
Distributed Routing Algorithms for Multi-hop Ad Hoc
Networks using d-Hop Connected d-Dominating Sets

Michael Q. Rieck
Drake University

Des Moines, Iowa 50311 USA
+1 515 271 3795

michael.rieck@drake.edu

Sukesh Pai
Microsoft Corporation

Mountain View, CA 94043 USA
+1 650 693 3688

sukeshp@microsoft.com

Subhankar Dhar
San Jośe State University
San Jośe, CA 95192 USA

+1 408 924 3499
dhar s@cob.sjsu.edu

ABSTRACT
This paper describes a distributed algorithm (generalized
d-CDS) for producing a variety of d-dominating sets of
nodes that can be used to form the backbone of an ad hoc
wireless network. In special cases (ordinary d-CDS), these
sets are also d-hop connected and has a desirable “shortest
path property”. Routing via the backbone created is also
discussed. The algorithm has a “constant-time” complex-
ity in the limited sense that it is unaffected by expanding
the size of the network as long as the maximal node de-
gree isn’t allowed to increase too. The performances of
this algorithm for various parameters are compared, and
also compared with other algorithms.

Keywords
d-dominating set, ad hoc wireless networks, d-closure, rout-
ing algorithm.

INTRODUCTION

One of the important problems in ad hoc wireless net-
works is to find efficient and reliable routing algorithms.
In such a network, the nodes are often mobile and rout-
ing requires a dynamic adaptation strategy. However, it
is important to first study static ad hoc networks, such as
sensor networks, and to devise good routing schemes for
these. This static routing problem will be the focus of this
article. There are several approaches to it. A commonly
used general method is cluster-based hierarchical routing
[3], [7], [8], [11]. The network is divided into several clus-
ters and from each cluster, certain nodes are elected to be
clusterheads. These clusterheads are responsible for main-
taining the routing information [1], [4]. Each cluster can
have one or more gateway nodes to connect to other clusters
in the network. These gateway nodes ensure connectivity
between all the clusters in the network.

Another approach, called backbone-based routing selects
certain nodes from the ad hoc network which are similar
to gateway nodes. These nodes form a connected dominat-
ing set and are responsible for routing within the network
[5]. However, this backbone tends to be rather large. Our
approach blends features of these two approaches with the
intention of gaining the advantages of each. The set pro-
duced by our basic algorithm (d-CDS) is not connected and
does not produce a traditional backbone. It is however a
d-hop connected d-dominating set with certain properties.

Each node in the network will obtain an awareness of
the other nodes (including at least one backbone node)

within d hops of itself. This facilitates local routing. Once
the backbone has been obtained, the backbone nodes are
expected to exchange global routing information with each
other, using local routing to communicate with each other
through intermediary ordinary nodes.

After this, when an ordinary node wishes to send a mes-
sage to another node that is more than d hops away, it first
polls the backbone nodes that are within d hops of itself.
These then indicate to the sender, the distances from them-
selves to the target. The sender can then determine which
backbone node to use to send the message most expedi-
tiously. The message will then be forwarded through the
backbone, using local routing to move the message between
consecutive backbone nodes, which will never be separated
by a distance in excess of d. Moreover, if the backbone was
formed using the d-CDS algorithm, then the path followed
will be guaranteed to be a shortest possible path from the
source to the target.

DEFINITIONS

Throughout this article, G will denote a connected
graph, representing an ad hoc network. V denotes the set
of all vertices in the graph G. The distance function in G
will be denoted by δ. A vertex u in G is said to have ec-
centricity e(u) if G has a vertex v such that δ(u, v) = e(u),
and for all vertices w in G, δ(u,w) ≤ e(u). The radius of
G, r(G), is the minimum of the eccentricities of its vertices.

Gd will denote the d-closure of G, by which we mean the
graph whose vertices are the same as those of G, but which
has an edge between two vertices u and v if and only if
0 < δ(u, v) ≤ d. We call a subset D of the set of vertices
of G a d-dominating set of G if it is a dominating set for
Gd, that is, if every vertex of G is within a distance d of
some vertex in D. A 1-dominating set is simply called a
dominating set. We say that D is d-hop connected if it is
connected in Gd.

We say a distributed algorithm is constant-time when its
execution time does not depend on the number of nodes
in the network, although it may depend on the maximum
vertex degree. The algorithms to be introduced in this
paper have this property.

RELATED WORK

Minimum connected dominating sets have been used for
backbone routing in wireless ad hoc networks. One of the
earlier studies was done by B. Das and V. Bharghavan who
used minimum connected dominating sets (MCDS) as a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eScholarShare at Drake University

https://core.ac.uk/display/46924226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

virtual backbone to develop routing schemes for wireless
ad hoc networks [5]. This virtual backbone may change
with the movement of nodes and is used only for comput-
ing and updating routes. Their MCDS routing algorithm
computes shortest possible paths for routes and updates
routes soon after each node moves. Besides finding routes,
their algorithm also supplies backup routes for temporary
use while shortest paths are updated. Because their focus
is on constructing a minimum connected dominating set,
the overhead in setting up such a set is quite time consum-
ing, when contrasted with other methods that merely settle
for a reasonably small set. The dominating set induces a
virtual backbone of connected vertices in the graph. Since
it is connected and dominating, the set is likely to be very
big for a network with a large number of nodes. Moreover,
if some node in the backbone were to fail, it may partition
the induced subgraph.

The Max-Min scheme for clustering nodes in a wireless
ad hoc network is described in [2], which introduces the
concept of d-dominating sets and proves that finding a
minimum d-dominating set is NP-complete. They use the
nodes selected in this set to divide the graph into a set
of clusters. They assume unique IDs (identifiers) for each
node and select a node for inclusion in the set if it has the
highest ID in some d-hop neighborhood. They describe a
distributed way of finding the dominating nodes by flooding
the node ID information for d rounds to all the neighbors
of the node. Further, they do another d rounds of flooding
to determine the clusters dominated by each node in the
dominating set. This algorithm is constant-time.

CEDAR [9] is another distributed routing algorithm for
ad hoc networks, which dynamically establishes a core net-
work. This core network is a dominating set and this set is
constructed by a core computation algorithm that approx-
imates the minimum dominating set for the nodes. So the
size of the core network is minimal. CEDAR is based on
the following principles:

1. Core election: From the nodes of the ad hoc network, a
subset (core) is elected by means of an approximation algo-
rithm to compute minimum dominating set. This compu-
tation is done locally. The members of the core are called
dominators.

2. Link state propagation: CEDAR tries to achieve QoS
by propagating the link state information of links that are
stable and has high bandwidth to the members of the core
network. The information about dynamic links and links
that have low bandwidth are kept local.

3. Route computation: First the core path is computed
from the dominator of the source to the dominator of the
destination. After that, the QoS routing algorithm com-
putes the path with maximum bandwidth to the final des-
tination node using local link state information.

In [10], the authors of CEDAR further extended their
algorithm and proposed MCEDAR, which allows multi-

casting capabilities and provides robustness of mesh based
routing protocols.

Jie Wu and Hailan Li present a basic algorithm [10], [11]
for constructing a connected dominating set in a connected
graph of radius at least two. This algorithm is distributed
in the sense that each node processes local information that
it receives from its neighbors in order to decide whether or
not it should join the dominating set, and it is constant-
time. They then consider some ways to refine the basic
algorithm in order to produce smaller connected dominat-
ing sets.

The basic Wu-Li algorithm [13] can be characterized as
follows.

WuLi0 : For each node z, the following question is asked:
Does z have neighbors x and y such that x and y are not
adjacent? The vertex z is then admitted to a set which we
will call WuLi0(G) if and only if the answer to this ques-
tion is “yes”. It is then possible to show that WuLi0(G) is
a connected dominating set, unless G is complete (i.e. has
radius one).

WuLi1 : Wu and Li then refine the above technique, by
assuming that each vertex has a unique integer identifier.
Their “Rule 1” amounts to asking a further question for
each vertex z in WuLi0(G), as follows: Does z have a
neighbor z′ in WuLi0(G) whose ID is higher than that of
z, and which is such that all of the neighbors of z are also
neighbors of z′? If so, z is deemed to be superfluous. The
set WuLi1(G) consists of all the vertices from WuLi0(G)
for which the answer to the question is “no”. It too is a
connected dominating set.

WuLi2 : To further reduce the size of the set, Wu and Li
also introduce “Rule 2”. For each vertex z in WuLi1(G),
the following question is asked: Does z have two neigh-
bors from WuLi1(G), which are themselves adjacent, and
which have IDs larger than that of z, and which are such
that their combined neighbors include all of the neighbors
of z? The set WuLi2(G) consists of all the vertices from
WuLi1(G) for which the answer is “no”. This too can be
shown to be a connected dominating set.

PROPOSED ALGORITHMS

Altered Wu-Li

Let us consider the possibility of replacing Wu and Li’s
“Rule 1” with a stronger condition, and refer to the re-
sulting algorithm as altered Wu-Li. The resulting set of
vertices will be denoted by D(G). Specifically, the algo-
rithm we wish to consider proceeds as follows:

1. Consider each pair of vertices x and y which are sepa-
rated by a distance 2 in G.

2. For such a pair, consider all of the common neighbors of
x and y. Let E(x, y) denote the vertex among these com-
mon neighbors whose ID is largest.

3. Admit a vertex to the set D(G) if and only if it is E(x, y)
for some suitable pair x and y.

We will say that E(x, y) was “elected” by the pair x and
y to join the set. Notice that vertices elected by altered
Wu-Li are also in the set WuLi0(G). Moreover, any vertex
eliminated by Rule 1 from WuLi1(G) would not be elected
to D(G). Thus D(G) ⊆ WuLi1(G).

An advantage of this approach over that of Wu and Li
is the “shortest path property” described in the following
theorem. This is a special case (d = 1) of Theorem 2, which
is stated and proved in the next section.

Theorem 1: Assume that the connected graph G has ra-
dius at least two. Then the set D(G) constructed by the
altered Wu-Li algorithm is a connected dominating set.
Moreover, any two vertices in G can be connected by a
shortest path consisting solely of vertices from D(G) (apart
from the endpoints).

The d-hop connected d-dominating set algorithm

There is a trivial way to apply the Wu-Li algorithm or
altered Wu-Li algorithm in order to produce a d-hop con-
nected d-dominating set for G. To do so, simply apply the
algorithm to Gd instead of G. Then, from the standpoint
of G, the resulting set is a d-hop connected d-dominating
set. However, because the graph Gd obscures the sense of
distance in G, we feel that this is not a desirable approach.

By contrast, our d-hop Connected d-Dominating Set al-
gorithm (d-CDS), to be proposed next, works directly with
the graph G, rather than Gd, and results in a set with this
desirable shortest path property. Moreover, we will show
that this algorithm has a more efficient implementation. It
is described as follows:

1. For each pair of vertices x and y satisfying δ(x, y) =
d + 1, consider all of the shortest paths from x to y.

2. Consider the set of vertices that lie strictly between x
and y along such a path. Let E(x, y) be the vertex in this
set with the highest ID. Call this vertex E(x, y).

3. Construct the set Dd(G) by including all such E(x, y),
and only these vertices.

Note that D1(G) = D(G). This algorithm also has a
“shortest path property”, as described in the following the-
orem.

Theorem 2: Assume that the connected graph G has ra-
dius at least d+1. Then the set Dd(G) is a d-hop connected
d-dominating set. Moreover, any two vertices u and v from
G can be connected by a shortest path in G, with the prop-
erty that the set of vertices which are on this path and also
in Dd(G), together with the vertices u and v, form a con-
nected path between u and v in the d-closure Gd.

14

4 9 15
8

2 10

6 3

1
1213

5 11

7

Figure 1 - Example G and G2

Proof: Consider a vertex x in G. There exists a ver-
tex y at a distance d + 1 from x. The vertex E(x, y) is in
Dd(G) and is within a distance d of x. Hence Dd(G) is
d-dominating.

To show the rest, fix any two vertices u and v. Let p
be a shortest path in G from u to v. Let uj denote the
vertex arrived at after taking j steps along this path. (j =
0, 1, 2, ..., m, where m = δ(u, v)). Consider the vertices on
p that are also in Dd(G), together with the vertices u and
v. Consider the subgraph of Gd induced by this set. If
this is not a path from u to v in Gd, then let i be as large
as possible so that ui is either u or is in Dd(G) and is
connected to u in the induced subgraph. So i < m− d. So
ui+d+1 is a vertex on the path at a distance d + 1 from ui

in G. Therefore, there is a path q of length d+1 from ui to
ui+d+1 which goes through an element of Dd(G), namely
E(ui, ui+d+1). Now create another shortest path in G from
u to v by replacing the subpath of p from ui to ui+d+1 with
the path q. If the resulting path is still not satisfactory to
establish the second claim in the theorem, then repeat the
procedure. This time i will be larger. Continuing in this
way, a suitable path will eventually be produced.

Example: Consider the example in Figure 1. The ver-
tices here together with the solid edges constitute the graph
G. By adding to this the dashed edges, which connect ver-
tices separated by a distance two in G, the graph G2 is
obtained. In this example, when the Wu-Li algorithm is
applied to the graph G2, the set WuLi0(G2) is found to
consist of all the vertices except 2, 7, and 8. Each of these
three vertices has the property that it forms a clique (in
G2) with its neighbors. That is, none of these three ver-
tices has a pair of neighbors that are not adjacent to each
other. Hence none of these three vertices is in WuLi0(G2),
while all the other vertices are in this set.

Rule 1 eliminates vertex 5 because all of its neighbors
are also neighbors of vertex 13, and because 13 > 5. Rule 2
eliminates several nodes. For example, vertex 1 is “covered
by” vertices 6 and 13, together, in that the combined neigh-

{1, 2} : {4, 6, 10, 13} {1, 8} : {4, 6, 10, 13}
{1, 14} : {4, 6, 9, 10)} {1, 15} : {3, 4, 6, 9, 12}
{2, 3} : {4, 6, 10} {2, 5} : {6, 10, 13}
{2, 7} : {13} {2, 9} : {4, 6, 10}
{2, 11} : {13} {2, 12} : {6, 13}
{2, 14} : {4, 6, 10} {2, 15} : {4, 6}
{3, 5} : {1, 6, 10, 11, 12} {3, 7} : {1, 11, 12}
{3, 8} : {4, 6, 10} {3, 13} : {1, 4, 6, 10, 11, 12}
{3, 14} : {4, 6, 9, 10, 15} {4, 5} : {1, 6, 10, 13}
{4, 7} : {1, 13} {4, 11} : {1, 3, 13}
{4, 12} : {1, 3, 6, 13, 15} {5, 8} : {6, 10, 13}
{5, 9} : {1, 6, 10} {5, 14} : {6, 10}
{5, 15} : {6, 12} {6, 7} : {1, 5, 12, 13}
{6, 11} : {1, 3, 5, 12, 13} {7, 8} : {13}
{7, 9} : {1} {7, 10} : {1, 5, 13}
{7, 15} : {12} {8, 9} : {4, 6, 10}
{8, 11} : {13} {8, 12} : {6, 13}
{8, 14} : {4, 6, 10} {8, 15} : {4, 6}
{9, 11} : {1, 3} {9, 12} : {1, 3, 6, 15}
{9, 13} : {1, 4, 6, 10} {10, 11} : {1, 3, 5, 13}
{10, 12} : {1, 3, 5, 6, 13} {10, 15} : {3, 4, 6, 9, 14}
{11, 15} : {3, 12} {12, 14} : {6, 15}
{13, 14} : {4, 6, 10} {13, 15} : {4, 6, 12}

Table 1 - Data for D(G2)

{1, 2} : {6, 10, 13} {1, 8} : {6, 10, 13}
{1, 14} : {4, 6, 9} {1, 15} : {3, 6, 9, 12}
{2, 3} : {6, 10} {2, 5} : {10, 13}
{2, 9} : {4, 6, 10} {2, 14} : {4, 10}
{3, 5} : {1, 6, 11, 12} {3, 7} : {11, 12}
{3, 8} : {6, 10} {3, 13} : {1, 6, 10, 12}
{3, 14} : {4, 6, 9, 15} {4, 5} : {1, 6, 10, 13}
{4, 12} : {1, 3, 6} {5, 8} : {10, 13}
{5, 9} : {1, 6} {6, 7} : {1, 5}
{6, 11} : {1, 3, 5, 12} {7, 10} : {5, 13}
{8, 9} : {4, 6, 10} {8, 14} : {4, 10}
{9, 12} : {1, 3, 6, 15} {9, 13} : {1, 4, 6, 10}
{10, 12} : {1, 3, 6, 13} {10, 15} : {3, 4, 6, 9}
{11, 15} : {3, 12} {13, 14} : {4, 10}

Table 2 - Data for D2(G)

bors of 6 and 13 include all the neighbors of 1. Moreover,
vertices 1, 6 and 13 are pairwise adjacent, and of course
6 > 1 and 13 > 1. Therefore Rule 2 eliminates vertex
1. Likewise vertex 3 is covered by 6 and 12, vertex 4 is
covered by 9 and 10, and vertex 11 is covered by 12 and
13. As a result, WuLi2(G2) = {6, 9, 10, 12, 13, 14, 15}. So
|WuLi2(G2)| = 7.

Next consider applying altered Wu-Li to G2. Two ver-
tices are a distance two apart in G2 if and only if they
are a distance three or four apart in G. Table 1 is a list
of such pairs of vertices {u, v}, together with the set of
all the vertices that are common neighbors of u and v in
G2, with the largest of these neighbors underlined. Col-
lecting all of the underlined numbers here, we see that
D(G2) = {1, 3, 6, 10, 12, 13, 14, 15}. So |D(G2)| = 8.

Lastly, consider the 2-CDS algorithm applied to the
graph G. Here only the pairs of vertices separated by a
distance 3 in G are considered. Moreover, for any such
pair, only vertices that lie between these two vertices along
a path of length 3 are considered for inclusion into the set
D2(G). The vertex among these paths with the highest ID
will be included. Table 2 is similar to Table 1, but contains
the data for forming D2(G) rather than D(G2).

So apparently D2(G) = {5, 6, 9, 10, 12, 13, 15} and
|D2(G)| = 7. Notice that this set contains the vertex 5,
while WuLi2(G2) does not. Also notice that the unique
shortest path from 7 to 6 does not contain an intermedi-
ary node from WuLi2(G2). Thus this set does not have the
shortest path property. By Theorem 2, the set D2(G) must
contain such a node, and have the shortest path property.

Generalization of d-CDS

The d-dominating set described in the previous section
can be implemented in a distributed way discussed in the
next section. But in fact, our method can be adjusted
slightly to produce even more general d-dominating sets,
and it is actually the implementation of this that will be
presented later. A practical motivation for this generaliza-
tion is the following. If we are willing to weaken somewhat
the shortest path property requirement for the set Dd(G)
described in Theorem 2, then it is reasonable to expect
that a smaller d-dominating set can be produced. In this
section, we will consider how this might be achieved, with
implementation details left until the next section.

Before presenting the technical details of the algorithm,
let us look at an example. Consider the example graph G
of the previous section and the set D2(G) produced by the
2-CDS algorithm. Now, suppose that we continue to use
exactly the same pairs as in 2-CDS, namely the pairs of
vertices separated by a distance 3 in G, but, for each such
pair {u, v}, take as candidates for inclusion into the set of
vertices being produced, all vertices that lie between u and
v along a path whose length is either 3 or 4, as was the
case in the altered Wu-Li algorithm example. This slight
flexibility in the path lengths now means that for each pair,
there are more candidates to consider. In a sense we are
now blending desirable aspects of the 2-CDS algorithm and
the altered Wu-Li algorithm: a small number of pairs to
consider, as with 2-CDS, but for each pair, a large number
of candidates, as with Altered Wu-Li. Both of these aspects
help reduce the size of the set produced (although this is
not evidenced by the small example presented here).

However, the properties of Theorem 2 have been com-
promised. The set need no longer be 2-dominating, nor
have the shortest path property. 2-domination can be re-
claimed by restricting, for each pair {u, v}, the associated
candidate vertices to those that lie within a distance two
of u and a distance two of v. So if a vertex lies along a
path of length four connecting u and v, then it will only be
considered a candidate based on this path if it lies midway
between u and v.

This example is a particular case of the generalized d-
CDS algorithm to be presented in this section, using the
parameter values d = e = 2, f = 3, g = 4. The expla-
nation for these values is that given any pair {u, v} of
vertices separated by a distance f = 3, we consider all
paths that connect u and v, but whose length does not
exceed g = 4, and along such paths, consider vertices w
that are within a distance d = 2 of u and within a distance
e = 2 of v. These vertices are the candidates for inclu-
sion into the set being constructed. As usual, the vertex

{1, 2} : {6, 10, 13} {1, 8} : {4, 6, 10, 13}
{1, 14} : {4, 6, 7, 9} {1, 15} : {3, 4, 6, 9, 12}
{2, 3} : {4, 6, 10} {2, 5} : {10, 13}
{2, 9} : {4, 6, 10} {2, 14} : {4, 6, 10}
{3, 5} : {1, 6, 10, 11, 12} {3, 7} : {1, 11, 12}
{3, 8} : {4, 6, 9, 10, 15} {3, 13} : {1, 6, 10, 11, 12}
{3, 14} : {4, 6, 9, 10, 15} {4, 5} : {1, 6, 10, 13}
{4, 12} : {1, 3, 6, 13, 15} {5, 8} : {6, 10, 13}
{5, 9} : {1, 6, 10} {6, 7} : {1, 5, 12, 13}
{6, 11} : {1, 3, 5, 12, 13} {7, 10} : {1, 5, 13}
{8, 9} : {4, 6, 10} {8, 14} : {4, 6, 10}
{9, 12} : {1, 3, 6, 15} {9, 13} : {1, 4, 6, 10}
{10, 12} : {1, 3, 6, 13} {10, 15} : {3, 4, 6, 9, 14}
{11, 15} : {3, 12} {13, 14} : {4, 6, 10}

Table 3 - Data for D2,2,3,4(G)

with the highest ID is admitted into the set. In general
the set is denoted Dd,e,f,g(G), and so in the present ex-
ample, the set is denoted D2,2,3,4(G). Table 3 shows the
data when this algorithm is applied to the example graph
G from the previous section. The resulting set is therefore
D2,2,3,4 = {9, 10, 12, 13, 14, 15}, and so |D2,2,3,4| = 6.

As suggested above, our general approach here is based
on four non-negative integer parameters: d, e, f and g. We
call it the Generalized d-hop Connected d-Dominating Set
(Generalized d-CDS) algorithm, and it is described as fol-
lows:

1. For each pair of vertices x and y, a distance f apart,
consider all paths from x to y whose length does not ex-
ceed g.

2. Consider the set Sd,e,g(x, y) of all vertices that lie on
at least one of these paths (including the endpoints), and
which are within a distance d of x and within a distance e
of y.

3. Define Ed,e,g(x, y) to be the vertex with the largest ID
among these vertices.

4. Define Dd,e,f,g(G) to be the set of such Ed,e,g(x, y) for
all pairs x and y, as above.

The set Dd(G) from the previous section is just the
special case Dd,d,d+1,d+1(G) here. Also, it should be
noted that in general the set Sd,e,g(x, y) and the vertex
Ed,e,g(x, y) can be defined for any vertices x and y, by sim-
ply taking Sd,e,g(x, y) =

{ z | δ(x, z) ≤ d, δ(y, z) ≤ e and δ(x, z) + δ(y, z) ≤ g },

and Ed,e,g(x, y) = max Sd,e,g(x, y), where “max” selects
the vertex with the maximum ID from a set of vertices. In
anticipation of the distributed algorithm in the next section
for computing Dd,e,f,g(G), we offer the following observa-
tions, where the notation w ∼ x means that the vertex w
is adjacent to the vertex x.

Theorem 3: Fix non-negative integers d, e, f and g.
Also, fix any two vertices x and y of G satisfying f =

δ(x, y).

1. If 0 < d, 0 < g, f ≤ g and e < f , then

Sd,e,g(x, y) =
⋃

w∼x

Sd−1, e, g−1(w, y),

and so

Ed,e,g(x, y) = max {Ed−1, e, g−1(w, y) | w ∼ x }
2. If 0 < d, 0 < g, f ≤ g and f ≤ e, then

Sd,e,g(x, y) = {x} ∪
⋃

w∼x

Sd−1, e, g−1(w, y),

and so
Ed,e,g(x, y) =

max{x , max {Ed−1, e, g−1(w, y) | w ∼ x } }.
3. If d = 0, f ≤ e and f ≤ g, or if f = 0, then Sd,e,g(x, y)
is {x}, and so Ed,e,g(x, y) is x.

4. In all other cases, Sd,e,g(x, y) is empty, so that
Ed,e,g(x, y) is undefined.

Proof: For item 1, consider first some z ∈ Sd,e,g(x, y).
This means that δ(x, z) ≤ d, δ(y, z) ≤ e, and there is a
path from x to y that goes through z, and whose length
does not exceed g. Since e < f , z 6= x. We may assume
that the subpath from x to z is as short as possible, i.e.
has length δ(x, z). Let w be the vertex immediately after x
along this path. So w ∼ x and δ(w, z) = δ(x, z)−1 ≤ d−1.
Consider the subpath from w to y that goes through z (i.e.
the original path without x). This path demonstrates that
z ∈ Sd−1,e,g−1(w, y).

Conversely, let w be any neighbor of x. Let z ∈
Sd−1,e,g−1(w, y). Consider a path from w to y through
z with length less than or equal to g − 1. Extend this to
a path (by adding one step) from x to y. Since δ(x, z) ≤
δ(w, z) + 1 ≤ (d− 1) + 1 = d, this path demonstrates that
z ∈ Sd,e,g(x, y). This establishes the first part of item 1.
The second part is an immediate consequence of this.

Item 2 is similarly proved, taking note however that now
x is an element of Sd,e,g(x, y), but it might not be an el-
ement of any of the Sd−1,e,g−1(w, y). Items 3 and 4 are
straightforward to check.

Note that it may be assumed that g ≤ d+e, since g > d+e
implies that Sd,e,g(x, y) = Sd,e,d+e(x, y).

Theorem 4: Fix non-negative integers d, e, f and g. As-
sume that the connected graph G has radius at least f , and
that 0 < d < f ≤ g ≤ d + e and 0 < e < f . Then the
set Dd,e,f,g(G) is a d-dominating set. Moveover, connect-
ing any two vertices u and v, there exists a path p̃ with the
following properties:

1. The set of vertices on p̃ that are also in Dd,e,f,g(G), to-
gether with u, form a path in Gd from u to a vertex whose
distance in G to v is less than f .

2. The length of p̃ does not exceed

δ(u, v) + max{0, b1 +
δ(u, v)− f

f − e
c} (g − f),

where bxc denotes the greatest integer less than or equal to
x.

Proof: The proof of the first part is essentially the
same as in Theorem 2. For any vertex x, there is a vertex
y with δ(x, y) = f , and then the vertex Ed,e,g(x, y) is both
in the set Dd,e,f,g(G) and within a distance d of x. Hence
Dd,e,f,g(G) is d-dominating.

The reasoning for the claim concerning a path p̃ from
u to v is analogous to the proof of a less general version
of this claim in Theorem 2. Begin with a shortest path
p from u to v. The idea is to successively alter this path
until a suitable path from u to v is obtained. If the length
of p (i.e. δ(u, v)) is less than f , then simply take p̃ = p
and observe that nothing needs to be shown in this case.
So assume otherwise. Let w be the vertex that is f steps
along p away from u, so that δ(u,w) = f . Let r be a path
from u to w that passes through Ed,e,g(u,w), and whose
length does not exceed g. Let u′ = Ed,e,g(u,w), which of
course is an element of Dd,e,f,g(G). Note that δ(u, u′) ≤ d
and that δ(u′, v) ≤ δ(u′, w) + δ(w, v) ≤ e + [δ(u, v)− f] ≤
δ(u, v) − (f − e). Let q be the subpath of r from u to
u′. Let p′ be any shortest path from u′ to v. Its length
does not exceed δ(u, v) − (f − e). The path from u to v
obtained by composing q with p′ has length bounded by
δ(u, v) + (g − f). This is because the length of r does not
exceed g, and δ(w, v) = δ(u, v)− f .

Now, if the length of p′ is not less than f , then treat
p′ as p was just treated, and hence obtain a vertex u′′ ∈
Dd,e,f,g(G), a path q′ from u′ to u′′ whose length is bounded
by d, and a shortest path p′′ from u′′ to v whose length
is bounded by δ(u, v) − 2(f − e). The path from u to v
obtained by composing q, followed by q′, followed by p′′,
has length bounded by δ(u, v) + 2(g − f). And so forth.

This process iterates until, after say m iterations, we
finally obtain a path p(m) from a vertex u(m) to v, whose
length is less than f . Now m cannot exceed m0, where this
is defined to be the minimum integer for which δ(u, v) −
m0(f − e) < f . It is thus seen that m ≤ m0 = b1 +
(δ(u, v)− f)/(f − e)c. Now consider the path p̃ defined as
the concatenation of q, q′, q′′ · · · q(m−1) and p(m). This path
has length bounded by δ(u, v)+m(g−f) which is bounded
by δ(u, v) + b1 + (δ(u, v)− f)/(f − e) c(g − f).

The second part of Theorem 4 is a worse case analysis of
the path lengths for acceptable routing paths. The average
case for these lengths is more difficult to analyze, but one
would expect that the average lengths are far shorter than
the bound given in Theorem 4. This is supported by our
experiments (see Chart 5).

In the next section, in connection with the application
of Theorem 3 as the basis of a distributed algorithm, the
following lemma will also be required.

Lemma 1: Fix two vertices x and y of the connected
graph G. Suppose that v0, v1, v2, ..., vk are vertices with x =
v0 ∼ v1 ∼ v2 ∼ · · · ∼ vk = y. Then for 0 ≤ i ≤ k,

δ(x, y)− i ≤ δ(vi, y) ≤ k − i.

Proof: δ(x, y) ≤ δ(x, vi) + δ(vi, y) ≤ i + δ(vi, y). This
establishes the lower bound. The upper bound is immedi-
ate.

A DISTRIBUTED IMPLEMENTATION

The nodes in an ad hoc network, described by a con-
nected graph G with uniquely labeled vertices (the IDs),
can be coordinated in order to compute the set Dd,e,f,g(G),
where it will be assumed that d, e, f, g are integers with
0 < d ≤ e < f ≤ g ≤ d + e. In fact, assuming that their
communications can be synchronized, each node only needs
to transmit g times, and simultaneously receive the cor-
responding messages from its neighbors, and then process
these messages. Theorem 3 and Lemma 1 provide the basis
for the approach to be taken for computing Dd,e,f,g(G).

In addition, each node x will learn about all of the nodes
within a distance g of itself, and (by means of an array
next node to) for each such node, y, will also know a
neighbor of x which is closer to y than x is. This can then
be used to route messages locally, i.e. within a distance g,
without the need to use the network backbone.

In the following implementation, each message will con-
sist of a number of ordered pairs or ordered triples of node
IDs. For the first g− d rounds of message passing, ordered
pairs will be transmitted. For the remaining d rounds,
ordered triples will be transmitted. To simplify the dis-
cussion, given a node x in the network, the integer ID(x)
will simply be denoted as “x”. Thus “x” must be read in
context. The algorithm is as follows.

Initialization: Each node x establishes two (possibly as-
sociative) arrays next node to and selected node, both
indexed by node IDs, and containing node IDs, initially
all NULL (the null node ID). Each node also maintains an
(ordinary) array nodes at a distance of lists (or point-
ers to lists) of node IDs. These are initialized so that
nodes at a distance[0] is a list consisting only of the
given node x’s own ID, while the other lists are empty.

After the k-th round of message passing, which
could occur either in phase 1 or phase 2, the list
nodes at a distance[k] will contain the nodes at a dis-
tance k from x. If y is such a node, then next node to[y]
will be the ID of a neighbor of x that is closer to y than x
is. These two arrays ultimately facilitate local routing to
nodes within g hops, as described later in this section.

Also, after the j-th round of phase 2, if a vertex y has
a distance from x in the range f − d + j to g − d + j,
then selected node[y] will be equal to the ID of the node
Ej, e, g−d+j(x, y). This array ultimately holds Ed,e,g(x, y),
and helps decide the set Dd,e,f,g.

Phase 1: For g−d rounds (j = 1, 2, ..., g−d), each node
x broadcasts to its neighbors, a message consisting of pairs
of the form: (x, s). On the j-th round x will broadcast such
pairs for vertices s satisfying δ(x, s) = j− 1. These are the
nodes included in its list nodes at a distance[j-1].

Upon receiving a similar pair (w, y) from one of its
neighbors, a node x checks to see whether or not its
next node to[y] is NULL. If so, then next node to[y] is
changed to w, selected node[y] is set to x, and y is added
to the list nodes at a distance[j]. The reason for this is
to initialize the array nodes at a distance prior to phase
2. As indicated above, setting j = 0, this should initially
equal E0,e,g−d(x, y), which in turn equals x since it must
be a node within distance zero of x.

Phase 2: For d rounds (j = 1, 2,, d), each node x now
broadcasts all triples (x, s, t) such that

1. f − d + j − 1 ≤ δ(x, s) ≤ g − d + j − 1, and

2. t = Ej−1, e, g−d+j−1(x, s).

The first of these two conditions can be managed via the ar-
ray nodes at a distance. The second condition amounts
to t equaling selected node[s] (as maintained by x dur-
ing round j). Note that when j = 1, the second condition
reads t = E0, e, g−d(x, s), which, assuming the first condi-
tion, means t = x because δ(x, s) ≤ g − d ≤ e.

Upon receiving all such triples from its neighbors for a
given round, a node x considers collections of triples that
share a common second entry y. Among these triples, let
(w, y, z) denote the one with the largest third entry. Note
that w must be adjacent to x. The node x now condition-
ally updates (if y is new to x) the entries next node to[y]
and nodes at a distance[g − d + j], essentially as was
done in phase 1, adjusting here to the fact that if y is a
newly discovered vertex, then its distance from x is g−d+j,
not j .

The ultimate goal is to compute Ed,e,g(x, y) for pairs
{x, y} with δ(x, y) = f . A subgoal during the j-th round
of phase 2, for each node x, is to compute Ej, e, g−d+j(x, y)
for relevant choices of y. Toward this end, Theorem 3 may
be iteratively applied. Lemma 1, setting i to d − j and
vi to the x here, implies that on the j-th round it is only
necessary to consider those y that satisfy

f − d + j ≤ δ(x, y) ≤ g − d + j,

which can be checked via nodes at a distance (as main-
tained by x).

Consider such a node y. If any triples having y as a
second entry have been received by x from transmissions
made during the previous round, then let (w, y, z) be as
described earlier, i.e. it has the largest third entry among
triples whose second entry is y. Otherwise, let z = NULL.
Define z′ to be x if δ(x, y) ≤ e, corresponding to case 2 of
Theorem 3. Otherwise, let z′ = NULL, corresponding to case
1. Let z′′ = max{z, z′}, where it is understood that NULL
is less than any actual vertex. Using Theorem 3, it can be

checked that z′′ is in fact the vertex Ej,e,g−d+j(x, y). This
value is now stored in selected node[y] (as maintained
by x).

Once this has been done for all appropriate nodes y,
the node x broadcasts a message consisting of the triples
(x, y, z′′) for which z′′ 6= NULL. After d rounds of this pro-
cess, each vertex x will have stored the value Ed,e,g(x, y) in
selected node[y], for each vertex y whose distance from
x falls in the range from f to g. Those whose distance is f
determine the set Dd,e,f,g.

Once the set Dd,e,f,g has been selected, routing informa-
tion can be gathered and maintained by the nodes of this
set. However, every node in the network will have already
learned about all of the other nodes in its g-hop neighbor-
hood, and so local messages can easily be passed between
nodes within a distance g of each other without involving
the backbone. This is achieved by means of next node to.

To manage general routing through the network, a rout-
ing process that involves only the d-dominating nodes in
the network can be implemented. Link state informa-
tion can be flowed from each dominating node to other
d-dominating nodes in its d-hop neighborhood. A d-
dominating node can keep information about the shortest
path length from it to the other d-dominating nodes in its
d-hop neighborhood. Upon receiving link state informa-
tion, each dominating node can build a weighted graph for
the whole network with each link in the graph having a
weight equal to the length of the shortest path between
the two d-dominating nodes. This graph can be used to
compute the shortest path between any two d-dominating
nodes.

Of course, each d-dominating node knows about all of the
nodes within a distance g of itself. When a shortest path
needs to be found from a non-dominating node to another,
the first node can query all the d-hop neighbors that are
d-dominating and find the best route to the other node by
comparing the path lengths returned by each after adding
the cost of the shortest path to that dominating node.

PERFORMANCE EVALUATION OF THE ALGORITHMS

We implemented the Generalized d-CDS algorithm
from the previous section. This was used to evaluate the
ordinary d-CDS algorithm (d + 1 = e + 1 = f = g), as well
as a variation of this that admits longer paths for the back-
bone candidate pools (d+1 = e+1 = f < g). We compared
these to the Wu-Li algorithm with optional use of rules 1
and 2, and also to the altered Wu-Li algorithm. Wu-Li
and altered Wu-Li were applied to the d-closure graph to
allow for sensible comparison with the d-CDS and general-
ized d-CDS algorithms. In this way, all of the algorithms
produced d-dominating sets.

The implementation was run on a single machine while
simulating the distributed nature of the algorithms. Each
node gathers the information it needs from its neighbor-
ing nodes and declares its results. While the above men-
tioned algorithms generate d-hop connected d-dominating
sets, they were also compared to the Max-Min algorithm,
which computes a d-dominating set.

Performance Metrics Used

1. Message cost: All messages are sent across the net-
work for a given algorithm until completion. At every step
of any algorithm, each node sends at most one message to
each of its neighbors.

Message cost is calculated as 1 packet whenever a node
transmits some information to a neighboring node at the
end of each step. There might be multiple set of informa-
tion that a node needs to transfer to a neighbor in any
given step. We assume that all that information can be
packed in a single message packet. Since the degree of each
node is bounded within a small value, we believe this is a
reasonable assumption to make.

Generalized d-CDS: Each message is sent to all the
neighboring nodes g steps. So the cost per node is g *
δ where δ is the node degree. Add to that the cost of send-
ing a selected message to every node in the d neighborhood
of the node selected as dominating node at the end of the
process.

d-CDS: Each message is sent to all neighboring nodes for
f steps. So the cost per node is f * δ where δ is the node
degree. Add to that the cost of sending a selected message
to every node in the d-hop neighborhood of the node se-
lected as dominating.

MaxMin: Each message is sent to all neighboring nodes
d floodmax round and then d floodmin round. So the cost
per node is 2 * d * δ where δ is the node degree.

WuLi (Rules 1 and 2): First a node sends messages to
its neighbors for d rounds to determine all the nodes to
which it is adjacent in the d-closure of the original graph.
Once every node knows its d-hop neighbors, it passes this
information to its d-hop neighbors so that each node can
compute rule 1 and rule 2 locally. This takes another d
rounds of messages to each neighbor. Thus totally, it takes
2 * d * δ messages per node.

altered WuLi: Similar to WuLi plus extra cost to let each
winner that has been selected in the d-hop neighborhood
of each node.

2. d-dominating set size: The number of nodes selected
in the d-dominating set by each algorithm.

3. Cumulative routing path length: For every pair of
nodes, the shortest paths connecting these in such a way
that backbone nodes are routinely encountered within d
hops, are determined. The length of all these paths is av-
eraged for each pair of nodes for the whole graph. This
determines the cumulative routing path length. Because of
the shortest path property, in the cases of Altered Wu-Li
and d-CDS, the paths of interest here will also be shortest
paths through the graph G from the source to the target.
In general, this is not the case for the other algorithms.

Each node, whether or not it is in the d-dominating set,
maintains information about all the nodes in a d-hop neigh-
borhood. (In the case of Generalized d-CDS, each node
must keep track of the nodes that are within f − 1 hops of
itself, not just d hops.) Since a local d-hop neighborhood
graph is available at each node, a node can figure out the
shortest path to any other node in its d-hop neighborhood.
To find the shortest path to any node not in the d-hop
neighborhood, a node contacts all the backbone nodes in
the d-hop neighborhood and queries for the shortest path
to the required node through that backbone node.

A routing process that involves only the backbone nodes
in the network can be implemented that flows link state
information from each backbone node to other backbone
nodes in its d-hop neighborhood. A backbone node keeps
information about the shortest path length from it to the
other backbone nodes in its d-hop neighborhood. Upon re-
ceiving link state information, each dominating node can
build a weighted graph for the whole network with each
link in the graph having a weight equal to the length of
the shortest path between the two backbone nodes. This
graph can be used to compute the shortest path between
any two backbone nodes.

Each d-dominating set node also keeps information about
the network as a whole. When a shortest path needs to be
found from a non-backbone node to another node, the first
node queries all the backbone nodes in its d-hop neighbor-
hood and finds the best route to the other node by com-
paring the path lengths returned by each after adding the
cost of the shortest path to that backbone node.

Methodology

For each experiment, a random disk graph was generated
and measurements were taken on it. A disk graph is a graph
in which a node is connected to all other nodes within a
geometric radius defined for the disk graph. This radius
can be seen as the coverage radius of a wireless link in the
ad-hoc network. A random disk graph with n nodes was
created by selecting random points in a 300 × 400 pixel 2-
D region. Each node is connected to all other nodes within
its coverage radius. As the number of nodes in the graph
increases, the degree of each node increases as there are
more nodes in the vicinity of any node.

We ran the experiments on graphs with varying num-
ber of nodes to compare different algorithms for producing
d-dominating sets, as the number of nodes were changed.
The algorithms considered were the Max-Min algorithm of
[2], different versions of the Wu-Li algorithm and the al-
tered Wu-Li algorithm applied to the graph Gd, as well
as the Generalized d-CDS algorithm with different values
of f . Note that all these algorithms are distributed and
constant-time. Hence, increasing the number of nodes has
no bearing on the cost per node. But, the cost of com-
putation and message costs depend on the degree of each
node in the graph. Our intention here is to understand the

Message Cost Vs Total Nodes in the Graph
(d=3)

0

4000

8000

12000

95 105 115 125 135 145
Total Number of Nodes

M
es

sa
g

e
C

o
st

Generalized 3-CDS MaxMin
3-CDS WuLi (Rules 1 & 2)
Altered WuLi

Chart 1: Message cost for d = 3

behavior of the algorithms as the density of the nodes in
a given area increases. In our setup, we achieve this by
simply increasing the number of nodes in the same pixel
2-D region. So, when we say we increase the number of
nodes or we increase the density of nodes, we imply we are
increasing the average degree of each node in the graph.

For every experiment, we ensure that the random graph
generated have a radius sufficient to run all variants of the
algorithms we consider. Specifically, we had the radius of
the graphs to be at least 2d for a given value of d.

Results

Overall, the Generalized d-CDS algorithm performed
very well compared to others in terms of the message costs
and cumulative routing path lengths. The d-dominating set
size for Generalized d-CDS was a little larger than that for
Wu-Li with rules 1 and 2 turned on. This is expected since
the Generalized d-CDS may add more nodes into the set
to ensure the shortest path property or an approximation
of this property (when f < g).

Chart 1 shows the message costs for each algorithm for
d = 3 averaged over a few steps of perturbations for some
graph. The basic Wu-Li with no rules applied has obviously
the least cost as it only involves the cost of finding the d
neighborhood for each node and then sharing neighborhood
information with each d neighbors. As rule 1 and rule 2
are applied, the cost increases. Hence, Wu-Li with both
rules has the higher cost when compared to d-CDS and
Generalized d-CDS. For the Generalized d-CDS, where
only cases with g = f have been investigated, the cost
increases as the value of f approaches 2d. So, among the
Generalized d-CDS versions, the one with f = d + 1,
i.e., d-CDS has the least cost and it is very much close
to basic Wu-Li. Min-Max has a cost that is equal to the
cost of WuLi with both rules as can be seen from their

Message Cost Vs Total Nodes in the Graph
(d=4)

0

4000

8000

12000

16000

95 105 115 125 135 145

Total Number of Nodes

M
es

sa
g

e
C

o
st

Generalized 4-CDS MaxMin
4-CDS WuLi (Rules 1 & 2)
Altered WuLi

Chart 2: Message cost for d = 4

message cost calculations. In both cases, each node sends
information to its neighbors 2d times.

Comparing Chart 1 to Chart 2, we can see as we increase
the value of d, the Generalized d-CDS gets more close
to basic Wu-Li in terms of messages exchanged. All the
Generalized d-CDS variants are upper bounded in cost
by the cost for Max-Min. The altered Wu-Li now incurs
more messages as it has to do more comparisons for each
selection into the d-dominating set. Note that Wu-Li with
both the rules turned on has the same message cost as
MaxMin. So in Charts 1 and 2, we see that the legends for
WuLi (rules 1 and 2) and MaxMin overlapped each other.

Charts 3 and 4 show the the d-dominating set size for
the various algorithms for d=3 and d=4 respectively. Wu-
Li with Rule 1 applied has the biggest dominating set.
The altered Wu-Li set is slightly better than this. The
Generalized d-CDS d-dominating sets follow the same
curve as the previous ones but are better than them. This
shows that the d-dominating set is affected by the connec-
tivity of each node. As the number of nodes increase, there
are more paths to be selected from and this increases the
chance of a node getting into the dominating set. On the
other hand, the Wu-Li with both rules has a much better
d-dominating set as does the one for Max-Min. The set
size remains the same as the node density increases. Re-
call that in our experiments, the nodes are constrained to
a certain region, so that increasing their number increases
their density and so too the vertex degrees. As the number
of nodes increase, since the connectivity increases propor-
tionally, there is an equal chance of eliminating some nodes
based on Rule 2.

Cumulative path lengths for Wu-Li with both rules is

Dominating Set size Vs Total Nodes in the
Graph (d=3)

0

10

20

30

40

50

75 85 95 105 115 125 135

Total Nodes in the Graph

N
u

m
b

er
 o

f
D

o
m

in
at

in
g

N

o
d

es

Generalized 3-CDS MaxMin

3-CDS WuLi (Rules 1 & 2)
Altered WuLi

Chart 3: d-dominating set size for d = 3

Dominating Set Size Vs Total Nodes in the
Graph (d=4)

0

10

20

30

75 95 115 135

Total Nodes in the Graph

N
u

m
b

er
 o

f
D

o
m

in
at

in
g

 N

o
d

es

Generalized 4-CDS MaxMin
4-CDS WuLi (Rules 1 & 2)
Altered WuLi

Chart 4: d-dominating set size for d = 4

compared with the cumulative path lengths for d-CDS. As
expected, d-CDS always finds the shortest path between
any two nodes. However, Wu-Li with both rules applied
misses the shortest path for quite a few pair of nodes. Chart
5 shows the how worse the cumulative path lengths found
by Wu-Li were as compared to the d-CDS ones. The y-axis
represents the the ratio of the difference in the cumulative
path lengths. If LWL is the cumulative path length for
Wu-Li and LGen is the cumulative path length for d-CDS,
then the y-axis shows (LWL − LGen)/LGen.

We see that as the value for d increases the percentage

Cum ulative Path length ratio (in percent)

0

2

4

6

8

10

12

14

16

2 3 4 5 6
d value

%
 p

er
ce

n
ta

g
e

Nodes = 200 Nodes = 250 Nodes = 300

 Chart 5: Cumulative path length ratio comparisons

difference in the cumulative path lengths go down. This is
because, more nodes are now directly connected to other
nodes. As the number of nodes increases, the nodes are
more connected (as discussed in Methodology section) and
consequently, more nodes are directly connected to other
nodes. Hence, the percentage difference decreases.

CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel approach of finding a
d-dominating set in an ad hoc wireless network that is also
d-hop connected and has a certain shortest path property in
some special cases. This is the basis of our routing scheme
which is also very efficient from a cost perspective.

We are exploring cost efficient alternatives to Rule 2 in
the Wu-Li algorithm. While we recognize that Rule 2 plays
a very useful role in controlling the size of the set, it also
sacrifices the shortest path property, and is costly to com-
pute. One of several approaches which we are currently
examining is the possibility of letting g exceed f in the
generalized d-CDS algorithm. We are also considering
the idea of changing the parameters used based on dynam-
ically obtained information about the network, like vertex
degree.

References
[1] A.D. Amis and R. Prakash. L. Load-Balancing Clusters in Wire-

less Ad Hoc Networks. Proceedings of ASSET 2000, Richardson,
Texas, March 2000.

[2] A.D. Amis, R. Prakash, T.H.P. Vuong and D.T. Huynh. Max-Min
D-Cluster Formation in Wireless Ad Hoc Networks. Proceedings
of IEEE INFOCOM’2000, Tel Aviv, March 2000.

[3] S. Bannerjee and S. Khuller. A Clustering Scheme for Higher-
archical Control in Multi-hop Wireless Networks. IEEE Infocom
2001, Anchorage, Alaska, April 2001.

[4] M. Chatterjee, S. Das and D. Turgut. WCA: A Weighted Cluster-
ing Algorithm for Mobile Ad Hoc Networks. Journal of Cluster
Computing (Special Issue on Mobile Ad hoc Networks), Vol. 5,
No. 2, April 2002, 193-204.

[5] Bevan Das and Vaduvur Bharghavan. Routing in Ad-Hoc Net-
works Using Minimum Connected Dominating Sets. IEEE Inter-
national Conference on Communications (ICC ’97), (1) 1997:
376-380.

[6] S. Guha and S. Khuller. Approximation algorithms for connected
dominating sets. Algorithmica, Vol 20, 1998.

[7] Charles E. Perkins. Ad Hoc Networking. Addison-Wesley, Upper
Saddle River, NJ, 2001.

[8] R. Ramanathan and M. Streenstrup. Hierarchically-organized
multihop mobile wireless networks for quality-of-service support.
Mobile Networks and Applications, Vol. 3, pp. 101-119, June 1998.

[9] R. Sivakumar, P. Sinha and V. Bharghavan. CEDAR: a Core-
Extraction Distributed Ad Hoc Routing Algorithm MIEE Journal
of Selected Areas of Communication, Vol. 17, No. 8, August 1999.

[10] P. Sinha, R. Sivakumar and V. Bharghavan. MCEDAR: Mul-
ticast Core-Extraction Distributed Ad Hoc Routing Algorithm
Proceedings of IEEE WCNC ’99, pp. 1313-1317, September 1999.

[11] C-K Toh. Ad Hoc Wireless Mobile Networks. Prentice Hall Inc,
Upper Saddle River, NJ, 2002.

[12] J. Wu and H. Li. Domination and Its Applications in Ad Hoc
Wireless Networks with Unidirectional Links. Proc. of Interna-
tional Conference on Parallel Processing (ICPP), Aug. 2000, 189-
200.

[13] Jie Wu and Hailian Li. A Dominating-Set-Based Routing Scheme
in Ad Hoc Wireless Networks. Special issue on Wireless Networks
in the Telecommunication Systems Journal, Vol. 3, 2001, 63-84.

