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SUMMARY

Throughout its lifetime, software must be changed for many reasons, such as bug

fixing, performance tuning, and code restructuring. Testing modified software is the main

activity performed to gain confidence that changes behave as they are intended and do not

have adverse effects on the rest of the software. A fundamental problem of testing evolving

software is determining whether test suites adequately exercise changes and, if not, providing

suitable guidance for generating new test inputs that target the modified behavior. Existing

techniques evaluate the adequacy of test suites based only on control- and data-flow testing

criteria. They do not consider the effects of changes on program states and, thus, are not

sufficiently strict to guarantee that the modified behavior is exercised. Also, because of the

lack of this guarantee, these techniques can provide only limited guidance for generating

new test inputs.

This research has developed techniques that will assist testers in testing evolving soft-

ware and provide confidence in the quality of modified versions. In particular, this research

has developed a technique to identify testing requirements that ensure that the test cases

satisfying them will result in different program states at preselected parts of the software.

This research has also developed supporting techniques for identifying testing requirements.

Such techniques include (1) a differencing technique, which computes differences and corre-

spondences between two software versions and (2) two dynamic-impact-analysis techniques,

which identify parts of software that are likely affected by changes with respect to a set of

executions.

xi



CHAPTER 1

INTRODUCTION

Software is constantly subject to pressures for changes and perceived to be easily mal-

leable [27]. Thus, software has always undergone continual modifications throughout its

lifetime. Because changes occur frequently and continually, the problem of testing modi-

fied versions of software with respect to these changes in an efficient and effective way is

important. Regression testing is the activity of testing modified versions of software to

increase the confidence that the changes behave as intended and do not adversely affect

the rest of the software. This testing activity has always been challenging because devel-

opers need to check not only the intended functionality of the changes themselves, but

also the intended functionality of the rest of the software that interacts with the changes.

Much research in regression testing has concentrated on three activities: regression-test

selection (e.g., [13, 64, 74]), test-suite prioritization (e.g., [66, 70]), and test-suite reduction

(e.g., [31, 65, 77]). These activities aim to improve the efficiency of regression testing by

reducing the number of test cases needed to be rerun and maintained and reordering test

cases based on some criteria, such as coverage. Little research, however, has concentrated

on assessing and improving the quality of regression test suites. Most of such research may

overestimate the adequacy of existing test suites in exercising the software with respect to

changes. Furthermore, such research often does not provide suitable guidance for creating

new test inputs that specifically target the changed behavior of the software when existing

test suites are not adequate.

1.1 Goal and Scope

The goal of this research is to assess the quality of existing test suites with respect to

changes. To address this goal, this research focuses on the problem of defining testing

criteria and identifying testing requirements that can be used to determine the extent to

which the changes are exercised and to guide the generation of new test inputs targeting

1



the changes.

1.2 Proposed Thesis

The thesis of this research is that static program analysis techniques can effectively compute

differences and correspondences between entities in two versions of a program and, combined

with dynamic analysis, can leverage the computed information to identify the requirements

for testing evolving software effectively and efficiently.

1.3 Overview of the Dissertation

The process of generating requirements for testing changes, depicted in Figure 1, consists

of three activities (differencing, dynamic impact analysis, and testing-requirements iden-

tification) that require as input two versions of a program: the original version, P, and a

modified version, P’. To facilitate the discussion of these activities in subsequent chapters,

Chapter 2 describes the necessary background material. This material includes fundamental

concepts in the area of program analysis: control-flow graph, control and data dependences,

and symbolic execution. The next three chapters present a new technique to identify test-

ing requirements and its supporting techniques in the order of the process flow, shown in

Figure 1. More precisely, Chapter 3 presents a differencing technique that reports change

information, which includes information about differences and correspondences, for enti-

ties in P and P’ at the statement level. Chapter 4 presents two dynamic-impact-analysis

techniques that use the change information and a test suite (or a set of executions), T, to

identify the parts of P’ that are likely affected by changes (impact information) in those

executions and discusses the tradeoffs between the two techniques. Chapter 5 presents a

technique that uses the change and impact information to identify requirements for testing

that can effectively assess the quality of test suites with respect to testing the changes and

guide the generation of new test inputs targeting the changes. Each of these three chapters

first discusses related work and its deficiencies, then describes each of the techniques and

the implementation of the tool for each technique. Chapter 6 concludes the dissertation

with merit and future directions of this research.

2



Figure 1: The testing-requirements-generation process.

1.4 Contributions

This research provides a number of contributions in the area of software testing.

1. An automated algorithm to compute the differences and correspondences between

entities in two versions of a program;

2. Two techniques to identify parts of software that are likely to be affected by changes

with respect to a set of executions;

3. A technique to identify testing requirements for modified versions of software that

ensure that the test cases satisfying them will result in different control flows or

different program states at selected points;

4. Implementations of the developed techniques; and

5. Empirical studies to evaluate the techniques on real programs.

3



CHAPTER 2

BACKGROUND

This chapter presents background material that facilitates the discussions of the new tech-

niques in subsequent chapters. The next sections describe fundamental concepts in the

area of program analysis: control-flow graph, control and data dependences, and symbolic

execution.

2.1 Control-Flow Analysis and Representation

Most program-analysis techniques need the information about the flow of control within and

between procedures in programs. Control-flow analysis [1] computes this information by

analyzing statements in the programs. The control-flow information is usually represented

using control-flow graphs. The following definition is based mainly on Aho et al.’s definition

of control-flow graph [1].

Definition 1. A control-flow graph (CFG) G = (N,E) for a procedure P is a directed

graph in which N contains one node for each statement in P and E contains edges that

represent possible flow of control between statements in P. N also contains unique entry

and exit nodes, which represent the entry to and exit from P, respectively. An edge in E

leaving a predicate node is labeled T (for true) or F (for false), which represents a control

path taken when the predicate evaluates to that value.

As an example, Figure 2 shows method getCheckedOutBooks in class Library and its

CFG.

2.2 Dependence Analysis

Another analysis used in this research is dependence analysis [16, 24], which identifies the

dependence relationships between statements in programs. The material in this section is

based on the work presented Ferrante et al. [24]. This research considers two classes of

4



pub l i c c l a s s Library {
Set<Book> getCheckedOutBooks ( ) {

s1 Set<Book> chOut = new HashSet<Book >() ;
s2 f o r (Book book : books )
s3 i f ( book . ge tStatus ( ) == Book .CHECKED OUT)
s4 chOut . add ( book ) ;
s5 i f ( chOut . isEmpty ( ) )
s6 chOut = new EmptySet<Book >() ;
s7 re turn chOut ;

}
. . .

}

Figure 2: Partial class Library and control-flow graph of method getCheckedOutBooks.

dependences. A control dependence occurs between a statement and a predicate when the

value of the predicate determines whether the statement is executed. A data dependence

occurs between two statements when a variable used in one statement may contain incorrect

value if the two statements are reversed. Next, control and data dependences are defined

more formally.

Definition 2. Let G = (N,E) be a CFG, and let u, v ∈ N . Node u is control dependent

on node v with label ‘L’ if and only if v has successors v′ along outgoing edge labeled ‘L’

and v′′ such that every path in G from v′ to the exit node contains u but at least one path

in G from v′′ to the exit node does not contain u.

For example, consider the control-flow graph of method getCheckedOutBooks in Fig-

ure 2: node s3 is control-dependent on node s2 with label ‘T’ because s2 has two successors,

s3 and s5, and every path from s3 to the exit node contains s3, but no path from s5 to the

exit node contains s3.

Definition 3. Let G = (N,E) be a CFG, and let u, v ∈ N . Node v is data dependent on

node u if and only if node u defines a variable x, v uses x, and there is a path in G from u

to v such that no other node on that path defines x.

For example, in method getCheckedOutBooks, node s7 is data dependent on node

s1 because node s1 defines variable chOut, s7 uses chOut, and no other node on path

(s1, s2, s5, s7) defines chOut.

5



2.3 Symbolic Execution

Symbolic execution [14, 36, 40] is a program-analysis technique that, unlike normal execu-

tions that exercise a program on a set of concrete inputs, exercises a program symbolically

on a set of classes of inputs. Symbolic execution computes a symbolic representation of

the computations of program variables along a path (from entry to exit) and the domain of

that path in terms of input values. For any path, the symbolic representation of the path

computation (the values of all output variables at the end of the path) and path domain (the

domain of input variables for the path to be executed) can be developed incrementally as

statements on the path are interpreted. To develop this representation, symbolic execution

assigns each input a symbolic value and evaluates a path by interpreting the statements on

that path in terms of these symbolic values. During execution, the values of program vari-

ables are maintained as algebraic expressions over the symbolic names. At each point along

a path, values of variables are represented as a vector (s(y1), s(y2), ...), where s(yi) denotes

the current symbolic value of variable yi. The path computation is a vector of values of all

output variables at the end of the path. The path domain is also formed incrementally by

interpreting branch predicates for the conditional statements on a path. At each branch

predicate p, expressed in terms of symbolic names, the predicate is evaluated by substitut-

ing each variable with its symbolic expression to obtain a predicate with substitution ps.

If the path takes the true branch of that predicate, the domain is restricted by constraint

ps; otherwise, it is restricted by constraint ¬ps. Thus, the path domain is a conjunction of

constraints ps,i or ¬ps,i, depending on the branches taken, for all branch predicates on the

path. For non-executable paths, the conjunction of constraints is unsatisfiable, and thus

no concrete values of inputs can lead to that path.

Three types of symbolic execution have been presented in the literature: path-dependent

symbolic execution, dynamic symbolic execution, and global symbolic execution. These

types differ primarily in their techniques to select paths to be executed. Path-dependent

symbolic execution chooses the paths from user input or heuristics used in the symbolic-

execution engine. Dynamic symbolic execution selects paths based on the paths that are

executed by specific input data. Global symbolic execution does not select a single path to

6



be executed but attempts to create a symbolic representation of path computations and

path domains that represents all paths.

2.4 Decision Procedures

When executing a program symbolically, a symbolic-execution engine needs to check whether

a subpath being explored so far is feasible. To achieve this, such an engine requires a de-

cision procedure (a method for solving a decision problem), to solve the feasibility of the

subpath (i.e., the satisfiability of the path constraints of that subpath). The decision pro-

cedure must be able to handle the satisfiability problem in logics that are more expressive

than propositional logic. In particular, symbolic execution concerns the satisfiability prob-

lem where formulas contain atoms that are interpreted with respect to background theories

of real and integer arithmetic and theories of arrays, lists, and other data structures. This

problem is known as the Satisfiability Modulo Theories (SMT) problem for a theory T :

given a formula (e.g., path constraints) F , determine whether F is T -satisfiable.

There are two broad approaches to SMT: the eager approach and the lazy approach.

The eager approach translates the input formula in a single satisfiability-preserving step

into a propositional CNF formula and uses a SAT solver to check its satisfiability. The

lazy approach, however, initially considers each atom occurring in a formula F simply as a

propositional symbol and sends the transformed formula to a SAT solver. If the SAT solver

reports that the formula is unsatisfiable, the original formula F is also T -unsatisfiable. If

the SAT solver reports a propositional model of F (i.e., F is satisfiable), this model (a

conjunction of literals) is checked by a T -solver. If the solver reports that the model is

satisfiable, then F is T -satisfiable. Otherwise, the T -solver returns feedback that can guide

the SAT solver in constructing a new model of F . This process is repeated until the SAT

solver finds a T -satisfiable model or returns unsatisfiable.

In recent years, the DPLL(T ) approach presented by Davis et al. has become the main-

stream lazy approach for SAT Modulo Theories [28, 52]. This approach is based on the

DPLL procedure for propositional logic [17, 18]. The DPLL(T ) approach consists of a gen-

eral DPLL engine, called DPLL(X), that is independent from any particular theory T and
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a solver for a theory T of interest. A system DPLL(T ) for deciding the satisfiability of

conjunctive-normal-form (CNF) formulas in a theory T is produced by instantiating the

parameter X with a module SolverT that can handle conjunctions of literals in T . There

are several implementations of the DPLL(T ) approach (e.g., Yices [22] and BarceLogic [51]).

Yices is a SMT solver that decides the satisfiability of arbitrary formulas containing unin-

terpreted function symbols with equality, linear real and integer arithmetic, scalar types,

recursive datatypes, tuples, records, extensional arrays, fixed-size bit vectors, quantifiers,

and lambda expressions. BarceLogic supports difference logic over integers or reals, equality

with uninterpreted function symbols, and the interpreted function symbols predecessor and

successor.
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CHAPTER 3

DIFFERENCING

The first step toward generating testing requirements for modified software is identifying

changes that have been made between the original and modified versions (as shown in Fig-

ure 1). Precise information about changes enables the testing-requirements identifier to

generate only requirements that actually reveal different behavior when running the mod-

ified version on test inputs satisfying them. Imprecise change information may cause the

identifier to generate testing requirements that are misleading: test inputs satisfying such re-

quirements do not reveal different behavior in the modified version. The identifier requires

not only the change information but also the mappings between program entities in the

original and modified versions. The identifier generates testing requirements by comparing

program states at statements in the original version with program states at the correspond-

ing statements in the modified version. (Section 5.2 provides further description of this

step.) Thus, the identifier requires the mappings between statements in the two versions.

Differencing techniques can provide both the change information and the mappings.

3.1 Related Work

Several techniques and tools for comparing source files textually (e.g., the UNIX diff

utility [49]) have been proposed. However, these techniques have shortcomings. Textual

differencing may report changes that have no effect on program semantics or syntax, such

as the addition of a method that is never called and modifications in comments and white

spaces, and do not consider changes in program semantics indirectly caused by textual

modifications.

Consider, for example, the two versions of a partial Java program in Figure 3: the origi-

nal version P and the modified version P ′. Both versions use the class Library, shown in Fig-

ure 2. The output of diff running on P and P ′ would show that method EmptySet.addAll

has been inserted and that the exception-type hierarchy has changed. However, detecting
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Program P

pub l i c c l a s s UnavailBookFinder {
pr i va t e Library l i b ;
. . .
pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) {

Set<Book> r e s =
l i b . getCheckedOutBooks ( ) ;

i f ( includesOnOrder ) {
t ry {

r e s . addAll ( l i b . getOnOrderBooks ( ) ) ;
}
catch ( UnsupportedOpException e ) { . . . }
catch ( RuntimeException e ) { . . . }

}
}

}

pub l i c c l a s s EmptySet<T>
extends AbstractSet<T> {

pub l i c i n t s i z e ( ) { r e turn 0 ; }
. . .

}

pub l i c c l a s s UnsupportedOpException
extends RuntimeException { . . . }

pub l i c c l a s s MyUnsupportedOpException
extends UnsupportedOpException { . . . }

Program P’

pub l i c c l a s s UnavailBookFinder {
pr i va t e Library l i b ;
. . .
pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) {

Set<Book> r e s =
l i b . getCheckedOutBooks ( ) ;

i f ( includesOnOrder ) {
t ry {

r e s . addAll ( l i b . getOnOrderBooks ( ) ) ;
}
catch ( UnsupportedOpException e ) { . . . }
catch ( RuntimeException e ) { . . . }

}
}

}

pub l i c c l a s s EmptySet<T>
extends AbstractSet<T> {

pub l i c void addAll ( Co l l e c t i on <T> c o l ){
throw new MyUnsupportedOpException ( ) ;

}
pub l i c i n t s i z e ( ) { r e turn 0 ; }
. . .

}

pub l i c c l a s s UnsupportedOpException
extends RuntimeException { . . . }

pub l i c c l a s s MyUnsupportedOpException
extends RuntimeException { . . . }

Figure 3: Partial code for an original version (P ) and a modified version (P ′).

that the call to res.addAll in UnavailBookF inder.main of P and P ′ can be bound to

different methods, and the exception can be thrown by the call to res.addAll in method

UnavailBookF inder.main, would not be straightforward without additional analyses. For

another example, consider the case when running diff with the intermediate version where

only method EmptySet.addAll is inserted as P and the version with both changes as P ′.

The output of diff on this pair of P and P ′ would not show that the exception that may

be thrown by the call to res.addAll in method UnavailBookF inder.main can be caught

by different catch blocks.

Other existing differencing techniques are specialized to compute differences in programs.

These techniques can be divided into two categories (which are discussed in Sections 3.1.1

and 3.1.2, respectively) : general-purpose differencing techniques and goal-specific differ-

encing techniques.
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3.1.1 General-purpose Program Differencing

These techniques can be further categorized into three groups: text-based program differ-

encing, syntactic-based program differencing, and semantic-based program differencing.

3.1.1.1 Text-based Program Differencing

Maletic and Collard’s approach [47] is a text-based program-differencing technique. Their

technique transforms C/C++ source files into a format called srcML that makes program

structures more explicit than raw source code and leverages diff to compare the srcML

representations for the original and modified versions of the source code. (srcML is an

XML-based format that represents the source code annotated with syntactic information.)

The results of the comparison are then post-processed to create a new XML document, also

in srcML format, with the additional XML tags that indicate the common, inserted, and

deleted XML elements. Their approach utilizes available XML tools to ease the process of

extracting change-related information. However, the technique is limited by the fact that

it still relies on line-based differencing information obtained from diff.

3.1.1.2 Syntactic-based Program Differencing

The techniques in this group compare two versions of a program syntactically. They usu-

ally operate on abstract-syntax-tree representations or control-flow-graph representations

of programs; thus, they can ignore textual differences that do not affect the programs, such

as changes in program comments.

Several modern integrated development environments, such as Eclipse [25], incorporate

a parser for the programming languages they support. Therefore, they can compare differ-

ent versions of a program more effectively than tools based on simple textual comparison.

However, the comparison capabilities of these tools are still limited, in that they recog-

nize changes only at the purely-syntactic level. For example, they cannot identify indirect

differences at the statement level due to changes involving object-oriented features.

Laski and Szermer present an algorithm that computes program differences by analyzing
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the control-flow graphs of the original and modified versions of a program [42]. Their al-

gorithm localizes program changes into clusters, which are single-entry, single-exit program

fragments. Clusters are reduced to single nodes in the two graphs and are then recur-

sively expanded and matched. Their control-flow graph representation does not model the

object-oriented behaviors properly; thus, their algorithm may not compute accurate change

information for object-oriented programs. For example, their algorithm cannot detect a

difference at a call site that may invoke a method that has just been added in the modi-

fied version due to method overriding. Moreover, their algorithm for matching clusters has

limited capability and may compute imprecise results. Their algorithm uses only the entry

statements of two clusters to determine whether the two clusters are matched. If only the

entry of one cluster in the modified version is changed, their algorithm may report that none

of the statements in the cluster is matched. Their algorithm also does not allow matching

of clusters at different nested levels .Thus, it may compute imprecise results.

BMAT (Binary MATching tool) [75] performs matching of both code and data blocks

between two versions of a program in binary format. BMAT uses a number of heuristics

to finding matches for as many blocks as possible. These heuristics, however, are specific to

finding matches at the binary level and cannot be applied to the source or Java bytecode

levels. Moreover, BMAT does not compute information about changes related to object-

oriented constructs, such as method overriding or changes in class hierarchy.

3.1.1.3 Semantic-based Program Differencing

The techniques in this group compare two versions of a program semantically and identify

the differences only when program semantics changes due to syntactic modification.

Semantic diff [38] compares two versions of a program procedure-by-procedure, com-

putes a set of input-output dependences for each procedure, and identifies the differences

between two sets computed for the same procedure in the original and modified versions.

Semantic diff is performed only at the procedure level and may miss changes that, although

not affecting input-output dependences, may drastically affect program behavior (e.g., con-

stant value change).
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Horwitz’s approach [34] computes both syntactic and semantic differences between two

programs using a partitioning algorithm. The approach models programs using a Program

Representation Graph (PRG), a representation defined only for programs written in a lan-

guage with scalar variables, assignment statements, conditional statements, while loops, and

output statements. Because of this limitation in its underlying representation, Horwitz’s

approach cannot be applied to programs written in traditional languages, such as C, C++,

or Java. Although, the PRG could be exteended to include features of such languages, the

partitioning algorithm may not scale to large programs.

3.1.2 Goal-specific Program differencing

The approaches in this category compute differencing information for some specific goals

and, thus, produce differencing information that is targeted to such goals. Binkley’s ap-

proach [6] computes semantic differences between two program versions to reduce the cost

of regression testing. The approach first identifies, on a System Dependence Graph (SDG),

unmatched nodes and nodes with different incoming data- or control-flow edges in the two

versions of the program considered. Then, it performs forward slicing starting from such

nodes to identify all affected nodes in the graph.

Raghavan and colleagues present a differencing tool called Dex [59]. Dex compares

two abstract semantic graphs (i.e., abstract syntax trees augmented with extra edges that

encode type information) that represent two versions of a program. At the end of the

comparison, Dex produces an edit script that contains the transformations necessary to

transform the semantic graph of the original version into the semantic graph of the new

version. The tool also collects change-related statistics to reveal some facts about the nature

of bug fixes in software projects.

Ren and colleagues present Chianti, an impact analysis tool that uses a differencing

engine to identify atomic changes between two versions of a Java program and dependences

among these changes [61]. Rangarajan also uses the notion of atomic changes at the class

and method levels and presents a tool called JEvolve [60], which analyzes Java programs

and identifies modified classes that must be regression tested. These two differencing tools
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operate at the method level and their goal is to provide differencing information to identify

which test cases are affected by the changes between two versions. (Chianti also identifies

which changes affect which test cases.) Therefore, the results of these techniques are impre-

cise for several program-analysis techniques including testing-requirements identification,

which is the intended application of this research.

Xing and Stroulia presented UMLDiff [78], an algorithm for automatically detecting

structural changes between the designs of subsequent versions of an object-oriented pro-

gram. UMLDiff compares the class diagrams of two program versions and uses structural

information to identify the differences between the two versions. Differences are identified

in terms of addition, removal, moving, and renaming of packages, classes, interfaces, fields,

and methods. UMLDiff works at the class and method levels and does not compares state-

ments in matched method pairs. Furthermore, UMLDiff is mostly targeted at identifying

design-level changes.

3.2 Differencing Algorithm

As discussed in the Introduction (Section 1.3), the precise information about differences and

correspondences between entities in two versions of a program is necessary for generating

effective testing requirements. However, existing differencing approaches have several short-

comings, as discussed in Section 3.1. Moreover, most existing approaches report declaration

changes (e.g., changes in method access modes and superclass declaration) as is. Conse-

quently, techniques that require change information at the statement level cannot readily

use such differencing results. To overcome problems with these approaches, this research

defines a new graph representation and a differencing algorithm that uses the representation

to identify changes at the statement level between two versions of a program. This new

representation augments a traditional control-flow graph (CFG) to model behaviors caused

by object-oriented features in the program. Using this graph, the technique developed in

this research identifies declaration changes and relates them to the points at the statement

level where the different behavior may occur.

The new algorithm, which extends an existing differencing algorithm [42], consists of
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five steps. First, it matches classes, interfaces, and methods in the two versions. Second, it

builds enhanced CFGs for all matched methods in the original and modified versions of the

program. Third, it reduces each graph to a series of nodes and hammocks [24] (single-entry,

single-exit subgraphs). Fourth, it compares, for each method in the original version and the

corresponding method in the modified version, the reduced graphs to identify corresponding

hammocks. Finally, it recursively expands and compares the corresponding hammocks and

nodes. Section 3.2.1 gives an overview of the algorithm. Sections 3.2.2, 3.2.3, and 3.2.4

detail the levels at which the algorithm compares the original and modified versions of the

program. Section 3.2.5 discusses the algorithm’s complexity.

3.2.1 Overview

The new algorithm, CalcDiff, given in Figure 4, takes as input an original version of a

program (P ) and a modified version of that program (P ′). The algorithm also takes as

inputs two parameters—LH and S—that are used in the node-level matching. Parameter

LH is the maximum lookahead that CalcDiff uses when attempting to match nodes in

methods. Parameter S is used when determining the similarity of two hammocks. At

completion, the algorithm outputs a set of pairs (N) in which the first element is a pair

of nodes and the second element is the status—either “modified” or “unchanged.” The

algorithm also returns sets of pairs of matching classes (C), interfaces (I), and methods

(M) in P and P ′.

CalcDiff performs its comparison first at the class and interface levels, then at the

method level, and finally at the node level. The algorithm first compares each class in P

with the like-named class in P ′, and each interface in P with the like-named interface in

P ′, and produces sets of class pairs (C) and interface pairs (I), respectively. For each pair

of classes and interfaces, CalcDiff then matches methods in the class or interface in P

with methods having the same signature in the class or interface in P ′; the result is a set of

method pairs (M). Finally, for each pair of concrete (i.e., not abstract) methods in M , the

algorithm constructs Enhanced CFGs (hereafter, ECFGs) for the two methods and matches

nodes in the two ECFGs.
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The next sections give details of CalcDiff, using the code in Figure 3 as an example.

3.2.2 Class and Interface Levels

CalcDiff begins its comparison at the class and interface levels (lines 1–2). The algorithm

matches classes (resp., interfaces) that have the same fully-qualified name; the fully-qualified

name consists of the package name followed by the class or interface name. Pairs of matching

classes (resp., interfaces) in P and P ′ are added to C (resp., I). Classes in P that do not

appear in C are deleted classes, whereas classes in P ′ that do not appear in C are added

classes. Analogous considerations hold for interfaces. In the example programs in Figure 3,

each class in P has a match in P ′, and thus there is a pair in C for each class in P .

To improve the differencing results, CalcDiff also accounts for the possibility of in-

teracting with the user while matching classes and interfaces. After matching classes and

interfaces in P with classes and interfaces in P ′ that have the same fully-qualified names,

CalcDiff provides users the possibility of defining additional matches; users can provide

the algorithm with matches between unmatched classes (interfaces) in P and unmatched

classes (interfaces) in P ′. This additional feature accounts for cases in which the user re-

named or moved one or more classes and interfaces. The interaction with the user can be

implemented efficiently because additional matches are required only for unmatched classes

(rather than all classes) in P .

3.2.3 Method Level

After matching classes and interfaces, CalcDiff compares, for each pair of matched classes

or interfaces, their methods (lines 3-4). The algorithm first matches each method in a class

or interface with the method with the same signature in the corresponding class or interface.

Then, if there are unmatched methods, the algorithm looks for a match based only on the

name. This matching accounts for cases in which parameters are added to (or removed

from) an existing method, which are found to occur in preliminary studies of this research,

and increases the number of matches at the node level. Pairs of matching methods are

added to M . Like the approach used for classes, methods in P that do not appear in set

M are deleted methods, whereas methods in P ′ that do not appear in set M are added
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Algorithm CalcDiff

Input: original program P
modified program P ′

maximum lookahead LH
hammock similarity threshold S

Output: set of 〈class,class〉 C
set of 〈interface,interface〉 I
set of 〈method,method〉 M
set of 〈〈node,node〉,status〉 N

Begin: CalcDiff
1: compare classes in P and P ′; add matched class pairs to C
2: compare interfaces in P and P ′; add matched interface pairs to I
3: for each pair 〈c, c′〉 in C or I do
4: compare methods; add matched method pairs to M
5: for each pair 〈m,m′〉 in M do
6: create ECFGs G and G′ for methods m and m′

7: identify, collapse all hammocks in G to obtain Gc

8: identify, collapse all hammocks in G′ to obtain G′
c

9: N = N∪ HmMatch(Gc,G′
c,LH,S)

10: end for
11: end for
12: return C, I, M , N
end CalcDiff

Figure 4: Algorithm CalcDiff.

methods. In the example (Figure 3), there would be a pair in M for each method in P , but

not for method EmptySet.addAll in P ′ (which would therefore be considered as added).

Analogous to the matching at the class level, the matching at the method level can also

leverage user-provided information. Given two matching classes (or interfaces), c and c′, the

user can provide matches between unmatched methods in c and c′. User-provided matchings

can improve the differencing by accounting for cases in which methods are renamed.

3.2.4 Node Level

For each pair of matched methods 〈m,m′〉 in M , CalcDiff builds ECFGs (Enhanced

CFG) G and G′ for m and m′, respectively (lines 5-6). Then, the algorithm identifies

all hammocks in G and G′, and collapses G and G′ to graphs Gc and G′
c (lines 7-8),

respectively. Next, CalcDiff calls procedure HmMatch, passing Gc,G′
c, LH, and S as

parameters. HmMatch identifies differences and correspondences between nodes in G and

G′ (line 9), and creates and returns N , the set of matched nodes and corresponding labels
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(“modified” or “unchanged”). Finally, CalcDiff returns N , C, I, and M (line 12).

The next three sections discuss the ECFG (the representation used in node matching),

hammocks and how they are processed, and the hammock-matching algorithm, HmMatch,

respectively.

3.2.4.1 Enhanced Control-Flow Graphs (ECFG)

When comparing two methods m and m′, the goal of the algorithm is to find, for each

statement in m, a match (or corresponding statement) in m′, based on the method structure.

Thus, the algorithm requires a modeling of the two methods that (1) explicitly represents

their structure, and (2) contains sufficient information to identify differences and similarities

between them. Although CFGs can be used to represent the control structure of methods,

traditional CFGs do not suitably model many object-oriented constructs. ECFGs extend

traditional CFGs and are tailored to represent object-oriented programs.1 The rest of this

section illustrates how the ECFG represents various object-oriented features of the Java

language.

Dynamic Binding.

Because of dynamic binding, an apparently harmless modification of a program may affect

call statements in different parts of the program with respect to the change point. For

example, class-hierarchy changes may affect calls to methods in any of the classes in the

hierarchy, and adding a method to a class may affect calls to the methods with the same

signature in its superclasses and subclasses.

The ECFG models a call site, in which a method m is called on an object o, to capture

these modifications. A call site consists of call and return nodes and a callee node for each

dynamic type T that can be associated with o. A callee node represents the method that is

bound to the call when the type of o is T and is labeled with the signature of that method.

1The ECFG is similar to the Java Interclass Graph (JIG) [32] in terms of the handling of variables,
object types, and exception constructs. However, the JIG is an inter-procedural representation of a program
whereas the ECFG is an intra-procedural representation of a method with summarized information from
inter-procedural analyses. The ECFG also models synchronization constructs.
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A call site also contains (1) a call edge from the call node to each callee node, labeled

with the type that causes such a binding, (2) a return edge from each callee node to the

return node, and (3) an exception return edge, labelled “exception”, from a callee node to

a corresponding catch node, a finally node, or the method exit node if an execption can be

thrown from inside the method call. Note that if the call is static (i.e., not virtual), there

is only one callee node.

To illustrate, consider method UnavailBookF inder.main in P (Figure 3). The ECFG

for UnavailBookF inder.main (Figure 5(a)), contains two callee nodes (12 and 13) for the

call to res.addAll because res’s dynamic type can be either HashSet or EmptySet. (The

dynamic type of res is the same as the return type of method Library.getCheckedOutBooks

(see Figure 2).). The callee node for dynamic type HashSet corresponds to method

HashSet.addAll whereas the callee node for dynamic type EmptySet corresponds to method

AbstractSet.addAll because EmptySet is a subclass of AbstractSet and does not override

method addAll.

Consider now one of the two differences between P and P ′ in Figure 3: the addition of

method addAll in EmptySet. Such a change causes a possibly different behavior in P and

P ′ for the call to res.addAll in method UnavailBookF inder.main: if the dynamic type of

res is EmptySet, the call results in an invocation of method AbstractSet.addAll in P and

an invocation of method EmptySet.addAll in P ′.

Figure 5(b) shows how the different binding, and the possibly different behavior, is re-

flected in the ECFG for method UnavailBookF inder.main: the call edge labeled EmptySet

from the call node for res.addAll (i.e., the call edge representing the binding when res’s

dynamic type is EmptySet) is now connected to a new callee node that represents method

EmptySet.addAll. This difference between the ECFGs for UnavailBookF inder.main in P

and P ′ lets the differencing technique determine that this call to res.addAll may behave dif-

ferently in P and P ′. Note that a simple textual comparison would identify the addition of

the method, but it would require a manual inspection of the code (or some further analysis)

to identify the points in the code where such change can affect the program’s behavior.
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Figure 5: ECFGs for UnavailBookF inder.main in P and P ′ (Figure 3).
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Variable and object types.

Changing the type of a variable may lead to changes in program behavior (e.g., changing a

long to an int). To identify these kinds of changes, the ECFG augments the names of scalar

variables with type information. For example, a variable a of type double is identified as

a double. This approach for representing scalar variables reflects any change in the type

of a variable in the locations where that variable is referenced.

Another change that may lead to subtle changes in program behavior is the modification

of class and interface hierarchies (e.g., moving a class from one hierarchy to another, chang-

ing the class that it extends). Hereafter, “class hierarchies” is used to represent both class

and interface hierarchies, unless otherwise stated. Effects of these changes that result in

different bindings in P and P ′ are captured by the new method-call representation. Other

effects, however, must be specifically addressed. To this end, instead of explicitly repre-

senting class hierarchies, the hierarchy information is encoded by using globally-qualified

names at points where a class is used as an argument to operator instanceof , as an argu-

ment to operator cast, as a type of a newly created exception, and as the declared type

of a catch block. A globally-qualified name for a class contains the entire inheritance chain

from the root of the inheritance tree (i.e., from class java.lang.Object) to its actual type.2

A globally-qualified name for an interface contains all the super interfaces in alphabetical

order. This method reflects changes in class hierarchies in the locations where the change

may affect the program behavior. For example, the globally-qualified name for exception

class MyUnsupportedOpException in P is java.lang.Throwable : java.lang.Exception :

java.lang.RuntimeException : UnsupportedOpException : MyUnsupportedOpException,

whereas it is java.lang.Throwable : java.lang.Exception : java.lang.RuntimeException :

MyUnsupportedOpException in P ′.

Exception Handling.

As for dynamic binding, program modifications involving exception-handling constructs

can cause subtle side effects in parts of the code that have no obvious relation to the

2For efficiency, class Object is excluded from the name, except that for class Object itself.
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modifications. For example, a modification of an exception type or a catch block can cause

a previously caught exception to go uncaught in the modified program, thus changing the

flow of control in unforeseen ways.

To identify these changes in the program, ECFG models exception-handling constructs

in Java code explicitly using an approach similar to that used in [32]. The ECFG repre-

sentation models each try statement with a try node and an edge between the try node and

the node that represents the first statement in the try block.

The representation then models each catch block of the try statement with a catch node

and a CFG to represent. Each catch node is labeled with the type of the exception that is

caught by the corresponding catch block. An edge connects the catch node to the entry of

the CFG enclosing the catch block.

An edge, labeled “exception,” connects the try node to the catch node for the first catch

block of the try statement. That edge represents all control paths from the entry node of

the try block along which an exception can be propagated to the try statement. An edge

labeled “exception” connects also the catch node for a catch block bi to the catch node for

catch block bi+1 that follows catch block bi (if any). This edge represents all control paths

from the entry node of the try block along which an exception is (1) raised, (2) propagated

to the try statement, and (3) not handled by any of the catch blocks that precede catch

block bi+1.

This representation models finally blocks by creating a CFG for each finally block,

delimited by finally entry and finally exit nodes. An edge connects the last node in the

corresponding try block to the finally entry node. The representation also contains one

edge from the last node of each catch block related to the finally to the finally entry node.

If there are exceptions that cannot be caught by any catch block of the try statement and

there is at least one catch block, an edge connects the catch node for the last catch block

to the finally entry node.

Because the information used in building the exception-related part of the ECFG is

computed through inter-procedural exception analysis [69], the ECFG can represent both

intra- and inter-procedural exception flow. If an exception is thrown in a try block for a
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method m, the node that represents the throw statement is connected to (1) the catch block

in m that would catch the exception, if such a catch block exists, (2) the finally entry node,

if no catch block can catch the exception and there is a finally block for the considered try

block, or (3) the exit node of m’s ECFG, otherwise. Conversely, if an exception is thrown in

method m from outside a try block, the node that represents the throw statement is always

connected to the exit node of m’s ECFG.

For example, consider again method UnavailBookF inder.main in P (Figure 3) and its

ECFG (Figure 5(a)). The ECFG contains a try node for the try block (node 7) and catch

nodes for the two catch blocks associated with the try block (nodes 15 and 16). The catch

nodes are connected to the entry nodes of the CFGs that represent the corresponding catch

blocks (nodes 17 and 18).

Consider now the second difference between P and P ′: the modification in the type

hierarchy that involves class MyUnsupportedOpException. This class is a direct sub-

class of UnsupportedOpException in P and a direct subclass of RuntimeException in

P ′. Such a change causes a possibly different behavior in P and P ′ because, in P ′,

an exception may be thrown in method EmptySet.addAll, propagate back to method

UnavailBookF inder.main, and be caught by the catch block that catches exceptions of

type RuntimeException.

Figure 5(b) shows how the possibly different behavior is reflected in the new representa-

tion: the node that represents the call to method EmptySet.addAll (node32) is connected

to the catch node that catches exceptions of type RuntimeException (node 35) rather than

to the return node (node 33). These differences between the two ECFGs let the differencing

technique determine that, if the exception in method EmptySet.addAll is thrown, method

UnavailBookF inder.main in P and P ′ may behave differently. A simple textual compar-

ison would identify only the change in the type of E3, whereas identifying the side effects

of such a change would require further analysis.
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Synchronization.

Java provides explicit support for threading and concurrency through the synchronized

construct. Using such a construct, Java programmers can enforce mutual exclusion semaphores

(mutexes) or define critical sections (i.e., atomic blocks of code). Synchronized areas of code

can be declared at the block, method, and class levels.

The ECFG models a synchronized area of code by creating two special nodes: synchro-

nize start and synchronize end. A synchronize-start node is added before the node that

represents the first statement of a synchronized area of code. Analogously, a synchronize-

end node is added after the node that represents the last statement of a synchronized area

of code.

In a program that uses synchronized constructs, changes in behavior can occur because

(1) an area of code that was not synchronized becomes synchronized, (2) an area of code

that was synchronized is no longer synchronized, or (3) a synchronized area is expanded

or contracted. In the ECFG, these cases are suitably captured by addition, removal, or

replacement of synchronize-start and synchronize-end nodes.

Reflection.

In Java, reflection provides runtime access to information about classes’ fields and methods,

and allows for using such fields and methods to operate on objects. In the presence of

reflection, this representation can fail to capture some of the behaviors of the program.

For example, using reflection, a method may be invoked on an object without performing

a traditional method call on that object. For another example, a program may contain

a predicate whose truth value depends on the number of fields in a given class; in such a

case, the control flow in the program may be affected by the (apparently harmless) addition

of unused fields to that class. Although some uses of reflection can be handled through

analysis, others require additional, user-provided information. This research assumes that

such information is available and can be leveraged for the analysis. In particular, for

dynamic class loading, this research assumes that the classes that can be loaded (and

instantiated) by name at a specific program point either can be inferred from the code (e.g.,
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when a cast operator is used on the instance after the object creation) or are specified

by the user. It is worth noting that, for the subjects used in the empirical studies (see

Section 3.4), such external information is provided for all uses of reflection that could not

be handled automatically by this technique.

Hammocks

CalcDiff uses hammocks and hammock graphs as a way to impose a hierarchical struc-

ture on the ECFGs, which facilitates the matching.

Definition 4. if G is a graph, a hammock H is an induced subgraph of G with a distin-

guished node V in H called the entry node and a distinguished node W not in H called

the exit node, such that

1. All edges from (G - H ) to H go to V.

2. All edges from H to (G - H ) go to W.

Similar to Laski and Szermer’s approach [42], once a hammock is identified, the algo-

rithm reduces it to a hammock node in three steps. First, the nodes in the hammock are

replaced by a new node. Second, all incoming edges to the hammock are redirected to the

new node. Third, all edges leaving the hammock are replaced by an edge from the new node

to the hammock exit. The resulting graph at each intermediate step is called a hammock

graph.

Figure 6 illustrates how the ECFG for method UnavailBookF inder.main in P is trans-

formed into a single hammock node and the intermediate hammocks that are generated

during the transformation. The regions inside the dotted lines in Figure 6(a) (i.e., nodes

11 to 13, and nodes 15 to 18) represent the two hammocks that the algorithm identifies

and replaces with hammock nodes 11’ and 15’, respectively (Figure 6(b)). Then the region

inside the dotted lines in Figure 6(b) (i.e., nodes 7 to 10, 11’, 14, and 15’) represent another

hammock that the algorithm reduces to hammock node 7’ (Figure 6(c)). This process con-

tinues until the graph is reduced to an intermediate graph with no hammocks (Figure 6(d).

This research uses Ferrante et al.’s algorithm for identifying hammocks [24].
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A hammock H with start node s is minimal if there is no hammock H ′ that (1) has the

same start node s, and (2) contains a smaller number of nodes. Hereafter, a hammock is

used to refer to a minimal hammock, unless otherwise stated.

3.2.4.2 Hammock Matching Algorithm

The hammock matching algorithm, HmMatch, is given in Figure 7. The algorithm is based on

Laski and Szermer’s algorithm for transforming two graphs into their respective isomorphic

graphs [42]. HmMatch takes as input G and G′, two hammock graphs, LH, an integer

indicating the maximum lookahead, and S, a threshold for deciding whether two hammocks

are similar enough to be considered a match. The algorithm outputs N , a set of pairs whose

first element is, in turn, a pair of matching nodes, and whose second element is a label that

indicates whether the two nodes are “unchanged” or “modified.”

To increase the number of matches, HmMatch extends Laski and Szermer’s algorithm

by allowing for the matching of hammocks at different nesting levels. This modification

accounts for some common changes that were encountered in preliminary studies, such as

the addition of a loop or a conditional statement at the beginning of a code segment. The

rest of this section first describes algorithm HmMatch and then presents an example of use

of the algorithm on the code in Figure 3.

HmMatch starts matching nodes in the two graphs by performing a depth-first pairwise

traversal of G and G′, starting from their start nodes. Thus, at line 1, the pair of start

nodes is added to stack ST , which the algorithm uses as a worklist. Each iteration over

the main while loop (lines 2–26) extracts one node pair from the stack and checks whether

the two nodes match. The body of the loop first checks whether any node in the current

pair is already matched (line 4). A matched node that has already been visited must not

be considered again; in this case, the algorithm continues by considering the next pair in

the worklist (line 5).

To compare two nodes, HmMatch invokes comp(c, c′, S,N) (line 9), where c and c′ are the

two nodes to compare, S is the similarity threshold for matching hammocks, and N is the set

of matching nodes. Unless c and c′ are hammock nodes, comp returns true if the two nodes’
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procedure HmMatch

Input: hammock graph in original version G,
hammock graph in modified version G′

maximum lookahead LH
hammock similarity threshold S

Output: set of pair 〈〈node,node〉,label〉 N
Use: succs(A) returns set of successors of each node a in A

comp(m,n, S, N) returns true if m and n are matched
edgeMatching(n, n′) returns matched outgoing edge pairs

Declare: stack of 〈node,node〉 ST
current depth d
current nodes c and c′

lookahead node sets L and L′

pair 〈node,node〉 match

Begin: HmMatch
1: push start node pair 〈s, s′〉 onto ST
2: while ST is not empty do
3: pop 〈c, c′〉 from ST
4: if c or c′ is already matched then
5: continue
6: end if
7: if comp(c, c′, S,N) then
8: match = 〈c, c′〉
9: else

10: match = null; L = {c}; L′ = {c′}
11: for (d = 0; d < LH; d + +) do
12: L = succs(L); L′ = succs(L′)
13: if

∨
p′∈L′ comp(c, p′, S,N) ∨

∨
p∈L comp(c′, p, S, N) then

14: set match to the first pair that matches
15: break
16: end if
17: end for
18: end if
19: if match != null then
20: push 〈match, “unchanged”〉 onto N
21: set c and c′ to the two nodes in match
22: else
23: push 〈〈c, c′〉, “modified”〉 onto N
24: end if
25: push a pair of sink nodes for each edge pair returned from edgeMatching(c, c′) onto ST
26: end while
end HmMatch

Figure 7: Hammock matching algorithm.

28



labels are the same. If c and c′ are hammock nodes, comp (1) expands the hammock nodes

into two graphs, (2) adds dummy exit nodes to both graphs, (3) recursively calls HmMatch to

obtain the set of matched and modified node pairs, and (4) computes the ratio of unchanged-

matched node pairs in the set to the number of nodes in the smaller hammock. If the ratio

is greater than threshold S, comp returns true (i.e., the two hammocks are matched) and

pushes all pairs in the set returned by HmMatch onto N . Otherwise, comp returns false.

If two nodes c and c′ are matched (i.e., comp returns true), they are stored in variable

match as a pair (line 8) and later added to the set of matched nodes with label “unchanged”

(line 20). Otherwise, HmMatch tries to find a match for c (resp., c′) by examining c′’s (resp.,

c’s) descendants up to the specified maximum lookahead (lines 10–17). First, match is

initialized to null, and the lookahead sets L and L′ are initialized to contain only the

current nodes (line 10). The algorithm then executes the for loop until a match is found or

depth d reaches the maximum lookahead LH (lines 11–17). At each iteration, the algorithm

updates L and L′ to the sets of successors of their members, obtained by calling procedure

succs (line 12). succs(L) returns, for each node l in L and each outgoing edge from l, the

sink of such edge. If node l is a hammock node, succs returns a set that consists of the start

node and the exit node of the hammock. In this way, a match can occur between nodes

in hammocks at different nesting levels. After computing the lookahead sets L and L′, the

algorithm compares each node in set L′ with c and each node in set L with c′ (line 13). If

there is a match, the search stops, and the first matching pair found is stored in variable

match (lines 14–15). The matching pair is then added to the set of matched nodes with

label “unchanged” (line 20). After two nodes have been matched as unchanged, c and c′

are set to be the two nodes in the matching pair (line 21). If no matching is found, even

after the lookahead, c and c′ are added to the set of matched nodes with label “modified.”

After processing nodes c and c′, the algorithm matches the outgoing edges from the two

nodes by calling edgeMatching(c, c′). edgeMatching matches outgoing edges from c and

c′ based on their labels. For each pair of matching edges, the corresponding sink nodes are

pushed onto worklist ST (line 27). At this point, the algorithm continues iterating over the

main while loop until ST is empty.
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Figure 8: Hammock graphs for the original and modified versions of UnavailBook-
Finder.main.

When the algorithm terminates, all nodes in the old version that are not in any pair (i.e.,

that have not been matched to any other node) are considered deleted nodes. Similarly, all

nodes in the new version that are not in any pair are considered added nodes.

To illustrate HmMatch better, consider a partial run of CalcDiff on the example code in

Figure 3. In particular, consider the execution from the point at which the pair of methods

UnavailBookF inder.main in P and P ′ is compared (line 5). At line 6 of CalcDiff, the

ECFGs for the methods are created, and at lines 7 and 8 of the algorithm, hammocks in

the ECFGs are identified and reduced to intermediate graphs with no hammocks. Then,

at line 9, CalcDiff calls HmMatch, passing it the two graphs. For the example, assume that

the lookahead threshold (LH) is 1, and that the hammock similarity threshold (S) is 0.5.

Figure 8 shows the graphs for the original and modified versions of the program.

HmMatch pushes the pair of start nodes 〈1,20〉 onto stack ST (line 1).

In the first iteration over the main while loop, the algorithm extracts node pair 〈1,20〉
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Figure 9: Hammock graphs for hammock nodes 6’ and 25’ in Figure 8.

from ST (line 3). Because neither node is already matched, the algorithm compares the two

nodes by calling comp(1, 20, 0.5, N) (line 7), which compares the nodes’ labels and returns

true. Therefore, the algorithm sets match to this pair (line 8), adds the pair of nodes to N

with label “unchanged,” and sets c and c′ to be nodes 1 and 20 (lines 20-22), which in this

case leaves c and c′ unchanged. At this point, the outgoing edges from 1 and 20 are matched

by calling edgeMatching(1, 20). Each node in the entry pair has only one outgoing edge,

and the two edges match, so the pair of sink nodes 〈2, 21〉 is pushed onto the worklist.

The next four iterations over the main loop perform the same steps as the first iteration

to match pairs 〈2, 21〉, 〈3, 22〉, 〈4, 23〉, and 〈5, 24〉 and add these pairs to N with labels

“unchanged.” In the fifth iteration, the algorithm extracts node pair 〈6′, 25′〉 from ST .

Because nodes 6’ and 25’ are not already matched and are both hammock nodes, comp

(line 7) expands nodes 6′ and 25′ to hammock graphs G6′ and G25′ (shown in Figure 9,

respectively, and calls HmMatch(G6′,G25′,1,0.5). HmMatch then pushes the pair of nodes

〈6, 25〉 onto ST1.3 This pair is then extracted from the stack and compared (lines 3–7).

Because both nodes have the same label, they are matched, and the pair is added to N1

with label “unchanged” (lines 20–21). edgeMatching is then called on the two nodes in the

pair, 6 and 25; edgeMatching matches like-labeled edges and the two pairs of sink nodes

〈41,42〉 and 〈7’,26’〉 are pushed onto ST1.

In the next iteration over the main loop, the nodes in pair 〈41,42〉 are compared. Because

both of them are already matched, the algorithm continues to the next pair on the stack

3The subscript notation is used to distinguish variables in recursively called procedures.
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Figure 10: Hammock graphs for hammock nodes 7’ and 26’ in Figure 9.

(line 5). The next iteration extracts pair 〈7’,26’〉 from ST1. Because nodes 7’ and 26’ are not

already matched and are both hammock nodes, comp expands nodes 7′ and 26′ to get two

graphs G7′ and G26′ (shown in Figure 10), respectively, and calls HmMatch(G7′,G26′,1.0.5).

Figure 10 shows nodes in the two hammocks inside the hammock graph of the original

version to facilitate the discussion of node matching at different hammock levels. HmMatch

then matches the dummy exit nodes 43 and 44, and puts 〈7,26〉 onto ST2. This pair

is then extracted and compared. Because both nodes in the pair have the same label,

they are matched and the pair is pushed onto N2 with label “unchanged.” Then the

outgoing edges of both nodes are matched by edgeMatching(7, 26), and the pairs 〈15’,34〉

and 〈8,27〉 are pushed onto ST2. In the next iteration of the main loop, the pair 〈15’,34〉

is extracted and compared. Because both nodes are not already matched, the algorithm

calls comp(15′, 34, 0.5, N2), which returns false because node 15’ is a hammock node, but
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node 34 is not. The algorithm performs a lookahead to find a match for either node 15’

or node 34 (lines 10-17). Node 15’ is compared with the successors of nodes 34, which are

nodes 35 and 36, whereas node 34 is compared with the successors of nodes 15’, which are

nodes 15 and 43 (the entry and exit nodes of the hammock). Nodes 34 and 15 are matched,

the algorithm, thus, sets match to the pair 〈15,34〉 (line 14), breaks out of the loop (line

15), and pushes the pair onto N2. HmMatch continues comparing and matching the rest of

the graph in an analogous way. When all nodes in the two hammocks in Figure 10 are

compared, HmMatch returns to the calling procedure comp. Because 24 out of 28 nodes are

unchanged-matched (nodes 11’ and 15’ have no match, and nodes 13 and 32 are modified-

matched), and the similarity threshold is 0.5, comp classifies the two hammocks as matched.

Therefore, the pairs in N2 are added to N1, comp returns true, pair 〈7’,26’〉 is added to N1

with label “unchanged,” and pair 〈41,42〉 is pushed onto ST1. The rest of the graphs are

compared and matched analogously. The part of the example shown so far illustrates the

main parts of the algorithm including the matching of hammock nodes, the lookahead, and

the matching of nodes at different hammock levels.

3.2.5 Worst-Case Time Complexity

The dominating cost of CalcDiff is the matching at the node level. Let m and n be the

number of nodes in all matched methods in the original and modified versions of a program,

respectively. Let p be the maximum number of nodes in a method, and let the maximum

lookahead be greater than p. In the worst case, if no matching of hammocks at different

nesting levels occurs, the algorithm compares each node in a method with all nodes in

the matching method (at most p), leading to a worst-case complexity of O(p·min(m,n)).

If matching of hammocks at different nesting levels occurs, the algorithm may compare a

pair of nodes more than once. To decide whether two hammocks are matched, HmMatch

compares each node in one hammock with nodes in the other hammock and counts the

number of matched nodes. If lookahead is performed, the same pairs of nodes are compared

again in the context of the new pair of hammocks. The number of times the same pairs

of nodes are compared depends on the maximum nesting depth of hammocks and the
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maximum lookahead. In the worst case, the maximum nesting depth is O(p). Let the

maximum lookahead be greater than p. The worst-case complexity of this algorithm is

then O(p2·min(m,n)).

3.3 JDiff: A differencing tool

To evaluate this differencing algorithm, we developed JDiff, a prototype tool for Java

programs. The tool consists of two main components: a differencing tool and a graph-

building tool. The differencing tool inputs the original and modified versions of a program,

compares them, and outputs sets of pairs of matching classes, methods, and nodes. The

differencing tool calls the graph-building tool to build an ECFG for each method. To

build ECFGs, the tool leverages the capabilities of Jaba (Java Architecture for Bytecode

Analysis)4, a Java-analysis front-end.

3.4 Empirical Studies on Differencing Algorithm

To evaluate the differencing algorithm CalcDiff, we performed three studies on two real,

medium-sized programs to investigate the following research questions;

RQ1: How often do changes involving object-oriented features occur in practice?

RQ2: How long does technique CalcDiff take to compute change information with

varying values of lookahead and hammock-similarity threshold?

RQ3: How much does algorithm CalcDiff gain, in terms of numbers of matched nodes,

compared to Laski and Szermer’s algorithm?

This section describes experimental setup, presents the studies, and discusses the results.

3.4.1 Experimental Setup

These studies used two subjects: Daikon and Jaba. Daikon is a tool for discovering likely

program invariants developed by Ernst and colleagues [23], whereas Jaba is the analysis

tool described above. To evaluate the effectiveness of algorithm CalcDiff, we ran JDiff

on 39 pairs of consecutive versions of Daikon (〈v1, v2〉 to 〈v39, v40〉) and on seven pairs of

4http://www.cc.gatech.edu/aristotle/Tools/jaba.html
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consecutive versions of Jaba (〈v1, v2〉 to 〈v7, v8〉). All versions are real versions extracted

from the CVS repositories for the two subjects.

The time interval between two versions of Daikon is one week (except for weeks in

which there were no changes in the software; in these cases, the interval is extended one

week at a time until the new version included modifications). The versions of Jaba can

be divided into two groups: v1–v4 and v5–v8. Versions v1 to v4 correspond to a period in

which Jaba was undergoing a major restructuring, and therefore contain a greater number

of changes than versions v5 to v8. Also, whereas the time interval between consecutive

versions for v1–v4 and v5–v8 is about two weeks, the time interval between v4 and v5 is

about six months.

Table 1: Subject programs used in differencing studies
Program Versions Classes Methods KLOC
Daikon 40 357-755 2878-7112 48-123
Jaba 8 550 2800 60

Table 1 summarizes the characteristics of the two subject programs. The table shows,

for each subject, the number of versions (V ersions), the number of classes (Classes), the

number of methods (Methods), and the number of non-comment lines of code in thousands

(KLOC). The size of Daikon varies widely between versions and, thus, is reported as

ranges between the numbers of the first version and those of the last version. The size of

Jaba varies little between versions. Thus the table reports the average size of all versions.

We ran all studies on a Sun Fire v480 server equipped with four 900 MHz UltraSparc-III

processors and 16 GB of memory. Each run used only one processor and a maximum heap

size of 3.5 GB.

There are several threats to the validity of these studies. An external threat exists

because the studies used only two subject programs. Thus, the results may not be general-

izable. However, the subject programs are real programs that are used on a regular basis by

several research groups, and the changes considered are real changes that include bug fixes

and feature enhancements. Another external threat to validity exists for the fourth study:

this study used only one test suite for each subject. Different test suites may generate
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different results.

Threats to internal validity mostly concern possible errors in the algorithm implemen-

tations and measurement tools that could affect outcomes. To control for these threats, we

validated the implementations on known examples and performed several sanity checks.

3.4.2 Study 1: Object-Oriented Changes

One of the main advantages of using technique CalcDiff, instead of traditional text-based

differencing approaches, is that CalcDiff can account for the effects of changes due to

object-oriented features. (For simplicity, in the following, such changes are referred to as

object-oriented changes.) The goal of Study 1 is to assess the usefulness of CalcDiff by

investigating how often object-oriented changes occur in practice. This study used the 39

pairs of consecutive versions of Daikon and the seven pairs of consecutive versions of Jaba.

We first ran JDiff on each pair of versions 〈Pi, Pi+1〉, where 1 ≤ i ≤ 39 for Daikon and

1 ≤ i ≤ 7 for Jaba, then analyzed JDiff’s output, and determined whether each change is

an object-oriented change.

Table 2 presents the results of this study. The upper part shows the number of object-

oriented changes in Daikon, and the lower part shows the number of object-oriented changes

for Jaba. The table presents, in separate columns and for each pair of versions, the num-

ber of occurrences of two types of object-oriented changes: changes in dynamic binding

(Binding) and changes in types of local variables and fields (Type). (The other two types

of object-oriented changes discussed in Section 3.2.4.1 occur rarely in the subject programs

and versions: there are only three changes related to synchronized blocks and no changes

in the exception class hierarchy.) A pair of columns under each type show the number of

actual (i.e., syntactic) changes (AC) and the number of statements indirectly affected by

such changes (IA).

For changes in dynamic binding, the actual changes are additions or deletions of meth-

ods, changes in methods from non-static to static or vice versa, and changes of method

access modifiers. The statements indirectly affected by such changes are the method calls

that may be bound to different methods as a consequence of the change. For changes in
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Table 2: Number of actual changes (AC) and number of statements indirectly affected
(IA) for each kind of object-oriented changes in each pair of versions of Daikon and Jaba

Daikon
Pair Binding Type Pair Binding Type

AC IA AC IA AC IA AC IA
v1,v2 26 151 14 31 v21,v22 11 15
v2,v3 v22,v23 29 90 3 4
v3,v4 17 54 v23,v24 7 45
v4,v5 1 2 v24,v25 13 187 1 1
v5,v6 2 8 v25,v26 38 230 2 6
v6,v7 4 4 19 34 v26,v27
v7,v8 3 48 v27,v28
v8,v9 5 14 v28,v29
v9,v10 2 2 v29,v30

v10,v11 8 14 v30,v31
v11,v12 4 5 6 53 v31,v32
v12,v13 2 3 4 10 v32,v33
v13,v14 v33,v34 19 130 10 16
v14,v15 3 4 v34,v35 8 14
v15,v16 1 1 v35,v36
v16,v17 v36,v37 6 14
v17,v18 6 8 v37,v38 7 54
v18,v19 21 90 v38,v39
v19,v20 5 6 v39,v40 14 22 10 30
v20,v21 17 19
Jaba

Pair Binding Type Pair Binding Type
AC IA AC IA AC IA AC IA

v1,v2 2 2 v5,v6 14 21
v2,v3 1 1 v6,v7
v3,v4 7 12 1 1 v7,v8 1 4
v4,v5 12 313 73 289

types, the actual changes consist of changes in declarations of local variables and fields, and

the affected statements are the statements in which such variables and fields are referenced.

For example, the changes for pair 〈v1, v2〉 of Daikon consist of modifications to 26 meth-

ods, which may cause 151 method calls to behave differently, and modifications to the type

of 14 local variables and fields, which may affect the behavior of 31 statements.

The indirectly-affected statements represent the additional information provided by

CalcDiff that other differencing approaches, such as diff, could not identify (without

further analysis). The results of this study show that object-oriented changes occur in more

than half of the cases considered. In a few cases, object-oriented changes may result in

more than 100 indirectly-affected statements (i.e., statements in the code that may behave
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differently but would not be identified by traditional differencing approaches).

3.4.3 Study 2: Efficiency

The goal of Study 2 is to measure the efficiency of JDiff for various values of lookahead,

LH, and hammock similarity threshold, S. This study used as subjects of the study all

versions of Jaba and Daikon used in the previous study. For each pair of versions, we

ran JDiff with different values for LH and S, and measured the running times. Because

the goal of the study is to assess the efficiency of technique CalcDiff, the running times

reported do not include the time required by Jaba to perform the underlying control- and

data-flow analysis. (This time ranges from 150 to 586 seconds for Daikon and from 279 to

495 for Jaba.)

Figures 11 and 12 show the running time (in seconds) of JDiff. For Daikon, because

there are 39 pairs of versions, the running times of JDiff are reported using box-and-whisker

plots. Figures 11(a), 11(b), and 11(c) show box-and-whisker plots of the running times

obtained for thresholds of 0.0, 0.6, and 1.0, respectively. In the diagrams, the horizontal axis

represents the value of LH, and the vertical axis represents the running time in second. In a

box-and-whisker plot, the upper and lower ends of the box are the upper and lower quartiles,

respectively; the median is marked by the horizontal line inside the box; the whiskers are

the two lines outside the box that extends to the highest and lowest observations that are

not outliers; and the outliers are marked by star symbols above and below the whiskers. To

illustrate, consider the runs of JDiff with LH = 10 and S = 1.0 (see the second box-and-

whisker plot in Figure 11(c)), the plot divides the 39 runs (one per pair of versions) into

four groups of about 10 runs each. The first group, represented by the whisker below the

box, shows that the 10 runs in this group took between 90 and 120 seconds to complete.

The second group, represented by the lower half of the box, shows that the runs in this

group took between 120 and 135 seconds. The line inside the box shows the median, which

is about 135 seconds. The third group, represented by the upper half of the box, shows that

the running time for the 10 runs in this group ranges between 135 and 190 seconds. Finally,

the last group, represented by the whisker above the box, shows that the running time for
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Figure 11: Average time (sec) for various pairs of versions of Daikon , lookaheads, and
similarity thresholds.
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Figure 12: Average time (sec) for various pairs of versions of Jaba, lookaheads, and
similarity thresholds.

the 10 runs in this group ranges between 190 and 250 seconds. For Jaba, there are only

seven pairs of versions; therefore, Figures 12(a), 12(b), and 12(c) show the running time

of JDiff on each individual pair for similarity thresholds of 0.0, 0.6, and 1.0, respectively.

For example, JDiff took about 200 seconds to compute the differences between versions

v2 and v3 of Jaba with S = 0 and LH = 30 (see Figure 12(a)).

The results show that, when LH is kept constant, the value of S affects only slightly

the performance of JDiff. Intuitively, with S = 0, the algorithm matches a hammock

in the original program’s ECFG with the first hammock found in the modified version’s

ECFG. Thus, each hammock is compared at most once, and the running time is almost the

same regardless of the value of LH. In addition, because each hammock is compared at
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most once, the running time for these cases is less than for S = 0.6 and S = 1.0, where a

hammock may be compared more than once. For S = 0.6 and S = 1.0, the number of times

a hammock is compared depends on the lookahead and on the actual changes. As shown

in the results, only in this case does the time increase when the lookahead increases. In all

cases considered, JDiff took less than six minutes to compute the differences between a

pair of versions (less than 15 minutes when Jaba’s analysis time is included). Note that

JDiff is still a prototype, so we expect even better performance on an optimized version

of the tool.

3.4.4 Study 3: Effectiveness

The goal of Study 3 is to evaluate the effectiveness of algorithm CalcDiff compared to

Laski and Szermer’s algorithm [42]. To this end, we compared the number of nodes that

each algorithm matches. For the study, we implemented Laski and Szermer’s algorithm (LS)

by modifying our tool. Note that in their paper [42], the handling of some specific cases is

not discussed. For example, when two hammocks have the same label, they are expanded

and compared, but the algorithm behavior is undefined in the case in which the expanded

graphs cannot be made isomorphic by applying node renaming, node removing, and node

collapsing. Those cases are handled in the same way for both algorithms. There are three

differences between the two algorithms: (1) LS does not use the lookahead but searches

the graphs until the hammock exit node is found; (2) LS does not allow the matching

of hammocks at different nesting levels; and (3) LS does not use the hammock similarity

threshold but decides whether two hammocks are matched by comparing the hammocks’

entry nodes only.

We ran both algorithms on all versions of Daikon and Jaba used in Studies 1 and 2

and counted the number of nodes in the sets of added, deleted, modified, and unchanged

nodes. We ran JDiff several times, using different values of lookahead LH and similarity

threshold S. Note that this study considers only nodes in modified methods because added,

deleted, and unchanged methods do not show differences in matching capability between

the two algorithms.

40



-150

-100

-50

0

50

100

0 10 20 30

S = 0.0

(a) 0 10 20 30

S = 0.6

(b) 0 10 20 30

S = 1.0

(c)

Figure 13: Percentage of the number of nodes identified as matched by JDiff but as
unmatched by LS in Daikon.
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Figure 14: Percentage of the number of nodes identified as matched by JDiff but as
unmatched by LS in Jaba.

To compare the effectiveness of the two algorithms, we compute the number of nodes that

are matched by JDiff but that are not matched by LS. This number is reported in terms

of a percentage over the total number of nodes identified as unmatched by LS. Intuitively,

this percentage represents the relative improvement, in terms of matching, achieved by

CalcDiff over LS. The number of nodes identified as unmatched by LS varies between 745

and 46,745 for Daikon and between 116 and 40,024 for Jaba.

Figures 13 and 14 present the results of this study. Figures 13(a), 13(b), and 13(c)

present the results for Daikon, summarized across all 39 pairs of versions, for similarity

thresholds of 0.0, 0.6, and 1.0, respectively. Figures 14(a), 14(b), and 14(c) present the

results for each considered pair of versions of Jaba for similarity thresholds of 0.0, 0.6, and
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1.0, respectively. The horizontal axis of each graph represents the value of LH, and the

vertical axis of each graph shows the percentage described earlier. For example, for S = 1.0

and LH = 20 (see Figure 13(c)), CalcDiff matches on average approximately 10% more

nodes than LS, when both algorithms run on the same pair of versions of Daikon. For

another example, for S = 0 and LH = 20 (see Figure 13(a)), CalcDiff matches about 45%

more nodes than LS for Jaba’s pair of versions 〈v5, v6〉. In this case, CalcDiff matches

1,319 additional nodes out of 3,233 nodes that LS identifies as unmatched nodes.

The results of this study show that CalcDiff performs better than LS in almost all

cases in which LH is not 0. For LH = 0, the fact that LS performs better than CalcDiff

confirms our intuition. Without lookahead, algorithm CalcDIff does not search further to

find a match when two hammocks do not match, whereas LS matches hammocks and nodes

by searching the graphs until the hammock exit node is found. It is worth noting that the

LS approach has a higher cost than CalcDiff. In fact, as we verified in this study, LS always

takes longer than CalcDiff to compare two versions.

We further analyzed the data and found that the few cases in which algorithm CalcDiff,

with LH ≥ 10, performs worse than LS are special cases in which: (1) there are very few

changes between the considered versions; and (2) the headers of the hammocks that contain

changes are the same, which favors LS’s hammock-matching strategy.

In all other cases considered (i.e., LH 6= 0 and other configurations except Jaba 〈v2, v3〉

with S = 0.0), CalcDiff matches more nodes than LS and improves the matching results by

10% on average for Daikon and up to 90% for Jaba. The results also show that the number

of matched nodes increases when LH increases, which confirms our intuition. Finally, the

results show that, for LH > 10, the number of matched nodes is slightly greater in the case

of S = 0.6 and S = 1.0 than in the case of S = 0.

Note that added nodes identified by LS or CalcDiff can be classified as (1) code that

is actually added or (2) code that cannot be matched because of the limitations of the

algorithms. Therefore, to measure the relative effectiveness of the two algorithms, we should

compute the percentage using the number of nodes in the second category only. In this sense,

the percent improvement reported in this study underestimates the actual improvement.
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3.4.5 Discussions

The empirical results show that, for both subjects the increase in the running time of

JDiff when S = 1.0 is not noticeable in most cases. In only few cases does the running

time increase, but by at most a factor of two. Where the effectiveness of the technique is

concerned, JDiff performs noticeably better when S = 1.0 than when S = 0.0 or 0.6 for

any value of LH. Therefore, based on the empirical results, we suggest using 1.0 as the

value of S.

With the suggested value of the similarity threshold (S = 1.0), in most cases the running

time of Jdiff when LH = 30 remains almost the same compared to the time when LH = 0.

In the other cases, the running time increases at most by a factor of two. The effectiveness,

however, increases considerably when LH = 30 compared to when LH = 0. Therefore, we

suggest using 30 as the value of LH.
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CHAPTER 4

DYNAMIC IMPACT ANALYSIS

As shown in Figure 1, after identifying changes, the testing-requirements identifier can begin

computing requirements. However, when testing time and resources are limited, developers

may want to focus on the parts of software that are more likely to be exercised in the field

first. The identifier, thus, requires a technique to identify the parts of software that, based

on a set of executions, are more likely to be affected by the changes. The identifier can

use this impact information to prune the affected parts of software that are less likely to

be exercised and, thus, restrict the cost of symbolic execution by reducing the number of

statements to be analyzed. Software change impact analysis, which estimates the potential

effects of changes, can provide this impact information.

4.1 Related Work

Many impact-analysis techniques are presented in the literature. This research focuses on

dependency-based impact analysis [8]. Existing dependency-based impact-analysis tech-

niques (e.g., [8, 46, 58, 67, 71]) rely on static analyses such as static forward slicing or

transitive closure on call graphs. Although, these techniques can compute the safe esti-

mated impact of changes, their conservative assumptions often result in the impact set, the

subset of affected program components, that includes most of the software. The problem of

sound static-analysis-based techniques is that they consider all possible behaviors of the soft-

ware, some of which may not be exercised by the users. Moreover, they often include some

impossible behaviors due to the imprecision of the analysis. Therefore, recently, researchers

have investigated and defined impact-analysis techniques based on dynamic information

about program behavior [10, 44, 45]. The dynamic information consists of execution data

for a specific set of program executions such as executions in the field, execution based

on an operational profile, or executions of test suites. Dynamic impact analysis estimates

the subset of program entities that are affected by the changes during at least one of the
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considered program executions.

All existing dynamic-impact-analysis techniques are based on the same technique called

PathImpact. To illustrate this main technique, consider the example, original version P

used in Chapter 3 (Figure 3). Figure 15 shows the partial code of P that is relevant to the

discussion in this chapter. The partial call graph of P used to illustrate the technique is

shown in Figure 16. To shorten the traces used in the discussion, each method is referred

to by a unique identifier. The edge connecting node D to node C is a back-edge in the call

graph and, thus, indicates recursion.

As part of the example, dynamic execution data corresponding to possible executions

of program P, shown in Figure 17, are provided. Each line in this figure corresponds to a

trace of an execution of P and consists of an identifier for the execution followed by a list

of method call and return events during that execution. Each method call is represented

by the method name. Each r represents the return from the most recently called method,

and x represents the exit from the program. For example, the trace for Exec2 corresponds

to an execution in which M is called, M calls B, B calls C, C returns to B, B calls G, G

returns to B, B returns to M, and M exits.

PathImpact [44] relies on instrumentation to collect dynamic information from a run-

ning software system. As the instrumented program executes, it records multiple execution

traces, of the form shown in Figure 17. PathImpact first processes these traces sequen-

tially using the SEQUITUR compression algorithm1 [50] to obtain a compact representation

called a whole-path DAG (directed acyclic graph) [41]. The execution traces can be pro-

cessed as they are generated and need not be stored, and the whole-path DAG is used

instead of the traces to calculate the change impact set. Given the execution traces in Fig-

ure 17, and assuming that the sequence CErFrDrr is repeated twice in Exec4, the resulting

DAG is shown in Figure 18. The compression algorithm creates rules, shown as numbered

interior nodes in the DAG, to remove repetition within and across traces. Note that Holz-

mann and Puri’s algorithm for representing model states as a minimized automaton [33]

1SEQUITUR is an algorithm for recursive construction of a hierarchical structure from a sequence of
discrete symbols by replacing repeated phrases with a new symbol whose grammatical rule generates the
phrase.
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Program P

pub l i c c l a s s UnavailBookFinder { . . .
pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) { . . .

Set<Book> r e s = l i b . getCheckedOutBooks ( ) ;
. . .

r e s . addAll ( l i b . getOnOrderBooks ( ) ) ;
. . .

}
. . .

}

pub l i c c l a s s Library { . . .
pub l i c Set<Book> getCheckedOutBooks ( ) {

. . .
i f ( book . ge tSta tus ( ) == Book .CHECKED OUT) { . . . }
. . .

}
pub l i c Set<Book> getOnOrderBooks ( ) {

. . .
i f ( book . ge tSta tus ( ) == Book .ON ORDER) {

. . .
Date d = book . getDe l iveryDate ( ) ;
. . .

}
. . .

}
}

pub l i c c l a s s Book {
. . .
pub l i c i n t ge tSta tus ( ) {

. . .
boolean b1 = isCheckedOut ( ) ;
boolean b2 = isOnOrder ( ) ;
i n t c1 = getNumAvailableCopies ( ) ;
. . .

}
pub l i c boolean isCheckedOut ( ) { . . . }
pub l i c boolean isOnOrder ( ) { . . . }
pub l i c i n t getNumAvailableCopies ( ) {

. . .
boolean b1 = anotherBook . ge tSta tus ( ) ;
. . .

}
pub l i c Date getDe l iveryDate ( ) { . . . }

}

Figure 15: Partial code for the original version P .
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M UnavailBookFiner.main
A Library.getCheckedOutBooks
B Library.getOnOrderBooks
C Book.getStatus
D Book.getNumAvailableCopies
E Book.isCheckedOut
F Book.isOnOrder
G Book.getDeliveryDate

Figure 16: Call graph for program P.

Exec1: M B G r G r r A C E r r r x

Exec2: M B C r G r r x

Exec3: M A C E r D r r r x

Exec4: M B C E r F r D r r ... C E r F r D r r r x

Figure 17: Traces for P . The dots in the last trace indicate that the sequence CErFrDrr
is repeated several times.

can be used in place of the SEQUITUR compression algorithm to provide lower runtime

overhead and better compression ratio.

PathImpact traverses the DAG to determine an impact set, given a set of changes. Law

and Rothermel present the complete algorithm for performing this traversal [45]. Intuitively,

one way to visualize its operation is to consider beginning at a changed method’s node

in the DAG, traversing through the DAG by performing recursive forward and backward

in-order traversals, and stopping when any trace termination symbol, x, is found. By

traversing forward in the DAG, the algorithm finds all methods that execute after the

change and therefore could be affected by the change. By traversing backward in the DAG,

the algorithm determines all methods into which execution can return. More precisely,

PathImpact performs a forward traversal by visiting each symbol on the right-hand side

of the rule in an interior node from left to right and by visiting the method symbol in a

leaf node. When visiting each non-terminal symbol a in rule r, PathImpact traverses the

DAG until it reaches the interior node corresponding to symbol a, continues its traversal

on symbols on the right-hand side of the rule associated with that node, and, after visiting

the last node in that rule, returns to the next symbol after symbol a in rule r. PathImpact
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Figure 18: Whole-path DAG for the execution traces in Figure 17.

performs a backward traversal similarly except that it traverses the symbols on the right-

hand side of a rule from right to left.

To illustrate, consider the impact set computed by PathImpact for the program and

the executions in this example (Figures 16 and 17) for change Z = {A} (i.e., only method

A is modified). PathImpact starts at leaf node A, traverses forward to interior node

6→ ACEr, and visits symbols (and leaf nodes) C, E, and r. After visiting the last symbol

in this node, PathImpact traverses forward to node τ → 213... and continues its traversal

after each symbol 6 in that node. For the first occurrence of 6, PathImpact visits symbol 7.

Because symbol 7 is a non-terminal symbol, PathImpact traverses node 7 → rr and visits

symbol r twice before returning to node τ → 213... again and stops when it finds x. After

forward traversal, PathImpact finds that CErrrx is the sequence that follows method A

in one of the executions that exercise A. This sequence means that A calls C, C calls E, E

returns into C, C returns into A, and A returns into a caller before the program terminates.

Thus, PathImpact includes C and E in the impact set and performs backward traversal to

identify the caller of A. The backward traversal is performed similarly as described above.

The resulting impact set computed by PathImpact is {M, A, C, D, E}.

PathImpact incurs significant runtime overhead because it requires time linear in the

size of the DAG computed so far to add a new event to the DAG (compressed traces) on

the fly. In terms of space, the traces, even when compressed, can be very large.

Breech and colleagues present an algorithm for computing the same impact sets as

PathImpact does, but on the fly [10]. Their algorithm collects, for each execution, an
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impact set for each method. At the entry of a method X, the algorithm adds X to the

impact set of each method currently on the call stack. Then, it adds all methods on the

call stack to X’s impact set. The worst-case space complexity is quadratic in the number of

methods. The worst-case time complexity per method call is O(n), where n is the number

of methods. Moreover, their technique assumes that all executions terminate with an empty

call stack.

Sections 4.2 and 4.3 present two new approaches, CoverageImpact and ExecuteAfter,

for dynamic impact analysis with significantly lower runtime overhead than PathImpact.

CoverageImpact computes impact sets by combining coverage information with static

slicing whereas ExecuteAfter computes impact sets by analyzing the execute-after rela-

tions obtained from executions. The two techniques have precision-efficiency trade-off (i.e.,

ExecuteAfter technique computes more precise impact sets than CoverageImpact while

incurring more overhead).

4.2 Coverage-Based Dynamic Impact Analysis

The CoverageImpact technique relies on lightweight instrumentation to collect dynamic

information from a running software system. As the instrumented program executes, it

records coverage information in the form of bit vectors, and CoverageImpact uses these bit

vectors to compute the impact set. The bit vectors contain one bit per method. A value

of 1 in the bit for method m in the vector for execution e indicates that m was covered in

e, and a value of 0 indicates that m was not covered in e. For example, for the executions

shown in Figure 17, the coverage information consists of the set of bit vectors shown in

Table 3.

Table 3: Coverage bit vectors for the execution traces in Figure 17.
Exec ID M A B C D E F G
Exec1 1 1 1 1 0 1 0 1
Exec2 1 0 1 1 0 0 0 1
Exec3 1 1 0 1 1 1 0 0
Exec4 1 0 1 1 1 1 1 0

Given a set of changed methods CHANGES, CoverageImpact uses the bit vectors col-

lected during execution to determine an impact set. This section provides an overview of
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Orso et al.’s algorithm for this analysis [55]. To identify the impact set, CoverageImpact

computes, for each method X in CHANGES, a dynamic forward slice based on the cov-

erage data for executions that traverse X. The impact set is the union of the slices thus

computed.

CoverageImpact computes the impact sets in two steps. First, using the coverage

information, it identifies the executions that traverse at least one method in the change

set CHANGES and marks the methods covered by such executions. Second, it computes

a static forward slice from each change in CHANGES considering only marked methods.

The impact set is the set of methods in the computed slices.

To illustrate, consider the impact set computed by CoverageImpact for the program and

executions in this example (Figures 16 and 17, Table 3) for change CHANGES = {A} (i.e.,

only method A is modified). The executions that traverse A are Exec1 and Exec3, and the

covered methods include M, A, B, C, D, E, and G. Assume that the traditional static slice

for method A consists of methods M, A, C, D, E, and F. The resulting impact set —the

slice computed considering only marked methods—would then be {M, A, C, D, E}.

4.3 Execute-After-Relation-Based Dynamic Impact Analysis

CoverageImpact incurs low runtime overhead to collect dynamic information because it

needs only coverage information. It, however, may compute imprecise impact sets. For

example, in an execution where a method, X, is executed only before the only changed

method, Y , if the static slice of method Y includes X, CoverageImpact will compute an

imprecise impact set for method Y (i.e., it includes method X, which should not be affected

in this execution) because method X is in the static slice and is marked as executed.

Therefore, another dynamic-impact-analysis approach that computes impact sets with the

same precision as PathImpact and the cost comparable to CoverageImpact is developed.

This section discusses the findings on what information is essential for computing dy-

namic impact sets, introduces a new algorithm for collecting this information efficiently

during program executions, and presents a proof of correctness for the algorithm.
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4.3.1 The Execute-After Relation

Dynamic impact analysis computes, for one or more program changes, the corresponding

dynamic impact set: the set of program entities that may be affected by the change(s)

for a specific set of program executions.2 Intuitively, all entities that are executed after a

changed entity are potentially affected by that change. As such, the dynamic impact set

for a changed entity e must include all program entities that are executed after e in the

considered program executions.

Therefore, to compute dynamic impact sets for a program P and a set of executions

E, the only information required is whether, for each pair of entities e1 and e2 in P , e2

was executed after e1 in any of the executions in E. This binary relation, named Execute

After (EA hereafter), can be defined for entities at different levels of granularity. For ease

of comparison with existing dynamic impact-analysis techniques, the EA relation is defined

formally for the case in which the entities considered are methods and executions are single-

threaded. The generalization of the EA relation with regard to multi-threaded executions

is discussed in Section 4.3.3.

Definition 5. Given a program P , a set of executions E, and two methods X and Y in P ,

(X, Y) ∈ EA for E if and only if, in at least one execution in E,

1. Y calls X (directly or transitively),

2. Y returns into X (directly or transitively), or

3. Y returns into a method Z (directly or transitively), and method Z later calls X

(directly or transitively).

The problem with existing dynamic-impact-analysis techniques [10, 44, 45, 55] is that

they do not explicitly compute the EA relation. Instead, they infer the relation from

information that is either too expensive to collect or too imprecise to provide accurate

results. For example, technique PathImpact uses complete program traces to identify which

2The uncertainty occurs because the analysis uses the execution information obtained from executing the
original version to estimate the affected program entities in the modified version.
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methods are executed after a change (see Section 4.1). For another example, technique

CoverageImpact uses coverage information combined with static slicing to approximate the

information contained in complete program traces. Preliminary investigation shows that

trace information is excessive for both deriving the EA relation and performing dynamic

impact analysis because it contains much unnecessary information. The following discussion

demonstrates that execution traces contain mostly redundant information and presents the

considerably smaller amount of information that the new technique collects at runtime.

The first finding, when analyzing the information contained in program traces such as

the ones in Figure 17, is that using only the information provided by method-return events

unnecessarily complicates the analysis of the traces. Method-return events can be used to

identify the methods into which the execution returns, but provide this information only

indirectly—some form of the stack-based walk of the traces is typically required to identify

such methods. To simplify the dynamic impact analysis, the new technique collects, instead

of method-return events, method-returned-into events. A method-returned-into event for a

method X, denoted as Xi, is generated when an execution returns (from any method) into X.

For now, assume that method-returned-into events can be easily collected. Section 4.4.2 dis-

cusses how to collect such events for Java programs efficiently. By considering only method-

entry and method-returned-into events, trace Exec 1 in Figure 17 can be rewritten as follows:

Me Be Ge Bi Ge Bi Mi Ae Ce Ee Ci Ai Mi

The rest of the section uses this example trace to illustrate how to capture the EA relation

between any pair of methods in an execution.

Obviously, the EA relation can be derived from this complete trace. By the definitions

of method-entry and method-returned-into events, an observation is as follows:

Method X executes after method Y if, in the trace, there is a method-entry

or method-returned-into event for X that follows a method-entry or method-

returned-into event for Y.

However, if the only goal is to derive the EA relation, the complete trace contains much

unnecessary information. In fact, the above observation can be restated as follows:
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(X, Y) ∈ EA iff at least one event for X occurs after at least one event for Y.

To assess whether at least one event for X occurs after at least one event for Y, an

analysis does not need a complete trace—the first method event for Y (referred to as Yf ),

the last method event for X (referred to as Xl), and the ordering of the two events in the

trace are adequate. If an event Y∗3 for method Y occurs before an event X∗ for method X,

then necessarily Yf occurs before Xl: by definition, Yf ≤ Y∗ < X∗ ≤ Xl. Conversely, if Yf

occurs after Xl, then there cannot be any X∗ and Y∗ such that Y∗ occurs before X∗: Y∗ < X∗

contradicts X∗ ≤ Xl < Yf ≤ Y∗.

One conclusion is that, in general, the essential information for deriving the EA relation

for an execution is, for each method, the first and the last events that the method generates

in the execution. The first event for a method X always corresponds to the first method-

entry event for X. The last event for a method X corresponds to the last method-entry

event for X or the last method-returned-into event for X, whichever comes last. Intuitively,

the first and last events for a method represent the first and last executions of the method,

where an execution of a method means an execution of one or more statements in the

method’s body.

By considering only the first and the last events for each method, the previous example

trace can be reduced to the following sequence:

Me Be Ge Ge Bi Ae Ce Ee Ci Ai Mi

To simplify the discussion, in the rest of this section, the notation for method events

introduced above is used: Xf indicates the first method event for a method X, and Xl

indicates the last method event for X. Using this notation, the above trace can be rewritten

as follows:

Mf Bf Gf Gl Bl Af Cf Ef El Cl Al Ml

Note that, because there is only one event for method E, the event appears as both

the first and the last. This sequence contains at most two entries for each method in

3The notation Y∗ and X∗ indicates any event for method Y and X, respectively.
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the program. Because this sequence contains the EA relation, it is referred to as EA

sequence. As discussed previously, the EA sequence contains the essential information

needed to perform dynamic impact analysis.

Dynamic impact analysis computed by using EA sequences is as precise as an analysis

performed on complete traces, while achieving significant space savings. These savings are

obvious when dynamic information is collected for real executions, in which methods can be

executed thousands (or millions) of times. However, achieving space savings by collecting

EA sequences would not be useful if, to collect them, complete execution traces need to be

gathered first. Therefore, the new algorithm, presented in the next section, for collecting EA

sequences on the fly at a cost comparable to the cost of collecting simple method coverage

information is developed.

4.3.2 Algorithms

One straightforward way to collect EA sequences is to use a list of events and update it

(1) at each method entry and (2) every time the flow of control returns into a method

after a call. The update must operate such that only the first and the last events for each

method are kept in the list. Therefore, every time an event for a method X is generated,

this approach checks whether the list already contains entries for X. If not, it adds both

an Xf entry and an Xl entry at the end of the list. Otherwise, if there is already a pair of

entries, the approach removes the existing Xl entry and adds a new Xl entry at the end of

the list. (Intuitively, this approach only records the first method event and keep updating

the last method event.) This straightforward approach is space efficient—the space required

never exceeds 2n, where n is the number of methods in the program. However, it is not

time efficient because, for every method event generated, the event list must be searched

and updated. The searching time could be eliminated by keeping a pointer to the last

event for each method and by suitably updating such pointers every time a method event

is generated. However, this approach still needs to update up to five pointers at each event

and is, thus, penalized by the memory-management overhead.
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Algorithm CollectEA

Declare: F array of first method events
L array of last method events
C counter
n number of methods in the program

Output: F, L
{On program start}
Begin:
1: initialize F[i] to ⊥, for 0 ≤ i < n
2: initialize L[i] to ⊥, for 0 ≤ i < n
3: initialize c to 1

end
{On entry of method M}
Begin:
4: if ( F[M] = ⊥) then
5: F[M] = c
6: endif
7: L[M] = c
8: increment c by 1

end
{On control returning into method M}
Begin:
9: L[M] = c

10: increment c by 1
end
{On program termination}
Begin:
11: output F, L
end

Figure 19: Algorithm CollectEA.

To minimize the overhead imposed by the analysis, an algorithm is developed for col-

lecting EA sequences at runtime that is more efficient (by a constant factor) than the list

approach, in terms of both time and space, and does not incur memory-management over-

head. The new algorithm is based on the use of two arrays of event timestamps, F and L.

Arrays F and L are used to store the timestamp of the first and last events, respectively,

generated by each method. The notation F[X] (resp., L[X]) denotes the element of array F

(resp., L) for a method X. The timestamp is a global counter that is incremented by one at

each event. Figure 19 shows the algorithm, CollectEA.

CollectEA is an on-line algorithm, whose different parts are triggered by the events that

occur during a program execution. When the program starts, all elements of arrays F and

L are initialized to ⊥, and counter c is initialized to 1 (lines 1–3). ⊥ denotes a non-numeric
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Table 4: Values of F, L, and c during the example execution.
F Levent

M A B C D E F G M A B C D E F G
c

start ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 1
Me 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 2
Be 1 ⊥ 2 ⊥ ⊥ ⊥ ⊥ ⊥ 1 ⊥ 2 ⊥ ⊥ ⊥ ⊥ ⊥ 3
Ge 1 ⊥ 2 ⊥ ⊥ ⊥ ⊥ 3 1 ⊥ 2 ⊥ ⊥ ⊥ ⊥ 3 4
Bi 1 ⊥ 2 ⊥ ⊥ ⊥ ⊥ 3 1 ⊥ 4 ⊥ ⊥ ⊥ ⊥ 3 5
Ge 1 ⊥ 2 ⊥ ⊥ ⊥ ⊥ 3 1 ⊥ 4 ⊥ ⊥ ⊥ ⊥ 5 6
Bi 1 ⊥ 2 ⊥ ⊥ ⊥ ⊥ 3 1 ⊥ 6 ⊥ ⊥ ⊥ ⊥ 5 7
Mi 1 ⊥ 2 ⊥ ⊥ ⊥ ⊥ 3 7 ⊥ 6 ⊥ ⊥ ⊥ ⊥ 5 8
Ae 1 8 2 ⊥ ⊥ ⊥ ⊥ 3 7 8 6 ⊥ ⊥ ⊥ ⊥ 5 9
Ce 1 8 2 9 ⊥ ⊥ ⊥ 3 7 8 6 9 ⊥ ⊥ ⊥ 5 10
Ee 1 8 2 9 ⊥ 10 ⊥ 3 7 8 6 9 ⊥ 10 ⊥ 5 11
Ci 1 8 2 9 ⊥ 10 ⊥ 3 7 8 6 11 ⊥ 10 ⊥ 5 12
Ai 1 8 2 9 ⊥ 10 ⊥ 3 7 12 6 11 ⊥ 10 ⊥ 5 13
Mi 1 8 2 9 ⊥ 10 ⊥ 3 13 12 6 11 ⊥ 10 ⊥ 5 14

special value used to identify methods that have not yet been executed. (If a method has

value ⊥ at the end of the execution, then that method was not executed at all in that

execution.) Every time a method M is entered, the algorithm checks the value of F[M]. If

F[M] is ⊥ (i.e., M has not yet been executed), then the algorithm sets F[M] to the current

value of the counter (lines 4–6). Because, as discussed in the previous section, the last event

generated by M may be a method-entry event, L[M] is also set to the current value of the

counter (line 7). Finally, counter c is incremented by one (line 8).

Every time the control flow returns into method M, L[M] is updated to the current

value of the counter (line 9), and counter c is incremented by one (line 10). In this way,

each element in L contains the timestamp of the last time the corresponding method was

(partially) executed.

To illustrate the algorithm, consider the execution producing the example trace Exec1

used in Section 4.1 (see Figure 17). Table 4 shows the values of F, L, and c after each method

(and program) event. The leftmost column (event) shows the program-start, method-entry,

and method-returned-into events. Columns labeled F and L show, for each method, the

values of the corresponding elements in the F and L arrays, respectively. Finally, the

rightmost column (c) shows the value of the counter.
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On program start, F, L, and c are initialized. When M is called, F[M] and L[M] are set

to 1, the current value of c, and c is incremented to 2. Likewise, when B is called, F[B] and

L[B] are set to 2, and c is incremented to 3. When G is called, F[G] and L[G] are set to 3,

and c is incremented to 4. Then, when the control flow returns into B, which generates a

Bi event, L[B] and c are updated accordingly. When method G is called again, F[G] is not

updated (because its value is not ⊥), L[G] is updated, and c is incremented. Additional

updates of F, L, and c occur in an analogous way until the program terminates.

The equivalency of the information in a pair of F and L arrays and the information

in an EA sequence is illustrated by presenting the steps to derive one from the other and

vice-versa. (Note that maintainers need not perform these steps to obtain impact sets from

a pair of F and L arrays.) Converting a pair of F and L arrays to an EA sequence requires

two steps: (1) order the elements of F and L (considered together and without including

elements with value ⊥) based on their value (if F[X] equals L[X], F[X] precedes L[X]), and

(2) for each method X, replace F[X] with Xf and L[X] with Xl. Converting an EA sequence

to a pair of F and L arrays requires the two previous steps to be reversed: (1) for each

method X, Xf is replaced with F[X], and Xl is replaced with L[X], and (2) increasing values,

starting from 1, is assigned to the elements in arrays F and L, based on their position.

For example, the pair of F and L arrays for the previous example (shown as the last row

of Table 4) would first be ordered,

F[M] F[B] F[G] L[G] L[B] F[A] F[C] F[E] L[E] L[C] L[A] L[M]

and then be converted as follows:

Mf Bf Gf Gl Bl Af Cf Ef El Cl Al Ml

Because arrays F and L provide the same information as an EA sequence, the EA

relation can be derived from such arrays, as stated in the following lemma:

Lemma 1. (X, Y) ∈ EA ⇐⇒ F[Y] < L[X]

Proof. To prove Lemma 1, consider three characteristics of the algorithm:

1. Counter c increases monotonically each time a method event occurs.
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2. For each method X, F[X] is set only once, to the then-current value of counter c, at

the first method-entry event for X.

3. For each method X, L[X] is set to the then-current value of counter c every time a

method event for X occurs.

The proof proceeds in two parts, by first showing that

(X, Y) ∈ EA ⇒ F[Y] < L[X] (1)

and then showing that

F[Y] < L[X] ⇒ (X, Y) ∈ EA (2)

Part (1). According to the definition of EA relation (Definition 5), there are three

cases in which (X, Y) ∈ EA

In the first case (Y calls X), a Ye event is generated at timestamp t1 and an Xe event

is generated at timestamp t2 > t1. At the end of the execution, because of Characteristics

1, 2, and 3, F[Y] is either t1 (if Ye is the first entry event for Y) or a value less than t1

(otherwise), and L[X] is either t2 (if Xe is the last method event for X) or a value greater

than t2 (otherwise). Thus, F[Y] < L[X] in this case.

In the second case (Y returns into X), a Ye event is generated at timestamp t1 (when

X calls Y directly or transitively) and an Xi event is generated at timestamp t2 > t1 (when

Y returns). As for the previous case, F[Y] ≤ t1, and L[X] ≥ t2. Thus, F[Y] < L[X] also in

this case.

In the third case (Y returns into a method Z that later calls X), a Ye event is generated

at timestamp t1 (when Z calls Y) and an Xe event is generated at timestamp t2 > t1 (when

Z calls X). As for the previous cases, F[Y] ≤ t1, and L[X] ≥ t2, and thus F[Y] < L[X] also

in this case.

Because (X, Y) ∈ EA implies F[Y] < L[X] in all three cases, part (1) of the Lemma

holds.

Part (2). This part follows directly from the meaning of arrays F and L: if F[Y] <

L[X], then the first (partial) execution of method Y precedes the last (partial) execution of
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method X—X executes after Y.

Now that the CollectEA algorithm has been shown to capture correctly the EA re-

lation among methods for a given execution, the rest of this section discusses how the

dynamic-impact-analysis technique uses such information to compute dynamic impact sets.

To compute the dynamic impact set for a changed method, the technique includes every

method whose timestamp in L is greater than or equal to the timestamp in F for the changed

method. In the case of more than one changed method, this technique just needs to com-

pute the impact set for the changed method, U, with the least timestamp in the F array.

By definition, the impact set for U is a superset of the impact set computed for any of the

other changed methods: any other changed method X has a greater timestamp than U and,

thus, the set of methods executed after X is a subset of the set of methods executed after

U. More formally, given a set of changed methods CHANGES, the technique identifies U

and computes the dynamic impact set for CHANGES as follows:

U = X | F[X] ≤ F[Y], X,Y ∈ CHANGES

impact set for CHANGES ={ X | L[X] ≥ F[U] }

To illustrate this, consider the previous example execution and a CHANGES set that

consists of A and C. In this case, U is method A, and the dynamic impact set for CHANGES

is {M, A, C, E}. Note that changed methods that were not executed (i.e., methods whose

timestamps are ⊥ at the end of the execution) are not considered. In the case of multiple

executions (i.e., multiple EA sequences), the impact set is computed by taking a union of

the impact sets for the individual executions.

Lemma 2. The dynamic impact sets computed as described include (1) the modified meth-

ods and (2) all and only methods that are (partially) executed after any of the modified

methods.

Proof. By definition, this technique computes dynamic impact sets with the following prop-

erty:

impact set = { X | L[X] ≥ F[Y] for any modified method Y}
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Lemma 2 follows immediately from Lemma 1 and from the above property.

The space complexity of CollectEA is O(n), where n is the number of methods in the

program, because the algorithm needs two arrays, each of size n, and a counter. Compared

to approaches that use traces, this algorithm achieves dramatic savings in terms of space

because program traces, even if compressed, can be very large. For example, in previous

work, traces even for relatively small programs [56] can be on the order of 2 gigabytes. The

time overhead of CollectEA is a small constant per method call. At each method entry,

the algorithm performs one check, one increment, and at most two array updates. Every

time the control returns into a method, the algorithm performs one array update and one

increment.

4.3.3 Multi-Threaded Executions

In multi-threaded executions, one method can be executed not only before or after another

method, but also concurrently. According to the definition of dynamic impact analysis, any

method (or part thereof) that is executed after a changed method is potentially affected by

the change. Therefore, any method that is executed concurrently with a changed method is

also potentially affected by the change because of possible interleaving of threads. Unfortu-

nately, method-entry, and method-returned-into events are not enough to identify affected

methods in these cases.

To illustrate, consider a multi-threaded program in which method A is entered at time t1

and exited at time t2, method B is entered at time t3 and exited at time t4, and t1 < t3 < t2.

In such a case, A and B are executed in parallel, and a possible sequence of events is

(assuming that methods A and B are invoked by two methods X and Y, respectively):

... Af Al Bf Bl Xl Yl

If method B is a changed method, the above sequence does not provide enough infor-

mation to identify A as possibly affected by B because it only appears before B. To address

this problem and account for multi-threaded executions, algorithm CollectEA must be

modified as follows. One pair of arrays F and L with a global counter is still adequate;
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however, method-return events need to be collected. Method-return events provide the in-

formation about whether one method in a thread exits before or after the entry of another

method in another thread. The algorithm treats method-return events in the same way

as method-return-into events. For the example above, the trace would therefore change as

follows:

... Af Bf Al Xl Bl Yl

The impact sets can be computed from arrays F and L in the same way previously

described.

4.4 Dynamic Impact Analysis Tools

4.4.1 CoverageImpact tool

Because CoverageImpact requires only method coverage information, it is implemented on

top of InsECT [12] and uses available InsECT functionality to collect coverage informa-

tion. The analysis part of the implementation takes as input the collected information and

computes a conservative approximation of dynamic forward slicing by using reachability on

static call graphs, which are built by JABA, that includes only executed methods.

4.4.2 EAT: An execute-after-based dynamic-impact-analysis tool

EAT is a tool written in Java that consists of three main components: (1) an instrumenta-

tion module, (2) a set of runtime monitors, and (3) an analysis module.

4.4.2.1 Instrumentation Module

The instrumentation module uses InsECT to instrument the program under analysis by

adding probes that produce method events. In Section 4.3, method events are assumed

to be easily produced. The way these events are produced in practice depends on the

programming language that is targeted by the analysis. Because the subjects of the studies

are Java programs, this section discusses how to collect the events for the Java language.

Collecting method-entry events is straightforward: simply instrument each method im-

mediately before the first statement with a probe that generates an event with an attribute.

The attribute is the numeric identifier for the method in which the event is generated.
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Collecting method-returned-into events is more complicated because, in Java, there are

three ways in which a method X can return into another method Y:

1. Normal return: X returns into Y because of a return statement or simply because

X terminates. In this case, the execution continues at the instruction in Y that

immediately follows the call to X.

2. Exceptional return into a catch block: while X executes, an exception is thrown that

is not caught in X but is caught in Y. In this case, the execution continues at the first

instruction in the catch block in Y that caught the exception.

3. Exceptional return into a finally block: while X executes, an exception is thrown that

is not caught in X and not caught in Y, but Y has a finally block associated with the

code segment that contains the (possibly indirect) call to X. In this case, the execution

continues at the first instruction in the finally block in Y.

The instrumentation for a Java program for collecting method-returned-into events must

handle these three cases. To this end, the instrumentation module instruments each call

site by adding (1) a probe immediately before the instruction that follows the call site, (2)

a probe before the first instruction of each catch block (if any) associated with the code

segment that contains the call site, and (3) a probe before the first instruction of the finally

block (if any) associated with the code segment that contains the call site. Each of these

probes generates an event and attaches to the event, in the form of an attribute, the numeric

identifier for the method in which the event is generated.

Note that the program instrumented in this way may generate some redundant method-

returned-into events, but the correctness of the algorithm is preserved. For example, if

method Y returns normally into method X, but there is a finally block in X associated

with the code segment that contains the call to Y, then two probes will be triggered, which

generate two Xi events: one after the call and one in the finally block (which would be

executed anyway). Every time an Xi event is duplicated, the first event produced is simply

discarded when the second event occurs (i.e., the value of element L[X] is set to the new
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value of the counter), which is correct because the goal is to record the last time the method

is executed. Such events are produced only in a few cases and, moreover, only require the

update of one array element and the increment of a counter (duplication only occurs for

method-returned-into events). Therefore, their impact on the efficiency of the approach is

unnoticeable. Obviously, a more sophisticated instrumentation could avoid the production

of these duplicated events, but the additional overhead would hinder the practicality of the

approach.

The other two events required by this approach, program start and program termination,

are already provided by InsECT [12] and only need to be enabled when instrumenting.

4.4.2.2 Monitors

The monitors are static methods that implement the four parts of the algorithm shown in

Figure 19. The monitors initialize, update, and output the F and L arrays during program

executions.

Leveraging InsECT functionality, the tool links the events generated by the probes

with the appropriate monitors. Therefore, when a method event is generated, InsECT

calls the appropriate static method and passes the event attribute (i.e., the identifier of

the method in which the event was generated) as a parameter. When a program event is

generated, which happens only at program start and program termination, InsECT simply

calls the appropriate method with no parameter.

4.4.2.3 Analysis Module

The analysis module inputs the arrays produced by the monitors and the change information

and outputs dynamic impact sets. To compute the impact sets, the analysis module uses

the approach described in Section 4.3.2.

4.5 Empirical Studies on Dynamic-Impact-Analysis Algorithms

The studies in this section investigate the following research questions:

RQ1: How much overhead does the instrumentation required by the two techniques

(CoverageImpact and CollectEA) impose, in practice, on the programs under analysis
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compared with each other?

RQ2: How much does technique CollectEA gain, in terms of precision, with respect to

technique CoverageImpact?

RQ3: How much does the analysis results obtained from using the field data (execution

information from deployed instances of software), differ from the results obtained from using

synthetic data (e.g., execution information from in-house test suites)?

This section presents experimental setup, describes the empirical studies and discuss

their results.

4.5.1 Experimental Setup

4.5.1.1 Subject programs used in dynamic-impact-analysis studies

Table 5: Subject programs
Program Versions Classes Methods LOC Test Cases
Siena 8 24 219 3674 564
Jaba 11 355 2695 33183 215

This study used as subjects several versions of two programs—Jaba and Siena—

summarized in Table 5. The table shows, for each subject, the number of versions (V ersions),

the number of classes (Classes), the number of methods (Methods), the number of non-

comment lines of code (LOC), and the number of test cases in the subject’s test suite

(Test Cases). The number of classes, methods, and lines of code is averaged across ver-

sions.

Siena [11] is an Internet-scale event notification middleware for distributed event-based

applications; and Jaba is a framework for analyzing Java programs. For both subjects, we

extracted from their CVS repositories consecutive versions from one to a few days apart.

4.5.1.2 Method and Measures

Because dynamic impact analysis requires dynamic information, these studies used the

test suites for the subjects as input sets. The test suite for Siena was created for earlier

experiments [54]. The test suite for Jaba, which was also available through CVS, was

created and used internally by the program developers. To examine the differences in
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runtime overhead for short and long executions, we divided this test suite two parts: short

tests (125 test cases) and long tests (90 test cases). The short and long tests take on average

approximately 430 ms and 5250 ms, respectively, to run. The results for the short and the

long tests are labeled differently, as Jaba and Jaba-long, respectively.

As change sets for use in assessing impacts, these studies used the actual sets of changes

from each version of the subject programs to each subsequent version. To compute such

changes, these studies used JDiff, a differencing tool discussed in Section 3.3.

4.5.2 Study 1: Costs

This study investigates RQ1. To evaluate relative execution costs for CollectEA and

CoverageImpact, we measured the time required to execute an instrumented program on

a set of test cases, gather the dynamic data (F and L arrays for CollectEA, and method

coverage for CoverageImpact), and output that information to disk. This study compares

the execution costs of the two techniques to each other and to the cost of executing a non-

instrumented program on the same set of test cases. Because timing data are collected for

each individual test case, the results are computed by considering each test case in a test

suite independently and then averaging the results across all test cases in the test suite.

The results of this study are shown in Table 6. For each program and version, the table

reports the average execution time of each individual test case on the uninstrumented pro-

gram, on the program instrumented by CoverageImpact, and on the program instrumented

by CollectEA. The table also reports the minimum, average, and maximum percentage

overhead imposed by CoverageImpact (%CoverageImpact Overhead) and by CollectEA

(%CollectEA Overhead).

As the table shows, the overhead imposed by CollectEA varies widely depending on

the subject (on average about 110% for Siena and 13% for Jaba) and also for different

executions of a given program version (e.g., it varies from 3% to 20% for Jaba-Long-v9).

The overhead for CoverageImpact shows a similar trend.

Careful investigation of the results has shown that the observed variation is caused

by a fixed cost associated with the instrumentation. Such fixed cost is due to the time
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Table 6: Execution time (ms)
Program Uninstru- Coverage- CollectEA %CoverageImpact Overhead %CollectEA Overhead

mented Impact min avg max min avg max
Siena-v0 52 107 109 92 106 196 98 111 163
Siena-v1 52 107 109 93 106 204 98 111 166
Siena-v2 52 107 110 93 106 170 98 112 165
Siena-v3 53 108 110 91 104 189 98 108 164
Siena-v4 53 108 110 91 104 183 96 108 158
Siena-v5 53 108 110 80 104 194 88 108 166
Siena-v6 53 108 110 84 104 200 90 108 166
Jaba-v0 421 451 475 5 7 10 10 13 17
Jaba-v1 423 453 476 5 7 10 10 13 15
Jaba-v2 423 453 476 4 7 10 9 13 15
Jaba-v3 424 454 477 5 7 10 10 13 15
Jaba-v4 428 459 483 5 7 11 11 13 14
Jaba-v5 429 459 483 5 7 10 10 13 15
Jaba-v6 429 459 483 5 7 10 11 13 15
Jaba-v7 429 459 483 5 7 10 11 13 15
Jaba-v8 452 489 511 5 7 8 6 12 14
Jaba-v9 461 496 514 5 8 14 5 12 14
Jaba-long-v0 5170 5591 5728 3 9 15 3 12 27
Jaba-long-v1 5125 5497 5749 3 9 14 3 13 26
Jaba-long-v2 5128 5496 5737 1 8 11 3 13 26
Jaba-long-v3 5170 5508 5763 2 8 13 3 13 28
Jaba-long-v4 5300 5668 5903 2 8 13 3 13 26
Jaba-long-v5 5304 5641 5928 2 8 15 3 13 26
Jaba-long-v6 5363 5715 5960 1 8 15 3 13 30
Jaba-long-v7 5313 5693 5932 1 8 13 3 13 29
Jaba-long-v8 5338 5674 5943 1 7 12 5 12 20
Jaba-long-v9 5360 5689 5969 1 6 12 3 13 20

required to (1) load and initialize the instrumentation-related classes and data structures,

and (2) store the dynamic information on disk on program termination. For short running

executions, such as the executions of Siena, the fixed cost is considerable, whereas for longer

executions it is less relevant. For example, for Jaba, all the executions that require more

than a few seconds (about four seconds, for the executions considered) have an overhead

consistently below 15% and as low as 3% in many cases. Although there are not enough

data points to generalize these results, they are encouraging. The results are especially

encouraging because most real programs execute for more than a few seconds (e.g., most

interactive programs). Moreover, the tools used in the studies are only prototypes without

any optimizations, so reducing considerably both fixed and variable costs associated with

the instrumentation may be possible.

When compared to CoverageImpact, CollectEA is, as expected, more expensive than

CoverageImpact. However, the practical difference between the two techniques is small,

ranging, on average, from 7% in the worst case (for Jaba-long-v9 ), to 3% in the best case (for
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Jaba-long-v9 ). Therefore, we can conclude that CollectEA is practical for most programs,

especially programs that run for more than a very short period of time. We can also conclude

that CollectEA is applicable in all cases in which CoverageImpact is applicable.

4.5.3 Study 2: Precision

This study investigates RQ2. To this end, the study compares CollectEA with CoverageImpact

in terms of precision. As a sanity check for the implementation of both tools and to reduce

the threats to internal validity, we also compare CollectEA with PathImpact to ensure that

they produce the same results. To evaluate the precision of the techniques, this study mea-

sures the relative sizes of the impact sets computed by the techniques on a given program,

change set, and set of program executions. This study reports and compares such sizes in

relative terms, as a percentage over the total number of methods. This study is an extension

of the studies presented in the previous work [56], in which only a subset of the executions

considered here are reported (due to the cost of the most expensive technique considered,

PathImpact). For this study, we implemented a version of technique PathImpact that does

not compress the traces and, thus, has an acceptable time overhead (at the cost of a huge

space overhead).

The graph in Figure 20 shows the results of the study. In the graph, each version of

the two programs4 occupies a position along the horizontal axis, and the relative impact-set

size for that program and version is represented by a vertical bar—dark grey for technique

CoverageImpact, light grey for PathImpact, and black for CollectEA. The height of the

bars represents the impact set size, averaged across all test cases, expressed as a percentage

of the total number of methods in the program. As expected, the graph shows that, in all

cases, the impact sets computed by CollectEA and PathImpact are identical (but computed

at very different costs). The graph also shows that the impact sets computed by CollectEA

are always more precise than those computed by CoverageImpact. In some cases, such dif-

ferences in precision are considerable (e.g., for Siena-v6, Jaba-v4, and Jaba-v5 ). Therefore,

the limited additional overhead imposed by CollectEA over CoverageImpact justifies its

4Note that there are two entries for each version of Jaba because of the separation between short and
long tests.
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Figure 20: Precision results, expressed as percentage of methods in the impact sets.

use.

4.5.4 Study 3: Field Data version In-house Data

The goal of this study is to assess whether using field data, instead of synthetic data, can

yield different analysis results. To achieve this goal, we performed a study that compared

the results of performing dynamic impact analysis using two data source: field data, referred

to as FIELD, and in-house data, referred to as IN-HOUSE.

The study used Java Architecture for Bytecode Analysis (Jaba), a framework for an-

alyzing Java programs. To collect field data, we instrumented Jaba for method coverage

information and released it to eleven users who agreed to have information collected dur-

ing execution. Five of the eleven users had already used Jaba for their work whereas the

other six users had just started projects that involved the use of Jaba. Seven of eleven

users involved in the studies are working in the Aristotle research lab: four are part of the

Aristotle research group and use Jaba for their research; another two are students working
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Table 7: Number of methods changed in the sets of real versions considered
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

15 3 15 6 3 2 3 178 95 12

C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

87 28 6 61 22 2 61 5 6 89

in College of Computing who use Jaba for two graduate-level projects; the last one is a

Ph.D. student who is using a regression testing tool built on top of jaba. The remaining

four users are three researchers and a student working in three different universities, one of

which is abroad.

To instrument and collect the data, we used the Gammatella tool [57]. When in-

strumenting, the tool also includes in the program the network-communication code that

is used to send data back to a central server. On the server side, the tool performs both

the data-collection and data-storage tasks. Using Gammatella, we gathered data for ten

weeks, during which approximately 1,100 executions are collected.

The in-house data are collected from the executions of the regression test suite that have

been developed for Jaba over the years.

This study used a set of real changes made to Jaba by extracting 21 versions of Jaba

during the period of seven months from its CVS repository. For each (version, subsequent-

version) pair (vi,vi+1) of Jaba, we identified the changes between the two versions and, for

each change, (1) mapped it to the method m containing the change, and (2) added m to

the set of changes Ci. The resulting sets of 20 changes, C1 to C20, are the sets used for this

study.

Table 7 shows the number of methods changed for each of the 20 sets. As the table

shows, the number of methods changed ranges from a minimum of 2, for change sets C6

and C16, to a maximum of 178, for change set C8.

The results of computing the impact sets using the two data source are shown in Table 8.

The table reports a number of measures. FL and IH are the sizes of the impact sets

computed using FIELD and IN-HOUSE data sources, respectively. FL/IH is the ratio of

the size of the impact set computed using FIELD data source to the size of the impact set
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Table 8: Results for the comparison of FIELD (FL) and IN-HOUSE (IH) data source on
real changes

C FL IH FL/IH FL-IH IH-FL

C1 776 784 0.99 96 104
C2 778 771 1.01 116 109
C3 778 784 0.99 110 116
C4 780 778 1.00 112 110
C5 617 617 1.00 0 0
C6 750 765 0.98 86 101
C7 791 796 0.99 97 102
C8 806 794 1.02 126 114
C9 822 785 1.05 139 102
C10 789 800 0.99 111 122
C11 737 766 0.96 68 97
C12 802 797 1.01 113 108
C13 805 788 1.02 120 103
C14 797 784 1.02 122 109
C15 773 751 1.03 127 105
C16 0 0 1.00 0 0
C17 790 767 1.03 130 107
C18 753 759 0.99 98 104
C19 763 761 1.00 99 97
C20 819 793 1.03 131 105
AV G 736.30 732.00 1.01 100.05 95.75
STD 174.11 172.14 0.02 37.22 27.37
MAX 822 800 1.05 139 122

computed using IN-HOUSE data source; FL-IH is the set difference between the impact

set computed using FIELD data source and the impact set computed using IN-HOUSE

data source (i.e., the number of methods that are considered affected when using FIELD

data source, but are not considered affected when using IN-HOUSE data source). IH-FL

is defined analogously.

The data in Table 8 clearly show that the results of the analysis are affected significantly

by the data sources considered. For example, 18 of the 20 changes (all but C5 and C16)

result in a significant number of methods (68-139) included in the impact set computed

using FIELD data source but not in the impact set computed using IN-HOUSE data source

and vice versa (97-122). Also in this case, both FIELD and IN-HOUSE data source yield

on average fairly dissimilar impact sets.
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Considering Table 8, note that, for all change sets considered, the sizes of the impact

sets computed using FIELD and IN-HOUSE data source are almost identical—what differs

is the composition of those sets. Note also that the above results are not due to the fact

that the sets of entities covered by the in-house test suite and by field executions are mostly

disjoint. In fact, the internal test suite and the field executions both cover approximately

65% of the code and their coverage sets have an 85% overlap.
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CHAPTER 5

TESTING-REQUIREMENTS IDENTIFICATION

With the availability of change information provided by the differencing activity and impact

information provided by the dynamic-impact-analysis activity (see Figure 1), the testing-

requirements-identification activity can proceed. This activity takes as input the original

program version, P , and a modified version, P ′, and the change and impact information.

The identification activity computes testing-requirements that can be used to assess the

quality of test suites with respect to testing the changes between P and P ′ and guide the

generation of new test inputs targeting the changes.

5.1 Related Work

Several existing techniques that are related to assessing the quality of test suites with respect

to changes and guiding the generation of new test cases are presented in the literature. A

first class of techniques computes testing requirements for whole programs in terms of

program entities: control-flow entities or data-flow entities (e.g.,[26, 43, 53]). Among these

techniques, the most closely related to the new technique is Ntafos’s required-elements (k-

tuples of definition-use associations) [53]. The technique identifies the chain of length k of

def-use associations in a program. The techniques in this class do not focus on changes

and treat all program entities equally. Therefore, using these techniques, software testers

need to test the parts of the software that are not affected by changes. In addition, these

technique require only that program entities are executed, which may not be adequate to

reveal different behaviors caused by changes.

A second class of related techniques incorporates into their testing requirements con-

ditions under which faults can propagate. In their RELAY framework, Richardson and

Thompson [62] describe a precise set of conditions for the propagation of faults to the

output. Morell [48] builds a theory of fault-based testing by using symbolic execution to

determine fault-propagation equations. These techniques do not target changed software
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and, moreover, rely on symbolic execution of an entire program, which is impractical for

large software. The technique developed in this research, in contrast, constrains complexity

by limiting the generation of testing requirements to preselected distances from changes and

incorporating conditions that guarantee propagation up to those distances.

A third class of related techniques augments existing test suites to strengthen their fault-

revealing capability. Harder and colleagues [30] introduce operational coverage, a technique

based on a model of the behavior of methods. Whenever a candidate test case refines an

operational abstraction (i.e., invariant) of a method, the candidate is added to the test suite.

Bowring and colleagues [9] present another behavior-based technique that builds a classifier

for test cases using stochastic models describing normal executions. These techniques do not

provide a criterion for quality assessment of test suites, but rather a means to classify and

group test cases. Moreover, they do not perform any kind of change-impact propagation.

Overall, these techniques are mostly complementary to techniques for assessing the quality

of test suites with respect to changes.

A fourth class of related techniques shares the goal of creating testing requirements based

on program changes. Binkley [7] and Rothermel and Harrold [63] use system dependence

graph (SDG) based slicing [35] to select testing requirements based on data- and control-

flow relations involving changes. SDG-based techniques typically do not scale due to the

memory and processing costs of computing summary edges [5]. Gupta and colleagues [29]

propose a technique that is also based on slicing, but uses an on-demand version of Weiser’s

slicing algorithm [76] and avoids the costs associated with building SDGs. Their technique

computes chains of control and data dependences from the change to output statements,

which may include a considerable part of the program and are likely to be difficult to

satisfy. Moreover, our preliminary studies show that considering the effects of changes on

the control- and data-flow alone, as these techniques propose, is often not sufficient for

exercising the effects of the changes on the software. Even when test cases exercise the

output-influencing data-flow relationships from the point of change(s) [21], the modified

behavior of the software may not be exercised.
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Program P

pub l i c c l a s s BookRecommender { . . .
pub l i c s t a t i c void main ( St r ing [ ] a rgs ) { . . .

s1 Book recBook = book f inder . getRecommendedBook ( ) ;
s2 i n t numpages = ( recBook == nu l l )? 0 : recBook . getNumPages ( ) ;

. . .
}
. . .

}

pub l i c c l a s s BookFinder { . . .
pub l i c Book getRecommendedBook ( ) { . . .

s3 f o r (Book book : l i b r a r y . getBooks ( ) ) {
s4 i f ( ! ( book i n s t an c e o f // s4 ’ i f ( book . category

==AudioBook ) // ==Book .NONFICTION)
s5 re turn book ;

}
s6 re turn nu l l ;

}

pub l i c c l a s s Book {
pub l i c s t a t i c f i n a l i n t NONFICTION = 1 ;
pub l i c s t a t i c f i n a l i n t CHILDREN = 2 ;
. . .

}

pub l i c c l a s s AudioBook extends Book { . . . }

Figure 21: Partial code for the original version P with a change at s4.

5.1.1 Motivating Example

To illustrate the inadequacy of the criteria based solely on control and data flow, consider

the example in Figure 21, which shows the original program version, P , and an alternative

version of statement s4 in P , s4′. This alternative version is used to construct a mod-

ified version of P , called P ′. The Bookfinder.getRecommendedBook in P returns the

first instance of class Book that is not of type AudioBook or null if all books are audio

books. The change at s4′ in P ′ causes method Bookfinder.getRecommendBook to return

a book whose catagory is NONFICTION . If the non-fiction book returned is of type

AudioBook, the call to recBook.getNumPages will throw an unsupported operation ex-

ception (because an audio book does not have pages). A technique that tests the changed

program by rerunning all test cases that traverse the change would generally not reveal a
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regression error introduced by the change (unsupported operation exception at statement

s2). Even a technique that exercises data-flow relationships from the point of change to an

output would be unlikely to reveal the problem. The only way to exercise the change at s4

suitably is to require that a non-fiction book of type AudioBook is returned from method

BookFinder.getRecommendedBook().

The problem is that changes in the software affect, after their execution, the state and the

control-flow of the software, but these effects often manifest themselves only under specific

conditions. Therefore, criteria that simply require the coverage of program entities (e.g.,

statements and data-flow relationships) are usually inadequate for assessing the quality of

test suites, in that they may overestimate the adequacy of test suites with respect to program

changes. These criteria are satisfied when all required program entities are executed even

though the test suites do not reveal different behaviors and, thus, are of limited use in

guiding test-case generation. To account for this limitation, techniques must incorporate a

means to model program states and compare them to obtain the necessary conditions for

different behavior between the two versions. However, state-modeling techniques usually

have high complexity, incur high costs in both space and time, and do not scale when

applied to whole programs.

5.1.2 Overview of the Approach

The new technique developed in this research addresses the shortcomings of existing tech-

niques by identifying testing requirements, which form testing criteria, that guarantee that

the test suites satisfying them, when executed on the modified version, will result in different

control flow or different program states at selected program points in the original and mod-

ified versions. The new technique provides this guarantee by leveraging symbolic execution,

which precisely models program states. To control the overall cost of this approach, the

new technique applies symbolic execution to only parts of the program that were modified

or affected by the modifications. More precisely, the technique performs symbolic execution

from change points to selected program points based on the distance from changes in terms

of control and data dependences and, thus, limits the number of statements to be analyzed.
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The empirical studies of this research show that considering program points that are only

a short distance away from changes can be sufficient for building testing requirements that

are effective in revealing different behavior while making the overall approach practical.

This technique involves several steps. First, it uses the change information to identify

affected statements in the new version (P ′) of a program at the preselected distances using

forward-dependence analysis. Second, it uses the mappings between statements in the

old version (P ) and the new version (P ′) to identify statements in P corresponding to

affected statements computed in the first step. Third, it uses symbolic execution to

compute, for statements that are executed after the changed statements in P and P ′, a

path condition and a symbolic state. Fourth, it compares path conditions and symbolic

states of corresponding statements in P and P ′ and defines testing requirements based on

the results of the comparison. Fifth, it instruments P ′ to assess, during regression testing,

the extent to which a test suite satisfies these testing requirements. Finally, based on the

set of unsatisfied testing requirements, the technique provides guidance to the tester for the

development of new test cases.

5.2 Testing Requirements Computation and Checking

This section provides details of the approach developed in this research for assessing the

quality of test suites with respect to changes and guiding the generation of new test cases

targeting the changes. Section 5.2.1 describes the change-based criteria for testing modified

programs. Section 5.2.2 presents the algorithm to compute testing requirements for a single

change that form this change-based criteria, Section 5.2.3 discusses how the requirements

can be checked, and Section 5.2.4 discusses an extension of the algorithm to handle multiple

changes.

5.2.1 Change-based Criteria

Ideally, a criterion for testing a modified program P ′ should guarantee that the effects of the

changes that can propagate to the output actually propagate, so that such effects will be

revealed. Such an approach can be seen as an application of the PIE model [73] to the case

of changed software: the criterion should ensure that the change is executed (E), that it
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infects the state (I), and that the infected state is propagated to the output (P). However,

generating testing requirements for such a criterion entails analyzing the execution of P

and P ′ (e.g., using symbolic execution) from the point of the change until the end of the

program, which is impractical for any non-trivial program.

A more practical approach than the one described above that can still be effective is

to define a set of criteria, each of which ensures that the executions of P and P ′ results

in different states after executing statements at a specific distance from the change (i.e.,

it ensures that the effects of the change have propagated at least to these statements).

The distance is expressed in terms of data- and control-dependence chains, rather than

control flow because the effects of changes propagate along the dependence chains. The

definition of distance is based on the two means the effects of changes may propagate.

First, affected variables (i.e., variables whose values are affected by the changes) may be

used in defining other variables and, thus, propagate the effects to those variables (data

dependence). Second, affected variables may be used in predicates causing the control flow

to continue on different paths (control dependence). The diverging control flow, in turn,

may indirectly cause values of variables to differ at statements after the two paths meet

because variables may be assigned different values in the true or false branch. Based on these

observations, statements at distance 1 from a statement include the closest statement along

any data- and control-dependence chain from the originating statement where the effects

of changes may manifest themselves. More specifically, given an assignment statement s1,

statements at distance 1 from s1 include all statements that are data-dependent on s1.

Given a branching statement s2, its affected statements include all statements that (1) are

data dependent on any statement that is control dependent on s2 and (2) are not control-

dependent on s2. For example, consider the code fragment in Figure 22 with an alternative

version of statement s2 (s2′), which can be used to generate a modified version. The only

statement that may expose different behavior in the modified version is statement s5 because

the change may cause the control flow to take the true branch of statement s2 in one version

and the false branch in the other version. Thus, the value of x at statement s5 could be 1 in

one version and 0 in the other version. Without the constraint that the affected statements
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s1 x = 0 ;
s2 i f ( a > 0 ) { // s2 ’ i f ( a > 1 ) {
s3 x = 1 ;
s4 y = x ;

}
s5 z = x ;

Figure 22: A code fragment for illustrating the identification of statements at distance 1
from a branching statement

must not control dependent on the branching statement, the set of affected statements at

distance 1 would include statement s4. However, s4 could not expose different behavior

because, if the executions in both versions reach s4, the value of x in both executions will

be the same (i.e., x equals 1).

Statements at distance d are computed recursively as statements that are at distance 1

from a statement at distance d − 1. Note that a statement can be at distance m and dis-

tance n at the same time. Such a statement is considered to be at distance min(m,n).

Note also that the change itself is considered to have distance 0 (i.e., requirements de-

fined for distance 0 refer to the state immediately after the changed statement is ex-

ecuted). For example, consider the change at statement s4′ in P ′ (Figure 21). State-

ments at distance 1 from s4′ include the assignment statement s1, which contains a call to

BookFinder.getRecommendedBook() (because the control flow of both versions merge at

method return). Other statements that contain calls to this method are also included in

the set of statements at distance 1 from s4′.

This distance provides the tester a way to balance effectiveness and efficiency of the cri-

terion. On the one hand, criteria involving greater distances are more expensive to compute

and satisfy than those involving shorter distances. On the other hand, criteria involving

greater distances ensure that states farther away from the change differ and, thus, that the

effects of the change have propagated at least to those points in the program. Intuitively,

requiring this propagation increases the likelihood that different (possibly erroneous) be-

haviors due to the changes will be exercised and revealed. Note that, in some cases, it may

not be possible to propagate the effects of a change beyond a given distance d. For example,
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imagine a change in the way an array is sorted; after the sorting is done, the states should

be exactly the same in P and P ′. In these cases, there would be no testing requirements

involving a distance d or higher because no different states in P and P ′ could be generated.

We discuss this aspect in more detail in Section 5.2.2, where we present our algorithm for

computing testing requirements.

For each change and distance value, the new algorithm generates a set of testing require-

ments that must be met to satisfy the change-based criterion at that particular distance.

The testing requirements are represented as boolean predicates, expressed in terms of con-

stant values and the values of the variables at the point immediately before the change in

P ′.

5.2.2 Algorithm

The algorithm for computing testing requirements for a change in a program, ComputeReqs

(shown in Figure 23), takes three groups of inputs: (1) P and P ′, the original and modi-

fied versions of the program, respectively; (2) change, a pair (c, c′) of statements where c′

is modified in, added to, or deleted from P ′; and (3) requested distance, the dependence

distance for which the testing requirements are generated. This algorithm handles a new

(deleted) statement by matching it to a dummy statement in P (P ′). If the new (deleted)

statement contains a definition of a variable v, then the algorithm adds the dummy state-

ment v = v in P (P ′).1 (This is needed to ensure the correct behavior of our algorithm.)

Otherwise, the dummy statement is a simple no-op (no operation). Analogously, a new

(deleted) branching statement is matched to a dummy branching statement in P (P ′) with

the same control dependent regions and predicate true. After the dummy statements have

been introduced, new and deleted statements are simply treated as modified statements.

ComputeReqs outputs reqs, a set of testing requirements that must be met to satisfy the

criterion at the requested distance. ComputeReqs uses five external functions: match(n′)

returns the statement in P that corresponds to n′ in P ′ (This information is provided by

1Without loss of generality, we assume that a single statement can define only one variable. Any statement
that defines more than one variable can be transformed into a number of statements with one definition
each.
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procedure ComputeReqs

Input: original and modified versions of the program, P and P ′,respectively
pair (c in P , c′ in P ′) of changed statements, change
dependence distance requested distance

Output: set of testing requirements (initially empty), reqs
Use: match(n′) returns a statement in P that corresponds to n′ in P ′

def(n) returns the variable defined at statement n if any, or null
FDD(n, d, P ) returns set of statements dependent on n
PSE(c, n, P ) returns program state at n
TRI(S, S′) returns set of testing requirements

Declare: sets of pairs of affected statements, affected and next affected
statements in P ′, s′ and n′

program states in P and P ′, S and S′, respectively
Begin:
{Step 1: Identify affected parts of P ′}
1: affected= {c′}
2: while requested distance- - > 0 do
3: next affected = ∅
4: for each s′ ∈ affected do
5: next affected = next affected ∪{n′|n′ ∈ FDD(s′, def(s′), P ′)}
6: end for
7: affected = next affected
8: end while
{Step 2: Compute testing requirements}
9: for each s′ ∈ affected do

10: S = PSE(c,match(s′), P );S′ = PSE(c′, s′, P ′)
11: reqs = reqs ∪ TRI(S, S′)
12: end for
13: return reqs
end

Figure 23: Algorithm to compute testing requirements.
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the differencing algorithm); def(n) returns the variable defined at statement n or null if

n does not define a variable; FDD(n, d, P ), PSE(c, n, P ), and TRI(S, S′) are explained

below.

ComputeReqs consists of two main steps: identification of the affected statements in

P and P ′ at the requested distance and computation of the testing requirements, which

correspond to the conditions under which the change induces different states, in P and P ′,

after the execution of the affected statements.

In the first step, ComputeReqs initializes affected, a set of affected statements in P ′,

to the changed statement c′ (line 1). For each iteration of the while loop, ComputeReqs

computes the affected statements one more dependence distance away from the change by

computing forward direct dependences for each affected statement at the current distance

and adding these dependents to next affected (line 5). Forward Direct Dependence (FDD)

identifies the statements control-dependent on the input statement s′ or data-dependent

on the definition of variable def(s′) at s′. For example, to compute affected statements

at distance 1 from s4′ in P ′ (see Figure 21), ComputeReqs calls FDD(s4′, null, P ′), which

returns the statement in P ′ that corresponds to s1 in P . After ComputeReqs processes each

pair of affected statements, it assigns next affected to affected and repeats the process until

the requested distance is reached.

In the second step, ComputeReqs computes the testing requirements for the affected

statements identified in the first step. To do this, at each statement s′ in P ′ (resp., match(s′)

in P ), ComputeReqs uses partial symbolic execution to identify the path conditions and

symbolic states of s′ (resp., match(s′)). Partial Symbolic Execution (PSE) is similar to

global symbolic execution [14], except that the changed statement c is the starting point,

all live variables at the changed statement are input variables, and s (resp., s′) is the

ending point. PSE differs from global symbolic execution in two respects. First, rather

than considering all paths from program inputs to program outputs, PSE considers only

finite subpaths from the change to s (resp., s′) along dependence chains up to the desired

distance. Second, instead of representing path conditions and symbolic states in terms

of input variables, PSE expresses them in terms of constant values and program variables
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Figure 24: Symbolic execution tree for s4-s1 in P .

representing the state of the program at the point immediately before the change. Analogous

to global symbolic execution, PSE represents program states with case expressions. More

formally, the program state at statement s, is defined as the set {(Cs,i : Vs,i)|i ≥ 1}, where

Cs,i is the path condition to reach statement s from the change through path i, and Vs,i

is the symbolic state when Cs,i holds. A symbolic state is represented as a set of variable

assignments, Vs,i = {v1 ← e1, v2 ← e2, ...}, where ei is the value of vi expressed symbolically.

(vi ← e1 means that the value of variable vi is expression ei.)

For the previous example, PSE(s4, s1, P ) evaluates s1 in terms of sym ref book0, the

value of variable book at the point immediately before s4, on two paths: (s4, s5, s1) and

(s4, s6, s1). Figure 24 illustrates the symbolic execution tree from s4 to s1. Each rect-

angle represents a state in P , and each edge, labeled with a statement, represents the

transformation from one state to another when that statement is executed. From the

tree, PSE returns {(sym ref book0instanceofAudioBook : {recBook = sym ref book0}),

(!(sym ref book0instanceofAudioBook) : {recBook = null})}

After each pair of affected statements at the requested distance is symbolically executed,
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ComputeReqs calls TRI, which compares each statement and its counterpart in terms of

their path conditions and symbolic states to identify testing requirements. For each pair

of corresponding statements (s, s′) in P and P ′, TRI produces a number of testing re-

quirements. These requirements guarantee that test inputs satisfying them would result in

different states after executing s′. For an assignment statement, program states are different

when the variable defined there has different values. Using the representation of a program

state, this condition can be formulated as follows. Let Ss = {(Cs,i : Vs,i)|1 ≤ i ≤ m} and

Ss′ = {(Cs′,j : Vs′,j)|1 ≤ j ≤ n} be the program states after executing statements s and s′

in P and P ′, respectively, where Vs,i = {v1 ← e1, v2 ← e2, ...}, Vs′,j = {v′
1 ← e′1, v

′
2 ← e′2, ...}

and each variable vi in P corresponds to variable v′
i in P ′. In the following, for simplicity,

we abbreviate Xs with X and Xs′ with X ′ for any entity X. The condition above can be

expressed as a set of requirements: ∀i, j, k{(Ci ∧ C ′
j) ∧ (ek 6= e′k)|vk ← ek, v

′
k ← e′k}. For

a branching statement, program states are different when the control flow diverges. More

formally, the condition can be expressed as ∀i, j{(Ci ∧C ′
j)∧ (p′ ∧¬p)}, for the true branch,

and ∀i, j{(Ci ∧ C ′
j) ∧ (¬p′ ∧ p)}, for the false branch, where p′ and p are the predicates at

s′ and s, respectively, where each variable vi (resp., v′
i) uses in p (resp., p′) is substituted

with ei (resp., e′i), given (vi ← ei) is in Vi and (v′
i ← e′i) is in V ′

i

Software testers may choose to satisfy only one of the requirements generated for each

affected statement or to satisfy all of these requirements. If one of the requirements is

met, the statement corresponding to the requirements will expose one different behavior.

However, that behavior may not lead to different output. If all requirements are met, there

are more chances that some different behaviors will lead to different output.

Note that, to measure coverage of the generated requirements, the requirements need

not be simplified or solved. Checking whether a test case satisfies any of these requirements

can be performed by substituting each variable in a requirement with its concrete value

(obtained during the execution of the test case at the point immediately before the change)

and evaluating the truth value of the requirement. Simplification and constraint solving are

necessary only if we want to use the requirements to guide test-case generation or determine

the requirements’ feasibility.

83



Table 9: Path conditions and symbolic states from s4-s1 of P and P ′

stmt C V
s3 C1: True V1 : {book = sym ref book0}
s3’ C ′

1: True V ′
1 : {book = sym ref book0}

s4 C1 : sym ref book0instanceofAudioBook V1 : {book = sym ref book0}
C2 :!(sym ref book0.categoryinstanceofAudioBook) V2 : {book = sym ref book0}

s4’ C ′
1 : sym ref book0.category = NONFICTION V ′

1 : {book = sym ref book0}
C ′

2 : sym ref book0.category 6= NONFICTION V ′
2 : {book = sym ref book0}

s5 C1 : sym ref book0instanceofAudioBook V1 : {book = sym ref book0,
ref = sym ref book0}

s5’ C ′
1 : sym ref book0.category = NONFICTION V ′

1 : {book = sym ref book0,
ref = sym ref book0}

s6 C1 :!(sym ref book0.categoryinstanceofAudioBook V1 : {book = sym ref book0,
ref = null}

s6’ C ′
1 : sym ref book0.category 6= NONFICTION V ′

1 : {book = sym ref book0,
ref = null}

s1 C1 : sym ref book0instanceofAudioBook V1 : {recBook = sym ref book0}
C2 :!(sym ref book0instanceofAudioBook) V2 : {recBook = null}

s1’ C ′
1 : sym ref book0.category = NONFICTION V ′

1 : {recBook = sym ref book0}
C ′

2 : sym ref book0.category 6= NONFICTION V ′
2 : {recBook = null}

As discussed above, there are changes whose effects do not propagate beyond a certain

distance (see the array-sorting example provided in Section 5.2.1). In these cases, if the

constraints corresponding to conditions (1) and (2) can be solved, they evaluate to false,

which means that the corresponding requirements are unsatisfiable and testers do not need

to further test the effects of that change.

For the example in Figure 21, the path conditions and symbolic states of s4-s1 in P and

P ′ are shown in Table 9. A statement in P ′ that corresponds to an unchanged statement, sn

in P is referred to as s′n. When identifying testing requirements at distance 1, ComputeReqs

computes the requirements necessary for revealing different states at s1 and s1′ by calling

TRI(Ss1, S
′
s1′). The testing requirement is

((C1 ∧ C ′
1 ∧ {recBook1 6= recBook′

1}) ∨ (C1 ∧ C ′
2 ∧ {recBook1 6= recBook′

2})∨

(C2 ∧ C ′
1 ∧ {recBook2 6= recBook′

1}) ∨ (C2 ∧ C ′
2 ∧ {recBook2 6= recBook′

2})), where

recBookn and recBook′
n refers to the value of variable recBook along path n in P and P ′,

respectively.

This testing requirement can be simplified to
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(!(sym ref book0.categoryinstanceofAudioBook)∧sym ref book0.category = NONFICTION)

∧(sym ref book0 6= null)

Now that the algorithm for computing the testing requirements is described. The next

section (Section 5.2.3) explains an approach for checking these requirements when the mod-

ified version of software is executed on concrete test inputs.

5.2.3 Checking Testing-requirements

When testing the modified version, testers may compare the outputs of a pair of execu-

tions on the original and modified versions. The results of this comparison are useful only

if the inputs of those executions are the same. Analogously, as described in Section 5.2.2,

ComputeReqs generates testing requirements by comparing program states at corresponding

points in the original and modified versions. The testing requirements are represented as

boolean predicates in terms of variables’ values at the point immediately before a change.

The testing requirements can thus be checked only when all variables present in the re-

quirements have the same values as their counterparts in the other version. For a pair of

executions on the original and modified versions of a deterministic program, the program

states at the points immediately before the change are obviously the same the first time the

change is executed. This condition may not be true the other times the change is executed

because the execution of the change may affect the program states or paths in the modified

version.

To ensure that the program states be the same at the time of requirements checking,

the checker uses two complimentary approaches. The checker first computes static, forward

dependence analysis from the change until the end of the program a priori to determine

whether the change depends on itself. (This static analysis need not be extremely precise

and, thus, can scale to large programs.) If the analysis indicates that the change does

not depend on itself (i.e., an execution of the change cannot affect the program states the

next times the change is executed), the testing requirements can be checked every time

the change is executed; otherwise, the checker uses dynamic, forward dependence analysis

to approximate whether the program states are affected by an execution of the change at
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runtime. Every time the testing requirements are checked during an execution, the checker

examines whether any requirement is satisfied. If none of the requirements are met, the

effects of the change certainly do not propagate. The program states will thus be the same

the next time the change is executed, and the requirements can be checked again. However,

if at least one of the requirements is satisfied, the effects of the change will propagate. The

checker approximates the effects using dynamic, forward dependence analysis (e.g., dynamic

tainting [15]). During an execution, dynamic, forward dependence analysis identifies the

variables whose values may depend on a given statement. This dependence analysis thus

can provide a safe approximation of variables that may be affected by a change. By using

the results of this analysis, the checker can safely check the testing requirements that do

not contain any of the affected variables when the change is executed the next time.

To handle multiple changes, this research extends both the techniques for computing and

checking testing requirements . The next section (Section 5.2.4) discusses the extensions to

both techniques.

5.2.4 Multiple Changes

When multiple changes have been made to a program, one change may affect the others.

Furthermore, some statements in the rest of the program may be affected by two or more

changes even though those changes do not affect one another. The testing requirements

generated by ComputeReqs for each change can guarantee different behavior for test inputs

satisfying them in the presence of multiple changes because PSE computes program states

by analyzing all other changes (and their effects) along the paths from the change considered

to each affected point. Therefore, ComputeReqs can generate the testing requirements for

multiple changes by taking a union of sets of requirements generated for each individual

change in the modified version. For example, consider a code fragment in Figure 25. This

example includes an alternative version for each of statements s2 and s3 (i.e., s2′ and s3′,

resp.), which is used to construct a modified version. Given the specified distance be two,

the set of affected statements at this distance from s2 contains only statement s5 because

s5 is at distance 1 from s3, which, in turn, is at distance 1 from s2. To generate testing
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s1 i f ( b > 0 )
s2 a = 0 ; // s2 ’ a = 2 ;
s3 i f ( a > 0 ) // s3 ’ i f ( a > 1 )
s4 x = 1 ;
s5 y = x + 1 ;
s6 z = y + y ;

Figure 25: A code fragment for illustrating the identification of statements at distance 2
in the presence of multiple changes

Table 10: Path conditions and symbolic states from s2-s5 in the original and modified
versions of the code fragment in Figure 25

stmt C V

s2 C1: True V1 : {a = 0;x = x0; y = y0}
s2’ C ′

1: True V ′
1 : {a = 2;x = x0; y = y0}

s3 C1 : 0 > 0 V1 : {a = 0;x = x0; y = y0}
C2 : 0 ≤ 0 V1 : {a = 2;x = x0; y = y0}

s3’ C ′
1 : 2 > 0 V ′

1 : {a = 2;x = x0; y = y0}
C ′

2 : 2 ≤ 0 V ′
2 : {a = 2;x = x0; y = y0}

s4 N/A N/A
s4’ C ′

1: True V ′
1 : {a = 2;x = 1; y = y0}

s5 C2: True V1 : {a = 0;x = x0; y = x0 + 1}
s5’ C ′

1: True V ′
1 : {a = 2;x = 1; y = 2}

requirements for the change at s2′, the requirements identifier calls PSE to compute program

states at s5 in the the modified version (which includes both changes) and the original one.

Table 10 shows the results of running PSE on the original and modified versions from

statement s2 to s5. As in the previous example, a statement in the modified version that

corresponds to an unchanged statement sn in the original version is referred to as s′n.

The path conditions and symbolic states of unreachable paths are removed from the table.

According to this table, the requirements identifier generates three requirements (one for

each variable): (True∧True∧(2 6= 0)), (True∧True∧(x0 6= 1)), and (True∧True∧(x0+1 6=

2)). The first requirement is trivially true, and the second and third requirements can be

simplified to the same requirement: (x0 6= 1). These requirements reflect the necessary

condition for the propagation of the impact from statement s2′ to s5′ in the presence of

both changes.
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However, the effects of several changes that are analyzed together in PSE may not be

sufficiently tested because the distance is computed from the first change encountered. For

the previous example, statement s5 is at distance 2 from statement s2 and at distance 1 from

s3. If the two changes are considered as a whole, statement s5 should be included in the set

of affected statements at distance 1 for this combined change. ComputeReqs thus redefines

the computation of the distance for an affected statement by using the distance from the

last change encountered along the dependence chain. Therefore, for this example, the set

of statements at distance 2 from the combined change (s2′ and s3′) includes statement s6′

because s6′ is at distance 2 from s3′, which is the last change along the dependence chain.

Each change that is analyzed in the contexts of other changes has to be analyzed in its

own context because there may be a feasible path from the beginning of the program to

the change without passing through any other changes. In the previous example, s3′ has to

be analyzed independently from s2′ because s3′ can be reached through the false branch of

s1′.

The testing-requirements checker also needs to be extended. The static, forward depen-

dence analysis must determine whether the variables present in a testing requirement at a

change depend on any other changes. If the analysis indicates that a change at statement

sa does not depend on another change at statement sb, the requirements generated for the

change at sa can be checked regardless of the number of times the change at sb is executed.

In the example shown in Figure 25, the change at s3′ is dependent on the change at s2′.

Thus, the requirements at s3′ can be checked only if statement s2′ has not been executed

or the dynamic dependence analysis indicates that the requirements can safely be checked.

During an execution, the testing requirements can be checked without any restrictions until

at least one of the requirements at any change is satisfied. After that, the checker needs

to determine whether any variables present in the testing requirements are affected by the

changes associated with the satisfied requirements. The requirements are checked only if

they contain no affected variables. In the previous example, after statement s2′ is executed,

the testing requirements at statement s3′ can be checked only if the requirements do not

contain the affected variable a. (Because one of the requirements at s2′ is “True,” the
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impact of the change always propagate.)

The extension to handle multiple changes makes the techniques for computing and

checking the testing requirements applicable to a wide range of changes occurred during

software maintenance. However, the number of statements that need to be analyzed in the

computation of testing requirements at each distance grows with the number of changes.

Another approach one can applied to limit the number of statements to be analyzed without

greatly reducing the effectiveness of the generated requirements is to focus on the parts of

software that are exercised and likely affected by the changes in a set of executions of

interest (e.g., executions by end users). Therefore, Section 5.2.5 describes the integration

of testing-requirements identification and dynamic impact analysis, which identifies such

affected parts.

5.2.5 Integration with Dynamic Impact Analysis

ComputeReqs can use the results of dynamic impact analysis when identifying the affected

points. Each time after calling FDD, ComputeReqs checks each statement in the results of

FDD whether its containing method is in the resulting set of dynamic impact analysis (i.e.,

whether the method is identified as likely affected by the changes in the set of executions of

interest). Only the statements whose methods are in the resulting set of dynamic impact

analysis are used in the next iteration or by the partial symbolic execution.

This integration approach computes a more precise set of affected points than a simple

approach that computes the affected points by first computing the set of affected points at

the specified distance before checking whether their containing methods are in the resulting

set of dynamic impact analysis. The precision loss comes from the use of statements at

short distances whose methods are not in the resulting set of dynamic impact analysis to

compute the affected points at greater distances. Furthermore, Our integration approach

may not have much higher cost (and can even be lower in some cases) than the simple

approach because the number of statements that need to be considered in the computation

of the affected points at greater distances may be reduced.
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Figure 26: MaTRIX tool set.

5.3 MaTRIX: a Testing-requirements-identification Tool

The MaTRIX (Maintenance-based Testing Requirements Identifier and eXaminer) tool

set (shown in Figure 26) implements the three main components of the technique for assess-

ing the quality of test suites and guiding test-input generation: the MaTRIX Identifier

identifies testing requirements related to the change from P to P ′; the MaTRIX Instru-

menter instruments P ′ so that, when it executes, it will record which testing requirements

are satisfied; and the MaTRIX Analyzer examines the recorded information to determine

which testing requirements have not been satisfied.

The MaTRIX Identifier, shown in Figure 27 comprises of three main parts: the

forward-direct-dependence analyzer; the partial-symbolic-execution engine, which includes

the partial symbolic execution (PSE) transformer and the Java PathFinder [72] Virtual Ma-

chine (JPF VM); and the testing-requirements constructor. The forward-direct-dependence

analyzer is a Java program implemented on top of the static-analyses module of Indus [39].

The analyzer computes both intra- and inter-procedural control- and data-dependence for

both local variables and fields. The partial-symbolic-execution engine relies on the virtual

machine of Java PathFinder as a symbolic-execution engine [2]. However, to perform sym-

bolic execution on a program using the JPF VM, the tool needs to transform the program,

such that the program can operate on symbolic values. Anand and colleagues [3] propose
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a technique and a tool (JPF Symbolic Transformer) to transform the program auto-

matically for operating on symbolic values. However, their tool does not support partial

symbolic execution. The PSE transformer is a series of program instrumentation and trans-

formation modules for producing a “partial” program that can operate on symbolic values.

The Isolator isolates the parts of a program that need to be executed symbolically, which

include parts of the methods containing changes, parts of the methods containing affected

statements at a specified distance, and parts of all the caller methods up to the least com-

mon ancestor of the changed and affected methods in the call graph. This code isolation

induces uninitialized variables and fields because the definitions of those variables and fields

may have been excluded. Hereafter, uninitialized variables and fields are both referred to as

“uninitialized variables,” unless otherwise noted. The Uninitialized Variable Finder

module is an analysis module for identifying these uninitialized variables. The partial pro-

gram and the uninitialized-variable information is fed into the LazyInit module, which

transforms the partial program such that every uninitialized variable of a reference type is

initially assigned a symbolic reference and every uninitialized variable of a primitive type a

symbolic value. At each statement that contains a reference to an uninitialized variable of a

reference type (i.e., an instance method call or a field reference on an object), that statement

is transformed such that the variable is passed into the lazyinit method before being refer-

enced. The lazyinit method implements the lazier# lazy initialization algorithm [19, 20].

The LazyInit module performs this transformation recursively on types (and their super

types) of all fields whose enclosing classes may be uninitialized. The StateMonitor then

instruments the transformed, partial program with code that monitors and outputs program

states at the specified distance. This instrumented, partial program can be considered as

a “whole” program for JPF Symbolic Transformer. The resulting program is then

run on the JPF VM that outputs the program states at the specified distance. When the

program states of both P and P ′ are obtained, the testing-requirements constructor com-

ponent can compute the testing requirements using the ComputeReqs algorithm discussed

in Section 5.2.2.

Currently, the set of Java programs that the MaTRIX Identifier can handle is limited
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Figure 27: MaTRIX identifier.

by the fragments of logics handled by the symbolic-execution extension to Java PathFinder.

This extension uses Yices [22] as its decision procedure; therefore, it can ultimately perform

symbolic execution on programs with linear real and integer arithmetic, recursive datatypes,

extensional arrays, and fixed-size bit vectors. However, the current interface to Yices im-

plemented by the extension does not support linear real arithmetic and bit-level operations

and supports only one-dimentional arrays. Even though Yices can handle constraints in-

volving recursive datatypes, the current implementation uses a separate library to solve

such constraints.

The generated requirements are used by two components: the MaTRIX Instru-

menter, which instruments the code to collect coverage of our requirements, and the Ma-

TRIX Analyzer, which analyzes the coverage information produced by the instrumented

program. Both components are implemented using InsECTJ [68], an instrumentation

framework for Java programs.
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5.4 Empirical Studies on Testing-requirements Identification

5.4.1 Experimental Setup

We performed two empirical studies to evaluate effectiveness and cost of existing test-

adequacy criteria and of our change-based criteria. To evaluate existing criteria, we extended

MaTRIX to compute and measure coverage of existing test-adequacy criteria. These stud-

ies use as subjects nine versions of two of the Siemens programs [37]: Tcas and Schedule.

We chose Tcas and Schedule, two small programs, because we wanted to have complete un-

derstanding of the subjects’ internals to be able to thoroughly inspect and check the results

of the studies. Moreover, selecting two small subjects let us use random test case generation

to create suitable test suites for the studies. Because Tcas and Schedule were originally

written in C, and MaTRIX tool works on Java programs, we converted all versions of Tcas

and Schedule to Java.

The Java versions of Tcas have two classes, 10 methods, and 134 non-comment LOC.

The Java versions of Schedule have one class, 18 methods, and 268 non-comment LOC.

Schedule requires some of the C standard library, which results in 102 additional LOC

when converted to Java. These studies use one base version (v0) and four modified versions

(v1-v4) of Tcas and one base version (v0) and five modified versions (v1-v5) of Schedule.

The changes in the modified versions are faults seeded by Siemens researchers, who deemed

the faults realistic based on their experience.

In both studies, we measure the effectiveness of a criterion as the ability of test suites that

satisfy the criterion to reveal different behaviors in the old and new versions of a program.

To obtain this measure, we first pair a modified version (P ′) with its base version (P ).

We then identify the locations of changes between P and P ′ using JDiff [4] and feed the

change information to MaTRIX Identifier to generate a set of testing requirements. We

next use MaTRIX Instrumenter to instrument P ′ based on the generated requirements.

Executing the instrumented P ′ against a test suite generates the information that is used

by MaTRIX Analyzer to determine which testing requirements are satisfied by that test

suite.

To create coverage adequate test suites for the different criteria considered, we proceeded
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as follows. For each modified version of the subject programs and each criterion, we built 50

coverage-adequate test suites by generating random test cases and selecting only test cases

that provided additional coverage over those already added. We used a 30-minute time

limit for the random generation: if the generator did not create a test input that covered

additional testing requirements for 30 minutes, we stopped the process and recorded only

the test cases generated thus far. To be able to generate randomly a sufficiently large

number of coverage-adequate test suites, we limited the maximum distance to two (i.e., we

created test suites for distances zero, one, and two). We measured the effectiveness of a

criterion by counting the number of test suites for that criterion that contained at least one

test case showing different behaviors in P and P ′. As a rough approximation of the cost of

a criterion, we used the number of test inputs in the test suites satisfying that criterion.

5.4.1.1 Threats to validity

The main threat to external validity is that these studies are limited to two small subjects.

Moreover, these subjects were originally written in C, so they do not use object-oriented

features such as inheritance and polymorphism. Therefore, the results may not generalize.

Another threat to external validity is that the test suites used in the studies may not be a

representative subset of all possible test suites. Threats to internal validity concern possible

errors in our implementations that could affect outcomes. Nevertheless, we carefully checked

most of our results, thus reducing these threats considerably.

5.4.2 Study 1: Existing Criteria

The goal of this study is to evaluate the effectiveness and cost of existing criteria for test-

ing changes. The test-adequacy criteria we consider are statement and all-uses data-flow

criteria. We define these criteria for modified software: the statement adequacy criterion is

satisfied if all modified statements are exercised. For the all-uses data-flow adequacy crite-

rion, we expand the criterion into a set of criteria, each of which requires du-pairs up to a

specific dependence distance from the changes to be exercised. More precisely, the all-uses

distance-0 criterion requires all du-pairs containing modified definitions to be exercised;

and the all-uses distance-n criterion requires the du-pairs whose definitions are control- or
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Table 11: Percentage of test suites revealing different behaviors over 50 test suites that
satisfy the statement adequacy criterion for Tcas and Schedule.

version v1 v2 v3 v4
% diff-revealing suites 2 14 22 40

Tcas
version v1 v2 v3 v4 v5
% diff-revealing suites 0 14 20 10 0

Schedule

Table 12: Percentage of test suites revealing different behaviors over 50 test suites that
satisfy all-uses distance-i adequacy criteria (0 ≤ i ≤ 2) for Tcas and Schedule.

ver distance ver distance
0 1 2 0 1 2

v1 0 4 12 v1 0 0 0
v2 6 6 100 v2 16 30 50
v3 18 68 68 v3 14 30 32
v4 80 94 94 v4 12 30 38

v5 0 0 0
Tcas Schedule

data-dependent on the uses of du-pairs at distance n− 1 to be exercised.

To measure the effectiveness and cost of each criterion, we followed the process described

earlier. Note that, for each of the all-uses distance-i criterion, where i ≥ 1, we built the

50 test suites starting from the test suite satisfying the all-uses distance-(i − 1) criterion,

rather than generating them from scratch.

Tables 11 and 12 show the percentage of test suites revealing different behaviors over all

test suites satisfying statement and all-uses data-flow adequacy criteria, respectively (e.g.,

Table 12 shows that, for Schedule v2, only 16% of test suites satisfying all-uses distance-

0 criterion reveal different behaviors). The data in the tables show that, in all but one

case, 22% or less of the test suites satisfying the statement adequacy criterion will reveal

different behaviors. In the case of the all-uses distance-i adequacy criterion, 0 ≤ i ≤ 2,

the data also show that the all-uses distance-2 adequacy criterion is adequate for Tcas

v2. However, none of the all-uses distance-i adequacy criteria, 0 ≤ i ≤ 2, is adequate for

Schedule because the average percentage of test suites revealing different behaviors is only

16.8%. The results confirm our intuition that all-uses adequate test suites are more effective

95



Table 13: Average number of test cases in test suites that satisfy all-uses distance-i ade-
quacy criteria (0 ≤ i ≤ 2) for Tcas and Schedule.

ver distance ver distance
0 1 2 0 1 2

v1 1.00 1.24 2.22 v1 1.00 1.54 1.78
v2 1.00 1.00 3.00 v2 1.00 1.68 2.56
v3 1.14 1.80 1.80 v3 1.00 1.68 2.10
v4 2.74 4.22 4.22 v4 1.00 2.08 2.38

v5 1.34 1.44 1.68
Tcas Schedule

in revealing different behaviors than statement adequate test suites, and that the longer

the dependence distances considered, the more effective the criteria become. However, the

results also show that, in many cases, these test-adequacy criteria do not effectively exercise

changes.

To measure the cost of generating a test suite satisfying the existing test-adequacy

criteria, we measure the average size of the test suites we created. The size of all test suites

satisfying the statement-adequacy criterion for any changes is 1. (Therefore, we do not

show this result in the tables.) Table 13 shows the average number of test cases in test

suites that satisfy an all-uses distance-i criterion for 0 ≤ i ≤ 2. For example, the average

size of the test suites satisfying all-uses distance-1 adequacy for the changes in Tcas v1 is

1.24. The data show that the average size of the test suite satisfying any of the all-uses

adequacy criteria is 3.00 or below in most cases, with the exception of the changes in Tcas

v3 at distances 1 and 2, which is 4.22. Overall, the results show that the cost of generating

test suites satisfying data-flow adequacy criteria considering only du-pairs that are only a

few dependences away from the changes is not much higher than the cost of generating test

suites satisfying the statement adequacy criterion.

We can also use these data to compute a measure of cost-effectiveness of the criteria,

by computing the ratio of the percentage of test suites revealing different behaviors to

the average size of the test suites. For example, for the all-uses distance-0 and distance-1

adequacy criteria for Tcas v3, the ratios are 15.79 (18/1.14) and 37.78 (68/1.8), respectively.

The results show that, for the subjects and versions considered, the cost-effectiveness for
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the all-uses-based criteria tends to increase with the distance.

5.4.3 Study 2: Change-based Criteria

The goal of this study is to evaluate the effectiveness and the cost of our change-based

criteria. We use the same effectiveness and cost measures as in Study 1 and also follow the

same process.

Table 14 shows the percentage of test suites revealing different behaviors for each of our

distance-i criteria and for each version of our subjects. As the data show, our change-based

criteria are more effective than the corresponding all-uses criteria—and much more effective

than the statement adequacy criterion—for distances greater than zero. (They are more

effective in most cases also for distance 0.) In particular, for Tcas, between 90% and 100%

of the test suites that satisfy the distance-2 requirements reveal different behaviors between

old and modified versions of the program. The results for Schedule are not as good from an

absolute standpoint, but are still considerably better than the results for the corresponding

all-uses criteria.

Note that, for changes in Schedule v1 and v5, none of the test suites that satisfy our

criteria reveal different behaviors. After inspecting the subjects, we discovered that the

changes in these versions affect the program state but not the control- and data-flow of

the program. Criteria based on control- or data-flow are therefore unlikely to reveal these

changes, as the results for the statement- and all-uses-based criteria show (see Tables 11

and 12). The reason why our technique does not reveal the difference either is that its current

implementation does not generate requirements to exercise differences in the program state,

as discussed in Section 5.3.
Table 15 shows the average number of test cases in test suites that satisfy each of our

distance-i criteria for each subject version. The results show that our set of criteria needs at

most (for Schedule v1 and distance 1) about twice as many test cases as the all-uses adequacy

criterion at the same distance. Note that, because the test suites for longer distances are

built on those for lower distances, and they are not reduced, the number of test cases per

test suite for longer distances (for both our change-based criteria and the all-uses criteria)

may not accurately reflect the actual test-suite generation costs. This explains why, in some
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Table 14: Percentage of test suites revealing different behaviors over 50 test suites that
satisfy our distance-i criteria (0 ≤ i ≤ 2) for Tcas and Schedule.

ver distance ver distance
0 1 2 0 1 2

v1 30 30 90 v1 0 0 0
v2 4 100 100 v2 10 48 94
v3 100 100 100 v3 16 64 82
v4 100 100 100 v4 36 56 60

v5 0 0 0
Tcas Schedule

Table 15: Average number of test cases in test suites that satisfy our distance-i criteria
for 0 ≤ i ≤ 2 and for modified versions of Tcas and Schedule.

ver distance ver distance
0 1 2 0 1 2

v1 1.00 1.00 1.80 v1 1.88 3.44 3.44
v2 1.00 1.96 1.96 v2 1.00 1.84 4.50
v3 1.70 1.70 1.70 v3 1.00 2.08 3.42
v4 3.76 3.94 4.88 v4 1.50 2.38 3.20

v5 1.58 2.44 2.64
Tcas Schedule

cases, all-uses adequacy criteria require more test cases than our change-based criteria for

the same distance and the same subject (e.g., for Tcas v1 and distance 2).

In terms of cost-effectiveness, our criteria are more cost-effective than both statement-

based and all-uses-based criteria in most cases. (In the following, we do not consider v1 and

v5 of Schedule, for which none of the criteria generate test cases that can reveal changes

in behavior.) For distances greater than zero, our criteria are more cost-effective than the

alternative criteria in all but one case (Tcas v4). For distance 0, our criteria are more

cost-effective in eight out of 14 cases.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

This research addresses the problem of assessing the quality of test suites with respect

to changes in a modified version of a program by defining change-based testing criteria,

which can be used in the quality assessment, and identifying testing requirements that form

the criteria. These testing requirements can also be used to guide the generation of new,

effective test inputs targeting the changes.

This research has three components.

• A program differencing technique that computes change information and mappings

of program entities in the old and new versions and handles the changes involving

object-oriented features.

• Two dynamic-impact-analysis techniques that use change information to identify pro-

gram entities that are likely affected by changes during at least one of the collected

program executions. These two techniques have a trade-off between precision and

efficiency.

• A technique that uses change and impact information to identify testing requirements,

which form change-based testing criteria. These requirements guarantee that the test

suites satisfying them, when executed on the modified version, will result in different

control or data flow or different program states at selected program points.

6.1 Merit of this research

First, this research improves the effectiveness of regression testing by identifying testing

requirements that enable testers to evaluate the extent to which their test suites exercise

changes more effectively than criteria based on control- and data-flow alone. This research

also enables testers to develop new test cases targeting modified behavior. Effective re-

gression testing, in turn, reduces the number of software failures in the field. Because field
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failures may incur significant direct cost (such as the cost of debugging under tight time

constraint and distributing patches to users) and indirect cost (such as user dissatisfaction),

a technique that reduces the number of these failures will contribute to considerable cost

reduction.

Second, this research produced techniques that, in addition to their applications in test-

ing evolving software, can also be used in other contexts. A number of examples of such

applications are presented here. In a collaborative environment where a number of develop-

ers modify copies of the same modules at the same time, the precise differencing technique

can alert these developers of potential conflicts in their modifications and enable program-

merging techniques to incorporate all non-conflict changes into a new version automatically.

In the situation where the coverage or profile information for the modified program is re-

quired but cannot be reproduced (e.g., information from deployed software), the differencing

results, along with the coverage or profile information for the original version, can be used

to estimate this information. This approach also eliminates the cost of rerunning the test

suite on the modified version of the program to obtain the coverage or profile information.

In many software projects where one desired change can be performed in more than one

way, the dynamic-impact-analysis technique can be applied to estimate the cost of those

proposed modifications and select among them and, thus, contributes to better resource

management. The impact information computed by dynamic impact analysis can also be

used to evaluate the extent of coupling among multiple software modules and to re-engineer

the software design.

Third, this research implemented a number of tools to evaluate the effectiveness and

efficiency of the developed techniques. These tools can be integrated into other systems that

require their functionalities. For example, these tools can be integrated with regression-test-

selection tools, test-suite prioritization and reduction tools, and test-case-generation tools

to form a regression testing environment that provides all of these functionalities. Moreover,

the JDiff tool has been released and used by other researchers in their own work. The

CoverageImpact, EAT, and MaTRIX will be released to the research community.
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6.2 Future Directions

Even though we expect that the impact of changes that propagate to statements at a

small distance will continue to propagate to output, and our empirical results confirm this

intuition, this may not be the case for some changes. To support the identification of

testing requirements at great distance, the technique needs to improve the efficiency of

partial symbolic execution, which can be achieved by two means. First, the existing lazy-

initialization algorithm does not provide an optimal solution for initializing an uninitialized

object. For example, when a field of an uninitialized object is referenced, the algorithm

needs to initialize that object. To do so, the algorithm splits the symbolic-execution path

into several paths, each of which corresponds to a possible alternative (i.e., any of all

the previously lazily-initialized objects of compatible types or an unseen object for each

compatible type). However, several symbolic-execution paths may analyze the same set of

statements during partial symbolic execution (e.g., the path corresponding to an unseen

object of type A and the path corresponding to an unseen object of type B when B is

a subtype of A and the reference field is not hidden). Rather than splitting into several

different paths, the lazy-initialization algorithm could add a constraint on the symbolic

reference to indicate that, for this path, this symbolic reference can be either of type A or

B. Second, partial symbolic execution needs not execute every statement between a change

and an affected statement because the affected statement may not depend (even indirectly)

on some of the statements. A slicing approach that filters out all statements that are not

involved in the computation of the affected statement will reduce the number of statements

needed to be analyzed and, thus, reduce the cost of partial symbolic execution.

The empirical studies on testing-requirements identification have shown the effectiveness

of this technique on two subject programs and a limited number of changes. Although the

technique requires symbolic execution on a small part of the program (the part close to

the changes) and, thus, is expected to scale to large programs, more empirical studies on

larger subjects with real-world sets of multiple changes should be conducted to support the

generalizability of the current results.

As discussed in Chapter 5, the identified testing requirements can be used as guidelines
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to generate new test inputs targeting the changes. However, manually generating test

inputs that exercise the changes effectively is a tedious, time-consuming task. Because

the testing- requirements representation (i.e., boolean predicates) is formal, a technique to

generate automatically test inputs that satisfy these requirements could be developed. Such

technique would need to solve the constraints that include the testing requirements and a

path condition from the beginning of the program to each of the changes.
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