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Cet article développe un modèle binomial d'évaluation des titres dérivés
américains en présence de contraintes d'investissement. Les politiques optimales
d'investissement et d'exercice du titre dérivé non-marchandé sont résolues de
manière simultanée . La contrainte d'absence de ventes à découvert se manifeste
sous forme d'un dividende implicite portant sur le processus neutre au risque de
l'actif sous-jacent. Une des conséquences est l'optimalité possible de l'exercice avant
l'expiration du contrat même lorsque l'actif sous-jacent ne paye pas de dividendes.
Une application à l'évaluation des options de compensation des cadres d'entreprises
est présentée. Nous étudions également l'évaluation de titres basés sur un prix qui
est imparfaitement corrélé avec le prix d'un actif transigé.

We provide a simple binomial framework to value American-style
derivatives subject to trading restrictions. The optimal investment of liquid wealth
is solved simultaneously with the early exercise decision of the non-traded
derivative. No-short-sales constraints on the underlying asset manifest themselves
in the form of an implicit dividend yield in the risk neutralized process for the
underlying asset. One consequence is that American call options may be optimally
exercised prior to maturity even when the underlying asset pays no dividends.
Applications to executive compensation options are presented. We also analyze
non-traded payoffs based on a price that is imperfectly correlated with the price
of a traded asset.

Mots Clés : Options américaines, options de compensation de dirigeants, temps
d'exercice optimal, contraintes de portefeuille, actif non-marchand,
valeur privée, équivalent certain, liquidité, aversion au risque

Keywords : American options, executive compensation options, optimal
exercise time, portfolio constraints, non-traded asset, private
valuation, certainty-equivalent, liquidity, risk aversion



1 Introduction.

The economics of asset pricing when one or more of the assets in the
opportunity set are either subject to trading restrictions or entirely non-
traded is a matter of great interest. Viewed from a practical perspective,
we have several important examples of such assets that are subject to
trading restrictions. Pensions, which represent perhaps the most sig-
ni�cant of assets held by individual households are subject to trading
restrictions. It is typically the case, that assets in pension are not avail-
able for immediate consumption. Borrowing against pension assets is
subject to signi�cant direct and indirect costs, by way of taxes and early
withdrawal penalties. Human capital is another example. Housing in-
vestment is also illiquid and subject to signi�cant transactions costs.
Together, pensions, human capital, and housing constitute a substantial
part of a typical household's assets. The signi�cance of such non-traded
assets for risk premia has already been noted by Bewley (1982). There
are other circumstances where lack of unrestricted trading plays an im-
portant role. Executive compensation plans usually take the form of
options that are not allowed to be traded in the open market. They are
subject to restrictions on how often and when they may be exercised.
In addition, executives who own such options are not permitted to short
the underlying shares of the company. In a similar vein, long-dated for-
ward contracts are frequently entered into by counterparties who are
fully aware that a liquid secondary market for the contract does not ex-
ist. Furthermore, the underlying commodity often is yet to be harvested
or cannot be sold short. It seems reasonable then to think of such for-
ward contracts as essentially non-traded assets. These examples stress
the role of non-traded derivatives on an underlying asset on which there
may be trading restrictions.

The purpose of this paper is to provide a constructive framework
to value derivative assets that are subject to trading restrictions. This
framework relies on simple dynamic programming techniques and can
be viewed as a counterpart to the martingale methods in Cvitanic and
Karatzas (1992). Our approach, however, delivers signi�cant new in-
sights. In the context of a simple binomial model we characterize the
pricing and the optimal exercise strategies associated with derivative as-
sets that are non-traded. The approach is illustrated with an Executive
stock option (ESO) example, although it is general and can be applied
to any other contexts where trading restrictions are important. In par-
ticular, it could be utilized to explain endogenous convenience yields in
long-term forward contracts which have a very thin market and hence
may be viewed to a �rst approximation as non-traded assets (NTA). In

1



some instances, such long-term forward contracts are written on assets
which may not be shorted easily. Examples are long-dated forwards on
crude oil or on commodities that are yet to be harvested. Our contribu-
tion pertaining to Executive stock options draws and builds signi�cantly
upon the work of Carpenter (1998), Huddard (1994) and Kulatilaka and
Marcus (1994). We briey review these papers to motivate our own work
and place it in a proper perspective.

Huddard (1994) and Kulatilaka and Marcus (1994) consider expected
utility maximizing models, which is in the spirit of our own work. But
both papers assume that the non-option wealth (liquid wealth) is in-
vested in the risk-free asset. As Carpenter (1998) notes, this assumption
places an arti�cial constraint on portfolio choice before and after the
exercise of the option which may in turn distort the optimal exercise
decision. Carpenter (1998) develops two models. The �rst is an exten-
sion of Jennergren and Naslund (1993). In this model she considers an
exogenous stopping state in which the executive must either optimally
forfeit or exercise the option. This setting is well suited to examine
issues pertaining to vesting restrictions. In her second model, which is
much closer to our own work, she studies an expected utility maximizing
model, in which the executive is o�ered an exogenous reward for leaving
the �rm at each instant. This induces the executive to optimally select
the exercise (or continuation) policy. Carpenter concludes that the �rst
model which is much simpler to implement does as well as the more
elaborate expected utility maximizing model in terms of predicting the
actual exercise times and payo�s. Like Huddard (1994) and Kulatilaka
and Marcus (1994), Carpenter (1998) assumes an exogenous investment
policy for the non-option wealth: the executive invests in the Merton
(1969, 1971) portfolio. She notes an important complication in making
this assumption: "Investing non-option wealth in the Merton portfolio
is more appealing although not fully optimal in the presence of the op-
tion. Full optimality would allow the executive to choose investment
and exercise strategies simultaneously. This scenario is intractable be-
cause the nonnegativity constraint on the stock holdings would become
binding along some stock price paths, but not along other paths. Under
these conditions, the optimal portfolio value would be a path-dependent
function of the stock price, and backward recursion would be impossi-
ble." This is in fact one of the thrusts of our paper. We model the
simultaneous investment and exercise decision problem. This problem is
path-dependent as Carpenter (1998) correctly notes. However, an expan-
sion of the state space enables us to formulate the problem as a purely
backward problem that can be solved using a dynamic programming al-
gorithm. As we show in the paper, the optimal investment policy di�ers
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from the Merton policy. Thus, our paper provides a broad framework
which is both constructive and easy to implement numerically.

Section 2 focuses on European-style non-traded assets. We analyze
the private valuation of such an asset and the hedging policy when there
is a no-short-sales constraint on the underlying asset. One insight aris-
ing out of this analysis is that trading restrictions manifest themselves in
the form of an implicit dividend yield in the risk neutralized underlying
asset price process. This implicit dividend yield will lead to qualita-
tively di�erent predictions for the exercise policies of American options
on the underlying asset. In this context the private value of the asset
is given by the certainty-equivalent of its payo�. We show that this
certainty-equivalent is bounded above by the unconstrained asset value.
We also provide a simple computational algorithm and a numerical ex-
ample which illustrates the algorithm for non-traded European options.
The solution of the constrained portfolio problem can be formulated in
terms of a backward equation which involves the liquid wealth of the
manager and his certainty-equivalent valuation. Due to the trading re-
strictions a simple closed form solution such as Black and Scholes cannot
be obtained. But this is precisely where our Binomial framework lends
itself superbly to the computation of the solution of the model.

In section 3, we examine the private valuation and the early exercise
policy associated with American-style non-traded derivatives. We �rst
display simple examples involving call options on a non-dividend-paying
stock in which the policy of holding the option to maturity is dominated
by early exercise. These examples demonstrate that early exercise (prior
to maturity) of an ESO may be optimal even when the underlying asset
does not pay dividends. This result runs counter to the conventional
wisdom and seems to contradict a well known proposition on the sub-
optimality of early exercise of such claims [see Merton (1973)]. In this
context exercising a call option has two consequences. On the one hand
it reduces welfare since the holder e�ectively gives up any potential ap-
preciation in the expectation of the discounted call option payo�. On
the other hand early exercise provides an indirect bene�t since it allevi-
ates the no short sales constraint faced by the investor in the underlying
market. Early exercise eliminates the need to hedge the NTA and in-
creases liquid wealth; both of these e�ects increase the optimal demand
for the stock and reduce the occurrence of a binding constraint. In in-
stances in which the constraint is su�ciently binding when the NTA is
held to maturity the bene�ts of early exercise (relaxing the constraint)
may dominate the costs (the loss of gains from appreciation of the dis-
counted payo�) and this leads to the optimality of early exercise. These
results enable us to rationalize a well known empirical regularity: the
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fact that executives tend to exercise their compensation options prior to
maturity and at times that do not seem to conform to the predictions
of conventional options pricing theory. The arguments above show that
such an early exercise policy may well be rational even in the absence
of an exogenous reward for leaving the �rm. The remainder of section
3 characterizes the optimal exercise policy. Section 4 presents numerical
applications of the model to Executive Stock Options.

In section 5 we extend our basic model to consider cases in which the
non-traded payo� depends on a price S2 that is imperfectly correlated
with the price S1 of the asset in which the investor can invest. Our analy-
sis is based on a trinomial model. In this context we extend the dynamic
programming approach of earlier sections and provide numerical results
on the e�ects of correlation. We show that the private value of a non-
traded call option may exceed the unconstrained value when correlation
is negative or su�ciently low: in such a situation the non-traded option
has diversi�cation bene�ts that may o�set the negative impact of the no
short sales constraint on the traded asset. When correlation increases
toward 1 the non-traded call option on asset 2 becomes a substitute for a
non-traded call option on asset 1: the private values of the two contracts
converge. For American-style call options on nondividend-paying assets
early exercise may take place even when the two asset prices S1; S2 are
imperfectly correlated.

Appendix A presents background results on the dynamic program-
ming approach to the problem. Proofs are collected in Appendix B. Ap-
pendix C details a recursive procedure to construct certainty-equivalent
values. Appendix D solves the constrained portfolio problem with two
underlying assets in the context of a trinomial model.

2 European-style contingent claims.

In this section we consider a portfolio problem cast in a binomial lat-
tice (section 2.1) that can be solved using dynamic programming meth-
ods (sections 2.2-2.5). A backward numerical procedure based on the
dynamic programming algorithm is developed (section 2.6) and imple-
mented in the context of a simple numerical example (section 2.7).

2.1 The model.

Our setting parallels the one in Cox, Ross and Rubinstein (1979). We
assume that the underlying asset price follows a binomial \process" with
constant parameters u and d, and probability p.
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The initial asset value is S0 and the tree has N steps. There is also a
risk-free asset bearing a constant return r.1 We assume that u > r > d.

In this complete market setting the risk neutral probability is q =
(r � d)=(u� d) and the implied state price density (SPD), �n; satis�es

�n;n+1 �
�n+1

�n
=

1

r

�
q=p w.p: p
(1� q)=(1� p) w.p. 1� p

(1)

subject to the initial condition �0 = 1.
Suppose that an investor holds an NTA with payo� YN at the termi-

nal date where the cash ow depends on the asset price and takes the
form YN � g(SN ) for some function g(�) : R ! R. Assume that the
investor has strictly concave, nondecreasing utility function u(�) such
that limx!0 u

0(x) = 1 and limx!1 u0(x) = 0. Let X denote his liquid
wealth (Xn is liquid wealth at date n) and � the proportion of wealth
invested in the risky asset. Suppose that the investor cannot short sell
the underlying asset. He then faces the constrained dynamic problem

max
�

Eu(XN + YN ) s.t. (2)

�
Xu
n+1 = Xn[r + �n(u� r)]

Xd
n+1 = Xn[r + �n(d� r)]

; X0 = x; (3)

Xn�n � 0; for all n = 0; � � �; N � 1 (4)

XN + YN � 0: (5)

1It is straightforward to extend the analysis to (stochastic) path-dependent coe�-

cients (u; d; r). Likewise path-dependent payo�s can be easily accommodated in our

framework.
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2.2 A dynamic programming formulation.

Let J(Xn; n) be the value function for this constrained portfolio prob-
lem.2 It satis�es, for n = 0; :::; N � 1;

J(Xn; n) = max
��0

EJ( eXn+1; n+ 1) (6)

where

eXn+1 = Xn[r + �n(er � r)]: (7)

Here the random variable er is the return on the stock (with values u or

d) and eXn+1 is liquid wealth at n+ 1. The wealth process (7) satis�es
the initial condition X0 = x. This recursion is subject to the boundary
condition J(XN ; N) = u(XN + YN ).

The Kuhn-Tucker conditions for this constrained problem are stan-
dard and are presented in Appendix A. Let J

0

(Xu
n+1; n) denote the

marginal value of wealth, yn the Lagrange multiplier for the budget
constraint at date n, q�n the adjusted risk neutral probability and ��n;n+1

the corresponding SPD which satis�es (1) substituting q�n for q. Finally,
let I(�; n+ 1) be the inverse of the marginal value of wealth at n+ 1.

Our �rst theorem presents an equivalence relation between the con-
strained economy and an arti�cial unconstrained economy constructed
by changing the drift of the risk-neutralized process.

Theorem 1 Let f(X�
n+1; y

�
n; q

�
n; �

�
n) : n = 0; :::; N � 1g denote the solu-

tion, described in Appendix A, to the constrained optimization problem

subject to the initial condition X0 = x: The constrained portfolio prob-

lem is equivalent to an unconstrained portfolio problem in an arti�cial

economy in which the risk neutral measure is fq�n : n = 0; :::; N � 1g.
In this unconstrained problem the stock price lives on a binomial lattice

with parameters u�n = u+ ��n and d�n = d+ ��n where ��n = (q� q�n)(u�d)
and ��n;n+1 is the corresponding state price density.3 The wealth process

and the optimal portfolio are, for n = 0; :::; N � 1;

X�
n+1 = I(y�n�

�
n;n+1; n+ 1)

2The value function is a function of the stock price as well. For ease of exposition

we adopt the simpler notation J(X;n) with two arguments. This notation places

emphasis on the fact that liquid wealth X is controlled by the investor through his

portfolio choice. Other arguments of the value function are exogenous state variables

(or time) that have a parametric e�ect on the optimal solution.
3Equivalence results of this type are known to hold in economies with portfolio

constraints (see Cvitanic and Karatzas (1992)).
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��n =
r

q�n(1� q�n)(u� d)
(
G�un+1

G�n
p� q�n)

where G�n � ��nX
�
n and G�un+1 = (��n+1X

�
n+1)

u:

The equivalence between the two optimization problems implies that
��n is the pricing kernel for the constrained individual and q�n = (r �
d�n)=(u

�
n� d�n) his adjusted risk neutral measure in the constrained mar-

ket. The pair (��n; q
�
n) encodes the private valuation of the constrained

investor taking the environment as given. It reects the no short sales
constraint as well as the other exogenous parameters of the model, in
particular the fact that he is endowed with a non-traded asset paying o�
at date N .

Note that the stock price takes the value

SN = S0u
N�kdk

at N if there are N � k steps up and k steps down, for k = 0; � � � ; N .
Using the de�nitions of u�n and d�n above and the fact that u�n � ��n and
d�n � ��n are constant we can also write

SN = S0u
N�kdk = S0

Y
n2N�Nk

(u�n � ��n)
Y
n2Nk

(d�n � ��n)

for k = 0; � � � ; N , where N = f0; :::; N � 1g and Nk is the subset of
k elements of N corresponding to the relevant down movements in the
stock price. Hence, the stock price in the constrained market can be
viewed as paying an implicit dividend equal to ��n at date n + 1. This
interpretation also emerges if we use the de�nition of q�n to derive the
stock price formula

Sn =
1

r

�
q�nS

u
n+1 + (1� q�n)S

d
n+1

�
+

1

r
Sn�

�
n:

This formula shows that the stock price Sn is the discounted value of
Sn�

�
n augmented by the expected value of the discounted price at n+ 1

where discounting is at the risk-free rate and the expectation is taken
under q�. By analogy with the standard representation result we can
then interpret the stock as a dividend-paying asset with dividend yield
��n under the adjusted risk neutral measure q�.4

4The interpretation of the stock as a dividend-paying asset under the adjusted risk

neutral measure q� is not meant to suggest that the properties of complete market

models will hold in this economy. In fact there are signi�cant di�erences. For example

the adjusted risk neutral measure q� is not independent of the dividend yield �� and
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We therefore reach an important conclusion: in the presence of a no-
short-sales constraint a derivative asset on a non-dividend-paying stock
is equivalent to a derivative written on a dividend-paying stock under
the adjusted risk neutral measure. Theorem 1 then suggests that the
(private) valuation of a non-traded derivative may be lower than an
otherwise identical derivative which is freely traded. This insight has far-
reaching implications for the exercise policies associated with Executive
Stock Options which we explore later. Additional intuition about the
costliness of a constraint is provided by the certainty-equivalent of the
non-traded asset from the perspective of an investor endowed with the
non-traded payo� and facing this trading restriction. What is the certain
compensation required to induce this investor to give up his claim to the
future cash ows associated with the NTA? We examine this issue next.

2.3 Certainty-equivalent and unconstrained valuation.

In the absence of any constraint the (complete market) value of the Euro-
pean contingent claim with payo� YN is V0 = ( 1

r
)NE�[YN ] = E[�NYN ].

In the presence of the no-short-sales constraint the value of the claim
is the certainty-equivalent bY0 of the payo� YN (see Pratt (1964)). By
de�nition

bY0 = bJ�1(J(X0; 0); 0)�X0

where bJ(X0+ bY0) represents the value function for the constrained prob-

lem without cash ow YN but starting from initial wealth X0 + bY0 andbJ�1(�; 0) is the inverse of this function.
With unrestricted investment the �nancial market described above

is complete. The market value of an asset is then unambiguous: it
represents the amount of initial wealth that is required to synthesize
the terminal cash ow YN . The certainty-equivalent on the other hand
represents the compensation required by an individual for giving up his
right to the terminal cash ow YN . Clearly these two notions coincide
when the market is complete.

this is a consequence of the no short sales constraint. Furthermore q� is a�ected

by changes in exogenous variables such as the risk aversion of the investor and the

properties of his non-traded payo� (see sections 4 and 5). Our interpretation also

assumes that the dividend yield applies to the initial stock price at date n (i.e. the

implicit dividend payment at n+1 is Sn�
�

n
) and this di�ers from the standard binomial

model with proportional dividend yield. Note that the solution of the constrained

portfolio problem and our results concerning the rationality (optimality) of early

exercise are independent of the interpretation given to the process ��.
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What is the relationship between the unconstrained value and the
certainty-equivalent of the NTA in our constrained problem? Our next
result shows that the two notions relate in a simple manner.

Proposition 2 Consider the constrained investment problem with a NTA

paying a terminal cash ow YN . Suppose (a) that the payo� YN is an in-

creasing function of the stock price and (b) that the short sales constraint

never binds for the pure portfolio problem with initial wealth X0 + bY0.
The following properties hold.

(i) If the short sales constraint never binds in the constrained problem the

certainty-equivalent and the complete market value are equal: bY0 = V0:

(ii) Suppose that the short sales constraint binds with positive probability.

Then, the certainty-equivalent is bounded above by the complete market

value of the asset: V0 � bY0.
An investor who is e�ectively unconstrained in the constrained econ-

omy is in fact in a complete market situation. Equality between the two
notions follows.

When the constraint binds at certain nodes of the tree the value func-
tion decreases (since the set of feasible policies is e�ectively restricted).
The certainty-equivalent then unambiguously decreases when condition
(b) holds: V0 � bY0.

A numerical illustration of the results of proposition 2 is given in
section 2.7 below. Before presenting this example we provide further
insights about the solution of the constrained portfolio problem.

2.4 A certainty-equivalent formulation.

Further light can be shed on the optimal portfolio policy by de�ning a
certainty-equivalent payo� bYn for each date n and using it to reformulate
the dynamic portfolio problem. Indeed, by de�nition of the certainty-
equivalent the value function at every node equals the value function of
a pure portfolio problem without NTA but starting from an adjusted
(certainty-equivalent) wealth level. It follows that we can write the ob-
jective function at date n entirely in terms of the value function of the
certainty-equivalent problem at date n + 1. This procedure leads to
a recursive construction of the certainty-equivalent payo� bYn which is
detailed in appendix C. We summarize the construction next.

Let bJ(Xn+1 + bYn+1; n + 1) denote the value function at date n + 1
of the pure portfolio problem without NTA but starting from the ad-
justed wealth level Xn+1+ bYn+1. By de�nition the date n+1 certainty-

equivalent bYn+1 solves
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J(Xn+1; n+ 1) = bJ(Xn+1 + bYn+1; n+ 1):

The constrained portfolio problem at time n+ 1 can then be written as

J(Xn; n) = max
�n�0

En bJ( eXn+1+bYn+1; n+1) s.t. Xn = En[�
�
n;n+1

eXn+1]:

Let (X�
n+1;

bY �n+1; q
�
n) denote the solution. The value function, certainty-

equivalent and optimal portfolio at date n are8>>>>><>>>>>:

J(Xn; n) = En bJ( eX�
n+1 +

bY �n+1; n+ 1)

bYn(Xn) = bJ�1(J(Xn; n); n)�Xn

��n = r
q�n(1�q

�

n)(u�d)
(
G�u
n+1

G�

n
p� q�n)

(8)

where G�n � ��nX
�
n and G�un+1 = (��n+1X

�
n+1)

u and where bJ�1 is the

inverse of the date n value function bJ(�; n) of the pure portfolio problem
with initial wealth Xn + bYn. The second equation in (8) provides the
recursive relation between the certainty-equivalents at dates n and n+1.

In the next sections we specialize the model to power utility function.
In this context we present a numerical recipe for solving the problem and
examine the behavior of the certainty-equivalent.

2.5 Power utility function (CRRA).

Consider the utility function u(X) = 1
1�R

X1�R where R > 0 is the

constant relative risk aversion coe�cient. Let Kn(Xn) = @ bYn(Xn)=@Xn

represent the derivative of the CE and let bgn+1;N = En+1[b�1�1=Rn+1;N ] whereb�n+1;N is the adjusted state price density for the pure portfolio problem

over fn + 1; :::; Ng with initial wealth bXn+1 = Xn+1 + bYn+1 and sub-
ject to a no-short-sales constraint. Now de�ne the function Fn(a; b) =

En

h
�
1�1=R
n;n+1 (1 +Kn+1(a))

bbgn+1;N

i
. Appendix C shows that the certainty-

equivalent and its derivative satisfy the system of recursive equations

10



bYn(Xn) =8>>>>>>>>>><>>>>>>>>>>:

(Xn +Wn)
(Fn(Xn+1;1=R�1))

1=(1�R)

Fn(Xn+1;1=R)
(bgn;N)� R

1�R �Xn

if Xu
n+1 > rXn�

En

h
(rXn + bYn+1(rXn))

1�RbgRn+1;N

i�1=(1�R)
(bgn;N )� R

1�R �Xn

if Xu
n+1 = rXn

1 +Kn = rEn

h
(Xn+1 + bYn+1)

�R(1 +Kn+1)bgRn+1;N

i
(Xn + bYn)Rbg�Rn;N

where Wn = 1
r
[qbY u

n+1+(1�q)bY d
n+1]. These recursions are subject to the

boundary conditions bYN = YN and KN = 0.

2.6 Numerical evaluation of the certainty-equivalent.

The numerical scheme that we employ implements the dynamic program-
ming equations described above. The procedure is a backward algorithm
structured as follows:5

1. Select a grid for wealth: X(j); j = 1; :::; Nx:

2. Set bYN = YN ;KN = 0:

3. At date N � 1: for each node and for j = 1; :::; Nx;

(i) �x XN�1 = X(j) and solve for (Xu
N (j); X

d
N (j));

(ii) compute bYN�1(j) and KN�1(j):

4. At date n: for each node and for j = 1; :::; Nx;

(i) �x Xn = X(j) and solve for (Xu
n+1(j); X

d
n+1(j));

(ii) compute bYn(j);Kn(j):

5An alternative computational procedure can be developed based on a forward-

backward binomial algorithm (FBB). Such a scheme involves the recursive compu-

tation of the CE based on estimated state prices (backward binomial procedure)

combined with a reestimation of state prices (forward procedure involving the liquid

wealth process and the optimal portfolio). Applying this FBB algorithm repeat-

edly eventually leads to a �xed point (in the space of processes) which represents

the solution of our constrained problem. In numerical experiments performed the

FBB algorithm has produced CE values which are identical to those obtained via the

dynamic programming procedure in the paper.

11



5. Proceed recursively until n = 0:

Several approaches are available for computing the derivative Kn

of the certainty-equivalent. Direct computation based on the recursive
equation for Kn can be performed in parallel with the computation ofbYn. An alternative estimate is based on the �nite di�erence (bYn(j) �bYn(j � 1))=(X(j)�X(j � 1)). Both approaches are easily implemented
and produce similar results for su�ciently �ne grids for wealth.

2.7 A numerical example.

We illustrate the results in this section by considering a simple numerical
example involving a non-traded call option with strike k. The binomial
model is calibrated in the standard manner: u = exp(�

p
h); d = 1=u and

p = 1
2
(1 + (�=�)

p
h), where h = T=N . The example's parameters are

� = :08; � = :3; r = :05; R = 2; X0 = 40; k = 80; T = 1; and N = 8:
Figure 1 illustrates the relationship between the certainty-equivalentbY0 and the unconstrained call value C when the initial stock price S0

ranges from 0 to 300. For low values of the underlying stock price the
option is out of the money and both its private value and the uncon-
strained value are near 0 (the ratio is 1). As the stock price increases
the option payo� increases at every node at the maturity date. As the
owner of the non-traded option attempts to hedge the contract he will
hit the no short sales constraint on the underlying asset and this will
reduce his private valuation. In fact his private valuation declines as
a fraction of the unconstrained value (see �gure 1) for moderate values
of the underlying stock price. For larger values of the stock price the
magnitude of the di�erence between unconstrained valuation and pri-
vate valuation increases to an upper bound: the ratio of the two values
eventually converges to 1.

[Insert Figure 1 about here]

This numerical example also vividly illustrates the fact that the pri-
vate value of the non-traded asset can be at a substantial discount to
the unconstrained value: in the example the discount is nearly 17% for
an at-the-money option.

The analysis above shows that the non-traded derivative with the
short sales constraint is equivalent to an unconstrained derivative on a
dividend-paying stock. This property whose consequences are illustrated
in the numerical example also foreshadows the result that early exercise
may be optimal if we allow for an early exercise feature. Furthermore, by

12



taking this argument to the limit, it is easily seen that the private value
of a non-traded European option on a non dividend-paying stock is equal
to the certainty-equivalent value of a traded European option on a stock
with same drift and volatility coe�cients but which pays a continuous
nonnegative dividend ow. This suggests that the Black-Scholes formula
will in fact overestimate the private value of a non-traded option; in our
discrete time setting, the binomial model of Cox, Ross and Rubinstein
is an upper bound for the private value of the executive stock option.

The �rst order conditions (17) in Appendix C also show that the
implicit dividend yield tends to be positive precisely when the non-traded
asset owner would like to go short but cannot due to the short sales
constraint. The dividend yield ��n = (q � q�n)(u� d) becomes zero when
he is unconstrained. For logarithmic utility this dividend yield can be
characterized in greater detail. In this case the dividend yield is (a)
a decreasing function of liquid wealth (this clearly illustrates that the
lack of diversi�cation is a major source of loss in the private value of
an executive stock option) and (b) a decreasing function of the excess
return on the stock.

3 American-style contingent claims.

We now turn to the case of American contingent claims. We �rst demon-
strate that early exercise of claims such as call options may be an optimal
policy even when the underlying asset does not pay dividends (section
3.1). We then characterize the optimal exercise time (sections 3.2-3.5).

3.1 The optimality of early exercise.

In the case of complete markets it is well known that it is never opti-
mal to exercise a call option when the underlying asset does not pay
dividends. More generally, it is suboptimal to exercise any claim whose
discounted payo� is a strict submartingale under the risk neutral mea-
sure q (i.e. when r�nE�Yn > Y0). We now consider the exercise decision
when the holder of the NTA is subject to a no short sales constraint in
the underlying asset. Contrary to conventional wisdom our �rst result
establishes the optimality of early exercise.

Proposition 3 Early exercise of a contingent claim whose discounted

payo� is a submartingale under the risk neutral measure q may be opti-

mal.

13



This proposition states that waiting until maturity to exercise such
a claim is a suboptimal policy under certain conditions. In order to
prove this proposition we need only exhibit examples that display the
property. Our �rst example below sets the stage: it shows that it is
always optimal (in the context of the example) to exercise early any
claim whose discounted payo� is a martingale. The second and third
examples are numerical examples involving an executive stock option
(ESO) which demonstrate that a submartingale discounted payo� may
also be optimally exercised prior to maturity.

Example 1: Consider an investor with logarithmic utility. Suppose

�rst that the discounted payo� of the claim is a supermartingale (i.e.

r�nE�Yn � Y0) and that p = q (i.e. Eer � r = 0). In this case the

unconstrained optimal portfolio is a pure hedging portfolio equal to

Xn�n = �V
u
n+1 � V d

n+1

u� d

for all n (Vn+1 is the unconstrained value of the claim at n + 1). For

claims that are positively correlated with the underlying stock price this

portfolio demand is negative. The constrained optimum is then �n =
0. The policy of exercising the claim at maturity leads to a random

terminal wealth equal to X0r
N + YN . Immediate exercise on the other

hand leads to the certain amount of terminal wealth (since the optimal

unconstrained and constrained portfolios are null) (X0 + Y0)r
N . Let

J(X0) (resp. bJ(X0 + Y0)) denote the value functions if exercise takes

place at maturity (resp. immediately). The value functions are related

by

J(X0) = E log(X0r
N + YN )

< log(X0r
N +EYN )

� log((X0 + Y0)r
N ) = bJ(X0 + Y0)

where the �rst inequality follows from Jensen's inequality and the second

from the supermartingale property of the discounted payo� function. In

particular if the discounted payo� is a p-martingale there is no incentive

to wait until maturity. Thus in this example immediate exercise strictly

dominates the policy of never exercising prior to maturity.

In this �rst example there are two distinct e�ects at play. The �rst is
the e�ect of the constraint. By preventing a complete hedge of the non-
traded position the no short sales constraint prevents terminal consump-
tion smoothing. The individual is forced to bear unwanted variability in

14



his terminal payo� and this reduces his expected utility. This e�ect pro-
vides incentives to exercise early. The second e�ect is the supermartin-
gale behavior of the discounted payo� which also provides incentives for
early exercise. Combining both e�ects results in the suboptimality of
waiting until maturity to exercise.

Under the conditions of the example above (p = q) a call option on
a non-dividend paying stock is a p-submartingale r�nE�(Sn � k)+ �
(S0 � k)+. This submartingale behavior works in the opposite direction
of the smoothing/constraint e�ect and may mitigate the negative e�ect
of the constraint on welfare. However, as we show in the next numerical
example, this e�ect may be too weak to fully o�set the negative impact
of the constraint.

Example 2: Consider an ESO with the following parameters � =
:2; r = :1; p = :61767; u(X) = log(X); X0 = 0; k = 80; S0 =
100; T = 1; N = 3. In this case the value of waiting to maturity is

J(X0) = �1 while immediate exercise leads to bJ(X0 + Y0) = 3:0957.
If the individual waits until maturity to exercise the portfolio constraint

binds at all nodes and terminal wealth includes highly undesirable out-

comes with null payo� X0r
N +YN = 0. Immediate exercise on the other

hand ensures strictly positive terminal wealth in all cases. In this exam-

ple the submartingale property of the discounted option payo� mitigates

the e�ect of the constraint but not su�ciently to o�set the suboptimality

of waiting to maturity.

Our last example shows that the suboptimality of waiting to maturity
may also hold when p > q (i.e. Eer � r > 0) and X0 > 0 provided risk
aversion is su�ciently large.

Example 3: Consider an ESO with the following parameters � =
:2; r = :1; p = :62; R = 4; X0 = 10; k = 80; S0 = 100; T = 1, N = 3.
In this case the value functions are respectively J(X0) = �0:0000265
and bJ(X0+Y0) = �0:0000091. Again, waiting to maturity is dominated

by immediate exercise.

In all examples above there is tension between two conicting ef-
fects. On the one hand waiting until maturity to exercise enables the
holder of the NTA to capture the bene�ts associated with the appreci-
ation of the discounted payo� (a submartingale is a positive sum game:
r�nE�Yn � Y0). On the other hand the portfolio constraint prevents a
complete hedge of the claim (i.e. prevents terminal consumption smooth-
ing) and this reduces welfare. Whenever the constraint is binding early
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exercise has the important added bene�t of alleviating the portfolio con-
straint. When the welfare losses resulting from the inability to smooth
consumption are su�ciently important early exercise becomes optimal.

3.2 A dynamic programming formulation.

We consider an American-style contingent claim with payo� Y = fYn :
n = 0; :::; Ng where Yn is a function of the stock price. If exercised at
date n the payo� is Yn.

6 Let in denote an indicator variable equal to 1
if early exercise did not take place at or before n � 1 and equal to 0 if
it did. Let J(Xn; in; n) be the value function for the portfolio problem
with this American-style NTA. It satis�es, for n = 0; :::; N � 1;

8>><>>:
J(Xn; 1; n) = max

n
max��0EnJ( eXa

n+1; 0; n+ 1);

max��0EnJ( eXb
n+1; 1; n+ 1)

o
J(Xn; 0; n) = max��0EnJ( eXb

n+1; 0; n+ 1):

(9)

where ( eXa
n+1 = (Xn + Yn)[r + �n(er � r)]eXb
n+1 = Xn[r + �n(er � r)]:

(10)

Here eXa
n+1 (resp. eXb

n+1) is liquid wealth at n+1 in the event of exercise
(resp. continuation) at n; the wealth process (10) is subject to the
initial condition X0 = x. The random variable er is the return on the
stock (with values u or d). These recursions are subject to the boundary
conditions J(XN ; 1; N) = u(XN + YN ) and J(XN ; 0; N) = u(XN). The
�rst component inside bracket on the right hand side of (9) represents
the immediate exercise value function, the second is the continuation
value function.

Clearly immediate exercise is optimal at n if and only if the exercise
value function exceeds the continuation value function, i.e. if and only if
J(Xn; 1; n) = max��0EnJ( eXa

n+1; 0; n + 1). Thus, the optimal exercise
time is

n� = inf

�
n � 0 : J(Xn; 1; n) = max

��0
EnJ( eXa

n+1; 0; n+ 1)

�
or n� = N if no such time exists in f0; :::; N �1g, i.e. n� is the �rst time
at which immediate exercise dominates continuation.

6Without loss of generality we assume that Yn � 0 for all n = 0; :::;N . Otherwise

replace Yn by Y +
n .
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For any value taken by J(Xn; 1; n) we can de�ne the certainty-equiv-

alent bYn as the solution to

J(Xn; 1; n) = J(Xn + bYn; 0; n)
i.e. bYn = J�1(J(Xn; 1; n); 0; n)�Xn

where J�1(�; 0; n) represents the inverse of J(�; 0; n) relative to the �rst
argument. An alternative characterization of the optimal exercise time
is then

n� = inf
n
n � 0 : bYn � Yn

o
or n� = N if no such time exists in f0; :::; N �1g, i.e. n� is the �rst time
at which the CE is bounded above by the exercise payo� of the claim.

3.3 Solving the dynamic program.

The �rst step in the determination of the exercise policy is the resolution
of the portfolio problem in the event that exercise takes place (i.e the
identi�cation of the exercise value function J(Xn; 0; n)). This problem
was in fact resolved in the context of the previous section.

Suppose that immediate exercise takes place at date n. Then the
exercise value function is

J(Xn + Yn; 0; n) = max
��0

EnJ( eXa
n+1; 0; n+ 1) = bJ(Xn + Yn; n)

where bJ(Xn; n) is the solution de�ned in Theorem 7, Appendix C, evalu-

ated at initial wealth Xn+Yn. Note that the function bJ(�; n) : (0;1)!
(0;1) is strictly increasing since the inverse marginal utility function
I(�) is strictly decreasing. Thus, J(�; 0; n) is strictly increasing in the

�rst argument and the certainty-equivalent bYn is uniquely de�ned.
To complete the description of the exercise decision we still need to

identify the continuation value function
Jc(Xn; n) � max��0EnJ( eXb

n+1; 1; n + 1). This function can be deter-
mined recursively since for n = 0; :::; N � 1;

Jc(Xn; n) = max
��0

En

n
Jc( eXb

n+1; n+ 1)1
fbYn+1>Yn+1g

+J( eXb
n+1 + Yn+1; 0; n+ 1)1

fbYn+1�Yn+1g

o
(11)

s.t. Jc(XN ; N) = J(XN + Yn; 0; N) = u(XN + YN ) (12)
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where Xb
n+1 satis�es (10). This dynamic programming problem can

be solved recursively using the methodology developed earlier since it
consists in a sequence of static one-period problems. Let I(�; n + 1)
denote the inverse of the date n+ 1 marginal value function

Jc0(Xb
n+1; n+1)1

fbYn+1>Yn+1g
+J 0n+1(X

b
n+1+Yn+1; 0; n+1)1

fbYn+1�Yn+1g

with respect to Xb
n+1. With this de�nition the �rst order conditions at

date n are also given by (16) in Appendix A; denote this new system
(16a). Solving this system for (yn; q

�
n) resolves the constrained portfolio-

exercise decision problem. Indeed, the solution identi�es the optimal
stopping time n� as the �rst time at which the certainty equivalent falls
below the exercise payo�. At the exercise time n� the liquid wealth of
the investor increases to Xn� + Yn� which equals the present value of
terminal consumption. Thus,

Xn� = En� [b�n�;NI(byn�b�n�;N)]� Yn�

where b�n is the state price density process post exercise. Prior to exercise
liquid wealth satis�es Xn = En[�

c
n;n�Xn� ] by construction. Since the

state price densities must coincide at exercise (b�n� = �cn�) we can also
write

Xn = En

h
�cn;n�

h
En� [b�n�;NI(byn�b�n�;N)]� Yn�

ii
= (�cn)

�1En

hb�NI(byn�b�n�;N )� �cn�Yn�
i
:

Summarizing,

Theorem 4 Consider the joint portfolio-exercise decision problem with

initial wealth X0 = x and subject to a no-short-sales constraint. Let

f(X�
n+1;

bY �n ; y�n; q�n; ��n) : n = 0; :::; N � 1g denote the solution of the

system of backward equations (16a) subject to the initial condition X0 =
x. The optimal exercise time is

n� = inf
n
n � 0 : bY �n � Yn

o
;

or n� = N if no such time exists in f0; :::; N � 1g:

At times prior to exercise, n < n�, the optimal wealth and portfolio are

X�
n+1 = I(y�n�

�
n;n+1; n+ 1)
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��n =
r

q�n(1� q�n)(u� d)
(
G�un+1

G�n
p� q�n)

where G�un+1 = (��n+1X
�
n+1)

u and G�n = ��nX
�
n. For n � n�

bXn = En[b�n;NI(byn�b�n�;N )]
b�n =

rbqn(1� bqn)(u� d)
(
bGn+1bGn

p� bqn)
where bGn = En[b�NI(byn�b�n�;N )] and bqn satis�es q � bqn � 0; b�n � 0 and

(q � bqn)b�n = 0.

Theorem 4 shows quite clearly that the structure of the solution
changes after exercise has taken place. This reects the irreversible
nature of the exercise decision which changes the structure of Arrow-
Debreu prices. These Arrow-Debreu prices are di�erent from those used
to compute the continuation value.

3.4 The certainty-equivalent formulation.

The certainty-equivalent formulation of section 2.4 can be easily adapted
to the case of American-style contingent claims. In order to embed
the possibility of early exercise in this formulation it su�ces to replace
the certainty-equivalent which appears in the dynamic programming al-
gorithm by the maximum of the exercise payo� and the continuation
certainty-equivalent bY c

n+1(Xn+1), i.e.bYn+1(Xn+1) � maxfbY c
n+1(Xn+1); Yn+1g � bY c

n+1(Xn+1) _ Yn+1.
The continuation value at date n now satis�es

Jc(Xn; n) = max
�n�0

En bJ( eXb
n+1 + (Yn+1 _ bY c

n+1); n+ 1) s.t.

Xn = En[�
�
n;n+1

eXb
n+1]

and the �rst order conditions are given by

8>>>><>>>>:
bJ 0(Xb

n+1 + (Yn+1 _ bY c
n+1); n+ 1)(1 +Kn+1(X

b
n+1)) = yn�

�
n;n+1

Xn = En[�
�
n;n+1

eXb
n+1]; yn > 0

(Xb
n+1)

u �Xnr � 0; q � q�n � 0; and (q � q�n)[(X
b
n+1)

u �Xnr] = 0
(13)
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where

Kn+1(X
b
n+1) =

@
�
Yn+1 _ bY c

n+1(X
b
n+1)

�
@Xb

n+1

=
@ bYn+1(X

b
n+1)

@Xb
n+1

1
fYn+1<bYn+1g

(14)
is the derivative of the certainty-equivalent in the event of optimal contin-
uation at n+1. The system (17) with bYn+1(Xn+1) = bY c

n+1(Xn+1)_Yn+1

substituting for the CE then characterizes the optimal policy; denote this
new system (17a). Solving for (yn; q

�
n) gives the solution at date n as-

suming that the NTA is held one more period. Let (X�
n+1;

bY �n+1; y
�
n; q

�
n)

denote the solution. The date n continuation value function Jc(Xn; n) =

En bJ(X�
n+1+

bY �n+1; n+1) then leads to the date n continuation certainty-
equivalent payo�

bY c
n (Xn) = bJ�1(Jc(Xn; n); n)�Xn

where bJ�1 is the inverse of the value function bJ(�; n) of the pure portfolio
problem with initial wealth Xn + bYn. Immediate exercise at date n is
optimal if and only if bY c

n (Xn) � Yn

and the date n CE is bYn(Xn) = bY c
n (Xn) _ Yn. Summarizing,

Theorem 5 Let f(X�
n+1;

bY �n+1; y
�
n; q

�
n) : n = 0; :::; N � 1g denote the

solution of the system of backward equations (17a) subject to the initial

condition X0 = x. The optimal exercise time n� is

n� = inffn � 0 : bY �n � Yng

or n� = N if no such time exists in f0; :::; N � 1g. The optimal portfolio

is, for n < n�

��n =
r

q�n(1� q�n)(u� d)

�
G�un+1

G�n
p� q�n

�
where G�n � ��nX

�
n and G�un+1 = (��n+1X

�
n+1)

u and for n � n�

b�n =
rbqn(1� bqn)(u� d)

(
bGn+1bGn

p� bqn)
where bGn = En[b�NI(byn�b�n�;N )] and bqn satis�es q � bqn � 0; b�n � 0 and

(q � bqn)b�n = 0.
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Remark 1 (i) The certainty-equivalent bY �n represents the private value

that the investor attaches to the full liquidation of the asset at date n. It

represents the cash compensation that yields indi�erence between owner-

ship of the asset and liquidation. The CE private valuation captures the

fact that the asset is not divisible.

(ii) The notion of certainty-equivalent has been introduced by Pratt (1962)

in the context of static problems under uncertainty. An important di�er-

ence in our model is the endogenous timing of collection of the random

payo�. The CE payo� bY �n captures both the intrinsic randomness of the

payo� as well as the randomness of the optimal exercise time.

3.5 American-style claims with logarithmic utility.

In the case of logarithmic utility the solution of the portfolio problem
with initial wealth bXn = Xn + bYn is given in corollary 8 with R = 1. In
the particular case Eer� r > 0 (i.e. p > q) the portfolio policy is strictly
positive and the adjusted risk neutral measure is the unconstrained mea-
sure bqm = q; also b�n;N = �n;N . We shall maintain this assumption in
the derivations below. The constrained portfolio problem with NTA at
date n can now be written

max
�n�0

En log(Xn+1+ bYn+1)�En log(�n+1;N) s.t. Xn = En[�
�
n;n+1Xn+1]

where bYn+1 = Yn+1 _ bY c
n+1. Specializing the �rst order conditions (19)

to the log case and solving gives bYN (XN ) = YN and KN(XN ) = 0 at
date N and, at an arbitrary date n,

Xu
n+1 = (Xn +Wn)

1 +Ku
n+1(X

u
n+1)

1 +EnKn+1(Xn+1)
(��un;n+1)

�1 � bY u
n+1(X

u
n+1)

Wn =
1

r
[q�ncW u

n+1 + (1� q�n)cW d
n+1]; cWn+1 = bYn+1(Xn+1)

and

Kn+1(Xn+1) =
@cWn+1

@Xn+1

=
@ bYn+1

@Xn+1

1
fYn+1<bYn+1g

:
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The value function and the certainty-equivalent are

Jc(Xn; n) =

8>>>>>>>>><>>>>>>>>>:

log(Xn +Wn) +En log
�

1+Ku
n+1(X

u
n+1)

1+EnKn+1(Xn+1)

�
�En log(�n;N)

if Xu
n+1 > rXn

En log(rXn +cWn+1(rXn))�En log(�n+1;N )

if Xu
n+1 = rXn

bY c
n (Xn) =

8>>>>>>>>><>>>>>>>>>:

(Xn +Wn) exp
�
En log(

1+Kn+1(Xn+1)

1+EnKn+1(Xn+1)
)
�
�Xn

if Xu
n+1 > rXn

exp(En log(rXn +cWn+1(rXn))�En log(�n+1;n))�Xn

if Xu
n+1 = rXn

1 +Kn = rEn

h
(Xn+1 + bYn+1)

�1(1 +Kn+1)bgn+1;N

i
(Xn + bYn)bg�1n;NbYn(Xn) = Yn _ bY c

n (Xn):

Immediate exercise at date n is optimal if and only if bYn(Xn) � Yn.
Summarizing

Corollary 6 Suppose that Eer � r > 0. Let f(X�
n+1;

bY �n+1; y
�
n; q

�
n) : n =

0; :::; N � 1g denote the solution of the system of backward equations

above subject to the initial condition X0 = x. The optimal exercise time

n� is

n� = inffn � 0 : bY �n � Yng
or n� = N if no such time exists in f0; :::; N � 1g. The optimal portfolio

is, for n < n�

��n =
r

q�n(1� q�n)(u� d)

�
G�un+1

G�n
p� q�n

�
where G�n � ��nX

�
n and G�un+1 = (��n+1X

�
n+1)

u; and for n � n�

��n =
r

q(1� q)(u� d)
(p� q):
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4 Application: Executive stock options.

In this section we provide numerical results illustrating the behavior
and properties of Executive Stock Options (ESO). The computations are
performed using the backward numerical scheme described in section 2.

Executive Stock Options are typical examples of NTAs involving
trading restrictions in the underlying asset market. These restrictions
imply substantial di�erences with standard option contracts.

The liquidity of the manager's wealth plays an important role for the
value of the ESO. Figure 2 documents the di�erence between the Euro-
pean ESO value (bY e) and the American ESO value (bY a) as a function
of liquid wealth. Values are reported as a fraction of the option value in
an unrestricted market (C). Note that the Early Exercise Premium de-
creases as liquid wealth increases. For a �xed immediate exercise payo�
the incidence of a binding constraint decreases when liquidity increases
and this reduces the gains from early exercise. However, both the Euro-
pean and the American ESO values are at a substantial discount to the
unconstrained value (the European ESO value may be worth less than
10% of the unconstrained value when the investor experiences severe
liquidity shortage).

[Insert Figure 2 about here]

The ESO is a concave function of liquid wealth when the early exer-
cise premium is su�ciently small (the European ESO is always concave):
the marginal impact decreases as X0 increases. As liquid wealth tends to
in�nity the ESO value converges to the value of a standard call option if
the probability of a binding constraint tends to zero. If the probability of
a binding constraint converges to a positive limit the ESO value remains
at a discount to a standard call even for large values of X0.

Unlike conventional option prices the ESO value depends on the risk
aversion of the owner. As risk aversion increases the ESO holder invests
more conservatively in the risky asset and this leads to an increased
probability of a binding constraint. The ESO value then decreases. As
illustrated in �gure 3 the American ESO value may be at a substantial
discount to the unconstrained value for moderate risk aversion levels
even if there is no discount for risk aversions less than or equal to 1.

[Insert Figure 3 about here]

The ESO also exhibits high sensitivity to the drift of the underlying
asset. An increase in drift raises the American ESO value since the
probability of a binding constraint decreases (see �gure 4).
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[Insert Figure 4 about here]

Contrary to conventional wisdom an increase in volatility may re-
duce the ESO value. In the context of our model a higher volatility
has two e�ects. On the one hand it increases the upside potential of
the ESO and this increases its CE value. On the other hand it may
reduce the demand for the stock, thereby increasing the probability of a
binding constraint. This second e�ect reduces the CE value. As �gure 5
illustrates the negative impact due to the failure to smooth terminal con-
sumption perfectly dominates over certain regions of parameter values.
This behavior emerges, in particular, when the manager's liquidity is
low. When liquid wealth is su�ciently high the probability of a binding
constraint decreases and the American ESO value mimicks the behavior
of an unconstrained American call option value over typical ranges of
volatility values.

[Insert Figure 5 about here]

Finally we note that time to maturity has the usual e�ect on the
American ESO: value increases with time to maturity since a longer
maturity implies an increased set of feasible exercise policies.

5 The e�ects of imperfect correlation.

We now consider an extension of our model to a situation in which the
non-traded payo� depends on a price that is imperfectly correlated with
the price of the asset in which the investor can trade. Let S1 be the
price of the traded asset and S2 the price of the asset underlying the
non-traded payo�. We consider a non-traded European call option with
payo�: (S2 � k)+. The model of the previous sections corresponds to
the case of perfectly correlated assets. Our objective is to examine the
structure of the certainty-equivalent in this more general context; in
particular we are interested in the e�ect of correlation between the two
assets.

5.1 Dynamic programming for the multiasset case.

In order to model correlated assets we consider a trinomial model with
three possible states of nature following each node. The tree pro�le is
as follows (at date 0)
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(S1
0u1; S

2
0u2) w.p. p1

(S1
0 ; S

2
0)

%
!
&

(S1
0m1; S

2
0m2) w.p. p2

(S1
0d1; S

2
0d2) w.p. p3

where p1 + p2 + p3 = 1. The initial asset values are S1
0 ; S

2
0 and the tree

has N steps. The risk-free asset has a return equal to r.
The solution of our problem is given by the same set of equations

as in sections 2 and 3 and in appendix A, with the proviso that we
must now account for 3 possible states following each node of the tree.
Furthermore since the investor cannot trade in the asset underlying the
non-traded payo� we have an additional constraint on his investment
policy. For power utility these considerations lead to a set of �rst order
conditions described in appendix D. We present some numerical results
next.

5.2 Numerical results.

We calibrate the trinomial tree using the parametrization of He (1990).7

The backward numerical algorithm of section 2.6 is used to solve the
equations characterizing the solution (see appendix D).

Consider a non-traded European call option written on the price S2 of
a non-dividend-paying asset. Figure 6 displays the correlation e�ect on
the certainty-equivalent expressed as a fraction of the unrestricted call
option value (the ratio bY2=C(S2)). When the underlying asset prices
(S1; S2) are negatively correlated the non-traded option hedges uctua-
tions in the traded asset S1. The investor values this hedging function
and prices the non-traded derivative above its unrestricted value. As
correlation increases its usefulness as a hedging vehicle diminishes. In
the limit the non-traded option behaves more and more like an option

7The model is calibrated as follows

u1 = exp
�
�1h+ �1

p
3h=2

�

m1 = exp (�1h)

d1 = exp
�
�1h� �1

p
3h=2

�

u2 = exp
�
�2h+ �2

�
�
p
3=2 +

p
1� �2

p
1=2

�p
h
�

m2 = exp
�
�2h� �2

p
1� �2

p
4=2)

p
h
�

d2 = exp
�
�2h� �2

�
�
p
3=2 �

p
1� �2

p
1=2

�p
h
�

where h = T=N . States have equal probabilities: p1 = p2 = p3 = 1=3.
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on asset 1: its private value converges to the certainty-equivalent of a
call option written on the �rst asset.8

Note also that the certainty-equivalent falls below the immediate ex-
ercise value when the correlation coe�cient � is su�ciently large (max(S2�
k; 0)=C(S2) = :9403). If the contract were American-style it would be
optimally exercised prior to maturity. Early exercise would be optimal
even in the absence of dividend payments on the underlying asset.

[Insert Figure 6 about here]

6 Conclusion.

In this paper we have provided a simple framework to value derivative
assets subject to trading restrictions. The approach which is based on
the binomial model is computationally tractable and easy to implement
numerically. The methodology is also exible: it accommodates any type
of derivative contract as well as any type of utility function for the holder
of the non-traded asset. In particular it enables us to characterize the
optimal portfolio and exercise decisions for non-traded American-style
derivatives.

In the case of a no short sales constraint we have shown that the
certainty-equivalent value of a non-traded derivative is bounded above
by the unconstrained value of the asset. The constraint is in fact equiv-
alent to the presence of an implicit dividend yield in the risk neutralized
underlying asset price process. This implicit dividend yield leads to
qualitatively di�erent predictions for the exercise policies of American
options. The most notable property is that an American call option may
be optimally exercised prior to maturity even when the underlying asset
pays no dividends.

When applied to the case of an executive compensation option our
model shows that the private value of such an option is bounded above
by the Black-Scholes value (in the absence of dividend payments) or the
standard American option valuation formula (with dividend payments).
The model also suggests that early exercise may take place even when
the underlying asset pays no dividends. This property is consistent with
empirical and a priori puzzling facts. Naturally, the private valuation of

8In the calibration of He (1990) the returns on the second asset (u2;m2; d2) depend

on the correlation coe�cient. In fact the distribution of asset 2's return is symmetric

with respect to correlation and has less favorable outcomes when correlation is closer

to zero. This payo� e�ect complements the hedging e�ect and explains the mildly

humped (decreasing-increasing) shape of the CE. When the option is deeper in the

money the shape can exhibit multiple humps.
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an ESO and the optimal exercise decision of the manager are inuenced
by additional factors such as incentive e�ects or provisions of the con-
tract (reload options, vesting restrictions,...). These aspect can be easily
incorporated in our setting and analyzed.

The framework that we propose can be used to value any non-traded
derivative with an underlying asset subject to trading restrictions. Be-
side ESOs other claims in this category include forward contracts with
thin market. In this context it is possible to show that the convenience
yield which arises in the forward's valuation is related to trading restric-
tions impacting the underlying asset. This endogenous convenience yield
is easily characterized and its structure in terms of the deep parameters
of the economy can be examined.
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7 APPENDIX.

7.1 Appendix A: some dynamic programming re-
sults.

This appendix details some of the steps taken in the resolution of the
intertemporal portfolio problem in the body of the paper. These re-
sults could also be used to show the equivalence with the Cox-Huang
martingale approach.

7.1.1 The unconstrained case.

Let Jn(Xn) denote the value function at date n: The unconstrained
dynamic programming problem is (here �n represents the amount of
wealth invested in the stock)

Jn(Xn) = max
�n

En [Jn+1(Xn+1)] s.t.

Xn+1 = Xnr + �n

�
u� r

d� r
; X0 = x

for n = 0; :::; N � 1, subject to the boundary condition JN (XN ) =
u(XN + YN ).

Since the market is dynamically complete we can at each date n

optimize state by state over wealth in the next period Xn+1 and then
compute the portfolio policy which supports optimal wealth. Using the
de�nition of the SPD in (1) enables us to write the budget constraint at
date n as Xn = En

�
�n;n+1Xn+1

�
. Thus, the optimization problem can

be reformulated as

Jn(Xn) = max
Xn+1

En [Jn+1(Xn+1)]

= max
(Xu

n+1;X
d
n+1)

�
pJn+1(X

u
n+1) + (1� p)Jn+1(X

d
n+1)

�
s.t.

Xn = En
�
�n;n+1Xn+1

�
=

1

r

�
qXu

n+1 + (1� q)Xd
n+1

�
for n = 0; :::; N �1. The corresponding optimal portfolio is uniquely (by
complete markets) given by

�n =
Xu
n+1 �Xnr

u� r
=
Xd
n+1 �Xnr

d� r
:
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The �rst order conditions for the program above are8>>>><>>>>:
J
0

n+1(X
u
n+1) = yn�

u
n+1 = yn

1
r
(q=p)

J
0

n+1(X
d
n+1) = yn�

d
n+1 = yn

1
r
((1� q)=(1� p))

Xn = En
�
�n;n+1Xn+1

�
; yn > 0

for n = 0; :::; N � 1. Standard arguments show that the value function
Jn(�) is strictly increasing and concave (thus the �rst order conditions
are also su�cient). It follows that there is a unique solution (X�

n+1; y
�
n)

for n = 0; :::; N � 1.

7.1.2 The constrained case with European-style non-traded

asset.

Suppose that the non-traded asset pays o� at time N only (European-
style claim). The dynamic programming algorithm for the constrained
portfolio problem is

Jn(Xn) = max
�n

En [Jn+1(Xn+1)] s.t.

Xn+1 = Xnr + �n

�
u� r

d� r

�n � 0

for n = 0; :::; N � 1, subject to the boundary condition JN (XN ) =
u(XN + Y ).

Due to the presence of the portfolio constraint the market is not
dynamically complete. It follows that the choice of wealth in any state
is a constrained choice problem. More precisely, for any date n since

�n =
Xu
n+1 �Xnr

u� r
=

Xd
n+1 �Xnr

d� r
� 0

the portfolio constraint is equivalent to the wealth constraint

Xu
n+1 � Xnr

Xd
n+1 � Xnr�

Xu
n+1 �Xnr

�
(d� r) =

�
Xd
n+1 �Xnr

�
(u� r):

29



Note that the last constraint above is redundant and can be eliminated.
Indeed

0 =
�
Xu
n+1 �Xnr

� d� r

u� d
�
�
Xd
n+1 �Xnr

� u� r

u� d

, 0 =
�
Xu
n+1 �Xnr

�
q +

�
Xd
n+1 �Xnr

�
(1� q):

, Xn = En
�
�n;n+1Xn+1

�
were the last line follows upon dividing by r and using the de�nition of
�n;n+1 in (1). The constrained dynamic problem is then equivalent to

Jn(Xn) = max
Xn+1

En [Jn+1(Xn+1)] s.t.

Xn = En
�
�n;n+1Xn+1

�
0 � Xu

n+1 �Xnr; Xd
n+1 �Xnr � 0:

for n = 0; :::; N � 1.
The Kuhn-Tucker conditions for the dynamic program are, for n =

0; :::; N � 1 8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

J
0

n+1(X
u
n+1) = yn�

u
n;n+1 � un=p

J
0

n+1(X
d
n+1) = yn�

d
n;n+1 + dn=(1� p)

En
�
�n;n+1Xn+1

�
= Xn; yn > 0

Xu
n+1 �Xnr � 0; un � 0

Xd
n+1 �Xnr � 0; dn � 0

un[X
u
n+1 �Xnr] = 0

dn[X
d
n+1 �Xnr] = 0:

Here un and dn are the Kuhn-Tucker multipliers associated with the
inequality constraints and the last two conditions are the complementary
slackness conditions.

Next note that the two constraints are linked through the budget
constraint. When un = 0 then dn = 0 as well, and conversely. Now
suppose that un > 0. It must then be the case thatXu

n+1�Xnr = 0. The
multiplier yn ensures that the budget constraint En

�
�n;n+1Xn+1

�
= Xn
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is satis�ed (and this for any arbitrary choice of dn > 0). Combining
these two equalities yields Xd

n+1 � Xnr = 0 for any dn > 0. In other
words we can set dn = un without loss of generality:

Using the change of variables

un = yn
�n

r(u� d)
and dn = yn

�n

r(u� d)

enables us to rewrite the Kuhn-Tucker conditions as8>>>>>>>>>>>><>>>>>>>>>>>>:

J
0

n+1(X
u
n+1) = yn

1
r
(q � �n

u�d
)=p

J
0

n+1(X
d
n+1) = yn

1
r
(1� q + �n

u�d
)=(1� p)

En
�
�n;n+1Xn+1

�
= Xn; yn > 0

Xu
n+1 �Xnr � 0; �n � 0

�n[X
u
n+1 �Xnr] = 0:

De�ning

q�n =
r � d� �n

u� d
= q � �n

u� d

we obtain the sequence of equalities

Xn = En
�
�n;n+1Xn+1

�
=

1

r

�
q(Xu

n+1 �Xnr) + (1� q)(Xd
n+1 �Xnr)

�
+Xn

=
1

r

��
q � �n

u� d

�
(Xu

n+1 �Xnr)

+

�
1� q +

�n

u� d

�
(Xd

n+1 �Xnr)

�
+Xn

=
1

r

�
q�n(X

u
n+1 �Xnr) + (1� q�n)(X

d
n+1 �Xnr)

�
+Xn

= En

h
��n;n+1Xn+1

i
where in the third line we use the complementary slackness conditions
�n[X

u
n+1 � Xnr] = 0 and �n[X

d
n+1 � Xnr] = 0. Substituting in the

Kuhn-Tucker conditions leaves us with
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8>>>>>>>>>>>>><>>>>>>>>>>>>>:

J
0

n+1(X
u
n+1) = yn

1
r
(q�n=p)

J
0

n+1(X
d
n+1) = yn

1
r
((1� q�n)=(1� p))

En

h
��n;n+1Xn+1

i
= Xn; yn > 0

Xu
n+1 �Xnr � 0; q � q�n � 0

(q � q�n)[X
u
n+1 �Xnr] = 0;

(15)

for n = 0; :::; N � 1. Equivalently, if I(�; n+1) denotes the inverse of the
marginal value of wealth at n+ 1, we can write8>>>>>>>>><>>>>>>>>>:

Xn+1 = I(yn�
�
n;n+1; n+ 1)

En

h
��n;n+1I(yn�

�
n;n+1; n+ 1)

i
= Xn; yn > 0

Xu
n+1 �Xnr � 0; q � q�n � 0

(q � q�n)[X
u
n+1 �Xnr] = 0:

(16)

The �rst 3 conditions in (15) (equivalently, the �rst 2 conditions in
(16)) correspond to an unconstrained portfolio problem in an auxiliary
economy in which the stock price follows a binomial model with coe�-
cients (u+ �n; d+ �n). Let �n(�n) be the solution of this unconstrained
problem. The last two conditions are equivalent to �n(�n) � 0; �n � 0
and �n�n(�n) = 0:

This system of �rst order conditions characterizes the solution of the
constrained problem and underlies the discussions in sections 2 and 3.
This characterization is similar to the one obtained using a martingale
approach (see Cvitanic and Karatzas (1992)).

7.2 Appendix B: proofs.

Proof of Theorem 1: The Kuhn-Tucker conditions for the constrained
problem are given by (15) in Appendix A. They imply
X�
n+1 = I(y�n�

�
n;n+1; n + 1) where ��n;n+1 is the constrained SPD. Let

��n = (q � q�n)(u� d). Using (3) we obtain
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��n =
1

u� r

�
X�u
n+1 �X�

nr
�

X�
n

=
1

u� r

�
u+ ��n � r

u+ ��n � r

��
X�u
n+1

X�
n

� r

�
=

1

u� r

�
u� r

u+ ��n � r

��
X�u
n+1

X�
n

� r

�
+

1

u� r

�
��n

u+ ��n � r

��
X�u
n+1

X�
n

� r

�
=

1

u+ ��n � r

�
X�u
n+1

X�
n

� r

�
=

1

(1� q�n)(u� d)

�
��un+1X

�u
n+1

��nX
�
n

(��un;n+1)
�1 � r

�
=

1

(1� q�n)(u� d)

�
G�un+1

G�n
(
1

r

q�n
p
)�1 � r

�
=

r

q�n(1� q�n)(u� d)

�
G�un+1

G�n
p� q�n

�
:

The �rst equality above follows from (3), the fourth uses the comple-
mentary slackness condition in (16), ��n(X

�u
n+1 � X�

nr) = (u � d)(q �
q�n)(X

�u
n+1 �X�

nr) = 0, the �fth the relation u+ ��n � r = (1� q�n)(u� d)
and the sixth the de�nition of the constrained SPD which satis�es (1)
substituting q�n for q.

Proof of Proposition 2: (i) Suppose that the no short sales constraint
never binds. Applying a standard Cox-Huang (1989) methodology shows

that the portfolio problem with initial wealth x0 + bY0 has solution�
XN = I(by�N )
x+ bY0 = E[�NI(by�N )]

where I(�) is the inverse of u0(�). The value function is bJ(x + bY0; 0) =
Eu(I(by�N )): On the other hand the solution of the "constrained" prob-
lem with the NTA paying o� at N is�

XN = I(y��N )� YN
x0 = E [�N [I(y

��N )� YN ]] :

Equivalently, the static budget constraint can be written

x0 + V0 = E[�NI(y
��N )]
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where V0 = E[�NYN ]. The corresponding value function is
bJ(x+V0; 0) =

Eu(I(y��N )):

It follows immediately from these expressions that y� = by and bY0 =
V0 where V0 = E[�NYN ] is the unconstrained value of the claim.

(ii) Suppose now that the constraint binds with positive probability in

the constrained problem with European-style claim. Assume that bY0 >
V0. But then by assumption (b) we must have bJ(x+ bY0; 0) > bJ(x+V0; 0)
where the right hand side is the unconstrained value function starting
from initial wealth x + V0. Since the left hand side equals J(x; 0) by

de�nition of the certainty-equivalent it follows that J(x; 0) > bJ(x+V0; 0),
i.e. the individual is better o� constrained than unconstrained. This
cannot hold since the portfolio constraint reduces the feasible choice
set.

7.3 Appendix C: backward construction of certainty-
equivalents.

7.3.1 A general recursive procedure.

In order to construct the sequence of certainty-equivalents we need to
solve the pure portfolio problem without nontraded asset but starting
from an adjusted wealth level. This problem can be solved by using the
method of Cvitanic and Karatzas (1992). This leads to the following
result.

Theorem 7 Consider the pure portfolio problem over fn+1; :::; Ng with
initial wealth bXn+1 = Xn+1 + bYn+1 and subject to a no-short-sales con-

straint. Let I(�) denote the inverse of the marginal utility function u0(�).
Optimal terminal wealth isbXN = I(byn+1

b�n+1;N )

where byn+1 solves Xn+1 + bYn+1 = En+1[b�n+1;NI(byn+1
b�n+1;N )]. The

value function, wealth process and portfolio policy are, for m � n+ 1,bJ(Xn+1 + bYn+1; n+ 1) = En+1[u(I(byn+1
b�n+1;N ))]bXm = Em[b�m;NI(byn+1

b�n+1;N )]

b�m =
rbqm(1� bqm)(u� d)

(
bGm+1bGm

p� bqm)
where bGm = Em[b�NI(byn+1

b�n+1;N )] and bqm satis�es q � bqm � 0; b�m � 0
and (q � bqm)b�m = 0.
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By de�nition the certainty-equivalent bYn+1 solves

J(Xn+1; n+ 1) = bJ(Xn+1 + bYn+1; n+ 1):

The dynamic problem (6)-(7) can then be written

J(Xn; n) = max
�n�0

En bJ( eXn+1 + bYn+1; n+ 1) s.t. Xn = En[�
�
n;n+1

eXn+1]

for n = 0; :::; N � 1. Taking account of the fact that the certainty-
equivalent payo� depends on liquid wealth (i.e. bYn+1 = bYn+1(Xn+1))
leads to the �rst order conditions8>>>><>>>>:

bJ 0(Xn+1 + bYn+1; n+ 1)(1 +Kn+1(Xn+1)) = yn�
�
n;n+1

Xn = En[�
�
n;n+1

eXn+1]; yn > 0

Xu
n+1 �Xnr � 0; q � q�n � 0; and (q � q�n)[X

u
n+1 �Xnr] = 0

where

Kn+1(Xn+1) =
@ bYn+1(Xn+1)

@Xn+1

is the derivative of the certainty-equivalent at n + 1. The structure of
the �rst order conditions is similar to the conditions in appendix A. Let
Hn+1(�) be the inverse of bJ 0(Xn+1+ bYn+1; n+1) with respect to the �rst

argument, Xn+1 + bYn+1. We can write

8>>>>>>>><>>>>>>>>:

Xn+1 = Hn+1

�
yn�

�
n;n+1

1+Kn+1(Xn+1)

�
� bYn+1(Xn+1)

Xn = En

�
��n;n+1

�
Hn+1

�
yn�

�
n;n+1

1+Kn+1(Xn+1)

�
� bYn+1(Xn+1)

��
; yn > 0

Xu
n+1 �Xnr � 0; q � q�n � 0; and (q � q�n)[X

u
n+1 �Xnr] = 0

(17)
and

�n =
Xu
n+1 � rXn

(1� q�n)(u� d)Xn
=

r

q�n(1� q�n)(u� d)

�
Gu
n+1

Gn
p� q�n

�
(18)

where Gn � ��nXn and Gu
n+1 = (��n+1Xn+1)

u. In the event that the
constraint is not binding q�n = q and �n satis�es (18) evaluated at q.
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Solving (17) for (yn; q
�
n) gives the solution of the constrained portfolio

problem at date n. Let (X�
n+1;

bY �n+1; y
�
n; q

�
n) denote the solution. The

value function is J(Xn; n) = En bJ(X�
n+1 +

bY �n+1; n + 1): The certainty-
equivalent payo� at date n is then

bYn(Xn) = bJ�1(J(Xn; n); n)�Xn

where bJ�1 is the inverse of the date n value function bJ(�; n) of the pure
portfolio problem with initial wealth Xn + bYn.
7.3.2 Power utility function.

In the case of power utility function we have u0(x) = x�R and I(y) =

y�
1
R where R denotes the relative risk aversion coe�cient. The solution

of the portfolio problem with initial wealth bXn+1 = Xn+1 + bYn+1 is

Corollary 8 Consider the pure portfolio problem over fn+1; :::; Ng with
initial wealth bXn+1 = Xn+1 + bYn+1 and subject to a no-short-sales con-

straint. Suppose that u exhibits constant relative risk aversion. Optimal

terminal wealth is

XN =
�
Xn+1 + bYn+1

�b��1=Rn+1;Nbg�1n+1;N

where bgn+1;N = En+1[b�1�1=Rn+1;N ]. The value function, wealth process and

portfolio policy are, for m � n+ 1,

bJ(Xn+1 + bYn+1; n+ 1) =
1

1�R

�
Xn+1 + bYn+1

�1�R bgRn+1;N

bXm =
�
Xn+1 + bYn+1

�b��1=Rn+1;m

bgm;Nbgn+1;N

b�m =
rbqm(1� bqm)(u� d)

 bGu
m+1bGm

p� bqm!

where bGm = Em[b�1�1=RN ] and bqm is such that q � bqm � 0; b�m � 0 and

(q � bqm)b�m = 0.

The constrained portfolio problem with NTA at date n can now be
written

max
�n�0

En
1

1�R

�
Xn+1 + bYn+1

�1�R bgRn+1;N s.t. Xn = En[�
�
n;n+1Xn+1]:
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The �rst order conditions are

8>>>><>>>>:
(Xn+1 + bYn+1))

�R(1 +Kn+1(Xn+1))bgRn+1;N = yn�
�
n;n+1

Xn = En[�
�
n;n+1Xn+1]; yn > 0

Xu
n+1 �Xnr � 0; q � q�n � 0; and (q � q�n)[X

u
n+1 �Xnr] = 0:

(19)

At date N we have bYN (XN ) = YN and KN(XN ) = 0. At an arbitrary
date n we can write the solution of the �rst order conditions as

Xu
n+1 = (Xn +Wn)

(��un;n+1)
�1=R(1 +Ku

n+1(X
u
n+1))

1=Rbgun+1;N

En

h
(��n;n+1)

1�1=R (1 +Kn+1(Xn+1))
1=R bgn+1;N

i
�bY u

n+1(X
u
n+1)

Wn =
1

r
[q�n bY u

n+1 + (1� q�n)bY d
n+1]

and

Kn+1(Xn+1) =
@ bYn+1

@Xn+1

:

De�ning Fn(a; b) = En

h
�
1�1=R
n;n+1 (1 +Kn+1(a))

bbgn+1;N

i
we can then write

the value function, the certainty-equivalent and its derivative as

J(Xn; n) =

8><>:
1

1�R
(Xn +Wn)

1�R Fn(Xn+1;1=R�1)

(Fn(Xn+1;1=R))
1�R if Xu

n+1 > rXn

1
1�R

En

h
(rXn + bYn+1(rXn))

1�RbgRn+1;N

i
if Xu

n+1 = rXn

bYn(Xn) =

8>>>>>>>>>><>>>>>>>>>>:

(Xn +Wn)
(Fn(Xn+1;1=R�1))

1=(1�R)

Fn(Xn+1;1=R)
(bgn;N )� R

1�R �Xn

if Xu
n+1 > rXn�

En

h
(rXn + bYn+1(rXn))

1�RbgRn+1;N

i� 1
1�R

(bgn;N )� R
1�R �Xn

if Xu
n+1 = rXn

1 +Kn = rEn

h
(Xn+1 + bYn+1)

�R(1 +Kn+1)bgRn+1;N

i
(Xn + bYn)Rbg�Rn;N :
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7.4 Appendix D: the trinomial model.

For power utility function the �rst order conditions at date n are

8>>>>>>>>><>>>>>>>>>:

(Xn+1 + bYn+1))
�R(1 +Kn+1(Xn+1))bgRn+1;N = yn�

�
n;n+1

Xn = En[�
�
n;n+1Xn+1]; yn > 0

1
u1+�1�r

(Xu
n+1 � rXn) � 0; �1 � 0; and �1

u1+�1�r
[Xu

n+1 �Xnr] = 0

(Xm
n+1 � rXn) =

m1+�1�r
u1+�1�r

(Xu
n+1 � rXn)

(20)
where �1 = (u1 � d1)(q

�
1 � q1) + (m1 � d1)(q

�
2 � q2)� (d1 � r): The �rst

two condition in (20) parallel the corresponding conditions for the one
asset case in appendix C. To derive the next two conditions note that
optimal wealth satis�es�

Xu
n+1

Xm
n+1

�
= rXn +

�
u�1 � r u�2 � r

m�
1 � r m�

2 � r

� �
�1
�2

�
:

Solving for the optimal portfolio yields�
�1
�2

�
=

1

det

�
(m�

2 � r)(Xu
n+1 � rXn)� (u�2 � r)(Xm

n+1 � rXn)
�(m�

1 � r)(Xu
n+1 � rXn) + (u�1 � r)(Xm

n+1 � rXn)

�
where det = (m�

2 � r)(u�1 � r)� (u�2� r)(m�
1 � r). The constraint �2 = 0

is then equivalent to

(Xm
n+1 � rXn) =

m�
1 � r

u�1 � r
(Xu

n+1 � rXn)

provided u�1 � r > 0 (this is automatically satis�ed if u1 � r > 0 and
�1 � 0). Substituting in the equation for �1 gives

�1 =
1

det

�
(m�

2 � r) � (u�2 � r)
m�

1 � r

u�1 � r

�
(Xu

n+1 � rXn)

=
1

u�1 � r
(Xu

n+1 � rXn):

The last two conditions in (20) follow from these expressions.

At date N we get bYN (XN ) = YN and KN(XN ) = 0. At an arbitrary
date n the quadruple (q�1 ; q

�
2; X

u
n+1X

m
n+1) solves the system of equations
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Xu
n+1 = (Xn +Wn)

(��un;n+1)
�1=R(1 +Ku

n+1(X
u
n+1))

1=Rbgun+1;N

En

h
(��n;n+1)

1�1=R (1 +Kn+1(Xn+1))
1=R bgn+1;N

i
�bY u

n+1(X
u
n+1)

Xm
n+1 = (Xn +Wn)

(��mn;n+1)
�1=R(1 +Km

n+1(X
m
n+1))

1=Rbgmn+1;N

En

h
(��n;n+1)

1�1=R (1 +Kn+1(Xn+1))
1=R bgn+1;N

i
�bY m

n+1(X
m
n+1)

(Xm
n+1 � rXn) =

m1 + �1 � r

u1 + �1 � r
(Xu

n+1 � rXn)

Xu
n+1 � rXn:

where

Wn =
1

r
[q�1 bY u

n+1 + q�2
bY m
n+1 + (1� q�1 � q�2)bY d

n+1]

and

Kn+1(Xn+1) =
@ bYn+1

@Xn+1

:

The optimal portfolio is

Xn�1n =
1

u1 + �1 � r
(Xu

n+1 � rXn):

The value function, the certainty-equivalent and its derivative are

J(Xn; n) =

8><>:
1

1�R
(Xn +Wn)

1�R Fn(Xn+1;1=R�1)

(Fn(Xn+1;1=R))
1�R if Xu

n+1 > rXn

1
1�R

En

h
(rXn + bYn+1(rXn))

1�RbgRn+1;N

i
if Xu

n+1 = rXn

bYn(Xn) =

8>>>>>>>>>><>>>>>>>>>>:

(Xn +Wn)
Fn(Xn+1;1=R�1)

1=(1�R)

Fn(Xn+1;1=R)
(bgn;N)� R

1�R �Xn

if Xu
n+1 > rXn�

En

h
(rXn + bYn+1(rXn))

1�RbgRn+1;N

i� 1
1�R

(bgn;N )� R
1�R �Xn

if Xu
n+1 = rXn
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1 +Kn = rEn

h
(Xn+1 + bYn+1)

�R(1 +Kn+1)bgRn+1;N

i
(Xn + bYn)Rbg�Rn;N :

with Fn(a; b) = En

h
(��n;n+1)

1�1=R(1 +Kn+1(a))
bbgn+1;N

i
. Solving these

equations recursively from n = N � 1; :::; 0; leads to the certainty-
equivalent of the non-traded asset at the initial date.

For the case of an American-style NTA it su�ces to replace the CE
in the dynamic programming algorithm above by bYn+1 = bY c

n+1 _ Yn+1

in the manner of section 3.4.
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Figure 1: Certainty-equivalent relative to unconstrained value: moneyness effect.
Parameter values: µ = .08, σ = .3, r = .05, R = 2, X0 = 40, k = 80, T = 1, N = 8. S0

ranges from 0 to 300.
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Figure 2: Liquidity effect. Parameter values: µ = .08, σ = .3, r = .05, R = 3,
k = 80, S0 = 100, T = 1, N = 6. Wealth between 2 and 200.
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Figure 3: Risk aversion effect. Parameter values: µ = .08, σ = .3, r = .05,
X0 = 40, k = 80, S0 = 100, T = 1, N = 7. Risk aversion values between .1
and 5.
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Figure 4: Drift effect. Parameter values are σ = .3, r = .05, R = 1, X0 = 40,
k = 80, S0 = 100, T = 1, N = 6. Drift µ between .04 and .2.
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Figure 5: Volatility and liquidity effect. Parameter values: µ = .08,
r = .05, R = 3, k = 80, S0 = 100, T = 1, N = 6. Volatility ranges from .04
to .50; wealth from 10 to 100.
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