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SUMMARY

There are two main purposes for conducting the sensitivity study.
One is for the comparative evaluation of different circuits realizing
the same network function. The other is for designing better circuits
from the sensitivity viewpoint. To accomplish these, the most important
step is to find a criterion that gives correct sensitivity information
of the network performance. The objective of this research is to de-
velop a new deterministic and statistical multiparameter sensitivity
measure, and to develop a new formulation and algerithm of continuously
equivalent networks which are used for sensitivity optimization of a
given network function.
The contribution of this research includes:
1. Pointing out the shortcomings of the existing sensitivity
measures.
2. Proposing a new deterministic and statistical sensitivity
measure.
3. Developing a new multivariable continuously equivalent network
“formulation.
4, Applying the new sensitivity measure to evaluate different
circuits realizing the same network function and comparing
the results with those obtained from traditional sensitivity
measures.
5. Using the newly proposed multiparameter sensitivity measure

and multivariable continuously equivalent network theory to
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obtain an optimal network for a prescribed network function.
The optimal network obtained by this method shows thaf the
network performance has a far less variation from the nominal
point for finite element tolerances than those obtained by the

traditional methods.

Several examples have been worked out based on the new measure
and the new formalism. These examples include both active and passive
networks. In the example of the optimization of a passive network, the
new measure for the best network designed on the basis of the first-
order sensitivity is 2.473. This measure has been reduced to (.044
when the new technique is applied. This represents an improvement by

a factor of approximately 56.



CHAPTER I
INTRODUCTION

Circuit sensitivity problem was first studied by Bode [1]. His
classical definition of network sensitivity is closely related to the

usual definition of the differential sensitivity

SF=%§- _d_ d{&n F)

X dx d(%n x)
where F is the network function and x is the value of an element.

Multiparameter Sensitivity Measures

Since Bode, a number of different definitions of multiparameter
sensitivity of a circuit have been proposed. Those definitions can be

classified into two categories:

1. Small-Change (or First-Order) Multiparameter Sensitivity

So far, five different definitions of multiparameter sensitivities
have been proposed. Mikulski [2] proposed the multiparameter sensitivity
measure to be

nx ] i ¢

[ 33(’“’” d(nx;) = 3 s:_l d(2nx,) (1.1)

where xi is the value of the ith element of the network.

Kuo and Goldstein [3] defined the multiparameter sensitivity as

F
= S 1.2
lg xil (1.2)



Shoeffler [4) used another multipafameter sensitivity measure
. > . -
M= Jlst | - o (1.3)
i i . _
in optimizing his continuously equivalent networks.

Assuming the variations of the elements of-the netwoxk to be

random variables with zero mean and known statistics, Rosenblum and

Ghausi [5] defined the muitiparameter'sensitivity measure in a frequency
range as
[VxF]

I Ax

dw| . (.4

where E.denotés the expe@téd value, VxF.= [35/3:1.;.3F/3xk]t:(k is the
1 to w,

frequency range, and Ax is the element variation vector. The measure

number of eleménts'in the network), w is the network operating

defined in (1.4) is not #efy:uséful=because'it is difficult.to carry

out the calculation, therefore it was modified to read

“a l:vaI] o [vai:] N I:VaFJ "o [Va.l] -
N Y : S

2 V. Fj*t . V.F
I R A= b
[ Fl] C,PC, [—-—Fl] dw




P = E[bx - Axt]
) t
VaF = [8F/33n_1,...,BF/3a0]
- t
VbF = [BF/an_l,...,BFfabo]
bsh+b .sPla + b.s+b
F=_N n-1 ) 1 0
- m-1
s”+a S + *a;s + a
_ _ — _
) Bam_l ) 3&0 . abn . EEQ
1 axl 1 Bxl 1 axl 1 8x1
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. Bamql Bao . an i EEQ
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Shenoi [6] used Hilberman's [7] biquadratic approach to sensi-

tivity in forming a multiparameter sensitivity measure as

min max
M= ox Loy <<ty ([ uy, (Gu) + 8o, (G} 1)1 (1.5)
1—1,2,...,Nf

where Nf is the number of degrees of freedom in choosing the element
values of a network, E is chosen according to the percentage yield

specified, and

Ni Ni
“Ay = (UR * uc); =S, - 25,
i 1i
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My the mean value of the operational amplifier gain
0

AO: the gain of the operational amplifier.

The measures defined in (1.1) through (1.5) all depend only on
the first derivative or the linear term of the Taylor's series expansion
of a network function about the nominal peint. These measures are only
good and meaningful if the higher-order terms are negligible.

2, Large-Change Multiparameter Sensitivity

Hakimi and Cruz [8] defined the multiparameter sensitivity mea-

sure at a single frequencyu)k as

max ﬂF[jmk]

M= -
F(ka)[ﬁl'ﬁé...ﬁn]

0< |e;] <6 (1.6)

where Gi is the tolerance on element x; and €, is the actual per-unit
deviation, ﬁxi/xi. Kelly [9] extended this single-frequency definition

to a range of frequency

{1
2
M = J A(w)|Fmax(m) - F . (@)|do (1.7

g |

where Fmax(w) and Fmin(w] are the maximum and minimum values, respec-

tively, that the network function F(w) can attain for element values

contained in the element constraint set R.

R= [x; (1-6;)x;y < x; < (1+6;)x]

where xi is the nominal value of element x5 and Gi is the tolerance

N

of element X; - A{w) is a weighting factor.



Among these definitions, the M's defined in (1.3) and (1.4) are

statistical and the remainder are deterministic.

Shortcomings of the Existing Multiparameter
Sensitivity Measures

In general, first-order semnsitivity measures only give infor-
mation en the characteristics of a network function in the vicinity of
its nominal point., These quantities may yield quite useful results in
some applications when element variations or tolerances are small,
However, for fairly large element variations such as those that may
occur in integrated and hybrid circuits, the first-order sensitivity
is not only inadequate to describe the behavior but also misleading
in many cases.

For instance, the Hamilton-Sedra circuit [11] realizing the

voltage transfer function of a band-pass filter

Vv
T(s) = Vo - 1.5s

in §" + =85 + 1
Q

is shown in Figure 1. For Q = 10, @ = 1 radian per second and with the

following nominal element values:

= 1,00001 farads

1 10
C2 = C20 = 1,0001 farads
C3 = CSO = 2.00002 farads
Ry = R40 = 0.649 ohm
RS = R50 = 2.167 ohns
R6 = Rf)0 = 1.0 ohm
R, = R,. = 1.0 ohm

7 70
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Figure 1. Hamilton-Sedra Circuit



R8 = R80 = 10,000 ohms
Rg = R90 = 39,12 _ ohms
Rlo = RlOO = 1.0 ohm

the variations of the magnitude of the normalized transfer function
versus circuit elements C1 and C2 in the heighborhood of nominal point
are depicted in Figure 2. When all the elements are at their nominal
values the transfer function at Wy is denoted by To' T(Cz) represents
the variation of the transfer function when C2 is varied and all other
elements are kept at their nominal values. Similarly T(Cl) represents
the variation of the transfer function when C1 is varied and all other
elements are kept at their nominal values. The solid line in Figure 2
represents the variation of the magnitude of the normalized transfer
function T(C,), while the dotted line represents that of T(C,). Since at
nominal point b the slope of the dotted curve T(Cz) is smaller than
that of the solid curve T(Cl), the first-order sensitivity with respect

to C, is less than that with respect to Cl' Nevertheless, when the

2
values of the elements C; and C, are considerably less than their nomi-
nal values (CI/C10 = C2/020 = 1.0}, the degradation in performance of
the transfer function from the nominal with respect to C, is worse.

For instance, when the element values C1 and Cz are changed from their
nominal values point ¢ to point d, the variation of the network
function from the nominal point caused by the change ¢y is ef and

the variation of the network function from the nominal point caused

by the change C2 is eg. Obviously, eg is larger than ef. This contra-

dicts the conclusion one might infer from the first-order sensitivity
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1



10

neasures.
Another example of the situation in which the first-order sensi-
tivity can give misleading information is the circuit of Figure 3.
Assume the nominal element values are R0 = 0.01 ohm, L0 = 1.0 henry,
and Co = 1.0 farad, the variation of the magnitude of the driving-point
admittance at w = 1 radian per second, when R and L are kept at their
nominal values and C is considered to vary, is depicted in Figure 4.
The first-order sensitivity of the driving-point admittance magnitude

with respect to C at the nominal point is zero, 2 Yacl) = 0.
€=C
0

According to the first-order sensitivity, this circuit is extraordi-
narily insensitive to the change in C. However, a 1 percent increase
in C results in a 90 percent decrease in IY(jl)]. Even a 0.2 percent
increase in C results in a 29.1 percent decrease in |Y(jl1)].

From these examples, it is seen that the first-order sensitivity
can frequently give inaccurate information on network behavior. In

other words, the first-order semnsitivity is not always reliable as an

index of the sensitivity of a network.

The large-change sensitivity measures cited carlier give informa-
tion at two extreme points for each element value change rather than at
the nominal point. This usually gives a better description of the net-
work behavior within the element tolerance limit. However, in general,

the behavior of a network function is dependent upon all points in the

element tolerance limit. For example, the two assumed network perfor-

mance curves shown in Figure 5 behave differently except that they have
the same magnitude at the nominal point b and the end points of the

tolerance limit (a and ¢). Even though the network performance on the
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Figure 3.

An RLC Circuit
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right behaves worse than the one on the left because for more values
of Ax it has a higher value of |AF|, the definitions of large-change
sensitivity given in (1.6) and (1.7) would both indicate that the two
networks have the same sensitivity measure and, presumably, performs
equally well. The misleading information that the first-order sensi-
tivities give is also shown clearly in Figure 5 where the slopes at
the nominal point would indicate that the network on the right would
perform better than the one on the left. This is exactly the opposite

of the true picture.

Continucusly Equivalent Networks

Once the criterion of sensitivity has been established, a net-
work designer can use the sensitivity to evaluate network performances
based on that criterion. Methods can then be developed to optimize
the design for a given network function. There has been some work
done in this area {4, 12-20]. Optimization is usually done by mini~
mizing the sensitivity measure with respect to the designed (or nominal)
element values either for a fixed network configuration or for a series
of continuously equivalent networks {4]. The current theory of con-
tinuously equivalent network is derived from the work of Howitt [21]

which is based on the first-order sensitivity measure.

The Howitt theory says: Given an n+l terminal n-port network N,
described by the admittance matrix Yo consider an n-port network Ny

whose admittance matrix Yl is such that

Yl =‘AY0 A



15

with
1_A } 1 0 }
_,A = ¥ 12 n A = r n

0 Ay, Aryp A

[ [N

T T

L'V"J L_\,..__J

n n

where 1r is a unit matrix of r X r, and A and A are nonsingular. Then
network N; is equivalent to network N, as far as the first r ports are
concerned. If A = At, the congruence transformation is called the

Howitt transformation.

Schoeffler chosej\t = A =1 + BAx where B = [?zpr, 1 is a unit
b

matrix and proved that any solution to the differential equation

%%‘l= BYY(x) + YOOB , Y(0) = Y, (1.7

(where Yo is the n x n admittance matrix of the original network) repre-
sents a network which is r-equivalent to the original network (i.e., they
are equivalent at the r ports formed by nodes 1,2,...,r and the refer-

ence node, 0 < r < n). The network component vector satisfies the

equations
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where

L
G = [g;,87s-++58]

t

(@]
1

= [CI,CZ,...,C]_I]

_ t
¥ = [[y,Tyseneul ]

81+855+++,8, are the conductances; CI’CZ’Cn are the capacitances;

rl’FZ""’rn are the inverse inductances of the network components.
The elements of the matrix M are linear sum of the elements of
matrix B.

Cheetham [22] also provided an alternative technique to solve
the same problem. Instead of choosing A = 1 + Bx, Cheetham chose
A =1 + Bx to perform the Howitt transformation and yielded the
equation

Y(x) = Y, » (BtYo +Y B)x + BtYOsz (1.8)

the transformation represented by this equation may be expressed for
each component vector as

E(x) = M, (X)E
where EO is the appropriate component vector of the original network and

the m X m matrix [m = %—n(n+1]] M(x) is in the form of

Ml(x) =1+ Px + sz (1.9)

where P and D are real m X m matrix whose elements are linearly dependent
on those of matrix B. The calculation of the quadratic equation (1.9) is
simpler than solving the differential equation (1.7). Nevertheless, his

sensitivity optimization was still limited to the traditional first-order
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sensitivity shown in equation (1.3).

In the time domain, Leon and Yokomoto [23] used the Howitt
theory on the state equation of a network, and thereby obtainéd new
equivalent networks. The method is described briefly below. Assume

that a given network N, is represented by the state equations

M°£=-N0§_+1J_u (1.10)
w=dx (1.11)
where
c 0
M =|©° 1 (1.12)
° o L
2 o
G g
o]
N_ = (1.13)
° s R

a new network Nl represented by another state equations

Ml__x_ = -Nl_)_(_ + P_u
W= d'x
such that
M, = ATM A A% = b
N, = AN A ata = a*

is r equivalent to No'
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The matrices Co and GO are r X r matrices whose elements are linear sums
of the network capacitances ¢; and conductances g; respectively with
coefficients +1; L and R are (n-r) % (n-r) matrices whose elements are
linear sums of the network inductances Ei and resistances r, respec-
tively; B and St are r X (n-r} matrices whose elements are +1, -1, or
zero; and 01 and 02 are T X (n-r) null matrices. The elements g in G
are co-tree conductances and the elements r. in R are tree resistances.

Because of the restrictions on state equations in describing a
network, this state-equation time-domain method has more limitations
in generating equivalent networks than the preceding two methods. The
optimization criterion Leon and Yokomoto used was also the traditional
first-order sensitivity measure shown in equation (1.3).

Since networks generated by the Howitt theory are known to be
incomplete, continuously equivalent networks derived from it are also
incomplete [24]. In Chapter IV a new formulation and algorithm of

continuously equivalent network will be presented.

Qutline for the Thesis

This research includes the following five facets and will be
presented in that order.

1. To point out the shortcomings of the existing sensitivity
measures which are either limited in their validity or giving inaccur-
ate or misleading information of the behavior of the network in the
element tolerance space. This item has already been discussed in
Chapter I.

2. To propose a new deterministic and statistical sensitivity

measure which will overcome the shortcomings of the existing sensitivity
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measures. This will be discussed in Chapter II. The newly proposed
sensitivity measure will be called "All-tolerance Multiparameter
Sensitivity."

3. To develop a new formulation and algorithm for continuously
equivalent networks in Chapter I11. Continuously equivalent networks
obtained by this new scheme will be called '"Multivariable Continuously
Equivalent Netwoxrks."

4. A comparative evaluation of different circuits realizing
the same network function will be discussed in Chapter IV. The evalu-
ation includes: (i) Applying the all-tolerance multiparameter sensi-
tivity measure to compare more meaningfully which of the circuits
realizing the same network function is less sensitive. (ii) Comparing
a series of equivalent networks by the newly proposed sensitivity
measure with those obtained by the traditional sensitivity measure.

5. To use the newly proposed multiparameter sensitivity measure
and multivariable continuously equivalent network theory to obtain an
optimal design for a prescribed network function. This will be dis-
cussed in Chapter V.

Finally, the conclusions derived from the research and recom-

mendations for further work are presented in Chapter VI,
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CHAPTER II

THE ALL-TOLERANCE MULTIPARAMETER

SENSITIVITY MEASURE

For the comparative evaluation of different circuits realizing
the same network function and for the optimization scheme for realizing
better networks to be meaningful, a sensitivity measure that gives
accurate information about the behavior of the network function through-
out the entire region of element values within their tolerance limits
must first be formulated. As demonstrated in Chapter I, none of the
existing sensitivity measures serves this purpose well.

In this chapter, a new deterministic and statistical sensitivity
measure that will be more meaningful than the existing sensitivity
measures will be proposed. The proposed deterministic multiparameter
sensitivity measure is used primarily to evaluate and design networks
in small production volumes. The statistical one is more applicable
to large-scale productions of units such as integrated or hybrid cir-
cuits. The proposed statistical multiparameter sensitivity measure
will include the consideration of tolerance, the type of the probability
density function (PDF), and the mean change of the element values,

Since the new deterministic and statistical sensitivity measure is
applicable to both the small-change and the large-change sensitivities,
the new sensitivity measure will be called the "all-tolerance multi-

parameter sensitivity."
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New Deterministic and Statistical Multiparameter
“Serisitivity Measure

The newly proposed statistical all-tolerance multiparameter
sensitivity is:

X +ix

1 2 o kK _%
I = TT——TTEJ Alw) [ IF(x,m) - F(xo,w]l Px dddw (2.1)
X
o w xo-&x
where x = (xl,xz,...,xn]t: the element value vector of the network
(or the random variables of the network)
t, .
X, = (xlo’xzo”"’xno] : the nominal element vector of the

network

Ax = (&xl,ﬂxz,...,axn)t: the tolerance vector of the elements

2 2 2,
||xo|| = //xlo ¥ Xy, * ...+ Xt the norm of x
Px = joint probability density function of ail elements XpsXgree s Xy
dé = dxl,dxz,...,dxn
Wy, 00y = the operating frequency range of the network (wz > wl)
A = weighting factor
k = a positive number
2 = a positive number
When £ = 0, equation (2.1) becomes the deterministic all-
tolerance multiparameter sensitivity measure, i.e.,
w X _+AX
1 2 ° k
I = A (w) |F(x,w) - F(xo,w)| ddduw (2.2)

n
'lxoll Wy X, -bx
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Simplified n One-Dimensional Integrals

Equation (2.1) and (2.2) are (n+l)-dimensional integrals. The
computation time required to evaluate such an integral may be excessive.
In order to make the calculation of the sensitivity measure practical,
it is proposed that each of the integrals be replaced by the sum of a
number of n one-dimensional integrals.

For the statistical sensitivity measure of equation (2.1) the
correlated case and the uncorrelated case have to be considered separ-
ately.

(a) Correlated Case

For the correlated case, equation (2.1) is replaced by

ng ° )
;: ———J l(mi)lF(xj,wiJ - F(xjo,mi)l P dxj (2.3)

where m is the number of frequency points being calculated; n is the
number of network elements; and Px is the joint probability density

function of element parameters X)sXgreonsX o

It is noted that the integral with respect to frequency w within
the operating frequency range w, to w, is replaced by the summation of
aggregated values that approximate the n one-dimensional points. The
number m is chosen arbitrarily. When m is sufficiently large, the
results from integration and summation will become very close.

(b) Uncorrelated Case

For the uncorrelated case, equation (2.1) is replaced by
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i
T =
g

1 k
‘“—'J k(mi]|F(xj’wi) - F(xj ’wi)l P % dx . (2.4)
Jo o X J

where P_ is the probability density function of the element
j
parameter xj.
Similarly, the deterministic all-tolerance multiparameter

sensitivity measure of (2.2) is replaced by the following summation

of n one-dimensional integrals

b=
="
‘—‘H:l

)t(mi)|F(xj,wi) < FGxy ) k d, (2.5)

H"—-—\.

In general, the integral evaluation needs to be carried out
through the computer by using numerical methods. Various numerical
integration methods such as the trapezoidal rule, Simpson's 1/3 rule,
Simpson's 3/8 rule, or Simpson's 3- and 5-point approximations are
available in the form of computer subroutines, The number of points
at which the integrand is to be evaluated depends on the degree of
accuracy required. Usually a maximum permissible error between suc-
cessive evaluations of the integral is set in advance. The type of
error comparison between successive values of the integral can be
relatiﬁe or absolute. For the purpose of evaluating the new measure, I,
it is recommended that the relative type error comparison be used

since the value of the new measure, I,usually has a different range for
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different problems. The absolute type error comparison can only be
used when the range of I is already known in advance, which is usually
not the case.

For a certain maximum permissible error between successive
calculated values of the integral, the reduction qf the number of
points at which the integrand is to be evaluated can be quite substantial
when the n-dimensional integral is reduced to n one-dimensional integral.
For instance, assume that 100 points are required for a relative maxi-
mum error of 10'2 in one-dimension. Further assume that n is 6. Then
the total number of points that the integrand must be calculated for
n-dimensional integral will be (100)n = 1006 or 1012. However, the
number of points that the integrand needs to be calculated for n one-
dimensional integral is n X 100 = 6 *x 100 or 600, which is dramatically
smaller than 1012.

Even though the n one-dimensional integrals give much less infor-
mation on the network behavior than the (n+l)-dimensional integral, it
still gives much more information than any of the sensitivity measures
mentioned in Chapter I. This is to say that the quantity I defined in
any of the equations (2.3), (2.4), and (2.5) still gives considerably
more informative than the existing sensitivity measures,

Figure 5 is redrawn in Figure 6 in conjunction with the
probability density functions of different kinds of element param-
eters. From this figure it is seen that not only the type of the PDF
but also the mean change (u) of the element parameters play an im-

portant role on the network performance. For instance, when p = 0,

the network function Fl has a better performance when the probability



25

Network F2

Network F1

+
]

>
E{x - x0)>0

Gaussian
Uniform

+
I
|
I
[

[
I
1

"E(x - x0)<0

Network Function and PDF

Figure 6.
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density function of the element parameter is Gaussian than when

the POF of the element parameter is uniform. This is because of

the fact that the area between that part of the performance curve
labeled efg and the |T| =|Tb|is weighted more heavily when the PDF is
Gaussian than when it is uniform; while the opposite is true for those
parts labeled bce and ghi. For the same reasoning, network F, also
performs better when the PDF of the network element parameter is
Gaussian than when the network element parameter is uniform.

If the PDF of the network element parameter is uniform, network
F2 in Figure 6 will have a worse performance when U is positive (u > 0)
than when u is negative (4 < 0). The difference in the measure is
dependent on the relative areas of the deviation that are weighted in
one PDF but not in the other. When p > 0, the area in question is be-
tween that part of the performance curve labeled hij and |T] =|TJ;
while when u < 0, the area is between abc and |T| = |Tb|. The former is
larger than the latter, The same conclusion cannot be reached for
network F1 by an inspection of Figure 6 since the relative areas of
the network performance curve is no longer obvious. The new measure I
needs to be calculated in order to determine what kind of u, positive
or negative, will give a better performance when the PDF of the network
element parameter is uniform.

When % = 0 both equations (2.3) and (2.4) become equation (2.5).
That is to say that the deterministic sensitivity measure is a special
case of the statistical sensitivity measure. When k=1, m=1, n=1
and both F(xj,wi) and F(xj ,wi) are real or are in the same phase the

o
value of I in equation (2.5) represents the shaded area shown in



27

Figure 6. For practical purposes it is suggested that k = 2, £ = 1

be used for the statistical cases of equations (2.3) and (2.4), and
that k = 2 be used for the deterministic case of equation (2.5). The
value k = 1 is not recommended especially when the sensitivity measure
is being minimized, since this vaiue of k will cause trouble in evalu-
ating the values of the partial derivatives of I with respect to the
element parameters. In the numerical integration algorithm, the de-
nominator of the integrand of the partial derivative of I with respect
to any element parameters becomes zero at the nominal point. This,

in turn, will make that integrand infinitely large and keep the com-
puter from proceeding further without errors.

A new formulation and algorithm of continuously equivalent net-
works-~the multivariable continuously equivalent networks--will be
presented in Chapter II1. The application of the new all-tolerance
multiparameter sensitivity measure will be discussed in Chapter IV
along with a series of continuously equivalent networks. In Chapter
V, the new all-tolerance multiparameter sensitivity measure and the
multivariable continuously equivalent networks will be applied to ob-

tain an optimal network for a prescribed network function.



28

CHAPTER III

THE MULTIVARIABLE CONTINUOUSLY

EQUIVALENT NETWORKS

Continuously equivalent networks are a series of networks whose
network functions are identical to that of a given network but whose
element values are varied from one network to the next by an incremen-
tal amount. Noting that the removal of an element between two nodes is
. the same as replacing it by an admittance of value zero and that adding
an element between the nodes is equivalent to replacing a zero value
admittance element by one with finite conductance, the topology or
the configuration of the equivalent network can often be changed by
this process. |

The purpose of generating a series of continuously equivalent
networks is to establish a series of networks from which an optimal
network can be found. In particular, the new techniques are more suit-
able for thin-film and integrated circuits since the engineering of
these circuits has changed some of the criteria by which networks are
evaluated. For instance, the new technique places less emphasis on
the number of network elements but requires designs which are fairly
insensitive to changes in the element value, Under this.circumstance,
the continuously equivalent networks will serve as a good tool for
finding an optimal network if (i) the networks generated by the theory
and algorithm are complete, and (ii) the optimality criterion or the

sensitivity measures used in the process of finding the optimal



29

network is effective. In Chapter I, it is mentioned that none of the
existing theories and algorithms can generate continuously equivalent
networks that are complete. In Chapter II, a sensitivity measure that
serves the purpose of optimization has been proposed. In this chapter,
a new formulation and algorithm for continuocusly equivalent networks
will be developed. This new formulation and algorithm will have the
following outstanding features: (a) the new scheme can grow both new
meshes and new nodes with all types of new elements (R, L, and C)

and, thereby, change the topology of the network; (b) the continucusly
equivalent networks produced by the new scheme are complete under cer-
tain conditions.

Instead of dealing with the continuously equivalent networks with
one variable, the new scheme will use more than one vaxiable. Therefore,
the continuously equivalent networks obtained by the new scheme shail
be called multivariable continuously equivalent networks. Two methods
of changing the topelogy of a given network will be presented. Oﬁe is the
element growing method between any pair of existing nodes; the other is
the node and element growing method.

Element Growing Method Between a
Pair of Existing Nodes

Given a network, one can assume that there is a component of
each type (R, L, and C) between every pair of nodes. For those com-
ponents which are not needed in the new equivalent network, the
admittance values are set equal to zero. As an example, when this
principle is applied to Schoeffler's original network, one can get the

topology of the equivalent networks Schoeffler and Cheetham got or
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the topology of the equivalent network Leon and Yokomoto got immedi-
ately. The process is demonstrated in Figure 7.

In this group of examples, network elements are limited to the
lossless type (I' and C). Schoeffler's original network is shown in
Figure 7{a). In Figure 7(b) a component of each type is assumed to exist
between every pair of nodes. The newly grown elements Cl and PS are
shown as dotted branches. If one decides to include both newly grown
elements C1 and F$ in the new equivalent network, the topology of the
new equivalent network is exactly the same as the one obtained by
Schoeffler and Cheetham which is shown in Figure 7(c). On the other
hand, if one decides to include only one of the newly grown elements,
say Cl’ in the new equivalent network, the topeology of the new equiva-
lent network will be exactly the same as the one obtained by Leon and
Yokomoto which is shown in Figure 7(d).

Once the new topology of continuously equivalent networks is
obtained, a new network function can be formed in terms of the element
parameters. Assuming the number of elements of the new network is n,
the number of independent coefficients in the given network function
is Nc‘ By equating each of the Nc coefficients, expressed in terms of
element parameters in the newly formed network function to the coeffi-
cients of the given network function there remain n - Nc unknown
parameters. These n - NC parameters are then used as independent vari-
ables. The number n - Nc is usually greater than one. This is why
the equivalent networks generated by this scheme are called multivari-
able continuously equivalent networks.

The following example illustrates the proposed procedure.
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(a) Schoeffler's original network
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(b} Network with newly grown elements
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(¢} Schoeffler's and Cheetham's (d) Leon-Yokomoto's equiva-
equivalent network lent network

Figure 7. Formulation of New Networks
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Example

Given a network function

5
5s° + 125 gs *+ 2 bys™ + bys
2(s) = =~ 5 - - 5 (3.1)

654 + 2252 + 18 s + %%-5 + 3 5 + a8 + 3,

which is realized in Figure 8 with element values shown below

r, =0.02 henry-I
-1

Fz = 1.50 henry

C2 = 1.20 farads

C; = 0.00833 farads

Following the element growing method stated above, a new equivalent
network having the same Z(s) as in Figure 8 is obtained in Figure 9.
The network function with its coefficients expressed in terms of ele-

ment parameters is

X, X

17%3 <3, X4 % .
Xy (KX 34X X0 7 Xy (X 4R )X X g
54;‘4("2”3 +x5("1""3)*"6("1""2)524"4("5”‘6)”‘5*6
X) (X)X ) +x X, X) (X)*X ) 4X,Xy

Z(s) =

B3(x)53 + B (x)s (3.2)

4 2
s + Az(x)s + Ao

Setting equation (3.2} equal to (3.1), one gets



2(s) — I‘2 % — C2 % C3

Figure 8. Circuits Realizing Equation (3.1)

%
1}
) — 3 T = Zx,
xs 2 -I_.'S
c .

Figure 9, A New Equivalent Network

33



34

X, + X

1 3 5
B (x) = ==h (3,3)
3 xI(x2+x3) * XyXs 6 3
X, + X
4 5
B, (x) = =2=59 (3.4)
1 xl(x2+x3) * XXg 1
A5 - x4(x2+x3) + xs(x1+x3) + x6(x1+x2] i 1 .. (5.5)
2 x1(x2+x3) X Xg 3 2
X, (Xe+x.) + XX
475 76 576
A (x) = =3=a (3.6)
0 xl(x2+x3) + X, Xg 0

In equation (3.1) the number of independent coefficients is 4,
(ao,az, b1 and b3), i.e., Nc = 4, In Figure 9 the number of elements
in the new network is 6, i.e., n = 6, Solving equations (3.3), (3.4),
(3.5),-and (3.6), there remain n - Nc = 6 -~ 4 = 2 unknown parameters.
These two unknown parameters are then used as independent variables.
The new networks of two independent variables are multivariable con-
tinuously equivalent networks compared to Schoeffler's and Cheetham's
equivalent networks of a single wvariable.

After the new equivalent network with newly grown elements are
determined, the general procedure for getting the values of the elements

of the new network for the general case is outlined below.

Given a network function

(3.7)
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where p + q + 1 = Nc is the number of independent coefficients, a new

network function with coefficients as functions of the element parameters

Xq,5Xn,...,X_ 15 formed from the new equivalent network. Using the
1°72 n

notation x = (xl,xz,...,xn) the new network function becomes

B (x)sp + B (x)sPwl + ... + B (xX)s + B,(x)
F(s) = D p-1 1 0

(3.8)
s+ Aq_l(x) AL, s A (X)s + Ay(x)

Setting equation {3.8) equal to equation (3.7), Nc equations are

obtained as follows,

n
4

Bp(x) = bp Aq_l(x) q-1
Bp_l(x] = bp_1 Aq_z(x) = a.q_2
_ (3.9)
Bl(x) = b1 Al(x) = 8
By(x) = by, A0 = 3,

With Nc element values constrained by the Nc equations in (3.9}, the
remaining n - N. element values are free to vary. That is to say, the
values of n - N, element parameters can be chosen arbitrary as one
desires. Once the values of n - N, element parameters are chosen,

the remaining values of NC parameters can be obtained by solving the

N_ simultaneous equations in equation (3.9).

Node and Element Growing Method

In addition to the fact that elements can be added between
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existing nodes, new nodes and new elements can be grown out of a given
network. This is illustrated in Figure 10. The original network is
shown in Figure 10(a). The new network with newly grown nodes and ele-
ments is shown in Figure 10(b) where Nl, N2’ and N3 are newly grown
nodes and Fl, 8 51, kl, and Rz are néwly grown elements. It is noted
when the values of Fl, g1» Sl’ ﬁl’ and 22 are zero, the topology of the
new equivalent network in Figure 10(b) is the same as the topology of
the original network in Figure 10(a). It is also noted that newly
grown elements are not in the same unit. The unit for rl is henry'l,

g, mho, S, farad_l, and &, & %, henry. The rule to determine the

1
unit of a newly grown element in an equivalent network is that when
the value of a newly grown element is zero, the topology of the new
equivalent network should be the same as the original network.

Once the new network is grown, the algofithm of getting the
values of the element parameters is basically the same as the element
growing method in Section 3.1 except some minor modifications.

When nodes are grown, the network function of the newly grown
equivalent network will not have the same degree as the original given

network function. Therefore, function in equation (3.7) is modified to

equation (3.10) below.

p*k

(x)s¥ "+.,.+B p+1+Bp(x)sp+B

s
p+l p-1
(x)sq*k+...+Aq(x)sq+Aq“1(x)sq“l;...+A1(x)s+A0(x)a

-1
B sP7he. . +B (x)s+Bn(x}
F(s) = p+k 1 0

Ak

(3.10)

Equation (3.9) is correspondingly modified to {3.11) below.



(a) Original network

gl (thS)
5 (Farads™ 1)

£ 22 (henries)

Fl (henry-l)

- 2 3
TSl % 2 g 2,

{b} New equivalent network with newly grown elements
(g1,51,£1,£2, and Fl) and nodes (Nl,NZ, and N3)

Figure 10. Node and Element Growing Scheme
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B 0 = 0 A (%) =
BP+1(X) =0 Aq+1()() =
Bp(x) = bp Aq(x) =
By 1 (X} = b,y Ag-100) =
Bl(x) = b1 Al(x) =
By(x) = by Ag(x) =

Now the number of constraint equations becomes

q-1

Nc =p+q+ 1+ 2k

38

(3.11)

The

rest of the algorithm is the same as the element growing method in the

previous section,

Completeness of the Proposed Multivariable

Continuously Equivalent Networks

Given a network function F(s) in equation (3.7) which is re-

peated below.

bsP+b . sp-l + o

F(s) = p-1

+ bls + b0

s q-].

s

q-1 ..

.+ 815 + 81_

If all possible values of the elements in a network with certain

topology satisfy the given network function cannot be obtained

{3.7)
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by the algorithm of a continuously equivalenﬁ network, then the con-
tinuously equivalent networks generated by this algorithm are incom-
plete. In Chapter I it is mentioned that the existing theories and
algorithms of continuously equivalent networks are derived from the
Howitt theory. The networks generated by the Howitt theory are known
to be incomplete. Therefore the continuously equivalent networks
generated by the existing algorithms are incomplete [24].

For the proposed multivariable continuously equivalent networks
the constrained equations (3.8) of obtaining the element values of the
new network are tied to the given network function directly as shown

below. All element values that satisfy the given network function

I
L=at
|
=+

Bp(x) = by A1 = 2
Byy (0 = b ) A2 = 3,
. : (3.9)
B,(x) = b, Ay () = &y
By () = by Ay(x) = ay

can be obtained from equation {3.9) if all the roots of equation (3.9)
can be found. If the roots of equation (3.9) can be obtained in closed
form, there is no doubt that all the roots can be found. Then the
continuously equivalent networks obtained are complete. In other
words, there are no networks which satisfy equation (3.7) that cannot
be obtained from equation (3.9) as long as all the roots of equation

(3.9) can be obtained. Hence the multivariable continucusly equivalent
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networks obtained by the proposed algorithm are complete if equation
(3.9) can be solved in closed form or if all the roots of equation
(3.9} can be found. On the other hand, the multivariable continuously
equivalent networks would not be complete if the equations in (3.9)
are nonlinear and cannot be solved explicitly. |

In Chapter IV, the new all-toierance multiparameter sensitivity
measure will be applied to evaluate different networks realizing the
same network function and the results will be compared with those ob-
tained from the traditional sensitivity measures. The convergence prob-
lem of carrying out the numerical integration in finding the value of
the new measure will also be discussed in Chapter IV. The variation
of the new measure, I, versus the variation of network elements will be
surveyed first in Chapter V. Then the new measure will be applied to
obtain an optimal network along with the multivariable continuously

equivalent networks.
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CHAPTER 1V
COMPARATIVE EVALUATION OF DIFFERENT CIRCUITS

For a given network function, there exist many different circuits
that realize that same network function. To determine which amongst all
of them gives the best performance is important especially from the
point of view of mass production. For instance, there are nearly 100
active-RC circuit configurations that have been proposed during the
last ten years for the realization of low-pass, band-pass, all-pass
response, etc. Without a good criterion one will have a great deal
of difficulty in choosing the right one to use. In this chapter, the
proposed new sensitivity measure will be applied to compare more mean-
ingfully which of the circuits realizing the same network function is
less sensitive. The new sensitivity measure will also be used to
evaluate a series of continuously equivalent networks and the results
will be compared with those obtained by the traditional sensitivity

measure.

Applying the All-Tolerance Multiparameter Sensitivity
Measure to Compare Circuits Realizing the
Same Network Function

Two biquadratic band-pass circuits that are practical and known
to have low sensitivity performance will be chosen for the purpose of
comparison. They are the Deliyannis-Friend circuit [25,26] and the
Hamilton-Sedra circuit {11] shown in Figure 1l1. Since the sensitivity

measure of a band-pass circuit generally decreases as the number of



(a) Deliyannis-Friend Circuit
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(b) Hamilton-Sedra Circuit

Figure 11. Two Band-pass Circuits, D-F and H-S Circuits



operational amplifiers increases, the comparison of the circuits shoul
be made only between circuits that have the same number of operational
amplifiers. The Deliyannis-Friend circuit and the Hamilton-Sedra cir-
cuit both use a negative beedback around the single operational ampli-
fier. The open-loop gain of the operational amplifier is chosen to be
90.4 dB, or 33,110, at 1 kHz for a typical operational amplifier pro-
vided with some internal compensation. This frequency is normalized
to a radian frequency of unity and the nominal band-pass transfer func
tion is given by

+1.5s
1
+ (=)s + 1

T(s) = (4.

s2
By using the sensitivity measure M defined in equation (1.5) Shenoi
was unable to tell the difference in network performance between the
two circuits. This is shown in Figure 12(a). The values of the ele-
ments of the two circuits for different values of Q for Figure 12(a)
are shown in Tables 1 and 2.

The proposed new sensitivity measures with k = 1, £ = 1 have
been calculated for the various values of Q using the following equa-

X, = C

tions for the Deliyamnnis-Friend circuit by letting x| = C 2 22

1’
Xg = R3, X4 = R4, Xg = RS’ Xe = RG’ X, = R7, and Xg = AO.
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d

1)

5 8 1 +0.1xj kK 2
iha T3 0yug) = Tolxgup) [T Py by
-0.1x. J
]
5 8 +0.1x,
-7 3 1—j 3{[Re{T,}-Re{T 112 + [Im{T.}-In{T }21% ¥ 4y (4.2)
i=1 j=1 %y j 0 j o X,

-0.1x, 3
]
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M [defined in (1.5}]

1.

o

0 ' ' -
1 50 100 Q

(a) Shenoi's measure for H-S and D-F
circuits

[J

1000
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L -
-

0 50 100 Q

(b} New measure, I, for H-S and D-F circuits

Figure 12, Two Different Measures for H-S and D-F Circuits



Table 1. Element Values for Deliyannis-Friend Circuit

45

Q 10 25 50 80

¢, 1.0 1.0 1.0 1.0
c, 0.666 0.666 0.666 0.666

R, 24.578 56.854 94,091 119.818

R, 1.0 1.0 1.0 1.0

R 0.064 0.027 0.016 0.012

Ry 1.0 1.0 1.0 1.0

R, .0001 .0001 .0001 .0001

A, 33,110 33,110 33,110 33,110

ohms, farads

Table 2. Element Values for Hamilton-Sedra Circuit

Q 10 25 50 80
C1 1.0 1.0 1.0 1.0
C2 1.0 1.0 1.0 1.0
C3 2.0 2.0 2.0 2.0
R, 0.649 0.659 0.663 0.664
R5 2,167 2.062 2.030 2.015
Re¢ 1.0 1.0 1.0 1.0
R, 1.0 1.0 1.0 1.0‘
Ré .996 .990 . 980 .968
Ré 38.967 98.800 198,205 316.976
RiO .0004 .0010 .020 .032
A 33,110 33,110 33,110 33,110

ohms, farads



where

Re{To}

Im{To}

B =

Re{Tj}

Im{Tj}

D1 =

(X Y) Xy XaX g X
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BOFow
(0 - m)z + (B w)2 @3
0 o
F w(D - mz)
> — > (4.4)
(D0 -w)" o+ (Bow)
Xy XgXg [X) (xg#xz)#x, X ]+ X X (X4 0x o) (Xg-XyX,) (4.6)
(1+x§)x1x2x3x4x5x6
o v X
X1 X2%3%4%s
X, (x, +x,)
- (x8+1§x 1 X (4.8)
8 27476
Bijw _
4.7
(D.4ﬂ2)2 + (B.wiz
j h)
F.w(D.mw?)
WA 7 (4.8)
(D.-w™)" + (B.w)
] ]
_ XgxgXgl (X +y) (xgrx ) #xgx g} (xy#y) x5 (% +X5) (xg~%p%g)
(1+x8)(x1+ij2x3x4x5x6
{4.9)
X, + X
45 (4.10)
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Xq (X, +X,)
( fl)i x7x (4.11)
Xgt %% %
XgXgXg[x] (Xg+%7)+ (xx+¥) xg] + X)Xz (x4%5) (X6 -XX,) (4.12)
(1+x8)x1(x2+y)x3x4xsx6 '
X, + X
X (x4+y)x5x X (4.13)
1V72 37475
X (x +x_)
G (410
8 2 476
x4x5(x8+y)[xl(x6+x7]+x2x6]+x1x3(x4+x5)(x6-x7(x8+y)) “ 15]
(1+x8+y)x1x2x3x4x5x6
X, + X
X i X xsx (4.16)
172737475
(xg*+y) (X +x.)
(x8+ +1)i x7x (4.17)
gty X% %e
1
BO
wy = 1.0 radian /sec (4.18)
1 \
W = 77 radians/sec (4.19)
1 ) _
wy * 3q radians/sec (4.20)
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1 .
4 0 6- radians/sec (4.21)

We = Wy + radians/sec {4.22)

1
Q
The evaluation of the integral (4.2) was carried out by using
the trapezoidal-rule numerical integration. The calculated new measures
for different values of Q for the Deliyannis-Friend circuit are plotted
in Figure 12(b).
Similarly, the new sensitivity measures for the Hamilton-Sedra

circuit was evaluated in the same manner from (4.2} except that j = 11;

X = €, xy =Gy, xg= Cgy X4 = Ryy X = Ry Xo = Rgy X5 = Ry, Xg =

Rg» Xg = Rgy X145 = Rygi x4y = Aj and
Pio * Pso * Pso * Py
By = T X (4.23)
20 * %2
Pap * Peo * Pyo * Py
D, = S0 (4.24)
20 * %2
F o= 1 (4.25)

0 xg(Pyy + x5)

where

[(1+x, )%, X J[(x +x ). X, + (X +x,)%,%x._]
p . 11°710 79 4 7577678 6 877475 (4.26)

10 x11x4x5x6x8x9

[y )%, 5+ xg1x,
Pyy = = — (4.27)
11%9
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[(Lex, )2 4X ] (X +X.) (X,+X.)
P = 117110 "9 Ve "8V s (4.28)

30 xllx4x5x6x8x9x1

[(Lexg )% g*%g] (xg+xg)x,

P = (4.29)
40 x11x6x8x9x1
X, + X
1 2
P = ———— (4.30)
50 xlxs
X, + X
4 8
P S —_— (4.31)
60 XXy XcXg

_ XXy %gm (141 ) %y

P (4.32)
70 x1x6x7x9x11
L e )
80 N, XX (4.33)
179711
(I+x, ) (x,+x.)
= 11 4 75
P90 X, X, X X X (4.34)

1747579711

Bj’ Dj’ and Fj can be obtained from Bo, Do’ and F0 by replacing every

xj with xj + y for j = 1 through 11. For example, when j = 1 one gets

P + P + P + P

11 ¥ Pa1 " P51 * Py

B, = (4.35)
1 Py v %

b o3 et Pt P 4. 36

1 P (4.36)

21 ¥ %2
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The new sensitivity measures, I, for different values of Q for the Hamil-
ton-Sedra circuit are also plotted in Figure 12(b). The values of the
elements of the two circuits, Deliyannis-Friend and Hamilton-Sedra, used
in célculating the new measure are the same as those used by Shenoi in
Tables 1 and 2. Some values of the measure I for Figure 12(b) are

given in Table 3 where ij/xj = 0.1; or, equivalently, a tolerance of

10 percent. The probability density function of the circuit elements
were assumed to be uniformly distributed. The value of A(w) used in
five different frequencies was unity. Thus, we may conclude that the
Deliyannis-Friend circuit has a smaller 10 percent tolerance sensitivity

than the Hamilton-Sedra circuit.

Table 3, New Measure, I, for Two Different Circuits

X. +AX.
mn i, I k.2
I =575 — Aw, ) |F(x,,w.) - F(x; ,w)| P d
A i ji1 J 1 X, X.
1 J JO X, _aX. o J J
ig 7
Q Deliyannis-Friend Circuit Hamilton-Sedra Circuit
10 24.253% 85.435
25 145,041 222.225
50 322,584 446 .520
75 481,142 669.147
100 662,015 890,246

125 835.236 1115.437




Comparing the Measures of Continuously
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Equivalent Networks

According to Schoeffler, networks n(0), n(1), n{2), and n(3)

in Figure 13 perform increasingly well in that sequence from the stand-

point of traditional first-order sensitivity measures.

Though Leed-

Ugron [13] and Leon-Yokomoto did not agree with Schoeffler in numeri-

cal values, they agreed that the sensitivities are decreasing according

to the sequence n(l), n(2), n(Sj.

Leon-Yokomoto and Cheetham claimed

that their equivalent networks n(4) and n{5) of Figure 14 are even

better than Schoefflers.

This is evidenced by the measures tabulated

in Table 4.
Table 4, First-Order Sensitivity Measures for
Six Equivalent Networks
Leon- Leeds-
* Scheeffler Yokomoto Cheetham Ugron
n(0) 23.4 23.48 23.48 23.03 Original
' Network

n(L) 17.9 26.46 - 33.26 |
Schoeffler's
Continuously

n(2) 11.9 20,17 - 20.16 L Equivalent
Networks

n(3) 5.52 19.14 - 15.14 |

n{4) - 18.35 - - Leon-Yokomoto's
Equivalent
Networks

n(5) - - 14.69 - Cheetham's
Equivalent
Network

*Sensitivity measure calculated by.
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The traditional sensitivity measures according to Schoeffler,
Leon-Yokomoto, and Cheetham are plotted versus the network sequence
n(0), n(1), n(2), n(3), n{4), and n(5) in Figure 15 and Figure 16. The
newly proposed measures for the same six networks; n(0), n(l), n{2),
n{3), n{4), and n{5); for various element tolerances are calculated

from the following equations at w = 1.5 radians per second.

= g = i | F(x X, + ) - F(x X x.)|%d
i=1 )(i 1,--. i Y,---XG 1,-.. i,... 6 y
~AX,
i
6 X.
= z .l..[ 1 IFI _ Folzd)’
i=l 7i T AX.
i
] 1 Axi , ,
= I i—-[ {[Re{Fi} - Re{Fo}] + [Im{F.} - mmiF_}1%}dy (4.47)
i=l i ’ Ax. i o
i
where
Re{FO} = 0 (4.48)
Re{Fi} "0 (4.49)
Abw4 - Bow2 * CO
Im{Fo} = 5 (4.50)
w(D_ - F w")
0 o
4 2
_ Aiw - Biw + Ci
Im{Fi} ) (4.51)

2
w(Ci - Fiw )
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Figure 16. Sensitivity Measure Given by Leon-Yokomoto and Cheetham
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Ao = xl(xz + x3) * XX, (4.52)
B0 = x4(x2 + x3) + xs(x1 + XS) + x6(x1 + xz] (4.53)
C0 = x4(x5 + x6) (4.54)
D0 = Xyt Xg | (4f55)
Fo=x; + Xg (4.56)

A, B., C., Di’ and Fi for i =1 to i = 6 can be obtained from AO, Bo’

C, D, and F0 by replacing each X, with X, *y. For instance,

Al = (xl + y)(x2 + x3) * X Xy (4.57)
B1 = x4(x2 + xs) + xs(xl + Y + x3) + x6(xl + Yy + xz) | (4.58)
C1 = x4(xs + x6) (4.59)
D1 =X, * Xg | (4.60)
Fl = xl +y + xs (4.61)

The elements xl, xz, xs, x4, x5, and x, corresponding to the six net-

6
works n{0), n(l), n(2), n({3), n(4), and n(5) are shown in Figure 17
and their values are tabulated in Table 5. The number A in equation
(4.47) is the tolerance.

The calculated new measures for various element tolerances
are tabulated in Table 6. These measures are plotted in Figures 18

through 21. For element tolerance of § percent (ﬂx/xo = 0,05, or

A = 0.05), it is seen that, according to the measure I, the five



Figure 17. Elements Assignment for Evaluating the
New Measure, I
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Table 5. Element Values for Six Equivalent Networks
Elements
Networks X1 ) X3 4 Xg X6
n(o) 0 1.2 0.0833 .02 1.5 0
n(1) .003 1.12 017 038 1.49 .0096
n(2) .36 1.06 .24 1.03 1.21 .40
n(3) 2.77 .52 .89 7.06 11 1,73
n(4) L0274 1.189 .0198 .113 1.50 0
n{s) .05127 1.172 .0708 0.196 1.448 . 05995
Table 6. New Measure, I, for Six Equivalent Networks
Element
Tolerance
ax/xo 0.05 0.10 0.15 0.20
Networks
n(o) .00712 1,172 1,196 12.258
n(l) 00697 1.992 2.031 2.0758
n{2) .00267 0.874 18,627 30.409
n(3) .00181 12.804 14,865 18,007
n{4) .00448 1.586 2.115 5.197
n(5) 00171 2.473 7.591 7.795
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networks, n(l), n(2), n(3), n{4), and n(5) do not perform increasingly
well in that order. From Figure 18 to Figure 21, it is found that the
performance of a network depends heavily on the tolerances of the net-
work elements,

From these facts it can be concluded that the property that
the sensitivity measure decreases as the number of elements increases
in continuously equivalent networks claimed by Leeds and Ugron [13] is
not necessarily true when the element tolerances are finite.

Convergence of Numerical Integration
of the New Measure

The evaluation of the integral of the new measure in (4.47) was
carried out by the trapezoidal rule numerical integration method. In
earlier runs for a tolerance of 10 percent, several difficulties were
encountered. The maximum permissible relative error between successive

4 and the maximum permissible

evaluations of the integral was set to 107
number of evaluations of the integral to be computed before non-
convergence status was declared was set to 50. In several runs, the
computer estimated run time of one minute for the Univac 1108 computer
was exceeded. The computér run time was extended until the maximum
permissible number of evaluations of the integral was reached. Never-
theless, the relative error between successive evaluations of the
integral was still larger than 10'3. Other numerical integration
methods such as Simpson's 1/3 rule and Simpson's 3/8 rule were also
tried, but the results were equally unsatisfactory. Then the interval

of integration was divided into ten sections between x/xo = 0.9 and

x/xo = 1.1 as shown in Figure 22; and the numerical integration was



66

x/xo

0.9

L4

¢

Divisions of Integration Interval

Figure 22.
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carried out independently for each section. It was found that the
numerical integration converged in most of the sections. The integrand
in those sections for which the computation did not converge was calcu-
lated and inspected for a fairly fine interval of 0.001 Xy» The tabu-
lated values revealed that there was an infinity in that section as
shown in Figure 23. The infinity was then handled by setting it equal
to an arbitrary large number, say 104. The division of the whole
interval between the lower and higher limits of the tolerance into
many sections is a good way to save the computer time and detect any
troublesome regions. For those parts of a performance curve that are
relatively smooth it is not necessary to have a large number of func-
tions evaluated as those parts that are not smooth, before the error
between successive evaluation of the integral reaches the preset small
error figure., Only in these sections in which the curve is not smooth
did the algorithm require very small steps of the independent variable
at which the function is to be evaluated. This scheme reduces the
total computer time greatly.

The role of an infinity within the tolerance limit in the net-

work optimization will be discussed in Chapter V.
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CHAPTER V

OPTIMIZATION OF NETWORK DESIGN BASED ON THE NEW
MEASURE AND MULTIVARIABLE CONTINUQUSLY

EQUIVALENT NETWORKS

One of the two purposes of sensitivity study--the comparative
evaluation of circuits realizing the same network function--was dis-
cussed in the preceding chapter. The other purpose of sensitivity
study--the optimal network design--will be discussed in this chapter.
The variation of the new all-tolerance multiparameter sensitivity mea-
sure with respect to circuit elements of a circuit will be studied
first. Then methods 6f obtaining optimal networks will be discussed.
Finally, an example of getting an optimal network by minimizing the
new sensitivity measure along with multivariable continuously equiva-

lent networks will be presented.

Variation of the New Measure versus
Circuit Element Values

In many circuit design problems, particularly in active networks,
there exists one or more parameters that can be chosen arbitrarily inso-
far as the realization of a given network function is concexned. The
existence of these parameters indicates that there are several degrees
of freedom that can be utilized to good advantage. It offers an oppor-
tunity to effect a good design under certain figures of merit or
criterion. An example of such a utilization is the Horowitz deéompo—

sition in active network synthesis [27]}.
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In this research, when such opportunities are present, the
possibility of minimizing the new all-tolerance multiparameter sensi-
tivity will be investigated. Given a certain network function and
after a certain circuit configuration has been chosen, the question
becomes: How does the new sensitivity measure, I, vary with respect
to the arbitrary parameter(s)? Does it have a minimum? If so, where
and what is the minimum? How can the parameter(s) be chosen to render
the minimum sensitivity measure? The following example illustrates a
typical situation in which these.questions are answered.

Example 1

A well-known practical active RC circuit is the Sallen and Key
filter section shown in Figure 24, This filter circuit [28] has been
discussed by many [see, for example, 5, 29]. This circuit is chosen
as an example here for the purpose of demonstrating the variation of
the new measure of the filter versus the variation of an arbitrary
element value.

Assume that the circuit in Figure 24 is to realize the follow-

ing voltage transfer function

T(s} = T (5.1}

It is desired to find the variation of the new sensitivity measure
versus the variation of some of the circuit elements when Q = 2,
Ry =1 ohm, and element tolerance is 10 percent.

In order to find the new measure, I, the first step is to write

the voltage transfer function with its coefficients represented in



2
¥
a1
AAR AN *K ———0
Ry Ry
—— Cl
—

Figure 24, Sallen and Key Active Filter
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temms of element parameters., It is easily shown that

K
T(s) = R.C. + R CRITZCIEZ KR, C (5.2)
2, 4 RS Ry - 1“1, 1
RRG6 RyRyC1Cy

Comparing (5.1) and (5.2), three constraint equations are obtained.

K

—— =10 (5.3)
R)RC Gy
R (1: =1 (5.4)
18246,

R1C1 + R1C2 + R202 - KR1C1 (5.5)
R.R,C,C )

[

3%

ol

[ %]
L=

Now we suppose that the value of K is fixed to be 10. Since Ry is
fixed to be 1 ohm; for a given value of Rz, the values of C1 and C2 that

realize (5.1} can be found from (5.4} and (5.5).

1, / , R an (5.6)
Q -/ R,

2 Z(R,*R,)

1 (5.7)

That is, when the nominal value of R2 is varied in a certain range,
one will be able to see how the sensitivity measure, I, of this circuit

varies,
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Since the circuit in Figure 24 is a low-pass filter the new

measure, I, is calculated at the following different frequency points

wy = 0 radian per second
w, = 0.2 radian per second
Wy = 0.4 radian per second
w, = 0.6 radian per second
We = 0.8 radian per second
We = 1.0 radian per second

Let X, = K, X, = Rl' X, = R2’ X, = Cl’ and x; = CZ’ the new measure

is calculated by

I = g g +0'1xj|T (x. + w,) - T (x;, w )|2d
Ll jE Y Y oty YL &Y
=1 j=1 74 1,
J
6
) 5 +0.1xj 7 5
= £ L {{Re{T.} - Re{T }1° + [Im{T.} - Im{T }}°}ay
s a_ j 0 k) o
i=] j=1 -0.1x,
J
where
H (D, - w,z)
Re{T } = g 5 = > (5.8)
(D0 - W)+ (BowiJ
-HOBOwi
Im{Tb} = r— )2 - )2 (5.9)
o i ( o1
H.(D, - wiz)
Re{Tﬁ} = J 232 5 (5.10)
(Dj - o, 1 o+ (Bjmi)
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'“ij“i
Im{T.} = '
3 Y 3 (5.11)
(Dj w, 37+ (iji)
XX, ¥ XX % X_X - X, XX
B - .24 i 5 _ xs s ~ *%1%% (5.12)
° 2%*3%4%g
D, = 1l (5.13)
x2x3x4x5
X
Ho = XyX2X,Xg (5f14)

B . - . Y
i Dj' and Hj are obtained from Bo’ Do’ and Ho by replacing xj with

xj + y. For instance, BZ’ Dz, and H2 are obtained from Bo’ Do’ and

HO by replacing X, with X, +Y

(x#7)xy + (6,#Y)Xg + XXg = X; (X*Y) %,

B, = (5.15)
2 (Xy*Y)X3X 4 X
D, = L (5.16)
2 (x2+y)x3x4x5
X
H, = (5.17)

2 (%*Y)xgX,Xg

Some of the calculated values of Cl’ C,, and the new measure, I,

2!

Versus R2 are tabulated in Table 7. The data in Table 7 are plotted

in Figure 25 where the ordinate is I and the abscissa is R, in ohms.

This is a rough sketch of the variation of the new measure, I, versus

the variation of R,. It is seen from the figure that there is a



Table 7. Variation of I versus a Wide Range of R,
: for SK #1 Circuit

A=10 , K=100 ,
R, ¢, c, I*
1074 33.3072 300.235 5.44503
1073 10.5185 95.0710 8.11952
1072 3.32230 30.0997 15.3207
107! 1.07811 9.27547 28.6952
1 444444 2.25000 5.44550
10 .322927 .309668 .17567
10° . 308368 .032429 4.78951
10° 306877 .003259 4.98391
10? . 306744 .000652 4.99738
chms , farads

*Element Tolerance = 10%



K=10 , Q = 2

Element Tolerance = 10%

30.0 —

10,0 -
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Figure 25. Rough Variation of I versus R, for SK #1
Circuit
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minimum of I in the neighborhood of R2 = 10 ohms. Another set of

data in the neighborhood of R, = 10 ohms are taken and are tabulated
in Table 8, The data in Table 8 are plotted in Figure 26. It is seen
that the variation of I, for 10-percent element tolerance, versus R, is

a smooth one. When K = 10, Q = 2 and R1 = 1 ohm, the new measure, I,

exhibits a minimum in the neighborhood of R2 = 9.9 ohms.

Methods of Obtaining Optimal Design of a Network

(a) Single Independent Variable

In obtaining an optimal design of a network from the sensitivity
viewpoint, we minimize the sensitivity measure, The preceding exawple
shows that for K = 10, Q = 2 and R1 = 1 chm, I has a minimum when
R, = 9.9 ohms, C

2 1
words, if K, Q, and R1 are fixed at K = 10, Q = 2 and R1 = 1 ohm,

= 0,323]1 farad, and C2 = 0.3126 farad. In other

the optimal design of the network is obtained by varying R2 from a
small value to a large value until a minimum measure I is found. The
values of C, and C, for the optimal design are obtained from the two
constraint equations (5.4) and (5.5). That is to say: If there is

only one independent variable, all one needs to do in finding the

minimum measure I for an optimal design is to vary the independent

variable within a range such that all the corresponding element values

from the constraint equations are in the acceptable ranges. When a

minimum I is found, the corresponding value of the independent variable
is the optimal design value for that element. The optimal values of

other elements are then obtained from the constraint equations.
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Table 8. Variation of I in the Neighborhood of
R, =10 ft for SK #1 Circuit
Q=2,K=10, R1 = 1 , Tolerance = 10%

R, ¢y c, 1

9.1 .324490 .338655 1.85142
9.2 . 324302 .335168 1.02285
9.3 .324117 .331753 .638396
9.4 . 323937 . 328407 .425308
9.5 . 323760 .325127 .299862
9.6 . 323586 .321913 .226094
9.7 .323417 .318762 .185582
9.8 .323250 .315671 .167705
9.9 . 323087 .312641 .165848
10.0 . 322927 . 309668 .175668
10.2 . 322616 .303888 .219212
10.4 .322317 .298321 .28307]
10.6 . 322029 .292954 .358785
10.8 321752 .287777 .441306
11.0 .321484 .282780 .527489
12.0 . 320277 .260192 .961903
13.0 .319252 .240948 1.39542
14.0 . 318371 .224356 1,69638
15.0 .317606 2.09904 1.99005

ohms, farads
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Element Tolerance = 10%
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Figure 26. Variation of I versus R2 for SK #1 Circuit
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Example 2
We shall now extend the same design and example in Example 1 to

(a) find the optimal designs of the circuit in Figure 24 to realize
{(5.1) for Q = 2, 4, &, 8, and 10 when the element tolerance is 10 per-
cent, and (b) find how the sensitivity measure, I, of the optimal cir-
cuit in Figure 24 varies with Q in (5.1) when the element tolerance
is 10 percent.

Repeating the same design carried out in Example 1 for Q = 4,
6, &, and 10, the findl results are tabulated in Table 9. It is seen
that when Q varies from 2 to 10, the new measure, I, varies from 0.16498
to 0.87698. This is also depicted in Figure 27. It is seen that as

Q increases, measure I increases almost proportionally.

Table 9, Optimal Designs for Various Values of
Q for SK #1 Circuit

Q K Ry R, ¢ £ I

2 10 1.0 9,86 . 323152 .313846 .164983
4 10 1.0 9.33 .337128 .317924 .413432
6 10 1.0 9.23 .341789 . 316986 619712
8 10 1.0 9.19 .344125 . 316205 . 768519
10 10 1.0 9.17 . 345527 . 315609 .876976

Element Tolerance = 10% , ohms, farads
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K = 10, Element Tolerance = 10%

14
1.0 1
0.5
]
0 Jl_;"; T —T Y T L — Q
2 4 6 8 10

Figure 27, I versus Q for Optimal Design of SK #1
Circuit
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(b) Multiple Independent Variables

For a network that has more than one available degree of freedom
in realizing a network function, the method of getting a minimum measure
for the optimal design of the network is much more complicated. The
minimum measure can no longer be obtained readily by simply varying the
independent variables in the applicable ranges. It is especially diffi-
cult to find the minimum measure when there are a large number of inde-
pendent variables. Under this circumstance, some kind of minimization
scheme needs to be employed. There are several schemes available such
as the steepest-descent method, the conjugate-gradient method, and the
Fletcher-Powell method [30]. The Fletcher-Powell algorithm which is
known to be one of the best algorithms available for function minimiza-
tion and has been used extensively in many applications will be chosen
to serve this purpose.

There are always some constraints on the values of the network
elements. For instance, all the network element values are constrained
to be nonnegative. The network elements are also subjected tc the con-
straint equations such that the network satisfies the given network fumc-
tion. Because of these reasons, the minimization of the new measure for
any network belongs to constrained function minimization. The Fiaco and
McCormick method enables us to transform a constrained minimization
problem into an unconstrained one.

Transformation of a Constrained Problem
Into an Unconstrained Problem

The first step of the minimization of the proposed measure, I, with

respect to (xl,xz,...,xj,...,xn), where j = n - Nc is the number of
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independent variables subjecf to constraints X >0, m=1,2,3,...,n,
and n is the number of network elements, is to transform the constrained
minimization problem into a sequence of unconstrained problems in such a
way that the difficulties associated with the motion along the con-
strained boundary are avoided. The particular transformation proposed
by Carroll [31] and proved by McCormick [32, 33] will be used in this

section. The transformation is accomplished by the use of the function

m L

P(x,r) = I(x) + r ifl EIT%T (5.18)
where I(x) is the objective function or the new measure, gi(x) is the
ith constraint function, W, is a positive weighting function, and r is
a member of a monotone decreasing sequence. For any fixed r, the uncon-
strained minimization technique of Fletcher-Powell can be used on equa-
tion (5.18). In using the technique one needs to find the partial
derivatives of the function P(X,r) with respect to each of the n - Nc
independent variables., Once the minimum point Xoin is found, the
element values, xl,xz,...,xj are the optimal design values of the net-
work. The remaining Nc element values of the optimal design are
determined by the N, equations in (3.9).

Partial Derivatives of the New Measure with Respect
to the Independent Network Elements

In order to use the Fletcher-Powell minimization technique to
find the optimal network element values, it is necessary to find the
partial derivative of the cost function P(x,r) of equation (5.1) with

respect to each of the independent network elements. In other words,



one needs to find the partial derivative of the new measure, I(x),

and the equation I/gi(x) with respect to each of the independent
network elements. Since the constraint equations gi(x), i=1,...,m,
usually are not complicated, their partial derivatives will not be
discussed here. A general form of partial derivative of any netwoxk
function F with respect to any independent network element at a
certain frequency is presented in the following. Assume that the
probability density function of the element parameter xj is uniform,
then the all-tolerance multiparameter sensitivity measure, I, in

equation (2.5) can be written as

. X,
1 2
J 1 |F(x1,...,xi+y,...,xn) - F(xl,...,xi,...,xn)l dy

H?’H

(5.19)

where Ay is the tolerance of the ith element parameter. Further

assune

he 1
}

= F(xl,...,xi+y,...,xnj

i
t

= F(xl,...,x.,...,x )

1 n

equation (5.19} can be written as



where
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_ 1 {Yi% 2
I = 121;:- IFi - F0| dy
-A.X,
11
i1} 1 A.Xi 2
-3 __.[ 13| [Re{F.} - Re{F_}] + j[In{F.} - Im{F }]|%dy
i=1 X3 1 ° ! °
=A. X,
11
noy X5 2 2
= I __.[ 11 {{Re{F.} - Re{F }]° + [Im{F.} - Im{F }]“}dy
i=1 "1 1 © * ©
-A X,
11
n 1 Aixi
- L EE'[ £, (%) dy (5.20)
=A. X,
11
£ (y,x) = [Re{Fi} - Re{FO}]2 + [Im{Fi} - Im{FO}]2 (5.21)

The partial derivative of I with respect to xj, the nominal

value of an independent element parameter, is

1 Aixi
LW g vy
1 TAx,

s 1. [MN% 11 NN
3% (;_) fi (Y:X-de + 'x_ ﬁ_' fi (stiJ dy
1



86

n 1 axi Aixi
- i ) A x,
11
no Aixi 3 Bxi
MU [ oo L5 Ooxgd]dy & Ay 5= L6 (A% 0% )+ €5 (A X 0 x4) ]
i=1l i A j] J
-H. X,
11
{(5.22)
Substituting equation (5.4) into equation (5.5), Bl/axj becomes
a1 B
== = I (G, + G, + G} (5.23)
%5 4o 1 203
where
1% A% 2 2
6 7 Ly [T (Rt <R T IP + (miF) - 1ntE )Py
X J —A.xi
1 (5.24)
A, X, aRe{F.}  3Re{F}
_ 2 i1 . i 0
6 = o [ T H{iRetr} - relr 1 [ - — ]
ax J ]
iTi
BIm{Fi} BIm{FO}
+ [Im{Fi} - Im{Fo}]'[ e - }]dy (5.25)

J J
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=

ax.
G =.i

3 x. 93X
1 J

1

[[Re{F(xl,...(1+Ai)xi,...xn]} Re{F (x ..xi,...xno)}]z

1’

+ [Im{F(xl,...(1+Ai)xi,...xn)} Re{F(xl,...xi,...xno)}]

+ [Re{F(x (I-Ai)xi,...an} Re{F(xl,...xi,...xno)}]2

1*ee

+ [Im{F(x

C(1-AX X)) Im{F(xl,...xi,...xno)}]z]

1,.'0

(5.26)

Once the partial derivative BIIij in equation (5.23) is ob-
tained, it is easy to find all of the partial derivatives of I with
respect to every independent element parameter of a network. Once
all partial derivatives are obtained, it is just a routine matter to
use the Fletcher-Powell minimization technique to find an optimal

design of a network.

Starting Point and Optimal Step Size

The Fletcher-Powell algorithm is used to find the unconstrained
local minimum of equation (5.18). The success of finding the local
minimum depends heavily on the proper choice of the starting point of
the independent network elements and on the choice of a scalar step
size., If the scalar step size chosen is too large the next values
chosen for the independent network elements may be beyond the boundaries
of the constraints. On the other hand, if the step size chosen is too
small, the number of iterations may be excessive.

One way of finding a starting point is to tabulate some of the



88

values of the cost function by varying the values of the independent
network elements in a random way. The point that has a smallest cost
function amongst the tabulated points is then chosen as a starting point.
When the number of the independent network elements are small, a rough,
systematic tabulation of the cost function versus the network elements
can even be employed in locating a good starting point.

In order to prevent the values of the independent network
elements from moving over the constraint boundaries, two additional
steps are incorporated in the Fletcher-Powell algorithm. The first
step is to choose a scalar step size that produces only a small
change in the function, roughly of the order of 1 percent. Then
the value of the scalar step size is changed in a doubling fashion
(1,2,4,8,...) as long as the function is decreasing up to and in-
cluding the first time the function increases. The second step is
to check on every iteration if the new values of the independent
variables obtained satisfy the constraints. If they satisfy‘the
constraints, the increasing of the scalar step size in doubling
fashion is continued. If they do not satisfy the constraint, the
last iteration is repeated by dividing the scalar size by 1.5. This
process is repeated until all the independent variables fall within
the constraint boundaries.

Example 3

Given a network function

3
58" + 125 _
i(s) = —3 Sl (5.27)

6s + 2252 + 18 s +
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which is realized by the circuit in Figure 28. An optimal design of
circuit realizing equation (5.27) will be obtained at w = 1.5 radians
per second by using the multivariable continuously equivalent network
theory and the new all-tolerance multiparameter sensitivity measure.
The result will be compared with those equivalent circuits obtained
by Schoeffler, Leon-Yokomoto, and Cheetham.

By the element growing method of multivariable continuously
equivalent network theory, an equivalent circuit having the same Z(s)
as in Figure 28 is obtained in Figure 29. The network function with
its coefficients expressed in terms of element parameters is

*1*%3 3 X4 e
X (X * X )4, X ° 7 X, (OGP %y
4, Xt X9+ xOyxg) + xglyixg) 5 Xy Uigrxg) vgXg
Xy (Xp*Xg) +x% 5 Xp (xp*xg)4x Xy

Z(s) =

(5.28)

The constrained equations are obtained from equations (5.27)

and (5.28) as follows

X +Xg s (5.29)
xl(x2+x3)+x2x3 6
X X
4 6 .
= (5.30)
X) (xp*xz}+x,X4

x4(x2+x3)+x5(xl+x3)+x6(xl+x2) ) ll (5. 51)
Xp (Xp+Xg)+x) Xy 3
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.02h~

= 1.2f o= .00833f

I

Z (s) 1.511‘13}

Figure 28. Circuit Realizes (5.27)

X1
11
i
1% N
Z(s) Xg ‘g 1%, Xq T % X
o

Figure 29. Multivariable Continuously Equivalent Network
for Optimization
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Xy (Xg*Xc)

= (5.32)
X) (Xy*x3)*+x %4

Now, there are four equations, (5.29), (5.30), (5.31), and (5.32), and

six variables, Xys Xoy Xgp Xy xs, and Xe o In other words Nc = 4,

n = 6, and the number of independent variables is n - Nc =6 -4=2,
Assume x., and X are the two element parameters chosen as inde-

1

pendent variables, then the remaining four element parameters, Xps Xgs

Xgs and Xg» can be obtained in terms of Xy and Xg by solving the four

equations above. The results are

_ 5 5
X, = (xl + x3) - 3'(x1 + x3)/(3{x1 + xs)) {5.33)
gb t Y gg * 4gagc
Xg = ZQa {5.34)
X, + X
where g, = 123 3 (5.35)
a= xl {xz + xs) + )(2)(3 (5.36)
g, = 2x3 {5.37)
g = u a - 2a{x, + x,} - = (5.38)
¢~ 3 2 Y X3 m 3 (X ¢ xg) :
X, = 2a - Xe (5.39)
3a - Zax6 + xg
(5.40)



The partial derivatives BI/Bxl and 31/8x3

equation (5.23). The tolerance

A =0.,1. The constraints gi(x]

to get the optimal values of

g, (x)

i

8,(x)
85(x)

g4(x) =

g¢ (x)

8¢ ()

g,

Since there are only two

L]
-

92

are obtained from
is assumed to be 10 percent, i.e.,

for minimizing equation (5.18) in order

the element parameters are

L >0 (5.41)
Xg 20 (5.42)
) >0 (5.43)
Z4agg >0 (5.44)
X, 20 (5.45)
420 (5.46)
g0 (5.47)
independent variables, X and Xz the

initial point was obtained by a preliminary tabulation of the cost

function versus X and Xz The
chosen as
X
*z
The values of W, for i = 1,2,3,.

to be unity. The value of r in

each successive iteration r was

initial values of Xy and X5 were

farad

0.50

farad

0.50

+.s7 in equation (5.18) were chosen
(5.18) was chosen to be 0.1. For

divided by 4.0. By using the Fletcher-

Powell function minimization algorithm with information provided above,
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an optimal design of network was obtained. The values of the elements

of the optimal network are
x, = 0,512 farad
x, = 0.9408 farad

X, = 0.525 farad

3
n -1
Xy = 1.452  henry
-1
Xe = 0.895  henry
-1
X = 1.037  henry

The optimal design of the network, n(6), that realizes equation
(5.27) is shown in Figure 30. The all-tolerance multiparameter
sensitivity measure for this optimal network is I = 0.044. The final

value of the weighted penalty function in (5.18)

is 10_7. This is sufficient to indicate the value of the cost func-
tion P(x,r) in equation (5.18) finally converges to the minimum value
of I(x) in (5.18).

Comparison of the Optimal Network in Example 3

with Those Obtained by Schoeffler, Leon-
Yokomoto, and Cheetham

The original network, n(0), realizing equation (5.27) is shown

in Figure 31(a). The remaining networks n(1), n(2), n(3), n(4), and
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1:
¢
1.452

o- — T

Iy

| 1
n(s) .895 éf‘ fond — I
2 .9408 c. |.s25 o r1-037
c, 3 -

=

farad, henry-1

Figure 30, Network Realizing the Impedance of (5.27)
with Minimum I
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n{5) in Figure 31 were claimed to perform increasingly well in the se-
quence according to the traditional first-order sensitivity measure.
This is shown in Figure 32(a). However, according to the all-tolerance
multiparameter sensitivity measure, I, networks n(1), n{2), n(3), n(4),
and n(5) do not perform increasingly well in that sequence as shown in
Figure 32(b). The optimal network n(6) in Example 3 has the least mea-
sure as shown in Figure 32(b), i.e., I = 0.044. (For values of I of
other networks, see Table 6.)

How much does the optimal network n(6) outperform the networks in
Figure 31 obtained by Schoeffler, Leon-Yokomoto, and Cheetham can also
be seen in Figure 33 where the performance of different networks versus
the element T, are depicted in the vicinity of nominal point. For a
tolerance of 10 percent, ﬁFllFl = 0.1, networks n(0), n(1}, n{2), n(3),
n(4), and n(5) all show large variations of network performance. All of
them have an infinity and almost a null within the tolerance limit. On
the other hand, the performance of the optimal network n(6) is shown in
Figure 34, which shows neither an infinity nor a null in the tolerance
limit. This is the reason why the optimal network n(6) outperforms
n(o), ﬁ(l), n(2), n(3), n{4), and n(5) as far as the element parameter
Pl is concerned.

It is also of interest to show how the performance of a network
function varies as other element values are changed from their nominal
values, These variations are shown in Figure 35. Again, neither an
infinity nor a null exists.

What this example demonstrates is that the result obtained by

the optimization scheme based on the new all-tolerance multivariable
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Figure 32. Two Different Sensitivity Measures
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sensitivity measure is far better than that based on the traditional

first-order sensitivity measure. If a large variation of the network
performance exists within the tolerance limit, it will manifest itself

through the value of 1.

A Comment on Sensitivity Minimization

The traditional minimum-sensitivity design is to reduce the
slope of the network function with respect to the element values at
the nominal point [4, 7, 8, 16, 19, 20, 23]. This approach may actually
introduce a worse pqrformance than the original one when the tolerances
of the network elements are finite. For instance, in the process of
optimization, Schoeffler obtained a better sensitivity of network
function with respect to element C1 for network n(3) of Figure 31(d)
compared to network n(2) of Figure 31(¢). That is true at nominal
point and is shown in Figure 36. At the nominal point [IZ/ZO| = 1.0,
Cl/C10 = 1.0) the slope of the dotted line is less than the slope of
the solid line. However, by reducing the slope of the network func-
tion at the nominal point one can see from this figure, an infinity
is introduced within the element tolerance limit. Hence, some net-
works optimized by the traditional sensitivity measure may be com-
pletely unacceptable even though their element values fall within the

tolerance limit.
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Figure 36.
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CHAPTER VI

CONCLUSTONS AND RECOMMENDATIONS

FOR FURTHER WORK

The shortcomings of the existing sensitivity measures were
pointed out and a new all-tolerance multiparameter sensitivity measure
that overcomes these shortcomings was presented. Examples in which the
traditional first-order sensitivity measures gave inaccurate and mis-
leading information were given. Since one of the purposes of sensi-
tivity study is to make comparative evaluation of different circuits
realizing the same network function, the new sensitivity measure was
applied to evaluate different circuits realizing the same network
function so that a better circuit can be chosen for practical applica-
tion.

A new formulation and algorithm for continuwously equivalent
network called "multivariable continuously equivalent networks'" was
presented. The continuously equivalent networks generated by the
existing single-variable continuously equivalent network theory are
incomplete. However, the continuously equivalent networks generated
by the new multivariable continuously equivalent network algorithm
are complete as long as the constraint equations can be solved in
closed form.

In addition to applying the all-tolerance multiparameter
sensitivity measure to compare more meaningfully which of the circuits

realizing the same network function is less sensitive, the new
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sensitivity measure was used to evaluate a series of continuously
equivalent networks and the results were compared with those obtained

by the traditional sensitivity measure. The results show that tolerances
play an important role in network sensitivity.

It was also pointed out that the optimization scheme based on
the traditional first-order sensitivity measure could give a worse
result. Since the other purpose of sensitivity study is to design a
better network from the semsitivity viewpoint, the new sensitivity
measure and multivariable continuously equivalent network theory were
incorporated into a scheme to obtain an optimal network design. It was
found that the optimal network obtained by minimizing the new sensi-
tivity measure outperformed the "optimized network' obtained by using
the traditional first-order sensitivity measure. This is because, in
effect, the new sensitivity measure takes into account the actual
variation of the network performance when the element values are
changed by finite amounts.

Fiacco and McCormick method was employed to transform the con-
strained optimization problem into am unconstrained optimization problen.
Then the Fletcher-Powell minimization technique was used to find the
optimal network. The success of the optimization depends heavily on
the proper choice of the starting points and the weighting factor for
the step size. It is recommended that further work can be done in
this area so that a more workable and efficient technique can be found.

The completeness of the multivariable continuously equivalent
networks depends on whether or not all roots of the constraint equations

can be found. All roots can be found if the solutions are in the
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closed form. A numerical method can be used if closed form solutions
are not obtainable. Methods for finding all roots of a set of
nonlinear equations by the numerical method is apparently an area that
is yet to be investigated.

The all-tolerance multiparameter sensitivity measure is recom-
mended to be used to evaluate those filter designs published in the
~last ten years so that we can determine which ones have low large-
change sensitivities and presumably more sﬁitable for practical appli-
cations.

Applying the multivariable continuously equivalent networks
along with the new measure to automated network design is another open

area that further work can be pursued.
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