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Preface	

Music is a special and unique part of human nature. Not only actively playing (making 

music in a group or alone) but also passive listening to music involves a richness of 

processes to make music the ideal tool to investigate how the human brain works. 

Since childhood I have been interested in music and spent a great amount of my free time 

playing the guitar – as a soloist, in chamber music formations, and in a guitar orchestra. 

After advanced theoretical and pedagogic training I also gave my own guitar lessons until I 

started with my PhD. During my studies in neurosciences I was always interested in 

perceptual and cognitive deficits resulting from brain injuries caused by a stroke or 

neurological disorders.  

This dissertation combines my professional interest in cognitive neurosciences with my 

non-academic interest in music and deals with the relationship between auditory, 

especially music, and visual dysfunctions after stroke. Behavioral investigations, lesion 

analysis, and functional magnetic resonance imaging were performed to assess the 

anatomical and functional correlates of these deficits.  

A better and more detailed understanding of amusia and connected cognitive deficits is 

not only relevant in terms of fundamental neuroscience but also from a clinical point of 

view: symptoms of amusia are rare, mostly undiscovered, and the underlying mechanisms 

are hitherto insufficiently understood.   



Abstract   2 

Abstract	

Acquired amusia denotes the impaired perception of melodies, rhythms, and the 

associated disability to enjoy music which can occur after a stroke. Many amusia patients 

also show deficits in visual perception, language, memory, and attention. Hence, the 

question arises whether amusia actually describes an independent clinical picture or is 

better described by a general perceptual deficit for auditory, as well as visual, and speech-

related material. Additionally, the question in what way impaired abilities in attention and 

working memory influence the performance in the music perception task remains to be 

investigated.  

Within the scope of this dissertation, stroke patients were investigated with a series of 

behavioral tests at the stroke unit of the Klinikum Bremen Mitte. These tests included the 

examination of music perception, visual Gestalt perception, categorization, working 

memory abilities, attention, and of a few additional basic visual and auditory functions. 

Two amusic stroke patients were identified within a pool of twenty-five examined patients 

suffering small middle cerebral artery infarctions (full data only available for twenty 

patients). These amusia patients demonstrated selective deficits in music perception. 

Additionally, working memory and attention deficits were not related to impaired music 

perception. Lesion analysis showed involvement of small right-hemispheric areas within 

the basal ganglia in rhythm perception. We concluded that relatively pronounced lesions 

are able to damage a specific brain area engaged in a specific sub-function of music 

processing. Large lesions can lead to a wide variety of deficits, possibly because these 

lesions damage a large array of anatomically close but functionally distinct areas. Thus, the 

music perception network is composed of small and widely distributed areas which can be 

embedded in a brain region which is involved in other cognitive functions as well.    

Furthermore, functional magnetic resonance imaging was used to investigate the influence 

of a stroke on the music perception network. For that aim, stroke patients and healthy 

control participants were measured during passive stimulation with a scene from German 

musical. The different conditions included unimodal auditory (only sound), unimodal 

visual (only vision) or bimodal visual-auditory (sound and vision as video presentation) 

sequences of the musical. For the analysis each condition was contrasted with a rest 

condition. Nine stroke patients and twenty-one control participants, nine of those were 

age- and gender-matched to the stroke patients, were measured. Comparison of stroke 

patients with healthy control participants showed compensation mechanisms in stroke 

patients recruiting additional brain regions for efficient perception of the stimuli. One 

amusic stroke patient demonstrated a very interesting pattern of BOLD activation for the 
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initial and re-test measurements. After six months the initially increased activation in 

frontal areas went back to normal and amusic symptoms were no longer found. Additional 

areas responsible for rhythm perception compensated for the initial damage of basal 

ganglia and the resulting deficit in rhythm perception. These were the supramarginal 

gyrus and inferior parietal lobule. Furthermore, insula activation was connected to amusia 

in general, possibly due to a strange and unpleasant perception of music.   

Investigation of twenty elderly healthy participants showed an increased lateralization of 

the activation and high engagement of frontal areas in response to musical input. Highest 

contributions came from left lateralized activations in the precentral and inferior frontal 

gyri, postcentral gyrus and inferior parietal lobule, and superior temporal and transverse 

temporal gyri. Pre- and postcentral regions showed robust activation and seem to play a 

major role in processing our musical stimuli.  

In sum, our results obtained from behavioral and functional magnetic resonance imaging 

measurements support the modular view of the music perception network. In this view a 

large array of brain regions in temporal, frontal, and parietal lobe are recruited to 

accomplish a certain sub-function of music. Additionally, damage to one of these modules 

leads to amusia symptoms, but reorganization processes may re-establish the concerned 

sub-function by compensatory mechanisms. 
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German	Abstract/Deutsche	Zusammenfassung	

Eine erworbene Amusie ist eine durch eine Hirnschädigung verursachte Beeinträchtigung, 

Melodien und Rhythmen zu erkennen und der damit verbundene Verlust der Fähigkeit, 

Musik zu genießen. Viele der Patienten zeigen neben der Amusie auch Defizite in der 

visuellen Wahrnehmung, Sprache, Gedächtnis und Aufmerksamkeit. Es stellt sich daher 

die Frage, ob Amusie ein eigenständiges Krankheitsbild darstellt oder eher als eine 

generelle Wahrnehmungsstörung von sowohl auditivem, als auch visuellem und 

sprachlichem Material zu verstehen ist. Zudem ist bisher unklar, ob Defizite von 

Aufmerksamkeit und Gedächtnis die Bewältigung einer Aufgabe zur Musikwahrnehmung 

beeinflussen.  

Im Rahmen dieser Doktorarbeit wurden Schlaganfall-Patienten auf der Schlaganfall-

Station des Klinikums Bremen Mitte mit einer Reihe von Verhaltensuntersuchungen 

getestet. Diese Untersuchungen beinhalteten die Überprüfung von Musikwahrnehmung, 

visueller Gestaltwahrnehmung, Kategorisierung, Gedächtnisfunktionen, 

Aufmerksamkeitsleistung und einigen weiteren basalen visuellen und auditiven 

Funktionen. Von fünfundzwanzig Schlaganfall-Patienten mit kleinen Infarkten im 

Versorgungsgebiet der Arteria cerebri media wurden zwei Patienten als amusisch 

klassifiziert (komplette Daten für zwanzig Patienten vorhanden). Diese beiden Amusie-

Patienten zeigten selektive Einschränkungen der Musikwahrnehmung. Zudem hingen 

Defizite in Arbeitsgedächtnis- und Aufmerksamkeitsleistungen nicht mit eingeschränkter 

Musikwahrnehmung zusammen. Die Läsionsanalyse zeigte, dass kleine 

rechtshemisphärische Areale in den Basalganglien mit der Rhythmuswahrnehmung 

assoziiert sind. Zusammenfassend konnten wir feststellen, dass relativ umschriebene 

Läsionen eine spezielle Hirnregion, die eine bestimmte Unterfunktion der 

Musikwahrnehmung ausführt, schädigen können. Größere Läsionen können eine Vielzahl 

an Defiziten hervorrufen, möglicherweise da größere Läsionen anatomisch benachbarte 

aber funktionell getrennte Areale schädigen. Folglich besteht das Netzwerk für 

Musikwahrnehmung aus kleinen weit verteilten Hirnarealen, die in größeren 

Hirnregionen mit anderen kognitiven Funktionen eingebunden sein können.  

Des Weiteren wurden in dieser Doktorarbeit bildgebende Verfahren angewendet 

(funktionelle Magnetresonanztomographie), um den Einfluss eines Schlaganfalls auf das 

Netzwerk für Musikverarbeitung zu untersuchen. Hierzu wurden geeignete Schlaganfall-

Patienten und gesunde Kontroll-Probanden mit einer passiven Stimulation durch ein 

kurzes Musical Video untersucht. Die Versuchsbedingungen beinhalteten unimodale 

auditive (nur Ton), unimodale visuelle (nur Bild) oder bimodale visuell-auditive (Ton und 
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Bild als Video) Sequenzen. In der Analyse wurden diese Versuchsbedingungen immer 

gegen eine Ruhebedingung kontrastiert. Neun Schlaganfall-Patienten und einundzwanzig 

gesunde Kontroll-Probanden, von denen neun alters- und geschlechts-angepasst waren, 

nahmen an diesen Untersuchungen teil. Der Vergleich der Schlaganfall-Patienten mit 

gesunden Kontroll-Probanden zeigte Kompensationsmechanismen der Schlaganfall-

Patienten, die zusätzliche Gehirnareale für die effiziente Wahrnehmung der Stimuli 

rekrutierten. Ein Amusie-Patient zeigte ein sehr interessantes Aktivierungsmuster bei der 

initialen Messung und in der Nachuntersuchung. Die anfängliche erhöhte Aktivierung 

frontaler Areale sank nach sechs Monaten auf einen normalen Zustand und die Symptome 

der Amusie waren verschwunden. Zusätzliche Areale, die in der Rhythmuswahrnehmung 

involviert sind, kompensierten die initiale Schädigung der Basalganglien und die damit 

verbundene Störung der Rhythmuswahrnehmung. Diese Areale waren der supramarginale 

Gyrus und der inferiore parietale Lobulus. Außerdem war Aktivierung der Insula mit 

Amusie im Allgemeinen assoziiert, möglicherweise aufgrund der seltsamen und 

unangenehmen Wahrnehmung von Musik.  

Die Untersuchung der zwanzig älteren gesunden Probanden zeigte eine erhöhte 

Lateralisierung der Aktivierung in frontalen Arealen in Bezug auf musikalische 

Stimulation. Links lateralisierte Aktivierungen in präzentralen und inferior frontalen Gyri, 

im postzentralen Gyrus und inferior parietalen Lobulus, und in den superior temporalen 

und transversen temporalen Gyri leisteten den größten Beitrag zur neuronalen 

Verarbeitung der Stimuli. Dabei zeigten prä- und postzentrale Gyri stabile Aktivierungen 

in allen Probanden; sie scheinen eine wichtige Rolle bei der musikalischen Verarbeitung 

zu spielen. 

Zusammenfassend unterstützen unsere Ergebnisse aus Verhaltensuntersuchungen und 

funktioneller Magnetresonanztomographie die modulare Sichtweise des Netzwerks für 

Musikwahrnehmung. Laut dieser Sichtweise wird ein großes Netzwerk aus temporalen, 

frontalen und parietalen Arealen für bestimmte Sub-Funktionen in der Verarbeitung von 

Musik rekrutiert. Außerdem führt eine Schädigung eines dieser Module zu Symptomen 

einer Amusie, allerdings können Reorganisierungsprozesse die Ausführung der 

bestimmten Sub-Funktion als kompensatorische Mechanismen wiederherstellen.  
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Abbreviations	

BOLD  Blood oxygenation level dependent 

fMRI  Functional magnetic resonance imaging  

IPL	 	 Inferior parietal lobule	

MBEA  Montreal Battery of Evaluation of amusia  

TPJ  Temporoparietal junction 

WM  Working memory 
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Theoretical	Background	

 

 

 

 

 

 

 

 

 

 

 

“The brain is by far our most fascinating and also 

complicated organ. They often say the brain is 

the most complicated piece of matter in the 

universe.”  

 

„Das Gehirn ist mit Abstand unser spannendstes 

Organ und auch unser kompliziertestes Organ. 

Man sagt ja oft, das Gehirn sei das 

komplizierteste Stück Materie, das es im 

Universum gibt.“ 

 

Manfred Spitzer 
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1. Introduction	

“The whole is entirely different from a mere sum. The nature of the whole determines what 

its parts are, and determines each part’s place, role, and function within that whole.” 

(Wertheimer, 1923; Wertheimer, 2014) 

Wertheimer’s Gestalt theory describes how our sensory systems group together single 

elements of an object to ‘a unified whole’ (the Gestalt) in order to perceive the object 

correctly and efficiently. Important to note is that the whole is not merely more than the 

sum of the parts but that it is totally different from the sum of the parts (Wertheimer, 

1923). Hence, the Gestalt determines what its parts must be and their attributes and 

relationships (Wertheimer, 2014). Imagine there are four equal straight lines and four 

right angles: if you group them together they can either become a square or a diamond, 

depending on how the different parts are arranged (their relationship to each other and to 

the viewer). The grouping occurs according to so-called Gestalt principles like proximity, 

similarity, continuity or common fate (parts that are close to each other, look similar, are 

aligned or move together are grouped together). Wertheimer’s Gestalt theory is primarily 

known for its application in the visual domain, and most of the principles were formulated 

based on studies of visual perception, but they can be applied to any other modality as 

well. Already in 1890 van Ehrenfels described “Gestaltqualitäten” (Gestalt qualities) in 

terms of melody perception and recognition. Similarly, Wertheimer explored a Sri Lankan 

tribe (the Vedda) and used the term “Gestalt” when referring to structural features of their 

melodies (Wertheimer, 1910). Hence, the basis for the Gestalt theory lies in visual 

perception, but the term already originates in musicology (besides others of course). 

When talking about auditory Gestalt perception in the context of this thesis we are 

considering the perception of music:  

“A melody is the sum total of the notes composing it, plus the theme of the melody.”  

(von Ehrenfels, 1890; Wertheimer, 2014) 

2. Auditory	Gestalt	Perception		

2.1 Acquired	Amusia	–	Clinical	Picture	

The ability to perceive, recognize and enjoy music can be affected by a stroke and as a 

result detection and recognition of melodies and rhythms are impaired, although primary 

auditory information processing is still intact (Griffiths, 1997). For the concerned patients 
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music sounds strange or even uncomfortable, they perceive ‘disagreeable noise’ and they 

do not enjoy listening to music anymore (DiPietro, Laganaro, Leemann, & Schnider, 2004; 

Griffiths, 1997; Mendez & Geehan, 1988; Quensel & Pfeifer, 1923). This dysfunction is 

termed acquired amusia (from now on simply amusia) and is widely reported in the 

literature (Ayotte, Peretz, Rousseau, Bard, & Bojanowski, 2000; DiPietro et al., 2004; 

Liegéois-Chauvel, Peretz, Babaï, Laguitton, & Chauvel, 1998; Mendez & Geehan, 1988; 

Quensel & Pfeifer, 1923; Steinke, Cuddy, & Jakobson, 2001; Tramo, Bharucha, & Musiek, 

1990).  

Analogously to visual agnosia (chapter 3.2) there are different types of amusia: 

apperceptive amusia is caused by a perceptual deficit (Stewart, von Kriegstein, Warren, & 

Griffiths, 2006). The long-term representation of music is still intact but patients cannot 

access it as already the analysis of music is impaired. Patients suffering apperceptive 

amusia e.g. cannot perceive a sequence of tones as a melody. A more infrequent type is the 

associative amusia which is characterized by a loss of music memory. Perceptual abilities 

are still preserved in this type of amusia but recognition processes are disturbed. As a 

result patients can perceive melodies as such and even discriminate between them, but 

they cannot identify their favorite music song. One can furthermore divide the 

apperceptive type of amusia into a melodic and a temporal dysfunction. A deficit in 

discriminating melodies can result from an impaired perception of melody (global aspect) 

or an impaired perception of pitch height (local aspect). Temporal dysfunctions are caused 

by deficits in discriminating rhythms. Case studies in the literature describe a double 

dissociation between melody (Griffiths, 1997; Peretz, 1990; Schuppert, Münte, Wieringa, & 

Altenmüler, 2000; Zatorre, 1985) and rhythm perception (DiPietro et al., 2004; Peretz, 

1990; Schuppert et al., 2000; Vignolo, 2003).  

Patients with a deficit in music perception often show deficits in visual-spatial abilities, 

executive functions, memory, learning, and attention as well (DiPietro et al., 2004; 

Griffiths, 1997; Särkämö et al., 2009a; Särkämö et al., 2009b). Language impairments often 

also accompany amusic symptoms (DiPietro et al., 2004; Eustache, Lechevalier, Viader, & 

Lambert, 1990; Patel, Peretz, Tramo, & Labreque, 1998) and one study revealed that all 

stroke patients suffering from visual neglect also showed amusia symptoms (Särkämö et 

al., 2009a). Considering all these findings in context, the question arises whether the visual 

and cognitive deficits represent an epiphenomenon of amusia (or rather vice versa) or 

whether the clinical picture of amusia actually depicts a general deficit in perceiving 

(auditory and visual) ‘Gestalts’.  
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The challenge to compare studies about amusia cases lies in the fact that the studies differ 

in terms of 1) the recruitment of patients (single case versus group studies; symptom-

based versus lesion-based) as well as 2) the localization of the lesions (unilateral versus 

bilateral). Moreover standardized methods to test music perception were missing 

(Zatorre, 1985). Only in 2003 a battery for testing music perception was invented which is 

globally used now (Montreal Battery of Evaluation of Amusia; Peretz, Champod, & Hyde). 

2.2 Neuronal	Correlates	of	Amusia	

The versatile clinical picture of amusia and the accompanied cognitive dysfunctions result 

from the fact that processing music is based on a distributed neuronal network with 

specialized subsystems (Alossa & Castelli, 2009; Peretz & Coltheart, 2003).  Previous 

investigations indicate only few suggestions about the neuroanatomical correlates of 

amusia (detailed review: Stewart et al., 2006). Typical lesion locations which are reported 

to induce amusia symptoms are mainly found in the superior and middle temporal gyrus 

(Ayotte et al., 2000; DiPietro et al., 2004; Eustache et al., 1990; Griffiths, 1997; Liegéois-

Chauvel et al., 1998; Mendez & Geehan, 1988; Patel et al., 1998; Peretz et al., 1994; 

Piccirilli, Sciarma, & Luzzi, 2000; Satoh et al., 2005) but other brain areas like the insula 

(Ayotte et al., 2000; Griffiths, 1997; Hochman & Abrams, 2014; Patel et al., 1998), the 

inferior parietal lobule (DiPietro et al., 2004; Patel et al., 1998), and frontal areas (Botez & 

Wertheim, 1959; Eustache et al., 1990; Johkura, Matsumoto, Hasegawa, & Kuroiwa, 1998; 

Patel et al., 1998; Steinke et al., 2001) are also mentioned. Often, these patients do not 

suffer from pure amusic symptoms but from generalized auditory agnosia characterized 

by deficits in recognizing and differentiating between non-verbal and verbal sounds. 

Therefore no firm conclusions about neuro-anatomical correlates of amusia can be drawn, 

except that music is processed in different modules of the brain and these processes are 

not lateralized (Alossa & Castelli, 2009). 

Further findings of case-studies with acquired amusia patients and neurological patients 

with similar dysfunctions led to the development of a model for music processing (Alossa 

& Castelli, 2009; García-Casares, Berthier Torres, Froudist Walsh, & González-Santos, 

2013; Peretz & Coltheart, 2003; Figure 2.1). It is divided into a temporal and a pitch 

organization module additionally to various other components connected with music 

perception (e.g. emotion, lexicon). These two processing streams work in parallel and 

largely independent. The temporal modules deal with rhythm (temporal grouping) and 

meter (temporal beat) of the stimulus. The pitch modules are concerned with pitch height, 

scale, intervals, and contours of melodies. Both melodic and rhythmic modules project to 

the components for emotion expression and musical lexicon. The emotion expression 
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module enables the listener to recognize and experience the emotion which is expressed 

in the music. On the other hand the musical lexicon contains representations of musical 

phrases collected during lifetime and serves to recognize familiar tunes. In combination 

with associative memories one can retrieve nonmusical information, e.g. the name of the 

tune. Processing components (shown as boxes) or the flow of information between 

different components (arrows between boxes) could be damaged as indicated in patients 

with dissociative deficits. Furthermore, the model can be applied to any acoustic input, not 

only music, and hence it accounts for any auditory ‘Gestalt’. 

 

Figure	2.1: Model of music processing developed by Peretz & Coltheart (2003). 

Hemispheric lateralization has also been addressed in the model: it was suggested that the 

right hemisphere processes melodic information and that rhythm is processed in both 

hemispheres (Alossa & Castelli, 2008; García-Casares et al., 2013; Stewart et al., 2006).  

Johnsrude, Penhune, & Zatorre (2000) found that patients with right (but not left) 

temporal lobe removal overlapping with the Heschl’s gyrus showed significantly higher 

thresholds in judging direction of pitch changes but not in pitch discrimination. These 

patients showed selective deficits in using pitch contour information suggesting that 

subtle functional specializations of specific sub-regions within the music perception 

network exist.  
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Functional correlates of acquired amusia were not investigated so far but there are a lot of 

magnetic resonance imaging (fMRI) studies about music processing in healthy subjects 

(Gaab, Gaser, Zaehle, Jäncke, & Schlaug, 2003; Jerde, Childs, Handy, Nagode & Pardo, 2011; 

Koelsch et al., 2002; Koelsch, Fritz, Schulze, Alsop, & Schlaug, 2005; Lee, Janata, Frost, 

Hanke, & Granger, 2011; Norman-Haignere, Kanwisher, & McDermott, 2013; Patterson, 

Uppenkamp, Johnsrude, & Griffiths, 2002; Platel et al., 1997; Rogalsky, Rong, Saberi, & 

Hickok, 2011; Stewart, Overath, Warren, Foxton, & Griffiths, 2008). 

2.3 Neuronal	Basis	of	Music	Perception	

Based on results from fMRI studies with healthy participants the model of music 

processing has been revised and new findings have been added (Koelsch, 2011; Schuppert 

et al., 2000; Stewart et al., 2006). All modules described here (as in the other model as 

well) can be applied not only to music but also to other acoustic material, e.g. speech, as 

similar features are shared and processed (Figure 2.2). First, acoustic information is 

decoded and transformed in the auditory brainstem, the superior olivary nucleus and the 

inferior colliculus (Feature extraction I). These structures show responses to periodicity of 

sounds, timber, roughness, and sound intensity (Koelsch, 2011). Then features of the tones 

have to be extracted (e.g. pitch height, timbre, intensity) which is accomplished by primary 

and secondary auditory cortices (Feature extraction II). The primary and secondary 

auditory cortices are located in the medial part of the Heschl’s gyrus, which can be found 

in the superior temporal cortex. Pitch is needed to construct melodies, chords, and 

harmonies which are the next steps of analysis. The process of Gestalt creation involves 

melody and rhythm formation as well as timbral and spatial grouping with the help of 

Gestalt principles such as similarity, proximity, and continuity (Gestalt formation; Koelsch, 

2011; Wertheimer, 1923). Gestalt formation is supposed to take place in the planum 

temporale which lies posterior to Heschl’s gyrus. Analysis of chords, contour, and time 

intervals belong to the process of Gestalt formation (Analysis of intervals). Cognitive 

analysis of sequential tones refers to melody and harmony construction and is processed 

by a network situated in the frontal lobe including premotor cortex, dorsolateral 

prefrontal cortex, and the inferior frontal gyrus (Structure building). Temporal processing 

in terms of rhythm or meter activates a network of superior-temporal cortices, the 

cerebellum, and basal ganglia (Structure building). 
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Figure	2.2: Neuro-cognitive model of music processing developed by Koelsch (2011). 

Other studies have found that not only areas in inferior frontal cortices but also temporal 

areas (bilaterally) are involved in musical structure building (Fedorenko, McDermott, 

Norman-Haignere, & Kanwisher, 2012). Furthermore, both premotor and supplementary 

motor areas, as well as basal ganglia, play important roles in beat perception (Fedorenko 

et al., 2012; Grahn & Brett, 2009; Zatorre, Chen, & Penhune, 2007). These findings are 

supported by other patient groups: Parkinson and stroke patients with damage in the 

basal ganglia have difficulty detecting beat or rhythm-based differences in melodies 

(Grahn & Brett, 2009; Merchant, Luciana, Hooper, Majestic, & Tuite, 2008; Schwartze, 

Keller, Patel, & Kotz, 2011). Further studies showed that parietal areas like intraparietal 

sulcus and inferior parietal lobule are activated during pitch and contour processing 

(Foster & Zatorre, 2009; Lee et al., 2011; Schwenzer & Mathiak, 2011). Attentive listening 

to music is achieved by frontal, temporal, and parietal areas, brain regions usually 

involved in domain-general attention and working memory (WM) functions (Janata, 

Tillmann, & Bharucha, 2002). Rhythm perception recruits several brain regions in frontal, 

parietal, and temporal cortices as well (Thaut, Trimarchi, & Parsons, 2014). 

Comparing typical lesions in amusia patients with the model evaluated on the basis of 

healthy music processing one can see that many individual patients do not fit the 

preliminary model. Recently, an updated neuroanatomical framework based on amusia 

patients and fMRI studies in healthy participants has been proposed (Figure 2.3; Clark, 

Golden & Warren, 2015). It shows a network consisting of regions processing relatively 

selective components of music, with extensive overlap with brain areas processing 

language or other complex auditory material. This network is highly complex and widely 

distributed over temporal, frontal, and parietal lobes, additional to subcortical and limbic 
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structures. It mostly overlaps with previous models (Peretz & Coltheart, 2003; Koelsch, 

2011), but enables a further distinction between selective types of amusia (not only 

differentiated between associative and apperceptive).  

 

Figure	2.3: Model of neuroanatomy of music processing developed by Clark, Golden, & Warren (2015).                 

The figure depicts the right hemisphere with partly removed cortical envelope to expose deep brain structures 

(although important structures are equally distributed in both hemispheres). Colours indicate brain damage 

shown to impair the specific process. Abbreviations: aCC, anterior cingulate cortex; Am, amygdala; BG, basal 

ganglia; HG, Heschl’s gyrus; Hip, hippocampus; iFG, inferior frontal gyrus; Ins, insula; mPFC, medial prefrontal 

cortex; OFC, orbitofrontal cortex; PL, parietal lobe; sTG, superior temporal gyrus; sTS, superior temporal 

sulcus; Thal, thalamus; TP, temporal pole; TPJ, temporoparietal junction.  

 

Taken together, the model for music processing in healthy participants shows that the 

right hemisphere seems to process melodic information (mainly superior temporal and 

frontal areas) while both hemispheres are responsible for rhythm perception (mainly 

superior temporal areas, cerebellum, and basal ganglia) (Clark, Golden, & Warren, 2015; 

García-Casares et al., 2013; Stewart et al., 2006). Despite several suggestions for a 

provisional model of music processing, any model can only be preliminary and any new 

patient with specific deficits will add knowledge to it. Hence, work with amusia patients 

seems to be an essential key to find a consensus about the music processing network. 
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3. Visual	Gestalt	Perception	

3.1 Visual	Processing	

In the visual domain we can also perceive ‘Gestalts’ by grouping single elements of an 

object with the help of the so-called Gestalt principles like good continuation or proximity 

(Wertheimer, 1923; Westheimer, 1999).  

Gabor arrays are often used as stimuli for the assessment of visual Gestalt perception 

(Figure 3.1): these are composed of a number of Gabor elements (either random or same 

orientation) and a target Gabor shape to be detected by aligned elements (principle of 

good continuation, Wertheimer, 1923). If the Gabor elements making up the target are not 

aligned, the detection ability is reduced (Field, Hayes, & Hess, 1993). Behavioral studies 

showed that the detection of a target Gabor shape is enhanced when interior elements 

have the same orientation compared to exterior elements (Machilsen & Wagemans, 2011), 

but that there is no effect if all interior and exterior elements are aligned or else random 

(Sassi, Machilsen, & Wagemans, 2012). Furthermore, it was revealed that closure and 

smoothness of the presented targets increases the detectability (Kovács & Julesz, 1993; 

Mathes & Fahle, 2007). 

 

Figure	3.1: An example of a Gabor array used by Machilsen & Wagemans (2011). 

Early studies dealing with visual processing suggested that there is a division of early 

versus late processing which involves different processing steps and corresponding brain 

areas (Felleman & Van Essen, 1991). Local features like orientation, color, contrast and 

shape were supposed to be processed by early visual areas (striate and extrastriate areas) 

while recognition of an object was thought to take place in higher visual areas (inferior 

temporal and posterior parietal cortices). These higher visual areas can be divided into 
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two streams: the dorsal (occipito-parietal) stream for object recognition and the ventral 

(occipito-temporal) stream for motion and spatial information processing (Barton, 2011). 

Later functional magnetic resonance imaging (Altman, Bülthoff, & Kourtzi, 2003; 

Dumoulin & Hess, 2006; Kourtzi & Huberle, 2005; Kourtzi, Tolias, Altmann, Augath, & 

Logothetis, 2003; Malach et al., 1995) and electroencephalographic studies (Herrmann & 

Bosch, 2001; Machilsen, Novitskiy, Vancleef, & Wagemans, 2011; Volberg & Greenlee, 

2014) found that both early and higher visual areas are associated with the process of 

Gestalt perception: it was demonstrated that early visual areas were correlated with 

processing of local information (e.g. orientation and contour of Gabor elements) while 

higher visual areas showed responses to perception of the global information (shape of 

the contour) of the stimuli. Besides parieto-occipital and occipito-temporal areas of the 

brain, the temporoparietal junction (TPJ) is thought to play a major role in global Gestalt 

perception (Huberle & Karnath, 2012). A bilateral representation of Gestalt perception in 

the TPJ has been proposed, but different clusters within the TPJ were found to be involved 

(Renning, Bilalić, Huberle, Karnath, & Himmelbach, 2013; Ritzinger, Huberle, & Karnath, 

2012). In a recent study the role of the right anterior TPJ in processing novel global forms 

has been identified (Renning, Himmelbach, Huberle, & Karnath, 2015). In contrast, 

another study using perceptual alternations between the perception of local dot motion 

and global illusionary square motion found reduced beta-band power in the posterior 

parietal cortex during the perceptual grouping phase (Zaretskaya & Bartels, 2015). Hence, 

an exact localization of where ‘Gestalts’ are formed in the human brain remains 

unresolved. 

Some of the current findings concerning neuronal correlates of visual Gestalt perception 

result from and are supported by cases of patients suffering from visual agnosia.  

3.2 Visual	Agnosia	

The term visual agnosia refers to impairments in visual object perception despite intact 

visual fields and basic visual functions (e.g. orientation, luminance, contrast, color 

perception). These can be present after occipito-temporal brain injury (De Renzi, 2000). 

Similar to amusia one can differentiate between an apperceptive and an associative type of 

agnosia: apperceptive agnosias affect the sensory perception and the associative term is 

used to describe a disorder in the recognition process. In the former case the object cannot 

be reconstructed whereas in the latter case the object can be perceived but the meaning of 

it cannot be accessed. Distinction between both types can be made by the help of a copying 

task: patients suffering the apperceptive agnosia type cannot copy a presented object but 
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associative agnosic patients mostly succeed in the copying task. For both types the 

recognition of the object can be achieved based on haptic or auditory information. 

We can further classify different forms of agnosia: visual form agnosia (de-Wit, Kubilius, 

Op de Beek, & Wagemans, 2013; Grossman, Galetta, & D’Esposito, 1997; Karnath, Rüter, 

Mandler, & Himmelbach, 2009) and integrative visual agnosia (Riddoch & Humphreys, 

1987). As a result patients show deficits in discriminating between shapes as well as to 

recognize objects (form agnosia) or they demonstrate deficits in integrating local aspects 

into global shapes (integrative agnosia). The latter patients may be able to copy simple 

designs but they are not able to perceive the whole object.  

Simultanagnosia is another – differentiated – form of agnosia (Himmelbach, Erb, 

Klockgether, Moskau, & Karnath, 2009; Huberle & Karnath, 2006; Luria, 1959; Wolpert, 

1924). These patients have difficulties in detecting global shapes (several elements at the 

same time) with preserved ability to recognize single elements of the whole shape. The 

deficit of simultanagnosia is associated with lesions in the occipitoparietal cortex – an area 

responsible for integrating multiple elements into a unified perception of the whole object 

(Himmelbach et al., 2009). Perceptual grouping impairments were shown for all of these 

cases. 

Shape perception deficits were also found in the intact hemifield of hemianopic patients 

(Cavézian et al., 2010; Paramei & Sabel, 2008; Schadow, Naue, Herrmann, Sabel, & 

Paramei, 2006; Schadow et al., 2009) assessed by psychophysics and electrophysiological 

measurements. These studies suggest that the stroke damages higher visual areas 

responsible for Gestalt perception and interhemispheric projections leading to perceptual 

deficits in the ipsilesional hemifields. 

Patient DF was intensively studied as she presented a visual form agnosia due to carbon 

monoxide intoxication (Carey, Harvey, & Milner, 1996; de-Wit et al., 2013; Goodale, Milner, 

Jakobson, & Carey, 1991; Goodale et al., 1994; Milner et al., 1991; Whitwell, Milner, Cavina-

Pratesi, Barat, & Goodale, 2014). She was unable to discriminate simple geometric shapes 

and objects but guidance of hand and finger movements in interaction with objects was 

accurate. It was shown that she did not benefit from Gestalt grouping principles like 

similarity or proximity, but recognition of ‘parts’ was preserved. These dysfunctions 

resulted from lesions in the lateral occipital cortex (the ‘ventral stream’ in visual 

processing) (James, Culham, Humphrey, Milner, & Goodale, 2003) and demonstrated that 

the perception of the “Gestalt” is not achieved without higher visual processing (de-Wit et 

al., 2013). 
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There are also specific forms of associative agnosia (where the meaning of an object 

cannot be accessed). The disorder can affect different ‘categories’ like faces or animated 

objects depending on which area of the brain is damaged (see chapter 4.1).  

4. Categorization	

Grouping is also required for higher visual and auditory functions where meaning and 

relevance meet perception. One of such processes is categorization. The process of 

categorization includes the classification of an object to a category containing equivalent 

objects, different from objects of another category. In order to correctly categorize an 

object we have to recognize and compare it with stored representations (Rosch, Mervis, 

Gray, Johnson, & Boyes-Braem, 1976) which is closely related to Gestalt formation and 

object detection (for a review see Mack & Palmeri, 2011; Grill-Spector & Kanwisher, 2005; 

Riesenhuber & Poggio, 1999). 

4.1 Visual	Categorization	

Although the underlying mechanisms of categorization are yet not fully understood, there 

is a consensus about the bidirectional communication of early and higher cortical areas in 

which bottom-up information is exchanged with top-down knowledge (Bar et al., 2006; 

Davenport & Potter, 2004; Evans & Treisman, 2005; Fabre-Thorpe, Delorme, Marlot, & 

Thorpe, 2011; Frith & Dolan, 1997). Categorization can be achieved at very short 

presentation latencies (usually around 50 ms) (Delorme, Richard, & Fabre-Thorpe, 2010; 

Delorme, Rousselet, Macé, & Fabre-Thorpe, 2004; Fabre-Thorpe et al., 2011; Joubert, Fize, 

Rousselet, & Fabre-Thorpe, 2008; Rousselet, Macé, & Fabre-Thorpe, 2003; Serre, Oliva, & 

Poggio, 2007; Thorpe, Fize, & Marlot, 1996; VanRullen & Thorpe, 2001). Response times in 

this paradigm are short (250 ms after stimulus presentation) as well, hence this is called 

ultra-rapid categorization.  It is the result of purely feed-forward information processing, 

but as stimuli get more complex, top-down information is needed to accomplish the task 

(Fenske, Aminoff, Gronau, & Bar, 2006; Serre, Oliva, & Poggio, 2007). 

Object categorization can be achieved according to three levels of abstraction first defined 

by Rosch and colleagues (1976): the intermediate or basic level (dog vs. cat), the 

superordinate level (animal vs. car), and the subordinate level (Saint Bernard vs. German 

shepherd). Thus, one and the same object can be categorized as an animal, a dog or a Saint 

Bernard – depending on the task. The level at which categorization is fastest is called the 

entry-level. At the basic level the categorization process seems to be fastest for most 
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objects possibly because this process occurs prior to super- and subordinate 

categorization and therefore seems to be a prerequisite for further processing (termed 

basic-level-advantage) (Rogers & Patterson, 2007; Rosch et al., 1976). Additionally it 

seems to be the most natural way to categorize objects: objects in the same category share 

many features while objects in different categories share few features. In contrast objects 

of different subordinate categories also share many features (Saint Bernards and German 

shepherds both have fur, four legs, snout, and other features common in dogs). Hence, the 

basic level is the most inclusive level at which objects look similar (Tanaka & Taylor, 

1991).  

But the basic level is not always the entry level: Joliceur and colleagues (1984) found an 

advantage of subordinate levels for atypical members of a category, e.g. one would first 

categorize a penguin as a penguin and not as a bird whereas a robin would be first 

categorized as a bird and then as a robin. Furthermore, experts can also categorize objects 

at the subordinate level as fast and accurate as objects at the basic level – known as the 

entry-level shift (for a review see Mack & Palmeri, 2011; Rosch et al., 1976; Tanaka & 

Taylor, 1991). Still all of these studies support the idea of a two-stage process in 

categorization with first access of the basic level and then the processing of super- and 

subordinate features (Jolicoeur, Gluck, & Kosslyn, 1984; Rosch et al., 1976). Another 

theory emerged as the basic level advantage was further challenged by some recent 

studies (Macé, Joubert, Nespoulous, & Fabre-Thorpe, 2009; Prass, Grimsen, König, & Fahle, 

2013): for ultra-rapid categorization significant faster reaction times and higher 

accuracies for the superordinate level than for the basic level were shown. Thus, the 

second theory proposes a parallel-processing model where first superordinate and then 

basic and subordinate levels are accessed like broad to fine tuning (Macé et al., 2009; 

McClelland & Rogers, 2003; Prass et al., 2013; Rogers & Patterson, 2007). In this model the 

basic level advantage arises because of similarity-based generalizations, e.g. when we 

learn that a robin is a bird, we generalize the name bird to other types of birds.  

Not only different levels of abstraction and expertise have an effect on the speed and 

accuracy of categorization, but also the category itself (e.g. animate versus inanimate 

objects) and the context of the stimuli (different backgrounds) may influence 

categorization performance. The category effect is still a controversial issue. Distinct brain 

areas for the processing of animate versus inanimate stimuli (Chao, Weisberg, & Martin, 

2002; Gerlach, 2007; Mahon, Anzellotti, Schwarzbach, Zampini, & Caramazza, 2009; 

Martin, 2007) and for special stimuli like faces, words, and numbers (Allison, McCarthy, 

Nobre, Puce, & Belger, 1994; Kanwisher, McDermott, & Chun, 1997) have been shown in 

healthy participants. Hence, regions like the fusiform face area (Kanwisher et al., 1997), 
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parahippocampal place area (Epstein & Kanwisher, 1998) and visual word form area 

(Nobre, Allison, & McCarthy, 1994) were identified. Selective impairments for either 

category were reported in patients (associative agnosia) (Capitani, Laiacona, Mahon, & 

Caramazza, 2003; Caramazza & Mahon, 2003; Hillis & Caramazza, 1991; Humphreys & 

Forde, 2001; Warrington & Shallice, 1984). In behavioral studies some do not find 

differences across categories (VanRullen & Thorpe, 2001), others find an advantage for 

animate objects (Crouzet, Joubert, Thorpe, & Fabre-Thorpe, 2012; Hillis & Carmazza, 

1991; McMullen & Purdy, 2006), yet others for inanimate objects (Hillis & Carmazza, 

1991; Warrington & Shallice, 1984). Even within one study with different categorization 

levels advantages for either category were shown (Prass et al., 2013).  

The same holds true for context effects: inversion (Rousselet et al., 2003) and semantic 

inconsistency seem to decrease performance (Davenport & Potter, 2004; Joubert et al., 

2008), presentation of isolated objects on gray background increased performance and 

speeded up response times in some studies (Davenport & Potter, 2004; Prass et al., 2013) 

but was shown to have no effect in another study (Joubert et al., 2008). 

4.2 Auditory	Categorization	

In the auditory domain categorization of sounds is based on certain acoustic features and 

hence enables an efficient and appropriate response of the listener (Tsunada & Cohen, 

2014). These features can belong to different types of input:  sounds, tones, and speech. 

Within these different areas, more ‘abstract’ types of categories can be formed: some 

stimuli are grouped together as a category based on several shared features – equivalent 

to different levels of abstraction in the visual domain (Rosch et al., 1976; Russ, Lee, & 

Cohen, 2007).   

These different semantic representations are processed by distinct cortical networks in 

the human brain: human sounds – including speech – recruit posterior superior temporal 

sulci, fronto-parietal regions, insula, and sub-cortical regions while animal sounds are 

processed in the superior temporal gyrus, and the insula (Belin, Zatorre, Lafaille, Ahad, & 

Pike, 2000; Desai, Liebenthal, Waldron, & Binder, 2008; Engel, Frum, Puce, Walker, & 

Lewis, 2009; Lewis, Brefczynski, Phinney, Janik, & DeYoe, 2005; Lim, Fiez, & Holt, 2014). 

Mechanical and tool sounds show increased blood oxygenation level-dependent (BOLD) 

signals in anterior superior temporal gyri, parahippocampal regions but also in distinct 

parietal and frontal regions while environmental sounds activate dorsal occipital and 

medial parietal cortices  (Engel et al., 2009; Lewis et al., 2005). A further distinction can be 

made for action- versus non-action-related sounds (Pizzamiglio et al., 2005): action-
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related sounds are correlated with activation in temporal and premotor areas while the 

temporal role is involved with processing non-action-related sounds. Another study found 

that within the auditory cortex the anterior superior temporal regions show category-

selective responses (to musical instrument sounds and human speech) whereas activation 

in regions closer to primary auditory cortex correlated with specific acoustic features of 

natural sounds (e.g. temporal modulation), and therefore supports a hierarchical 

organization of the anteroventral auditory processing stream (Leaver & Rauschecker, 

2010). Studies with patients suffering from auditory agnosia (deficits in discriminating or 

recognizing different types of sounds) show that lesions to the TPJ induce deficits in 

parsing (analysis of the sentences) and damage to the more anterior temporal lobe lead to 

deficits in sound recognition (Goll, Crutch, & Warren, 2012).  

The temporal and prefrontal cortices are highly interconnected and important areas for 

auditory category formation and retrieval (Freedman, Riesenhuber, Poggio, & Miller, 

2001; Russ et al., 2007; Tsunada & Cohen, 2014). Moreover, both areas are also involved in 

processing visual category information, hence again reflecting processes of association, 

memorizing and learning rules (Freedman et al., 2001; Freedman, Riesenhuber, Poggio, & 

Miller, 2002; Freedman, Riesenhuber, Poggio, & Miller, 2003; Russ et al., 2007). Temporal 

areas seem to be more associated with physical properties, while the prefrontal areas are 

more involved with processing category memberships, associations, meaning and 

memory. A study exploring both visual and auditory categorization showed that the 

inferior frontal gyrus seems to be an important region related to both auditory and visual 

object semantic material (Adams & Janata, 2002). Additionally the middle temporal gyrus 

seems to integrate information from auditory and visual modalities (Beauchamp, Lee, 

Argall, & Martin, 2004). 

There is evidence that visual and auditory material is similarly perceived across both 

categories. Primary visual and auditory areas are more associated with processing 

physical properties of the stimuli while frontal areas are linked to category formation, 

association and retrieval of information. 
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5. Objective	of	the	Thesis	

5.1 Thematical	Motivation	

Patients with focal brain lesions suffering from specific behavioral deficits tell us a lot 

about the brain. From these patients we are able to draw conclusions about functions of 

specific brain areas. Just to mention a few examples from history, research of brain-

damaged patients enabled to identify regions involved in language processing (Broca’s and 

Wernicke’s area), specialized visual processing (fusiform face area, parahippocampal place 

area) or memory formation (Patient HM and his removal of the hippocampus). In the 

context of music perception investigations of stroke patients showed that music 

processing is not lateralized (like language) and that there is a double dissociation 

between melody and rhythm perception.  

Furthermore, we know that brain damage does not only affect the focal area that is injured 

but has widespread implications for other brain areas as well (Calautti, Leroy, Guincestre, 

Mariè, & Baron, 2001a; Feydy et al., 2002; Gratton, Nomura, Pèrez, & D’Esposito, 2012; 

Grefkes et al., 2007; Karnath et al., 2005; Marshall et al., 2000; Meehan, Randhawa, Wessel, 

& Boyd, 2011; Ward, Brown, Thompson, & Frackowiak, 2003). Often these brain areas are 

connected and belong to a whole network of regions accomplishing a specific function. 

Hence, not only damage to one specific area impairs the correct execution of that function 

(but damage to one of several possible areas could do that) and the damage could lead to 

dysfunctions of other connected areas too.  

Amusia patients often also show other perceptual and cognitive deficits. These can affect 

visual-spatial abilities, executive functions, memory, learning, attention, and language 

skills (DiPietro et al., 2004; Eustache et al., 1990; Griffiths, 1997; Patel et al., 1998; 

Särkämö et al., 2009a; Särkämö et al., 2009b). It was also revealed that stroke patients 

suffering from visual neglect were impaired in music perception (Särkämö et al., 2009a). 

When considering findings from clinical studies and from imaging experiments in healthy 

subjects, one can notice that brain areas supposed to induce amusia symptoms and brain 

areas demonstrated to be involved in healthy music processing do not always match 

(García-Casares et al., 2013; Koelsch, 2011; Stewart et al., 2006). 

Taken together, the following assumptions can be ascertained so far: 1) Music perception 

is accomplished by a widely distributed network; 2) Amusia symptoms can arise if this 

network is damaged by e.g. a stroke; 3) Often amusia symptoms are accompanied by other 

perceptual and cognitive deficits; 4) A stroke can have widespread implications on other 
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brain areas; 5) The models for music processing and lesions resulting in amusia are not 

consistent across the literature. Considering all these findings from past research it seems 

to be convenient to study brain lesions and music perception in combination. The 

objective of this dissertation is to investigate widespread effects of a stroke on other areas 

and functions of the brain. More specifically the aim is twofold: a) on one hand behavioral 

measurements should be conducted in order to address the question whether visual and 

cognitive deficits coming along with amusia represent an epiphenomenon or whether 

amusia actually is better described by a general deficit in perceiving ‘Gestalts’ (Manuscript 

”Musical, visual and cognitive deficits after middle cerebral artery infarction”, chapter 6); 

b) on the other hand imaging tools like fMRI come into play to investigates changes in 

brain activation in brain areas belonging to the music perception network after a stroke 

(Manuscript “Amusia after stroke – an fMRI study”, chapter 7). Additionally, the music 

perception network was explored in twenty healthy elderly people to identify effects of 

aging which may complicate the view about music perception in healthy young individuals 

and usually elderly stroke patients with amusia (Manuscript “Lateralization of music 

perception in healthy elderly people – an fMRI study”, chapter 8). A summary of the 

current findings and the arising questions can be seen in figure 5.1.   

 

 

Figure	5.1: Assumptions and arising questions for the present thesis. 
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5.2 Operationalization	

In order to address the objective of the present thesis, two different methods have been 

applied: a) behavioral measurements and b) functional magnetic resonance imaging. All 

experiments are described in detail in the ‘Manuscripts’-section. However, the scientific 

considerations for the design of both measurements are presented below.  

5.2.1 Behavioral	Measurements	

The key element of the behavioral measurement is the Montreal Battery of Evaluation of 

amusia (MBEA; Peretz, Champod, & Hyde, 2003). The MBEA is a globally used battery and 

consists of six subtests. Särkämö and colleagues (2009) showed that the subtests ‘scale’ 

assessing melody perception and ‘rhythm’ assessing rhythmic perception are sufficient to 

adequately assess music perception skills. Therefore only these two subtests are 

administered in the experiments described in this dissertation. These two different tests 

are needed because of the double dissociation between melody and rhythm perception. In 

both tests the participants hear two melodies and have to decide whether or not they are 

the identical. In fifty percent the melodies are the same, in fifty percent they are not: in the 

scale task, the melody is changed by one tone which is out of scale; in the rhythm task, the 

temporal order of two succeeding tones is altered.  

Having a closer look at the MBEA, there are several possible conclusions one can come to, 

if a patient is scoring bad in the test: a) the patient is suffering amusia; b) the patient has 

general attention deficits; c) the patients has WM impairments; d) the patient has a more 

widespread deficit in the perception of auditory and maybe also visual material. Besides 

these, first of all it is necessary to confirm that this deficit does not result from peripheral 

hearing loss, established via audiometric testing. Additionally, a lot of other tests will be 

conducted in the behavioral measurement to assess visual, language, attention, and WM 

functions of the participants. The core of these tests is formed by a visual Gestalt 

perception test and a categorization task self-designed for four different modalities 

(auditory, visual, nonverbal and verbal). With the help of these the aim was to 

systematically check whether amusic symptoms are music specific, auditory specific (also 

affecting language), specific for nonverbal material (also visually presented) or result from 

a general deficit in the perception of Gestalts. This general deficit would be characterized 

by impaired visual and auditory perception of simple geometric figures and music input, 

as well as categorization deficits. The visual Gestalt perception test is a mixture of already 

established material in state-of-the-art visual Gestalt perception tasks (chapter 3.1) and 

the participants’ task in the MBEA. Two Gabor arrays with a Gestalt formed by aligned 

Gabors are presented and participants have to decide whether or not the seen Gestalts 
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were identical. Hence, both the MBEA and the visual Gestalt task seem to be comparable 

across modalities. In the categorization task, participants have to decide whether the 

presented stimulus is an ‘animal’ or a ‘means of transportation’. Stimuli are presented on 

grey background. This task is widely used in the literature and the grey background is 

supposed to facilitate the categorization process (Prass et al., 2013).   

Besides a better and more detailed understanding of amusia and the connected perceptual 

and cognitive deficits, findings of the connection between the different functions and 

impairments could also be helpful and important for rehabilitation matters. Regeneration 

of a specific ability may improve music perception, or vice versa (Ripollés et al., 2015; 

Särkämö et al., 2008; Särkämö et al., 2009; Särkämö et al., 2010; Särkämö et al., 2014). 

5.2.2 Functional	Magnetic	Resonance	Imaging	

As a second step functional magnetic resonance imaging (fMRI) was applied. With this 

method the (BOLD) signal of different brain regions in response to different stimulations 

can be determined. As no fMRI experiment was done with patients suffering from acquired 

amusia so far, this step was taken within the scope of the present dissertation.  

The stimulation paradigm consisted of four different conditions: unimodal auditory, 

unimodal visual, bimodal (auditory and visual) synchronous and bimodal asynchronous 

stimulation. A block design with rest condition alternating with stimulation sequences 

consisting of a German Musical song was used. The aim was to investigate in which areas 

an abnormal (increased or decreased) BOLD signal can be found in amusia patients 

compared to other stroke patients and healthy controls. Additionally, it should be explored 

whether these areas (with abnormal signal) not only respond to the unimodal but also to 

the bimodal modality. The asynchronous bimodal condition was designed to check 

whether or not amusia patients show a less pronounced BOLD signal to this condition 

compared to the synchronous condition, maybe induced by altered perception of the 

music presented in the stimulation sequence. The idea was that if the perception of music 

was disturbed anyway (sounding strange or uncomfortable), the asynchronous 

presentation should not induce a great difference compared to synchronous presentation 

as we would expect in participants with normal music perception.  

However, the BOLD signal in post-stroke patients must be interpreted with caution. The 

BOLD signal is an indirect measure for brain function and it is highly dependent on the 

relationship between increase of local blood flow in the activated region and decrease of 

desoxygenated haemoglobin in the surrounding microvasculature. This mechanism is 

termed neurovascular coupling – which can vary in normal aging or disease (D’Esposito, 

Deouell, & Gazzaley, 2003; Fabiani et al., 2014). In stroke patients the relationship 
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between blood flow and oxygen concentration may be altered and therefore induces an 

abnormal BOLD signal leading to inaccurate results and conclusions (Carusone, Srinivasan, 

Gitelman, Mesulam, & Parrish, 2002; Hamzei, Knab, Weiller, & Röther, 2003; Handwerker, 

Gonzalez-Castillo, E’Esposito, & Bandettini, 2012; Murata et al., 2006). Other studies 

present evidence that the BOLD signal can be changed by the main risk factors for 

cerebrovascular disease: hypertension, diabetes and hypercholesterolemia (D’Esposito, 

Deouell & Gazzaley, 2003; Sobey, 2001). The best way to deal with an altered BOLD signal 

is to explore the obtained data and to make careful assumptions and conclusions 

(Handwerker, Gonzalez-Castillo, E’Esposito, & Bandettini, 2012). Hence, the BOLD contrast 

is still a useful and effective tool to investigate brain function, but caution is suggested 

when obtaining data from participants with possibly altered neurovascular coupling (He, 

Snyder, Vincent, Epstein, Shulman, & Corbetta, 2007).  

 

 

All experiments conducted in the present dissertation are presented in manuscript style, 

including a short review of relevant literature and a discussion of the results. The last 

chapter ‘Discussion and Conclusion’ presents a general discussion of all results and a final 

conclusion. For reasons of clarity all figures and tables are numbered continuously (with 

chapter numbers) and the entire literature is presented at the end in the section 

‘References’.  

 

 

 

 

 

 

 

 

 



Manuscripts   27 

Manuscripts	

 

 

 

 

 

 

 

 

 

 

 

 

 

“After having described these lesions, and 

researched their nature, seat, and anatomical 

progression, it is important to compare these 

results with those of clinical observation, to 

finally establish, if possible, a connection between 

the symptoms and the material disorders.” 

 

Paul Broca 
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Abstract 

The perception of music can be impaired after a stroke. This dysfunction is called amusia 

and amusia patients often also show deficits in visual abilities, language, memory, 

learning, and attention. The current study investigated whether deficits in music 

perception are selective for musical input or generalize to other perceptual abilities. 

Additionally, we tested the hypothesis that deficits in working memory or attention 

account for impairments in music perception. Twenty stroke patients with small 

infarctions in the supply area of the middle cerebral artery were investigated with tests 

for music and visual perception, categorization, neglect, working memory and attention. 

Two amusia patients with selective deficits in music perception and pronounced lesions 

were identified. Working memory and attention deficits were highly correlated across the 

patient group but no correlation with musical abilities was obtained. Lesion analysis 

revealed that lesions in small areas of the putamen and globus pallidus were connected to 

a rhythm perception deficit. We conclude that neither a general perceptual deficit nor a 

minor domain general deficit can account for impairments in the music perception task. 

But we find support for the modular organization of the music perception network with 

brain areas specialized for musical functions as musical deficits were not correlated to any 

other impairment. 
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6.1 Introduction	

The perception, recognition, and joyful sensation of music can be affected by a stroke – a 

condition called acquired amusia. Impairments of music perception are widely reported in 

the literature (Ayotte, Peretz, Rousseau, Bard, & Bojanowski, 2000; Liegéois-Chauvel, 

Peretz, Babaï, Laguitton, & Chauvel, 1998; Mendez & Geehan, 1988; Quensel & Pfeifer, 

1923; Tramo, Bharucha, & Musiek, 1990) and can occur after lesions to temporal, frontal, 

and parietal areas (Botez & Wertheim, 1959; DiPietro, Laganaro, Leemann, & Schnider, 

2004; Eustache, Lechevalier, Viader, & Lambert, 1990; Griffiths, 1997; Johkura, 

Matsumoto, Hasegawa, & Kuroiwa, 1998; Patel, Peretz, Tramo, & Labreque, 1998; Peretz 

et al., 1994; Piccirilli, Sciarma, & Luzzi, 2000; Satoh et al., 2005; Schuppert, Münte, 

Wieringa, & Altenmüler, 2000; Steinke et al., 2001; Särkärmö, 2009), but also after 

subcortical lesions (Hochman & Abrams, 2014). These patient studies showed a double 

dissociation between melody (Griffiths et al., 1997; Peretz, 1990; Schuppert et al., 2000; 

Zatorre, 1985) and rhythm perception (DiPietro et al., 2004; Peretz, 1990; Schuppert et al., 

2000; Vignolo, 2003).  

This double dissociation was supported by recent models for music perception suggesting 

a highly complex and distributed network of temporal, frontal, and parietal areas, 

additional to subcortical and limbic structures (Clark, Golden & Warren, 2015; García-

Casares, Berthier Torres, Froudist Walsh, & González-Santos, 2013; Koelsch, 2011; Peretz 

& Coltheart, 2003; Stewart, von Kriegstein, Warren, & Griffiths, 2006). Melodic 

information is supposed to be mainly processed in superior temporal and frontal areas; 

the cerebellum and basal ganglia are thought to be involved in processing rhythmic 

material. Other studies strengthen the role of premotor and supplementary motor areas in 

beat perception (Fedorenko, McDermott, Norman-Haignere, & Kanwisher, 2012; Grahn & 

Brett, 2009; Zatorre, Chen & Penhune, 2007). Furthermore functions of pitch and contour 

processing as well as rhythm perception are attributed to the parietal lobe (Foster & 

Zatorre, 2009; Lee, Janata, Frost, Hanke, & Granger, 2011; Schwenzer & Mathiak, 2011; 

Thaut, Trimarchi & Parsons, 2014).  

This network widely overlaps with areas usually responsible for domain-general attention 

and working memory (Janata, Tillmann & Bharucha, 2002). This knowledge is expanded 

by findings that amusia patients often show deficits in visual-spatial abilities, executive 

functions, memory, learning, and attention (DiPietro et al., 2004; Griffiths et al., 1997; 

Särkämö et al., 2009a, Särkämö et al., 2009b). Furthermore music perception problems 

seem to be highly correlated with aphasia (Stewart et al., 2006; Schuppert et al., 2000, 

Särkärmö, 2009) and to visuo-spatial neglect (Särkärmö, 2009). Conclusively, a direct link 
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between music perception and other cognitive functions, as well as even visual abilities, 

has been suggested.  

Särkärmö and colleagues (2009) measured a large group of amusia patients after stroke 

who presented several cognitive deficits, primarily in attention, working memory (WM), 

and executive functions. Their work underlined the close relationship between amusia and 

other cognitive deficits. However, the question whether these connected deficits arise 

because music perception and the other cognitive functions are accomplished by shared 

neural processes or whether they involve functionally different but anatomically close 

areas could not be answered. Lesions in the amusic group were significantly larger than in 

the non-amusic group and therefore might have mediated the results. Additionally, deficits 

in attention and WM may have accounted for the poor performance in the music 

perception task of the amusic patients. The Montreal Battery of Evaluation of Amusia 

(Peretz, Champod & Hyde, 2003) was used in this study and the selected tasks require 

relatively good WM, attention, and executive abilities (Särkärmö et al., 2009).  

In the current study we wanted to investigate whether symptoms of amusia are specific 

for musical material or whether a general perceptual deficit can explain the symptoms. 

Furthermore we were interested in the question whether or not impairments in general 

domain specific functions like WM or attention could account for poor performances in the 

MBEA. For this aim we specifically measured stroke patients with small cerebral artery 

infarctions in order to control for lesions possibly damaging a large array of areas and 

functions. We applied a large battery of neuropsychological and psychophysical tests 

including the Montreal Battery of Evaluation of Amusia and tests for visual perception, 

categorization, neglect, and cognitive functions of attention and WM. Our sample of 

patients suffering subacute stroke in supply areas of the middle cerebral artery showed a 

variety of initial symptoms including aphasia, paresis, sensory deficits, and also visual 

symptoms. Performances in different tests were compared via correlation analysis and 

Chi² statistics were applied to compare subgroups of patients. 

6.2 Material	and	Methods	

6.2.1 Ethical	Approval	

This study was approved by the local ethics committee of the University of Bremen. 

Subjects were informed about the aim and procedure of the experiment and had to sign a 

written consent form according to the Declaration of Helsinki. They were free to withdraw 

from the study at any time. 
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6.2.2 Subjects	

Patients (n= 20) were ten female and ten male volunteers suffering a subacute stroke in 

supply areas of the medial cerebral artery. Patients were tested one to six days after the 

stroke onset in the stroke-unit of the central hospital in Bremen. The mean age was 52 

years (±9.8) and all of them were right-handed. Exclusion criteria were previous 

neurological, psychiatric or ophthalmological disorders and auditory defects. Further 

exclusion criteria for the stroke patients were bleedings, bilateral and previous lesions. 

6.2.3 Clinical	Investigations	

All patients underwent a series of neuropsychological tests, including assessment of visual 

neglect and extinction, visual fields, stereoscopic vision, color vision, and hearing.  

The visual neglect tests included: a line bisection test (Wilson, Cockburn & Halligan, 1987), 

the apple test (Bickerton, Samson, Williamson, & Humphreys, 2011), the clock task (Ishiai, 

Sugishita, Ichikawa, Gono, & Watabiki, 1993), and a copying task (target: flower). For 

assessment of visual field defects static perimetry of 30° of the visual field was conducted 

with the contralesional eye. The Lang Test (Lang, 1983) and the Ishihara Colour Vision test 

(Ishihara, 1986) served as measures for stereoscopic and color vision. An audiometry with 

8 frequencies for each ear was applied for assessment of hearing. 

Furthermore, patients were asked for impairments in the following domains: memory 

deficits, anomia, reading deficits, visual field defects, spatial orienting disorder and 

auditory impairments in relation to loudness, sound, voice, and music perception. 

All following computer-based tests were performed at 60cm distance from the screen and 

subjects wore headphones when required (Sennheiser HD 201). Spatial resolution of the 

monitor (Samsung Sync Master 1100 MB) was 1600x1200 pixels (2041x1617 arcmin) and 

the temporal resolution was 75 Hz. The fixation dot in each test had a size of 5 arcmin. 

Response time was ‘infinite’, i.e. the next trial started only after a response was given 

(enforced response). 

6.2.4 Attention	Test	

The D2 Concentration Endurance Test (Brickenkamp, 1994) is a test for assessing 

sustained attention and visual scanning ability. It is a paper and pencil task, where 

subjects are required to cross out targets and leave non-targets untagged with a time 

constraint of 20 sec for each row (14 rows and 47 characters per row). To measure the 

quality of performance (correctly processed characters) for each subject the overall 

number of processed characters, omissions, and errors were evaluated. 
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6.2.5 Montreal	Battery	of	Evaluation	of	Amusia	

Stimuli 

In order to compute a computer-based version of the Montreal Battery of Evaluation of 

Amusia (Peretz, Champod & Hyde, 2003; MBEA) stimuli were taken from the original 

version. The subtests ‘scale’ and ‘rhythm’ with thirty trials each were used for this 

experiment. Each trial consisted of a target melody and a comparison melody and both 

subtests included 15 same and 15 different trials. In ‘different’ trials, one tone was in a 

different scale or the rhythm of two subsequent tones was changed (for further 

information see Peretz, Champod & Hyde, 2003). 

Experimental Procedure 

Two practice trials were completed in advance, in case of difficulties the examples were 

played for several times until the subjects understood the procedure of the test. Subjects 

were told to listen to the melody pairs and to decide whether the melody pair was 

identical or different (two-alternative-forced choice). Each trial began with a 3-second 

inter-trial interval while the word ‘break’ was displayed on the computer screen. Then a 

melody pair with a 2-second silent interval was played to the subjects while a note was 

shown on the screen. Answers were given via button press; buttons were held in both 

hands (one for same, one for different; button position permuted across subjects). Subjects 

were allowed to press the button while the music was still playing (e.g. as soon as they 

heard the different tone they were allowed to press the button for ‘different’) or after the 

trial. 

6.2.6 Visual	Gestalt	Perception	Test	

Some of the reported cases of amusic patients showed visual deficits as well. To test 

similar visual abilities comparable to the MBEA a visual Gestalt perception task was 

developed in-house. 

Stimuli 

The Gestalt images consisted of (68x43) Gabor elements distributed over the entire screen 

while 31-33 of them yield a Gestalt shape by aligned elements. Five Gestalts have been 

produced by patterns used in the L-POST test (Torfs, Vancleef, Lafosse, Wagemans & de-

Wit, 2014). Picture size was 1600x1200px and the Gestalt shapes extended over 6.5x6.5° 

of visual angle, placed centrally in an area of 10.5x10.5° of visual angle (Figure 6.1). There 

were two levels of difficulty: easy (perfectly aligned) and difficult (Gabor elements rotated 

by up to 15 degrees). The whole task consisted of 40 trials: 20 same and 20 different trials, 
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each containing ten difficult and ten easy comparisons. For each comparison it was 

ensured that the Gestalt was not placed at the exact same position on both pictures. 

 

Figure	6.1: Example image for Gestalt perception task (Gabor shape cropped out for visualization). 

Experimental Procedure 

Before the test, five practice trials were completed to familiarize the subjects with the task. 

Each trial started with 1000ms fixation (red dot on grey background). Then target and 

comparison pictures were shown for 100ms with a 1000ms inter-stimulus interval. After 

that a green fixation point was shown to indicate that the answer was expected. Subjects 

were instructed to carefully watch the presented pairs of shapes and to decide whether or 

not the shapes were identical (two-alternative-forced choice). Answers were given via 

button press (as for the MBEA task). 

6.2.7 Categorization	

Because of the reported deficits in visual abilities and language (DiPietro et al., 2004; 

Griffiths et al., 1997; Stewart et al., 2006; Schuppert et al., 2000; Särkämö et al., 2009a; 

Särkärmö et al., 2009b), a categorization task consisting of visual and language-related 

material was invented. In order to investigate whether deficits were present in only one 

modality or in several, the test consisted of four different elements: visual and auditory 

material as well as verbal and nonverbal stimuli. 

Stimuli 

The categorization task consisted of 56 stimuli (28 animals and means of transportation 

each). The task was repeated four times in both visual and auditory modalities (written 

words, spoken words, images, sounds). Chosen stimuli were controlled for word length, 

number of syllables and frequency in German language. 

Sounds were animals and means of transportation sounds cut to the duration of 700ms. 

Only the sound of the corresponding animal/means of transportation was presented to the 
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subjects and loudness was corrected for all trials. Spoken words had the duration of 295 – 

912ms (mean: 528ms). 

Images were extracted pictures of animals or means of transportation on a square grey 

background (11.4x11.4°). The extracted pictures were placed centrally in an area of 

5.7x5.7° of visual angle (Figure 6.2). Written words where presented in black on a white 

background (11.4x11.4°) and the words were placed centrally in an area of 8.5x0.95° of 

visual angle which corresponds to a font size of 48pt (Figure 6.3). 

 

Figure	6.2: Example image for categorization and two-back task. 

 

Figure	6.3: Example image for a word in the categorization task, with black border for visualization. 

Experimental Procedure 

Each trial started with a 1000ms fixation where a red fixation dot on a grey background 

had appeared. Stimulus presentation was different for each modality (images: 50ms; 

written words: 60ms; sounds: 700ms; spoken words: 295 – 912ms depending on the word 

length). A visual mask was applied for 300ms after stimulus presentation for the visual 

trials. During auditory stimulation a grey screen was displayed to the subject. Subjects 

were instructed to decide whether the seen or heard stimulus belongs to the category 

‘animal’ or ‘means of transportation’ and to indicate the answer via button press (green: 

animal, red: means of transportation; button position permuted across subjects). The 

inter-trial-interval was 500ms. 
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6.2.8 Two-Back	Task	(WM)	

Stimuli 

The two-back task consisted of a visual subtest (pictures, Figure 6.2) and an auditory 

subtest (sounds). Stimuli were chosen from the categorization stimuli, but only five 

animals and five means of transportation were included in the task (different ones for 

each modality). 

Experimental Procedure 

Each trial started with 500ms fixation where a red fixation dot on a grey background was 

shown. Stimulus presentation of 500ms and response time of 1000ms followed. During 

response time a grey screen was shown. The inter-trial-interval was 500ms. Subjects were 

instructed to carefully listen to/look at the presented stimuli and to press a button 

whenever the presented one was the same as the second last (two-back) one (Go-No Go 

task). They were allowed to press the button during stimulus presentation or during the 

response time. The whole experiment consisted of 64 trials with 20 target trials. 

6.2.9 Data	Analysis	

Performance (number correct of answers) of all computer-based tasks and the attention 

test were analyzed using IBM SPSS Statistics 23. The analysis of the relationships between 

music and Gestalt perception, attention, categorization, and WM was based on a 

correlation analysis (Pearson, two-tailed, Bonferroni-corrected). A Chi² statistics was 

applied on the distribution of impairments across subgroups of patients. For this aim 

groups were assigned according to ‘deficit’ versus ‘no deficit’. After group assignment, the 

Chi² test compared deficits across all other tasks to detect similarities across different 

tasks. This was done for five groups: for 1) music perception, 2) visual Gestalt perception, 

3) categorization, 4) attention, and 5) WM. 

Lesion Analysis 

Lesion analysis was performed with MRI images obtained when patients were admitted to 

the stroke unit. MRIcron (Rorden, Karnath, & Bonilha, 2007) and the clinical toolbox of 

SPM (Rorden, Bonilha, Fridriksson, Bender, & Karnath, 2012) served to delineate and 

normalize lesions of nineteen patients (Patient P12 only had a cCT measurement). The 

MNI Flair template brain was used for normalization. 
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6.3 Results	

6.3.1 Basic	Investigations	

Initial symptoms reported by the patients are displayed in Table 6.1. Aphasia and Paresis 

were the most common symptoms in this patient population. In the measurement session 

a few patients reported still existing anomia (8), memory deficits (5), reading disorders 

(4) and auditory deficits concerning loudness (2). No visual or spatial orienting disorders 

were reported. 

Table	6.1: Initial symptoms of patients in decreasing order of frequency 

 All Patients Left-hemispheric Right-hemispheric 

N 20 13 7 

Aphasia 10 9 1 

Paresis 9 6 3 

Nausea 7 5 2 

Headache 6 5 1 

Sensory impairments 6 3 3 

Confusion 3 3 0 

Amnesia 3 2 1 

Visual symptoms 2 2 0 

 

Extinction was not present in the group of patients, but one neglect patient (P13) was 

identified showing abnormal neglect-typical responses in three of four neglect tests (clock 

task was normal). Color vision was normal in the patient sample, but six patients showed 

problems in stereoscopic vision (three minor and three major). 

6.3.2 Clinical	Investigations	

Results for the attention test (D2), MBEA and visual Gestalt tasks, categorization, and WM 

tests can be seen in table 6.2. The correct numbers of answers are displayed and a cut-off 

value of 75% was applied in order to detect abnormalities (except for the D2 test where 

age-corrected norm values are available). For cut-off values for the different tests were 23 

for the MBEA (this cut-off value was used in other studies as well), 30 for the visual Gestalt 

test, 42 for the categorization task, and 15 for the WM test.  

Five patients showed deficits in attention, two in musical perception, five in visual Gestalt 

perception, two in categorization and eleven in the two-back task. The two patients with 

amusic symptoms (P5 and P6) did not show any other impairment in the applied tests. 

Both of them reported aphasia as initial symptoms, one (P5) still displayed anomia, 

reading disorder and reported auditory deficits. The neglect patient (P13) did not show 

amusic symptoms but deficits in the visual Gestalt task.



 

Table	6.2: Number of correct answers for the attention test (D2), MBEA and visual Gestalt tasks, categorization (cat) and WM tests for all patients. Impaired performances are highlighted 

in red (below 75% correct). MBEA 1: scale task; MBEA 2: rhythm task 

Patient Attention D2 MBEA 1 MBEA 2 Gestalt Cat sounds Cat pictures Cat auditory words Cat visual words WM visual WM auditory 

1 315 24 26 37 51 47 54 54 7 7 

2 310 27 24 29 52 44 55 32 19 15 

3 333 28 30 35 48 52 54 53 15 9 

4 327 29 28 33 48 54 56 55 20 13 

5 316 13 21 36 50 51 56 55 16 15 

6 379 26 20 32 45 46 54 49 20 17 

7 207 23 24 33 54 49 56 55 12 8 

8 287 28 25 18 48 55 55 52 12 13 

9 451 26 26 35 49 49 56 52 16 15 

10 262 24 30 22 50 49 56 55 17 10 

11 390 26 29 29 52 55 56 56 18 16 

12 108 23 28 39 50 41 55 49 8 5 

13 331 27 28 20 48 47 55 48 16 14 

14 367 29 25 34 47 53 56 54 14 14 

15 99 25 26 30 51 51 55 44 15 13 

16 453 26 24 32 51 52 55 55 19 18 

17 477 27 30 37 53 54 56 55 15 17 

18 372 27 27 33 47 42 54 55 13 16 

19 406 25 27 35 49 52 56 52 18 16 

20 408 25 25 34 51 54 55 54 18 16 
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A correlation analysis (Pearson correlation coefficient, two-tailed, Bonferroni-corrected) 

for the patient group (of data in Table 6.2) revealed two significant correlations: auditory 

WM correlated with visual memory (r=0.728, p<0.001), and with the attention test 

(r=0.713, p<0.001).  

A group comparison of the impairment distribution between subgroups of patients was 

performed with a Chi² statistics. The group of patients with attention deficits showed a 

significantly higher incidence of auditory WM deficits (Chi²=6.667, p=0.01). A trend was 

observed for the group with attention deficits and their incidence in visual WM deficits 

(Chi²=2.857, p=0.09). A look at the data showed that all patients with attention deficit had 

impairments in the auditory two-back task and that three of five also showed visual WM 

deficits. No other significant Chi² results were obtained. 

6.3.3 Lesion	Data	

Lesion overlap in the patient sample was relatively small, except for lesions in the basal 

ganglia (Figure 6.4). Amusia patients presented a left frontal lesion (P5) and a right basal 

ganglia lesion (P6).  

 

Figure	6.4: Lesion overview: Normalized lesions of nineteen patients (left on left and right on right side). 

Bright red areas are associated with maximum lesion overlap. 

Patient P6 showed amusia symptoms and a lesion in the right basal ganglia. Two other 

patients with right basal ganglia infarction but without amusia symptoms were identified: 

patients P11 and P19. A subtraction plot revealed relatively small and circumscribed areas 

of the putamen and the globus pallidus of the basal ganglia associated with rhythm deficit 

amusia (Figure 6.5). The caudate nucleus seems not to be connected to the music 

perception deficit.  

 

Figure	6.5: Basal ganglia lesion subtraction plot: Amusia patient P6 minus two non-amusic patients with basal 

ganglia infarction. 
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6.4 Discussion	

This study was carried out in order to investigate whether symptoms of amusia are music 

selective or whether they can be explained by (1) general perceptual deficits or (2) 

impairments in attention or WM. 

6.4.1 Music	perception	deficits	

We present data from twenty patients suffering middle cerebral artery infarction with 

typical initial symptoms and subjective impairments. In this sample, only two amusia 

patients were identified and they did not show any other deficits in the applied 

assessment. We infer that amusia is not necessarily connected to impairments in domain 

general cognitive functions or to other perceptual deficits per se, as we present two cases 

with selective deficits in the MBEA and relatively pronounced cortical lesions (frontal lobe 

and basal ganglia).  

Both amusia patients presented initial aphasic symptoms, the more severe amusia patient 

showed still existing reading disorder and anomia as subjective impairments during 

testing. Aphasia and music perception deficits seem to be connected in our study as well, 

in line with previous literature (Stewart et al., 2006; Schuppert et al., 2000, Särkärmö, 

2009). Furthermore, the double dissociation was also visible in our sample, which shows 

that it is very important to test both rhythmic and melodic abilities (DiPietro et al., 2004; 

Griffiths et al., 1997; Peretz, 1990; Schuppert et al., 2000; Vignolo, 2003; Zatorre, 1985). 

Our patient group did comprise one patient suffering hemi-spatial neglect and he did not 

show any impairment in music perception. Thus, neglect is not always associated with 

amusia which is in contrast to Särkärmö (2009). 

6.4.2 Anatomical	correlates	of	amusia	

Patient P6 presented right basal ganglia lesion and rhythm perception deficits. This is in 

line with a study investigating stroke patients with damage in the basal ganglia who 

showed difficulties detecting beat or rhythm-based differences in melodies (Schwartze, 

Keller, Patel & Kotz, 2011). The lesion analysis of patient P6 and other stroke patients with 

lesions in the right basal ganglia revealed that the putamen and globus pallidus were 

associated with a deficit in rhythm perception, while the caudate nucleus was not. Lesions 

in the left basal ganglia did not lead to amusic symptoms although the lesions were 

distributed relatively similar on both hemispheres. Two possible conclusions come to 

mind: 1) Either only right hemispheric basal ganglia lesions of the specific regions lead to 

amusic symptoms or 2) individual differences in the representation of music perception 

complicate this view about the music perception network and its dysfunctions. Other 

studies indeed showed results supporting highly individual representations of the music 
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perception network (Schuppert et al., 2000; Toiviainen, Alluri, Brattico, Wallentin & Vuust, 

2014). In contrast, Schwartze and colleagues (2011) presented a group of patients with 

basal ganglia lesions in both hemispheres. Group results showed a significant impairment 

compared to healthy controls. Unfortunately, this study only presented results on the 

group level and no further distinction between lesion sites of their patients was made. 

Therefore, one cannot exclude that only a few patients in the patient group presented 

deficits, severe enough to induce significant differences compared to the control sample. A 

lesion analysis of this patient group and their behavioral results may further contribute to 

this issue. Other studies also present a clear relationship between basal ganglia damage 

and rhythm perception deficits, e.g. in Parkinson’s patients (Grahn & Brett, 2009; 

Merchant, Luciana, Hooper, Majestic, & Tuite, 2008). Thus, there is clear evidence that the 

basal ganglia engage in rhythm perception. But at present, no final differentiation between 

both possible explanations (lateralization vs. individualization) can be made. Additional 

work about basal ganglia infarctions and music perception deficits are needed to further 

investigate this issue. 

6.4.3 Other	deficits	

Generally, we found only few deficits in categorization abilities, and a few more patients 

suffering visual Gestalt perception deficits. Attention and WM were impaired in five and 

eleven patients respectively and a strong correlation between both abilities was shown by 

correlation and Chi² statistics. On the other hand, no correlations between performances 

of other tasks were found.  

This shows that deficits in attention and WM, which occurred relatively often, were 

connected to each other but cannot account for low performances in the MBEA. Our 

patients with low performance in attention and WM tests were still able to solve the 

MBEA. Additionally, visual perception deficits were not associated with musical deficits or 

vice versa. Therefore, the hypothesis that deficits in the MBEA may be explained by a 

general perceptual dysfunction or domain general deficits have to be rejected. Although 

cognitive load of the MBEA is relatively high (Särkärmö et al., 2009), it is not sensitive to 

minor impairments in domain general cognitive functions (like those in our patients). 

Whether or not major impairments influence performance in the MBEA remains to be 

investigated. 

6.4.4 Conclusion	

Our study shows that amusia is not necessarily connected to other deficits in perceptual or 

cognitive functions or to neglect. Previous results may have been mediated by increased 

lesion size of amusic patients (Särkämö, 2009a). In contrast the lesions of our patient 



Manuscripts   41 

sample were relatively pronounced. One may infer that the increased lesions damaged 

several areas responsible for different functions and that in our study the small lesions 

damaged exactly the specific area important for music perception (functionally distinct 

but anatomical close).  

Important regions seem to be the putamen and the globus pallidus as lesion in these areas 

induced rhythm perception deficits. The question whether this deficit is associated with 

lesions only in right hemispheric infarctions or whether individual differences account for 

the results cannot finally be answered.  

Our findings of patients with selective deficits and pronounced lesions support the view of 

a modular organization of the music perception network (Peretz & Coltheart, 2003; 

Piccirilli, Sciarma, & Luzzi, 2000). We found patients with selective deficits not connected 

to other deficits supporting the theory of specific sub-modules in distinct brain areas that 

are specialized for musical functions.   

6.4.5 Limitations	

For this study twenty-five stroke patients were screened with the MBEA to look for music 

perception deficits. Only two amusic stroke patients were identified. Full data were only 

available for the twenty subjects presented here. The lesion overlap in this study was 

small. However, it was intended to specifically test patients with small lesions to avoid the 

danger of large lesions that have an increased risk to damage a large array of functions. 

The mean age of stroke patients in the study by Särkämö et al (2009) was 56 and 60 years 

for both groups. Our patient group had a mean age of 52 years. The younger age may have 

induced less severe deficits or faster recovery, which we could not control for. 

Additionally, differences between patients may be due to demographic or clinical values 

we did not access.  

Nevertheless, the results can make a significant contribution to what is already known 

about the music perception network and acquired amusia. 
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Abstract	

The network which is responsible for processing music is widely distributed in the brain. 

Different brain regions are engaged in different sub-functions, e.g. melody or rhythm 

perception. This network can be damaged by a stroke leading to a disorder pattern 

referred to as acquired amusia. A local brain injury may cause abnormal brain function 

even in intact brain regions which are connected to the lesion. The aim of this study was to 

investigate the BOLD signal in damaged and intact music processing brain regions of 

amusia patients. Stroke patients with middle cerebral artery infarctions were tested for 

music perception deficits. An fMRI experiment consisting of musical stimulation 

(unimodal and bimodal in combination with visual stimulation) was conducted with 

healthy participants, stroke patients with amusia, and stroke patients without musical 

deficits. We found increased activation in occipital, temporal, and postcentral regions in 

stroke patients compared to healthy participants. Amusia was connected to increased 

activation in frontal and parietal lobe areas, insula and specifically inferior parietal lobule, 

and supramarginal gyrus. We argue for compensatory mechanisms in stroke patients 

recruiting additional brain regions in the unimodal stimulation which was not present for 

the bimodal condition.   
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7.1 Introduction	

The perception of music is accomplished by a widely distributed non-lateralized network 

in the brain (Alossa & Castelli, 2009; Peretz & Coltheart, 2003; Schuppert, Münte, Wieringa 

& Altenmüller, 2000). If one of the cortical areas belonging to the network is damaged, e.g. 

by a stroke, the perception of music may be impaired and the joyful sensation elicited by 

music can turn into strange and even uncomfortable sound perception (DiPietro, 

Laganaro, Leemann & Schnider, 2004; Griffiths, 1997; Mendez & Geehan, 1988; Piccirilli, 

Sciarma & Luzzi, 2000; Quensel & Pfeifer, 1923). This dysfunction is termed amusia and 

can be caused by lesions in superior and middle temporal gyri, the insula, inferior parietal 

lobule or frontal areas (Ayotte, Peretz, Rousseau, Bard, & Bojanowski, 2000; Botez & 

Wertheim, 1959; DiPietro et al., 2004; Eustache, Lechevalier, Viader & Lambert, 1990; 

Griffiths, 1997; Hochman & Abrams, 2014; Johkura, Matsumoto, Hasegawa & Kuroiwa, 

1998; Liegéois-Chauvel, Peretz, Babaï, Laguitton & Chauvel, 1998; Mendez & Geehan, 

1988; Patel, Peretz, Tramo & Labreque, 1998; Peretz et al., 1994; Piccirilli et al., 2000; 

Satoh et al., 2005; Steinke, Cuddy & Jakobson, 2001). Additionally, Parkinson and stroke 

patients with damage in the basal ganglia have difficulty detecting beat or rhythm-based 

differences in melodies (Grahn & Brett, 2009; Merchant, Luciana, Hooper, Majestic, & 

Tuite, 2008; Schwartze, Keller, Patel & Kotz, 2011). Case studies showed a double 

dissociation between melody and rhythm perception (DiPietro et al., 2004; Griffiths, 1997; 

Peretz, 1990; Schuppert et al., 2000; Vignolo, 2003).  

Functional magnetic resonance imaging (fMRI) studies with healthy participants showed 

that mainly frontal cortical areas are responsible for melody processing while the 

cerebellum and basal ganglia are involved in rhythm perception. The superior temporal 

cortex plays a role in both melody and rhythm processing (García-Casares, Berthier 

Torres, Froudist Walsh, & González-Santos, 2013; Koelsch, 2011; Stewart, von Kriegstein, 

Warren & Griffiths, 2006). Premotor and supplementary motor areas, as well as basal 

ganglia, engage in beat perception (Fedorenko, McDermott, Norman-Haignere & 

Kanwisher, 2012; Grahn & Brett, 2009; Zatorre, Chen & Penhune, 2007). The perception of 

different rhythmic structures is achieved by several brain regions in frontal, parietal, and 

temporal cortices (Thaut, Trimarchi & Parsons, 2014). Additionally, parietal areas are 

involved in pitch and contour processing and discrimination (Foster & Zatorre, 2009; Lee, 

Janata, Frost, Hanke & Granger, 2011; Schwenzer & Mathiak, 2011). Attentive listening to 

music recruits a network of frontal, temporal, and parietal areas, brain regions usually 

involved in domain-general attention and working memory (Janata, Tillmann & Bharucha, 

2002).  
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Recently, music perception deficits after stroke in the supply area of the middle cerebral 

artery have been described repeatedly in the literature (Hochman & Abrams, 2014; 

Kohlmetz, Altenmüller, Schuppert, Wieringa, & Münte, 2001; Münte et al., 1998; Särkämö 

et al., 2009; Särkämö et al., 2010) and therefore receive growing attention. However, with 

the current knowledge an allocation of the deficit to a circumscribed area of the brain 

seems to be demanding because the network of music processing is widely distributed and 

different brain regions engage in specific sub-functions. Furthermore, the effects of a focal 

brain lesion in the music processing network on other areas in the network are not known 

yet. From the literature it becomes obvious that brain areas that are supposed to be 

involved in healthy music processing and brain lesions leading to amusia symptoms do not 

always match. A first step to explore the influence of a focal brain lesion on other music 

processing regions seems to be an fMRI study with amusia patients – which to our 

knowledge has not been performed so far. By this method a comparison to the music 

processing network of healthy participants (identified by previous fMRI studies) can be 

achieved as well.  

Other neuronal networks of the brain have already been shown to change not only in the 

area of the brain damage itself but also in connected but structurally intact regions 

(Karnath et al., 2005). Focal brain injury can lead to global functional changes if the 

damaged brain areas are connected and communicating with other brain areas in that 

network (Gratton, Nomura, Pèrez & D’Esposito, 2012). In hemiparetic stroke patients 

greater and more widespread activation was found in early compared to late stages after 

stroke (Calautti, Leroy, Guincestre, Mariè & Baron, 2001a; Feydy et al., 2002; Grefkes et al., 

2007; Marshall et al., 2000; Meehan, Randhawa, Wessel & Boyd, 2011; Ward, Brown, 

Thompson & Frackowiak, 2003). This additional recruitment is thought to be 

compensatory and it decreases as motor function recovers.   

Based on the findings that a) a local brain injury could cause widespread disturbances in 

brain function and activation in connected but intact brain areas and b) music processing 

is achieved by a distributed network in the brain, our objective was to investigate the 

effects of a lesion leading to amusic symptoms on other brain regions belonging to the 

music perception network. More specifically, we were interested in whether or not amusia 

patients show an abnormal BOLD signal in intact brain regions associated with music 

processing (temporal and frontal lobes, cerebellum, and basal ganglia). Therefore stroke 

patients with middle cerebral artery infarctions were screened for music perception 

deficits. An fMRI experiment was conducted in healthy participants, stroke patients with 

musical deficits, and stroke patients without musical impairments to assess the BOLD 
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signal changes with respect to passive music listening (unimodal and also in combination 

with visual input). 

7.2 Material	and	Methods	

7.2.1 Ethical	Approval	

This study was approved by the local ethics committee of the University of Bremen. 

Participants were informed about the aim and procedure of the experiment and had to 

sign a written consent form according to the Declaration of Helsinki. They were free to 

withdraw from the study at any time and they were paid for participation. 

7.2.2 Stroke	Patients	

Stroke patients suffering a stroke in supply areas of the medial cerebral artery 

participated in this study. The group consisted of nine participants, three female and six 

male participants within the age range of 32 to 65 years, with a mean age of 52.6 (±9.3) 

years. Patients with bleedings, bilateral and previous lesions were excluded from the 

study. 

All patients participated in a behavioral study one to four days after their stroke. In this 

study they conducted the Montreal Battery of Evaluation of Amusia (MBEA; Peretz, 

Champod & Hyde, 2003) – melody and rhythm perception were included – and a test for 

visual Gestalt perception (developed in-house). Two amusia patients were identified (P2 

and P3). Patient P2 was particularly interesting because he showed amusia symptoms and 

participated in the fMRI experiment only ten days after the stroke. Moreover, he 

participated in a re-test of imaging and behavior six months after the stroke as well. 

7.2.3 Participants	

Age-matched healthy control participants with a mean age of 53.7 (±10.1) years 

participated in this study as well.  

All participants and patients were native German speakers and right-handed. Exclusion 

criteria for patients and participants were previous neurological, psychiatric or 

ophthalmological disorders, and auditory defects. 

7.2.4 Stimuli	

Stimuli consisted of video sequences of a German Musical song (Musical Elisabeth, Song: 

‘So wie du’; DVD Live aus dem Theater an der Wien, 2005). Each of the six video sequences 

was presented four times (twenty-four stimulation sequences in total): unimodal visual 

presentation, unimodal auditory presentation, bimodal synchronous visual and auditory 

presentation, and bimodal asynchronous visual and auditory presentation with the visual 
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being 560ms ahead of the auditory presentation (the latter not evaluated here). During 

auditory only presentation a green fixation point on a grey background and during the rest 

condition a red fixation point on a grey background was presented. Image size for 

unimodal visual and bimodal presentation was adjusted to 9.72° x 6.92° of visual angle 

and the videos were presented centrally. Participants were instructed to fixate on the 

fixation point whenever it was present (rest condition and auditory stimulation) and to 

freely watch all visual stimuli (video sequences). No response or interaction by volunteers 

was expected.  

Visual stimuli were presented by a projector (DLA-G15E, JVC Professional, Japan) 

retrofitted with a custom lens on a screen which was positioned behind the scanner at a 

distance of 140cm from eye to screen. Participants lay in the scanner with lights off and 

they were able to look at the stimuli via a mirror which was attached to the head coil. 

Auditory stimuli were presented via MR compatible headphones (CONFON HP-SC 02, MR 

confon GmbH, Germany) which the participants wore for the whole measurement session.  

7.2.5 Data	Acquisition	

We used a 3T whole-body Siemens Magnetom Skyra MRI machine with a 20 channel 

receive only head coil for scanning. Participants performed one functional run, a T1-

weighted anatomical scan and a T2-weighted anatomical scan in one session. Functional 

images were acquired using an interleaved and ascending echo-planar imaging (EPI) 

sequence (TR = 2500 ms, TE = 30 ms, flip angle = 83°, slice thickness 3mm, 46 slices, 

192x192 mm2). The T2-weighted images were collected to localize the lesions in patients 

and to check for structural abnormalities in controls (TR = 4280 ms, TE = 9.4 ms, flip angle 

= 120°, slice thickness 3mm, 40 slices). Structural images were acquired with a 3-D T1-

weighted sequence (MP-RAGE, TR = 1900, TE = 2.07, flip angle = 9°, slice thickness 1mm, 

176 sagittal slices).  

7.2.6 Experimental	Procedure	

For each participant one functional run was conducted. Twenty-four stimulation 

sequences (consisting of the different unimodal and bimodal conditions) with a duration 

of 20 seconds each were presented with a resting condition of 10 seconds in between. In 

total, the experiment lasted for 12 minutes. Before the experiment the participants 

completed a practice trial where all four conditions (visual, auditory, synchronous 

bimodal, and asynchronous bimodal stimulation) were presented consisting of four video 

sequences of another song from the same Musical. The practice trial had the duration of 

one minute (4 times 10 seconds presentation, 4 times 5 seconds resting condition). 
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To control fixation and eye movements an eye-tracking system was used that recorded 

one eye of the participant via the mirror above the participant’s head during the 

experiment. Eye tracking data acquisition and stimuli presentation was achieved by in-

house software based on Matlab (Matlab 2013a, The MathWorks, Inc., USA). 

7.2.7 Data	Analysis	

We analyzed the imaging data with the Statistical Parametric Mapping software package 

(SPM8, Welcome Department of Imaging Neuroscience, London, UK) based on Matlab 

2013a. Preprocessing of each dataset included slice-timing offset correction, realignment 

estimation, normalization to the Montreal Neurological Institute (MNI) stereotactic space, 

and Gaussian smoothing (full width half maximum = 8mm). In the first level analysis, a 

temporal high pass filter (128s) was applied. Head movement parameters were entered as 

regressors and different conditions were individually modeled by the canonical 

hemodynamic response function. Three contrasts were computed on the individual level: 

a) auditory vs. rest, b) visual vs. rest and, c) bimodal synchronous stimulation (video) vs. 

rest. In the following the contrasts will be referred to as a) auditory, b) visual, and c) video. 

Statistical threshold was set to p<0.001 (uncorrected). As we had only nine participants in 

each group and the patient group was very inhomogeneous, we examined individual data 

and did not perform a second-level analysis. For the individual analysis we determined the 

activated regions for each participant and each contrast. We extracted the number of 

activation foci (maximally 30 foci, 8mm apart) and the number of activated voxels per 

region from the SPM statistics output for all participants.  

Based on individual results (activated anatomical regions, number of foci, and number of 

activated voxels) a group analysis was performed via Chi² and T-statistics with SPSS (IBM 

SPSS Statistics 23). For patient P2 a separate analysis was computed to compare his voxel 

based results with the results of the group according to the method suggested by Crawford 

(Crawford & Garthwaite, 2002; Crawford & Howell, 1998).  

7.3 Results	

This study was carried out to investigate functional correlates of amusia. Stroke patients 

with amusic symptoms, stroke patients without amusic symptoms, and healthy 

participants were investigated with fMRI to assess the BOLD signal in brain areas 

associated with music processing. 

7.3.1 Clinical	Evaluation	of	Stroke	Patients	

Behavioural results and elapsed days between stroke and investigation are listed in Table 

7.1. Hence, two amusia patients were included in the study, the other patients served as 
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‘control stroke patients without any deficit’ or ‘control stroke patients with visual deficit’. 

Four of the patients were measured in the subacute phase (7 to 10 days after the stroke) 

and the other five were measured in the subacute-chronic state (> 50 days after the 

stroke). Additionally, P2 took part in a re-test six months after his stroke (see results 

under section ‘Patient P2’). 

 

Table	7.1: Overview of stroke patients: Elapsed days between stroke and fMRI investigation and Behavioral 

Data acquired few days after the stroke. (Deficits are in bold and shaded in grey, amusia patients are shaded in 

red) 

Patient Days after stroke Melody perception Rhythm perception Visual Gestalt perception 

1 97 29 28 33 

2 10 26 20 32 

3 113 13 21 36 

4 8 28 25 18 

5 52 23 24 33 

6 7 24 30 22 

7 50 26 26 35 

8 105 27 28 20 

9 8 26 24 32 

 

Stroke locations are shown in Figure 7.1. Patients P2 and P8 suffered from right-

hemispheric lesions, all other patients had left-sided lesions. 
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Figure	7.1: Lesions for all patients normalized with MRIcroN and clinical toolbox of SPM (left on left side).  

The glass brain views of the three computed contrasts for all patients and participants can 

be seen in Figure 7.2. The following results section will be divided into three different 

parts: foci based results, voxel based results, and results of Patient P2 in detail.  
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Figure	7.2: Glass brain views of all participants/patients for all computed contrasts (auditory, visual, video), 

C1-9 denote results for healthy control participants and P1-9 the results for the stroke patients. 
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7.3.2 Foci-based	Analysis	

The term ‘principal activation’ is used to describe whether one participant presented at 

least one focus of activation in the specific brain region for the given contrast. Tables 7.2 to 

7.4 show the number of foci for each participant and for all three computed contrasts.  

Contrast auditory (auditory stimulation vs. rest) 

In this contrast mainly frontal and temporal areas were activated. We found that 56% up 

to 100% of the participants showed principal activation in the precentral gyrus, as well as 

in superior, middle, medial, and inferior frontal gyri. For the superior and middle temporal 

gyrus 78% to 100% of the participants showed at least one activation focus. Parietal areas 

like the postcentral gyrus, inferior parietal lobule, and precuneus were principally 

activated in up to 56% of the participants. Same (up to 56% of the participants) number of 

activation foci was found for the cerebellum (not shown in tables).  

The foci distribution of healthy participants and stroke patients was compared via Chi² 

tests (Fisher’s exact test, df=1). For the auditory contrast less stroke patients had at least 

one activation focus in the right precentral gyrus (p=0.041) and right postcentral gyrus 

(p=0.066). No significant differences in number of foci between healthy controls and 

stroke patients were obtained by unpaired one-sided t-tests, i.e. patients were not 

significantly impaired.  

Contrast visual (visual vs. rest) 

In the visual contrast signal increases can be found in frontal areas and mainly in the 

occipital cortex. Only 11% to 78% of the participants – less than for the auditory contrast – 

showed principal activation in frontal areas, whereas 44% to 100% of the participants had 

at least one activation focus in middle and inferior occipital gyri, cuneus, fusiform, and 

lingual gyri. Temporal areas also showed activation for this contrast, mainly middle 

temporal gyrus (44% – 89%). Postcentral gyrus (22-67%) and superior parietal lobule 

(22-56%) were the main activation foci in the parietal lobe. 

Comparison of foci distribution via Chi² tests (Fisher’s exact test, df=1) for this contrast 

indicated that fewer stroke patients showed principal activation in the left precentral 

gyrus (p=0.025), the left inferior occipital gyrus (p=0.008), and the left cuneus (p=0.052), 

whereas more stroke patients had at least one activation focus in the right inferior 

occipital gyrus (p=0.025). The number of foci across both groups was compared via 

unpaired one-sided t-tests. In this contrast patients had less foci than healthy controls in 

the precentral gyrus (p=0.037) and the cuneus (p=0.047). Patients showed more 

activation foci in the medial frontal gyrus (p=0.046). 



Manuscripts   52 

Contrast video (bimodal synchronous stimulation vs. rest) 

For this contrast we found activation throughout the whole brain. Precentral and frontal 

gyri showed principal activation in 33% up to 100% of the participants. For parietal areas 

fewer participants with at least one focus were found (11-89%). Occipital gyri and cuneus 

were principally activated in 11% to 78% of the participants. In 67% to 100% of the 

participants we found at least one activation focus in the superior and middle temporal 

gyri. Up to 89% of the participants also showed activation foci in parts of the cerebellum 

(not shown in tables). 

In the video contrast the principal activation in stroke patients compared to healthy 

controls (tested by Fisher’s exact test, df=1) was lower for the right medial frontal gyrus 

(p=0.077) and higher for the right inferior occipital gyrus (p=0.066). The number of foci 

across both groups showed no significant differences (unpaired one-sided t-tests).  



 

Table	7.2: Principal activation denoted by number of foci for each participant (left/right) for the auditory contrast 

 

Anatomical Region 

Healthy controls Stroke patients 

C1 C2 C3 C4 C5 C6 C7 C8 C9 P1 P2 P3 P4 P5 P6 P7 P8 P9 

Precentral Gyrus 1/1 1/2 1/5 1/6 1/2 2/1 1/1 2/1 2/1 1/1 1/0 3/0 2/1 0/0 2/2 3/4 3/0 0/3 

Superior Frontal Gyrus 1/0 6/1 1/2 1/2 0/0 2/2 3/1 1/1 0/1 6/2 0/1 0/1 1/2 0/0 1/1 1/0 2/1 5/4 

Medial Frontal Gyrus   2/0   1/1   1/1 1/0 1/0   3/0 1/0 0/2 1/0     1/0 1/0   

Middle Frontal Gyrus 0/1 2/3 0/1 2/1   4/3 0/1 0/1 0/2 3/2 2/3 0/3 1/2 0/1     1/3 1/0 

Inferior Frontal Gyrus 3/3 4/2   1/3 1/0   2/2 2/6 1/1 1/1 1/1 2/1 2/1 1/1 2/1 1/1 1/1 0/1 

Paracentral Lobule   1/2 3/0   1/0         1/0           1/0     

Anterior Cingulate            0/1               

Cingulate Gyrus       0/1   0/1           0/1             

Posterior Cingulate         1/0             1/0         1/1   

Insula   3/0   1/0       1/0     1/0 1/0     0/1       

Postcentral Gyrus     1/1 1/0 1/4 1/2 1/2   0/2 3/0     1/0         0/4 

Superior Parietal Lobule                 1/0          

Inferior Parietal Lobule   1/0 1/0 1/0 1/1 0/1     2/0 1/0 1/0 0/2           0/5 

Supramarginal Gyrus             0/1              

Precuneus 1/0 1/2   1/0 2/0       1/3 2/1 1/0 2/1 1/0       0/1 2/0 

Superior Occipital Gyrus                 1/0          

Middle Occipital Gyrus              0/4             

Inferior Occipital Gyrus     2/1 1/0                 2/0       1/0   

Cuneus       0/1         3/3     2/0     0/1   1/2   

Lingual Gyrus       1/0         2/1     1/3             

Fusiform Gyrus     1/1 1/1     1/0   1/0 0/2             2/0 1/0 

Superior Temporal Gyrus 7/4 5/5 7/6 8/3 4/3 5/4 4/6 6/6 3/5 7/7 6/9 4/5 6/6 6/5 4/3 3/3 6/6 6/2 

Middle Temporal Gyrus   2/2 3/2 3/3 3/5 2/5 1/1 3/2 1/3 3/3 0/2 3/2 0/2 2/2 3/2 1/1 5/4 1/4 

Inferior Temporal Gyrus     1/2   1/1     0/4     0/1       1/1   0/1   

Transverse Temporal Gyrus   0/1   0/1       0/1       0/1 1/0   1/0   0/1 1/1 

 



 

Table	7.3: Principal activation denoted by number of foci for each participant (left/right) for the visual contrast 

 

Anatomical Region 

Healthy controls Stroke patients 

C1 C2 C3 C4 C5 C6 C7 C8 C9 P1 P2 P3 P4 P5 P6 P7 P8 P9 

Precentral Gyrus 3/0   1/1 2/0 1/0 0/2 2/1 1/1     0/2   0/1   0/2 1/0   0/1 

Superior Frontal Gyrus   0/1 1/0 1/3 3/1 0/1 9/3 0/5   1/2 1/4 3/1 6/6   1/1 4/1   2/5 

Medial Frontal Gyrus         1/0   0/1 1/0   1/1 1/0   4/0     1/1   2/3 

Middle Frontal Gyrus 0/1 2/0 1/0 0/6   1/2 6/6 3/3   2/3 6/5 0/3 4/4   9/3 4/5   2/3 

Inferior Frontal Gyrus 0/3 2/0 0/2   3/1 3/2 3/3 2/2   3/2 4/2 0/1 2/4   2/1 1/2   1/3 

Paracentral Lobule            2/0             1/1 

Anterior Cingulate                1/2           

Cingulate Gyrus             0/1       3/1               

Posterior Cingulate             1/0       0/1             0/3 

Insula     1/0       0/1     2/1 1/0       1/0       

Postcentral Gyrus 1/0   0/1   5/0 0/1 1/1 1/0   0/1 0/1 4/3 0/1   4/1     0/3 

Superior Parietal Lobule 2/2   1/0       2/1 1/0 1/1 2/1   2/0 1/1     1/0     

Inferior Parietal Lobule           0/1 3/0 0/1   1/0 2/2 1/0 0/2           

Angular Gyrus                      0/1     

Precuneus 1/0         0/3 1/1 0/2   1/1 3/2   2/1   0/1 0/1 1/0 0/3 

Superior Occipital Gyrus                          2/0 

Middle Occipital Gyrus 2/3 1/1 1/2 1/2 2/2 2/3 2/2 1/2 4/3 3/3 0/2 2/1 1/2 2/2 2/2 0/2 1/1 1/1 

Inferior Occipital Gyrus 1/1 1/0 3/0     1/0 1/1 1/1 1/0 0/1 0/1 0/1 0/1 0/1 0/1   1/1 0/1 

Cuneus 1/1 2/3 2/0 2/2 2/3 1/0 1/1 1/4 1/1   1/2 1/1 1/0 3/1   0/1 0/1 3/1 

Lingual Gyrus   1/1 1/1 0/1 2/1   0/1 1/0 1/0 0/1 1/1 1/1 0/1 2/1 1/0 3/0 0/1 0/3 

Fusiform Gyrus 2/2 2/1 0/1 0/1 3/1       1/1   0/1   1/0 1/1 0/1 0/1 1/0 2/2 

Superior Temporal Gyrus         1/4 2/0 1/6 1/0 0/1 3/0 0/1 1/0 6/2 1/1 1/0 1/7   3/3 

Middle Temporal Gyrus 2/1 1/1 0/1 0/1 1/1 1/2 1/1 1/1 1/0 1/0 0/1 0/1 6/0 0/1 1/5 0/4   2/3 

Inferior Temporal Gyrus   0/1             1/0                 0/1 

  



 

Table	7.4: Principal activation denoted by number of foci for each participant (left/right) for the (bimodal) video contrast  

 

Anatomical Region 

Healthy controls Stroke patients 

C1 C2 C3 C4 C5 C6 C7 C8 C9 P1 P2 P3 P4 P5 P6 P7 P8 P9 

Precentral Gyrus 1/0 1/0 2/6 3/1 5/3 3/1 1/1 2/3 2/1 2/1 1/2 4/0 3/2   1/1 2/0 5/2 2/1 

Superior Frontal Gyrus 4/6 1/4 1/2 2/3 2/5 1/1 5/7 2/3 8/1 4/2 4/0 4/3 3/2   1/1 5/4 5/1 4/8 

Medial Frontal Gyrus 4/2 1/0 2/1 3/2 1/1 2/1 1/1 4/5 2/0 1/0 2/0 1/6 2/3   1/1 1/0 1/0   

Middle Frontal Gyrus 1/5 0/4 0/1 1/3 2/3 3/4 0/1 2/1 1/1 1/3 1/4 1/2 1/2 1/3 6/0 1/2   2/1 

Inferior Frontal Gyrus 1/3 3/4   2/4 2/4 1/3 2/0 3/2 1/1 2/4 1/3   3/0 1/0 4/0 1/1 1/0 0/1 

Orbital Gyrus                  0/2         

Paracentral Lobule     1/1   1/0 0/1   1/0   1/0   0/1 0/1   1/0       

Anterior Cingulate 1/1                     1/0 1/1           

Cingulate Gyrus 2/0   2/3 1/1 1/0         1/1         2/2       

Posterior Cingulate         1/0   1/0   2/1 1/0               1/0 

Insula         0/1   0/1               2/0       

Postcentral Gyrus 1/1   2/2 1/0 5/4 2/0 0/1 1/1     1/1 2/5     3/0     0/3 

Superior Parietal Lobule 1/0 0/1     1/0   1/1 1/1 0/2   0/1 3/2     1/0   0/1   

Inferior Parietal Lobule 1/0 1/0   3/0 1/3       1/0 2/0 1/0 1/0     2/1     0/2 

Angular Gyrus                 1/0          

Precuneus   1/3 2/0   1/0 0/1 0/2 1/2 1/1 0/1 1/3 0/1   0/1 3/2 0/1 5/1 0/1 

Middle Occipital Gyrus 1/0 1/3 0/1 0/2 0/3 1/3 2/1   1/1 2/2   0/1 1/1 2/1 1/0 0/2 0/1 0/1 

Inferior Occipital Gyrus 2/0 1/0           1/1   0/1     0/1 0/1   2/1 1/0 1/1 

Cuneus 1/0 1/1       1/0 1/0 0/1 1/0   1/0 0/1 0/1 3/0 1/0 0/1 0/1 2/1 

Lingual Gyrus 1/0 0/1   0/1 1/0   0/1           0/1 3/0 1/0 1/0 0/1 0/2 

Fusiform Gyrus 0/1 0/2         1/0   1/0       1/0 0/1 1/1     0/1 

Superior Temporal Gyrus 2/3 4/3 2/4 3/4 4/2 0/1 3/2 2/2 3/1 5/3 5/4 2/2 1/1 3/2 3/2 8/8 2/3 5/3 

Middle Temporal Gyrus 1/0 2/5 0/1 3/1 1/1 0/1   2/2 1/1   0/2 1/1 1/0 1/3 1/2 1/2   1/5 

Inferior Temporal Gyrus 1/0 0/2           1/1 0/1       0/1 1/0     1/0   

Transverse Temporal Gyrus   0/1                         1/0     1/1 
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7.3.3 Voxel-based	Analysis	

For each participant and contrast the number of activated voxels was computed separately 

for each hemisphere (p<0.001, uncorrected). Table 7.5 shows the mean percentage of 

activated voxels for each specific brain region of all healthy participants and stroke 

patients separately for all contrasts. These results reflect the findings from the foci 

analysis: a) The auditory contrast mainly activated temporal regions, frontal, and parietal 

areas. b) In the visual contrast we found mainly occipital areas which were activated, as 

well as (less) frontal activation, and minor temporal activation. Apart from that we found 

many activated voxels in the superior parietal lobule. c) The video contrast showed a 

mixture of the other two contrasts with activated voxels in temporal and occipital areas. 

Parietal and frontal areas showed more activated voxels than in the unimodal contrasts, 

except for the superior parietal lobule (both groups), the angular gyrus, and precuneus 

(stroke patients). 

A one-sided paired t-test was conducted to test the number of activated voxels between 

both groups. Here, the exact number of activated voxels for each brain region was 

compared (not percentage of voxels). A trend was observed for the left inferior temporal 

gyrus (p=0.092) for the auditory contrast. Patients showed more activated voxels than 

healthy participants. Significant differences and trends were obtained for the left superior 

occipital gyrus (p=0.096), left inferior temporal gyrus (p=0.089), right postcentral gyrus 

(p=0.089), right inferior occipital gyrus (p=0.057), and right fusiform gyrus (p=0.042) for 

the visual contrast. In this contrast patients showed more activated voxels than healthy 

participants, except for the temporal gyrus. In the video contrast trends and significant 

differences were reported for the left precentral gyrus (p=0.062), the left precuneus 

(p=0.058), the left inferior temporal gyrus (p=0.036), the right angular gyrus (0.06), the 

right superior occipital gyrus (p=0.051), and right inferior temporal gyrus (p=0.09). All 

patients showed less activated voxels than healthy controls. Bonferroni correction for 

multiple t-tests was not applied, because of the low number of participants and high 

variability of activated voxels. This has to be kept in mind and the (anyway low 

significances) have to be interpreted with caution. 



 

Table	7.5: Overview of activated voxels for all three computed contrasts:  

Mean values (± standard deviation) of healthy controls and stroke patients for left and right hemisphere separately (in percentage of the specific brain region) 

Contrast Auditory vs. Rest Visual vs. Rest Video vs. Rest 

Hemisphere Left Right Left Right Left Right 

Anatomical region Healthy Stroke Healthy Stroke Healthy Stroke Healthy Stroke Healthy Stroke Healthy Stroke 

Precentral Gyrus 1.06±0.74 1.06±0.96 0.93±0.44 1.30±1.15 0.37±0.62 0.37±0.51 0.27±0.29 0.52±0.74 1.81±0.90 1.22±0.60 1.58±0.89 1.42±1.00 

Superior Frontal Gyrus 0.11±0.11 0.37±0.61 0.09±0.08 0.33±0.53 0.10±0.23 0.19±0.28 0.11±0.18 0.29±0.44 0.40±0.56 0.27±0.30 0.48±0.49 0.43±0.45 

Medial Frontal Gyrus 0.16±0.14 0.22±0.46 0.07±0.09 0.17±0.29 0.03±0.07 0.16±0.43 0.01±0.03 0.10±0.26 0.43±0.44 0.31±0.55 0.51±0.58 0.27±0.39 

Middle Frontal Gyrus 0.21±0.20 0.54±1.27 0.26±0.16 0.49±1.07 0.37±0.72 0.74±1.05 0.83±0.83 0.92±1.00 0.64±0.41 0.56±0.67 1.37±1.02 0.80±0.80 

Inferior Frontal Gyrus 0.94±1.00 1.00±0.90 0.58±0.50 0.47±0.40 0.60±1.62 0.86±1.11 0.72±1.10 1.11±1.15 2.07±1.49 1.47±0.99 1.76±1.07 1.82±1.91 

Paracentral Lobule 0.03±0.10 0.04±0.10 0.01±0.03 0.00±0.00 0.00±0.00 0.11±0.27 0.00±0.00 0.06±0.17 0.04±0.07 0.06±0.13 0.21±0.52 0.03±0.10 

Postcentral Gyrus 0.98±0.87 1.29±1.06 1.02±0.66 1.29±1.15 0.09±0.15 0.11±0.18 0.04±0.07 0.31±0.52 1.44±0.92 1.36±0.51 1.33±0.76 1.17±0.67 

Superior Parietal Lobule 0.00±0.00 0.82±2.47 0.01±0.03 0.51±1.53 1.50±2.25 1.38±2.22 1.99±2.40 2.08±3.33 1.40±1.97 0.73±1.41 2.36±2.87 1.00±2.45 

Inferior Parietal Lobule 0.99±1.04 1.22±1.82 0.36±0.54 0.76±1.49 0.40±0.71 0.31±0.72 0.53±0.58 0.70±1.04 1.30±0.90 1.00±0.74 1.24±1.17 1.02±1.36 

Supramarginal Gyrus 0.64±1.43 1.06±2.07 0.07±0.17 0.16±0.37 0.53±1.45 0.27±0.40 0.44±0.97 0.66±0.76 1.43±2.55 0.90±1.37 1.00±1.45 0.53±1.09 

Angular Gyrus 0.00±0.00 0.34±1.03 0.00±0.00 0.17±0.50 0.04±0.10 0.21±0.49 0.40±0.68 0.42±0.84 0.17±0.32 0.12±0.27 0.63±0.98 0.07±0.20 

Precuneus 0.11±0.16 0.50±1.35 0.03±0.07 0.40±0.98 1.04±1.33 0.76±1.11 1.47±1.83 1.53±1.72 1.72±1.84 0.58±0.85 2.22±2.16 1.06±1.47 

Superior Occipital Gyrus 0.02±0.07 0.09±0.27 0.00±0.00 0.27±0.80 1.78±2.12 3.79±3.82 2.21±2.25 2.59±3.70 2.53±2.85 2.38±3.77 3.00±2.65 1.24±1.47 

Middle Occipital Gyrus 0.02±0.07 0.02±0.04 0.00±0.00 0.09±0.27 7.99±2.31 8.20±2.41 8.19±1.71 8.34±1.58 8.36±2.76 7.46±2.91 8.44±2.30 7.19±2.09 

Inferior Occipital Gyrus 0.82±2.36 0.07±0.20 0.03±0.10 0.00±0.00 10.73±3.22 10.03±3.04 8.90±2.15 10.50±1.82 10.98±3.36 9.51±3.13 9.24±2.85 9.82±2.57 

Cuneus 0.66±1.97 0.04±0.10 0.17±0.50 0.02±0.04 3.89±3.24 4.72±2.99 4.64±2.94 6.06±3.48 5.02±3.35 3.93±2.55 6.09±3.35 5.16±3.16 

Lingual Gyrus 0.61±1.65 0.02±0.07 0.11±0.30 0.02±0.07 6.18±3.36 6.08±2.88 6.69±3.18 8.04±2.95 7.36±3.62 6.37±4.08 8.08±3.83 7.86±3.18 

Fusiform Gyrus 0.22±0.45 0.07±0.11 0.01±0.03 0.20±0.60 4.57±1.80 5.18±2.15 5.51±1.67 6.81±1.34 6.13±2.21 4.98±1.61 6.53±2.10 6.81±1.35 

Superior Temporal Gyrus 6.43±1.39 7.17±1.71 5.93±1.62 6.74±1.66 1.01±1.41 0.98±1.25 1.34±1.31 1.86±1.05 7.60±1.63 8.14±1.73 7.49±2.21 8.26±1.97 

Middle Temporal Gyrus 2.91±1.03 2.97±1.46 2.92±0.98 3.24±0.93 1.88±0.92 2.27±1.40 2.68±1.06 2.84±1.16 5.90±1.21 5.24±2.27 6.57±1.50 6.10±1.82 

Inferior Temporal Gyrus 0.10±0.16 0.31±0.38 0.29±0.46 0.20±0.21 1.67±0.36 1.46±0.33 2.07±0.77 1.74±0.38 2.08±0.66 1.54±0.46 2.47±0.88 1.92±0.69 

Transverse Temporal Gyrus 11.32±2.13 11.63±2.59 9.96±1.94 10.77±2.04 0.00±0.00 0.12±0.30 0.00±0.00 0.00±0.00 11.12±2.50 11.71±2.74 9.76±2.07 10.22±2.27 

Insula 2.01±1.40 2.27±1.12 1.78±1.37 2.12±1.51 0.16±0.47 0.03±0.10 0.17±0.33 0.08±0.13 1.82±1.38 1.97±1.01 1.98±1.67 1.89±1.23 
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The mean percentage of activated voxels for all four lobes of the auditory contrast for all 

participants is shown in Figure 7.3. For simplification fusiform and lingual gyri were 

included in the occipital lobe and the insula was included in the temporal lobe. The 

temporal lobe showed the highest percentage of activated voxels. Amusic patient P2 

presented a high number of activated voxels for the frontal and parietal lobes. Therefore 

frontal and parietal lobes were inspected in detail with respect to P2 compared to all other 

participants. For the other two contrasts no such ‘peculiarities’ were found. Subcortical 

regions showed activation in some participants as well, but these were major activations 

in only two participants, a few others showed minor (below 1%) activation.  

 

Figure	7.3: Percentage of activated voxels for all four lobes for both hemispheres (contrast: auditory vs. rest), 

C1-9 denote results for healthy control participants and P1-9 the results for the stroke patients. 

7.3.4 Amusic	Patient	P2	

The number of activated voxels for frontal and parietal regions can be seen in Figures 7.4 

(left hemisphere) and 7.5 (right hemisphere). In several brain regions patient P2 

presented a high number of activated voxels compared to all other participants. P2 was 

the only participant with activation in the left superior parietal lobule, only one other 

participant also showed minor activation for the right superior parietal lobule. 

Additionally P2 had major activation in the right angular gyrus. In contrast to these 

findings P3 (chronic amusia patient) showed major activation in the left angular gyrus. All 

other brain regions were compared with the method established by Crawford and 

colleagues (Crawford & Garthwaite, 2002; Crawford & Howell, 1998). The exact number of 
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activated voxels for each brain region in each hemisphere of P2 was compared to the 

group of other participants: a) only the stroke patients, b) only the healthy participants, c) 

all healthy participants and stroke patients combined. Highly significant differences were 

obtained for the precentral gyrus, superior, medial and middle frontal gyri, inferior 

parietal lobule, and precuneus (p<0.01). For the postcentral gyrus all differences were 

highly significant (p<0.01), except for the comparison of P2 to healthy controls (p=0.013). 

Only the left supramarginal gyrus showed significant differences between P2 and the three 

different groups (p<0.05).    

 

Figure	7.4: Percentage of activated voxels for left frontal and parietal regions (contrast: auditory vs. rest), C1-

9 denote results for healthy control participants and P1-9 the results for the stroke patients. 
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Figure	7.5: Percentage of activated voxels for right frontal and parietal regions (contrast: auditory vs. rest), 

C1-9 denote results for healthy control participants and P1-9 the results for the stroke patients. 

The insula was inspected for abnormal brain activation as well, because of its role in the 

music perception network pointed out in the literature. Significant differences were 

obtained for the comparison of Patient P2 with a) other stroke patients (p=0.031) and c) 

all healthy participants and stroke patients (p=0.048). The comparison of P2 with healthy 

participants (b) yielded a trend (p=0.092).  

Patient P2 took part in a re-test of behavior and imaging six months after his stroke. 

Compared to the initial measurement, he improved in both MBEA tasks: he achieved 100% 

in the melody perception and 86% (26 correct answers) in the rhythm perception task. 

Both scores are well above the cut-off score for amusia. Evaluation of number of activated 

voxels showed a decrease (from initial to the re-test measurement) in almost all brain 

areas (Figure 7.6, Fable 7.6). However, damage of the basal ganglia was still visible on the 

T1 and T2 images after six months.  
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Figure	7.6: Axial slice view of the auditory contrast activation in Patient P2 for two measurements (left: 

subacute, right: chronic).  

 

Table	7.6: Mean number of activated voxels for patient P2 at subacute and chronic stage, P3 (only chronic) 

and all other participants (mean of healthy and all other stroke patients) 

 P2 subacute P2 chronic P3 Mean of all other participants 

Precentral Gyrus 2.47 0.67 0.57 0.63 

Superior Frontal Gyrus 7.07 0.00 0.03 0.26 

Medial Frontal Gyrus 1.17 0.00 0.10 0.07 

Middle Frontal Gyrus 2.40 0.07 0.03 0.13 

Inferior Frontal Gyrus 0.83 0.07 0.53 0.48 

Paracentral Lobule 0.03 0.00 0.00 0.01 

Postcentral Gyrus 2.50 0.60 0.87 0.65 

Superior Parietal Lobule 4.00 0.00 0.00 0.00 

Inferior Parietal Lobule 3.47 1.17 0.40 0.38 

Supramarginal Gyrus 1.60 1.27 0.00 0.26 

Angular Gyrus 0.50 0.00 1.03 0.00 

Precuneus 3.50 0.00 0.87 0.04 

Superior Occipital Gyrus 1.07 0.00 0.00 0.00 

Middle Occipital Gyrus 0.03 0.00 0.27 0.01 

Inferior Occipital Gyrus 0.00 0.00 0.00 0.17 

Cuneus 0.40 0.00 0.07 0.36 

Lingual Gyrus 0.00 0.00 0.13 0.23 

Fusiform Gyrus 0.03 0.00 0.00 0.09 

Superior Temporal Gyrus 5.90 5.87 5.80 4.20 

Middle Temporal Gyrus 2.17 3.03 3.63 1.90 

Inferior Temporal Gyrus 0.37 0.03 0.37 0.12 

Transverse Temporal Gyrus 8.67 8.67 8.70 7.10 

Insula 2.63 2.33 2.97 1.18 

 

The obtained values were compared to patient P3 (amusia patient measured three months 

after the stroke) and all other participants without amusia. The high amount of activated 
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voxels in frontal gyri of P2 almost disappeared. The number of activated voxels in pre- and 

postcentral gyri dropped to nearly the mean number of all other participants and was 

comparable to P3. The same holds true for the superior parietal lobule, precuneus, and 

angular gyrus. The number of activated voxels in the inferior parietal lobule and 

supramarginal gyrus decreased as well but were still much higher than in P3 or the mean 

of all other participants. Activation in the insula was equally high for both amusic patients 

and for both measurements in P2. All values were higher than the mean of all other 

participants.  

7.4 Discussion	

This study was carried out with two evident previous findings in mind: 1) Brain areas 

associated with music processing in healthy participants and brain lesions inducing 

amusia symptoms are not always consistent across the literature and 2) no study has 

explored functional correlates of amusia so far. Hence, we wanted to investigate the 

impact of a focal brain lesion leading to amusia symptoms on other brain areas supposed 

to process musical input.  

Here, we report two cases of amusia: one with a basal ganglia lesion and a deficit in 

rhythm perception (P2) and one with frontal lobe lesion and impairment both in melody 

and rhythm perception (P3). First, general results will be discussed, then the differences 

between healthy controls and stroke patients. Finally and in more detail, the findings of 

the two amusia patients compared with the other participants will be discussed.  

7.4.1 General	Activation	Pattern	

In this study three different contrasts were computed: auditory stimulation vs. rest, visual 

stimulation vs. rest, and bimodal auditory and visual stimulation (video) versus rest. 

Stimulation sequences consisted of a German musical song. Individual data analysis of foci 

and number of voxels revealed a main activation pattern in temporal, frontal, and parietal 

areas for the auditory contrast. In the visual contrast brain areas in occipital and frontal 

regions were recruited and the superior parietal lobule showed many activated voxels. 

The bimodal auditory and visual contrast presented a combination of the other two 

contrasts: Many activated voxels in temporal and occipital regions were found. Besides, 

parietal and frontal areas showed more activated voxels than in unimodal contrasts, 

except for the superior parietal lobule, angular gyrus, and precuneus. These results very 

well reproduce findings from the literature. Temporal and occipital regions are involved in 

the processing of auditory and visual stimuli. Additionally our stimulation invoked 

recruitment of frontal and parietal areas. As our stimulus was a German musical song, 
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melody, rhythm, beat, and speech had to be processed and the whole network for music 

processing was activated. Frontal and parietal areas may have processed melody and pitch 

(Foster & Zatorre, 2009; García-Casares et al., 2013; Koelsch, 2011; Lee et al., 2011; 

Schwenzer & Mathiak, 2011). Premotor and supplementary motor areas may have 

engaged in beat perception (Fedorenko et al., 2012; Grahn & Brett, 2009; Zatorre et al., 

2007) and rhythm perception may be achieved by frontal, parietal, and temporal regions 

(Thaut et al., 2014). It is possible that the wide distribution of activation is not only or 

maybe not at all connected to the perception of the presented music per se. As frontal and 

parietal areas were also activated during visual and bimodal stimulation the increased 

BOLD signal could be correlated to the participants’ strategy during the task: although it 

was a passive listening task, the presentation was in chronological order of the song and 

the singers were acting at the same time (musical). Therefore, keeping track of the 

storyline as well as evaluating the behavior of the performers could have happened during 

the stimulation as well. A recent study evaluating attentive listening to music showed that 

areas in frontal, parietal, and temporal cortices engage in this task, a network associated 

with domain-related attention and working memory (Janata et al., 2002). A comparison of 

our results for the different contrasts showed that a few regions were not equally 

activated throughout the whole experiment: Pre- and postcentral gyri were more 

activated during auditory and bimodal stimulation while the superior parietal lobule and 

precuneus were mainly activated during visual and bimodal presentation. These findings 

are partly supported by the foci based analysis. More participants showed principal 

activation in precentral gyrus for the auditory and video contrast (up to 100%) compared 

to the visual contrast (up to 67%). Foci in the postcentral gyrus were visible in all three 

contrasts. Principal activation in superior parietal lobule and precuneus was observed 

more often in contrasts two and three (up to 89%) compared to contrast one (up to 56%). 

Hence, we argue from the general activation pattern we observed across all participants 

that pre- and postcentral gyri seem to be important for processing the musical input in our 

stimuli and that superior parietal lobule and precuneus seem to play a role for the 

perception of the visual input of our stimuli. 

7.4.2 Stroke	Patients	compared	to	healthy	controls	

For the three computed contrasts foci and number of activated voxels for all participants 

and stroke patients were extracted and then compared across groups by Chi²- and T-

statistics. Fewer patients showed at least one focus in precentral and postcentral gyri, left 

inferior occipital gyrus, cuneus, and medial frontal gyrus compared to healthy 

participants. More patients had at least one focus in right inferior occipital gyrus and 

medial frontal gyrus. This was partly reflected by the T-statistics comparing the number of 
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foci across groups. The voxel based analysis showed that patients tended to show more 

activated voxels in temporal, occipital, fusiform, and postcentral gyri, for the unimodal 

conditions. On the other hand activated voxels in temporal, precentral, angular, and 

occipital gyri, additional to the precuneus for the bimodal contrast seemed to be fewer in 

patients (keep in mind: no Bonferroni-correction). 

Patients show a more widely distributed activation pattern (more activated voxels) which 

is less focused (fewer foci) than healthy participants for the unimodal contrasts compared 

to the bimodal contrast. This could be due to compensatory mechanisms (Calautti et al., 

2001a; Feydy et al., 2002; Grefkes et al., 2007; Marshall et al., 2000; Meehan et al., 2011; 

Ward et al., 2003) or global brain function changes in areas connected with or close to the 

lesion (de Haan, Rorden & Karnath, 2013; Gratton et al., 2012). Five of our nine patients 

presented behavioral deficits in either musical or visual perception. Higher activation was 

found only for unimodal conditions and was present in temporal, occipital, fusiform, and 

postcentral gyri. None of the patients presented lesions in these areas. On the other hand 

the bimodal stimulation contrasted to rest showed a fewer number of activated voxels in 

temporal, precentral, occipital, and parietal areas in patients compared to controls. These 

areas correspond better to the lesions of the patients, except for the occipital regions. That 

means, we found lower activation in damaged and nearby regions for bimodal stimulation 

but higher activation in areas needed to process exclusively unimodal stimuli. Hence, we 

argue that the increased BOLD signal found for the unimodal stimulation is a 

compensatory mechanism. It could be possible that it is only needed when the specific 

modality is presented alone. If the input is bimodal the unaffected modality may take over 

the processing of the input (at least partly) and no compensation would be needed.  

7.4.3 Correlates	of	Amusia	

Amusia patient P2 was of particular interest in this study because he presented acute 

amusia symptoms, participated in the fMRI experiment ten days after stroke and was re-

tested after six months.  

In several brain regions patient P2 presented more activated voxels compared to all other 

healthy participants and patients. Significantly more activated voxels were obtained for 

precentral gyrus, superior, medial and middle frontal gyri, inferior parietal lobule, left 

supramarginal gyrus, and precuneus. Only P2 showed high activation in the superior 

parietal lobule, whereas all other participants did not show any activation in this area. 

Comparing these results with the re-test six months later one can see that the high amount 

of activated voxels in frontal and parietal gyri dropped in P2, mostly to zero (or close to 

zero) or close to the mean of the other participants. Activated voxels in the inferior 
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parietal lobule and supramarginal gyrus decreased as well but are still much higher than 

in P3 or the other participants. Insula activation was high for both amusia patients for 

both time points and higher than for the other stroke patients or healthy participants. 

Hence, we found a network of frontal and parietal areas showing ‘overactivation’ in the 

subacute amusia stage but not in the chronic/recovered stage or in any other participants. 

The behavioral deficit was gone after six months as well. Hence, we have two possible 

explanations: compensatory mechanisms or changes of global brain function. Studies 

investigating hemiparetic patients found greater and more widespread activation in early 

compared to late stages after stroke, suggesting compensatory mechanisms which 

decrease when motor functions recover (Calautti et al., 2001a; Feydy et al., 2002; Grefkes 

et al., 2007; Marshall et al., 2000; Meehan et al., 2011; Ward et al., 2003). Another study 

found abnormal perfusion in the superior temporal gyrus, intraparietal lobule, and 

inferior frontal gyrus after basal ganglia stroke (Karnath et al., 2005). Premotor cortex and 

supplementary motor area are connected to the basal ganglia (Ward et al., 2003). Hence, 

the increased BOLD signal we observed could be due to a disturbed connection between 

basal ganglia and fronto-parietal cortical areas. An argument against this explanation 

could be that the increased signal was only obtained for the unimodal stimulation and not 

for the bimodal stimulation. If the same processes are engaged for any musical input 

(either uni- or bimodal), the same effect would have been found for the bimodal contrast 

as well. Hence, we are again arguing for compensatory mechanisms which are present 

when only the affected modality is stimulated. Support for this idea could be the fact that 

the perception of irregular chords activates inferior frontal and orbito-frontal gyri, insula, 

premotor and temporal cortices, and the supramarginal gyrus (Koelsch et al., 2005). 

Possibly, P2 is experiencing the auditory stimulation as an unpleasant or strange sound 

(due to his amusic symptoms) and therefore has the same experience as healthy 

participants present when hearing irregular chords. 

Critical regions seem to be the inferior parietal lobule and supramarginal gyrus as their 

activation was still increased in Patient P2 in the recovered state after the initial stroke. In 

other studies the perception of rhythm was characterized by activation in supramarginal 

gyrus, postcentral gyrus, and right precuneus (Thaut et al., 2014). In line with these 

findings is the report of an amusia patient with lesions in the inferior parietal lobule 

presenting impaired discrimination of rhythms (DiPietro et al., 2004). As we do not see a 

behavioral deficit in P2 after six months but increased activation in these areas, one might 

come to the conclusion that these areas try to compensate for the initial damage to basal 

ganglia and the impairment in rhythm perception. The fact that the behavioral deficit 

diminished but the damage of basal ganglia is still visible yields the conclusion that the 
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compensation actually worked very well. This suggestion would also fit into the network-

idea where global changes in connected brain areas result from focal brain damage 

(Gratton et al., 2012). The insula seems to be connected to amusia per se, as a high 

activation was found for both patients at both investigations and is not necessarily 

connected to recovering of musical functions. Patients P2 showed good musical abilities 

six months after the stroke but insula activation was still high. It could be the case that 

listening to music still evokes a strange feeling for the patients, like listening to irregular 

chords (Koelsch et al., 2005), although musical abilities started to recover and 

distinguishing between melodies was already possible.  

7.4.4 Conclusion	

Lesions of both amusia patients perfectly fit the music perception network already 

identified in the literature (García-Casares et al., 2013; Grahn & Brett, 2009; Koelsch, 

2011; Merchant et al., 2008; Schwartze et al., 2011; Stewart et al., 2006). The impact of 

amusia on this network has not been investigated by fMRI so far.  

From the general activation pattern we observed across all participants we supposed that 

pre- and postcentral gyri seem to be important for the perception of the musical input in 

our stimuli. All other frontal and parietal areas were activated for visual and bimodal input 

as well and we cannot exclude that these areas also subserve domain-general functions 

like working memory or attention. Comparing stroke patients with healthy participants 

we found increased activation in temporal, occipital, and postcentral regions for unimodal 

stimulation. We think that the recruitment of these additional areas is due to 

compensatory mechanisms after the stroke only needed for unimodal visual or musical 

stimulation but not for bimodal stimulation. Regarding results from amusia patient P2 in 

detail, we are again arguing for compensatory mechanisms. Our results demonstrate a 

larger and quite distributed activation in frontal and parietal areas for acute amusia. These 

BOLD signal increases were present in both hemispheres after a unilateral basal ganglia 

lesion. In the chronic amusia patient with frontal lobe lesion this ‘overactivation’ was not 

visible.  

In summary, our results show distributed patterns of activation for musical input for 

healthy participants. In the amusic patient this activation was increased in frontal and 

parietal areas in the subacute phase. Parietal areas, specifically inferior parietal lobule and 

supramarginal gyrus, seem to play an important role in recovered amusia with rhythm 

perception deficit as they may take over processing tasks usually accomplished by intact 

basal ganglia. Activation in the insula seems to be connected to acquired amusia in 

general. 
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Although we are presenting arguments for compensatory mechanisms, no final 

differentiation between the two possible explanations (disturbed connection between 

basal ganglia and fronto-parietal areas or compensation in fronto-parietal areas) can be 

drawn unless further amusia patients are investigated with fMRI.   

7.4.5 Limitations	

The results presented in this study do not cover the whole complexity of music processing 

in general nor can the conclusions be applied to all amusia patients. Because of the small 

sample size, results should be interpreted with caution.   

We screened 25 participants for music perception deficits and identified only two amusic 

patients. These two were invited for the imaging experiment and all other patients who 

were able and willing to participate in the experiment. The lesion overlap in our sample 

size was small and the variability in lesion size was large. However, the heterogeneity of 

the group permitted us to compare amusic patients with a variety of other patients to look 

for reasons for different brain activity and behavior. In our study we could rule out that 

our findings result from a) having a stroke in general, b) having a stroke with any 

behavioral deficits, and c) from chronic amusic symptoms. Differences between patients 

could be due to demographic or clinical values we did not access. Hence, definitely more 

studies are needed with lesions in similar brain regions to make any further assumptions 

about the effect of amusia on other brain areas and to rule out the possibility that the 

effects we find for P2 just result from basal ganglia infarctions in general and are not 

connected to amusia or music processing at all.  

Although we present data from only one individual measured in the subacute stage, 

results are in line with previous investigations in healthy participants. This study 

strengthens the evidence that basal ganglia are involved in rhythm perception and that 

frontal and parietal areas play a major role in music perception. 
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Abstract 

Music perception is accomplished by a network of temporal, parietal and frontal areas. 

While most of these areas were identified by investigating young healthy subjects with 

fMRI, some of the areas were determined based on case studies with amusia patients 

(elderly stroke patients). But these areas do not always match. Aging is usually 

accompanied by changes in brain activation in temporal, parietal and frontal areas which 

are the important brain regions for music perception. Therefore an exploration of healthy 

elderly music perception seems to be required. In this study we explored music perception 

in twenty healthy individuals to compare their activation patterns with that of young 

participants reported in the literature. Additionally, we investigated individual voxel-

based results and the contribution of different lobes and both hemispheres. As expected 

brain activation in response to musical stimulation versus rest was obtained in temporal, 

frontal and parietal regions. Temporal activation was highest, followed by frontal and 

parietal activation. Pre- and postcentral gyri, besides temporal gyri, showed robust 

activation in every participant. Highest contribution to the perception of music was seen 

in left lateralized precentral, inferior frontal, postcentral, superior and transverse 

temporal gyri, and the inferior parietal lobule. Hence, we find increased lateralization and 

a high engagement of frontal areas in healthy elderly participants. 
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8.1 Introduction	

The perception of music is based on a widely distributed network of temporal, frontal, 

parietal, and subcortical structures (Alossa & Castelli, 2009; Peretz & Coltheart, 2003; 

Schuppert, Münte, Wieringa & Altenmüller, 2000). Investigations with functional magnetic 

resonance imaging (fMRI) in healthy subjects showed that different sub-functions of music 

perception are executed in distinct regions of the brain and a model of music perception 

has been developed (Clark, Golden, & Warren, 2015; García-Casares, Berthier Torres, 

Froudist Walsh, & González-Santos, 2013; Koelsch, 2011; Stewart, von Kriegstein, Warren, 

& Griffiths, 2006). These sub-functions can be involved in e.g. melody or rhythm 

perception, but they can also engage in processing of smaller elements like pitch and 

contour (Foster & Zatorre, 2009; Lee, Janata, Frost, Hanke, & Granger, 2011; Schwenzer & 

Mathiak, 2011; Stewart, Overath, Warren, Foxton, & Griffiths, 2008) or beat (Fedorenko, 

McDermott, Norman-Haignere, & Kanwisher, 2012; Grahn & Brett, 2009; Thaut, Trimarchi, 

& Parsons, 2014; Zatorre, Chen, & Penhune, 2007). An important finding is that melodic 

and rhythmic processing streams are dissociated in the brain (DiPietro et al., 2004; 

Griffiths, 1997; Jerde, Childs, Handy, Nagode, & Pardo, 2011; Peretz, 1990; Schuppert et al., 

2000; Vignolo, 2003).  

The network executing melodic information includes premotor cortex, prefrontal cortex, 

superior frontal gyrus, inferior frontal gyrus, intraparietal sulcus, inferior parietal lobule 

as well as temporal cortices (Fedorenko, McDermott, Norman-Haignere, & Kanwisher, 

2012; Foster & Zatorre, 2009; Koelsch, 2011; Lee et al., 2011; Platel et al., 1997; 

Schwenzer & Mathiak, 2011). Temporal information is processed in superior temporal 

cortices, cerebellum, basal ganglia, premotor, and supplementary motor areas, 

supramarginal gyrus, and middle frontal gyrus (Bengtsson et al., 20009; Fedorenko et al., 

2012; Grahn & Brett, 2009; Koelsch, 2011; Thaut, Trimarchi, & Parsons, 2014; Toiviainen, 

Alluri, Brattico, Wallentin, & Vuust, 2014; Zatorre, Chen, & Penhune, 2007). The insula is 

concerned with emotional music perception and processing of musical meaning (Bamiou, 

Musiek, & Luxon, 2003; LaCroix, Diaz, & Rogalsky, 2015; Thaut et al., 2014). Passive 

listening to music recruits bilateral and lateralized brain regions including frontal areas 

(inferior and medial frontal gyri), insula, pre- and postcentral gyri, and inferior parietal 

lobule, apart from temporal regions (LaCroix, Diaz, & Rogalsky, 2015). On the other hand, 

attentive listening to music engages a network of frontal, temporal, and parietal regions. 

Apart from music processing, this network is usually involved in domain-generalized 

attention and working memory (Janata, Tillmann, & Bharucha, 2002).   
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Damage to this music perception network can lead to a disorder known as amusia. 

Reported cases presented lesions in superior and middle temporal gyri, the insula, inferior 

parietal lobule or frontal areas (Ayotte, Peretz, Rousseau, Bard, & Bojanowski, 2000; Botez 

& Wertheim, 1959; DiPietro et al., 2004; Eustache, Lechevalier, Viader, & Lambert, 1990; 

Griffiths, 1997; Hochman & Abrams, 2014; Johkura, Matsumoto, Hasegawa, & Kuroiwa, 

1998; Liegéois-Chauvel, Peretz, Babaï, Laguitton, & Chauvel, 1998; Mendez & Geehan, 

1988; Patel, Peretz, Tramo, & Labreque, 1998; Peretz et al., 1994; Piccirilli et al., 2000; 

Satoh et al., 2005; Steinke, Cuddy, & Jakobson, 2001).  

When comparing regions belonging to the healthy music perception network and reported 

lesions, one can notice that these areas do not always match. One reason for this 

discrepancy may be that the model for music processing has been developed for young 

healthy people, but stroke patients are usually older (above 40 years). Therefore, the 

question arises whether older people recruit other or more/less areas for the processing 

of musical input than young people do. If this is the case the model for music perception 

has to be broadened for older populations and the list of cerebral regions leading to 

amusia when damaged has to be extended.  

Previous research on aging – not specifically concerned with music perception – identified 

brain regions which present less activity (temporal areas) or ‘over-recruitment’ (frontal 

and parietal areas) in older subjects compared to young controls. Other studies found a 

decreased lateralization in prefrontal areas in older participants (Cabeza, 2002). This 

increased activation can be compensatory or a sign of inefficiency and is usually seen in 

memory but also perceptual tasks (Grady, 2008). Especially in networks of brain regions 

effects of aging, namely reduced function or efficiency of the network, or compensatory 

recruitment of additional brain regions, were highlighted (Cabeza, 2002; Grady, 2008). 

Age-related structural and vascular changes may contribute to differences obtained in 

fMRI studies, but the full extent remains to be determined (Grady, 2012; Raz, 2000).  

As aging effects are usually seen in temporal, frontal, and parietal areas, and these areas 

are involved in processing musical input, it seems to be of interest to explore the music 

perception network in healthy elderly people. Specifically, the aim of the present study 

was to determine if older adults present a similar or a different pattern of activation for 

music perception than young people. First attempts to compare music processing in young 

and older volunteers were conducted by Sikka and colleagues (2015). They compared the 

recognition of familiar melodies in young versus older healthy participants and found 

higher activation in the left superior temporal gyrus for young participants and higher 

activation in left superior frontal, left angular, and bilateral superior parietal regions for 
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older adults. To our best knowledge, no other study has explored music perception in 

healthy elderly people so far.  

In contrast to the study by Sikka and colleagues in which an active memory task was 

required we focused on the question whether or not already passive listening to music 

engages other cortical regions in the elderly population than in young people. We present 

an exploratory study and describe the brain activation obtained during the holistic 

perception of the musical stimulus comparable to everyday music listening without any 

further demands in attention and working memory. The obtained activation pattern was 

compared to brain regions found for music processing in a younger sample presented in 

the literature (LaCroix, Diaz, & Rogalsky, 2015).  

Based on previous work we hypothesized to find many different activated regions in 

temporal, frontal, and parietal areas. We expected bilateral activation in superior, middle 

and transverse temporal gyri, the medial frontal gyrus, insula, pre- and postcentral gyri, 

and inferior parietal lobule, and left-lateralized inferior frontal activation in response to a 

passive viewing task (LaCroix, Diaz, & Rogalsky, 2015). Apart from that we hypothesized 

to find a decreased lateralization in older adults (Cabeza, 2002) and increased recruitment 

of frontal and parietal areas (Grady, 2008; Sikka, Cuddy, Johnsrude, & Vanstone, 2015). 

8.2 Material	and	Methods	

8.2.1 Ethical	Approval	

This study was approved by the local ethics committee of the University of Bremen. 

Participants were informed about the aim and procedure of the experiment and had to 

sign a written consent form according to the Declaration of Helsinki. They were free to 

withdraw from the study at any time and they were paid for participation. 

8.2.2 Participants	

Twenty healthy people within the age range of 47 to 73 years and a mean age of 58.1 

(±8.6) years participated in this study. All participants were native German speakers and 

right-handed. Exclusion criteria for participants were previous neurological, psychiatric or 

ophthalmological disorders, and auditory defects. 

8.2.3 Stimuli	

Stimuli consisted of twenty-four stimulation sequences taken from a German Musical song 

(Musical Elisabeth, Song: ‘So wie du’; DVD Live aus dem Theater an der Wien, 2005). Six 

video sequences were taken from this song and each was presented four times (four 

conditions): unimodal visual presentation, unimodal auditory presentation, bimodal 
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synchronous visual and auditory presentation, and bimodal asynchronous visual and 

auditory presentation with the visual being 560ms ahead of the auditory presentation. 

Only unimodal auditory stimulation is evaluated here.  

For the presentation of auditory stimuli participants wore MR compatible headphones 

(CONFON HP-SC 02, MR confon GmbH, Germany) for the whole measurement session. 

Contact with the participant was possible via the headphones as well. Visual stimuli were 

presented by a projector (DLA-G15E, JVC Professional, Japan) retrofitted with a custom 

lens on a screen which was positioned behind the scanner at a distance of 140cm from eye 

to screen. Participants were able to look at this screen via a mirror which was attached to 

the head coil. Image size for visual stimulation was adjusted to 9.72° x 6.92° of visual angle 

and the videos were presented centrally.  

A fixation dot was presented on grey background during auditory only presentation 

(green fixation point) and during the rest condition (red fixation point). Participants were 

instructed to fixate on the fixation point whenever it was present (rest and auditory 

condition) and to freely watch visual stimuli (video sequences). The participants lay in the 

scanner with lights off and no response or interaction was expected. 

8.2.4 Data	Acquisition	

We used a 3T whole-body Siemens Magnetom Skyra MRI machine with a 20 channel 

receive only head coil for scanning. All participants conducted one functional run, a T1-

weighted anatomical scan and a T2-weighted anatomical scan in one session 

(approximately 30 minutes scanning time). Functional images were acquired using an 

interleaved and ascending echo-planar imaging (EPI) sequence (TR = 2500 ms, TE = 30 

ms, flip angle = 83°, slice thickness 3mm, 46 slices, 192x192 mm2). Structural images were 

acquired with a 3-D T1-weighted sequence (MP-RAGE, TR = 1900, TE = 2.07, flip angle = 

9°, slice thickness 1mm, 176 sagittal slices). The T2-weighted images were collected to 

screen for structural abnormalities in the participants (TR = 4280 ms, TE = 9.4 ms, flip 

angle = 120°, slice thickness 3mm, 40 slices). 

8.2.5 Experimental	Procedure	

Each participant performed one functional run of twelve minutes. The run consisted of 

twenty-four stimulation sequences (consisting of different conditions) with a duration of 

20 seconds each, presented alternating with a 10 second resting condition. Before the 

experiment the participants completed a practice trial in which all conditions were 

presented by sequences taken from another song from the same Musical. The practice trial 

lasted for one minute (4 times 10 seconds stimulation and 4 times 5 seconds rest 

condition). 
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We used an eye-tracking system to control fixation and eye movements of the participants. 

One eye was recorded via the mirror above the participant’s head during the whole 

measurement. Eye tracking data acquisition and stimuli presentation was achieved by in-

house software based on Matlab (Matlab 2013a, The MathWorks, Inc., USA). 

8.2.6 Data	Analysis	

The Statistical Parametric Mapping software package (SPM8, Welcome Department of 

Imaging Neuroscience, London, UK) based on Matlab served to analyze the imaging data. 

Preprocessing of each dataset included slice-timing offset correction, realignment 

estimation, normalization to the Montreal Neurological Institute (MNI) stereotactic space, 

and Gaussian smoothing to decrease variability between subjects and maximize overlap 

(full width half maximum = 8mm) 

In the first level analysis, a temporal high pass filter (128s) was applied and head 

movement parameters were entered as regressors. Each condition was individually 

modeled by the canonical hemodynamic response function. One contrast was computed 

for every participant: auditory stimulation versus rest. Statistical threshold was set to 

p<0.001 (uncorrected).  

A second-level random-effects analysis was computed including all participants. MNI 

coordinates for peak activations of the group analysis were extracted from the SPM 

statistics output and were transformed into Talairach coordinates.  

Apart from this we performed an individual voxel-based analysis for every participant. For 

that aim we extracted the number of activated voxels per region from the SPM statistics 

output for the first-level analysis of every participant. The extracted numbers of activated 

voxels in each anatomical brain region were used for further statistical comparison of 

activation across the different lobes and the two hemispheres. The activation which was 

obtained only in the individual analysis, and not in the second-level group analysis, was 

inspected for individual differences (general activation of that region and location of 

activation in that region). Additionally, the activation obtained for different anatomical 

regions (e.g. inferior frontal gyrus) was investigated in detail to determine in which 

functional areas the activation was located (e.g. Broca’s area).  

This statistical analysis of individual voxel-based results was performed using SPSS (IBM 

SPSS Statistics 23). Paired t-Tests were used to compare the number of activated voxels 

for the two hemispheres. 
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8.3 Results	

8.3.1 Group	Analysis	

A second-level random effects analysis of twenty participants (p<0.001 uncorrected) was 

computed in SPM (Figure 8.1). Activation occurred in the temporal, parietal, and frontal 

lobes. There was no BOLD signal change in occipital areas.  

 

Figure	8.1: Group analysis for the contrast auditory > rest condition. 

A detailed overview of peak activations is presented in Table 8.1. Middle and inferior 

frontal gyri as well as transverse temporal gyrus show activations only in the left 

hemisphere. The middle temporal gyrus shows activation only in the right hemisphere. 
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Table	8.1: Anatomical regions, Hemisphere, T-statistics (T) and Talairach coordinates (Tal) for contrast 

auditory > rest conditon 

Anatomical Region Hemisphere T Tal-x Tal-y Tal-z 

Precentral Gyrus L 5.4 -61 -3 11 

Precentral Gyrus L 6.2 -51 -9 47 

Precentral Gyrus R 6.2 53 0 42 

Middle Frontal Gyrus L 4.7 -46 1 50 

Inferior Frontal Gyrus L 5 -51 25 -1 

Inferior Frontal Gyrus L 3.9 -42 31 -7 

Inferior Frontal Gyrus L 4 -48 18 19 

Inferior Frontal Gyrus L 3.6 -53 11 20 

between Superior and Medial Frontal Gyrus R 7.1 2 3 64 

Superior Temporal Gyrus L 18.1 -51 -16 1 

Superior Temporal Gyrus L 17.1 -65 -23 3 

Superior Temporal Gyrus L 13.5 -44 -21 5 

Superior Temporal Gyrus L 9.4 -50 -1 -10 

Superior Temporal Gyrus L 9.3 -57 -30 14 

Superior Temporal Gyrus R 19.3 51 -23 9 

Superior Temporal Gyrus R 14.8 63 -15 6 

Superior Temporal Gyrus R 9 57 0 0 

Superior Temporal Gyrus R 8.6 50 3 -12 

Middle Temporal Gyrus R 14 63 -20 -4 

Middle Temporal Gyrus R 11.4 59 -6 -8 

Transverse Temporal Gyrus L 12.3 -42 -31 11 

Midbrain L 4.4 -14 -25 -4 

between Culmen, Midbrain, Cerebellar Lingual, 

Midbrain, and Cerebellar Lingual 

B 3.7 0 -39 -5 

8.3.2 Voxel-based	Analysis	

In order to explore individual activation patterns in this group a single subject analysis 

was conducted for every participant and the number of activated voxels per region were 

extracted from the SPM statistics output.  

An overview over the number of activated voxels across participants can be seen in Tables 

8.2 (left hemispheric voxels) and 8.3 (right hemispheric voxels). Activation of the occipital 

lobe and subcortical structures was minor and therefore these were excluded from further 

analysis. Precentral and postcentral gyri, as well as superior, middle, and transverse 

temporal gyri and the left insula showed activated voxels in all twenty participants. 

Superior parietal lobule, paracentral lobule, and angular gyrus showed no activation. 

Highest values were obtained for the precentral and inferior frontal gyri in the frontal 

lobe. The highest values in the parietal lobe were obtained for the postcentral gyrus and 

inferior parietal lobule. In the temporal lobe the highest values were obtained from the 

superior temporal and transverse temporal gyri. The insula showed a very high activation 

as well (approximately same amount of activated voxels as in the precentral gyrus). 



 

Table	8.2: Number of activated voxels for all participants and brain regions for the left hemisphere 

Anatomical region 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean 

Precentral Gyrus 201 338 412 472 352 23 154 332 180 323 149 453 539 109 17 478 410 762 283 319 315 .3 

Superior Frontal 

Gyrus 
103 83 21 42 5 0 0 0 32 18 0 0 31 29 0 60 44 67 0 54 29 .45 

Medial Frontal 

Gyrus 
17 78 39 6 5 0 0 0 0 23 0 0 86 109 0 33 29 42 0 85 27 .6 

Middle Frontal 

Gyrus 
85 154 0 353 133 0 20 31 98 132 0 86 8 308 0 15 6 110 29 170 86 .9 

Inferior Frontal 

Gyrus 
639 270 59 296 108 0 0 333 204 577 8 569 456 76 0 229 384 788 73 144 260 .65 

Postcentral Gyrus 77 272 169 235 88 75 307 231 311 39 196 233 420 74 179 84 106 639 279 214 211 .4 

Inferior Parietal 

Lobule 
260 237 253 247 21 117 322 109 75 21 115 153 141 0 13 0 0 671 31 154 147 

Supramarginal 

Gyrus 
11 34 31 286 7 15 0 0 0 4 0 66 5 0 22 0 0 273 0 0 37 .7 

Precuneus  59 34 0 13 0 0 0 0 0 39 19 0 5 0 0 0 0 0 0 0 8 .45 

Superior Temporal 

Gyrus 
2184 2100 2899 2413 2056 1672 2290 2823 2489 2762 2077 2779 2624 1382 1719 1986 2060 2599 2078 2241 2261 .65 

Middle Temporal 

Gyrus 
959 891 1210 1340 1812 437 402 1307 1361 1631 896 1963 2393 839 147 1776 1877 1092 424 801 1177 .9 

Inferior Temporal 

Gyrus 
0 2 33 40 48 0 0 7 22 2 18 76 241 0 0 96 77 25 0 0 34 .35 

Transverse 

Temporal Gyrus 
212 222 197 213 185 158 210 203 214 168 193 200 212 146 161 197 209 237 208 223 198 .4 

Insula 341 404 538 412 144 76 360 440 488 141 229 309 388 5 62 127 126 483 657 479 310 .45 

 

  



 

Table	8.3: Number of activated voxels for all participants and brain regions for the right hemisphere 

Anatomical region 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean 

Precentral Gyrus 309 285 242 288 67 3 239 329 214 215 137 293 351 314 131 370 321 528 247 189 253 .6 

Superior Frontal 

Gyrus 
36 57 88 19 0 0 16 0 0 3 0 0 41 35 0 12 9 43 0 67 21 .3 

Medial Frontal Gyrus 0 1 56 16 0 0 0 0 0 12 0 0 41 49 0 32 0 28 0 36 13 .55 

Middle Frontal Gyrus 123 216 42 157 88 0 61 30 177 253 0 219 19 86 1 6 3 170 8 200 92 .95 

Inferior Frontal 

Gyrus 
145 303 69 0 4 0 46 213 299 271 0 249 651 37 0 125 430 248 193 451 186 .7 

Postcentral Gyrus 263 200 146 321 31 24 237 125 178 228 182 369 134 104 68 95 72 531 161 86 177 .75 

Inferior Parietal 

Lobule 
306 20 0 48 0 8 3 204 0 29 86 86 145 4 143 82 0 202 1 18 69 .25 

Supramarginal Gyrus 31 0 0 0 0 0 0 2 0 0 0 0 49 0 12 0 0 6 0 0 5 

Precuneus 0 40 0 0 2 0 0 0 0 0 0 0 8 0 0 0 0 0 1 0 2 .55 

Superior Temporal 

Gyrus 
2123 

202

2 
2782 1991 1665 980 2081 2845 2074 2333 1213 2549 2707 1277 1637 2355 2214 2720 2025 2119 2085 .6 

Middle Temporal 

Gyrus 
679 837 1390 838 1565 804 691 1431 1023 1560 683 1334 2387 1085 40 1525 1497 902 616 950 1091 .85 

Inferior Temporal 

Gyrus 
0 54 111 0 35 0 11 40 0 47 7 1 143 0 0 26 17 1 0 0 24 .65 

Transverse Temporal 

Gyrus 
190 161 159 193 104 78 196 208 211 175 131 203 205 109 198 207 185 211 186 205 175 .75 

Insula 591 347 346 146 133 4 415 424 450 206 30 549 331 0 172 88 182 478 384 308 279 .2 
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Comparison between Hemispheres 

The number of activated voxels across hemispheres was compared for every brain region 

with a two-tailed paired t-test (Tables 8.2 and 8.3). Five brain regions showed significant 

differences between the two hemispheres (Figure 8.2). For all of them the left hemisphere 

presented a higher number of activated voxels than the right hemisphere. The precentral 

gyrus (p=0.044), medial frontal gyrus (p=0.021), inferior parietal lobule (p=0.032), 

superior temporal gyrus (p=0.015), and transverse temporal gyrus (p=0.004) were the 

brain regions with significant differences in activated voxels across both hemispheres. 

Inspection of the individual lateralization revealed that not all participants presented a left 

lateralization, but some displayed a right lateralization in: precentral gyrus (5), medial 

frontal gyrus (2), inferior parietal lobule (7), superior temporal gyrus (5) and transverse 

temporal gyrus (5). As only half of the participants showed activation in the medial frontal 

gyrus, the lateralization is not as strong as in the other regions (also apparent in figure 2). 

Although seven participants showed a lateralization to the right inferior parietal lobule, 

differences however were small in that direction (mean value for right lateralization of 

about 50 voxels) whereas lateralization to the left for the remaining participants was 

strong (mean value of left lateralization of about 160 voxels).   
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Figure	8.2: Significant differences in the number of activated voxels across both hemispheres for the contrast 

auditory > rest (p<0.05). Mean values activated voxels ± standard error of the mean are presented for both 

hemispheres separately. 

Comparison of the different lobes 

The number of activated voxels was calculated for every lobe in order to compare the 

different lobes with each other (only frontal, parietal, and temporal considered). An 

overview of the individual voxel-based results for each lobe can be seen in Figure 8.3. The 

frontal lobe included precentral gyrus, superior, medial, middle, and inferior frontal gyrus. 

Activation pattern in the parietal lobe consisted of voxels in the postcentral gyrus, inferior 

parietal lobule, supramarginal gyrus, and precuneus. Temporal lobe values were summed 

up over superior, middle, inferior, and transverse temporal gyri, and the insula. The 

number of activated voxels in the frontal lobe was 1288, while it was 659 in the parietal 

lobe and 7640 for the temporal lobe.  
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Figure	8.3: Number of activated voxels in frontal, parietal and temporal lobes for each participant. The black 

bars present the mean values for each lobe across all participants. 

8.4 Discussion	

This study was carried out in order to investigate the BOLD signal in healthy elderly 

participants in response to musical stimulation and to compare it with findings from the 

literature about the music perception network in young people. Additionally, individual 

voxel-based results served to explore the contribution of the different hemispheres and 

lobes to the processing of the musical input. 

8.4.1 General	Discussion	

Generally, the activation pattern we obtained was distributed throughout temporal, 

frontal, and parietal areas, in line with previous research (Fedorenko, McDermott, 

Norman-Haignere, & Kanwisher, 2012; Foster & Zatorre, 2009; Koelsch, 2011; Lee et al., 

2011; Platel et al., 1997; Schwenzer & Mathiak, 2011).  

Activation in superior, middle, and transverse temporal gyri, the medial frontal gyrus, 

insula, pre- and postcentral gyri, and inferior parietal lobule may be attributed to the 

auditory and musical aspects of the presented material (LaCroix, Diaz, & Rogalsky, 2015). 

Other frontal areas may have been involved in attention, working memory, and other 
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executive functions which the participants may have engaged in during the passive 

listening task (and which we cannot exclude) (Janata, Tillmann, & Bharucha, 2002; 

LaCroix, Diaz, & Rogalsky, 2015; Platel et al., 1997). 

Temporal activation 

The processing of general auditory information and also musical input like pitch or timbre 

is accomplished by primary and secondary auditory cortices (Koelsch, 2011; Stewart et al., 

2006; Stewart et al., 2008). The primary and secondary auditory cortices are located in the 

medial part of the Heschl’s gyrus, which can be found in the superior temporal cortex. 

Areas right anterior and posterior to Heschl’s gyrus in the superior temporal gyrus are 

also involved in melodic processing (Farbood, Heeger, Marcus, Hasson & Lerner, 2015). 

The planum temporale – which lies posterior to Heschl’s gyrus – is responsible for melody 

and rhythm formation and grouping while the cognitive analysis of melodies is achieved 

by frontal areas (Koelsch, 2011; Clark, Golden, & Warren, 2015). Thus, the perception of 

single pitches and the grouping of tones to a melody are accomplished by temporal areas.  

Insula activation was visible in all participants but one. The insula is involved in auditory 

processing as well, especially in terms of musical input and emotional music perception, 

but also in detecting irregular chords (Bamiou, Musiek, & Luxon, 2003; LaCroix, Diaz, & 

Rogalsky, 2015; Koelsch et al., 2005).  

Frontal activation 

Activation in the inferior frontal gyrus may be attributed to the verbal part of the musical 

stimulus, as we used a German song. Parts of Brodmann area 47 were activated in the 

group analysis, with some overlap with Broca’s area for individual activations. Brodmann 

area 47 seems to be engaged in analyzing syntax and temporal order of music, as a melody 

evolves over time (Farbood, Heeger, Marcus, Hasson, & Lerner, 2015; Levitin & Menon, 

2003; Vuust, Roepstorff, Wallentin, Mouridsen, & Østergaard, 2006). Parts of both Broca’s 

and Wernicke’s areas and their right homologues were activated, this might not only be 

due to speech comprehension of the German Musical, but also because they may have been 

involved in processing some basic musical features as well, e.g. syntax of the melody 

(Abrams et al., 2011; Maess, Koelsch, Gunter, & Friederici, 2001). 

Parietal activation 

Parts of the precentral gyrus, primary and supplementary motor areas were also 

activated. It is important to note that parietal activation became only visible in the 

individual voxel-based analysis and not at the group level. Although most of the 
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participants showed activated voxels, these voxels may not have overlapped sufficiently to 

become significant in the group analysis. Thus, in the individual voxel-based analysis we 

saw additional activation in the postcentral gyrus, the inferior parietal lobule, and the 

supramarginal gyrus. The primary and supplementary motor areas and supramarginal 

gyrus are involved in rhythm and beat perception (Bengtsson et al., 20009; Fedorenko et 

al., 2012; Grahn & Brett, 2009; Koelsch, 2011; Thaut, Trimarchi, & Parsons, 2014; 

Toiviainen, Alluri, Brattico, Wallentin, & Vuust, 2014; Zatorre, Chen, & Penhune, 2007). 

Possibly some participants paid attention to the beat, or subconsciously processed the 

underlying beat and rhythm of the song, while others did not. Otherwise some of them 

may have covertly tapped with their finger/hand/foot according to the beat, which may 

have not been the same finger/body part for every participant and hence no sufficient 

overlap appeared in the group analysis.  

The inferior parietal lobule is concerned with contour perception (Diaz, & Rogalsky, 2015; 

Thaut, Trimarchi, & Parsons, 2014). Participants may have perceived the overall contour 

of the different melodic parts that were presented for short sequences of 20 seconds, 

enough time to follow the rhythm, melody and contour of that song. 

Minor precuneus activation was seen in some participants, possibly because they 

visualized the musical scene which they were familiar with from the visual and bimodal 

conditions (which were not analyzed in this context), or used executive functions, or 

working memory. However, the precuneus is also involved in music processing (e.g. pitch 

and contour) which is highly connected to the other functions (Cavanna & Trimble, 2006; 

Platel et al., 1997).  

Additionally, pre- and postcentral gyri showed activated voxels in every participant, while 

all other areas in frontal and parietal regions did not. Thus, pre- and postcentral gyri seem 

to be important in processing the musical input in our study, as they showed robust 

activation for all individuals. Young participants showed activation in these areas during 

passive music listening as well (LaCroix, Diaz, & Rogalsky, 2015). 

8.4.2 Lateralization	and	Contribution	of	the	Lobes	

The second-level group analysis showed a left lateralization for middle and inferior frontal 

gyri, and the transverse temporal gyrus, while a right lateralization was seen for the 

middle temporal gyrus (table 1, Figure 1). A closer look at the individual voxel-based 

analysis partly reflected the results: significantly more activated voxels were found in five 

regions of the left hemisphere compared to the right hemisphere: Precentral and medial 

frontal gyri, inferior parietal lobule, superior, and transverse temporal gyri (Figure 2).  
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Temporal lobe activation was highest in our paradigm. Superior, middle, and transverse 

temporal gyri showed robust activation in every participant. Thus, most of the processing 

work is done in the temporal lobe due to basic encoding of music properties like pitch but 

also melodic and rhythmic grouping (Koelsch, 2011). Frontal areas play a major role, 

although no active task was required in our experiment. Activation was seen in almost all 

individuals and a high amount of voxels in the frontal lobe was activated. This may partly 

result from the fact that frontal areas are the preferred projection fields of temporal areas 

(Platel et al., 1997) and many frontal areas are involved in processing musical input. Thus, 

higher cognitive analysis of the musical input (concerning music, language, attention or 

working memory) took definitely place. Interestingly, also some parietal areas make a 

major contribution to the processing of the musical input, although other parietal areas 

were not activated at all (these were superior parietal lobule, paracentral lobule, and 

angular gyrus). The highest number of activated voxels was obtained for the precentral 

and inferior frontal gyri in the frontal lobe; for the postcentral gyrus and inferior parietal 

lobule in the parietal lobe; and for the superior temporal and transverse temporal gyri in 

the temporal lobe. Most of these areas showed lateralization effects in the second-level 

analysis or in the individual voxel-based analysis. Thus, highest contributions to the 

processing of the musical input arise from left lateralized brain regions in frontal, parietal, 

and most importantly temporal areas.  

Lateralization issues have always been under debate, because some studies find 

lateralization effects of specific functions for music processing, while others do not (Alossa 

& Castelli, 2008; García-Casares et al., 2013; Johnsrude, Penhune, & Zatorre, 2000; Stewart 

et al., 2006). Mostly the right hemisphere was thought to be involved in music perception, 

suggested to be a counterpart for left lateralized speech perception (LaCroix, Diaz, & 

Rogalsky, 2015), although substantial overlaps between music and speech perception 

were identified as well (Fadiga, Craighero, & D'Ausilio, 2009; Fedorenko, Patel, Casasanto, 

Winawer, & Gibson, 2009; Koelsch, 2011; Peretz, Vuvan, Lagrois, & Armony, 2015). Left 

lateralization of prefrontal and inferior frontal areas in our study may partly be due to the 

verbal material we used and the fact that all participants were right-handed (thus possible 

covert tapping to the beat may have occurred for right body parts). But we do not only find 

this lateralization for areas engaged in speech perception. Although we cannot disentangle 

speech from music perception in this paradigm, the left lateralization for many regions in 

temporal, parietal, and frontal areas speaks for a specific music-related lateralization 

correlated beyond the processing of the verbal material.  
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8.4.3 Differences	between	elderly	and	young	people	

Sikka and colleagues found higher activation in the left superior temporal gyrus for young 

participants and higher activation in left superior frontal, left angular, and bilateral 

superior parietal regions for older adults (Sikka, Cuddy, Johnsrude, & Vanstone, 2015). We 

did not find angular and superior parietal activation at all and only minor superior frontal 

activation. This may partly result from the different task we applied (passive listening 

versus melody recognition). Our task was supposed to activate the inferior frontal gyrus 

bilaterally, left medial frontal gyrus, right middle frontal gyrus, bilateral insula, right pre- 

and bilateral postcentral gyri, and left inferior parietal lobule (LaCroix, Diaz & Rogalsky, 

2015). Our results show a shift to the left hemisphere for prefrontal, inferior, and middle 

frontal gyri. All other regions are in accordance with right/left/bilateral activation in the 

literature. Thus, we definitely see a higher engagement in left frontal areas (Grady, 2008). 

However, we saw an increased lateralization in our task and participants although we 

expected a decreased lateralization in older adults.  

Whether or not the high engagement of frontal areas differs significantly from that of 

healthy young participants cannot be resolved at this stage. Additionally, the question 

whether or not differences between young and old adults arise because of differences in 

experience and in evoked associations (which is definitely higher in the older population) 

or due to other functional mechanisms cannot be solved yet. The absence of decreased 

lateralization can be explained by our easy task. Due to the choice of the passive listening 

task no compensational mechanisms may have been needed, but it could also be the case 

that for the pure perception of music elderly people do not need to make use of 

compensatory mechanisms at all. Additionally, other reorganization principles may 

underlie the perception of music in elderly people not comparable to other cognitive 

functions we have been explored so far. Future studies may resolve this issue by applying 

varying task demands for young and elderly people and evaluate behavior as well as the 

BOLD signal during the different tasks. 

8.4.4 Conclusion	

We conclude that the applied method (especially individual voxel-based analysis) is a very 

appropriate way to detect contributions of different brain areas in each hemisphere to a 

specific task. This is particularly interesting because individual differences in the 

representation of music perception exist (Schuppert et al., 2000; Toivianinen, Alluri, 

Brattico, Wallentin, & Vuust, 2014) and because music perception is accomplished by a 

widely distributed network which needs to be further specified. Our results show that 

highest contributions to the processing of musical input during passive listening result 

from left lateralized activation in frontal, parietal, and temporal brain regions. Temporal 
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activation was highest, followed by frontal and parietal activation. Pre- and postcentral 

regions seem to play a major role in this task. Furthermore, an increased lateralization and 

high engagement of frontal areas is seen in elderly participants compared to the activation 

in young people presented in the literature. These results can be seen as an 

encouragement for further research into the fascinating and highly complex topic of music 

perception. 
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“Music does not just express static emotions or 

affects such as nobility or gloom. It moves from 

one state to another in kaleidoscopic patterns of 

tension and attraction that words cannot begin 

to describe adequately.” 

 

Ray Jackendoff & Fred Lerdahl 
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9. Discussion	

The objective of the current dissertation was twofold: investigations of ‘amusia’ and its 

effects on other functions and areas of the brain with behavioral testing and fMRI. The first 

manuscript entitled “Musical, visual and cognitive deficits after middle cerebral artery 

infarction” dealt with the behavioral assessment and investigated the relationship of 

amusia, visual, and cognitive deficits. The second manuscript “Amusia after stroke – an 

fMRI study” included fMRI measurements and explored changes in brain activation 

resulting from stroke and amusia. The third manuscript “Lateralization of music 

perception in healthy elderly people – an fMRI study” explored the fMRI activation pattern 

in healthy elderly participants.  

Results of these experiments are presented and discussed in the following sections. 

However, a theoretical update about music perception literature is given first. The last 

chapter provides an integration of literature and results obtained within this dissertation, 

in addition to suggestions for future research.  

9.1 General	Discussion	

Having a closer look at the literature and areas that are found to be involved in music 

perception, one recognizes that almost all temporal, frontal, and parietal regions besides 

some subcortical structures are involved. Much of this work was published within the last 

three years (when the dissertation project had already started), especially involving the 

suggestions for the music processing model (Clark, Golden, & Warren, 2015; García-

Casares et al., 2013). It is not the scope of the present thesis to elaborate on all brain 

regions found to be involved in music processing in the specific literature because the 

focus of this dissertation is on amusia and related implications. However, the main 

findings have been clearly summarized and are presented in the following:   

• Inferior	 frontal	 gyrus: Pitch and harmony perception (Koelsch et al., 2005; 

LaCroix, Diaz, & Rogalsky, 2015; Peretz, Vuvan, Lagrois, & Armony, 2015; Platel, 

1997); Rhythm perception (Thaut et al., 2014); Both auditory and visual object 

semantic material (Adams & Janata, 2002) 

• Medial	 frontal	 gyrus: Passive listening to music (LaCroix, Diaz, & Rogalsky, 

2015); Rhythm perception (Thaut et al., 2014); Musical memory (Platel, Baron, 

Desgranges, Bernard, & Eustache, 2003) 

• Middle	frontal	gyrus: Rhythm perception (Thaut et al., 2014) 
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• Superior	 frontal	gyrus: Musical memory (Platel, Baron, Desgranges, Bernard, & 

Eustache, 2003) 

• Precental	gyrus: Musical structure (Fedorenko et al., 2012; Koelsch et al., 2005); 

Rhythm perception (Bengtsson et al., 2009; Grahn & Brett, 2009; Thaut et al., 

2014; Zatorre, Chen, & Penhune, 2007); Passive listening to music (LaCroix, Diaz, & 

Rogalsky, 2015) 

• Postcentral	gyrus: Musical structure (Fedorenko et al., 2012); Rhythm perception 

(Bengtsson et al., 2009; Thaut et al., 2014; Grahn & Brett, 2009; Zatorre, Chen, & 

Penhune, 2007); Passive listening to music (LaCroix, Diaz & Rogalsky, 2015) 

• Precuneus: Pitch and harmony detection (Cavanna & Trimble, 2006; Platel, 1997; 

Thaut et al., 2014); Musical memory (Platel et al., 2003) 

• Insula: Auditory processing, especially with musical input; musical meaning and 

emotional music perception (Bamiou, Musiek, & Luxon, 2003; LaCroix, Diaz, & 

Rogalsky, 2015; Koelsch et al., 2005; Thaut et al., 2014) 

• Supramarginal	gyrus: Musical meaning and emotional music perception (Koelsch 

et al., 2005); Rhythm perception (Thaut et al., 2014) 

• Angular	gyrus: Musical memory (Platel et al., 2003) 

• Inferior	 parietal	 lobule: Contour perception (LaCroix, Diaz, & Rogalsky, 2015; 

Lee et al., 2011; Thaut et al., 2014) 

• Superior	 parietal	 lobule: Auditory spatial and attentional functions, pitch 

perception (Gaab et al., 2003) 

• Intraparietal	 sulcus: Pitch perception (Foster & Zatorre, 2009; Schwenzer & 

Mathiak, 2011) 

• Superior	 temporal	 areas: Musical meaning and emotional music perception, 

contour and rhythm perception (Fedorenko et al., 2012; Koelsch et al., 2005; 

Koelsch et al., 2011; Lee et al., 2011; Platel, 1997; Schwenzer & Mathiak, 2011; 

Stewart et al., 2008; Thaut et al., 2014; Toiviainen, Alluri, Brattico, Wallentin, & 

Vuust, 2014) 

• Middle	 temporal	 gyrus: Musical structure (Fedorenko et al., 2012); Rhythm 

perception (Thaut et al., 2014); Musical memory (Platel et al., 2003) 

• Transverse	temporal	gyrus: Rhythm perception (Thaut et al., 2014) 

• Basal	ganglia: Rhythm perception (Grahn & Brett, 2009; Zatorre et al., 2007) 

• Cerebellum: Rhythm perception (Bengtsson et al., 2009; Grahn & Brett, 2009; 

Thaut et al., 2014; Toiviainen, Alluri, Brattico, Wallentin, & Vuust, 2014; Zatorre, 

Chen, & Penhune, 2007) 
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In addition to the above listed publications it is worth to point out that human sounds and 

speech recruit a network of posterior superior temporal sulci, fronto-parietal regions, 

insula, and sub-cortical regions (Belin, Zatorre, Lafaille, Ahad, & Pike, 2000; Desai, 

Liebenthal, Waldron, & Binder, 2008; Engel, Frum, Puce, Walker, & Lewis, 2009; Lewis, 

Brefczynski, Phinney, Janik, & DeYoe, 2005; Lim, Fiez, & Holt, 2014). This temporal-

frontal-parietal network is usually involved in domain-general attention and working 

memory outside of music processing (Janata, Tillmann & Bharucha, 2002). This knowledge 

is further complicated by individual differences in the representation of music perception 

(Schuppert et al., 2000; Toivianinen, Alluri, Brattico, Wallentin, & Vuust, 2014).  

9.2 Behavioral	Measurements	

The key elements of the behavioral measurements were two subtests (scale and rhythm) 

from the MBEA. Additionally, a large battery of other cognitive and perceptual tests was 

conducted to find out whether amusia deficits are a) selective for musical input, b) better 

described by a general perceptual dysfunction, c) due to WM deficits, or d) the result of 

deficits in attention. For this aim a visual Gestalt perception test, a categorization task with 

four different modalities (auditory, visual, verbal, and nonverbal) and tests for WM and 

attention were applied to patients suffering from a stroke in the supply area of the middle 

cerebral artery.  

Full data were acquired for twenty stroke patients suffering small cerebral artery 

infarctions. In these investigations we found two amusic patients who did not present any 

other deficits. Other stroke patients with attention or WM deficits were not impaired in 

the MBEA. Additionally, lesion analysis showed small areas within the basal ganglia, 

namely putamen and globus pallidus, which seem to be involved in rhythm perception. We 

conclude that we found cases of ‘pure amusias’ with selective impairment in music 

perception induced by small lesions in the frontal lobe or basal ganglia. Minor deficits in 

WM or attention do not necessarily lead to low performances in the MBEA. Thus, relatively 

pronounced lesions are able to damage a specific music area responsible for a specific sub-

function within the music perception network. This area can be embedded in a brain 

region involved in other cognitive functions as well, i.e. large lesions of this region can lead 

to several different deficits, and it can be particularly small. Some regions in the brain are 

relatively large and complex, thus they can easily engage in more than one function or 

distinct processing network (Peretz, Vuvan, Lagrois & Armony, 2015). Therefore any 

particular form of ‘pure amusia’ is relatively rare (as can be seen by only two amusic 

patients found within a pool of twenty-five measured stroke patients) but cases of amusia 
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presenting a multifaceted picture of deficits (as presented in the literature) actually 

denote a form of ‘non-pure amusia’.    

 

In contrast to the literature, we were not able to identify many amusia patients (in the 

literature up to 60 % of the investigated stroke patients were classified as amusia 

patients) nor did we find correlated deficits in visual or cognitive functions in our stroke 

patients with amusia. Twenty-five patients were screened with the MBEA and only two 

presented deficits classified as being amusic. Thus, our original aim of differentiating 

between deficits in the MBEA according to a) musical deficits, b) attention deficits, c) WM 

deficits, and d) general perceptual deficits could not be addressed within this dissertation.  

A major reason for finding only two amusia patients could be the assessment of patients 

with small lesions. Previous studies investigated stroke patients with larger lesions than 

we did and it could be the case that these lesions damaged a large array of functions which 

are anatomically close but functionally distinct. This could explain why 1) many amusic 

patients and 2) amusic patients with other deficits in attention, memory, language, and 

visual perception were found in these studies (Särkämö et al., 2009a; Särkämö et al., 

2009b; Särkämö et al., 2010). Assessment of small lesions is advantageous and 

disadvantageous at the same time. The likelihood of finding damage in a brain area 

involved in music perception rises with exploring large lesions, but the likelihood of 

discovering other compromised functions increases as well Thus, the likelihood of finding 

amusia patients decreases with the assessment of small lesions, but enables a more 

precise localization of the neuronal correlate of the disorder.   

Another important aspect to keep in mind is to exclude that basic auditory deficits could 

also lead to low performance in the MBEA without being amusic per se. Särkämö et al. 

(2009a) found a significantly higher incidence of auditory cortex lesions in the amusia 

group but did not perform a test for basic auditory function (e.g. audiometry). Thus, it 

could not be excluded in their study that patients with general deficits in hearing acuity 

were falsely classified as being amusic. In order to rule out basic auditory deficits as a 

cause for low performance in the MBEA we applied audiometry in all our clinical 

investigations.   

A last reason why we did not find many amusia patients could be simply the fact that the 

investigated stroke patients did not have their lesions in the regions where musical input 

is being processed or that these lesions were too small to induce major deficits. Inclusion 

criteria for participating in investigations for this dissertation did not only address lesion 



Discussion and Conclusion   91 

location but also the general ability of the patient to participate in the applied tests 

(besides the willingness of the patient to participate of course). Thus, the well-being of the 

patient was always considered and let to exclusion of some of them due to increased 

stress. Within   the scope of this dissertation no further investigations were possible. 

9.3 Functional	Magnetic	Resonance	Imaging	

After release from the hospital, the stroke patients were invited to participate in an fMRI 

experiment at the University of Bremen to assess the BOLD signal of different brain 

regions in response to visual and auditory stimulation. The aim was to investigate in 

which brain areas amusic patients show an abnormal (increased or decreased) BOLD 

signal compared to other stroke patients and healthy controls.  

The comparison of amusic stroke patients, non-amusic stroke patients, and healthy 

controls yielded an interesting pattern of activation obtained from unimodal and bimodal 

visual and auditory stimulation. Pre- and postcentral gyri seem to be important in 

processing the musical input of our stimuli (German musical). Activation in temporal, 

occipital, fusiform, and postcentral gyri in response to unimodal stimulation was increased 

for stroke patients compared to healthy controls. On the other hand, bimodal stimulation 

led to decreased temporal, precentral, angular, occipital, and precuneus activation in 

stroke patients compared to healthy participants.  

Due to lesion sites and different BOLD signal characteristics for unimodal and bimodal 

stimulation, we conclude that higher levels of activation are a sign of compensation 

needed for the successful processing of unimodal information. Decreased activation can be 

found in damaged and nearby regions for bimodal activation during which information of 

the unaffected modality suffices for processing of the stimuli.  

One amusic stroke patient with rhythm perception deficit showed increased activation in 

frontal and parietal areas (including pre- and postcentral gyri) in response to unimodal 

auditory stimulation, which was significantly different from all other patients and 

participants. This activation dropped after six months, but activation in the inferior 

parietal lobule (IPL), supramarginal gyrus and insula were still higher than for the other 

participants. Musical abilities of this patient recovered after six months and changes in 

brain activation were found for both hemispheres. From the literature we know that 

rhythm perception is closely related to activation in supramarginal gyrus, premotor and 

supplementary motor areas, as well as precuneus, and IPL (Fedorenko et al., 2012; Grahn 

& Brett, 2009; Thaut et al., 2014; Zatorre, Chen, & Penhune, 2007). Within these areas 

distinct neural substrates process sub-elements of rhythm (like meter or beat) (Bengtsson 
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et al., 2009; Thaut et al., 2014). Additionally, there are anatomical connections between 

basal ganglia and IPL, frontal areas, and premotor and supplementary motor areas 

(Karnath et al., 2005; Ward et al., 2003).   

Thus, the initial recruitment of frontal and parietal areas could be a compensatory 

mechanism in response to musical input, also seen in other stroke patients compared to 

healthy controls for unimodal but not for bimodal stimulation. From the results of the re-

test after six months one may conclude that additional ‘rhythm perception areas’ are 

recruited efficiently now because no musical deficit can be observed. Our results highlight 

the connection of basal ganglia to supramarginal gyrus and IPL. These areas seem to work 

closely together, possibly undergoing similar tasks within the function of rhythm 

perception. Damage to any of these areas can cause deficits in the perception of rhythms, 

but the other areas may be able to take over the lost function and to re-establish the 

successful processing of rhythms. High insula activation was also seen in another amusic 

patient displaying melodic and rhythmic problems. Therefore, we conclude that the insula 

may play an important role in amusia in general – possibly due to the strange and 

unpleasant perception of music. 

 

As already mentioned in the introduction of this dissertation, the BOLD signal in stroke 

patients needs to be interpreted with caution. Several studies have shown that 

neurovascular coupling – the relationship between blood flow and oxygen concentration – 

can be changed in aging or disease and changes in the acquired BOLD signal were 

observed (Carusone et al., 2002; D’Esposito, Deouell, & Gazzaley, 2003; Fabiani et al., 

2014; Hamzei et al., 2003; Handwerker et al., 2012; Murata et al., 2006). Additionally, the 

stroke and the accompanied arterial deposits may alter the BOLD signal. But with careful 

inspection of the data, the BOLD signal can be an effective tool to investigate the brain 

function of stroke patients compared to healthy controls. The obtained results in this 

dissertation cannot be explained by a general abnormal neurovascular coupling due to 

several reasons. First, the increased signal was only obtained for one specific condition 

and not for all kinds of stimulations. Second, the signal was only increased in frontal and 

parietal regions, but not in temporal and occipital regions. Finally, recovery of the signal 

(approaching to a value of the healthy participants) was only present in a few regions but 

not in all regions which showed increased signal in the sub-acute stage. Based on the 

exploration of the results, these (careful) conclusions have been made.  
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The investigation of voxel based results for twenty elderly healthy participants showed 

that highest contribution to the processing of the musical input in our study came from left 

lateralized activations in the frontal (precentral and inferior frontal gyri), parietal 

(postcentral gyrus and inferior parietal lobule), and temporal lobe (superior temporal and 

transverse temporal gyri). Temporal activation was highest, followed by frontal and 

parietal activation. Again, pre- and postcentral regions seem to play a major role in this 

task as all participants showed activations in these areas. Additionally, an increased 

lateralization and high engagement of frontal areas was seen in elderly participants 

compared to activation in young volunteers presented in the literature. 

10. Conclusion	

The integration of the results obtained with behavioral and fMRI measurements enables to 

consider the deficit of acquired amusia in a broader context. In short, we find that deficits 

found in amusia can be selective and are not generally related to deficits in attention, WM 

or visual perception. Additionally, stroke in frontal areas and basal ganglia may induce 

amusia symptoms and changes in brain activation that accompany amusia are found in 

frontal and parietal lobes. Specifically, the IPL, the supramarginal gyrus, and the insula are 

important brain areas still showing differences in brain activation after the amusia 

recovered six months after the initial stroke.   

Considering these findings in context, current knowledge of the network for music 

perception can be extended. The models proposed for music perception involved temporal 

and frontal areas, as well as cerebellum, and basal ganglia (Clark, Golden, & Warren, 2015; 

García-Casares et al., 2013; Koelsch, 2011; Stewart et al., 2006). Other studies already 

pointed out that also premotor, supplementary motor (Fedorenko et al., 2012; Grahn & 

Brett, 2009; Zatorre, Chen, & Penhune, 2007) and parietal areas (Foster & Zatorre, 2009; 

Lee et al., 2011; Schwenzer & Mathiak, 2011; Thaut, Trimarchi, & Parsons, 2014) actively 

engage in specific sub-functions of musical perception. Furthermore, it was shown that 

attentive listening to music is achieved by a network of frontal, temporal, and parietal 

areas, which are usually involved in domain general cognitive functions like attention and 

WM (Janata, Tillmann, & Bharucha, 2002).  

Results from behavioral data and lesion analysis indicate that certain brain areas execute 

specific sub-functions of music perception and that some of these areas are relatively 

small (e.g. small areas in putamen and globus pallidus). Focal lesions may specifically 

damage the area important for a specific sub-function of music perception, but larger 
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lesions more likely damage several distinct but anatomically close brain areas which are 

not responsible for similar or related functions. Based on fMRI results this dissertation 

highlights a network of supramarginal gyrus, IPL, and basal ganglia which is responsible 

for sub-functions of rhythm perception. Furthermore, the parietal lobe is involved in 

compensatory and reorganization mechanisms.  

Hence, our results support the modular view of the music perception network recruiting a 

large array of non-lateralized brain areas in temporal, frontal and parietal areas (Clark, 

Golden & Warren, 2015; Peretz & Coltheart, 2003; Piccirilli, Sciarma, & Luzzi, 2000). Sub-

functions are accomplished by several modules working together but damage to only one 

of these sub-modules can lead to amusic symptoms. Additionally, we saw that if a stroke 

damaged a specific area and the function was not sufficiently executed for a certain time, 

the unaffected modules are able to reorganize and to re-establish the concerned sub-

functions (compensatory mechanism). With increasing age, the lateralization of functions 

within temporal, parietal and frontal regions may occur (further investigation is needed). 

 

I cannot exclude that the two amusia patients actually presented deficits in some task 

which I did not access, i.e. these two cases might not have been ‘pure amusia patients’ 

either. This would imply that brain areas defined as being a module for a specific music 

perception sub-function are actually no pure music modules but also subserve other 

functions. It is certainly possible that at least some brain areas use the same neuronal 

resources to conduct different functions. But from the combination of results from 

behavior, lesion analysis, and fMRI, I conclude that our brain comprises small, distinct, and 

connected modules for specific sub-functions of music perception. Not only greater sub-

modules processing melody, rhythm, timbre, harmony, etc., but still smaller sub-modules 

for the perception of rhythm exist (that would actually make them sub-sub-modules). 

Hence, it seems to be unlikely – although not impossible – that there are small areas in the 

brain processing a (sub-) sub-function of music and also another cognitive function (one 

that I did not access within my investigations).  

In summary, a huge network including temporal, frontal and parietal regions is involved in 

processing musical input. Some of them are also engaged in other cognitive functions, e.g. 

attention and working memory or other music related abilities like singing or rehearsing. 

Certain functions have been differentiated across the brain (e.g. dissociation between 

rhythm and melody perception), but a few areas seem to be involved in more than one 

musical function. Therefore a disentanglement of executive functions, attention, working 

memory and language perception from active processing of musical input and a 
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differentiation of different musical functions in separated brain areas seem to be the next 

steps in research about music perception. Individual differences in musicality and possibly 

affinity to music always need to be kept in mind.  

As frontal regions seem to be highly involved in the cognitive aspects of music perception, 

not only investigations of stroke patients with frontal lobe lesions may be appropriate, but 

also other patient groups like patients suffering fronto-temporal dementia seem to be 

highly interesting (Agustus et al., 2015; Downey et al., 2013; Omar, Hailstone, Warren, 

Crutch, & Warren, 2010). A detailed analysis of intact and damaged brain regions in 

relation to intact and impaired performance in music perception seems to be one major 

research method to find out which areas in the music perception network are needed to 

establish a sufficient perception of music and which areas lead to impaired performances 

when damaged. Additionally, individual and voxel based analyses are helpful to investigate 

the differences across participants and the different contributions of the different lobes 

and hemispheres (like in manuscript 3). Furthermore the processing of subcomponents of 

music can be investigated by confronting subjects with different types of music which lean 

more or less heavily on rhythm, melody and pitch variations during fMRI. Another idea 

would be to use the same set of musical stimuli but a change in attention focus (e.g. in the 

first run the participants are asked to attend to the underlying beat and in the second run 

they should focus their attention on the rhythmic structure).  

 

As said in the introduction ‘any model can only be preliminary and any new patient with 

specific deficits will add knowledge to it’, further work with amusia patients is needed to 

extend the current model of music perception and amusia. A systematic investigation of 

lesion location, lesion size, and lateralization with respect to behavioral deficits and 

changes in brain activation present after a stroke will give new insights into the 

perception of music and its associated dysfunctions.  
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