
Rapid Prototyping Infrastructure
for Wearable Computing

Applications

A dissertation submitted to
Faculty 3 (Mathematics and Computer Science) at the

University of Bremen
for the degree of

Dr.-Ing.

by
Dipl.-Inf. Hendrik Iben

born January 2nd, 1981, Bremerhaven

Vorgelegt am / Date of submission: 22.04.2014
Datum des Promotionskolloquiums: 19.06.2015
/ Date of defense

1. Gutachter / Examiner: Prof. Dr. Michael Lawo
2. Gutachter / Co-Examiner: Prof. Dr. Paul Lukowicz

Publication Changes

The following changes have been made to this dissertation for publication:

• Appendix D that contained previously published papers has been removed.

• All figures have been converted to grayscale.

• Some table headers in the evaluation chapter have been edited and/or
annotated for a better understanding.

• Various spelling mistakes were fixed.

Änderungen zur Publikation

Zur Publikation wurden an dieser Dissertation folgende Änderungen vorgenom-
men:

• Anhang D, welcher bereits publizierte wissenschaftliche Veröffentlichungen
enthielt, wurde entfernt.

• Alle Abbildungen wurden in Graustufen umgewandelt.

• Einige Tabellenköpfe im Evaluationskapitel wurden zum besseren Ver-
ständnis bearbeitet und/oder annotiert.

• Diverse Rechtschreibfehler wurden korrigiert.

Acknowledgements

I want to thank my academic supervisor Prof. Dr. Michael Lawo for his sup-
port especially during the final phase of my thesis work. I also thank Prof. Dr.
Malaka and Prof. Dr. Lukowicz for their willingness to examine my work.
In addition I also want to express my gratitude to Prof. Dr. Otthein Herzog
who helped me in many discussions to find the right direction when starting my
thesis work.
I also want to thank my former colleague Dr. Hannes Baumann who worked
with me on the SiWear project. Our common goals in the project helped to
drive the progress of our academic work.
Working on the SiWear project brought up many opportunities for fruitful dis-
cussion with people from many different institutions. I would like to thank
everyone involved for their contributions.
I want to thank all past and current members of the Wearable Computing Group
at the TZI for creating a nice working atmosphere where an interesting discus-
sion can occur by just walking up to the coffee machine.
Finally I want to thank my parents and my two sisters who always encouraged
me to pursuit my academic career even though it was not always easy to share
my fascination for this field with them.

v

Contents

Publication Changes iii

Änderungen zur Publikation iii

Acknowledgements v

Abstract xi

Zusammenfassung xiii

1 Introduction 1

2 Building a Wearable Computing Application 5

2.1 Wearable Computing Context Needs 5

2.1.1 The Need for Simple Systems 6

2.1.2 Mock-Up Testing and Iterative Development 7

2.1.3 Scientific Study Support 9

3 Related Work 11

3.1 Roulette Wheel Prediction . 12

3.2 Implicit Human Computer Interaction 13

3.3 Active Maps . 13

3.4 MIThril Enchantment Whiteboard 14

3.5 wearIT@work . 16

3.6 Context Recognition Network Toolbox 18

3.7 Evaluation of Findings . 18

vii

4 Evaluation of the Context ToolKit 23

4.1 Context ToolKit . 23

4.1.1 Design Concept . 24

4.1.2 Architecture . 25

4.1.3 Context Information Model 27

4.1.4 Context Information Delivery 27

4.1.5 Usage in Applications . 28

4.1.6 Code Metrics . 29

4.1.7 Discussion . 33

5 The TZI Context Framework 37

5.1 Motivation . 38

5.2 Distributed Communication Schemes 38

5.2.1 D-Bus . 39

5.2.2 IRC . 39

5.3 Describing Context in an Abstract Way 40

5.4 General Context Handling . 43

5.4.1 Infrastructure for Context Distribution 45

5.4.2 Data Structures for Context Information 47

5.4.3 Differences between TCF and CTK 53

5.4.4 Code Metrics . 54

5.4.5 Communication Protocol 59

5.4.6 Short Context Mode . 66

5.4.7 Transfer of large datasets 67

5.4.8 History Queries . 69

5.4.9 Storing Context Histories in Relational Databases 71

5.4.10 Scripted Subscription . 74

6 Evaluation of the TZI Context Framework 77

6.1 Comparing CTK to TCF . 77

6.1.1 Application Complexity 78

6.1.2 Transmission Performance and Efficiency 83

6.1.3 Conclusion . 87

6.2 Creating High-Level Context . 88

6.2.1 Context Aggregation . 89

6.2.2 High-Level Example . 89

6.2.3 Limitations . 90
6.3 Framework usage in the SiWear Project 91

6.3.1 Context for Picking . 92
6.3.2 Test-Scenario . 94
6.3.3 Evaluation-Scenario . 96

7 Conclusion and Outlook 99

References 103

List of Figures 109

List of Abbreviations 111

A Server Commands 113
A.1 Connection Maintenance Commands 113
A.2 General Queries . 114
A.3 Context Manupilation Commands 117
A.4 Subscription Management . 117
A.5 Context Setting . 119
A.6 Context History . 119
A.7 Large Transfers . 120

B UML Diagrams 121

C Code Examples 127
C.1 Context Subscription and Processing 127
C.2 Context Generation . 128
C.3 Temperature Demo CTK . 128

C.3.1 CTKTempReader.java . 129
C.3.2 TempReadUI.java . 135
C.3.3 CTKTempProvider.java 138
C.3.4 TempUI.java . 141

C.4 Temperature Demo TCF . 143
C.4.1 CTXTempReader.java . 143
C.4.2 TempReadUI.java . 147
C.4.3 CTXTempProvider.java 149
C.4.4 TempUI.java . 151

Abstract
Supporting workers by the use of computer systems is widely found through-
out the world of work. While the benefits are apparent for office work, process
monitoring and similar fields, where computers are used as tools to carry out a
task, other fields can not benefit of them at first sight.

When a task demands high mobility or the use of hands, computers cannot
directly make it easier. The manual work is in focus here and cannot be carried
out by the computer as a tool. In these fields workers can be supported by
the use of wearable computing applications where using the computer is not the
focus but the automatic detection of on-goings in the environment.

These context-sensitive applications consist of a body-worn system - the wearable
- together with numerous sensors distributed in the environment. By analyzing
sensor-data in conjunction with known work structures the system is able to
support the wearer at his or her task. Support can come up from displaying
preprocessed information relevant to the task or by triggering processes in the
environment.

Typical wearable computing applications are found in an industrial environ-
ment. Possible examples are order picking, car-manufacturing or maintenance
work. The challenge when developing a supporting application here is to im-
prove an already optimized process. When designing a wearable computing
application the user, whose present task has to be structured more efficient, is
in focus.

For the development of these applications user studies are vital where a possible
solution can be evaluated in a practical environment. For a wearable comput-
ing application this often means to test a sensor-system resp. a possible way
of detecting specific events in spite of not knowing in advance if it will be ben-
eficial. These kind of tests are often performed with simulated systems in so
called Wizard-of-OZ studies. Here a human operator takes over the role of the
component in question and sends corresponding signals to the rest of the sys-
tem. If a simulated system turns out to be unusable no resources have been
consumed for a technical realisation. If results are promising the component is
implemented and a next test is performed with the real system.

When using sensors in the environment this approach demands that the ap-
plication needs to work with simulated and later with real values. For this a
generic framework is desirable that enables an easy replacement of components.
While there exist generic methods in software engineering to allow replacing
components they do not incorporate the technical needs of sensors.

This thesis deals with the implementation of a framework to build context-
sensitive wearable computing applications that enables a rapid-prototyping ap-
proach during development. Special technical demands for such a framework in
an industrial setting are worked out and an abstraction for modelling informa-
tion in the environment is introduced. An existing framework for context-aware
applications in a pervasive computing environment is examined where problems
arise when transferring it to the wearable computing domain. This motivates a
specialized approach customized to the conditions in an industrial environment.
As a last point an evaluation of the framework by its use in the development of
a wearable computing solution is performed leading to a final assessment of its
value.

wearable computing, mobile computing, pervasive computing, rapid proto-
typing, software infrastructure

Zusammenfassung
Die Unterstützung von Menschen durch Computersysteme ist weit verbreitet in
der Arbeitswelt. Während die Vorteile für Bürotätigkeiten, Prozessüberwachung
oder ähnliche Arbeitsfelder, in denen Computer als Werkzeug für die Umsetzung
einer Tätigkeit verwendet werden, offensichtlich sind, besteht in anderen Berei-
chen auf den ersten Blick keine Verwendungsmöglichkeit.

Tätigkeiten, die eine hohe Mobilität oder den Einsatz der Hände erfordern, kön-
nen nicht direkt durch ein Computersystem erleichtert werden. Hier steht die
körperliche Arbeit im Vordergrund, die nicht durch den Computer als Werkzeug
erledigt werden kann. In diesen Arbeitsfeldern kann eine Unterstützung durch
den Einsatz von Wearable Computing Anwendungen realisiert werden, bei de-
nen der Einsatz des Rechnerssystems nicht im Vordergrund steht, sondern die
automatische Erkennung von Vorgängen in der Umgebung.

Diese kontext-sensitiven Anwendungen bestehen aus einem am Körper getra-
genen System - dem Wearable - sowie aus einer Vielzahl von Sensoren, die in
der Umgebung verteilt sind. Durch die Analyse von Sensordaten in Verbindung
mit den bekannten Arbeitsstrukturen, kann das System den Träger bei seiner
oder ihrer Arbeit unterstützen. Eine Unterstützung kann dabei die Aufbereitung
und Darstellung arbeitsrelevanter Informationen sein oder auch das Auslösen
von Prozessen im Umfeld.

Das typische Einsatzfeld für Wearable Computing Anwendungen findet man
im industriellen Umfeld. Beispiele sind die Kommissionierung, die Fertigung im
Automobilbereich oder Wartungstätigkeiten. Die Herausforderung bei der Ent-
wicklung einer unterstützenden Anwendung ist es hier, einen bereits optimierten
Prozess zu verbessern. Beim Design von Wearable Computing Anwendungen
steht daher der Nutzer im Vordergrund, dessen bisherige Tätigkeit effizienter
gestaltet werden soll.

Bei der Entwicklung dieser Anwendungen sind Nutzerstudien unverzichtbar, in
denen eine mögliche Lösung in einer praxisnahen Umgebung evaluiert werden
kann. Für eine Wearable Computing Anwendung bedeutet dies häufig, ein Sen-
sorsystem bzw. eine mögliche Art der Erkennung von Ereignissen testen zu
müssen, obwohl ein möglicher Nutzen nicht von vornherein sicher ist. Derartige

Tests werden häufig mit simulierten Systemen in sog. Wizard-of-OZ Studien
durchgeführt. Dabei übernimmt ein Mensch die Rolle der zu testenden Kom-
ponente und gibt entsprechende Signale an das restliche System weiter. Stellt
sich ein simuliertes System als nicht brauchbar heraus, wurden keine Ressourcen
durch eine technische Realisierung verbraucht. Sind die Resultate vielverspre-
chend, wird die Komponenten technisch umgesetzt und ein nächster Versuch
mit dem echten System durchgeführt.

Bei der Verwendung von Umgebungssensoren bedeutet dies, dass die kontext-
sensitive Anwendung einmal mit simulierten und später mit echten Werten funk-
tionieren muss. Hierzu ist ein generisches Framework wünschenswert, welches
eine einfache Austauschbarkeit ermöglicht. Es existieren zwar allgemeine Me-
thoden in der Softwareentwicklung, um Austauschbarkeit von Komponenten zu
ermöglichen, jedoch beziehen diese die technischen Anforderungen von Sensoren
nicht mit ein.

Die vorliegende Arbeit beschäftigt sich mit der Implementierung eines Frame-
works für kontext-sensitive Wearable Computing Anwendungen, durch das ein
Rapid-Prototyping-Ansatz bei der Entwicklung ermöglicht wird. Die speziellen
technischen Anforderungen an ein solches Framework im industriellen Umfeld
werden heraus gearbeitet und eine Abstraktion zur Modellierung von Umge-
bungsinformationen wird eingeführt. Ein bestehendes Framework für kontext-
sensitive Anwendungen in Pervasive Computing Umgebungen wird betrachtet
wobei Probleme bei der Übertragung auf die Wearable Computing Domäne
sichtbar werden. Dies motiviert einen spezialisierten Ansatz der an die Bedin-
gungen eines industriellen Umfeldes angepasst ist. Als letzter Punkt, wird ei-
ne Evaluation des Frameworks durch seinen Einsatz bei der Entwicklung einer
Wearable Computing Lösung durchgeführt und eine abschliessende Bewertung
erstellt.

Wearable Computing, Mobile Computing, Pervasive Computing, Rapid Pro-
totyping, Software Infrastruktur

Chapter 1

Introduction

Wearable Computing describes body worn computing devices that provide use-
ful information relevant to a physical real world task. Unlike mobile devices the
focus is on the task and the device should not unnecessarily distract from it. To
fulfill this expectation the wearable device cannot depend on direct interaction
with the wearer but needs to process information from the environment to infer
the next helpful action to be taken.

This relevant information is the context of a wearable computing application.
There are many sources for contextual information: One can use sensors that
measure physical properties like location, lighting conditions, the presence of
digital markers to name a few. Other possibilities are known aspects of the
work-flow and the resulting mental model of the user to take pro-active actions,
software generated information from databases, current time, simulations or im-
plicit interaction by analyzing the actions of the wearer or co-workers.

One problem with the wearable computing approach is the ambiguity of in-
formation gained through any system and the conversion into usable context-
information. This problem is an open research question and many solutions for
limited aspects have been proposed (e.g. [Dey00, LTGLH07, ST94]).

Wearable Computing is a field that shares many challenges with Pervasive Com-
puting but also has its own problems to solve and other constraints.

1

2

It is commonly applied in industrial settings to support workers at a specific
task. Additional challenges arise from the industrial setting as typically devices
have to be running throughout the whole shift of a worker and need to be con-
nected to some form of information system that keeps track of the state of the
task at hand.

Even though many advances have been made to reduce energy usage and in-
crease battery capacity, a full shift of eight hours is still a challenge that can be
approached by designing a system for reduced energy usage. Unlike a Smart-
phone, that can save energy by turning off components until needed, a wearable
computing device is virtually always on to support the user. Any software that
runs on such a device needs to make a best effort at saving resources that con-
sume a significant amount of energy - notably CPU time and wireless network
transmissions.

When it comes to designing systems that can make use of information from
the environment, pervasive and wearable computing approaches face a common
problem. Information needs to be transmitted from devices in the environment
to the application. Currently two approaches are found. The first approach
is creating an application from scratch, e.g. selecting the needed information
providers and designing the application to directly use these sources. While
this allows to create very efficient applications, making changes at a later stage
becomes problematic or impossible. In the second approach, a framework is
used as a layer between the application and information from the environment
that allows the application to retrieve information in an abstract way. While
this approach obviously introduces an overhead, it makes introducing changes
later easier and also enables quicker development since a transport scheme is
already in place.

However, even though the benefits of having an abstraction layer are a valid
concern, many applications are still developed from scratch and not many of
these abstraction layers have been created. A notable implementation of such
a layer is the Context ToolKit (CTK) [SDA99] that provides a complete frame-
work to make environmental information available to applications. It has been

3

successfully used to create smart environments and is based on extensive re-
search on best ways to provide information to smart applications.

It is however hard to apply the CTK to a wearable computing system due
to technical problems and design decisions. CTK was designed for smart en-
vironments where all components are accessible over the same network. This
allows for an elegant discovery mechanism but can typically not be applied to
restricted networks found in industry settings. Additionally, it is not applicable
to current even more restricted mobile networks.
Even though these technical problems are severe, they could be solved by strip-
ping some of the elegance from the system. The problem with the design how-
ever remains. The design of the CTK is decentralized making each component
of the system independent of each other. This also means that each component
is responsible for communicating with other components that need information
from the device. If this is applied to a small sensor in a wearable computing
application (e.g. a temperature sensor), the computation needed to be part of
the CTK framework is very high compared to the actual computation power
needed to process the sensor.

A wearable computing scenario therefore needs a more fitting framework that
cares equally for the information providers, such as sensors, and information
consumers. While the consumers will typically be more sophisticated systems
their energy is still limited if they are wearable. The producers might be at a
fixed place in the environment and therefore have access to virtually unlimited
energy but might also be a part of a mobile system or a component of the wear-
able system that additionally drains energy. In any case, a low computing and
transmission power demand is desirable.

On the other hand, information distribution from a producer to potentially
many consumers is a key factor of a framework for smart applications. This
also applies to the ability to locate suitable producers at the runtime of the
application.

To provide these features, a wearable computing information framework has
to shift needed computing power away from the individual devices and concen-

4

trate it on one dedicated system. While the CTK uses a distributed approach
to create an information distribution framework for pervasive computing, wear-
able computing needs a centralized approach. A single, powerful computer in
the environment will serve all other components. Information producers send
data only to this server while consumers are notified of this data by it. This
approach minimizes computational and transmission effort for the components
by putting this burden on a single system. In addition to this, a centralized
approach is also more easy to integrate into a typical industrial network as only
the server has to be reachable in a controlled fashion.

In order to show the beneficial character of a centralized system for wearable
computing, it has to be compared to the other approach. At the time of this
writing the CTK is the only usable system for creating a smart application with
a framework. As no centralized approach exists, it will be implemented as part
of this work. The implementation will show the concept of centralized informa-
tion distribution and how applications can make use of it. To show the fitness
for the wearable computing domain, an examplary application will be created
using the framework. To further show, that the decentralized system saves en-
ergy and resources for the clients, a technical comparison will be done where
both frameworks perform the same task. By analyzing the needed transmission
effort a direct relation to the energy needed by both systems can be derived.

Chapter 2

Building a Wearable

Computing Application

The motivation for the creation of a new framework for contextual support in
wearable computing applications emerges from the experiences during the design
of such an application. Evaluating existing frameworks in the light of the task at
hand showed a missing link between modelling contextual information and the
technical aspects of making this information available to wearable clients. This
chapter provides an overview of the encountered problems during the design and
how they influenced the creation of a practical approach to context information.

2.1 Wearable Computing Context Needs

In the BMWi-funded project SiWear1[BGH+07], the consortium was tasked
with the creation of a wearable computing solution for applications in picking
and service for the automobile industry. The goal was to create a solid founda-
tion for wearable computing applications suitable for the needs of this field by
evaluating and extending the state of the art in wearable computing.

During the course of this project many studies were conducted in laboratory and
also real world environments to evaluate the effects and potential of supporting
workers with wearable computing technology. While the initial studies did not

1http://www.siwear.de

5

http://www.siwear.de

6

employ very sophisticated systems, they were driving the technical work in terms
of requirements and software architecture design. During this phase, previous
work in wearable computing, especially the results of the wearIT@work[LHW07]
project, where examined for potential use in the project. While many of these
previous approaches had been designed to be reusable in later projects, with the
intention of speeding up development, many technical problems were encoun-
tered that ultimately lead to the development of new solutions for the task at
hand.

Existing systems were developed to suit a particular set of requirements that
may be different from the specific requirements of a new project. When this is
the case, the existing system was not generic enough to be truly reusable. On
the other hand, a truly generic system may be too complex for starting a new
project with it as developers may not even know what they need at first. Both
situations lead to the infamous not-invented-here-syndrome[KA82], where de-
velopers neglect existing software in favour of a solution tailored to their exact
needs.

2.1.1 The Need for Simple Systems

As stated before, re-inventing software solutions is often the result of existing
software being to complex to use quickly. Also, not knowing exact requirements
during initial prototype development can make it impossible to select an appro-
priate solution from the beginning. When development started in the SiWear
project a mix of both situations was in effect. While some systems for creating
wearable computing applications were known, initial investigations showed that
it was not clear how to use them correctly while they also were very complex
systems that required a significant amount of time to set up. Furthermore it was
unclear, what kind of information had to be processed and how the complete
system would need to be integrated into an existing infrastructure.

To create applications more quickly it was decided to start with the creation
of user interface tests that needed to respond to direct input via common user
interface elements. Additionally, external events from sensors or other sources
should be able to modify the state of the interface. The only known constant
for development was that external events would be sent via a network connec-

7

tion. Using these requirements and constraints a very rudimentary client-server
approach was built where a wearable client would retrieve information from the
environment via textual messages from a server in the environment. The inter-
pretation of these messages was done by the client itself, providing a first step
in the creation of a content agnostic server for context information.
Even though this system was very limited and non-structured, it provided de-
velopers with a common tool to quickly send arbitrary messages to wearable
clients. The nature of the client-server approach also allowed distribution of
events to multiple clients in a very easy way.
In conclusion, a very simple system enabled developers to rapidly explore new
ideas on dealing with contextual information.

The first area where the use of wearable computing technology was applied
in the SiWear project was warehouse picking. In the beginning, only two types
of commands were needed: application control and pick detection. The inter-
esting observation here is that the broad category of application control is not
easy to grasp using terminology associated with context processing, since it is
up to the application developer what control can mean. Nevertheless, using
(simulated) sensor information and arbitrary control messages proved to be no
problem to manage for the developers. Sensor information became ’just another
kind of button press’.

2.1.2 Mock-Up Testing and Iterative Development

The use of mock-ups, that is, the use of partial or make-believe systems, lacking
important features, is a valuable tool for getting feedback on systems without
having to invest many resources in development. While mock-ups are often
used for the user interface of a system, many aspects can be studied with this
approach. Potential users can (pretend to) use or interact with these systems
and form an opinion. From observations, developers are also able to identify po-
tential problems with the design, e.g. users struggling to understand the system.

Initial studies in SiWear were focused on providing an alternative to paper
based picking. In paper based picking, the worker needs to carry a piece of
paper that lists items to be picked from some form of structured storage sys-
tem, e.g. labelled shelfs. Alternatives to paper are the use of audio messages

8

or computer controlled displays. Switching away from a physical piece of paper
is not as simple as transmitting the same information over a different medium.
It is easy to understand that reading out the complete list via speech-synthesis
will not help a worker much in keeping track of picked items. This is also true
for visual systems that should only provide a minimum amount of information
in a clearly visible manner, to allow a quick reception by the worker. While the
information could be navigated by some form of direct input scheme, the use
of contextual information represents an interesting option. If the system can
in some way detect correct (or incorrect) actions by the worker, an automatic
transition of displayed information and providing additional information is pos-
sible.

At this point, mock-up-testing becomes an important tool. Developing actual
mechanisms for detecting picking actions is a complex task that requires a signif-
icant amount of resources. Without knowing the benefits from having this kind
of information starting development is hard to justify. When deciding to use
a mock-up, the detection functionality can be emulated by a human operator.
This kind of setup is also known as a Wizard-of-OZ [Kel83] approach, where the
operator (wizard) observes the environment from a suitable spot (behind the
curtain) and controls part of the system without interacting with the user of
the simulated system. A human operator is an easy to use detector for human-
computer-interactions but has to maintain the needed discipline when operating
the system (e.g. sticking to set rules and no anticipation of user actions).

When the intention of the mock-up system is to not use it for further devel-
opment anymore (throw-away prototype), the implementation of the simulated
input is of no importance. If however the system is used to develop and im-
prove other components of the system, such as the user interface, one has to
think of the phase where the mock-up functionality will actually be replaced
by a real implementation. In the best case, the real implementation would be
a drop-in replacement for the mock-up that requires no further changes to the
components. While this can be solved in various ways for general software de-
velopment, e.g. by defining interfaces, the domain of environmental context
acquisition has also a physical component. When a suitable trigger to navigate
an information system can come from a human observer or a sensor in the envi-

9

ronment, a suitable abstraction has to be found. From a software development
standpoint, this abstraction should not be created ad-hoc for every encountered
need but come from a generic framework. The use of a framework allows de-
velopers to find common patterns in their project to apply the framework on.
While developers have to learn the framework at first, re-applying the knowl-
edge later leads to faster development.

When the first tests were done in SiWear, only very simple events in the envi-
ronment were of interest. One thing to note though is that different means of
controlling were handled via the same mechanism, that is, direct interactions
from the user, simulated speech recognition and simulated sensor information
were transformed into a common representation to control the application. This
way of input abstraction was inspired by the work done in the wearIT@work
[LTGLH07] project that showed benefits of a common control infrastructure.
As a result of this abstraction real systems could later be used to replace simu-
lated functionality as the application was not tied to any specific source of input.

In [Sti08] a system for identifying user activities related to the wearIT@work
project is shown. An interesting parallel can be drawn to the design of this sys-
tem and the applications in SiWear. The activity detection system made use of
an existing framework for integrating the sensors and detection algorithms that
allowed replacing components developed in special software with more efficient
direct implementations after testing. In SiWear, simulated sensor events were
later replaced by real sensor events. While not directly related, both approaches
show how a framework can accelerate development by abstracting components
and thereby making them interchangeable.

2.1.3 Scientific Study Support

While successful wearable computing solutions have been developed and are in
use [Sta02] these projects often originate in a scientific environment. Conducting
studies and analyzing performance are important for those in the process of the
design. An often needed feature, not only in the wearable computing domain, is
the possibility of monitoring the internal processes of the application and making
the same information the user sees available to observers. A framework for
context distribution should support developers in this special use case without

10

much burden. The studies performed in the SiWear project benefited from such
a feature by being able to provide a mirrored image of the user view to a camera
for recording while also making environmental data available to an operator for
inspection. Inspection of the environment was possible using a generic client
that used monitoring features provided by the implemented context distribution
framework. This application could be re-used throughout many studies without
changes.

Chapter 3

Related Work

Over time there have been various approaches to wearable computing. While
many of them were one-time experiments exploring specific properties of the
field, some tried to approach the general problem of designing a wearable appli-
cation by creating software frameworks.

One of the technical challenges involved in every approach is creating suitable
technical descriptions of the information needed from the environment or the
user of the system - the context - in order to make it available to the system.
Focusing on this part of the wearable computing field, creating a framework for
distributing context information, one first has to define the boundaries of this
information by creating a model of context information. Every model used by a
computer system is just that, a simplification of a process or entity from the real
world. And while such a model will never be able to encompass every situation
from the real world, a suitable model will work within a defined set of circum-
stances. A model should also be as simple as possible (but not more) to be used
effectively and efficient by a designer. If a model can be easily understood, its
limits can also be understood easily.

To create a model for context information several projects from the pervasive
and wearable computing domain will be evaluated in this chapter for their in-
formation models to find a general pattern. This model will then be biased
towards the anticipated use in a wearable computing scenario but should still

11

12

be functionally able to serve pervasive computing applications.

3.1 Roulette Wheel Prediction

The first wearable computing system, built with the intention of supporting
a real world task, can be found in the experiments on Roulette wheel predic-
tion by Thorp[Tho98] as early as 1955. While the core idea is quite simple it
shows some general needs of wearable applications. To predict the outcome of
Roulette wheels, a shoe-integrated computer was used where timing information
about the current game was input with the toes. The result of the computa-
tion was transmitted to another device1 worn by a (potentially different) person
and mediated by audible signals. Analyzing the needed information here can be
quickly done. The computer system needs timing information that is abstracted
by keeping track of the time when a button is pressed. The transmitted result
is a single symbol that either specifies where to place the bet or not to bet at
all. While the setup in this early experiment is technically very direct it can be
logically abstracted. On the one side is an action from the user such as pressing
a button that is not used directly as a means of control but indirectly used to
setup a timespan very similar to the control scheme of a stopwatch. On the
other side, an abstract output symbol is computed that needs to be conveyed to
the wearer. While this example is very simple it shows one important property.
Neither the actual physical source of the input, nor the actual physical represen-
tation of the output are important for the application and can be replaced by
other means. This has actually been done with the Eudaemonics’ shoe [Eud98],
a project directly related to the work of Thorp. In this recreation of the project
instead of an audio output a tactile feedback device was used to convey the
computed symbol to the wearer.

Outcome 1: Context information comes in the form of events and values.
Outcome 2: (Physical) source of context not always important.

1The receiver here is actually just an audio playback device

13

3.2 Implicit Human Computer Interaction

In [Sch00] Schmidt defines the term implicit human computer interaction and
how sensor devices can be used to create context information for applications.
Three key requirements are identified to create software systems that can make
use of this kind of interaction (from [Sch00]):

1. the ability to have perception of the use, the environment,
and the circumstances,

2. mechanisms to understand what the sensors see, hear and
feel, and

3. applications that can make use of this information.

The first requirement is fulfilled by identifying appropriate sensor devices and
for the second and third part, an abstraction layer is introduced that allows a
uniform description of sensor events and the actions that should be taken by the
application. The proposed model behind this layer consists of treating possible
events that are determined by sensor evaluation as boolean variables that can
be used to form complex expressions. The evaluation of these expression can
then in turn trigger corresponding actions in an application.

The concept requires that sensor readings can be transformed into an appli-
cation specific meaning and removes the any need to process sensor data at the
application level.

Outcome 3: Smart applications do not necessary need raw sensor data but
evaluations of it.
Outcome 4: An abstraction that assigns meaning to sensor data allows replac-
ing actual sensors.

3.3 Active Maps

Active map services provide clients with information on located objects. In
[ST94], Schilit and Theimer investigate dissemination methods for mobile hosts.

14

They are approaching the problem of transmitting information over bandwidth
limited connections from the perspective of location based services for mobile
applications. As a possible solution they evaluated the idea of serving different
needs of mobile receivers in terms of wanted information and bandwidth limita-
tions. While they did not specifically create an implementation - at least not for
public use - they created an elaborate architecture design to help in designing
information distribution systems. The expressed ideas are very interesting from
a technical point of view but the proposed systems are specialized to mainly lo-
cation based information distribution. General handling of context information
for more abstract information sources is not covered in this work. A core real-
ization that also applies to general handling of information is however present
(from [ST94]):

The information that clients are actually interested in is a subset
of all the information that might be available to them.

Outcome 5: Clients are only interested in a subset of available information.

3.4 MIThril Enchantment Whiteboard

As part of the MIThril project for wearable computing at the MIT the Enchant-
ment Whiteboard system is used for communication in general and especially for
transmitting sensor information[DSGP03]. The main purpose of the system is to
accelerate the development of distributed applications. It follows the paradigm
of a whiteboard where a central component can be seen from any possible client
who in turn can read and write information from and to it. Additionally, clients
are able to subscribe to portions of the whiteboard thus receiving automatic up-
dates. For the transmission of high bandwidth data a secondary system exists
that allows direct communication between clients be negotiating a connection
via the whiteboard. As a curious fact, the framework was created to serve as
a communication mechanism for the context aware window manager Anduin2

but was soon extracted as a separate project to solve the more general com-
munication problem. This is another example of the observation that general
frameworks for wearable computing are not available.

2http://www.media.mit.edu/wearables/mithril/anduin, accessed 16. Dez. 2013

http://www.media.mit.edu/wearables/mithril/anduin

15

The main idea of the whiteboard approach is to reduce the complexity of com-
munication. For N clients, instead of having N ∗ (N − 1) communication
channels (in the worst case), a whiteboard limits communication to N as each
client is only connected to a central point. However, the project contains a
small contradiction by providing a non-transparent way of direct communica-
tion via its Enchantment Signal extension. To use this form of communication
two clients negotiate a connection setup via the whiteboard and then engage in
direct information exchange. This puts a burden on the application designer to
choose the appropriate way of communication for specific information.
While the whiteboard approach to communication seems well suited for infor-
mation source discovery and transmitting sensor data this implementation is
not used widely outside of the MIThril project. Possible reasons for this are,
that its use was not well communicated in the wearable computing community
and also technical problems. While it was meant to be portable and therefore
usable on many platforms it needs to be build for each platform first. This
puts another burden on potential users of the software. They do not only have
to understand how to use the software but also need to make it work on their
desired platform.
Additionally, while the sources are freely available, documentation is very sparse
and the project seems to be mostly not maintained anymore. These problems
make the framework a niche choice for people that have the required skills to
deploy and use it.
The framework is written in the C/C++ language with the intention of being
portable. While applications written in these languages have the tendency to
be more resource efficiently, especially on embedded or otherwise small systems,
compilation introduces a higher effort to setup a system in comparison with
interpreted software packages that need no compilation for the target system.

Outcome 6: Efficient communication is a building block for distributed appli-
cations.
Outcome 7: Automatic pushing of updated data reduces communication ef-
fort.
Outcome 8: A framework must be easy to use to be widely adopted.

16

3.5 wearIT@work

The wearIT@work project [LTGLH07, LHBK11] aimed at providing a complete
solution to the development of wearable computing applications with a strong
focus on applications for industrial settings. The project followed a modular
software architecture approach. At the center of this approach is the Spring
Framework[Spr13], a generic framework for modular systems using the depen-
dency injection (DI) approach. This very abstract concept allows specifying
dependencies between components at runtime and therefore changing compo-
nents transparently to the application. The handling of context information is
also implemented via DI in a way that the application does not need to know
available sources of information in advance as long as the injected components
are compatible.

While this approach is interesting from a software engineering point it cre-
ates an additional burden on the side of the application developer. The specific
aspects of the needed context component need to be defined for all sensors or
other sources of context. Only with a consistent definition different modules
can be injected later as replacements. Since the meaning of information can
vary greatly this approach is not very effective in combination with DI. Fur-
thermore the DI approach shifts the problem of detecting available sensors into
the generic framework. In the case of the Spring framework this means that all
needed sources of context have to be configured before the application starts and
cannot be changed later. A component that detects sensors in the environment
while the wearable application is running can of course be added as a component
but would defeat the purpose of a central configuration via the framework. The
implemented context sources in wearIT@work however are quite simple and can
easily be handled by the framework. There are implementations for temperature
and light sensors, that transmit their readings as numeric values and switches
that have a boolean status.

A big focus of the project was the evaluation of adaptive user interfaces that
can use contextual information to change their properties. Handling of user
interaction is done by the Wearable UI Toolkit (WUI-TK)[WNK07] with a de-
tailed description in [Wit08]. Following the architectural ideas of the project the

17

user interface specification itself was highly modular and a designated rendering
component is responsible for visualizing an abstract model of the current user
interaction possibilities. This component in turn depends on a context manager
component that provides sensor information in an abstract way.

While the architecture itself is very modular only a few and very simple sen-
sors have been evaluated. A specification of the interface between rendering
and context manager component has not been defined leading to some direct
dependencies in this project. However, the design envisions the use of distribu-
tion systems like the Context ToolKit (discussed in chapter 4) combined with
modular systems for data acquisition.

In [WNK07], Witt describes needed architectural support for wearable user
interfaces:

Adaptive user interfaces have to deal with lots of information
to implement some kind of intelligent behavior. Therefore, a
suitable architecture for such kind of interfaces has to include
access to many different information sources (preferably in a
modular way).

This further underlines the need for a robust way of discovering and making
use of sensors in wearable applications and a separation of context handling
from the logical transfer of information. The Context ToolKit is directly men-
tioned as a suitable communication component for this problem. A technical
issue with the approach used in this project is that it is virtually not available
to third parties. While the goal was to create a common framework that would
be of benefit for later projects in the wearable computing domain the required
resources have never been formally released and can only be obtained by asking
the involved working groups.

Outcome 9: Context information can be optional for a wearable system (e.g.
used for optimization).
Outcome 10: Information is not necessarily processed at only one point in the
application.
Outcome 11: Distribution systems should not make assumptions on their con-

18

sumers or sources.

3.6 Context Recognition Network Toolbox

In [BKLA06] a modular system for context recognition is built. The goal of this
system is not to provide a solution for making context information available to
distributed applications but to create this information easily in the first place.
The CRN Toolbox is a set of modular components that provide access to raw
sensor data and also to machine learning algorithms that can be used to extract
meaning from this data. The authors of the toolbox themselves see it as a com-
plementary tool that can be used together with a distribution system such as
the CTK.

While the software has been used in several projects, including the wearIT@work
project, it is not widely used in recent projects. The project website is at the
time of this writing unmaintained and the provided links to the software are not
functional. This is a similar situation as with the MIThril Enchantment White-
board and the wearIT@work project in general. The knowledge and resources
to actually use the developed software are not available to the public. This is
the result of depending on services that have been discontinued for some reason
and no mechanism of transferring the information to other services.

Outcome 12: Gathering of context information can be separated from its dis-
tribution.
Outcome 13: Separation of concerns makes adaption easier.

3.7 Evaluation of Findings

It is obvious that communication has a vital role in the creation of smart ap-
plications. When the number of external or not logically connected sources of
information increases having a framework for information distribution reduces
the needed engineering effort for the application designer. The remaining ques-
tion is how to structure information best and how to design an appropriate

19

communication scheme for such a framework. In [Dey00] many existing frame-
works for context distribution have been evaluated to find common needs among
smart applications. The type of support for context in these frameworks was
evaluated with respect to the type of supported information and the features
provided to enable context awareness. From [Dey00]:

There are certain types of context that are, in practice, more im-
portant than others. These are location, identity, time and
activity. Location, identity, time, and activity are important
context types for characterizing the situation of a particular en-
tity.

[...]

Our proposed categorization [...] is a list of the context-aware
features that context-aware applications may support. There are
three categories:

1. presentation of information and services to a user;
2. automatic execution of a service; and,
3. tagging of context to information for later retrieval.

The result of this evaluation did show a high diversity in the support for these
features in the various frameworks. They have been created to support a specific
type of task and are not suitable for general use. This lead to the creation of the
CTK with the goal of creating a framework that supports all needed features
from the evaluated domains. While designed for general use its main goal was
supporting smart applications in a pervasive computing setting. In this field,
constraints from the environment only have a minor impact on the application
while they are much more limiting in the domain of wearable computing.

By evaluating frameworks that have been designed with wearable computing
applications in mind more fitting criteria will be found. This evaluation will
evaluate not only the logical needs in terms of context information but also
technological needs arising from the special conditions. While the outcomes
from the first examples show that context information can be used as an ab-
straction for direct input (outcome 1,2) further examples from the field show
the need also for implicit interaction in a wearable scenario (outcome 3,4). A

20

context information framework therefore needs to be able to process both kinds
of information. Furthermore, a common problem with context information is
finding an efficient way of transferring the information across many devices
(outcome 5,6,7,8). Here a difference can be found between wearable and per-
vasive computing applications. Wearable applications will also often encounter
a change in available sources for information and generally need to be able to
discover and select them according to the current needs of the user.

The wearIT@work project also shows a very complex interpretation of con-
text information that affects the wearable application in various ways. Not only
explicit and implicit interaction has to be taken into account but also other
information sources can be used to further control the wearable application,
for example, by changing the representation of information to better match the
current situation (outcome 9,10,11). Finally, a general trend can be observed in
favor of modular systems (outcome 12,13). A context distribution system does
not necessarily need means of interaction with the sources of information but
provide only a distribution scheme.

As a non-technical observation the few frameworks that are created for solving
general problems for wearable computing applications so far seem to become
unmaintained (or even unavailable) after a few years for various reasons. In
general, the required knowledge to operate and enhance the provided software
seems to only be present among very few developers and to vanish when they
leave the field of wearable computing. When a new wearable computing ap-
plication is to be developed this situation will become the first road-block for
the developers. One could argue that the availability of a framework is equally
important as its suitability for the task at hand. Even if the description of a
framework looks promising a lack of resources to actually use it will encourage
developers to start writing their own solutions. This is however true for software
systems in general and not a specific problem of the wearable computing field.
Applying proven methods of keeping software available to a larger community
would be beneficial for new projects.

A long lasting solution for wearable computing should therefore make use of
public software distribution and documentation systems to ensure that main-

21

tainers that are not necessarily part of the original development team can take
over projects easily. Therefore the need for modular systems does not only ap-
ply to the actual software design process but should also be adopted on a higher
level. There exist various independent online services for collaborative software
development that are not affected by changes in working groups and have the
added benefit of providing easy ways for interested third parties to contribute
to a project. The software developed during this thesis has been published on
the GitHub software collaboration platform and can be found at:
https://github.com/wearlab-uni-bremen

This popular platform allows free access to the code for any interested party
and will hopefully exist for a long time.

https://github.com/wearlab-uni-bremen

22

Chapter 4

Evaluation of the Context

ToolKit

4.1 Context ToolKit

In the previous chapter various needs for context information in applications and
possible methods of transmission have been examined. Many of these transmis-
sion concepts have been developed for a specific use and are therefore only to
some extend reusable. This chapter will focus on an existing framework for
context information transmission that was explicitly designed to be generic.
Previous systems have been analyzed for their needs to provide a solution that
can be applied to all scenarios. While the framework is a very elaborate solu-
tion to this problem, it was not designed with wearable computing applications
in mind and it will be shown that its approach may be unfitting for this domain.

The Context ToolKit (CTK)[Dey00] is a very elaborate system that deals with
creating an infrastructure for context sensing devices (sensors) and applications
using the gathered information. It is engineered following an object oriented
paradigm were a common base class enables communication between objects.
Subclasses are implemented for sensors, interpreters and other participants in a
context aware application. On a very low level the system relies on the HTTP
protocol[HTT99] for communication and each object in the system acts as an
individual HTTP server and client for communication. It uses a network broad-

23

24

casting approach to find components in the environment which enables context
aware applications to be used almost without configuration. However, this ap-
proach only works if the underlying network structure supports this kind of
technique which is not always the case, especially for many mobile networks.
An interesting aspect of CTK is the use of the widget metaphor for working
with context information. It allows the programmer to make use of an external
sensor as if it were normal type of user interface element. This approach ab-
stracts the use of the context information from the technical means of getting
the information.

4.1.1 Design Concept

The central design aspect of the CTK has been to create a system that is easy
to use for the application designer. It takes up the widget metaphor from graph-
ical user interface design to provide a similar mechanism to work with context
information. An application designer can therefore apply existing knowledge on
graphical user interfaces to working with context. Making use of this knowledge
is an interesting approach since a lot of effort has been made to create consistent
schemes for user interface programming as shown in [MHP00]. A GUI widget
like a button serves as a mediator between the user and the application by pro-
viding a known element to the user that has a defined meaning and behaviour.
The inner workings of how input devices act with the button and how the wid-
get triggers the associated program function are of no concern to the user and
the application designer.

There are however differences between this approach and standard GUI pro-
gramming. While GUI widgets are created by an application for a specific
purpose context widgets are shared among applications since the same context
information can be of interest for more than one application. From the appli-
cation design view this is only a minor difference since the important part of
triggering a defined function still happens for each application independently.
Having an easy to understand metaphor for context widgets is not only meant
to provide an easy to use framework but also to encourage building additional
widgets that can be reused. From [Dey00]:

25

[...], we need to provide support so that the building of these
components is actually easier than ad hoc implementation within
the application.

In addition to the context widgets the CTK also introduces the concepts of In-
terpreters, Aggregators, Services and Discoverers that correspond to other needs
of context aware applications. A discoverer in this framework is a component
that acts as a registry for other components and provides services to find re-
mote components. Figure 4.1 shows the core of the object hierarchy used to
model these concepts where the arrow direction indicates the specialisation of
classes. The common ancestor of all objects is the BaseObject that provides the
communication infrastructure used by all components.

Figure 4.1: component model in CTK (from [Dey00])

4.1.2 Architecture

The framework has been implemented in an object oriented approach using the
Java programming language. All concepts have been modelled to include a com-
mon parent class that provides functionality for communication and all other
common tasks shared among the concepts (such as storage, timekeeping etc.).
While the components in the framework are decentralized and therefore do not
provide a central point for finding other components the discoverer concept pro-
vides this kind of functionality. Applications do not need an explicit discoverer
component but can instead use network broadcast messages to find one. When

26

a discoverer component has been found, it can be queried for other components
in the network that in turn have registered with this discoverer component.

Figure 4.2: CTK architecture (from [Dey00])

Figure 4.2 shows an example constellation of components that can provide con-
textual information to applications. The component structure of the framework
suggests using a container framework like Spring[Spr13] to provide a flexible
system for starting the main part of a smart application. Distributed sensors
however will more likely be implemented as stand-alone applications communi-
cating with the rest of the system.

The communication protocol used by the components has been designed to
be independent of the used programming language and operating system and
makes use of XML for data representation and HTTP as a transport mecha-
nism. It is therefore possible to have independent implementations of various
parts of a context aware application. By using a defined set of messages encoded
in XML components can transparently exchange information.
By using HTTP for information transport each component has to act as a HTTP
client and also as a (simplified) server. This implies that each component needs
to open a network port on its local system to be reachable by other compo-
nents. The combination of the host name (or IP address) and the used port can

27

therefore be used as a unique identifier for components1.

4.1.3 Context Information Model

Context information is represented by attributes of context widgets. These at-
tributes are complex data types and are identified by a given name. The value
of an attribute depends on its type that can either be one of many standard
primitive types (boolean values, character strings, numerical types, etc.) or a
nested structure of attributes and their values. This data model for context
information permits to encode virtually any information that can be found in
applications or databases.

There is however no meaning attached to the information. External conven-
tions have to be made to provide a common understanding of attribute names
and the meaning of the value. When an application is searching for a provider
of context information it can send a description of the needed data structure (in
terms of attribute name and type) to a discoverer that will eventually provide
suitable components.

4.1.4 Context Information Delivery

Analog to graphical user interface widgets context information is delivered as an
event to the application. While normal input events are sequential and typically
handled in a single thread of execution different context events can happen while
others are still being processed. Widgets in the CTK therefore deliver context
events in individual threads of execution.

While this has some benefits it puts an additional burden on the application
developer in terms of potential problems of parallel access to resources and also
increases needed resources by creating additional threads. In case of high fre-
quency events from sensors the creation (and dispose) of threads may require
a lot of system resources. The creators of the CTK are aware of this problem
and propose a selectable means of delivery (e.g. single threaded) but so far have
only implemented the multi-threaded behaviour.

1at least in local area network (LAN) structures

28

4.1.5 Usage in Applications

While applications can make use of the CTK framework by implementing the
used protocol themselves reusing the provided software as a library is a more
convenient approach. Application developers will mostly make use of the com-
mon base class provided by the framework that implements the communication
protocol. Relying on the existing methods retrieving the context widgets and
subscribing to events is a straightforward process. The only thing left to the
developer is implementing the application logic that performs tasks correspond-
ing to the received information. Developers that want or need to to create
new sources of context information will make use of the Widget class itself that
provides the needed mechanisms to define attributes and distribute values to
subscribers.

Receiving Information

When an application wants context information it needs to create a subclass of
the base class to have access to the communication mechanism. This allows it
to automatically search for discoverers in the network. To find a suitable widget
a query is sent to a discoverer through a method of the base class. No direct
communication with the discoverer is needed. The query contains a description
of the needed attributes and types. The discoverer will return a list of match-
ing components that can be queried for further information. If the application
decides to use a component it subscribes for receiving updates. In case that no
matching component is found an application can also subscribe to the discoverer
to be notified on the discovery of new components to eventually find a matching
widget later.

When new data is available from the widget a handler method is called where
data can be parsed from a supplied data object. The data object represents the
hierarchy of nested attributes and values and needs to be traversed to recon-
struct the needed information as an application defined data type (if needed).
This data handling is also done when waiting for new components from the
discoverer. Specialised methods transform the data object to a component rep-
resentation that can be used to subscribe to the corresponding widget. There
is only a single handler method for all subscriptions and the application has to

29

keep track of the information source by comparing a supplied identifier.

Providing Information

To provide context information an application has to create a subclass of the
Widget class to inherit needed functionality. For simple information cases (e.g.
temperature readings) the class only needs to specify the provided attributes
and a way to obtain this information. By creating an update notification the
new value is automatically sent to all current subscribers of the widget. Per
default a widget will try to locate a discoverer and register itself with them to
make it available to other components.

4.1.6 Code Metrics

The framework has been designed using an object oriented approach. This is
characterised by the introduction of abstract base classes and subsequent spe-
cialisations of these classes that inherit a certain set of common functionality.
In addition to the encapsulation of functionality in classes, packages are used
to form a logical grouping of classes inside the structure of object oriented soft-
ware. The package concept is not only found in object oriented programming
languages but is also a method of logical separation of functionality in general.
When building software systems reducing the dependencies between packages
and therefore also between classes from different packages in the object oriented
approach is desirable from a software quality viewpoint. In addition, the com-
plexity of individual methods should be kept low to ensure that their behaviour
is well defined and can be tested automatically. There exist tools that can
automatically analyze code and generate quality metrics. Using these metrics
developers can set acceptable limits to their own work and receive automatic
feedback on the current state of their development. If a limit is exceeded a de-
veloper has to decide whether this result is still acceptable for the given method
or package or if changes need to be introduced to maintain the desired goals in
quality.

Code metrics can also be applied to foreign code to get a quick overview on
potentially problematic areas in terms of maintainability or methods with a po-
tentially complex behaviour. In case of the CTK framework code metrics have

30

Figure 4.3: dependency graph of the Context ToolKit

been applied to get an understanding of its structure and dependencies between
packages. Figure 4.3 show the result of an analysis using the metrics2 [Met14]
plugin for the Eclipse Java IDE[Ecl14].

The nodes in the graph represent packages where a number in the upper right
corner shows the number of sub-packages not shown. An edge in the graph
represents a dependency where the thinner side connects to the package that is
being used by another package. The central package of the graph that is used
as the origin for the dependency analysis is colored in a grey shade and normal
packages are colored lighter. During the dependency analysis some packages

31

may be found to form circular dependencies with each other. These packages
are called strong packages or tangles and are colored darker. A grey circle is
associated with each tangle and shows the number of involved components and
the length of the shortest path from one component to another one in the cycle.
Analyzing the CTK shows that 202 classes inside 28 packages are present where
about 30 of these classes are not strictly part of the framework but can be
used to demonstrate some functionality of the framework. The dependency
graph is therefore quite complex and does not intuitively provide an insight into
the framework. The graph does show however a very high dependency between
packages in the framework as indicated by the single tangle that almost connects
all packages. On the outer side of the graph packages containing demonstration
code are visible that are also logically separated by a different base package.
A feature of the code metrics plugin is the inspection of individual tangles that
can provide a better view on the packages involved in a cyclic structure. This
detail view can be seen in figure 4.4.

For an application developer the creation of widgets is the central entry point
into the framework but the high amount of dependencies between packages can
be confusing. Apart from human confusion each dependency between packages
increases the instability of software. Instability, as defined by [Mar03], describes
the effect of changes outside a package on the package by the ratio of efferent
coupling (dependency on external packages) to the sum of efferent and afferent
(external packages depending on this package) coupling. In an ideal case, a
package does not depend on classes from other packages and is therefore not
affected by change. Such a package would have an instability of 0. The most
unstable package, a package that only uses external packages, would have an
instability of 1. A cyclic dependency can therefore have a great impact on a
software system where a change in one package requires changes in all other
packages inside the cycle.

The whole CTK source code has been analyzed to have an average instability
of 0.403 (±0.292) but this value cannot be directly used to judge the frame-
work as it also contains the demonstration code. The demonstration code has
naturally a high instability as it only uses other packages and biases the overall
result. More appropriate is to look at the package containing the base class to

32

Figure 4.4: dependency graph of the Context ToolKit core

derive new context widgets. The context.arct.widget package has an instability
of 0.278 derived from an efferent coupling of 5 and an afferent coupling of 13.
Further generated metrics show that most of the instability in packages is found
in internal packages that deal with the protocol and widget discovery and do
not directly affect the developer of context widgets.

To get an understanding of the complexity of the framework classes the Cyclo-
matic Complexity measurement[McC76] of class methods is calculated. While
this metric only counts potential control flow paths in methods it can be used
to find methods that are more complex than others in a software system. The
generated metrics show an overall complexity of 2.061 (±2.570) for the complete
framework (again including the demostration code) with a maximum value of 54.
This highest value is found in a class dealing with the storing of context infor-
mation. Other methods with very high complexity deal with internal discovery
mechanisms. For the BaseObject (and therefore any Widget implementation)

33

the methods dealing with querying the framework for context widgets have a
higher complexity (9-11) which comes at no surprise.

4.1.7 Discussion

The idea and implementation of the Context ToolKit are very well suited for pro-
viding context information in a distributed system. The used widget metaphor
and object oriented approach make it easy to create applications using the
system without knowing details about the implementation. While it is very
straightforward to create a context providing widget the handling of received in-
formation is more difficult. The framework supports the developer by providing
a callback mechanism that is similar to the response to user interface elements.
Extracting the actual information however requires dealing with a complex ab-
stract data type. When looking at the actual implementation it is unclear if a
better approach to the data extraction issue exists, e.g. if the framework could
provide methods to automatically extract requested data types but the provided
examples are showing only the manual way. Related IPC frameworks such as
the Java Remote Method Invocation (RMI) or D-Bus proxy objects allow an au-
tomatic handling of abstract data types by a compatible local wrapper to lift the
work of manual extraction from the developer. This functionality may or may
not be already present in CTK. Documentation that clarifies this point has not
been found. Seen from a high level perspective the design of the framework and
the model of context information is suitable from the information distribution
aspect for smart applications, but shows drawbacks when used in a wearable
computing scenario.

The choice of a decentralized communication scheme makes the system flexible
but also more resource intensive. Each component has to act as an individual
server to process HTTP requests and each request is handled in an individ-
ual thread. While this effect has only a small impact on a typical desktop or
server system a small or embedded system may have difficulties providing the
resources while still being responsive. As a side effect of using HTTP as a trans-
port mechanism a lot of information needs to be send for every request. This
is a result of the stateless nature of the protocol that treats each connection
independently and therefore needs instructions from the client to perform an
operation. This is a common problem with Web Services[Web04] where appli-

34

cations request information that depends on a previous state. While there exist
techniques to mitigate the information overhead such as persistent sessions or
the use of WebSockets[Web11] they have been retrofitted into the stateless na-
ture of the protocol to be useful when mixed with applications running inside
a web browser. Implementing these measures can reduce information overhead
but adds an additional burden on the server side. In case of the CTK, where all
components implement a HTTP server, this would mean to trade transmission
costs for computation costs. Overall this could be a benefit but would at least
make the system more complex.

The used method of component discovery may also pose a problem for wearable
computing. A broadcast message is typically only visible in the same network
but will not be transmitted, for example, from a wired network into a wireless
network. Therefore a component in the environment (LAN) will not be vis-
ible from a mobile client (WLAN, GPRS). The components of the CTK can
communicate directly if their address is known in advance but doing so is a
contradiction to the discovery mechanism. Using XML to encapsulate data is a
popular choice but also wastes a lot of data that is mainly useful to allow human
inspection. While wireless networks become faster they still offer only a fraction
of the bandwidth found in a wired network. And even if network speed is not
an issue transmitting more data results in higher energy use. Energy is a very
valuable resource for a mobile client and therefore a more compact transmission
format would be desirable.

From a software development view the framework is robust but very complex.
There is no technical separation of the framework code and the code used for
demonstration. This supplies a new developer with examples on how to use the
framework but adds unneeded resources to a project. The overall structure of
the project shows cyclic dependencies that create potential burdens on further
maintenance of the framework. While a developer will typically not deal with
all aspects of the framework and the packages that are directly used only have
a few dependencies it complicates the understanding of the framework.

The goal of the CTK framework for context aware applications was to pro-
vide support so that the building of these components is actually easier than

35

ad-hoc implementation[Dey00] but it seems that this goal is not fully reached.
While the creation of components is very simple and a discovery mechanism is
in place the usage of the provided information can still be difficult.

36

Chapter 5

The TZI Context Framework

Context information is any information relevant to the current use of the wear-
able computing system. This includes information on the user and the system
itself (c.f. [Dey00]).

To make context information available to an application it has to be input into
the system by some technical means. Many approaches have been shown in the
past where each can be used to solve particular problems in this domain. In this
chapter the design and implementation of the TZI Context Framework (TCF) is
portrayed. This framework is a direct result of the requirements of the wearable
computing approach developed in the SiWear project and was developed at the
Center for Computing and Communication Technology (TZI). Its main focus
is the integration of contextual information into a typical network found in in-
dustrial environments and limiting the needed resources on the wearable clients.

After outlining the motivation and discussing related technology the represen-
tation of contextual information is presented. Following this high level concept
the actual implementation in an object oriented approach is shown. A compar-
ison between the TCF and the CTK reveals the strengths and weaknesses of
the individual frameworks and verifies the fittness of the proposed framework
for wearble computing applications. A discussion of the concept of handling
high level context and the evalaution of the framework in the SiWear project
conclude the chapter.

37

38

5.1 Motivation

Unlike typical applications for desktop environments, wearable applications are
in general not self-sufficient (c.f. [SS02]). In order to work at their full potential
they need access to systems that are not worn on the body. At a very low level
this dependency on other systems results in the requirement of wireless network-
ing for the wearable system that can come in different flavors. For industrial
settings a wireless network may simply be a connection to wireless LAN access
point that provides access to the rest of the available network infrastructure,
possibly including access to the internet itself. For mobile wearable applications
a wireless network will likely be realized by connecting to the internet via a cel-
lular network were bandwidth and connectivity are far more limited compared
to a WLAN connection. Between these two extremes are many possible vari-
ations, e.g. in some scenarios a wearable system may rely on available public
WLAN hotspots to access data when possible.

Some existing systems for context distribution have been designed to implement
smart objects in a fixed environment[Dey00]. For these approaches bandwidth
and connectivity issues are virtually not existent as these have to be solved once
when the smart object is installed into the environment. When these systems
are to be used in a mobile scenario, several problems arise. Apart from dramati-
cally reduced bandwidth network techniques for discovery, such as broadcasting,
may also not be available in such a network.

The context distribution system that was developed here has been built to be
usable in a limited network environment - especially in cellular networks. Key
ideas here were the reduction of transmitted information, explicit handling of
sporadic disconnections, easy protocol handling on the client side (for resource-
limited devices) and robust discovery of information sources.

5.2 Distributed Communication Schemes

As previously discussed, the communication approach used in the Context
ToolKit (CTK) is suitable for making information available in distributed sys-
tems but has high demands on bandwidth and processing power. Other ap-

39

proaches focus on special fields where only limited types of information are to
be distributed as shown in [RLRT11]. The distribution of information is a com-
mon problem in many computer systems and many specialized systems have
been developed. To motivate the development of a suitable communication
scheme for wearable computing applications a few selected systems haven been
investigated.

5.2.1 D-Bus

The D-Bus[DBu14, Lov05] system is a framework for inter-process communica-
tion (IPC) and is part of many Linux-based operating systems. Applications
can register themselves with the D-Bus service to provide services to other appli-
cations. Messages can be either method calls that interact with an application
or signals that notify applications of a certain event.

This idea can be extrapolated to sensor systems where sensor information is
distributed in the same way. However, D-Bus is limited to a local infrastructure
and while it would be technically possible (to some extend) to transfer messages
in distributed systems, it was not designed for this purpose. The system uses a
forest-structure to group information where each tree is constructed from textual
identifiers. This way of grouping by textual prefixes is commonly found in many
aspects of programming (e.g., nested data-structures, package hierarchies, file
systems, etc) and is therefore easy to grasp for application programmers while
it puts additional burden on the technical system. In other words, the D-Bus
system provides abstract information in a commonly understood structure.

5.2.2 IRC

Internet Relay Chat[IRC93, Wer96] is a protocol that solves the problem of
offering a global system for textual communication that uses a distributed net-
work. The structure of the protocol is designed to be human readable and easy
to implement for different systems. While not designed for carrying sensor in-
formation the design can be adapted to fit other needs. A special client-to-client
protocol (CTCP)[IRC94] exists to create an isolated communication channel be-
tween two users that can be used to implement file exchange and other services.
The concept of people talking in different rooms can be seen as an analogy to

40

the use of sensor information. The same utterance in different rooms can have a
different meaning. That is, the room an IRC conversation takes place provides
a context for interpreting what was said. By joining a room a user expresses
interest in data concerning a specific topic. IRC therefore models a way of struc-
turing information flow by letting users choose where they say something and
also from where they want to receive information.

5.3 Describing Context in an Abstract Way

One of the problems when designing context aware systems is finding a proper
description of the needed information that is not too specific to the used sen-
sors and also not too complex for practical use. The meaning of context is
also not fixed and may be different in many application domains. There have
been many attempts at providing formal descriptions for context information
([KWN05, Sch00]) but they have not found a wide use for various reasons, e.g.
being too abstract, too complex or just not suitable for a given task. It is un-
likely that one framework will be able to suit the needs of every possible use.
On the other hand there are not many applications for end users that make use
of very complex information from the environment. The design of the general
framework for handling context will therefore focus on being easy to use from a
developers point of view. Easy use of a framework will encourage experimenta-
tion which will hopefully lead to improvements. In other words: since little is
known about how to use complex information in applications, a context frame-
work should concentrate on providing easy to use means of dealing with simple
context information.

This leads to another question: What is simple context information ?

A simple context does not necessarily mean that it consists only of simple in-
formation. A prominent example is the use of location information in mobile
applications. Getting coordinates for positioning is a complex task but the use
in the application is actually simple. The application does not have to deal
with the how of getting the information but just incorporates that information
for other purposes like location based services or just plainly to show the users
location.

41

In this work, simple context information will be characterised by the low com-
plexity of the contained information. Location information for example simply
consists of coordinates in a common coordinate system and some kind of er-
ror estimation. In other words: a simple location context does not provide all
means to infer the meaning of the values (e.g. coordinate pairs). It is expected
to be used in a common way, e.g. coordinates are implicitly expected to be used
for terrestrial navigation and not as markers for craters on the moon. Another
example are temperature readings. A simple numerical value is not enough to
infer the used system (Fahrenheit, Celsius, Kelvin, ...) but is sufficient if the
system is clear from the application domain.

Assumption 1: Simple context information provides values but does not con-
vey any meaning.

One could argue that this kind of simplification will lead to incompatible sys-
tems due to misinterpretation of readings. But from a practical point of view
the change of coordinate systems and units will occur very seldom. Instead of
providing information for late inference the framework should rather make it
easy to write wrappers for sensors that use a different system. And in cases
where creating a wrapper is not possible it is also unlikely that the application
would be able to use the data even if it could infer information on the semantics
of the data, e.g. adding a gyroscope to a system that has no ability to process
rotation is futile. If an additional sensor is intended to stabilize or improve
another sensors reading, the output of this system can be used instead when
wrapped appropriately.

Assumption 2: A system for handling simple context information is enough
to create context aware applicaitons.

Even among sensors that provide simple information in the previously men-
tioned sense a logical structure has to be created to allow uniform treatment of
different sources of information. While an explicit sensor can be accessed in a
specific way by an application (e.g. reading coordinates from a GPS receiver)
allowing it to interpret the values correctly, this method does not deal well with

42

the replacement of sensors. For some applications defining classes of sensors
among their domain may be appropriate but it suffers from a similar problem
that is found in object oriented programming. Here a specialized instance of a
class may provide useful properties for the application to exploit but these are
not visible if it is used as a general (less specialized) class instance. A practical
approach to this problem is checking for known specializations but these have
to be known to the programmer. Sensors can be similar to this. For example
a light sensor is expected to provide the level of lighting. More specialized sen-
sors may be able to also provide their limits (e.g. maximum reading) or the
resolution of the sensor (e.g. a very simple sensor may only be able to differ-
entiate between ’no light’ and some defined threshold before switching to ’light’).

The underlying problem is the same as with the object oriented programming:
An application can only make use of properties where their meaning is known.
But unlike OOP, a set of necessary and optional attributes can be defined for
many sensors by common understanding of the application domain. Missing
attributes will probably degrade the overall performance of an application but
it can still fulfil its purpose.

Assumption 3: Sensors can provide optional information besides the required
readings. Due to the nature of these additions, a formal description would be
very complex. A simple, common-sense based approach will have a positive ef-
fect on using this kind of information

Regardless of information being optional or necessary a need for grouping in-
formation concerning a physical or logical object arises from these observations.
A framework for handling sensor information needs to provide some kind of
abstraction to relate sets of values to a particular sensor and also to support
multiple instances of the same sensor (e.g. providing support for multiple accel-
eration sensors mounted on tools, the body, etc.). The most important decision
is the handling of values from a multidimensional sensor. The longitude and
latitude information from a location sensor are mostly useful together, as are the
values from a tri-axial acceleration sensor. From a technical point these values
can be handled as an atomic set or as individual entries. An atomic set means
that the values in this set can only be transmitted or received in one operation in

43

contrast to multiple operations used for individual values. This distinction can
matter when information is transfered in real time. For one reason or another,
individual values may not always arrive in a determined sequence and have to
be combined by the application. On the other hand, individual entries can be
retrieved selectively and more important (from a developer point of view) avoid
the need for complex data types.

The proposed framework choses the approach of using individual values. In
section 6 it will be shown that this can also have a practical benefit on band-
width consumption. However: if atomic value sets are needed, the framework
should support them by letting the application designer take care of the details
(e.g. wrapping and unwrapping multiple values from a single transmission).

Assumption 4: Avoiding complex datatypes in the framework allows easier gen-
eral use.

The following chapter will outline the logical structure for dealing with sim-
ple context information by following these observations.

5.4 General Context Handling

Previous approaches concentrated on either the access to context information
or on the means of recognizing context from given signals. Also distribution of
context was addressed. In order to create a truly reusable system for context
use it has to be operating system, programming language and interface neutral.
The less assumptions on the system are made the higher the chances are for a
successful reuse.

This comes at a price however. Neutrality means that such a system is un-
able to convey the meaning of information, that is, semantic information can
not be part of the information and has to be created at the application level.
On the other hand this approach allows for injecting arbitrary data into the
system without bending or breaking semantic rules. It therefore allows rapid
prototyping of context aware applications without explicitly specifying seman-
tics that may change at a later point for various reasons.

44

The proposed framework has been built on the following assumptions:

• Information in a context is given a semantic meaning by the context.

• There can be more than one context in a domain allowing for different
meanings of the same information.

• Information has a source. That is a physical or logical object to which it
belongs.

• Sources have one or more properties that carry information.

• Each information is assigned a time-stamp indicating the time this infor-
mation became valid.

• Context information can have a persistent or transient character. That is,
persistent information is valid until it changes while transient information
is valid for a short time or only punctual.

• While semantic information cannot be transmitted certain classifying ele-
ments (tags) can be attributed to information.

A simple example for this view on context information is given in figure 5.1.
A room has two sensors that monitor the state of a window (open or closed)
and the temperature in the room. The state of the window is an example for
persistent information as it will not change over time. The temperature sensor
provides transient information as the measurements are taken periodically and
may become invalid very quickly.

This example also shows the logical grouping of context information. The phys-
ical room has two properties: the state of the window and the temperature.
Inside a given context the room is a source of information. Both properties
contain values that are related to the room and can be interpreted according to
the context of the room.

This kind of separation represents a simple hierarchical model of three layers
as shown in figure 5.2. Information is first grouped by a context in which the
information is to be interpreted. Secondly, physical and logical items inside the

45

Figure 5.1: room context example

context form sources of information. Inside these sources an arbitrary number
of properties hold values from the environment.

Figure 5.2: context hierarchy

Properties themselves hold the corresponding value and also other information
such as the validity of the information (persistent or transient) and a time-
stamp. Furthermore, an optional set of tags can be associated with a single
piece of information. This structure is visualized in figure 5.3.

5.4.1 Infrastructure for Context Distribution

A common scenario in wearable computing is the availability of numerous con-
text sources and computing devices that require specific types of information

46

Figure 5.3: property details

from these sources. The problem of providing information to these devices is
best solved with a Client-Server-Architecture were a server acts as an aggrega-
tor of context information and clients provide or request specific information to
or from the server. Seen from a software development side this follows both,
the mediator and the observer pattern as found in [GHJV95]. A mediator is
needed as context aware applications do not necessarily know the specific type
of sensor found in the environment and therefore need a discovery technique.
The observer pattern reflects the need of applications to be notified of changes
in the sensor readings or the occurrence of events in the environment.
The server side of the framework is designed to run on a computer with high
processing power and availability thus being able to serve many clients simulta-
neously. Clients only need very little computing power and may stop and start
participating in communication frequently.

Clients providing contextual information send it to the server where it is stored.
If a client needs access to context information it can either actively request in-
formation from the server or subscribe to certain types of information which are
then pushed to the client on arrival at the server (push-approach). Figure 5.4
shows a diagram of the client-server structure. This design additionally allows
chaining together several server systems by having a server act as a client to an-
other server and mirroring arriving context information or selected parts. This
allows for building redundant systems or specialized sub-servers only providing
specific information to reduce processing load. See figure 5.5 for an illustration
of this kind of filtering.

47

Figure 5.4: client server diagram

5.4.2 Data Structures for Context Information

While the fixed structure of context information as defined by the framework
allows a very simple abstract data type for modelling definitions to transfer this
information over a network connection have to be defined. When clients receive
information or send an update of a sensor value it has to be encoded into a data
stream that represents the internal model.

Updates of context information can originate from two different components
of the framework. The first component is the server that manages all sources
of information in the environment and needs to keep track of changes sent by
connected clients. The clients are the second component in the framework that
have to deal with changes sent by the server. Following an observation from the
needs of both, context providers and context aware applications, clients may
require only very little functionality in terms of context management. While
the server needs to keep track of new context sources or their removal, a client
might only be interested in getting updates on a very specific set of information.
In that case, replicating the tracking of information on the client would waste
resources. On the other hand, some clients might be interested in this kind of
information, e.g. a context aggregator might depend on the presence of several

48

Figure 5.5: context filtering for a second server

information sources and has to react on changes of the environment.

Storing of context information on the server is separated into the maintenance
of an environment model that keeps track of existing sources of context infor-
mation and the notification of clients when requested information changes. The
environment is modelled very closely to the proposed data structure for sim-
ple context information but implements a design that allows resource efficient
access and changes to the components inside the model. Figure 5.6 shows a
simplified UML diagram on the implemented data structures but leaves out de-
tails. See figure B.1 in appendix B for a detailed version. The diagram shows
how the framework models an active environment of information sources. The
Environment class serves as a central control structure that encapsulates the
management of logical elements in the context model. Only one instance of the
environment is present at a server or client. The actual model of context infor-

49

Figure 5.6: simplified environment model

mation inside an environment is represented by the classes ContextAbstraction,
SourceAbstraction and PropertyAbstraction1. All of these classes are derived
from the common base class AbstractItem. The software development approach
behind this allows the environment to treat all of the abstractions in the same
way as the basic AbstractItem class. Inheriting from this base class all items
have an assigned numeric id that is unique inside the environment. This enables
the protocol to reference any item inside the environment by this number and
in turn allows a very efficient lookup of items. The environment class provides
methods to perform different lookups that can be either based on the given
names of items or their numeric identifiers. In addition to the management
functionality, the environment representation implements a callback function-
ality that can be used to notify interested objects of structural changes in the
environment such as the addition or removal of elements.

While the representation of context and source elements is straightforward, the
representation of properties is more specialized. The PropertyAbstraction class

1by convention, Java class names are written in CamelCase where each word begins with
a capital letter

50

does not contain the context information but only a reference to a PropertyVal-
ues object that serves as an abstract data type encapsulating the information.
This separation of concerns allows to add or remove elements to the property
model at a later state if needed without influencing the management of the en-
vironment. In addition to the value reference the PropertyAbstraction class im-
plements a callback functionality that can inform registered listeners of changes
in the values. Using this mechanism updating values inside the environment
will automatically create an appropriate event. This is used inside the server to
process the subscriptions to context information by individual clients. While the
environment model is the central part of the server system clients might need
the ability to mirror a subset of the environment to perform special operations.
For this case the PassiveEnvironment class exists that is functionally identical
to the Environment class in terms of managing changes in the environment. The
difference between these two implementations is that the passive environment
does not assign unique identifiers to items but requires them when items are
added to it. Using this special class a client can keep track of an environment
by using the same identifiers as given by the central server component and make
use of the efficient lookup mechanisms.

While the environment model is a very sophisticated approach for dealing with
a changing environment it can become rather complex. Simple clients that only
request a defined set of information might not want to invest the needed re-
sources required by the model. The framework provides a second model that
still provides some convenience methods for dealing with context information
but does require only a low amount of resources. The UML diagram in figure
5.7 shows the involved classes and interfaces. The class Context represents a
complete logical context inside an implicit environment and manages its sources
and properties on its own. The ContextElement class in this model serves as
an abstract data type that references values of a specific property in a given
source. Information on the context of the source is not present in this class.
The Context class implements a callback functionality that allows classes that
implement the ContextListener interface to be notified of events in this specific
context. This includes structural changes such as the addition or removal of
sources and also provides a method of processing updates to the values of a
property. All methods that deal with changes to a context are supplied with

51

Figure 5.7: context data model

a reference to the originating Context class. When a change to the values of a
property occurs, the processContext method of the listener is called. In addition
to the context reference a ContextElement object is passed to the method that
identifies the source and property and contains the context information.

On the server side, these classes are used to model client subscriptions to con-
text information. A ContextListenerInterface implementation, provided by the
ContextListener implementation, defines the events that are of interest to a
client. Only when a matching event occurs (e.g. a subscription has been made)
the server will send a message to that client. There exist currently two im-
plementations of the ContextListenerInterface. The ContextListenerProperties
class defines matching events by a set of given properties, such as valid source
names, valid tags, etc. The ContextListenerScript class can be used by clients

52

to define more complex rules by submitting a script to be run on the server side.
On each event an appropriate function of the script will be evaluated to see if
an event should be transmitted to the client. Using a script can for example
perform text comparisons for decisions or use an internal state that influences
the outcome of a check. For a detailed overview on the class structure on the
server side see figure B.3 in appendix B.

On the client side a simple class structure provides methods to communicate
with the server side and convenience implementation for dealing with context
information. At its core it implements the used protocol and provides a callback
functionality to react to context information sent from the server. The diagram
in figure 5.8 shows a simplified overview on the involved classes. See figure B.4
for a detailed version.

Figure 5.8: simplified client model

The ContextClient class implements the network protocol for the client side.
It is used to connect to a server and can automatically handle connection loss
and reconnect to a server without intervention from the application. It provides
rudimentary methods for sending commands to the server, such such subscrip-
tion to context information. It provides a callback mechanism to notify the
application of incoming messages. The ContextListener interface is used on
the client side to provide a needed abstraction from the raw protocol. The
ContextClient class will create appropriate Context instances an communicate

53

context information with ContextElement objects. For more high level handling
of context information the ContextManager class provides more functionality.
The class itself implements the ContextClient interface and uses the provided
low level information to update an internal PassiveEnvironment model. It can
make use of the unique identifiers in requests to and updates from the server
reducing the needed bandwidth (in contrast to using names). See section 5.4.5
for more information on this feature.

The ContextManager is meant to be used by context aware applications. It
provides convenience methods to request and set properties and performs other
housekeeping tasks that allow the developer to focus on the application logic
instead of dealing with the framework.

5.4.3 Differences between TCF and CTK

The representation of context information in TCF is very different from the sys-
tem used in CTK. While TCF demands a context-source-property structure for
information a context widget in CTK can freely choose a structured abstract
data type with named fields to transmit information. On the one hand, this
enables the widget designer to model physical or logical structures of observed
entities. On the other hand, this introduces a overhead when modelling simple
properties, such as sensors that only provide one reading (e.g. a temperature
sensor or a simple switch). Depending on the application domain the simple
system of TCF can either ease the design of an appropriate information repre-
sentation or could introduce the need for inconvenient workarounds.

Another conceptual difference between the approach here and the CTK is the
use of a centralized server for receiving and distributing context information.
The main reason for this decision is the difficulty of discovering devices in a
peer-to-peer network as used in CTK. If an application using CTK wants to
access a source of context information it broadcasts a message on the network
asking for matching sources. The sources or a discoverer answer this message
automatically which allows to deploy new sensors simply by connecting them to
the network. While this is a very elegant solution it does not work in most mo-
bile and wearable settings since broadcasting only works inside a single network
(e.g. as found in home automation) and is not supported by cellular networks

54

in general. Even in an industrial setting this technique will most likely not work
as wireless- and wired LANs are often technically different networks. A possible
solution for this scenario is the use of a centralized server where each component
registers itself and can query this server for information on how to contact other
components to engage in a direct communication. This kind of approach is for
example present in instant messengers where each participant is logged in at a
central server and can be found by others.

In addition to the discovery problem there is another issue again related to
network technology. If each component engages in peer-to-peer communication
they need to be servers per definition and therefore require permissions in the
firewall protecting the network. This potentially puts a huge burden on the
IT workforce or requires tricks on the side of the components with help from
a centralized server such as hole punching[FSK05] which may or may not be
acceptable for a network depending on IT policies. With a centralized server
approach only one device needs special treatment regarding the network con-
figuration but can also be controlled more easily in terms of network security.
Further benefits of a centralized system are additional services that can be pro-
vided such as storing sensor data for later use, data filtering and the generation
of various statistics on the processed data.

5.4.4 Code Metrics

The framework follows a very simple design principle that allows developers to
quickly create applications without the need to implement a specific model for
the context information they intend to use. Since the framework is separated
into a server and a client side the implementation follows the same division by
creating packages that are specific for each side. A third part of the framework
emerges from the need of equal functionality on both sides. These components
are placed in a common package. This separation of code into packages and a
set of common functionality leads to a development approach that limits the
instability of the system as a whole. Changes to the server side do not require
changes in the clients as long as no modification is needed in the set of common
components.

55

To analyze the components in a more objective way a set of metrics has been
generated similar to the findings in section 4.1.6. When analyzing the com-
ponents common to both sides only a very flat structure is found. It consists
of 32 classes in two packages that define the behaviour of the communication
protocol and the needed classes and interfaces to model context information.
This structure can be seen in figure 5.9.

Figure 5.9: dependency graph of common package

Computing the instability metrics for the common classes results in a low value
of 0.062 (± 0.062). The communication related functionality has a value of 0
from an efferent coupling of 0 and an afferent coupling of 32. For the context
information model a value of 0.125 results from a coupling of 1 (efferent) and
7 (afferent). The value of 0 for the first set of classes shows a desired property
of a common set of functionality as it has no external dependencies. Looking
at the complexity metrics shows an average value of 2.642 (± 2.642) with a
maximum value of 18. The highest valued method is found in a class dealing
with the definition of listeners for context information that is mostly used on
the server side. Other high values methods are related to the implementation
of the network protocol and the representation of abstract data types in the
communication.

The server part of the framework consists of 47 classes in two packages that are
roughly split into classes for the available commands and classes that deal with
the management of context data. This structure can be seen in figure 5.10 that
also shows the dependencies on the common set of functionality. Looking at
this graphical representation a circular dependency between the server and the
commands is visible. This results from the nature of the provided commands

56

Figure 5.10: dependency graph of server package

that directly manipulate the state of the server and are in turn called by the
server process.

While application developers will typically focus on the creation of applications
that make use of the client side looking at the instability metrics can provide
some insight on the design of the server side. A value of 0.696 (±0.251) has
been computed for the server as a whole were the command package has an
individual instability of 0.947 (afferent coupling of 1, efferent coupling of 18)
and the control classes score 0.444 (afferent coupling 10, efferent coupling 8).
This reflects the circular dependency of command and control structures that
have to change simultaneously.

Looking at the complexity metrics reveals an average value of 4.313 (± 7.638)
with a maximum value of 75. This very high value is found for the command
that deals with handling subscription requests from a client and is also the
complexity of the main server loop. Other high values are also found for other
commands and for functionality that deals with storing and retrieving contex-
tual information from database systems. In general, code from the server side
of the framework tends to be more complex but on the other hand this is of no

57

concern to the application developer.

Figure 5.11: dependency graph of client package

The client part of the framework consists of separate classes for the client imple-
mentation and for demonstration classes. There are 17 classes for the client code
that provide functionality to communicate with the server part. The demon-
stration code has an additional 32 classes that can be used as examples for
implementation. The structure of dependencies, including dependencies on the
common classes, can be seen in figure 5.11. The package org.tzi.context in this
figure contains the demonstration code while the org.tzi.context.client package
represents the implementation of the actual client side of the framework. No
cyclic dependencies are present but one can clearly see that the context.client
package and base context package form two clusters in the graph with similar
dependencies. This reflects separation of the demonstration code.

The dependency graph can be shifted to the demonstration package that is
more close to what an actual developer would experience with the framework.
This rearrangement can be seen in figure 5.12. When looking at the resulting
structure a desirable configuration can be seen where the demonstration code
has clear dependencies to other packages on the client side and these packages
have only a few other dependencies. This is an indicator for a suitable separa-
tion of concerns.

58

Figure 5.12: dependency graph of client package, context view

Instability metrics for the client side have been computed as an average of 0.583
(± 0.417). This includes the demonstration code. When computed separately
the demonstration code shows an instability of 1 (afferent coupling 0, efferent
coupling 5). This result is only natural as the demonstration code does not
contribute to the framework and only uses its functionality. The instability for
the actual client side is 0.167 from an afferent coupling of 15 and an efferent
coupling of 3. This low instability reflects the graphical representation that
shows very independent packages of functionality.

The complexity metrics for the client side could only be computed including
the demonstration code. A average value of 3.489 (± 7.976) with a maximum of
70 is found. The highest value results from the main loop of the communication
thread inside the client class. This method is not used by an application devel-
oper but handles receiving and sending data from and to the server. Other high
values are found in demonstration code or other internal methods that handle
different aspects of communication.

59

5.4.5 Communication Protocol

The following sections will provide an overview on the most important aspects
of the implemented protocol in the context distribution framework. A complete
protocol reference can be found in appendix A. The protocol used in commu-
nication between server and client is based on transmitting messages as lines
of text. The end of a line indicates a complete message that is then processed
by the corresponding communication partner. However, the protocol defines a
maximum length of each line that serves as a protection against a malfunction-
ing client (or attack).

In general, clients send a command to the server and wait for a reply. When a
client subscribes to context information, as an exception from this, the server
will automatically send this information to clients as a special message. To help
making messages platform independent their content is always represented as
UTF-8[UTF03] encoded text and numbers use a decimal representation. Indi-
vidual parts of the message are URL-encoded[URL05] before transmission. This
encoding step allows the use of spaces in items without making the parsing more
complicate (as spaces are replaced by other tokens) and also wraps all characters
into a sequence of pure ASCII characters for a very robust transmission process.
In many cases, where the message content only contains valid ASCII characters
and no spaces the encoding step has no effect on the size of a message when
sent over a network.

All messages have a similar structure as depicted in figure 5.13.

[#Prefix] Command/Reply Argument1 Argument2 ... ArgumentN

Figure 5.13: message structure

The prefix of a message is an optional part and can be used by clients to orga-
nize asynchronous communication. If a client starts a message with a sequence
of a hash symbol (#) followed by one or more characters the server will use the
same prefix for the reply to the command. By using this protocol feature clients
can associate replies to their commands without keeping track of the order of

60

replies. The prefix feature is available for all messages and does not affect their
meaning in any way. Each message contains at least one item that identifies the
command to be executed or the type of reply. After this identifier any amount
of arguments can follow.

While many different commands exist in the protocol the efficient transmis-
sion of context information is of highest importance. A sensor can potentially
produce a lot of information in short time that needs to be transferred first to
the server and then to the client. While the generation of context information
from such a sensor is handled by a specific command message the resulting value
updates sent to subscribers have a different format. As portrayed in section 5.4.2
the ContextElement abstract data type is used on the client side to encapsulate
context information. The representation used in the protocol follows roughly
this data type and results in the structure of figure 5.14.

Source Property NT Tag [Tag[...]] Value TS [P]

Figure 5.14: context data structure (transmission)

The Source, Property and Value items in this structure directly correspond to
the fields in the abstract data type. The element denoted by TS contains the
time-stamp as an integer number (in millisecond resolution). The NT element
is an integer number that counts the number of tags for this element. It is
directly followed by the specified amount of tags. A value of zero means that no
tags are present. The last element in this representation is an optional indicator
of the type of information. If the character P is present, the information has
a persistent character. If not, it is treated as transient, which is the default case.

This representation is missing an identification of the associated context in the
same way it is missing in the ContextElement model. For an actual transmission
over the network, this structure is embedded in a ContextMessage class (shown
in figure B.2). This class is not used in the internal model but serves as a trans-
lation aid from the network protocol into the internal model and reverse. When
a context message is constructed the correct context and a ContextElement in-
stance is used to form a message containing all needed information. This class

61

can also create messages that inform interested clients of structural changes to
the environment such as added sources or properties. There exist also special
modes of operation that allow compacting a context message further by only
referencing the numeric id of the property in question. See section 5.4.6 for
details. A message for transferring context information in the protocol follows
the structure seen in figure 5.15.

CTX Id Context[;Info] ContextElement-Representation

Figure 5.15: context message

The command CTX identifies the message type and tells the client how to pro-
cess the arguments. The Id field contains a unique number that identifies the
subscription made by the client. This enables a client to quickly sort incoming
messages from different subscriptions if needed. The Context field contains the
name of the context where the information originated. It can be optionally fol-
lowed by the numeric identifier of the context on the server side. Clients can
check if the context name contains a semicolon and split this field accordingly.2

After the identification of the subscription and the context, the actual informa-
tion as shown in figure 5.14 is appended.

These context messages are sent asynchronously to clients by the server and
can be easily read out to form a ContextElement structure with an associated
context. The elements in the message are structured in a way that makes writing
a parser for the format very simple and resource friendly. All items in a message
are guaranteed to contain no white-space3 and can therefore be extracted by
splitting up a message whenever a white-space character occurs. Alternatively,
clients can choose to simply read a word until white-space is found. After the
command or reply type is identified the appropriate further processing option
can be chosen, e.g. a context message can be processed according to its ex-
pected structure. Reading a context element follows the same simple parsing

2This additional information was retrofitted in the framework at a later state in the project
and needed to be attached in a way that did not change the used protocol. In the future, this
kind of information would require its own field.

3White-space refers to a set of invisible characters that contribute to horizontal space such
as spaces and tabulators

62

approach where the names of the source and property are the first two items.
The third item is the count of contained tags. Knowing this value in advance al-
lows a client to allocate needed structures before going on in the parsing process
making later adjustments unneeded. This very simple approach is used in all
commands and allows constructing parsers without the need for looking ahead.
The benefits of such an approach are extensively explained in [GJ90].

A client communicates with the server over a single TCP/IP connection. The
default port for communication is 2009 (decimal) but can be defined on startup
of the server. The communication starts with a short message from the server
that can be used by the client to verify talking to the correct server and also
contains the version of the protocol used by the server.

There are three different forms of communication between server and client. A
client can send a query or property change to the server to which a response is
generated indicating the success or failure of the operation and providing the
requested information (if any). In case of a context event to which the client has
made a subscription, the server will send the context message as outlined previ-
ously. As a third form of communication, either server or client can be engaged
in the transfer of a message that was too long to transmit in a single operation.
These large transfers are explained in section 5.4.7. After a transfer is complete
the merged message is processed as if received in one piece. This last form of
communication is transparent to the logical protocol and transfer handling is
automatically facilitated by the implementation. Similar to the asynchronous
context messages, the server will also perform periodic checks to see if a client
is still participating in communication. It will send a PING message to clients
if they have not send any events in a defined period of time. Non responding
clients will be removed from the server to free up resources. This ensures long
time usability of the server.

Figure 5.16 shows a flowchart of the main server loop. As mentioned before, the
communication between the server and its client is stateful to allow a compact
protocol. Before the actual communication protocol is used clients have to par-
ticipate in a simple login procedure where the server transmit the used version
of the protocol and the unique id of the client. In this initial communication

63

Figure 5.16: main server loop

the client can also provide a name for itself or re-claim a connection that was
lost before.

The server will send a DROP message if the login procedure is erroneous or
if the client does not respond any more. If a DROP event is received by the
client the server will have closed the connection.

After successfully establishing a login each unknown or erroneous message sent
by the client will cause a FAIL response from the server but will not cause the
termination of the connection.

64

Receiving Context Information

In order to receive context information from the server a client needs to make
subscribe to the information it is interested in. These subscriptions can be based
on the names of the elements in the environment and/or on the existence of spe-
cific tags. There also exists a more complex type of subscription via server-side
scripts that is discussed in section 5.4.10.

A standard subscription is made by sending a SUBSCRIBE message to the
server that defines a number of matching items. The general format of this com-
mand is seen in figure 5.17 and allows a client to subscribe to different items
in one call. The field NM is the number of MatchDefinitions that are present.
MatchDefinitions declare matches inside a context by providing a number of

SUBSCRIBE NM MatchDefinition ...

Figure 5.17: subscribe command

SourceMatchDefinitions as shown in figure 5.18 where the field NS represents the
number of these sub-definitions. Following this pattern, the SourceMatchDefini-
tion entries outlined in figure 5.19 define a number of matching properties with
PropertyMatchDefinitions (with the NP field counting their number). These

Context NS SourceMatchDefinition ...

Figure 5.18: subscribe command - context definition

innermost elements define matching properties by their name and potentially
a number of tags that need to be present. Figure 5.20 shows this structure
where the field NT is the number of tags. By convention, the absence of tags is
interpreted as matching any tag.

There are two options when referencing the elements in the environment that

Source NP PropertyMatchDefinition ...

Figure 5.19: subscribe command - source definition

are used in the protocol. The first option is to use the name of an item. This is

65

Property NT Tag ...

Figure 5.20: subscribe command - property definition

indicated by prepending the name with an @ symbol in a message. Named items
are not necessarily unique, e.g. there might be several sources with the same
name in different contexts. When named items are used, the server will use the
given information to look up the corresponding item in its internal state. The
second option for referencing items is using their assigned numeric identifier.
This is done by using its decimal representation in the respective field. Making
use of identifiers allows the server to perform a very quick lookup as it keeps a
global table containing a mapping from numeric identifiers to the corresponding
object.

If a client only wants to subscribe to one specific property with one match-
ing tag a message similar to figure 5.21 would be sent.

SUBSCRIBE 1 @cname 1 @sname 1 @pname 1 tname

Figure 5.21: subscribe command - example

If a client knows the numeric identifier of a property in question, the message for
subscription can be shortened. If the context field contains only the letter ’P’,
the client indicates that it will not specify a SourceDefinition but skip directly
to defining a single PropertyDefinition where the numeric identifier is used. The
server will then use its lookup table to identify the associated context and source
items. Such a message is depicted in figure 5.22. A similar shortcut exists for
sources that can be referenced by numeric identifier to avoid sending the name
of the context.

SUBSCRIBE 1 P 1234 1 tname

Figure 5.22: subscribe command - numeric id example

Clients might not always know the actual name or identifier of a source of context
but might rather use specific sets of tags for identification. For this case, special
wildcard names exists that instruct the server to match any name. The special

66

constants <AllContexts>, <AllSources>, <AllProperties> and <AllTags> can
be used in the place of the corresponding identifier in a subscribe message.
These special identifiers can be freely mixed with others to create the needed
behaviour of context messages. A client could for example instruct the server
to send all properties with the name prop from all available sources in a given
context. Such a message is shown in figure 5.23.

SUBSCRIBE 1 @cname 1 <AllSources> 1 @prop 0

Figure 5.23: subscribe command - wildcard example

When the server has successfully processed the subscribe message it will send a
reply message containing the unique identifier of this subscription. This identi-
fier will be send along with any matching context message.

5.4.6 Short Context Mode

While the protocol in its simplicity can be easily read and even written by
human observers the constant transmission of the same identifying names for
contexts, sources and properties increases the volume of data and therefore lim-
its the speed of transmission over any medium.

As described in the previous sections, the server assigns unique numeric iden-
tifiers to each known item and can transmit these values to the client. These
identifiers can then be used in place of names or allow shortening any request by
leaving out redundant information. While shortening of requests can be useful
on its own the greatest amount of messages in a typical system will be context
messages sent from the server to the client. Each of these messages normally
contains information on the context, source and property origins of the event.
When a client already knows all these details for a given property it can change
the message structure to exclude them. This mode of operation is the Short
Context Mode that can be enabled for each subscription individually. When
activated the server will not send normal CTX messages but SCTX messages to
make the different data formats easily distinguishable for the client. The SCTX
messages contain the same information for reconstructing a ContextElement ob-
ject but leave out the names of the source and property. This arrangement is

67

shown in figure 5.24 where the field PropertyId represents the numeric identifier
and is used instead of two fields storing the names of source and property (in
comparison to figure 5.14). The resulting structure of a short context message
is shown in figure 5.25

PropertyId NT Tag [Tag[...]] Value TS [P]

Figure 5.24: short context data structure

SCTX Context[;Info] Short-ContextElement-Representation

Figure 5.25: short context message

A client can even enable the short mode before knowing the used identifiers.
Upon receiving a SCTX message the client can ask the server for the missing
information on the property.

5.4.7 Transfer of large datasets

While typical sensors only produce small amounts of data per reading (e.g. nu-
merical readings, boolean states, etc.), support for larger entities such as images,
audio data or even complete files containing binary data must be supported to
cover potential application needs. However, a problem arises from the architec-
ture of the server. Since messages are processed in a single thread and not with
individual threads per client a large and therefore time consuming transfer would
block other clients while in progress. A solution to this is splitting a transfer
into smaller blocks of data that are transferred sequentially and can therefore
be mixed with other commands. While this approach introduces some overhead
in data transfer it ensures that large data transfers do not cause the system as a
whole to become non-responding. It also allows for a more easy control of data
transfer since they can be stopped after each small block if needed. Finally, this
concept is also a benefit for the client as it can sent unrelated commands to the
server while the transfer is in progress and even transmit multiple large data
sets simultaneously if needed.

Conceptually, a large transfer can originate from the server or from the client.

68

When a client updates a property and the size of the generated message exceeds
the maximum message size defined by the protocol the message needs to be
send in smaller blocks. To create an easy to parse representation the original
message is URL encoded to replace all white-space and special symbols before
transmitting. After this message has been transfered to the server, potential
listeners will receive the new value in form of a context message that will most
likely also be too large to transmit as a normal message. The server will there-
fore transfer the generated context message in smaller blocks.

A data transfer is performed by sending a TX message. This message is used
for starting a transfer and also for sending the individual blocks. To initialize
a new transfer, the first message contains a numeric id for the transfer, a block
number of 0, the total size of the data and the first part of the actual data. The
receiving end responds to each TX message by sending a TXACK message
with the transfer id and the number of the block. In case of a missing block,
the receiving side can also send a TXRESEND message with the id and the
number of the missing block.
A transfer can also be cancelled by sending a TXCANCEL message with the
corresponding transfer id.
After a complete transfer, the received data is URL decoded and processed as
if received as a normal message.

As a special case, a context message is transmitted with a different message. If
the message that initializes the transfer uses TXCTX as the command (instead
TX) a client knows in advance that the message will contain context informa-
tion. This feature is used to ease message parsing for clients but has no further
benefit for the protocol.

Since the transfer of data blocks is marked with a transfer identifier and a block
number, several transfers can take place in parallel and other messages can be
sent in between. While the framework technically supports transfers of data
using the described mechanisms it is not very efficient. If large datasets often
need to be transferred in a specific setup it might be a more feasible solution to
increase the maximum allowed size for messages.

69

5.4.8 History Queries

For various reasons a client may be interested in the retrieval of older context
information. Examples include reconstructing the state of a model upon con-
nection (trends, travel, etc.), recovery after unplanned disconnection from the
server or a punctual need for data at the client side.

The TZI Context Framework supports this kind of history access through an
abstraction layer that makes the actual type of storage transparent to the server
and the client. The history function was initially engineered to store context
information into a SQL database (making use of Javas JDBC concept). It
uses a flexible SQL adapter that can support different SQL dialects such as
MySQL, MS-SQL, SQLite and DerbyDB. There exists also an implementation
of a volatile history that is only stored in the memory of the server. This his-
tory is lost when the server is stopped but depending on the task can provide
an alternative functionality without further infrastructure.

The history functionality is an optional part of the framework and the actual
class performing the storage and retrieval operations can be specified by the
user. By extending the basic abstraction class additional mechanism for history
functionality can be implemented by third parties. The need for extending a
base class instead of providing an interface to be implemented for history func-
tionality is a result of technical dependencies by the server. The class provides
methods for handling properties that serve as an abstraction layer between the
server and the backend data storage. Changes to most of the methods are un-
likely (but possible) and therefore the extension from the class allows a quick
implementation of new storage methods. Figure 5.26 shows a simplified overview
of the class hierarchy where only selected attributes are shown. The abstract
base class maintains a basic environment for context item handling that can
be used by subclasses and defines methods to be implemented for storing data.
The HistoryDB class performs the actual queries using a SQL connection while
the MemoryHistory class stores a (limited) set of old values inside the working
memory.

Clients can access the previous state of properties through the HISTORY
command. This command is used by the client to form a query that specifies

70

the context, source and property in question and also a range of time and a
limit for returned values. Optionally, a list of tags can be specified so that only
property values that contain at least one of these tags are returned. Matching
values should be returned in the same order as they where received by the server
but may be sorted differently by the used history implementation. In any case,
each returned value carries its time-stamp. The result of a history query is a list
of short context formatted context elements but also leaving out the identifier
(see section 5.4.6). In this list, each individual item has been URL encoded.
The list is prefixed with a decimal number equal to the number of elements.
The empty list is therefore returned as the string 0.

Figure 5.26: simplified history class relations

The ContextManager (see section 5.4.2) class provides convenience methods for
requesting history information and makes the results available. When the server
component does not support history functionality the history requests will fail.
In contrast to the approach in CTK where each individual widget is responsi-
ble for storing previous values the centralized approach in this framework shifts
this responsibility to the server component. This makes the maintenance of
this information easier as only one connection to a suitable back-end has to be
specified.

71

5.4.9 Storing Context Histories in Relational Databases

As mentioned in the previous section, an implementation for storing context
histories into a database was created. A naive approach for storage would con-
sists of simply inserting every event into a suitable database table as they are
received at the server. This would however result in a lot of repetitive informa-
tion if the names of the context, the sources and the properties are stored for
every event.

A more sophisticated strategy is used here that exploits features present in
existing database systems like MySQL and others. Similar to the hierarchical
structure formed by contexts, sources and properties, a table is created in the
database that stores the name of each context and assigns a unique numerical
identifier to it. For each context a table of sources is created that contains the
names and identifiers of all associated sources. Finally, for each source, a corre-
sponding table of properties with their unique identifiers is created.
Property changes are stored in a table for each context where the source and
property are referenced by the numeric identifier. While this approach mini-
mizes the amount of data used to identify sources and properties it also speeds
up searching for specific history elements as the database can use numeric com-
parison instead of matching names.

One important part of history storage is the handling of removed items. Prop-
erties, sources and contexts can be removed from the server to signal that the
associated information is no longer available. To keep track of this informa-
tion items need to be marked as active or inactive inside the history. Making
this information available to the server is important as it will be used when
the server restarts to reconstruct the state of all properties but only for those
that are still present in the contexts. The current implementation stores this in-
formation inside the tables that assign unique ids to all items as a boolean value.

In figure 5.27 an example for the table structure is shown. The table contexts
is used to look up existing contexts while all other table names are inferred by
the unique ids assigned by the database.

Currently, tag values are stored as a comma separated string in the database

72

Figure 5.27: history database tables

tables. Depending on the specific use, creating a separate table that assigns
unique ids to individual tags and then only saving a list of these numbers could
improve storage performance and also speed up queries for matching tags by
applying table joining techniques.

Database Queries

The history implementation keeps track of all unique identifiers assigned by
the database and uses them for value lookups. This allows for efficient value
queries and also serves as a bridge between the client queries that either specify
the property by name or by the unique id from the server (which is different
from the database id). If for example the context in question has the database id
2, the source has id 1 and the property has id 3, a query may be formed like this:

SELECT (value) FROM ctx2 WHERE source=1 AND property=3

Of course further SQL statements can be used to restrict the range of time-
stamps in returned results to match the specified query for the history database.

73

Storing Large Values in a DataBase

While the normal use of context information is supposed to transfer only small
values that can be easily stored inside the database larger values are processed
differently by the implementation. This is similar to the handling of large trans-
fers described in section 5.4.7

Most SQL-like databases support the storage of large binary objects (so called
BLOBs) using a special syntax. These objects use a special datatype in the ta-
ble and need a more elaborate handling process for storage and retrieval. Since
the usage of large values is expected to be an exception the table normally used
for storing context events does not contain a field for a BLOB. Instead, a global
table is used to store BLOBs that assigns a unique numeric identifier to them.
This identifier is stored in a recognizable form instead of the value in the table.
Some care has to be taken to modify values that would match an identifier be-
fore saving. The current implementation simply saves a large object identifier
as a hash-symbol (’#’) directly followed by a decimal representation of the nu-
meric id. If a normal value starts with the hash symbol, a second hash-symbol
is prepended to the value. When a value is to be retrieved from the database, it
is therefore easy to determine if the value actually refers to a large object that
can then be retrieved from the global table. See figure 5.28 for an illustration.

Figure 5.28: history database BLOB access

74

5.4.10 Scripted Subscription

The method of subscribing to context information shown in section 5.4.5 allows
an application to receive information updates from entities that are known by
name or by specific tag information. For more specific control over the matching
process a client can deploy small scripts on the server that contain algorithms
to determine if a context event is of interest to the client.

The SUBSCRIPT command is used instead of the SUBSCRIBE command
to upload a script written in the ECMAScript[ECM14] language (commonly
known as JavaScript) to the server. This script provides predefined functions
that are evaluated on the server to decide if a context information event should
be transferred to the client or not. Also the notifications on new context, source
and property entities can be controlled by this.

The SUBSCRIPT message has two arguments, the context for the script (that
can also be the special value <AllContexts>) and the script itself. As with all
messages, the actual script data is transmitted as an URL encoded argument.
The script is then evaluated on the server and any errors in the script will lead
to a failure reply from the server.

On each context event, an appropriate method from the script is called. For
context update events, the method matches is called with the list of tags, the
name of the source and property, the value, time-stamp and persistence infor-
mation. Only if the method returns true, the event is sent to the client. In
addition to these methods, there are also methods for the notification of struc-
tural changes. The method notifyNewSource is called when new sources are
added (with the name of the source as parameter) and notifyNewProperty when
a new property is defined (with source and property as arguments). Similar for
the removal of sources and properties the methods matchesSource and matches-
SourceProperty are evaluated. Structural notifications are only sent when the
methods return true. There are also methods that define if the client has any
interest in structural changes at all. The methods getNewSourcePolicy and get-
NewPropertyPolicy can return a string from the set always, never or match to
indicate the desired behaviour. Only when matching is selected, the evaluation
methods for structural changes are used.

75

Using scripts is currently an experimental feature that has not been tested ex-
tensively. The core idea is to allow clients to formulate their requests in terms of
an algorithm in order to reduce the amount of information that is transmitted
to them. The server component requires a suitable scripting engine to process
the scripts. Most Java environments provide a suitable engine or can be setup
to integrate an external engine such as the Mozilla Rhino[Rhi14] project.

76

Chapter 6

Evaluation of the TZI

Context Framework

6.1 Comparing CTK to TCF

The main difference between CTK and TCF is the choice of a centralized ap-
proach in favor of decentralized communication. A direct comparison needs to
focus on the effects on a potential developer and also on the amount of data
transmitted between components of an application. While CTK was designed
to transfer knowledge from the domain of traditional UI development to the
domain of context aware applications the main focus of TCF is providing a
resource-efficient way of context distribution.

This section provides a technical comparison in terms of code metrics, im-
plementation differences and transmission behaviour. A simple application is
implemented using both frameworks and the resulting code is analyzed for its
complexity. To measure data transmission characteristics, two additional ap-
plications are created that allow performing transmission tests with varying
parameters.

77

78

6.1.1 Application Complexity

A simple application was constructed to compare both frameworks. It con-
sists of a context aware application and a corresponding information provider.
Temperature monitoring was chosen as a simple to understand example for this
task where the context aware application simply monitors a temperature sensor.
No further action is performed other than showing the value. In this case the
provider of information is a piece of software that interfaces the actual sensor
and makes the reading available to the monitoring application. In order to re-
duce the complexity of the example the temperature sensor is simulated by a
UI element where the user can simply adjust the temperature value. Figure 6.1
shows a simplified UML diagram of this exemplary application where the Temp-
Provider class represents either the sensor for CTK or TCF and TempReader
implements the monitoring application.

The design of this application is modular to limit the coupling between the
application and the frameworks. While the Provider and Reader classes are
created specially for each framework the TempUI class that controls the slider
element and the TempReadUI class that displays the temperature are identical.
A complete listing of the code can be found in appendix C, section C.3 and C.4.

Figure 6.1: architecture of the temperature demo

In both cases, an interface as shown in figure 6.2 is presented to the user and
a change to the slider is immediately reflected in the display. While the user
interface is the same for each framework there is a huge technical difference that
is not visible to the application developer. In case of CTK, two applications are

79

started that use the framework to register themselves. The monitoring applica-
tion will query the framework for a temperature provider and then register at
the providing application for updates. For the TCF approach, three applications
are running. In addition to the two applications that provide and monitor in-
formation the central server is running as a third component. Both applications
connect to the server and the temperature provider transmits updates when
the slider changes. The monitoring application does not query for a providing
component but simply subscribes at the server for matching information. The
server will then transmit temperature values on each change to the monitoring
application.

Figure 6.2: temperature application UI

Even though both applications are very simple they can be used to get an ini-
tial overview of the complexity of the frameworks. A visual representation of
package dependencies and standard code metrics were generated with the Met-
rics2 [Met14] plugin for the Eclipse IDE [Ecl14]. While the visual representation
of dependencies can give a quick view on the complexity of an application a
complex graph does not necessarily indicate bad design. It reflects however
how many aspect of a framework need to be understood by the application
developer. On the other side, a simple graph can also be an indicator of bad
software design where a beneficial separation of concerns has not been done. In
combination with other code metrics a more formal comparison is possible. A
common expression for code maintainability is the cyclomatic complexity as de-
fined by [McC76]. This value represents the number of possible control paths in
a method as defined by the used control structures. A high value is an indicator

80

for a complex method as it requires more testing to ensure correct behaviour.
However, there exist examples where methods with high cyclomatic complex-
ity are actually trivial to understand for developers. The idea behind defining
complexity measures is to set self defined limits on code. If a method becomes
too complex it is split up into smaller, less complex methods. This prevents the
existence of large methods that are hard to test and more prone to errors. Also,
a reduced complexity generally results in a behaviour easier to document and
therefore to understand. The cyclomatic complexity measurement can not be
used to directly compare two given methods since it does not reflect the reasons
for complexity. It can however be used to identify methods with a relatively high
complexity among related methods. If these methods are to be used by other
developers they need to be documented well otherwise leading to confusion.

Analysis of the CTK approach

Using CTK the temperature provider is implemented as a Widget that provides
a temperature attribute and a callback function that allows other components
to be notified of changes to this value. When the user changes the temperature
using the slider the temperature is set using the defined setTemperature method
(see figure 6.1) and then update is called. This in turn creates an Attributes
object containing the temperature value that is transmitted to all subscribers
of this object using methods from the Widget class.

The temperature monitor is implemented as a BaseObject instance that also im-
plements the Handler interface. It inherits therefore the communication func-
tionality from the BaseObject class but does not provide any information by
itself. The Handler interface provides methods to receive updates from other
components. Upon starting the application, the monitor sends a description
of the required context information to the discovery service of the framework.
This is done by creating an AbstractQueryItem that searches for an attribute
with the name of temperature and a numeric type. It uses the first matching
component that contains such an attribute and requests updates on the value by
using a ClientSideSubscriber object. This object encapsulates information on
the Widget that provides that data and the callback method to use. A method
from the BaseObject class is used to set up receiving updates via the Handler
interface. The result of this setup is a subscription identifier that can be used to

81

distinguish several senders. When an update arrives, the defined handle method
is called with the subscription identifier and an abstract DataObject. The afore-
mentioned identifier can be used to process data from several sources. The
DataObject has to be inspected by the application to extract the transmitted
information as it can store complex data types.

Generating a dependency graph for the package containing both applications
(ctktest) results in figure 6.3. The central placement of the application pack-
age and the star pattern of dependencies indicates that all used packages are
independent of each other. This is an indicator for a good application design
in the framework. However, many packages are in use even for a very simple
application which indicates that a lot of functionality is very common for all
types of applications.

Looking at the cyclomatic complexity values for the classes and methods of
the application, the methods of the monitor have a relatively high value. While
the overall complexity is 2.09±2.99, the method for extracting the temperature
value from the DataObject has a value of 15. The most complex method of the
provider has a complexity value of 3 and deals with sending a new value to the
subscribers. This reflects the experience in the implementation phase. While
it was very easy to create the Widget for providing temperature information,
creating the receiving side was far more complex.

Analysis of the TCF approach

Using TCF the temperature provider is a simple abstract data type that en-
capsulates the temperature information and an instance of the ContextManager
and the ContextClient class. When the application starts the client is instructed
to connect to the central server. When the user changes the temperature with
the slider a new temperature is set using the defined setTemperature method
(see figure 6.1) and then update is called. The update method transmits the
new temperature value to the server using methods from the ContextManager.
In addition to the temperature value, each update is tagged with the annotation
temperature to allow clients to subscribe by this information.

The temperature monitor is constructed similar to the provider as it also en-

82

Figure 6.3: package dependencies CTK (temperature)

capsulates an instance of the ContextManager and the ContextClient class. Ad-
ditionally it implements the ContextListener interface to process contextual
information.
Upon startup the monitor subscribes to all context events that are tagged with
the temperature annotation, matching the behaviour of the provider. When
context information arrives the processContext method (from the ContextClient
interface) is called with the name of the context of origin and a ContextElement
object. The application then tries to interpret the value component of the Con-
textElement as a numeric value and updates the temperature display.

The dependency graph for the package of both applications is very simple as
can be seen in figure 6.4. As with the CTK approach, the application package
is central and other dependencies form a star pattern around it, showing no
inter-package dependencies. In contrast to the CTK dependencies, only three
external packages are referenced by the application (technically, only two pack-
ages are referenced as the third reference is a class from a referenced package).
While a small dependency graph is not an indicator of good package design it
shows that functionality for a simple client can be accessed by very few refer-

83

ences.

Looking at the cyclomatic complexity values for the classes and methods of
the application, the methods of the monitor have the highest values. While
the overall complexity is 1.09±0.29, the method for extracting the temperature
value from the ContextElememt has a value of 2. The most complex method of
the provider cannot be defined as all methods have the minimal value of 1. The
only other method that has complexity value higher than 1 is the notification of
the user interface after the temperature update. This method has a complexity
value of 2. The very low complexity on both parts of the application is an in-
dicator for a simple to use system. By design, the almost identical structure of
context providers and receivers allow a quick implementation of both sides.

Figure 6.4: package dependencies TCF (temperature)

6.1.2 Transmission Performance and Efficiency

The Context ToolKit was benchmarked against the TZI Context Framework to
get a better understanding of the advantages and disadvantages of each system
in terms of transmission performance and bandwidth requirements. The general
outcome of the experiments was that the Context Framework is most suitable
for scenarios were only very few values are transmitted from each sender. For
larger groups of values the data structures used by CTK are more efficient and
result in less volume of transferred data. The overhead with CTKs protocol is
however very large for small value sets where the actual data is only a small

84

fraction of the transmitted data.

All tests were performed on a local computer system where the bandwidth for
transmitting data was virtually limitless. In this scenario CTK is clearly the
fasted framework for transmitting data with almost no decrease in transmission
time regardless of the amount of data per value update. When estimating the
time needed to transfer the data over a limited connection (e.g. UMTS/3G) the
transfer time using TCF instead of CTK can however be significantly lower for
small value sets.

Test-Concept

Both frameworks have concepts to group a set of attributes. In CTK, each
context widget defines its set of values that are transmitted. In TCF, a set of
properties is associated with a source. In real world applications the number
of attributes per entity will vary but can be assumed to be a small number.
Therefore it is interesting to compare the performance of each system for vary-
ing number of attributes.

The test used here defines N attributes named data, data2, ..., dataN (where
N is the number of attributes) and updates these values 10000 times. The re-
ceiving end just counts the received updates to assert complete transmissions.
The resulting network traffic is recorded using the network analysis software
WireShark. Each test condition is repeated three times to compensate for small
variations in the network traffic. For unknown reasons the transmission speed
for CTK had to be limited artificially as many values were lost during the tests
when no delays were used. A delay of 2-3ms between triggering two transmis-
sions was found to be suitable to prevent data loss. This cause of the problem
could not be determined.

In addition to these systematic tests also a more practical test was performed
where pre-recorded data from a tri-axial accelerometer was transmitted. Here
the three axes were grouped and 10242 samples were sent. Each logical sample
here consisted of three floating point values with three decimal places (acceler-
ation on each axis). This test was also repeated three times.

85

The times and transmission sizes are specific to the given problem and the used
hardware setup and can therefore not be used to compare performance between
this and another setup. These values are only used to compare the relative
performance between the two frameworks under the same circumstances.

Test-Setup

To test both frameworks under comparable conditions two small applications
were written that use the appropriate mechanisms from each framework to per-
form the defined test. All software is running on the same machine using the
local loop network device. Each framework requires a central part (the CTK
discoverer or the TCF server) that is restarted prior to each test to avoid caching
effects. Recording network traffic starts after this component is running before
the sending and receiving applications are started.

Traffic recoding stops when the receiving part signals a complete transmission
and the sending application has terminated. The information on the needed
time for transmission is computed by the receiving application. It simply uses
the difference between the last and the first message containing relevant values
and does not take other parts of the protocol explicitly into account (e.g., ini-
tial connection, keep-alive messages). The size of the recorded traffic however
takes all exchanged information into account regardless of their meaning to the
problem as this is reflects the real transfer time needed on bandwidth limited
connections.

Results

After a few initial test-runs it was apparent that the size and time development
behaves linearly for both systems. A few large value-counts were chosen at reg-
ular intervals and the behaviour for one to five values was additionally measured
as a small number of values is a regular case in many applications. The results
are shown in table 6.1.

The most striking result here is that the CTK framework has only a very little
increase in transfer time over for a large number of values per update. In con-
trast the transfer time for TCF grows linearly with the number of values per
update. The size of the transmission is proportional to the transmitted data

86

time (s) size (MiB) time 3G (s) BW MBit/s size
N TCF CTK T C T C T C C/T

30 373,3 18,8 57,6 53,0 1258,6 1157,6 1,29 23,66 0,92
25 325,6 16,5 48,6 46,3 1061,4 1012,4 1,25 23,59 0,95
20 248,7 15,8 38,5 39,8 841,1 870,0 1,30 21,18 1,03
15 188,0 14,9 29,0 33,2 634,2 725,1 1,30 18,67 1,14
10 129,5 13,5 19,6 26,8 427,8 584,6 1,27 16,67 1,37
5 63,6 13,1 9,9 20,2 216,3 440,4 1,31 12,91 2,04
4 51,3 13,0 8,0 19,1 174,7 416,6 1,31 12,31 2,38
3 39,1 13,2 6,1 17,6 133,5 383,7 1,31 11,17 2,88
2 26,8 12,8 4,2 16,3 91,9 356,7 1,32 10,71 3,88
1 14,4 12,8 2,3 15,0 50,8 327,8 1,36 9,87 6,46

Table 6.1: results (10000 updates)

and while the growth rate is lower for CTK it has a very high offset compared
to TCF. For this particular experiment the data volume per update produced
by TCF is lower until the set contains more than 20 values. After this point the
protocol used by CTK becomes more efficient.

Estimating the time for data transmission at 384kbit/s (maximum standard
UMTS rate) shows that both systems perform faster than this type of trans-
mission would allow. The reduction in used data volume would enable TCF to
perform faster than CTK up to the point where the volume of data becomes
larger than its CTK equivalent.

Transmitting the pre-recorded acceleration samples draws a similar picture as
seen in table 6.2.

time (s) size (MiB) time 3G (s) BW MBit/s size
N TCF CTK T C T C T C C/T

3 40,4 34,3 5,7 18,9 125,5 412,7 1,19 4,63 3,29

Table 6.2: results (10242 acceleration tuples)

In this more practical scenario the TCF data uses slightly less volume for the

87

three acceleration values than in the synthetic test (for N = 3). The size ratio
between TCF and CTK is also even better here for TCF. This shows that rep-
resentation of data is also of importance and different for both systems. As in
the previous test the amount of saved data is very high and shows a potential
advantage of the TCF protocol over CTK in similar cases. It is worth noting
that the transmission times for both systems are far below the time that was
used to record the values from the physical device. Both systems would there-
fore be able to transmit these values in real time.

A minor observation in the tests was that data in CTK does not arrive sequen-
tially. From a quick technical analysis it seems that a context widget creates
multiple connections for sending data and these are scheduled by the operating
system resulting in a more or less random sequence. Since TCF only uses one
connection for data transmission the sequence of data is always the same (FIFO
principle).

6.1.3 Conclusion

In terms of transmission performance CTK is much better than TCF. This
comes however at the cost of data volume and the need for direct communica-
tion between the sensor and the receiver. Also the data does not necessarily
arrive in the same order as it was generated due to the use of multiple con-
nections for transmission. This has to be taken into account when designing a
system using information provided by CTK. In terms of data volume TCF pro-
duces far less data for a small number of values. Its protocol however becomes
less efficient for higher number of values. While TCF sends a message for every
single value CTK groups all values into a single message. Only the overhead
introduced by the message format makes its use for small number of values less
desirable. A conceptual difference between TCF and CTK is found when the
state of an entity needs to be transmitted atomically. While CTK transmits all
values at once and therefore satisfies atomic transfers in TCF the user has to
rely on the time-stamps of each property. This allows atomic transfers if there
is more than one millisecond time between two updates. Still the receiving end
has to wait for all properties that belong to an entity before an atomic update
can be finished.

88

When a suitable network for CTK exists and the volume of data is not of
interest, as it is the case with smart indoor environments, CTK should be used
for data transmission. For mobile networks the centralized approach of TCF
might be more suitable as the client only needs to connect to a known server.
For a small set of properties, e.g. a small set of sensors on a device, the re-
duced data amount allows a fast transmission even over connections with small
bandwidth. For reading sensors the sequence of readings might be important.
If time-stamping and sorting data on the receiver is not desired, the guaranteed
sequence order of TCF can be a benefit.

A technical consideration is the nature of the connection in both frameworks.
CTK uses HTTP connections between all entities and by this needs to open and
close a network socket for each message. In TCF each client maintains a persis-
tent connection to the context server to transfer all messages. For some mobile
networks the HTTP approach of CTK may not be suitable if the receiver is
not visible from the network or if the carrier simply does not forward incoming
connections. In this case the centralised approach used in TCF will still work
as the clients only need to reach the server that can in most cases be deployed
in a way that makes it accessible to mobile clients. It is worth noting, that both
frameworks deal with the creation of smart applications in their respective en-
vironments. There are also other approaches that deal with creating a smarter
environment such as shown in [LMPMP+07] with totally different requirements.
However, the TCF aims at providing a practical approach for experimentation
and rapid prototyping that can be deployed in many kinds of networks. It does
not provide special services for creating smart environments or adaptive sensor
networks.

6.2 Creating High-Level Context

In the previous chapter the aquisition and transmission of low-level context
information was presented. While this kind of information can reflect properties
of the real world and trigger context related actions a higher level of abstraction
can be useful.

89

6.2.1 Context Aggregation

Following the same approach as in CRN[BKLA06] high-level context is gen-
erated by aggregating low-level context information. In this aggregation step
information is collected and interpreted. The resulting high-level context is
then transmitted in the same way as low-level information. As the informa-
tion is virtually indistinguishable from other context information other means
of separation have to be established if needed. The TCF can provide several
mechanisms to create such a division. For a complete separation a new context
entity can be created where only high-level context is provided. This would
also allow further abstractions of context where a hierarchical model of con-
text information abstractions would emerge. This approach might however be
too complex for simple applications. Another method of separation is the in-
troduction of special tags to mark aggregated information. This would allow
other entities to just observe one context while subscribing to the low- and high-
level events that they are interested in. An even simpler approach that might
be suitable for prototyping is the introduction of special sources that ’gener-
ate’ high-level context. However, this approach requires a distinction based on
names that are know a-priory (or dynamically negotiated). Depending on the
expected complexity and lifetime of the application each of these approaches or
combinations thereof may be suitable.

6.2.2 High-Level Example

To provide a better understanding of how the context distribution system can
be used to form high-level context information an easy to follow but very sim-
plified example can be used.

Assuming there exist two sensors in the environment that measure tempera-
ture and relative humidity a high-level context information can be aggregated
that describes the quality of the working conditions. These sensors are in some
way connected to a computer system that can transmit their information to a
computer running the context server (note that this is only a logical separation
and may take place on the same machine).

For this example the temperature sensor measures a room temperature of 22◦C

90

while the humidity sensors measures 45% relative humidity. This can be aggre-
gated to a high-level description of the working conditions (which are optimal
in this case). A virtual sensor that acts as context client receives both readings
and uses some adequate form of computation to provide a high-level abstrac-
tion of the working conditions that is usable by other clients. This high-level
information is then transmitted to the context server to be distributed to all
interested clients. See figure 6.5 for a graphical representation.

Regardless of the chosen way of distributing high-level information to the clients
the technical aspects do not change.

Figure 6.5: high-level context aggregation12

6.2.3 Limitations

While the creation of high-level abstractions is a straightforward process there
are some limitations to be kept in mind. All communication between clients is
relayed over the central context server. This design allows for a quick setup and
discovery but has a drawback when building a long chain for context aggregation.

1numbers at arrows indicate sequence of transmission
2technically, step three would occur as two independent transmissions

91

In the given example for high-level context generation two sensors were in-
putting their readings into the server. Theses readings were then sent to a third
component that computes an abstraction and sends it back to the server for
distribution. If one imagines building more complex abstractions the need for
reusing previous abstractions arises. For every abstraction level three sequential
transmission blocks have to take place. First, the lower level information is sent
to the server. In a second step this information is transmitted to all interested
parties including the aggregator. Once the aggregator has computed the ab-
straction it is sent back to the server in a third step. While each transmission
may be quick when seen alone this could become a problem if a timely response
to a very high abstraction is needed. When comparing this to the approach
used by the Context ToolKit it is obvious that sending the information directly
from each client to other clients is an advantage there.

However, this requires that free communication between the clients is possible
which may or may not be a trivial requirement for a given network. In many
cell phone networks direct communication is not possible1 and would need to be
relayed over a central point. This would then technically amount to the same
overhead that is always present in the protocol used by the context distribution
system.

6.3 Framework usage in the SiWear Project

The TCF framework has been used in the SiWear project to transmit context
information to clients. There were two stages of implementation with slightly
different requirements to the distribution of context that were investigated. One
of the goals of the SiWear project was improving the process of order picking
with wearable computing technology. Optimizations in picking are of interest in
many industrial areas as these operations account for 55%[BH09] to 65%[CBL02]
of the total operational costs of a warehouse. Also, successfull wearable com-
puting applications[SFH+98, Sta02] exist in this sector providing a reference for
potential optimisations.

1internet connected cell phones are often not provided with an externally reachable address
by the service provider

92

In a first step the potential benefit of a context aware wearable system for
the picking process was evaluated in laboratory settings. The results from these
experiments were used to refine the requirements for a system that could be used
for a study in a live production environment. The context framework matured
during the laboratory phase where an initial Wizard of OZ[Kel83] setting was
gradually replaced by a computer controlled system. The performed studies are
documented in [IBRK09].
In the next phase of the project the setup for the picking process, while still in
a laboratory setting became more elaborate. While the first studies evaluated
the use of a wearable computing application in general the second study com-
pared different methods of conveying information about the picking tasks to the
users of the system. Also ambient displays were used to mirror information on
the tasks for the experimenters to be easily recorded on video. This scenerio
made use of the distribution aspect of the TCF. This study is documented in
[WBS+10].
While the previous studies simulated the use of environmental sensors and used
the framework for general application control further studies incorporated real
sensors to provide contextual information. To identify picking tasks a barcode
reader was used to trigger loading relevant data into the system while laser range
finder sensors where used to automatically detect picking of items. In prepara-
tion of the study documented in [BSI+11] both sensors were first simulated in
software to define a suitable structure of the information within the framework.
While processing information from a barcode reader is very straightforward the
output of laser range finders is not directly useable. Adapters were developed
to extract the position of hands as a high level information from the sensor
data using heuristic methods. This approach is described in [Ibe12]. The sim-
ulated sensors could later be replaced by the real hardware without changes to
the picking application as they simply used the same structure for providing
contextual information.

6.3.1 Context for Picking

Throughout the performed studies processing information on performed picks
is the primary driver of the wearable computing application. This information
can either come from a Wizard of OZ setup or a sensor in the environment.
In both cases the picking event needs to identify the location where the pick

93

occurred to enable the application to detect errors in the picking process. In in-
dustrial picking warehouses items are organized in hierarchical structures where
normally an item has a defined location inside a shelf. In some cases, especially
for large parts, a shelving unit can contain only a single location for that shelf
but still keep the logical grouping. In any case item placements will follow a
homogeneous pattern that allows assigning identifiers to their location.

First studies examined simple setups containing a small number of shelves with
a few boxes for the items. For pick detection an event is needed that identifies
the box. Apart from pick detection general control signals are needed that allow
controlling the application, e.g. switching to the next task by an event from the
barcode reader. The framework does not assign a meaning to the information
it transmits and therefore relies on common knowledge among the components.
To have a basic association with the task at hand contextual information for the
picking process is transmitted in a context with the name picking (see section
5.4 for a reference on the internal model in the framework). While not used here,
other applications or processes can listen to this specific context to monitor the
flow of all information regarding picking.

All entities in the environment that provide information for picking are mod-
elled as sources under this context. For each shelf a source with a matching
identifier (to match the shelf in the used location definition) is created. Pick
events are modelled as properties of the shelf with a name matching the identi-
fier of the shelf. The value of this property indicates if a pick is currently taking
place in the location, e.g. on the start of a pick, the value changes the entered
and changed back to left when the worker retracts the hand again. Since these
events are only valid for a short time and can change quickly they are modelled
as transient properties in the context framework (as discussed in section 5.4).
Since registering the interest in picking events for all shelfs and all boxes would
be inefficient for an application, pick events make use of the tagging mechanism
the framework provides. They are tagged with the pick tag and applications
simply register interest in receiving events that contain this tag (inside the pick-
ing context).

94

6.3.2 Test-Scenario

Several studies in SiWear were carried out in a laboratory environment were
the working conditions encountered at an industrial picking workplace were
reconstructed. A laser range finder (LRF) from Hokuyo2 was used to detect
picks from a shelf or other picking location and a barcode reader from Metro-
logic/Honeywell3 was used by participants to setup the task for picking. Both
devices were monitored by clients for the server to transmit detected events to
the wearable client.

Figure 6.6: logical setup for tests

The client processing the LRF did not transmit the sensor data directly but used
a mapping of known pick locations to transmit events for these areas. These
events were the entering and leaving of the area. The Barcode-Reader infor-

2http://www.hokuyo-aut.jp
3http://www.honeywell.com

http://www.hokuyo-aut.jp
http://www.honeywell.com

95

mation was transmitted as received by the sensor and only a small check was
performed to filter wrong readings occurring on a few occasions.

On the wearable device a single context client connected to the central con-
text server subscribing to events from the laser range finder and the barcode
reader. The application was driven by these events and if needed by additional
manual input. Figure 6.6 shows the logical setup of the system.

The greatest benefit of using the context framework in this scenario was the
easy way of adding a second application to the setup that passively monitored
all messages sent to the client. This allowed the experiment conductors to de-
ploy a quick visual representation in into the system to keep track of what the
user is seeing. This was not limited to presenting an exact copy of the users
view but also provided additional data.

Context-Design

Context information for this scenario comes from processes triggered by the
worker via direct interaction using the barcode scanner and implicit interaction
when picks from the shelfs are detected by the LRF. To use this information a
simple logical structure for context was designed.

The barcode reader and the laser range finder operate in the same logical con-
text ’picking’. The physical barcode reader is represented by a source named
’USB-Barcode’ (since the reader was connected via USB) and has a single prop-
erty named ’barcode’ that gets updated with the value received from the reader.
Additionally a tag ’Barcode’ is introduced to allow listeners to either register
for events from the specific source or to all events using the tag. This can be
useful to allow sending synthetic barcodes via software for corrections.

The ’picking’ context has no representation of the LRF but provides a source
for each available shelf in the environment. The picking locations inside the
shelves are represented by properties of the shelves using the location identifiers
for names. Picks are modelled by setting these properties to ’enter’ and ’leave’
when the picker reaches into the location respectively when the pick is no longer
detected by the LRF.

96

A typical tuple for context, source and property in this scenario has a structure
similar to (’picking’, ’B112’, ’23’) (where ’B112’ is the identifier of the shelf
and ’23’ is the identifier of the location in the shelf’).

6.3.3 Evaluation-Scenario

The framework was used in experiments on the picking process where workers
were picking parts for a given task. The physical picking was monitored by a
system of Laser Range Finders (LRF) from Leuze4 that emitted detected picks
to control a pick-by-light setup. These events were monitored by an application
on a computer system to generate context events to be used on the wearable
client. In addition to the pick information, the information on the current task
was also extracted from a database and sent to the client as context information.

Figure 6.7: logical setup for evaluation

4http://www.leuze-electronic.de

http://www.leuze-electronic.de

97

Similar to the testing scenario the information from the laser range finder system
was not sent directly. Because of different naming schemes in both applications
a simple mapping layer was added to translate the received area identifiers to
the named picking areas. The information on the items to pick were obtained
from a snapshot of the production database. A query on the database resulted
in sets of items to pick which were in turn analyzed and converted to an internal
representation to be used by the picking application on the wearable client.
Again similar to the testing scenario a monitoring application was setup to pro-
vide the experiment conductors with real time information on the state of the
wearable application. However the form of user interaction was different in this
scenario as new tasks were not triggered by an external barcode reader but by
user interaction on the wearable. Therefore all user interaction was replayed on
the monitoring application by sending all relevant events as context informa-
tion. Both applications were accessing the same database to get information on
the current items to pick. Figure 6.7 shows the logical setup used in this scenario.

This scenario shows the flexibility of the framework. While the wearable client
receives information from the LRF to aid in the picking process the user inter-
face independently uses the context distribution mechanism to send information
on its state. If this had been done with the CTK, the LRF had been modelled
as a provider of information while the application would need to implement an
additional context widget to distribute the state of the user interface. While
this logical separation can be justified it implies using more network connections
and makes service discovery more complex.

98

Chapter 7

Conclusion and Outlook

The creation of the TZI Context Framework (TCF) was motivated by the lack of
a suitable framework for distribution of context information for wearable com-
puting applications in the scope of industrial settings. The first chapter gave an
introduction into the field and motivated the need for providing a framework for
supporting wearable computing applications in general. In the second chapter
functional aspects that a suitable framework would need to provide were defined
and discussed. The third chapter of this work evaluated previous attemps of
building wearable computing applications and collected the resulting require-
ments for handling information from the environment. Shared problems from
the field of pervasive and ambient computing led to the evaluation of an exist-
ing framework for distributing context information for creating context aware
applications. Chapter four evaluated the Context ToolKit (CTK) for its fitness
in the field of wearable computing. Various technical and design aspects were
found sub-optimal in the light of the identified requirements. This realization
provoked the design of a specialized framework. In chapter five the design and
technical implementation of the TCF is outlined. A technical comparison to
CTK is shown in chapter 6 were synthetic tests show how the behaviour of the
framework provides a benefit for wearable computing applications. The frame-
work is then evaluated in the different stages of a wearable computing project
showing its practical usabilty.

The TCF framework has shown to be an efficient part of a wearable computing

99

100

architecture that supports developers by providing a simple to use development
approach that encourages experimentation. Its design also limits the use of
resources on wearable clients and has only small requirements on bandwidth
for data transmissions. While only an indirect conjecture, both factors have a
positive effect on the overall energy consumption of the devices that are either
part of the wearable application or the environment. This statement is based
on the fact that a higher amount of transfered data and a higher amount of
needed computing resources will require a greater amount of energy.

In an attempt to make the framework available to a larger community it has
been published on the GitHub software collaboration platform and can be found
at:
https://github.com/wearlab-uni-bremen

While there are no guarantees on how long this platform will be available it
allows collaboration with other developers without any formal connection to a
specific working group. The motivation behind this choice of platform is to en-
courage using the framework and potentially improving it based on upcoming
needs.

While the framework has been developed with tasks from the industrial field
in mind it is currently being used for prototyping applications in a different
domain. In the Rehab@Home1[PBLG13] project different environmental and
on-body sensors are evaluated to create serious games for rehabilitation where
exercises are motivated by playing games. The framework is used to create an
abstraction layer between the actual games and the sensor devices. While these
applications are not meant to be context aware, the features of the framework
to transmit sensor values had a positive effect on development time. Similar to
the SiWear project, it was again beneficial to be able to simulate sensors before
creating a real implementation.

The framework can potentially be applied to many application domains that
have the need to communicate events to distributed components. Its resource
efficient design separates it from other available communication schemes and
its simple data model allows developers to quickly start using it. In contrast

1http://www.rehabathome-project.eu

https://github.com/wearlab-uni-bremen
http://www.rehabathome-project.eu

101

to web-service based approaches the stateful nature of the framework simplifies
many aspects of communication. This comes however at the cost of introducing
a new protocol. It is up to individual developers to carefully evaluate which
approach is the best for their situation.

The TCF is not in all cases the ideal solution but its properties make it an inter-
esting candidate for integrating sensor information into an application. While
it was meant to help developers in a rapid-prototyping approach for wearable
computing applications it has also potential to be used in other areas. In the
spirit of ’the street finds its own uses for things’ [Gib86] other successful uses of
the framework may emerge in the future.

102

References

[BGH+07] Christian Bürgy, Ulrich Glotzbach, Axel Hildebrand, Motoki
Tonn, and Thomas Ziegert. Sichere Wearable Systeme zur Kom-
missionierung industrieller Güter sowie für Diagnose, Wartung
und Reparatur. In Thilo Paul-Stueve, editor, Mensch &
Computer Workshopband, pages 117–120. Verlag der Bauhaus-
Universität Weimar, 2007.

[BH09] J. Bartholdi and S. Hackmann. Warehouse and distribution sci-
ence release 0.89. Technical report, Georgia Institute of Technol-
ogy, January 2009.

[BKLA06] David Bannach, Kai S. Kunze, Paul Lukowicz, and Oliver Amft.
Distributed modular toolbox for multi-modal context recogni-
tion. In ARCS, pages 99–113, 2006.

[BSI+11] Hannes Baumann, Thad Starner, Hendrik Iben, Anna
Lewandowski, and Patrick Zschaler. Evaluation of graphical
user-interfaces for order picking using head-mounted displays. In
Proceedings of the 13th International Conference on Multimodal
Interfaces, ICMI ’11, pages 377–384, New York, NY, USA, 2011.
ACM.

[CBL02] J. Coyle, E. Bardi, and C. Langley. The Management of Business
Logistics: A Supply Chain Perspective. South-Western College,
Cincinnati, OH, 2002.

[DBu14] The D-Bus message bus system. http://dbus.freedesktop.

org, 2014. accessed 07.02.2014.

103

http://dbus.freedesktop.org
http://dbus.freedesktop.org

104

[Dey00] Anind Kumar Dey. Providing architectural support for build-
ing context-aware applications. PhD thesis, Georgia Institute of
Technology, Atlanta, GA, USA, 2000. AAI9994400.

[DSGP03] Richard W. DeVaul, Michael Sung, Jonathan Gips, and Alex
Pentland. MIThril 2003: Applications and architecture. In
ISWC, pages 4–11. IEEE Computer Society, 2003.

[Ecl14] Eclipse IDE. http://www.eclipse.org, 2014. accessed
27.03.2014.

[ECM14] ECMAScript - the language of the web. http://www.

ecmascript.org/, 2014. accessed 09.04.2014.

[Eud98] The Eudaemons’ shoe. http://wearcam.org/historical/

node3.html, 1998. accessed 20.11.2013.

[FSK05] Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-peer com-
munication across network address translators. In Proceedings
of the Annual Conference on USENIX Annual Technical Confer-
ence, ATEC ’05, pages 13–13, Berkeley, CA, USA, 2005. USENIX
Association.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[Gib86] William Gibson. Burning Chrome. In Burning Chrome. Arbor
House, New York, NY, USA, 1986.

[GJ90] Dick Grune and Ceriel J. H. Jacobs. Parsing Techniques: A
Practical Guide. Ellis Horwood, Upper Saddle River, NJ, USA,
1990.

[HTT99] HTTP protocol. http://tools.ietf.org/html/rfc2616, 1999.
accessed 27.03.2014.

[Ibe12] Hendrik Iben. A heuristic approach to robust laser range finder
based pick detection. In Proceedings of the 16th International

http://www.eclipse.org
http://www.ecmascript.org/
http://www.ecmascript.org/
http://wearcam.org/historical/node3.html
http://wearcam.org/historical/node3.html
http://tools.ietf.org/html/rfc2616

105

Symposium on Wearable Computers, ISWC ’12, pages 108 –111,
2012.

[IBRK09] Hendrik Iben, Hannes Baumann, Carmen Ruthenbeck, and To-
bias Klug. Visual based picking supported by context aware-
ness: Comparing picking performance using paper-based lists
versus lists presented on a head mounted display with contex-
tual support. In Proceedings of the 2009 International Confer-
ence on Multimodal Interfaces, ICMI-MLMI ’09, pages 281–288,
New York, NY, USA, 2009. ACM.

[IRC93] Internet Relay Chat (IRC) protocol. http://tools.ietf.org/
html/rfc1459, 1993. accessed 07.02.2014.

[IRC94] Client-To-Client-Protocol (CTCP). http://www.irchelp.org/
irchelp/rfc/ctcpspec.html, 1994. accessed 14.03.2014.

[KA82] Ralph Katz and Thomas J. Allen. Investigating the not invented
here (NIH) syndrome: A look at the performance, tenure, and
communication patterns of 50 R&D project groups. R&D Man-
agement, 12(1):7–20, 1982.

[Kel83] J. F. Kelley. An empirical methodology for writing user-friendly
natural language computer applications. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
CHI ’83, pages 193–196, New York, NY, USA, 1983. ACM.

[KWN05] Holger Kenn, Hendrik Witt, and Tom Nicolai. Towards a formal
description of context. In 2nd International Forum on Applied
Wearable Computing (IFAWC), 2005.

[LHBK11] Michael Lawo, Otthein Herzog, Michael Boronowsky, and Pe-
ter Knackfuss. The Open Wearable Computing Group. IEEE
Pervasive Computing, 10(2):78–81, 2011.

[LHW07] Michael Lawo, Otthein Herzog, and Hendrik Witt. An industrial
case study on wearable computing applications. In Proceedings
of the 9th International Conference on Human Computer Inter-
action with Mobile Devices and Services, MobileHCI ’07, pages
448–451, New York, NY, USA, 2007. ACM.

http://tools.ietf.org/html/rfc1459
http://tools.ietf.org/html/rfc1459
http://www.irchelp.org/irchelp/rfc/ctcpspec.html
http://www.irchelp.org/irchelp/rfc/ctcpspec.html

106

[LMPMP+07] Clemens Lombriser, Mihai Marin-Perianu, Raluca Marin-
Perianu, Daniel Roggen, Paul Havinga, and Gerhard Tröster. Or-
ganizing context information processing in dynamic wireless sen-
sor networks. In 3rd International Conference on Intelligent Sen-
sors, Sensor Networks, and Information Processing (ISSNIP),
pages 67–72, 0 2007.

[Lov05] Robert Love. Get on the D-Bus. Linux Journal, (130), 2005.
http://www.linuxjournal.com/article/7744.

[LTGLH07] Paul Lukowicz, Andreas Timm-Giel, Michael Lawo, and Ot-
thein Herzog. WearIT@work: Toward real-world industrial wear-
able computing. IEEE Pervasive Computing, 6(4):8–13, October
2007.

[Mar03] Robert Cecil Martin. Agile Software Development: Principles,
Patterns, and Practices. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2003.

[McC76] Thomas J. McCabe. A complexity measure. In Proceedings of
the 2Nd International Conference on Software Engineering, ICSE
’76, page 407, Los Alamitos, CA, USA, 1976. IEEE Computer
Society Press.

[Met14] Metrics plugin for the Eclipse IDE. http://metrics2.

sourceforge.net, 2014. accessed 27.03.2014.

[MHP00] Brad Myers, Scott E. Hudson, and Randy Pausch. Past, present
and future of user interface software tools. ACM TRANS-
ACTIONS ON COMPUTER-HUMAN INTERACTION, 7:3–28,
2000.

[PBLG13] Lucia Pannese, Giancarlo Bo, Michael Lawo, and Silvia Gabrielli.
The Rehab@Home project: Engaging game-based home reha-
bilitation for improved quality of life. In Proceedings of the
SEGAMED Conference, 2013.

[Rhi14] Mozilla Rhino. www.mozilla.org/rhino, 2014. accessed
09.04.2014.

http://www.linuxjournal.com/article/7744
http://metrics2.sourceforge.net
http://metrics2.sourceforge.net
www.mozilla.org/rhino

107

[RLRT11] Daniel Roggen, Clemens Lombriser, Mirco Rossi, and Gerhard
Tröster. Titan: An enabling framework for activity-aware "per-
vasive apps" in opportunistic personal area networks. EURASIP
J. Wirel. Commun. Netw., 2011:1:1–1:22, January 2011.

[Sch00] Albrecht Schmidt. Implicit human computer interaction through
context. Personal Technologies, 4(2-3):191–199, June 2000.

[SDA99] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Con-
text Toolkit: Aiding the development of context-enabled appli-
cations. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’99, pages 434–441, New
York, NY, USA, 1999. ACM.

[SFH+98] R. Stein, S. Ferrero, M. Hetfield, A. Quinn, and M. Krichever.
Development of a commercially successful wearable data collec-
tion system. In IEEE Intl. Symp. on Wearable Computers. IEEE
Computer Society, 1998.

[Spr13] Spring framework. http://spring.io, 2013. accessed
16.12.2013.

[SS02] Asim Smailagic and Daniel Siewiorek. Application design for
wearable and context-aware computers. IEEE Pervasive Com-
puting, 1(4):20–29, October 2002.

[ST94] Bill Schilit and Marvin Theimer. Disseminating active map in-
formation to mobile hosts. IEEE Network, 8:22–32, 1994.

[Sta02] Thad E. Starner. Wearable computers: No longer science fiction.
IEEE Pervasive Computing, 1(1):86–88, 2002.

[Sti08] Thomas Stiefmeier. Real-Time Spotting of Human Activities in
Industrial Environments. PhD thesis, ETH, Zürich, Germany,
2008.

[Tho98] Edward O. Thorp. The invention of the first wearable com-
puter. In Proceedings of the 2Nd IEEE International Symposium
on Wearable Computers, ISWC ’98, pages 4–, Washington, DC,
USA, 1998. IEEE Computer Society.

http://spring.io

108

[URL05] Uniform Resource Identifier (URI): Generic syntax. http://

tools.ietf.org/html/rfc3986, 2005. accessed 08.04.2014.

[UTF03] UTF-8, a transformation format of ISO 10646. http://tools.

ietf.org/html/rfc3629, 2003. accessed 07.04.2014.

[WBS+10] Kimberly A. Weaver, Hannes Baumann, Thad Starner, Hendrick
Iben, and Michael Lawo. An empirical task analysis of warehouse
order picking using head-mounted displays. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
CHI ’10, pages 1695–1704, New York, NY, USA, 2010. ACM.

[Web04] Web Services architecture. http://www.w3.org/TR/ws-arch/,
2004. accessed 27.03.2014.

[Web11] WebSocket protocol. http://tools.ietf.org/html/rfc6455,
2011. accessed 27.03.2014.

[Wer96] C. Werry. Linguistic and Interactional Features of Internet Relay
Chat. In S. Herring, editor, Computer-Mediated Communication:
Linguistic, Social and Cross-Cultural Perspectives, pages 47–63.
John Benjamins, Amsterdam, 1996.

[Wit08] Hendrik Witt. User interfaces for wearable computers: develop-
ment and evaluation. PhD thesis, University of Bremen, 2008.
http://d-nb.info/987814362.

[WNK07] Hendrik Witt, Tom Nicolai, and Holger Kenn. The WUI-toolkit:
A model-driven UI development framework for wearable user in-
terfaces. In ICDCS Workshops, page 43. IEEE Computer Society,
2007.

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3629
http://www.w3.org/TR/ws-arch/
http://tools.ietf.org/html/rfc6455

List of Figures

4.1 component model in CTK (from [Dey00]) 25
4.2 CTK architecture (from [Dey00]) 26
4.3 dependency graph of the Context ToolKit 30
4.4 dependency graph of the Context ToolKit core 32

5.1 room context example . 45
5.2 context hierarchy . 45
5.3 property details . 46
5.4 client server diagram . 47
5.5 context filtering for a second server 48
5.6 simplified environment model . 49
5.7 context data model . 51
5.8 simplified client model . 52
5.9 dependency graph of common package 55
5.10 dependency graph of server package 56
5.11 dependency graph of client package 57
5.12 dependency graph of client package, context view 58
5.13 message structure . 59
5.14 context data structure (transmission) 60
5.15 context message . 61
5.16 main server loop . 63
5.17 subscribe command . 64
5.18 subscribe command - context definition 64
5.19 subscribe command - source definition 64
5.20 subscribe command - property definition 65
5.21 subscribe command - example . 65

109

110

5.22 subscribe command - numeric id example 65
5.23 subscribe command - wildcard example 66
5.24 short context data structure . 67
5.25 short context message . 67
5.26 simplified history class relations 70
5.27 history database tables . 72
5.28 history database BLOB access 73

6.1 architecture of the temperature demo 78
6.2 temperature application UI . 79
6.3 package dependencies CTK (temperature) 82
6.4 package dependencies TCF (temperature) 83
6.5 high-level context aggregation . 90
6.6 logical setup for tests . 94
6.7 logical setup for evaluation . 96

A.1 example LISTSRC reply . 115
A.2 example LISTPRP reply . 116

B.1 Environment Model . 122
B.2 Common Data Structures . 123
B.3 Server Data Structures . 124
B.4 Client Data Structures . 125

List of Abbreviations

BLOB Binary Large Object

CPU Central Processing Unit

CRN Context Recognition Network (Toolbox)

CTK Context ToolKit

DI Dependency Injection

FIFO First In, First Out

GPRS General Packet Radio Service

GPS Global Positioning System

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

IDE Integrated Development Environment

IPC Inter Process Communication

JDBC Java Database Connectivity

LAN Local Area Network

LRF Laser Range Finder

MIT Massachusetts Institute of Technology

OOP Object Oriented Programming

SQL Structured Query Language

111

112

TCF TZI Context Framework

UI User Interface

UML Unified Modelling Language

URL Universal Resource Locator

UTF-8 8-bit UCS Transformation Format

WLAN Wireless Local Area Network

WUI-TK Wearable UI Toolkit

XML eXtensible Markup Language

Appendix A

Server Commands

A.1 Connection Maintenance Commands

LOGIN <Name>
Connect to the server with a given name
Reply: ACCEPT <Name> <Id> - Name is your name and Id is a positive
integer that identifies this connection (unique)

RELOGIN <Name> <Id>
Reclaim connection after connection loss using old Id
Reply: ACCEPT <Name> <Id> - same as for LOGIN
Reply: FAIL - if the Id is not known (anymore)

When a client successfully reconnects to the server, all previous subscriptions
still apply. If any context events arrived while the client was not connected, they
will be transmitted now. However, some events might still be lost depending on
the technical circumstances causing the earlier involuntary disconnect.
If the client set up short context mode the server will continue using this mode.

LOGOUT
Terminate connection to the server; invalidates your Id
Reply: OK

113

114

After logging out, the server will free any resources associated with the par-
ticular client. This includes all subscriptions and settings.

PING1

Request a PONG-reply from the server.
Reply: PONG

A client can use this command as a means of checking the connection. The
server will reply as fast as possible.
While no other communication takes place, the server will also periodically send
a PING message to check the connection. The client is expected to either reply
with a PONG message or any other valid message.
If the client does not reply to server generated PING messages the server will
assume a communication problem and disconnect. For a defined time, the client
will be able to recover the connection using the RELOGIN command.

PONG1

Answer a PING-message from the server.
Reply: Nothing

While this command has no further meaning it can be used by a client to pro-
actively mark itself as being active. A very simple client could choose to ignore
PING messages from the server and instead periodically send PONG messages
while no other commands need to be executed.

A.2 General Queries

STARTTIME
Request startup time from server
Reply: REPLY <time> - time of server start (epoch, in ms)

A client can use the start-time value to determine if a server was restarted
since the last communication.

1can be send at any time when logged in

115

2 123 3 345=source1 456=source2 567*=source3 234 1 678=source4
Sources for two contexts (123 and 234). Context one has three sources (345,
456 and the unset source 567). The second context has one source (678).

Figure A.1: example LISTSRC reply

LISTIDS
List all known numeric ids
Reply: REPLY <#Ids> <Id1> ... <Idn>
number of ids followed by all ids

LISTCLT
List all connected clients
Reply: REPLY <#Clients> <ClientId1>=<ClientName1>, ...
<ClientIdn>=<ClientNamen>
number of clients followed by all pairs of client ids and associated names.

LISTCTX
List all defined contexts
Reply: REPLY <#Contexts> <ContextId1>=<ContextName1>, ...
<ContextIdn>=<ContextNamen>
number of contexts followed by all pairs of context ids and associated names.

LISTSRC [<Context>*]
List all sources for given contexts (or all contexts, if none given)
Reply: REPLY <#Contexts> <ContextId1> <#Sources>
<SourceId1>=<SourceName1> ... <SourceIdn>=<SourceNamen> ... <ContextIdm>
...
number of contexts in answer and that many times a ContextId followed by the
number of sources in that context. This is followed by pairs of source ids and
associated names. Source ids may have an additional postfix ’*’ that signals
that this source does not yet contain anything. See figure A.1 for an example
on the output format.

LISTPRP <Context> <#Sources> <Source1> ... <Sourcen> *
List all properties for given contexts and sources (or all sources on a context if 0

116

2 123 2 345 2 912=prop1 192*=prop2 456 1 139=prop3
234 1 678 1 492=prop4

Properties for two contexts (123 and 234). Two sources at context one; source
345 has 2 properties (912 and the unset property 192). Source 456 has one
property (139). There ist one source for the second context (678) with one
property(492).

Figure A.2: example LISTPRP reply

is given for number of sources). You can specify multiple contexts and sources
to list.
Reply: REPLY <#Contexts> <ContextId1> <#Sources> <SourceId1>#Prop-
erties <PropertyId1>=<PropertyName1> ...
<PropertyIdn>=<PropertyNamen> ... <ContextIdm> ...
number of contexts in answer and that many times a ContextId followed by the
number of sources listed for that context. Each sources id is given, followed by
the number of properties for that source. This number indicates the number
of property id and name pairs which follow. Additionally, each property id can
have a postfix ’*’ indicating that this property has not been set yet. See figure
A.2 for an example on the output format.

GETCTXID <ContextName>
Request the numerical id for a given context
Reply: REPLY <id> - returns the id of the context or FAIL if no such context
is known.

GETSRCID <Context> <SourceName>
Request the numerical id for a given source
Reply: REPLY <id> - returns the id of the source or FAIL if no such source
(or context) is known.

GETPRPID (<Context> <Source> | <SourceId>) <PropertyName>
Request the numerical id for a given property
Reply: REPLY <id> - returns the id of the property or FAIL if no such prop-
erty (or context/source) is known.

117

GETIDINFO <Id>
Request information on id
Reply: REPLY IDINFO (C | S | P | U) <Id> - returns C for contexts, S for
sources and P for properties. Everything else (invalid ids, client ids, subscrip-
tion ids, etc.) is returned as U (unknown).

A.3 Context Manupilation Commands

CREATECTX <ContextName>
Create a context
Reply: REPLY <Id> - Returns the id of the created context; if a context by
the same name already exists, the existing id is returned

CREATESRC <Context> <SourcetName>
Create a source
Reply: REPLY <Id> - Returns the id of the created source; if a source of the
same name exist in this context, the existing id is returned
FAIL is returned, if the context does not exist

CREATEPRP (<Context> <Source> | <SourceId>) <PropertytName>
Create a property
Reply: REPLY <Id> - Returns the id of the created property; if a source of
the same name exist in this source, the existing id is returned
FAIL is returned, if either the context or the source do not exist

A.4 Subscription Management

SUBSCRIBE #Def (<Context> #SrcDef (<Source> #PrpDef (<Property>
#Tags Tag*)))
SUBSCRIBE #Def (S (<SourceId> #PrpDef (<Property> #Tags Tag*)))
SUBSCRIBE #Def (P (<PropertyId> #Tags Tag*))
Subscribe to context events.
Context, Source and Property items can be reference either by their name or

118

their numeric identifier. A name is prefixed with ’@’, otherwise the numeric
identifier is required. Numeric ids for sources and properties imply information
on their parent structures. Therefore two shorthand versions of the subscribe
command exists, that allow skipping parts of the definitions. A ’P’ in place of
the context identifier means that a property will be referenced by identifier. The
letter ’S’ indicates that a numeric source identifier will be used. The arguments
that are marked with a ’#’ in the command definitions define the number of
times the following structure is repeated. In case of the short-cut versions, the
previous number serves this purpose, e.g. a ’#Def’ of 2 with a ’P’ short-cut
selects two property definitions.
Reply: REPLY <Id> - Returns the id of the created subscription
See section 5.4.5 for more details on subscribing.

SUBSCRIPT <Context> <Script> - Send a script to handle events
Reply: REPLY <Id> - Returns the id of the created subscription
See section 5.4.10 for more details on the scripting mechanism.

LISTSUB
List current subscriptions
Reply: REPLY #Subscriptions SubscriptionId1 ... SubscriptionIdn

SHORTSUB (true|false) (all | <SubscriptionId1> ... <SubscriptionIdn>)
Enable or disable short mode for subscriptions. You can either specify all to
affect all subscription or list subscriptions individually.

Reply: OK; on invalid subscription id, FAIL is returned and only some of
the given subscriptions may have been processed.

CANCELSUB (all | <SubscriptionId1> ... <SubscriptionIdn>)
Cancel subscriptions. You can either specify all to affect all subscription or list
subscriptions individually.
Reply: OK; on invalid subscription id, FAIL is returned and only some of the
given subscriptions may have been processed.

119

A.5 Context Setting

SETPRP (<Context> <Source> <Property> | <SourceId> <Property> |
<PropertyId>) = <Value> <TimeStamp> #Tags Tag1 ... Tagn [P]
Set a property value
A time-stamp can be specified in ms since epoch or can be set to -1. In case of
-1 the server will set to timestamp to the time of arrival.
The number of tags may be 0 or must be followed by that number of tags. Spec-
ifying an optional P at the end marks the property as being persistent (default
is non-persistent).
Reply: OK
FAIL is returned when the specified property does not exist.

This command represents the central function of the server from a informa-
tion source point of view. A sensor representation uses this command to update
the corresponding information on the server. The server will in turn check, if
any client is interested in receiving a notification about the change and send a
CTX or SCTX message if needed.

A.6 Context History

HISTORY (<Context> <Source> <Property> | <SourceId> <Property> |
<PropertyId>) ((GET [-]<From> [+|r]<To> <Limit>) | latest | earliest) -
Retrieve history values for given property
Reply: #Elements ContextElement1 ... ContextElementn
The returned context elements are returned in the same way as for normal con-
text events but without the identifying context or subscription id.

All query commands can fail if an unknown context, source or property is spec-
ified.

120

A.7 Large Transfers

Transfer commands have a transfer identifier as their first argument. This id is
chosen by the side that initiates a transfer.

TX | CTXTX <TID> (0 <SIZE> | <PNUM> <DATA>)
Start a transfer of send data. A transfer starts with a packet numer of 0 and
the total size of the data to be transfered. Following messages have a packet
number greater 0 and contain data. The difference between TX and CTXTX is
that the latter is used to indicate the transfer of a context event.

TXACK <TID> <PNUM>
Packet acknowledgement. When this message is received the next packet should
be sent.

TXRESEND <TID> <PNUM>
Packet resend request. When this message is received the packet with the given
number should be resend.

TXCANCEL <TID>
Transfer cancel. When this message is received the corresponding transfer is
cancelled. This command is only valid when sent from the side that initialized
the transfer.

Appendix B

UML Diagrams

121

122

Figure B.1: Environment Model

123

Figure B.2: Common Data Structures

124

Figure B.3: Server Data Structures

125

Figure B.4: Client Data Structures

126

Appendix C

Code Examples

The following code examples show small fragments of key functionality and are
not by themselves complete programs.

C.1 Context Subscription and Processing

An application can make use of the framework by simply subscribing to known
sources of information and process incoming events by registering an instance
of a listener interface.

// [. . .] i n i t i a l i s a t i o n code
// hostname and por t r e f e r to s e r v e r
// name i s an a r b i t r a r y i d e n t i f i e r

ContextCl ient cc = new ContextCl ient () ;
cc . i n i t (hostname , port) ;
cc . l o g i n (name) ;
cc . setAutoReconnect (true) ;
ContextManager cm = new ContextManager (cc) ;
cm . addContextListener (this) ;

cm . sub s c r i b e (" s en so r s " , " temperature " , " o f f i c e ") ;

// [. . .] implementat ion o f L i s t ene r i n t e r f a c e
@Override

127

128

public void processContext (Context ctx , ContextElement ce) {
// data proce s s ing

}

C.2 Context Generation

The general pattern for context generation is to perform an initial setup and
then updating information as it comes in. A software interface for a temperature
sensor would read the sensor at set intervals and update the context information
after each result.

// [. . .] i n s tance f i e l d
ContextManager cm;

// [. . .] i n i t i a l i s a t i o n code
// hostname and por t r e f e r to s e r v e r
// name i s an a r b i t r a r y i d e n t i f i e r

ContextCl ient cc = new ContextCl ient () ;
cc . i n i t (hostname , port) ;
cc . l o g i n (name) ;
cc . setAutoReconnect (true) ;
ContextManager cm = new ContextManager (cc) ;

// [. . .] a p p l i c a t i o n s p e c i f i c update event , e . g . sensor read ing
cm. se tProper ty (" s en so r s " , " temperature " , " o f f i c e " ,

I n t eg e r . t oS t r i ng (read ing)) ;

When generating context the actual transmission of values is transparent to
the application and performed in a background task. It is therefore possible to
perform context updates inside methods that need to finish quickly such as GUI
event listeners.

C.3 Temperature Demo CTK

This code was used in the application complexity tests in section 6.1.1 for the
CTK values.

129

C.3.1 CTKTempReader.java

package c t k t e s t ;

import java . awt . EventQueue ;
import java . u t i l . L inkedLis t ;
import java . u t i l . L i s t ;
import java . u t i l . Vector ;

import context . arch . BaseObject ;
import context . arch . Inval idMethodException ;
import context . arch . MethodException ;
import context . arch .comm. DataObject ;
import context . arch .comm. c l i e n t s . IndependentCommunication

;
import context . arch . d i s c ov e r e r . ComponentDescription ;
import context . arch . d i s c ov e r e r . D i s cove re r ;
import context . arch . d i s c ov e r e r . componentDescr ipt ion .

NonConstantAttributeElement ;
import context . arch . d i s c ov e r e r . querySystem .

AbstractQueryItem ;
import context . arch . d i s c ov e r e r . querySystem . QueryItem ;
import context . arch . handler . Handler ;
import context . arch . s t o rage . Att r ibute ;
import context . arch . s ub s c r i b e r . C l i en tS id eSubs c r i b e r ;
import context . arch . s ub s c r i b e r . D i s cove r e rSubsc r i b e r ;
import context . arch . u t i l . Error ;
import context . arch . widget . Widget ;

public class CTKTempReader extends BaseObject implements
Handler {

private St r ing widgetId = null ;
private St r ing d i s c o Id = null ;

public interface TemperatureListener {

130

public void onTemperature (f loat temp) ;
}

private List<TemperatureListener> l i s t e n e r = new
LinkedList<TemperatureListener >() ;

private void no t i f yL i s t e n e r (f loat temp) {
List<TemperatureListener> tmp l i s t = null ;
synchronized (l i s t e n e r) {

tmp l i s t = new LinkedList<TemperatureListener >(
l i s t e n e r) ;

}
for (TemperatureListener l : tmp l i s t) {

l . onTemperature (temp) ;
}

}

public void addLis tener (TemperatureListener l) {
synchronized (l i s t e n e r) {

l i s t e n e r . add (l) ;
}

}
public void removeListener (TemperatureListener l) {

synchronized (l i s t e n e r) {
l i s t e n e r . remove (l) ;

}
}

public CTKTempReader(int l o c a l S e rv e rPo r t) {
super (l o c a l S e r v e rPo r t) ;
s e t I d (Widget . ge t Id ("TempReader" , l o c a l S e rv e rPo r t)) ;
f i ndD i s c ove r e r () ;
d i s c o v e r e rReg i s t r a t i o n () ;

boolean su c c e s s = fa l se ;

131

AbstractQueryItem aqi = new QueryItem (new
NonConstantAttributeElement (" temperature " , null ,
Att r ibute .FLOAT)) ;

Vector<?> re s = discovererQuery (aq i) ;

i f (r e s != null && re s . s i z e () >0) {
ComponentDescription cd = (ComponentDescription) r e s

. f i r s tE l ement () ;
C l i en tS id eSubs c r i b e r cs = new Cl i en tS id eSubs c r i b e r (

get Id () , getHostName () , getPort () , "update" ,
null , null) ;

Error er = subscr ibeTo (this , cd . id , cd . hostname , cd
. port , c s) ;

i f (er . ge tError () . equa l s (Error .NO_ERROR)) {
widgetId = cs . g e tSubs c r i p t i on Id () ;
System . out . format ("WidgetID : ␣%s\n" , widgetId) ;

s u c c e s s = true ;
System . out . format (" Su c c e s s f u l l y ␣ subsc r ibed . . . \ n")

;
} else {

System . e r r . format ("Error ␣whi l e ␣ sub s c r i b i ng . . . ␣%s \
n" , er . t oS t r i ng ()) ;

}
} else {

System . e r r . format ("Did␣not␣ d i s c ove r ␣ the ␣ temperature
␣widget . . . \ n") ;

}

i f (! s u c c e s s) {

132

System . out . p r i n t l n (" Subsc r ib ing ␣ to ␣ d i s c ov e r e r . . . \ n"
) ;

D i s cove r e rSubsc r i b e r ds = new Discove r e rSubsc r i b e r (
get Id () , getHostName () , getPort () , D i s covere r .
NEW_COMPONENT, aq i) ;

d i s c ov e r e rSub s c r i b e (this , ds) ;

d i s c o Id = ds . g e tSubs c r i p t i on Id () ;
}

}

private Object getValue (DataObject data , S t r ing name) {
DataObject nonconstant = data . getDataObject ("NCANVS")

;
i f (nonconstant==null) {

System . e r r . p r i n t l n ("No␣non−constant ␣ a t t r i b u t e s . . . ")
;

return null ;
}

DataObject a t t r i b u t e s = nonconstant . getDataObject ("
a t t r i b u t e s ") ;

i f (a t t r i b u t e s==null) {
System . e r r . p r i n t l n ("No␣ a t t r i b u t e s . . . ") ;
return null ;

}

for (Object o : a t t r i b u t e s . ge tChi ldren ()) {
i f (o instanceof DataObject) {

DataObject doch i ld = (DataObject) o ;
i f (! doch i ld . getName () . equa l s (" attributeNameValue "

))
continue ;

133

Vector<?> namedAttrs = doch i ld . getValue () ;
Object va lue = null ;
boolean hasName = fa l se ;
boolean hasValue = fa l se ;
for (Object no : namedAttrs) {

i f (no instanceof DataObject) {
DataObject ndo = (DataObject) no ;
Vector<?> va lue s = ndo . getValue () ;

i f (va lue s == null | | va lue s . s i z e () < 1)
continue ;

i f (ndo . getName () . equa l s (" attributeName") &&
name . equa l s (va lue s . get (0))) {

hasName = true ;
}
i f (ndo . getName () . equa l s (" a t t r ibuteVa lue ")) {

hasValue = true ;
va lue = va lue s . get (0) ;

}
}
i f (hasName && hasValue)

return value ;
}

}
}
System . e r r . p r i n t l n ("No␣matching␣data . . . \ n") ;
return null ;

}

@Override
public DataObject handle (S t r ing subs c r i p t i on Id ,

DataObject data)
throws Inval idMethodException , MethodException {

134

System . out . format ("Message␣ from␣%s\n" , s ub s c r i p t i on Id
) ;

System . out . p r i n t l n (data) ;
System . out . p r i n t l n ("HT: ␣" + data . g e tAt t r i bu t e s ()) ;
i f (s ub s c r i p t i on Id . equa l s (widgetId)) {

Object dotemp = getValue (data , " temperature ") ;
i f (dotemp instanceof St r ing) {

System . out . p r i n t l n ("Temp: ␣" + dotemp) ;
try {

n o t i f yL i s t e n e r (Float . par seF loat ((S t r ing) dotemp)
) ;

} catch (NumberFormatException nfe) {
System . e r r . p r i n t l n (" Inva l i d ␣ temperature : ␣" +

dotemp) ;
}

} else {
System . e r r . p r i n t l n ("No␣Temp! ␣" + dotemp + (dotemp

== null ? "<nul l>" : dotemp . ge tC la s s () .
getName ())) ;

}
return (new Error (Error .NO_ERROR)) . toDataObject

() ;
}
i f (s ub s c r i p t i on Id . equa l s IgnoreCase (d i s c o Id)) {

DataObject w = data . getDataObject (Di s covere r .
DISCOVERER_QUERY_REPLY_CONTENT) ;
ComponentDescription widget =

ComponentDescription .
dataObjectToComponentDescription (w) ;

C l i en tS id eSubs c r i b e r cs = new
Cl i en tS id eSubs c r i b e r (get Id () , getHostName () ,
getPort () , "update" , null , null) ;

subscr ibeTo (this , widget . id , widget . hostname ,
widget . port , c s) ;

135

widgetId = cs . g e tSubs c r i p t i on Id () ;
System . out . format ("WidgetID : ␣%s\n" , widgetId) ;
return (new Error (Error .NO_ERROR)) . toDataObject

() ;
}

return null ;
}

@Override
public void handleIndependentReply (

IndependentCommunication independentCommunication)
{

}

public stat ic void main (St r ing . . . a rgs) {
f ina l CTKTempReader t r = new CTKTempReader(1235) ;
EventQueue . invokeLater (new Runnable () {

@Override
public void run () {

new TempReadUI(t r) ;
}

}) ;
}

}

C.3.2 TempReadUI.java

package c t k t e s t ;

import java . awt . BorderLayout ;

import java . awt . event .WindowEvent ;
import java . awt . event . WindowListener ;

136

import javax . swing . BoxLayout ;
import javax . swing . JFrame ;
import javax . swing . JLabel ;
import javax . swing . JPanel ;

public class TempReadUI implements CTKTempReader .
TemperatureListener {

private JLabel tempLabel ;

private JFrame frame ;

public TempReadUI(CTKTempReader t r) {
t r . addLis tener (this) ;

frame = new JFrame ("ReadUI") ;
frame . s e tDe fau l tC lo seOperat ion (JFrame .

DISPOSE_ON_CLOSE) ;
frame . setLocat ionByPlat form (true) ;

JPanel tempPanel = new JPanel () ;
tempPanel . setLayout (new BoxLayout (tempPanel ,

BoxLayout .PAGE_AXIS)) ;

JPanel p ;
p = new JPanel () ;
p . add (new JLabel ("Temperature")) ;
tempPanel . add (p) ;

p = new JPanel () ;
p . add (tempLabel = new JLabel ("?␣◦C")) ;
tempPanel . add (p) ;

137

frame . add (tempPanel , BorderLayout .NORTH) ;

frame . pack () ;
frame . s e tV i s i b l e (true) ;

frame . addWindowListener (new WindowListener () {

@Override
public void windowOpened (WindowEvent e) { }

@Override
public void windowIcon i f i ed (WindowEvent e) { }

@Override
public void windowDeiconi f ied (WindowEvent e) { }

@Override
public void windowDeactivated (WindowEvent e) { }

@Override
public void windowClosing (WindowEvent e) {

System . e x i t (0) ;
}

@Override
public void windowClosed (WindowEvent e) { }

@Override
public void windowActivated (WindowEvent e) { }

}) ;
}

@Override
public void onTemperature (f loat temp) {

tempLabel . setText (S t r ing . format ("%.1 f ␣◦C" , temp)) ;

138

}
}

C.3.3 CTKTempProvider.java

package c t k t e s t ;

import java . awt . EventQueue ;

import context . arch . s e r v i c e . S e r v i c e s ;

import context . arch . s t o rage . Att r ibute ;
import context . arch . s t o rage . At t r ibute s ;
import context . arch . s ub s c r i b e r . Ca l lbacks ;
import context . arch . widget . Widget ;

public class CTKTempProvider extends Widget {

private St r ing l o c a t i o n ;
private f loat temperature = 0 .0 f ;

public CTKTempProvider (S t r ing l o ca t i on , int port ,
S t r ing id , boolean s to rageF lag) {

super (port , id , s to rageF lag) ;
this . l o c a t i o n = l o c a t i o n ;
f i ndD i s c ove r e r (true) ;

}

public CTKTempProvider (S t r ing l o ca t i on , int port ,
S t r ing id) {

this (l o ca t i on , port , id , fa l se) ;
}

@Override
protected Att r ibute s i n i tA t t r i b u t e s () {

At t r ibute s a t t s = new Att r ibute s () ;

139

a t t s . addAttr ibute (" temperature ") ;
return a t t s ;

}

@Override
protected Cal lbacks i n i tCa l l b a c k s () {

Cal lbacks ca = new Cal lbacks () ;
At t r ibute s a t t s = new Att r ibute s () ;
a t t s . addAttr ibute (" temperature " , Att r ibute .FLOAT) ;
ca . addCallback (Widget .UPDATE, a t t s) ;
return ca ;

}

@Override
protected Att r ibute s i n i tCons tan tAt t r i bu t e s () {

At t r ibute s a t t s = new Att r ibute s () ;
a t t s . addAttributeNameValue (" l o c a t i o n " , l o c a t i o n) ;
return a t t s ;

}

@Override
protected Se r v i c e s i n i t S e r v i c e s () {

return new Se r v i c e s () ;
}

@Override
protected Att r ibute s queryGenerator () {

At t r ibute s a t t s = new Att r ibute s () ;
a t t s . addAttributeNameValue (" temperature " , Float .

valueOf (temperature) , Att r ibute .FLOAT) ;
return a t t s ;

}

public void setTemperature (f loat temp) {
this . temperature = temp ;

140

}

public f loat getTemperature () {
return temperature ;

}

@Override
public void no t i f y (S t r ing event , Object data) {

Att r ibute s a t t s = queryGenerator () ;

i f (a t t s !=null) {
setNonConstantAttr ibutes (a t t s) ;
i f (s ub s c r i b e r s . s i z e () >0) {

sendToSubscr ibers (event) ;
}

s t o r e (a t t s) ;
}

}

/∗∗
∗ @param args
∗/

public stat ic void main (St r ing [] a rgs) {
int port = 1234 ;
f ina l CTKTempProvider tp = new CTKTempProvider ("

f r i d g e " , port , Widget . ge t Id ("TempProvider" , port))
;

EventQueue . invokeLater (new Runnable () {

@Override
public void run () {

new TempUI(tp) ;
}

}) ;

141

}
}

C.3.4 TempUI.java

package c t k t e s t ;

import java . awt . BorderLayout ;
import java . awt . event .WindowEvent ;
import java . awt . event . WindowListener ;

import javax . swing . BoxLayout ;
import javax . swing . JFrame ;
import javax . swing . JLabel ;
import javax . swing . JPanel ;
import javax . swing . JS l i d e r ;
import javax . swing . event . ChangeEvent ;
import javax . swing . event . ChangeListener ;

public class TempUI {
private CTKTempProvider tp ;
private JLabel tempLabel ;
private JFrame frame ;
private JS l i d e r tempSl ider ;

public TempUI(CTKTempProvider tp) {
this . tp = tp ;

frame = new JFrame ("TempUI") ;
frame . s e tDe fau l tC lo seOperat ion (JFrame .

DISPOSE_ON_CLOSE) ;
frame . setLocat ionByPlat form (true) ;

JPanel tempPanel = new JPanel () ;
tempPanel . setLayout (new BoxLayout (tempPanel ,

BoxLayout .PAGE_AXIS)) ;

142

JPanel p ;
p = new JPanel () ;
p . add (new JLabel ("Temperature")) ;
tempPanel . add (p) ;

p = new JPanel () ;
p . add (tempLabel = new JLabel ("?␣◦C")) ;
tempPanel . add (p) ;

frame . add (tempPanel , BorderLayout .NORTH) ;

tempSl ider = new JS l i d e r (JS l i d e r .VERTICAL, −80, 400 ,
(int) (10 ∗ tp . getTemperature ())) ;

tempSl ider . addChangeListener (new ChangeListener () {

@Override
public void stateChanged (ChangeEvent e) {

int v = tempSl ider . getValue () ;
f loat tmp = (f loat) v / 10 .0 f ;
tempLabel . setText (S t r ing . format ("%.1 f ␣◦C" , tmp)) ;
TempUI . this . tp . setTemperature (tmp) ;
TempUI . this . tp . n o t i f y ("update" , null) ;

}
}) ;

frame . add (tempSl ider , BorderLayout .CENTER) ;
frame . pack () ;
frame . s e tV i s i b l e (true) ;

frame . addWindowListener (new WindowListener () {

@Override
public void windowOpened (WindowEvent e) { }

143

@Override
public void windowIcon i f i ed (WindowEvent e) { }

@Override
public void windowDeiconi f ied (WindowEvent e) { }

@Override
public void windowDeactivated (WindowEvent e) { }

@Override
public void windowClosing (WindowEvent e) {

System . e x i t (0) ;
}

@Override
public void windowClosed (WindowEvent e) { }

@Override
public void windowActivated (WindowEvent e) { }

}) ;
}

}

C.4 Temperature Demo TCF

This code was used in the application complexity tests in section 6.1.1 for the
TCF values.

C.4.1 CTXTempReader.java

package c on t ex t t e s t ;

import java . awt . EventQueue ;
import java . u t i l . Arrays ;
import java . u t i l . L inkedLis t ;
import java . u t i l . L i s t ;

144

import org . t z i . context . c l i e n t . ContextCl ient ;
import org . t z i . context . c l i e n t . ContextC l i en tL i s t ene r ;
import org . t z i . context . c l i e n t . ContextManager ;
import org . t z i . context . c l i e n t . ContextCl ient .

CommunicationState ;
import org . t z i . context . common . Context ;
import org . t z i . context . common . ContextElement ;
import org . t z i . context . common . ContextL i s tener ;
import org . t z i . context . common . Con t ex tL i s t en e r In t e r f a c e ;

public class CTXTempReader implements ContextL i s tener {
private ContextCl ient cc ;
private List<Str ing> tags = Arrays . a sL i s t (new St r ing []

{ " temperature " }) ;

public interface TemperatureListener {
public void onTemperature (f loat temp) ;

}

private List<TemperatureListener> l i s t e n e r = new
LinkedList<TemperatureListener >() ;

private void no t i f yL i s t e n e r (f loat temp) {
List<TemperatureListener> tmp l i s t = null ;
synchronized (l i s t e n e r) {

tmp l i s t = new LinkedList<TemperatureListener >(
l i s t e n e r) ;

}

for (TemperatureListener l : tmp l i s t) {
l . onTemperature (temp) ;

}
}

145

public void qu i t () {
cc . logoutI fConnected () ;
cc . terminate () ;

}

public void addLis tener (TemperatureListener l) {
synchronized (l i s t e n e r) {

l i s t e n e r . add (l) ;
}

}
public void removeListener (TemperatureListener l) {

synchronized (l i s t e n e r) {
l i s t e n e r . remove (l) ;
}

}

private CTXTempReader(ContextCl ient cc , ContextManager
cm) {

this . cc = cc ;
cm. sub s c r i b e (Context .ALL_CONTEXTS, Context .

ALL_SOURCES, Context .ALL_PROPERTIES, tags) ;
cm . addContextListener (this) ;

}

public stat ic void main (St r ing . . . a rgs) {
St r ing s e r v e r = " l o c a l h o s t " ;
int port = 2009 ;
S t r ing user = "tempReader" ;

ContextCl ient cc = new ContextCl ient () ;
cc . i n i t (s e rver , port) ;
cc . l o g i n (user) ;

ContextManager cm = new ContextManager (cc) ;

146

f ina l CTXTempReader t r = new CTXTempReader(cc , cm) ;

EventQueue . invokeLater (new Runnable () {
@Override
public void run () {

new TempReadUI(t r) ;
}

}) ;
}

@Override
public Cont ex tL i s t en e r In t e r f a c e g e tP rope r t i e s () {
return null ;

}

@Override
public void processContext (Context ctx , ContextElement

ce) {
try {

f loat temp = Float . par seF loat (ce . getValue ()) ;
n o t i f yL i s t e n e r (temp) ;

} catch (Exception e) {
System . e r r . p r i n t l n (" Inva l i d ␣ temperature : ␣" + ce .

getValue ()) ;
}

}

@Override
public void propertyAdded (Context ctx , S t r ing source ,

S t r ing property) { }

@Override
public void propertyRemoved (Context ctx , S t r ing source ,

S t r ing property) { }

147

@Override
public void sourceAdded (Context ctx , S t r ing source ,

S t r ing property) { }

@Override
public void sourceRemoved (Context ctx , S t r ing source) {

}
}

C.4.2 TempReadUI.java

package c on t ex t t e s t ;

import java . awt . BorderLayout ;

import java . awt . event .WindowEvent ;
import java . awt . event . WindowListener ;

import javax . swing . BoxLayout ;
import javax . swing . JFrame ;
import javax . swing . JLabel ;
import javax . swing . JPanel ;

public class TempReadUI implements CTXTempReader .
TemperatureListener {

private JLabel tempLabel ;
private JFrame frame ;

public TempReadUI(CTXTempReader t r) {
t r . addLis tener (this) ;

frame = new JFrame ("ReadUI") ;
frame . s e tDe fau l tC lo seOperat ion (JFrame .

DISPOSE_ON_CLOSE) ;
frame . setLocat ionByPlat form (true) ;

148

JPanel tempPanel = new JPanel () ;
tempPanel . setLayout (new BoxLayout (tempPanel ,

BoxLayout .PAGE_AXIS)) ;

JPanel p ;
p = new JPanel () ;
p . add (new JLabel ("Temperature")) ;
tempPanel . add (p) ;

p = new JPanel () ;
p . add (tempLabel = new JLabel ("?␣◦C")) ;
tempPanel . add (p) ;

frame . add (tempPanel , BorderLayout .NORTH) ;

frame . pack () ;
frame . s e tV i s i b l e (true) ;

frame . addWindowListener (new WindowListener () {
@Override
public void windowOpened (WindowEvent e) { }

@Override
public void windowIcon i f i ed (WindowEvent e) { }

@Override
public void windowDeiconi f ied (WindowEvent e) { }

@Override
public void windowDeactivated (WindowEvent e) { }

@Override
public void windowClosing (WindowEvent e) {

System . e x i t (0) ;
}

149

@Override
public void windowClosed (WindowEvent e) { }

@Override
public void windowActivated (WindowEvent e) { }

}) ;
}

@Override
public void onTemperature (f loat temp) {

tempLabel . setText (S t r ing . format ("%.1 f ␣◦C" , temp)) ;
}

}

C.4.3 CTXTempProvider.java

package c on t ex t t e s t ;

import java . awt . EventQueue ;
import java . u t i l . Arrays ;
import java . u t i l . L i s t ;
import java . u t i l . Loca le ;

import org . t z i . context . c l i e n t . ContextCl ient ;
import org . t z i . context . c l i e n t . ContextManager ;

public class CTXTempProvider {
private f loat temperature = 0 .0 f ;

private ContextCl ient cc ;
private ContextManager cm;
private St r ing context ;
private St r ing source ;
private St r ing property = " temperature " ;

150

private List<Str ing> tags = Arrays . a sL i s t (new St r ing []
{ " temperature " }) ;

public CTXTempProvider (ContextCl ient cc , ContextManager
cm, St r ing context , S t r ing source) {

this . cc = cc ;
this . cm = cm;
this . context = context ;
this . source = source ;

}

public void setTemperature (f loat temp) {
temperature = temp ;

}

public f loat getTemperature () {
return temperature ;

}

public void update () {
cm. se tProper ty (context , source , property , S t r ing .

format (Loca le .US, "%.1 f " , temperature) , tags , −1) ;
}

public void qu i t () {
cc . logoutI fConnected () ;
cc . terminate () ;

}

public stat ic void main (St r ing . . . a rgs) {
St r ing s e r v e r = " l o c a l h o s t " ;
int port = 2009 ;
S t r ing user = "tempSensor" ;

ContextCl ient cc = new ContextCl ient () ;

151

cc . i n i t (s e rver , port) ;
cc . l o g i n (user) ;

ContextManager cm = new ContextManager (cc) ;

f ina l CTXTempProvider tp = new CTXTempProvider (cc , cm
, " Storage " , "Fridge ") ;

EventQueue . invokeLater (new Runnable () {
@Override
public void run () {

new TempUI(tp) ;
}

}) ;
}

}

C.4.4 TempUI.java

package c on t ex t t e s t ;

import java . awt . BorderLayout ;
import java . awt . event .WindowEvent ;
import java . awt . event . WindowListener ;

import javax . swing . BoxLayout ;
import javax . swing . JFrame ;
import javax . swing . JLabel ;
import javax . swing . JPanel ;
import javax . swing . JS l i d e r ;
import javax . swing . event . ChangeEvent ;
import javax . swing . event . ChangeListener ;

public class TempUI {
private CTXTempProvider tp ;
private JLabel tempLabel ;

152

private JFrame frame ;
private JS l i d e r tempSl ider ;

public TempUI(CTXTempProvider tp) {
this . tp = tp ;

frame = new JFrame ("TempUI") ;
frame . s e tDe fau l tC lo seOperat ion (JFrame .

DISPOSE_ON_CLOSE) ;
frame . setLocat ionByPlat form (true) ;

JPanel tempPanel = new JPanel () ;
tempPanel . setLayout (new BoxLayout (tempPanel ,

BoxLayout .PAGE_AXIS)) ;

JPanel p ;
p = new JPanel () ;
p . add (new JLabel ("Temperature")) ;
tempPanel . add (p) ;

p = new JPanel () ;
p . add (tempLabel = new JLabel ("?␣◦C")) ;
tempPanel . add (p) ;
frame . add (tempPanel , BorderLayout .NORTH) ;

tempSl ider = new JS l i d e r (JS l i d e r .VERTICAL, −80, 400 ,
(int) (10 ∗ tp . getTemperature ())) ;

tempSl ider . addChangeListener (new ChangeListener () {

@Override
public void stateChanged (ChangeEvent e) {

int v = tempSl ider . getValue () ;
f loat tmp = (f loat) v / 10 .0 f ;
tempLabel . setText (S t r ing . format ("%.1 f ␣◦C" , tmp)) ;

153

TempUI . this . tp . setTemperature (tmp) ;
TempUI . this . tp . update () ;

}
}) ;

frame . add (tempSl ider , BorderLayout .CENTER) ;
frame . pack () ;
frame . s e tV i s i b l e (true) ;
frame . addWindowListener (new WindowListener () {

@Override
public void windowOpened (WindowEvent e) { }

@Override
public void windowIcon i f i ed (WindowEvent e) { }

@Override
public void windowDeiconi f ied (WindowEvent e) { }

@Override
public void windowDeactivated (WindowEvent e) { }

@Override
public void windowClosing (WindowEvent e) {

TempUI . this . tp . qu i t () ;
}

@Override
public void windowClosed (WindowEvent e) { }

@Override
public void windowActivated (WindowEvent e) { }

}) ;
}

}

	Publication Changes
	Änderungen zur Publikation
	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction
	Building a Wearable Computing Application
	Wearable Computing Context Needs
	The Need for Simple Systems
	Mock-Up Testing and Iterative Development
	Scientific Study Support

	Related Work
	Roulette Wheel Prediction
	Implicit Human Computer Interaction
	Active Maps
	MIThril Enchantment Whiteboard
	wearIT@work
	Context Recognition Network Toolbox
	Evaluation of Findings

	Evaluation of the Context ToolKit
	Context ToolKit
	Design Concept
	Architecture
	Context Information Model
	Context Information Delivery
	Usage in Applications
	Code Metrics
	Discussion

	The TZI Context Framework
	Motivation
	Distributed Communication Schemes
	D-Bus
	IRC

	Describing Context in an Abstract Way
	General Context Handling
	Infrastructure for Context Distribution
	Data Structures for Context Information
	Differences between TCF and CTK
	Code Metrics
	Communication Protocol
	Short Context Mode
	Transfer of large datasets
	History Queries
	Storing Context Histories in Relational Databases
	Scripted Subscription

	Evaluation of the TZI Context Framework
	Comparing CTK to TCF
	Application Complexity
	Transmission Performance and Efficiency
	Conclusion

	Creating High-Level Context
	Context Aggregation
	High-Level Example
	Limitations

	Framework usage in the SiWear Project
	Context for Picking
	Test-Scenario
	Evaluation-Scenario

	Conclusion and Outlook
	References
	List of Figures
	List of Abbreviations
	Server Commands
	Connection Maintenance Commands
	General Queries
	Context Manupilation Commands
	Subscription Management
	Context Setting
	Context History
	Large Transfers

	UML Diagrams
	Code Examples
	Context Subscription and Processing
	Context Generation
	Temperature Demo CTK
	CTKTempReader.java
	TempReadUI.java
	CTKTempProvider.java
	TempUI.java

	Temperature Demo TCF
	CTXTempReader.java
	TempReadUI.java
	CTXTempProvider.java
	TempUI.java

