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Abstract 
 
Coastal and shelf sediments are hot spots for carbon remineralization and also for carbon 

fixation. Here, a large fraction of organic carbon is mineralized under anoxic conditions by 

microorganisms via fermentation or respiration of fermentation products such as molecular 

hydrogen (H2) and acetate. Reduced inorganic metabolites released during these anaerobic 

processes and inorganic carbon are used by light-independent chemolithoautotrophs for so-

called secondary production. However, still little is known about the in situ relevant 

organisms and how they contribute to key processes like chemoautotrophy as well as H2 and 

acetate turnover.  

To understand how inorganic carbon at sediment surfaces is turned over we surveyed the 

diversity of candidate bacterial chemolithoautotrophs in 13 tidal and sublittoral sediments and 

identified ubiquitous core groups of Gammaproteobacteria mainly affiliating with sulfur-

oxidizing bacteria. In a novel methodological approach we quantified dark carbon fixation by 

scintillography of specific microbial populations extracted and flow-sorted from sediments 

that were short term incubated with 14C-bicarbonate. Here, we show that uncultured 

Gammaproteobacteria dominate dark carbon fixation in coastal sediments and three distinct 

gammaproteobacterial clades made up more than half of dark carbon fixation in a tidal 

sediment. Meta- and single cell genomics along with metatranscriptomics provided evidence 

for a largely sulfur-based carbon fixation. These chemolithoautotrophic 

gammaproteobacterial clades also accounted for a substantial fraction of the microbial 

community in 1,000 to 2,000 year old subsurface sediments, suggesting that burial of 

chemolithoautotrophic bacteria could possibly be a yet-unrecognized mechanism of carbon 

sequestration. 

Microbial scavenging of H2 is an essential process in anoxic carbon mineralization, because 

only low H2 levels make H2-forming fermentation thermodynamically feasible. In a sediment 

metagenome we identified a high diversity of genes encoding the [NiFe] uptake 

hydrogenases of numerous yet-uncultured, potentially H2-oxidizing bacteria. 

Metatranscriptomics together with incubation experiments suggested uncultured 

Desulfobacteraceae, in particular the sulfate-reducing Sva0081-clade, as important H2 

oxidizers in anoxic sediments. On the contrary, Gammaproteobacteria and Flavobacteria 

encoding O2-tolerant hydrogenases are possibly involved in H2 oxidation in oxic sediments. 

In a third study, we quantified the relative contribution of single bacterial populations to total 

acetate assimilation. Here, we showed that acetate was assimilated by physiologically and 

phylogenetically distinct bacterial groups such as Gammaproteobacteria, sulfate-reducing 

Desulfobacteraceae and Desulfobulbaceae as well as likely lithoheterotrophic sulfur-oxidizing 

Roseobacter-clade bacteria. We identified uncultured Gammaproteobacteria as a major 
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contributor to acetate assimilation under oxic and anoxic conditions accounting for 31-62% of 

the total acetate assimilation. 

In summary, this thesis contributes to our understanding how distinct bacterial populations 

turn over key metabolites of organic carbon degradation in marine sediments. The 

quantification of uptake of 14C-labeleld model compounds by defined populations is a major 

step forward in the identification of key organisms in element cycling in marine sediments. 
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Zusammenfassung  
 
Küsten- und Schelfsedimente sind höchst aktive Systeme für die Remineralisierung von 

organischem Kohlenstoff und auch für die Kohlenstoffdioxidfixierung. In diesem größtenteils 

anoxischen Habitat bauen Mikroorganismen den organischen Kohlenstoff durch 

Fermentation ab, oder nutzen Fermentationsprodukte wie molekularen Wasserstoff (H2) und 

Acetat als Substrate für die Energiegewinnung. Reduzierte Verbindungen wie Sulfid werden 

bei diesen anaeroben Prozessen abgegeben. Diese werden von Licht-unabhängigen 

chemoautotrophen Mikroorgansimen für die sogenannte Sekundärproduktion genutzt wobei 

Kohlenstoffdioxid fixiert wird. Jedoch sind die relevanten Organismen größtenteils noch nicht 

identifiziert und es ist wenig bekannt wie diese zu zentralen Prozessen wie 

Chemoautotrophie sowie H2- und Acetat-Umsatz beitragen. 

Um zu verstehen, wie anorganischer Kohlenstoff in Oberflächensedimenten umgesetzt wird, 

haben wir die Diversität potentieller chemolithoautotropher Bakterien in 13 tidalen und 

sublittoralen Sedimenten untersucht. Dabei wurden Gruppen von Gammaproteobakterien in 

allen Sedimenten identifiziert, die mit schwefeloxidierenden Bakterien verwandt sind. In 

einem neuartigen methodologischen Ansatz haben wir die Kohlenstoffdioxidfixierung für 

spezifische mikrobielle Populationen quantifiziert. Dafür wurden Bakterien nach der 

Inkubation mit 14C-Bikarbonat und Identifizierung mittels Fluoreszenz in situ Hybridisierung 

(FISH) durchflusszytometrisch aus den Sedimentproben sortiert und deren 

Substrataufnahme gemessen. Wir zeigen dass Gammaproteobakterien, im speziellen drei 

weit verbreitete Untergruppen, den Großteil der bakteriellen chemoautotrophen 

Kohlenstoffdioxidfixierung ausmachten. Metagenomik zusammen mit Metatranskriptomik 

zeigten größtenteils Schwefel-basierte Kohlenstofffixierung. Die Gruppen 

chemolithoautotropher Gammaproteobakterien machten auch in 1000-2000 Jahre altem 

Sediment in 5 m Tiefe noch einen wesentlichen Bestandteil der mikrobiellen Gemeinschaft 

aus, was auf eine bislang unerkannte Weise der Kohlenstoffsequestrierung hindeutet. 

Der Abbau von H2 ist ein unerlässlicher Prozess in anoxischen Habitaten wie in marinen 

Sedimenten, da die H2 Konzentrationen auf niedrigen Level gehalten werden müssen, um 

Fermentation thermodynamisch möglich zu machen, was für den anaeroben Abbau von 

organischem Material eine zentrale Rolle spielt. In einem Metagenom identifizierten wir eine 

hohe Diversität von bislang unbekannten potentiellen H2-Oxidierern. Metatranskriptomik in 

Kombination mit Sedimentinkubationen mit H2 deuteten darauf hin, dass Sulfatreduzierer aus 

der Familie der Desulfobacteraceae, im Besonderen die Sva0081 Gruppe, wichtige H2-

Oxidierer in anoxischen Sedimenten sind. Gammaproteobakterien und Flavobakterien 

spielen hingegen für die H2 Oxidation in oxischen Sedimenten eine Rolle. 
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In einer dritten Studie wurde die Assimilation von Acetat für phylogenetisch identifizierte 

bakterielle Populationen in marinem Sediment quantifiziert. Acetat wurde von physiologisch 

und phylogenetisch unterschiedlichen Gruppen assimiliert wie Gammaproteobacteria, 

sulfatreduzierende Desulfobacteraceae und Desulfobulbaceae sowie von wahrscheinlich 

lithoheterotrophen Schwefeloxidierern der Roseobacter Gruppe. Gammaproteobakterien 

trugen 31-62% zu der gesamten Assimilation von 14C-Acetat durch Bakterien bei und 

machten hier somit einen Großteil aus. 

Diese Arbeit trägt wesentlich zum Verständnis bei wie Metaboliten aus dem Abbau von 

organischem Kohlenstoff in marinen Sedimenten von bestimmten Gruppen von Bakterien 

umgesetzt werden. Die hier vorgestellte Methode zur exakten Quantifizierung der Aufnahme 

von 14C-Kohlenstoff durch phylogenetisch identifizierte Bakterien ist ein wichtiges neues 

Werkzeug zur Identifizierung von Schlüssel-Organismen in Stoffkreisläufen mariner 

Sedimente. 
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1.) Introduction 
 

1.1) The marine carbon cycle 
The oceans are an immense reservoir for carbon. Falkowski et al. (2000) estimated the 

amount of stored carbon in the ocean at about 38,400 Gt, the majority of it (approximately 

90%) as carbonate. Dissolved inorganic carbon (DIC), composed of carbon dioxide (CO2), 

bicarbonate (HCO3
-) and carbonate (CO3

2-), plays a major role in the marine carbon cycle. 

The ocean contains 50 times more DIC than the atmosphere and the annual oceanic uptake 

was estimated at about 93 Gt C y-1 while 90 Gt C y-1 are released to the atmosphere (Suttle, 

2005; Falkowski and Raven, 2013). Primary producers that are capable to fix inorganic 

carbon in the ocean are largely microbial, whereas macroalgae and vascular plants are only 

locally important (Walsh, 1997). Microorganisms fix CO2 either by photosynthesis in the 

surface ocean or independent of light (chemosynthesis) at hydrothermal vents. The marine 

primary production has been estimated at about 48.5-54 Gt C, which is comparable to 

terrestrial primary production (Field et al., 1998; Dunne et al., 2007). A large fraction of the 

carbon fixed in surface waters is cycled by the microbial loop (Azam et al., 1983). 

Phytoplankton biomass becomes dissolved organic matter by diverse processes such as 

excretion of substances, bacterial interactions or viral lysis (Azam and Malfatti, 2007). Most 

of the dissolved organic matter is subsequently respired to CO2 by heterotrophic bacteria 

which in turn is available for primary producers (Azam and Malfatti, 2007). A fraction is 

channelled into the classical marine food chain (Azam and Malfatti, 2007) and only a small 

proportion of about 0.2-0.79 Gt C is exported to the seafloor and buried in sediments (Duarte 

et al., 2005; Burdige, 2007;  Dunne et al., 2007). Up to 20-33% of the total marine primary 

production occurs in coastal and shelf areas (0-200 m) (Wollast, 1991; Hedges et al., 1997). 

Here, also benthic cyanobacteria and diatoms contribute to total primary production 

(Middelburg et al., 2000; Gattuso et al., 2006; Evrard et al., 2010) The fraction of organic 

matter that reaches the seafloor is largely dependent on the depth of the overlying water 

(Wenzhöfer and Glud, 2002; Jørgensen and Boetius, 2007). In coastal and shelf areas up to 

50% of the primary production can reach the sediment surface (Jørgensen, 1982; Wollast, 

1991; Canfield, 1993). Consequently, the productivity in surface ocean waters determines 

microbial respiration rates in the underlying sediments (Wenzhöfer and Glud, 2002). 

 

1.1.1) Chemolithoautotrophy in marine environments 
Dark carbon fixation in the ocean and in sediments can be considered as secondary 

production (Middelburg, 2011) as the energy is derived from the degradation of organic 

matter. Heterotrophs cannot use all energy from the organic matter. Some is shunted into 

reduced metabolites such as ammonium and sulfide. These reduced compounds are used 
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by chemoautotrophic bacteria and archaea to fuel dark carbon fixation (Howarth, 1984). 

Although chemoautotrophy in the ocean account for approximately only 1% of the carbon 

fixed by photosynthesis (Field et al., 1998; Dunne et al., 2007; Middelburg, 2011) it is similar 

to the amount of organic carbon that is buried in sediments (Duarte et al., 2005; Burdige, 

2007) and therefore a substantial part of the marine carbon cycle. 

Chemolithoautotrophic microorganisms in marine sediments fix up to 370 Tg C/yr (Figure 1), 

accounting for nearly half of the total oceanic dark carbon fixation (Middelburg, 2011). Of 

these 370 Tg C/yr, 175 is fixed in shallow near-shore sediments. Here, reduced sulfur 

compounds were suggested to be the major energy source while nitrification is quantitatively 

less important (Middelburg, 2011; Boschker et al., 2014). Approximately half of the oceanic 

dark carbon fixation occurs by nitrifiers in the water column (Middelburg, 2011; Figure 1). 

Furthermore, chemolithoautotrophy by diverse Gammaproteobacteria, Deltaproteobacteria 

and Thaumarchaeota appears to be important in the oxygenated water column below the 

epipelagic (Reinthaler et al., 2010; Swan et al., 2011).  

The key players of autotrophic carbon and sulfur cycling in OMZs and hydrothermal vents, 

such as Epsilonproteobacteria and the gammaproteobacterial SUP05-clade, have been 

extensively studied (Lavik et al., 2009; Canfield et al., 2010; Reinthaler et al., 2010; Swan et 

al., 2011; Grote et al., 2012; Anantharaman et al., 2013; Mattes et al., 2013). In contrast, 

previous studies of benthic autotrophic sulfur oxidizers mostly focused on large, conspicuous 

sulfur bacteria such as Beggiatoa, which are widely distributed but occur in high abundances 

only in few habitats (Salman et al., 2013; Ruff et al., 2015). In support of a largely sulfur 

based chemoautotrophy in marine sediments, several groups of sulfur-oxidizing 

Gammaproteobacteria which are indeed chemoautotrophs were recently identified in coastal 

sediments (Lenk et al., 2011; Boschker et al., 2014; Vasquez-Cardenas et al., 2015) but their 

environmental importance is still unexplored. 
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Figure 1. Dark carbon fixation in the ocean and the involved microbial key players. OMZ, oxygen 

minimum zone. HTV, hydrothermal vent. For details see text. Based on data presented in Duarte et al. 

(2007) and Middelburg (2011).  

 

1.1.2) The organic carbon cycle in marine sediments 
The organic carbon cycle can be subdivided into a biological and a geological part (Tissot 

and Welte, 2012). Commonly, primary production of organic matter is the first step and it 

ends in the decay of biomass into CO2 with turnover times of days to tens of years 

(Rullkötter, 2006). The geological carbon cycle starts with the burial of organic matter and 

continues with the formation of gas, crude oil and coal or metamorphic forms of carbon, 

which finally may be reoxidized to CO2. The carbon reservoir of the geological cycle is 

several orders of magnitude higher than that of the biological cycle with turnover times of 

millions of years (Rullkötter, 2006). The burial of organic matter is therefore an important 

process for long-term carbon sequestration and storage as it eventually leads to net removal 

of CO2 from the atmosphere (Burdige, 2007). 

Biogenic organic matter is sensitive to oxidative degradation either chemically or biologically 

mediated (Rullkötter, 2006) and the concentration of oxygen in particular at the 

water/sediment interface was suggested as a major factor determining the amount of organic 

matter that is finally buried in sediments (Demaison and Moore, 1980). During the biotic 

degradation of organic matter in marine sediments microbes use the easily degradable 

compounds first, leaving poorly-degradable (refractory) material. This is reflected by the 
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decrease of reactivity of organic matter with increasing sediment depth (Middelburg, 1989;  

Hedges and Keil, 1995; Dauwe et al., 1999). Organic matter preservation is the absence of 

mineralization (Burdige, 2007) and the burial rate is regulated by the efficiency of microbial-

driven diagenesis (Archer and Maier-Reimer, 1994).  

Marine coastal sediments are global hot spots of carbon remineralization and burial (Hedges 

and Keil, 1995). The organic matter that reaches the sediment in particular in coastal and 

shelf sediments is mainly derived from marine primary production and from the input of 

terrestrial organic matter. Preservation of organic matter is strongly dependent on local 

environmental conditions and the extent of mineralization in the surface layers of the 

sediment can vary between 30 and 85% (Jørgensen, 1996; Whelan and Farrington, 2013). In 

current models of oceanic carbon cycling, the sequestration of microbially altered organic 

matter is the major mechanism of carbon preservation in sediments (Parkes et al., 1993; 

Burdige, 2007). However, the burial of microorganisms and their persistence the subsurface 

might be a yet unrecognized mechanism of carbon sequestration in marine sediments. 

 

1.1.3) Microbial degradation of organic matter in marine sediments 
Dissolved organic matter (DOM) is the quantitatively most important part of dead organic 

material (detritus) in aquatic environments and can account for more than 95% of total 

organic matter in the ocean’s water column (Canfield et al., 2005). The composition of DOM 

is still poorly understood and less than 20% of DOM has been classified into major 

biochemical classes such as carbohydrates, lipids and amino acids (Burdige, 2002). The 

total organic carbon (TOC) content in marine sediments ranges from 2.5 mg C per gram dry 

sediment (gdw) in the open ocean to approximately 100-fold higher amounts (up to 200 mg C 

gdw
-1) in coastal sediments (Premuzic et al., 1982; Romankevich, 2013). Coastal and shelf 

sediments account for only a small area of the ocean but the majority of global ocean 

microbial respiration occurs in coastal and shelf sediments (Jørgensen and Kasten, 2006). 

Chemotrophic microorganisms use the energy gained during dissimilatory metabolism to fuel 

carbon assimilation. The energy gained from a redox-reaction depends, among others, on 

the difference in redox potentials of electron donor and electron acceptor. Strictly based on 

thermodynamics, respiration of oxygen is the most favourable process for organic carbon 

mineralization (Canfield et al., 2005a). The free energy gain correlate with the distribution of 

electron accepting processes over sediment depth (Froelich et al., 1979; Jørgensen, 1982; 

Jørgensen, 1983; Canfield et al., 1993). In the uppermost sediment layer organic matter is 

mineralized by oxic respiration usually followed by denitrification, manganese and iron 

reduction, sulfate reduction and finally by methanogenesis (Jørgensen, 1983, Canfield et al., 

1993) (Figure 2). Sulfate reduction was suggested as the most important electron accepting 
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process in marine sediments accounting for up to 50% of the mineralization (Jørgensen, 

1982). 

 

 
Figure 2. Sequence of electron accepting processes during the degradation of organic matter in 

sediments (a) and an idealized vertical distribution of electron acceptors (arbitrary scale) in a typical 

marine sediment (b). Modified from Jorgensen et al. (1983) (a). Adapted from Canfield et al. (2005b) 

(b). 

 

However, factors such as substrate/product concentration, pH and temperature strongly 

affect the energetics of these reactions and may favour one process over the other (Canfield 

et al., 2005b; Jørgensen, 2000). Besides these respiratory processes, organic carbon can be 

degraded by fermentation where organic matter acts as both the electron acceptor and the 

electron donor. The following is a brief summary how organic matter is mineralized in 

sediments:  

Microbial degradation of organic matter starts with the depolymerization of macromolecular 

material. Microbes release extracellular enzymes or use enzymes associated to the outer 

membrane or cell wall to initially hydrolyze particulate polymers to smaller molecules such as 

sugars, amino acids, long chain fatty acids and nucleic acids (Figure 3). During the sequence 

of mineralization depolymerization is generally the rate-limiting step (Arnosti, 2004). Aerobic 

microorganisms use a wide range of the smaller molecules released by hydrolysis and can 

mineralize these compounds completely to CO2. However, the oxic zone in shelf sediments 

is only millimetres to centimetres thick (Jørgensen, 1982; Jørgensen and Boetius, 2007). 

Thus, fermentation and anaerobic respiration take over in the sequence of organic matter 

mineralization. Nitrifying bacteria are still capable of using a versatile range of organic 

substances and can oxidize these completely to CO2. But deeper in the sediment the energy 
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yield of microbial redox reactions becomes smaller. Sulfate reducing bacteria on the other 

hand largely depend on rather simple molecules (Jørgensen, 2000). Fermenting 

microorganisms provide these fermentation products such as volatile fatty acids including 

formate, acetate, propionate, butyrate as well as molecular hydrogen and alcohols. However, 

acetate can be also excreted during aerobic growth (Majewski and Domach, 1990; Farmer 

and Liao, 1997). Acetate among other organic acids is a common substrate for sulfate 

reducing bacteria (Laanbroek and Pfennig, 1981; Thauer and Postgate, 1982). Some sulfate 

reducing bacteria are capable of oxidizing organic compounds to CO2 (complete oxidizers) 

whereas others are incapable of such complete oxidation (incomplete oxidizers) and excrete 

acetate as a product (Widdel and Bak, 1992). In addition, several Gammaproteobacteria and 

heterotrophic sulfur-oxidizing members of the marine Roseobacter-clade utilize acetate as 

carbon source (Kuenen and Veldkamp, 1973; Hagen and Nelson, 1996; Otte et al., 1999; 

Nielsen et al., 2000; Schulz and Beer, 2002; Sorokin, 2003; Sorokin et al., 2005). 

Methanogenesis is usually the final process in the degradation of organic matter and 

becomes important when sulfate is depleted. Methanogens can only use very few substrates, 

primarily molecular hydrogen, CO2 and acetate. Overall, molecular hydrogen, acetate and 

CO2 are at the heart of organic matter mineralization. 

 

 

Figure 3. Sequence of organic matter mineralization in sediments. SCFA, short chain fatty acid. After 

Fenchel and Jørgensen (1977).  
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1.2) The marine sulfur cycle 
The ocean waters and sediments are a major reservoir of sulfur on Earth. Sulfur compounds 

can have a broad range of oxidation states ranging from -2 (e.g. sulfide) to +6 (e.g. sulfate). 

This allows sulfur compounds to be used by microorganisms as both electron donors and 

acceptors depending on environmental conditions.  Thereby the sulfur cycle is closely linked 

to other element cycles such as nitrogen, phosphorous, iron and in particular carbon. Sulfate, 

the most stable form of sulfur, is the second most abundant anion in today’s ocean with 

concentrations of approximately 28 mM. Besides sulfate, sulfur is present in the ocean in 

many inorganic forms such as sulfide, elemental sulfur (S0), thiosulfate and sulfite as well as 

organic sulfur compounds such as dimethyl sulfide or dimethylsulfoniopropionate (Ivanov, 

1971; Andreae and Raemdonck, 1983; Taylor et al., 1999; Zopfi et al., 2004; Jansen et al., 

2009). All living organisms assimilate sulfur, where it is mainly present as constituent of 

proteins. But energy-yielding dissimilatory sulfur metabolism is essential for sulfur cycling in 

the ocean (Figure 4). 

 

 

Figure 4. A simplified scheme of the biotic and abiotic sulfur cycle. Oxidative reactions are shown in 

red and reductive reactions are shown in black. OSC, organic sulfur compounds. Modified from Brüser 

et al. (2000). 

 

In marine sediments dissimilatory sulfate reduction accounts for up to 50% of organic matter 

remineralization (Jørgensen, 1982) and thereby forms the fundament of biotic sulfur cycling 

(Rabus et al., 2013). During this process sulfate-reducing bacteria and archaea produce 

large amounts of sulfide. A fraction of the produced sulfide is precipitated and retained in the 
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sediment as iron sulfide or pyrite, while the remaining can be either chemically or biologically 

reoxidized (Jørgensen, 1982; Howarth, 1984). The sulfide concentration typically increases 

with sediment depth (Zopfi et al., 2004) and 80-99% of the sulfide is reoxidized to sulfate at 

the sediment surface (Jørgensen, 1977a; Howarth, 1984). Different sulfur intermediates are 

produced during microbial sulfur oxidation which can be further oxidized to sulfate, reduced 

or disproportionated (Figure 4). Disproportionation can be considered as inorganic 

fermentation where parts of the sulfur species are concurrently oxidized and reduced. 

Usually S0 accumulates to higher concentrations in sediments than other intermediates such 

as polysulfide, thiosulfate, tetrathionate, sulfite (Zopfi et al., 2004). 

 

1.2.1) Dissimilatory sulfur-metabolizing bacteria and archaea in marine sediments 
The microbial reduction of inorganic sulfur significantly contributes to sulfur cycling and 

represents the counterpart of microbial sulfur oxidation (Rabus et al., 2013). Among others, 

sulfate, S0 and further reduced sulfur species can be used by bacteria and archaea as 

electron acceptor for anaerobic respiration (dissimilatory sulfate or sulfur reduction). Sulfur 

and sulfate reducers are distributed among various phylogenetic lineages (Figure 5). The 

only known sulfate-reducing archaea so far are found in the genera Archaeoglobus and 

Caldivirga whereas sulfur-reducing archaea include several orders (e.g. Desulfurococcales, 

Thermococcales, Thermoproteales, and Sulfolobales) (Muyzer and Stams, 2008; Rabus et 

al., 2013; and references therein). On the other hand, several bacteria and archaea gain 

energy from the oxidation of reduced sulfur compounds. Likewise, sulfur oxidizers are 

physiologically and phylogenetically diverse. Archaeal sulfur-oxidizers are found in the order 

Sulfolobales (Segerer et al., 1985; Huber and Prangishvili, 2006). The following section will 

focus on sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) as these groups 

were subject of this thesis.  
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Figure 5. Schematic phylogenetic tree depicting the diversity of sulfur-metabolizing microorganisms 

among major phylogenetic lineages. Modified after Sievert et al. (2007). Figure adapted from Pjevac 

(2014) 

 

Sulfur-oxidizing bacteria 

Chemotrophic sulfur-oxidizing microorganisms fix inorganic carbon or assimilate organic 

carbon using energy gained from the oxidation of reduced sulfur species whereas 

phototrophic sulfur oxidizers use light as energy source and reduced sulfur compounds as 

electron donor for anoxygenic photosynthesis. The most prominent phototrophic sulfur 

oxidizers are the strictly anaerobic green sulfur bacteria (GSB) of the phylum Chlorobi and 

the gammaproteobacterial purple sulfur bacteria (PSB). GSB are restricted to very narrow 

zones in aquatic habitats and sediments as they require both light and reduced sulfur 

species for growth and they have relatively little metabolic flexibility (Bergstein et al., 1979; 

Steinmetz and Fischer, 1982; Brune, 1989; Heising et al., 1999; Overmann, 2006; Frigaard 

and Dahl, 2008). On the contrary, PSB are capable of using various electron donors for 

anoxygenic photosynthesis such as sulfide, elemental sulfur, thiosulfate, tetrathionate, 

polysulfides, sulfite, H2 or ferrous iron (Steudel et al., 1990; Sasikala and Ramana, 1997; 

Dahl, 2008). Some PSB can also live chemolithoautotrophically or 

chemoorganoheterotrophically in the dark (Imhoff, 2006; Frigaard and Dahl, 2008). Their 
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versatile metabolism allow the PSB to inhabit a broader niche than the GSB (Imhoff and 

Trüper, 1977; Bryantseva et al., 1999; Oren, 2002; Overmann, 2008; Sorokin, 2008). 

Most chemotrophic SOB belong to the alpha, beta, gamma and epsilon classes within the 

Proteobacteria (Figure 7; Friedrich et al., 2005; Sievert et al., 2007). In particular in marine 

environments, other chemolithotrophic sulfur oxidizers such as the archaeal Sulfolobales and 

the thermophilic Aquificae are rare (Huber and Stetter, 1991; Burggraf et al., 1992; Huber et 

al., 1992; Reysenbach and Cady, 2001). Furthermore, betaproteobacterial sulfur oxidizers 

are more common in freshwater habitats than in marine environments (Glöckner et al., 

1999).  

Among the Alphaproteobacteria, the Roseobacter-clade (RCB) plays an important role in the 

oxidation of climate relevant dimethyl sulfide (DMS) which originate from 

dimethylsulfoniopropionate released by marine photoautotrophs (González et al., 1999; 

González et al., 2003; Zubkov et al., 2002; Vila et al., 2004; Howard et al., 2008). RCB are 

ubiquitous in the ocean and abundant members of the bacterioplankton. Generally, RCB 

have a heterotrophic lifestyle with metabolically versatile capabilities such as anoxygenic 

phototrophy and oxidation of inorganic or organic sulfur compounds (Sorokin, 1995; 

González et al., 1999; Howard et al., 2006; Sass et al., 2010; Curson et al., 2011). The 

Roseobacter-clade was also found in high cell abundance in coastal sediment contributing 

up to 10% to the bacterial community, thereby outnumbering pelagic RCB by three orders of 

magnitude (Lenk et al., 2012). In addition, members of the globally abundant 

alphaproteobacterial SAR11 clade can metabolize organo-sulfur compounds (González and 

Moran, 1997; González et al., 1999; Buchan et al., 2005; Howard et al., 2006; Curson et al., 

2011). 

Gammaproteobacterial sulfur oxidizers are physiologically highly versatile. Besides 

phototrophic sulfur oxidizers, the class Gammaproteobacteria harbour facultative and 

obligate chemolithoautotrophic SOB. Various gammaproteobacterial SOB are capable to use 

other inorganic and also organic compounds as electron donor or energy source (Sorokin, 

2003; Petersen et al., 2011; Anantharaman et al., 2013; Hansen and Perner, 2015). Some 

representatives were also found in endo- or ectosymbiotic association with marine 

invertebrates (Dubilier et al., 2008; Kleiner et al., 2012; Petersen et al., 2012). Among the 

best studied sulfur-oxidizing Gammaproteobacteria are the large conspicuous Beggiatoa, 

Thioploca and Thiomargarita (Jørgensen, 1977; Fossing et al., 1995; Schulz et al., 1996; 

Schulz et al., 1999; Schulz and Jørgensen, 2001; Schulz and Schulz, 2005). Furthermore, 

the ecophysiology and genetic composition of key players of sulfur cycling in OMZs and 

hydrothermal vents, such as the gammaproteobacterial SUP05-clade, have been extensively 

studied (Lavik et al., 2009; Canfield et al., 2010; Reinthaler et al., 2010; Swan et al., 2011; 

Grote et al., 2012; Anantharaman et al., 2013; Mattes et al., 2013; Hawley et al., 2014). In 
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the past decades, small and unicellular chemolithoautotrophic sulfur-oxidizing 

Gammaproteobacteria were repeatedly isolated from marine sediments (Kuenen and 

Veldkamp, 1972; Brinkhoff et al., 1999; Park et al., 2011) but these organisms do not seem 

to be the key players in situ. Culture-independent studies have shown that uncultured 

Gammaproteobacteria distantly related to cultured sulfur oxidizers, in particular to symbionts 

of marine invertebrates were abundant in sediments (Musat et al., 2006; Lenk et al., 2011; 

Boschker et al., 2014; Vasquez-Cardenas et al., 2015), while large sulfur bacteria such as 

Beggiatoa occur only patchily (Salman et al., 2013; Ruff et al., 2015).  

Chemolithoautotrophic sulfur-oxidizing Epsilonproteobacteria represent a substantial fraction 

of the microbial community at hydrothermal vents (Nakagawa et al., 2005; Takai et al., 2006; 

Sievert et al., 2008; Roalkvam et al., 2011; Schauer et al., 2011). Furthermore, members of 

the Sulfurimonas/Sulfurovum group are involved in S0 oxidation at sediment surfaces (Pjevac 

et al., 2014).  In addition to the gammaproteobacterial SUP05-clade, members of the 

Epsilonproteobacteria were also abundant in oxygen-depleted pelagic environments 

(Campbell et al., 2006; Grote et al., 2007; Lavik et al., 2009; Grote et al., 2012). The well 

characterized chemolithoautotrophic sulfur oxidizers Arcobacter sulfidophilus and 

Sulfurimonas denitrificans have been isolated from coastal sediments (Hoor, 1975; Wirsen et 

al., 2002). Nevertheless, in coastal sandy sediments only low relative abundance of sulfur-

oxidizing Epsilonproteobacteria have been reported (Llobet-Brossa et al., 1998; Lenk et al., 

2011). 

 

Sulfate-reducing bacteria 

Dissimilatory sulfate reduction is the defining trait of sulfate-reducing bacteria (SRB) and 

among anaerobic respirations in marine environments, the reduction of sulfate is most 

important (Rabus et al., 2013; Rabus et al., 2015). As end product of dissimilatory sulfate 

reduction SRB release substantial amounts of sulfide, which is corrosive and toxic already at 

micromolar concentrations. Several SRB have been isolated from marine sediments, of 

which a large fraction belong to the families Desulfobacteraceae and Desulfovibrionaceae 

within the class of Deltaproteobacteria (Widdel and Pfennig, 1981; Devereux et al., 1989; 

Widdel and Bak, 1992; Rabus et al., 2013). However, SRB are phylogenetically diverse and 

have versatile lifestyles with broad metabolic capabilities such as long-distance electron 

transport (cable bacteria) (Nielsen et al., 2010; Pfeffer et al., 2012) animal symbiosis (Woyke 

et al., 2006; Kleiner et al., 2012) or syntrophic associations. SRB use various organic 

molecules as carbon and energy source or can even grow lithoautotrophically (Rabus et al., 

2013; and references therein). The SRB known to date belong to the bacterial phyla 

Proteobacteria, Fimicutes, Thermodesulfobacteria and Nitrospirae (Figure 7) and were found 

besides marine environments in aquatic and terrestrial habitats as well as in the human gut 
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and animal microbiomes (Rabus et al., 2015). Using cultivation-dependent and cultivation-

independent approaches it has been shown that particularly members of the 

Desulfosarcina/Desulfococcus cluster within the Desulfobacteraceae dominate SRB 

communities in coastal-, shelf-, mangrove- and deep sea sediments (LlobetBrossa et al., 

2002; Dhillon et al., 2003; Mußmann et al., 2005; Gittel et al., 2008; Leloup et al., 2009; 

Varon-Lopez et al., 2014). Given their abundance and their metabolic potential to completely 

oxidize organic compounds to CO2, members of the Desulfobacteraceae were suggested to 

be the key players in carbon- and sulfur-cycling in organic rich marine sediments (Rabus et 

al., 2015). On the other hand, incomplete-oxidizing SRB are incapable of such complete 

oxidation as these organisms lack the metabolic pathway to oxidize acetyl-CoA to CO2 

(Widdel and Bak, 1992). However, some incomplete-oxidizing SRB such as 

Desulfobulbaceae are capable of using acetate together with CO2 as carbon source when 

additional energy sources such as H2 are present (Kuever, 2014; Rabus et al., 2015). 

Disproportionating Desulfobulbaceae are also possible key players in anoxic S0 consumption 

at the sea floor (Pjevac et al., 2014).  

 
1.2.2) Pathways of microbial sulfur oxidation and carbon fixation 
The different microbial sulfur oxidation pathways have been extensively reviewed (Dahl et 

al., 2001; Friedrich et al., 2005; Mohapatra et al., 2008; Frigaard and Dahl, 2008). The 

following section is a brief overview of enzymes involved in the oxidation of reduced sulfur 

compounds (see also Figure 6).  

Among the best studied are the thiosulfate-oxidizing multi-enzyme system (SOX) for 

oxidation of thiosulfate or sulfite to elemental sulfur or sulfate and the reverse dissimilatory 

sulfite reductase complex (rDSR) for oxidation of sulfide/S0 to sulfite (Figure 6). In addition, 

sulfide can be oxidized to elemental sulfur mediated by sulfide:quinine oxidoreductase (SQR) 

or flavocytochrome c sulfide dehydrogenase (FccAB). The adenosine 5’-phosphosulfate 

reductase (APS) and ATP sulfurylase (SAT) mediate the oxidation of sulfite to sulfate. 

Among others, the sulfite oxidoreductase (SorAB) or sulfite dehydrogenase (SoeABC) can 

also catalyze this final oxidation step. 

Uncultured sulfur-oxidizing bacteria have been studied in the past by comparative sequence 

analysis of functional marker genes encoding the characteristic enzyme. Therefore, genes 

encoding subunits of the reverse dissimilatory sulfite reductase (dsrAB), of the adenosine-5'-

phosphosulfate reductase (aprA) and of the thiosulfate-oxidizing multi-enzyme complex 

(soxB) have been used to target the diversity of marine benthic sulfur oxidizers (Petri et al., 

2001; Meyer and Kuever, 2007; Lenk et al., 2011; Lenk et al., 2012; Pjevac, 2014; Thomas 

et al., 2014). 
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Figure 6. A simplified scheme of sulfur oxidation pathways. Adapted from Anantharaman et al. (2013) 

and modified after Frigaard and Dahl (2009). 

 

Autotrophs fix inorganic carbon and thereby providing organic carbon to heterotrophs. This 

makes the balance between autotrophy and heterotrophy a key factor regulating CO2 and O2 

concentrations in the atmosphere (Hügler and Sievert, 2011a). Currently, there are six 

pathways known for CO2 fixation: the Calvin-Benson-Bassham (CBB) cycle (Bassham and 

Calvin, 1960), the reductive tricarboxylic acid (rTCA) cycle (Buchanan and Arnon, 1990), the 

reductive acetyl-CoA (Ljungdahl and Wood, 1969), the 3-hydroxypropionate (3-HP) cycle 

(Holo, 1989; Zarzycki et al., 2009), the 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4HB) 

cycle (Kandler and Stetter, 1981; Berg et al., 2007) and the dicarboxylate/4-hydroxybutyrate 

(DC/4-HB) cycle (Huber et al., 2008). Although the importance of the so-called alternative 

carbon fixation pathways is nowadays well known, the CBB cycle, which is the carbon 

fixation pathway used for oxygenic photosynthesis, is the most significant one (Field et al., 

1998; Falkowski et al., 2000; Raven, 2009).  

Bacteria use the CBB-, rTCA- and 3-HP cycle as well as the reductive acetyl-CoA pathway 

for carbon fixation. Some archaea also use the reductive acetyl-CoA for carbon fixation but 

the 3-HP/4HB- and DC/4-HB cycle have been exclusively identified in archaea so far (Hügler 

and Sievert, 2011). Carbon fixation pathways that harbour oxygen-tolerant enzymes and are 

used by aerobic organisms (CBB-, 3-HP- and 3-HP/4HB cycle) require more energy in form 

of ATP for synthesizing a three-carbon unit compared to pathways using oxygen-sensitive 

enzymes which are used by anaerobic or microaerophilic microorganisms (reductive acetyl-

CoA pathway, rTCA- and DC/4-HB cycle) (Mccollom and Amend, 2005; Berg et al., 2010; 

Berg, 2011; Fuchs, 2011). 
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In marine environments the CBB cycle is used by Cyanobacteria, photo- or 

chemoautotrophic Alpha-, Beta-, Gamma- and Deltaproteobacteria as well as some 

Firmicutes and Chloroflexi (Ivanovsky et al., 1999; Caldwell et al., 2007; Hügler and Sievert, 

2011; Swan et al., 2011). A genetic determinant for the CBB cycle is the cbbM/cbbL gene 

encoding the characteristic ribulose 1,5-bisphosphate carboxylase/oxygenase enzyme 

(RuBisCO), which catalyzes the initial carboxylation of ribulose 1,5-bisphosphate (Quayle et 

al., 1954). The rTCA cycle is used by diverse groups of anaerobic and micoaerophilic 

bacteria. In particular, sulfur-oxidizing Epsilonproteobacteria use this carbon fixation pathway 

(Hügler et al., 2005; Hügler et al., 2007; Sievert et al., 2008; Nakagawa and Takai, 2008). 

The gammaproteobacterial symbiont of Riftia pachyptila uses the rTCA cycle in addition to 

the CBB cycle (Markert et al., 2007). A characteristic enzyme of this pathway is the ATP 

citrate lyase (ACL) that catalyzes the ATP-dependent cleavage of citrate (Wahlund and 

Tabita, 1997; Hügler et al., 2005; Hügler et al., 2007; Lücker et al., 2010). The ACL is 

encoded by the aclAB genes. Further alternative carbon fixation pathways of significance in 

marine environments, in particular sediments, are the reductive acetyl-CoA pathway and the 

3-HP/4-HB cycle. The latter is found in archaeal sulfur oxidizers and ammonia-oxdidizing 

archaea (Berg et al., 2007; Könneke et al., 2014). The reductive acetyl-CoA pathway is 

present in autotrophic sulfate-reducing bacteria and archaea as well as methanogenic 

archaea (Jansen et al., 1984; Zeikus et al., 1985; Schauder et al., 1988; Fuchs, 1994; 

Vornolt et al., 1995; Strous et al., 2006) 
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1.3) Hydrogen-producing and -consuming processes 
Molecular hydrogen (H2) is a central intermediate in organic matter mineralization (Fenchel 

and Jørgensen, 1977; Hoehler et al., 1998) and is widespread in the environment. 

Microorganisms release and oxidize H2 during various processes (Figure 7). H2 is an electron 

donor and a source of energy for diverse functional groups of microorganisms such as 

sulfate reducers, sulfur oxidizers, acetogens, methanogens and anoxygenic phototrophs and 

the potential to metabolize H2 is common among diverse Bacteria and Archaea (Schwartz et 

al., 2013). Moreover, H2 is a primary thermodynamic control on most redox reactions 

(Hoehler et al., 1998). Depending on the in situ concentration, H2 supports different 

respiratory processes and affect the thermodynamics of fermentation processes (Hoehler et 

al., 1998; Canfield et al., 2005a).  

Fermentation is the major source of H2 in the biosphere (Schwartz et al., 2013). In anaerobic 

food chains fermentation processes are an integral part of organic carbon remineralization 

(Schmitz et al., 2006). In marine sediments the oxic layer varies from a few millimetres in 

coastal areas to several decimetres in deep sea sediments (Murray and Grundmanis, 1980; 

Revsbech et al., 1980; Wenzhöfer and Glud, 2002). Couple of centimetres below the surface, 

shelf sediments are usually anoxic. Here, obligate and facultative fermenters release excess 

reducing equivalents in form of H2. The production and oxidation of H2 are closely coupled so 

that the produced H2 does not accumulate and is generally kept at low concentrations (5-30 

nM) (Novelli et al., 1987; Novelli et al., 1988; Michener et al., 1988). Microbial fermentation 

processes become endergonic if H2 would accumulate. It has been shown that fermentation 

of butyrate and propionate was inhibited by H2 concentrations of 100 and 20 nM, respectively 

(Schwartz et al., 2013). 

An additional source of biologically produced H2 in marine environments is nitrogen fixation. 

Here, H2 is not produced by a specific H2-transforming enzyme (hydrogenase) but rather 

evolved as by-product from nitrogenase activity (Schubert and Evans, 1976). Cyanobacteria 

are among the most widespread diazotrophs and in surface waters they can release 

significant amounts of H2 to the environment. At sediment surfaces nitrogen fixation by 

cyanobacterial mats has been suggested as alternative source of H2 (Hoehler et al., 2001). 

A minor source of H2 is anaerobic carbon monoxide oxidation by carboxidotrophs (Schwartz 

et al., 2013). The anoxygenic phototrophic bacterium Rhodospirillum rubum and some 

thermophilic Firmicutes are well described to perform this process (Fox et al., 1996a; Fox et 

al., 1996b; Sokolova et al., 2001; Sokolova et al., 2002; Sokolova et al., 2004; Slepova et al., 

2006). In marine environments anaerobic CO oxidation is of unknown significance.  

Apart from biologically mediated H2 production H2 can be produced photochemically possibly 

from chomophoric dissolved organic matter (Punshon and Moore, 2008). This process of H2 

production in the absence of biology may be an important source of H2 in ocean and lake 
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surface waters (Punshon and Moore, 2008). H2 may also be produced anaerobically along 

with formation of pyrite from ferrous sulfide and hydrogen sulfide (Wächtershäuser, 1988; 

Drobner et al., 1990). 

More than a century ago Kasserer (1906) described aerobic H2 oxidizing bacteria that 

performed the “knallgas” reaction to gain energy for growth: 

H2 + ½O2  H2O  (ΔG0 -210 kJ mol-1) 

The first isolated knallgas bacteria were facultative H2 oxidizers that prefer organic acids and 

sugars or grow mixotrophically (Aragno and Schlegel, 1992). Much later the first obligate 

hydrogenotroph was isolated from marine environments (Nishihara et al., 1991). Recently it 

has been shown that H2 can be an important energy source also for chemoautotrophs at 

hydrothermal vents. Free living and symbiotic sulfur-oxidizing bacteria (SOB) of the 

gammaproteobacterial SUP05 clade as well as Thiomicrospira possess the metabolic 

flexibility to use H2 as an alternative energy source besides reduced sulfur compounds with 

oxygen or nitrate as electron acceptor to fuel dark carbon fixation (Petersen et al., 2011; 

Anantharaman et al., 2013; Hansen and Perner, 2015).  

In contrast to oxygenic phototrophs their anoxygenic counterparts use reduced molecules 

such as H2 or reduced sulfur compounds as electron donor but not H2O (Roelofsen, 1934; 

Drews and Imhoff, 1991). Therefore, anoxygenic phototrophs do not produce oxygen. The 

marine bacterium Thiocapsa roseopersicina strain BBS has been shown to produce H2 

during fermentative growth in the dark and oxidize H2 during anoxygenic photosythesis or 

aerobic chemolithotrophic growth in the dark (Ákos T. Kovács et al., 2005; K.L. Kovács et al., 

2005; Rákhely et al., 2007; Maróti et al., 2010). 

Further H2 scavenging processes are dehalorespiration (Scholz-Muramatsu et al., 1995), 

acetogenesis (Diekert and Wohlfarth, 1994), fumarate respiration (Dubini et al., 2002) and 

Fe(III) reduction (Figure 7). The latter has been suggested as one of the earliest form of 

respiration (Vargas et al., 1998; Kashefi and Lovley, 2000). 

Methanogenesis and the reduction of sulfur compounds are the major H2 consuming 

processes in the biosphere (Schwartz et al., 2013), in particular in marine environments. 

Many sulfate reducing bacteria and archaea possess the metabolic potential to oxidize H2. 

They grow either lithoautotrophically on H2 and CO2 or mixotrophically on H2 together with 

organic compounds (Rabus et al., 2015). Up to nine different hydrogenases were identified in 

the genome of the SRB Syntrophobacter fumaroxidans suggesting a versatile H2 

metabolizing potential (Bok et al., 2002; Plugge et al., 2012). Some sulfate reducing bacteria 

are capable to efficiently reoxidize H2 produced during fermentation, thus no H2 is released to 

the environment (Tsuji and Yagi, 1980). In surface sediments, so far sulfate reduction is 

suggested to be the quantitatively dominant H2 consuming process, whereas in sulfate-

depleted sediments SRB rather form H2 and methanogenesis becomes the major H2 
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consuming process (Winfrey and Zeikus, 1977; Oremland and Taylor, 1978; Oremland and 

Polcin, 1982). 
 

 
Figure 7. Overview of major biologically mediated H2-producing and -consuming processes in the 

environment.  

 

1.3.1) Classification of H2-producing and -consuming enzymes 
Hydrogenases (H2ases) are metalloenzymes that catalyze the reversible cleavage of 

molecular hydrogen to protons and electrons: 

H2 ↔ 2H+ + 2e- 

H2ases can be divided into three major groups with a phylogenetically independent origin 

(Schwartz et al., 2013): [NiFe]-H2ases (including [NiFeSe]-H2ases), [FeFe]-H2ases and [Fe]-

H2ases. The first detailed classification scheme for H2ases was presented and later on 

revised by Vignais and coworkers (Vignais et al., 2001; Vignais and Billoud, 2007). Recently, 

an expanded H2ase classification scheme (Figure 8) was introduced by Greening et al. 

(2015), which includes the prediction of biological functions.  

[NiFe]-H2ases can be subdivided into four groups of which each group contains several 

subclasses. Group 1 contains membrane-associated energy transducing enzymes that 

liberate electrons for respiration. Group 1 [NiFe]-H2ases are heterodimeric enzymes 

composed of a large subunit that carries the catalytic site and a small subunit that contains 

three iron-sulfur clusters for electron transport (Volbeda et al., 1995; Higuchi et al., 1997). 

This group mainly consist of oxygen sensitive enzymes but also harbours oxygen-tolerant 

subclasses (1d and 1h, Figure 8). Diverse bacteria and archarea possess group 1 [NiFe]-

H2ases linking H2 oxidation to processes such as sulfate-, nitrate-, oxygen respiration and 
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iron reduction. Some of these enzymes may function bidirectional and can also work in the 

direction of H2 production (1c and 1e; Lukey et al., 2010; Greening et al., 2015). Group 2 

contains cytoplasmic oxygen tolerant uptake H2ases (2a), H2-sensing enzymes that regulate 

H2ase expression (2b) and H2ases of unknown function (2c and 2d). Group 2a is mainly 

distributed among cyanobacteria (Schwartz et al., 2013) but also found in nitrifying bacteria 

capable to use H2 as alternative energy source during aerobic growth (Koch et al., 2014). 

Group 3 [NiFe]-H2ases were multimeric enzymes composed of several subunits. These 

bidirectional enzymes were soluble in the cytoplasm and interact with cofactors such as F420, 

NAD or NADP. Group 4 contains membrane bound multisubunit energy converting H2ases. 

The best studied example represents the H2-evolving hydrogenase-3 (4a) from E. coli 

(McDowall et al., 2014) that produces H2 during mixed acid fermentation. Except of group 2, 

which is exclusively distributed among bacteria, all groups of [NiFe]-H2ases have been 

identified in both bacteria and achaea. 

[FeFe]-H2ases are mainly H2-evolving enzymes but also contain putatively H2-sensory 

enzymes and H2ases of unknown function. Fermentative production is a well described 

function of this structurally heterogeneous group which contains mono-, di-, tri- and 

tetrameric enzymes. Accordingly, Greening et al. (2015) proposed a subdivision of [FeFe]-

H2ases into six subtypes.  

The third group, [Fe]-H2ases are 5,10-methenyltetrahydromethanopterin reducing (Hmd) 

enzymes. This highly conserved group of H2-activating H2ases was so far only identified in 

methanogenic archaea. For further details about the expanded hydrogenase classification 

scheme see Greening et al. (2015).  

H2ase-encoding genes form operons with structures specific for each group and subclass. 

Besides the H2ase genes most of these operons encode genes for proteins involed in 

maturation of the H2ase precursor to an active enzyme and regulatory genes. For further 

details about the genetic organisation of H2ase operons see Schwarz et al. (2013). 

Evidence is accumulating that H2-cycling has a central function in the energy transfer in 

diverse ecosystems. However, a comprehensive dataset on H2ases and the corresponding 

microorganisms in marine sediments is still lacking. Moreover, H2-cycling in marine surface 

sediments has hardly been studied on the molecular level so far and still little is known about 

the diversity and activity of in situ relevant H2-metabolizing microorganisms. 
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Figure 8. Classification and phylogeny of H2 producing and consuming enzymes. Neighbour-joining 

trees showing the phylogenetic relationship of the H2ase groups and subgroups.  Black circles, 

bootstrap support >75%. Red circles, bootstrap support <75%. Modified from Greening et al. (2015). 
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1.4) Cultivation-independent molecular approaches to study microbial 
communities  
Isolation of pure cultures is essential to study the physiology of microorganisms. However, to 

date, a great majority of microorganisms resist cultivation (Alain and Querellou, 2009; 

Vartoukian et al., 2010; Stewart, 2012). To overcome this limitation and to study microbes in 

their natural environment several molecular tools have been developed. 

The 16S rRNA gene but also functional genes have been widely used as phylogenetic 

marker to study the diversity of microbial communities. The full cycle rRNA approach is a 

cultivation-independent tool that allows the identification and in situ quantification of microbes 

in the environment (Amann et al., 1995). After nucleic acid extraction the 16S rRNA gene is 

amplified and either cloned and sequenced or directly sequenced using next generation 

sequencing technologies. The diversity is explored by comparative gene analysis and nucleic 

acid probes can be designed for fluorescence in situ hybridization (FISH). To complete the 

cycle, FISH allows the visualization and quantification of microbes within complex microbial 

communities. 

Meta-omics approaches such as metagenomics and metatranscriptomics rely on the 

extraction of bulk nucleic acids from an assemblage of microorganisms followed by direct 

sequencing without amplification of a particular gene (Riesenfeld et al., 2004; Leininger et al., 

2006). Metagenomics allows in-depth analysis of the diversity and metabolic potential of 

microbial communities and combined with metatranscriptomics it can provide information 

which metabolic pathways are active. This produces large amounts of data and for the 

computational reconstruction comprehensive bioinformatic analysis such as assembly, gene 

prediction, binning and taxonomic classification are necessary.  

Single-cell genomics require whole genome amplification from a single target cell to recover 

enough nucleic acid sufficient for sequencing without the need of isolation of a pure culture. 

Therefore, single cells can be separated from complex assemblages using fluorescence 

activated cell sorting (FACS) followed by multiple displacement amplification (MDA) for 

random primed genome amplification (Lasken, 2007). This workflow has been used to study 

the genetic potential of marine microbes from various habitats (Woyke et al., 2009; Swan et 

al., 2011; Lloyd et al., 2013; Kashtan et al., 2014). Metagenomics may not allow the 

taxonomic assignment of all the sequence data to a particular phylogenetic clade. In 

particular, in environments that harbour a high microbial diversity such as sediments 

assembly and binning of sequence data can be difficult. Single-cell genomics may overcome 

these limitations. 
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1.4.1) Methods to study the activity of uncultured microbes  
Linking the identity of uncultured microorganisms with their metabolic potential to use a 

specific substrate is essential to understand the role of particular phylogenetic groups within 

complex microbial communities. Isotope-labeling using either stable isotopes or 

radioisotopes is a great tool for microbial ecologists to study the ecophysiology of uncultured 

microbial populations in the environment (Wagner, 2009). The following is a brief introduction 

of some isotope-labeling methods and their application in sediments. 

Stable isotope probing (SIP) was developed to trace the incorporation of stable isotopes (e.g. 
13C, 15N) into cellular biomarkers such as nucleic acids (DNA-SIP, RNA-SIP) or phospholipid-

derived fatty acids (PLFA-SIP). Active populations of the microbial community incorporate 

the heavier isotopes into cell components. Boschker et al. (1998) introduced PLFA-SIP to 

identify SRB responsible for 13C-acetate oxidation in estuarine and brackish sediments by 

their specific phospholipid fatty acids. Webster et al. (2006) used PLFA-SIP with 13C-labeled 

acetate, glucose and pyruvate to study the function of a sulfate reducing microbial 

community in marine sediments. 

In contrast, DNA- and RNA-SIP was established for a phylogenetic identification of the active 

population that incorporates a specific substrate (Radajewski et al., 2000; Manefield et al., 

2002). Both, DNA- and RNA-SIP have been widely applied in sediments to track the 

incorporation of common substrates such as acetate into the microbial community. 

Uncultured Desulfobacteraceae, Firmicutes and Crenarchaeota were reported to assimilate 

acetate in anoxic sulfate-reducing marine sediments (Boschker et al., 1998; Webster et al., 

2006; Webster et al., 2010; Seyler et al., 2014; Na et al., 2015). On the contrary, diverse 

Gammaproteobacteria like Alteromonadales, Oceanospirillales and Acidithiobacillales as well 

as epsilonproteobacterial Arcobacter were identified by RNA-SIP as acetate oxidizers using 

oxygen, nitrate and manganese oxide as electron acceptor (Vandieken et al., 2012; 

Vandieken and Thamdrup, 2013). MacGregor et al. (2006) combined SIP with magnetic bead 

capture of hybridized 16S rRNA (Mag-SIP) to study the incorporation of acetate, propionate, 

glucose and amino acids into microbes of a marine sediment. Mag-SIP was further used to 

identify sulfate-reducing Deltaproteobacteria utilizing propionate and glucose in a coastal 

sediment (Miyatake et al., 2009). DNA-SIP experiments require high substrate 

concentrations and extended incubation time, as multiple cell reproduction cycles are 

needed. Consequently, in situ conditions cannot be simulated. Community shifts during the 

incubation and cross-feeding are well known biases of DNA-SIP experiments (Dumont and 

Murrell, 2005). Furthermore, DNA- and RNA-SIP would miss microbes that assimilate a 

substrate but did not channel the isotopes into nucleic acids and generally SIP does not 

allow an exact quantification of substrate assimilation. 
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The combination of fluorescence in situ hybridization and microautoradiography (MAR-FISH) 

requires much shorter incubation times than DNA-SIP (Lee et al., 1999). This approach 

allows observing and visualizing the incorporation of substrates labeled with radioisotopes at 

single-cell level within complex microbial communities. The incubated sample is exposed to 

an autoradiography emulsion after FISH. The incorporated radioisotopes lead to the 

precipitation of silver grains in the emulsion around the cells that assimilated the labeled 

substrate. MAR-FISH has been also used for semi-quantitative analysis of specific substrate 

metabolism, as the number of silver grains formed during exposure correlates with 

radioactivity (Nielsen et al., 2003). In marine sediments MAR-FISH was recently used to 

identify uncultured potential sulfur-oxidizing chemoautotrophic Gammaproteobacteria (Lenk 

et al., 2011).  

A rather new single-cell approach is the application of nanoscale secondary ion mass 

spectometry (nanoSIMS) for microbial ecology. NanoSIMS analyses the surface composition 

(stable- or radioactive isotope content) of single microbial cells at a spatial resolution of 50 

nm. Compared to MAR the senstivity of nanoSIMS in cellular 14C detection is 1000 x higher 

(Kuypers and Jørgensen, 2007). In combination with halogen in situ hybridization (HISH-

SIMS) this approach has been used to link phylogenetic identification and quantification of 

metabolic activities of mixed populations of phototrophic bacteria (Behrens et al., 2008; 

Musat et al., 2008). NanoSIMS combined with FISH has been used to identify metabolic 

active cells in deep subseafloor sediments (Morono et al., 2011) and to track nitrogen fixation 

and carbon assimilation at single cell level in microbial consortia or electrogenic cable 

bacteria from marine sediments (Dekas and Orphan, 2011; Dekas et al., 2014; Vasquez-

Cardenas et al., 2015). Major drawbacks of nanoSIMS applications are a low sample-

throughput and time-consuming sample preparation and data processing. 

Flow cytometry (FCM) is a fast and reliable technique that originates from clinical diagnostic 

and medical research. FCM allows a high sample-throughput and nowadays it has broad 

applications in microbiology and marine science (Ibrahim and Engh, 2007; Wang et al., 

2010). Flow cytometric cell sorting together with radio-labeling has been used in the past to 

measure the assimilation of radioactive substrates into individual populations of marine 

bacterioplankton (Zubkov et al., 2004; Zubkov et al., 2007; Jost et al., 2008). The basic 

principle of FCM (Figure 9) is as follows: a heterogeneous mixture of particles and cells in 

suspension (sample) is injected into a larger, surrounding column of sheath fluid. Under 

laminar flow condition the sample becomes hydrodynamically focused. Particles and cells 

singly pass one or multiple light sources and optical characteristics such as light scatter or 

fluorescence are collected by an array of photo-detectors simultaneously. The detected light 

scatter and fluorescence signals correlate with morphology and particle size as well as 

intracellular composition. In combination with nucleic acid or protein staining techniques 
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different populations of the microbial community can be distinguished by flow cytometry 

based on their DNA or protein content. The identified populations can subsequently 

separated by fluorescence activated cell sorting (FACS). However, unspecific DNA- or 

protein-stain does not allow a phylogenetic identification.  

 

 
Figure 9. A simplified scheme for the basic principle of fluorescence-activated cell sorting using a jet-

in-air flow cytometer. The example shows a mixture of cells hybridized with a specific FISH probe. 

Here, probe fluorescence is the defined optical parameter for cell sorting. Charged droplets containing 

cells with user defined optical properties are deflected by an electric field and thereby separated. Flow 

sorting with a jet-in-air flow cytometer allows sorting of multiple parallel fractions with different optical 

parameters.   
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2.) Objectives of my thesis 
 
The overarching goals of the research presented in my thesis were the identification of 

microorganisms involved in the turnover of central products/intermediates of organic matter 

remineralization such as CO2, H2 and acetate in marine coastal sediments. Beyond the 

identification of organisms driving these processes and the investigation of their metabolic 

potential a major focus of this study was to quantify the contribution of microbial populations 

to specific carbon turnover processes. The specific objectives were: 

(3.1) First, I asked the question: Are there ubiquitous groups of chemolithoautotrophs in 

coastal sediments and what energy sources they use? Recently, novel groups of 

chemolithoautotrophic sulfur-oxidizing Gammaproteobacteria were identified in a coastal 

sediment (Lenk et al., 2011) but it is still unknown if there are cosmopolitan key players in 

marine sediments like the SUP05 group found in pelagic systems worldwide. 16S rRNA tag 

sequencing together with meta- and single cell genomics as well as metatranscriptomics 

should be used to shed light on these largely unresolved questions. To quantify the carbon-

fixing activity of the identified microbial populations a method should be used that allow fast 

throughput and an accurate quantification of 14CO2 uptake by phylogenetically identified 

bacteria from sediments. Therefore, we applied for the first time a novel combination of 

molecular and isotopic tracer techniques to achieve these goals and thereby overcome 

limitations of other methods such as SIP, MAR or nanoSIMS. 

(3.2) The microorganisms consuming H2 in marine sediments are largely unknown. 

Therefore, I screened a metagenome from an intertidal sediment for potential H2-oxidizing or 

-producing bacteria. Two additional coastal sediments should be further screened using 

functional gene (uptake hydrogenase) libraries for the major groups identified in the 

metagenome. As previously published hydrogenase primers would miss many sulfate 

reducers novel SRB-specific primers were designed. Together with metatranscriptomics, H2-

consumption experiments and immunohistochemistry I aimed to identify bacterial groups in 

situ relevant for H2 scavenging. 

(3.3) Acetate is a major product from fermentation and at the same time an important 

substrate for various microbes. Already decades ago, acetate was suggested to be among 

the most important substrates for SRB (Laanbroek and Pfennig, 1981; Thauer and Postgate, 

1982). As many phylogenetically and physiologically distinct bacterial groups are able to 

assimilate acetate, I aimed to quantify acetate assimilation for particular bacterial populations 

in a coastal sediment including SRB. Here I used flow sorting of FISH-labeled cells that 

potentially incorporated 14C-labeled acetate (method introduced in 3.1.) 
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ORIGINAL ARTICLE

Ubiquitous Gammaproteobacteria dominate dark
carbon fixation in coastal sediments

Stefan Dyksma1, Kerstin Bischof1, Bernhard M Fuchs1, Katy Hoffmann2,3, Dimitri Meier1,
Anke Meyerdierks1, Petra Pjevac1,4, David Probandt1, Michael Richter5,
Ramunas Stepanauskas6 and Marc Mußmann1

1Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany; 2HGF-
MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Bremen,
Germany; 3Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven,
Germany; 4Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of
Vienna, Vienna, Austria; 5Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for
Marine Microbiology, Bremen, Germany and 6Bigelow Laboratory for Ocean Sciences, East Boothbay, USA

Marine sediments are the largest carbon sink on earth. Nearly half of dark carbon fixation in the
oceans occurs in coastal sediments, but the microorganisms responsible are largely unknown. By
integrating the 16S rRNA approach, single-cell genomics, metagenomics and transcriptomics with
14C-carbon assimilation experiments, we show that uncultured Gammaproteobacteria account for 70–
86% of dark carbon fixation in coastal sediments. First, we surveyed the bacterial 16S rRNA gene
diversity of 13 tidal and sublittoral sediments across Europe and Australia to identify ubiquitous core
groups of Gammaproteobacteria mainly affiliating with sulfur-oxidizing bacteria. These also
accounted for a substantial fraction of the microbial community in anoxic, 490-cm-deep subsurface
sediments. We then quantified dark carbon fixation by scintillography of specific microbial
populations extracted and flow-sorted from sediments that were short-term incubated with 14C-
bicarbonate. We identified three distinct gammaproteobacterial clades covering diversity ranges on
family to order level (the Acidiferrobacter, JTB255 and SSr clades) that made up450% of dark carbon
fixation in a tidal sediment. Consistent with these activity measurements, environmental transcripts
of sulfur oxidation and carbon fixation genes mainly affiliated with those of sulfur-oxidizing
Gammaproteobacteria. The co-localization of key genes of sulfur and hydrogen oxidation pathways
and their expression in genomes of uncultured Gammaproteobacteria illustrates an unknown
metabolic plasticity for sulfur oxidizers in marine sediments. Given their global distribution and high
abundance, we propose that a stable assemblage of metabolically flexible Gammaproteobacteria
drives important parts of marine carbon and sulfur cycles.
The ISME Journal (2016) 10, 1939–1953; doi:10.1038/ISMEJ.2015.257; published online 12 February 2016

Introduction

Marine coastal sediments are global hot spots of
carbon remineralization and burial (Hedges and Keil,
1995). In current models of oceanic carbon cycling,
the sequestration of microbially altered organic
matter is the major mechanism of carbon preserva-
tion in sediments (Parkes et al., 1993; Burdige, 2007).
Marine sediments are sites not only of carbon
remineralization but also of carbon fixation. Recent
estimates suggest that marine microbes fix inorganic
carbon independent of light (chemolithoautotrophy)
in amounts that are in the same order of magnitude

as the annual organic carbon burial (Middelburg,
2011). Chemolithoautotrophic microorganisms in
marine sediments fix up to 370 Tg C/year,
which equals 48% of carbon fixed chemolithoauto-
trophically in the ocean (Middelburg, 2011). Thereof,
47% are fixed in shallow, near-shore sediments
(175 Tg C/year). Near-shore sediments, therefore,
contribute more to oceanic carbon fixation than
pelagic oxygen minimum zones (OMZs) and hydro-
thermal vents (Middelburg, 2011). In recent years,
chemolithoautotrophy in these marine systems has
received much attention. The ecophysiology and
genetic composition of key players of carbon (and
sulfur) cycling in OMZs and hydrothermal vents,
such as the gammaproteobacterial SUP05 clade, have
been extensively studied (Lavik et al., 2009; Canfield
et al., 2010; Reinthaler et al., 2010; Swan et al., 2011;
Grote et al., 2012; Anantharaman et al., 2013; Mattes
et al., 2013). This cosmopolitan clade is expected to
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have an important role in attenuating atmospheric
carbon dioxide concentrations, when OMZs expand
in a warming climate (Hawley et al., 2014).

In contrast to pelagic OMZs, where the oxic-
anoxic/sulfidic interface can be meters thick, in
near-shore sediments this interface is only a few
millimeters thick, and is characterized by steep
biogeochemical gradients and approximately 1000-
fold higher cell abundances per sample volume.
Biogeochemical evidence indicates that sulfur oxida-
tion is the dominant chemolithoautotrophic process
in coastal sediments, while nitrification appears to
play only a minor role (Middelburg, 2011; Boschker
et al., 2014). Previous studies of benthic autotrophic
sulfur oxidizers mostly focused on large, conspic-
uous sulfur bacteria such as Beggiatoa, which are
widely distributed but occur in high abundances
only in certain habitats (Salman et al., 2013; Ruff
et al., 2015). Other Gammaproteobacteria affiliating
with cultured sulfur oxidizers (Acidithiobacillus,
Thiohalophilus and Thiomicrospira) or with
uncultured symbiotic sulfur oxidizers among the
Chromaticaeae and Ectothiorhodospiracea have
been regularly found in marine and estuarine
sediments (Bowman et al., 2005; Orcutt et al.,
2011). Consistent with this, recent molecular and
isotopic approaches suggest that some of these are
indeed autotrophs (Lenk et al., 2011; Boschker et al.,
2014; Vasquez-Cardenas et al., 2015).

Culture-independent molecular studies previously
identified predominant carbon fixation pathways
such as the Calvin-Benson-Bassham (CBB) cycle
and the reductive tricarboxylic acid cycle in marine
chemolithoautotrophic bacteria. The key genes
encoding ribulose-1,5-bisphosphate carboxylase-
oxygenase (RuBisCO) form I and form II (cbbL,
cbbM) and the ATP citrate lyase (aclAB) in the
reductive tricarboxylic acid cycle pathway have
been frequently detected in environmental studies
(reviewed by Hügler and Sievert, 2011). Likewise,
genes encoding subunits of the reverse dissimilatory

sulfite reductase (dsrAB), of the adenosine-5'-
phosphosulfate reductase (aprA) and of the
thiosulfate-oxidizing Sox-multienzyme complex
(soxB) have been used to target the diversity of
marine benthic sulfur oxidizers (Lenk et al., 2011;
Thomas et al., 2014).

To understand how inorganic carbon at sediment
surfaces is turned over and possibly buried, detailed
knowledge of the microbes driving these processes is
essential but currently still lacking. To fill this gap,
we surveyed the diversity of candidate bacterial
chemolithoautotrophs in 13 coastal surface sediments
across Western Europe and Australia. Moreover, we
studied whether these chemolithoautotrophic bacteria
are also present in anoxic, 490-cm-deep subsurface
sediments. We developed a new method to combine
14C-bicarbonate labeling of cells with fluorescence
in situ hybridization (FISH), fluorescence-activated
cell sorting (FACS) and scintillography to quantify
dark carbon fixation by distinct taxonomic groups.
Meta- and single-cell genomics along with metatran-
scriptomics provided evidence for a largely sulfur-
based carbon fixation in a selected tidal sediment.
Metatranscriptomic reads were mapped against
reference databases containing cbbL, cbbM and
aclAB sequences to identify active carbon fixation
pathways. Metatranscriptomic reads mapped against
reference databases containing dsrAB, aprA and
soxB sequences indicated sulfur oxidation pathways
active in situ. This unique combination of molecular
and isotopic approaches provided unprecedented
insights into the ecology and ecophysiology of
cosmopolitan microorganisms driving a major part
of global dark carbon fixation.

Materials and methods

Sediment sampling and characteristics
Between October 2012 and December 2014, we
sampled 10 tidal and 3 sublittoral sandy sediments

A

B

C

Western Europe Australia

MM, Mont St. Michel

JS, Janssand

YS, Yerseke

CA, Calais

CS, Courseulles-sur-Mer

KH, Sylt
*NS1,*NS2,*NS3

CR, Cairns

CP, Carlo Point
NB, Nudgee Beach

DB, Dunsborough

2 cm

Figure 1 Sampling sites of the 16S rRNA gene survey (a). Example for a typical stratification of a sediment core from coastal sandy
sediments (b). A=uppermost sediment layer, B= sulfide transition zone and C= sulfidic layer refer to the different sampling depths in this
study. During sampling, the sediment colors were used as an indicator for the presence of iron sulfide (dark gray to black). Asterisk
indicates samples from sublittoral sediments.
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in Western Europe and Australia (Figure 1 and
Supplementary Table S1). The 10 tidal sediments
were sampled during low tide using polyacryl-cores
or cutoff syringes of up to 25 cm length. The three
sublittoral, coastal sandy sediments were sampled
during cruise He417 with the RV Heincke in March
2014 in the German Bight using multi- and
boxcorers. At each site, two to three different
sediment layers were selected for molecular
analyses (16S rRNA gene amplicon sequencing,
catalyzed reporter deposition (CARD)-FISH). Sedi-
ment for 14C incubations was collected from sites
Calais, Courseulles-sur-Mer and from Janssand
(Supplementary Table S1). Sediment colors served
as a proxy for redox state and active sulfide
formation and oxidation (Figure 1). For most of the
sites, sediment (i) from the uppermost cm (brownish
sediment, sulfide-free), (ii) from the sulfide transition
zone (brown to gray, reflecting the presence of iron
sulfides) and (iii) from sediment of the sulfidic layer
was sampled for molecular analyses (Supplementary
Table S1). Sulfide concentrations in pore waters
were measured for sites Calais and Courseulles-sur-
Mer using the methylene blue method (Cline, 1969).
More details on the biogeochemistry of sulfide and
oxygen at the study sites Janssand and Königshafen
in the German Wadden Sea have been published
previously (de Beer et al., 2005; Billerbeck et al.,
2006; Jansen et al., 2009). In addition, in April 2005
we sampled a 490-cm-deep subsurface core at
site Janssand as described in detail by Gittel et al.
(2008). Sulfate and methane concentration profiles
and lithological data from this core have been
described previously (Gittel et al., 2008; Seidel
et al., 2012).

DNA extraction for barcoded 16S rRNA gene amplicon
sequencing
For all intertidal and subsurface sediment samples
from Europe and Australia, DNA was extracted from
200 to 250 μl sediment recovered from distinct layers
using the PowerSoil DNA isolation kit (MoBio
Laboratories, Solana Beach, CA, USA). DNA from
sites NoahA, NoahB and CCPδwas extracted from 5 g
of homogenized surface sediments according to
Zhou et al. (1996) including Proteinase K treatment
for improved cell lysis.

Barcoded 16S rRNA gene amplicon sequencing
The bacterial diversity in all sediment samples was
determined by analyzing the hypervariable V3–V4
region of the 16S rRNA gene using Roche 454
pyro- or Illumina MiSeq-sequencing of barcoded
amplicons. Barcoded amplicons from all surface
sediments were prepared using primers 341f/
785rev (Herlemann et al., 2011; Klindworth et al.,
2012). Barcoded amplicons from the 490 cm-deep
subsurface sediment from site Janssand were pre-
pared by replacing primer 785rev with 907rev

(Muyzer et al., 1998; Klindworth et al., 2012). This
primer covers a similar bacterial diversity as the
reverse primer 785rev used for surface sediments
(see above, Figure 2), but it is known to bias against
some phyla that are, however, low abundant or
absent in marine sediments (Klindworth et al., 2012).
In total, 311 196 bacterial 16S rRNA reads were kept
for taxonomic classification using the SILVAngs
pipeline v115 (Quast et al., 2013) with a clustering
at 98% identity. Details on PCR conditions, sequen-
cing and processing are given as Supplementary
Information.

Sediment incubations with 14C-bicarbonate
Sediment for 14C-DIC incubations was collected from
sites Calais and Courseulles-sur-Mer in July 2013
and from Janssand in April 2014 (Supplementary
Table S1). These cores were kept at in situ tempera-
ture (15–20 °C) and used for 14C-DIC incubations
within 48 h after sampling. After slicing, 2ml of the
uppermost sediment layer and from the sulfide
transition zone was transferred into 10ml glass vials.
In all, 1 ml of sterile filtered seawater and 1ml of
artificial seawater containing 1.5mM 14C bicarbonate
(specific activity 54.7mCimmol−1, Hartmann Analytic,
Braunschweig, Germany) were added. Vials were
sealed with lab-grade butyl rubber stoppers (GMT
Inc., Ochelata, OK, USA) leaving 6ml of headspace
(air). Then, vials were incubated for 20 h with
mild agitation (100 r.p.m.) at in situ temperature
in the dark. In parallel incubations 1mM thiosulfate
was added to slurries from Courseulles-sur-Mer and
Calais. Slurry incubations were performed in dupli-
cates (Calais, Courseulles-sur-Mer) or in triplicates
(Janssand). Dead controls were included for each site
by adding formaldehyde (2%, final concentration)
before the incubation.

CARD-FISH and sample preparation for flow cytometry
For CARD-FISH, sediment from sites Calais,
Courseulles-sur-Mer and Janssand was fixed immedi-
ately after core retrieval as described in Lenk et al.
(2011). Cells were detached from 100 to 200 μl
sediment by ultrasonic treatment as described pre-
viously (Lenk et al., 2011). Permeabilization and
CARD-FISH were performed as described by
Pernthaler et al. (2002) with the modifications
detailed in Supplementary Information. Tyramides
labeled with Alexa488 fluorescent dye (Molecular
Probes, Eugene, OR, USA) were used for CARD signal
amplification. An overview of oligonucleotide probes
used in this study is shown in Supplementary
Table S2. Novel oligonucleotide probes were designed
for the JTB255 group using ARB and the SILVA 16S
rRNA reference database release 117 (Pruesse et al.,
2007). Please note that the Xanthomonadales, which
includes the JTB255 clade, are not targeted by probe
GAM42a, specific for most Gammaproteobacteria
(Siyambalapitiya and Blackall, 2005). In line with
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this, the JTB255 clade could not be detected with
probe GAM42a in double hybridizations with the JTB-
probe mix (Supplementary Table S2). Therefore, we
summed up FISH counts of the JTB255-probe mix and
of probe GAM42a to yield the total relative abundance
of FISH-detectable Gammaproteobacteria.

FACS and scintillography of sorted cells
We developed a novel protocol to quantify bulk
assimilation of radiolabelled substrates in a defined
number of cells phylogenetically identified via
CARD-FISH before for flow sorting. To minimize
cell loss, the filters were handled extremely carefully

during the CARD-FISH procedure. Cells were
scraped off from membrane filters by using a cell
scraper or membrane filters were vortexed in 5ml of
150mM NaCl containing 0.05% Tween-80 according
to Sekar et al. (2004). Before flow cytometry, large
suspended particles were removed by filtration
through 8-μm pore-size filter (Sartorius, Göttingen,
Germany) to avoid clogging of the flow cytometer.

Flow sorting of cells that were fluorescently
labeled by CARD-FISH was performed using a
FACSCalibur flow cytometer equipped with cell
sorter and a 15-mW argon ion laser exciting at
488 nm (Becton Dickinson, Oxford, UK). Autoclaved
Milli-Q water was used as sheath fluid. Cell sorting
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was done at low flow rate of 12 ±3 μl min− 1 or med
flow rate of 35 ± 5 μl min− 1 with single-cell sort mode
to obtain the highest purity. The event rate was
adjusted with a fluorescence threshold, and sorting
was performed at a rate of approximately 25–100
particles s− 1. Hybridized cells were identified on
scatter dot plots of green fluorescence versus
90° light scatter (Supplementary Figure S1). Sedi-
ment background such as clay particles was deter-
mined by flow-cytometric analysis of sediment
hybridized with a nonsense probe (NON338)
(Supplementary Figure S1). For subsequent measure-
ments, 50 000 cells were sorted and filtered onto
0.2-μm polycarbonate filters (GTTP, Millipore,
Eschborn, Germany). Dead controls of 14C incubated
sediments did not show any measurable assimilation
of 14C, and were thus not used for cell sorting.
Unspecifically adsorbed label in live samples caused
only minor radioactive background as determined by
spiking experiments with fluorescent beads and
Escherichia coli cells (Supplementary Figure S2).
Fluorescent beads (yellow-green, 1.0 μm, Polyscience,
Warrington, PA, USA) or hybridized E. coli cells were
flow-sorted from of a sample hybridized with the
nonsense probe to determine radioactive back-
ground. E. coli cells were hybridized with EUBI-III
probe beforehand. Beads and E. coli cells were
mixed with the sample in approximately the same
quantity as the target populations (10–20% of total
cells). Two to three repeated sortings were applied to
confirm the technical reproducibility from duplicate
or triplicate incubations. Collected cell batches on
polycarbonate filters were directly transferred into
5ml scintillation vials and mixed with 5ml Ultima-
Gold XR (Perkin-Elmer, Boston, MA, USA) scintilla-
tion cocktail. Radioactivity of sorted cell batches was
measured in a liquid scintillation counter (Tri-Carb
2900, Perkin-Elmer).

The purity of flow-cytometric enriched target cells
was 493%, and was manually analyzed under an
Axioplan epifluorescence microscope (Zeiss, Jena,
Germany). For microscopic analysis, filters were
counterstained with 1 μgml− 1 4′,6-diamidino-2-
phenylindole (DAPI) and at least 1000 DAPI-
stained cells were examined for CARD-FISH. Our
approach was technically highly reproducible, and
the radioactivity linearly increased with the number
of sorted cells (Supplementary Figure S2).

For calculation of average cell-specific carbon
fixation rates in our slurry experiments, we assumed
a background concentration of dissolved inorganic
carbon of 2mM (Billerbeck et al., 2006) as we used
local seawater for our experiment (see Supplementary
Information for calculations). The relative abundance
of assimilating gammaproteobacterial cells in the
sulfide transition zone from Calais, Courseulles-
sur-Mer and Janssand sediments was determined
by microautoradiography (MAR). MAR was per-
formed according to Alonso and Pernthaler (2005)
and Lenk et al. (2011) with an exposure time of
2 days. Relative abundance of MAR-positive cells

was manually determined under an Axioplan epi-
fluorescence microscope (Zeiss).

A single-cell genome of the SSr clade from Janssand
sediment
In January 2011, the upper two centimetres of
Janssand sediment were sampled for extraction and
sorting of single bacterial cells for whole-genome
amplification. After extraction, cells were cryopre-
served with N,N,N-trimethylglycine (‘glycine betaine’)
(Sigma-Aldrich, St Louis, MO, USA) at a final
concentration of 4% according to Cleland et al.
(2004), stored at −80 °C and shipped overseas.
Single-cell sorting and whole-genome amplification
via multiple displacement amplification were per-
formed at the Bigelow Laboratory Single Cell Genomics
Center (https://scgc.bigelow.org) as described by Swan
et al. (2011). A single amplified genome (SAG) encoding
a single, high quality 16S rRNA gene sequence
affiliating with the SSr clade was sent to Max Planck
Genome Centre (MP-GC) Cologne for MiSeq (Illumina)
sequencing yielding 9 557 547 PE reads. The SAG
assemblies were auto-annotated using the Joint Genome
Institute IMG-ER pipeline (Markowitz et al., 2012).
Details on cell extraction, sequencing and quality
control of the assembled genomic data are given as
Supplementary information.

cDNA libraries and metatranscriptomic mapping
In April 2013, sediment was sampled from the
sulfide transition zone at site Janssand and immedi-
ately frozen on dry ice. Total RNA was extracted
from sediment in triplicates (one ml each) by the
Vertis Biotechnologie AG (Freising, Germany), and
bacterial rRNA was depleted with the Ribo-Zero
Magnetic Kit (for Bacteria) (Epicentre, Madison,
WI, USA). Barcoded RNA TrueSEQ libraries were
constructed from RNA extractions and paired-end
sequenced using Illumina HiSeq2000 (MP-GC,
Cologne, Germany). After quality trimming at a Phred
score 28 using Nesoni clip v.0.115 (http://www.
vicbioinformatics.com/software.nesoni.shtml), reads
were mapped to reference databases of nucleotide
sequences encoding key genes for sulfur oxidation
(Sox-multienzyme complex, soxB; reverse dissimila-
tory sulfite reductase, dsrAB; adenosine-5′-phosphosul-
fate reductase, aprA; uptake [NiFe]-hydrogenase, hupL;
ammonia monooxygenase, amoA, ribulose-1,5-
bisphosphate carboxylase/oxygenase form I, cbbl,
and form II, cbbm; ATP citrate lyase, aclAB) and to
the SAG using Bowtie2 (Langmead and Salzberg,
2012). Details on program settings and normal-
ization are given as Supplementary information.

Nucleotide accession numbers
All nucleotide sequences obtained in this study have
been deposited in GenBank. Sequences of 16S rRNA
and hydrogenase gene libraries are available under
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accession numbers KR824952–KR825244 and
KR534775–KR534844, respectively. Amplicon
sequences from the 16S rRNA gene surveys were
deposited in NCBI BioProjects PRJNA283163 and
PRJNA285206. All cDNA reads are available in
BioProject PRJNA283210. Fosmid end sequences
are available in NCBI's Genome Survey Sequences
database (GSS) with the accession numbers
KS297884–KS307053. The genome sequence of
the SAG WSgam209 is accessible under the IMG
Genome ID 2609459745 through the Joint Genome
Institute portal IMG/ER (https://img.jgi.doe.gov/
cgi-bin/er/main.cgi), the metagenomic bin Acidi-
ferrobacter-a7 is accessible under the IMG Genome
ID 2616644801.

Results and Discussion
Identification of candidate chemolithoautotrophs in
coastal surface sediments
To identify candidate chemolithoautotrophs in
coastal sediments, we studied the bacterial diversity
in 10 tidal and 3 sublittoral sandy sediments from
Western Europe and Australia (Figure 1 and
Supplementary Table S1). We sequenced the
V3–V4 region (4300 bp) of tagged 16S rRNA gene
amplicons. After quality trimming, 311 196 Illumina-
and 454-tag reads were recovered. Taxonomic
classification revealed that Gammaproteobacteria
were consistently among the most abundant clades
on class to phylum level, accounting for 12–45% of
sequences regardless of sampling site, sediment
depth or season (Figure 2). These data were
supported by CARD-FISH, which showed that
Gammaproteobacteria make up 19–22% of all
bacteria at sites Janssand, Calais and Courseulles-
sur-Mer (Supplementary Table S5). At all sites, we
observed a recurring diversity pattern also at the
family to order level within the Gammaproteobac-
teria. We consistently identified candidate chemoau-
totrophs most closely related to: (1) Acidiferrobacter
thiooxydans of the family Ectothiorhodospiraceae,
(2) symbionts of the siboglinid tubeworms such as
Oligobrachia spp. (henceforth designated as Sibogli-
nidae Symbionts related, SSr, see Supplementary
Figures S3 and S4), (3) ciliate symbiont Candidatus
Thiobios zoothamnicoli and (4) BD7-8 clade, including
the γ3 symbiont of the marine gutless oligochaete
Olavius algarvensis (Woyke et al., 2006). Sulfur-
dependent chemolithoautotrophy for cultured or
symbiotic relatives of these clades has been shown
before (Rinke et al., 2006; Lösekann et al., 2008;
Hallberg et al., 2011; Kleiner et al., 2012). Acidiferro-
bacter thiooxydans can also grow autotrophically with
ferrous iron (Hallberg et al., 2011). Moreover, we
previously showed carbon fixation by the SSr- and
the Acidiferrobacter-related clades, and determined
relative cell abundances of up to 8% at site Janssand
in the German Wadden Sea (Lenk et al., 2011).

Strikingly, in all tested sediments up to 52% of
gammaproteobacterial sequences grouped with the

uncultured JTB255 clade. This clade is affiliated
with the order Xanthomonadales and accounted
for the largest fraction of gammaproteobacterial
sequences at 10 out of 13 sites (Figure 2). In line
with the sequence data, CARD-FISH targeting mem-
bers of the JTB255 clade revealed rod-shaped cells
(Supplementary Figure S5) that made up 3–6% of
total cell counts in Janssand, Calais and Courseulles-
sur-Mer sediments (Supplementary Table S6). So far,
the exact environmental function of the JTB255
clade is unknown;however, a sulfur-oxidizing activ-
ity has been hypothesized (Bowman and McCuaig,
2003). In summary, we identified five candidate
chemolithoautotrophs that accounted for 28–75% of
Gammaproteobacteria and for 8–31% (average =
17%) of all bacterial sequences across all sites.
Other potentially autotrophic populations such as
sulfur-oxidizing Epsilonproteobacteria, anoxygenic
phototrophs, the BD1-5/SN-2 clade, nitrifiers and
cyanobacteria were found in low abundance or were
patchily distributed (Figure 2).

Gammaproteobacteria in subsurface sediments
Because of the high sedimentation rates of
43mm/year in the German Wadden Sea at site
Janssand (Ziehe, 2009), a yet unknown fraction of the
surface microbial community including the chemo-
lithoautotrophic Gammaproteobacteria is buried
into the anoxic subsurface. To study, how these
organisms are affected by such a burial, we also
analyzed the distribution of chemolithoautotrophic
Gammaproteobacteria in a 490-cm-deep subsurface
core from site Janssand, spanning a sedimentation
record of 1000–2000 years (Ziehe, 2009). This
sediment core displayed a typical sulfate-methane-
transition zone in 150–200 cm below surface (cmbsf)
(Gittel et al., 2008), reflecting the changes in the
major metabolic pathways that are active along this
depth range. Surprisingly, Gammaproteobacteria
including the chemolithoautotrophic gammaproteo-
bacterial clades also accounted for a dominant
fraction of 16S rRNA gene pyrotags over the entire
depth range (21–37% of all sequences, Figure 2).
This observation was supported by 16S rRNA gene
libraries from 200 and 490 cmbsf (Supplementary
Figure S4), in which these clades accounted for 95
out of 289 clones (33%). To gain PCR-independent
support for the dominance of Gammaproteobacteria
in subsurface sediments, we fosmid-cloned large
metagenomic fragments of ~ 40 kb in size from 490
cmbsf and taxonomically classified the end
sequences (Supplementary Table S7), as FISH is
commonly too insensitive to comprehensively target
subsurface organisms with very low ribosome
content (Schippers et al., 2005). In support of
our 16S rRNA gene data, 24% of all prokaryote-
affiliated fosmid end sequences (n= 4052) showed
best hits to Gammaproteobacteria, while only
approximately 1% affiliated with Archaea
(Supplementary Table S7).
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Collectively, these molecular data indicate a
relatively stable community structure over the 5-m
depth range, despite the measured strong biogeo-
chemical gradients. These data are consistent with
similar total cell abundances and a similar composi-
tion of major phospholipids over the entire 490 cm
depth in the same sediment core (Gittel et al., 2008;
Seidel et al., 2012).

Whether these gammaproteobacterial populations
are active despite very different biogeochemical
settings in the subsurface, or whether they are simply
surviving in subsurface sediments with little or no
turnover, are currently unclear. Upon burial, marine
microbial cells may survive in the subsurface over
geological time scales without significant growth
(Jørgensen, 2011). Energy for maintenance and
survival could be supplied by fermentation of
refractory organic matter and by the slow transport
and diffusion of dissolved organic compounds to
subsurface sediments, which has been demonstrated
for the subsurface at site Janssand (Røy et al., 2008;
Seidel et al., 2012).

Global occurrence of candidate chemolithoautotrophic
Gammaproteobacteria
Our 16S rRNA diversity and FISH data agree well
with numerous studies showing a substantial
contribution of Gammaproteobacteria to microbial
communities in diverse marine surface sediments
(Hunter et al., 2006; Kim et al., 2008; Schauer et al.,
2009; Orcutt et al., 2011; Gobet et al., 2012; Ruff
et al., 2015). To examine the geographic distribution

of the five candidate chemoautotroph groups in more
detail, we did a meta-analysis of 16S rRNA gene
sequence data from 65 diversity studies of the sea
floor (Figure 3). Although these published data sets
hardly covered the extent of microbial diversity
at the studied sites, sequences related to the
Acidiferrobacter, SSr and to a lesser extent
Ca. T. zoothamnicoli and BD7-8 groups were found
in all types of benthic habitats ranging from inter-
tidal sediments to deep-sea hydrothermal chimneys
(Figure 3). Intriguingly, the JTB255 clade was
detected in 92% of all studies (Figure 3) and
accounted for the most frequent sequence group
among Bacteria in Arctic, Antarctic and tropical
deep-sea as well as shallow coastal sediments (Wang
et al., 2013; Zheng et al., 2014; Liu et al., 2014; Emil
Ruff et al., 2014). In temperate Tasmanian and in
cold Antarctic coastal sediments, 16S rRNA gene
copies of the JTB255 clade accounted for 6–9% of
total bacterial 16S rRNA gene sequences (Bowman
et al., 2005). In summary, our biogeographic survey
shows that these five clades are important members
of microbial communities in marine surface sedi-
ments worldwide, and clearly, the JTB255 clade is
one of the most successful bacterial lineages in
marine surface sediments.

Measuring dark carbon fixation by Gammaproteobacteria
in sediments
Our 16S rRNA gene survey suggested that sulfur-
oxidizing Gammaproteobacteria are potentially the
major carbon fixers in dark coastal sediments.

JTB255 Acidiferrobacter

SSr
Thiobios

BD7-8

Presence/absence:

Figure 3 Biogeographic survey of the major chemolithoautotrophic gammaproteobacterial clades identified in this study. Only clone
sequences (presence/absence) from bacterial diversity studies from 65 marine sea floor surfaces have been considered, deposited in the
SILVA database release 117 (Pruesse et al., 2007).
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However, quantitative data on carbon fixation by
distinct bacterial populations in marine sediments
are lacking. To determine the contribution of
Gammaproteobacteria to dark carbon fixation in
sediments, we developed a novel approach to
quantify assimilation of a radiolabeled compound
by specific populations. Previous FACS experiments
with autofluorescent, radiolabeled marine bacterio-
plankton and subsequent scintillography of sorted
populations prompted us to use FISH signals instead
of autofluorescence or unspecific DNA staining to
identify and enrich populations from sediments
(Zubkov et al., 2003; Jost et al., 2008). We incubated
aerobic sediment slurries prepared from surface and
from sulfide transition zone sediments from sites
Calais, Courseulles-sur-Mer and Janssand with 14C-
labeled bicarbonate and for 20 h in the dark. After
detachment of cells from sand grains and CARD-
FISH, we sorted fluorescently labeled Bacteria
(probe EUBI-III) or Gammaproteobacteria (probe
GAM42a). To account for potentially nitrifying
autotrophic Archaea, we also sorted cells targeted
by the archaeal probe Arch915. Fifty thousand cells
were sorted per population, and bulk radioactivity
was measured. This workflow allowed us to accu-
rately quantify the bulk assimilation of radiolabeled
substrates by a defined population in high through-
put. At the analysis level of populations and
communities it thereby overcomes limitations in
throughput and precision of other methods such as
MAR-FISH, HISH-SIMS and stable isotope probing
(Boschker et al., 1998; Lee et al., 1999; Radajewski
et al., 2000; Manefield et al., 2002; Musat et al.,
2008).

Although the total amount of fixed carbon in
sorted populations varied between sites and sam-
ples, the 14C-assimilation by sorted Gammaproteo-
bacteria ranged from 2.4 to 10.3 Bq and was 2.5- to

5-fold higher than those of sorted Bacteria (0.5–2.1 Bq)
(Figure 4a). At all three sites, the relative abundance
of 14C-assimilating Gammaproteobacteria was
approximately 40–50% as determined by MAR
(Supplementary Table S8; Lenk et al., 2011) and is
similar to the relative sequence frequency of
chemoautotrophic subpopulations (Figure 2). The
14C-radioactivity of 50 000 archaeal cells accounted
for 1.4–3.8 Bq, ranging between the average assim-
ilation by Bacteria and Gammaproteobacteria
(Figure 4b). Addition of nitrate did not stimulate
14C-assimilation in anoxic slurry incubations. The
addition of 1mM thiosulfate doubled the total carbon
fixation by Gammaproteobacteria in the uppermost
surface sediments, but not in the sulfide transition
zone at Calais and Courseulles-sur-Mer (Figure 4a).
Likewise, thiosulfate did not stimulate carbon fixa-
tion in the sulfide transition zone from site Janssand
(Zerjatke, 2009). The oxidized surface sediments are
possibly limited in electron donors, while the sulfide
transition zone contained sufficient reduced sulfur
compounds such as free and iron sulfides as energy
sources for carbon fixation (Jansen et al., 2009;
Supplementary Table S1).

Dark carbon fixation in Gammaproteobacterial clades
To quantify carbon fixed by the candidate chemo-
lithoautotrophic clades, we used the FISH probes
available for three of the five clades for cell sorting
and subsequent scintillography. Our FISH probes
for the SSr and Acidiferrobacter clades mostly
target sequences retrieved from site Janssand
(Supplementary Figure S4; Lenk et al., 2011); there-
fore, we measured carbon assimilation by specific
subpopulations at this site. The Acidiferrobacter
clade showed the highest 14C-assimilation (6.1–10Bq),
while the SSr clade assimilated 2.7–6.9 Bq (Figure 4b
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Figure 4 14C carbon fixed by Bacteria, Gammaproteobacteria and Archaea in three coastal sediments. Carbon fixation by flow-sorted
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and Supplementary Figure S6). This is consistent
with the chemolithoautotrophic potential encoded in
the corresponding genomes (Supplementary Table
S5), and is confirmed by the previously detected 14C
bicarbonate assimilation by single cells of both
clades (Lenk et al., 2011).

Our probes for the ubiquitous JTB255 clade
display a wider target range; therefore, we used
these probes to sort JTB255 cells from Janssand,
Calais and Courseulles-sur-Mer. The 14C-assimilation
by the JTB255 clade ranged from 3 to 4.4 Bq in
Janssand sediment to up to 10.7 Bq in Calais
sediment (Figure 4b and Supplementary Figure S6).
The 14C-assimilation by the JTB255 clade was
slightly less than that of the SSr clade. The addition
of thiosulfate did not stimulate the 14C-assimilation
by the JTB255 clade in Courseulles-sur-Mer but did
slightly stimulate it in Calais sediments, which is
consistent with the hypothesized thiotrophy of
members of this clade (Bowman and McCuaig, 2003).

The 14C-assimilation by the three gammaproteo-
bacterial clades was up to 10-fold higher than the
14C-assimilation by the entire bacterial community
(Figures 4a and b), which largely consisted of
heterotrophic bacteria (Figure 2). Using the carbon
assimilated by the bulk bacterial community
(targeted by probes EUBI-III) as an approximate
reference for heterotrophic, anaplerotic carbon
fixation (Wood and Werkman, 1936; Li, 1982;
Roslev et al., 2004), we conclude that heterotrophic
carbon fixation was minor. Moreover, we calculated
average carbon fixation rates per sorted gammapro-
teobacterial cell based on all sorted Gammaproteo-
bacteria (1.1–3.0 fg C cell− 1 day− 1, Supplementary
Table S8). Average carbon fixation rates per cell and
for each of the three individual subpopulations
ranged from 1.1 to 3.5 fg C cell− 1 day− 1. These rates
are consistent with those of autotrophic freshwater
green sulfur bacteria (1.4–5.8 fg C cell− 1 day−1)
(Musat et al., 2008), and are in the lower range of
rates measured for autotrophic marine bacterio-
plankton (3.5–24.7 fg C cell− 1 day− 1) (Jost et al.,
2008). Collectively, these data strongly support an
autotrophic carbon fixation by the Acidiferrobacter,
SSr and JTB255 clades.

Gammaproteobacteria dominate dark carbon fixation
in coastal sediments
The relative contribution of carbon fixed by the
Acidiferrobacter, SSr and JTB255 clades amounted
to 77% of gammaproteobacterial and to 50–62% of
bacterial dark carbon fixation at Janssand (Figure 5).
Although they make up only 19–22% of the total
microbial community, Gammaproteobacteria in
total accounted for 70–86% of the microbial dark
carbon fixation irrespective of sampling site, season
and sediment depth (Figure 5 and Supplementary
Figure S7).

Although they can be important autotrophs in
organic-poor deep-sea sediments (Molari et al., 2013)

nitrifying Archaea have a minor role in dark carbon
fixation in the sediments we measured. In our study,
Archaea occurred at low relative abundances and
assimilated less 14C than Gammaproteobacteria
(Figures 4a and b and Supplementary Figure S7).

Genomics suggests thioautotrophy in uncultured
Gammaproteobacteria
We previously showed that key genes of sulfur
oxidation in Janssand sediments are mainly affiliated
with Gammaproteobacteria (Lenk et al., 2011). To
further investigate the metabolism of the candidate
chemolithoautotrophic Gammaproteobacteria, we
sequenced the amplified genomic DNA of a single
cell of the SSr clade from Janssand sediment. In
addition, we recovered a metagenomic bin of a
member of the Acidiferrobacter clade from a deep-
sea hydrothermal chimney that displayed 91%
sequence identity to 16S rRNA gene sequences from
site Janssand (Supplementary Figure S4).

The assembled SAG of the SSr cell (‘WSgam209’)
consists of 1.9Mbp on 311 scaffolds (Supplementary
Table S3). In addition to the cytochrome c oxidase
for oxygen respiration, the genome encoded a reverse
dissimilatory adenosine-5′-phosphosulfate (APS)-
reductase subunit A (AprA), a widely distributed
enzyme catalyzing the oxidation of sulfite to
sulfate (Meyer and Kuever, 2007). Similar to the
16S rRNA gene also the AprA is affiliated with the
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sulfur-oxidizing symbionts of Oligobrachia haakon-
mosbiensis (Supplementary Figures S4 and S8),
indicating a congruent phylogeny of both phyloge-
netic markers. Moreover, it encoded the large and
small subunits of the RuBisCO form I (CbbL, CbbS)
(Supplementary Table S5).

The metagenomic bin of the Acidiferrobacter-
clade organism (‘Acidiferrobacter-a7’) consists of
2Mbp on 66 scaffolds (Supplementary Table S3). It
contained genes for thiosulfate oxidation (Sox-multi-
enzyme complex, soxABXYZ), sulfite oxidation
(soeABC) and carbon fixation (RuBisCO form I
subunits cbbL and cbbS) (Supplementary Table S4).
Together with the measured carbon fixation of SSr
and the Acidiferrobacter clades at site Janssand, the
identification of sulfur oxidation and carbon fixation
genes in both clades provides the genetic back-
ground of their chemolithoautotrophic potential.

Metatranscriptomics underscores the role of
Gammaproteobacteria in thioautotrophy
To further test, whether Gammaproteobacteria
in these sediments are the major active chemo-
lithoautotrophs, we sequenced triplicate metatran-
scriptomes from the sulfide transition zone of
Janssand sediments. Transcript reads were mapped
to reference sequences from the GenBank database,
functional gene libraries, metagenomic fragments
and the SSr-single cell genome recovered from site
Janssand (this study; Lenk et al., 2011, 2012).

To identify the expressed carbon fixation path-
ways, we mapped the metatranscriptomic reads to
gene sequences of RuBisCO form I and form II (cbbL,
cbbM) and of ATP citrate lyase (aclAB) from cultured
representatives and environmental sequences from
diverse aquatic environments including sediments.
All transcripts of RuBisCO genes, on average
112 reads, mapped to those of sulfur-oxidizing

Gammaproteobacteria, confirming active carbon
fixation through the CBB-cycle in Janssand sedi-
ments. Only very few transcripts (n⩽ 6) could be
mapped on genes encoding an epsilonproteobacter-
ial ATP citrate lyase (Supplementary Table S4),
reflecting the low relative abundance and low
activity of sulfur-oxidizing Epsilonproteobacteria in
these sediments (Figure 2; Lenk et al., 2011).

To identify the expressed sulfur oxidation path-
ways and the respective organisms in the sulfur
transition zone in Janssand sediments, we mapped
the metatranscriptomic reads to references databases
containing gene sequences encoding SoxB, AprA
and subunits of the reverse dissimilatory sulfite
reductase, DsrAB. The major fraction (69–82%) of
transcripts mapped to dsrAB, soxB and aprA
sequences that are affiliated with Gammaproteobacteria
(Figure 6 and Supplementary Figure S8), further
supporting their central role in chemolithoautotrophy.
Here, dsrAB transcripts were fourfold higher than
soxB transcripts. The identification of the sulfur
oxidation pathway prevailing in marine sediments
has important implications for modeling of carbon
budgets, as the reverse Dsr (rDsr) pathway may allow
a higher ATP gain that can be used for carbon
fixation than the complete Sox-multienzyme com-
plex (Klatt and Polerecky, 2015). In the rDsr pathway
electrons finally enter the electron transport chain at
the level of quinone (Holkenbrink et al., 2011), while
the Sox-multienzyme complex donates electrons to
cytochrome c (Kelly et al., 1997), probably resulting
in higher energy yields for rDsr-encoding sulfur
oxidizers. However, further in situ studies are
essential to confirm this observation.

Very few reads mapped to bacterial (n⩽ 2) and
archaeal (n⩽ 5) amoA genes encoding the ammonia
monooxygenase subunit A (AmoA) (Supplementary
Table S1). This is consistent with the minor role of
Archaea in carbon assimilation measured in our

Gammaproteobacteria
Alphaproteobacteria
Deltaproteobacteria
Other bacteria

82% 78%

17% 22%

aprA dsrAB soxB

69%

31%

<1%

hupL

54%
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40%
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100 Normalized no. of mapped transcripts (n)

n = 1255 n = 940 n = 253

n = 417

Figure 6 Taxonomic affiliation of metatranscriptomic reads of key genes from sulfur and hydrogen oxidation pathways.
Metatranscriptomic reads from the sulfide transition zone (Janssand surface sediments 2–3 cmbsf) were mapped to key genes of sulfur
and hydrogen oxidation genes (aprA, adenosine-5′-phosphosulfate reductase; dsrAB, reverse dissimilatory sulfite reductase; soxB, Sox-
multienzyme system; uptake [NiFe]-hydrogenase). Metatranscriptomes were sequenced in triplicates, and the average values are
displayed. Transcript abundance is normalized for gene length and number of reads per data set.
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study (Supplementary Figure S7), and is also con-
sistent with the very low nitrification rates measured
at site Janssand (Marchant et al., 2014). Overall our
data confirm previous biogeochemical models sug-
gesting a low impact of nitrification on chemo-
lithoautotrophic production in coastal sediments
(Middelburg, 2011; Boschker et al., 2014).

Hydrogen is likely an alternative energy source for
sulfur-oxidizing Gammaproteobacteria
Recently, uptake [NiFe]-hydrogenase genes were
found in metagenomic bins of Gammaproteobacteria
from estuarine sediments, indicating alternative
energy sources for dark carbon fixation under oxic
to suboxic conditions (Baker et al., 2015). As the
ability to oxidize hydrogen has been shown to confer
metabolic plasticity to symbiotic and pelagic
sulfur-oxidizing bacteria (Petersen et al., 2011;
Anantharaman et al., 2013; Hansen and Perner,
2015), we tested whether hydrogen could serve as
an alternative energy source also for gammaproteo-
bacterial sulfur oxidizers in marine sediments, for
example, to respire sulfur under anoxic conditions
(Laurinavichene et al., 2007). To overcome the lack
of reference sequences from marine sediments, we
constructed an uptake [NiFe]-hydrogenase gene
library from Janssand sediments. The recovered
hydrogenase gene diversity comprised different
physiological groups from phyla such as Proteobac-
teria and Bacteroidetes (Supplementary Figure S9).
A substantial fraction (40%) of all hydrogenase
transcripts were assigned to sequences of diverse
Gammaproteobacteria, in particular to those group-
ing with sulfur-oxidizing bacteria (Figure 6 and
Supplementary Figure S9). Expression levels of
hydrogenase genes were lower than those of sulfur
oxidation genes, but were in the same order of
magnitude (Figure 6).

To link a potential hydrogen-oxidizing activity
with sulfur-oxidizing Gammaproteobacteria, we
searched for co-localization and co-expression of
key genes of both pathways. First, we identified a
metagenomic fragment from Janssand, affiliated with
Gammaproteobacteria, which encoded both the
uptake [NiFe]-hydrogenase HupSL and the rDsr
operon (Supplementary Figure S10). Notably, the
SAG of the SSr-group recovered from site Janssand
also encodes an uptake [NiFe]-hydrogenase gene in
addition to aprA and cbbLS. Moreover, these genes
were among the top 20 transcribed genes out of 2008
identified genes (Supplementary Figure S11).

Collectively, our single-cell genomic, metage-
nomic and metatranscriptomic data indicate that
Gammaproteobacteria in marine surface sediments
may use both reduced sulfur species and hydrogen
as energy sources for carbon fixation. In fact, the
thioautotroph Sulfurimonas denitrificans grows
more efficiently with hydrogen than with thiosulfate,
when the electron acceptor nitrate is limiting
(Han and Perner, 2014). Hence, hydrogen oxidation

could be a hitherto overlooked energy source for
carbon fixation in marine sediments.

Key functions of ubiquitous chemolithoautotrophic
Gammaproteobacteria in sediments
Overall, our molecular and 14C-assimilation data
suggest that rather than a single group, a stable
assemblage of Gammaproteobacteria drives dark
carbon fixation in coastal surface sediments.
In particular, we showed that members of the
Acidiferrobacter, the JTB255 and the SSr clade occur
in sediments worldwide and fix carbon in rates
similar to those of uncultured sulfur-oxidizing
bacteria from other aquatic habitats. Our genomic
and metatranscriptomic evidence supports the pre-
vious assumption that chemolithoautotrophy in
marine surface sediments is mainly driven by sulfur
oxidation (Middelburg, 2011). However, the expres-
sion of uptake [NiFe]-hydrogenases in the SSr clade
and other Gammaproteobacteria suggests that these
organisms may also use hydrogen as an energy
source for carbon fixation. On the basis of our data,
we cannot exclude the possibility that other chemo-
lithoautotrophic pathways such as ferrous iron
oxidation also contributed to dark carbon fixation,
but these are probably minor in organic- and sulfide-
rich systems. Molecular, isotopic and physiological
studies will be critical to determine, how other
chemoautotrophic processes such as nitrification,
metal oxidation, sulfur disproportionation (Jørgensen,
1990) and possibly also hydrogen-dependent sulfate
respiration (Boschker et al., 2014) contribute to dark
carbon fixation in marine sediments. Intriguingly,
sulfur-oxidizing, autotrophic Gammaproteobacteria
including members of the SSr clade were recently
shown to be associated with heterotrophic, electro-
genic ‘cable bacteria’. These were hypothesized to
use cable bacteria as an electron sink during
autotrophic sulfur oxidation (Vasquez-Cardenas
et al., 2015). Considering their cosmopolitan
distribution, their metabolic lifestyle and their
ecological importance, the Acidiferrobacter-, the
JTB255-, and the three symbiont-related clades may
be benthic counterparts to the gammaproteobacterial
SUP05 clade, key organisms for sulfur and carbon
cycling in hydrothermal plumes and OMZs (Canfield
et al., 2010; Wright et al., 2012; Anantharaman et al.,
2013; Glaubitz et al., 2013).

Role of chemolithoautotrophic gammaproteobacteria in
carbon cycling
Coastal sediments are global hot spots of carbon
cycling. The importance of marine vegetation such
as sea grass, salt marshes and mangroves for carbon
sequestration is already well established (Duarte
et al., 2005), but the role of coastal sediments as
hot spots of microbial dark carbon fixation was only
recently realized (Middelburg, 2011). According to
our most conservative estimate, 70% of dark carbon
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fixation in coastal sediments are driven by chemo-
lithoautotrophic Gammaproteobacteria (Figure 5).
These could fix 122 Tg C/year in Earth's coastal
sediments (assuming a total of 175 Tg/year, from
Middelburg 2011), which is similar to the 111 Tg
carbon buried yearly by marine vegetated habitats
worldwide (Duarte et al., 2005). It is still unclear
whether significant amounts of carbon fixed in the
dark are buried into subsurface sediments. However,
because identical/almost identical chemolithoauto-
trophic Gammaproteobacteria are frequently
found in surface and subsurface sediments, they
may have the potential to trap inorganic carbon and
survive for centuries in subsurface sediments by
tapping yet unknown sources of energy. Under-
standing whether the buried populations are in a
state of dynamic equilibrium or whether they merely
survive will be essential for assessing their role as a
carbon sink.

Even though chemolithoautotrophy in shelf
sediments mostly represents a ‘secondary produc-
tion’, as it is ultimately based on energy from
recycled organic matter (Middelburg, 2011), it may
mitigate carbon (and sulfide) emissions from
re-mineralized organic matter already at sediment
surfaces. As marine sediments are the main site of
global carbon sequestration, it is imperative to
understand the processes and microorganisms that
govern rates of burial of organic and inorganic
carbon in these habitats. Here, our study provides
first detailed insights into the microbiology of a
largely overlooked aspect of the marine carbon cycle
and highlights the environmental importance of
widely distributed chemolithoautotrophic, most
likely sulfur-oxidizing Gammaproteobacteria. As
hypoxic events will expand and intensify in a
warming ocean, sulfur-dependent carbon cycling
will be more prevalent not only in pelagic OMZ,
but also in organic-rich coastal sediments. Thus,
sulfur-oxidizing and carbon-fixing microorganisms
may have an increasingly important role in attenuat-
ing the rising emissions of sulfide and inorganic
carbon to ocean waters and ultimately to the
atmosphere.
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Supplementary Information 

Methods 
Barcoded 16S rRNA gene amplicon sequencing 

The bacterial diversity in all sediment samples was determined by analyzing the 

hypervariable V3-V4 region of the 16S rRNA gene using Roche 454 pyro- or Illumina MiSeq-

sequencing of barcoded amplicons. Barcoded amplicons from all surface sediments were 

prepared using primers 341f/785rev (Herlemann et al., 2011; Klindworth et al., 2012). PCR 

conditions were as follows: initial denaturation, 95°C for 5 min, followed by 20-28 cycles of 

95°C for 30 s, 50°C for 1 min, 72°C for 1 min and final elongation of 72°C for 10 min. In 

general, the Taq-DNA polymerase (Eppendorf, Hamburg, Germany) was used, but for site 

Dunsborough we applied a high fidelity Phusion polymerase (Thermo Fisher Scientific Inc., 

USA). Pools of six replicates per sample were sequenced by Max Planck-Genome Centre 

(MP-GC, Cologne, Germany) using the Roche 454 GS junior sequencer. Barcoded 

amplicons from Dunsborough sediments were used for preparation of a TruSeq library and 

sequenced (paired end, 2x 250 bp) at MP-GC using an Illumina MiSeq instrument (Illumina 

Inc., USA). Barcoded amplicons from the 490 cm-deep subsurface sediment from site 

Janssand were prepared by replacing primer 785rev with 907rev (Muyzer et al., rev 1998; 

Klindworth et al., 2012). This primer covers a similar bacterial diversity as the reverse primer 

785rev used for surface sediments (see above, Figure 2), but it is known to bias against 

some phyla that are, however, low abundant or absent in marine sediments (Klindworth et 

al., 2012). PCR amplification and barcoded pyrosequencing was done by Research and 

Testing Laboratories, (Lubbock, Texas, USA) using a Roche 454 FLX sequencer. Samples 

from 10 cmbsf and 490 cmbsf were run in duplicate. Paired end reads were merged using 

the software package BBmap v4.3 (overlap >15 nucleotides). Finally, all amplicon reads 

were quality trimmed (>q20) and split by barcodes using MOTHUR (Schloss et al., 2009). 

Sequences less than 300 bp and those containing ambiguous nucleotides and long 

homopolymers (>7) were removed. In total 311,196 bacterial 16S rRNA reads were kept for 

taxonomic classification using the SILVAngs pipeline v115 (Quast et al., 2013) with a 

clustering at 98% identity. 

 

16S rRNA gene libraries from subsurface sediments and phylogenetic analysis 

From the 490 cm-deep subsurface core from Janssand sediment (April 2005) bulk DNA was 

extracted from 200 and 490 cmbsf according to Zhou et al. (1996) with an overnight 

incubation with proteinase K for improved cell lysis. The crude DNA extract obtained was 

purified using the Wizard DNA Cleanup system (Promega, Madison, WI, USA). PCRs were 

performed as described by Lenk et al. (2011) with the following thermocycler conditions: 

initial denaturation, 95°C for 5 min, followed by 25 cycles (490cmbsf) or 19 cycles (200 
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cmbsf) of 95°C for 1 min, 46°C for 1 min, 72°C for 3 min and final elongation of 72°C for 10 

min using Master Taq DNA polymerase. The products of 6 (200 cmbsf) and 10 (490 cmbsf) 

parallel PCR amplifications were pooled and purified (QIAquick PCR purification Kit, 

Quiagen, Hilden, Germany). Preparative gels were used to get the right size of the PCR 

amplificates. The gel-excised and extracted (QIAquick Gel Extraction Kit, Quiagen, Hilden, 

Germany) PCR products were cloned using the TOPO TA Sequencing Kit (Invitrogen, 

Carlsbad, CA, USA) according to the manufacturer´s specifications. Clone inserts were 

sequenced using the BigDye Terminator cycle sequencing kit, version 3.1 (Applied 

Biosystems, Darmstadt, Germany). Selected nearly full-length sequences were retrieved 

using the Sequencher 4.9 DNA sequence assembly and analysis software (Gene Codes 

Corporation, Ann Arbor, MI, USA). All sequences were checked for chimera with the online 

tool Bellerophon from Greengenes (Huber et al., 2004; DeSantis et al., 2006) and possible 

chimera sequences were excluded from further analysis.  

Phylogenetic trees were calculated by neighbor-joining (Jukes-Cantor correction) and 

PHYML (Guindon and Gascuel, 2003) maximum-likelihood analyses implemented in the 

ARB software package (Ludwig et al., 2004) using a 50% base-frequency filter for 

Gammaproteobacteria. RAxML trees (Stamatakis et al., 2004) were calculated using Gamma 

model of rate heterogeneity at the CIPRES cluster (version 7.2.745, 

http://www.phylo.org/46). Only sequences with more than 1200 base pairs (bp) were used for 

tree calculation. Topologies derived by the different approaches were compared to construct 

a consensus tree. Partial sequences were then inserted into the reconstructed tree by 

applying parsimony criteria, without allowing changes in the overall topology. Clones library 

preparation and nearly full-length 16S rRNA gene sequences from Janssand surface 

sediment have been published elsewhere (Lenk et al., 2011). 

 

CARD-FISH and sample preparation for flow cytometry 

For catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) sediment 

from sites Calais, Courseulles-sur-Mer and Janssand was fixed immediately after core 

retrieval as described in Lenk et al. (2011). Cells were detached from 100-200 μl sediment by 

ultrasonic treatment as described previously (Lenk et al., 2011). The sample was not 

centrifuged but directly after settlement of the sand grains the supernatant along with the 

detached cells were filtered onto 25 mm polycarbonate membrane filters with a 0.2 μm pore 

size (GTTP, Millipore, Eschborn, Germany). Permeabilization and CARD-FISH was 

performed as described by Pernthaler et al. (2002) without embedding in agarose with the 

following modifications. Endogenous peroxidases were inactivated in 3% H2O2 in Milli-Q 

water for 10 min at room temperature. The temperature for all hybridizations was 46°C and 

washing was performed at 48°C according to the protocol of Ishii et al. (2004). An overview 
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of oligonucleotide probes used in this study is shown in Supplementary Table 2. Novel 

oligonucleotide probes were designed for the JTB255-group using ARB and the SILVA 16S 

rRNA reference database release 117 (Pruesse et al., 2007). Please note that the 

Xanthomonadales, which includes the JTB255-clade, is not targeted by probe GAM42a, 

specific for most Gammaproteobacteria (Siyambalapitiya and Blackall, 2005). In line with 

this, the JTB255-clade could not be detected with probe GAM42a in double hybridizations 

with the JTB probe mix (Supplementary Table 2). Therefore, we summed up FISH counts of 

the JTB255 probe mix and of probe GAM42a to yield the total relative abundance by FISH-

detectable Gammaproteobacteria. 

 

Calculation of cell-specific carbon fixation rates  

The average cell-specific carbon fixation rates (g carbon/cell/h) were calculated from bulk 

measurements for a sorted population assuming 50,000 cells per sorting event according to 

the equation R = (A * M) / (a * n * t * L). A represents the activity of the sorted cell batch 

(50,000 cells) in Becquerel (Bq), M represents the molar mass of carbon (g/mol), a equals 

the specific activity of the tracer (Bq/mol), n represents the number of sorted cells, t 

represents the incubation time in hours and L equals the ratio of total DIC/14C DIC. Note that 

since the JTB255-group is not targeted by probe GAM42a, we added 14C carbon assimilation 

of the sorted JTB255-populations to the assimilation of cells sorted by probe GAM42a to 

yield the total amount of 14C assimilated by all FISH-detectable Gammaproteobacteria. 

 

Clone library of uptake [NiFe]-hydrogenase genes from Janssand sediment 

A library for the gene encoding the large subunit of an uptake [NiFe]-hydrogenase was 

established using DNA extracted from sediment of the upper cm, sulfide transition zone and 

sulfidic layer collected at site Janssand in March 2012. The hydrogenase gene was amplified 

with the general primers HUPLX1 (forward) and HUPLW2 (reverse) (Csáki et al., 2001). PCR 

reactions (final volume of 20 μl) contained 10 pmol of each primer, 6.25 nmol of each dNTP, 

1x Master Taq Buffer and 1U of Taq DNA. Thermocycler conditions were as follows: initial 

denaturation, 95°C for 5 min, followed by 35 cycles of 95°C for 30 s, 65°C for 30 s, 72°C for 

2 min and final elongation of 72°C for 10 min. Amplified PCR products were cloned using 

TOPO TA kit for sequencing (pCR4-TOPO, Invitrogen, Germany) and sequenced with the 

Big Dye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Darmstadt, Germany) 

according to manufacturer’s instructions. Alternatively, clones were sent for Sanger-

sequencing to GATC Biotech AG (Konstanz, Germany). Phylogenetic trees from the 

deduced amino acid sequences were constructed in ARB (Ludwig et al., 2004) using a 

maximum-likelihood algorithm (RAxML) (Stamatakis et al., 2004) and the JTT amino acid 

substitution matrix with 100 bootstrap replicates. 
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cDNA libraries and metatranscriptomic mapping 

In April 2013 sediment was sampled from the sulfide transition zone at site Janssand and 

immediately frozen on dry ice. Total RNA was extracted from sediment in triplicates (one ml 

each) by the Vertis Biotechnologie AG (Freising, Germany) and bacterial rRNA was depleted 

with the Ribo-Zero™ Magnetic Kit (for Bacteria) (Epicentre, Madison, USA). Barcoded RNA 

TrueSEQ libraries were constructed from RNA extractions and paired-end-sequenced using 

Illumina HiSeq2000 (MP-GC, Cologne, Germany). After quality trimming at a Phred score 28 

using Nesoni clip (v.0.115) reads were mapped to reference databases of nucleotide 

sequences encoding key genes for sulfur oxidation (Sox multienzyme system, soxB; reverse 

dissimilatory sulfite reductase, dsrAB; adenosine-5'-phosphosulfate reductase, aprA), 

hydrogen oxidation (uptake [NiFe]-hydrogenase), ammonia oxidation (ammonia 

monooxygenase, amoA), carbon fixation (ribulose-1,5-bisphosphate carboxylase/oxygenase 

form I, cbbl; ribulose-1,5-bisphosphate carboxylase/oxygenase form II, cbbm; ATP citrate 

lyase, aclAB) and to the single amplified genome (SAG) using Bowtie2 (Langmead and 

Salzberg, 2012) with the following settings: match score = 0, mismatch penalty = 5, gap open 

penalty = 5, gap extension penalty = 5. The minimum alignment score for an alignment 

considered as valid was defined by -0.25 multiplied by read length for mapping to sulfur and 

hydrogen oxidation genes as well as for mapping on the SAG and -0.5 multiplied by read 

length for mapping to carbon fixation genes resulting in a percent identity cut-off of 95% and 

90%, respectively. The percent identity cut-off for mapping to ammonia oxidation genes was 

set at 70%. The numbers of unique mapped reads were normalized by dividing the number 

of cDNA reads per gene by gene length multiplied by 1000 and adjusting for the total size of 

the data set. Details on reference databases are given in Supplementary Table 4. Reference 

sequences of sulfur oxidation genes (aprA, dsrAB and soxB) from site Janssand have been 

published previously (Lenk et al., 2011; Lenk et al., 2012). 

 

A single cell genome of the SSr-clade from Janssand sediment 

In January 2011, sediment from a 10 cm-deep sediment core was sampled at site Janssand. 

After immediate transfer to the lab the upper two cm including the oxidized and sulfide 

transition zone were mixed and one ml was transferred to a 15 ml plastic tube. After adding 3 

ml of sterile-filtered sea water the slurry was vortexed at maximum speed for 5 min. After 

settlement of sand grains the supernatant was filtered through a 3 μm pore-size membrane. 

The filtrate was cryopreserved with N,N,N-trimethylglycine (“glycine betaine”) (Sigma-Aldrich, 

USA) at a final concentration of 4% according to Cleland et al. (2004), stored at -80°C and 

shipped overseas. Single-cell sorting and whole genome amplification via multiple 

displacement amplification (MDA) were performed at the Bigelow Laboratory Single Cell 

Genomics Center (https://scgc.bigelow.org) as described by Swan et al. (2011). PCR-
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screening for 16S rRNA genes of amplified single cell genomes was performed at the MPI 

Bremen. A single amplified genome (SAG) encoding a single, high quality 16S rRNA gene 

sequence was sent to Max Planck Genome Centre Cologne for MiSeq (Illumina) sequencing 

yielding 9,557,547 PE-reads. Reads were assembled with the CLC Genomics software with 

standard settings. Details on assembled data are given in Supplementary Table 3. The SAG 

assemblies were auto-annotated using the Joint Genome Institute (JGI) IMG-ER pipeline 

(Markowitz et al., 2012). The assembled data set was screened for contamination using k-

mer analysis within the IMG-ER pipeline. Finally, two scaffolds showing a k-mer pattern 

divergent from bulk scaffolds were removed from the dataset. In addition, universal single 

copy genes (Ciccarelli et al., 2006; Creevey et al., 2011), ribosomal proteins and tRNA were 

manually checked for a possible contamination by examining their closest BLAST hits. 

 

Metagenomic sequencing from hydrothermal chimney (Manus Basin) and targeted re-

assembly of metagenomic bins 

Total DNA from a hydrothermal chimney biofilm obtained from the Manus Basin 

hydrothermal field (Reeves et al., 2011) was shotgun-sequenced on an Illumina HiSeq 

sequencer. After quality clipping, sequence reads were normalized to a k-mer depth value of 

40 with BBnorm (BBmap package) and assembled using the IDBA-UD iterative assembler 

(Peng et al., 2012). Scaffolds from the metagenome assembly larger than 1000 bp were 

imported into MetaWatt (Strous et al., 2012) and binned by tetranucleotide (N4) frequencies 

(Teeling et al., 2004) at a high confidence (98%) threshold. Open reading frames (ORFs) 

were predicted by Prodigal v 2.6.1 (Hyatt et al., 2010) and scaffolds were taxonomically 

classified by a BLASTP search of the translated ORFs against the NCBI reference Genome 

database with the BLASTP based module of MetaWatt. N4 based bins were corrected 

manually based on GC content, coverage, and consistency of taxonomic classification. 

Selected genome bins were exported from MetaWatt and used as a reference for mapping of 

raw unassembled reads with BBmap. The initial mapping was performed with a minimum 

identity threshold of 80%. Mapped reads were subsequently assembled de-novo using the 

SPAdes assembler V3.1.1 (Bankevich et al., 2012) in single cell mode with k-mer size 

ranging from 21 to 121 in steps of 10 and 121 as the maximum k-mer size. The new 

assembly was again binned by N4-frequency, classified with BLASTP and manually refined 

based on coverage and GC content in MetaWatt. Raw reads were again mapped onto the 

refined genome bin with more stringent parameters (minimum sequence identity of 95%) and 

de-novo assembled with SPAdes. Binning, mapping and de-novo assembly with SPAdes 

were repeated 7 times with increasing read mapping stringency (up to 98%). After the third 

round of re-assembly binned contigs larger than 10 kb were supplied to SPAdes as “trusted 

contigs”. The completeness and possible redundancy of the final genome bin was evaluated 
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by CheckM lineage-specific workflow and by the HMMER3 (Eddy, 2008) based “Six-frame 

Pfam” module search against a conserved single-copy gene set (Campbell et al., 2013) in 

MetaWatt. 

 

Fosmid endsequence analysis 

DNA from the 490 cm-deep subsurface sediment core sampled in 2005 (Gittel et al., 2008) 

was extracted according to Zhou et al. (1996). A metagenomic fosmid library was generated 

comprising 13,680 clones was established as described previously (Mussmann et al., 2005). 

Five thousand clones were randomly selected for fosmids-end Sanger-sequencing on 

ABI3730XL capillary sequencers (PE Applied Biosystems, USA) by using fosmid-specific 

primers. End sequences were translated in all possible six reading frames. All reading 

frames were searched with BLAST against the NCBI-nr database. Reading frames with 

significant results (<1e-05 E-value) were considered as protein coding sequences. All protein 

coding sequences were taxonomically affiliated by BLAST against an in-house database of 

whole/draft genomes sequences (~10,000) by using a Lowest Common Ancestor (LCA) 

algorithm to assign an end-sequence to a particular taxonomic rank and group. 
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Supplementary Figure 1 Characteristic signatures of sediment samples analyzed by flow 

cytometry. Density dot plot diagrams of green fluorescence plotted versus 90° light scatter. 

Each diagram showed 250,000 analyzed events from hybridization with the negative-control 

probe NON338 (a), NON338 mixed with fluorescent beads (b), EUBI-III (c) and 

GAM1030/GAM446 (d). The square indicates the sort-gate for cell sorting (d).  

 

 
Supplementary Figure 2 Correlation of 14C carbon activity with abundances of sorted 

Gammaproteobacteria cells and fluorescent beads. To determine the unspecific background 

from 14C bicarbonate incubations, sediments slurries were supplemented with fluorescent 

beads, hybridized with the negative control probe (NON338) and then sorted for liquid 

scintillography. 14C carbon activity is given in Becquerel (Bq). Error bars indicate the standard 

deviation (SD) of triplicate sorting. 
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Supplementary Figure 3 16S rRNA phylogeny of the SSr-, the Acidiferrobacter-related and 

the JTB255-clades. Phylogenetic analysis of nearly full-length 16S rRNA gene sequences of 

three gammaproteobacterial clades abundant and widespread in marine sediments and their 

closest known relatives. A more detailed view is given in Supplementary Figure 4. The 

consensus tree was calculated using RAxML, and Phylip maximum likelihood and Neighbor 

joining algorithms. The taxonomy refers to the SILVA database, release 117 (Pruesse et al., 

2007). 
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Supplementary Figure 4 Detailed phylogenetic reconstruction of nearly full length and 

partial 16S rRNA gene sequences of the SSr-, the Acidiferrobacter-related and the JTB255-

clades. Sequences in blue were recovered from 200 or 490 cmbsf, sequences in red were 

recovered from the 0-12 cmbsf. OTUs were defined for sequences with 100% sequence 

identity. Target sequences of probes used for FISH counting and flow sorting are boxed in 

green. The consensus tree was calculated using RAxML, and Phylip maximum likelihood and 

Neighbor joining algorithms. Partial sequences were added using the quick-add parsimony 

tool in ARB. Note that in previous publications the JTB255-clade according to an outdated 

taxonomy were falsely classified as belonging to the Sinobacteraceae. The taxonomy used in 

this paper is based on to the SILVA database, release 117 (Pruesse et al., 2007). 
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Supplementary Figure 5 Epifluorescence images of cells of the gammaproteobacterial 

JTB255-clade in Janssand sediment (April 2014). To confirm identity of cells targeted by our 

“JTB probe mix" (probes JTB843 + JTB1275 + JTB1270), we performed a double 

hybridization with another JTB255-specific probe (“probe KH”, unpublished, Katy Hoffmann). 

“JTB probe mix", Alexa594, red fluorescence (a), probe KH, Alexa488, green fluorescence 

(b), overlay of images (c). In blue: DAPI-stain.   

 

 
Supplementary Figure 6 14C carbon fixed by gammaproteobacterial clades identified in this 

study. 14C carbon fixation quantified in flow-sorted cells of the JTB255- and SSr-clades from 

the uppermost sediment layer (surface, 0-1 cmbsf) and from the sulfide transition zone 

(trans.) incubated with 14C bicarbonate. Batches of 50,000 cells were sorted for 

quantification. 14C carbon activity is given in Becquerel (Bq). 
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Supplementary Figure 7 Relative contribution of bacterial and archaeal dark carbon fixation 

at site Janssand from triplicate incubations. 

 

 
Supplementary Figure 8 Phylogeny of AprA and abundance of metatranscriptomic reads. 

Phylogenetic tree based on maximum-likelihood (RAxML) of AprA amino acid sequences 

from site Janssand (in bold) and normalized abundance of their transcripts. Circles indicate 

lineages with > 70% (closed) and > 50% (open) RAxML bootstrap support. The bar indicates 

10% sequence divergence. 
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Supplementary Figure 9 Phylogenetic tree based on maximum-likelihood (RAxML) of 

Uptake [NiFe]-hydrogenase amino acid sequences from site Janssand (in bold) and 

normalized abundance of their transcripts. Circles indicate branches with >70% (closed) and 

>50% (open) RAxML bootstrap support. The bar indicates 10% sequence divergence. 

 

 

 
Supplementary Figure 10 Co-localization of gammaproteobacterial rDsr-operon and hupSL 

genes encoding an uptake [NiFe]-hydrogenase on a metagenomic fosmid clone retrieved 

from Janssand sediments. 
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Supplementary Figure 11 Normalized number of metatranscriptomic reads recruited by 

genes of a single cell genome affiliating with to the SSr-clade (WSgam209). The top 20 

transcribed genes are shown including genes for carbon fixation, sulfur and hydrogen 

oxidation. IMG gene IDs: 2609851537=hypothetical, 2609851423=RuBisCO small subunit, 

2609851536=hypothetical, 2609851422=RuBisCO large subunit, 2609852573=RelE/StbE 

family, 2609851428=carboxysome shell protein, 2609852572=transcriptional regulator, 

2609852972=Txe/YoeB, 2609851841=predicted membrane protein, 2609852973=prevent-

host-death family protein, 2609853218=helicase conserved C-terminal domain, 

2609853000=APS reductase, 2609851840=alpha/beta hydrolase, 2609851425=carbonic 

anhydrase, 2609852733=type III restriction enzyme Res subunit, 

2609852971=lactoylglutathione lyase, 2609851900=type I restriction-modification system, 

2609851882=hypothetical, 2609853066=transposase. Note, that the sequence of the uptake 

[NiFe]-hydrogenase was recovered by PCR derived from MDA product of WSgam209 and is 

therefore not included in the IMG/ER of WSgam209 submission. 
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Supplementary Table 1 Study sites and performed experiments 

Site/Country 
Name 
code 

Sampling position       
(Lat, Lon) Sampling time 

Surface 
temperature 

(°C) 

 Sulfide in sulfide 
transition zone 

(μM) 

Sampling depth (cm) 
(A=surface, B= sulfide 
transition, C= sulfidic) 

Performed 
experiments 

Intertidal sands:         
Königshafen/GER KH 55.03432N, 8.42428E April 2013 6 0-35*†  A: 0-1, B: 3-4, C: 9-10 a 
Janssand/GER JS 53.73668N, 7.69893E October 2009 - 0-1000‡  B: 1-2  a, b§ 
Janssand/GER JS 53.73668N, 7.69893E March 2012 8 0-1000‡ A: 0-1, B: 7-8, C: 12-13 c 
Janssand/GER JS 53.73668N, 7.69893E April 2013 13 0-1000‡ A: 0-1, B: 2-3, C: 6-7 a, d 
Janssand/GER JS 53.73668N, 7.69893E April 2014 - 0-1000‡ B: 2-3 b, e 
Yerseke/NL YS 51.45950N, 4.08026E October 2012 15 - A: 0-1, B: 5-6, C: 7-8 a 
Calais/FRA CA 50.99695N, 1.98212E October 2012 16 - A: 0-1, B 18-19, C: 22-23 a 
Calais/FRA CA 50.99695N, 1.98212E July 2013 21 7-13  A: 0-1, B: 2-3, C: 8-9 b, e 
Courseulles-sur-
Mer/FRA CS 49.33955N, 0.46952W October 2012 18 - A: 0-1, B: 2-3, C: 6-7 a 
Courseulles-sur-
Mer/FRA CS 49.33955N, 0.46952W July 2013 19 0 A: 0-1, B: 15-16, C: 21-22 b, e 
Mont-St-Michel/FRA MM 48.61387N, 1.74368W October 2012 18 - A: 0-1, B: 5-6, C: 7-8 a 
Cairns/AUS CR 16.91796S, 145.77678E December 2013 25 - B: 1-1.5, C: 6.5-7 a 
Carlo Point/AUS CP 25.89598S, 153.05691E December 2013 26 - A: 0-0.5, C: 6.5-7 a 
Nudgee Beach/AUS NB 27.34243S, 153.10273E December 2013 26 - A: 0-0.5, B: 4.5-5, C: 8.5-9 a 
Dunsborough/AUS DB 33.61745S, 115.11572E December 2014 25 - A: 0-1, B: 1-3, C: 6-7 a 
        
Sublittoral sands¶:        
Noah_A/GER NS1 53.98767N, 6.23566E March 2014 - - A: 0-2, B: 2-5 a 
Noah_B/GER NS2 53.98983N, 6.88150E March 2014 7 - A: 0-2, B: 2-5 a 
CCPδ/GER NS3 54.16883N, 7.99150E March 2014 6 - A: 0-2, B: 2-5 a 

 
- no information available; a 16S rRNA gene sequencing; b 14C DIC incubations; c hydrogenase gene library; d metatranscriptomics; e CARD-FISH 

*(de Beer et al., 2005); †(Thiermann et al., 1996); ‡(Jansen et al., 2009); §(Lenk et al., 2011); ¶water depth: Noah_A, 29 m; Noah_B, 29 m; CCPδ, 20 m



Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments 
 

 67  

Supplementary Table 2 Oligonucleotide probes used in this study 

Probe Specificity Sequence (5'-3') 
FA*  

Reference (%) 

EUB I-III† Bacteria GCWGCCWCCCGTAGGWGT 35 
(Amann et al., 1990; 
Daims et al., 1999) 

ARCH915† Archaea GTGCTCCCCCGCCAATTCCT 35 
(Stahl and Amann, 

1991) 
NON338† Nonsense probe ACTCCTACGGGAGGCAGC 35 (Wallner et al., 1993) 

ROS537† 
Roseobacter-clade 
bacteria CAACGCTAACCCCCTCC 35 (Eilers et al., 2001) 

CF319a† 
Cytophaga/ 
Flavobacteria TGGTCCGTRTCTCAGTAC 35 (Manz et al., 1996) 

GAM42a†‡ 
Gamma-
proteobacteria GCCTTCCCACATCGTTT 35 (Manz et al., 1992) 

BET42a§ Betaproteobacteria GCCTTCCCACTTCGTTT 35 (Manz et al., 1992) 
GAM209†‡ SSr-group CTACTAGTGCCAGGTCCG 25 (Lenk et al., 2011) 
GAM209c§  CTAATAGTGCCAGGTCCG 25 (Lenk et al., 2011) 

GAM1030† 
Acidiferrobacter-
related CCTGTCAACCAGTTCCCG 25 (Lenk et al., 2011) 

GAM1030c§  CCTGTCAATCAGTTCCCG 25 (Lenk et al., 2011) 

GAM446† 
Acidiferrobacter-
related ACCCGCAACTGTTTCCTC 25 (Lenk et al., 2011) 

GAM446c1§  ACCCTAAGCTTTTCCTC 25 (Lenk et al., 2011) 
GAM446c2§  ACCCTGAGCTTTTCTTC 25 (Lenk et al., 2011) 
GAM446c3§  ACCTTAAGCTTTTCTTC 25 (Lenk et al., 2011) 
GAM446c4§  ACCAAAAGCTTTTCTTC 25 (Lenk et al., 2011) 
GAM446c5§  ACCTTRAGCTTTTCCTC 25 (Lenk et al., 2011) 
GAM446h1§  GGTCGCGGGATATTA 25 (Lenk et al., 2011) 
GAM446h2§  CCYACTGAAAGTGCTT 25 (Lenk et al., 2011) 
JTB1270† JTB255-group GAGCTTTAAGGGATTAGCGCACCA 40 This study 
JTB1270h¶  TTGCTGGTTGGCAACCCTCTGTAT  40 This study 
JTB843†‡ JTB255-group TGCGACACCGAGGGACAR 10 This study 
JTB843c1§  TTCGACACCGAGGGACAR 10 This study 
JTB843c2§  TGCGACACCGAGGGGCAR 10 This study 
JTB843c3§  TGCGACACCGAAAGACAR 10 This study 
JTB843c4§  GGCGACACCGAGGGGCAR 10 This study 
JTB843c5§  TGCGACACCGAAGGACTR 10 This study 
JTB843us¶  TCCCCCAACATCTAGTTCTCA 10 This study 
JTB843ds¶  CGGAGAACTTAACGCGTTAGC 10 This study 
JTB1275†‡ JTB255-group AGCTTTAAGGGATTAGCG 10 This study 
JTB1275c1§  AGCTTTAAGGGATTAGCG 10 This study 
JTB1275c2§  AGCTTTAAGGGATTAGCA 10 This study 
JTB1275c3§  AGCTTTAAGGGATTAGCT 10 This study 
JTB1275c4§  CGCTTTAAGGGATTAGCT 10 This study 
JTB1275us¶  TTGGCAACCCTCTGTACTCGC 10 This study 
JTB1275ds¶  ACTCCATACCGGACTACGACG 10 This study 
 

* Formamide concentration (v/v) in hybridization buffer 
† Probe labeled with horseradish peroxidase (HRP) 
‡ Probe was applied with competitor  
§ Unlabeled competitor oligonucleotide  
¶ Unlabeled helper oligonucleotide 
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Supplementary Table 3 General statistics of assemblies of a single cell genome (recovered 

from site Janssand) affiliating with the SSr-clade (WSgam209) and a metagenomic bin 

affiliating with the Acidiferrobacter-clade (recovered from a deep-sea hydrothermal chimney) 

  WSgam209  Uncultured 
Acidiferrobacter 

  # % of total   # % of total 
DNA, total number of bases  1,922,127 100   2,041,809 100 
DNA coding number of bases  1,660,663 86.4   1,933,109 94.7 
G+C content  43.8    68.9 
DNA scaffolds  311    66  
Genes total number  2,008 100   2,092 100 
Protein coding genes  1,989 99.1   2,059 98.5 
Protein coding genes with function prediction  1,488 74   1,748 83.6 
Protein coding genes without function 
prediction 501 25   311 14.9 

RNA genes 19 1   33 1.6 
tRNA genes 11 0.5   27 1.3 

       

estimated completeness 20%*/22%†     89%‡/71.9%§ 

 
* expressed as % of tRNAs is next cultured relative Leucothrix mucor (Grabovich et al., 1999). 
† expressed as % of universal single copy genes in SSr_104 (28) out of 40 (Ciccarelli et al., 2006; 

Creevey et al., 2011). 
‡ CheckM (Matsen et al., 2010; Hyatt et al., 2012; Parks et al., 2015) 
§ Six Frame PFAM embedded in Metawatt (Strous et al., 2012; Campbell et al., 2013) 
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Supplementary Table 4 Overview of metatranscriptomic reads mapped on 

reference databases 

Reference 
database 

No. of unique mapped cDNA reads 

Replicate A 
(29029446 reads) 

Replicate B 
(29726577 reads) 

Replicate C 
(33590664 reads) 

aprA 
(220 sequences) 603 582 669 
dsrAB 
(133 sequences) 1927 1972 2078 
soxB 
(166 sequences) 226 202 293 
Uptake Ni, Fe 
hydrogenase 
(203 sequences) 658 532 685 
cbbm/cbbl 
(250 sequences) 196 190 260 
aclAB 
(269 sequences) 0 6 2 
amoA (bacteria) 
(6999 sequences) 2 0 1 
amoA (archaea) 
(8544 sequences) 3 5 3 
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Supplementary Table 5 Selected IMG gene IDs for WSgam209 and the Acidiferrobacter metagenomic bin 

IMG/ER 
Gene ID Gene product name (IMG/ER) 

Type of genome: organism 
(origin) 

Sequence 
length 

(aa) COG ID COG name Pfam ID 

2609851422 

Ribulose 1,5-bisphosphate 
carboxylase, large subunit, or a 
RuBisCO-like protein 

single cell genome SSr-group: 
WSgam209 (Janssand sediment) 471 COG1850 

Ribulose 1,5-bisphosphate 
carboxylase, large subunit, 
or a RuBisCO-like protein pfam02788 

2609851423 
Ribulose bisphosphate 
carboxylase small subunit 

single cell genome SSr-group: 
WSgam209 (Janssand sediment) 113 COG4451 

Ribulose bisphosphate 
carboxylase small subunit pfam00101 

2609851424 
Carboxysome shell peptide 
mid-region 

single cell genome SSr-group: 
WSgam209 (Janssand sediment) 791   pfam12288 

2609851425 
carboxysome shell carbonic 
anhydrase 

single cell genome SSr-group: 
WSgam209 (Janssand sediment) 514     pfam08936 

2609851426 carboxysome peptide A 
single cell genome SSr-group: 
WSgam209 (Janssand sediment) 84 COG4576 

Carboxysome shell and 
ethanolamine utilization 
microcompartment protein 
CcmK/EutM pfam03319 

2609851427 carboxysome peptide B 
single cell genome SSr-group: 
WSgam209 (Janssand sediment) 84 COG4576 

Carboxysome shell and 
ethanolamine utilization 
microcompartment protein 
CcmK/EutM pfam03319 

2609851482 
cytochrome c oxidase, subunit 
I 

single cell genome SSr-group: 
WSgam209 (Janssand sediment) 531 COG0843 

Heme/copper-type 
cytochrome/quinol oxidase, 
subunit 1 pfam00115 

2609851483 
cytochrome c oxidase, subunit 
II 

single cell genome SSr-group: 
WSgam209 (Janssand sediment) 377 COG1622 

Heme/copper-type 
cytochrome/quinol oxidase, 
subunit 2 pfam13442 

2609851866 

hydrogenase 
expression/formation protein 
HypE 

single cell genome SSr-group: 
WSgam209 (Janssand sediment) 333 COG0309 

Hydrogenase maturation 
factor pfam00586 

2609851868 

hydrogenase 
expression/formation protein 
HypD 

single cell genome SSr-group: 
WSgam209 (Janssand sediment) 364 COG0409 

Hydrogenase maturation 
factor pfam01924 

2609851869 
hydrogenase accessory protein 
HypB 

single cell genome SSr-group: 
WSgam209 (Janssand sediment) 278 COG0378 

Ni+binding GTPase 
involved in regulation of 
expression and maturation 
of urease and hydrogenase pfam02492 

2609851881 hydrogenase (Ni,Fe) small single cell genome SSr-group: 271     pfam01058 
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subunit (hydA) WSgam209 (Janssand sediment) 

2609852594 
Ni,Fe, NiFeSe hydrogenase 
small subunit C-terminal 

single cell genome SSr-group: 
WSgam209 (Janssand sediment) 144   pfam14720 

2609852596 
Ni,Fe-hydrogenase 2 integral 
membrane subunit HybB 

single cell genome SSr-group: 
WSgam209 (Janssand sediment) 377 COG5557 

Ni/Fe-hydrogenase 2 
integral membrane subunit 
HybB pfam03916 

2609852597 
Ni,Fe-hydrogenase I large 
subunit 

single cell genome SSr-group: 
WSgam209 (Janssand sediment) 575 COG0374 

Ni,Fe-hydrogenase I large 
subunit pfam00374 

2609852598 
hydrogenase 
expression/formation protein 

single cell genome SSr-group: 
WSgam209 (Janssand sediment) 199 COG0680 

Ni,Fe-hydrogenase 
maturation factor pfam01750 

2609852649 Carbonic anhydrase 
single cell genome SSr-group: 
WSgam209 (Janssand sediment) 202 COG0288 Carbonic anhydrase pfam00484 

2609852672 
hydrogenase maturation 
protease 

single cell genome SSr-group: 
WSgam209 (Janssand sediment) 173 COG0680 

Ni,Fe-hydrogenase 
maturation factor   

2609853000 

dissimilatory adenylylsulfate 
reductase alpha subunit 
precursor (EC 1.8.99.2) 

single cell genome SSr-group: 
WSgam209 (Janssand sediment) 524 COG1053 

Succinate 
dehydrogenase/fumarate 
reductase, flavoprotein 
subunit pfam00890 

       

2616652017 
Sulfite oxidase subunit A 
(SoeA) 

metagenomic bin 
Acidiferrobacter_a7 (black 
smoker chimney, Manus Basin) 943 COG0243 

Anaerobic selenocysteine-
containing dehydrogenase pfam04879 

2616652018 
Sulfite oxidase subunit A 
(SoeB) 

metagenomic bin 
Acidiferrobacter_a7 (black 
smoker chimney, Manus Basin) 212 COG0437 

Fe-S-cluster-containing 
dehydrogenase component pfam13247 

2616652019 
Sulfite oxidase subunit A 
(SoeC) 

metagenomic bin 
Acidiferrobacter_a7 (black 
smoker chimney, Manus Basin) 313 COG3302 

DMSO reductase anchor 
subunit pfam04976 

2616652250 

ribulose 1,5-bisphosphate 
carboxylase large subunit (EC 
4.1.1.39) 

metagenomic bin 
Acidiferrobacter_a7 (black 
smoker chimney, Manus Basin) 472 COG1850 

Ribulose 1,5-bisphosphate 
carboxylase, large subunit, 
or a RuBisCO-like protein pfam02788 

2616652251 

ribulose 1,5-bisphosphate 
carboxylase small subunit (EC 
4.1.1.39) 

metagenomic bin 
Acidiferrobacter_a7 (black 
smoker chimney, Manus Basin) 121 COG4451 

Ribulose bisphosphate 
carboxylase small subunit pfam00101 

2616652516 
thiosulfate oxidation protein 
SoxX 

metagenomic bin 
Acidiferrobacter_a7 (black 
smoker chimney, Manus Basin) 122   pfam00034 

2616652517 
thiosulfate oxidation protein 
SoxY 

metagenomic bin 
Acidiferrobacter_a7 (black 
smoker chimney, Manus Basin) 155 COG5501 Predicted secreted protein pfam13501 
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2616652518 
thiosulfate oxidation protein 
SoxZ 

metagenomic bin 
Acidiferrobacter_a7 (black 
smoker chimney, Manus Basin) 105   pfam08770 

2616652519 
thiosulfate oxidation protein 
SoxA 

metagenomic bin 
Acidiferrobacter_a7 (black 
smoker chimney, Manus Basin) 278       

2616652520 
thiosulfate oxidation protein 
SoxB 

metagenomic bin 
Acidiferrobacter_a7 (black 
smoker chimney, Manus Basin) 579 COG0737 

2',3'-cyclic-nucleotide 2'-
phosphodiesterase/5'- or 3'-
nucleotidase, 5'-
nucleotidase family pfam02872 
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Supplementary Table 6 Relative cell abundance at site Courseulles-sur-Mer (CS), Calais 

(CA) and Janssand (JS) 

    Relative Abundance (%) 
  CS CA JS May 2014 
Probes Specificity Surface Trans. Surface Trans. Trans. 
EUBI-III Bacteria 95.3 92.1 94.7 90.9 94.4 
ARCH915 Archaea 0.9 0.9 1.3 1.2 1.2 
GAM42a Gammaproteobacteria 13.5 14.6 15.1 15.3 16.3 
JTB1270 JTB255-group 6.2 5.1 5.1 3.4 5.3 
GAM209 SSr-group 0.6 1.1 0.9 0.5 1.0 
GAM1030/ 
GAM446 

Acidiferrobacter-
related 2.1 2.1 1.7 0.9 3.1 

 
Note: GAM42a + JTB1270 target most of the Gammaproteobacteria (Siyambalapitiya and Blackall, 
2005) 

 
 
 
Supplementary Table 7 Phylogenetic affiliation of fosmid 

endsequences recovered from a metagenomic fosmid library from 

shallow subsurface sediments (490 cm sediment depth), Janssand April 

2004 

  No. of 
reads 

% of total archaeal and bacterial 
reads 

Archaea 60 1 
Bacteria 3992  
Bacterial and archaeal 
reads 4052  
Gammaproteobacteria 979 24 
Planctomycetes 505 12 
Alphaproteobacteria 303 7 
Deltaproteobacteria 301 7 
Actinobacteria 289 7 
Firmicutes 173 4 
Betaproteobacteria 112 3 
Bacteroidetes 95 2 
Cyanobacteria 71 2 
Chloroflexi 72 2 
Acidobacteria 16 0.4 
Other Bacteria 1076 26 
unassigned reads 5118  
all reads 9170   
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Supplementary Table 8 Cell-specific carbon fixation rates and relative abundance of cells 

labeled by microautoradiography 

Sampling 
site Population 

Population-specific 
CO2 fixation rate 
(fg C cell-1 d-1) 

MAR 
positive cells  

(%) 

Cell-specific CO2 
fixation rate  

(fg C cell-1 d-1) 
Courseulles All bacteria 0.3 - - 
surface Gammaproteobacteria 1.5 46 3.2 
Jul13 JTB255-group 1.1 - - 
Courseulles All bacteria 0.4 - - 
transition Gammaproteobacteria 2.0 49 4.0 
Jul13 JTB255-group 2.1 - - 
Calais All bacteria 0.4 - - 
surface Gammaproteobacteria 1.6 - - 
Jul13 JTB255-group 1.1 - - 
Calais All bacteria 0.6 - - 
transition Gammaproteobacteria 3.0 50 5.9 
Jul13 JTB255-group 2.2 - - 
Janssand All bacteria 0.3 - - 
transition Gammaproteobacteria 1.1 - - 
Apr14 JTB255-group 1.5 - - 
 Acidiferrobacter-related 3.5 - - 
 SSr-group 2.5 - - 
  Archaea 0.9 - - 

Janssand All bacteria 0.9 
22 (Lenk et 
al., 2011) 4.2 

surface Gammaproteobacteria 2.4 
40 (Lenk et 
al., 2011) 6.4 

Jun09 SSr-group 1.9 
25 (Lenk et 
al., 2011) 7.5 

Janssand All bacteria 0.6 
18 (Lenk et 
al., 2011) 3.3 

surface Gammaproteobacteria 1.9 
43 (Lenk et 
al., 2011) 4.4 

Oct09 SSr-group 1.6 
25 (Lenk et 
al., 2011) 6.4 

 
- not determined 
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Abstract 

Molecular hydrogen (H2) is the key intermediate in the anaerobic degradation of organic 

matter, as it controls the thermodynamic balance between fermentation and terminal 

respiration. Marine sediments are global hot spots of anaerobic carbon mineralization and 

sequestration, and thus H2 cycling, but the involved H2ases and the corresponding 

microorganisms are unknown. We combined metagenomics, single-cell (meta)genomics and 

metatranscriptomics to investigate the diversity and expression of H2ase genes in a marine 

sediment that was shown to consume H2 under micro-oxic and anoxic conditions. 

Metagenomic analysis revealed exceptionally high frequencies of H2ase reads, the majority 

of which belonged to H2-evolving [FeFe]- and to group 1 uptake and group 3 bidirectional 

[NiFe]-H2ases. Corresponding transcriptome reads suggested that O2-tolerant 1d uptake 

[NiFe]-H2ases were relatively more abundant in the uppermost sediment layer (0-1 cm), while 

O2-sensitive 1b uptake [NiFe]-H2ases were relatively more abundant in the deeper layers (2-

8 cm). Single-cell genomics allowed us to identify the organisms encoding highly expressed 

H2ases. In oxic sediments, the JTB255-marine benthic group (MBG)/Gammaproteobacteria 

and Flavobacteriaceae/Bacteroidetes were the most likely H2 consumers, whereas sulfate-

reducing Desulfobacteraceae/Deltaproteobacteria likely oxidized H2 in deeper, anoxic 

sediments. Notably, the uncultured, sulfate-reducing Sva0081-MBG consistently accounted 

for around half of transcripts of detected uptake [NiFe]-H2ases from sulfate-reducing 

microorganisms. These distinct bacterial groups are ubiquitous and abundant in marine 

sediments and likely scavenge H2 under distinct oxygen regimes. In particular, sulfate-

reducing Desulfobacteraceae seem to play a central role in maintaining the anaerobic food 

chain by removing H2. 
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Introduction  

Coastal sediments are hot spots of organic matter mineralization in the oceans (Hedges and 

Keil, 1995). Since oxygen is rapidly consumed in organic-rich marine sediments, a large 

fraction of organic matter is degraded anaerobically, e.g. via fermentation and sulfate 

respiration (Jørgensen, 1982). When oxygen is depleted, fermenting bacteria release organic 

acids, alcohols and molecular hydrogen (H2) as main end products that are in turn consumed 

by different anaerobic terminal respiration processes. In this anaerobic food chain, H2 is 

central for energy transfer and thermodynamic control of “virtually every step of organic 

matter breakdown” (Hoehler et al, 1998). Accumulation of H2 inhibits fermentative reactions, 

hence scavenging of H2 by H2-consuming bacteria is essential to make fermentation 

thermodynamically possible (Monetti and Scranton, 1992). Therefore, the production and 

consumption of H2 are tightly coupled so that H2 is generally short-lived and present only in 

nanomolar concentrations in marine sediments (Novelli et al, 1987; Novelli et al, 1988; 

Michener et al, 1988).  

Diverse Bacteria and Archaea consume H2, e.g. during sulfate reduction, acetogenesis, 

methanogenesis and anoxygenic phototrophy (Schwartz et al, 2013). In anoxic aquatic 

sediments and water-logged soils sulfate-reducing microorganisms (SRM) and 

methanogenic Archaea compete for H2 in the terminal steps of the anaerobic food chain 

(Winfrey and Zeikus, 1977; Oremland and Taylor, 1978; Oremland and Polcin, 1982). Since 

SRM have a higher affinity to H2, they can successfully outcompete methanogens even at 

low sulfate concentrations (Pester et al, 2012). Thus, sulfate respiration is the major H2 

consuming process in marine surface sediments (Oremland and Taylor, 1978), whereas 

methanogenesis is prevalent in the sulfate-depleted subsurface sediments (D’Hondt et al, 

2002). 

Hydrogenases (H2ases) are the key enzymes of H2 cycling. They catalyze the reversible 

cleavage of H2 to protons and electrons (H2 ↔ 2H+ + 2e-). Hydrogenases are classified 

according to the metal cofactor at the catalytic site as [NiFe]-, [FeFe]- and [Fe]-H2ases. 

These hydrogenase-types have evolved independently (Schwartz et al, 2013). [NiFe]-H2ases 

represent the most widespread type and comprise four subgroups that catalyze H2 oxidation 

and/or H2 evolution. The phylogeny of group 1 [NiFe]-H2ases has been strongly affected by 

diversification and adaptation to specific environmental conditions (Pandelia et al, 2012; 

Greening et al, 2015). Distinct phylogenetic clades appear to correspond to functionally 

homologous groups according to e.g. O2 tolerance and the preferred terminal electron 

acceptor (Vignais et al, 2001; Vignais and Billoud, 2007; Pandelia et al, 2012; Greening et al, 

2015). Few H2ases, such as group 1d [NiFe]-H2ases, can function at O2-saturation, whereas 

most tolerate only 1-2% O2 and others are inactivated by even trace amounts of O2 (Goris et 

al, 2011; Vargas et al, 2011; Pandelia et al, 2012; Fritsch et al, 2013). In a recent survey, 
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Greening et al. (2015) found that H2ases are widespread and abundant in metagenomes 

from diverse ecosystems including soil, gut, freshwater and seawater habitats. Notably, 

group 1 [NiFe]-H2ases were proposed to play a major role in catalyzing H2 consumption in 

many ecosystems.  

Many molecular studies used 16S rRNA or dissimilatory sulfite reductase (DsrAB) genes as 

molecular markers to identify deltaproteobacterial SRM, in particular Desulfobacterales as 

the dominant SRM in diverse marine sediments (Rabus et al, 2015). Although H2 is a key 

substrate for SRM, those responsible for H2-dependent sulfate respiration are still 

unidentified. Besides SRM, other functional groups may consume H2. For instance, primarily 

thioautotrophic Gammaproteobacteria from hydrothermal vent systems can also oxidize H2 

with oxygen or nitrate (Petersen et al, 2011; Anantharaman et al, 2013; Hansen and Perner, 

2015). Moreover, (meta)genomes from coastal and estuarine sediments recently identified 

the potential for H2 oxidation in Gammaproteobacteria (Baker et al, 2015; Dyksma et al, 

2016). Recently, Hamann and colleagues (2016) reported an anaerobic consortium of a H2-

releasing nanoflagellate and H2-consuming Epsilonproteobacteria isolated from a tidal 

sediment in the German Wadden Sea.  

In our study, we revisited this tidal sediment and investigated the overall diversity and 

expression of H2ase genes in a metagenome and in replicated transcriptomes from different 

sediment layers. We hypothesized that group 1 uptake [NiFe]-H2ases from Desulfobacterales 

and thiotrophic Gammaproteobacteria account for a major fraction of metagenomic and -

transcriptomic H2ase reads. Moreover, we designed primers to specifically target group 1 

[NiFe]-H2ase genes of a subset of environmentally relevant SRM. Using PCR-based clone 

libraries we studied the geographic distribution of group 1b-e [NiFe]-H2ases in two additional 

sediments along the European Atlantic coast. To link frequently detected clusters of H2ase 

genes with the corresponding microorganisms we screened selected metagenomes derived 

from pooled single-cell genomes (SAGs). Finally, incubations with H2 under anoxic and 

micro-oxic conditions demonstrated an active H2 consumption in sediment from our main 

study site. 
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Materials and methods 

Study sites and sampling 
Between January 2011 and July 2015 we sampled sandy tidal sediments during low tide at 

three sites along the European coastline for molecular analysis and H2 oxidation experiments 

(see Supplementary Table 1 for geographic positions of samples used for the different 

experiments). Our main sampling site “Janssand” is a tidal flat in the German Wadden Sea in 

approximately 10 km distance from the coastline. In addition, we sampled two tidal sandy 

sediments close to Mt. St. Michel and Courseulles-sur-Mer (France) for molecular analysis 

(see Dyksma et al, 2016). 

Sediment was retrieved by 3.7 cm diameter polyacryl cores and sliced according to the 

sediment color that commonly serves as proxy for sulfide formation by sulfate respiration. 

Sediment from the uppermost oxidized (0-1 cm, brownish color, sulfide-free), from the sulfide 

transition zone (2-4 cm, interface of brown- to grey-color, reflecting formation/oxidation of 

iron-sulfides) and from the sulfidic layers (6-8 cm, grey to black color due to formation of iron-

sulfides by sulfate respiration) were recovered. Detailed exemplary oxygen, sulfide and pH 

profiles of Janssand sediments were published by Jansen et al. (2009).  

  

Metagenomics and targeted screening for uptake H2ases  
In April 2013 we sampled the sulfide transition zone comprising both oxidized (brown) and 

sulfidic (grey) sediments for metagenomic analysis. The uppermost surface layer was 

removed in order to avoid excess eukaryotic DNA. The bacterial community composition in 

the upper 8 cm of Janssand sediments is largely homogeneous (Lenk et al, 2011; Dyksma et 

al, 2016) as the studied sediments are characterized by constant re-shuffling and periodic 

changes from oxic to suboxic/anoxic conditions during the tidal cycles (Jansen et al, 2009). 

DNA was extracted according to the protocol by Zhou et al. (1996). DNA was then paired-

end sequenced (2x 150 bp) in a single Illumina (San Diego, CA, USA) HiSeq 2000 run (one 

lane) at the Max Planck Genome Centre (MP-GC, Cologne, Germany). H2ase reads were 

extracted as follows: the metagenome was screened using blastx (Camacho et al, 2009) 

against a reference database that was recently introduced by Greening et al. (2015) 

containing 3,286 H2ase sequences. The translated BLAST (Altschul et al, 1990) screening 

was performed with the following settings: word size 3, e-value 0.1 and minimum percentage 

query coverage 75% (Greening et al, 2015). To minimize false positive hits, the minimum 

percentage identity cut-off was set to 60%.  

In order to assemble nucleotide sequences of group 1 [NiFe]-H2ases for phylogenetic 

analysis we mapped 141,031,806 metagenomic reads to a reference database. Bowtie2 

(Langmead and Salzberg, 2012) was used with local alignment. The reference database 

comprised 271 environmental sequences from clone libraries (site Janssand) and published 
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sequences of group 1 [NiFe]-H2ases. In total, 26,425 reads (0.02% of the total) mapped to 

reference sequences. These reads were assembled using SPAdes (Bankevich et al, 2012) 

and contigs larger than 500 bp (n=109) were kept for phylogenetic analysis and as reference 

for metatranscriptome mapping. 

 

Metatranscriptome sequencing and analysis 
In April 2013 and in July 2015 triplicate sediment cores were sampled at site Janssand 

during low tide. In April 2013, sediment was sampled at late low tide after the sand flat was 

bare of sea water for approximately one hour. In July 2015 during late low tide, the sand flat 

was still water-covered (approximately 5 cm water depth) and flushed with sea water by 

slight waves. Immediately after retrieval the cores were sliced (Supplementary Table 1), 9-14 

g of sediment of each layer were transferred to 50 ml tubes and stored at dry ice/-80°C until 

further processing. Care was taken that the sediment slices were not disturbed and 

transferred within 20 s to minimize oxygen penetration.  

Total RNA was extracted from one gram of each sampled layer from the triplicate cores, 

DNAase-treated and purified by Vertis Biotechnologie AG (Freising, Germany). Bacterial 

rRNA was depleted with the Ribo-Zero™ Magnetic Kit (for Bacteria) (Epicentre, Madison, WI, 

USA). Barcoded RNA TrueSEQ libraries were constructed from RNA extractions and paired-

end sequenced using Illumina HiSeq 2500 (MP-GC). Quality trimming was performed at 

phred score 28 using Nesoni v.0.115 (https://github.com/Victorian-Bioinformatics-

Consortium/nesoni) with the clip option. Sequencing results are provided in Supplementary 

Table 2. All metatranscriptomes were analyzed using blastx against the reference database 

from Greening et al. (2015) as described above.  

Transcript reads were mapped to the reference database of group 1 [NiFe]-H2ase nucleotide 

sequences from GenBank, environmental clone libraries and metagenomic assemblies 

recovered from site Janssand (total of 380 sequences). For mapping we used Bowtie2 with 

settings: match score = 0, mismatch penalty = 5, gap open penalty = 5, gap extension 

penalty = 5. The minimum alignment score for an alignment considered as valid was defined 

by -0.25 multiplied by read length resulting in a percent identity cut-off of 95%. Abundances 

of unique mapped reads were normalized for gene length and adjusted for the total number 

of cDNA reads. On average, 3,376 cDNA reads per replicate mapped to the reference 

database. 

 

H2ase genes from single–cell (meta)genomes  
In January 2011, the upper two and in August 2015, the upper three centimeters comprising 

the oxic and sulfide transition layers of Janssand sediment were sampled for extraction and 

sorting of single bacterial cells for whole genome amplification. After immediate transfer to 
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the lab the sediment was mixed and 1 ml was transferred to a 15 ml plastic tube. After 

adding 3 ml of sterile-filtered sea water slurries were vortexed at maximum speed for 3 or 5 

min, respectively. Sand grains were allowed to settle and the supernatant was filtered 

through a 3 or 5 μm pore-size membrane, respectively. The cell extracts were cryopreserved 

with N,N,N-trimethylglycine (“glycine betaine”) (Sigma-Aldrich, St. Louis, MO, USA) at a final 

concentration of 4% according to Cleland et al. (2004), stored at -80°C and shipped 

overseas.  

Single-cell sorting and whole-genome amplification via multiple displacement amplification 

(MDA) were performed at the Bigelow Laboratory Single Cell Genomics Center (East 

Boothbay, ME, https://scgc.bigelow.org) as described by Swan et al. (2011) or at the 

Microbial Single Cell Genomics facility at SciLifeLab in Uppsala, Sweden 

(https://www.scilifelab.se/facilities/single-cell) as described by Mussmann et al. (submitted). 

SAGs were screened for 16S rRNA genes (described in Dyksma et al, 2016; Mussmann et 

al, submitted) affiliating with flavobacterial Eudoraea spp. or the deltaproteobacterial 

Sva0081-marine benthic group (Supplementary Table 3). To minimize costs two SAGs of the 

Eudoraea-group were pooled before sequencing. The 16S rRNA gene sequences displayed 

99.8% sequence identity (SI) to each other and 98% to the type strain Eudoraea adriatica 

(Alain et al, 2008). Furthermore, we pooled 11 SAGs from the Sva0081-MBG into 4 SAG-

pools. The 16S rRNA gene sequences displayed 96-99% SI. The pooling scheme of the 

individual SAGs and the corresponding 16S rRNA genes sequences is given in 

Supplementary Table 3. The recovery and analysis of a SAG belonging to the JTB255-MBG 

is described by Mussmann et al. (submitted). The pooled SAGs were sequenced at the 

Department of Energy Joint Genome Institute (DOE-JGI, Walnut Creek, CA, USA) or at the 

MP-GC.  

The three SAG-pools “pSCGC” were sequenced (Illumina HiSeq 2000, Illumina HiSeq 2500) 

and assembled at the DOE-JGI, and auto-annotated using the IMG-ER pipeline (Markowitz 

et al, 2012). The assembled dataset was screened for contamination using k-mer analysis 

within the IMG-ER pipeline. In addition, universal single copy genes (Ciccarelli et al, 2006; 

Creevey et al, 2011), ribosomal proteins and tRNA were manually checked for a possible 

contamination by examining their closest BLAST hits. 

The SAG-pools 1868_C and 1868_D were sequenced (Illumina MiSeq) at the MP-GC. 

Sequence reads were quality trimmed with BBmap (v35.82; 

https://sourceforge.net/projects/bbmap, using bbduk.sh) at a minimum quality cut-off of 15. 

Single cell genome assembly was performed with SPAdes v 3.6.2 using the single-cell mode 

(--sc), the “-careful” option and suggested kmer-sizes between 21 and 99. Purity of the 

assembly was checked with Metawatt v 3.5.2 (Strous et al, 2012) using tetramer frequencies 

and GC-content. The completeness and possible redundancy of the SAG assembly and the 
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final genome bin was evaluated with the HMMER3 (Eddy, 2008) based “Six-frame Pfam” 

module search against a conserved single-copy gene set (Campbell et al, 2013) in Metawatt. 

The SAG-pools 1868_C and 1868_D were auto-annotated using the IMG-ER pipeline 

(Markowitz et al, 2012) and manually checked. After sequencing we recovered a 16S rRNA 

gene sequence and a group 1 [NiFe]-H2ase sequence per SAG-pool (n=5) (Supplementary 

Table 3). The metagenomic sequences of all SAG pools described in this study will be 

published elsewhere (Mussmann et al, in preparation).  

 

Design of H2ase primers for clone library construction 
As primers previously published by Csáki et al, (2001) and Kim et al, (2007) mainly target 

alpha-, beta- and gammaproteobacterial group 1 [NiFe]-H2ase genes, we designed novel 

primer sets to cover a broader diversity of H2ases from sulfate-reducing Deltaproteobacteria. 

Details on design of primers to target group 1b and 1c uptake [NiFe]-H2ases of SRM, PCR 

and phylogenetic reconstructions of group 1 [NiFe]-H2ase and 16S rRNA genes are provided 

in the Supplementary Material and Methods. Furthermore, nucleotide accession numbers of 

H2ase and 16S rRNA gene sequences recovered from metagenomes, -transcriptomes, clone 

libraries and SAGs are given in the Supplementary Material and Methods 

 

H2 oxidation experiments in Janssand sediments 
Sediments were sampled at site Janssand in January 2012 (anoxic incubations) and April 

2013 (micro-oxic incubations). Portions of 3 ml of sediment were transferred into 50 ml 

serum bottles with 2 ml sterile filtered seawater. The headspace was replaced by either 

nitrogen (N2) gas with 3,600 nmol l-1 H2 for anoxic, sulfate-dependent incubations or N2 with 

210 nmol l-1 H2 and 1% oxygen for micro-oxic experiments. The triplicate incubations were 

mildly agitated for 52-96 h at 14 °C. Residual sulfate reduction in micro-oxic treatments was 

inhibited in parallel incubations by adding sodium molybdate (28 mmol l-1 final concentration). 

For measuring H2 one ml of the headspace was sampled and analyzed using gas 

chromatography (GC-8A, Shimadzu) with an HgO-reducing detector (RGD2, Trace 

Analytical, Gemany). Concentrations of dissolved H2 was calculated according to Weiss 

(1970) and Crozier and Yamamoto (1974).  

 

Results 

H2ase diversity and expression in a coastal sediment 
To study the diversity and relative abundance of genes of the catalytic subunit of H2ases in 

coastal sediments, we first recruited reads of all types of H2ases from the Janssand 

metagenome. Overall, 0.1% (n=275,328) of all metagenomic sequence reads were assigned 

to H2ases and were classified according to a revised scheme recently introduced by 
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Greening et al. (2015). Three types accounted for the majority of the H2ase reads: 77% 

corresponded to [FeFe]-H2ases (mainly H2-evolving), 11% to group 1 [NiFe]-H2ases (mainly 

uptake) and 9% to cytosolic, bidirectional group 3 [NiFe] H2ases (Figure 1).  

To study the vertical expression profile of the distinct types of H2ase genes we sequenced 

triplicate metatranscriptomes from the surface, sulfide transition and sulfidic sediment layers 

in July 2015. In addition, we recovered a triplicate metatranscriptome from the sulfide 

transition layer in April 2013. H2ase genes of all groups and subgroups were expressed in 

both seasons and in all tested sediment layers (Figure 1 and Supplementary Figure 1). While 

normalized, total read abundances varied strongly between the triplicate metatranscriptomes 

of July 2015 (not shown), the relative expression of the different H2ase types showed clear 

trends with sediment depth (Figure 1). The oxygen-sensitive, mainly H2-evolving [FeFe]-

H2ases were relatively higher expressed in the sulfide transition and in the sulfidic layer, 

whereas group 1 and 3 [NiFe]-H2ases were relatively more expressed in the surface layer 

than in deeper layers (Figure 1).  

 

Diversity of group 1 [NiFe]-H2ase genes in three tidal sediments 
H2 is an energy source for diverse but still unidentified microorganisms in marine sediments. 

Thus, we studied the diversity and expression of genes of H2-oxidizing H2ases in more detail. 

Since metagenomic reads of group 1 [NiFe]-H2ases clearly prevailed over those of group 2 

[NiFe]-H2ases, we focused our diversity and expression analysis on group 1 [NiFe]-H2ases.  

Among all metagenomic reads of group 1 [NiFe]-H2ases, 89% belonged to subgroups 1b-e 

(Figure 1: 1e, Isp/Hyn, 40%; 1d, O2-tolerant, 19%; 1c, Hyb-type, 17%; and 1b, prototypical, 

13%). Only few reads were assigned to subgroups 1a, 1g and 1h.  

Similar to the overall H2ase expression (Figure 1) the subgroup 1d-e NiFe H2ases showed a 

depth-dependent expression pattern (Figure 1). While group 1d and 1e NiFe H2ases together 

were relatively more expressed in the surface layer (56%) than in sulfidic layer (29%), the 

SRM-type group 1b [NiFe]-H2ases followed an inverse pattern, accounting for in average 

12% in the upper cm to in average 36% in the sulfidic layer of all group 1 uptake [NiFe]-

H2ase transcripts (Figure 1).  

For a detailed phylogenetic analysis of the metagenomic group 1 [NiFe]-H2ases we 

assembled 98 partial sequences (>500 bp) of group 1 [NiFe]-H2ase genes with diverse 

phylogenetic origin (Supplementary Figure 1). To cover a larger diversity of potential group 1 

uptake [NiFe]-H2ases, we established gene libraries from Janssand sediment (Germany) and 

from two additional coastal sediments (Western France). As the published primer set (Csáki 

et al, 2001; Kim et al, 2007) mostly targets group 1d and 1e [NiFe]-H2ase genes of sulfur-

oxidizing and Knallgas-bacteria, we designed a novel primer set to include a broader 

diversity of 1b and 1c [NiFe]-H2ase of mostly cultured, environmentally abundant 
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Desulfobulbaceae and Desulfobacteraceae SRM (Supplementary Tables 4, 5). These target 

50 genes sequences of group 1 [NiFe]-H2ases of cultured and uncultured SRM (see 

Supplementary Information). Using both newly designed and previously published primers 

we yielded a total of 317 [NiFe]-H2ase clone sequences.  

Together, the PCR-derived and metagenomic group 1 [NiFe]-H2ase sequences formed 24 

monophyletic sequence clusters among bacterial group 1b-f [NiFe] H2ases (Supplementary 

Figure 1). The sequence diversity recovered from clone libraries and from the metagenome 

largely overlapped, however, the cloning approach revealed a higher microdiversity and 

entire sequence clusters that were underrepresented in the metagenome (Figure 2 and 

Supplementary Figure 1). Of the 24 sediment clusters, 18 were represented in at least two of 

three study sites indicating a more widespread occurrence of the corresponding organisms. 

The retrieved [NiFe]-H2ase sequences affiliated with different phylogenetic and functional 

groups including sulfate-reducing bacteria, sulfur-oxidizing bacteria and others 

(Supplementary Figure 1).  

 

Group 1e [NiFe]-H2ases: diversity and expression 
Group 1e [NiFe]-H2ases catalyze different H2-cyling reactions including dark H2 oxidation, 

light-dependent H2 evolution and intracellular H2 cycling. These accounted for a substantial 

fraction of all group 1 [NiFe]-H2ases in the metagenome (40%), in clone libraries (24-34%) 

and also in the metatranscriptomes (16-37%) (Figure 1). Nine out of twelve sediment clusters 

exhibited transcriptional activity, but no depth-related trend (Supplementary Figure 1), except 

for sediment cluster 11, which was more expressed in the uppermost sediment layer 

(Supplementary Figure 1). Most of the clone and metagenome-derived sequences of group 

1e [NiFe]-H2ases were related to those of sulfur-oxidizing Gammaproteobacteria such as 

endosymbionts, Thiothrix spp. or Thioalkalivibrio spp. (Supplementary Figure 1). The 

corresponding 16S rRNA gene sequences are unknown except for sediment cluster 2, which 

contains a H2ases sequence derived from a SAG of the gammaproteobacterial, sulfur-

oxidizing SSr-clade recovered from Janssand sediment (Dyksma et al, 2016).  

 

O2-tolerant, group 1d uptake [NiFe]-H2ases: diversity and expression 
The O2-tolerant group 1d uptake [NiFe]-H2ases accounted for 19% of metagenomic and for 

12-21% of metatranscriptomic group 1 [NiFe]-H2ase reads (Figure 1). Within this group only 

sediment clusters 13 and 15 were significantly expressed, in particular in the surface layer 

(Figure 2).  

The sediment cluster 15 accounted for 23% of all group 1d [NiFe]-H2ase transcripts and 

grouped with [NiFe]-H2ase sequences of H2-oxidizing Bacteroidetes, such as the soil-

dwelling Flavobacterium johnsoniae (Figure 2). To show the potential for H2 oxidation in 
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marine benthic Flavobacteriaceae, we identified a 1d [NiFe]-H2ase sequence among two 

pooled flavobacterial SAGs from the Eudoraea-group retrieved from site Janssand. The 16S 

rRNA gene sequences of the individual SAGs displayed 99.8% sequence identity to each 

other and 98% to the heterotrophic, aerobic flavobacterium Eudoraea adriatica (Figure 3, 

Alain et al, 2008). This Eudoraea-related [NiFe]-H2ase groups with sediment cluster 15 and 

with other flavobacterial O2-tolerant 1d [NiFe]-H2ase sequences (Figure 2).  

Notably, cluster 13 accounted for >75% of all group 1d uptake [NiFe]-H2ases in the surface 

layer, suggesting a pivotal role of this cluster in O2-tolerant H2-oxidation. Six sequences of 

sediment cluster 13 were relatively less expressed in deeper sediment layers than at the 

sediment surface (Figure 2). The corresponding organisms are still unknown, however, we 

recently identified a closely related H2ase sequence retrieved from a SAG of the uncultured 

gammaproteobacterial JTB255-marine benthic group (Mussmann et al, submitted) (Figure 2). 

This SAG has been recovered from the same site during our sampling campaign in July 

2015. Consistent with this finding we identified a closely related 1d [NiFe]-H2ase in a 

metagenomic bin from the White Oak River, USA, that is also affiliated with the JTB255-

marine benthic group (Figure 2, Baker et al, 2015; Mussmann et al, submitted). We therefore 

propose that the 1d [NiFe]-H2ases sediment cluster 13 most likely corresponds to the 

uncultured JTB255-marine benthic group. 

 

Group 1b and 1c uptake [NiFe]-H2ases of sulfate-reducing bacteria  
We retrieved 117 clone and 11 metagenomic sequences that are affiliated with cultured and 

uncultured Desulfobacteraceae (Figure 2). Only few group 1c [NiFe]-H2ases of 

Desulfobulbaceae were encoded in the metagenome (n=3) and in clone libraries (n=3) 

(Figure 2 and Supplementary Figure 2).  

H2ases of sediment clusters 17 to 19 comprised the majority of clone and metagenome-

derived H2ase sequences of SRM and are most closely related to H2ases of Desulfosarcina 

spp. as next cultured relatives (Figure 2). Interestingly, clone and metagenomic sequences of 

sediment cluster 17 consistently grouped with a H2ase of the sulfate-reducing 1-symbiont of 

the gutless marine oligochaete Olavius algarvensis (Figure 3). To identify the corresponding 

microorganisms, we sequenced 4 metagenomes derived from 11 pooled closely related 

SAGs from site Janssand (Figure 3). The 16S rRNA gene sequences of the SAGs displayed 

a 96-99% sequence identity to those of Olavius ssp. sulfate-reducing δ-endosymbionts 

(Figure 3) and are affiliated with the uncultured Sva0081-marine benthic group 

(MBG)/Desulfobacteraceae (ARB-Silva taxonomy, Ref NR99_SSU release 117 as of April 

2015, Quast et al, 2013). As the phylogeny of the 1b uptake [NiFe]-H2ase and of 16S rRNA 

are largely congruent, the 1b [NiFe]-H2ase sediment cluster 17 therefore most likely 

corresponds to the Sva0081-MBG (Figures 2 and 3). 
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Consistent with the metagenomic data, the group 1b [NiFe]-H2ases of Desulfobacteraceae 

(sediment clusters 17-19, Figure 2) accounted for a majority of transcripts of SRM-related 

H2ases (82-89%, Figure 2, Supplementary Figure 2). In all metatranscriptomes from April 

2013 and July 2015 the largest fraction of mapped transcripts (49-69%) affiliated with the 

sediment cluster 17, the putative Sva0081-MBG. H2ase sequences more closely related to D. 

variabilis (sediment clusters 18, 19) and to Desulfobulbaceae (sediment cluster 23) recruited 

only 14-30% and 11-18% of SRM-H2ase transcripts, respectively (Figure 2, Supplementary 

Figure 2). Transcripts of epsilonproteobacterial H2ases were not found. 

 

Potential H2 oxidation rates in Janssand sediments 
As sulfate respiration is considered the major H2-consuming process in marine sediments, 

we initially focused our measurements on anaerobic H2-oxidation in Janssand sediments. In 

January 2012 H2 (3,600 nmol l-1) in sediments slurries was completely consumed within 48 h 

equaling a H2 oxidation rate of 31 nmol ml-1 h-1 (Figure 4).  

Since the detected diversity of group 1 [NiFe]-H2ase genes in our sediments unexpectedly 

indicated also a H2 consumption in the presence of O2 we then measured the potential H2 

oxidation rates in micro-oxic sediment slurries in April 2013. Here, O2 and H2 concentrations 

were adjusted to 210 nmol l-1 H2 and to 1% O2 to account for inhibitory effects. A potential 

residual sulfate-dependent H2 consumption was inhibited by the addition of molybdate. Under 

these micro-oxic conditions H2 was consumed at a rate of 0.97 nmol ml-1 h-1 (Figure 4). 

 

Discussion 

Evidence is accumulating that various types of H2ases drive H2-cycling in natural and 

anthropogenic ecosystems, while the H2ases themselves and the corresponding 

microorganisms in marine sediments are still unknown. In our study we show that the 

metagenome from Janssand tidal sediment contained more than twice as many H2ase-

assigned reads (0.1%) as in any of the recently investigated ecosystem (up to 0.045% in 20 

ecosystems), including aerated soils, hypoxic water-clogged soils, marine water bodies and 

anoxic termite and human guts (Greening et al, 2015). This underscores the vital role of H2 

for energy transfer in marine sediments (Hoehler et al, 1998). In particular, in anoxic 

sediments the H2-evolving [FeFe]-H2ases may be as important for H2 production as in 

digestive systems (Greening et al, 2015), while distinct group 1 [NiFe]-H2ases may mostly 

oxidize H2. Other H2ases such as the abundant bidirectional group 3 [NiFe]-H2ases could 

also play a still unknown role in oxic and suboxic sediment layers. 

An explanation for the observed high frequency of H2ase reads is possibly the dynamic 

nature of the studied ecosystem: tidal cycles cause strong short-termed spatial and temporal 

gradients in e.g. oxygen and sulfide levels (Jansen et al, 2009), thus the microbial 
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communities experience alternating oxic and sub-/anoxic conditions. This provides many 

distinct ecological niches on a narrow spatial and temporal scale that foster the co-existence 

of diverse O2-tolerant/-sensitive and H2-producing/-consuming microorganisms. Moreover, 

marine SRM use H2 to reduce and detoxify O2 under micro-oxic conditions (Krekeler et al, 

1997) and therefore also express H2ase genes in oxic surface sediments (Figures 1, 2). 

Thus, we can also not exclude that SRM oxidized H2 in our micro-oxic experiment despite the 

addition of SR-inhibiting molybdate (Figure 4). Together, these habitat-specific factors may 

be the reason, why virtually all types of H2ases, including O2-sensitive H2ases, were 

expressed at relatively similar levels in the three distinct sediment layers. Likewise, the 

expression of the same group 1 [NiFe]-H2ase gene clusters in April 2013 and in July 2015 in 

the three distinct sediment layers (Figure 2, Supplementary Figures 1, 2), indicates a stable 

bacterial H2-cycling community structure over time. This agrees with the generally similar 

bacterial 16S rRNA diversity found in the upper 7 to 10 cm of sandy tidal surface sediments 

across the ocean (Dyksma et al, 2016). It would be intriguing to reveal, whether and how 

tightly these distinct H2ases are regulated under the highly fluctuating conditions. As deep 

metaproteome analysis from such complex communities is still virtually impossible, 

additional, internally standardized metatranscriptomes (Gifford et al, 2011) need to be 

sequenced in a higher spatial and temporal resolution to reveal the extent of constitutive and 

tightly regulated expression during a tidal cycle.  

 

Group 1 [NiFe]-H2ase genes are abundant and frequently expressed  
Group 1 [NiFe]-H2ases accounted for the largest fraction of potential uptake [NiFe]-H2ase 

reads in the metagenome. In fact, group 1 [NiFe]-H2ases are the most widespread H2-

metabolizing enzymes and are encoded in many Bacteria and Archaea isolated from diverse 

ecosystems (Vignais and Billoud, 2007; Schwartz et al, 2013; Greening et al, 2015). A 

significant subset of metagenomic and -transcriptomic reads affiliated with O2-sensitive, 

group 1e (Hyn-type) [NiFe]-H2ases related to sulfur-oxidizing Gammaproteobacteria (Figure 

2). However, this type of H2ase can exert different metabolic functions: Hyn-type H2ases are 

involved in dark H2 oxidation but also in H2 evolution under light in the phototrophic purple 

sulfur bacterium Thiocapsa roseopersicina (Laurinavichene et al, 2007; Tengölics et al, 

2014). Moreover, the expression of Hyn-type H2ase is up-regulated in Allochromatium 

vinosum when growing on sulfide, thiosulfate or S0 in the absence of H2 (Weissgerber et al, 

2014). Recently, Kreutzmann and Schulz-Vogt (2016) showed that the marine aerobic 

sulfide-oxidizing strain Beggiatoa sp. 35Flor reaches higher biomass using H2 probably as a 

supplemental energy source for maintenance or for disposing excess intracellular sulfur. In 

line with this, a group 1e [NiFe]-H2ase gene in the SAG of the sulfur-oxidizing SSr-group was 

among the top 20 expressed genes along with sulfite-oxidation and carbon-fixation genes, 



Hydrogenases in a marine sediment 
 

 90  

suggesting a possibly multifunctional role of group 1e [NiFe]-H2ases in chemoautotrophy 

(Dyksma et al, 2016). It is therefore conceivable that the generally high expression of O2-

sensitive group 1e [NiFe]-H2ases even in the oxygen-exposed, uppermost sediment layer 

reflects an intracellular H2 recycling during sulfur oxidation and not necessarily the oxidation 

of ambient H2. 

 

O2-tolerant oxidation of H2 by Flavobacteriaceae and Gammaproteobacteria 
Our data show that sediment clusters 13 (putative JTB255-MBG) and 15 (putative Eudoraea-

group) contributed almost all transcripts of O2-tolerant, group 1d uptake [NiFe]-H2ases at all 

depths and seasons (Figure 2). This is consistent with the observed oxidation of H2 under 

micro-oxic conditions in parallel samples in April 2013 (Figure 4, Supplementary Figure 1). 

Thus, it is likely that mostly these two groups are responsible for oxidation of H2 at ambient 

O2 levels, e.g. in the uppermost sediment surface or at high tide, when also deeper 

sediments are temporarily flushed with fully oxygenated sea water (Jansen et al, 2009). 

Recently, we showed that members of the JTB255-MBG fix CO2 (Dyksma et al, 2016), and 

encode RubisCO form I and a thiosulfate oxidation pathway, suggesting carbon fixation 

powered by thiosulfate or H2 (Mussmann et al, submitted). The high transcript frequency and 

the more widespread occurrence of H2ase genes of the putative JTB255-MBG (Figure 2) 

agrees with the fact that JTB255-MBG is a cosmopolitan, abundant core member of 

microbial communities in diverse types of marine sediments, (Dyksma et al, 2016, 

Mussmann et al, submitted). While few other marine Gammaproteobacteria, such as 

symbiotic and pelagic members of the SUP05-clade, do thrive on H2 (Petersen et al, 2011; 

Anantharaman et al, 2013), we propose that the JTB255-MBG could be an important 

aerotolerant H2-oxidizing Gammaproteobacteria also in marine surface sediments.  

Consistent with the relatively high transcript frequency of putative Eudoraea-group H2ases, 

cells closely related to Eudoraea adriatica accounted for up to 4% of total cells in coastal 

sediments including site Janssand (Rizvi, 2014). Although H2 oxidation has so far been only 

been shown for soil Flavobacteria (Maimaiti et al, 2007), evidence is accumulating for 

flavobacterial group 1d [NiFe]-H2ases also in marine water and sediment metagenomes 

(Figure 2, Barz et al, 2010). In fact, H2 could be an attractive energy source for marine 

bacterioplankton since seawater can be supersaturated with H2 that is formed by nitrogen 

fixation or photochemical H2O lysis (Hoehler et al, 2001; Punshon and Moore, 2008; Moore 

et al, 2014).  

 

Desulfobacteraceae likely oxidize H2 in anoxic coastal sediments  
In line with our initial hypothesis the Desulfobacterales, in particular the Desulfobacteraceae, 

accounted for most of SRM-related H2ase genes and transcripts and may therefore drive 
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sulfate-dependent H2 oxidation at site Janssand and perhaps also at sites Mt. St. Michel and 

Courseulles-sur-Mer. Although Desulfovibrio-like H2ase genes have earlier been detected in 

coastal sediments (Wawer and Muyzer, 1995), we did not find any indication for 

Desulfovibrio-related organisms in our samples. Accordingly, Desulfobacteraceae commonly 

dominate SRM communities and outnumber Desulfobulbaceae and Desulfovibrionaceae in 

most marine sites including Janssand and other Wadden Sea sediments (Llobet-Brossa et 

al, 1998; Ravenschlag et al, 2000; Ishii et al, 2004; Mußmann et al, 2005). Moreover, the low 

relative frequency of group 1c [NiFe]-H2ase reads may also reflect the relatively low 

abundance of Desulfobulbaceae in these sediments. However, a better coverage of group 1c 

[NiFe]-H2ases via additional metagenome sequencing could provide a more comprehensive 

reference data set for efficient metatranscriptome mapping.  

 

The uncultured Sva0081-MBG are possible key players in the anaerobic food chain 
Notably, H2ase sequences of the SRM-related sediment cluster 17 accounted for in total 

approximately ~50% of all SRM-related group 1b and 1c [NiFe]-H2ase transcripts in April 

2013 and in July 2015. We could link these H2ase sequences to the uncultured, 

deltaproteobacterial Sva0081-MBG by sequencing the metagenome of 11 pooled SAGs from 

site Janssand and by analyzing symbiotic Sva0081-MBG in a metagenomes of the bacterial 

symbionts of gutless marine oligochaetes O. algarvensis. Consistent with this, the high H2 

consumption rates by O. algarvensis symbionts and the detection of a Sva0081-specific 

[NiFe]-H2ase in corresponding proteomes (Kleiner et al, 2012, 2015) strongly corroborate the 

capability of the Sva0081-MBG to actively oxidize H2 in marine sediments. Since this a 

chemolithotrophic process, a concomitant carbon fixation seems plausible. However, 

previous isotopic tracer experiments did not indicate any carbon fixation in the Olavius sp. 

worms despite high H2 oxidation rates (Kleiner et al, 2015). Likewise, CO2 assimilation in 

sulfidic sediment layers at site Janssand was very low (Lenk et al, 2011). Presumably, the 

Sva0081-MBG oxidizes H2 chemolithoheterotrophically, as other SRM do, by using e.g. 

acetate as carbon source (Kleiner et al, 2015, Rabus et al, 2015).  

H2ase sequences of the putative Sva0081-MBG occurred in all three studied coastal 

sediment sites and in other North Sea sediments (Figure 2). In line with this, the Sva0081-

MBG has been frequently identified in 16S rRNA gene surveys in marine sediments 

(Ravenschlag et al, 2000; Wang et al, 2013; Liu et al, 2014; Zheng et al, 2014) and accounts 

for up to 6-8% of total cell counts in different marine sediments worldwide including site 

Janssand (Mussmann et al, in prep.; Ovanesov, 2012). If the genetic potential to oxidize H2 is 

common to members of the Sva0081-MBG in sediments worldwide, these SRM are 

candidate key players in the marine anaerobic food chain. 
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Ecological significance of the candidate H2-consumers in coastal sediments 
Here, we provide first molecular evidence that a complex community of mostly uncultured 

microorganisms drives H2-cycling, in particular H2 consumption in marine coastal sediments. 

By analyzing single cell-derived (meta)genomes, we identified putative bacterial 

representatives of significant H2ase sequence clusters of group 1 uptake [NiFe]-H2ases. 

Since production, flux and consumption rates of H2 are generally low in oxic sediments, the 

metabolically flexible JTB255-MBG and Eudoraea-group probably consume H2 only as a 

supplemental energy source. However, by employing O2-tolerant H2ases they might be able 

to monopolize H2 at ambient O2 concentrations. 

While it has been known for decades that H2 is a central energy source for marine sulfate 

respiration, we now propose that widely distributed and abundant family Desulfobacteraceae, 

in particular the uncultured Sva0081-MBG, are the probable key players in consuming H2 

released by fermentative hydrolysis of organic matter. Importantly, these SRM may 

outcompete hydrogenoclastic methanogens and thereby suppress the production and 

emission of methane in organic-rich coastal surface sediments. In general, marine sediments 

may harbor a multitude of hidden syntrophic interactions between novel H2-forming and 

-consuming microorganisms that ultimately control the anaerobic food chain and carbon 

sequestration in earth´s largest carbon sink.  
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Figure 1. Relative frequency of metagenomic and metatranscriptomic sequence reads of 

H2ases in Janssand sediments in April 2013 and July 2015. Left panel: relative frequency of 

sequence reads of H2ases with different metal co-factors. Right panel: relative frequency of 

sequence reads of group 1a-1h [NiFe]-H2ases. In July 2015 samples were taken during low 

tide at different sediment depth (cm below surface, cmbsf): surface= 0-1 cmbsf, 

transition=sulfide transition zone 2-3 or 3-4 cmbsf, and sulfidic=sulfidic sediment layer 7-8 

cmbsf. All metatranscriptomic samples were taken in triplicate. 
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Figure 2. Phylogenetic tree of group 1 [NiFe]-H2ase sediment sequence clusters 13, 15, 17-

19 (see Supplementary Figure 1 for overview). It displays the prototypic group 1b and O2-

tolerant group 1d [NiFe]-H2ase amino acid sequences and the normalized abundance of 

transcripts from three distinct sediment layers (Janssand, July 2015). Metatranscriptomes 

were sampled in triplicates. The guide tree was calculated using RAx-Maximum Likelihood 

and the overall topology was supported by Neighbor-Joining. Circles indicate branches with 

>70% (closed) and >50% (open) RAxML bootstrap support (100 replicates). For simplicity 

sequence accession numbers reference sequences of North Sea sediments are provided in 

Supplementary Table 6. The scale bar indicates 10% sequence divergence. 
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Figure 3. Phylogenetic tree of 16S rRNA genes from single amplified (meta)genomes 

(SAGs) of the Sva0081-MBG/Desulfobacteraceae and of Eudoraea spp.-

group/Flavobacteriaceae. The guide tree was calculated with RAxML (100 bootstraps). The 

overall topology was supported by Neighbor-joining. The scale bar indicates 10% sequence 

divergence. 
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Figure 4. Potential H2 consumption rates in sediment slurries from site Janssand. Left panel: 

sulfidic sediment incubated with 3,600 nmol H2 l-1 under anoxic conditions (January 2012). 

Right panel: sediment from 0-1 cmbsf incubated with 210 nmol H2 l-1 under micro-oxic (1% 

O2) conditions (April 2013). Sodium molybdate (28 mM) was added to inhibit residual sulfate 

respiration. For dead controls sediments were either inactivated by addition of 5% zinc 

acetate or were autoclaved. All experiments were performed in triplicates. 
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Supplementary Material and Methods 

Design of H2ase primers for clone library construction 

As primers previously published by Csáki et al. (2001) and Kim et al. (2007) mainly target 

alpha-, beta- and gammaproteobacterial group 1 [NiFe]-H2ase genes, we designed novel 

primer sets to cover a broader diversity of H2ases from sulfate-reducing Deltaproteobacteria. 

An alignment of selected H2ase sequences from SRM (Appendix I) was used as reference 

and primer sequences were selected using Primrose 2.17 (Ashelford et al., 2002). For 

evaluation of the novel oligonucleotides (Supplementary Table 4), the gene encoding the 

large subunit of group 1 [NiFe]-H2ases was amplified from a set of pure cultures 

(Supplementary Table 5). Details on primer coverage are provided in the Appendix I.  

 

PCR amplification and sequencing of uptake [NiFe]-H2ases 

Clone libraries of genes encoding the large subunit of group 1 [NiFe]-H2ase were established 

using DNA extracted from sediment sampled in 2012 at sites Janssand, Mt. St. Michel and 

Courseulles-sur-Mer (Supplementary Table 1). DNA extraction from three distinct layers was 

performed using the MoBio Power Soil kit (MoBio Laboratories, Solana Beach, CA, USA) 

according to the manufacturer’s instructions. PCR reactions were performed with primers 

HUPLX1 (forward) and HUPLW2 (reverse) (Csáki et al., 2001), hupLSRB2f/hupLSRB2r and 

hupLSRB3f/hupLSRB3r (Supplementary Table 3). The primer HUPLW1, HUPLXF, and 

HUPLXY (Csáki et al., 2001) were also tested but no amplicon with the specific size was 

recovered. Each reaction (final volume of 20 μl) contained 10 pmol of each primer, 6.25 nmol 

of each dNTP, 1x Master Taq Buffer and 1U of Taq DNA polymerase (Eppendorf, Hamburg, 

Germany). Thermocycler conditions were as follows: initial denaturation, 95 °C for 5 min, 

followed by 35 cycles of 95 °C for 60 s, annealing (for temperature see Supplementary Table 

3) for 60 s, 72 °C for 2 min and final elongation of 72 °C for 10 min. The expected amplicon 

length for the primers hupLSRB2f/hupLSRB2r is approximately 1200 bp and approximately 

1300 bp for primers hupLSRB3f/hupLSRB3r. Amplified PCR products were cloned using 

TOPO TA kit for sequencing (pCR4-TOPO, Invitrogen, Germany) or cloned into pGEM-T 

Easy vector (Promega, Madison, WI, USA) and sequenced with the Big Dye Terminator v3.1 

Cycle Sequencing Kit (Applied Biosystems, CA, USA) according to manufacturer’s 

instructions or clones were sent for Sanger-sequencing to GATC Biotech AG (Konstanz, 

Germany). We recovered 142 sequences from site Janssand (Germany), 84 sequences from 

Courseulles-sur-Mer (France) and 91 sequences from Mont St. Michel (France). 

 

Phylogenetic analysis of uptake [NiFe]-H2ases and 16S rRNA genes 

All H2ase sequences were aligned using MAFFT version 7 (Katoh and Standley, 2013) and 

imported into ARB (Ludwig et al., 2004). Partial sequences of ~600-900 bp from sites 
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Courseulles-sur-Mer and Mont St. Michel and nearly full-length sequences of ~1200-1500 bp 

from site Janssand were included for phylogenetic analyses. The alignment was manually 

corrected. Trees from the corresponding amino acid sequences were constructed in ARB 

using the maximum-likelihood algorithm RAxML (100 bootstrap resamples, JTT amino acid 

substitution matrix, Stamatakis et al., 2004) and by Neighbor-Joining trees (1000 bootstrap 

resamples, Kimura substitution). Detailed trees were calculated for group 1b and 1d [NiFe]-

Hases using RAxML and Neighbor-Joining as described above. Only sequences >300 aa 

and 50% amino acid frequency filters were used for construction of guide trees. Partial 

sequences were added without changing the overall tree topology using the Quick Add 

parsimony tool in ARB. 

For phylogenetic reconstruction of the 16S rRNA genes from pooled SAGs (Supplementary 

Table 3) we used the SILVA Ref NR99_SSU 117 dataset (Pruesse et al., 2007). For the 

guide tree, only sequences >1200 bp were used. Trees were calculated by RAxML (100 

bootstraps) and Neighbor-Joining (Jukes-Cantor correction, 1000 bootstraps) using 50% 

base frequency filters. Partial sequences were added without changing the overall tree 

topology using the Quick Add parsimony tool in ARB. 

 

Nucleotide accession numbers 

H2ase metagenomic and –transcriptomic reads are available in BioProject PRJNA324597. 

Sequences of group 1 [NiFe]-H2ases gene libraries are available under accession numbers 

KX352470-KX352722. The genome sequence of the JTB255-MBG SAG is accessible 

through the Joint Genome Institute portal IMG/ER (https://img.jgi.doe.gov/cgi-bin/er/main.cgi) 

under the IMG Genome ID 2651869504. The 16S rRNA gene sequences and group 1 [NiFe]-

H2ase of SAGs and SAG-pools (Supplementary Table 3) are available under accession no. 

(pending). 
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Supplementary Figure 1. Overview phylogenetic guide tree using maximum-likelihood 

(RAxML) including all sequences from clone libraries, metagenome and single-cell 

(meta)genome-derived group 1 uptake [NiFe]-H2ase sequences recovered from site 

Janssand (JS), Courseulles-sur-Mer (CS) and Mont St. Michel (MM). Abundance and source 

of sequences in sediment cluster is indicated in parentheses as follows (PCR: JS-CS-MM, 

metagenome, SAG). Note that sequences from sites Courseulles-sur-Mer and Mt. St. Michel 

were recovered by PCR-based clone libraries only. The normalized abundance of transcripts 

from three distinct sediment layers (Janssand April 2013: only sulfide transition layer, July 

2015: all three layers, see Figure 2) is given as average of triplicate metatranscriptomes. 

Standard deviations were omitted for simplicity as they indicated no significant differential 

expression for the individual sediment clusters except for sediment cluster 17 (see Figure 2). 

The scale bar indicates 10% sequence divergence. 
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            Normalized no. of transcripts 
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Supplementary Figure 2. Relative frequency of clone sequences, assembled metagenomic 

fragments and metatranscriptomic reads affiliated with sulfate-reducing microorganisms at 

site Janssand. Sediment clusters 17-19 belong to prototypic group 1b [NiFe]-H2ases of 

Desulfobacteraceae, sediment cluster 23 belong to group 1c [NiFe]-H2ases related to 

Desulfobulbaceae.  
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 Supplementary Table 1. Sampling sites and performed experiments 

 
 

 

Supplementary Table 2. Sample IDs and reads abundances of metatranscriptomes from 

site Janssand 

Sampling date Sediment depth Layer Sample ID core no. Reads* 
April 2013 2-3 cm transition A  29,029,446 

 2-3 cm transition B  29,726,577 

 2-3 cm transition C  33,590,664 

July 2015 0-1 cm surface A 1 30,334,650 

 3-4 cm transition B 1 23,645,294 

 7-8 cm sulfidic C 1 22,259,685 

 0-1 cm surface D 2 28,626,609 

 2-3 cm transition E 2 20,595,041 

 7-8 cm sulfidic F 2 29,235,314 

 0-1 cm surface G 3 29,610,575 

 2-3 cm transition H 3 21,066,755 

 7-8 cm sulfidic I 3 20,830,901 

 
* Number of paired reads kept after quality trimming 

 

 

 

 

 

 
 
 

Site, country 

Sampling 
position 

(Lat, Lon) 
Sampling 

date 

Surface 
temperature 

(°C) 

Sampling depth (cmbsf) 
(A=surface, B= sulfide 
transition, C= sulfidic) 

Performed 
experiments 

Janssand, GER 
52.7366N, 
7.6989E January 2011  A: 0-1, B: 1-2 a 

Janssand, GER 
52.7366N, 
7.6989E January 2012 5 C: 3-5 b 

Janssand, GER 
53.7368N, 
7.6989E March 2012 8 A: 0-1, B: 7-8, C: 12-13 c 

Janssand, GER 
53.7366N, 
7.6989E April 2013 13 A: 0-1, B: 2-3, C: 6-7 b, d, e 

Janssand, GER 
53.7375N, 
7.6988E July 2015 18 Supplementary Table 2 e 

Courseulles-sur-Mer, 
FRA 

49.3395N, 
0.4695W October 2012 18 A: 0-1, B: 2-3, C: 6-7 c 

Mont St. Michel, FRA 
48.6138N, 
1.7436W October 2012 18 A: 0-1, B: 5-6, C: 7-8 c 

      
a single cell genomics; b H2 oxidation experiments; c clone libraries; d metagenomics; e metatranscriptomics  
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Supplementary Table 3. Pooling scheme of single amplified genomes (SAGs), accession 

no. and service institutions. 

  

16S rRNA gene acc. 
no of individual SAG 

SAG pool 
identifier 

16S rRNA gene acc. no 
from SAG pool after 

sequencing 

 
WGAa by 

sequenced 
by 

SAG identifier      

Eudoraea spp.     

SCGC_5401 Pending   pSCGC_5291* Pending   SCGCb 

JGIc SCGC_5291* Pending   

     

Sva0081-MBG     

SCGC_5345 Pending   
pSCGC_5268* Pending   

 
SCGCb 

JGIc 
 SCGC_5268* Pending   

      

SCGC_5290* Pending   
pSCGC_5290* Pending   

 
SCGCb 

JGIc 
 SCGC_5419 Pending   

      

282_O19 Pending   

1868_C Pending   

 
 
 

SciLifeLabd 
MP-GCe 

 
 

281_G6 Pending   

281_C15 Pending   

282_I19 Pending   

282_M14 Pending   

      

282_I17 Pending   
1868_D Pending   

 
SciLifeLabd 

MP-GCe 281_A17 Pending   
 
a whole genome amplification  
b Bigelow Laboratory Single Cell Genomics Centre, Bigelow, USA  
c Joint Genome Institute, Walnut Creek, USA  
d Microbial Single Cell Genomics facility at SciLifeLab, University of Uppsala, Sweden  
e Max Planck Genome Centre, Cologne, Germany 
 
 

 
Supplementary Table 4. PCR primers used in this study 

Primer Sequence (5'-3') 

Annealing 
Temperature 

(°C) Reference 
HUPLX1 GACCCSGTBACSCGNATYGARGG 65 (Csáki et al., 2001) 

HUPLW2 RCANGCNAGRCASGGGTCGAA 65 (Csáki et al., 2001) 

HupLSRB2f GSAGCCCAGTTYCAGCAC 53 This study 

HupLSRB2r CCAGGTKGAGGGAACMAC 53 This study 

HupLSRB3f GCCCTSGACTGGGTBGAYRT 55 This study 

HupLSRB3r CAGGCVAKRCABGGRTCRAA 55 This study 
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Supplementary Table 5. Evaluation of novel PCR primer sets on pure cultures of sulfate-

reducing bacteria 

  Amplicon with primers set 

Species DSM no. 

hupLX1/W2  

(Csaki et al., 2001) 

hupLSRB2f/r 

(This study) 

hupLSRB3f/r 

(This study) 

Syntrophobacter fumaroxidans 10017 +  + +  

Desulfatibacillum alkenivorans 16219 -  +  -  

Desulfobacterium autotrophicum 3382 -  +  -  

Desulfosarcina variabilis 2060 -  + + 

Desulfobacter postgatei 2034 +  -  -  

Desulfobulbus propionicus 2032 -  -  + 

Desulfotalea psychophila 12343 -  -  +  

Desulfovibrio fructosivorans 3604 +  -  +  

Sulfurimonas denitrificans* 1251 - + - 
 
+ specific PCR product, - no PCR product, * non-sulfate-reducing Epsilonproteobacteria 

 
 
 
Supplementary Table 6. Accession numbers of group 1 [NiFe]-H2ase reference sequences 

from North Sea sediment metagenomes in Figure 2. 

Sequence name in tree (Figure 2) IMG gene ID   

North Sea, sediment metagenome_A Ga0065183_110804171 

North Sea, sediment metagenome_B Ga0065183_107219501 

North Sea, sediment metagenome_C Ga0055584_1022313581 

North Sea, sediment metagenome_D Ga0055584_1000122545 

North Sea, sediment metagenome_E Ga0065183_102383401 

North Sea, sediment metagenome_F Ga0055584_1002724581 
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Supporting Information 

Appendix S1: Primer evaluation on hydrogenase genes in SRM (meta)genomes (available 

at Joint Genome Institute, IMG platform, May 2016). 
 

IMG: Gene ID or Locus tag IMG: gene product name targeted by 

    HupLSRB2f HupLSRB2r HupLSRB3f HupLSRB3r 

644405509 Nickel-dependent hydrogenase  
large subunit          

2595078610 NiFe hydrogenase large subunit         
orf68 0100 5  Nickel-dependent hydrogenase,  

large subunit         
JGI24668J20090_100028693  NiFe-hydrogenase I large subunit         
JGI24669J20092_100009643  NiFe-hydrogenase I large subunit         
JGI24670J26820_116366605  NiFe-hydrogenase I large subunit         
JGI25716J29047_114730585  NiFe-hydrogenase I large subunit         
Ga0052190_1016636  NiFe-hydrogenase I large subunit         
Ga0065184_100008933  NiFe-hydrogenase I large subunit         
Ga0065185_100007893  NiFe-hydrogenase I large subunit         
2503007996 NiFe hydrogenase large subunit         
2523114984 NiFe hydrogenase large subunit         
643720967 HynA         
648711125 Nickel-dependent hydrogenase  

large subunit        
2502436589 NiFe-hydrogenase I large subunit        
2537414111 NiFe hydrogenase large subunit        
645000006 Nickel-dependent hydrogenase  

large subunit        
2595072046 NiFe hydrogenase large subunit        
2597044397 NiFe hydrogenase large subunit        
637527826 Ni/Fe-hydrogenase, large subunit        
2525210765 NiFe hydrogenase large subunit        
2612205264 NiFe hydrogenase large subunit        
2638626507 NiFe hydrogenase large subunit        
644801811 NiFe hydrogenase large subunit        
647337628 Nickel-dependent hydrogenase  

large subunit        
2508669373 NiFe hydrogenase large subunit        
2558086154 hydrogenase large subunit        
2639033377 NiFe hydrogenase large subunit        
649928178 Nickel-dependent hydrogenase  

large subunit        
2563384592 NiFe hydrogenase large subunit        
648112620 Nickel-dependent hydrogenase  

large subunit        
2516165900 NiFe hydrogenase large subunit        
2514920201 hydrogenase large subunit        
2523326328 NiFe hydrogenase large subunit        
2541022611 NiFe hydrogenase large subunit        
2541022315 NiFe hydrogenase large subunit        
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2541022313 NiFe-hydrogenase I apoprotein,  
large subunit        

2623443530 NiFe hydrogenase large subunit        
2656899711 hydrogenase large subunit        
645036831 Nickel-dependent hydrogenase  

large subunit        
2562215499 NiFe hydrogenase large subunit        
2562334896 hydrogenase large subunit        
2588171282 NiFe hydrogenase large subunit        
JGI24672J20091_100017575  NiFe-hydrogenase I large subunit        
2515197362 NiFe hydrogenase large subunit        
2523422185 NiFe hydrogenase large subunit        
Ga0056138_100053411  NiFe-hydrogenase I large subunit        
Ga0056113_10004878  NiFe-hydrogenase I large subunit        
Ga0056137_10010493  NiFe-hydrogenase I large subunit        
Ga0056112_10004959  NiFe-hydrogenase I large subunit        
2523914283 hydrogenase large subunit       
2524113310 NiFe hydrogenase large subunit       
2623322204 NiFe hydrogenase large subunit       
637123769 periplasmicNiFe hydrogenase,  

large subunit, isozyme 2       
2508700825 ferredoxin hydrogenase large  

subunit       
2508699307 NiFe hydrogenase large subunit       
2523845531 hydrogenase large subunit       
2524232440 NiFe hydrogenase large subunit       
2582525997 hydrogenase large subunit       
2597044293 NiFe hydrogenase large subunit       
2598074110 ferredoxin hydrogenase large  

subunit       
649843381 Nickel-dependent hydrogenase 

large subunit       
2525928439 NiFe hydrogenase large subunit       
2540825772 ferredoxin hydrogenase large  

subunit       
2563206737 NiFe hydrogenase large subunit       
2563206505 hydrogenase large subunit       
2568551726 ferredoxin hydrogenase large  

subunit       
2583208918 NiFe hydrogenase large subunit       
2587818225 hydrogenase large subunit       
2612204691 NiFe hydrogenase large subunit       
2646275835 ferredoxin hydrogenase large  

subunit       
2654383969 NiFe hydrogenase large subunit       

637784678 
periplasmic (NiFe) hydrogenase, 
large subunit,  
isozyme 2       

637783027 
periplasmic (NiFe) hydrogenase, 
large subunit,  
isozyme 1       

643139751 NiFe-hydrogenase I large subunit       
2574173340 NiFe hydrogenase large subunit       
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2587790109 NiFe hydrogenase large subunit       
639819476 Nickel-dependent hydrogenase, 

large subunit       
639818936 Nickel-dependent hydrogenase, 

large subunit       
2518924523 NiFe hydrogenase large subunit       
2523307157 NiFe hydrogenase large subunit       
2524894892 NiFe hydrogenase large subunit       
2524893616 NiFe-hydrogenase I apoprotein, 

large subunit       
2528591788 NiFe hydrogenase large subunit       
2572190346 ferredoxin hydrogenase large  

subunit       
2621232412 hydrogenase large subunit       
648112215 Cytochrome-c3 hydrogenase       
2507228726 hydrogenase large subunit       
643581839 Nickel-dependent hydrogenase  

large subunit       
643581633 NiFe-hydrogenase I apoprotein, 

large subunit       
2514390240 ferredoxin hydrogenase large  

subunit       
2514388568 NiFe hydrogenase large subunit       
2588094852 NiFe hydrogenase large subunit       
646846126 Nickel-dependent hydrogenase  

large subunit       
2514486646 hydrogenase large subunit       
2514486499 NiFe hydrogenase large subunit       
2595154195 NiFe hydrogenase large subunit       
2595151730 hydrogenase large subunit       
643540248 Nickel-dependent hydrogenase 

large subunit       
643538766 Nickel-dependent hydrogenase 

large subunit       
2508601824 , hydrogenase large subunit       
2527180206 NiFe hydrogenase large subunit       
2574508305 NiFe hydrogenase large subunit       
2576856899 NiFe hydrogenase large subunit       
2576856829 ferredoxin hydrogenase large 

subunit       
2585089270 hydrogenase large subunit       
JGI24673J20094_1000031411  NiFe-hydrogenase I large subunit       
JGI24669J20092_1000019416  NiFe-hydrogenase I large subunit       
JGI24670J26820_1163752548  NiFe-hydrogenase I large subunit       
JGI25716J29047_1147383648  NiFe-hydrogenase I large subunit       
Ga0049118_1000002535  NiFe-hydrogenase I large subunit       
Ga0049118_100857211  NiFe-hydrogenase I large subunit       
Ga0056122_1000003235  NiFe-hydrogenase I large subunit       
Ga0056122_1000003829  NiFe-hydrogenase I large subunit       
Ga0056122_100057871  NiFe-hydrogenase I large subunit       
Ga0056137_100001428  NiFe-hydrogenase I large subunit       
Ga0056137_10016624  NiFe-hydrogenase I large subunit       
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Ga0049117 100005389  NiFe-hydrogenase I large subunit       
Ga0049119_10001214  NiFe-hydrogenase I large subunit       
Ga0049119_10709271  NiFe-hydrogenase I large subunit       
Ga0065184_1000000779  NiFe-hydrogenase I large subunit       
Ga0065185_1000000935  NiFe-hydrogenase I large subunit       
2598073802 NiFe hydrogenase large subunit       
639703724 Nickel-dependent hydrogenase, 

large subunit       
2574153587 NiFe hydrogenase large subunit       
2638625652 NiFe-hydrogenase I apoprotein, 

large subunit       
2541188942 NiFe hydrogenase large subunit       
2574147102 NiFe hydrogenase large subunit       
2574204277 NiFe hydrogenase large subunit       
2620573311 NiFe hydrogenase large subunit       
2524272668 NiFe hydrogenase large subunit       
2515940352 NiFe hydrogenase large subunit       
2523531168 NiFe hydrogenase large subunit       
JGI24672J20091_1000003416  NiFe-hydrogenase I large subunit       
Ga0056138_100000496  NiFe-hydrogenase I large subunit       
Ga0056113_100003029  NiFe-hydrogenase I large subunit       
Ga0114885_1083856  NiFe hydrogenase large subunit       
649853399 Nickel-dependent hydrogenase 

large subunit       
2526261803 NiFe-hydrogenase I large subunit       
2574158876 NiFe hydrogenase large subunit       
2515863299 NiFe hydrogenase large subunit       
2588105827 NiFe hydrogenase large subunit       
JGI24673J20094_100279691  NiFe-hydrogenase I large subunit       
JGI24672J20091_100074731  NiFe-hydrogenase I large subunit       
Ga0049117_100001461  NiFe-hydrogenase I large subunit       
648708799 Cytochrome-c3 hydrogenase      
2501939430 F420-non-reducing hydrogenase 

subunit A      
2501938422 hydrogenase large subunit      
2510244675 hydrogenase large subunit      
2510242326 hydrogenase large subunit      
2510241718 hydrogenase large subunit      
2502438970 NiFe-hydrogenase III large subunit      
2502438769 NiFe-hydrogenase III large subunit      
2502434832 NiFe-hydrogenase I large subunit      
2522159913 Nickel-dependent hydrogenase      
2523967573 hydrogenase large subunit      
2562527838 NiFe hydrogenase large subunit      
2579732409 NiFe hydrogenase large subunit      
2588508210 hydrogenase large subunit      
2648644610 hydrogenase large subunit      
637123154 periplasmicNiFe hydrogenase, 

large subunit, isozyme 1      
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637123150 periplasmic      
645001194 Nickel-dependent hydrogenase 

large subunit      
2507427916 hydrogenase large subunit      
2507427835 hydrogenase large subunit      
2507427304 hydrogenase large subunit      
2507425773 hydrogenase large subunit      
2508699310 hydrogenase large subunit      
2505283578 hydrogenase large subunit      
2503788802 NiFe hydrogenase large subunit      
2523908838 Nickel-dependent hydrogenase      
2523908837 NiFe hydrogenase large subunit      
2597044294 Nickel-dependent hydrogenase      

637529521 
NAD(P)-dependent Nickel-iron  
dehydrogenase  
catalytic subunit      

637527407 
similar to cytochrome-c3  
hydrogenase (NiFeSe),  
large subunit      

649842741 Nickel-dependent hydrogenase 
large subunit      

650891413 Nickel-dependent hydrogenase  
large subunit      

2503788087 NiFe hydrogenase large subunit      
2525728026 hydrogenase large subunit      
2525725080 hydrogenase large subunit      
2540825143 NiFe hydrogenase large subunit      
2568551616 NiFe hydrogenase large subunit      
2612205263 Nickel-dependent hydrogenase      
2620502094 NiFe hydrogenase large subunit      
2646274870 NiFe hydrogenase large subunit      
2656812246 hydrogenase large subunit      
2656812245 hydrogenase large subunit      
637783024 NiFeSe) hydrogenase, large subunit,  

selenocysteine-containing      
643137516 NiFe-hydrogenase I large subunit      
644840202 Nickel-dependent hydrogenase  

large subunit      
644840066 Nickel-dependent hydrogenase  

large subunit      
2507127932 hydrogenase large subunit      
2507126251 hydrogenase large subunit      
2507124978 hydrogenase large subunit      
2524001555 NiFe hydrogenase large subunit      
2568540186 NiFe hydrogenase large subunit      
2595078611 Nickel-dependent hydrogenase      
637912001 NiFe-hydrogenase large subunit      
637911861 NiFe-hydrogenase large subunit      
637911350 NiFe-hydrogenase large subunit      
637910522 NiFe-hydrogenase large subunit      
639819479 Nickel-dependent hydrogenase,  

large subunit      



Hydrogenases in a marine sediment 
 

 116  

644401216 Nickel-dependent hydrogenase 
large subunit      

646853416 Nickel-dependent hydrogenase 
large subunit      

649926633 Nickel-dependent hydrogenase 
large subunit      

649988675 Cytochrome-c3 hydrogenase      
2509273730 hydrogenase large subunit      
2509270523 hydrogenase large subunit      
2509269915 hydrogenase large subunit      
2514680147 hydrogenase large subunit      
2511486587 NiFe-hydrogenase I large subunit      
2511486368 NiFe-hydrogenase I large subunit      
2511486004 hydrogenase large subunit      
2506602637 hydrogenase large subunit      
2523631346 NiFe hydrogenase large subunit      
2523711418 NiFe hydrogenase large subunit      
2527068693 NiFe hydrogenase large subunit      
2572192879 NiFe hydrogenase large subunit      
2651739353 NiFe hydrogenase large subunit      
643563290 Nickel-dependent hydrogenase 

large subunit      
643563191 Nickel-dependent hydrogenase 

large subunit      
643562662 hydrogen:quinone oxidoreductase      
643560720 Nickel-dependent hydrogenase 

large subunit      
2507228328 hydrogenase large subunit      
2507227045 hydrogenase large subunit      
2507226995 hydrogenase large subunit      
2509741687 NiFe hydrogenase large subunit      
2512873150 quinone-reactive Ni/Fe-hydrogenase 

large subunit      
2516167362 NiFe hydrogenase large subunit      
2656900525 hydrogenase large subunit      
646845900 Cytochrome-c3 hydrogenase     
646845739 Nickel-dependent hydrogenase  

large subunit      
2508512363 hydrogenase large subunit      
2508512196 hydrogenase large subunit      
2502445612 NiFe-hydrogenase I large subunit      
2502444211 NiFe-hydrogenase I large subunit      
2502443232 NiFe-hydrogenase I large subunit      
2502443231 NiFe-hydrogenase I large subunit      
2502442079 NiFe-hydrogenase I large subunit      
2523311096 NiFe hydrogenase large subunit      
2566033826 NiFe hydrogenase large subunit      
2571096069 NiFe hydrogenase large subunit      
2583134717 NiFe hydrogenase large subunit      
2653076074 hydrogenase large subunit      
2653074786 hydrogenase large subunit      
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643538769 Nickel-dependent hydrogenase  
large subunit      

643719900 HysA      
2508601061 hydrogenase large subunit      
2508506329 hydrogenase large subunit      
2508505836 hydrogenase large subunit      
2520044566 NiFe hydrogenase large subunit      
2524221153 hydrogenase large subunit      
2524277342 NiFe hydrogenase large subunit      
2524275249 hydrogenase large subunit      
2574444789 hydrogenase large subunit      
2600105052 NiFe hydrogenase large subunit      
2620818713 NiFe hydrogenase large subunit      
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Abstract 

Acetate is a key intermediate in organic matter mineralization in aquatic sediments. To 

quantify acetate assimilation by distinct bacterial populations in marine sediments, we 

incubated sediment cores with 14C-labeled acetate and flow-sorted cells identified by 

fluorescence in situ hybridization or stained by Nile Red, a fluorescent dye for 

polyhydroxyalkanoates (PHA). Subsequently, scintillography determined the amount of 14C-

acetate assimilated by distinct populations. By integrating 14C-acetate assimilation rates and 

cell abundances, we measured total uptake and the relative contribution of individual 

populations to the overall acetate uptake by Bacteria. Acetate uptake was highest in the 

surface layer (0-1 cm) for all sorted populations. Although cell-specific uptake rates were 

highest in Roseobacter-clade bacteria, they contributed only up to 11% to total bacterial 

acetate assimilation because of their low cell abundance in situ. Sulfate-reducing 

Desulfobacterales accounted for up to 32% of total bacterial acetate assimilation, while 

Gammaproteobacteria dominated acetate uptake in all sediment layers with a relative 

acetate uptake of 31-62%. Flow-sorting of Nile Red-stained cells demonstrated that some yet 

unidentified microorganisms assimilated 14C-acetate into PHA with rates exceeding those of 

the sorted bacterial population by 3-fold. Our results suggest that phylogenetically and 

metabolically diverse bacteria consume acetate in distinct layers of tidal sediments.  
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Introduction 

In organic-rich coastal and ocean margin sediments oxygen is already depleted in a few 

millimetres depth below the sediment surface, thus a large fraction of organic matter is 

degraded anaerobically (Jørgensen, 1977; Jørgensen, 1982). Under anoxic conditions 

complex organic matter is fermented and molecular hydrogen and volatile fatty acids such as 

propionate and acetate are released and respired by different terminal electron accepting 

processes (Christensen and Blackburn, 1982; Reeburgh, 1983; Novelli et al., 1988). In 

marine sediments acetate is quickly turned over and pore water concentrations are typically 

in the micromolar range (Sørensen et al., 1981; Christensen, 1984; Parkes et al., 1989; 

Kristensen, 1994; Finke et al., 2007; Valdemarsen and Kristensen, 2010). Several studies 

have shown that acetate stimulates in particular sulfate respiration in marine sediments 

(Oremland and Polcin, 1982; Werner et al., 2006). Consistent with this acetate was 

suggested to be the quantitatively most important substrate for sulfate-reducing bacteria 

(SRB) that are capable of completely oxidizing organic substrates to CO2 (Laanbroek and 

Pfennig, 1981; Thauer and Postgate, 1982). Thus, acetate is considered to be a central 

substrate for sulfate respiration, a process accounting for up to 50% of total carbon 

mineralization (Jørgensen, 1982).  

Stable isotope probing (SIP) has been frequently used to track the consumption of 

isotopically labelled model substrates into cellular biomarkers such as nucleic acids (DNA-

SIP, RNA-SIP) or phospholipid fatty acids (PLFA-SIP) (Boschker et al., 1998; Webster et al., 

2006; MacGregor et al., 2006; Miyatake et al., 2009; Webster et al., 2010; Vandieken et al., 

2012; Vandieken and Thamdrup, 2013; Na et al., 2015). These studies helped in detecting 

acetate assimilation by sulfate-reducing Desulfobacteraceae, Firmicutes, Crenarchaeota and 

others (Boschker et al., 1998; Webster et al., 2006; Webster et al., 2010; Seyler et al., 2014; 

Na et al., 2015). Moreover, diverse Gammaproteobacteria like Alteromonadales, 

Oceanospirillales and Acidithiobacillales and the epsilonproteobacterial Arcobacter respire 

acetate using oxygen, nitrate and manganese oxide as electron acceptors (Vandieken et al., 

2012; Vandieken and Thamdrup, 2013). Because of relatively long incubation periods in 

DNA-SIP, cross-feeding and population shifts are well known limitations (Dumont and 

Murrell, 2005). In these SIP approaches, the uptake of an isotopically labelled model 

compound by a defined population cannot or only indirectly be quantified. Moreover, 

microbes assimilating isotopic labels into compounds other than nucleic acids or PFLAs 

escape detection by SIP. To overcome these limitations, we recently introduced a novel 

methodological approach, in which we combined 14C-labeling of cells with catalyzed-reporter 

deposition fluorescence in situ hybridization (CARD-FISH), fluorescence-activated cell 

sorting (FACS) and scintillography to quantify carbon uptake by a given number of cells of a 

phylogenetically identified populations (Dyksma et al., 2016). 
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In our study, we applied this approach to identify the major acetate-assimilating bacterial 

populations in tidal sediments of the German Wadden Sea. These sediments are 

characterized by high nutrient concentrations, high aerobic respiration rates and intense 

sulfur cycling (Billerbeck et al., 2006; Beck et al., 2008; Al-Raei et al., 2009; Jansen et al., 

2009). To identify major contributors to acetate assimilation in distinct sediment layers we 

incubated whole sediment cores and slurries with 14C-acetate. After CARD-FISH we flow-

sorted cell batches of 50,000 cells from major phylogenetic groups for scintillography. 

Thereby, we aimed at quantifying 14C-acetate assimilation by in situ abundant groups such 

as Gammaproteobacteria, Roseobacter-clade bacteria (RCB), sulfate reducing 

Desulfobulbaceae and some Desulfobacteraceae (Desulfosarcina/Desulfococcus-clade). 

Given their abundance and their metabolic potential to completely oxidize organic 

compounds to CO2, members of the Desulfobacteraceae were suggested to be the key 

players in carbon- and sulfur-cycling in organic rich marine sediments (Rabus et al., 2015). . 

In addition, flow-sorting of cells containing fluorescently stained polyhydroxyalkanoates 

(PHAs) revealed an assimilation of 14C-acetate into storage compounds. 
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Results 

Pore water concentrations of acetate, formate and lactate 

In June 2009 we exemplarily determined the concentrations of acetate, formate and lactate 

in distinct sediment layers at site Janssand. In the top 10 cm of the sediment concentrations 

were in the lower micromolar range (Fig. S1). Acetate and lactate concentrations varied 

between 0 and 12 μM, whereas formate concentrations were below 5 μM. 

 

Bulk assimilation of acetate and abundance of acetate-assimilating cells  

To quantify acetate assimilation by the bulk sediment and by in situ abundant bacterial 

populations we percolated two sediment cores with seawater containing 100 μM of [1,2-14C]-

labelled acetate and incubated them for 8h. We used oxic seawater in order to mimic flushing 

of even deeper sediment layers with fully oxygenated seawater during high tide (de Beer et 

al., 2005; Jansen et al., 2009). The relative abundance of 14C-acetate-assimilating cells was 

determined by microautoradiography (MAR) of DAPI-stained cells. The abundance of 

acetate-assimilating cells was highest in 0-1 cm depth, equalling 17% of total cell counts and 

decreased to 2% in 9-10 cm depth (Fig. 1). Similarly, bulk acetate assimilation was highest at 

in 0-1 cm reaching 7.6 μmol l-1 h-1 and steeply decreased to 0.2 μmol l-1 h-1 in 9-10 cm 

sediment depth (Fig. 1). 

 

Quantification of acetate assimilation in FISH-identified bacterial populations 

First, we used MAR-FISH to identify major candidate acetate-assimilating populations in the 

surface layer (0-1 cm) of the whole cores incubated with 14C-acetate. Gammaproteobacteria 

accounted for about 60% of all MAR-positive cells, whereas Deltaproteobacteria and RCB 

made up only for 6-8% each (Table S1). Approximately 19% of Gammaproteobacteria, 40% 

of RCB and 8% of Deltaproteobacteria displayed a MAR-signal (Fig. 2 and Table S1). 

Since MAR-FISH is only semi-quantitative and has a low dynamic range of sensitivity we 

quantified 14C-acetate assimilation by measuring the bulk substrate uptake by pooling a 

defined number of phylogenetically identified cells. To this end, we sorted different 

populations from three distinct sediment layers from the duplicate cores, 50,000 cells each. 

Our target populations were I) Bacteria (probe EUBI-III), II) Gammaproteobacteria (probe 

GAM42a), III) Roseobacter-clade bacteria (RCB, probe ROS537), IV) some members of the 

Desulfobacteraceae (probe DSS658) and V) Desulfobulbaceae (probe DSB706). For each 

measurement the flow-sorted batches of 50,000 cells were used for subsequent quantitative 

scintillography. To estimate background assimilation of acetate we sorted fluorescent beads 

added to dead controls and fluorescent particles from probe NON33-targeted samples 

(control for unspecific staining). Background radioactivity was minimal and was subtracted 

from values of the sorted bacterial populations (Fig. S2). 
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As a general trend, all studied populations assimilated most acetate in the upper 0-1 cm and 

assimilated less with increasing sediment depth (Fig. 3a). The 14C radioactivity of 50,000 

sorted Bacteria ranged between 9.8 Bq in the uppermost cm to 0.5 Bq at 6-7 cm sediment 

depth. In the top cm of the sediment cores Roseobacter-clade bacteria (RCB) showed 

highest 14C-acetate assimilation (20.1-24.8 Bq), while Gammaproteobacteria assimilated 

10.1 to 14.2 Bq (Fig. 3a). Also sulfate-reducing Desulfobacteraceae and Desulfobulbaceae 

assimilated acetate in the upper one cm ranging from 6.3 to 8.4 Bq and 12.6 to 18.2 Bq, 

respectively.  

By dividing the total amount of assimilated 14C-acetate per population by the number of 

sorted cells cell (50,000 per measurement), we calculated the average cell-specific 14C-

acetate uptake. RCB displayed highest cell-specific carbon assimilation rates amounting to 

9.7 fg C cell-1 d-1 (Table 1). The measured cell-specific assimilation rates for 

Gammaproteobacteria were approximately half (5.5 fg C cell-1 d-1) and sulfate-reducing 

Desulfobulbaceae assimilated acetate up to 7.1 fg C cell-1 d-1, while Desulfobacteraceae 

showed lower cell-specific rates of up to 3.3 fg C cell-1 d-1. 

 

Relative contribution of populations to total bacterial acetate assimilation 

We then calculated the relative contribution of the sorted populations to total acetate 

assimilation by integrating the relative in situ cell abundances in the sediment cores (Fig. 

S3), the cell-specific 14C-carbon assimilation and the 14C-carbon assimilated by Bacteria. The 

relative abundances of the individual target populations were highly similar throughout the 

upper 7 cm in both cores (Fig. S3). Irrespective of the sediment depth, 

Gammaproteobacteria assimilated most acetate, accounting for 31-62% of total bacterial 

acetate assimilation (Fig. 3b). The relative contribution of Desulfobulbaceae to total acetate 

assimilation slightly increased with sediment depth, while such an effect was unclear for 

Desulfobacteraceae. Together, SRB contributed up to 32% of total bacterial acetate 

assimilation (Fig. 3b). Although RCB showed highest 14C-acetate assimilation per cell, they 

contributed only 1-11% to bacterial acetate assimilation because of their lower cell 

abundances (1-2% of total cell counts). 

 

Sediment slurry incubations in October 2009 

To study acetate assimilation by the individual groups in more detail, we prepared oxic 

sediment slurries from 0-1 cm depth and anoxic slurries from 10-11 cm depth in October 

2009. As whole cores slurries were incubated under similar conditions at 100 μM 14C-acetate 

for 6-8 h. In contrast to whole core incubations from June 2009, Gammaproteobacteria 

displayed a 3-fold higher acetate uptake per 50,000 sorted cells than RCB (Fig. 4). 

Desulfobulbaceae and Desulfobacteraceae assimilated acetate in oxic and anoxic slurry 
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incubations but 2 to 3-fold less than in the whole core incubations (Fig. 4). Similar to whole 

core incubations Desulfobacteraceae from surface layers seemed to assimilate more acetate 

than cells from deeper layers, while this trend was not clear for Desulfobulbaceae. 

Consistent with the whole core incubations Desulfobulbaceae assimilated in average more 

acetate than Desulfobacteraceae (Figs. 3a, 4 and Table 1).  

In addition, we sorted cells of the uncultured Sva0081-MBG using a newly designed probe 

DSS_1431 (Fig. S4). The Sva0081-MBG forms a monophyletic subcluster within the 

Desulfobacteraceae and partial 16S rRNA gene sequences of this group have been 

recovered from site Janssand during earlier sampling and sequencing efforts (Lenk et al., 

2011). The Sva0081-MBG assimilated acetate in similar rates as Desulfobacteraceae and 

Desulfobulbaceae (Table 1).  

 

Acetate uptake and polyhydroxyalkanoates (PHAs) 

To test, whether acetate is used to build up storage compounds (Anderson and Dawes, 

1990), we used the lipophilic, fluorescent dye Nile Red to stain polyhydroxyalkanoates (PHA) 

in bacterial cells from the oxic and anoxic slurry incubations. We observed strongly 

fluorescent intracellular inclusions in cells extracted from incubated sediments (Fig. S5). As 

the intracellular PHA concentration and Nile Red fluorescence intensity correlate linearly 

(Greenspan et al., 1985; Vidal-Mas et al., 2001) we flow-sorted Nile Red-stained cells 

according to four fluorescence intensity classes (Fig. S6) and measured 14C radioactivity in 

batches of 50,000 cells. 

In the sorted cell fractions, the fluorescence intensity of Nile Red stained cells correlated well 

with 14C radioactivity, suggesting that unidentified microorganisms formed PHAs from acetate 

(Fig. 5). In oxic incubations, PHA formation from acetate was slightly higher (Fig. 5). Cells 

with the highest intracellular PHA concentration showed average carbon assimilation rates 

between 19.8 and 26.4 fg C cell-1 d-1 (Table S2), which exceeded all cell-specific uptake rates 

measured for the phylogenetically identified populations (Table 1). 

 

Discussion 

We combined a radioactive labeling of bacterial cells with CARD-FISH and flow-sorting to 

exactly quantify the assimilation of acetate by a given number of cells of a phylogenetically 

identified population. Our approach provides a high sample throughput and a precision at the 

level of populations that complements readily existing methods such as MAR-FISH, HISH-

SIMS and DNA/RNA-SIP (Boschker et al., 1998; Nielsen and Nielsen, 2002; Vandieken et 

al., 2012; Vandieken and Thamdrup, 2013; Na et al., 2015). The scintillography of 50,000 

FISH-stained cells thus also includes cells that are labeled below detection limits of 

techniques such as SIP or MAR-FISH. Single cell methods could be applied after sorting to 
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achieve a resolution at the single cell level in a higher throughput. These would allow 

including biovolumes to more accurately infer population-specific uptake rates. To facilitate 

accurate modelling of carbon budgets, the amount of 14CO2 released by respired acetate 

should be quantified in future experiments. 

 

Acetate assimilation rates in distinct sediment layers 

The average cell-specific acetate assimilation rates in whole core incubations amounted to 

9.7 fg C cell-1 d-1 (Table 1), which is three orders of magnitude lower than rates reported for 

activated sludge communities (1.1-7.6 pg C cell-1 d-1; Nielsen and Nielsen, 2002) but are in 

the range of rates known for freshwater bacterioplankton (approximately 5-57 fg C cell-1 d-1; 

Buck et al., 2009). Bulk sediment uptake and population-specific substrate incorporation 

were highest in 0-1 cm for all groups investigated in this study (Figs. 1, 3a). This is consistent 

with earlier studies that showed highest acetate assimilation in oxygenated surface layers 

(Christensen and Blackburn, 1980; Christensen and Blackburn, 1982). In our experiment, the 

surface layer (0-1 cm) also comprised the oxic-anoxic interface as indicated by transition of 

brownish to black-coloured sediment in approximately one cm depth and exemplary O2-

microsensor measurements at site Janssand (Jansen et al., 2009). In this transition zone  

nitrate, manganese, ferric iron and sulfate serve as alternative electron acceptors (Kowalski 

et al., 2012) which likely supported anaerobic acetate uptake during our experiments. 

Apparently, the incubation conditions and the vertical resolution in our core experiment were 

not sufficient to clearly discriminate aerobic from anaerobic acetate uptake as it was out of 

scope of our study to ultimately evaluate acetate uptake under fully oxic versus fully anoxic 

conditions. Such experiments require a more sophisticated experimental set-up, e.g. as 

described by Gao et al. (2010). However, our data clearly demonstrate that the microbial 

community displayed a generally higher acetate-assimilating activity at the sediment surface 

than in deeper layers. In the transition zone, the onset of microbial fermentations fosters the 

production of H2 and acetate, which in turn stimulate sulfate respiration. Our data also agree 

with the observation that e.g. sulfate reduction rates can peak right below the oxic-anoxic 

interface in tidal surface sediments (de Beer et al., 2005; Al-Raei et al., 2009).  

 

Roseobacter-clade bacteria showed the highest bulk assimilation of 14C-acetate  

Roseobacter-clade bacteria (RCB) are metabolically versatile and thrive as heterotrophs, 

anoxygenic phototrophs and oxidize inorganic and organic sulfur compounds (Sorokin, 1995; 

González et al., 1999; Howard et al., 2006; Sass et al., 2010; Curson et al., 2011). In the 

incubated sediment cores the RCB assimilated most acetate per 50,000 cells of all sorted 

populations including the total bacterial fraction (Fig. 3, Table 1), but they contributed only up 

to 11% to bacterial acetate assimilation because of their low cell abundance. However, since 
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relative cell abundances of RCB seasonally vary in these tidal sediments (Lenk et al., 2012), 

their contribution to acetate consumption may also shift significantly during a seasonal cycle.  

In contrast to whole core incubations, in slurry incubations RCB assimilated less acetate than 

Gammaproteobacteria cells despite identical acetate concentrations and the use of oxic 

seawater (Figs. 3a, 4, Table 1). RCB and Gammaproteobacteria comprise many distinct 

physiological groups that possibly respond differently to incubations in either undisturbed 

sediment or slurries. In addition, Vandieken and Thamdrup (2013) observed the 

accumulation of added acetate in slurry incubations and suggested a lower acetate oxidizing 

capacity in slurries compared to intact core incubations, possible because of a limitation of 

electron acceptors. Together, these observations suggest a severe impact of the applied 

incubation conditions on the measured acetate uptake. 

 

Gammaproteobacteria dominate bacterial acetate assimilation 

Both MAR-FISH and scintillography of sorted populations suggested that 

Gammaproteobacteria are major acetate consumers in Janssand sediments accounting for 

up to 62% of total bacterial acetate assimilation (Fig 3b). This is consistent with the previous 

observation that gammaproteobacterial groups such as Alteromonadales, Acidithiobacillales 

and Oceanospirillales incorporated acetate in marine sediments using manganese and likely 

other electron acceptors (Vandieken et al., 2012; Vandieken and Thamdrup, 2013). 

Gammaproteobacteria account for up to 20-25% to total cell counts in Janssand sediments 

and are central members of the microbial communities in coastal sediments (Fig. S3, 

Dyksma et al., 2016). These comprise distinct physiological groups including autotrophic and 

heterotrophic members that possibly assimilated acetate in our experiments. However, our 

MAR-FISH results indicated that only approximately 20% of Gammaproteobacteria 

assimilated acetate in amounts detectable at the single cell level (Fig. 2 and Table S1), 

suggesting that only few gammaproteobacterial groups assimilated high amounts of acetate. 

The accumulation of high amounts of substrate by a relatively few number of cells within a 

short incubation period is typical for formation of storage compounds such as PHA. In line 

with this, the high correlation of acetate uptake and PHA concentrations (Fig. 5) along with 

the high cellular uptake rates (Table S2) indicate that some, still unknown microorganisms 

took up relatively large amounts of 14C-acetate and formed PHA. Our observation that 

relatively few Gammaproteobacteria accounted for most of bacterial acetate assimilation, lets 

us hypothesize that these formed PHAs during the short-term experiments. However, double 

labelling of cells with Nile Red and CARD-FISH provided inconclusive results and requires 

methodological optimization. 

In general, PHAs are formed at elevated carbon-to-nitrogen ratios or under nutrient limitation 

(Macrae and Wilkinson, 1958; Dawes and Senior, 1973; Repaske and Repaske, 1976). In 
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our incubations, we used 10-fold higher acetate concentrations than in pore waters (Fig. S1) 

to minimize substrate limitation during the course of our incubations. However, as for most 

isotopic tracer studies it has to be taken into account that such artificially high acetate 

concentrations can blur results, as they may favour opportunistic microorganisms adapted to 

high substrate concentrations. Consistent with this notion, our results suggest that the rapid 

build-up of PHA under the experimentally introduced nutritional imbalance may have 

favoured PHA-forming bacteria, possibly some Gammaproteobacteria. In the future, the 

application of specific probes for gammaproteobacterial subgroups along with optimized Nile 

Red stains may unravel their contribution to bacterial acetate assimilation. Moreover, we 

recommend semi-continuous culture-like set-ups to guarantee both low substrate 

concentrations and sufficient isotopic labeling of cells (Pester et al., 2010).  

 

Sulfate-reducing Desulfobacteraceae and Desulfobulbaceae assimilated acetate 

In both whole core and slurry experiments the Desulfobacteraceae contributed more to total 

acetate assimilation than Desulfobulbaceae (Fig. 3b), although the Desulfobulbaceae 

consistently showed a higher acetate uptake rate both in core and slurry incubations (Figs. 

3a, 4, Table 1). The higher in situ cell abundances of the Desulfobacteraceae made up for 

the lower cell-specific rates, which explains their prevalent contribution to acetate uptake 

among SRB (Fig. 3b). Desulfobacteraceae, in particular members of the 

Desulfosarcina/Desulfococcus-group and Desulfobulbaceae have been regularly identified as 

the key SRB in marine sediments by 16S rRNA gene libraries and FISH (Devereux et al., 

1992; Edgcomb et al., 1999; Ravenschlag et al., 2000; Knittel et al., 2003; Mußmann et al., 

2005; Musat et al., 2006). Moreover, Desulfobacteraceae have been identified as acetate 

consumers in SIP approaches using nucleic acids or PFLAs but quantitative data are lacking 

(Boschker et al., 1998; Webster et al., 2006; Webster et al., 2010; Na et al., 2015). 

Generally, Desulfobulbaceae can utilize acetate only as carbon source, whereas most 

Desulfobacteraceae use acetate also energy source (Kuever, 2014; Rabus et al., 2015). 

According to this distinct pattern of acetate utilization, the Desulfobulbaceae in our 

experiments may have consumed acetate mostly for assimilation into biomass, while 

Desulfobacteraceae probably also respired acetate and thus assimilated a smaller fraction of 

the consumed acetate.  

Unexpectedly, both Desulfobacteraceae and Desulfobulbaceae assimilated similar amounts 

of acetate in oxic and anoxic slurry incubations (Table 1, Fig. 4). Here, despite vigorous 

shaking we cannot rule out the existence of anoxic micro-niches that could have supported 

sulfate respiration. Alternatively, instead of respiring acetate with sulfate these SRB might 

have channelled acetate into storage compounds such as PHA or glycogen, which are 

commonly used by SRB to detoxify oxygen (Dolla et al., 2006). In addition, even a slight 
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growth in presence of oxygen was reported for some SRB (reviewed in Rabus et al., 2015). 

Future experiments require a higher spatial and temporal resolution and more defined 

incubation conditions to test for a potential acetate uptake by SRB in under fully oxic 

conditions. 

To further resolve the acetate assimilation of Desulfobacteraceae in more detail we studied 

the activity of Sva0081-MBG in the sediment slurries. This group assimilated acetate in 

higher rates than the average Desulfobacteraceae population (Fig. 4 and Table 1). Within the 

highly diverse Desulfobacteraceae the Sva0081-MBG has been frequently detected in 

various types of marine sediments (Wang et al., 2013; Liu et al., 2014; Zheng et al., 2014) 

and was found in high cell abundance in Wadden Sea sediments (up to 8% of total cell 

counts, Ovanesov, 2012). Thus, we hypothesize that the Sva0081-MBG could be an 

important acetate-consuming SRB also in other marine coastal sediments. 

 

Conclusion 

Our approach complements earlier studies on microbial acetate assimilation in marine 

sediments, as we can now accurately quantify the acetate uptake by distinct bulk populations 

and determine their relative contribution to the total bacterial acetate uptake. We show that 

physiologically and phylogenetically distinct bacterial groups assimilated acetate, whereby 

Gammaproteobacteria and sulfate-reducing Desulfobacteraceae accounted for most of the 

bacterial acetate assimilation, in particular in the upper one cm of the sediment, which 

generally is the microbially most active zone in coastal sediments.  Future experiments using 

different electron acceptors facilitate to track the varying contributions of distinct microbial 

populations to acetate consumption in a high spatial and temporal resolution, for instance 

during a full tidal cycle. By quantifying acetate uptake in distinct bacterial populations, we 

provide deeper insights into the activity of key players involved in acetate consumption, 

which is essential for our understanding of re-mineralization of organic matter in marine 

sediments.  
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Experimental procedures 

Study site and sampling 

In June and October 2009 sediment was sampled by 3.7 cm diameter polyacryl cores at the 

tidal flat Janssand (53.7366N, 7.6989E) located in the German Wadden Sea. This site 

represents a typical sand flat with predominantly sandy sediment (Beck et al., 2009). 

Biogeochemical data and sediment characteristics of this site are published elsewhere 

(Billerbeck et al., 2006; Jansen et al., 2009). Sediment cores of 20 cm length were taken, 

stored at in situ temperatures and processed within 24 to 48 h after sampling.  

 

Concentrations of volatile fatty acids and lactate 

Concentrations of volatile fatty acids and lactate were analyzed in two sediment cores 

sampled in June 2009. Sediment from seven distinct sediment layers was sampled. High-

performance liquid chromatography (HPLC), collection and analysis of pore water were 

performed as described by Sawicka and colleagues (2009). In brief, sediment samples from 

respective depths were centrifuged in SphinexR 135 filters at 4000 rpm at 4°C for 15 min. 

Collected pore water was filtered into 1-ml brown borosilicate glass vials that were pre-

combusted at 480°C for 4 h to minimize possible contamination. The acids were derivatized 

with p-nitrophenyl hydrazine, separated by HPLC using a LiChrosphere 80/100 (Knauer, 

Berlin, Germany) column at 25°C, and the concentrations were determined from the 

absorption on a UV/VIS detector (Linear) at 400 nm. 

 

Whole sediment core and slurry incubations with 14C-acetate 

Intact sediment cores from the same sampling campaign in June 2009 were percolated with 

50 ml of sterile filtered pore-water containing 100 μM [1,2-14C]-acetate (specific activity 100 

mCi/mmol (Hartmann Analytic, Braunschweig, Germany) to displace natural pore water (as 

described earlier (Lenk et al., 2011) and incubated for 8 h at in situ temperature (20 °C). After 

incubation, sediment cores were washed by percolating 2×50 ml of sterile filtered seawater to 

remove free 14C-acetate and sliced into 1 cm thick sections. From each layer 0.5 ml were 

fixed for FISH as described previously (Lenk et al., 2011).  

In October 2009 we prepared additional sediment slurries from 0-1 cm depth for oxic 

incubations and from 10-11 cm depth for anoxic incubations. We added 100 μM [1,2-14C]-

acetate to 1 ml of sediment and 1 ml of medium and incubated under ambient air at 200 rpm. 

For sediment from 0-1 cm depth we used the local sterile-filtered seawater as medium, while 

for sediment from 10-11 cm depth we used 1 ml of sterile-filtered pore water, extracted from 

sediment of 8-12 cm depth and incubated under a N2/CO2 (80/20 v/v) atmosphere. The 

slurries were incubated in 5 ml vials for 8 h before inactivation. All sediment samples were 

fixed by adding 1.8% formaldehyde overnight at 4 °C and processed for CARD-FISH 
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analysis according to Ishii et al. (2004). From this experiment cells either labeled by CARD-

FISH or by Nile Red for PHA stain were used. As controls we used formaldehyde-inactivated 

sediment. These dead controls did not show any significant 14C incorporation.  

  

Microautoradiography 

The relative abundance of 14C-acetate-assimilating cells in sediment cores from June 2009 

was determined by microautoradiography (MAR). MAR was performed according to Alonso 

and Pernthaler (2005) and Lenk et al. (2011) with an exposure time of two days. Relative 

abundance of MAR-positive cells was manually determined under an Axioplan 

epifluorescence microscope (Zeiss, Jena, Germany). 

 

Measurements of acetate uptake by the bulk microbial community  

Bulk uptake of acetate by the microbial community in whole core incubations and time-series 

experiment (June 2009) was measured in cells separated from large sediment particles. 

Therefore, fixed cells were detached from sediment grains by ultrasonic treatment as 

described previously (Lenk et al., 2011). After sonication 10 μl of the supernatant containing 

the detached cells was mixed with 5 ml UltimaGold XR (Perkin Elmer, Boston, USA) 

scintillation cocktail and the radioactivity was measured in a liquid scintillation counter (Tri-

Carb 2900, Perkin Elmer, USA). Scintillation counts of formaldehyde-inactivated dead 

controls were minor and were subtracted from the samples. 

 

CARD-FISH and sample preparation for flow cytometry 

For catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) sediment 

was fixed immediately after core retrieval as described in Lenk et al. (2011). Cells were 

detached from sediment particles by ultrasonic treatment as described previously (Lenk et 

al., 2011). Cells were detached from 100-200 μl sediment by ultrasonic treatment as 

described previously (Lenk et al., 2011). The sample was not centrifuged but directly after 

settlement of the sand grains the supernatant along with the detached cells were filtered onto 

25 mm polycarbonate membrane filters with a 0.2 μm pore size (GTTP, Millipore, Eschborn, 

Germany). Permeabilization and CARD-FISH was performed as described by Pernthaler et 

al. (2002) without embedding in agarose with the following modifications. Endogenous 

peroxidases were inactivated in 3% H2O2 in Milli-Q water for 10 min at room temperature. 

The temperature for all hybridizations was 46°C and washing was performed at 48°C 

according to the protocol of Ishii et al. (2004). An overview of oligonucleotide probes used in 

this study is shown in Table S3. Tyramides labeled with Alexa488 fluorescent dye (Molecular 

Probes, USA) were used for CARD signal amplification. For detachment of cells filters were 

vortexed in 5 ml of 150 mM NaCl containing 0.05% Tween 80 according to Sekar et al. 
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(2004) or using a cell scraper. Prior to flow cytometry, large suspended particles were 

removed by filtration through 8 μm pore-size filter (Sartorius, Göttingen, Germany) to avoid 

clogging of the flow cytometer.  

 

Fluorescence activated flow sorting (FACS) and scintillography of sorted cells 

Flow sorting of FISH-identified cells and scintillation counting of sorted cell fractions were 

performed as described previously (Dyksma et al., 2016). In brief, cells were sorted using a 

FACSCalibur flow cytometer (Becton Dickinson, Oxford, UK). Hybridized cells were identified 

on scatter dot plots of green fluorescence versus 90° light scatter and sediment background 

was determined by flow cytometric analysis of hybridizations with a nonsense probe 

(NON338) prior to flow sorting. Collected cell batches on polycarbonate filters were 

transferred into 5 ml scintillation vials and mixed with 5 ml UltimaGold XR (Perkin Elmer, 

Boston, USA) scintillation cocktail. Radioactivity of sorted cell batches was measured in a 

liquid scintillation counter (Tri-Carb 2900, Perkin Elmer, USA). Unspecifically adsorbed label 

in live samples caused only minor radioactive background as determined by spiking 

experiments with fluorescent beads (Fig. S2). 

For measuring assimilation of 14C-acetate into PHAs we sampled oxic sediment slurries from 

0-1 cm depth sampled in October 2009 (see above). For Nile red staining of PHAs, cells 

were detached from the sediment as described above and stained with 10 μg/ml (final 

concentration) Nile red from a stock solution of 1 mg/ml dissolved in dimethylsulfoxide 

(DMSO). Cells were stained for 30 min at 37 °C and a fraction of the stained sample was 

manually checked under an epifluorescence microscope (Zeiss, Jena, Germany) (Fig. S5). 

Prior to flow cytometry large suspended particles were removed by filtration through 5 μm 

pore-size filters (Sartorius, Göttingen, Germany). Target cells for flow cytometry were 

identified on scatter dot plots of orange fluorescence (detected wavelength 585 ±21 nm) 

versus 90° light scatter. Regions with four different fluorescence intensities were selected for 

sorting (Fig. S6). Sorted cell batches were collected on polycarbonate filters and radioactivity 

was measured as described above.  

 

Calculation of cell-specific carbon assimilation rates  

The average cell-specific carbon assimilation rates (g carbon/cell/h) were calculated from 

bulk measurements for a sorted population according to the equation R = (A * M) / (a * n * t * 

L). A represents the activity of the sorted cell batch in Becquerel (Bq), M represents the 

molar mass of carbon (g/mol), a equals the specific activity of the tracer (Bq/mol), n 

represents the number of sorted cells, t represents the incubation time in hours and L equals 

the ratio of total acetate/14C-acetate. 
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16S rRNA gene phylogeny of Sva0081-MBG and probe design 

From previous sampling and sequencing efforts at site Janssand (Lenk et al., 2011, 2012) 

we recovered 19 partial clone sequences (644 to 907 bp) belonging to the Sva0081-

MBG/Desulfobacteraceae. For phylogenetic reconstruction these sequences were imported 

into the SILVA Ref NR99_SSU 117 dataset (Pruesse et al., 2007) using the ARB software 

package (Ludwig et al., 2004). For the guide tree, only sequences >1200 bp were 

considered. Trees were calculated by RAxML, Maximum Parsimony, Neighbor-Joining 

(Jukes-Cantor correction) and MrBayes using 50% base frequency filters. A subset of partial 

sequences of Sva0081-MBG from site Janssand were added without changing the overall 

tree topology using the Quick Add parsimony tool in ARB.  

The probe_design-tool implemented in ARB was used to design a specific probe for those 

sequences >1,200 bp of the Sva0081-MBG that grouped with the only partial sequences 

recovered from site Janssand (Fig. S4). As positive control for probe DSS1431 we used 

cross-sections of the marine gutless oligochaete Olavius algarvensis -

symbiont that were kindly provided by Nicole Dubilier and Mario Schimak, MPI Bremen. 

Helper and competitor probes were applied at 30% formamide in the hybridization buffer 

(Table S3), yielding an optimal signal-to-noise-ratio in the tested sediment from site 

Janssand. Double-hybridizations with probe DSS658 targeting most members of the 

Desulfoarcina/Desulfococcus-group within the Desulfobacteraceae was performed to ensure 

specificity. Therefore, consecutive CARD-FISH using Alexa488- and Alexa546-labeleld 

tyramides were performed with an intermediate inactivation of HRP-enzyme after the probe 

applied first. All FISH signals for probe DSS1431 overlapped with signals of probe DSS658. 

Unspecific signals were neglectable 

 

Nucleotide accession numbers 

The partial 16S rRNA gene sequences of the Sva0081-MBG are available under accession 

no. (pending). 
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Fig. 1. Bulk 14C-carbon activity given in Becquerel (Bq) and relative abundance of 14C-

acetate-assimilating cells determined by microautoradiography after 8h incubations of whole 

sediment cores (June 2009). 

 

 
Fig. 2. Microautoradiography combined with CARD-FISH demonstrating 14C-acetate uptake 

by Gammaproteobacteria. Epifluorescence micrograph showing Gammaproteobacteria 

labeled by probe GAM42a (Alexa488, green signals) and silver grains indicate uptake of 14C-

acetate. 
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Fig. 3. 14C-carbon activity in 50,000 cells flow-sorted after CARD-FISH from incubations of 

whole sediment cores (June 2009). The following populations were flow-sorted according to 

their CARD-FISH signal: Bacteria (probe EUBI-III), Gammaproteobacteria (probe GAM42a), 

Roseobacter-clade bacteria (RCB, probe ROS537), Desulfobulbaceae (probe DSB706) and 

some members of the Desulfobacteraceae (probe DSS658). Batches of 50,000 cells were 

sorted for quantification (a). Integration of relative cell abundances of flow-sorted populations 

and their average cell-specific 14C-acetate assimilation rates shows the relative contribution 

to total bacterial 14C-acetate assimilation (b). 

 

 
Fig. 4. 14C-carbon activity in 50,000 cells flow-sorted after CARD-FISH from duplicate 

sediment slurries incubated under oxic or anoxic conditions (October 2009). 
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Fig. 5. 14C-carbon activity in 50,000 flow-sorted cells after Nile Red-staining. Four different 

mean fluorescence intensity classes were defined for flow-sorting (see Fig. S6). Values are 

depicted as average of duplicate sediment slurries incubated under oxic or anoxic conditions 

(June 2009).  

 

 

Table 1. Average cell-specific 14C-acetate assimilation rates of flow-sorted populations 

(50,000 cells each) from duplicate whole core and slurry incubations. Cells were either 

labeled by CARD-FISH (16S rRNA) or by Nile Red-staining (polyhydroxyalkanoate, PHA). 

  
 Cell-specific assimilation rates (fg C cell-1 d-1) 

core A/B 
 

Sample  
type 

Bacteria  Gamma-
proteob. 

RCB Desulfobacteraceae 
                  Sva0081 

Desulfo-
bulbaceae 

PHA* 
(min-max) 

core 
incubations  
A/B:        

 

  

 

0-1 cm 3.8/1.3 5.5/3.9 9.7/7.8 3.3/2.5 n.d. 4.9/7.1  
2-3 cm 0.2/0.3 0.6/0.8 0.1/1.3 0.9/0.6 n.d. 1.3/3.0  
6-7 cm 0.2/0.2 0.3/0.2 0.4/0.5 0.3/0.2 n.d. 0.8/1.6  

slurry 
incubations  
A/B:       

 

oxic 3.5/5.8 11.9/17.6 3.8/5.3 1.1/1.2 2.7/2.8 2.5/3.0 1-26 
anoxic n.d. n.d. n.d. 0.3/1.0 0.4/1.4 1.7/2.5 1-20 

 
n.d, not determined; * polyhydroxyalkanoates stained with Nile Red 
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Fig. S1. In situ pore water concentrations of acetate (a), formate (b) and lactate (c) in 

sediment cores sampled in duplicates at site Janssand in June 2009. 
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Fig. S2. Correlation of 14C-carbon activity with abundances of flow-sorted cells of 

Gammaproteobacteria and fluorescent beads. To determine the unspecific background from 
14C-acetate incubations, sediments slurries were supplemented with fluorescent beads and 

hybridized with the negative control probe (NON338). Fluorescent beads were then flow-

sorted before liquid scintillography. 14C-carbon activity is given in Becquerel (Bq). Error bars 

indicate the standard deviation (SD) of triplicate flow-sorting. 

 

 
Fig. S3. Relative cell abundance over sediment depth in percent of total cell counts (DAPI) in 

two sediment cores (A, B) used for radiotracer incubations. 
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Fig. S4. Phylogenetic reconstruction of 16S rRNA gene sequences of selected 

Desulfobacterales based on RAxML. Only branching patterns supported by all 4 treeing 

methods are indicated. Partial Sva0081-MBG sequences retrieved from Janssand sediments 

are given in red. Sequences given in bold are targeted by the Sva0081-MBG specific probe 

DSS1431. Note that some partial sequences were too short to cover the target site of probe 

DSS1431. The scale bar refers to 10% sequence divergence. 
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Fig. S5. Epifluorescence images of samples from sediment slurry incubations (October 

2009) stained with DAPI and Nile Red. DAPI-stained cells panel a, Nile Red-stain panel b 

and overlay of images panel c. 
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Fig. S6. Characteristic signatures of sediment samples stained with Nile Red and analysed 

by flow cytometry. Dot plot diagram of orange fluorescence plotted versus 90° light scatter. 

The gates used for cell sorting are indicated (sortgate 1-4). 
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Table S1. Relative abundances of 14C-acetate-assimilating cells as determined by 

microautoradiography and DAPI staining or hybridization with specific CARD-FISH probes in 

duplicate whole sediment cores incubated with 14C-acetate. 

 Sorted population 

% of all  
MAR-positive cells 

(core A/B) 

% MAR-positive  
of hybridized cells 

(core A/B) 

Gammaproteobacteria 59/61 19/19 

Roseobacter-clade bacteria (RCB) 6/8 48/32 

Deltaproteobacteria 8/4 9/7 

 
 
Table S2. Average cell-specific 14C-acetate assimilation rates of flow-sorted populations after 

Nile Red-staining. Four distinct fluorescence intensity classes (Fig. S6) were defined for 

sorting from duplicate sediment slurries incubated under oxic and anoxic conditions. 

 

Cell-specific carbon 
assimilation rates 

(fg C cell-1 d-1) 

Fluorescence intensity of Nile Red-
stained cells with oxygen without oxygen 

++++  (bright fluorescence) 26.4 19.8 

 +++ 9.9 4.8 

  ++ 3.5 1.2 

   +      (weak fluorescence) 1.5 0.8 
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Table S3. Horseradish peroxidase (HRP)-labeled oligonucleotide probes used for CARD-

FISH. Helper and competitor oligonucleotides were not labeled. 

Probe Specificity Sequence (5'-3') 
FA 
(%) Reference 

EUB I-III most Bacteria GCWGCCWCCCGTAGGWGT 35 Amann et al. (1990) 

Daims et al. (1999) 

NON338 Negative control ACTCCTACGGGAGGCAGC  Wallner et al. (1993) 

GAM42a* most Gammaproteobacteria GCCTTCCCACATCGTTT 35 Manz et al. (1992) 

ROS537 Roseobacter-clade bacteria 

(RCB) 

CAACGCTAACCCCCTCC 35 Eilers et al. (2000) 

DSS658 many marine 

Desulfobacteraceae including  

the Desulfosarcina/ 

Desulfococcus-group 

TCCACTTCCCTCTCCCAT 50 Manz et al. (1998) 

DSB706 many marine 

Desulfobulbaceae 

ACCGGTATTCCTCCCGAT 40 Loy et al. (2002) 

Delta495 a-c* most Deltaproteobacteria AGTTAGCCGGTGCTTCCT 

AGTTAGCCGGCGCTTCCT 

AATTAGCCGGTGCTTCCT 

35 Lücker et al. (2007) 

DSS1431* subgroup of Sva0081-MBG GGTTTGCCCAACGACTTC 30 This study 

cDSS1431a† Competitor to probe DSS1431 GGTTTGCCCAACAACTTC 30 This study 

cDSS1431b† Competitor to probe DSS1431 GGTTAGCCCAACAACTTC 30 This study 

cDSS1431c† Competitor to probe DSS1431 GGTTCGCCCACCAACTTC 30 This study 

cDSS1431d† Competitor to probe DSS1431 AGTTTGCCCAACAACTTC 30 This study 

cDSS1431e† Competitor to probe DSS1431 GGTTGGCCCAACAACTTC 30 This study 

DSS1431us‡ Helper to probe DSS1431 TGGTACAACCAACTCTCATGG 30 This study 

DSS1431us‡ Helper to probe DSS1431 TTAGGCGCCTGCATCCCCGAA 30 This study 

DSS1431us‡ Helper to probe DSS1431 TTAGGCGCCTGCATCCTGTAAA 30 This study 
 

FA, formamide; * probes were used with published competitors; † competitor oligonucleotide; ‡ helper 

oligonucleotide 
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4.) General discussion 
 

Key intermediates of organic matter remineralization in aquatic sediments are CO2, H2 and 

acetate. In the past, several studies addressed acetate- (e.g., Christensen and Blackburn, 

1982; Sansone and Martens, 1982; Wellsbury and Parkes, 1995; Graaf et al., 1996; Finke et 

al., 2007) and H2 turnover (Lovley et al., 1982; Lovley and Goodwin, 1988; Goodwin et al., 

1988; Hoehler et al., 1998) as well as chemoautotrophy (Lenk et al., 2011; Boschker et al., 

2014; Vasquez-Cardenas et al., 2015) in marine sediments but the involved organisms are 

still largely unexplored. Goals of this thesis were the identification of key players, to 

understand their metabolic potential and how they contribute to these important processes. 

Cultivation independent molecular tools such as fluorescence in situ hybridization, 

metagenomics and metatranscriptomics have been used to identify organisms, quantify their 

in situ abundance and to investigate their potential function. However, it is important to 

integrate these merely molecular data with quantitative activity measurements to study the 

ecological role of key microbes within complex microbial communities. I therefore developed 

a novel methodological approach to exactly quantify 14C carbon uptake by phylogenetically 

identified microorganisms. The following chapter summarizes the collective findings of this 

study and describes potential impact of my research on the current knowledge about the 

ecology of sulfur and carbon cycling bacteria in marine sediments. 

 

4.1) Groups of Gammaproteobacteria are key players in inorganic carbon 
fixation 
Among the most important outcomes of my dissertation is that particular groups within the 

Gammaproteobacteria dominate chemoautotrophy in coastal sediments regardless of the 

site and season. Consistently 40 to 50% of the Gammaproteobacteria in coastal sediments 

fixed 14CO2 in the dark and were therefore identified as potential chemoautotrophs 

(Manuscript I). Intriguingly, these chemoautotrophic gammaproteobacteria accounted for up 

to 86% of the bacterial chemoautotrophy. Gammaproteobacteria are globally distributed and 

abundant members of the bacterial community in nearly all types of marine sediments 

(Hunter et al., 2006; Kim et al., 2008; Schauer et al., 2009; Orcutt et al., 2011; Gobet et al., 

2012; Ruff et al., 2015). Primary production by chemoautotrophic bacteria at hydrothermal 

vents and dark carbon fixation in pelagic oxygen minimum zones has been extensively 

studied in the past. Here, key players for carbon and sulfur cycling such as the 

gammaproteobacterial SUP05-clade have been identified and their ecophysiology and 

environmental impacts are well described (Lavik et al., 2009; Canfield et al., 2010; Reinthaler 

et al., 2010; Grote et al., 2012; Anantharaman et al., 2013; Mattes et al., 2013; Hawley et al., 

2014). However, the identity and activity of chemolithoautotrophic bacteria (and archaea) in 
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coastal and shelf sediments are still understudied although this environment contribute more 

to oceanic dark carbon fixation than pelagic oxygen minimum zones and hydrothermal vents 

(Middelburg, 2011). According to Middelburg (2011), 291 Tg C y-1 are fixed in coastal and 

shelf sediments. Intriguingly, the area of theses sediments accounts for only ~5% of the total 

marine benthic environment, but they are responsible for 78% of sedimentary dark carbon 

fixation (Dunne et al., 2007; Middelburg, 2011). On average we observed a cell-specific 

carbon fixation rate for Gammaproteobacteria accounting for 5 fg C cell-1 d-1 in sediments 

from the uppermost centimetre and a total cell abundance of chemoautotrophic 

Gammaproteobacteria of approximately 108 cells cm-3. Assuming an even distribution and 

similar activity across coastal and shelf sediments these Gammaproteobacteria would 

account for 30.3 Tg carbon fixed per year, only considering the top cm of the sediment 

(surface area estimation was taken from Dunne et al. (2007)). We surveyed the bacterial 16S 

rRNA gene diversity of 13 tidal and sublittoral sediments across Europe and Australia and 

indeed we identified putatively chemoautotrophic core groups of Gammaproteobacteria 

mainly affiliating with sulfur-oxidizing bacteria that were ubiquitous distributed in theses 

sediments, which indicates that microbial community structures may be similar. At all sites 

we identified candidate chemoautotrophs related to Acidiferrobacter, to symbionts of the 

siboglinid tubeworms (Siboglinidae Symbionts related, SSr), to the ciliate symbiont 

Candidatus Thiobios zoothamnicoli, to the BD7-8 group including mussel and worm 

symbionts and the JTB255-clade. Moreover, three of these clades (the Acidiferrobacter-, 

JTB255- and the SSr-clade) made up more than 50% of dark carbon fixation, largely fuelled 

by sulfur oxidation, in a tidal sediment and by FISH we further confirmed their in situ 

abundance (Figure 10). We then re-visited the 16S rRNA gene diversity data collected in 65 

diversity studies from marine surface sediments and found those groups globally distributed 

in various types of sediments. Microbial respirations generally lead to a net release of CO2 

from the sediment and inorganic carbon fixation counteracts these processes (Howarth, 

1984; Dunne et al., 2007). Thus, chemoautotrophy driven by few ubiquitous 

gammaproteobacterial populations at sediment surfaces could attenuate CO2 emissions to 

the ocean and ultimately to the atmosphere. Given their ubiquity and frequent dominance as 

well as the major contribution to dark carbon fixation these groups of chemolithoautotrophic 

Gammaproteobacteria are important not only for carbon fixation but also for sulfide 

detoxification at sediment surfaces, thereby effectively preventing oxygen minimum zones to 

build up. Therefore, the stable assemblage of the Acidiferrobacter-, JTB255- and the SSr-

clade may be benthic counterparts to pelagic sulfur-oxidizing and carbon-fixing SUP05, 

however, more widely distributed and abundant. 
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4.2) The enigmatic and cosmopolitan JTB255-clade 
Further attention should be paid to the enigmatic JTB255-clade. This group consistently 

accounted not only for one the largest sequence fraction within the Gammaproteobacteria 

(Manuscript I), but also for one of the most abundant sequence fraction at the family/order 

level across all phyla at 13 investigated sites. Using CARD-FISH we identified the JTB255-

clade as abundant, accounting for 3-6 % of total cell counts in coastal sediments. In our 

meta-analysis of 16S rRNA gene sequence data from 65 diversity studies of the sea floor 

around the world the JTB255-group was detected in 92% of all studies and often accounted 

for the most frequent sequence group of Bacteria in deep-sea (Bowman et al., 2005; 

Schauer et al., 2009) and in shallow coastal sediments (Wang et al., 2013; Zheng et al., 

2014; Liu et al., 2014; Ruff et al., 2014). Moreover, in a comprehensive 16S rRNA gene 

survey Bienhold et al. (2016) identified the JTB255-clade as a true cosmopolitan group in 27 

investigated deep sea sediments while a significant part of the bacterial community appears 

to be geographically restricted. The 16S rRNA gene divergence within the JTB255-clade is 

high (family to order level). Whether different sequence clusters exists that reflect distinct 

groups adapted to specific environmental conditions is still an open question. So far the 

environmental function of the JTB255-group is largely unknown. In the past, a sulfur-

oxidizing activity of the JTB255-group has been speculated (Bowman and McCuaig, 2003). 

In this thesis we provided first indication that the JTB255-clade fix inorganic carbon and may 

use reduced sulfur compounds as we observed a stimulation of dark carbon fixation by this 

group in some incubation experiments when thiosulfate was added. However, this group may 

not be obligate autotroph or they can grow mixotrophically. It is of fundamental interest for 

our understanding of ecosystem functioning to decipher the prevalent physiological 

mechanisms that makes this clade globally successful in nearly all types of marine 

sediments. Like the alphaproteobacterial SAR11-clade, which appears to be the most 

abundant bacteria in the pelagic zone, the gammaproteobacterial JTB255-clade may be 

equally predominant in marine sediments. 

 

4.3) Burial of microorganisms as mechanism for long-term carbon storage 
An important implication that can be drawn from the first manuscript presented in my 

dissertation is that burial of chemolithoautotrophic bacteria may be a yet unrecognized 

mechanism carbon sequestration. Coastal vegetation such salt marshes and seagrass 

meadows are already well known for their importance in carbon sequestration as they not 

only hold a large standing stock of carbon but also bury carbon into sediments (Duarte et al., 

2005; Kennedy et al., 2010; Fourqurean et al., 2012). In current models of oceanic carbon 

cycling the burial of refractory organic matter is the major mechanism of carbon preservation 

in sediments, while the microbial contribution to carbon burial in sediments to date focused 
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on the diagenesis and assimilation of organic carbon (Burdige, 2007). The ability of 

chemolithoautotrophs to trap carbon and to survive a long-term burial in subsurface 

sediments is unknown. Recently, biogeochemical budgeting revealed coastal sediments also 

as hot spots of dark carbon fixation (175 Tg C/yr), exceeding total carbon fixed in the dark 

ocean (Middelburg, 2011). We also searched for burial of candidate chemolithoautotrophic 

Gammaproteobacteria in subsurface sediment at site Janssand with an estimated age of 

1,000 to 2,000 years in the deepest layer (Seidel et al., 2012). Likewise, we observed the 

same candidate subpopulations (JTB255, Acidiferrobacter, symbiont-relatives) with up to 

100% identity to sequences from the surface (Manuscript I) even though they are may 

secluded from potential electron acceptors. A large fraction of microbial cells in marine 

sediments are inactive (Luna et al., 2002) but can persist millions of years in the subsurface 

(Morono et al., 2009; Jørgensen, 2011; Røy et al., 2012). The slow, but steady advective 

transport of dissolved organic matter in these sediments (Røy et al., 2008; Seidel et al., 

2012) may have supplied the buried populations with sufficient nutrients for maintenance and 

long-term survival in an otherwise unfavourable environment for chemoautotrophic bacteria. 

Despite strong biogeochemical gradients in the upper 500 cm below sea floor (cmbsf) 

bacterial communities and cell abundances in surface and subsurface sediments appear to 

be surprisingly similar also in other benthic habitats (Kirchman et al., 2014; Treude et al., 

2014; Walsh et al., 2015). However, other surface-associated populations such as the 

sulfate-reducing, deltaproteobacterial Sva0081-clade almost disappeared at site Janssand 

below 100 cmbsf and in other subsurface sediments strong changes in the entire microbial 

community were observed with sediment depth (Wilms et al., 2006; Jorgensen et al., 2012; 

Walsh et al., 2015).  

Given the high sedimentation rate in the German Wadden Sea of >3 mm/yr (Ziehe, 2009), a 

large fraction of microorganisms is buried in the subsurface. By their ability to persist in 

subsurface sediments for hundreds to thousands of years they may substantially contribute 

to long-term burial of carbon. Consequently, carbon fixation by chemolithoautotrophs at 

sediment surfaces and their subsequent burial may represent a previously unrecognized but 

significant mechanism in carbon sequestration. It is fundamental to decipher processes and 

microorganisms that govern rates of carbon burial. Detangling the microbial contribution of 

inorganic and organic carbon assimilation to carbon flux into the subsurface will be an 

important future task and will help to improve modelling of global carbon budgets. 

 

4.4) Important role of H2 in energy transfer in marine sediments 
Evidence is accumulating that microbial metabolism of H2 is widely distributed rather than a 

niche process. Greening et al. (2015) screened 20 published metagenomic datasets from 

different environments including soil, gut and water samples for enzymes involved in H2 
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production and consumption and reported that H2 is a major electron donor for respiration in 

various oxic and anoxic ecosystems as well as that fermentative H2 production is widely 

distributed. Moreover, the ubiquity of H2 utilization also in subsurface sediments under a wide 

range of environmental conditions and biogeochemical zones has been suggested recently 

(Adhikari et al., 2016). However, until now, no comprehensive metagenomic study of H2ases 

in marine sediments was available and the involved groups were largely unknown. Therefore 

we screened single cell genomes, a metagenome and 4 replicated metatranscriptomes from 

a coastal sediment for H2ases and the involved organisms. Overall, we found the highest 

number of H2ase-assigned reads so far reported for an environmental ecosystem, suggesting 

that coastal sediments are hot spots of H2 cycling and pointing to a central role of H2 in 

energy transfer. In particular, a large fraction of metagenome and transcriptome reads were 

assigned to [FeFe]-H2ases. Coastal sediments are largely anoxic habitat as oxygen is only 

the uppermost millimeters to centimeters of the surface layer available (Jørgensen, 1982; 

Jansen et al., 2009). Here, fermentation processes are an integral part of organic carbon 

remineralization (Schmitz et al., 2006). Obligate and facultative fermenters possess [FeFe]-

H2ases that are most likely responsible for the release excess reducing equivalents in form of 

H2.  

On the contrary, group 1 [NiFe]-H2ases were also abundant in the metagenome as well as in 

the metatranscriptomes and thereby identified as major determinant for H2 oxidation. An 

oxygen-tolerant subclass of group 1 [NiFe]-H2ases from the flavobacterial Eudoraea spp. and 

from sulfur-oxidizing Gammaproteobacteria appear to play a more important role in H2-

cycling at the oxic sediment surface. Among sulfate-reducing bacteria H2ase sequences 

affiliating with Desulfobacteraceae and Desulfobulbaceae were consistently found in three 

tidal sediments at the European Atlantic coast and sediment slurry incubation experiments 

with H2 suggested a rather sulfate-dependent H2 oxidation. In particular, the sulfate-reducing 

Sva0081-clade within the Desulfobacteraceae accounted for 50% of all SRB-related 

transcripts. Scavenging of H2 is an essential process in anoxic marine sediments to keep H2 

concentrations low and thereby making H2-forming fermentation thermodynamically possible, 

which is central to organic carbon degradation. Here, some sulfur-oxidizing 

Gammaproteobacteria, Eudoraea spp. and particularly sulfate-reducing Desulfobacteraceae 

may be essential for ecosystem functioning by scavenging H2 (Figure 10). 

 

4.5) Acetate consuming bacteria in coastal sediments 
Acetate is a product of organic matter remineralization and at the same time a source of 

energy and carbon for bacteria and archaea not only in marine sediments. We were able to 

unravel the identity of physiologically and phylogenetically distinct bacterial groups that 

assimilated acetate in a coastal sediment such as Gammaproteobacteria, sulfate-reducing 
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Desulfobacteraceae and Desulfobulbaceae as well as sulfur-oxidizing Roseobacter-clade 

bacteria (Figure 10). Acetate incorporation was generally highest in the top layer of the 

sediment for all groups investigated in this study which is consistent with earlier studies that 

showed highest acetate assimilation in oxygenated surface layers (Christensen and 

Blackburn, 1980; Christensen and Blackburn, 1982). In marine surface sediments there is a 

high functional redundancy for the oxidation of rather simple organic compounds such as 

acetate, in particular in the top layer of the sediment (Böer et al., 2009; Miyatake et al., 2013; 

Baker et al., 2015). Although acetate assimilating Gammaproteobacteria contributed only 

approximately 5% to the microbial community they accounted for up to 62% of the bacterial 

acetate assimilation thereby contributing the largest fraction to total acetate assimilation 

under both oxic and anoxic conditions. Roseobacter-clade bacteria showed highest cell-

specific acetate uptake rates but they contributed only up to 11% to total bacterial acetate 

assimilation because of their low cell abundance in situ. However, high cell abundances (up 

to 10%) have been reported for lithoheterotrophic sulfur-oxidizing members of the 

Roseobacter-clade in coastal sediments (Lenk et al., 2012). Thus Roseobacter-clade 

bacteria may be important for acetate turnover linked to oxidative sulfur cycling whereas the 

Desulfobulbaceae and the Desulfobacteraceae assimilated acetate likely during sulfate 

reduction (Figure 10). 

 

4.6) Key functions of the sulfate-reducing Sva0081-clade in coastal sediments 
Acetate is a central substrate for sulfate-reducing bacteria in marine sediments. In sediment 

slurry and intact sediment core incubations we showed acetate incorporation among 

uncultured relatives of Desulfosarcina variabilis (Desulfosarcina/Desulfococcus-group). In 

particular, we identified the Sva0081-clade as important acetate consumers within the 

Desulfosarcina/Desulfococcus-group. Intriguingly, members of the Sva0081-clade were 

found in high cell abundance accounting for up to 10% of cell counts in various tidal, 

seagrass and deep-sea sediments (Mussmann et al., in prep.) and have been frequently 

identified in 16S rRNA gene surveys in various types of marine sediments (Ravenschlag et 

al., 2000; Wang et al., 2013; Liu et al., 2014; Zheng et al., 2014). Acetate was suggested to 

be the quantitatively most important substrate for complete oxidizing SRB (Laanbroek and 

Pfennig, 1981; Thauer and Postgate, 1982). Given their abundance and their metabolic 

potential to completely oxidize organic compounds to CO2, the Sva0081 may be a key player 

in carbon- and sulfur-cycling in organic rich marine sediments (Figure 10). 

Using single cell genomics we could link a cluster of [NiFe]-hydrogenase genes with the 16S 

rRNA gene of the Sva0081-clade. This cluster occurred in all three tested sediments and 

accounted for ~50% of all SRB-type H2ase transcripts at site Janssand indicating a 

predominant role of the sulfate-reducing Sva0081-clade in H2 consumption. In support of this, 
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the δ1-endosymbiont of O. algarvensis, also a member of Sva0081-clade, has been 

suggested to oxidize H2 in Mediterranean sediments (Kleiner et al., 2012; Kleiner et al., 

2015). Above all, we provide first molecular evidence that widely distributed and abundant 

sulfate reducers of the Sva0081-clade could be important drivers of H2- and acetate oxidation 

in marine sediments. By keeping H2 and acetate levels low they make fermentations 

thermodynamically feasible. SRB of the Sva0081-clade may also be important to global 

carbon cycling as they probably outcompete hydrogenoclastic methanogens in organic-rich 

marine surface sediments, thereby preventing the production of the potent greenhouse gas 

and therefore unwanted methane. Their cosmopolitan distribution, their metabolically 

versatile lifestyle and their ecological importance, make the Sva0081-clade a candidate key 

player in the marine anaerobic food chain. 
 

 
Figure 10. A simplified scheme depicting bacterial key players that consume intermediates and 

products from the remineralization of organic matter in marine sediments based on data presented in 

this dissertation. Organisms targeted in this study are highlighted (red boxes). Sred, reduced sulfur 

compound. Unc., uncultured. RCB, Roseobacter-clade bacteria. DSB, Desulfobulbaceae. Image of 

Eudoraea provided by M. Mußmann. 
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4.7) Methodological considerations: linking the identity of uncultured microbes 
with their activity 
There are versatile applications of flow cytometry and cell sorting for molecular microbial 

ecology. Sorting of single cells or small cell batches of up to hundreds of cells is widely 

applied for subsequent genomic analysis (Woyke et al., 2009; Swan et al., 2011; Lloyd et al., 

2013; Kashtan et al., 2014). Single cells were randomly sorted followed by whole genome 

amplification (WGA) and sequencing. In combination with tools such as the multi-labeled 

FISH approach (MiL-FISH; Schimak et al., 2016) or hybridization chain reaction-FISH (HCR-

FISH; Yamaguchi et al., 2015) it allows the identification and flow cytometric enrichment of 

target cells prior to downstream processing. The sorted cell batch of FISH-identified and 

thereby phylogenetically related organisms can then be used for genomic analysis. This is of 

particular importance, if the target organisms are low abundant. Furthermore, HRC-FISH as 

well as MiL-FISH can be applied to living samples and thereby allow omitting fixation, which 

can greatly affect the accessibility of nucleic acids for further analysis (Yamaguchi et al., 

2015; Schimak et al., 2016). 

FACS of marine bacterioplankton after CARD-FISH was already described more than a 

decade ago (Sekar et al., 2004). However, the application of flow cytometry to sediments is 

more challenging due to strongly enhanced background. First, cells need to be detached 

from the sediment particles (e.g., by ultrasonication) for a subsequent flow cytometric 

analysis. The cells in suspension are separated from sediment grains and larger particles to 

avoid clogging of the flow cytometer. Usually the orifice of the nozzle of a jet-in-air flow 

cytometer has a diameter between 50-200 μm. In this range is also the largest possible 

particle size that can be analyzed by flow cytometry. In order to purify cells from sediments 

density gradient centrifugation has been successfully applied for flow cytometric cell sorting 

and further downstream analysis (Lenk, 2011; Lloyd et al., 2013). Flow cytometry is a high-

throughput method and FACS together with radio-labeling has been used to measure the 

assimilation of radioactive substrates into individual populations of marine bacterioplankton 

(Zubkov et al., 2004; Zubkov et al., 2007; Jost et al., 2008). Using nucleic acid or protein 

staining techniques different populations of a microbial community could be distinguished by 

flow cytometry based on their DNA or protein content. However, DNA- or protein-staining is 

rather unspecific and does not allow a phylogenetic identification. 

With this research project I present a novel method combining radioisotope probing of 

sediment bacteria with cell detachment and flow cytometric sorting based on CARD-FISH 

identification of particular phylogenetic clades (Manuscript I and Figure 11).  
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Figure 11. A novel approach that combines 14C carbon-labeling of cells with fluorescence in situ 

hybridization (FISH), fluorescence-activated cell sorting (FACS) and scintillography (a). Target cells 

from sediment incubation experiments were hybridized with specific FISH probes (b) and subsequently 

enriched using FACS (c) for quantification of radiotracer uptake. FISH signals are shown in green (a-

c). In blue: DAPI-stain (b and c). Scale bars correspond to 10 μm (b and c). 

 

After incubation of the sediments with radioisotopes cells were fixed using standard protocols 

and detached from sand grains by ultrasonication as described previously (Lenk et al., 2011). 

Filtration through an 8 μm filter was used to separate larger particles from the cells prior to 

flow cytometry. Simple filtration omits elaborate purification steps such as density gradient 

centrifugation, which may be selective for certain cells and may result in low recovery. After 

filtration FACS of sediment bacteria and archaea triggered by CARD-FISH probe 

fluorescence resulted in high purity (always above 93%). 

FISH can be too insensitive to comprehensively target organisms with very low ribosome 

content. Therefore, it would be possible that FACS after CARD-FISH may be biased towards 

active cells. However, the activity of organisms in organic rich surface sediments is generally 

high and in our experimental set up cell sorting was not selective. We identified similar 

abundances of 14C-assimilating gammaproteobacterial cells using microautoradiography-

FISH (MAR-FISH) with a general probe for Gammaproteobacteria (GAM42a) on the initial 
14C-incubated sediment sample before cell sorting compared to MAR-identification on flow-

sorted Gammaproteobacteria. This was repeated for different sediment incubations with 14C 
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bicarbonate and 14C acetate suggesting that the work flow was not selective although a 

fraction of the cells were lost during filtration. Moreover, MAR-FISH on sedimentary bacteria 

and archaea would benefit from flow cytometric enrichment of target population beforehand. 

Low abundant and little active populations are difficult to identify within a complex microbial 

community using MAR. Lenk (2011) identified no 14C acetate-assimilating sulfate-reducing 

bacteria of the Desulfosarcina/Desulfococcus-clade in incubations with sediment from a tidal 

flat (Janssand). On the contrary, after flow sorting of Desulfosarcina/Desulfococcus-clade 

bacteria and subsequent MAR we identified 14C acetate-assimilating cells in the same 

sample (Figure 12) and we were able to quantify their uptake (Manuscript III).  
Commencing with short-term radiotracer incubation, the entire workflow to analyze various 

phylogenetic clades from multiple samples can be conducted within 1-2 days. Our novel 

workflow was technically highly reproducible and for the first time it combines high-

throughput, phylogenetic identification and an accurate quantification of substrate 

assimilation. Thereby, our approach outclasses other isotope-labeling methods such as 

MAR-FISH, HISH-SIMS and stable isotope probing (Boschker et al., 1998; Lee et al., 1999; 

Radajewski et al., 2000; Manefield et al., 2002; Musat et al., 2008) as it overcomes their 

limitations in throughput and precision. Furthermore, the radioactive label does not need to 

be channeled into nucleic acids as for RNA- and DNA-SIP. This allowed us to identify cells 

that incorporated a substrate, which was directly used to build intracellular storage 

compounds such as PHAs (Manuscript III). 

 
Figure 12. Microautoradiography on sorted cells of Gammaproteobacteria (a, probe GAM42a) and the 

Desulfosarcina/Desulfococcus-clade (b, probe DSS658). Precipitation of silver grains around the cell 

(red arrows) indicate uptake of the radioactive substrate (14C acetate). 

 

4.8) Future perspectives of FACS in microbial ecology of sediment bacteria 
GeneFISH provides the possibility to visualize the presence of a functional gene within 

phylogenetically identified microorganisms (Moraru et al., 2010). The current geneFISH 

protocols (Moraru et al., 2010; Barrero-Canosa et al., in prep.) are still limited to samples with 
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low background. Sediment samples generally have high background that weakens the signal 

to noise ratio and thereby a clear identification of specific gene signals is not possible. FACS 

triggered by unspecific DNA-stain would extract all microbial cells from sediment background 

and allow applying the geneFISH protocols on sediment bacteria. 

Another interesting combination is bioorthogonal non-canonical amino acid tagging 

(BONCAT) on environmental microbes (Hatzenpichler et al., 2014) with FACS. BONCAT is 

based on incorporation of artificial amino acids carrying clickable alkyne or azide moieties 

into newly synthesized proteins of active cells (Figure 13). Thus, active microbes can be 

separated from a complex microbial community by cell sorting based on the BONCAT-signal 

for a subsequent identification or analysis. Furthermore, BONCAT together with FACS of 

FISH-identified cells would enable to purify the newly synthesized proteome from a particular 

phylogenetic clade by azide/alkyne-affinity chromatography. Analysis of the purified proteins 

would allow identification of newly expressed protein dependent on different environmental 

parameters such as carbon sources, electron donors and acceptors within a target 

population. 

 
Figure 13. Bacterial culture after bioorthogonal non-canonical amino acid tagging (BONCAT). 

BONCAT-signals of cells that synthesized new proteins during incubation in presence of 

homoproparagylglycine (HPG) appear in green. The artificial amino acid HPG carries a free alkyne 

moiety and is built into newly synthesized proteins of active cells analogue to methionine (upper right 

corner of the figure). The incorporated HPG can be linked to an azide-modified dye in a click reaction. 

In blue: DAPI-stain. 
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So far the approach combining radio-labeling of sediment bacteria, FACS after CARD-FISH 

and scintillography introduced in this study depends on the incorporation of radioisotopes. 

Commercially available 14C carbon compounds are still limited and other elements such as 

nitrogen have radioisotopes with short half-life that makes them hardly applicable for tracer 

experiments in microbial ecology. The use of stable isotopes with our novel approach would 

circumvent these limitations. Nanoscale secondary ion mass spectrometry (nanoSIMS) has 

been used to trace uptake of stable isotopes into environmental microbes (e.g., Behrens et 

al., 2008; Musat et al., 2008; Morono et al., 2011; Dekas and Orphan, 2011; Dekas et al., 

2014; Vasquez-Cardenas et al., 2015). Single microbial cells can be analyzed at a spatial 

resolution of 50 nm but measurements of larger cell batches (thousands of cells) are very 

time-consuming and thereby unfeasible. Here, time-of-flight secondary ion mass 

spectrometry (TOF-SIMS) may be an alternative for analysis of the sorted cell batches. TOF-

SIMS is a surface analytical technique that used a primary ion beam to produce secondary 

ions from the surface of a sample analyzed by time-of-flight measurement. In a single run an 

area of several square millimetres can be analyzed by TOF-SIMS. Batches of FISH-identified 

and flow-sorted cells from incubation experiments may be spotted on a defined area of a 

wafer or slide for TOF-SIMS analysis thereby allow the quantification of population-specific 

stable isotope-labeled substrate uptake. 

Our novel isotope probing approach using either stable- or radioisotopes is a valuable tool for 

future experiments that aim at unravelling the ecological role of uncultured microorganisms in 

carbon turnover within complex communities. It can be easily adapted to various other 

ecosystems besides sediments such as soil, marine- and freshwater. 
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5.) Outlook 
 
This thesis provided a first glimpse at the metabolism of the enigmatic JTB255-clade as we 

demonstrated their capability to fix inorganic carbon. However, it is still unresolved what 

physiological traits make this clade globally successful in benthic marine environments. No 

isolates or genomes are currently available for members of the gammaproteobacterial 

JTB255-clade. So far, we were not successful to recover a sequence bin affiliating with the 

JTB255-clade using metagenomics, although this group is abundant at the site where we 

conducted our metagenomic approach. Metagenomics as well as single cell genomics 

targeting the JTB255-clade should be subject of future studies and will be essential to 

establish concepts of potential energy metabolism and carbon assimilation pathways. In 

addition, the genomic information may help to enrich and ultimately isolate a representative 

of the JTB255-clade. Isolation and cultivation will be vital to in-depth study ecophysiological 

responses to single parameters in a controlled environment also for other ubiquitous and 

abundant but uncultured groups identified in this study such as the SSr- and the Sva0081-

clade. 

Acetate turnover in marine sediments has been studied for several decades. But it is 

surprising that some basic questions regarding the turnover of acetate still remain 

unresolved: are there key groups of microorganisms that oxidize acetate in situ and 

particularly how much do they contribute to total acetate assimilation? What pathways are 

important for acetate turnover in the environment? To some extent we were able to shed light 

on the first question as we quantified acetate assimilation for phylogenetically identified 

groups in a coastal sediment. Gammaproteobacteria accounted for a major fraction of total 

acetate assimilation at site Janssand but the responsible subgroups within the 

Gammaproteobacteria need to be identified on a higher phylogenetic resolution. Using SIP 

several gammaproteobacterial groups have been identified in the past that assimilate 

acetate. Our novel approach can be used to quantify their contribution to total acetate 

assimilation and also to screen additional sites. The results presented within this study 

suggest that acetate is used by a phylogenetically and metabolically versatile range of 

bacteria besides the Gammaproteobacteria and thereby pave the way for future studies 

aiming to further elucidate spatial and temporal patterns of acetate incorporation in marine 

sediments. Using single cell- and metagenomics combined with metatranscriptomics 

possible pathways for acetate assimilation, growth on acetate and PHA formation should be 

further investigated. A change in expression of these pathways with sediment depth and 

across different electron donor/acceptor regimes will be vital to unravel the role of acetate as 

substrate for different functional groups such as sulfate reducers and sulfur oxidizers. 
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