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Abstract

Volatile Organic Compounds (VOC) are key species in tropospheric chem-

istry, air pollution and climate. The largest fraction of VOC is emitted from nat-

ural sources, but significant contributions are also attributed to anthropogenic

emissions and vegetation fires. Despite many studies estimating VOC amounts

in the atmosphere and identifying their sources, the uncertainties in estimation

are large. Glyoxal (CHOCHO), the smallest and most abundant of the alpha-

dicarbonyls in the atmosphere, is an intermediate product in the oxidation of

most VOC and an indicator of secondary aerosol formation in the atmosphere.

Glyoxal in combination with other VOC (e.g. formaldehyde: HCHO) can be used

for source identification of VOC. Glyoxal has been measured from space since

2003 by the SCIAMACHY and GOME–2 (MetOp–A) instruments and provides

a unique global long-term dataset. The focus of this thesis is to retrieve glyoxal

from measurements by the OMI instrument, to improve the SCIAMACHY and

GOME–2 (MetOp–A and–B) analysis, and to investigate the resulting long-term

datasets.

The first part of this thesis focuses on the development of an improved re-

trieval for glyoxal from OMI measurements. From sensitivity tests, optimized fit

parameters are determined. Two different approaches to reduce the interference

of liquid water absorption over oceanic regions are evaluated, achieving a signif-

icant reduction of the number of negative columns over clear water regions. The

impact of using different absorption cross-sections for water vapour is evaluated

and only small differences are found. Finally, a high temperature (boundary

layer ambient 294K) absorption cross-section of nitrogen dioxide (NO2) is intro-

duced in the DOAS retrieval to account for potential interferences with NO2 over

regions with large anthropogenic emissions, leading to improved fit quality over
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these areas. In a sensitivity test, a spectrum of backscattered solar radiation

over the Pacific Ocean is used as a reference spectrum, in order to reduce the

offsets (“stripes”) that sometimes are observed between viewing directions in the

OMI instrument. The new retrieval has also been applied to measurements from

SCIAMACHY and GOME–2 (MetOp–A and–B) instruments.

Using the new CHOCHO dataset, the combination of four instruments pro-

vides more than 12 years of glyoxal measurements, which are used for the inves-

tigation of the temporal variability of VOC on a global scale. The link between

vegetation, fires, anthropogenic activity, and glyoxal columns is investigated both

globally and locally. This provides a general picture of where glyoxal comes from

and what its temporal behaviour is depending on the region. CHOCHO and

HCHO are used synergistically for the identification of VOC emission sources by

computing their ratio and correlating it with indicators of biogenic emissions,

fires, and anthropogenic activities, giving important information for assigning

the ratios of glyoxal to formaldehyde to emission sources of VOC.

In a case study, mapped averages are computed for a fire event in Rus-

sia between mid-July and mid-August 2010. Enhanced CHOCHO levels are

found in close spatial and temporal proximity to elevated levels of fire radiate

power, demonstrating that pyrogenic emissions can be clearly identified in the

new CHOCHO data product. Also, for the first time long-range transport of

glyoxal in the atmosphere has been clearly identified, where elevated levels of

glyoxal follow the trajectories of simulated air masses.

Finally, CHOCHO, HCHO, and NO2 columns have been retrieved from ground

based measurements for two MAX-DOAS stations, which are part of the BRE-

DOM network. Diurnal and seasonal variations have been computed for the

three species and also the glyoxal to formaldehyde and formaldehyde to nitro-

gen dioxide ratios. The results have been compared to results from the satellite

observations and with other studies.
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Introduction

The fact that plants, in particular trees, emit volatile organic compounds

(VOC), mainly in the form of isoprenes (C5H8) and monoterpenes (varieties of

molecules with two isoprene units) has been well established for many years

(Guenther et al., 1995; Atkinson and Arey, 2003; Kansal, 2009). However, the

uncertainties in total emissions are very high since the amounts emitted depend

on several parameters, e.g. on plant species, temperature, humidity and also con-

dition of the plants (Guenther et al., 2000). Furthermore, VOC are present in the

atmosphere as a result of many anthropogenic activities, being mainly emitted

by the oil industry. In urban areas, VOC from anthropogenic (AVOC) emissions

are emitted from mobile and stationary sources (Kansal, 2009). Additionally,

burning of biomass emits large quantities of trace gases and aerosols into the

atmosphere. Depending on the type of biomass burned and the temperatures of

the fire, VOC are emitted in varying amounts and compositions. Similar to bio-

genic emissions the total amount of the pyrogenic emissions of VOC have large

uncertainties (Stavrakou et al., 2009b).

The role and importance of VOC in ambient atmospheric composition and its

impact in climate change was established many years ago (Williams, 2004; Curci

et al., 2010; Vrekoussis et al., 2010), most notably for tropospheric ozone (O3)

formation (Houweling et al., 1998). In the presence of sunlight, enhanced levels of

VOC in combination with oxides of nitrogen (NOx=NO+NO2; NO: nitrogen ox-

ide) lead to the photochemical formation of ozone in the troposphere. Another

topical issue is the formation of secondary organic aerosols (SOA) (Fu et al.,
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2008), which potentially are relevant for cloud formation (Yu, 2000), heteroge-

neous chemistry, and can also contribute to the long-term transport of otherwise

short lived VOC by first acting as a sink and later re-emitting VOC.

The inhomogeneous spatial and temporal distribution of VOC, resulting in

a large variability of VOC fluxes into the atmosphere, led several research groups

to study the global distribution of smaller molecules such as formaldehyde and

glyoxal, which are produced from precursor biogenic VOC (BVOC) and AVOC

species. Additionally, pyrogenic emissions can produce HCHO and CHOCHO

both directly and indirectly (Stavrakou et al., 2009a). CHOCHO and HCHO

are often used as tracers of hydrocarbons over areas with enhanced VOC emis-

sions, the so-called photochemical “hot-spot” regions due to their short lifetime.

They are intermediate products in the oxidation of most VOC (Volkamer et al.,

2005a; Wittrock et al., 2006; Sinreich et al., 2007; De Smedt et al., 2008). Also,

CHOCHO is an indicator of SOA formation (Sinreich et al., 2007; Fu et al., 2008;

Vrekoussis et al., 2009).

Atmospheric HCHO and CHOCHO columns can be determined by remote

sensing using the Differential Optical Absorption Spectroscopy (DOAS) method

in the ultraviolet and visible spectral regions (Platt and Stutz, 2008). This

sensitive technique has been used both from the ground, applying active and

passive DOAS (e.g. Volkamer et al., 2005a; Heckel et al., 2005; Sinreich et al.,

2007), and from satellites (e.g. Wittrock, 2006; De Smedt et al., 2008). Satel-

lite observations, including the GOME (Global Ozone Monitoring Experiment)

(Burrows et al., 1999), the SCanning Imaging Absorption spectroMeter for At-

mospheric CHartographY (SCIAMACHY) (Burrows et al., 1995; Bovensmann

et al., 1999), the second Global Ozone Monitoring Experiment (GOME–2) (Cal-

lies et al., 2000), and the Ozone Monitoring Instrument (OMI) (Levelt et al.,

2006) have been used to derive the spatial distribution of HCHO and CHOCHO

at a global scale, to study individual fire episodes and to identify sources of

VOCs. The satellite data have also been used in combination with chemical

transport models to estimate isoprene emissions in the Eastern United States

and Europe. Ground-based DOAS measurements have been used for both local

pollution studies and validation of satellite HCHO columns. While sources and

chemistry of glyoxal and formaldehyde are similar in many respects, the varia-

tion in production efficiency for different sources can be used to better constrain

source attribution of VOCs e.g. by analysing the ratio of CHOCHO to HCHO.

In addition, comparison of satellite observations and model results has revealed

a missing source for glyoxal from a biogenic precursor with a longer lifetime.

2



1. INTRODUCTION

In addition, VOC may have direct and indirect impacts on human health

(Kampa and Castanas, 2008). The indirect impact is due to the photochemical

ozone formation in the troposphere, and the direct impact on human health is

through the different effects of some organics compounds. These effects include:

acute respiratory diseases, nose and skin irritation, nervous system impairment,

asthma, and lung and nasal cancer.

This study aims at develop an improved CHOCHO retrieval from different

platforms (satellite-based and ground-based) and to investigate its temporal vari-

ability over areas with dense vegetation, fire events, and with high populations,

at identifying VOC sources by constraining the ratio of glyoxal to formaldehyde

and by correlating time series with indicators of different emissions.

This thesis is structured as follows: scientific background information about

VOC sources and their atmospheric chemistry, an introduction to the Earth’s

atmosphere, tropospheric chemistry of relevant trace gases, absorption spec-

troscopy, and a description of instruments are given in Chapter 2. A complete

description of improved glyoxal retrievals from different instruments, the opti-

mization of fitting parameters, the corrections needed due to interferences with

different absorber species, error estimation, and an intercomparison of glyoxal

retrieved from different instruments are present in Chapter 3. In Chapter 4, a

description of seasonal behaviour and temporal evolution of glyoxal, and iden-

tification of different sources by correlation with indicators of biogenic, pyro-

genic and anthropogenic activities are presented. In Chapter 5, computation

of CHOCHO to HCHO ratios for sources identification of VOC and two case

studies are presented. In Chapter 6, glyoxal, formaldehyde and nitrogen dioxide

are retrieved from MAX-DOAS measurements taken at two different locations,

and discussed. Finally, a summary of the main findings and conclusions ob-

tained in this study are presented, as well as an outlook for further analysis and

improvements in the retrievals of VOC and suggestions for future studies.
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Scientific background

2.1 Volatile organic compounds

VOC are organic chemicals that play an important role in the atmosphere.

Organic chemical compounds originate from biogenic, pyrogenic, and anthro-

pogenic emissions and have a significant influence on atmospheric composition

(Vrekoussis et al., 2010; Curci et al., 2010). VOC include non-methane hydro-

carbons (NMHC) and oxygenated NMHC (e.g., alcohols, aldehydes and organic

acids), and are emitted from different sources such as vegetation and oceans,

fossil fuel burning, biomass burning, and geochemical processes (Kansal, 2009).

Most VOC have a short atmospheric lifetime ranging from fractions of a day to

months Volkamer et al. (2005a). On a global scale, the biogenic emissions exceed

the anthropogenic emissions by around a factor of 10 (Atkinson and Arey, 2003).

The biogenic contribution of VOC is estimated to be around 1150Tg C yr−1

(Guenther et al., 1995). BVOC are emitted by oceans and plants, in particular

trees, as part of a complex system (see Fig. 2.1) (Guenther et al., 1995; Atkinson

and Arey, 2003; Kansal, 2009). The uncertainties in total emissions are very high

since the amounts emitted depend on plant species, temperature, humidity and

also the condition of the plant. In urban areas, there are also contributions of

VOC from anthropogenic emissions by mobile and stationary sources (Kansal,

2009). AVOC sources include fuel production, distribution, and combustion, with

the largest source from motor vehicles due to either evaporation or incomplete

combustion of fuel, and from biomass burning. However, estimated AVOC emis-
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2.1 VOLATILE ORGANIC COMPOUNDS

Figure 2.1: Schematic description of chemical and transport processes in the at-

mosphere, showing the relations between atmospheric processes and

other components of the Earth system such as the oceans, land, and

terrestrial and marine plants and animals (from USGCRP, 2003).

sions between 161–186Tg C yr−1 are ten times lower than the respective BVOC

(Stavrakou et al., 2009b). In addition, 33–49Tg C yr−1 emanate from pyrogenic

emissions (Andreae and Merlet, 2001). Lastly, the oceanic sources emit about

0.5–5Tg C yr−1 (Koppmann, 2007) (see Fig. 2.2).

VOCs in the presence of NOx are precursors of O3 formation in the tropo-

sphere, with the hydroxyl (OH) radical as initiators of oxidation (Atkinson and

Arey, 2003; Cook et al., 2007; Martin, 2008; Stavrakou et al., 2009b; Kansal,

2009). They also play a role in the formation of organic aerosols (Atkinson,

2000).
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2. SCIENTIFIC BACKGROUND

Figure 2.2: Estimates of global VOC emission from biogenic, anthropogenic and

pyrogenic sources. The dominant emission of VOC into the atmosphere

is from biogenic sources in the form of isoprene and monoterpene.

RH+OH −−→ R+ H2O (R2.1)

R + O2 −−→ RO2 (R 2.2)

The conversion of NO to NO2 is the key reaction in the VOC oxidation cycle,

and takes place through a transfer reaction with NO.

RO2 +NO −−→ RO+NO2 (R 2.3)

R can also be produced by photolysis and usually involves only VOC with

molecules containing the carbonyl bond (C=O). The most common VOCmolecule

containing the carbonyl bond is HCHO (see Sect. 2.3.1). Following this, O3 is

formed from the photolysis of NO2,

7



2.2 INTRODUCTION TO EARTH’S ATMOSPHERE

NO2 + hv −−→ NO+O(3P) (R 2.4)

O(3P) + O2 +M −−→ O3 +M (R2.5)

However, O3 reacts quickly with NO,

NO +O3 −−→ NO2 +O2 (R 2.6)

and reactions R 2.4, R 2.5 and R2.6 do not lead to the net formation or loss of

O3. In rural areas (less anthropogenic emissions) where the NOx concentration

is small, O3 can actually be removed by VOC. However, in urban areas NOx

concentrations are often at levels that allow the formation of O3 in the presence of

sunlight. This is because organic peroxy (RO2) radicals are intermediate products

in the degradation of BVOC and AVOC, and these radicals react with NO to

form NO2 (reaction R2.3), which then leads to net O3 formation (Atkinson,

2000).

Moreover, VOC have an important role in the global carbon cycle and can

enhance the global greenhouse effect as these emissions play a major role in the

increasing rate of methane (CH4) and carbon monoxide (CO) concentrations in

the atmosphere. Consequently, there are changes in the global radiation balance

of the Earth and climate in general (Fehsenfeld et al., 1992; Guenther et al.,

1995).

2.2 Introduction to Earth’s atmosphere

The atmosphere together with the hydrosphere form the fluid layered sys-

tem of the Earth, whose dynamics are closely related. The Earth’s atmosphere

is divided into five layers, the troposphere, stratosphere, mesosphere, thermo-

sphere, and exosphere, which are defined by vertical changes in temperature (see

Fig. 2.3). The lowest layer (troposphere) extends from the Earth’s surface up

to 10–17 km in altitude, depending on latitude and season, and its temperature

decreases with altitude. In addition, it is dominated by H2O produced by evap-

oration of water from rivers, lakes, and oceans due to the solar radiation that

reaches the Earth’s surface, which also contributes to cloud formation in the

8



2. SCIENTIFIC BACKGROUND

Figure 2.3: A typical vertical temperature profile of the atmosphere at mid-

latitude (U.S. Standard Atmosphere).

atmosphere. This layer can be subdivide into boundary layer (BL) and free tro-

posphere. The VOC chemistry is mainly taking place in the boundary layer. In

Fig. 2.3, the stratosphere layer is extended from 12 km to 50 km with an increase

in temperature with altitude, due to absorption of ultraviolet radiation by O3

molecules. These two layers (troposphere and stratosphere) account for 99.9% of

the atmosphere’s mass. In the next layer (mesosphere), the temperature drops

with increasing altitude; this is the coldest of the layers. Similar to the strato-

sphere, the thermosphere shows an increase in temperature with altitude, which

is caused by the absorption of a huge amount of strong UV solar radiation by

nitrogen (N2) and oxygen (O2). Finally, the last layer (exosphere) extends up to

space and is almost at vacuum.

The Earth’s atmosphere contains a variety of gases and suspended particles in

its layers. These gases vary in quantities, nitrogen (N2: 78.08%) and oxygen (O2:

20.95%) being the dominant constituents, which do not change with altitude,
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Table 2.1: Most relevant gaseous constituents of the Earth’s atmosphere (adapted

from Wallace and Hobbs, 2006, pp. 8).

Fractional

concentration

Gas specie by volume

Nitrogen (N2) 78.08%

Oxygen (O2) 20.95%

Argon (Ar) 0.93%

Water vapour (H2O) 0-5%

Carbon dioxide (CO2) 380 ppm

Neon (Ne) 18 ppm

Helium (He) 5 ppm

Methane (CH4) 1.75 ppm

Krypton (Kr) 1 ppm

Hydrogen (H2) 0.5 ppm

Nitrous oxide (N2O) 0.3 ppm

Ozone (O3) 0-0.1 ppm

while Argon (Ar: 0.93%) is the noble gas having the largest concentration (see

Table 2.1). Water vapour (H2O) has large variability in concentration around 0–

5% and depends on the atmospheric conditions (e.g temperature and humidity).

Also, other constituents are present in small concentrations and are known as

trace gases. Among these trace gases can be found the VOC, such as HCHO and

CHOCHO, as well as NO2, which are of interest for this study.

In addition, some gas species more strongly absorb the outgoing infrared ra-

diation, H2O, carbon dioxide (CO2) and O3 being the most importants. These

species are called greenhouse gases. Also, CH4, nitrous oxide N2O, CO, and

chlorofluorocarbons (CFCs) are contributors to the so-called greenhouse effect,

which is a process by which the outgoing radiation from Earth’s surface is ab-

sorbed and re-emitted by these greenhouse gases. Since part of this re-emitted
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2. SCIENTIFIC BACKGROUND

Figure 2.4: Global distribution of HCHO vertical columns from GOME–2

(MetOp–A) instrument for the time period of 2007–2014. Formalde-

hyde is mainly located in the tropical and sub-tropical regions over

areas with large vegetation, also large amounts of HCHO vertical

columns are located in Europe and Southeastern of USA.

radiation is directed back towards the surface and the boundary layer, it results

in an increase of the average surface temperature. While this study is not di-

rectly linked to the greenhouse effect, the VOC are related to it mainly by their

impact on the ozone.

2.3 Tropospheric chemistry

The atmosphere is composed of a wide variety of gases. Among these gases

are the so called trace gases, which are found in low concentrations compared to

those of N2 or O2. Both VOC and NOx are trace gases and are mainly located

in the troposphere.
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2.3 TROPOSPHERIC CHEMISTRY

2.3.1 Formaldehyde (HCHO)

Atmospheric formaldehyde originates from a wide number of natural and

anthropogenic sources and is the most abundant among the carbonyls in the

atmosphere. While primary emissions from biomass burning and fossil fuel com-

bustion exist (Wittrock, 2006; Boeke et al., 2011), most production is secondary.

In the troposphere, HCHO varies commonly from 0.2 parts per billion by volume

(ppbv) to 20 ppbv (Fried et al., 2002). HCHO is an indicator of photochemi-

cal activity and an intermediate product of the process of degradation of VOC

(Fu et al., 2007; De Smedt et al., 2008; Stavrakou et al., 2009b). This is be-

cause atmospheric HCHO concentrations are mainly determined by the oxidation

of methane and non-methane hydrocarbons. During their oxidation to carbon

monoxide (CO), carbon dioxide (CO2) and water (H2O), almost all VOC lead to

the formation of HCHO as an intermediate product in the presence of sunlight

(Wittrock, 2006; Platt and Stutz, 2008). As the simplest example, the process

of oxidation of CH4 in the atmosphere is as follows:

OH + CH4 −−→ CH3 +H2O (R2.7)

CH3 +O2 +M −−→ CH3O2 +M (R2.8)

CH3O2 +NO −−→ NO2 + CH3O (R2.9)

CH3O+O2 −−→ HCHO+HO2 (R 2.10)

The levels of HCHO are therefore indicative of the overall VOC concentra-

tions, at least for regions without significant direct emissions of HCHO due to

anthropogenic activities (e.g. traffic). HCHO has a short lifetime (a few hours

during daytime) as a result of photolysis,

HCHO+ hv −−→ H2 + CO (R2.11)

HCHO+ hv −−→ H+HCO (R2.12)

and reaction with OH

12



2. SCIENTIFIC BACKGROUND

HCHO+OH −−→ HCO+H2O (R2.13)

HCO +O2 −−→ HO2 + CO (R2.14)

HO2 +NO −−→ NO2 +OH (R2.15)

The hydroperoxyl radical (HO2) is generated by reaction R2.14, and the OH

radical (consumed in reaction R2.13) returns in reaction R2.15 to complete the

cycle. Moreover, reaction R2.15 produces the NO2 required for O3 formation, as

described in section 2.1. In addition, CO generated by reaction R2.14 can react

like an organic molecule to yield another hydroperoxyl radical.

OH + CO −−→ H+ CO2 (R 2.16)

H+O2 +M −−→ HO2 +M (R2.17)

There is also a significant contribution to HCHO removal from the atmosphere

by dry and wet deposition (Hak et al., 2005). HCHO plays a main role in odd

hydrogen radical chemistry, HOx (OH + HO2), and in O3 production. This occurs

due to the fact that HCHO is a source of HO2 radicals in the presence of enough

NOx by converting NO to NO2, in particular in the upper troposphere where

water vapor is found at low concentrations (Fried et al., 2002; Hak et al., 2005;

Wittrock, 2006; Platt and Stutz, 2008; Dufour et al., 2009).

For humans, HCHO in concentrations larger than 100 ppbv can cause irrita-

tion to the nose, the eyes, the throat, and the skin. Even higher concentrations of

HCHO in air are toxic and classified as potentially carcinogenic (ATSDR, 1999).

2.3.2 Glyoxal (CHOCHO)

Glyoxal originates from natural and anthropogenic activities similar to HCHO

(Wittrock et al., 2006; Wittrock, 2006; Fu et al., 2008; Stavrakou et al., 2009a).

It is the smallest of the alpha-dicarbonyls and the most predominant in the

atmosphere (Myriokefalitakis et al., 2008). It is an intermediate product in the

oxidation of most VOC (Volkamer et al., 2005a; Wittrock, 2006; Sinreich et al.,

2007) and an indicator of SOA formation in the atmosphere (Sinreich et al., 2007;
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2.3 TROPOSPHERIC CHEMISTRY

Figure 2.5: Global distribution of CHOCHO vertical columns from GOME–2

(MetOp–A) instrument for period of 2007–2014. Glyoxal, similar to

formaldehyde, is mainly located in the tropical and sub-tropical regions

over areas with large vegetation and fire events. Also, some“hot-spots”

of CHOCHO vertical columns are located over regions with large an-

thropogenic emissions.

Fu et al., 2008; Vrekoussis et al., 2009). Among others, CHOCHO is a product of

the oxidation of isoprene, alkyne, and aromatic hydrocarbons. CHOCHO is not

influenced directly by vehicle emissions (Volkamer et al., 2005a), because these

are believed to be small. Glyoxal has a short lifetime (a few hours) in the presence

of sunlight (Atkinson, 2000), because of it is removal from the atmosphere by

photolysis (Tadić et al., 2006),

CHOCHO+ hv −−→ 2HCO (R2.18)

CHOCHO+ hv −−→ H2 + 2CO (R2.19)

CHOCHO+ hv −−→ H2CO+ CO (R2.20)

CHOCHO+ hv −−→ H+ CO+HCO (R2.21)

and reacts with OH (Setokuchi, 2011).
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CHOCHO+OH −−→ HCOCO+H2O (R2.22)

HCOCO+O2 −−→ 2CO + HO2 (R 2.23)

Additionally, CHOCHO is removed by SOA, OH oxidation, and by dry and

wet deposition (Fu et al., 2008; Stavrakou et al., 2009a). For atmospheric obser-

vations, CHOCHO is of interest as it has slightly different sources than HCHO,

and can be used as an indicator of the rate of photochemical VOC process-

ing, because in contrast to HCHO it is not produced in the oxidation of CH4

(Myriokefalitakis et al., 2008).

At high concentrations, CHOCHO is harmful for humans, causing irritation

to the eyes and skin (Wittrock, 2006).

2.3.3 Nitrogen dioxide (NO2)

Nitrogen dioxide is one of the most important trace gases in the atmosphere.

It is emitted by a wide variety of natural and anthropogenic sources (Platt and

Stutz, 2008). The majority of NO2 comes from fossil fuel combustion in in-

dustries, vehicle emissions, home heating, and power stations. However, there

are also contributions from biomass burning and soils, as well as situ formation

from lightning and photochemical reactions in the troposphere (Atkinson, 2000).

NOx lead to the formation of nitrate (NO3) radicals in the troposphere by the

reactions,

NO + O3 −−→ NO2 +O2 (R 2.24)

NO2 +O3 −−→ NO3 +O2 (R 2.25)

However, NO3 photolyzes rapidly with a lifetime of around 5 s in the presence

of sunlight (Atkinson, 2000),

NO3 + hv −−→ NO+O2 [ ∼ 10%] (R2.26)

NO3 + hv −−→ NO2 +O(3P) [ ∼ 90%] (R 2.27)
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Figure 2.6: Global distribution of tropospheric NO2 vertical columns from

GOME–2 (MetOp–A) instrument for period of 2007–2014. High levels

of nitrogen dioxide are located over large agglomerations, which are

characterized by large anthropogenic emissions.

NO2 in the presence of sunlight is a catalyst for ozone formation in the tro-

posphere (reaction R2.4 and R2.5). In the stratosphere, in contrast to the

troposphere, NO2 plays an important role in the destruction of ozone, and also

in the formation of halogen reservoirs such as chlorine nitrate (Richter et al.,

2011, and references therein).

NO2 is destroyed in the atmosphere mainly by its reaction with OH during

the daytime, and at high concentrations it can have an important impact on OH

levels (Atkinson, 2000). At night, NO3 takes over the role of OH.

OH + NO+M −−→ HONO+M (R2.28)

OH + NO2 +M −−→ HNO3 +M (R2.29)

The reaction of OH with NO is in photoequlibrium with the photolysis of

nitrous acid (HONO),
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HONO+ hv −−→ OH+NO (R2.30)

HONO is also formed during the night-time in urban areas and this is at-

tributed to the heterogeneous hydrolysis of NO2 on aerosol and particulate mat-

ter surfaces (Jacob, 2000). This being the case, HONO is important because its

photolysis early in the morning enhances photo-oxidation processes due to rapid

production of OH radicals.

NO2 is a pulmonary irritant primarily affecting the upper respiratory system.

Individuals with asthma, respiratory disorders, and lung diseases are more sen-

sitive to the effects of NO2. At higher concentrations it can irritate the lungs,

cause bronchitis and pneumonia, and lower resistance to respiratory infections

(EPA).

2.4 Absorption spectroscopy∗

2.4.1 Electromagnetic radiation

Electromagnetic radiation consists of oscillating waves of electric and mag-

netic fields, which propagate at the speed of light (c ≈ 2.998× 108ms−1). These

waves are always in phase and perpendicular to each other. Electromagnetic ra-

diation is distinguished by its wavelength (λ) or frequency (ν), which are related

by,

c = ν · λ (2.1)

The electromagnetic radiation is subdivided in different regimes depending on

wavelength. These regimes are γ-radiation, X-radiation, ultraviolet (UV), visible

(Vis), infrared, and radio waves (see Fig 2.7). The ultraviolet spectral range

extends from about 100 nm to 400 nm, while the visible ranges from 400 nm to

780 nm. Wavelengths shorter than 100 nm correspond to the γ and X-radiation

range and longer than 780 nm to the infrared, while radiation of even longer

wavelength (λ > 1mm) corresponds to microwave and radio wave radiation.

∗This section is based on Seinfeld and Pandis (2006) and Platt and Stutz (2008)
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2.4 ABSORPTION SPECTROSCOPY

Figure 2.7: Diagram of the electromagnetic spectrum showing the different wave-

length ranges from radio waves to X-rays. The different types of tran-

sition in atoms and molecules induced by electromagnetic radiation

are indicated at the corresponding wavelength range.

From quantum mechanics it is well-known that some aspects of electromag-

netic radiation can be described as waves, and others can only be understood

as particles. Depending on the energy (E = hν = hc/λ; h ≈ 6.626 × 10−34 Js

denoting Planck’s constant) of photons, different forms of interactions of radi-

ation with the matter can take place. For example, UV and visible radiation

can lead to reconfiguration of the electron shell of atoms or molecules, which is

commonly called electronic excitation, while less energetic radiation will excite

vibrational or rotational states in molecular gases. Atoms or molecules in an

excited state can return to the ground state by converting the absorbed photon

into heat (collisions with other molecules) or by re-radiating a photon. The en-

ergy of an excited state can also be used in chemical reactions to overcome the

activation barrier.

2.4.2 Energy levels and molecular transitions

Molecules are electrically neutral groups of two or more atoms connected by

chemical bonds. The individual energy states in atoms and molecules are discrete,

because they are quantum multi-particle systems. For molecules, two additional

excitation states are found, which are not present in atoms. Therefore, there are

three energy states in molecules: rotational (rotation of the complete molecule),

vibrational (vibration of the atoms in the molecule) and electronic (change in the

configuration of the electrons). The typical transitions energies are on the order

of about 1 eV for electronic, 0.1 eV for vibrational, and between 10−3 and 10−2 eV
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for rotational transitions. Electronic transitions correspond to wavelengths of the

visible and near UV spectral range, vibrational transitions to wavelengths in the

infrared spectral range, and the rotational lines to wavelengths in the microwave

range (see Fig 2.7).

The rotational energy levels in a molecule are calculated by,

Ej = B · J(J + 1) (2.2)

where B is the rotational constant of the molecule, and J the rotational

quantum number. The energy difference between two consecutive states is given

by,

∆Ej = Ej+1 − Ej = 2B(J + 1) (2.3)

which represents the photon energy of the allowed transitions. Thus, in ab-

sorption spectra rotational lines are equally spaced. Most molecules are rota-

tionally excited at room temperature, because these differences of energies are in

the order of the thermal kinetic energy (10−3 – 10−2 eV).

The vibration of atoms in molecules can be described by the harmonic oscil-

lator and the energy levels can be given by,

En = (n+
1

2
) · h̄ω0 (2.4)

where n is the vibrational quantum number and 1/2h̄ω0 is the zero-point

energy of the molecular oscillator. Therefore, for the different vibrational states

the energies vary proportional to the vibrational quantum number. In these

vibrational states it is very likely that the molecules are also rotationally exited

at ambient temperature. Therefore, each vibrational state splits into a series of

rotational lines (see Fig 2.8).

Electronic transitions occur when the configuration of the electrons in a

molecule change from one energy level to another, which also leads to changes in

the intermolecular force and length. Thus, each electronic state has its own set

of vibrational and rotational states. Figure 2.8 shows an example of an electronic
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Figure 2.8: Diagram of rotational-vibrational energy levels in two electronic states

of a molecule. Electronic energies are given as a function of interatomic

distance. These energies are minimal at a certain distance (R0 and

R′
0), which is different for each different electronic state. The groups

of equidistant horizontal lines represent the lowest rotational levels of

the vibrational states (ground state: = 0,1,2; excited state: n′ = 0,1).

transition, which represents a potential energy diagram with the rotational-

vibrational energy levels of two electronic states in a molecule. The electronic

transition occurs vertically, as is governed by the Franck-Condon principle de-

scribing the absorption or emission of a photon. This principle states that when a

molecule undergoes an electronic transition, no significant change is experienced

in the nuclei position during the electron reconfiguration.

2.4.3 Solar radiation

Electromagnetic radiation is reaching the Earth from space, mainly from

the Sun and is emitted back into space. The Sun is a gaseous body of about

1.99× 1030 kg mass and a radius around 6.96× 105 km. It is mainly composed of

hydrogen (around three parts) and helium (one part). The energy in the outer

layers of the Sun is coming from the core, which is believed to be mainly trans-
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ferred by electromagnetic radiation and produced by nuclear reactions in the core,

the fusion of four hydrogen atoms into one helium atom being the dominating

process. The solar radiation received by the Earth is emitted in the photosphere

(around 500 km outer of the Sun), the emission of which can be approximated by

black-body radiation corresponding to its temperature of ≈ 5800K. The spectral

distribution is described by Planck’s law, which describes the radiation emitted

by a black-body in thermalequilibrium at a given temperature,

Pe(λ, T ) =
2πhc2

λ5

1

exp( hc
λkBT

)− 1
(2.5)

Here, λ denotes the wavelength, T the temperature, c is the speed of light, h

is the Planck constant, kB ≈ 1.381 × 10−23 JK−1 is the Boltzmann constant.

However, the Sun does not emit radiation as a perfect black-body. The Sun’s

atmosphere emits and absorbs radiation at characteristic wavelengths. Figure 2.9

shows a solar spectrum measured by the SCIAMACHY instrument outside the

atmosphere. Many absorption lines are observed in the solar spectrum, which are

called Fraunhofer lines and are caused by absorption at characteristic wavelength

for different species (see Fig. 2.9). The solar spectrum shown is similar to the

one used in this study as reference spectrum.

2.4.4 Radiative transfer in the atmosphere

Radiative transfer in the atmosphere describes all processes that influence the

propagation of radiation in a medium that absorbs and scatters it, such as the

atmosphere. Understanding these processes is required for the interpretation of

measurements with passive DOAS. As will be described in Sect. 2.4.7, the DOAS

analysis results in the slant column density, which depends on the effective opti-

cal light path s through the absorbing layer. The propagation of radiation in the

atmosphere is a complex process and is dominated by the interaction of radiation

with matter, such as absorption, scattering and emission. These processes are

expressed in the equation of radiative transfer (“RTE: Radiative Transfer Equa-

tion”). The RTE describes the changes of radiation while passing through the

atmosphere (I(λ)). When the RTE is applied in the ultraviolet/visible spectral

range, as is done in this work, the thermal emission can be neglected and the

RTE is given by,
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Figure 2.9: Example of solar spectrum measured by the SCIAMACHY instrument.

In addition, some of the Fraunhofer absorption lines have been pointed

out for wavelengths between 300 and 1000 nm with their responsible

species (from Schönhardt, 2009).

dI(λ)

ds
= −I(λ)ε(λ) + ε(λ)B(λ) (2.6)

The left side of the equation represents the change of radiation along the

effective optical light path ds, while the first term on the right side describes the

attenuation of radiation due to absorption and scattering, ε being the extinction

coefficient, which is the sum of the absorption and scattering coefficients. The

second term represents the gain through scattering, where B(λ) is the scattering

source function (Rozanov et al., 2013).

2.4.5 Scattering processes in the atmosphere

In the atmosphere, incoming radiation can be scattered by large molecules

of atmospheric gases and suspended particles. The scattering process can be

divided into two main different types: elastic (no change of photon energy due

to the scattering process) and inelastic (change in the photon energy during the

process). The elastic scattering usually occurs on time scales of 10−14 seconds,

this scattering depending on the ratio of the particles size to the wavelength of

incident radiation and can be referred as Rayleigh or Mie scattering. While the

22



2. SCIENTIFIC BACKGROUND

inelastic scattering by air molecules is referred to as Raman scattering.

Rayleigh Scattering

Rayleigh scattering describes the dominant elastic scattering of light by par-

ticles which are small compared to the wavelength of the scattered light. In the

atmosphere, Rayleigh scattering is responsible for blue sky during a clear day,

because shorter wavelengths are scattered more efficiently by air molecules (e.g.

N2 and O2). Thus, most of the ultraviolet radiation is scattered before reaching

the Earth’s surface. Rayleigh scattering results from electric polarizability of air

molecules, being reached the maximum of polarisation at 90° scattering angle.

The dependence of the Rayleigh scattering cross-section (σRay) with wavelength

(λ) is very strong and given by (Platt and Stutz, 2008),

σRay(λ) =
8π3

3λ4N2
air

·

n0(λ)

2 − 1
2 · FK(λ) (2.7)

where n0(λ) represents the index of refraction of air as a function of wave-

length, Nair is the number density of air, and FK(λ) is the polarisability factor

of air molecules, which expresses the influence of molecular anisotropy. However,

equation 2.7 can be simplified using an analytic expression for the dependence

of refraction index with wavelength and thus, Rayleigh scattering cross-section

can be written as (Nicolet, 1984),

σRay(λ) =
4.02× 10−28

λ4.04
cm2 (2.8)

The distribution of scattered light can be described by the phase function,

which gives the distribution probability of scatter intensity as a function of scat-

tering angle, which is measured with respect to the direction of incoming radia-

tion. For Rayleigh scattering, the phase function is given by,

P (θ) =
3

4


1 + cos2(θ)


(2.9)

where (θ) is the scattering angle. For Rayleigh scattering, the distribution

of intensity of scattered radiation is equally distributed between forward and

backward directions (see Fig. 2.10).
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Figure 2.10: Polar diagram of the Rayleigh scattering phase fucntion P (θ) for non-

polarised incident radiation (from Platt and Stutz, 2008, pp. 94).

Mie Scattering

When light is scattered by a particle comparable in size to the wavelength of

the incident light, it is known as Mie scattering. This scattering occurs mainly

on “large” particles, e.g. aerosol, cloud droplets, suspended matter in liquids. In

the atmosphere, there are a large variety of aerosols and their sizes and shapes

among them varies, thus performing calculations using the scattering phase func-

tion can be complex. This problem can be addressed by the Mie theory, which

describes the solution of Maxwell’s equations for the scattering of light on spher-

ical particles. Mie scattering is mainly differentiated from Rayleigh scattering by

its weaker dependence on the wavelength. Similar to Rayleigh scattering, Mie

scattering can be defined as (Platt and Stutz, 2008),

σMie(λ) ∝
1

λα
(2.10)

Where α is the Ȧngström exponent. Small particles have larger values for

α. For large particles α decreases. A normal distribution of particles in the

atmosphere have a characteristic value of α ≈ 1.3.
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In the atmosphere, the distribution of scattered light for Mie scattering de-

pends on aerosol types and particle size, as well as wavelength of scattered light,

resulting in different shape of phase functions. Also, depending on α, the distri-

bution of scattered radiation has a strong dominance in the forward direction in

comparison to Rayleigh scattering, being stronger for larger particles. In addi-

tion, Mie scattering is not polarising in contrast to the Rayleigh scattering.

Raman Scattering

The inelastic scattering of photons by air molecules is known as Raman scat-

tering and is the inelastic version of Rayleigh scattering. It can be described

as the interaction of light with an air molecule that changes its energy state

of excitation during the scattering process. The photon transfers part of its

energy to the molecule (Stokes lines) or loses part of its energy (Anti-Stokes

lines). The term rotational Raman scattering is used, if it is affected by the

rotational excitation only, and if also the vibrational state changes, the term is

called rotational-vibrational Raman scattering. Only discrete amounts of energy

can be transferred between the photon and the molecule defined by the difference

between discrete excited levels. The rotational-vibrational Raman scattering is

an order of magnitude smaller than the rotational Raman scattering. In addition,

rotational Raman scattering has important effects on the spectrum of scattered

solar radiation in the atmosphere in comparison to direct sunlight (unscattered

radiation). As a consequence of Raman scattering at air molecules, the presence

of absorption features such as Fraunhofer lines changes the spectrum of scatter

radiation (Brinkmann, 1968). This results in systematically less deep and strong

Fraunhofer lines in the scattered sunlight in comparison to unscattered sunlight.

This filling-in of absorption lines is not exclusive to the Fraunhofer structures but

also occurs for other absorbers such as ozone. This effect was named as the Ring

effect, which has been discovered by Grainger and Ring (1962) and explained by

Brinkmann (1968).

2.4.6 Absorption in the atmosphere

With the absorption of a photon by a molecule, electronic, vibrational and

rotational transitions can occur by absorbing energy, an electron ”jumps” from

a lower energy state E1 to another higher energy state E2 (now the molecule

is in an excited state). Classically, the absorption process is described by the
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Figure 2.11: Representation of the Beer-Lambert law. Intensity after passing

through the sample is collected by a detector. Its intensity decreases

by an exponential function as s increases (from Alvarado Bonilla,

2011).

Beer-Lambert law (Platt and Stutz, 2008),

I(λ) = I0(λ)exp[−σ(λ)ρs] (2.11)

Where I0(λ) represents the initial intensity, I(λ) the intensity after passing

through the portion of material (see Fig. 2.11), λ the wavelength, ρ the uniform

material concentration, s the optical path and σ(λ) represents the absorption

cross-section, which is characteristic of each material.

Rewriting equation 2.11, the concentration for a uniform and homogeneous

material is given by,

ρ =
ln(I0/I)

σ(λ)s
(2.12)

where ln

I0
I


is known as optical depth or absorbance of a certain material.

The optical depth is the basis for most applications of absorption spectroscopy

(Platt and Stutz, 2008).

In the atmosphere the equation should include all the processes of absorption

by all molecules. It also needs to account for the processes of light scattering.

Although the scattering process is not an absorption process, it can be treated

as an absorption in the Beer-Lambert law (Platt and Stutz, 2008). Therefore,

adding the terms for Rayleigh, Mie, and Raman (by the Ring effect) scatterings,

equation 2.11 can be rewritten as follows,
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I(λ)

I0(λ)
= exp


−


ds


n

i=1

ρi(s)σi(λ, s) + ρRay(s)σRay(λ, s)

+ρMie(s)σMie(λ, s) + ρRing(s)σRing(λ, s)


(2.13)

where I0(λ) represents the initial intensity (extra-terrestrial solar spectrum),

I(λ) the intensity after passing through the atmosphere, ρi,Ray,Mie,Ring(s) are the

number densities of the absorbers and the scattering molecules and particles, and

σi,Ray,Mie,Ring(λ) are the absorption and scattering cross-sections, which are spe-

cific to each species and integration is along the light path s. The so-called Ring

effect is related to rotational Raman scattering on air molecules, which produces

wavelength shifts in the ultraviolet and visible wavelength range comparable to

the width of Fraunhofer lines and results in an apparent filling-in of the Fraun-

hofer lines (more details in Sect. 2.4.5). Thus, the Ring effect is treated as an

additional absorber. Here, the differential form of Beer-Lambert law is used,

because ρi varies along the light path as it changes with altitude.

2.4.7 Differential Optical Absorption Spectroscopy (DOAS)

DOAS has been frequently applied to measure trace gases in the troposphere

and stratosphere (Platt and Stutz, 2008). This technique allows the determi-

nation of atmospheric amounts of trace gases with narrow absorption bands in

the ultraviolet and visible. The method analyses the intensity of the absorption

bands using the Beer-Lambert law in the atmosphere. From equation 2.13 and

not taking into account any dependence of the cross-section on location a long

the light path (s)1, we can exchange the integral with the sum and can define

the slant column density (SC) as,

SCi =


ρi(s)ds (2.14)

1This is considered as an approximation, because the cross-sections normally are temperature

dependent, and thus depend on altitude. Sometimes, cross-sections at different temperatures

are used in the retrieval to take into account the temperature dependence of the trace gas

retrieved (e.g. ozone in the UV and NO2 in the visible), because the gases normally are not

spread across the whole atmosphere, but located at some specific altitude.
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Figure 2.12: Principle of DOAS: σ0
i and σ,

i are separated by a filtering procedure,

the black line represent the absolute absorption cross-section, the red

line (polynomial) describe the slowly varying with wavelength, and

the blue line is rapidly varying with wavelength (differential absorp-

tion cross-section).

The basic idea of the DOAS method is to decompose the cross-section into

a component that varies “slowly” with wavelength, σ0
i , and another component,

σ,
i, that shows a “fast” variation with wavelength (σi = σ,

i + σ0
i ).

The rapidly varying part σ,
i is representative of narrow band structures in

the absorption of trace gases, while σ0
i includes low frequency variations of the

spectrum (see Fig. 2.12, broad band structures). The latter, together with the

Rayleigh scattering (σRay ∼ λ−4) and Mie scattering (σMie ∼ λ−k, 0 ≤ k ≤ 2),

can be substituted by a polynomial proportional to λp, due to its slow variation

with wavelength. With these considerations we obtain,

I(λ)

I0(λ)
= exp


−

n
i=1

σ,
i(λ)SCi −


p

apλ
p


(2.15)

where σ,
i is called differential absorption cross-section (see Fig. 2.12). As a

consequence of the separation of absorption into slow and fast variation, only

gases with narrow band structures in the spectral window of interest can be

retrieved by the DOAS method (e.g. ozone in the UV, see Fig. 2.12). Taking the
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natural logarithm of Eq. 2.15, we obtain the optical depth (τ(λ)),

τ(λ) = ln


I0(λ)

I(λ)


=

n
i=1

σ,
i(λ)SCi +


p

apλ
p (2.16)

If I(λ), I0(λ), and the absorption cross-sections σ,
i are known, the SCi can be

determined by a least-squares fit. The absorption cross-section of the species can

be obtained from the literature or measured in the laboratory. Equation 2.16

only consider the ideal case, because the measurements are affected by noise,

which can not be calculated. Thus, the measured optical depth, τ(λ), needs to

be replaced by the fitted, τfit(λ), which differs from the measured optical depth

as,

r(λk) = τ(λk)− τfit(λk) (2.17)

where λk represents the wavelength at discrete spectral point, because the

measure spectra (I and I0) are measured in discrete points as well. The slant

columns of interest as well as the polynomial coefficients are obtained as fit

parameters, which are adjusted in the DOAS fit routine to yield the best fit

result (τfit) as close as possible to the measured optical depth (τ),


k

r2k → minimize (2.18)

r(λk) is the residual spectrum at the respective wavelength point. Therefore,

τ(λ) = τfit(λ) + r(λ)

τ(λ) =
n

i=1

σ,
i(λ)SCi +


p

apλ
p + r(λ) (2.19)

A small residual without remnants of absorption structures are request for

a most successful retrieval. Thus, in order to judge the fit performed, the root

mean square (RMS) is used as a quality criterion,
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RMS =

 1

N

N
k=1

r2k (2.20)

This describes the deviation of measurement from the theory for each pixel,

where N represent the total number of pixels in the fitting window. The data

analysis is performed using the in-house software NLIN developed by Richter

(1997). Additionally, the DOAS principle can be applied in a variety of arrange-

ments and observation modes. These can be classified according to their light

sources as active or passive DOAS. The first one uses an artificial light, while

the second has a natural source light (e.g. sun, moon). This discussion is limited

to explaining some of the passive DOAS configurations. Among these passive

DOAS configurations, direct sunlight DOAS, multi axis DOAS (MAX-DOAS),

and satellite borne DOAS (see Fig. 2.13) can be found (Platt and Stutz, 2008).

For satellite DOAS, the measurements of I0 do not contain any absorption of

traces gases due to the presence of Earth’s atmosphere, because it usually is

measured out of atmosphere. However, for ground-based DOAS the I0 measure-

ment is performed in the zenith direction at the small solar zenith angle (SZA),

because the light path through the Earth’s atmosphere is shorter and thus, the

absorption of different species is smaller as is showed in the Fig. 2.13, A and C.

As a consequence, the slant column is not absolute, but it is the difference be-

tween the slant column (SC) of spectrum I and the slant column of the reference

spectrum I0 (DSC = SC − SCref ).

2.4.8 The Air mass factor

As the SC depends strongly on observation geometry and the sun’s elevation

above the horizon, it is often useful to compute the vertical column which is

defined as the trace gas concentration integrated along vertical path,

V C =


ρi(z)dz (2.21)

where ρi(z) is the concentration of the species and dz is the vertical path

through the atmosphere. The vertical and slant columns are related by the air
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Figure 2.13: Schematic representation of some passive DOAS configurations: (A)

direct sunlight DOAS observations, (B) satellite borne DOAS (nadir

observation), and (C) multi axis DOAS observations.

mass factor (AMF). The AMF is defined as the ratio of SC and VC, and depends

on the radiative transfer in the atmosphere (Platt and Stutz, 2008),

AMF =
SC

V C
(2.22)

It depends on the wavelength, trace gas profile, air pressure, surface spectral

reflectance (albedo), temperature, ozone and aerosol profiles, clouds, as well as

on the SZA and the measurement geometry. In the computation of the AMF,

an a priori assumption of the profile shape is needed. However, if the trace gas

profile is not known, large uncertainties can be introduced in the conversion of

SC to VC. As the measurements are functions of altitude, the so called Block-

AMF (BAMF) concept is used, in order to characterize the altitude-dependent

sensitivity. This describes the partial AMF within an individual atmospheric

layer,
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BAMFi =
SCi

V Ci

(2.23)

where SCi and VCi represent the partial slant and vertical columns within

the layer. Then, the total SC can be defined as,

SC =
TOA
i=0

BAMFi · V Ci (2.24)

The total SC up to the top of the atmosphere is expressed as the sum of

partial slant columns from the surface to the top of the atmosphere (TOA). The

advantage of BAMF in contrast to the AMF is that these are independent of the

trace gas profile. Thus, AMF can be computed from BAMF as,

AMF =

TOA
i=0 BAMFi · V Ci

V C
(2.25)

where VCi/VC gives the relative trace gas concentration profile or shape

factor (Palmer et al., 2001). As the AMFs no longer depend on the absorber

profile, these can be applied to different a-priori profiles (e.g. from atmospheric

chemistry models or retrieved from measurements). In addition, this approach

is convenient when a large number of air mass factors have to be computed as in

the case of satellite observations.

In this work, AMFs have been calculated using the radiative transfer model

SCIATRAN (Rozanov et al., 2013) assuming typical glyoxal profiles as described

in Wittrock (2006), page 96.

2.5 Description of instruments

In the following, a brief description of the instruments used in this thesis to

obtain the data for the retrieval of columns of atmospheric species by the DOAS

technique from ground and satellite is given.
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Figure 2.14: Schematic representation of main parts of ground-based DOAS in-

strument.

2.5.1 Ground based instruments

Currently there is a wide variety of designs of ground-based passive DOAS

instruments and these designs are based on many requirements such as high

sensitivity, spectral resolution and practical aspects such as the cost, weight and

power consumption (Platt and Stutz, 2008).

In general, a MAX-DOAS instrument consists of a telescope coupled to a

spectrograph by a fibre bundle (see Fig. 2.14). It also has a temperature con-

troller and a telescope that can be pointed at different elevation angles. Two

MAX-DOAS instruments are used in this work and both have a telescope with a

field of view of 1.2° and an optical fiber bundle with 76 single fibers, one is coupled

to two spectrometers (38 fibers for each). One spectrometer is for the ultraviolet

range (315–384 nm) with a two-dimensional CCD (512x2048 pixels) and a spec-

tral resolution of 0.4 nm. The second spectrometer also has a two-dimensional

CCD (100× 1340 pixels) for the visible range (400–570 nm) with a spectral res-

olution of 0.8 nm. The second MAX-DOAS instrument has a spectrometer that

covers the ultraviolet and visible range (332–508 nm) with a two-dimensional

CCD (512 × 2048 pixels) with a spectral resolution of 0.8 nm. Moreover, the
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telescope contains a video camera and a Mercury/Cadmium (HgCd) lamp for

wavelength calibration measurements. For more details see Peters et al. (2012).

2.5.2 Satellite instruments

The GOME, SCIAMACHY, OMI, and GOME-2 instruments are nadir view-

ing spectrometers providing the spectral coverage and resolution needed for

DOAS retrievals of atmospherics trace gases. These instruments measure the

light scattered by the atmosphere and reflected by the surface in the UV and

visible range. The principal characteristics of each of these instruments are ex-

plained below.

GOME instrument

The Global Ozone Monitoring Experiment was carried by the European Re-

mote Sensing platform (ERS-2). It had a double monochromator with a pre-

disperser prism and four holographic grating channels as dispersing elements.

These channels had wavelength intervals of 237–316 nm, 311–405 nm, 405–611 nm

and 595–793 nm. The spatial resolution was 320 km×40 km and the spectral

resolution was between 0.2 nm to 0.4 nm. The instantaneous field of view was

2.9°×0.14° (40 km×2 km). The GOME instrument had a global coverage of three

days and an equator crossing time of 10:30 LT (Local Time). The main objective

of the GOME mission was to observe the global O3 distribution and several other

atmospheric compounds that are related to global change issues (Burrows et al.,

1999). GOME data are available from April 1995 to July 2011.

SCIAMACHY instrument

The SCanning Imaging Absorption spectroMeter for Atmospheric CHartogra-

phY instrument was launched on the ENVISAT satellite in March 2002. It was an

enhanced version of the GOME instrument, designed for a wavelength operating

range of 214–2386 nm with spatial resolution of 60 km×30 km and a spectral

resolution of 0.2–1.5 nm. SCIAMACHY performed solar and lunar occultation

measurements and limb scans. It had an equator crossing time of 10:00 LT (half

an hour earlier than the GOME instrument), and an instantaneous field of view

of 1.8° × 0.045° (ground pixel size of 25 km×0.6 km). Global coverage was

achieved in six days at the equator (Bovensmann et al., 1999). SCIAMACHY
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has been used for retrieval of many trace gases including O3, NO2, SO2, HCHO,

CHOCHO, BrO, OClO, H2O and also aerosol properties, cloud cover and cloud

top high (Ladstätter-Weißenmayer et al., 2003; Wittrock et al., 2006, and refe-

rences therein). The SCIAMACHY instrument provided data from April 2002

to April 2012.

OMI instrument

The Ozone Monitoring Instrument is a nadir viewing imaging spectrograph

that measures backscattered radiation in the wavelength range from 270 to

500 nm with an average spectral resolution of about 0.5 nm and a spatial res-

olution of 13 km×24 km at nadir that can be zoomed to 13 km×13 km. The

radiation entering the telescope is split into two channels, the UV channel (270–

365 nm) and the visible channel (365–500 nm). The UV channel is subdivided

into two full performance ranges of 270–310 nm and 310–365 nm with spectral

resolutions of 0.42 nm and 0.45 nm, respectively. The UV channel enables re-

trieval of O3, HCHO, SO2, BrO, and OClO (González Abad et al., 2015), while

the visible channel enables retrieval of NO2 and CHOCHO (Chan Miller et al.,

2014; Alvarado et al., 2014; Anand et al., 2015). OMI has a swath width of

2600 km due to its wide field of view of 114°, which provides global coverage in

one day (14 orbits). This has a sun-synchronous polar orbit with an equator

crossing time at 13:45 LT (ascending node). The OMI instrument consists of a

two-dimensional CCD, one used for detecting spectral information (780 pixels)

and the other for spatial information (576 pixels). Thus, this does not use a scan

mirror as GOME, GOME–2(MetO–A and–B) and SCIAMACHY instruments

for recording spatial information. In addition, OMI does not have polarization

sensitivity, because it uses a polarization scramble which depolarizes the radia-

tion over all wavelength ranges. Moreover, OMI does not have a spectral lamp

onboard for the spectral calibration, but this is performed using a spectrum of

Fraunhofer lines and a spectral slit function measured on the ground. This cal-

ibration is only performed for the nadir row, because the calibration for every

single spectrum using this procedure would consume too much time (Levelt et al.,

2006). The OMI instrument provides data from October 2014 until today.
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GOME–2 instrument

The second Global Ozone Monitoring Experiment is one of the European in-

struments carried by the MetOp platforms, and consists of a series of three satel-

lites which carry 11 different scientific instruments with a mission duration of six

years for each one. The GOME–2 instrument consists of a double monochroma-

tor with a predisperser prism and four holographic gratings. The spectral range is

from 240 to 790 nm in four different channels (1. 240–315 nm, 2. 311–403 nm, 3.

401–600 nm, and 4. 590–790 nm) with a spatial resolution of 80 km×40 km and a

spectral resolution of 0.2–0.4 nm. The instantaneous field of view is 0.286°×2.75°
(4 km×40 km), and the instrument provides nearly daily global coverage (Cal-

lies et al., 2000). The GOME–2 instrument on board the MetOp–A platform

provides data from January 2007 until today, and the GOME–2 instrument on

board the MetOp–B since September 2012. MetOp–C is scheduled to launch in

August 2018. For now, we will refer to GOME–2 (MetOp–A and–B) as GOME–2

(A and B).
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Glyoxal retrieval from satellite

measurements

3.1 Introduction

In the last decades, the applications of remote sensing from space and in

particular by the DOAS technique have had a rapidly growing and important

role in the observations of atmospheric composition. There are many satellite

based studies of HCHO and somewhat fewer on CHOCHO. However, the exact

amounts of VOC emissions from anthropogenic, pyrogenic and biogenic sources

are unfortunately still unknown. The studies from satellites have been performed

using different instruments such as GOME (Burrows et al., 1999), SCIAMACHY

(Burrows et al., 1995; Bovensmann et al., 1999), OMI (Levelt et al., 2006), and

GOME–2 (Callies et al., 2000), which when combined provide a continuous data

set covering a period of 20 years. Below, a chronological overview of VOC re-

trievals from satellite measurements is presented. The first results reported of

HCHO retrieval from space were presented by Thomas et al. (1998) and Burrows

et al. (1999). Thomas et al. (1998) published results of HCHO slant columns over

southeast Asia from GOME measurements between August and October 1997,

finding slant column values in the range 2.5 to 4.0×1016molec cm−2. Burrows et

al. found tropospheric HCHO VCs up to 2.0× 1016molec cm−2, over Indonesian

biomass burning in summer-fall 1997, also from GOME measurements. Soon
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after, Chance et al. (2000) published results of HCHO observations over North

America for July 1996, also from the GOME instrument. This study reported val-

ues of HCHO in the range 2 to 3.0×1016molec cm−2 over North America. These

values were compared by Palmer et al. (2001) with global chemistry transport

model (CTM) results that showed an overestimation of 30% in simulated HCHO

VCs compared to GOME results. Abbot et al. (2003) and Martin et al. (2004b)

reported results from satellite observations over North America, the first one pre-

senting an evaluation of a multi-year (1995–2001) time series of HCHO columns

from the GOME instrument for determination of the seasonal and interannual

variability of isoprene emissions, showing a good consistency between known iso-

prene emissions and HCHO columns from GOME over this region. The latter

study reported a comparison of NO2 and HCHO from the GOME instrument

with insitu measurements from aircraft of tropospheric NO2 and HCHO columns

over eastern Texas and the southeast United States. These results showed a

mean absolute difference between both techniques of 6.0 × 1014molec cm−2 for

NO2 and 5.5× 1015molec cm−2 for HCHO.

Hewson et al. (2013) reported a characterisation of GOME–2 (A) HCHO

retrieval based on sensitivity tests for minimisation of the fitting residual, per-

forming an evaluation in the spectral fitting window for HCHO, as well as testing

the major parameters such as polynomial order, I0 correction, fitted ancillary ab-

sorbers and offset corrections. The results showed that changes in the spectral

fitting window produce variations in the retrieved HCHO SC around 190 and

390% globally. These tests provided an optimal group of parameters for HCHO

retrievals, based on the minimisation of error.

The most recent study by González Abad et al. (2015) focused on a new

HCHO retrieval from OMI measurements. They present an updated algorithm,

including a new high-resolution solar reference spectrum, additional interfering

species such as O4 and O3 at 295K, a new fitting window. In addition, they use

a model reference sector over the remote Pacific Ocean to correct for possible

biases and their temporal drift in the retrieved SC, leading to improvements in

the fit residual and reductions in the noise.

In order to improve our understanding of VOC sources and extend the amount

of data available, Wittrock et al. (2006) published the first global simultaneous

observation of HCHO and CHOCHO by the SCIAMACHY instrument. The

highest concentrations of both species were found over areas with large bio-

genic isoprene emissions and also in regions with anthropogenic emissions and
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biomass burning. Both HCHO and CHOCHO showed similar global patterns

and ratios of CHOCHO to HCHO around 0.05 in regions with biogenic emissions.

The study also presented a comparison of results from ground-based DOAS and

SCIAMACHY measurements, finding good agreement between both datasets.

In addition, Wittrock (2006) reported on the comparison of HCHO between the

SCIAMACHY and GOME instruments for January to March 2003 over Africa,

showing a correlation of 0.73 and a consistent agreement between both instru-

ments.

Kurosu et al. (2007) reported on the first CHOCHO retrieval from OMI

observations, presenting seasonally resolved global distributions of HCHO and

CHOCHO during twelve months (2005–2006) over regions of biomass burning

and anthropogenic sources. These results were compared with ground-based

measurements as well as with simulations from CTM.

De Smedt et al. (2008) published results of tropospheric HCHO from the

GOME and SCIAMACHY instruments during 1996–2007 using a new retrieval,

which led to a reduction in the columns over tropical forests of about 20–30%

compared to previous studies and also to reduce fitting errors.

Vrekoussis et al. (2009) reported on a new retrieval of CHOCHO from SCIA-

MACHY measurements, where the largest values over tropical and sub-tropical

regions were found as part of a study of temporal and spatial variability of

CHOCHO. This result was associated with high biological activity and plumes

from vegetation fires. Also, they found in the seasonality highest values during

the warm and dry periods due to the enhancement of biogenic activities and/or

biomass burning from natural and man-made fires. A study by Stavrakou et al.

(2009a) confirms the high emissions of CHOCHO from natural sources, however

the amount of these sources is still unknown and the comparison with simu-

lated CHOCHO columns led to a good agreement between both, but with an

underestimation in the simulated columns.

Vrekoussis et al. (2010) published the firsts retrievals of HCHO and CHOCHO

columns from the GOME–2 (A) instrument over regions with enhanced bio-

genic emissions. They used the ratio of CHOCHO to HCHO to classify different

sources. These results were compared with SCIAMACHY observations show-

ing good agreement for the period 2007–2008. Lerot et al. (2010) reported an

improved retrieval for CHOCHO and compared the results with model calcula-

tions. They presented for the first time a retrieval algorithm with a two–step

approach to reduce interferences in the CHOCHO analysis over some oceanic
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regions caused by liquid water absorption. The latter approach resulted in an

improvement of the fit quality and less unphysical negative CHOCHO columns

over clear water regions. The highest CHOCHO values were found over conti-

nental tropical regions and the comparison with simulated results from a CTM

showed that there are probably missing CHOCHO sources in the CTM.

A study over China by Liu et al. (2012) compared CHOCHO satellite obser-

vations with model simulated values. This comparison showed a large unknown

source of CHOCHO over China. They attributed this missing source to an un-

derestimation of aromatics emissions.

Chan Miller et al. (2014) reported on OMI retrievals of CHOCHO. They

showed that CHOCHO is very sensitive to the settings of the retrieval. Also,

Chan Miller et al. (2014) used a two–step approach similar to Lerot et al. (2010)

to reduce the interferences with liquid water over ocean regions. In addition,

they used a normalization region over the Sahara instead of the Pacific Ocean

region, which is used in other studies (Vrekoussis et al., 2009; Lerot et al., 2010).

In this chapter, results of an improved CHOCHO DOAS retrieval applied to

the radiances measured by OMI are presented. These results are extended to

data from the GOME–2 (A and B) and SCIAMACHY instruments. Sensitivity

tests have been performed aiming at the optimization of the CHOCHO retrieval

parameters, and at reducing spectral interferences with liquid water absorption

over ocean regions and with tropospheric NO2 absorption over areas with large

NOx emissions. Part of these results have been published in Alvarado et al.

(2014).

3.2 Optimization of the retrieval from satellite mea-

surements∗

For the retrieval of weak absorbers such as CHOCHO, an appropriate se-

lection of the fitting window is a prerequisite for deriving accurate SCs. Most

retrievals focus on avoiding spectral regions where interfering species have sig-

nificant absorption lines. Retrievals of CHOCHO are usually performed in the

spectral region between 420 and 460 nm, with polynomials of order 2, 3, or 4 for

removal of broad-band signatures, and including the respective interfering species

∗Parts of this section have been previously published as part of Alvarado et al. (2014).
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(Wittrock et al., 2006; Vrekoussis et al., 2009). As mentioned above, Lerot et al.

(2010) showed that absorption by liquid water interferes with CHOCHO re-

trievals over oceans, and a pre-fitting of the liquid water signature using a larger

fitting window was suggested to improve the CHOCHO retrievals. Despite these

efforts to achieve better CHOCHO retrievals, the results are still affected by large

uncertainties. Here, a new retrieval algorithm for the OMI measurement is pre-

sented based on detailed sensitivity tests, which has been extended to GOME–2

(A and B) and SCIAMACHY measurements.

For the glyoxal retrieval, the OMI, GOME–2 (A and B), and SCIAMACHY

level 1B calibrated data have been used, which are provided by NASA, EU-

METSAT, and ESA through DLR respectively. Also, a two-step wavelength

calibration has been applied which first aligns the irradiance spectrum to a high-

resolution Fraunhofer spectrum (Chance and Kurucz, 2010) and then the radi-

ance spectrum to the irradiance. An intensity offset is fitted as well. Additionally,

the quality flags provided by NASA are used to reduce problems with the row

anomaly in the OMI data2.

The additional settings used in the glyoxal retrievals within this work are

described in detail below.

3.2.1 Dependence on the fitting window

Systematic errors can be introduced into the glyoxal retrieval by possible

cross-correlations between reference cross-sections, by the influence of instru-

mental features, and by shifts in the wavelength calibration. Thus, a dependence

on the fitting window can be observed in the retrieved CHOCHO SCs, because

all these systematic errors exhibit a dependency on the wavelength interval.

In order to test the sensitivity of the retrieval on the wavelength interval

selected and to find an appropriate fitting window for the CHOCHO retrieval,

a synthetic measurement spectrum of backscattered Earthshine was computed

using the radiative transfer model SCIATRAN (Rozanov et al., 2013). A satellite

measurement in nadir geometry, at solar zenith angle of 41°, and at constant

surface reflectance of 5% was simulated in the wavelength range of 365–500 nm

at a spectral sampling of 0.2 nm. Absorption cross-sections of CHOCHO and

2The row anomaly is a dynamic anomaly, which changes over time and corresponds to row

on the CCD detectors. This anomaly affects the quality of the level 1B radiance data at all

wavelength of particular OMI viewing direction and shows differences between channels.
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Figure 3.1: Colour mapping of the relative difference of CHOCHO SCs with re-

spect to the a priori (“true value”)

SCfitted−SCtrue

SCtrue
× 100


retrieved

from a synthetic spectrum for wavelength intervals with start limits

of 420–437 nm and end limits 442–460 nm (top). Glyoxal absorption

cross-section at 296K (Volkamer et al., 2005b); blue and green lines

mark the start and end of the favourable wavelength intervals, respec-

tively, with the main absorption bands in the shaded area (bottom).
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Table 3.1: Regions selected for Fig. 3.3.

Latitude [°] Longitude [°] Date

Africa −5.0± 3.0 13.5± 0.5 9 Aug 2007

Brazil −8.5± 3.5 −64.5± 2.5 19 Aug 2007

Europe 49.5± 3.5 7.0± 5.0 20 Aug 2007

NA 31.0± 3.0 −82.5± 1.5 14 Aug 2007

Desert 22.0± 3.0 20.0± 4.0 15 Aug 2007

Ocean 25.0± 1.0 144.0± 1.0 1 Aug 2007

interfering species (NO2, O3, H2Ovap, and O4; see Fig. 3.2), degraded to the

OMI spectral resolution, were used to model absorption processes in the light

path. However, rotational Raman scattering (Ring effect) was not included in

the model simulation. For the atmospheric profiles, the assumption was made

of a CHOCHO concentration profile, exponentially decreasing with altitude, and

no stratospheric contribution. The sensitivity test consists of retrievals of glyoxal

SCs in different wavelength intervals. The results are shown in Fig. 3.1 (top),

where each pixel corresponds to one CHOCHO SC retrieved using one particular

wavelength range and is colour coded according to the relative difference between

the retrieved and a priori SC (2.69×1015molec cm−2). The wavelength intervals

have start limits of 420–437 nm, end limits of 442–460 nm, the limits have steps

of 0.2 nm, and a polynomial of order 3 is used in the retrievals. This test follows

the method developed in Vogel et al. (2013).

In general, the observed deviations are mostly rather small (i.e. < 4%). The

largest deviations are found for wavelength ranges with start limits between 420–

430 nm and end limits of 442–448 nm, which correspond to the wavelength region

where glyoxal only has weak absorption bands and consequently the interference

with the strong absorbers (e.g. NO2 and O3) is more significant. These deviations

decrease for start and end wavelengths in the ranges 430–437 and 448–454 nm,

respectively, as these ranges include an additional glyoxal band with greater ab-

sorption than those found between 420 and 430 nm. Nevertheless, interferences

with the absorption bands of NO2, O3, O4, and H2Ovap are present in these

wavelength ranges (see Fig. 3.2), the last two being the dominant species. Con-

sequently, the deviations decrease when the strongest absorption band of glyoxal
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Figure 3.2: Different absorption cross-sections degraded to the OMI resolution in-

cluded in the glyoxal retrieval. CHOCHO at 296K (Volkamer et al.,

2005b); NO2 at 220K (Vandaele et al., 1998), O3 at 223K (Bogumil

et al., 2003), H2O at 295K (Rothman et al., 2005), and O4 at 203K

(Thalman and Volkamer, 2013).

is included, the most accurate retrievals being found in the wavelength intervals

with start limits of 430–436 nm and end limits of 456–460 nm. Thus, the best

wavelength intervals for the retrieval of glyoxal from synthetic spectra simulated

for the specific scenario described above, have start limits of 430–436 nm and end

limits of 456–460 nm, corresponding to deviations close to zero from the a priori

SC. In Fig. 3.1 (bottom), the blue lines mark these start limits and the green

lines the end limits.

To compare these results with real data, a similar test was performed for
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Figure 3.3: CHOCHO SC means retrieved over selected regions from OMI mea-

surements for wavelength windows with start limits of 420–437 nm and

end limits of 442–460 nm, during different days on August 2007 (see

Table 3.1).

selected relatively small areas over Africa, Europe, North America (NA), Brazil,

a desert region, and an oceanic area (see Table 3.1). These regions were se-

lected to be representative for different CHOCHO levels and sources, as well as

for possible interfering effects (sand, liquid water absorption). For each region,

more than 100 spectra measured by OMI were included to obtain significant

results and to limit the effect of measurement noise (with SC detection limits

between 0.5 × 1014molec cm−2 and 2.0 × 1014molec cm−2). The retrieval set-

tings were identical to the synthetic test described above; additionally, the Ring

cross-section and an intensity offset were included. Figure 3.3 shows averages of

the retrieved SCs for each region and for all wavelength ranges. The variation

in retrieved SCs is large on real data for all regions selected, highlighting the

fact that glyoxal retrievals are very sensitive to details of the fitting parameters

selected. A similar variability in the results is found for ground-based data (see

Sect. 6.3) as well as for SCIAMACHY and GOME–2 (A) measurements over

two selected regions (see Fig. 3.4), but the observed pattern of deviations varies.

This indicates that both interference between absorption from different absorbers
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and also instrumental effects may play a role. In the absence of validation data,

the true columns are not known for this test on real measurements. However,

some consistency considerations can help to make a choice for the fitting range.

First, the strongest absorption band of glyoxal should be included in the fit-

ting window, because without this band, interferences with other species in the

wavelength range of weak glyoxal absorption bands (420–450 nm) are stronger

and sometimes lead to unphysical results. This restricts our intervals to start

wavelengths of 420–437 nm and end wavelengths of 456–460 nm. Second, the

SC averages obtained over the desert in the restricted region are mostly nega-

tive for start wavelengths below 432 nm (larger fitting windows, Fig. 3.3), most

likely due to soil interferences (Richter et al., 2011). In addition, large CHOCHO

SCs are retrieved from the SCIAMACHY data, and SCs around zero from the

GOME–2 (A) data for wavelength windows with start limits below 432 nm over

the desert region. Under normal circumstances, however, no CHOCHO can be

expected in the desert atmosphere. Thus, the fit windows can be limited to start

wavelengths between 432 and 437 nm, which correspond to mean values close to

zero for the three instruments, and also correspond to lower root mean square

(RMS) values of the spectral fit for the Africa region (see Fig. 3.5). Then, the

chosen wavelength intervals can be restricted again to start limits between 432

to 437 nm and end limits between 456 to 460 nm, which also show homogeneous

patterns for Africa, Brazil, Europe, and the North America region within the

chosen wavelength ranges and also have limits similar to the wavelength ranges

obtained from the synthetic spectrum. However, over the ocean region, negative

SC means are obtained, probably as a consequence of interference with liquid wa-

ter absorption (Lerot et al., 2010; Alvarado et al., 2014). Additionally, the fitting

windows used for glyoxal retrievals in previous studies are found in these chosen

wavelength intervals (Vrekoussis et al., 2010; Lerot et al., 2010; Alvarado et al.,

2014). Despite the good consistency found for OMI data over the selected re-

gions, the glyoxal retrieval appears to be sensitive to small changes in wavelength

and it is a challenge to determine the most appropriated fitting window.
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Figure 3.4: Colour mapping of absolute CHOCHO SCs for different wavelength

with start limits of 420–437 nm and end limits 442–460 nm retrieved

from the GOME–2 (A, top) and SCIAMACHY (bottom) measure-

ments over two Africa regions (large forest and desert), during different

days in August 2007.

In the following, we will use a fitting window extending from 433 to 460 nm

(within the chosen wavelength intervals), as indicated by the shaded area in

Fig. 3.1 (bottom), which is slightly larger than the fitting windows used in previ-

ous studies (e.g. Vrekoussis et al., 2010; Alvarado et al., 2014). In addition, when

the liquid water cross-section is included in the glyoxal retrieval (see Sect. 3.2.3), a

reduction in the number of negative glyoxal SCs is observed over ocean using this

wavelength range in comparison to a smaller fitting window (e.g. 434–458 nm)

for all three instruments. This wavelength range covers the strong CHOCHO

absorption bands, which have already been used to retrieve glyoxal from ground

47



3.2 OPTIMIZATION OF THE GLYOXAL RETRIEVAL FROM SATELLITE
MEASUREMENTS

Figure 3.5: RMS obtained in the glyoxal retrieval from OMI (left), the GOME–

2 (A, middle) and SCIAMACHY (right) measurements for different

fitting intervals, with start limits of 420–437 nm and end limits 442–

460 nm over large forest area (Africa) during a day in August 2007.

and ship-based instruments (Sinreich et al., 2007, 2010) as well as from satellite

measurements (Wittrock et al., 2006; Vrekoussis et al., 2009, 2010; Lerot et al.,

2010).

3.2.2 Dependence on the polynomial order

Another main parameter in the DOAS retrieval is the order of the polynomial

accounting for broadband features in the measured spectra. Experience shows

that a low-order polynomial helps to avoid instability in the fit, while increasing

the degree usually improves the fitting residual, in particular for large fitting

windows. In order to evaluate the dependence of the fit results on the polyno-

mial degree, the glyoxal retrievals were performed for both cases (i.e. using the

synthetic spectrum and real data) for polynomial orders 2, 3, and 4. For the syn-

thetic spectrum, Fig. 3.6 (top) shows the deviations of the CHOCHO SCs from

the a priori SC, for polynomial degrees 2, 3, and 4. For the specific conditions

of the simulated spectrum, the results are similar for polynomial,orders 3 and 4,

while the SCs retrieved with polynomial order 2 show larger deviations from the

true value for most wavelength intervals and more variability for the wavelength

ranges where the deviations are close to zero for the polynomial orders 3 and 4.

For comparison, glyoxal columns from OMI measurements over two small re-

gions (Africa and North America) have been retrieved for August 2007, as high

glyoxal levels are expected over these areas in summer, which are attributed to

biogenic activity and biomass burning. Figure 3.6 (middle and bottom) shows
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Figure 3.6: Colour mapping of CHOCHO SC deviation with respect to the a pri-

ori (“true value”), retrieved from a synthetic spectrum for wavelength

intervals with start limits of 420–437 nm, end limits 442–460 nm, and

polynomial degrees 2, 3, and 4 (top). CHOCHO SC means retrieved

over Africa and North America for August 2007 (see Table 3.1) from

OMI measurements for different wavelength ranges and polynomial

orders (middle and bottom).

similar patterns for polynomial order 3 in both regions and a more homogeneous

behaviour than polynomial order 4 for the chosen wavelength ranges, while re-

sults using polynomial degree 2 show more variability in the CHOCHO SCs for

the wavelength area of interest. However, among the instruments, the polynomial
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Figure 3.7: Maps of monthly averaged glyoxal slant columns retrieved from OMI

measurements for August 2007 (top). Cloud screening has been ap-

plied in all maps (see Sect. 3.2.6). CHOCHO SCs obtained using the

standard CHOCHO retrieval without liquid water absorption cross-

section (left), by using the two-step fit (centre), and including the liq-

uid water absorption cross-section in the standard CHOCHO retrieval

(right).

degree 4 show a more consistent result than polynomial degree 2 and 3. In view

of small differences found between polynomial degrees 3 and 4, and more consis-

tency in the result among instrumens for polynomial degree 4, in the following a

polynomial order of 4 is selected in the glyoxal retrieval for all instruments. The

differences in the polynomial for the different instruments is probably the result

of instrument calibration issues.

3.2.3 Interference with liquid water absorption

One of the main problems in glyoxal retrievals found by Vrekoussis et al.

(2009) was the negative CHOCHO SC values over the remote Pacific Ocean,

possibly due to interferences from the absorption by liquid water. Later, similar

results were found by Lerot et al. (2010), who proposed a two-step retrieval to

reduce the negative values over ocean regions. In a first step, they retrieved

liquid water SCs from a large fitting window (405–490 nm). In a second step,

they then retrieved glyoxal SCs in the wavelength range of 435–460 nm, fixing

the liquid water SC to the results from the first step. This method worked well

for GOME–2 fits, significantly reducing the impact of liquid water absorption on

the glyoxal fits. Similar problems of interferences over ocean regions were found

in the glyoxal retrieval from OMI measurements.
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In order to reduce the number of negative glyoxal SCs over the remote Pacific

Ocean, two different approaches were tested. First, the approach proposed by

Lerot et al. (2010) is followed and a two-step fitting procedure is applied, where

the absorption by liquid water is determined in a pre-fit using a wavelength

range of 410–495 nm. Second, the liquid water cross-section is introduced in the

standard glyoxal fit. Figure 3.7 shows a comparison of monthly global maps of

CHOCHO SCs for August 2007, standard (left), two-step(centre), and including

the liquid water absorption cross-section (right).

All three maps show a similar pattern over ocean, with negative values of

varying amplitude over clear water regions. Clearly, SCs obtained from the

standard retrieval without the liquid water absorption cross-section have more

negative results over oceans than the two retrievals that add this cross-section. In

addition, the standard glyoxal retrieval shows a dependence of CHOCHO SCs on

latitude in comparison to those that include the liquid water cross-section in the

retrieval. Figure 3.8 shows CHOCHO SC means retrieved over a small oceanic

region at different latitudes (latitude: 55.0°±1.0°, 25.0°±1.0°, 0.0°±1.0°, -25.0°±
1.0°, -55.0°± 1.0°; longitude: 144.0°± 1.0°) for different wavelength intervals. As

can be seen from the figures showing the dependence on fitting window, the two-

step approach and including the liquid water cross-section reduce the number of

negative glyoxal SCs and their latitudinal dependence over the oceans, however

the two-step approach has slightly more variability in the wavelength ranges

chosen as optimal in the Sect. 3.2.1.

The two-step approach and including the liquid water cross-section in the fit

show similar behaviour over ocean and both significantly reduce the number of

unphysical negative values over these regions. The approaches show some differ-

ences in CHOCHO SCs over land (see Fig. 3.7), mainly over desert regions, most

likely due to spectral interferences with sand (Richter et al., 2011). Figure 3.9

shows CHOCHO SC averages for the standard fit, the two-step fit, and including

the liquid water cross-section retrievals as function of longitude for the latitude

range of 21.0° N±7.0°. The two-step approach and including the liquid water

cross-section show a significant reduction of the number of negative SCs over

ocean (Longitudes < −17.0°) in comparison to the standard retrieval, similar to

the observation made from the global maps. However, large differences are found

over land (Longitudes > −17.0°) between the two-step approach and the other

two retrievals, most likely as a consequence of interferences with sand.

Based on the global behaviour, the smallest number of negative values is
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Figure 3.8: CHOCHO SC means retrieved using the standard retrieval without

liquid water absorption cross-section (left), by using the two-step ap-

proach (centre), and including the liquid water absorption cross-section

(right) at different fit windows with start limits of 420–437 nm and end

limits 442–460 nm over ocean (latitudes of 55° N–55° S and longitudes

of 144.0° ± 1.0°) from OMI measurements on 1 August 2007.
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Figure 3.9: CHOCHO SC means retrieved using the standard CHOCHO retrieval

(black), by using the two-step fit (red), and including the liquid water

absorption cross-section in the standard CHOCHO retrieval (blue) for

latitudes (21.0° N±7.0°) as function of longitude from OMI measure-

ments in August 2007.

obtained when including the liquid water cross-section directly in the fit. As no

significant differences with respect to the standard retrieval are observed over

land as a consequence of introducing this cross-section, this option was selected

for the final data product.

Although the CHOCHO SCs retrieved by including the liquid water cross-

section are improved over the oceans, the interference with liquid water is still

present to a lesser degree, judging from the fact that some regions with negative

CHOCHO SC values still remain over ocean. Whether this is the result of non-

optimal cross-sections for liquid water (Peters et al., 2014) or other effects such

as vibrational Raman scattering in the ocean water cannot be determined at this

point.

3.2.4 Interference with NO2 absorption

Some urban and industrial regions show high levels of glyoxal (e.g. the large

urban agglomerations Johannesburg, Los Angeles, Beijing, and Guangzhou) due
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Figure 3.10: Monthly maps of NO2 SCs, CHOCHO SCs, SC absolute and chi-

square relative differences between retrievals with and without high-

temperature NO2 absorption cross-section over Los Angeles, Johan-

nesburg, and East China for September 2007. (A) CHOCHO SCs

retrieved with 220KNO2 cross-section. (B) An additional NO2 cross-

section at high temperature (294K) is included in the retrieval.
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to the production of CHOCHO from aromatics and acetylene (Volkamer et al.,

2007; Myriokefalitakis et al., 2008; Liu et al., 2012). However, the observed

CHOCHO signal could potentially also be influenced by spectral interferences

with tropospheric NO2, which is very abundant in these regions (see Fig. 3.10,

top) and also shows strong absorption lines inside the CHOCHO fitting window.

To test this, an additional NO2 absorption cross-section measured at high tem-

perature (i.e. typical for the surface, 294K) was included in the glyoxal retrieval

to better represent near-surface NO2.

Monthly maps of glyoxal SCs for September 2007 are shown in Fig. 3.10.

Including the high-temperature NO2 absorption cross-section in the fit leads to

decreased glyoxal SC values over pollution hot-spots and improves the fitting

residuals. The improvement of chi-square values over these regions is up to 5%

and even larger in some cases. However, glyoxal values still remain high in all

cases, indicating that the observed enhancements are not artefacts but rather

indicate genuine anthropogenic sources.

To further investigate the effect of including the high-temperature cross-

section of NO2, a comparison between the glyoxal seasonal variation including

and excluding this additional term is presented in Fig. 3.11 (top and middle),

retrieved from the OMI and SCIAMACHY instruments for the regions of Beijing

(latitude: 37.5°±2.5°; longitude: 115.5°±1.5°) and Congo (latitude: −4.0°±2.0°;
longitude: 18.0° ± 2.0°).

The results show similar seasonal variability. However there are large dif-

ferences (larger than 30%) observed during winter especially in Beijing, where

the anthropogenic emissions of NOx are higher than in Congo (see Fig. 3.11,

bottom), because the latter is mainly influenced by biogenic sources and fires.

Moreover, these differences between datasets are observed for both instruments.

This result shows that the temperature dependence of the NO2 absorption cross-

section should be taken into account in case of large tropospheric NO2 columns to

limit as much as possible the seasonal dependent systematic errors of the glyoxal

column caused by spectral interferences.

3.2.5 Dependence on the water vapour cross-section

From ground-based observations, potential interferences of water vapour with

glyoxal have been identified pointing at possibly insufficient quality of existing

water vapour cross-sections. In some cases, measured water vapour cross-sections
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Figure 3.11: Seasonal variation of glyoxal SCs including and excluding the high-

temperature NO2 absorption cross-section from OMI and SCIA-

MACHY instruments (top and middle), and NO2 SCs (bottom) over

Beijing (left: latitude, 37.5°±2.5°; longitude, 115.5°±1.5°) and Congo

(right: latitude, −4.0° ± 2.0°; longitude, 18.0° ± 2.0°) for 2007.

have been used to improve the glyoxal retrieval (Sinreich et al., 2007, 2010). How-

ever, evidence for problems with water vapour cross-sections in satellite observa-

tions has not been published so far. In order to evaluate the potential influence

of the choice of water vapour cross-section on the glyoxal retrieval, four different

water vapour cross-sections were tested in the glyoxal retrieval from OMI data

(i.e. Rothman et al., 2005, 2009, 2010, 2013) and the results were compared.

First, the relative differences of chi-square between retrievals using the different

water vapour cross-sections are computed, assuming the database HITRAN–

2005 (Rothman et al., 2005) as reference. The relative differences between the

glyoxal–HITRAN–2005 retrieval and those using the other cross-sections led to

global differences no larger than 2.0% (see Table 3.2). At closer inspection, the

comparison between retrievals using HITRAN–2005 and HITEMP (Rothman

et al., 2010) water vapour cross-section led to relative differences in the chi-

square no large than 2.0 %, which does not indicate a significant improvement
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Figure 3.12: Global maps of chi-square relative differences between glyoxal re-

trievals from OMI measurements using different water vapour cross-

sections for August 2007. Relative differences between HITRAN–

2005 and HITEMP (left), and HITRAN–2005 and HITRAN–2012

(right).

Table 3.2: Chi-square relative difference and P values from the Wilcoxon signed-

rank test for five regions have been computed, using as reference water

vapour cross-section the one from the HITRAN–2005 database (Roth-

man et al., 2005).

Rel. diff. max. Africa China NA Pacific Desert

(Chi-square) Pchis Pchis Pchis Pchis Pchis

HITRAN–2008 2.0% 0.395 0.218 0.350 0.176 0.350

HITEMP −1.5% 0.511 0.227 0.235 0.054 0.001

HITRAN–2012 1.0% 0.603 0.981 0.702 0.785 0.874

in the retrieval. It should also be noted that the chi-square becomes worse when

using the water vapour cross-section from the HITEMP database (see Fig. 3.12,

left). However, the chi-square relative differences obtained between retrievals us-

ing HITRAN–2005 and HITRAN–2012 Rothman et al. (2013) are even smaller

and not larger than 1.0 % (see Fig. 3.12, right).
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In order to evaluate the significance in the change of chi-square, a statistical

test was performed between retrievals using HITRAN-2005 and the other water

vapour cross-sections. As the chi-square values are non-normally distributed,

the Wilcoxon signed-rank test is used, where the null hypothesis assumes that

two populations have an identical distribution at the significance level of 0.05

(P value). If the P values are larger than 0.05, the chi-square values are not

significantly different in the glyoxal retrievals, and if they are smaller than 0.05,

the difference is considered to be significant. In Table 3.2, the P values (Pchis)

obtained for five selected regions (Africa, China, North America (NA), Pacific,

and desert) are summarized. Pchis > 0.05 were obtained for almost all regions

with the exception of Pchis over the desert between glyoxal–HITRAN–2005 and

glyoxal–HITEMP retrievals, which is smaller than 0.05. However, the chi-square

values are not improved using the HITEMP water vapour cross-section and also

over the desert it is well known that there are interference problems due to sand

reflectance (Richter et al., 2011). Thus, the chi-square relative differences among

the different retrievals are considered not to be significant. Despite that, there

are some differences in glyoxal SCs between retrievals, however these are rather

small and to this point it is not clear which cross-section produces better values.

For that reason, the decision was taken to use the water vapour cross-section

from the HITRAN–2005 database in our retrieval.

3.2.6 The effects of clouds on the glyoxal retrieval

In the CHOCHO retrieval a number of corrections and their effects need

to be taken into account. This section is focused on investigating the effect of

cloud screening in the glyoxal retrieval. Clouds are highly reflective and usually

above a CHOCHO pollution layer, because CHOCHO amounts are expected to

be close to the surface. Clouds have significant effects on trace gas retrievals from

satellite observations in the ultraviolet and visible spectral ranges. Only 5–15

% of all measurements of spatial resolutions of 10× 10 km2 are cloud-free pixels

(Krijger et al., 2007). Clouds can shield the trace gases below them from top

of atmosphere observations. Furthermore, clouds can enhance the visibility of

trace gases above them due to the larger spectral reflectance compared to most

ground surfaces. In addition, clouds can enhance the visibility of trace gases

in their upper part due to multiple scattering by increasing the light path of

photons in this altitude range. Theses effects of clouds on the light path depend

on the cloud fraction, cloud height, trace gas profile, aerosol loading and surface
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Table 3.3: Regions selected for test the glyoxal SC dependence on cloud fraction

(Fig. 3.14).

Latitude [°] Longitude [°] Month

Region 1 39.0± 2.0 −68.0± 2.0 August 2007

Region 2 47.5± 2.5 −7.5± 2.5 August 2007

Region 3 −10.0± 5.0 7.5± 2.5 August 2007

Region 4 −5.0± 5.0 22.5± 7.5 August 2007

Region 5 23.0± 7.0 102.0± 10.0 April 2007

reflectivity (Krijger et al., 2007).

In this study, the parameter used for investigating the effects of clouds on

the glyoxal fields is the cloud fraction. For OMI CHOCHO retrievals, a cloud

screening is applied based on the OMI O4 cloud product (Acarreta et al., 2004).

For GOME–2 (A and B) and SCIAMACHY, a cloud screening based on the algo-

rithm Fast Retrieval Scheme for Clouds from the Oxygen A band (FRESCO+)

is applied (Wang et al., 2008). In Fig. 3.13, global glyoxal SC fields are compared

for different cloud fraction ranges (0.0 < CF < 0.1; 0.0 < CF < 0.3; 0.5 < CF <

1.0) for August 2007. The figure shows that the difference between the first two

is only moderate and more significant for the last case, because the tropospheric

glyoxal signal is reduced over hot-spots and enhanced over ocean in comparison

of the other two. This enhancement over ocean and some land areas in cloudy

measurements could be related to transport events (see Sect. 5.3.2).

Thus, five different regions over ocean and land have been selected in order

to evaluate the dependence of glyoxal SCs from the cloud fraction threshold (see

Table 3.3). Figure 3.14 shows the CHOCHO SC dependence on cloud fraction for

five regions characterized by outflow and biomass burning hot-spots from OMI

and GOME–2A measurements. The dependence on the cloud fraction for the

five regions is similar for both instruments with the major differences found for

regions 3 and 5 (land areas). Regions 1, 2, and 3 correspond to areas over ocean,

where usual outflow of glyoxal is observed. CHOCHO SCs increase for high

cloud fraction, showing a similar behaviour for regions 1 and 2, while in region

3 the CHOCHO SC are high for most cloud fractions and have some differences

between both instruments, which could be related to the transport events that
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Figure 3.13: Comparison of CHOCHO SCs retrieved from GOME–2A measure-

ments for August 2007 using different cloud fraction selection criteria,

0 to 0.1 (top), 0 to 0.3 (middle), and 0.5 to 1 (bottom).
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Figure 3.14: Glyoxal SC dependence on the cloud fraction for five selected regions

in OMI and GOME–2A measurements. For region 1 to 4, the mea-

surements correspond to August 2007, while for region 5 April 2007

data is shown.

have been observed over this region (see Sect. 5.3.2). For region 4, the glyoxal

SCs increase for lower cloud fractions indicating that CHOCHO is close to the

surface (Vrekoussis et al., 2009), in fact glyoxal amounts over this region are

large due to pyrogenic emissions. For region 5, where transport of glyoxal has

been observed similar to region 3, especially during the biomass burning season

(March–April), the dependence on cloud fraction is not clear and high glyoxal
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columns are found for all cloud fractions. Glyoxal has as primary source biomass

burning (produced close to the surface, similar as in region 4), however it also

is produced during the oxidation process of other VOC which can occur at high

altitudes and thus, glyoxal may have this behaviour.

In order to reduce the effect of clouds in the glyoxal retrieval, a cloud fraction

threshold of 0.3 is applied, because glyoxal SCs decrease for cloud fraction thresh-

olds larger than 0.3 over “hot-spots”, where large glyoxal amounts are expected

close to the surface (and not at high altitudes because of its short lifetime). How-

ever, more tests are needed in order to properly asses the effect of clouds and

aerosols on the glyoxal retrieval from satellite measurements.

3.2.7 The reference spectrum

For satellite retrieval of traces gases by the DOAS method, normally a solar

irradiance spectrum is used as reference spectrum as shown in Fig. 2.9. However,

for instruments using an imaging spectrometer such as OMI, offsets (“stripes”)

are sometimes observed between viewing directions (solar and terrestrial) due

to different sources such as small differences in the dark current correction or

pixel damage. In Fig. 3.15 (left), an example of OMI glyoxal SC for an orbit

measured on 12 August 2007 is shown and stripes between the different viewing

directions are observed. Therefore, a correction needs to be applied to the OMI

measurements for an optimum quality of the retrieved SCs.

The approach consists of a statistical evaluation of a large dataset of CHO-

CHO SCs over a limited region, and the assumption that the CHOCHO VCs

do not depend on the viewing direction in that region (Boersma et al., 2007).

Here, we assume that the variations in glyoxal air mass factor are small close to

the equator and only correct for the change in viewing zenith angle. The me-

dian SC is computed for a number of measurements over a selected region (lat.

30°N–30°S; long. 160°E–140°W), and the mean deviation from this value for

each viewing direction is computed. Then, the pattern is corrected for all SCs

by adding it as an offset. The corrected orbit shows a significant reduction of

the stripes between the different viewing directions in comparison to the retrieval

without the correction (Fig. 3.15, middle).

However, one alternative in the glyoxal retrieval would be to use as back-

ground spectrum a daily backscattered spectrum (known as Earthshine spec-

trum) measured over a region where glyoxal levels are low. This approach has
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Figure 3.15: Glyoxal SCs retrieved from OMI data (orbit 16362) using the Sun

spectrum as reference with (middle) and without (left) destriping cor-

rection, and using the Pacific region as a reference spectrum (right).

Figure 3.16: RMS relative differences

RMSsun−RMSPacific

RMSSun


obtained from the OMI

glyoxal retrieval for the orbit 16362 between retrievals using the Sun

spectrum and Pacific region as reference spectrum.
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Table 3.4: CHOCHO retrieval settings for reference spectrum intercomparison for

OMI measurements.

Retrieval 1 Retrieval 2

Instrument OMI

Fitting window 433–460 nm

Polynomial 4

Cross-sections CHOCHO, O3 (223K),

NO2 (220K and 294K)

O4, H2Ovap, H2Oliq, Ring

Cloud fraction 0.3

Ref. spectrum Sun (fixed) Pacific region (daily)

already been applied in the retrieval of iodine monoxide (IO) from SCIAMACHY

(Schönhardt et al., 2008), HCHO from GOME (De Smedt et al., 2008), and most

recently NO2 from OMI measurements (Anand et al., 2015). In all cases, a re-

duction of residual instrumental noise has been observed, which is introduced by

differences between the viewing mode of measurements (solar and terrestrial) as

is mentioned above. Thus, daily backscattered spectra averaged over a remote

Pacific region (lat. 50°N–50°S; long. 160°–235°) have been used as reference

spectrum in the glyoxal retrieval. The glyoxal SCs retrieved by using the Earth-

shine spectrum as reference show no stripes between viewing directions in the

OMI CHOCHO SCs (Fig. 3.15, right), and also a significant reduction in the

residuals is observed. In Fig. 3.16, RMS relative differences between glyoxal re-

trievals using the Sun as reference (destriped) and those using the Pacific region

are shown. The observed improvement in the retrieval is generally up to 20% in

RMS and in some cases it is up to 40%.

In addition, when using the Pacific region as reference spectrum, the inter-

ferences with liquid water over remote Pacific areas are partially cancelled out.

Similar improvements are observed for glyoxal retrievals from SCIAMACHY and

GOME–2 (A and B) measurements, when a region over the Pacific is used as

reference spectrum.

In order to evaluate the impact of the reference spectrum on the glyoxal SC,

monthly mean glyoxal SCs retrieved by using the Sun (retrieval 1) and the Pacific

region (retrieval 2) as reference spectrum are compared. Table 3.4 summarizes
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Table 3.5: Regions selected for Fig. 4.3.

Abbrev. Latitude [°] Longitude [°]

N-America NA 33.5± 6.5 −83.5± 10.5

S-America SA −5.0± 4.0 −50.5± 6.5

C-Africa AFC −2.0± 14.0 9.5± 24.5

India IND 26.0± 8.0 81.0± 13.0

NE-China CHN 33.5± 6.5 116.5± 6.5

Australia AUS −14.5± 4.5 136.5± 9.5

Figure 3.17: Comparison of glyoxal SCs over 6 selected regions (see Table 3.5)

between retrievals using the Sun spectrum and Pacific region as ref-

erence spectrum for 2007.

the main fitting parameters used in the glyoxal retrievals from OMI. For this

comparison, six regions over continents with large production of glyoxal from

biogenic, anthropogenic and pyrogenic sources have been selected (see Table 3.5).

In Fig. 3.17, time series of monthly mean CHOCHO SCs over these six regions

are shown for the year 2007. The monthly observations are averaged within each

of the areas. The temporal variabilities of both retrievals have a very good con-

sistency and overall good agreement between them for all six regions. However,
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Figure 3.18: Glyoxal SC relative differences

SCsun−SCPacific

SCSun


obtained from the

OMI glyoxal retrieval for 2007 between retrievals using the Sun spec-

trum and Pacific region as reference spectrum.

on closer inspection some differences between retrievals are observed for January

in all regions, corresponding to relative differences of about 14% (see Fig. 3.18).

For the other months in 2007, these differences decrease to 5% and are sometimes

even smaller for most regions, S-America being an exception where the differ-

ences are more pronounced for several months. These differences over S-America

could be related to interferences in the measurements over the Southern Atlantic

Anomaly (SAA)3.

In addition, correlation coefficients are determined by assuming a linear rela-

tionship between glyoxal SCs from retrievals 1 and 2 for the same four of the six

selected regions above (see Table 3.5). The computations were performed using

daily mean glyoxal SCs for both retrievals. The correlation coefficients obtained

for all regions are larger than 0.97 and slopes are nearly 1, which proves the

strong correlation and agreement between the retrievals.

The differences found between retrievals are small and the improvement in

the fit residual using the Pacific region as reference is significant, and no stripes

are introduced due to the different viewing modes of the measurements (solar

and terrestrial). The Pacific region is used as reference spectrum in the glyoxal

3The SAA is a region where the Earth’s inner Van Allen radiation belt comes closest to the

Earth’s surface, leading to an increase of energetic particles flux in this area. Thus satellites

orbiting the Earth are expose to high radiation levels (more than usual) causing technical

problems in the measurements from these. This effect is due to the non-concentricity of the

Earth and its magnetic dipole, being SAA the near area where the Earth’s magnetic field is

weaker relative to an idealized Earth centered dipole field.
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Figure 3.19: Correlation plots for 4 selected regions (see Table 3.5) between glyoxal

columns retrieved using Sun and Pacific region as reference spectrum

for 2007. Additionally, the respective distribution of each dataset are

showed.

retrieval for OMI and applied to the SCIAMACHY and GOME–2 (A and B) as

well. Despite the fact that these instruments are not imaging spectrometers as

OMI, there are other causes of interferences introduced by using a Sun spectrum

as reference in the glyoxal retrieval. In Fig. 3.20 (blue line), glyoxal SCs retrieved

from GOME–2A measurements over the Pacific (30°S–30°N, 180–240°E) using
similar fitting parameters to retrieval 1 (see Table 3.4), but using as reference

a Sun spectrum are shown. CHOCHO SCs show a seasonal variability over the
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Figure 3.20: Comparison of GOME–2A glyoxal SCs over the Pacific using daily

Sun reference spectrum and daily Region as reference spectrum from

2007 to 2014.

Pacific and very large negative SCs, which are introduced by problems in the

daily Sun reference spectrum. Similar behaviour is observed for NO2 SCs over

the Pacific (Andreas Richter, personal communication), which are also associated

with artefacts introduced by the Sun reference spectrum. However, if daily spec-

tra from the Pacific region are used in the retrieval (retrieval 2), the number of

negative glyoxal SCs is reduced and no seasonal variability is observed (Fig. 3.20,

black line).

3.3 Glyoxal detection limits and errors∗

When investigating the uncertainty of the retrieved glyoxal columns, several

effects have to be taken into account. Photon-shot noise, related to the number

of photons collected in a single measurement and governed by the probability

distribution of incoming photons (Burrows et al., 2011), together with readout

noise and the dark signal in the detector, are the main sources of random errors

in the radiance measurements. Systematic errors in the slant columns are intro-

duced by uncertainties in reference spectra, an imperfect wavelength calibration,

and instrumental features (Boersma et al., 2004; De Smedt et al., 2008; Vrek-

oussis et al., 2009; Lerot et al., 2010). These, combined with other parameters

∗Parts of this section have been previously published as part of Alvarado et al. (2014).
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such as the limited penetration of solar radiation due to scattering effects in the

atmosphere, determine the total uncertainty of the retrieved glyoxal SCs. In this

study, these systematic errors are estimated as described by Wittrock (2006) to

be around 6.0× 1014molec cm−2 in the SC.

In addition, the air mass factor calculations introduce more uncertainties in

the results (Boersma et al., 2004) as well as the influence of clouds and aerosols,

which lead to significant uncertainties in satellite retrievals (Wang et al., 2008;

Vrekoussis et al., 2009).

Moreover, some offset errors can be introduced for weak absorbers in the

DOAS retrieval (Wittrock, 2006). For example, the solar irradiance entering the

Earth’s atmosphere varies with time, the greatest changes being observed in the

ultraviolet spectral region, however the irradiance variability occurs at almost

all wavelengths. This solar irradiance variability is associated with the 11 years

solar cycle (22 years magnetic cycle), and the solar rotation (27 days). These

cycles are the periods of changes in the Sun, which include changes in the ejec-

tion of solar material and solar radiation, as well as changes in the numbers of

sunspots, flares and other manifestations. All these variabilities can introduce

interferences in the satellite retrievals, especially for weak absorbers such as gly-

oxal. In Fig. 3.21 (top), time series of glyoxal SCs retrieved from SCIAMACHY,

OMI and GOME–2 (A and B) measurements over the Pacific region (30°S–30°N,
180–240°E) using retrieval 1 (see Table 3.4) are shown. The retrieval 1 uses a sin-
gle solar reference spectrum, which has been measured on 15 July 2007 for OMI,

SCIAMACHY and GOME–2A, and on 15 July 2014 for GOME–2B. CHOCHO

SCs show a similar temporal oscillation in SC for all instruments, which most

likely are introduced by the solar irradiance variability. The Magnesium II core-

to-wing ratio (MgII index) is used as proxy for the solar variability (Snow et al.,

2014). Then, composite MgII index time series are compared with the glyoxal

SCs (Fig. 3.21, top). The comparison shows that CHOCHO SCs variation follow

very well the variability of the MgII index. These variations have a cycle of 27

days, which corresponds to the solar rotation and is an evidence for the influence

of solar variation in the glyoxal retrieval by introducing changes in the SC. In

order to account for these effects, the normalization method of columns intro-

duced in Vrekoussis et al. (2009) has been applied, which consists of computing

the mean of the slant columns over an area in the remote Pacific Ocean (lat.:

0°±60°; long.: 180°±30°), and subtracting this value from all the measurements

of the same day. Similar as before, time series of glyoxal SCs have been com-

puted for all instruments after applying the normalization correction (Fig. 3.21,
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Figure 3.21: CHOCHO SCs retrieved over the Pacific using a fix Sun reference

spectrum without normalization, MgII index (top), and glyoxal SCs

after applying the normalization correction (bottom) for OMI, SCIA-

MACHY and GOME–2(A and B) from 2011 to 2014. The fixed Sun

reference spectrum corresponds to a measurement on 15 July 2007

for OMI, SCIAMACHY and GOME–2A, and on 15 July 2014 for

GOME–2B.

bottom). After applying the normalization correction, the glyoxal SC variability

is removed and also the offsets between datasets. In addition, in order to account

for the glyoxal background a slant column of 1.6×1014molec cm−2 is then added

to the global field similar to the values found over the Pacific by Sinreich et al.

(2010).

For the computation of the detection limit, the minimum glyoxal slant columns

detectable with the DOAS retrieval from OMI measurements are estimated for

an ideal case of a single measurement as described by Vrekoussis et al. (2009).
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Figure 3.22: Distribution of CHOCHO SCs for OMI, SCIAMACHY and GOME–

2A over a clean equatorial ocean region (5° S–5°N, 160–200°E) for

August 2007.

This detection limit is given by the ratio between the root mean square (RMS) at

the residual and the maximum differential absorption cross-section of the trace

gas of interest (σCHOCHO). The typical RMS for a single measurement in a

region where high glyoxal amounts are found (indicating ideal measurement con-

ditions, e.g. Africa) is around 3 × 10−4 for OMI, 9 × 10−5 for SCIAMACHY,

and 8 × 10−5 for GOME–2A and the maximum of the CHOCHO absorption

cross-section is 5.5 × 10−19 cm2molec−1. Thus, the SC detection limit for the

ideal case and a single measurement of OMI, SCIAMACHY, and GOME–2A are

around 5.5× 1014molec cm−2, 1.6× 1014molec cm−2, and 1.4× 1014molec cm−2,

respectively, using a typical RMS for a region where high glyoxal amounts are

found. This limit is reduced by averaging over time or space to compute monthly

means.

For comparison, the scatter of SCs over a clean region in the equatorial

Pacific (5° S–5°N, 160–200°E) has been computed for August 2007. As illus-

trated in Fig. 3.22, the SC scatter shows a distribution around zero for the

three instruments with FWHM of 3.0× 1015molec cm−2, 2.0× 1015molec cm−2,
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and 1.6 × 1015molec cm−2 and a standard deviation of 1.3 × 1015molec cm−2,

8.9× 1014molec cm−2, 6.8× 1014molec cm−2, respectively, which are of the same

order of magnitude as obtained for the detection limit by the theoretical ap-

proach above. OMI glyoxal SCs present a larger scatter than the GOME–2A

and SCIAMACHY instrument, which could be related to instrumental features.

3.4 Summary

An improved and homogenized glyoxal retrieval has been developed for four

different satellite instruments, which expands the dataset available of glyoxal to

12 years from morning and afternoon orbits. Sensitivity tests on synthetic data

as well as on OMI, GOME–2 (A and B), and SCIAMACHY measurements over

selected regions provided useful information for the selection of DOAS fitting

window and the most appropriate polynomial degree for this study. Moreover,

two approaches for the reduction of the liquid water interference over clear water

oceans have been evaluated, finding that including the liquid water absorption

cross-section in the DOAS fit leads to the best reduction of unphysical negative

glyoxal values over oceans and nearly no differences over land are found. For

the first time, possible interferences by tropospheric NO2 over areas with large

anthropogenic emissions have been investigated. A high-temperature NO2 ab-

sorption cross-section representing near-surface NO2 has been introduced in the

retrieval, leading to a significant reduction of glyoxal over these areas and an

improved fit quality.

Investigation of the impact of different water vapour cross-sections in the

fit shows that for OMI data, this does not seem to be a critical factor. This

is in contrast to ground-based MAX-DOAS observations, where water vapour

absorption can interfere strongly with the retrievals, in particular in the tropic

regions (Sinreich et al., 2007, 2010).

In spite of the progress made on the glyoxal retrieval and its homogenisa-

tion for different satellite platforms, the resulting datasets are still noisy and

depend critically on the details of the selection made for the retrieval. Further

improvements in signal-to-noise and consistency are needed to make full use of

the synergy between measurements from instruments in morning and afternoon

orbits. In addition, the effects of clouds and aerosols on the air mass factors

need to be taken into account, in particular for biomass burning scenarios, where

these can play an important role in the detection of glyoxal transport events.
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Observations of glyoxal from space

4.1 Introduction

Despite the increase in the number of studies about glyoxal from space, more

detailed description of the behaviour and global distribution is needed.

Wittrock et al. (2006) published the first global simultaneous observation of

HCHO and CHOCHO by the SCIAMACHY instrument. The highest concentra-

tions of both species were found over areas with large biogenic isoprene emissions

and also in regions with anthropogenic emissions and biomass burning (tropical

and sub-tropical regions).

Kurosu et al. (2007) reported observations from OMI of seasonally resolved

global distribution of HCHO and CHOCHO during twelve months over regions of

biomass burning and anthropogenic sources. These results were compared with

ground based measurements, as well as with simulations from the chemistry

transport model (CTM).

Millet et al. (2008), Fu et al. (2008) and Barkley et al. (2008) reported spatial

distributions of isoprene emissions derived from OMI HCHO columns, SCIA-

MACHY CHOCHO columns, and GOME HCHO columns, respectively. Mil-

let et al. (2008) compared HCHO columns in June-August over north America

with the CTM. They compared emissions derived from OMI to a state-of-science

bottom-up isoprene emission inventory from MEGAN (Model of Emissions of

Gases and Aerosols from Nature), and found consistent results between both,
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however the results derived from OMI were lower than isoprene emissions de-

termined by MEGAN. Fu et al. (2008) published global budgets of atmospheric

CHOCHO and methylglyoxal, and the implications for formation of SOA. They

compared CHOCHO on a global scale between the CTM and SCIAMACHY

measurements, finding highest values and good agreement over biomass burning

regions. Also, the SCIAMACHY results showed that a large source over the

ocean is missing in CTM. Barkley et al. (2008) presented a study of isoprene

emissions derived from GOME and compared them with simulated results from

a CTM using the MEGAN bottom-up inventory over South America. These

results showed a qualitative consistency among the CTM, in situ ground based

results, airborne concentration profiles of isoprene, and GOME HCHO columns.

However, the agreement was not so good in the wet season. Myriokefalitakis

et al. (2008) published a study on the influence of natural and anthropogenic

secondary sources on the CHOCHO global distribution. They calculated by a

global CTM (TM4–ECPL) the chemical production of CHOCHO (56Tg yr−1)

with around 30% of anthropogenic origin. According to this model the anthro-

pogenic contribution to CHOCHO over tropical regions is about 3–20%, while

over urban areas it can be as large as 70%. Also, the model result showed a good

agreement with the earlier study by Wittrock et al. (2006).

Vrekoussis et al. (2009) reported largest values of CHOCHO over tropical

and sub–tropical regions as part of a study of temporal and spatial variability

of CHOCHO from the SCIAMACHY instrument. This result was associated

with high biological activity and plumes from vegetation fires.They also found

the highest values during the warm and dry seasons due to the enhancement of

biogenic activities and/or biomass burning from natural and man-made fires. A

study by Stavrakou et al. (2009a) confirms the high emissions of CHOCHO from

natural sources, however the amount of these sources is still unknown and the

comparison with simulated CHOCHO columns led to a good agreement between

both, but with underestimation in the simulated columns. Later, Vrekoussis

et al. (2010) published the first HCHO and CHOCHO columns retrieved from

the GOME–2 instrument over regions with enhanced biogenic emissions. They

used the ratio of CHOCHO to HCHO to classify the different sources. These

results were compared with SCIAMACHY observations showing good agreement

between both instruments for 2007–2008. Lerot et al. (2010) reported an im-

proved retrieval for CHOCHO from GOME–2 measurements and compared the

results with model calculations. This study showed good agreement with the

results found by Vrekoussis et al. (2010). The highest CHOCHO values were
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found over continental tropical regions and the comparison with the simulated

results showed that there are missing CHOCHO sources in the model. Another

study over China by Liu et al. (2012) compared CHOCHO satellite observations

with model simulated values. This comparison showed a large unknown source

of CHOCHO over China. They attributed this missing source to an underesti-

mation of aromatics emissions.

Most recent studies by Chan Miller et al. (2014), and Alvarado et al. (2014)

reported on OMI retrievals of CHOCHO. Chan Miller et al. (2014) similar to

Alvarado et al. (2014), showed glyoxal pattern with high values associated to

regions with dense vegetations and biomass burning. In addition, Alvarado et al.

(2014) presented the correlation map with Fire Radiate Power (FRP) as an

indicator of glyoxal emissions from fires.

This chapter’s focus is on a detailed description of glyoxal globally and also

over selected “hot-spots”. In addition, correlations with different indicators of

biogenic activities (Enhanced Vegetation Index: EVI), pyrogenic emissions (Fire

Radiate Power: FRP), and anthropogenic activities (NO2 vertical columns) are

analysed in order to identify the possible sources of glyoxal.

4.2 Global observations and satellite intercomparison

In order to evaluate the quality and consistency of the improved glyoxal re-

trieval presented in Chap. 3, a comparison among instruments has been per-

formed using homogenized fitting parameters for all datasets. Table 4.1 sum-

marizes the main fitting parameters used in the glyoxal retrievals from SCIA-

MACHY, OMI, and GOME–2 (A and B) measurements.

The glyoxal slant columns have been retrieved from SCIAMACHY, OMI,

and GOME–2 (A and B) measurements and converted to vertical columns by

using AMFs as is described in the Sect. 2.4.8. Glyoxal vertical columns com-

prising a dataset of more than twelve years (2003–2014) of global CHOCHO

observations. As no stratospheric column of glyoxal is expected, no stratospheric

correction is necessary. Then, the vertical column represents the tropospheric

CHOCHO vertical column. Figure 4.1 shows the global CHOCHO VCs for the

four instruments averaged for the periods of 2003–2011 (SCIAMACHY), 2005–

2014 (OMI), 2007–2014 (GOME–2A), and 2013–2014 (GOME–2B). Enhanced

CHOCHO VCs are observed mainly in the tropical and sub-tropical areas (e.g.
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Table 4.1: CHOCHO retrieval settings for the instrument intercomparison.

Parameters

Instrument SCIAMACHY, OMI, GOME–2 (A and B)

Fitting window 433–460 nm

Polynomial 4

Cross-sections CHOCHO, O3 (223K),

NO2 (220K and 294K)

O4, H2Ovap,H2Oliq,Ring

Cloud fraction ≤0.3

Ref. spectrum Pacific region (daily)

Central and South America, Africa, India, Indonesia and South-eastern China),

with CHOCHO VCs of about 4× 1014molec cm−2. At mid-latitudes, the glyoxal

VCs are moderate and about 2.5× 1014molec cm−2 are distinguishable over the

southern USA, Europe and Australia. The high glyoxal values originate mostly

from regional sources of the precursors of VOC due to its short lifetime (2–3 h).

These regions are characterized by strong biogenic and pyrogenic emissions, as

well as pollution induced by anthropogenic activities.

The global pattern of glyoxal VCs from the four instruments are similar (see

Fig. 4.1), with their maxima located over the same regions. However, the mag-

nitude of glyoxal vertical columns varies, GOME–2 (A and B) CHOCHO VCs

being larger than those of SCIAMACHY and OMI. Figure 4.2 shows absolute

differences between OMI and SCIAMACHY VCs (left), as well as OMI and

GOME–2A VCs (right), all averages for 2007–2011. The OMI gloyxal VCs are

generally smaller than those from SCIAMACHY and GOME–2A, mainly in trop-

ical regions.

Additionally, monthly mean VCs from the OMI, GOME–2 (A and B) and

SCIAMACHY instruments are used in order to compare those columns over

regions where large amounts of glyoxal are found. In Fig. 4.3 (top), time series

of monthly mean CHOCHO VCs over 6 regions (see Table 3.5) are shown for

the period 2003–2014. The monthly observations are averaged within each of

the areas, which represent different environments with large glyoxal production

(biogenic, anthropogenic and pyrogenic sources). The seasonal variabilities of

the datasets have an overall good consistency. However, OMI glyoxal VCs are
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Figure 4.1: Global means of CHOCHO VCs retrieved from SCIAMACHY, OMI,

GOME-2(A and B) for the period 2003–2011, 2005–2014, 2007–2014,

and 2013–2014 respectively.

Figure 4.2: Global absolute differences between CHOCHO VCs from OMI and

SCIAMACHY, as well as OMI and GOME–2A for the period 2007–

2011.

often lower than SCIAMACHY and GOME–2 (A and B), especially since 2010.

This tendency of decreasing OMI glyoxal VCs is more evident for regions within

latitudes 30° S–5°N (C-Africa: AFC, S-America: SA, Australia: AUS) similar

to those observed in the global maps (see Fig. 4.1). In contrast, the glyoxal

VCs for regions with latitudes larger than 5°N show a very good agreement
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Figure 4.3: Comparison of monthly averaged CHOCHO VCs from GOME–2B

(blue line), GOME–2A (black line), OMI (red line) and SCIAMACHY

(green line) data for 6 selected regions over different environments dur-

ing 2003–2014. This regions are the same as defined in Table 3.5.

among instruments. Also, the seasonal variation is less pronounced in almost all

regions for the OMI instrument. Some of these differences could be related to the

different overpass times at the satellites, sampling different VOC emissions and

photochemical regimes. Additionally, this result is consistent with the observed

diurnal variation of HCHO by De Smedt et al. (2015) as well as with the diurnal

variation computed from ground-based measurements as shown in this work (see

Chap. 6), with a maximum corresponding to morning hours between 10:00 and

11:00 hour local time, which is closer in time to the overpass of GOME–2 (A and

B) and SCIAMACHY.

In addition, the amplitude of seasonal variability of glyoxal VCs is larger

in North America and Africa than in South America, China, Australia and In-

dia, which is possibly related to less variation in the emissions from vegetation
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in those areas. Good agreement between products are found over regions with

large anthropogenic activities (e.g. China). Despite the differences found be-

tween products, the homogenized glyoxal retrieval offer useful and consistent

information for the analysis of VOCs from different sources.

4.2.1 Interannual variability

Annual averages of CHOCHO VCs from GOME–2A between 2007 and 2014

are used to investigate the interannual variability of glyoxal (see Fig. 4.4). The

annual averages show a similar pattern every year, where each individual yearly

average of CHOCHO VCs confirms that high amounts of glyoxal VCs are found

over tropical and subtropical regions characterized by dense vegetation (e.g. trop-

ical forest of Amazonia), biomass burning (e.g. central Africa and the sub-Sahara

Africa), and with high anthropogenic emissions (e.g. Beijing, China), as well as

those that have a mixture of the three sources. Annual changes of glyoxal are

not clearly observed, however on closer inspection some regions show variations

from year to year, specially those that are dominated by pyrogenic emissions (e.g.

central Africa and Brazil). These changes can be related to many factors, such

as variability in the number of fire events and decrease or increase in the precipi-

tation levels over these regions. The possible causes of variability in glyoxal and

VOC in general will be discussed in more detail in the sections below.

4.2.2 Seasonal variation

In order to study the seasonal variability of glyoxal, averages of CHOCHO

VCs for Northern Hemispheric winter (DJF), spring (MAM), summer (JJA),

and autumn (SON) are presented for GOME–2A data (see Fig. 4.5). These are

averaged for the respective seasons within the time period 2007 to 2014. The

maps show that the highest levels of CHOCHO are found in the tropical and

sub-tropical regions as has been observed in the interannual variability. The

CHOCHO VCs vary with the season, the maxima and minima corresponding to

the respective summer and winter. This is consistent with the fact that the bio-

genic emissions increase in the warm periods and thus the CHOCHO production

is enhanced. Whereas the largest CHOCHO amounts are found in Africa north

of the equator in DJF, maximum CHOCHO production is observed in JJA over

central Africa due to fire emissions. The maximum of CHOCHO in South Amer-
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Figure 4.4: Yearly averages maps of CHOCHO VCs from GOME–2A between 2007

and 2014. The annual means are similar for all years, being glyoxal

levels high for the earliest years.

ica occurs in SON, in agreement with the largest fire activity and the highest

NO2 (produced from fire emissions) levels during that season (Schreier et al.,

2014). Close to the equator, the CHOCHO seasonal variation is quite smooth,

suggesting that CHOCHO is mostly produced by biogenic sources from tropical

forests (Guenther et al., 2006). In contrast, CHOCHO from biogenic sources

at higher latitudes has a clear seasonal cycle with the maximum in JJA (e.g.

Southeast US), which corresponds to the vegetation growth cycle. No signifi-

cant differences were found between seasons over highly populated regions (e.g.
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Figure 4.5: Seasonal means of GOME–2A CHOCHO VCs for winter (DJF), spring

(MAM), summer (JJA), and autumn (SON) for the period 2007–2014.

The CHOCHO VCs vary with the season, the maxima and minima cor-

responding to the respective summer and winter for each hemisphere.

Southeast China), most likely as a result of different sources contributing to the

CHOCHO amounts at different times of the year (e.g. anthropogenic emissions

in DJF, biogenic production in MAM). Similar patterns are observed for the

glyoxal VCs retrieved from SCIAMACHY, OMI and GOME–2B measurements.

4.3 Identification of glyoxal sources

4.3.1 Biogenic emissions∗

It is well known that one of the main sources of trace gases in the atmosphere

are biogenic emissions. The global maps of glyoxal show that high values are

found over regions such as south America, continental Africa, south of Asia and,

to a lesser extent, the southeastern US, which correspond to areas with dense

vegetation (see Fig. 4.1). Around 55% of global glyoxal amounts released to the

∗Part of this subsection has been previously published as part of Alvarado et al. (2015).
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Figure 4.6: Pearson coefficient correlation map between CHOCHO VC and EVI

over continental regions 2005–2014.

atmosphere result from the oxidation of biogenic VOC, where isoprene oxidation

is responsible for 90%, while the remaining sources are ethane and monoterpenes

(Stavrakou et al., 2009a).

In order to investigate the link between glyoxal and biogenic activities, corre-

lation coefficients between CHOCHO and enhanced vegetation index (EVI) were

computed, where EVI represents a measure of vegetation “greenness”, a compos-

ite property of leaf chlorophyll and canopy cover, which can be retrieved from the

MODerate resolution Imaging Spectroradiometers (MODIS) on board NASA’s

Terra and Aqua satellites Jiang et al. (2008). Investigating a possible linear re-

lationship between CHOCHO VCs from OMI and SCIAMACHY and EVI from

Aqua and Terra satellites respectively, monthly mean values of CHOCHO VCs

and EVI with a grid resolution of 0.5 deg×0.5 deg were used in the calculations.

Figure 4.6 shows a global map of correlation coefficients between SCIAMACHY

CHOCHO and EVI Terra (morning instruments) and OMI CHOCHO and EVI

Aqua (afternoon instruments) for the time periods 2007–2014 and 2005–2014,

respectively. The highest correlations between CHOCHO and EVI were found

for three regions (Southeastern USA, Africa north of equator, and Northwest In-

dia), even correlation coefficients larger than 0.8 were found over these areas (see

Fig. 4.6). Time series of spatially averaged monthly means were computed for the

three regions (see Fig. 4.6, black boxes) and are shown in Fig. 4.7. The seasonal

behaviour of glyoxal and EVI are in good correspondence for all three regions,

which leads to the conclusion that the dominant source of glyoxal is biogenic

emissions. This is in agreement with the results obtained for one year of analysis

of SCIAMACHY CHOCHO VCs and EVI by Vrekoussis et al. (2009). Addition-
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Figure 4.7: Time series of glyoxal VCs and EVI over regions, where high corre-

lation coefficients were found for 2005–2014 (Africa north of equator,

Southeastern USA, and Northwest India: black boxes in Fig. 4.6).

ally, some differences are observed between SCIAMACHY and OMI CHOCHO

VCs, which are not observed between Terra and Aqua EVI, these differences

could be related to the photochemical regime of VOC. Maxima of glyoxal VCs

are found in the warm seasons for both instruments, probably caused by the

increase isoprenes emissions, which also corresponds to the major growth phase

of plants. Negative correlations between CHOCHO VCs and EVI were found

over regions in Africa, which are characterized by high pyrogenic emissions as

discussed in the section below.

4.3.2 Pyrogenic emissions∗

Another main source of glyoxal in the atmosphere is pyrogenic emissions,

which together with biogenic emissions are one of the main contributors of trace

∗Part of this subsection has been previously published as part of Alvarado et al. (2014).
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Figure 4.8: Pearson correlation coefficients of FRP and CHOCHO VCs over con-

tinental regions from 2005 to 2014.

gases to the atmosphere over tropical and sub-tropical areas, and are estimated to

contribute 18% of the global CHOCHO levels (Stavrakou et al., 2009a). Around

60% of this glyoxal is believed to be emitted directly by the fires and the rest by

secondary production (Stavrakou et al., 2009a). It is well known that large fire

events occur during the warm season in Africa. In order to identify the regions

with largest production of CHOCHO from fires, correlation coefficients between

CHOCHO VCs and fire radiative power (FRP) are presented. FRP is a measure

of outgoing radiant heat from fires (in units of wattcm−2), which can be retrieved

from the MODIS Terra and Aqua similar to EVI (Justice et al., 2002).

As for biogenic emissions, a linear relationship is assumed between glyoxal

and FRP. The calculations were performed with a grid resolution of 0.5° × 0.5°
using monthly means of OMI and SCIAMACHY CHOCHO VCs and FRP from

MODIS Aqua and Terra, respectively. High correlation coefficients are found

over Africa south of the equator and Myanmar–Thailand (see Fig. 4.8), which

correspond to regions with large fire activities during the dry season. Also,

some negative correlation coefficients are observed in Fig. 4.8, which correspond

to regions dominated by biogenic emissions as shown in Vrekoussis et al. (2010).

A linear relationship between tropospheric NO2 VCs and FRP was already shown

by Schreier et al. (2014). They demonstrated a strong link between the seasonal

cycles of tropospheric NO2 and FRP for the main biomass burning regions. In

this study, we found a comparable connection between CHOCHO and FRP for

two similar regions in Africa as shown in Schreier et al. (2014). The time series

of spatially averaged monthly means are shown in Fig. 4.9 for the three regions.

Although pyrogenic emissions contribute only about 18% to the global budget
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Figure 4.9: Time series of glyoxal and FRP over region where high correlation

coefficient were found for 2005–2014 (Africa north of equator b, Africa

south of equator, and Myanmar–Thailand: black boxes Fig. 4.8).

of CHOCHO (Stavrakou et al., 2009a), there clearly exist some regions where

fires are the dominant source of glyoxal and where good agreement in seasonal

behaviour is found with FRP. Additional peaks are observed in CHOCHO VCs

during the wet season in all three regions. As there is no significant fire activity

during this time, these peaks are most likely caused by biogenic sources. In

addition, similar to regions with high correlation between EVI and CHOCHO

VCs, the GOME–2A CHOCHO columns are higher than those from OMI.

4.3.3 Anthropogenic emissions

In the global maps of glyoxal, some hot-spots can be identified over regions

with large populations (e.g., Los Angeles, USA; Pearl River Delta, China). About

27% of the global glyoxal originated from anthropogenic activities (Stavrakou

et al., 2009a). About 60% of this are produced by acetylene oxidation, 20% are

due to primary glyoxal, and about 15% are formed from aromatics. To identify
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Figure 4.10: Averaged global maps of CHOCHO and trophospheric NO2 VCs (left)

and zoom maps of CHOCHO and trophospheric NO2 over China

(right) for period of 2005–2012.

regions where the dominant sources of glyoxal are anthropogenic, tropospheric

NO2 VCs from OMI measurements are used (Hilboll et al., 2013), as tropospheric

NO2 is a tracer of anthropogenic activities, in particular combustion of fossil fuels

(Richter et al., 2005). Tropospheric NO2 and CHOCHO VCs from OMI measure-

ments are shown in Fig. 4.10, where both gases present clearly different spatial

distributions (CHOCHO: mainly over tropical and sub-tropical regions; NO2:

mainly over regions with large populations, China, Europe and USA). At closer

inspection, CHOCHO VCs have a similar spatial distribution to tropospheric

NO2 VCs over China (see Fig. 4.10, right), the hot-spots over the Pearl River

Delta (PRD) and Northeastern China (NE-China) being clearly visible.

In order to investigate this further, Pearson correlation coefficients between

CHOCHO and tropospheric NO2 VCs over two regions are computed (see Fig. 4.11,
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right, black boxes). The calculations were performed with a grid resolution of

0.5° × 0.5° using monthly means of OMI CHOCHO and NO2 VCs from 2005

to 2012. The Pearson correlation coefficient obtained for PRD and NE-China

region are 0.7 and 0.4, respectively (see Fig. 4.11, top). The higher correlation

between CHOCHO and tropospheric NO2 corresponds to the PRD region, which

includes large metropolis, and the combination of all these cities form one of

the most densely populated regions in the world, having a population of about

57 million. As in this region, there are not only anthropogenic but also bio-

genic and pyrogenic sources, the analysis was repeated using only winter months

(more tropospheric NO2 is emitted). The correlation between the datasets in-

creases significantly, being 0.62 and 0.81 for NE-China and PRD, respectively

(see Fig. 4.11, bottom). This increase is especially pronounced over NE-China,

where the biogenic contribution is significant in summer due to increased isoprene

emissions during this period. In contrast to PRD region where the emission of

glyoxal from vegetation is less.

4.4 “Hot-spot” areas of glyoxal and comparison with

indicators of different sources

After the description of the global glyoxal VC distribution and comparison

among instruments, its seasonal and annual variation and correlations with pos-

sible sources, closer inspection over areas where the glyoxal levels are high will

be performed. For that, 21 regions have been selected on the globe (see Fig. 4.12,

black boxes), which are representative of continental distribution of glyoxal, and

these have been grouped by regions. Additionally, mean values of EVI, FRP and

NO2 VCs are compared with glyoxal for the different seasons, in order to investi-

gate the possible dominant sources for each glyoxal “hot-spot”. For consistency,

all datasets have been regridded to the same resolution (0.5° × 0.5°).

4.4.1 North and Central America

For this region, two different locations are used (Southeastern USA and Cen-

tral America: see Fig. 4.12, boxes 1–3). Figure 4.13 shows the comparison of

normalized mean values of CHOCHO VCs to EVI (biogenic), FRP (Pyrogenic),

and tropospheric NO2 VCs (anthropogenic) for the different seasons from morn-
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Figure 4.11: Density correlation plots between CHOCHO and tropospheric NO2

VCs for two selected areas over China (see Fig. 4.10, black boxes)

computed including all data between 2005 and 2012 (Top) and only

taking into account the months corresponding to winter season (bot-

tom).

ing and afternoon instruments over Southeastern USA and Central America for

the period 2007–2011. In general, the variability of glyoxal VCs among the sea-

sons for Central America are less pronounced than for the Southeastern USA (see

Fig. 4.13). The mean values from Central America are higher than those of the

Southeastern USA. In addition, the variability of glyoxal VCs over the Southeast-

ern USA is in agreement with the variability of EVI over this region, the maxi-

mum for both quantities occurring during JJA (see Fig. 4.13, top), which corre-

sponds to the warm season and thus a major release of isoprene during the growth

of plants. In the case of Central America, the glyoxal amounts are almost con-

stant during MAM (2.3–2.8×1014molec cm−2), JJA (2.1–2.7×1014molec cm−2),
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Figure 4.12: Selected“hot-spots”of CHOCHO VCs over continental regions: black

boxes 1–21.

and SON (2.4–3.2×1014molec cm−2), however slightly lower values are observed

during DJF (1.8–2.3×1014molec cm−2) (see Fig. 4.13, bottom). This is consis-

tent with the variability of EVI and FRP during the seasons, high FRP values

during MAM and low values for the other three seasons, and the opposite for

EVI, high values during JJA and SON and lower during MAM and DJF. On

the other side, tropospheric NO2 VCs behave similarly as glyoxal VCs over the

seasons for Central America, however over Southeastern USA, the glyoxal VCs

decrease for DJF but the NO2 VCs increase significantly during that period due

to the increased anthropogenic emissions and decrease of light, which lead to less

NO2 photolysis.

Additionally, the values of CHOCHO and NO2 from morning orbits are higher

than those from afternoon and the opposite is observed for EVI and FRP (higher

in the afternoon than those from morning). These differences in the case of

glyoxal and nitrogen dioxide could be related to different overpass times at the

satellites, sampling different emissions and photochemical regimes as we have

mentioned above.
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Figure 4.13: Seasonal means of CHOCHO VCs [1014 molec cm−2], FRP [mW

m−2], EVI and NO2 VCs [1015 molec cm−2] normalized to the re-

spective maximum over each region from morning and afternoon in-

struments over Southeastern USA and Central America during 2007–

2011.

4.4.2 South America

Regions over the tropical rainforests of Amazonia have been selected (South

America a, b and c: see Fig. 4.12, boxes 4–6). South America is characterized

by dense vegetation. However, the large abundance of glyoxal over this region is

not only produced by VOC induced by biogenic activities (high values of EVI in
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Figure 4.14: Seasonal means of CHOCHO VCs [1014 molec cm−2], FRP [mW

m−2], EVI and NO2 VCs [1015 molec cm−2] normalized to the re-

spective maximum over each region from morning and afternoon in-

struments over South America (a and b, Fig. 4.12, boxes 4–3) during

2007–2011.

comparison to other regions, e.g. North and Central America), but also by py-

rogenic emissions. Figure 4.14 shows the comparison of mean normalized values

of CHOCHO VCs, EVI, FRP, and tropospheric NO2 VCs for different seasons

from morning and afternoon instruments over South America (a and b) for the

period 2007–2011. In South America a, the glyoxal values remains almost con-
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stant during the seasons, with a very small increase during SON (see Fig. 4.14,

top). However, over South America b and c, there is a clear maximum in the gly-

oxal VCs during SON, which also corresponds to a maximum in FRP. Although

pyrogenic emissions contribute less systematically than biogenic emissions, their

occurrence coincides with maximum amounts of glyoxal VCs. The glyoxal VCs

over South America vary between 2.5×1014 and 3.7×1014molec cm−2 for MAM,

2.2×1014 and 3.5×1014molec cm−2 for JJA, 2.9×1014 and 5.2×1014molec cm−2

for SON, and between 2.8×1014 and 4.3×1014molec cm−2 for DFJ. These values

are almost twice as large as those observed over North America. In addition,

South America b and c behave very similar through the seasons in glyoxal, EVI,

FRP and NO2 levels. The glyoxal VCs behave similar to EVI over the seasons,

which remains constant during all seasons, and only have differences when gly-

oxal increased due to fire emissions (increase of FRP). Additionally, similar to

glyoxal, the values of EVI and FRP over South America are higher than those

from North America, but with lower NO2 levels. Thus, the dominant sources

of glyoxal over this region are VOC produced by biogenic emission, and with a

maximum in SON induced by pyrogenic emissions.

4.4.3 Europe and Western Sahara

An European region and two “hot-spots” over Western Sahara have been

selected (see Fig. 4.12, boxes 7–9). Europe has been characterized by high pop-

ulation density and thus large anthropogenic emissions. The levels of CHOCHO

over Europe are moderately low in comparison to those from North and South

America. These values vary between 1.5×1014 and 2.1×1014molec cm−2 (see

Fig. 4.15, top), with a maximum during the warm season (JJA), when major

isoprene emissions occur due to the increase of temperature. Also, the variabil-

ity of EVI and FRP values behaves similarly to glyoxal with the maximum during

the same period (JJA) as is shown in Fig 4.15, top. In contrast, the contribu-

tion from fires over this region is low in comparison to South America or Africa,

which is clearly observed in the low FRP values over this region. Additionally,

as consequence of large anthropogenic activities over Europe, large NO2 VCs are

found (Hilboll et al., 2013).

In addition, Fig. 4.15 (bottom) shows mean values normalized to the maxi-

mum over one of two regions selected over Western Sahara. For the two “hot-

spots”, the values for EVI are very low and zero for FRP. Also, the NO2 VCs are

lower than those obtained over Europe, but as similar order of magnitude of those
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Figure 4.15: Seasonal means of CHOCHO VCs [1014 molec cm−2], FRP [mW

m−2], EVI and NO2 VCs [1015 molec cm−2] normalized to the re-

spective maximum over each region from morning and afternoon in-

struments over Europe and Western Sahara a, Fig. 4.12, boxes 7–8)

during 2007–2011.

obtained over South America. Also, NO2 values behave almost constant through

the seasons. The glyoxal levels over these two “hot-spots” are higher than those

from Europe and they vary between 1.7×1014 and 2.9×1014molec cm−2. Despite

the high values of glyoxal over these regions, no correlation is found with EVI,

FRP and NO2, which are associated to biogenic, pyrogenic, and anthropogenic
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emissions, respectively. Thus, the probable source of glyoxal over Western Sa-

hara is unknown and further investigation will be need, however it is out of the

scope of this study.

4.4.4 Africa

Africa is one of the continental regions with the most vegetation, similar to

South America, which implies large emissions of VOC and thus high glyoxal

levels are observed. Additionally, biomass burning is a common phenomenon

over this area, which is a contributor of glyoxal levels (Vrekoussis et al., 2009).

Four regions have been selected over Africa, two north of the equator and two

south of it (see Fig. 4.12, boxes 10–13). In order to investigate the variability

of glyoxal and its relation with indicators of different sources (biogenic, pyro-

genic and anthropogenic), a comparison of mean normalized values of CHOCHO

VCs, EVI, FRP, and tropospheric NO2 VCs for different seasons from morn-

ing and afternoon instruments over two of four regions selected in Africa for

the period 2007–2011 are shown in Fig. 4.14. The CHOCHO VCs vary between

1.8×1014 and 3.9×1014molec cm−2 for MAM, 1.7×1014 and 5.1×1014molec cm−2

for JJA, 2.7×1014 and 4.2×1014molec cm−2 for SON, and between 2.4×1014 and

4.3×1014molec cm−2 for DJF. The maxima for each region are found in the sea-

son with large wild and savanna fires, which is correlated with the high values

in FRP during the season. For Africa north of the equator, this maximum cor-

responds to DJF, while for Africa south of the equator to JJA and SON. Also,

NO2 values follow a similar variability over these regions (see Fig. 4.14). In addi-

tion, the values found in EVI are larger than those found over Europe and North

America, but comparable in order of magnitude to those from South America,

which varies between 0.22 and 0.46 and represent the dense vegetation found in

Africa and South America. Despite the large fire activities over these African

regions, the dominant source is biogenic emission, because in contrast to South

America where the difference between the peaks of glyoxal during the wet and

dry seasons are large, the background of glyoxal over Africa remains always high

and the variability in the amplitudes of CHOCHO VCs is less pronounced in

most of the regions selected, showing small influence of biomass burnig season

on the total CHOCHO levels.
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Figure 4.16: Seasonal means of CHOCHO VCs [1014 molec cm−2], FRP [mW

m−2], EVI and NO2 VCs [1015 molec cm−2] normalized to the re-

spective maximum over each region from morning and afternoon in-

struments over two Africa regions (see Fig. 4.12, boxes 10–12) during

2007–2011.

4.4.5 Asia

Six “hot-spots” have been selected over Asia (see Fig. 4.12, boxes 11–19).

Two over India and China, and one over Thailand and Indonesia. The North-

east China region is controlled by strong biogenic as well as pyrogenic emissions
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Figure 4.17: Seasonal means of CHOCHO VCs [1014 molec cm−2], FRP [mW

m−2], EVI and NO2 VCs [1015 molec cm−2] normalized to the re-

spective maximum over each region from morning and afternoon in-

struments over India and Northeast China, (Fig. 4.12, boxes 14–19)

during 2007–2011.

(Stavrakou et al., 2009b), while the Pearl-River-Delta region is mainly domi-

nated by anthropogenic activities (high amounts of NO2 are observed as well),

but also has some contribution from fires and biogenic emissions as is reflected

in the values for FRP and EVI, respectively. Figure 4.17 shows seasonal means

normalized to the respective maximum over each region of CHOCHO VCs, EVI,
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FRP, and NO2 VCs for two of six selected “hot-spots” in Asia for 2007–2011.

The glyoxal VCs are high for most of the regions in comparison of those columns

obtained over Africa and South America and these behave different depend-

ing on the season and latitude. CHOCHO VCs have large influence for most

of source production of VOC (biogenic, pyrogenic and anthropogenic), in fact

despite that the major source of glyoxal is natural, in Asia there is a large contri-

bution from fires and also from anthropogenic emissions, which can be observed

in the Fig. 4.17, where depending on the season the high glyoxal values correlate

to the respective indicator (e.g. JJA: EVI, SON: FRP, DFJ: NO2). In addition,

the glyoxal columns vary between 2.0×1014 and 4.5×1014molec cm−2 for MAM,

2.4×1014 and 4.2×1014molec cm−2 for JJA, 2.8×1014 and 4.6×1014molec cm−2

for SON, and between 2.3×1014 and 4.0×1014molec cm−2 for DJF. Additionally,

Fig. 4.17 shows seasonal behaviour is relatively similar for India and Northeast

China, with the maximum values being retrieved during SON. In general, sim-

ilar to another regions, the values of glyoxal from the morning instruments are

larger than those from the afternoon instruments for almost all seasons. How-

ever, in the Northeastern China and Pearl-River-Delta regions, the glyoxal level

from afternoon instrument during DFJ (winter season) the values are larger than

those from morning (see Fig. 4.17, bottom), which also correspond to high levels

of NO2 over this region. This is consistent with results obtained from ground-

based measurements over highly polluted areas by Volkamer et al. (2005a), where

glyoxal showed a maximum at noon (close to the overpass time of OMI). How-

ever, in measurements performed over Athens and Nairobi from ground based

measurements, the maximum of glyoxal is found in the morning (see Chap. 6),

nevertheless the chemistry, topography and population density of these cities are

different and thus different behaviors in glyoxal is expected.

4.4.6 Oceania

Two regions have been selected for Oceania (Northern Australia and New

Guinea: see Fig. 4.12, boxes 20–21). Northern Australia is characterized by

large diversity of environments such as desert, tropical subtropical and others.

The region selected over Australia is dominated by large vegetations and periods

of biomass burning. However, New Guinea is characterized by dense vegetation,

having EVI values comparable to those from Africa and South America. Fig-

ure 4.17 shows seasonal means of CHOCHO VCs, EVI, FRP, and tropospheric

NO2 VCs normalized to the respective seasonal maximum over Australia and
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Figure 4.18: Seasonal means of CHOCHO VCs [1014 molec cm−2], FRP [mW

m−2], EVI and NO2 VCs [1015 molec cm−2] normalized to the re-

spective maximum over each region from morning and afternoon in-

struments over Australia and New Guinea (see Fig. 4.12, boxes 20–21)

during 2007–2011.

New Guinea for 2007–2011. CHOCHO columns over New Guinea vary between

2.3×1014 and 2.6×1014molec cm−2 for MAM, 2.4×1014 and 2.5×1014molec cm−2

for JJA, 2.5×1014 and 3.2×1014molec cm−2 for SON, and between 2.6×1014

and 2.9×1014molec cm−2 for DFJ, while in Northern Australia the glyoxal le-

vels are slightly smaller for some seasons than those obtained over New Guinea
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and vary between 2.0×1014 and 2.3×1014molec cm−2 for MAM, 1.3×1014 and

1.6×1014molec cm−2 for JJA, 2.1×1014 and 2.9×1014molec cm−2 for SON, and

2.7×1014 and 3.1×1014molec cm−2 for DJF. This is also reflected by the values

of EVI over these regions. The EVI values for New Guinea are almost twice as

large (0.47) as those from Australia (0.27). A seasonality in FRP is observed over

Australia which corresponds to the maximum in glyoxal over this area. On the

other hand, the NO2 levels over these regions remain almost constant through

the seasons. Thus, most likely, the main influence of glyoxal over these regions

is biogenic emission (mainly for New Guinea) and fires as well (for both regions,

but more strongly over Northern Australia), and probably, to a lesser degree,

contribution from anthropogenic sources.

4.5 Summary

A global description of glyoxal retrieved from four different instruments shows

that the largest levels are located in the tropical and subtropical regions, where

dense vegetation can be found. In the northern and southern hemisphere, a clear

seasonal pattern for glyoxal was found with the maximum for summer season.

The comparison of glyoxal VCs retrieved from measurements of OMI, GOME–

2 (A and B), and SCIAMACHY shows good overall agreement in the seasonal

behaviour. However, OMI glyoxal columns are systematically lower than those

columns observed by SCIAMACHY and GOME–2 (A and B), especially for re-

cent years (since 2010). This observation is even more evident in OMI CHOCHO

VCs for regions within latitudes 30°S–5°N. In addition, the amplitude of the

seasonal variation for OMI is smaller than for the other instruments. Significant

differences were found over regions with large anthropogenic emissions. More-

over, a similar seasonal behaviour is observed among the four products, although

less pronounced in the OMI product.

Correlation coefficients between EVI and CHOCHO columns larger than 0.8

have been found over regions characterized by dense vegetation, where the com-

puted time series of EVI and glyoxal columns show strong and in-phase seasonal

variations. Moreover, the maxima of glyoxal were found during the warm seasons,

as a consequence of the increase in the isoprene emissions. Additionally, strong

negative correlations between glyoxal columns and EVI were found over Africa,

caused by large fire events in these regions, which mainly occur outside the grow-

ing season. The correlation coefficients between FRP and CHOCHO VCs over
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these regions are larger than 0.8 and the time series of FRP and glyoxal VCs

show strong and in-phase seasonal variation. However, the source contribution

over these regions is not only due to fires, because the background signal of gly-

oxal is large in these areas. Most likely due to the biogenic contribution, also an

additional peak in glyoxal is found in the wet season which also could be related

to biogenic influences.

Finally, a detailed comparison between glyoxal, EVI, FRP, and tropospheric

NO2 over 21 regions have been performed in order to characterize the possible

sources of glyoxal in these regions. It is clear that the dominant source of glyoxal

is biogenic emissions because in most of the regions it was observed to follow the

behaviour of EVI. However, there are regions where the strong fire events become

an important source for glyoxal, similarly this can be observed for regions with

an important influence from anthropogenic emissions.
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5

Identification of VOC sources and case

studies

5.1 Introduction

VOC play an important role in the atmosphere and have a significant influ-

ence on atmospheric composition (Vrekoussis et al., 2010; Curci et al., 2010).

VOC originate from natural and anthropogenic sources as well as from fire emis-

sions. VOC commonly have a short atmospheric lifetime between fractions of a

day to months. On a global scale, the biogenic emissions are ten times larger

than those produced by anthropogenic sources (Atkinson and Arey, 2003). VOC

are emitted by oceans and plants as part of a complex system, in particular trees.

Also, anthropogenic and fire emissions contribute to the total amounts of VOC

in the atmosphere with about 161–186Tg C yr−1 (Stavrakou et al., 2009b), and

33–49Tg C yr−1 (Andreae and Merlet, 2001), respectively. Although the main

pathways of biogenic VOC release to the atmosphere have been relatively well-

known for many years, the uncertainties in total emissions are large since the

amounts emitted depend on several parameters, e.g. on plant species, tempera-

ture, humidity and the condition of the plant.

For a better understanding and identification of VOC sources, Vrekoussis

et al. (2010) used the ratio of CHOCHO to HCHO to classify the different

sources. CHOCHO and HCHO are mainly emitted from natural and anthro-
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pogenic sources as well as during fire events. Although the sources and chemistry

are similar in many respects, the variation in production efficiency for different

sources can be used to better constrain source attribution of VOC. This approach

for source identification of VOC has already been used for ground and satellite

based instruments (e.g. Vrekoussis et al., 2010; DiGangi et al., 2012; Li et al.,

2013; Kaiser et al., 2015). However, different values of ratios have been reported

in the literature and no clear agreement between them was found.

The first attempts to identify source types using the ratio of glyoxal to

formaldehyde (RGF ) from satellite measurement were reported by Wittrock et al.

(2006) and Vrekoussis et al. (2009). Both studies used SCIAMACHY observa-

tions, which were limited to specific regions. Later, Vrekoussis et al. (2010) also

computed the ratio from GOME-2A observations. From these studies, for places

with known biogenic emissions, ratios in the range of 0.4–0.6 were found, while for

regions with high anthropogenic emissions lower ratios were found in comparison

to those from biogenic influence.

In the previous chapter, the correlation of glyoxal with indicators of bio-

genic, pyrogenic and anthropogenic emissions were evaluated. In order to extend

our analysis, computation of the ratio of CHOCHO to HCHO for identify VOC

sources is performed. In addition, analysis of temporal evolution of ratios glob-

ally and also for selected hot-spots is presented. Additionally, two selected case

studies are presented.

5.2 Ratio of glyoxal to formaldehyde (RGF )

In this study, GOME-2A data are used for computation of the ratio of glyoxal

to formaldehyde. HCHO VCs have been retrieved as is described by Wittrock

et al. (2006). Figure 5.1 shows global average maps of CHOCHO and HCHO

VCs retrieved from GOME–2A measurements from 2007 to 2014. CHOCHO and

HCHO VCs have similar global patterns with highest levels over tropical and sub-

tropical regions, which are characterized by dense vegetation and fire activities.

Some “hot-spots” are also found over highly populated cities for both species,

which could be associated to anthropogenic emissions. In spite of the similarity

of the global pattern, differences are found over some regions most likely due to

difference in production efficiency of these VOC species. Furthermore, outflow of

glyoxal is observed over ocean regions while for formaldehyde it is not observed.

Previous studies associated this glyoxal to an unknown oceanic source (Vrekoussis
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et al., 2010), because the lifetime of glyoxal is too short for such a transport event.

Nevertheless, it will be discussed again in the following sections.

The RGF have been computed using monthly mean gridded data of CHOCHO

and HCHO VCs with a spatial resolution of 1.0°×1.0°. These ratios have been

averaged by season for the whole period (2007–2014). Figure 5.2 shows average

RGF for the four seasons for 2007–2014. Individual ratios show a large scatter,

but some differences in the pattern of RGF values among regions where biogenic

sources are expected and those areas where the dominant sources of VOC are as-

sociated to anthropogenic and pyrogenic emissions can be found. RGF has a clear

seasonal behaviour, the large ratios being found over regions dominated by an-

thropogenic and pyrogenic emissions, and low values where the dominant source

is natural. Also, there are regions where the RGF variability is not clear. RGF

behaves similar to glyoxal over the seasons (see Fig. 4.5), with an increase during

the warm season when more release of VOC from natural sources is observed.

For a better identification and assessment of VOC sources, a comparison of

RGF with EVI, FRP, NO2 over nine selected regions is performed (see Fig. 4.3:

1–Southeastern USA, 4–South America a, 6–South America c, 10–Africa north

of equator a, 12–Africa south of equator a, 14–India a, 15–India b, 18–Pearl

River Delta, and 19–Northeast China). For consistency, all datasets have been

regridded to the same spatial resolution (0.5° × 0.5°). Figure 5.3 shows ratios of

glyoxal to formaldehyde over the season for the nine selected regions for 2007–

2014. RGF behaves different for each region, however for most of the regions

the lowest RGF correspond to seasons with larger EVI (e.g. warm season for

Southeastern USA, India, Pearl River Delta, and Northeast China). The opposite

is observed when FRP and NO2 VCs increase, an increase of RGF is observed.

EVI values have a significant increase in the warm season for Southeastern USA,

India, China, but over regions characterized by dense vegetation (e.g. South

America, and Africa south of equator), the observed ratios are nearly constant

over the seasons. Similar behaviour is found for EVI values with differences

between seasons close to zero.

It is clear that RGF varies quiet strongly among the regions, in fact different

vegetation types and land covers are expected for all these areas (see Fig. 5.4).

For example, Southeastern USA, India, Pearl River Delta, and Northeast China

are mainly characterized by a combination of croplands, woody savannas, and

evergreen broadleaf forest, in contrast to South America, and Africa south of

equator which are mainly dominated by evergreen broadleaf forest, savannas and
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Figure 5.1: Global average maps of glyoxal and formaldehyde VCs for 2007–2014

from GOME–2A measurements. The global distributions of CHOCHO

and HCHO are similar, high values being found over tropical and

sub-tropical regions, where large extensions of vegetation are found.

Outflow of glyoxal is observed over ocean regions whereas this is not

observed for formaldehyde.
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Figure 5.2: Seasonal global averaged ratio of glyoxal to formaldehyde from

GOME–2A data for period between 2007 and 2014.

woody savannas. Another important difference between these regions is the tem-

perature between seasons, strong changes are observed for subtropical regions

(e.g. Southeastern USA, India and China) and nearly no changes for tropical

areas (e.g. South America and Africa south of equator), subtropical regions are

usually hotter than tropical regions during summer. In addition, the population

density in regions such as Southeastern USA, India or China is higher than is

South America, and Africa south of equator. Therefore, depending on the veg-

etation type, temperature and population, the ratio of glyoxal to formaldehyde

varies. Values between 0.015 and 0.029 are found for those regions where strong

changes of temperature are observed between seasons and also for regions where

the dominant vegetation type is evergreen broadleaf forest (e.g. South America).

For regions where there is also a large contribution from fire emissions, the ratios

are large and nearly constant over the season (e.g. Africa south of equator). This

assessment is in contrast with earlier results obtained by Vrekoussis et al. (2010),

which associated large ratios to regions dominated by biogenic emissions and

small RGF to regions with anthropogenic emissions as dominant source. How-

ever, it is important to mention that Vrekoussis et al. (2010) have computed the

RGF for a complete period of two years and not by season. If the ratios obtained

here are averaged over all seasons, then for regions such as Southeastern USA,

China, India where large contributions from anthropogenic sources is expected
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Figure 5.3: Temporal variation of GOME–2A RGF for nine selected regions com-

pared with indicators of biogenic, anthropogenic and pyrogenic emis-

sions for 2007–2014.

during winter, the RGF is in general smaller than 0.03 and for regions that are

characterized by dense tropical vegetation, large ratios are found. The assess-

ment performed here is in agreement with the results obtained by Kaiser et al.

(2015). Thus, the assignment of RGF to the different sources emissions of VOC

needs to take into account all the factors that can affect these emissions such

as vegetation type, temperature, humidity and population. Useful information

for the identification of VOC sources can be obtained with this approach, but a

more accurate process is needed in order to have a better identification of VOC

sources and combination with model studies for the assessment of RGF to the

VOC sources.
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Figure 5.4: Global land cover map with different biomass types. The areas selected

for the comparison between EVI, FRP and NO2 are mainly cover by

evergreen broadleaf forest (green), open shrublands (beige), woody sa-

vannas (orange), savannas (yellow), and croplands (red) (from Schreier

et al. (2014)).

5.3 Case studies

5.3.1 Glyoxal as an indicator of pyrogenic emissions: Russian

fires in summer 2010∗

In this study, we have found connections between CHOCHO and fire radiative

power for three regions as shown in Sect. 4.3.2. Although pyrogenic emissions

contribute only about 18% to the global budget of CHOCHO (Stavrakou et al.,

2009a), there are some regions where fires are the dominant source of glyoxal and

where good agreement in seasonal behaviour is found with FRP. Thus, in order

to investigate the connection of glyoxal and pyrogenic emissions closer, a large

fire event is studied here.

In summer 2010, unprecedented temperature anomalies causing severe drought

in some areas of European Russia resulted in the outbreak of many wildfires

(Shvidenko et al., 2011). Beginning in mid-July, the number of fires showed

∗This subsection has been previously published as part of Alvarado et al. (2014).
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Figure 5.5: Maps of fire radiative power (top) and glyoxal VCs (middle) over Rus-

sia from 22 July to 18 August 2010, as well as glyoxal VCs for the same

period in 2009 (bottom). Clearly an enhancement of glyoxal VCs is

observed as consequence of emissions of VOC from the fire activity.
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a steadily increase in occurrence until the end of July, followed by a decrease in

August (Parshutkina et al., 2011).

The wildfires around Moscow created elevated atmospheric levels of carbon

monoxide (CO), NOx, O3, sulfur dioxide (SO2), methane (CH4), carbon dioxide

(CO2), ammonia (NH3), formic acid (HCOOH) and aerosol load, affecting air

quality and human health (Yurganov et al., 2011; Elansky et al., 2011; Konovalov

et al., 2011; van Donkelaar et al., 2011; R’Honi et al., 2013). Here, we show that

high levels of glyoxal have also been produced from these wildfires.

For this case study, we use the 24 h assimilation data of FRP from the

Global Fire Assimilation System (GFASv1.0) (Kaiser et al., 2012). Briefly,

GFASv1.0 spatially aggregates all valid observations of fire and non-fire from

the two MODIS instruments onto a horizontal resolution of 0.5°×0.5° and calcu-

lates the total FRP sums for each grid cell. Further details about the daily 24 h

assimilated GFASv1.0 FRP product, which we use for the following analysis of

Russian wildfires can be found in Kaiser et al. (2012).

The geographical distributions of the 24 h assimilated FRP and the tropo-

spheric vertical columns of CHOCHO are shown in Fig. 5.5 (top and middle)

for the period 22 July to 18 August 2010, which represents the main part of the

fire period. The largest fire activity is observed in the east of Moscow and this

is also where the highest CHOCHO VCs are found, although it is a region with

usually rather low glyoxal levels (see Fig. 5.5, bottom). This is a clear indication

of glyoxal emissions from forest fires. Another hot-spot of fire activity during the

selected time period is observed between 60° and 65°N and 60° and 65°E. How-
ever, these fires are much less intense and thus, the magnitude of the observed

CHOCHO columns is lower.

5.3.2 Glyoxal transport event

Wittrock et al. (2006) and Vrekoussis et al. (2009) observed large amounts

of glyoxal over ocean regions, where no sources of glyoxal are expected. Due

to the short lifetime of glyoxal, the long-range transport of glyoxal is also very

unlikely. However, in this study some possible transport of glyoxal produced

from fire emissions has been identified. To illustrate the nature of CHOCHO

transport events, one example is analysed and compared with model simulation

trajectories.
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Figure 5.6: High CHOCHO levels detected over Myanmar-Thailand-Laos from 13

to 17 March of 2007. The glyoxal high levels partially follows forward

trajectories of the air masses simulated with HYSPLIT (right).

Southeast Asia (Myanmar-Thailand-Laos)

The agricultural fire season (March-April) in Southeast Asia spreads smoke

across a large portion of Myanmar, Thailand, and Laos. These fires create el-

evated atmospheric levels of many different gases in the atmosphere, e.g. CO,

NOx, O3, SO2, CO2, HCHO, CHOCHO and aerosols affecting air quality. On
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March 13, 2007, elevated levels of glyoxal are observed over Myanmar as a result

of fire activities in the region. The elevated levels remain visible for some days

and move through Thailand and Laos until they dispersed.

In order to investigate if the air mass follows the same trajectories as the

plume of elevated glyoxal levels, the web-based version of the HYbrid Single-

Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Stein et al., 2015;

Rolph) from the National Oceanic and Atmospheric Administration (NOAA) was

used for the calculation of airmass forward trajectories. HYSPLIT is a system

for the calculation of simple air parcel trajectories, based on the Global Data

Assimilation System (GDAS) meteorological databases. In this study, forward

trajectories at an altitude of 500m above sea level are calculated for the selected

region with high CHOCHO levels (VCs > 7.5× 1014molec cm−2). The ensemble

tracks of air masses, starting 12 hours prior to the observations of high glyoxal

amounts from 13 to 17 March 2007.

Figure 5.6 shows maps of glyoxal from 13 to 17 of March 2007, and the

forward trajectories computed with HYSPLIT model. The glyoxal high levels

partially follows forward trajectories of the air masses simulated with HYSPLIT.

One explanation of longer life time of glyoxal emitted from fires is that glyoxal

in the lower troposphere layer is mixed with aerosols, and its lifetime becomes

longer due to recycling processes. This first time transport event observed for

glyoxal could explain the reason of large amounts of glyoxal over oceanic areas,

because over South America and Africa south of the equator, large fire events

take place and similar recycling processes could lead to an enhanced lifetime of

glyoxal. More investigation is needed in order to study all possible reasons of

extended atmospheric lifetime of glyoxal under these conditions, but that is out

of scope of this research.

5.4 Summary

The ratio of glyoxal to formaldehyde has been computed from GOME-2A

measurements from 2007 to 2014. The RGF show a clear seasonality similar to

that of glyoxal. On closer inspection over nine selected regions, the variation RGF

depends on the vegetation type and temperature. The comparison of RGF with

indicators of biogenic (EVI), pyrogenic (FRP), and anthropogenic (NO2) emis-

sions also vary, for most of the regions being low when large EVI was observed

and large when high FRP and NO2 was found. These result are in agreement
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with the assessment performed by Kaiser et al. (2015) for the assignment of RGF

to the different source emissions of VOC. Many factors such as vegetation type,

temperature, humidity, and population play an important role in the behaviour

of RGF for different regions. Thus, the ratios of glyoxal to formaldehyde can

be used as a tool for the identification of VOC sources from satellite, however a

more accurate process is needed in order to have a better identification of VOC

sources.

The CHOCHO retrieval has been applied to study pyrogenic activities for the

large Russian wildfire during August 2010. It was shown that the location and

temporal pattern of the retrieved glyoxal columns is closely linked with the fire

radiative power observations, indicating that in these areas, pyrogenic emissions

dominate the glyoxal signal and thus glyoxal can also be used as an indicator of

fires emissions.

For the first time, evidence for transport events of glyoxal have been found in

the GOME–2A data. A case study over Southeast Asia has been investigated,

where the elevated levels of glyoxal were found to follow the trajectories of air

masses simulated with HYSPLIT. As glyoxal lifetime is short in the atmosphere,

possible recycling processes in a mixing layer with aerosols could be the reason

of the extended atmospheric lifetime of glyoxal in such plumes.
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6

Glyoxal, formaldehyde, and nitrogen

dioxide retrievals from MAX-DOAS

measurements

6.1 Introduction

From the ground both, direct-light DOAS and MAX-DOAS observations can

be performed. They both utilise light from natural sources such as the sun or the

moon. The use of other stars as light source has also been reported (Platt and

Stutz, 2008). In the last decade, MAX-DOAS has been introduced and shown

to be a powerful technique for the detection of tropospheric species, because

their “off-axis” observational geometries (see Fig. 2.13C) are mainly sensitive

to measuring trace gases in the troposphere (Hönninger et al., 2004; Wittrock

et al., 2004; Wagner et al., 2004; Heckel et al., 2005; Pinardi et al., 2012). This

is because the incoming photons have a longer path through lower layers (small

elevation angles) than photons at large elevation angles (see Fig. 2.13C). As

a consequence, these observations have an increased sensitivity to atmospheric

absorbers close to the surface, such as HCHO and CHOCHO. The MAX-DOAS

configuration has been applied for detection of NO2, HCHO, CHOCHO, SO2,

and BrO (Bobrowski et al., 2003; Hönninger et al., 2004; Wittrock et al., 2004;

Heckel et al., 2005; Sinreich et al., 2007; Pikelnaya et al., 2007; Vlemmix et al.,
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2010; Irie et al., 2011; Wagner et al., 2011; Pinardi et al., 2012; Peters et al.,

2012; Li et al., 2013). Also, It has been used to retrieve information on the

vertical distribution of both trace gases and aerosols (Wagner et al., 2004; Li

et al., 2010). In addition, measurements with MAX-DOAS configuration can be

used as a link for validation between satellite observation, and model calculation

(Wittrock, 2006; Brinksma et al., 2008).

In 2002 and 2003, the first measurements of HCHO with MAX-DOAS were

performed in the Po-Valley in Italy (Heckel et al., 2005; Wagner et al., 2011).

The first study of CHOCHO with the MAX-DOAS technique was reported by

Sinreich et al. (2007). These measurements were part of the ICARTT campaign

in 2004, and reported mixing ratios between 40 ppt and 140 ppt with a maximum

at noon for Cambridge, USA during summer 2004. Later, Hak et al. (2005) re-

ported on an intercomparison of HCHO results among MAX-DOAS, long-path

(LP) DOAS (active DOAS), the chromatographic technique, Fourier Transform

Infrared (FTIR), and Hantzsch-type in-situ instruments. These results showed

a good agreement among all instruments with the exception of one Hantzsch

instrument. Wittrock (2006) presented results of MAX-DOAS measurements

from the Cabauw campaign in summer 2005 and satellite observations, finding

a good agreement between the tropospheric columns of HCHO and CHOCHO

with satellite observations, and demonstrated that MAX-DOAS is a powerful

tool for long-term observation of tropospheric species. A study performed by

MacDonald et al. (2012) for the rainforest canopy in Borneo with MAX-DOAS

and LP-DOAS in spring and summer 2008 observed a maximum of HCHO and

CHOCHO at 4.5 ppt and 1.6 ppt respectively, with consistent agreement between

MAX-DOAS and LP–DOAS columns. Vigouroux et al. (2009) compared SCIA-

MACHY, MAX-DOAS and FTIR HCHO total columns over a tropical region,

finding good agreement between daily mean total columns of HCHO from MAX-

DOAS and FTIR, and also a very good agreement with SCIAMACHY observa-

tions during the same period. Later, Fried et al. (2011) compared aircraft and

ground-based measurement of HCHO during the INTEX–B campaign, finding a

good agreement between both configurations. More recently, a study by Pinardi

et al. (2012) presents an intercomparison exercise of HCHO columns retrieved

from different instruments that participated in the CINDI campaign during sum-

mer 2009. The mean differences found are no larger than 15% on slant columns.

Thus, MAX-DOAS instruments have demonstrated the capabilities for detection

of HCHO and CHOCHO in long-term observations and the link with satellite

observations and model calculations.
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In this chapter, results of HCHO, CHOCHO, and NO2 retrieved from MAX-

DOAS measurement over two different locations (Athens and Nairobi) are pre-

sented. Sensitivity studies have been performed in order to optimize the retrieval

parameters of HCHO, CHOCHO, and NO2. In addition, an analysis of the tem-

poral evolution of the three gases has been performed for the two locations, which

are part of the Bremian DOAS Network for Atmospheric Measurements (BRE-

DOM). Also, the ratio of glyoxal to formaldehyde (RGF ) was evaluated in order

to constrain VOC emission types (Vrekoussis et al., 2010; DiGangi et al., 2012;

Li et al., 2013) and the formaldehyde to dioxide nitrogen ratio (RFN) for the

study of O3 production rates (Duncan et al., 2010; Ortega et al., 2015).

6.2 Measurement sites

The geographic location of the measurement sites can be seen in the map in

Fig. 6.1. The red stars represent stations that are part of the BREDOM network,

one is located in Athens, Greece and the other in Nairobi, Kenia. The purple star

represents the location where the Multi-Axis DOAS-Comparison campaign for

Aerosols and Trace gases (MAD–CAT) in Mainz, Germany took place. However,

results from the campaign are not shown here.

6.2.1 Athens

Athens is the capital and largest city of Greece. It is located in the South-

east of Europe, having a population of 3.1 millions inhabitants over an area

of 38.9 km2. Athens is characterized by a typical Mediterranean climate, with

hot summers and mild winters. The summer corresponds to the months June to

August, which are usually dry and hot with temperatures between 19 °C and 28 °C
(see Fig. 6.2). During summer, the city is also prone to smog formation most

likely due to the increase of temperature and the photochemistry. Spring and

autumn are from March to May and from September to November, respectively.

Rainfall is sparse from mid October to mid April, and sometimes showers fall

during summer (see Fig. 6.3).

The BREDOM MAX-DOAS instrument is installed in Penteli (30° N, 23° E)
at an altitude of 500 meters above sea level in the building of the National Obser-

vatory of Athens (more details about the instrument can be found in Sect. 2.5.1).

Figure 6.4 shows the eight different azimuth viewing direction of the MAX-DOAS
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Figure 6.1: Overview map of locations where MAX-DOAS instruments are mea-

suring. In red are the measurement sites that are part of the BREDOM

network and in purple the location where MAD-CAT campaing took

place.

instrument over Athens. These directions are looking over open ocean (W), air-

port (A), southern part of the city (R), old centre (S), Piraeus harbour (T),

Olympic stadium (U), northern suburbs of the city (V), and a region with bio-

genic background (B). The MAX-DOAS instrument is measuring at elevations

angles of 0°, 1°, 2°, 3°, 4°, 6°, 8°, 15°, and 30° in fact, there are additional eleva-

tions in some directions. The reference spectrum is measured at the zenith (90°).
Here, measurements from January 2013 to December 2014 are analysed.

6.2.2 Nairobi

Nairobi is the capital and largest city of Kenya. It is located in the central east

of Africa, having a population of 3.2 millions inhabitants over an area of 696 km2.

Nairobi has a tropical climate, with temperatures between 12 °C and 27 °C (see

Fig. 6.5). The winter corresponds to months between July and September, which

are usually dry and mid–cold. The summer months are from December to March

116



6. GLYOXAL, FORMALDEHYDE, AND NITROGEN DIOXIDE
RETRIEVALS FROM MAX-DOAS MEASUREMENTS

Figure 6.2: Maxima and minima of average temperature for Athens (from http:

//www.worldweatheronline.com).

with temperatures between 13 °C and 28 °C (see Fig. 6.5). The rest of the months

are characterized by rainfall and wet conditions (see Fig. 6.6).

The BREDOM MAX-DOAS instrument is installed in the building of the

United Nations Environment Programme of Kenya (1°S, 36°E) at an altitude of

1600 meters above sea level. Figure 6.7 shows the azimuth viewing direction of

the MAX-DOAS instrument over Nairobi. This direction is looking over the city

and a national park. The MAX-DOAS instrument is measuring at elevations

angles between 0° and 30°. The reference spectrum is measured at the zenith

(90°). Here, measurements from January 2011 to December 2014 are analysed.

Despite its large population, Nairobi also has a large extension of vegetation.

Thus, it is interesting to compare the results from Athens and Nairobi in order

to obtain a better understanding of sources for production of VOC and NOx.

117

http://www.worldweatheronline.com
http://www.worldweatheronline.com
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Figure 6.3: Maxima and minima of average rainfall for Athens (from http://www.

worldweatheronline.com).

Figure 6.4: Location and azimuth viewing direction of the MAX-DOAS instrument

in Athens. The lines represent the different azimuth viewing directions

to which the instrument is looking.
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Figure 6.5: Maxima and minima of average temperature for Nairobi, Kenya (from

http://www.worldweatheronline.com).

Figure 6.6: Maxima and minima of average rainfall for Nairobi, Kenya (from http:

//www.worldweatheronline.com).
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6.3 SENSITIVITY STUDY ON THE RETRIEVALS OF CHOCHO, HCHO
AND NO2

Figure 6.7: Location and azimuth viewing direction of the MAX-DOAS instrument

in Nairobi. The red line represents the azimuth viewing direction to

which the instrument is looking and a distance of 20 km.

6.3 Sensitivity study on the retrievals of CHOCHO,

HCHO and NO2

During the last two decades, many efforts have been taken in order to im-

prove the retrieval of smaller absorbers such as HCHO and CHOCHO. However,

the uncertainties are still large in comparison to strong absorbers such as NO2.

Nevertheless, the number of algorithms and definition of parameters used in the

NO2 retrievals are still broad, which sometimes show consistent results but also

large differences, depending on the wavelength window, polynomial and cross-

sections included of interfering species in the retrieval. Therefore, the focus of

this section is to find the optimal retrieval parameters for HCHO, CHOCHO and

NO2, based on sensitivity studies as is described below.

For the formaldehyde, glyoxal and nitrogen dioxide sensitivity studies, mea-

surements performed in Athens have been used. A systematic variation of param-

eters has been performed to find the optimal parameter set for each specie. The

parameters evaluated were the cross-sections included in the retrieval, the fitting

window, and the polynomial degree. First, a day with good weather (specially
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with good visibility) was selected. In order to chose a day where the amounts

of HCHO, CHOCHO, and NO2 are high, preliminary retrievals were performed

using parameter sets that have been used in other studies. During the mea-

surement period, many days with large amounts of HCHO, CHOCHO, and NO2

slant columns have been found. From this priori evaluation, measurements from

25.06.2013 have been identified as a good test day. After this initial phase, the

systematic analysis of the measurements was performed, varying the start and

end wavelength limits in the intervals used in the DOAS fit, the cross-sections

included, and the polynomial degree in the fit.

• start wavelength: intervals between 335 nm and 340 nm, 420 nm and 437 nm,

405 nm and 435 nm for HCHO, CHOCHO, and NO2 respectively.

• end wavelength: intervals between 343 nm and 364 nm, 442 nm and 460 nm,

440 nm and 500 nm for HCHO, CHOCHO, and NO2 respectively.

• cross-sections: HCHO at 297K (Meller and Moortgat, 2000), O3 for tem-

peratures of 223K, 243K, 273K, and 293K (Bogumil et al., 2003), NO2

at 220K and 294K (Vandaele et al., 1998), CHOCHO at 298K (Volka-

mer et al., 2005b), BrO (Fleischmann et al., 2004), O4 at 293K (Thalman

and Volkamer, 2013), H2O vapour at 296K (Rothman et al., 2010), and

Ring (Vountas et al., 1998). The temperature dependence on O3 and BrO

absorption are evaluated for the formaldehyde retrieval, while NO2 temper-

ature dependence is tested in the glyoxal and nitrogen dioxide retrievals.

• polynomial order: 2 to 5

Every combination of parameters was applied to the 36 measurements of

the day at an elevation angle of 2° and using as reference spectrum the zenith

measurement closest in time. The combination of these parameters gives more

than 2.0× 105 fits for each measurement. In order to compensate the stray–light

effect, a constant intensity offset was applied.

Figures 6.8, 6.9, and 6.10 show the mean RMS obtained from the retrievals of

HCHO, CHOCHO, and NO2 computed for all possible combinations of start and

end wavelengths for each combination of cross-sections, and different polynomial

orders. Clearly, when the number of cross-sections used in the retrieval increase,

the mean RMS decreases, the reduction in mean RMS being more significant

when the stronger absorbers in the wavelength range of interest are included. For
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Figure 6.8: The mean RMS for formaldehyde retrievals with their respective stan-

dard deviation as error bar computed over all possible fitting win-

dows for each combination of cross-sections and different polynomials

(colour bars) for measurements performed in Athens during 25 June

2013, elevation angle of 2° and azimuth direction of 52.5° (S direction,

see Fig. 6.4).

HCHO, the most pronounced reduction of the mean RMS is achieved by adding

the Ring, stratospheric O3, tropospheric NO2, and O4 cross-sections. Adding

BrO and a higher temperatures O3 (accounting for tropospheric contribution)

cross-sections gives a small improvement in the mean RMS as well. For the

ozone high temperature cross-sections, this improvement is nearly independent

on which one is used, however the 293K cross-section led to the most noticeable

improvement and is the one used in our HCHO retrieval. Additionally, the order

of polynomial that gives the smallest mean RMS corresponds to 5 (see Fig. 6.8).

For CHOCHO, the most significant reduction in the mean RMS is achieved by

adding Ring, stratospheric O3 and NO2, O4, water vapour and high temperature

NO2 (294K) cross-sections, this last accounting for the tropospheric contribution

over regions with large anthropogenic emissions as suggested in (Alvarado et al.,

122



6. GLYOXAL, FORMALDEHYDE, AND NITROGEN DIOXIDE
RETRIEVALS FROM MAX-DOAS MEASUREMENTS

Figure 6.9: The mean RMS for glyoxal retrievals with their respective standard

deviation as error bar computed over all possible fitting windows for

each combination of cross-sections and different polynomials (colour

bars) for measurements performed in Athens during 25 June 2013,

elevation angle of 2° and azimuth direction of 52.5° (S direction, see

Fig. 6.4).

2014). A polynomial of order 4 is used although polynomial degrees of 3 and 5

give similar mean residuals.

For NO2, the introduction of O4 and H2O cross-sections in the retrieval led to

the most significant reduction in the mean RMS (see Fig. 6.10), because strong

absorption bands of O4 and H2O are found in the visible wavelength range. Also,

a slight improvement is observed with the introduction of Ring, stratospheric O3

and NO2 (220K) in the retrieval. A polynomial of order 5 gives the smallest

mean residual.

After choosing the polynomial and cross-sections that are used in the re-

trievals of HCHO, CHOCHO, and NO2, the selection of the most appropriate

fitting window has been done based on root mean square and fitting error for

each retrieval. The RMS and fit error as function of start and end limits of
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Figure 6.10: The mean RMS for nitrogen dioxide retrievals with their respective

standard deviation as error bar computed over all possible fitting win-

dows for each combination of cross-sections and different polynomials

(colour bars) for measurements performed in Athens during 25 June

2013, elevation angle of 2° and azimuth direction of 52.5° (S direction,

see Fig. 6.4).

fitting intervals at steps of 0.5 nm are shown in Fig. 6.11. The wavelength limits

chosen for each gas take into account the most representative absorption bands.

Every point in the plot represents the average RMS and fitting error over 36

spectra in order to limit the effect of measurement noise. For HCHO, the start

wavelengths have been limited to 335 nm due to instrumental limitations. Fit-

ting windows between 335 nm and 360 nm have been used in previous studies for

retrieving formaldehyde from MAX-DOAS measurements (Peters et al., 2012;

Pinardi et al., 2013). The minimum fitting error for each retrieval combined

with the smallest RMS is highlighted by a dark–red box in Fig. 6.11. The vari-

ability of RMS with the fitting windows is low in comparison with the fit error

variability. For HCHO and CHOCHO only wavelength ranges for which the fit-
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Figure 6.11: Colour mapping of fit errors and RMS of HCHO, CHOCHO, and NO2

for different wavelength with start limits of 335–340 nm, 420–437 nm,

405–435 nm and end limits of 343–364 nm, 442–460 nm, 440–500 nm

respectively from measurements performed at 2° elevation angle over

Athens on Tuesday, 25 June 2013.

ting error is below 12% are considered. In the case of CHOCHO, this result is

in agreement with the one obtained for satellite measurements, being below 12%

for wavelength ranges that include the strong absorption band of glyoxal (larger

than 456 nm) and this limits the end wavelength to the range between 456 and

460 nm. Only start wavelengths in the range of 432–436 nm are considered, be-

cause the RMS increases for wavelengths below 432 nm, and also the CHOCHO

differential slant columns (DSC) pattern is largely variable for these wavelengths

(see Appendix). Finally, the combined lowest fit error with the low RMS in these

wavelength ranges led to the fitting window between 433 nm and 458 nm. Similar

fitting windows have already been used for retrieving glyoxal from ground and

satellite measurements (Sinreich et al., 2010; Alvarado et al., 2014).

The lowest fit error in HCHO retrievals corresponds to ranges with start wave-

lengths of 335–338.5 nm and end wavelengths of 357–364 nm, lowest error being

found for the fitting window between 335 nm and 358.5 nm. However, the RMS is

high for this wavelength range and thus the selected fitting window corresponds

to wavelengths between 337 nm and 358 nm, which led to a lower RMS and simi-
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Table 6.1: Parameters used for retrieve HCHO, CHOCHO, and NO2 from MAX-

DOAS measurements

Parameters Gas to retrieve

Formaldehyde Glyoxal Nitrogen dioxide

Cross sections

HCHO (297K) + - -

CHOCHO (298K) - + -

NO2 (220K) - + +

NO2 (294K) + + +

O3 (223K) + + +

O3 (293K) + - -

O4 (293K) + + +

H2Ovap (296K) - + +

BrO + - -

Ring + + +

Fitting window 337–358 nm 433–458 nm 413–485 nm

Polynomial 5 4 5

lar fit error as the wavelength interval between 335 nm and 358.5 nm. Moreover,

the HCHO DSCs for these wavelength ranges are similar and no large variability

is observed as was the case in CHOCHO DSCs. For the NO2 retrieval, the vari-

ation in fit error and RMS is lower than for HCHO and CHOCHO, because the

absorption of NO2 is stronger than those of HCHO and CHOCHO. Thus, most of

all possible combinations of start and end wavelengths give fit errors below 1.2%,

however for the selection of NO2 fitting window, only wavelengths with start

limits of 400–425 nm and end limits of 450–500 nm are considered. The lowest

fit errors are found for start wavelengths of 412–414 nm and end wavelengths of

482–486 nm (see Fig. 6.11, bottom-right), which correspond to fit errors below

0.25%. For these wavelength intervals, the lowest RMS is obtained for the wave-

length range extended from 413 nm to 485 nm. The final settings for retrieving

each gas are summarized in the Table 6.1.
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Figure 6.12: Example fits for HCHO, CHOCHO, and NO2 from a measurement

performed at 2° elevation over Athens on the morning of 25 June 2013

(9:53:08, local time). The black lines show the reference cross-section

and the red lines the fit for each gas.

Typical fit examples for HCHO, CHOCHO, and NO2 retrieved from a mea-

surement performed at 2° elevation angle over Athens on Tuesday, 25 June 2013

in the morning are shown in Fig. 6.12. The agreement between reference cross-

sections for HCHO, CHOCHO, and NO2 (black line) and the respective fits (red

line) is very good, specially for wavelengths where the main absorption bands

are found, leading to a fit error for each gas about of 5.27%, 4.15%, and 0.24%

respectively.
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Figure 6.13: Time series of HCHO DSCs retrieved from the MAX-DOAS measure-

ments over Athens at elevation angles of 1°, 4°, 8°, 15° and 30° in the

S direction for the period between 23 (Sunday) and 27 (Thrusday)

June 2013.

6.4 Results and Discussion

In this section, the main results obtained from the retrievals of HCHO,

CHOCHO, and NO2 from the MAX-DOAS measurements over Athens and Nairobi

are presented.

6.4.1 Athens

Figures 6.13, 6.14, and 6.15 show time series from Sunday (23 June 2013)

to Thursday (27 June 2013) of HCHO, CHOCHO, and NO2 DSCs retrieved

from the MAX-DOAS measurements over Athens at an azimuth angle of 52.5°
(S direction, see Fig. 6.4) and elevation angles of 1°, 4°, 8°, 15°, and 30°. These

days are mostly cloud free with the exception of 26 June 2013 in the afternoon.

The separation between elevation angles is clear for all days due to the good

visibility. The HCHO, CHOCHO, and NO2 DSCs have a very pronounced diurnal

variation with a maximum around noon for most of the days. However, on

Sunday (23 June 2013) no diurnal variation is observed, which could be related
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Figure 6.14: Time series of CHOCHO DSCs retrieved from the MAX-DOAS mea-

surements over Athens at elevation angles of 1°, 4°, 8°, 15° and 30° in
the S direction for the period between 23 (Sunday) and 27 (Thrusday)

June 2013.

to the lower amount of emissions from vehicles, as well as from industry. The

lowest DSCs for the three gases are found on Sunday in comparison to the weekly

days. The temporal variability of DSCs for the three gases is similar, the largest

HCHO, CHOCHO, and NO2 DSCs being found on 25 June 2013. In contrast, the

variation from one day to another (e.g. 24 and 25 June 2013) is less pronounced

for HCHO than for CHOCHO and NO2. For these five days, the HCHO DSCs

vary between 0 and 1.4×1017molec cm−2, while for CHOCHO, DSCs are between

0 and 9× 1015molec cm−2 and for NO2 between 0 and 2.9× 1017molec cm−2.

In order to compare the columns obtained with satellite measurements or with

results obtained from other stations, the DSCs need to be converted to VC, which

is usually done as is described in the Sect. 2.4.8. For simplicity, a geometrical

approximation is used here. This approach has already been validated in many

studies for the computation of vertical columns (e.g. Li et al., 2013). A differential

AMF (DAMF) has to be computed, which is defined as the difference of AMF

between the off–axis direction (θ ̸= 90°) and the zenith (θ = 90°). Then, the AMF

for off–axis and the zenith view can be estimated as 1/ sin(θ) and 1 respectively.

For this study, a measurement at elevation angle of 15° as off–axis is used for the

determination of the “geometric” VC.
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Figure 6.15: Time series of NO2 DSCs retrieved from the MAX-DOAS measure-

ments over Athens at elevation angles of 1°, 4°, 8°, 15° and 30° in the

S–direction for the period between 23 (Sunday) and 27 (Thrusday)

June 2013.

Thus, the trace gas VCgeo can be written as,

V Cgeo =
DSCθ

DAMFθ

=
DSC15°

DAMF15°
=

DSC15°

(1/ sin(15°))− 1
(6.1)

Additionally, a quality test is applied in order to filter the VCgeo. This consists

of comparing the VCs obtained using an elevation angle at 8° and 15°. If the

relative difference between both VCs (
V C15°

geo−V C8°
geo

(V C15°
geo+V C8°

geo)/2
) is larger than 20%, the VC

is not used as final product.

Figure 6.16 shows monthly mean HCHO, CHOCHO, and NO2 VCs over

Athens for morning (5:00–12:00), afternoon (12:00–19:00), and all day (5:00–

19:00) from January 2013 to December 2014, which have been computed by

using the geometrical approach described above. For the computation of monthly

means, only months that have more than 10 days of measurements are taken

into account. The monthly mean HCHO VCs for the morning, afternoon and

all show a similar temporal behaviour, the main differences being found between

afternoon and those from morning and all. The HCHO VCs from morning and

all are in good agreement, in fact the maximum for every day of formaldehyde is

found in the morning time (see Fig. 6.17, top), which probably is dominant factor
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in the computation of daily mean HCHO VCs (all) and most likely originates

from direct emissions from local combustion events during the peak hours. The

seasonal behaviour is similar for 2013 and 2014, which have the maximum during

summer (June–July–August), which also most likely corresponds to an increase

in the emissions of VOC by the vegetation during this season. The monthly

values of HCHO VCs for 2013 and 2014 are of the same order of magnitude and

about of 2− 7.0× 1015molec cm−2.

The monthly mean CHOCHO VCs show a less pronounced seasonality in

comparison to the one observed for HCHO VCs, in particular for 2014, where

the values are nearly constant for most months, with a slightly increase during

summer (see Fig. 6.16, middle). However, in 2013 two peaks of glyoxal are clearly

observed (June and October), which are also observed for formaldehyde. Similar

to HCHO, glyoxal amounts increase for the period corresponding to the warm

season, which also corresponds to the growth of plants and thus, major release

of isoprene and monoterpene from vegetation. In addition, the anthropogenic

contributions play an important role in the amounts of formaldehyde and gly-

oxal, the contribution of anthropogenic sources to glyoxal being less important.

Despite the fact that sources of glyoxal and formaldehyde are similar, the effi-

ciency in the production of these could be the reason for the more pronounced

seasonal behaviour of formaldehyde. The CHOCHO VCs computed for morning,

afternoon, and all day show a similar temporal behaviour during 2013–2014, the

VCs being slightly higher in the morning than in the afternoon. This is con-

sistent to the observations for formaldehyde, as the glyoxal maximum is found

during the morning period (see Fig. 6.17, middle). The glyoxal VCs vary between

1.5× 1014molec cm−2 and 3.4× 1014molec cm−2.

In contrast to formaldehyde and glyoxal, NO2 VCs for morning, afternoon and

all vary more (see Fig. 6.16, bottom). NO2 is mainly emitted by anthropogenic

sources and as Athens is a city with high population density, a large contribution

from fossil fuel combustion and industry is expected. The tendency of NO2 from

morning and afternoon measurement is not clear, in some months the values from

the morning are higher than those from the afternoon, but also the opposite is

observed. The highest monthly values of NO2 VCs are found in the winter season,

where more emissions by heating are expected. This is in good agreement to the

observations from satellite over regions with large anthropogenic emission (e.g.

North East China). The NO2 VCs oscillate between 2.0 × 1015molec cm−2 and

8.0× 1015molec cm−2 with the maximum corresponding to December 2014.
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Figure 6.16: Monthly means HCHO, CHOCHO, and NO2 VCs computed by using

the geometrical approximation on 8° elevation angle over Athens for

the S direction from January 2013 to December 2014.

Despite that the morning, afternoon, and all VCs have a similar temporal

behaviour, the diurnal variation of HCHO, CHOCHO, and NO2 VCs show dif-

ferences. Figure 6.17 shows normalized means of HCHO, CHOCHO, and NO2

VCs for 10 days. These diurnal variations have been computed from 18 to 27

June 2013, which are cloud free days. The measurements from every day have

been binned into 1 hour steps and then normalized to the corresponding daily
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Figure 6.17: Diurnal variation of HCHO, CHOCHO, and NO2 VCs retrieved over

Athens for 10 cloud free days from 18 to 27 June 2013.

maximum, so that the increase of vertical columns from day to day will not

affect the diurnal variation. In general, the diurnal cycles for CHOCHO and

NO2 behave similar with morning build-up and noon maximum, but NO2 then

decreases and has second maximum in the evening. While HCHO nearly no di-

urnal cycle. The diurnal cycles for each gas show the maxima in the morning,

NO2 and CHOCHO are low in the early morning and increase after peak hour

(major vehicle traffic) and decrease in the afternoon. The NO2 diurnal cycle has

a similar behaviour as seen from model results (Blechschmidt et al., in prepara-

tion), with a maximum at 10:00 hour local time for both and decreasing around

noon and an increase again after 17:00 hour local time (see Fig. 6.17, bottom). In

133



6.4 RESULTS AND DISCUSSION

contrast, the diurnal cycle of CHOCHO VCs shows a more symmetric evolution

during the day with maximum around 11:00 hour at local time (see Fig. 6.17,

middle). A similar result has already been found over Mexico city by Volkamer

et al. (2005a), however the maximum corresponded to 12:00 hour local time. In

contrast, Li et al. (2013) reported glyoxal amounts measured in Southern China

and found that the CHOCHO diurnal cycle has a maximum in the early morn-

ing as consequence of oxydation of VOC in the previous night by OH radicals.

These different results could be consequence of different dominant sources in the

production of glyoxal over each region (e.g. anthropogenic or biogenic).

Additionally, HCHO, CHOCHO, and NO2 VCs have been retrieved for eight

different azimuth directions over Athens (see Fig. 6.4). Figure 6.18 shows monthly

mean vertical columns computed from daily means that take into account mea-

surements from 5:00 to 19:00 hours (all). For the three trace gases, the temporal

evolutions are similar in the eight azimuth directions, the lowest VCs being found

in the W (ocean) and A (airport) directions. These differences between azimuth

viewing directions is more evident for CHOCHO and NO2 VCs. Thus, the az-

imuth variation of HCHO VCs shows a quite homogeneous distribution, while

for CHOCHO, and NO2 is not. However, in the weekly and daily variation of

HCHO, CHOCHO, and NO2 VCs from the different azimuth viewing directions,

large gradients can be found due to horizontal transport carry out by wind.

Finally, in order to investigate the sources of VOC over Athens, the ratio of

glyoxal to formaldehyde (RGF ) has been computed for the S direction. Although,

HCHO and CHOCHO are mainly produced in the oxidation processes of hydro-

carbons, they have different pathways of formation and precursors (Vrekoussis

et al., 2010; DiGangi et al., 2012; Kaiser et al., 2015). The ratio of formalde-

hyde to nitrogen dioxide (RFN) can be used to investigate the ozone production

rates of precursor species of VOC and NOx (Martin et al., 2004a; Duncan et al.,

2010; Li et al., 2013; Ortega et al., 2015). The interpretation of these ratios

is highly variable and depends on many factors (e.g. season, location). Fig-

ure 6.19 shows monthly mean RGF over Athens for 2013 and 2014. The RGF

has a clear seasonal variation with large ratios corresponding to the cold season

(winter: December–January–February) and low values to the warm season (sum-

mer: June–July–August). These ratios vary between 0.028 to 0.06, the maximum

found for October 2013 and the minimum in August 2013. For the warm season,

ratios oscillate between 0.028 and 0.033. These ratios could be associated to bio-

genic sources of VOC, because during summer an increase of temperature lead

to a major release of BVOC from vegetation. These ratios are sightly larger than
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Figure 6.18: Monthly means of HCHO, CHOCHO, and NO2 VCs over Athens for

eight different azimuth directions, which are focused over different

sources for period 2013–2014.

those found by DiGangi et al. (2012) from in–situ measurements over two rural

regions during summer time. The ratios obtained by DiGangi et al. (2012) vary

between 0.019 and 0.030 for most days, smaller than those found in our study.

However, the measurement regions are characterized by large biogenic influence,

they associated these small ratios to biogenic sources of VOC. In contrast, Athens

is a city with high population density and despite the larger biogenic emission
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Figure 6.19: Ratio of glyoxal to formaldehyde (RGF ) obtained for the S direction

over Athens for 2013 and 2014.

expected in summer, the anthropogenic contribution still remains, and thus RGF

in Athens during summer time could be a result from BVOC with some in-

fluence from AVOC, because the ratios obtained from this study are monthly

means and not daily as in DiGangi et al. (2012). In the monthly means, the

production of glyoxal and formaldehyde from day to day can change due to the

different sources that emitte VOC over Athens. DiGangi et al. (2012) also found

an enhancement of RGF during a fire event, which is in agreement with results

obtained from satellite observations over regions characterized by a large number

of fire events (Kaiser et al., 2015) and associated to pyrogenic and anthropogenic

sources. Thus, large ratios observed during winter season in this study could be

due to the anthropogenic contribution to production of AVOC.

Additionally, by using the ratio of formaldehyde to nitrogen dioxide, the

relative sensitivity of O3 formation to precursor species of VOC and NOx is

investigated over Athens as is inferred from this ratio. Because, the formation of

ozone can drive by reducing the emissions of VOC or NOx, and they are referred

to VOC–lmited and NOx–limited photochemical regimes. Duncan et al. (2010)

characterized the relationship between RFN and O3 production in the United

States, by combining a model study and satellite observation, and suggested
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Figure 6.20: Monthly means ratios of formaldehyde to nitrogen dioxide (RFN ) for

the S direction over Athens during 2013 and 2014.

three regimes: RFN < 1 for VOC–limited, RFN > 2 for NOx–limited, and RFN

between 1 and 2 for transition regimes, where both (VOC–limit and NOx–limit)

may reduce the ozone production. Figure 6.20 shows monthly mean RFN over

Athens for 2013 and 2014. The RFN behave opposite to the RGF , the large ratios

during the warm season and small values in the cold season. These ratios are

between 0.5 and 3.0 with the minimum found in February 2013 (0.5), while the

maximum is found during July 2013 (3.1). Thus, in the summer months O3

production is NOx–limited and only in winter it is VOC–limited, while the rest

of the year it is in the intermediate regime.

6.4.2 Nairobi

Figures 6.21, 6.22, and 6.23 show HCHO, CHOCHO, and NO2 DSCs re-

trieved from the MAX-DOAS measurements over Nairobi at elevation angles of

1°, 4°, 8°, 15°, and 30° from Wednesday (23 January 2013) to Sunday (27 January

2013). These days are mostly cloud free. As described above, Nairobi is a city

with large population, however there are also large vegetation extensions and the

instrument is in the direction of a national park.
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Figure 6.21: Time series of HCHO DSCs retrieved from MAX-DOAS measure-

ments over Nairobi at elevation angles of 2°, 4°, 8°, 14° and 30° for

the period between 23 (Wednesday) and 27 (Sunday) January 2013.

The separation of the retrieved DSCs between different elevation angles is

clear for these five days due to the good visibility. The HCHO DSCs have a

very pronounced diurnal variation with the maximum around noon for most of

days, which is not clear for CHOCHO, and NO2 DSCs (see Figs 6.22 and 6.23).

Moreover, some HCHO DSCs for the 30° elevation angle are negatives due to

instrumental problems as mirror degradation (this has working for more than 12

years). The CHOCHO, and NO2 DSCs show an increase in the afternoon, while

the maximum in DSC varies between days, being mostly found around noon

(late morning or early afternoon) for CHOCHO and mainly in the afternoon for

NO2. On Sunday (27 January 2013) the diurnal variation is less pronounced

than during week days. Moreover, a significant reduction in the DSCs for the

three gases is observed for Sunday in comparison of week days, which could

be related to reduced amount of emissions from vehicles similar to Athens (see

Sect. 6.4.1). The day to day variations of DSCs for CHOCHO and NO2 is similar,

higher amounts of these gases being observed on 26 January 2013 (Saturday).

In contrast, HCHO DSCs are nearly constant with only a slight decrease on

Sunday. The HCHO is varying between 0 and 7 × 1016molec cm−2, CHOCHO

between 0 and 4.5× 1015molec cm−2 and NO2 columns are between 0 and 9.5×
1016molec cm−2.
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Figure 6.22: Time series of CHOCHO DSCs retrieved from the MAX-DOAS mea-

surements over Nairobi at elevation angles of 2°, 4°, 8°, 14° and 30° for
the period between 23 (Wednesday) and 27 (Sunday) January 2013.

These DSCs retrieved over Nairobi are converted to VCs using equation 6.1

as is described in Sect. 6.4.1. However, instead of using the elevation angle at

15°, an angle at 14°is used, because for the years of interest the measurement at

15° was not performed.

In order to investigate the diurnal variation of HCHO, CHOCHO, and NO2

VCs, means of VCs normalized to the corresponding daily maximum for 10 days

from 15 to 25 February 2013 (summer time in Nairobi) have been computed.

These days are characterized by be cloud free conditions. The measurements

from every day have been binned into 1 hour steps. Figure 6.24 shows the

diurnal variation of HCHO, CHOCHO, and NO2, which is quite similar for all

three species. However, the increase during the day occurs at a different time for

each gas. HCHO and NO2 VCs are slightly higher in the morning and decrease

to a minimum at 8:00 and 9:00 hour (local time), respectively. These elevated

levels for the early morning could be related to vehicle emissions in the peak

hours, which is more evident for HCHO and NO2 as they are directly related to

anthropogenic emissions. In the case of HCHO, a maximum is reached around

11:00 hours, keeping the levels high and nearly constant until 16:00 hours, when

the amounts of formaldehyde start to decrease. In contrast, NO2 levels keep

increasing until the maximum is reached around 15:00 hour, and them remain
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Figure 6.23: Time series of NO2 DSCs retrieved from the MAX-DOAS measure-

ments over Nairobi at elevation angles of 2°, 4°, 8°, 14° and 30° for

the period between 23 (Wednesday) and 27 (Sunday) January 2013.

nearly constant until the end of the day. For CHOCHO during the morning, the

behaviour is nearly constant and lower with a minimum at 8:00 hour. CHOCHO

levels start to increase around 10:00 hours until a maximum is reached around

noon (12:00 hours). These high levels remain constant until 16:00 hours, when

they start to decrease again. These diurnal variations show that the behaviour of

the three gases during the day is most likely dominated by photolysis and increase

of temperature, because the tropical regions are characterized by intense sun light

between 10:00 and 15:00 hours during summer time with a significant increase

of temperature. In fact the increase of temperate also causes an increase in the

isoprene emissions over regions with large vegetation (Duncan et al., 2010). The

diurnal behaviour observed in Nairobi is different that in Athens, which could be

related to the difference in sources and sinks over each city.

Figure 6.25 shows monthly mean HCHO, CHOCHO, and NO2 VCs over

Nairobi for morning (5:00–12:00), afternoon (12:00–19:00), and all day (5:00–

19:00) from January 2011 to December 2014. The computation of monthly

means has been performed similar to Athens (see Sect. 6.4.1). The monthly

mean VCs show a similar temporal behaviour for the three gases, the most no-

table differences between time periods (morning, afternoon, all) are found for

formaldehyde and glyoxal. In contrast, the NO2 VCs for the three time periods
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Figure 6.24: Diurnal variation of HCHO, CHOCHO, and NO2 VCs retrieved over

Nairobi for 10 cloud free days from 15 to 25 February 2013.

are very similar. The VCs of the afternoon period are larger than those from

the morning time, as expected from the daily variations showing higher levels

of formaldehyde, glyoxal and nitrogen dioxide between late morning and after-

noon time (see Fig. 6.24). The seasonal behaviour for glyoxal and NO2 VCs is

similar from year to year with the exception of 2014 for glyoxal. In contrast,

the seasonal variability for formaldehyde is not clear, a slight increase being

found during winter time (June–July–August-September) for every year. The

maximum of CHOCHO and NO2 VCs for every year is observed during winter

similar to formaldehyde, however the seasonal variability of these two gases is

much more pronounced. The HCHO VCs vary between 3.0 × 1015molec cm−2
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Figure 6.25: Monthly means of HCHO, CHOCHO, and NO2 VCs computed by

using the geometrical approach over Nairobi from January 2011 to

December 2014.

and 11.0 × 1015molec cm−2, and for CHOCHO between 1.0 × 1014molec cm−2

and 4.5 × 1015molec cm−2, while NO2 VCs between 2.0 × 1015molec cm−2 and

9.0× 1015molec cm−2.

Similar to Athens, the ratios of glyoxal to formaldehyde and formaldehyde

to nitrogen dioxide have been computed in order to investigate the sources of

production of VOC and the ozone production rates to NOx limit and VOC limit
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Figure 6.26: Monthly means ratios of glyoxal to formaldehyde (RGF ) over Nairobi

from January 2011 to December 2014.

as well. Fig. 6.26 shows monthly mean RGF over Nairobi between 2011 and 2014.

The RGF has a clear seasonal variation with large ratios corresponding to cold

season (winter: June–July–August–September) and low ratios in the warm sea-

son (summer: December–January–February–March). These ratios vary between

0.015 to 0.085, the maximum being found in August 2011 and the minimum

in April 2014. For the warm season, ratios range between 0.015 and 0.060 are

found. Low ratios similar to Athens, could be associated to biogenic sources of

VOC, because during summer more isoprenes are emitted by vegetation due to

the temperature dependence of these, especially over Nairobi, where large ex-

tensions of vegetation are found in the direction of instrument view. The RGF

over Nairobi are larger than those observed by DiGangi et al. (2012), however

Nairobi is a city with large anthropogenic contribution as well. Thus, significant

differences would be expected between both regions, because the measurement

site in DiGangi et al. (2012) is characterized mainly by biogenic influence. The

largest ratios are found for June–July–August–September, which corresponds to

winter months and is characterized for regions with anthropogenic activities and

fire events (DiGangi et al., 2012; Kaiser et al., 2015).

Figure 6.27 shows monthly mean RFN values computed for Nairobi from 2011

to 2014. The RFN have a strong seasonality following the behaviour of NO2 with
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Figure 6.27: Monthly means ratios of formaldehyde to nitrogen dioxide (RFN ) over

Nairobi from January 2011 to December 2014.

large ratios observed in summer and small from winter. During summer the ratio

varies between 2 and 3.5 and for winter between 0.4 and 1.5. Thus, following

the characterization suggested by Duncan et al. (2010), the values obtained for

summer correspond to NOx–limited. This could be a consequence of the large

isoprene emission from vegetation during that season and it is consistent with

the small RGF values. While for winter, the values correspond to VOC–limited,

which could be a consequence of higher anthropogenic emissions during winter.

These ratios are about the same order of magnitude with the ones found by

(Duncan et al., 2010) over Los Angeles, USA. For the rest of the months the

RFN corresponds to the transition regime.

6.4.3 Comparison between Athens and Nairobi

Despite the similar population size of Athens and Nairobi, many differences

are found between the results obtained in each city. First, the weather in Nairobi

is mostly stable without strong changes in the temperatures as cities located very

north or south in the hemisphere such as Athens. The rainfall and temperatures

over Nairobi in average are higher than in Athens. Also, the vegetation exten-
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sion for Nairobi is larger than in Athens. These differences in weather could be

the reasons of most pronounced seasonal cycle of CHOCHO and NO2 VCs for

Nairobi (increase of temperature during summer more emissions from biogenic

sources), however the background signal of the these gases is larger in Athens

than in Nairobi, which could be explained by the major anthropogenic influence

in Athens. The diurnal cycles for both regions are different, which could be re-

lated to the time of sources in these and the weather conditions. Nevertheless,

the diurnal cycles from Athens is in agreement with those found by Volkamer

et al. (2005a) in Mexico city for CHOCHO and model results by Blechschmidt

et al. (in preparation) for NO2. The RGF is larger for Nairobi than Athens

(see Fig. 6.19 and 6.26), however the lower values for both regions correspond

to their respective summer (increase of temperature means more isoprene emis-

sions from vegetation), and the higher for their respective winter season (more

anthropogenic emissions). The RFN have their maxima during winter season

for both stations and the minima correspond to summer season, which is the

opposite to the RGF . Thus, we could conclude that the main sources of VOC

in Athens are mainly due to anthropogenic emissions with minor influences from

biogenic sources, and for Nairobi these sources are mainly biogenic with some

contribution from anthropogenic emissions. In spite the many differences and

consistences found between results from both station, further work is need to

done in order to a better characterization of the VOC sources over Athens and

Nairobi.

6.5 Summary

HCHO, CHOCHO, and NO2 columns have been retrieved from MAX-DOAS

measurements for two locations (Athens and Nairobi), based on a systematic

analysis of fitting windows, polynomial orders, and interfering cross-sections for

each species. For both locations, the measured HCHO, CHOCHO, and NO2 SCs

have been converted to VCs using a geometrical approach.

Diurnal cycles of HCHO, CHOCHO, and NO2 VCs have been computed for

both locations. In spite of the similar population size, the diurnal variations

at both stations are different. This difference could be related to the different

weather conditions (Nairobi tropical climate and Athens mediterranean climate)

but, more importantly, due to the different types of sources, because the vegeta-

tion extensions in Nairobi are larger than in Athens. Also, the diurnal cycle of
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glyoxal and NO2 are similar to observations by Volkamer et al. (2005a) in Mex-

ico city and model results by Blechschmidt et al. (in preparation) over densely

populated cities like Athens.

Monthly mean VCs have been computed for each gas for three time periods

(morning, afternoon and all day), finding a good agreement among the three data

sets for both locations. The monthly mean time series of VCs show the maximum

for each year during June–July–August. However, in the case of Athens, this

corresponds to summer season while for Nairobi, it is winter season. Generally,

the VCs over Nairobi are larger than these VCs obtained for Athens.

The RGF and RFN show a strong seasonality for both locations. The RGF

are high for winter season and small for summer season. The opposite is also

true for RFN (high for summer and small for winter). From these ratios, some

information about the type of sources can be inferred from both location. For

Athens, these ratios indicate mainly anthropogenic sources with some biogenic

contribution during summer to VOC, and mainly biogenic sources for Nairobi

with some contribution from pyrogenic and anthropogenic emissions.
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Conclusions and Outlook

Glyoxal satellite retrieval

In this thesis, an improved and homogenized glyoxal retrieval has been devel-

oped for four different satellite instruments, which expands the data set available

of glyoxal to more than 12 years of morning and afternoon orbits. Sensitivity

tests on synthetic data as well as on OMI, GOME-2 (A and B), and SCIA-

MACHY measurements over selected regions provided useful information for the

selection of DOAS fitting windows and the most appropriate polynomial degree

for this study. Two approaches for the reduction of the liquid water interference

over clear water oceans have been evaluated, finding that including the liquid

water absorption cross-section in the DOAS fit leads to the reduction of nega-

tive glyoxal values over oceans and nearly no differences over land. For the first

time, possible interferences by tropospheric NO2 over areas with large anthro-

pogenic emissions have been investigated. A high-temperature NO2 absorption

cross-section representing near-surface NO2 has been introduced in the retrieval,

leading to a significant reduction of glyoxal over these areas and an improved fit

quality.

Investigation of the impact of different water vapour cross-sections in the

fit shows that for OMI data, this does not seem to be a critical factor. This

is in contrast to ground-based MAX-DOAS observations, where water vapour

absorption can interfere strongly with the retrievals, in particular in the Tropics.

In spite of the progress made on glyoxal retrieval and its homogenisation
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for different satellite platform, the resulting datasets are still noisy and depend

critically on the details of the selections made for the retrieval. Further im-

provements in signal-to-noise and consistency are needed to make full use of the

synergy between measurements from instruments in morning and afternoon or-

bits. In addition, the effects of clouds and aerosols on the air mass factors need

to be taken into account, in particular for biomass burning scenarios, where these

can play an important role in the detection of glyoxal transport events.

Interpretation of satellite data

A global analysis of glyoxal retrieved from four different instrument shows

that the largest levels are located in the tropical and subtropical regions, where

more dense vegetation is found. In the northern and southern hemisphere, a

clear seasonality of glyoxal is present with the maximum in the summer season.

The comparison of glyoxal vertical columns retrieved from measurements of

OMI, GOME-2 (A and B), and SCIAMACHY shows good overall agreement

in the seasonal behaviour. However, OMI glyoxal columns are systematically

lower than the vertical columns observed by SCIAMACHY and GOME-2 (A

and B), especially for the most recent years (since 2011). This decrease in OMI

CHOCHO VCs is most evident for regions in the latitude range 30° S–5°N. In
addition, the amplitude of the seasonal variation for OMI is smaller than that of

the other instruments. Significant differences were found over regions with large

anthropogenic emissions. A similar seasonal behaviour is observed among the

four products, although less pronounced in the OMI product.

Correlation coefficients between EVI and CHOCHO columns larger than 0.8

have been found over areas characterized by dense vegetation, where the com-

puted time series of EVI and glyoxal columns show strong and in-phase seasonal

variations. The maxima of glyoxal were found during the warm seasons, as a

consequence of increases in isoprene emissions. Strong negative correlation be-

tween glyoxal columns and EVI was found over Africa caused by large fire events

in these regions, which mainly occur outside the growing season. The correla-

tion coefficient between FRP and CHOCHO VCs over these regions are larger

than 0.8 and the time series of FRP and glyoxal VCs show strong and in-phase

seasonal variation. However, the sources contribution over these regions is not

only from fires, because the background signal of glyoxal is large, most likely due

to the biogenic contribution. An additional peak in glyoxal is found in the wet
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season which could be related to biogenic influence.

Finally, a detailed comparison between glyoxal, EVI, FRP, and NO2 over

21 regions has been performed in order to characterize the possible sources of

glyoxal in these regions. It is clear that the dominant source of glyoxal is biogenic

emission, because in most of the regions it follows the behaviour of EVI. There

are some regions where strong fire events become an important source in the

production of glyoxal, and others with an important influence from anthropogenic

emissions.

The ratio of glyoxal to formaldehyde has been computed from GOME-2A

measurements from 2007 to 2014. The RGF shows a clear seasonality similar

to that of glyoxal. On a closer inspection over nine selected regions the vari-

ation RGF turns out to depend on the vegetation type and temperature. The

comparison of RGF with indicators of biogenic (EVI), pyrogenic (FRP), and an-

thropogenic (NO2) emissions also vary, with most of the regions being low when

large EVI is observed and large when high FRP and NO2 is found. These results

are in agreement with the assessment performed by Kaiser et al. (2015) for the

assignment of RGF to the different source emissions of VOC. In addition, many

factors such as vegetation type, temperature, humidity, and population play an

important role in the behaviour of RGF for different regions. Thus, the ratios

of glyoxal to formaldehyde can be used as a tool for the identification of VOC

sources from satellites, however a more accurate process is needed in order to

have a better identification of VOC sources.

The CHOCHO retrieval has been applied to identify pyrogenic activities for

the large Russian wildfire during August 2010. It was shown that the location

and temporal pattern of the retrieved glyoxal columns are closely linked to the fire

radiative power observations, indicating that in these areas, pyrogenic emissions

dominate the glyoxal signal and thus glyoxal can also be used of indicator of fire

emissions.

For the first time transport events of glyoxal have been identified. A case

study over Southeast Asia was investigated, where high levels of glyoxal follow the

trajectories of air masses simulated with HYSPLIT. As glyoxal lifetime is short

in the atmosphere, a possible recycling process in a mixing layer with aerosols

could be the reason of an extended lifetime of glyoxal under these conditions.
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Ground-based MAX-DOAS measurements

HCHO, CHOCHO, and NO2 columns have been retrieved from MAX-DOAS

measurements for two locations (Athens and Nairobi), based on a systematic

analysis of fitting windows, polynomial orders, and interfering cross sections for

each species. For both locations, the measured HCHO, CHOCHO, and NO2 SCs

have been converted to VCs using a geometrical approach.

Diurnal cycles of HCHO, CHOCHO, and NO2 VCs have been computed for

both locations. In spite of the similar population size, the diurnal variations

at both stations are different. This difference could be related to the different

weather conditions (Nairobi tropical climate and Athens mediterranean climate);

but most importantly due to the type of sources, because the vegetation extension

in Nairobi is larger than in Athens. The diurnal cycles of glyoxal and NO2 are

similar as seen from measurement in Mexico city and model results over densely

populated cities as Athens.

Monthly mean VCs have been computed for each gas for three periods of time

(morning, afternoon and all), finding a good agreement among the three data sets

for both locations. The monthly mean time series of VCs show the maximum

for each year during June–July–August. However, in the case of Athens, this

corresponds to summer season while for Nairobi, it is winter season. Generally,

the VCs obtained for Nairobi are larger than the VCs obtained in Athens.

The RGF and RFN have a strong seasonality for both locations. The RGF

are high during winter season and small for summer season. The opposite is

true for RFN (high for summer and small for winter). From these ratios, some

information about the type of source can be inferred from both location. For

Athens, these are mainly anthropogenic with some biogenic contribution during

summer to VOC, and mainly biogenic for Nairobi with some contribution from

pyrogenic and anthropogenic emissions.

Outlook

As shown by this thesis, satellite and ground-based measurements are an

invaluable tool to observe glyoxal and have a better understanding of VOC in

the atmosphere. However, the number of assumptions made in the retrieval

still provide many possibilities to improve the glyoxal product. Especially, more

efforts have to be invested in accounting for cloud and aerosol effects on the
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air mass factors calculation, in particular in the case of biomass burning when

atmospheric aerosol levels are high. Also, in order to better quantify the observed

CHOCHO columns, in terms of surface concentrations, detailed information on

the glyoxal profile is needed for different environments.

For improved interpretation possibilities of the VOC, trajectory analysis can

be used to identify sources and transport path ways of HCHO and CHOCHO

observed in the satellite data. Both forward trajectories (mainly from locations

of fires but also from areas with expected biogenic emissions) and backward tra-

jectories (from interesting satellite measurement locations and the ground-based

instrument) can be used. The outcome will provide statistics on the relation

between source regions and HCHO/CHOCHO columns observed as a function

of season.

Also, selected trajectories and trajectory groups need to be used to drive

a chemistry box model with input from up-to-date emission inventories and to

compare the columns determined from multiple runs of the model with those

observed from satellite to verify the consistency of the emissions used.

The methods presented in this thesis open the path for interpretation of the

available long-term multiple instrument datasets with the possibility of including

data from future missions (e.g. GOME–2/Metop-C, Sentinel 4 and 5) for the

analysis in a consistent manner.
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Figure A.1: Comparison of monthly averaged CHOCHO VCs from GOME–2B

(blue line), GOME–2A (black line), OMI (red line) and SCIAMACHY

(green line) data for 21 selected “hot-spots” from different environ-

ments during 2003–2014. This regions are the same as defined in

Fig. 4.12.
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Richter, A., Burrows, J. P., Nüß, H., Granier, C., and Niemeier, U.: Increase in

tropospheric nitrogen dioxide over China observed from space, Nature, 437,

129–132, 2005.

Richter, A., Begoin, M., Hilboll, A., and Burrows, J. P.: An improved NO2

retrieval for the GOME-2 satellite instrument, Atmos. Meas. Tech., 4, 1147–

1159, 2011.

Rolph, G.D., G. R.: READY - Real-time Environmental Applications and Dis-

play sYstem.

Rothman, L., Jacquemart, D., Barbe, A., Chris Benner, D., Birk, M., Brown, L.,

Carleer, M., Chackerian Jr., C., Chance, K., Coudert, L., Dana, V., Devi, V.,

Flaud, J.-M., Gamache, R., Goldman, A., Hartmann, J.-M., Jucks, K., Maki,

A., Mandin, J.-Y., Massie, S., Orphal, J., Perrin, A., Rinsland, C., Smith, M.,

Tennyson, J., Tolchenov, R., Toth, R., Vander Auwera, J., Varanasi, P., and

Wagner, G.: The HITRAN 2004 molecular spectroscopic database, Journal of

Quantitative Spectroscopy and Radiative Transfer, 96, 139–204, 2005.

Rothman, L., Gordon, I., Barbe, A., Benner, D., Bernath, P., Birk, M., Boudon,

V., Brown, L., Campargue, A., Champion, J.-P., Chance, K., Coudert, L.,

Dana, V., Devi, V., Fally, S., Flaud, J.-M., Gamache, R., Goldman, A., Jacque-

mart, D., Kleiner, I., Lacome, N., Lafferty, W., Mandin, J.-Y., Massie, S.,

Mikhailenko, S., Miller, C., Moazzen-Ahmadi, N., Naumenko, O., Nikitin, A.,

Orphal, J., Perevalov, V., Perrin, A., Predoi-Cross, A., Rinsland, C., Rotger,
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