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Abstract

Physical activity is generally considered as being bene�cial for many health

outcomes. Lack of physical activity and increased sedentary behavior are re-

garded as major risk factors. Therefore physical activity has been in the focus

of epidemiological research for a long time.

Subjective methods like standardized physical activity questionnaires are fre-

quently used to assess physical activity in epidemiological research. In recent

years, objective methods, like pedometers and accelerometers, have become

more common. Accelerometers measure the body acceleration along up to three

axes. The acceleration is stored as a numerical quantity, the counts for a cer-

tain period of the time (epochs). Counts are thought to be proportional to the

intensity of the activity. Accelerometer measurements allow to derive the time

a person spent in certain intensity ranges, like sedentary, light, moderate and

vigorous.

After a motivation of the research presented in this thesis and a short outline,

the concept of physical activity is introduced in Chapter 2, which particularly

focuses on the description of the objective measurement of physical activity

using accelerometers and pedometers in contrast to subjective measurements

like physical activity questionnaires. Some methodological problems regarding

the objective and subjective assessment of physical activity are identi�ed and

investigated in Chapter 5.

Chapter 3 presents more details on accelerometer measured physical activity.

The intensity levels are commonly assigned using count thresholds, the so-

called cutpoints. The time spent within one activity range without changing

into another is called bout. The cutpoint method is a valid way to analyze

accelerometer data under the quite unrealistic assumptions that the state of

motion at a point in time is independent of the state of motion a person was in

just before and that humans switch from sitting to running and back to sitting

within a few seconds.

It is, however, more realistic to assume that human activity behavior consists of

a sequence of non-overlapping distinguishable activities, like walking to work,

sit at the desk and playing badminton after work that can be represented by

a mean intensity level. The recorded accelerometer counts scatter around this

mean level. If this holds true, then the cutpoint method leads to considerable



misclassi�cation of the bouts into the wrong intensity levels and hence also to

an incorrect estimation of the number of bouts.

In Chapter 4, two novel approaches to better capture physical activity un-

der these assumptions are developed and implemented. The Hidden Markov

models (HMM) are stochastic models that allow �tting a Markov chain with

a prede�ned number of activities to the data. This new method is compared

to the standard cutpoint method in a simulation study. HMMs require some

a priori information that are not veri�able. Therefore, it is desirable to �nd

a way to model physical activity data that does not need any other a priori

information. Thus, a regression model is called for that allows to model ac-

celerometer data as a sort of step function with each jump indicating the start

of a new activity and the constant interval being the mean intensity level of

that activity. Here, expectile regression utilizing the Whittaker smoother with

an L0-penalty is introduced as a second innovative approach, which allows the

desired �t. The expectile regression is compared to the cutpoint method and

the HMMs by means of Monte-Carlo experiments. Both methods, compared

to the cutpoint method, reduce the misclassi�cation rate of counts and the

number of identi�ed bouts and therefore present a substantial improvement

for modeling accelerometer data to assess physical activity.

Chapter 5 presents the results of four studies on physical activity. In the large

European IDEFICS study, accelerometer data were collected from several thou-

sands children. These data are used to describe the physical activity behavior

in European children using GAMLSS, which is also introduced in this chapter.

A second study exploits the collected activity data of the IDEFICS study to

investigate the in�uence of physical activity and sedentary behavior on high

blood pressure in children. The PATREC study is a smaller study in German

children and adolescents with a strong methodological focus. Data collected in

this study are used to study some problems identi�ed in Chapter 2 regarding

objectively and subjectively measured physical activity in di�erent domains of

activity. In the fourth study an energy expenditure equation is derived for one

pedometer model.

Chapter 6 summarizes and discusses the �ndings of the previous chapters and

ends with an outlook on future research with respect to the assessment of

physical activity data in epidemiological studies.



Physical activity, accelerometer data, hidden Markov models, expectile regres-

sion, L0-penalty, Whittaker smoother, pattern recognition, physical activity

patterns, bout detection, GAMLSS, energy prediction equation



Zusammenfassung

Allgemein geht man davon aus, dass körperliche Aktivität einen positiven Ein-

�uss auf viele Erkrankungen und respiratorische Fitness hat. Bewegungsman-

gel und sitzendes Verhalten gelten als Hauptrisikofaktoren. Daher steht kör-

perliche Aktivität seit langer Zeit im Fokus epidemiologischer Forschung.

Typischerweise werden subjektive Methoden wie standardisierte Fragebögen

zur Erfassung von körperlicher Aktivität groÿ�ächig eingesetzt. Seit einigen

Jahren werden vermehrt Akzelerometer und Pedometer als objektive Metho-

den verwendet. Akzelerometer messen die Beschleunigung des Körpers entlang

bis zu drei Achsen. Die Beschleunigung wird als natürliche Zahl, dem soge-

nannten Count, für eine bestimmte Zeitdauer (Epoche) im Gerät gespeichert.

Es wird angenommen, dass diese Counts proportional zur Aktivitätsintensität

sind. Mit Akzelerometermessungen kann die Zeit, die eine Person in den In-

tensitätsbereichen sitzend, leicht, moderat und stark verbracht hat, bestimmt

werden.

Nach einer Motivation des Themas und einer kurzen Übersicht über die Ar-

beit wird in Kapitel 2 das Konzept von körperlicher Aktivität vorgestellt und

objektiven Methoden zur Erfassung von körperlicher Aktivität werden sub-

jektiven Methoden gegenübergestellt. Hieraus ergeben sich einige methodische

Fragestellungen, die im weiteren Verlauf in Kapitel 5 untersucht werden.

In Kapitel 3 werden weitere Details zur Messung von körperlicher Aktivität

mit Akzelerometern beschrieben. Intensitätsbereiche der Counts werden übli-

cherweise anhand von Schwellwerten zugeordnet. Dabei wird die Zeit, die eine

Person in einem Intensitätsbereich verbringt, ohne in einen anderen zu wech-

seln, Bout genannt. Diese Schwellwertmethode ist nur unter den unrealistischen

Annahmen, dass der Bewegungszustand zu einem bestimmten Zeitpunkt un-

abhängig vom vorangegangen Bewegungszustand ist und dass Menschen ih-

ren Bewegungszustand üblicherweise innerhalb von Sekunden vom Sitzen zum

Rennen und wieder zurück zum Sitzen wechseln, eine valide Möglichkeit, Ak-

zelerometerdaten zu analysieren.

Dahingegen ist es wesentlich realistischer anzunehmen, dass körperliche Ak-

tivität die diskrete Abfolge von unterscheidbaren Aktivitäten ist, wie zu Fuÿ

zur Arbeit zu gehen, am Schreibtisch sitzen und nach der Arbeit Badminton



spielen. Die Aktivitäten können dabei durch ein mittleres Intensitätsniveau ab-

gebildet werden und die gemessenen Akzelerometercounts streuen um dieses

mittlere Niveau. Unter dieser Annahme führt die Schwellwertmethode zu er-

heblicher Missklassi�kation der Counts in die falschen Intensitätsbereiche und

damit schlieÿlich zu einer verfälschten Schätzung der Anzahl von Bouts.

In Kapitel 4 werden zwei innovative Methoden, die diese Annahmen berück-

sichtigen, entwickelt und implementiert. Hidden Markov Modelle (HMM) sind

stochastische Modelle, die es ermöglichen, eine Markovkette mit einer vorher

de�nierten Anzahl von Aktivitäten an die Daten anzupassen. Diese neue Me-

thode wird mit der üblichen Schwellwertmethode in einer Simulationsstudie

verglichen. HMMs benötigen einige a priori Annahmen, die nicht überprüf-

bar sind. Daher ist es wünschenswert, einen Modellierung von körperlicher

Aktivität zu �nden, die ohne solche Annahmen auskommt. Es wird also ein

Regressionsmodell gesucht, das es erlaubt, Akzelerometerdaten als eine Art

Stufenfunktion zu modellieren, bei der jeder Sprung den Beginn einer neuen

Aktivität anzeigt und das konstante Intervall das mittlere Intensitätsniveau

der Aktivität darstellt. Hierzu wird Expektilregression unter Verwendung des

Whittakerglätters mit L0-Strafterm als zweite innovative Methode vorgestellt

und ebenfalls mit der Schwellwertmethode und HMMs in einer weiteren Simu-

lationsstudie verglichen. Beide Methoden reduzieren im Vergleich zur Schwell-

wertmethode die Missklassi�kationrate der Counts und die Anzahl der erkann-

ten Bouts und stellen somit eine substantielle Verbesserung der Modellierung

von Akzelerometerdaten dar.

In Kapitel 5 werden die Ergebnisse von vier empirischen Studien zur kör-

perlichen Aktivität vorgestellt. In der groÿen europäischen IDEFICS-Studie

wurden von mehreren tausend Kindern Akzelerometerdaten gesammelt. Diese

Daten werden genutzt, um das Bewegungsverhalten von europäischen Kindern

mittels GAMLSS, das ebenfalls in diesem Kapitel eingeführt wird, zu beschrei-

ben. Eine weitere Studie nutzt die Daten der IDEFICS-Studie, um den Ein�uss

von körperlicher Aktivität und sitzendem Verhalten auf kindlichen Bluthoch-

druck zu untersuchen. Die PATREC-Studie untersucht das Bewegungsverhal-

ten deutscher Kinder und Jugendlicher mit einem besonderen methodischen

Fokus. Die hier gesammelten Daten dienen zur Untersuchung der in Kapitel

2 aufgebrachten Fragen zu objektiven und subjektiven Erfassungsmethoden



in unterschiedlichen Aktivitätsdomänen. In der vierten Studie wird eine Glei-

chung zur Schätzung des Energieumsatzes für ein Pedometermodell bestimmt.

In Kapitel 6 werden die Resultate zusammengefasst und diskutiert sowie ein

Ausblick auf zukünftige Forschung im Bereich der Erfassung von körperlicher

Aktivität in epidemiologischen Studien gegeben.

Körperliche Aktivität, Akzelerometerdaten, Hidden-Markov-Modelle, Expek-

tilregression, L0-Strafterm, Whittaker-Glätter, Mustererkennung, körperliche

Aktivitätsmuster, Bouterkennung, GAMLSS, Energievorhersagegleichung
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Chapter 1

Introduction

1.1 Motivation

Physical activity is generally considered as being bene�cial for many health

outcomes. Lack of physical activity and increased sedentary behavior are re-

garded as major risk factors. Therefore physical activity has been in the focus

of epidemiological research for a long time. Physical activity is typically de-

scribed by the four dimensions, (1) frequency, (2) duration, (3) intensity and

(4) type and is performed in so called domains, which typically include leisure

time physical activity, occupational physical activity, transportation activity

and activities performed at home.

In order to be able to properly investigate the association of physical activity

with di�erent outcomes, a good exposure measurement is required. In epi-

demiological research subjective methods like standardized physical activity

questionnaires are broadly used. The advantages of the subjective assessment

are its low costs, simple logistics and its broad application with an accompa-

nying �validation�.

In recent years, objective methods, like pedometers and accelerometers, have

become more common. Accelerometers measure the body acceleration along up

to three axes. The acceleration is stored as a numeric quantity, the counts for

a certain period of the time (epochs). Counts are thought to be proportional to

the intensity of the activity. Accelerometer measurements allow to derive the

time a person spent in certain intensity ranges, like sedentary, light, moderate

and vigorous. Physical activity is frequently summarized as minutes per day

1



2

spent in these activity ranges, hence dimensions (1) to (3) can be assessed.

The intensity levels are commonly assigned using count thresholds, the so-

called cutpoints. The time spent within one activity range without changing

into another is called bout. The cutpoint method is a valid way to analyze

accelerometer data under the quite unrealistic assumptions that the state of

motion at a point in time is independent of the state of motion a person was in

just before and that humans switch from sitting to running and back to sitting

within a few seconds.

It is, however, more realistic to assume that human activity behavior con-

sists of a sequence of non-overlapping distinguishable activities, like walking

to work, sit at the desk and playing badminton after work that can be rep-

resented by a mean intensity level. The recorded accelerometer counts scatter

around this mean level. If this holds true, the application of the simple cutpoint

method will lead to considerable misclassi�cation of the counts and hence to

an invalid exposure measurement. Additionally the number of bouts will be

overestimated, as by misclassifying the count to the wrong intensity range, a

new count is started by de�nition.

This thesis focuses on how to improve modeling accelerometer data to better

re�ect real-life behavior and also investigates methodological issues regarding

the comparison of subjective and objective measurement of physical activity.

The thesis also presents results from studies on physical activity that describe

the physical activity behavior of European children and investigate the impact

of sedentary behavior and physical activity on high blood pressure in children.

An energy prediction equation for a pedometer model is also derived.

1.2 Outline

This thesis consists of six chapters based on six manuscripts, reprinted in the

appendix. Chapter 2 gives an introduction to the concept of physical activity

and its assessment in epidemiological studies. Chapter 3 presents more details

on accelerometer measured physical activity, how it is commonly analyzed and

what disadvantages may occur, given some assumptions on physical activity

behavior. Chapter 4 describes and implements two novel approaches to re�ect

these assumptions, and Chapter 5 presents four papers on empirical studies
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related to physical activity. The thesis concludes with a detailed discussion in

Chapter 6.

Chapter 2 introduces the concept of physical activity and particularly focuses

on the description of the objective measurement of physical activity like ac-

celerometers and pedometers in contrast to subjective measurements like phys-

ical activity questionnaires, especially with regard to their utilization in epi-

demiological studies. Some methodological problems regarding the objective

and subjective assessment of physical activity are identi�ed and further inves-

tigated in a paper on objectively and subjectively measured physical activity

in di�erent domains of activity.

Chapter 3 builds on the previous chapter and provides more details on how

physical activity is objectively measured using accelerometers, which have be-

come the method of choice in recent years. The data recorded by the devices

is described, as well as the typical approach how they are analyzed, i.e. by

applying the so-called cutpoint method. The assumptions underlying the cut-

point method are quite unrealistic. Under more realistic assumptions, namely

that physical activity can be regarded as a sequence of non-overlapping ac-

tivities with an distinguishable mean intensity, the simple cutpoint method

has some serious drawbacks, leading to considerable misclassi�cation. The as-

sumptions are veri�ed by the collection of labeled accelerometer data, where

the performed activities are known.

In Chapter 4, two novel approaches to model accelerometer data under the as-

sumptions introduced in Chapter 3 are developed. The hidden Markov models

(HMM) are stochastic models that allow �tting a Markov chain to the data

based on a prede�ned number of activities. In a methodological paper this new

method is compared to the standard cutpoint method in a simulation study.

Expectile regression utilizing the L0-penalty and the Whittaker smoother are

introduced as a second innovative approach. Fitting the 0.5-expectile curve to

the data is basically a mean regression. Adding the Whittaker smoother with

an L0-penalty now allows the desired �t accounting for the above assumptions

on physical activity behavior. In a second methodological paper the expectile

regression is compared to the cutpoint method and the HMMs by means of

Monte-Carlo experiments. In order to ensure using simulated data resembling

real-life accelerometer data as closely as possible, the simulation was chosen
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to re�ect the collected labeled data.

Chapter 5 presents the results of four studies on physical activity. In the large

European IDEFICS study, accelerometer data were collected from several thou-

sand children. These data are used to describe the physical activity behavior

in European children using GAMLSS, which is also introduced in this chapter.

A second paper based on the IDEFICS study exploits the collected activity

data to investigate the in�uence of physical activity and sedentary behavior

on high blood pressure in children. The PATREC study is a smaller study in

German children and adolescents with a strong methodological focus. Data

collected in this study are used to study some problems identi�ed in Chapter 2

on objectively and subjectively measured physical activity in di�erent domains

of activity. In the fourth paper an energy expenditure equation is derived for

one pedometer model. The data were collected by Oldenburg sports scientists

combining this pedometer model with spirometry.

Chapter 6 summarizes and discusses the �ndings of the previous chapters and

ends with an outlook on future research regarding the assessment of physical

activity data in epidemiological studies.

The appendix of this thesis provides reprints of the published papers. The

complete paper is presented in case the papers have been published in an

open access journal, or if permission for reprint was obtained from the journal.

In cases where papers have been just submitted and not yet published, the

abstract will be presented.



Chapter 2

Methodological background

This chapter serves as an introduction to the wide spectrum of assessing phys-

ical activity in the context of modern epidemiological studies. Di�erent assess-

ment methods are presented and discussed with regard to their application

in epidemiological studies. This chapter mostly summarizes results from Trost

(2007), Beneke and Leithäuser (2008), Westerterp (2009), and Schmid and

Leitzmann (2014).

2.1 Assessment of physical activity

Currently physical inactivity is considered as major risk factor for several

health disorders like cancer (McTiernan, 2008), obesity (Kimm et al., 2005),

cardiovascular disorders (Lee et al., 2012), muscular skeletal disorders (Janz

et al., 2010), as well as mental disorders (Rethorst et al., 2009). �Valid and reli-

able measures of physical activity are therefore a necessity in studies designed

to (1) document the frequency and distribution of physical activity in de�ned

population groups, (2) determine the amount or dose of physical activity re-

quired to in�uence speci�c health parameters, (3) identify the psychosocial

and environmental factors that in�uence physical activity behavior in youth,

and (4) evaluate the e�cacy or e�ectiveness of programs to increase habitual

physical activity in youth.� (Trost, 2007). �Physical activity is de�ned as any

bodily movement produced by skeletal muscle that results in energy expendi-

ture above resting� (Trost, 2007) and should not be confused with exercise,

as �exercise is a speci�c type of physical activity that is de�ned as planned,

5
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structured, and repetitive bodily movement done to improve or maintain one

or more components of physical �tness.� (Trost, 2007). Studies show that the

proportion of activity-induced energy expenditure (AEE) of total energy ex-

penditure (TEE) varies between 5% in a subject with minimal activity level to

about 45-50% in a subject with high activity level (Westerterp, 2009). Schmid

and Leitzmann (2014) state that total energy expenditure typically consists

of three components: (1) resting metabolic rate RMR, which is the minimal

rate of energy that is required for basic bodily functions, (2) thermic e�ect of

food (TEF) (also known as dietary induced thermogenesis (DIT)), which is the

amount of energy required above RMR for processing food and (3) activity-

induced energy expenditure. RMR is the main component with approximately

70% of TEE, TEF forms about 10% of TEE and AEE around 20%. Several

measurement units are common when measuring physical activity. These in-

clude energy expenditure per time unit, e.g. kJ per hour per kg body mass,

and metabolic equivalent of task (MET), as rate of oxygen (O2) consumption.

By de�nition

1 MET = 3.5 · mL O2

kg ·min
,

which is equivalent to

1 MET = 1
kcal
kg · h

= 4.184
kJ

kg · h
.

1 MET also roughly corresponds to the energy costs of sitting quietly. MET

values range from 0.9 MET while sleeping to 23 MET for running at 22.5km/h.

METs are often used to assign activities to activity ranges. Consequently 1 -

1.5 METs correspond to sedentary behavior, light intensity activities are those

with 1.5 to <4 METs, moderate intensity activities are those with 4-6 METs

and activities with >6 METs are called vigorous intensity activities (Trost et

al., 2011). In the case of objective instruments, physical activity is commonly

reported as time spent in these activity ranges. Physical activity can be de-

scribed by four dimensions, (1) frequency, (2) duration, (3) intensity and (4)

type and is performed in so called domains, which typically include leisure

time physical activity, occupational physical activity, transportation activity

and activities performed at home. Depending on the context and study pop-

ulation, additional domains, like for example in the case of school students

physical education, sports clubs or after-school programs, should be added.
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The perfect measurement instrument would allow a reliable and valid measure-

ment of physical activity in all dimensions and domains (Trost, 2007). There

are many di�erent instruments available, which can be assigned to three cate-

gories. Category 1 contains the reference methods, or gold-standard. Objective

measurements and subjective or self-report methods form categories 2 and 3.

Reference methods measure energy expenditure directly and are used to vali-

date instruments of categories 2 and 3. Validated instruments of category 2 in

turn are frequently used to validate methods of category 3 (Beneke and Lei-

thäuser, 2008). All instruments have certain advantages and disadvantages that

one has to consider with regard to the question of interest. Trost (2007) and

Westerterp (2009) as well as Schmid and Leitzmann (2014) provide overviews

and ratings of the di�erent methods, which are now discussed in detail.

2.1.1 Reference methods

Direct observation, indirect calorimetry and doubly labeled water (DLW) are

considered reference methods for measuring physical activity.

Direct observation Direct observation is one of the �rst methods to mea-

sure physical activity in free-living individuals and is the only method to ob-

serve all dimensions and domains of physical activity. Specially trained per-

sonnel observes the study subject for a continuous observation period, ranging

from a single physical education lesson, to four hours during the course of the

day. In pre-de�ned observation intervals of 3, 10, 15 or 60 seconds, physical

activity is recorded either as intensity equivalent within three to eight pre-

de�ned categories, or as standardized activity, like sitting, running, swimming

etc. in combination with an intensity (Beneke and Leithäuser, 2008). On the

one hand, direct observation has proven itself to be very �exible and is able

to record contextual information like environmental conditions. On the other

hand, this method is very labor intensive and observers have to be thoroughly

trained. In addition, one can argue that their presence will in�uence the be-

havior of the subject (reactivity e�ect) and that judging activity intensity is

highly subjective, although studies have shown high inter-observer reliability

(Trost, 2007; Westerterp, 2009). Another point of criticism is the fact that ob-

servations are only done for a relatively short period of time compared to other
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measurement methods and that results are therefore only valid for the observed

setting. This is particularly true, if, for example, only a single physical educa-

tion lesson was used for the observation, as this lesson can be hardly regarded

as representative for the general behavior of a student. This disadvantage in

combination with the immense need for personnel and the accompanying huge

costs prohibit using this instrument in large cohort studies (Trost, 2007; Beneke

and Leithäuser, 2008; Westerterp, 2009).

Indirect calorimetry This method is based on the oxygen intake (VO2) and

carbon dioxide (CO2) production and calculates the energy expenditure using

the measured amounts of breathing gas. This method has been used since the

1920s, with �rst devices being bulky and hence stationary. Nowadays, portable

devices (spirometers) are available, allowing vigorous physical activity without

too much interference, although mouthpieces and masks do cause discomfort

to a certain degree and might not be tolerated by the subject. Particularly

when dealing with children, additional weight burden exceeding 6% of the

body mass will in�uence movement economy negatively and will lead to con-

siderably increased energy expenditure. This instrument is frequently used to

validate methods of category 2 and 3 (Beneke and Leithäuser, 2008). Indi-

rect calorimetry is relatively expensive and burdensome for the participants,

especially for longer periods of time, which are needed for the assessment of

habitual physical activity. Therefore this method is not a feasible option in

large scale epidemiological cohorts (Schmid and Leitzmann, 2014).

Doubly labeled water This method is considered as the gold standard for

measuring total energy expenditure (TEE) in free-living subjects over a period

of one to four weeks. Water containing doses of two stable water isotopes, 2H2O

(deuterium-labeled water) and H18
2 O (oxygen-18-labeled water), is given to the

subject at speci�c points in time. The isotopes are naturally occurring and

have no known toxicity. The deuterium-labeled water is only released through

the body's water pool (urine, sweat, evaporative losses), while the oxygen-

18-labeled water is additionally lost via the bicarbonate pool. Dissolved CO2,

which is the end product of metabolism, enters the blood stream and is exhaled.

Samples of body �uids (urine, blood, saliva) are analyzed by mass spectrometry
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and the rates for the disappearance of the isotopes are determined. At least

three samples are required. One baseline sample before DLW application, one

after the DLW has equilibrated with the body water and one after one to

four weeks. The measured CO2 production can be converted to TEE and if

basel energy expenditure (BEE) is known, either by separate measurement or

estimation, activity-induced energy expenditure (AEE) can be calculated as

AEE = 0.9× TEE −BEE.

Although gold-standard for measuring TEE, this method has some consider-

able disadvantages that prohibit its use in large cohort studies. This method

requires exact adherence to the study protocol by the subject. Information on

the pattern of physical activity, such as energy spent in light, moderate and

vigorous physical activity, cannot be derived from this method. The most im-

portant limitation of the DLW method is its excessive costs. Therefore DLW

is typically used only in relatively small samples and mostly to validate instru-

ments of category 2 (Trost, 2007; Westerterp, 2009). For example, DLW was

used in the IDEFICS study (see Section 5.1) to validate accelerometer devices

(Ojiambo et al., 2012).

2.1.2 Objective measurements

Heart rate monitoring, pedometry and accelerometry are objective methods to

measure physical activity in free-living subjects. These methods are validated

using one of the above described reference methods and are in turn used to

validate methods of category 3. In the literature, usually a so-called �validation

coe�cient� is reported to assess validity. Often this term refers to Pearson's

and Spearman's correlation coe�cient interchangeably (see Trost, 2007, Ta-

ble 1). It is obvious that two measurements should be highly correlated, if

they are supposed to assess the same dimension, however, this is not su�cient

to show validity of one of these instruments. This is especially true, if correla-

tion coe�cients ≤ 0.5 that turn out to be signi�cantly di�erent from 0 lead to

the conclusion that the investigated instrument is valid, see Bland and Altman

(1986) for considerations on the validity of instruments. However, a discussion

of the correct interpretation and investigation of validity is beyond the scope

of this chapter.
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Heart rate monitoring Heart rate monitoring was one of the �rst objective

methods used for the assessment of physical activity. Equations are available,

which can be used to estimate daily energy expenditure based on the moni-

tored heart rate. Validation studies using DLW were conducted showing good

agreement on group level, but individual di�erences were large. For this method

individual calibration and measurement of VO2 at rest are needed to determine

the so called �ex heart rate. It is well known that people with higher physical

�tness can perform more intense activities at lower heart rates than persons

with low levels of �tness. Other factors like age, body size or emotional stress

may also in�uence the relationship between heart rate and VO2, as do sub-

stances like ca�eine and medications like e.g. beta-blockers. Additionally, heart

rate lags behind changes in movement and stays elevated after some exhausting

activity, although the body is already at rest. Hence it can be suspected that

heart rate monitoring is not suitable for measuring sporadic activity patterns

that are found e.g. in children (Trost, 2007; Westerterp, 2009).

Pedometry A pedometer is a relatively simple device that registers steps

and is quite cost-e�ective compared to accelerometers and is often used in

health promotion programs and in clinical settings where walking is the main

type of activity. Pedometers are easy to administer, which allows their use also

in large groups of virtually any age. The concept of a �step� is easy to com-

prehend, therefore pedometers have the potential to promote behavior change,

like for example in the �10,000 steps Rockhampton project� (Schmid and Leitz-

mann, 2014). A major limitation is the inability of the pedometer to record

the magnitude/intensity of the activity. Movement above a certain threshold is

registered as a step, regardless whether the movement was walking, running or

jumping, although, of course, the step frequency allows conclusions regarding

speed and thereby intensity. Pedometers can only register walking activities,

but do not capture activities like swimming, cycling or weight lifting. Thus,

pedometers are supposed to provide valid measurement of the relative amount

of physical activity, but they cannot provide information on type of activity,

frequency, intensity, or duration (Trost, 2007; Schmid and Leitzmann, 2014). In

Section 5.6 an energy prediction equation is derived for one pedometer model,

allowing at least to capture the energy expenditure and hence the intensity for
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walking activities.

Accelerometry In contrast to pedometers, accelerometers are able to mea-

sure acceleration in up to three planes. Uni-axial devices register accelera-

tion along a vertical axis, bi-axial devices additionally along the medio-lateral

plane and tri-axial devices also along the anterior-posterior plane. These, in

the meanwhile relatively inexpensive, devices collect information known as

(impulse-)counts and provide information on intensity, frequency and dura-

tion of physical activity of an individual. Counts represent a device-speci�c

numeric quantity which is generated by the accelerometer for a speci�c time

unit (epoch) (e.g. 1 to 60 sec). This quantity is proportional to the intensity

of the physical activity performed by the subject. Devices of the �rst gener-

ations had only limited memory. Therefore epochs around 15 seconds to one

minute were common, as well as observation times of only a few days. Nowa-

days, devices have become small, light and robust and are very well tolerated

by subjects. Their improved batteries and increased memory now allow high

frequency measurements with epoch length of 1-5 seconds over a complete

week or more. The sequence of activities during a day is stored as a time series

of counts by the device. The most common approach to derive the pattern of

physical activity and its energy expenditure is to map these counts to a certain

number of sedentary and activity ranges, such as sedentary behavior (SED),

light (LPA), moderate (MPA) and vigorous (VPA) physical activity. So the

most common measurement unit is minutes (per day) in SED, LPA, MPA, or

VPA respectively. The duration of physical activity within the same activity

range is known as bout and can be easily extracted from a given sequence

of counts. A bout is de�ned as the time period in which the subject remains

within one activity range without changing to another. Activity ranges are sep-

arated by thresholds known as cutpoints. Cutpoints are available for children

(e.g. Evenson et al., 2008; Freedson et al., 2005; Guinhouya et al., 2009a; Pate

et al., 2006; Puyau et al., 2002; Treuth et al., 2004; Trost, 2007) and adults

(e.g. Freedson et al., 1998; Sasaki et al., 2011; Troiano et al., 2008) to assess

the overall time spent in these ranges of physical activity. Alternatively, energy

prediction equations (e.g. Crouter et al., 2012) can be used to derive energy

expenditure from the accelerometer counts. Numerous validation studies have
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been performed to date (e.g. Ekelund et al., 2001; Hislop et al., 2012; Ojiambo

et al., 2012; Plasqui and Westerterp, 2007) using DLW or indirect calorime-

try, as well as direct observation as reference method. Due to these results,

accelerometers can be regarded as a valid instrument to assess physical activ-

ity. Because of these features, accelerometry is now one of the most frequently

used methods for assessing physical activity in free-living subjects. However,

accelerometers are not able to register certain activities that are associated

with increased energy costs like cycling, swimming, using stairs, carrying heavy

objects, or walking uphill. Some people argue that these activities only make

up a small proportion of the overall physical activity and therefore this disad-

vantage is neglectable. Modern tri-axial devices are more sensitive to activities

of light intensity and provide better measurements of upper-body movement

in activities like rowing and riding a bike. The Euclidean norm is then used to

combine the counts along the axes to the vector magnitude (VM). Until now,

only few cutpoints for VM are available. Another factor that may in�uence

the results of an accelerometer measurement is the place where the device is

attached, e.g. foot, hip or arm. Therefore standardization within one study is

mandatory. Like other objective methods, accelerometers do not provide con-

textual information on the domains in which physical activity is performed. To

overcome this shortage, oftentimes participants are asked to keep an activity

diary, in which non-wearing periods, e.g. swimming, or other times when the

accelerometer was not worn are recorded, as well as the beginning and end of

certain domains like transportation, being in the work environment, at school

etc. (Trost, 2007; Beneke and Leithäuser, 2008; Westerterp, 2009; Schmid and

Leitzmann, 2014).

GPS The recent spreading of smart phones with GPS capability as well as

standalone GPS trackers now allow to combine information on physical activity

with the built environment using geographical information systems (GIS) and

by this to investigate the interaction between people's physical activity and

their environment. Many smart phones also have built in pedometers and more

and more applications to monitor physical activity and exercises are introduced

(Schmid and Leitzmann, 2014).
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2.1.3 Subjective measurements

All presented methods above are objective in the sense that the subject is not

forced to rate his or her own activity behavior. All methods of category 3, which

are proxy report, structured interview, questionnaire and activity diary, require

that the subject recalls physical activity from the past and rates/estimates du-

ration and intensity. This is of course highly subjective and therefore all subjec-

tive methods are, to some degree, subject to recall bias and social desirability

bias.

With the exception of the structured activity interview, all self-report methods

are inexpensive and require only minimal personnel resources compared to

other methods of assessment and are therefore widely applied in all kinds of

(large) studies. A huge number of di�erent physical activity questionnaires

exist and their validity and reliability is subject to discussion. Particularly for

self-report instruments, the criticism concerning the use and interpretation of

correlation coe�cients from above holds true.

Proxy report Proxy reports are used when the subject is considered to be

unable to understand and/or answer questions concerning his or her physical

activity due to e.g. age as it is the case for young children. These proxy reports

are based on the assumption that parents or teachers know enough of the

behavior pattern of the child to su�ciently answer questions on its behalf.

Studies on the validity of this instrument only showed disappointing results

(Beneke and Leithäuser, 2008; Verbestel et al., 2015).

Activity diary Subjects are asked to retrospectively indicate their activity

performed and its intensity every few minutes (e.g. 1-15 minutes). Resulting

estimates are quite good compared to objective measurements, yet some sub-

jects have di�culties to rate their own intensity level and a diary can impose a

considerable burden to the subject, especially, if reporting intervals are short

(Beneke and Leithäuser, 2008). Recently electronic activity diaries using smart

phones have been introduced. After a certain time interval participants are

reminded by a signal to record their past physical activity. Using voice recog-

nition the participant's reply is converted to a text form and then assigned to

an activity category (Schmid and Leitzmann, 2014).
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Structured interview The presence of an interviewer can reduce misun-

derstandings and incomplete answers on the one hand. On the other hand,

direct contact between the interviewer and the subject increases the chances

of socially desirable answers. Compared to other self-report instruments higher

personnel resources are necessary and it is not clear, whether avoidance of mis-

understandings outweighs interviewer induced bias (Beneke and Leithäuser,

2008).

Questionnaire Physical activity questionnaires are probably the most fre-

quently used instrument to assess physical activity. They are easy to use, cheap

and many di�erent questionnaires for di�erent target groups and settings are

available. In theory, a questionnaire can assess all dimensions and domains of

physical activity. In fact, next to direct observation, self-report instruments

are the only ones that can provide contextual information. However, ques-

tionnaires are subject to considerable recall bias for subjects of all ages, as

especially habitual physical activity is challenging to recall and rate retrospec-

tively. Questionnaires tend to underestimate LPA and to overestimate MVPA.

This might be explained by the fact that MVPA, like swimming and jogging,

are mostly planned exercises and occur in more structured settings like vis-

its to the gym, while low intensity activities, like walking, occur throughout

the day and are therefore di�cult to assess. One of the most popular physi-

cal activity questionnaires is the International Physical Activity Questionnaire

(IPAQ)(Craig et al., 2003). It was developed in 1996 and is considered as an

established population surveillance tool for the assessment and comparison of

physical activity across countries. A long and a short version for e.g. telephone

interviews are available and have been translated into more than 20 languages

(Schmid and Leitzmann, 2014). Some physical activity questionnaires may not

be suitable for all age groups. E.g. they may be unsuitable for children who are

younger than 10 years of age. Young children seem to have problems to fully

understand the concept of physical activity and they have problems to di�eren-

tiate between sedentary activities like playing a video game and non-sedentary

activities like playing outside and doing household chores (Trost, 2007). Addi-

tionally children's activity behavior is characterized by short bouts of activity.

In order to deal with this, one could either opt for proxy reports, as mentioned
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above, or use questionnaires that have been especially designed for children,

like the MoMo questionnaire as part of the German KiGGS study (Schmid and

Leitzmann, 2014). There are many other questionnaires available (see Trost,

2007, Table 1). This re�ects the lack of comparability when trying to measure

physical activity. Researcher tend to rather create their own questionnaires

than to use existing �validated� ones. This causes problems if one tries to com-

pare results between studies using di�erent questionnaires. As there are many

di�erent physical activity questionnaires, there are also many reviews available

investigating the validity of these instruments, with varying results. Some cer-

tify su�cient validity for self-report instruments, with the exception of younger

children (Trost, 2007), while other see rather low validity and reliability when

habitual physical activity is measured. Some studies report systematic under-

estimation, some report overestimation and others report agreement at group

level with considerable error on individual level (Westerterp, 2009). Method-

ological problems of physical activity questionnaires applied to children and

adolescents are further investigated in Section 5.5.1. Here, subjective measured

physical activity in di�erent domains is compared with accelerometer assessed

physical activity.

2.1.4 Observation period

The answer to the question how many days a subject's physical activity should

be monitored strongly depends on the research question and the preferred

method of assessment. Other considerations may be �nancial limitations and

researchers have to make sure not to choose a monitoring protocol that is

overly burdensome to the subjects. As said above, direct observation can be

used to measure one's physical activity for a couple of hours, maybe a day

or two, due to its limitations. Doubly labeled water, on the contrary, can by

design only be used to assess physical activity over the course of one to several

weeks. Self-report instruments can be used for arbitrary periods. Because of

technological improvements objective instruments can be used for a few weeks,

if desired. Some studies tried to calculate wearing days that are necessary to

reach a certain degree of reliability. However, the results of these studies are

inconclusive. Keeping this in mind and considering the strong likelihood that

physical activity behavior will vary between weekdays and weekend days, a
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7-day monitor protocol seems to be a reasonable choice (Trost, 2007).

2.1.5 Discussion

When looking at the di�erent options available for measuring physical activity

in free-living subjects, it is quite obvious that there does not exist the one in-

strument of choice. Physical activity is a rather complex concept that consists

of four dimensions and several domains. Reference methods like doubly labeled

water and indirect calorimetry are excellent for measuring energy expenditure,

but neither provide information on the dimensions frequency, intensity, dura-

tion and type nor on the domains. In the case of doubly labeled water, the

costs of this method prohibit its large scale use in cohorts. If a monitoring

period of a complete week is intended, indirect calorimetry also seems to be

inappropriate, although the spirometer and its mask/mouthpiece may be tol-

erated for a couple of hours under �laboratory conditions�, it is certainly not

feasible to wear this device for a complete week.

Among the objective instruments, accelerometers and pedometers imply the

least burden to subjects and are methodologically robust and well tested. De-

vices have become a�ordable to allow their use in large-scale �eld studies.

Accelerometers can, in contrast to pedometers, additionally provide informa-

tion on the dimensions of physical activity. No objective measurement can

provide contextual information. This is the special advantage of self-report in-

struments like questionnaires. They are easy to use, cheap, widely used and,

compared to accelerometers, do not require sophisticated logistics. Yet, there

are substantial doubts regarding validity, reliability and comparability. These

doubts are less pronounced for accelerometers. An accelerometer is a �heartless

machinery�, that is not tempted to record socially desirable physical activity

behavior, it does not forget to register motion and it can judge intensity rather

precise, although some activities cannot be registered, which in turn question-

naires can. Accelerometers can also be used in children of all ages, an area

of application in which questionnaires reach their limits. As a matter of fact,

accelerometers are becoming more and more broadly used in �eld studies and

large cohorts, as their advantages are obvious.

The question is, however, whether accelerometers should be the only measure-

ment of physical activity in such studies. As discussed, contextual information



17

is not recorded. But this might be of particular interest. For example, it may

be of interest to learn in which domain most of the physical activity is per-

formed. It would be, of course, interesting to know, whether most physical

activity is accumulated during regular activities during the day, or whether

there are certain domains, like organized sports activities (e.g. physical educa-

tion or school programs), or transportation activities with high intensity levels.

Such information will be helpful when developing intervention programs that

aim to increase physical activity. Thus, it seems reasonable to combine both

instruments and their strengths by adding an activity diary, in which date and

time of the domains of interest are recorded. This way highly validated and

reliable objective measurements can be put into contextual settings of physical

activity.

This approach was implemented in the PATREC study described in Section

5.5. Some results that can be obtained from the combined use of objective and

subjective measurements are presented in Section 5.5.1.
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Chapter 3

Accelerometer measured physical

activity

This chapter provides further details on accelerometer measured physical ac-

tivity. Counts, which are recorded by the accelerometer, are introduced, as

well as the commonly used method to analyze them, the cutpoint method.

This method is only valid under quite unrealistic assumptions. More realistic

assumptions about human physical activity behavior are formulated, which, if

true, lead to some serious drawbacks of the cutpoint method. In order to ver-

ify these assumptions, labeled accelerometer data were collected. In Chapter 4,

two novel approaches will be presented that allow to model accelerometer data

taking these assumptions into account.

3.1 Accelerometer counts

As described in Section 2.1.2, accelerometers as an objective measurement of

physical activity have become the method of choice to access physical activity

in recent years. Modern devices allow high frequency measurements for ex-

tended periods of time. The information is stored as a natural number, the

so-called (impulse-)counts which provide information on intensity and dura-

tion of an individual's physical activity. Counts are a device-speci�c numeric

quantity which is recorded for a speci�c time unit, the epoch, which ranges from

1 second in modern devices to 60 seconds in older ones. Counts are thought

to be proportional to the intensity of the physical activity performed by the

19



20

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00
22

50
05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

Ti
m

e 
(1

 s
ec

 e
po

ch
s)

Counts

cu
tp

oi
nt

co
un

t

sl
ow

 w
al

ki
ng

fa
st

 w
al

ki
ng

cy
cl

in
g

ru
nn

in
g

si
tti

ng
st

ai
rs

22
50

25
00

27
50

30
00

32
50

35
00

37
50

40
00

42
50

45
00

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

Ti
m

e 
(1

 s
ec

 e
po

ch
s)

Counts

st
ai

rs
st

an
di

ng

ba
dm

in
to

n

ly
in

g

ba
sk

et
ba

ll

st
an

di
ng

sh
ut

tle
 ru

n

Figure 3.1: Example of collected labeled accelerometer data (1 second epochs).
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subject. The sequence of activities during a day is stored as a time series of

counts by the accelerometer, see Figure 3.1 for an example of collected labeled

data, for which the underlying activity is known, with 1 second epochs.

3.2 Cutpoint method: choice of cutpoints and

epoch length

The most common approach to derive the pattern of physical activity and its

energy expenditure is to map these counts to a certain number of sedentary

and activity ranges, such as sedentary behavior, light, moderate and vigorous

physical activity. Activity ranges are separated by thresholds known as cut-

points. Cutpoints for di�erent age groups are available for children (Evenson

et al., 2008; Freedson et al., 2005; Guinhouya et al., 2009a; Pate et al., 2006;

Puyau et al., 2002; Treuth et al., 2004; Trost, 2007) and adults (Freedson et

al., 1998; Sasaki et al., 2011; Troiano et al., 2008) allowing to assess the over-

all time spent in these ranges of physical activity. The duration of physical

activity within the same activity range is called a bout and is de�ned as the

time period in which the subject remains within one activity range without

changing to another.

Cutpoints according to Freedson et al. (1998) are included in Figure 3.1. In this

example all epochs with ≤ 99 counts/min are classi�ed as SED, epochs with

100-1951 counts/min as LPA which corresponds to < 3 metabolic equivalent

of task (METs). Epochs with 1952-5724 counts/min are assigned to MPA with

3-5.99 METs and epochs with 5725-9498 counts/min to HARD with 6.00-8.99

METS and epochs > 9498 counts/min to VERY HARD with > 9 METs.

Commonly epochs with ≥ 1952 counts/min are characterized as moderate-to-

vigorous physical activity (MVPA).

Apparently the choice of the cutpoints has a direct e�ect on the derived

amounts of time spent in SED, LPA and MVPA. A discussion of the ad-

vantages and disadvantages of di�erent cutpoints is beyond the scope of this

chapter, but in the literature cutpoints according to Evenson et al. (2008)

are frequently used for children and adolescents and cutpoints according to

Freedson et al. (1998) are commonly used for adults.

Another in�uencing factor with regard to the identi�ed intensities is the choice
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Figure 3.2: Assumed physical activity model: The �gure shows �ve distinct

activities: walking, sitting, fast walking, an arbitrary activity and playing bad-

minton with mean activity levels represented by the solid line. The observed

accelerometer counts scatter around them following a certain distribution de-

picted as dotted line (adopted from Witowski et al. (2014) and to be shown in

the forthcoming paper presented in Appendix B).

of the epoch length. As will be seen later on, an increase in the chosen epoch

length results in a reduction of the variation of counts and hence fewer counts

will be at the extreme ends of the intensity range. This leads to an under-

estimation of time spent in SED/LPA and particularly MVPA. In the past,

determining epoch lengths was a trade o� between battery endurance and

available memory, resulting in epoch lengths of 15 seconds to 1 minute. With

the technological advances of accelerometer devices, nowadays epoch lengths

of 1, 3 or 5 seconds are considered as sensible choices.
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3.3 Assumption about physical activity behav-

ior

The cutpoint method is very easily implemented and therefore widely used. It

is a valid way to classify accelerometer data, if one assumes that the count at

point in time t is independent of the count at t− 1 and human beings are able

to switch instantly from one mode of activity to the other. These assumptions

are, however, quite unrealistic. Assuming a more realistic physical activity

behavior may lead to serious �aws of the cutpoint method.

Let us assume that a person's daily activities are composed of a non-overlapping

series of bouts of di�erent activities. For example riding a bike to work, work-

ing at a desk, walking to lunch and so on. Let us further assume that all these

activities have a certain intensity, which is represented by a true, mean count

level. The registered counts by the accelerometer then scatter around this true

intensity level. This assumption is depicted in Figure 3.2. The person �rst takes

a short walk, after which she/he is sitting, maybe watching TV, followed by

some fast walking, an arbitrary activity (see Section 4.4.1) and a game of bad-

minton. The solid black lines represent the �true� average count level for each

of these activities, which can be understood as the true intensity level. The

counts registered by the accelerometer scatter around this true level, following

a certain distribution (dotted gray line). So activities depicted in Figure 3.2

consist of �ve separate bouts, with �ve distinct activity levels.

If this assumption holds true, then the cutpoint method has some serious

drawbacks. As long as the variation around the true intensity level is small

and the true level is not close to a cutpoint the complete mode of activity can

be correctly assigned to its corresponding activity range. However, in real-life

applications there are activities showing large variation of counts, resulting

in large scattering, as for example games such as basketball or badminton.

Counts are then assigned to the wrong activity range, leading to considerable

misclassi�cation. The erroneous classi�cation of counts may also lead to an

overestimation of the number of activity bouts. As a bout is de�ned as the

time a person spends within one activity range without switching to another

range, misclassifying the count into a di�erent activity range starts a new bout

by de�nition. The subject seems to switch from one activity range to another
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Figure 3.3: Example of collected labeled accelerometer data (5 seconds epochs).
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Figure 3.4: Example of collected labeled accelerometer data (10 seconds

epochs).
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Activity Duration (min) Speed (m
s
) Intensity

Standing still 5 0 SED

Lying on the ground 5 0 SED

Sitting 5 0 SED

Slow walking 10 1.08 LPA

Fast walking 10 1.67 LPA

Riding a bike 5 5.33 LPA

Climbing stairs of ≈ 4 N/A LPA/MVPA

a �ve story building

Jogging 5 2.83 MVPA

Badminton 5 N/A MVPA

Basketball 10 N/A MVPA

Shuttle run test ≈ 6 N/A LPA to MVPA

N/A = not applicable

Table 3.1: List of activities performed for generating labeled data.

and back again within a few epochs.

3.4 Labeled data

Chapter 4 will present novel approaches to assign intensity levels to accelerome-

ter counts to cope with the drawbacks of the cutpoint method mentioned above.

These methodological approaches for modeling accelerometer data have to be

evaluated. For this purpose accelerometer data are needed in which the under-

lying truth for each observation (count) is known. This includes the activity,

which generated the measured count, as well as its intensity. These require-

ments are met by simulated data (see Section 4.2.1 and Section 4.4.1).

In order to simulate accelerometer data that resemble real life data as closely

as possible, we collected labeled accelerometer data in a small sample. Five

female and four male participants were asked to perform a sequence of pre-

de�ned activities, covering the whole range of intensities. The participants wore

GT3X+ Actigraph accelerometers (Pensacola, Florida, USA). The device was

attached to the right hip using an elastic belt. The devices were initialized
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using the ActiLife 6 software. Data were downloaded using the same software

and counts were computed at 1, 5, 10 and 15 seconds epochs. Table 3.1 lists

the performed activities, their duration and intensity. The speci�c activities

were chosen to cover rather monotonic ones, like walking and cycling, resulting

in a count series with little variation, as well as activities like badminton and

basketball, which show considerably more variation. Figures 3.1, 3.3 and 3.4

show the collected labeled data for one participant displayed in 1, 5 and 10

seconds epochs. In this example the e�ects of increasing epoch lengths become

obvious. The variation of the counts is reduced and hence less counts are found

below the LPA cutpoint and above the VPA cutpoint, this is especially true

for activities with high variation like badminton and basketball. Consequently

less time spent in LPA and MVPA is identi�ed by the cutpoint method.
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Chapter 4

New approaches for assigning

intensity levels

This chapter investigates two innovative approaches to model accelerometer

data under more realistic assumptions then those underlying the cutpoint

method. The theoretical background of both methods, namely hidden Markov

models and expectile regression using a Whittaker smoother with L0-penalty,

will be introduced. In addition, their performance will be investigated by means

of Monte Carlo experiments.

It will be shown that hidden Markov models are a promising improvement

over the cutpoint method. Hence, this method will be compared with expectile

regression utilizing a Whittaker smoother with an L0-penalty, where we will

see that the latter even outperforms hidden Markov models albeit at the cost

of computational simplicity.

4.1 Hidden Markov models

Assumptions on the true physical activity behavior in human beings were

formulated in Section 3.3 and the resulting drawbacks of the simple cutpoint

method were described. As one solution to this problem the hidden Markov

models (HMM) can be combined with the traditional cutpoint method. The

idea is to identify the correct average intensity levels and map the counts to

them. Afterwards the identi�ed activities are then assigned to an intensity level

via the regular cutpoints. The result of this proposal is depicted in Figure 4.1.

29
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Figure 4.1: Identi�ed activities and their intensities after the application of the

HMM-method (adapted from Witowski et al. (2014))

The theory of hidden Markov models will be introduced in this section. In

Section 4.2, HMMs will be applied to simulated accelerometer data to assess

their performance.

4.1.1 De�nition of hidden Markov models

This section follows the description of the mathematical background provided

in Zucchini and MacDonald (2009) and Fink (2003). Let us now assume that

the activities performed during the day can be represented as a time series

of true activity states can be mathematically described as a stochastic pro-

cess. The idea is that the observed time series, the counts registered by the

accelerometer, have been generated by an underlying unobservable, time and

value discrete, stochastic process whose random variables Zt are hidden.

De�nition 4.1. (Stochastic process) Let (Ω,A , P ) be a probability space. Let

further I be an index set and Z a space with a σ-algebra. Then a stochastic
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process is a function

Z : Ω×I → Z , (ω, t) 7→ Zt(ω), (4.1)

where the function

Zt : Ω→ Z (4.2)

is a random variable on (Ω,A , P ) for each t ∈ I .

The range Z of random variables Zt is the set of possible states. In the case

of activities performed during the day, Z = {1, . . . ,m} is �nite with i ∈ Z

symbolizing a speci�c activity, e.g. walking, running or sitting at the desk.

Correspondingly I is a countable set. The stochastic process {Zt, t ∈ N} is
called time and value discrete.

De�nition 4.2. (Time series) A times series {z1, . . . , zT} = z1:T is a �nite

realization of a stochastic process {Zt, t ∈ N} with length T ∈ N.
zt = i, i ∈ Z , is the realization of Zt at point in time t.

The true time series of length T of activities {z1, . . . , zT} is thought to be hid-
den and can therefore only be observed indirectly via the recorded accelerome-

ter counts {x1, . . . , xT}, which are the observed realizations of random variables

Xt. The underlying, unobservable and hence hidden stochastic process satis�es

the Markov property and is therefore called Markov chain.

De�nition 4.3. (Markov property) A time and value discrete stochastic process

{Zt, t ∈ N} is calledMarkov chain, if it satis�es the followingMarkov property :

P (Zt = zt|Z1 = z1, . . . , Zt−1 = zt−1) = P (Zt = zt|Zt−1 = zt−1). (4.3)

Let us now assume that the transition probability to switch from one state to

another at point in time t only depends on the state a person is currently in

and is independent of all states prior to t.

De�nition 4.4. (Transition probability) The probability of a Markov chain to

switch from state i to state j is given by the transition probability

γij = P (Zt = j|Zt−1 = i). (4.4)

A Markov chain is called homogeneous, if the transition probability γij is in-

dependent of t for all pairs of i and j ∈ Z . The transition probability of a
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homogeneous Markov chain with �nite Z = 1, . . . ,m can be summarized in

an (m×m) transition matrix

Γ = (γij)1≤i,j≤m (4.5)

with

γij ∈ [0, 1], i, j ∈ Z , (4.6)∑
j∈Z

γij = 1, i ∈ Z . (4.7)

A Markov chain is fully de�ned by its transition matrix Γ and a vector contain-

ing the initial probabilities π0 = (π01, . . . , π0m) = (P (Z1 = 1), . . . , P (Z1 = m))

with
∑m

i=1 π0i = 1 for the �rst state. Under the assumption described above,

each state i = 1, . . . ,m is linked with the mean activity count µi of the corre-

sponding activity, which the state represents. Let µi denote the mean activity

level of the i-th physical activity. Furthermore, the variable Xt is assumed to

be conditionally independent of all remaining variables given its unobservable

activity Zt:

P (Xt = xt|Z1, . . . , Zt, X1, . . . , Xt−1) = P (Xt = xt|Zt = zt). (4.8)

At each point in time t, the observed accelerometer count xt is assumed to

be generated by a certain distribution, which depends on the activity state

zt = i with the corresponding activity level µi as mean of this distribution.

This assumption is depicted in Figure 3.2, in which the distribution is drawn

as dotted grey line.

De�nition 4.5. (Observation distribution) The probability that Xt takes a

value xt under the condition that Zt = i is given by the observation distri-

bution

pi(xt) = P (Xt = xt|Zt = i). (4.9)

In case of continuous distributions, pi(xt) is the value of the density function

at xt.

The observation distributions are assumed to be a subset of a whole class of

distributions to be speci�ed in advance. Each observation distribution pi is

determined by k ∈ N parameters with parameter vector θi = (θ1i, . . . , θki) ∈
Rk. The m · k parameters in turn form the matrix θ = (θli)1≤l≤k;1≤i≤m. An

HMM is fully de�ned by its model-speci�c parameter Θ = (π0,Γ,θ).
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4.1.2 Applying HMMs to accelerometer data

The application of HMMs can be subdivided into the following three steps.

Step 1: Building an HMM for an observed time series of counts

The model-speci�c parameter Θ of an HMM is estimated based on an observed

time series of counts {x1, . . . , xT}. This �rst step is referred to as training of

the HMM.

De�nition 4.6. (Production probability) Let the hidden Markov model be

de�ned by Θ, then the production probability of a certain observed series

{x1, . . . , xT} = x1:T is given by the probability

L(Θ) = P (X1:T = x1:T |Θ). (4.10)

The likelihood of the model is �nally the probability that a certain observed

series x1:T as well as a certain series of activities z1:T have been generated by

an HMM de�ned by Θ summed over all possible series of activities z1:T ∈ Z1:T :

L(Θ) =
∑

z1:T∈Z1:T

P (X1:T = x1:T , Z1:T = z1:T |Θ) (4.11)

=
∑

z1:T∈Z1:T

[π0z1pz1(x1)
T∏
t=2

γzt−1,ztpzt(xt)] (4.12)

The likelihood of the model with respect to Θ can be either numerically maxi-

mized or by utilizing the so-called Baum-Welch algorithm (Baum et al., 1970)

which is commonly used to �t HMMs. In real-life applications the number

of underlying activities m given the observed accelerometer counts x1:T is un-

known. Therefore several HMMs with di�erent numbers of statesm are trained

and their goodnesses of �t are compared using the Bayesian Information Cri-

terion (BIC) and Akaike Information Criterion (AIC). If both criteria suggest

a di�erent number of states, then one may opt for fewer states to have a more

simplistic model or for a larger number of states if this better re�ects the

underlying practical situation.

Step 2: Decoding the hidden sequence of PA-levels

After the model parameter Θ and an appropriate number of physical activities

m have been estimated, the resulting HMM is used to link each observed count
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xt to an estimated activity level µ̂i, i = 1, . . . ,m.

Step 2.1 First, the Viterbi algorithm (Forney Jr, 1973; Viterbi, 1967) is

used to decode the globally most likely sequence of hidden activities denoted

by z∗1 , . . . , z
∗
T for the trained HMM and the same time series of counts x1:T that

was used to train the HMM in Step 1 by comparing the joint probability of all

T hidden states and the observed accelerometer counts.

Step 2.2 Second, each accelerometer count xt is assigned to the estimated

activity level µ̂z∗t that corresponds to the decoded state z
∗
t at this point in time.

Step 3: Extension of the cutpoint method

In the last step the results of the HMM-based method is combined with the

traditional cutpoint approach. Now, each accelerometer count xt is assigned

to an activity range at via its corresponding (most likely) mean activity level

µ̂z∗t .

In the example illustrated in Figure 4.1, the trained HMM identi�es �ve ac-

tivity levels µ̂1, . . . , µ̂5, which leads to a misclassi�cation of parts of the state

'badminton' into three instead of one bout, with two bouts being assigned to

MPA and one to LPA. Even with this overestimation of six identi�ed activity

levels instead of �ve, the HMM-based method assigns most counts correctly

to their actual activity range. The high number of bouts typically obtained

from the cutpoint method is reduced by the HMM-based approach because a

Markov chain is assumed to underlie the performed activities at each point in

time. The present example consists of �ve bouts: the �rst is de�ned by the

activity 'walking', which corresponds to the activity range LPA, the second

bout is de�ned by 'sitting' in SED, the third by 'fast walking' in MPA, close

to the cutpoint for VPA. The fourth bout is de�ned by a arbitrary activity

and the last by 'badminton' in MPA. Due to the assumed Markov chain, the

HMM-based approach detects seven bouts, which is an overestimation of the

true value of �ve, but results are more precise than those obtained from the

traditional cutpoint method, which identi�es over 40 bouts.

Figures 4.4 and 4.5 show the HMMs (gray dashed line) �tted to the labeled
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accelerometer presented in Section 3.4.

4.2 Modeling accelerometer data with HMMs

The hidden Markov models introduced in Section 4.1 have the potential to im-

prove the analysis of accelerometer data, especially compared to the traditional

cutpoint approach, described in Section 3.2. In order to investigate the gen-

eral feasibility and the advantages over the cutpoint approach, we conducted

a simulation study (Witowski et al., 2014), see Appendix A for a reprint. The

HMMs were compared with the traditional cutpoint method in terms of (1)

the misclassi�cation rate (MCR), calculated as the percentage of how many of

the counts were assigned incorrectly to any other activity range than their true

activity range, (2) number of bouts correctly identi�ed, (3) number of activity

levels correctly identi�ed, and (4) runtime.

4.2.1 Simulation study

In the simulation study, 1,000 days of labeled accelerometer data consisting

of T = 1, 440 counts at 15 seconds epochs were simulated. So each simulated

time series represented a six-hour day. For labeled data, the true sequence of

activities and their actual activity level and also the activity range of each

count are known. Counts per day were randomly generated using the negative

binomial distribution (with parameters r = 1 and p = 0.0009, resulting in the

lowest activity level µ1 = 111.11) and the Gaussian distribution (with the pa-

rameters µ2 = 400, µ3 = 600 and µ4 = 900 as well as σ2
2 = σ2

3 = σ2
4 = 10, 000)

around three or four pre-de�ned activity levels (depending on the random time

series generated by a Markov chain). For the simulation study cutpoints from

Pate et al. (2006) were used. The lowest activity level of 400 of the simulated

data was intentionally chosen to be very close to the lower cutpoint of 420 to

investigate the performance of the HMMs close to a cutpoint. In the context of

modeling accelerometer counts, three distributions are of particular interest:

The �rst HMM is based on the Poisson distribution, which is typically used

to model counts. The second model uses the generalized Poisson distribution

(Joe and Zhu, 2005) that includes a further variance parameter to allow for a

larger or smaller variation than the one assumed for a standard Poisson dis-
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tribution. Real-life accelerometer data typically show larger variability than a

simple Poisson distribution can accommodate. For the third HMM, a Gaus-

sian distribution is assumed to capture the random scattering of the counts

around the presumed activity level. For the purpose of the present analysis,

the Poisson-based HMM is referred to as HMM[Pois], the HMM based on the

generalized Poisson distribution as HMM[GenPois] and the Gaussian-based

HMM as HMM[Gauss].

4.2.2 Results

The results of the simulation study clearly show the superiority of the HMM-

based method over the traditional cutpoint approach. Among the di�erent dis-

tributions used for the hidden Markov models, HMM[Pois] showed the weakest

performance with regard to MCR, bout and activity detection. The results for

HMM[GenPois] and HMM[Gauss] were similar. HMM[Gauss] led to a slightly

better MCR, while HMM[GenPois] was better in terms of bout detection.

HMM[GenPois] outperformed HMM[Gauss] with a considerably higher activ-

ity detection rate. This outperformance came at a price, namely runtime and

problems with numerical stability. So depending on the particular research

question one has to weigh the advantages and drawbacks of HMM[GenPois]

and HMM[Gauss] to decide which model is best suited for the situation. For

detailed results and an extensive discussion of the results see Witowski et al.

(2014).

4.3 Expectiles and expectile regression

As was seen in the previous two sections, HMMs are a promising improvement

to model accelerometer data compared to the cutpoint method. Yet, quite a

lot of a priori information is required for a proper �t. That is the number

of modeled activity levels has to be de�ned in advance, as well as the class of

distributions. Both assumptions are di�cult to verify. It is virtually impossible

to know how many activities a participant performs during any given day and

according to which distribution the observed counts scatter around the mean

level in advance without inspecting the data. Visual inspections may provide

a good guess, but this is unmanageable for thousands of accelerometer days.
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So we are searching for an approach that takes the assumptions made on phys-

ical activity behavior in Section 3.3 into account, by modeling accelerometer

data as a sort of step function with each jump indicating the start of a new ac-

tivity and the constant interval being the mean intensity level of that activity.

This should be accomplished without any a priori assumptions on the number

of activities or any distribution.

Here, we propose expectile regression using a Whittaker smoother with L0-

penalty as a solution that allows the desired modeling of accelerometer data. In

Section 4.4, the general performance and the advantages of this novel approach

are investigated in a simulation study, in which it is compared to HMMs and

the cutpoint method.

In this section, �rst, a short introduction to univariate expectiles is given and

the concept of penalized regression is brie�y explained. This introduction will

be a little broader than is needed for our application to accelerometer measured

physical activity to enable the reader to better understand the underlying idea.

Building on this, expectile regression utilizing a Whittaker smoother with L0-

penalty will be presented, which allows to model a step curve with the desired

properties, as described above.

4.3.1 Univariate expectiles

Usually regression models focus only on one quantity of the response distri-

bution, the mean. However, there are situations in which it is needed to also

model the extreme parts of the data. This can be, for example, done by using

GAMLSS as presented in Section 5.3.1. Quantile regression as introduced by

Koenker and Bassett Jr (1978) is frequently used, as quantiles have a natu-

ral interpretation. Another option is expectile regression introduced by Newey

and Powell (1987) as an alternative to quantile estimation. Expectile regres-

sion, as well as quantile regression can be used to characterize the complete

conditional distribution of a response. An overview of models beyond mean

regression can be found in Kneib (2013). In recent years, expectile regression

has been found to be a reasonable generalization of mean regression and an

alternative to median regression.

For given observations y1, . . . , yn of independent identically distributed ran-

dom variables Y1, . . . , Yn the τ -quantile qτ can be estimated by minimizing the
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weighted absolute residuals

q̂τ = arg min
qτ

n∑
i=1

wτ (yi, qτ )|yi − qτ | (4.13)

with weights

wτ (yi, qτ ) =

τ if yi > qτ

1− τ if yi ≤ qτ
(4.14)

as introduced by Koenker and Bassett Jr (1978). The basic idea is to asym-

metrically �punish� the residuals. As the sum in (4.13) is not di�erentiable,

linear programming is used to obtain estimates (Koenker, 2005). An R package

is available to calculate qτ for τ ∈ (0, 1) (Sobotka and Kneib, 2012).

In 1987 Newey and Paul extended the asymmetric weights used for quantile

regression to what they called asymmetric least squares, which more recently

was replaced by least asymmetrically weighted squares (LAWS). Instead of

partitioning the data by a proportion τ being below the estimate, as quantiles

do, the weight of a partial �rst moment with proportion τ is located below the

estimate. τ is often referred to as asymmetry parameter, it speci�es the strength

of a speci�c interest in either the upper or lower tail of the distribution.

Newey and Powell (1987) replaced the L1 distance in (4.13) by the L2 distance,

which makes the sum in (4.15) di�erentiable and allows an easy solution. An

expectile estimate can then be calculated by ful�lling the LAWS criterion

ζ̂τ = arg min
ζτ

n∑
i=1

wτ (yi, ζτ )(yi − ζτ )2 (4.15)

with weight function wτ (yi, ζτ ), as de�ned in Equation (4.14), and τ ∈ (0, 1). As

stated above, the sum in (4.15) is di�erentiable, but depends on the weights

wτ (yi, ζτ ), which in turn depend nonlinearly on ζτ . Therefore, estimates are

obtained through an iteratively weighted least squares process. LAWS can

be understood as a weighted generalization of the well-known ordinary least

squares (OLS) estimation, which is the special case of LAWS for τ = 0.5.

Unlike quantiles, expectiles lack an easy interpretation, with the exception

of ζ0.5, which is the mean. Jones (1994) showed that the expectiles are in

fact quantiles uniquely related to the distribution of Y . Yao and Tong (1996)

showed that there exists a unique bijective function h : (0, 1) → (0, 1) such
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that qτ = ζh(τ) where

h(τ) =
−τqτ +G(qτ )

−ζ0.5 + 2G(qτ ) + (1− 2τ)qτ
(4.16)

with G(q) =
q∫
−∞

y dF (y) as the partial moment function and F (y) as the

cumulative distribution function. Here, G(∞) = ζ0.5 = µ is the expectation of

Y .

This implies that quantiles can be calculated from a dense set of expectiles.

Schulze Waltrup et al. (2015) used (4.16) to compare expectile-based quantile

estimates with quantile estimates regarding e�ciency and proposed a method

to estimate non-crossing expectile curves based on splines.

All theoretical τ -expectiles can be calculated for a given distribution with

cumulative distribution function F and �nite expectation. The R package

expectreg provides expectiles for various distributions and the necessary pro-

grams to calculate expectiles for given distributions (Sobotka et al., 2014).

4.3.2 Expectile regression

In the following, we will extend the above approach to a regression model with

covariates xi, i = 1, . . . , r. Let us �rst consider the simple parametric model

Y = Xβτ + ετ

with response Y = (Y1, . . . , Yn)T , design matrixX = (1,x1, . . . ,xr) with xj =

(x1j, . . . , xnr)
T , j = 1, . . . , r and errors ετ = (ε1, . . . , εn)T . Here ζτ = Xβτ is

the expectile and the regression coe�cient that minimizes (4.15) is estimated

by iteratively reweighted least squares updates

β̂
[b]

τ = (XTW b−1
τ X)−1XTW b−1

τ y (4.17)

where β̂
[b]

τ is the estimated regression coe�cient vector in the bth iteration

step. As stated above, the estimation has to be iterated, since the weights in

the weight matrix W b
τ = diag(wτ (y1,Xβ̂

[b]

τ ), . . . , wτ (yn,Xβ̂
[b]

τ )) also depend

on the current estimates (Schulze Waltrup, 2014).

Now let us de�ne a more �exible nonlinear model

Yi = fτ (xi) + ετi.
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Several choices for the functional form for the expectile curve fτ are possible.

Newey and Powell (1987) originally proposed a linear model. Schnabel and

Eilers (2009) favored P(enalized)-splines to model expectile curves.

The basisc idea is to approximate f(x) by polynomial B-splines of degree l.

Let us assume the domain is divided into M̃ − 1 equal intervals by M̃ knots.

Then f(x) can be approximated by M = M̃ + l − 1 basis functions Bl
m(x) of

degree l as

f(x) =
M∑
m=1

βmB
l
m(x)

with βm denoting the coe�cient (so-called amplitude) of basis function Bl
m.

B-splines are described in detail by Eilers and Marx (1996). The aim is to

construct a smooth function by joining polynomial pieces, resulting in a (l−1)-

times continuously di�erentiable function f .

B-splines are de�ned recursively, with basis function of degree 0 de�ned as

B0
m(x) =

1, if κm ≤ x < κm−1

0, otherwise

for m = 1, . . . ,M − 1 and knots κm. A general B-spline of degree l ≥ 1 can

now be de�ned as

Bl
m(x) =

x− κm−l
κm − κm−l

Bl−1
m−1(x) +

κm+1 − x
κm+1 − κm+1−l

Bl−1
m (x).

Thus, a B-spline of degree l can be constructed from a B-spline of degree (l−1)

and can be traced back to a B-spline of degree 0. A basis function of degree l

consists of l + 1 polynomial pieces, which are de�ned by l + 2 knots, of which

l are inner knots. A design matrix B containing the basis functions can be

constructed as

B =


B1(x1) · · · BM(x1)

...
. . .

...

B1(xn) · · · BM(xn)

 .

For more details on B-Splines we refer to Eilers and Marx (1996) and Schulze

Waltrup (2014).

The correct choice of the number of knots and their positions is a problem in

B-spline regression, as it has an impact on the �exibility of the �tted curve.

In order to correct for too much �exibility Eilers and Marx (1996) created
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P-splines by using equidistant knots and by introducing a penalty term. Let

K denote a symmetric penalty matrix, then

(y −Bβ)T (y −Bβ) + δβTKβ

with δ ≥ 0 is the penalized least squares criterion, which we minimize with

respect to β. With smoothing parameter δ the smoothness of the �tted curve

can be tuned between a polynomial spline regression without penalty (δ →
0) or a polynomial �t of order d − 1 (δ → ∞). Schnabel and Eilers (2009)

investigated methods for choosing δ. In Section 4.3.4 two options for selecting

δ will be presented.

Eilers and Marx (1996) proposed to use second order di�erences of adjacent

coe�cients of B-splines, which is accomplished with the di�erence operator

42(βm) = 44(βm) = βm − 2βm−1 + βm−2 for m ≥ 3. This leads to the

de�nition of the (M − 2)×M dimensional di�erence matrix D2 as

D2 =


1 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. . . . . . . . . . . . 0

0 · · · 0 1 −2 1

 ,

which leads to the desired penalization and K = DT
2D2.

In the context of expectile regression, the regression coe�cients are estimated

by iteratively reweighted least squares updates,

β̂
[b]

τ = (BTW b−1
τ B + δDTD)−1BTW b−1

τ y

similar to 4.17 (Schulze Waltrup, 2014). Expectile smoothing can also be

achieved by other smoothers. For example, Sobotka and Kneib (2012) used

bivariate P-splines and Markov �elds for spatial smoothing in combination

with expectiles. See also Kneib (2013) for an overview.

4.3.3 Modi�cation for use in accelerometer data

The basic assumptions related to physical activity behavior were presented in

Section 3.3. As a consequence, the best �tting regression model should be a)

constant during the performance of one speci�c activity, b) close to the mean
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intensity level of that activity and c) �jump� right to the next mean intensity

level.

The concept of penalized smoothing introduced in the sections above is now

used to modify expectile regression by applying the Whittaker smoother with

L0-penalty to ensure that the �tted expectile curve has the desired properties.

Model

As described in Section 4.1 the recorded accelerometer counts y1, . . . , yT are the

observed realizations of random variables Yt. Now, we consider the regression

model

f(x) =
T∑
t=1

βtBt(x)

with regression coe�cients βt and basis elements Bt. The �exibility is ensured

by construction, as there is one regression coe�cient βt for each observed point

in time t, t = 1, . . . , T . The support of each basis element is also only one point

in time and hence the design matrix simpli�es to B = I.

L0-penalty

Whittaker (1923) introduced the smoother described in (4.18), see also Eilers

(2003) for details on theory, implementation and applications. Rippe et al.

(2012) presented a modi�cation of the Whittaker smoother as signal smoother

for segmented genetic data. In certain types of tumor tissue, segmentation

can be observed and a visual representation ful�lling the same requirements

as a regression curve for accelerometer data is required (see Figure 4.2). The

authors proposed to use a smoother based on the L0 norm.

Let the data consist of T data pairs (xi, yi) for which a smooth series ŷ =

(ŷ1, . . . , ŷT ) is �tted. The authors de�ned the so called objective function as

S2 =
T∑
i=1

(yi − ŷi)2 + δ
T∑
i=2

(ŷi − ŷi−1)2. (4.18)

The �rst term, the squared residuals, measure the �delity of the �tted curve

ŷ to data y. The second term is the penalty on roughness with smoothing

parameter δ. The larger δ is chosen, the smoother the curve will be (see top

panel of Figure 4.2; please note that in this �gure the original notation of
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Rippe et al. (2012) is used with λ instead of δ). In quantile smoothing the L2

norm (sum of squared values) in the penalty is replaced by the L1 norm (sum

of absolute values) with objective function

S1 =
T∑
i=1

|yi − ŷi|+ δ

T∑
i=2

|ŷi − ŷi−1|.

This modi�cation results in a better visualization of the segmented data, as

can be seen in the middle panel of Figure 4.2, although there is still a number

of undesirable small jumps. As further improvement the use of the L0 norm is

proposed, resulting in

S0 =
T∑
i=1

(yi − ŷi)2 + δ

T∑
i=2

|ŷi − ŷi−1|0. (4.19)

This penalizes basically non-zero di�erences between neighboring points of ŷ,

that is jumps. Positive numbers raised to the power of 0 result in 1 and 00 = 0

by convention. Therefore only jumps result in a penalty. The penalty is always

1, regardless of the magnitude of the jump. The result can be seen in the lower

panel of Figure 4.2.

The optimal choice of the smoothing parameter δ will be discussed in Section

4.3.4.

Penalty matrix

As we look at di�erences of neighboring regression coe�cients βt − βt−1, the
penalty matrixK can be constructed asK = DT

1PD1 with D1 a (T −1×T )

dimensional di�erence matrix with

D1 =


1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . . . . . . . . 0

0 · · · 0 1 −1

 ,

and weight matrix P = diag

((
1

(D1β)2+ξ

)T)
with ξ > 0 added for computa-

tional stability. With this de�nition, the total penalty adds up to δβTDT
1PD1β =

δ
T∑
t=2

(βt−βt−1)2

(βt−βt−1)2+ξ
. Typical choices for ξ are 10, 000−2. This way, the summand

is 0, if βk−1 = βk, i.e. constant. For βk−1 6= βk, i.e. a jump in the regression
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Figure 4.2: Visualization of L0-penalty on segmented genome data from Rippe

et al. (2012)

.
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curve, each summand is about 1. Thus, the penalty punishes the number of

jumps in the regression curve.

With these modi�cations, the expectile regression can be used to model ac-

celerometer data while re�ecting the underlying assumptions. As described

previously, expectile curves have no natural interpretation, except for τ = 0.5

as the mean. As we are interested in the mean intensity levels of activities,

analyses should therefore focus on �tting the 0.5-expectile curve to accelerom-

eter data, although additionally estimating lower and upper expectiles may

provide further insights into the type of activity and its accompanying distri-

bution of counts. Lower expectiles could be interpreted as stops or less active

periods during an activity as e.g badminton, and higher expectiles represent

periods of highest intensity.

4.3.4 Choice of smoothing parameter δ

With the roughness penalty being properly de�ned we can search for a proper

smoothing parameter δ. It is obvious that for δ → 0 the regression model will

be just an interpolation of the observed data, while for δ →∞ it will become

a constant. In the literature, two approaches to select the �optimal� δ can be

found that have proven to work in practice.

Cross-validation

Rippe et al. (2012) proposed to use odd/even cross-validation when working

with the L0 smoother. All even observations are left out by setting a weight

w̃i to 0. w̃i is set to 1 for all odd observations. For a series of di�erent δs the

value

C̃V =

√∑
i

(1− w̃i)(yi − ŷi)2

is calculated. Then the value δ that minimizes C̃V is determined. It should,

however, be doubled when modeling the complete dataset. See Figure 4.3 for

a visualization of odd/even cross-validation.

We adapt the odd/even cross-validation in a way that we are able to use all

available observations. We separate the data into two folds, one containing all

even observations, the other all odd observations. For each fold h = 1, 2 we
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Figure 4.3: Example of odd/even cross-validation to select optimal smoothing

parameter from (Rippe et al., 2012)

estimate

β̂
h

= arg min
β

[
T∑
t=1

w∗t,h(yt − βt)2 + δβTDT
1PD1β

]
with additional weights w∗t,1 = 0 for h = 1 and t even. Thus, although only

odd observations are used, we also obtain predictions for the omitted even

observations. In the second fold, h = 2, w∗t,2 = 0 and t odd. The two predictions

are combined to β̂ = β̂
1

+ β̂
2
and the cross-validation score CV =

∑T
t=1(yt −

β̂t)
2 is calculated. δ that minimizes CV is then determined by a grid search.

L-curve

Alternatively, the so-called L-curve may be used to select an adequate value

for δ. Hansen (1992) suggested to consider the two major components of every

smoothing procedure that is godness of �t and smoothness of the �nal estimate.

For this purpose, the logarithm of the magnitude of the penalty term of the

regression model (Ξ = log10(β
TDT

1PD1β)2) is plotted against the logarithm

of the sum of squared residuals (Ψ = log10

T∑
i=1

(yi − βi)2) parameterized by
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δ resulting in the so-called L-curve. The �elbow� of the L-shaped curve is

characterized by intermediate values of Ψ, Ξ and δ. Hansen (1992) opted to

select as appropriate δ the value that corresponds to the point of maximum

curvature, that is the elbow of this curve.

The L-curves were originally introduced for the selection of a regularization

parameter in ill-proposed inverse problems. Frasso and Eilers (2015) showed

that the L-curves can be applied to a wide variety of smoothing problems, even

in data with correlated noise. See Hansen (1992) and Frasso and Eilers (2015)

for computational details and graphical visualization of selecting an optimal δ

by this approach.

Both methods for selecting the smoothing parameter δ su�er from the disad-

vantage that a grid search from values close to zero with almost no penalization

to values implying a constant estimate has to be performed. This leads to a

tremendous computational e�ort, as the time needed for the grid search is

multiplied by the number of tested δ.

4.4 Comparison of HMM- and expectile-modeled

accelerometer data

In Section 4.1 HMMs were introduced as a novel approach to allow modeling

physical activity behavior as described in Section 3.3. Section 4.2.1 describes

a simulation study conducted by Witowski et al. (2014) in which the per-

formance of HMMs based on the Poisson, generalized Poisson and Gaussian

distribution was compared with the cutpoint method, concluding that HMMs

based on the Gaussian distribution, denoted HMM[Gauss], are a suitable new

approach to model accelerometer data. Expectile regression using the L0 norm

penalty and a Whittaker smoother have been introduced in Section 4.3.3 as

a second innovative approach to model accelerometer data accounting for the

assumptions made for physical activity behavior. The new methods are com-

pared with each other and with the cutpoint method in a second simulation

study. The expectile regression is compared with the traditional cutpoint ap-

proach (Section 3.2) and with HMM[Gauss] with regard to (1) misclassi�cation

rate (MCR), (2) number of identi�ed bouts and (3) identi�ed levels, (4) the

proportion of the estimated curve being in the range of ±10% of the true mean



48

No. Resembled

activity

1 second epochs % during

the dayMean

level

Distribution

1 Sitting −1 N(µ = −1, σ = 1) 40

2 Arbitrary 28 Pois(λ = 28) 24

3 Slow walking 36 N(µ = 36, σ = 11) 24

4 Arbitrary 55 N(µ = 55, σ = 13) 2

5 Badminton 60 N(µ = 60, σ = 55) 2

6 Arbitrary 68 Pois(λ = 68) 2

7 Fast walking 90 N(µ = 90, σ = 15) 2

8 Basketball 110 N(µ = 110, σ = 65) 2

9 Running 160 N(µ = 160, σ = 30) 1

10 Arbitrary 190 N(µ = 190, σ = 40) 1

Table 4.1: Characteristics of simulated activities (1 second epochs).

and (5) runtime.

4.4.1 Simulation study

The major advantage of simulated accelerometer data is that for each count

the originating intensity level is known. In order to obtain plausible results

it is essential to simulate data that resemble real-life accelerometer data as

closely as possible. We collected labeled accelerometer data, for which the

performed activities are known in a sample of nine adults, as described in

Section 3.4. Based on these data 6 activities presented in Tables 4.1 and 4.2

were chosen for the simulation, covering the range from monotonic activities

like walking with little variation of counts to ball games like basketball with

large variation. Another 4 arbitrary activities were de�ned to introduce further

activities with smaller or larger variation. For most simulated activities the

Gaussian distribution was used, some arbitrary activities were assumed to be

Poisson distributed. Additionally some mean activity levels were deliberately

chosen to be close to a cutpoint de�ned by Freedson et al. (1998). In total 1,000

accelerometer days were simulated for 1 second epochs (T = 43, 200) and 5

seconds epochs (T = 8, 640) each. For each day �ve to ten activities were
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No. Resembled

activity

5 seconds epochs % during

the dayMean

level

Distribution

1 Sitting -1 N(µ = −1, σ = 1) 40

2 Arbitrary 140 Pois(λ = 140) 24

3 Slow walking 200 N(µ = 200, σ = 45) 24

4 Arbitrary 275 N(µ = 275, σ = 75) 2

5 Badminton 230 N(µ = 230, σ = 177) 2

6 Arbitrary 340 Pois(λ = 340) 2

7 Fast walking 470 N(µ = 470, σ = 66) 2

8 Basketball 500 N(µ = 500, σ = 240) 2

9 Running 860 N(µ = 860, σ = 125) 1

10 Arbitrary 950 N(µ = 950, σ = 200) 1

Table 4.2: Characteristics of simulated activities (5 seconds epochs).

randomly chosen, the average percentage of time the activities were performed

during the day can be found in Table 4.1 for 1 second epochs days and Table 4.2

for 5 seconds epochs, respectively. Minimum bout length was set to 240 seconds.

Negative counts were set to 0. The number of activities and bouts for the

simulated days can be found in Table 4.3.

4.4.2 Statistical analyses

As described in Section 4.3.4 there are basically two ways to determine a good

smoothing parameter δ for the expectile regression. Odd/even cross-validation

as well as L-curves are very computationally intensive and therefore it was

not feasible to automatically determine an optimal δ for each individual day.

Instead, the optimal choice was made in a subsample of accelerometer days,

leading to δ = 630 to be used in the analyses.

The main analyses were performed on a high performance computing cluster

(HPC), providing two master servers and 28 computing nodes, each consisting

of 12 CPU cores (2.53 GHz each) and 96 Gb RAM, using R version 3.2.0 (R

Core Team, 2015). For the cutpoint method and HMM[Gauss] the R package

HMMpa (Witowski and Foraita, 2014) was used. Expectile curves were calculated
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No. 1 second epochs 5 seconds epochs

Activities Bouts Activities Bouts

Min 6 30 5 27

Median 8 42 9 41

Mean 8.45 41.64 8.50 41.40

Max 10 56 10 54

Table 4.3: Characteristics of simulated accelerometer days.

with the R package expectreg (Sobotka et al., 2014). Expectile curves turned

out to be very computationally intensive. In order to fully exploit the potential

of the HPC, simulated 1 second epochs days were divided into �ve equal sized

parts, which were sent to �ve di�erent cores and results were recombined after

analyses.

4.4.3 Results

As was previously known, the cutpoint method performed worst, with the

obvious exception of runtime. Expectile regression performed considerately

better than HMM[Gauss] with regard to MCR and number of identi�ed bouts.

Results for HMM[Gauss] were closer to the correct number of activities. As

HMMs by construction are based on a pre-de�ned numberm of levels this is not

surprising, as expectile regression estimates a curve. Therefore we introduced

the proportion of the estimated curve being in the range of ±10% of the true

mean as a measure of �closeness of �t�. Using this as a criterion, the expectile

regression was by far better than the other two techniques. Expectile regression

needed on average about seven times the runtime of HMM[Gauss], but given

the increased performance, this is a reasonable price to pay. Both methods

show improved results for data aggregated to 5 seconds epochs, mainly due to

the accompanying reduction of variance relative to the mean as described in

Section 3.2. Especially HMM[Gauss] bene�ted from this reduction with regard

to all considered quality criteria. Expectile regression showed improvements

regarding MCR, runtime and proportion of the estimated curve being in the

range of ±10% of the true mean. Compared to 1 second epochs data, the

number of identi�ed bouts increased, but was still in the magnitude of and
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Figure 4.4: Example of collected labeled accelerometer data (1 second epochs)

and the results of HMM[Gauss] and expectile regression applied to them (forth-

coming paper presented in Appendix B).
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Figure 4.5: Example of collected labeled accelerometer data (5 seconds epochs)

and the results of HMM[Gauss] and expectile regression applied to them (forth-

coming paper presented in Appendix B).
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considerably closer to the true number than for HMM[Gauss]. The number of

identi�ed levels also increased. It seemed that the expectile regression became

more sensitive to (numerically) extreme values and added levels to compensate

these values.

Figures 4.4 and 4.5 show the HMMs (gray dashed line) and expectile curve

(solid black line) �tted to the labeled accelerometer presented in Section 3.4.

In summary, expectile regression with an L0 norm penalty and a Whittaker

smoother showed superior results compared to HMMs and the cutpoint method

and is hence promising approach to analyze accelerometer data. For more re-

sults and a more detailed discussion we refer to the forthcoming paper pre-

sented in Appendix B.
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Chapter 5

Studies of physical activity in

various age groups

Whereas the previous chapter introduced and compared two novel approaches

to model accelerometer data, this chapter describes �ve empirical studies on

physical activity. First, in the European IDEFICS study accelerometer data

were collected in over 12,000 children. These data are used to describe the

physical activity behavior of European children using GAMLSS, which is also

introduced in this chapter. The IDEFICS data will also be used to investigate

the association between physical activity and high blood pressure in children.

Adding the follow-up data collected in the I.Family study, which continues

the IDEFICS cohort, the data are used to assess the longitudinal associations

between physical activity and obesity markers like BMI and fat mass.

The smaller PATREC study conducted in Bremen, Germany, collected ac-

celerometer data in combination with an activity diary and activity question-

naire to investigate some methodical issues in the assessment of physical activ-

ity in adolescents for di�erent domains by subjective and objective methods.

Finally, an energy prediction equation for a pedometer model is derived based

on a small study conducted in Oldenburg, Germany.

5.1 The IDEFICS study

The European IDEFICS (Identi�cation and prevention of dietary- and lifestyle

induced health e�ects in children and infants) study is a prospective cohort

55
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study, which started in 2006. The study aims at investigating the etiology

of overweight, obesity and related disorders in children. A baseline survey

(T0) was conducted in 2007-2008 and a follow-up survey (T1) in 2010-2011

in eight European countries (Belgium, Cyprus, Estonia, Germany, Hungary,

Italy, Spain and Sweden) (Ahrens et al., 2006; Bammann et al., 2006; Ahrens

et al., 2014). Between T0 and T1 a primary prevention program was imple-

mented in selected intervention regions in each country, each to be compared

with a control region (Henauw et al., 2011; Pigeot et al., 2015). 16,228 children

aged 2-9 years participated in the baseline survey. Parents were asked to report

data on sociodemographic characteristics as well as on medical, nutritional and

other lifestyle factors. Children also participated in an extensive examination

protocol, which included anthropometry, accelerometry, blood pressure and a

�tness test, as well as the collection of biological samples, including saliva for

DNA extraction, blood and urine (Figure 5.1, left section). Additional proto-

cols to collect information on the built environment, sensory taste perception

and mechanisms of food choice and consumer behavior were implemented in

subgroups. Signed written informed consent was obtained from children's par-

ents in addition to verbal permission from each child before examination. The

study protocol was approved by the local ethics committees. See Ahrens et

al. (2011) for more details on the study design, the used instruments and a

description of the study population. Free-living physical activity was assessed

using GT1M or Actitrainer uniaxial devices from Actigraph, LLC, Pensacola,

FL, USA. Both devices use identical sensor units. The general survey manual

required the accelerometers to be set to 15 seconds epochs. The devices were

attached to the right hip by means of an elastic belt. The children were asked

to wear the devices from the getting up in the morning until bed time in the

evening. Participants were asked to wear the accelerometer for at least three

consecutive days including one weekend day. Parents completed a daily activ-

ity or non-wearing diary, in which wearing periods and periods during which

the accelerometers were not worn should be recorded. A total of 18,745 chil-

dren participated in both IDEFICS surveys. Of these, 12,014 provided data

on physical activity. The remaining 6,731 either refused to wear the devices or

the assessment was not completed due to other reasons, like lack of devices at

the time of assessment. Children with musculoskeletal or orthopaedic diseases
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Figure 5.1: Longitudinal design of the IDEFICS study, its concatenation with

the I.Family study and overview of all examination modules (left part presented

in Ahrens et al. (2011)).
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(n=332) were excluded from this assessment.

5.2 The I.Family study

The I.Family study (Determinants of eating behaviour in European children,

adolescents and their parents) builds on the IDEFICS study. In this follow-up

study dietary behavior and food choice within whole families and their lifestyle

are investigated. As in the IDEFICS study, data on health and nutrition be-

havior were collected and complemented with family data by including siblings

and parents.

A second follow-up survey (T3) was conducted in the year 2013/2014. All index

children that is all children, who participated in T0 and/or T1 were invited to

participate, as well as their siblings and parents. The examination program of

T3 covered the majority of the modules employed during T0 and T1. Modules

on family life, peers and kinship structure were introduced in T3 (Figure 5.1,

right section). Additional assessment modules were implemented in a subgroup

of participants, the so-called contrasting groups, these were de�ned as children

who showed divergent developmental trajectories in their weight status. One

of these modules investigated the built environment of the families using GIS

and GPS trackers. Families were asked to wear an accelerometer together with

a GPS tracking device. Like in the IDEFICS study, signed written informed

consent was obtained from children's parents in addition to verbal permission

from each participant before examination. The study protocol was approved

by the local ethics committees.

In total 17,540 persons participated in I.Family of which 7,083 were index

children, 2,548 were newly recruited siblings and 6,851 biological parents and

1,057 other adults. The 6,162 families in I.Family had on average 2 children

(data status as of December 2015). More details on the study design, the used

instruments and a description of the study population will soon be presented

in a forthcoming publication.

Participants in T3 were asked to wear an Actigraph accelerometer for seven

consecutive days. For 4,841 children (50.3% of children and adolescents partic-

ipating in T3) and 1,427 adults (18.1%) data on physical activity were down-

loaded from the devices. Since also the raw data �les were collected, the data
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can be derived for arbitrary epoch lengths like e.g. 15 or 60 seconds as used in

the IDEFICS study, or even shorter epochs like 1 or 5 seconds.

5.3 Descriptive results of physical activity: ap-

plication of GAMLSS to accelerometer data

In Konstabel et al. (2014) we used the Generalized Additive Models for Loca-

tion Scale and Shape (GAMLSS) presented below to derive percentile curves

for levels of physical activity. The publication aims at describing physical ac-

tivity levels of European children and the provision of sex- and age-speci�c

reference standards in children aged 2-10 years.

5.3.1 Generalized Additive Models for Location Scale and

Shape (GAMLSS)

In clinical practice, especially for diagnostic purposes, reference ranges are

needed for various clinical parameters to classify measurements as pathologic,

unusual or usual. If the measurement depends on a covariate, for example age,

so that the reference ranges change with the covariate, then this should be

re�ected in so-called percentile curves. Percentile curves show the percentiles

of the distribution of a medical parameter depending on an additional covari-

ate, typically depending on age. These percentile curves are thus of particular

interest for measurements in children, as their bodies pass through dramatic

changes during childhood and adolescence, so that one single reference range

might be su�cient for adults, but certainly not for children and adolescents. In

1988 Cole introduced the LMS method, which summarizes the changing dis-

tribution by three separate curves which are estimated for the a) median, b)

the variation coe�cient and c) the skewness. This method has been extended

in recent years to also allow for more than one covariate and for additional

modeling of the kurtosis of a distribution. For this purpose the so-called Gen-

eralized Additive Models for Location Scale and Shape (GAMLSS) are used.

Both techniques will be brie�y introduced in this section.
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LMS method for smooth reference percentile curves

The LMS method was �rstly introduced by Cole in 1988 and further improved

in 1992. The basic idea is to �t what was later on called a Box-Cox Cole

and Green (BCCG) distribution to the empirical distribution of the variable

of interest. The BCCG distribution is described by three parameters, 1) the

Box-Cox power ψ, 2) the mean µ and 3) the coe�cient of variation σ. The

following paragraphs are based on Cole and Green (1992) and give a formal

introduction to this technique. Let us denote e.g. the medical parameter of

interest with Y . Let us further assume that Y is a positive random variable

with median µ and that Y ψ is normally distributed. For ψ = 0 let lnY follow a

normal distribution. Based on the family of transformations proposed by Box

and Cox (1964) (therefore ψ is referred to as Box−Cox power) the following
transformation

X =
(Y/µ)ψ − 1

ψ
, ψ 6= 0 (5.1)

or

X = ln(Y/µ), ψ = 0

will map the median µ of Y to a median of 0 for X and is continuous at ψ = 0.

Let σ denote the standard deviation (SD) of X. For ψ = 1, σ is the coe�cient

of variation (CV) of Y . Thus, X follows a normal distribution with mean µ and

variance σ2. The standard deviation score (SDS) or z-score of X and hence of

Y is given by

Z = X/σ

=
(Y/µ)ψ − 1

ψσ
, ψ 6= 0, σ 6= 0 (5.2)

or

Z =
ln(Y/µ)

σ
, ψ = 0,

respectively. Thus, Z follows a truncated standard normal distribution, as the

condition 0 < Y <∞ leads to the condition −1/(σψ) < Z <∞ if ψ > 0 and
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−∞ < Z < −1/(σψ) if ψ < 0. It follows that percentiles can be calculated as

P100α = µ(1 + ψσzα)1/ψ, ψ 6= 0 (5.3)

or

P100α = µe(σzα), ψ = 0,

where zα is the α-quantile of the standard normal distribution. Now let us

assume that the distribution of Y varies with some covariate t, i.e. age or

height, then also the three parameters ψ, µ and σ vary with this covariate.

The name giving idea of the LMS method is now to estimate three smooth

curves L(t), M(t) and S(t) for the parameters ψ, µ and σ. It follows that

Z =
[Y/M(t)]L(t) − 1

L(t)S(t)
, L(t) 6= 0, S(t) 6= 0, (5.4)

or

Z =
ln[Y/M(t)]

S(t)
, L(t) = 0.

Analogously to (5.3) percentiles can be calculated as

P100α(t) = M(t)(1 + L(t)S(t)zα)1/L(t), L(t) 6= 0 (5.5)

or

P100α(t) = M(t) exp[S(t)zα], L(t) = 0

The probability density function for Y is given by

fY (y) =
yψ−1 exp(−1

2
z2)

µψσ
√

2πΦ( 1
σ|ψ|)

, (5.6)

where z is given by (5.2) and Φ( 1
σ|ψ|) is the cumulative distribution function

of a standard normal distribution. Cole and Green (1992) assumed a standard

normal distribution for Z and that the truncation probability is negligible.

With these assumptions and inserting L(t), M(t) and S(t) for the parameters

ψ, µ and σ, the log-likelihood function can be derived as:

l = l(L,M, S) =
n∑
i=1

(
L(ti) ln

yi
M(ti)

− lnS(ti)−
1

2
z2i

)
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for the case of independent random variables Yi with observations yi at cor-

responding covariate levels ti with zi being the SDS corresponding to yi. If

the L,M and S curves are smooth, then so are the percentile curves. In order

to assure the smoothness of L(t), M(t) and S(t) Cole and Green suggest to

subtract penalties from the likelihood (penalized likelihood). L(t),M(t) and

S(t) are thus estimated by maximizing the penalized likelihood

lp = l − 1

2
αψ

∫
(L′′(t))2dt− 1

2
αµ

∫
(M ′′(t))2dt− 1

2
ασ

∫
(S ′′(t))2dt

where αψ, αµ and ασ are smoothing parameters. Cubical splines are used for

the estimation. The Fisher-score is used for iterative optimization; see Cole

and Green (1992) for details on the numerical implementation and optimal

choice of the smoothing parameters.

So in summary the LMS method can be used to derive percentile curves for a

medical parameter that depends on one covariate, if the assumption that the

variable follows a normal distribution after a suitable power transformation

is ful�lled. The LMS method, however, is not suitable to model a medical

parameter that depends on more than one covariate, i.e. age and height or

height and weight, or if one wants to explicitly model kurtosis, which can only

be indirectly modeled by the LMS method via the shape and scale parameters.

In these cases one may want to opt for GAMLSS, which is a generalization of

the presented LMS method.

GAMLSS

Generalized additive models for location scale and shape (GAMLSS) are very

�exible regression models. GAMLSS are not restricted to response variables

whose distribution belongs to an exponential family as e.g. the Generalized

Additive Models (GAM) or Generalized Linear Models (GLM). A large number

of distributions can be modeled, including distributions that are highly skew

and/or kurtotic. The following paragraphs provide a short introduction and

are based on Stasinopoulos and Rigby (2007).

Let us assume for i = 1, 2, . . . , n observations yi to originate from independent

random variables Yi with probability (density) function f(yi|θi) conditional on
a vector of four distribution parameters θTi = (θi1, θi2, θi3, θi4) = (µi, σi, νi, ρn).

Although GAMLSS is not restricted to distributions de�ned by up to four
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parameters, for most applications up to four distribution parameters will be

su�cient, where µi and σi are usually characterized as location and scale

parameters and νi, ρi as shape parameters, e.g., skewness and kurtosis. Fol-

lowing the de�nition of GAMLSS by Rigby and Stasinopoulos (2005), let

yT = (y1, y2, . . . , yn) be the vector of the response variable of length n. Let

us further assume that the distribution parameters can be considered as func-

tions of the potential covariates. Then, gk(.) for k = 1, 2, 3, 4, denote known

monotonic link functions, which describe the functional relationship between

the distribution parameters (µi, σi, νi, ρi) and the Jk covariates and random

e�ects by

gk(θk) = ηk = Xkβk +

Jk∑
j=1

Zjkϕjk, (5.7)

where for j = 1, . . . , Jk and k = 1, 2, 3, 4 let us denote with

1. βTk = (β1k, β2k, . . . , βJ ′kk
) ∈ RJ

′
k , J

′

k ∈ N, the parameter vector,

2. Xk ∈ Rn×J ′k a �xed known design matrix,

3. ϕjk a qjk dimensional random variable,

4. Zjk a �xed known n× qjk design matrix,

5. ηk the linear predictor.

With θ1 = µ = (µ1, . . . , µn)T ,θ2 = σ = (σ1, . . . , σn)T ,θ3 = ν = (ν1, . . . , νn)T ,θ4 =

ρ = (ρ1, . . . , ρn)T we get

g1(µ) = η1 = X1β1 +

J1∑
j=1

Zj1ϕj1,

g2(σ) = η2 = X2β2 +

J2∑
j=1

Zj2ϕj2,

g3(ν) = η3 = X3β3 +

J3∑
j=1

Zj3ϕj3,

g4(ρ) = η4 = X4β4 +

J4∑
j=1

Zj4ϕj4,
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where µ,σ,ν,ρ and ηk are vectors of length n.ϕjk is assumed to be distributed

as ϕjk ∼ Nqjk(0,G
−1
jk ) with G−1jk being the (generalized) inverse of a qjk × qjk

symmetric matrix Gjk = Gjk(χjk). Gjk = Gjk(χjk) may depend on a vector

of hyperparameters χjk and if Gjk is singular then ϕjk is understood to have

an improper prior density function proportional to exp
(
−1

2
ϕTjkGjkϕjk

)
.

For (5.7) every distribution parameter can be modeled as a linear function of

explanatory variables and/or as linear functions of stochastic variables (ran-

dom e�ects). An important special case of this very general de�nition gives

the semi-parametric additive formulation of GAMLSS. Let Zjk = In, where In

is an n × n identity matrix, and ϕjk = hjk = hjk(xjk) for all combinations

of j = 1, . . . , Jk and k = 1, . . . , 4. Then (5.7) is simpli�ed as follows to the

semi-parametric additive formulation of GAMLSS

gk(θk) = ηk = Xkβk +

Jk∑
j=1

hjk(xjk), (5.8)

where

1. xjk for 1, 2, . . . , Jk are vectors of length n,

2. hjk is an unknown function of the explanatory variable Xjk

3. hjk = hjk(xjk) is the vector which evaluates the function hjk at xjk.

With θ1 = µ = (µ1, . . . , µn)T ,θ2 = σ = (σ1, . . . , σn)T ,θ3 = ν = (ν1, . . . , νn)T ,θ4 =

ρ = (ρ1, . . . , ρn)T we get

g1(µ) = X1β1 +

J1∑
j=1

hj1(xj1),

g2(σ) = X2β2 +

J1∑
j=1

hj2(xj2),

g3(ν) = X3β3 +

J2∑
j=1

hj3(xj3),

g4(ρ) = X4β4 +

J4∑
j=1

hj4(xj4). (5.9)

The semi-parametric additive formulation of the GAMLSS (5.9) is most com-

mon and is implemented in the R package gamlss, in addition to the more
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general de�nition of (5.7). With (5.9) hjk(xjk) can be modeled as natural cu-

bic spline(s) of the covariate(s). Similar to the LMS method smoothness is

ensured by maximizing the penalized likelihood, which is given by

lp = l − 1

2

p∑
k=1

Jk∑
j=1

ϕTjkGjkϕjk (5.10)

where l =
∑n

i=1 log(f(yi|θi)) is the log-likelihood function of the data given

θi for i = 1, . . . , n; see Rigby and Stasinopoulos (2005) and Stasinopoulos

and Rigby (2007) for details. GAMLSS is able to cope with a large number

of distributions ranging from discrete one parameter distributions, like the

binomial or Poisson distributions, to continuous distributions with four model

parameters like the Box-Cox power exponential (BCPE), which was introduced

by Rigby and Stasinopoulos (2004). A (non-conclusive) list can be found in

Stasinopoulos and Rigby (2007). The only restriction on the distribution is

that f(y|θ) and its �rst and second (and cross-) derivatives with respect to

each element of θT = (θ1, θ2, θ3, θ4) need to exist, either in explicit form or as

numerical derivatives.

Remark 5.1. For our application in the section below, we assume that Yn are

independent identically distributed with distribution parameters (µ, σ, ν, ρ) ∈
R4. Following the notation as introduced by Rigby and Stasinopoulos (2005),

we will denote a model where the response variable Y follows a BCPE-distribution

with (1) the location parameter µ modeled using the identity link as a cubic

smoothing spline (cs(x, 3)) with three degrees of freedom in x, i.e. age, com-

bined with the linear term in x and (2) the scale parameter σ being modeled

by a log-linear model in x and (3) ν and (4) ρ being modeled using a constant

model expressed as 1 (in case of ρ on the log-scale), in short, with

Y ∼ BCPE{µ = cs(x, 3), log(σ) = x, ν = 1, log(ρ) = 1}.

5.3.2 Objectively measured physical activity in European

children

During the IDEFICS surveys T0 and T1 free-living physical activity was as-

sessed using Actigraph GT1M and Actitrainer devices set to 15s epochs (see

Section 5.1). However, in some of the IDEFICS centers 60s epochs were used.
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Therefore, it was decided to reintegrate the data collected at 15s epochs to 60s

epochs. Non-wearing time was de�ned as 20 minutes or more of consecutive

zero counts and was removed for analysis. Minimum wearing time was set to

at least 8 hours of valid time per day. In order to be included into the analysis

at least one valid weekday and one valid weekend day were required. In total

7,684 children met the inclusion criteria (3,842 boys and 3,842 girls). Activity

ranges were assigned to the accelerometer counts using the cutpoint method

(Section 3.2) with Evenson cutpoints (Evenson et al., 2008). For the follow-

ing dependent variables percentile curves were derived: 1) average counts per

minute (CPM) that is sum of daily counts divided by valid time, 2) time spent

in at least moderate activity (MVPA), 3) light activity (LPA) and 4) seden-

tary time (SED). For MVPA, LPA and SED the unadjusted as well as adjusted

minutes were analyzed. To obtain adjusted minutes, unadjusted (raw) minutes

were divided by wearing time for each wearing day and the resulting fraction

was multiplied by the average wearing time across all valid days.

Statistical analysis

We used the gamlss package (version 4.2-6) of the statistical softwareR (version

3.0.1) (R Core Team, 2015). Di�erent distributions were �tted to the observed

distribution of physical activity variables as the Box-Cox power exponential

(BCPE), the Box-Cox Cole and Green (BCCG), the Box-Cox t, the normal,

the power exponential and the t family distribution. Age was modeled either

as a constant, as a linear function, or as a cubic spline. Goodness of �t was

assessed by the Bayesian Information Criterion (BIC) and Q-Q plots. As a

result, percentile curves for the 5th, 10th, 25th, 50th, 75th, 90th and 95th

percentiles were calculated based on the model that showed the best goodness

of �t (Cole et al., 2009; Stasinopoulos and Rigby, 2007). For comparative

purposes, it is, however, bene�cial, if the same distribution is used for all

dependent variables. The BCCG distribution (Cole and Green, 1992) turned

out to be the most appropriate distribution according to the BIC in most cases.

In all other cases, the di�erence from the best �tting distribution in terms of

BIC was negligible. Following the notation introduced in Remark 5.1, Table

5.1 presents the �tted GAMLSS for the physical activity data.
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Variable Distribution log(µ) log(σ) ν Sex

CPM BCCG cs(age, 3) cs(age, 3) 1 both

Adjusted MVPA BCCG cs(age, 3) cs(age, 3) 1 boys

Adjusted MVPA BCCG cs(age, 3) 1 1 girls

Unadjusted MVPA BCCG cs(age, 3) 1 1 both

Adjusted LPA BCCG cs(age, 3) 1 1 both

Unadjusted LPA BCCG cs(age, 3) 1 1 both

Adjusted SED BCCG cs(age, 3) 1 1 both

Unadjusted SED BCCG cs(age, 3) 1 1 both

Table 5.1: Fitted GAMLSS for physical activities and sedentary behavior

As described in Section 5.3.1 one major advantage of GAMLSS is that distri-

butions can be �tted, which allow the explicit modeling of kurtosis, like e.g.

the BCPE distribution. However, here the BCCG distribution showed the best

�t for the physical activity data. So in retrospective the LMS method by Cole,

as presented in the beginning of Section 5.3.1, would have been su�cient to

capture the structure of our data. But this was a priori unknown and was only

con�rmed by the more sophisticated analysis exploiting GAMLSS.

Results

Based on the �tted distributions listed in Table 5.1 smoothed percentile curves

P5, P10, P25, P50, P75, P90 and P95 were calculated as reference ranges for physi-

cal activity in European children (see Figures 5.2 to 5.4). In general boys show

higher values for CPM and MVPA, while sedentary time was higher for girls.

No di�erences can be seen with regard to light activities. The percentile curves

show similar trends with increasing age for both sexes. Average sedentary be-

havior increases with age from about 240 minutes per day (min/day) at age 3 to

about 380 min/day at age 10. At the same time an decrease from 410 min/day

to 360 min/day can be seen in LPA. MVPA increases with age. Starting with

24 min/day on average in boys and girls, the time spent in MVPA doubles in

boys until the age of 10. For girls an increase can be seen as well, but only to

35 min/day at the age of 10.

Children are recommended to perform MVPA activities for at least 60 min-

utes a day. To investigate how many children follow this recommendation, we
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Figure 5.2: Percentile curves: adjusted SED for European boys and girls (Kon-

stabel et al., 2014).

Figure 5.3: Percentile curves: adjusted LPA for European boys and girls (Kon-

stabel et al., 2014).
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Figure 5.4: Percentile curves: adjusted MVPA for European boys and girls

(Konstabel et al., 2014).

calculated the corresponding percentage of children in the IDEFICS study.

General compliance was low with proportions ranging from 2.0% (Cyprus) to

14.7% (Sweden) in girls and from 9.5% (Italy) to 34.1% (Belgium) in boys. For

detailed results and an extensive discussion see Konstabel et al. (2014).

5.4 Association of physical activity with speci�c

endpoints

5.4.1 Longitudinal association of objectively measured

physical activity behavior and obesity in European

children

Physical activity is generally considered as being bene�cial for body composi-

tion, that is high levels of physical activity lead to low body fat mass and a

healthy body mass index (BMI) in general. Numerous studies, mostly cross-

sectional, investigated the relationship between obesity and physical activity

(Jimenez-Pavon et al., 2010; Rauner et al., 2013). There is general agreement

that physical activity is negatively associated with obesity (Jimenez-Pavon et

al., 2010).

Cross-sectional studies can only study associations rather than causality. To
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the best of our knowledge, only few longitudinal studies with small sample sizes

investigated the interaction of objectively measured physical activity levels,

fat mass and fat free mass (FFM) (Jimenez-Pavon et al., 2013). Until today it

remains unclear whether physical activity leads to a reduction of fat mass or if

fat mass hinders being physically active (Metcalf et al., 2010; Ekelund et al.,

2014). Recently, the Ballabeina (Bürgi et al., 2011) and EarlyBird (Metcalf et

al., 2010) studies investigated the interaction of objectively measured physical

activity and fat mass.

Metcalf et al. (2010) investigated in a sample of about 200 children whether in-

activity is the cause of fatness or fatness the cause of inactivity. This research

was part of the EarlyBird study in which children were visited yearly from

age 7 to age 10. Physical activity was assessed using Actigraph accelerome-

ters on seven consecutive days. Total physical activity (TPA) as counts per

week and minutes spent in MVPA were analyzed. Body fat per cent (BF)

was measured by dual x-ray absorptiometry. The authors used partial cor-

relation coe�cients to compare baseline versus change to follow-up associ-

ations in order to examine the direction of association. First, the authors

looked at cross-sectional associations for the four surveys, adjusted for age

and sex (e.g. TPA7y = sex + age7y + BFy7). Second, so-called time-lagged

associations of physical activity on future BF measured 1, 2 and 3 years

later adjusted for the earlier measurement were modeled, as well as the re-

verse association, i.e. the in�uence of BF on future physical activity (e.g.

TPA10y = sex + age7y + BFy7). Third, changes in physical activity and BF

were calculated for each 1-, 2- and 3-year period. Partial correlation coe�-

cients were then calculated for the predictor at a single point in time and the

change in the outcome variable from that point in time to a 1-, 2- or 3-year

follow-up. The authors adjusted for the outcome measure at the earlier point

in time (e.g. TPA10y − TPA7y = sex+ age7y + TPA7y +BFy7). In this study,

BF was predictive of changes in physical activity, but physical activity levels

were not predictive of changes in BF. The authors concluded that physical

inactivity seems to be the result of fatness rather than its cause. See Metcalf

et al. (2010) for the complete study and results.

This result was also con�rmed by the Ballabeina study: while children with

higher body fat at baseline were observed to be less active at follow-up, baseline
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Cross-sectional

T0 T1

r (95%-CI) r (95%-CI)

CPM -0.05 (-0.09,-0.01) -0.07 (-0.11,-0.04)

MVPA -0.05 (-0.09,-0.01) -0.08 (-0.12,-0.04)

VPA -0.11 (-0.15,-0.08) -0.16 (-0.2,-0.13)

Time-lagged

PA T0 vs. z-FMI T1 z-FMI T0 vs. PA T1

r (95%-CI) r (95%-CI)

CPM -0.06 (-0.1,-0.02) -0.07 (-0.11,-0.03)

MVPA -0.05 (-0.09,-0.01) -0.07 (-0.11,-0.04)

VPA -0.1 (-0.14,-0.06) -0.15 (-0.18,-0.11)

Change in outcome

PA T0 vs ∆z-FMI z-FMI T0 vs. ∆PA

r (95%-CI) r (95%-CI)

CPM -0.02 (-0.06, 0.01) -0.06 (-0.1,-0.03)

MVPA -0.01 (-0.04, 0.03) -0.06 (-0.1,-0.02)

VPA -0.01 (-0.04, 0.03) -0.11 (-0.14,-0.07)

r = Spearman's partial correlation coe�cient, adjusted

for sex and age.

CI = con�dence interval; ∆ = change;

Table 5.2: Preliminary results on the association between physical activity and

BF based on follow-up data of the IDEFICS study.
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physical activity did not reduce fat mass at follow-up (Bürgi et al., 2011).

Using the data collected in the IDEFICS study (Section 5.1), we tried to repro-

duce these �ndings. Body composition was assessed using the z-score of the fat

mass index (FMI), which is the fat mass in kg divided by the squared height

in m, abbreviated as z-FMI, the z-score of waist circumference (z-waist) (Nagy

et al., 2014, corrected version to be published in 2016) and FFM. Physical

activity was measured using Actigraph accelerometers for at least three days

of at least eight hours wearing time of which at least one day was a weekend

day. We used CPM and time spent in MVPA and VPA as components of phys-

ical activity. About 3,000 children had valid accelerometer measurements at

T0 and T1, which is a requirement to calculate the changes between points in

time. Using the same methods as Metcalf et al. (2010), we were able to derive

similar results based on our data. Table 5.2 presents the resulting partial corre-

lation coe�cient for z-FMI. Like Metcalf et al. (2010) we observe statistically

signi�cant cross-sectional and time-lagged associations. When looking at the

correlations of the changes, only z-FMI versus change in physical activity is

signi�cant. Hence, our �ndings support the results of Metcalf et al. (2010).

But as a limitation, in the IDEFICS study only two points in time can be

considered.

In order to increase the number of observations, data from the I.Family study

(Section 5.2) are used to augment the IDEFICS study data. Both studies com-

bined include about 3,600 participants with two valid accelerometer measure-

ments and nearly 1,000 participants with three valid measurements. In order

to use as many observations as possible, we will use multi-level models (MLM)

to assess the direction of the association.

In a �rst step MLMs will be used to derive a random slope over time for each

participant's exposure, e.g. MVPA. In a second step this result will be inserted

into another MLM as predictor for the outcome, e.g. z-FMI at a later point in

time, preferably T3. A paper is currently being prepared.

One could also argue that comparing the change in z-scores with the �raw�

minutes spent in an intensity level is incorrect. The z-scores are by construction

adjusted for age and sex, that means that a participant with a change of 0

maintains his/her position relative to the reference population, even if his/her

�raw� FMI value changes. This is not true for e.g. minutes spent in MVPA.
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As can be seen in Figure 5.4 MVPA increases over time, as does the variance.

So a participant who is at P50 at age 4 can still be at P50 at age 6, hence

his/her activity level has not changed relative to the population, yet he/she

has a change of 10 minutes MVPA. A participant at P5 can also remain at this

percentile and has only a change of about 5 minutes MVPA.

In order to address these concerns, one may, aside from calculating the physical

activity z-scores, use MLMs to consider the daily accelerometer measurements.

So accelerometer measurements nested within individuals nested within coun-

tries may be modeled, rather than simply using the mean of the daily mea-

sured physical activity. Another alternative would be to use the best linear

unbiased predictor (BLUP) to combine the daily measurements to one value

as suggested by Olive et al. (2012) and Stanek 3rd et al. (1999) as the BLUP

allows to consider the inter- as well as the intra-individual variability of the

measurements.

Another idea is to use path models to further investigate the association be-

tween physical activity and body composition. If fatness leads to inactivity,

which increases fatness further reducing physical activity, then this would be

a classic vicious circle. Here, the path model may discover the best starting

point to break this circle.

5.4.2 Incidence of high blood pressure in children - Ef-

fects of physical activity and sedentary behaviors

High blood pressure (HBP) is known to be one of the most important risk

factors for cardiovascular diseases. De Moraes et al. (2015) determined the in-

cidence of pre-HBP and HBP and analyzed the e�ect of physical activity and

sedentary behavior on pre-HBP and HBP. Of 16,228 children participating in

the baseline survey T0 of the IDEFICS study only a subset of 5,221 children

provided information on the primary outcome HBP and the main exposures

physical activity and sedentary behavior, as well as potential confounders. As

this information were required for T0 and T1, a total of 5,061 participants were

included in the analyses. Pre-HBP and HBP were de�ned according to the Na-

tional High Blood Pressure Education Program Working Group on High Blood

Pressure in Children and Adolescents (NHBPEP, 2004). Minimum accelerom-
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eter wearing time was at least 6 h/d for at least 3 days (2 weekdays and 1

day of weekend/holiday). The sampling interval (epoch) was set to 15 seconds.

Total volume of activity was expressed as the sum of recorded counts divided

by total daily registered time expressed in minutes (counts/min; cpm). All

children were categorized as ful�lling the current recommendation of ≥ 60 min

MVPA per day or not. Another variable categorizing the change in physical

activity from T0 to T1 was created with values (1) meeting the recommen-

dation in T0 and T1; (2) meeting the recommendations in T0 but not T1;

(3) meeting recommendation only in T1 and (4) meeting the recommendation

neither in T0 nor T1. Sedentary behavior was assessed using a proxy report on

activity behavior that was completed by the children's parents. Reported daily

TV/DVD/video and computer/games-console use were summed up to obtain

the total screen time per day. Finally the children were categorized accord-

ing to the American Academy of Pediatrics: Committee on public education

(AAoPCoPE, 2001) as having either ≤ 120 min screen time per day or more.

In addition, a variable describing the change in sedentary behavior from T0 to

T1 was derived.

Cumulative incidence was calculated for the two years of follow-up with 95%

con�dence intervals (CI) for both outcomes: Pre-HBP and HBP for total phys-

ical activity (ful�lling the recommendation of ≥ 60 min MVPA per day), cate-

gorized screen time and categorized change in physical activity. The magnitude

of these associations was subsequently expressed as unadjusted and adjusted

relative risk (RR) and 95% CI. Multinomial multilevel regression models using

random intercepts were applied to estimate the e�ect of physical activity and

sedentary behavior on pre-HBP and HBP incidence. The survey center was

used as level in this model.

The incidence of pre-HBP per year was found to be 121/1000 children and

110/1000 children per year for HBP. Children, who had a reported screen time

> 120 min per day at T0 and T1, showed an RR of having HBP of 1.28 (1.03-

1.60). For T1 an elevated RR of 1.53 (1.12-2.09) for having HBP can be seen for

children not meeting the physical activity recommendation of at least 60 min

MVPA per day. No association between pre-HBP and the considered behaviors

was found. In conclusion, it can be stated that the incidence of pre-HBP and

HBP is high in European children and that maintaining sedentary behaviors
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during childhood increases the risk of developing HBP. For the detailed results

and their discussion see Moraes et al. (2015).

5.5 The PATREC study

The PATREC study is a cross-sectional study which was carried out dur-

ing the school year 2012/2013 (September 2012 - February 2013). The aim

of this study was to evaluate the comparability of di�erent instruments used

to objectively and subjectively measure physical activity. 542 students from

two primary and two secondary schools in the city of Bremen were invited to

participate in four di�erent modules: (1) wearing an Actigraph accelerometer

(GT3X+, GT1M, ActiTrainer; Pensacola, Florida, USA) for seven consecutive

days during waking hours, except when taking a bath and swimming, and to

complete an activity diary. The students were asked to record sports clubs and

physical education time frames in this diary, as well as non-wearing periods

and their reasons. The accelerometers were attached with an elastic belt on the

right hip. Accelerometer data were stored at 3-second-epochs and computed

with the ActiLife 6 software. Non-wearing periods were de�ned according to

Choi et al. (2011) also using the ActiLife 6 software. Cutpoints from Evenson

et al. (2008) for SED, LPA and MVPA were applied; (2) a 7-day-recall ques-

tionnaire at the last day of the accelerometer-wearing-period with 12 items

covering di�erent domains and dimensions of physical activity and sedentary

behavior; (3) a questionnaire on the habitual physical activity; and (4) a �tness

test. The body mass index (BMI) was calculated by self-reported height and

weight.

Participating students were required to ask for written parental consent. In

addition, older students (11-17 years) had to give their written consent, while

oral consent was obtained from the younger students (6-10 years). The study

was approved by the ethical committee of the University of Bremen.
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5.5.1 Domain-speci�c self-reported and objectively mea-

sured physical activity in children.

As was discussed in Section 2.1.5, the agreement of subjectively and objec-

tively measured physical activity is generally low or moderate at best. Little is

known about the extent di�erent domains contribute to total physical activity

and sedentary behavior. According to the SLOTH (sleep, leisure, occupation,

transportation, household) model (Pratt et al., 2004), opportunities for chil-

dren and adolescents to accumulate physical activity can be assigned to �ve

domains: sleep, transportation, school time, leisure time and home. Among

these domains school can be considered as a very important domain, as chil-

dren and adolescents spend about half of their waking hours there (Bailey et

al., 2012; Escalante et al., 2014; Guinhouya et al., 2009b).

Epidemiological studies commonly use questionnaires and proxy reports to as-

sess physical activity and sedentary behavior by asking children or their parents

to report the duration of outdoor playing time, organized sports activities or

electronic media consumption. These domain-speci�c activity variables are of-

ten thought to su�ciently describe the physical activity behavior (Pratt et al.,

2004; Trost, 2007).

Sprengeler et al. in a forthcoming publication presented in Appendix E studied

the agreement of self-reported and objectively measured physical activity and

sedentary behavior in speci�c domains (transportation, school time, physical

education, leisure time and organized sports activities). Additionally, the con-

tribution of these domains to total SED, LPA and MVPA was investigated by

combining accelerometry (and an activity diary) with a questionnaire.

Methods

A modi�ed version of the validated German MoMo-(Motoric Module) physical

activity questionnaire (PAQ) was used, which is designed to assess habitual

physical activity (Jekauc et al., 2013). The modi�ed PAQ consists of 12 ques-

tions assessing �ve domains of physical activity (transport, school time, phys-

ical education, leisure time and organized sports activities). Children up to

the age of 10 completed the questionnaire with their parents (proxy-reported),

while the older students completed the questionnaire by themselves. For each
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domain, frequency, duration and intensity of physical activity were assessed.

Self-reported SED was de�ned as the duration of sedentary activities (e.g.

TV viewing, sitting during school hours). The intensity of physical activity

was assessed as participants' self-perceived, typical intensity of breathing and

sweating during physical activity.

Accelerometer data were used for analyses, if at least ten hours per day of

valid wearing time for at least three days were available. Non-wearing time

was removed according to Choi et al. (2011) and intensity levels assigned us-

ing cutpoints from Evenson et al. (2008). Using the information provided in

the accelerometer diary and the PAQ, objectively measured SED, LPA and

MVPA were each assigned to the �ve domains transport, school time, physical

education, leisure time and organized sports activities. Dates and time of phys-

ical education and organized sports activities were linked to the accelerometer

counts based on the information in the activity diary. School time was de�ned

as the interval between the start and end of school. The time of physical educa-

tion classes was excluded from school time and assessed separately. Transport

was de�ned as the provided self-reported transport duration plus �ve addi-

tional minutes before start and after end of school. All other accelerometer

counts were assigned to leisure time.

542 children and adolescents were invited to participate in the study and writ-

ten consent was obtained from 390 (72%). At baseline, accelerometer and ques-

tionnaire data were available from 371 participants. Of these 298 provided valid

questionnaire and accelerometer data (adequate valid wearing time on at least

two weekdays and one weekend day) for the comparison of subjective vs. objec-

tive measurements. Information on school time was only available for children

attending the primary schools, aged 6-10 years. Of these, 207 students had

at least three valid accelerometer weekdays available for the domain-speci�c

analyses.

Statistical analyses

Accelerometers and PAQs are supposed to be two instruments measuring es-

sentially the same. In this case, it is to be expected that the corresponding

measurements are highly correlated, however, a high positive correlation is not

su�cient to show that two instruments measure the same (Bland and Altman,
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1986). Self-reported and objectively measured minutes of total and domain-

speci�c SED, LPA and MVPA were compared using the Spearman rank cor-

relation coe�cient rS. The correlation coe�cient ranges from −1 to 1, with 1

meaning perfect monotone correlation and 0 no correlation. The correlation is

considered as weak if rS ≤ 0.39, as moderate if 0.40 ≤ rS ≤ 0.59, as strong if

0.60 ≤ rS ≤ 0.79 and as very strong to perfect if rS ≥ 0.80.

Results

Self-reported physical activity was generally over-reported compared to ac-

celerometer measured physical activity. The agreement of self-reported and

objectively measured physical activity was low for total LPA (rS = 0.09, 95%-

con�dence interval (CI) = (-0.03, 0.20)), total MVPA (rS = 0.21, CI = (0.10,

0.32)). Moderate agreement was found for total SED (rS = 0.44, CI = (0.34,

0.53)).

Among the domain-speci�c correlations, moderate agreement could be seen

for LPA during transport (rS = 0.59, CI = (0.49, 0.67)) and MVPA during

organized sports activities (rS = 0.54, CI = (0.38, 0.67)). About half of total

objectively measured SED, LPA and MVPA (55%, 53% and 46%, respectively)

occurred during school time, while organized sports activities contributed 24%

to total MVPA.

In conclusion, the school setting is the most important domain, contributing

about half of total SED, LPA and MVPA in children aged 6-10 years. Ac-

celerometers should be preferred over questionnaires to measure duration and

intensity of physical activity. As was known, domain-speci�c data still require

self-reported information. Further results and a discussion will be included in

the forthcoming publication presented in Appendix E.

5.6 Energy expenditure using pedometers

Pedometer data were collected and combined with spirometer measurements

of the activity energy expenditure (AEE) in 207 participants (110 females) in

the age of 8 to 74 years. These were recruited by newspaper announcements

and telephone calls. All participants (and their parents/legal guardians if ap-

plicable) were carefully instructed and gave written informant consent. All
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procedures of the study were approved by the local ethics committee. Partici-

pants had to be healthy and free of impairments with an BMI ≤ 27.5 kg m−2

.

Resting energy expenditure (REE) was measured by a portable oxygen ana-

lyzer system (MetaMax 3b, Cortex Biophysik, Leipzig, Germany) for 30 min-

utes under controlled conditions. The same device was used to record AEE

for three di�erent walking speeds/intensities. Participants �rst walked at their

preferred speed for eight minutes, which was considered moderate walking.

Then participants were asked to walk slowly for eight minutes and afterwards

to walk fast, without running for three minutes. Participants younger than

18 years only walked moderately and fast. AEE was computed as the average

metabolic equivalent of task (MET) from data measured between minute 5:00

and minute 7:00 for the �rst two intensities and minutes 1:30 to 3:00 for the

last intensity.

Gait cycles per minute for the relevant time frames were recorded using a step

activity monitor (StepWatch 3.0, Orthocare Innovations, WA, USA), which

was attached to the right ankle of participants. The step activity monitor was

previously adjusted to the participant's gait characteristics and steps were

stored in 15 seconds epochs by the device (Brandes et al., 2012).

5.6.1 Estimating energy expenditure from gait intensity

Brandes et al. used the collected data in a forthcoming publication presented

in Appendix F to derive an energy expenditure equation for the step activity

monitor StepWatch 3.0. Here, log(AEE) was used as dependent variable and

gait cycles, body weight, height, age and sex as independent variables. In

order to account for the repeated measurements (up to three measurements

per participant) mixed linear models were �tted. Several di�erent models based

on the predictor variables were calculated. As a way to assess the accuracy of

the energy prediction and to compare the di�erent models, we used leave-one-

out cross-validation to calculate the root-mean-square-error (RMSE) and mean

absolute-percentage-error (MAPE).
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Walking

Model Independent variables r2 RMSE MAPE

1 Weight 0.183 8.54 39.20

2 Weight + SAM 0.582 6.19 20.40

3 Weight + height + SAM 0.644 5.69 18.92

4 Weight + height + age + SAM 0.651 5.64 18.76

5 Weight + height + height · SAM 0.651 5.60 19.11

+ age + age · SAM + SAM

6 Weight + weight · SAM + height + age 0.648 5.66 18.68

+ age · SAM + SAM · SAM + SAM

RMSE = root-mean-square-error; MAPE = mean-absolute-percentage-error;

SAM = gait cycles

Table 5.3: Overview of models for predicting AEE during walking.

k-fold cross-validation

Let us assume for n = 1, 2, . . . , N observations yn to originate from indepen-

dent random variables Yn. Let k ∈ N, then the original sample of N observa-

tions is divided into k equal sized subsamples. One subsample is kept as the

validation dataset and the remaining k − 1 samples (training data) are used

to derive the energy prediction equation. This in turn is used to calculate a

prediction ŷ based on the validation dataset.

This cross-validation is repeated k times (the folds). This way all data are

used for both training and validation, while each single observation is used

only once for validation. The RMSE is calculated as

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2,

being a measure for the accuracy of the prediction. Di�erent models can now be

compared by their RMSE, with a smaller RMSE meaning a better prediction.

MAPE is also commonly used as another accuracy measure, which can be

interpreted as the percentage the prediction di�ers from the observation on

average, calculated as
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Walking

Model Independent Coe�cient (95% CI) SE p-value

3 Intercept -2.9522 (-3.5498, -2.3547) 0.30 <0.0001

Weight 0.01129 (0.0077, 0.0148) 0.002 <0.0001

Height 0.01359 (0.0095, 0.0177) 0.002 <0.0001

SAM 0.04597 (0.0425, 0.0494) 0.002 <0.0001

4 Intercept -3.1430 (-3.7549, -2.5310) 0.31 <0.0001

Weight 0.009068 (0.0051, 0.0193) 0.002 <0.0001

Height 0.01507 (0.0108, 0.0193) 0.002 <0.0001

Age 0.001891 (0.0003, 0.0035) 0.001 0.021

SAM 0.04621 (0.0428, 0.0497) 0.002 <0.0001

SAM = gait cycles; CI = con�dence interval

Table 5.4: Regression coe�cients for selected models of walking AEE.

MAPE =
1

N

N∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ · 100%.

Please note, that k = 10 is a common choice in cross-validation and k = N

leads to the special case of leave-one-out cross-validation.

Statistical analyses

A priori the best prediction model to be used is unknown. Various models

starting with only gait cycles as predictor for AEE up to complex model with

quadratic terms, interactions terms and random e�ects are possible. In a �rst

step over 160 models representing many of the possible combinations of the

predictor variables and e.g. containing indicators for fast walking, age groups

rather than age as a continuous variable, about half of the models also allowing

for an individual random intercept were considered.

RMSE and MAPE were then calculated using 10-fold cross-validation. Models

were compared with regard to RMSE and MAPE and a set of 15 candidate

models was selected and then leave-one-out cross-valdiation was conducted to

improve RSME and MAPE estimation. As a last step non-signi�cant �xed

e�ects were removed from the models leaving the ones presented in Table 5.3.
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Results

Of the 207 participants originally participating in the study 167 provided 452

observations, which were included in the analyses. Table 5.3 shows the selected

models after cross-validation, with the simple models 1 and 2 added for com-

parison. RMSE and MAPE were calculated after transforming the prediction

back to the original scale of AEE. As it turned out, the more complex models

5 and 6 only slightly reduced RMSE and MAPE and therefore the simpler

models 3 and 4 were selected.

The parameter estimates for model 3 and 4 were obtained using the complete

dataset and are shown in Table 5.4 and can be applied to predict AEE given

gait cycles measured by the StepWatch 3.0 pedometer.



Chapter 6

Discussion and conclusion

In Chapter 4, hidden Markov models based on the Gaussian and generalized

Poisson distribution and the expectile regression using the Whittaker smoother

in combination with an L0-penalty were introduced as new approaches for mod-

eling accelerometer data going beyond the commonly used cutpoint method.

Both methods were investigated using simulated accelerometer data in which

the true intensity level underlying the observed accelerometer count is known.

As has been shown by Witowski et al. (2014) and in Section 4.4 both meth-

ods are superior to the cutpoint method with regard to all considered quality

measures, except runtime.

In a direct comparison HMMs and expectile regression perform similarly well

with a slight advantage of the expectile regression. Expectile regression shows

the smallest misclassi�cation rate of all investigated methods, which is the

most important quality measure, especially in epidemiological studies, where

the total amount of physical activity is of particular interest. Additionally, the

expectile regression does not need any prior assumption on the distribution,

which the counts follow around the mean intensity level. Even the smooth-

ing parameter δ can be automatically selected. So in summary the expectile

regression has proven to be the most �exible method, which needs no prior in-

formation for modeling the data. However, there may still be some situations,

where HMMs based on a certain distribution are advantageous as discussed in

Witowski et al. (2014), like e.g. if the number of di�erent activities performed

during the day is of particular interest.

It has to be pointed out that both methods still use cutpoints at the end of

83
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Mean proportion of physical activity

intensity levels (1 second epochs)

Model SED (%) LPA (%) MVPA (%) VPA (%)

Simulation 38.0 23.0 39.0 2.8

Cutpoint 38.4 28.2 33.4 4.0

HMM[Gauss] 38.3 35.2 26.5 4.0

Expectile 36.0 27.6 36.4 2.8

SED = sedentary behavior; LPA = light physical activity;

MVPA = moderate-to-vigorous physical activity;

VPA = vigorous physical activity

Table 6.1: Mean proportions of assigned physical activity intensity levels by the

cutpoint method, HMMs and expectile regression, compared to the simulated

data for 1 second epochs.

the day. The next step to a convincing method for modeling physical activity

should consider an approach that does not need to use established cutpoints

in order to assign intensity levels and hence AEE to the counts. It is hard to

imagine how this can be accomplished just using accelerometer counts without

external information on the actual energy expenditure. For example, even if

a dense set of expectile or percentile curves is �t to the data, how should a

threshold for e.g. MVPA be selected for each participant? Such an approach

would imply that each participant spends a certain amount of time in the

MVPA range. This assumption can be hardly justi�ed, hence a method to ac-

count for externally measured (individual) energy expenditure will be required

for the near future.

Both methods su�er from a considerably longer runtime than the cutpoint

method, but both have the potential to improve the modeling of physical ac-

tivity based on accelerometer data, especially in large epidemiological studies,

where good estimates of the total time spent in di�erent intensity levels and

of the physical activity episodes (bouts) are particularly important.
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Mean proportion of physical activity

intensity levels (5 seconds epochs)

Model SED (%) LPA (%) MVPA (%) VPA (%)

Simulation 38.1 22.9 39.0 2.9

Cutpoint 38.6 28.0 33.4 3.6

HMM[Gauss] 38.4 27.6 34.0 3.1

Expectile 38.1 22.9 39.0 2.8

SED = sedentary behavior; LPA = light physical activity;

MVPA = moderate-to-vigorous physical activity;

VPA = vigorous physical activity

Table 6.2: Mean proportions of assigned physical activity intensity levels by the

cutpoint method, HMMs and expectile regression, compared to the simulated

data for 5 seconds epochs.

6.1 Future applications

HMMs and the expectile regression have only been applied to simulated data.

The next step will be to apply both methods to the accelerometer data col-

lected during the IDEFICS and I.Family studies (Sections 5.1 and 5.2). Both

methods are computationally intensive, so applying them to ten thousands of

accelerometer days will take some time, especially since the collected free-living

physical activity data have to be cleaned �rst, that is any non-wearing time

has to be removed before processing the data any further. As the assessment

of the times spent in di�erent intensity levels should be improved by both

methods, the results of the HMM- and expectile-analyzed physical activity

has to be compared to the results obtained by the cutpoint method. Tables 6.1

and 6.2 show the mean proportions of physical activity intensity levels as they

were simulated and as identi�ed by the cutpoint method, the HMMs and the

expectile regression for 1 and 5 seconds epochs in the simulated data from

Section 4.4.1. As can be seen, the cutpoint method tends to underestimate

the time spent in MVPA, while at the same time overestimating time spent

in VPA. This is crucial, because even in very intensive, complex activities like

e.g. playing badminton, there will always be counts equal or close to 0 (see

Figures 3.1-3.3), which will be assigned to SED by the cutpoint method in-
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stead of MVPA, while HMMs and expectile regression will �nd the underlying

mean activity level, so counts even �far away� from then mean intensity level

will be assigned to MVPA rather than to SED. The same principle applies to

extremely large counts, which are assigned to VPA by the cutpoint method,

but to MPA by the HMMs and expectile regression. So applying HMMs and

expectile regression to the collected data should result in an increased estimate

of the time spent in MVPA and a reduction of time spent in VPA.

This in turn will most likely have an e�ect on the associations between physical

activity and any outcome that can be seen in the IDEFICS and I.Family data.

Therefore it may be reasonable to perform statistical analyses for physical ac-

tivity based on the improved physical activity assessment and to compare the

obtained results to the ones derived by the �conventional� cutpoint method.

The analysis of longitudinal associations of physical activity and body com-

position as described in Section 5.4.1 is an obvious candidate for such a com-

parison. As the cutpoint method tends to underestimate time spent in MVPA,

any associations (if any) seen for MVPA should be more pronounced when

using HMM- and expectile regression-assessed physical activity. However, as-

sociations identi�ed for VPA should become smaller, if just VPA is considered,

since it tends to be overestimated by the cutpoint method.

6.2 Going beyond accelerometer assessed phys-

ical activity

Recently so-called activity or �tness trackers have become an emerging tech-

nology, which address a broad community of leisure time athletes promising

to improve a healthy lifestyle by tracking physical activity and various other

health parameters. The devices range from simple step counters to fully �edged

smartwatches with built in heart rate monitors, GPS and even a pulse oxime-

ter. The concept �step� and the daily goal to reach 10,000 steps are simple

to understand and to interpret. All devices allow an instant feedback to the

wearer and a wireless download to his/her smartphone and online account.

Depending on the producer and the features of the device, summary statis-

tics on the physical activity behavior are portrayed, like steps and distances

walked that day and calories burnt. Some devices register the �oors climbed
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during the day and give a detailed time trend of the heart rate over time and

during exercise. Sleep duration and quality can be monitored. Some providers

created software applications for sports such as swimming, which supposedly

registers the swum laps and the required strokes, aside from burnt calories

and distances. Another application is supposed to improve training results for

cycling using also GPS information. All collected data can be displayed by the

smartphone application and is stored for longer periods of time allowing to

monitor the training progress over weeks or even months. Some smartphone

apps allow the entry of further information regarding weight and body com-

position as well as consumed foods. Training results can be shared with others

via social media, others can also be challenged to certain activities. All devices

are designed to be worn in daily life, either clipped to the clothes or worn as

wristwatch, hence special attention is given to the design.

These activity trackers have great potential for epidemiological research, al-

though some questions have to be clari�ed �rst. Activity trackers could be

particularly useful in intervention studies and long-term monitoring. The de-

vices give instant feedback and the smartphone app provides a detailed graph-

ical summary and additional features and advice on how to improve towards

an active lifestyle. The devices are made for constant wearing, so it is likely

that participants will tolerate the trackers and include them in their daily life,

if participants perceive them as providing (instant) bene�t. The recorded in-

formation is automatically downloaded from the device and linked to an online

account, which in turn can be accessed by a researcher given informed con-

sent and that all required data protection regulations are met. This way a lot

of information on the physical activity behavior can be collected with a very

limited, cost e�ective logistical e�ort for very long periods of time.

Accelerometers typically used in epidemiological studies do not o�er these ad-

vantages. Although modern devices are very small and light they are commonly

worn on the hip with an additional elastic belt, which adds some burden to

the participants, as it is hard to disguise the device. It is not waterproof, such

that is has to be taken o� when showering or swimming and may provide dis-

comfort in some situations, like e.g. lying on the side the device is attached

to. Accelerometers also do not allow instant feedback to the participants, as

the devices have to be collected and the stored data need to be downloaded by
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special software and have to be processed before the feedback can be generated

and mailed to participants. Thus, in epidemiological studies the feedback on

physical activity behavior of a participant comes with some delay in an often

very simple form providing only limited information. All these issues regularly

result in a relatively short observation time with sometimes only moderate

compliance.

Activity trackers may lead to a higher compliance and as they are relatively

inexpensive they could serve as an incentive for participants. It has to be

kept in mind that activity trackers might not be suitable for all age groups.

Participants need to be technologically knowledgeable, which might prohibit

their use in very young children and the elderly.

But before activity trackers can be widely applied, it has to be investigated,

if the quality of the recorded data is similar to that of accelerometer data. It

has to be checked, if the data are similarly structured, that is a time series of

observations, e.g. steps and heart rate recorded along with time and date and

possibly even GPS coordinates. If so, the question remains, if they can be used

to derive AEE and hence the intensity of the activity and the burnt calories.

Apparently energy prediction equations are used to estimate the burnt calories,

but their validity needs to be reviewed. One of the imminent weaknesses of

accelerometers is their inability to reliably assess climbing stairs, cycling and

swimming. Some manufacturers of activity trackers claim that their devices

are able to correctly assess physical activity in such situations, which has to

be veri�ed.

If the recorded data can be retrieved as a time series similar to accelerometer

data, HMMs and expectile regression may be useful approaches to improve

modeling these data. As the information is supposedly very similar to reg-

ular pedometers an energy prediction equation could be derived as done in

Section 5.6.
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Abstract

Introduction: The use of accelerometers to objectively measure physical activity

(PA) has become the most preferred method of choice in recent years. Traditionally,

cutpoints are used to assign impulse counts recorded by the devices to sedentary

and activity ranges. Here, hidden Markov models (HMM) are used to improve the

cutpoint method to achieve a more accurate identification of the sequence of

modes of PA.

Methods: 1,000 days of labeled accelerometer data have been simulated. For the

simulated data the actual sedentary behavior and activity range of each count is

known. The cutpoint method is compared with HMMs based on the Poisson

distribution (HMM[Pois]), the generalized Poisson distribution (HMM[GenPois]) and

the Gaussian distribution (HMM[Gauss]) with regard to misclassification rate

(MCR), bout detection, detection of the number of activities performed during the

day and runtime.

Results: The cutpoint method had a misclassification rate (MCR) of 11% followed

by HMM[Pois] with 8%, HMM[GenPois] with 3% and HMM[Gauss] having the best

MCR with less than 2%. HMM[Gauss] detected the correct number of bouts in

12.8% of the days, HMM[GenPois] in 16.1%, HMM[Pois] and the cutpoint method in

none. HMM[GenPois] identified the correct number of activities in 61.3% of the

days, whereas HMM[Gauss] only in 26.8%. HMM[Pois] did not identify the correct

number at all and seemed to overestimate the number of activities. Runtime varied

between 0.01 seconds (cutpoint), 2.0 minutes (HMM[Gauss]) and 14.2 minutes

(HMM[GenPois]).

Conclusions: Using simulated data, HMM-based methods were superior in activity

classification when compared to the traditional cutpoint method and seem to be
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appropriate to model accelerometer data. Of the HMM-based methods,

HMM[Gauss] seemed to be the most appropriate choice to assess real-life

accelerometer data.

Introduction

Currently physical inactivity is considered a major risk factor for several health

disorders like cancer [1], obesity [2], cardiovascular disorders [3], muscular

skeletal disorders [4], as well as mental disorders [5]. An appropriate assessment

of physical activity (PA) is therefore essential in disciplines like medicine and

epidemiology to improve the existing evidence-base. The use of accelerometers as

an objective measurement of PA has become the most preferred method of choice

in recent years, as modern devices allow high frequency measurements for

extended periods of time. These now relatively inexpensive devices collect

information known as (impulse-)counts and provide information on intensity and

duration of PA in an individual.

Counts represent a device-specific numeric quantity which is generated by an

accelerometer for a specific time unit (epoch) (e.g. 1 to 60 sec). This quantity is

proportional to the intensity of the physical activity performed by the subject. The

sequence of activities during a day is stored as a time series of counts by the

device. The most common approach to derive the pattern of PA and its energy

expenditure is to map these counts to a certain number of sedentary and activity

ranges, such as sedentary, light, moderate and vigorous activity. The duration of

PA within the same activity range is known as bout and can be easily extracted

from a given sequence of counts. A bout is defined as the time period in which the

subject remains within one activity range without changing to another. Activity

ranges are separated by thresholds known as cutpoints. Cutpoints for different age

groups are available for children [6, 7, 8, 9, 10, 11, 12] and adults [13, 14, 15]

allowing to assess the overall time spent in these ranges of PA.

While the ease of implementation of this cutpoint method is an obvious

advantage, this method has certain important disadvantages. Counts are being

incorrectly assigned to the wrong activity range, leading to misclassification and

thereby to an increase of bouts. In the following we assume that the PA of an

individual is composed of a sequence of non-overlapping bouts, i.e. each bout

being a discrete activity, which is performed over a period of time. Furthermore,

the modes of activity can be represented by a ‘true’ average count level. This

assumption is depicted in Figure 1. The person first takes a short walk, after which

she/he watches TV, followed by a game of basketball and running afterwards. The

solid black lines represent the ‘true’ average count level for each of these activities.

For example the short walk at the beginning has a true count level of about

m2 walkingð Þ~300 counts per epoch, which can be understood as the true intensity

level of this walk. The counts registered by the accelerometer scatter around this
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true level, following a certain distribution (dotted grey line). So the PA depicted in

Figure 1 consists of four separate bouts, with four distinct PA-levels m1 to m4.

As long as the variation around the true intensity level is small and the true level

is not close to a cutpoint the complete mode of activity can be correctly assigned

to its corresponding activity range. However, in real-life applications the variation

of counts and the resulting scattering is large, leading to considerable

misclassification of the registered counts into erroneous activity ranges. As a

consequence the number of bouts is dramatically increased, as a subject seems to

switch from one activity range to another and back again within a few epochs.

Therefore, the duration a subject spends in one activity range can be significantly

under- or overestimated (cf. numerous validation studies performed to date e.g.

[16, 17, 18, 19]).

There has been a number of attempts to resolve the misclassification issue. For

example, Pober et al. [20] proposed stochastic models to allow the identification

of modes of activity like working at a computer, walking, walking uphill and

vacuuming in accelerometer data. A hidden Markov model (HMM) was

successfully trained to identify these activities. The model correctly identified the

activity mode in 80.8% of the data. Vacuuming was correctly identified most

Figure 1. Modeling of accelerometer counts using HMMs. The figure shows the three activity ranges LIG, MOD, VIG, separated by the cutpoints at 420
counts and 842 counts. The accelerometer counts xt scatter around four different activity states (‘‘watching TV’’, ‘‘walking’’, ‘‘running’’ and ‘‘playing
basketball’’) following a state dependent distribution Xt jZt*N mi, s2

i

� �
with hi~ mi, s2

i

� �
and fictitious PA-levels m1 TVð Þ~10, m2 walkingð Þ~300, m3 runningð Þ~800,

m4 basketballð Þ~1050 respectively.

doi:10.1371/journal.pone.0114089.g001
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frequently in 98.8% of all cases, and walking/walking uphill in about 62%. This

approach requires annotated data for training the HMM and activity mode

identification is therefore limited to the modes used during training. In order to

use this method in free living environments, one would need to train the HMM

with all possible activity modes.

As a solution to the misclassification problem caused by large variation of the

counts registered by accelerometers, we suggest a new approach that combines the

HMM-based method with the traditional cutpoint method. The aim is to provide

a better estimate of the activity modes that generated the sequence of counts

during the day and by this to decrease the misclassification error, which is

inevitably introduced by the cutpoint approach. In order to achieve this, an

HMM-based approach was developed to model accelerometer data. 1,000 days of

labeled accelerometer data were simulated. HMM models based on the Gaussian,

the Poisson and the generalized Poisson distribution were compared with the

cutpoint method with regard to misclassification rate (MCR), bout detection,

detection of the number of activities performed during the day and runtime.

Methods

Traditional cutpoint approach

The cutpoint method assigns an activity range to each epoch. There are various

cutpoints available in the literature. Any of these cutpoints could have been used

for our simulation study where we decided to use cutpoints from Pate et al. [9].

According to [9] epochs with ,420 counts/15 sec are assigned to light physical

activity (LIG) with 0–3 metabolic equivalent of task (METs), epochs with 420–841

counts/15 sec to moderate physical activity (MOD) with 3–6 METs and epochs

.841 counts/15 sec to vigorous physical activity (VIG) with more than 6 METs.

HMM-based approach

An HMM is a stochastic model based on the idea that an observed time series has

been generated by an underlying unobservable, time and value discrete, stochastic

process whose random variables Zt are hidden. This sequence of hidden states

satisfies the Markov property and forms a Markov chain, i.e. the transition

probability to switch from one state to another only depends on the state of

interest and is independent of all states prior to t. The hidden Markov chain

represents a sequence of unobserved random variables Zt with a finite number of

states m: Let Z~ 1,:::,mf g denote the set of possible states and represent the

realization of Zt at point in time t: Each state i EZ symbolizes different activities

that change from one activity ztz1~i, iEZ, to another ztz1~j, jEZ, over time.

The states, however, cannot be observed directly, but they generate a state-

dependent output according to a known or presumed probability distribution (see

[21, 22] for further details on HMMs). For the purpose of this analysis, the hidden

sequence of states is the true, but unknown sequence of PA each subject
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performed in a free living-environment, while the recorded accelerometer counts

xt are the observed realizations of random variables Xt: The sequence of hidden

states satisfies the Markov property:

P(Zt~zt jZ1,:::,Zt{1,X1, . . . ,Xt{1)~P(Zt~zt jZt{1~zt{1),

i.e. each activity solely depends on its predecessor. The resulting time series of

length Tof performed physical activities z1,:::,zT can only be observed indirectly

via a parallel time series represented by the assessed accelerometer counts.

The probability of a Markov chain to switch from state i to state j is given by the

transition probability ci,j~P(Zt~jjZt{1~i): A Markov chain is called homo-

geneous, if the transition probability ci,j is independent of t for all pairs of i and

j EZ. The transition probability of a homogeneous Markov chain with finite

Z~ 1,:::,mf g can be summarized in an m|mð Þ transition matrix C~(ci,j)1ƒi,jƒm,

with elements of C being probabilities and therefore the following conditions have

to be fulfilled: and A Markov chain is fully defined by this transition matrix C and

a vector containing the initial probabilities

p0~ p01, . . . ,p0mð Þ~ P Z1~1ð Þ, . . . ,P Z1~mð Þð Þ with
Pm

i~1 p0i~1 for the first

state.

In the HMM-based approach, each state i~1,:::,m is linked with the mean

activity count mi of the PA, which the state represents. mi denotes the PA-level of

the PA i. Furthermore, the variable Xt is assumed to be conditionally independent

of all remaining variables given its hidden PAZt :

P(Xt~xt jZ1,:::,Zt,X1, . . . ,Xt{1)~P(Xt~xt jZt~zt):

This means, at each point in time t, the count xt is assumed to be generated by a

certain distribution, which depends on the activity state zt~i, with the

corresponding PA-level mi as mean of this distribution. The observation

distribution is the probability that Xt takes a value xt under the condition that

Zt~i: The observation distributions are assumed to be a subset of a whole class of

distributions to be specified in advance. Depending on the class of distributions, pi

is determined by kEN parameters. These form the parameter vector

hi~(h1i, . . . ,hki) ERk: The m: k parameters in turn form the matrix

h~ hlið Þ1ƒlƒk;1ƒiƒm: An HMM is fully described by its model-specific parameter

H~ p0,C,hð Þ: This setting is illustrated in Figure 1 and depicts the fictitious

output of an accelerometer, while the subject performed four activities ‘walking’,

‘watching TV’, ‘running’ and ‘playing basketball’. The sequence of activities is

assumed to follow a Markov chain, and the accelerometer counts are assumed to

be generated by four activity-state-dependent Gaussian distributions with the

corresponding PA-levels m1 TVð Þ, m2 walkingð Þ, m3 runningð Þ and m4 basketballð Þ as their

means.

The HMM approach developed for such situations can be subdivided into the

following three steps.

Hidden Markov Models to Quantify Acclerometer Data

PLOS ONE | DOI:10.1371/journal.pone.0114089 December 2, 2014 5 / 13

94



Step 1: Building an HMM for an observed time series of counts. The model

specific parameters H of the HMM given an observed time series of counts

x1,:::,xT are estimated. This is referred to as training of the HMM. Parameter

estimation can either be performed by numerical maximization of the likelihood

of the model with respect to H or by utilizing the so-called Baum-Welch algorithm

[23] which is commonly used to fit HMMs.

Typically the number of hidden states m (respectively the number of hidden

activities) given the counts x1,:::,xT is unknown. In this case the basic idea is to

train several HMMs with different numbers of states m and to evaluate the

goodness of fit of the model by the Bayesian Information Criterion (BIC) and

Akaike’s Information Criterion (AIC). If both criteria suggest a different number of

states, then one may opt for fewer states to have a more simplistic model or for a

larger number of states if this better reflects the underlying practical situation.

Step 2: Decoding the hidden sequence of PA-levels. After the model

parameters H and an appropriate number of physical activities m have been

estimated, the resulting HMM is used to link each count xt to an estimated PA-

level m̂i i~1, . . . ,mð Þ.
Step 2.1 First, the Viterbi algorithm [24, 25] decodes the globally most likely

sequence of hidden activities denoted by z�1 ,:::,z�T for the trained HMM and the

same time series of counts x1, . . . ,xT that was used to train the HMM in Step 1 by

comparing the joint probability of all T hidden states and the observed

accelerometer counts. Alternatively, a local method can be used to decode the

most likely hidden activity z�t , given all accelerometer counts x1, . . . ,xT , for each

single t~1,:::,T by comparing the joint probability of the hidden state at point in

time t and the observed accelerometer counts.

Step 2.2 Second, each count xt is assigned to the estimated PA-level m̂z�t
that

corresponds to the decoded state z�t at this point in time. Step 2.2 is demonstrated

in Figure 2. In this example, the trained HMM with m~5 leads to an overfitting

of the four activities performed, where the state ‘running’ is mistakenly split into

two different PA-levels by the decoding step.

Step 3: Extension of the cutpoint method. In the last step of our approach,

which combines the HMM-based method with the traditional cutpoint approach,

each accelerometer count xt will be assigned via its corresponding (most likely)

PA-level m̂z�t
to an activity range at , using the traditional cutpoint method.

Overall, the procedure of the new HMM-based cutpoint approach can be

summarized as follows:

Step 1: Train the HMM parameters assuming a probability distribution for the

counts for each (hidden) PA.

Step 1.1: (optional): Estimate the number of different states m.

Step 2: Decode the hidden sequence.

Step 2.1: Estimate the most likely sequence of states (HMM-decoding):

x1, . . . ,xT?z�1 , . . . ,z�T :
Step 2.2: Assign a PA-level (HMM-decoding): z�t ?m̂z�t
Step 3: Assign an activity range (cutpoint method): m̂z�t

?at:
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In the example illustrated in Figure 2, the trained HMM identifies five PA-levels

m̂1,:::,m̂5, which leads to a misclassification of parts of the state ‘running’ into five

instead of one bout, with two bouts being assigned to the highest activity range.

Even with this overestimation of five identified PA-levels instead of four, the

HMM-based method assigns most counts correctly to their actual activity range.

The high number of bouts typically obtained from the cutpoint method is reduced

by the HMM-based approach because a Markov chain is assumed to underlie the

performed activities at each point in time. The present example consists of three

bouts: the first is defined by the two activities ‘walking’ and ‘watching TV’ that

correspond to the activity range LIG; the second bout is defined by ‘running’ in

MOD and the third by ‘playing basketball’ in VIG. Due to the assumed Markov

chain, the HMM-based approach detects eight bouts, which is an overestimation

of the true value of three, but results are more precise than those obtained from

the traditional cutpoint method, which identifies 25 bouts.

The underlying distributions of the states which generate the observed time

series are a priori unknown. In the context of modeling accelerometer counts,

three distributions are of particular interest: The first HMM is based on the

Poisson distribution, which is typically used to model counts. The second model

uses the generalized Poisson distribution [26] that includes a further variance

parameter to allow for a larger or smaller variation than the one assumed for a

standard Poisson distribution. Real-life accelerometer data typically show larger

Figure 2. HMM-decoding using the Viterbi algorithm to extract the most likely sequence of physical activity.

doi:10.1371/journal.pone.0114089.g002
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variability than a simple Poisson distribution can accommodate. For the third

HMM, a Gaussian distribution is assumed to capture the random scattering of the

counts around the presumed PA-level. For the purpose of the present analysis, the

Poisson-based HMM is referred to as HMM[Pois], the HMM based on the

generalized Poisson distribution as HMM[GenPois] and the Gaussian-based

HMM as HMM[Gauss].

Simulation Study

The performance of the traditional cutpoint method is assessed by comparing it

with the extended cutpoint method using HMMs in terms of (1) the

misclassification rate (MCR), calculated as the percentage of how many of the

counts were assigned incorrectly to any other activity range than their true activity

range, (2) number of bouts correctly identified, (3) number of activity levels

correctly identified, and (4) runtime. For this purpose, labeled accelerometer

count time series, for which the correct activity range of each count is known,

with the length of T~1,440 and an epoch length of 15 seconds have been

simulated. This particular epoch length and length of T were chosen to reflect

typical situations in population-based epidemiological studies [27]. The HMMs

does also work with shorter epoch lengths and larger T: Please note that for our

simulated, labeled data, the true sequence of activities and therefore the actual PA-

level and also the activity range of each count are known. In total, 1,000 different

time series were simulated, each representing 6 hours of counts per day (data

available under doi:10.5061/dryad.tq0gt). Counts per day were randomly

generated using the negative binomial distribution (with parameters r~1 and

p~0:0009, resulting in the lowest PA-level m1~111:11) and the Gaussian

distribution (with the parameters and m4~900, with s2
2~s2

3~s2
4~10,000)

around three or four pre-defined PA-levels (depending on the random time series

generated by a Markov chain), with the lowest PA-level (400) chosen to be very

close to the lower cutpoint of 420. To create random activity modes that are time

periods spent on the same PA-level, e.g. walking or running, the sequence of PA-

levels has been generated using a Markov chain. The simulations were designed to

reflect free living-environment observations obtained for children (see Table 1).

The simulated data were specifically designed to accommodate cutpoints

proposed by [9]. As a large amount of misclassification is expected to occur in

activity modes close to a cutpoint, the lowest PA-level (400) was intentionally

chosen to be close to one cutpoint, in order to demonstrate the advantage of this

method. Any other cutpoints available in the literature could have been chosen,

since the application of HMMs does not depend on the choice of the cutpoints.

On average, one 6 hour day comprised of 23.66 bouts and 3.97 activities during

the day. For data simulation and analysis the R package HMMpa [28] was used.
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Results

Table 2 displays the MCR of all considered methods based on 1,000 simulated

days. The cutpoint method shows the highest misclassification rate with about

11% followed by HMM[Pois] with about 8%. HMM[GenPois] and HMM[Gauss]

correctly assign 97% and 98% of all counts to their true activity range,

respectively. HMM[GenPois] and HMM[Gauss] outcomes are very close to the

simulated data of 23.7 bouts with a mean of 31.2 and 32.5 detected bouts,

respectively, while HMM[Pois] detects five times and the cutpoint method ten

times as many bouts (Table 2). HMM[Gauss] detects the correct number of bouts

in 12.8% and HMM[GenPois] in 16.1% of the days.

The proposed methods do not need a priori information on the number of

different activities performed during the day. The algorithms identify the most

appropriate number m by minimizing AIC and BIC. On average, the simulated

days have 3.97 different activities. HMM[GenPois] identifies on average 4.19

followed by HMM[Gauss] with 5.18 (Table 2). HMM[GenPois] identifies the

correct number of activities in 61.3% of the days, whereas HMM[Gauss] only in

26.8%. HMM[Pois] does not identify the correct number at all.

Mathematical models often have the disadvantage of being numerically instable

or having a long runtime. With the exception of the HMM[GenPois], which was

numerically instable in 6.9% of the simulated days, all other presented methods

converged for the simulated days. Runtime varied from 0.01 seconds (cutpoint) to

Table 1. Statistical characteristics of the simulated 1,000 data sets (SD5standard deviation).

Mean SD Min Median Max

b [bouts] 23.66 7.03 5.00 23.00 47.00

m [activities] 3.97 0.17 3.00 4.00 4.00

doi:10.1371/journal.pone.0114089.t001

Table 2. Misclassification rate, number of identified bouts and identified activities for the traditional cutpoint method and the HMM-based method with
different state-dependent observation distributions (SD5standard deviation).

Measure Method Mean SD Min Median Max Correctly identified [%]

Misclassification rate Cutpoint 11.14 2.16 5.35 11.18 19.31 88.86

HMM[Gauss] 1.77 3.53 0.00 0.90 31.94 98.23

HMM[Pois] 8.21 5.97 1.53 5.56 32.64 91.79

HMM[GenPois] 3.03 5.58 0.14 1.18 23.06 96.97

Number of identified bouts Cutpoint 229.55 38.52 129.00 229.00 345.00 0.00

HMM[Gauss] 32.52 12.84 1.00 31.00 125.00 12.8

HMM[Pois] 136.43 46.75 37.00 131.00 283.00 0.00

HMM[GenPois] 31.16 9.86 13.00 31.00 51.00 16.1

Number of identified activities Cutpoint – – – – – –

HMM[Gauss] 5.18 0.96 3.00 6.00 6.00 26.8

HMM[Pois] 5.66 0.47 5.00 6.00 6.00 0.00

HMM[GenPois] 4.19 0.60 3.00 6.00 6.00 61.8

doi:10.1371/journal.pone.0114089.t002
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2.0 minutes (HMM[Gauss]) to 14.2 minutes (HMM[GenPois]) on a regular

Windows workstation.

Discussion

This paper investigated the feasibility and the potential advantages of the HMM-

based method over the cutpoint approach in identifying the sequence of modes of

PA. The results of the simulation study clearly showed the inferiority of the

cutpoint method compared to HMM-based approaches. By default the cutpoint

method was not able to identify the number of activities performed by a subject.

Depending on the specific research question, this may, however, be of particular

interest in addition to the correct identification of bouts.

For example, typical recommendations on how much PA children and

adolescents need each day suggest 60 minutes (1 hour) or more of physical activity

that are age-appropriate, enjoyable and offer variety [29]. While moderate to

vigorous activity can be adequately assessed using the cutpoint method, this

method leads to a rather rough classification, if one wishes to distinguish the

intensities of activities within one activity level, as e.g. between fast walking and

slow jogging. Both would be simply assigned to a moderate activity level, whereas

HMM-based methods have proven to be much more appropriate for this purpose.

The HMM-based method can distinguish those activities and therefore our

findings have important implications for the measurement of PA in individuals in

free-living conditions for monitoring and surveillance purposes.

Among the HMM-based methods, HMM[Pois] revealed the weakest perfor-

mance in terms of MCR, bout and activity detection. As anticipated, a simple

Poisson distribution cannot accommodate the variance seen in accelerometer

data. The results for HMM[GenPois] and HMM[Gauss] were very similar to each

other. HMM[Gauss] had a slightly better MCR (1.77% vs. 3.03%), while

HMM[GenPois] was better in terms of bout detection (16.1% vs. 12.8%). This is a

considerable improvement compared to the cutpoint method, especially if one

keeps in mind that a bout is considered as incorrectly identified if the detected

bout is just one epoch shorter or longer than the true one. This situation can easily

occur at the ‘point of discontinuity’ when the person switches from one activity to

the other. HMM[GenPois] also performed better than HMM[Gauss] and

HMM[Pois] with regard to the number of correctly identified activities, which

may be particularly relevant for the analysis of accelerometer data. According to

the present results, HMM[GenPois] outperforms HMM[Gauss] in this respect as

reflected by the considerably higher activity detection rate of 61.3% for

HMM[GenPois] compared to only 26.8% for HMM[Gauss]. HMM[Pois] did not

identify the correct number at all. As the mean of identified activities is greater

than the mean number of simulated activities, combined with the fact, that

HMM[Pois] was not able to detect the correct number of activities at all, it can be

concluded that HMM[Pois] in general overestimates the number of activities.
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However, this outperformance of HMM[GenPois] comes at a price, namely

runtime and problems with numerical stability. Even with 6 hour days and 15

seconds epochs (T~1,440), HMM[GenPois] needed seven times more runtime

than HMM[Gauss]. As modern accelerometers are becoming increasingly

powerful, subjects can be monitored for up to 24 hours a day for 7 or more days at

1–5 seconds epochs. This results in a time series of more than

T~24|7|3600~604,800 counts, which will dramatically increase the runtime.

For small sample sizes this fact can be disregarded and HMM[GenPois] can be

used, but in large cohort studies with more than 10,000 subjects, runtime can

become an issue and hence HMM[Gauss] may be preferred.

A simulation study was used here to explore the general feasibility and the

potential advantages of the presented HMM-based method, as simulated data

have the advantage that the ‘truth’ is known for every individual count. That

means for example that the activity that generated this count and its true intensity

level are known for comparative purposes. Using real-life accelerometer data this

information would not be available, even if annotated data with measured oxygen

consumption would be at hand. In the present study, the data were generated such

that one simulated PA-level was close to a cutpoint to investigate whether HMM-

based methods are able to correctly identify PA-levels in such situations. Although

the simulation study was especially designed for the comparison of methods when

using cutpoints from [9], this does not constitute a limitation to the HMM-based

approach presented here since it can be easily adapted to any cutpoints proposed

in the literature.

Nevertheless, in a next step, the HMM-based methods have to be applied to

real-life accelerometer data, where it will be especially interesting to apply these

models to annotated data, where the energy expenditure is known. Another

promising future application of the presented method is to use HMMs to estimate

�mz�t
as mean PA-level and use the resulting count estimate in energy prediction

equations, as e.g. provided by [30]. The HMM-based methods may lead to

improved energy expenditure estimates based on better count estimates.

Conclusion

HMM-based methods for modeling accelerometer data are a promising extension

of the traditional cutpoint method and on the basis of data presented here ought

to improve the analysis of PA. While both HMM[GenPois] and HMM[Gauss]

methods seem superior to current cutpoint methods, HMM[Gauss] may be more

suitable for real-life applications and if estimation of activity levels is not the main

focus. HMM[GenPois] should be used if a better activity and bout detection is

desired and runtime is not an issue. Despite these encouraging results, both

models will have to be applied to real accelerometer data in future studies in order

to prove their superiority over traditional cutpoint method in practice.
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Abtract

In recent years accelerometers have become widely used for the objective as-

sessment of physical activity. Usually intensity ranges are assigned to the mea-

sured accelerometer counts by simple cutpoints, disregarding the underlying

activity pattern. Under the assumption that physical activity can be seen as

distinct sequence of distinguishable activities, the use of hidden Markov mod-

els (HMM) has been proposed to improve the modeling of accelerometer data.

As a potential further improvement we propose to use expectile regression uti-

lizing a Whittaker smoother with an L0-penalty to better capture the mean

intensity levels underlying the observed accelerometer counts. The performance

of this new approach is investigated in a simulation study, where we simulated

1,000 days of accelerometer data with 1 second epochs and 5 seconds epochs,

based on collected labeled data to resemble real-life data as closely as possi-

ble. The expectile regression is compared to HMMs and the commonly used

cutpoint method with regard to misclassi�cation rate (MCR), number of iden-

ti�ed bouts and identi�ed levels, the proportion of the estimate being in the

range of ±10% of the true mean. In summary, expectile regression utilizing a

Whittaker smoother with an L0-penalty seems to outperform HMMs and the

cutpoint method and is hence a promising approach to model accelerometer

data.
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Objectively measured physical activity in European children:
the IDEFICS study
K Konstabel1,2, T Veidebaum1, V Verbestel3, LA Moreno4, K Bammann5,6, M Tornaritis7, G Eiben8, D Molnár9, A Siani10, O Sprengeler6,
N Wirsik6, W Ahrens6,11 and Y Pitsiladis12 on behalf of the IDEFICS consortium

OBJECTIVES: To provide sex- and age-specific percentile values for levels of physical activity (PA) and sedentary time of European
children aged 2.0–10.9 years from eight European countries (Sweden, Germany, Hungary, Italy, Cyprus, Spain, Belgium and Estonia).
METHODS: Free-living PA and sedentary time were objectively assessed using ActiGraph GT1M or ActiTrainer activity monitors in
all children who had at least 3 days' worth of valid accelerometer data, with at least 8 h of valid recording time each day. The
General Additive Model for Location Scale and Shape was used for calculating percentile curves.
RESULTS: Reference values for PA and sedentary time in the European children according to sex and age are displayed using
smoothed percentile curves for 7684 children (3842 boys and 3842 girls). The figures show similar trends in boys and girls. The
percentage of children complying with recommendations regarding moderate-to-vigorous physical activity (MVPA) is also
presented and varied considerably between sexes and country. For example, the percentage of study participants who were
physically active (as assessed by MVPA) for 60 or more minutes per day ranged from 2.0% (Cyprus) to 14.7% (Sweden) in girls
and from 9.5% (Italy) to 34.1% (Belgium) in boys.
CONCLUSION: This study provides the most up-to-date sex- and age-specific reference data on PA in young children in Europe. The
percentage compliance to MVPA recommendations for these European children varied considerably between sexes and country
and was generally low. These results may have important implications for public health policy and PA counselling.

International Journal of Obesity (2014) 38, S135–S143; doi:10.1038/ijo.2014.144

INTRODUCTION
Physical activity (PA) has assumed an increasingly prominent role
in health promotion efforts given the childhood obesity epidemic.
Consequently, assessing levels of regular PA and sedentary
behaviour among children has become an important public
health surveillance activity. Currently, the most important official
reports about PA levels in European children have been based on
data obtained through questionnaires.1–3 However, there is no
established PA questionnaire for use in children and even the
most widely used PA questionnaires, such as the International
Physical Activity Questionnaire4,5 developed as an international
standard questionnaire to monitor PA across diverse adult
populations may be subject to recall bias, social desirability and
misinterpretation. As questionnaires are too imprecise in the
assessment of PA and given the advances made in this area over
the last 10–15 years, objective methods should be favoured in
large-scale studies or for surveillance purposes.6–8 For purposes of
monitoring and surveillance, accelerometers provide a reasonable
compromise between validity, reliability, ease of administration
and cost.9 As such accelerometry is considered as the reference
method for measuring PA and sedentary behaviour of children in
free-living conditions.10 Until recently, no large representative set

of accelerometer data existed to describe PA behaviour especially
in young European children. In response, the International
Children’s Accelerometry Database (http://www.mrc-epid.cam.ac.
uk/research/studies/icad/) was established to pool data from 14
studies collected between 1998 and 2009 comprising 20 871
children (4–18 years). Time spent in moderate and vigorous PA
and sedentary time was measured using accelerometry after re-
analysing raw data files and independent associations between
accelerometry outcomes and measures such as waist circumfer-
ence, systolic blood pressure, fasting triglycerides, high-density
lipoprotein-cholesterol and insulin were examined using meta-
analysis.11 In the results, reported by Ekelund et al.,12 children
accumulated a modest 30 ± 21min per day of moderate-to-
vigorous physical activity (MVPA) and this activity was associated
with all cardio-metabolic outcomes independent of sex, age,
monitor wear time, time spent sedentary and waist circumference.
The IDEFICS study (Identification and prevention of dietary and
lifestyle-induced health effects in children and infants)13 provides
an excellent opportunity to augment current data by reporting
the objectively measured PA data from this large sample
of children from a wider range of European countries. It will
extend available data as well as allow comparison with other
important European studies of childhood PA.14,15 Therefore, the
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11Institute of Statistics, Faculty of Mathematics and Computer Science, University Bremen, Bremen, Germany and 12Centre for Sport and Exercise Science and Medicine (SESAME),
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aim of the present analysis is to describe PA levels and to provide
sex- and- age-specific PA reference standards in European children
aged 2–10 years. A General Additive Model for Location Scale and
Shape developed by Rigby and Stasinopoulos16 was used to
calculate percentile curves. This method is an extension of the
LMS method to model the distribution of PA depending on
multiple covariates while accounting for dispersion, skewness, and
particularly the kurtosis of this distribution.16

MATERIAL AND METHODS
Data collection
The IDEFICS study13 is a multi-centre, prospective cohort study on
lifestyle and nutrition among children aged 2.0–10.9 years from
eight European countries (Sweden, Germany, Hungary, Italy,
Cyprus, Spain, Belgium and Estonia) where an intervention was
embedded. Data collection for T0 (baseline) took place from
September 2007 to June 2008 and for T1 (follow-up) from
September 2010 to May 2011. Detailed description of IDEFICS
sampling and recruitment approaches, standardisation and
harmonisation process, data collection, analysis strategies, quality
control activity and inclusion/exclusion criteria have been
published elswhere.17 Free-living PA and sedentary time were
objectively assessed using Actigraph uniaxial accelerometers
(either ActiTrainer or GT1M; Actigraph, LLC, Pensacola, FL, USA).
The sensor units of both models are identical. The monitor was set
to record PA in a 15 s epoch. Children were instructed to wear the
accelerometer for at least 3 days (including 1 weekend day).
Accelerometers were mounted on the right hip of each child by
means of an elastic belt and adjusted to ensure close contact with
the body. Parents were also asked to complete a daily activity or
‘non-wear’ diary during the monitoring period with instructions to
record the time the accelerometer belt was attached and
removed. Children were encouraged to wear the accelerometer
from the moment they woke up in the morning until bedtime in
the evening so that a full day of PA and sedentary time could be
assessed. The Research Ethics Committees of each survey region
involved approved the study and informed consent for participa-
tion in the study was signed by each parent/guardian.
From the starting-point database (18 745 children), 12 014 had

some data on PA; the others (6731) either refused or the
assessment was not completed for other reasons (mostly, lack of
devices at the time that the child was measured). In addition,
subjects were excluded from analysis if the child had chronic
orthopaedic, bone or joint problems, chronic rheumatic disease, or
musculoskeletal diseases, as indicated in the health and medical
history questionnaire (total number of children excluded for these
reasons was 332).
According to the protocol, a 15-s sampling interval (‘epoch’) was

to be used in PA data collection; however, a 60-s sampling interval
(the default in Actigraph software) was inadvertently used in some
centres for a considerable proportion of data. Three options
were considered to rectify this problem: (1) include only data
recorded at 15 s (or, in a few cases, sub-multiple of 15 s) epoch or
re-integrate all data to 60 s, (2) use 6, 8, or 10 h as minimum
requirement of valid day, and (3) the numbers of valid weekdays
(1 or 2) required in addition to at least 1 weekend day. The sample
sizes following each option are shown in Table 1. Of the total of
12 014 children having at least some accelerometer data, the
number of children to be included in the analysis varied from 8193
according to the most liberal criterion (at least 6 h daily, at least
1 weekend day+1 weekday, using 60 s epoch), to 3390 according
to the most stringent criterion considered (at least 10 h of data, at
least 1 weekend day and 2 weekdays; using 15 s epoch). First, all
data were re-integrated to 60 s epoch in order to incorporate the
data from Italy. Second, the decision was made to use 8 h as the
lower threshold of daily wearing time as previously adopted in

the HELENA study,17 thus avoiding the loss of at least 1335
participants had a 10 h rule been adopted. Finally, the require-
ments of at least 1 vs 2 valid weekdays (in addition to at least
1 weekend day) were contrasted. Requiring 2 weekdays would
have resulted in a total sample size of 5047 (42% of all children
having some accelerometer data), as opposed to 7684 (64%) with
the alternative criterion. The requirement was thus set to at least
1 weekday.
The possibility of sample bias induced by an additional

restriction of the sample was examined by conducting an analysis
of covariance using body mass index (BMI Z-scores18) as a
dependent variable. The sample was therefore divided into three
categories: (1) no accelerometer data; (2) incomplete data (that is,
o1 weekday and 1 weekend day of at least 8 h of recording); and
(3) complete data. The effect of this categorisation, adjusted for
region (two regions that later became ‘intervention’ and ‘control’
regions in each country), sex and age was negligible in size
(η2 = 0.0002) and not statistically significant (P= 0.14). Moreover,
the differences were not in the expected direction: the mean BMI
Z-score was 0.342 in the group of children who had complete
accelerometer data and 0.282 in the group who had no data
(unadjusted standardised difference, Cohen’s d= 0.051). Therefore,
the children having complete data had, on the average, higher
BMI Z-scores than those having no accelerometry data. Similarly,
children having incomplete data tended to have higher BMI, than
those who had complete data (respective means: 0.383 and 0.342;
Cohen’s d= 0.035). Note that these effect sizes are not adjusted for
possible confounders.
Given PA levels tended to be higher on weekends and for ease

of presentation, PA data for weekdays and weekend days were
analysed separately and then combined so that weekdays were
weighted by five, weekend days by two, and the result was
divided by seven as previously recommended.19 To be able to
compare the results of the present study (that is, re-integrated into
60 s before analysis) with data recorded at lower epoch, a formula
for converting MVPA recorded at 15 s epoch to 60 s epoch is
presented in the Supplementary Information. The percentage of
children complying with the 60min MVPA recommendations was
determined using the weighted-average day (that is, weekend
average weighted by two and weekday weighted by five).

Table 1. Number of subjects included in the final analysis of PA
(highlighted in bold) and number of subjects according to alternative
criteria of epoch length and minimum wearing time

Epoch= 60 s Epoch= 15 s

Required wearing time
(hours per day)

6 8 10 6 8 10

At least 1 weekend day and 2 weekdays
Included in the analysis 5721 5047 3667 5316 4680 3390
Incomplete data 5961 6635 8015 6366 7002 8292

At least 1 weekend day and 1 weekday
Included in the analysis 8193 7684 6349 6941 6516 5365
Incomplete data 3489 3998 5333 4741 5166 6317

Excluded children
No accelerometer data
was collected

6731

Musculoskeletal diseases 26
Orthopaedic and
musculoskeletal diseases

7

Orthopaedic diseases 280
Rheumatic diseases 5
Age 410.9 14
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Accelerometer data reduction
For comparability, data reduction criteria were chosen similar to
those used in the HELENA study (www.helenastudy.com).17

Namely, non-wearing time was defined as 20 min or more of
consecutive zero counts and at least 8 h of wear time was
necessary to constitute a valid day and be included in the final
analysis. Using more restrictive criteria like those in the European
Youth Heart Study15 (that is, counting 410 consecutive minutes
of zero recording as non-wearing time and requiring at least 10 h
daily wear time) would have resulted in a loss of data from 41000
children in the present study.
Accelerometer data were analysed using algorithms developed

in R (version R 3.0.1; R Foundation for Statistical Computing,
Vienna, Austria; http://www.r-project.org20). A set of add-on
functions to R was developed that allowed R to automatically
read in the accelerometer raw files and where necessary re-
integrate any data collected to standardise epoch settings, edit
the data for excluding the likely non-wearing periods and
compute daily summary statistics. Two rules were used for
excluding data: (1) all negative counts were replaced by missing
data code and (2) periods of 20 min or more consecutive zero
counts were replaced by missing data code before further
analysis. The output generated by R included accelerometer
counts per minute (CPM), total monitoring time and time spent
sedentary and in physical activities of different intensities based
on Evenson cutoffs21 (sedentary: 0–100, light: 101–2295, moder-
ate: 2296–4011, vigorous: 4012 and more CPM).

The following dependent variables were used for the analysis:
average CPM (that is, sum of daily counts divided by valid time,
averaged over all ‘valid days’), MVPA (minutes spent in at least
moderate activity according to Evenson cutoffs), light activity, and
sedentary time. The last two were used in two versions: (1) ‘raw’

Table 2. Sample characteristics (sample size by country, age group, and sex)

Age Italy Estonia Cyprus Belgium Sweden Germany Hungary Spain Total

Boys
2.0–2.9 4 14 3 19 11 20 71
3.0–3.9 30 112 5 17 37 60 30 97 388
4.0–4.9 43 153 28 31 32 85 31 133 536
5.0–5.9 85 64 60 38 33 45 49 62 436
6.0–6.9 133 29 54 111 57 85 57 93 619
7.0–7.9 128 106 50 128 57 108 113 126 816
8.0–8.9 112 89 45 68 48 78 89 60 589
9.0–9.9 19 80 28 60 14 29 30 9 269
10.0–10.9 14 43 8 16 3 15 13 6 118

Total 568 690 278 472 300 516 412 606 3842
Mean age 6.81 6.36 6.89 7.20 6.19 6.38 7.00 5.78
s.d. (age) 1.61 2.34 1.63 1.64 2.00 1.95 1.75 1.85

Girls
2.0–2.9 2 12 1 8 5 3 29 60
3.0–3.9 35 113 4 22 24 52 25 79 354
4.0–4.9 44 144 22 36 37 69 52 103 507
5.0–5.9 66 57 64 49 31 45 44 40 396
6.0–6.9 109 32 47 119 37 72 66 105 587
7.0–7.9 101 119 57 115 61 145 141 148 887
8.0–8.9 121 68 52 70 54 104 80 57 606
9.0–9.9 38 96 42 57 19 24 12 17 305
10.0–10.9 22 67 9 15 7 5 15 140

Total 538 708 297 484 278 521 438 578 3842
Mean age 6.98 6.59 7.11 7.05 6.60 6.62 6.82 5.98
s.d. (age) 1.77 2.39 1.69 1.69 2.00 1.80 1.72 1.87
T0 822 898 402 430 486 907 693 1109 5747
T1 284 500 173 526 92 130 157 75 1937
All 1106 1398 575 956 578 1037 850 1184 7684

Abbreviation: s.d.= standard deviation.

Table 3. Descriptive statistics (mean± s.d.) of physical activity in
2–10-year-old European children

Age CPM Sedentary
(minutes
per day)

Light
(minutes
per day)

MVPA
(minutes
per day)

Mean s.d. Mean s.d. Mean s.d. Mean s.d.

Boys
2.0–2.9 567 141 237 68 410 63 24 14
3.0–3.9 625 159 241 70 416 62 34 18
4.0–4.9 662 160 241 70 422 57 42 21
5.0–5.9 657 168 262 81 420 66 46 22
6.0–6.9 631 185 296 98 397 64 50 26
7.0–7.9 610 175 321 94 381 66 52 27
8.0–8.9 581 186 342 101 368 68 49 28
9.0–9.9 551 159 366 98 364 75 48 26
10.0–10.9 540 162 378 91 360 71 48 25

Girls
2.0–2.9 567 114 245 70 414 54 24 12
3.0–3.9 570 145 243 69 410 62 27 15
4.0–4.9 600 156 250 71 412 64 33 18
5.0–5.9 587 154 274 90 419 69 35 17
6.0–6.9 559 163 301 92 398 73 37 20
7.0–7.9 549 148 320 90 381 66 39 19
8.0–8.9 518 172 339 99 373 75 36 22
9.0–9.9 481 139 370 89 352 71 36 20
10.0–10.9 471 138 380 87 357 60 35 21

Abbreviations: CPM= counts per minute; MVPA=moderate-to-vigorous
physical activity (using Evenson cutoffs); s.d.= standard deviation.

Physical activity in European children
K Konstabel et al

S137

© 2014 Macmillan Publishers Limited International Journal of Obesity (2014) S135 – S143

108



minutes, and (2) ‘adjusted’ minutes. Adjusted minutes were
computed by dividing the raw minutes by wearing time and
multiplying the resulting fraction by the average wearing time.
Average wearing time of the final sample was 740± 100min
(mean± s.d.). Data have also been analysed using other common
cutoffs ie Sirard,22 Pate,23 Puyau,24 and Van Cauwenberghe.25

Results are presented in Supplementary Tables A–C.

Statistical analysis
The General Additive Model for Location Scale and Shape method
is able to particularly model the kurtosis using other distributions
and to include more than one covariate. We used the gamlss
package (version 4.2–6) of the statistical software R (version
3.0.1).20 Different distributions, that is, the Box-Cox power
exponential, the Box-Cox t or the Box-Cox Cole and Green, the
normal, the power exponential and the t family distribution were
fitted to the observed distribution of PA variables. Moreover, the
influence of age on parameters of the considered distributions
was modelled either as a constant, as a linear function, or as a
cubic spline of the covariates. Goodness of fit was assessed by the
Bayesian Information Criterion and Q–Q plots to select the final

model including the fitted distribution of PA variables and the
influence of covariates on distribution parameters. Finally,
percentile curves for the 5th, 10th, 25th, 50th, 75th, 90th and
95th percentiles were calculated based on the model that showed
the best goodness of fit.16,26

In order to use the same distribution for all dependent variables,
it was decided to use the Box-Cox Cole and Green distribution as it
was in most cases the best fitting model according to the Bayesian
Information Criterion; or the difference in Bayesian Information
Criterion from the best fitting model was negligible. For average
CPM, the final model for both sexes considered Box-Cox Cole and
Green distribution modelling log μ and log σ as a cubic spline of
age, and ν as a constant. For unadjusted MVPA and light activity
(both unadjusted and adjusted minutes), as well as for sedentary
time (adjusted and unadjusted minutes), the final model for both
sexes considered the Box-Cox Cole and Green distribution
modelling log μ as a cubic spline of age, and log σ and ν as a
constant. The form of the model for adjusted MVPA was different
for boys and girls: for both sexes, log μ was modelled as a cubic
spline of age and ν as a constant, but for boys, log σ was also a
cubic spline of age but a constant for girls.
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RESULTS
In total, data from 7684 children (3842 boys and 3842 girls) from
T0 and T1 are presented in Table 2. No longitudinal data were
included: for most children (N= 5747), T0 values were used; the T1
values were included only if the child was newly recruited in T1, or
if their PA was not measured in T0 (N= 1937). The descriptive
statistics of PA and sedentary time in these 2.0–10.9-year-old
European children are presented in Table 3. Both CPM and MVPA
were higher in boys, whereas sedentary time was higher for girls;
there was no overall difference in light activity. Reference values
for PA and sedentary time (Evenson cutoffs) in the European
children according to sex and age are expressed using smoothed
centile curves (P5, P10, P25, P50, P75, P90, P95) and are illustrated in
Figures 1, 2, 3, 4, 5, 6 and 7. These figures show similar trends in
boys and girls. Tabulated percentiles of these data are presented
in the Supplementary Table A. Centile curves for PA and
sedentary time were similar irrespective of whether data was
adjusted or not by dividing the raw minutes by wearing time and
multiplying the resulting fraction by the average wearing time

(see Figures 2, 3, 4, 5, 6 and 7). The percentage of children
complying with recommendations regarding MVPA is shown in
Figure 8. The percentage compliance to MVPA recommendations
for these European children varied considerably between sexes
and country and was generally low with the percentage of study
participants who were physically active for 60 or more minutes
per day ranging from 2.0% (Cyprus) to 14.7% (Sweden) in girls and
from 9.5% (Italy) to 34.1% (Belgium) in boys (Figure 8). Percentile
curves for average CPM obtained from the whole sample were
similar to those obtained after excluding overweight and obese
children (Supplementary Tables A–C).

DISCUSSION
The present study provides the most up-to-date sex- and age-
specific data on PA in young children in Europe with important
implications for public health policy and PA counselling. Although
the present data should not be used as reference standards,
scientists, medical and biomedical personnel and related stake-
holders, children and parents will be able to compare the
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obtained scores with these sex- and age-specific objective
measures of PA and sedentary time of European children from
eight different countries. These data complement a growing
literature of comparative data across a range of different health-
related fitness measures such as body mass index, physical fitness,
bone health and blood lipids from this unique cohort of European
children (see Nagy et al., De Henauw et al., Peplies et al.,
De Miguel-Etayo et al.; this issue). The present analysis quantifies
the magnitude and direction of sex- and age-related differences in
children’s PA patterns and shows boys having higher MVPA than
girls on average from the age of 5 years onwards and a larger
range in MVPA. These differences in MVPA are in line with
previous studies and could be largely explained by socio-cultural
reasons such as more vigorous exercise outside of school, during
school physical education and more participation in sports teams
in boys.27

Despite the importance of PA assessment, most previous
reports and fact sheets about PA levels in European youth used
data obtained through questionnaires.1–3 For example, PA
patterns were estimated in a cross-sectional survey of 137 593
youth (10–16 years) from the 34 (primarily European) participating

countries of the 2001–2002 Health Behaviour in School-Aged
Children Study (HBSC survey) using self-completed questionnaires
administered in the classroom.3 Subjects were asked how many
days in the past week and in a typical week they were physically
active (cumulative activity including sports, school activities,
playing with friends, and walking to school) for 60 min or more.
Using this approach, the percentage of study participants who
were physically active for 60 or more minutes on 5 or more days
per week ranged from 19.3% in France to 49.5% in the United
States. Notwithstanding the usefulness of the data generated
using questionnaires (for example, useful to identify, which
activities were performed), such subjective approaches are heavily
prone to recall bias, social desirability and misinterpretation.
Until the present analysis, no large representative set of

accelerometer data existed to provide normative values especially
for young European children. Notable attempts to review
objectively measured PA data obtained by accelerometry from
children and adolescents in Europe have been published.11,12,28 In
the first attempt, data were pooled from 14 studies collected
between 1998 and 2009 comprising 20 871 children (4–18
years).11 Using a meta-analysis, Ekelund et al.12 found children
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accumulated a modest 30 ± 21min per day of MVPA and this
magnitude is very much in line with the data presented here from
the IDEFICS study. MVPA was associated with all measured cardio-
metabolic outcomes such as waist circumference, systolic blood
pressure, fasting triglycerides, high-density lipoprotein-cholesterol
and insulin independent of sex, age, monitor wear time, time
spent sedentary and waist circumference (when waist circumfer-
ence was not the outcome).12 The subsequent study explored the
proportion of European children who were assessed, based on
objective assessment using accelerometry, as sufficiently active
according to PA recommendations.28 In order to do this, the
authors conducted systematic electronic search of studies
involving European youth published up to March 2012. The
analysis and interpretation of the data is difficult owing to the
use of different PA thresholds lying between 1000 and
4000 counts min− 1 to define MVPA. For example, up to 100% of
youth may be assessed as sufficiently active when using a
threshold of ~41000–1500 CPM. Applying 42000 CPM as the
cutoff, which is most frequently used, up to 87% of European
children and adolescents would be considered physically active
according to the current recommendations that children aged
5–18 years should engage in MVPA for a minimum of 60 min on a

daily basis.29 If the cutoff would be raised to 43000 CPM, only
3–5% of the children would reach these recommendations.

The large discrepancy in outcomes released by accelerometer
data is mainly due to the variety of cutoff points for MVPA among
children and adolescents, hindering the definition of a clear goal
towards PA promotion in Europe and beyond; standardisation of
these methods is, therefore, urgently required. The results of the
study by Guinhouya et al.28 illustrate the significant impact of
methodological decisions on accelerometer outcome variables
and consequently the observed compliance to public health
guidelines in young children. For example, choosing a low cutoff
can wrongly classify inactive children as active and vice versa.23

Trost et al.30 have compared an array of varying cutoffs for
children and recommend Evenson’s cutoffs as the most accurate
when assessing all levels of activity. Cutoffs developed for pre-
school children by Van Cauwenberghe et al.25 are similar to those
by Evenson for MVPA counts (Evenson:⩾ 585 counts per 15 s vs
Van Cauwenberghe:⩾ 574 counts per 15 s) but ~ 120 counts per
15 s lower by Van Cauwenberghe for vigorous activities. However,
the validity of these recommendations remains to be determined
conclusively and, therefore, consensus on this subject remains
elusive, although essential.
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Given the recommendation30 that the Evenson’s cutoffs are the
most accurate when assessing all levels of activity in young
children, these cutoffs have been preferred to generate the
primary normative PA data for this cohort (albeit the data using
the other commonly used cutoffs can also be found in the
supplementary material). Using the Evenson cutoffs PA patterns
were also generated for the different countries. One must exercise
caution in extrapolating this data to each respective country as
the IDEFICS study is not nationally representative because each
survey centre only covered a delimited geographic area within a
country. Furthermore and like all studies, the present study is not
without limitations. Most important of these limitations relate to
the variable use of accelerometers (that is, typically less than
4 days) and in only a proportion of the IDEFICS study cohort (see
Table 2) due primarily due to the prohibitive cost of purchasing
sufficient accelerometer devices for the testing of as many of the
IDEFICS cohort possible and avoiding any negative impact on
compliance given the already significant burden for parents,
teachers and the children from the large amount of data being
collected on numerous occasions. Nevertheless, some interesting
patterns do emerge that tend to agree with other published data.
For example, the proportion of children complying with MVPA
recommendations is low in Italy and Cyprus and higher in Estonia,
Hungary, Germany, Sweden, Belgium and Spain (see Figure 8).
This trend is in almost complete agreement with data on physical
fitness published previously.31

In conclusion, accelerometry is currently considered to be the
most valid method of assessing PA among children in free-living
conditions. In anticipation of an even greater reliance on
accelerometry for measuring movement behaviours of children,
the present study provides the most up-to-date and comprehen-
sive set of sex- and age-specific reference data on PA in children
and youth. These reference values may have important implica-
tions for public health policy and PA counselling to motivate
young individuals with low levels of PA to set appropriate goals
and monitor individual changes in PA.
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Background/objectives: High blood pressure (HBP) is one of the most important risk factors for cardiovascular
diseases and it has a high prevalence in pediatric populations. However, the determinants of the incidence of
Pre-HBP and HBP in children are not well known. i) To describe the incidence of HBP in European children;
and ii) to evaluate the effect of physical activity (PA) and sedentary behavior (SB) on the Pre-HBP and HBP.
Methods: The IDEFICS cohort study. A total of 16,228 children 2–9 years at baseline were recruited by complex
sampling population-based survey in eight European countries. At baseline (T0), 5221 children were selected
for accelerometer measurements; 5061 children were re-examined 2 years later (T1). We estimated the inci-
dence of Pre-HBP and HBP and evaluate the effect of PA and SB on the Pre-HBP and HBP, by computing relative
risks and the corresponding 95% confidence intervals (RR, 95% CI).
Results: Incidences of Pre-HBP and HBP per year were: 121/1000 children and 110/1000 children, respectively.
We found that children maintaining SB N 2 h/d during the two year follow-up showed a RR of having HBP of
1.28 (1.03–1.60). Children in T1 not performing the recommended amount of PA (b60 min/d) have a RR of
HBP of 1.53 (1.12 to 2.09). We found no association between pre-HBP and the behaviors.
Conclusion: The incidence of pre-HBP and HBP is high in European children. Maintaining sedentary behaviors
during childhood increases the risk of developing HBP after two years of follow-up.

© 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Chronic non-communicable diseases are the main source of disease
burden worldwide and are thus a major public health problem [1].

Among non-communicable diseases, hypertension has been shown
to have the highest prevalence in adults [2], and studies have
shown that blood pressure (BP) levels in childhood and adolescence
greatly impact the development of hypertension in adulthood [3].

Among the factors that may influence blood pressure levels (e.g.
genetics, intrauterine development, socioeconomic status, tobacco use,
total and abdominal obesity), physical activity (PA) and sedentary
behaviors (SB) have been shown inverse [4] and direct associations
[5,6], respectively, with blood pressure in children.
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Although the effects of PA and SB on BP have mainly been examined
in isolation, there are studies suggesting that these behaviors have an
aggregate effect in children [7]; however, few studies have quantified
the association between combined PA/SB levels and cardiovascular
risk in children, like blood pressure. On the other hand, PA/SB levels
are associated with sociodemographic and economic variables. The
influence of sociodemographic factors on PA/SB has been described
in a review [8]. There is no consensus in the literature regarding
socioeconomic variables as determinants of these behaviors since
such differences may be attributed to the demographic context and
characteristics of the populations studied rather than the individual
[9,10].

Reproducing the same results in different population groups with
different characteristics would increase their biological plausibility and
provide a higher level of scientific evidence. For this reason, we have
included results from a multi-national European study in this report.
We tested our hypothesis, in cohort studies conducted with children
within the IDEFICS study (Identification and prevention of Dietary- and
lifestyle-induced health EFfects In Children and infantS).

Thus, we hypothesized that low levels of PA and high levels of SB
may contribute to the development of high blood pressure (HBP).

2. Methods

2.1. Study population

The IDEFICS study (Identification and prevention ofDietary- and lifestyle-induced health
EFfects In Children and infantS) is an epidemiological multicenter European study, aiming
to identify nutritional and lifestyle-associated etiological factors of childhood obesity and
relatedmorbidities. A cohort of 16,228 children aged 2–9 years at baseline (51% of eligible
sample), recruited fromeight European countries (Germany, Hungary, Italy, Cyprus, Spain,
Estonia, Sweden and Belgium), was examined in the baseline survey (T0) and it was the
starting point of the prospective study with the largest European children's cohort
established to date. They were assessed between September 2007 and May 2008 accord-
ing to a standardized protocol. Details of the procedures of the IDEFICS project have been
previously published [11,12]. These children were followed up longitudinally to assess
their development and to determine the etiological associations betweenbaseline predictors
and selected follow-up end points by a follow-up survey 2 years later at T1 (September 2009
to May 2010).

As accelerometry was measured only in a random subset of children from every cen-
ter (due to availability of accelerometers), when the objective measurement of physical
activity (PA)was included in the analyses, the sample size was reduced. The present anal-
ysis was performed in 5221 children (32.2% of the sample; boys = 51%; age = 6.1 ± 1.8
years; mean ± s.d.) at T0, with a complete set of data including: systolic blood pressure
(SBP), diastolic blood pressure (DBP), height, exposures [PA intensities, sedentary behav-
ior (SB)] and confounding variables (Fig. 1). Parents or legal guardians provided written
informed consent to participate in the full program or in a selected set of examination
modules. For each survey center, the approval of the local Ethical Committee was
obtained.

2.2. Outcomes

Data collection procedures were described previously [13]. An arm BP oscilometric
monitor device WelchAllyn 42008™, previously validated in this age group was used
[14]. It was previously tested for reliability and reproducibility in the IDEFICS project
[13]. Two BP readings were taken after 10-min rest, with a 5-min interval between
them, and the lowest reading was recorded. The inter-observer coefficients of variation
were below 5% for both BP levels.

The outcomes for this study are: Pre-HBP andHBP [15]. Pre-HBPwas defined as SBP or
DBP between 90th to 95th percentile for age and height; and HBP defined as SBP or DBP
above the 95th percentile for age and height too.

2.3. Principal exposures

PA and SB levels were considered independent variables.
Physical activity: was measured using a uniaxial accelerometer (Actigraph model

GT1M GT1M or ActiTrainer. The sensor unit of both models is identical). Recordings
were for at least 6 h/d for at least 3 days (2 weekdays and 1 day of weekend/holiday).
The sampling interval (epoch) was set at 15 s. A measure of average total volume activity
(hereafter called total PA) was expressed as the sum of recorded counts divided by total
daily registered time expressed in minutes (counts/min; cpm). The cut-offs to define the
PA intensity categories were derived from previously-validated cut-offs [16], with time
spent in light PA (minutes) defined as the sum of time-per-day in which counts per
epoch were 26 to 573 cpm. The time engaged in moderate PA was calculated based
upon a cut-off of 574 to 1002 cpm per epoch. The time engaged in vigorous PA was

calculated based upon a cut-off of ≥1003 cpm per epoch. In addition, the time spent at
the ‘effective’ intensity level was calculated as the sum of time spent inmoderate+ vigor-
ous PA (MVPA).

Following current PA guidelines [17], subjects were classified in T0 and T1 as:meeting
current PA recommendations when they accumulated at least 60 min/d of MVPA and not
meeting current PA recommendationswhenMVPAwas b60min/d.We also established the
variable change in PA based on the distribution in PA categories in T0 and T1; sub-
jects were classified into the following categories: always ≥60 min/d (meeting cur-
rent PA recommendations in both T0 and T1); ≥60 min/d → b60 min/d (meeting
current PA recommendations in T0 to not meeting current PA recommendations in
T1); b60 min/d → ≥60 min/d (not meeting current PA recommendations in T0 to
meeting current PA recommendations T1); and always b60 min/d (not meeting cur-
rent PA recommendations in T0 and T1).

Sedentary behaviors: The parental questionnaire was used to obtain information on
children's sedentary behaviors'. Parents reported hours of TV/DVD/video viewing and
computer/games-console use both for a typicalweekday andweekendday. For thepurpose
of the current analysis, children's daily TV/DVD/video and computer/games-console use
were summed to obtain the total screen time per day (thewholeweek). The used question-
naire had previously been tested for its reliability and validity in this population [18].

Thereafter, participants were classified into two groups according to the American
Academy of Pediatrics (AAP's) guidelines on total screen time: ≤2 h/d and N2 h/d [19].
We also established the variable change in SB based on the distribution in SB categories in
T0 and T1; subjects were classified into the following categories: always≤2 h/d (meeting
current SB recommendations in both T0 and T1);≤2 h/d→ N2 h/d (meeting current SB rec-
ommendations in T0 to not meeting current SB recommendations in T1); N2 h/d→≤2 h/d
(not meeting current SB recommendations in T0 to meeting current SB recommendations
T1); and always N2 h/d (not meeting current SB recommendations in T0 and T1).

2.4. Potential confounders

The potential confounders for this study were divided into two groups: Contextual
Factors and Individual Factors, and described bellow:

Contextual Factors
Centres in 8 European countries: Belgium, Cyprus, Estonia, Greece, Germany,
Hungary, Italy, Spain and Sweden.

Seasonality: A variable was computed by recoding the original variable “blood
drawing date” into “seasonality”, as follows: winter (from 21st December to 20th
March, coded as 1), autumn (from 21st September to 20th December, coded as 2),
spring (from 21st March to 20th June, coded as 3), and summer (from 21st June to
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20th September, coded as 4), as performed in previous studies. As the IDEFICS study
was performed during the academic year, only a few children (n=2%)were assessed
in the first days of summer. They were included along with those assessed during
spring. Therefore, the final variable was composed of three groups: winter (coded as
1), autumn (coded as 2), and spring (coded as 3).
Individual Factors

Study group: The children were divided into two groups: Intervention and con-
trol. The intervention group received a community-based intervention program
withmulticomponent education topics to promote healthy lifestyle. Children received
nutrition education at school and community activities were performed to prevent
obesity/overweight and metabolic syndrome components. The control group did
not receive any intervention.

Age group: 2–5 years; 6–9 years and 10–12 years (only T1 analyses);
Parental education of the family provider: determined with a self-reported ques-

tionnaire and categorized according to the International Standard Classification of Ed-
ucation (ISCED) [20] in five levels: ISCED 1 = illiterate; ISCED 2 = up to 4th year of
primary school; ISCED 3 = completed primary school; ISCED 4 = completed high
school; and ISCED 5 = completed higher education.

Waist circumference: It was measured at the midpoint between the lowest rib
cage and the top of the iliac crest with a non-elastic tape to the nearest 0.1 cm. The
intraobserver technical errors of measurement were between 0.53 and 1.75 cm and
interobserver reliability was greater than 94.9% [21], for this circumference.

2.5. Statistical analysis

The descriptive analyses were performed by mean (continuous variables) and per-
centage (categorical variables) and respective 95% confidence intervals (95% CI).

We calculated the cumulative incidence for the two years of follow-up and 95% CI of
both outcomes: Pre-HBP and HBP for total and principal exposures. The magnitude of
these associations was subsequently expressed in, unadjusted and adjusted, relative risk
(RR) and 95% CI. Multinomial multilevel regression models using mixed effects intercept
were applied to estimate the effect of PA and SB on Pre-HBP and HBP incidence [22,23].
The context variable used was the center.

For the adjusted analysis we developed a conceptual framework (Fig. 2) previously
separated into five levels (the association of these levels is not shown): 1) center, season-
ality; 2) sex; age (years); 3) parental education; 4)waist circumference; and 5) PA and SB.
In thismodel, variableswere controlled for those in the same level but also for those in the
higher one [24]. P-values≤ 0.20were adopted in the univariate analysis [24] (as necessary
to include a variable in the multivariate analysis and, then, it was entered through the hi-
erarchical model method following the levels above) or when there was more than 10%
modification in RR of any variable already in the model.

Multilevel analyses were performed with two objectives: 1st) to test the associations
between BP categories and two separate measures of individual behaviors; and 2nd) to
test the extent to which country-specific characteristics and contextual variables mediate
the associations between BP categories and PA and SB.

C
ontextual 
Level 

Centers 

Seasonality 

3 

1 

Parental Education Level 

Age (years)

Pré-BP and HBP 
(outcomes) 

Individual 
Level 

4 

Waist Circumference5 

6 Physical Activity Sedentary Behavior 

Sex 

2 Study Group

Fig. 2. Theoretical conceptualmodel of the association between contextual and individual variables on children's blood pressure categories. The effect of each variable on the outcomewas
adjusted for other variables in the samemodel or above in the hierarchical model. Variables with P N 0.2were not included in the subsequent adjustmentmodels. HBP=high blood pres-
sure. The principal's independent variables are described in level 6.
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Significance was set at P-values b 0.05 and the Stata 12 (Stata Corp., College Station,
TX, USA) was used for all statistical calculations. All analyses were adjusted for the clus-
tered nature of the sample using the “svy” set of commands.

3. Results

We performed sensitivity analyses in the sample by comparing the
prevalence of the outcomes among children who had complete data
(baseline= T0 and cohort= T1), and thosewho did not have complete
data (only T0). We found no significant differences (P N 0.05) in preva-
lence in this analysis. Fig. 1 presents a description of the study sample,
which represents 32.2% of the total IDEFICS study sample. A strong
point of our study is that we only had 3.1% loss in the two years of
follow-up (n = 5061).

Table 1 shows the characteristics of the sample at T0 and T1 of data
collection. The only variable found showing significant differences be-
tween boys and girls was the increased prevalence of high sedentary be-
haviors (N2 h/d) both at T0 and T1, being higher inmales than in females.

Cumulative incidences of both outcomes (Pre-HBP andHBP) accord-
ing to the main exhibits examined are presented in Table 2. Significant
effects were only found in the incidence of HBP for PA and SB at follow-
up in cohort and in those maintaining high SB (N2 h/d) at follow-up.

Children who perform b60 min/d of PA at the time of the second
data collection or maintained higher SB (N2 h/d) during the period of
follow-up are at risk for HBP (Table 3).

4. Discussion

To the best of our knowledge, this is the first study examining the in-
cidence of HBP in children, and exploring the effect of PA and SB on this
incidence.We analyzed the incidence of pre-HBP andHBP in a large sam-
ple of European children fromeight different countries, and also the effect
of PA and SB in the incidences of these outcomes. We found a high inci-
dence of both outcomes during the follow-up of two years. Children not
meetingwith the PA recommendation (≥60min/d) in T1 ormaintaining
high SB (N2h/d) at follow-up are at high risk of developingHBP. Ourfind-
ings are relevant, because HBP is considered the risk factor with the
highest attributable fractions for cardiovascular diseases (CVD)mortality
(40.6%) [25] and some studies have shown that if HBP is developed in
childhood and adolescence. Therefore, this could be crucial for develop-
ing CVD such as stroke andmyocardial infarction in adulthood [3]. Includ-
ing data from a cohort study adds consistency and temporality to our
report as some of the results were similar in different populations and
the risk factor came first than the outcome (Hill's principles) [26].

Our results corroborate studies that have evaluated, in cross-
sectional studies, the association of PA on BP levels [27,28]. Several
mechanisms can explain the positive effects PA induces on BP levels.
There is strong evidence that the sheer stress caused by regular PA has
a powerful effect on the release of vasodilator factors produced by the
vascular endothelium [29], such as nitric oxide and endothelium-
derived hyperpolarizing factor (EDHF) [30], and the children that

Table 1
Descriptive analysis of characteristics of the sample on cross-sectional and cohort, and their respective confidence intervals 95% (95% CI), according to independent variables.

Independents variables Cross-sectional (n = 5221) Cohort (n = 5061)

Males (n = 2638) Female (n = 2583) Males (n = 2485) Female (n = 2576)

% 95% CI % 95% CI % 95% CI % 95% CI

Age (years)
2–5 years 42,8 (40,9–44,6) 39,6 (37,8–41,6) 16,5 (9,1–11,5) 15,5 (14,1–16,9)
6–9 years 57,2 (55,4–59,1) 60,4 (58,4–62,2) 69,3 (66,2–69,8) 70,3 (68,5–72,2)
10–12 years – – – – 14,2 (13,4–16,2) 14,3 (12,9–15,6)

Countries
Belgium 6,3 (5,4–7,2) 7,5 (6,5–8,5) 14,2 (12,7–15,4) 13,8 (12,4–15,1)
Cyprus 7,6 (6,6–8,6) 7 (6,0–8,0) 5,1 (4,3–6,0) 6,7 (5,7–7,7)
Estonia 16,1 (14,7–17,5) 16,9 (15,5–18,4) 20,1 (18,5–21,6) 21,5 (19,9–23,1)
Germany 11,5 (10,3–12,7) 12,9 (11,6–14,2) 14,5 (13,2–15,9) 13,8 (12,4–15,1)
Hungary 16,3 (14,9–17,7) 16,4 (14,9–17,8) 5,7 (4,8–6,6) 5,5 (4,6–6,4)
Italy 12,2 (10,9–13,4) 11,4 (10,2–12,6) 12,6 ((11,3–13,9) 10,4 (9,2–11,6)
Spain 20,1 (18,6–21,6) 19,2 (17,6–20,7) 20,1 (18,5–21,7) 19,4 (17,9–20,9)
Sweden 9,9 (8,8–11,1) 8,7 (7,6–9,8) 7,8 (6,8–8,9) 9 (7,9–10,1)

Parental education level (ISCED)
ISCED 1 2,1 (1,5–2,6) 2,3 (1,7–2,9) 2,2 (1,6–2,8) 2,4 (1,8–3,0)
ISCED 2 6,4 (5,4–7,3) 6,2 (5,3–7,1) 7,5 (6,4–8,6) 6,4 (5,5–7,4)
ISCED 3 34,5 (32,7–36,3) 33,2 (31,3–35,0) 32,5 (30,6–34,4) 32,1 (30,3–34,0)
ISCED 4 17 (15,6–18,5) 18,8 (17,3–20,4) 21,2 (19,5–22,8) 20,1 (19,3–22,5)
ISCED 5 40 (38,1–41,9) 39,6 (37,6–41,4) 36,6 (34,7–38,6) 38,2 (36,3–40,1)

Physical activity
b60 min/d 78,4 (76,8–79,9) 91,4 (90,3–92,5) 74,3 (7,26–76,0) 90,4 (89,2–91,5)
≥60 min/d 21,6 (20,1–23,2) 8,6 (7,5–9,7) 25,7 (24,0–27,4) 9,6 (8,5–10,8)

Sedentary behavior
≤2 h/d 63,7 (61,9–65,6) 70,5 (68,8–72,3) 51,1 (49,1–53,2) 60,1 (58,2–62,0)
N2 h/d 36,3 (34,4–38,1) 29,5 (27,7–31,2) 48,9 (46,9–50,9) 39,9 (38,0–41,8)

Nutritional status by BMI
Undernutrition 10,2 (9,0–11,3) 10,6 (9,4–11,8) 10,3 (9,1–11,5) 10,1 (8,9–11,3)
Eutrophic 72,5 (70,8–74,2) 69,5 (67,8–71,3) 68 (66,2–69,8) 67,8 (66,0–69,6)
Overweight 10,8 (9,7–12,0) 13,6 (12,3–15,0) 14,8 (13,4–16,2) 16,2 (14,8–17,6)
Obese 6,5 (5,6–7,5) 6,3 (5,3–7,2) 6,8 (5,8–7,8) 5,9 (5,0–6,8)

Blood Pressure
Normal 78,8 (77,2–80,4) 75,5 (73,8–77,2) 84,5 (83,1–86,0) 83,7 (82,3–85,2)
Pre-HBP 12,1 (10,9–13,4) 13,2 (11,8–14,5) 8,8 (7,7–9,9) 8,4 (7,3–9,4)
HBP 9,1 (7,9–10,2) 11,3 (10,0–12,5) 6,7 (5,7–7,6) 7,9 (6,8–8,9)

Significant associations are in bold.
HBP = high blood pressure.
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performphysical activity less than 60/min/d have lower vasodilation ca-
pacity of the endothelium and this could be the biological mechanism
by which they develop HBP.

An important result we found was that children who maintained
SB N 2 h/d during the two-year follow-up showed a high incidence of
HBP. There are several possible physiological mechanisms by which SB
may contribute to increased BP, andmore research is needed to analyze
the pathophysiological processes of increased BP due to high SB. One
possible biological explanation is that SB changes themyokine response
in the skeletal muscle and these alterations promote the endothelial
dysfunction in the cardiovascular system by increase of the pro-inflam-
matory adipokines. Consequently, this increase could be the start of the
pathological processes of atherosclerosis, and progressively develop
into hypertension [31].

The results of this study are in agreement with some cross-sectional
studies suggesting that lower PA level is associatedwith higher levels of
BP [32]. Additionally, present results corroborate with previous survey
observations [33] and a recent review [5] suggesting that SB is an inde-
pendent risk factor for detrimental cardiovascular outcomes indepen-
dent of PA level. Our results are of importance and highlight that the
youth should be encouraged to engage in recommended levels of
MVPA and reduce excessive time spent in screen-based sedentary
behavior. In adolescents our group found that recommended levels of
MVPA could attenuates the harmful effects of SB in increased blood
pressure [6].

The behavioral patterns under consideration during childhood tend
to continue into adulthood [34] and high levels of sedentary behaviors
in adults increase the risk of mortality from cardiovascular diseases
[35,36].

A limitation of this study is that itwas not possible to adjust the anal-
ysis for other potentially BP-associated factors in either of the large
children sample, such as genetics or intrauterine development, but we
developed an adjusted analysis for a large set of potential of con-
founders. On the other hand, the diverse geographic origin of the sam-
ples, the cohort design consequently, temporal sequence between risk
factor and outcome can be established, the use of objective measures

Table 2
Cumulative incidence and respective confidence interval 95% (95% CI) of the outcomes per
1000 individual lifestyle behaviors.

Independents variables Incidence

Pre-HBP HBP

Physical activity (PA) in cross-sectional
≥60 min/d 84 (56–112) 66 (41–91)
b60 min/d 81 (69–92) 75 (64–86)

Physical activity (PA) in cohort
≥60 min/d 83 (61–104) 40 (25–55)
b60 min/d 63 (54–72) 65 (56–74)

PA changes (cross-sectional == N cohort)
Always ≥ 60 min/d 68 (43–93) 43 (23–63)
≥60 min/d == N b60 min/d 52 (40–63) 42 (31–52)
b60 min/d == N ≥60 min/d 105 (68–143) 35 (13–58)
Always b 60 min/d 74 (61–87) 86 (72–99)

Sedentary behavior (SB) in cross-sectional
≤2 h/d 67 (56–78) 57 (47–67)
N2 h/d 66 (54–79) 65 (53–77)

Sedentary behavior (SB) in cohort
≤2 h/d 66 (56–76) 55 (46–63)
N2 h/d 69 (54–83) 73 (58–88)

SB changes (cross-sectional == N cohort)
Always ≤ 2 h/d 67 (56–79) 56 (45–67)
≤2 h/d == N N2 h/d 62 (45–80) 51 (35–67)
N2 h/d == N ≤2 h/d 64 (37–91) 61 (35–87)
Always N 2 h/d 70 (53–88) 78 (59–96)
Total 121 (53–188) 110 (93–162)

HBP = high blood pressure.

Table 3
Relative risk and respective confidence interval 95% (RR, 95% CI) by multilevel Poisson according lifestyle behaviors changes.

Independents variables Pre-high blood pressure High blood pressure

RR (95% CI)
unadjusted

RR (95% CI)
adjusteda

RR (95% CI)
unadjusted

RR (95% CI)
adjusteda

Random effects intercept 0,06 (0,03–0,10) 0,08 (0,04–0,15) 0,06 (0,03–0,10) 0,08 (0,04–0,15)

Physical activity (PA) in cross-sectional
≥60 min/d 1,00 1,00 1,00 1,00
b60 min/d 0,93 (0,64–1,37) 0,89 (0,61–1,31) 1,10 (0,82–1,49) 0,93 (0,68–1,27)

Physical activity (PA) in cohort
≥60 min/d 1,00 1,00 1,00 1,00
b60 min/d 0,85 (0,63–1,16) 0,83 (0,61–1,13) 1,67 (1,25–2,24) 1,53 (1,12–2,09)

PA changes (cross-sectional == N cohort)
Always ≥ 60 min/d 1,00 1,00 1,00 1,00
≥60 min/d == Nb60 min/d 0,84 (0,54–1,32) 0,80 (0,51–1,27) 1,05 (0,71–1,54) 0,97 (0,64–1,47)
b60 min/d == N ≥60 min/d 1,26 (0,73–2,16) 1,23 (0,72–2,12) 0,67 (0,38–1,19) 0,65 (0,36–1,18)
Always b 60 min/d 1,03 (0,67–1,57) 0,98 (0,64–1,51) 1,66 (1,16–2,37) 1,43 (0,97–2,12)

Sedentary behavior (SB) in cross-sectional
≤2 h/d 1,00 1,00 1,00 1,00
N2 h/d 1,05 (0,82–1,34) 1,04 (0,81–1,33) 1,24 (1,04–1,48) 1,20 (0,99–1,44)

Sedentary behavior (SB) in cohort
≤2 h/d 1,00 1,00 1,00 1,00
N2 h/d 1,03 (0,82–1,31) 1,01 (0,80–1,28) 1,17 (0,98–1,39) 1,16 (0,97–1,40)

SB changes (cross-sectional == N cohort)
Always ≤ 2 h/d 1,00 1,00 1,00 1,00
≤2 h/d == N N2 h/d 0,96 (0,70–1,35) 0,95 (0,69–1,29) 1,07 (0,84–1,35) 1,06 (0,82–1,35)
N2 h/d == N ≤2 h/d 0,93 (0,61–1,43) 0,94 (0,61–1,44) 1,15 (0,85–1,56) 1,07 (0,78–1,46)
Always N 2 h/d 1,08 (0,81–1,44) 1,05 (0,78–1,44) 1,32 (1,07–1,63) 1,28 (1,03–1,60)
Random effects — countries 0,73 (0,42–1,29) 0,72 (0,41–1,27) 1,21 (0,71–2,06) 1,18 (0,70–2,02)
Akaike information criterion 2076,51 2065,9 3334,77 3098,58

Significant associations are in bold.
a This analysis was adjusted for potential confounders: country, seasonality, sex, age, parental education and waist circumference.
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to assess PA and SB and multilevel adjusted analysis are some of the
main strengths of our study.

5. Conclusions

According to our results, the incidence of pre-HBP andHBP is high in
European children, low levels of PA are a risk factor for developing HBP
and to maintain sedentary behaviors increases the risk of developing
HBP after two years of follow-up. These results suggest that regular PA
should be promoted and SB should be discouraged in children to pre-
vent high blood pressure and its consequences in adulthood.
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Purpose: Little is known about the extent di�erent domains contribute to

total sedentary (SED), light (LPA) and moderate-to-vigorous physical activity

(MVPA). We compared domain-speci�c PA behaviour assessed by question-

naire and accelerometry during a typical school week.

Method: 298 German school children and adolescents aged 6-17 years wore

an accelerometer for one week and completed a PA recall-questionnaire for the

same period. Spearman coe�cients were used to compare self-reported and

objectively measured total and domain-speci�c PA.

Results: Self-reported PA was generally over-reported when compared to ac-

celerometry. The agreement of self-reported and objectively measured PA was

low for total LPA (r=0.09, 95%-CI:-0.03-0.20), total MVPA (r=0.21, 95%-CI:

0.10-0.32). In contrast, moderate agreement was found for total SED (r=0.44,

95%-CI: 0.34-0.53), LPA during transport (r= 0.59; 95%-CI: 0.49-0.67) and

MVPA during organized sports activities (r= 0.54; 95%-CI: 0.38-0.67). About

half of the objectively measured SED, LPA and MVPA (55%, 53% and 46%,

respectively) occurred during school time, while organized sports activities

contributed 24% to total MVPA.

Conclusions: The school setting is the domain contributing about half to

total SED, LPA and MVPA in children. Accelerometry should be preferred over

questionnaires to assess duration and intensity of PA in youth while domain-

speci�c data require self-reported information.
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Abtract

Purpose: A reliable estimation of activity-related energy expenditure (AEE)

from gait intensity may increase the value of step counting in daily life. The

current study aims to improve previous equations for calculating AEE based

on gait intensity measurements, i.e. the number of steps taken in a one minute

interval.

Methods: 167 participants (82 females, 85 males, 6-81 years old) were equip-

ped with a step activity monitor (Step Watch 3.0, Orthocare Innovations,

Washington, USA). Total energy expenditure (TEE) was measured with a

mobile oxygen analyzer (MetaMax 3b, Cortex Biophysik, Leipzig, Germany).

Resting energy expenditure (REE) was measured for 30 min, followed by three

walking conditions with slow, moderate and fast pace on level ground in out-

door conditions. AEE was calculated as TEE - REE and expressed in kJ/min.

Mixed linear models were used to derive an energy prediction equation. Leave-

one-out cross validation was utilized to calculate the accuracy of the models.

Results: A model involving the number of gait cycles, weight and height

performed best (r2=0.644, RMSE=5.69, MAPE=18.92). The model improved

only marginally with additional variables such as age, or cross-interactions.

Furthermore, discriminating fast walking with a pronounced variation on AEE

did not improve the model prediction.

Conclusions: Gait intensity measured by step counters in one minute inter-

vals o�ers a reliable estimation of AEE across a wide age range. This approach

is superior to the prediction of AEE by means of daily step counts, but does

not reach the accuracy of accelerometers mounted on the lower back and using

raw acceleration for AEE prediction.
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