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SUMMARY 

There are two main purposes for conducting the sensitivity study. 

One is for the comparative evaluation of different circuits realizing 

the same network function. The other is for designing better circuits 

from the sensitivity viewpoint. To accomplish these, the most important 

step is to find a criterion that gives correct sensitivity information 

of the network performance. The objective of this research is to de

velop a new deterministic and statistical multiparameter sensitivity 

measure, and to develop a new formulation and algorithm of continuously 

equivalent networks which are used for sensitivity optimization of a 

given network function. 

The contribution of this research includes: 

1. Pointing out the shortcomings of the existing sensitivity 

measures. 

2. Proposing a new deterministic and statistical sensitivity 

measure. 

3. Developing a new multivariable continuously equivalent network 

formulation. 

4. Applying the new sensitivity measure to evaluate different 

circuits realizing the same network function and comparing 

the results with those obtained from traditional sensitivity 

measures. 

5. Using the newly proposed multiparameter sensitivity measure 

and multivariable continuously equivalent network theory to 
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obtain an optimal network for a prescribed network function. 

The optimal network obtained by th is method shows that the 

network performance has a far less var iat ion from the nominal 

point for f in i t e element tolerances than those obtained by the 

t r ad i t iona l methods. 

Several examples have been worked out based on the new measure 

and the new formalism. These examples include both active and passive 

networks. In the example of the optimization of a passive network, the 

new measure for the best network designed on the basis of the f i r s t -

order s ens i t i v i t y i s 2.473. This measure has been reduced to 0.044 

when the new technique is applied. This represents an improvement by 

a factor of approximately 56. 
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CHAPTER I 

INTRODUCTION 

Circuit sensitivity problem was first studied by Bode [1]. His 

classical definition of network sensitivity is closely related to the 

usual definition of the differential sensitivity 

x F * dx " d(£n x) 

where F i s the network function and x is the value of an element. 

Multiparameter Sens i t iv i ty Measures 

Since Bode, a number of different def ini t ions of multiparameter 

s ens i t i v i t y of a c i r cu i t have been proposed. Those defini t ions can be 

c lass i f i ed into two categories: 

1. Small-Change (or First-Order) Multiparameter Sens i t iv i ty 

So far , five different def ini t ions of multiparameter s e n s i t i v i t i e s 

have been proposed. Mikulski [2] proposed the multiparameter s ens i t i v i t y 

measure to be 

M = I J o £ n F ^ d(£nx.) = T SF d(£nx.) (1.1) 
v 8f£nx.) ^ iy v x. i 
i v i / 1 1 

where x. is the value of the ith element of the network. 
I 

Kuo and Goldstein [3] defined the multiparameter sensitivity as 

M = II S* \ (1.2) 
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Shoeffler [4] used another multiparameter sensitivity measure 

M = l\S F ,2 
x. 

l l 

(1.3) 

in optimizing his continuously equivalent networks. 

Assuming the variations of the elements of the network to be 

random variables with zero mean and known statistics, Rosenblum and 

Ghausi [5] defined the multiparameter sensitivity measure in a frequency 

range as 

M = E 

w, 

w, 

[VXF] 
Ax dw (1.4) 

where E denotes the expected v a l u e , V F = [9F /3x 1 . . . 9F /dx , ] (k i s the 

number of elements in the ne twork) , w. to uu i s the network o p e r a t i n g 

frequency range , and Ax i s the element v a r i a t i o n v e c t o r . The measure 

defined in (1.4) i s no t very useful because i t i s d i f f i c u l t to ca r ry 

out the c a l c u l a t i o n , t h e r e f o r e i t was modified t o read 

0), 

M = 
fV FT*t 

C l t p C l 

V FI a dw + I 2 Re TV Fl* t 

L F J 
C l t p C 2 

rv FI 
a dco 

u, w, 

^2 rv,F|*t t rv>,Fl 

w, 

where 
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P = E[Ax • Ax ] 

VaF = [ 8 F / 3 a n _ 1 , . . . , 3 F / 8 a 0 ] T : 

VbF = [ 9 F / 9 b n _ 1 , . . . , 9 F / 8 b 0 ] t 

F = 

1. n i n ~ l i. i-

b s + b n s + . . . + b , s + b n 

_n n-1 1 0 
m m-1 

s + a n s + . . . + a 1 s + an m-1 1 0 

C l = 

8a 
m-1 

1 3x. 

3a T m-1 
K 3x, k 

h 
1 3x, 

3 a, 

\ d: 

C = 

3b 
n 

1 3x, 

3b 
n 

vk 3x, 

3b 

1 W. 

3b, 

k 3x, 

Shenoi [6] used Hilberman's [7] b i q u a d r a t i c approach to s e n s i 

t i v i t y in forming a mul t iparameter s e n s i t i v i t y measure as 

M = 
mm 

x. 
i 

max 

i = l , 2 , : . . , N 
[0)^0X0)2 (| uAy(jO)) + gcrA (ju>) |) ] (1 .5) 

where N f i s the number of degrees of freedom in choosing the element 

values of a network, g i s chosen according to the pe rcen tage y i e l d 

s p e c i f i e d , and 

U A Y
 = ( yR + V? 

' 1 

YNi 
- S„ - 2 S 

n i i 

YNi V ^Di 

n 0 i 
+ 2 

d l i 
+ 2 SA 

d 0 i 
HA o o 



Ay 
i , j » k 

Ni n Di A 
S S - S, S K 

n, x. d, x . 
k j He j 

a . 
J 

YNiCw) = An|- n 2 i w + jn u a> + n Q i | 

YDi(w) = An | - d2 iw + jd1±a) + dQi 

Y(a>) = An|F(ja))| = E ( Y N , ( W ) - Yn, (w)) Ni Di 

n ... , > n n ^ . s + n , . s + n 

F(s) - n ^ 4 = n 2 l u 
Oi 

i - 1 Di<»> i - 1 d 2 . s 2 • d u s • d ^ 

YNi 9 yNi 
\ = \ 9nk 

s
n k ^ ^ k 
x . ~ nk 3x. 

Y Di 3Y 

\ ' - \ 
Di 

3 d k 

s ^ . x_i 3 dk 
x . d. 3x. 

a R : 

V 

V 

the standard deviation of r e s i s to r s 

the standard deviation of capacitors 

the mean value of the r e s i s to r s 

the mean value of the capacitors 
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Vi : the mean value of the o p e r a t i o n a l ampl i f i e r gain 
Ao 
A : the gain of the o p e r a t i o n a l a m p l i f i e r . 

The measures defined in (1.1) through (1.5) a l l depend only on 

the f i r s t d e r i v a t i v e or the l i n e a r term of the T a y l o r ' s s e r i e s expansion 

of a network funct ion about the nominal p o i n t . These measures are only 

good and meaningful i f the h i g h e r - o r d e r terms are n e g l i g i b l e . 

2. Large-Change Mult iparameter S e n s i t i v i t y 

Hakimi and Cruz [8] defined the mul t iparameter s e n s i t i v i t y mea

sure a t a s i n g l e frequency 0) as 

max AFfjuj,] 
M = W , , , . ! • * . * * i 0 < | e i | < 6 . (1 .6) F ( j U k ) [ 6 1 . 6 2 . . . 6 n ] 

where 6. i s the t o l e r a n c e on element x. and e. i s the ac tua l p e r - u n i t 
I I I

 r 

d e v i a t i o n , A x . / x . . Kelly [9] extended t h i s s ing le - f requency d e f i n i t i o n 

to a range of frequency 

°°2 
X(w) IF (a)) - F . (a)) Ida) (1 .7) 

J v ; | maxv J min J • 
M 

0) 

where F (a)) and F . (a)) are the maximum and minimum values, respec-
max J mm^ ' v 

tively, that the network function F(o)) can attain for element values 

contained in the element constraint set R. 

R = [x. (l-6.)x..T < x. < (1+6.)x-J L l v iy lN — l — v \J iNJ 

where x.„T i s the nominal value of element x. and 6. i s the t o l e r a n c e 
lN 1 1 

of element x.. A(w) is a weighting factor. 
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Among these def in i t ions , the M*s defined in (1.3) and (1.4) are 

s t a t i s t i c a l and the remainder are determinis t ic . 

Shortcomings of the Existing Multiparameter 
Sens i t iv i ty Measures 

In general, f i r s t -o rde r s ens i t i v i t y measures only give infor

mation on the charac te r i s t ics of a network function in the v i c in i ty of 

i t s nominal point . These quant i t ies may yield quite useful resu l t s in 

some applications when element var ia t ions or tolerances are small. 

However, for fa i r ly large element variat ions such as those that may 

occur in integrated and hybrid c i r c u i t s , the f i r s t -o rde r s ens i t i v i t y 

i s not only inadequate to describe the behavior but also misleading 

in many cases. 

For instance, the Hamilton-Sedra c i rcu i t [11] rea l iz ing the 

voltage t ransfer function of a band-pass f i l t e r 

v i r 
T('s) = - ^ - = 1 > 5 s 
U S J V. 2 1 

m s + i- s + 1 

is shown in Figure 1. For Q = 10, w = 1 radian per second and with the 

following nominal element values: 

1.00001 farads 

1.0001 farads 

2.00002 farads 

0.649 ohm 

2.167 ohms 

1.0 ohm 

1.0 ohm 

c l = C10 

C2 = C20 

C3 = So 
R4 = R40 

R5 = R50 

R6 = R60 

R7 = R70 
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Figure 1. Hamilton-Sedra Circuit 
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Ro = Ron = 10,000 ohms 
o oU 

R = R Q = 39.12 ohms 

Rio = Rioo = 1 ' ° ohm 

the var iat ions of the magnitude of the normalized t ransfer function 

versus c i r cu i t elements C, and C~ in the neighborhood of nominal point 

are depicted in Figure 2. When a l l the elements are at the i r nominal 

values the t ransfer function at w i s denoted by T . T(C2) represents 

the var ia t ion of the t ransfer function when CL is varied and a l l other 

elements are kept at t he i r nominal values. Similarly T(C,) represents 

the var ia t ion of the t ransfer function when C, i s varied and a l l other 

elements are kept at the i r nominal values. The sol id l ine in Figure 2 

represents the variat ion of the magnitude of the normalized t ransfer 

function T(C.), while the dotted l ine represents that of T(C2). Since at 

nominal point b the slope of the dotted curve T(CL) is smaller than 

that of the sol id curve T(C,), the f i r s t -o rde r s ens i t i v i ty with respect 

to C i s less than that with respect to C^. Nevertheless, when the 

values of the elements C, and C? are considerably less than t h e i r nomi

nal values (C^/C^~ - C,,/C2n = 1.0), the degradation in performance of 

the t ransfer function from the nominal with respect to C2 i s worse. 

For instance, when the element values C, and CL are changed from the i r 

nominal values point c to point d, the var ia t ion of the network 

function from the nominal point caused by the change C. i s ef and 

the variat ion of the network function from the nominal point caused 

by the change CL is eg. Obviously, eg i s larger than ef. This contra

dicts the conclusion one might infer from the f i r s t -o rde r s ens i t i v i ty 



1.2 

V C 1 0 0 r C2 / C20 
Figure 2 . Transfer Function P l o t v s . C. and C2 in Figure 1 
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measures. 

Another example of the s i tua t ion in which the f i r s t -o rde r sensi

t i v i t y can give misleading information i s the c i rcu i t of Figure 3. 

Assume the nominal element values are R = 0 . 0 1 ohm, L = 1.0 henry, 

and C = 1 . 0 farad, the variat ion of the magnitude of the driving-point 

admittance at w = 1 radian per second, when R and L are kept at t he i r 

nominal values and C i s considered to vary, i s depicted in Figure 4. 

The f i r s t -o rde r s ens i t i v i ty of the driving-point admittance magnitude 

with respect to C at the nominal point is zero, I ^ = 0. 
C=C 

8C 
•L=L 

O 

According to the first-order sensitivity, this circuit is extraordi

narily insensitive to the change in C. However, a 1 percent increase 

in C results in a 90 percent decrease in |Y(jl)|. Even a 0.2 percent 

increase in C results in a 29.1 percent decrease in |Y(jl)|. 

From these examples, it is seen that the first-order sensitivity 

can frequently give inaccurate information on network behavior. In 

other words, the first-order sensitivity is not always reliable as an 

index of the sensitivity of a network. 

The large-change sensitivity measures cited earlier give informa

tion at two extreme points for each element value change rather than at 

the nominal point. This usually gives a better description of the net

work behavior within the element tolerance limit. However, in general, 

the behavior of a network function is dependent upon all points in the 

element tolerance limit. For example, the two assumed network perfor

mance curves shown in Figure 5 behave differently except that they have 

the same magnitude at the nominal point b and the end points of the 

tolerance limit (a. and c). Even though the network performance on the 
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R 

•V\A-

Figure 3 . An RLC C i r c u i t 
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900 -

800 

n 

700 

>* 600 -

500 

400 

300 

200 

100 

0 ^ -I 1 1 L 

.97 .98 .99 1.0 1.01 1.02 1.03 
(Farads) C 

Figure 4. Plot of |Y(jl)| vs. C in Figure 3 
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x -6 o 

i . . l IAFI T - T . 
j — r l ' max mm 

t , 

x +6 o 

Ax 

Figure 5. Two Assumed Di f fe ren t Network Performance Curves 
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r ight behaves worse than the one on the le f t because for more values 

of Ax i t has a higher value of | A F | , the definit ions of large-change 

sens i t iv i ty given in (1.6) and (1.7) would both indicate that the two 

networks have the same sens i t iv i ty measure and, presumably, performs 

equally well . The misleading information that the f i r s t -o rde r sensi 

t i v i t i e s give is also shown clearly in Figure 5 where the slopes at 

the nominal point would indicate that the network on the r ight would 

perform be t t e r than the one on the l e f t . This i s exactly the opposite 

of the true p ic tu re . 

Continuously Equivalent Networks 

Once the c r i te r ion of sens i t iv i ty has been establ ished, a ne t 

work designer can use the sens i t iv i ty to evaluate network performances 

based on that c r i t e r ion . Methods can then be developed to optimize 

the design for a given network function. There has been some work 

done in th i s area [4, 12-20]. Optimization i s usually done by mini

mizing the sens i t i v i ty measure with respect to the designed (or nominal) 

element values e i the r for a fixed network configuration or for a ser ies 

of continuously equivalent networks [4] . The current theory of con

tinuously equivalent network i s derived from the work of Howitt [21] 

which i s based on the f i r s t -o rder s ens i t i v i ty measure. 

The Howitt theory says: Given an n+1 terminal n-port network N 

described by the admittance matrix Y , consider an n-port network N, 

whose admittance matrix Y, i s such tha t 

Y, = J\ Y A 1 o 
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J* = 
1 0 r 

A21 A22 

where 1 is a unit matrix of r x r, and^ and A are nonsingular. Then 

network N. is equivalent to network N as far as the first r ports are 

concerned. If^A = A , the congruence transformation is called the 

Howitt transformation. 

Schoeffler chose J\ = A = 1 + BAx where B = 0 

LbJ 

}r 
, 1 i s a unit 

matrix and proved that any solution to the d i f fe ren t ia l equation 

• ! 3r I = B t y ( x ) + Y ( 3 ° B > Y C 0 ) = Y
0 

(1.7) 

(where Y i s the n x n admittance matrix of the or iginal network) repre

sents a network which i s r-equivalent to the or iginal network ( i . e . , they 

are equivalent at the r ports formed by nodes l , 2 , . . . , r and the re fe r 

ence node, 0 < r < n ) . The network component vector s a t i s f i e s the 

equations 

dG_ 
dx 

= MG 

dC 
dx 
^- = MC 

dr 
dx 
=- = Mr 
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where 

G* = [ g 1 , g 2 - - - g n ] t 

c1 = [clfc2 y 1 

r ' = [ r 1 , r 2 , . . . , r j t 

g , >g?> - > - >g a r e t n e conductances; C^CLjC are the c a p a c i t a n c e s ; 

T 1 , r ? , . . . , r are the i nve r se inductances of the network components. 

The elements of the mat r ix M are l i n e a r sum of the elements of 

matr ix B. 

Cheetham [22] a l so provided an a l t e r n a t i v e technique to solve 

the same problem. Ins tead of choosing A = 1 + Bx, Cheetham chose 

A = 1 + Bx to perform the Howitt t ransformat ion and y i e lded the 

equat ion 

._ t t ? 
(1 .8) Y(x) = Yn + (B1^ + Y B)x + B*Y BX2 

o v o o o 

the t r ans fo rmat ion r ep resen ted by t h i s equat ion may be expressed for 

each component vec to r as 

E(x) = M1(x)EQ 

where E i s the appropr i a t e component vec to r of the o r i g i n a l network and 

the m x m ma t r ix [m = T n ( n + 1 ) ] M(x) i s i n the form of 
2 

M2(x) = 1 + Px + Dx 
2 (1.9) 

where P and D are r e a l m x m matr ix whose elements are l i n e a r l y dependent 

on those of mat r ix B. The c a l c u l a t i o n of the q u a d r a t i c equat ion (1 .9) i s 

s imple r than so lv ing the d i f f e r e n t i a l equat ion ( 1 . 7 ) . N e v e r t h e l e s s , h i s 

s e n s i t i v i t y op t imiza t ion was s t i l l l i m i t e d to the t r a d i t i o n a l f i r s t - o r d e r 
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sensitivity shown in equation (1.3). 

In the time domain, Leon and Yokomoto [23] used the Howitt 

theory on the state equation of a network, and thereby obtained new 

equivalent networks. The method is described briefly below. Assume 

that a given network N is represented by the state equations 

M x = - N x + b u 
o— o— — (1.10) 

w = d x (1.11) 

where 
— 

M = 
0 

C 
0 

°2 

°i 
L 

0 

N o = 

G 
0 

S 

3 

R 

(1.12) 

(1.13) 

a new network N rep resen ted by another s t a t e equa t ions 

M,.x = -N,x_ + bu 

such t h a t 

w = d x 

M, = AtM A A tb = b 
1 o 

N = A ^ A d ^ = dt 

i s r equ iva len t to N . 
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The matrices C and G are r x r matrices whose elements are l inear sums o o 

of the network capacitances c and conductances g. respectively with 

coefficients +1; L and R are (n-r) x (n-r) matrices whose elements are 

l inear sums of the network inductances I. and resis tances r . respec

t ive ly ; B and S are r x (n-r) matrices whose elements are +1, - 1 , or 

zero; and 0, and 0 are r x (n-r) nul l matrices. The elements g. in G 

are co-tree conductances and the elements r. in R are t ree res i s tances . 

Because of the r e s t r i c t ions on s t a t e equations in describing a 

network, th is state-equation time-domain method has more l imita t ions 

in generating equivalent networks than the preceding two methods. The 

optimization cr i te r ion Leon and Yokomoto used was also the t r ad i t iona l 

f i r s t -o rde r sens i t iv i ty measure shown in equation (1 .3) . 

Since networks generated by the Howitt theory are known to be 

incomplete, continuously equivalent networks derived from i t are also 

incomplete [24] . In Chapter IV a new formulation and algorithm of 

continuously equivalent network wil l be presented. 

Outline for the Thesis 

This research includes the following five facets and will be 

presented in tha t order. 

1. To point out the shortcomings of the exis t ing sens i t i v i ty 

measures which are e i ther limited in the i r va l id i ty or giving inaccur

ate or misleading information of the behavior of the network in the 

element tolerance space. This item has already been discussed in 

Chapter I . 

2. To propose a new determinist ic and s t a t i s t i c a l s e n s i t i v i t y 

measure which wil l overcome the shortcomings of the exis t ing s ens i t i v i t y 
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measures. This will be discussed in Chapter II. The newly proposed 

sensitivity measure will be called "All-tolerance Multiparameter 

Sensitivity." 

3. To develop a new formulation and algorithm for continuously 

equivalent networks in Chapter III. Continuously equivalent networks 

obtained by this new scheme will be called "Multivariable Continuously 

Equivalent Networks." 

4. A comparative evaluation of different circuits realizing 

the same network function will be discussed in Chapter IV. The evalu

ation includes: (i) Applying the all-tolerance multiparameter sensi

tivity measure to compare more meaningfully which of the circuits 

realizing the same network function is less sensitive. (ii) Comparing 

a series of equivalent networks by the newly proposed sensitivity 

measure with those obtained by the traditional sensitivity measure. 

5. To use the newly proposed multiparameter sensitivity measure 

and multivariable continuously equivalent network theory to obtain an 

optimal design for a prescribed network function. This will be dis

cussed in Chapter V. 

Finally, the conclusions derived from the research and recom

mendations for further work are presented in Chapter VI. 
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CHAPTER I I 

TOE ALL-TOLERANCE MULTIPARAMETER 

SENSITIVITY MEASURE 

For the comparative eva lua t ion of d i f f e r e n t c i r c u i t s r e a l i z i n g 

t h e same network funct ion and for the op t imiza t ion scheme for r e a l i z i n g 

b e t t e r networks to be meaningful, a s e n s i t i v i t y measure t h a t g ives 

accu ra t e information about the behavior of the network funct ion through

out the e n t i r e region of element values wi thin t h e i r t o l e r a n c e l i m i t s 

must f i r s t be formulated. As demonstrated in Chapter I , none of the 

e x i s t i n g s e n s i t i v i t y measures s e rves t h i s purpose w e l l . 

In t h i s chap te r , a new d e t e r m i n i s t i c and s t a t i s t i c a l s e n s i t i v i t y 

measure t h a t w i l l be more meaningful than the e x i s t i n g s e n s i t i v i t y 

measures w i l l be proposed. The proposed d e t e r m i n i s t i c mul t iparameter 

s e n s i t i v i t y measure i s used p r i m a r i l y to eva lua t e and design networks 

in small product ion volumes. The s t a t i s t i c a l one i s more a p p l i c a b l e 

to l a r g e - s c a l e product ions of u n i t s such as i n t e g r a t e d o r hybr id c i r 

c u i t s . The proposed s t a t i s t i c a l mul t iparameter s e n s i t i v i t y measure 

w i l l inc lude the cons ide ra t ion of t o l e r a n c e , the type of the p r o b a b i l i t y 

d e n s i t y funct ion (PDF), and the mean change of the element v a l u e s . 

Since the new d e t e r m i n i s t i c and s t a t i s t i c a l s e n s i t i v i t y measure i s 

a p p l i c a b l e to both the small-change and the la rge-change s e n s i t i v i t i e s , 

the new s e n s i t i v i t y measure w i l l be c a l l e d the " a l l - t o l e r a n c e m u l t i 

parameter s e n s i t i v i t y . " 
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New D e t e r m i n i s t i c and S t a t i s t i c a l Mul t iparameter 
S e n s i t i v i t y Measure 

The newly proposed s t a t i s t i c a l a l l - t o l e r a n c e mul t iparameter 

s e n s i t i v i t y i s : 

I = 

ou x +Ax 
2 f ° , k j 

A(w) 
i i n J 

o 1 ' w. x -Ax 
1 o 

F(x,w) - F(x ,w) | P d6dw (2.1) 

where x = f x , , x „ , . . . , x ) : the element value vec to r of the network v 1 2 n 

(or the random v a r i a b l e s of the network) 

x = (x, ,x^ , . . . , x ) : t h e nominal element v e c t o r of the 
o lo' 2o' ' no' 

network 

Ax = (Ax1 ,Ax«, •.. ,Ax ) : the tolerance vector of the elements 

2 2 2 
.,-.,, x, + x0 + .. . + x : the norm of x 1' o lo 2o no o 

P = joint probability density function of all elements x..,x?,...,x 

d6 = dx,,dx0,...,dx 1 2 * n 

w2,03 = the ope ra t i ng frequency range of the network (au > co,) 

A = weight ing f a c t o r 

k = a p o s i t i v e number 

% = a p o s i t i v e number 

When I = 0 , equat ion (2.1) becomes the d e t e r m i n i s t i c a l l -

t o l e r a n c e mul t iparameter s e n s i t i v i t y measure, i . e . , 

I = 

03.. X +AX 
' 2 r o f ° . k 

A(03) J |F(x,u)) - F ( X O , W ) | d6dw (2.2) • i T l 

o " w, x -Ax 
1 o 
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Simplified n One-Dimensional Integrals 

Equation (2.1) and (2.2) are (n+1)-dimensional i n t eg ra l s . The 

computation time required to evaluate such an in tegra l may be excessive. 

In order to make the calculation of the s ens i t i v i t y measure p r a c t i c a l , 

i t i s proposed that each of the in tegra ls be replaced by the sum of a 

number of n one-dimensional i n t eg ra l s . 

For the s t a t i s t i c a l sens i t iv i ty measure of equation (2.1) the 

correlated case and the uncorrelated case have to be considered separ

a te ly . 

(a) Correlated Case 

For the correlated case, equation (2.1) i s replaced by 

x . +Ax. 
m n 1 f "*° "* V Q 

I = H ~ A ( U > . ) | F ( X . , U > . ) - F(x . ,u>.)| P* dx. (2.3) 
x J i " y iJ 3o' i " x j 

J Jo x . -Ax. 
Jo J 

where m is the number of frequency points being calculated; n is the 

number of network elements; and P is the joint probability density 

function of element parameters x,,x2,...,x . 

It is noted that the integral with respect to frequency w within 

the operating frequency range u) to 0)2 is replaced by the summation of 

aggregated values that approximate the n one-dimensional points. The 

number m is chosen arbitrarily. When m is sufficiently large, the 

results from integration and summation will become very close. 

(b) Uncorrelated Case 

For the uncorrelated case, equation (2.1) is replaced by 
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x . +Ax. 
111 n l f 3 ° J , ,k 

I = Z Z -±-l X(w ) | F ( x ,(D.) - F ( x ,o) ) | K £ 
i i i J J ^n v 

j ' i " P dx. (2 .4) 
J Jo x . -Ax. j J 

Jo 3 

where P i s the p r o b a b i l i t y d e n s i t y funct ion of the element 
J 

parameter x . . 

S i m i l a r l y , the d e t e r m i n i s t i c a l l - t o l e r a n c e mul t iparameter 

s e n s i t i v i t y measure of (2.2) i s rep laced by the fol lowing summation 

of n one-dimensional i n t e g r a l s 

x . +Ax. 
m n r J o J , 

I = E I — A(u).) F (x . ,w . ) - F(x . ,o>.) dx. (2.5) 
1 J Jo x. -Ax. ° 

Jo J 

In g e n e r a l , the i n t e g r a l eva lua t ion needs to be c a r r i e d out 

through the computer by us ing numerical methods. Various numerical 

i n t e g r a t i o n methods such as the t r a p e z o i d a l r u l e , Simpson's 1/3 r u l e , 

Simpson's 3/8 r u l e , o r Simpson's 3- and 5-poin t approximations a re 

a v a i l a b l e in the form of computer s u b r o u t i n e s . The number of p o i n t s 

a t which the in t eg rand i s to be eva lua ted depends on the degree of 

accuracy r e q u i r e d . Usually a maximum p e r m i s s i b l e e r r o r between suc

ces s ive eva lua t i ons of the i n t e g r a l i s s e t in advance. The type of 

e r r o r comparison between success ive va lues of the i n t e g r a l can be 

r e l a t i v e or a b s o l u t e . For the purpose of eva lua t i ng the new measure, I , 

i t i s recommended t h a t the r e l a t i v e type e r r o r comparison be used 

s ince the value of the new measure, I , u sua l l y has a d i f f e r e n t range for 
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different problems. The absolute type error comparison can only be 

used when the range of I i s already known in advance, which i s usually 

not the case. 

For a certain maximum permissible er ror between successive 

calculated values of the i n t eg ra l , the reduction of the number of 

points at which the integrand i s to be evaluated can be quite substant ia l 

when the n-dimensional integral i s reduced to n one-dimensional i n t eg ra l . 

For instance, assume that 100 points are required for a r e l a t ive maxi-

_2 
mum error of 10 in one-dimension. Further assume that n i s 6. Then 

the to t a l number of points that the integrand must be calculated for 

n-dimensional in tegral will be (100) = 100 or 10 . However, the 

number of points that the integrand needs to be calculated for n one-

dimensional in tegral i s n * 100 = 6 x 100 or 600, which i s dramatically 

12 smaller than 10 

Even though the n one-dimensional in tegra ls give much less infor

mation on the network behavior than the (n+1)-dimensional i n t eg ra l , i t 

s t i l l gives much more information than any of the sens i t iv i ty measures 

mentioned in Chapter I . This i s to say that the quantity I defined in 

any of the equations (2.3) , (2 .4) , and (2.5) s t i l l gives considerably 

more informative than the exist ing s ens i t i v i t y measures. 

Figure 5 i s redrawn in Figure 6 in conjunction with the 

probabil i ty density functions of different kinds of element param

eters . From th is figure i t i s seen that not only the type of the PDF 

but also the mean change (u) of the element parameters play an im

portant role on the network performance. For ins tance, when u = 0, 

the network function F1 has a be t t e r performance when the probabi l i ty 



Network F Network F, 

Figure 6. Network Function and PDF 
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density function of the element parameter is Gaussian than when 

the PDF of the element parameter is uniform. This is because of 

the fact that the area between that part of the performance curve 

labeled efg and the |T| = IT lis weighted more heavily when the PDF is 

Gaussian than when it is uniform; while the opposite is true for those 

parts labeled bee and ghi. For the same reasoning, network F_ also 

performs better when the PDF of the network element parameter is 

Gaussian than when the network element parameter is uniform. 

If the PDF of the network element parameter is uniform, network 

F in Figure 6 will have a worse performance when y is positive (y > 0) 

than when y is negative (y < 0). The difference in the measure is 

dependent on the relative areas of the deviation that are weighted in 

one PDF but not in the other. When y > 0, the area in question is be

tween that part of the performance curve labeled hij and |T| = T I; 

while when y < 0, the area is between abc and |T| = |T |. The former is 

larger than the latter. The same conclusion cannot be reached for 

network F. by an inspection of Figure 6 since the relative areas of 

the network performance curve is no longer obvious. The new measure I 

needs to be calculated in order to determine what kind of y, positive 

or negative, will give a better performance when the PDF of the network 

element parameter is uniform. 

When I = 0 both equations (2.3) and (2.4) become equation (2.5). 

That is to say that the deterministic sensitivity measure is a special 

case of the statistical sensitivity measure. When k = l , m = l , n = l 

and both F(x. w.) and F(x. ,u>.) are real or are in the same phase the 
J* i J0 i 

value of I in equation (2.5) represents the shaded area shown in 
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Figure 6. For prac t ica l purposes i t is suggested that k = 2, £ = 1 

be used for the s t a t i s t i c a l cases of equations (2.3) and (2 .4 ) , and 

that k = 2 be used for the determinist ic case of equation (2 .5) . The 

value k = 1 i s not recommended especial ly when the s ens i t i v i t y measure 

is being minimized, since th i s value of k will cause trouble in evalu

ating the values of the p a r t i a l derivat ives of I with respect to the 

element parameters. In the numerical integrat ion algorithm, the de

nominator of the integrand of the p a r t i a l derivative of I with respect 

to any element parameters becomes zero at the nominal point . This, 

in turn, will make that integrand in f in i t e ly large and keep the com

puter from proceeding further without e r ro r s . 

A new formulation and algorithm of continuously equivalent ne t 

works—the multivariable continuously equivalent networks—will be 

presented in Chapter I I I . The application of the new a l l - to le rance 

multiparameter s ens i t i v i ty measure will be discussed in Chapter IV 

along with a ser ies of continuously equivalent networks. In Chapter 

V, the new a l l - to le rance multiparameter s ens i t i v i ty measure and the 

multivariable continuously equivalent networks wil l be applied to ob

tain an optimal network for a prescribed network function. 
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CHAPTER III 

THE MULTIVARIATE CONTINUOUSLY 

EQUIVALENT NETWORKS 

Continuously equivalent networks are a series of networks whose 

network functions are identical to that of a given network but whose 

element values are varied from one network to the next by an incremen

tal amount. Noting that the removal of an element between two nodes is 

the same as replacing it by an admittance of value zero and that adding 

an element between the nodes is equivalent to replacing a zero value 

admittance element by one with finite conductance, the topology or 

the configuration of the equivalent network can often be changed by 

this process. 

The purpose of generating a series of continuously equivalent 

networks is to establish a series of networks from which an optimal 

network can be found. In particular, the new techniques are more suit

able for thin-film and integrated circuits since the engineering of 

these circuits has changed some of the criteria by which networks are 

evaluated. For instance, the new technique places less emphasis on 

the number of network elements but requires designs which are fairly 

insensitive to changes in the element value. Under this circumstance, 

the continuously equivalent networks will serve as a good tool for 

finding an optimal network if (i) the networks generated by the theory 

and algorithm are complete, and (ii) the optimality criterion or the 

sensitivity measures used in the process of finding the optimal 
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network is effective. In Chapter I, it is mentioned that none of the 

existing theories and algorithms can generate continuously equivalent 

networks that are complete. In Chapter II, a sensitivity measure that 

serves the purpose of optimization has been proposed. In this chapter, 

a new formulation and algorithm for continuously equivalent networks 

will be developed. This new formulation and algorithm will have the 

following outstanding features: (a) the new scheme can grow both new 

meshes and new nodes with all types of new elements (R, L, and C) 

and, thereby, change the topology of the network; (b) the continuously 

equivalent networks produced by the new scheme are complete under cer

tain conditions. 

Instead of dealing with the continuously equivalent networks with 

one variable, the new scheme will use more than one variable. Therefore, 

the continuously equivalent networks obtained by the new scheme shall 

be called multivariable continuously equivalent networks. Two methods 

of changing the topology of a given network will be presented. One is the 

element growing method between any pair of existing nodes; the other is 

the node and element growing method. 

Element Growing Method Between a 
Pair of Existing Nodes" 

Given a network, one can assume that there is a component of 

each type (R, L, and C) between every pair of nodes. For those com

ponents which are not needed in the new equivalent network, the 

admittance values are set equal to zero. As an example, when this 

principle is applied to Schoeffler's original network, one can get the 

topology of the equivalent networks Schoeffler and Cheetham got or 
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the topology of the equivalent network Leon and Yokomoto got immedi

ately. The process is demonstrated in Figure 7. 

In this group of examples, network elements are limited to the 

lossless type (T and C). Schoeffler's original network is shown in 

Figure 7(a). In Figure 7(b) a component of each type is assumed to exist 

between every pair of nodes. The newly grown elements C, and T_ are 

shown as dotted branches. If one decides to include both newly grown 

elements C, and F, in the new equivalent network, the topology of the 

new equivalent network is exactly the same as the one obtained by 

Schoeffler and Cheetham which is shown in Figure 7(c). On the other 

hand, if one decides to include only one of the newly grown elements, 

say C,, in the new equivalent network, the topology of the new equiva

lent network will be exactly the same as the one obtained by Leon and 

Yokomoto which is shown in Figure 7(d). 

Once the new topology of continuously equivalent networks is 

obtained, a new network function can be formed in terms of the element 

parameters. Assuming the number of elements of the new network is n, 

the number of independent coefficients in the given network function 

is N . By equating each of the N coefficients, expressed in terms of 

element parameters in the newly formed network function to the coeffi

cients of the given network function there remain n - N unknown 

parameters. These n - N parameters are then used as independent vari

ables. The number n - N is usually greater than one. This is why 

the equivalent networks generated by this scheme are called multivari-

able continuously equivalent networks. 

The following example illustrates the proposed procedure. 
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o -1ST-

(a) Schoeffler 's original network 

1—nf^~i~ 

I 
(b) Network with newly grown elements 

o-

-rr^ o -nnr* 

(c) Schoeffler 's and Cheetham's 
equivalent network 

(d) Leon-Yokomoto's equiva
lent network 

Figure 7. Formulation of New Networks 
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Example 

Given a network function 

_ 3 , ~ T s + 2s b s + b , s 
7( . 5s + 12s _ 6 3 1 r - n 

" , 4 0 0 2 1 Q " 4 11 2 ' 4 2 ^'L) 

6s + 22s + 1 8 s + -=- s + 3 s + a~s + aQ 

which i s r e a l i z e d in Figure 8 with element va lues shown below 

,-1 

-1 

T = 0 . 0 2 henry" 

T2 = 1.50 henry 

C2 = 1.20 farads 

C3 = 0.00833 farads 

Following the element growing method s t a t e d above, a new equ iva len t 

network having the same Z(s) as i n Figure 8 i s obta ined in Figure 9. 

The network funct ion with i t s c o e f f i c i e n t s expressed in terms of e l e 

ment parameters i s 

V X 3 3 V X 6 

z f
 Xl ( V X 3 } + V 3 S \ ( V X3}+X2X3 S 

" -*, X 4 ( W *X5 C V X 3 J tX6 C V V 2, X4 < Vx6>+XSX 6 
X 1 ( X 2 + X 3 J + X 2 X 3 * + X 1 ( X 2 + X 3 } + X 2 X 3 

_ B 3 ( x ) s 3 • B l ( x ) s ( 3 2 3 

" 4 2 
s + A (x)s + AQ 

Setting equation (3.2) equal to (3.1), one gets 
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o~ 

ri 

•^nr-

Z(s) T- C 

Figure 8. Circuits Realizing Equation (3.1) 

o-
x 

Z(s) 4 -b 

Figure 9. A New Equivalent Network 



34 

B 3 ^ ^ ( y ^ ? x 2 x 5 - | = b 3 C3.3) 

X 4 + X5 
B (x) = — 7 Z - — = 2 = b . (3.4) 

\K } x x (x 2 +x 3 ) + x 2 x 3 1 

A r , X 4 ( X 2 + X 3 } + X5(xl+39 + X 6 ( W 11 
V X ) =

 Xl(x2+x5) * x2x5 = X = a2 <3-5) 

W V X5X6 
Art(x) = - i , b - — = 3 = a„ (3 .6) 

0 x x (x +x ) + x x 0 

In equat ion (3.1) the number of independent c o e f f i c i e n t s i s 4 , 

(a , a „ , b , and b_) , i . e . , N = 4 . In Figure 9 the number of elements 

in the new network i s 6, i . e . , n = 6. Solving equat ions ( 3 . 3 ) , ( 3 . 4 ) , 

( 3 . 5 ) , and ( 3 . 6 ) , t he re remain n - N = 6 - 4 = 2 unknown pa ramete r s . 

These two unknown parameters are then used as independent v a r i a b l e s . 

The new networks of two independent v a r i a b l e s are m u l t i v a r i a b l e con

t i nuous ly equ iva len t networks compared to S c h o e f f l e r ' s and Cheetham's 

equ iva l en t networks of a s i ng l e v a r i a b l e . 

After the new equ iva len t network with newly grown elements are 

determined, the genera l procedure for g e t t i n g the va lues of the elements 

of the new network for the general case i s o u t l i n e d below. 

Given a network funct ion 

b s13 + b , sP~ + . . . + b , s + b n 

^ - -i ^ l—- ^ 
s n + a , s n + . . . + a , s + aQ 
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where p + q + 1 = N i s the number of independent c o e f f i c i e n t s , a new 

network funct ion with c o e f f i c i e n t s as funct ions of the element parameters 

x , , x ? , . . . , x i s formed from the new equ iva len t network. Using the 

n o t a t i o n x = ( x , , x „ , . . . , x ) the new network funct ion becomes v 1 2 n 

B fx)s P + B^ 1 ( x ) s P " 1 + . . . + B 1 (x)s + B (x) 
F(s) = - ^ ^ - - (3 .8) 

s q + Aq_1(x) s01"1 + . . . + A 1 (x)s + AQ(x) 

Setting equation (3.8) equal to equation (3.7), N equations are 

obtained as follows. 

B (x) = b^ A ,(x) = a . 
P P q-1 q-1 

B . (x) = b A 0 (x) = a 0 

p-1 p-1 q-2^ q-2 

(3.9) 

B1(x) = bx Ax(x) = ax 

BQ(x) = bQ AQ(x) = aQ 

With N element values constrained by the N equations in (3.9), the 

remaining n - N element values are free to vary. That is to say, the 

values of n - N element parameters can be chosen arbitrary as one 

desires. Once the values of n - N element parameters are chosen, 

the remaining values of N parameters can be obtained by solving the 

N simultaneous equations in equation (3.9). 

Node and Element Growing Method 

In addition to the fact that elements can be added between 
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existing nodes, new nodes and new elements can be grown out of a given 

network. This is illustrated in Figure 10. The original network is 

shown in Figure 10(a). The new network with newly grown nodes and ele

ments is shown in Figure 10(b) where N.. , N , and N, are newly grown 

nodes and T , g , S- , I , and i? are newly grown elements. It is noted 

when the values of T g , S1 , % , and %~ are zero, the topology of the 

new equivalent network in Figure 10(b) is the same as the topology of 

the original network in Figure 10(a). It is also noted that newly 

grown elements are not in the same unit. The unit for r is henry , 

g1 mho, S1 farad" , and I £ %2 henry. The rule to determine the 

unit of a newly grown element in an equivalent network is that when 

the value of a newly grown element is zero, the topology of the new 

equivalent network should be the same as the original network. 

Once the new network is grown, the algorithm of getting the 

values of the element parameters is basically the same as the element 

growing method in Section 3.1 except some minor modifications. 

When nodes are grown, the network function of the newly grown 

equivalent network will not have the same degree as the original given 

network function. Therefore, function in equation (3.7) is modified to 

equation (3.10) below. 

B (x)sP+k+...+B sP+1
+B (x)s

P
+B 1s

P"1
+...+B (x)s+B0(x) 

F(s) = -£-^ r V^ 2 j— 2~ 
A (x)sq +...+A (x)sq+Aq'1(x)sq'1+...+A1(x)s+A()(x) 

(3.10) 

Equation (3.9) is correspondingly modified to (3.11) below. 
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(a) Or ig ina l network 

--^fP-

g1 (mhos) 

S ( f a r a d s " ) 

I , £ ? (henr ies ) 

T (henry ) 

(b) New equivalent network with newly grown elements 
(g1,S1>£ ,£ , and I\) and nodes (N^N , and N ) 

Figure 10. Node and Element Growing Scheme 
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B p + k (x) = 0 A q + k (x ) = 0 

B _(x) = 0 A _(x) = 0 
p+1^ J q+1 

B (x) = b A (x) = 1 (3.11) 
p v J p q 

B . (x) = b , A . (x) = a , 
p - l v J p -1 q - l v J q-1 

Bx(x) = b x Ax(x) = a 

BQ(x) = bQ AQ(x) = aQ 

Now the number of c o n s t r a i n t equa t ions becomes N = p + q + l + 2k. The 

r e s t of the a lgor i thm i s the same as the element growing method in the 

p rev ious s e c t i o n . 

Completeness of the Proposed M u l t i v a r i a b l e 
Continuously Equivalent Networks 

Given a network funct ion F(s) in equat ion (3.7) which i s r e 

pea ted below. 

b s * + b , sP~ + . . . + b . s + brt 

F(s) = -2 & 1 2. (3.7) 
q q-1 J 

s n + a , s n + . . . + a , s + a, q-1 1 1 

If all possible values of the elements in a network with certain 

topology satisfy the given network function cannot be obtained 
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by the algorithm of a continuously equivalent network, then the con

tinuously equivalent networks generated by this algorithm are incom

plete. In Chapter I it is mentioned that the existing theories and 

algorithms of continuously equivalent networks are derived from the 

Howitt theory. The networks generated by the Howitt theory are known 

to be incomplete. Therefore the continuously equivalent networks 

generated by the existing algorithms are incomplete [24]. 

For the proposed multivariable continuously equivalent networks 

the constrained equations (3.9) of obtaining the element values of the 

new network are tied to the given network function directly as shown 

below. All element values that satisfy the given network function 

A T (x) = a , 
q-1 J q-1 

A „(x) = a n q-2v q-2 

(3.9) 

Ax(x) = a1 

AQ(x) = aQ 

can be obtained from equation (3.9) if all the roots of equation (3.9) 

can be found. If the roots of equation (3.9) can be obtained in closed 

form, there is no doubt that all the roots can be found. Then the 

continuously equivalent networks obtained are complete. In other 

words, there are no networks which satisfy equation (3.7) that cannot 

be obtained from equation (3.9) as long as all the roots of equation 

(3.9) can be obtained. Hence the multivariable continuously equivalent 

B (x) = b 
P P 

B . (x) = b . p-lv p-1 

Bx(x) = bx 

BQ(x) = bQ 
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networks obtained by the proposed algorithm are complete if equation 

(3.9) can be solved in closed form or if all the roots of equation 

(3.9) can be found. On the other hand, the multivariable continuously 

equivalent networks would not be complete if the equations in (3.9) 

are nonlinear and cannot be solved explicitly. 

In Chapter IV, the new all-tolerance multiparameter sensitivity 

measure will be applied to evaluate different networks realizing the 

same network function and the results will be compared with those ob

tained from the traditional sensitivity measures. The convergence prob

lem of carrying out the numerical integration in finding the value of 

the new measure will also be discussed in Chapter IV. The variation 

of the new measure,I, versus the variation of network elements will be 

surveyed first in Chapter V. Then the new measure will be applied to 

obtain an optimal network along with the multivariable continuously 

equivalent networks. 
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CHAPTER IV 

COMPARATIVE EVALUATION OF DIFFERENT CIRCUITS 

For a given network func t ion , t h e r e e x i s t many d i f f e r e n t c i r c u i t s 

t h a t r e a l i z e t h a t same network func t ion . To determine which amongst a l l 

of them gives the be s t performance i s important e s p e c i a l l y from the 

p o i n t of view of mass p roduc t ion . For i n s t a n c e , t he re are n e a r l y 100 

active-RC c i r c u i t conf igura t ions t h a t have been proposed during the 

l a s t ten yea r s for the r e a l i z a t i o n of low-pass , band-pass , a l l - p a s s 

r e sponse , e t c . Without a good c r i t e r i o n one w i l l have a g rea t deal 

of d i f f i c u l t y in choosing the r i g h t one to u se . In t h i s chap te r , the 

proposed new s e n s i t i v i t y measure w i l l be app l ied to compare more mean

i n g f u l l y which of the c i r c u i t s r e a l i z i n g the same network funct ion i s 

l e s s s e n s i t i v e . The new s e n s i t i v i t y measure w i l l a l so be used to 

eva lua t e a s e r i e s of cont inuously equ iva len t networks and the r e s u l t s 

w i l l be compared with those ob ta ined by the t r a d i t i o n a l s e n s i t i v i t y 

measure. 

Applying the Al l -Tolerance Mult iparameter S e n s i t i v i t y 
Measure to Compare C i r c u i t s Rea l iz ing the 

Same Network Function 

Two b i q u a d r a t i c band-pass c i r c u i t s t h a t are p r a c t i c a l and known 

to have low sensitivity performance will be chosen for the purpose of 

comparison. They are the Deliyannis-Friend c i r cu i t [25,26] and the 

Hamilton-Sedra c i rcu i t [11] shown in Figure 11. Since the s ens i t i v i t y 

measure of a band-pass c i rcu i t generally decreases as the number of 



(a) Deliyannis-Friend Circuit 

V. O—'W in 

r~i 

X, R7 
— v v R, 

•A 1 1—vV -̂i 

1 R10 R5 1 

• o V 

(b) Hamilton-Sedra C i r c u i t 

Figure 11 . Two Band-pass C i r c u i t s , D-F and H-S 
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operational amplifiers increases , the comparison of the c i rcu i t s should 

be made only between c i rcu i t s that have the same number of operational 

amplifiers. The Deliyannis-Friend c i rcu i t and the Hamilton-Sedra c i r 

cui t both use a negative beedback around the single operational ampli

f i e r . The open-loop gain of the operational amplifier i s chosen to be 

90.4 dB, or 33,110, at 1 kHz for a typical operational amplifier pro

vided with some internal compensation. This frequency is normalized 

to a radian frequency of unity and the nominal band-pass t ransfer func

tion i s given by 

T(s) = - j ±±^2 (4.1) 
s + (Q)S + 1 

By using the sensitivity measure M defined in equation (1.5) Shenoi 

was unable to tell the difference in network performance between the 

two circuits. This is shown in Figure 12(a). The values of the ele

ments of the two circuits for different values of Q for Figure 12(a) 

are shown in Tables 1 and 2. 

The proposed new sensitivity measures with k = 1, £ = 1 have 

been calculated for the various values of Q using the following equa

tions for the Deliyannis-Friend circuit by letting x, = C., x- = C-, 

x3 = R3, x4 = R4, x5 = R5> x6 = R6, x? = Ry, and xg = A Q. 

5 8 r+0.1x. , Q 

1= Z Z — J|T.(x.+y,u).) - T (x.,w.)| P dy 
i=l i=1 Xi J J J * ° J ! Xi 

J 3 -O.lX. J 

J 

5 8 1 f + 0 - l x i 2 2 h I 
= E Z — J{[Re{T.}-Re{T }]Z + [Im{T.}-Im{T > r P P* dy (4.2) 

1 = 1 ^ = 1 " - O . l x . ' 3 o x . 
J 
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c 
•H 

nd 
C 

•H 
<U 

nd 

. i 

1.0 

50 100 

(a) Shenoi ' s measure for H-S and D-F 
c i r c u i t s 

I • 

1000 

500 

0 50 100 Q 

(b) New measure, I, for H-S and D-F circuits 

Figure 12. Two Di f fe ren t Measures for H-S and D-F C i r c u i t s 
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Table 1. Element Values for Deliyannis-Friend Circuit 

Q 10 25 50 80 

ci 
1.0 1.0 1.0 1.0 

C2 
0.666 0.666 0.666 0.666 

R3 
24.578 56.854 94.091 119.818 

R4 
1.0 1.0 1.0 1.0 

Rs 0.064 0.027 0.016 0.012 

R6 
1.0 1.0 1.0 1.0 

R7 
.0001 .0001 .0001 .0001 

A 
o 

33,110 33,110 33,110 33,110 

ohms, farads 

Table 2. Element Values for Hamilton-Sedra Circuit 

Q 10 25 50 80 

cl 
1.0 1.0 1.0 1.0 

C2 
1.0 1.0 1.0 1.0 

C3 
2.0 2.0 2.0 2.0 

R4 
0.649 0.659 0.663 0.664 

R5 
2.167 2.062 2.030 2.019 

R6 
1.0 1.0 1.0 1.0 

R7 
1.0 1.0 1.0 1.0 

R8 
.996 .990 .980 .968 

R9 
38.967 98.800 198.205 316.976 

Rio . 0004 .0010 .020 .032 

A 
o 

33,110 33,110 33,110 33,110 

ohms, farads 
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where 

Re('T } = 
0 

B F OJ 
o o Re('T } = 

0 (DQ - w)2 + (B0u))2 

Im{T } = 
0 

F OJ(D - w2) 
o v o J 

Im{T } = 
0 (DQ - a . . 2 ) 2

 + (B Q aj) 2 

(4.3) 

(4.4) 

B = 
o 

X 4 X 5 X 8 [ X 1 ( X 6 + X 7 ) + X 2 X 6 ] + x 1 x 3 ( x 4 ^ x 5 ) ( x 6 - x 7 x 8 ) 
( l + x 8 ) x 1 x 2 x 3 x 4 x 5 x 6 

(4.6) 

D = 
X 4 + X5 

o x 1 x 2 x 3 x 4 x 5 

VW 
o " ( x 8 + l ) x 2 x 4 x 6 

(4.6) 

Re{T.} = 
B.F.w 
-LL 

2TT J (D..-a> ) " + ( B ^ ) 
(4.7) 

F.w(D.-u) ) 
I m { T } = ^L— 

J (D.-a) ) + (B.w)Z 

J J 

(4.8) 

B l = 

x4x5xg[(x1+y)(x6+x7)+x3x6]+(x1+y)x3(x4+x5)(x^x^) 

(l+xg)(x1+y)x2x3x4x5x6 

(4.9) 

D, = 
X4 + X5 

1 (x1+y)x2x3x4x5 
(4.10) 
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F vw 
1 ~ (x 8 + l )x 2x 4x 6 

(4.11) 

B2 = 

x 4x 5x 8 [x 1 (x 6 +x y )+ (x 2 +y)x 6 ] + x 1x 5 (x 4 +x 5 ) (x 6 -x 7x 8 ) 

( l+x 8 )x 1 (x 2 +y)x 3x 4x 5x 6 
(4.12) 

D„ = 
X 4 + x5 

2 x x ( x 2 + y ) x 3 x 4 x 5 
(4.13) 

F„ = 
x8(x6 +x ?) 

2 (xg+l)(x2+y)x4x6 
(4.14) 

x 4 x 5 (x g + y)[x 1 (x 6 + x 7 ) + x 2 x 6 ] + x 1 x 3 (x 4 + x 5 ) (x 6 -x 7 (x 8 + y)) 
B

8 M ^ V ^ , i (4.15) ( l+xg +y)x1x2x3x4x5x6 

D„ = 
X4 + X 5 

8 x1x2x3x4x5 
(4.16) 

(x 8 +y)(x 6 +x ? ) 

8 ( x 8 + y + l ) x 2 x 4 ^ F0 = (4.17) 

Q = ^ 

OJ1 = w n = 1.0 rad ian / s e c 

w2 = w0 ~ 277 r a d i a n s / s e c 

(4.18) 

(4.19) 

w_ = wn + ^ " r a d i a n s / s e c (4.20) 
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co = a) - — r a d i a n s / s e c (4.21) 

a) = 0)n + — r a d i a n s / s e c (4.22) 

The eva lua t ion of the i n t e g r a l (4 .2) was c a r r i e d out by us ing 

the t r a p e z o i d a l - r u l e numerical i n t e g r a t i o n . The c a l c u l a t e d new measures 

for d i f f e r e n t values of Q for the Del iyannis -Fr iend c i r c u i t are p l o t t e d 

in Figure 12 (b ) . 

S i m i l a r l y , the new s e n s i t i v i t y measures for the Hamilton-Sedra 

c i r c u i t was eva lua ted in the same manner from (4.2) except t h a t j = 1 1 ; 

X l = C l ' X2 = C 2 ' X 3 = C 3 ' X4 = R 4 ' x 5 = R 5 ' X6 = R 6 ' X 7 = R 7 * X 8 = 

R g , x g = R g , x 1 Q = R 1 Q ; x u = A Q and 

p + p + p + p 
B • "> ' 4 0 P 5 0 P 8 0 

P 2 0 + X2 

P + P + P + P 
D • 5 0 " 6 0 7 0 2° (4.24) 

P20 + X 2 

F = —^-i r (4.25) 
o x 4 ( P 2 Q + x 2 ) 

where 

[ ( l + x n ) x 1 0 + x 9 ] [ ( x 4 + x 5 ) x 6 x g + ( x 6 + x 8 ) x 4 x 5 ] 
p = 1±—tz—:: z _ ^ — ^ ^—w T ^ (4.26) 

IU x 1 ] L x 4 x 5 x 6 x 8 x g 

[(1+x J x 0 + x ]x 
P o n = ±±—±2 L_2 (4.27) 

20 x x 9 
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[ ( l + x n ) x 1 ( ) + x 9 ] (x6+xg) (x4+x5) 

X11X4X5X6X8X9X1 

[ ( l + x u ) x 1 0 + x 9 ] ( x 6 + x 8 ) x 2 

X11X6X8X9X1 

X l + X2 
X 1 X 8 

X4 + X8 
X1X4X5X8 

x9xn-x9-(l+xn)x10 

X1X6X7X9X11 

(xx+x2) (l+xn) 

X1X9X11 

( l + x 1 1 ) ( x 4 + x 5 ) 

X1X4X5X9X11 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4 .34) 

F. can be ob ta ined from B , D , and F by r e p l a c i n g every 

y fo r j = 1 through 1 1 . For example, when j = 1 one g e t s 

p" *p? v ? + "81 

*21 X2 

P + P + P + P 
*31 61 *71 r 9 1 ( . . , , 

p : r ^ (4-36) 
*21 X2 
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F = — 1 ^ (4.37) 
i x4(P21 + xpr 

where 

P n = p io (4-38^ 

P 2 1 - P 2 0 C4.39) 

p = [ C ^ x n ) x 1 0 + x 9 ] ( x 6 + x 8 ) ( x 4 + x 5 ) ^ ^ 

31 x n x 4 x 5 x 6 x 8 x 9 C x 1 + y ) 

[ ( l + x 1 1 ) x 1 Q + x 9 ] ( x 6 + x 8 ) x 2 

l l X 6 X 8 X 9 ^ l ' 
P . , = ' 1 U / * , C4.41) 

41 x 1 1 x , x Q x Q ( x 1 + y ) 

(x + y) + x 
P = _-_i £. (4.42) 

51 (xx + y ) x g *• ' 

x4 + X8 
61 (x1+y)x4x5xg ; 

(4.43) 

X7X11 X9 ^ 1 + x l l ^ x 1 0 p = -JL±± f i i — i i i (4.44) 
71 ( x 1 + y ) x 6 x 7 x 9 x n 

(x +y+x )(l+x ,) 
P = -J. f i±_ (4.45) 
81 (x1+y)xgx11 

(l+x11)(x4+x5) 
P91 = (x1+y)x4x5xgx- ^*V 
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The new sens i t i v i t y measures, I, for different values of Q for the Hamil

ton-Sedra c i r cu i t are also plot ted in Figure 12(b). The values of the 

elements of the two c i r c u i t s , Deliyannis-Friend and Hamilton-Sedra, used 

in calculat ing the new measure are the same as those used by Shenoi in 

Tables 1 and 2. Some values of the measure I for Figure 12(b) are 

given in Table 3 where Ax./x. = 0 . 1 ; or , equivalently, a tolerance of 

10 percent. The probabi l i ty density function of the c i rcu i t elements 

were assumed to be uniformly d is t r ibu ted . The value of A(u)) used in 

five different frequencies was unity. Thus, we may conclude that the 

Deliyannis-Friend c i rcu i t has a smaller 10 percent tolerance sens i t i v i ty 

than the Hamilton-Sedra c i r c u i t . 

Table 3. New Measure, I, for Two Different Circuits 

x . +Ax. 
m n 1 f J o J , .k I 

= z z _L_ ° A(u) i) |F(x a).) - F(x , a ) . ) | V dx 
1 3 L I _ A . ° 3 3 o x . -Ax 

Jo J 

Q Deliyannis-Friend Circuit Hamilton-Sedra Circuit 

10 

25 

50 

75 

100 

125 

24.253 

145.041 

322.584 

491.142 

662.015 

835.236 

85.435 

222.225 

446.520 

669.147 

890.246 

1115.437 
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Comparing the Measures of Continuously 
Equivalent Networks 

According to Schoef f l e r , networks n ( 0 ) , n ' ( l ) , - n ( 2 ) , and n(3) 

in Figure 13 perform i n c r e a s i n g l y well in t h a t sequence from the s t and 

po in t of t r a d i t i o n a l f i r s t - o r d e r s e n s i t i v i t y measures . Though Leed-

Ugron [13] and Leon-Yokomoto did not agree with Schoef f le r in numeri

ca l v a l u e s , they agreed t h a t the s e n s i t i v i t i e s a re decreas ing according 

t o the sequence n ( l ) , n ( 2 ) , n ( 3 ) . Leon-Yokomoto and Cheetham claimed 

t h a t t h e i r equ iva len t networks n(4) and n(5) of Figure 14 are even 

b e t t e r than S c h o e f f l e r s . This i s evidenced by the measures t a b u l a t e d 

in Table 4 . 

Table 4 . F i r s t - O r d e r S e n s i t i v i t y Measures for 
Six Equiva len t Networks 

Leon- Leeds-
Schoef f l e r Yokomoto Cheetham Ugron 

n(0) 

n(D 

n(2) 

n(3) 

n(4) 

n(5) 

23.4 

17.9 

11.9 

5.52 

23.48 

26.46 

20.17 

19.14 

18.35 

23.48 23.03 Or ig ina l 
Network 

14.69 

33.26 

20.16 

19.14 

S c h o e f f l e r ' s 
Continuously 
Equivalent 
Networks 

Leon-Yokomoto's 
Equiva len t 
Networks 

Cheetham's 
Equivalent 
Network 

*Sensitivity measure calculated by. 
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n(0) 

(a) 

.00833 Z|SF I2 = 23.4 1 x. ' 
I 

nd) 

.003 

-r.017 
i F i2 ES = 17.9 1 x. ' 

I 

.36 

.24 E|SF I2 = 11.9 
1 x. ' 

I 

n(3) 

2.77 

=t^89 

henry , farad 

i F 12 
E S r = 5.52 1 x. ' 

l 

Figure 13. A Series of Continuously Equivalent Networks 
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.0274 

-T .0198 

henry , farad 

Z|SF I2 = 18.35 1 x. ' 
I 

n(5) 

.05127 

.0708 

henry , farad 

Z|SF I2 = 14.69 1 x. ' 
l 

Figure 14. Two Continuously Equivalent Networks 
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The t r a d i t i o n a l s e n s i t i v i t y measures according to Schoe f f l e r , 

Leon-Yokomoto, and Cheetham are p l o t t e d versus the network sequence 

n ( 0 ) , n ( l ) , n ( 2 ) , n ( 3 ) , n ( 4 ) , and n(5) in Figure 15 and Figure 16. The 

newly proposed measures for the same s i x ne tworks ; n ( 0 ) , 1 ( 1 ) , n ( 2 ) , 

n ( 3 ) , n ( 4 ) , and n ( 5 ) ; for var ious element t o l e r a n c e s are c a l c u l a t e d 

from the following equat ions at OJ = 1.5 rad ians pe r second. 

o 1 TAX. ~ 
I = E f-j x | F ( x 1 , . . . x i + y , . . . x 6 ) - F ( x 1 , . . . x . , . . . x 6 ) r d y 

I 

6 . rAx. 0 
1 1 I T. „ | 2 = I ~ A F. - F dy . - x. J ' I o1 J 

1 = 1 1 -Ax. 
1 

6 , fAx 
= I ~ \ 1 {[Re{F i ) - Re{FQ}]2 + [ I m i F ^ - ImiF o}] 2}dy (4.47) 

. -. x. 
1 = 1 l -Ax. 

1 

where 

Re{F } = 0 (4.48) 

Re{F..} = 0 (4.49) 

4 2 
Aw - B OJ + C 

Im{F } = -^ 2 o C 4 . 5 0 ) 
0 w(D - F oo ) 

0 0 

4 2 
A.OJ - B.oo + C. 

Im{F.} = - i 1 — L (4.51) 
w(C. - F.OJ ) 

1 l 
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.F ,2 

n(0) n(D n(2) n(3) 

Figure 15. Sensitivity Measures Given by Schoeffler 
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£ |S F | 2 I 
1 

25 • 

20 

15-

10-

5-
Q I 1 1 1 | 1 

n(0) n(i) n(2) n(3) n(4) n(5) 

Figure 16. S e n s i t i v i t y Measure Given by Leon-Yokomoto and Cheetham 
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Ao = X 1 C X 2 + X 3 } + X2X3 ( 4 - 5 2 ) 

Bo = X 4 ( X 2 + x 3 } + X 5 ( X 1 + X 3 3 + X 6 C x l + V ( 4 " 5 3 ) 

Co - x 4 ( x 5 + x 6 ) (4.54) 

DQ = x4 • x 6 (4.55) 

FQ . xx + x 3 (4.56) 

A. , B . , C. , D. , and F. for i = 1 to i = 6 can be obta ined from A , B , 
l ' 1 1 1 1 O * O* 

C , D , and F by r e p l a c i n g each x. with x. + y. For i n s t a n c e , 

A1 = (xx + y ) ( x 2 + x3) + x 2 x 3 (4.57) 

Bl = X4^X2 + X3^ + X5^X1 + y + X3^ + X6(X1 + y + X2^ (4.58) 

Cx = x4(x5 + x6) (4.59) 

Dx = x4 + x6 (4.60) 

Fx = xx + y + x3 (4.61) 

The elements x , x , x , x , x , and x corresponding to the six net

works n(0), n(l), n(2), n(3), n(4), and n(5) are shown in Figure 17 

and their values are tabulated in Table 5. The number A in equation 

(4.47) is the tolerance. 

The calculated new measures for various element tolerances 

are tabulated in Table 6. These measures are plotted in Figures 18 

through 21. For element tolerance of 5 percent (Ax/x = 0.05, or 

A = 0.05), it is seen that, according to the measure I, the five 
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Figure 17. Elements Assignment for Evaluating the 
New Measure, I 
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Table 5. Element Values for Six Equivalent Networks 

^^^-^Elements 
'Networks^^^^^ x i X2 X3 X4 X5 

•" " 1 
X6 J 

n(0) 0 1.2 0.0833 .02 1.5 0 

n(D .003 1.12 .017 .038 1.49 .0096 

n(2) .36 1.06 .24 1.03 1.21 .40 

n(3) 2.77 .52 .89 7.06 .11 1.73 

n(4) .02 74 1.189 .0198 .113 1.50 0 

n(5) .05127 1.172 .0708 0.196 1.448 .05995 

Table 6. New Measure, I, for Six Equivalent Networks 

[ ^ s . Element 
^vTo le r ance 

\ ^ x o 0.05 0.10 0.15 0.20 

Networks ^ ^ 

n(0) .00712 1.172 1.196 12.258 

1 n( i ) .00697 1.992 2.031 2.075 

n(2) .00267 0.874 18.627 30.409 

n(3) .00181 12.804 14.865 18.007 

n(4) .00448 1.586 3.115 5.197 

n(5) .00171 2.473 7.591 7.795 
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n(0) n(D n(2) n(3) n(4) n(5) 

Figure 18. New Measure, I, for Ax/x = 0 . 0 5 
o 
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n(0) n(D n(2) n(3) n(4) n(5) 

Figure 19. New Measure, I, for Ax/x =0.10 
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25 

20 f 

15 I 

10 | 

5 I 

0 
n(0) n(i) n(2) n(3) n(4) n(5) 

Figure 20. New Measure, I, for Ax/x = 0.15 
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I 

A 
35 | 

30 1 

25 1 

20 I 

15 I 

10 I 

5 f 

n(0) n d ) n(2) n(3) n(4) n(5) 

Figure 21. New Measure, I, for Ax/x = 0.20 



65 

networks, n ( l ) , n(2) , n (3) , n (4) , and n(5) do not perform increasingly 

well in that order. From Figure 18 to Figure 21, i t i s found that the 

performance of a network depends heavily on the tolerances of the net 

work elements. 

From these facts i t can be concluded that the property that 

the s ens i t i v i t y measure decreases as the number of elements increases 

in continuously equivalent networks claimed by Leeds and Ugron [13] i s 

not necessar i ly true when the element tolerances are f i n i t e . 

Convergence of Numerical Integration 
of the New Measure 

The evaluation of the in tegra l of the new measure in (4.47) was 

carried out by the trapezoidal rule numerical integrat ion method. In 

e a r l i e r runs for a tolerance of 10 percent, several d i f f i cu l t i e s were 

encountered. The maximum permissible r e la t ive error between successive 

-4 evaluations of the integral was set to 10 and the maximum permissible 

number of evaluations of the in tegra l to be computed before non-

convergence s ta tus was declared was se t to 50. In several runs, the 

computer estimated run time of one minute for the Univac 1108 computer 

was exceeded. The computer run time was extended un t i l the maximum 

permissible number of evaluations of the in tegra l was reached. Never

the less , the re la t ive er ror between successive evaluations of the 

integral was s t i l l larger than 10 . Other numerical in tegrat ion 

methods such as Simpson's 1/3 rule and Simpson's 3/8 rule were also 

t r i e d , but the resu l t s were equally unsat isfactory. Then the in terva l 

of in tegrat ion was divided into ten sections between x/x = 0.9 and 

x/x = 1.1 as shown in Figure 22; and the numerical integrat ion was 
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Figure 22. Divisions of Integration Interval 
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carried out independently for each section. It was found that the 

numerical integration converged in most of the sections. The integrand 

in those sections for which the computation did not converge was calcu

lated and inspected for a fairly fine interval of 0.001 x . The tabu

lated values revealed that there was an infinity in that section as 

shown in Figure 23. The infinity was then handled by setting it equal 

4 
to an arbitrary large number, say 10 . The division of the whole 

interval between the lower and higher limits of the tolerance into 

many sections is a good way to save the computer time and detect any 

troublesome regions. For those parts of a performance curve that are 

relatively smooth it is not necessary to have a large number of func

tions evaluated as those parts that are not smooth, before the error 

between successive evaluation of the integral reaches the preset small 

error figure. Only in these sections in which the curve is not smooth 

did the algorithm require very small steps of the independent variable 

at which the function is to be evaluated. This scheme reduces the 

total computer time greatly, 

The role of an infinity within the tolerance limit in the net

work optimization will be discussed in Chapter V. 
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1.0 

•fr 
0.9 1.0 1.1 r /r v 10 

Figure 23. Inf in i ty on n(0) 
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CHAPTER V 

OPTIMIZATION OF NETWORK DESIGN BASED ON THE NEW 

MEASURE AND MULTIVARIABLE CONTINUOUSLY 

EQUIVALENT NETWORKS 

One of the two purposes of s ens i t i v i ty study--the comparative 

evaluation of c i rcu i t s rea l iz ing the same network function—was d i s 

cussed in the preceding chapter. The other purpose of s ens i t i v i t y 

study--the optimal network design—will be discussed in th i s chapter. 

The variat ion of the new a l l - to lerance multiparameter s ens i t i v i ty mea

sure with respect to c i r cu i t elements of a c i r cu i t wil l be studied 

f i r s t . Then methods of obtaining optimal networks will be discussed. 

Final ly, an example of gett ing an optimal network by minimizing the 

new sens i t i v i t y measure along with multivariable continuously equiva

lent networks will be presented. 

Variation of the New Measure versus 
CJ-rcuit Element Values 

In many c i rcu i t design problems, pa r t i cu la r ly in active networks, 

there exis ts one or more parameters tha t can be chosen a r b i t r a r i l y inso

far as the rea l iza t ion of a given network function i s concerned. The 

existence of these parameters indicates that there are several degrees 

of freedom that can be u t i l i zed to good advantage. I t offers an oppor

tuni ty to effect a good design under certain figures of merit or 

c r i t e r ion . An example of such a u t i l i z a t i o n i s the Horowitz decompo

s i t ion in active network synthesis [27]. 
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In th i s research, when such opportunit ies are present , the 

pos s ib i l i t y of minimizing the new a l l - to lerance multiparameter sensi 

t i v i t y will be invest igated. Given a cer tain network function and 

af ter a certain c i rcui t configuration has been chosen, the question 

becomes: How does the new sens i t i v i t y measure, I , vary with respect 

to the a rb i t ra ry parameter(s)? Does i t have a minimum? If so, where 

and what i s the minimum? How can the parameter(s) be chosen to render 

the minimum sens i t i v i t y measure? The following example i l l u s t r a t e s a 

typical s i tua t ion in which these questions are answered. 

Example 1 

A well-known prac t ica l active RC c i r cu i t i s the Sallen and Key 

f i l t e r section shown in Figure 24. This f i l t e r c i r cu i t [28] has been 

discussed by many [see, for example, 5, 29] . This c i r cu i t i s chosen 

as an example here for the purpose of demonstrating the variat ion of 

the new measure of the f i l t e r versus the variat ion of an arbi t rary 

element value. 

Assume tha t the c i r cu i t in Figure 24 i s to rea l ize the follow

ing voltage t ransfer function 

T(s) = - ^ - ^ (5.1) 
s + Q S + 1 

It is desired to find the variation of the new sensitivity measure 

versus the variation of some of the circuit elements when Q = 2, 

Rj = 1 ohm, and element tolerance is 10 percent. 

In order to find the new measure, I, the first step is to write 

the voltage transfer function with its coefficients represented in 
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Figure 24. Sallen and Key Active Filter 



72 

terms of element parameters. It is easily shown that 

R1R2C1C2 

2 R1C1 + R1C2 + R2C2 " KR1C1 1 
R1R2C1C2 R1R2C1C2 

Comparing (5.1) and (5.2), three constraint equations are obtained. 

K =10 (5.3) 
R1R2C1C2 

R1R2C1C2 
= 1 (5.4) 

R 1 C 1 + R 1 C 2 + R 2 C 2 - K R 1 C 1 I 

WlC2 = Q 
(5 .5) 

Now we suppose that the value of K i s fixed to be 10. Since R, is 

fixed to be 1 ohm; for a given value of R2, the values of C^ and C2 that 

r e a l i z e (5 .1) can be found from (5.4) and ( 5 . 5 ) . 

i A (yKHi-K) ( s . 6 ) 

2 2(R1+R2) 

C, = 
(5.7) 

1 C2RXK2 

That is, when the nominal value of R? is varied in a certain range, 

one will be able to see how the sensitivity measure, I, of this circuit 

varies. 
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Since the c i r c u i t in Figure 24 i s a low-pass f i l t e r the new 

measure, I, i s c a l c u l a t e d a t the fol lowing d i f f e r e n t frequency p o i n t s 

w = 0 rad ian per second 

a) = 0.2 rad ian pe r second 

a) = 0.4 r ad ian per second 

GO, = 0.6 r ad ian per second 
4 r 

GO = 0 .8 r ad ian per second 

UL, = 1.0 r ad i an pe r second 

Let xx = K, x2 = R., x_ = R2>
 x

4
 = c i » sn<3i \ = c

2 ' t h e n e w m e a s u r e 

i s c a l c u l a t e d by 

6 5 
I = Z Z 

i= l j = l J 

+C).lx 
^iTjUj. + y, wi) - T

0 ( x j - <Vl2dy 
-O.lx 

J 

6 5 
= Z Z 

r+0.1x 

s l J=1 io.i 

j {[Re{T.} - Re{T } ] 2 + [Im{T.} - Im{T }]2}dy 

x. 

where 

Re{T } = 
o 

H (D - GO. ) 
O O 1 J 

2~1 1 
(D - w.y + (B GO.) 
V O 1 •* V O 2 / 

(5 .8) 

Im{T } = o 

-H B GO. 
0 0 1 

(D - GO.)2 + (B GO.)2 

V O 1 v O 1 

(5.9) 

Re(T,} -
H.(D. - GO. ) 

2"2 I 7 ? (5.10) 
(D. - GO. ) + (B.OJ.) 

3 i J l 
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-H.B.w. 
I m { T j } = ~ U ' ,n ^ (5.11) 

J ( D . - a). ) + (B .U) . ) v 

X 2 X 4 + X?\ + X,5X,5 " X 1 X 2 X 4 B = _£—t £-2 ±-2 LSJL (5.12) 
X2X3X4X5 

D = 1 (5.13) 
X2X3X4X5 

Xl 
H = 1 (5.14) 

o x2x3x4x5 

B^, D., and H. are obtained from B , D , and H by replacing x. with 
j j •) o o o / r 6 j 

x. + y. For ins tance, B~, D,-, and H0 are obtained from B , D , and 
] J 22 2 oo 

H by replacing x2 with x2 + y 

(x +y)x + (x9+y)xt. + x x - x (x~+y)xA 

B9 = —^ - z > ; s—2-2 L - f i (5.15) 
2 (x2 +y)x3x4x5 

^ T y y f c ^ CS.16) 

H 2 = T v y f e p ^ (5-17^ 

Some of the calculated values of C,, C2, and the new measure, I, 

versus R2 are tabulated in Table 7. The data in Table 7 are plotted 

in Figure 25 where the ordinate is I and the abscissa is R2 in ohms. 

This is a rough sketch of the variation of the new measure, I,versus 

the variation of R2. It is seen from the figure that there is a 
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Table 7. Variation of I versus a Wide Range of R2 
for SK #1 Circuit 

A = 10 K = 100 > V = 1 

R2 c l C2 I* 

lO"4 33.3072 300.235 5.44503 

ID'3 10.5185 95.0710 8.11952 

lO"2 3.32230 30.0997 15.3207 

10"1 1.07811 9.27547 28.6952 

1 .444444 2.25000 5.44550 

10 .322927 .309668 .17567 

102 .308368 .032429 4.78951 

103 .306877 .003259 4.98391 

104 .306744 .000652 4.99738 

ohms , farads 

•Element Tolerance = 10% 
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K == 10 , Q = 2 

Element Tolerance = 10' 

30.0 -

10.0 -

8.0 -

6.0 -

4.0 -

2.0 -

^ V 4 M " '2 

Figure 25. Rough Var i a t ion of I versus R2 for SK #1 
C i r c u i t 
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minimum of I i n the neighborhood of R = 10 ohms. Another s e t of 

da ta in the neighborhood of R2 = 10 ohms are taken and a re t a b u l a t e d 

i n Table 8. The data in Table 8 are p l o t t e d in Figure 26. I t i s seen 

t h a t the v a r i a t i o n of I , for 10-percent element t o l e r a n c e , versus R2 i s 

a smooth one. When K = 10, Q = 2 and R, = 1 ohm, the new measure, I, 

e x h i b i t s a minimum in the neighborhood of R? = 9 . 9 ohms. 

Methods of Obtaining Optimal Design of a Network 

(a) S ing le Independent Var iab le 

In ob t a in ing an optimal design of a network from the s e n s i t i v i t y 

v iewpoint , we minimize the s e n s i t i v i t y measure. The preceding example 

shows t h a t for K = 10, Q = 2 and R.. = 1 ohm, I has a minimum when 

R2 = 9.9 ohms, C^ = 0.3231 fa rad , and CL = 0.3126 fa rad . In o t h e r 

words, i f K, Q, and R, a re f ixed a t K = 10, Q = 2 and R.. = 1 ohm, 

the optimal design of the network i s ob ta ined by vary ing R2 from a 

small value t o a l a r g e value u n t i l a minimum measure I i s found. The 

va lues of C, and C2 for the optimal design are ob ta ined from the two 

c o n s t r a i n t equat ions (5.4) and ( 5 . 5 ) . That i s to say : I f t h e r e i s 

only one independent v a r i a b l e , a l l one needs t o do in f inding the 

minimum measure I for an optimal design i s to vary the independent 

v a r i a b l e wi th in a range such t h a t a l l the corresponding element values 

from the c o n s t r a i n t equat ions are in the accep tab le r anges . When a 

minimum I i s found, the corresponding value of the independent v a r i a b l e 

i s the opt imal design value for t h a t element. The optimal va lues of 

o t h e r elements are then ob ta ined from the c o n s t r a i n t e q u a t i o n s . 
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Table 8. Variation of I in the Neighborhood of 
R2 = 10 Q for SK #1 Circuit 

Q = 2 . , K = 10 , R! = 1 , Tolerance = 10% 

R2 Cl C2 
I 

9.1 .324490 .338655 1.85142 

9.2 .324302 .335168 1.02285 

9.3 .324117 .331753 .638396 

9.4 .323937 .328407 .425308 

9.5 .323760 .325127 .299862 

9.6 .323586 .321913 .226094 

9.7 .323417 .318762 .185582 

9.8 .323250 .315671 .167705 

9.9 .323087 .312641 .165848 

10.0 .322927 .309668 .175668 

10.2 .322616 .303888 .219212 

10.4 .322317 .298321 .283071 

10.6 .322029 .292954 .358785 

10.8 .321752 .287777 .441306 

11.0 .321484 .282780 .527489 

12.0 .320277 .260192 .961903 

13.0 .319252 .240948 1.39542 

14.0 .318371 .224356 1.69638 

15.0 .317606 2.09904 1.99005 

ohms, farads 
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I I K = 1 0 , Q = 2 , R = l f t 

Element Tolerance = 10% 

1.50 H 

1.0 A 

0.5 H 

•fr 
9.0 10.0 11.0 12.0 13.0 

- r * R2 

14.0 (ohms) 

Figure 26. Variation of I versus R0 for SK #1 Circuit 
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Example 2 

We shal l now extend the same design and example in Example 1 to 

(a) find the optimal designs of the c i rcu i t in Figure 24 to rea l ize 

(5.1) for Q = 2, 4, 6, 8, and 10 when the element tolerance i s 10 per

cent, and (b) find how the sens i t i v i ty measure,I, of the optimal c i r 

cuit in Figure 24 varies with Q in (5.1) when the element tolerance 

i s 10 percent. 

Repeating the same design carried out in Example 1 for Q = 4, 

6, 8, and 10, the f inal resu l t s are tabulated in Table 9. I t i s seen 

that when Q varies from 2 to 10, the new measure, I, varies from 0.16498 

to 0.87698. This i s also depicted in Figure 27. I t i s seen tha t as 

Q increases , measure I increases almost proport ionally. 

Table 9. Optimal Designs for Various Values of 
Q for SK #1 Circuit 

Q K Rl R2 c i f i 
I 

2 10 1.0 9.86 .323152 .313846 .164983 

4 10 1.0 9.33 .337128 .317924 .413432 

6 10 1.0 9.23 .341789 .316986 .619712 

8 10 1.0 9.19 .344125 .316205 .768519 

10 10 1.0 9.17 .345527 .315609 .876976 

Element Tolerance = 10% , ohms, farads 
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K = 10, Element Tolerance = 10% 

1.0 -

0 M*-

10 

•>• Q 

Figure 27. I versus Q for Optimal Design of SK #1 
Circuit 



82 

(b) Multiple Independent Variables 

For a network that has more than one available degree of freedom 

in realizing a network function, the method of getting a minimum measure 

for the optimal design of the network is much more complicated. The 

minimum measure can no longer be obtained readily by simply varying the 

independent variables in the applicable ranges. It is especially diffi

cult to find the minimum measure when there are a large number of inde

pendent variables. Under this circumstance, some kind of minimization 

scheme needs to be employed. There are several schemes available such 

as the steepest-descent method, the conjugate-gradient method, and the 

Fletcher-Powell method [30]. The Fletcher-Powell algorithm which is 

known to be one of the best algorithms available for function minimiza

tion and has been used extensively in many applications will be chosen 

to serve this purpose. 

There are always some constraints on the values of the network 

elements. For instance, all the network element values are constrained 

to be nonnegative. The network elements are also subjected to the con

straint equations such that the network satisfies the given network func

tion. Because of these reasons, the minimization of the new measure for 

any network belongs to constrained function minimization. The Fiaco and 

McCormick method enables us to transform a constrained minimization 

problem into an unconstrained one. 

Transformation of a Constrained Problem 
Into an Unconstrained Problem 

The first step of the minimization of the proposed measure, I, with 

respect to (x,,x ,...,x.,...,x ), where j = n - N is the number of 



83 

independent variables subject to constraints x >_ 0, m = 1,2,3,...,n, 

and n is the number of network elements, is to transform the constrained 

minimization problem into a sequence of unconstrained problems in such a 

way that the difficulties associated with the motion along the con

strained boundary are avoided. The particular transformation proposed 

by Carroll [31] and proved by McCormick [32, 33] will be used in this 

section. The transformation is accomplished by the use of the function 

m w. 
P(x,r) = I(x) + r E —^- (5.18) 

i=l gi l x J 

where I (x) is the objective function or the new measure, g.(x) is the 

ith constraint function, w. is a positive weighting function, and r is 

a member of a monotone decreasing sequence. For any fixed r, the uncon

strained minimization technique of Fletcher-Powell can be used on equa

tion (5.18). In using the technique one needs to find the partial 

derivatives of the function P(x,r) with respect to each of the n - N 

independent variables. Once the minimum point x . is found, the 

element values, x, ,x~,.... ,x. are the optimal design values of the net

work. The remaining N element values of the optimal design are 

determined by the N equations in (3.9). 

Partial Derivatives of the New Measure with Respect 
to the Independent Network Elements 

In order to use the Fletcher-Powell minimization technique to 

find the optimal network element values, it is necessary to find the 

partial derivative of the cost function P(x,r) of equation (5.1) with 

respect to each of the independent network elements. In other words, 



one needs to find the partial derivative of the new measure, I (x) , 

and the equation 1/g.(x) with respect to each of the independent 

network elements. Since the constraint equations g.(x) , i = l,...,m, 

usually are not complicated, their partial derivatives will not be 

discussed here. A general form of partial derivative of any network 

function F with respect to any independent network element at a 

certain frequency is presented in the following. Assume that the 

probability density function of the element parameter x. is uniform, 

then the all-tolerance multiparameter sensitivity measure, I, in 

equation (2.5) can be written as 

n . rA.x. 
1 = £ — I |F(x1,...,xi+y,...,xn) - F(x1,...,xi,...,xn)| dy 

-A.x. 
1 l 

(5 

where A. is the tolerance of the ith element parameter. Further 

assume 

'± = F(x1,...,xi+y,...,xn) 

F Q = F(xlf...,x ,...,xn) 

equation (5.19) can be written as 
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n n f A . x . n 

I . t l " I F . - F |2dy 

i=ixi K 
- A . x . 

1 1 

n , rA .x . ? 

E — x x | [Re{F.} - Re{F }] + j [ Im{F.} - Im{F }] | d y 
. .. X . I L 1 0 J J L 1 0 J , / 

1 = 1 1 J . 
- A . x . 

l l 

n 1 
I — 

. , X . 
1 = 1 1 

rA.x 
l i 

-A.x. 
l l 

{[Re{F.} - Re{F } ] 2 + [Im{F.} - Im{F }] }dy 

n rA.x.. 

i=l I
 ; . 

-A.x. 
l I 

(5.20) 

f. ( y , x . ) = [Re{F.} - Re{F } ] 2 + [Im{F. } - Im{F } ] 2 

1 w 1 L 1 O L 1 O 
(5.21) 

The p a r t i a l d e r i v a t i v e of I wi th r e s p e c t t o x . , the nominal 

of an independent element parameter , i s 

3x 
3 

n 1 r A . x . 
Z — X 1 f . ( y , x . ) d y . , x. I I I

 J 

i = l I J
 A 

- A . x . _ 
- l i 

n 
£ 

i = l 

a , fA.x. . 1 rA.x. 
T— (—) I 1 f - ( y . x . ) d y + — T ^ - X X f. ( y , x . ) d y 8x. vx. I

 w * iJ J x. 8x. ±w ' \J } 

3 i -A.x. 
l l 

i 3 -A.x. 
l l 
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9x. rA.x ax. m .x . 

T33rJ V ^ V ^ l J - A . x . 
1 l 

_1_ 
X . 

'rA.X. ~ 9 x 
1 1 _d 

3x. 
J J -A.x. 

1 1 

*T- [f- ( y , x . ) ] d y + A. TT-^- [f. (A.x. , x . ) + f . ( - A . x . , x . ) ] 
c ) x . 1 J 1 J ' 1 9x . L 1 1 1 1 1 1 1 1 

(5.22) 

equat ion (5.4) i n t o equat ion ( 5 . 5 ) , 9 I / 9 x . becomes 

n 
E (Gx + G2 + G ), (5.23) 

i= l 

9x. rA.x 
T33r| 1 M ^ V -Re{FQ}]2 • [M{?J - Im{Fo}]2)dy 

X- J A 

i J -A .x 1 X (5.24) 

0 frA.x. f 9Re{F.} 9Re{F } 
2- l l [Re{F.} - R e C F , , } ] - ! - ^ ^ ] 

9Im{F.} 9Im{F } oimir. / o-uuir j \ 
• [I»(F.} - I m { F o } ] - [ ^ S i p W ( 5 - 2 5 ) 
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G3 " J T & ( [ M F ( x 1 > . . . ( l + A i ) x . , . . . x n J } - R e { F C x 1 , . . . x i , . . . x n o ) } ] 2 

i 3 

+ [ Im{F(x 1 , . . . ( l+A i )x i , . . . x n )> - R e { F ( x 1 > . . . x i , . . . x n o ) } ] 

+ [ R e { F ( x 1 , . . . ( l - A i ) x . , . . . x n ) } - R e { F ( x 1 , . . . x i , . . . x n 0 ) } ] 2 

+ [ Im{F(x 1 , . - . . ( l -A i )x i , . . . x n )} - I m { F ( x 1 , . . . x . , . . . x n o ) } ] 2 ) 

(5.26) 

Once the pa r t i a l derivative 91/3x. in equation (5.23) i s ob

tained, i t i s easy to find a l l of the p a r t i a l derivat ives of I with 

respect to every independent element parameter of a network. Once 

a l l pa r t i a l derivatives are obtained, i t i s j u s t a routine matter to 

use the Fletcher-Powell minimization technique to find an optimal 

design of a network. 

Star t ing Point and Optimal Step Size 

The Fletcher-Powell algorithm is used to find the unconstrained 

local minimum of equation (5.18). The success of finding the local 

minimum depends heavily on the proper choice of the s t a r t i ng point of 

the independent network elements and on the choice of a scalar step 

s i ze . If the scalar step size chosen i s too large the next values 

chosen for the independent network elements may be beyond the boundaries 

of the cons t ra in ts . On the other hand, i f the step s ize chosen is too 

small, the number of i t e r a t ions may be excessive. 

One way of finding a s t a r t i ng point i s to tabulate some of the 
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values of the cost function by varying the values of the independent 

network elements in a random way. The point that has a smallest cost 

function amongst the tabulated points is then chosen as a starting point. 

When the number of the independent network elements are small, a rough, 

systematic tabulation of the cost function versus the network elements 

can even be employed in locating a good starting point. 

In order to prevent the values of the independent network 

elements from moving over the constraint boundaries, two additional 

steps are incorporated in the Fletcher-Powell algorithm. The first 

step is to choose a scalar step size that produces only a small 

change in the function, roughly of the order of 1 percent. Then 

the value of the scalar step size is changed in a doubling fashion 

(1,2,4,8,...) as long as the function is decreasing up to and in

cluding the first time the function increases. The second step is 

to check on every iteration if the new values of the independent 

variables obtained satisfy the constraints. If they satisfy the 

constraints, the increasing of the scalar step size in doubling 

fashion is continued. If they do not satisfy the constraint, the 

last iteration is repeated by dividing the scalar size by 1.5. This 

process is repeated until all the independent variables fall within 

the constraint boundaries. 

Example 3 

Given a network function 

7 5 3 „ 
r 3 ,0 -r s + 2s 

nc -\ OS + 12S 6 f- 0<7. 
z ^ = 7 1 — — 2 — — • T—TT-2—r V-27) 

6s + 22s +18 s + ^ - s + 3 
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which i s r e a l i z e d by the c i r c u i t in Figure 28. An optimal design of 

c i r c u i t r e a l i z i n g equat ion (5.27) w i l l be ob ta ined a t oo = 1.5 r ad i ans 

pe r second by using the m u l t i v a r i a b l e cont inuously equ iva len t network 

theory and the new a l l - t o l e r a n c e mul t iparameter s e n s i t i v i t y measure. 

The r e s u l t w i l l be compared with those equ iva l en t c i r c u i t s ob ta ined 

by Schoe f f l e r , Leon-Yokomoto, and Cheetham. 

By the element growing method of m u l t i v a r i a b l e cont inuous ly 

e q u i v a l e n t network t h e o r y , an equ iva len t c i r c u i t having the same Z(s) 

as in Figure 28 i s ob ta ined in Figure 29. The network funct ion with 

i t s c o e f f i c i e n t s expressed in terms of element parameters i s 

Z(s) = 

X l + X 3 s 3
 + 

V X 6 
X. 

l t x 2 + X 3 ) + X 2 X 3 
s 3

 + 
x l ( x 2 + X 3 ) + X 2 X 3 " 

4 + W X3> + X 5 ( X 1 + X 3 ) + V W 2 W X 6 ) + X 5 X 6 
s 

+ 
X1C X2+ X35 + X2 X3 

O i 

W X 3 ) + X 2 X 3 

(5.28) 

The constrained equations are obtained from equations (5.27) 

and (5.28) as follows 

V X 3 5 
1 6 -- (5.29) X l ( x 2 + x 3 ) + x 2 x 3 6 

X d + XA 
4 ° = 2 (5.30) x1(x2+x3)+x2x3 

x4(x2+x3)+x5(x1+x3)+x6(Vx2) _ ^ 

x1(x2+x3)+x2x3 " 3 
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Z (s) 1.5h .00833f 

Figure 28. Circuit Realizes (5.27) 

O-

Z(s) 

-TZ^ 

Figure 29. Multivariable Continuously Equivalent Network 
for Optimization 
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X . (X(- + X A ) 
4 5 0 = 3 (5.32) 

x , ( x 0 + x 7 ) + x o x 7 1 2 3 2 3 

Now, t h e r e are four e q u a t i o n s , ( 5 . 2 9 ) , ( 5 . 3 0 ) , ( 5 . 3 1 ) , and ( 5 . 3 2 ) , and 

s i x v a r i a b l e s , x , , x ? , x~, x . , x_, and x , . In o t h e r words N = 4 , 

n = 6 , and the number of independent v a r i a b l e s i s n - N = 6 - 4 = 2 . 

Assume x, and x„ are the two element parameters chosen as i n d e -
1 i x 

pendent v a r i a b l e s , then the remaining four element pa rame te r s , x 2 , x . , 

Xj., and x , , can be ob ta ined in terms of x, and x~ by so lv ing the four 

equa t ions above. The r e s u l t s are 

x 2 = (xx + x3) - ^ (xx + x 3 ) / (^ - (x 1 + x 3 ) ) (5.33) 

gb - / g b + 4 g a g c 
&a 

X l + X3 where g = —— (5.35) 
a Z a 

a = x x ( x 2 + x 3) + x 2 x 3 (5.36) 

gb = 2x3 (5.37) 

gc = T a • 2 a ( x 2 + X3} " I ( x l + x3^ (5.38) 

x 4 = 2a - x 6 (5.39) 

2 
3a - 2ax, + x . 

*S = 2 i — - <*•«> 
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The partial derivatives 3l/9x and 3l/9x„ are obtained from 

equation (5.23). The tolerance is assumed to be 10 percent, i.e., 

A = 0.1. The constraints g.(x) for minimizing equation (5.18) in order 

to get the optimal values of the element parameters are 

gl(x) = xx ^ 0 (5.41) 

g2(x) = x3 ̂ 0 (5.42) 

g3(x) = x2 ^ 0 (5.43) 

g 4W = &l + 4gagc - ° (5-44) 

gt.(x) = x, > 0 (5.45) 

g6(x) = x4 > 0 (5.46) 

g?(x) = x5 ^ 0 (5.47) 

Since there are only two independent variables, x. and x„, the 

initial point was obtained by a preliminary tabulation of the cost 

function versus x, and x». The initial values of xx and x~ were 

chosen as 

xx = 0.50 farad 

x = 0.50 farad 

The values of w. for i = 1,2,3, ,7 in equation (5.18) were chosen 

to be unity. The value of r in (5.18) was chosen to be 0.1. For 

each successive iteration r was divided by 4.0. By using the Fletcher-

Powell function minimization algorithm with information provided above, 
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an optimal design of network was obtained. The values of the elements 

of the optimal network are 

xl = 0.512 farad 

x2 = 0.9408 farad 

x3 = 0.525 farad 

x. = 1.452 henry" 

x = 0.895 henry" 

x, = 1.037 henry" 

The optimal design of the network, n (6) , tha t rea l izes equation 

(5.27) i s shown in Figure 30. The a l l - to lerance multiparameter 

s ens i t i v i t y measure for th i s optimal network is I = 0.044. The final 

value of the weighted penalty function in (5.18) 

7 W. 
v 1 

r L i=i hw 

is 10" . This is sufficient to indicate the value of the cost func

tion P(x,r) in equation (5.18) finally converges to the minimum value 

of I(x) in (5.18). 

Comparison of the Optimal Network in Example 3 
with Those Obtained by Schoeffler, Leon-

Yokomoto, and Cheetham 

The original network, n(0), realizing equation (5.27) is shown 

in Figure 31(a). The remaining networks n(l)> n(2), n(3), n(4), and 
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1.21 * 
1.06 
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.24 
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(c) n(2) , Schoef f le r 

.05127 

]y 
.196 

1.448 

o 

-W\ Tl 

.05995' 
1.172 .0708 

(f) n(5) , Cheetham 

henry , farads 

Figure 3 1 . A Se r i e s of Continuously Equivalent Networks 
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ri (5) in Figure 31 were claimed to perform increasingly well in the se

quence according to the t r ad i t iona l f i r s t -o rder sens i t iv i ty measure. 

This i s shown in Figure 32(a). However, according to the a l l - to lerance 

multiparameter sens i t iv i ty measure, I , networks n ( l ) , i"l(2), r\ (3) , ri (4) , 

and n(5) do not perform increasingly well in that sequence as shown in 

Figure 32(b). The optimal network n(6) in Example 3 has the l eas t mea

sure as shown in Figure 32(b), i . e . , I = 0.044. (For values of I of 

other networks, see Table 6.) 

How much does the optimal network ri (6) outperform the networks in 

Figure 31 obtained by Schoeffler, Leon-Yokomoto, and Cheetham can also 

be seen in Figure 33 where the performance of different networks versus 

the element r , are depicted in the v ic in i ty of nominal point . For a 

tolerance of 10 percent, Ar , / r , = 0 . 1 , networks n (0) , n ( l ) , n (2 ) , n (3 ) , 

D (4), and ri(5) a l l show large var ia t ions of network performance. All of 

them have an in f in i ty and almost a null within the tolerance l imi t . On 

the other hand, the performance of the optimal network rj (6) i s shown in 

Figure 34, which shows ne i ther an in f in i ty nor a null in the tolerance 

l imi t . This i s the reason why the optimal network n(6) outperforms 

n (0), r)(l)> n (2 ) , n (3 ) , n (4 ) , and n(5) as far as the element parameter 

T, i s concerned. 

I t i s also of in t e re s t to show how the performance of a network 

function varies as other element values are changed from the i r nominal 

values. These var iat ions are shown in Figure 35. Again, ne i ther an 

in f in i ty nor a nul l e x i s t s . 

What t h i s example demonstrates is that the resu l t obtained by 

the optimization scheme based on the new a l l - to lerance multivariable 
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Figure 32. Two Different Sensitivity Measures 
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Figure 33 . Di f fe ren t Network Performances versus element 
T in Figure 31 
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Figure 34. Network Performance of n(6) versus 
Element I\ 
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Figure 35. Network Performance of n(6) ve r sus All of I t s 
Elements 
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sensitivity measure is far better than that based on the traditional 

first-order sensitivity measure. If a large variation of the network 

performance exists within the tolerance limit, it will manifest itself 

through the value of I. 

A Comment on Sensitivity Minimization 

The traditional minimum-sensitivity design is to reduce the 

slope of the network function with respect to the element values at 

the nominal point [4, 7, 8, 16, 19, 20, 23]. This approach may actually 

introduce a worse performance than the original one when the tolerances 

of the network elements are finite. For instance, in the process of 

optimization, Schoeffler obtained a better sensitivity of network 

function with respect to element C, for network r|(3) of Figure 31(d) 

compared to network n(2) of Figure 31(c). That is true at nominal 

point and is shown in Figure 36. At the nominal point (|Z/Z | = 1.0, 

C,/C,0 =1.0) the slope of the dotted line is less than the slope of 

the solid line. However, by reducing the slope of the network func

tion at the nominal point one can see from this figure, an infinity 

is introduced within the element tolerance limit. Hence, some net

works optimized by the traditional sensitivity measure may be com

pletely unacceptable even though their element values fall within the 

tolerance limit. 
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Figure 36. Effect of Optimization at the Nominal Point 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER WORK 

The shortcomings of the existing sensitivity measures were 

pointed out and a new all-tolerance multiparameter sensitivity measure 

that overcomes these shortcomings was presented. Examples in which the 

traditional first-order sensitivity measures gave inaccurate and mis

leading information were given. Since one of the purposes of sensi

tivity study is to make comparative evaluation of different circuits 

realizing the same network function, the new sensitivity measure was 

applied to evaluate different circuits realizing the same network 

function so that a better circuit can be chosen for practical applica

tion. 

A new formulation and algorithm for continuously equivalent 

network called "multivariable continuously equivalent networks" was 

presented. The continuously equivalent networks generated by the 

existing single-variable continuously equivalent network theory are 

incomplete. However, the continuously equivalent networks generated 

by the new multivariable continuously equivalent network algorithm 

are complete as long as the constraint equations can be solved in 

closed form. 

In addition to applying the all-tolerance multiparameter 

sensitivity measure to compare more meaningfully which of the circuits 

realizing the same network function is less sensitive, the new 
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sensitivity measure was used to evaluate a series of continuously 

equivalent networks and the results were compared with those obtained 

by the traditional sensitivity measure. The results show that tolerances 

play an important role in network sensitivity. 

It was also pointed out that the optimization scheme based on 

the traditional first-order sensitivity measure could give a worse 

result. Since the other purpose of sensitivity study is to design a 

better network from the sensitivity viewpoint, the new sensitivity 

measure and multivariable continuously equivalent network theory were 

incorporated into a scheme to obtain an optimal network design. It was 

found that the optimal network obtained by minimizing the new sensi

tivity measure outperformed the "optimized network" obtained by using 

the traditional first-order sensitivity measure. This is because, in 

effect, the new sensitivity measure takes into account the actual 

variation of the network performance when the element values are 

changed by finite amounts. 

Fiacco and McCormick method was employed to transform the con

strained optimization problem into an unconstrained optimization problem. 

Then the Fletcher-Powell minimization technique was used to find the 

optimal network. The success of the optimization depends heavily on 

the proper choice of the starting points and the weighting factor for 

the step size. It is recommended that further work can be done in 

this area so that a more workable and efficient technique can be found. 

The completeness of the multivariable continuously equivalent 

networks depends on whether or not all roots of the constraint equations 

can be found. All roots can be found if the solutions are in the 



closed form. A numerical method can be used if closed form solutions 

are not obtainable. Methods for finding all roots of a set of 

nonlinear equations by the numerical method is apparently an area that 

is yet to be investigated. 

The all-tolerance multiparameter sensitivity measure is recom

mended to be used to evaluate those filter designs published in the 

last ten years so that we can determine which ones have low large-

change sensitivities and presumably more suitable for practical appli

cations. 

Applying the multivariable continuously equivalent networks 

along with the new measure to automated network design is another open 

area that further work can be pursued. 
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