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Abstract

A longstanding problem in the representation theory of finite solvable groups, sometimes called the Taketa
problem, is to find strong bounds for the derived length dl(G) in terms of the number |cd(G)| of irreducible
character degrees of the group G. For p–groups an old result of Taketa implies that dl(G) ≤ |cd(G)|, and
while it is conjectured that the true bound is much smaller (in fact, logarithmic) for large dl(G), it turns out
to be extremely difficult to improve on Taketa’s bound at all. Here, therefore, we suggest to first study the
problem for a restricted class of p–groups, namely normally monomial p–groups of maximal class. We exhibit
some structural features of these groups and show that if G is such a group, then dl(G) ≤ 1

2 |cd(G)|+ 11
2 .

1. Introduction

In 1930, K. Taketa proved that finite monomial groups are solvable, and his proof implied that
the derived length dl(G) of the group G is bounded by the number |cd(G)| of irreducible complex
character degrees of G, i.e.,

dl(G) ≤ |cd(G)|.

Since p–groups are monomial, this bound in particular holds for p–groups.
In the 1970’s Isaacs picked up the problem and asked for more general and better bounds. Since
then, numerous people have worked on this problem, which we shall call Taketa problem henceforth
(see e.g. [8] for a more detailed account of the history of the problem), with the result that today
it is known that dl(G) ≤ 2|cd(G)| in general, and it is believed that there are universal constants
C1, C2 such that for any finite solvable group we have

(∗) dl(G) ≤ C1 log |cd(G)|+ C2.

This conjecture has first been stated early on by Isaacs for p–groups only, but today this is more
or less the only case for which it has not been proved yet, i.e., proving (∗) for p–groups essentially
will imply (∗) for arbitrary solvable groups (see [7]). So curiously enough, while establishing a linear
bound for p–groups is quite easy and the conjectural logarithmic bound arose from p–groups, it
turned out that the p–group case is the core problem in proving (∗) for arbitrary solvable groups. In
fact, it seems as if even the slightest improvement of Taketa’s inequality (such as dl(G) ≤ |cd(G)|−1
for large dl(G)) is almost out of reach of today’s techniques. This is evidenced by the fact that, to
the authors’ knowledge, there is only one result in this direction, namely Slattery’s result [17] that
if G is a p–group and cd(G) = {1, p, p2, . . . , pn}, then dl(G) ≤ n− 1, which is an improvement in a
very specialized situation. Recently A. Moretó could prove a logarithmic bound in the situation of
Slattery’s theorem. (His result is even more general, see [15, Theorem D].)
Moreover, the evidence supporting (∗) for p–groups stems from studying quite specific families of
p–groups, mostly Sylow subgroups of some classical groups, for which the character degrees are suf-
ficiently well–known. Given the abundance of p–groups, this evidence is not too strong, and there
might as well be a corner in the universe of p–groups where a counterexample is hiding.

In view of all these difficulties, in this paper we propose to start modestly on the problem by con-
sidering it for a very restricted class C of p–groups only that still in many ways catches the typical
behavior of p–groups and thus could provide essential insight for further progress on the problem.
In particular, it could be one of the places where a counterexample to (∗) is hiding, if one exists.
Otherwise, it should be possible to prove (∗) for groups in C (although we have not been able to do
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so).

The class C we have in mind is the set of all normally monomial p–groups of maximal class. In
Section 2 we will collect some basic structural properties of the groups in C, and we will also see
that for these groups |cd(G)| can be determined from the group structure without using character
theory. In Section 3 we will – via the Lazard correspondence – translate the Taketa problem to a
problem in Lie algebras which are easier to study.
Finally we will use our results to prove that

dl(G) ≤ 1
2
|cd(G)|+ 11

2

for all groups in C, thus giving a first improvement on Taketa’s bound (see Corollary 3.12(c) below).

2. Normally monomially p–groups of maximal class

In this section, we will investigate the structure of the groups in C and collect some useful informa-
tion on these groups. It is well–known that p–groups are monomial, i.e., every irreducible complex
character χ is induced from a linear character of some subgroup Uχ (depending on χ). If in an
M–group G for every χ ∈ Irr(G) the subgroup Uχ can be chosen to be normal in G, then (following
[10]) we call G normally monomial and also say that G is an nM–group. With this notation the
class C of groups we are interested in here is

C = {G | G is a normally monomial p–group of maximal class}.

For our study of this class of groups we make use of a characterization of nM–groups due to G. A.
How [2, 3] which immediately implies the following:

Theorem 2.1. Let G be a finite group with a unique minimal normal subgroup N , and let A be an
abelian normal subgroup of maximal order in G.

Then G is an nM–group if and only if the following hold:

(1) G/N is an nM–group and

(2) N ≤ [A, g] = 〈[a, g] | a ∈ A〉 for all g ∈ G−A.

Proof. This follows immediately from [2]. 3

Note that while the groups in C have quite a restricted structure, still C contains groups of arbitrary
derived length, as was shown in [10] and [16]. Hence it does make sense to study the Taketa problem
for the groups in C.

Now let G be a p–group of maximal class, that is, if |G| = pn and n ≥ 2, then cl(G) = n− 1. A lot
of structural information is available on p–groups of maximal class (see e.g. [4, III, §14]), and we
will freely use the basic well–known facts on these groups. We introduce some more notation that
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we will use for the rest of the paper.

Let G be a p–group of maximal class with |G| = pn and n ≥ 4. Let G = γ1(G) > γ2(G) > . . . >
γn−1(G) be the lower central series of G, and let G1 = CG(γ2(G)/γ4(G)). Then |G : G1| = p and
G1 is characteristic in G. Any maximal subgroup of G except for G1 is of maximal class.
We define Gi = Gi(G) = γi(G) for i ≥ 2 and G0 = G so that altogether G0 > G1 > . . . > Gn = 1 is
a characteristic series of G with G′ = G2. Also, if i ≥ 2, then Gi is the only normal subgroup of G
of index pi in G.
Moreover, as in [4, III, Def. 14.5 and Hauptsatz 14.7] we say that G is non–exceptional or of
non–exceptional type if and only if [Gi, G1] ≤ Gi+2 for i ∈ IN or equivalently if and only if
[Gi, Gj ] ≤ Gi+j+1 for all i, j with i + j > 2. If G is not non–exceptional, we say that G is ex-
ceptional or of exceptional type. The main results about exceptionality are due to Blackburn and
can also be found in [4, III, §14]. In particular, as G/Gn−1 is always non–exceptional, for studying
the Taketa problem on C, one often can assume that G is non–exceptional.
Let G = 〈G1, s〉 and G1 = 〈G2, s1〉 for suitable s, s1 ∈ G. If we define recursively si+1 = [s, si] for
i ≥ 1, then it is well–known that if G is non–exceptional, then Gi = 〈si, Gi+1〉 for i ∈ IN.

Non–exceptionality has good hereditary properties, as the following lemma shows.

Lemma 2.2. Let G be a non–exceptional p–group of maximal class of order pn with n ≥ 3 and let
H be a maximal subgroup of G with H 6= G1. Then H is a non–exceptional p–group of maximal
class of order pn−1, and we have

Gj(H) = Gj+1 for j = 1, . . . , n− 2.

Proof. By [4, III, Satz 14.22] we know that H is a p–group of maximal class. Now H �G and Gj(H)
is characteristic in H of index pj for j = 1, . . . , n− 2. Therefore Gj(H) is normal in G of index pj+1

(j = 1, . . . , n− 2), and so by [4, III, Hilfsatz 14.2b)] we have Gj(H) = Gj+1 for j = 1, . . . , n− 2. In
particular, G1(H) = G2 = G′, and therefore [G1(H), Gi(H)] = [G2, Gi+1] ≤ Gi+3 = Gi+2(H) for all
i ∈ IN. This shows that H is non–exceptional, and the lemma is proved. 3

Now we can study the groups in C. First we prove an important hereditary property of belonging
to C, showing that the groups in C are rather well–behaved.

Lemma 2.3. Let G ∈ C be non–exceptional and let H ≤ G be a maximal subgroup of G with
G1 6= H. Then H ∈ C and H is non–exceptional.

Proof. By Lemma 2.2 we know that H is a non–exceptional p–group of maximal class. It re-
mains to show that H is an nM–group. We prove this by induction on n, where |G| = pn. If n ≤ 3,
then H is abelian and everything is trivial. So let n ≥ 4. By Lemma 2.2 we have Gj(H) = Gj+1

for j = 1, . . . , n− 2. Now by induction, applied to G/Gn−1 and its maximal subgroup H/Gn−1, we
see that H/Gn−1 ∈ C. Thus by Theorem 2.1 we have to show that if A � H is a maximal abelian
normal subgroup of G and g ∈ H −A, then

[〈g〉, A] ≥ Gn−2(H) = Gn−1 (+).
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As n ≥ 4, H is not abelian. Let A be a maximal abelian normal subgroup of H. If |H : A| ≥ p2,
then obviously n ≥ 5 and again by [4, III, Hilfssatz 14.2b)] clearly A = Gj(H) = Gj+1 for some
j ∈ {2, . . . , n − 3} (which is nonempty). But then A is obviously also the maximal abelian normal
subgroup of G, and since G ∈ C and thus satisfies the conclusion of Theorem 2.1, obviously this im-
plies (+). Therefore as H is nonabelian, it remains to consider the case |H : A| = p. So if g ∈ H−A,
then H = 〈g,A〉 and thus [〈g〉, A] = H ′. Since |H/H ′| = p2, we have H ′ = Gj(H) = Gj+1 ≥ Gn−1

for some j ∈ {2, . . . , n − 2} and so altogether we get [〈g〉, A] ≥ Gn−1, as wanted. This finishes the
proof of the lemma. 3

We now take a closer look at the metabelian sections of the groups in C of exponent p.

Proposition 2.4. Let G be a p–group of maximal class and of exponent p. Suppose that there
are 1 < i < j such that γi−1(G)′ > γi(G)′ = . . . = γj(G)′ > γj+1(G)′. By [4, III, Hilfssatz 14.2b)]
there is a k > j such that γi(G)′ = γk(G) > 1. For U ≤ G write U = Uγk+1(G)/γk+1(G), and put
N = γi(G). Then the following hold:

(a) N = E ×A for an extraspecial group E with γk(G) = Z(E) and an elementary abelian group
A.

(b) γk(G) × A = Z(γi(G)) � G, in particular, there is an l such that j < l ≤ k and γl(G) =
γk(G)×A, and l − i is even. For s ∈ {0, . . . , l−i

2 } we have CN (γl−s(G)) = γi+s(G) = Es ×As

with Es ≤ E extraspecial of order |E|
p2s and A ≤ As ≤ Z(γi+s(G)) elementary abelian, d(As) =

d(A)+s and γl−s(G) = As×γk(G). Moreover, CN (γl−s(G)) = CG(γl−s(G)) for s = 1, . . . , l−i
2 ,

and γ l+i
2

(G) is the maximal abelian normal subgroup of γi(G) (and thus of G).

Proof. Clearly we may assume that γk+1(G) = 1. Now N/N ′ = γi(G)/γk(G) is elementary
abelian and N ′ has order p and N ′ ≤ Z(N). As exp(G) = p we can write Z(N) = N ′ × A
for an elementary abelian subgroup A. So now it is easy to see that for Ñ := N/A we have
Z(Ñ) = Z(N)/A = N ′A/A ∼= N ′: Namely clearly Z(N)/A ≤ Z(Ñ), and if x̃ = xA ∈ Z(Ñ), then
[〈x〉, N ] ≤ A and thus [〈x〉, N ] ≤ N ′ ∩A = 1, so x ∈ Z(N) and x̃ ∈ Z(N)/A.
Consequently Z(Ñ) = N ′A/A = (N/A)′ = Ñ ′ ∼= N ′ is cyclic of order p, i. e., Ñ is extraspecial of
exponent p. Thus we conclude that N = E × A where E ∼= Ñ is extraspecial with Z(E) = γk(G).
So (a) is shown.
By [4, III, Hilfssatz 14.2b)] there is an l ∈ IN such that γl(G) = Z(N) = γk(G) × A, and clearly
j < l ≤ k. Moreover N/Z(N) ∼= E/Z(E) and so l − i = d(N/Z(N)) is even. We prove the
statement on CN (γl−s(G)) in (b) by induction on s. For s = 0 the assertion is trivial. So let
s ≥ 1. By induction we see that CN (γl−s(G)) ≤ CN (γl−(s−1)(G)) = γi+s−1(G) = Es−1 × As−1

with Es−1 extraspecial, |Es−1| = |E|
p2(s−1) , As−1 elementary abelian, A ≤ As−1 ≤ Z(γi+(s−1)(G)),

and γl−(s−1)(G) = As−1 × γk(G) is abelian. Hence As−1 ≤ CN (γl−s(G)) � G and so γl−(s−1)(G) ≤
CN (γl−s(G)). As γl−s(G)/As−1 is of order p2 and a normal subgroup of the extraspecial group
γi+s−1/As−1

∼= Es−1, from the well–known structure of extraspecial groups we conclude that
CN (γl−s(G)) = Es−2×〈x〉×As−1 for a suitable x ∈ Es−1∩γl−s(G) and Es−2 ≤ Es−1 is extraspecial
of order |E|

ps . Moreover since |CN (γl−(s−1)(G))/CN (γl−s(G))| = p, we have CN (γl−s(G)) = γi+s(G).
If we put As = 〈x〉 × As−1, then obviously A ≤ As ≤ Z(γi+s(G)), A is elementary abelian,
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d(As) = d(A) + s and γl−s(G) = As × γk(G).
Finally observe that as CN (γl−s(G)) � G and CN (γl−s(G)) < N for s ≥ 1, we have CG(γl−s(G)) =
CN (γl−s(G)) for s = 1, . . . , l−i

2 . Also from the above it is clear that for s = l−i
2 we see that

γl−s(G) = γ l+i
2

(G) is the maximal abelian normal subgroup of G. So also (b) is proved. 3

Next we turn to the irreducible characters of the groups in C. We give a purely group theoretic
description of |cd(G)|.
As usual, we denote by Irr(G) the set of ordinary irreducible characters of G and write cd(G) =
{χ(1) | χ ∈ Irr(G)} for the set of the degrees of these characters.

Proposition 2.5. Let G ∈ C.
(a) Let i ∈ {0, 1, . . . , n − 1} and suppose that there is a 1 6= λ ∈ Irr(G′

i) with λ(1) = 1 and
G′

i+1 ≤ ker(λ). If µ ∈ Irr(Gi+1) is an extension of λ (which clearly exists), then µG ∈ Irr(G).

(b) Let χ ∈ Irr(G) with χ(1) 6= 1. Then there is an i ∈ {0, . . . , n − 1} and a linear µ ∈ Irr(Gi+1)
with µG = χ and such that for λ = µ|G′

i
we have λ 6= 1 and G′

i+1 ≤ ker(λ).

Proof. (a) Note that as λ 6= 1, we have n ≥ 3. Clearly we may assume that G′
i+1 = 1, so that Gi+1

is the unique maximal abelian normal subgroup of G. So there is an extension µ of λ to Gi+1. Now
by [5, Proposition 19.12] λ cannot be extended to Gi, as by hypothesis G′

i 6≤ ker(λ). Hence as G is
an nM–group, it follows easily that µG must be irreducible.
(b) As G is an nM–group, and χ(1) 6= 1, χ is induced from a linear character µ of some Gi+1 for
a suitable i ∈ {0, . . . , n− 2}. So clearly G′

i+1 ≤ ker(λ). Now if even G′
i ≤ ker(λ), then G′

i ≤ ker(µ)
and thus G′

i ≤ ker(χ), so that χ can be seen as an element of Irr(G/G′
i). Hence Gi/G′

i is an abelian
normal subgroup of G/G′

i and thus by Ito |G : Gi+1| = µG(1) = χ(1) divides |G/Gi| which is a
contradiction. Therefore G′

i 6≤ ker(λ) and we are done. 3

Corollary 2.6. Let G ∈ C. Define s(G) = |{G′
i | i = 0, . . . , n}|.

Then |cd(G)| = s(G).

Proof. By Proposition 2.5 we conclude that cd(G)−{1} = {|G : Gi+1| | i ∈ {0, . . . , n−1} such that
there is a 1 6= µ ∈ Irr(Gi+1/G′

i+1) with µ|G′
i
6= 1}. Now since for any i ∈ {0, 1, . . . , n−1} there exists

such a 1 6= µ ∈ Irr(Gi+1/G′
i+1) with µ|G′

i
6= 1 if and only if G′

i > G′
i+1, we conclude that

|cd(G)| − 1 = |{i | i ∈ {0, 1, . . . , n− 1} with G′
i > G′

i+1}|

which immediately implies |cd(G)| = s(G), as wanted. 3

3. Exploring C via Lie algebras

An important and rather well–known tool we have to use is a strong structure–preserving corre-
spondence between certain p–groups and certain Lie rings, which was discovered by W. Magnus (see
[13]) and later independently by M. Lazard (see [11]). It runs as follows:

Theorem 3.1. Let p be a prime, let Γp denote the set of finite p–groups (P, ·P ) (where ·P denotes the
group multiplication) whose nilpotency class is less than p, and let Λp denote the set of finite nilpo-
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tent Lie rings (L, [·, ·]L) (where [·, ·]L denotes the Lie bracket) whose order is a power of p and whose
nilpotency class is less than p. Then there exists a bijection φ : Γp → Λp with φ : (P, ·P ) 7→ (P, [·, ·]P )
for (P, ·P ) ∈ Γp (i.e., the set P remains the same under φ, so the set P carries a group structure
and a Lie ring structure at the same time), such that the following holds:

(1) If U ⊆ P , then (U, ·P ) is a subgroup of (P, ·P ) if and only if (U, [·, ·]P ) is a Lie–subring of
(P, [·, ·]P ), and (U, ·P ) is a normal subgroup of (P, ·P ) if and only if (U, [·, ·]P ) is an ideal of (P, [·, ·]P ).

(2) If (H, ·P ) and (K, ·P ) are normal subgroups of (P, ·P ), then the set of elements of the commu-
tator group [(H, ·P ), (K, ·P )] = 〈[x, y] | x ∈ (H, ·P ), y ∈ (K, ·P )〉 coincides with the set of elements
of the ideal 〈[x, y]P | x ∈ (H, [·, ·]P ), y ∈ (K, [·, ·]P )〉 of (P, [·, ·]P ) generated by all Lie brackets of
elements of (H, [·, ·]P ) with elements of (K, [·, ·]P ).
In particular, if (P (i), ·P ) for i ∈ IN are the subgroups of the derived series of (P, ·P ), then the
(P (i), [·, ·]P ) are the ideals of the derived series of (P, [·, ·]P ); so the derived lengths of (P, ·P ) and
(P, [·, ·]P ) coincide.
Likewise, if (γi(P ), ·P ) for i ∈ IN are the subgroups of the lower central series of (P, ·P ), then the
(γi(P ), [·, ·]P ) are the ideals of the lower central series of (P, [·, ·]P ); so the nilpotency classes of
(P, ·P ) and (P, [·, ·]P ) coincide.

Proof. This follows from the work Magnus [13] and Lazard [11]. (Alternatively, see [9, Exam-
ple 10.24 and the comments preceeding it]). 3

Since Lie rings are often easier to handle than p–groups (as becomes obvious by looking at the
corresponding Jacobi identities, for example), we will often work in the setting of Lie rings and then
via Theorem 3.1 translate the obtained results into statements about p–groups.

So to study the groups in C via Lie algebras, we will restrict ourselves to the class

Cp := {G | G ∈ C, G has nilpotency class less than p and G is non–exceptional of exponent p}.

This, however, is not a great restriction for studying the Taketa problem on C because if G is a
p–group of maximal class with dl(G) ≥ 4, by [12, Corollary 2.7] the class of G is at most 9p − 40,
and thus dl(Gp) ≤ 4. Hence if G has class ≥ p, then by [4, III, Hauptsatz 14.6 and Hilfssatz 14.14])

dl(G) ≤ dl(G/Gp) + 4 and G/Gp ∈ Cp.

We next reword the Taketa problem on Cp in terms of Lie algebras.

For any Lie algebra L, we define the derived Lie subalgebra by

L′ = [L,L] = 〈[u, v] | u, v ∈ L〉.

In general, for Lie algebras U, V we let [U, V ] = 〈[u, v] | u ∈ U, v ∈ V 〉.

Definition 3.2. Let p be a prime. We define a class Lp of Lie algebras in the following way:
L ∈ Lp if and only if the following hold:
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(a) L is a Lie algebra over GF(p).

(b) n := dimGF(p) L ≤ p

(c) There are e1, . . . , en ∈ L such that L = 〈e1, . . . , en〉, and if we put Li = 〈ei, ei+1, . . . , en〉 for
i ∈ IN (so that L1 = L and Lm = 0 for m > n), then

[L,Li] = [e1, Li] = Li+1 for i ≥ 2,

where [e1, U ] = 〈[e1, u] | u ∈ U〉 (generated as GF(p)–vector space) for any U ⊆ L.

Using the fact that [[Li, Lj ], Lk] ⊆ [[Lj , Lk], Li] + [[Lk, Li], Lj ], one can easily see (by induction)
that [Li, Lj ] ⊆ Li+j for all i, j. By [4, III, Hauptsatz 14.7] this shows that the (via Lazard) cor-
responding group of any L ∈ Lp is non–exceptional. Hence altogether the Lazard–correspondence
induces a bijection between Cp and Lp.

Remark 3.3. Let L ∈ Lp. Then the following hold.

(a) L′
i = [Li, Li+1] for all i

(b) [Li, Lj ] ⊆ Li+j for all i, j, more precisely [Li, Lj ] = Lk for all i, j and some k ≥ i + j.

Proof. (a) is trivial.
(b) follows immediately from the corresponding facts for the groups in Cp, but can also be shown
directly from the definition. 3

Example 3.4. Let p be a prime, n ≤ p and L = 〈e1, . . . , en〉 a GF(p)–vector space. Define the
bilinear form [·, ·] on L by putting [ei, ej ] = (i − j)ei+j and linearly extending this to arbitrary
elements of L. With this, L becomes a Lie algebra and even L ∈ Lp (see e.g. [10]).
At this point, except for trivial variations this seems to be the only known family of Lie algebras in
Lp with increasing derived length. We will refer to this family as the “standard example”.

Definition 3.5. For L ∈ Lp, define s(L) = |{L′
i | i = 1, . . . , n}|. Also, for k ∈ IN define the function

f : IN → IN by
f(k) = min{s(L) | L ∈ Lp and dl(L) ≤ k}

With this, the Taketa problem for Lp is to find good upper bounds for dl(L) in terms of s(L),
and any result on this is, via the Lazard correspondence, a result on the Taketa problem for Cp.

Note that we clearly have 1 ≤ s(L) ≤ n for L ∈ Lp with |L| = pn.
Furthermore, by Remark 3.3(b) the terms of the derived series of L are just a subset of {L′

1, . . . , L
′
n}
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which is why dl(L) ≤ s(L) for any L ∈ Lp. Hence f(k) ≥ k for all k ∈ IN.
Moreover, it can easily be checked that the standard example yields f(k) ≤ 2k−1 for all k ∈ IN. So
altogether we have

(∗∗) k ≤ f(k) ≤ 2k−1.

So is the true upper bound exponential or polynomial in k?
The conjecture is that it is exponential, and this conjecture is equivalent to Conjecture (∗) in the
introduction for the groups in Cp. As to the small values of k, by (∗∗) we obtain f(1) = 1, f(2) = 2
and 3 ≤ f(3) ≤ 4 and 4 ≤ f(4) ≤ 8. We will show below that f(3) = 3 and f(4) ≥ 5. More generally
we will see that f(k) ≥ 2k − 3 for all k ∈ IN.

The following settings will be used throughout the remainder of this paper.

Definition 3.6. (a) Let L ∈ Lp with |L| = pn and let e1 be as in Definition 3.2, and let e2 ∈ L2−L3.
It is then easy to see that if we successively define ei+1 = [e1, ei] (i ∈ IN), then ei ∈ Li−Li+1 for all
i = 1, . . . , n and ek = 0 for k ≥ n + 1; hence L = 〈e1, . . . , en〉.

(b) Now we introduce a “differential operator” d on L as follows:
For v ∈ L define d(v) = [e1, v]. Repeated operations of d are written as powers of d, and we put
d0(v) = v and dj(v) = 0 whenever j < 0.

(c) We also introduce the structural coefficients Ck
i,j ∈ GF(p) with respect to our specially chosen

basis {e1, . . . , en}, that is, we define them such that

[ei, ej ] =
n∑

k=1

Ck
i,jek for i, j ∈ {1, . . . , n}.

Next we will see that once [e2, e3], [e3, e4], . . . , [el, el+1] are given (i.e., the Ck
i,i+1 are given for

i = 2, . . . , l and k = 1, . . . , n), where l = n
2 − 1 if n is even and l = n−1

2 if n is odd, then this
already determines L completely (note that L′

l+1 = 0), that is, all the other structural coefficients
are determined. This can be useful for constructing examples.

Lemma 3.7. Let L ∈ Lp. Then for all i > 1 and j ≥ 0 we have

[ei, ei+j+1] = d([ei, ei+j ])− [ei+1, ei+j ]

and

[ei, ei+j+1] =
n−i∑
k=0

(−1)k

(
j − k

k

)
dj−2k([ei+k, ei+k+1]).

Proof. The first equation follows immediately from the Jacobi identity for e1, ei and ej . The second
equation follows by a routine induction on j. 3

The reader may compare the second formula in Lemma 3.7 to [1, Theorem 4.5].

Example 3.8. (a) We now can show that f(3) = 3. For this, we only have to construct an example
L with dl(L) = s(L) = 3.

9



The easiest such example seems to be the following:
Let p be a prime with p > 8, and put L = 〈e1, . . . , e8〉 with the ei as in Definition 3.6 and [e2, e3] = e7,
[e3, e4] = e7. (By Lemma 3.7 this fully defines L.)
The only other nonzero [ei, ej ] not involving e1 then are

[e3, e5] = [e2, e4] = e8, [e2, e5] = −e7 and [e2, e6] = −2e8.

It is easy to check that L has the claimed properties.
Note that this L really does not depend on p and also works over ZZ.
The next example will be different in this respect.

(b) Let F be a field and L an F–vector space with F–basis {e1, . . . , e13}. We try to turn this into
a Lie algebra by defining

[e1, ei] = ei+1 for i = 2, . . . , 12,
[e2, e3] = 37e7, [e3, e4] = −74e9, [e4, e5] = −111e11, [e5, e6] = −37e11 and [e6, e7] = e13.

Then we have the following:

α) If F = IQ, then this does not lead to a Lie algebra; some Jacobi identity will be violated.

β) If F = GF(37), then L ∈ L37, and dl(L) = s(L) = 3, so here we have another example showing
that f(3) = 3.

γ) If F = GF(223), then L ∈ L223, and dl(L) = 3 and s(L) = 6.

(c) The following is an example L ∈ L103 with dl(L) = 3 and s(L) = 7:
Let the ei be as in Definition 3.6 and put
[e2, e3] = e7, [e3, e4] = 2e9, [e4, e5] = 28e11, [e5, e6] = 107e13, [e6, e7] = −7e15, [e7, e8] = 2e15.
(This system is not consistent over ZZ, though.)

Example 3.8(b) and (c) were found and verified with the help of a program written in MATHE-
MATICA that takes as input the structural coefficients for [ei, ei+1] for i ≥ 2 and checks whether
this leads to a Lie algebra (i.e., it checks whether all the Jacobi identities are valid) for some prime
and if yes, it determines dl(L) and s(L). Despite this useful tool as of yet we have been unable to
produce a new interesting example (other than the standard example) of derived length 4.

We now start working towards our main results. The following result is the crucial step.

Theorem 3.9. Let L ∈ Lp. If L′
2 = L′

3 = Lm for some m ∈ IN, then L′
4 ≥ L2m−5.

Proof. If Lm = 0, then there is nothing to do. So let Lm 6= 0, then m ≥ 7. Clearly we may
assume that n = 2m− 5. Working towards a contradiction, we assume that L′

4 = 0.
First, observe that as [e2, e3] ∈ Lm ⊆ L7 and L′

4 = 0, we have [e2, e3, e4] = 0, where we use the

10



usual convention that [u, v, w] := [[u, v], w] for u, v, w ∈ L.
Second, observe that [e2, e4] = d([e2, e3]) by Lemma 3.7 and thus

[e4, e2, e3] = [e3, [e2, e4]] = [e3, d([e2, e3])]

=
n∑

k=m

Ck
2,3[e3, ek+1]

=
n∑

k=m

Ck
2,3

n−3∑
j=0

(−1)j

(
k − 3− j

j

)
dk−3−2j([e3+j , e4+j ]).

As L′
4 = 0 it further follows that [e3+j , e3+j+1] = 0 for j ≥ 1, so [e4, e2, e3] =

n∑
k=m

Ck
2,3d

k−3[e3, e4],

and as [e3, e4] ∈ Lm, for k ≥ m we have dk−3[e3, e4] ∈ Lm+k−3 ⊆ L2m−3 = 0, as n = 2m− 5.
Thus [e4, e2, e3] = 0.
Thirdly, consider

[e3, e4, e2] =
n∑

k=m

Ck
3,4[ek, e2]

= −
n∑

k=m

Ck
3,4[e2, ek]

= −
n∑

k=m

Ck
3,4

n−2∑
j=0

(−1)j

(
k − 3− j

j

)
dk−3−2j([e2+j , e3+j ])

= −
n∑

k=m

Ck
3,4(d

k−3([e2, e3])− (k − 4)dk−5([e3, e4])).

Now as for k ≥ m clearly dk−3([e2, e3]) ∈ Lm+k−3 ⊆ L2m−3 = 0 and for k ≥ m+1 also dk−5([e3, e4]) ∈
Lm+k−5 ⊆ L2m−4 = 0, we obtain

[e3, e4, e2] = Cm
3,4(m− 4)dm−5([e3, e4])

= (m− 4)Cm
3,4

n∑
l=m

C l
3,4el+m−5

= (m− 4)(Cm
3,4)

2e2m−5.

Now as m− 4 6= 0 and by the Jacobi identity we have

0 = [e2, e3, e4] + [e4, e2, e3] + [e3, e4, e2] = 0 + 0 + (m− 4)(Cm
3,4)

2e2m−5,

it follows that Cm
3,4 = 0.

But on the other hand, as L′
4 = 0, we have

Lm = L′
3 = 〈[ei, ej ] | i, j ≥ 3〉 = 〈[e3, ej ] | j ≥ 4〉 = 〈dj([e3, e4]) | j ≥ 4〉,

and this obviously forces Cm
3,4 6= 0. This contradiction proves the theorem. 3

Corollary 3.10. Let L ∈ Lp. Suppose that for some i ≥ 0 we have L′
2+i = L′

3+i = Lm+i. Then
L′

4+i ⊇ L2m−5+i.

11



Proof. Clearly we may assume that |L| = p2m−5+i. Now consider M = 〈e1, e
′
2, e

′
3, . . . , e

′
2m−5〉 ⊆ L,

where e′j = ej+i for j = 2, . . . , 2m − 5, and put M1 = M and Mj = 〈e′j , . . . , e′2m−5〉 = Lj+i. Then
also M ∈ Lp and M ′

2 = M ′
3 = Mm. Thus by Theorem 3.9 we have L′

4+i = M ′
4 ⊇ M2m−5 = L2m−5+i,

as wanted. 3

Note that Corollary 3.10 is more interesting than it seems at first sight. Naively, one might think
that generalizing Theorem 3.9 appropriately to the situation in Corollary 3.10 would yield only the
conclusion L′

4+i ⊇ L2(m+i)−5 = L2m+2i−5. Instead, we get the above stronger conclusion, so the
result gets more powerful as i increases.

Corollary 3.11. Let L ∈ Lp with dl(L) = k. Then s(L) ≥ 2k − 3. Thus also f(k) ≥ 2k − 3. In
particular, f(4) ≥ 5.

Proof. We may assume that k ≥ 3. Define mi ∈ IN (i = 0, . . . , k) such that L(i) = Lmi for
i = 1, . . . , k, so L′

mi
= Lmi+1 for i = 1, . . . , k − 1 and Lmk

= 0. So we have m0 = 1, m1 = 3 and
mi+1 ≥ 2mi + 1 and hence m1 > m2 > . . . > mk with mi+1 − mi ≥ 2 for i = 0, . . . , k − 1. Also
L′

m0
> L′

m1
> . . . > L′

mk
= 0. Next we establish the following:

Claim: For each i ∈ {1, . . . , k − 2} we have one of the following:
(1) L′

mi−1
> L′

mi−1 > L′
mi

or
(2) L′

mi
> L′

r > L′
mi+1−1 for a suitable r or

(3) L′
mi

> L′
r = 0 for some r.

To establish the claim, assume that (1) does not hold. Now as L′
mi−1

= Lmi and L′
mi−1 ≤ L2mi−1

and 2mi − 1 > mi, we have L′
mi−1

> L′
mi−1, and so (1) not holding means that L′

mi−1 = L′
mi

.
So let t ∈ ZZ be maximal such that L′

mi−1 = L′
mi

= L′
t = Lmi+1 (possibly t = mi) and note

that then mi+1 ≥ 2t + 1. Now as L′
t−1 = L′

t, we may apply Corollary 3.10 which yields that
L′

t+1 ⊇ L2(mi+1−t+3)−5+t−3 = L2(mi+1−1)−t ⊇ L2(mi+1−1), and as L′
mi+1−1 ⊆ L2(mi+1−1)+1, we con-

clude that if we put r = t + 1, then L′
mi

= L′
t > L′

r > L′
mi+1−1 if L′

r > 0 which is (2), or we get (3)
if L′

r = 0. This proves the claim.
Now by the claim we have |{L′

2, L
′
3, . . . , L

′
mk−1}| ≥ 2(k−2), as careful counting shows. Thus includ-

ing L′
1 = L3, we find s(L) ≥ 2k − 3, as wanted. This proves the corollary. 3

The fact that f(4) ≥ 5 can also be seen directly quite easily, using Theorem 3.9. It shows that also
in Cp there is no p–group G with dl(G) = |cd(G)| = 4. It is not known whether such a group can
exist.

We finally translate our results on Lie algebras back to groups. This gives us our main results.

Corollary 3.12. (a) If G ∈ Cp and dl(G) = 4, then |cd(G)| ≥ 5.

(b) If G ∈ Cp, then dl(G) ≤ 1
2 |cd(G)|+ 3

2 .

(c) If G ∈ C, then dl(G) ≤ 1
2 |cd(G)|+ 11

2 .
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Proof. (a) and (b) are immediate consequences of Corollary 3.11.
(c) Let G ∈ C of order pn. If G has class less than p, then G/Gn−1 is non–exceptional of exponent
p and so G/Gn−1 ∈ Cp, so that by (b)

dl(G) ≤ dl(G/Gn−1) + 1 ≤ 1
2
|cd(G/Gn−1)|+

3
2

+ 1 ≤ 1
2
|cd(G)|+ 5

2
.

So we may assume that G has class ≥ p. Recall from the beginning of this section that then
dl(G) ≤ dl(G/Gp) + 4 and G/Gp ∈ Cp. Hence by (b) we have

dl(G) ≤ 1
2
|cd(G/Gp)|+

3
2

+ 4 ≤ 1
2
|cd(G)|+ 11

2
,

and so we are done. 3

Note that in the proof of Corollary 3.12(c) by a more careful argument, applying Corollary 3.12(b)
also to groups 〈e1, ep, . . . , e2p−2〉 ∈ Cp etc. (where G = 〈e1, . . . , en〉, and n ≥ 2p− 2 in this case), one
could slightly improve the constant 11

2 in that result, but we did not deem this worth the effort.
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[10] L. G. Kovács, C. R. Leedham–Green, Some normally monomial p–groups of maximal class
and large derived length, Quart. J. Math. Oxford Ser. (2) 37 (1986), 49–54.

[11] M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. École Norm. Sup. 71
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