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Abstract 

In times of global warming a profound understanding of the climate system is necessary to 

develop mitigation strategies. Studying episodes of climate change during the Earth’s history 

(e.g. Glacial-Interglacial cycles) allows insights into the climate system and its feedback 

processes. In the subarctic Northwest Pacific (NW Pacific) and adjacent Northeast Siberia 

(NE Siberia) mean climate changes between the Last Glacial Maximum and the Holocene are 

poorly understood since climate records (e.g. temperature records) spanning the full LGM-

Holocene transition are sparse. This thesis shall contribute to a better understanding of climate 

and environmental change since the LGM and the controlling mechanisms in the region by 

investigating the development of temperature, glaciation and export of terrigenous organic 

matter into the North Pacific (N Pacific). Biomarkers in sediment cores from the Western 

Bering Sea and the NW Pacific/continental margin off Siberia are applied as palaeoclimate 

archives. 

In the first part of the thesis LGM-to-Holocene sea surface temperature (SST) records for the 

marginal Northwest Pacific and the Western Bering Sea are established using the TEXL
86 

(Tetraether IndeX)-SST proxy. It focusses on the LGM and the early deglaciation since 

existing deglacial SST records from the region do not reach beyond 15 ka BP. TEXL
86-based 

SSTs in both settings closely follow millennial-scale climate fluctuations known from 

Greenland ice-cores until 15 ka BP, confirming other SST-records from the region which 

point to rapid atmospheric teleconnections with abrupt climate changes in the North Atlantic 

(N Atlantic). During Heinrich Stadial 1 (HS1), Western Bering Sea SSTs decline, similar to 

the N Atlantic realm, suggesting the Bering Sea was connected to the N Atlantic climate 

change. Progressively rising SSTs in the NW Pacific differ from the Western Bering Sea and 

the N Atlantic climate. Similarities between the climate in the Gulf of Alaska and the NW 

Pacific suggest that the Alaskan Stream accumulated in the NW Pacific during the LGM 

connecting the climates of the eastern and western N Pacific. Deviating trends in the climate 

from 12-10 ka onwards point to reduced influence of the Alaskan Stream in the NW Pacific 

and the end of the oceanic linkage. 

The second part of the thesis investigates the LGM-to-Holocene evolution of mean air 

temperature (MAT) of the Kamchatka Peninsula. Climate archives, existing in Kamchatka, do 

not reach beyond 12 ka BP, so the climate evolution since the LGM is fairly unknown. Using 

the CBT/MBT’-palaeothermometry (Cyclisation of Branched Tetreathers and the Methylation 

of Branched Tetraethers indices) a continuous record in summer MAT is provided for the past
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20 ka. It is found that glacial summers were as warm as at present. This is in line with summer 

conditions in continental Siberia but contrasts with the SST-development of the surrounding 

seas. Likely, strong southerly winds, associated with a pronounced North Pacific High 

pressure system (NPH) over the subarctic NW Pacific, accounted for the warm conditions on 

Kamchatka. A comparison with an Earth System Model reveals discrepancies between proxy-

based inferences for temperature and atmospheric circulation. The deglacial temperature 

development was characterized by abrupt millennial-scale temperature oscillations. The 

Bølling/Allerød warm-phase (B/A) and the Younger Dryas cold-spell (YD) are pronounced 

events, providing evidence for a strong impact of N Atlantic climate variability on 

southeastern Siberia, at least during the past 15 ka BP. During HS1, similarities with the NW 

Pacific SST imply that the Alaskan Stream determined temperature change on the Peninsula 

rather than teleconnections with the N Atlantic.  

Considering that NE-Siberian glaciation is supposed to have been more extensive than at 

present but restricted to mountain ranges during the LGM, the warm glacial-summers of 

Siberia suggest that summer temperature may have been an important limiting factor for ice 

sheet growth in the region. In the third part of the thesis, mass balance calculations for the 

LGM-glaciers on Kamchatka and the Kankaren Range (NE Siberia) are performed by degree-

day-modelling in order to estimate the precipitation needed to sustain the glaciers under warm 

summer conditions. It is found that precipitation at least must have equaled or even exceeded 

the modern average. The precipitation estimates confirm the hypothesis that summer 

temperature limited ice-sheet expansion in NE Russia during the LGM, thereby countering the 

prevailing view that increased aridity (relative to present) hampered ice-sheet growth.  

The fourth part of the thesis contributes to an ongoing debate about the sources of old, (14C-

depleted) carbon dioxide (CO2) which increased atmospheric CO2-levels (CO2atm) and 

concurrently decreased the atmospheric radiocarbon signature (Δ14Catm) during the 

deglaciation. Permafrost-decomposition in the Northern Hemisphere (NH) triggered by 

deglacial warming and sea-level rise is considered as one possible source of 14C-depleted 

CO2, particularly at the onset of the B/A-interstadial (14.6 ka BP). However, the timing of 

carbon mobilization in permafrost areas of the NH is underconstrained. In order to investigate 

the potential role of permafrost decomposition in the subarctic N Pacific realm in the 

atmospheric, changes mass accumulation rates and the radiocarbon signature (Δ14C) of leaf-

wax lipids are analyzed in order to identify intervals of intensified export of 14C-depleted 

terrigenous OM into the Western Bering Sea and the NW Pacific. Enhanced burial of nearly 
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14C-free carbon commenced during the HS1 and was likely triggered by increased runoff in 

the Yukon River due to retreating American ice-sheets. Since the B/A mobilization of 14C-

depleted seems to have been dominantly controlled by sea-level rise and thus by erosion of 

permafrost-covered shelves. Enhanced OM-export associated with permafrost-thaw on 

Kamchatka likely initiated during the second half of the B/A-interstadial and peaked during 

the YD-stadial. Lagging the rapid CO2atm/Δ14Catm changes at 14.6 ka BP, the permafrost 

degradation in the Kamchatka region was probably irrelevant for the atmosphere. Instead, 

enhanced OM-export in the region coincided with abrupt CO2atm/Δ14Catm changes during the 

YD suggesting that permafrost may have contributed to the atmospheric carbon-pool at that 

time. 
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Kurzfassung 

In Zeiten globaler Erwärmung ist ein profundes Verständnis des Klimasystems nötig, um 

Strategien zur Eindämmung der Konsequenzen des Klimawandels zu entwickeln. Das 

Untersuchen von vergangenen Klimaveränderungen in der Erdgeschichte (z. B. Glazial-

Interglazial Zyklen) gewähren Einsichten in das Klimasystem und dessen Rückkopplungs-

prozesse. Sowohl im subarktischen Nordwestpazifik als auch im angrenzenden Nordost 

Sibirien sind Prozesse der Klimaveränderungen während des Übergangs aus dem Letzten 

Glazialen Maximums (LGM) ins Holozän kaum verstanden, da Klimaarchive dieser Region 

selten den gesamten Zeitraum erfassen. Diese Dissertation soll zu einem besseren Verständnis 

der deglazialen Klima- und Umweltveränderungen sowie deren Ursachen im Nordwest-

pazifikraum beitragen. Auf der Basis von Biomarkern in Sedimenten des westlichen Bering-

meers und des Nordwestpazifiks (Kontinentalhang Sibirien), werden die Entwicklungen von 

Temperatur, Vergletscherung und des Eintrags terrigenem Materials in den Ozean untersucht. 

Im ersten Teil der Dissertation werden Oberflächenwassertemperaturen (sea surface 

temperature, SST) mittels des TEXL
86 (Tetraether Index) Temperaturpoxys für das westliche 

Beringmeer und den marginalen Nordwestpazifik rekonstruiert. Der Fokus liegt dabei auf 

dem Heinrich Stadial 1 (HS1) und dem LGM, da existierende SST-Datensätze nicht weiter als 

15 ka BP (BP: Before Present, vor heute) zurückreichen. Bis ca. 15 ka BP, zeichnen die auf 

TEXL
86 basierenden Daten beider Lokationen Klimaoszillationen nach, die aus Grönland-

Eiskernen bekannt sind. Dieses Muster bestätigt die Interpretationen vorangegangener 

Arbeiten, wonach atmosphärische Telekonnektionen mit dem Klima des Nordatlantiks die 

deglaziale SST-Entwicklungen im Nordpazifik bestimmten. Im HS1 verzeichnet die 

Temperaturkurve aus dem westlichen Beringmeer eine ähnliche Abkühlung, wie sie aus dem 

Nordatlantik bekannt ist, was eine Telekonnektion im HS1 suggeriert. Mit einer progressiven 

Erwärmung weicht der Nordpazifik sowohl vom Temperaturmuster des Beringmeeres als 

auch der Entwicklung des Nordatlantiks ab. Ähnlichkeiten mit dem Golf von Alaska deuten 

auf eine ozeanische Verbindung zwischen dem westlichen und östlichen Nordpazifik über den 

Alaska Strom an. Ab 10-12 ka BP suggerieren abweichende Trends zwischen Ost und West 

eine Abschwächung des Stroms und damit das Ende der ozeanographischen Verbindung. 

Im zweiten Teil der Dissertation wird die Entwicklung der mittleren Lufttemperaturen (mean 

air temperature, MAT) auf Kamtschatka zwischen dem LGM und dem Holozän untersucht. 

Da existierende Klimaarchive der Halbinsel nur die letzten 12 ka umfassen, sind 

Kamtschatkas klimatische Bedingungen während des LGMs und des Deglazials nahezu 
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unbekannt. Mit dem CBT/MBT-Temperaturproxy (Cyclisation of Branched 

Tetreathers/Methylation of Branched Tetraethers) werden im Rahmen der Dissertation 

kontinuierliche Sommertemperaturdaten für die letzten 20 ka gewonnen. Die Daten zeigen, 

dass die Sommer des LGM genauso warm waren, wie heute. Dies passt zu den glazialen 

Temperaturbedingungen in Sibirien, nicht aber zur SST Entwicklung des Nordpazifiks. Es 

wird vermutet, dass verstärkte Südwinde, die mit einem intensivierten Nordpazifik-Hoch in 

Zusammenhang stehen können, für die warmen Bedingungen auf Kamtschatka verantwortlich 

waren. Im Verlgeich mit einem Klimamodell (Earth System Model) fallen Diskrepanzen in 

Hinblick auf die klimatischen Bedingungen im LGM auf. Das Deglazial wird von abrupten 

Oszillationen charakterisiert. Die Bølling/Allerød-Warmphase (B/A) und die Jüngere Dryas-

Kaltphase (Younger Dryas, YD) sind deutlich zu erkennen und zeugen von einer starken 

Verbindung zum Klimageschehen des Nordatlantiks. Ähnlichkeiten mit der 

Temperaturentwicklung des Nordwestpazifiks deutet darauf hin, dass der Alaska Strom 

während des HS1 einen größeren Einfluss auf Kamtschatkas Klima hatte, als eine 

atmosphärische Telekonnektion mit dem Nordatlantik. 

Rekonstruktionen der glazialen Vergletscherung Sibiriens zeigen, dass die Eisausdehnung 

weiter als heute, jedoch auf Gebirgsketten eingeschränkt war. Vor diesem Hintergrund mögen 

warme Sommer als ein wichtiger hemmender Faktor für die Vereisung der Region gewesen 

sein. Um diese These zu überprüfen, werden im dritten Teil der Dissertation die jährlichen 

Niederschlagsmengen abgeschätzt, die für das Ausmaß der glazialen Gletscher unter warmen 

Sommerbedingungen erforderlich gewesen wären. Dazu werden Massenbilanzen für die 

Gletscher mit einem „Degree-Day-Model“ erstellt. Die Daten zeigen, dass die Niederschlags-

mengen im LGM mindestens genauso groß oder sogar noch größer als heute gewesen sein 

müssen. Dies suggeriert, dass Sommertemperaturen die Eisausdehnung im LGM limitierten, 

und stellt die vorherrschende Hypothese in Frage, wonach trockene Bedingungen den 

limitierenden Faktor darstellten. 

Der vierte Teil der Dissertation liefert einen Beitrag zur Suche nach Quellen für 14C-

abgereichertes Kohlendioxid (CO2), die den deglazialen Anstieg der atmosphärischen CO2-

Konzentration verursachten und gleichzeitig das atmosphärische Kohlenstoffisotopen-

verhältnis (14C/12C) der Atmosphäre (∆14Catm) veränderten. Als eine mögliche Quelle werden 

tauende Permafrost-böden in der Nordhemisphäre angesehen und primär für den CO2atm-

Anstieg zu Beginn der B/A-Warmphase diskutiert. Um die potenzielle Rolle deglazialer 

Permafrost-Destabilisierung im Nordpazifikraum für Veränderungen in CO2atm und ∆14Catm zu 
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untersuchen, werden Massenakkumulationsraten und die ∆14C-signatur terrigener Biomarker 

bestimmt. Ein erster verstärkter Eintrag von 14C-abgereichertem organischen Material (OM) 

ist für das HS1 zu verzeichnen, und war vermutlich mit fluviatiler Erosion im Einzugsgebiet 

des Yukon assoziiert. Ab dem B/A scheint die Mobilisierung des OM vornehmlich durch den 

steigenden Meeresspiegel und der damit zusammenhängenden Erosion der Schelfe 

kontrolliert worden zu sein. Verstärkter OM-Eintrag im Zuge tauender Permafrostböden auf 

Kamtschatka begann wahrscheinlich im späten B/A und spitzte sich in der YD zu. Da Phasen 

verstärkter OM-Mobilisierung in der Region um Kamtschatka nicht mit den atmosphärischen 

Veränderungen zu Beginn des B/A zusammenfallen, stattdessen aber mit denen der YD, 

könnten Permafrost-Destabilisierungen während der YD zum CO2atm-Anstieg beigetragen 

haben, erscheinen jedoch als unwahrscheinliche Quellen für den Beginn des B/A. 
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1. Introduction 
1.1. Scientific background  

It is unequivocal that that anthropogenic greenhouse gas emissions (e.g. carbon dioxide and 

methane) as a result of fossil fuel burning cause global warming, since global mean 

temperature and atmospheric greenhouse-gas concentrations have progressively risen since 

the industrialization in the late 19th century (Figure 1.1.; IPCC, 2007, 2013 and references 

therein). There is consensus across various climate-models that the global warming trend will 

continue in the future and will induce severe climatic and environmental responses. Changing 

environmental conditions, such as e.g. sea-level rise or desertification represent long-term 

threats for society (IPCC, 2007; 2013).  

 

Figure 1.1. (A) Development of atmospheric greenhouse gases over the past 2000 years (adopted from: IPCC, 2007). (B) 
Global average land-surface temperature anomalies relative to 1961-1990, since the the mid-19th century (adopted from: 

IPCC, 2013 and references therein).  
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In order to develop strategies to mitigate climate change and its consequences, precise 

predictions for the dimensions of future warming and environmental responses are necessary 

and require a profound understanding of the climate system. Future climate change is 

certainly dependent to the dimension of future anthropogenic greenhouse-gas emissions but 

also on the interaction of several internal feedback processes in the Earth’s climate system 

(e.g. the carbon cycle; Huntingford et al., 2009; IPCC, 2013 and references therein) which 

may either intensify or hamper regional and global warming. So far, not all feedback 

processes are fully understood, which requires further research on the Earth’s climate system. 

A particular sensitivity and relevance to climate change is assigned to the high latitudes of the 

Northern Hemisphere (NH) as arctic mean temperature rose twice as much as the average of 

lower latitudes since the 1980s (AMAP, 2012). Such polar amplification is also consistently 

predicted for the future (Figure 1.2) across various climate models. Depending on different 

greenhouse-gas emission scenarios (Representative Concentration Pathway, RCP), 

temperature is expected to increase by 2.2-2.4 times the global average until the end of the 

21st century (IPCC, 2013 and references therein). Hence, the arctic cryosphere and ecosystems 

will probably undergo drastic changes (AMAP, 2012) which will implicate various feedback 

processes and climate responses acting on regional and partly global scales. By way of 

example, the decay of the Greenland ice sheet may potentially cause a negative feedback of at 

least regional dimension as the input of melt-water from the retreating Greenland ice-sheet is 

predicted to weaken the Atlantic Meridional Overturning Circulation (AMOC) and thus the 

meridional heat transport (e.g. Driesschaert et al., 2007; Drifjhout et al., 2012) into the North 

Atlantic (N Atlantic) throughout the 21st century. This may result in cooling the North 

Atlantic realm (Figure 1.2) but may potentially also counteract warming in distant regions of 

the NH (IPCC, 2013).  

In contrast, representing a net terrestrial carbon sink, the circumarctic permafrost soils may 

trigger a positive feedback process magnifying the Earth’s greenhouse effect and hence global 

warming. Permafrost is perennial frozen ground (per definition: perennial frozen for at least 

two consecutive years) covering about 25% of the circumarctic land-area north of 50°N 

(Figure 1.3). 
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Figure 1.2. Left panel: Global mean temperature development for four scenarios of anthropogenic greenhouse gas 
emission (Representative Concentration Pathway, RCP), averaged across all climate models from the Coupled Model 
Intercomparison Phase 5 (CMIP5). Likely ranges for the scenarios are given by vertical bars. Right panel: Temperature 
anomalies for years 2081-2100 relative to 1986-2005 adopted from two CMIP5 models for the highest (RCP8.5) and lowest 
(RCP2.6) emission scenarios (from IPCC, 2013). 

Owing to the frozen conditions microbial degradation of organic matter (OM) is strongly 

suppressed and restricted to the summer months when the uppermost soil layer (active layer) 

temporarily thaws. The frozen conditions allowed permafrost to accumulate and preserve 

large amounts of organic carbon during the Quaternary (Smith et al., 2004; Zimov et al., 

2006). The size of the freeze-locked carbon pool is estimated to 1700 PgC (Tarnocai et al., 

2009) which is approximately twice as much as the carbon stock of the atmosphere 

(Houghton, 2007; Dolman et al., 2010; Schuur et al., 2009, 2013) and amounts to half of the 

global soil-carbon pool. In the course of arctic warming permafrost is expected to thaw 

(Figure 1.3), so the carbon stocks would become accessible to biogeochemical cycling. As 

such it is very likely that permafrost will turn into a source of carbon dioxide (CO2) and 

methane (CH4) magnifying the Earth’s greenhouse effect (e.g. Saito et al. 2007; Zimov et al., 

2006, 2009; Schuur et al., 2008, 2009; 2013; 2015; Zhang et al. 2008a, b; Slater and 

Lawrence, 2013). Observations of permafrost conditions in the NH show that permafrost 

thaw/decomposition has already begun, as soil temperature has risen by up to 2°C since the 

1980s (e.g.; Callaghan et al., 2011; IPCC, 2013) and the southern limit of permafrost extent 

has migrated northward since the 1970s (e.g. IPCC, 2013). Also, the active-layer thickness 

has grown since then (Akerman and Johansson, 2008; Smith et al., 2010; IPCC, 2013). 

Furthermore, permafrost decomposition will probably constitute itself by enhanced riverine 

and coastal erosion (e.g. Guo et al., 2007; AMAP, 2012) due to intensifying fluvial runoff, 
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sea-level rise and ocean warming (Lantuit et al., 2008; Rachold et al., 2000, IPCC, 2013; 

Lawrence and Slater, 2010; Koven et al., 2013). By now, the climatic relevance of permafrost 

degradation is poorly assessed since most climate models do not consider the permafrost 

carbon-pool for predictions of future atmospheric CO2-levels (e.g. IPCC, 2013 and references 

therein). The few existing modelling approaches do predict the carbon sink would turn into a 

source of greenhouse gases and would cause a positive feedback-process acting on centennial 

to millennial time-scales (e.g. Koven et al., 2011; Schaefer et al., 2011; MacDougall et al., 

2012; IPCC, 2013). However, these models largely vary among future development of 

regional extent of permafrost, active-layer thickness and magnitude of greenhouse-gas 

release. Consequently, a broad range of additional warming (ranging between 0.04-4.69°C by 

2100) is currently suggested (MacDougall et al., 2012; Schneider von Deimling et al., 2012; 

IPCC, 2013). This variety is because uncertainty exists upon physical and chemical processes 

in degrading permafrost. This includes thawing rates, the time-scales of the thawing and 

carbon mobilization, as well as about the quantity of carbon which would be remineralized 

and would ultimately become climatically relevant by entering the atmosphere as CO2 or CH4 

(Koven et al., 2011, 2013; Schaefer et al., 2011; McDougall et al., 2012; IPCC, 2013). 

Therefore, further research on the permafrost feedback is necessary. 

As the impact of permafrost-thaw will certainly depend on the magnitude of future warming 

(e.g. Harden et al., 2012; Schneider von Deimling et al., 2012; IPCC, 2013 and references 

therein), further research investigating the controlling mechanisms of temperature-change in 

high latitudes of the NH is necessary, considering that climate models still have large 

discrepancies concerning the dimension of future warming in the Arctic and sub-arctic 

regions. Temperature predictions for these regions differ significantly in magnitude as the 

processes controlling temperature change are divers and differently represented in climate 

models.  For instance, model simulations consistently predict a weakening of the AMOC 

throughout the 21st century but uncertainty exists upon the magnitude (Drifjhout et al., 2012; 

IPCC, 2013). As such arctic warming (by the end of the 21st century) is strongest in models 

with none or little AMOC-weakening (Figure 1.2) but weaker when AMOC-indued cooling 

spreads out into the NH (IPCC, 2013 and references therein). As a negative feedback process, 

AMOC-weakening may be important to hamper the permafrost-feedback.  
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Figure 1.3. a) Southern boundary of permafrost during the Last Glacial Maximum (21-18 ka BP; yellow line; after 
Vandenberghe et al., 2014). White shaded areas indicate continental ice caps. B) Present-day permafrost extent (from 
AMAP, 2012). C) Climate model outputs for permafrost extent in 2099 based on different climate trajectories adopted from 
different RCP-scenarios. Grey areas sketch the modern permafrost extent. (From: Slater and Lawrence, 2013). 

1.2. Past climate change 

The study of past episodes of global warming and rising greenhouse-gas concentrations 

allows to improve the understanding of the climate system providing insights into the 

interaction of feedback processes and environmental responses to different forcings. The last 

deglaciation, the transition from the Last Glacial Maximum (LGM) into the current 

interglacial, the Holocene, is such analogue as it was characterized by several environmental 

changes which are also expected for the future. Between 18-8 ka before present (BP) average 

global temperature rose about 3-8 °C (e.g. Shakun et al., 2012), atmospheric CO2-levels 
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(CO2atm) increased by about 100 ppm and melting continental ice caps made sea-level rise by 

approximately 120 m (e.g. Stanford et al., 2011; Lambeck et al., 2014). Also, the extensive 

permafrost areas of the (NH) rapidly shrank during the deglacial climate amelioration (Figure 

1.3) with the southern boundary migrating 10° farther north (Brown et al., 1998; Yershov, 

1998; Vandenberghe et al., 2014). So the last deglaciation represents a suitable time interval 

to study the response of permafrost to warming, the contribution of formerly freeze-locked 

carbon to rising atmospheric CO2 levels, but also the mechanisms controlling temperature 

change in subarctic and arctic regions.  

Intending to contribute to a better understanding of temperature change in high-latitudes and 

the permafrost feedback, this thesis investigates deglacial temperature change and carbon 

turnover associated with permafrost dynamics in the Northwest Pacific (NW Pacific) realm, 

using biomarkers preserved in marine sediments as palaeoclimate archives. 

1.3. Biomarkers and their application as proxies for past environmental changes 

Biomarkers are molecular fossils indicative of a specific organism or a group of organisms. 

Being indicative of a specific biological sources they represent powerful tools to reconstruct 

past environmental conditions (e.g. Peters et al., 2005). Found in marine sediments marine 

and terrigenous biomarkers allow insights into both, continental as well as marine realm. They 

are common means to reconstruct past temperature and organic-matter turnover. In the 

following a brief overview of the biomarkers and appending proxies mentioned in this thesis 

are given. Examples of the molecular structure are shown in Figure 1.4. 

Long-chain alkenones 

Long-chain alkenones (C37:2-C37:4; Figure 1.4) are unsaturated long-chain ketones which are 

produced by haptophyte algea, predominantly by Emiliana Huxleyi, a coccolithophorid-

species (e.g. Volkman et al., 1980). Since the degree of saturation, that is to say the number of 

double bonds (2-4), varies with temperature (number of double-bonds increases with 

decreaseing temperature) the alkenone-unsaturation index (UK
37) was developed as proxy for 

sea-surface temperature. (Brassel et al., 1986; Prahl and Wakeham, 1987; Prahl et al., 1988; 

Muller et al., 1998). 
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Isoprenoid Glycerol Dialkyl Glycerol Tetraethers 

Isoprenoid Glycerol Dialkyl Glycerol Tetraethers (isoGDGTs) are membrane molecules of 

Marine Thaumarchaeota (e.g. Schouten et al., 2013 and references therein) which differ in the 

number of cyclopentyl moieties in the alkyl-chains (Figure 5). It has been observed in culture 

experiments that the growth temperature influences the distribution of isoprenoid GDGTs in 

the cell membrane in so far that the number of GDGTs with a higher amount of cyclopentyl-

moities increases with rising temperature (e.g. Schouten et al., 2002, 2007, 2013; Wuchter et 

al., 2004). Due to this observation the TetraEther-Index of Tetraethers consisting of 86 carbon 

atoms (TEX86) was introduced as proxy for mean annual sea-surface temperature (Schouten et 

al., 2002) based on the relative abundances of isoGDGTs (GDGT 1-4 and the Crenarchaeol 

regio-isomer; Figure 1.4) in marine sediments. Due to uncertainties in the relation between 

TEX86 and temperature modified versions of the calibration or advanced indices were 

proposed. Kim et al. (2010) introduced the TEXL
86 and TEXH

86 (L: low temperature; H: high 

temperature) which are supposed to work best in settings below and above 15°C, respectively. 

Since Thaumarchaeota also thrive in sub-surface waters the TEX86_0-200 m was introduced to 

estimate mean annual temperature in the upper 200 m of the water column (Kim et al., 2012). 

Branched Glycerol Dialkyl Glycerol Tetreaethers 

Similar to isoGDGTs, branched Glycerol Dialkyl Glycerol Tetraether (brGDGTs) are 

supposed to be membrane lipids but the exact species synthesizing these molecules are still 

unknown. Most likely brGDGT derive from anaerobic (Weijers et al., 2006a, b) and 

heterotrophic (Pancost and Sinninghé Damsté, 2003) bacteria which are ubiquitous in peats 

and soils (Weijers et al., 2006a, 2007; Peterse et al., 2012). Some Acidobacteria have been 

suggested as producer of brGDGTs but so far culture experiments could only provide 

evidence for the presence of one GDGT in those bacteria (Weijers et al., 2009; Sinninghé-

Damsté, 2011). Initially, brGDGT were supposed to be predominantly produced in terrestrial 

environments and to be fluvially transported into the marine realm. Based on this view 

Hopmans et al. (2004) introduced the Branched and Isoprenoid Tetraether index (BIT-index) 

as a means to quantify the relative abundance of terrigenous organic matter in marine 

sediments. The BIT is based on the sum of brGDGTs (GDGTs Ia, IIa, and IIIa; Figure 1.4) 

and the predominantly marine derived Crenarchaeol (isoGDGT). In soils and peats, hence 

where terrigenous GDGTs dominate, the index is close to 1 whereas open marine sediments 

with extremely low terrigenous inputs reach BIT-values close to 0 (Hopmans et al., 2004). 
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Later, it was found that the distribution of the nine different brGDGTs in terrestrial soils is 

dependent on temperature and soil-pH. Specifically, it was found that number of methyl 

groups in the alkyl chains of the brGDGT negatively correlated with temperature whereas the 

number of incorporated cyclopentyl-moieties show a negative correlation with soil pH 

(Weijers et al., 2007). Therefore, Weijers et al. (2007) introduced the Cyclysation of 

Branched Tetraether index (CBT) and Methylation of Branched Tetraether index (MBT) as 

proxies for mean annual air temperature and changes in soil-pH (based on all nine brGDGT, 

shown in Figure 1.4). MBT was modified (to MBT’) by Peterse et al. (2012) who excluded 

GDGT IIIb and IIIc as they usually do not account for more than 1% in the GDGT 

distribution. During the last decade evidence was found that brGDGT are not exclusively 

produced in terrestrial soils but also in marine sediments, lake water and rivers (Peterse et al., 

2009; Tierney et al., 2010; Zhu et al., 2011; Zell et al., 2013; deJonge et al., 2014). This 

complicates the application of the BIT-index and CBT/MBT proxies (e.g. Peterse et al., 2009, 

2014; Zell et al., 2013). 

Leaf-wax lipids 

Long-chain n-alkanes (> n-C23) and long-chain n-alkanoic acids (> n-C24; Figure 1.4) are 

constituents of the protective epicuticular leaf-waxes of higher land plants (Eglinton and 

Hamilton, 1967). They are frequently used to reconstruct terrestrial climate change as the 

molecular structure and the stable carbon and hydrogen isotopic compositions contain 

information about continental vegetation (composition and distribution of different plant 

types) or humidity as well as variations in pCO2 at the time of biosynthesis (e.g. Schefuß et 

al., 2005; Eglinton and Eglinton, 2008). Quantified in marine sediments they can also be 

applied as proxies to estimate variations in the export of terrigenous organic matter into the 

ocean. Compound-specific radiocarbon analysis of leaf-wax lipids has been applied to study 

terrestrial residence times of organic matter between the death of the plant and the final burial 

in marine sediments (e.g. Kusch et al., 2010), a means to obtain insights into the time-scales 

of processes controlling the fate of terrigenous organic matter prior to the final deposition in 

marine sediments. The time-scales are determined by the way of transport (e.g. aeolian or 

riverine), the temporary storage in terrestrial reservoirs (e.g. soils) and several biogeochemical 

and sedimentary processes affecting the organic matter after the death of the plant. 

Information about terrestrial residence times of biomarkers helps to understand past and 

present carbon cycle dynamics. 
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Figure 1.4. Molecular structure of biomarkers described in section 1.3. 
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1.4. Motivation, aims and objectives of the thesis 

The deglacial increase in CO2atm was characterized by three distinct pulses between 

approximately 17.5 and 11.8 ka BP (Figure 1.5). Each of them was accompanied by a 

concurrent decrease in the radiocarbon-content of atmospheric CO2 (Δ14Catm, Figure 1.5). The 

first phase lasted from 17.5-14.6 ka BP, often referred to as the Mystery Interval (MI), and 

was followed by more rapid increase lasting for approximately 180 years at the onset of the 

Bølling/Allerød (B/A)-interstadial. Afterward, CO2-levels remained stable until the onset of 

the final phase which occurred between 12.8 and 11.8 ka BP (Figure 1.5). Deglacial variations 

of the carbon cycle that caused the changes in the atmospheric carbon pool are not completely 

understood. A reorganization of oceanopraphic conditions (e.g. circulation and stratification) 

particularly in the Southern Ocean leading to outgassing of 14C-depleted CO2 from a formerly 

isolated deep-water masses, is considered as primary cause (e.g. Broecker and Barker, 2007; 

Broecker and Clark, 2010; Fischer et al., 2010; Marchitto et al., 2010; Rose et al., 2010; 

Ronge et al., 2015). However, it is questionable whether oceanic outgassing alone can account 

for the entire changes in atmospheric CO2 and Δ14C. It seems that this processes fuelled the 

CO2atm-rise during the first half of the MI (Skinner et al., 2010; Schmitt et al., 2012) but the 

sources for the abrupt changes from 14.6 ka BP onward are not fully identified (Köhler et al., 

2014).  

 

Figure 1.5. a) CO2atm from Epica Dome C (compiled from Monnin et al., 2001 and Parrenin et al., 2013). b) IntCal 13 from 
Reimer et al. (2013). c) Oxygen istope record from Greenland ice cores (NGRIP, 2004). Grey bars mark the intervals of rising 
CO2atm and decreaseing Δ14Catm. MI: Mystery Interval. 
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Diverting OM from biogeochemical cycling over long periods of time permafrost represents a 

source of old organic matter OM. In this light, emissions of 14C-depleted CO2 during the 

deglacial permafrost retreat are suggested to have partly fuelled the deglacial changes in 

CO2atm and ∆14Catm (e.g. Ciais et al., 2013; Köhler et al., 2013, 2014). However, the potential 

impact of permafrost carbon on CO2atm and ∆14Catm is poorly understood since the age of 

carbon stored in permafrost during the LGM is unknown and the timing of carbon release as 

well as the portion that entered the atmosphere are current factors of uncertainty.  

Various palaeoclimate records and models suggest that the deglacial climate and temperature 

development was strongly controlled by oscillations in the AMOC (e.g. Manabe and Stouffer, 

1988; Contreras-Rosales, 2014; Hong et al., 2008; Wang et al., 2008; Sanchi et al., 2014). 

Alternating phases of weakening and strengthening of the AMOC lead to abrupt temperature 

oscillations in the North Atlantic realm (Figure 1.5.) with cold-spells during the Heinrich 

Stadial 1 (17.5-14.6 ka BP) and the Younger Dryas (12.9-11.7 ka BP) and abrupt warming 

during the Bølling/Allerød-interstadial (14.6-12.9 ka BP) and the early Holocene (11.7 ka BP; 

e.g. NGRIP, 2004). It is suggested that this climatic pattern spread widely throughout the NH 

due to atmospheric or oceanic teleconnections (e.g. Manabe and Stouffer, 1988; Wang et al., 

2008). As such it is likely that permafrost dynamics and the associated mobilization of old 

OM were linked to this temperature pattern. Indeed, environmental indicators of permafrost 

thaw, such as stalagmite growth and thaw-lake expansion, point to permafrost thaw during the 

B/A and the early Holocene whereas stabilizing Eurasian permafrost conditions were reported 

for the YD (e.g. Sailer and Kernschner et al., 2000; Renssen and Vandenberghe, 2003; Gruber 

and Reitner, 2007; Fischer et al., 2008; Rostek and Bard, 2013). Therefore, permafrost 

appears likely to have fuelled the abrupt atmospheric changes at the onset of the B/A, a 

hypothesis which is corroborated by carbon cycle models (Köhler et al., 2014). However, it 

seems unlikely as source for CO2atm and Δ14Catm during the HS1 and YD cold-spells. As for 

the onset of the B/A it was further hypothesized that coastal permafrost erosion caused by 

rapid shelf-flooding during Meltwater Pulse 1a (MWP-1a) may have additionally triggered 

degradation of OM formerly stored in permafrost. However, constraints on the timing of 

mobilization of 14C-depleted carbon during permafrost retreat are very sparse as most 

environmental indicators (e.g. stalagmite growth, or thaw-lake expansion) for deglacial 

permafrost dynamics (Walter et al., 2007; Lozhkin et al., 2011; Vaks et al., 2013) do neither 

provide insights into carbon mobilization nor the radiocarbon signature of the mobilized OM. 

Rostek and Bard (2013) analyzed the abundance of terrigenous biomarkers in Black-Sea 

sediments as a means to trace OM-mobilization during Eurasian permafrost-retreat. However, 
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radiocarbon data providing evidence that the mobilized OM was 14C-depleted was not 

provided. Recently, mass accumulation rates together with the Δ14C-signature of terrigenous 

biomarkers provided evidence for increased deglacial export of 14C-depleted OM from the 

Amur River catchment into the Sea of Okhotsk and this was suggested to attest to deglacial 

permafrost dynamics in East Asia (Winterfeld, 2014; Dummann; 2015). This generally 

corroborates the idea of permafrost as potential source of 14C-depleted CO2. Given the scarce 

information on the time-scales of carbon mobilization the application of the approach used for 

the Amur-River catchment is necessary elsewhere in the NH in order to identify regional 

differences and to ultimately better comprehend the role permafrost may have played in 

CO2atm and Δ14Catm. 

Beringia is one of those regions. It is defined as the area between NE Russia and the Yukon 

Territories in Canada (Figure. 1.6, Hopkins et al., 1982). Nowadays, NE Russia is separated 

from Alaska by the Bering Strait, a shallow seaway connecting the Bering Sea with the Arctic 

Ocean (Figure 1.6). In the course of Pleistocene sea-level variation (e.g. Manley, 2002) large 

parts of the Bering and Chukchi Shelves became exposed and connected northeast Russia and 

Alaska via the “Bering Land Bridge” (BLB)(Figure 1.6). In contrast to North America and 

Western Europe, where large continental ice caps persisted north of 50-60°N (Figure 1.4 & 

1.6), Beringia remained widely unglaciated and glaciers were restricted to the mountain 

ranges (e.g. Gualtieri et al., 2000; Brigham-Grette et al., 2003; Gualteri et al., 2003; Stauch 

and Gualtieri, 2008; Barr and Solomina, 2014). Those conditions made Beringia a glacial 

refuge for Arctic flora and fauna (e.g. Guthrie, 2001) and ultimately allowed permafrost to 

accumulate large amounts of organic carbon. Beringia is supposed to have been completely 

covered by continuous permafrost during the LGM (Vandenberghe et al., 2014). During the 

deglacial climate amelioration continuous permafrost in Alaska likely turned into 

discontinuous permafrost in Alaska. On Kamchatka, (a Peninsula attached to Siberia 

separating the Sea of Okhotsk from the NW Pacific, Figure 1.6) is assumed to have become 

almost permafrost-free (Vandenberghe et al., 2014). Under present-day conditions continuous 

permafrost still covers large areas in Siberia. Thermokarst processes have been described for 

the deglaciation (e.g. Walter et al., 2007) in Siberia and those probably attest to permafrost 

dynamics. Furthermore, the Beringian shelf areas were presumably covered by permafrost 

(Vandenberghe et al., 2014) and may have undergone erosion during sea-level rise. So it 

appears possible that permafrost-destabilization mobilized 14C-depleted OM and potentially 

contributed to rising CO2atm and declining ∆14Catm.  
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Figure 1.6. The subarctic North Pacific Ocean and Beringia. KR: Kamchatka River. White shaded areas mark the position 
of continental ice sheets. Red stars: study sites from this thesis. 

In order to contribute to a better understanding of the region’s potential to have fuelled CO2atm 

and Δ14Catm changes, this thesis aims at identifying the time-scales (onset and duration) of 

mobilization-events of 14C-depleted OM during deglacial permafrost decomposition in 

Kamchatka and the Koryak area (NE Siberia, Figure 1.6).  

However, gaps of knowledge exist upon the temperature development in the NW-Pacific 

realm between the LGM and the Holocene. In terms of deglacial temperature evolution, 

western Beringia (Siberia), the subarctic NW Pacific and its marginal seas (the Sea of 

Okhotsk and the Bering Sea, Figure 1.6) are one of the least studied areas across the NH since 

climate records spanning the entire LGM-Holocene transition are very sparse. Furthermore, 

many terrestrial records have poor chronologies (e.g. Kokorowski et al., 2008a,b). Kamchatka 

is one of the least studied areas of Beringia as terrestrial climate archives, such as peat 

sections or lake sediments, do not reach beyond 12 ka BP (e.g. Dirksen et al., 2013, 2015; 

Nazarova et al., 2013a; Hoff et al. 2015; Klimaschewski et al., 2015; Self et al., 2015; 

Solovieva et al., 2015). In the marine realm, HS1 and the LGM are underconstrained as far as 

the sea surface temperature (SST) evolution is concerned. This is because most existing 

records from the subarctic N Pacific and its marginal seas (the Bering Sea and the Sea of 

Okhotsk) are based on alkenone palaeothermometry (UK’
37) and alkenones are often 
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extremely low or even below detection limit in sediments corresponding to HS1 and the LGM 

(Ternois et al., 2000; Barron et al., 2003; Caissie et al., 2010; Seki et al., 2004a; Max et al., 

2012). If alkenones are present (Sea of Okhotsk), adopted temperatures for the last glacial 

period and early deglaciation appear to be too warm (e.g. Seki et al., 2004b, 2007). It is 

assumed that these records are seasonally biased due to shifting blooming seasons of the 

coccolithophorids during the deglaciation. (Harada et al., 2003; Seki et al., 2004b, 2007). 

Temperature-inferences for the NW-Pacific realm adopted from foraminiferas do provide 

records for the full glacial/Holocene transition but those are often considered to reflect sub-

surface (approx. 50-100 water depth) rather than sea surface (0-50 m) conditions (e.g. 

Gebhardt et al., 2008; Max et al., 2012; Riethdorf et al., 2013). Given the gaps in the 

temperature records, there is a lack in consensus regarding climate change since the LGM and 

the controlling mechanisms in the region. Uncertainties exists upon the LGM-to-Holocene 

development of regional climate drivers such as oceanic and atmospheric circulation, upon the 

nature of teleconnections with AMOC-variability, or upon the response to insolation or 

atmospheric CO2-levels. Inconsistencies exist across climate model outputs for the LGM 

climatic conditions as well as for deglacial climate change. For the LGM some suggest that 

LGM SST were warmer than at present (Otto-Bliesner et al., 2006; Alder and Hostetler, 2015) 

while others predict a cooling relative to pre-industrial conditions (e.g. Yanase and Abe-

Ouchi, 2007). As for the deglaciation it has been proposed that N-Pacific SST evolution was 

linked to North Atlantic climate oscillations. However, proxy-based SST reconstructions as 

well as general circulation models provide to an inconsistent picture regarding nature of the N 

Pacific response to AMOC-oscillations. Some climate models found an out-of-phase behavior 

with cooling in the N Atlantic and a concurrent warming in the N Pacific during stadials 

(Sarnthein et al., 2004, 2006; Gebhardt et al., 2008). General Circulation Models (GCMs) 

suggest that the weakening of the AMOC would result in the establishment of a Pacific 

Meridional Overturning Circulation (PMOC) and hence intensified poleward heat transport 

into the N Pacific (Schmittner et al., 2003; Saenko et al., 2004; Okazaki et al., 2010; Menviel 

et al., 2012). By contrast, GCMs also proposed that Atlantic and Pacific SST varied in-phase, 

a pattern which was attributed to rapid atmospheric teleconnections between both ocean 

basins (Mikolajewicz et al., 1997; Vellinga and Wood, 2002; Okumura et al., 2009; 

Chikamoto et al., 2012). Both scenarios are corroborated by SST, sub-surface temperature and 

salinity reconstructions (Barron et al., 2003; Gebhardt et al., 2008; Kiefer and Kienast, 2005; 

Max et al., 2012; Kuehn et al., 2014; Praetorius and Mix, 2014). Also, terrestrial archives 

generate an ambiguous picture as far as the sensitivity of Beringia to deglacial N Atlantic 
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climate change is concerned. Existing climate reconstructions from Siberia, the former BLB 

and Alaska reveal a rather inconsistent picture. Some studies found evidence for a late glacial 

warming during the B/A followed by a cold reversal corresponding to the YD while others do 

not show any climatic reversals during the deglacial climate amelioration (e.g. Lozhkin et al., 

1993, 2007; Pisaric et al., 2001; Lozhkin and Anderson, 2006; Kokorowski et al., 2008a,b; 

Meyer et al., 2010; Fritz et al., 2012). The discrepancies among Beringian records may relate 

to regional differences in the sensitivity to N-Atlantic climate variability but also to poor 

chronologies or to sampling resolutions which are too coarse to monitor short-term 

oscillations (e.g. Kokorowski et al., 2008a, b). 

The sparseness of continuous LGM-to-Holocene temperature records and the inconsistencies 

among climate inferences require additional records in SST and mean air temperature (MAT) 

which span the full LGM/Holocene transition in order to continue building up a better 

understanding of regional climate dynamics in the NW Pacific and NE Siberia. This is also 

the basis for comprehending the permafrost dynamics and carbon mobilization in the 

Kamchatka-region. So, the second aim of this thesis is to contribute to an improved picture of 

LGM climatic conditions and deglacial climate change in the NW Pacific realm and adjacent 

NE Siberia by establishing continuous LGM-to-Holocene SST records for the Western Bering 

Sea, the marginal NW Pacific and MAT-records for the Kamchatka Peninsula. The TEXL
86 

and CBT/MBT-paleothermometries shall be applied in marine sediment cores from the 

continental margin off Kamchatka (sites SO201-2-12KL and SO201-2-114KL; Figure 1.6). 

The climatic history of the Kamchatka-area may provide important insights into the LGM and 

deglacial patterns of regional atmospheric and oceanic circulation and the impact of supra-

regional climate drivers. Furthermore, a better understanding of the temperature during the 

LGM and the deglaciation, offers the possibility to investigate the role of temperature in 

restricted ice-sheet extent in Northeast Siberia. In contrast to North America and western 

Eurasia, Beringia remained widely unglaciated as glaciers were restricted to the mountain 

ranges (e.g. Brigham-Grette et al., 2003; Barr and Solomina, 2014). The prevailing hypothesis 

seeking to explain the limited ice-extent is that the region was too arid (e.g. Brigham-Grette et 

al., 2003; Barr and Clark, 2011). However, glacier growth is ultimately a function of snow 

accumulation and temperature. Considering that some Siberian records provide evidence for 

relatively warm summers during the LGM with conditions similar to modern (e.g. Berman et 

al., 2011). Temperature may have played an important role in restricted glaciation, next to 

arid conditions. On Kamchatka detailed reconstruction about palaeo-glaciation has been 

provided by Barr and Clark (2011) and includes the reconstruction of equilibrium line 
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altitudes (ELA). Those can be used to investigate a glacier’s response to temperature or 

precipitation (e.g. Barr and Clark, 2011) as data on glacier extent combined with LGM air 

temperature would allow mass-balance calculations for the LGM-glaciers and would provide 

estimates about LGM precipitation (Braithwaite et al., 2006; Barr and Clark, 2011). Since, 

climate records from Kamchatka do not reach beyond 12 ka BP information about 

temperature and precipitation is not available so far. As such a quantitative air temperature 

record for Kamchatka represents a first puzzle piece to unravel how temperature and 

precipitation controlled ice-sheet growth in the Kamchatka-region. Estimates of glacial 

precipitation may also complement the temperature records with respect to inferences 

regarding atmospheric and oceanic circulation. All together this may provide important 

information to validate existing climate model outputs and a step towards comprehending the 

controls on the regional climate during the LGM.  

Constraints on the deglacial SST development and on the deglacial MAT-development of 

Kamchatka may complement the existing knowledge about the connectivity of the NW 

Pacific, the Western Bering Sea and Siberia to N Atlantic climate change. Existing SST 

records from sites 12KL and 114KL provide evidence for the presence of the B/A warm phase 

and the YD cold-spell which attests to atmospheric teleconnections between the NW Pacific 

realm and the N Atlantic (Max et al., 2012). However, these records are established on 

alkenone paleothermometry and do not provide insights into HS1. The presence of the B/A-

interstadial and the YD cold spell may suggest that HS1 would have been characterized by a 

cold-spell, similar to the N-Atlantic realm. However, in the open NW Pacific warm-spells 

have been identified which corroborate the idea of intensified oceanic heat transport 

(Gebhardt et al., 2008). Inferences for the AMOC-impact on Kamchatka are important for 

understanding temperature controls on permafrost dynamics in the region and to test the 

hypothesis that HS1 and the YD were intervals of stabilizing permafrost conditions. Warm-

spells during HS1 may have already caused permafrost degradation and carbon mobilization 

prior to the B/A, so the region may have provided CO2 to the atmosphere during the MI. 

In summary, the thesis aims at imroving the comprehension of LGM-climatic conditions 

(temperature and precipitation) and deglacial temperature change in the NW Pacific realm. It 

further aims at providing into the potential role of the region’s permafrost carbon-pool in 

deglacial CO2atm and Δ14Catm changes. In order to achieve these major aims marine and 

terrigenous biomarkers are analyzed in sediment cores SO201-2-12KL and SO201-2-114KL. 

Based upon the TEXL
86 temperature proxy the SST development of the Western Bering Sea 
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and the NW Pacific between the LGM and the Holocene shall be reconstructed (Objective 1). 

The focus is the SST evolution during the LGM and HS1.  

Objective 2 comprises the reconstruction of the evolution of mean air temperature on 

Kamchatka, using the CBT/MBT-temperature proxy. Objectives 1 and 2 shall provide insights 

into the impact of regional climate oceanic and atmospheric circulation and into the impact of 

AMOC-variability. Investigating the deglacial temperature variability on Kamchatka shall 

generate the basis to comprehend permafrost dynamics and carbon mobilization in the region.  

On the basis of the adopted temperature data for the LGM, the interplay of temperature and 

precipitation for restricted glacier extent on Kamchatka shall be investigated in a degree-day-

model (mass balance calculations, Objective 3).  

In order to trace permafrost decomposition in Kamchatka and the Koryak area, and to assess 

the time-scales of the associated carbon mobilization, the deglacial development of the export 

of terrigenous OM into the adjacent NW Pacific and the Western Bering Sea shall be 

reconstructed (Objective 4). Mass-accumulation rates and compound-specific radiocarbon 

analysis of leaf-wax lipids in cores SO201-2-12KL and SO202-2-114KL are supposed to 

identify periods of enhanced mobilizaton of 14C-depleted OM and to constrain the timing of 

carbon release during permafrost decomposition in the region. 

1.5. Outline of the thesis 

The three objectives are addressed in four manuscripts (chapters 2-5) which are either in the 

process or in preparation for publishing in peer-reviewed journals. The first part of the thesis 

(chapters 2 & 3) deal with the reconstruction of the SST and MAT development, tackling 

objectives 1 and 2. In the second part (chapters 4 & 5) the implications of temperature for the 

cryosphere (glaciation and permafrost) are addressed (objectives 3 & 4). Chapter 6 

summarizes the main findings and the perspectives of this thesis.  
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2. Manuscript I:  

Glacial-to-Holocene evolution of sea surface temperature and surface 

circulation in the subarctic Northwest Pacific and the Western Bering Sea 

Vera D. Meyer1,2, Lars Max1, Jens Hefter1, Ralf Tiedemann1 and Gesine Mollenhauer1 

1 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, D-27568, 

Bremerhaven, Germany 
2 Department of Geosciences, University of Bremen, Klagenfurter Strasse, D-28359 Bremen, Germany 

Revised version after first review. To be re-submitted to 

Palaeoceanography 

Abstract 

It has been proposed that North Pacific sea surface temperature (SST) evolution was 

intimately linked to North Atlantic climate oscillations during the last deglaciation. However, 

during the early deglaciation and the Last Glacial Maximum (LGM), the SST development in 

the subarctic Northwest Pacific and the Bering Sea is poorly constrained. Most existing 

deglacial SST records are based on alkenone palaeothermometry which is limited prior to 15 

ka BP in the subarctic North Pacific realm. By applying the TEXL
86 temperature proxy we 

obtain Glacial-Holocene-SST records for the marginal Northwest Pacific and the Western 

Bering Sea. We find that during the past 15 ka SSTs in the northwest Pacific and the Western 

Bering Sea closely follow millennial-scale climate fluctuations known from Greenland ice 

cores. This agrees with previous studies suggesting rapid atmospheric teleconnections with 

abrupt climate changes in the North Atlantic. Our SST reconstructions indicate that in the 

Western Bering Sea SSTs drops significantly during Heinrich Stadial 1 (HS1), similar to the 

known North Atlantic climate history. In contrast, progressively rising SST in the Northwest 

Pacific is significantly different to the North Atlantic climate development during HS1. 

Similarities between the Northwest Pacific SST and climate records from the Gulf of Alaska 

rather point to a stronger influence of Alaskan Stream waters connecting the eastern and 

western basin of the North Pacific during this time. During the Holocene, dissimilar trends in 

the climate point to reduced influence of the Alaskan Stream in the Northwest Pacific. 
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2.1. Introduction 

During the last deglaciation, the North Pacific (N Pacific) and its marginal seas experienced 

millennial scale climate oscillations, which are proposed to be linked to variations in the 

strength of the Atlantic Meridional Overturning Circulation (AMOC) (e.g. Seki et al., 2002; 

Sagawa and Ikehara, 2004; Kiefer and Kienast, 2005; Gebhardt et al., 2008; Harada et al., 

2012; Max et al., 2012). From the N Atlantic it has been proposed that AMOC weakened 

twice during the last deglaciation (Heinrich Stadial 1 and Younger Dryas stadials) due to vast 

freshwater supply from melting continental ice-sheets into the N Atlantic, which lead to 

colder conditions in the N Atlantic realm (e.g. McManus et al., 2004). Proxy-based SST 

reconstructions as well as general circulation models lead to an inconsistent picture regarding 

the N Pacific response and the underlying teleconnection mechanisms. Some studies (based 

on climate models and proxy data) found an out-of-phase behavior with cooling in the N 

Atlantic and a concurrent warming in the N Pacific during stadials (Sarnthein et al., 2004, 

2006; Gebhardt et al., 2008). It has been proposed that the weakening of the AMOC would 

result in the establishment of a Pacific Meridional Overturning Circulation (PMOC) and 

hence intensified poleward heat transport in the N Pacific (Schmittner et al., 2003; Saenko et 

al., 2004; Okazaki et al., 2010; Menviel et al., 2012). By contrast General Circulation Models 

(GCMs) and the majority of proxy-based studies and identified a similar pattern of N Pacific – 

N Atlantic climate evolution which was attributed to rapid atmospheric teleconnections 

connecting both ocean basins (Mikolajewicz et al., 1997; Kienast and McKay, 2001, Pisias et 

al., 2001; Vellinga and Wood, 2002; Barron et al., 2003; Okumura et al., 2009; Timmermann 

et al., 2010; Chikamoto et al., 2012; Harada et al., 2012; Max et al., 2012; Kuehn et al., 2014; 

Praetorius and Mix, 2014). Most proxy-based studies do not allow insights into the Heinrich 

Stadial 1 (HS1) and the LGM because for this time-interval alkenone palaeothermometry is 

afflicted by several limitations. So the SST development and its potential linkage to AMOC 

variations during during the early deglaciation remains underconstrained. 

Specifically, alkenone concentrations are often extremely low or even below detection limit in 

sediments older than ca. 15 ka (Ternois et al., 2000; Barron et al., 2003; Caissie et al., 2010; 

Seki et al., 2004a; Max et al., 2012), which prevents the application of Uk’
37 during HS1 and 

LGM. The growth of coccolithophorids, the alkenone producers, may have been impeded by 

low temperatures during glacial times. Besides, in records where alkenones are present (Sea 

of Okhotsk), adopted temperatures for the last glacial period and early deglaciation appear to 

be too warm pointing to a seasonal bias (e.g. Seki et al., 2004b). It has been assumed that 
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longer lasting sea-ice seasons likely forced phytoplankton to bloom in late summer during 

glacial times, while under modern conditions phytoplankton blooms occur during early 

spring/autumn (Takahashi et al., 2002; Harada et al., 2003; Seki et al., 2004b, 2007). 

 

Figure 2.1. Map of the study area showing sites of the sediment cores used in this study together with core sites from other 
studies mentioned in the text. Additionally, the general surface circulation pattern of the N Pacific and the Bering Sea is 
sketched. 

The TEX86 (Tetra Ether indeX) has been introduced as SST proxy by Schouten et al. (2002) 

and quantifies the relative abundance of isoprenoid glycerol dialcyl glycerol tetraethers 

(isoGDGTs) consisting of 86 C-atoms with different numbers of cyclopentyl moieties. These 

lipids are synthesized by marine Thaumarchaeota (Archaea), planktonic ammonia oxidizing 

chemoautotrophes (Könneke et al., 2005; Martens-Habbena et al., 2009; Walker et al., 2010). 

In the subarctic gyre, the highest abundances of Thaumarchaeota have been observed in 

winter and summer (e.g. Karner et al., 2001; Yamamoto et al., 2012) but the strongest 

productivity of marine Thaumarchaeota in the N Pacific and the Sea of Okhotsk seems to be 

associated with the summer season (Seki et al., 2009; 2014). Having different ecological 

preferences than alkenone producers (phytoplankton) the Thaumarchaeota may not be 

affected by environmental stress factors which limit the alkenone producing algae, rendering 

the TEX86 index potentially useful in settings where alkenone palaeothermometry is 
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problematic. Applying the TEX86 temperature proxy to two sediment cores used in the study 

of Max et al. (2012) we were able to produce full glacial to Holocene records in SST for the 

Western Bering Sea and the marginal NW Pacific. Our SST data provides new insights into 

the nature of teleconnections between the N Pacific and N Atlantic during the early 

deglaciation. Our findings also reveal changes in the relative intensity of surface circulation 

patterns of the Bering Sea and the marginal NW Pacific and their impact on the N Pacific 

climate development. 

2.2. Regional Setting 

The surface circulation in the North Pacific and the Bering Sea is cyclonic (Figure 2.1). At 

40°N the North Pacific Current, the extension of the subtropical Kuroshio Current, flows 

eastward carrying warm and saline surface waters into the Alaskan Gyre/Northeast Pacific 

(NE Pacific). The Alaskan Stream (AS) forms a northern boundary current flowing along the 

Aleutian Arc into the Western Sub-polar Gyre. Through several passages of the Aleutian 

Islands surface waters from the AS enter the Bering Sea where they form the Aleutian North 

Slope Current (ANSC), a surface current flowing eastwards along the Aleutian Arc. The 

ANSC acts as the southern boundary current of the counterclockwise circulation of the Bering 

Sea. In the north, the Bering Slope Current transports the water masses along the coastlines of 

Alaska and Siberia. The Bering Sea waters leave the Bering Sea via the Bering Strait into the 

Arctic Ocean. The main outflow, however, is through the Kamchatka Strait where surface 

waters enter the NW Pacific via the East Kamchatka Current (EKC). The EKC flows along 

the eastern coast of the Kamchatka Peninsula and forms the western boundary current of the 

Western Sub-polar Gyre (e.g. Stabeno and Reed, 1994).  

The N Pacific and its marginal seas are characterized by strong seasonal contrasts in SST 

(winter: 0-3°C; summer 8-12°C; (Locarnini et al., 2010) and upper-water column 

stratification. The seasonal contrasts are linked to seasonal changes of the major atmospheric 

circulation over the N Pacific. During winter, the Aleutian Low develops over the N Pacific 

and brings cold air masses from the Arctic to the subarctic N Pacific. The cold air induces 

cooling of surface waters and sea ice formation in the Bering Sea (Ohtani et al., 1972; 

Niebauer et al., 1999). Brine rejection as well as wind stress cause vertical mixing of surface 

and subsurface waters. During summer the Aleutian Low weakens and the North Pacific High 

establishes over the N Pacific. This brings warm southerly winds to the subarctic N Pacific 

and the Bering Sea. Together with increasing insolation this causes sea-ice melt and warming 
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of surface waters. As a consequence a distinct upper-ocean stratification with pronounced 

seasonal pycnocline and thermocline develops (Ohtani et al., 1972).  

2.3. Material and Methods 

2.3.1. Core material and age control 

For this study we used two piston cores from the Western Bering Sea (SO201-2-114KL) and 

the NW Pacific (SO201-2-12KL) recovered at the continental margin off Kamchatka 

Peninsula (Figure 2.1) during KALMAR Leg 2 cruise of R/V SONNE SO201 in 2009 (Dullo 

et al., 2009). Prior to sample preparation, cores were stored at 4°C. Integrated age models 

were developed by accelerator mass spectrometry (AMS) radiocarbon dating of planktonic 

foraminifera (Neogloboquadrina pachyderma sinistral) as well as by core-to-core correlations 

of high-resolution spectrophotometric (color b*) and X-ray fluorescence data. For a detailed 

description and AMS-14C results see Max et al. (2012). For this study, cores were sampled in 

10 cm (12KL) and 5 cm (114KL) steps providing a temporal resolution of ca. 250-500 years. 

The cores have a total recovery of 11.78 m (12KL) and 7.89 m (114KL) representing the 

periods of 1-20 ka BP and 8.8-29 ka BP. 

2.3.2. Lipid extraction 

The sediment samples (5 g) were freeze-dried and homogenized. 10 µg of C46-GDGT were 

added as internal standard. Samples were extracted with an accelerated solvent extractor 

(Dionex ASE 200) using 22 ml cells and dichlormethane (DCM):methanol (MeOH) 9:1 (v/v) 

as solvent at 100°C and 1000 psi with three cycles of 5 minutes each. The total lipid extracts 

were dried with a rotary evaporator. Afterwards they were hydrolyzed with 0.1 N potassium 

hydroxide (KOH) in MeOH:H2O 9:1 (v/v). Neutral compounds (including GDGTs) were 

extracted with n-hexane. Compound classes were separated with column chromatography, 

using deactivated SiO2 . An apolar fraction was eluted using n-hexane. Polar compound-

classes, including the GDGTs, were eluted with MeOH:DCM 1:1 (v/v). Dissolved in 

hexane:isopropanol 99:1 (v/v) the polar-fraction was filtered with a PTFE filter (0.45 µm pore 

size) according to Hopmans et al. (2004). Samples were brought to a concentration of 2 µg/µl 

prior to GDGT analysis.  
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2.3.3. GDGT analysis and SST determination 

GDGTs were analyzed by high performance liquid chromatography (HPLC) coupled via an 

atmospheric pressure chemical ionization (APCI) interface to a single quadrupole mass 

selective detector (MSD), with a method slightly modified from Hopmans et al. (2000). 

Analyses were performed on an Agilent 1200 series HPLC system and an Agilent 6120 MSD. 

Separation of the individual GDGTs was achieved on a Prevail Cyano column (Grace, 3µm, 

150 mm x 2.1 mm) maintained at 30°C. After sample injection (20 µL) and 5 min isocratic 

elution with solvent A (hexane) and B (hexane with 5 % isopropanol) at a mixing ratio of 

80:20, the proportion of B was increased linearly to 36 % within 40 min. The eluent flow was 

0.2 ml/min. Prior to analysis of the next sample, the column was cleaned by back-flushing 

with 100% solvent B (8 min) and re-equilibrated with solvent A (12 min, flow 0.4 ml/min). 

GDGTs were detected using positive-ion APCI-MS and selective ion monitoring (SIM) of 

their (M+H)+ ions (Schouten et al., 2007) with APCI spray-chamber conditions as follows: 

nebulizer pressure 50 psi, vaporizer temperature 350°C, N2 drying gas flow 5 l/min and 

350°C, capillary voltage (ion transfer tube) -4 kV and corona current +5 µA. The MS-detector 

was set for SIM of the following (M+H)+ ions: m/z 1302.3 (GDGT 0), 1300.3 (GDGT 1), 

1298.3 (GDGT 2), 1296.3 (GDGT 3), 1292.3 (GDGT 4 + 4´ / crenarcheol + regio-isomer), 

1050 (GDGT III), 1036 (GDGT II), 1022 (GDGT I) and 744 (C46 standard), with a dwell time 

of 67 ms per ion. 

Peak areas from the individual GDGTs were obtained by integration. Compounds were 

quantified by using the respective peak areas and the response factor of the C46 standard. The 

results were normalized to the amount of extracted sediment and total organic carbon (TOC) 

content. We applied the TEXL
86 -index, which has been suggested for temperature ranges 

below 15°C by Kim et al. (2010). In order to convert TEXL
86 into temperatures we applied the 

regional calibration for the Sea of Okhotsk and the NW Pacific by Seki et al. (2014). 

The reported standard error for the regional calibration is ± 1.7°C. The standard deviation for 

TEXL
86 was calculated from repeated measurements and was < 0.0,1 corresponding to a 

maximal uncertainty of ± 0.37°C in the reconstructed temperatures. 

This regional calibration has been suggested since in the Sea of Okhotsk and the N Pacific the 

global core-top calibrations by Kim et al. (2010, 2012) often overestimate mean annual SST 

and tend to produce excessively cold temperatures for the Glacial (Seki et al., 2014). This was 

explained by region-specific ecologic characteristics of the Thaumarchaeota such as 

seasonality and export production depth which may bias the TEXL
86 (Seki et al., 2014). 
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According to the study of Seki et al. (2014) TEXL
86 would reflect mean August temperatures 

in 20 m water depth (Figure 2.2).  

 

 

Figure 2.2. Core-top data from the Bering Sea (black squares, sites from cruise SO202-2, Ho et al., (2014) plotted together 
with the dataset used for the regional calibration for the Sea of Okhotsk and the N Pacific from Seki et al. (2014) (grey dots). 

Corresponding mean August temperatures at 20 m water depth for the sites in the Bering Sea were taken from WOA09 
(Locarnini et al., 2010). 

As the dataset from Seki et al. (2014) does not include data from the Bering Sea, we tested 

whether the proposed regional calibration would be applicable there by combining core-top 

data from the central Bering Sea (from Ho et al. (2014) and the dataset from (2014). The data 

from the Bering Sea are based on sites from cruise SO202-2 with RV SONNE (Ho et al. 

(2014), Figure 2.1). Since data from the Bering Sea were within the range of values from the 

Sea of Okhotsk/N Pacific we concluded that the regional calibration is valid for the Bering 

Sea (Figure 2.2). Seki et al. (2014) argued that a highly stratified water column in summer 

restricted the summer warmth to 20 m and 40 m in the Sea of Okhotsk and the NW Pacific 

and that ammonium concentrations peaked in that depth interval at the same time. As 

Thaumarchaeota are ammonia oxidizing chemoautotrophs (Könneke et al., 2005; Martens-

Habbena et al., 2009; Walker et al., 2010) they probably accumulate in that depth range 

during the summer months (Seki et al., 2014 and references therein). CTD-profiles from the 

Western Bering Sea show that the development of the water column is similar to the NW 

Pacific/Sea of Okhotsk with respect to the depth of summer stratification (Dullo et al., 2009; 

Riethdorf et al., 2013). Therefore, it is reasonable to assume that ammonium which is 

produced during the decay of organic matter after the first phytoplankton blooms in spring 
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would accumulate in the mixed layer of the Bering Sea during the summer months. This 

might be accompanied by enhanced productivity of the Thaumarchaeota.  

As Weijers et al. (2006) pointed out that terrigenous GDGTs can bias the temperature signal 

of TEX86 when terrigenous organic matter input is high, we determined the relative 

contribution of marine and terrigenous GDGTs in our samples using the BIT-index after 

Hopmans et al. (2004). The index is based on a ratio of terrigenous GDGTs (GDGT I-III) and 

the marine Crenachaeol (GDGT 4). Repeated measurements resulted in a standard deviation 

of 0.01 which corresponds to an analytical error of ± 0.004 BIT units. 

2.4. Results 

2.4.1. BIT-values and applicability of TEXL
86-based SST reconstructions 

BIT values and TEXL
86-derived SST (SSTTEXL86) are shown together with alkenone-based 

SST (SSTUk’37) from Max et al. (2012) in Figure 2.3. Ranging between 0.04-0.22, BIT values 

are below the critical value of 0.3, defined by Weijers et al. (2006), where SST 

reconstructions are potentially biased by terrigenous isoGDGTs (Figure 2.3). Hence, at sites 

12KL and 114KL marine derived GDGTs dominate over terrigenous GDGTs. Under these 

circumstances we are confident that TEXL
86 is not biased by terrigenous input. At site 12KL 

TEXL
86-based SST reconstructions for the core-top (1000 ka BP, 9.5°C) match modern 

summer SST in the Western Subarctic Gyre (ca. 9-11°C; satellite data from WOA09 

(Locarnini et al. 2010) confirming that TEXL
86 reflects summer SST. Since site 114KL does 

not cover the entire Holocene a comparison of late Holocene SST with modern satellite data is 

not possible. The TEXL
86-derived SST from the early Holocene (10- 9.5°C) gives estimates 

slightly above modern summer SST (ca. 8°C; WOA09; Locarnini et al., 2010). This offset is 

likely because the reconstructed temperatures fall in the time-period of the Holocene thermal 

maximum that occurred between 11 and 8 ka BP in the NW Pacific and Siberia (e.g. Max et 

al., 2012; Biskaborn et al., 2012 and references therein) and was warmer than at present.  

2.4.2. SST development over the past 22 ka 

Whereas the previously published UK’
37-records span the last 15 ka only (Max et al., 2012), 

our TEXL
86 records reach further back, (Figure 2.3). During the LGM Bering Sea SSTTEXL86 

range between 5°C and 6°C, while SSTTEXL86 in the NW Pacific range between 8°C and 

8.5°C. During the deglaciation SSTTEXL86 increase about 4-5°C in the Western Bering Sea but, 

less in the NW Pacific. At site 12KL SSTTEXL86 only rise by 3°C. SSTTEXL86 in the NW 

Pacific reach their maximum at 8 ka BP and subsequently decrease progressively. While a 
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temperature offset between the Western Bering Sea and the NW Pacific of ca. 2°C is present 

during the late glacial /early deglaciation both locations reach similar temperatures during the 

early Holocene Thermal Maximum (10-11°C; 10 ka BP-8 ka BP; Figure 2.3). 

 

Figure 2.3. Sea surface temperature reconstruction and BIT-indices (a) over the past 22 ka for the NW Pacific (site 12KL, 
A) and the Western Bering Sea (site 114KL, B). TEXL86 based SSTs from this study (c) are plotted together with the SSTUk’37 
(d) by Max et al. (2012). The thermal difference between the two proxies is expressed as ΔTTEXL86-Uk’37 (e). Additionally, mean 
July insolation at 65°N (b, Berger and Loutre, 1991) is shown. The NGRIP oxygen isotope record from Greenland (f) is 
shown in order to compare the N Pacific SST development with the climate variability in the N Atlantic. Grey shaded areas 
mark the YD and the HS1 stadials. 

Since ca. 15 ka BP, the SSTTEXL86 evolution at both sites has been in agreement with the 

previously published SSTUK’37 from Max et al., 2012 (Figure 2.3). It is characterized by a 

sharp temperature increase at the onset of the B/A and a subsequent cooling into the YD cold-

spell followed by an abrupt warming into the early Holocene (Figure 2.3). SSTTEXL86 are 

generally higher than SSTUk’37 at both sites (Figure 2.3). The difference (ΔTTEX-UK’) is 6°C 

during the deglaciation (Figure 2.3). At site 12KL ΔTTEX-UK’ is abruptly reduced by about 3-

4°C at the Holocene transition. This is mainly driven by a sharp increase in SSTUK’37.  

Whereas the Bering Sea and the NW Pacific have experienced similar SST developments 

since the B/A, they are characterized by different patterns prior to 15 ka BP (Figure 2.3). In 

the Bering Sea the SSTTEXL86 records an early warming phase during the late glacial (18-17 ka 

BP) which is followed by a drop in SST during at 17-16 ka BP. Warming rebounds at 15.5 ka 
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BP and an abrupt increase in temperature occurs at the transition to the B/A-interstadial (14.6 

ka BP). In the NW Pacific the late glacial and the early deglaciation SSTTEXL86 deviates from 

SSTTEXL86 at site 114KL (Figure 2.3). At site 12KL SSTTEXL86 continuously rises between 18 

and 14.6 ka BP, without being interrupted by a cold-reversal (Figure 2.3). At 14.6 ka an 

abrupt temperature increase marks the onset of the B/A-interstadial.  

2.5. Discussion 

2.5.1. Seasonal differences between summer and fall SST  

Based on the good correspondence of regional core-top data with summer SST (Seki et al., 

2014; Ho et al., 2014, Figure 2), TEXL
86 is regarded to reflect summer SST in the N Pacific 

and its marginal seas. In contrast, UK’
37 is supposed to reflect late summer/fall SST today 

(Harada et al., 2003; Seki et al., 2007). At site 12KL the Holocene ΔTTEXL86-Uk’37 (ca. 3°C) is 

in agreement with the thermal difference between summer and autumn recorded by the 

satellite data of WOA09 (Locarnini et al., 2010). Accordingly, the increased ΔTTEXL86-Uk’37 

(prior to 12 ka BP) implies that the thermal contrast between summer and autumn was greater 

than during the Holocene (Figure 2.3). The temperature increase at the YD-Holocene 

boundary is stronger in the SSTUk’37 than in the SSTTEXL86 which makes the alkenones the 

main driver of the decrease in ΔTTEXL86-Uk’37 (Figure 2.3). This suggests that autumn warming 

may have been more pronounced than summer warming. Prolonged summer seasons during 

the Holocene may have accounted for this. Several GCMs suggest that the Aleutian Low was 

stronger during the LGM than during the Holocene (Dong and Valdes, 1998; Shin et al., 

2003; Yanase and Abe-Ouchi, 2007, 2010; Alder and Hostetler, 2015) and that a distinct low-

pressure anomaly persisted throughout the deglaciation, until ca. 12 ka BP. In association with 

a stronger Aleutian Low northerly winds would intensify over the NW Pacific and would 

have enhanced the advection of cold arctic air during fall/winter. As a result, sea-surface 

cooling between summer and fall was likely more pronounced during the LGM/deglaciation 

than during the Holocene. 

2.5.2. SST evolution of the NW Pacific and Western Bering Sea over the past 22 ka 

2.5.2.1. The late deglacial (10-15 ka) 

Our TEXL
86-basded SST-records resemble the previously published alkenone data from Max 

et al. (2012) and show a similar pattern as recorded in NGRIP-δ18O (Figure 2.3). Similarity 

between N Pacific SST and the climate evolution in the N Atlantic realm was also described 

in the Sea of Okhotsk (e.g. Max et al., 2012), the NE Pacific (e.g. Kienast and McKay, 2001; 
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Pisias et al., 2001; Barron et al., 2003) and the Bering Sea (Caissie et al., 2010; Max et al., 

2012) and interpreted as atmospheric coupling between both oceans. GCMs predicting 

simultaneous drops/increases in SST in the N Pacific indicate that enhanced westerly winds 

would have carried cold/warm air masses from the Atlantic to the N Pacific where the sea 

surface would have cooled/warmed due to heat exchange with the atmosphere (Manabe and 

Stouffer, 1988; Mikolajewicz et al., 1997; Schiller et al., 1997; Vellinga and Wood, 2002; 

Chikamoto et al., 2012). A key role has been attributed to the Aleutian Low pressure system 

since in model simulations the intensity and the position of the Aleutian Low was extremely 

sensitive to SST anomalies in the N Atlantic (e.g. Mikolajewicz et al., 1997, Okumura et al., 

2009). In those models the Aleutian Low deepens and migrates southward during stadials 

resulting in anomalous advection of cold Arctic air via northerly winds and enhanced 

westerlies, which increase surface heat fluxes from the ocean to the atmosphere, as well as in 

a southward shift of the oceanic frontal zones. All these processes would cause SST cooling 

in the N Pacific.  

However, being present from late fall until early spring, the Aleutian Low is a seasonal 

feature restricted to the boreal winter. Therefore, any anomaly in the Aleutian Low should not 

have a dominant control on the summer SST reflected by TEXL
86. Indeed, Okumura et al. 

(2009) found that the cyclonic anomaly over the N Pacific is strongest in winter but absent 

during the summer months. Interestingly, the magnitude of SST cooling did not show strong 

seasonal variations as the difference between summer and winter was less than 1°C in their 

model simulations. This robustness of the SST cooling in the N Pacific is confirmed by the 

clear presence of the YD stadial in the summer-SST records from TEXL
86. Furthermore, it 

becomes obvious when SSTTEXL86 is compared to the SSTUk’37. Alkenones are supposed to 

reflect autumn SST and therefore would be under the influence of the Aleutian Low. 

Consequently, large seasonal variations in the magnitude of the YD cooling should cause 

large discrepancies in the SSTTEXL86 and SSTUK’37. At site 12KL the magnitude of the cooling 

is 1°C in the SSTTEXL86 smaller than in the SSTUK’37 (Figure 2.3) which supports the finding of 

the model simulations. Suggesting a response to N Atlantic climate change of SST throughout 

the annual cycle. 
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2.5.2.2. Late glacial and HS1 – differences between the NW Pacific and the Western 

Bering Sea 

As cited above, previously published alkenone-based studies from the N Pacific and its 

marginal seas indicate that the subarctic N Pacific was widely connected to the N Atlantic via 

atmospheric teleconnections during the deglaciation (between ca. 10-15 ka). Therefore, it 

seems reasonable to assume that the atmospheric coupling would have also controlled the SST 

development during the early deglaciation and the late glacial. Indeed, SSTTEXL86 from the 

Western Bering Sea resemble NGRIP-δ18O and reveals a cooling during Heinrich Event 1 

(17-16 ka BP; Figure 2.4 A) in the Western Bering Sea, indicating that the atmospheric 

linkage with the N Atlantic has already been present during the early deglaciation. However, a 

quite different pattern is visible in SSTTEXL86 in the NW Pacific (site 12KL), where a gradual, 

uninterrupted increase in SSTTEXL86 between 18 ka -15 ka does not agree with the North 

Atlantic climate evolution and shows no indication for a Heinrich-equivalent cold spell 

(Figure 2.4B). This contrasts model simulations which investigated the response of the N 

Pacific to freshwater perturbations in the N Atlantic under glacial boundary conditions 

(including lowered Sea-level and continental ice-caps) to explicitly investigate the SST-

response during HS1 (Chikamoto et al. (2012), MIROC-simulation). The model predicted a 

clear decrease in SST in the Bering Sea as well as in the entire subarctic N Pacific. This 

suggest a rather widespread sensitivity of NW Pacific SST to atmospheric teleconnections 

with N Atlantic climate change already during the early deglaciation/HS1. However, our 

SSTTEXL86-record reveals that a clear similarity with the NGRIP-δ18O and the SST-

development in the NW Pacific can only be found since ca. 15 ka (Figure 2.3 & 2.4). This 

finding implies that during the late glacial and the early deglaciation the SST development in 

the NW Pacific was apparently less sensitive to an atmospheric teleconnection with the N 

Atlantic than the Western Bering Sea and was controlled by different processes.  
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Figure 2.4. a) SSTTEXL86 from site 114KL, Western Bering Sea (orange) compared to Greenland ice core δ18O 
(NGRIP, black). b) SSTTEXL86 from site 12KL, NW Pacific (blue) plotted together with the GOA-δ18O measured 
on the planktonic foraminifera Neogloboquadrina pachyderma (sin.) (grey, Praetorius and Mix, 2014) and mean 
July-insolation at 65°N (Berger and Loutre, 1991). c) Comparison SSTTEXL86 from sites 12KL (blue) and 114KL 
(orange). 
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2.5.3. Controls on the early deglacial SST development in the NW Pacific 

As the warming in SSTTEXL86 at site 12KL during the late glacial/HS1 follows the trend of 

mean summer insolation (Figure 2.3 & Figure 2.4B) it seems likely that increasing insolation 

was an important factor driving the SST-evolution during this time. The temperature 

development from the NW Pacific also resembles the climate evolution in the Gulf of Alaska 

(GOA, Figure 4b). There, δ18O-records, established on planktonic foraminifera, indicate that 

the climate of the NE-Pacific developed asynchronously with the N Atlantic realm during the 

late glacial/HS1 and became synchronized on centennial time-scales at ca. 15 ka (Praetorius 

and Mix (2014), Figure 2.4). It is noteworthy that δ18O of planktonic foraminifera technically 

record a composite of temperature, salinity and global ice volume and cannot easily be 

interpreted as a temperature signal alone. However, Praetorius and Mix (2014) found that 

alkenone-based SST records from the NE Pacific and the southern Bering Sea track the GOA-

δ18O which made them conclude that a large component of the δ18O would reflect upper-

ocean temperature. Under this assumption, the similarity between the GOA-δ18O and our data 

may even indicate a quite similar SST-evolution in the NW Pacific and the GOA (Figure 2.4 

B). The asynchroneity between the climate development in the GOA and the N Atlantic realm 

was explained by a southward displacement of the westerly jet due to expanded ice caps on 

the American continent. This would have reduced the atmospheric connection between 

Greenland and GOA preventing the establishment of an atmospheric coupling (Praetorius and 

Mix, 2014 and references therein). At ca. 15.5 ka the coupling would have been initiated in 

response to falling ice height in the course of retreating continental ice caps (Praetorius and 

Mix, 2014). However, in case of site 12KL in the NW Pacific, it seems unlikely that a 

southward shift of the westerly jet accounts for the decoupling since an atmospheric 

connection is evident in SSTTEXL86 from the Western Bering Sea, north of site 12KL (Figure 

2.1 & 2.4). Instead, the similar trends in the GOA-δ18O and SSTTEXL86 suggest the existence of 

an oceanographic linkage between the eastern and western basin of the subarctic N Pacific 

which overprinted an atmospheric coupling with the N Atlantic. A prominent oceanic feature 

connecting the eastern and western part of the North Pacific is the Alaskan Stream (AS, 

Figure 2.1). Relatively strong accumulation of AS waters at site 12KL could have been more 

relevant to the SST development in the NW Pacific, than an atmospheric teleconnection there 

during HS1. This east-west linkage corroborates considerations by Riethdorf et al. (2013) who 

reconstructed sub-surface salinity at site 12KL and found a freshening between 17.5 and 15.5 

ka BP in the NW Pacific. These authors supposed enhanced accumulation of low-salinity 

waters from the AS since the Alaskan Current/Alaskan Stream current system experienced 
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drops in salinity due to continental runoff and intensified ice-berg calving, associated with the 

beginning retreat of continental ice caps during HS1 (Gebhardt et al., 2008; Hendy and 

Cosma, 2008; Riethdorf et al., 2013; Taylor et al., 2014). The freshwater discharge from the 

American continent would have reduced surface salinity in the NE Pacific/GOA and the AS 

would have advected this low-salinity anomaly to the NW Pacific (Riethdorf et al., 2013). 

Hence, a pronounced influence of AS waters at site 12KL seems to have had an important 

impact on the surface conditions and the climate in the NW Pacific during the late glacial and 

the HS1.  

2.5.4. Surface circulation changes – the AS-EKC interplay 

Sites 12KL and 114KL are both under the influence of the EKC (Figure 2.1). Considering that 

the current transports surface water from the Western Bering Sea to site 12KL (Figure 2.1) 

one may expect that the SST development would be similar in both settings. Ice rafted detritus 

(IRD) was deposited in the open NW Pacific (sites ODP Site 882, MD01-2412) during glacial 

times until ca. 15 ka BP (St. John and Krissek, 1999; Gebhardt et al., 2008) and it has been 

found that the source of the IRD is the Kamchatka Peninsula and coastal Siberia (St. John and 

Krissek, 1999). Ice rafting along the coast of Kamchatka provides evidence for the presence 

of the EKC during the late glacial/HS1. So, the disagreement of the two SSTTEXL86 records 

(Figure 2.4) implies that the AS was dominating over the influence of the EKC during the late 

glacial. 

A glacial increase of AS waters accumulating in the marginal NW Pacific as inferred from our 

data is in agreement with studies that point to reduced inflow of AS waters into the Bering 

Sea (Katsuki and Takahashi, 2005; Tanaka and Takahashi, 2005) during the glacial sea-level 

low stand. Those authors speculated that some shallow passages between the Aleutian Islands 

were closed, including Unimak Pass, the main pathway of the AS into the Bering Sea today. 

The closure would have reduced the net inflow of AS waters into the Bering Sea and 

consequently, would have increased the accumulation of AS waters in the NW Pacific and 

ultimately established the climatic linkage between the eastern and western basins of the N 

Pacific. At the same time the reduced inflow of AS waters into the Eastern and Southern 

Bering Sea limited the influence of the N Pacific there and likely lead to a climatic isolation 

of the Bering Sea which allowed atmospheric teleconnections with the N Atlantic to affect the 

Bering Sea already prior to 15 ka BP. As our record is representative for the Western Bering 

Sea only, future SST studies should be carried out in the Eastern Bering Sea in order to test 

this hypothesis. 
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The relative influence of the two surface currents seems to have changed over the deglaciation 

as the GOA-δ18O and our TEXL
86-based SST differ during the Holocene. While in the NW 

Pacific, SST progressively decreases over the Holocene and follows the trend of mean 

summer insolation (Figure 2.4B) Praetorius and Mix (2014) found relatively stable δ18O-

values in the NE Pacific throughout the entire Holocene (Figure 2.4B). This implies that the 

influence of the AS weakened over the deglaciation, which likely disconnected the NW 

Pacific SST from the NE Pacific. Also, the thermal difference between the Western Bering 

Sea and the NW Pacific becomes smaller over the deglaciation since the two SST-records 

show equal values during the Holocene (Figure 2.4C). Similar SST along the transect point to 

increased advection of Bering Sea waters into the NW Pacific and thus an increased influence 

of the EKC. The change in the relative intensities of the EKC and AS (AS strong during 

glacials, EKC more influential during the Holocene) may explain the relatively low thermal 

difference between the glacial and the Holocene SST at site 12KL. The deglacial temperature 

increase is ca. 2°C smaller than in the Western Bering Sea and glacial SST are only 1.5°C 

lower than modern. The MARGO-compilation (Waelbrock et al., 2009) suggested a 

temperature drop of 2-6°C for the subarctic N Pacific. This attenuated glacial-Holocene 

warming may result from the deglacial changes in the EKC and AS-intensities in the NW 

Pacific. The increasing intensity of the relatively cold EKC and the concurrent reduction of 

the relatively warm AS may have dampened the deglacial SST increase at the site 12KL. 

The change in the relative intensities of the EKC and the AS likely are a result of deglacial 

sea-level rise. When sea level rose the passages between the Aleutian Islands opened and 

probably allowed the AS waters to enter the Bering Sea. This in turn weakened the influence 

of the AS in the NW Pacific and at the same time the relative influence of the EKC could 

increase. Some evidence exists that the passages began to open during the B/A, since 

Riethdorf et al. (2013) reported sub-surface freshening at the southern tip of the Shirshov 

Ridge (site SO201-2-77KL, Figure 2.1) and considered enhanced inflow of relatively fresh 

AS waters into the Bering Sea. With the onset of the B/A, the thermal difference between the 

Bering Sea and the NW Pacific becomes reduced and SSTTEXL86 at sites 12KL and 114KL 

approach each other (Figure 2.4C) which may attest to contemporaneously reduced influence 

of the AS at site 12KL. However, diatom assemblages from site 12KL point to a pronounced 

influence of AS-waters in the NW Pacific during the B/A (Smirnova et al., 2015). Therefore, 

we assume that the relative intensities of the AS and the EKC may have not significantly 

differed from the glacial. In the southeastern Bering Sea the fractional abundances of the 

diatom species associated with AS-waters, have been increasing since ca. 11-12 ka BP (site 
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51-JPC, near Unimak Pass, Figure 2.1) which is indicative of pronounced inflow of AS waters 

into the Bering Sea and is associated with the opening of the Unimak Pass [Katsuki et al., 

2004; Caissie et al., 2010]. Diatom assemblages from site 12KL indicate that the coastal 

Bering Sea waters have significant influence on the NW Pacific since ca. 11 ka BP (Smirnova 

et al. 2015) which coincides with the convergence of SSTTEXL86 at sites 12KL and 114KL and 

the beginning deviation of SSTTEXL86 and the GOA-δ18O. Therefore, we infer that the change 

in the relative intensities of the EKC and the AS likely occurred between the YD and the early 

Holocene and seems to be associated to the opening of Unimak Pass. We conclude that 

controlling the Glacial-Interglacial change in the relative intensities of the AS and EKC, sea 

level played an important role in regional differences of N Pacific climate change. 

The glacial-interglacial interplay between the AS and EKC suggested here contrasts the 

conclusion regarding the evolution of the relative intensity of the two surface currents by 

Katsuki and Takahashi (2005). These authors proposed an opposite pattern with a 

strengthened EKC and weakened AS during glacial times and vice versa during Interglacials. 

Analyzing diatom assemblages in the southwestern Bowers Ridge and the open NW Pacific 

(site ES, Figure 2.1) they found high abundance of N. seminae, a species indicative of open 

water conditions and associated with the AS, in the NW Pacific during interglacials but 

decreasing abundances during glacials. The reduction of Neodenticula seminae combined 

with increasing abundances of species related to sea-ice and cold, low-salinity surface waters 

made them conclude that icebergs and sea-ice were transported along the coast of the 

Kamchatka Peninsula and lowered the surface salinity in the Western Bering Sea and the NW 

Pacific. Therefore, they considered reduced influence of AS and a strengthened EKC during 

glacial times. However, they also suggested that the low abundance of N. seminae would 

indicate a decrease of nutrients in the surface layer and this may explain the discrepancies 

with the data presented in our study.  

2.6. Summary and conclusions 

Using TEXL
86 we reconstructed SST development in the Western Bering Sea and the NW 

Pacific from the LGM to the Holocene. Our conclusions can be summarized as follows: 

Providing a rather stable signal throughout the entire studied time period TEXL
86 appears to 

be a powerful tool for unravelling the SST-development during glacial periods where 

alkenone-palaeothermometry is often problematic. SSTTEXL86 are slightly warmer than 

previously published alkenone data resulting from different production seasons of 
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Thaumarchaeota (summer) and coccolithophores (fall). We propose that the offset reflects the 

seasonal contrast. The seasonal contrasts were greater during the deglaciation than during the 

Holocene which is probably a result of a shortened period of summer stratification and/or a 

stronger Aleutian Low. While alkenone-based records do not reach beyond 15 ka TEXL
86 

allows SST reconstructions until the LGM and provides new insights into the SST 

development during the HS1. 

The deglacial SST development (ca. 10-15 ka) recorded by TEXL
86 corroborates previous 

studies which suggested that the SST evolution in the N Pacific was linked to the climate 

development in the N Atlantic via atmospheric teleconnections. However, our data reveal that 

the onset of the teleconnections in the NW Pacific is delayed compared to the Western Bering 

Sea. While the Bering Sea has already been influenced by N Atlantic climate change through 

an atmospheric coupling during the early deglaciation (HS1), the marginal NW Pacific 

remained insensitive to any atmospheric connection until ca. 15 ka BP. Before this time, SST 

evolution in the NW Pacific seems to have been driven by increasing summer insolation and 

was strongly linked to the climate development in the GOA. There, a southward migration of 

the westerly jet is suggested to have inhibited atmospheric teleconnection with the N Atlantic 

prior to ca. 15 ka BP. Relatively strong accumulation of AS waters in the NW Pacific 

overprinted the atmospheric teleconnections there.  

Our study reveals a glacial-interglacial interplay between the relative strengths of the EKC 

and the AS surface currents. While the AS dominates the surface conditions during glacial 

times, its influence weakens during the deglaciation in the course of sea-level rise and the 

concurrently increasing inflow of AS waters into the Bering Sea. At the same time the EKC 

becomes more influential in the NW Pacific. During the Holocene, the weakened influence of 

the AS in the NW Pacific disconnects the eastern and the western basins of the N Pacific and 

allows regionally different SST developments.  

Regulating the net inflow of AS waters into the Bering Sea variations in sea level seem to 

drive the relative intensities of the EKC and AS and consequently have an indirect impact on 

the Glacial-Holocene SST development in the subarctic N Pacific.  
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Abstract 

Little is known about the climate evolution on the Kamchatka Peninsula during the last 

deglaciation as existing climate records do not reach beyond 12 ka BP. In this study, a summer-

temperature record for the past 20 ka is presented. Branched Glycerol Dialkyl Glycerol 

Tetraethers, terrigenous biomarkers suitable for continental air temperature reconstructions, 

were analyzed in a sediment core from the western continental margin off Kamchatka/marginal 

Northwest Pacific (NW Pacific). The record reveals that glacial summer temperatures on 

Kamchatka equaled modern. We suggest that strong southerly winds associated with a 

pronounced North Pacific High pressure system over the subarctic NW Pacific accounted for 

the warm conditions. A comparison with outputs from an Eath System Model reveals 

discrepancies between model and proxy-based reconstructions for the LGM-temperature and 

atmospheric circulation in the NW Pacific realm. The deglacial temperature development is 

characterized by abrupt millennial-scale temperature oscillations. The Bølling/Allerød warm-

phase and the Younger Dryas cold-spell are pronounced events, providing evidence for a strong 

impact of North-Atlantic climate variability on temperature development in southeastern 

Siberia. Summer insolation and teleconnections with the North Atlantic determine the long-

term temperature development during the Holocene. 
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3.1. Introduction 

The Kamchatka Peninsula is attached to Siberia and protrudes into the North Pacific Ocean 

separating the Sea of Okhotsk from the Northwest Pacific (NW Pacific) and the Bering Sea 

(Figure 3.1A). The Peninsula is a remote part of western Beringia. “Beringia” extends from 

the Lena River in Northeast Russia to the lower Mackenzie River in Canada (Figure 3.1A, 

Hopkins et al., 1982). During Pleistocene sea-level low-stands the Bering Land Bridge (BLB) 

linked Eastern and Western Beringia as the Chukchi and Bering Shelves became exposed 

(Figure 3.1A). Kamchatka is one of the least studied areas of Beringia since the available 

terrestrial climate archives, such as peat sections or lake sediments, do not reach beyond 12 ka 

BP (e.g. Dirksen et al., 2013, 2015; Nazarova et al., 2013a; Hoff et al. 2015; Klimaschewski 

et al., 2015; Self et al., 2015; Solovieva et al., 2015) and the climatic conditions during the 

Last Glacial Maximum (LGM) and the deglaciation are poorly understood. However, the 

climatic history of Kamchatka may provide important insights into the deglacial development 

of regional atmospheric and oceanic circulation, since the Holocene climate evolution largely 

responds to those regional forcing mechanisms (Nazarova et al., 2013a; Brooks et al., 2015; 

Hammarlund et al., 2015; Self et al., 2015) next to global or supra-regional climate drivers, 

e.g. summer insolation (Savoskul, 1999; Dirksen et al., 2013; Brooks et al., 2015; Self et al., 

2015). Particularly, information about atmospheric and oceanic circulation in the Northwest 

Pacific (NW Pacific) realm is important to confirm outputs from climate models. 

The investigation of deglacial climate change on Kamchatka may also contribute to the 

understanding of the spatial dimension of atmospheric teleconnections with abrupt climate 

change in the North Atlantic (N Atlantic). The majority of sea surface temperature records 

from the subarctic NW Pacific and the marginal seas mirror the N Atlantic climate 

oscillations (e.g. Caissie et al., 2010; Max et al., 2012; Meyer et al., submitted b) suggesting 

that atmospheric teleconnections with the North Atlantic controlled deglacial temperature 

development in the N Pacific realm (Max et al., 2012; Meyer et al., submitted b). However, 

climate records from Siberia and Alaska provide an ambiguous picture concerning the 

sensitivity of Beringia to climate oscillations in the N Atlantic. Some studies in Siberia (west 

of 140°N) and interior Alaska found patterns similar to the N Atlantic climate variability, 

including a Bølling/Allerød (B/A)-equivalent warm-phase and a subsequent climatic reversal 

during the Younger Dryas (YD; Anderson et al., 1990; Andreev et al., 1997; Pisaric et al., 

2001; Bigelow and Edwards, 2001; Brubaker et al., 2001; Anderson et al., 2002; Meyer et al., 

2010; Anderson and Lozhkin, 2015), while other Alaskan and east Siberian (east of ca. 



39 
 

 

Figure 3.1. (A) Overview of Beringia and the N Pacific. Site SO201-2-12KL is marked by a red star. Circles represent sites mentioned in the text. Black arrows indicate the surface circulation patterns 
of the N Pacific (e.g. Stabeno and Reed, 1994). BLB = Bering Land Bridge, KR = Kankaren Range, R = River, EKC = East Kamchatka Current. P = Peninsula. L= Lake (B) Map of the Kamchatka 
Peninsula and its major orographic units. CKD = Central Kamchatka Depression.
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150°N) records show progressive warming during the postglacial climate amelioration, 

without a YD-cold spell (Lozhkin et al., 1993, 2001; Anderson et al., 1996, 2002; Lozhkin 

and Anderson, 1996; Nowaczyk et al., 2002; Anderson et al., 2003; Nolan et al., 2003; 

Kokorowski et al., 2008a,b; Kurek et al., 2009). As pointed out by Kokorowski et al. 

(2008a,b) this may attest to regional differences or to uncertainties in chronologies. Therefore, 

further deglacial climate records with high resolution are necessary. This particularly applies 

for easternmost Siberia, since most deglacial records are obtained from sites west of 150°N 

and north of 65°N (Kokorowski et al., 2008a). 

In this study, we analyzed branched glycerol dialkyl glycerol tetraethers (brGDGTs), 

terrigenous biomarkers as recorders of continental temperature (Weijers et al., 2006a, 2007), 

in a marine sediment core retrieved at the eastern continental margin off Kamchatka/NW 

Pacific (site SO201-2-12KL, NW Pacific, Figure 3.1). We present a continuous, quantitative 

record of summer-temperature on Kamchatka for the past 20 ka. The impact of global climate 

drivers, N Atlantic climate change, and regional atmospheric/oceanic circulation is 

investigated. The record reveals new aspects of LGM atmospheric circulation in the NW 

Pacific-realm, which are compared to an Earth System Model (ESM), and provides new 

insights into the interplay of global and regional climate drivers in the south-eastern edge of 

western Beringia since the LGM. 

3.2. Regional Setting 

The Kamchatka Peninsula is situated south of the Koryak Uplands in Siberia. It is 

characterized by strong variations in relief with lowlands in the coastal areas (Western 

Lowlands; Eastern Coast) and mountain ranges further inland (Figure 3.1B). The mountain 

ranges, the Sredinny and the Eastern Ranges, encircle the lowlands of the Central Kamchatka 

Depression (CKD; Figure 3.1B). The CKD is the largest watershed of the Peninsula and is 

drained by the Kamchatka River, the largest river of Kamchatka. The river discharges into the 

Bering Sea near 56°N (Figure 3.1B). The climate is determined by marine influences from the 

surrounding seas, by the East Asian continent, and by the interplay of the major atmospheric 

pressure systems over NE-Asia and the North Pacific (e.g. Mock et al., 1998; Glebova et al., 

2009). In general the climate is classified as sub-arctic maritime (Dirksen et al., 2013). The 

winters are characterized by cold and relatively continental conditions since northerly winds 

prevail over Kamchatka which are mainly associated with the Aleutian Low over the N 

Pacific and the Siberian High over the continent (Mock et al., 1998). In summer, Kamchatka 

experiences warm maritime conditions owing to the East Asian Low over the continent and 
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the North Pacific High (NPH) over the N Pacific (Mock et al., 1998). Furthermore, there are 

the influences of the East Asian Trough (EAT) which has its average position over the 

northern shelves of central Beringia, as well as the influences of the westerly Jet and the 

associated polar front (Mock et al., 1998).Variations in the position and strength of the EAT 

affect precipitation and temperature over Beringia and can cause climatic contrasts between 

Siberia and Alaska (Mock et al., 1998 and references therein). With respect to Kamchatka 

westerly to northwesterly winds associated with the Jetstream and the EAT form a source of 

continental air masses from Siberia/East Asia (Mock et al., 1998). 

The mountainous terrain with strongly variable relief results in pronounced climatic diversity 

on the Peninsula (Figure 3.1B). The coastal areas, the western Lowlands and the Eastern 

Coast, are dominated by marine influences. In the coastal areas, summers are cool and wet 

and winters are relatively mild. Precipitation is high along the coast and in the mountains 

throughout the year (Kondratyuk, 1974; Dirksen et al., 2013). Being protected from marine 

influences by the mountain ranges the CKD has more continental conditions with less 

precipitation and a larger annual temperature range than in the coastal areas (Ivanov, 2002; 

Dirksen et al., 2013, Kondratyuk, 1974; Jones and Solomina, 2015). Averaged for the entire 

Peninsula mean temperatures range from -8 to -26°C in January and from 10 to 15°C in July 

(Ivanov, 2002). 

3.3. Material and Methods 

3.3.1. Core material and chronology 

Within a joint German/Russian research program (KALMAR Leg 2) core SO201-2-12KL 

(Figure 3.1) was recovered with a piston-corer device during cruise R/V SONNE SO201 in 

2009 (Dullo et al., 2009). The core material was stored at 4°C prior to sample preparation. 

Age control is based on accelerator mass spectrometry (AMS) radiocarbon dating of planktic 

foraminifera (Neogloboquadrina pachyderma sin.) as well as on core-to-core correlations of 

high-resolution spectrophotometric (color b*) and X-ray fluorescence (XRF) data. For 

detailed information and AMS-14C results, see Max et al. (2012).  

3.3.2. Lipid extraction 

For GDGT analyses, freeze-dried and homogenized sediment samples (ca. 5 g) were extracted 

with dichloromethane : methanol (DCM:MeOH, 9:1 v/v) using accelerated solvent extraction 

(ASE). Prior to extraction, 10 µg of a C46-GDGT internal standard was added to each sample. 

The extraction was conducted on a “Dionex ASE 200”-device and was performed in three 
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cycles, each of them lasting for five minutes. During the extraction cycles the temperature 

was maintained at 100°C and the pressure at 1000 psi. After drying with a rotary-evaporator, 

extracts were hydrolyzed with 0.1N potassium hydroxide (KOH) in MeOH:H2O 9:1 (v/v) to 

separate carbonic acids from neutral compound classes. After the hydrolyzation, neutral 

compounds such as hydrocarbons, ketones, alcohols and GDGTs were extracted with n-

hexane, from the saponified solution. Dissolved in n-hexane the neutral compound-classes 

were separated using silica gel columns. Columns were built with Pasteur pipettes (6 mm 

diameter) which were filled with deactivated SiO2 (mesh size 60, filling height 4 cm). After 

having eluted a less polar fraction with n-hexane, a polar fraction, containing the GDGTs, was 

eluted with DCM:MeOH (1:1 v/v). Dried polar fractions were dissolved in n-

hexane:isopropanol (99:1, v/v) and were filtered through PTFE syringe filters (4 mm 

diameter, 0.45 µm pore size). Afterwards, samples were brought to a concentration of 2 µg/µl 

in order to prepare them for GDGT analysis. 

3.3.3. GDGT analysis 

GDGTs were analyzed by High Performance Liquid Chromatography (HPLC) and a single 

quadrupole mass spectrometer (MS). The systems were coupled via an atmospheric pressure 

chemical ionization (APCI) interface. The applied method was slightly modified from 

Hopmans et al. (2000). Analyses were performed on an Agilent 1200 series HPLC system and 

an Agilent 6120 MSD. Separation of the individual GDGTs was performed on a Prevail 

Cyano column (Grace, 3 µm, 150 mm x 2.1 mm) which was maintained at 30°C. After 

sample injection (20 µL) and 5 min isocratic elution with solvent A (hexane) and B (hexane 

with 5% isopropanol) at a mixing ratio of 80:20, the proportion of B was increased linearly to 

36% within 40 min. The eluent flow was 0.2 ml/min. After each sample, the column was 

cleaned by back-flushing with 100% solvent B (8 min) and re-equilibrated with solvent A (12 

min, flow 0.4 ml/min). GDGTs were detected using positive-ion APCI-MS and selective ion 

monitoring (SIM) of their (M+H)+ ions (Schouten et al., 2007). APCI spray-chamber 

conditions were set as follows: nebulizer pressure 50 psi, vaporizer temperature 350 °C, N2 

drying gas flow 5 l/min and 350 °C, capillary voltage (ion transfer tube) -4 kV and corona 

current +5 µA. The MS-detector was set in SIM-mode detecting the following (M+H)+ ions 

with a dwell time of 67 ms per ion: m/z 1292.3 (GDGT 4 + 4´ / crenarcheol + regio-isomer), 

1050 (GDGT IIIa), 1048 (GDGT IIIb), 1046 (GDGT IIIc), 1036 (GDGT IIa), 1034 (GDGT 

IIb), 1032 (GDGT IIc), 1022 (GDGT Ia), 1020 (GDGT Ib), 1018 (GDGT Ic) and 744 (C46-

internal standard).  



43 
 

GDGTs were quantified using the peak areas of the respective GDGTs and the obtained 

response factor from the C46 -standard. Concentrations were normalized to the dry weight 

(dw) of the extracted sediment and to total organic carbon contents (TOC). It has to be noted 

that the quantification should only be regarded as semi-quantitative because individual 

relative response factors between the C46-standard and the different GDGTs could not be 

determined due to the lack of appropriate standards. Fractional abundances of single GDGTs 

were calculated relative to the total abundance of the all nine brGDGTs. The standard 

deviation was determined from repeated measurements of a standard sediment and resulted in 

an uncertainty of 9 % for the concentration of the sum of all nine brGDGT (ƩbrGDGT).  

3.3.4. Temperature determination 

The Cyclysation of Branched Tetraether index (CBT) and Methylation of Branched Tetraether 

index (MBT) were introduced as proxies for soil-pH (CBT) and mean annual air temperature 

(MAT, CBT/MBT) by Weijers et al. (2007). The CBT-index was calculated after Weijers et 

al. (2007). For calculating the MBT-index we used a modified version of the original index, 

the MBT’ which excludes GDGTs IIIb and IIIc. This modified index was introduced by 

Peterse et al. (2012), who argued that the brGDGTs IIIb and IIIc were often below detection 

limit, or accounted for not more than 1% of the total GDGT abundance on average. From 

repeated measurements the standard deviation for CBT and MBT’ were determined as 0.01 

and 0.04, respectively. CBT and MBT’-values were converted into temperature using the 

global-soil dataset calibration by Peterse et al. (2012). The residual standard mean error of 

this calibration is 5°C (Peterse et al., 2012). The standard deviation of CBT and MBT’ 

translates into an uncertainty of max. 0.1°C. 

Although terrestrial soils are supposed to be the main source of branched GDGTs (Weijers et 

al., 2007) brGDGT can also be produced in-situ in marine water systems (Peterse et al., 2009; 

Zhu et al., 2011; Zell et al., 2014) as well as in fresh water environments such as rivers or 

lakes (Tierney 2010; Zell et al., 2013; De Jonge et al., 2014; Dong et al., 2015). As in-situ 

production can bias temperature reconstructions, particularly in marine settings where the 

input of terrigenous GDGTs is low (Weijers et al., 2006b; Peterse et al., 2009, 2014; DeJonge 

et al., 2014), the contribution of brGDGTs to the marine sediments needs to be estimated prior 

to any palaeoclimatic interpretation of CBT/MBT’-derived temperatures. A common means to 

estimate the relative input of marine and terrestrial GDGTs is the BIT-index (Branched and 

isoprenoid tetraether index) which quantifies the relative contribution of the marine-derived 
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Crenarchaeol and terrigeous brGDGTs (Hopmans et al., 2004). BIT-values were adopted from 

Meyer et al. (submitted) who worked on the same sample used in this present study. 

3.3.5. Climate simulations with the Earth System Model COSMOS 

In order to compare inferences for atmospheric circulation during the summer months to 

computer model outputs, model simulations for the glacial climate were performed with the 

Earth System model COSMOS for pre-industrial (Wei et al., 2012) and glacial conditions 

(Zhang et al., 2013). The model configuration includes the atmosphere component ECHAM5 

at T31 resolution (~3.75°) with 19 vertical layers (Roeckner et al., 2006), complemented by a 

land-surface scheme including dynamical vegetation (Brovkin et al., 2009). The ocean 

component MPI-OM, including the dynamics of sea ice formulated using viscous-plastic 

rheology, has an average horizontal resolution of 3ºx1.8° with 40 uneven vertical layers 

(Marsland et al, 2003). The performance of this climate model was evaluated for the 

Holocene (Wei and Lohmann, 2012; Lohmann et al., 2013), the last millennium (Jungclaus et 

al., 2006), glacial millennial-scale variability (Gong et al., 2013; Weber et al., 2014; Zhang et 

al., 2014), and warm climates in the Miocene (Knorr and Lohmann, 2014) and Pliocene 

(Stepanek and Lohmann, 2012).  

The climate model was integrated for 3000 model years and provides monthly output. Here, 

anomalies in sea-level pressure (SLP), wind directions (1000 hPa level) and surface air 

temperature (SAT) between the LGM and pre-industrial conditions were analyzed for the 

boreal summer season - June, July and August (JJA). All produced Figures show 

climatological mean characteristics averaged over a period of 100 years at the end of each 

simulation. 

3.4. Results 

3.4.1. Concentrations and fractional abundance of brGDGT 

The summed concentration of all nine brGDGTs (ΣbrGDGT) is shown in Figure. 3.2a. The 

concentration of ΣbrGDGTs vary between 40 and 160 ng/g dw throughout the record. 

Ranging between 60-80 ng/g dw, they are lowest during the LGM and the late Holocene. 

During the deglaciation and the early Holocene (17-8 ka BP) lowest values are ca. 80 ng/g 

dw, except for two peaks at 15-16 ka BP and 12-13 ka BP, respectively, where concentrations 

reach 160 ng/g dw (Figure 3.2a). 

The fractional abundance of all nine brGDGTs, calculated relative to the ΣbrGDGT, is shown 

in Figure 3.3.  All samples are characterized by a similar pattern. The composition of the 
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brGDGT assemblage is dominated by brGDGTs without cyclopentyl moieties which together 

account for 60-80% of the total GDGT-assemblage (GDGT Ia, IIa, IIIa; Figure 3.3). GDGTs 

with a higher degree of methylation are more abundant than lesser methylated ones. In 83 out 

of 90 samples GDGT IIIa is the most prominent GDGT accounting for 22-37% of the total 

GDGT distribution. It is closely followed by GDGT IIa with 16-29% and GDGT Ia which 

accounts for 14-23% of the total GDGT distribution. As for GDGTs containing cyclopentyl 

moieties, GDGT IIb is most abundant accounting for 9-16% of the total GDGT assemblage. 

GDGT IIc, Ib, Ic, IIIb and IIIc are less abundant reaching 2-6%, 3-7%, 1-3%, 2-4%, and 1-

2%. In one outlying sample GDGT IIc accounts for 24% (Figure 3.3).  

3.4.2. Temperature development over the past 20 ka 

The CBT/MBT’-derived temperatures are plotted in Figure. 2b. During the late Holocene (ca. 

1 ka BP), the reconstructed temperature is 7.5°C. Interestingly, glacial temperatures (between 

20-18 ka) are the same (Figure 3.2b). At 18 ka temperature drops by about 1.5°C. At 16 ka 

temperature jumps back to the glacial level. As this increase is based on one single data point, 

it cannot be excluded that this warming is an artifact resulting from an outlier. Deeming the 

data-point an outlier, temperature increases progressively until the onset of the 

Bølling/Allerød at ca. 14.6 ka BP, where it abruptly jumps back to the glacial and Holocene 

level of 7.5°C (Figure 3.2b). Between 14.6 and 13 ka, temperature progressively decreases 

about 1-0.5°C. During the Younger Dryas (YD) temperature abruptly decreases by about 2°C 

(at ca. 13 ka BP) and remains cold until 12 ka BP (Figure 3.2b). With ca. 4.5°C the YD is the 

coldest episode during the Glacial-Holocene transition. The cold spell is followed by a sharp 

temperature increase of ca. 3°C at the onset of the Preboreal (PB)/early Holocene (Figure 

3.2b). After the abrupt temperature increase into the PB temperature progressively increases 

culminating in a Mid-Holocene Thermal Maximum (HTM) between 8.0-4.0 ka BP. With 8°C 

being reached between 6 and 4 ka BP, the mid-Holocene is the warmest episode since the Last 

Glacial Maximum (LGM). At 4 ka BP a cooling trend initiates and temperature decreases by 

about 0.5°C (Figure 3.2b). Compared to the deglacial temperature variations the Holocene 

variability is relatively small. 

3.4.3. LGM-climate simulation with COSMOS 

3.4.3.1. Sea-level pressure and wind patterns 

Model-simulations for SLP (JJA) are shown Figure. 3.4A. The LGM-simulation is 

characterized by strong positive anomalies in sea-level pressure (SLP) over the American 
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Continent (Figure 3.4A). Positive SLP-anomalies also occur over the Arctic Ocean. Negative 

SLP anomalies occur south of 50°N and are centered over the NW Pacific and East Asia, but 

are also observed in a few grid-cells over the central and NE Pacific and over the Sea of 

Okhotsk. In the Bering Sea, the northern N Pacific (north of 50°N) and Beringia SLP does not 

change significantly relative to present.  

The strong positive SLP-anomalies over North America are associated with pronounced 

anticyclonic anomalies in the wind directions, which expand to the Chukchi-Sea and to the 

formerly exposed BLB (Figure 3.4A). Over western Beringia as well as the adjacent Arctic 

Ocean small northerly anomalies are present. Between 100°E and 110°E pronounced 

anticyclonic anomalies are present over Russia. Over Kamchatka and the adjacent East 

Siberian Coast small northerly anomalies occur. The Western Bering Sea is characterized by 

easterly anomalies. Over the NW Pacific anomalies are small and show now general pattern. 

In the NE Pacific relatively strong westerly to southwesterly anomalies are present. 

3.4.3.2. Surface air temperature 

Model simulations for SAT (JJA) are shown in Figure 3.4B. The model predicts widespread 

negative surface air temperature (SAT)-anomalies over Beringia, East Asia, North America, 

the Arctic Ocean and the entire N Pacific (Figure 3.4B). However, in small parts of the 

formerly exposed BLB slightly warmer-than-present conditions are simulated. On the arctic 

shelf a small band where temperature may equal the PI-conditions as the SAT anomaly falls 

in the window of -1 to +1°C, occurs. The temperature anomalies are strongest over North 

America where they reach -17°C. Over western Beringia the SAT anomaly increases from 

east to west with SAT ranging between -1 and -5 over East Siberia and between -5 and -9 

further west. Over the N Pacific SAT anomalies are smaller than over western Beringia and 

range between -1 and -5°C. SAT anomalies are smallest in the Bering Sea and along the 

eastern coast of Kamchatka. Over the Peninsula itself, the majority of grid-cells indicate a 

negative anomaly (-3 to -5°C). In the northern part and over the adjacent Bering Sea the SAT 

anomalies are very small within the window of -1 to +1°C (Figure 3.4B).  

3.5. Discussion 

3.5.1. Sources of brGDGT and implications for CBT/MBT’-derived temperatures 

Considering that brGDGT are thought to be synthesized by terrestrial bacteria which thrive in 

peats and soils (e. g. Weijers et al., 2006b) it is most likely that the major origin of brGDGT 

in the marine sediments of the Bering Sea/NW Pacific would be the Kamchatka Peninsula.  
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Figure 3.2. a) Concentrations of ƩbrGDGT of core 12KL. b) CBT/MBT’ derived MATifs from Kamchatka (this study). Black 
pins represent the age control points from core 12KL (based on radiocarbon dating of planktonic foraminifera, Max et al., 
2012). c) BIT-index values of core 12KL (Meyer et al., submitted b). d) Titanium/Calcium ratios (Ti/Ca, XRF-scan core 12KL, 
Max et al., 2012). e) Mean July insolation at 65°N (Berger and Loutre, 1991). f) Atmospheric CO2 concentration (EPICA 
dome C, Monnin et al., 2001). g) SST development in the marginal NW Pacific (site 12KL, Meyer et al., submitted b). h) SST 
evolution in the Western Bering Sea (site 114KL, Meyer et al., submitted b). i) NGRIP-δ18O (NGRIP, 2004) represents 
climate change in the N Atlantic. j) Pollen-based temperature reconstructions from the CKD (after Dierksen et al., 2013). 
Grey-shaded bars mark the HS1 and YD stadials. 
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However, BIT-values from core 12KL range between 0.08 and 0.2 (Meyer et al., submitted b) 

throughout the entire record, indicating that marine derived GDGT dominate the total GDGT 

composition and that terrigenous input is low (Figure 3.2c). Since a bias from in-situ 

production is particularly eminent in marine settings where terrigenous input is low (e.g. 

Weijers et al., 2006b; Peterse et al., 2009; Zhu et al., 2011), non-soil derived brGDGTs 

potentially have a considerable effect on the temperature reconstruction at site 12KL. 

However, the concentrations of ΣbrGDGT show strong similarities with the trend of 

Titanium/Calcium ratios (Ti/Ca-ratios, Figure 3.2d) from core 12KL (XRF-data from Max et 

al. (2012)). Reflecting the proportion of terrigenous and marine derived inorganic components 

of the sediment, Ti/Ca-ratios can be used as an estimator of terrigenous input. With relatively 

high values at 15.5 and 12 ka BP, and minima at 14 and 11 ka BP. As intervals of relatively 

high/low terrigenous input (as suggested by Ti/Ca) coincide with relatively high/low 

ΣbrGDGT-concentrations brGDGTs seem to be terrigenous (Figure 3.2b, d). Moreover, the 

distribution of the brGDGTs the samples from site 12KL resemble the GDGT composition 

described for soils world-wide (Weijers et al., 2007; Blaga et al., 2010) as GDGT Ia, IIa and 

IIIa dominate over GDGTs with cyclopentyl moieties (e.g. Ib, IIb) accounting for 60-80% of 

the total brGDGT assemblage (Figure 3.3).  

 

Figure 3.3. Fractional abundances of all nine brGDGT in core 12KL, given in percentage relative to the amount of 
ƩbrGDGTs. For four samples the corresponding age is given, based on the core chronology from Max et al., [2012]. 

By contrast, in areas where GDGTs are thought to be produced in-situ, the GDGT 

compositions were dominated by GDGTs containing cyclopentyl moieties (Peterse et al., 

2009; Zell et al., 2014). Thus, brGDGT seem to be soil-derived and a bias from in-situ 
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production is unlikely. We also exclude changes in the source of brGDGTs through time 

because the relative abundance of the brGDGTs is similar in all samples indicating that the 

source of brGDGTs remained constant throughout the past 20 ka (Figure 3.3). We consider 

the catchment of the Kamchatka River (CKD and inner flanks of the mountains) and the 

Eastern Coast as the likely sources of brGDGTs deposited in the marine sediments at the core 

site since the Kamchatka River and several small rivers draining the Eastern Coast discharge 

into the Western Bering Sea. Flowing southward along Kamchatka, the East Kamchatka 

Current would carry the load of the Kamchatka River to site 12KL (Figure 3.1A) 

Although the CBT/MBT-palaeothermometre has been suggested to generally record mean 

annual air temperatures (Weijers et al., 2007) it is assumed to be biased to the summer 

months/ice-free season in high latitudes (Rueda et al., 2009, Shannahan et al., 2013; Peterse et 

al., 2014). According to Klyuchi climate station (for location see Figure 1b), mean annual air 

temperatures in the northern CKD are ca. -0.5°C (http://en.climate-data.org/location/284590/). 

The CBT/MBT’-derived temperatures for the core-top/late Holocene (7.5°C; Figure 3.2b) 

exceed the annual mean by ca. 8°C and are similar to mean air temperatures from the ice-free 

season (Mai-October) at Klyuchi (ca. 9°C). Therefore, they are interpreted as summer 

temperature and will be referred to as “Mean Air Temperature of the ice-free season” 

(MATifs) henceforth. 

3.5.2. Temperature evolution over the past 20 ka  

3.5.2.1. The last glacial maximum – warm summers and the regional context 

The finding that LGM and Holocene MATifs are equal contrasts with the general 

understanding of the glacial climate according to which the extratropics were significantly 

colder than today, as documented by several proxy-based temperature reconstructions (e.g. 

MARGO compilation, Kageyama et al., 2006; Waelbroeck et al., 2009) and computer model 

simulations (e.g. Kutzbach et al., 1998; Kageyama et al., 2006; Kim et al., 2008; Alder and 

Hostetler, 2015). The general cooling tendency is thought to result from low summer 

insolation, reduced carbon-dioxide concentrations in the atmosphere and extensive continental 

ice caps (Berger and Loutre 1991; Monnin et al., 2001; Kageyama et al., 2006, Shakun et al., 

2012). Therefore, one may expect that the Kamchatka Peninsula would experience a glacial-

interglacial warming trend. As MATifs deviates from the trends in CO2atm and insolation 

(Figure 3.2.b, e, f) regional climate drivers may have overprinted the effects of CO2atm and 

summer insolation. Interestingly, several studies investigating climate in Beringia based on 

pollen and beetle-assemblages indicate that in NE Siberia and the formerly exposed BLB 
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(catchments of the Lena, Kolyma and Indigirka Rivers, Ayon Island, Anadyr Lowlands, Lake 

El’Gygytgen, Seward Peninsula, Figure 3.4C) summers during the LGM were as warm as at 

present or were even warmer (Figure 3.4C; Elias et al., 1996, 1997; Elias, 2001; Alfimov and 

Berman, 2001; Kienast, 2002; Kienast et al., 2005; Sher et al., 2005; Berman et al., 2011). 

Only a few pollen and insect-data from Markovo, Lakes Jack London and El’Gygytgyn 

(Figure 1a), point to colder-than-present conditions (Figure 3.4C; Lozhkin et al., 1993; 

Alfimov and Bermann, 2001; Lozhkin et al., 2007; Pitul’ko et al., 2007). The fairly large 

number of sites indicating warm summers in Siberia suggests that a thermal anomaly was 

widespread over western/central Beringia (Figure 3.4.c) and extended to Kamchatka. The 

thermal anomaly did probably not extend to eastern Beringia as insect-data as well as pollen 

consistently point to summer cooling of up to 4°C (Figure 3.4.c; e.g. Mathews and Telka, 

1997; Elias, 2001; Kurek et al., 2009). 

3.5.2.2. Controls on MATifs 

The warm Siberian summers were attributed to increased continentality, which would arise 

from the exposure of the extensive Siberian and Chukchi shelves at times of lowered sea-level 

(Figure 3.1A; e.g. Guthrie, 2001; Kienast et al., 2005; Berman et al., 2011). The greater 

northward extent of the Beringian landmass (ca. +800 km relative to today) would have 

minimized maritime influences from the cold Siberian and Chukchi Seas (Guthrie, 2001; 

Alfimov and Berman, 2001; Kienast et al., 2005; Sher et al., 2005; Berman et al., 2011). 

Increased seasonal contrasts resulting in warmer summers and colder winters would have 

been the result (e.g. Guthrie, 2001; Kienast et al., 2005). Winter cooling in Siberia (relative to 

modern) is indicated by ice-wedge data (Meyer et al., 2002) from Bykovski Peninsula (Figure 

3.1.A). Also, the presence of stronger-than-present sea-ice cover in the Bering Sea (Caissie et 

al., 2010; Smirnova et al., 2015) points to cold winter during the LGM. 

However, for Kamchatka it is unlikely that the thermal anomaly and an increased seasonal 

contrast were a direct result from lowered sea-level as the bathymetry around the Peninsula is 

relatively steep and the exposed shelf area was very small. (Figure 3.1.A, B). Thus, other 

climate drivers were likely responsible for the relatively warm summer conditions. Potential 

mechanisms are changes in oceanic or atmospheric circulation. 

A prominent oceanic conveyor of heat into the subarctic N Pacific is the Kuroshio-Current 

which flows northward along the coast of Japan and transports warm tropical water masses 

into the North-Pacific current system (Figure 3.1A). Today, it turns eastward at 40°N. Warm 

summers on Kamchatka could be a consequence of a northward expansion of Kuroshio water 
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into the proximity of the Kamchatka Peninsula. A northward expansion of the Kuroshio 

Current would have made the surface and sub-surface warmer and saltier than today and 

would have weakened the stratification. However, this scenarios seems unlikely as 

palaeoceanographic studies provide evidence for relatively fresh and colder-than-present 

surface (Meyer et al. submitted) and sub-surface waters (Gebhardt et al., 2008; Riethdorf et 

al., 2013) in the subarctic NW Pacific which points to pronounced stratification during the 

LGM (Gebhardt et al., 2008; Riethdorf et al., 2013). The work carried out by Riethdorf et al. 

(2013) suggests that at site 12KL these conditions persisted until the Bølling/Allerød. 

Intriguingly, alkenone-based SST reconstructions from the Sea of Okhotsk indicate that 

glacial SST were slightly warmer than today or equal to modern conditions (Seki et al., 

2004b, 2009; Harada et al., 2004, 2012; Figure 3.4C). However, these records are considered 

to be biased by seasonal variations in the alkenone production rather than to reflect real 

temperature anomalies (Seki et al., 2004b, 2009; Harada et al., 2004, 2012). This seems to be 

supported by a few TEXL
86-based SST reconstruction from the Sea of Okhotsk suggesting 

that LGM SST were ca. 5°C colder than at present (Seki et al. 2009; 2014). In this light, a 

climatic relation between alkenone-based SST and MATifs seems very unlikely. Interestingly, 

LGM-SST in the subarctic NW Pacific (site 12KL) were only 1°C lower than at present 

(Figure 3.2.h), a relatively small temperature difference compared to other SST records from 

the NW Pacific and its marginal seas which suggest a cooling of 4-5°C on average (e.g. Seki 

et al., 2009; 2014; Harada et al., 2012, Meyer et al., submitted b). The relatively warm SST at 

site 12KL were explained by a stronger-than-present influence of the Alaskan Stream (Figure 

3.1.A) in the marginal NW Pacific during the LGM (Meyer et al., submitted b). Such warm 

SST may have supported the establishment of warm conditions on Kamchatka. However, it is 

unlikely, that the temperature development on Kamchatka was fully controlled by oceanic 

influences since this would probably cause a similar temperature reduction as in the SST 

record of site 12KL. 

If oceanic circulation alone is unlikely to have caused the warm temperatures on Kamchatka, 

atmospheric circulation may have exerted a strong control on glacial summer temperatures in 

the region. In terms of atmospheric circulation the summer climate of the Kamchatka is 

largely determined by the strength and position of the North Pacific High (NPH) over the N 

Pacific (Mock et al., 1998). As the southerly flow at the southwestern edge of the NPH brings  
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Figure 3.4. Comparison of proxy- and model-based inferences regarding glacial anomalies in temperature and atmospheric 
circulation over the N Pacific and Beringia relative to present. (A) COSMOS-simulation for the SLP-anomaly over Beringia 
and the N Pacific during the LGM (21 ka) relative to PI. Arrows represent the wind anomaly. Note that the model predicts a 
northerly anomaly over Kamchatka. (B) COSMOS-simulation for the SAT-anomaly together with the wind-anomaly. (C) 
Compilation of proxy based anomalies of summer air temperature in Beringia and of summer/autumn SST reconstructions in 
the N Pacific for the LGM. Sites and corresponding references are given in the appendix, Table A3.1. Doted arrows sketch 
the general summer anticyclone over the N Pacific, the NPH. Based MATifs, the NPH and associated southerly winds over 
the subarctic NW Pacific were stronger than at present (represented by solid arrow). 
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warm and moist air masses to Kamchatka summers on the Peninsula become warmer when 

the NPH and the associated warm southerly flow increase in strength (Mock et al., 1998). 

This modern analogue suggests that the LGM-NPH over the subarctic NW was stronger than 

today and the resulting warming effect may have balanced the cooling effects of CO2atm and 

insolation. This atmospheric pattern could be explained by an increased thermal gradient 

between western/central Beringia and the N Pacific Ocean. While warm summers were 

widespread in western Beringia, the majority of sea surface temperature (SST) records from 

the open N Pacific and the Bering Sea indicate colder conditions during the LGM (Figure 

3.4.A; deVernal and Pedersen, 1997; Seki et al., 2009, 2014; Kiefer and Kienast, 2005; 

Harada et al., 2004; 2012; Maier et al., 2015; Meyer et al., submitted b). Under the 

assumption that alkenone-based reconstructions of LGM SST in the Sea of Okhotsk are 

biased, also the Sea of Okhotsk may have been 4-5°C colder than at present as suggested by 

TEXL
86-based SST reconstruction (Seki et al. 2009; 2014). An increased thermal gradient 

between the subarctic N Pacific and western Beringia would translate into an increased 

pressure gradient between the low-pressure over western Beringia and the high pressure over 

the subarctic NW Pacific, and in response the southerly flow over the Kamchatka would have 

intensified relative to today. (Figure 3.4C). 

3.5.2.2.1. Comparison to the COSMOS-simulations 

These inferences contrast with results from the climate simulations with COSMOS. For JJA 

the model predicts a decrease in SLP over the NW Pacific suggesting that the southerly flow 

at the western edge of the NPH was reduced rather than strengthened (Figure 3.4A). The 

weakening of the southerly flow is also discernable in the anomaly of the major wind-patterns 

over the NW Pacific (Figure 3.4.A) as a small northerly anomaly occurs north of Kamchatka 

(Figure 3.4A). The weakening of the NPH is agreement with several other General 

Circulation Model (GCM) outputs, which consistently predict a reduction in SLP over the N 

Pacific (Kutzbach and Wright, 1985; Bartlein et al., 1998; Dong and Valdes, 1998; Vetteoretti 

et al., 2000; Yanase and Abe-Ouchi, 2007; Alder and Hostetler, 2015). According to the 

climate synopsis by Mock et al (1998) a northerly anomaly would have caused summer 

cooling on Kamchatka. It has been suggested that a pronounced positive SLP-anomaly and a 

persistent anticyclone over the American continent resulted in reduced SLP over the Western 

North Pacific (Yanase and Abe Ouchi, 2010). The positive SLP-anomaly and the strong 

anticyclonic tendencies are clearly present in the COSMOS simulation of SLP and wind-

patterns (Figure 3.4A) and were also simulated by several other GCMs (e.g. Yanase and Abe-
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Ouchi, 2007; 2010; Alder and Hostetler, 2015). Its development was attributed to the presence 

of extensive ice sheets on the American continent (Yanase and Abe-Ouchi, 2010), which 

would have caused severe cooling of the overlying atmosphere. Considering the consistency 

of different GCMs, the anticyclonic anomalies over North America as well as resulting 

cyclonic anomalies over the N Pacific seem to be a robust feature of the glacial atmospheric 

circulation. As this contrast with the inferences made from the MATifs-record, one may 

speculate that the effect of the ice-caps on the NPH mainly influenced the NE Pacific and that 

a strengthened anticyclone (as suggested in sec. 5.2.2) was restricted to the subarctic NW 

Pacific. In other words, the NPH may have shifted westward in response to the presence of a 

strong anticyclonic anomaly over the LIS. 

The COSMOS-simulation also contrasts with the temperature patterns in western Beringia 

suggested by proxy-based climate reconstructions (see. Sec. 5.1) as summers were simulated 

to be colder than at present on Kamchatka and in Siberia (Figure 3.4B). However, in small 

parts of the formerly exposed BLB and the arctic shelves temperatures level or exceed PI-

conditions (Figure 3.4B). These positive anomalies in the model are probably associated with 

the dominant anticyclonic flow over North America and the associated easterly to 

southeasterly winds over south-Alaska and the BLB (Figure 3.4B). The exposure of the 

Siberian Shelf may also have an effect. However, these anomalies are restricted to a relatively 

small area and are not comparable with the widespread warming tendencies over Siberia, 

which are visible in the proxy-compilation (Figure 3.4B, C). Given the discrepancies between 

proxy-based temperature reconstructions for Siberia and computer-model simulations, the 

thermal gradient between western Beringia and the subarctic NW Pacific may also differ. In 

the model simulation the thermal contrast between land and ocean tends to become smaller 

since the negative temperature anomaly over western Beringia for the most part is more 

pronounced than over the subarctic N Pacific (Figure 3.4B). This contrasts with the proxy 

compilation according to which the thermal gradient was increased relative to present (Figure 

3.4C). As the model predicts a reduction of the thermal gradient the preconditions for the 

increased landward air-flow are not given. In contrast a reduced thermal gradient would 

support a northerly anomaly, which is in accordance with the simulated wind-patterns over 

Kamchatka (Figure 3.4A). Hence, the discrepancies between proxies and model-outputs 

concerning glacial summer temperature over western Beringia potentially entail the mismatch 

regarding the atmospheric circulation patterns over the NW Pacific.  
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3.5.2.3. The deglaciation (18 ka-10 ka BP) 

The deglacial short-term variability strongly resembles the climate development in the N 

Atlantic as MATifs follows the deglacial oscillations recorded in the NGRIP-δ18O (Figure 

3.2b, i), particularly after 15 ka BP. MATifs clearly mirrors the Bølling/Allerød (B/A)-

interstadial, the Younger Dryas (YD)-cold reversal and the subsequent temperature increase 

into the Preboreal (PB; Figure 3.2b, i). This similarity suggests a strong coupling with climate 

change in the N Atlantic realm and hence variations in the AMOC-strength. The pronounced 

response to N Atlantic climate change is in line with the temperature development in the 

surrounding seas where the majority of climate-records shows a Greenland-like pattern 

(Ternois et al., 2000; Seki et al., 2004b; Max et al., 2012; Caissie et al., 2010; Praetorius and 

Mix, 2014; Meyer et al., submitted b). This in-phase variability is assumed to result from 

atmospheric teleconnections between the N Atlantic and the N Pacific Oceans (e.g. Manabe 

and Stouffer, 1988; Mikolajewicz et al., 1997; Vellinga and Wood, 2002; Okumura et al., 

2009; Chikamoto et al., 2012; Max et al., 2012; Kuehn et al., 2014). While the effects of an 

atmospheric coupling with the N Atlantic are undoubtedly present between 15 and 10 ka BP 

their relevance is questionable during Heinrich Stadial 1 (HS1). The cold-spell between 18 ka 

BP and 14.6 ka BP as evident in the MATifs record may coincide with the HS1 in the N 

Atlantic but initiates 2 ka earlier than in NGRIP-δ18O. Considering that also SST records from 

the Western Bering Sea indicate that the Heinrich-equivalent cold-spell commenced at ca. 

16.5 ka BP (site 114KL, Meyer et al., submitted b), the event in MATifs is probably not 

associated with climate change in the N Atlantic (Figure 3.2b, g). This temporal offset cannot 

be explained by age-model uncertainties in core 12KL since the error (1σ) of the calibrated 

radiocarbon ages is smaller than 100 yrs (Max et al., 2012). If the cooling was not associated 

with climate change in the N Atlantic, it could perhaps represents a local event on Kamchatka, 

and potentially western Beringia, marking the abrupt end of the warm LGM-conditions. 

Since, to the knowledge of the authors, such an event is not reported in the terrestrial realm of 

western Beringia, it is difficult to identify the driving processes.  

A clear similarity between MATifs and NGRIP-δ18O establishes at ca. 15 ka BP. This has 

recently been described for the SST in the marginal NW Pacific (Meyer et al., submitted b) 

reconstructed for the same core site as investigated in the present study (site 12KL, Figure 

3.2h). This record implies that the climate of the Kamchatka Peninsula until 15 ka BP was 

tied to the climate change in the NW Pacific rather than to climate change in the Western 

Bering Sea (Figure 3.2). For SST this pattern was explained by accumulation of AS waters in 
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the NW Pacific, which likely overprinted the effect of the atmospheric teleconnection by 

linking the western and the eastern basins of the N Pacific (Meyer et al., submitted b). Hence, 

the effect of the AS may have also determined temperature evolution on Kamchatka during 

the early deglaciation, restricting the teleconnection to the period after 15 ka BP.  

The clear and constant impact of N Atlantic climate change between 15 and ca. 10 ka BP on 

Kamchatka is in agreement with palynological data from the Kankaren Range/Northeast 

Siberia (Figure 3.1a) where abrupt climatic changes corresponding to the B/A and the YD are 

reported (Anderson and Lozhkin, 2015). Abrupt warming at the onset of the B/A is also 

evident in a high resolution record from Lake Elikchan 4 (Lozhkin and Anderson, 1996; 

Kokorowski et al., 2008b) and may indicate a linkage to N Atlantic climate change. However, 

a climatic reversal equivalent to the YD is often absent in records from northeast Siberia (east 

of 140°N and north of 65°N; Figure 3.1A; e.g. Lake Jack London, Lake El’Gygytgyn and 

Wrangel Island; Lozhkin et al., 1993, 2001, 2007; Lozhkin and Anderson, 1996; Nowaczyk et 

al., 2002; Nolan et al., 2003, Kokorowski et al., 2008a,b), as compiled by Kokorowski et al. 

(2008a). By contrast, palynological data from Siberia (e.g. Lakes Dolgoe, Smorodynovoye 

and Ulkhan Chabyda, Figure 3.1A) indicates that a YD climatic reversal was present west of 

140°N (Pisaric et al., 2001; Anderson et al., 2002, Kokorowski et al., 2008a). This east-west 

gradient was explained by a westward shift of the East Asian Trough (normally situated over 

the central Beringian coast; Mock et al., 1998) which caused cooling in west of 140°N by 

enhancing cold northerly winds, and together with an anticyclone over the Beaufort Sea 

brought warming through stronger easterlies into the region (Kokorowski et al., 2008a). The 

presence of a YD-cold reversal on Kamchatka and in the Kankaren Range implies that the 

southeastern edge of Siberia was probably not affected by the shifting EAT. Several general 

circulation models investigating the nature of teleconnections between the N Atlantic and N 

Pacific realms suggest that the westerly Jet played an important role by acting as heat-

conveyor between the N Atlantic and the N Pacific-Oceans (e.g. Manabe and Stouffer, 1988; 

Okumura et al., 2009). Considering the modern average position of the westerly Jet (between 

30 and 60°N) Kamchatka likely received the YD-cold reversal through the westerlies. Also, 

relatively strong marine influences from the N Pacific may have induced cooling on 

Kamchatka and may have also affected the Kankaren Range. Together with the atmospheric 

patterns suggested by Kokorowski et al. (2008a), northward decreasing influences of the 

westerly Jet and the Pacific Ocean north may explain north-south differences in northeast 

Siberia. 
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3.5.2.4. The Holocene 

Although not quite pronounced in magnitude, the long-term MATifs evolution during the 

Holocene is characterized by a mid-Holocene Thermal Maximum (HTM) between 8 and 4 ka 

BP which is followed by neoglacial cooling (Figure 3.2b). This long-term development is in 

good agreement with existing climate records from central and southern Kamchatka (Figure 

3.2j) where pollen-based records indicate warm and wet conditions between 8 and 5 ka BP, 

which are associated with the HTM (Dirksen et al., 2013). According to MATifs the climate 

deterioration after the HTM started at ca. 4 ka BP. This timing is consistent with diatom-based 

climate reconstructions as well as chironomid-based temperatures from central and south 

Kamchatka (Dirksen et al., 2013; Hoff et al., 2014) and with re-advancing mountain glaciers 

(Savoskul et al., 1999, Barr and Solomina, 2014). As already discussed in previous studies 

this long-term temperature development is thought to respond to changes in mean summer 

insolation (Figure 3.2b, e, j). As summarized by Brooks et al. (2015), the timing of the HTM 

(ca. 9-4 ka BP) on Kamchatka as well as in southern parts of eastern Siberia is delayed 

compared to northern parts of Chukotka and Siberia where the HTM initiated at 9-8 ka BP 

(Biskaborn et al., 2012 and references therein; Nazarova et al., 2013b; Anderson and Lozhkin, 

2015). Since a similar delay of the HTM has been found in northern Europe (Seppä et al., 

2009), Brooks et al. (2015) concluded that the climate on Kamchatka was connected with the 

N Atlantic realm by an atmospheric coupling. Furthermore, the fact that Andrén et al. (2015) 

detected an 8.2 cooling-event in pollen-based climate records from Kamchatka also points to 

a linkage with N Atlantic climate.  

Hence, it seems that the atmospheric linkage that determined climate variability during the 

deglaciation likely persisted into the Holocene where it acted as an important driver for long-

term climate changes as well as for abrupt, short-lived climatic events. 

3.6. Summary and Conclusion 

Based on the CBT/MBT’-palaeothermometre a continuous LGM-to-late Holocene record of 

summer-temperature in Kamchatka is presented. The temperature evolution and the driving 

mechanisms were investigated. The record allows inferences for the glacial atmospheric 

circulation patterns (i) and to describe how regional climate drivers (such as oceanic and 

atmospheric circulation) as well as global and supra-regional drivers (including CO2atm, 

summer insolation and N Atlantic climate variability) influenced the climate change on 

Kamchatka (ii). The findings can be summarized as follows: 



58 
 

(i) LGM-summer temperatures were as high as at present. The warm summers likely result 

from a change in the regional atmospheric circulation including a stronger-than-present 

southerly winds over Kamchatka as a result of a stronger-than-present anticyclone over 

the subarctic NW Pacific. This was potentially driven by increased thermal gradients 

between western Beringia and the N Pacific Ocean. The temperature reconstruction as 

well as the inferences for atmospheric circulation contrasts with model simulations, 

which predict widespread cooling over Siberia and Kamchatka, and a weakening of the 

NPH over the NW Pacific together with a reduction of southerly winds over Kamchatka. 

These discrepancies underline the need of further investigations of the LGM-climate in 

the NW Pacific realm using environmental indicators and model simulations.  

During the LGM the warming effect of the altered regional atmospheric circulation likely 

balanced the cooling-effects of lowered CO2atm and summer insolation.  

(ii) Abrupt millennial-scale fluctuations characterize the deglacial temperature development 

and represent the most prominent temperature changes during the past 20 ka. A first 

abrupt cooling-event at 18 ka BP marks the end of the warm LGM conditions and is 

likely caused by regional climate change, the origin of which cannot be identified, yet. 

From 15 ka onwards the temperature variations are obviously linked to climate change in 

the N Atlantic, presumably via rapid atmospheric teleconnections, as the B/A-interstadial 

and the YD cold reversal are clearly present. Regional differences regarding the presence 

of a YD-cold reversal in Siberia are possibly related to the position of the westerly Jet. 

During the Holocene the atmospheric linkage with the N Atlantic remained active and 

together with summer insolation is a primary driver for the long-term temperature 

development. 
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Appendix A - 3 

 

Table A 3.1. Sites and references for the data compiled in Figure 3.4 C. 

No. Site Region Proxy Reference 

1 SO201-2-12KL NW Pacific/Kamchatka CBT/MBT’ This study 

2 SO201-2-12KL NW Pacific TEXL86 Meyer et al., submitted b 

3 SO201-2-114KL Western Bering Sea TEXL86 Meyer et al., submitted b 

4 MR0604-PC7 Sea of Okhotsk UK’37 Seki et al., 2009, 2014 

5 XP98-PC2 Sea of Okhotsk UK’37 Seki et al., 2004 

6 XP98-PC4 Sea of Okhotsk UK’37 Seki et al., 2004 

7 MR00K03-PC04 Sea of Okhotsk UK’37 Harada et al., 2004, 2012 

8 unknown Sosednee Lake/Siberia pollen Lozhkin et al., 1993 

9 unknown Oymyakon Depression/Siberia beetle Berman et al. (2011) 

10 unknown 
Middle stream of Indigirka 

River/Siberia 
beetle Berman et al. (2011) 

11 unknown 
Lower and middle reaches 

Kolyma River/Siberia 
beetle Berman et al. (2011) 

12 Mkh Bykovski Peninsula/Siberia pollen/beetle 
Kienast et al. (2005); Sher et al. 

(2005) 

13 YA02-Tums1 Yana lowlands/Siberia pollen Pitul’ko et al. (2007) 

14 unknown Indigirka Lowland/Siberia beetle 
Alfimov and Berman, (2001); 

Kieselev (1981) 

15 unknown Kolyma Lowland/Siberia beetle 
Alfimov and Berman, (2001); 

Kieselev (1981) 

16 unknown Ayon Island/Siberia beetle 
Alfimov and Berman, (2001); 

Kieselev (1981) 

17 PG1351 Lake El‘Gygytgyn pollen Lozhkin et al. (2007) 

18 unknown Markovo/Siberia beetle 
Alfimov and Berman, (2001); 

Kieselev (1981) 

    Continued on the next page 
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No. Site Region Proxy Reference 

19 unknown 
Anadyr River middle stream 

/Siberia 
beetle Berman et al. (2011);  

20 Bering Shelf 78-15 
Shelf off Seward 
Peninsula/BLB 

beetle 
Elias et al. (1996, 1997); Elias 

(2001) 

21 Zagoskin Lake western Alaska chironomids Kurek et al. (2009) 

22 
Bering Land Bridge 

Park 
Seward Peninsula/Alaska beetle Elias et al. (2001) 

23 Burial Lake 
St. Michael Island /BLB, 

Alaska 
chironomids Kurek et al. (2009) 

24 Bluefish Bluefish Basin/Alaska beetle 
Mathews and Telka, (1997); 

Elias et al. (2001) 

25 SO202-27-6 Gulf of Alaska UK’
37 Maier et al. (2015) 

26 PAR87A-10 Gulf of Alaska dinocysts deVernal and Pedersen (1997) 

27 MR97-02 St. 8s NW Pacific UK’
37 Harada et al. (2004, 2012) 

28 MR98-05 St. 5 NW Pacific UK’
37 Harada et al. (2004, 2012) 

29 MR98-05 St. 6 NW Pacific UK’
37 Harada et al. (2004, 2012) 

30 unknown Chaun Depression/Siberia beetle Berman et al. (2011) 
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Abstract 

It is generally assumed that during the Last Glacial Maximum (LGM) dry climatic conditions 

in Northeast Russia inhibited the growth of large ice caps and restricted glaciers to mountain 

ranges. The Kamchatka Peninsula and the Kankaren Range are examples of two such 

locations. However, recent evidence has been found to suggest that glacial summers on 

Kamchatka and the Kankaren Range were as warm as at present while glaciers were more 

extensive than today. As a result, we hypothesize that precipitation must have been relatively 

high in order to compensate for the high summer temperatures and the resulting glacial 

ablation. We estimate precipitation abundance by mass balance calculations for the palaeo-

glaciers on Kamchatka and in the Kankaren Range using a degree-day-modelling approach. 

We find that, precipitation must have either equalled or exceeded the modern average, 

according to our mass-balance calculations by approximately 13-28%. We suggest that 

stronger than present southerly winds over the Northwest Pacific may have accounted for the 

abundant precipitation. The DDM-results imply that summer temperature rather than aridity 

limited glacier extent in the southern Pacific Sector of NE Russia during the LGM.  
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4.1. Introduction 

An understanding of the extent of glaciers in East Asia during the Last Glacial Maximum 

(LGM), and an appreciation of the underlying controlling mechanisms are important for the 

palaeoclimate modelling community, as the presence of large ice-caps during this period 

would strongly impact climatic conditions in the North Pacific (N Pacific) region (Felzer et 

al., 2001, Bigg et al., 2008). Glacier extent in Northeast Russia (NE Russia) during the LGM 

has been controversially discussed in the literature. For a long time the idea that a large pan-

arctic ice sheet stretched over Beringia dominated the scientific debate (Grosswald, 1988, 

1998; Grosswald and Hughes, 2002; Grosswald and Hughes, 2005). However, this hypothesis 

was challenged by many studies in which Pleistocene moraines in NE Russia were dated. 

These studies provided evidence that Beringia (the region stretching from Siberia to Alaska) 

remained largely ice-free during the LGM, and that glaciers were restricted to mountain 

ranges and did not extend further than 20 km in length (Velichko et al., 1984; Arkhipov et 

al.,1986; Glushkova, 2001; Gualtieri et al., 2000; Gualtieri et al., 2003; Brigham-Grette et al., 

2003; Zamoruyev, 2004; Stauch and Gualtieri, 2008; Barr and Clark, 2012). By now, the idea 

of limited mountain glaciation has become widely accepted, and it is generally supposed that 

the Beringian climate was too dry to allow ice sheet growth (e.g. Brigham-Grette et al., 2003). 

Interestingly, several proxy-based palaeoclimate studies indicate that in Siberia, and in parts 

of the formerly exposed Bering Land Bridge (BLB), summers were as warm as, or even 

warmer than under present-day conditions (Elias et al., 1992, 1996, 1997, 2001; Alfimov and 

Berman, 2001; Kienast et al., 2005; Berman et al., 2011; Anderson and Lozhkin, 2015; Meyer 

et al., submitted a). This applies also for Kamchatka, a mountainous Peninsula (attached to the 

south-eastern edge of Siberia Figure 4.1A, B), and the Kankaren Range, situated north of the 

Koryak Range (Figure 4.1A, C; Berman et al., 2011; Anderson and Lozhkin, 2015; Meyer et 

al., submitted a). Glacier reconstructions from these regions suggest that during the LGM 

glaciation was restricted to mountain-glaciers but was more extensive than during the 

Holocene (St. John and Krissek, 1999, Bigg et al., 2008; Barr and Clark, 2011; Barr and 

Solomina, 2014). If warm summers accompanied this comparatively extensive mountain-

glaciation, annual precipitation was probably abundant so that snow accumulation could 

compensate for the temperature-induced ablation during the warm summers. If this was the 

case, glacial summer temperatures would have been an important limiting factor for ice-

expansion in these areas during the LGM. This would challenge the prevailing view that ice 

extent was limited by the region’s aridity.  
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In this paper we test this hypothesis by estimating precipitation on Kamchatka and in the 

Kankaren area during the LGM - performing mass-balance calculations for palaeo-glaciers in 

the Sredinny (Kamchatka) and Kankaren mountain ranges (Figure 4.1). This is conducted 

using a degree-day-modelling approach (DDM, e.g., Hughes and Braithwaite, 2008). The 

results provide a new view of palaeo-climatic conditions in the Pacific sector of Siberia 

(Figure 4.1A) during the LGM and the mechanisms controlling glaciation in the region. 

 

Figure 4.1. (A) Overview of Northeast Russia showing the regions mentioned in the text. The division into Pacific and noN 
Pacific sector is based upon Grosswald and Kotlyakov (1969). The LGM-shore line is indicated (solid line, sea-level ca. 
120 m below present). M: Mountains; R: Range; AL: Anadyr Lowland. The rectangle marks the position of the Kankaren 
Range. (B) Glacier reconstruction in the Sredinny Range and the Eastern Range for the LGM after Barr and Clark (2011) and 
Barr and Solomina (2014) & references therein. EC: Eastern Coast; CKD: Central Kamchatka Depression. Dashed lines 
indicate the different sectors of the Sredinny ice field. N: northern sector, C: central sector, S: southern sector. (C) 
Reconstructed glaciation in the Kankaren Range during the LGM after Barr and Clark (2011). 
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4.2. Regional Setting 

The climate in NE Russia is generally classified as strongly continental and characterized by 

warm summers, cold winters and strong aridity (Ivanov, 2002). A general gradient towards less 

extreme conditions exists from the interior towards the Pacific coast as the marine influence 

increases. Kamchatka and the Kankaren Range are part of the milder Pacific Sector (Figure 

4.1A). Therefore, the climate is milder and wetter than in central Siberia. The general climatic 

conditions in NE Siberia are controlled by the interplay of the major atmospheric pressure 

systems over the North Pacific and the East Asian Continent. The winter climate is mainly 

determined by the presence of the Aleutian Low over the N Pacific and the Siberian High over 

Siberia. The atmospheric constellation lets northerly winds predominate over East Siberia 

which bring cold, arctic air masses. In summer, the North Pacific High develops over the North 

Pacific together with the East Asian Low over the continent. Southerly winds drive warm and 

moist maritime air masses to East Siberia (Mock et al., 1998; Shahgedanova et al., 2002; Yanase 

and Abe-Ouchi, 2007). 

4.2.1. Kamchatka Peninsula/Sredinny Mountains 

Kamchatka is bordered by the Sea of Okhotsk to the West, the Northwest Pacific to the 

Southeast and the Bering Sea to the East (Figure 4.1A). Its topography is characterized by 

strong variations in relief with lowlands along the coast and in the interior (Central Kamchatka 

Depression, CKD), and two major mountain Ranges, the Sredinny Range and the Eastern Range 

(Figure 4.1B). The Sredinny Range reaches a maximal altitude of 3621 m above sea-level 

(a.s.l.). The general climate of Kamchatka is cold maritime with cool and wet summers and 

mild, snowy winters (Dierksen et al., 2013). Mean July and January temperature of the entire 

Peninsula range from 10 to 15°C and from -8 to -26°C, respectively (Ivanov, 2002). In the 

coastal areas, precipitation is abundant throughout the year (ca. 900 mm yr-1). Precipitation is 

highest in the mountain ranges where values typically range between 1200 mm yr-1 and 

1500 mm yr-1, but can reach maximal values of 2000 mm yr-1 in the southeast (Ivanov, 2002; 

Dierksen et al., 2013). In the interior valley, precipitation is lower (ca. 300 mm yr-1) as the 

Mountain Ranges shield the marine influences. Today, small glaciers are only present at the 

highest peaks of the mountain ranges (Solomina and Calkin, 2003; Ananicheva et al., 2008; 

Barr and Solomina, 2014). A glacier reconstruction by Barr and Clark (2011) suggests that 

during the LGM a continuous, mountain-centred ice field existed in the Sredinny Mountains 

(Figure 4.1B). Its outlet glaciers extended up to 80 km into the valleys and the ice-field covered 

57,363 km2 (Barr and Clark, 2011). End-moraines of potential LGM age also exist in the 
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Eastern Range. As accurate dates to clearly ascribe these Eastern Range moraines to MIS 2 are 

missing (Barr and Solomina, 2014) this paper focusses on the Sredinny Range alone.  

4.2.2. The Kankaren Range and adjacent Anadyr-Lowlands 

The Kankaren Range is attached to the northern flanks of the Koryak Range and faces the 

Anadyr-Lowlands (AL) in the North (Figure 4.1A). The Kankaren Mountains reach maximal 

altitudes of 1200 m a.s.l. Direct observations of modern climate conditions in the mountains 

themselves are lacking, as the closets climate station is situated in Anadyr which lies ca. 150 km 

further north (Barr and Clark, 2011), where average July, January and annual temperatures are 

12.6°C,-26.7°C and -10.1°C (Anderson and Lozhkin, 2015). Precipitation values for the 

Kankaren Mountains are also lacking, though in the Anadyr region modern precipitation is ca. 

475 mm yr-1 (Glushkova, 2001). According to the glacier reconstruction by Barr and Clark 

(2011), the western part of the Kankaren range was covered by a mountain-centred ice-field 

during the LGM, while the eastern sector was occupied by a group of five valley glaciers (Figure 

4.1C). The reconstruction revealed glaciers up to 7 km in length and a total ice covered area of 

215 km2.  

4.3. Degree Day Modelling 

4.3.1. General Model setup 

In order to estimate the amount of precipitation necessary to sustain the reconstructed LGM 

glaciers in the Sredinny and Kankaren Ranges, we used the degree day modelling approach 

used by Barr and Clark (2011). This approach allows estimating the annual accumulation 

needed to balance annual ablation at the equilibrium line altitudes (ELA) of former glaciers 

(Braithwaite et al., 2006). A glacier’s ELA is defined as the altitude where net annual 

accumulation and ablation are in equilibrium. In the DDM approach, the annual melt at the 

glaciers ELA is calculated from the sum of daily melt values. The latter are dependent on 

daily air temperatures at the palaeo ELA. Assuming that the annual distribution of 

temperatures is described by a sine curve, (eq. 1; Hughes and Braithwaite, 2008; Hughes, 

2009) daily temperatures at the palaeo-ELA can be calculated as follows (eq.1):  

Td=Ay sin ൬
2πd

λ
-ϕ൰+Ta   (eq. 1), 

where Td is the daily mean temperature, Ay is the amplitude of annual temperature variations 

(1/2 of the total annual temperature range), d the ordinal day, λ is the period (365 days), ɸ is 
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the phase angle of the sine curve (here 1.93 radians based on the assumption that temperature 

is maximal in July and minimal in January), and Ta is the mean annual air temperature.  

After modelling temperatures for every day of the year, the daily melt (Md) at the palaeo-

ELAs was calculated as a function of daily mean temperature using a degree-day melt factor 

(f) of 4 mm d-1 °C-1 (eq. 2).  

Md=Td*f   (eq. 2) 

The sum of these daily melt values was then assumed to be equalled by accumulation 

(expressed in mm) at the ELA (since, at the ELA, annual accumulation = annual ablation).  

4.3.2. Setup of simulated scenarios for Kamchatka and in the Kankaren Range 

In order to estimate the LGM precipitation for Kamchatka and the Kankaren area, the model 

was applied to the palaeo-ELA data for the Sredinny Range and the Kankaren Range from 

Barr and Clark (2011). In the Sredinny Range, the model was run with the mean annual ELAs 

of the entire ice-field and with average ELAs for the southern sector, the central sector and the 

northern part (Figure 4.1B). In the Kankaren Range, an ELA gradient was not reconstructed, 

and the mean values (shown in Table 4.1) were adopted from Barr and Clark (2011). LGM 

conditions were simulated assuming that glacial summer temperatures (TJuly) equal modern 

conditions (Beerman et al., 2011; Anderson and Lozhkin, 2015; Meyer et al., submitted a), 

but that winters were colder than at present (Meyer et al., 2002). Modern TJuly (12°C, Table 

4.1) were compiled from two different Kamchatkan climate stations, Klyuchi (56.32°N, 

160.83°E) and Petropavlovsk (52.99°N, 158.66°E; Figure 4.1A) which represent the 

continental climate of the CKD and the maritime conditions at the eastern coast 

(http://en.climate-data.org). These stations were chosen, as the temperature record is 

considered to reflect climate change in the CKD and the Eastern Coast (Meyer et al., 

submitted a). TJuly for the Kankaren Range (13°C) were adopted from Anderson and Lozhkin, 

2015). Since no proxy-based absolute estimates for annual or winter LGM-temperature exists 

for the Kankaren and Sredinny Ranges, climate-model data (Kim et al., 2008) were adopted. 

For eastern Siberia as a whole, this climate model predicts a decrease in mean annual air 

temperature (Ta) of ca. 6-14°C at the LGM, relative to present. Ay was calculated according to 

equation 3 using both values for Ta to obtain maximal and minimal estimates. As the summer-

temperature is assumed to equal modern, winters are warmer in the scenario based on the 

minimal amplitude than in the scenario with maximal amplitude. 

	Ta=TJuly-Ay    (eq. 3) 
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Adopted Ta, TJuly, and Ay values for Kamchatka and the Kankaren area are shown in Table 

4.1. As all temperature-data reflect the conditions approximately at sea-level, Ta was lowered 

using a lapse-rate of 0.63°C/100 m altitude (Osipov, 2004) in order to obtain the mean annual 

air temperature at the palaeo-ELAs of the LGM glaciers reconstructed by Barr and Clark 

(2011). 

4.4. Results  

Results for precipitation and the duration of the ablation season for the minimal and maximal 

amplitudes (i.e., Ay) are given in Table 4.1. Precipitation based on the greatest temperature 

amplitude (Ay = 25.5°C) are always lower than in its counterpart (Ay = 17.5°C). If scenarios 

based on both temperature altitudes are considered, the model suggests that 1399-1698 mm 

yr-1 precipitation would be necessary to sustain the mean ELA (897 m.a.s.sl.) of the entire ice 

field in the Sredinny Range (Table 4.1). The results for the average ELAs in the different 

sectors suggests an increasing palaeo-precipitation gradient from south to north. Average 

ELA of the southern sector requires the lowest accumulation (1119-1350 mm yr-1) while 

accumulation is maximal in the northern part of the ice-field (1590-1920 mm yr-1). In the 

central part the estimated accumulation is 1443-1742 mm yr-1 (Table 4.1).  

Table 4.1. DDM temperature-setup for the LGM simulations and results for precipitation and the length of the ablation 
season. The model was run with minimal and maximal Ta, based on climate-model estimates from Kim et al. (2008). 
Summer-temperature data for the LGM was adopted from Beerman et al. (2011); Anderson and Lozhkin (2015), and Meyer 
et al. (submitted a), and Klyuchi and Petropawlowsk climate stations. Calculated precipitation for the Sredinny Range is 
compared to modern values for the mountain ranges on Kamchatka (modern precipitation data is taken from, Ivanov et al. 
(2002) and Dierksen et al. (2013)). Such a comparison is not possible for the Kankaren Range as data for modern 
precipitation in the mountains is not available. 

 LGM Sredinny R. LGM Kankaren

Average ELA 
[m.a.s.l.] 

1035 
south 

876 
centre 

808 
north 

897 
mean 

1035 
south 

876 
centre

808 
north 

897 
mean 

575 
mean 

TJuly[°C] 12 12 12 12 12 12 12 12 13 13 

Ta [°C] -0.5 -0.5 -0.5 -0.5 -2.7 -2.7 -2.7 -2.7 -16.1 -24.1 

Ay[°C] 17.5 17.5 17.5 17.5 25.5 25.5 25.5 25.5 29.1 37.1 

Ablation [days] 93 102 105 101 76 83 86 82 96 82 

annual prec.  
[mm yr-1] 

1350 1742 1920 1698 1119 1443 1590 1399 2359 2081 

Prec. [% modern] 
(relative to 

1200/1500 mm yr-1) 

112/ 
90 

145/ 
116 

160/ 
128 

141/ 
113 

93/ 
74 

120/ 
96 

132/ 
106 

116/ 
93 

- - 
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In the Kankaren range the average ELA at the LGM was 575 m a.s.l. according to Barr and 

Clark (2011). Given this value, the accumulation required to keep the glaciers in equilibrium 

is higher than in the Sredinny Range (2505-2210 mm yr-1, Table 4.1).  

Barr and Clark (2011) pointed out that annual precipitation cannot be directly compared to the 

calculated annual accumulation at the ELA, since annual precipitation comprises snow and 

rainfall, whereas annual accumulation at a glacier mainly reflects snowfall (since rain 

contributes little to the glacier growth). Precipitation during the ablation season (presumed to 

be dominated by rainfall) is therefore not included in the output of the DDM. The ablation 

season in all our scenarios ranged between 76-105 days (Table 4.1) meaning that the values 

for accumulation are a rough estimate for annual precipitation but likely slightly 

underestimate true values.  

It should also be kept in mind that there are additional uncertainties in these palaeo 

precipitation estimates as several parameters are approximated in the modelling approach (e.g. 

the amplitude of temperature change) and slight variations in these values would change 

accumulation/precipitation estimates. Hence, the obtained results should only be regarded as 

order of magnitude approximations of LGM precipitation and of how it differed relative to 

today. 

4.5. Discussion 

4.5.1. Inferences for LGM precipitation relative to present 

Precipitation-values corresponding to the ELAs of the Sredinny ice-field assuming the 

maximal LGM temperature-amplitude, fall in the range of modern precipitation values on 

Kamchatka (1200-1500 mm yr-1; Ivanov, 2002; Dierksen et al., 2013). However, the result for 

the minimal amplitude (warmer winters) at the mean ELA of the entire ice-field, the northern 

sector and the center indicate that LGM precipitation exceeds the modern annual mean by 13, 

28 and 16 %, respectively (calculated relative to modern value of 1500 mm yr-1). The results 

from the Kankaren Range cannot be compared to modern values because modern 

precipitation-data are lacking in the area (see section 2). A comparison with Anadyr climate 

station is probably not sensible as the Anadyr Lowlands are situated in the rain shadow of the 

Kankaren and Koryak Ranges (Mock et al., 1998). However, since the calculated precipitation 

amounts for the Kankaren are higher than the results for the Sredinny Mountains (see Table 

4.1) the values might be assumed to exceed the modern average in the Kankaren Range.  
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These results indicate that annual precipitation must have been at least as high as today or 

must have even exceeded the modern average if summers were as warm as present while 

mountain glaciers were more extensive than today. An assessment of whether precipitation on 

Kamchatka during the LGM was greater than today cannot be made on the basis of proxy-

data, since data is not available for the LGM or the period of deglaciation (i.e., leading into 

the early Holocene). In the Kankaren Range it is unclear whether or not published proxy-

based precipitation reconstructions are in agreement with the DDM results from the present 

study. Pollen-based vegetation reconstructions provide evidence for the presence of snow-bed 

plant-communities indicating abundant snow-accumulation during the LGM. Although this is 

generally in concert with the presence of glaciers and abundant precipitation (as suggested by 

the DDM), the pollen assemblages also contrast with our findings as the paucity of shrubs in 

the region points to reduced available moisture (relative to today) implying that the LGM-

climate of southern Chukotka was more arid than at present (Anderson and Lozhkin, 2015). 

However, NE-Russia’s moisture may have been trapped in glaciers and ground ice during this 

period (Sergin and Scheglova, 1976; Alfimov and Beerman, 2001), meaning that 

precipitation, even if abundant, may not have been available to the plants. The sparseness of 

records and the uncertainty in the Kankaren Range indicates that further records of glacial 

precipitation in the region are required in order to confirm or discount our hypothesis. 

However, the DDM-results from this investigation certainly suggest that warm summer 

temperature have the potential to limit glacier growth in the Pacific Sector of Siberia, in 

contrast with prevailing view that ice-sheet expansion was hampered by increased aridity 

(Seigert et al., 2001; Brigham-Grette et al., 2003; Stauch and Gualtieri, 2008; Barr and Clark, 

2011; Barr and Spagnolo, 2013). 

Summer temperature may have also limited glacier growth in the Pekulney Mountains (north 

of the Anadyr-Lowlands, Figure 4.1A) since DDM-results from Barr and Clark (2011) 

suggest that precipitation must have been 126% increased relative to modern conditions, if 

summer temperature was 3.1-4.1°C lower than at present (Alfimov and Beerman, 2001; Barr 

and Clark, 2011). However, LGM temperature reconstructions for the Pekulney-area vary 

considerably (Alfimov and Beerman, 2001; Lozhkin et al., 2007; Barr and Clark, 2011), and 

calculations based on a temperature reduction of 6.4°C (Lozhkin et al., 2007), would suggest 

that annual LGM accumulation was ca. 40% less than the modern mean, supporting the 

hypothesis that aridity hampered glacier growth (Barr and Clark, 2011). The ambiguity in the 

Pekulney Mountains requires further records in air temperature in the region (Barr and Clark, 
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2011). Nevertheless, based on the results adopted for the Sredinny and Kankaren Ranges it 

seems likely that temperature was the limiting factor for ice-sheet growth in the southern 

Pacific Sector of NE Russia.  

4.5.2. Possible mechanisms for increased annual precipitation at the LGM 

Glacier growth is mainly dependent to the snow accumulation/precipitation in winter. 

However (as outlined in section 5.1.), in the Beringian/N Pacific realm several palaeo-

environmental indicators argue for a decrease in winter and annual precipitation during the 

LGM (relative to present) rather than an increase (as suggested in section 5.1.). During the 

LGM, the Bering and Chukchi-Shelves were exposed, reducing marine influences in western 

and central Beringia (Laukhin et al., 2006; Barr and Clark et al., 2011; Yanase and Abe-

Ouchi, 2007), and proxy-based studies point to extensive sea-ice coverage (Sakamoto et al., 

2005; Caissie et al., 2010; Smirnova et al., 2014) which also suggests that winter sea surface 

temperatures were lower than at present. These factors would reduce evaporation over the 

marginal N Pacific (Sancetta, 1983). Also, a study based on climate-models found no 

indication for increased winter precipitation in the N Pacific realm during the LGM (Yanase 

and Abe-Ouchi, 2007). Additionally, the growth of ice-sheets elsewhere in the Northern 

Hemisphere is presumed to have deprived NE Russia of moisture (e.g. Seigert et al., 2001; 

Stauch and Gualtieri, 2008). These factors are essentially the basis of the aridity-hypothesis 

(e.g. Brigham-Grette et al., 2003). Hence, the existing palaeo-environmental indicators 

generate a palaeoclimatic scenario for the NW Pacific realm in which extensive mountain 

glaciation, warm summers and arid conditions coexisted. However, this picture appears to 

contradict inferences made from the DDM approach adopted here. As such, the assertion that 

extensive glaciers and warm summer temperatures coincided at the LGM is brought into 

question.  However, uncertainties in the chronologies of either temperature or glaciation may 

potentially explain the discrepancies; yet the chronology for the marine sediment-core on 

which the temperature record for Kamchatka was established, accurately defines the LGM in 

the record (Max et al., 2012; Meyer et al. submitted a,b). In terms of glaciation, a small 

number of radiocarbon ages in the Sredinny Mountains and cosmogenic dating (36Cl) in the 

Kankaren Range assigns the terminal glaciation to the LGM and the late glacial (Braitseva et 

al., 1968; Melekestsev et al., 1970; Gualtieri et al., 2000). Moreover, ice rafted detritus (IRD), 

which evidently originated from the Kamchatka Peninsula (St John and Krissek, 1999), was 

constantly deposited in the NW Pacific during MIS 2 and is no longer found after ca. 15 and 

14 ka BP (St. John and Krissek, 1999; Kiefer et al., 2001; Bigg et al., 2008; Gebhardt et al., 
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2008). This suggests that outlet glaciers from the eastern coast of Kamchatka reached the 

shore-line during the LGM - indicating extensive glaciation (Figure 1B). Therefore, 

uncertainties in the glaciation-chronology can probably also be ruled out (i.e., they fail to 

account for the discrepancies noted in this paper). Since Meyer et al. (submitted a) consider a 

bias in the temperature record unlikely, the coexistence of warm summers and extensive 

mountain glaciation during the LGM seems likely and the view of abundant precipitation is 

supported. 

Interestingly, Meyer et al. (submitted a) suggested that the warm summers on Kamchatka 

resulted from stronger-than-present southerly winds over the Northwest Pacific due to a 

strengthening or a westward displacement of the North Pacific High (NPH). Besides summer 

warming, increased advection of maritime air masses from the south simultaneously leads to 

more precipitation during the summer months in southeast Siberia, as summarized in the 

climate synopsis for Beringia by Mock et al. (1998). Given this interpretation, the temperature 

record may be an indirect indication for wet or maybe wetter-than-present conditions on the 

Peninsula/Coastal Siberia during the summer season. Unfortunately, no direct proxy-based 

reconstruction for precipitation is available for Kamchatka, so this assumption needs to be 

tested in the future. However, increased precipitation in the summer months contrasts with 

several studies utilising General Circulation Models, which predict that summer precipitation 

in East Asia was significantly reduced during the LGM (ca. 30-60%; Budiko et al., 1992; 

Velichko, 1993; Yanase and Abe-Ouchi, 2007). Yanase and Abe-Ouchi (2007) suggested two 

underlying mechanisms: (I) weakened advection of maritime air masses to the East Asian 

coast in response to a weakened NPH. (II) A reduction of precipitable moisture as a 

consequence of reduced evaporation over the NW Pacific due to lowered SST. (I) can be 

challenged by the proxy-based inference for increased southerly flow over Kamchatka (Meyer 

et al. submitted a). However, (II) seems to be a robust scenario since various SST records 

from the open North Pacific (south of 45°N) show lowered temperature during the LGM (e.g. 

Harada et al., 2012). However, in the marginal NW Pacific, in the vicinity of Kamchatka (site 

12KL, Figure 4.1A) summer SST was probably only 1°C lower than at present (Meyer et al., 

submitted b). This is in accordance with model simulations which indicate that the thermal 

anomaly was relatively weak north of 50°N (Yanase and Abe-Ouchi, 2007). Hence, 

evaporation over the subarctic NW Pacific potentially did not differ significantly from 

present. According to alkenone-based SST records the same may have applied for the Sea of 

Okhotsk, since these records suggest that glacial temperatures in the area were the same as at 

present (Seki et al., 2004; Harada et al., 2012). However, these records are suspected to be 
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biased by shifting production-seasons of Coccolithophores (e.g. Seki et al., 2004b, 2009), a 

hypothesis which is supported by SST reconstructions based on TEXL
86 (another SST-proxy) 

which indicate a cooling of ca. 5°C relative to modern (Harada et al., 2012; Seki et al., 2014). 

Nevertheless, in the subarctic NW Pacific little changes in evaporation (between LGM and 

present) combined with increased southerly winds in the subarctic NW Pacific may have 

resulted in increased precipitation in the southern Pacific sector of Siberia. So, summer 

precipitation may have mainly accounted for the precipitation necessary to sustain the glaciers 

during the LGM. Considering that the DDM does not include precipitation of the ablation 

season as it would fall as rain at the ELA, this scenario is difficult to envisage. However, if 

LGM-winter precipitation is unlikely to have been increased relative to present, increased 

summer precipitation must have significantly contributed to the glacier growth. Potentially, 

abundant snow accumulation occurred above the ELA even during the summer season. 

Additionally, a short summer season/ablation season may have supported glacier stability by 

limiting the total ablation. However, since palaeo data for LGM temperatures through the 

annual cycle do not exist for Kamchatka, this hypothesis is difficult to test, yet.  

4.6. Summary and Conclusion 

As evidence exists that LGM-summers in Kamchatka and the Kankaren Range were as warm 

as at present while mountain glaciation was more extensive than today, we hypothesized that, 

during this period, precipitation must have been abundant and that summer-temperature 

limited ice-sheet growth in the Pacific Sector of NE Russia. Our DDM-results support this 

hypothesis indicating that annual precipitation at the LGM was either equal to, or higher than, 

the modern mean on the Kamchatka. This finding is in contrast to the prevailing view that 

strong aridity restricted glaciation to the mountain ranges in NE Russia during the LGM. It 

seems possible that summer-precipitation was increased relative to today due to stronger 

southerly winds and relatively warm SST in the marginal NW Pacific, and this may have 

resulted in heavy snowfall above the ELA, allowing glaciers to develop and persist despite 

warm summer temperatures. Additionally the summer season may have been notably short 

(limiting total ablation). However, the majority of palaeo-environmental indicators from 

Siberia and the subarctic N Pacific point to dryer-than-present conditions in the NW Pacific 

realm at the LGM, particularly during winter. As winter precipitation is more important for 

glacier growth, than summer precipitation, it questionable whether summer precipitation at 

the LGM accounted for the relatively high annual precipitation suggested by the DDM. In 

light of this, the coincidence of warm summers, decreased annual and/or winter precipitation 
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and extensive mountain glaciation provides a conflicting picture of LGM-

palaeoenvironmental conditions in NE Russia—highlighting the necessity to further 

investigations of the regions glacial and climatic history.   
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Abstract 

During the last deglaciation warming and sea-level rise likely triggered large-scale 

decomposition of permafrost soils in the Northern Hemisphere. Resulting release of 14C-

depleted carbon is assumed to have contributed to rising atmospheric carbon dioxide (CO2atm) 

and declining atmospheric radiocarbon activity (Δ14Catm), particularly at 14.6 ka BP. 

However, the impact of permafrost-degradation is not well understood as the timing of the 

carbon release is poorly constrained. In order to trace mobilization-events of 14C-depleted 

terrigenous organic matter (OM) and permafrost decomposition on the Kamchatka Peninsula, 

we analyzed mass accumulation rates and the radiocarbon activity of leaf-wax lipids in two 

sediment cores from the Western Bering Sea and the Northwest Pacific. We find that 

enhanced mobilization of nearly 14C-free carbon commenced during the Heinrich Stadial 1 

and was likely triggered by retreating American ice-sheets and the associated meltwater-

runoff through the Yukon River. Afterwards, deglacial mobilization of 14C-depleted carbon 

was dominantly controlled by sea-level rise and permafrost erosion during shelf-flooding. 

Enhanced OM-export from Kamchatka associated with thawing of permafrost likely initiated 

during the second half of the Bølling/Allerød-interstadial and peaked during the Younger 

Dryas (YD). Increased OM-export from the Kamchatka region ends at 9 ka BP. The 

mobilization events lag the rapid CO2atm/Δ14Catm changes at 14.6 ka BP suggesting that the 

region can be ruled out as drivers. Instead, carbon mobilized from degrading permafrost may 

have been a source of 14C-depleted CO2 during the YD. 
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5.1. Introduction 

During the last glacial termination atmospheric carbon dioxide rose by about 100 ppm (e.g. 

Monnin et al., 2001; Parrenin et al., 2013), and this rise was accompanied by a decrease in 

atmospheric radiocarbon activity (Δ14C; Hughen et al., 2004; Fairbanks et al., 2005; Reimer et 

al., 2013). The underlying mechanisms for the changes in the atmospheric carbon pool are 

still not fully understood. Venting of formerly isolated deep-water masses is considered as a 

prominent driver for the atmospheric changes (Broecker, 1982; Broecker and Barker, 2007; 

Broecker and Clark, 2010; Fischer et al., 2010; Skinner et al., 2010; Schmitt et al., 2012). 

However, mobilization of terrigenous carbon may have additionally contributed since the 

glacial size of inert terrestrial carbon pool has been estimated to be larger than under 

Holocene conditions (Ciais et al., 2013). Among the terrestrial carbon reservoirs, it is the 

carbon pool of the permafrost-soils (perennially frozen ground) in the Northern Hemisphere 

(NH) which is regarded as a potentially important source of 14C-depleted (old) CO2. 

Permafrost acts as a carbon sink, as its frozen state suppresses microbial degradation of 

organic matter. Therefore, the carbon stocks of permafrost are characterized by low 

radiocarbon activity.  

Since permafrost extent rapidly shrank during the deglaciation (Yershov, 1998; Vandenberghe 

et al., 2014), vast amounts of old carbon may have been mobilized from thawing permafrost 

and released as greenhouse gases (CO2 and CH4) into the atmosphere (Zimov et al., 2006, 

2009; Schuur et al., 2008, 2009; Köhler et al., 2013; 2014). The permafrost-feedback has been 

suggested to have particularly fueled the atmosphere at the onset of the Bølling/Allerød-

interstadial (B/A, approx. 14.6 ka BP; Köhler et al., 2013; 2014), where the CO2atm/∆14Catm 

increase/decrease abruptly accelerated (Parrenin et al., 2013; Durand et al., 2013) with CO2atm 

rising about six times faster than during the early deglaciation (approx. 10 ppmv within 180 

years; Parrenin et al., 2013, Veres et al., 2013). Based on a carbon-cycle model, Köhler et al. 

(2013; 2014) showed that release of old permafrost-soil derived carbon would have been able 

account for the atmospheric changes and may have “provided the final push out of the ice 

age” (Köhler et al. 2014). These authors hypothesized that abrupt warming of the NH at the 

onset of the B/A, together with rapid flooding of the Siberian shelves during Meltwater Pulse 

1a (MWP-1a) triggered widespread permafrost decomposition. Supporting evidence for 

widespread permafrost-thaw and concurrent mobilization of terrigenous OM at that time may 

come from increasing concentrations of terrigenous biomarkers in Black Sea sediments 

(Rostek and Bard, 2013) and the beginning expansion of thermokarst lakes in Eurasia and 

Alaska (Walter et al., 2007). CO2atm and Δ14Catm also increased/decreased during HS1 and the 
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YD, but those events represent cold-reversals in the Northern Hemisphere (NH). So 

permafrost decomposition is unlikely to be important for the atmosphere at that time. This is 

corroborated by environmental indicators which point to permafrost-stabilization during the 

YD (Renssen and Vandenberghe, 2003; Gruber and Reitner, 2007; Fischer et al., 2008; 

Rostek and Bard, 2013). However, the timing of deglacial mobilization of 14C-depleted 

carbon during permafrost thaw in the NH is only poorly constrained as proxy-data recording 

mobilization-events of 14C-depleted terrigenous carbon are sparse.  

On the Kamchatka Peninsula (attached to Siberia, Figure 5.1) permafrost is supposed to have 

almost completely disappeared during the deglaciation (Vandenberghe et al., 2014). In this 

light, carbon export from the Peninsula into the Northwest Pacific (NW Pacific) and the 

Western Bering Sea may contain information about the timing of permafrost decomposition in 

East Asia and may contribute to a better understanding of the role permafrost may have 

played in deglacial CO2atm/Δ14Catm changes. 

 

Figure 5.1. Map of the North Pacific Ocean and adjacent Beringia. Red dots represent sites investigated in this study. The 
white circle denotes a site mentioned in the text. Blue arrows indicate the modern surface circulation patterns of the N Pacific 
and the Bering Sea (e.g. Stabeno and Reed, 1994). EKC: East Kamchatka Current, ANSC: Aleutian North Slope Current, 
BSC: Bering Slope Current. White shaded areas sketch the extent of continental ice sheets during the LGM. LIS: Laurentide 
Ice Sheet, CIS: Cordilleran Ice Sheet. KR: Kamchatka River, BS: Bering Strait, BLB: Bering Land Bridge, P: Peninsula. 1: 
modified after Brown et al, (1998); 2: modified after Vandenberghe et al. (2014).  
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Quantifying terrigenous biomarkers and analyzing their compound-specific Δ14C-signature in 

two sediment cores from the Western Bering Sea and the subarctic NW Pacific (sites 114KL 

and 12KL, Figure 5.1), we identify time intervals of enhanced export of terrigenous organic 

matter and reconstruct deglacial permafrost dynamics on Kamchatka and the adjacent shelves. 

Our results provide new insights into the timing and underlying mechanisms of deglacial 

organic matter mobilization in the NW Pacific realm, and into the potential role of permafrost 

decomposition in deglacial CO2atm/Δ14Catm changes. 

5.2. Regional Setting 

The source areas of terrestrial material deposited in sediments along the core-transect (114KL 

and 12KL, Figure 5.1) spreads from eastern Siberia (114KL), to Kamchatka (12KL), a 

mountainous peninsula separating the Bering Sea from the Sea of Okhotsk (Figure 5.1). The 

Apuka-River drains the southern flanks of the Koryak Ranges and the adjacent coastal 

lowlands until it discharges into the Western Bering Sea (Figure 5.1), in front of site 114KL. 

The landscape of Kamchatka is characterized by strong variations in relief as two parallel 

mountain chains separate the coastal lowlands from the interior depression. Draining the 

interior valley and the inner flanks of the mountain ranges, the Kamchatka River is the largest 

watershed of the Peninsula and, by discharging into the Bering Sea, it is probably the most 

prominent supplier or terrigenous sedimentary load for site 12KL (Figure 5.1). Additionally, 

terrigenous material may also derive from the Eastern Coast. 

Under present-day conditions eastern Siberia is dominantly covered by continuous permafrost 

(Brown et al., 1998). However, in the Apuka catchment, discontinuous permafrost prevails 

spreading to the northern tip of Kamchatka (down to approx. 57°N, Brown et al., 1998). South 

of 57°N the Peninsula is widely permafrost-free and only small patches of sporadic 

permafrost occur. Continuous permafrost is restricted to the high mountains (Brown et al., 

1998).  

The east Siberian climate is in general continental with strong aridity, cold winters and warm 

summers. Continental conditions are strongest in the Siberian interior and become less 

extreme towards the Pacific coast where marine influences become more prevalent (Ivanov, 

2002). In NE Siberia mountain ranges along the coast cause climatic gradients between north 

and south by preventing maritime influences from migrating further inland (Mock et al., 

1998). The same applies for Kamchatka where the parallel mountain chains cause climatic 

gradients between the interior valley and the coastal areas (Dirksen et al., 2013 and references 

therein). Therefore, the climate of Kamchatka and along the Bering-Sea coasts is relatively 
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mild compared to central Siberia, with smaller annual temperature ranges and abundant 

precipitation (Mock et al., 1998; Dirksen et al., 2013). Averaged for the entire Kamchatka 

Peninsula, mean July and January temperature range from 10 to 15°C and from -8 to -26°C, 

respectively (Ivanov, 2002). 

5.3. Material and Methods 

5.3.1. Core material and chronology 

During cruise RV SONNE SO201 piston-cores SO201-2-114KL (Western Bering Sea) and 

SO201-2-12KL (NW Pacific) have been recovered in 2009 (Dullo et al., 2009) within the 

frame of KALMAR Leg 2. Prior to sample preparation, cores were stored at 4°C. Integrated 

age models were developed by accelerator mass spectrometry (AMS) radiocarbon dating of 

planktonic foraminifera (Neogloboquadrina pachyderma sinistral) as well as core-to-core 

correlations of high-resolution spectrophotometric (color b*), X-ray fluorescence data and 

ash-layers. For details, the reader is referred to Max et al. (2012). For the quantification of 

leaf-wax lipids (long-chain n-alkanes and long-chain n-alkanoic acids) and the calculation of 

mass accumulation rates, cores were sampled every 10 cm (12KL) or 5 cm (114KL). Samples 

for CSRA were taken from 5-6 selected horizons of 2-3.5 cm thickness. 

5.3.2. Lipid extraction 

Samples were freeze-dried and homogenized using an agate mortar and pestle. Prior to 

extraction Squalane and Erucic Acid (10 µg) were added as internal standards. Samples for 

compound-specific radiocarbon analyses (CSRA) were processed without internal standards, 

as the standards were regarded as potential contaminants. The sample set at regular 10 and 5 

cm intervals was extracted by accelerated solvent extraction (Dionex ASE 200) using 22 ml 

cells and dichlormethane (DCM):methanol (MeOH) 9:1 (v/v) as solvent. Every sample was 

treated with three cycles, each of them run at 100°C and 1000 psi for five min. Samples for 

CSRA were extracted with a Soxhlet-apparatus (60°C, 48 hours, DCM:MeOH 9:1 (v/v)). 

Total lipid extracts were dried with a rotary evaporator. In order to break up wax-esters and to 

separate carbonic acids from neutral compounds, samples were hydrolyzed with 0.1 N 

potassium hydroxide (KOH) in MeOH:H2O 9:1 (v/v) at 80°C for two hours. Neutral 

compounds were extracted with n-hexane. Seralpur-e water was added before the saponified 

solution was acidified to pH~1 with hydrochloric acid (HCl; 37%). Subsequently, carbonic 

acids were extracted with DCM. The neutral fraction was further separated into hydrocarbons 

and polar compounds using column chromatography, performed in Pasteur pipettes (0.5 mm 
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diameter) which were filled with deactivated SiO2 (mesh size 60, filling height 4 cm). 

Hydrocarbons were first eluted with 4 mL n-hexane. MeOH:DCM 1:1 (v/v) was used to elute 

the remaining polar compound-classes. In a second chromatographic step, unsaturated 

compounds were separated from saturated hydrocarbons using SiO2 coated with silver nitrate 

(filling hight 4 cm). Saturated hydrocarbons were eluted with 4 mL n-hexane.  

Carbonic acids were derivatized to fatty acid methyl esters (FAME) in order to facilitate 

chromatographic separation. The derivatization was achieved by adding MeOH of known 

Δ14C, together with 20µl HCl. Air in the headspace of the sample-tube was replaced by 

Nitrogen gas (N2) and the solutions were heated overnight, at 50°C. After adding Seralpur-e 

water to the methylated solutions, FAMEs were extracted with n-hexane. FAMEs were 

separated from polar compounds with column-chromatography using deactivated SiO2 (mesh 

size 60, filling height 4 cm) and NaSO4 (0.5 cm on top of SiO2). FAMEs were eluted with 

DCM:Hexane 2:1 (v/v). 

5.3.3. Analysis of n-alkanes and n-alkanoic acids and determination of mass 

accumulation rates 

N-alkanes and FAMEs were analyzed using an Agilent7890A gas chromatograph coupled to a 

flame ionization detector (GC-FID). The system was equipped with an on-column injector 

and an Agilent J&W DB5-ms column (length 60 m, diameter 250 µm, film thickness 0.25 

µm). Helium (He) was used as carrier-gas, maintained at a constant flow of 1.5 ml/min. The 

temperature program of the GC-oven was set as follows: for both compound-classes: 60°C 

(1min); 20°C/min up to 150°C; 6°C/min to 320°C; 320°C (35 min). The FID was maintained 

at 330°C throughout the measurement. Long-chain n-alkanes and the respective FAMEs of 

long-chain n-alkanoic acids were identified with an external standard mixture. Single 

compounds were quantified using the peak areas of the respective compounds and the 

response factor of the internal standard (Squalane and Erucic Acid). The measurement 

uncertainty was obtained from repeated injections of the external standard. The standard 

deviation was 0.01%. Concentrations of the compounds were normalized to the dry weight 

(dw) and total organic carbon content (TOC) of the extracted sediment.  

In order to estimate terrigenous input, mass accumulation rates were calculated for the sum of 

the odd-numbered n-alkanes (C23-C33; MARΣC23-C33) using the concentrations of the 

compounds, the dry bulk density (dbd) of the sediment and the sedimentation rates. Dbd and 

sedimentation rates were obtained from Max et al., (2012). As for core 114KL dbd values are 

not available, MARΣC23-C33 were calculated using a constant value of 0.9 g/cm3.  
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In order to identify potential contributions of petrogenic OM, the Carbon Preference Index 

(CPI) was calculated. It quantifies the relative abundance of odd versus even-numbered n-

alkanes in an n-alkane-assemblages, and can be used to estimate thermal maturity of organic 

matter (Bray and Evans, 1961). 

5.3.4. Purification of single compounds for CSRA 

For CSRA the n-C26:0 and n-C28:0 alkanoic acids were purified using preparative capilliary 

gaschromatography (e.g. Eglinton et al., 1996). The purification was performed on an Agilent 

HP6890N gas chromatograph, with a Gerstel CIS injection-system, connected to a Gerstel 

preparative fraction collector (PFC-GC), using a method similar to Kusch et al. (2010). The 

system was equipped with a Restek Rtx-XLB fused silica capillary column (30 m, 0.53 mm 

diameter, 0.5 µm film thickness). Samples were injected in solvent vent mode, with a split 

vent flow of 100 ml/min until 0.12 min and a purge flow of 50 mL/min until 2 min. The 

temperature program of the CIS injector was set as follows: 40°C (0.06 min), 12 °C/s to 320 

°C (5 min), 12 °C/s to 340 °C (5 min). The program of the GC-oven was: 50°C (1 min), 

6°C/min up to 320°C (20 min). The interface between the GC and the PFC was maintained at 

320°C. Helium was used as carrier-gas with a constant flow-rate of 4 ml/min. All samples 

were stepwise injected into the PFC-GC system with 5 µl per injection. Depending on the 

sample size, 20-110 injections were necessary to process the entire sample. Purified 

compounds were transferred into pre-combusted quartz-tubes, together with 150 µg pre-

combusted copper (II)-oxide (CuO; wire shaped) which served as oxidizing agent. Quartz 

tubes were evacuated (10-5 mbar) and flames-sealed with a hydrogen/oxygen torch. The sealed 

tubes were combusted at a temperature of 950°C for four hours to convert the solid FAMEs 

into CO2. 

5.3.5. Compound-specific radiocarbon analysis 

The isotopic ratio (14C/12C) of the n-alkanoic acids was determined by Accelerator Mass 

Spectrometry (AMS). The measurements were carried out on the MICADAS-system 

equipped with a gas-ion source (Ruff et al., 2007; Synal et al., 2007; Wacker et al., 2013) at 

the Institute of Ion Beam Physics, ETH Zurich. 

AMS-results are reported as “fraction modern carbon” (fMC), conventional radiocarbon ages 

(14C-ages, given in 14C yrs BP) and Δ14C (Stuiver and Pollach, 1977). In order to account for 

contamination from modern and fossil carbon from unknown sources during the sample-

treatment, process-blanks were assessed by processing standards of know radiocarbon 
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activity. n-hexadecanoic acids (n-C16:0) from apple peel served as representative of the 

modern end-member, and Triacosanoic acid (n-C30:0) Sigma, Prod. No. T3527-100MG, Lot 

018K3760, Rethemeyer et al., 2013) was used as fossil standard. A list of processed samples 

and respective sample sizes is given in the Appendix (Table A5.1). Blank assessment was 

performed graphically similar to Shah and Pearson, (2007). A description of the blank 

assessment, the fMC-value and the mass of the blank as well as the respective uncertainties 

are given in the appendix (Figure A5.1). Blank-correction was performed after Wacker and 

Christl (2011). fMC-values were further corrected for the methyl-group, which had been 

added during the derivatization process, using isotopic mass balance. Errors have been 

propagated after Wacker and Christl (2011). 

5.3.6. Reporting 14C-content 

14C-contents of n-alkanoic acids are henceforth reported as the difference between initial ∆14C 

values (∆14Cinitial, ∆14C-value corrected for the decay between measurement and deposition; 

calculated after Ohkouchi et al., 2002) and atmospheric ∆14C-values at the time of deposition 

(∆∆14C). Atmospheric ∆14C-values were extracted from IntCal 13 (Reimer et al., 2013), and 

the time of deposition was obtained from the age models of cores 12KL and 114KL (Max et 

al., 2012). 

5.4. Results 

5.4.1. Mass accumulation rates and CPI-values 

MARƩC23-C33 are given in Figure 5.2. All MARƩC23-C33 display similar general patterns. 

Deglacial MARƩC23-C33 (between approx. 17 and 10 ka BP) tend to be higher than MARƩC23-

C33 of the Holocene and the LGM (Figure 2). During the deglaciation, MARƩC23-C33 are 

characterized by two striking maxima which coincide with the Heinrich Stadial 1 (HS1) and 

the Preboreal (PB, Figure 5.2). The first event in MARƩC23-C33 abruptly initiates between 16.8 

and 16.3 ka BP and abruptly ends at approx. 15-14.6 ka BP, shortly before the onset of the 

B/A. The second maximum initiates at approx. 11.5 ka BP and lasts until 10.5 ka BP at site 

114KL, but is shorter at site 12KL where it ends at approx. 11 ka; Figure 5.2). MARƩC23-C33 of 

both cores reach their highest values during this event, (Figure 5.2). Different patterns 

characterize the period between the B/A and the onset of the PB (approx. 13.2-11.5 ka BP).  

At site 12KL a third peak occurs between 14 and 13.3 ka BP while MARƩC23-C33 of core 

114KL remain constant during this interval (Figure 5.2). MARƩC23-C33 of core 12KL increase 

again at 13.2 culminating into a fourth peak during the YD (at approx. 12.3 ka BP). A similar 
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event is also present in core 114KL (between 13.2-12.8 ka; Figure 2) but in contrast to site 

12KL, it does not persist into the YD (Figure 5.2). Instead, MARƩC23-C33 at site 114KL exhibit 

a deglacial minimum at that time. After the PB-maximum MARƩC23-C33 decrease until approx. 

9 ka BP and become lower than during most parts of the deglaciation. At core 12KL, 

MARƩC23-C33 even out and remain constant throughout the Holocene (Figure 5.2).  

CPI-values of both cores are rather stable during the LGM and the early deglaciation, 

scattering between 5.5 and 6.5 (Figure 5.3). Strikingly decreased CPI-values of 3.5 are 

exhibited between 17 and approx. 14.6 ka BP. During the deglaciation and the Holocene, 

values range between 5 and 7 (Figure 5.3). 

5.4.2. CSRA and ΔΔ14C 

ΔΔ14C-values for the long-chain n-alkanoic acids of cores 12KL and 114KL are shown in 

Table 51 together with the corresponding blank- and methyl-group-corrected fMC-values, 

conventional radiocarbon ages (14C-ages), Δ14C and Δ14Cinitial. ΔΔ14C-values are also plotted 

in Figure 2, together with MARƩC23-C33. The raw data from the AMS-measurement are given 

in Appendix 2 (Table A5.2). In both cores, ΔΔ14C-values are highest during the LGM 

(1413‰ & 1405‰) and lowest during the Holocene (372‰ & 52‰; Figure 2). The n-C28:0 n-

alkanoic acid is generally more depleted in 14C than the n-C26:0 homologue. A ΔΔ14C-

signature exceeding 1000 ‰, implies that the n-alkanoic acids are virtually 14C-free which is 

also expressed by infinite 14C-ages (Table 5.1).  

Between the LGM and HS1 the ΔΔ14C signatures decrease and range between 966.3‰ (n-

C26:0 114KL) and 1323.7 (n-C28:0, 12KL). The ΔΔ14C-values further decline into the B/A 

reaching values between 831.4‰ (n-C26:0, 114KL) and 1231.2‰ (n-C28:0, 12KL). Although 

two ΔΔ14C-values fall below the threshold of 1000‰ (HS1, 114KL n-C26:0 & B/A, 12KL, n-

C26:0), they still have to be considered as 14C-free and hence beyond the limit of radiocarbon 

dating, when the error bars are taken into account (Figure 5.2; Table 5.1). Therefore, the 

decrease of the ΔΔ14C-values between the LGM and the B/A is only determined by the 

differing Δ14C-signature of the atmosphere (Figure 5.4a) and does not allow for any palaeo-

environmental inferences. The lipids significantly fall below the threshold of 1000 ‰ during 

the B/A (site 114KL) and the YD (site 12KL). Considering the error bars of the ΔΔ14C-

values, the ΔΔ14C-signature of n-C26:0 and n-C28:0 remains constant in core 114KL throughout 

the B/A, the YD and the PB. (Figure 5.2, Table 5.1). 



84 
 

Table 5.1. CSRA-data of long-chain n-alkanoic acids for cores SO201-2-12KL and SO201-2-114KL. Raw-data, respectively 
AMS-results, are given in the appendix, Table A2.  
1: corrected for process-blanks (for blank data, see appendix, Table A5.1 and Figure A5.1) and methylation 2: adopted from 
the age model of cores 12KL and 114KL (Max et al., 2012). 3: Difference between Δ14Cinitial and Δ14Catm at the respective 
time of deposition. Δ14Catm-data was taken from IntCal 13 (Reimer et al., 2013).  

Sample (core, 
depth [cm], 
compound) 

Corrected 
fMC1 

Deposition 
age, mid-

point 
[cal. ka BP]2, 
time interval 

14C-age 
[ka BP] 

Δ14C [‰] Δ14Cinitial [‰] ΔΔ14C [‰]3 

12KL, 1-4.5, 
n-C26:0 

0.5366 
± 0.0429 

1.07 
5.180 

± 0.500 
-467.5 
± 3.3 

-389.2 
± 38.0 

372.0 
± 36.3 

12KL, 203-205, 
n-C26:0 

0.1408 
± 0.0085 

9.35 
15.800 
± 0.500 

-859.5 
± 0.8 

-561.3 
± 27.2 

660.6 
± 34.7 

12KL, 203-205, 
n-C28:0 

0.1242 
± 0.0106 

9.35 
16900 

± 0.720 
-876.7 
± 1.1 

-615.1 
± 34.9 

714.4 
± 32.4 

12KL, 295-297, 
n-C26:0 

0.1049 
± 0.0894 

11.10 
18.300 
± 5.200 

-895.8 
± 10.0 

-597.9 
± 383.8 

751.9 
± 381.6 

12KL, 295-297, 
n-C28:0 

-0.1514 
± 0.2219 

11.10 infinite 
-999.9 
± 11.6 

-999.6 
± 448.5 

1153.6 
± 292.3 

12KL, 419-422, 
n-C26:0 

0.0813 
± 0.0122 

12.31 
20.100 
± 1.200 

-918.7 
± 1.2 

-636.9 
± 55.7 

852.2 
± 52.8 

12KL, 419-422, 
n-C28:0 

0.0707 
± 0.0141 

12.31 
21.400 
± 1.700 

-929.1 
± 1.5 

-683.4 
± 65.8 

898.7 
± 62.8 

12KL, 609-612, 
n-C26:0 

0.0516 
± 0.0199 

14.51 
23.800 
± 2.700 

-948.7 
± 3.6 

-701.1 
± 208.7 

932.9 
± 202.9 

12KL, 609-612, 
n-C28:0 

-0.0393 
± 0.0504 

14.51 infinite 
-999.9 
± 2.7 

-999.4 
± 154.7 

1231.2 
± 148.9 

12KL, 693-696, 
n-C26:0 

0.0425 
± 0.0117 

16.03 
25.400 
± 2.300 

-957.5 
± 2.8 

-702.1 
± 197.8 

1026.5 
± 148.9 

12KL, 693-696, 
n-C28:0 

-0.0017 
± 0.0239 

16.03 infinite 
-999.9 
± 1.3 

-999.3 
± 87.8 

1323.7 
± 188.7 

12KL, 896-898, 
n-C26:0 

-0.0147 
± 0.0270 

19.61 infinite 
-999.9 
± 1.4 

-998.9 
± 153.4 

1413.6 
±141.6 

114KL, 3-5.5, 
n-C26:0 

0.0924 
± 0.0313 

9.01 
8.480 

± 0.520 
-654.7 
± 3.2 

34.9 
± 96.4 

52.0 
± 18.7 

114KL, 39-41.5, 
n-C26:0 

0.3479 
± 0.0060 

10.72 
19.150 
± 0.750 

-908.5 
± 0.6 

-662.8 
± 22.1 

786.2 
± 96.4 

114KL, 39-41.5, 
n-C28:0 

0.0869 
± 0.0063 

10.72 
19.700 
± 0.600 

-914.6 
± 0.6 

-685.1 
± 23.8 

808.5 
± 20.4 

114KL, 101-103.5, 
n-C26:0 

0.0794 
± 0.0105 

12.69 
20.500 
± 1.100 

-922.7 
± 1.1 

-638.3 
± 50.3 

860.4 
± 43.1 

114KL, 101-103.5, 
n-C28:0 

0.0534 
± 0.0162 

12.69 23.600 
± 2.300 

-947.4 
± 3.5 

-754.1 
± 165.4 

976.2 
± 158.2 

Continued on the next page  
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Sample (core, 
depth [cm], 
compound) 

Corrected 
fMC1 

Deposition 
age, mid-

point  
[cal. ka BP]2, 
time interval 

14C-age  
[ka BP] 

Δ14C [‰] Δ14Cinitial [‰] ΔΔ14C [‰]3 

114KL, 144-146.5,  
n-C26:0 

0.0677 
± 0.0091 

14.40 
21.600 
± 1.200 

-932.6 
± 1.0 

-612.1 
± 57.4 

831.4 
± 51.5 

114KL, 174-176.5, 
n-C26:0 

0.0493 
±0.0121 

15.33 
24.100 
± 2.100 

-950.6 
± 1.3 

-682.2 
± 81.0 

966.3 
± 72.8 

114KL, 174-176.5, 
n-C28:0 

0.0021 
± 0.0314 

15.33 
49.800 

± 21.900 
-998.0 
± 1.8 

-987.0 
± 43.1 

1271.1 
± 104.9 

114KL, 301-303.5, 
n-C26:0 

-0.0327 
± 0.0188 

18.41 infinite -999.9 
± 1.0 

-999.1 
± 90.0 

1405.5 
± 81.9 

 

ΔΔ14C-values range between 976.2‰ and 786.2‰. ΔΔ14C-values of core 12KL progressively 

decline between the B/A and the PB (Figure 5.2). This trend is exhibited by both the n-C28:0 

and the n-C26:0 but can only be regarded as significant in the n-C28:0 which yields smaller error 

bars than the n-C26:0 (Figure 5.2).  

From the B/A to the PB, ΔΔ14C varies between 1231.2 (B/A, n-C28:0) and 751.9 (PB, n-C26:0) 

and is in a similar range as in core 114KL (Table 5.1, Figure 5.2).  

 After the PB, the ΔΔ14C-signatures of the cores strongly deviate from each other since the 

abrupt decrease about approx. 700 ‰ which characterizes site 114KL, is not present at site 

12KL (Figure 5.2, Table 5.1). Instead, at 9 ka BP ΔΔ14C-values of core 12KL (n-C26:0: 

714.4‰ & n-C28:0: 660.6‰) are lowered by approx. 100 ‰-points relative to the PB and the 

YD (Figure 5.2, Table 5.1). The ΔΔ14C-signature of the n-C26:0 further declines over the 

Holocene and reaches a value of 372‰ during the late Holocene, at approx. 1 ka BP (Figure 

5.2, Table 5.1).  

5.5. Discussion 

5.5.1. Sources of terrigenous organic matter and mobilization of 14C-depleted carbon 

5.5.1.1. Steady state conditions – Late Holocene and LGM 

Considering that the late Holocene and the LGM were periods with rather stable climatic 

conditions (compared to the deglaciation), the ΔΔ14C signature of the long-chain n-fatty acids 

from these time-intervals reflect the background (permafrost-) conditions during the two 

steady states. As core 114KL contains only late glacial to early Holocene sediment (core top 

at approx. 9 ka), the modern steady state is only recorded at site 12KL. During the late  
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Figure 5.2. a) Global rate of sea-level change (Lambeck et al., 2014). b) Mass accumulation rate of long-chain n-alkanes 
(ƩC23-C33) of core 18-3/6 (unpublished data V. Meyer), c) Mass accumulation rate of long-chain n-alkanes (ƩC23-C33) and 
radiocarbon data of long-chain n-alkanoic acids of core 114KL (this study), d Mass accumulation rate of long-chain n-alkanes 
(ƩC23-C33) and radiocarbon data of long-chain n-alkanoic acids of core 12KL (this study). e) Mean Air Temperature if the ice-
free season/summer season on Kamchatka (MATifs Meyer et al., submitted a) and SST from the marginal subarctic NW 
Pacific (site 12KL, Meyer et al., submitted b). f) Mean July insolation at 65°N (Berger and Loutre, 1991). Yellow shaded 
areas mark the warm-phases of the Bølling/Allerød and the Preboreal. Grey bars represent MWP-1a and MWP-1b (after 
Hanebuth et al., 2000; Deschamps et al., 2012). 

  



87 
 

Holocene, the n-C26:0 alkanoic acid has a ΔΔ14C-signature of 372.0 ‰ which is considered 

here as the background signal of the n-alkanoic acids exported from Kamchatka. With a 

ΔΔ14C-signature of approx. 1400‰, the LGM n-fatty acids from sites 12KL and 114KL 

indicate that the turnover of leaf-wax lipids was much slower during the LGM than during the 

late Holocene. As compound-specific ∆14C-values of lipids in modern sediments off the 

Siberian permafrost draining rivers (-530 to -660‰, Gustafsson et al., 2011) are higher than 

off rivers with permafrost free catchments (e.g. 200‰, Kusch et al., 2010) the difference 

points to extensive permafrost coverage on Kamchatka during the LGM. Interestingly, Meyer 

et al. (submitted b) found that LGM summers were as warm as at present which may counter 

the view of extended permafrost during the LGM (relative to modern). Assuming that 

Kamchatka experienced colder-than-present winter conditions during the LGM, mean annual 

air temperatures would have been lowered as well. Such harsh conditions may have allowed 

permafrost to persist despite relatively warm summers.  

Astonishingly, the ΔΔ14C-signature of sites 12KL and 114KL (approx. 1400 ‰, Table 1, 

Figure 5.2) exceeds the modern values of the Siberian Rivers by 900 to 700 ‰-points. This 

suggests that glacial terrestrial residence times of leaf-wax lipids in permafrost areas was 

increased relative to modern. Values above 1000 ‰ even indicate that the OM deposited in 

the sediments at the LGM was 14C-free implying that the contribution of fresh, weakly pre-

aged OM, e.g. from the vegetation or top-soils, was strongly suppressed during the LGM. A 

scarce vegetation coverage on Kamchatka and in the Apuka-catchment could have accounted 

for this. However, glacial and deglacial vegetation history of Kamchatka and the Apuka-

catchment is poorly known (e.g. Dirksen et al., 2013). Assuming scarce vegetation, erosion of 

relatively old organic-rich layers preserved in the permafrost-soils along the riverbanks and 

coastlines may have formed the dominant source of exported OM during the LGM. Also, 

pronounced contributions petrogenic OM, a prominent source of 14C-free carbon, could 

explain the ΔΔ14C-signature (e.g. Kusch et al., 2010). However, CPI-values in cores 12KL 

and 114KL are around 6 suggesting that the OM composition is dominated by fresh, immature 

OM (Figure 5.3). Furthermore, due to their reactivity n-fatty acids are prone to degradation 

(Sun and Wakeham, 1994; Canuel and Martens, 1996) and would lose their functional groups 

during diagenesis. Hence, a significant contribution of petrogenic carbon to the n-alkanoic 

acids is rather unlikely. 

Considering that a few studies suggested that during the LGM, NE Russia’s moisture was 

trapped in glaciers and ground ice during the LGM (Sergin and Scheglova, 1976; Alfimov and 
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Berman, 2001), overland drainage was probably weak and may have reduced the transport of 

vegetation-derived OM into rivers systems. Slow riverine runoff/reduced fluvial energy would 

have certainly increased terrestrial residence times of OM.  

5.5.1.2. Early deglaciation (17-14.6 ka BP) 

5.5.1.2.1. Contribution of thermally mature OM and provenance of leaf-wax lipids 

During the HS1 (between approx. 17 and 14.6 ka BP) all sites exhibit a first pronounced event 

of intensified supply of 14C-depleted terrigenous OM as can be inferred from the increased 

MARƩC23-C33 and a high ΔΔ14C-signature of the n-C26:0 from sites 12KL and 114KL. Coevally 

to the increased terrigenous OM-input all cores are characterized by strongly decreasing CPI-

values (Figure 5.3). A change towards lower values indicates that the portion of thermally 

mature OM, and probably petrogenic carbon, abruptly increased in the course of the 

mobilization event and may imply that the carbon source changed. Numerous oil-shale and 

coal deposits exist in Alaska and the Yukon Territories/Canada (USGS; Barnes, 1967), but 

also the Anadyr basin, the catchment of the Anadyr River, (stretching from the Anadyr 

Lowlands to the western Bering Shelf, Figure 5.1) holds several source rocks of oil and gas 

(Clarke, 1988; Burlin and Agapitov, 2002; Poludedkina, 2007). Considering the anti-

clockwise circulation of the Bering Sea (consisting of the BSC and the EKC) OM matter from 

the Anadyr and Yukon catchments may have been carried to the marginal NW Pacific (Figure 

5.1). This idea is confirmed by MAR of long-chain n-alkanes and CPI-values (unpublished 

data from V. Meyer) from a sediment core retrieved at the continental margin off the Bering 

Shelf (site 18-3/6, Figure 5.1). The site is near Navarin Canyon (Gersonde, 2012), which was 

presumably formed by the palaeo-Anadyr and Yukon Rivers when the Bering and Chukchi-

Shelves were exposed during Pleistocene sea-level regressions (Carlson and Karl, 1984, 

1988).The MARƩC23-C33 and CPI-values of core 18-3/6 show the same pattern with more 

pronounced amplitudes as cores 12KL and 114KL (Figures 5.2 and 5.3). As increased 

MARƩC23-C33 coincides with a first peak in the global rate of sea-level change (Figure 5.2), 

shelf flooding may have resulted in erosion of thermally mature deposits from the Anadyr 

Basin. This would be in agreement with the flooding-scenario for the Bering Shelf (Manley, 

2002), according to which submergence mainly initiated in the western part of the Bering 

Shelf at that time (Figure 5.3). However, unpublished data of the clay-mineral composition at 

site 18-3/6 which indicate that fluvial discharge intensified at 16.8 ka BP (pers. 

Communication R. Wang, May, 2015) suggesting that also the intensified export of OM and 

the mobilization of thermally mature OM was associated with strong fluvial activity of either  
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Figure 5.3. a) Mass accumulation rate of long-chain n-alkanes (ƩC23-C33) of core 18-3/6 and CPI-values of cores 18-3/6, 
114KL and 12KL (b, c ,d, this study). e) Abundance of ice rafted detritus in core MD02/2489 (Gebhardt et al., 2008). The 
grey bar represents the maximum time interval for the final drainage of proglacial Lake Old Crow (after Harrington, 2003; 
Zazula et al., 2004; Kennedy et al., 2010). The dashed line indicates when the LIS retreated from its northwestern limits 
(after Dyke and Prest, 1987; Dyke et al., 2002, 2003). Beforehand, the LIS blocked eastward drainage into the Beaufort Sea, 
causing drainage through the Yukon River (Dyke and Prest, 1987; Dyke et al., 2002, 2003). BLB-shore lines are adopted 
from the shelf-flooding scenario for the Bering Shelf by Manley (2002).   
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the Yukon or Anadyr Rivers. Hence, shelf erosion may have played a secondary role. 

Increased fluvial activity in the Yukon River is likely considering that the Cordilleran and 

Laurentide ice sheets (CIS, LIS, Figure 5.1) began to retreat between approx. 19 ka-15ka BP 

(e.g.: Mann and Peteet, 1994; Mann and Hamilton, 1995; Dyke et al., 2002; Gebhardt et al., 

2008; Hendy and Cosma, 2008; Kennedy et al., 2010; Davies et al., 2011; Taylor et al., 2014). 

The timing is probably best documented by ice-rafted detritus (IRD) in the NE Pacific where 

intensified IRD supply attests to calving-events of retreating outlet glaciers from the Alaska 

Peninsula and the CIS between 17.5 and 15 ka BP (Mann and Peteet, 1994; Mann and 

Hamilton, 1995; Porter and Swanson, 1998; Mosher and Hewitt, 2004; Cosma and Hendy, 

2008; Gebhardt et al., 2008; Hendy and Cosma, 2008, Figure 5.3). Also, the final drainage of 

proglacial Lake Old Crow (Figure 5.1) initiated around approx. 13.7 14C ka BP (16.3 ka BP; 

Kennedy et al., 2010) and was accomplished by approx. 12.6-11.9 14C ka BP (15,0-13.7 ka 

BP; Harrington, 2003; Zazula et al., 2004; Kennedy et al., 2010). As the LIS remained close 

to its northwestern limits until approx. 15-14 ka BP, thereby blocking northward drainage of 

its proglacial lakes into the Beaufort Sea (Dyke and Prest, 1987; Dyke et al., 2002, 2003; Fritz 

et al., 2012), the Lake Old Crow drained westward into the Yukon-River and confluences 

(Dud-Rodkin and Hughes, 1994; Dud-Rodkin et al., 2004; Kennedy et al., 2010). This timing 

of peaking IRD-supply and lake drainage fits well with the increased MARƩC23-C33 and 

decreased CPI-values in our sediment cores (Figure 5.3), implying that enhanced fluvial 

discharge from the Yukon River accounted for the intensified export of OM and the 

deposition of thermally mature OM, potentially derived from Alaskan or Canadian oil-shale 

or coal deposits. A strong influence of Alaskan sources on the sedimentary composition of the 

NW Pacific (as suggested here) is also supported by the glacial provenance pattern of 

inorganic sediment components according to which approx. 50% of siliciclastic sediment 

components from the Meji Drift body (marginal NW Pacific, near site 12KL, Figure 5.1) 

originated from Alaska and the Yukon-River catchment during glacial intervals 

(VanLaningham et al., 2009).  

5.5.1.2.2. Sources of 14C-depleted n-alkanoic acids 

Given the conclusion that melt-water runoff during the early phase of the LIS/CIS-retreat and 

deglacial drainage of Lake Old Crow caused the increased organic supply to sites 18-3/6, 

114KL and 12KL it should consequentially also account for the intensified mobilization of 

strongly 14C-depleted OM. Note that radiocarbon data are not available for site 18-3/6 which 

is why the assumed linkage between the ∆∆14C has to be confirmed by future CSRA of core 
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18-3/6. Although thermally mature organic matter is a potential source of fossil/14C-free 

carbon, it is questionable whether 14C-depleted n-alkanoic acids are directly associated with 

thermally mature OM. Since n-alkanoic acids are prone to degradation during diagenesis and 

catagenesis they are barely present in strongly mature deposits. Instead, intensified runoff in 

the Yukon River probably enhanced permafrost erosion along the riverbanks and mobilization 

of 14C-depleted OM increased. Widespread thawing of Alaskan permafrost seems unlikely 

since sea surface temperature reconstructions for the Gulf of Alaska and the Bering Sea imply 

that the climate was similarly cold as during the LGM (Maier et al., 2015; Meyer et al. 

submitted). Furthermore, thermokarst processes seem to have begun after 15 ka BP (Walter et 

al., 2007; Lozhkin et al., 2011; Reyes and Cooke, 2011).  

5.5.1.3. The deglaciation (14.6-9 ka BP) 

5.5.1.3.1.  Sea-level induced mobilization of 14C-depleted carbon 

Between approx. 15 and 14.6 ka BP increasing CPI-values and decreasing MARƩC23-C33 in all 

cores, including site 18-3/6, likely attest to the end of the mobilization event associated with 

the LIS-drainage (Figure 5.2 & 5.3). Afterwards, the deglacial pattern in the MARƩC23-C33 at 

sites 12KL and 114KL shows strong similarities with the global rate of sea-level change as 

peaks in MARƩC23-C33 during the B/A and the PB coincide with the rapid sea-level change 

during melt-water pulses 1a and 1b (MWP-1a, MWP-1b, Figure 5.2; Lambeck et al., 2014). 

The pronounced similarity suggests that shelf erosion on the shelves along the eastern coast of 

Siberia/Kamchatka was the dominant mechanism for OM mobilization between 14.6 and 

approx. 10 ka BP. However, site 114KL is missing a peak in MARƩC23-C33 during MWP-1a 

(Figure 5.2) indicating that sea-level rise had hardly any impact on the shelf adjacent to site 

114KL, while it seems to have been effective along the shelves off Kamchatka. Interestingly, 

site 18-3/6 also exhibits a pronounced peak in MARƩC23-C33 during MWP-1a (Figure 5.2). The 

discrepancies between site 114KL and 18-3/6 indicate that the supply from the Yukon-River 

catchment ceased during the B/A and that sites 114KL and 12KL are dominated by Siberian 

sources. While the impact of MWP-1a was inconsistently present in the NW Pacific/western 

Bering-Sea, MWP-1b was consistently effective, causing the strongest mobilization-event of 

OM during the deglaciation, since MARƩC23-C33 of cores 114KL and 12KL become maximal 

(Figure 5.2). ΔΔ14C-values varying between 1231-751‰ at sites 114KL and 12KL imply that 

the mobilized OM was nearly 14C-free (Figure 5.2). Hence, it likely that shelf-erosion during 

MWP-1a and 1b triggered permafrost decomposition on the flooded shelves areas. Given this 
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interpretation, coastal erosion and associated permafrost decomposition along 

Kamchatka/Siberia was strongest during the PB/MWP-1b.  

Sea-level rise seems to have mobilized terrigenous OM on the BLB, as MARƩC23-C33 of core 

18-3/6 are similar to the rate of sea-level change (Figure 5.2). So pronounced coastal 

permafrost decomposition may have potentially occurred on the BLB during MWP-1a and 

MWP-1b. However, radiocarbon-data confirming that the OM was 14C-depleted are not 

available. 

5.5.1.3.2. The deglaciation (14.6-9 ka BP) – mobilization of  14C-depleated OM in the 

Kamchatka hinterland 

Although sea-level seems to have played a major role in OM-mobilization, additional 

processes mobilizing 14C-depleted carbon seem to have acted on Kamchatka as MARƩC23-C33 

at site 12KL deviate from the global rate of sea-level change between 13.3 and approx. 11.3 

ka BP. MARƩC23-C33 exhibit a peak while the rate of sea-level change is relatively low (Figure 

5.2). A parallel development establishes again at 11.3 ka BP when MWP-1b causes shelf-

erosion (Figure 5.2). A similar event which is likely not related to sea-level, is also displayed 

at site 114KL but the event is less pronounced and shorter (restricted to 13.3-12.9 ka). Since 

erosional activity along the coastlines presumably weakened in response to slowly rising sea-

level, the strongly pre-aged OM could have been mobilized in the catchments of the 

Kamchatka and Apuka Rivers. The onset of the export event coincides with peat-land 

expansion on Kamchatka, which has been dated to the period between 13.9 and 8.5 ka BP 

(Khotinsky, 1977; Dirksen et al., 2013 and references therein; Klimaschewski et al., 2015).  

The initiation of peat-formation likely occurred in response to climate amelioration including 

warming and increased moisture availability (Dirksen et al., 2013 and references therein; 

Klimaschewski et al., 2015). Warming during the B/A would be in concert with rising 

summer insolation at 65°N (e.g. Berger and Loutre, 1991) and temperature records from 

Siberia, and eastern Beringia (Kokorowski et al., 2008; Kurek et al., 2009; Anderson and 

Lozhkin, 2015) as well as in the adjacent seas (Seki et al., 2004b; Max et al., 2012; Meyer et 

al., submitted a). As the ΔΔ14C-signature of the n-alkanoic acids provides evidence for 

mobilization of strongly 14C-depleted OM, it seems likely that warming also triggered 

permafrost-thaw and increased soil erosion on Kamchatka at that time. Permafrost thaw may 

have also supported peat formation on the Peninsula by raising the ground water table and 

increasing moisture in the soils. Initiating permafrost-thaw during the B/A is in line with the 

beginning expansion of thermokarst lakes in Siberia and Alaska (Walter et al., 2007; Jones 
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and Yu, 2010; Reyes and Cooke, 2011). Conflictingly, the biomarker data from site 12KL 

suggest that the mobilization event culminated during the mid-YD where several temperature 

records from Siberia, Kamchatka and the adjacent Sea of Okhotsk, the Western Bering Sea 

and the NW Pacific consistently indicate a cold-spell (Seki et al., 2004b; Caissie et al., 2010; 

Max et al., 2012; Dirksen et al., 2013; Smirnova et al., 2015; Meyer et al., submitted a, b). As 

suggested by Meyer et al. (submitted b) summer temperatures on Kamchatka declined by 

approx. 2°C, relative to the late B/A (Figure 2). Owing to the cold-reversal, one may assume 

that permafrost would have stabilized on Kamchatka and that soil erosion and the associated 

OM export weakened. However, as MARƩC23-C33 do not track the abrupt climate-deterioration 

suggesting the export of OM-mobilization may not have responded to the abrupt temperature-

forcing. Interestingly, SST and mean air temperature (MAT) records indicate that the severe 

cold-spell in the Kamchatka region was relatively short (lasting only for the first half of the 

YD-stadial; Figure 5.2). So, one may speculate that the response of permafrost-thaw on 

Kamchatka and the associated carbon release, was too slow react to this short event. 

Furthermore, SST records from the NW Pacific indicate that YD-SST were as warm as at 

present and warmer than during the LGM, despite the presence of a cold reversal (Figure 5.2). 

The MAT record from Kamchatka may indicate that YD summers were colder than at present, 

but if the annual mean or winter temperatures on Kamchatka developed similar to the NW 

Pacific SST (including a relatively warm YD), permafrost decomposition may have 

proceeded through the YD despite the abrupt and pronounced summer cooling on Kamchatka. 

At this point, the establishment of records of winter temperature would be helpful to fully 

understand the carbon export dynamics on the Peninsula at that time.  

5.5.1.4. The early Holocene (approx. 10 - 9 ka BP) – end of strong OM mobilization 

MARƩC23-C33 of cores 114KL and 12KL progressively decrease after the pronounced 

mobilization-event at approx. 11.0-10.5 ka BP/MWP-1b until they fall below the average 

deglacial level at approx. 9 ka BP and remain constant throughout the Holocene (sites 12KL 

and 18-3/6; Figure 2). During this time-interval, the ΔΔ14C-signature of the n-alkanoic acids 

of core 12KL exceeds the background value of the late Holocene and is still similar to the 

period of intense sea-level rise and permafrost-thaw on Kamchatka (Figure 5.2). This suggests 

that the export of strongly pre-aged OM into the NW Pacific associated with permafrost 

decomposition was still in progress but gradually declined, as suggested by the decreasing 

MARƩC23-C33, until it probably ended at 9 ka BP (Figure 5.2). Palynological data from peat-

profiles on Kamchatka show that aquatic and marsh plants spread on the Peninsula between 
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approx. 10.4 and 8.5 ka BP (Klimaschewski et al., 2015) which would be in line with 

permafrost thaw. As sea-level globally rose until 6-7 ka BP (Stanford et al., 2011; Lambeck et 

al., 2014) shelf erosion may also have contributed to the 14C-depleted carbon pool at site 

12KL, until 9 ka BP. In contrast to site 12KL, the ΔΔ14C-signature at site 114KL decreases 

abruptly together with the MARƩC23-C33 (Figure 5.2). As the core-top of 114KL represents 9 

ka BP, the ΔΔ14C-signature may potentially be biased by carbon exported later than 9 ka BP, 

so the data-point has to be interpreted with caution. The decrease in the ΔΔ14C-signature may 

indicate that the export of strongly pre-aged OM associated with permafrost decomposition 

ended at approx. 10.5 ka BP. According to the flooding scenario for the Bering Shelf by 

Manley (2002), major parts of the Bering Shelf were inundated after the Bering Strait had 

opened between 13-10 ka BP (Elias et al., 1992, 1996; Manley, 2002; Bradley and England, 

2008), and the coastline changed only slightly after approx. 10 ka BP. Hence, reduced sea-

level change in the Bering-Sea realm may have stopped permafrost erosion on the shelves 

adjacent to site 114KL.  

5.5.2. Implications for atmospheric CO2 and ∆14C 

The first mobilization-event of 14C-depleted carbon, which is associated with the LIS-retreat, 

initiates during the Mystery Interval (MI, lasting from 19-14 ka BP; Broecker et al., 2007). 

Although the atmospheric changes during the MI are assumed to have largely been fueled by 

outgassing from 14C-depleated deep ocean carbon (Broecker, 2007; Schmitt et al., 2012; 

Skinner et al., 2012) and by the production rate of radiocarbon in the atmosphere (Köhler et 

al., 2006) our CSRA-results suggest that reworked pre-aged terrigenous OM was a possible 

additional contribution to the CO2atm and ∆14Catm. The same potentially applied for the 

retreating Fennoscandian Ice Sheet (FIS), as intensified OM-mobilization associated with 

increasing drainage from the FIS during the early HS1/MI is also recorded in sediments from 

the Black Sea (Rostek and Bard, 2013; Soulet et al., 2013). However, to the knowledge of the 

authors, radiocarbon data to confirm or counter this idea are not available for the biomarkers 

in the Black-Sea sediments. 

During the B/A, the mobilization-event on the shelf along Kamchatka associated with MWP-

1a lags the accelerated increase in CO2atm and decrease in Δ14Catm by approx. 600 years 

(Figure 5.4). Together with the absence of a pronounced export event during MWP-1a at site 

114KL this suggests that the sea-level induced destabilization of permafrost soils in the NW 

Pacific/western Bering-Sea realm was probably irrelevant for the abrupt changes of 

CO2atm/Δ14Catm. Since the sea-level induced mobilization of 14C-depleted carbon around 
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Kamchatka seem to have been strongest during the B/A and PB when CO2atm was stagnating 

and ∆14Catm changed relatively slowly (Figure 5.4), sea-level induced destabilization of 

permafrost in the NW Pacific/Western Bering Sea region seems to have been insignificant for 

the major changes of CO2atm and ∆14Catm. Initiating during the second half of the B/A on 

Kamchatka, thaw-induced mobilization of 14C-depleted carbon occurs also too late to be  

 

Figure 5.4. a) CO2atm from Epica Dome C (based on the age models of Monnin et al., 2001 and Parrenin et al., 2013). b) 
∆14Catm from IntCal 13 (Reimer et al., 2013). The ∆14Catm-record from IODP-cores # 310, corals off Tahiti, is superimposed 
(pink line, modified after Durand et al., 2013). c) Mass accumulation rate of long-chain n-alkanes (ƩC23-C33) of core 18-3/6 
(unpublished data V. Meyer). d) Mass accumulation rate of long-chain n-alkanes (ƩC23-C33) and radiocarbon data of long-
chain n-alkanoic acids of core 114KL (this study), e) Mass accumulation rate of long-chain n-alkanes (ƩC23-C33) and 
radiocarbon data of long-chain n-alkanoic acids of core 12 KL (this study). Grey bars represent the pronounced phases of 
deglacial CO2atm/∆14Catm changes. MI: Mystery Interval. 
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relevant for the atmospheric changes. Hence, permafrost dynamics in the NW Pacific realm 

can probably be ruled out as important drivers for the increase/decrease in CO2atm/Δ14Catm at 

that time. This counters the hypothesis of Köhler et al., (2014) according to which permafrost 

in Eurasia may have rapidly released carbon into the atmosphere in the course of abrupt 

warming and sea-level rise at 14.6 ka BP. Considering that MARƩC23-C33 at site 18-3/6 indicate 

that shelf-flooding mobilized OM from the BLB (Figure 5.2) and display a maximum at 14.6 

ka BP (Figures 5.2 & 5.3) it seems still possible that the shelves from the northern Bering Sea 

represented a source 14C-depleted CO2. Since, the BLB, together with the Siberian shelves 

(Figure 5.1), was among the largest permafrost-covered shelf-areas during the LGM 

(Vandenberghe et al., 2014; Köhler et al., 2014) it may have been an important for the rapid 

atmospheric changes (Köhler et al., 2014). However, the sampling resolution of core 18-3/6 is 

too coarse to precisely constrain the mobilization-timing and CSRA-data for the OM is not 

available. Therefore, the authors plan to analyze the radiocarbon activity of leaf-wax lipids in 

core 18-3/6 in order to investigate the timing of sea-level induced permafrost decomposition 

on the BLB. 

Persisting into the YD, enhanced thaw-induced carbon release (on Kamchatka) may have 

presented an additional source to fuel the CO2atm/Δ14Catm changes between approx. 12.6 and 

11.2 (Figure 5.4), next to oceanic outgassing which is suggested as driver of the atmospheric 

changes (e.g. Skinner et al., 2010). The timing of Kamchatka contrasts the idea that 

permafrost is unlikely to have provided CO2 at that time given the widespread cold-spell at 

that time. Considering the small size of Kamchatka (relative to permafrost covered regions in 

Eurasia, Vandenberghe et al., 2014) the inferences for atmospheric changes (during both, the 

onset of the B/A and the YD) adopted here would only apply if carbon export during 

permafrost thaw in large parts of Eurasia had a similar timing as Kamchatka. However, at the 

onset of the B/A (14.6 ka BP) biomarker concentrations in Black-Sea sediments abruptly 

increase which was assumed to reflect abruptly initiating permafrost decomposition in 

southeastern Europe (Rostek and Bard, 2013). In contrast to the Kamchatka data, this would 

support the hypothesis of Köhler et al., (2014). As for the YD, existing studies indicate that 

European permafrost stabilized during the cold-reversal (Renssen and Vandenberghe, 2003; 

Gruber and Reitner, 2007; Fischer et al., 2008; Rostek and Bard, 2013). Rostek and Bard 

(2013) suggested that diminishing input of terrigenous biomarkers into the Black Sea were in 

connection with reduced soil erosion due to stabilizing permafrost conditions. Considering the 

discrepancies between the Kamchatka data and other studies regional differences regarding 

the timing of permafrost decomposition seem likely and permafrost thaw on the Peninsula 
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could have been decoupled from continental Eurasia. So, a large-scale relevance of 

permafrost decomposition as suggested by the Kamchatka-data from this study, seems 

questionable but not impossible considering the sparseness of data constraining the timing of 

carbon mobilization during Eurasian permafrost-thaw. This highlights the need of further 

investigations of the deglacial mobilization of 14C-depleted OM in Eurasia.  

5.6. Summary and Conclusions 

This study provides insights into the LGM-to-Holocene-development of terrestrial residence 

times (i) and provenance of terrigenous OM in the NW Pacific/Bering Sea realm (ii). The data 

allow inferences for the timing of deglacial permafrost destabilization in adjacent Beringia 

and the potential relevance for CO2atm and ∆14Catm (iii). The main findings can be summarized 

as follows.  

(i) During the LGM the terrestrial long-chain n-alkanoic acids are significantly more pre-

aged when deposited in marine sediments than during the late Holocene. Transport of 

OM from the vegetation or the top-soils is probably strongly suppressed (relative to 

present) and OM may have mainly derived from riverbank erosion of permafrost soils. 

We hypothesize that this may have resulted from weak overland drainage during the 

LGM. However, the underlying mechanisms remain poorly understood and require 

further investigations of OM-transport in high latitudes during the LGM. 

(ii) During HS1 increased contributions of thermally mature OM (relative to the LGM and 

the later deglaciation), associated with the retreat of the LIS and the drainage of 

proglacial Lake Old Crow, point to a provenance-change of terrigenous OM in the 

Yukon-catchment. Having spilled out into the Western Bering Sea and the NW Pacific 

the Yukon-River load seems to have played an important role in the sedimentation 

processes in the NW Pacific/Western Bering Sea realm, until the early B/A. A significant 

influence of the Yukon load in the NW Pacific complicates biomarker-based 

reconstruction of palaeo-environmental conditions in the western Beringian realm. 

(iii) Mobilization of 14C-depleted carbon intensifies during HS1 (16.8 and 14.6 ka BP) and is 

associated with enhanced melt-water runoff in the Yukon River. Thermally mature OM, 

riverbank erosion of permafrost and outwash from the retreating LIS may have provided 
14C-depleted OM. After approx. 14.6 ka BP, the sediment cores predominantly record 

mobilization of nearly 14C-free OM associated with permafrost erosion during shelf-

flooding. OM export is most pronounced during MWP-1b/PB. Thaw-induced OM-export 

in the Kamchatka-hinterland likely initiated during the late B/A and culminated during 
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the early YD. While shelf-erosion causes abrupt variations in OM-export, carbon release 

during permafrost-thaw seems to be a slow process and does not vary in-phase with 

abrupt temperature-fluctuations. Pronounced carbon mobilization and permafrost 

decomposition (from both processes) ended at approx. 9 ka BP. With a duration of more 

than 1000 years the carbon-mobilization event associated with permafrost thaw in the 

Kamchatka hinterland lasted significantly longer than the abrupt sea-level induced 

erosion events (200-700 years). 

Terrigenous organic carbon, mobilized during ice-sheet retreat, presents a potential 

carbon source during the MI and further research should address the mechanisms that 

may have made the OM available for conversion to CO2 and release to the atmosphere. 

The hypothesis of Köhler et al. (2014) according to which permafrost decomposition 

induced by shelf-flooding and abruptly rising temperatures was an important carbon 

source at the onset of the B/A, is challenged since mobilization-events of 14C-depleted 

OM (associated with both, MWP-1a and warming) lag the atmospheric event. Instead, the 

timing of permafrost thaw on Kamchatka implies that Eurasian permafrost soils may have 

fueled the atmosphere during the YD. Discrepancies with other studies require further 

research on the timing of deglacial permafrost decomposition and the associated carbon 

release in Eurasia. 
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Appendix - 5 

Table A 5.1. Samples sizes (expressed in µg carbon, µgC) together with the fMC-values and the respective measurement 
uncertainties (σfMC)) from the AMS-measurement of fossil and modern standards used for the process-blank assessment 
(fossil: n-C30:0 alkanoic acid; modern: n-C16:0 alkanoic acid). 1: adopted from Rethemeyer et al. (2013). 

Standard material Mass [µgC] fMC σfMC 

Apple peel bulk 
unprocessed 

38.3 1.0103 0.0089 

Apple peel n-C16:0 
processed 

150.6 0.9650 0.0078 

Apple peel n-C16:0 
processed 

22.4 0.9013 0.0083 

Sigma Aldrich n-C30:0

unprocessed 
n.a. 0.00251 0.00071

Sigma Aldrich n-C30:0

processed 
24.0 0.1453 0.0038 

 

 

 

Figure A 5.1. Graphical assessment of the fMC-value and the mass of the process blank (fMCblank & mblank) based on the 
AMS-results of modern and fossil standards shown in Table A1. The intercept of the two regression lines yields an fMCblank 
of 0.6097 and an mblank of 5.6 µg Carbon (µgC). The uncertainty for fMCblank (σfMC) and mblank (σm) were determined by the 
regression coefficient R2 of the n-C16:0 dataset. The dataset of the n-C30:0 was ignored since n = 2. Based on the R2 of 0.92 
σfMC would be 0.08. According to Shah and Pearson (2007), the R2-value of 0.92 implies that the both, the fMCblank and the 
mblank, are predicted with 92% certainty by the respective regression line. Therefore, these authors inferred that σm can be 

determined by: σm = mblank*(1-R2). Based on R2 = 0.92 the equation yields σm = 0.5 µgC. It has to be acknowledged that σm 
and σfMC are likely underestimated since the uncertainties of the n-C30:0-dataset could not be taken into account. 
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Table A 5.2. List of CSRA-samples from cores SO201-2-12KL and SO201-2-114KL, the respective sample sizes 
(expressed in µgC) and the AMS-results for long-chain n-alkanoic acids (expressed as fMC-values). σfMC represents the 
respective measurement uncertainties from the AMS. Radiocarbon data for site 18-3/6 are not available yet. 

Sample (core, 
depth [cm], 
compound) 

Sample size 
[µgC] fMC σfMC 

12KL, 1-4.5, 
n-C26:0 

17.6 0.5730 0.0074 

12KL, 203-205, 
n-C26:0 

100.2 0.1636 0.0029 

12KL, 203-205, 
n-C28:0 

81.8 0.1542 0.0032 

12KL, 295-297, 
n-C26:0 

13.09 0.3232 0.0064 

12KL, 295-297, 
n-C28:0 

9.4 0.3046 0.0074 

12KL, 419-422, 
n-C26:0 

72.3 0.1228 0.0028 

12KL, 419-422, 
n-C28:0 

63.2 0.1183 0.0029 

12KL, 609-612, 
n-C26:0 

46.4 0.1214 0.0030 

12KL, 609-612, 
n-C28:0 

22.4 0.1302 0.0037 

12KL, 693-696, 
n-C26:0 

71.2 0.0858 0.0026 

12KL, 693-696, 
n-C28:0 

40.08 0.0862 0.0029 

12KL, 896-898, 
n-C26:0 

36.9 0.0847 0.0029 

114KL, 3-5.5, 
n-C26:0 

25.5 0.4132 0.0055 

114KL, 39-41.5, 
n-C26:0 

151.2 0.1092 0.0026 

114KL, 39-41.5, 
n-C28:0 

144.4 0.1048 0.0026 

114KL, 101-103.5, 
n-C26:0 

83.5 0.1136 0.0028 

114KL, 101-103.5, 
n-C28:0 

56.1 0.1102 0.0029 

Continued on the next page 



101 
 

Sample (core, 
depth [cm], 
compound) 

Sample size 
[µgC] 

fMC σfMC 

114KL, 144-146.5,  
n-C26:0 

98.3 0.0983 0.0029 

114KL, 174-176.5, 
n-C26:0 

74.3 0.0926 0.0027 

114KL, 174-176.5, 
n-C28:0 

31.2 0.1131 0.0033 

114KL, 301-303.5, 
n-C26:0 

51.7 0.0404 0.0025 
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6. Summary and Perspectives 

The studies carried out within this thesis ultimately aimed at (i) contributing to a better 

understanding of climatic conditions of the subarctic NW Pacific realm during the LGM and 

the last deglaciation, emphazising on temperature development and the controls, and (ii) 

reconstructing the time-scales of mobilization of 14C-depleted OM during deglacial 

permafrost thaw in Northeast Siberia (Kamchatka and the adjacent Koryak region) in order to 

identify time-intervals when the region potentially represented a source of 14C-depleted CO2. 

The LGM-to-Holocene temperature development of the NW Pacific realm was investigated 

by establishing continuous LGM-to-Holocene summer-SST records for the Western Bering 

Sea and the NW Pacific using the TEXL
86-palaeothermometry, and by establishing a record in 

summer MAT (MATifs) for Kamchatka applying the CBT/MBT’-temperature proxy. It was 

intended to obtain insights into the impact of regional and supra-regional climate drivers, such 

as insolation, atmospheric CO2, N Atlantic climate change or regional oceanic and 

atmospheric circulation. Mass balance calculations for the palaeo glaciers on Kamchatka and 

the Kankaren Range (NE Siberia) were used to estimate LGM precipitation abundance and to 

investigate the controls for restricted glaciation in the region during the LGM. Temperature 

development and inferences for precipitation were used to validate climate-model outputs. 

The established temperature records were used to investigate infer temperature controls on 

deglacial permafrost dynamics Beringia (particularly on Kamchatka and the Koryak area) and 

the associated mobilization of 14C-depleted OM. Mass accumulation rates and the Δ14C-

signature of terrigenous biomarkers was used to identify periods enhanced OM-export into the 

NW Pacific and the Western Bering Sea. It was aimed to test the hypothesis that AMOC-

induced temperature variation controlled permafrost decomposition in the region and making 

permafrost a potential source 14C-depleted CO2 at the onset of the B/A-interstadial, but not 

during HS1 and the YD-cold reversals. Furthermore, it was tested whether or not rapid shelf-

flooding during MWP-1a mobilized 14C-depleted OM on the shelves in the Bering Sea/NW 

Pacific shelves. 

The main findings can be summarized as follows: 

6.1. LGM climatic conditions and deglacial temperature change 

LGM SST in the Western Bering Sea and the NW Pacific were both colder than at present but 

the magnitude of glacial cooling was more pronounced in the Western Bering Sea than in the 

NW Pacific (3°C/1.5°C; see chapter 2). MATifs were as warm as at present (see chapter 3). 
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Ocean cooling is in general agreement with lowered CO2atm and summer insolation during the 

LGM but altered configurations of oceanic surface and atmospheric circulation seem to have 

counteracted the cooling effects of the CO2atm and insolation in the NW Pacific and on 

Kamchatka. The SST data imply that the Alaskan Stream accumulated in the NW Pacific 

during the LGM when sea-level was 120 m below present so Unimak Pass and other Aleutian 

passes became exposed (chapter 2). This weakened the inflow of relatively warm Pacific 

waters into the Bering Sea and at the same time made the relatively warm water masses of the 

Alaskan Stream (warm relative to the East Kamchatka Current) more influential in the 

marginal NW Pacific. This led to relatively weak cooling in the NW Pacific compared to the 

Bering Sea (chapter 2). At the same time stronger than present southerly winds over the 

marginal NW Pacific, presumably resulting from a strengthened North Pacific High Pressure 

System over the marginal NW Pacific, likely accounted for warm summers on Kamchatka. As 

summer temperature in large parts of NE Siberia were similar to today or even warmer while 

the N Pacific was colder than at present (see chapter 3 and references therein)it is suggested 

that an increased thermal pressure gradient may have amplified the southerly flow during the 

LGM. Moreover, a westward displacement of the NPH due to a persistent anticyclone over 

the American ice sheets may have accounted for the strong southerly flow over the subarctic 

NW Pacific (chapter 3). The relatively small reduction of summer SST in the NW Pacific 

(1.5°C) probably supported the establishment of warm summers on Kamchatka as the cooling 

marine influences may have been small compared to today. In turn, the increased southerly 

winds over the subarctic NW Pacific (as suggested in chapter 2) may have additionally 

weakened the influence of the East Kamchatka Current in the subarctic NW Pacific during the 

last glacial, and may have contributed to the relatively warm SST during the LGM, at least 

during the summer season.  

Based on the summer temperature data for Kamchatka and existing data for the Kankaren 

Range it was hypothesized that glacial precipitation must have been abundant if mountain 

glaciation was more extensive than today while summers were as warm as at present. This 

view was supported by mass-balance calculations for the palaeo glaciers, suggesting that 

precipitation must have been similar or even more abundant than at present (chapter 4). It was 

inferred that summer temperature restricted glacier growth which contrasts the prevailing 

hypothesis according to which aridity hampered ice sheet growth in the region. The 

strengthened southerly winds potentially supplied the Pacific Sector of Siberia with enough 

moisture. 
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The HS1 was characterized by heterogenous temperature development which is largely 

caused by the accumulation of Alaskan Stream waters in the NW Pacific. In the Bering Sea a 

cold-spell equivalent to the Heinrich Event 1 in the N Atlantic provided evidence for 

atmospheric teleconnections. In contrast, SST in the NW Pacific warmed progressively 

without being interrupted by a similar cold spell as in the Western Bering Sea/N Atlantic. The 

Alaskan Stream waters seem to have linked the NW Pacific with the Gulf of Alaska, where a 

southward displacement of the westerly Jet, caused by the presence of the Laurentide ice 

sheet, inhibited the establishment of an atmospheric coupling with the N Atlantic (chapter 2 

and references therein) prior to 15 ka BP. On Kamchatka a pronounced cold spell between 18 

and 15 ka BP was probably not associated with AMOC-variability. Its origin could not be 

identified. Similarities between MATifs and the NW Pacific SST during HS1 suggested that 

the temperature evolution on Kamchatka responded to the influence of the Alaskan Stream. 

The oceanographic linkage between the eastern and western Pacific ended with the opening of 

the Aleutian Passes between approximately 12 and 10 ka BP, as adopted from the SST-data.   

From 15 ka BP onwards the temperature development in the NW Pacific realm and 

Kamchatka seems to be strongly determined by atmospheric teleconnections with the N 

Atlantic since the B/A-warm phase, the YD cold-spell and the subsequent abrupt warming 

into the Preboral are clearly exhibited by the SST and MAT-records. This is in line with 

several SST records from the NE Pacific and the Sea of Okhotsk, suggesting that atmospheric 

teleconnections widely determined temperature variation in the subarctic N Pacific realm 

(chapters 2 & 3 and references therein). 

As for summer temperature on Kamchatka, LGM atmospheric circulation and LGM 

precipitation in the NW Pacific several climate-models contrast with the result of this thesis. 

Models suggest cold summers, a weakened HPH and decreased precipitation (see Chapters 3 

and 4). Also, the temperature development during HS1 is only partly in line with climate 

model outputs as models which suggest atmospheric teleconnections, predict widespread 

cooling over the entire N Pacific (see chapter 2 and references therein). 

6.2. Time-scales of OM-mobilization 

The SST and MATifs records provided evidence for cold conditions during HS1 and the YD 

and for abrupt warming into the B/A-interstadial. On Kamchatka the stadials have even been 

the coldest episodes since the LGM as far as summer temperature is concerned. So the 

deglacial temperature evolution corroborates the idea that permafrost decomposition and the 

associated mobilization of 14C-depleted OM may have followed N Atlantic temperature 
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variations and that permafrost in the Kamchatka region may have represented a source of 14C 

depleted CO2 at 14.6 ka BP. It is found that enhanced export (relative to the LGM and the late 

Holocene) of 14C-delpeted OM into the N Pacific happened between approximately 17 and 9 

ka BP and occurred in four pulses. Although HS1 was a cold episode with colder than or 

similar temperatures as during the LGM (see chapters 2 & 3) permafrost erosion seems to 

have strengthened at that time. Instead of temperature it was likely associated with 

strengthened fluvial erosion in the Yukon-River catchment triggered by the beginning retreat 

of the Laurentide ice sheet and drainage of proglacial lakes (chapter 5). Coinciding with 

increasing CO2atm and decreasing Δ14Catm permafrost erosion appears as potential source of 
14C-depleted OM during the Mystery Interval. During MWP-1a and MWP-1b rapid flooding 

of permafrost covered shelves along the Koryak Range and Kamchatka caused abrupt and 

pronounced mobilization of 14C-depleted OM. Permafrost thaw in the Kamchatka interior 

likely initiated in the second half of the B/A-warm phase, peaked during the YD-cold spell 

and ended around 9 ka BP (chapter 5). Mobilization of 14C-depleted OM was strongest during 

the Preboreal and likely associated with MWP-1b. As for duration of carbon mobilization and 

permafrost degradation sea-level rise caused abrupt short events in the range of approximately 

200-700 years. By contrast the retreat of permafrost in the Kamchatka hinterland appears as a 

process of millennia (see chapter 5).  

The identified timing of carbon mobilization counters the hypotheses that permafrost 

decomposition and the associated carbon release followed abrupt temperature variations 

caused by N Atlantic climate change. Carbon mobilization in the Kamchatka-region the rapid 

atmospheric CO2 and Δ14C changes at 14.6 ka BP and was probably not important for the 

atmospheric event. Also, the shelf erosion during MWP-1a initiated too late in the area to be 

considered as CO2 source during the early B/A. Not responding to the YD cold-spell the 

carbon mobilization on Kamchatka represents itself as possible source of 14C-depleted CO2 

for rising CO2atm-levels and declining Δ14Catm.  

6.3. Perspectives – LGM climatic conditions and deglacial temperature development. 

This thesis provides the first continuous and quantitative temperature records for the Western 

Bering Sea, the marginal subarctic NW Pacific and the Kamchatka Peninsula. This allowed 

for new insights into regional oceanic and atmospheric circulation patterns during the LGM. 

The combination of MATifs with data on LGM-glacier extent on Kamchatka provided a first 

but indirect insight into glacial precipitation on Kamchatka and the Pacific Sector of Siberia. 

The SST and MAT records also identified new aspects regarding the nature of teleconnections 
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(particularly during HS1) and contributes to better comprehension of the connectivity of the 

NW Pacific and adjacent Siberia to N Atlantic climate variability. As AMOC-weakening is 

predicted for the future, this might useful for assessing the supra-regional impact of a 

potential future negative feedback triggered by AMOC-weakening. 

The information on summer temperature, precipitation, atmospheric circulation and SST-

development during HS1 is important for the modelling community since several 

discrepancies with climate models regarding these points were identified. Those discrepancies 

highlight the need to further investigate precipitation and temperature development in the 

region, using both, proxies and climate models, in order to identify where climate models may 

insufficiently represent the interaction of several climatic forcings in the region (e.g. the effect 

of continentality in Siberia), or where proxy-interpretations go wrong due to (e.g. biases). 

More proxy-pased data on precipitation are necessary to confirm the newly established 

hypotheses of increased precipitation in the region and of summer temperature as limiting 

factor for ice sheet growth. This particularly applies to Kamchatka where no proxy-data on 

precipitation is available. Pollen-data from terrestrial archives would be a desirable 

complement to the degree-day-model data. The need of further proxy-based reconstructions of 

precipitation and (summer) temperature in western Beringia also manifests itself by 

inconsistencies within proxy-based inferences for LGM-climatic conditions. Proxies generate 

the picture of warm summers, extensive mountain glaciation and dryer-than-present 

conditions in NE Siberia. The finding from the DDM indicates that these conditions are very 

unlikely to have co-existed. The application of different proxies (e.g. beetles, pollen 

brGDGTs for summer temperature) at the same location may represent a way to identifiy 

potential biases or misinterpretations.  

The temperature reconstruction from this thesis are indicators for the summer season. 

However, information on winter or annual mean temperatures would be important to better 

understand the interaction of temperature and cryosphere in the region. It is not clear why 

carbon mobilization - likely associated with permafrost-decomposition - proceeded through 

and even culminated during the YD, despite a pronounced cold-spell at that time. Also, it 

remains an open question how far the annual temperature cycle, (the length of the summer 

and winter season) may have influenced glacier extent in the Sredinny and Kankaren Ranges. 

Together with the existing summer temperature data palaeo-winter temperature would provide 

insights into the annual temperature range and may also allow insights into the length of the 

season, e.g. by modelling the annual temperature cycle. Oxygen isotopes from ice-wedges 
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have been applied as winter temperature archives in Siberia (e.g. Meyer et al., 2002) and if 

present in the vicinity of Kamchatka, those might help to better constrain climate change in 

the region. 

In terms of SST reconstruction in the subarctic N Pacific and its marginal seas, chapter 2 

identifies the TEXL
86 as alternative to the unsaturation of alkenones. Since the UK’

37 is often 

afflicted with several problems in sediments deposited prior to 15 ka BP, the TEXL
86 is 

promising for unravelling oceanographic changes during the early deglaciation. For instance 

constraints on water column stratification may help to understand intermediate water 

formation during HS1 in the Bering Sea (e.g. Riethdorf et al., 2013; Knudson and Ravelo, 

2015). From the SST records (provided in this thesis) for the Western Bering Sea and the NW 

Pacific one may hypothesize that the marginal seas (the Bering Sea and the Sea of Okhotsk) 

were affected by atmospheric teleconnections with the N Atlantic during HS1 (since a cold-

spell is shown for the Bering Sea but not for the N Pacific). Future applications of the TEXL
86 

in the Sea of Okhotsk may help to test this hypothesis. Although there is consensus that the 

existing UK’
37-based LGM-SST in the Sea of Okhotsk are biased by shifting blooming seasons 

of coccolithophorids, the conclusion that precipitation must have been at least as abundant as 

at present challenges this idea since warm summer conditions in the Sea of Okhotsk would 

have represented a source of moisture (see chapter 4). TEXL
86-based SST-reconstruction may 

help to improve the understanding of LGM surface conditions. 

6.4. Perspectives – export of terrigenous OM 

In Chapter 5 it was identified that the provenance of the OM changed during HS1 as a 

significant portion of the lipid-biomarkers in the sediments from the NW Pacific and the 

Western Bering Sea likely derived from the Yukon catchment. This complicates the 

application of biomarkers as palaeo-environmental indicators for western Beringia. So one 

may question the CBT/MBT-derived temperatures during HS1. However, brGDGTs seem to 

be too prone to degradation to be transported over long distances, in contrast to the refractory 

n-alkanes (e.g. Schouten et al., 2013). So it seems very likely that brGDGT do monitor 

Kamchatka temperatures during HS1. Nevertheless, given the provenance change, data on 

terrigenous biomarkers (e.g. distribution of compounds or adopted climate signals) should be 

compared to biomarker assemblages from the eastern Bering Sea, in order to identify groups 

of biomarkers that are concerned by this provenance pattern. 

By analyzing mass accumulation rates and ∆14C of terrigenous biomarkers in marine 

sediments from the subarctic NW Pacific and the Bering Sea, new insights into the timing of 
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mobilization of 14C-depleted OM during deglacial permafrost decomposition could be 

adopted. When discussing the relevance of permafrost decomposition for the atmosphere one 

has to keep in mind that the approach does not allow infrences regarding the fraction of the 

mobilized carbon that entered the atmosphere as CO2. It is possible to make assessments of 

the timing and relative intensity of pronounced mobilization phases and this can be used for 

estimating the likelihood during which intervals permafrost may have contributed to the 

atmospheric greenhouse gases. By generating the counterintuitive idea that permafrost-thaw 

may have represented a source of CO2 during the YD-cold spell instead of the early B/A it 

also revealed new aspects about the general role permafrost may have played in atmospheric 

CO2/Δ14C changes since such timing as found here has not been described beforehand. This 

makes further studies investigating OM-mobilization during permafrost thaw elsewhere in the 

NH, in order to assess the spatial dimension of this timing. This would be an important step to 

unravelling the potential role of permafrost in influencing the atmospheric carbon pool. As 

such, the combination of mass accumulation rates of biomarkers combined with CSRA should 

be applied off Eurasian river systems with larger catchments than the Kamchatka Peninsula, 

for instance in the Black Sea. Chapter 5 of this thesis suggests that shelf-erosion during rapid 

sea-level rise was a powerful mechanism to mobilize permafrost derived OM during the 

deglaciation. In this light, carbon mobilization and the Δ14C-signature of the mobilized OM 

should be investigated on the Siberian Shelf and the Bering Shelf as those areas were the 

largest permafrost covered shelves during the LGM and represent a potentially important 

carbon sources for the atmosphere. This is highlighted by the biomarker data from 18-3/6 

which indicates that OM was mobilized from the Bering Shelf at 14.6 ka BP (Chapter 5). As it 

remains unclear whether or not the mobilized OM was depleted in 14C, CSRA-data for this 

core is highly necessary to confirm this hypothesis core.  

Providing evidence that the mobilization 14C-depleted terrigenous OM in formerly permafrost 

covered areas increased during the deglaciation supports the hypothesis that formerly freeze-

locked, 14C-depleted carbon potentially became available for biogeochemical cycling and 

potentially entered the atmosphere as greenhouse gases. This corroborates the expectation of 

future mobilization of the carbon stock preserved in permafrost today, highlighting the need 

to include permafrost modules into carbon cycle models. The data adopted in this thesis 

(regarding the timing of carbon mobilization and Δ14C-signature of the mobilized OM) could 

be implemented into permafrost modules of (transient) carbon cycle models which estimate 

the impact of deglacial as well as future permafrost decomposition on atmospheric 

greenhouse gas concentrations. 
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9. Description of Own Contributions 

The sediment cores had already been retrieved when I started my PhD. Sampling of the cores 

was performed by myself. I processed the majority of samples from cores 12KL and 114KL 

through the subsequent geochemical sample treatment in the laboratories. I obtained help 

from two students during sample processing. One assisted to prepare samples for TOC 

measurements of cores 12KL and 114KL. The other student processed my samples of core 

18-3/6 through the entire geochemical treatment. Supervising both students I instructed them 

during the lab-work. TOC-measurements were performed by two technicians at the University 

of Bremen. Measurements on the GC-FID, HPLC-APCI-MS and PC-GC were all conducted 

by myself. I performed the sample preparation for compound-specific radiocarbon analysis at 

ETH and also actively run the AMS measurements under the supervision and help of 

Cameron McIntyre.  

TOC-measurements were performed by two technicians at the University of Bremen. 

Measurements on the GC-FID, HPLC-APCI-MS and PC-GC were all conducted by myself. 

Jens Hefter introduced me into the different instruments. I also actively conducted the AMS 

measurements at ETH-Zürich under the supervision and help of Cameron McIntyre and Negar 

Haghipour.  

The research questions addressed in the manuscripts, the data-distribution among the 

manuscripts, the data processing (e.g. correction of radiocarbon-data) and the data 

interpretation were largely developed by myself. I developed the final details of the research 

questions. I wrote all manuscript-drafts and my co-authors made some suggestions where and 

how to improve the drafts. G. Lohmann produced the figures from the Earth System Model 

COSMOS (in Mansucript II) and wrote the model-setup description for the methods section of 

the manuscript. For manuscripts I, II and IV Jens Hefter helped with the accurate description 
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Manuscript III resulted from a research stay at Queen’s University Belfast where I was 

cooperating with Iestyn Barr. He introduced me to his degree-day-model and I applied it to 

my scientific questions.  

 


