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Abstract

The generation and manipulation of electromagnetic field distributions plays an
essential role in physics in general, and particularly in the vast field of physical optics.
In the current state of the art, one of the most convenient methods of performing
this task is provided by either static or dynamic diffractive as well as holographic
optical elements. Currently available dynamic optical elements, such as spatial light
modulators, do offer on the one hand high temporal flexibility. They however have
a limited space-bandwidth product (SBWP), and thus limited degrees of freedom.
This arises primarily from a limitation in the number of controllable elements, their
inherent two dimensional nature and limited lateral extent. Conventional static optical
elements, such as planar or volume holographic elements, have on the other hand high
degrees of freedom but low flexibility in terms of temporal applications. An optical
system that facilitates dynamic synthesis of field distributions with high SBWP is thus
highly desirable.

This thesis presents a novel approach that facilitates the generation of a set of
arbitrary orthogonal elementary waves, which can in turn be coherently superposed
in order to generate optical fields with a high SBWP. To achieve this goal a hybrid
system that consists of an angular multiplexed computer generated volume hologram
(CGVH) as a static element and a spatial light modulator as a dynamic element is
investigated, developed and characterized. CGVHs are volumetric holographic optical
elements whose complex transmission function can be modeled mathematically in
terms of the scattering potential of a given dielectric medium. This work presents an
approach that employs perturbation theory in deriving a more elaborate mathematical
model that is based on a series approximation of the complex wave field scattered
from a volume hologram. The mathematical model behind this approach essentially
incorporates various physical constraints that account for the discretized numerical
design and a laser lithography based fabrication of the holograms in a non-linear
optical material. Initial simulations and experimental work done to characterize this
system show that the proposed approach facilitates a dynamic decoupling of single or
a linear combination of far field projections without any detectable cross-talk between
them. This work furthermore demonstrates that Bragg selectivity on the order of
Af < 1° can be achieved. This in turn allows for the superposition of a set of wave
fields, which can be decoupled sequentially or simultaneously from a CGVH with an
SBWP = 5.4 x 10® for each far field projection. Furthermore, this system facilitates
dynamic synthesis of fields having an SBWP > 1.1 x 10'°, i.e. approximately 4 orders
of magnitude higher than the current state of the art, which is based on cascaded
computer generated holograms.
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1. Introduction

1.1. Overview

Within the scope of physical optics, an optical element can be thought of as a device
that transforms a single or a set of input optical signals into a set of output signals.
Such an optical element could for instance be a simple linear optical element such as
a mirror, a beam splitter or a prism. It could on the other hand be a micro or nano
optical element that is integrated in a complex quantum optical system [1]|. In all op-
tical systems, ranging from geometrical optics based instruments to highly specialized
quantum physics based systems, optical elements with distinct and optimized trans-
fer functions are desired. Holograms can be designed to have such transfer functions
thus making them highly desirable in a vast number of applications. In this case these
holograms are referred to as holographic optical elements (HOE) [1, 2].

The concept of holography has been around for more than six decades now. Since
their invention by Dennis Gabor in 1948 and of coherent laser light in 1960, holograms
have motivated innumerable inventions. Specifically in the field of modern optics these
applications include microscopy |3, 4|, data storage [5, 6], metrology [7-10], and ad-
vanced imaging [11-13]. Another application has been the synthesis and analysis of
optical wave fields [14-17|. Most of these applications utilize optical holography as a
method for recording and reconstructing both the phase and amplitude of a complex
wave field [18].

Thereby, the basic principle of holography which consists in the transformation of
phase changes into recordable intensity changes is employed. Conventionally a holo-
gram is produced by the interference between a given field, e.g. one that is diffusely
scattered by an object, and a reference wave field. A predominant advancement to
this scheme was the introduction of a smart combination of the holographic princi-
ple with the carrier frequency technique known from radar technologies [19]. With
this approach, the twin image problem in Gabor’s original in-line scheme could be
effectively eliminated. However, owing to the high spatial frequency of the intensity
fluctuations involved, a medium with adequate spatial resolution such as a photosen-
sitive film was required to encode the hologram. Initially a photosensitive film was
used in most applications. However, an approach that would allow for recording and
digitally manipulating holograms was strongly desired. The first idea for such an ap-
proach was initially conceived and published as early as 1967 [20]. The introduction of
digital cameras with reasonable space-bandwidth products (SBWP) [21] and powerful
processor technology, which in turn led to a major improvement of digital holography
(DH) can thus be viewed as a crucial step [12, 22, 23|.
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Another very commendable invention was made by Lohmann in 1967 [24]. He pro-
posed a method of numerically generating holographic optical elements in the form
of interference patterns using a digital computer. These elements are referred to as
computer generated holograms (CGH) and are usually placed in the wider category of
diffractive optical elements (DOE). CGHs are computed using the same basic principle
of holography described above. A CGH can thus be described as a holographic optical
element which is designed to modulate a given input complex wave field and thereby
produce a desired optical field, either in its near field or far-field domain.

Depending on their temporal characteristics CGHs can generally be classified as
either static or dynamic. Static CGHs are fabricated by transferring the designed
element onto an appropriate substrate mainly by means of micro or sub-micrometer
fabrication methods. Hereby, a variety of methods such as computer driven plotter
writing [25], projection lithography [26, 27|, direct laser writing [28| or electron-beam
lithography [29] can be used. In the near past, the application of novel optical micro
and nano fabrication methods has facilitated the realization of static CGHs with a
comparatively high SBWP, thus making them ideal for applications where whole field
and high frequency modulation of wave fields is desirable. They are therefore applied
for instance for the generation of tailored illumination for aspheric testing [30] as well
as the generation of complex light field distributions - e.g. optical vortex beams which
are used in optical tweezers [31], or holographic projection [32, 33|. Similarly, they
are used in lithographic systems whereby a master CGH is used to expose a desired
intensity pattern on a substrate coated with a photoresist [23]. One major drawback
of this type of CGHs is their static nature which leads to less flexibility in terms of
temporal applications. This implies that for each given functionality, a long design and
fabrication process is needed.

Dynamic CGHs which can on the other hand be attained by transferring the de-
signed element onto a programmable element, e.g. a spatial light modulators (SLM)
or a digital mirror devices (DMD). A digital mirror device is a semiconductor based
micro-electrical-mechanical system consisting essentially of an array of individually
addressable micro-mirrors. It is an electrical input, optical output element that can
be used for high speed, efficient, and reliable spatial light modulation, whereby the
position of each mirror is individually controlled using an external electrical signal |34,
35]. An SLM consists, in analogy to a DMD, of an array of individually controllable
pixel elements. But unlike a DMD it is made up of liquid crystal elements whose in-
dex of refraction can be controlled electronically or optically [36, 37]. Dynamic CGHs
are mainly applied for wavefront generation and adaptive illumination for example in
imaging and projection display systems [38, 39|, microscopy [40], wave field sensing
[41-43] and in optical metrology [44-46|. However, these type of CGHs can not be
applied in some of the aforementioned applications (e.g. aspheric testing) due to their
inherent limitation in SBWP. This limitation arises from a number of technological
constraints that include their size and most importantly their limited number of con-
trollable elements, which is on the order of 1000x1000 micro mirrors or liquid crystal
pixels. A system that combines the advantages of both types of CGHs, i.e. one that
facilitates dynamic synthesis of wave fields with a large SBWP is thus highly desirable
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[47, 48|.

In order to allow the generation of a desired wave field with a high signal SBWP the
degrees of freedom of the optical system used to generate it, and hence the SBWP of the
CGH, must be higher or at least equal to that of the desired wave field |21]. Therefore,
the task of designing and fabricating CGHs that allow for a generation of arbitrary
wave fields with a high SBWP across a given plane has been extensively studied.
Thereby advances in micro and nano fabrication methods, have facilitated for instance
the generation of discontinuous diffractive optics using a diamond turning process.
This novel approach has allowed for the realization of multiplexed CGHs with a much
higher SBWP as compared to conventional CGHs [32, 33]. Nonetheless, owing to their
inherent 2D nature, these CGHs can only modulate an impinging wave across a single
transverse plane. This limitation has led to an ever increasing demand of developing 3D
holographic optical elements. For instance, stratified CGHs in a cascaded setup have
been proposed [49] and it has been shown that by adding more degrees of freedom
they expand the system’s solution space thus facilitating both angular and frequency
multiplexing [50, 51|. Another example is presented by thick volume holograms [52].
These are optically recorded periodic diffractive optical elements that depict both
angular and wavelength selectivity in cases where the Bragg condition is fulfilled,
as opposed to their 2D counter parts. Although these two types of volume elements
have found numerous applications their ability to generate arbitrary light distributions
within a certain 3D domain is quite limited. This is mainly due to their comparatively
low diffraction efficiency, since the efficiency of the device decreases as the square
root of the number of holograms that are recorded in a single hologram. This can
also be attributed to the fact that for thick holograms, since individual voxels cannot
be addressed, the achievable degrees of freedom are limited by the optical recording
process [53].

The first computer generated volume hologram was proposed as a specific type of
modulated three dimensional grating a few decades ago [54] and has been investigated
continuously since then [55, 56|. Recently, we have in our previous work studied and
demonstrated their superior performance in terms of angular and wavelength multi-
plexing [47, 57]; as well as their application in the dynamic synthesis of wave fields
[17]. State of the art CGVHs can be described as volumetric holographic optical ele-
ments whose complex transfer functions can be controlled and optimized in the design
process. In analogy to their 2D counterparts, CGVHs are generated numerically by
means of iterative optimization algorithms. They are modeled mathematically as a
randomly scattering inhomogeneous medium that is characterized by a refractive in-
dex distribution - the so called scattering potential [58]. The scattering potential is
assumed to be embedded in a known background potential. It therefore corresponds
to a modulation of the refractive index, e.g. in the bulk of a transparent dielectric
material thus facilitating fabrication of CGVHs by means of 3D laser lithography.

The problem of designing a CGVH can be stated as follows: the set of wave field
distributions that is to be generated in a certain predefined domain is the known ef-
fect for which the scattering potential inside the CGVH 1is the sought cause. This is
in essence an ill-posed inverse problem involving the mapping of the 3D field dis-
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tribution scattered in the volume of the CGVH onto one or a set of transverse 2D
planes. The resolution of this inverse problem requires very good knowledge of the
underlying forward problem, i.e. an explicit description of how light is scattered inside
the volume of the hologram is needed [17, 58]. In the current design approach several
shortcomings in the applied forward model and its implementation have however been
recognized. These shortcomings have the effect of imposing very stringent restrictions
on the achievable optical functionality of CGVHs and can be listed as follows [17]:

(i)

(i)

(iii)

In the current state of the art the assumption of weak scattering is necessary in
order to derive a linear model for the numerical modeling of the scattering pro-
cess. Hereby the Born approximation is applied. This approximation is derived by
considering only linear perturbation of the amplitude of the scattered wave field.
This assumption leads to a constraint that limits the refractive index modulation
allowed to very small values within a range on the order of 6, ~ 10=%...1073,
relative to the index of the background material [56, 57]. This in turn limits the
optical functionality of the CGVH in terms of angular and frequency selectivity,
as well as the achievable SBWP. An approximation that gives a more accurate
estimate for larger CGVH sizes without such stringent restrictions has not yet
been considered in this context and will be considered in the course of this work.

The iterative Fourier transform algorithm that has been applied so far tends to
stagnate after the first few iterations [56|. This is attributed to the fact that a
set of basic constraints in both the frequency and space domains are not fully
fulfilled thereby leading to convergence to a local minimum. For instance, in the
definition of the coding and quantization operators, which are crucial for the dis-
crete representation and for the fabrication of the CGVH in a dielectric material,
various linear interpolation schemes have to be employed. This misrepresentation
of values can be shown to lead to deviations from the desired optimal distribu-
tion. This in turn implies that diffraction still occurs even for cases where the
Bragg condition is not fulfilled. For multiplexed CGVHs, where the fulfillment
of the Bragg condition is indispensable, this will result in a poor signal to noise
ratio (SNR) and to a reduced diffraction efficiency.

In the current state of the art, only fabrication of CGVHs in glass by means of
direct laser writing has been investigated. In such an approach, the intensity of
the laser has to be chosen appropriately in order to achieve a condition where
photomodification only occurs in the focal plane. Therefore, one challenging task
is to be able to perform this complicated micro-structuring with a spatial resolu-
tion better or on the order of 1 um and thereby induce refractive index changes
on the order of §, ~ 10~*-.-1072. Here, we propose a new approach for the fab-
rication of CGVHs in an optical nonlinear material. In such a nonlinear optical
material the absorption profile is narrower than the beam profile. This allows
us to design and realize CGVHs with much smaller voxels as compared to the
current state of the art.
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1.2. Aim and Scope of this Thesis

In order to describe, generate and/or analyze optical fields in a specified three dimen-
sional domain, it is customary to decompose them into independent discrete scatterers,
such as planes, segments or points, which can be treated separately [59]. In this work
we however focus on a problem in which an arbitrary wave field is defined in a given
three dimensional domain. The main aim is to analyze light distributions scattered
in the bulk of a volume hologram in order to develop a general method of computing
the scattering potential of the aforementioned CGVHs. Moreover, we investigate how
such holograms can be applied to generate a set of arbitrary orthogonal elementary
waves, which can in turn be coherently superposed in order to generate optical fields
with a high SBWP.

This work thus reviews the theory and the fundamental limitations of the inho-
mogeneous wave equation with respect to its application in solving scalar scattering
problems. It investigates a novel approach that can be used to improve the capabilities
of numerically computed volume holographic optical elements in terms of their Bragg
selectivity, diffraction efficiency and achievable spatial bandwidth product. Specifically,
this thesis extends the perturbation theory based approximations to the scattered field.

In a nutshell, the general aim of this thesis is the derivation and investigation of a
model that allows for the design of CGVHs with an advanced optical functionality.
Furthermore, the feasibility of fabricating such holograms in a nonlinear optical ma-
terial by means of femtosecond laser lithography is assessed. To achieve these goals,
a more accurate prediction of the field scattered within the volume of a CGVH is
developed. Thereby, a novel formulation of the inverse random scattering problem for
a weakly scattering inhomogeneous dielectric medium is presented. This thesis aims
to achieve these goals by undertaking the following steps:

e Deriving an integral formulation of the wave equation for the aforementioned
forward problem of computing multiplexed CGVHs. Hereby, a forward mapping
operator that defines a 3D mapping of an arbitrary complex field by the scat-
tering potential of the hologram onto a desired target field will be derived.

e Deriving the general sampling conditions that are necessary for the computation
of such a discrete scattering potential. To do this, it is initially assumed that
the magnitude of the scattered field for each projection must be continuous and
bounded within a compact support. This will pave way to the development of
an optimization theory based iterative technique that can be applied to numeri-
cally solve the aforementioned inverse problem within the accuracy of the Rytov
approximation.

e (learly formulating this inverse problem, which can be described as the problem
of computing the scattering potential, given a set of desired optical fields and the
corresponding physical constraints. This will essentially entail the transformation
of these set of physical constraints into constraints on the scattering potential of
the volume HOE.
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e Assessing further physical constraints that need to be satisfied for the proposed
hybrid system, which essentially utilizes the Bragg selectivity of CGVHs and the
flexibility of a programmable spatial light modulator.

e Investigating an approach that is based on a multiphoton absorption process
(MPA) to fabricate CGVHs in a nonlinear optical material such a photosensi-
tive glass-ceramic. Since the proposed holograms are defined as discrete volume
elements, an appropriate method that is able to create the desired subsurface
micro structures in the bulk of the dielectric material needed.

e Assessing the feasibility of generating not only single but also a linear com-
bination of 2D wave field distributions, which have a higher space-bandwidth
product as compared to the currently available elements. To accomplish this
goal, a spatial light modulator will be applied to simultaneously couple in a set
of illumination fields into the CGVH and thereby decode a linear combination
of the single far-field projections.

1.3. Structure of this Work

This work is divided into three major parts. The first part aims at reviewing the
physical background behind the interaction of electromagnetic with different dielec-
tric materials, which are encountered in the course of this work. For this purpose,
Maxwell’s equations are introduced and used to present a description of light as elec-
tromagnetic radiation. In the next step wave optics theory is then introduced as an
approximation of the electromagnetic theory, which can be used to describe light by
a single scalar function. This theory is then in turn used to derive scalar diffraction
and scalar scattering integrals, which will form the basis for the discussion of planar
and volume HOEs respectively. In the final step the proposed approach is described
in details. Below is a brief overview of the contents of the individual chapters.

Starting with the derivation of the Helmholtz equation and the inhomogeneous wave
equation, the basis of scalar diffraction theory and scalar theory of scattering are pre-
sented in chapter 2. The integral form of the linearized inhomogeneous wave equation
is then derived and applied in chapter 3. For this purpose the weak scattering approx-
imation is applied in deriving the relationship between the scattered wave field and
the scattering potential. In chapter 4 the motivation behind this thesis is articulated
and the hypothesis that forms the basis of this work is formulated.

Chapter 5 focuses on the design and realization of computer generated volume holo-
grams. It starts by presenting a rigorous analysis of methods available in the current
state of the art. This analysis is then applied to derive a model upon which the pro-
posed novel approach is based. Both Rytov and Born approximation based models and
their corresponding optimization algorithms are then compared by means of numerical
studies in this chapter. The hybrid algorithm developed in the course of this work and
the relevance, as well as the applicability of all the constraints implemented therein
are then discussed in details.
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Chapter 6 is dedicated to the experimental proof of the proposition stated in chapter
4. A laser lithographic method for the fabrication of CGVHs in a nonlinear optical
material is discussed. For this purpose, the nonlinear wave equation which is derived in
chapter 2 is applied. The fabricated holograms are then characterized by determining
the achievable diffraction efficiency and an improvement in the quality of projected
far-field distribution is demonstrated. The thesis is summarized in chapter 7 and an
outlook for future research is presented.






2. Theoretical Background:
Holographic Optical Elements

A holographic optical element (HOE) is an optical element - e.g. a lens, filter, beam
splitter, diffuser, or diffraction grating - that can be described using the principle of
holographic imaging processes [2]. Conventional HOEs are optically recorded or nu-
merically computed and then transferred into a suitable dielectric medium. Thereby,
the basic principle of holography which essentially consists in the transformation of
phase changes into recordable intensity changes is utilized. HOEs are applied in diverse
fields of modern physical optics to modulate light fields in order to acquire transfor-
mations thereof, some being analogous to the transformations carried out by classical
elements and others being specific transformations determined by the possibilities of
holography [60, 61]. It follows from this, that in order to gain a good insight on HOEs,
a deeper understanding of the basic theory that governs the interaction of light with
material in general is needed.

In the next two sections Maxwell’s equations are introduced and used to present
a description of light as electromagnetic radiation, which propagates in the form of
two mutually coupled vector waves consisting of an electric-field and a magnetic-field.
Thereby, wave optics theory is first introduced as an approximation of the electromag-
netic theory to describe light by a single scalar function. In this simple case, Maxwell’s
equations are formulated for a medium that is isotropic, linear and non-conducting.
Wave optics theory will in turn be applied in Sect. 2.3 to derive the scalar diffraction
integral which is commonly adopted when considering planar HOEs. Furthermore,
Maxwell’s equations for a nonlinear, homogeneous as well as inhomogeneous dielectric
medium will be considered. The former case will be encountered in chapters 3 and 5
while discussing propagation of light through a volume HOE. The latter case will, on
the other hand, form the basis for the discussion of the fabrication of volume HOEs in
nonlinear optical material by means of femtosecond laser lithography. The main aim
of this chapter is therefore to form a basis for the description of light propagation,
scattering and absorption in different media.

2.1. Theory of Electromagnetic Waves

The phenomena of scattering and absorption of weak electromagnetic waves, i.e. where
the electric vector of the electromagnetic field is small, in any given medium plays a
crucial role in many fields of science. It can for example be inferred directly from
the basic theory of electromagnetic waves that a parallel beam of light will traverse
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through vacuum without any energy loss. However, it will for instance interact through
absorption and /or scattering with an inhomogeneous medium thereby partially or fully
losing its energy. The energy of the incident beam is thus reduced by an amount equal
to the sum of absorbed and scattered energy. This reduction is commonly referred to
as extinction. In the next two chapters the theoretical background behind scattering
and extinction of light traversing a given medium is presented. Of particular inter-
est in this work are non scattering and weakly scattering homogeneous, as well as
inhomogeneous dielectric media which are characterized by their index of refraction.
Specifically, propagation of light and the dependence of the scattering interaction on
the magnitude and distribution of the refractive index within such a medium, which is
embedded in a homogeneous background, is discussed in details. This discussion will
essentially form the foundation of this work and the basis for the derivation of the
aforementioned forward and inverse problems in holography.

If on the other hand the electric vector of the electromagnetic field is large enough,
the alternating electric field will induce a nonlinear polarization in the medium. This
leads to an excitation of higher harmonics, and hence to interactions that result in
to wave mizing processes [62]. In the following sections wave mixing processes will
be discussed in further details. It will be shown that they correspond to different
nonlinear effects, whereby the order of nonlinearity depends on the magnitude of the
electric field and on the material in question. One such nonlinear process, which will
be of particular interest in this work, is multi-photon absorption process (MPA).

2.1.1. Maxwell’s Equations

Within the theory of quantum optics light is found to depict both particle-like and
wave-like properties. However, many optical phenomena can adequately be described
using the theory of electromagnetic waves which was put forward by James Clerk
Maxwell in 1865. In this case an electromagnetic field is described by two related
vector fields: the electric field €(r,t) and the magnetic field H(r,t). Both are vector
functions of position r and time t. For a medium that is free of charges and imposed
currents, the propagation behavior of electromagnetic fields is fundamentally governed
by the following Maxwell’s equations |2, 63|

V.D=0 (2.1)
V-B=0
oD
oB

where D(r,t) is the electric flux density and B(r,t) the magnetic flux density. When
dealing with materials having distinct properties it is important to consider the re-
lationship between the flux densities and the fields, i.e. between D and £ as well
as between B and H. This relationship is characterized by the polarization density

10
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P(r,t) in the former case and the magnetization polarization density M (r,t) in the
latter. It can be described using the following material equations

D=cE+P (2.5)
B = puH + oM. (2.6)
Hereby, €, and pu, are, respectively, the free space or vacuum permittivity and perme-

ability. In free space P and M are equal to zero and thus D = ¢,€ and B = pu,H
whereupon Eqgs. (2.1) to (2.4) become free space Maxwell’s equations [63]:

V.E£=0 (2.7)
VH =0 (2.8)
o€
VxH= EOE (29)
oH
VxE&E= —,LLOW. (210)

Maxwell’s equations will be used in this thesis while considering propagation of light
in free space as well as in dielectric media have particular properties as it is explained
in the next section.

One significant property of electromagnetic waves is that they transport energy
and momentum. Therefore, further insight on the physical properties of optical waves
can be gained by considering the energy flow connected with the propagation of an
electromagnetic wave, which is described by the Poynting vector

S=ExH. (2.11)

Thus 8 is a power density vector which specifies both the power density in Watts per
square meter, and the direction of flow. Let us for instance consider a monochromatic
plane wave, which is an elementary solution of the Maxwell’s equations. We start by
adopting the complex representation of the field components as follows,

E(r,t) = Re{E(r)exp(iwt)} (2.12)
H(r,t) = Re {H (r)exp(iwt)}, (2.13)

whereby E(r) and H/(r) represent electric and magnetic field complex amplitude
vectors respectively; and w the angular frequency. The complex Poynting vector of
such fields can be expressed as

S=FExH. (2.14)

Given the complex representation of the field components, a monochromatic electro-
magnetic wave whose electric and magnetic field components are plane waves of wave
vector k can be expressed as

E(r) = E,exp(—ik - ) (2.15)
H(r) = H,exp(—ik - 1), (2.16)

11
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where E, and H, are constant vectors. From Eqs. (2.14), (2.15) and (2.16); the com-
plex Poynting vector of such a plane wave is given by

1
S=;ExH" (2.17)

where (*) denotes complex conjugation. The direction of S in this case indicates the
direction of instantaneous power flow as we would expect i.e., it is normal to both E
and H at any point.

Since optical waves have very large temporal frequencies lying in the range of several
hundred terahertz, optical detectors can only register the time-average of the power
flow which is given by the real part of the complex Poynting vector, i.e. the irradiance
64 2

= e b7
I=(S)| = e (2.18)
In the course of this work we will only consider absolute measurements of the irradiance
for time independent optical fields. Thus the constants in Eq. (2.18) will be omitted
and the following simplified equation for the irradiance, which we will refer to as the
intensity, will be adapted
I =|E|* = E2. (2.19)

2.1.2. Electromagnetic Waves in Dielectric Media

In the course of this work dielectric materials having different properties are considered.
We assume that all the materials considered here are nonmagnetic. In order to describe
the interaction of light with any of these materials, a brief discussion on the response
of the given material to an electric field is presented. For instance, in chapter 3 we will
deal primarily with linear media. A linear medium is one in which the polarization
produced by an applied electric or magnetic field is proportional to that field i.e. the
vector field P(r, t) is linearly related to €(r, t). Given the fact that interatomic electric
fields are of the order of 101 Vim~!, the electric fields used in the course of this work
(which are of the order < 10® Vm™!) are small in comparison, and their effects are
consequently linear. The oscillating fields produced by intense laser beams are often
orders of magnitude larger and can cause nonlinear response [65]. Such a nonlinear
process will be discussed in chapter 6.

Electromagnetic waves in linear, homogeneous, nondispersive and isotropic
dielectric media

The simplest case considered in this thesis is when light propagates through free space
or through linear, homogeneous, nondispersive and isotropic media. Such case is en-
countered for instance while considering the background dielectric medium within
which a given HOE is embedded. Thereby, the vectors P and £ at every position and
time are then parallel and proportional, so that

P = e, XE, (2.20)

12
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where x the electric susceptibility. By substituting (2.20) into (2.5) we arrive at
D = €, (2.21)
where the permittivity of the medium is defined as follows
€ =¢€,(1+ x). (2.22)

The polarizability of such a medium, which is defined physically as the ratio of the
dipole moment induced to the electric field that produces it, can in turn be expressed
by the dielectric constant;

6=—=1+y, (2.23)

60

i.e. its relative permittivity. The polarizability of a given dielectric material plays an
important role in holography. For instance, holographic information can be stored in
such a medium by means of small changes in the dielectric constant of a polymeric
material [66]. In the course of this work we considered mainly pure phase photosensitive
glass ceramics, whereby such a change is induced during exposure to light as it will be
discussed in latter sections.

In a similar way to Eq. (2.21), given the permeability of the medium i, the magnetic
relation can be written in the form of

B=uH. (2.24)

Given Egs. (2.20) and (2.21) as well as the general form of Maxwell’s equations in Eqs.
(2.1) - (2.4); we can derive the following Maxwell’s equations for a linear, homogeneous,
nondispersive and isotropic medium,

V-E=0 (2.25)
V-H=0 (2.26)
o€

= e— 2.2

VxH o (2.27)
OH

= —U—. 2.2

VxE& Wy (2.28)

It is apparent that Eqs. (2.25) - (2.28) are identical in form to the free space Maxwell’s
equations in Eqgs. (2.7) - (2.10), except that in this case € and p replace €, and p,
respectively. It is important to mention here that one necessary condition for £ and
H to satisfy Maxwell’s equations is that each of their components satisfy the wave
equation [63|

1 O%u(r,t)
2 Ot?

where the speed of the propagating optical wave in this medium is given by

Vu(r,t) — =0, (2.29)

(2.30)

13
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and the scalar function u(r,t) represents any of the three components (&,,&,,E,) of €
or the three components (H,, H,, H.) of H. From above we conclude that in a dielectric
medium that is linear, isotropic, homogeneous, and nondispersive, all components of
the electric and magnetic field behave identically and their behavior is fully described
by a single scalar wave equation |2, 63].

Here we will assume that the medium at hand is nonmagnetic, which implies that
1 = . This is a valid assumption since most of the material encountered in the course
of this work are nonmagnetic. It follows from this that the ratio between the velocity
of the optical waves in vacuum and the given medium is defined as the refractive index

n= /e, (2.31)

whereby, as priorly mentioned, €, is the material specific dielectric constant - see Eq.
(2.23). The response of different media encountered in this work to electromagnetic
waves, as it can be expressed using Eq. (2.31), will play quite crucial role. However, in
Eq. (2.31) ¢, it is presumed to be a static constant. For the majority of the material
considered here €., and therefore n, will be position and frequency dependent as it
is discussed in later sections. The frequency dependence of n leads to dispersion.
Additionally, as an electromagnetic wave traverses through a given medium a portion
of it will always be attenuated. Thus in general, such a wave is taken to be traveling
through a medium with a complex index of refraction

i =n+ik. (2.32)

The imaginary part of the complex refractive index x = Im {n} is commonly referred
to as the absorption coefficient and it determines the amount of absorption loss as the
wave traverses through the material.

Electromagnetic waves in linear, inhomogeneous, nondispersive and isotropic
dielectric media

One deviation from the ideal uniform dielectric medium described above occurs when
the medium is inhomogeneous. This implies that the relationship between P and £
is dependent on r. Such a medium will be encountered in this thesis while describing
propagation of light in the bulk of volume HOEs. In such a case the relations in
Egs. (2.20) and (2.21) remain intact, but both the susceptibility and the permittivity
become functions of position: y = x(r) and ¢, = ¢(r)/¢,. Hence also the refractive
index becomes position dependent, so that n = n(r). We can then show that the wave
equation satisfied by € becomes

V2E — uoe(r)aa—tf +V (%VE(T’) : 8> = 0. (2.33)

In order to derive this inhomogeneous wave equation from the Maxwell’s equations in
Egs. (2.1) - (2.4), we can apply the curl operation Vx to both sides of Eq. (2.4). By
then noting that € = ¢(r) and invoking the identities

Vx(VxE =V(V-E —VE (2.34)

14



2.1. Theory of Electromagnetic Waves

and
V-e€=eV-E+ Ve & (2.35)

Egs. (2.1),(2.3), (2.21) and (2.24) can be used to arrive at Eq. (2.33) [63]. A detailed
derivation of this equation is presented in appendix A.l. From this inhomogeneous
wave equation we can see that for a medium whose dielectric properties do not change
over space, the third term on the left side of Eq. (2.33) is zero and hence Eq. (2.33)
will take the form of Eq. (2.29). This term will however be nonzero for instance for a
medium with a refractive index that changes over space, i.e.

n(r) = \e(r)/e,. (2.36)

Such material will be encountered in this work while describing light propagation in
a CGVH. Specifically, we will assume the holograms can be described as a medium
whereby €(r) varies much slower than £(r), i.e. €(r) does not vary within a distance
of one wavelength. In this case the third term in Eq. (2.33) maybe neglected so that
the wave equation

0?E
o2

is approximately applicable for such an inhomogeneous medium. Thus, Eq. (2.37) will
then be applied in Sect. 3.2 while discussing scalar scattering theory and in Sect. 5.1
to derive an advanced scattering model which forms the basis of this work. Thereby,
it will be shown that this term introduces a coupling between the various components
of the electric field.

V2E — lige(r) =0 (2.37)

Electromagnetic waves in nonlinear, homogeneous, nondispersive and
isotropic dielectric media

Nonlinear dielectric media will be encountered in Sect. 6.1 while discussing laser lithog-
raphy based micro- and nanofabrication of HOEs. A nonlinear medium is defined as
a medium whereby the relationship between P and &€ is nonlinear. In analogy to to
the inhomogeneous wave equation presented above, a nonlinear wave equation can be
derived from the Maxwell’s equations - Egs. (2.1) - (2.4), as it is shown in appendix
A.2; to arrive at
0’E B 0*P
o~ Mg
This nonlinear wave equation, as opposed to the linear wave equation in (2.29), con-
tains an extra term that arises from the nonlinear polarization. This term is again
responsible for energy transfer between coupled propagating waves in the medium.
An electromagnetic wave incident on a nonlinear medium will polarize it causing
it to develop a time dependent electrical polarization P(t). The resulting polariza-
tion can be considered to be made of several contributions, which are represented by
terms consisting of products of higher order susceptibility y™ and the magnitude of

V2E — 106, (2.38)
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the electric field £(¢) [62]. This leads to the aforementioned wave mixing processes.
Thereby, the i’ component of P(t), where i stands for (z,y, z) is given by

P =6 {XS)SJ +XAEE + XHEELE + - } ; (2.39)

where x(™ is a tensor of rank (n+1) with 3"*1) [62] components in general. This math-
ematical formalism will be adopted in Sect. 6.1. to present an elaborate description
of the physical processes behind fabrication of CGVHs by means of optically induced
refractive index modulation using non-linear absorption of near infrared light in glass
ceramics.

2.2. Time Independent Wave Equation

2.2.1. Helmholtz Equation

In the first two chapters of this thesis we will mainly be interested in situations where
the time-dependency of electromagnetic waves does not play a role. In what follows, we
use a scalar representation of the wave field by using a single component. Furthermore,
monochromatic electromagnetic waves will be of particular interest in this work, mainly
owing to the fact that only laser light is considered. Thus, we will assume that only
quasi-monochromatic light having a single frequency v and corresponding angular
frequency w = 27v is used. For such waves, we can consider the following solution of
the wave equation in Eq. (2.29)

u(r,t) = A(r) cos (wt + ¢(r)) = Re {U(7) exp (iwt)}, (2.40)
where A(r) is the amplitude and ¢(7) the phase. The complex amplitude is given by
U(r) = A(r) exp (ig(r)), (2.41)

By substituting u(r, t) into the wave equation - Eq. (2.29), it follows that U must obey
the time-independent Helmholtz equation

(V2 +E2)U(r) =0, (2.42)

whereby
k=2m/\ (2.43)

is the wave number and A\ the wavelength in the given dielectric medium [2]|. The
Helmholtz equation is valid for all waves satisfying the scalar wave equation.

2.2.2. Elementary Plane Waves

One of the simplest solution of the Helmholtz equation is a stationary plane wave.
For the monochromatic optical wave field introduced in Eq. (2.15) this solution of the
scalar wave equation can be written as follows

U(r) = Aexp(—ik - r), (2.44)
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where A is a complex constant and k = (k,, k,, k.)" is a vector in spatial frequency
space [64]. This equation satisfies Eq. (2.42) as long as

=k 4k + k. (2.45)

An illustration of a numerically simulated plane wave traveling in the direction
parallel to the z-direction is shown in Fig. 2.1 (a). The set of all solutions corresponding
to a given k apparently represents a sphere with a radius & = 27/ in three dimensional
frequency space, the so called Fwald’s sphere 67| - cf. Fig. 2.1 (b). Here, k is given
by Eq. (2.43). It follows therefore that the components of k are not independent of
one another. Thus k, is conventionally chosen to be the dependent variable so that

K2 = k% — k2 — k2 [68)

a) . b ) k A
I [win?)] |~ (0,027/4)
X
0
L»z D m

Figure 2.1.: (a) [lustration of a numerically simulated plane wave traveling in the
direction normal to the z- and y-axis. (b) In the frequency space this
plane wave is represented by a point at the position (0,0,27/\) and lies
on the surface of a sphere of radius 27 /A - the Fwald’s sphere.

2.3. Scalar Diffraction Theory and its Application in
Holography

A major portion of holography is devoted to the consideration of numerically computed
holographic optical elements, which are used to manipulate wave fields by means of
diffraction. Such diffractive optical elements are commonly referred to as computer
generated holograms [69]. A significant amount of study has been devoted to methods
for numerically designing CGHs. The advantage gained by such a process is that one
can generate arbitrary 2D or 3D wave field distributions. One is then only limited by
the ability to describe these holograms mathematically, to compute them numerically
in a reasonable amount of time and to fabricate them |[2|. In this section the design
theory behind the computation and fabrication of CGHs, which are considered to be
thin diffractive optical elements is discussed. In particular, an analysis of phase-only
CGHs and their characteristics is presented. We will assume that the structure of these
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elements is defined by the modulation of the index of refraction of a given dielectric
medium. This theory will then be generalized in the subsequent sections to include
the design of volume holographic optical elements.

Scalar theory of diffraction is commonly adopted when considering thin diffractive
optical elements, whereby the assumptions discussed in Sect. 2.2.1. are presumed to
be fulfilled. Scalar diffraction theory involves the conversion of the wave equation (cf.
Eq. (2.42)) from a partial differential equation into an integral equation. By treating
diffraction problems as boundary-value problems, this integral transform formulation
of diffraction theory can be derived without approximations [70|. Thus scalar diffrac-
tion theory can be used to analyze most types of diffraction phenomena and imaging
systems within its realm of validity [71]. It offers a useful simplification of rigorous
vector diffraction theory yet retains important features that allow for the treatment of
diffraction and scattering in terms of linear system theory [72|. In this section scalar
diffraction theory is used to derive some important tools. These tools are some of the
cornerstones of Fourier optics and will form a basis for the work presented in this
thesis.

2.3.1. Rayleigh-Sommerfeld Diffraction Integral

A monochromatic light beam propagating in free space can be completely deduced
from the values of that beam, which are known across a given single plane. In other
words the field crosssection in any one transverse plane completely determines the field
everywhere else [73]. This dependence provides a solution to the problem of finding the
diffracted wave field due to a given object. The Rayleigh-Sommerfeld formulation of
diffraction and its paraxial approximation are commonly used to solve this problem.
Let us consider for instance the determination of the monochromatic optical field
distribution across a distant observation plane {s} from a given field distribution
across a source plane {x}. At the source plane, which is located at z = 0, an area 3
defines the extent of a source or an illuminated aperture. The field distribution in the
source plane is given by U(«x). The field U(s) in a distant observation plane can be
computed using the first Rayleigh-Sommerfeld diffraction formula |2, p. 49|

1 ik
Ulx) = — // U(S)MCOS (é-r)d&dn. (2.46)
i J s 7|
Here, |r| = /(s — x)? + 22 is the distance between a position on the source plane and

a position in the observation plane whereas z, is the distance between the centers of
the source and observation plane. The vectors s = (£,7)? and = = (z,y)” represent
points in the observation and source space respectively. Equation (2.46) is, assuming
the fields U(x) and U(s) are defined across two parallel planes, a convolution integral
which can be written as

U(z) = / /Z H(s — &)U(z)dédn, (2.47)
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where the impulse response H (s — x) has the general form |2, pp. 61]

1 ik
H(s — )= 5%”’"’) cos (& - 1). (2.48)
Fourier convolution theorem can be applied to rewrite Eq. (2.47) as a discrete shift-
invariant convolution in a simplified form as follows

Ulx) =7 HF{U(s)} - H(q)}- (2.49)

Here, Z{-} and .Z '{-} are the forward and inverse Fourier transform operators
respectively whereas ¢ = (f,, f,)” is a vector representing spatial frequencies. The
transfer function H (q) of the wave propagation phenomenon, which is derived using
an angular spectrum analysis is given by [71]

Hg) - {exp (k2o T=OLF=0RF) i VEFE <IN 0

0 otherwise.

With the assumption that z, > A, it is apparent that wave propagation in a homoge-
neous medium is equivalent to a linear 2D spatial filter with the band limited transfer
function given by (2.50) [74, pp. 61]. Furthermore, it is clear that the effect of propa-
gation is the modulation of the relative phases of various plane waves whereby their
amplitudes remain unchanged.

Equation (2.46) forms the basis for the numerical forward and backward propagation
of wave fields in digital holography for diverse applications ranging from holographic
interferometry |75] to metrology (8], as well as for the design of holographic optical
elements [69]. In the next section application of the concept introduced here in both
conventional digital holography and in the design of computer generated holograms is
discussed. In a later chapter this approach will be adopted to derive a more advanced
mathematical model that is applied in the design of computer generated volume holo-
grams.

2.3.2. Basic Principle of Digital Holography

Conventional holography can essentially be described as an interferometric approach
for numerically recording and reconstructing the amplitude and phase of a complex
wave field, either optically or numerically [18]. Once the wave field has been recorded,
the resulting hologram can be transferred onto an appropriate substrate. This can
then be used to modulate an impinging complex wave field with the aim of gener-
ating a desired wave field distribution across a given plane or region. These, among
other applications of holograms, have made them versatile and widely applied optical
elements in different fields of science. In this section a short overview of the basic
concepts behind digital holography (DH) in specific as well as holography in general
are presented. These concepts will be revisited in the subsequent sections where the
topic of wave field synthesis by means of holographic optical elements is introduced.
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The principle of the interference between two coherent monochromatic light waves
emitted by the same source is utilized in DH to encode phase information into de-
tectable intensity modulations. A digital hologram is thus recorded by coherently
superposing a given wave field, e.g. originating from an object of interest, with a
known reference wave. Let U, (¢, ), denote the complex amplitude of a plane reference
wave, U,(s) that of the object wave and Ap(s) = ¢,(s) — ¢, the phase difference
of these two waves. Furthermore, let us assume that an ideal unit amplitude plane
reference wave is used so that from Eq. (2.41) we have U,(¢,) = exp(ip,). The total
field U(s) = U,(p,) + U,(s) across the hologram plane {s} is given in terms of the
interference pattern

I(s:¢,) = |U(s)]"
= Uo(8)]* + |U-(00)[* + Us(8) Uy (20) + Ur(2:)U; (5), (2.51)

where (*) denotes the complex conjugate. The desired object wave field can be re-
constructed from one of the last two terms in Eq. (2.51), i.e. the interference terms
between the object and the reference waves. These two terms are, to a good approxi-
mation, proportional to the original object field. Thus, the complex field across a given
plane {x} in the object space can be reconstructed from the hologram using Eq. (2.46)

as follows . "
Ul@) = = / /E I(S)U:(%)wcos (é - r)deds. (2.52)

However, the reconstructed wave will contain distortions arising mainly from the
different interference terms in (2.51). This becomes apparent after inserting the general
forms, U, (¢,) = exp(ip,) and U,(s) = A,(s) exp(ip,), of the complex valued reference
and object waves into Eq. (2.52) to arrive at

I(s)U () = Aexp(—ig,) + Ao exp(—ip,) + A exp(i(p, — 2¢,)), (2.53)

for the first term within this integral. In Eq. (2.53) the first term, with A = 1+|A4,(s)[?,
represents the zero-order term. The second term will, upon reconstruction, form the
real image which corresponds to a distorted version of the original object wave. On
the other hand, the last term forms the virtual image. This last term is in the general
case, i.e. where the amplitude of the reference wave is not unity, proportional to a
scaled version of the original object wave. The scaling factor is in this case given by
the magnitude of the reference wave [8]. Therefore, since the original wave front is only
a part of the reconstruction the four terms in (2.51) have to be separated. A number
of solutions to this problem have thus been developed for various applications. Two of
the most common approaches for this task are [2]:

The temporal phase shifting method

This method is usually employed in the reconstruction of the so called Gabor holo-
grams, whereby the in-line setup depicted in Fig. 2.2 (a) is used to record the holo-
grams. In such a setup the reference wave and the object wave are collinearly incident
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on the detector plane. In this approach, a set of intensities are recorded with known
stepped phase differences. In a practical implementation of an in-line setup, a coher-
ent beam is divided into two paths, one of which contains a transmitting or reflecting
object and the other a phase shifting element, e.g. a piezoelectric transducer mirror.
Such an in-line setup can be used to record a series of intensities from which the phase

a) b)
U CCD
Object ¢ /
— e —> ———fmm - —>
z z
U U,

I} {s} {x} {s}

Figure 2.2.: Basic principle behind recording a digital hologram using (a) an in-line
and (b) an off-axis setup. The hologram is hereby captured in form of an
interference pattern between a given object field U, and a reference field
U, using a CCD sensor.

and amplitude profiles of the object wave can then be extracted [75|. For instance in
the so called four-step phase-shifting digital holography, four holograms are acquired
with phase shifts of Ay = 0,7/2,7,37/2 from which the phase

I4(s;3m/2) — IQ(S;W/Q)]
I,(s;0) — Iz(s; ) ’

Ap(s) = arctan [ (2.54)

where the phase of the initial reference wave is assumed to be zero, and the amplitude
=

Ao(s) = 7D Ii(s) (2.55)
J

of the object wave can be recovered |76]. With this approach the contributions of the
zero order term and the virtual image can be completely removed from the recon-
struction. One of the main drawbacks of this method is the extended time needed to
acquire a series of measurements, which makes it sensitive to vibrations and also leads
to an elevated demand on the temporal coherency of the light.

The spatial phase shifting method

This method involves the introduction of a spatial carrier in order to spatially separate
the real image from the virtual image and the zero order term [19, 77|. Practically this
is realized using an off-axis setup like the one schematically depicted in Fig. 2.2 (b).
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To give a better insight on this method, we start by re-writing the hologram in Eq.
(2.51) in terms of the intensities of the object and reference wave as follows

I.(8) = A(s) + 2/ 1,(8)I,.(s) cos [Ap(s) + 27mq,s]
= A(s) + B(s) exp [i2mq,s| + B*(s) exp [—i127q,s], (2.56)

whereby in this case A(s) = |U,(s)|* 4+ |U,(¢.)*, B(s) = /Io(8)I.(s) exp [iA¢(s)] and
q, is a known spatial carrier. By now taking the Fourier transform of Eq. (2.56) with
respect to s we acquire

I.(q) = Alq) + B(g + q.) + B'(q — q,), (2.57)

where g denotes 2D spatial frequencies and the tilde is used to denote the Fourier
transform of the individual terms. Given Eq. (2.57) the sought object field can be
recovered from I.(s) using the spatial filtering method.

Considering the spectrum of the hologram I, (q) in Fig. 2.3, it is clear that one can
extract any of the first order terms by means of spatial filtering using an appropriate
mask as shown in Fig. 2.3. Thus an appropriate spatial carrier has to be chosen such
that the term in question lies within the window W. Furthermore, the spectrum must
be sampled adequately so that aliasing does not occur. After application of the spatial
filter the retained frequencies can then be shifted into the center of the spectrum in
order to obtain the appropriate dimensions for the reconstruction. Finally, Eq. (2.46) is
applied to propagate the resulting field in order to numerically reconstruct the object
field across the desired plane [8].

L@t

-1 {0} +13
/ v

4, q, q

Figure 2.3.: Schematic representation of the spectrum of a hologram I. (q), whereby
a spatial carrier of g, is used to separate the virtual image {—1} and the
real image {+1} of the object from the zero order term {0}.

Space-Bandwidth Product Analysis in Digital Holography

It is crucial to analyze the information capacity of a digital holographic system. This
is usually done in terms of space-bandwidth product (SBWP). As a physical quan-
tity, SBWP can be applied to characterize the capability of the system in capturing,
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2.3. Scalar Diffraction Theory and its Application in Holography

transferring and/or processing information. In digital holography, SBWP is defined
as a parameter that allows for analysis of the information capacity of a given DH
system either in the recording or reconstruction step. Thereby, the SBWP of a wave
field within the system is defined by the location @ and the spatial frequency band-
width Ag, i.e. the range of frequencies within which the field is non-zero, and can be
expressed as [21, 78|

SBWP = zAq. (2.58)

The concept of SBWP can for instance be used to characterize the performance of the
in-line and off-axis approach based DH systems discussed above. The temporal phase
shifting method is thereby seen to offer better spatial resolution in the recording step as
compared to the spatial phase shifting method. This is attributed to the fact that the
spatial filter introduces an inherent spatial frequency bandwidth limitation. The off-
axis approach thus yields a reconstruction with a poorer resolution than the intrinsic
sensor resolution owing to the discarded high-frequency components. Herein lies the
principle limitation of this method since this translates to a severe limit in the space-
bandwidth product of the holographic system as it can be inferred from Eq. (2.58).
This concept of SBWP will be used in later sections while assessing the information
capacity of volume holographic element based systems.

2.3.3. Computer Generated Holograms (CGHs)

A CGH is a holographic optical element that is designed with a numeric optimization
procedure and fabricated by means of micro-fabrication tools. Essentially, CGHs are
holographic optical elements that are mainly used to modulate a complex wave field
incident across a given plane {x}, with the aim of generating a desired field distribution
across a certain remote plane {s} as shown in Fig. 2.4. One main advantage of CGHs,
as compared to conventional holograms, is that they allow for the use of a wide range
of optical materials as a holographic storage medium, other than holographic plates
or electronic devices. Additionally, unlike the conventional digital holograms discussed
in Sect. 2.3.2., the numerical design and optimization of CGHs allows for the use of
ideal wave fronts during encoding. Furthermore, the appropriate encoding strategy
can be chosen for any given application. This in turn means that typical problems
such as aberrations of the optical system, vibrations, thermal instabilities etc; that
arise during the optical recording step in conventional holography can be avoided
[23]. However, in analogy to conventional DH the reconstruction and decoding step
is performed optically. Thus, the concepts of DH discussed above are adopted during
the design and optimization of CGHs.

In this section an overview on computer generated holograms is presented. A gener-
alized design approach, which can also be adopted to design and optimize holographic
optical elements is presented in the next chapter. Therein, it will be shown that CGHs
can be regarded as planar HOEs, which represents a special case of volume holo-
graphic optical element whose thickness is negligibly small. Here, key concepts such
as the sampling and encoding of complex field distributions into fabricable discrete
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elements will also be introduced.

x) sy A

—| |~ d

L :
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Figure 2.4.: Basic setup of the problem under consideration: a wave field U, originating
from region (i) propagates through a planar CGH which is located at the
position z = z, and whose thickness is considerably small. This field is
transformed into a total field U = U, + Uy by the CGH. This resulting
field is assumed to be known in region (iii) across a remote plane {s}.

Computer generated holograms can generally be described as planar holographic
clements, having a finite thickness d and a transmittance 7(x) which determines their
optical functionality. This transmittance function is discretized into N x M pixels in
order to allow numerical optimization. Thereby, the complex amplitude across either
the CGH or reconstruction plane is also regarded as a distribution of discrete samples
on a periodically extended rectangular grid of infinite extension. Thus as a result of
numerical implementation, the sought discrete complex transmittance 7(n,m) is a
sampled version of an unknown continuous function 7(x) [32]:

N M
T(n,m) = 7(x) Z Z d (nAx; — x;, mAx; — ;) . (2.59)
i=0 j=0

Here, z; and x; are the components of  whereas Az; and Ax; are the sampling
distances in the i— and j— directions respectively. Once a solution 7(n,m) has been
acquired by means of an iterative optimization algorithm [24, 79|, numerous methods
can be employed to fabricate the CGH. These methods include plotting techniques,
direct laser writing, mask lithography laser and electron-beam lithography [23]. The
choice of fabrication method dictates the approach that can be adopted to encode
the complex transmittance 7(n, m). The choice can be phase-only, amplitude-only or
complex encoding [69]. Encoding translates directly into physical constraints. For in-
stance, pure phase-only elements are advantageous since they only modify the phase

of an impinging field while transmitting all the power.
However, they rely on an inefficient encoding scheme since the field across the CGH
plane has to be converted into pure phase information. Furthermore, in order for such a
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CGH to be fabricable, the phase levels are constrained to C' levels that can actually be
fabricated with the target fabrication tool. In the case of electron-beam lithography
or direct laser writing, binary encoding is thus usually adopted. In Fig. 2.5 (a) an
example of a binary coded phase-only CGH, which was designed using an iterative
Fourier transform algorithm [80], is shown. In this case the phase values are allowed
to take on only either +7 or —m values (see also Sect. 3.4.2.).

Figure 2.5.: (a) A binary coded phase-only CGH designed using an iterative Fourier
transform based algorithm. () Numerically reconstructed far-field projec-
tions from a CGH with a size of 256 x 256 pixels and (¢) of 512 x 512 pixels.
Thus, the CGH in (¢) has a space-bandwidth product of SBWP = 5.2x10°
which is four times higher than the one in (b) - SBWP = 1.3x10°. There-
fore, it is apparent that higher SBWP values lead to a reconstruction with
a better quality - see Eq. (2.60).

The information capacity of such a discrete CGH, which can be given in terms of
the SBWP can be expressed as follows [69]:

L.L,

SBWP = m(), (2.60)
where L, and L, denote the size of the CGH in the x— and y—directions respectively.
For instance, in Fig. 2.5 (b) and (¢) a comparison of numerically computed far-field
projections from two phase-only CGHs is presented. The results in (b) were acquired
from a CGH with an SBWP = 1.3x10°, i.e. four times less SBWP as the ones in (¢) -
SBWP = 5.2x10°. In the former case a CGH with 256 x 256 pixels and a pixel size of
Ax; = Ay; = 3um was designed, whereas in the latter case the CGH had 512 x 512
pixels and the same pixel size. The speckled nature of the reconstructions is a result
of the clipping of high spatial frequencies of the object wave by the pseudo random
phase |15, 81]. It can be seen from these results that the quality of the reconstruction
increases with an increase of the SBWP, i.e. with an increase in the degrees of freedom
of the optical system.

It is important to note here that in general SBWP can be used to characterize an
optical system or an optical signal. The SBWP of a signal or of a set of signals is
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defined by the location and by the range of spatial frequencies within which the signal
is nonzero. The SBWP, whether for a system or for a signal, may be either a pure
number (degrees of freedom) or a specific area in the (x, ¢) domain, which we will refer
to as the Wigner domain [21, 82, 83]. In this work we will use the former definition
while considering the synthesis of field distributions means of holographic multiplex-
ing. Thereby, we will investigate how single field distributions can be decoupled and
superposed in order to generate a field that possess a higher SBWP than that of the
holographic optical system.

26



3. Current State of the Art in
Volume Holographic Optical
Elements

As priorly mentioned, a significant portion of holography is devoted to the considera-
tion of numerically computed holographic optical elements, which are used to manipu-
late wave fields by means of diffraction. This is mainly due to the fact that numerically
generated holograms offer important advantages over the optical holograms discussed
in the previous section. This type of holograms can for instance be used to encode
mathematical functions or mathematically defined wave field distributions. From a
historical point of view, digital holograms are commonly categorized as thin or thick,
depending on the relation between the finest cell size they contain and the thickness of
the holographic medium. Here, we will mainly discuss holograms in the latter category,
as opposed to the thin holographic elements which can be modeled using the scalar
diffraction theory presented in the previous chapter.

In this chapter the mathematical framework of three dimensional scattering which is
the basis for understanding volume holographic optical elements and their multiplexing
capabilities is developed. We begin with an explicit definition of the problem at hand
and then we will consider the general case (see Sect. 3.2.), whereby we assume that a
scalar field U;(r) is scattered by a weakly scattering but continuously inhomogeneous
dielectric medium that is located in a bounded domain Dg. We will show that the
scalar approach and the mathematical treatise presented in Sect. 2.3. can be extended
to the 3D case if the interaction process between the field and the holographic medium
is introduced. In other words, we will show that if this interaction is modeled with an
inhomogeneous wave equation, then the resulting field U(s) which is captured across
the plane {s} outside Dy can be predicted using the scalar theory of scattering. For
this purpose the integral equation for potential scattering is derived in Sect. 3.2.2.
and a weak scattering approximation is introduced in Sect. 3.2.3. in order to come
up with an approximate technique for solving this equation. In section 3.4., we apply
this technique to derive the forward and inverse scattering problems for thick volume
holographic gratings and CGVHs.

3.1. Problem Definition

The principle problem of designing a HOE can be stated as follows: given a known
incident wave field design a holographic optical element that modulates it in order to
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obtain a desired target wave field distribution across a given distant plane. Thus we are
faced with the problem of finding a hologram that transforms a specific reference wave
into a desired signal wave field. In other words, we seek to solve an inverse problem for
the forward problem of conventional DH described in Sect. 2.3.2., but for the general
case of a volume HOE. It follows directly from this that the basic concepts of DH that
were presented in the previous chapter are adopted while designing CGVHs. Thereby,
the CGVH is defined as a holographic optical element which is usually characterized by
the physical state of matter within a given dielectric medium. However, due to various
physical limitations inherent to this problem a closed form solution for this problem
does not exist in most cases. In the following these limitations will be discussed in
details and a rigorous procedure with which an optimal solution to this problem can
be acquired for a given set of constraints will be derived.

3.2. Scalar Scattering Theory and its Application in
Holography

3.2.1. Inhomogeneous Wave Equation

This section explores the principles behind scalar scattering theory and its application
in the description of light propagation through a weakly scattering but continuously
inhomogeneous dielectric material. In the following analysis we assume that the scat-
tering process is time independent and that the effects of polarization can be ignored.
Moreover, we assume that the response of the medium to the incident wave is linear
and can be described on a macroscopic scale in terms of the material’s refractive in-
dex. Under these conditions the propagation of waves in an inhomogeneous medium
is described in general by the scalar wave equation [74, 84]

(V2 + K2 (r,w))U(r,w) = 0. (3.1)

It is however important to note that in this case, as opposed to the previously discussed
scalar diffraction theory, k(r,w) is a frequency dependent scalar function representing
the refractive index of the medium, i.e.

k(r,w) = kon(r,w), (3.2)

where n(r,w) represents the modulated refractive index of the material (cf. definition
in Eq. (2.31)) and k, = 27/ = w/c is the wave number of the incident field. It is
evident from Eq. (3.2) that for a homogeneous medium of refractive index n,, with
k(r,w) = k,, Eq. (3.1) is the Helmholtz equation (see Eq. (2.42)) as priorly introduced.
Substituting (3.2) into (3.1) and rearranging the terms, Eq. (3.1) can be re-written in
the form

(V2 4+ EHU(r,w) = —47S(r,w)U(r,w), (3.3)
with {
S(r,w) = Ek’g [n*(r,w) —n2]. (3.4)
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Equation (3.3) is an inhomogeneous wave equation which was introduced in Eq. (2.37).
In this case, S(r,w) is the extra term that results from the space dependent dielectric
properties and is usually referred to as the scattering potential [74, pp. 695|. Consider-
ing the geometry depicted in Fig. 3.1 and assuming that for the monochromatic case
S(7r,w) now defines the refractive index distribution within a scattering volume V/,
which is confined within the domain Dpg, the total field U(r,w) within this volume
can be represented as a sum of two fields, i.e.

U(r,w) = Uy(r,w) + Us(r,w), (3.5)

where U,(r,w) is the non-scattered part of the incident field and Uy(r,w) the scat-
tered field. The field Us(r,w) is thus solely attributed to the presence of scattering
inhomogeneities in the volume. In this work we assume that these inhomogeneities
correspond to refractive index distribution given by

n(r,w) =n, + d,ni(r,w), (3.6)

where n, is the refractive index of the dielectric material, d,, represents a slight change
in n, and n;(r,w) is a function of position that accounts for the fluctuations in re-
fractive index. Here, we assume that the refractive index n(r,w) of the medium is
a real random function of position [56, 74]|. By substituting Eq. (3.5) into (3.3), the
inhomogeneous wave equation can be expressed as

(V2 + ) U, (r,w) + (V? + ) U,(r,w) = —47S(r,w)U(r, w). (3.7)

By now taking into account that U,(r,w) is a solution of the homogeneous equation
(2.42), ie. (V2 +E2)U,(r,w) = 0, the first term on the lhs drops out and we arrive at
the following wave equation for the scattered component:

(V2 4+ EHU(r,w) = —47S(r,w)U(r,w). (3.8)

3.2.2. Integral Equation of Potential Scattering

Since a direct solution for the scalar wave equation in (3.8) does not exist, we follow
the scheme introduced in section 2.3. and derive an integral equation of potential scat-
tering. Let us assume that a volume V', that is bounded in the domain Dy, comprises
of randomly distributed scatterers which represent points of inhomogeneity described
by S(r,w) - see Fig. 3.1. The total field due to these scatterers can be represented as
a summation of scaled and shifted versions of the impulse response H(r — 7', w) [85]

Us(r,w) = / S, w)U(r',w)H (r — ', w)d’. (3.9)
1%
Here, H(r — r’,w) has the general form of [74, pp. 698|

3 _ 4
Hir — ' w) exp (ik, |7 — 7’])

(3.10)

7
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Let us now consider the case where the incident wave is a monochromatic plane wave
of unit amplitude and frequency w, propagating in the direction specified by a real
unit vector 6,. It follows from Eq. (3.5), with (2.44) and (3.9) that

U(r,w) = exp (ik,0, - r) + /V S(r', w)U(r',w)H (r — ' w)d*r’. (3.11)

This equation presents an analytical solution for the forward scattering problem.
It is commonly referred to as the integral equation of potential scattering or the
Lippmann-Schwinger equation. It defines a nonlinear mapping between the scatter-
ing potential and the scattered field and is entirely equivalent to Eq. (3.3). However,
since in Eq. (3.9) the scattered field is represented in terms of the total field, i.e.
U(r) = Uy(r) + Us(r) this equation still needs to be solved for the scattered field.
We can therefore conclude that, given the total field U(r,w) inversion of Eq. (3.11) to
attain the scattering potential is a nonlinear problem which is difficult to solve both
from a mathematical as well as from a computational point of view. It is however pos-
sible to introduce some approximations under certain circumstances, which will allow
linearization of this problem as it will be shown in the next section.

(a) (b)
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Figure 3.1.: (a) Schematic of the geometry considered for a general scattering problem.
The gray area corresponds to the volume V' of the volume hologram, which
is defined by the scattering potential S(7,w) while the intermediate region
corresponds to the domain Dg. A wave field (wave vector, k, = k6,)
incident upon this volume will be scattered such that a predefined field
is projected into the signal window W across the plane {s} in the far-
field domain of the hologram. (b) Frequency space representation of the
scattering problem where values of the scattered field are seen to lie on a
portion (solid line) of the Ewald’s sphere (broken line) - after Kamau et.
al. [17].
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3.2.3. Weak Scattering Approximation of the Inhomogeneous
Wave Equation

Suppose the scattering potential is localized about the point »’ = 0 and that it is
essentially zero outside V. Furthermore, in reference to Fig. 3.1, we assume we want
to determine the scattered field across a plane located far away from Dp. Then it is
evident that = > »’ for all points that contribute to the integral in Eq. (3.11), so that

r—r'|=r—0,- 1, (3.12)

where 7’/ is the position vector of the point within the scattering medium, @, is a unit
vector in the direction of the scattered field and r = r6, is the position vector of the
point on the signal plane W (cf. Fig. 3.1). Thus we can make the approximation [86]

exp (ik, |1 — r'|) _ exp(ik,r _
(|7‘ _’ ’I"” D - <7" ) €Xp (_lkoes . 'I",) . (313)

With these assumptions we can then invoke the weak scattering approximation to
arrive at the following expression for the total field |74, 84|

U(r@s,w) = eXp (iko<00 ! T)) + UB<T987 w)

ik, . , 3.14
= exp (iko(0, - 7)) + —exp(; ) / S (1!, w)e ko(B:=60) 1" 4340 (3:14)
v

Equation (3.14) represents an integral form of the inhomogeneous wave equation within
the validity of the so called first Born approximation, which is essentially a weak
potential approximation. Hereby, Up is thus the scattered field for the case of the first
Born approximation. The integral term on the rhs of (3.14) is commonly referred to as
the scattering amplitude. It clearly represents the Fourier transform of the scattering
potential, i.e.

S(K,w):/S(r',w)e_iK'r'd?’r'. (3.15)
v

From Eq. (3.15) it is clear to see that for a given incident field, the scattered plane
wave in the far-field of CGVH in the direction specified by gs depends entirely on only
one Fourier component of the scattering potential, since the spatial frequency vector
K is given by [74, 86|

K =k, (0,—86,). (3.16)

3.3. Optically Recorded Volume Holograms
The term volume holograms was initially used to refer to thick hologram gratings.
Essentially, these are holographic optical elements which are recorded in the bulk of

a given medium by means of two or multiple beam interference. These type of holo-
grams were studied intensively in the 1960s [5], and are still of particular interest for
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applications in high capacity data storage [6] as well as display and communication
technology [87]. In this section, the concepts behind volume holograms will be pre-
sented using the fundamentals of scalar scattering theory introduced in the previous
section. This will pave way to the discussion on the current state of the art in the field
of CGVHs.

It is important to note here that the scalar approach discussed here only presents
a good approximation for weakly modulated loss-less holographic gratings. For the
weakly modulated volume phase holograms (VPH) that we will consider here, we
assume that typical values are on the order of §, ~ 107%. With this assumption,
effects resulting for example from polarization of the light or absorption within the
hologram can be neglected [52]. A rigorous analysis of volume holograms involves
applying the rigorous coupled wave theory (RCWT), which can be derived from the
Maxwell’s equations and is described more comprehensively in Sect. B.2.

3.3.1. Volume Phase Holograms

The most basic form of a volume hologram is recorded using plane waves for both
the object and reference beams. The interaction of the two optical fields results in
a stationary interference pattern at the media, consisting of bright and dark fringes.
The fringes are recorded throughout the media volume via modulation of the dielectric
constant of the material. These technique can however be used to record even more
complex types of holograms, whereby the plane object wave is replaced by an arbitrary
wave that can be generated for instance by means of a spatial light modulator [88].
These type of holograms are commonly referred to as volume phase holograms (VPH).

Let us consider a hologram which is recorded by superimposing two plane waves
U.(r) = Uie* ™ and U,(r) = Use™®*™ in a linear dielectric medium, thereby leading
to a refractive index modulation. This optically induced refractive index modulation
dn(r) is locally proportional to the intensity distribution, which is given by Eq. (2.51).
In other words

O (1) o |UL|* + |Ua)® + 2|UL| |Us| cos [(ky — ko) - T — Ay] (3.17)

where Ay is the phase difference between the phasors U; and U, [2]. For infinite plane
waves, we can define a grating vector K¢, which in analogy to Eq. (3.16) is given by
the difference of the two wave vectors,

Kg =k, — ko (3.18)

The magnitude of the grating vector is given by |K¢g| = 27 /A, where A is the grating
period. A beam transversing such an elementary grating is only diffracted when the
Bragg condition, as it is defined by Eq. (3.18), is met. The magnitude of the illu-
minating and diffracted wave vectors inside the medium of a refractive index n are
|k,| = |k.| = 2mn/X and have angles of 6, and 6, respectively as shown in Fig. 3.2.
Due to this limitation on the range of wavelengths (or angles) over which diffraction
occurs, it is ideally possible to record multiplexed holograms inside the same volume
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that work independently and without interfering with each other [2, pp. 332]. It is
also possible to obtain a theoretical 100% diffraction efficiency in this case. However,
diffraction of light traveling through the hologram will also depend on the magnitude
of the refractive index modulation ¢,, as well as the thickness of the volume grating d.
The multiplexing properties of volume holograms is thus dependent on the thickness
of the recording material.

As per definition, a thin hologram is one that essentially modulates light across a
single plane as it was discussed in the case of CGHs. On the other hand, the interaction
of light in a thick hologram takes place at different positions within the volume. Within
the validity of the scalar theory introduced above, the resulting field can be assumed
to be a superposition of the light scattered from the individual positions within the
hologram. In order to characterize a VPH as either thick or thin, and thereby take into
consideration the influence of the other aforementioned parameters, the () Parameter

B 2w A\d
T nA2

Q (3.19)

was introduced [89]. Here, X is the vacuum wavelength of the light used to reconstruct
it and A is the grating period. If ) > 1 and the induced index change is large enough,
then the VPH is considered thick and vice versa.

Let us now assume that a given hologram of thickness d = L. and infinite extent
has a plane parallel grating with fringes that are normal to the grating surface - see
Fig. 3.2 (a). Then the Bragg condition of such a VPH is given by [90]

mA = 2ny sin (0p) A, (3.20)

where 6 is the Bragg angle in the grating medium, m is the order of diffraction and
ny is the modulated part of the refractive index n(y, z) within the hologram itself as
given by Eq. (3.17) and is approximately represented by

n(ya Z) =Ty + ny
z

21y
= n, + J, cos {T] rect {L—J . (3.21)

Thus for plane parallel gratings Bragg condition is met when m is an integer and
the wavelength and A is such that the angles of incidence and diffraction are equal
and opposite, with respect to the surface normal [90|. This Bragg selectivity property
essentially facilitates fabrication of multiplexed VPHs. In Fig. 3.2 (b) this multiplexing
capabilities of volume holograms is illustrated. Hereby only light incident at the Bragg
angle with respect to the grating with slanted fringes is scattered efficiently. It is
this selective aspect which allows these gratings to be tuned for different angles or
wavelengths by for instance changing the tilting angle with respect to the incident
beam of light [90].
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Figure 3.2.: (a) Illustration of the illumination of an elementary transmission volume
holographic grating at a Bragg angle 6g. Since the incident light fulfills
the Bragg condition, the angles of incidence and diffraction are equal and
opposite. (b) Hlustration of the multiplexing capabilities of volume holo-
grams, whereby only light incident at the Bragg angle with respect to the
grating with slanted fringes is scattered efficiently. It is this selective aspect
which allows these gratings to be tuned for different orders of diffraction
and /or wavelengths by changing the tilting angle ag with respect to the
incident beam of light.

3.3.2. Bragg Selectivity and Multiplexing Properties of Volume
Holograms

In practice, all holograms have a limited size, which is determined by the thickness of
the medium L, and their lateral extension (L,, L,). Additionally, given the fact that
all wave fronts can be decomposed into a sum of plane waves as it was discussed in
Sect. 2.3.1., understanding the nature of periodic VPHs is very useful. In this section
an overview on this type of holograms is presented.

Let us assume we have a volume holographic grating with a Q-factor @) > 1. If such
a VPH is illuminated at angles significantly outside of the Bragg condition light may
pass through it without being diffracted. However, near the Bragg angle, there is a
range of angles for which light will still be efficiently diffracted [90]. To illustrate this
effect and how it is related to the size of the VPH, we will consider a holographic
grating with a cosinusoidal refractive index modulation - cf. Egs. (3.17) and (3.21).
Suppose that the scattering potential of this hologram can approximately be written
in its general form as follows

S(r) =[1+mcos(Kg-r— ¢)|rect [i i, Liz] : (3.22)

With the help of Eq. (3.15) and by applying the convolution theorem we can easily
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compute the grating vector spectrum by means of a 3D Fourier transform to arrive at

S(K) = AL. {5(1{) + 20K — Kg) + 30(K + Kg)

3.23
Lok, Lyk, L.k. (3.23)

or T 2 T 27w |’

® sinc {

where A = L, - L, is the area of the aperture bounding the hologram. From this it is
clear that the multiplicative rect function on the scattering potential in (3.22) leads
to a convolution of all frequency space components by a sinc function. The effect of
this convolution is a blurring of the grating vector tip into a continuum of vectors
surrounding the ideal position |2, 31].

After further rigorous analysis of HOEs using for instance RCWT (see Sect. B.2.),
it can be shown that for a loss-less transmission VPH the diffraction efficiency can be

defined as follows
1 = sinc? <\/X? + X%) : (3.24)

whereby the parameters

mni L,
= 2
X1 )\COS(QB)7 (3 5)
and I
Xo = A@”AZ (3.26)

are related to the angular deviation Af from the Bragg angle g and the thickness
of the hologram. Diffraction efficiency of this VPH is thus maximum at the Bragg
incidence and decays as a sinc® function as a result of the angular Bragg mismatch
[52, 91] as it is shown in Fig. 3.3 (a). The angular Bragg selectivity of a volume
hologram can be characterized in terms of the full width at half maximum (FWHM)
of this sinc envelope. In Fig. 3.3 (b) angular Bragg selectivity, as a function of the
holograms thickness, is depicted for different holograms. Here, the range of Bragg
mismatch AG(FWHM) is shown for holograms with different grating periods A. Further
practical implications of this blurring effect and their impact on the Bragg selectivity
of CGVHs will be discussed in the following sections.

3.4. Computer Generated Volume Holograms
(CGVH)

Computer generated volume holograms are volumetric holographic non-periodic opti-
cal elements whose complex transfer functions can be controlled and optimized in the
design process |47, 56]. In analogy to their 2D counterparts (cf. Sect. 2.3.2.), CGVHs
are generated numerically by means of iterative optimization algorithms. Mathemat-
ically, CGVHs are modeled as a randomly scattering inhomogeneous medium, that
is characterized by a refractive index distribution. In the following, the problem of
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Figure 3.3.: (a) Plots of the angular bandwidth envelope for volume phase holograms
(VPH) with a thickness of L, = 80 pm, 100 gm, 120 pm, in terms of the
diffraction efficiency 1 and the deviation from the Bragg angle Af. The
dependency of the blurring of the spectrum on the size of the VPH can
clearly be seen in this plots - see Eq. (3.24). (b) Illustration of angular
Bragg selectivity in terms of the FWHM as a function of the holograms
thickness. Here, the range of Bragg selectivity AG(FWHM) is depicted for
holograms with different grating periods A.

computing the scattering potential of such a hologram within the validity of the first
order Born approximation is presented. In chapter 5 an extension of this approach in
terms of a model based on higher order approximation of Eq. (3.11) will be presented.

3.4.1. Definition of the Inverse Problem: Modeling CGVHs
within the validity of the Born Approximation

The problem of designing a CGVH is an inverse problem and can be stated as follows:
the set of wave field distributions that is to be generated in a certain predefined domain
is the known effect for which the scattering potential inside the CGVH is the sought
cause. In the sense of Hadamard, there are three important conditions that must
be fulfilled for this kind of a problem to be well-posed |92]. These are the existence,
uniqueness and the continuous dependence of the solution on the target far-field distri-
butions. However, for most practical applications fulfillment of the first two conditions
cannot be guaranteed. This is mainly due to the fact that the problem is formulated
ideally for an infinitely large CGVH which is represented in terms of a continuous
scattering potential. For computational purpose the scattering potential S(7’,w) is
then discretized, whereby a discretization error appears. Furthermore, only a set of
far field projections are specified for limited values g, and q,. In general, for a fixed
value of k, a complete determination of S(r/,w) is only possible if Uy is known for
various values g5 and q,. Thus, this problem is in essence an ill-posed inverse problem
involving the mapping of the 3D field distribution scattered in the volume hologram
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onto one or a set of transverse 2D planes [58]. The resolution of this inverse problem
requires very good knowledge of the underlying forward problem, i.e. an explicit de-
scription of how light is scattered inside the volume of the hologram is needed. In the
following, a model that allows for the numerical computation of the CGVH is thus
derived from the scalar theory of scattering, which was presented in Sect. 3.2.

To derive this model, we begin by considering the general setup that is depicted in
Fig. 3.4. Hereby, a plane wave field (wave vector k,) which is incident on the CGVH
is scattered in the bulk of the hologram thereby resulting in a total field U(r,w) -
see Eq. (3.5). One portion of the total field is in turn transformed into a projection
Us(r,w), whereby this transformation can be formulated in terms of forward mapping
operator:

Pr:U(r,w) — Us(r,w) V(K,w)eW. (3.27)
From equations (3.15) and (3.16), we can see that P defines a 3D mapping of the total
field U(r,w) € C3 by the potential S(r,w) € R3 in Eq. (3.4), on to the scattered field
Us(r,w) € C2 This physical implication becomes apparent when one considers the
scattering process within the bulk of the hologram in frequency space as it is defined
by Egs. (3.15) and (3.16). Here, the values of the scattered field are seen to lie on a
portion of the Ewald’s sphere. We therefore conclude that Eq. (3.16) is a restatement
of the Bragg condition for holograms designed using this approach. Thus, Eq. (3.14)
presents the direct problem of designing CGVHs.

T ﬁ" Z(m,n,p) {S} o / "
k,
/

S(r)

Far-field

Figure 3.4.: Schematic of the basic principle behind wave field synthesis approach
using a discrete CGVH which is defined in terms of its scattering potential
S(r). Each voxel ¥, ,, ,, represents the local modulation of the refractive
index. In the CGVH a single or several angular projections of predefined
far-field distributions W; are encoded. A given plane reference wave that
fulfills the Bragg condition will encode the corresponding projection.

Unfortunately, the existence of the corresponding inverse problem cannot be guaran-
teed as previously discussed. However, given a set of constraints, numerical optimiza-
tion based methods can be applied to compute an optimal solution. In the current
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design approach [56, 57|, using Eqs. (3.14) and (3.16) optimization theory is applied
to compute an optimal solution iteratively. Thereby, assuming that for every target
far-field projection W; there exists an optimal binary refractive index contrast

n = 6,ni(r) (3.28)
such that n = argmin, (L), i.e. it minimizes the objective function
L(i;) = [|U; = U(R)]1*, (3.29)

where 71 is the approximated refractive index contrast at the j—th iteration and U,
is the target field. It is however crucial that the refractive index change must be
constrained to values on the order of §, ~ 1073, i.e. that lie within the validity of the
Born approximation as it will be shown in Sect. 3.5.

3.4.2. lterative Design Algorithm Based on The Born
Approximation

The algorithm described in this section is thus based on Eq. (3.14) and involves
optimizing a multivariable system as defined by the functional in Eq. (3.29). It is
a bi-directional algorithm which is similar to the iterative Fourier transform based
Gerchberg-Saxton algorithm [79]. The design algorithm can be summarized for the
case of angular multiplexing in five steps as follows [56, 57]:

1. In the initial step, a discrete scattering potential S;(r,w) for a desired CGVH
composed of M x N x P number of voxels is initialized by generating a random
refractive index contrast n(r) as an initial guess.

2. To attain the resulting scattered fields, the forward mapping P; is computed for
each far-field projection. Thereby a 3D forward FFT of the scattering potential is
computed and the far-field projections are extracted from the corresponding por-
tion of the Ewald’s sphere for each illumination direction. From Egs. (3.14) and
(3.16) the scattered field for a given incident field can be expressed in frequency

space as
eikr _

U;(K)=—5(K). (3.30)

3. Each of these single fields is then modified to better approximate the target
intensity I;(K,w) across a given plane in the far-field of the CGVH by imposing
the following amplitude constraint:

- VK . eligi(Kw)l (K %%
Uj(K,w)z{ck (K,w) e (K, w) € (3.31)

U;(K,w) otherwise.

Here, ¢;(K,w) = arg{U,;(K)} is the unmodified phase. We hereby assume that
I;(K,w) is only given within the limited signal window W (cf. Fig. 3.4). Further-
more, a linear interpolation is employed to map I;( K, w), which is defined across
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a planar detector surface, on to the circular manifold of the Ewald’s sphere. The
weighting factor ¢ is introduced here to ensure the convergence of the algorithm
and was determined here heuristically by means of a parameter scan.

4. The modified and unmodified sections of the Ewald’s sphere are recombined to
obtain S;(K,w) and an inverse 3D FFT is used to compute a new scattering

potential, i.e. S’j(r,w) = Fap {Sj(K, w)}

5. To obtain an approximated binary refractive index contrast n;, a fabrication
constraint is imposed on this new scattering potential as follows

1 8 1

k2 [n2(r,w) —nZ] VSi(r,w) > &k? [n3(r,w) — n?]

o

Sj+1(’f’,&)) = { (332)

0 otherwise.

Finally, S;41(7, w) is set as the new scattering potential and steps 2.-5. are re-
peated until the algorithm converges to an optimum solution n. To monitor the
convergence of the algorithm, both diffraction efficiency and the average value
of 9,, are computed at each iteration.

3.5. Limitations in the Current State of the Art

The principle limitation of planar 2D holographic optical elements, in terms of their
capability of wave field synthesis, is the fact that they can only modulate an impinging
wave across a single transverse plane. This has led to an ever increasing demand of
developing 3D optical elements. For instance, stratified DOEs in a cascaded setup have
been proposed [49] and it has been shown that by adding more degrees of freedom
they expand the system’s solution space thus facilitating both angular and frequency
multiplexing [50, 51].

Another example is presented by volume phase holograms [52]. As it was discussed
in Sect. 3.3, these are optically recorded periodic diffractive optical elements that
depict both angular and wavelength selectivity in cases where the Bragg condition is
fulfilled, as opposed to their 2D counterparts. Although these two types of volume
elements have found numerous applications, their ability to generate arbitrary light
distributions within a certain 3D domain is quite limited. This is mainly due to their
comparatively low diffraction efficiency, since the efficiency of the device decreases
as the square root of the number of holograms recorded in a multiplexed hologram
and the thickness of the hologram. This can also be attributed to the fact that for
thick holograms, since individual voxels cannot be addressed, the achievable degrees
of freedom are limited by the optical recording process [53].

A better solution is presented by the CGVHs that were introduced in Sect. 3.4. In the
current design approach several shortcomings in the applied forward model (cf. Sect.
3.2.3.) and its implementation have however been recognized. These shortcomings have
the effect of imposing very stringent restrictions on the achievable optical functionality
of CGVHs and can be listed as follows:
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(i)

(i)

(i)

40

In the current state of the art the assumption of weak scattering is necessary
in order to derive a linear model for the numerical modeling of the scattering
process. Hereby the Born approximation is applied [56, 57|. This approximation
is derived by considering only linear perturbation of the amplitude of the scat-
tered wave field. In other words, it is obtained by requiring that the first order
correction of the scattered field be small as compared to the incident field [93]:

Up(rfs,w)| < [Us(r6,,w).| (3.33)
Given Eq. (3.14), this results in

exp(ik,r)

/ S(r! w)e He(0:s=0o) 1 B3yt (3.34)
r 1%

Since the scattered field can be expected to increase with increasing distance
of propagation, it is clear that the Born approximation can easily break down
for large holograms. For holograms with dimensions in the sub-millimeter range,
this assumption leads to a constraint that limits the index modulation allowed to
very small values within a range on the order of (4, &~ 107*---1073), relative to
the refractive index of the background material [56, 57]. This in turn limits the
optical functionality of the CGVH in terms of angular and frequency selectivity.
An approximation that gives a more accurate estimate for larger CGVH sizes
without such stringent restrictions has not yet been considered in this context
and will be considered in the course of this work.

The iterative Fourier transform algorithm that has been applied so far tends to
stagnate after the first few iterations [56|. This is attributed to the fact that a
set of basic constraints in both the frequency and space domains are not fully
fulfilled thereby leading to convergence to a local minimum. For instance, in
the definition of the coding and quantization operators, which are crucial for
the discrete representation and for the fabrication of the CGVH in a dielectric
material, various linear interpolation schemes have to be employed - see step 3 in
Sect. 3.4.2. This misrepresentation of values can be shown to lead to deviations
from the desired optimal distribution. This in turn implies that diffraction still
occurs even for cases where the Bragg condition is not fulfilled. For multiplexed
CGVHs, where the fulfillment of the Bragg condition is indispensable, this will
result in a poor signal-to-noise ratio (SNR) and to a reduced diffraction efficiency.

In the current state of the art, only fabrication of CGVHs by means of a linear
one photon absorption process has been demonstrated. In such an approach,
the photomodification of the substrate, which leads to a localized change in the
refractive index can predominantly be attributed to light-induced damage [94].
Thereby, the substrate will undergo a dielectric breakdown upon irradiation by
femtosecond laser pulses. This will in turn create a void filled by the gaseous
products of the breakdown process. In such a case, the contrast of refractive index
is created between the damaged and non-damaged substrate material [95]. An



3.5. Limitations in the Current State of the Art

alternative approach would be to utilize a multiphoton absorption process (MPA)
to fabricate CGVHs in a nonlinear optical material such as a photosensitive glass-
ceramics [57|. Thereby, a multiphoton absorption process can be used to facilitate
a more accurate fabrication of volume holograms, which have smooth internal
contours and with even much smaller voxel sizes. This is mainly due to the fact
that the absorption profile is narrower than the beam profile. Furthermore, such
a nonlinear material allows for the manipulation of the refractive index in a
subsequent postbake process [96] and this can be utilized to accurately tune the
refractive index change. So far, a laser lithography based fabrication of CGVHs
in nonlinear optical materials has not been investigated.
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4. Reformulation of the Inverse
Scattering Problem and the
Hypothesis of this Work

In this thesis a model that allows for a more accurate prediction of the field scattered
within the volume of a CGVH is derived. In this model both physical and fabrication
constraints that are derived from the wave equation as well as from the consideration
of the underlying laser material interaction process are integrated. To accomplish this,
the inverse scattering problem has to be reformulated.

4.1. Motivation and Problem Definition

Let us start by considering higher order approximations of the inhomogeneous wave
equation. We can do this in the form of the Rytov approximation, which consists mainly
in expressing the total field in Eq. (3.5) in terms of its complex phase, ®(r,w), form
as follows [74, 97|

U(r,v) = Uy(r,w)exp [(r,w)] . (4.1)

Now let us consider the power series expansion of the exponential term in Eq. (4.1) so
that the total field can be written as
Br.w) | Br.w)’

U(r,w) =U,(r,w) |1+ T o i

- (4.2)

In the literature it is customary to consider the first two terms of the series in Eq.
(4.2) in order to derive a scattering model based on the Rytov approximation [98-100].
For instance, as it will be shown in Sect. 5.1.2.; by considering only the linear term
and expressing the complex phase in terms of the Born approximation the total field
assumes the additive form of Eq. (3.14)

U(r,w) = Uy(r,w) + Uy(r,w)P(r,w)

=U,(r,w)+ Up(r,w). (4:3)

Therefore, we can conclude that both Born and first order Rytov approximations
should produce the same results for a given hologram that fulfills the constraints
in Eq. (3.34). However, since the Rytov approximation results from a perturbation
expansion of the complex phase of the field rather than of the amplitude, it should
have a larger validity in potential scattering than the Born approximation [84]. This
fact leads to the following proposition.
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4.2. Hypothesis

The current approach for numerically computing the scattering potential of CGVHs
considers only the linear perturbation of the amplitude of a scattered wave field, within
the validity of the first Born approximation. This leads to a stringent limitation on
the hologram in terms of the allowed refractive index modulation. The range of the
allowed values are on the order of §, ~ 10~*.--1072. This in turn implies that the
design of highly efficient multiplexed CGVHs using this approach is limited and that
the size of the holograms is constrained to dimensions on the order of L < 200um.

Through a novel approach that is based on the first Rytov approximation, CGVHs
with a refractive index modulation within a range of 6, ~ 107*---1072 can be com-
puted. In this case the size of the feasible holograms depends on the number of terms
of the perturbation series that are considered.

In this thesis we posit that such an approach can be applied to design CGVHs,
which we define in terms of refractive index modulation of a nonlinear optical dielec-
tric medium. We propose that this approach will facilitate realization of holograms
with a higher space-bandwidth product and thus with improved optical functionality.
This improvement will be assessed by characterizing their performance in terms of
diffraction efficiency, Bragg selectivity and the SNR of the synthesized far-field pro-
jections.
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5. Advanced Dynamic Wave Field
Synthesis Using Electronically
Addressed Computer Generated
Volume Holograms

In this chapter we will outline an approach which is based on the solution of the
inverse scattering problem introduced in chapter 4. The main aim is to come up with
a novel approach for optimizing the performance and optical functionality of computer
generated volume holograms. Moreover, we will analyze the feasibility of fabricating
such holograms in a nonlinear optical material as well as derive the corresponding
physical constraints. The motivation behind this goal is to design and optimize a
system that facilitates dynamic synthesis of predefined wave fields. Specifically, we
focus on a novel hybrid system comprising in a spatial light modulator (SLM) as a
dynamic element and a CGVH as a multiplexed static element. Figure 5.1 shows the
schematic of the setup that is considered in our design. This configuration makes use
of an SLM which allows for the adaptive manipulation of the impinging wave. The
SLM is illuminated with a plane reference wave (with wave vector k,); the modulated
wave fields (described by the wave vector k;) then propagate through a CGVH thereby
decoding individual projections. With this, wave fields with a higher SBWP can for
instance be generated through coherent superposition of these projections.

5.1. Advanced Scattering Model

5.1.1. Rytov Approximation

In order to derive an advanced model on the basis of the first Rytov approximation, we
start by studying the scattering of the scalar wave of the form of Eq. (4.1). In analogy
to Eq. (3.5), we can express the total complex phase as the sum of the incident phase
function ®,(r,w) and the scattered complex phase ®4(r,w)

O(r,w) = P,(r,w) + Py(r,w). (5.1)

Furthermore, we consider the total field to be represented as a complex phase as shown
in Eq. (5.1). This scalar wave satisfies the wave equation so that after inserting Eqs.
(4.1) (with U,(r,w) = 1) and (5.1) into the wave equation in Eq. (3.3) we obtain the
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Figure 5.1.: Schematic of the basic principle behind the dynamic wave field synthesis
approach, which utilizes the Bragg selectivity property of volume holo-
grams. In the CGVH several angular projections of predefined far-field
distributions are encoded. The spatial light modulator (SLM) is used to
modulate an impinging plane wave (k,) such that the corresponding refer-
ence waves (k;) can be generated across a remote plane {x} in the entrance
aperture of the CGVH. This allows for a dynamic decoding of individual
projections or their superposition.

following equation for ®(r,w) - cf. Sect. A.3 for the derivation
V20(r,w) + [VO(r,w)]* = —47S(r, w). (5.2)

Hereby, S(r,w) is the scattering potential in Eq. (3.4). By expressing the total complex
phase ® as a sum of the incident phase function ®, and scattered phase ®, as given
by Eq. (5.1) and considering that S(r,w) is given by Eq. (3.4) into Eq. (5.2) we arrive
at the following nonlinear equation for ®4(r,w)

V20, (r,w)+ V20, (1, w)+ (P, (1, w)) >+ (Do (7, w) ) +20, (7, w) - P, (r,w) = —47S(r,w).

(5.3)
An an approximate solution of Eq. (5.3) can be obtained by means of the Rytov
expansion of ®(r,w) as follows

d(r,w) = O,(r,w) + 7P, (r,w) + V2 Oy (r,w) + -, (5.4)

where 7 is a perturbation parameter. It is apparent that ®; is linear in S(r,w), @5 is
quadratic in S(7r,w) and so on [74]. In this thesis we consider the first order term with
the aim of assessing the feasibility of designing multiplexed CGVHs. In this case, the
total field can be written as

U(r,w) = exp [Py(r,w) + &1(r,w)]. (5.5)

In general however, the Rytov expansion allows for the derivation of a recurrence
relation with which any successive terms can be computed once the preceding ones
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are known. This recurrence relation for the Rytov series is derived in details in Sect
AA4.

5.1.2. First Order Rytov Approximation

In this section we will derive equations which facilitate the design of a CGVH within
the validity of the first order Rytov approximation. We begin by noting that within
the accuracy of first order perturbation theory we can deduce from Eq. (5.1) that |74]

O(r,w) = Oy(r,w) + O1(r,w), (5.6)

where ®,(r,w) denotes the zero order term of the series expansion. Here, the complex
phase of the scattered field ®;(7,w) can be expressed in terms of the Born approxi-
mation as follows as

Ug(r,w)
Uy(r,w)’
Please note, as it was introduced in Sect. 4.1., that by considering only the linear term
in Eq. (4.3) and then inserting Eq. (5.7) one arrives at an expression that is similar
to the Born approximation. Furthermore, given Eqgs. (5.6) and (5.7) we can derive a
integral form of the differential equation in Eq. (A.16). As a result, in a similar manner
to the case of the Born approximation (cf. Eq. (3.14)), the total field within validity
of the Rytov approximation is then given by [17]:

Oy (r,w) = (5.7)

D(rgs,w) = O,(r,w) + Pr(r,w)
1 eikr
Uy(r,w) r

>~ Q,(r,w) + / S(r!, w)e Fas=a0) " g3 (5.8)
v

where ®g(7,w) is the scattered complex phase withing the first Rytov approxima-
tion. In deriving Eq. (5.8), given Egs. (A.16) and (5.7), we however have to make an
assumption that

(VO (r,w))* + S(r,w) = S(r,w). (5.9)

This is only fulfilled if
(Vo (r,w))* < S(r,w). (5.10)

This shows that within the validity of the first order Rytov approximation the scat-
tering potential is linearly related to the refractive index:

S(r,w) ~ 2k2n3(r,w). (5.11)
This is only fulfilled when the following conditions are satisfied [101]:

5, < 1 (5.12)
VP, (r,w)| < k. (5.13)

In Sect. 5.2.2. the exact physical constraints on the refractive index change in a CGVH
that corresponds to the conditions in Egs. (5.12) and (5.13) will be assessed.

47



5. Advanced Dynamic Wave Field Synthesis Using Electronically Addressed
Computer Generated Volume Holograms

5.2. A Novel Design Algorithm based on the First
Order Rytov Approximation

In order to design CGVHs as voxelated volume optical elements using a projection
based optimization algorithm similar to the one discussed in Sect. 3.4.2.; a clear mathe-
matical formulation of the physical constraints and of the quantization of the refractive
index distribution is necessary. In Sect. 5.2.3 the numerical implementation of a volu-
metric design approach of CGVHs within the validity of the first Rytov approximation,
that is based on the formulation that is discussed in Sect. 5.2.2 is presented. In Sect.
5.2.4 the validity of the physical constraints that are presumed in deriving the model
presented here is assessed by comparing the results acquired to those predicted by the
rigorous coupled wave theory for a given set of elementary CGVHs.

Hereby, a plane wave field (wave vector k,) which is incident on the CGVH is
scattered in the bulk of the hologram thereby resulting in a total complex phase
O(r,w) - see Eq. (5.1). One portion of the total complex phase is in turn transformed
into a projection ®4(r,w), whereby this transformation can be formulated in terms of
forward mapping operator:

Pr:@(r,w) — d4(r,w) YV(K,w) e W. (5.14)

From equations (3.15) and (3.16), we can see that Py defines a 3D mapping of the
total field ®(r,w) € C? by the potential S(r,w) € R? in Eq. (3.4), on to the scattered
phase ®,(r,w) € C2. This physical implication becomes apparent when one considers
the scattering process within the bulk of the hologram in frequency space as it is
defined by Egs. (3.15) and (3.16). Here, the values of the scattered field are seen to
lie on a portion of the Ewald’s sphere. We therefore conclude that Eq. (3.16) is a
restatement of the Bragg condition for holograms designed using this approach. Thus,
Eq. (5.14) presents the forward problem of designing CGVHs within the validity of the
Rytov approximation.

5.2.1. Mathematical Background of the Projection Algorithm
Adopted in this Work

In order to obtain a far-field distribution from the CGVH, we can infer from Eq. (5.8)
that the incident wave field U, must be modulated such that the scattered complex
phase can be expressed in general as follows

Qp(r,w) =Pr{S(r,w)U(r,w)}. (5.15)

Equation (5.15) presents the general form of the forward problem in Eq. (5.14) whose
inverse problem we intend to solve. Thereby, the composite operator can be comprised
of N set of projections, i.e. Py = Py ---Pi. It can be described as the problem of
finding the cause S(r,w) for a known effect (Pr(r,w)), under certain given physical
constraints. From this we can infer that the problem of designing a CGVH evidently
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involves finding the actual composition of the operator P. One common trait of such
inverse problems is that although an analytical solution usually does not exist, the
properties of this solution are known. This a priori knowledge can thus be utilized to
solve the problem by means of optimization theory. In the following we will outline how
projection based optimization methods can be used to solve such a problem. These
are numerical methods which can be used to compute an exact or optimal solution,
which is an element of a feasible region defined by the intersection of a given number
of sets.

To describe such an approach for the problem at hand, let us start by noting that the
physical constraints imposed by these properties can be transformed into constraints
on the scattering potential of the CGVH, thereby arriving at the sought solution which
we will denote here by . From a mathematical point of view, 1) can then be attained
by finding the projection of this field onto a set of N constraints C' = Cy---Cy.
These constraints are thus seen to limit the size of the feasible solution subset C' in a
given space H. A projection P, {1} of ¢ € H onto C, is defined through the distance
measure (-, -):

P, {6} = argmin E(1, ). (5.16)
Yeln
Commonly E(-,-) is chosen to be the Euclidean norm such that

Ewa%) = H@D - on . (517)

The feasible region C' is defined as the intersection of all N constraint sets C),, C
H : C NY_, C,. The sought solution is consequently any function 1* that lies in this
intersection [102, 103]:

N
v e () Ca (5.18)

The approach adopted by projection based methods is one of finding this intersection
by iteratively projecting i) onto a given set. A general formulation of one iteration is
hereby given by

biv1 =P {5}, (5.19)

where j is the number of the iteration. To iterate from an initial point v, € H to a
point in the feasible set C', the set of N projections defined above can be applied in a
serial manner so that the iteration in Eq. (5.19) takes the following general form

Vi1 =Pn{-Pi{e;}}. (5.20)

5.2.2. Description of the Constraints imposed on the Discrete
Scattering Potential of Multiplexed Volume Holograms

In analogy to CGHs, computer generated volume holograms can generally be described
as holographic elements having a discreet scattering potential S(#,w) which determines
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their optical functionality for a given wavelength. Likewise, this discreet scattering
potential represents a sampled version of an unknown continuous function S(r,w):

M N P
S(F,w) = S(r,w) Z Z Z 0 (mAx; — x;,nAx; — xj, pAxy, — x)) . (5.21)

i=0 j=0 k=0

Here, x;, x; and z;, are the components of r whereas Ax;, Az; and Azj are the
sampling distances in the ¢, 7 and k directions respectively.

The initial step in designing the CGVHs is to define a discreet scattering potential
S(7,w) in terms of a random refractive index distribution n(#,w). This refractive index
distribution is constrained to fit the fundamental physical constraints resulting from
the conditions in Egs. (5.12) and (5.13) as well as fabrication constraints. An overview
of the constraints considered in the proposed design are summarized in Table 5.1.
Since we applied an optical nonlinear absorption process to fabricate our holograms,
one major fabrication constraint was the limitation of the sampling distances Az;, Ax;
and Axy by the achievable point spread function (PSF) for a given objective lens (cf.
Sect. 6.1.3). This means that the actual scattering potential S(#,w) which describes
the modulation of the refractive index for each voxel depends on the dimensions and
shape of the focal spot of the focused fs-laser beam. Therefore, S(7,w) has a compact
support only in the volume X, ,, , of a single voxel and can be written in terms of the
ideal scattering potential S('F,w) and the PSF(r) as follows

S(7,w) = S(7,w) @ PSF(r), (5.22)

where ® denotes a 3D convolution.

In order to fabricate the CGVHs in the bulk of photosensitive glass-ceramics, a bi-
nary refractive distribution must be computed. This leads to two additional fabrication
constraints, namely binary coding and positive refractive index change values. This
means we assume that the imaginary part of n is zero or negligibly small, i.e. k &~ 0
(see Eq. (2.32)). Therefore the choice of the coding approach, fabrication method (in
this case a nonlinear absorption based laser lithography approach) as well as the type
of substrate material used places constraints of the feasible optimal refractive index n
distribution - see Eq. (3.28). This can be expressed in the form of

n e H{n(r,w)} C H, (5.23)

where H denotes the set of refractive index distribution that is consistent with the
constraints.

The angular multiplexing functionality of the CGVHs is introduced in the design
process in form of a parallel projection based algorithm, whereby the scattered fields
are extracted from the Ewald’s sphere simultaneously for each illumination condition.
In this work we follow the approach that was introduced in Sect. 3.4. As it is shown in
Fig. 5.2 (a), since the Ewald’s sphere is defined in size and orientation by the incident
wave vector kg and the aperture of the imaging system is considered, a distinct sphere
exists for each illumination condition. For each illumination condition that corresponds
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Table 5.1.: A summary of the different constraints imposed on S(K,w) that char-
acterize the set H {-}, i.e. the set of refractive index distribution n(7,w)
that is consistent with the design and fabrication of CGVHs in a nonlinear
material - see Eq. (5.23).

Name Constraint Description

Cy ni(r) € {0,1} Binary index coding - Eq. (5.27)

Cy n(r) >n, Positive refractive index change

Cs 0<4, <107 Weak scattering - Eqgs. (5.12) and (5.13)
Cy Ax; i < PSFuypa Voxel limit MPA (Sect. 6.1.3.)

Cs nm ~ 0 Non-absorbing refractive index change
Cs A, =1 Unit amplitude reference wave

Cy Ay =1, Known target intensity

Cy I(fs, fy) o< I(AQ) Solid angle constraint

to a given plane reference wave kg, which is incident on the hologram at an angle 6,
there exists a sphere which lies within the Fwald’s limiting sphere of radius R |74, 81].
For the transmission CGVHs considered in this work, we are interested in the envelope
of the spheres whose centers O; are offset in the frequency domain of the scattering
potential by - kg from the center (cf. Fig. 5.2 (a)). Please note, each of the coordinates
of the surface of each of these spheres can be computed from the other by means of
a simple affine transformation. This fact can be used to increase the computational
efficiency of the algorithm.

Unlike in the current state of the art, our approach includes an extra intensity
mapping step between the values defined across a remote plane in the far-field of the
CGVH and the circular surface of the Ewald’s sphere. Instead of applying a linear
interpolation scheme, we start by noting that since the different far-field projections
are to be superposed across a planar surface, e.g. of a CCD sensor, each pixel on
this plane then integrates the light scattered within a solid angle AQ(ks). A general
measure of this scattered intensity 7(€2) is the differential cross section. Unfortunately,
AQ(ks) decreases with the increase in spatial frequency as it is shown in Fig. 5.2
(b). This in turn means that projections to the middle part of the Ewald’s sphere
tend to be larger than those towards the polar regions, which leads to artifacts in the
synthesized fields. To remedy this problem a bi-cubic interpolation, whereby AQ(ks)
(see Fig. 5.2 (¢)) is considered during this computation, was implemented. This was
done using the following spherical polar coordinates

fo= 2—7Ts.irl(19)(:os(<zﬁ)

A

fy= 2Tﬁsin(ﬁ)sin(gb) (5.24)
2T

fo = 2 eos) - 1),

where 9 and ¢ are the spherical polar angles. A block diagram of the design algorithm
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Figure 5.2.: (a) Cross section of the frequency space geometric construct, illustrating
how the scattered fields can be extracted from the Fourier transformed
scattering potential S(K). For a transmission CGVH there exists a dis-
tinct sphere, whose center O; is offset by the vector - kg, for each ref-
erence wave incident on the CGVH at an angle 6. All these spheres lie
within an envelope of the limiting Ewald’s sphere which has a radius R;.
(b) Representation of the scattering problem in terms of the differential
cross section, whereby the field scattered within a given solid angle A is
mapped onto a certain area dA on the Ewald’s sphere. (¢) These values
are projected onto a planar detector, whereby each pixel on this plane
integrates the light scattered within a solid angle AQ.
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developed in this work is depicted in Fig. 5.3 and a detailed description of the single
steps is presented in Sect. 5.2.3.

5.2.3. Numerical Implementation

The design algorithm which is based on the first order Rytov approximation can be
summarized in five steps as follows:

1. In the initial step, a discrete scattering potential S;(7,w) for a desired CGVH
composed of M x N x P number of voxels is initialized by generating a random
refractive index contrast n(7, w) as an initial guess. Here, we introduce constraint
Cy (see Table 5.1.) for the designed refractive index distribution by considering
the fact that the achievable voxel sizes are determined by the absorption profile
of the MPA for a given set of fabrication parameters. Furthermore, the spherical
coordinates of the indivindual portions of the Ewald’s sphere are pre-calculated
using the relations in Eq. (5.24).

2. To attain the resulting scattered fields, a forward projection operator is applied
on the scattering potential. Hereby, a 3D forward FF'T of the scattering Potential
is computed and the far-field projections are extracted from the corresponding
portion of the Ewald’s sphere for each illumination direction. From Egs. (3.14),
(3.16) and (5.8) the scattered field for a given incident field ky can be expressed
in frequency space as

ikr

U;(K,w) =exp . S(K,w)/U,(T,w)| . (5.25)

3. Each of these single far-field projections is then evaluated, and the amplitude con-
straint Cy (see Table 5.1.) is applied, thereby resetting the amplitude throughout
the field in order to better approximate the target intensity [;(K,w). However,
the phase information is preserved:

N /T (K celigi (K] (K %74
UJ’(K,w)_{Ck (Ksw) e (K,w) € (5.26)

U;(K,w) otherwise,

where ¢;(K,w) = arg{U;(K)} is the unmodified phase. We hereby assume that
I;(K,w) is only given within the limited signal window W. A bicubic interpo-
lation is employed to map I;(K,w), which is defined across a planar detector
surface, onto the circular manifold of the Ewald’s sphere. This is done by com-
puting the coordinates on the Ewald’s sphere that correspond to a single pixel
on the detector. The weighting factor ¢, is introduced here to ensure the con-
vergence of the algorithm and was determined here heuristically by means of a
parameter scan.
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4. The modified and unmodified sections of the Ewald’s spheres are recombined to
obtain 5;(K,w) and an inverse projection operator is used to compute a new

scattering potential, i.e. S;(7,w) = Fi.} {S’j(K,w)}.

5. To obtain an approximated binary refractive index contrast 7;, a fabrication
constraint is imposed on this new scattering potential as follows

k2 [n3(7,w) — n?] VS;(F,w) > Lk? [n3(7,w) — n?]

) (5.27)
0 otherwise.

Sj (T, w) = {

The overall refractive index contrast is finally computed, S;41(7,w) is set as the
new scattering potential and steps (2-5) are repeated until the algorithm con-
verges to an optimum solution n. To monitor the convergence of the algorithm,
both the SNR of the signal within the window W (see Fig. 5.4) and the average
value of §,, (see Fig. 5.5) were computed at each iteration.

Start R S(rw) | 3pFFT S(K)
(Init.guess) |~~~ 7777 ” " Eq 3.15)
v
New scattering Extract projections ~
potential Egs. (3.14-3.16) & (5.8) | U(K)
I I
Apply design Apply physical
constraints constraints
Table 5.1 Table 5.1
T SGw S(K.o)
rw - , @,
3DFFT | e End

(opt. sol.)

Figure 5.3.: A block diagram of the proposed iterative Fourier transform based bi-
directional algorithm for the design of CGVHs within the validity of the
first Rytov approximation.

5.2.4. Validation of the Model

In order to verify the hypothesis of this work, a set of CGVHs were designed using
both the Born and Rytov approximation based approaches. The designed holograms
were characterized in terms of signal-to-noise ratio as well as the computed refractive
index distribution. In this section results of these numerical experiments are presented.

Performance of the Proposed Approach

For an initial analysis on the performance of the proposed approach two different
CGVHs having the following parameters are discussed: a thickness of L, = 192 ym, a
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lateral size of L, , = 128 ym and the wavelength of illumination A = 532 nm. In each
hologram three projections are encoded, whereby each projection has a Bragg angle
6. The Bragg angle of each of these holograms is offset at an angle of 7° from the
other. The target intensity [, is presented by 64 x 64 samples. The holograms were
zero-padded during the design process, thus resulting in CGVHs with 128 x 128 x 128
voxels. Additionally, a third hologram with a slightly larger thickness, L, = 288 um,
and the same parameters as the first two is used here to analyze the performance of the
proposed approach as the size of the CGVH increases. For all holograms the iterative
algorithm was terminated after 25 iterations and the SNR of the signal was computed
at each iteration. SNR (measured in dB) is computed here as a practical measure of
performance for a given projection ®; as follows:

[ A:( K, w) H@(K,w)eW
|A(K,w) — Aj(K,WW\Qy(K,w

SNR = 10logy, : (5.28)

YeW

where A; = /I, and A; = ’Uj’ are the amplitudes of the target and designed far-

field projections for a given illumination condition respectively. The results in Fig.
5.4 show the performance of these CGVHs. For the case when the size of the CGVH
is small (see Eq. (4.3)), both the model based on the first Born approximation and
our first Rytov approximation based approach are seen to change the SNR from 0 to
5.9 dB after 25 iterations. These results are thus seen to agree with our theoretical

6.5

————— Born Approx.: L, = 192ym

—— Rytov Approx.: L,= 192 um
35t ——— Rytov Approx.: L, =288 um

0 5 10 15 20 25
Iterations

Figure 5.4.: Comparison of the models in terms of the SNR of a single projection. It is
clear as stated in Sect. 4.1. that for small values of §,, and L., both models
have the same results - see Eq. (4.3). But as the size of the hologram
increases, the proposed algorithm computes a result with an even higher
SNR as expected, whereas no functional hologram could be computed for
this thickness using the first Born approximation.

expectation. However, as the thickness of the hologram increases, our proposed method
is seen to produce better SNR values (in this case 6.4 dB) in analogy to the previously
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discussed volume phase holograms. On the other hand, no functional hologram, i.e.
one that fulfills the constraints of the proposed hybrid system, could be computed for
the thickness of L, = 288 pum using the first Born approximation based approach.

Investigation on the Validity of Various Constraints

In addition to the computation of the performance measure in terms of SNR, the
average refractive index change was computed at each iteration for the holograms dis-
cussed in the previous section. These results are used here to evaluate the implications
of the refractive index constraint - cf. Eq. (5.12).

In Fig. 5.5 results of the convergence behavior of the design algorithm in terms of the
average refractive index change, for the two similar CGVHs discussed in the previous
subsection, are shown. It can been seen clearly that the design algorithm based on
the Rytov model converges towards a 6, value on the order of 1072, whereas the Born
model converges towards a §,, value on the order of 1073, We can thus conclude that

x 10
2.5 —
20 } e
= e
& 15 /! == Rytov Approx. (proposed)
g . R — Born Approx. (conventional)
< /
Q I
% 1.0 p
Q I
"g i
w 05
[3)
e~
O L L L L
1 50 100 150 200 250

Iteration

Figure 5.5.: Comparison of the convergence behavior of the design algorithm for both
the model based on the Rytov approximation (broken line) and the con-
ventional method which is based on the Born approximation. It is apparent
from these results that in the former, the algorithm eventually converges to
an average refractive index change d,, value on the order of 1072, whereas
the latter converges to a d, value on the order of 1072 - after Kamau et.
al. [17].

using the Rytov model functional multiplexed CGVHs with a refractive index contrast
within the range of 6, = 10™*--- 1072 can be designed. This shows the flexibility of this
design approach in terms of the feasible range in achievable 4,, values and hologram
thickness. As we have shown in our previous work [47], this increase in thickness leads
to an increased SBWP. Additionally, the proposed algorithm does not stagnate after
a few iterations as in the case of the conventional approach as the size of the CGVH
increases. This can be attributed to the introduction of further constraints (see Table
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5.1) and a more precise modeling of the scattering process within the bulk of the
hologram.

In order to get additional insight on the propagation of different reference waves in
the volume of the multiplexed CGVHs, 3D numerical simulations were used. Thereby,
the Fourier based beam propagation method (FFT-BPM) was used to study a set
of CGVHs. FFT-BPM is a computational technique in optics, which is used to nu-
merically solve the wave equation (see Sect. B.1). It is one of the most widely applied
methods for the analysis and simulation of guided wave propagation in inhomogeneous
media [104]. The main goal of this analysis was to design a CGVH with an analytically
known response using our Rytov approximation based model and then compare this
response with the one attained by means of numerical simulations. For instance, let
us assume that a given projection ¥, is defined as a 2D circularly symmetric Gaussian
function across a plane {s} in the far-field of the CGVH, i.e.:

0]

o (5.29)

U,(s) = Aexp [—w

where A =1/ o+/27 is the amplitude and g, is a known spatial carrier - Sect. 2.3.2. We
can expect that a CGVH that projects such an elementary far-field distribution will
depict some periodicity in the designed refractive index distribution. This becomes
more clear if we consider the limiting case of the distribution in Eq. (5.29) as 0 — 0.
In this case the projection becomes a Dirac distribution 6(s—gq,), which in turn implies
the scattered field is a plane wave. Consequently, the CGVH will adopt the form of a
periodic volume phase hologram - cf. Sect. 3.3.1.

Figure 5.6 (a) shows the binary refractive index distribution for a CGVH that
projects a far-field distribution which is given by Eq. (5.29). In Figs. 5.6 (b), (¢) and
(d) the FFT-BPM results of simulated propagation of a Gaussian beam through this
CGVH are shown. In (), it can be seen clearly that the incident beam is scattered in
the bulk of the hologram and that the resulting complex phases ®,(r,w) and ®4(r,w)
are initially coupled as expected - see Sect. B.2. However, in the far-field of the CGVH
the distribution of the scattered field assumes a Gaussian distribution (Fig. 5.6 (a)).

Here, we additionally analyzed the case where constraint Cj is not fulfilled, i.e.
the case where the imaginary part of the induced refractive index is not zero. We
particularly simulated the case where the refractive index distribution is given by Eq.
(2.32). We thereby assumed that the refractive index modulation introduced in the
fabrication process is in one case purely real and in the other case it has an equal real
and imaginary part. In Figs. 5.6 (¢) and (d) a comparison between these two cases are
shown in terms of the diffraction efficiency, which can be expressed as

_ HAS(S)H@(K,W)GW (5.30)
[Ao()|I” |

where A; = ||U;(K,w)]|| is the magnitude of the scattered field across a plane {s}
and A, = ||U,(K,w)|| that of the illumination field across the entrance plane {x}.
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Hereby, U;(K,w) is the field given in Eq. (5.25). We can see from these results that
the imaginary part leads to absorption losses. However, since both the phase relation
between the scattered and the non-scattered fields are influenced only marginally this
leads to very a little influence on the angular selectivity of the hologram. Similar results
have been observed with other types of holograms [105]. We can thus conclude that
as long as the imaginary part of the induced refractive index is negligibly small, the
optical functionality of CGVHs remains unchanged.

|D (r,m)|
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Figure 5.6.: (a) Axial slice of the optimized binary refractive index CGVH (where n
and n, are given by Eq. (3.6)) that projects an elementary circularly sym-
metrical Gaussian intensity distribution. (b) Results of an investigation on
the transmission of a Gaussian beam through this CGVH using a Fourier
transform based beam propagation simulation method, whereby in the
near-field the complex phases ®,(r,w) and ®,(r,w) are initially coupled.
In (¢) and (d) the normalized amplitudes of the total field U(r,w) in the
far-field of the CGVH are shown for a purely transmittive and a lossy
CGVH respectively.
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5.3. Novel Hybrid System

5.3.1. System Geometry

Figure 5.7 depicts a sketch of an optical setup that was conceived for the dynamic
decoupling of single or a set of far-field projections from one CGVH. Such a setup
allows for a precise, non-mechanical and robust modulation of single reference waves
[106]. Hereby, the objective lenses L; and Lo (focal length f; and f3)) form a 4 f optical
setup within a spatial light modulator is positioned. This setup allows for the dynamic
decoupling of individual projections from the CGVH by inscribing the transfer function
H(v) on the SLM, whereby v are spatial frequencies.

SLMs can modulate the phase of an optical beam with just a few millisecond re-
sponse time and a large angle scan range. In general it is possible to utilize various
degrees of freedom which are provided by a spatial light modulator. These degrees
of freedom could for instance include utilizing various diffraction order terms [107]
or linearly shifted plane waves [106], which can be generated by inscribing predefined
transfer functions on the SLM. The feasibility of wave field modulation using the latter
example for the purpose of dynamically decoupling a set of fields that are encoded in
a single CGVH is discussed in Sect. 5.3.2.

|<—fl—>|<—fl — |— fl—>|<—f] —>|<—f2—>|

Figure 5.7.: Conceptual layout of the novel hybrid system proposed in this work,
whereby an optoelectronic wave field modulation scheme is used to dy-
namically decouple various far-field projections from a volume holographic
element. The objective lenses L; and Ly (focal length f; and f5)) form
a 4f optical setup within a spatial light modulator is positioned. This
setup allows for the dynamic decoupling of individual projections from
the CGVH by inscribing the transfer function H(v) on the SLM.

5.3.2. Optoelectronical Wave Field Modulation Using a
Phase-only SLM

The configuration depicted in Fig. 5.7 makes use of an electronically addressed re-
flective phase-only SLM, which allows for the adaptive manipulation of the impinging
wave. The SLM is regarded here as a non-mechanical multiple angle beam splitting
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device. For instance, the 2D Fourier shift theorem can be applied to shift a wave field
in the frequency space. The spectrum of the shifted field, with a shift s, is in this case
the Fourier transform of the original field modulated by the linear transfer function

H,(v) = ™™, (5.31)

Such a modulation can be achieved optically with the help of a 4 f-setup. Hereby, the
wave field is first Fourier-transformed using a lens with a focal length f. An SLM is
then placed in the Fourier plane of this lens. Across this plane there will be a field
Ug(r’), whose complex valued amplitude at the position defined by 7’ is proportional
to the Fourier transform of the field U;(r) incident at the front focal point of the lens
at the position v = r’/\f, i.e. [2]:

1 r’
’
= — f — 1, .32
Ustr') = i+ F 0} () (5:32
where F denotes the Fourier transform operator. From Eq. (5.31) if the complex
transmittance
r’ r’
ts(r') = H, <ﬁ) = exp [—iZW)\—fS} (5.33)
is generated by the SLM and an identical lens is introduced at a distance of 2f, the
shifted wave field exiting the 4 f-setup can be written as

Up(r") = FAF{Ui(r)} ts}
= —Uy(—(r" - 5)), (5.34)

which is clearly a copy of the translated field U; - but one that is rotated by 180°. A set
of shifted plane waves k;, which correspond to individual reference waves impinging
on the CGVH at different angles, can then be coupled into the hologram thereby
dynamically synthesizing a given set of far-field projections ¥, as shown in Fig. 5.1.
Moreover, a set of arbitrary orthogonal elementary waves can be coherently superposed
in order to attain the complex valued field

U(r) = Z Agel? (), (5.35)

where each v;(r) and therefore U(r) has a large SBWP. Owing to the birefringence
property of the SLM, only light that is polarized along its slow axis is modulated,
while light polarized along the fast axis remains unchanged [43|. This property can be
used additionally for multiplexing as it will be discussed in the next section.
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6. Experimental Results:
Fabrication of CGVHs in a
Nonlinear Optical Material and
Characterization of Their
Optical Functionality

To facilitate the assessment of the devices described in the previous chapter a series
of experiments, which will be described in this chapter were undertaken. These exper-
iments were performed, (a) to ascertain the feasibility of fabricating multifunctional
CGVHs using a 3D laser lithography method; (b) to assess the suitability of photosen-
sitive glass-ceramics for this fabrication using a nonlinear absorption process approach
and (¢) to deliver a proof of principle for the hypothesis of this work by characterizing
the performance of CGVHs designed and fabricated within the validity of the Rytov
approximation.

6.1. Fabrication of CGVHs in Nonlinear Optical
Materials

Three dimensional laser micro- and nanofabrication has become a fast growing field
of science and technology. Particularly in the case of dielectric materials, this opens
up a wide range of material processing processes in the micro- and nanometer range.
One such process involves 3D structuring within the bulk of the material by means
of a laser direct writing process. In the current state of the art [56, 108|, fabrication
of holograms in glass has been reported. Feasibility of fabricating CGVHs in nonlin-
ear optical materials, which allows for the realization of devices with much smaller
voxel dimensions has however not been investigated. In this section, the fabrication
of CGVHs in a photostructurable glass-ceramic by means of femtosecond direct laser
writing and the corresponding nonlinear absorption process are discussed.

6.1.1. Photostructurable Glass-Ceramics

Glass-ceramics (GC) are manufactured by adding dopant compounds in a base ma-
terial like glass. This provides the potential to tailor a specific functional property
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either on the local or global scale. The photostructurable GC material used in this
work was Foturan™ glass. This is a glass which mainly consists of silica, stabilizing
admixtures, a nucleating agent and a photoactive component. Table 6.1 summarizes
the typical concentrations of commercially available Foturan substrates [95].

Foturan glass and other GCs, e.g. chalcogenide glasses, are generally manufactured
in the amorphous glass state and contain a photoactive component that permits the
controlled modification of the refractive index of the material following exposure to a
given radiation. A further advantage of this GCs is the fact that they can be trans-
formed to a composite material in a subsequent heat treatment through a controlled
nucleation and crystallization of the GC constituents [95, 109].

6.1.2. Optical Nonlinearlity in Photostructurable
Glass-Ceramics

As previously discussed in Sect. 2.1.2., an electromagnetic wave incident on a nonlinear
medium will polarize it causing it to develop a time dependent electrical polarization.
The optical response of the material to an optical electromagnetic field can be described
by considering the effect of the field on an atom. The electric field acting on the positive
and negative charges of the atom distorts the electron charge distribution in the atom.
A primary measure of this distortion is the electric dipole moment induced in the atom
by the electric field. The overall macroscopic electric polarization P(t), cf. Eq. (2.39),
can then be obtained by summing up such dipoles over a given sample volume and
dividing by the volume. Of particular interest in this work, are the nonlinear reactions
resulting from this polarization after tightly focusing a laser beam into the bulk of a
photostructurable GC.

In this work we are specifically interested in the nonlinear multiphoton absorption
process induced in the bulk of a dielectric material. For this purpose we use a near infra
red laser source and a high numerical aperture (N.A.) objective to focus a laser beam
into the bulk of a GC material. The main aim is to concentrate high electromagnetic
energy densities into a tiny volume (& pm?). This process can induce a number of non-
linear reactions e.g., self phase modulation; self focusing; multiple photon absorption
and avalanche ionization. However, by appropriately choosing the magnitude of the
electric field and spatially controlling these defective regions we can be able to create
the desired subsurface structures [95, 110].

If we consider a plane electromagnetic wave propagating into a nonlinear medium,
and by taking the Maxwell equation in Eqs. (2.1) - (2.4), the following wave equation
can be deduced - cf. Eq. (2.38)

€ >Nt
2
E — L6, = L 6.1
VEE = ooy = Mo~ (6.1)
Hereby we have only consider the third-order nonlinear polarization
PN =) E,EE (6.2)
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6.1. Fabrication of CGVHs in Nonlinear Optical Materials

Table 6.1.: Overview of typical constituents and concentrations (in mass percentage -
wt%) found in a commercially available Foturan photostructurable glass-
ceramic [95].

Constituents wt% Description

Primary substrate:

Si0, 75 - 85 Base glass

Admiztures:

Li,0 7-11 Stabilizer

K50 and Al,O3 3 -6 Stabilizer

Aly,O4 1-2 Stabilizer

Zn0 <2 Stabilizer

Ces05 0.01 - 0.04 Photoactive component
Ag>O 0.05-0.15 Nucleating agent

since previous investigations on the mechanism of the photoreaction of the photosen-
sitive glass to the infrared fs laser has shown that the third order susceptibility is the
largest contributing factor to the electromagnetically induced polarization in the GC
used in this work [95, 96]. From Egs. (2.18), (6.1) and (6.2), an approximated change
of irradiance with depth into the sample can be expressed as follows [62, 95, 110]

d / ’
— &I(z, t) ~ azl’(z,t), (6.3)

where the three-photon absorption coefficient is defined as:

Bw (5)

a3 = 55 33X
2n3c3ed

6.1.3. Multiphoton Absorption Process

Initially a comprehensive analysis of the feasibility of fabricating CGVHs in the bulk
of photosensitive glass was undertaken. One principle task thereby involved the de-
termination of the peak power density needed to induce photomodification within the
volume of a single voxel using a setup that is schematically shown in Fig. 6.1. This
entailed experimentally investigating the predictions made in Sect. 6.1.2. For this pur-
pose, we employed an fs-laser with the following parameters: wavelength A = 1550 nm,
repetition rate up to 100 kHz, pulse duration up to £, = 50 uJ and pulse energy
7 < 800fs. An appropriate amount of light from the fs-laser had to be focused using
a microscope objective (40X; NA = 0.75) in order to achieve conditions where non-
linear absorption is induced in the focal region only. This absorption would lead to
the generation of non equilibrium charge carriers in the area localized within the focal
spot. In a multiphoton absorption process [111], this focal region is usually elongated

63



6. Experimental Results: Fabrication of CGVHs in a Nonlinear Optical Material and
Characterization of Their Optical Functionality

in the beam’s propagation direction and the intensity distribution within it depicts an
elliptic form [95]. This distribution represents the point spread function in the focal
spot of a laser beam focused using an objective of a given numerical aperture. The
size of the focal spot thus dictates the achievable resolution in terms of the achievable
PSF - cf. Eq. (5.22).

To experimentally approximate the PSF for our system, the dimensions of the focal
spot was determined by means of microscopy for different pulse energies and number
of pulses. The threshold for photomodification was found to lie approximately above
100 pulses at the target pulse energy of 5 i1J for the set of system parameters presented
above. Minimum lateral focal spot sizes on the order of 9, < 1 um were measured. This
values are much smaller than the diameter of the focal spot of the fs-laser used, since
the nonlinear absorption process takes place only in a region smaller than the focal
spot. An even better resolution could be achieved with this system by using a high
NA objective and carefully controlling the energy deposition.

In order to inscribe CGVHs with voxel sizes of (Ax, Ay, Az), an XPS-controller
(Newport XPS-C8) was used to facilitate a point-to-point positioning of the GC.
Thereby, the focal spot of the laser is translated inside the material along the de-
sired path with high precision and accuracy. Exact motion trajectories could thus be
defined such that a series of focal spots overlap within the volume of a single voxel.
Furthermore, the XPS-controller was used to precisely trigger the fs-laser and the
translation stages such that a predefined peak power density is delivered for each
voxel. As a result, optical elements having dielectric features such as the VPH shown
in 6.1 (a) can be realized. This method is commonly reffered to as direct laser writing
(DLW) [112, 113].

a) n+on
/
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Figure 6.1.: (a) Schematic of the setup used to determine the Bragg angle of volume
hologram, from which the induced refractive index could be determined.
(b) Diffraction pattern of a CGVH with a thickness of 120 um, having a
sinusoidal refractive index modulation with §,, = 1- 1072 and illuminated
with a He-Ne laser beam incident on it at the Bragg angle 0p. (c) BPM
simulation of the transmission of a Gaussian beam through the hologram
studied in (b) - after Biilters et. al. [48].
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In order to characterize our DLW system and thereby assess the feasibility of fab-
ricating CGVHs in the bulk of Foturan glass, a series of experiments as well as sim-
ulations were undertaken. In a first step, experiments were conducted to determine
the optimum pulse energy for inducing a refractive index change on the order of
8, ~ 107*...1072. This was achieved by first inscribing a volume grating in the glass
and then measuring the Bragg angle 65 using the setup shown in Fig. 6.1 (a). The
thickness of the grating was L, = 120 um and the grating period was A = 5 um. Given
0p, the induced refractive index change could be calculated using Eq. (3.20). Concur-
rently, FF'T-BPM was used to investigate the transmission of a light through a VPH,
which is embedded in the bulk of the material. This was modeled as a weak scattering
element having a sinusoidal refractive index modulation, whereby the peak refractive
index change was taken to be 4, &~ 1-1073. Figs. 6.1 (b) and (c) show the results of the
experiment and the simulation respectively. It is apparent from this results that the
volume grating produces a single diffraction order at the Bragg angle. Furthermore,
these results show a good agreement between the simulation and the experiment.

CGVH

pare[nore)

wr 96

64 um

pajedLIqe]

Figure 6.2.: (a) 3D representation of calculated refractive index modulation for a
CGVH with a size of 64 x 64 x 96 um?, (b) top layer of the CGVH and
(b) a phase contrast micrograph after fabrication in a nonlinear optical
material - after Kamau et. al. [57].

These preliminary studies paved the way to the fabrication of computer generated
volume holograms in the bulk of Foturan glass. Fig. 6.2 (a) shows a 3D representation
of the refractive index modulation for a CGVH with a size of 64 x 64 x 96 ym? that was
first fabricated in Foturan glass. In Fig. 6.2 (b) the refractive index distribution n(r)
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of the top layer of this binary CGVH is shown. After the fabrication of this CGVH a
differential interference contrast (DIC) microscope measurement of the index contrast
in Fig. 6.2 (b) was recorded - see Fig. 6.2 (¢).

These results clearly demonstrate for the first time that CGVHs with smooth in-
ternal contours and smaller voxel dimensions (Ax = Ay = 1 um) than in the current
state of the art (Az = Ay = 2 um) can be fabricated in a photosensitive glass by
nonlinear laser induced 3D modification of refractive index.

6.2. Experimental Characterization of Fabricated
CGVHs

The CGVHs that were fabricated as discussed in the previous section were experi-
mentally investigated in order to characterize their performance in terms of diffraction
efficiency and Bragg selectivity. In the following these experiments are described and
the acquired results are presented.

6.2.1. Optical Setup

Figure 6.3 shows the setup realized for wave field synthesis through angular multiplex-
ing. Hereby, an SLM with 1920 x 1080 pixels and a pixel pitch of 8 ym is located in
its Fourier plane of the first objective lens (f = 105 mm) and is illuminated with a
collimated laser beam (A = 532 nm) from a diode laser. The modulated reference beam
is then Fourier-transformed by a second objective lens as described in Sect. 5.3.2. An
aperture is placed in the Fourier plane to block unwanted higher diffraction orders
resulting from the SLM. The beam behind the second objective lens is collimated us-
ing a lens (f = 10 mm) which allows the reference beam to sweep through an angle
range of approximately £10°. A second aperture is placed behind this lens making the
beam as small as possible. The size of this aperture is chosen such that it matches the
dimensions of the effective exit pupil of the CGVH in order to reduce the magnitude
of the zero order in the far-field. A motorized rotation and two linear stages are used
to precisely position the CGVH along the optical axis.

6.2.2. Diffraction Efficiency and Bragg Selectivity of the
CGVHs

For the angular multiplexing approach adopted in this work, if the reference waves
meant to decouple single far-field projections are appropriately spaced, then the scat-
tered wave U, contains significant reconstruction from the i-th projection W¥; only.
The remaining holograms are Bragg mismatched, i.e. they are read out by the inci-
dent beam, but their reconstructions, when integrated over the entire volume of the
material, cancel out to zero as it has been shown for optically recorded volume holo-
grams [114]|. However, unlike in the case of such holograms the CGVHs proposed here
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Positioning
Stage

CGVH
> Objective lens
N
Fourier ~ A2 Wave A T Laser
plate 1 x _
plane (A =532 nm)

Figure 6.3.: Experimental setup which comprises in a 4f-setup consisting of a fiber
coupled diode laser, 2 objective lenses with a focal length of f; = 105
mm, a A\/2 wave plate and a polarizer P. This part is used to implement a
non-mechanical beam modulation unit with the help of an SLM. The other
part, high precision positioning stages are used to position the CGVH and
a lens, is used to collimate and couple in a single or a set of reference waves
at different angles 6 into the CGVH. For instance light that is polarized
along the slow axis (dashed line) of the SLM can be modulated to generate
a given reference wave, while light polarized along the fast axis (solid line)
represents a second reference wave.
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are designed to possess an optimal Bragg selectivity. This is mainly due to the fact
that during the nonlinear based fabrication approach, only single voxels are addressed,
unlike in the optical case where both the signal and reference beams illuminate the
whole volume for each hologram.

The model developed in this thesis was thus first experimentally characterized by
investigating the Bragg selectivity properties of the CGVHs shown. Since the CGVHs
realized in this work have finite thickness, we expect them to show similar Bragg
detuning characteristics as those of the VPHs discussed in Sect. 3.3. We thus expect
that the size of the CGVH will effectively impart a multiplicative rect function, which
then translates to a convolution of all far-field components with a sinc function:

™

rect (%) S(r,w) 4 £sinc (gkz) ® S(K,w). (6.5)

This becomes clear if we consider that we have a finite sized CGVH with a scattering
potential which has the general form of

S(r) = S(r) - rect {Li L% Li} , (6.6)

where (L,, L,) determine the lateral extensions and L, the thickness of the medium.
From Eq. (3.15) and by applying the convolution theorem we can compute the scat-
tering amplitude

& & Lx x L Lz z
S(K,w)=S5(K,w)® L,L,L,sinc [ 271: : nyy, 271: } : (6.7)
Thus we arrive at a scattering amplitude that is convolved with a sinc function whose
width is scaled by a positive-valued scale factor b = L;/27 along the i—th direction.
Note that from Eqs. (5.24) and (6.7), changing the angle of incidence for instance in
the y-direction leads to a deviation in the reciprocal space scattering vector which can
be written as k, = (27/\) sin(6 + Af)sin(«).

The result of this convolution is a blurring of the far-field projection around the
Bragg angle 0p as it’s apparent from Fig. 6.4 (a). Here, the Bragg detuning effect
is shown in terms of the relative diffraction efficiency as a function of the sum of
Bragg angle and a certain deflection Ad. It is clear that this results in sinc®—shaped
diffraction efficiency functions of every far field projection. These results also show
a very good agreement between the theoretical case predicted by Eq. (6.7) and the
experimentally measured data since the efficiency of reconstruction decreases as the
angle of the reference wave deviates from the Bragg angle 6. The width of this sinc
envelope can be interpreted as to represent the full width at half maximum (FWHM)
of the system. Therefore, to minimize cross-talk, a certain Afs,, has to be achieved.

Since the angular multiplexing approach investigated in this work utilizes a discrete,
angularly distinct set of plane waves as reference beams for decoding the CGVHs, the
angular selectivity of the holograms plays a very important role. The Bragg selectivity
thus directly limits the number of far field projections, i.e. the number of holograms,
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Figure 6.4.: (a) Bragg selectivity property of a CGVH, which is shown in terms of the
relative diffraction efficiency 1/n,. The width of this sinc? envelope can
be interpreted as to represent the full width at half maximum (FWHM)
of the system - after Kamau et. al. [17|. (b) Angular Bragg selectivity of
a CGVH, which projects an elementary circularly symmetrical Gaussian
intensity distribution - c.f Sect 5.2.4., in terms of the Afy,p,, as a function
of the holograms thickness.

that can be encoded in a single CGVH. To evaluate the impact of the thickness on the
Bragg selectivity of the CGVHs proposed here, a far field projection of a circularly
symmetrical Gaussian intensity distribution (c.f Sect 5.2.4) was investigated numer-
ically for different values of L, - see Fig. 6.4 (b). For such an elementary far field
projection, Bragg selectivity values on the order of Afgyp, = 0.6° can be attained
from a CGVH with a thickness of L, = 0.25mm. In the course of this work, a mul-
tiplexed CGVH having Bragg selectivity which has values of Afgypn, < 1° was also
investigated experimentally as it is discussed in the next section.
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6.3. Dynamic Wave Field Synthesis: Angular
Multiplexing and Superposition of Complex
Fields

In the next step a CGVH with dimensions of 683 x 683 x 200 um?, i.e. with a higher
SBWP, was designed and fabricated using the parameters discussed above. The opti-
cal setup in Sect. 6.2.1 was then used to investigate multiplexing capabilities of this
CGVH, which was designed to project far-field target intensities of the initials bias
(see Fig. 6.5 (a)-(d)). Each projection was offset by an angle step of 2° degrees from
cach other. Figure 6.5 (e) - (h) shows results whereby the feasibility of cross-talk
free decoding of these four far-field projections v; from a single CGVH have been
demonstrated. The far-field intensities of all four projections could clearly be decoded
without detectable cross-talk.

In a further proof of principle study, a CGVH for the target intensities in Fig. 6.5
(a - d) was used to assess the feasibility of dynamic wave field synthesis. In an initial
test, the birefringence property of the SLM was used. In Fig. 6.6 (b) the projection
1y corresponding to a single reference wave that was generated using light of a single
polarization is shown.
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Figure 6.5.: Comparison between target intensities (a) - (d) and the four far-field
projections (e) - (h), which were were decoded experimentally from a
single CGVH for four different angles. Each projection 1; was offset by an
angle step of 2° from each other - after Kamau et. al. [17].

Alternatively, using the concept described in Sect. 5.3.2 above, a deflected reference
wave ky can be generated so that the projection 13 is decoded as shown in Fig. 6.6 (¢).
If however orthogonally polarized light is chosen, then the SLM can be used to generate
two reference waves with k-vectors k, and ky concurrently. Two such reference waves
can be coupled simultaneously into the CGVH thereby decoding two different far-field
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projections and thus enabling synthesis of wave fields with a higher SBWP within
the signal window W as shown in Fig. 6.6 (d). By comparing these two images, this
superposition is quite apparent since two projections are decoupled simultaneously
and are superposed leading to the synthesis of a new wave field 1y + 3.
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Figure 6.6.: (a) Vectorial representation of the reconstruction process, whereby the
same signal window W for two projections is chosen and hence both ref-
erence waves ko and K5 have the same scattering vector kg. This leads to
the superposition of ¥y and 3 even though the corresponding reference
waves are offset by an angle 0. (b) a single projection 1y corresponding
to a single reference wave, which is decoupled by light polarized in the
fast axis. In (¢) a second projection 13 corresponding to a single reference
wave is decoupled by light polarized in the slow axis and modulated using
the SLM in order to generate a deflected reference wave ky. In(d) projec-
tions 1y and 13 are decoupled simultaneously and are superposed leading
to the synthesis of a new wave field ¢y + 13 - after Kamau et. al. [17].

In a similar manner, by employing the SLM as an electronic diffraction grating
several diffraction orders which depend on the shape of the grating can be generated
thus facilitating a simultaneous superposition of N far-field projections in a given
signal window W . This generation of several projections from a single CGVH was
discussed in details in our previous work [47]. Note that if for N-reference waves the
same signal window W is chosen (see Fig. 3.1(a)), the resulting CGVH contains N-
holograms each having a grating vector K,. Consequently, according to Eq. (3.16)
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these holograms have the same scattering vector ky. Such a vectorial representation
of the scattering process for the results attained in this work is shown in Fig. 6.6 (a).
This representation shows how the superposition of 15 and 13 is achieved even though
the corresponding reference waves are offset by an angle 6.

The information capacity of a CGVH having refractive index values that are con-
strained to C' discreet levels can be expressed in terms of the degrees of freedom of
the feasible field distribution that it can synthesize. To do this let us start by first
considering a wave field scattered within the CGVH to represent a 3D analytic func-
tion Us(r’,w) with a compact support in a give region. Suppose that this function is
sampled in a uniform manner in the (z, y, z)-directions, which is indicated by

Us(a:,y,z,w) - Us(mAxanA%pAZaw) (68)

where the sample intervals are (Az, Ay, Az) in the x—, y— and z—directions respec-
tively and (m,n,p) are integer valued indices of the samples. Now let us assume that
this sampling is done in accord with the sampling theory, i.e. with spacings

Ax < 1/2B,
Ay <1/2B,
Az < 1/2B,, (6.9)

where B; is the bandwidth of Uy in the i—th direction. The total number of significant
samples required to represent U, can be expressed in terms of the SBWP as follows

C
SBWP = < [L;L,L.B;B, D). (6.10)

From Egs. (6.9) and (6.10) it is clear that the results in Fig. 6.5 (b) were obtained
from an SLM-CGVH hybrid system with an SBWP = 5.4 x 108 for each projection ;.
Hereby, we consider the fact that 5 holograms were encoded in one CGVH, each with
discreet levels of quantization of C' = 2, voxel sizes of (Az = 2.6 um, Ay = 2.6 um,
Az =4 pum) and a hologram size of (L, = 683 ym, L, = 683 yum, L, = 200 pum). Thus
owing to the excellent Bragg selectivity properties of the CGVH, the total SBWP
of this system is SBWP = 2.2 x 10°. This is 3 orders of magnitude higher than the
current state of the art in multiplexed cascaded CGH systems [50], where a system
with SBWP = 2.6 x 10° was demonstrated. In this case, 2 holograms were encoded
in a system of CGHs, each with discreet levels of quantization C' = 64, pixel sizes
of (Az = 5pm, Ay = 5pum, Az = 0.3mm) and a hologram size of (L, = 320 um,
L,=320pm, L, = 1.5mm).

Moreover, since our system allows for a simultaneous coupling of a set of reference
waves, the achievable signal SBWP is much larger than that of a single CGVH. For
instance, a hybrid system having a total in-coupling angle of 20° in both the xy-
directions and a CGVH with a size of (L, = 683 um, L, = 683 um, L, = 200 pum)
can have an SBWP on the order of 1.1x = 10'°. Hereby we have assumed that each
of these holograms has an SBWP = 5.4 x 10® and that single projections are offset
at an angle of 1°. Hence we can conclude that our approach facilitates a tremendous
increase in the achievable SBWP.
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7.1. Summary

The capability of an optical system to generate arbitrary optical fields is mainly limited
by the number of degrees of freedom of the applied optical element or set of optical
elements. One physical quantity that can be utilized to characterize the capability of
such systems in capturing, transferring and/or processing optical information is their
space-bandwidth product. The SBWP of conventional holographic optical elements,
such as computer generated holograms, is for instance known to be quite limited. This
can be attributed primarily to a limitation in the number of controllable elements
(e.g. pixels), their limited lateral extent and their inherent two dimensional nature.
The goal of this thesis was therefore to develop and investigate a novel method of
designing volume holographic optical elements that allow for the generation of optical
fields with a large signal SBWP. This work is based on the hypothesis that such volume
holographic optical elements can in general be applied to generate a set of arbitrary
orthogonal elementary waves, which can in turn be coherently superposed in order to
attain an optical field with a desirably large signal SBWP.

The motivation behind this goal is to design and optimize a system that facilitates
dynamic synthesis of predefined wave fields. Specifically, this work focuses on a novel
hybrid system comprising in an SLM as a dynamic element and a CGVH as a mul-
tiplexed static element. It begins with an explicit definition of the problem at hand.
Thereby, a problem where a scalar field is scattered by a weakly scattering but in-
homogeneous dielectric holographic medium that is located in a bounded domain is
considered. Hereby, the scattering process within the bulk of the CGVH is modeled
with an inhomogeneous wave equation. This problem is formulated as an inverse prob-
lem of finding the scattering potential of a desired volume holographic optical element,
for a given set of impinging reference waves and physical constraints. It is shown that
due to various physical limitations inherent to this problem a closed form solution
does not exist.

The proposed solution is based on the Rytov approximation of the scattered field,
which is essentially a weak potential approximation. To attain this solution, the inte-
gral form of the inverse scattering problem is derived from the inhomogeneous wave
equation within the accuracy of first order perturbation theory. The resulting model is
then applied to develop a Fourier transform based iterative algorithm for numerically
computing the scattered field for a given set of desired far field projections. Thereby,
fundamental limits of this approach and the corresponding physical constraints are
investigated.



7. Summary and Outlook

It is shown in this work that most of these constraints arise from the fact that the
wave fields that are modeled must fulfill the wave equation as well as a set of sampling
conditions. For instance, an optical nonlinear absorption process is applied here to
fabricate the proposed holograms. One major fabrication constraint that follows from
this is the limitation of the sampling distances which correspond to the point spread
function of the femtosecond laser lithographic system. Similarly, the Bragg condition
is utilized to facilitate the design of crosstalk free multiplexed CGVHs. To achieve this,
the magnitudes of the Fourier transform on the Ewald’s sphere are determined for each
desired projection. Hereby, the following constraints were enforced: the amplitude of
the scattered field for each projection must be non-negative, continuous, and bounded
within a compact support. It is shown that in order to enforce continuity of the wave
field within the support, a cubic filter has to be applied within the design algorithm.

This thesis thus essentially presents a novel approach that is based on the first order
Rytov approximation of the field scattered from a voxelated volume hologram. It is
shown in this work that through this approach functional multiplexed CGVHs with a
refractive index contrast within the range of §,, ~ 10~*- - - 1072 can be computed. These
values are one order of magnitude higher than the ones achievable in the current state of
the art. This shows the flexibility of this design approach in terms of the feasible range
in achievable ¢,, values and hologram thickness. As a result, this approach allows for the
determination of the discrete scattering potential of larger holograms as compared to
the conventional approach that is based on the first Born approximation. In turn, this
increase in thickness leads to an increased space-bandwidth product. The possibilities
presented by the proposed approach were investigated by assessing the applicability
of such holograms in the field of dynamic wave field synthesis.

In an initial step, in order to explore theoretically the feasibility of the proposed
design approach, a set of holograms with a known response are computed - see chapter
5. These CGVHs are analyzed numerically by characterizing their performance in
terms of diffraction efficiency, Bragg selectivity and the SNR of the synthesized far-
field projections. It is shown here that as the thickness of the hologram increases, our
proposed approach is seen to compute holograms with better SNR. For instance, for
a hologram with a thickness of L, = 288 um the SNR within the signal window is
seen to increase from 0 to 6 dB within the first 25 iterations, whereas the conventional
approach is seen to fail. Furthermore, it is shown that CGVHs with a diffraction
efficiency of 7 = 12% can be designed using this approach. Additionally, to assess the
experimental feasibility of fabricating these holograms and of wave field synthesis using
the proposed hybrid system, the characterization of various holograms is discussed in
chapter 6. The results of DIC microscopy are for instance presented. These results
clearly demonstrate for the first time that CGVHs with smooth internal contours and
smaller voxel dimensions (Az = Ay = 1 um) than in the current state of the art
(Ar = Ay = 2 pm) can be fabricated in a photosensitive glass by nonlinear laser
induced 3D modification of refractive index.

The optical functionality of the fabricated CGVHs is characterized in terms of their
multiplexing properties and the signal SBWP of the synthesized optical fields. It is
shown herein that a set of wave fields can be decoupled sequentially or simultaneously
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from a CGVH with an SBWP = 5.4 x 10® for each far field projection. Furthermore,
it is shown that a Bragg selectivity value of A0y, = 1° is achievable. These results
allow for the proposed dynamic wave field synthesis using an electronically addressed
spatial light modulator as it is demonstrated here. In conclusion, this thesis clearly
demonstrates that a set of arbitrary orthogonal elementary waves can in principle be
encoded in a single CGVH. These can then be decoded and coherently superposed in
order to generate an optical field having a large signal space-bandwidth product, i.e.
SBWP > 1.1 x 100,

7.2. Suggestions for Future Work

One significant next step for the work presented in this thesis would be to investigate
a method that facilitates the computation of an even more efficient HOE based hybrid
system. In the following, a set of ideas for the future work are outlined:

e For instance, a model based on higher order terms of the Rytov series could be
incorporated to the current model. This extension can be used to obtain a very
good approximation of the scattered field if more and more terms of the series
are included in the calculation. This extension is straightforward since each term
is obtained from the preceding one by means of the recurrence relation.

e Another significant next step could be a detailed analysis on the feasibility of
encoding fundamental functions in the CGVH. Such signals could then be de-
coded and superposed thereby generating even more complex field distributions.
The capability of such a volumetric spatial light modulator would open up more
possibilities in the field of wave field synthesis.

e [t is important to note that one of the major bottlenecks of the laser lithography
based approach, which was used for the fabrication of CGVHs, is the voxel to
voxel serial writing. This leads to a technical limitation on the feasible number of
discreet quantization levels to binary levels of C' = 2 and to the size of holograms
that can be inscribed in a given period of time. An approach that allows for a
parallel exposure of a set of voxels in a single step is required.

75






A. Derivations

This appendix provides details of lengthy and important derivations referred to through-
out the text for reference purposes.

A.l. Inhomogeneous Wave Equation

In order to derive the inhomogeneous wave equation in Eq. (2.33) from the Maxwell’s
equations in Eqs. (2.1) - (2.4), we start by applying the curl operation Vx to both
sides of Eq. (2.4), using Eq. (2.3) and noting that ¢ = ¢(r) in order to arrive at

9 0*B
—VX(VXﬁ):V(V-S)—Vf/’:—u()W. (A1)
Now with the help of Eqgs. (2.3) and (2.21) and the identity V - €€ = €V - € + Ve - &,

we arrive at the inhomogeneous wave equation [63]

- 0. (A.2)

2 lgeg) L 2¢
v5+v(€ves ETORT

which, by noting that ¢(r) = ¢,/n(r), can be rewritten to arrive at the inhomogeneous
wave equation Eq. (2.33).

A.2. Nonlinear Wave Equation

Again from the Maxwell’s equations given by Eqs. (2.1) - (2.4) we start by taking the
curl of Eq. (2.4) to arrive at

o(V x B)

VXx(VxE)=-— T

(A.3)

By considering the definition in Eq. (2.24) and with the help of Eq. (2.3), we can
rewrite Eq. (A.3) as

0*D
Vx(VxE)=-— . A4
X (VX E)=—pms (A.4)
Here we can use the vector identity in Eq. (2.34) and Eq. (2.1) to arrive at
9*D
-V =— . A5
v H o (A.5)
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A. Derivations

Finally, recalling the definition of the electric flux density in Eq. (2.5) we get

0?E 0*P
—V2E = —flo€p—n — fl—e-. A6

Hoto s — H g3 (A.6)
From Eq. (2.39) we can write the polarization P as a sum of a linear part PY and
higher order contributions P™). Thus, Eq. (A.6) can be rewritten to arrive at the

nonlinear wave equation
PE o*p)
oz~ Mo

which was given in Eq. (2.38). Here, we have changed pu to p, since the materials we
consider in this work are assumed to be nonmagnetic.

V2E — loéo (A.7)

A.3. Inhomogeneous Wave Equation for the Rytov
Approximation

The Rytov approximation is derived by considering the total field to be represented
as a complex phase of the form of

U(r,w) = exp [P(r,w)]. (A.8)

This scalar wave satisfies the wave equation so that after inserting it into the wave
equation in Eq. (3.3) we obtain (the arguments (7,w) are omitted here to simplify
notation)

V2e® + k2e® = —471Se® (A.9)
V [VPe®] + k2e® = —4rSe® (A.10)
V20e? + (VD) e® 4 k2e® = —4nSe®, (A.11)
and finally
V20(r,w) + [VO(r,w)]” = —47S(r,w) (A.12)

A.4. Perturbation Expansion of the Rytov
Approximation

Hereby, S(r,w) is the scattering potential in Eq. (3.4). By expressing the total complex
phase ® as a sum of the incident phase function ®, and scattered phase ®, as given by
Eq. (5.1) and inserting Eq. (3.4) into Eq. (A.12) we arrive at the following nonlinear
equation for ®,(r,w) [98, 101]

V20, (r,w) + Vo, (r,w) - 2V, (7, w) + (7, w)]2 +
2k28,m0 (7, w)ny (7, w) + k26203 (r,w) = 0 (A.13)
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A.4. Perturbation Expansion of the Rytov Approximation

Now let us consider a solution to this problem by assuming that the following power
series can be used to represent ®,(r,w) as an asymptotic expansion in powers of the
small perturbation parameter :

D, (r,w) = Zv’@s,i(r, w). (A.14)

After substituting (A.14) into (A.13) and equating the groups of terms containing
equal powers of the perturbation parameter v, we arrive at the following recurrence
relations |74, 101]

(V2®,(r,w)) + (VO,u(r,w))?* = —2k2n,ny (7, w) (A.15)
V20, (r,w) + 2Vd,(r,w) - VO, (r,w) = —2k>ni(r,w) — VO, (r,w) - Vo, (r,w)
(A.16)

V2®,,(r,w) + 2V, (r,w) - VO, (r,w) = — Z VO, (r,w) V&, (r,w),m> 2.
i=1

(A.17)

Note that Eq. (A.15) is independent of the medium and thus gives a solution to Eq.
(3.1) (ie. (V2 + k(r,w)*)Uy(r,w) = 0) - for the case where ni(r) = 0 and

Uy(r,w) = exp [P,(7,w)] . (A.18)

On the other hand, Eq. (A.16) which has the term ®; (7, w) is linear in S(r,w) and the
term ®o(7r,w) in Eq. (A.17) is quadratic in S(7,w) and so on. In literature these terms,
Oy (r,w) and Py(r,w) is usually referred to as the first and second order Rytov ap-
proximation respectively. Equation (A.17) can therefore be used to obtain a very good
approximation of the scattered field if more and more terms of the series are included
in the calculation. Hereby, as it was mentioned in Sect. (4.1) each term is obtained
from the preceding one by means of the recurrence relation [115, 116]. This means
that once a numerical model, which is based on the first order Rytov approximation
is derived, extension of this model to include further terms is straightforward.
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B. Modeling of Light Propagation
in Scattering Inhomogeneous
Holographic Media

With the aim of numerically analyzing light propagation in computer generated vol-
ume holograms, two methods were applied in this thesis. The first one is the rigorous
coupled wave theory which was originally proposed by Kogelnik with the purpose of
analyzing volume holographic gratings [52]. The second method is a numerical com-
putational technique, which is widely applied for the general analysis and simulation
of guided wave propagation in inhomogeneous media.

B.1. Fourier Based Beam Propagation Method

To predict the performance of the computed CGVHs and also gain additional insight
on their functionality prior to their fabrication, routines for a Fourier based beam
propagation method (FFT-BPM) were implemented. The BPM method is a computa-
tional technique in optics, which is used to numerically solve the wave equation. It is
one of the most widely applied methods for the analysis and simulation of guided wave
propagation in inhomogeneous media. It was first introduced by Feit and Fleck in the
late 1970s [104]. It is an approximation technique for simulating the propagation of
light in a medium slowly varying envelope approximation. Since a different approach
(slice-by-slice computation) to the propagation of light is taken in this method, as
compared to the perturbation theory based design approach described in this thesis,
it can be used to validate such models.

Beam propagation method is based on the solution of the Helmholtz equation in the
paraxial approximation for monochromatic waves [117]. Thus in the conventional BPM
plane wave decomposition is used to represent a propagating wave field propagating
in an inhomogeneous medium as a superposition of plane waves. Wave propagation is
thereby modeled as an integral of these plane waves in the spectral domain and effects
resulting from the inhomogeneity are accounted for as a phase correction in the space
domain [118]. From Egs. (2.29), (3.2) and (3.6) we can write the Helmholtz equation
as follows

9z + 7 + k2 [n(z,y,2)> —n2] U = —21/{0710@.

From this equation we then derive the operator form of the FFT-BPM method [119—

(B.1)
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B. Modeling of Light Propagation in Scattering Inhomogeneous Holographic Media

121] which was implemented in the course of this work:
U,y 2+ A2) = exp (SA2) - FHD - F{U(w,y: 2)}} (B.2)

Here, D = exp [i (f2 + f) Az/2k] and S = —iAn(z, y; 2)k are the diffraction and the
nonlinear operators respectively, (x,y, z) are coordinates in the spatial domain, (fs, fy)
the corresponding spatial frequencies and Az propagation steps along the z-direction.

Please note that there are some limitations in the applicability of the conventional
BPM method since in its the derivation a paraxial approximation is assumed. Fur-
thermore it is assumed that there are no large refractive index discontinuities in the
medium [118]. In cases where these assumptions are not valid, the accuracy and flexi-
bility of this method can be improved by using extended methods like finite-difference
based BPM schemes (FD-BPM) and finite-element BPM (FE-BPM) [121]|. However,
for a more accurate analytical solution rigorous coupled wave theory is adopted.

B.2. Rigorous Coupled Wave Theory

Historically, rigorous analysis of volume holograms has always been done by means
of coupled wave theory (CWA). In its original formulation, CWA was derived from
the Maxwell’s equations by assuming that the total field propagating through a holo-
graphic volume grating can be expressed in terms of a reference wave R(r) and a
scattered wave O(r) [52|. Later on, it could be shown that a rigorous coupled wave
theory (RCWA) can be formulated as an exact solution of the Maxwell’s equations
without approximation [122]. The accuracy of this solution depends solely on the
number of retained terms in the space-harmonic expansion of the fields propagating
through the medium. In the following we will discuss the derivation of the fundamental
equations that can be used to calculate observables such as the diffraction efficiency
and angular selectivity of volume holograms.

Let us start by considering the periodic volume phase hologram that is schematically
depicted in Fig. 3.2 (a). When such a VPH is illuminated with a reference plane wave

U, = A.(2)exp(—ip - 1), (B.3)
in the direction p at the Bragg-matched angle 6, a plane wave
Us = As(2) exp(—io - r) (B.4)

is reconstructed in the direction o. These two fields are described by the amplitudes
A.(2) and A,(z), which vary along the z—direction. The propagation vectors p and
o, which have a modulus of

2mn

contain information about the propagation constants and the direction of these fields.
In analogy to (3.5), we assume hereby that the total field within the hologram is the
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B.2. Rigorous Coupled Wave Theory

superposition of these two wave fields, i.e. U = U, + U,. Given this information, Kogel-
nik derived from the Maxwell’s equations the following system of coupled differential
equations that describe the energy interchange between these two fields [52]:

du,

Cr d; +ikU, =0 (B.6)
d
‘. dUS WU, + iR, = 0, (B.7)
z

where & = mn; /) is the coupling constant - see also Eq. (3.21), ¥ = (872 —n?)/283 is
the Bragg mismatch parameter and ¢, and ¢, are the cosines of the angles formed by
the propagation vectors with respect to the normal of the grating.

For the loss-less transmission holograms presented in this thesis Eqs. (B.6) and (B.7)
can be solved subject to the boundary conditions A,(0) = 1 and A4(0) = 0 in order
to obtain the diffraction efficiency n = |U,| which can be written as follows [52]

n = sinc? <\/X? + X%) : (B.8)

whereby the parameters

7Tn1LZ
= — B.
X1 )\COS(QB)’ ( 9)
and I
X2 = MWAZ (B.10)

are related to the angular deviation A# from the Bragg angle and the thickness of the
hologram.

For a volume hologram with a more complex non-periodic refractive index distribu-
tion, this approach can be adopted in form of rigorous coupled wave theory. Thereby,
by eliminating the z-dependency of the refractive index distribution, it is possible
to write the solution inside the hologram as a Fourier expansion, since only a de-
pendency on the coordinate x and y is present [122, 123|. In this work, a numerical
implementation of RCW'T was achieved by slicing up the CGVH such that inside each
slice, the n(r) only depends on z and y. At the boundaries between two slices, the
tangential components of the electromagnetic fields are continuous. In this way, the
unknown reflection and transmission coefficients of the upper and lower half-space can
be connected to each other and determined.
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