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Abstract

Physical activity is generally considered as being beneficial for many health
outcomes. Lack of physical activity and increased sedentary behavior are re-
garded as major risk factors. Therefore physical activity has been in the focus
of epidemiological research for a long time.

Subjective methods like standardized physical activity questionnaires are fre-
quently used to assess physical activity in epidemiological research. In recent
years, objective methods, like pedometers and accelerometers, have become
more common. Accelerometers measure the body acceleration along up to three
axes. The acceleration is stored as a numerical quantity, the counts for a cer-
tain period of the time (epochs). Counts are thought to be proportional to the
intensity of the activity. Accelerometer measurements allow to derive the time
a person spent in certain intensity ranges, like sedentary, light, moderate and
vigorous.

After a motivation of the research presented in this thesis and a short outline,
the concept of physical activity is introduced in Chapter 2, which particularly
focuses on the description of the objective measurement of physical activity
using accelerometers and pedometers in contrast to subjective measurements
like physical activity questionnaires. Some methodological problems regarding
the objective and subjective assessment of physical activity are identified and
investigated in Chapter 5.

Chapter 3 presents more details on accelerometer measured physical activity.
The intensity levels are commonly assigned using count thresholds, the so-
called cutpoints. The time spent within one activity range without changing
into another is called bout. The cutpoint method is a valid way to analyze
accelerometer data under the quite unrealistic assumptions that the state of
motion at a point in time is independent of the state of motion a person was in
just before and that humans switch from sitting to running and back to sitting
within a few seconds.

It is, however, more realistic to assume that human activity behavior consists of
a sequence of non-overlapping distinguishable activities, like walking to work,
sit at the desk and playing badminton after work that can be represented by
a mean intensity level. The recorded accelerometer counts scatter around this

mean level. If this holds true, then the cutpoint method leads to considerable



misclassification of the bouts into the wrong intensity levels and hence also to
an incorrect estimation of the number of bouts.

In Chapter 4, two novel approaches to better capture physical activity un-
der these assumptions are developed and implemented. The Hidden Markov
models (HMM) are stochastic models that allow fitting a Markov chain with
a predefined number of activities to the data. This new method is compared
to the standard cutpoint method in a simulation study. HMMs require some
a priori information that are not verifiable. Therefore, it is desirable to find
a way to model physical activity data that does not need any other a priori
information. Thus, a regression model is called for that allows to model ac-
celerometer data as a sort of step function with each jump indicating the start
of a new activity and the constant interval being the mean intensity level of
that activity. Here, expectile regression utilizing the Whittaker smoother with
an Lg-penalty is introduced as a second innovative approach, which allows the
desired fit. The expectile regression is compared to the cutpoint method and
the HMMSs by means of Monte-Carlo experiments. Both methods, compared
to the cutpoint method, reduce the misclassification rate of counts and the
number of identified bouts and therefore present a substantial improvement
for modeling accelerometer data to assess physical activity.

Chapter 5 presents the results of four studies on physical activity. In the large
European IDEFICS study, accelerometer data were collected from several thou-
sands children. These data are used to describe the physical activity behavior
in European children using GAMLSS, which is also introduced in this chapter.
A second study exploits the collected activity data of the IDEFICS study to
investigate the influence of physical activity and sedentary behavior on high
blood pressure in children. The PATREC study is a smaller study in German
children and adolescents with a strong methodological focus. Data collected in
this study are used to study some problems identified in Chapter 2 regarding
objectively and subjectively measured physical activity in different domains of
activity. In the fourth study an energy expenditure equation is derived for one
pedometer model.

Chapter 6 summarizes and discusses the findings of the previous chapters and
ends with an outlook on future research with respect to the assessment of

physical activity data in epidemiological studies.
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Zusammenfassung

Allgemein geht man davon aus, dass korperliche Aktivitdt einen positiven Ein-
fluss auf viele Erkrankungen und respiratorische Fitness hat. Bewegungsman-
gel und sitzendes Verhalten gelten als Hauptrisikofaktoren. Daher steht kor-
perliche Aktivitit seit langer Zeit im Fokus epidemiologischer Forschung.
Typischerweise werden subjektive Methoden wie standardisierte Fragebogen
zur Erfassung von korperlicher Aktivitdt grofflichig eingesetzt. Seit einigen
Jahren werden vermehrt Akzelerometer und Pedometer als objektive Metho-
den verwendet. Akzelerometer messen die Beschleunigung des Korpers entlang
bis zu drei Achsen. Die Beschleunigung wird als natiirliche Zahl, dem soge-
nannten Count, fiir eine bestimmte Zeitdauer (Epoche) im Gerit gespeichert.
Es wird angenommen, dass diese Counts proportional zur Aktivititsintensitit
sind. Mit Akzelerometermessungen kann die Zeit, die eine Person in den In-
tensitétsbereichen sitzend, leicht, moderat und stark verbracht hat, bestimmt
werden.

Nach einer Motivation des Themas und einer kurzen Ubersicht iiber die Ar-
beit wird in Kapitel 2 das Konzept von korperlicher Aktivitit vorgestellt und
objektiven Methoden zur Erfassung von korperlicher Aktivitdt werden sub-
jektiven Methoden gegeniibergestellt. Hieraus ergeben sich einige methodische
Fragestellungen, die im weiteren Verlauf in Kapitel 5 untersucht werden.

In Kapitel 3 werden weitere Details zur Messung von korperlicher Aktivitat
mit Akzelerometern beschrieben. Intensititsbereiche der Counts werden {ibli-
cherweise anhand von Schwellwerten zugeordnet. Dabei wird die Zeit, die eine
Person in einem Intensitdtsbereich verbringt, ohne in einen anderen zu wech-
seln, Bout genannt. Diese Schwellwertmethode ist nur unter den unrealistischen
Annahmen, dass der Bewegungszustand zu einem bestimmten Zeitpunkt un-
abhingig vom vorangegangen Bewegungszustand ist und dass Menschen ih-
ren Bewegungszustand iiblicherweise innerhalb von Sekunden vom Sitzen zum
Rennen und wieder zuriick zum Sitzen wechseln, eine valide Moglichkeit, Ak-
zelerometerdaten zu analysieren.

Dahingegen ist es wesentlich realistischer anzunehmen, dass korperliche Ak-
tivitdt die diskrete Abfolge von unterscheidbaren Aktivitdten ist, wie zu Fuf

zur Arbeit zu gehen, am Schreibtisch sitzen und nach der Arbeit Badminton



spielen. Die Aktivitdten konnen dabei durch ein mittleres Intensitétsniveau ab-
gebildet werden und die gemessenen Akzelerometercounts streuen um dieses
mittlere Niveau. Unter dieser Annahme fiithrt die Schwellwertmethode zu er-
heblicher Missklassifikation der Counts in die falschen Intensitétsbereiche und
damit schlieklich zu einer verfilschten Schatzung der Anzahl von Bouts.

In Kapitel 4 werden zwei innovative Methoden, die diese Annahmen beriick-
sichtigen, entwickelt und implementiert. Hidden Markov Modelle (HMM) sind
stochastische Modelle, die es ermdglichen, eine Markovkette mit einer vorher
definierten Anzahl von Aktivitdten an die Daten anzupassen. Diese neue Me-
thode wird mit der iiblichen Schwellwertmethode in einer Simulationsstudie
verglichen. HMMs bendtigen einige a priori Annahmen, die nicht tiberpriif-
bar sind. Daher ist es wiinschenswert, einen Modellierung von korperlicher
Aktivitdt zu finden, die ohne solche Annahmen auskommt. Es wird also ein
Regressionsmodell gesucht, das es erlaubt, Akzelerometerdaten als eine Art
Stufenfunktion zu modellieren, bei der jeder Sprung den Beginn einer neuen
Aktivitdt anzeigt und das konstante Intervall das mittlere Intensitidtsniveau
der Aktivitat darstellt. Hierzu wird Expektilregression unter Verwendung des
Whittakerglidtters mit Lg-Strafterm als zweite innovative Methode vorgestellt
und ebenfalls mit der Schwellwertmethode und HMMs in einer weiteren Simu-
lationsstudie verglichen. Beide Methoden reduzieren im Vergleich zur Schwell-
wertmethode die Missklassifikationrate der Counts und die Anzahl der erkann-
ten Bouts und stellen somit eine substantielle Verbesserung der Modellierung
von Akzelerometerdaten dar.

In Kapitel 5 werden die Ergebnisse von vier empirischen Studien zur kor-
perlichen Aktivitdt vorgestellt. In der grofen europiischen IDEFICS-Studie
wurden von mehreren tausend Kindern Akzelerometerdaten gesammelt. Diese
Daten werden genutzt, um das Bewegungsverhalten von européischen Kindern
mittels GAMLSS, das ebenfalls in diesem Kapitel eingefiihrt wird, zu beschrei-
ben. Eine weitere Studie nutzt die Daten der IDEFICS-Studie, um den Einfluss
von korperlicher Aktivitdt und sitzendem Verhalten auf kindlichen Bluthoch-
druck zu untersuchen. Die PATREC-Studie untersucht das Bewegungsverhal-
ten deutscher Kinder und Jugendlicher mit einem besonderen methodischen
Fokus. Die hier gesammelten Daten dienen zur Untersuchung der in Kapitel

2 aufgebrachten Fragen zu objektiven und subjektiven Erfassungsmethoden



in unterschiedlichen Aktivitdtsdomanen. In der vierten Studie wird eine Glei-
chung zur Schitzung des Energieumsatzes fiir ein Pedometermodell bestimmt.
In Kapitel 6 werden die Resultate zusammengefasst und diskutiert sowie ein
Ausblick auf zukiinftige Forschung im Bereich der Erfassung von korperlicher

Aktivitat in epidemiologischen Studien gegeben.

Korperliche Aktivitat, Akzelerometerdaten, Hidden-Markov-Modelle, Expek-
tilregression, LO-Strafterm, Whittaker-Gléatter, Mustererkennung, korperliche
Aktivitdtsmuster, Bouterkennung, GAMLSS, Energievorhersagegleichung
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Chapter 1

Introduction

1.1 Motivation

Physical activity is generally considered as being beneficial for many health
outcomes. Lack of physical activity and increased sedentary behavior are re-
garded as major risk factors. Therefore physical activity has been in the focus
of epidemiological research for a long time. Physical activity is typically de-
scribed by the four dimensions, (1) frequency, (2) duration, (3) intensity and
(4) type and is performed in so called domains, which typically include leisure
time physical activity, occupational physical activity, transportation activity
and activities performed at home.

In order to be able to properly investigate the association of physical activity
with different outcomes, a good exposure measurement is required. In epi-
demiological research subjective methods like standardized physical activity
questionnaires are broadly used. The advantages of the subjective assessment
are its low costs, simple logistics and its broad application with an accompa-
nying “validation”.

In recent years, objective methods, like pedometers and accelerometers, have
become more common. Accelerometers measure the body acceleration along up
to three axes. The acceleration is stored as a numeric quantity, the counts for
a certain period of the time (epochs). Counts are thought to be proportional to
the intensity of the activity. Accelerometer measurements allow to derive the
time a person spent in certain intensity ranges, like sedentary, light, moderate

and vigorous. Physical activity is frequently summarized as minutes per day



spent in these activity ranges, hence dimensions (1) to (3) can be assessed.
The intensity levels are commonly assigned using count thresholds, the so-
called cutpoints. The time spent within one activity range without changing
into another is called bout. The cutpoint method is a valid way to analyze
accelerometer data under the quite unrealistic assumptions that the state of
motion at a point in time is independent of the state of motion a person was in
just before and that humans switch from sitting to running and back to sitting
within a few seconds.

It is, however, more realistic to assume that human activity behavior con-
sists of a sequence of non-overlapping distinguishable activities, like walking
to work, sit at the desk and playing badminton after work that can be rep-
resented by a mean intensity level. The recorded accelerometer counts scatter
around this mean level. If this holds true, the application of the simple cutpoint
method will lead to considerable misclassification of the counts and hence to
an invalid exposure measurement. Additionally the number of bouts will be
overestimated, as by misclassifying the count to the wrong intensity range, a
new count is started by definition.

This thesis focuses on how to improve modeling accelerometer data to better
reflect real-life behavior and also investigates methodological issues regarding
the comparison of subjective and objective measurement of physical activity.
The thesis also presents results from studies on physical activity that describe
the physical activity behavior of European children and investigate the impact
of sedentary behavior and physical activity on high blood pressure in children.

An energy prediction equation for a pedometer model is also derived.

1.2 Outline

This thesis consists of six chapters based on six manuscripts, reprinted in the
appendix. Chapter 2 gives an introduction to the concept of physical activity
and its assessment in epidemiological studies. Chapter 3 presents more details
on accelerometer measured physical activity, how it is commonly analyzed and
what disadvantages may occur, given some assumptions on physical activity
behavior. Chapter 4 describes and implements two novel approaches to reflect

these assumptions, and Chapter 5 presents four papers on empirical studies



related to physical activity. The thesis concludes with a detailed discussion in
Chapter 6.

Chapter 2 introduces the concept of physical activity and particularly focuses
on the description of the objective measurement of physical activity like ac-
celerometers and pedometers in contrast to subjective measurements like phys-
ical activity questionnaires, especially with regard to their utilization in epi-
demiological studies. Some methodological problems regarding the objective
and subjective assessment of physical activity are identified and further inves-
tigated in a paper on objectively and subjectively measured physical activity
in different domains of activity.

Chapter 3 builds on the previous chapter and provides more details on how
physical activity is objectively measured using accelerometers, which have be-
come the method of choice in recent years. The data recorded by the devices
is described, as well as the typical approach how they are analyzed, i.e. by
applying the so-called cutpoint method. The assumptions underlying the cut-
point method are quite unrealistic. Under more realistic assumptions, namely
that physical activity can be regarded as a sequence of non-overlapping ac-
tivities with an distinguishable mean intensity, the simple cutpoint method
has some serious drawbacks, leading to considerable misclassification. The as-
sumptions are verified by the collection of labeled accelerometer data, where
the performed activities are known.

In Chapter 4, two novel approaches to model accelerometer data under the as-
sumptions introduced in Chapter 3 are developed. The hidden Markov models
(HMM) are stochastic models that allow fitting a Markov chain to the data
based on a predefined number of activities. In a methodological paper this new
method is compared to the standard cutpoint method in a simulation study.
Expectile regression utilizing the Lo-penalty and the Whittaker smoother are
introduced as a second innovative approach. Fitting the 0.5-expectile curve to
the data is basically a mean regression. Adding the Whittaker smoother with
an Lg-penalty now allows the desired fit accounting for the above assumptions
on physical activity behavior. In a second methodological paper the expectile
regression is compared to the cutpoint method and the HMMs by means of
Monte-Carlo experiments. In order to ensure using simulated data resembling

real-life accelerometer data as closely as possible, the simulation was chosen



to reflect the collected labeled data.

Chapter 5 presents the results of four studies on physical activity. In the large
European IDEFICS study, accelerometer data were collected from several thou-
sand children. These data are used to describe the physical activity behavior
in European children using GAMLSS, which is also introduced in this chapter.
A second paper based on the IDEFICS study exploits the collected activity
data to investigate the influence of physical activity and sedentary behavior
on high blood pressure in children. The PATREC study is a smaller study in
German children and adolescents with a strong methodological focus. Data
collected in this study are used to study some problems identified in Chapter 2
on objectively and subjectively measured physical activity in different domains
of activity. In the fourth paper an energy expenditure equation is derived for
one pedometer model. The data were collected by Oldenburg sports scientists
combining this pedometer model with spirometry.

Chapter 6 summarizes and discusses the findings of the previous chapters and
ends with an outlook on future research regarding the assessment of physical
activity data in epidemiological studies.

The appendix of this thesis provides reprints of the published papers. The
complete paper is presented in case the papers have been published in an
open access journal, or if permission for reprint was obtained from the journal.
In cases where papers have been just submitted and not yet published, the

abstract will be presented.



Chapter 2
Methodological background

This chapter serves as an introduction to the wide spectrum of assessing phys-
ical activity in the context of modern epidemiological studies. Different assess-
ment methods are presented and discussed with regard to their application
in epidemiological studies. This chapter mostly summarizes results from Trost
(2007), Beneke and Leithauser (2008), Westerterp (2009), and Schmid and
Leitzmann (2014).

2.1 Assessment of physical activity

Currently physical inactivity is considered as major risk factor for several
health disorders like cancer (McTiernan, 2008), obesity (Kimm et al., 2005),
cardiovascular disorders (Lee et al., 2012), muscular skeletal disorders (Janz
et al., 2010), as well as mental disorders (Rethorst et al., 2009). “Valid and reli-
able measures of physical activity are therefore a necessity in studies designed
to (1) document the frequency and distribution of physical activity in defined
population groups, (2) determine the amount or dose of physical activity re-
quired to influence specific health parameters, (3) identify the psychosocial
and environmental factors that influence physical activity behavior in youth,
and (4) evaluate the efficacy or effectiveness of programs to increase habitual
physical activity in youth.” (Trost, 2007). “ Physical activity is defined as any
bodily movement produced by skeletal muscle that results in energy expendi-
ture above resting” (Trost, 2007) and should not be confused with ezercise,

as “exercise is a specific type of physical activity that is defined as planned,



structured, and repetitive bodily movement done to improve or maintain one
or more components of physical fitness.” (Trost, 2007). Studies show that the
proportion of activity-induced energy expenditure (AEE) of total energy ex-
penditure (TEE) varies between 5% in a subject with minimal activity level to
about 45-50% in a subject with high activity level (Westerterp, 2009). Schmid
and Leitzmann (2014) state that total energy expenditure typically consists
of three components: (1) resting metabolic rate RMR, which is the minimal
rate of energy that is required for basic bodily functions, (2) thermic effect of
food (TEF) (also known as dietary induced thermogenesis (DIT)), which is the
amount of energy required above RMR for processing food and (3) activity-
induced energy expenditure. RMR is the main component with approximately
70% of TEE, TEF forms about 10% of TEE and AEE around 20%. Several
measurement units are common when measuring physical activity. These in-
clude energy expenditure per time unit, e.g. kJ per hour per kg body mass,
and metabolic equivalent of task (MET), as rate of oxygen (O3) consumption.
By definition

| MET — 3.5. 2192
kg - min
which is equivalent to
P MET = 1Al gy K
kg-h kg-h

1 MET also roughly corresponds to the energy costs of sitting quietly. MET
values range from 0.9 MET while sleeping to 23 MET for running at 22.5km /h.
METSs are often used to assign activities to activity ranges. Consequently 1 -
1.5 METs correspond to sedentary behavior, light intensity activities are those
with 1.5 to <4 METs, moderate intensity activities are those with 4-6 METs
and activities with >6 METs are called vigorous intensity activities (Trost et
al., 2011). In the case of objective instruments, physical activity is commonly
reported as time spent in these activity ranges. Physical activity can be de-
scribed by four dimensions, (1) frequency, (2) duration, (3) intensity and (4)
type and is performed in so called domains, which typically include leisure
time physical activity, occupational physical activity, transportation activity
and activities performed at home. Depending on the context and study pop-
ulation, additional domains, like for example in the case of school students

physical education, sports clubs or after-school programs, should be added.



The perfect measurement instrument would allow a reliable and valid measure-
ment of physical activity in all dimensions and domains (Trost, 2007). There
are many different instruments available, which can be assigned to three cate-
gories. Category 1 contains the reference methods, or gold-standard. Objective
measurements and subjective or self-report methods form categories 2 and 3.
Reference methods measure energy expenditure directly and are used to vali-
date instruments of categories 2 and 3. Validated instruments of category 2 in
turn are frequently used to validate methods of category 3 (Beneke and Lei-
thauser, 2008). All instruments have certain advantages and disadvantages that
one has to consider with regard to the question of interest. Trost (2007) and
Westerterp (2009) as well as Schmid and Leitzmann (2014) provide overviews

and ratings of the different methods, which are now discussed in detail.

2.1.1 Reference methods

Direct observation, indirect calorimetry and doubly labeled water (DLW) are

considered reference methods for measuring physical activity.

Direct observation Direct observation is one of the first methods to mea-
sure physical activity in free-living individuals and is the only method to ob-
serve all dimensions and domains of physical activity. Specially trained per-
sonnel observes the study subject for a continuous observation period, ranging
from a single physical education lesson, to four hours during the course of the
day. In pre-defined observation intervals of 3, 10, 15 or 60 seconds, physical
activity is recorded either as intensity equivalent within three to eight pre-
defined categories, or as standardized activity, like sitting, running, swimming
etc. in combination with an intensity (Beneke and Leith&user, 2008). On the
one hand, direct observation has proven itself to be very flexible and is able
to record contextual information like environmental conditions. On the other
hand, this method is very labor intensive and observers have to be thoroughly
trained. In addition, one can argue that their presence will influence the be-
havior of the subject (reactivity effect) and that judging activity intensity is
highly subjective, although studies have shown high inter-observer reliability
(Trost, 2007; Westerterp, 2009). Another point of criticism is the fact that ob-

servations are only done for a relatively short period of time compared to other



measurement methods and that results are therefore only valid for the observed
setting. This is particularly true, if, for example, only a single physical educa-
tion lesson was used for the observation, as this lesson can be hardly regarded
as representative for the general behavior of a student. This disadvantage in
combination with the immense need for personnel and the accompanying huge
costs prohibit using this instrument in large cohort studies (Trost, 2007; Beneke
and Leithduser, 2008; Westerterp, 2009).

Indirect calorimetry This method is based on the oxygen intake (VO,) and
carbon dioxide (CO3) production and calculates the energy expenditure using
the measured amounts of breathing gas. This method has been used since the
1920s, with first devices being bulky and hence stationary. Nowadays, portable
devices (spirometers) are available, allowing vigorous physical activity without
too much interference, although mouthpieces and masks do cause discomfort
to a certain degree and might not be tolerated by the subject. Particularly
when dealing with children, additional weight burden exceeding 6% of the
body mass will influence movement economy negatively and will lead to con-
siderably increased energy expenditure. This instrument is frequently used to
validate methods of category 2 and 3 (Beneke and Leithduser, 2008). Indi-
rect calorimetry is relatively expensive and burdensome for the participants,
especially for longer periods of time, which are needed for the assessment of
habitual physical activity. Therefore this method is not a feasible option in

large scale epidemiological cohorts (Schmid and Leitzmann, 2014).

Doubly labeled water This method is considered as the gold standard for
measuring total energy expenditure (TEE) in free-living subjects over a period
of one to four weeks. Water containing doses of two stable water isotopes, 2H,O
(deuterium-labeled water) and H3*O (oxygen-18-labeled water), is given to the
subject at specific points in time. The isotopes are naturally occurring and
have no known toxicity. The deuterium-labeled water is only released through
the body’s water pool (urine, sweat, evaporative losses), while the oxygen-
18-labeled water is additionally lost via the bicarbonate pool. Dissolved COs,
which is the end product of metabolism, enters the blood stream and is exhaled.

Samples of body fluids (urine, blood, saliva) are analyzed by mass spectrometry



and the rates for the disappearance of the isotopes are determined. At least
three samples are required. One baseline sample before DLW application, one
after the DLW has equilibrated with the body water and one after one to
four weeks. The measured CO, production can be converted to TEE and if
basel energy expenditure (BEE) is known, either by separate measurement or

estimation, activity-induced energy expenditure (AEE) can be calculated as
AFE =09 xTFEFE — BEE.

Although gold-standard for measuring TEE, this method has some consider-
able disadvantages that prohibit its use in large cohort studies. This method
requires exact adherence to the study protocol by the subject. Information on
the pattern of physical activity, such as energy spent in light, moderate and
vigorous physical activity, cannot be derived from this method. The most im-
portant limitation of the DLW method is its excessive costs. Therefore DLW
is typically used only in relatively small samples and mostly to validate instru-
ments of category 2 (Trost, 2007; Westerterp, 2009). For example, DLW was
used in the IDEFICS study (see Section 5.1) to validate accelerometer devices
(Ojiambo et al., 2012).

2.1.2 Objective measurements

Heart rate monitoring, pedometry and accelerometry are objective methods to
measure physical activity in free-living subjects. These methods are validated
using one of the above described reference methods and are in turn used to
validate methods of category 3. In the literature, usually a so-called “validation
coefficient” is reported to assess validity. Often this term refers to Pearson’s
and Spearman’s correlation coefficient interchangeably (see Trost, 2007, Ta-
ble 1). It is obvious that two measurements should be highly correlated, if
they are supposed to assess the same dimension, however, this is not sufficient
to show validity of one of these instruments. This is especially true, if correla-
tion coefficients < 0.5 that turn out to be significantly different from 0 lead to
the conclusion that the investigated instrument is valid, see Bland and Altman
(1986) for considerations on the validity of instruments. However, a discussion
of the correct interpretation and investigation of validity is beyond the scope

of this chapter.
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Heart rate monitoring Heart rate monitoring was one of the first objective
methods used for the assessment of physical activity. Equations are available,
which can be used to estimate daily energy expenditure based on the moni-
tored heart rate. Validation studies using DLW were conducted showing good
agreement on group level, but individual differences were large. For this method
individual calibration and measurement of VOs at rest are needed to determine
the so called flex heart rate. It is well known that people with higher physical
fitness can perform more intense activities at lower heart rates than persons
with low levels of fitness. Other factors like age, body size or emotional stress
may also influence the relationship between heart rate and VO,, as do sub-
stances like caffeine and medications like e.g. beta-blockers. Additionally, heart
rate lags behind changes in movement and stays elevated after some exhausting
activity, although the body is already at rest. Hence it can be suspected that
heart rate monitoring is not suitable for measuring sporadic activity patterns
that are found e.g. in children (Trost, 2007; Westerterp, 2009).

Pedometry A pedometer is a relatively simple device that registers steps
and is quite cost-effective compared to accelerometers and is often used in
health promotion programs and in clinical settings where walking is the main
type of activity. Pedometers are easy to administer, which allows their use also
in large groups of virtually any age. The concept of a “step” is easy to com-
prehend, therefore pedometers have the potential to promote behavior change,
like for example in the “10,000 steps Rockhampton project” (Schmid and Leitz-
mann, 2014). A major limitation is the inability of the pedometer to record
the magnitude /intensity of the activity. Movement above a certain threshold is
registered as a step, regardless whether the movement was walking, running or
jumping, although, of course, the step frequency allows conclusions regarding
speed and thereby intensity. Pedometers can only register walking activities,
but do not capture activities like swimming, cycling or weight lifting. Thus,
pedometers are supposed to provide valid measurement of the relative amount
of physical activity, but they cannot provide information on type of activity,
frequency, intensity, or duration (Trost, 2007; Schmid and Leitzmann, 2014). In
Section 5.6 an energy prediction equation is derived for one pedometer model,

allowing at least to capture the energy expenditure and hence the intensity for
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walking activities.

Accelerometry In contrast to pedometers, accelerometers are able to mea-
sure acceleration in up to three planes. Uni-axial devices register accelera-
tion along a vertical axis, bi-axial devices additionally along the medio-lateral
plane and tri-axial devices also along the anterior-posterior plane. These, in
the meanwhile relatively inexpensive, devices collect information known as
(impulse-)counts and provide information on intensity, frequency and dura-
tion of physical activity of an individual. Counts represent a device-specific
numeric quantity which is generated by the accelerometer for a specific time
unit (epoch) (e.g. 1 to 60 sec). This quantity is proportional to the intensity
of the physical activity performed by the subject. Devices of the first gener-
ations had only limited memory. Therefore epochs around 15 seconds to one
minute were common, as well as observation times of only a few days. Nowa-
days, devices have become small, light and robust and are very well tolerated
by subjects. Their improved batteries and increased memory now allow high
frequency measurements with epoch length of 1-5 seconds over a complete
week or more. The sequence of activities during a day is stored as a time series
of counts by the device. The most common approach to derive the pattern of
physical activity and its energy expenditure is to map these counts to a certain
number of sedentary and activity ranges, such as sedentary behavior (SED),
light (LPA), moderate (MPA) and vigorous (VPA) physical activity. So the
most common measurement unit is minutes (per day) in SED, LPA, MPA| or
VPA respectively. The duration of physical activity within the same activity
range is known as bout and can be easily extracted from a given sequence
of counts. A bout is defined as the time period in which the subject remains
within one activity range without changing to another. Activity ranges are sep-
arated by thresholds known as cutpoints. Cutpoints are available for children
(e.g. Evenson et al., 2008; Freedson et al., 2005; Guinhouya et al., 2009a; Pate
et al., 2006; Puyau et al., 2002; Treuth et al., 2004; Trost, 2007) and adults
(e.g. Freedson et al., 1998; Sasaki et al., 2011; Troiano et al., 2008) to assess
the overall time spent in these ranges of physical activity. Alternatively, energy
prediction equations (e.g. Crouter et al., 2012) can be used to derive energy

expenditure from the accelerometer counts. Numerous validation studies have
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been performed to date (e.g. Ekelund et al., 2001; Hislop et al., 2012; Ojiambo
et al., 2012; Plasqui and Westerterp, 2007) using DLW or indirect calorime-
try, as well as direct observation as reference method. Due to these results,
accelerometers can be regarded as a valid instrument to assess physical activ-
ity. Because of these features, accelerometry is now one of the most frequently
used methods for assessing physical activity in free-living subjects. However,
accelerometers are not able to register certain activities that are associated
with increased energy costs like cycling, swimming, using stairs, carrying heavy
objects, or walking uphill. Some people argue that these activities only make
up a small proportion of the overall physical activity and therefore this disad-
vantage is neglectable. Modern tri-axial devices are more sensitive to activities
of light intensity and provide better measurements of upper-body movement
in activities like rowing and riding a bike. The Euclidean norm is then used to
combine the counts along the axes to the vector magnitude (VM). Until now,
only few cutpoints for VM are available. Another factor that may influence
the results of an accelerometer measurement is the place where the device is
attached, e.g. foot, hip or arm. Therefore standardization within one study is
mandatory. Like other objective methods, accelerometers do not provide con-
textual information on the domains in which physical activity is performed. To
overcome this shortage, oftentimes participants are asked to keep an activity
diary, in which non-wearing periods, e.g. swimming, or other times when the
accelerometer was not worn are recorded, as well as the beginning and end of
certain domains like transportation, being in the work environment, at school
etc. (Trost, 2007; Beneke and Leithiuser, 2008; Westerterp, 2009; Schmid and
Leitzmann, 2014).

GPS The recent spreading of smart phones with GPS capability as well as
standalone GPS trackers now allow to combine information on physical activity
with the built environment using geographical information systems (GIS) and
by this to investigate the interaction between people’s physical activity and
their environment. Many smart phones also have built in pedometers and more
and more applications to monitor physical activity and exercises are introduced
(Schmid and Leitzmann, 2014).
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2.1.3 Subjective measurements

All presented methods above are objective in the sense that the subject is not
forced to rate his or her own activity behavior. All methods of category 3, which
are proxy report, structured interview, questionnaire and activity diary, require
that the subject recalls physical activity from the past and rates/estimates du-
ration and intensity. This is of course highly subjective and therefore all subjec-
tive methods are, to some degree, subject to recall bias and social desirability
bias.

With the exception of the structured activity interview, all self-report methods
are inexpensive and require only minimal personnel resources compared to
other methods of assessment and are therefore widely applied in all kinds of
(large) studies. A huge number of different physical activity questionnaires
exist and their validity and reliability is subject to discussion. Particularly for
self-report instruments, the criticism concerning the use and interpretation of

correlation coeflicients from above holds true.

Proxy report Proxy reports are used when the subject is considered to be
unable to understand and/or answer questions concerning his or her physical
activity due to e.g. age as it is the case for young children. These proxy reports
are based on the assumption that parents or teachers know enough of the
behavior pattern of the child to sufficiently answer questions on its behalf.
Studies on the validity of this instrument only showed disappointing results
(Beneke and Leithduser, 2008; Verbestel et al., 2015).

Activity diary Subjects are asked to retrospectively indicate their activity
performed and its intensity every few minutes (e.g. 1-15 minutes). Resulting
estimates are quite good compared to objective measurements, yet some sub-
jects have difficulties to rate their own intensity level and a diary can impose a
considerable burden to the subject, especially, if reporting intervals are short
(Beneke and Leithéuser, 2008). Recently electronic activity diaries using smart
phones have been introduced. After a certain time interval participants are
reminded by a signal to record their past physical activity. Using voice recog-
nition the participant’s reply is converted to a text form and then assigned to

an activity category (Schmid and Leitzmann, 2014).
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Structured interview The presence of an interviewer can reduce misun-
derstandings and incomplete answers on the one hand. On the other hand,
direct contact between the interviewer and the subject increases the chances
of socially desirable answers. Compared to other self-report instruments higher
personnel resources are necessary and it is not clear, whether avoidance of mis-
understandings outweighs interviewer induced bias (Beneke and Leithéuser,
2008).

Questionnaire Physical activity questionnaires are probably the most fre-
quently used instrument to assess physical activity. They are easy to use, cheap
and many different questionnaires for different target groups and settings are
available. In theory, a questionnaire can assess all dimensions and domains of
physical activity. In fact, next to direct observation, self-report instruments
are the only ones that can provide contextual information. However, ques-
tionnaires are subject to considerable recall bias for subjects of all ages, as
especially habitual physical activity is challenging to recall and rate retrospec-
tively. Questionnaires tend to underestimate LPA and to overestimate MVPA.
This might be explained by the fact that MVPA, like swimming and jogging,
are mostly planned exercises and occur in more structured settings like vis-
its to the gym, while low intensity activities, like walking, occur throughout
the day and are therefore difficult to assess. One of the most popular physi-
cal activity questionnaires is the International Physical Activity Questionnaire
(IPAQ)(Craig et al., 2003). It was developed in 1996 and is considered as an
established population surveillance tool for the assessment and comparison of
physical activity across countries. A long and a short version for e.g. telephone
interviews are available and have been translated into more than 20 languages
(Schmid and Leitzmann, 2014). Some physical activity questionnaires may not
be suitable for all age groups. E.g. they may be unsuitable for children who are
younger than 10 years of age. Young children seem to have problems to fully
understand the concept of physical activity and they have problems to differen-
tiate between sedentary activities like playing a video game and non-sedentary
activities like playing outside and doing household chores (Trost, 2007). Addi-
tionally children’s activity behavior is characterized by short bouts of activity.

In order to deal with this, one could either opt for proxy reports, as mentioned
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above, or use questionnaires that have been especially designed for children,
like the MoMo questionnaire as part of the German KiGGS study (Schmid and
Leitzmann, 2014). There are many other questionnaires available (see Trost,
2007, Table 1). This reflects the lack of comparability when trying to measure
physical activity. Researcher tend to rather create their own questionnaires
than to use existing “validated” ones. This causes problems if one tries to com-
pare results between studies using different questionnaires. As there are many
different physical activity questionnaires, there are also many reviews available
investigating the validity of these instruments, with varying results. Some cer-
tify sufficient validity for self-report instruments, with the exception of younger
children (Trost, 2007), while other see rather low validity and reliability when
habitual physical activity is measured. Some studies report systematic under-
estimation, some report overestimation and others report agreement at group
level with considerable error on individual level (Westerterp, 2009). Method-
ological problems of physical activity questionnaires applied to children and
adolescents are further investigated in Section 5.5.1. Here, subjective measured
physical activity in different domains is compared with accelerometer assessed

physical activity.

2.1.4 Observation period

The answer to the question how many days a subject’s physical activity should
be monitored strongly depends on the research question and the preferred
method of assessment. Other considerations may be financial limitations and
researchers have to make sure not to choose a monitoring protocol that is
overly burdensome to the subjects. As said above, direct observation can be
used to measure one’s physical activity for a couple of hours, maybe a day
or two, due to its limitations. Doubly labeled water, on the contrary, can by
design only be used to assess physical activity over the course of one to several
weeks. Self-report instruments can be used for arbitrary periods. Because of
technological improvements objective instruments can be used for a few weeks,
if desired. Some studies tried to calculate wearing days that are necessary to
reach a certain degree of reliability. However, the results of these studies are
inconclusive. Keeping this in mind and considering the strong likelihood that

physical activity behavior will vary between weekdays and weekend days, a
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7-day monitor protocol seems to be a reasonable choice (Trost, 2007).

2.1.5 Discussion

When looking at the different options available for measuring physical activity
in free-living subjects, it is quite obvious that there does not exist the one in-
strument of choice. Physical activity is a rather complex concept that consists
of four dimensions and several domains. Reference methods like doubly labeled
water and indirect calorimetry are excellent for measuring energy expenditure,
but neither provide information on the dimensions frequency, intensity, dura-
tion and type nor on the domains. In the case of doubly labeled water, the
costs of this method prohibit its large scale use in cohorts. If a monitoring
period of a complete week is intended, indirect calorimetry also seems to be
inappropriate, although the spirometer and its mask/mouthpiece may be tol-
erated for a couple of hours under “laboratory conditions”, it is certainly not
feasible to wear this device for a complete week.

Among the objective instruments, accelerometers and pedometers imply the
least burden to subjects and are methodologically robust and well tested. De-
vices have become affordable to allow their use in large-scale field studies.
Accelerometers can, in contrast to pedometers, additionally provide informa-
tion on the dimensions of physical activity. No objective measurement can
provide contextual information. This is the special advantage of self-report in-
struments like questionnaires. They are easy to use, cheap, widely used and,
compared to accelerometers, do not require sophisticated logistics. Yet, there
are substantial doubts regarding validity, reliability and comparability. These
doubts are less pronounced for accelerometers. An accelerometer is a “heartless
machinery”, that is not tempted to record socially desirable physical activity
behavior, it does not forget to register motion and it can judge intensity rather
precise, although some activities cannot be registered, which in turn question-
naires can. Accelerometers can also be used in children of all ages, an area
of application in which questionnaires reach their limits. As a matter of fact,
accelerometers are becoming more and more broadly used in field studies and
large cohorts, as their advantages are obvious.

The question is, however, whether accelerometers should be the only measure-

ment of physical activity in such studies. As discussed, contextual information
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is not recorded. But this might be of particular interest. For example, it may
be of interest to learn in which domain most of the physical activity is per-
formed. It would be, of course, interesting to know, whether most physical
activity is accumulated during regular activities during the day, or whether
there are certain domains, like organized sports activities (e.g. physical educa-
tion or school programs), or transportation activities with high intensity levels.
Such information will be helpful when developing intervention programs that
aim to increase physical activity. Thus, it seems reasonable to combine both
instruments and their strengths by adding an activity diary, in which date and
time of the domains of interest are recorded. This way highly validated and
reliable objective measurements can be put into contextual settings of physical
activity.

This approach was implemented in the PATREC study described in Section
5.5. Some results that can be obtained from the combined use of objective and

subjective measurements are presented in Section 5.5.1.
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Chapter 3

Accelerometer measured physical

activity

This chapter provides further details on accelerometer measured physical ac-
tivity. Counts, which are recorded by the accelerometer, are introduced, as
well as the commonly used method to analyze them, the cutpoint method.
This method is only valid under quite unrealistic assumptions. More realistic
assumptions about human physical activity behavior are formulated, which, if
true, lead to some serious drawbacks of the cutpoint method. In order to ver-
ify these assumptions, labeled accelerometer data were collected. In Chapter 4,
two novel approaches will be presented that allow to model accelerometer data

taking these assumptions into account.

3.1 Accelerometer counts

As described in Section 2.1.2, accelerometers as an objective measurement of
physical activity have become the method of choice to access physical activity
in recent years. Modern devices allow high frequency measurements for ex-
tended periods of time. The information is stored as a natural number, the
so-called (impulse-)counts which provide information on intensity and dura-
tion of an individual’s physical activity. Counts are a device-specific numeric
quantity which is recorded for a specific time unit, the epoch, which ranges from
1 second in modern devices to 60 seconds in older ones. Counts are thought

to be proportional to the intensity of the physical activity performed by the
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Figure 3.1: Example of collected labeled accelerometer data (1 second epochs).
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subject. The sequence of activities during a day is stored as a time series of
counts by the accelerometer, see Figure 3.1 for an example of collected labeled

data, for which the underlying activity is known, with 1 second epochs.

3.2 Cutpoint method: choice of cutpoints and
epoch length

The most common approach to derive the pattern of physical activity and its
energy expenditure is to map these counts to a certain number of sedentary
and activity ranges, such as sedentary behavior, light, moderate and vigorous
physical activity. Activity ranges are separated by thresholds known as cut-
points. Cutpoints for different age groups are available for children (Evenson
et al., 2008; Freedson et al., 2005; Guinhouya et al., 2009a; Pate et al., 2006;
Puyau et al., 2002; Treuth et al., 2004; Trost, 2007) and adults (Freedson et
al., 1998; Sasaki et al., 2011; Troiano et al., 2008) allowing to assess the over-
all time spent in these ranges of physical activity. The duration of physical
activity within the same activity range is called a bout and is defined as the
time period in which the subject remains within one activity range without
changing to another.

Cutpoints according to Freedson et al. (1998) are included in Figure 3.1. In this
example all epochs with < 99 counts/min are classified as SED, epochs with
100-1951 counts/min as LPA which corresponds to < 3 metabolic equivalent
of task (METs). Epochs with 1952-5724 counts/min are assigned to MPA with
3-5.99 METs and epochs with 5725-9498 counts/min to HARD with 6.00-8.99
METS and epochs > 9498 counts/min to VERY HARD with > 9 METs.
Commonly epochs with > 1952 counts/min are characterized as moderate-to-
vigorous physical activity (MVPA).

Apparently the choice of the cutpoints has a direct effect on the derived
amounts of time spent in SED, LPA and MVPA. A discussion of the ad-
vantages and disadvantages of different cutpoints is beyond the scope of this
chapter, but in the literature cutpoints according to Evenson et al. (2008)
are frequently used for children and adolescents and cutpoints according to
Freedson et al. (1998) are commonly used for adults.

Another influencing factor with regard to the identified intensities is the choice
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Figure 3.2: Assumed physical activity model: The figure shows five distinct
activities: walking, sitting, fast walking, an arbitrary activity and playing bad-
minton with mean activity levels represented by the solid line. The observed
accelerometer counts scatter around them following a certain distribution de-
picted as dotted line (adopted from Witowski et al. (2014) and to be shown in
the forthcoming paper presented in Appendix B).

of the epoch length. As will be seen later on, an increase in the chosen epoch
length results in a reduction of the variation of counts and hence fewer counts
will be at the extreme ends of the intensity range. This leads to an under-
estimation of time spent in SED/LPA and particularly MVPA. In the past,
determining epoch lengths was a trade off between battery endurance and
available memory, resulting in epoch lengths of 15 seconds to 1 minute. With
the technological advances of accelerometer devices, nowadays epoch lengths

of 1, 3 or 5 seconds are considered as sensible choices.
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3.3 Assumption about physical activity behav-
ior

The cutpoint method is very easily implemented and therefore widely used. It
is a valid way to classify accelerometer data, if one assumes that the count at
point in time ¢ is independent of the count at t — 1 and human beings are able
to switch instantly from one mode of activity to the other. These assumptions
are, however, quite unrealistic. Assuming a more realistic physical activity
behavior may lead to serious flaws of the cutpoint method.

Let us assume that a person’s daily activities are composed of a non-overlapping
series of bouts of different activities. For example riding a bike to work, work-
ing at a desk, walking to lunch and so on. Let us further assume that all these
activities have a certain intensity, which is represented by a true, mean count
level. The registered counts by the accelerometer then scatter around this true
intensity level. This assumption is depicted in Figure 3.2. The person first takes
a short walk, after which she/he is sitting, maybe watching TV, followed by
some fast walking, an arbitrary activity (see Section 4.4.1) and a game of bad-
minton. The solid black lines represent the “true” average count level for each
of these activities, which can be understood as the true intensity level. The
counts registered by the accelerometer scatter around this true level, following
a certain distribution (dotted gray line). So activities depicted in Figure 3.2
consist of five separate bouts, with five distinct activity levels.

If this assumption holds true, then the cutpoint method has some serious
drawbacks. As long as the variation around the true intensity level is small
and the true level is not close to a cutpoint the complete mode of activity can
be correctly assigned to its corresponding activity range. However, in real-life
applications there are activities showing large variation of counts, resulting
in large scattering, as for example games such as basketball or badminton.
Counts are then assigned to the wrong activity range, leading to considerable
misclassification. The erroneous classification of counts may also lead to an
overestimation of the number of activity bouts. As a bout is defined as the
time a person spends within one activity range without switching to another
range, misclassifying the count into a different activity range starts a new bout

by definition. The subject seems to switch from one activity range to another
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Figure 3.3: Example of collected labeled accelerometer data (5 seconds epochs).
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Activity Duration (min) Speed (%) Intensity
Standing still 5 0 SED
Lying on the ground 5 0 SED
Sitting 5 0 SED
Slow walking 10 1.08 LPA
Fast walking 10 1.67 LPA
Riding a bike 5 5.33 LPA
Climbing stairs of ~ 4 N/A LPA/MVPA
a five story building

Jogging 5 2.83 MVPA
Badminton 5 N/A MVPA
Basketball 10 N/A MVPA
Shuttle run test ~ 6 N/A LPA to MVPA

N/A = not applicable

Table 3.1: List of activities performed for generating labeled data.

and back again within a few epochs.

3.4 Labeled data

Chapter 4 will present novel approaches to assign intensity levels to accelerome-
ter counts to cope with the drawbacks of the cutpoint method mentioned above.
These methodological approaches for modeling accelerometer data have to be
evaluated. For this purpose accelerometer data are needed in which the under-
lying truth for each observation (count) is known. This includes the activity,
which generated the measured count, as well as its intensity. These require-
ments are met by simulated data (see Section 4.2.1 and Section 4.4.1).

In order to simulate accelerometer data that resemble real life data as closely
as possible, we collected labeled accelerometer data in a small sample. Five
female and four male participants were asked to perform a sequence of pre-
defined activities, covering the whole range of intensities. The participants wore
GT3X+ Actigraph accelerometers (Pensacola, Florida, USA). The device was

attached to the right hip using an elastic belt. The devices were initialized



27

using the ActiLife 6 software. Data were downloaded using the same software
and counts were computed at 1, 5, 10 and 15 seconds epochs. Table 3.1 lists
the performed activities, their duration and intensity. The specific activities
were chosen to cover rather monotonic ones, like walking and cycling, resulting
in a count series with little variation, as well as activities like badminton and
basketball, which show considerably more variation. Figures 3.1, 3.3 and 3.4
show the collected labeled data for one participant displayed in 1, 5 and 10
seconds epochs. In this example the effects of increasing epoch lengths become
obvious. The variation of the counts is reduced and hence less counts are found
below the LPA cutpoint and above the VPA cutpoint, this is especially true
for activities with high variation like badminton and basketball. Consequently
less time spent in LPA and MVPA is identified by the cutpoint method.
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Chapter 4

New approaches for assigning

intensity levels

This chapter investigates two innovative approaches to model accelerometer
data under more realistic assumptions then those underlying the cutpoint
method. The theoretical background of both methods, namely hidden Markov
models and expectile regression using a Whittaker smoother with Ly-penalty,
will be introduced. In addition, their performance will be investigated by means
of Monte Carlo experiments.

It will be shown that hidden Markov models are a promising improvement
over the cutpoint method. Hence, this method will be compared with expectile
regression utilizing a Whittaker smoother with an Lj-penalty, where we will
see that the latter even outperforms hidden Markov models albeit at the cost

of computational simplicity.

4.1 Hidden Markov models

Assumptions on the true physical activity behavior in human beings were
formulated in Section 3.3 and the resulting drawbacks of the simple cutpoint
method were described. As one solution to this problem the hidden Markov
models (HMM) can be combined with the traditional cutpoint method. The
idea is to identify the correct average intensity levels and map the counts to
them. Afterwards the identified activities are then assigned to an intensity level

via the regular cutpoints. The result of this proposal is depicted in Figure 4.1.

29
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Figure 4.1: Identified activities and their intensities after the application of the
HMM-method (adapted from Witowski et al. (2014))

The theory of hidden Markov models will be introduced in this section. In
Section 4.2, HMMs will be applied to simulated accelerometer data to assess

their performance.

4.1.1 Definition of hidden Markov models

This section follows the description of the mathematical background provided
in Zucchini and MacDonald (2009) and Fink (2003). Let us now assume that
the activities performed during the day can be represented as a time series
of true activity states can be mathematically described as a stochastic pro-
cess. The idea is that the observed time series, the counts registered by the
accelerometer, have been generated by an underlying unobservable, time and

value discrete, stochastic process whose random variables Z; are hidden.

Definition 4.1. (Stochastic process) Let (€2, <7, P) be a probability space. Let

further .# be an index set and 2 a space with a o-algebra. Then a stochastic
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process is a function
Z:Qx I =2, (wt)— Zi(w), (4.1)

where the function

is a random variable on (2, &7, P) for each t € 7.

The range Z of random variables Z; is the set of possible states. In the case
of activities performed during the day, 2 = {1,...,m} is finite with i € 2
symbolizing a specific activity, e.g. walking, running or sitting at the desk.
Correspondingly .# is a countable set. The stochastic process {Z;,t € IN} is

called time and value discrete.

Definition 4.2. (Time series) A times series {z1,...,2r} = zyr is a finite
realization of a stochastic process {Z;,t € IN} with length 7" € IN.

z =1,1 € &, is the realization of Z; at point in time t.

The true time series of length T of activities {21, ..., zr} is thought to be hid-
den and can therefore only be observed indirectly via the recorded accelerome-
ter counts {x1, ..., x7}, which are the observed realizations of random variables
X;. The underlying, unobservable and hence hidden stochastic process satisfies

the Markov property and is therefore called Markov chain.

Definition 4.3. (Markov property) A time and value discrete stochastic process

{Z;,t € N} is called Markov chain, if it satisfies the following Markov property:

P(Zt = Zt|Z1 = 21y, Zt—l = Zt—l) = P(Zt = zt|Zt—1 = Zt—l)- (43)

Let us now assume that the transition probability to switch from one state to
another at point in time ¢ only depends on the state a person is currently in

and is independent of all states prior to t.

Definition 4.4. (Transition probability) The probability of a Markov chain to

switch from state 7 to state j is given by the transition probability
’Yij = P(Zt = j|Zt—1 = Z) (44)

A Markov chain is called homogeneous, if the transition probability 7;; is in-

dependent of t for all pairs of ¢ and j € 2. The transition probability of a
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homogeneous Markov chain with finite 2 = 1,...,m can be summarized in

an (m x m) transition matric

I'= (%’j)1§i,j§m (4.5)
with
v €10,1], i,jeZ, (4.6)
Z%-jzl, e Z. (4.7)
JEZX

A Markov chain is fully defined by its transition matrix I and a vector contain-
ing the initial probabilities wo = (o1, ..., Tom) = (P(Z1 =1),..., P(Z; = m))
with > m; = 1 for the first state. Under the assumption described above,
each state © = 1,...,m is linked with the mean activity count u; of the corre-
sponding activity, which the state represents. Let u; denote the mean activity
level of the i-th physical activity. Furthermore, the variable X; is assumed to
be conditionally independent of all remaining variables given its unobservable

activity Z;:
P(Xt = ZL't|Zl, ey thXl, e 7Xt—1) = P(Xt = $t|Zt = Zt)' (48)

At each point in time ¢, the observed accelerometer count x; is assumed to
be generated by a certain distribution, which depends on the activity state
2y = 1 with the corresponding activity level p; as mean of this distribution.
This assumption is depicted in Figure 3.2, in which the distribution is drawn

as dotted grey line.
Definition 4.5. (Observation distribution) The probability that X; takes a

value x; under the condition that Z; = i is given by the observation distri-
bution

In case of continuous distributions, p;(z;) is the value of the density function

at Tt

The observation distributions are assumed to be a subset of a whole class of
distributions to be specified in advance. Each observation distribution p; is
determined by k& € IN parameters with parameter vector 8; = (0y;,...,0x;) €
RF. The m -k parameters in turn form the matrix 6 = (0;)1<j<p1<i<m- An
HMM is fully defined by its model-specific parameter ® = (7, T", 9).
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4.1.2 Applying HMMs to accelerometer data

The application of HMMs can be subdivided into the following three steps.

Step 1: Building an HMM for an observed time series of counts

The model-specific parameter ® of an HMM is estimated based on an observed

time series of counts {x1,...,zr}. This first step is referred to as training of
the HMM.

Definition 4.6. (Production probability) Let the hidden Markov model be
defined by ©, then the production probability of a certain observed series
{z1,..., o7} = x1.1 is given by the probability

L(®) = P(Xyr = 21:7(©). (4.10)

The likelihood of the model is finally the probability that a certain observed
series x1.7 as well as a certain series of activities z;.r have been generated by

an HMM defined by ©® summed over all possible series of activities zi.p € 2.7

L(®) = Z P(Xyr = 210, Ziw = 21.7|©) (4.11)
Zl:TeflzT
T
= Z {WOlem(Il) H’)/Zt—lyztpzt ()] (4.12)
21.T€EA.T t=2

The likelihood of the model with respect to ® can be either numerically maxi-
mized or by utilizing the so-called Baum-Welch algorithm (Baum et al., 1970)
which is commonly used to fit HMMs. In real-life applications the number
of underlying activities m given the observed accelerometer counts xy.r is un-
known. Therefore several HMMs with different numbers of states m are trained
and their goodnesses of fit are compared using the Bayesian Information Cri-
terion (BIC) and Akaike Information Criterion (AIC). If both criteria suggest
a different number of states, then one may opt for fewer states to have a more
simplistic model or for a larger number of states if this better reflects the

underlying practical situation.

Step 2: Decoding the hidden sequence of PA-levels

After the model parameter ® and an appropriate number of physical activities

m have been estimated, the resulting HMM is used to link each observed count
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x¢ to an estimated activity level fi;, ¢ =1,...,m.

Step 2.1 First, the Viterbi algorithm (Forney Jr, 1973; Viterbi, 1967) is
used to decode the globally most likely sequence of hidden activities denoted
by 27, ..., 2z} for the trained HMM and the same time series of counts 1.7 that
was used to train the HMM in Step 1 by comparing the joint probability of all

T hidden states and the observed accelerometer counts.

Step 2.2 Second, each accelerometer count x; is assigned to the estimated

activity level fi.x that corresponds to the decoded state z; at this point in time.

Step 3: Extension of the cutpoint method

In the last step the results of the HMM-based method is combined with the
traditional cutpoint approach. Now, each accelerometer count z; is assigned

to an activity range a; via its corresponding (most likely) mean activity level

/122‘ :

In the example illustrated in Figure 4.1, the trained HMM identifies five ac-
tivity levels fi1, ..., fi5, which leads to a misclassification of parts of the state
’badminton’ into three instead of one bout, with two bouts being assigned to
MPA and one to LPA. Even with this overestimation of six identified activity
levels instead of five, the HMM-based method assigns most counts correctly
to their actual activity range. The high number of bouts typically obtained
from the cutpoint method is reduced by the HMM-based approach because a
Markov chain is assumed to underlie the performed activities at each point in
time. The present example consists of five bouts: the first is defined by the
activity 'walking’, which corresponds to the activity range LPA, the second
bout is defined by ’sitting’ in SED, the third by ’fast walking” in MPA, close
to the cutpoint for VPA. The fourth bout is defined by a arbitrary activity
and the last by ’badminton’ in MPA. Due to the assumed Markov chain, the
HMM-based approach detects seven bouts, which is an overestimation of the
true value of five, but results are more precise than those obtained from the
traditional cutpoint method, which identifies over 40 bouts.

Figures 4.4 and 4.5 show the HMMs (gray dashed line) fitted to the labeled
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accelerometer presented in Section 3.4.

4.2 Modeling accelerometer data with HMMs

The hidden Markov models introduced in Section 4.1 have the potential to im-
prove the analysis of accelerometer data, especially compared to the traditional
cutpoint approach, described in Section 3.2. In order to investigate the gen-
eral feasibility and the advantages over the cutpoint approach, we conducted
a simulation study (Witowski et al., 2014), see Appendix A for a reprint. The
HMMs were compared with the traditional cutpoint method in terms of (1)
the misclassification rate (MCR), calculated as the percentage of how many of
the counts were assigned incorrectly to any other activity range than their true
activity range, (2) number of bouts correctly identified, (3) number of activity

levels correctly identified, and (4) runtime.

4.2.1 Simulation study

In the simulation study, 1,000 days of labeled accelerometer data consisting
of T'= 1,440 counts at 15 seconds epochs were simulated. So each simulated
time series represented a six-hour day. For labeled data, the true sequence of
activities and their actual activity level and also the activity range of each
count are known. Counts per day were randomly generated using the negative
binomial distribution (with parameters r = 1 and p = 0.0009, resulting in the
lowest activity level u; = 111.11) and the Gaussian distribution (with the pa-
rameters pp = 400, pz = 600 and pg = 900 as well as 05 = o2 = o2 = 10, 000)
around three or four pre-defined activity levels (depending on the random time
series generated by a Markov chain). For the simulation study cutpoints from
Pate et al. (2006) were used. The lowest activity level of 400 of the simulated
data was intentionally chosen to be very close to the lower cutpoint of 420 to
investigate the performance of the HMMs close to a cutpoint. In the context of
modeling accelerometer counts, three distributions are of particular interest:
The first HMM is based on the Poisson distribution, which is typically used
to model counts. The second model uses the generalized Poisson distribution
(Joe and Zhu, 2005) that includes a further variance parameter to allow for a

larger or smaller variation than the one assumed for a standard Poisson dis-
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tribution. Real-life accelerometer data typically show larger variability than a
simple Poisson distribution can accommodate. For the third HMM, a Gaus-
sian distribution is assumed to capture the random scattering of the counts
around the presumed activity level. For the purpose of the present analysis,
the Poisson-based HMM is referred to as HMM|Pois|, the HMM based on the
generalized Poisson distribution as HMM|GenPois| and the Gaussian-based
HMM as HMM|Gauss|.

4.2.2 Results

The results of the simulation study clearly show the superiority of the HMM-
based method over the traditional cutpoint approach. Among the different dis-
tributions used for the hidden Markov models, HMM|Pois| showed the weakest
performance with regard to MCR, bout and activity detection. The results for
HMM|GenPois] and HMM|Gauss| were similar. HMM|Gauss]| led to a slightly
better MCR, while HMM|GenPois| was better in terms of bout detection.
HMM|GenPois| outperformed HMM|Gauss| with a considerably higher activ-
ity detection rate. This outperformance came at a price, namely runtime and
problems with numerical stability. So depending on the particular research
question one has to weigh the advantages and drawbacks of HMM|GenPois|
and HMM|Gauss| to decide which model is best suited for the situation. For
detailed results and an extensive discussion of the results see Witowski et al.
(2014).

4.3 Expectiles and expectile regression

As was seen in the previous two sections, HMMs are a promising improvement
to model accelerometer data compared to the cutpoint method. Yet, quite a
lot of a priori information is required for a proper fit. That is the number
of modeled activity levels has to be defined in advance, as well as the class of
distributions. Both assumptions are difficult to verify. It is virtually impossible
to know how many activities a participant performs during any given day and
according to which distribution the observed counts scatter around the mean
level in advance without inspecting the data. Visual inspections may provide

a good guess, but this is unmanageable for thousands of accelerometer days.
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So we are searching for an approach that takes the assumptions made on phys-
ical activity behavior in Section 3.3 into account, by modeling accelerometer
data as a sort of step function with each jump indicating the start of a new ac-
tivity and the constant interval being the mean intensity level of that activity.
This should be accomplished without any a priori assumptions on the number
of activities or any distribution.

Here, we propose expectile regression using a Whittaker smoother with L,-
penalty as a solution that allows the desired modeling of accelerometer data. In
Section 4.4, the general performance and the advantages of this novel approach
are investigated in a simulation study, in which it is compared to HMMs and
the cutpoint method.

In this section, first, a short introduction to univariate expectiles is given and
the concept of penalized regression is briefly explained. This introduction will
be a little broader than is needed for our application to accelerometer measured
physical activity to enable the reader to better understand the underlying idea.
Building on this, expectile regression utilizing a Whittaker smoother with L-
penalty will be presented, which allows to model a step curve with the desired

properties, as described above.

4.3.1 Univariate expectiles

Usually regression models focus only on one quantity of the response distri-
bution, the mean. However, there are situations in which it is needed to also
model the extreme parts of the data. This can be, for example, done by using
GAMLSS as presented in Section 5.3.1. Quantile regression as introduced by
Koenker and Bassett Jr (1978) is frequently used, as quantiles have a natu-
ral interpretation. Another option is ezpectile regression introduced by Newey
and Powell (1987) as an alternative to quantile estimation. Expectile regres-
sion, as well as quantile regression can be used to characterize the complete
conditional distribution of a response. An overview of models beyond mean
regression can be found in Kneib (2013). In recent years, expectile regression
has been found to be a reasonable generalization of mean regression and an
alternative to median regression.

For given observations i, ...,y, of independent identically distributed ran-

dom variables Y3, ..., Y, the 7-quantile ¢, can be estimated by minimizing the
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weighted absolute residuals

qAT = afgminzwr(yw%)’yi - QT‘ (413)
ar i=1
with weights
T if Yi > qr
wr(Yir 4r) = (4.14)

-7 lfy’LSQT

as introduced by Koenker and Bassett Jr (1978). The basic idea is to asym-
metrically “punish” the residuals. As the sum in (4.13) is not differentiable,
linear programming is used to obtain estimates (Koenker, 2005). An R package
is available to calculate ¢, for 7 € (0,1) (Sobotka and Kneib, 2012).

In 1987 Newey and Paul extended the asymmetric weights used for quantile
regression to what they called asymmetric least squares, which more recently
was replaced by least asymmetrically weighted squares (LAWS). Instead of
partitioning the data by a proportion 7 being below the estimate, as quantiles
do, the weight of a partial first moment with proportion 7 is located below the
estimate. 7 is often referred to as asymmetry parameter, it specifies the strength
of a specific interest in either the upper or lower tail of the distribution.
Newey and Powell (1987) replaced the L; distance in (4.13) by the L, distance,
which makes the sum in (4.15) differentiable and allows an easy solution. An

expectile estimate can then be calculated by fulfilling the LAWS criterion

~

(; = arg min Z wr (Yi, &) (yi — CT)z (4.15)
i=1

Cr

with weight function w, (y;, (;), as defined in Equation (4.14), and 7 € (0, 1). As
stated above, the sum in (4.15) is differentiable, but depends on the weights
w-(Yi, ¢-), which in turn depend nonlinearly on (.. Therefore, estimates are
obtained through an iteratively weighted least squares process. LAWS can
be understood as a weighted generalization of the well-known ordinary least
squares (OLS) estimation, which is the special case of LAWS for 7 = 0.5.

Unlike quantiles, expectiles lack an easy interpretation, with the exception
of (o5, which is the mean. Jones (1994) showed that the expectiles are in
fact quantiles uniquely related to the distribution of Y. Yao and Tong (1996)

showed that there exists a unique bijective function A : (0,1) — (0,1) such
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that g- = (u(r) where

_ —Tqr + G(QT)
_CO.B + QG(qT) + (1 - 2T)q7'

h(7) (4.16)

q
with G(q) = [ ydF(y) as the partial moment function and F(y) as the

—0o0

cumulative distribution function. Here, G(0c0) = (o5 = p is the expectation of
Y.

This implies that quantiles can be calculated from a dense set of expectiles.
Schulze Waltrup et al. (2015) used (4.16) to compare expectile-based quantile
estimates with quantile estimates regarding efficiency and proposed a method
to estimate non-crossing expectile curves based on splines.

All theoretical T-expectiles can be calculated for a given distribution with
cumulative distribution function F' and finite expectation. The R package
expectreg provides expectiles for various distributions and the necessary pro-

grams to calculate expectiles for given distributions (Sobotka et al., 2014).

4.3.2 Expectile regression

In the following, we will extend the above approach to a regression model with

covariates x;, 1 = 1,...,r. Let us first consider the simple parametric model

Y:X/37+€T

with response Y = (Y1, ...,Y,)7, design matrix X = (1, @1, ..., x,) with z; =
(w1, s @)ty j = 1,...,7 and errors €, = (e1,...,&,)7. Here ¢, = X, is
the expectile and the regression coefficient that minimizes (4.15) is estimated

by iteratively reweighted least squares updates

~[b

B = (XWX XTW (4.17)

o [b
where B[T] is the estimated regression coefficient vector in the bth iteration
step. As stated above, the estimation has to be iterated, since the weights in
~ b ~[b

the weight matriz W’ = diag(wT(yl,XB[T]), . ,wT(yn,XB[T])) also depend
on the current estimates (Schulze Waltrup, 2014).

Now let us define a more flexible nonlinear model

}/:i = fT(x’L> + Eri-
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Several choices for the functional form for the expectile curve f, are possible.
Newey and Powell (1987) originally proposed a linear model. Schnabel and
Eilers (2009) favored P(enalized)-splines to model expectile curves.

The basisc idea is to approximate f(x) by polynomial B-splines of degree .
Let us assume the domain is divided into M — 1 equal intervals by M knots.
Then f(z) can be approximated by M = M + 1 — 1 basis functions B (z) of

degree [ as
M
f(x) =) BuB,()
m=1

with 3,, denoting the coefficient (so-called amplitude) of basis function B’ .
B-splines are described in detail by Eilers and Marx (1996). The aim is to
construct a smooth function by joining polynomial pieces, resulting in a (I—1)-
times continuously differentiable function f.
B-splines are defined recursively, with basis function of degree 0 defined as
0 1, ifk, <x<Kp_1

B, (z) =

0, otherwise

form =1,...,M — 1 and knots x,,. A general B-spline of degree | > 1 can

now be defined as

L= Fm—l pi-1 Fmy1 — T -1
— B (x)+ B ).
Km — Kmt " 1(@) Fmil — Kmi11 " ()

B, (v) =

Thus, a B-spline of degree [ can be constructed from a B-spline of degree (I—1)
and can be traced back to a B-spline of degree 0. A basis function of degree [
consists of [ + 1 polynomial pieces, which are defined by [ + 2 knots, of which
[ are inner knots. A design matrix B containing the basis functions can be

constructed as

Bi(z1) -+ Bu(xy)
B = : K :

Bi(x,) -+ Buyl(z,)

For more details on B-Splines we refer to Eilers and Marx (1996) and Schulze
Waltrup (2014).

The correct choice of the number of knots and their positions is a problem in
B-spline regression, as it has an impact on the flexibility of the fitted curve.

In order to correct for too much flexibility Eilers and Marx (1996) created
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P-splines by using equidistant knots and by introducing a penalty term. Let

K denote a symmetric penalty matriz, then

(y —BB)'(y — BB) + B Kp

with 0 > 0 is the penalized least squares criterion, which we minimize with
respect to 8. With smoothing parameter § the smoothness of the fitted curve
can be tuned between a polynomial spline regression without penalty (6 —
0) or a polynomial fit of order d — 1 (0 — o0). Schnabel and Eilers (2009)
investigated methods for choosing d. In Section 4.3.4 two options for selecting
6 will be presented.

Eilers and Marx (1996) proposed to use second order differences of adjacent
coefficients of B-splines, which is accomplished with the difference operator
A2 (B) = ANBrm) = Bm — 2Bm-1 + Bm_o for m > 3. This leads to the
definition of the (M — 2) x M dimensional difference matriz D, as

1 -2 1 0 0
o 1 -2 1
D2 = )
0
o --- 0 1 -2 1

which leads to the desired penalization and K = D3 D,.
In the context of expectile regression, the regression coefficients are estimated

by iteratively reweighted least squares updates,

AY = (BTW''B 1+ sD"D) ' BTW' ly
similar to 4.17 (Schulze Waltrup, 2014). Expectile smoothing can also be
achieved by other smoothers. For example, Sobotka and Kneib (2012) used
bivariate P-splines and Markov fields for spatial smoothing in combination

with expectiles. See also Kneib (2013) for an overview.

4.3.3 Modification for use in accelerometer data

The basic assumptions related to physical activity behavior were presented in
Section 3.3. As a consequence, the best fitting regression model should be a)

constant during the performance of one specific activity, b) close to the mean
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intensity level of that activity and ¢) “jump” right to the next mean intensity
level.

The concept of penalized smoothing introduced in the sections above is now
used to modify expectile regression by applying the Whittaker smoother with
Lo-penalty to ensure that the fitted expectile curve has the desired properties.

Model

As described in Section 4.1 the recorded accelerometer counts yy, . . ., yr are the
observed realizations of random variables Y;. Now, we consider the regression

model .
flz) = ZﬁtBt(il?)
t=1

with regression coefficients 3; and basis elements B;. The flexibility is ensured
by construction, as there is one regression coefficient (; for each observed point
intime ¢, t =1,...,T. The support of each basis element is also only one point

in time and hence the design matrix simplifies to B = I.

Lo-penalty

Whittaker (1923) introduced the smoother described in (4.18), see also Eilers
(2003) for details on theory, implementation and applications. Rippe et al.
(2012) presented a modification of the Whittaker smoother as signal smoother
for segmented genetic data. In certain types of tumor tissue, segmentation
can be observed and a visual representation fulfilling the same requirements
as a regression curve for accelerometer data is required (see Figure 4.2). The
authors proposed to use a smoother based on the Ly norm.

Let the data consist of T' data pairs (z;,y;) for which a smooth series § =

(1, .. .,9r) is fitted. The authors defined the so called objective function as

T T

So="3 (Wi— ) +0> (G — 1) (4.18)

i=1 i=2
The first term, the squared residuals, measure the fidelity of the fitted curve
9y to data y. The second term is the penalty on roughness with smoothing
parameter §. The larger ¢ is chosen, the smoother the curve will be (see top

panel of Figure 4.2; please note that in this figure the original notation of
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Rippe et al. (2012) is used with X instead of §). In quantile smoothing the L
norm (sum of squared values) in the penalty is replaced by the L; norm (sum

of absolute values) with objective function

T T
- Z |yi — 4l +5Z Ui — Uizl
i=1 i=2

This modification results in a better visualization of the segmented data, as
can be seen in the middle panel of Figure 4.2, although there is still a number
of undesirable small jumps. As further improvement the use of the Ly norm is
proposed, resulting in

T

T
S0 = Z(yz —0:)* + 52 |95 — Gia]”. (4.19)
i=2

i=1
This penalizes basically non-zero differences between neighboring points of g,
that is jumps. Positive numbers raised to the power of 0 result in 1 and 0° = 0
by convention. Therefore only jumps result in a penalty. The penalty is always
1, regardless of the magnitude of the jump. The result can be seen in the lower
panel of Figure 4.2.

The optimal choice of the smoothing parameter § will be discussed in Section
4.3.4.

Penalty matrix

As we look at differences of neighboring regression coefficients 5; — 8;_1, the
penalty matrix K can be constructed as K = D{ PD; with Dy a (T —1xT)

dimensional difference matrix with

1 -1 0 0
0o 1 -1
Dl - 5
0
0 0 1 -1

T
and weight matrix P = diag <<m) ) with £ > 0 added for computa-
tional stability. With this definition, the total penalty adds up to 63" DT PD,3 =
0 E (B ﬁf’ll) Typical choices for £ are 10,000~2. This way, the summand

is () 1f Br_1 = P, i.e. constant. For §,_1 # [, i.e. a jump in the regression
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curve, each summand is about 1. Thus, the penalty punishes the number of
jumps in the regression curve.

With these modifications, the expectile regression can be used to model ac-
celerometer data while reflecting the underlying assumptions. As described
previously, expectile curves have no natural interpretation, except for 7 = 0.5
as the mean. As we are interested in the mean intensity levels of activities,
analyses should therefore focus on fitting the 0.5-expectile curve to accelerom-
eter data, although additionally estimating lower and upper expectiles may
provide further insights into the type of activity and its accompanying distri-
bution of counts. Lower expectiles could be interpreted as stops or less active
periods during an activity as e.g badminton, and higher expectiles represent

periods of highest intensity.

4.3.4 Choice of smoothing parameter ¢

With the roughness penalty being properly defined we can search for a proper
smoothing parameter d. It is obvious that for 6 — 0 the regression model will
be just an interpolation of the observed data, while for 6 — oo it will become
a constant. In the literature, two approaches to select the “optimal” § can be

found that have proven to work in practice.

Cross-validation

Rippe et al. (2012) proposed to use odd/even cross-validation when working
with the Lo smoother. All even observations are left out by setting a weight

w; to 0. w; is set to 1 for all odd observations. For a series of different ds the

v = \/Z (1 @) (s — )

is calculated. Then the value ¢ that minimizes C'V is determined. It should,

value

however, be doubled when modeling the complete dataset. See Figure 4.3 for
a visualization of odd/even cross-validation.

We adapt the odd/even cross-validation in a way that we are able to use all
available observations. We separate the data into two folds, one containing all

even observations, the other all odd observations. For each fold h = 1,2 we
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Cross-validation profile
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Figure 4.3: Example of odd/even cross-validation to select optimal smoothing

parameter from (Rippe et al., 2012)

estimate
T
~h

B = arg;nin Zw;h(yt - B)? +é8"DIPD,S3
t=1

with additional weights w;; = 0 for h = 1 and ¢ even. Thus, although only
odd observations are used, we also obtain predictions for the omitted even
observations. In the second fold, h = 2, wy, = 0 and t odd. The two predictions
are combined to B = Bl + 32 and the cross-validation score C'V = ZtT:l(yt -

Bt)Q is calculated. ¢ that minimizes C'V is then determined by a grid search.

L-curve

Alternatively, the so-called L-curve may be used to select an adequate value
for 0. Hansen (1992) suggested to consider the two major components of every
smoothing procedure that is godness of fit and smoothness of the final estimate.
For this purpose, the logarithm of the magnitude of the penalty term of the
regression model (Z = log,,(8" DT PD,3)?) is plotted against the logarithm

T
of the sum of squared residuals (¥ = log;, Y. (y; — 3;)?) parameterized by
i=1
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0 resulting in the so-called L-curve. The “elbow” of the L-shaped curve is
characterized by intermediate values of ¥, = and 6. Hansen (1992) opted to
select as appropriate § the value that corresponds to the point of maximum
curvature, that is the elbow of this curve.

The L-curves were originally introduced for the selection of a regularization
parameter in ill-proposed inverse problems. Frasso and Eilers (2015) showed
that the L-curves can be applied to a wide variety of smoothing problems, even
in data with correlated noise. See Hansen (1992) and Frasso and Eilers (2015)
for computational details and graphical visualization of selecting an optimal
by this approach.

Both methods for selecting the smoothing parameter ¢ suffer from the disad-
vantage that a grid search from values close to zero with almost no penalization
to values implying a constant estimate has to be performed. This leads to a
tremendous computational effort, as the time needed for the grid search is

multiplied by the number of tested 0.

4.4 Comparison of HMM- and expectile-modeled

accelerometer data

In Section 4.1 HMMs were introduced as a novel approach to allow modeling
physical activity behavior as described in Section 3.3. Section 4.2.1 describes
a simulation study conducted by Witowski et al. (2014) in which the per-
formance of HMMs based on the Poisson, generalized Poisson and Gaussian
distribution was compared with the cutpoint method, concluding that HMMs
based on the Gaussian distribution, denoted HMM[Gauss]|, are a suitable new
approach to model accelerometer data. Expectile regression using the Ly norm
penalty and a Whittaker smoother have been introduced in Section 4.3.3 as
a second innovative approach to model accelerometer data accounting for the
assumptions made for physical activity behavior. The new methods are com-
pared with each other and with the cutpoint method in a second simulation
study. The expectile regression is compared with the traditional cutpoint ap-
proach (Section 3.2) and with HMM|Gauss| with regard to (1) misclassification
rate (MCR), (2) number of identified bouts and (3) identified levels, (4) the

proportion of the estimated curve being in the range of £10% of the true mean
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No. Resembled 1 second epochs % during
activity Mean Distribution the day
level
1 Sitting 1 N(p=-1,0=1) 40
2 Arbitrary 28 Pois(\ = 28) 24
3 Slow walking 36 N(u=36,0=11) 24
4 Arbitrary 55 N(u =550 =13) 2
5 Badminton 60 N(u=60,0 =55) 2
6  Arbitrary 68 Pois(A = 68) 2
7  Fast walking 90 N(pu=90,0 =15) 2
8  Basketball 110 N(p = 110,0 = 65) 2
9  Running 160 N(p = 160,0 = 30) 1
10 Arbitrary 190 N(p = 190,0 = 40) 1

Table 4.1: Characteristics of simulated activities (1 second epochs).

and (5) runtime.

4.4.1 Simulation study

The major advantage of simulated accelerometer data is that for each count
the originating intensity level is known. In order to obtain plausible results
it is essential to simulate data that resemble real-life accelerometer data as
closely as possible. We collected labeled accelerometer data, for which the
performed activities are known in a sample of nine adults, as described in
Section 3.4. Based on these data 6 activities presented in Tables 4.1 and 4.2
were chosen for the simulation, covering the range from monotonic activities
like walking with little variation of counts to ball games like basketball with
large variation. Another 4 arbitrary activities were defined to introduce further
activities with smaller or larger variation. For most simulated activities the
Gaussian distribution was used, some arbitrary activities were assumed to be
Poisson distributed. Additionally some mean activity levels were deliberately
chosen to be close to a cutpoint defined by Freedson et al. (1998). In total 1,000
accelerometer days were simulated for 1 second epochs (T = 43,200) and 5

seconds epochs (7" = 8,640) each. For each day five to ten activities were



49

No. Resembled 5 seconds epochs % during
activity Mean Distribution the day
level
1 Sitting 1 N(p=-1,0=1) 40
2 Arbitrary 140 Pois(\ = 140) 24
3 Slow walking 200 N(u =200,0 = 45) 24
4 Arbitrary 275 N(u = 275,0 = 75) 2
5 Badminton 230 N(pu =230,0 = 177) 2
6  Arbitrary 340 Pois(\ = 340) 2
7  Fast walking 470 N(u=470,0 = 66) 2
8  Basketball 500 N(u = 500, 0 = 240) 2
9  Running 860 N(u = 860,0 = 125) 1
10 Arbitrary 950 N(u = 950,05 = 200) 1

Table 4.2: Characteristics of simulated activities (5 seconds epochs).

randomly chosen, the average percentage of time the activities were performed
during the day can be found in Table 4.1 for 1 second epochs days and Table 4.2
for 5 seconds epochs, respectively. Minimum bout length was set to 240 seconds.
Negative counts were set to (. The number of activities and bouts for the

simulated days can be found in Table 4.3.

4.4.2 Statistical analyses

As described in Section 4.3.4 there are basically two ways to determine a good
smoothing parameter ¢ for the expectile regression. Odd/even cross-validation
as well as L-curves are very computationally intensive and therefore it was
not feasible to automatically determine an optimal ¢ for each individual day.
Instead, the optimal choice was made in a subsample of accelerometer days,
leading to 6 = 630 to be used in the analyses.

The main analyses were performed on a high performance computing cluster
(HPC), providing two master servers and 28 computing nodes, each consisting
of 12 CPU cores (2.53 GHz each) and 96 Gb RAM, using R version 3.2.0 (R
Core Team, 2015). For the cutpoint method and HMM]|Gauss| the R package

HMMpa (Witowski and Foraita, 2014) was used. Expectile curves were calculated
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No. 1 second epochs 5 seconds epochs

Activities Bouts Activities Bouts

Min 6 30 5 27
Median 8 42 9 41
Mean 8.45 41.64 8.50 41.40
Max 10 56 10 54

Table 4.3: Characteristics of simulated accelerometer days.

with the R package expectreg (Sobotka et al., 2014). Expectile curves turned
out to be very computationally intensive. In order to fully exploit the potential
of the HPC, simulated 1 second epochs days were divided into five equal sized
parts, which were sent to five different cores and results were recombined after

analyses.

4.4.3 Results

As was previously known, the cutpoint method performed worst, with the
obvious exception of runtime. Expectile regression performed considerately
better than HMM|Gauss| with regard to MCR and number of identified bouts.
Results for HMM|Gauss| were closer to the correct number of activities. As
HMDMs by construction are based on a pre-defined number m of levels this is not
surprising, as expectile regression estimates a curve. Therefore we introduced
the proportion of the estimated curve being in the range of +10% of the true
mean as a measure of “closeness of fit”. Using this as a criterion, the expectile
regression was by far better than the other two techniques. Expectile regression
needed on average about seven times the runtime of HMM|Gauss|, but given
the increased performance, this is a reasonable price to pay. Both methods
show improved results for data aggregated to 5 seconds epochs, mainly due to
the accompanying reduction of variance relative to the mean as described in
Section 3.2. Especially HMM|[Gauss| benefited from this reduction with regard
to all considered quality criteria. Expectile regression showed improvements
regarding MCR,, runtime and proportion of the estimated curve being in the
range of +10% of the true mean. Compared to 1 second epochs data, the

number of identified bouts increased, but was still in the magnitude of and
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considerably closer to the true number than for HMM|Gauss|. The number of
identified levels also increased. It seemed that the expectile regression became
more sensitive to (numerically) extreme values and added levels to compensate
these values.

Figures 4.4 and 4.5 show the HMMs (gray dashed line) and expectile curve
(solid black line) fitted to the labeled accelerometer presented in Section 3.4.

In summary, expectile regression with an Ly norm penalty and a Whittaker
smoother showed superior results compared to HMMSs and the cutpoint method
and is hence promising approach to analyze accelerometer data. For more re-
sults and a more detailed discussion we refer to the forthcoming paper pre-

sented in Appendix B.
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Chapter 5

Studies of physical activity in

various age groups

Whereas the previous chapter introduced and compared two novel approaches
to model accelerometer data, this chapter describes five empirical studies on
physical activity. First, in the European IDEFICS study accelerometer data
were collected in over 12,000 children. These data are used to describe the
physical activity behavior of European children using GAMLSS, which is also
introduced in this chapter. The IDEFICS data will also be used to investigate
the association between physical activity and high blood pressure in children.
Adding the follow-up data collected in the I.Family study, which continues
the IDEFICS cohort, the data are used to assess the longitudinal associations
between physical activity and obesity markers like BMI and fat mass.

The smaller PATREC study conducted in Bremen, Germany, collected ac-
celerometer data in combination with an activity diary and activity question-
naire to investigate some methodical issues in the assessment of physical activ-
ity in adolescents for different domains by subjective and objective methods.
Finally, an energy prediction equation for a pedometer model is derived based

on a small study conducted in Oldenburg, Germany.

5.1 The IDEFICS study

The European IDEFICS (Identification and prevention of dietary- and lifestyle

induced health effects in children and infants) study is a prospective cohort

25
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study, which started in 2006. The study aims at investigating the etiology
of overweight, obesity and related disorders in children. A baseline survey
(T0) was conducted in 2007-2008 and a follow-up survey (T1) in 2010-2011
in eight European countries (Belgium, Cyprus, Estonia, Germany, Hungary,
Italy, Spain and Sweden) (Ahrens et al., 2006; Bammann et al., 2006; Ahrens
et al., 2014). Between T0O and T1 a primary prevention program was imple-
mented in selected intervention regions in each country, each to be compared
with a control region (Henauw et al., 2011; Pigeot et al., 2015). 16,228 children
aged 2-9 years participated in the baseline survey. Parents were asked to report
data on sociodemographic characteristics as well as on medical, nutritional and
other lifestyle factors. Children also participated in an extensive examination
protocol, which included anthropometry, accelerometry, blood pressure and a
fitness test, as well as the collection of biological samples, including saliva for
DNA extraction, blood and urine (Figure 5.1, left section). Additional proto-
cols to collect information on the built environment, sensory taste perception
and mechanisms of food choice and consumer behavior were implemented in
subgroups. Signed written informed consent was obtained from children’s par-
ents in addition to verbal permission from each child before examination. The
study protocol was approved by the local ethics committees. See Ahrens et
al. (2011) for more details on the study design, the used instruments and a
description of the study population. Free-living physical activity was assessed
using GT1M or Actitrainer uniaxial devices from Actigraph, LLC, Pensacola,
FL, USA. Both devices use identical sensor units. The general survey manual
required the accelerometers to be set to 15 seconds epochs. The devices were
attached to the right hip by means of an elastic belt. The children were asked
to wear the devices from the getting up in the morning until bed time in the
evening. Participants were asked to wear the accelerometer for at least three
consecutive days including one weekend day. Parents completed a daily activ-
ity or non-wearing diary, in which wearing periods and periods during which
the accelerometers were not worn should be recorded. A total of 18,745 chil-
dren participated in both IDEFICS surveys. Of these, 12,014 provided data
on physical activity. The remaining 6,731 either refused to wear the devices or
the assessment was not completed due to other reasons, like lack of devices at

the time of assessment. Children with musculoskeletal or orthopaedic diseases
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(n=332) were excluded from this assessment.

5.2 The I.Family study

The I.Family study (Determinants of eating behaviour in European children,
adolescents and their parents) builds on the IDEFICS study. In this follow-up
study dietary behavior and food choice within whole families and their lifestyle
are investigated. As in the IDEFICS study, data on health and nutrition be-
havior were collected and complemented with family data by including siblings
and parents.

A second follow-up survey (T3) was conducted in the year 2013/2014. All index
children that is all children, who participated in T0 and/or T1 were invited to
participate, as well as their siblings and parents. The examination program of
T3 covered the majority of the modules employed during T0O and T1. Modules
on family life, peers and kinship structure were introduced in T3 (Figure 5.1,
right section). Additional assessment modules were implemented in a subgroup
of participants, the so-called contrasting groups, these were defined as children
who showed divergent developmental trajectories in their weight status. One
of these modules investigated the built environment of the families using GIS
and GPS trackers. Families were asked to wear an accelerometer together with
a GPS tracking device. Like in the IDEFICS study, signed written informed
consent was obtained from children’s parents in addition to verbal permission
from each participant before examination. The study protocol was approved
by the local ethics committees.

In total 17,540 persons participated in I.Family of which 7,083 were index
children, 2,548 were newly recruited siblings and 6,851 biological parents and
1,057 other adults. The 6,162 families in [.Family had on average 2 children
(data status as of December 2015). More details on the study design, the used
instruments and a description of the study population will soon be presented
in a forthcoming publication.

Participants in T3 were asked to wear an Actigraph accelerometer for seven
consecutive days. For 4,841 children (50.3% of children and adolescents partic-
ipating in T3) and 1,427 adults (18.1%) data on physical activity were down-

loaded from the devices. Since also the raw data files were collected, the data
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can be derived for arbitrary epoch lengths like e.g. 15 or 60 seconds as used in
the IDEFICS study, or even shorter epochs like 1 or 5 seconds.

5.3 Descriptive results of physical activity: ap-
plication of GAMLSS to accelerometer data

In Konstabel et al. (2014) we used the Generalized Additive Models for Loca-
tion Scale and Shape (GAMLSS) presented below to derive percentile curves
for levels of physical activity. The publication aims at describing physical ac-
tivity levels of European children and the provision of sex- and age-specific

reference standards in children aged 2-10 years.

5.3.1 Generalized Additive Models for Location Scale and
Shape (GAMLSS)

In clinical practice, especially for diagnostic purposes, reference ranges are
needed for various clinical parameters to classify measurements as pathologic,
unusual or usual. If the measurement depends on a covariate, for example age,
so that the reference ranges change with the covariate, then this should be
reflected in so-called percentile curves. Percentile curves show the percentiles
of the distribution of a medical parameter depending on an additional covari-
ate, typically depending on age. These percentile curves are thus of particular
interest for measurements in children, as their bodies pass through dramatic
changes during childhood and adolescence, so that one single reference range
might be sufficient for adults, but certainly not for children and adolescents. In
1988 Cole introduced the LMS method, which summarizes the changing dis-
tribution by three separate curves which are estimated for the a) median, b)
the variation coefficient and c¢) the skewness. This method has been extended
in recent years to also allow for more than one covariate and for additional
modeling of the kurtosis of a distribution. For this purpose the so-called Gen-
eralized Additive Models for Location Scale and Shape (GAMLSS) are used.

Both techniques will be briefly introduced in this section.
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LMS method for smooth reference percentile curves

The LM S method was firstly introduced by Cole in 1988 and further improved
in 1992. The basic idea is to fit what was later on called a Box-Cox Cole
and Green (BCCGQG) distribution to the empirical distribution of the variable
of interest. The BCCG distribution is described by three parameters, 1) the
Box-Cox power 1, 2) the mean p and 3) the coefficient of variation o. The
following paragraphs are based on Cole and Green (1992) and give a formal
introduction to this technique. Let us denote e.g. the medical parameter of
interest with Y. Let us further assume that Y is a positive random variable
with median ;1 and that Y% is normally distributed. For ¢ = 0 let In'Y follow a
normal distribution. Based on the family of transformations proposed by Box
and Cox (1964) (therefore 1 is referred to as Box — Cox power) the following

transformation

(Y/p)? -1

X =
¢ Y

v #0 (5.1)

or

X =MW/p), ¢=0

will map the median p of Y to a median of 0 for X and is continuous at 1) = 0.
Let o denote the standard deviation (SD) of X. For 1) = 1, o is the coefficient
of variation (CV) of Y. Thus, X follows a normal distribution with mean p and
variance o2. The standard deviation score (SDS) or z-score of X and hence of

Y is given by

Z =X/o
P _
Z(Y/‘;)—Ul, W40, 040 (5.2)
or
2B

respectively. Thus, Z follows a truncated standard normal distribution, as the

condition 0 < Y < oo leads to the condition —1/(0v)) < Z < o0 if 1) > 0 and
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—00 < Z < —1/(o7) if ¢ < 0. It follows that percentiles can be calculated as

Piooa = (1 +oz) ¥, b #0 (5.3)

or

PlOOa = :ue(aza)a w = Oa

where z, is the a-quantile of the standard normal distribution. Now let us
assume that the distribution of Y varies with some covariate ¢, i.e. age or
height, then also the three parameters v, y and o vary with this covariate.
The name giving idea of the LMS method is now to estimate three smooth
curves L(t), M(t) and S(t) for the parameters 1, u and o. It follows that

Y/M @) —1

2= L #0580 £0, (5.4)

Analogously to (5.3) percentiles can be calculated as

Pigoa(t) = M()(1+ L()S(t)za) YLD, L(t) #0 (5.5)

or

Proga(t) = M(t) exp[S(t)za], L(t) =0

The probability density function for Y is given by

_ Y exp(—32%)
peo2m®( )

1
aldl
of a standard normal distribution. Cole and Green (1992) assumed a standard

fr () (5.6)

where z is given by (5.2) and ®(=-) is the cumulative distribution function
normal distribution for Z and that the truncation probability is negligible.
With these assumptions and inserting L(¢), M (t) and S(t) for the parameters
¥, i and o, the log-likelihood function can be derived as:

n

|=1(L,M,S) =Y <L(ti) In My(t —InS(t) - %ZQ)

i=1 ’)
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for the case of independent random variables Y; with observations y; at cor-
responding covariate levels ¢; with z; being the SDS corresponding to y;. If
the L, M and S curves are smooth, then so are the percentile curves. In order
to assure the smoothness of L(t), M(t) and S(t) Cole and Green suggest to
subtract penalties from the likelihood (penalized likelihood). L(t), M(t) and
S(t) are thus estimated by maximizing the penalized likelihood

l,=1- %aw /(L”(t))Zdt - %% /(M”(t))2dt — %ao /(S”(t))2dt

where oy, ay, and a, are smoothing parameters. Cubical splines are used for
the estimation. The Fisher-score is used for iterative optimization; see Cole
and Green (1992) for details on the numerical implementation and optimal
choice of the smoothing parameters.

So in summary the LMS method can be used to derive percentile curves for a
medical parameter that depends on one covariate, if the assumption that the
variable follows a normal distribution after a suitable power transformation
is fulfilled. The LMS method, however, is not suitable to model a medical
parameter that depends on more than one covariate, i.e. age and height or
height and weight, or if one wants to explicitly model kurtosis, which can only
be indirectly modeled by the LMS method via the shape and scale parameters.
In these cases one may want to opt for GAMLSS, which is a generalization of
the presented LMS method.

GAMLSS

Generalized additive models for location scale and shape (GAMLSS) are very
flexible regression models. GAMLSS are not restricted to response variables
whose distribution belongs to an exponential family as e.g. the Generalized
Additive Models (GAM) or Generalized Linear Models (GLM). A large number
of distributions can be modeled, including distributions that are highly skew
and/or kurtotic. The following paragraphs provide a short introduction and
are based on Stasinopoulos and Rigby (2007).

Let us assume for ¢ = 1,2, ..., n observations y; to originate from independent
random variables Y; with probability (density) function f(y;|6;) conditional on
a vector of four distribution parameters BiT = (0i1,0i2,0i3,0i4) = (1i, 04, Vi, pr).
Although GAMLSS is not restricted to distributions defined by up to four
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parameters, for most applications up to four distribution parameters will be
sufficient, where p; and o; are usually characterized as location and scale
parameters and v;, p; as shape parameters, e.g., skewness and kurtosis. Fol-
lowing the definition of GAMLSS by Rigby and Stasinopoulos (2005), let
v = (y1,¥2,...,yn) be the vector of the response variable of length n. Let
us further assume that the distribution parameters can be considered as func-
tions of the potential covariates. Then, gi(.) for k = 1,2,3,4, denote known
monotonic link functions, which describe the functional relationship between
the distribution parameters (u;,0;,v;, p;) and the Jj covariates and random

effects by

Ji

9k (0k) = my, = X4, 8), + Z 2k P (5.7)

Jj=1

where for j =1,...,J, and k = 1,2, 3,4 let us denote with
1. ,3;‘5 = Bk, Bok, - - - ’BJL/“) € ]RJ/;7 J,; € N, the parameter vector,
2. Xy € Rk a fixed known design matrix,
3. @i a ¢ dimensional random variable,
4. Z;i, a fixed known n x g;;, design matrix,
5. m, the linear predictor.

Wlth01 =K = (/Lb...,,un)T,Oz:O': (Ul,...,O'n)T,g,g:V: (Vl,...,l/n)T,04:
p=(p1, .., pn)" we get

Ji
gi(p) =m =X16;, + Z Zj1pj1,
j=1

J2

g2(0) =my = X508, + Z Zjspjs,
=1
J3

93(v) = n3 = X30; + Z Zj3pjs;
=1
Ja

9a(p) =My =Xufy + Z Zj1pj4;

J=1
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where p, o, v, p and n,, are vectors of length n. ¢, is assumed to be distributed

as @ ~ N,

0:(0,G}) with G, being the (generalized) inverse of a gjx X ;i
symmetric matrix G, = Gjr(x;1). Gjr = Gjr(x; ) may depend on a vector
of hyperparameters x;;, and if Gj; is singular then ¢, is understood to have
an improper prior density function proportional to exp (—%(,okaijgojk).

For (5.7) every distribution parameter can be modeled as a linear function of
explanatory variables and/or as linear functions of stochastic variables (ran-
dom effects). An important special case of this very general definition gives
the semi-parametric additive formulation of GAMLSS. Let Z;, = I,,, where I,,
is an n x n identity matrix, and ¢, = hy, = hj(x;) for all combinations
of j =1,...,Jy and k = 1,...,4. Then (5.7) is simplified as follows to the

semi-parametric additive formulation of GAMLSS

Ji
9x(0k) = ), = X8, + Z Pk (X1, (5.8)
j=1
where
1. xj; for 1,2,..., J; are vectors of length n,

2. hji is an unknown function of the explanatory variable Xj;

3. hj; = hjk(x;x) is the vector which evaluates the function hjj, at x;y.

Wlth01 =M = (/Ll,...“un)T,ez:O': (0’17...,0'n)T,03:V: (Vl,...,Vn)T,04:

p=(p1,-..,pn)" we get

Ji
gi1(p) = X416, + Z hj1(x;1),

Jj=1

Ji
92(0) = Xy + > hya(x0),
=1

J2
93(v) = X385 + Z hjs(x;3),
j=1
Ja
91(p) = XuBy + > hja(xja). (5.9)
j=1

The semi-parametric additive formulation of the GAMLSS (5.9) is most com-

mon and is implemented in the R package gamlss, in addition to the more
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general definition of (5.7). With (5.9) hjx(x,x) can be modeled as natural cu-
bic spline(s) of the covariate(s). Similar to the LMS method smoothness is

ensured by maximizing the penalized likelihood, which is given by

p Ji

by =1~ %Z Z ‘P]TijkSOjk (5.10)
k=1 j=1

where | = > log(f(v:]0;)) is the log-likelihood function of the data given
0; for i = 1,...,n; see Rigby and Stasinopoulos (2005) and Stasinopoulos
and Rigby (2007) for details. GAMLSS is able to cope with a large number
of distributions ranging from discrete one parameter distributions, like the
binomial or Poisson distributions, to continuous distributions with four model
parameters like the Boz-Coz power exponential (BCPE), which was introduced
by Rigby and Stasinopoulos (2004). A (non-conclusive) list can be found in
Stasinopoulos and Rigby (2007). The only restriction on the distribution is
that f(y|@) and its first and second (and cross-) derivatives with respect to
cach element of 87 = (6y,60,,03,04) need to exist, either in explicit form or as

numerical derivatives.

Remark 5.1. For our application in the section below, we assume that Y,, are
independent identically distributed with distribution parameters (u,o,v, p) €
R*. Following the notation as introduced by Rigby and Stasinopoulos (2005),
we will denote a model where the response variable Y follows a BCPE-distribution
with (1) the location parameter u modeled using the identity link as a cubic
smoothing spline (cs(z,3)) with three degrees of freedom in z, i.e. age, com-
bined with the linear term in z and (2) the scale parameter o being modeled
by a log-linear model in x and (3) v and (4) p being modeled using a constant

model expressed as 1 (in case of p on the log-scale), in short, with

Y ~ BCPE{p = ¢s(z, 3), log(0) = z,v = 1,log(p) = 1}.

5.3.2 Objectively measured physical activity in European
children

During the IDEFICS surveys T0 and T1 free-living physical activity was as-
sessed using Actigraph GT1M and Actitrainer devices set to 15s epochs (see

Section 5.1). However, in some of the IDEFICS centers 60s epochs were used.
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Therefore, it was decided to reintegrate the data collected at 15s epochs to 60s
epochs. Non-wearing time was defined as 20 minutes or more of consecutive
zero counts and was removed for analysis. Minimum wearing time was set to
at least 8 hours of valid time per day. In order to be included into the analysis
at least one valid weekday and one valid weekend day were required. In total
7,684 children met the inclusion criteria (3,842 boys and 3,842 girls). Activity
ranges were assigned to the accelerometer counts using the cutpoint method
(Section 3.2) with Evenson cutpoints (Evenson et al., 2008). For the follow-
ing dependent variables percentile curves were derived: 1) average counts per
minute (CPM) that is sum of daily counts divided by valid time, 2) time spent
in at least moderate activity (MVPA), 3) light activity (LPA) and 4) seden-
tary time (SED). For MVPA, LPA and SED the unadjusted as well as adjusted
minutes were analyzed. To obtain adjusted minutes, unadjusted (raw) minutes
were divided by wearing time for each wearing day and the resulting fraction

was multiplied by the average wearing time across all valid days.

Statistical analysis

We used the gamlss package (version 4.2-6) of the statistical software R (version
3.0.1) (R Core Team, 2015). Different distributions were fitted to the observed
distribution of physical activity variables as the Box-Cox power exponential
(BCPE), the Box-Cox Cole and Green (BCCG), the Box-Cox t, the normal,
the power exponential and the ¢ family distribution. Age was modeled either
as a constant, as a linear function, or as a cubic spline. Goodness of fit was
assessed by the Bayesian Information Criterion (BIC) and Q-Q plots. As a
result, percentile curves for the 5th, 10th, 25th, 50th, 75th, 90th and 95th
percentiles were calculated based on the model that showed the best goodness
of fit (Cole et al., 2009; Stasinopoulos and Rigby, 2007). For comparative
purposes, it is, however, beneficial, if the same distribution is used for all
dependent variables. The BCCG distribution (Cole and Green, 1992) turned
out to be the most appropriate distribution according to the BIC in most cases.
In all other cases, the difference from the best fitting distribution in terms of
BIC was negligible. Following the notation introduced in Remark 5.1, Table
5.1 presents the fitted GAMLSS for the physical activity data.
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Variable Distribution  log(u) log(o) v Sex
CPM BCCG cs(age,3) cs(age,3) 1 both

Adjusted MVPA BCCG cs(age,3) cs(age,3) 1 boys
Adjusted MVPA BCCG cs(age, 3) 1 1 girls
Unadjusted MVPA BCCG cs(age, 3) 1 both
Adjusted LPA BCCG cs(age, 3) 1 1 both
Unadjusted LPA BCCG cs(age, 3) 1 1 both
Adjusted SED BCCG cs(age, 3) 1 1 both
Unadjusted SED BCCG cs(age, 3) 1 1 both

Table 5.1: Fitted GAMLSS for physical activities and sedentary behavior

As described in Section 5.3.1 one major advantage of GAMLSS is that distri-
butions can be fitted, which allow the explicit modeling of kurtosis, like e.g.
the BCPE distribution. However, here the BCCG distribution showed the best
fit for the physical activity data. So in retrospective the LMS method by Cole,
as presented in the beginning of Section 5.3.1, would have been sufficient to
capture the structure of our data. But this was a priori unknown and was only

confirmed by the more sophisticated analysis exploiting GAMLSS.

Results

Based on the fitted distributions listed in Table 5.1 smoothed percentile curves
Ps, Py, Pas, Pso, Prs, Py and Pys were calculated as reference ranges for physi-
cal activity in European children (see Figures 5.2 to 5.4). In general boys show
higher values for CPM and MVPA, while sedentary time was higher for girls.
No differences can be seen with regard to light activities. The percentile curves
show similar trends with increasing age for both sexes. Average sedentary be-
havior increases with age from about 240 minutes per day (min/day) at age 3 to
about 380 min/day at age 10. At the same time an decrease from 410 min/day
to 360 min/day can be seen in LPA. MVPA increases with age. Starting with
24 min/day on average in boys and girls, the time spent in MVPA doubles in
boys until the age of 10. For girls an increase can be seen as well, but only to
35 min/day at the age of 10.

Children are recommended to perform MVPA activities for at least 60 min-

utes a day. To investigate how many children follow this recommendation, we
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Figure 5.2: Percentile curves: adjusted SED for European boys and girls (Kon-
stabel et al., 2014).
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Figure 5.3: Percentile curves: adjusted LPA for European boys and girls (Kon-
stabel et al., 2014).
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Figure 5.4: Percentile curves: adjusted MVPA for European boys and girls
(Konstabel et al., 2014).

calculated the corresponding percentage of children in the IDEFICS study.
General compliance was low with proportions ranging from 2.0% (Cyprus) to
14.7% (Sweden) in girls and from 9.5% (Italy) to 34.1% (Belgium) in boys. For

detailed results and an extensive discussion see Konstabel et al. (2014).

5.4 Association of physical activity with specific

endpoints

5.4.1 Longitudinal association of objectively measured
physical activity behavior and obesity in European

children

Physical activity is generally considered as being beneficial for body composi-
tion, that is high levels of physical activity lead to low body fat mass and a
healthy body mass index (BMI) in general. Numerous studies, mostly cross-
sectional, investigated the relationship between obesity and physical activity
(Jimenez-Pavon et al., 2010; Rauner et al., 2013). There is general agreement
that physical activity is negatively associated with obesity (Jimenez-Pavon et
al., 2010).

Cross-sectional studies can only study associations rather than causality. To
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the best of our knowledge, only few longitudinal studies with small sample sizes
investigated the interaction of objectively measured physical activity levels,
fat mass and fat free mass (FF'M) (Jimenez-Pavon et al., 2013). Until today it
remains unclear whether physical activity leads to a reduction of fat mass or if
fat mass hinders being physically active (Metcalf et al., 2010; Ekelund et al.,
2014). Recently, the Ballabeina (Biirgi et al., 2011) and EarlyBird (Metcalf et
al., 2010) studies investigated the interaction of objectively measured physical
activity and fat mass.

Metcalf et al. (2010) investigated in a sample of about 200 children whether in-
activity is the cause of fatness or fatness the cause of inactivity. This research
was part of the EarlyBird study in which children were visited yearly from
age 7 to age 10. Physical activity was assessed using Actigraph accelerome-
ters on seven consecutive days. Total physical activity (TPA) as counts per
week and minutes spent in MVPA were analyzed. Body fat per cent (BF)
was measured by dual x-ray absorptiometry. The authors used partial cor-
relation coefficients to compare baseline versus change to follow-up associ-
ations in order to examine the direction of association. First, the authors
looked at cross-sectional associations for the four surveys, adjusted for age
and sex (e.g. TPAy, = sex + ager, + BFy7). Second, so-called time-lagged
associations of physical activity on future BF measured 1, 2 and 3 years
later adjusted for the earlier measurement were modeled, as well as the re-
verse association, i.e. the influence of BF on future physical activity (e.g.
TPA, = sex + agery, + BF,7). Third, changes in physical activity and BF
were calculated for each 1-, 2- and 3-year period. Partial correlation coeffi-
cients were then calculated for the predictor at a single point in time and the
change in the outcome variable from that point in time to a 1-, 2- or 3-year
follow-up. The authors adjusted for the outcome measure at the earlier point
in time (e.g. TPAy0, — TPA7, = sex + agery, + T PAz, + BF,7). In this study,
BF was predictive of changes in physical activity, but physical activity levels
were not predictive of changes in BF. The authors concluded that physical
inactivity seems to be the result of fatness rather than its cause. See Metcalf
et al. (2010) for the complete study and results.

This result was also confirmed by the Ballabeina study: while children with

higher body fat at baseline were observed to be less active at follow-up, baseline
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Cross-sectional
TO T1
r (95%-CI) r (95%-CI)
CPM  -0.05 (-0.09,-0.01) -0.07 (-0.11,-0.04)
MVPA -0.05 (-0.09,-0.01) -0.08 (-0.12,-0.04)
VPA -0.11  (-0.15,-0.08) -0.16 (-0.2,-0.13)
Time-lagged
PA TO vs. z-FMI T1  z-FMI TO vs. PA T1
r (95%-CI) r (95%-CI)
CPM  -0.06 (-0.1,-0.02) -0.07 (-0.11,-0.03)
MVPA -0.05 (-0.09,-0.01) -0.07 (-0.11,-0.04)
VPA -0.1  (-0.14,-0.06) -0.15 (-0.18,-0.11)
Change in outcome
PA TO0 vs Az-FMI z-FMI TO vs. APA
r (95%-CI) r (95%-CI)
CPM  -0.02 (-0.06, 0.01) -0.06 (-0.1,-0.03)
MVPA -0.01 (-0.04, 0.03) -0.06 (-0.1,-0.02)
VPA -0.01  (-0.04, 0.03) -0.11 (-0.14,-0.07)

r = Spearman’s partial correlation coefficient, adjusted

for sex and age.

CI = confidence interval; A = change;

Table 5.2: Preliminary results on the association between physical activity and
BF based on follow-up data of the IDEFICS study.
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physical activity did not reduce fat mass at follow-up (Biirgi et al., 2011).
Using the data collected in the IDEFICS study (Section 5.1), we tried to repro-
duce these findings. Body composition was assessed using the z-score of the fat
mass index (FMI), which is the fat mass in kg divided by the squared height
in m, abbreviated as z-FMI, the z-score of waist circumference (z-waist) (Nagy
et al., 2014, corrected version to be published in 2016) and FFM. Physical
activity was measured using Actigraph accelerometers for at least three days
of at least eight hours wearing time of which at least one day was a weekend
day. We used CPM and time spent in MVPA and VPA as components of phys-
ical activity. About 3,000 children had valid accelerometer measurements at
TO and T1, which is a requirement to calculate the changes between points in
time. Using the same methods as Metcalf et al. (2010), we were able to derive
similar results based on our data. Table 5.2 presents the resulting partial corre-
lation coefficient for z-FMI. Like Metcalf et al. (2010) we observe statistically
significant cross-sectional and time-lagged associations. When looking at the
correlations of the changes, only z-FMI versus change in physical activity is
significant. Hence, our findings support the results of Metcalf et al. (2010).
But as a limitation, in the IDEFICS study only two points in time can be
considered.

In order to increase the number of observations, data from the I.Family study
(Section 5.2) are used to augment the IDEFICS study data. Both studies com-
bined include about 3,600 participants with two valid accelerometer measure-
ments and nearly 1,000 participants with three valid measurements. In order
to use as many observations as possible, we will use multi-level models (MLM)
to assess the direction of the association.

In a first step MLMs will be used to derive a random slope over time for each
participant’s exposure, e.g. MVPA. In a second step this result will be inserted
into another MLM as predictor for the outcome, e.g. z-FMI at a later point in
time, preferably T3. A paper is currently being prepared.

One could also argue that comparing the change in z-scores with the “raw”
minutes spent in an intensity level is incorrect. The z-scores are by construction
adjusted for age and sex, that means that a participant with a change of 0
maintains his/her position relative to the reference population, even if his/her

“raw” FMI value changes. This is not true for e.g. minutes spent in MVPA.
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As can be seen in Figure 5.4 MVPA increases over time, as does the variance.
So a participant who is at Psy at age 4 can still be at P5 at age 6, hence
his/her activity level has not changed relative to the population, yet he/she
has a change of 10 minutes MVPA. A participant at Ps can also remain at this
percentile and has only a change of about 5 minutes MVPA.

In order to address these concerns, one may, aside from calculating the physical
activity z-scores, use MLMs to consider the daily accelerometer measurements.
So accelerometer measurements nested within individuals nested within coun-
tries may be modeled, rather than simply using the mean of the daily mea-
sured physical activity. Another alternative would be to use the best linear
unbiased predictor (BLUP) to combine the daily measurements to one value
as suggested by Olive et al. (2012) and Stanek 3rd et al. (1999) as the BLUP
allows to consider the inter- as well as the intra-individual variability of the
measurements.

Another idea is to use path models to further investigate the association be-
tween physical activity and body composition. If fatness leads to inactivity,
which increases fatness further reducing physical activity, then this would be
a classic vicious circle. Here, the path model may discover the best starting

point to break this circle.

5.4.2 Incidence of high blood pressure in children - Ef-

fects of physical activity and sedentary behaviors

High blood pressure (HBP) is known to be one of the most important risk
factors for cardiovascular diseases. De Moraes et al. (2015) determined the in-
cidence of pre-HBP and HBP and analyzed the effect of physical activity and
sedentary behavior on pre-HBP and HBP. Of 16,228 children participating in
the baseline survey TO of the IDEFICS study only a subset of 5,221 children
provided information on the primary outcome HBP and the main exposures
physical activity and sedentary behavior, as well as potential confounders. As
this information were required for T0O and T1, a total of 5,061 participants were
included in the analyses. Pre-HBP and HBP were defined according to the Na-
tional High Blood Pressure Education Program Working Group on High Blood
Pressure in Children and Adolescents (NHBPEP, 2004). Minimum accelerom-
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eter wearing time was at least 6 h/d for at least 3 days (2 weekdays and 1
day of weekend /holiday). The sampling interval (epoch) was set to 15 seconds.
Total volume of activity was expressed as the sum of recorded counts divided
by total daily registered time expressed in minutes (counts/min; cpm). All
children were categorized as fulfilling the current recommendation of > 60 min
MVPA per day or not. Another variable categorizing the change in physical
activity from TO to T1 was created with values (1) meeting the recommen-
dation in TO and T1; (2) meeting the recommendations in TO but not T1;
(3) meeting recommendation only in T1 and (4) meeting the recommendation
neither in TO nor T1. Sedentary behavior was assessed using a proxy report on
activity behavior that was completed by the children’s parents. Reported daily
TV/DVD/video and computer/games-console use were summed up to obtain
the total screen time per day. Finally the children were categorized accord-
ing to the American Academy of Pediatrics: Committee on public education
(AAoPCoPE, 2001) as having either < 120 min screen time per day or more.
In addition, a variable describing the change in sedentary behavior from TO0 to
T1 was derived.

Cumulative incidence was calculated for the two years of follow-up with 95%
confidence intervals (CI) for both outcomes: Pre-HBP and HBP for total phys-
ical activity (fulfilling the recommendation of > 60 min MVPA per day), cate-
gorized screen time and categorized change in physical activity. The magnitude
of these associations was subsequently expressed as unadjusted and adjusted
relative risk (RR) and 95% CI. Multinomial multilevel regression models using
random intercepts were applied to estimate the effect of physical activity and
sedentary behavior on pre-HBP and HBP incidence. The survey center was
used as level in this model.

The incidence of pre-HBP per year was found to be 121/1000 children and
110/1000 children per year for HBP. Children, who had a reported screen time
> 120 min per day at TO and T1, showed an RR of having HBP of 1.28 (1.03-
1.60). For T1 an elevated RR of 1.53 (1.12-2.09) for having HBP can be seen for
children not meeting the physical activity recommendation of at least 60 min
MVPA per day. No association between pre-HBP and the considered behaviors
was found. In conclusion, it can be stated that the incidence of pre-HBP and

HBP is high in European children and that maintaining sedentary behaviors
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during childhood increases the risk of developing HBP. For the detailed results

and their discussion see Moraes et al. (2015).

5.5 The PATREC study

The PATREC study is a cross-sectional study which was carried out dur-
ing the school year 2012/2013 (September 2012 - February 2013). The aim
of this study was to evaluate the comparability of different instruments used
to objectively and subjectively measure physical activity. 542 students from
two primary and two secondary schools in the city of Bremen were invited to
participate in four different modules: (1) wearing an Actigraph accelerometer
(GT3X+, GT1M, ActiTrainer; Pensacola, Florida, USA) for seven consecutive
days during waking hours, except when taking a bath and swimming, and to
complete an activity diary. The students were asked to record sports clubs and
physical education time frames in this diary, as well as non-wearing periods
and their reasons. The accelerometers were attached with an elastic belt on the
right hip. Accelerometer data were stored at 3-second-epochs and computed
with the ActiLife 6 software. Non-wearing periods were defined according to
Choi et al. (2011) also using the ActiLife 6 software. Cutpoints from Evenson
et al. (2008) for SED, LPA and MVPA were applied; (2) a 7-day-recall ques-
tionnaire at the last day of the accelerometer-wearing-period with 12 items
covering different domains and dimensions of physical activity and sedentary
behavior; (3) a questionnaire on the habitual physical activity; and (4) a fitness
test. The body mass index (BMI) was calculated by self-reported height and
weight.

Participating students were required to ask for written parental consent. In
addition, older students (11-17 years) had to give their written consent, while
oral consent was obtained from the younger students (6-10 years). The study

was approved by the ethical committee of the University of Bremen.
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5.5.1 Domain-specific self-reported and objectively mea-

sured physical activity in children.

As was discussed in Section 2.1.5, the agreement of subjectively and objec-
tively measured physical activity is generally low or moderate at best. Little is
known about the extent different domains contribute to total physical activity
and sedentary behavior. According to the SLOTH (sleep, leisure, occupation,
transportation, household) model (Pratt et al., 2004), opportunities for chil-
dren and adolescents to accumulate physical activity can be assigned to five
domains: sleep, transportation, school time, leisure time and home. Among
these domains school can be considered as a very important domain, as chil-
dren and adolescents spend about half of their waking hours there (Bailey et
al., 2012; Escalante et al., 2014; Guinhouya et al., 2009Db).

Epidemiological studies commonly use questionnaires and proxy reports to as-
sess physical activity and sedentary behavior by asking children or their parents
to report the duration of outdoor playing time, organized sports activities or
electronic media consumption. These domain-specific activity variables are of-
ten thought to sufficiently describe the physical activity behavior (Pratt et al.,
2004; Trost, 2007).

Sprengeler et al. in a forthcoming publication presented in Appendix E studied
the agreement of self-reported and objectively measured physical activity and
sedentary behavior in specific domains (transportation, school time, physical
education, leisure time and organized sports activities). Additionally, the con-
tribution of these domains to total SED, LPA and MVPA was investigated by

combining accelerometry (and an activity diary) with a questionnaire.

Methods

A modified version of the validated German MoMo-(Motoric Module) physical
activity questionnaire (PAQ) was used, which is designed to assess habitual
physical activity (Jekauc et al., 2013). The modified PAQ consists of 12 ques-
tions assessing five domains of physical activity (transport, school time, phys-
ical education, leisure time and organized sports activities). Children up to
the age of 10 completed the questionnaire with their parents (proxy-reported),

while the older students completed the questionnaire by themselves. For each
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domain, frequency, duration and intensity of physical activity were assessed.
Self-reported SED was defined as the duration of sedentary activities (e.g.
TV viewing, sitting during school hours). The intensity of physical activity
was assessed as participants’ self-perceived, typical intensity of breathing and
sweating during physical activity.

Accelerometer data were used for analyses, if at least ten hours per day of
valid wearing time for at least three days were available. Non-wearing time
was removed according to Choi et al. (2011) and intensity levels assigned us-
ing cutpoints from Evenson et al. (2008). Using the information provided in
the accelerometer diary and the PAQ), objectively measured SED, LPA and
MVPA were each assigned to the five domains transport, school time, physical
education, leisure time and organized sports activities. Dates and time of phys-
ical education and organized sports activities were linked to the accelerometer
counts based on the information in the activity diary. School time was defined
as the interval between the start and end of school. The time of physical educa-
tion classes was excluded from school time and assessed separately. Transport
was defined as the provided self-reported transport duration plus five addi-
tional minutes before start and after end of school. All other accelerometer
counts were assigned to leisure time.

542 children and adolescents were invited to participate in the study and writ-
ten consent was obtained from 390 (72%). At baseline, accelerometer and ques-
tionnaire data were available from 371 participants. Of these 298 provided valid
questionnaire and accelerometer data (adequate valid wearing time on at least
two weekdays and one weekend day) for the comparison of subjective vs. objec-
tive measurements. Information on school time was only available for children
attending the primary schools, aged 6-10 years. Of these, 207 students had
at least three valid accelerometer weekdays available for the domain-specific

analyses.

Statistical analyses

Accelerometers and PAQs are supposed to be two instruments measuring es-
sentially the same. In this case, it is to be expected that the corresponding
measurements are highly correlated, however, a high positive correlation is not

sufficient to show that two instruments measure the same (Bland and Altman,
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1986). Self-reported and objectively measured minutes of total and domain-
specific SED, LPA and MVPA were compared using the Spearman rank cor-
relation coefficient rg. The correlation coefficient ranges from —1 to 1, with 1
meaning perfect monotone correlation and 0 no correlation. The correlation is
considered as weak if rg < 0.39, as moderate if 0.40 < rg < 0.59, as strong if
0.60 < rg <0.79 and as very strong to perfect if rg > 0.80.

Results

Self-reported physical activity was generally over-reported compared to ac-
celerometer measured physical activity. The agreement of self-reported and
objectively measured physical activity was low for total LPA (rg = 0.09, 95%-
confidence interval (CI) = (-0.03, 0.20)), total MVPA (rg = 0.21, CI = (0.10,
0.32)). Moderate agreement was found for total SED (rg = 0.44, CI = (0.34,
0.53)).

Among the domain-specific correlations, moderate agreement could be seen
for LPA during transport (rg = 0.59, CI = (0.49, 0.67)) and MVPA during
organized sports activities (rg = 0.54, CI = (0.38, 0.67)). About half of total
objectively measured SED, LPA and MVPA (55%, 53% and 46%, respectively)
occurred during school time, while organized sports activities contributed 24%
to total MVPA.

In conclusion, the school setting is the most important domain, contributing
about half of total SED, LPA and MVPA in children aged 6-10 years. Ac-
celerometers should be preferred over questionnaires to measure duration and
intensity of physical activity. As was known, domain-specific data still require
self-reported information. Further results and a discussion will be included in

the forthcoming publication presented in Appendix E.

5.6 Energy expenditure using pedometers

Pedometer data were collected and combined with spirometer measurements
of the activity energy expenditure (AEE) in 207 participants (110 females) in
the age of 8 to 74 years. These were recruited by newspaper announcements
and telephone calls. All participants (and their parents/legal guardians if ap-

plicable) were carefully instructed and gave written informant consent. All
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procedures of the study were approved by the local ethics committee. Partici-

pants had to be healthy and free of impairments with an BMI < 27.5 kg m~2

Resting energy expenditure (REE) was measured by a portable oxygen ana-
lyzer system (MetaMax 3b, Cortex Biophysik, Leipzig, Germany) for 30 min-
utes under controlled conditions. The same device was used to record AEE
for three different walking speeds/intensities. Participants first walked at their
preferred speed for eight minutes, which was considered moderate walking.
Then participants were asked to walk slowly for eight minutes and afterwards
to walk fast, without running for three minutes. Participants younger than
18 years only walked moderately and fast. AEE was computed as the average
metabolic equivalent of task (MET) from data measured between minute 5:00
and minute 7:00 for the first two intensities and minutes 1:30 to 3:00 for the
last intensity.

Gait cycles per minute for the relevant time frames were recorded using a step
activity monitor (StepWatch 3.0, Orthocare Innovations, WA, USA), which
was attached to the right ankle of participants. The step activity monitor was
previously adjusted to the participant’s gait characteristics and steps were

stored in 15 seconds epochs by the device (Brandes et al., 2012).

5.6.1 Estimating energy expenditure from gait intensity

Brandes et al. used the collected data in a forthcoming publication presented
in Appendix F to derive an energy expenditure equation for the step activity
monitor StepWatch 3.0. Here, log(AEE) was used as dependent variable and
gait cycles, body weight, height, age and sex as independent variables. In
order to account for the repeated measurements (up t