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Abstract

Communication of complex content is an important ability in our everyday life. For
communication to be possible, several requirements need to be met: The individual com-
municated to has to learn to associate a certain meaning with a given sound. In the
brain, this sound is represented as a spatio-temporal pattern of spikes, which will thus
have to be associated with a different spike pattern representing its meaning. In this the-
sis, models for associative learning in spiking neurons are introduced in chapters 6 and 7.
There, a new biologically plausible learning mechanism is proposed, where a property of
the neuronal dynamics - the hyperpolarization of a neuron after each spike it produces -
is coupled with a homeostatic plasticity mechanism, which acts to balance inputs into the
neuron. In chapter 6, the mechanism used is a version of spike timing dependent plasticity
(STDP), a property that was experimentally observed: The direction and amplitude of
synaptic change depends on the precise timing of pre- and postsynaptic spiking activity.
This mechanism is applied to associative learning of output spikes in response to purely
spatial spiking patterns. In chapter 7, a new learning rule is introduced, which is derived
from the objective of a balanced membrane potential. This learning rule is shown to be
equivalent to a version of STDP and applied to associative learning of precisely timed
output spikes in response to spatio-temporal input patterns.
The individual communicating has to learn to reproduce certain sounds (which can be
associated with a given meaning). To that end, a memory of the sound sequence has
to be formed. Since sound sequences are represented as sequences of activation patterns
in the brain, learning of a given sequence of spike patterns is an interesting problem for
theoretical considerations Here, it is shown that the biologically plausible learning mech-
anism introduced for associative learning enables recurrently coupled networks of spiking
neurons to learn to reproduce given sequences of spikes. These results are presented in
chapter 9.
Finally, the communicator has to translate the sensory memory into motor actions that
serve to reproduce the target sound. This process is investigated in the framework of
inverse model learning, where the learner learns to invert the action-perception cycle by
mapping perceptions back onto the actions that caused them. Two different setups for
inverse model learning are investigated: In chapter 5, a simple setup for inverse model
learning is coupled with the learning algorithm used for Perceptron learning in chapter 6
and it is shown that models of the sound generation and perception process, which are
non-linear and non-local in time, can be inverted, if the width of the distribution of time
delays of self-generated inputs caused by an individual motor spike is not too large. This
limitation is mitigated by the model introduced in chapter 8. Both these models have
experimentally testable consequences, namely a dip in the autocorrelation function of the
spike times in the motor population of the duration of the loop delay, i.e. the time it
takes for a motor activation to cause a sound and thus a sensory activation and the time
that this sensory activation takes to be looped back to the motor population. Further-
more, both models predict neurons, which are active during the sound generation and
during the passive playback of the sound with a time delay equivalent to the loop delay.
Finally, the inverse model presented in chapter 8 additionally predicts mirror neurons
without a time delay. Both types of mirror neurons have been observed in the songbird
[GKGH14, PPNM08], a popular animal model for vocal imitation learning.
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Chapter 1

Introduction

Throughout this thesis, as the writer I am communicating with the reader in the form of
written communication. Written communication is based on language which evolved as a
form of oral communication. By the means of speech, complex concepts can be transferred
from one person to another. This enables cooperative approaches to developing further,
even more complex concepts as well as technology. Hence, vocal communication is one of
the fundamental properties that make us human.

To be able to verbally communicate with one another, people have to convert sound
into meaning. To that end, sounds are first converted into activation signals in the brain.
The functional cells of the brain are called neurons, which send signals from one neu-
ron to an other via their connections called synapses. In each neuron, these signals are
coded in the membrane potential, which is the voltage difference across the membrane.
When a neuron is active, the membrane potential produces a sharp increase, followed by
a sharp decrease, a process called an action potential or spike. Sounds are thus converted
into elongated patterns of spikes in a number of auditory neurons. To be able to derive
meaning from these spike patterns, patterns have to be assigned a certain meaning. This
process is called associative learning.

In theoretical studies the problem of associative learning has been discussed in dif-
ferent contexts. The patterns that are the most simple to study are purely spatial, i.e.
they consist of a pattern of activation or non-activation in different neurons. These neu-
rons provide input into an output neuron, that is taught to associate one type of output
with one group of the input patterns and a different type of output to another group, the
groups being predefined from the outside. This problem is called the Perceptron problem.
It can easily be generalized to the temporal domain: Here, a output neuron is required to
classify spatio-temporal input patterns into two groups by either spiking in response to a
pattern or not spiking. This problem is called the Tempotron. An even more sophisticated
problem, which is probably most closely related to the real situation in biological neurons,
is the associative learning of precisely timed output spikes in response to spatio-temporal
patterns. This is called the Chronotron problem.

In modelling studies on neural networks, learning rules have been devised that enable
a neuron to learn these association tasks. However, these learning rules suffer from varying
degrees of lack of biological realism. One particular problem all these learning rules have

9



CHAPTER 1. INTRODUCTION

in common is that it is unclear, how the neuron can be instructed on what the correct
response to a given input is, a signal called the teacher signal.

In addition to associating meaning with a certain sound, communication requires the
reproduction of learned sounds. This process is called vocal imitation learning. Vocal
learning is a property that separates humans from other primates. It is shared with very
few mammals, such as whales, and with songbirds. Understanding the processes that un-
derlie vocal imitation learning is a fascinating endeavour. To be able to learn something
about the neuronal activations that occur during vocal imitation learning, experimental
studies have been done on songbirds. The vocal imitation learning process of songbirds
shares a remarkable amount properties with the one of humans: There is a critical phase,
in which the sounds which are to be imitated are learned. In this phase, social interactions
are very important [BD13]. After that, in a babbling phase, the young learner produces
first, small sound segments, which over time become more and more similar to the tar-
get sound sequence. Since it is easier to access experimental data for songbirds than for
humans, theoretical studies may also focus on songbird imitation learning in a first step.
Due to the similarities in the learning process, however, it can be hoped that some of the
general principles that are found to enable songbirds to perform imitation learning are
also present in humans.

The first step to vocal learning is the ability to memorize a sequence of sounds. This
sequence of sounds is represented in the brain in a sequence of activations in an auditory
brain area. Memorizing the sequence is then equivalent to being able to reproduce the
sequence without the auditory input. In theoretical neuroscience, there have been ad-
vances towards the learning of reproducing sequences of activations in artificial neuronal
networks [Hop82]. These are usually connected in an all-to-all fashion, such that each
neuron gives input to all other neurons in the network and thus indirectly to itself. In
these so-called recurrent networks, sequences can be in general conceived in the following
way: A neuron activates the next neuron, which in turn activates the neuron after that
and so on, until the sequence is complete. However, if more than one sequence is sup-
posed to be learned, it is important, that each neuron does not only get input from one
neuron, but from several. This implies, that the combined input from several neurons will
activate a subsequent neuron. Thus, if these input neurons are not activated exactly in
the correct way, it is possible that they fail to activate the subsequent neuron and thus,
the sequence is interrupted. Likewise, if one part of the sequence is slightly distorted,
more than just the target neuron can be activated, which can lead to a very high network
activity. Thus, recurrent networks are highly sensitive to noise. Therefore, it is difficult
to generate, let alone learn, stable sequences of activation. It has been shown that it
can be done, however, if during the learning process the network is already exposed to
noise, which enables it to learn to tolerate some degree of noise and thus generate stable
sequences [LB13]. However, most of the learning rules employed are relatively artificial
and not suitable to imprint sequences of activation on networks of realistic spiking neurons.

Once the auditory sequence is memorized, it needs to be translated into suitable motor
activations that in turn generate the same sound sequence. It has been hypothesized that
this is done in the form of reinforcement learning, where the young learner just tries out
variations of muscle activation and gets some feedback on how well she is performing.

10



CHAPTER 1. INTRODUCTION

From this signal, the learner can change her behaviour towards better performances by
trial-and-error learning. This framework works well for simple, low-dimensional targets,
but suffers in a high-dimensional setting, where there are just too many different types of
motor activation that would have to be tried out. Furthermore, each new sequence would
have to be learned individually from scratch. Since imitation learning is remarkably fast in
humans, such that a simple tune can be imitated immediately upon hearing it only once,
this can not be the only mechanism enabling humans to perform vocal imitation learning.
Some songbirds also learn to imitate remarkably complex sounds, such as the lyrebird for
example, which is famous for imitating car alarms and camera shutters as well as chain
saws. It is hard to conceive how this could be achieved with reinforcement learning.

Another way to learn to generate a motor sequence from the memorized sound se-
quence is provided by so-called inverse models. There, in the learning phase the young
learner produces arbitrary sounds, similar to the babbling phase of human babies and
young songbirds. During this phase she experiences the forward model of “this particular
motor activation produces this sound and from that derives the inverse model ”if I want
to produce this sound, I have to perform this particular motor activation”. These inverse
models have been suggested as a learning mechanism [HGH14]. It was shown that for a
simple correlational learning rule and a linear forward mapping, a highly variable motor
code during the learning (or exploration) phase leads to a so-called causal inverse model,
which maps auditory activations back onto their respective motor causes. It remains an
open question however, how more complex action-perception mappings on realistic spik-
ing neurons could be inverted with a biologically plausible learning rule. Such a learning
rule faces two main difficulties: In the motor population, which triggers the sounds and
therefore the auditory activation, a trace of earlier activations has to persist over time,
until the activation from the auditory population is fed back into the motor population.
Furthermore, then the original activation and the feedback from the auditory population
have to be compared.

Learning of inverse models or classifications or, in fact, of anything else has to manifest
in a physiological change in the brain. The underlying hypothesis in neuroscience is that
this physiological change is in the strength of the synapses, the connections between neu-
rons. How much each neuron is influenced by the activation of another neuron providing
input to it is different between neurons. The magnitude of this influence is experimentally
accessible, so the strength of the coupling between to neurons can be measured. This
connection strength is called synaptic strength, efficacy or weight. The synaptic efficacy
can change over time due to activations in the two neurons forming the synapse. The
hypothesis that learning is just the changing of the synaptic efficacy was formulated by
Hebb [Heb49]:

Let us assume that the persistence or repetition of a reverberatory activity
(or ”trace”) tends to induce lasting cellular changes that add to its stability.
When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.

This implies that previous activations in the brain drive synaptic change. This process is
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CHAPTER 1. INTRODUCTION

called synaptic plasticity.

Synaptic plasticity is investigated extensively in experimental studies. It has been
found that the direction of synaptical change depends on the precise timing of spiking
activity in both neurons [DP04, DP06, CD08]. This phenomenon is called Spike Timing
Dependent Plasticity (STDP): the neuron sending a signal via the synapse, which is also
called the presynaptic neuron and the neuron receiving the signal, which is also called the
postsynaptic neuron. In a typical excitatory neuron, the intensity of the weight change is
stronger the closer in time the two activations are. For a causal spike pattern, where first
the presynaptic neuron spikes and then the postsynaptic neuron spike, the synaptic weight
is strengthened and for an anti-causal spike pattern, the weight is weakened. More recently,
however, it has been found that the direction and strength of the weight change depends
on the activation patterns in a much more complex way [FD02, WGNB05, SH06, AWP13].
Additionally, it is unclear what the computational purpose of these synaptic learning rules
is. Theoretical work can thus provide meaningful insights into the nature and purpose of
synaptic learning rules. Furthermore, it can identify new learning rules that are useful
from a computational perspective and thus inspire new experimental investigations.

In theoretical studies, the role of plasticity is often investigated independently from
the underlying dynamics of the neuronal network. Combining for example classic STDP
with any network of spiking neurons leads to an unbounded strengthening of the synap-
tic weights, which are strong enough to cause spikes, since each presynaptic activation
leads to a causally timed postsynaptic activation, which leads to a strengthening of the
synapses, which in turn even strengthens this effect. These runaway effects can be avoided
by a capping of the weights, such that weights grow to a maximal weight but not beyond.
Another possibility is the introduction of a self-inhibiting state of each neuron after a
spike. This limits the total number of spikes. Homeostatic plasticity mechanisms are yet
another example of synaptic plasticity mechanisms that aim to keep the activity in a given
network at a target activity.

Finally, it is important to take the interaction of the learning system with the outside
world into account. Many modelling studies focus on one particular brain area, which then
is modelled in great detail. However, complex behaviour relies on the interaction of differ-
ent brain areas, which can be modelled as different modules. Looking at the interactions
of the modules and how their combined activations interact with the world can provide
meaningful insights into the functional modules necessary to perform a given task. From
these theoretical insights, new directions for experimental investigations can be derived.

This thesis is organized in ten chapters. The first chapter provides an introduction to the
topic, the second chapter gives a brief overview of the biological context, which inspires
the theoretical work. There, the core pieces of information on neurons, synaptic plasticity
and on vocal imitation learning in the songbird are provided. In the following chapter,
the theoretical considerations that are the basis for this work, will be introduced. This
includes a number of neuron and plasticity models. Furthermore, the concept of supervised
learning is introduced. In chapter four, the theoretical models that have been devised to
investigate songbird imitation learning will be presented. Furthermore, a underlying basic
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insight into the nature of imitation learning on spiking neurons is introduced. In the
fifth chapter, a simple inverse model learning algorithm based on the self-inhibition of
neurons after a spike and a non-classical form of STDP is introduced. This learning
mechanism is applied to a simple Perceptron classifier in chapter six. The extension of the
Perceptron to the temporal domain, the Chronotron is investigated in chapter seven, where
a new learning rule based on a homeostatic principle is introduced. In chapter eight, the
analogy of Chronotron learning to the learning of inverse models in spiking neurons that
was intoduced in chapter four is applied to learning inverse models with the previously
introduced learning rule. Furthermore, this learning rule is applied to the learning of
sequences in recurrent networks in chapter nine. Finally, all results are summarized and
discussed in chapter ten.

To facilitate understanding of individual chapters independently from each other, the
description of all relevant parts of the respective models will be repeated in each chapter.
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Chapter 2

Biological Background

In this chapter, I will provide a brief overview over the biological background of this
thesis. The basic function of neurons, the functional cells in the brain of animals, will
be introduced. The connections between these neurons, which provide the basis for the
computing power of the brain, will be discussed. Additionally, I will introduce basic
concepts of the phenomenology of how the connections change over time as a response to
experience.
Finally, I will briefly introduce the biological model system, on which this thesis is focused:
the songbird. The behaviour of songbirds is diverse and varies greatly between species.
For theoretical work, abstractions on this diversity are necessary in order to restrict the
description to the properties of a generic vocal learner. Therefore, the description here will
also be limited to the generic learning behaviour of songbirds. Finally, the functionally
important parts of the songbird brain anatomy, the song system, will be introduced briefly.
The brain function of the songbird is an active field of experimental research. Therefore,
theoretical work can contribute to understanding the functionally important modules a
vocal learner needs to have and to match these onto experimental results. Finally, I will
focus on the phenomenon of mirror neurons in the songbird brain, which are neurons that
are active in the same way when the bird sings its song and when it passively hears the
same song. These mirror neurons have inspired new theoretical work on vocal learning
[HGH14].

2.1 Neurons and Neuronal Networks

In this section, I will provide a brief introduction to biological neurons and their mutual
connections. This description loosely follows [DA01].

2.1.1 Neurons

Neurons are the main functional cells that allow the brain to perform computing tasks.
They differ from other cells in animals based on two main characteristics: Their shape
and the fact that they have a voltage potential across the cell membrane.
The morphology of neurons typically consists of a cell body and two different types of
appendages: Dendrites and axons (see figure 2.1(a) for a schematic drawing). When a
dendrite of one neuron is close to the axon of another neuron, they can form a connection,
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a so-called synapse. Via this connection, activation signals can travel from one neuron to
the other. The connection is directed, that is signal travel from the axon of the ”sender”
neuron to the dendrite of the ”receiver” neuron, but not in the other direction. Due to
this direction of information flow, the ”sender” neuron is also called pre-synaptic neuron
and the ”receiver” neuron is called post-synaptic neuron. Axons are smooth appendices
that only branch out at the end, while dendrites branch out a lot to collect input from a
high number of presynaptic neurons.
The inside of a neuron is separated from the outside by the cell membrane, a bi-lipid
layer. Across this membrane, a potential difference can be measured, which is called the
membrane potential. This membrane potential is the medium of signal processing and the
basis for fast signal transmission along the axon. It is kept in place by ion pumps, which use
metabolic energy to maintain a gradient of calcium, potassium and sodium ions across the
membrane. Concentrations of calcium and potassium are higher on the outside of the cell,
while the sodium concentration is higher on the inside. In equilibrium, the voltage across
the membrane hovers around −70mV . This is called the resting potential. Ion channels
in the membrane can disturb this equilibrium: They can open to let ions of a specific type
flow along the gradient. Voltage dependent ion channels open and close depending on the
membrane potential. When the membrane potential is sufficiently perturbed away from
the equilibrium, a fast feedback process is triggered, such that the voltage-dependent ion
channels behave in a stereotyped way to allow for the membrane potential to perform a
sharp increase, followed by a sharp decrease with an undershoot of the membrane potential
below the resting potential. This stereotyped response is called an action potential or, due
to the short duration of the perturbation, a spike. This action potential is triggered, when
the membrane potential is sufficiently high, that is above a certain spiking threshold, which
is typically at about −50mV . At the spiking threshold, first the sodium channels open,
allowing positive sodium ions to flow into the cell, thus depolarizing the neuron. Then
the membrane potential quickly rises (in less than a millisecond) to about 0mV . Slightly
later, the potassium channels open, causing an influx of potassium which leads to a sharp
drop in the membrane potential. This drop stops at the reset potential, which is typically
below the resting potential. From here, the membrane potential relaxes back towards the
resting potential. The whole process of action potential generation is very fast, such that
the action potential is localized within the cell. They are usually triggered in the cell
body (soma), where the input from other neurons is integrated, and then quickly travel
along the axon towards the synapses and also along the dendrites. The signals travelling
from the soma back up the dendrite are functionally different from the action potentials
travelling along the axon and are called backpropagating action potential. After travelling
down the axon upon arrival at the presynapse, the strong depolarisation of the action
potential triggers synaptic transmission. Hence, the action potential is the fast travelling
signal that allows for rapid information transmission between neurons.
When the strong depolarization of the action potential invades the presynaptic bouton,
neurotransmitters are released into the synaptic cleft between the presynaptic bouton
and the postsynaptic spine. These neurotransmitters bind to the ligands of the other
class of ion channels in the membrane, which for that reason are called receptors. These
are strategically positioned at the postsynaptic spine to facilitate synaptic transmission.
These ion channels are specific to the type of ion that they allow to pass through as well.
Hence, the influence on the membrane potential of the transmission of the signal across the
synapse can either be towards more or less polarized values. When the membrane potential
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Figure 2.1: Simplified schematic drawing of a neuron and a synapse. Left: Two
neighbouring neurons; each neuron receives input from other neurons through its
dendrites, integrates these in the soma and, upon a spike sends input to other
neurons via its axon. When the dendrite of one neuron comes close to the axon
of another one, a synapse can form. (b) On the presynaptic side, a bouton forms,
where vesicles containing neurotransmitters are stored. Upon arrival of a spike at
the synapse, these vesicle fuse with the membrane to release the neurotransmitters
into the synaptic cleft. There, they will bind to the receptors at the postsynaptic
spine, which will in turn open the ion channels, thus causing a deflection of the
membrane potential.

is deflected upwards towards the spiking threshold, the input into the neuron is called
excitatory. An inhibitory input into a neuron is caused by an ion channel, which allows
for the membrane potential to drop in response to the binding of the neurotransmitter,
thus pushing the neuron away from the spiking threshold, or inhibiting it from spiking.
The disturbance of the postsynaptic membrane potential is called postsynaptic potential
or PSP (either excitatory or inhibitory). The maximum amplitude of the PSP varies
between synapses, which implies that synapses are of different strength.
When a signal is transmitted through the synapse into the dendrite of the postsynaptic
neuron, it travels towards the soma, where all inputs are integrated. When the summed
input currents suffice, the neuron generates its own spike which is transmitted to its
postsynaptic neurons.

2.1.2 Synapses

Whenever the axon of one neuron comes close to the dendrite of another one, a synapse
may form (see figure 2.1(b) for a schematic drawing). There are two types of synapses:
Chemical synapses and electrical synapses. While in electric synapses, a bidirectional and
very direct connection is formed, in chemical synapses a more intricate form of signal
transmission is employed. To that end, a physical structure at the site of the connection
forms: On the presynaptic side a bouton forms, which gets its name from the button-like
shape. On the dendrite, a spine forms, which is elongated towards the axon. Between the
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presynaptic bouton and the postsynaptic spine, there is the synaptic cleft, which separates
the two by about 20− 50nm. In the presynaptic bouton, there are vesicles, little bubbles
of cell membrane filled with neurotransmitters. When a presynaptic spike arrives at the
presynapse, these vesicles can fuse with the cell membrane, releasing neurotransmitters
into the synaptic cleft. If they do, the neurotransmitters can diffuse very quickly towards
the postsynapse, where they bind to receptors, which in turn open their ion channels. This
elicits a perturbation in the membrane potential, which then travels towards the soma of
the postsynaptic neuron. Neurotransmitters unbind from the receptors and are removed
from the synaptic cleft, as they are reuptaken into the presynapse.
While the transmission of the main electrical signal is unidirectional, there are retrograde
messengers that travel backwards from the postsynapse to the presynapse. These messen-
gers are not involved in computational tasks, but they are only important for plasticity
purposes.
There are two basic types of synapses: Those that cause a upwards deflection of the
postsynaptic membrane potential upon a presynaptic spike are called excitatory. Those
that cause a downwards deflection are called inhibitory. The former is implemented by
sodium channels, while the latter is implemented by potassium channels. The receptors of
these different ion channels react to different neurotransmitters, such that the neurotrans-
mitter the presynapse emits has to match the postsynapse. The majority of excitatory
synapses is formed by glutamatergic synapses, which are activated by the neurotransmit-
ter glutamate. The matching receptors are called AMPA receptors, which open sodium
channels. Inhibitory synapses are usually GABAergic synapses, which are governed by
the neurotransmitter GABA (γ-aminobutyric acid). The ion channels which are opened
upon GABA exposition are potassium channels. Which synapse can form between two
neurons is defined by the presynaptic neuron: The output from a neuron is either excita-
tory or inhibitory. This implies, that synapses cannot change their type and therefore the
direction of influence on the membrane potential. This property is called ”Dale’s law”.
However, due to the very large number of synapses in the brain, each neuron receives both
excitatory and inhibitory inputs at all times.
Synapses also differ from each other in strength. To evaluate the strength of a synapse
experimentally, an experimentator first needs to find a pair of connected neurons. Then,
a spike in the presynaptic neuron is triggered, which is transmitted to the postsynaptic
neuron via the synapse in question. In the postsynaptic neuron, the deflection of the
membrane potential in response to the single presynaptic spike can be measured. The
amplitude of this postsynaptic potential then depends on the strength of the synapse.
This synaptic strength, or weight, provides an estimate of how much the activity of the
presynaptic neuron influences the postsynaptic neuron. The synaptic weight is not sta-
tionary over time, but can change due to pre- and postsynaptic activity. This process of
changing synapses is called synaptic plasticity and will be discussed in the next section.

2.1.3 Plasticity

The strength of a synapse is defined by the strength of the deflection of the postsynaptic
membrane potential upon a presynaptic activation. This connection strength is subject
to changes over time. In fact, it is assumed that the changes in strength of synapses is
what enables learning in the brain. The strength of a synapse can change on different time
scales: Upon repeated presynaptic activation, short term plasticity takes place, usually in
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form of a weakening of the synaptic transmission. This can be seen in the decrease of the
amplitude of the PSP in response to a high frequency presynaptic burst. This is caused
by a depletion of neurotransmitter vesicles in the presynapse. It takes a few seconds to
refill the vesicles and return the synapse to the original strength. In this thesis, effects of
short term plasticity will be omitted.
The other type of synaptic plasticity is called long-term plasticity, because it leads to
lasting changes in the strength of the synapse. This is the kind of synaptic change that
is hypothesized to be involved in learning. The long-term weakening of a synapse is
called long-term depression (LTD), while the long-term strengthening of a synapse is
called long-term potentiation (LTP). LTP and LTD can be a result of very short pre- and
postsynaptic activity and have long lasting effects. The dependency of plasticity on pre-
and postsynaptic firing patterns is diverse and complex. One striking characteristic is the
dependency of the synaptic change in response to pre- and postsynaptic changes on the
precise temporal order of these spikes, a phenomenon that is called spike-timing dependent
plasticity and will be discussed in the next section.

2.1.3.1 Spike Timing Dependent Plasticity

In modern biological experiments, it was found that the nature of synaptic change depends
on the specific activation pattern of pre- and postsynaptic changes. This phenomenon,
spike timing dependent plasticity (STDP), was first investigated in spike pairs [DP04,
DP06, CD08], where it was found that for excitatory synapses the causal spiking order
(first pre- and then postsynaptic) leads to a synaptic strengthening, while the reverse order
leads to a weakening of the synapse. The overall amplitude of the synaptic change depends
on the temporal distance between pre- and postsynaptic change and decays approximately
exponentially with that distance; for a simple computational model see section 3.4.1.2.
Since this is the Classical shape of STDP, this type of STDP will be called CSTDP
throughout this thesis. However, experiments with more complex spike patterns have
revealed that STDP is much more complex than that. For example, it was found that
for inhibitory synapses, the causal order of spikes induces a strengthening, while the
anti-causal order induces a weakening, which has the opposite net effect of the standard
shape of excitatory STDP on the membrane potential [HNA06]. Since this net effect
is the exact opposite of the classical shape of CSTDP, I will here call it reverse STDP
(RSTDP). In excitatory synapses, it was found that the reversed temporal order (first
post- then presynaptic spiking) could lead to LTP (and vice versa; RSTDP), depending on
the location of the synapse on the dendrite [FPD05, SH06]. Additionally it has been shown
that CSTDP does not always rely on spikes, but that strong subthreshold depolarization
can replace the postsynaptic spike for LTD, while keeping the usual timing dependence
[STN04].
Due to its compelling temporal dependencies and relative simplicity of modelling, STDP
has been a popular learning rule investigated in theoretical studies.

2.2 Songbirds

Imitation learning is central to learning from others in a group. While imitation learning
in general is hard to investigate, because the behaviour is hard to quantify, vocal learning
is a comparatively well controlled situation. Songbirds are one of the very few animals that
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perform vocal learning, which makes them a good animal model for studying the details of
how vocal learning comes about. In fact, there are remarkable similarities between vocal
learning in songbirds and humans [DK99, Mar70, Moo09]. A recent review discussing the
possibilities of the bird model in applied medical research is given in [BD13].

In this section, I will provide a brief introduction into the learning behaviour in song-
birds. This process involves several sets of different learning phases, in which the bird
needs to be exposed to the right kind of stimuli for the learning process to be effective.
I will go on to discuss the neuroanatomical basis of imitation learning in songbirds, the
avian song system. While a lot of studies have been done to investigate the connections
between brain areas and their specific roles, the precise structure and the specific task of
each brain area remain under investigation. Here, theoretical work can provide insights
into possible roles of different brain areas that are necessary for vocal imitation learning.
Lastly, I will focus on one specific phenomenon in the avian brain: mirror neurons. These
are neurons that are active in the same way when the bird vocalizes and when it pas-
sively listens to a playback of its song [PPNM08, GKGH14]. These mirror neurons give
rise to theoretical considerations linking songbirds learning to inverse models (see section
4) [HGH14]. Good reviews on the vocal learning in songbirds are given in [BD02] and
[DK99].

2.2.1 Behaviour

Songbirds use their songs to woo a mate and defend a territory. Young songbirds therefore
learn to imitate the song of a tutor. Vocal learning is separated into distinct phases, during
which the learner needs to be exposed to specific stimuli to enable learning. If in the critical
period exposure is prevented, learning fails. For songbirds, there is a critical period in
which the young bird has to be exposed to the tutor song, which it is supposed to learn.
After this critical period has passed no more songs can be learned. After the student
bird has learned a sensory representation of the tutor song in the sensory period, in a
different phase it performs sensorimotor learning, where it needs to be exposed to its own
vocalizations. In this phase, also called a babbling phase, the young bird generates highly
variable sounds of low amplitude similar to babbling behaviour in infants. From these
small sound snippets, or subsong, later an imitation of the whole song emerges. This song
will first still be variable and therefore be called plastic song and then crystallize into the
adult version.

2.2.2 Basic Neuroanatomy

The avian song system is a complex structure (see figure 2.2.2), of which I will highlight
some key aspects here, that are important to understand this thesis. For more details
refer to [BD13] or [RPMJ04].
In the avian brain, sounds are processed in several auditory areas (caudal mesopal-

lium (CM), medial part of the dorsolateral thalamic nucleus(DLM), nucleus avalanche
(Av), caudomedial nidopallium (NCM), nucleus interface (NIf), nucleus ovoidalis (OV),
nucleus uvaeformis (Uva), field L), which I will not discuss in detail, because they are
not part of the song system. These areas project to the motor part of the song system,
specifically to HVC (abbreviation used as a proper name, formerly higher vocal center),
which is a premotor area. Activations in HVC are extremely sparse and involved in the
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Figure 2.2: Schematic drawing of the avian brain. Processed auditory input is fed
into premotor area HVC, which innervates RA, which in turn controls respiratory
centers and the motor neurons controlling the vocal organ. LMAN provides further
input into RA.

timing and sequencing of the song [HKF02, FS10]. HVC innervates RA (robust nucleus
of the arcopallium), which directly controls the motor neurons in the vocal organ and
the respiration. Both, HVC and RA are important for song production throughout life
[NSL76]. Lesions cause song disruption or even muteness. HVC and RA are also indirectly
linked via the anterior forebrain pathway (AFP), which is crucial for song learning and
the slight variability present in adult song [KB06, TBW+11]. In particular, area LMAN
(lateral magnocellular nucleus of the anterior nidopallium) in the AFP has been viewed
to be particularly important for learning in songbirds, since it provides highly variable
input into RA during learning, in particular in the sensorimotor phase, and comparatively
stereotyped activations during directed singing in the adult bird.

2.2.3 Mirror Neurons

Mirror neurons were originally discovered in the frontal cortex of monkeys [DPFF+92].
These are neurons that are active during the performance of an act and in a similar way
during the passive observation of that same act. Neurons with this general property were
later discovered in songbirds as well. I will here only provide a short introduction, for a
review see [Moo14].
During the vocalization of a songbird, certain neurons in areas HVC, RA and LMAN
are active. In sleeping or anaesthetized birds, these same neurons are also active during
passive replay of these songs. In fact, in zebra finches, all areas downstream of HVC
are activated during playback. However, the most striking observations were made with
chronic extracellular recordings in freely singing swamp sparrows: Here, the activations in
HVC neurons innervating area X are active at almost precisely the same time relative to
the song during singing as during replay [PPNM08]. It would be easy to assume that this
effect is just a side-effect of the reaction of these HVC neurons to identical acoustic stimuli.
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However, it was found that the singing related activity of these cells is not perturbed by
altered auditory feedback during singing [PPNM08, HTY+14]. Furthermore, the precise
mirroring activations can only be found in sleeping or anaesthetized birds, which implies
that sensory input into HVC is gated off during singing.
While in HVCX neurons mirroring activity with a zero time delay between vocalization
and playback were found, neurons in LMAN display mirroring behaviour with a time lag
of about 40− 60ms [GKGH14]. In their study, Giret et al. observed singing behaviour in
freely moving zebra finches and playback during sleep. In their study, they also estimate
the loop delay, that is the time it takes for motor activation in LMAN to elicit sound and
the time that it takes for a response in LMAN to occur during playback of the song. They
estimated the loop delay to lie between the minimal measured value at 32ms and the
median loop delay at 56ms. The delay of the mirroring activity in LMAN thus roughly
matches the loop delay. Throughout this thesis, I will therefore assume a loop delay in
the order of magnitude of 40ms.
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Chapter 3

Theoretical Background

Since the biology inspiring theoretical investigations of learning is very complex, any the-
oretical approach will have to be based on simplifications of all components of the system.
In particular, if, like here, a modular system of interacting modules is to be investigated,
the elements of which the modules are comprised should be chosen to be as simple as pos-
sible to allow for reasonable computing times. In this chapter, I will provide an overview
about the standard neuron models that will be used throughout this work, as well as the
ways in which these neurons then are coupled to form networks. I will go on to discuss
different standardized learning problems, as well as a number of learning rules that strive
to solve these problems. The type of learning problems discussed in this chapter usually
consist of a desired input-output relationship in a given neuronal network, which is sup-
posed to be acquired during training. During training, an outside entity gives feedback to
the network on how well it is doing (reinforcement learning, 3.4.3) or even how to change
the connections from input to output to derive the required input-output relationship
(supervised learning 3.4.2). Most of this description loosely follows [DA01].

3.1 Neuron Models

Due to the complex nature of real biological neurons, neuron models always have to make
some simplifications. Which simplifications are reasonable depends on the context, in
which the models will be used, since there is a tradeoff between biological realism on the
one hand and computational cost and analytical tractability on the other hand. While
there are very complex neuron models that capture many different aspects of neurons, here,
I will limit the description to the basic neuron models that are widely used in modelling
studies.
All these neuron models have two things in common: The spatial structure of the neuron
is omitted, which leads to point neuron models. Furthermore, all model neurons reproduce
the basic non-linearity of the spiking process. This spiking process is modelled in great
detail in the Hodgkin-Huxley type model (see section 3.1.2.3) or just as a threshold crossing
event in the (conductance-based) integrate-and-fire neuron (see section 3.1.2.1 and 3.1.2.2).
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3.1.1 Rate Neurons

Rate neuron models are models that operate on the firing rate rather than on single spikes.
Here, I will only present the very basic idea of rate neurons, since they will not be used
in this thesis. However, I want to give a very basic introduction into what a rate neuron
is and how it operates, because rate neurons have been used in some of the discussed
literature.
There are many different rate neuron models, which have in common that the neuron
receives input from its presynaptic neurons and converts it to an output. Both, the input
hi and the output yi are modelled as real numbers. The output is given by an activation
function g(hi), such that

yi = g(hi) = g

⎛⎝∑
j

wijxj + hexti

⎞⎠ (3.1)

where wij is the synaptic weight between presynaptic neuron j and postsynaptic neuron
i. xj is the activation of presynaptic neuron j, hexti is an external, non-synaptic input into
neuron i.
The activation function g(h) can be chosen in different ways to capture different aspects
of the neurons dynamics. Common choices are the logistic function, the rectifying bracket
([h] = h if h > 0 and 0 otherwise) and the Heaviside step function

Θ(h) =

{
1 if h > 0

0 else
(3.2)

Rate neurons can be modelled with or without an explicit dependence on time. In the
former case, the firing rate depends on time via the time dependent external or synaptic
input. In the latter case, the input is assumed to be stationary at least for some periods of
time, which simplifies the model significantly and can be justified in some contexts. These
neuron models are often used to investigate the propagation of activity through layered
networks.

3.1.2 Spiking Neurons

For a detailed description and discussion of how different spiking neuron models can be
reduced to each other see [AK90].

3.1.2.1 The Integrate-and-Fire Neuron

The simplest model that captures the dynamics of the membrane potential V (t) is the
leaky integrate-and-fire neuron. The basic assumption is that the subthreshold behaviour
of the neuron can be modelled as a capacitor with capacitance Cm. It can be charged by
external input Ie, generating a potential different from the resting potential Vrest, to which
the voltage decays with time constant τm = Cm ·Rm, when no further input is given. Rm

is the resistance modelling the leak currents through the membrane. The voltage is then
given by

τm
dV

dt
= −V + Vrest +RmIe (3.3)
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Throughout this thesis, the resting potential Vrest is set to zero without loss of generality.
Furthermore, in the following, it will be assumed that R = 1, since the resistance can
always be absorbed in the description of the input current Ie. There are synaptic inputs
from afferent neurons Isyn and external currents Iext that are given by an experimentator
via an electrode, which constitute the full input current Ie = Isyn + Iext.
Whenever the membrane potential V crosses the spiking threshold Vthresh at time tk, it is
reset to a reset potential Vreset ≤ Vrest < Vthresh, which generally is at or below the resting
potential. At this point in time, a spike is registered. If the reset potential is below the
resting potential, the neuron is in a hyperpolarized state after each spike, thus hindering
spiking again immediately after a spike. Spikes are generally modelled to be delta pulses,
such that the spike train of the neuron s is given by

s(t) =
∑
k

δ(t− tk) (3.4)

where tk is the time of the kth spike.
The synaptic currents Isyn can be modelled in different ways. Assuming a very fast opening
and closing of the ion channels in the synapse, the synaptic current can be modelled as a
sum of delta functions of height of the synaptic weight wi between a presynaptic neuron
i and the postsynaptic neuron that is being modelled:

Isyn =
∑
i

∑
k

wiδ(t− tik − τa − τd) (3.5)

where τa is the time that the signal travels from the soma of the presynaptic neuron to
the synapse and τd is the time that the signal travels from the synapse to the soma of
the postsynaptic neuron. These delays are often modelled as a single delay of synaptic
transmission τ .
This model of synaptic transmission generates postsynaptic potentials (PSPs) of the shape
of an exponential decay:

Vδ(t) = Θ(t) exp

(
− t

τm

)
(3.6)

where it is assumed that the input into the postsynaptic neuron happens at t = 0. Θ(t)
is the Heaviside step function given by equation 3.2. If the closing process of the ion
channels in the synapse is modelled to take a finite time τsyn, the synaptic current can
be modelled as a sum of step-and-decay functions, that rise with the synaptic weight wi

between a presynaptic neuron i and the postsynaptic neuron that is being modelled:

τsynİsyn = −Isyn +
∑
i

∑
k

wiδ(t− tik − τ) (3.7)

The shape of the resulting PSP is then given by the convolution of this synaptic input
current with the response kernel of the neuron to delta shaped input given by equation
3.6. The shape of the membrane potential in response to a single presynaptic spike in
neuron i of synaptic weight wi at time t = 0 is then given by

Vts =
1

τm − τs

(
exp

(
− t

tm

)
− exp

(
− t

ts

))
Θ(t) (3.8)

Due to the linearity of the differential equation governing the voltage V , it is possible
to reformulate the integrate-and-fire neuron into the Spike Response Model [GK02]. The
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membrane voltage V (t) is then given by the sum of weighted synaptic input kernels ε(s)
(postsynaptic potentials, PSPs) and reset kernels R(s), which model the neuronal reset
after a spike. External input currents Iext(t) are low-pass filtered with a response kernel
κ(s). The full equation reads

V (t) =
∑
i

wi

∑
k

ε(t− tik − tdelay) +
∑
tj

R(t− tj) +

∞∫
0

κ(t− s)Iext(s)ds. (3.9)

Here, wi is the weight from presynaptic neuron j to the postsynaptic neuron. κ = exp (−(t− s)/τm)
is the passive response kernel by which external currents are filtered. The other kernels
are

ε(s) = Θ(s)
1

τm − τs
(exp(−s/τm)− exp(−s/τs))

R(s) = Θ(s)(Vreset − Vthr) exp(−s/τm).

(3.10)

This formulation can be useful in the derivation of learning rules based on the dynamics
of the neuron model.

3.1.2.2 The conductance-based Integrate-and-Fire Neuron

To increase the biological accuracy of the above model, it is possible to separate inhibitory
from excitatory inputs. The presynaptic population is split into Nex excitatory and Nin

inhibitory neurons. The postsynaptic neuron can then be modelled as a conductance based
LIF neuron governed by

Cm
dV

dt
= −gL(V − VL)− (gsl + gf )(V − Vh)− gex(V − Vex)− gin(V − V in) , (3.11)

where V denotes the membrane potential, Cm the membrane capacitance, VL the resting
potential, gL the leak conductance, Vi and Vex the reversal potential of inhibition and
excitation, respectively and gin and gex their respective conductances. The spike after-
hyperpolarisation is modelled to be biphasic, consisting of a fast and a slow part, described
by conductances gf and gsl that keep the membrane potential close to the hyperpolarisa-
tion potential Vh = Vi. When the membrane potential surpasses the spiking threshhold
Vthr at time tpost, a spike is registered and the membrane potential is reset to Vreset = Vh.
All conductances are modelled as step and decay functions. The reset conductances are
given by

τf,slġf,sl = −gf,sl +∆gf,sl
∑
tpost

δ (t− tpost) , (3.12)

where ∆gsl resp. ∆gsl is the increase of the fast and slow conductance at the time of each
postsynaptic spike. They decay back with time constants τf = τs < τsl = Cm/gL. The
input conductances gex and gin are step and decay functions as well, that are increased
by wi when presynaptic neuron i spikes and decay with time constant τs. wi denotes the
strength of synapse i.

3.1.2.3 The Hodgekin-Huxley Neuron

The Hodgkin-Huxley model is a sophisticated neuron model, where the flow of sodium
and potassium ions through voltage dependent channels in the membrane are explicitly
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modelled. Additionally, there is a leak conductance, which models other ionic currents.
The full equation for the voltage is given by

CmV̇ = −gL(V −VL)− gKn4(V −VK)− gNam
3h(V −VNa)− gex(V −Vex)− gin(V −V in)

(3.13)
where VL = −65mV is the leak potential, gL = 0.1mS/cm2 is the leak conductance,
gex resp. gin are the conductance governing excitatory resp. inhibitory input from the
input populations and Vex = 0mV resp. Vin = −75mV are their reversal potentials.
VNa = 55mV is the reversal potential of sodium, VK = −90mV is the reversal potential of
potassium, Cm = 1µF/cm2 is the membrane capacitance, gK = 9mS/cm2 is the maximum
potassium conductance and gNa = 35mS/cm2 is the maximum sodium conductance.
The conductance variables n(t, V ), m(t, V ) and h(t, V ) are time and voltage dependent
and take values between 0 and 1. They are given by

ṅ = αn(V )(1− n)− βn(V )n (3.14)

ṁ = αm(V )(1−m)− βm(V )m (3.15)

ḣ = αh(V )(1− h)− βh(V )h (3.16)

where

αn(V ) =
(−0.01(V (t) + 55))

(exp(−0.1(V + 55))− 1)
(3.17)

βn(V ) = 0.125 exp(−(V (t) + 65)

80
) (3.18)

αm(V ) =
(−0.1(V + 40))

(exp(−0.1(V + 40))− 1)
(3.19)

βm(V ) = 4 exp(−0.0556(V + 68)) (3.20)

αh(V ) = 0.07 exp(−(V + 65)

20
) (3.21)

βh(V ) =
1

exp(−0.1(V + 35)) + 1
(3.22)

To facilitate reading, units are dopped; voltages are in mV , time is in ms. Parameters are
fitted to experimental data and taken from [AK90].
When a sufficient input current is given to the neuron, the membrane potential rises over
a critical value, which causes a rapid increase in the variable m, which activates a positive
inward sodium current. The membrane potential rises sharply, until the variables h and
n adjust to the change in membrane potential. The variable h decreases, thus decreasing
the sodium current that caused the rise in the membrane potential. At the same time,
n increases and causes a positive outward potassium current which drives the membrane
potential below resting potential into hyperpolarization. Over time, all conductance vari-
ables m,h and n return to their resting values.
The parameters of the model can be tweaked to provide a more or less strong hyperpolar-
ization after each spike.

3.2 Poissonian Spiking and Noise

The spiking neuron models presented above provide highly reliable responses to defined
outputs, similar to the response of a real neuron to a defined input current [MS95]. How-
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ever, in vivo studies show that spiking in real neuronal networks is highly irregular. The
statistics of the spiking can be well described as poissonian processes. The probability of
measuring n spikes in a time interval T is given by

P (n) =
(rT )n

n!
exp(−rT ) (3.23)

if the underlying process has a firing rate r. Here, the firing rate is assumed to be constant
during the time interval T . However, this is not always the case, such that it is useful
to define an instantaneous firing rate r(t), which in modelling studies may depend on the
voltage.
Transforming a firing rate into a set of discrete spiking events for simulation purposes can
be done via

P (spike between t and t+∆t) = r(t)∆t (3.24)

where ∆t is the bin size of the time binning. It should be chosen small enough, such that
the probability of having more than one spike per interval is very small, i.e. r(t)∆t << 1.
In modelling studies, it is often useful to explicitly model noise. In spiking neurons that can
be achieved by an additional noise input current Inoise, which is often chosen as gaussian
white noise centered around zero.
However, for analytical studies it can be simpler to assume that the spike generation
process is stochastic. To that end, for example in the SRM0 with exponential escape noise
[GK02], a conversion of the membrane potential to a instantaneous firing rate is defined
by

r(t) = r0 exp

(
V (t)− Vthr

∆V

)
(3.25)

∆V describes how strong the influence of stochastic spike generation is. If ∆V is chosen
large, spiking is relatively independent from the voltage and therefore, very stochastic.
However, if ∆V is chosen very small, the influence of the voltage is bigger and spiking
becomes more predictable.

3.3 Network Models

The brain consists of interconnected neurons. The architecture of these connections has a
relevant contribution to the computational output. In modelling studies, different archi-
tectures are considered in different network models.

3.3.1 Feed-Forward Networks

In feed-forward networks, neurons are organized in layers. A neuron i in a layer receives
input I from a neuron j in the previous layer, its input layer, whenever j is active (see
figure 3.1(a) for a sketch). The activity of neuron j is denoted in aj . The neurons from
the input layer are connected to the output neurons via weights wij , which signify the
strength of the connection. Then the input into each neuron is just the summed output
from affarent neurons, weighted by their respective weights. This input will be converted
to output either by an activation function (see section 3.1.1) or given as input current into
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(a) (b)

Figure 3.1: Sketch of different network setups. (a) Feed-forward network: An output
neuron receives directed input from an input layer, but the activation of the output
neuron has no influence on the input layer. (b) Recurrent network: All neurons are
interconnected, such that the activation of each neuron influences its own future
activation via the network activation.

the spiking neuron model (see e.g. section 3.1.2.1).
There is no feedback from the output layer back to the input layer, which is why these
networks are called feed-forward networks. These networks are widely used in classification
problems (see section 3.4.2.1 and section 3.4.2.3).

3.3.2 Recurrent Networks

By contrast, in recurrent networks generally all neurons are interconnected. This means,
in principle, each neuron receives input from all other neurons or a subset of neurons, but
crucially, the output of each neuron is fed back into the network and thus implicitly to
itself.
Because of the connectivity, the weights wij can be organized into a weight matrix w,
where the column indexes the presynaptic neuron and the row indexes the postsynaptic
neuron. The connections can have a delay τ .
A peculiar property of recurrent networks is that they are highly sensitive to noise. If
sequences of spike patterns in recurrent networks are considered, a slight difference in the
pattern at time t can have a large influence on the later activation patterns.

3.4 Learning

In artificial neuronal networks, neurons are interconnected by synaptic weights, which
define the behaviour of the network in response to a given input. These weights are a simple
model of synaptic connections between biological neurons. The underlying hypothesis in
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neuroscience is that synaptic plasticity is the neuronal substrate for learning and memory
formation. Physiological studies have shown that synapses change in response to the
pairwise activity of the connected neurons. In real neurons, the synaptic strength can
change on a diversity of time scales. In this thesis, only long term plasticity is treated,
which in experiments takes seconds to minutes to induce and express, and stays at least
for one hour (presumably longer).
In modelling, there are two different approaches to synaptic learning: One is the top down
approach, where a goal is defined and then an update rule for synaptic weights is derived
to achieve that goal. These update rules often rely on a teaching signal giving explicit
information about the necessary synaptic changes to the neuron. This type of learning
is called supervised learning. The other approach, the bottom up approach, starts from
experimental data. The learning behaviour of biological synapses is observed and modelled.
Then, these simplified models can be applied to neuronal networks to see, if they are useful
for computational purposes. This approach results in unsupervised learning.

3.4.1 Unsupervised Learning

Due to the current state of experimental techniques, the synaptic change in biological
studies is a function of the pairwise activity. The experimental results can be subsumed
in mathematical models and implemented in artificial neuronal networks to analyze their
consequences. The learning system evolves according to the learning rule without super-
vision from an outside entity or teacher. This type of learning is likely to happen in real
biological neurons. Here, two very simple activity dependent plasticity rules will be intro-
duced that are widely used in modelling studies: Hebbian learning and spike pair spike
timing dependent plasticity.

3.4.1.1 Hebbian Learning Rule

The idea of Hebbian learning is derived from the observation that co-activation of neurons
leads to a synaptic strengthening. This is formalized in the Hebbian learning rule to train
Hopfield networks, which are a modelling attempt for content-addressable memory and
associative learning [Hop82, Hop07] (see section 3.4.3.1.1). This is the most simple form
of an activity dependent learning rule.
Following the description given in [HKP91], xi is the activation of neuron i and xj is the
activation of neuron j. Then the weight wij between them as defined by Hebbian learning
is given by

∆wij ∝ xixj (3.26)

It is possible using this weight change to make defined activity patterns the attractors
of the dynamics of recurrent networks of rate neurons (Hopfield-networks, see section
3.4.3.1.1). The downside is that this rule leads to symmetric weights, which is neither
biologically realistic, nor computationally efficient. More sophisticated learning rules thus
try to include more information about the activation patterns than just co-occurrence.
However, it is possible to imprint desired activation patterns onto Hopfield networks (see
below).
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Figure 3.2: The STDP win-
dow as a result of the simple
spike pair STDP model: The
weight change decays exponen-
tially with τ+ resp. τ− for large
time distances between pre- and
postsynaptic spiking. The am-
plitude of the weight change is
given by A+ resp. A−.

3.4.1.2 Spike Pair Spike Timing Dependent Plasticity

Spike timing dependent plasticity (STDP) has been observed experimentally, often in the
classical, hebbian form introduced here (see 2.1.3.1 for details on experimental findings).
In experiments, it is often studied in a setting, where the synaptic change upon pairwise
stimulation of the pre- and postsynaptic neuron in dependency of the timing difference
between these stimulations is observed. In typical experiments on synapses of excitatory
neurons, STDP is observed in its standard form: a postsynaptic spike which arrives at the
synapse shortly before a presynaptic spike leads to synaptic depression, while a presynap-
tic spike arriving at the synapse shortly before the postsynaptic spike leads to synaptic
potentiation. This sensitivity of the learning rule to the specific order of spiking makes it
a possible mechanism for learning timing dependent responses.
Let us consider a single spike pair where tpre is the time of the presynaptic spike and
tpost is the time of the postsynaptic spike. Then ∆t = tpost − tpre is the time distance
between the presynaptic spike and the postsynaptic spike. This allows to formulate a
simple description of the weight change according to spike pair STDP for this spike pair
as

∆wspSTDP
1 =

⎧⎨⎩A+ exp
(
−∆t
τ+

)
if ∆t > 0

A− exp
(
∆t
τ−

)
else

(3.27)

where A+, A−, τ+ and τ− are the parameters of the model, which define the shape of the
STDP window (see figure 6.1).

The exponential shape of the STDP window captures the experimental results on
STDP relatively well. To generalize the model to arbitrary spike patterns, in additive
spike pair STDP, the resulting weight changes are simply superposed, such that the total
weight change is given by

∆wspSTDP =
∑
∆t

∆wspSTDP
1 (3.28)

Because of its simplicity, spike pair STDP is widely used in modelling studies. How-
ever, more sophisticated experiments show that the spike pair STDP model likely is an
oversimplification of real synapes [FD02, WGNB05, SH06, AWP13].
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3.4.2 Supervised Learning

Supervised learning is used to imprint a precise set of desired input-output relationships
onto neuronal networks. If the output neuron is required to respond to certain classes of
input patterns with a specific output activity, this process is called classification. During
the learning process, a supervisor or teacher provides detailed feedback to the synaptic
connections on the success of learning and the nature of the synaptic changes necessary
to achieve the desired input-output relationship. The formulation of the input-output
relations depends on the network structure and neuron type: In the most simple setting
in a feed-forward network, an output neuron is required to respond to a given spatial
input pattern either with positive activity or not. This is called the Perceptron problem
and will be discussed in the next section. The Perceptron setting can be extended to
the temporal domain with spiking neurons, the Tempotron: Here, the output neuron is
required to classify two sets of spatio-temporal input patterns by either spiking or not
spiking. The natural extension of the Tempotron is the Chronotron: Here, the output
neuron is required to respond to a spatio-temporal input spike pattern with a spike at a
precisely defined time. This problem and its solutions will be discussed in section 3.4.2.3.
Supervised learning is also applied to learning in recurrent networks. Here, either a sta-
tionary activation pattern in response to a noise or partial input of that pattern or even
elongated spatio-temporal activation patterns are the goal of learning. Due to the high
sensitivity of activations in recurrent networks to noise, it is difficult to imprint stable
activation sequences.

3.4.2.1 The Perceptron

The Perceptron is a toy model of a simple feed-forward neural network, that can learn to
distinguish two different classes of inputs. To that end, it is required to respond to one
class of input patterns with activation and to the other class with non-activation. This
can also be viewed as a case of associative learning, where the input pattern is associated
with a given output.
Consider a simple feed-forward network, which consists of a layer of N input neurons and
a single output neuron that is trained to perform the desired classification. Figure 3.1(a)
shows an example of such a network. In the original Perceptron setup as introduced in
[HKP91], the state of each input neuron is called ξi and takes the values ξi ∈ {−1, 1}. The
output neuron takes states O ∈ {−1, 1}. It is a simple threshold unit, i.e. it computes its
output according to

O = g(h) = g

(∑
i

wiξi

)
(3.29)

where wi is the connections strength from input neuron i to the output neuron and g(h)
is the activation function. In the simple case of deterministic threshold units it is just the
sign function:

g(h) = sgn(h) (3.30)

3.4.2.1.1 The Original Perceptron Learning Rule
In simple classification problems, there are two classes of µ input patterns, which are
supposed to be distinguished by the output neuron. The input vectors of pattern µ will
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be denoted ξµ. This implies that for each input pattern ξµ there is a desired output ζµ.
The goal then is that

Oµ !
= ζµ . (3.31)

Since Oµ is given by eq. (3.29), the weight wi have to be chosen such that the summed
and weighted input into the output neuron is either positive or negative.
It is possible to interpret eq. (3.29) as a scalar product, which makes it possible to rewrite
it as

ζµ
!
= Oµ = sgn

(
w⃗ ˙ξ⃗µ

)
. (3.32)

This shows that the output is just the sign of the input projected onto the weight vector.
Therefore, the boundary between positive and negative output is given by the plane defined
by w⃗⃗̇ξµ = 0 through the origin and perpendicular to w⃗.
The goal here, is to choose w⃗ such that this plane separates patterns with desired positive
output (ζµ = 1) from patterns with desired negative output (ζµ = −1).
This is not always possible, since the patterns may not always be linearly separable, that
is there may be two or more patterns that require synaptic weights that are incompatible
to provide correct output.
For robustness to noise in the input patterns, it is useful to define a margin κ, which
defines a minimum distance between the input into the output neuron and zero, such that

ζµhµ > Nκ (3.33)

The original Perceptron learning rule is then given by

∆wi = ηΘ(Nκ− ζµhµ) ζµξµi (3.34)

This quantity is only larger than zero, if the condition in equation 3.33 is not fulfilled,
that is the output is different from the required output. Then the weight from input
neuron i to the output neuron is increased, if the activation in both has the same sign
and decreased, if they are of different sign. Hence, the weight change moves the output
in the desired direction. Due to the constant size of the weight change in each step, this
learning rule converges in a finite number of steps, if learning is possible (see [HKP91]
for a proof). Furthermore, learning stops, when the actual output is the desired output,
such that overlearning due to repeated presentation of the input patterns is not possible.
These are highly desirable qualities in a learning rule.

3.4.2.2 The Tempotron

The natural extension of the Perceptron problem is the Tempotron. Here, the output
neuron is taught to classify elongated spatio-temporal patterns and respond to them with
either a spike or no spike. This concept was introduced in [GS06], where it was found that
in principle, integrate-and-fire neurons are capable of learning such spike timing based
decisions, since the state of the neuron is dependent on the order of inputs into a neuron.

3.4.2.3 The Chronotron

The Chronotron problem is the extension of the Tempotron problem from the pure clas-
sification task on spatio-temporal patterns: The output neuron is required to provide one

33



3.4. LEARNING CHAPTER 3. THEORETICAL BACKGROUND

output spike at a precisely defined time during each input pattern.
There are several learning rules that attempt to solve these classification problems, some
of which I will introduce here.

3.4.2.3.1 The δ-rule and ReSuMe.
The δ-rule, also called the Widrow-Hoff-rule [HKP91], lies at the core of a whole class
of learning rules used to teach a neuronal network some target activity pattern. Synap-
tic changes are driven by the difference of desired and actual output, weighted by the
presynaptic activity:

∆w(t) ∝ fpre(t)
(
f target
post (t)− factual

post (t)
)

. (3.35)

Pre- and postsynaptic firing rate are denote fpre,post. The target activity f target
post (t) is some

arbitrary time dependent firing rate. The actual self-generated activity factual
post (t) is given

by the current input or voltage of the postsynaptic neuron (depending on the formulation),
transformed by the input-output function g(h) of the neuron.
ReSuMe (short for Remote Supervised Method) is a supervised spike-based learning rule
first proposed in 2005 [PK10]. It is derived from the Widrow-Hoff rule for rate-based
neurons, applied to deterministic spiking neurons. Therefore, continuous time dependent
firing rates are replaced by discrete spiking events in time, expressed as sums of delta-
functions. Because these functions have zero width in time, it is necessary to temporally
spread out presynaptic spikes by convolving the presynaptic spike train with a temporal
kernel. Although the choice of the kernel is free, usually a causal exponential kernel works
best. The weight change is given by

ẇ(t) ∝ [Sd(t)− So(t)]

⎡⎣ad + ∞∫
0

exp(−s/τplas)Si(t− s)ds

⎤⎦ , (3.36)

where Sd(t) is the desired, So(t) is the self-generated and Si(t) the input spike train at
synapse i. τplas is the decay time constant of the exponential kernel. ad is a constant
which makes sure that the actual and target firing rates match; learning also works with-
out. ReSuMe converges when both actual and desired spike lie at the same time, because
in this case the weight changes exactly cancel each other out.

3.4.2.3.2 E-Learning.
E-Learning was conceived as an improved learning algorithm for spike time learning [Flo12a].
It is derived from the Victor-Pupura distance (VP distance) between spike trains [VP96].
The VP-distance is used to compare the similarity between two different spike trains (see
section 3.5.2).
E-Learning is a gradient descent on the VP distance and has smoother convergence than
ReSuMe. In this rule, first the actual output spike train is compared to the desired spike
train. The VP algorithm determines if output spikes must be shifted or erased or if some
desired output spike has no close actual spike so a new spike has to be inserted. Based on
this evaluation, actual and desired spikes are put in three categories:

� Actual output spikes are “paired” if they have a pendant, i.e. a desired spike close
in time and no other actual output spike closer (and vice versa). These spikes are
put into a set S.
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� Unpaired actual output spikes that need to be deleted are put into the set D.

� Unpaired desired output spike times are put into the set J , i.e. the set of spikes
that have to be inserted.

To clarify, S contains pairs of “paired” actual and desired spike times, D contains the
times of all unpaired actual spikes, and J the times of unpaired desired spike times. With
the PSP sum as above, the E-Learning rule is then

∆wi = γ

⎡⎣ ∑
tins∈J

λi(t
ins)−

∑
tdel∈D

λi(t
del) +

γr
τ2q

∑
(tact,tdes)∈S

(tact − tdes)λi(t
act)

⎤⎦ . (3.37)

γ is the learning rate, and γr is a factor to scale spike shifting relative to deletion and
insertion.
The former two terms of the rule correspond to ReSuMe, except the kernel is not a simple
exponential decay. The advantage of E-Learning is that the weight changes for spikes
close to their desired location are scaled with the distance, which improves convergence
and consequentially memory capacity.

3.4.2.3.3 FP-Learning.
FP-Learning [MRÖS14] was devised to remedy a central problem in learning rules like

ReSuMe and others. Any erroneous or missing spike “distorts” the time course of the
membrane potential behind it compared to the desired final state. This creates a wrong
environment for the learning rule, and weight changes can potentially be wrong. Therefore,
the FP-Learning algorithm stops the learning trial as soon as it encounters any spike output
error. Additionally, FP-Learning introduces a margin of tolerable error for the desired
output spikes. An actual output spike should be generated in the window of tolerance
[td − ϵ, td + ϵ] with the adjustable margin ϵ. Weights are changed on two occasions:

1. If a spike occurs outside the window of tolerance for any td at time terr, then weights
are depressed by ∆wi ∝ −λi(terr). This also applies if the spike in question is the
second one within a given tolerance window.

2. If t = td + ε and no spike has occured in the window of tolerance, then terr = td + ε
and ∆wi ∝ λi(terr).

In both cases, the learning trial immediately ends, to prevent that the “distorted” mem-
brane potential leads to spurious weight changes. Because of this property, this rule is
also referred to as “First Error Learning”.

3.4.3 Reinforcement Learning

Reinforcement learning is a special case of supervised learning, where the teacher does
not give specific information about the changes that need to be made to the synaptic
connections in order to accomplish the desired task. Instead it only provides a feedback
on how well the task is performed in the form of a reward or a punishment.
Reinforcement learning can be interpreted as trial-and-error learning. The learning system
is active in a particular way and then this activity is evaluated by the critic, that gives a
(possibly negative) reward. Next, the system tries out a change and if the received reward
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is higher, it will keep the change and otherwise discard it.

In this way, e.g. irregularly spiking neural networks can estimate the gradient of the
reward signal and perform a stochastic gradient ascent on the expected reward [XS04]. In
their model, Xie and Seung introduce stochastic spiking neurons i, which receive input
from input neurons j. The strength of the connection between j and i is given by the
synaptic weight wij . The input current into neuron i then given by

Ii(t) =
∑
j

wijhij(t) (3.38)

where hij evolves according to

τs
dhij
dt

+ hij =
∑
a

δ(t− T a
j )ζ

a
ij (3.39)

where ζaij is a binary random variable modelling the stochastic nature of synaptic trans-
mission and T a

j is the time of the ath spike in input neuron j. The input current Ii(t) is
converted to an instantaneous firing rate λi(t) by

λi(t) = fi(Ii(t)) (3.40)

where fi is the current-discharge relationship.
The learning rule is then given by

∆wij = ηReij (3.41)

where R is a reward signal, η is a learning rate and eij is an eligibility trace given by

eij =

∫ T

0
dtΦi(Ii) [si(t)− fi(Ii)]hij (3.42)

where T is the length of the learning episode and si(t) =
∑

a δ(t − T a
i ) is the spike train

in neuron i. Φi(Ii) is a function that scales the weight changes depending on the current
firing rate. Learning works, because if the actual activation of the neuron is larger than
the instantanous firing rate and this is rewarded (R > 0), then weights from positively
contributing input neurons are increased to increase the instantaneous firing rate upon
repetition. Similarly, if the actual output of the neuron is above the instantaneous firing
rate and this is punished (R < 0), weights are changed to decrease the firing rate. The
same mechanism also applies for an actual activation below the firing rate, such that the
firing rate is changed in the desired direction. By this learning mechanism, a gradient
ascent on the reward is performed.
For constant reward and an output spike train that is enforced by a teacher, this is very
similar to the δ-rule.

In a study by Fiete et al., reinforcement learning has been shown to be applicable
to more realistic neuron models, where the exploration is done by a perturbation of the
conductance of the neuron [FS06].
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3.4.3.1 Learning in Recurrent Networks

So far, only feed-forward classifiers on more or less complex patterns were discussed. In
this section, I want to discuss learning in recurrent networks. This setup if of particular
interest, because in biological neuronal networks, at least some degree of feedback input
can be expected.

3.4.3.1.1 Hopfield networks
Hopfield networks [Hop82, Hop07] are arguably the most simple setup for a recurrent
network: A population of N rate neurons is interconnected by weights wij , which define
the recurrent input. The activation of each neuron i is binary with Si ∈ {−1, 1}, where
Si = 1 is an activated state and Si = −1 is a silent state. In this setup, the input into
each neuron is given by

hi =
∑
j

wijSj (3.43)

The activation of the neuron will then be defined by an activation function, which is chosen
to be the sign function, such that

Si := sgn

⎛⎝∑
j

wijSj

⎞⎠ (3.44)

Activations of neurons can either all be updated the same time in a synchronous update
or one after the other in an asynchronous update.
Imprinting P patterns ξµ onto this network can generate stable patterns, that are self-
consistent in that they generate input into each neuron that is compatible with its own
state. Patterns can even be completed, if a noisy version of the pattern is presented to
the network, because an attractor around the original pattern is formed.
In the Hopfield model, a generalized Hebb rule is employed for learning:

wij =
1

N

P∑
µ=1

ξµi ξ
µ
j (3.45)

With this learning rule, a number of patterns can be stored in such a neuronal network,
such that these patterns form attractors. This is a very simple form of content-addressable
memory and associative learning.

3.4.3.1.2 Temporal sequences of patterns
So far, stationary patterns were discussed. However, in biological neuronal networks,
sequences of activation patterns are essential. In modelling studies, these activation se-
quences are usually considered in closed loop situations, where the last activation pattern
in the sequence restarts the sequence (limit cycles). This process can be seen as a stable
trajectory in a phase space, where the vector of the states of the neurons is the state of
the system. This state vector then follows a closed trajectory.
Recurrent neuronal networks, which are able to create continuous, self-sustained patterns
of activity, are highly sensitive to noise. Hence, any learning algorithm that attempts to
teach elongated activity sequences to recurrent networks needs to take this sensitivity into
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account.
Laje and Buonomano introduce a model that produces robust patterns in recurrent neural
networks in [LB13]. Their model is based on firing-rate units and generates locally stable
trajectories in the phase space.
They use innate trajectories through the phase space as a starting point, that is, sequences
of activation that the network generates due to the initialization. During a training period,
they present the network with noisy input and apply a learning rule similar to the delta
rule to achieve an output equivalent to the original trajectory. Thus, they generate areas
of attraction around the desired trajectory, from which the network evolves back onto the
trajectory. Thus, noise during learning is beneficial for the stability of learned trajectories.
To derive meaningful output from this recurrent network, they train an output neuron to
respond to the learned pattern in a specific way.
Brea et al. [BSP13] introduce another model based on spike-response model neurons with
stochastic spiking. They use a set of visible neurons that are part of the training pattern
and a set of hidden neurons that can spike at liberty. Hidden neurons enable networks
to solve more complex problems, that are not solvable with visible neurons only. In their
study, they introduce a membrane potential

ui(t) = u0 +

N∑
j

wijx
ϵ
j(t) + xκi (t) (3.46)

where wij is the synaptic strength from neuron j to neuron i, xαk (t) =
∑∞

s=1 α(s)xk(t− s)
represents the convolution of spike train xk with kernel α and u0 is the resting poten-
tial. The postsynaptic kernel is given by ϵ(s) = 1

τ1−τ2
(exp (−s/τ1)− exp (−s/τ2)) and the

adaptation kernel by κ(s) = c exp(−s/τr) for s ≥ 0. Both kernels are zero for s < 0.
The spiking process is modelled as a stochastic process based on the deterministic mem-
brane potential. The spiking probability of neuron i in time bin t is given by

P (xi(t) = 1|ui(t)) = ρ(ui(t)) (3.47)

with ρ(u) = 1
1+exp(−βu) .

In this setup, they develop a learning rule from the goal that the distribution of output
spike trains in the visible neurons Pw(v) is as similar as possible to the target distribution
P ∗(v). To that end they calculate a learning rule that performs a gradient descent on an
upper bound on the Kullback-Leibler divergence given by

D(P ∗(v)||Pw(v)) = ⟨logP
∗(v)

Pw(v)
⟩P ∗(v) (3.48)

The derived learning rule is given by

∆wbatch
ij = η

T∑
i=1

gi(t) (xi(t)− ρi(t))x
ϵ
j(t)

{
1 if i visible

logRw(v|h)− r̄ if i hidden
(3.49)

where η is the learning rate. gi(t) =
ρ′i(t)

ρi(t)(1−ρi(t))
with ρ′i(t) =

dρ(t)
du |u=ui(t), which implies

gi(t) = β for ρ(U) as defined above. Rw(v|h) is the probability of a visible activity pattern,
given the past hidden pattern and r̄ is a constant. During the learning process, spike trains
for the visible neurons are sampled from the target distribution v P ∗(v) and imposed on
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the visible neurons. Hidden neurons follow the dynamics of the network. The main part of
the learning rule is essentially equivalent to the delta learning rule: The difference between
the actual and the real activation of each target neuron is correlated with the presynaptic
activation.
With this learning rule, a network of spiking neurons can learn to approximate a desired
output spike pattern distribution.

3.5 Spike Train Distance Measures

When comparing outputs between neurons, it can be useful to compare the similarity
of output spike trains. This can be particularly useful to evaluate learning success in
modelling studies.
There are several possible spike train distance measures d0(s1, s2), e.g. the VanRossum-
distance [vR01] and the Victor-Purpura-distance [VP96].

3.5.1 VanRossum-Distance

To calculate the VanRossum-distance between two spike trains s1 and s2, both spike trains
are convoluted with an exponential kernel. Then the quadratic distance is computed
between those convolutions. While this spike train distance measure is easy to implement,
it has the computational disadvantage of the computing time being dependent on the total
number of simulation time steps.

3.5.2 Victor-Purpura-Distance

Calculating the Victor-Purpura-distance seems
more complicated, but is generally faster for suffi-
ciently low firing rates: To evaluate a spike train
distance between spike trains s1 and s2, a cost for
the transformation from s1 into s2 is calculated.
There is a cost of 1 for the deletion or introduc-
tion of a spike and a cost of q∆t for a shift of the
spike time of one spike by ∆t, where q is a param-
eter that scales the cost of shifting a spike relative
to the insertion and deletion of spikes. The sum of
the costs to transform s1 into s2 is then the spike
train distance d(s1, s2). For an illustration see fig-
ure 3.5.1.

Figure 3.3: Illustration of the
Victor-Purpura-Distance
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Chapter 4

Theoretical Approaches to Vocal
Learning in Songbirds

Imitation learning requires the learning system not only to observe the tutor, but also
to have an understanding of its own behaviour. Furthermore, the learning system has
to be able to compare the two behaviours and to change its own behaviour accordingly.
While imitation learning is a complex process, vocal imitation learning is a relatively well
controlled form of imitation learning, in which behaviour is relatively easy to quantify
and to compare in a detailed way. Thus, songbirds provide a unique opportunity to
study imitation learning experimentally, which can inspire new theoretical work. In fact,
vocal imitation learning is one of the simplest forms of imitation learning, because the
self-generated action is perceived with the same sense as the tutor action.

While the biological background of songbird imitation learning was discussed in section
2.2, here, I want to give an introduction to the theoretical approaches that have been made
towards an understanding of imitation learning in the songbird.

4.1 Reinforcement Learning

Reinforcement learning is a form of weakly supervised learning. While in supervised
learning the network output is controlled by a teacher (see section 3.4.2), in reinforcement
learning, an outside entity called the critic only provides feedback on the behaviour of the
learning system in form of a reward or a punishment.
The basic idea of reinforcement learning is very simple: trial-and-error learning. The
learning system is active in a particular way and then this activity is evaluated by the
critic, that gives a reward or punishment. Next, the system tries out a change and if the
received reward is higher, it will keep the change and otherwise discard it.
In this way, e.g. irregularly spiking neural networks can estimate the gradient of the
reward signal and perform a stochastic gradient ascent on the expected reward [XS04].
Furthermore, reinforcement learning has been shown to be applicable to more realistic
neuron models, where the exploration is done by a perturbation of the conductance of the
neuron [FS06].

Reinforcement learning has been applied to songbird learning [FFS07] and it was shown
that it is useful in learning very simple songs of low dimensionality. This framework
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has inspired experimental work that shows that the avian brain area LMAN modulates
both, neuronal as well as behavioural, variability during learning, which is essential for
the learning process as shown by lesion studies [BMA84, SN91, KDB05, ÖAF05]. Since
singing is a form of motor sequence generation, it is tempting to investigate, if there
are similarities between the brain structures that allow for acoustic sequence generation
in songbirds and brain structures of other birds, unable to sing, but well able to learn
behavioural sequences. Pigeons, for example, are able to learn to peck specific sequences
on a touch screen. There is a strong neurophysiological similarity between the brain
structure of songbirds and of pigeons. Hence, it was tempting to investigate whether
the putative pigeon homologue to songbird LMAN provides a similar function, namely
the modulation of behavioral variability. However, it was found that pharmacological
inactivation of the forebrain area nidopallium intermedium medialis pars laterale (NIML)
has no effect on behavioural variability [HWPG14].

4.2 Inverse Models

Inverse models provide a fascinating alternative to reinforcement learning for vocal learn-
ing. Since for reinforcement learning, the dimensionality of the activation has to be small
and every activation pattern has to be specifically learned, it is unlikely that more complex
songs or even human speech is learned this way.
In particular, the remarkable imitation learning skills of particular birds, such as e.g. the
lyrebird who is known for imitating chain saws and car alarms, show that reinforcement
learning is not or at least not the only way that imitation learning happens in the brain.
Also adult humans can perform vocal imitation of sounds in the known realm of sounds
that the human can produce - for example by learning to sing a new simple tune. This can
usually be done relatively well in one-shot-learning, i.e. immediately and without training.
A possible explanation for these remarkable imitation skills is provided by inverse mod-
els: Here, a sensory memory of the tutor song is formed independently from the rest of
the learning process. This shifts the problem of learning a motor sequence to learning
a sensory sequence, which is simpler to do, because the sensory sequence is input into
the learning system as a sequence during the learning process, while the motor sequence
needs to be generated without explicit guidance. This process of sequence learning will be
discussed in chapter 9.
Independently from the sensory memory formation, in a babbling phase, the young imi-
tator produces random activations in a motor area, which in turn produce some sound,
which leads to a sensory activation in a sensory area. During the babbling phase, the
imitator learns to associate the sensory impression with the motor activations that caused
it by adapting the synaptic connections from the sensory to the motor population. This
mapping of sensory activations back onto the causal motor activations is called an inverse
model. It can then be used to produce any sound in the realm of the explored space:
The sensory memory is just fed through the mapping, such that it will then produce the
necessary motor activations (see figure 4.1).
After the inverse model is once formed, any new sound can (to some degree) be imitated
quickly, namely as soon as the memory is formed. Hence, one-shot-learning and imitation
of very complex sounds becomes possible. In song birds in particular, this means that the
tutor song can be reproduced.
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(a) During exposure to the
tutor song, a sensory memory
template is formed in a mem-
ory area. A model for this
process will be presented in
chapter 9.

(b) During a babbling phase,
the bird explores its own
sound generation capabilities
by random exploration and
forms an inverse model of its
sound generation and percep-
tion apparatus. This is the
process that will be explored
in this chapter, chapter 5 and
chapter 8.

(c) After the inverse model
is learned, any sensory repre-
sentation can be reproduced
by simply feeding it into
the inverse model, which will
elicit the corresponding mo-
tor activity. This is true in
particular for the tutor song.

Figure 4.1: Illustration of the general setup of bird song learning with inverse models.

4.2.1 Existing Learning Rules

Inverse models were suggested as a possible mechanism for vocal imitation learning in song
birds by Hanuschkin et al.[HGH14]. In their study, they suggest a simple learning rule
that serves to learn an inverse model in a simple linear framework: the sensory response
a(t) in the sensory brain area at time t is a vector of firing rates linearly related to the
motor cause m(t − τ) at an earlier time t − τ . m is a vector of firing rates in the motor
area, which they assume to be either HVC or LMAN. They assume a constant loop delay
τ = τm + τa, where τm is the time needed for the motor activation m to generate a sound
and τa is the time needed for the thus generated sound to elicit a response in a. They go
on to assume a linear mapping from motor activity to auditory activity:

a(t) = Qm(t− τ) (4.1)

where Q is a matrix. A successful inverse model V can be described as V = Q−1. This
mapping then allows to postdict the motor causes ma of any given sensory target a ac-
cording to

ma = Va (4.2)

Thus, this inverse model can be used in feed-forward motor control to generate a motor
sequence ma(t) which in turn generates sound that elicits the desired sensory response
a(t). In their study, Hanuschkin et al. suggest a local learning rule which is based on
an eligibility trace e(s), which establishes a link between the activity in a motor neuron
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at time t and activity in a sensory neuron at a later time t + s. This eligibility trace is
assumed to decay monotonically over time, which implies that sensory neurons connect
preferentially onto motor neurons that were recently and reliably activated rather than
onto motor neurons that were activated a long time ago. The decay of e(s) must be slow
enough to account for the loop delay τ , such that e(τ) >> 0. Then the learning rule
describing changes in synaptic strength Vij from auditory neuron j onto motor neuron i
is given by

δVij =

∫ ∞

0
ds [e(s)mi(t− s)aj(t)]− m̂i(t)aj(t) (4.3)

where m̂(t) =
∑

k Vikak(t) is the silently postdicted motor activity corresponding to the
summed auditory input to neuron i at time t. They describe this silently postdicted
motor activity m̂iaj as a heterosynaptic depression term; they also assume that this signal
is transferred silently, that is without a contribution to synaptic input into motor neuron
i. This requires a gating off of sensory input into the motor population during internally
generated motor explorations. With this world model and learning rule, they derive that
the type of inverse model formed and the type of mirror neuron it gives rise to depends on
the type of motor code used for exploration. A causal inverse model can be learned when
the motor explorations are random noise, which will in turn give rise to mirror neurons
with a time delay between motor and sensory activation which is equivalent to the loop
delay τ . This type of causal inverse model maps the auditory activation a(t) back onto its
cause ma(t), such that with this inverse model any sound can be imitated by feeding its
corresponding activation pattern a(t) into the inverse model.

A predictive inverse model can be learned by stereotyped neural input during learning,
which gives rise to mirror neurons with a time delay of zero. Since predictive inverse
models just map the auditory activation a(t) at time t onto a motor activation m(t+ δt)
at a slightly later time t + δt, which repeatedly occurs during the stereotyped neural
activations used during learning, auditory activations are not mapped onto their own
motor causes, but onto the motor causes of subsequent auditory activations, which limits
the set of imitable sounds to the training sequence. Hence, predictive inverse models are
not useful for imitation of arbitrary sounds.

While this study provides a local learning rule which allows first insights into the
learning of inverse models and their connection to mirror neurons, it remains unclear
how the silent signal for the heterosynaptic plasticity m̂ could be propagated. Also, it is
unclear, how the difference between this silent signal m̂ and the actual motor activation
weighted by the eligibility trace is computed. Furthermore, it would be interesting to
extend the learning of inverse models to spike-based neural codes as opposed to firing rate
based neural codes.

4.2.2 Inverse Models in Spiking Neurons as a Form of Pat-
tern Association

If we consider inverse models in spiking neurons, any model of the sound generation and
perception process will be non-linear due to the threshold property of the spiking neurons.
In the most general sense the sound generation and perception process can be described
as mapping from a spike pattern in the motor population to a spike pattern in the sensory
population: A particular pattern of motor activity will induce a certain movement in the
respiratory muscles and the syrinx, which will in turn generate a specific sound which will
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be perceived by the auditory system in a certain way to generate a matching sensory spike
pattern. Due to the threshold nature of spiking neurons, this mapping is always non-linear.
Furthermore, the mapping may or may not be local in time: Both, the generated sound
and the sensory activations might depend on events in the past.
An inverse model in this context will then be the mapping from the self-generated sensory
pattern back onto the motor pattern that generated it. In the case of a causal inverse
model, each particular part of the sensory pattern will be mapped back onto the motor
pattern that produced it.
In this framework, the learning of such an inverse model thus shares a lot of properties
with the problems of pattern association. In fact, it is just a particular case of pattern
association on a very specific set of patterns.
While in pattern classification problems in feed-forward networks mostly the entire set of
patterns is presented during learning (see e.g. [HKP91]), this is impossible to do in the
inverse model, because of the large number of possible motor patterns. The inverse model
thus has to generalize between the patterns used during learning to be able to invert the
entire pattern space.
The learning of inverse models of forward mappings which are local in time, i.e. where the
sensory activation only depends on the motor activation at a given time, is very similar
to Perceptron learning: if the motor activation and the sensory activation is binned into
(arbitrarily small) time bins, for each moment in time a motor pattern evokes a particular
sensory pattern. This pattern then has to be matched back onto the original motor pattern.
To that end, each motor neuron has to learn to respond to a particular spatial pattern of
sensory activation either by spiking or by not spiking (see figure 4.2(a)). While the set of
patterns may be very large, this is just the Perceptron problem.
If the forward mapping is not local in time, each motor spike influences or elicits not only
a local response, but a elongated pattern of sensory activity. This elongated pattern then
needs to be mapped back onto a spike in the relevant motor neuron at a precisely defined
time and no spikes in any other neuron. This is a setting very similar to the Chronotron
problem, albeit with a very peculiar set of patterns (see figure 4.2(b)).
Hence, the learning of inverse models can be investigated in the framework of pattern
classification.
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(a) (b)

Figure 4.2: The learning of inverse models in spiking neurons can be mapped onto
the learning of pattern association. In each of the figures, left is a raster plot of the
simplest possible motor activity, which is then transformed by the sound generation
and perception process to a pattern of sensory activation, which is displayed in the
middle raster plot. Finally, a successful inverse model maps this sensory pattern
back onto the original motor activation, possibly with a time shift due to the delays
between motor and sensory populations (right raster plot, red star). (a) For models
of the sound generation and perception that are local in time, the learning of an
inverse model is similar to the Perceptron problem (see chapter 5 and chapter 6).
(b) For models that are non-local in time, the learning of the inverse model is similar
to the Chronotron problem (see chapter 7 and chapter 8.)
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Chapter 5

Learning of Inverse Models with
Anti-Hebbian Spike Timing
Dependent Plasticity

5.1 Introduction

Inverse sensor-motor models serve to generate a desired sensory input by appropriate motor
actions. In this sense, they attempt to “invert” the action-sensation mapping given by the
physical world. While in general this mapping is not stationary, sound sequence imitation
represents a comparatively well controlled situation. Therefore, it was tempting to propose
inverse models as the mechanism enabling many bird species to imitate previously heard
acoustic signals [HGH14]. The underlying hypothesis is that inverse models in the bird’s
brain perform a transformation of memorized sensory representations of sound sequences
into spatio-temporal patterns of activities in motor areas that in turn generate the same
sound sequences. This enables imitation of arbitrary sound sequences within the realm
of the possible sounds the bird can produce. A crucial prediction of such so called causal
inverse models are mirror neurons active during both singing as well as playback of a
recording of the bird’s song. The responses of these mirror neurons to a playback would
be delayed relative to the bird itself singing the song. This delay reflects the loop time it
takes for motor activations to produce sound, which produces sensory activations that are
looped back to the respective motor area. Indeed, a recent study has found evidence for
such delayed mirroring in area LMAN of the song bird [GKGH14] (for more information
on auditory-vocal mirroring in songbirds see 2.2).

The loop time varies between songbird species in a range from a minimum of around
35ms in the LMAN loop in zebra finches [GKGH14] to the order of magnitude of 70−90ms
measured in behavioural studies with altered feedback in Bengalese finches [SB06]. In this
thesis, a loop delay of about 42ms is chosen for the model to match the time delay found
in the mirror neurons in LMAN in zebra finches[GKGH14].

The classical form of spike-timing-dependent plasticity (STDP) for excitatory synapses
(here denoted CSTDP) postulates that the causal temporal order of first presynaptic ac-
tivity and then postsynaptic activity would lead to long-term potentiation of the synapse
(LTP) while the reverse order would lead to long-term depression (LTD)[DP04, DP06,
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CD08]. More recently, however, it became clear that STDP can exhibit different dependen-
cies on the temporal order of spikes. In particular, it was found that the reversed temporal
order (first post, then presynaptic spiking) could lead to LTP (and vice versa; RSTDP),
depending on the location on the dendrite [FPD05, SH06]. For inhibitory synapses some
experiments were performed which indicate that also here STDP exists and has the form
of CSTDP [HNA06]. Note that CSTDP in inhibitory synapses in its effect on the post-
synaptic neuron is equivalent to RSTDP of excitatory synapses. For simplicity, here the
presentation is restricted to RSTDP for synapses that in contradiction to Dale’s law can
change their sign.

Under natural conditions synaptic changes caused by STDP will depend not only on
the inputs but also on the dynamical properties of the pre- and postsynaptic neurons
within a network. One example for a beneficial effect of such an interplay was investigated
in [DLH10], where CSTDP interacted with spike-frequency adaptation of the postsynaptic
neuron to perform a gradient descent on a square error. Several other studies investigate
the effect of STDP on network function, however mostly with a focus on stability issues
(e.g. [SMA00, ID03, VSZ+11]). In contrast, here the focus is put on the constructive role
of STDP for the learning of inverse models.

5.2 The Model

To investigate learning of inverse models, a model of connected neuronal populations re-
flecting the brain anatomy of songbirds is constructed (see figure 5.1). A neuron population
m in the motor area activates the muscles in the syrinx for singing. The bird’s cochlea
converts sounds into activations of neurons in sensory area s. To model the bird hearing
its own vocalizations, spatio-temporal activity in m is converted to input in s through
one or several delayed linear transformations. This gives self-generated input into the sen-
sory area at or around the loop delay. Mimicking the “babbling” young birds presumably
use to establish the relation of motor activities with the corresponding sensations of self-
generated sounds, the motor neurons are driven with noise during an exploration phase
(see figure 5.3(a) for an example pattern). Consequently, the spatio-temporal motor activ-
ity is transformed into input into the sensory neurons, which in turn create spatio-temporal
sensory spike patterns (see figure 5.3(b)).

A successful inverse model then has to map these sensory patterns, when retrieved
from memory, back onto the motor patterns that have generated the respective sensory
inputs.

There are several fundamental challenges when it comes to learning a causal inverse
model:

� During exploration, there must be some trace of exploratory motor activation over
time to account for the loop delay.

� This trace of the past motor activation must be compared to the input generated
by the inverse model.

� It would be interesting to study this in a framework of spike-time-based neural code
rather than in a rate-based neural code.

� All ingredients to the model should be biologically plausible; in particular the learn-
ing rule should be local.
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This model attempts to achieve all of this.

5.2.1 Neuron Model

Neurons are modelled as simple leaky integrate-and-fire neurons in both areas m and s.
Area m contains Nm neurons, which will be indexed by j, area s consists of Ns neurons
indexed by i. Their membrane potentials V (which are all considered to be measured
relative to the resting potential set to zero) are governed by

τmm V̇j(t) = −Vj(t) + Ij(t) + Iexplor (5.1)

and

τ smV̇i(t) = −Vi(t) + Ii(t) + Inoise (5.2)

respectively, where τ
m/s
m is the membrane time constant and Ii,j is the external current

generated by the network, Iexplor is the current used to elicit activity during exploration
and Inoise is a current induced by potential background noise, which will be set to zero
unless otherwise mentioned. In the absence of input currents, the membrane potential
decays back to the resting potential at Vrest = 0. Ij consists of synaptic inputs from
s, weighted by their synaptic strength wji, such that each presynaptic spike induces a
synaptic current that then leads to an increase or decrease of the membrane potential
with a time delay of τsm = 2ms:

τsynIj = −Ij +
∑
i

wjisi(t− τsm) (5.3)

Iexplor for each motor neuron is independently generated: poissonian spikes are generated
with an exploration firing rate rexplor and then fed into Ij as regular synaptic inputs with
weight 1. Every time a membrane potential crosses the firing threshold Vthresh = 2mV ,
a spike in this neuron is registered and the voltage is reset to the reset potential Vreset =
−48mV . Spike trains are written as a sum of delta pulses

mj(t) =
∑
k

δ(t− tjk) (5.4)

and

si(t) =
∑
k

δ(t− tik) (5.5)

where tik is the time of the k-th spike in neuron i. To provide the hyperpolarisation essential
to this model, the membrane time constant τm = 50ms is chosen to be relatively long as to
provide a substantial remaining hyperpolarisation at the time of the self-generated input
from s. This is also supported by a low reset potential.

5.2.2 World Model

To model the bird hearing its own vocalizations, spatio-temporal activity in m is converted
to input in s through one or several delayed linear transformations, whereNw is the number
of different delays and τw is the temporal difference of the delays relative to each other.
To construct this model of the world, a sparse matrix Mall is created, where each entry
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is either zero, a positive constant with probability Pp = 0.1 or a negative constant with
probability Pn = 0.1. Then Nw empty matrices are constructed and the content of Mall

is distributed over these matrices with equal probability by assigning each entry of Mall a
delay from the set of theNw different delays associated with theNw matricesMr, such that
finally

∑
r Mr = Mall. This construction of the world ensures maximum comparability

between the most simple case of just one delay and the more complex ones.
To then generate input into the sensory population s, spikes in m are low-pass filtered

by τs ˙⃗y = −y⃗ + m⃗ and used as input into the sensory population.

Ii(t) =

Nw∑
r

M i
ry⃗(t− τms − (r − 1

2
Nw)τw). (5.6)

This generates a nonlinear transformation of motor activities into sound activities, which
may or may not be local in time.

5.2.3 Spike-Timing Dependent Plastictiy

Synapses from sensory area s to motor area m are denoted by their synaptic weights wij .
They are plastic according to reverse spike-timing dependent plasticity (RSTDP) and of a
delay of τsm = 2ms. Spikes in the sensory area are denoted as s⃗(t) and spikes in the motor
area m as m⃗(t), both of which consist of a sum of delta pulses, see equations 5.4 and 5.5.
Additionally, a spike-like event in the motor neurons is introduced purely for plasticity
purposes: on the crossing of an additional plasticity threshold 0 < V plast

thresh < Vthresh from
below, a spike-like event is registered and will be denoted m⃗st(t). When a spike arrives at
the synapse with weight wij , it leaves a trace m̄i(t) resp. s̄j(t):

τpre ˙̄sj = −s̄j(t) + sj(t)

τpost ˙̄mi = −m̄i(t) +mi(t) .
(5.7)

RSTDP can then be modelled by a suitable interaction of spikes and traces:

ẇij ∝ −s̄j(t)m
st
i (t) + m̄i(t)sj(t) , (5.8)

where τpre = 4ms and τpost = 50ms define the time course of the STDP window. Probing
this plasticity rule with spike pairs reveals that it reproduces the anti-symmetric STDP
window (see figure 6.1). Because the differential equations (6.8) are linear, the resulting
STDP rule is also linear. All weight changes are effective immediately and weighted with
a learning rate η. To allow for maximum comparability between system sizes, the learning
rate is scaled with the system size, such that ηnorm = Nsη = 0.00025 is constant for all
trials unless otherwise mentioned.

5.2.4 Measuring the Learning Progress

5.2.4.1 General Measuring Procedure

To evaluate learning progress, one particular motor pattern with input rate rsong into
the motor area during exploration and its respective sensory pattern are picked out and
assigned the role of the tutor song; they are stored for later comparison. This is done
to ensure that the model bird can in principle generate the desired activity sequence and
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Figure 5.1: Sketch of the
system setup. A motor
population m feeds into a
sensory population s via
a world model M , which
models the sound genera-
tion and perception pro-
cess with one or several
weighted delay lines with or
centered around the delay
τms = 40ms. The sensory
population s feeds back into
the motor population m via
the inverse model w with a
delay τsm = 2ms.

Figure 5.2: Learning rule (5.8) is equivalent with
RSTDP. A postsynaptic spike leads to an instan-
taneous jump in the trace m̄ (above left, red line),
which decays exponentially. Subsequent presynap-
tic spikes (dark blue bars and corresponding thin
gray bars in the STDP window) “read” out the
state of the trace for the respective ∆t = tpre−tpost.
Similarly, postsynaptic spikes mst read out the
presynaptic trace s̄ (lower left, blue line). Sam-
pling for all possible times reconstructs and as-
sembles the traces in the STDP window.

is equivalent to assuming the tutor bird and the student bird to have the same mapping
from motor activity to sound output. The firing rate of exploration during learning rexplor
can be the same or different from the song firing rate rsong. Learning and recall periods
are of duration T = 3000ms. Weights are initialized as zero, the world model initialized
at random for every trial according to section 5.2.2.
To allow for learning, in the exploration phase, random input is given into the motor
population m during Nk = 5000 learning epochs. During learning, all weight changes are
immediately applied. Every ∆Nk = 100 learning epochs, recall is tested.
To test the ability of the system to reproduce the tutor song, the sensory representation
of the tutor song is set to be the activity in the sensory area s by hand (in addition to
any self-generated activity). This sensory activity then generates some motor activity in
area m, which - if learning was successful - should be a shifted version of the tutor motor
activity. This recall motor activity is in turn fed into a copy of the sensory population to
test whether it generates the same sensory impression on the model bird that the tutor
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song did. Testing whether the same sensory impression is generated is equivalent to testing
if the song sounds the same to the (model) bird, which is the marker of good imitation. It
is in principle possible that two very different motor sequences generate the same sound
output and therefore the same sensory impression. Since for the bird the emphasis is on
mimicking the sound, this is the relevant measure of success. As we will see, however, the
difference between learning success measured on the motor patterns and learning success
measured on the sensory patterns is very small, if learning is successful.

5.2.4.2 Measure of Pattern Similarity

To quantify the similarity of the tutor pattern and the self-generated pattern, it is necessary
to compare two sets of spike trains. The activity asi (t) in each neuron i in the tutor song
will have to be compared to the activity during recall ari (t) to give some distance measure
d0(a

s
i (t), a

r
i (t)). The total distance over the activity as resp. ar of all neurons in the given

population will then just be the sum over all neurons in the population. Finally, this
distance should be minimized over a global shift to account for the loop delay:

d(as, ar) = min
∆t

∑
i

d0(a
s
i (t), a

r
i (t−∆t)) (5.9)

This quantity is evaluated every ∆Nk = 100 learning cycles. The resulting learning curves
are normalized to the number of spikes in the tutor pattern, such that the error before
learning is 1. For small Ns, it is possible that the sensory tutor pattern does not contain
any spikes. Since this is equivalent to a tutor song without sound, these trials are discarded
and repeated with a different initialization.
For the quantitative analysis, the residual error after learning is computed by taking the
average over the last 10% of learning steps in each of the N = 50 trials and then computing
average and standard error from those measurements.

5.2.4.3 Spike Train Distance Measures

There are several possible spike train distance measures d0(s1, s2), e.g. the VanRossum-
distance [vR01] and the Victor-Purpura-distance [VP96].

To calculate the VanRossum-distance between two spike trains s1 and s2, both spike
trains are convoluted with an exponential kernel. Then the quadratic distance is computed
between those convolutions. While this spike train distance measure is easy to implement,
it has the computational disadvantage of the computing time being dependent on the total
number of simulation time steps.

Calculating the Victor-Purpura-distance seems more complicated, but is generally
faster for not too high firing rates: To evaluate a spike train distance between spike
trains s1 and s2, a cost for the transformation from s1 into s2 is calculated. There is a
cost of 1 for the deletion or introduction of a spike and a cost of q∆t for a shift of the
spike time of one spike by ∆t, where q is a parameter that scales the cost of shifting a
spike relative to the insertion and deletion of spikes. The sum of the costs to transform
s1 into s2 is then the spike train distance d(s1, s2).
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5.2.5 Autocorrelation Function

In the setup of the model, the membrane time constant of neurons in the motor population
is very long, which leads to a imposed distance between spikes in these neurons. To be
able to quantify this experimentally accessible property of the model, the autocorrelation
function is introduced.

To evaluate how the spiking probability of the motor neurons depends on past spiking
activity, consider the autocorrelation function ρ(∆t):

ρ(∆t) =
⟨(m(t)− m̄)(m(t−∆t)− m̄)⟩NmN

σ2
m

(5.10)

where < · · · >NmN denotes the average over motor neurons and the ensemble, m̄ is the
mean and σm is the standard deviation of m⃗(t). In this form, the autocorrelation function
is normalized between -1 and 1, 1 indicating perfect correlation, -1 indicating perfect
anti-correlation. An autocorrelation of 0 indicates uncorrelated spiking activity.

5.3 Results

To investigate learning of inverse models, a model of connected neuronal populations
reflecting the brain anatomy of songbirds is constructed (see figure 5.1). A population
m in the motor area activates the muscles in the syrinx for singing. The bird’s cochlea
converts sounds into activations of neurons in sensory area s . To model the bird hearing
its own vocalizations, spatio-temporal activity in m is converted to input in s through one
or several delayed linear transformations. This gives self-generated sounds at or around
the loop delay. Mimicking the “babbling” phase, the motor neurons are driven with noise
during an exploration phase (see figure 5.3(a) for an example pattern). Consequently, the
spatio-temporal motor activity is transformed into input into the sensory neurons, which
in turn create spatio-temporal sensory spike patterns (see figure 5.3(b)).

A successful inverse model then has to map these sensory patterns back onto the motor
patterns that have generated the respective sensory inputs.

5.3.1 Intuitive Understanding of the Learning Process

To facilitate an intuitive understanding of the learning process, I will here first present the
learning principle.
Consider just one spike in one motor neuron at a particular time. This spike will lead to
some sort of activation in the sensory population with a delay of τms. With a delay of
τsm, this activation will provide input back into the motor neuron.
Before learning, due to hyperpolarisation after each spike in a motor neuron its membrane
potential is well below resting potential at the time of the recurrent input from the sensory
population. Furthermore, for the respective synapse, first a postsynaptic spike happens
and then a presynaptic one in each sensory neuron that was activated due to the motor
activity. This order of spiking leads to a potentiation of the synapse, such that upon
repetition of the same activation patterns the membrane potential will be higher. This
process will continue, until the membrane potential hits the plasticity threshold V plast

thresh.
Then, the neuron will perceive a postsynaptic spike, a presynaptic spike and a postsynaptic
plasticity event. This will in net effect cause a weakening of the synapse, because the time
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(a) motor population (b) sensory population

Figure 5.3: Raster plots of an example of activations in the motor (left) resp. sensory
population (right) for Nm = 10, Ns = 200, Nw = 1 and rexplor = rsong = 1Hz. Black
dots represent spikes in the tutor song, red stars represent recall spikes. Recall spikes
are shifted for about τloop with respect to tutor spikes.

distance between the postsynaptic spike and the presynaptic spike is much larger than
the time distance between the presynaptic spike and the postsynaptic plasticity event and
because of the time constants of the plasticity traces. This will halt plasticity such that
the membrane potential will stay below the threshold at that point in time. However,
there will be a substantial amount of extra input back into the motor neuron from the
sensory population at τloop = τsm + τms after the original motor spike.
During recall, the original motor spike is absent, such that the extra input from the sensory
population drives a motor spike in the right neuron with a time shift of τloop.
For all other motor neurons, no spike happens. All input from the sensory population will
be suppressed as soon as the membrane potential reaches the plasticity threshold.
For more complex patterns, the same process applies: Whenever a motor spike occurs,
the synapses from the corresponding sensory neurons are potentiated, until the membrane
potential of the motor neuron reaches the plasticity threshold, whereupon plasticity is
stopped. Figure 7.3 shows the membrane potential in five motor neurons during learning
(left column) and during recall (middle column), as well as the complete song pattern in
all Nm = 10 motor neurons (right column, black dots) and the recall of that song pattern
(right column, red stars) over the course of learning. During the learning process, in
the learning trials, the membrane potential shows a more and more pronounced upwards
deflection of the membrane potential at τloop after each spike. During the recall trials,
first only very small, sub-threshold upwards deflections of the membrane potential become
visible that grow as learning continues, until they reach the threshold and cause a recall
spike. After learning, the entire pattern is completed.

5.3.2 Quantitative Evaluation of the Learning Process

For the quantitative evaluation of the learning process, the spike train distance between
patterns of motor resp. sensory activity is measured every ∆Nk = 100 learning epochs
over a total of Nk = 5000 learning epochs. Learning curves are normalized, such that
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Figure 5.4: From left to right: Example of membrane potential during training,
example of membrane potential during testing, spike raster plot of pattern in m
(black: tutor pattern, red: recall pattern). Top to bottom: At learning steps 10,
20, 50, 200. During learning, the hyperpolarisation is filled up more and more by
extra input from the sensory population. In the recall case, the teacher spikes are
missing, such that the extra input drives the motor neurons over the threshold; the
inverse model is learned.
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Figure 5.5: Learning curves for Nm = 10 and different sensory population sizes.
Over learning, the error decreases quickly and settles on a low level. For large errors
after learning, the error is more pronounced in the motor population than in the
sensory population. The residual error is calculated by taking the average over the
last 10% of learning steps for individual learning curves. From these residual errors
average and standard error are calculated. Left: motor population, right: sensory
population.

the error before learning is 1. This is equivalent to a normalization to the number of
spikes in the tutor pattern. A typical set of learning curves, averaged over N = 50 sets of
initializations, for an exploration and song firing rate rexplor = rtest = 1Hz is displayed in
figure 5.5. Learning is quick and after learning, the system settles at a low error. When
learning is successful, learning curves for the motor pattern and the sensory pattern are
similar. Note that in case of a relatively high residual error (Ns = 20, blue line), the error
is higher in the motor population than in the sensory population. This is a trace of the
fact that different motor patterns do not give sufficiently different sensory patterns, such
that the mapping is difficult to invert.
For all further evaluations, a residual error is calculated by taking the average of the last
10% of learning steps for each initialization. From this set of residual error measurements,
average and standard error are computed and used in all further investigations.

5.3.3 Dependency on System Size

To explore how the residual error after learning depends on the system size, several different
sizes are tested with Nm = {10, 15, 20, 25, 30} for an exploration and song firing rate
rexplor = rtest = 1Hz and the simple world model with Nw = 1. Since it is reasonable to
assume that the residual error will scale with the ratio α = Ns/Nm of neuron numbers in
s and m, residual error after learning is computed for α = {0.2, 0.4, 0.6, 0.8, 1, 2, 5, 10, 20}.
The results for different system sizes are displayed in figure 5.6. Learning is increasingly
successful for increasing α and settles at about αc = 10. Learning success depends only
very little on system size with lower residual error at low α for larger systems.
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Figure 5.6: Residual error after learning in dependency on size ratio between sensory
and motor populations. Left: motor population, Right: sensory population.

5.3.4 Dependency on Firing Rates

In the songbird, in most areas in the song system firing rates are higher than 1Hz, so
it is important to investigate learning also for higher firing rates. Due to the long after-
hyperpolarisation in the motor area, spiking is prevented immediately after each spike
for at least the time of the loop delay τloop = τms + τsm = 42ms. Since the length
of the hyperpolarisation in the motor population is chosen at τm = 50ms to provide a
reasonably strong distance of the membrane potential to the threshold at the time of the
self-generated input, the maximum firing rate is limited to at most 20Hz, if the spiking is
entirely regular. Here, the investigation of learning success is limited to the range of firing
rates of rexplor = rsong = {1Hz, 2Hz, 3Hz, 4Hz, 5Hz, 6Hz, 7Hz}. To investigate how the
success of learning depends on the motor firing rate, the residual error is calculated for
different firing rates for Nm = 10 and α = {2, 5, 10, 20} and the simple world model with
Nw = 1. The results are displayed in figure 5.7. The residual error is low for low firing
rates up to 3Hz and then rises to moderate levels with the firing rate. Note, however, that
the quantitative results differ from motor to sensory population with the overall learning
success higher in the sensory population. So even though there may be differences in how
a sensory impression was generated, the sensory impression is very similar.

5.3.5 Learning with Background Noise

Since songbirds usually learn to sing in large and noisy bird colonies, it is interesting to
investigate, how well inverse models can be learned with background noise. To that end,
extra random input is fed into the sensory population. This input mimics extra sensory
input by being of the same type as the input that reaches the sensory neurons via the
model of the world. The rate with which this input is given is calculated in percent based
on an estimation of the firing rate during song rests : The number of spikes in the song are
divided by the duration and the size of the sensory population:

rests =
1

NsT

∑
j

∫ T

0
sj(t)dt (5.11)
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Figure 5.7: Residual error for different size ratios between sensory and motor popula-
tions in dependency of exploration firing rate. Song firing rate is equal to exploration
firing rate. Left: motor population, Right: sensory population. The residual error
is low for low firing rates and then rises to moderate levels with higher firing rates.

Figure 5.8 shows residual errors for Nm = 10 and Nw = 1 for different population size
ratios α = {2, 5, 10, 20} in dependency on the noise level.
While for low α, the influence of noise is substantial, the residual error saturates for noise
levels up to 200%. For high α, however, the noise level only has a very low impact on the
residual error.

5.3.6 Necessity of Exploration with Testing Firing Rate

Up to this point, it was assumed that the firing rate in the motor population m was
the same for both, the exploration phase and the song. Since this would require prior
knowledge of the firing rate of the song, it is interesting to investigate, how the residual
error changes when exploration is done with a firing rate different from the song firing
rate. To this end, the ratio β = rsong/rexpl is introduced. The residual error is mea-
sured for Nm = 10 and Ns = 100 for exploration firing rate rexpl = {1Hz, 2Hz, 3Hz} and
β = {0.25, 0.5, 1, 2, 4}. The results are displayed in figure 5.9.
The residual error is low for low song firing rates and rises for higher song firing rates.
Learning is successful as long as the exploration firing rate is higher than the song fir-
ing rate, which is consistent with high activation for random exploration. However, the
possible firing rates for the motor population remain limited due to the hyperpolarisation.

5.3.7 Towards more complex Models of the World

Up until now, all results were obtained for a very simple model of the world: a simple,
weighted delay line. However, it can be assumed that the sound generation and perception
process of the songbird is a lot more complex. As a first step towards more complex models
of the world, here, several delays from motor to sensory population will be considered. This
is done by spreading the input of one delay line from the simple world model over several
delays, apart by τw = 1ms. For maximal comparability between the models, the overall
connection probability remains the same.
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Figure 5.8: Residual error for different size ratios between sensory and motor
populations in dependency of background noise level. Left: motor population, Right:
sensory population. Noise has a higher impact on lower size ratios than on high size
ratios. For high size ratios, the impact of noise is surprisingly small.

Figure 5.9: Residual error for different exploration firing rates in dependency on the
firing rate ratios between song firing rate and exploration firing rate. Left: motor
population, Right: sensory population. The residual error is low for low song firing
rates for all exploration firing rate ratios and then rises to moderate level for higher
ratios.
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(a) Moderately complex world model with Nw = 5

(b) Moderately complex world model with Nw = 10

Figure 5.10: Residual error for different system sizes in dependency on size ratios
between sensory and motor populations for a broad distribution of self-generated
inputs with Nw = 5 resp. Nw = 10. Learning success is still relatively good with
moderate residual errors. Left: motor population, Right: sensory population.

Experimentally, a high width of the self-generated input is equivalent to a broad dis-
tribution of loop delays, which is indeed found in experiments (e.g. [GKGH14], [SB06]).

To investigate how the complexity of the world model affects the learning success,
the residual error for different system sizes and population ratios is computed for several
different net widths of the self-generated input with Nw = {5, 10, 40}.

The residual errors for Nw = 5 resp. Nw = 10 are displayed in figure 5.10(a) resp.
5.10. Learning is no longer almost perfect, but still successful with moderate residual
errors. While at low α the residual error is higher in larger system, it is smaller for larger
systems for high α, where residual errors are lowest.

For the broadest distribution of self-generated input, Nw = 40, learning converges a
lot more slowly, which is why ηnorm = 0.001 was choosen. The residual error for different
system sizes and population size ratios is displayed in figure 5.11. Here, learning breaks
down completely with very high residual errors. Hence, learning of inverse models with
this learning rule in spiking networks only works for relatively simple models of the world,
but not for more complex pattern on pattern matching.
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Figure 5.11: Residual error for different system sizes in dependency on size ratios
between sensory and motor populations for a broad distribution of self-generated
inputs Nw = 40. Learning success is very low with high residual errors. Left: motor
population, Right: sensory population.

5.3.8 Experimentally testable Predictions: the Spike Auto-
correlation

The long after-hyperpolarisation in the motor population in the model serves to avoid
cyclic activity and to provide a testbed for self-generated input from the sensory popula-
tion. A side effect of this hyperpolarisation is that the maximum firing rate in the motor
population is limited, because immediately after a spike, each neuron is reset to a low
membrane potential and thus has a very low spiking probability. This can be measured
by measuring the autocorrelation of the spike trains. Figure 5.12 shows the autocorrela-
tion of the spike trains in m for Nm = 10, Ns = 100, rexpl = rsong = 7Hz. There is a
small, but noticeable dip in the autocorrelation of the length of the time of the loop delay.
Furthermore, there is an upward bump in the autcorrelation function at the time of the
self-generated input. This is a consequence of the fact that the membrane potential of the
motor neuron rises to above resting potential due to that extra input. Note that this is a
side-effect of the specific setup of the model, while the dip in the autocorrelation function
is a generic property of the learning principle.
The autocorrelation could be accessible experimentally.

5.4 Discussion

In this chapter, I presented a simple and biologically plausible learning mechanism that
can serve to learn inverse models in networks of spiking neurons.

The model predicts mirror neurons with a delay equivalent to the loop delay in the
respective sensory and motor areas. This delay was linked to causal inverse models before
([HGH14]). In fact, experimental evidence for this type of delay was found in songbird
brain area LMAN ([GKGH14]). In their study, [HGH14] suggest a simple hebbian learning
rule, which relies on the comparison between self-generated and target input. However,
there is no clear biological interpretation of how this comparison could be done. Addi-
tionally, in their study, to provide analytical tractability they only discuss a linear model
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(a) Autocorrelation function of spiking activity
in the motor population.

(b) Close-up of the autocorrelation function
around ∆t = 0 and ρ(∆t) = 0.

Figure 5.12: Autocorrelation function of the spiking activity in m. There is a dip of
a width equivalent to the loop delay. The horizontal black line at autocorrelation 0
serves as a guide to the eye.

of sound generation and perception which is local in time. In the songbird, however, the
process of sound generation and perception can be assumed to be both, non-linear and
non-local in time. In this model, non-linear spiking neurons for sound perception and
generation are included as well as a motor-sensory mapping that includes interactions not
local in time.
The learning algorithm presented here is designed to operate on spiking neurons and is
well able to invert non-linear models of the world. Furthermore, it can invert world models
that spread the sensory input over some amount of time - up to about Nw = 10 learning
works relatively well, which is equivalent to a temporal width of input into the sensory
population of 10ms. However, for broad distributions of time delays from motor to sensory
population, learning breaks down.

In this chapter, simple integrate-and-fire neurons are used, because they capture the
general properties of spiking neurons. However, to provide a large and long enough hy-
perpolarisation after each spike, a very low reset potential is chosen. While this is not
biologically realistic, the learning process only relies on the fact that a substantial extra
input around the time of the self-generated input from the sensory population back into
the motor population is required to drive the membrane potential up to the plasticity
threshold. In more realistic neuron models, such as the conductance-based integrate-and-
fire-neuron model, this could be done with a more reasonable reset potential, in a way
similar to what will be presented in chapter 7. Since these neuron models are much closer
to real neurons than the simple integrate-and-fire neuron used here, it can be assumed
that in the songbird no large visible hyperpolarisation is required.

In fact, the learning only relies on the fact that all synapses from sensory to motor
population are strengthened, when coactive, until the sensory input is large enough to
reach a plasticity threshold below the spiking threshold. For learning to be successful, the
membrane potential needs to be at a sufficient distance from the plasticity threshold at the
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time of the self-generated input (while the amplitude of the self-generated input input is
still small - after learning, the self-generated input pushes the membrane potential towards
the plasticity threshold). The mechanism suggested here is not the only mechanism that
can accomplish that: An adaptive spiking threshold, that is raised with each motor spike
and decays exponentially with the plasticity threshold at a fixed distance to the spiking
threshold would have the same learning effect. The interplay between this type of adaptive
threshold and STDP was shown to be beneficial for associative learning before [DLH10].
Hence, the hyperpolarisation does not need to be as pronounced as it is here, or, in fact,
present at all, but any such mechanism will leave a trace in the spiking statistics of the
motor neuron: There will be a dip in the autocorrelation function of the duration of the
loop delay (compare figure 5.12). Hence, this dip in the autocorrelation function is a
trademark of this learning principle, which might be experimentally accessible.

The other part of the learning principle, RSTDP, has been observed experimentally in
several systems, either in the direct form of RSTDP on excitatory synapses [FPD05, SH06]
or in the indirect form of regular STDP on inhibitory synapses [HNA06], which has
the same net effect on the membrane potential. Several studies investigate the effect
of STDP on network function, however mostly with a focus on stability issues (e.g.
[SMA00, ID03, VSZ+11]). In this model, however, it is shown that it can serve a con-
structive role in learning inverse models.

There are several areas in the avian song system that are candidate areas for both,
motor and sensory population. Mirror neurons of the time delay in the order of magnitude
of the loop delay have only been found in LMAN [GKGH14], which makes LMAN the most
likely candidate for the motor area. However, firing rates in LMAN are generally higher
than the very low firing rates required in this very simple model with typical firing rates
at between 12Hz and 40Hz [ÖAF05, Leo04]. In the model, not only does the learning
success decrease for higher firing rates, firing rates are limited by the long hyperpolarisa-
tion in the motor neurons. This effect is generic to the learning principle and would occur
as well, if it was implemented by a spike frequence adaptation as in [DLH10].
One candidate area for a sensory area involved in song production is HVC. However, there
are no direct connections from HVC to LMAN (or from any other primarily sensory area),
which shows that the very simple setup presented here is a strong simplification of the
much more complex real system.
However, HVC is not only a sensory area, but also involved as a motor area in song pro-
duction. Hence, it is also a candidate area for the motor area of this model. Firing rates in
HVC are very low [HKF02], which would match the low firing rates required for optimal
learning in the model. However, the only mirror neurons found in HVC have zero time
delay between song and playback [PPNM08].

To allow for the inversion of any type of forward mapping, a size difference between
the involved neural populations is advantageous. In the model, learning works particularly
well, if the sensory area is at least five times bigger than the motor area. However, it is
unlikely that this size difference would be reflected in the size of the brain areas in the
songbird.
Learning success depends very little on system size, if learning is successful. When learning
is only moderately successful - in the case of more complex world models or high firing
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rates - larger systems are advantageous. However, when learning breaks down for very
broad distributions of self-generated input, larger system sizes don’t help to alleviate this
effect. This is particularly important, because songbird brain areas are much larger than
the up to Nm = 30 motor neurons considered here.

Songbirds learn to sing not in isolation, but rather in large bird colonies. This raises
the question, how well the model bird can learn in the presence of background noise. To
investigate this, the residual error was measured in dependency of the noise level in percent
of the average activity of the tutor song. While there are substantial difficulties for low
size ratios between the motor and sensory population α, learning is surprisingly robust
under the influence of noise, with little influence for large size ratios between motor and
sensory area ranging up to 200%.

In this chapter, a new mechanism for the learning of inverse models in a simple setup
was suggested, that consists of biologically plausible parts and works on spiking neurons.
While it is unclear, if this exact setup can be found in the songbird, it is a conceptually
interesting approach to inverse model learning. However, the role of zero delay mirror
neurons and possible mechanisms for the inversion of more realistic world models remain
unclear - they will be discussed again in chapter 8.
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Chapter 6

The Perceptron Learning Rule

While in the last chapter the application of Anti-Hebbian spike-timing-dependent plas-
ticity (RSTDP) to unsupervised learning of inverse models was discussed, here the focus
is set on the general properties of RSTDP in a much simpler network architecture: the
single layer feed-forward network. RSTDP is able to perform Perceptron learning very
similarly to the original Perceptron Learning Rule as introduced by [Ros58] and below.
In this chapter, it is proven that RSTDP of excitatory synapses (or CSTDP on inhibitory
synapses) when acting in concert with neuronal after-hyperpolarisation and depolariza-
tion dependent LTD is sufficient for realizing the classical Perceptron learning rule. The
neuron model and the plasticity rule in this chapter are the same as in chapter 5, but will
be repeated for completeness.

The results from this chapter were obtained in collaboration with Christian Albers and
published in [AWP13] together with a quantitative assessment of the learning capabilities
of the learning rule for the associative learning of output spikes in response to input
patterns elongated in time, both for precisely timed output spike (Chronotron problem)
and for output spikes without timing restrictions (Tempotron problem).

6.1 Introduction

Perceptrons are paradigmatic building blocks of neural networks [HKP91] (see section
3.4.2.1 for details). The original Perceptron Learning Rule (PLR) is a supervised learning
rule that employs a threshold to control weight changes, which also serves as a margin
to enhance robustness [Ros58, MP69]. If the learning set is linearly separable, the PLR
algorithm is guaranteed to converge in a finite number of steps [HKP91], which justifies
the term ’perfect learning’.

Associative learning can be considered a special case of supervised learning, where the
activity of the output neuron is used as a teacher signal such that after learning missing
activities are filled in. For this reason the PLR is very useful for building associative
memories in recurrent networks, where it can serve to learn arbitrary patterns in a ’quasi-
unsupervised’ way. Here it turned out to be far more efficient than the simple Hebb
rule, leading to a superior memory capacity and non-symmetric weights [DO87]. Note
also that over-learning from repetitions of training examples is not possible with the PLR
because weight changes vanish as soon as the accumulated inputs are sufficient, a property
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which in contrast to the näıve Hebb rule makes it suitable also for incremental learning of
associative memories from sequential presentation of patterns.

On the other hand, it is not known if and how biological synaptic mechanisms might
realize the success-dependent self-regulation of the PLR in networks of spiking neurons in
the brain. For example in the Tempotron [GS06], a generalization of the Perceptron to
spatio-temporal patterns, learning was conceived even somewhat less biological than the
PLR, since here it not only depends on the potential classification success, but also on
a process that is not local in time, namely the localization of the absolute maximum of
the (virtual) postsynaptic membrane potential of the postsynaptic neuron. The simplified
Tempotron learning rule, while biologically more plausible, still relies on a reward signal
which tells each neuron specifically whether it should have spiked or not. Taken together,
while highly desirable, the feature of self regulation in the PLR still poses a challenge for
biologically realistic synaptic mechanisms.

The classical form of spike-timing-dependent plasticity (STDP) for excitatory synapses
(here denoted CSTDP) states that the causal temporal order of first presynaptic activity
and then postsynaptic activity leads to long-term potentiation of the synapse (LTP) while
the reverse order leads to long-term depression (LTD)[DP04, DP06, CD08]. More recently,
however, it became clear that STDP can exhibit different dependencies on the temporal
order of spikes. In particular, it was found that the reversed temporal order (first post-
then presynaptic spiking) could lead to LTP (and vice versa; RSTDP), depending on
the location of the synapse on the dendrite [FPD05, SH06]. For inhibitory synapses some
experiments were performed which indicate that here STDP exists as well and has the form
of CSTDP [HNA06]. Note that CSTDP of inhibitory synapses is equivalent to RSTDP of
excitatory synapses in its effect on the postsynaptic neuron. Additionally it has been shown
that CSTDP does not always rely on spikes, but that strong subthreshold depolarization
can replace the postsynaptic spike for LTD while keeping the usual timing dependence
[STN04]. Therefore, here a second threshold for the induction of timing dependent LTD
is assumed. For simplicity and without loss of generality, investigations can be restricted
to RSTDP for synapses that in contradiction to Dale’s law can change their sign.

It is very likely that plasticity rules and dynamical properties of neurons co-evolved
to yield maximally beneficial interplay. Combining them could reveal new and desirable
effects. A modelling example for a beneficial effect of such an interplay was investigated in
[DLH10], where CSTDP interacted with spike-frequency adaptation of the postsynaptic
neuron to perform a gradient descent on a square error. Several other studies investigate
the effect of STDP on network function, however mostly with a focus on stability issues
(e.g. [SMA00, ID03, VSZ+11]). In contrast, here focus is put on the constructive role of
STDP for associative learning. It is proven that RSTDP of excitatory synapses (or CSTDP
of inhibitory synapses) when acting in concert with neuronal after-hyperpolarisation and
depolarization-dependent LTD is sufficient for realizing the classical Perceptron learning
rule.
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6.2 The Model

6.2.1 Neuron Model and Network Structure

Assume a feed-forward network of N presynaptic neurons and one postsynaptic integrate-
and-fire neuron with a membrane potential U governed by

τU U̇ = −U + Isyn + Iext, (6.1)

where Isyn denotes the input from the presynaptic neurons, and Iext is an input which
can be used to drive the postsynaptic neuron to spike at certain times. When the neuron
reaches a threshold potential Uthr, it is reset to a reset potential Ureset < 0, from where
it decays back to the resting potential U∞ = 0 with time constant τU . Spikes and other
signals (depolarization) take finite times to travel down the axon (τa) and the dendrite
(τd). Synaptic transmission takes the form of delta pulses, which reach the soma of the
postsynaptic neuron after time τa+ τd, and are modulated by the synaptic weight w. The
presynaptic spike train of neuron i is denoted as xi with spike times tipre:

xi(t) =
∑
tipre

δ(t− tipre). (6.2)

A postsynaptic neuron receives the input Isyn(t) =
∑

iwixi(t− τa− τd). The postsynaptic
spike train is similarly denoted by y(t) =

∑
tpost

δ(t− tpost).

6.2.2 The Plasticity Rule

The plasticity rule employed here mimics reverse STDP: A postsynaptic spike which ar-
rives at the synapse shortly before a presynaptic spike leads to synaptic potentiation. For
synaptic depression the relevant signal is not the spike, but the point in time tk where
U(t) crosses an additional threshold Ust from below, with U∞ < Ust < Uthr (“subthreshold
threshold”). These events are modelled as δ-pulses in the function z(t) =

∑
k δ(t − tk)

(see figure 6.1 (a) for an illustration of the principle). The temporal characteristic of
(reverse) STDP is preserved: If a presynaptic spike occurs shortly before the membrane
potential crosses this threshold, the synapse depresses. Such timing-dependent LTD with-
out postsynaptic spiking has been observed, although with classical timing requirements
[STN04].

This is formalized by letting pre- and postsynaptic spikes each drive a synaptic trace
x̄(t) resp. ȳ(t):

τpre ˙̄x = −x̄+ x(t− τa)

τpost ˙̄y = −ȳ + y(t− τd).
(6.3)

The learning rule is a read–out of the traces by spikes and threshold crossing events,
respectively:

ẇ ∝ ȳx(t− τa)− γx̄z(t− τd), (6.4)

where γ is a factor which scales depression and potentiation relative to each other. Figure
6.1 (b) shows how this plasticity rule creates RSTDP.
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(a) (b)

Figure 6.1: Illustration of STDP mechanism. (a) Upper trace (red) is the membrane
potential of the postsynaptic neuron. Shown are the firing threshold Uthr and the
threshold for LTD Ust. Middle trace (black) is the variable z(t), the train of LTD
threshold crossing events. Please note that the first spike in z(t) occurs at a different
time than the neuronal spike. Bottom traces show w(t) (yellow) and x̄ (blue) of a
selected synapse. The second event in z reads out the trace of the presynaptic spike
x̄, leading to LTD. (b) Learning rule (6.4) is equivalent to RSTDP. A postsynaptic
spike leads to an instantaneous jump in the trace ȳ (top left, red line), which decays
exponentially. Subsequent presynaptic spikes (dark blue bars and corresponding thin
gray bars in the STDP window) “read” out the state of the trace for the respective
∆t = tpre − tpost. Similarly, z(t) reads out the presynaptic trace x̄ (lower left, blue
line). Sampling for all possible times results in the STDP window (right).
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6.3 Equivalence to Perceptron Learning Rule

The Perceptron Learning Rule (PLR) for positive binary inputs and outputs is given by

∆wµ
i ∝ xi,µ0 (2yµ0 − 1)Θ [κ− (2yµ0 − 1)(hµ − ϑ)] , (6.5)

where xi,µ0 ∈ {0, 1} denotes the activity of presynaptic neuron i in pattern µ ∈ {1, . . . , P},
yµ0 ∈ {0, 1} signals the desired response to pattern µ, κ > 0 is a margin which ensures

a certain robustness against noise after convergence, hµ =
∑

iwix
i,µ
0 is the input to a

postsynaptic neuron, ϑ denotes the firing threshold, and Θ(x) denotes the Heaviside step
function. If the P patterns are linearly separable, the Perceptron will converge to a correct
solution of the weights in a finite number of steps. For random patterns this is generally
the case for P < 2N . A finite margin κ reduces the capacity.

Interestingly, for the case of temporally well separated synchronous spike patterns the
combination of RSTDP-like synaptic plasticity dynamics with depolarization-dependent
LTD and neuronal hyperpolarization leads to a plasticity rule which can be mapped to
the Perceptron Learning Rule. To cut down unnecessary notation in the derivation, the
indices i and µ are dropped except where necessary and the range of considered times is
limited to 0 ≤ t ≤ τa + 2τd.

Consider a single postsynaptic neuron with N presynaptic neurons, with the condition
τd < τa. During learning, presynaptic spike patterns consisting of synchronous spikes at
time t = 0 are induced, concurrent with a possibly occuring postsynaptic spike which
signals the class the presynaptic pattern belongs to. This is equivalent to the setting of a
single layered Perceptron with binary neurons. With x0 and y0 used as above, the pre- and
postsynaptic activity can be written as x(t) = x0δ(t) and y(t) = y0δ(t). The membrane
potential of the postsynaptic neuron depends on y0:

U(t) = y0Ureset exp(−t/τU )

U(τa + τd) = y0Ureset exp(−(τa + τd)/τU ) = y0Uad.
(6.6)

Similarly, the synaptic current is

Isyn(t) =
∑
i

wix
i
0δ(t− τa − τd)

Isyn(τa + τd) =
∑
i

wix
i
0 = Iad.

(6.7)

The activity traces at the synapses are

x̄(t) = x0Θ(t− τa)
exp(−(t− τa)/τpre)

τpre

ȳ(t) = y0Θ(t− τd)
exp(−(t− τd)/τpost)

τpost
.

(6.8)

The variable of threshold crossing z(t) depends on the history of the postsynaptic neurons,
which again can be written with the aid of y0 as

z(t) = Θ(Iad + y0Uad − Ust)δ(t− τa − τd). (6.9)

Here, Θ reflects the condition for induction of LTD. Only when the postsynaptic input
at time t = τa + τd is greater than the residual hyperpolarization (Uad < 0!) plus the
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threshold Ust, a potential LTD event is registered. These are the ingredients for the
plasticity rule (6.4):

∆w ∝
∫

[ȳx(t− τa)− γx̄z(t− τd)] dt

=x0y0
exp(−(τa + τd)/τpost)

τpost
− γx0

exp(−2τd/τpre)

τpre
Θ(Iad + y0Uad − Ust).

(6.10)

This expression can be shortened by choosing γ such that the factors of both terms are
equal, which can be dropped subsequently:

∆w ∝ x0 (y0 −Θ(Iad + y0Uad − Ust)) . (6.11)

Expanding equation 6.11 by adding and substracting y0Θ(Iad + y0Uad − Ust) gives

∆w ∝x0 [y0(1−Θ(Iad + y0Uad − Ust))− (1− y0)Θ(Iad + y0Uad − Ust)]

=x0 [y0Θ(−Iad − Uad + Ust)− (1− y0)Θ(Iad − Ust)] .
(6.12)

In the last transformation, 1 − Θ(x) = Θ(−x) was used and y0 was dropped from the
argument of the Heaviside functions, as the two terms are separated into the two cases
y0 = 0 and y0 = 1. A similar transformation can be done to construct an expression G
which is used to substitute the arguments of the Heaviside functions. That expression is

G = Iad − Ust + y0(−2Iad − Uad + 2Ust), (6.13)

with which the arguments are replaced

∆w ∝ x0y0Θ(G)− x0(1− y0)Θ(G) = x0(2y0 − 1)Θ(G). (6.14)

The last task is to show that G and the argument of the Heaviside function in equation
(6.5) are equivalent. For this, Iad = h, Uad = −2κ and Ust = ϑ − κ is chosen. Note that
ϑ = Uthr is the firing threshold. Introducing this into G yields

G =Iad − Ust + y0(−2Iad − Uad + 2Ust)

=h− ϑ+ κ+ 2y0h+ 2y0κ+ 2y0ϑ− 2y0κ

=κ− (2y0 − 1)(h− ϑ),

(6.15)

which is the same as the argument of the Heaviside function in equation (6.5). Therefore,
equivalence of the two learning rules was shown.

6.4 Discussion

In this chapter, the biologically highly plausible approach to learning in neuronal net-
works introduced in chapter 5 is applied to learning in feed-forward networks. RSTDP
with subthreshold LTD in concert with hyperpolarisation is shown to be mathematically
equivalent to the Perceptron learning rule for activity patterns consisting of synchronous
spikes, thereby inheriting the highly desirable properties of the PLR (convergence in fi-
nite time, stop condition if performance is sufficient and robustness against noise). This
provides a biologically plausible mechanism to build associative memories with a capacity
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Figure 6.2: Illustration of Perceptron learning with RSTDP with subthreshold LTD
and postsynaptic hyperpolarization. Shown are the traces x̄, ȳ and U . Pre- and
postsynaptic spikes are displayed as black bars at t = 0. (a) Learning in the case of
y0 = 1, i.e. a postsynaptic spike as the desired output. Initially the weights are too
low and the synaptic current (summed PSPs) is smaller than Ust. Weight change
is LTP only until the membrane potential hits Ust during pattern presentation. At
this point LTP and LTD exactly cancel each other out, and learning stops. (b)
Pattern completion for y0 = 1. Shown are the same traces as in A at the absence
of an inital postsynaptic spike. The membrane potential after learning is drawn
as a dashed line to highlight the amplitude. Without the initial hyperpolarization,
the synaptic current after learning is large enough to cross the spiking threshold
and the postsynaptic neuron fires the desired spike. Learning until Ust is reached
ensures a minimum height of synaptic currents and therefore robustness against
noise. (c) Pattern presentation and completion for y0 = 0. Initially, the synaptic
current during pattern presentation causes a spike and consequently LTD. Learning
stops when the membrane potential stays below Ust. Again, this ensures a certain
robustness against noise, analogous to the margin in the PLR.
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close to the theoretical maximum. Equivalence of STDP with the PRL was shown be-
fore in [LNM05], but this equivalence only holds on average. Here, in contrast, a novel
approach is presented that ensures exact mathematical equivalence to the PRL.

The mechanism proposed here is complementary to a previous approach [DLH10] which
uses CSTDP in combination with spike frequency adaptation to perform gradient descent
learning on a squared error. However, that approach relies on an explicit teacher signal,
and is not applicable to auto-associative memories in recurrent networks. Most impor-
tantly, the approach presented here inherits the important feature of self-regulation and
fast convergence from the original Perceptron which is absent in [DLH10].

Spike after-hyperpolarization is often neglected in theoretical studies or assumed to
only play a role in network stabilization by providing refractoriness. Depolarization depen-
dent STDP receives little attention in modelling studies (but see [CBVG10]), possibly be-
cause there are only few studies which show that such a mechanism exists [STN04, FDV09].
The novelty of the learning mechanism presented here lies in the constructive roles both
play in concert. After-hyperpolarization allows synaptic potentiation for presynaptic in-
puts immediately after the teacher spike without causing additional non-teacher spikes,
which would be detrimental for learning. During recall, the absence of the hyperpolar-
ization ensures the then desired threshold crossing of the membrane potential (see figure
2 (b)). Subthreshold LTD guarantees convergence of learning. It counteracts synaptic
potentiation when the membrane potential becomes sufficiently high after the teacher
spike. The combination of both provides the learning margin, which makes the result-
ing network robust against noise in the input. Taken together, these results show that
the interplay of neuronal dynamics and synaptic plasticity rules can give rise to powerful
learning dynamics.
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Chapter 7

Chronotron Learning with
Membrane Potential Dependent
Plasticity

In chapters 5 and 6, the learning of classification of input spike patterns that are purely
spatial was investigated in the context of learning of simple inverse models and on the
example of Perceptron learning. This learning principle consists of combining a strong hy-
perpolarisation with a synaptic learning rule that changes synapses to raise the membrane
potential until a plasticity threshold below the firing threshold is reached. So far, this
synaptic plasticity rule was chosen to be Anti-Hebbian Spike-Timing-Dependent Plastic-
ity. Here, the learning capabilities of a different synaptic learning rule will be investigated:
Membrane Potential Dependent Plasticity (MPDP), which strives to balance excitatory
and inhibitory inputs to keep the membrane potential bounded. The combination of this
learning rule with hyperpolarisation provides a learning principle that is not only biolog-
ically plausible, but also enables a neuron to learn to spike at precisely defined times in
response to spatio-temporal input patterns (Chronotron problem, see 3.4.2.3).

7.1 Introduction

Precise and recurring spatio-temporal patterns of action potentials are observed in various
biological neuronal networks. In zebra finches, precise sequences of activations in region
HVC are found during singing and listening to the own song [HKF02]. Also, when spike
times of sensory neurons are measured, the variability of latencies relative to the onset of
an externally induced stimulus is often higher than if the latencies are measured relative
to other sensory neurons [GM08, Mas13]; spike times covary. This allows to conclude that
information about the stimulus is coded in spatio-temporal spike patterns. Theoretical
considerations show that in some situations spike-time coding is superior to rate coding
[VT01]. Xu and colleagues demonstrated that through associative training it is possible
to imprint new sequences of activations in visual cortex [XJPD12], which shows that there
are plasticity mechanisms which are used to learn precise sequences.
These observations suggest that spatio-temporal patterns of spike activities underlie cod-
ing and processing of information in many networks of the brain. However, it is not
known which synaptic plasticity mechanisms enable neuronal networks to learn, generate,
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and read out precise action potential patterns. A theoretical framework to investigate
this question is the Chronotron, where the postsynaptic neuron is trained to fire a spike
at predefined times relative to the onset of a fixed input pattern [Flo12a]. A natu-
ral candidate plasticity rule for Chronotron training is Spike-Timing Dependent Plasticity
(STDP) [CD08] in combination with a supervisor who enforces spikes at the desired times.
Legenstein and colleagues [LNM05] investigated the capabilities of supervised STDP in
the Chronotron task and identified a key problem: STDP has no means to distinguish
between desired spikes caused by the supervisor and spurious spikes resulting from the
neuronal dynamics. As a result, every spike gets reinforced, and plasticity does not ter-
minate when the correct output is achieved, which eventually leads to unlearning of the
desired synaptic state. The failings of STDP hint at the requirements of a working learning
algorithm. Information about the type of a spike (desired or spurious) has to be avail-
able to each synapse, where it modulates spike time based synaptic plasticity. Synapses
evoking undesired spikes should be weakened, synapses that contribute to desired spikes
should be strengthened, but only until the self-generated output activity matches the de-
sired one. Plasticity should cease if the output neurons generate the desired spikes without
supervisor intervention. In other words, at the core of a learning algorithm needs to be a
comparison of actual and target activity, and synaptic changes have to be computed based
on the difference between the two.
In recent years, a number of supervised learning rules have been proposed to train to
fire temporally precise output spikes in response to recurring spatio-temporal input pat-
terns [BKLP02, Flo12a, MRÖS14]. They compare the target spike train to the self-
generated (actual) output and devise synaptic changes to transform the latter into the
former. However, because spikes are discrete events in time that influence the future dy-
namics of the neuron, the comparison is necessarily non-local in time, which might be
difficult to implement for a biological neuron and synapse. Another group of algorithms
performs a comparison of actual and target firing rate instead of spike times [PK10, XS04,
BSP13, US14]. Because they work with the instantaneous firing rate, they do not rely on
sampling of discrete spikes and therefore the comparison is local in time. It is interesting
to note that these learning algorithms are implicitely sensitive to the current membrane
potential, of which the firing rate is a monotonous function. However, two important
questions remain unanswered: How is the desired activity communicated to a biological
neuron and how does the synapse compute the difference?
In this chapter, the learning capabilities of a plasticity rule, which relies only on postsy-
naptic membrane potential and presynaptic spikes as signals, are investigated. To distin-
guish it from spike times based rules, it is called Membrane Potential Dependent Plasticity
(MPDP). MPDP is derived from a homeostatic requirement on the voltage and it is shown
that in combination with spike after-hyperpolarisation (SAHP) it is compatible with ex-
perimentally observed STDP of inhibitory synapses [HNA06]. Despite its Anti-Hebbian
nature, MPDP combined with SAHP can be used to train a neuron to generate desired
temporally structured spiking output in an associative manner. During learning, the su-
pervisor or teacher induces spikes at the desired times by a strong input. Because of the
differences in the time course of the voltage, a synapse can sense the difference between
spurious spikes caused by weak inputs and teacher spikes caused by strong inputs. As
a consequence, weight changes are matched to the respective spike type. Therefore, the
learning algorithm provides a biologically plausible answer for the open question presented
above.
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This learning algorithm was quantitatively assessed in [AWP16], where the memory ca-
pacity and the noise tolerance were tested in the most simple neuron model presented
here, the integrate-and-fire neuron.

7.2 The Model

In this section, the models used are presented. First, the simpler leaky integrate-and-fire
neuron model (LIF neuron) is introduced and used to derive the MPDP rule. Second,
MPDP is applied to a more realistic conductance based integrate-and-fire neuron and a
Hodgkin-Huxley type neuron.

7.2.1 Neuron Models

Three different neuron models are introduced to show that the learning algorithm sug-
gested here is capable of learning precise spike times in response to spatio-temporal input
patterns irrespective of the specifics of the neuron model.

7.2.1.1 The simple Integrate-and-Fire Neuron

The model for the simple integrate-and-fire neuron is the same as in chapter 5 and 6,
however, the description will be repeated here for completeness.
Plasticity processes are investigated in several different network setups. In each of these
setups, a neuron j receives input from other neurons i via plastic synapses. tki is the time
of the k-th spike of presynaptic neuron with index i. The neuron is modelled as a simple
leaky integrate-and-fire neuron. The formulation of the SRM0 facilitates the derivation of
the plasticity rule ([GK02]). The neuronal voltage V (t) is given by the sum of weighted
synaptic input kernels ε(s) (postsynaptic potentials, PSPs) and reset kernels R(s), which
model the neuronal reset after a spike. External input currents Iext(t) are low-pass filtered
with a response kernel κ(s). The full equation reads

V (t) =
∑
i

wi

∑
k

ε(t− tik − tdelay) +
∑
tj

R(t− tj) +

∞∫
0

κ(t− s)Iext(s)ds. (7.1)

Here, wi is the weight from presynaptic neuron j to the postsynaptic neuron. κ = exp (−(t− s)/τm)
is the passive response kernel by which external currents are filtered. A delay of synaptic
transmission tdelay is included. The other kernels are

ε(s) = Θ(s)
1

τm − τs
(exp(−s/τm)− exp(−s/τs))

R(s) = Θ(s)(Vreset − Vthr) exp(−s/τm).

(7.2)

τm = 8ms is the membrane time constant of a LIF neuron determining the decay of
voltage perturbations, and τs = 2ms is the decay time constant of synaptic currents,
which defines the rise time of the PSP kernel. Θ(s) is the Heaviside step function. If there
is no input, the voltage relaxes back to Veq = 0. Spiking in this model is deterministic: If
V (t′) = Vthr = 20mV , the neuron spikes and a reset kernel is added at time t′ = tpost. The
formulation of the kernel makes sure that the voltage is always reset to Vreset = −60mV <
Veq.

75



7.2. THE MODEL CHAPTER 7. CHRONOTRON

7.2.1.2 The conductance-based Integrate-and-Fire Neuron

The simple model above suffers from the fact that MPDP is agnostic to the type of synapse.
In principle, MPDP can turn excitatory synapses into inhibitory ones by changing the sign
of any weight wi. Since this is a violation of Dale’s law, a more biologically realistic scenario
involving MPDP is presented.
The presynaptic population is split into Nex excitatory and Nin inhibitory neurons. The
postsynaptic neuron is modelled as a conductance based LIF neuron governed by

Cm
dV

dt
= −gL(V − VL)− (gsl + gf )(V − Vh)− gex(V − Vex)− gin(V − V in) , (7.3)

where V denotes the membrane potential, Cm = 0.16µF the membrane capacitance,
VL = −70mV the resting potential, gL = 20 the leak conductance, Vi = −75mV and
Vex = 0 the reversal potential of inhibition and excitation, respectively and gin and gex
their respective conductances. The spike after-hyperpolarisation is modelled to be biphasic
consisting of a fast and a slow part, described by conductances gf and gsl that keep the
membrane potential close to the hyperpolarisation potential Vh = Vi. When the membrane
potential surpasses the spiking threshold Vthr = −50 at time tpost, a spike is registered
and the membrane potential is reset to Vreset = Vh. All conductances are modelled as step
and decay functions. The reset conductances are given by

τf,slġf,sl = −gf,sl +∆gf,sl
∑
tpost

δ (t− tpost) , (7.4)

where ∆gsl = 5 resp. ∆gsl = 1000 is the increase of the fast and slow conductance at
the time of each postsynaptic spike. They decay back with time constants τf = τs <
τsl = Cm/gL. The input conductances gex and gin are step and decay functions as well,
which are increased by wi when presynaptic neuron i spikes and decay with time constant
τs = 2ms. wi denotes the strength of synapse i.

7.2.1.3 The Hodgkin-Huxley-type Neuron

To test whether the learning mechanism suggested below is also capable of learning spike
associations for neuron models that generate spikes, it is tested on a Hodgkin-Huxley type
neuron (see section 3.1.2.3).
Inhibitory and excitatory inputs remain separated into two input populations. They pro-
vide input into the output neuron with membrane potential V (t) given by

CmV̇ = −gL(V −VL)− gKn4(V −VK)− gNam
3h(V −VNa)− gex(V −Vex)− gin(V −V in)

(7.5)
where VL = −65mV is the leak potential, gL = 0.1mS/cm is the leak conductance,
gex resp. gin are the conductance governing excitatory resp. inhibitory input from the
input populations and Vex = 0mV resp. Vin = −75mV are their reversal potentials.
VNa = 55mV is the reversal potential of sodium, VK = −90mV is the reversal potential of
potassium, Cm = 1µF/cm2 is the membrane capacitance, gK = 9mS/cm2 is the maximum
potassium conductance and gNa = 35mS/cm2 is the maximum sodium conductance.
The conductance variables n(t, V ), m(t, V ) and h(t, V ) are time and voltage dependent
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and take values between 0 and 1. They are given by

ṅ = αn(V )(1− n)− βn(V )n (7.6)

ṁ = αm(V )(1−m)− βm(V )m (7.7)

ḣ = αh(V )(1− h)− βh(V )h (7.8)

where

αn(V ) =
(−0.01(V (t) + 34))

(exp(−0.1(V + 34))− 1)
(7.9)

βn(V ) = 0.071025 exp(−(V (t) + 75)

500
) (7.10)

αm(V ) =
(−0.1(V + 35))

(exp(−0.1(V + 35))− 1)
(7.11)

βm(V ) = 4 exp(−V + 68

18)
(7.12)

αh(V ) = 0.07 exp(−(V + 66)

20
) (7.13)

βh(V ) =
1

exp(−0.1(V + 28)) + 1
(7.14)

To facilitate reading, units are dropped; voltages are in mV , time is in ms. Parameters
are adapted from experimental values to yield a strong hyperpolarisation.

7.2.2 Learning Rule

The plasticity rule is derived from the demand of a balanced membrane potential: The
neuron should neither be hyperpolarized nor too strongly depolarized. This is a sensible
demand, because it holds the neuron at a sensitive working point and keeps metabolic costs
down. To that end, two thresholds are introduced, ϑP < ϑD < Vthr, between which the
membrane potential is bounded. The weight change is chosen such that, whenever ϑD =
10mV is surpassed, all weights that contribute to the rise of the membrane potential are
depressed, weighted by their respective influence given by the PSP-kernel ε. Whenever the
membrane potential drops below ϑP = VL, all synapses that contribute to that downward
deflection are potentiated, such that for a repetition of the pattern the membrane potential
is deflected to stay within bounds. Additionally, in some cases (a = 1) the weights are
bounded to stay below a maximum weight wmax, symbolizing a maximal synaptic strength,
while in other cases the weights are not limited (a = 0). Limiting the maximum weights is
advantageous for stability in the case of synapses that can change signs and a real teacher
input. The weight change is then given by

ẇi = η (wmax − |wi|)a
(
−γ [V (t)− ϑD]+ + [ϑP − V (t)]b+

)∑
k

ε
(
t− tki − tdelay

)
. (7.15)

The parameter b defines, whether the contribution of the potentiation term scales linearly
(b = 1) or quadratically (b = 2) with the distance of the membrane potential from the
plasticity threshold. γ is a factor that scales inhibition to excitation, which needs to be
adapted to the neuron model in question. γ = 650 for the simple integrate-and-fire neuron
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and γ = 150 for the conductance-based integrate-and-fire neuron. For the Hodgekin-
Huxley type neuron, γ = 20.

Obviously, the PSP-kernel used in the learning rule only has a very direct interpretation
in the case of simple linear integrate-and-fire neurons. However, in the learning rule, this
term only serves to estimate the extent to which the postsynaptic membrane potential
depends on the input of one particular neuron. Hence, in the non-linear neuron models
a pseudo-PSP is tracked and used instead (with τm = Cm/gL). Furthermore, for the
conductance-based integrate-and-fire neuron, the upper threshold is chosen to lie between
resting potential and firing threshold: ϑD = −53mV .
For the Hodgkin-Huxley type neuron, there is no spiking threshold. To avoid an overly
strong influence of the very high membrane potential during the spike, the LTD part of the
learning rule is clipped to the respective constant value at ϑup

D = −55mV . The plasticity
thresholds are chosen as ϑD = −58mV and ϑP = −64mV .

For the inhibitory synapses coming into play for conductance-based neurons between
the inhibitory presynaptic neurons and the output neurons, the learning rule is adapted
such that the net effect of learning on the membrane potential is preserved. To that end,
the same learning rule as for the excitatory synapses is applied, just with the opposite
sign:

ẇinh = −ẇ (7.16)

7.2.2.1 Chronotron Setup

Consider a feed-forward network consisting of N = 200 presynaptic neurons and one
postsynaptic neuron. For illustration purposes, each input neuron spikes once in each of
the five patterns used during training. To train the output neuron to spike at a specific time
in response to each input pattern, a single spike is induced at a fixed time tpost = 100ms
by a supplementary external (teacher) input

Iext = c exp

(
− t− tpost

τs

)
Θ(t− tpost). (7.17)

c is the amplitude of the teacher input. The shape of the current is chosen to mimic a
synaptic input and induce a PSP-like voltage perturbance (see eq. (9.5)).

While in the case of the simple integrate-and-fire neuron synapses change signs, for
the conductance-based integrate-and-fire neuron and the Hodgekin-Huxley type neuron
positive and negative inputs need to be separated. To that end, the output neuron receives
inhibitory input from Nin = 200 inhibitory presynaptic neurons and excitatory input from
Nex = 200 excitatory presynaptic neurons. An input pattern for learning thus consists
of a set of one excitatory and one inhibitory input pattern. In each pattern, each input
neuron spikes once.

During learning, the patterns are presented to the neuron concurrent with the teacher
input. Weights are updated after all patterns were presented (batch mode). For recall,
just the input patterns are presented and if learning was successful, the output neuron
will generate a spike close to the time of the (now absent) teacher spike.
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Figure 7.1: (a) The model network has a simple feed-forward structure. The top
picture shows three pre- and one postsynaptic neurons, connected by synapses. Line
width in this example corresponds to synaptic strength. The bottom picture shows
the postsynaptic membrane potential in response to the input. (b) Illustration of
Anti-Hebbian Membrane Potential Dependent Plasticity (MPDP). A LIF neuron is
presented twice with the same presynaptic input pattern. Excitation never exceeds
Vthr. MPDP changes synapses to counteract hyperpolarization and depolarization
occuring in the first presentation (blue trace), reducing (arrows) them on the sec-
ond presentation (green trace). (c) Homeostatic MPDP on inhibitory synapses is
compatible with STDP as found in experiments. Plasticity is tested for different
temporal distances between pre- and postsynaptic spiking; the resulting spike tim-
ing characteristic is in agreement with experimental data on STDP of inhibitory
synapses [HNA06].
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7.3 Results

7.3.1 Membrane Potential Dependent Plasticity

The learning algorithm is based on the interplay between a strong afterhyperpolarisation
and a basic homeostatic requirement on the membrane potential of the neuron. The
neuron should stay in a sensible working regime; in other words, its voltage should be
confined to moderate values. This is formalized by introducing two thresholds on the
voltage. ϑD lies between the firing threshold and resting potential and ϑP is equal to the
resting potential. With these thresholds, an update rule for the weights is formulated (see
equation 7.15). Weight changes with this rule “bend” the voltage at the times of non-zero
error towards the region between the two thresholds. Figure 7.1 (b) shows how MPDP
affects the voltage for recurring input activity.

7.3.2 Homeostatic MPDP on Inhibitory Synapses is com-
patible with STDP

First the biological plausibility of a network with MPDP is investigated. Experimental
studies on plasticity of cortical excitatory neurons often find Hebbian plasticity rules like
Hebbian Spike Timing Dependent Plasticity (STDP; see [MLFS97, Fel00, STN01, FD02,
WGNB05] for examples). Reports on Anti-Hebbian plasticity or sensitivity to subthresh-
old voltage in excitatory cortical neurons are scarce [STN04, LHS+07, FDV09, VGO+13].
However, it has been reported that plasticity in (certain) inhibitory synapses onto excita-
tory cells has a Hebbian characteristic [HNA06], i.e. synapses active before a postsynaptic
spike become stronger, those active after the spike become weaker. The net effect of this
rule on the postsynaptic neuron is Anti-Hebbian, because weight increases tend to suppress
output spikes.
In experimental investigations of STDP, neurons are tested with pairs of pre- and postsy-
naptic spikes. This procedure is mimicked in a simple network consisting of one pre- and
one postsynaptic neuron, and one “experimentator neuron”. The postsynaptic neuron is
modelled as a conductance based LIF neuron. The experimentator neuron has a fixed
strong excitatory synaptic weight onto the postsynaptic neuron, so that a spike of the
experimentator neuron causes a postsynaptic spike. It serves to control the postsynaptic
spike times. The presynaptic neuron is inhibitory and its weight is small compared to the
experimentator, so that it has negligible influence on the postsynaptic spike time. Synap-
tic plasticity is probed by inducing a pair of a pre- and a postsynaptic spike at times tpre
and tpost, and varying tpre while keeping tpost fixed. The resulting weight change of the
inhibitory neuron as a function of timing difference is shown in figure 7.1 (c). The shape
of the function is in qualitative agreement with experimental results [HNA06].
It is necessary to assume the presence of an “experimentator neuron”. The reason for
this is that the shape of the STDP curve explicitely depends on the specifics of spike
induction since the MPDP rule is sensitive only to subthreshold voltage. For example,
using a delta-shaped input current would lead to a LTD-only STDP curve, since the time
the voltage needs to cross the firing threshold starting from equilibrium is infinitely short.
These results were obtained for a linear contribution of the LTP part of the learning rule
(b = 1), but qualitative shape of the STDP curve is similar for b = 2.
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7.3.3 Homeostatic MPDP allows Associative Learning

At first glance, it might seem unlikely that a homeostatic plasticity mechanism can imple-
ment associative learning. It is Anti-Hebbian in nature, because if the membrane potential
is close to the firing threshold it gets suppressed, and if it is below the resting potential
it gets lifted up. However, the neuronal dynamics show somewhat stereotypic behaviour
before, during and after each spike. To induce a spike, the neuron needs to be depolarized
up to Vthr, where active feed-back processes kick in. These processes cause a very short
and strong depolarization and a subsequent undershoot of the membrane potential (hy-
perpolarization), from where it relaxes back to equilibrium.

Figure 7.2: Hebbian learning with homeostatic MPDP. A postsynaptic neuron is
presented the same input pattern multiple times, alternating between teaching tri-
als with teacher spike (blue trace) and recall trials (green trace) to test the output.
Initially, all weights are zero (left). Learning is Hebbian initially until strong de-
polarization occurs (second to left). When the spike first appears during recall, it
is still not at the exact location of the teacher spike (second to right). Continued
learning moves it closer to the desired location. Also, the time windows of the volt-
age being above ϑD and below ϑP shrink and move closer in time (right). Synaptic
plasticity almost stops. The number of learning trials before each state is 1, 16, 53,
and 1600 from left to right.

In a simplified setup, the basic learning mechanism is demonstrated. All synapses are
subject to MPDP and are allowed to change their sign. A population of N presynaptic
neurons fires one spike in each neuron at equidistant times. They project onto a single
postsynaptic LIF neuron and all weights are zero initially. In each training trial an external
delta-shaped suprathreshold current is induced at the postsynaptic neuron at a fixed time
relative to the onset of the input pattern (teacher spike). The postsynaptic neuron reaches
its firing threshold instantaneously, spikes and undergoes reset into a hyperpolarized state
(blue trace on the left in figure 7.2). This is mathematically equivalent to adding a reset
kernel at the time of the external current [MRÖS14]. Because ϑP = Veq = 0, potentia-
tion is induced in all synapses which have temporal overlap of their PSP-kernel with the
hyperpolarization. Probing the neuron a second time without the external spike shows a
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small bump in the membrane potential around the time of the teacher spike. The same
input pattern is repeated, alternating between teaching trials (with teacher spike) and
recall trials without teacher and with synaptic plasticity switched off. Plasticity is Heb-
bian until the weights are strong enough such that there is a considerable depolarization
before the teacher spike, inducing synaptic depression. Also, spike after-hyperpolarization
is partially compensated by excitation, which reduces the window for potentiation. Con-
tinuation of learning after the spike association has been achieved (second to right plot)
shrinks the windows for depression and potentiation, until they are very narrow and very
close to each other in time. Because synaptic plasticity is determined by the integral over
the normalized PSP during periods of depolarization and hyperpolarization, depression
and potentiation become very similar in magnitude for each synapse and synaptic plastic-
ity slows down nearly to a stop. Furthermore, the output spike has become stable. The
time course of the membrane potential during teaching and recall trials is almost the same
(figure 7.2 right).

7.3.4 Associative Learning with a real Teacher

To extend learning to a setup including a real teacher input of the shape of a regular
synaptic input, first, the simplified setup is used in a simple integrate-and-fire neuron.
Here, a limitation of the maximum weight is introduced to facilitate stability (a = 1).
Furthermore, here, the contribution to the LTP part of the learning rule is quadratic,
i.e. b = 2. This also facilitates stability in this simple neuron model, since the LTP
contribution to the weight change around the spike decreases more quickly than the LTD
contribution. Weights are initialized as zero. During the learning trials, a teacher induces
a spike and consequently a strong hyperpolarisation (see figure 7.3.4, green lines). Before
learning, the recall membrane potential is flat (red line, top). During the learning process,
extra input is generated close to the teacher input, which fills up the hyperpolarisation.
This extra input first just generates a bump in the recall membrane potential (second to
top), until it generates a recall spike at a small distance to the teacher spike (middle row).
The recall spike continues to become closer and closer to the recall spike, until learning
settles and the spikes almost coincide (bottom).

7.3.5 Associative Learning in the conductance-based Integrate-
and-Fire Neuron

To demonstrate the capability of MPDP for learning of exact spike times in more complex
setups, the input population is split intoNi inhibitory andNe excitatory neurons. Synaptic
weights were initialized randomly. The splitting of neuron populations into excitatory and
inhibitory neurons with just one set of synapses being plastic, in effect limits the range of
the membrane potential. This renders a formal limit of the weights superfluous (a = 0).
Here, the linear contribution of the LTP part of the learning rule was considered (b = 1).
Both input populations project onto one conductance based LIF neuron. This network is
presented with frozen poissonian noise as the sole presynaptic firing pattern (figure 7.4,
top). Excitatory synapses were kept fixed and inhibitory synapses changed according to
MPDP. First, the network learns to balance all inputs from the excitatory population
such that the membrane potential mostly stays between the thresholds ϑI

P and ϑI
D. Then

the teacher input is introduced as a strong synaptic input from a different source (e.g. a

82



CHAPTER 7. CHRONOTRON 7.3. RESULTS

Figure 7.3: Learning progress in Chronotron toy model in the simple integrate-
and-fire neuron. During teaching (green line), a regular, but strong input evokes
a spike at the desired spike time. Due to the hyperpolarization after the teacher
spike, the neuron adapts its synapses to generate extra input around the spike,
which produces a spike when the teacher input is omitted (recall trial, red line). The
learning progress is shown for several different stages of learning. Precise spike times
can be learned in response to several input patterns independent of the specifics of
the model neuron.
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different neuron population, figure 7.4, second to top). After repeated presentations of
the input pattern with the teacher input, inhibition around the teacher spike is released
such that after learning the output neuron will spike close to the desired spike time even
without the teacher input (figure 7.4, third and fourth to top). At the same time, due
to the balance requirement of the learning rule, inhibitory and excitatory conductances
covary and thus their influence on the membrane potential mostly cancels out (figure 7.4
bottom). Due to the stereotypical shape of the membrane potential around the teacher
spike, a homeostatic learning rule is able to perform associative learning by release of
inhibition.

7.3.6 Associative Learning in a Hodgekin-Huxley-type Neu-
ron

To show that learning works in even more complex and realistic neuron models, MPDP is
applied to the Hodgkin-Huxley type model.
Learning to balance the weights before the first teacher trial is dropped. Weights are
initialized as zero and bounded. The quadratic component in the learning rule is used
(b = 2).
Before learning, the teacher input elicits a spike, which drives the neuron into hyperpolar-
isation. After repeated presentation of pattern and teacher input, there is a small bump
in the membrane potential upon recall (7.3.6, second to top). After learning progresses,
a recall spike appears at some distance after the teacher spike, which continues to shift
closer to the teacher as learning continues. After 500 learning steps, the recall spike almost
coincides with the spike induced by the teacher input (bottom).

7.3.7 Other Results on MPDP

In our study [AWP16], we presented a quantitative assessment of the capacity of a sim-
plified version of MPDP for unbounded weights (a = 0, see equation (7.15)) and a linear
contribution of the LTP part of the learning rule in simple integrate-and-fire neurons.
MPDP has about half of the maximum capacity of the Chronotron, which was theoret-
ically estimated in [MRÖS14]. Furthermore, MPDP is much more robust to noise than
all other learning rules due to the imposed distance of the membrane potential from the
spiking threshold. Tolerance to noise comes at the cost of capacity. Since the quantitative
results were obtained by Christian Albers, I will here just mention and discuss them. For
these results and the details of the model see [AWP16].

7.4 Discussion

A synaptic plasticity mechanism was introduced that is based on the requirement to
balance the membrane potential and therefore uses the postsynaptic membrane potential
rather than postsynaptic spike times as the relevant signal for synaptic changes (Membrane
Potential Dependent Plasticity, MPDP). It was shown that this simple rule allows the
somewhat paradoxical temporal association of enforced output spikes with arbitrary frozen
noise input spike patterns (Chronotron). Before, this task could only be achieved with
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Figure 7.4: A conductance based integrate-and-fire neuron is repeatedly presented
with a fixed input pattern of activity in presynaptic inhibitory or excitatory neuron
populations (top row - blue is excitatory, red inhibitory). Before learning, the neuron
is allowed to adapt its inhibitory weights according to homeostatic MPDP, such that
the membrane potential mostly stays between the two learning thresholds. Then a
strong excitatory input is given concurrently with the pattern to induce a spike at
t = 100ms (second row). Learning is restricted to inhibitory weights. By release
of inhibition, the net input after the teacher spike is increased (third row). After
learning has converged, the neuron is presented the input pattern without the teacher
input and reproduces the spike close to the target time (4th row) . At all other times,
excitatory and inhibitory conductances are balanced (bottom row).
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Figure 7.5: Associative learning in a Hodgkin-Huxley type neuron. Weights are
initialized as zero, so before learning, the recall membrane potential is flat (red line,
top; green line is the membrane potential during a teacher trial). After the input
pattern is presented concurrently with a teacher input during some learning epochs,
a small bump in the recall membrane potential appears (second row), which grows
to elicit a spike at a certain distance from the teacher spike (middle row). This recall
spike continues to shift to spike times closer and closer to the spike elicited by the
teacher input, until it is almost identical (bottom line).
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supervised learning rules that provided knowledge not only about the desired spike times,
but also about the type of each postsynaptic spike (desired or spurious). With MPDP,
the supervisor only has to provide the desired spike, while the synapse endowed with
MPDP distinguishes between desired and spurios spikes exploiting the time course of the
voltage around the spike. Additionally, the sensitivity of MPDP to subthreshold membrane
potential allows for robustness against noise.

7.4.1 Biological Plausibility of MPDP

Spike-Timing-Dependent Plasticity (STDP) is experimentally well established and simple
to formalize, which made it a widely used plasticity mechanism in modelling. It is there-
fore important to note that MPDP is compatible with experimental results on STDP,
in particular with those of Hebbian STDP on inhibitory synapses. The reason is that
spikes come with a stereotypic trace in the membrane potential. The voltage rises to the
threshold, the spike itself is a short and strong depolarization, and afterwards the neuron
undergoes reset, all of which are signals for MPDP. Pairing a postsynaptic spike with
presynaptic spikes at different timings gives rise to a plasticity window which shares its
main features with the STDP window: The magnitude of weight change drops with the
temporal distance between both spikes and the sign switches close to concurrent spiking.
It is known that the somatic membrane potential plays a role in synaptic plasticity. Many
studies investigated the effect of prolonged voltage deflections by clamping the voltage for
an extended time while repeatedly exciting presynaptic neurons (see e.g. [ABS90]). How-
ever, MPDP predicts that synaptic plasticity is sensitive to the exact time course of the
membrane potential, as well as the timing of presynaptic spikes. This necessitates that
dendrites and spines reproduce the time course of somatic voltage without substantial at-
tenuation. Morphologically the dendritic spines form a compartement separated from the
dendrite, which, for example, keeps calcium localized in the spine. It has been a topic un-
der investigation whether the spine neck dampens invading currents. Despite experimental
difficulties in measuring spine voltage, recent studies found that backpropagating action
potentials indeed invade spines almost unhindered [HZK10]. Furthermore, independently
of spine morphology and proximity to soma, the time course of a somatic hyperpolarizing
current step is well reproduced in dendrites [PS09] and spines [PGCZ14]. This shows that
at least in principle the somatic voltage trace can be available at the synapse. In turn,
voltage-dependent calcium channels can transform subthreshold voltage deflections into
an influx of calcium, the major messenger for synaptic plasticity. A few studies found that
short depolarization events act as signals for synaptic plasticity [STN04, FDV09], with a
dependence of sign and magnitude of weight change on the timing of presynaptic spikes.
Another important point is the sign of synaptic change. “Membrane Potential Dependent
Plasticity” per se is a very general term which potentially could include many different
rules [CBVG10, SBC02]. Here, MPDP serves as a mechanism that keeps the membrane
potential bounded. For inhibitory synapses this requirement results in a Hebbian plas-
ticity rule, which has been reported previously [HNA06]. Inhibitory neurons in cortex
have been implied to precisely balance excitatory inputs [XAS14]. MPDP on excita-
tory synapses is necessarily “Anti-Hebbian”. Lamsa and colleagues [LHS+07] found that
pairing presynaptic spikes with postsynaptic hyperpolarization can lead to synaptic poten-
tiation. This was caused by calcium permeable AMPA receptors (CP-AMPARs) present
in these synapses. However, Anti-Hebbian plasticity does not rely on CP-AMPARs alone.
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Verhoog et al. [VGO+13], for example, found Anti-Hebbian STDP in human cortex, which
depends on dendritic voltage-dependent calcium channels. Taken together, these find-
ings demonstrate the existence of cellular machinery which could implement homeostatic
MPDP, either on excitatory or inhibitory synapses.

In the case of a simple integrate-and-fire neuron, the hyperpolarisation needs to be
very pronounced, if a real teacher is used. This serves to eliminate the extra input from
the teacher after the spike and to provide a strong learning signal, which is at odds
with biological realism. It was shown that in a more sophisticated neuron model, such
as a conductance-based integrate-and-fire neuron or the Hodgkin-Huxley type neuron,
this overly strong hyperpolarisation is not necessary, because a sufficiently strong hyper-
polarisation that is filled non-linearly during learning can be provided by an additional
conductance.

7.4.2 Properties and Capabilities of Homeostatic MPDP

Homeostatic MPDP was derived from a balance requirement: Synapses change in order
to prevent hyperpolarization and strong depolarization for recurring input activity. This
kind of balance reduces metabolic costs of a neuron and keeps it at a sensible and sen-
sitive point of operation [AL01]. The resulting plasticity rule is Anti-Hebbian in nature
because synapses change to decrease net input when the postsynaptic neuron is excited
and to increase net input when it is inhibited. However, spike after-hyperpolarization
turns homeostatic MPDP effectively into Hebbian plasticity. Every postsynaptic spike
causes a voltage reset into a hyperpolarized state. Therefore synapses of presynaptic neu-
rons which fired close in time to the postsynaptic spike will change to increase net input
if the same spatio-temporal input pattern re-occurs. The total change summed over all
synapses depends on the duration and magnitude of hyperpolarization. Because the in-
duced synaptic change reduces this duration, total synaptic change is also reduced. The
same is true for total synaptic change to decrease net input, which depends on the duration
of the membrane potential staying above ϑD (resp. ϑI

P for inhibitory synapses) and which
reduces this duration in future occurrences. If the rise time of the voltage before the spike
and residual spike after-hyperpolarization are both short and close in time, potentiation
and depression will become approximately cancelled around a spike.
In this view, associative synaptic plasticity or “learning” is the consequence of imbal-
ance. A spike is stable if the time course of the voltage in its proximity leads to balanced
weight changes. For example, if input is just sufficient to cause a spike, the voltage slope
just before the spike is shallow and synaptic depression outweighs potentiation. On the
other hand, the delta-pulse shaped currents used to excite the postsynaptic neuron during
Chronotron training are very strong inputs. They are not unlearned. Instead, the weights
potentiate until the membrane potential is in a balanced state, and the neuron fires the
teacher spike on its own when left alone.
Another interesting aspect of MPDP is the emergence of robustness against noise. Most
obviously, with the choice of the threshold for depression the neuron sets a minimal dis-
tance of the voltage to the firing threshold for known input patterns. This allows to have
perfect recall in the case of noisy input in the Chronotron. The second effect of the de-
pression threshold is more subtle. Not only does it prevent spurious spikes, but through
learning the slope of the membrane potential just before the desired spike tends to become
steep. This is necessary to prevent spike extinction by noise. To see how this influences
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noise robustness, consider an output spike with a flat slope of the voltage. Increasing the
voltage slightly around the spike time moves the intersection of the voltage with the firing
threshold forward in time by a proportionally large margin. Decreasing voltage moves it
backwards in time or could even extinguish the spike; a flat slope implies a low peak of the
“virtual” membrane potential. MPDP in contrast achieves a state which is robust against
spike extinction as well as the generation of spurious spikes. On the downside, keeping
the voltage away from the firing threshold as well as imposing steepness on the slope just
before spikes puts additional constraints on the weights. Robustness comes at the cost of
capacity.

7.4.3 Relation of MPDP to other Learning Rules

There are many supervised learning algorithms that are used to train neuronal networks
to generate desired spatio-temporal activity patterns. All of them involve a comparison
of the self-generated output to the desired target activity. They can be broadly put into
three different classes. E-Learning and FP-Learning [Flo12a, MRÖS14] are examples of
algorithms of the first class which are used to train a neuron to generate spikes at exactly
defined times. They first observe the complete output and then evaluate it against the
target. E-Learning performs a gradient descent on the Victor-Purpura distance [VP96] be-
tween both spike trains. This means that the weight changes associated to one particular
spike (actual or desired) can depend on distant output spikes. In FP-Learning, the train-
ing trial is interrupted if the algorithm encounters an output error. Subsequent spikes are
not evaluated anymore. Thereby these algorithms are non-local in time and very artificial.
Another class of learning algorithms emerged recently with the examples of PBSNLR [XZZ13]
and HTP [MRÖS14]. They take an entirely different route. The postsynaptic membrane
potential is treated as a static sum of PSP kernels weighted by the respective synaptic
weight, similar to the SRM0 model of the LIF neuron. The firing threshold is moved
towards infinity to prevent output spikes and voltage resets are added at the target spike
times. Then the algorithms perform a Perceptron classification on discretely sampled
time points of the voltage, with the aim of keeping it below the actual firing threshold for
all non-spike times and to ensure a threshold crossing at the desired spike times. These
algorithms were devised as purely technical solutions and are highly artificial. However,
MPDP bears some similarity to the described procedure: Except close to teacher inputs,
at every point in time recently active synapses get depressed if the voltage is above the
threshold for depression. This is comparable to a Perceptron classification on a continuous
set of points.
A third class of algorithms compares actual and target activity locally in time. In contrast
to the algorithms mentioned above, they are usually not used to learn exact spike times,
but rather continuous time dependent firing rates. The ur-example is the Widrow-Hoff
rule [HKP91, PK10]. More recently, similar rules were developed by Xie and Seung [XS04],
Brea et al. [BSP13] and Urbanzcik and Senn [US14]. In contrast to the Widrow-Hoff rule,
the more recent rules are defined for spiking LIF neurons with a “soft” firing threshold,
i.e. spike generation is stochastic and the probability of firing a spike is a monotonous
function of the current voltage. In these rules, at every point in time the synaptic change
is proportional to the difference of the current firing rate and a target firing rate specified
by an external supervisor. When it comes to biological implementation, the central prob-
lem of Widrow-Hoff type rules is the comparison of self-generated and target activity. It
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is derived from the abstract goal to imprint the target activity onto the network. This
target needs to be communicated to the neuron and synaptic plasticity has to be sensi-
tive to the difference of the neurons’ own current activity state (implicitly represented by
its membrane potential) and the desired target activity. Usually, no plausible biological
implementation for this comparison is given. The combination of homeostatic MPDP, hy-
perpolarization and a teacher now offers a solution to both problems. The teacher provides
information about the target activity through temporally confined, strong input currents
which cause a spike. Spike after-hyperpolarization (SAHP) allows to compare the actual
input to the target without inducing spurious spikes detrimental to learning. The more
SAHP is compensated by synaptic inputs, the closer the self-generated activity is to the
target and the less synapses need to be potentiated. This is implemented naturally in
MPDP, where potentiation is proportional to the magnitude and duration of hyperpolar-
ization. On the other hand, strong subthreshold depolarization implies that self-generated
spurious spikes are highly probable, and weights need to be depressed to prevent spurious
spikes in future presentations.
A further solution for the problem of how information about the target is provided was
given by Urbanczik and Senn [US14]. Here, the neuron is modelled with soma and dendrite
as seperate compartements instead of point neurons as used in this model. The teacher
is emulated by synaptic input projecting directly onto the soma, which causes a specific
time course of the somatic membrane potential. The voltage in the dendrite is determined
by a different set of synaptic inputs, but not influenced by the somatic voltage; however,
the soma gets input from the dendrites. The weight change rule then acts to minimize
the difference of somatic (teacher) spiking and the activity as it would be caused by the
current dendritic voltage. This model represents a natural way to introduce an otherwise
abstract teacher into the neuron. Nonetheless, the neuron still has to estimate a firing rate
from its current dendritic voltage, for which no explicit synaptic mechanism is provided.
Also, it is worth noting that the model of Urbanczik and Senn requires a one-way barrier
to prevent somatic voltage invading the dendrites; in contrast, MPDP requires a strong
two-way coupling between somatic and dendritic/synaptic voltage.
Another putative mechanism for a biolgical implementation of the δ-rule was provided by
D’Souza et al. [DLH10]. In this model, a neuron recieves early auditory and late visual
input. By the combination of spike frequency adaptation (SFA) and STDP, the visual
input acts as the teacher that imprints the desired response to a given auditory input in
an associative manner. However, the model is quite specific to the barn owl setting; for
example, parameters have to be tuned to the delay between auditory and visual input.
Applying rules of the Widrow-Hoff type to fully deterministic neurons can lead to unsatis-
factory results. ReSuMe is an example of such a rule [PK10]. Its memory capacity is low,
but it increases sharply if the input is noisy during training (see [AWP16] for details). A
propable reason is that in a fully deterministic setting, the actual spike times do not allow
a good estimation of the expected activity. This sounds paradoxical. But if we consider
a deterministic neuron with noise-free inputs, the membrane potential can be arbitrarily
close to the firing threshold without crossing it. But even the slightest perturbation can
cause spurious spikes at those times. This leads to bad convergence in Chronotron train-
ing, since the perturbations caused by weight changes for one pattern can easily destroy
previously learned correct output for another pattern [MRÖS14]. The problem of these
rules is the sensing of the activity via the instantaneous firing rate. Therefore, the explicit
sensitivity to subthreshold voltages of MPDP is advantageous if training examples are
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noise free.
In conclusion, the MPDP rule with hyperpolarization and teacher input represents a bi-
ologically plausible implementation of the comparison of actual and target activity that
is key to all supervised learning algorithms. Also, because MPDP is explicitely sensitive
to the membrane potential and not the firing rate, it is fully applicable to deterministic
neurons. Additionally, the training procedure leads to networks whose output is robust
against input noise, similar to what learning algorithms of the Widrow-Hoff type achieve.
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Chapter 8

Learning of Inverse Models with
Membrane Potential Dependent
Plasticity

In this chapter, a different setup for the learning of inverse models will be introduced. For
maximal comparability with chapter 5, the model of the interaction of the learner with
the outside world and some of the evaluated quantities are chosen the same. However, for
the sake of completeness I will repeat the descriptions here.

This model was conceived to remedy the shortcomings of the simple model introduced
in chapter 5. In that model, it was found that the inversion of a world mapping that maps
individual motor spikes onto too long sequences of sensory patterns is difficult. Here these
elongated patterns are mapped back onto simpler, shorter ones - which is equivalent to
the Chronotron problem.

8.1 Introduction

Inverse sensor-motor models serve to generate a desired sensory input by appropriate motor
actions. In this sense they attempt to ’invert’ the action-sensation mapping given by the
physical world. While in general this mapping is not stationary, sound sequence imitation
represents a comparatively well controlled situation. Therefore, it was tempting to propose
inverse models as the mechanism enabling many bird species to imitate previously heard
acoustic signals [HGH14]. The underlying hypothesis is that inverse models in the bird’s
brain perform a transformation of memorized sensory representations of sound sequences
into spatio-temporal patterns of activities in motor areas that in turn generate the same
sound sequences. This enables imitation of arbitrary sound sequences within the realm
of the possible sounds the bird can produce. A crucial prediction of such so called causal
inverse models is the existence of mirror neurons active during both singing as well as
playback of a recording of the bird’s song. The responses of these mirror neurons to a
playback would be delayed relative to the bird itself singing the song. This delay reflects
the loop time it takes for motor activations to produce sound, which produces sensory
activations that are looped back to the respective motor area (e.g. about 40 ms in zebra
finches). Indeed, a recent study has found evidence for such delayed mirroring in area
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LMAN of the songbird [GKGH14] (for more information on auditory-vocal mirroring in
songbirds see section 2.2.3).

The unambiguously clear mirroring with roughly zero delay discovered in neurons in
area HVCx of swamp sparrows [PPNM08], however, is at odds with previous explana-
tions using causal inverse models. It was suggested to reflect a ’predictive inverse model’
that could emerge from hebbian learning of a single stereotyped (i.e. predictable) song
[HGH14]. If this was true, these neurons could not be (directly) involved in imitation
of arbitrary sound sequences, i.e. their zero delay mirroring would represent a highly
specific epiphenomenon emerging from a system enabling reproduction of a limited set of
memorized sensory experiences of sounds.

Here, an alternative causal inverse model is proposed in which zero-delay mirroring
rather reflects a delayed feedback from motor areas backwards to HVC that compensates
for the loop delay. The architecture consists of three interacting neuronal modules that
could be identified with corresponding areas in the songbird involved in sound production.
In particular, it includes the hypothetical feedback which for conceptual simplicity is
realized by delay-lines (see figure 8.1(a)).

The delayed feedback turns out to be particularly beneficial for solving the problem
of learning inverse models when they are based on precise spatio-temporal spike patterns,
because it can then be mapped to the problem of Chronotron learning (see chapter 7 and
[Flo12b, MRÖS14, GS06, PK10]). The learning mechanism introduced in chapter 7 will
therefore here be applied to the learning of inverse models.

This mechanism can not only learn simple Chronotrons (see chapter 7), but is similarly
potent for learning the mappings of spatio-temporal spike patterns to spatio-temporal
spike patterns as required in inverse models. In particular, it will be shown that zero-
delay mirroring in the model presented here naturally emerges in HVCx neurons that
receive - either by chance or because of anatomical constraints - no direct sensory memory
input.

8.2 The Model

8.2.1 Network Setup

To investigate learning of inverse models, a model of connected neuronal populations
reflecting the brain anatomy of songbirds is constructed (see figure 8.1(a)).

A population of Nm motor neurons in the motor area m activates the muscles in
the syrinx for singing. The bird’s cochlea converts sounds into activations of Ns sensory
neurons in population s. s innervates a sensorimotor area sxmx reps. s2m2 via plastic
synapses. This sensorimotor area serves as a relay for forming the inverse model.

To mimick the ’babbling’ young birds presumably use to establish the relation of motor
activities with the corresponding sensations of self-generated sounds, the motor neurons
are fed strong delta-shaped current pulses of height h = 0.5 with a frequency of rexplor
during an exploration phase. The firing rate of the neurons in motor population m is
limited by the long hyperpolarization in this area introduced by the long membrane time
constant τmm . This long hyperpolarization serves to suppress cyclic activity between areas
m and m2s2.

Consequently, the spatio-temporal motor activity is transformed into input into the
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sensory neurons via the world model (see section 8.2.4), which in turn create spatio-
temporal sensory spike patterns.

Note that the sensory area s is split into two sub-populations ssens and srecall receiving
the same input. Only srecall will be activated to retrieve the memory of the tutor song
during recall, while ssens only receives sensory input.

At all times, a copy of the motor activations in m is send as teacher input to a
population of sensorimotor neurons in s2m2 (τ smm = 8ms) with a delay τloop equivalent to
the loop delay. The teacher input takes the shape of a synaptic input (see neuron model,
section 8.2.2) of strength c = 0.3:

Iext = c exp

(
− t− tpost

τs

)
Θ(t− tpost). (8.1)

By this teacher input the spatio-temporal spike patterns activated in sensory memory
area srecall can be mapped back onto the delayed copy of the motor patterns in the
sensorimotor population s2m2. The sensorimotor population s2m2 then gives a copy of
it’s own activation as input into the motor population. The synaptic weights from the
sensory population s to the sensorimotor population s2m2 are plastic according to (8.6).

8.2.2 Neuron Model

All neurons are modelled as simple leaky integrate-and-fire neurons. To facilitate the
derivation of the plasticity rule, the formulation of the SRM0 [GK02] is used. A neuron
j receives input from other neurons i either via plastic synapses of weight wji or via the
model of the sound generation and perception process (see section 8.2.4). The neuronal
voltage V (t) is given by the sum of weighted synaptic input kernels ε(s) (postsynaptic
potentials, PSPs) and reset kernels R(s), which model the neuronal reset after a spike.
External input currents Iext(t) are low-pass filtered with a response kernel κ(s). The full
equation reads

Vj(t) =
∑
i

wji

∑
k

ε(t− tik − tdelay) +
∑
tj

R(t− tj) +

∞∫
0

κ(t− s)Iext(s)ds. (8.2)

Here, wji is the weight from presynaptic neuron i to the postsynaptic neuron j and tki
is the time of the k-th spike of presynaptic neuron with index i. A delay of synaptic
transmission tdelay is included. The synaptic input kernel, the reset kernel and the passive
filtering kernel are given by

ε(s) = Θ(s)
1

τm − τs
(exp(−s/τm)− exp(−s/τs)) (8.3)

R(s) = Θ(s)(Vreset − Vthr) exp(−s/τm) (8.4)

κ = exp (−(t− s)/τm) . (8.5)

where τm is the membrane time constant of a LIF neuron determining the decay of voltage
perturbations, and τs = 2ms is the decay time constant of synaptic currents, which defines
the rise time of the PSP kernel. If there is no input, the voltage relaxes back to Veq = 0.
Spiking in this model is deterministic: If V (t′) = Vthr = 20mV , the neuron spikes and a
reset kernel is added at time t′ = tj . The formulation of the kernel makes sure that the
voltage is always reset to Vreset = −60mV < Veq. The membrane time constants of the
neurons in the respective areas are τmm = 70ms and τ sm = τ smm = 8ms.
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8.2.3 Learning Rule

The plasticity rule is derived from the demand of a balanced membrane potential: the
neuron should neither be hyperpolarized nor too strongly depolarized. This is a sensible
demand, because it holds the neuron at a sensitive working point and keeps metabolic costs
down. To that end, two thresholds are introduced, ϑP < ϑD < Vthr, between which the
membrane potential is bounded. The weight change is chosen such that, whenever ϑD =
10mV is surpassed, all weights that contribute to the rise of the membrane potential are
depressed, weighted by their respective influence given by the PSP-kernel ε. Whenever the
membrane potential drops below ϑP = VL, all synapses that contribute to the membrane
potential at the time of that downward deflection are potentiated, such that for a repetition
of the pattern the membrane potential is deflected to stay between bounds. Additionally,
the weights are bounded to stay below a maximum weight wmax = 1.5, symbolizing a
maximal synaptic strength. Limiting the maximum weights is advantageous for stability.
The weight change is then given by

ẇi = η (wmax − |wi|)
(
−γ [V (t)− ϑD]+ + [ϑP − V (t)]2+

)∑
k

ε
(
t− tki − tdelay

)
. (8.6)

γ = 1000 is a factor that scales inhibition to excitation. η is the learning rate.

8.2.4 World Model

To model the bird hearing its own vocalizations, spatio-temporal activity in m is converted
to input in s through one or several delayed linear transformations. Nw defines the number
of different delays and τw is the temporal difference of the delays relative to each other. τms

is the median delay. To construct this model of the world, a sparse matrix Mall is created,
where each entry is either zero, a positive constant with probability Pp = 0.1 or a negative
constant with probability Pn = 0.1. Then Nw empty matrices are constructed and the
content of Mall is distributed over these matrices with equal probability by assigning each
entry of Mall a delay out of the set of the Nw different delays associated with the Nw

matrices Mr, such that finally
∑

r Mr = Mall. This construction of the world ensures
maximum comparability between the most simple case of just one delay and the more
complex ones.

To then generate input Ii into neuron i in the sensory population s, spikes in m are
low-pass filtered by τs ˙⃗y = −y⃗ + m⃗:

Ii(t) =

Nw∑
r

M i
ry⃗(t− τms − (r − 1

2
Nw)τw). (8.7)

This generates a nonlinear transformation of motor activities into sound activities, which
may or may not be local in time.

8.2.5 Measuring the Learning Progress

8.2.5.1 General Measuring Procedure

To evaluate learning progress, one particular motor pattern with input rate rsong into
the motor area during exploration and its respective sensory pattern are picked out and
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assigned the role of the tutor song; they are stored for later comparison. This is done
to ensure that the model bird can in principle generate the desired activity sequence and
is equivalent to assuming the tutor bird and the student bird to have the same mapping
from motor activity to sound output. The firing rate of exploration during learning rexplor
can be the same or different from the song firing rate rsong. Learning and recall periods
are of duration T = 3000ms. Weights are initialized as zero, the world model is initialized
at random for every trial according to section 8.2.4.
To allow for learning, in the exploration phase, random input is given into the motor
population m during Nk = 2000 learning epochs. During this learning phase, all weight
changes are summed up and applied after each training period. Every ∆Nk = 50 learning
epochs, recall is tested.
To test the ability of the system to reproduce the tutor song, the sensory representation
of the tutor song is set to be the activity in the sensory area s by hand (in addition to
any self-generated activity). This sensory activity then generates some sensorimotor ac-
tivity in area s2m2, which in turn generates motor activity in area m, which - if learning
is successful - is a shifted version of the ’tutor’ motor activity. This recall motor activ-
ity is in turn fed into a copy of the sensory population to test whether it generates the
same sensory impression on the model bird that the tutor song did. Testing whether the
same sensory impression is generated is equivalent to testing if the song sounds the same
to the (model) bird, which is the marker of good imitation. It is in principle possible
that two very different motor sequences generate the same sound output and therefore
the same sensory impression. Since for the bird the emphasis is on mimicking the sound,
this is the relevant measure of success. As we will see, however, the difference between
learning success measured on the motor patterns and learning success measured on the
sensory patterns is very small, if learning is successful. For maximum comparability be-
tween the learning trials, the learning rate is scaled with the firing rate and the system
size to yield a similar change on the membrane potential per learning cycle, such that
ηnorm = ηNsrexplor/Nw = 1 · 10−5 is the same for all trials.

8.2.5.2 Measure of Pattern Similarity

To quantify the similarity of the tutor pattern and the self-generated pattern, it is necessary
to compare two sets of spike trains. The activity asi (t) in each neuron i in the tutor song
will have to be compared to the activity during recall ari (t) to give an appropriate distance
measure d0(a

s
i (t), a

r
i (t)). The total distance over the activity as resp. ar of all neurons in

the given population will then just be the sum over all neurons in the population. Finally,
this distance should be minimized over a global shift to account for the loop delay and
normalized to the number of spikes in the tutor pattern:

d(as, ar) = min
∆t

∑
i

d0(a
s
i (t), a

r
i (t−∆t)) (8.8)

This quantity is evaluated every ∆Nk = 50 learning cycles. The resulting learning curves
are normalized to the number of spikes in the tutor pattern, such that the error before
learning is 1. For small Ns, it is possible that the sensory tutor pattern does not contain
any spikes. Since this is equivalent to a tutor song without sound, these trials are discarded
and repeated with a different initialization.
For the quantitative analysis, the residual error after learning is computed by taking the
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average over the last 10% of learning steps in each of the N = 50 trials and then computing
average and standard error from those measurements.

8.2.5.3 Spike Train Distance Measures

There are several possible spike train distance measures d0(s1, s2), e.g. the VanRossum-
distance [vR01] and the Victor-Purpura-distance [VP96].

To calculate the VanRossum-distance between two spike trains s1 and s2, both spike
trains are convoluted with an exponential kernel. Then the quadratic distance is computed
between those convolutions. While this spike train distance measure is easy to implement,
it has the computational disadvantage of the computing time being dependent on the total
number of simulation time steps.

Calculating the Victor-Purpura-distance seems more complicated, but is generally
faster for not too high firing rates: To evaluate a spike train distance between spike
trains s1 and s2, a cost for the transformation from s1 into s2 is calculated. There is a
cost of 1 for the deletion or introduction of a spike and a cost of q∆t for a shift of the
spike time of one spike by ∆t, where q is a parameter that scales the cost of shifting a
spike relative to the insertion and deletion of spikes. The sum of the costs to transform
s1 into s2 is then the spike train distance d(s1, s2).

8.2.6 Autocorrelation Function

In the setup of the model, the membrane time constant of neurons in the motor population
is very long, which leads to a imposed distance between spikes in these neurons. To be
able to quantify this experimentally accessible property of the model, the autocorrelation
function is introduced.

It serves to evaluate how the spiking probability of the motor neurons depends on past
spiking activity and is given by ρ(∆t):

ρ(∆t) =
⟨(m(t)− m̄)(m(t−∆t)− m̄)⟩NmN

σ2
m

(8.9)

where < · · · >NmN denotes the average over motor neurons and the ensemble, m̄ is the
mean and σm is the standard deviation of m⃗(t). In this form, the autocorrelation function
is normalized between -1 and 1, 1 indicating perfect correlation, -1 indicating perfect
anti-correlation. An autocorrelation of 0 indicates uncorrelated spiking activity.

8.3 Results

8.3.1 Basic Learning Mechanism

To investigate learning of inverse models, a model of connected neuronal populations
reflecting the brain anatomy of songbirds is introduced (see figure 8.1(a)). A population
m in the motor area activates the muscles in the syrinx for singing. The bird’s cochlea
converts sounds into activations of neurons in sensory area s. To model the bird hearing
its own vocalizations, spatio-temporal activity in m is converted to input in s through
several delayed linear transformations. This temporally spreads the self-generated sounds
around the loop delay. Mimicking the ’babbling’ young birds presumably use to establish
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(a) Inverse model setup
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Figure 8.1: (a) Sketch of the system setup. (b),(c) Motor resp. sensory pattern.
Black dots mark target spike times and red stars mark recall activity. For the sensory
pattern, only half of the Ns = 400 sensory neurons are displayed.

the relation of motor activities with the corresponding sensations of self-generated sounds,
the motor neurons are driven with noise during an exploration phase (see figure 8.1(b)
for an example pattern). Consequently, the spatio-temporal motor activity is transformed
into input into the sensory neurons, which in turn create spatio-temporal sensory spike
patterns (see figure 8.1(c)).

A successful inverse model then has to map these sensory patterns, when retrieved
from memory, back onto the relatively sparse motor patterns that have generated the
respective sensory inputs, which is a task similar to the Chronotron task (see chapter 7).
Note that the sensory area s is split into two sub-populations ssens and srecall receiving
the same input given by (8.7). Only srecall will be activated during recall, while ssens only
receives sensory input.

Before learning the inverse model, a memory of the tutor song is formed by choosing
one particular random pattern in motor area m and the respective sensory pattern, which
are stored for later comparison. Since the target pattern is chosen to be a particular
stochastic pattern with the same or at least similar statistics as the training set, it could
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by chance occur during the babbling phase. Due to the stochastic nature of the exploration,
however, this is highly unlikely. This choice of target pattern is equivalent to assuming that
the tutor bird has the same mapping from motor activity to sound and thus to auditory
activity. This ensures that the resulting song (i.e. sensory activation) can in principle be
generated perfectly by the model bird.

During learning, the stored motor pattern is compared to the motor pattern that is
evoked when the tutor sensory pattern is fed into the sensory population (recall case).
This motor pattern is then used to test which sensory pattern it would evoke. Figure
8.1(b) and 8.1(c) show spike raster plots of the target motor resp. sensory activity (black
dots) and recalled activity via the inverse model (red stars) for rtarget = rexplor = 1Hz.
After learning, the tutor pattern is very well reproduced in both the motor and the sensory
area with a time delay of about τloop.

8.3.2 Quantitative Evaluation of the Learning Process

For the quantitative evaluation of the learning process, the spike train distance between
patterns of motor resp. sensory activity is measured every ∆N = 50 learning epochs over
a total of Nk = 2000 learning epochs. A typical set of learning curves, averaged over
N = 50 sets of initializations, for an exploration and song firing rate rexplor = rtest = 1Hz
is displayed in figure 8.2. Learning is quick and after learning, the system settles at a low
error. When learning is successful, learning curves for the motor pattern and the sensory
pattern are similar. Note that in case of a relatively high residual error (Nm = 10, purple
line), the error is slightly higher in the motor population than in the sensory population.
This is a trace of the fact that different motor patterns do not give sufficiently different
sensory patterns, such that the mapping is difficult to invert.
For all further evaluations, a residual error is calculated by taking the average of the last
10% of learning steps for each initialization. From this set of residual error measurements,
average and standard error are computed and used in all further investigations.

Figure 8.2: Learning curves for Nm = {10, 15, 20, 25, 30} and α = 20 in a complex
world model with Nw = 40. Over learning, the error decreases quickly and settles
on a low level. The residual error is calculated by taking the average over the last
10% of learning steps for individual learning curves. From these residual errors
average and standard error are calculated. Left: motor population, right: sensory
population.
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Figure 8.3: Residual error after learning in dependency on size ratio between sensory
and motor populations for a complex world model with Nw = 40. Left: motor
population, Right: sensory population.

8.3.3 Dependency on System Size for Different World Mod-
els

This model was conceived to remedy the shortcomings of the simpler model introduced
in chapter 5. Therefore, here the dependency on system size is tested for various world
models with different temporal width.

The dependency on system size is tested for Nw = {1, 5, 10, 40}. To explore how the
residual error after learning depends on the system size, several different sizes are tested
with Nm = {10, 15, 20, 25, 30} for an exploration and song firing rate rexplor = rtest =
1Hz. Since it is reasonable to assume that the residual error will scale with the ratio
α = Ns/Nm of neuron numbers in s and m, residual error after learning is computed for
α = {0.4, 0.8, 2, 5, 10, 20}. The results for different system sizes for different complexities
of the world model are displayed in figures 8.3, 8.4(a), 8.4(b) and 8.4(c). For the most
complex world model (Nw = 40), for low values of α in some cases cyclic activities between
m and s2m2 occur, yielding very distances between tutor and recall pattern. Therefore,
for the sake of visibility, the range of α is limited to α = {2, 5, 10, 20} for Nw = 40.
Learning is increasingly successful for increasing α. For simple world models, the learning
success depends only very little on system size with lower residual error for larger systems
(at low α). For the most simple world model, results are comparable to those from chapter
5, but here the residual error after learning increases less for increasing complexity of the
world model. For the most complex model of the world with Nw = 40, however, there
is a noticeable difference in the learning success, which much lower residual errors for
larger systems. The slower decrease of the residual error for higher α for more complex
world models is to be expected, because for more complex world models fewer neurons in
s spike in the time interval which coincides with the teacher spike in s2m2. Therefore,
fewer neurons contribute to learning at this point in time, hence increasing the necessary
size difference between motor and sensory population to enable successful learning.
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(a) Moderately complex world model with Nw = 10

(b) Moderately complex world model with Nw = 5

(c) Simple world model with Nw = 1

Figure 8.4: Residual error after learning in dependency on size ratio between sen-
sory and motor populations for world models of different complexity. Left: motor
population, Right: sensory population.
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8.3.4 Dependency on Firing Rates

In the songbird, in most areas in the song system firing rates are higher than 1Hz, so
it is important to investigate learning also for higher firing rates. Due to the long after-
hyperpolarisation in the motor area, spiking is prevented immediately after each spike
for at least the time of the loop delay τloop = τms = 40ms. Since the length of the
hyperpolarisation in the motor population is chosen at τm = 70ms to provide a reasonably
strong distance of the membrane potential to the threshold at the time of the self-generated
input, the maximum firing rate is limited to at most 15Hz, if the spiking is entirely
regular. Here, the investigation of learning success is limited to the range of firing rates of
rexplor = rsong = {1Hz, 2Hz, 3Hz, 4Hz, 5Hz, 6Hz, 7Hz}. To investigate how the success
of learning depends on the motor firing rate, the residual error is calculated for different
firing rates for Nm = 20 and α = {10, 20} and the complex world model with Nw = 40.
The results are displayed in figure 8.5. Learning is successful for high α for low firing
rates. For higher firing rates, the residual error rises to moderate levels.

Figure 8.5: Residual error for different size ratios between sensory and motor popula-
tions in dependency of exploration firing rate. Song firing rate is equal to exploration
firing rate. Left: motor population, Right: sensory population. The residual error
is low for low firing rates and then rises to a moderate level with higher firing rates.
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8.3.5 Necessity of Exploration with Testing Firing Rate

Up to this point, it was assumed that the firing rate in the motor population m was
the same for both, the exploration phase and the song. Since this would require prior
knowledge of the firing rate of the song, it is interesting to investigate, how the residual
error changes when exploration is done with a firing rate different from the song firing
rate. To this end, the ratio β = rsong/rexpl is introduced. The residual error is measured
for Nm = 10 and Ns = 400 for exploration firing rate rexpl = {1Hz, 2Hz, 3Hz} and
β = {0.25, 0.5, 1, 2, 4}. The results are displayed in figure 8.6.
Learning is successful, if the exploration rate is higher than the song firing rate, which
is consistent with high firing rates during the exploration phase. Residual errors rise to
moderate levels for high song firing rates and high exploration firing rates.

Figure 8.6: Residual error for different exploration firing rates in dependency on the
firing rate ratios between song firing rate and exploration firing rate. Left: motor
population, Right: sensory population. The residual error is low for low song firing
rates for all exploration firing rate ratios and then rises to moderate level for higher
ratios.

8.3.6 Experimentally testable Predictions

8.3.6.1 Autocorrelation Function

As for the simple inverse model presented in chapter 5, the long after-hyperpolarisation
in the motor population in the model serves to avoid cyclic activity. A side effect of this
hyperpolarisation is that the maximum firing rate in the motor population is limited,
because immediately after a spike, each neuron is reset to a low membrane potential
and thus has a very low spiking probability. This can be measured by measuring the
autocorrelation of the spike trains. Figure 8.7 shows the autocorrelation of the spike
trains in m for Nm = 10, Ns = 200, rexpl = rsong = 7Hz. There is a small, but noticeable
dip in the autocorrelation of the length of the time of the loop delay. The autocorrelation
could be accessible experimentally.
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(a) Autocorrelation function of spiking activity
in the motor population.

(b) Close-up of the autocorrelation function
around ∆t = 0 and ρ(∆t) = 0.

Figure 8.7: Autocorrelation function of the spiking activity in m. There is a dip of
a width equivalent to the loop delay. The horizontal black line at autocorrelation 0
serves as a guide to the eye.

8.3.6.2 Mirror Neurons without Delay between Song and Playback

All of the above assumes that the neurons in s2m2 all receive their input from srecall. The
bird’s brain, however, may also contain neurons in adjacent area sxmx that receive their
inputs from the primary sensory area ssens, as well as from the motor area m. Let us
assume that here the same setting applies, i.e. that the feedback from m is delayed and
the connections from ssens to sxmx are plastic according to the same learning mechanism.
Then, after learning, the neurons in sxmx indeed respond at similar times during both,
active singing and passive listening, i.e. they represent zero delay mirror neurons as found
experimentally in area HVCx ([PPNM08]) (see figure 8.3.6.2).

Figure 8.8: Mirror neurons in sxmx are active at approximately the same time
relative to the song during singing and during passive playback.
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8.4 Discussion

In this chapter, I show that the learning algorithm suggested for Chronotrons in chapter
7 can realize inverse models based on spatio-temporal spike patterns, even for complex
models of the world. This model was conceived to remedy the limits of the model presented
in chapter 5, which it does. In contrast to other learning rules operating on precise single
spikes, this learning rule is biologically plausible, with a clear interpretation of the teacher
signal. For a full discussion of the biological plausibility of the learning rule and its
relationship to other learning rules, see 7.4.1 and 7.4.3.

The learning rule is applied in a new architecture consisting of coupled neuronal net-
works mimicking the anatomy of the songbird’s brain to explain the reproduction of previ-
ously encountered acoustic signals. Crucially, this model assumes the existence of delayed
feedback from a motor area to a sensorimotor region which serves as an intermediate relay
for realizing the inverse model that has been suggested to underlie the bird’s sound imita-
tion capabilities. The existence of zero delay mirror neurons in birds [PPNM08] provides
strong evidence for such a feedback.

The delay lines used in this model are a simplification of the possible delayed feedback
in the songbird: In the songbird, these connections would not be monosynaptic. However,
it can be assumed that this type of mixed delayed feedback is similar to the world model
of temporal width of up to 10ms used in chapter 5 and can therefore be inverted with a
mechanism of that type. Since the Anti-Hebbian STDP used in chapter 5 is compatible
with the learning algorithm used here, I suspect that it could also serve to invert the inner
delayed feedback loop from m to s2m2 and back.

In this model, zero delay mirror neurons naturally emerge from the same learning
mechanism acting on synapses that feed only sensory input, but not memory input, into
areas that also receive delayed feedback. Interestingly, the singing related activity of
the zero-delay mirror neurons found in HVC is not distorted by acoustic manipulations
disrupting auditory feedback during singing, suggesting that these neurons receive purely
motor-related input when the bird sings ([PPNM08]).

Furthermore, the model predicts mirror neurons with a delay equivalent to the loop
delay in the respective sensory and motor areas involved in recall. This delay was linked
to causal inverse models before ([HGH14]). In fact, experimental evidence for this type
of delay was found, albeit in songbird brain area LMAN ([GKGH14]). In their study,
[HGH14] suggest a simple Hebbian learning rule, which relies on the comparison between
self-generated and target input. However, there is no clear biological interpretation of how
this comparison could be achieved. Additionally, in their study, to allow for analytical
tractability, they only discuss a linear model of sound generation and perception which is
local in time. In the songbird, however, the process of sound generation and perception can
be assumed to be both, non-linear, and non-local in time. In this thesis, non-linear spiking
neurons are included for sound perception as well as for the motor-sensory mapping that
includes interactions that are not local in time.

The model presented in this chapter requires a switch to suppress singing activity
during passive playback, which could be implemented by strong inhibitory input into the
motor area m. This hypothesis is supported by experimental evidence, since while in
awake birds, motor neurons downstream of HVC are not responsive to auditory stimuli,
in anaesthetized birds, playback of the bird’s own song excites neurons in all nuclei in the
song system downstream of HVC ([DM00, DK91, SWM03]). In the songbird, inhibitory
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inputs into HVC are learned to suppress spiking activity during tutor song presentation
[VKLL16]. Furthermore, the acoustically induced activation of mirror neurons is measured
in sleeping or anaesthetized birds [PPNM08, GKGH14]. This implies that the visibility of
mirror neurons in the songbird is an effect of sleep or anaesthesia.

In contrast to other models ([HGH14]), however, auditory input is not required to be
gated off during singing, because echoing is suppressed by self-inhibition induced by long
hyperpolarisations in the motor area m. This self-inhibition comes with a characteristic
dip of the length of the loop delay in the spike autocorrelation of the involved motor
neurons, which should be experimentally accessible.

The overall learning performance in this model for the most complex world model
with Nw = 40 is worse than the learning performance in the model introduced in chapter
5. However, in chapter 5, only the most simple world model with a single delay line
was investigated. In that model, learning breaks down completely for more complex
world models. In contrast, the model presented in this chapter provides high learning
performance even in the most complex world model. The analysis of the dependency on
the firing rate in the motor population is only done for the most complex world model,
but it can be expected that residual errors would be overall smaller for more simple world
models as the one used in chapter 5.

Hence, together with the model from chapter 5, a complete setup for the learning of
inverse models of complex world models was presented.
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Chapter 9

Learning in Recurrent Networks
with Membrane Potential
Dependent Plasticity

In chapters 5 and 8, models for the learning of inverse models were introduced as a
method for vocal learning. These inverse models serve to map a given sequence of sensory
activations onto the matching motor activations. Before that can happen, however, a
sensory activation sequence representing the tutor song has to be memorized. This chapter
introduces a model for the imprinting of precise spatio-temporal sequences onto a recurrent
network of spiking neurons. To that end, the algorithm for learning precisely timed spikes
in response to spatio-temporal input patterns introduced in chapter 7 is applied to all
connections in a recurrently coupled all-to-all network of spiking neurons.

9.1 Introduction

The generation of precise sequences of activation in neural networks is at the basis of
almost all behaviour in animals. For example, it was found that songbirds produce ex-
tremely sparse and precise activations in HVC during singing [HKF02]. At least some of
these sequences are a result of learning. Learning to reproduce a given spatio-temporal
sequence of activations is a fundamental challenge, which has been addressed in early
modelling studies (e.g. [Hop82]). However, previous models incorporated neither spiking
neurons, nor biologically plausible learning rules.

The setup for each single neuron in a recurrent network is similar to the setting in
the Chronotron problem: The neuron needs to learn to generate precisely timed spikes
in response to an input pattern from all other neurons. Therefore, it is reasonable to try
to apply the same learning rules that work for Chronotrons to the learning in recurrent
networks.

However, recurrent networks are very sensitive to noise, such that slight deviations
from the target pattern at a given time have large impact on the spiking pattern at later
times. This behaviour was successfully reined in with the addition of noise during the
learning process in [LB13]. There, robust spiking sequences in a network of rate neurons
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were produced. Learning was started from sequences the networks would produce from
the weight distribution at initialization, and these sequences were stabilized by learning
with noise. Noise during learning is beneficial for the stability of recall.

The learning of sequences in recurrent networks has been treated with learning algo-
rithms that were devised to solve the Chronotron problem before in [MRÖS14]. There,
the FP-learning algorithm (for a brief description see section 3.4.2.3.3) was shown to be
able to imprint several sequences onto recurrent networks of spiking neurons. However,
FP-learning suffers from a lack of biological plausibility.

Here, the biologically plausible learning algorithm introduced in chapter 7 is applied to
learning in recurrent networks, where it enables neurons to learn precisely timed sequences.

9.2 The Model

9.2.1 Network setup

To investigate whether the same mechanism used for learning precisely timed spikes as a
response to spatio-temporal input patterns in the Chronotron setting in chapter 7 and the
inverse model in chapter 8 can also serve to imprint spatio-temporal patterns on recurrent
networks, an all-to-all network of N neurons is considered (see figure 3.1(b)). During
learning, all synapses within the network are considered to be plastic and to obey (9.6)
(see below). For proof of principle, the desired spatio-temporal patterns are taken to
consist of N equidistant spikes with a distance of d = 2ms, where the order of spikes
is randomly assigned. Each pattern is looped twice during each learning epoch lasting
T = 2Nd to allow for cyclic recall. All P patterns are shown to the network in batch
mode and then the synaptic weights are updated. The patterns to be memorized are fed
into the network by giving the respective neurons an input which mimics a synaptic input
from a different neuron population with weight a = 0.3:

Iext = a exp

(
− t− tpost

τs

)
Θ(t− tpost). (9.1)

During learning, all neurons receive additional gaussian noise of standard deviation σ =
0.1mV . Recall is performed without noise.

9.2.2 Neuron Model

In this chapter, as in chapter 5 and 8, simple integrate-and-fire neurons are used. For the
sake of completeness, the description is repeated here.

All neurons are modelled as a simple leaky integrate-and-fire neuron. To facilitate the
derivation of the plasticity rule, the formulation of the SRM0 [GK02] is used. A neuron
j receives input from other neurons i via plastic synapses of weight wji. The neuronal
voltage V (t) is given by the sum of weighted synaptic input kernels ε(s) (postsynaptic
potentials, PSPs) and reset kernels R(s), which model the neuronal reset after a spike.
External input currents Iext(t) are low-pass filtered with a response kernel κ(s). The full
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equation reads

Vj(t) =
∑
i

wji

∑
k

ε(t− tik − tdelay) +
∑
tj

R(t− tj) +

∞∫
0

κ(t− s)Iext(s)ds. (9.2)

Here, wji is the weight from presynaptic neuron i to the postsynaptic neuron j and tki
is the time of the k-th spike of presynaptic neuron with index i. A delay of synaptic
transmission tdelay is included. The synaptic input kernel, the reset kernel and the passive
filtering kernel are given by

ε(s) = Θ(s)
1

τm − τs
(exp(−s/τm)− exp(−s/τs)) (9.3)

R(s) = Θ(s)(Vreset − Vthr) exp(−s/τm) (9.4)

κ = exp (−(t− s)/τm) . (9.5)

where τm = 8ms is the membrane time constant of a LIF neuron determining the decay
of voltage perturbations, and τs = 2ms is the decay time constant of synaptic currents,
which defines the rise time of the PSP kernel. If there is no input, the voltage relaxes back
to Veq = 0. Spiking in this model is deterministic: If V (t′) = Vthr = 20mV , the neuron
spikes and a reset kernel is added at time t′ = tj . The formulation of the kernel makes
sure that the voltage is always reset to Vreset = −60mV < Veq.

9.2.3 Learning Rule

Since the learning in recurrent networks can be mapped onto the Chronotron problem as
discussed in chapter 7, the same learning rule is used here. The description is repeated
for the sake of completeness.
The plasticity rule is derived from the demand of a balanced membrane potential: the
neuron should neither be hyperpolarized nor too strongly depolarized. This is a sensible
demand, because it holds the neuron at a sensitive working point and keeps metabolic costs
down. To that end, two thresholds are introduced, ϑP < ϑD < Vthr, between which the
membrane potential is bounded. The weight change is chosen such that, whenever ϑD =
10mV is surpassed, all weights that contribute to the rise of the membrane potential are
depressed, weighted by their respective influence given by the PSP-kernel ε. Whenever the
membrane potential drops below ϑP = VL, all synapses that contribute to that downward
deflection are potentiated, such that for a repetition of the pattern the membrane potential
is deflected to stay within bounds. Additionally, the weights are bounded to stay below
a maximum weight wmax, symbolizing a maximal synaptic strength. Limiting weights is
advantageous for stability. The weight change is then given by

ẇji = η (wmax − |wi|)
(
−γ [V (t)− ϑD]+ + [ϑP − V (t)]2+

)∑
k

ε
(
t− tki − tdelay

)
. (9.6)

γ = 900 is a factor that scales inhibition to excitation. The learning rate is given by
η = 0.1.

9.2.4 Evaluation of Learning Success

To test whether the network is able to reproduce the target sequence, the first part of
the target pattern is fed into the network, as during the learning process, to initialize
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the network. The duration of the initialization period is Tinit = 30ms. After learning,
the network should be able to reproduce the target pattern, albeit possibly shifted and/or
stretched. To evaluate the long-term stability of the pattern, the network runs for a longer
time Tlong−term = fT with f = 3.

For the quantitative evaluation of the learning process, the spike train distance between
the target pattern and the reproduced pattern is measured (see below) and learning success
is evaluated (see below) every ∆N = 100 learning epochs over a total ofNk = 4000 learning
epochs for each pattern. Results are averaged over n = 100 sets of initializations consisting
of P patterns. All weights are initialized as zero.

9.2.4.1 Measure of Pattern Similarity

To quantify the similarity of the target pattern and the self-generated pattern, it is nec-
essary to compare two sets of spike trains for each pattern. The activity atargeti (t) in each

neuron i in the tutor song will have to be compared to the activity during recall aselfi (t)

to give some distance measure d0(a
target
i (t), aselfi (t)). The total distance over the activity

atarget resp. aself of all neurons in the given population will then just be the sum over all
neurons in the population. Finally, this distance should be minimized over a global shift
and a global stretching factor:

d(atarget, aself ) = min
∆t,c

∑
i

d0(a
target
i (t), c · aselfi (t−∆t)) (9.7)

The spikes during the initialization period are not taken into account. This distance is
evaluated every ∆Nk = 50 learning cycles. The resulting learning curves are normalized
to the number of spikes in the target pattern, such that the distance before learning is 1.

9.2.4.2 Spike Train Distance Measures

There are several possible spike train distance measures d0(s1, s2), e.g. the VanRossum-
distance [vR01] and the Victor-Purpura-distance [VP96].

To calculate the VanRossum-distance between two spike trains s1 and s2, both spike
trains are convoluted with an exponential kernel. Then the quadratic distance is computed
between those convolutions. While this spike train distance measure is easy to implement,
it has the computational disadvantage of the computing time being dependent on the total
number of simulation time steps.

Calculating the Victor-Purpura-distance seems more complicated, but is generally
faster for not too high firing rates: To evaluate a spike train distance between spike
trains s1 and s2, a cost for the transformation from s1 into s2 is calculated. There is a
cost of 1 for the deletion or introduction of a spike and a cost of q∆t for a shift of the
spike time of one spike by ∆t, where q is a parameter that scales the cost of shifting a
spike relative to the insertion and deletion of spikes. The sum of the costs to transform
s1 into s2 is then the spike train distance d(s1, s2).

9.2.4.3 Measure of Learning Success

To evaluate if learning was successful in an individual trial, the distance of the recalled
pattern to the target pattern in that trial and the number of spikes in the long-term
recall are taken into account. If the patterns were reproduced perfectly and the recall was
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perfectly stable, the patterns in the long-term recall condition should consist of 2fNP
spikes. If the distance between recall and target pattern as introduced above is below
0.1 in the short term condition and the number of spikes in the long-term recall condition
N longterm

spikes is between 0.9·2fNP < N longterm
spikes < 1.1·2fNP , the trial is counted as successful.

This quantity can be normalized to the number of patterns in the trial P , thus yielding a
success rate.

For the quantitative analysis, the fraction of correctly recalled patterns is computed
every ∆Nk learning cycles. In each trial, the fraction of correctly recalled patterns after
learning is computed by taking the average over the last 10% of measurements.

9.3 Results

In this chapter, learning of precise spatio-temporal spike patterns in recurrent networks is
investigated. To that end, the learning mechanism introduced in chapter 7 is applied to
an all-to-all coupled network of N neurons. P patterns of equidistant spikes are presented
to the network via a strong teacher input given at the time of the desired spike. After
successful learning, the network should reproduce the entire sequence when initialized with
the beginning of the sequence. Furthermore, recall should be cyclic and therefore persist
for times longer than the training period T .

9.3.1 Intuitive Understanding of the Learning Process

To facilitate an intuitive understanding of the learning process, for a single network of
N = 100 neurons, which is supposed to learn P = 3 patterns, the spiking patterns at
different stages of learning are presented and discussed. Note that for this size of the
network, learning P = 3 patterns does not work in all cases, but the value is here chosen
for better visibility of the patterns.

The extra input into a neuron around each teacher spike from the other neurons in
the network emerging during learning will make the membrane potential steeper around
the spike and cause the spikes to shift forwards in time during learning. However, during
learning, the hyperpolarization, the signal for LTP, is slowly filled up, while at the same
time the slope of the membrane potential before the spike becomes steeper. In net effect
these two influences cancel each other out, so that learning comes to a halt.

Since after learning, around each spike for each neuron extra input is generated by the
network, the network will fill in the missing teacher activity after learning, if the sequence is
initialized by the first few spikes during an initialization period of Tinit = 30ms. However,
the resulting sequence may be stretched or shifted with respect to the original input
sequence.

To test for stability of recall, it is checked if and for how long the network is able to
reproduce the sequence. The recalled pattern is compared to both, the initial response of
the network to the input before learning and the response of the network after learning.
Since spikes may shift over time, the sequence slightly changes. Figure 9.2 shows raster
plots of the different patterns imprinted on the same neuronal network for t < T for
different stages of learning.

Figure 9.3 shows a raster plot of the activity in the network after Nk = 4000 learning
cycles during and after initialization for different patterns as it evolves for longer times.
Recall is tested over six cycles. After learning, recall is cyclic and stable.
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Figure 9.2: Spike raster plots at different stages of learning. Black pentagons are
original activity of the network in response to the teacher input before learning,
green stars are activity during learning and red dots are recall; the vertical black
line demarks the end of the initialization sequence. From top to bottom after 50,
100, 150, 350 and 1200 learning cycles.

0 500 1000
time (ms)

Figure 9.3: Spike raster plots for long times after learning. Black pentagons are
original activity of the network in response to the teacher input before learning,
green stars are activity during learning and red dots are recall; the vertical black
line marks the end of the initialization sequence. The learned patterns are cyclic
and stable after learning.
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9.3.2 Quantitative Evaluation of the Learning Process

For the quantitative evaluation of the learning process, the spike train distance between
target pattern and the reproduced pattern is measured every ∆Nk = 50 learning epochs
over a total of Nk = 4000 learning epochs for each pattern. The normalized distance
between the recall and the target pattern (i.e. the original response of the network to
the teacher input before learning) for N = 50 and P = 1, averaged over n = 100 sets of
initializations, are displayed in figure 9.4(a).
Furthermore, a success measure for individual patterns is introduced: In individual trials
a pattern is counted as successfully recalled, if the distance between recalled and target
pattern is below 0.1 and the number of spikes in a recall pattern observed during 3T
is within 10% of the target number of spikes during this time period. This quantity
can then be normalized to the number of patterns P , yielding a fraction of correctly
recalled patterns. The fraction of correctly recalled patterns over the course of learning
for N = {50, 100, 150} for P = 2 is displayed in figure 9.4(b). Learning converges quickly
with success rates of close to 1 for sufficiently large networks.
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(a) Distance between the self-generated pat-
tern and the target pattern, optimized for a
global stretch and shift averaged over patterns
and initializations for P = 1 patterns in a net-
work of N = 50 recurrently coupled neurons.
The distance decays quickly in the learning
process and settles on a low level.
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(b) Fraction of correctly recalled patterns over
the course of learning for P = 2 patterns in a
network of N = {50, 100, 150} recurrently cou-
pled neurons. Learning is counted as success-
ful, if in the individual trial the distance be-
tween the self-generated pattern and the tar-
get pattern is below 10% and the number of
self-generated spikes for the long-term trial is
within a 10% range around the expected num-
ber. Learning converges quickly with the frac-
tion of correctly recalled patterns close to 1 for
sufficiently large networks.

9.3.3 Scaling with the System Size

To investigate how the number of patterns a network can learn to reproduces scales with
the system size, the success rate after learning is computed for individual trials as the
average over the last 10% of measurements. From this quantity the average and standard
error are computed.
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Figure 9.4: Left: Number of correctly recalled patterns in dependency of the number
of patterns learned for different system sizes. Right: If the number of patterns P is
normalized by the square root of the number of neurons in the network N , curves
for different system sizes coincide. Learning is successful up to a critical load of
about αc√ = P√

N
= 0.2.

The ability to learn P = {1, 2, 3, 4, 5} is evaluated for network sizes N = {50, 100, 150}
for n = 100 initializations. Learning works well if the number of patterns P is sufficiently
small in comparison to the number of neurons N . When the fraction of correctly recalled
patterns is plotted as a function of a load parameter α√ = P√

N
, the curves almost coincide

for different system sizes. Learning is successful for α√ = P√
N

< 0.2 and breaks down

above that. The slope of the curve around the cutoff point becomes steeper for larger
networks, suggesting that for sufficiently large networks there may be a critical load,
below which all patterns are learned and above which learning fails. However, since all
networks considered here are relatively small, finite size effects may have an influence on
the scaling behaviour.

9.4 Discussion

In this chapter, the plasticity mechanism introduced in chapter 7 was applied to the learn-
ing of elongated spatio-temporal sequences in recurrent networks. It was shown that it
is possible to imprint several patterns onto a recurrent network, such that they will be
reproduced in a stable manner, if the network is initialized with the beginning of the se-
quence.

The introduction of noise during learning has been shown to be beneficial for stability
[LB13]. In their study, Laje and Buonomano showed that in a network of rate neurons,
stable activation patterns can be learned, if innate activation patterns of the network were
additionally trained with the addition of noise. This generates an attractor around the
desired activation pattern sequence. Using innate patterns that the network would gener-
ate spontaneously before learning has the added benefit of guaranteeing that the pattern
can in fact be learned. In this chapter, the slight variability of the spiking pattern due
to the shifting of individual spikes during the learning process, which is a result of a real
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teacher input, may be similarly beneficial for the selection of patterns that can be learned.
In the model presented here, additive noise is used as well for the stabilization of the recall.

In this chapter, an algorithm that was originally devised for Chronotron learning was
applied to the learning in recurrent networks. This is based on the insight that for each
individual neuron, the situation in both setups is very similar: The neuron has to produce
precisely timed spikes in response to a given input pattern, which in the case of recurrent
networks is generated by the rest of the network.
Another algorithm devised for Chronotron learning (FP-learning) has been successfully
applied to the learning in recurrent networks before [MRÖS14]. There, the finite preci-
sion that is required during the learning process allows the spikes to slightly move around
during the learning process, which may be similarly effective for stabilizing sequences as
the addition of noise is.

The interplay between the neuronal dynamics in the form of the hyperpolarization and
the learning rule is particularly important for the learning mechanism. In their study, Brea
et al. [BSP13] similarly propose that the learning algorithm should match the neuronal
dynamics. They devise a learning rule starting from the given dynamics of the neuron,
which optimizes the recall properties after learning. However, their learning algorithm
only serves to approximate a given target spiking distribution, and thus does not operate
on single spikes.

Both, the learning rule proposed by Brea et al. [BSP13] and FP-Learning [MRÖS14]
suffer from an unclear interpretation of the teacher input. Here, in contrast, the teacher
input is just a regular synaptic input, albeit of high amplitude. For a full discussion of
the biological plausibility of MPDP in contrast to other learning rules, including the ones
mentioned above, see 7.4.1 and 7.4.3.

In this chapter, only the arguably simplest type of pattern is investigated. However,
since it is possible to imprint several such patterns at the same time, it is likely that more
complex patterns can be learned as well. The number of patterns seems to grow with
the square root of the number of neurons in the network. This is plausible: learning of
individual spikes becomes simpler for growing networks sizes, because the pattern becomes
sparser at any given point in time. However, learning becomes more difficult for growing
network sizes, because the length of each pattern grows with the network size. The net
effect is a scaling of the number of patterns that can be stored with the square root of the
network size. However, in this work, only small networks are considered, such that the
results may be influenced by finite size effects. It would be tempting to investigate the
scaling behaviour more deeply and possibly even gain an analytical understanding of the
scaling behaviour.
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Chapter 10

Discussion

This thesis aims to shed light on the neuronal mechanisms that enable communication. In
order to verbally communicate complex content, sound has to be associated with meaning.
Furthermore, the respective sounds have to be reproduced to actively communicate. To
that end, a sensory memory of the activation pattern in an auditory brain region needs
to be formed. Finally, this sensory activation pattern needs to be translated into motor
commands that reproduce the original sound.

In this chapter, I will provide a summary of the results in this thesis and how they
contribute to answer the questions raised above and briefly discuss the results. For a more
detailed discussion of each part, see the individual chapters. Finally, I will provide an
outlook onto possible future work based on this thesis.

10.1 Summary and Discussion

In this thesis, two models for associative learning are introduced in chapter 6 and chapter
7. In the brain, associative learning may serve to associate two stimuli or to associate
meaning with a given neuron activation pattern, e.g. the auditory representation of a
sound. Thus, this type of associative learning is required for communication of complex
content.

In both chapters, associative learning is discussed in a single layer feed-forward net-
work. In the former, the associative learning of either spiking or not spiking in response
to a purely spatial input pattern is discussed. It is shown that reverse spike-timing de-
pendent plasticity (RSTDP) in combination with a hyperpolarization after each spike is
mathematically equivalent to the Perceptron learning rule (PLR). This implies that the
resulting learning algorithm has the beneficial properties of the PLR: a stop condition to
avoid overlearning and a margin, which guarantees correct output also in the presence of
some noise. The nature of the learning algorithm is pairing a hyperpolarization induced
by a teacher spike with a synaptic learning rule, that raises the membrane potential of the
output neuron, until a plasticity threshold below the spiking threshold is reached. The
extra input that is generated to fill the hyperpolarization leads to a spike in the absence
of the teacher spike.
In chapter 7, the Chronotron problem is discussed. Here, the output neuron in a sim-
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ple feed-forward network is required to spike at a precisely defined time in response to a
spatio-temporal input spike pattern. The learning mechanism follows the same principle as
above: A teacher spike is induced at the desired spike time, which leads to a strong hyper-
polarization. This hyperpolarization serves as a learning signal for the synaptic learning
rule, which has the objective to balance all inputs into the output neuron and thus keep
the membrane potential bounded. Thus, the hyperpolarization leads to a strong learning
signal, which changes the weights to bend the membrane potential upwards for a repeti-
tion of the pattern. This process stops when enough extra input from the input pattern is
generated for the membrane potential to hit the upper plasticity threshold (which is below
the spiking threshold). At the same time, the membrane potential before the spike rises
above that plasticity threshold, which induces a synaptic change bending the membrane
potential towards more negative values for a repetition of the pattern. After the hyperpo-
larization is sufficiently filled up, these effects cancel each other out, such that plasticity
comes to a halt. The extra input generated by the input pattern again leads to an output
spike in the absence of the teacher spike, which is close in time to the original teacher
spike time. Thus, the Chronotron problem is solved. Furthermore, the algorithm provides
a mechanism to distinguish desired teacher spikes from undesired spurious spikes: weak
input, which leads to a shallow rise before a spurious spike, will be suppressed, because the
membrane potential stays above the upper plasticity threshold before the spike for a long
time, giving a strong learning signal to suppress the spike. For stronger teacher inputs,
the membrane potential rises steeply before the spike, thus limiting the time it stays above
the plasticity threshold, which leads to a net strengthening effect. Furthermore, the time
course of the membrane potential around the spike changes over the course of learning: It
becomes steeper due to the extra input after the spike and the negative input before the
spike, such that the resulting output spikes become more resistant to noise in the input
pattern.

Compared to existing supervised learning rules, both of the learning rules introduced
here are unique in that they provide a local synaptic update rule and a clear interpretation
of how a teaching signal could be communicated to an individual neuron in the brain. The
key parts of both learning rules are all biologically plausible, albeit not yet experimentally
found. However, the sensitivity of the synaptic weight change in response to presynap-
tic spiking activity and postsynaptic sub-threshold depolarization found in experimental
studies [ABS90, STN04, FDV09] points to biological mechanisms to transfer all relevant
signals to the synapse, such that the update rule suggested in chapter 7 could be in place
in real neurons.

In chapter 9, the latter mechanism is applied to the learning of sequences of spike pat-
terns in recurrent networks. This process may be involved in the formation of the sensory
memory of a given sound sequence. The application of a Chronotron learning algorithm
to learning in recurrent networks is based on the insight that for each individual neuron
involved in sequence learning in a recurrent network the learning task is the same as in
the Chronotron problem: The neuron is required to produce a precisely timed spike in
response to a given spatio-temporal input pattern, which is provided by the other neurons
in the case of the recurrent network. It is shown that it is possible to imprint several
spatio-temporal spiking patterns onto recurrent networks. The plasticity mechanism in-
cludes real teacher inputs, which allow the target spikes to shift slightly over the course
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of learning. This allows the network to slightly modify the sequence towards sequences
which are easier to reproduce. Furthermore, over the course of learning, the entire spike
pattern is compressed in time, each time shifting to slightly earlier times relative the the
preceding spikes, which allows spikes to be reproduced in the absence of the teacher spike.
The addition of noise during the learning process is beneficial for stability of the learned
patterns. After learning, recall is cyclic and stable for long times. In the context of this
thesis, only learning of the simplest possible spiking patterns were investigated. However,
the number of patterns, in which each neuron spikes exactly once, grows with the square
root of the number of neurons in the network. Due to the fact that several such patterns
can in principle be learned at the same time, it can be assumed that longer, more com-
plex patterns can also be learned. Furthermore, it is likely that the plasticity mechanism
presented here may enable recurrent neuronal networks to learn to reproduce less regular
sequences as they would occur for sensory memory formation. A general difficulty for
learning arbitrary sequences is posed by patterns that cannot be produced by recurrent
networks, where all neurons are involved in the pattern in question: linearly non-separable
patterns or patterns with too long time stretches of silence, in which the activity dies out.
Adding hidden neurons, which are at liberty to fire at any given point in time uncon-
strained by a teacher, as used in [BSP13], might help to alleviate these constraints.

Finally, in chapters 5 and 8, vocal learning in the context of inverse models is dis-
cussed. The basic concept of inverse models is simple: During an exploration phase, the
learner learns to invert the action perception cycle. Essentially, it generates random motor
activations, which cause some sound and the thus perceived mapping “after this motor
activation, this particular sound happens“ can be inverted to “if this is the target sound,
this is the particular motor pattern required”. After this inverse model is learned, any
sound sequence in the range of producible sounds can be produced by just feeding an
auditory memory sequence into the inverse model, thus mapping the auditory sequence
onto the motor sequence which in turn generates the same sound sequence.

In chapter 5, a simple model for learning inverse models is introduced: A system of
connected neuron populations mimicking the brain architecture of songbirds is coupled
with the learning mechanism also used for Perceptron learning in chapter 6. During the
exploration phase, a motor population generates random activation patterns, which are
translated into input into the sensory population via a model of the sound generation and
perception process. After successful learning, the synaptic weights from the sensory to the
motor population are adapted such that the extra input filling up the hyperpolarisation
after each exploratory spike in the motor neurons drives the motor neurons to spike in
the recall case. If learning is successful, the sensory patterns are thus mapped back onto
the motor patterns that caused them. The sound generation and perception process is
modelled as one or several weighted delay lines from the motor population to the sensory
population. The learning of inverse models works well for simple models of the sound
generation and perception process with a single fixed delay. Learning works well for a size
difference between the sensory and the motor population, where the sensory population
is at least five times bigger than the motor population. Due to the long hyperpolariza-
tion in the motor population, which serves to suppress cyclic recall and as a testbed for
the input generated by the sensory population, the spike rate in the motor population is
limited. The firing rate during exploration does not have to match the firing rate of the
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tutor song, with learning being successful, if the exploration firing rate is higher than the
song firing rate. Another interesting question is how robust learning in this setup is to
unstructured background noise: Residual errors after learning remain small for a noise
level in the sensory population up to 200% of the bird’s own song. Another interesting
consequence of the long hyperpoplarization is a dip in the spike autocorrelation function of
the motor neurons of duration matching the loop delay from motor activation to sensory
activation and back. This might be accessible experimentally. Finally, this type of inverse
model entails mirror neurons in the motor and the sensory population, which are active
in the same way during singing and during passive listening to the same song. The time
shift between the two is of the same length as the loop delay. For more complex models
of the sound generation and perception process, learning works still moderately well for a
temporal spread of the input into the sensory population of up to 10ms. For more complex
world models, however, for a width of the world model of 40ms, learning breaks down.
Here, spatio-temporal spike patterns need to be mapped back onto precisely timed spikes,
which the learning mechanism is unable to achieve.

Since this mapping back from spatio-temporal spike patterns onto precisely timed
spikes is very similar to the Chrontoron problem, the learning algorithm suggested in
chapter 7 is applied to learning of inverse models in chapter 8. The learning rule is applied
in a new architecture consisting of coupled neuronal networks mimicking the anatomy of
the songbird’s brain. Crucially, this model assumes the existence of delayed feedback from
a motor area to a sensorimotor region which serves as an intermediate relay for realizing
the inverse model.

In this model, zero delay mirror neurons naturally emerge from the same learning
mechanism acting on synapses that feed only sensory input but not memory input, into the
sensorimotor areas that also receive delayed feedback. Furthermore, the model predicts
mirror neurons with a delay equivalent to the loop delay in the respective sensory and
motor areas involved in recall. The model requires a switch to suppress singing activity
during passive playback, which could be implemented by strong inhibitory input into the
motor area m. In contrast to other models [HGH14], however, no gating off of auditory
input during vocalization is required.
The delay lines used in this model are a simplification of the possible delayed feedback in
the songbird: In the songbird, these connections would not be monosynaptic. However,
it can be assumed that this type of mixed delayed feedback is similar to the world model
of temporal width of up to 10ms used in chapter 5 and can therefore be inverted with a
mechanism of that type. Since the Anti-Hebbian STDP used in chapter 5 is compatible
with the learning algorithm used here, I suspect that it could also serve to invert the inner
delayed feedback loop from the motor area to the sensorimotor area and back.

Learning is successful for both, simple and complex models of the sound generation
and perception process, albeit residual errors after learning are slightly higher for complex
world models. For the complex model of the world, learning for different firing rates was
tested and found to be successful for moderate firing rates. Firing rates during the ex-
ploration phase do not need to match firing rates of the target pattern. As in the simple
model for inverse model learning introduced in chapter 5, the long hyperpolarisation in
the motor population entails a limit on the maximal firing rate and a dip in the spike
autocorrelation in these neurons. Again, this could be accessible experimentally, as well
as the existence of mirror neurons.
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In conclusion, in this thesis, models for associative learning which may serve to asso-
ciate meaning with sound were introduced as well as an conceptually complete model for
vocal learning composed of a novel architecture and a learning mechanism that not only
serves to form inverse models, but is also able to imprint spiking sequences onto recurrent
networks, which may underlie the formation of sensory memories.

10.2 Outlook and Future Work

Inverse model learning is an interesting approach to vocal learning. The inversion of
the sound generation and perception process leads to an ability of the learner to imi-
tate arbitrary sounds within the range of sounds it can produce at all. In this thesis,
the investigation of inverse model learning was limited to relatively simple models of the
sound generation and perception process, which is a simplification of the real processes
involved. The sound generation process in zebra finches can be modelled as a surprisingly
low-dimensional process [APMM13], making it accessible for theoretical studies. It would
thus be interesting to develop a model for the sound perception process and the coding of
motor gestures in the motor model, thus modelling the sound generation and perception
process in more detail. It would then be interesting to see, how the results found in chapter
5 and 8 generalize to such a more complex model of this process.

From a theoretical and technical point of view, it would be interesting to test the abili-
ties of inverse model learning as suggested in this thesis in setups involving physical sound
generation modules. It should be possible to use any physical structure that produces
sufficiently diverse sounds and a microphone, as well as a model for conversion of sound
waves into input into the sensory population and a model for the conversion of activation
in the motor population into physical movement in the sound generation module. In prin-
ciple, the learning mechanism here should be able to invert any such mapping to some
degree and thus produce arbitrary sounds (in the realm of sounds it can produce at all).

Finally, it would be interesting to investigate the properties of the recurrent network
learning mechanism suggested in chapter 9 in more detail. The scaling behaviour with
the square root of the network size is a peculiar effect, that could be investigated further
numerically or even analytically. Furthermore, it would be interesting to investigate how
recall is affected by noise. Moreover, the size and shape of the attractors around the target
sequence could be investigated, as well as how these are influenced by this amplitude of
noise during learning.

Last, but not least, the models devised for inverse model learning make the prediction
of a dip in the autocorrelation function of the motor population involved. It could be
investigated experimentally, if any of the (pre-)motor nuclei of the songbird have spiking
statistics matching the requirements of the model. It could thus be tested experimentally,
if the type of inverse model suggested here could indeed be in place in the songbird.
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Numerical Procedures

Throughout this thesis, all networks were numerically integrated using a simple Euler
integration scheme. The simulations were written in Python and used a step size of 0.5ms
for all leaky integrate-and-fire neurons, a step size of 0.01ms for the conductance-based
integrate-and-fire neurons and a step size of 0.005ms for the Hodgkin-Huxley type neurons.
The values of neurons parameters can be found in the respective chapters.
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