
BUILDING A THRIVING CS PROGRAM AT A SMALL LIBERAL ARTS COLLEGE

Timothy Urness and Eric Manley
Department of Mathematics and Computer Science
Drake University
Des Moines, IA 50311
515 271-2118
timothy.urness@drake.edu,	 eric.manley@drake.edu

ABSTRACT
 In this paper we describe several techniques that have helped increase enrollment
in the computer science program from 23 computer science majors in 2008 to 42
computer science majors in 2010 – an increase of 82.6%. We discuss issues related to
curriculum, programming assignments, and professor-student interactions that have made
the discipline more attractive and manageable to a variety of students within the setting of
a small liberal arts college.

INTRODUCTION
 Liberal arts colleges promote a diverse study of disciplines to emphasize breadth
of education, analysis, and integrity in students’ intellectual experiences. The goal is to
provide a learning environment that prepares students for meaningful personal lives,
responsible citizenship, and ultimately, professional accomplishments. At first glance, the
liberal arts approach may seem contradictory to an effective method of teaching computer
science – a field closely tied to real-world problems and engineering. However, a
computer science program can be strongly supported by the liberal arts paradigm [14].
Liberal arts programs in computer science typically emphasize problem-solving,
applications of theory, communication, and intellectual skills, not just current technology
trends or operational details that may change rapidly. The material content of computer
science requires analyzing, synthesizing, and organizing information. These life-long
skills are fundamental to a liberal arts education [8]. In this paper, we discuss several of
the issues related to curriculum, programming, and professor-student interactions that
have made the discipline more attractive and manageable to a variety of students.

CURRICULUM
 The curriculum of a liberal arts college emphasizes breadth of study. As a result,
students must take a wide variety of courses from outside their chosen area of study.
Thus, only approximately 39 hours of classroom time in computer science or
mathematics courses can reasonably be required for a major [8]. We acknowledge that
each school has a unique environment and several of these suggestions may not be
applicable or have the same effect on student enrollments or experiences. However, we
have found that these recent changes in our curriculum have encouraged an influx of
students to study computer science.

Use Introductory Course to Recruit
 Entering students typically have misconceptions about computer science. In a
study by Deborah Wiley, a teacher in North Canton Ohio, 66 percent of high school

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eScholarShare at Drake University

https://core.ac.uk/display/46925954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

students had no idea of what the field of computer science is about. Only 7 percent
believed that computer science involved programming and networking [5]. While
strategies to inform and recruit high school students have shown to be effective [9], we
have chosen to focus our efforts on students that have already selected and enrolled in the
college. We feel that our limited resources can be best utilized by introducing students to
computer science, stressing the potential it has to assist other areas of study and
contribute to a liberal arts education. This approach has resulted in a number of students
adding computer science as a second major or minor.

 Using the approach of attracting current students, it is important to view the
introductory course (CS1) as a recruitment tool. Ultimately, the introductory course
should be an invitation to computing that highlights applications and usefulness of
algorithmic thinking and processing. We have found success in not requiring any
programming or computing experience for this course – only some basic mathematics
(e.g. college algebra). The goal is for students to take the course and have their views of
computer science enlightened by introducing algorithms, programming, basic
fundamentals, and applications to other disciplines. In the process, we hope to debunk
any previous and erroneous attitudes and beliefs the students may have [2, 7].

 Simply providing an excellent introductory course will not necessarily entice
students to enroll in the course. In our case, increasing the number of majors was likely a
result from adding the introductory computer science courses to the list of courses that
satisfy a liberal arts general education requirement. Since computer science is a versatile
discipline, the case can be made for the introductory course to be placed in several
different general education categories (e.g. information technology, critical thinking,
quantitative analysis).

Hooking Nonmajors with a Broad CS0
 It has been our experience that CS0 can also be effective in introducing and
recruiting students to the discipline of computer science. In contrast to programming-
centric introductory courses, introductory courses that provide a broad survey of
computer science principles have attracted a much higher percentage of female students
and had success in student retention [4, 13].

Simplify Curriculum
 Once a student’s interest is piqued by an introductory course, it is important to
demonstrate that the curriculum is simple and manageable. As suggested in [8], courses
with prerequisites should be minimal as to not deter a student that takes the introductory
course during his or her sophomore year. Demonstrating that the major (or minor) can
still be fulfilled in the senior year without having declared it as a freshman will allow for
the inclusion of many more students.

Pay Attention to the Student Experience
 Computer science can be an intimidating field of study, full of complicated jargon
and ever-changing technology. This is particularly daunting for students in disadvantaged
populations or students that have not yet formed an academic identity. As suggested in

[5], an approach to increasing women in computing is to “pay ferocious attention to the
quality of the student experience.” We believe this applies to increasing enrollment
numbers in general – increasing the quality of education experiences for all students.

 In an effort to make computer science approachable, we eliminate “weed-out”
courses that affirm only the brightest or most-committed students. We feel that the
professor should be an advocate for each student, allowing grace for students that have a
wide range of computing experiences. As professors, we have no influence on the
students’ background or prior availability of technology. We do, however, have control
over how the student perceives computing in the classroom. By paying attention to the
student experience, the unfortunate preconceptions of the discipline can be overcome
provided every student is given the attention and opportunity to succeed.

Encourage CS Minors
 The number of majors in a program is an often-used and potentially misleading
metric for the success of a college program. Students with multiple majors, minors, or
concentrations add to the health of a program, but may not be counted as a major. A low
number of students enrolled in a course, however, will seemingly always get the attention
of an administrator with the power to cancel the course. The far-reaching applications of
computer science make it a natural complement to other disciplines as a minor. A
program filled with computer science minors can lead to a vibrant, healthy, computer
science department. Promotion of the computer science minor program can be done in a
variety of ways: announcements in CS0 and CS1, department website, emails, etc.

Incorporate Current Technology Trends
 A balance that must be found for each computer science professor is how much
technology to teach vs. how much theory and concepts to introduce. Mobile application
development can be an attractive method for attracting students’ attention while still
cultivating algorithmic and critical thinking within the discipline. Our experience is that
offering an iPhone application development course in the context of software engineering
has created a large amount of excitement and enthusiasm within the department.

PROGRAMMING AND PROGRAMMING ASSIGNMENTS
 Students will (likely) spend more time working on assignments than in the
classroom. The assignments also constitute a large percentage of the final grade. Thus,
from the students’ perspectives, the assignments are extremely important to the course
and their perception of the discipline. To support student interest, it is critical that the
assignments are relevant, manageable, not trivial, and highlight the concepts stressed in
the classroom. The following “rules of thumb” can help professors develop meaningful,
appropriate assignments that cultivate and support interest in the class and discipline.

Make Assignments Meaningful
 Nick Parlante of Stanford University has coordinated the publishing of several
“nifty” assignments at the annual SIGCSE conference [11]. These assignments were
selected from criteria of being fun (nifty), useful for a broad audience (topical), scalable
for easy and open-ended assignments, adoptable, inspirational and thought-provoking.

Assignments that focus on highly technical aspects (“geeky”) can result in the lasting
impression that the real-world problems that computer science can help solve are
shallow. Programming assignments that stress concepts and encourage students to utilize
logic and problem-solving are likely to attract and retain a diverse collection of students
[5]. It has been ours, and others, experiences that the assignments that involve “real
world” problems or ask open-ended questions are the most likely to inspire creative,
dedicated submissions and can encourage students to pursue the discipline further [6].

Facilitate Student Programming
 A controlled lab environment allows a professor to make sure all of the compilers
will work the same, the system (probably) won’t crash, and everything will work as
expected. Requiring students, however, to either purchase specific computer hardware or
come into a lab to work on an assignment indicates that the technology they are
interacting with is not the same as the ubiquitous computing they interact with on a daily
basis. It is highly advantageous that students be able to work on their assignments
wherever and whatever their home computer may be. Thus, choosing a development
environment and technology that is platform independent, reliable, and flexible will make
the discipline more accessible and attractive to students. Furthermore, creating thorough,
readable, introductory descriptions can reduce the amount of frustration for a beginner.

Visual Programming Environments
 A popular technique for getting students hooked on computer science is to use
visual programming environments such as Scratch, Greenfoot, or Alice. These
environments make programming accessible and immerse the programmer in a media-
rich environment, which is appealing to larger audiences who might otherwise disregard
computer science because of preconceived perceptions about programming.

PROFESSOR-STUDENT INTERACTIONS
“… building a relationship of respect between teacher and student for women and
minority students is the first order of business – at all levels of school. No tactic of
instruction, no matter how ingenious, can succeed without it.” [12] As the previous quote
illustrates, the professor-student relationship is extremely important. Small class sizes and
small professor-to-student ratios are some of the reasons typically stated by students that
attend small liberal arts colleges. The professor-student relationship can be foundational
for a student deciding to pursue computer science. The following are a few suggestions to
help develop and strengthen these important relationships.

Out-Of-Class Activities
 We have had great success in opening up the ACM programming competition to
any student that would like to participate. Many introductory students have chosen to take
part in this all-day computing event which has been an effective recruiting tool. Students
end up spending time with majors, making friends, and eventually adding computer
science as a major or minor. The incentive for the students is a one-time Friday night
practice “party” in which we hold a mock competition, followed by pizza, soda, and a
Ms. Pac Man tournament. Since many of the students may be new to computer science,
we don’t expect them to be competitive. Instead, we encourage their effort and highlight

the experience (e.g. new techniques learned, the fun of the Ms. Pac Man contest, the
food, etc.). The result has been a high retention rate for the annual programming contest
and an increase in majors and minors.

Communication and Approachability
 A way to build a relationship of respect between professor and student is to treat
every interaction with the utmost importance. Several ways we have found to be effective
in our approachability are to hold extended office hours and respond to email or wiki
questions as soon as possible. When students get prompt feedback, they are more likely
to retain the information and the answer can be most effective. Similarly, when grading
assignments or exams, a timely response is as important as a quality response. In order
for students to learn from mistakes, it is most beneficial to point out these mistakes as
close as possible to when the mistake was made. Delaying the feedback cycle, even if the
feedback is extremely thorough, increases the chances that the student not learn from the
mistakes made and the student may become frustrated with the process or professor.

WOMEN IN COMPUTING
 According to Computing Research Association, women have earned 11.8% of the
CS bachelor degrees in recent years [15]. Recruiting women to computer science is a
topic of much research and discussion [1, 3, 10]. Our goal is to create an environment
within our program that encourages the participation of students, regardless of gender.
Thus, we attempt to teach computer science as a discipline that offers a great deal to
interdisciplinary collaborations and practical applications, rather than the technological
“geeky” stereotype that can sidetrack women from engaging in the discipline.

 By focusing on creating a thriving program, our percentage of women in the
program is currently 20%. We feel we have been successful in not deterring, and possibly
encouraging, women to consider the major through the following actions: We do not
require students to enter the program having any programming experience. It has been
our experience that students that are “fresh” to computer science and have strong analytic
skills have the potential to be excellent computer scientists. Therefore, whenever
possible, and especially in the introductory courses, we stress the “experience is not a
prerequisite” message that has been successful in recruiting women [5]. To do so, the
curriculum must be simple enough to accommodate the novice student. Additionally, as
previously mentioned, our beginning CS1 course starts from the ground floor – there are
no prerequisites for our introductory courses. Any student, provided they have a strong
work ethic, can take the introductory course and earn an A. Using CS0 and CS1 as
recruitment tools has allowed for us to break stereotypes incoming freshman have
regarding computer science [2]. Similarly, we have found that using a broad CS0 course
can lay a solid foundation for studying computer science and attract women, as supported
by reference [1]. In fact, over the last three semesters, women have made up just over
50% (46/91) of the students in CS0. Finally, our computer science program is
complementary to several other majors (math, physics, and even biology). Having a high
number of double majors reduces the “geek” image of CS majors on campus that can be
beneficial to increasing the number of women in computer science [5].

 CONCLUSION
 Liberal arts colleges promote a diverse study of disciplines to emphasize breadth
of education, analysis, and integrity in students’ intellectual experiences. Computer
science programs in small liberal arts colleges must effectively balance the ideals of a
liberal arts education and current technology trends. We have highlighted several
strategies involving curriculum, programming assignments, and professor-student
interactions that, we feel, have made the discipline more attractive and manageable to a
variety of students. The ultimate goal of education is to enrich students’ lives. We feel
that a computer science program has the potential to present a student with a unique
perspective of analytical problem solving, application of theory, and analyzing,
synthesizing, and organizing information. Under the best circumstances, this kind of
program will thrive at a small liberal arts college.

REFERENCES
[1] Alvarado, C., Dodds, Z., Women in CS: an evaluation of three promising practices,
Proceedings of Symposium on Computer Science Education (SIGCSE ’10), 57-61, 2010.
[2] Bennett, C., Urness, T., Using daily student presentations to address attitudes and
communication skills in CS1, SIGCSE Bull., 41, (1), 76-80. 2009.
[3] Cohoon, J. M.. Must there be so few?: including women in CS. Proceedings of the
25th international Conference on Software Engineering, 668-674, 2003.
[4] desJardins, M., Littman, M., Broadening student enthusiasm for computer science
with a great insights course, Proceedings of Symposium on Computer Science Education
(SIGCSE ’10), 157-161, 2010.
[5] Fisher, A., Margolis, J., Unlocking the Clubhouse: Women in Computing, Cambridge,
MA: MIT Press, 2002.
[6] Layman, L., Williams, L., Slaten, K., Note to self: make assignments meaningful,
SIGCSE Bull., 39, (1), 459-463, 2007.
[7] Lewis, C., Attitudes and beliefs about computer science among students and faculty,
SIGCSE Bull. 39, (2), 37-41, 2007.
[8] Liberal Arts Computer Science Consortium, A 2007 model curriculum for a liberal
arts degree in computer science. J. Educ. Resour. Comput. 7, (2), 2007.
[9] Morreale, P., Kurkovsky, S., Chang, G., Methodology for successful undergraduate
recruiting in computer science at comprehensive public universities, SIGCSE Bull., 41,
(1), 91-95, 2009.
[10] Othman, M. and Latih, R., Women in computer science: no shortage here!. Commun.
ACM, 49, (3), 111-114, 2006.
[11] Parlante, N., Nifty assignments, 2011, http://nifty.stanford.edu/ retrieved January
11, 2011.
[12] Steele, C., Race and the schooling of black Americans, The Atlantic Monthly, 4, 68-
78, 1992.
[13] Turner, E. H., Albert, E., Turner, R. M., Latour, L., Retaining majors through the
introductory sequence, SIGCSE Bull., 39, (1), 24-28, 2007.
[14] Walker, H. M., Kelemen, C., Computer science and the liberal arts: a philosophical
examination, Trans. Comput. Educ., 10, (1), 1–10, 2010.
[15] Zweben, S., Upward trend in undergraduate CS enrollment; doctoral production
continues at peak levels. Computing Research News, 21, (3), 2009

