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Summary 

 

 Nanotubes have numerous potential applications in areas such as biotechnology, 

electronics, photonics, catalysis and separations. Even though the unique shape, size and 

other structural features of nanotubes make them attractive for nanotechnological 

applications, there are several challenges to be overcome in order to realize their 

potential, such as: (1) Synthesis of monodisperse (in diameter and in length) single-

walled nanotubes; (2) Quantitative understanding of the mechanism of formation and 

growth of nanotubes for development of novel functional materials; (3) Capability to 

engineer the nanotube size; (4) Low temperature synthesis process, preferably in aqueous 

phase; and (5) Synthesis of impurity free nanotubes.  

 

Our investigation focuses on a class of metal oxide (aluminosilicate/germanate) 

nanotubes, which we propose as attractive nanotube materials for a number of reasons. 

They are single walled nanotubes with monodisperse inner and outer diameters, which 

can be synthesized in the laboratory by a low temperature (95ºC) process from mildly 

acidic aqueous solutions of aluminate and silicate precursors. The nanotubes can be 

obtained in pure form.  Furthermore, the formation of the nanotubes from their precursors 

occurs on a time scale of hours, which makes it convenient as a model system to 

study the mechanisms of nanotube formation, and thus obtain new insights that address 

the nanotube science and engineering challenges enumerated above.  
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This work is focused on obtaining a qualitative and quantitative understanding of 

the mechanism of formation of aluminosilicate and aluminogermanate nanotubes. 

Understanding of the self-assembly, nucleation and growth of such a model system 

would enable precise predictive control of synthesis parameters for a wider range of 

nanoscale materials. This work is also focused on precise control of nanotube dimensions 

(length and diameter). In order to achieve this overall objective, this thesis consists of the 

following aspects: 

 

(I) A systematic phenomenological study of the growth and structural properties of 

aluminosilicate and aluminogermanate nanotubes. The evolution of the aqueous-phase 

nanotube synthesis process over a period of 5 days, was carefully analyzed by a number 

of qualitative and quantitative characterization tools. In particular, the time-dependence 

of the nanotube size, structure, and solid-state packing was followed using electron 

microscopy, electron diffraction, X-ray diffraction, and dynamic light scattering. The 

essentially constant size and structure of the nanotubes over their entire synthesis time, 

the increasing nanotube concentration over the synthesis time, and the absence of 

significant polydispersity, strongly suggest that these nanotubular inorganic 

macromolecules are assembled through a thermodynamically controlled self-assembly 

process, rather than a kinetically controlled growth/polymerization process. 

 

(II) Investigation of the mechanism of formation of single-walled aluminogermanate 

nanotubes and development of key insights into the process of hydrolysis and self-

assembly of metal oxides in mildly acidic aqueous solutions. Here we employ solution-
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phase and solid-state characterization tools to elucidate such a mechanism, particularly 

that governing the formation of short (20 nm), ordered, monodisperse (3.3 nm diameter), 

aluminum-germanium-hydroxide (‘aluminogermanate’) nanotubes in aqueous solution. 

The central phenomena underlying this mechanism are: (1) the generation (via pH 

control) of a precursor solution containing aluminate and germanate precursors 

chemically bonded to each other, (2) the formation of amorphous nanoscale (~ 6 nm) 

condensates via temperature control, and (3) the self-assembly of short nanotubes from 

the amorphous nanoscale condensates. This mechanism provides a model for controlled 

low-temperature assembly of small, monodisperse, ordered nanotube objects. 

 

(III) Synthesis of mixed metal oxide (aluminosilicogermanate) nanotubes with precise 

control of elemental composition of the product nanotubes. Here we demonstrate that 

with the use of compositional control, we can precisely control the dimensions (external 

diameter and length) of the nanotubes.  

 

(IV) Preliminary work towards generalization of the kinetic model developed for 

aluminogermanate nanotubes to a larger class of metal oxide nanotubes. It was found that 

the size of nanotubes is dependent on the amount of precursors that can be packed in a 

single ANP and in turn depends on the size of the ANP. With a simple calculation we 

have estimated that the diameter of ANP required to pack enough precursor material to 

make a 90 nm nanotube is 10 nm, and which is close to the value predicted by the kinetic 

model (12 nm). Furthermore, it is found that nanotube concentration is independent of 
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nanotube composition since the activation energy barrier for the formation of nanotubes 

from ANP is independent of composition.  

 

This research therefore addresses three critical issues: It firstly explains how 

nanotube formation and growth occurs by self-assembly mechanisms in aqueous 

solutions, it secondly provides a kinetic and thermodynamic rationale for the mechanism, 

and it thirdly aims at generalizing the mechanism for applicability to a wide variety of 

systems. Understanding the growth mechanism is an important aspect of developing a 

synthetic method for generating nanotubes of desired material, size, and morphology. 

Unfortunately, syntheses of many nanoscale materials have been attempted without 

satisfactory knowledge of the underlying mechanism. Such an approach has a low 

probability of success when attempt to construct nanoscale objects of the level of 

structural complexity described in the following chapters. The present work imparts some 

basic conceptual, experimental, and theoretical tools and methodologies to assess the 

effects of experimental parameters that control the size, shape, and monodispersity of the 

nanotubes, and suggests future directions for research based on the results of the present 

work.  
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Chapter 1 : Introduction and Background 

 

Nanotechnology has emerged as a promising vehicle for an emerging scientific 

and technological revolution [1-3]. Richard Feynman, in his seminal 1959 lecture [4], 

proposed a variety of potential nanomachines, which could be engineered to a higher 

level of functional efficiency than currently available manufactured devices by exploiting 

changes in the behavior of matter at the nanometer length scale. In order to realize this 

goal, scientists and engineers have to devise strategies to synthesize specified functional 

nanoparticles, and then learn how to incorporate them into devices in which they might 

function individually or in cooperation with other nanoparticles or devices. This “bottom 

up” approach of “nanoparticle design” followed by “device assembly from nanoparticles” 

is widely accepted as a promising route to nanotechnological applications, separate from 

a more traditional “top down” approach followed in semiconductor and electronics 

research. In  recent years, “bottom up” nanotechnology has led to promising innovations 

in fields such as biotechnology [2, 5], electronics [6] and catalysis [1, 7]. This approach 

also could potentially address the ever-present need to miniaturize components, 

especially in the electronics industry.  

 

Today it is widely accepted that reduction in size to a molecular level (nanometer 

scale) cannot be achieved with conventional “top down” methods (e.g. photolithography, 

etching etc) [1, 3, 5]. Thus, nanoparticle-based (or “single-molecule” based) device 

development is emerging as a fundamental requirement in realizing the goals of 

nanotechnology. Single-molecule devices can be faster, more precise, and more efficient 
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in energy utilization than devices made of bulk materials. Single functional molecules 

like molecular rectifiers were first designed and assembled [8-10] in IBM research 

laboratories. Numerous molecules having electronic properties have hence been 

identified and reported [11]. Single molecule logic gates and circuits have been theorized 

and detailed molecular designs have been put forward for actualization and incorporation 

in solid state electronics [6, 12-16]. Biotechnology is also stressing the need for 

nanoscale devices for a variety of applications, notably in DNA sequencing and 

biosensing [17, 18]. 

 

Single molecule devices require not only the creation of functional molecules but 

also substrates and platforms; i.e. the support systems that allow the active molecules to 

function with high efficiency and minimal degradation over time. In an enzyme, the 

“active centers” (biocatalytic sites) may be just a few tens of atoms in dimension, but are 

incorporated in a support protein of much larger size so that the active centers are 

stabilized and can perform efficiently in the desired environment. The nanometer scale of 

these structural features offers unique engineering challenges. First, there is little 

quantitative understanding of the processes governing the controlled synthesis of 

important synthetic nanoscale materials like nanotubes, nanowires and nanodots which 

could be used (in the form of sub-100-nm macromolecules) as components of such 

devices [1]. However, knowledge of these processes is essential for rational design of 

nanodevices, since fine control over dimensions, structure, and composition is key to 

producing nanomaterials suitable for incorporation in devices. Additionally, the 

properties of any nanoscale system are controlled by “molecular” physics and 
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confinement effects as opposed to “bulk” physics, and it is well known that the functional 

properties of nanomaterials are usually very different from the corresponding bulk 

materials. Once the synthesis-structure-size-shape-property relations of a nanoparticle are 

accurately determined, one can begin to rationally address the next set of problems such 

as manipulation of the nanoparticle and direction to a specific location in a device, and 

connection of the device to a larger system or collection of devices. In this work, we 

focus on synthesis-structure-size-shape-property relations in nanotube materials. 

 

1.1 Nanotubes and Nanotechnology 

 

Nanotubes are defined as hollow cylindrical objects having one or more 

dimensions within the nanometer regime. Due to their unique shape and size, nanotubular 

materials [19] are acknowledged as important “building blocks” of a future 

nanotechnology based on synthesis of functional nanoparticles and their assembly into 

nanoscale devices with novel applications in areas such as electronics [15], biotechnology  

[17, 20-25], sensing [26], separations [27], energy storage/management [28] and catalysis 

[29].  

 

Figure 1-1 classifies nanotubes based on structure and composition. The 

discovery of carbon nanotubes [30] has stimulated extensive research on the synthesis, 

properties and applications of nanotubes, with the majority of studies being focused on its 

novel properties. Carbon nanotubes [24, 30] and their inorganic analogues (e.g., boron 

nitride and tungsten disulfide nanotubes) [31-33] continue to be extensively studied. 
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However, several problems in these nanotube technology remain to be overcome, e.g. the 

development of a low-temperature synthetic process with high yield as well as precise 

control over the nanotube dimensions and chirality, limitations of chemical composition, 

and the production of ‘three-dimensionally nanoscale’ nanotube objects (i.e., single-

walled objects smaller than 10 nm in both length and cross-section). Inorganic  oxide  

nanotubes [31, 34-38], on the other hand, are emerging as attractive materials due to their 

potentially wide range of tunable compositions and properties accessible by low-

temperature solution-phase chemistry.  

 

 

Figure 1-1: Classification of nanotubes based on their structure and composition. 

 

An important goal of nanotube science and technology is the development of a 

low temperature synthetic process with precise control (at sub-100-nm length scale and 

sub-10-nm diameter scale) over  nanotube  dimensions  to  produce ‘three-dimensionally 

nanoscale’ nanotube objects [24, 39]. This would allow the optimal exploitation of many 

of their unique properties (e.g., tunable band gaps, ballistic transport of charge/heat/mass, 

and quantum confinement phenomena) that manifest themselves strongly at these small 

length scales. A short discussion is presented in the next few sections where these 
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objective goals of nanotechnology are discussed in the perspective of present nanotube 

technology. 

 

1.1.1 Carbon and Isomorphous Nanotubes 

 

The discovery of carbon nanotubes [30] has stimulated extensive research on the 

synthesis, properties and applications of nanotubes, with the majority of studies being 

focused on the novel properties of carbon nanotubes. There are two main types of 

structurally perfect carbon nanotubes; Single Walled NanoTubes (SWNT) comprises of a 

single graphene sheet rolled up to form a cylindrical nanotube and Multi-Walled 

NanoTubes (MWNT) are arrays of concentrically nested SWNTs (Figure 1-2). Although 

the nanotubes are structurally identical to a sheet of graphite (a semiconductor with zero 

band-gap), their properties range from metallic to semiconductor, depending on the sheet 

direction about which it is rolled to form the nanotube [22]. Furthermore, the nanotubes 

have superior tensile strength [40] and heat conductivity  to that of a graphite sheet. 

These unique and advantageous properties of carbon nanotubes have inspired numerous 

investigations into their potential applications. 

 
Figure 1-2: Transmission electron microscope image of a carbon MWNT with 9 nested 
SWNTs. Taken from [22]. 
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Carbon nanotubes are synthesized by methods like arc-discharge, laser ablation 

and chemical vapor deposition on catalyst particles [41]. The details of these high-

temperature (> 500 K) synthesis methods are not the subject of this thesis. The chemical 

vapor deposition method uses less energy and has lower cost than the other methods, but 

uses metallic catalysts (such as iron) which are retained by the product nanotubes. This 

fact may necessitate expensive purification techniques. High purity carbon nanotubes 

currently cost around $750/g and carbon nanotubes with substantial amounts of 

impurities costs around $60/g. Carbon nanotubes are commercially manufactured by 

catalytic gas-phase pyrolysis of heavy hydrocarbons [22]. The products generated by this 

process have high defect density and have only been used in polymer-nanotube 

composites to obtained improved mechanical strength. Furthermore, carbon nanotube 

products are rarely monodisperse and substantial additional cost is incurred in separating 

nanotubes by size (length and diameter) [42]. The nature of the above synthesis 

techniques creates difficulties in controlling the synthesis, because the main mechanistic 

events occur over a very short period of time (~ 1 ms – 1 s). This makes the control over 

dimensions, composition, folding directions of the graphene sheets, and the number of 

walls of the product nanotube, very difficult and reliant upon “Edisonian” 

experimentation.  

 

Many layered inorganic compounds with two dimensional structures have been 

found [43] to form nanotubes. Isomorphous to carbon nanotubes, these inorganic 

nanotubes (also called inorganic fullerene-like nanotubes) [31] are being increasingly 

investigated for nanotechnological applications owing, among several factors, to the vast 
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range of potential physicochemical properties afforded by inorganic materials. For 

example, WS2 nanotubes have been shown to have superior solid lubrication properties. 

Unlike carbon nanotubes, which are built from a monatomic sheet of graphite, inorganic 

nanotubes comprise of “molecular” sheets. In the case of WS2, the repeating structure is 

the sandwich of three layers of W-S-W, with covalent tetrahedral W-S bonds and weak 

van der Waals forces holding the adjacent sulfur layers (Figure 1-3). This layered 

structure is considered as one reason for the much more common observation of multi-

walled inorganic nanotubes than carbon nanotubes.  

 

 
 

          

Figure 1-3: (a) Schematic representation of WS2 nanotube where the pink and yellow 
atoms are W and S respectively. Taken from [39]. (b) Layered structure of graphite and 
WS2. Taken from [43]. 

 

(b) 

(a)
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Synthesis of layered inorganic nanotubes is achieved by using reactive metal 

oxide, metal halide, or metal carbonyl precursors. Progress on various synthesis routes 

are discussed in detail in many reviews [32, 39, 44]. Halides or carbonyls of metals react 

almost instantaneously with H2S to form metal sulfide materials. In such a highly reactive 

environment, there is little scope for rational control over the polydispersity of 

dimensions, number of walls, defect concentration etc. In recent years, it has been 

demonstrated that through soft-chemistry, some control over nanotube synthesis can be 

achieved [45]. Overall, the fullerene-like inorganic nanotubes synthesized to date are 

polydisperse and/or multiwalled materials [31, 33, 44, 46]. 

 

1.1.2 Biomolecular Nanotubes 

 

Biolmolecules like proteins, carbohydrates, and cyclic peptides can self-assemble 

to form nanotube-like structures. An important feature of biological nanotubes is the 

possibility of building in molecular recognition capabilities based on well-known 

interactions between amino acid residues [47, 48]. This feature has enabled researchers to 

achieve molecular level manipulation of nanomaterials for molecular electronics 

applications [49] and selective binding for drug delivery applications [50]. Furthermore, 

peptide and protein based nanotubes are biologically compatible and requires simple lab-

scale equipment to synthesize. Disadvantages include their poor temperature stability and 

sensitivity of their structural integrity to solution conditions. 
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Figure 1-4: Nanotubular organization of a cyclic peptide. The dotted lines represent the 
hydrogen bonds. The unit cell is shown with grey lines. Taken from [51]. 

 

Peptide nanotubes can be assembled from either linear or non-linear peptide 

monomers [52]. The details of the synthesis processes are beyond the scope of this thesis. 

Broadly, however, peptide nanotube are formed either by attachment of linear peptides to 

shape-directing amphiphiles [53] or by self-assembly of cyclic peptides monomers [54, 

55]. The later forms nanotubes where the individual units are connected with hydrogen 

bonds as shown in Figure 1-4. In almost all the peptide nanotubes the stability of the 

structure is dependent on the pH and temperature of the solution in which it is stored. 

Absence of covalent bonds between the peptide monomer units makes these structures 

unstable in the absence of proper solvent pH and temperature. Furthermore, the reagents 

used in the synthesis are expensive and so the nanotubes are associated with high per unit 

costs. 
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1.1.3 Metal Oxide Nanotubes 

 

Metal oxides are a diverse class of materials with a range of technologically 

important properties. For example, ZnO and TiO2 have electronic band gaps of 3.4 eV 

and 3 eV (rutile structure) respectively, and are important in piezoelectric, optoelectronic, 

photovoltaic, and photochemical applications [56]. In2O3 has a band gap of 3.75 eV, 

which makes it optically transparent and an important material for use in liquid crystal 

displays [57]. Fe3O4 has ferromagnetic properties [58]. The diversity of structure-

property relations in metal oxides has led to extensive research on the synthesis of metal 

oxide nanotubes and nanowires, with the objectives of shrinking the device dimensions 

and ultimately taking advantage of nanoscale electron confinement effects to further 

control the properties of these materials [59].  Many important metal oxides, e.g. those of 

Zn, In, Fe, V, Ti, Cu and Ga, have been synthesized in the form of multi-walled 

nanotubes [60]. Synthetic metal oxide nanotubes have been successfully demonstrated as  

field-effect transistors, logic gates, light emission diodes, photodetectors, photovoltaic 

devices, chemical sensors and field emitters [60]. 

                         

Figure 1-5: (a) Low magnification TEM image with ED inset and (b) High magnification 
image of α-Fe2O3 nanowire. Taken from [61]. 

(a) (b) 
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Several synthetic processes have been developed for the synthesis of metal oxide 

nanotubes. They are often synthesized via an evaporation technique, wherein the metal 

vapor and oxygen gas are contacted over a solid seed material (Vapor-Liquid-Solid 

process) [62] or a dispersed liquid phase seed material (Vapor-Liquid process) [63]. 

Vapor-phase syntheses are conducted at high temperature, and offer very little rational 

control over the dimensions of the resulting structures, because of the number of poorly-

understood variables in the synthesis. The products are usually multiwalled and quickly 

grow beyond nanoscale dimensions [31, 34, 64]. Since the diameter of the inner porous 

region may be much smaller than the external diameter of the multi-walled material, they 

are often referred to as nanowires rather than true nanotubes. There has also been 

development of solution-phase growth methods for multi-walled nanotubes, using 

templates such as anodic alumina substrates and carbon nanotubes [65]. Recently there 

has been increasing interest in the synthesis of metal oxide nanotubes from water soluble 

salts and organic templates by hydrothermal processes [66-68]. Such hydrothermal 

(“soft” chemistry) processes occur at 200°C to 300°C and slightly above 1 atm pressure. 

Metal oxide nanotubes like ZnO [68], CuO [69], TiO2 [70], Fe2O3 [71] and In2O3 [57] 

have been synthesized using this process. Although the hydrothermal route offers a low 

cost process, nanoscale engineering (particularly, control of dimensions and defects) is 

yet to be achieved since the mechanistic aspects are little understood for these systems 

[19, 34, 35]. Furthermore, templated approaches have not yielded single-walled metal 

oxide nanotubes. 
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Metal oxide nanotubes also encompass a few naturally occurring minerals. Multi-

walled nanotubes of minerals like chrysotile (magnesium hydroxide silicate) [72] and 

kaolinite (aluminosilicate clay) have been discovered  [73]. It is notable that Pauling [73] 

appears to have been the first to speculate on a thermodynamic basis for nanotube 

formation using the chrysotile model. It was proposed that bond energy mismatches on 

the inner and outer walls generate a bending strain that might favor a cylindrical rather 

than flat (layered) material under certain conditions.  

 

1.2 Imogolite: An Metal Oxide Aluminosilicate Nanotube 

 

The natural and synthetic versions of the nanotube mineral imogolite [74] have 

been investigated to a significant extent over the years [74-79]. In contrast to other metal 

oxide materials, imogolite is a single-walled nanotube (Figure 1-6). Its wall structure is 

identical to a layer of aluminum (III) hydroxide (gibbsite); with isolated silicate groups 

pendent from the inner wall. The nanotube has a periodic wall structure composed of six-

membered aluminum hydroxide rings, with a repeat unit of approximately 0.84 nm along 

the nanotube axis [74]. The empirical formula of imogolite is (OH)3Al2O3SiOH. The 

presence of hydroxyl groups on walls and rims makes the nanotube hydrophilic. 

Naturally occurring imogolite has an external diameter of around 2.0 nm and an internal 

diameter of around 1.0 nm [76]. The structural model of imogolite shown in Figure 1-6 

was proposed [74-76] based on solid-state NMR, TEM and XRD studies that established 

its close relation to the layered structure of gibbsite as well as the coordination and 

environment of the Al and Si atoms.  
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Figure 1-6: Cross sectional view of the aluminosilicate nanotube imogolite. 

 

Synthetic imogolite was prepared [77] from a millimolar aluminosilicate 

precursor solution at a temperature of 95ºC. The typical solid-state structure consists of 

nanotube bundles or ropes several microns in length. An aluminogermanate analog (not 

naturally occurring) has also been successfully synthesized by substitution of silicon with 

germanium in the synthesis solution [80]. However, from the limited amount of 

characterization data available, the aluminogermanate (AlGe) analogs are considerably 

shorter (< 50 nm) than the aluminosilicate (Al-Si) nanotubes and the diameters are about 

50% larger.  

 

1.3 Synthesis and Growth Mechanisms of Aluminosilicate Materials 

 

There are many natural and synthetic aluminosilicates whose existence is made 

possible by the unique aqueous chemistries of silicon and aluminum. For example, 

silicates hydrolyze easily at pH > 9 with limited solubility in more acidic solutions [81-

83]. Silicon forms tetrahedral coordination complexes with water both in acidic and basic 

aqueous solutions. Aluminum, on the other hand, prefers tetrahedral coordination at pH > 
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9 and the octahedral arrangement at pH < 9 [81]. This variability in coordination 

chemistry, and variation of parameters like pH, temperature and concentration, can lead 

to a host of materials. For instance, more than 200 types of zeolites [84] (crystalline 

nanoporous aluminosilicates used widely as molecular sieves and catalysts) have been 

synthesized. Different zeolites can be synthesized by changing parameters such as 

temperature or the organic template [84, 85]. In the case of zeolites (sodalite, chabazite 

etc.) where no organic templates are used for synthesis, it has been proposed that the 

alkali-metal cations act as templates, forming an ordered shell of water around 

themselves and which is subsequently displaced by the tetrahedrons of silicon and 

aluminum under basic conditions [84]. Thus, changing the alkali metal cation can alter 

the resulting zeolite structure. The pore systems of such materials tend to have 

spherical/isotropic cages rather than channels of specific shape. In the case of the 

templated zeolites, the templating (structure-directing) function is carried out by an 

organic molecule which influences the pore shape and structure of the product material. 

 

Comprehensive kinetic data (easily available for organic polymers) is usually 

missing in the case of aluminosilicate polymers. Most of the structures synthesized are 

through empirical experimentation. Concrete mechanistic insights into the formation of 

aluminosilicates are necessary to develop engineering principles for synthesis of these 

structures. Even though there exists a large array of aluminosilicates, and though they are 

a valuable base for a range of nanotechnology applications, much remains unknown 

about their mechanisms of formation [84, 85]. 
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Figure 1-7: Kinetic model of formation of Zeolite. Taken from [86]. 

 

Zeolites have attracted a number of mechanistic studies [85-87] due to their 

variety of complex structures and many applications. The synthesis of defect-free and 

controllable pore size zeolites (and zeolite films) has remained a significant challenge. 

Zeolites are made by a hydrothermal synthesis involving sols of precursor material and 

possibly an organic structure directing agent (depending on the type of zeolite) [84]. 

There is a consensus in the zeolite community that the sol consists of nanoparticles [85-

88]. However, the structure of the nanoparticles, and the mechanism by which they 

contribute to the growth of zeolite crystals, is still a matter of some controversy [85, 87]. 

In a recently published work [86], it has been demonstrated by systematic time-dependent 

(~ 1  year) characterization, that zeolite crystals can evolve by structural transformation 

and aggregation from amorphous nanoparticles which actively participate in the zeolite 

nucleation and growth. The kinetic model developed (Figure 1-7) shows that amorphous 

precursor nanoparticles (A) gradually transforms to zeolite nuclei (C) through additive 

intermediates (Bn). The growing crystal is depicted as C1 to Cn. 
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The synthesis process of zeolites has similarities to the synthesis of 

aluminosilicate nanotubes, in the sense that both are hydrothermal processes and involve 

similar precursors (sols of Al and Si). However the differences are also significant. 

Aluminosilicate nanotubes are synthesized using dilute precursors in mildly acidic 

aqueous solutions, whereas zeolites are synthesized in concentrated sols in basic pH. 

Little work has been done on the mechanism of formation of the aluminosilicate 

nanotubes from the precursors, and previous authors refer to a speculative mechanism 

proposed in 1977 [77, 78]. It was proposed that the formation of imogolite occurs through 

a intermediate called “proto-imogolite” [78]. However, its structure could not be detected 

by TEM and its existence is proposed based on the structure of the final product. It was 

suggested [89, 90] that the formation of “proto-imogolite” precursors took place early in 

the reaction, and these precursors provided nuclei to the growth and formation of 

nanotubes by polymerization. However, definitive experimental proof of this mechanism 

has been lacking. 

 

1.4 Overall Objective and Strategy 

 

This thesis is focused on obtaining a quantitative understanding of the mechanism 

of formation and growth of a class of metal oxide nanotubes, namely the aluminosilicate 

(and analogous aluminogermanate) nanotubes. Ideally, the mechanistic model should 

explain how growth occurs, provide a kinetic and thermodynamic rationale for the 

nanotube growth, and additionally allow insights that might make possible the control of 

nanotube shape and size as well as the synthesis of potentially new materials using the 
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same mechanistic principles. The above overall objective has been achieved through a set 

of specific steps as follows. In Chapter 2, a detailed phenomenological study of the 

growth and structural properties of aluminosilicate and aluminogermanate nanotubes is 

presented. The evolution of the aqueous-phase nanotube synthesis process over a period 

of 5 days, was analyzed by a number of qualitative and quantitative characterization 

tools. In particular, the time-dependence of the nanotube size, structure, and solid-state 

packing was followed using electron microscopy, electron diffraction, X-ray diffraction, 

and dynamic light scattering. In Chapter 3, the mechanism of formation of single-walled 

aluminogermanate nanotubes is presented, with the development of key insights into the 

processes of hydrolysis and self-assembly of the oxide precursors in mildly acidic 

aqueous solutions. Here we employ solution-phase and solid-state characterization tools 

to elucidate such a mechanism. Based on observations from this mechanistic study and 

previous phenomenological study, a quantitative kinetic model was developed. The 

kinetic parameters of the model were obtained by fitting of experimental data. Chapter 2 

and Chapter 3 together, provide a basic thermodynamic and kinetic rationale for 

understanding and controlling the growth of such materials. In Chapter 4, we show the 

capability of controlling the dimensions (diameter and length) by synthesizing mixed 

metal oxide (AlSiGe) nanotubes. In Chapter 5, we discuss results of preliminary work 

towards generalizing the kinetic model of formation of the AlGe nanotubes (developed in 

Chapter 3) to the entire spectrum of AlSiGe nanotubes. Chapter 6 summarizes the present 

work and discusses future directions for engineering the nanotube materials, along with 

relevant preliminary data. 
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Chapter 2 : Phenomenology of the Growth of Aluminosilicate and 

Aluminogermanate Nanotubes 

 

2.1 Introduction and Objective 

 

In the present study, we undertake a systematic investigation of the growth of 

imogolite aluminosilicate [75, 76] and aluminogermanate [80] nanotubes. Our approach 

is based on the use of a number of complementary characterization techniques to probe 

the dimensions, structure and morphology of the nanotubes both in solid state as well as 

aqueous phase, as a function of synthesis time. In particular, samples withdrawn at 

specific times (up to 120 hours) from the nanotube synthesis reactor are then 

characterized using transmission electron microscopy (TEM), selected area electron 

diffraction (SAED), x-ray diffraction (XRD) and dynamic light scattering (DLS). TEM 

and XRD data were used to extract information on the morphology of the nanotubes and 

to propose a model for their packing in the solid state. SAED was used to ascertain the 

internal structure of the nanotubes as a function of growth time. Detailed mathematical 

analysis of DLS data provided quantitative information on the dimensions of the 

nanotubes in solution. The combination of characterization techniques revealed new 

aspects of the process of nanotube formation and structure, which are discussed below. 

The experimental evidence obtained here is then discussed in the context of the two 

possible types of nanotube formation mechanisms. The phenomenology of aqueous phase 

AlSi and AlGe nanotube growth as developed here is a required step towards 
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understanding the mechanisms of formation of these nanoscale materials, and further 

using the insights gained to synthesize and apply new classes of functional nanomaterials. 

 

2.2 Possible Mechanistic Pathways to Nanotube Formation 

 

Our investigations into the synthesis and properties of inorganic nanotubes 

indicate that imogolite Al-Si and AlGe nanotubes have unique properties (e.g., short 

length, hydrophilicity, ability to disperse in aqueous phase, well defined structure, and 

monodispersity) which make them attractive candidates for the above applications. 

Despite the potential nanotechnological applications of imogolite-like nanotubes, the 

phenomenology and mechanism of its formation are not well understood. Previous 

investigators have suggested a mechanism based on the formation of sheets/layers of 

gibbsite which eventually develop curvature due to the binding of silicate groups [90, 

91]. The curvature results from the differing bond lengths of the Al-O and Si-O bonds 

(0.19 nm and 0.16 nm respectively), i.e., the tetravalent silicon atoms pull the oxygen 

atoms in the aluminum hydroxide layer into a curved cylinder. As mentioned earlier, the 

formation of imogolite has been proposed to occur from the intermediate “proto-

imogolite”, which is said to possess some structural characteristics of imogolite but not 

its distinct nanotubular morphology [78]. Its structure could not be detected by TEM. It 

was also observed that the quantity of nanotubes seemed to grow substantially with the 

reaction time, with all the precursors being consumed by about 120 hours of synthesis 

time [90]. Thus it was suggested [89, 90] that the formation of “proto-imogolite” 

precursors took place early in the reaction, and these precursors provided nuclei to the 
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growth and formation of nanotubes by polymerization. However, definitive experimental 

proof of this mechanism is lacking. 

 

 

Figure 2-1: Schematic of possible mechanistic pathways leading to the formation of short 
aluminosilicate and aluminogermanate nanotubes in aqueous phase. 

 

Figure 2-1 shows a schematic of the main events that are likely to occur in two 

generally possible mechanisms. In a “kinetically driven” growth, the nanotube length 

Kinetic Control (Inorganic 
Polymerization) 

Thermodynamic Control
(Self-Assembly) 

Nucleation 

Addition of Precursors  
to Growing Ends 

Direct Condensation 
of Precursors 

Nanotube

Monomeric Precursors Oligomeric Precursors 



 21

would increase substantially with synthesis time as growth units are added to the end of a 

previously nucleated nanotube; whereas in a “thermodynamically controlled” self 

assembly process, nanotubes could self-assemble as dictated by the precursor solution 

properties and the temperature. Depending on which type of mechanism operates, one 

would require different approaches towards controlling the nanotube structure. 

 

2.3. Experimental Section 

 

2.3.1. Synthesis 

 

Tetraethylorthosilicate (TEOS) was added drop-wise to a stirred solution of 5 

millimolar (mM) AlCl3 solution until the Al:Si ratio was 1.8, and left to stand for 45 mins 

under vigorous stirring. Then a 0.1 N NaOH solution was added at the rate of 0.3 ml/min 

until the pH of the solution reached 5.0. The pH was brought down immediately to 4.5 by 

drop-wise addition of a solution containing 0.1 M HCl and 0.2 M of acetic acid. The 

resulting clear solution was allowed to stir for 3 hrs and then reacted at 95ºC under reflux 

conditions. A similar procedure was followed for the aluminogermanate nanotube except 

that TEOS was substituted by GeCl4.  

 

For DLS analysis, 5 ml of the sample was filtered through a 0.2 µm pore size 

syringe filter to produce a dust-free sample containing only nanoscale particles. A drop of 

the sample was deposited on a formvar-backed copper TEM grid for electron microscopy 

and diffraction analysis. The remaining sample was transferred into a vessel under 
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vigorous stirring. 0.1 N ammonia solution was added carefully until the pH reached 8.0. 

At this point the solution turned opaque and was centrifuged at 3000 rpm for 20 min. The 

supernatant was discarded and the gel acidified with a few drops of 12 N HCl. The 

resulting solution was immediately dialyzed against deionized water for 120 hrs to 

remove any unreacted precursors as well as sodium and chlorine ions. A schematic of the 

synthesis and purification process is shown in .5 ml of dialyzed solution was evaporated 

over a glass slide to deposit a film of nanotubes amenable to XRD and XPS (X-ray 

Photoelectron Spectroscopy) analysis. A portion of the dialyzed sample was freeze-dried 

for nitrogen adsorption measurements. 

 

 

Figure 2-2: Aluminosilicate/Aluminogermante nanotube synthesis process. 
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2.3.2. Characterization 

 

TEM images and SAED patterns were obtained with a JEOL JEM 100CX 

transmission electron microscope operated at 100 kV. Due to the low contrast of the 

nanotubes, imaging was restricted to slight underfocus conditions.  Since the converging 

electron beam tends to destroy the sample, the ED patterns were recorded first. A 

parallel, rather than convergent, electron beam was used to reduce electron dosage while 

obtaining the ED patterns. Thin film XRD analysis was performed on a PAnalytical 

X’pert Pro diffractometer operating with a Cu Kα source and equipped with a diffracted 

beam collimator and a Miniprop detector. The data were collected in grazing angle 

incidence mode, with the incident beam at a fixed grazing angle of 1º with respect to the 

sample plane, and the detector scanning over angles from 2º to 30º with respect to the 

same plane. The nanotube films were analyzed for surface composition with a PH1 

Model SCA 1600 XPS instrument equipped with a monochromatic Al Kα source (1486.4 

eV) and a spherical capacitor analyzer operating at 187.85 eV pass energy. High 

resolution spectra (0.05 eV/step and 50 ms/step) were collected for bond information by 

peak deconvolution using Gauss-Lorentzian peaks.  

 

Nitrogen adsorption measurements were performed at 77 K using a Micrometrics 

ASAP 2000M adsorption analyzer. The samples were first outgassed for 12 hrs at 250ºC. 

A static volumetric method was used to obtain the volume of nitrogen adsorbed as a 

function of relative pressure in the range of 10-3 to 100 was used. This was sufficient to 

scan the expected range of the nanotube pore size. The pore size distribution was 
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determined using the Horvath-Kawazoe [92] model (developed for slit shaped pores) 

with the Saito-Foley [93] modification for cylindrical pores. DLS data were collected 

with a Protein Solutions DynaPro instrument. The scattering angle was 90º and the laser 

wavelength was 720 nm. The autocorrelator delay time (τ) was 1 µs. At least 20 scans 

were performed on each sample, each with a 10 s acquisition time. Initial cumulant 

analysis [94] was used to discard uncharacteristic or erroneous scans affected by 

scattering from stray particles (e.g. dust) in the sample. 

 

2.4. Results and Discussion 

 

2.4.1 Structure, Packing and Composition of Nanotubes 

 

2.4.1.1 Transmission Electron Microscopy and Selected Area Electron Diffraction 

 

Figure 2-3 shows the SAED pattern of an Al-Si NT sample after 120 hours of 

synthesis. Since the Al-Si and AlGe nanotubes are similar in molecular structure, the ED 

patterns obtained were the same. The Miller-indexed peaks and corresponding d-spacings 

of the five most prominent rings in the ED pattern are tabulated in Table 2-1. The SAED 

patterns mainly probe the structure within the individual nanotubes, and are important for 

tracking the formation of the nanotubes. With the crystallographic c-axis along the 

nanotube axis, the (006) and (004) reflections occurring at d-spacing of 0.14 nm and 0.21 

nm are sharp and intense [74, 76, 79, 80, 95, 96], and arise from the periodic unit cell of 

approximately 0.85 nm in the c-direction.  
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Figure 2-3: Selected Area Electron Diffraction Pattern of Al-Si nanotubes. The numbers 
on the rings correspond to those in Table 2-1. 

 

Table 2-1: The d-spacings of rings appearing in the SAED pattern of Al-Si NTs (Figure 
2-3). The (hkl) indices are in the cylindrical C24h space group. 

 

Reflections d-spacing (nm) hkl 

1 0.14 006 
2 0.21 004 
3 0.22 063 
4 0.32 071 
5 0.43 002 

 

The diffraction spots due to the packing of the tubes are located very close to the 

central beam and can only be identified for very low selected areas (< 20 µm) and low 

exposure times. The nanotube packing is better elucidated using XRD, as discussed later 

in this paper. Due to the cylindrical (C24h) symmetry of these nanotubes, the odd 

reflections along the c axis are absent. A similarly intense (006) reflection, as well as the 

(004) reflection, are observed for the AlGe nanotubes. The absence of the (003) or (005) 



 26

reflections also supports the assignment of C24h symmetry of the AlGe nanotubes. The 

(006) and (004) rings are thus taken as characteristic signatures that differentiate the 

nanotubes from any amorphous materials or other crystalline structures existing in the 

samples at various times during the reaction.  

 

 

 

 

Figure 2-4: Transmission Electron Micrographs of (a) Al-Si and (b) AlGe nanotubes at a 
synthesis time of 120 hours. Inset are SAED patterns obtained from the same samples. 

(a) 

(b) 
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Figure 2-4 shows TEM micrographs of the Al-Si and AlGe nanotubes at a 

synthesis time of 120 hours.  The morphology of the AlSi samples is that of bundles of 

close-packed nanotubes, the lengths of the bundles being close to a micron. The bundles 

form a random fibrous network. On the other hand, the AlGe nanotubes are much shorter, 

do not form any fibrous structures, and display a morphology consisting of nanotubes 

often standing upright on the surface of the polymeric TEM sample film. This distinct 

feature arising from the short length of the AlGe nanotubes enabled us to obtain clear 

TEM images down the axis of the AlGe nanotubes (Figure 2-4b). The diameters of the 

AlSi and AlGe nanotubes appear to be highly monodisperse, being measured as 2.2 nm 

and 3.3 nm (outer diameter) respectively. 

 

2.4.1.2 X-Ray Diffraction 

 

Figure 2-5 shows the characteristic XRD spectra of AlSi and AlGe nanotubes. 

While a fully quantitative understanding of XRD spectra from nanotube materials has not 

been achieved to date, these spectra can be used in estimating the external diameter of the 

nanotubes. The sharp and intense first peak is always strongly correlated to the external 

diameter. As can be seen in the nanotube TEM images (Figure 2-4), the AlSi nanotubes 

are long and exhibit substantial packing, which may further contribute to the sharpness of 

the first peak. AlGe nanotubes on the other hand are short and show less packing order. 

Thus, the first intense reflection, while still representative of the nanotube diameter, is 

broader and leads to a less accurate estimate.  
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Figure 2-5:Grazing angle incidence XRD spectra from thin films of (a) AlSi and (b) AlGe 
nanotubes obtained after 120 hours of synthesis. 

 

To calculate the external diameter of the nanotubes from the XRD spectra, the 

spectra were fitted with Gaussian peaks. The respective spectra along with the Gaussians 

are shown in Figure 2-6. Then the peak position of the first reflection was used to 

calculate the estimated diameter of the nanotubes. The diameter of the AlSi nanotube 
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calculated from this method is quantitatively more accurate than the AlGe counterpart, as 

explained previously.                    

 

          

Figure 2-6: Fitted XRD spectra of (a) AlSi and (b) AlGe nanotubes. 
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2.4.1.3 Nitrogen Adsorption 

 

Figure 2-7a shows the nitrogen adsorption isotherms at 77 K for AlGe and AlSi 

nanotubes (synthesized by a 120 hr reaction, purified by dialysis, and outgassed at 250ºC 

for 12 hrs). The lower limit (10-3) of the relative pressure (P/Psat) was determined by the 

capability of the instrument to equilibrate at low pressures. Figure 2-7b shows the 

differential pore size distribution of the AlGe and AlSi nanotubes. The pore size 

distribution was estimated using a modification for cylindrical pores [93, 97] of the HK 

model [92].  The results agree very well with earlier adsorption studies on natural and 

synthetic imogolite [98] with the exception that no mesoporosity was observed in our 

samples. Both AlGe and Al-Se nanotubes show a narrow distribution of pore sizes 

centered at effective pore diameters of ~ 0.9 nm and ~0.65 nm respectively. The pore size 

distributions are monomodal which strongly indicates a monodisperse diameter and an 

open-ended (uncapped) structure of the nanotubes. The diameter of the AlGe nanotubes 

is substantially larger than that of AlSi nanotubes. These conclusions are in agreement 

with TEM observations (Section 2.4.1.1). The effective pore diameters measured by 

nitrogen adsorption are lower than those visible by TEM. As argued by previous authors 

[92], the exact values of the pore size should be taken with caution, being based on a 

number of assumptions regarding the pore geometry and the packing of nitrogen in the 

pores [92, 93, 99].  
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Figure 2-7: (a) Nitrogen adsorption isotherms at 77 K for freeze dried AlSi and AlGe 
nanotubes outgassed at 250ºC. (b) Differential pore size distributions of AlSi and AlGe 
nanotubes. 

 

2.4.1.4 X-ray Photoelectron Spectroscopy  

 

XPS survey spectra for the AlSi and the AlGe NT films are shown in Figure 2-8a 

and Figure 2-8b respectively.  The following photoelectron bands were used to calculate 

the composition of the sample: Al2p (71.8 eV), Al2s (116.79 eV), Ge2p3/2 (1217.2 eV), 

Ge3d (29.15 eV), Ge2p1 (1220.7 eV), Si2s (150.2 eV) and Si2p (99.4 eV). The atomic 

concentrations were obtained from fitting of the peaks were 10.99% Al and 6.44% Si for 

the AlSi NT film, and 16.56% Al and 6.18% Ge for the AlGe NT film. The atomic 

concentration ratios (Al:X , X = Si or Ge) are thus close to 2,  conforming to the expected 

chemical composition of the nanotubes. 
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Figure 2-8: X-ray Photoelectron Spectroscopy survey spectra of thin films of (a) AlSi and 
(b) AlGe nanotubes. The positions of the oxidation states of the elements are indicated. 
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2.4.2 Morphology Dependence on the Growth Time 

 

2.4.2.1 X-Ray Diffraction 

 

Figure 2-9 shows the XRD patterns of AlSi and AlGe nanotubes extracted from 

the reactor samples at reaction times of 10, 24, 48, 72 96 and 120 hrs. All the peaks seen 

in the 120-hr samples are visible even at shorter reaction times (10 hrs). All the peaks 

increase in intensity as the reaction time is increased, showing that the nanotubes are 

increasing in quantity. Since the volume of sample dried on the glass slide was the same 

in all cases, the concentration of the nanotubes must be increasing with reaction time.  

 

2.4.2.2 Transmission Electron Microscopy and Selected Area Electron Diffraction 

 

A series of TEM micrographs (Figure 2-10) shows the samples prepared directly 

from the AlSi nanotube synthesis reactor at reaction times of 10, 24, 48, 72, 96 and 120 

hrs respectively. The SAED patterns are also inset in the Figures. It is clear that 

nanotubes form as early as 10 hrs. This is inferred from the morphology of the TEM 

images, and is well supported by the occurrence of the (006) and (004) reflections in all 

the SAED patterns. Figure 2-11 show the TEM micrographs of AlGe nanotubes at 

intermediate growth times of 10, 24, 48, 72, 96 and 120 hrs; and the insets show the 

SAED patterns. All the micrographs clearly show the presence of nanotubes from as early 

as 10 hrs, and the reduction of amorphous materials with the increase in synthesis time. 

In the AlGe NT case however, the nanotubes are relatively short (~10 nm) as indicated 
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before. Qualitative comparison of the images does not indicate any appreciable changes 

in the nanotube length and diameter, or observable high polydispersity in either the length 

or the diameter. 

 

        

Figure 2-9: X-ray diffraction spectra of (a) AlSi and (b) AlGe nanotubes at synthesis time 
of 10 hrs, 24 hrs, 48 hrs, 72 hrs, 96 hrs and 120 hrs respectively, arranged from bottom to 
top with increasing synthesis time. 
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Figure 2-10: TEM micrographs with SAED insets of AlSi nanotubes as a function of 
synthesis time as indicated in the figures. The scale bar is 25 nm. 
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Figure 2-11: TEM micrographs and SAED insets of AlGe nanotubes as a function of 
synthesis time as indicated in the figures. The scale bar is 25 nm. 
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2.4.3 Quantitative Analysis of Nanotube Growth by Dynamic Light Scattering 

 

2.4.3.1 Dynamic model 

 

DLS is a useful technique for studying the dimensions of nanoparticles in solution 

at dilute concentrations. The present synthesis produces micromolar concentrations of 

nanotubes in solution. This situation is ideal for DLS measurements, but unfavorable for 

techniques such as small-angle X-ray scattering (SAXS) which require higher 

concentrations of nanoparticles to obtain quantitatively useful data. The characteristics of 

self-diffusion of rigid and flexible rod-like nanoparticles in dilute isotropic solutions have 

been the subject of extensive theoretical treatment[100-104] and have been used to fit 

DLS data and to determine the dimensions and polydispersity of rod-like nanoparticles 

such as viruses[105] and inorganic whiskers [106].  In this section we discuss briefly the 

theoretical details applicable to the system under investigation, and then present the 

results of our DLS investigations into AlSi and AlGe nanotube synthesis.  

 

For a rigid rod nanoparticle undergoing Brownian translational and rotational 

motion in a solvent, the translational and rotational diffusivity coefficients D and Θ 

respectively are related as [104]: 

                                                         9~
2

D
L Θ                                                                  (2.1) 

In particular, Θ has an L-3 dependence, where L is the length of the rod. When the rod 

length is short, the rotational diffusion becomes very rapid. If the time taken to 

rotationally circumscribe a sphere approaches the delay time (τ ~ 1 µs) of the 
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autocorrelator, then the rapidly rotating rod can be approximated as a translationally 

diffusing sphere whose diameter equals the length of the rod. In our experiments the 

measured diffusion coefficients for the AlGe nanotubes were of the order of 5 × 10-7 

cm2/s, and the nanotube length as obtained from TEM micrographs was ~10 nm. Then Θ 

= 4.5 × 106 rad2/s. The time taken to circumscribe a sphere is given as:  

                                                   sµπ 4.42 2

=
Θ

                                                             (2.2) 

This is close to the delay time of the autocorrelator. Thus, to the autocorrelator the 

rapidly rotating short rod is indistinguishable from a spherical nanoparticle whose 

diameter equals the length of the rod. Therefore, in the case of the short AlGe nanotubes, 

the length can be obtained in a simple manner from the diffusivity D via the Stokes-

Einstein equation:  

                                                          D
kT

L =03πη                                                            (2.3)        

With an increase in the length of the rods (AlSi nanotubes) the rotational motion becomes 

more sluggish and a full model for diffusion (described below) can be used for data 

analysis. 

 

The Siegert equation [101] relates the normalized intensity autocorrelation 

function g2(t) with the field autocorrelation function g1(t) as: 

                                                    ( ) ( ) 2
12 1 tgtg β+=                                                      (2.4) 

Here β, the coherence factor [101], is an adjustable parameter (taken as unity in dilute 

aqueous suspensions). The full model for the field autocorrelation function of a 

suspension of nanorods of uniform diameter but polydisperse length is [100, 107, 108]:  
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−Θ−−+Θ+−=
0

22
2

242
01 dL)L(P)7/DtQt6DtQexp(a)120/tDQDtQexp(a)t(g       (2.5) 

 

Here Q is the momentum transfer given by Q = (4πn/λ)sin(θ/2), where n is the refractive 

index of water, λ is the wavelength of the incident light, and θ is the scattering angle (90° 

in the present study). The function P(L) is the distribution function of the rod lengths. 

The prefactors a0 and a2 are given as: 

 

 224244422
0 72010803240013361 Θ−Θ++−= DQDLQLQLQa                (2.6)  

           2242444
2 72010806480 Θ+Θ−= DQDLQLQa                                  (2.7) 

 

This model can be used to obtain the nanotube length from DLS data, employing the 

expression for the translational diffusivity D of a slightly bending nanorod [100, 107, 

108]: 

            

                    ( ) ( ) 320 )L(L01883.0L67.03863.0
d
Lln

kT
LD3

χΟ+χ+χ++⎟
⎠
⎞

⎜
⎝
⎛=

πη                      (2.8) 

 

Here η0 is the viscosity of the aqueous solvent (0.89 cP at 25°C), χ is the inverse Kuhn 

length [109] which parameterizes the bending of the rods and which converges to zero for 

a perfectly rigid rod, L is the length of the rod and d is the outer diameter. The observed 

signal intensity was in the region of 10,000-250,000 counts per second in all cases. The 

autocorrelator produces g2(t) with a high signal-to-noise ratio by means of repeated scans 
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on the sample (see Experimental Section). Then g1(t) was obtained from g2(t) according 

to the Siegert relation, and the diffusion model (Equations 1-3) was directly fitted to g1(t) 

via a nonlinear least squares algorithm developed in-house. Initially, a monodisperse 

suspension was assumed. The only fit parameters are the nanotube length (L) and the 

inverse Kuhn length (χ). The diameter of the AlSi nanotubes was taken as d = 2.2 nm 

based on the TEM images. The values of the nanotube length were used in a subsequent 

fit incorporating a length distribution function P(L) of Gaussian form, i.e. 

                                    ( ) [ ]2
L

2
L 2/)LL(exp.21)L(P σ−−σπ=                                        (2.9) 

 

2.4.3.2 Results 

 

 Examples of the nonlinear least squares fits of the measured g2(t) data are shown 

in Figure 2-12. The open circles are the experimental autocorrelation functions of 

samples taken at different synthesis times, and the solid lines correspond to the calculated 

autocorrelation functions using the final values of the fitted parameters. The fits are of 

excellent quality and the residuals are less than 1%. For the case of the AlSi nanotubes 

where the inverse Kuhn length (χ) was included as a fitting parameter, it was found that 

this parameter always converged to zero, i.e., the nanotubes behave as rigid rods in 

solution. This coincides with a result from previous work which used natural imogolite 

fibers dispersed in water [107], wherein no bending effects of the AlSi nanotubes were 

observed. In the case of the AlGe nanotubes, no bending effects are expected at all, 

owing to their extremely short lengths. Finally, the inclusion of the Gaussian distribution 

of lengths (to describe polydispersity) resulted in no appreciable standard deviation in the 
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nanotube lengths. The fitted standard deviations are in the range of 0-1 nm, which are not 

statistically significant. Hence, the nanotubes are regarded as monodisperse in length, to 

the limits of dynamic light scattering measurement from nanoparticles[110]. 
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Figure 2-12: Photon intensity autocorrelation functions obtained from DLS 
measurements on AlSi nanotube solutions at synthesis times of 10 hrs, 24 hrs, 48 hrs, 72 
hrs, 96 hrs and 120 hrs, arranged from bottom to top.  

 

The fitted lengths of the nanotubes as functions of synthesis time are shown in 

Figure 2-13, for both AlSi and AlGe nanotubes. The error bars on the fitted lengths are 

obtained by averaging the results from 4 independent samples taken in different 

experiments. An important result of this analysis is that the nanotubes do not grow in 
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length substantially as a function of synthesis time.  Considering the error bars on the 

data, there does not appear a physically significant “growth rate” for the nanotube 

lengths. Small increases, if any, in the fitted lengths could also be due to some 

aggregation of the nanotubes at higher concentrations. The AlSi NTs average about 100 

nm in length, whereas the AlGe nanotubes are about 15 nm in length. These results are 

well consistent with the detailed TEM observations. 

0

20

40

60

80

100

120

140

160

5 25 45 65 85 105 125

Synthesis Time (hrs)

Le
ng

th
 (n

m
)

Al-Si NT

Al-Ge NT

 

Figure 2-13: Fitted lengths of AlSi and AlGe nanotubes obtained from DLS experiments, 
as a function of synthesis time from 10 hours to 120 hours. 

 

The practically constant length of the nanotubes throughout the synthesis time (of 

over 100 hrs) appears to favor a self-assembly mechanism, over a kinetic mechanism 

involving the formation of ‘proto-nanotube’ intermediates which increase in length by 
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addition of precursors. The samples, after filtration through a 0.2 µm filter, do not reveal 

any other significant population of nanoparticles except for the nanotubes themselves. 

This indicates that the nutrient sources for nanotube formation are either sub-nanometer 

aluminosilicate oligomers which cannot be detected by DLS, or a few large gel-like 

particles suspended in solution and which are removed by filtration. The former 

possibility is also consistent with NMR spectroscopic studies of acidic gibbsite-forming 

aluminum (III) hydroxide solutions, wherein no oligomeric precursors other than the 

monomer and the dimer have been conclusively established [111].  It should be noted that 

acidic aluminosilicate solutions, with aluminum in primarily octahedral coordination [91, 

111], are completely different at a molecular level from the large variety of precursors 

seen in alkaline solutions [112]. In addition, the highly dilute solutions used here may 

favor only the formation of a small number of oligomeric precursors. While none of the 

techniques can provide conclusive evidence regarding the polydispersity of the nanotube 

length; the DLS fit results, presence of a well-ordered solid state structure, as well as 

qualitative observation of the TEM images do not support a high polydispersity in 

nanotube length. 

 

In the light of the present phenomenological work, it is suggested that the 

nanotubes are the product of a “thermodynamically-controlled” molecular self-assembly 

process. In other words, the formation of a small (10-100 nm in length) nanotubular 

molecule of monodisperse diameter, is the final step of the reaction rather than a 

intermediate step for the growth of longer nanotubes. In this case, control over the 

nanotube dimensions is unlikely to be obtained by increasing the synthesis time or adding 
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reactants continuously to the synthesis reactor in the hope of extending the nanotube 

length, but rather by thermodynamic control over the reaction chemistry. For example, 

the substitution of silicon with germanium leads to a substantial, yet precise and 

reproducible, change in the nanotube diameter and length. Other possible methods of 

thermodynamic control include the use of organosilane precursors (which contain a Si-C 

bond). These could potentially lead to the formation of well-defined nanotubes with 

organic-functionalized interiors. From the viewpoint of technological applications, the 

prevalence of thermodynamic control has advantages in terms of the ability to obtain 

nanotubes whose dimensions are governed more precisely by the thermodynamics of the 

self assembly process. 

 

2.5 Conclusion 

 

The phenomenology of formation of single walled aluminosilicate and 

aluminogermanate nanotubes has been examined by a combination of characterization 

techniques (TEM ,SAED, XRD, XPS, N2 Adsorption, and DLS) to probe the nanotube 

structure, composition, packing, and dimensions as a function of synthesis time. By TEM 

and DLS analysis, it is found that the dimensions of the aluminogermanate nanotubes are 

3.3 nm in diameter and approximately 15 nm in length, whereas those of the 

aluminosilicate nanotubes are 2.2 nm and approximately 100 nm respectively. The Al/Si 

and Al/Ge atomic ratios are found to be 1.71 and 2.68 respectively by XPS analysis, 

consistent with the accepted structural model of these nanotubes. Nitrogen adsorption 

clearly shows the monodisperse diameter of the nanotubes. The combined TEM, SAED, 
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and XRD data shows clearly that nanotube materials are formed at an early stage in the 

reaction, and that the structure of the nanotubes remains essentially identical throughout 

the synthesis. However, the nanotube concentration increases with synthesis time. XRD 

analysis shows that their solid-state packing is well ordered in an apparently monoclinic, 

and not hexagonal, arrangement. Furthermore, the synthetic nanotubes are individually 

dispersed in an acidic aqueous solution, allowing quantitative analysis of their 

dimensions by DLS. The present evidence strongly indicates that their dimensions (both 

length and diameter) do not change significantly with synthesis time. The sum total of the 

experimental data lends substance to our proposal that self-assembly thermodynamics of 

the aluminosilicate precursor solution, rather than kinetic kinetic (inorganic nucleation 

and end-growth) processes, exert control over the nanotube formation. In addition, the 

confirmation of well defined, uncapped, hydrophilic, dispersible, synthetic nanotube 

materials is of significance for a number of potential nanotechnological applications.  
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Chapter 3 : Mechanism of Formation of Aluminogermanate Nanotubes 

 

3.1 Introduction 

 

In the phenomenological study of Chapter 2 [38], we observed that the 

aluminogermanate nanotube size did not appear to change appreciably during several 

days of synthesis time, whereas the concentration of nanotubes appeared to increase 

substantially (as evinced by XRD). This indicated a fundamental and important 

difference between the present system and the conventional routes [35, 46, 113] for 

nanotube growth. In the latter cases, growth occurs by catalytic addition of molecular or 

atomic precursors to the ends of the nanotube to produce long (~ 1 µm) carbon/BN/WS2 

nanotubes, or it may occur by a combination of crystal nucleation, growth and organic 

templating effects (during liquid-phase growth) to produce long, multi-walled oxide 

nanotubes. In the above works, the use of organic-templating strategies have not yielded 

single-walled nanotubes, e.g., templated metal oxide nanotubes are multi-walled and are 

several tens of nm in outer diameter.   

 

In this Chapter, we describe an investigation that establishes the main aspects of a 

novel nanotube formation mechanism. We chose the aluminogermanate nanotubes for 

this work, since they are truly nanoscale objects with length not more than 20 nm. Since 

the aluminogermanate nanotube synthesis proceeds over a time scale of days to weeks, 

we were able to employ a number of solution-phase (dynamic light scattering and UV-

Vis absorbance spectroscopy) and solid-state (vibrational spectroscopy and electron 



 47

diffraction) characterization tools. After careful interpretation of all available evidence, 

we are in a position to elucidate a mechanism for the self-assembly of short, highly 

ordered nanotube materials. The mechanism suggests a route to nanotube materials of 

small (sub-100-nm) and controllable dimensions. This route consists of controlling 

chemical bonding between precursors in solution via pH control, followed by the use of 

temperature control to form nanoparticle condensates, which sets the stage for self-

assembly processes that work to assemble small, ordered objects from the amorphous 

condensate.  

 

3.2 Experimental Section 

 

3.2.1 Nanotube Synthesis 

 

3.2.1.1 Batch Synthesis 

 

      Tetraethylorthogermanate (TEOG) was added drop-wise to a stirred solution of 

2.5 millimolar (mM) aluminum chloride (AlCl3) solution until the Al:Ge ratio was 1.8, 

and left to stand for 45 minutes under vigorous stirring. Then a 0.1 M NaOH solution was 

added at the rate of 0.3 mL/minute until the pH of the solution reached 5.0. The pH was 

brought down immediately to 4.5 by drop-wise addition of a solution containing 0.1 M 

HCl and 0.2 M acetic acid. The resulting clear solution was allowed to stir for 3 hours 

and then reacted under reflux conditions at different temperatures, as described in the 

following sections.  
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3.2.1.2 Semi-Batch Synthesis 

 

A semi-batch synthesis process was designed to supply a steady supply of 

precursors during the reaction (Figure 3-1). A 150 ml synthesis batch process was set up 

(Section 3.2.1.1). A precursor batch was prepared using the same procedure, except that 

the final step was omitted. The precursor solution was slowly added to the synthesis 

reactor from the beginning of the reaction step. The rate of addition of precursors was 1.8 

ml/h. A low rate of addition was preferable to prevent any “shock” (sudden pH change, 

concentration change etc), which might hinder the reaction. Samples were withdrawn at 

regular intervals to ensure that the reactor volume remains constant at 200 ml. The 

samples withdrawn were used for characterization. To prevent any precursor degradation, 

a fresh batch of precursor solution was prepared and added to the reaction every 24 h.  

                  

 

Figure 3-1: Semi-batch synthesis process. 
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3.2.1.3 Seeded-Batch Synthesis 

 

A seeded batch synthesis was designed in order to supply enough precursors to 

the “seeds” (purified AlGe nanotubes obtained after 120 h of batch synthesis), so as to 

increase the length 3 times. The seeds were obtained after synthesis and purification of 

AlGe nanotubes (Section 2.3.1) and were added to the synthesis batch after the 3 h 

equilibration step. Assuming the AlGe nanotube length L = 18 nm and a 100 % 

conversion of the batch synthesis. The empirical formula of AlGe nanotube is Al2GeO7H4 

[74, 76], with an empirical formula weight of 243 gm/mol. One unit cell of AlGe 

nanotube is Lo = 0.84 nm long and has No = 72 Al atoms in it [38, 114]. In a batch 

synthesis, 0.181 gm of AlCl3.6H2O (Mol. Wt. = 241.5 gm/mol) is added, or NAl = 

0.00075 mol of Al is added and V = 15 ml of purified nanotube solution is obtained. 

Assuming 100% conversion to nanotubes, concentration of nanotubes: 

                                                   
V

L
LN

NC

O
O

Al
N

××
=                                                       (3.1) 

Substituting, we obtain CN = 1.6 × 10-8 mol/ml.  

 

The quantity of AlGe nanotube “seeds” added to the batch synthesis is NS = CN × 

V = 2.4 × 10-7 mol. Now, to increase the length of the seeds to 3L = 54 nm, enough 

precursors must be introduced for an extra 2L = 36 nm of AlGe nanotube. Reordering 

Equation 3.1, the amount of Al required for such growth is: 

                                ( )
O

OS
O

ONAl L
LNN

L
LNVCN 22 ××=×××=                                     (3.2) 
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Substituting, NAl = 0.00042 mol, which is much smaller than the amount of Al added to 

the batch reaction i.e. 0.00075 mol. Thus, enough precursors are introduced in the seeded 

batch synthesis that the seeds could grow to an average length 3L if the mechanism is 

dominated by end-growth.  

 

3.2.2 Characterization Methods 

 

For DLS and UV-Vis analyses, 5 mL samples were withdrawn from the reactor 

and filtered through a 0.2 µm pore size syringe filter to produce a dust-free sample 

containing only nanoparticles. DLS data were collected with a Wyatt DAWN EOS 

instrument. The scattering angle was 108º and the wavelength of the laser was 690 nm. 

The autocorrelator delay time (τ) was 1 µs. A series of 120 scans were performed on the 

sample, each with a 1-second acquisition time. UV-Vis data was obtained on a HP 8453 

UV-Vis spectrophotometer. A quartz cuvette was used as a sample holder since it is 

optically transparent to UV radiation. FT-Raman and FT-IR were performed on freeze-

dried samples. 100 ml of liquid samples were taken directly from the reactor and 

immediately frozen at -20°C before application of vacuum. FT-Raman spectra were 

obtained on a Bruker IFS-66/FRA-106 instrument operating with a Nd:YAG laser. FT-IR 

spectra were collected under vacuum conditions on a Bruker IFS 66v/S spectrometer. At 

least 2048 scans were collected for each FT-Raman and FT-IR spectrum, with a 

resolution of 8 cm-1. Other qualitative characterizations (TEM and electron diffraction) 

were carried out with a JEOL 100CX TEM operating at 100 kV. X-ray diffraction was 

carried out by a PANalytical X’Pert Pro instrument with a CuKα wavelength (0.154 nm).  
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3.3 Results and Discussion 

 

3.3.1 Control of Chemical Bonding in the Precursor Solution  

 

The established synthesis process [38, 80] can be divided into five steps, all 

carried out under vigorous stirring: (I) Hydrolysis, i.e. dissolution of aluminum and 

germanium precursors in water at pH ~3.5, (II) Basification, i.e. slow ramping of the pH 

to 5.0 by addition of sodium hydroxide, (III) Partial Re-acidification to pH 4.5 by 

addition of acid, (IV) Equilibration at room temperature, and (V) Heating above room 

temperature under reflux conditions. Steps I, IV, and V are common in the synthesis of 

inorganic oxide materials. However, Steps II and III are unusual and have no explanation 

in the literature, though they were empirically found to be necessary for the formation of 

nanotubes rather than dense crystalline or amorphous materials [95, 98]. Indeed, we also 

found that successful nanotube synthesis - while completely reproducible - was critically 

dependent on the correct execution of the sequence of Steps I-V. It was first verified by 

TEM imaging of the products (Figure 3-2) that carrying out the synthesis with omission 

of Steps II and III results in the formation of dense crystalline boehmite (aluminum 

oxyhydroxide, AlOOH) irrespective of the presence of germanium. This evidence 

indicated that Steps II and III facilitate a controlled chemical interaction between 

aluminum and germanium precursors that enables the formation of aluminogermanate 

nanotubes in Step V.  
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Figure 3-2: (a) TEM image of boehmite (AlOOH) “rafts” formed in the synthesis when 
Steps II and III were omitted. (b) Electron diffraction pattern of the boehmite “rafts”. 

 

      To study the events occurring during Steps I-IV in more detail, we first 

used dynamic light scattering (DLS) to probe nanoparticle evolution during these steps. 

DLS was found to be preferable over small angle X-ray scattering, since the latter gives a 

very weak signal at the nanoparticle concentrations of interest (1-10 µM). Figure 3-3 

shows DLS autocorrelation functions of liquid samples from the reactor at various stages. 

These experiments have been reproduced several times to ensure their validity. Complete 

dissolution of precursors (i.e., lack of nanoparticles) in Step I is evinced by the flat 

autocorrelation function. Upon increasing the pH (Step II), no nanoparticles are detected 

until the pH reaches 5, whereupon a well-defined autocorrelation function appears 

corresponding to nanoparticle condensates 20 nm in size (Figure 3-4). However, these 

nanoparticles quickly disappear upon partial re-acidification (Step III) and do not 

reappear during equilibration (Step IV).  

 

200 nm 

(a) (b) 
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Figure 3-3: Autocorrelation functions G(t) obtained from dynamic light scattering during 
Steps I-IV of nanotube synthesis. 
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Figure 3-4: Average particle size from DLS analysis for Step 1-5 of the 
aluminogermanate synthesis. 

 

We then investigated Steps I-IV in greater detail with Raman and infrared (IR) 

spectroscopy (Figure 3-5). As expected, liquid-phase spectroscopy failed to produce 

sufficient Raman scattering or IR absorption signal at the concentrations of interest. Thus, 

solid-state spectroscopy was performed on freeze-dried samples removed from the 

reactor during these four steps. The Raman and IR spectra corroborate the following main 

points, based on analysis of the 450-1000 cm-1 region that is of importance [80] in 

identifying the aluminogermanate nanotube material. Firstly, the main change in the 

bonding environment of the precursors is between Steps I and II (i.e., upon basification), 

whereas there are only minor changes in the vibrational spectra thereafter (through Steps  
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Figure 3-5: (a) Raman spectra of freeze-dried samples during Steps I-IV, and the purified 
nanotube product. (b) Infrared spectra of the same samples. The legend for both figures is 
the same. Important vibrational band regions are labeled identically in both figure. 
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II-IV). Secondly, the vibrational spectra of the precursors in Steps II-IV are very similar 

to that of the purified nanotubes obtained as the final product of an independent synthesis 

experiment. In particular, they show that Al-O-Al and Al-O-Ge linkages have been 

formed with similar Raman and IR frequencies as in the nanotube product, whose 

vibrational bands have been assigned qualitatively in previous work [80]. The ‘Al-O-Al 

bending and stretching’ frequency regions, as well as the ‘Al-O-Ge and Ge-O stretching’ 

frequency regions for the nanotube product are labeled. Note that bands with high Raman 

intensity usually have low IR intensity, and vice versa. For example, the Al-O-Al mode at 

450 cm-1 is intense in the Raman and weak in the IR spectrum, whereas the modes around 

550 cm-1 are weak in the Raman and intense in the IR spectrum. Similarly, the Al-O-Al 

stretching mode at 700 cm-1 is intense in Raman and weak in the IR spectrum. The Al-O-

Ge and Ge-O stretching bands at 810, 850, and 950 cm-1 are relatively weak in the Raman 

spectrum but more intense in the IR spectrum. 

 

Finally, we used liquid-phase UV-Vis spectroscopy to prove that there are no 

structurally ordered species at any stage of the Steps I-IV. UV-Vis spectroscopy is an 

excellent probe of structural order in oxide materials (also see following sections), and 

allows us to easily distinguish between ordered nanotubes and amorphous nanoparticles 

or precursors even at nanomolar concentrations. The UV-Vis spectra of the solutions in 

Steps I-IV are completely featureless, as expected from aqueous solutions of aluminate 

and germanate precursors (whether monomeric or oligomeric). No ordered materials are 

observed by TEM, electron diffraction, or XRD on the solid products after freeze-drying.  
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Together, the DLS, Raman, IR, and UV-Vis data provide insight on how control 

of chemical bonding in the precursor solution can influence nanotube synthesis. The role 

of Step II (basification) is to promote co-condensation of aluminum and germanium 

precursors into small (sub-nanometer) aluminogermanate precursors in which the 

chemical bonding resembles that of the aluminum and germanium atoms in the final 

nanotube product. The role of Step III (partial re-acidification to pH 4.5) is to prevent 

precipitation of amorphous materials that begins when basification reaches pH 5 (as 

evinced by the appearance of nanoparticles in the DLS measurements). Furthermore, our 

data confirm the existence of only sub-nanometer precursors before temperature changes 

are applied, save for the temporary appearance of amorphous nanoparticles (only in Step 

II, when pH ~ 5).  

 

3.3.2 Nanotube Formation  

 

Next, we studied the formation of nanotubes during Step V, as a function of 

reaction time (up to 300 hours) and temperature (65°C-95°C) in a batch reactor 

configuration. Additional seeded-batch and semi-batch experiments were carried out at 

95°C. Together, these experiments provide critical information on the nanotube growth 

mechanism and eliminate other possible models. In each case, multiple experiments were 

carried out over a total period of more than a year to ensure reproducibility and realistic 

error estimates on the quantitative measures of nanotube growth. We can quantitatively 

obtain average nanoparticle sizes in the reactor from DLS autocorrelation functions, as 

well as the mass concentration of only nanotubes from UV-Vis absorption intensities. We 



 58

can also obtain (semi-quantitatively) the total concentration of all nanoparticles 

(nanotubular as well as amorphous) from DLS photon scattering signal intensities. 

 

3.3.2.1 Average Nanoparticle Size and Concentration 

 

      Figure 3-6 shows the average nanoparticle size obtained from DLS as a function 

of reaction time and reaction temperature. Nanoparticles of size 5-7 nm appear 

immediately upon heating but do not exist prior to this step. Thereafter, we see a slow 

increase in the average particle size. The ‘apparent rate of growth’ of the nanoparticles 

varies from 0.04 nm/hr at 95°C to 0.001 nm/hr at 65°C. If interpreted in terms of a model 

that involves addition of precursors to nanotube ends, this rate of growth is negligible.  

 

Figure 3-7 shows the photon scattering signal intensity (measured during DLS 

experiments) as a function of reaction time. The intensity has been normalized by the 

nanoparticle size (obtained simultaneously from the DLS autocorrelation function). This 

is because the intensity is proportional to the product of the concentration and the 

molecular weight (which in the case of a 1-D nanotube is proportional to its length) [94]. 

Thus, the normalization to the particle size semi-quantitatively isolates the contribution 

from increasing nanotube concentration. As in the case of the UV-Vis spectra, the total 

concentration of nanoparticles in the solution is seen to be increasing substantially with 

time at higher temperatures of reaction. 
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Figure 3-6: Average nanoparticle size versus time obtained from dynamic light scattering. 

 

                 

Figure 3-7: Semi-quantitative measurement of total nanoparticle concentration versus 
time, from dynamic light scattering signal intensity. 
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3.3.2.2 Effect of Excess Precursors on Nanotube Growth 

 

      We also carried out other experiments to examine the possibility of growth by NT 

nucleation in solution followed by addition of dissolved precursors to the NT ends. 

Figure 3-8 presents DLS particle sizes measured during seeded-batch and semi-batch 

experiments at 95°C in comparison to the batch experiment data. In seeded growth, 5 mL 

of a suspension of purified NTs (of size 19 nm as obtained by a prior DLS measurement) 

was added to the reactor at the onset of Step V. The amount of nanotubes added was such 

that their average length would increase by a factor of 3 during the reaction time if the 

nanotube formation was dominated by end-growth.  However, Figure 3-8 shows that the 

particle sizes do not increase substantially, and both the batch and seeded-batch reactions 

tend to converge to a similar nanoparticle size at long times. The main difference is the 

initially larger average particle size in the seeded-growth experiment, owing to the 

addition of NTs at the beginning of Step V. Another important fact is that the nanotube 

length is not limited by declining precursor concentration in the batch reactor 

experiments, even as the nanotube concentration continues to increase after long reaction 

times of 300 hours at 95°C. This point was further verified by a semi-batch experiment, 

in which reactants were continuously added to the reactor during the synthesis. In this 

case, the initial concentration of the precursors was the same as in the batch reaction, but 

the initial volume of solution was only 25 mL. Precursor solution was continuously added 

to the reactor at a rate of 5 mL/hr. The evolution of the average nanoparticle dimensions 

measured by DLS (Figure 3-8) shows no substantial differences from the batch 

experiments at long times. Finally, the size of the purified NTs (obtained by dialysis of 
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the solution after reaction) was almost constant (at 19±2 nm) irrespective of the growth 

method (Figure 3-8).  

 

 

Figure 3-8: Comparison of DLS nanoparticle sizes obtained from batch, seeded-batch, 
and semi-batch growth. The dashed line shows the nanoparticle size measured from 
purified (dialyzed) nanotube products of the three reactions after 300 hours. 
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is also the first report of the optical properties of these materials, which are wide band 

gap semiconductors (with Eg = 3.6 eV). The sharp, intense peaks may reveal the presence 

of confined excitons and other phenomena that are currently of considerable interest in 

the photonic applications of nanoparticles [88, 115-119]. The spectra differ only in the 

intensity of the peaks, which is proportional to the concentration of nanotubes in the 

solution. According to Beer-Lambert’s law, the absorbance varies linearly with the 

concentration of ordered material in solution, i.e bCA ε= , where A = absorbance, C = 

concentration of nanotubes, ε = molar absorptivity and b = path length. The molar 

absorptivity and path length are constant if the structure of the absorbing material (in this 

case the nanotubes) and the experimental set-up remain unaltered, as is the case here. 

Using this linear relationship, the concentration of the nanotubes can be calculated from 

the absorption spectra. 
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Figure 3-9: UV-Vis spectra of the solution at various times during reaction at 95°C. 
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As seen in Figure 3-9, the AlGe nanotubes absorb in the 200-400 nm regime with 

the most intense absorption at around 320 nm. With increase in synthesis time the 

intensity of all the peaks increases, but the 320 nm peak was the most distinguishable. 

Thus, the total area under the 320 nm peak was used to track the nanotube concentration.  

 

For each spectra, a double exponential background subtraction was followed by 

fitting the spectra with the minimum number of Gaussians [117]. An example of a fit is 

shown in Figure 3-10, where the hollow circles represent the data (95°C synthesis at 

165h) and the solid line represents the fit. The black solid line is the double exponential 

background and the Gaussians are shown in solid curves. Here, the total absorbance (A) 

due to ordered AlGe nanotubes in solution is represented by the total area under the 3 

Gaussians fitting the intense 320 nm peak. 

 

             

0

0.5

1

1.5

2

2.5

210 260 310 360

Wavelength (nm)

In
te

ns
ity

 (A
rb

. U
ni

ts
.)

 

Figure 3-10: Fitted UV-Vis spectra of AlGe nanotube at 165 h and 95°C. 
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3.3.2.3.2 Results 

 

      Figure 3-11 shows detailed UV-Vis data obtained at four synthesis 

temperatures. The spectra differ only in the intensity of the peaks, which is proportional 

to the concentration of nanotubes in the solution as explained in the previous section. 

Using Figure 3-11, we construct the plot of Figure 3-12 which shows the evolution of the 

nanotube concentration as a function of time.  

 

 

Figure 3-11: UV-Vis spectra of AlGe nanotubes as a function of synthesis time and 
temperature. 
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While for the 95°C and 85°C synthesis, the appearance of ordered nanotube 

structures are visible early (~ 1h) in the synthesis. On the other hand for the 75°C and 

65°C synthesis the nanotubes are detected only after 30h and 90h of synthesis 

respectively. It should be noted, however, that from DLS analysis (Figure 3-6) 

nanoparticles appear early (~ 1h) even for the 65°C and 75C synthesis temperatures. 

These observations indicates the presence of disordered nanoparticles, which forms early 

in the reaction. Moreover, the concentration of nanotubes for the 65°C synthesis is 2 

orders of magnitude lower than the 95°C counterpart, which indicates that the transition 

of the nanoparticles to nanotubes is an activated process. 

 

    

Figure 3-12: Concentration of nanotubes, obtained from the 320 nm excitation as a 
function of growth time.  
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Together, Figure 3-6 to Figure 3-12 reveal the central mechanistic aspects of the 

nanotube growth. The temperature rise at the onset of Step V results in the condensation 

of Amorphous NanoParticles (‘ANPs’) of size ~ 5-7 nm (Figure 3-6) and low 

concentration (Figure 3-7). At the higher reaction temperatures, ordered NanoTubes 

(‘NTs’) begin to emerge at an early stage (a few hours) as evinced by the appearance of 

peaks in UV-Vis spectra (Figure 3-11 and Figure 3-12). The UV-Vis spectra remain 

practically the same (except for the increasing intensity) throughout the reaction, and 

result from increasing concentrations of the same ordered material as the reaction 

proceeds. At the same time, the average nanoparticle size increases slowly over the 

reaction time of 300 hours.  

 

Based on all the results, the apparent increase of nanoparticle size during the 

reaction (as observed in DLS) is not primarily due to the increase in the nanotube length 

by solution-phase addition of growth units to the ends, but rather due to evolution of the 

ANPs into low-density (porous), short, ordered NTs by self-assembly as evinced by the 

UV-Vis spectra. Simultaneously, limited aggregation of the ANPs may increase the 

average nanoparticle size and size distribution. In the next section, we explain the 

mechanistic implications of the combined DLS and UV-Vis studies described above. 

 

3.3.3 Overall Mechanism and Quantitative Kinetic Model 

 

We are now in a position to propose a nanotube formation mechanism (Figure 

3-13) that we believe to be conclusive in its essential aspects. The initial Steps I-IV 
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induce the formation of aluminogermanate precursors that are capable of assembly into 

the nanotube structure. The formation of ANPs from precursors in Step V can be 

considered (in general) as a reversible reaction. Having excluded the possibility of liquid-

phase growth of the NTs, the ANPs (once formed) must be evolving irreversibly into 

ordered NTs primarily through internal self-assembly as indicated in Figure 3-13. There 

is a unique energy minimum in this system as a function of the nanotube diameter [114, 

120], which is likely to be important in causing self-assembly into NTs of monodisperse 

diameter within the confines of the ANPs. Regarding the role of amorphous nanoparticles 

and their evolution to ordered materials, we also note a remarkable similarity between the 

nanotube formation mechanism deduced here (following our speculation in a previous 

work [38]) and the reported mechanisms of nanoporous crystal (zeolite) formation [86, 

121-123]. In the latter case, aggregation processes are additionally important for the 

formation of bulk crystalline materials [124]. On the other hand, the much more dilute 

concentrations encountered in the nanotube system can be expected to limit the 

aggregation processes and lead to the formation of nanoscale (rather than bulk) materials. 

In other words, each NT can be formed from only a few ANPs (and from a minimum of 

one ANP). One objective of our ongoing investigations is to ascertain quantitatively the 

role of aggregation that may occur in parallel to the ANP  NT transformation 

processes. The role of amorphous nanoparticles has also been suggested to be of 

profound importance in biomineralization at the interface of biological structures with 

aqueous environments [124, 125]. Very recently, pH-influenced condensation has also 

been shown to influence the formation of dense germanium oxide nanoparticles [126]. 
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Figure 3-13: Schematic representation of the aluminogermanate nanotube growth mechanism. Red: aluminum, green: silicon, 
light blue: oxygen, grey: hydrogen. 
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3.3.3.1 Quantitative Kinetic Model 

 

The UV-Vis concentration data and the DLS particle size data can be well fitted 

(Figure 3-14 and Figure 3-15) to a simple two-step mathematical model based on Figure 

3-13, that involves reversible first-order formation of ANPs from precursors, followed by 

irreversible first-order formation of NTs. Note that the ANP evolution to NTs may 

involve a series of rearrangements (involving hydrolysis and condensation) of atoms 

within the ANPs, and even limited aggregation of the ANPs. Here, we use bulk 

concentrations CA(t) and CN(t) to represent the concentration of ANPs and the fully 

evolved NTs respectively, with the internal rearrangements, precursor-ANP exchange, 

and any aggregation processes being represented by effective rate constants shown in 

Figure 3-13.  

 

Such a ‘minimalist’ model can be used to capture the main features of the 

nanotube assembly mechanism, and similar models have been applied to describe crystal 

growth by nanoparticle aggregation [86, 127]. A quasi-steady-state assumption is made 

for the ANP concentration, which remains low throughout the reaction as seen in the 

experiments carried out at 65°C and 75°C (Figure 3-12). Thus, the model relates the 

concentrations of the precursors (CP), ANPs (CA) and NTs (CN) through the three first-

order rate equations: 

                                             AP
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                                                         A
N Ck

dt
dC

2=                                                           (3.5) 

 Here NP is the number of precursors condensing into a single ANP. The rate equations 

can then be integrated analytically, and the resulting CA(t) and CN(t) can be used to fit the 

effective overall rate constant (K) for nanotube formation, as well as that for the ANP  

NT transformation (k2). The QSS approximation ( 0~dtdCA ) leads to the following 

three expressions: 
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Here, K is the overall pseudo-first-order rate constant for NT formation and CP0 is the 

initial precursor concentration, where:  
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3.3.3.2 Model Fitting to Obtain Kinetic Parameters 

 

We first fit the measured UV-Vis intensity which is proportional to the NT 

concentration (Figure 3-14): 

                                                     )1('
11

Kt
NUV eCI −−== αα                                       (3.10) 

Here 1α  is the instrumental calibration factor where: 
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P
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C 01'
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This fit has only two parameters: K and '
1α . Figure 3-14 shows the resulting least square 

fit and the subsequent fit parameters are shown in Table 3-1.  

 

 

Figure 3-14: Nanotube concentration obtained from UV-Vis analysis. The solid lines 
show the least square fits. 
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NA
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+=                                               (3.12) 

Substituting the model expressions for CA (Equation 3.7) and CN (Equation 3.8) the fit of 

the DLS particle size over the four temperatures involves three parameters: LA, LN, and k2 

(since K is already determined). The fitted DLS data is shown in Figure 3-15. 

 

 

Figure 3-15: Average nanoparticle size from DLS analysis. The solid lines show the least 
square fits. 
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can easily be improved by specifying a temperature-dependent ANP size, although this 

leads to introduction of a larger number of parameters. 

 

Table 3-1: Summary of model fit parameters. 

 

T (°C) Fitted K (h-1) Fitted k2 (h-1) Fitted α1'  

95°C 5.78 × 10-3 9.16 × 10-3 97.45 

85°C 2.05 × 10-3 4.29 × 10-3 97.45 

75°C 4.39 × 10-4 1.11 × 103 97.45 

65°C 2.87 × 10-5 4.15 × 10-4 97.45 

Fitted Length of Nanotube (LN) = 18 nm 

Fitted Diameter of Amorphous Nanoparticle (LA) = 6 nm 
 

The value of '
1α  is found to be temperature-independent, and is assumed as such 

during the nonlinear least squares. The fitted sizes of the nanotube and the amorphous 

nanoparticle were initially assumed to be temperature-dependent, but the results were 

within the resolution of DLS. Hence, the fit was performed again with the assumption of 

temperature-independent nanotube and amorphous nanoparticle size, to yield the final set 

of parameters listed in the Table 3-1. The determination of the effective activation 

energies from the fitted rate constants is shown below in Figure 3-16. 
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Figure 3-16: Activation energies for the two fitted rate constants K and k2. 
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of the (longer) NTs continues to grow in proportion to that of the (compact) ANPs. 

Hence, the average particle size measured by DLS increases with time.  

 

      We further emphasize that the mechanism does not preclude the concurrent role 

of processes such as aggregation of the ANPs, which would have the effect of increasing 

the average size (and size distribution) of the ANPs and thus causing an increase in the 

average length (and length distribution) of the NT that is eventually formed. The possible 

role of aggregation processes, as well as the effects of parameters such as increasing 

precursor concentration, are under investigation and are considered to be outside the 

scope of this investigation. However, the central aspect of the mechanism is the discovery 

that the dissolved nanotube precursors are condensed into amorphous nanoparticles 

containing localized precursors, thus allowing the assembly of ordered nanotubes of 

small sizes and whose structure is controlled by the nature of the precursors.  

 

This is a novel concept as pertaining to nanotube synthesis, and for the synthesis 

of highly ordered nanoscale metal oxide objects in general. The application of this 

mechanism in combination with metal oxide chemistry and variations in parameters such 

as the ionic strength (which can influence nucleation, growth, and aggregation processes), 

precursor concentration, and even the solvent, may allow development of more 

generalized processes based on amorphous nanoparticle condensation and self-assembly 

to yield very small metal oxide nanotube objects of tunable composition and functionality 

- a highly desirable goal of nanomaterials science and technology. As illustrated here, 

such routes could exploit the fact that a large number of metals are well known to form 
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layered oxides, oxyhydroxides, and hydroxides [129]. Such a tendency can potentially be 

diverted to induce nanotube formation via co-condensing ions (such as germanate, 

silicate, and phosphate) that alter the chemical bonding and energetics of the system as 

seen in the current synthesis. Furthermore, the fact that the ANPs necessarily contain 

only a few thousand atoms may allow computational prediction/design of their self-

assembly into ordered objects leading to synthesis of new classes of nanomaterials.  

 

3.4 Conclusion 

 

We have described in this Chapter, the essential mechanistic aspects of a route 

towards the assembly of very small (~ 20 nm), structurally ordered, single-walled 

aluminogermanate nanotubes in aqueous conditions. A combination of solution phase 

(dynamic light scattering and UV-Vis spectroscopy) and solid phase (Raman, FTIR, 

electron diffraction, TEM) characterization methods with necessary variations of the 

basic synthesis process, leads to a mechanism that involves first the use of pH control to 

generate alumiongermanate precursors with appropriate chemical bonding conducive to 

assembly into nanotubes, followed by the use of temperature control (at 65-95°C) to 

condense these precursors into amorphous nanoparticles (ANPs) of size ~ 6 nm, and 

finally the self-assembly of short, ordered aluminogermanate nanotubes (NTs) of size (~ 

20 nm) from these amorphous condensates. A two-step kinetic model of this process can 

capture the main features of the mechanism, viz. increasing NT concentration and slowly 

changing average nanoparticle size, both of which are due to the ANP NT 

transformation.  
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Chapter 4 : Dimension Control of Mixed Metal Oxide Nanotubes 

 

4.1 Introduction 

 

The unique properties of nanoscale materials can be primarily attributed to the 

shape and size of the functional features in the material. For example, the size and shape 

of the pores or channels in a zeolite determines its particular separation applications. In 

electronics and photonics, the size and shape of semiconductor nanomaterials determines 

the shape and height of the potential well in which an electron or hole can be confined 

[130, 131]. Such semiconductor nanomaterials, also called quantum dots [130], have 

created a field of active research targeted at a wide range of photonic applications. 

Recently, there have been significant interest in semiconductor nanomaterials with 

tunable dimensions [132] e.g. cadmium selenide nanorods. It has also been shown that 

the emission photoluminescence spectra of these materials change with both the diameter 

and length of the nanorods [115].  

 

Although shape and size control of nanomaterials are clearly important in 

controlling their properties, there is little systematic knowledge of these aspects in the 

case of nanotube materials. Most 1-D nanomaterials (nanotubes, nanorods, nanobelts etc) 

are assumed to be a product of various crystal nucleation and growth mechanisms [34]. 

Although this model is adequate to explain the growth mechanism in some of the 

materials, it has not led to an effective method to control size and shape. Ultimately, 

nanoscale material synthesis would require adequate control of parameters so as to 
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effectively change product properties (specifically the dimension and composition) and 

produce materials for specific applications.  

 

In this Chapter, we demonstrate the capability of synthesizing 

AlumuminoSilicoGermante (AlSiGe) nanotubes with desired Si to Ge ratio. Here, we 

investigate the change of dimensions with composition of the nanotubes. XPS analyses, 

as well as a quantitative FTIR method developed here, have been used to measure the 

composition of the product nanotubes vis-a-vis that of the precursor solution 

composition. XRD analysis was used to calculate the external diameter of the product 

nanotubes as a function of composition. DLS analysis was used to obtain the length of the 

nanotubes.  

 

4.2 Experimental Section 

 

4.2.1 Synthesis 

 

Depending on the desired content of Ge in the mixed metal oxide nanotubes, 

TetraEthylOrthosilicate (TEOS – Si precursor) and TetraEthylOrthoGermanate (TEOG – 

Ge precursor) were added drop-wise to a stirred solution of 5 millimolar (mM) AlCl3 

solution until the Al:(Si+Ge) ratio was 1.8, and left to stand for 45 mins under vigorous 

stirring. Then a 0.1 N NaOH solution was added at the rate of 0.3 ml/min until the pH of 

the solution reached 5.0. The pH was brought down immediately to 4.5 by drop-wise 

addition of a solution containing 0.1 M HCl and 0.2 M of acetic acid. The resulting clear 



 79

solution was allowed to stir for 3 hrs and then reacted at 95ºC under reflux conditions for 

120 h. Then the solution was cooled to room temperature and 0.1 N Ammonia solution 

was added carefully until the pH reached 8.0. At this point the solution turned murky and 

was centrifuged at 3000 rpm for 20 min. The supernatant was discarded and the gel 

acidified with a few drops of 12 N HCl. The resulting solution was immediately dialyzed 

against deionized water for 120 hrs to remove any unreacted precursors as well as sodium 

and chlorine ions. For DLS analysis, 5 ml of the sample was filtered through a 0.2 µm 

pore size syringe filter to produce a dust-free sample containing only nanoscale particles. 

5 ml of dialyzed solution was evaporated over a glass slide to deposit a film of nanotubes 

amenable to XRD and XPS (X-ray Photoelectron Spectroscopy) analysis. A portion of 

the dialyzed sample was freeze-dried for FTIR measurements.  

 

4.2.2. Characterization 

 

Thin film XRD analysis was performed on a PAnalytical X’pert Pro 

diffractometer operating with a Cu Kα source and equipped with a diffracted beam 

collimator and a Miniprop detector. The data were collected in grazing angle incidence 

mode, with the incident beam at a fixed grazing angle of 1º with respect to the sample 

plane, and the detector scanning over angles from 2º to 30º with respect to the same 

plane.  

 

The nanotube films were analyzed for surface composition with a PH1 Model 

SCA 1600 XPS instrument equipped with a monochromatic Al Kα source (1486.4 eV) 
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and a spherical capacitor analyzer operating at 187.85 eV pass energy. High resolution 

spectra (0.05 eV/step and 50 ms/step) were collected for bond information by peak 

deconvolution using Gauss-Lorentzian peaks. DLS data were collected with a Wyatt 

DAWN EOS instrument. The scattering angle was 108º and the wavelength of the laser 

was 690 nm. The autocorrelator delay time (τ) was 1 µs. A series of 120 scans were 

performed on the sample, each with a 1-second acquisition time. FT-IR was performed 

on freeze-dried samples. The dialyzed liquid samples were immediately frozen at -20°C 

before application of vacuum. FT-IR spectra were collected with a resolution of 8 cm-1
 

under vacuum conditions on a Bruker IFS 66v/S spectrometer.  

 

4.3 Results and Discussion 

 

4.3.1 Chemical Composition of the Nanotubes 

 

Once the AlSiGe nanotubes are synthesized, it is important to analytically 

estimate the actual composition of the products. This is to ensure that the amount of the 

Si to Ge ratio intended to be present in the nanotubes during synthesis is reflected 

accurately in the products. Two independent elemental composition techniques have been 

used for comparison; XPS and FTIR. Using XPS, elemental composition of a sample is 

performed by running multiplex scans at specified energy ranges. This procedure is also 

called deconvolution scanning. Using this data an elemental composition estimate is 

supplied by the software in atomic percentages. Obtaining composition from FTIR 

analysis required more intensive approach described below. 
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4.3.1.1 Determination of Chemical Composition from FTIR Analysis 

 

The IR peak intensity is a function of number concentration of the particular 

vibration it represents [133] given by the Beer-Lambert law. For example, the intensity of 

the Al-O stretching peak at 450 cm-1 would linearly increase in intensity with the number 

concentrations of the Al-O bonds. Thus, quantitative composition information can be 

indirectly derived from IR spectra. For solid-state IR, however, there are peak broadening 

effects which make calibration with intensities very inaccurate [134]. Instead, peak areas 

are considered an accurate calibration measure [135] for all spectroscopic technique and 

which can be linearly related to the number concentrations. 

 

In order to quantitatively compare composition of different set of samples, the IR 

spectrum needs to be normalized with respect to any one of the element that has a fixed 

composition in all the respective samples. In the case of the AlSiGe nanotubes it is the 

Al, since amount of Al in the synthesis remains constant and the Ge to Si ratio is altered. 

The amount of sample used in a particular experiment is subject to experimental error, 

which may/may not be substantial for any quantitative analysis. To avoid such errors the 

spectra was normalize on the basis of Al content. The IR peaks from 400 cm-1 to 790 cm-1 

corresponds to the Al-O and Al-O-H vibrations [76, 79, 80, 96]. The complete spectra 

was normalized with respect to the area under the spectra in the 400 cm-1 to 790 cm-1 

range. This means that regardless of the amount of nanotube sample in the path of the IR, 

the spectra suggests that the Al content irradiated by the IR beam is the same for all 

samples. 
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Figure 4-1: FTIR spectra of freeze dried mixed metal oxide nanotubes. The legend 
indicates Ge content in the respective nanotubes. 

 

Figure 4-1 shows the Al normalized FTIR spectra of the purified and freeze-dried 

mixed metal oxide nanotubes. The pure AlGe and pure AlSi nanotube spectra are shown 

in bold red and blue respectively for clear visual comparison. The legend shows the 

experimental composition of the metal oxide nanotubes represented as the percentage Ge, 

i.e. mathematically Ge/(Ge+Si) × 100. As mentioned in the previous paragraph the peaks 

from 400 cm-1 to 790 cm-1 corresponds to the Al-O and Al-O-H vibrations, which 

remains unaltered in all the samples. A clear difference is noted between the AlGe and 
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AlSi nanotube spectra with the shift of the most intense peak from 810 cm-1 to 910 cm-1 

as the Ge content decreases. This observation is in agreement with previous reports [80]. 

 

In order to quantify the Ge to Si ratio in the mixed metal oxide nanotubes a 

rigorous curve fitting procedure was developed. Firstly, the pure nanotube (AlGe and 

AlSi nanotube) spectra were fitted to minimum number of Gaussians to obtain an 

accurate fit. Then, keeping the peak positions fixed and varying the intensity and peak 

widths of all the Gaussians in the pure nanotube spectra, all the respective AlSiGe 

nanotube spectra was fitted. The peak fits for the mixed metal oxide nanotubes are shown 

in Figure 4-2. From previous work on these materials [80] it is known that the peak 

positions in the 800 cm-1 to 1000 cm-1 range is of interest in compositional analysis. For 

pure AlGe nanotubes they are the Ge peaks (Ge-O and Ge-O-H vibrations) and for the 

pure AlSi nanotube spectra, they are the Si peaks (Si-O and Si-O-H vibrations). In the 

AlSiGe nanotubes, however, all the Si and Ge peaks coexist and ratio of the areas of the 

respective peaks gives the ratio of the respective elements in the product nanotube. The 

Ge and Si peak areas in the AlSiGe nanotubes are shown in Table 4-1, along with the Ge 

content of the nanotubes calculated from the areas of the fitted peaks. 
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Figure 4-2: Deconvoluted FTIR spectra of mixed metal oxide nanotubes. The Gaussians 
indicated in red are vibrations involving Si-O bonds and blue are vibrations involving 
Ge-O bonds. 
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Table 4-1: Fitting results of FTIR spectra of mixed metal oxide nanotubes and 
composition calculations. 

 

FTIR Analysis Results 

Total area from: 

Experimental Ge 
content (%) : 

100×
+ SiGe

Ge
 Si-O vibrations Ge-O vibrations 

100×
−+−

−
OSiOGe

OGe

0.00 72 0 0.00 
25.00 150 54 26.67 
31.25 119 46 28.00 
37.50 121 94 43.60 
50.00 154 149 49.22 
75.00 61 219 78.30 

100.00 0 125 100.00 
 

 

4.3.1.2 Results 

 

The values obtained from FTIR compositional analysis, shown in Table 4-1 is 

plotted in Figure 4-3 along with the elemental composition given by XPS. The solid line 

corresponds to the composition line where the amount of Ge added is equal to the amount 

of Ge in the product nanotube (as obtained from analytical techniques). The error bars in 

the XPS data was obtained by performing the elemental analysis in 3 different sample 

areas. 

 

It is clear from Figure 4-3 that the Ge content in the product nanotube follows the 

solid line (precursor composition) closely. Since the nanotube used for the analysis were 

purified using dialysis so that no amorphous synthesis products remains, the signal 
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coming from XPS and FTIR analysis are coming entirely from the nanotubes. This 

suggests that the Ge content in the product nanotube can be readily controlled.  
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Figure 4-3: Comparison of the results of FTIR and XPS compositional analysis of the 
product nanotubes. 

 

4.3.2 External Diameter of the Nanotubes 

 

Recently, our group has reported that the monodisperse diameter of the AlSi 

nanotubes is a result of a unique strain energy minimum [114] in the material as a 

function of diameter. This energy minimum determines the external diameter of the AlSi 

nanotubes, particularly because the energetics governs the number of building units in the 

circumference (Figure 4-4). AlSi and AlGe nanotube has an external diameter of 2.1 nm 
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3.3 nm respectively.  This increase in diameter can be explained partly by the observation 

that the Ge-O bond length of 0.175 nm is longer than the Si-O bond length (~0.16 nm). 

However, this does not fully explain why there are more building units in the 

circumference of the AlGe nanotubes than the AlSi nanotubes. To explain the phenomena 

of the increase in diameter, the strain energy minima model needs to be extended to AlGe 

nanotubes. More recent work in our group extends the theoretical calculations done on 

the AlSi nanotubes to the AlGe nanotube, and validates the model with the experimental 

data presented below. 

 

 

Figure 4-4: Strain energy of AlSi nanotubes as a function of building units [114]. 
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We have shown in the previous section that the composition of the nanotubes (the 

ratio of Ge to Si) can be controlled accurately. Figure 4-5 shows the XRD spectra of the 

mixed metal oxide nanotubes and Ge content is indicated. Qualitatively the plot shows a 

visible shift towards lower 2θ values with the increase in Ge content, suggesting an 

increase in inter-tube spacing. The first intense peak corresponds to the (100) reflection, 

and we can calculate the inter-nanotube spacing by fitting the background subtracted 

XRD spectra with minimum number of Gaussians. This gives us an accurate estimate of 

the position of the first intense reflection, which is then used to calculate the inter-

nanotube spacing.  

 

Figure 4-6 shows the diameter of the mixed metal oxide nanotubes as a function 

of Ge content. It is clear that the external diameter of the nanotube is increasing with 

increase in Ge content. However, from TEM imaging it has been observed that with the 

increase in Ge content in the nanotubes, the length of the nanotubes also decreases,  a fact 

that may lead to more irregular packing of the nanotubes. Qualitatively, this is also 

observed in the XRD spectra, wherein, with the increase of Ge content in the nanotubes 

the intensity of the first reflection significantly decreases coupled with peak broadening. 

In other words the closely packed model of the nanotubes is only semi-quantitative for 

short nanotubes with high Ge content.  
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Figure 4-5: XRD spectra of mixed metal oxide nanotubes as function of Ge content. 
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Figure 4-6: Diameter of mixed metal oxide nanotubes as a function of Ge content 
obtained from XRD analysis. 

 

4.3.3 Length of Mixed Metal Oxide Nanotubes 

 

Previously, it was observed by TEM imaging [80], that the length of the mixed 

metal oxide nanotubes decreases in length with the increase of Ge content. This is in 

agreement with the fact that the AlGe nanotubes are an order of magnitude shorter than 

its AlSi counterpart. Here we use DLS analysis to obtain a quantitative estimation of the 

length of the mixed metal oxide nanotubes. We recall that the Yamakawa rigid-rod model  

[100] used in our analysis is valid only for rods that have an aspect ratio (L/d) of greater 

than 20. Any nanotubes having aspect ratio less than 20 can be assumed to be a spherical 

particle with a diameter equal to the length of the nanotube. Figure 4-7 shows the length 

of the mixed metal oxide nanotubes as a function of Ge content. It shows the results of 
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the rigid rod and spherical approximation analysis. It is prudent to include both models in 

the plot since in this case the aspect ratio of the rods are not as clear as in the case of the 

pure AlGe and AlSi nanotubes. It is evident from Figure 4-7 that the nanotubes decreases 

in length with increase in Ge content and the rigid rod model converges with the 

spherical approximation at the 100% Ge content point. The reason for the decrease in 

nanotube length with increased Ge content is currently being investigated in our 

laboratory.  
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Figure 4-7: Length of nanotubes obtained from DLS analysis, both from rigid rod and 
spherical approximation models. 
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4.4 Conclusion 

 

In parallel with our mechanistic investigation, we have demonstrated the 

capability of synthesizing and characterizing mixed metal oxide (AlSiGe) nanotubes 

wherein we can control the Si to Ge ratio in the product nanotube with analytical 

precision. Using FTIR and XPS analysis independently, it was shown that the actual 

composition of the product nanotubes coincides precisely to the composition added in the 

precursor solution. Furthermore, the dimensions of the AlSiGe nanotubes changes with 

composition. An increase in external diameter of the nanotubes with the increase in Ge 

content was observed by XRD analysis. DLS analysis, quantitatively established that the 

length of the nanotubes decreases with increase in Ge content. Thus, such precise 

changes of dimensions with composition is an important example of engineering of 

nanotubular objects with desired shape by controlling synthesis parameters. 
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Chapter 5 : Towards Generalization of the Mechanism of Formation of 

Single-Walled Mixed Metal Oxide Nanotubes 

 

5.1 Introduction 

 

As shown in the previous chapter, the dimensions of the present nanotube 

materials change with their composition. In a recently published work [114], our group 

reported the use of molecular dynamics simulations to show that there is a unique strain 

energy minimum that controls the diameter of the nanotubes. More recent work in our 

group (to be published separately) has verified the existence of the energy minimum for 

the mixed AlSiGe nanotubes and its correlation to the Ge content as shown by the 

experimental data of Chapter 5. Therefore, the control over the nanotube diameter is now 

well explained by our ongoing computational and theoretical efforts.  

 

However, the above works do not address the question of why the length of the 

nanotubes is also a function of composition. If we assume that the kinetic model [136] 

derived for the AlGe nanotubes (Chapter 3) holds for the entire class of AlSiGe 

nanotubes, then we can investigate the changes in the quantitative model parameters 

resulting from higher Si content. Important questions are as follows: do the size and 

number of the amorphous nanoparticles change as a function of the Si content? Should 

the dynamic exchange between precursor solution and amorphous nanoparticles be 

considered non-equilibrium (i.e., can the amorphous nanoparticle accommodate a 

continuous influx of precursors even as it arranges into a nanotube? Is there a possible 
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role of aggregation processes that could change with Si content (due to changes in the 

surface charge and van der Waals properties) of the amorphous nanoparticles? 

 

While the above questions require detailed consideration and possibly new types 

of experimental data (e.g., zeta potential measurements to determine surface properties), 

we present here preliminary results employing a similar “toolbox” of methods as used in 

Chapter 4. These results are presently inconclusive, but offer some qualitative insight and 

also suggest the required approaches for quantitative generalization of the mechanism. 

Specifically, we have used DLS and UV-Vis analysis to track the growth of AlSiGe 

nanotubes as a function of synthesis time. Three different compositions of AlSiGe 

nanotubes were investigated, namely 10%, 30% and 60% Ge content (with the remaining 

tetrahedral sites supplied by Si). As before, syntheses were run at four different 

temperatures and the data was collected over 300 h of synthesis.  

 

5.2 Experimental Section 

 

5.2.1 Synthesis 

 

Depending on the desired content of Ge in the mixed metal oxide nanotubes, 

TetraEthylOrthoSilicate (TEOS – Si precursor) and TetraEthylOrthoGermanate (TEOG – 

Ge precursor) were added drop-wise to a stirred solution of 5 millimolar (mM) AlCl3 

solution until the Al:(Si+Ge) ratio was 1.8, and left to stand for 45 mins under vigorous 

stirring. Then a 0.1 N NaOH solution was added at the rate of 0.3 ml/min until the pH of 
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the solution reached 5.0. The pH was brought down immediately to 4.5 by drop-wise 

addition of a solution containing 0.1 M HCl and 0.2 M of acetic acid. The resulting clear 

solution was allowed to stir for 3 hrs and then reacted at 95ºC under reflux conditions for 

300 h.  

 

5.2.2 Characterization 

 

For DLS and UV-Vis analyses, 5 mL samples were withdrawn from the reactor 

and filtered through a 0.2 µm pore size syringe filter to produce a dust-free sample 

containing only nanoparticles. DLS data were collected with a Wyatt DAWN EOS 

instrument. The scattering angle was 108º and the wavelength of the laser was 690 nm. 

The autocorrelator delay time (τ) was 1 µs. A series of 120 scans were performed on the 

sample, each with a 1-second acquisition time. UV-Vis data was obtained on a HP 8453 

UV-Vis spectrophotometer. A quartz cuvette was used as a sample holder since it is 

optically transparent to UV radiation.  

 

5.3 Results and Discussion 

 

In this section we present the experimental data obtained for the growth of 

AlSiGe nanotubes, and investigate their formation and growth phenomena in the 

framework of the kinetic model presented in Chapter 3 for the AlGe nanotubes. The 

mathematical expressions, together with the procedure for obtaining the kinetic 
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parameters by fitting the experimental data, are elaborated in Chapter 3 and cross-

referenced in this section. 

 

Figure 5-1 to Figure 5-3 show the concentration of AlSiGe nanotubes with 

varying Ge content (10%, 30% and 60% Ge) as a function of synthesis time for four 

separate synthesis temperatures of 95°C, 85°C, 75°C and 65°C, as obtained by UV-Vis 

spectroscopy. The solid lines in Figure 5-1 to Figure 5-3 correspond to the least square 

fits to the kinetic model. The kinetic parameter K, obtained from the fits at different 

temperatures and composition are shown in Table 5-1. The kinetic parameters for the 

pure AlGe nanotubes are given in the table for comparison. The kinetic parameter and its 

significance will be discussed later in this section. 

 

 

Figure 5-1: Concentration of AlSiGe nanotubes with 10% Ge content from UV-Vis 
absorption analysis, as a function of synthesis time and temperature.  
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Figure 5-2: Concentration of AlSiGe nanotubes with 30% Ge content from UV-Vis 
analysis, as a function of synthesis time and temperature.  

 

Figure 5-3: Concentration of AlSiGe nanotubes with 60% Ge content from UV-Vis 
analysis, as a function of synthesis time and temperature.  
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Table 5-1: Kinetic parameter K, at different nanotube compositions and temperatures 
obtained from fitting the concentration plots. 

K (h-1) at different 
Synthesis Temperatures 

% Ge 

100×
+ SiGe

Ge
 

65°C 75°C 85°C 95°C 

10% 1.92×10-4 3.01×10-4 1.63×10-3 5.73×10-2 
30% 1.52×10-5 5.01×10-5 2.62×10-4 4.42×10-4 
60% 2.08×10-5 6.46×10-5 2.56×10-4 3.88×10-4 

100% 2.87×10-5 4.39×10-4 2.05×10-3 5.78×10-3 
 

 

Figure 5-4 to Figure 5-6 show the average size of nanoparticles (nanotubes and 

amorphous nanoparticles) from DLS analysis as a function of synthesis time and 

temperatures for different AlSiGe nanotube compositions. Here the average nanoparticle 

size has been calculated from the DLS autocorrelation function by using the rigid rod 

model as explained in Chapter 1. From qualitative TEM [80] and quantitative DLS 

analysis (Figure 4-7), we know that the lengths of the AlSiGe nanotubes are longer than 

that of pure AlGe nanotubes. Recall that the rigid rod model is valid only for nanotubes 

with L/d ≥ 20 and the spherical approximation is valid for nanotubes with L/d ≤ 5. With 

significant Si content in the nanotubes, the spherical approximation does not hold. For 

example, for a nanotube with 20% Si content the length, L = 40 nm (Figure 4-7) and the 

diameter, d = 3.2 nm (Figure 4-6). Therefore, L/d = 12.5, and hence the spherical 

approximation does not hold. Finally, note that reproducible DLS data could not be 

obtained beyond approximately 100 hours of synthesis time for the reaction at 95°C in 

Figure 5-4. Since the Ge content is low, longer nanotubes are formed and eventually lead 

to difficulties in filtering the samples. 
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Figure 5-4: Average nanoparticle size obtained from DLS analysis and the corresponding 
fits for AlSiGe nanotubes with 10% Ge. 

 

 

Figure 5-5: Average nanoparticle size obtained from DLS analysis and the corresponding 
fits for AlSiGe nanotubes with 30% Ge. 
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Figure 5-6: Average nanoparticle size obtained from DLS analysis and the corresponding 
fits for AlSiGe nanotubes with 60% Ge. 

 

Table 5-2: Kinetic parameters k2, diameter of ANPs (LA) and length of nanotube (LN) at 
different nanotube compositions and temperatures obtained from fitting the nanoparticle 
size DLS plots. 

k2 (h-1) at different 
synthesis temperatures 

% Ge 

100×
+ SiGe

Ge
 

65°C 75°C 85°C 95°C 
LA (nm) LN (nm) 

10% 3.94×10-4 5.16×10-4 5.69×10-3 2.50×10-2 12 91 

30% 3.99×10-8 2.77×10-5 3.75×10-5 5.76×10-5 10 4998 

60% 2.09×10-4 3.05×10-4 5.25×10-4 1.41×10-3 6 248 

100% 4.15×10-4 1.11×10-3 4.29×10-3 9.16×10-3 6 18 
 

 

The solid lines in Figure 5-4 to Figure 5-6 are the model fits from which the 

kinetic parameters tabulated in Table 5-2 are obtained. The fitted nanotube lengths and 

kinetic parameters for the 30% Ge and 60% Ge syntheses do not appear to be physically 

realistic. We believe that this is primarily due to the high sensitivity of the DLS analysis 
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to the aspect ratio of the nanotubes. As explained in the previous paragraph, the spherical 

approximation does not hold for nanotubes with less than 80% Ge content, and the rigid 

rod model does not hold for nanotubes with more than 20% Ge content. The AlSiGe 

nanotubes with 30% and 60% Ge content lie in the intermediate range, where neither 

model is valid. This problem is compounded by the fact that the presence of the spherical 

ANPs also alters the DLS diffusivity substantially due to an averaging effect. A detailed 

discussion of this effect is given in the next paragraph. However, the length of nanotubes 

and diameter of the ANPs obtained by the fit for the AlSiGe nanotubes with 10% Ge 

show reasonable values (Table 5-2). An important finding is that the size of the initial 

AlSi ANP is more than twice the size of the ANP formed in the AlGe nanotube synthesis. 

Thus, more precursors are packed in the nanoparticle, leading to the formation of much 

longer nanotubes (~ 91 nm) as explained later in this chapter. 

 

The diffusivity obtained from the DLS autocorrelation function is the 

concentration weighted average of the diffusivities of rods (nanotubes) and spheres 

(ANPs). Restating Equation 3.12 expressed in Chapter 3: 

 

                                                
NA

NNAA
DLS CC

CLCLL
+
+=                                                   (3.12) 

 

At high Ge content (very short rods, spherical approximation is valid), this equation 

remains valid because LA and LN are comparable. At low Ge content, LN >> LA, and 

Equation 3.12 essentially transforms to NDLS LL ~ , and thus still remains useful. For the 
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nanotubes with intermediate Ge content, neither is the diffusivity a linear function of 

length (spherical approximation invalid), nor is the length sufficiently large to mask the 

contribution from the ANPs. Thus, Equation 3.12 does not correctly express the length of 

the AlSiGe nanotubes with intermediate Ge content (20% < Ge < 80%). For such cases, a 

DLS analysis needs to be developed wherein the diffusivities of ANPs and the nanotubes 

are separately identified from the autocorrelation function itself.  

 

Figure 5-7 shows the Arrhenius plots for the AlSiGe nanotubes with different Ge 

content. The activation energies obtained from the slopes of the plots are given in Table 

5-3. In accordance with our discussion regarding the DLS analysis of AlSiGe nanotubes 

with 30% and 60% Ge content, the preliminary value of activation energy obtained for k2 

is considered unrealistic and is being reported for the sake of completeness. Table 5-3 

shows that the activation energy Ea(k2) for the formation of AlSiGe nanotubes with 10% 

Ge, differs substantially from the pure AlGe (i.e. 100% Ge) case. However, this inference 

is inconclusive and has been drawn from just two nanotube syntheses (10% Ge and 100% 

Ge).  For validation of this result, more detailed experimental studies are required and are 

underway, specifically measurements on AlSiGe nanotubes with 20%, 80% and 90% Ge. 

These materials can be described adequately with the current DLS analysis method.  
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Figure 5-7: Arrhenius plots for AlSiGe nanotubes with indicated Ge content. The 
activation energies are obtained from the slope of the plots. The red and blue points 
correspond to rate constants K and k2. 
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Table 5-3: Activation energy from the Arrhenius plots shown in Figure 5-7. 

Activation Energy Ea (kJ/mole) % Ge 

100×
+ SiGe

Ge
Ea(K) Ea(k2) 

10% 123 153 
30% 122 99 
60% 105 95 

100% 181 110 
 

In the above discussion based on the DLS and UV-Vis analyses, we have assumed 

that the “first-pass” kinetic model of Chapter 4 holds quantitatively without any 

refinements. On fitting the experimental data with the model, and excluding the 30% and 

60% Ge data for reasons explained above, we have some reason to believe that the longer 

length of nanotubes at higher Si content may indeed be the result of the formation of 

larger ANPs. The fitted size of ANPs formed in the 10% Ge synthesis is 12 nm, which 

evolves into nanotubes of 91 nm. The fitted size of ANPs formed during the synthesis of 

(18 nm long) AlGe nanotubes is 6 nm. If we assume that the packing density of Al 

species in the ANPs is almost constant, we can then estimate the required size of ANP 

from the length of the nanotube finally formed. We know that for the AlGe nanotubes we 

have 72 Al atoms per unit cell (0.84 nm) of the nanotube. Therefore, the number of Al 

atoms in the 17.60 nm AlGe nanotube is; ( ) 15091884.0/72 =× . This is the number of Al 

atoms in a single ANP of size 6 nm. Therefore, the Al packing density is 

( ) ( )[ ] 142/63/4/1509 3 =π Al atoms/nm3. The length of the AlSiGe nanotube with 10% Ge 

is 91 nm, and therefore the total number of Al atoms; ( ) 77559184.0/72 =× . If the 

packing density of Al remains the same, i.e. 14 Al atoms/nm3, then we have 

( ) ( )[ ] 142/3/4/7755 3 =ALπ , yielding LA = 11 nm. This estimate is close to the fitted size 

of the ANP, i.e. 12 nm. It is to be noted that the number of Al atoms in a unit cell of the 
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nanotube differs considerably with composition because of the different diameters of 

each material. For example, AlGe and AlSi nanotubes have 72 and 48 Al atoms per unit 

cell respectively. 

 

5.4 Conclusions 

 

In this Chapter, we have described preliminary progress in quantitatively 

generalizing the mechanistic model of AlGe nanotube formation developed in Chapter 3 

to the larger class of AlSiGe nanotubes. Our initial results seem to provide clues to 

understand why the nanotube length changes with composition. The size of the nanotube 

is dependent on the amount of precursors condensed in the ANP, which in turn depends 

on the size of the ANP. Our experiments indicate that for AlSiGe nanotube with 10% Ge 

content, the size of ANP is 12 nm, which is more than twice the size of ANPs formed 

during the AlGe nanotube synthesis (6 nm). With a simple calculation, we have estimated 

that the diameter of ANP required to pack enough precursor material to make a 91 nm 

nanotube is 11 nm, which is close to the value obtained from the experiments. However, 

no further definite statements can be made regarding the data, since it has been found that 

the present DLS analysis method is invalid for the AlSiGe nanotubes with 30% and 60% 

Ge content. We are presently carrying out further experiments to investigate materials 

that are closer to the two ends of the AlSiGe nanotube spectrum i.e. with Ge content less 

than 20% or greater than 80%. A modified DLS analysis would be required to analyze the 

experimental data from intermediate compositions. At the same time, more detailed 

models that account for any possible aggregation processes (supported by the necessary 
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surface property data) as well as refinements to account for the non-equilibrium nature of 

the ANP formation process, will allow generalization of the mechanism to allow a more 

robust framework for future nanotube engineering research.  
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Chapter 6 : Conclusions and Recommendations for Future Work 

 

6.1 Summary of Present Work 

 

Nanotubes are important ‘building block’ materials for nanotechnology, but a 

synthesis process for short (sub-100-nm) solid-state nanotubes with structural order and 

monodisperse diameter has remained elusive. To achieve this goal, it is critical to possess 

a definitive mechanistic framework for control over nanotube dimensions and structure. 

In this thesis, we have elaborated the essential aspects of a comprehensive mechanistic 

framework that may allow the engineering of precisely tunable nanotube objects. Firstly, 

the phenomenological study of growth of AlSi and AlGe nanotubes gave new insight into 

the effect of synthesis time on the growth of the nanotubes, and showed unusual behavior 

that could not be explained with existing nanotube growth models. The ensuing 

mechanistic investigation on AlGe nanotubes provided a clear explanation of the 

phenomenological observations, and led to the conclusion that amorphous nanoparticles 

are a key intermediate in the nanotube synthesis. The mechanism could be described with 

a simple mathematical model. In a parallel study, we successfully demonstrated 

compositional and dimensional control of mixed metal oxide (AlSiGe) nanotubes, and 

provided critical experimental input to validate computational and theoretical research by 

other group members on nanotube diameter control. Finally, we took substantial steps 

towards generalizing the quantitative kinetic model to encompass a larger class of mixed 

metal oxide nanotubes.  
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In our view, the present work has established a conceptual framework as well as 

reliable experimental procedures to allow pursuit of an important goal in nanoscale 

chemical processing, viz. the engineering of oxide nanotube materials with controlled 

composition, structure, and dimensions. Success in this endeavor will allow us to 

incorporate the vast range of technologically relevant properties of oxide materials into 

nanotube objects. The number of applications that can be envisioned for metal oxide 

nanotube materials is very large, especially in context of rapid improvements in methods 

for integrating nanoparticle components into functioning devices. In the concluding 

sections of this thesis, some future directions of particular interest (separate from the 

ongoing mechanistic studies) are outlined, in which successful results would be also 

considered as significant advances in nanoscale science and engineering. 

 

6.2 Future Directions in Nanotube Engineering 

 

6.2.1 Nanotube Functionalization 

 

Imogolite nanotubes have been investigated for use as a catalyst support [29, 137] 

and for methane storage [138].  However, based on the unique properties of these 

nanotubes, one may envision many other potential applications. For example, the AlGe 

nanotubes, which are as short as 18 nm and with an outside diameter of 3.3 nm, are 

attractive candidates for use in artificial ion channel devices due to their well-defined 

solid-state structure, hydrophilic interior and short length. Artificial ion channels have 

high potential as novel biomolecule sensing devices, particularly for high speed DNA and 
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protein analysis [17]. These devices operate by detecting chain biopolymers as they 

translocate through a nanoscale ion-conducting channel. The variation in the ion 

conductance of the channel, when correlated to the biopolymer properties, can lead to 

novel sensing strategies with single-molecule resolution and high speed. Intrinsic 

limitations on the stability and reliability of nanoscale ion channels made from ‘soft 

matter’ such as proteins, have led to a requirement for solid-state hydrophilic ion 

channels of appropriate length and diameter [139]. Similarly, others have proposed the 

construction of nanocomponents such as nanoelectrical cables (containing a conducting 

polymer wire with an insulating nanotube sheath) by threading of polymers into short 

nanotubes. A number of recent simulation studies [140-142] using carbon nanotube 

models (< 5 nm in length) have suggested the potential for the above applications.  

 

To realize these potential applications, it is critical to develop the ability to control 

the functionality of the internal and external nanotube surfaces. For example, the external 

surface of the nanotube should be hydrophobic for incorporation as an artificial ion 

channel in a lipid bilayer membrane. This is to ensure that it has favorable interactions 

with the aliphatic lipid tail so that it anchors strongly in the bilayer. On the other hand, 

for nanoelectrical cables, the internal surfaces should be hydrophobic to ensure favorable 

polymer-nanopore interactions. The aluminosilicate/aluminogermanate nanotubes offer a 

unique advantage in that their external and internal surfaces are chemically different 

(aluminum hydroxide and silanol/germanol respectively).  
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6.2.1.1 Nanopore Functionalization 

 

The present nanotubes could be functionalized with organic functional groups, 

both on the interior as well as exterior surfaces. In situ functionalization could be carried 

out by replaced by a functional group attached to the silicon/germanium atom, i.e. ≡Si-

OH will be replaced by ≡Si-X for AlSi nanotubes.  

X

Silicon
Oxygen

Aluminum

XX

Silicon
Oxygen

Aluminum

Silicon
Oxygen

Aluminum

 

Figure 6-1: 6-membered aluminum hydroxide ring with pendent silinol/germanol groups 
comprising the SBU of the nanotubes. A side view of the SBU showing the position of 
the functional group (X) attached to the silicon/germanium atom. 

 

A Structural Building Unit (SBU) of the nanotube is the six membered ring of 

aluminum hydroxide with a silanol/germanol pendant (Figure 6-1). The group marked X 

in the Figure refers to the organic functional group. X can be chosen for any desired 

property of the nanotube pore. In a regular AlSi nanotube synthesis, the silicon precursor 

TetraEthylOrthoSilicate (TEOS) is hydrolyzed in mildly acidic conditions to yield 

Si(OH)4. Three of the four hydroxide groups in the silicate tetrahedron react with the 

aluminum hydroxide sheets by an oxo bridge to form the nanotube wall [74, 76, 89, 120]. 

The fourth hydroxide group is pendant in the nanotube. If TEOS is replaced by any of the 

chemical species shown in Figure 6-2, wherein the Si-X (X = methyl, methoxy, 

X 
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ethylammonium, ethoxy) bond is stable in acidic pH, the resulting nanotube would have a 

pendant X group in the nanopore, leading to functionalized nanotubes. 

 

 

Figure 6-2: Silicate precursors with one of the valences occupied by a non-hydrolyzable 
Si-C bond where a functional group (X) is attached to the Si atom. 

 

Systematic synthesis experiments could be performed with varying ratios of 

silicate precursors (TEOS and functionalized silicate precursors) keeping all the other 

synthesis steps unchanged. The formation of nanotubes can be confirmed by XRD, TEM 

and ED analysis. The pore size of the functionalized nanotubes can be measured with 

nitrogen adsorption. Fourier Transform Infra-Red (FTIR), Raman, and solid state 29Si and 

13C MAS NMR spectroscopy can be used to ascertain whether the functional groups are 

attached to the Si groups in the interior of the nanotubes. However, some issues regarding 

the compatibility of the organosilane precursors in an aqueous environment need to be 

addressed. Some of the silicate precursors have hydrophobic groups (methyl, ethyl) 

attached to the silicon. Since the nanotube synthesis is in aqueous solution, the 

Ethoxytriethoxysilane 
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hydrophobic silicate precursors might aggregate and condense with each other rather than 

being incorporated in the nanotube. This problem can be dealt with by diluting the 

functionalized silicate precursors with TEOS, keeping Al to Si atomic ratio constant. 

Since TEOS is hydrolyzable with the product having no hydrophobic groups, this may 

prevent the partially hydrolyzed functionalized silicate precursors from clustering and 

condensing. Another approach could involve selection of more hydrophilic (e.g., 

hydroxymethyl or aminomethyl) functional groups. In mildly acidic conditions, 

hydrolysis of ethoxysilicate bond (Si-OC2H5) is slow [82] and furthermore, the presence 

of organic functional groups in any of the valences of silicon decreases the rate of 

hydrolysis of the silicate precursors [83, 143, 144]. This problem could be addressed by 

choosing compounds like functionalized chlorosilanes, e.g. (Cl)3SiCH2Cl  

(methylchloridetrichlorosilane), which are reported to be much more easily hydrolyzable 

than alkoxysilanes [82].  

 

6.2.1.2 Transition Metal Oxide Nanotubes 

  

Like aluminum, many other metals (e.g., Mg, Ga, In, Fe, Cr, Cu) are known to 

form layered oxides and hydroxides. Thus, it is natural to attempt the synthesis of 

nanotubes with transition elements in the outer wall, whether by themselves or in 

combination with aluminum. This modification could drastically alter the nanotube 

properties (optical, magnetic, etc). 
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Figure 6-3: Charge versus electronegativity diagram of elements. 

 

Suitable elements for substitution of Al are the trivalent elements which are close 

to Al in the charge-electronegativity diagram shown in Figure 6-3. Elements like Ga, In, 

Sc, and Fe are known to octahedrally coordinate with oxygen to form hydroxides and 

oxyhydroxides of layered structure [145], which is an important attribute as shown by our 

mechanistic investigation. Also we know from our mechanistic work that formation of 

the M-O-Si bridges(M represents the octahedrally coordinated metal) must occur very 

early in the reaction for a successful nanotube synthesis. Thus, careful control of pH and 

hydrolysis/condensation rates as well as monitoring of the reaction with techniques 

discussed in this thesis, are likely to be critical components in exploring metal 

substitution reactions.  
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 Substitution elements can also be introduced in the synthesis as precursors in 

dilute mixture with Al. Typically 1% to 10% molar ratio of X (X/(Al+X)×100) where X 

= Ga, In, Sc or Fe can be administered with the Si precursor. After separation and 

dialysis, solid state characterization analysis can be conducted. XRD, TEM and ED 

analysis can show whether nanotubes was formed in the synthesis and correspondingly 

XPS analysis can indicate the composition of the products. This combination can fully 

characterize the substitution products. 

 

The interaction of Al with the substitution metal must be ensured for a successful 

synthesis. To such an end the concentration plays a major role. The substituting element 

should not be too concentrated to interfere with Al in the process of forming the Al-O-Si 

bridges that lead to the formation of the nanotubes, and, should not be too dilute to get 

inadequate signal from analytical characterization tool (XPS). Through careful 

experimentation this optimum concentration can be found.  

  

6.2.2 Electronic and Optical Properties of Aluminosilicate/germanate Nanotubes 

 

The relationship between structure and electronic properties of nanoscale 

materials is of high importance particularly in field of electronics and optics [59, 131]. 

Semiconducting materials have been known to change electronic structure quite 

drastically with shape and size primarily due to electron confinement effects[115, 146]. 

Nanoparticles with cylindrical geometry have an inherent advantage in comparison with 
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spherical nanoparticles, because they have two controllable dimensions [115, 132, 146]. 

Optical activity of materials is characterized by optical absorption at certain wavelengths, 

and by optical emission at particular wavelengths through processes such as 

photoluminescence (PL). Photoluminescence is a process in which a material absorbs a 

photon, thus transitioning to a higher electronic energy state, and then radiates one or 

more photons to return to the ground state. Although there are many types of PL (due to 

different pathways a electron can take to come back to ground state), the type of PL of 

interest to us is fluorescence, wherein the emitted photon is of a longer wavelength than 

the absorbed one.  

 

Aluminosilcate/germanate nanotubes shows a strong absorption in the UV/near-

visible range at 320 nm, which also shifts with composition (Figure 6-4). From the 

leading edge of the absorption peak, the band gap of the nanotubes is calculated to be 3.6 

eV (GaN, used in semiconductor lasers, has a band-gap of 3.4 eV at 0 K [147]). Previous 

work on boehmite (layered AlOOH, Figure 3-2) powders showed strong PL activity with 

emission in the blue region [148]. The reason behind this property is controversial [149], 

and several authors have proposed that the primary reason for such optical activity in 

ceramic materials is due to internal defects and hydroxyl groups (e.g., Al-OH, Si-OH, Ti-

OH) in the materials [150]. 
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Figure 6-4: UV-Vis absorption spectra of aluminosilicogermanate (AlSiGe) nanotubes. 

 

Furthermore, the observed optical absorption at 3.6 eV is unusual in comparison 

to bulk aluminosilicate materials (which have band gaps in excess of 4 eV). The role of 

nanoscale phenomena such as excitons [59] which give rise to a number of optical 

absorbances in strongly insulating boron nitride nanotubes, as well as the effects of 

hydroxyl groups and possible structural defects, are subjects of future investigation. Thus, 

the theoretical, computational, and experimental study of the electronic and optical 

properties of the present nanotubes, with consideration of potential nanoscale 

confinement effects, could yield several interesting phenomena with potential 

technological relevance. Additionally, the synthesis of transition metal oxide nanotubes 



 117

would allow facile control over these electronic and optical properties. Such advances in 

nanotube synthesis, enabled in part by the mechanistic investigations and concepts 

presented in this thesis, could potentially create an entirely new class of metal oxide 

nanotube objects that are attractive components for assembling a future generation of 

nanoscale electronic and photonic devices. 
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