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Abstract / R�esum�e

We present a general class of nonlinear time series Markov regime-

switching models for seasonal data which may exhibit periodic features

in the hidden Markov process as well as in the laws of motion in each

of the regimes. This class of models allows for nontrivial dependen-

cies between seasonal, cyclical and long-term patterns in the data.

To overcome the competitional burden we adopt a Bayesian approach

to estimation and inference. This paper contains two empirical ex-

amples as illustration, one using housing starts data while the other

covers U.S. post WWII individual production.

Nous pr�esentons une classe g�en�erale de mod�eles non-lin�eaires avec
changement de r�egime Markovienne. Les mod�eles propos�es permet-

tent d'avoir une structure p�eriodique pour la châ�ne de Markov ainsi

que des e�ets saisonniers dans chaqu'un des r�egimes. La classe de
structure propos�ee permet d'avoir des interd�ependences entre les uc-

tuations saisonni�eres, les cycles d'a�aire et la composante de crois-

sance. Une m�ethode Baysienne bas�ee sur le principe de l'�echantillo-
nage de Gibbs est utilis�ee pour estimation et interf�erence. Deux

exemples empiriques sont fournis, un premier utilisant des s�eries de

mise en chantier de maisons, tandis que le second couvre la produc-
tion industrielle aux �Etats-Unis.
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1. Introduction

Modeling seasonality in nonlinear time series analysis is a relatively un-
explored area. In this paper, we present a class of nonlinear time series
models for seasonal data. Seasonal phenomena considered are not limited
to linear characteristics such as deterministic mean shifts or peaks in the
spectral decomposition at the seasonal frequency and its harmonics. The
time series models considered can, for instance, predict that, say booms in
housing starts are less likely to take o� in the winter, that stock market
crashes, economic recoveries, etc. appear less likely to occur during certain
times of the year. It may also produce asymmetries in seasonal patterns
and other nontrivial dependencies between seasonal, cyclical and long-term
patterns in the data. Our analysis builds on a class of models in nonlinear
time series analysis gaining considerable interest in recent years. It consists
of a stochastic regime-switching structure driven by a hidden Markov pro-
cess with a �nite number of regimes. In econometrics, for instance Quandt
(1960) and Goldfeld and Quandt (1973) proposed switching regression mod-
els, while Neftci (1984) and particularly Hamilton (1989) further developed
such models as tools to investigate asymmetries in the cyclical behavior of
macroeconomic aggregate series. More recently, McCulloch and Tsay (1993,
1994) introduced a more general class of Markov switching models which
allows for state dependent AR polynomials, random variance shifts, and
transition probabilities depending on a set of exogenous variables. Ghysels
(1992, 1994) in work related to Hamilton (1989), proposed the use of pe-
riodic Markov switching structures to model the aforementioned nontrivial
dependencies between di�erent types of cycles such as seasonal and busi-
ness cycles. A periodic Markov regime-switching structure is one where the
Markov chain is nonhomogeneous, with the time variation of the transition
probabilities being purely periodic, i.e., having the same transition scheme
each year during a particular quarter or month, etc. In this paper, we ex-
ploit results of McCulloch and Tsay (1993, 1994) and Ghysels (1992, 1994)
to propose a general Markov switching structure appropriate for seasonal
time series.

The traditional maximum likelihood approach to Hamilton's original
model, where a two-state Markov chain governs an intercept shift and the
intertemporal dynamics are shaped by a �xed AR polynomial, is computa-
tionally demanding. In part, to overcome the computational burden, both
Albert and Chib (1991) and McCulloch and Tsay (1994) independently
proposed the more exible environment of the Gibbs sampler, adopting a
Bayesian approach to estimation and inference to overcome some of the
computational di�culties.

In this paper, we also adopt a Bayesian approach to estimation us-
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ing the Gibbs sampler as a simulation tool. This approach is particularly
suited as a classical estimation of periodic Markov chain models often re-
sult in boundary parameter estimates, see Ghysels (1992, 1994) for further
discussions. It is, in fact, quite useful to exploit extra-sample informa-
tion regarding switching probabilities within a Bayesian framework. In this
paper, we provide a detailed discussion of this and other issues. Section
2 provides a detailed description of our model and estimation procedure.
Section 3 presents examples and Section 4 concludes.

2. A General Periodic Regime-Switching Model

Consider a discrete-time Markov chain process f�tg with two states, namely
�t 2 f1; 2g. The process is a periodic Markov regime-switching process
if its realizations �t are governed by a periodic probability scheme with
periodicity s and transition matrices P (v) de�ned by

P (v) =

�
1� �v1 �v1
�v2 1� �v2

�
; v = 1; � � � ; s: (2.1)

In other words, �t is a two-state periodic Markov process with transition
matrices P (v), where v denotes the season at time index t. In economic
applications, s may denote the number of seasons in a year and the states
may represent the status of an economy. In this paper, we shall refer states
as regimes of the model.

A time series fytg follows a periodic regime-switching model if its evo-
lution is governed by a hidden periodic Markov process �t. Speci�cally, yt
satis�es the model

yt =

�
X0

t�v;1 + Y 0

t �v;1 + av;1;t if �t = 1
X0

t�v;2 + Y 0

t �v;2 + av;2;t if �t = 2
(2.2)

where Xt = (x1t; � � � ; xkt)0 is a set of exogenous regressors, including pos-
sibly a constant and some indicator variables, Yt = (yt�1; � � � ; yt�p)

0 is a
set of lagged dependent variables, and fav;i;tg is a sequence of independent
Gaussian random variates with mean zero and variance �2v;i. In (2.2), the
innovations fav;i;tg are independent for di�erent v and i. This model is
a generalization of the Markov switching model of McCulloch and Tsay
(1994) by introducing season-dependent transition matrices in (2.1). It is
also related to the models considered by Tyssedal and Tj�stheim (1988)
and by Hamilton (1989).

If Xt contains a constant and yt is stationary, then the stochastic struc-
ture of (2.2) allows for random mean shifts which vary according to regime
and season, producing asymmetries in seasonal mean shifts. This property
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is similar to that of using seasonal dummy e�ects that di�er across the
business cycle. If Xt contains an indicator variable for a particular season
and the associated parameter does not depend on v, then the model can
be used to estimate seasonal e�ects which may be common to all regimes
or depend on the regimes. Moreover, the AR polynomial �v;i in (2.2) may
depend on the season, hence producing periodic time-variation in the dy-
namic of the process as well as in the regime transition. In general, the
structure of model (2.2) is fairly rich. It enables the regime swiching to
occur with higher probability in certain times of the year. The mean-shifts
may depend on the regime and the season, and so may the dynamic struc-
ture of the system. Strictly speaking, however, the model in (2.2) is not
identi�able, because the labels of the regimes and the parameter values
of the submodels are interchangeable. Consequently, some constraints are
needed to render the model identi�able. For further discussion, we follow
the approach of McCulloch and Tsay (1994) by classifying the parameters of
model (2.2) into three categories. The parameters in the �rst category are
regime-invariant, that is, these parameters are the same for both regimes.
The second category consists of parameters that are unique to regime i

and season v, where i = 1, 2 and v denotes the season of time t. Finally,
the third category contains constrained parameters for regime i and sea-
son v. The constraints specify prior information about how the parameters
di�er between the two regimes. These constrained parameters are used in
applications to identify the proposed periodic regime-switching model.

Speci�cally, we partition each of the two regressor vectors of (2.2) into
three subvectors, namely Xt by (X0

ct; X
0

rt; X
0

gt)
0 and Yt by (Y 0

ct; Y
0

rt; Y
0

gt)
0,

and write the model as

yt =

�
X 0

ct�
c

v + Y 0

ct�
c

v +X 0

rt�
r

v;1 + Y 0

rt�
r

v;1 +X 0

gt�
g

v;1 + Y 0

gt�
g

v;1 + av;1;t if �t = 1

X 0

ct�
c

v + Y 0

ct�
c

v +X 0

rt�
r

v;2 + Y 0

rt�
r

v;2 +X 0

gt�
g

v;2 + Y 0

gt�
g

v;2 + av;2;t if �t = 2

(2.3)

with v denoting the season of time t, where the parameter vectors are
partitioned accordingly such that �cv and �

c
v are the same for both regimes,

but may depend on the season v, �rv;i and �rv;i are unique to regime i and
season v, and �gv;i and �gv;i are constrained parameters for regime i and
season v. The constraints are typically inequality constriants to separate
the regimes and/or seasons. For example, if yt is the growth rate of the
U.S. quarterly real GNP and the regimes represent \expansions" and \con-
tractions" of U.S. economy, then one might set an inequality constraint on
the parameter of the constant term in Xt so that regime-1 has higher mean
level. By so doing, one identi�es regime-1 as expansion periods which have
higher average growth rate. For further details, see McCulloch and Tsay
(1994). If desirable, the innovational variances �2v;i can also be constrained.

The model in (2.2) can be partitioned in other ways than that in (2.3).
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However, for the purpose of this paper, it su�ces to consider model (2.3).
In what follows, we consider a Bayesian analysis of such a two-state periodic
regime-switching model by using the Gibbs sampler.

2.1. A Bayesian analysis

For simplicity, we assume that the �rst p observations y1; � � � ; yp are given,
where p is the maximum past lagged variable in Yt. Let the observational
vector be y = (y1; � � � ; yn)0 and the state vector � = (�p+1; � � � ; �n)0, where
n is the sample size. Group the parameters in (2.3) as

	
c
= [(	

c

1
)
0
; � � � ; (	

c

s
)
0
]
0
; 	

g
= [(	

g

1;1
)
0
; (	

g

1;2
)
0
; � � � ; (	

g

s;1
)
0
; (	

g

s;2
)
0
]
0
; 	

r

i
= [(	

r

1i
)
0
; � � � ; (	

r

si
)
0
]
0

(2.4)

where 	c
v = [(�cv)

0; (�cv)
0]0, 	g

v;i = [(�gv;i)
0; (�gv;i)

0]0, and 	r
vi = [(�rv;i)

0; (�rv;i)
0]0

for i = 1; 2 and v = 1; � � � ; s. Thus, 	c is the collection of parameters com-
mon to both regimes, 	g denotes constrained parameters, and 	r

i contains
all un-constrained parameters that are unique to regime i.

Besides the coe�cient parameters in (2.4), model (2.3) also invoves the
innovational variances �2v;i, the transition probabilities �vi, and the state
con�guration �. Any conventional statistical analysis of such a model would
require a substantial amount of computing and in many cases become in-
feasible. To overcome this problem, we adopt a Bayesian approach via the
Gibbs sampler. The Gibbs sampler is a recent development in the statistical
literature and has been found to be useful in solving complicated statisti-
cal problems. See Casella and George (1992) for an introduction to Gibbs
sampling and McCulloch and Tsay (1994) for its use in Markov switching
models. Briey speaking, the Gibbs sampler is a stochastic substitution
procedure that enables us to make joint statistical inference from a set of
conditional distributions of parameters given all the other parameters in
the model.

Let H be the collection of all parameters in model (2.3) and p(wjH �
w; y) be the conditional posterior distribution of the parameter w given the
data y and all the other parameters of the model, where H � w denotes
all the parameters of the model except w. The Gibbs sampler for the
proposed model involves drawing random variates sequentially from the
following conditional posterior distributions:

1. p(	cjH �	c; y).

2. p(	r
i jH � 	r

i ; y) for i = 1, 2.

3. p(	g

v;ijH � 	g

v;i; y) for i = 1, 2 and v = 1; � � � ; s.

4. p(�tjH � �t; y) for t = p+ 1; � � � ; n.
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5. p(�2v;ijH � �2v;i; y) for i = 1, 2 and v = 1; � � � ; s.

6. p(�vijH � �vi; y) for i = 1, 2 and v = 1; � � � ; s.

More speci�cally, the proposed Bayesian analysis of model (2.3) via the
Gibbs sampler consists of the following steps:

1. Specify some prior distributions and some initial values for all the
parameters in the model.

2. Draw random variates sequentially according to the conditional pos-
terior distributions listed above. Once a realization of a parameter
is drawn, it is treated immediately as the value of that parameter in
the subsequent drawings of other parameters. The collection of all
realizations in a pass through the conditional posterior distributions
listed above is called a Gibbs iteration.

3. Iterate the Gibbs sampler for M + N times. Discard the �rst M

iterations, but keep the realizations of the last N iterations to form
a Gibbs sample of size N on which statistical inference of the model
can be made.

Under some mild regularity conditions, e.g. Geman and Geman (1984)
and Tierney (1993), the Gibbs iterations form a Markov chain and, by
ergodic theory, the sample joint distribution of the Gibbs sample converges
weakly to the joint distribution of all the parameters. Therefore, marginal
distributions of parameters of interest can easily be deduced from the Gibbs
sample for making inference. The key condition for convergence is that the
Markov chain of the Gibbs iteration is irreducible, which is true for the
Markov switching models considered in the paper provided that the model
is identi�able. In practice, di�erent initial parameter values and di�erent
numbers of iterations should be used to check the convergence. Similarly,
di�erent prior speci�cations should be used to study the prior sensitivity
in making inference.

It remains to complete the conditional posterior distributions listed
above. To this end, we use proper conjugate priors, namely

	c
� N(	c

0;A
�1
c ); 	r

i � N(	r

i;0;A
�1
r;i ); �

2
vi �

u(v; i)�vi

�2
u(v;i)

; �vi � Beta(v;i;1; v;i;2)

(2.5)

where N (�;�) denotes a multivariate Gaussian distribution with mean �

and covariance matrix �, �2u denotes chi-square dsitribution with u degrees
of freedom, and Beta(1; 2) is a beta-distribution with parameters 1 and
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2. For the constrained parameter 	g, we employ componentwise inequality
constraints,

�
g

v1;j < (or >)�gv2;j + �x;j and �
g

v1;j < (or >)�gv2;j + �y;j

where �x;j and �y;j are given constants and �
g

vi;j and �
g

vi;j denote the j-th
element of �gvi and �

g

vi, respectively. Let � be the collection of all constraint
constants �x;j and �y;j. The prior distribution of 	g is then

	g � N (	g

0
; A�1

g )I(�) (2.6)

where I(�) is an indicator function such that I(�) = 1 if 	g satis�es the
inequality constraints given by �. In the prior speci�cations in (2.5) and
(2.6), all the hyper-parameters 	c

0, 	
r
i;0, 	

g

0
, Ac, Ar;i, Ag , u(v; i), �vi, v;i;j

and � are assumed to be known. If necessary, one can treat these hyper-
parameters as parameters governed by yet another level of prior distribu-
tions. As mentioned earlier, sensitivity analysis of these hyper-parameters
is an integral part of the proposed Bayesian analysis. Finally, we assume
that all the prior distributions in (2.5) and (2.6) are independent of each
other.

With the conjugate priors in (2.5) and (2.6), the necessary conditional
posterior distributions can be obtained by traditional Bayesian techniques,
e.g. DeGroot (1970). Details of those conditional posterior distributions
can be found in McCulloch and Tsay (1994) with some modi�cations.

Some remarks are in order in our implementation of the Gibbs sam-
pling. First, instead of individual state �t, we draw � states jointly, say
�t;� = (�t; �t+1; � � � ; �t+��1). This modi�cation serves two purposes: (a) it
can speedup the convergence of the Gibbs sampler, because realizations of
adjacent states are often dependent, and (b) by varying �, we can check the
convergence of the sampler. Second, the constrained parameters in 	g are
drawn component by component. This enables us to check the constraints
easily. Third, the drawing of innovational variances �2vi can be simpli�ed if
the process is homogenous across the rgimes and/or seasons.

3. Examples

3.1. Monthly Housing Starts

The �rst series we consider consists of monthly housing starts for single
family homes from 1964 to 1991. Figure 1 is a time series plot of the data
which clearly were seasonally unadjusted. The series is a closely watched
leading indicator, as increased activities on housing starts are often a pre-
lude to economic recovery.
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To implement the modelling procedure described in section 2, we �rst
choose the seasonal structure for the switching probabilities (�vi). We use
two seasons, with season 1 being the months fJanuary, February, Novem-
ber, Decemberg, and season 2 encompassing the rest of the months. With
this speci�cation we can investigate whether the switching mechanism is
di�erent in the winter months, a plausible hypothesis for the housing in-
dustry.

For our switching model we let the current value yt depend on an in-
tercept, a dummy variable set to 1 for the winter months as de�ned by our
choice of seasons, and lagged values with lags of 1, 2, and 12. The dummy
and lag 12 are included to capture the seasonal structure of the data. We
must also specify, for each explanatory variable, which of the three classes
discussed in section 2 its coe�cient belongs to. To identify the two states,
we let the intercept be regime dependent with the constraint that the in-
tercept in regime 1 be larger than the intercept in regime 2 by 0.1. The
rest of the coe�cients and the residual variance are constrained to have the
same value in both regimes. In the notation of equation 2.3, we have Xgt

consists of a vector of ones, Xct consists of the seasonal dummy variable,
and Yct consists of the values of yt lagged 1, 2, and 12 periods. Intuitively
we now think of seasons 1 and 2 as \winter" and \summer" and regimes 1
and 2 as \high" and \low" housing activities.

The prior for the two intercepts (one for each regime) is the bivariate
normal with 0 mean and covariance matrix equal to four times the iden-
tity, conditioned on the restriction given above. All other coe�cients have
independent N (0; 1) priors. The residual variance has prior �2 � ��

�2
�

with

� = 5 and � = 0:2. Finally, there are the four �vi where v indexes the
two seasons and i indexes the two regimes. Recall that �vi denotes the
probability of leaving regime i in season v. The four �vi are independent
Beta(2,15). The �rst boxplot in �gure 3 depicts this common prior. All of
the priors have been chosen in an attempt to make them spread out, with-
out supporting improbable values. For example, making the autoregressive
coe�cients standard normal would seem to cover the range of likely values.
We do not expect the coe�cient for yt�1 to be 3! Choosing the prior for
the dummy coe�cient and residual variance is less obvious and our choices
reect a fair amount of playing around with the model.

In order to compute the joint posterior distribution, we ran the Gibbs
sampler forM = 500 initial iterations and kept the results for a subsequent
N = 10; 000 iterations. We compared the output obtained from di�erent
runs and found the results to be very stable.

Figure 2 plots P (�t = 2 j Y;X), the posterior probability that time t
is in regime 2 versus time index t. Note that although our data start in
1964 the plot starts in 1965 because of the lagged variables used. The plot
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shows for example, that there is strong evidence that housing starts was in
regime 2 in the mid 70's and in the early 80's. Except for the second half
of the 80's the results are quite strong in that the probabilities are close to
zero or one.

Is the propensity to switch regimes related to the season? Figure 3 uses
boxplots to display the prior and posterior distributions of the �vi. The �rst
boxplot is based on 1000 draws from the common Beta(2,15) prior. The
remaining four boxplots are based on our 10000 draws from the posterior
distribution of the �vi. The boxplots suggest that there is strong evidence
that the switching probabilities are related to the seasons. In the �rst
season (winter) it appears that �11, the probability of leaving regime 1,
is substantially smaller than �12, the probability of leaving regime 2. In
the second season (summer) the ordering is reversed with �22 concentrated
on the smaller values. However, some care in needed in looking at the
boxplots. In particular, while the posterior for �12 seems to support value
much larger than those of �11, we note that the posterior of �12 is very
similar to the prior so that what may really be going on here is that there
is little information in the sample about �12.

Table 3.1 shows the median, 5%, and 95% quantiles for the marginal
posteriors of the model parameters. Note that the posterior probability that
the di�erence between the intercepts in the two regimes is in the interval
(.14, .19) is 90%. Although both intercepts vary over a similar range, they
are highly dependent and the marginal distribution of their di�erence is
concentrated near .17. The di�erences in the transition probabilities we
saw in �gure 3 are also evident in the table. For example, the posterior
median of �1;2 is .12 while the posterior median of �2;2 is .031.

3.2. Quarterly Industrial Production

Our second series is the index of U.S. quarterly Industrial Production from
the �rst quarter of 1947 to the �nal quarter of 1991. The data were season-
ally adjusted and obtained from the Citibase data system. Our initial step
in the analysis is to di�erence the data. The di�erenced series is displayed
in �gure 4.

To investigate the possibility of seasonal switching probabilities we spec-
ify two seasons with the �rst season being the �rst and fourth quarters and
the second season being the second and third quarters. Again, we can
roughly think of our two seasons as being \winter" and \summer".

The switching model includes an intercept and lagged production in-
dicies at lags 1, 2, 5, and 8. We used the intercept to de�ne the regimes
by letting it be regime dependent with the contraint that the intercept in
regime 1 be larger than the intercept in regime 2 by at least 0.5. The four
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Table 3.1: Housing Starts: Selected Quantiles of Marginal Posteriors of
Parameters

parameter median .05 quantile .95 quantile
intercept, regime 1 3.94 3.57 4.44
intercept, regime 2 3.77 3.41 4.27

di�erence in intercepts .17 .14 .19
ar1 coe�cient .69 .60 .78
ar2 coe�cient -.18 -.25 -.10

seasonal dummy -.21 -.24 -.18
ar12 coe�cient .15 .09 .20

� .12 .11 .13
�1;1 .031 .006 .086
�1;2 .120 .034 .245
�2;1 .083 .036 .165
�2;2 .031 .007 .081

coe�cients of the lagged yt values were allowed to be state dependent with-
out any constraint. In the notation of equation 2.3, we have Xgt consists
of a vector of ones, and Yrt consists of yt�i for i = 1, 2, 5, and 8.

The prior used for the intercept and autoregressive coe�cients is the
same as in the previous example (standard normal) with corresponding
coe�cients in the two regimes being independent. The residual variance is
constrained to be the same in the two regimes with � = 5 and � = 1. The
�vi are independent Beta(5,15) as depicted in the �rst boxplot in �gure 6.

Figure 5 plots P (�t = 2 j Y;X), the posterior probability that time t is in
regime 2 versus t. The majority of quarters are in the �rst regime with high
probability. While this plot is markedly di�erent from the corresponding
plot in the previous example, note that they are somewhat in accordance
in that high probabilities for state 2 occur around 1970, the mid seventies,
early eighties, and early nineties.

Figure 6 (analogous to �gure 3) depicts the marginal posteriors of the
�vi. This time the switching pattern is similar in both seasons. In both
seasons, the data has moved the distribution of �v1 towards smaller values
and moved the distribution of �v2 towards larger values relative to the
common prior distribution of the �vi. Thus, as clearly suggested in �gure
5, it is generally much easier to leave regime 2 than regime 1. There is
however, the suggestion that regime 1 is \stickier" in season 1 (winter)
than in season 2. The median value of the 10,000 draws of �11 is .08 while
it is .14 for �21.
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Table 3.2: Di�erenced Industrial Production: Selected Quantiles of
Marginal Posteriors of Parameters

parameter median .05 quantile .95 quantile
intercept, state 1 .81 .64 .97
intercept, state 2 -1.42 -1.94 -.84

ar1 coe�cient, regime 1 .35 .24 .47
ar1 coe�cient, regime 2 .75 .37 1.08
ar2 coe�cient, regime 1 -.15 -.25 -.04
ar2 coe�cient, regime 2 -.28 -.74 .22
ar5 coe�cient, regime 1 -.17 -.26 -.08
ar5 coe�cient, regime 2 .83 .31 1.34
ar8 coe�cient, regime 1 -.16 -.26 -.06
ar8 coe�cient, regime 2 -.60 -.94 -.29

� .79 .71 .88
�1;1 .09 .038 .157
�1;2 .342 .199 .499
�2;1 .140 .082 .222
�2;2 .313 .168 .491

Table 3.2 shows the median, 5%, and 95% quantiles for the marginal
posteriors of the model parameters. In this example the intercepts are
markedly di�erent in the regimes. Also there seems to be strong evidence
that the dynamic structure of the model in the two regimes is di�erent
(note for example the lag 5 AR coe�cients).

4. Concluding Remarks

In this paper we have proposed a general class of periodic Markov regime-
switching models and used Gibbs sampler to analyze such models. Two
real economic examples are used to illustrate the application of the models.
We found evidence that the asymmetric transition probabilities between
regimes are also season dependent both for the U.S. monthly housing starts
and quarterly industrial production index. This suggests that for both data
sets considered their behavior in the winter is di�erent from that in the
summer. In particular, the magnitudes of transition probabilities reverse
between winter and summer for the monthly housing starts series.
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