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 SUMMARY 

 

Current advancements in nuclear reactor core design are pushing reactor cores 

towards greater heterogeneity in an attempt to make nuclear power more sustainable in 

terms of fuel utilization and long-term disposal needs.  These new designs are now being 

limited by the accuracy of the core simulators/methods.  Increasing attention has been 

given to full core transport as the flux module in future core simulators.  However, the 

current transport methods, due to their significant memory and computational time 

requirements, are not practical for whole core calculations. While most researchers are 

working on developing new acceleration and phase space parallelization techniques for 

the current fine mesh transport methods, this dissertation focuses on the development of a 

practical heterogeneous coarse mesh transport method. 

In this thesis, a heterogeneous coarse mesh transport method is extended from two 

to three dimensions in Cartesian geometry and new techniques are developed to improve 

the computational efficiency.  The high efficiency is achieved by decoupling the problem 

into a series of fixed source calculations in smaller sub-volume elements (e.g. coarse 

meshes). This decoupling leads to shifting the computation time to a priori calculations 

of response functions in unique sub-volumes in the system. Therefore, the method is well 

suited for large problems with repeated geometry such as those found in nuclear reactor 

cores.  Response functions can be generated with any suitable 3-D fine-mesh 

(deterministic or stochastic) code. A stochastic method is selected in this dissertation due 

to its high fidelity, continuous energy and arbitrary geometry capabilities.  Previous work 

in two dimensions used discrete polynomial expansions that are well suited for treating 

discrete variables used in pure deterministic transport methods.  We use continuous 

Legendre polynomial expansions since stochastic methods treat the phase space variables 

continuously.  



 xiv

The coarse mesh method was initially implemented in two dimensions and tested 

on benchmark problems of varying size and type.  In all cases, low order surface current 

expansions were sufficient to obtain accurate core eigenvalue and pin power distribution 

results. The three dimension implementation was tested on the C5G7 MOX benchmark 

problem.  Once again, the results proved to be very accurate with low order expansions.
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CHAPTER 1 

 

INTRODUCTION 

1.1 Overview and Motivations 

The calculation of the neutron flux or fission density distribution in a large 

heterogeneous eigenvalue problem has been traditionally accomplished using low-order 

methods, such as diffusion theory, that treat large-scale systems composed of 

homogeneous coarse-meshes (Lawrence, 1986). In reactor applications, a coarse-mesh 

typically corresponds to a single fuel assembly that is characterized by homogeneous 

cross-sections and flux discontinuity factors (Smith, 1986). The homogenized parameters 

are generated from a high-order fine-mesh calculation of the heterogeneous assembly. In 

large part, the accuracy of this approach is limited by the extent to which the boundary 

condition used in the fine-mesh calculation (typically full specular reflection) accurately 

represents the true relationship between the fluxes entering and exiting the coarse-mesh 

in the global system. 

The motivation for the two-phase approach just described is to avoid the 

computational expense of generating global fine-mesh solutions. The ever-increasing 

processing speed and memory capacity of computers have motivated the development of 

many high-order methods aimed at tackling large transport problems. A great deal of 

research has been dedicated to developing techniques for accelerating existing fine-mesh 

methods, as well as schemes that take advantage of parallel processing systems. Much 

less attention has been dedicated to developing high-order coarse-mesh methods that 

avoid homogenization. Such methods have the potential of offering an accurate means for 

solving large heterogeneous problems without consuming the vast computational 

resources required to generate fine-mesh solutions. 
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Several transport methods have been developed in which an individual coarse-

mesh is characterized by a set of response functions (Villarino and Stamm’ler, 1984; 

Rathkopf and Martin, 1986; Moriwaki et al., 1999; Ilas and Rahnema, 2003). The 

response functions are computed as fine-mesh solutions to fixed source problems with in-

volume sources and/or incident flux boundary conditions. An estimate of the global flux 

distribution is constructed from a linear superposition of the individual responses. In this 

way, the approximations associated with homogenization schemes are avoided. These 

methods have been shown to provide extremely accurate results for highly-heterogeneous 

1-D problems.  

 The major obstacle to extending these methods to higher-dimensional geometries 

is the sheer number of response functions required to characterize a coarse-mesh in such 

problems. Recently, Mosher and Rahnema (2005) generalized the response expansion of 

Ilas and Rahnema (2003) to facilitate a practical extension of the method to 2-D. This 

new method admits a broad class of functions that are responses to an orthogonal set of 

incident flux boundary conditions. Certain sets of functions are extremely efficient in that 

they allow the response expansion to be truncated at a low order while maintaining an 

accurate characterization of the integrated response, which vastly increases computational 

efficiency. This represents a significant step toward developing an accurate and efficient 

coarse-mesh method for higher-dimensional problems. The extension of the coarse mesh 

transport method to 3-D is a necessity for whole core reactor calculations. 

1.2 Literature Review 

The literature review is divided into three main sections.  The first section reviews 

the current state-of-the-art method used in reactor calculations.  The second section 

reviews methods relevant to the coarse mesh transport method, while the third section 

deals with the available benchmark problems found in the literature. 
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1.2.1 Nodal Diffusion Method/GET 

The nodal diffusion method is the current state-of-the-art methodology for whole 

core three dimensional calculations (Lawrence, 1986).  This method is essentially a two-

step approach: 1) single bundle infinite lattice transport calculations, followed by, 2) 

whole core three dimensional nodal diffusion calculations.  The single bundle 

calculations are used to compute few energy group node homogenized parameters for use 

in the nodal diffusion calculations.  

1.2.1.1 Generalized Equivalence Theory 

The accuracy of the nodal diffusion method relies heavily on the homogenization 

techniques used.  The most advance method is called the generalized equivalence theory 

(GET) that goes beyond simple spatial homogenization based on reaction rates 

preservation as shown in the following equation. 

 
∫

∫
Φ

ΦΣ

=Σ

i

i

V
g

V
gg

g
r

rr

)(ˆ

)()(
ˆ

α

α  (1.1) 

where gαΣ is the macroscopic cross-section of reaction type α within energy group g, 

gΦ is the neutron flux in group g and the symbol “^” indicates that the parameters are 

homogenized.  The GET also introduces additional homogenization parameters called 

“discontinuity factors” (Smith, 1986) defined by 

 
kl
g

kl
gkl

gf
Φ

Φ
= ˆ  (1.2) 

This expression allows the heterogeneous flux to be continuous across a node interface, 

denoted by the superscript kl, by letting the homogenous flux be discontinuous.  The 

addition of discontinuity factors has the added benefit of preserving the nodal leakage 

rates. 
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1.2.1.2 Nodal Diffusion Method 

 In the nodal diffusion method, the reactor is subdivided in non-overlapping nodes 

that usually correspond to fuel assemblies for which it is assumed that homogenized 

parameters defined in the previous section are known.  The diffusion equations are then 

integrated over each node and the transverse integration procedure is used to compute the 

surface currents of the node in each direction.  This procedure reduces the three 

dimensional equation to three one dimensional equations by integrating the three 

dimensional equation in each of the two transverse directions.  The one-dimensional 

nodal fluxes are then approximated by polynomials or obtained analytically with different 

assumed shapes of the transverse leakages.  The equations are then solved iteratively and 

the multidimensional flux solution is constructed from the one-dimensional solutions. 

1.2.1.3 Accuracy 

Smith (1980) as shown that using GET in nodal diffusion calculations reproduces 

exactly node average reaction rates, node leakage rate and system eigenvalue when using 

the reference lattice cell solution to evaluate his homogenized parameters and 

discontinuity factors.  However, when performing a core calculation, the reference 

solution is certainly not known a priori.  The parameters of equations (1.1) and (1.2) are 

approximated from the single bundle infinite lattice calculation.  By using the infinite 

lattice fluxes, the parameters lose the effect produced by neighboring nodes of different 

composition making the nodal diffusion method unsuitable for very heterogeneous 

problems. 

1.2.1.4 Pin Power Reconstruction 

In reactor calculations, predicting the power of each individual pin is most often 

desired.  The difficulty with the nodal diffusion method is that the solution provides only 

nodal averaged fluxes and reaction rates.  Reconstruction techniques must be used to 
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relate the node averaged solution to the heterogeneities of the true problem.  The simplest 

technique is to compute form factors from the single bundle infinite lattice calculations 

that modulate the smooth nodal flux shape to the heterogeneous assembly flux shape.  

This method is quite inaccurate for heterogeneous cores.  An alternative is to perform 

single bundle calculations using boundary conditions obtained from the nodal solution 

and compute the form factors.  This approach is quite accurate but becomes quite 

expensive when pin powers for many assemblies are sought.  A less expensive approach 

of flux reconstruction is to match assembly flux shapes to polynomial flux shapes whose 

coefficients are determined by forcing conservation of node averaged, surface averaged 

and corner point fluxes obtained from the nodal solution. 

1.2.2 Nodal Transport Methods 

 This section reviews methods considered similar to the heterogeneous coarse 

mesh transport method, mainly the interface current method and the response matrix 

method.  These two methods were explored in the early 1970’s (Leonard, 1975) for 

lattice calculations but eventually gave way to fine-mesh deterministic methods as 

computer power became more accessible.  Both methods used the spatially flat cosine 

current approximation extensively. 

1.2.1.1 Interface Current Method 

In the interface current method, the domain is divided into a number of cells.  A 

simplified model is then used to describe the transfer between these cells, the most 

common one being the cosine current approximation.  The solution within a single sub-

region can be computed with any method, such as discrete-ordinates, Monte Carlo or 

spherical harmonics (Leonard, 1975), it is however more common to derive this method 

in terms of the collision probability method (Sanchez and McCormick, 1982). 
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1.2.1.1.1 Theory 

For a system comprised of N regions within which the flux is assumed constant, 

the multigroup integral transport equation, as done by Pryor and Graves (1973), can be 

written as: 

 ( ) ( ) ( )∑
=

=
N

n

gg
VV

gg
ntrn nSnnPnV

1'
, '',φσ  (1.3) 

where Vn is the volume of region n, g is the energy group indicator, g
ntr ,σ  is the 

macroscopic transport cross-section of region n, ( )ngφ  is the average neutron flux in 

region m, ( )',nnP g
VV  is the neutron first flight collision probability from region n’ to 

region n and ( )'nS g  is the neutron source in region n given by: 

 ( ) ( ) g
n

g
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ggsn

g Sn
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'
',

'
',' '' +⎟⎟

⎠

⎞
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→ φυσ
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σ  (1.4) 

In the above equation, sσ is the scattering cross-section, χ is the fission energy spectrum, 

υ  is the mean number of fission neutrons produced and fσ  is the fission cross-section.  

The external source in region n’ is represented by g
nS ' .  The parameter k represents the 

multiplication factor of the system and is 1 in the presence of an external source. 

The interface current method divides the domain into a collection of contiguous 

cells.  The domain is thus divided into M coarse meshes each composed of Rm regions.  

The Rm regions of all M meshes correspond to the N regions of the large problem, which 

is shown by the following equivalence. 

 ∑∑∑∑
= ===
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 (1.5) 

By assuming a phase space shape for the currents entering mesh m, such as the 

flat cosine-current approximation, the coupling in equation (1.3) can then be reduced to: 

 ( ) ( ) ( ) ( ) ( )∑∑
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where Vm,r is the volume of region r in mesh m, ( )srPVS ,  is the neutron first flight 

collision probability from face s to region r, where the sum is over all surfaces ( m∂ ) of 

mesh m and ( )sJ mIN ,  is the current entering mesh m from surface s.  An expression for 

evaluating the outgoing current, ( )sJ mOUT , , from mesh m can also be written. 

 ( ) ( ) ( ) ( )∑∑
∂∈=

+=
ms

g
mIN

g
SS

R

r

g
m

g
SV

g
mOUT sJssPrSrsPsJ

m

'
,

1'
, '','',)(  (1.7) 

where ( )', rsPSV  is the probability that a neutron originating in region r’ will pass through 

surface s without making a collision and ( )', ssPSS  is the probability that a neutron 

entering through surface s’ will exit mesh m through surface s without having made a 

collision. 

Once all first-flight collision probabilities are computed, the large system can be 

solved by a straightforward mesh-by-mesh iterative procedure over the scalar fluxes and 

interface currents.  In the case the system is critical (no external source), the eigenvalue 

(k) that appears in equation (1.4) can be solved by factoring out k from the solution of 

these equations. 

 ( ) ( ) ( ) ( ) K+++= n
k

n
k

nn gggg
2210

11 φφφφ  (1.8) 

and 

 ( ) ( ) ( ) ( ) K+++= sJ
k

sJ
k

sJsJ g
OUT

g
OUT

g
OUT

g
OUT 2,21,0,

11  (1.9) 

where g
iφ and g

iOUTJ , are the flux and currents for the ith neutron generation, respectively.  

The 0th generation flux and current are the solution to equations (1.6) and (1.7) with no 

fission sources, while all other generations are the solution to the same equations with a 

fission source but with no incoming current. 
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1.2.1.2 Response Matrix Method 

In the response matrix method (Leonard, 1975; Lewis and Miller, 1993), the 

system that needs to be solved is also divided into a number of local subunits.  Very 

similarly, each of these subunits is solved locally by a transport or diffusion method to 

obtain the response of outgoing neutron current to any given input.  The unknowns are 

thus the interface currents of each subunit.  Once these are known, any other quantity of 

interest may be evaluated within each subunit (e.g. reaction rates).  The response matrix 

equations can be obtained from the interface current derivation previously described.  To 

facilitate this demonstration, the interface current equations are rewritten in matrix form. 

 INVSVVtr JPFPV +=ΦΣ  (1.10) 

and 

 INSSSVOUT JPFPJ +=  (1.11) 

with 

 S
k

V
VF f

s +
ΦΣ

+ΦΣ=  (1.12) 

where Φ  and OUTINJ /  are the flux and current vectors for all meshes and energy group, 

respectively, V is the volume matrix, trΣ  is the transport cross-section matrix, sΣ  is the 

scattering matrix, fΣ is the fission matrix that includes the mean number of neutrons 

produced by fission and the energy spectrum of the fission neutrons, VVP  is the volume to 

volume first flight collision probability matrix, VSP  is the volume to surface without 

collision probability matrix, SSP is the surface to surface without collision probability 

matrix, SVP  is the surface to volume first flight collision probability matrix and k is the 

system multiplication factor.  Once again, it should be noted that the parameter k of 

equation (1.12) only appears when solving a critical system, implying that the source 
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vector S is set to zero.  The source term, F, of equation (1.12) is replaced in equation 

(1.10), then the flux, Φ , is solved for in the ensuing equation. 
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The term for the flux is then used in equation (1.11) to obtain the common response 

matrix equation. 

 ( ) SJkRJ INOUT
~+=  (1.14) 

where R is the response matrix corresponding to 
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The external source is expressed as 

 ( ) SP
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VPVVPS VV
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To solve this system in its matrix form, another relation is introduced that connects the 

currents leaving one mesh to the currents entering the neighboring mesh.    This relation 

is expressed in terms of the connectivity matrix C that also includes the system boundary 

conditions. 

 OUTIN CJJ =  (1.17) 

1.2.1.2.1 Criticality Calculation 

Replacing this relation in equation (1.14), for a critical system (S = 0), yields an 

eigenvalue equation 

 ( ) OUTOUT CJkRJ λ=  (1.18) 
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where l is known as the current eigenvalue (Pryor and Graves, 1973).  This system can 

be solved by using standard numerical methods.  The matrix R(k) is computed for a 

certain value of k, the system multiplication factor, which is adjusted until the current 

eigenvalue is equal to unity (Pryor and Graves, 1973).  As done in the interface current 

method, the multiplication factor k can be factored out of the response matrix. 

 ( ) K+++= 2210
11 R
k

R
k

RkR  (1.19) 

where the matrices Ri are independent of the parameter k and can thus be precomputed 

for each unique mesh. 

1.2.1.2.2 External Source 

Replacing equation (1.17) in equation (1.14), with an external source (S ∫ 0 and   

k = 1), the following relation is obtained: 

 SRCJJ OUTOUT
~+=  (1.20) 

or 

 ( ) SRCIJOUT
~1 ⋅−= −  (1.21) 

where I is the identity matrix.  This equation system can be solved by direct Gauss 

elimination if the system is fairly small or iteratively for larger problems. 

1.2.1.3 Cosine Current Approximation 

This approximation is based on the assumption that the flux is isotropic in the two 

angular half spaces at each region interface (Mohanakrishnan, 1981).  The cosine current 

approximation has proven to work quite well for heavy water reactors (Honeck, 1971; 

Forget et al, 2004b) as well as for tightly coupled light water reactors (Leonard et al, 

1971; Forget et al, 2004a; Forget et al, 2004c).  However, this optimistic representation 

of the interface currents can become quite inaccurate in some circumstances, especially in 

two or three dimensions.  Leonard (1975) illustrated this setback of the cosine current 
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approximation by assuming a system of constant mesh size a in which very few 

scattering events occur, 1<<Σ as , as represented in Figure 1.1. 

 

Figure 1.1: Reflection of Cosine-Current Approximation 
 
 
 

For illustration purposes, neutrons produced from the source point are entering the 

boundary only on the south face of the middle mesh.  The actual neutron flight paths are 

illustrated by the solid lines, while the cosine redistributed flight paths are represented by 

the dashed lines.  In the true flight path, a negligible fraction of neutrons will be reflected 

through the originating boundary, however, with the cosine current approximation, too 

many neutrons are reflected and not nearly enough are transmitted.  If the mesh size goes 

to zero, the cosine current approximation makes the neutrons isotropically reflected at 

their entry point regardless of the material properties or the entering angular distribution.  

The neutrons are thus refracted when one uses the cosine current approximation. 

The errors due to cosine current approximation can thus be reduced over all 

energy groups by using a mesh size as large as fast neutron mean free path.  However, 

another very common approximation is to assume that the spatial distribution of the 

interface current is uniformly distributed (spatially flat).  This approximation requires 

a
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meshes as small as the thermal neutron mean free path.  Obviously, these conflicting 

requirements cannot be met.  As an alternative, higher order angular or spatial modes 

must be considered. 

1.2.1.4 Higher Order Modes 

Anderson and Honeck (1973) developed an interface-current technique in two-

dimension that expanded the angular component of the half-space angular fluxes in a PN 

series (Legendre polynomial expansion).  This gave a more accurate representation of the 

interface currents as compared to the cosine current approximation.  This method is still 

limited by the flat-current approximation and couples only homogeneous regions but 

shows improvement in the angular treatment. 

Mueller and Wagner (1972) developed a three-dimensional interface current 

method that expanded the collision probabilities along the spatial variables in a PN series.  

In this method, the expansion is limited to first order and the P1 component is chosen 

proportional to the gradient of the source in the direction of travel of the neutrons.  This 

ratio is approximated by the ratios of in and out-currents at opposite sides of the cell.  

This method showed great improvement over diffusion theory but still uses cosine-

current distribution, which limits the accuracy of the angular component.  This method 

considered (coupled) homogeneous regions only. 

Griesheimer and Martin (2003) developed a Monte Carlo based angular flux 

response function method that discarded the use of cosine-current approximation in favor 

of a double Legendre polynomial expansion of the cosine of the polar angle.  The 1-D 

results accurately predicted the magnitude and angular distribution of the neutron current 

at the interfaces. The method however was not used or extended for solving the transport 

equation in a reactor core.  
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1.2.1.5 Additional Literature Review 

 This section covers additional methods closely related to the heterogeneous coarse 

mesh transport method.  The last sub-section dealing with the variational heterogeneous 

coarse mesh transport method is reviewed in greater detail because it is the basis for the 

work developed in this thesis. 

1.2.1.5.1 Use of Monte Carlo in Response Matrix Method 

Pryor and Graves (1973) proposed a homogeneous response matrix method for 

treating 2-D reactor configurations.  Their method was based on integral transport 

methods through the use of collision probabilities which required a great deal of region 

subdivision to obtain accurate results.  More subdivision invariably meant more 

computational time.  To overcome this they performed a Monte Carlo calculation for the 

0th generation of neutrons (neutrons that do not come from fission) in each homogeneous 

node and combined it with the collision probability calculations for the neutrons born 

from fission.  This method showed good computational efficiency and accuracy, but it is 

once again limited by the cosine-current angular distribution and also by the flat flux 

approximation along each segment. 

McDaniel (1975) also derived a two-dimensional response matrix method that 

used Monte Carlo calculations.  A Monte Carlo code was used to compute the water 

response matrix.  Six different types of responses were computed using a Monte Carlo 

process: reflection, side transmission, transmission, rod return, water escape and rod 

capture.  The rest of the system response matrices were computed from the collision 

probability method.  This method also showed great promise but is also limited by the 

same constraint as the previous ones: cosine-current and flat-current approximation.  The 

method was also based on homogeneous nodes, which greatly limits its application and 

practicability in reactor calculations. Most of these methods were developed for solving 

lattice (fuel assembly) problems. 
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Moriwaki, Ishii, Maruyama and Aoyama (1999) developed a direct method of 

calculating response matrices using a Monte Carlo technique.  The response matrix is 

decomposed in sub-matrices representing the transmission probability, the neighbor-

induced production probability, the self-induced production probability and the escape 

probability.  Reasonable accuracy was achieved for simplified 2-D BWR benchmarks, 

but the use of flat-flux approximation and cosine-current distribution limits the 

practicality of this method to more realistic problems. 

1.2.1.5.2 Heterogeneous Response Matrix Methods 

Villarino and Stamm’ler (1984) developed a 1-D heterogeneous coarse mesh 

method based on the interface current method, which they referred to as the 

Heterogeneous Response Method (HRM).  Each cell’s response was computed from 

collision probabilities and was coupled with neighboring cells through the cosine-current 

approximation.  The 1-D results were very promising. 

Rathkopf and Martin (1986) developed a finite element response matrix method 

for the solution of the neutron transport equation.  This method computes response 

matrices for a heterogeneous coarse mesh by means of the finite element method in both 

space and angle.  The one dimensional results were very promising and found to be more 

efficient than the conventional finite element method.  Better efficiency was said to be 

obtained for the two-dimensional extension. No results were found in the literature. 

1.2.1.5.3 Asymptotic Methods 

Zhang et al. (1995 and 1997) developed a multiple-scale asymptotic expansion 

method which, starting from either the diffusion or transport equation, results in a 

systematic homogenization theory and a self-consistent local flux reconstruction 

procedure. The two spatial scales employed are similar to those previously used by 

Larsen (1975 and 1976) in a multi-scale approach for heterogeneous media comprised of 
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exactly periodic pin cells. The method developed by Zhang et al. (1997) is based on the 

assumption that the core is an array of near-periodic fuel assemblies. Results presented by 

Zhang et al. show significant improvement over generalized equivalence theory, which is 

the current state-of-the-art homogenization technique for core calculations.  Despite the 

encouraging results, there are two significant drawbacks to the multi-scale method as 

described by the authors. First, the authors state that the iterative solution procedure will 

diverge without very tight convergence criteria (10-10 to 10-12) for the forward and adjoint 

eigenvalue and auxiliary fixed source calculations. Second, the method is currently 

restricted to the one-group approximation, which is not sufficient for modern reactor 

calculations. The authors (Zhang et al., 1995 and 1997) believe that it is possible to 

extend their method to multigroup equations by building on the ideas presented by 

Pomraning (1990). 

1.2.1.5.4 Subelement Variational Nodal Method 

Palmiotti et al (1995) developed a code called VARIANT that solved the 

multigroup even-parity transport equation using a variational nodal method.  The original 

method solved large systems using transport theory over homogenized nodes that are 

coupled together by odd-parity Lagrange multipliers.  Despite the use of high-order 

angular approximations, doubt remained in the accuracy of the results caused by the 

homogenization procedures and the subsequent dehomogenization needed to reconstruct 

fuel pin powers.  Smith et al (2003) proposed the subelement variational nodal method 

that permits the coupling of heterogeneous nodes in two-dimensions.  The nodes of the 

test problems consisted of a single fuel pin cell with no fuel-coolant homogenization.  

Possibilities of using larger nodes (e.g. several pin cells) are mentioned as a way of 

achieving large gains in computational efficiency by building the response matrix on 

parallel computers.  It was also concluded that very high order spherical harmonic 

approximations were required to obtain accurate eigenvalue and pin power solutions. 
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1.2.1.5.5 Heterogenenous Coarse Mesh Transport 

A variational heterogeneous coarse-mesh transport method (Ilas, 2001; Ilas and 

Rahnema, 2003) was previously developed and implemented for one-dimensional 

discrete ordinates problems. The method is based on a coarse-mesh response formulation 

in which the fission source distribution is treated implicitly. This is accomplished by 

considering a fission term in the fixed source equations used to calculate response 

functions. Consequently, only responses to incident fluxes are required. This leads to a 

significant improvement in overall efficiency over similar methods that require both 

incident flux and in-volume source responses. In addition, this formulation makes no 

approximation regarding the shape of the fission source distribution, which is necessary 

with methods that employ in-volume responses. 

As part of a NERI project (Rahnema, 2002), the 1-D method was extended to 

two-dimensional Cartesian geometry by Mosher and Rahnema (Mosher and Rahnema, 

2003; Mosher, 2004; Mosher and Rahnema, 2005). A broad class of functions were 

identified that can be used to characterize the response of a coarse-mesh to an arbitrary 

incident flux distribution. For example, the surface Green’s functions that were employed 

in the original 1-D method are a special case of the general class. By truncating the 

response expansion at a low order, the scope of the pre-computations (i.e., response 

function calculations) is greatly reduced. However, not all sets of response functions will 

lead to highly accurate coarse-mesh calculations with low order truncation. 

This new coarse-mesh method was implemented in 1-D and 2-D geometry using a 

finite-difference, multigroup, discrete ordinates response function generator.  An efficient 

set of response functions was generated using orthogonal boundary conditions 

constructed from the Discrete Legendre Polynomials (Neuman, 1974; Mosher, 2004; 

Mosher and Rahnema, 2003). Several simplified one and two-dimensional heterogeneous 

light water reactor benchmark problems were studied. Relatively low-order response 

expansions were used to generate highly accurate results using both the variational and 
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non-variational methods.  However, the variational technique requires adjoint response 

functions which double the pre-computational effort. The expansion order was found to 

have a far more significant impact on the accuracy of the results than the type of method. 

The variational techniques provide better accuracy, but at substantially higher 

computational costs.  It was also found that the flexibility and accuracy of the coarse 

mesh method were highly dependant on the fine mesh method used to generate the 

response functions and on the choice of orthogonal boundary condition. 

1.2.3 Benchmark review 

This section covers the most relevant and available benchmark problems in 2-D 

and 3-D commonly used to assess code performance in nuclear reactor analysis. Only the 

first benchmark is described thoroughly because it is the only one considered to be a 

reasonable test for the heterogeneous coarse mesh transport method.  The others are 

presented mainly as a review of existing problems and to emphasize the need for more 

complex test cases. 

1.2.3.1 2D/3D MOX Fuel Assembly Benchmark 

This is a very recent benchmark problem sponsored by the OECD/NEA Expert 

Group on 3-D Radiation Transport Benchmarks.  The emphasis of this problem is on 

transport calculations without spatial homogenization.  It offers a 2-D and 3-D problem 

(Lewis, 2003). The 3-D problem is extended to include configurations with inserted 

control rods (Lewis, 2005).  The benchmark problem is composed of four PWR fuel 

assemblies (2 sets of two identical fuel assemblies) each with 264 fuels pins, 24 guide 

tubes (or control rods) and one fission chamber explicitly represented.  The two uranium 

oxide (UO2) assemblies have only one type of fuel and the mixed oxide (MOX) assembly 

is composed of fuel rods with three different enrichments.  A seven group cross-section 

library is given for each material.  In the 2-D configuration, presented in Figure 1.2, each 
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fuel assembly measures 21.42 cm per side.  Specular reflective boundary conditions are 

used on the left and top boundaries. A vacuum boundary condition is assumed on the 

other external boundaries.  The fuel pin pitch is 1.26 cm and the radius of the fuel pin is 

0.54 cm.  In Figure 1.2, the upper left and lower right fuel assemblies are UO2 and the 

other two are MOX. 

In the 3-D configurations, the fuel assemblies are surrounded on three sides by a 

reflector region with vacuum boundary conditions, while the other three sides have 

specular reflective boundary conditions.  In the original 3-D case, as shown in Figure 1.3, 

the height of the core including the water reflector is 192.78 cm.  Figure 1.3 is a 

simplified illustration of the benchmark.  The fuel assemblies of the 3-D case are 

identical as the ones shown in Figure 1.2. 

 

 

Figure 1.2: 2-D C5G7 MOX Benchmark 
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Figure 1.3: 3-D C5G7 MOX Benchmark 

 

In the extended 3-D cases, the height of the geometry is reduced to 64.26 cm to 

reduce the memory requirements and computational times needed to solve the 

benchmark.  The presence of control rods is also added as an additional element of 

complexity for the problems.  In the first configuration, named Unrodded, control rod 

clusters (composed of 24 control rods) are inserted in the water reflector above the fuel 

assemblies as indicated by Figure 1.4. 
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Figure 1.4: Unrodded Configuration of the 3-D Extended Case 
C5G7 Benchmark 

 
 
 
 
 In the second configuration, named Rodded A, a control rod cluster is inserted 1/3 

of the way into the corner UO2 fuel assembly as illustrated in Figure 1.5. 

 

 

Figure 1.5: Rodded A Configuration of the 3-D Extended Case 
C5G7 Benchmark 
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The last configuration, Rodded B, offers even more complexity.  One control rod 

cluster is inserted 2/3 of the way in the corner UO2 assembly and control rod clusters are 

inserted 1/3 of the way in both MOX fuel assemblies as shown in Figure 1.6. 

 

 

Figure 1.6: Rodded B Configuration of the 3-D Extended Case 
C5G7 Benchmark 

 
 

1.2.3.2 The Henry-Worley Benchmark Problem 

The Henry-Worley benchmark problem (Smith, 1980) is an idealized 2-D BWR 

representation of 25 fuel assemblies of 8 cm widths with an 8 cm reflector region 

surrounding the core.  The fuel pins are modeled as being homogenous within the pin 

cell.  The only strong heterogeneity in the problem is the presence of the control blades. 

1.2.3.3 The CISE BWR Benchmark Problem 

The CISE 2-D benchmark problem (Smith, 1980) is also an idealized version of a 

BWR but presents a little more heterogeneity, representative of an actual BWR, than the 

previous benchmark.  It consists of 208 fuel assemblies of 15 cm widths surrounded by a 
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15 cm water reflector.  The fuel pins are once again homogenized within the fuel cell but 

all control blades and water gaps are treated explicitly. 

1.2.3.4 The HAFAS BWR Benchmark Problem 

The HAFAS problem (Smith, 1980) presents most of the heterogeneities present 

in an actual BWR reactor.  It consists of 308 fuel assemblies of 15.31 cm widths 

surrounded by a 15.31 cm water reflector.  The fuel pins are presented explicitly and the 

fuel enrichment is also modeled.  The presence of 16 control blades and assemblies with 

different void conditions (0%, 40%, 70%) also add to the complexity of this problem. 

1.2.3.5 Other benchmarks 

There exists other two-dimensional and three dimensional benchmarks for 

evaluating transport theory models such as the 2D/3D IAEA benchmark problem 

(Misfeldt, 1975) or the 3D Neutron Transport benchmark problem (Takeda and Ikeda, 

1991).  However these benchmarks do not offer a great deal of complexity and are not 

useful for evaluating a whole core transport method. 

1.3 Objectives 

The goal of this thesis is to develop an efficient three-dimensional whole core 

neutronics method/tool which is based solely on transport theory, does not de-couple the 

transport phenomena between coarse meshes (e.g., assemblies), does not rely on 

homogenization or discontinuity factors, contains an accurate self-contained flux 

reconstruction procedure and does not restrict the size of the coarse meshes.  This method 

will thus eliminate the errors associated with spatial homogenization and diffusion 

theory. The new method must be a flexible tool for a variety of reactor designs and 

spectra.  It must also be substantially faster than fine mesh transport method. Another 

goal of this thesis is to develop new and realistic numerical benchmark problems for 

evaluating transport methods. 
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1.4 Organization 

The coarse mesh transport method is developed in Chapter 2.  This includes the 

description of (1) a general formulation for treating eigenvalue and external source 

problems simultaneously (2) the main approximations made in solving the transport 

equation and (3) the concept of a response function. Two different techniques for 

evaluating the eigenvalue are also presented.  Chapter 3 describes a special case of the 

method in which the response functions are generated from Monte Carlo calculations.  

All the aspects related to choosing Monte Carlo methods (e.g. sampling, uncertainties, 

tallying …) are explained in this chapter.  Segmentation and spectral mapping are 

introduced as ways of enhancing the phase space approximation.  The computer code 

COMET (Coarse Mesh Transport) that was developed for this research is also briefly 

presented.  Even thought the main objective is to perform three dimensional transport 

calculations, a great deal of work was initially performed in two dimensions to fully 

develop the method.  Chapter 4 contains two-dimensional results obtained in a variety of 

benchmark problems based on different reactor types (e.g. PWR, BWR and CANDU).  In 

Chapter 5, the three dimensional results are presented, while Chapter 6 offers concluding 

remarks and recommendations for future work.  Detailed information related to Chapters 

4 and 5 are found in Appendices A and B.  These include the description of the 

benchmark problems, cross-sections (or atom densities), if available, and additional 

results. 
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CHAPTER 2 

 

METHODOLOGY 

In this section, a general method for solving large heterogeneous problems is 

described.  The general ideas of this method for eigenvalue calculations were previously 

introduced by Mosher and Rahnema (2005).  The following is a more general description 

allowing both source and eigenvalue problems to be solved.  It also offers a new 

eigenvalue evaluation technique and introduces the node coupling through partial angular 

currents. 

2.1 Domain Decomposition 

The decomposition starts by assuming a large heterogeneous system of volume V 

for which the angular flux distribution of neutral particles is sought.  This can be obtained 

by solving the transport equation expressed here in its general form. 
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with an arbitrary boundary condition 

 ( ) ( )','ˆ,,ˆ, ErBEr bb Ω=Ω rr ψψ  where 0ˆ. <Ωnr  and 0'ˆ. >Ωnr  and Vrb ∂∈r  (2.2) 

where ψ is the angular flux distribution of the system, Q is the source term and k is the 

system eigenvalue (only present if Q = 0, otherwise equals one).  This eigenvalue is the 

largest positive eigenvalue of equation (2.1) and corresponds to the fundamental mode of 

the transport equation.  This largest eigenvalue is defined physically as the ratio of 

neutrons in successive generations, where a fission reaction is the event separating 

generations.  The external boundary of the system is denoted by V∂ , the normal vector 
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nr is chosen as the outward unit vector with respect to V∂ , and B is the general boundary 

condition operator obtained from the redistribution kernel as defined by Gheorghiu and 

Rahnema (1998).  The phase-space variables are defined by ( )Er ,ˆ,Ωr  for the space, angle 

and energy respectively.  The macroscopic cross-sections are denoted by s with 

subscripts t, s and f representing the total cross-section, the scattering cross-section and 

the fission cross-section, respectively.  The fission spectrum is denoted by the function c. 

The system is decomposed in a set of N non-overlapping sub-volume elements Vi 

(e.g. coarse mesh), within which, the angular flux distribution can be expressed by the 

following relation. 
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with the following boundary condition 

 ( ) ( )ErEr jijjiiji ,ˆ,,ˆ, Ω=Ω rr ψψ  (2.4) 

where { }jiij VVr ∩∈r  for all Vj bounding Vi and jjii nn Ω⋅=Ω⋅ ˆˆ rr with 0ˆ. <Ω iinr  and 

ˆ. 0j jn Ω >r .  Also, iψ  is the angular flux within the sub-volume element Vi and Vj 

represents all the sub-volume elements sharing a common boundary with Vi.  It should 

also be noted that k is still the system eigenvalue and that Qi is the source within volume 

element Vi.  Equation (2.3) has a unique solution in a vacuum as long as coarse mesh i 

remains sub-critical (Bell and Glasstone, 1970).  In some cases (codes), it is more 

convenient to use a boundary condition that is in terms of angular current rather than 

angular flux. Multiply Equation (2.4) by ˆ
i in ⋅Ωr  and use jjii nn Ω⋅=Ω⋅ ˆˆ rr , then the 

boundary condition (2.4) becomes  
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In the above equation, Ji is the angular partial current of Vi and Ji is the angular partial 

current of Vj.  This new formulation of the sub-volume element boundary condition 

makes this approach more suitable to the Monte Carlo adaptation of the method 

introduced in the next section. 

In the particular case where Vi shares a boundary with the system, the boundary 

condition takes the following form: 

 ( ) ( )',ˆ,,ˆ, ' ErBEr iibiiibi Ω=Ω rr ψψ  (2.6) 

where { }VVr iib ∂∩∈r and 'ˆˆ
iiii nn Ω⋅=Ω⋅ rr with 0ˆ. <Ω iinr and 0ˆ. ' >Ω iinr . Following the 

same procedure for deriving Eq. (2.5), Eq. (2.6) can be reformulated in terms of the 

angular current as 
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2.1.1 Eigenvalue/External Source Calculations 

Upon applying the decomposition of the previous section, a series of N fixed 

source problems, as shown in equation (2.3), are obtained which are entirely equivalent to 

solving the problem of equation (2.1).  The immediate benefits of such decomposition 

might not appear obvious at first hand.  However, solving the transport equation directly 

on large heterogeneous systems (e.g. nuclear reactor) is a very difficult task.  Most 

computational methods quickly run into memory and processor limitations and as a result 

end up simplifying the problem through spatial and spectral homogenization.  On the 

other hand such methods have proven to be very accurate and efficient on smaller fixed 

source or eigenvalue problems (e.g. fuel assembly).  Thus, combining the efficiency and 
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accuracy of current methods on small fixed source problems with the domain 

decomposition could lead to efficient and accurate solutions of large heterogeneous 

systems.  When performing eigenvalue calculations, a two level iterative process is 

introduced: 1) inner iterations on the angular flux (or current) on the boundaries of the 

sub-volume elements, and 2) outer iterations on the system eigenvalue.  For fixed source 

calculations, the outer iteration disappears 

2.2 Considerations for Eigenvalue Mode 

 This section deals with issues relevant only to eigenvalue calculations.  Even 

thought fixed source problems are not considered in this thesis, similar considerations are 

discussed in Section 2.3. 

2.2.1 Implicit Treatment of the Fission Source 

 The implicit treatment of the fission source (Ilas and Rahnema, 2003; Mosher and 

Rahnema, 2005) is the main difference between the coarse mesh transport method and 

conventional response matrix or interface currents methods.  In the previous methods, 

described in Section 1.2.2, the fission source is treated explicitly, thus requiring surface 

to surface, surface to volume (where fission may occur), volume to surface and volume to 

volume first-flight collision probabilities.  They also require an approximation in terms of 

the number of neutron generations that are tracked. The coarse mesh transport method 

treats the fission source implicitly meaning that the neutron transport equation is solved 

over a coarse mesh in which the fission source is scaled by the core eigenvalue, as shown 

in equations (2.3) and (2.4). In this case, only surface to surface calculations need to be 

performed.  Outer iterations are thus performed directly on the eigenvalue instead of the 

fission source. This leads to a significant improvement in terms of overall efficiency.  In 

addition, this formulation makes no approximation regarding the shape of the fission 

source distribution and with the number of neutron generations, which is necessary with 
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methods that employ in-volume responses.  However, with the implicit source treatment, 

the magnitude of the source has to be controlled by the incident flux in the local fixed 

source calculation, thus requiring an external normalization in order to converge on the 

global system solution. 

2.2.2 Inner Iterations 

The process starts with an initial guess of k and a normalized uniform incoming 

angular flux (or current) estimate on the surface { }jiij VVr ∩∈r  e.g., the initial guess is 

given by  

 ( )
D

Eriji
1,ˆ,/ =Ω+− rψ  (2.8) 

The choice of the normalization factor (D) is arbitrary and thus remains unspecified for 

the time being. 

Starting from the initial guess, equation (2.3) is evaluated on Vi and the 

corresponding solution will give us information that we can transmit to neighboring sub-

volume elements.  For example, if the local fixed source problem is evaluated on Vj prior 

to Vi, then an immediate update to the boundary conditions of the Vi sub-volume element 

can be performed in accordance to equation (2.4).  Once all the volume elements have 

been solved, the surface angular fluxes (or currents) are renormalized as done in equation 

(2.9).  Both incoming and outgoing angular fluxes of all volume elements are normalized 

using the same normalization factor.  
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where l
iψ  is the unnormalized angular flux of inner iteration l and l

iψ~ is the normalized 

angular flux of that same inner iteration.  Also, lD is the normalization factor evaluated 

with the unnormalized angular fluxes. 
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The surface angular fluxes are then compared to the previous estimate to verify if 

convergence is achieved to a pre-defined criterion ψε . 

 ψε
ψ
ψ <−− 1~
~

1l

l

 (2.10) 

where l represents the inner iteration number.  The above equation ensures the 

convergence of the global flux, however this choice is not unique.  One may choose any 

other quantity of interest that is related to the solution.  

The process for updating local boundary conditions of equation (9) yields 

discontinuities in the angular flux (or current) on every coarse mesh interface and 

therefore does not satisfy the global boundary condition unless the normalization factor 

(D) equals unity, which will only happen when the system eigenvalue is fully converged.  

The discontinuities are present since the initial guess of the eignvlaue deviates from the 

system eigenvalue. They disappear as convergence in the eigenvalue and the flux is 

achieved. 

Asymmetry in a symmetric solution may be observed if care in sweeping scheme 

is not exercised. An arbitrary sweeping scheme when a symmetrical solution is expected 

may lead to small deviations from symmetry that are proportional to the convergence 

criteria.  Mosher (2004) illustrated the use of symmetrical sweeping schemes to avoid 

such inconsistencies, but this requires some user input.  A more classical and user-

independent approach, described in Section 2.2.4, is to use checkerboard sweeping 

patterns which will always lead to satisfactory results.  

2.2.3 Outer Iterations 

Upon the convergence of the inner iteration, two methods are used to evaluate the 

new system eigenvalue.  These are: the neutron balance method and the discontinuous 

normalization method.  The former was introduced by Mosher and Rahnema (2004), 

while the latter is an original concept developed in this thesis. 
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2.2.3.1 Neutron Balance Method 

Mosher and Rahnema (2004) presented the following formula to evaluate k. 

 
LdEdrdA

dEdrdF
k

+Ω

Ω
=
∫∫∫
∫∫∫

ˆ

ˆ
r

r

ψ

ψ
 (2.11) 

where the fission operator F is defined by  

 ( ) ( ) ( )∫ ∫
∞

ΩΩ=
0 4

','ˆ,',',
4
1 ErErvddEEr
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F f
rrrr ψσχ

π
ψ

π
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In the above equation A is the absorption operator  

 ( ) ( ) ( ) ( )∫ ∫
∞

ΩΩ→ΩΩ−Ω=
0 4

','ˆ,,ˆ','ˆ,'ˆ',ˆ,, ErEErddEErErA st
rrrr ψσψσψ

π

 (2.13) 

and L, the net leakage from the global system boundary, is defined as  

 ( ) dEdSdErnL ΩΩΩ⋅= ∫∫∫ ˆ,ˆ,ˆ rr ψ  (2.14) 

The convergence is achieved when the difference between the last two iterates is less than 

a predefined value kε . i.e.,   

 k
uu kk ε<− −1  (2.15) 

where u is the outer iteration index. . 

2.2.3.1.1 Algorithm 

 Figure 2.1 describes the algorithm used to evaluate the angular fluxes and the 

eigenvalue using the neutron balance method. 

 This simple algorithm shows explicitly the two levels of iterations: an outer 

iteration on the eigenvalue and an inner iteration on the surface angular fluxes.  The 

algorithm also introduces the possibility of pre-computing the response functions to form 

a database.  Ilas and Rahnema (2003) showed that excellent accuracy is obtained by pre-

computing a database as a function of eigenvalue chosen on a 10% grid.  The initial 
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guess, k0, of the eigenvalue is usually set to one if the global system represents an 

operating (critical) reactor. However, if a prior knowledge indicates that the system 

eigenvalue differs from one (e.g. sub-critical reactors), a different initial guess can be 

used. 

 
Algorithm Neutron Balance Method 
k = k0 ! initial guess of eigenvalue 
Initialize angular fluxes by equation (2.8) 
DO WHILE k isn’t converged 
 Obtain response functions for given k 

• Perform fixed source calculations for given k 
• Interpolation from a database 

DO WHILE ψ isn’t converged 
 Sweep on the surface angular fluxes 
 Normalize angular fluxes by equation (2.9) 
END DO 
Evaluate new eigenvalue with equation (2.10) 

  END DO  

Figure 2.1: Algorithm for the Neutron Balance Method 
 
 

2.2.3.2 Discontinuous Normalization Method 

A new method for evaluating the system eigenvalue is presented. This method 

(Forget and Rahnema, 2005c) requires a smaller number of parameters and therefore 

makes the overall coarse mesh method more efficient than when the neutron balance 

method (NBM) is used.  The NBM method requires the precomputation of the fission and 

absorption and terms (F and A), which make the fixed source calculations less efficient in 

addition to increasing the total amount of response function data.  The new method is 

based on the knowledge that the normalization factor (D) will approach unity once the 

solution is converged.  In an attempt to accelerate convergence the normalization 

constant is evaluated at two distinct guesses of k.  From this information, linear 

interpolation is used to find the corresponding value of k for a normalization constant 

equal to 1.  Convergence is achieved when the following criterion is met 
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 k
uD ε<−1  (2.16) 

Clearly, the new method for evaluating the eigenvalue is most effective when the 

normalization constant varies somewhat linearly with 1/k.  It is thus important to indicate 

in which cases this constraint holds.  We must first introduce a definition of our 

normalization factor: 

 ( )∑ Ω= +

i
iji ErD ,ˆ,rψ  (2.17) 

Equation (2.17) corresponds to the summation of all outgoing surface angular fluxes.  

Introducing this definition in equation (2.9) will normalize the outgoing currents to unity.  

By linearity of the transport equation we can decompose the normalization factor to a 

sum of local (coarse mesh) normalization factor. 

 ∑
=

=
CM

i
iDD

1
 (2.18) 

where Di is the local normalization factor and the summation is performed over all coarse 

meshes (CM).  We are now left with showing the relation that exits between the 

normalization factor and k. 

2.2.3.2.1 Demonstration 

Once the global problem is decomposed, the coarse mesh becomes a fixed source 

transport problem.  We will thus rewrite equation (2.3) in more details for the cases of k = 

k1 and k = k2 over coarse mesh i with the assumption that neutrons are born isotropically 

from fission.  The values of k1 and k2 are chosen such that coarse mesh i remains sub-

critical in a vacuum, thus allowing for a unique solution (Bell and Glasstone, 1970).  
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with the following boundary condition 

 ( ) ( )ErEr ijjiji ,ˆ,,ˆ,1, Ω=Ω rr ψψ  where { }jiij VVr ∩∈r  for all Vj bounding Vi (2.20) 

and for k = k2 
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 (2.21) 

with the following boundary condition 

 ( ) ( )ErEr ijjiji ,ˆ,,ˆ,2, Ω=Ω rr ψψ  where { }jiij VVr ∩∈r  for all Vj bounding Vi (2.22) 

For the sake of simplicity, the following additional assumptions are made: 

1) one-group approximation in energy 

2) the angular variation of the scattering cross-section ( )Ω→Ω ˆ'ˆ,rs
rσ depends only 

on the scattering angle ( )'ˆˆ, Ω⋅Ωrs
rσ . 

Change the sign of the angular variables in equation (2.21) to get 
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This equation is now multiplied by ( )Ω̂,1, ri
rψ  and equation (2.19) by ( )Ω− ˆ,2, ri

rψ . 
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and 
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The two new expressions are then subtracted, (2.25) minus (2.24), and integrated over Vi 

and all angles. 
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The left hand side of equation (2.26) may be rewritten as: 

 ( ) ( )∫∫ ΩΩ−ΩΩ⋅∇ ˆˆ,ˆ,ˆ
2,1, dVdrr ii
rr ψψ  (2.27) 

Then, using the divergence theorem, the volume integral becomes a surface integral and 

equation (2.26) now becomes: 
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Where the scalar flux is given by 

 ( ) ( )∫ ΩΩ= ˆˆ, drr rr ψφ  (2.29) 

Setting our fixed source boundary condition jψ to unity and performing the integral over 

the angular half-space, we get: 
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which is equivalent to 
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This relation indicates that the normalization constant will vary linearly with 1/k only if 

( ) ( )dVrr ii∫
rr

2,1, φφ is constant.  This however would be the case if the response function 

grid in k is not too coarse.  

2.2.3.2.2 Algorithm 

 Figure 2.2 describes the algorithm used to evaluate the angular fluxes and the 

eigenvalue using the discontinuous normalization method. 

This algorithm is slightly more complex than the previous NBM method (Figure 

2.1).  It requires two initial guesses of the eigenvalue that should preferably be chosen as 

to bind the expected value.  In doing so, the need of using extrapolation is avoided.  For 

each initial guess, sweeping is performed until convergence of the angular fluxes is 

reached and the normalization factor is evaluated.  If in either case this factor differs from 

unity by more than the convergence criterion kε as per equation (2.16), linear 

interpolation is performed to evaluate a new estimate of k that corresponds to a 

normalization factor of one and convergence of the angular fluxes is obtained through the 

sweeps.  If the correlation between k and D is almost linear, no outer iterations on D will 

be necessary.  As this is hardly ever the case, another linear interpolation is performed 

between the new k estimate and one of the previous points and an iteration process on the 

normalization factor is repeated.  This process is illustrated in Figure 2.3. 
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Algorithm Discontinuous Normalization Method 
Start with two initial guesses of eigenvalue (k1 and k2) 
They are preferably chosen to bind the converged eigenvalue 
 

k = k1 
Initialize angular fluxes by equation (2.8) 
Obtain response functions for given k 

• Perform fixed source calculations 
for given k 

• Interpolation from a database 
DO WHILE ψ isn’t converged 

Sweep on the surface angular 
fluxes 
Normalize angular fluxes by 
equation (2.9) 

END DO 
Evaluate normalization factor (D1) with 
equation (2.13) 
Verify convergence of D1 with (2.12) 
 If convergence is reached EXIT 

k = k2 
Initialize angular fluxes by equation (2.8) 
Obtain response functions for given k 

• Perform fixed source calculations 
for given k 

• Interpolation from a database 
DO WHILE ψ isn’t converged 

Sweep on the surface angular 
fluxes 
Normalize angular fluxes by 
equation (2.9) 

END DO 
Evaluate normalization factor (D2) with 
equation (2.13) 
Verify convergence of D1 with (2.12) 
 If convergence is reached EXIT

 
Initial guess of D3 = 0 
DO WHILE D3 isn’t converged according to (2.12) 

By linear interpolation between (k1,D1) and (k2,D2), evaluate 
eigenvalue k3 for a normalization factor D = 1 

   Obtain response functions for given k 
• Perform fixed source calculations for given k 
• Interpolation from a database 

DO WHILE ψ isn’t converged 
Sweep on the surface angular fluxes 
Normalize angular fluxes by equation (2.9) 

END DO 
Evaluate normalization factor (D3) with equation (2.13) 
IF (D1 and D3 less than 1) THEN  
 Set k1 = k3 and D1 = D3 
ELSE 
 Set k2 = k3 and D2 = D3 
END IF 

  END DO  

Figure 2.2: Algorithm for the Discontinuous Normalization Method 
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Figure 2.3: Iteration Process of the Discontinuous Normalization Method 

 

Figure 2.3 indicates graphically how convergence is obtained for a situation in 

which equation (2.31) is not a linear relation between k and D.  Interpolating between the 

two initial guesses gives point 1 which yields a new eigenvalue.  Solving the system with 

this new estimate of the eigenvalue exposes the non-linearity of the system for k and D by 

introducing the solution at point 1’.  Another interpolation is then performed between 1’ 

and (k2, D2) from which a new estimate of the eigenvalue is obtained at point 2.  The 

solution of the system to this estimate yields point 2’.  This procedure is repeated until 

convergence of the normalization factor is met.  Similarities can be drawn between this 

method and methods used to find the roots of polynomials.  This thus introduces the 

possibility of developing many different algorithms based on these approaches that might 

prove considerably faster.  For example, a bisection or a Newton approach could be 

implemented fairly easily. 
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2.2.3.2.3 Bisection 

The bisection method (Burden and Faires, 1997) starts with two initial guesses (k1 

and k2) that still need to be chosen to bind the expected value.  The midpoint of these 

guesses, k3, would be evaluated.  If, for example, f(k1) and f(k3) are both smaller than one 

and f(k2) is larger than one, the midpoint between k2 and k3  is calculated.  The procedure 

is repeated until convergence.  This method is very similar to the one proposed 

previously without the need of interpolation. 

2.2.3.2.4 Newton 

 In the Newton method (Burden and Faires, 1997), the two initial guesses (k1 and 

k2) are chosen very close to one an other in a way to approximate the tangential slope of 

the function with this formula: 

 
21

21
12

)()()('
kk

kfkfkf
−
−

≈  (2.32) 

where k12 is the midpoint between k1 and k2 and f’ is the derivative of the function.  This 

method is identical to the previously proposed method with the exception that it is based 

on extrapolation instead of interpolation. 

2.2.4 Sweeping technique 

 The sweeping technique refers to the procedure through which the information is 

transferred from one coarse mesh to another.  When dealing with approximate methods 

with iteration process, residual error can accumulate and propagate in a non-symmetrical 

way to neighboring coarse meshes.  To avoid such a problem a symmetric sweeping 

scheme must be employed.  Mosher (2004) introduced such a scheme by analyzing the 

transfer of information in a symmetrical problem.  This requires only a brief analysis of 

the problem to be solved, but does not eliminate the possibility of pushing the residual 

error in given symmetrical directions.  As an alternative, a simple red-black iteration 



 

 39

scheme is proposed.  The method, which has been used extensively in diffusion theory, is 

based on the checkerboard pattern.  Every other coarse mesh is solved (red squares) and 

then all coarse meshes that were skipped are solved (black squares).  This method offers a 

good compromise between obtaining a perfectly symmetrical solution and a more evenly 

distributed residual error. 

2.3 Considerations for Source Driven Calculations 

Source driven calculations are far simpler than eigenvalue calculations.  An 

iteration process over the angular surface fluxes is performed with no need for an outer 

iteration.  This eliminates the presence of discontinuities at the coarse mesh interfaces.  

There is also no need for normalization of any kind, since the magnitude of the angular 

fluxes is determined by the magnitude of the source.  As done in equation (2.10), the 

iteration process is terminated when convergence is attained over the surface angular 

fluxes or any other quantity of interest. 

 The sweeping through the meshes is preferably done by starting from the meshes 

with external sources and moving to its neighboring mesh and so on.  In doing so, the 

information carried by the source is transported more rapidly through the meshes from 

regions of high importance to regions of relatively low importance. 

2.4 Concept of a Response Function 

Before continuing any further, it is of utmost importance to understand precisely 

the concept of a response function and how it is evaluated.  We define a response 

function as the solution of a system (e.g. the transport equation in a coarse mesh) to an 

incoming unitary current on one surface with vacuum boundary conditions everywhere as 

illustrated in Figure 2.4 and written in equation (2.3). 
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Figure 2.4: Concept of a response function 
 
 
 

The response of this system to a particular incoming source can be characterized 

by any form of the solution (parameters of interest). The most important ones for the 

coarse mesh method are the outgoing currents on all surfaces.  Other quantities of interest 

may also be computed, such as fission rates in fuel elements or absorption rates.  The 

phase space distribution of the incoming unitary current is where the key approximation 

lies.  The accuracy of the coarse mesh solution depends on how precisely this incoming 

angular current is representative of the full core problem.  Different approximations were 

reviewed in Chapter 1, but none could truly represent the complexity observed in highly 

heterogeneous cores. 

2.5 Interface Approximation 

The method described in the previous section is exact but it is based on the 

assumption that the surface flux distribution in angle, space and energy of each coarse 

mesh is known.  To resolve this, an approximation is introduced.  The local fixed source 

problem of equation (2.3) is solved with the following boundary condition: 

 ( ) ( ) ( ) { }
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⎨
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where SV∂ denotes a sub-region of the boundary of coarse-mesh Vj that shares a boundary 

with Vi, and Γm is the mth member of a set of functions that are orthogonal on the infinite-

dimensional half-space.  The solution of equation (2.3) with the boundary condition of 

equation (2.33) yields a result referred to as a response function denoted ( )ErRm
is ,ˆ,Ωr .  

This response function is the actual angular flux solution corresponding to a given 

boundary condition Γm, it thus gives the response of the coarse mesh to this particular 

boundary condition.  Then the solution to the local fixed source problem within coarse-

mesh Vi can be constructed as the linear superposition 

 ,),ˆ,(),ˆ,(
0
∑∑

∞

=

Ω=Ω
m s

m
is

m
isi ErRcEr rrψ  (2.34) 

where the coefficients are defined by 

 ( )∫∫∫ ΩΓΩ= − dEdrdErc is
m

isi
m
is

ˆ,ˆ, rrψ  (2.35) 

where we recall that −
iψ is the incoming partial angular flux of the local fixed source 

problem and isrr  is the spatial variable along the boundary of Vi and SV∂ .  For 

computational efficiency, it is desirable to truncate the response expansion at a low order. 

The accuracy obtained for a given maximum order depends, of course, on the type of 

response functions used. 
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CHAPTER 3 

 

MONTE CARLO ADAPTATION 

In previous work, Mosher (2004) and Mosher and Rahnema (2005) identified 

some issues with the discrete-ordinates implementation of the coarse mesh method, 

mainly that the discrete Legendre polynomials used to expand the angular flux were 

defined on uniform intervals.  However, non-uniform spatial intervals are 

computationally more efficient than a very fine uniform meshing scheme.  The obvious 

extension would have been to replace the orthogonal set by a more flexible alternative, 

but this was later dismissed in favor of the Monte Carlo adaptation.  When working with 

a deterministic code to generate response functions, a spatial and angular approximation 

is introduced making the use of discrete polynomials more suitable.  To solve very 

heterogeneous coarse meshes, a very fine spatial and angular discretization must be used, 

thus requiring extensive memory to store all the necessary information for later use by the 

coarse mesh code.  As the complexity of the two-dimensional problems grew, the library 

became quite large making the extension to 3-D impractical. 

Using Monte Carlo methods as a response function generator enabled the 

transition from discrete polynomials to continuous polynomials (Forget and Rahnema, 

2005a).  In doing so, the uniform interval problem disappeared and the size of the library 

was reduced greatly by storing only the expansion coefficients of the polynomial set.  

Monte Carlo methods also possess the advantage of geometric flexibility in modeling 

complex structures inside the coarse meshes.  Another substantial advantage of using 

Monte Carlo methods is the possibility of performing both multigroup and continuous 

energy calculations.  This work also demonstrates that the coarse-mesh technique 

introduced previously is robust and flexible with respect to the choice of fine-mesh 

method used to generate the response functions. 
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The set of orthogonal continuous polynomials chosen for this work is the 

Legendre polynomials.  The choice was made in part by their widespread use in the 

nuclear industry.  However, any other set of orthogonal continuous polynomials, such as 

the Chebyshev or the Jacobi polynomials, could have been used.  The impact of 

orthogonal set type is believed to be small enough. 

3.1 Reference System 

Before describing the source sampling and tallying technique using a continuous 

Legendre polynomial expansion, it is important to discuss the reference system chosen to 

represent the spatial and angular variables.  Each face of a coarse mesh has its own 

independent reference system.  At this point, all expansions are performed on flat 

surfaces.  Our interest thus lies in the half-space angular current.  Figure 3.1 illustrates a 

particle crossing a surface with a given direction for the reference system implemented 

and compares it to the one that was readily available in the Monte Carlo code MCNP 

(Briemeister, 1997) that is used to generate the response functions.  This change was 

necessary because MCNP did not offer possibilities for tallying variations in the 

azimuthal angle.  The angular half-space is defined by a variation of the cosine of the 

polar angle in the [-1, 1] domain and a variation of the azimuthal angle in the [0,π ] 

interval.  Spatially, in a 3-D volume element, the surface expansion has two spatial 

variables that we will name u and v.  Assuming a surface of dimension U x V, the spatial 

variables u and v are defined over the intervals [0,U] and [0,V], respectively. 
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Figure 3.1: Reference System Comparison 
 
 
 

The axis system of Figure 3.1 was chosen in a way to minimize the number of 

response functions and complexity of post-processing for lattices that present some level 

of symmetry.  This is illustrated in Figure 3.2 for the two dimensional case. 

 

Figure 3.2: Reference system on a 2-D coarse mesh 
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In Figure 3.2, the s variable defines the axis of the spatial variable where the 

arrow points in the positive direction.  The j variable is the azimuthal angle varying from 

0 to π in the direction of the arrow.  The “in” and “out” superscript indicate that the axis 

system corresponds to an incoming or an outgoing angular current, respectively.  The 

reason for this axis system is better illustrated in Figure 3.3 which presents the coupling 

between neighboring coarse meshes. 

 

Figure 3.3: Reference System for Sweeping Purposes 
 
 
 

The coarse mesh method is based on a deterministic sweeping technique that 

calculates outgoing currents from a mesh that become the incoming currents of the 

neighboring mesh.  The scheme presented in Figure 3.3 has axes for the outgoing currents 

that are identical to the neighboring meshes axes for the incoming currents.  When 

coupling scalar currents or currents with a fixed symmetric shape (e.g. spatially flat 

cosine current) such a scheme is not necessary.  However, when the coupling is 

performed on angular currents, such a scheme allows for a more transparent coupling. 
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3.2 Legendre Polynomials 

The Legendre polynomials (Bell and Glasstone, 1970) are defined as a set of 

polynomials orthogonal over the interval [-1,1] and are given by the following equations: 

 ( ) 10 =xP  (3.1) 
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With the exception of P0, all the Legendre polynomials integrate to 0 over the 

interval [-1,1].  This can be seen readily in Figure 3.4, which illustrates the first five 

Legendre polynomials also written in equation (3.3). 
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Figure 3.4: First five Legendre polynomials 
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3.3 Sampling from Legendre polynomials 

To sample from the continuous Legendre polynomials (Pn), they must be 

expressed in terms of a probability density function, f(x), meaning that they must respect 

the following conditions (Hines et al, 2003): 

 1)          ∫
ℜ

= 1)( dxxf  (3.4a) 

 2)        0,0)( ≥∀≥ xxf  (3.4b) 

 3)          ( ) ∫=∈ℜ⊆
A

dxxfAXPthenAIf )(,  (3.4c) 

To facilitate the transition to a probability density function of the Legendre 

polynomials, the orthogonal set is transferred to the interval [0,1] by a simple change of 

variable. 

 
2

1+= xy  (3.5) 

This special set of Legendre polynomials is commonly referred to as the double 

Legendre polynomials (DPn or ]1,0[
nP ).  Even with this change, we do not obtain directly 

probability density functions for all orders.  As was done before for the source sampling 

(Griesheimer et al, 2003; Mosher et al, 2003), the polynomials were sampled by linear 

combinations of the Legendre expansions thus avoiding the presence of negative weights 

associated with expansions orders greater than zero and also complying to the properties 

of probability distribution functions given by equations (3.4).  The resulting probability 

distribution functions are illustrated in Figure 3.5. 
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Figure 3.5: Linear Combinations of Double Legendre polynomials. 
 
 
 

Griesheimer and Martin (2003) introduced modifications to MCNP4C to sample 

the polar angle over the interval [0,1] using Double Legendre polynomials for orders up 

to two.  They used this sampling scheme in a 1-D response matrix method.  The sampling 

was performed using the inversion technique.  This work was thus extended allowing 

sampling on arbitrary intervals as well as higher order cases.  Analytical solutions for 

higher orders are cumbersome and sometimes do not exist, thus polynomials with order 

greater than two were sampled using the rejection technique.  It should also be noted that 

the statistical uncertainty of these distributions is being neglected.  It is assumed that 

enough particles are sampled to represent accurately the expected distributions. 
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3.4 Surface Source Sampling 

The distribution of particles along a given surface is defined by a tensor product 

of Legendre polynomials orthogonal over given intervals specified by their respective 

variables and scaled appropriately to become probability density functions.  Equation 

(3.6) indicates the form taken by the unitary angular current on the coarse mesh surface. 

  )()()()()(),,,,( ]1,1[],0[],0[],0[],[,,,,, 1 µϕϕµ π −−=Γ rp
V

n
U

mg
EE

l
rpnmlg PPvPuPEPEvu gg  (3.6) 

The expansion order is given by the variables l, m, n, p and r, which correspond 

respectively to the expansion in energy over group g, space (u and v) and angle (µ and j).  

Sampling each variable according to the procedure introduced in Section 3.3 for orders l, 

m, n, p and r will determine the location, direction and velocity of the particle emerging 

from the given surface.  This is repeated for as many particles necessary to obtain 

reasonable precision of the quantities of interest in the Monte Carlo simulation. 

All possible combinations of expansion orders l, m, n, p and r must be solved.  

For example, a second order expansion in three variables, noted {a,b,c}, will require 

solving 27 independent simulations: {0,0,0}, {0,0,1}, {0,0,2}, {0,1,0}, {0,1,1}, {0,1,2} 

{0,2,0}, {0,2,1}… 

3.5 Tallying 

3.5.1 Outgoing Currents 

Every time a particle leaves the system, it crosses a surface at a given location 

(x,y,z) with a direction vector (i,j,k) and a specific energy (E).  From these variables, it 

can be determined easily which surface of the system the particle is exiting from, its 

location on the surface, its energy and its angular direction as defined in Section 3.1.  

With this information it is then possible to evaluate the expansion coefficients of the 

outgoing angular current in response to a specific source. 
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In Monte Carlo simulations, the surface current tally is a simple count of particles 

(Briemeister, 1997), of a given weight (W), which cross a given surface within specific 

bins and is given by equation (3.7). 
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where C is the total number of particles simulated and rpnml
ssggJR ,,,,
',', →→  is the estimated surface 

current response of surface s’ within energy group g’ to a given incoming current from 

surface s of order l, m, n, p and r in energy, space (two variables) and angle (two 

variables) within energy group g, respectively. However, the coarse mesh method 

requires that the tally be performed on the coefficients of the scaled Legendre polynomial 

expansion as shown in equation (3.8). 
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where ',',',','
',',

rrppnnmmll
ssggJR →→→→→

→→ is the estimated surface current response of surface s’ with 

orders l’, m’, n’, p’ and r’, within energy group g’ to a given incoming current from 

surface s of order l, m, n, p and r in energy, space (two variables) and angle (two 

variables) within energy group g, respectively.  When dealing with Monte Carlo methods, 

uncertainties associated with the mean value of the response functions must also be 

estimated. This is done by evaluating the variance.  Since the true sample mean is not 

know, an approximation of the true variance, also known as the sample variance (Hines et 

al, 2003), is evaluated according to equation (3.9). 

 ( )222 ][][ XEXES −=  (3.9) 

where S2 is the sample variance, E is the expected value and X represents the set of all 

outcomes, xi, of the simulation.  The estimate of E[X] corresponds to the tally of equation 
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(3.8). The estimate of E[X2] needs a separate tally in which all values are squared as 

shown in equation (3.10). 
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The estimated variance of X is given by: 

 
C
SS X

2
2 =  (3.11) 

3.4.2 Other Quantities 

As of now, only the outgoing currents were tallied on Legendre polynomials 

because other quantities showed no need for such expansions.  However, the extension of 

this procedure to other quantities of interest is essentially straightforward.  For example, 

using Legendre expansion, it would be possible to solve for the radial and axial variations 

of power within each fuel element. 

A popular tally amongst other quantities of interest is the reaction rate of a given 

reaction Z expressed by equation (3.12). 
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where rpnml
sgZR ,,,,

,, is the estimated Z-reaction rate response to a given incoming current of 

order l, m, n, p and r in energy, space (two variables) and angle (two variables) within 

energy group g over surface s, respectively.  This response function type is evaluated 

over a volume element V in which particles travel a distance T. 

3.6 Concept of a Response Function 

In Section 2.4, a response function was defined as being the response to a unitary 

incoming current of a given (fixed) distribution.  After introducing the Legendre 

boundary expansion of equation (3.6), this concept can now be refined.  The response 

function is known as the response of a mesh to a given tensor product of Legendre 
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polynomials of given order.  Response functions now have to be generated for all 

combinations of cross terms.  The tallying of a response function must also be done on all 

possible expansion order combinations.  The amount of generated data for each response 

function is thus much larger than when a single fixed phase space distribution (e.g. 

spatially flat cosine-current) is used and the total number of response functions is also 

increased.  Coarse mesh solutions with very high expansion order can quickly require 

countless amounts of memory, thus making response function reduction techniques very 

important (see Section 3.10).   

3.7 Segmentation 

It is clear from equation (3.6) that the energy variable must be treated differently 

than the other variables.  The energy expansion is performed over a given energy range 

(group).  The same concept can be applied to all the other variables in an effort to reduce 

the expansion orders as shown in equation (3.13). 
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The interval of any given variable is reduced to a number of non-overlapping 

intervals (segments).  The expansions are thus performed on smaller intervals allowing 

each to evolve independently.  This becomes quite useful in dealing with (treating) strong 

flux gradients along a given interval.  In nuclear reactor calculations, the angular 

distribution is generally well behaved over the entire angular interval, which does not 

really require this type of segmentation.  However, the spatial variables will sometimes 

have very strong gradients along the surfaces making segmentation (allowing 

discontinuities) desirable. 

3.8 Energy Treatment 

The derivation of the coarse mesh transport method by Ilas and Rahnema (2003) 

and subsequently by Mosher and Rahnema (2005) treated the energy variable in the 
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multigroup (energy bin) formalism.  The deterministic response function generator 

(discrete-ordinates code) solved the fixed source problem of equation (2.3) using cross-

sections previously condensed in energy by a lattice code.  This procedure was directly 

translated to the Monte Carlo approach.  Fixed source calculations for each group were 

solved and responses were tallied over all groups (in energy bins).  However, the 

transition from deterministic to stochastic methods to generate response functions offered 

the additional possibility of using continuous energy data in our calculations.  Attempts 

were made with segmentation and Legendre polynomial expansion, but as the results will 

show the eigenvalue accuracy suffered.  This type of expansion/segmentation is expected 

to work well with a low-order expansion if the energy variation of the surface current is 

smooth.  Unfortunately, interface currents are not smooth in energy in nuclear reactor 

calculations, particularly in the thermal and resonance range. Sharp gradients in the 

current in the resonance range would require impractical high order expansions making 

the energy expansion less attractive than the current multigroup scheme.  As an 

alternative, a new technique is proposed in the next section. 

3.8.1 Spectral Mapping 

The spectral mapping approach is based on mapping a predetermined energy 

spectrum to a 0th order expansion and then performing polynomial expansions based on 

this mapping, as shown in Figure 3.6.  The 0th order represents the initial energy spectrum 

and the higher orders are shifts to that spectrum. 

 

Figure 3.6: Spectral Mapping (0th order) 
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The initial spectrum must be carefully chosen to obtain good accuracy.  This 

choice is usually made by evaluating the energy spectrum found in a typical coarse mesh 

(e.g. average burnup) or by averaging over selected meshes.  No exact method exists for 

choosing this spectrum and the methods presented here are mostly based on the 

experience user. 

3.8.1.1 Energy Spectrum 

The key step in this method is identifying a suitable spectral map.  This can be 

done by performing infinite lattice calculations on unique coarse meshes and tallying the 

energy spectrum at the boundaries of the mesh over a fine group energy structure.  The 

fine group structure is chosen in the current literature to be representative of the type of 

reactor under consideration (e.g. HELIOS energy structure for light water reactors (Casal 

et al, 1991)).  A leakage correction should be applied to these infinite lattice calculations 

to simulate more accurately the true core conditions.  The normalized energy spectra of 

all the unique coarse meshes in the core are then averaged to a “reference” spectrum that 

will be used for the mapping. 

3.8.1.2 Source Sampling 

The reference energy spectrum is then used to generate probability mass functions 

from which the surface source will be sampled at different expansion orders.  The 0th 

order expansion corresponds directly to the reference spectrum, while the higher orders 

correspond to a scaled Legendre polynomial of a given order multiplying the reference 

spectrum.  Once again, the Legendre polynomials are sampled on linear combinations of 

the 0th order to avoid the presence of negative values and to make normalization to a 

probability mass function possible.   Figure 3.7 illustrates a 1st and 2nd order spectral 

mapping.  The plots on the right hand side indicate how the higher expansion order 
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influences the reference energy spectrum of Figure 3.6.  The probability mass function of 

the energy variable is then sampled using the rejection technique, while all other 

variables of the surface source are sampled according to Section 3.4. 

 

Figure 3.7: Spectral Mapping (1st and 2nd order) 

 

3.8.1.3 Tallying 

 Tallying the Legendre expansion coefficients on such an energy spectrum is done 

in a two-step procedure.  First, the response functions calculations are performed with the 

new surface source expansion but with tallies identical to that of equation (3.8).  By itself, 

this procedure is inconsistent because we are not evaluating the expansion coefficients of 

the reference spectrum but merely evaluating deviations from a flat spectrum.  The 

second step consists of applying a correction factor to these tallies.  These correction 

factors correspond to the expansion coefficients obtained by representing the reference 

spectrum in terms of a Legendre polynomial expansion as shown in equation (3.14). 
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where J is the angular current at the boundary of a coarse mesh that serves as the 

reference spectrum, j is the expansion coefficient of order l and P is the Legendre 

polynomial scaled over the interval of minimum (Emin) to a maximum energy (Emax). 

3.9 Deterministic Sweeps 

Once the response functions for each unique coarse mesh have been computed 

using the appropriate boundary condition, a deterministic sweeping technique will be 

used to calculate the outgoing half-space currents from each coarse mesh and any other 

quantities of interest (i.e. fission density in each fuel pin).  The coefficients of the exiting 

current j+ from coarse mesh Vi are calculated from equations (2.34) and (2.35) which give 

the following relation 
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where ',',',','
',',,

rrppnnmmll
ssggiJR →→→→→

→→  is the current response function relating the incoming to the 

outgoing coefficients of the currents for all expansion orders, surfaces and energy groups 

in coarse mesh Vi.  The summations are performed over all energy groups/bins E and 

surfaces S for up to the maximum expansion orders in energy (L), spatial (M, N) and 

angular (P, R) variables, respectively.  It is important to note that there is no need to 

compute (iterate on) the interface currents since the inner iterations can be performed 

directly on the expansion coefficients.  If one wishes to evaluate other quantities of 

interest (e.g. pin fission density, region-wise absorption …) within the volume element 

Vi, a similar relation can be developed. 
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where Z is the quantity of interest and ',',',','
',',,

rpnml
sgiZR  is the response of this quantity to a 

boundary condition of order l’ in energy, m’ and n’ in space, p’ in azimuthal angle and r’ 

in polar angle.  These quantities can also be used to assess convergence for the inner 

iterations. 

3.9.1 Propagation of Statistical Uncertainty 

Using a Monte Carlo method as a response function generator implies dealing 

with the statistical uncertainty associated with all the quantities provided by the fine mesh 

code. As was done before in Forget et al. (2004a), the propagation of statistical 

uncertainty was implemented in the coarse mesh code using the following formula to 

calculate the standard deviations (Bevington, 1969): 
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In this equation W is a function of variables x y, … and 2
xyρ  is the covariance between x 

and y.  We assume that the Monte Carlo results are uncorrelated and as a result all the 

terms with the covariance data in equation (3.17) are set to zero. 

An expression for the standard deviation of each of the exiting current coefficients 

follows from equations (3.15) and (3.17). 
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A similar expression for evaluating the standard deviation of a quantity of interest 

Z can also be derived from equations (3.16) and (3.17). 
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3.10 Acceleration 

When performing coarse mesh calculations based on Legendre expansions of the 

surface angular currents, an acceleration scheme inherent to the method can be 

developed.  Obtaining an accurate solution requires in most cases an expansion order 

between 2 and 5 in all variables.  However, when pre-computing a high order database 

from the tensor product of Legendre polynomials of equation (3.6), lower order response 

function subsets are included.  This implies that performing a fast low-order calculation is 

possible because all the information is already there.  The solution of this low-order 

calculation can then be used as the initial guess for the higher order solution. This method 

tends to reduce the number of inner iteration required to converge the interface partial 

currents. This procedure can also be done incrementally, meaning that a low-order 

solution becomes the starting point of a higher order calculation whose solution also 

becomes the starting point of an even higher order calculation. 

3.11 Order Reduction 

It is now evident that the coarse mesh method relies heavily on the pre-

computation of the so called response functions.  More precise solution obviously 

requires a greater number of fixed source calculations making the pre-computational 

phase that much longer.  The surface angular current expansion expressed in terms of a 

tensor product of Legendre polynomials requires all of the response function expansion 

coefficients.  Different techniques have been proposed to reduce the number of response 

functions associated with the polynomial expansion of the phase space. 
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3.11.1 Multi-Variable Orthogonal Polynomials 

 The first possibility is to use multi-variable orthogonal polynomials (Suetin, 

1999).  This would combine two or more variables in a single expansion.  A classical 

choice would be a spherical harmonic expansion in angle, which is often used in transport 

theory for other resolution techniques.  The orthogonal expansion couples the polar angle 

and the azimuthal angle in a single expansion.  This choice was discarded mainly because 

the order of expansion of the azimuthal angle is somewhat limited by the polar angle 

expansion order.  This makes the spherical harmonic basis set quite impractical in 2-D 

calculations where high order azimuthal angle expansions are of utmost importance in 

comparison to the expansion order of the polar angle.  This avenue of research has not yet 

been fully investigated. Many possibilities of coupling the angular variables or the spatial 

variables exist and should be investigated. 

3.11.2 High Order Reduction 

Another possibility is to drop high order cross terms.  For example, consider the 

second order polynomial p(x,y) written in terms of variables x and y 

 feydxcxybyaxyxp +++++= 22),(  (3.20) 

where a, b, c, d, e and f are arbitrary coefficients and 1,1 <<− yx .  The polynomial p(x,y) 

is clearly a second order function that we will now expand using 2nd order Legendre 

polynomials in both variables. 
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where n and m are the expansion orders of variables x and y, and Kn,m is obtained from the 

orthogonality relation 
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Equation (3.21) can now be rewritten in the following form 

 '''''''''),( 222222 iyhxgyfxyexdxycyxbyxayxp ++++++++≈  (3.23) 

where a’, b’, c’, d’, e’, f’, g’, h’ and i’ are the expansion coefficients.  When evaluating 

the aforementioned coefficients with equation (3.22), the following is observed 

 fiehdgcfbeadcba ========= ';';';';';';0';0';0'  (3.24) 

Dropping the higher order terms, a’, b’ and c’, of equation (3.23) yields the exact second 

order expansion of equation (3.20).  This implies that this scheme can be used to reduce 

the number of response functions by truncating the higher order cross terms of the tensor 

product presented in equation (3.6) while still conserving a second order expansion. 

3.11.3 Odd Order Polar Angle in 2-D 

 In two-dimensional calculations, an additional response function reduction 

technique can be introduced.  Recalling the axis reference scheme introduced in Figure 

3.1, in a 2-D problem, the azimuthal angle (φ) is chosen to be in the 2-D plane, while the 

polar angle (q) is a measure of the complimentary angle from that plane.  Since a two-

dimensional problem can be seen as a three-dimensional problem with an infinite 

component in the third dimension, the polar angle distribution of the angular current in 

the interval [0, p/2] must be symmetric to the distribution in the interval [p/2, p].  When 

the Legendre polynomial expansion of the cosine of the polar angle is performed, this 

symmetry requirement alleviates the need of performing the odd-order expansions which 

are not symmetrical over these intervals. 

3.12 COMET 

The coarse mesh transport method was implemented in a computer code called 

COMET (Coarse Mesh Transport) written in Fortran 95.  The code used to perform the 
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calculations of the ensuing chapters was compiled using Compaq Visual Fortran 

Professional Edition 6.6C under the Windows 2000 operating system.  This code is 

separated into three main functions: 1) an automated response function generator, 2) a 

response function post-processing/database program and 3) a coarse mesh transport 

simulator. 

3.12.1 Response Function Generator 

The response function generator is an automated way of generating all the input 

files needed to perform the Monte Carlo calculations with the modified MCNP code.  It 

also creates an execution batch file.  There is also the option of separating all the 

calculations in as many folders as allowed on available computer system.  

3.12.2 Post-Processing/Database 

The post-processing of the data takes place upon the completion of the 

calculations of all the response functions.  The Legendre polynomial scaling illustrated in 

Figure 3.5 is undone (unfolded) to obtain the true Legendre expansions.  The collected 

data is then stored in a database.  The CDF database format (NSSDC, 2006) was chosen 

because of its capabilities and ease of implementation.  Common Data Format (CDF) was 

developed by the National Space Science Data Center (NSSDC) at NASA and is freely 

available and portable to many platforms.  It is used widely by many universities and 

government agencies and is continuously supported.   

3.12.3 Coarse Mesh Transport Simulator 

The coarse mesh transport simulator performs the transport calculations in a 

system built from different user defined unique meshes, whose properties (response 

functions) can be found in the database.  Calculations can be performed to any order 

combination up to the maximum orders of the different variables as stored in the 

database.  The simulator can perform both two and three dimensional calculations.  The 
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allowed system boundary conditions are vacuum, specular reflection and periodic.  The 

sweeping order from mesh to mesh is also user defined. 
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CHAPTER 4 

 

2-D RESULTS 

In this chapter, we determine the accuracy and efficiency of the coarse mesh 

method in 2-D configurations using several benchmark problems  We first include a 

description of the notations used in this chapter and then present the methods used for 

analyzing the results.  Results are presented for a small pressurized water reactor 

benchmark problem followed by a few CANDU problems. The 2-D MOX C5G7 

benchmark problem is presented in Section 4.6. This section is followed by a full core 

extension of the C5G7 problem and a ¼ core update of the HAFAS benchmark problem.  

It should also be noted that initially the coarse mesh method was tested using the cosine-

current approximation and that this approximation was later replaced by the Legendre 

polynomial expansion of the interface currents. 

4.1 Analysis Method and Notation 

Different benchmarks will be used to evaluate the accuracy of the coarse mesh 

transport method.  In all cases, a highly accurate reference solution is obtained from a 

Monte Carlo simulation which yields the reference eigenvalue and the reference fission 

densities.  The relative error (RE) of all the measures is defined by 
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where ZCOMET is the coarse mesh result and Zreference is the reference solution.  The relative 

error will be used as a method of comparison for the eigenvalue as well as the fission 

density in individual fuel pins.  The terms fission density and pin power are used 

interchangeably and are meant to refer to the fission reaction rate within a given pin. For 

the fission densities, a comparison is established using the following error measurements: 
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the average relative error, the root mean square error, the mean relative error and the 

maximum error. 

4.1.1 Average Relative Error 

The average relative error (AVG) is a measure of the central tendency of the 

fission densities.  It is thus an indicator of the overall accuracy of the power distribution 

of the coarse mesh solution.  It is evaluated using the following formula: 

 
N

RE
AVG N

n∑
=  (4.2) 

where N is the number of fuel pins and REn is the relative error of pin n. 

4.1.2 Root Mean Square Error 

The root mean square error (RMS) measures the magnitude of the variations of the 

fission density relative errors.  Larger errors weigh more than smaller errors in this 

measurement.  It is evaluated from the following formula: 

 
N

RE
RMS N
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=

2

 (4.3) 

4.1.3 Mean Relative Error 

The mean relative error (MRE) is an average error in which the relative errors are 

weighed by the pin powers.  This measurement thus gives greater importance to high 

power pins rather than low power pins.  This choice is justifiable considering that in 

nuclear power reactors, the importance is given to high power pins because they are more 

likely to suffer failures.  The mean relative error is evaluated using the following 

formula: 
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where pn is the power in pin n and pavg is the average power of all pins. 

4.1.4 Notation 

In this sub-section, the most common notations and acronyms used in the results tables 

are explained below. 

k:   core eigenvalue or core multiplication factor 

RE:  Relative Error 

AVG:   Average Relative Pin Power Error 

UNC:  Statistical Uncertainty in % 

RMS:   Root Mean Square Pin Power Error 

MRE:   Mean Relative Pin Power Error 

MAX:   Maximum Pin Power Error 

CPU Time:  Computational Time 

# RF:  Number of Response Functions computed 

{a,b,c}: Angular current expansion orders used in 2-D coarse mesh calculations: 

   ath order in space 

   bth order in the cosine of the polar angle 

   cth order in the azimuthal angle 

{a,b,c}{a’,b’,c’}: The subscript indicates that the {a,b,c} coarse mesh calculation was 

accelerated using a {a’,b’,c’} coarse mesh calculation 

{aS,b,c}: The subscript indicates that variable a was divided in S equal length 

segments on which ath order expansions were performed 

{a1,a2,b,c}: Angular current expansion orders used in 3-D coarse mesh calculations: 

SFCC:   Spatially flat cosine current approximation 

SFCCS: The subscript indicates that S equal length spatial segments are used on 

each face of a coarse mesh 

PWR:  Pressurized Water Reactor 
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BWR:  Boiling Water Reactor 

UO2:  Uranium oxyde 

MOX:  Mixed-oxyde 

CANDU: Pressurized Heavy Water Reactor (Canada Deuterium Uranium) 

Reference PC: The reference PC is a personal computer for which the computational time 

was evaluated.  This PC is powered by an Intel Pentium 4 processor of 2.8 

GHz with 1GB of RAM. 

4.2 Small PWR 

The first problem that was solved with the coarse mesh code was a small 

eigenvalue problem shown in Figure A.1.  The problem is composed of four fuel 

assemblies, each with 8 fuel rods arranged in a 3 by 3 array, of two distinct types with 

light water coolant.  The Type 1 assemblies contain 2% enriched UO2 fuel, while the 

Type 2 assemblies contain 1% enriched UO2 fuel.  The diameter of each fuel rod is 0.82 

cm and the rod pitch is 1.26 cm, which is representative of a PWR design.  Specular 

reflective boundary conditions are imposed on all external surfaces of the problem.  This 

problem was solved with a one energy group library and a continuous energy group 

library.  The one group cross-sections and the material number densities are presented in 

Appendix A. 
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4.2.1 Continuous Energy 

The initial work on the coarse mesh transport method was tested on the 

continuous energy version of the test problem. 

4.2.1.1 Reference Solution 

The MCNP4B2 code was used to perform a reference calculation of the core 

problem. Fifty million histories were simulated to estimate the eigenvalue and rod fission 

densities. The eigenvalue was found to be 1.17406 ± 0.00006, and the relative 

uncertainties in the rod fission density results were less than 0.1%.  Continuous energy 

cross-sections at 300K from the ENDF/B-VI library were used in the Monte Carlo 

simulations of this problem. 

4.2.1.2 COMET Solution and Analysis 

The angular variables are approximated using the cosine-current approximation.  

Two representations of the spatial and energy dependence of the partial currents on the 

coarse mesh boundaries were considered.  First, one and two equal-width spatial 

segments per coarse mesh edge were treated.  In addition, both 12 and 45 energy bins 

were considered.  The 12 bin set, which is specified in Table A.1, was chosen based on 

the coolant flux spectra in the Type 1 assemblies from a reference calculation.  The 45 

bin boundaries correspond to those of the 45-group production library of the lattice 

depletion code HELIOS (Casal et al., 1991) version 1.6 (Guist, 2000) code.  A modified 

version of the MCNP code was used to perform the response function calculations with 

two million histories in each simulation.  It should also be noted that the coarse mesh 

results were obtained without performing any outer iterations.  They were omitted to 

reduce the pre-computational time and remove the eigenvalue residual errors in the 

solutions.  The fission source in the response function calculations was thus scaled using 

the reference eigenvalue.  The convergence criterion of the iteration process on the pin 
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powers is 10-4.  The differences between the coarse mesh method and reference results, 

for each possible current representation, are summarized in Table 4.1. 

 

Table 4.1: COMET Results for the Continuous-Energy Benchmark Problem 
 SFCC / 

EB12 
(%) 

SFCC2 / 

EB12 
(%) 

SFCC / 
EB45 
(%) 

SFCC2 / 
EB45 
(%) 

RE k -0.99 -1.03 -0.69 -0.57 
AVG 1.27 1.09 0.81 0.33 
RMS 1.55 1.34 1.03 0.43 
MAX 2.79 2.26 2.58 0.88 

# RF 24 24 90 90 
  EB: Number of Energy Bins 
 
 
 
It can be seen that both the energy and spatial representation of the currents have 

a significant impact on the results.  With 12 energy bins, increasing the number of spatial 

segments has no effect on the eigenvalue accuracy, but leads to a slight improvement in 

the fission densities.  The accuracy of the results improves with the 45 bin approximation.  

The most detailed representation leads to highly accurate fission density results, however 

the error in the eigenvalue remains significant. 

4.2.2 One Energy Group 

The eigenvalue results for the continuous energy form of the small 2-D problem 

are much less accurate than those obtained in 1-D discrete ordinates problems, even 

without the application of variational techniques.  It was conjectured that the simplistic 

treatment of the complex energy dependence was the cause of the error in the eigenvalue 

results.  A one-group version of this problem was posed using cross-sections generated 

by a HELIOS calculation of the system.  The actual values defining this benchmark can 

be found in the appendix. 
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4.2.2.1 Reference Solution 

A reference calculation was performed on a quarter model of the system with five 

million histories to estimate the eigenvalue and fission density results.  The eigenvalue 

was found to be 1.18471 ± 0.00021, and the relative uncertainties in the rod fission 

density results were less than 0.1%. 

4.2.2.2 COMET Solution and Analysis 

Initially, the cosine current approximation was again used to represent the angular 

variables.  The current interface was later improved using a tensor product of Legendre 

polynomials.  The results are also obtained without any outer iteration, which indicates 

that the fission source of the response functions was scaled using the reference 

eigenvalue.  The pin powers were converged to a criterion of 10-4.  The differences 

between the coarse mesh and reference results for this problem are presented in Table 2 

with one segment per coarse mesh edge and in Table 3 with two segments per coarse 

mesh edge. 

 

Table 4.2: COMET Results for the One Group Problem (one segment per edge) 
 

{0,0,0} 
(%) 

{0,1,1} 
(%) 

{0,2,2} 
(%) 

{1,2,2} 
(%) 

{2,2,2} 
(%) 

SFCC 
 (%) 

RE k -0.89 -0.89 0.21 0.22 0.22 -0.16 
AVG 1.04 1.04 0.28 0.12 0.13 0.27 
RMS 1.08 1.09 0.35 0.16 0.15 0.32 
MAX 1.60 1.64 0.67 0.35 0.31 0.66 

# RF 2 8 18 36 54 2
 

For this problem, the coarse mesh results are in excellent agreement with the 

reference calculation.  Therefore, it appears that a more sophisticated treatment of the 



 

 70

energy dependence of the partial currents is required to achieve highly accurate results in 

continuous energy problems.  A great improvement in the fission densities is also 

observed by replacing the cosine-current approximation by the tensor product of 

Legendre polynomials.  Second order expansions in both angles, {0,2,2}, are fairly 

equivalent to the cosine-current approximation.  Adding the linear spatial expansion 

reduces considerably the fission density average error (from 0.28% to 0.12%) and the 

maximum error (from 0.67% to 0.35%).  The second order spatial term adds very little to 

the solution.  The following table illustrates the effect of further spatial refinement by 

segmenting the coarse mesh edge in two equal width segments. 

 

Table 4.3: COMET Results for the One Group Problem (two segments per edge) 
 

{02,0,0} 
(%) 

{02,1,1} 
(%) 

{02,2,2} 
(%) 

{12,2,2} 
(%) 

{22,2,2} 
(%) 

SFCC2 
 (%) 

RE k -0.97 -0.98 -0.07 -0.06 -0.06 -0.16 
AVG 0.91 0.82 0.13 0.09 0.09 0.12 
RMS 0.95 0.84 0.15 0.10 0.11 0.14 
MAX 1.25 1.18 0.28 0.16 0.18 0.26 

# RF 4 16 36 72 108 2
 

 

The addition of spatial segments improves greatly the accuracy of the eigenvalue 

for the cases with second order angular expansions.  The fission density accuracy is also 

improved considerably.  The average error of the linear spatial expansion is reduced from 

0.12% to 0.09% and the maximum error is reduced even more significantly going from 

0.35% to 0.16%.  Once again, the addition of second order spatial expansion has little to 

no effect on the results.  However, it should be noted given a larger core, the second order 

spatial term might become much more important. 
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4.2.3 Spectral Mapping 

Comparing the results of Sections 4.1.1 and 4.1.2, it is obvious how important the 

energy variable is in obtaining an accurate coarse mesh solution.  The one-group 

approximation was shown to work considerably well, and later on the multigroup 

approximation will be shown to be as effective.  However, when trying to approximate 

the continuous-energy calculation with equally distributed energy bins, a great number of 

response functions must be used.  In Section 4.1.1, 45 energy bins were used to attempt to 

reproduce the continuous-energy results with limited success on the eigenvalue.  In the 

next section, this method will be pushed even further on a more realistic benchmark.  In 

this section, the spectral mapping method discussed in Section 3.8.1 is tested on the small 

PWR benchmark. 

4.2.3.1 COMET Solutions and Analysis 

The initial spectral map was computed by averaging the surface current obtained 

from infinite lattice calculations performed on each assembly type.  This initial spectrum 

corresponds to the 0th order energy expansion.  The spectral map was then shifted up to 

Legendre polynomials of 3rd order.  The spatial and angular variables were all expanded 

up to 2nd order.  The results are presented in Table 4.4. 

 

Table 4.4: Spectral Mapping Results with {2,2,2} Expansion 
 

SM 0th 
(%) 

SM 1st 
(%) 

SM 2nd 
(%) 

SM 3rd 
(%) 

RE k -0.25 -1.04 -1.18 -0.42 
AVG 3.63 1.71 1.50 0.81 
RMS 4.92 2.26 1.86 0.98 
MAX 10.67 5.32 4.21 1.91 

# RF 54 108 162 216 
SM: Spectral Mapping Expansion Order 
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The coarse mesh calculation with the initial spectrum improves the eigenvalue 

greatly but worsens the fission densities considerably.   The fission densities are greatly 

improved by increasing the spectral map order, however the eigenvalue result tends to 

oscillate.  The spectral mapping method shows some potential. However, significant 

work is required to achieve acceptable accuracy. The choice of the initial spectrum seems 

to be of utmost importance.  It is well known that infinite lattice calculations do not 

produce the correct energy spectrum (Stamm’ler and Abbate, 1983).  The spectral map 

should thus be representative of the core by a buckling correction or a leakage 

adjustment.  The scope of this work goes beyond the objectives of this thesis, In the next 

two sections, we present the continuous energy results for the case in which response 

functions are generated by sampling from a unit surface source that is distributed 

uniformly over each energy bin. This section is then followed by results based on 

multigroup response function calculations. 

4.3 CANDU-6 - 3 by 4 

The benchmark problem consists of 12 standard 37-pin CANDU-6 natural 

uranium fuel bundles placed in a 3 by 4 arrangement with periodic boundary conditions, 

as shown in Figure A.2.  The geometrical configuration is based on previous work 

reported in Rahnema et al (2000). 

The test cores are made up of three unique coarse meshes that are either voided or 

cooled. Each mesh is represented by the fuel bundle at a given average fuel burnup.  The 

three levels of burnup considered are denoted by high (H), mid (M) and low (L) and 

correspond to 8737.19 MWd/t, 4086.27 MWd/t and 1465.36 MWd/t, respectively.  They 

were arbitrarily chosen as being the midpoints among the 12 fuel bundles over different 

burnup ranges at the third axial plane of a reference reactor core (Rahnema et al, 2000).  

Considering the emphasis attributed to the analysis of the loss of coolant scenarios for the 

CANDU-6 reactors, three different coolant states were simulated: the cooled (non-
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voided) checkerboard voided and fully voided configurations.  The material temperature 

and densities in the cooled case corresponds to those for the hot operating condition in 

CANDU-6 core as specified in Rahnema et al (2000). The checkerboard voided 

configuration corresponds to voiding the odd-numbered cells in rows J and L and the 

even-numbered cells in row K.  The fully voided case corresponds to voiding all of the 

channels. The material densities and temperatures remain the same as the cooled case. 

4.3.1 Reference Solution 

The reference solutions were computed using MCNP-4B2 with the ENDF/B-VI 

continuous-energy library developed at the hot operating temperatures.  The solutions 

consist of the eigenvalue and the fuel rod fission densities, which are normalized to the 

total number of pins.  Our convergence criterion for the reference solutions was to obtain 

a relative standard deviation of less than 0.1% for all rod fission densities.  This required 

simulating 120 million active particles using a converged source distribution.  The cooled 

case eigenvalue is 1.01800 ± 0.00004, the voided case eigenvalue is 1.02418 ± 0.00004 

and the checkerboard case eigenvalue is 1.03334 ± 0.00004. 

4.3.2 COMET Solutions and Analysis 

The response function calculations for all of the cases were performed with half a 

million particles.  These response functions were obtained using the 45 and 190 energy 

bin structures that correspond to the ones used by the lattice depletion code HELIOS.  

Outer iterations were omitted from these calculations to reduce the number of response 

functions.  The reference eigenvalue was thus used to scale the fission source in the fixed 

source calculations.  The convergence criterion of the pin powers was set to 10-4.  Each 

response function calculation requires 2-3 minutes of computational time on the reference 

PC.  The 45 energy bin structure for the cooled configuration required 270 response 
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functions, while the 190 structure needed 1140 response functions.  The results are 

presented in Table 4.5. 

 

Table 4.5: COMET Results for the 3 by 4 CANDU-6 Benchmark 

Cooled Voided Checkerboard 
 

SFCC2 / 

EB45 
(%) 

SFCC2 / 

EB190 
(%) 

SFCC2 / 
EB45 
(%) 

SFCC2 / 

EB190 
(%) 

SFCC2 / 
EB45 
(%) 

RE k -0.66 -0.28 -0.75 -0.44 -0.70 
k UNC 0.05 0.04 0.05 0.04 0.05 

AVG 0.48 0.45 0.48 0.45 0.51 
RMS 0.61 0.57 0.59 0.56 0.63 
MAX 1.68 1.58 1.65 1.55 1.79 

 
 

For the 45 energy bin structure, in the cooled case, the eigenvalue relative error 

between MCNP and the coarse mesh method is -0.66% with a standard deviation of 

0.05%.  The pin power average error is 0.48%, and the maximum error is 1.68%. The pin 

power uncertainty ranged from 0.18% (outer pins) to 0.20% (inner pins).  The maximum 

relative errors occur near the center of the fuel assemblies.  However, the absolute errors 

in the pins in this region are comparable to all the others. The checkerboard voided 

configuration corresponds to the case when one of the two primary coolant loops is 

ruptured.  The eigenvalue error in this scenario is -0.70% with a one-sigma uncertainty of 

0.05%.  Once again, the pin power errors are small, with an average of 0.51% and a 

maximum error of 1.79%, with a pin fission density uncertainty ranging from 0.17% to 

0.20%.  The error distribution in this configuration is very similar to that of the cooled 

configuration, indicating that the presence of void does not affect the accuracy of the 

method.  The fully voided configuration is attributed to a rupture of both coolant loops.  

The results indicate that the method remains very accurate for the individual pin fission 

density but the eigenvalue accuracy deteriorates slightly to -0.75%.  As seen from Table 
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4.5, the root mean square errors are around 0.6%.  The average error of around 0.5% is 

very close to the root mean square error indicating a smooth distribution of errors 

centered about the mean value.  The mean relative error, which is a pin power weighted, 

is also close to the average error indicating a uniform pin error distribution across the 

entire configuration. 

The eigenvalue errors observed in Table I with the 45 bins energy structure seem 

quite large for a transport calculation.  A great deal of the eigenvalue error can be once 

again attributed to the selection of the energy structure of bins (45) used in this study.  In 

order to support this claim, calculations involving a greater number of energy bins (190) 

were performed.  We see a much better agreement between the reference solution and the 

coarse mesh solution when the 190 bin energy structure is used. The eigenvalue error has 

dropped to -0.27% with a one-sigma statistical uncertainty of 0.04% for the cooled case. 

For the voided case the error is reduced to -0.44% ± 0.04%.  Even though better accuracy 

is obtained for the eigenvalue, the accuracy gain in the pin power distribution is minimal.  

The errors are slightly reduced but not enough to justify using more energy bins.  The 

one-sigma statistical uncertainties range from 0.14% to 0.16%.  The reduction in the 

statistical uncertainties is simply due to the presence of more response functions 

representing a larger number of simulated particles. 

The coarse mesh calculation for the 45 energy bin structure took 26 seconds while 

the 190 energy bin structure needed 450 seconds to converge the pin power distribution 

to 10-5 on the reference PC.  As mentioned previously, the outer iterations were avoided, 

thus removing the residual eigenvalue errors, in order to isolate as best as possible the 

impact of the partial current representation on the solution accuracy. 

4.4 CANDU-6 - 4 x 4 

This benchmark is a one row extension of the previous 3 by 4 CANDU6 

benchmark problem as illustrated by Figure A.3.  It is composed of 16 fuel assemblies of 
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three varying burnups in a 4 by 4 lattice with periodic boundary conditions.  This 

configuration is more representative of the CANDU-6 reactor when performing coolant 

voiding analysis.  The cooled and fully voided configurations were simulated. 

4.4.1 Reference Solution 

 As with the prior benchmark, reference solutions were obtained using MCNP4B2 

with the hot operating temperature continuous-energy cross-section files.  The simulation 

required 160 million active particles on a converge source to obtain fission densities 

results with an uncertainty below 0.1%.  The cooled case eigenvalue is 1.01833 ± 

0.00004 and the voided case eigenvalue is 1.03377 ± 0.00004. 

4.4.2 COMET Solutions and Analysis 

 Response functions were generated with a modified version of MCNP using ½ 

million and 5 million particles to study the effect of the statistical uncertainty on the void 

reactivity coefficient, eigenvalue and fission densities.  Once again, the outer iterations 

were omitted and the reference eigenvalue was used to scale the fission source of the 

response function calculations.  Also, a 10-4 convergence criterion was used on the pin 

powers.  The following table summarizes the results obtained with the coarse mesh 

method. 

 

Table 4.6: COMET Results for the 4 by 4 CANDU-6 Benchmark 
SFCC2 / EB45 

½ million particles 
SFCC2 / EB45 

5 million particles 
 

Cooled 
(%) 

Voided 
(%) 

Cooled 
(%) 

Voided 
(%) 

RE k -0.63 -0.70 -0.68 -0.73 
k UNC 0.05 0.05 0.02 0.02 

AVG 0.7 0.7 0.7 0.7 
RMS 0.8 0.8 0.8 0.8 
MAX 2.5 2.4 2.3 2.1 
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When comparing the cases with ½ million particles and 5 million particles, very 

little to no difference exists in the fission densities average errors and root mean square 

errors.  However, a noticeable change is observed in the maximum errors, which drop 

from 2.5% to 2.3% in the cooled case and from 2.4% to 2.1% in the voided case.  The 

individual pin power uncertainties range from 0.17% to 0.21% for the ½ million particle 

cases and from 0.10% to 0.12% for the 5 million particle cases, thus indicating that all 

variations are within the one standard deviation statistical uncertainties.  Small variations 

are also observed for the eigenvalues but these are well within the 95% confidence 

interval ensuing from the statistical uncertainty. 

The 4 by 4 CANDU-6 benchmark problem can also be used to estimate the 

reactors void reactivity coefficient which is evaluated by the following formula: 

 100011 ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

voidedcooled
void kk

ρ  (4.5) 

where voidρ is the void reactivity coefficient in mk, kcooled is the eigenvalue of the cooled 

case and kvoided is the eigenvalue of the voided case.  The results of the coarse mesh 

calculations are compared to the result obtained from the MCNP reference results and are 

presented in Table 4.7. 

 

Table 4.7: Void Reactivity Coefficient Results 
 Reference 

(mk) 
Coarse Mesh 

(mk) 
Absolute Error

(mk) 

SFCC2 / EB45 
½ million particles 14.1 ± 0.7 0.5 ± 0.7 

SFCC2 / EB45 
5 million particles 

14.6 ± 0.1 
14.5 ± 0.2 0.1 ± 0.2 

 
 
 

In Table 4.7, the results showed no indications for the need of using more 

particles, however when computing the void reactivity coefficients, the importance of 



 

 78

low statistical uncertainty is highlighted.  With ½ million particles per response function, 

the void reactivity coefficient is found to be 0.5 mk off the reference solution with a 

standard deviation of 0.7 mk.  Using 5 million particles, the absolute error is reduced to 

0.1 mk with a one-sigma uncertainty of 0.2 mk.  Since the void reactivity calculation is 

based on a difference between the un-voided (cooled) and voided eigenvalue results, 

good results can still be obtained even thought the eigenvalues themselves are not very 

accurate.  The important thing is that the method is consistent.  The nature of the void 

reactivity coefficient expressed in equation (4.5) necessitates very good accuracy on the 

eigenvalue, because it is comparing very small changes in reactivity.  It is thus imperative 

that the amount of particles used in the response function calculation be taken into 

account when performing this type of calculation. 

When the previous results were computed, the Legendre polynomial expansion of 

the interface current was not yet available.  In an attempt to once again prove the gain 

obtained by replacing the cosine-current approximation, the cooled case with ½ million 

particles was reevaluated.  Table 4.8 presents results with second order expansions in 

space and angles. 

 

Table 4.8: COMET Results for the CANDU-6 Benchmark 
with Legendre Expansion 

 SFCC2 / 
EB45* 
(%) 

{02,2,2} 
(%) 

{22,2,2} 
(%) 

RE k -0.63 -0.63 -0.64 
k UNC 0.05 0.05 0.05 
AVG 0.7 0.3 0.3 
RMS 0.8 0.4 0.4 
MAX 2.5 1.1 1.2 

   *These results are reinserted from Table 4.6 to 
facilitate comparison. 
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A second order expansion in angle with two spatial segments is more than 

sufficient to greatly improve the fission densities of the 4 by 4 CANDU-6 benchmark 

problem but has no effect on the eigenvalue.  The average error is reduced from 0.7% to 

0.3% and the maximum error goes from 2.5% to 1.1%.  The additional spatial expansions 

have no effect on the results.  The fission densities uncertainties range from 0.18% to 

0.21% in all cases. 

4.5 CANDU-6 - ¼ Core 

The 2-D quarter core CANDU-6 benchmark problem is representative of a 

simplified upper right hand corner of an operating CANDU-6 reactor as shown in Figure 

A.4.  The 95 fuel assemblies are exact representations of 37 fuel elements CANDU-6 

bundles shown in Figure A.5.  Reflective boundary conditions are used on the west and 

south surfaces and vacuum elsewhere.  The author is well aware that rotational periodic 

boundary conditions would have been more appropriate for an accurate representation of 

the reactor. However the code (MCNP) used to perform the reference solution did not 

readily permit such a calculation.  Four different burnups (800 kWd/t, 2700kWd/t, 5000 

kWd/t, 7000 kWd/t) were chosen and distributed according to an operating core burnup 

map as illustrated by Figure A.4 and Table A.4.  Depletion calculations were performed 

on a single bundle infinite lattice calculation using the lattice depletion code HELIOS 

from which two group cross-sections were obtained.  All fuel elements are represented by 

a single set of cross-sections for each burnup.  A separate set of cross-sections is also 

used for the moderator, the coolant and the cladding.  The gap normally filled with gas 

was considered to be a void in the HELIOS calculation. 

4.5.1 Reference Solution 

A two group MCNP reference solution was obtained using 2.1 billion active 

particles on a previously well converge source.  The core has an eigenvalue of 1.01943 ± 
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0.00001 with average and maximum pin power uncertainties of 0.06% and 0.10%, 

respectively. 

4.5.2 COMET Solutions and Analysis 

Low-order response functions were computed using a modified version of MCNP.  

Each response function was computed using 3 million particles which took about 6 

minutes for fuel assemblies and 1 minute for moderator assemblies.  Three different 

fission source scaling values were used to generate response functions: 0.9, 1.0 and 1.1.  

The eigenvalues were computed using the neutron balance method, presented in Section 

2.2.3.1, with an initial guess of 1.0.  The pin powers convergence criterion was set to    

10-4.  The results of the coarse mesh method are shown in Table 4.9. 

 
 

Table 4.9: COMET Results for the ¼ Core CANDU-6 Benchmark 

 {0,0,0} 
(%) 

{1,0,0} 
(%) 

{2,2,2} 
(%) 

RE k -0.60 0.41 0.09 
AVG 3.0 0.5 0.5 
RMS 3.6 0.7 0.6 
MRE 2.8 0.5 0.4 
MAX 9.2 2.4 2.0 

CPU time (s) 2.0 2.9 31.7 
 

 

With low-order expansion of the angular current at the interface of the fuel cells, 

very good accuracy is obtained in the ¼ core benchmark problem.  The eigenvalue error 

is 0.09% with a standard deviation of about 0.03%.  The pin power average error is 0.5% 

with a maximum error of 2.0%.  The uncertainties associated with the pin power are all 

around 0.3%.  It is also interesting to notice that the 0th order expansion in angles with 1st 

order expansion in space yields a very accurate power map.  The average pin power error 

for that case is 0.5% with a maximum pin error of 2.4%.  The computational time of the 
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2nd order calculation (last column) is around 32 seconds.  However, the coarse mesh 

method also allows for seamless low-order acceleration from low-order solutions.  The 

results of this acceleration are presented in Table 4.10. 

 
 

Table 4.10: Low-Order Acceleration on the ¼ Core 
CANDU-6 Benchmark 

 {2,2,2}{0,0,0} {2,2,2}{1,0,0} 

CPU time (s) 16.4 18.3 
 

 

By using the 0th order, the 2nd order results are greatly accelerated.  The solution 

converges to the same eigenvalue and pin power results that were presented in Table 4.9 

but in half the time.  The acceleration with the {1,0,0} expansion order does not offer any 

gain over the 0th order expansion. 

4.6 2-D C5G7 MOX Benchmark 

This benchmark problem was described in Chapter 1.  Lewis et al (2003) 

published a reference solution using the Monte Carlo code MCNP with many million 

particles with the ensuing seven group cross-sections that were used.  This reference 

solution will be used to compare the coarse mesh results.  This section is separated in two 

parts: first, a spatial analysis is performed to determine which of segmentation and 

polynomial expansion is the way to go for the spatial variable and second, the two 

methods for evaluating the eigenvalue presented in Chapter 2 are compared.  All results 

presented in this section used convergence criteria of 10-4 for both the eigenvalue and the 

pin powers. 
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4.6.1 Spatial Analysis 

The spatial analysis consists of comparing segmentation, high order expansion 

and a mix of both methods.  In this analysis, the angular expansion was kept fixed to 2nd 

order in both the cosine of the polar angle and the azimuthal angle (Forget and Rahnema, 

2005d). 

4.6.1.1 COMET Solutions and Analysis 

Response functions were generated with 3 million particles per calculation up to 

6th order in space.  The reference eigenvalue was used to scale the fission source in an 

effort to eliminate the residual eigenvalue uncertainty and reduce the number of pre-

computations.  Each fuel assembly was considered to be a coarse mesh.  There are thus 

three unique coarse meshes, namely: the UO2 assembly, the MOX assembly and the 

moderator assembly, each of size 21.42 cm by 21.42 cm.  Each fuel assembly calculation 

took about 12 minutes on the reference PC, while each moderator assembly calculation 

took about 3 minutes.  Table 4.11 summarizes the results obtained with increasing spatial 

order. 

 

Table 4.11: High Order Spatial Expansion on the 2-D C5G7 MOX Benchmark 
 

{0,2,2} 
(%) 

{1,2,2} 
(%) 

{2,2,2} 
(%) 

{3,2,2} 
(%) 

{4,2,2} 
(%) 

{6,2,2} 
(%) 

RE k -2.79 -0.04 0.05 0.05 0.05 0.05 
AVG 12.0 1.1 0.7 0.6 0.5 0.4 
RMS 17.3 2.3 2.1 0.9 0.6 0.5 
MAX 107.9 12.1 7.3 6.9 2.8 2.2 

# RF 189 378 567 756 945 1323
 

 

Increasing the spatial order beyond second order has little to no effect on the 

eigenvalue results.  However, a constant diminishing trend can be observed in the fission 
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densities results.  With a 6th order spatial expansion, the average error is 0.4%, the root 

mean square error is 0.5% and the maximum error is 2.2%.  In all cases, the pin power 

average uncertainties were around 0.5%.   

Table 4.12 compares the results obtained for a given number of response 

functions with a different number of segments per edge.  The total number of response 

functions is fixed at 756.  For one segment per edge, this number corresponds to a third 

order spatial expansion.  Once again the angular expansions are held fixed at quadratic.  

For two segments per edge, the spatial expansion is limited to 1st order and for the four 

segments per edge case, the spatial expansion is of 0th order.  It should also be noted that 

taking full advantage of the symmetry of the fuel assembly would reduce the total 

number of response functions required to 630 for the calculation for the cases where 

segmentation is used.  However, the added complexity in dealing with these response 

functions is very error prone and was omitted in this analysis. 

 

Table 4.12: Spatial Analysis on the 2-D C5G7 MOX Benchmark 
 

{31,2,2} 
(%) 

{12,2,2} 
(%) 

{04,2,2} 
(%) 

RE k 0.05 0.05 -0.25 
AVG 0.6 0.6 1.3 
RMS 0.9 1.1 1.9 
MAX 6.9 8.4 12.0 

# RF 756 756* 756*

*Could be reduced to 630 if one takes into account all  
possibilities of symmetry. The complexity is however 
much greater. 

 

 

The results in Table 4.12 show once again the importance of the method in which 

the spatial variable is treated.  All three approximations have a dimension of 4 along each 

segment; the difference thus relies on the quality of the approximation.  A piecewise 
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approximation on uniform segments, {04,2,2}, is not sufficient to obtain accurate results 

with the least pre-computation time.  The best results are obtained for higher order spatial 

expansion with no segmentation.  The average pin power error in this case is 0.6%, the 

root mean square error is 0.9% and the maximum error is 6.9%.  The piecewise linear 

approximation, {12,2,2}, also has a average fission density error of 0.6%, but its 

maximum and root mean square error is a bit larger.  The approach of combining both 

segmentation and polynomial expansion yields good results, but uniform segmentation 

may not be the best approximation; one might consider segmenting at the zeros of the 

Legendre polynomial of appropriate degree.  Determining the appropriate segmentation 

may require some analysis by the user as is the case with any numerical transport 

meshing scheme. 

However, this analysis was performed in hopes that it would be shown that 

segmentation could be replaced entirely by a higher order spatial expansion, which was 

the case.  The complexity of using spatial segmentation in three dimensions with the 

additional spatial variable would have been reason enough to consider high order spatial 

expansion sufficient.  Spatial segmentation will thus be omitted from the three 

dimensional results in the next chapter. 

4.6.2 Eigenvalue Method 

In this section, the two eigenvalue evaluation techniques discussed in Chapter 2 

are compared. 

4.6.2.1 COMET Solutions and Analysis 

A response function database was generated for the 7-group PWR assemblies 

found in the MOX benchmark for three different values of k (1.0, 1.1 and 1.2).  The 

response functions, generated with a modified version of MCNP4C using 1.5 million 

particles, on two segments per edge have Legendre polynomial expansion orders of 3, 2, 
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and 4 for the spatial variable, polar angle and azimuthal angle, respectively.  Once again, 

the same three unique coarse meshes were defined as in the previous analysis.  Table 4.13 

presents the results comparing both eigenvalue evaluation method with interface current 

expansions of {32,2,4}.  Since the neutron balance method (NBM) only requires a single 

initial guess, while the discontinuous normalization method (DNM) requires two, the 

initial guess of the NBM technique was chosen as the average of the two points of the 

DNM to ensure a consistent comparison.  The initial guess for the NBM was chosen to be 

1.15, while the bounds of the DNM were chosen to be 1.1 and 1.2. 

 
 

Table 4.13: Eigenvalue Method Comparison with {32,2,4} Expansion 
 

NBM 
(%) 

DNM 
(%) 

RE k -0.03 0.05 
AVG 0.4 0.4 
RMS 0.5 0.5 
MAX 1.8 1.5 

Norm. Cst 1.0003 1.0000
CPU time (s) 149 146 

    NBM: Neutron Balance Method (Section 2.2.3.1) 
    DNM: Discontinuous Normalization Method (Section 2.2.3.2) 
    Norm. Cst: Normalization Constant of equation 2.17 
 
 
 

Both eigenvalue estimates (via NBM and DNM) are in close agreement with the 

reference MCNP results.  The difference in the pin power distribution between the two 

methods is within one-sigma of the statistical uncertainty of about 0.25% on the average.  

The corresponding statistical uncertainty in the eigenvalue is of the order of 0.04% and 

0.01% for the NBM and DNM, respectively.  The computational times for the two 

methods are comparable as seen from the table. However, the new method eliminates the 

need for tallying (pre-computing) the production response function and the ensuing 

calculation of the absorption response functions.   Therefore the new method requires less 



 

 86

pre-computation time and storage than the NBM.  However, the acceleration technique 

presented in Chapter 3, makes the NBM method substantially faster as can be seen in 

Table 4.14. 

 

Table 4.14: Low-Order Acceleration of the NBM 

 {22,2,2}{0,0,0} {32,2,4}{0,0,0} {32,2,4}a 

CPU time (s) 27.1 89.9 67.9 
   a: {22,2,2}{0,0,0} (incremental acceleration) 

 
 

By adding the 0th order acceleration to the {32,2,4} calculation, the coarse mesh 

calculation takes only 90 seconds.  Incremental acceleration from 0th order to 2nd order to 

{32,2,4} cuts the computational time to 68 seconds on the reference PC.  Implementing 

this acceleration scheme in the discontinuous normalization method is not as trivial as in 

the neutron balance method.  Many variations have been implemented, but none that are 

as successful. 

4.7 Full Core PWR 

A PWR full core was constructed using the uranium oxide (UO2) and mixed oxide 

fuel assemblies (MOX) of the C5G7 problem. The core is composed of 48 uncontrolled 

UO2 assemblies, 21 controlled UO2 assemblies, 28 uncontrolled MOX assemblies and 24 

controlled MOX assemblies.  The core geometry is presented in Figure A.6.  The core 

was deliberately build with 1/8 symmetry to minimize the time requirement for the 

Monte Carlo reference solution. The purpose of this benchmark is to determine the 

efficiency of the coarse mesh method for solving a full-core problem.  The results 

presented in this section used convergence criteria of 10-5 for both the eigenvalue and the 

pin powers. 
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4.7.1 Reference Solution 

The same 7-group cross section library as in the C5G7 problem was used to 

perform the reference MCNP and COMET calculations. The reference solution was 

obtained by performing MCNP5 calculation in 1/8th of the core using 1.6 billion active 

particles with a converge source.  As an illustration of this solution, a quarter-core 

representation of the pin power distribution is presented in Figure A.7.  The reference 

eigenvalue of the core is 1.12623 ± 0.00002.  The average pin power uncertainty is 

0.11% with a maximum uncertainty of 0.23%. 

4.7.2 COMET Solutions and Analysis 

Since this problem is an extension of the C5G7 benchmark, the response 

functions used previously in Section 4.4.2.1 can be used once again for this problem.  

However, two additional coarse mesh types were added to the database.  These two 

additional coarse meshes represent the addition of control rods in the two distinct fuel 

assemblies.  Table 4.15 summarizes the results for the full 2-D core (see  Figure A.6 for 

the core configuration). The eigenvalue was computed using the neutron balance method 

with an initial guess of 1.0. 

 

Table 4.15: COMET Results for the Full Core PWR Benchmark 
 

{22,2,2} 
(%) 

{32,2,4} 
(%) 

RE k -0.01 -0.01 
AVG 0.5 0.4 
RMS 0.4 0.4 
MAX 4.1 1.7 

CPU time (min) 23.0 112.3
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The COMET eigenvalue is very accurate as seen from Table 4.15. With both 

interface current expansion order, the eigenvalue error is -0.01% with an uncertainty of 

0.01%.  The pin power uncertainty associated with the coarse mesh calculations is 

roughly 0.25%.  Increasing the expansion order has little effect on the average and root 

mean square errors, however the maximum error is reduced from 4.1% to 1.7%.  This 

gain in accuracy always comes with a price; the higher order calculation takes 

approximately five times longer than the second order calculation.  Both calculations can 

be accelerated by using low-order solutions as the initial guess.  The results of this 

acceleration are presented in Table 4.16. 

 
 

Table 4.16: Low-Order Acceleration Results on the Full Core PWR 

 {22,2,2}{0,0,0} {32,2,4}{0,0,0} {32,2,4}a 

CPU time (min) 13.6 62.7 37.7 
a: {22,2,2}{0,0,0} (incremental acceleration) 

 
 
 

By performing a 0th order calculation beforehand, both interface current 

representation of Table 4.16 are accelerated substantially.  The computational time for the 

{2,2,2} case is reduced from 23 minutes to 13.6 minutes, while the {3,2,4} case goes 

from 112.3 minutes to 62.7 minutes.  Incremental acceleration reduces the high order 

calculation even more requiring only 37.7 minutes to converge to the same solution. 

4.8 Updated HAFAS Benchmark 

An extended version of the BWR HAFAS diffusion benchmark mentioned in Section 

1.2.3.4 and shown in Figure A.8 was proposed (Breen and Forget, 2005).  The fuel 

assemblies of the original benchmark were composed of 16 homogeneous regions and the 

control blade was modeled as a homogenous entity.  The fuel assembly was replaced by 

an exact representation of the GE9 fuel assembly (Kelly, 1995) and a heterogeneous 
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control blade model was developed.  Both fuel assemblies are shown in Figures A.9 and 

A.11. 

HELIOS (Casal et al, 1991) calculations were performed on the GE9 assembly to 

generate three energy group cross sections for the 12 fuel types, the control rods, the 

control sheath, the coolant, the moderator and the cladding.  Cross sections were obtained 

at three different void levels (0%, 40% and 70%) and two different burnups (A: 0.1 

MWd/t and B: 17 MWd/t). 

4.8.1 Reference Solution 

A multi-group MCNP calculation was performed to serve as a reference solution 

for the core configuration illustrated in Figure A.10.  A simulation on half the problem 

(diagonal symmetry) was performed using 230 000 particles per cycle over 6000 active 

cycles (500 cycles were skipped to converge fission source).  The reference core 

eigenvalue is 1.03592 ± 0.00002.  Fission densities in all fuel pins were also tallied.  The 

average fission density uncertainty is 0.09% with a maximum uncertainty of 0.18%. 

4.8.2 COMET Solutions and Analysis 

Response functions were generated for each unique coarse mesh for an angular 

current expansion of fourth order in space, second order in the cosine of the polar angle 

and third order in azimuthal angle.  Each simulation was performed using 5 million 

particles.  New features were added to COMET to reduce the number of response 

functions needed to represent the problem: 1) a new axis system was introduced to take 

full advantage of the diagonal symmetry of the GE9 fuel assembly (Figure A.12), 2) a 

coarse mesh rotation feature was added to position the fuel assemblies correctly in the 

core, and 3) the odd order moments of the cosine of the polar angle were dropped.  The 

polar angle was chosen as coming out of the 2-D plane, thus in a 2-D problem its shape 

must be symmetric.  The total number of pre-computations is 5760 response functions for 
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the fuel meshes and 240 response functions for the reflector mesh, which take 

approximately 15 minutes and 5 minutes each on the reference PC, respectively.  The 

COMET results obtained from an initial eigenvalue guess of 1.0 are presented in Table 

4.17. 

 

Table 4.17: COMET Results for the Updated HAFAS Benchmark Problem 
 

{2,2,2} 
(%) 

{3,2,2} 
(%) 

{4,2,2} 
(%) 

{3,2,3} 
(%) 

{4,2,3} 
(%) 

RE k -0.21 -0.12 -0.12 -0.13 -0.13 
AVG 3.0 2.0 2.0 1.8 1.7 
RMS 3.5 2.3 2.3 2.1 2.0 
MRE 3.0 2.0 1.9 1.7 1.7 
MAX 10.3 7.4 7.0 7.1 6.5 

CPU Time (s) 151 238 375 394 593 
 

 

The results of Table 4.17 with low-order expansion are not nearly as good as with 

the other two types of reactors.  The fission density errors for PWR (Table 4.15) and 

CANDU (Table 4.9) calculations were always around 0.5 % with a maximum error 

around 2.0% for low-order angular current expansions.   However, the higher discrepancy 

of the BWR results was to be expected when one considers the high level of 

heterogeneity that is present in the BWR.  The GE9 bundle of Figure A.11 is composed 

of 10 different enrichments of the fuel pins and two different types of enrichment in the 

gadolinium pins in comparison to 3 or 4 different fuel types for the other reactors.  The 

presence of the control blade is also a major hinder on accuracy.  The meshes are defined 

in such a way that the control blade lies on the outer surface of a mesh, thus influencing 

greatly the surface angular current on which Legendre polynomial expansions are 

performed.  With an expansion order of {4,2,3}, the eigenvalue differed from the 

reference solution by 0.13% with a statistical uncertainty of 0.01%.  The fission density 
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errors differed on average by 1.7% with a maximum of 6.5%.  The statistical 

uncertainties of the pins were on average 0.2% with a maximum of 0.4%.  The larger 

errors are all found in pins in close vicinity to the control blades.  Higher order 

expansions might be necessary to correctly represent the surface current along the edge of 

the controlled meshes.  The clever use of segmentation at the edge of the blade might also 

prove to be a valid option.  With no acceleration, the {4,2,3} expansion took 593 seconds 

to converge to a criterion of 10-4 on both the eigenvalue and the surface currents.  Using 

the incremental acceleration obtained by performing a {0,0,0} expansion followed by a 

{2,2,2} expansion and finally followed by the {4,2,3} expansion, the computational time 

is reduced to 250 seconds. 
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CHAPTER 5 

 

3-D RESULTS 

Three dimensional results are presented in this section. The first 3-D test problem 

is an extension of the small PWR benchmark presented in Section 4.2 (Forget and 

Rahnema, 2005b).  Two distinct configurations were developed.  The method is then 

tested on the more rigorous 3-D C5G7 MOX benchmark problem that was described in 

Chapter 1.  Supplemental information on the benchmarks and the results is included in 

Appendix B. 

5.1 Small PWR 

5.1.1 Configuration 1 

This is a one-group problem with specular reflective boundary condition on five 

of the six surfaces and vacuum on the other as illustrated in Figures B.1 and B.2.  The 

one-group cross-sections are the same as those of the 2-D benchmark problem described 

in Section 4 and can be found in appendix A.  The benchmark problem is composed of 

nine fuel assemblies, each with 8 fuel rods arranged in a 3 by 3 array, of two distinct 

types with light water coolant.  The first type contains 2% enriched UO2 fuel, while the 

second type contains 1% enriched fuel.  The remaining assemblies contain light water 

and act as a reflector.  The system is a cube measuring 11.34 cm per side. 

5.1.1.1 Reference Solution 

The reference solution was generated with a one-group MCNP simulation.  The 

reference solution was obtained using five million histories, which yielded an eigenvalue 

of 0.9255 ± 0.0002.  Individual pin fission densities were also tallied, all with relative 

errors smaller than 0.15%.  The reference solution took 27 minutes on the reference PC. 
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5.1.1.2 COMET Solutions 

Each coarse mesh was chosen as being a cube of 3.78 cm per side (1/27 of the 

system).  Initially the code was tested using a spatially flat cosine current approximation 

(SFCC), but eventually the polynomial expansion of the surface currents was 

implemented using continuous Legendre polynomials.  The results of both phase space 

representation are found in Table 5.1. 

 
 

Table 5.1: COMET Results for Configuration 1 
 

SFCC 
(%) 

{2,2,2,2}
(%) 

RE k 0.3 0.3 
AVG 0.6 0.3 
RMS 0.8 0.4 
MAX 2.9 0.9 

 
 
 

As expected, replacing the SFCC by the orthogonal expansion reduces the pin 

power errors. However, the approximation of the eigenvalue remains unchanged.  The 

cosine-current distribution is a good approximation in the presence of water gaps, which 

is usually the case in 2-D for conventional fuel assemblies.  However, the addition of the 

third dimension leads to also assuming that the current is cosine distributed along the 

coarse-mesh edge that cuts through the fuel pins.  Using a 2nd order Legendre polynomial 

expansion reduces the pin power average error to 0.3% from 0.6%.  The root mean square 

error is also reduced from 0.8% to 0.4%.  The greatest improvement is in the maximum 

pin power error which dropped from 2.9% to 0.9%.  When this problem was solved, the 

propagation of statistical uncertainty was omitted from the 3-D code to facilitate the 

development work.  Given the pre-computed response functions, the 2nd order expansion 

results were obtained in 20 seconds on the reference PC.  The inner convergence criterion 
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on the fission densities was 10-4.  No outer iterations were performed in this case, 

meaning that the response functions were generated using the reference eigenvalue.  Each 

response function calculation took roughly 3 minutes. 

5.1.2 Configuration 2 

The second configuration is once again based on the 1 group cross-sections of 

Section 4.  This benchmark, illustrated in Figures B.3 and B.4, has specular reflective 

boundaries on three of the six surfaces and vacuum elsewhere.  It is composed of 16 fuel 

assemblies, each with 8 fuel rods arranged in a 3 by 3 array, of the same two distinct fuel 

types as previously.  The entire system forms a cube of 22.68 cm per side. 

5.1.2.1 Reference Solution 

The reference solution was generated with a one-group MCNP simulation.  The 

reference solution was obtained using 22 million histories, which yielded an eigenvalue 

of 0.9469 ± 0.0001.  Individual pin fission densities were also tallied, all with relative 

errors smaller than 0.4%.  The reference solution took about a day on the reference PC. 

5.1.2.2 COMET Solutions 

Once again, the coarse meshes were chosen to be cubes of 3.78 cm per side.  The 

system is composed of three unique coarse meshes for which response functions were 

generated with 2 million particles.  The response functions of the fuel assemblies were 

evaluated for three different fission scaling factors (0.9, 1.0, 1.1) and took on average 2 

minutes each on the reference PC.  The coarse mesh results are presented in Table 5.2. 

The second order calculation of the second configuration yielded an eigenvalue 

error of -0.16% with an average pin power error of 0.3%.  The maximum error was 1.3%.  

The coarse mesh calculation took 160 seconds with a convergence criterion of 10-4 for 

both the inner and outer iterations.  The average pin power uncertainty was 0.2%. 
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Table 5.2: COMET Results for Configuration 2 
 

{2,2,2,2}
(%) 

RE k -0.16 
AVG 0.3 
RMS 0.4 
MAX 1.3 

 
 

5.2 3-D C5G7 MOX Benchmark 

5.2.1 One Energy Group  

To facilitate the phase-space variable analysis of the C5G7 benchmark problem 

and reduce the pre-computational downtime, a one-group version of the unrodded 

benchmark was developed (Section 1.2.3.1).  A seven group MCNP calculation was 

performed in the 2-D problem to obtain the 7-group flux distribution. These fluxes were 

then used to collapse the material dependent cross sections to one group.  The one energy 

group cross-sections are given in the appendix. 

5.2.1.1 Reference Solution 

 The reference solution was generated with a one-group MCNP calculation using 

750 million particles.  The obtained reference eigenvalue was 1.17544 ± 0.00002.  

Individual pin fission densities were also tallied over three axial slices of 14.28 cm (one 

third of the fuel assembly), all with relative errors smaller than 0.1%.  The pin powers 

were normalized over the entire length of the fuel assemblies for comparison to the 

COMET solution in the next section. 

5.2.1.2 COMET Solution – Unrodded Configuration 

The unrodded configuration requires response functions for the five unique coarse 

meshes.  Two of these meshes are for the fuel assemblies and the other three are needed 
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to represent the moderator regions of varying sizes and composition (e.g. presence of 

control rods).  Response functions were generated with a modified version of MCNP4C 

using 3 million particles.  The fission source scaling factors were chosen to be (1.0, 1.1, 

1.2).  To perform this analysis, the interface currents were expanded up to 5th order in 

both spatial and angular variables.  In this section, results with the most importance to 

this analysis will be presented.  A summary of the results is presented in appendix B.  

Table 5.3 shows the importance of the azimuthal expansion in the coarse mesh 

calculation. 

 
 

Table 5.3: COMET Results for the One Group 3-D C5G7 Benchmark 
 

{2,2,2,2}
(%) 

{2,2,2,3}
(%) 

{2,2,2,4}
(%) 

{2,2,2,5} 
(%) 

RE k 0.10 0.07 0.06 0.06 
AVG 0.8 0.6 0.6 0.6 
RMS 0.9 0.8 0.8 0.8 
MRE 0.7 0.6 0.5 0.5 
MAX 3.2 2.8 2.6 2.7 

# RF* 81 108 135 162 
CPU Time (s) 107 137 179 227 

  *: Represents only the phase-space response functions for a unique node 
 
 
 

Increasing the expansion order of the azimuthal variable has a positive effect on 

the coarse mesh results.  The eigenvalue error is reduced from 0.1% to 0.06% and the 

average pin power error is reduced from 0.8% to 0.6%.  Similar trends are also observed 

for the root mean square, mean relative error and maximum errors.  The eigenvalue 

uncertainty is of the order of 0.05% and the pin power uncertainties are roughly 0.4%.  

The impact of using higher than third order is more or less lost in the statistical noise. 

From this analysis we can conclude that the seven group calculation should at the very 

least have a third order expansion in the azimuthal angle. 
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Another aspect tested in the one group problem is the order reduction technique 

proposed in Section 3.10.  The following table presents coarse mesh results to a 4th order 

expansion in all variables with different order reduction schemes. 

 
 

Table 5.4: Order Reduction of a {4,4,4,4} Expansion 

Maximum 
Order 

4a 

(%) 
8b 

(%) 
12c 

(%) 
16d 

(%) 

RE k 0.08 0.07 0.04 -0.02 
k UNC 0.05 0.05 0.08 0.21 
AVG 0.6 0.6 0.6 0.7 
RMS 0.8 0.8 0.7 0.9 
MRE 0.6 0.6 0.6 0.7 
MAX 2.8 3.1 2.6 3.7 

AVG UNC 0.4 0.5 0.7 2.0 

# RF* 70 225 375 625 
CPU Time (s) 344 966 1571 2598 

  a: 4th order maximum for all variables 
  b: 4th order maximum in angle and 4th order maximum in space 
  c: 4th order maximum in space 
  d: no order reduction 

*: Represents only the phase-space response functions for a unique node 
 
 
 

The most noticeable effect of the order reduction is on the eigenvalue and pin 

power uncertainties.  The high order terms tallied in the response functions carry a very 

large statistical uncertainty that would require many millions more particle to reduce.  By 

simply dropping these high order terms, the statistical uncertainty of the results becomes 

more reasonable.  Another interesting aspect from the order reduction is that the pin 

power results remain almost the same.  This indicates that the dropped terms had very 

little influence on the pin power distribution and only a slight effect on the eigenvalue. 

Results in Tables 5.3, 5.4 and B.1 indicate that the azimuthal angle has a greater 

importance than the polar. Also reducing the spatial expansion order has little effect on 
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the accuracy.  Therefore, it can be concluded that a spatial expansion order reduction 

should be employed.  Table 5.5 presents various coarse mesh results using spatial order 

reductions. 

 

Table 5.5: COMET Results with Spatial Order Reductions 

 {3,3,2,3}
(%) 

{3,3,2,4}
(%) 

{4,4,2,3}
(%) 

{4,4,2,4} 
(%) 

Maximum 
Order 8 9 9 10 

RE k 0.09 0.08 0.08 0.05 
AVG 0.6 0.6 0.6 0.6 
RMS 0.7 0.7 0.8 0.7 
MRE 0.5 0.5 0.6 0.6 
MAX 3.0 2.7 3.2 3.0 

# RF* 120 150 180 225 
CPU Time (s) 198 278 391 577 
*: Represents only the phase-space response functions for a unique node 

 
 
 

Once again these results are all very similar and the variations are within the 

statistical uncertainties.  However, it can be seen that a 3rd order expansion in space with 

order reduction leads to sufficient accuracy.  Note that reducing the order decreases the 

total number of response functions needed to perform the COMET calculations.  

Therefore, the order reduction improves COMETs computational efficiency and the 

memory requirement (response function library size). Based on the one-group results, it 

seems that a {3,3,2,4} expansion order with 3rd order spatial reduction should lead to 

reasonable accuracy in the 7-group problem. 
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5.2.2 Seven Energy Group 

This benchmark problem was described in Chapter 1.  Reference solutions for all 

three configurations were published by Lewis et al (2005) and these were used to 

establish a comparison with the COMET coarse mesh solutions. 

5.2.2.1 Unrodded Configuration 

5.2.2.1.1 Reference Solution 

The reference eigenvalue published by Lewis et al (2005) is 1.14308 with a 

standard deviation of 0.00003.  The pin power results are presented over three axial slices 

of 14.28 cm.  The average uncertainty of the pin power (1/3 length) is 0.20% with a 

maximum uncertainty of 0.43%. 

5.2.2.1.2 COMET Solution 

Based on the one energy group analysis of this configuration, response functions 

were generated with a phase space expansion of {3,3,2,4} with 3rd order spatial reduction 

with a fission scaling factor grid of 1.0, 1.1 and 1.2.  Each response function was 

computed using a modified version of MCNP4C with 5 millions particles per calculation.  

Each calculation for a fuel mesh took roughly 10-15 minutes on the reference PC, while 

reflector meshes took on average 3 minutes.  The pre-computational phase required a 

total of 28,350 response functions of which 18,900 were for the fuel meshes.  Table 5.6 

presents a summary of the errors for the eigenvalue and the pin power distribution. 

The eigenvalue uncertainty of these calculations is 0.02% indicating that the 

{2,2,2,2} and the {3,3,2,2} results are within a two standard deviation interval and the 

other three calculations are within a one standard deviation interval.  The average pin 

power uncertainty of these calculations is about 0.3 % with a maximum of 0.7%.  As the 

spatial expansion is increased ({3,3,2,2} case), the average error is reduced to 0.7%, the 
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root mean square error drops to 1.1% and the mean relative error to 0.6%.  The maximum 

error is also reduced slightly to 9.8%. 

 
 
 

Table 5.6: COMET Results for Total Pin Power– Unrodded Configuration 

 {2,2,2,2}
(%) 

{2,2,2,4}
(%) 

{3,3,2,2}
(%) 

{3,3,2,3} 
(%) 

{3,3,2,4}
(%) 

Maximum 
Order 7 9 7 8 9 

RE k 0.04 0.00 0.04 -0.01 0.00 
AVG 1.0 1.0 0.7 0.8 0.8 
RMS 1.5 1.6 1.1 1.2 1.2 
MRE 0.7 0.8 0.6 0.6 0.6 
MAX 10.6 10.8 9.8 10.0 10.0 

 

 

Increasing the azimuthal expansion has no positive effect on the pin power results 

but gives a more accurate representation of the eigenvalue.  The pin power variations are 

attributed to slightly larger uncertainties that appear in the higher order terms.  Another 

interesting aspect caused by the large uncertainties is the asymmetrical nature of the 

solution along the diagonal symmetry axis.  The reference solution does not show any 

sign of asymmetry since it was unfolded from a simulation in half of the core. However, 

the coarse mesh calculations were performed in the entire geometry.  This asymmetry is 

best illustrated when comparing the two MOX fuel assemblies that should ideally be 

mirror reflections of each other.  In the {3,3,2,2} case, the maximum error in both 

assemblies is 9.8% and 8.0%.  Interestingly, these errors occur in the same location (in 

reference to the symmetry axis) and both in the same direction to the reference pin power 

(both overestimated).  Tighter convergence (10-6) of the eigenvalue and pin powers had 

little effect on this asymmetry.  Resolving this issue would require using a much larger 

number of particles per response function, thus reducing the pin power and surface 
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angular current uncertainties.  However, such calculations would require much more 

computational power.  

The calculations presented here achieved a pin power average error of less than 

1% and an eigenvalue error of less than 0.05%. However, when comparing to other 

transport methods (Lewis et al, 2006), it is desirable to reduce the maximum error 

substantially. It seems that higher spatial expansion order should reduce the maximum 

error. Response functions are thus generated for a {4,4,2,2} expansion with a 4th order 

spatial reduction.  The range for the fission source scaling factor is chosen to include the 

eigenvalue of all three configurations while minimizing the amount of pre-computations 

(i.e., 1.05 and 1.15).  The response function calculations were once again performed 

using 5 million particles.  The results of the unrodded configuration for the eigenvalue 

and the total pin powers are presented in Table 5.7.  The results for the three fuel slices 

are presented in Appendix B.  The eigenvalue was evaluated using the neutron balance 

method with an initial guess of 1.14. 

 

Table 5.7: COMET Results for Total Pin Power– Unrodded Configuration 

 {3,3,2,2}
(%) 

{4,4,2,2}
(%) 

Maximum 
Order 8 8 

RE k 0.05 0.03 
AVG 0.7 0.5 
RMS 1.1 0.7 
MRE 0.6 0.4 
MAX 9.7 3.3 

CPU Time (s) 2273 3248
 
 

The eigenvalue statistical uncertainty for these cases is 0.02%. Therefore, the 

eigenvalue error is well within a 95% confidence interval.  The pin power average 
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uncertainty is 0.3% with a maximum of 0.7%.  Using a {4,4,2,2} expansion with 4th order 

spatial reduction reduces the pin power errors.  The average error drops to 0.5% with a 

maximum of 3.3%.  The computational times presented for this surface angular current 

expansion could be accelerated quite easily by simply adding more random access 

memory (RAM) to the reference PC.  When using such a high order expansion in 3D, the 

size of the variables becomes larger than the available RAM thus making the computer 

swap data to the hard disk.  This swapping of the data out of the memory makes the code 

much slower than the case where the RAM is sufficient to contain the entire response 

function data. Obviously, adding RAM is a short term solution because at some point 

bigger problems with even higher order expansions will exceed the maximum memory 

currently available.  More efficient memory management within the COMET code must 

be considered in the future. The same memory problem is also encountered in solving the 

next two configurations.  The lack of RAM also makes the acceleration procedure 

impractical because this technique requires even more memory. 

 Response functions for the fuel assemblies with control elements were generated 

using the same expansion order and added to the database.  The pin power and the 

eigenvalue results of the rodded A configuration are presented in Table 5.8.  The initial 

eigenvalue guess used in the neutron balance method was 1.13.  Pin power results for the 

three selected slices are given in Appendix B. 

Once again, the eigenvalue uncertainty is 0.02%, while the pin power 

uncertainties have an average of 0.3% and a maximum of 0.7%.  With the {4,4,2,2} 

expansion of the surface angular current, the eigenvalue error is 0.04%.  Similar to the 

unrodded configuration, the pin power errors are on average 0.5% with a maximum of 

3.8%.  The results of the rodded B configuration for the eigenvalue and the pin powers 

are presented in Table 5.9, while the pin power errors on the three slices are given in 

Appendix B.  The neutron balance method was used to compute the eigenvalue with an 

initial guess of 1.08. 
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Table 5.8: COMET Results for Total Pin Power– Rodded A Configuration 

 {3,3,2,2}
(%) 

{4,4,2,2}
(%) 

Maximum 
Order 8 8 

RE k 0.06 0.04 
AVG 0.7 0.5 
RMS 1.1 0.7 
MRE 0.6 0.4 
MAX 9.4 3.8 

CPU Time (s) 2013 3521
 

 

Table 5.9: COMET Results for Total Pin Power– Rodded B Configuration 

 {3,3,2,2}
(%) 

{4,4,2,2}
(%) 

Maximum 
Order 8 8 

RE k 0.05 0.03 
AVG 0.7 0.5 
RMS 1.1 0.7 
MRE 0.6 0.4 
MAX 9.0 3.7 

CPU Time (s) 2207 3652
 

 

The uncertainties on the eigenvalue and pin powers are the same as with the 

previous two configurations.  The eigenvalue differs from the reference solution by 

0.03%, while the pin power errors are 0.5% on average when using the {4,4,2,2} 

expansion order.  Increasing the expansion order from {3,3,2,2} to {4,4,2,2} has a very 

visible effect on the maximum pin power error and also has a noticeable effect on the pin 

power error distribution. 
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CHAPTER 6 

 

CONCLUSION 

The desire to increase fuel utilization and optimization of parameters related to 

other economic and safety factors have led to reactor core designs that are substantially 

more heterogeneous than the current designs. It is anticipated that the trend in increased 

heterogeneity in fuel assembly and core designs will continue with the advanced and 

Generation IV reactors. The new designs are pushing the validity of the approximations 

made in the current state-of-the-art methods. The need to maintain or improve the 

solution accuracy has led researchers to consider the use of pure transport theory in favor 

of the current two step methodology in which transport theory is used at the lattice level 

to generate homogenized cross section for diffusion theory calculations at the core level.  

Unfortunately, the current available transport codes and methods are mostly 

impractical or require significant amount of memory and computational resources to 

perform accurate core calculations.  Most researchers are developing new acceleration 

and parallelization techniques to overcome these difficulties.  In this dissertation, a new 

method has been developed for performing highly accurate and efficient reactor core 

calculations in highly heterogeneous core configurations.  

In this work, a heterogeneous coarse mesh transport method has been extended to 

three-dimensional Cartesian geometry. The high efficiency of the method is achieved by 

decoupling the problem into smaller sub-volume elements (e.g. coarse meshes) and 

shifting the computation time to a priori calculations of response functions for the unique 

sub-volumes in the system. That is, the method takes advantage of the repeated structure 

found frequently in large reactor problems.  Previously, a deterministic method was used 

to generate the response functions when the surface angular current is represented by an 

expansion in discrete Legendre polynomials that are orthogonal on uniform intervals.  
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The complexity of nuclear reactor designs makes uniform intervals highly impractical 

and inaccurate. Also, the discrete spatial representation along the coarse mesh edge leads 

to the need for a significant number of pre-computed response function data. It was found 

that the size of this data can be greatly reduce if continuous Legendre polynomials are 

used. The deterministic method was thus replaced by a stochastic response function 

generator making this transition fairly simple. 

Initially, the method was implemented in two dimensions and tested on many 

benchmark problems representative of various reactor types and sizes.  With low-order 

expansion of the surface angular currents ({32,2,4}), a full core PWR reactor was 

modeled using seven energy groups.  When comparing to the full core Monte Carlo 

reference calculation, the core eigenvalue differed by only 0.01% while the average and 

maximum pin power errors were 0.4% and 1.7%, respectively.  A two-group quarter core 

CANDU-6 benchmark was also simulated using 2nd order polynomial expansion in space 

and angle.  In just over 18 seconds (not including the pre-computation time) the coarse 

mesh method achieved a solution accuracy of 0.09% in the eigenvalue. The 

corresponding errors in the average and maximum pin power were 0.5% and 2.0%, 

respectively. A BWR benchmark problem was also simulated using three group cross 

sections.  For this problem, using a {4,2,3} expansion, the eigenvalue of the coarse mesh 

transport method differed from the reference Monte Carlo solution by 0.13%.  The 

average and maximum pin power errors were 1.7% and 6.5%, respectively.  For all three 

types of reactor simulated in two dimensions, very accurate results were obtained using 

low order approximation in space and angle. 

The method was then implemented in three dimensions and tested on the C5G7 

MOX Benchmark problem.  Through a series of calculations, it was observed that the 

spatial variables have a strong influence on the accuracy of the results.  With an 

expansion order of {4,4,2,2} in conjunction with a 4th order spatial reduction, the core 
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eigenvalue of all three configurations differed by less than 0.05%.  The pin power errors 

averaged 0.5% with a maximum error of less than 4% for all three configurations 

6.1 Recommendations for Future Work 

In 2-D, the addition of spatial segmentation was presented as a way of gaining 

some accuracy with low-order expansions. Since segmentation becomes complicated in 

3D, this feature was not retained when the coarse mesh method was extended to 3-D.  

However, surface segmentation might be useful for reactors that would otherwise require 

very high expansion orders.  In this thesis, segmentation was only tested using uniform 

segments.  An additional possibility would be to consider variable length segmentation.  

For example, segments might be chosen as a function of the zeros of the orthogonal 

polynomials. 

The spectral mapping idea presented in Section 3.8.1 was barely explored and 

could lead to significant improvements in reproducing continuous energy results. One 

should explore higher order methods as well as improved ways to find a more suitable 

spectral map that is representative of the core (e.g. critical spectrum).  The idea of 

spectral mapping could also be extended to other variables of the phase space.  For 

example, both angular variables could be mapped such that their 0th order would 

represent the cosine-current approximation. 

In the concepts considered for the next generation nuclear reactors, the use of a 

hexagonal lattice is a strong possibility.  The coarse mesh method could easily be 

extended to such geometry.  Another possible addition to the coarse mesh method would 

be the coupling of neutron, photon and electron transport.  This coupling is essentially 

straightforward except for the energy variable.   

In order for the coarse mesh methodology to become practical for core monitoring 

and follow-up, better memory management techniques must be investigated to accelerate 

the coarse mesh solution and reduce the strain on the computer resources.  Parallelization 



 

 107

of the coarse mesh algorithm is a definite possibility.  Also, grid computing should be 

explored for response functions calculations. 

 Another interesting idea is to use triangular meshes at the reflector edge.  This 

would allow for a better representation of the outer reflector without the problem of re-

entering boundaries of the staircase approximation.  Another possibility is to represent 

the outer core as a single coarse mesh and linking it to the rest of the core in the sweeping 

process. 
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APPENDIX A 

COMPLEMENT TO CHAPTER 4 

 
Figure A.1: Geometrical Configuration of the Benchmark Problem 

 
 

The structure of the 12 energy bin approximation that was used to solve the 

problem in Section 4.2.1 is given in Table A.1. 

 

Table A.1: Twelve Energy Bin Limits (MeV) 
Bin Lower Energy Bound Upper Energy Bound 
1 6.0653 20.0 
2 3.6788 6.0653 
3 1.8316e-01 3.6788 
4 6.7379e-02 1.8316e-01 
5 9.1188e-03 6.7379e-02 
6 2.0347e-03 9.1188e-03 
7 1.3007e-04 2.0347e-03 
8 2.3824e-06 1.3007e-04 
9 6.2506e-07 2.3824e-06 
10 8.1968e-08 6.2506e-07 
11 1.2396e-08 8.1968e-08 
12 1.0e-10 1.2396e-08 
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The material properties used in the continuous-energy benchmark are presented in 

Table A.2 and the cross-sections of the one-group version are found in Table A.3. 

 

Table A.2: Material Number Densities for Continuous-Energy Benchmark 
 U-234 U-235 U-238 O-16 H Total 

1% enriched fuel 1.8491E-06 2.2732E-04 2.2218E-02 4.4894E-02  6.734151E-02 
2% enriched fuel 4.0177E-06 4.5461E-04 2.1991E-02 4.4899E-02  6.734888E-02 

Moderator 
(@300K)    3.3338E-02 6.6676E-02 1.00014E-01 

 

Table A.3: Cross-sections for one-group problem 
 Coolant (2%) Fuel (2%) Coolant (1%) Fuel (1%) 

Σtr 9.6691584E-01 4.3288590E-01 1.0522071E+00 4.1543850E-01 

Σab 5.3858400E-03 3.4606100E-02 6.0670900E-03 3.2901800E-02 

Σs 9.6153000E-01 3.4354800E-01 1.0461400E+00 3.4915900E-01 

Σf  5.4731800E-02  3.3377700E-02 

ν  2.44844861671  2.45482762443 

χ  1.  1. 
 

 

  
Figure A.2: Core Configuration of the 3 by 4 CANDU-6 Benchmark 
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Figure A.3: Core Configuration of the 4 by 4 CANDU-6 Benchmark 

 

 

Table A.4: Burnup Distribution for ¼ Core CANDU-6 Benchmark 

Color Scheme Burnup 
(kWd/t) 

Green 800 
Yellow 2700 
Orange 5000 

Red 7000 
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Figure A.4: Core Configuration of the ¼ Core CANDU-6 Benchmark 
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Figure A.5: CANDU-6 Cell Geometry 

 
 
 
 
 

 
Figure A.6: Core Configuration of the Full Core PWR Benchmark 
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Figure A.7: Pin Power Distribution of the Full Core PWR Benchmark 

 
 
 
 

 
Figure A.8: Core Configuration of the Original HAFAS Benchmark 
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Figure A.9: Bundle Configuration of the Original HAFAS Benchmark 

 
 
 

 
Figure A.10: Core Configuration of the Updated HAFAS Benchmark 
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Figure A.11: GE9 Cell Geometry  

 
 
 

 
Figure A.12: Reference System for Diagonal Symmetry 
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APPENDIX B 

 

COMPLEMENT TO CHAPTER 5 

 
Figure B.1: Configuration 1 – Radial View 

 
 

 
Figure B.2: Configuration 1 – Simplified 3-D 
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Figure B.3: Configuration 2 – Radial View 

 

 

 

 
Figure B.4: Configuration 2 – Simplified 3-D 
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Table B.1: One Group C5G7 Cross-sections – Non Fissionable Materials 
 Water GT CR 

Σtr 6.83673E-1 3.43076E-1 6.99624E-1 

Σab 4.94752E-3 2.66447E-3 2.18095E-1 

Σs 6.78725E-1 3.40412E-1 4.81530E-1 
 

 

 

 

 

Table B.2: One Group C5G7 Cross-sections – Fissionable Materials 
 Fuel I Fuel II Fuel III Fuel IV 

Σtr 3.59815E-1 3.72108E-1 3.79763E-1 3.82151E-1 

Σab 4.02914E-2 5.00665E-2 5.38881E-2 5.37404E-2 

Σs 3.19524E-1 3.22042E-1 3.25875E-1 3.2841E-1 

Σf 2.2072815E-2 2.19634E-2 2.3546655E-2 2.3146111E-2 

ν 2.65494 2.86813 2.89563 2.90991 

χ 1.0 1.0 1.0 1.0 
 

 

 

 

 

 

 

 

 

 



 

 119

Table B.3: One Group C5G7 Results – Unrodded Configuration 

 Maximum 
Order 

RE k 
(%) 

AVG 
(%) 

RMS 
(%) 

MRE
(%) 

MAX 
(%) 

AVG 
UNC 
(%) 

Time(s)

{1,1,1,3} 6 -0.01 2.3 2.9 2.1 10.4 0.4 70 
{1,1,2,3} 7 -0.11 1.9 2.4 1.7 8.2 0.4 76 
{1,2,1,3} 7 0.04 2.0 2.5 1.8 10.0 0.4 76 
{2,1,1,3} 7 0.06 2.0 2.5 1.8 8.1 0.4 75 
{2,2,2,2} 8 0.10 0.8 0.9 0.7 3.2 0.4 107 
{2,2,1,3} 8 0.13 1.9 2.2 1.7 7.6 0.4 101 
{2,2,2,3} 9 0.07 0.6 0.8 0.6 2.8 0.4 137 
{2,2,3,2} 9 0.10 0.8 1.0 0.7 3.1 0.4 138 
{2,3,2,2} 9 0.11 0.7 0.9 0.6 3.3 0.4 139 
{3,2,2,2} 9 0.10 0.7 0.9 0.6 3.4 0.4 140 
{3,3,2,2} 10 0.10 0.7 0.9 0.6 3.4 0.4 189 
{2,2,3,3} 10 0.07 0.6 0.8 0.6 2.8 0.4 189 
{2,2,2,4} 10 0.06 0.6 0.8 0.5 2.6 0.4 179 
{2,2,2,5} 11 0.06 0.6 0.8 0.5 2.7 0.4 227 
{3,3,2,3} 81 0.09 0.6 0.7 0.5 3.0 0.4 198 
{3,3,2,4} 91 0.08 0.6 0.7 0.5 2.7 0.4 278 
{3,3,2,5} 101 0.07 0.6 0.7 0.5 2.7 0.4 374 
{3,3,3,3} 33 0.10 0.7 0.9 0.7 2.9 0.4 187 
{3,3,3,3} 61,2 0.10 0.7 0.9 0.7 2.9 0.4 456 
{3,3,3,3} 12 0.08 0.6 0.7 0.5 2.9 0.6 1043 
{4,4,2,3} 91 0.08 0.6 0.8 0.6 3.2 0.4 391 
{4,4,2,4} 101 0.05 0.6 0.7 0.6 3.0 0.5 577 
{4,4,3,3} 101 0.08 0.6 0.8 0.6 3.1 0.5 667 
{4,4,3,3} 14 0.06 0.6 0.7 0.5 2.8 0.9 1054 
{4,4,4,4} 43 0.08 0.6 0.8 0.6 2.8 0.4 344 
{4,4,4,4} 81,2 0.07 0.6 0.8 0.6 3.1 0.5 966 
{4,4,4,4} 121 0.04 0.6 0.7 0.6 2.6 0.7 1571 
{4,4,4,4} 16 -0.02 0.7 0.9 0.7 3.7 2.00 2598 

1 Spatial Reduction 
2 Angular Reduction 
3 All Variable Reduction 
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Table B.4: COMET Results for Pin Powers in Slice 1 – Unrodded Configuration 

 {3,3,2,2} {4,4,2,2}

Maximum 
Order 8 8 

AVG 0.7 0.5 
RMS 1.1 0.7 
MRE 0.6 0.5 
MAX 9.2 3.2 

 
 
 
 

Table B.5: COMET Results for Pin Powers in Slice 2 – Unrodded Configuration 

 {3,3,2,2} {4,4,2,2}

Maximum 
Order 8 8 

AVG 0.7 0.5 
RMS 1.1 0.7 
MRE 0.6 0.4 
MAX 9.7 3.7 

 
 
 
 

Table B.6: COMET Results for Pin Powers in Slice 3 – Unrodded Configuration 

 {3,3,2,2} {4,4,2,2}

Maximum 
Order 8 8 

AVG 1.0 0.7 
RMS 1.4 0.9 
MRE 8.4 0.7 
MAX 10.6 4.0 
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Table B.7: COMET Results for Pin Powers in Slice 1 – Rodded A Configuration 

 {3,3,2,2} {4,4,2,2}

Maximum 
Order 8 8 

AVG 0.7 0.5 
RMS 1.1 0.7 
MRE 0.6 0.5 
MAX 9.2 3.4 

 
 
 
 

Table B.8: COMET Results for Pin Powers in Slice 2 – Rodded A Configuration 

 {3,3,2,2} {4,4,2,2}

Maximum 
Order 8 8 

AVG 0.7 0.5 
RMS 1.1 0.7 
MRE 0.6 0.4 
MAX 9.3 4.2 

 
 
 
 

Table B.9: COMET Results for Pin Powers in Slice 3 – Rodded A Configuration 

 {3,3,2,2} {4,4,2,2}

Maximum 
Order 8 8 

AVG 0.9 0.6 
RMS 1.3 0.8 
MRE 0.8 0.6 
MAX 10.0 4.0 
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Table B.10: COMET Results for Pin Powers in Slice 1 – Rodded B Configuration 

 {3,3,2,2} {4,4,2,2}

Maximum 
Order 8 8 

AVG 0.7 0.5 
RMS 1.1 0.7 
MRE 0.6 0.4 
MAX 8.8 3.5 

 
 
 
 

Table B.11: COMET Results for Pin Powers in Slice 2 – Rodded B Configuration 

 {3,3,2,2} {4,4,2,2}

Maximum 
Order 8 8 

AVG 0.8 0.6 
RMS 1.2 0.7 
MRE 0.7 0.5 
MAX 9.1 3.7 

 
 
 
 

Table B.12: COMET Results for Pin Powers in Slice 3 – Rodded B Configuration 

 {3,3,2,2} {4,4,2,2}

Maximum 
Order 8 8 

AVG 1.2 0.7 
RMS 1.6 1.0 
MRE 1.1 0.7 
MAX 9.1 4.6 
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