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German summary

Diese Dissertationsschrift beschaftigt sich mit der zeitlichen Entwicklung von
Wahrscheinlichkeitsdichten seltener Ereignisse in einem dynamischen System,
dem ein o-endliches, invariantes Maf3 zugrunde liegt. Bekannte distributionale
Konvergenzséatze werden erweitert und es werden Observablen betrachtet, fir die
keine distributionale Konvergenz hin zu einem Gleichgewichtszustand gilt. Ein
Kernwerkzeug dieser Untersuchungen ist der Transferoperator, der die Entwicklung
von Wahrscheinlichkeitsdichten beziiglich eines dynamischen Systems beschreibt.
Es wird eine Familie von Markov-Intervall-Abbildungen untersucht, die zwischen
der Zeltabbildung und der Farey Abbildung interpoliert. Hierflr wird distributionale
Konvergenz fiir Wahrscheinlichkeitsdichten mit Singularitédten betrachtet. Es kann
gezeigt werden, dass unter gewissen Voraussetzungen auch hierfiir Grenzwert-
satze gelten. Ein besonderes Augenmerk wird hierbei auf die Farey Abbildung
gelegt, da in diesem Fall ein Wechselspiel von chaotischer und regularer Dynamik
auftritt, das durch einen indifferenten Fixpunkt im Ursprung erzeugt wird. In der the-
oretischen Physik ist dieses Phanomen auch bekannt als Intermittency. AuB3erdem
kann gezeigt werden, dass das Grenzwertverhalten entlang der w-Limesmenge
der Singularitat von den diophantischen Eigenschaften der Singularitat abhangt.
Dieser Teil ist teilweise in [KKS16] verdffentlicht.

Im letzten Teil der Arbeit wird untersucht, inwieweit die Voraussetzungen der be-
kannten Konvergenzresultate erweitert werden kénnen. Es zeigt sich, dass es
hier nattirliche Grenzen gibt und selbst fir verhaltnismaBig regulare Beobach-
tungsgréBen keine distributionale Konvergenz zur Gleichverteilung zu erreichen
ist. Dieser Teil legt die Familie der a-Farey Abbildungen zugrunde, eine Familie
stlickweise linearer Markov Intervall Abbildungen, die es ermdglicht, verschiedene
Systeme mit einem instabilen, indifferenten Fixpunkt im Ursprung und verschiede-
nen regular variierenden Wanderraten zu erzeugen. Der dritte Teil ist in [KKSS15]
ver6ffentlicht.

Dieser Arbeit liegt die Idee der Erneuerungstheorie flir Operatoren zugrunde;
eine Idee, die in [Sar02] entwickelt wurde und durch [MT12] weiter vertieft wurde.
Sie generalisiert Ideen der klassischen Erneuerungstheorie fiir Operatoren und
ermdglicht so Aussagen zur distributionalen Konvergenz, indem zuerst die Konver-
genz des Transferoperators des induzierten dynamischen Systems gezeigt wird
und diese dann fiir den Transferoperator des eigentlichen dynamischen Systems
zurlickgefolgert wird.
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Chapter 1

Introduction

1.1 Background

Rare events are events for which we expect to wait infinitely long, but the probability
that they happen is equal to one. Naturally, these events have a certain impact
on a system and what comes to mind are catastrophes like earthquakes, nuclear
accidents, volcano eruptions or tsunamis. After such a catastrophe a system can
become disordered or chaotic for some time, after which it returns to normal. It
could even end up in chaos and never return to normal. Thus, an important ques-
tion to ask is which one of the two scenarios really happens. In mathematics and
physics this phenomena is known as intermittency.

One way of examining this kind of phenomena is to look at distributional conver-
gence. Distributional convergence is a vital area of research in ergodic theory
and dynamical systems and is concerned with the evolution in time of probability
densities imposed on the system. Models to examine such phenomena are given
by maps of the unit interval.

Expanding maps of the unit interval have been widely studied in the last decades.
However, in recent years an increasing amount of interest has aroused in maps
exhibiting indifferent fixed points. That is, maps which are expanding everywhere,
except at unstable fixed points. Around this point trajectories are considerably
slowed down and cause the interplay of regular and chaotic dynamics. From a
measure theoretical point of view, this might lead to the invariant measure having
infinite mass. The first models representing intermittency were the so-called
Pomeau-Manneville maps [PM80]. Further models for intermittent maps are given
by Markov interval maps with indifferent fixed points.

Methods from finite ergodic theory are not applicable in this setting because they
do not yield meaningful information about the system. For instance, it is known that
Birkhoff’s ergodic theorem breaks down [Aar97, Theorem 2.4.2], see Chapter 6 for
further detalils.
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The main object of consideration in this thesis are non-singular, conservative and
ergodic dynamical systems, that is a quadruplet (X, B, u, T), where (X, B, u) is
a o-finite measure space and where T: X — X is an ergodic transformation.
For formal definitions and basic results deeper introduction to this field and the
nomenclature the reader is referred to Chapter 3.

For such a system a vital tool to explore its statistical behaviour is the transfer
operator [Bal00]. The transfer operator is the linear operator'f: L}l — LL, uniquely
defined, for f € L, and g € L, via the dual relation

fg-?(f)dﬂ:fgor-fdﬂ.
X X

This operator plays an important role in finding invariant measures for a system,
since the constant density 1 is a fixed point of the transfer operator, meaning
/7:(]1) = 1, whenever T is u-invariant, see for instance [LY73]. With the transfer
operator at hand, one can, instead of looking at ergodic sums, look at dual ergodic
sums, Y0, /'fk(f) and ask whether these converge, or at what rate they converge
or diverge. This leads to the notion of pointwise dual ergodicity. Further results
on the asymptotic behaviour of those dual ergodic sums have been achieved,
under certain conditions, for instance by [CF90, Tha95, Zwe98, Zwe00]. Having
statements about the dual ergodic sums, a good question to ask is, whether we
can determine the asymptotics of the individual iterates of the transfer operator.
This question turns out to be considerably more delicate and is at the heart of this
thesis. For a deeper account on the topic of distributional convergence and about
the starting point for the research carried out for this thesis, the reader is referred
to Section 6.2.

In the beginning of the 21st century a new method evolved to discern distributional
convergence results, namely operator renewal theory. For this method arguments
and techniques from classical renewal theory are lifted to an operator setting,
see [Sar02, MT12], which plays a crucial role in this thesis. With the help of these
techniques it is possible to obtain convergence for individual iterates of the transfer
operator, by exploiting convergence results for the so-called return time operator.
The starting point is to understand the previously known convergence results. To
elaborate how far the theory reaches, there are two natural ways to modify the
setting. One of them is to adjust the transformation itself, in particular to change the
wandering rate of the transformation, which is done in the third part of this thesis.
Another option is to extend the class of observables that is considered, which is
done in Part Il. The second part considers distributional convergence of observ-
ables which are integrable, but posses singularities. It turns out that the limiting
behaviour on the w-limit set of the pole depends on the diophantine properties of
the pole. Yet, distributional convergence can still be obtained on compact subsets,
that do not intersect the w-limit set of the pole and that are bounded away from the
indifferent fixed point, as Theorems 8.1, 8.2 and 8.6 show.
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Part Ill focuses on how to modify the transformation in general and its wandering
rate in particular. It turns out that additional assumptions may be required, if the
wandering rate is no longer slowly varying but regularly varying, as Theorem 12.3
shows. However, under additional assumptions on the wandering rate, see Theo-
rem 12.2, or on the observable, see Theorem 12.1, convergence to equilibrium can
still be obtained.

Before stating the main results of this thesis in Section 1.2, we give an overview of
the structure of the thesis. The thesis splits up in three parts.

Part | gives an introduction to the underlying theory of this thesis. It will unify
notation and introduce necessary definitions and statements that are needed in
Part Il and Part 11l

Chapter 2 introduces the notation that is used throughout this thesis. It gives an
overview of the key variables and also introduces the maps and transformations
central to this thesis. A brief introduction to dynamical systems and ergodic theory
is given in Chapter 3, followed by a short introduction to regular varying functions
in Chapter 4. There are two main examples which are introduced in Chapter 5 and
which elucidate the theory. These two main examples will also play a key role in
the main results of this thesis. We will work with the first example in Part Il and
focus on the second in Part Ill.

As infinite ergodic theory and the transfer operator is at the core of this thesis, the
first part concludes with Chapter 6 on transfer operator methods. It consists of three
sections. Section 6.1 introduces the transfer operator and the necessary relations,
Section 6.2 gives an overview of the state of the art in distributional convergence
and finally, Section 6.3 introduces operator renewal theory.

The second part has partly been published in [KKS16]. The nomenclature as well
as several passages, including the central definitions and the main results, are
adopted from there.

Before the main results of Part Il are stated in Chapter 8, important notation
and some definitions, as used in [KKS16], are needed and hence introduced in
Chapter 7. After the main results are stated, pictures and heuristics are given to
elucidate the theory in Chapter 9. After which complete proofs of Theorems 8.1,
8.2 and 8.6 are given in Chapter 10.

Part Il has partly been published in [KKSS15]. It is structured similar to Part II.
Chapter 11 introduces the necessary definitions and Chapter 12 states the main
results of Part Ill. After giving complete proofs of the main results in Chapter 13,
this thesis ends with Chapter 14 which comments on how the results complement
and extend the previously known results in infinite ergodic theory. In particular this
Chapter comments on how the current results can be seen in the light of [MT15].

1.2 Statement of main results

This section states the main results. The necessary notion is introduced briefly;
nevertheless, for thorough introduction to the notion and further details, the reader
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is referred to Part Il and Part Il respectively.

1.2.1 Main results of Part I

Forr e [0,1],the map T,: [0,1] — [0, 1] is defined by

2_ .

—(1 ;)XX if0<x<1/2,
"0 =10 _n.a-x

LT i1 <x<.

l—r+r-x

Let P, denote the Perron-Frobenius operator for T, see Definition 6.1, page 31.
Further w,(B) denotes the w-limit set of 3, see Equation (7.1), page 64, and g ,
is a class of functions that are integrable and have a pole at 8 of order a, see
Definition 7.2, page 63, for further properties of Ug 5. The term intermediate a-type
is defined in Definition 7.3, page 64. Heuristically, we can say that, if a number is
of intermediate a-type, we have some kind of control over the growth rate of its
continued fraction entries. For r € [0, 1], we let h, denote the invariant density
of T,, absolutely continuous with respect to the Lebesgue measure. Given these
definitions, we can state the main results of Part Il. The first theorem is a statement
on convergence to equilibrium of unbounded observables for r € [0, 1).

Theorem (Theorem 8.1). Forr €[0,1), ifac (0,1) andpg € [0, 1], then, for each
v € Ug 5, we have that

lim P7(v) = fvd/l-h,, (1.1)

uniformly on compact subsets of [0, 1] \ w,(B) and pointwise outside a set with
Hausdorff dimension equal to zero.

Ifg € [0, 1] is pre-periodic with respect to T, and has period length strictly greater
than one, then on the finite set w,(B8) we have that

liminf P](v) = fvd/l- hy and limsupP](v) = +co.
n—+oo N—+00

In the case that 8 € [0, 1] is pre-periodic with respect to T, and has period length
equal to one, then on the singleton w.(B), the limit in (1.1) is equal to +oco.

The next theorem deals with the case r = 1.

Theorem (Theorem 8.2). Ifa< (0,1) and if 5 € (0, 1] is either rational or irrational
of intermediate a-type, then, for each v € g 5, we have that

lim 1n(n)-50f(v)=f vda- hy, (1.2)
n—oo [071]

uniformly on compact subsets of (0, 1] \ w(B) and pointwise outside a set with
Hausdorff dimension equal to zero. If B € (0, 1] is pre-periodic with respect to T,
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and has period length strictly greater than one, then on the finite set w(8) we have
that

liminf In(n) - P(v) = fvd/l- hy and limsupln(n) - P{(v) = +co.
n—=+00 n—-+00
In the case that 8 € (0, 1] is pre-periodic with respect to T\ and has period length
equal to one, then on the singleton w1 (B), the limit in (1.2) is equal to +co.

ForB e [0,1]\ Q, we let [a}, a, ... ] denote the continued fraction expansion of S.
In the following theorem, for the observable vz 4(x) = |8 — x|~# and a non-periodic
B, we demonstrate that on the w-limit set, the values of the limit inferior and limit
superior depend on the diophantine properties of .

For n € IN, let p, = pn(B) and g, = gn(B) denote the unique integers, such that
ged(pn, gn) = 1 and

Pn
- = [al’ a, ..., an]-

n

Theorem (Theorem 8.6). 1. There exist non-periodic  and o € (0, 1] both
with bounded continued fraction entries but such that, on the one hand, if
ae (0,1), then on w(B), we have that

. n _ ‘
On the other hand, if a € (0, 1/2), then on wi(o), we have that
lim In(n) - P(v,,2) = fvgla da- hy;
n—oo
otherwise, ifa € (1/2,1), then on w;(0)

lim inf In(n) - P}(v,,a) = f Vpadd - hy
n—+o0o

and limsupln(n) - PJ(v,a) = +o0.

n—+oo

2. Letace (0,1) and letB = [0; a1, a, ... ] € (0, 1] be of intermediate a-type

such that

llm an = +OO,

n—+o00
which implies that w(B) = {1/n: n € N} U {0}.
Fix k € IN and let I(k) := min{i € IN: ap, > k forall m > i}. For allj > I(k),
set nyj € IN to be the unique integer satisfying TI" “(B) = [0 K, ajs1, @42, - ]
and set

o (@j+1)? - In (nk,/)
ki = T (grta
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where q, is as defined in (5.1). Iflimsup %k ; = 0, then

Jj—oo
lim In(n) - PJ( )l— da - hy;
Jim In(n) - Pvsa) | )= | vaadd-hu;
otherwise,

Vsadd - hy

1

o N it
l}glfolof In(n) - P{(vz.a) (k)
1

n—+oo k

and limsupln(n)-P’l’(vﬁ,a)(—)>fv/g,ad/l-hl.

1.2.2 Main results of Part Il

Let F, denote the a-Farey map, given by Equation (5.11). Further, let Fa denote
the transfer operator with respect to the invariant measure u, and let h, denote the
density of the invariant measure with respect to the Lebesgue measure. We have
the following statements on distributional convergence.

Theorem (Theorem 12.1). For 6 € (1/2,1], let ([0, 1], B, uq, Fy) denote a 5-
expansive a-Farey system. If v € L1([0, 1]) and if

Da (nAl . Frl (hi : ]lA,,)) =90(1)

a
)
=D|— ,
o tf‘l

— (Vv 1
li Fr( L) = | van
e W " Fa (h) ra+o)-re-o J "

and ||v-]1An

then uniformly on compact subsets of (0, 1],

For the next theorem we need the space of functions A,. It is given by

Vil < 0, 252 |[Fé v 1)

< 400
and FM'(v-1,)€B,foralne N '

Ay = {v € L, ([0,1D:

The term moderately increasing is an additional assumption on slowly varying
functions, defined in Definition 11.1. Theorem 12.2 shows that we can weaken
the conditions on the observable compared to Theorem 12.1, if we have more
information on the wandering rate.

Theorem (Theorem 12.2). Let ([0, 1], %, uq, Fo) denote a 1-expansive a-Farey
system and assume that the wandering rate is moderately increasing. If v € A,,
then, uniformly on compact subsets of (0, 1],

lim w,,-EQ(v):fvdua.
n—oo
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Nevertheless, Theorem 12.3 shows, that precaution is needed if the conditions on
the wandering rate are weakened. In the next theorem s is a constant given in

Equation (5.14).

Theorem (Theorem 12.3). Leté € (1/2,1) and let ([0, 1], A, ua, Fo) denote a
o0-expansive a-Farey system. There exists a positive, locally constant, Riemann
integrable function v € A, of bounded variation, such that, for all x € Ay,

lim inf Wy - FI(V)(x) = T f vdug

and limsup w, - F7(v)(x) = +co.

n—oo
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Chapter 2

Notation

This chapter begins with an overview of the main variables and maps used through-
out the thesis. The following notation is used.

A denotes the Lebesgue measure.

T;, r € [0, 1] denotes a family of intermittent interval transformations. It is
given in Equation (5.2). If r = 1, T; is known as the Farey transformation.
This family of transformations is crucial in Part Il.

Uy is the invariant measure of T, absolutely continuous with respect to A. Itis
unique up to multiplication with a constant.

hy is the density of u, with respect to A. That is h, := du,/dA. In particular
h; is the density of the invariant measure of the Farey map with respect
to the Lebesgue measure. That is, h; = 1/x. The density h;, is given in
Equation (5.4).

F, is the family of a-Farey maps, introduced in (5.11)
U is the invariant measure of F, absolutely continuous with respect to A.

h, is the invariant density of u, with respect to A. That is h, := du,/dA. ltis
given by Equation (5.15).

Furthermore, for a measure space (X, B, u), we let LL(X) denote the space of
functions, for which

flfl du < +o0.
X

By L/]I(X) we denote the Banach space of equivalence classes [f], of functions,
where for each representative f: [0, 1] — C of [f],,

1l = f 1 dut < +oo,
X

11
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and where f, g belong to the same equivalence class, if and only if, |f — gll,,1 = 0.
Throughout, following convention, we write f € L}l(X) to mean a function f: X —» C
which belongs to the equivalence class [f], of LIII(X). A similar construction is
done for the spaces £;; and L.

To simplify notation, the index w, is replaced by r in Part I, for instance, we write
L1(X) = L, (X).

We use the Landau notation o(-) and O(-) as well as ~ and <.

The symbol ~ between the elements of two sequences of real numbers (bp)pew
and (¢p)new means that the sequences are asymptotically equivalent, namely that
limp— 400 bp/Cr = 1.

We use the Landau notation b, = o(cp), if limy_ 40 by/cn = 0. The notions
b, = O(cp) and by < ¢, are used interchangeably, if lim,— .« bp/ch < C < oo.
The same notation is used between two real-valued function f and g, defined on
the set of real numbers R.

These variables are the crucial ones throughout this thesis. The rest of the neces-
sary notation is introduced along the way and we turn towards the introduction of
dynamical systems and ergodic theory in Chapter 3.



Chapter 3

Basics of dynamical systems
and ergodic theory

For a reader with a background in dynamical systems and ergodic theory this
chapter is a recapitulation. It is included to recall and introduce central definitions
that are needed for this thesis. The purpose is to motivate the questions being
asked in Part Il and Part Ill on the one hand. On the other hand this chapter
gives a brief introduction to the matter for readers of different backgrounds and it
unifies notations, which differ in literature. For a thorough account on the subject of
dynamical systems and ergodic theory the reader is referred to standard references
such as [Aar97, Den05, Wal82]. Additionally, a variety of lecture notes can be
found online.

Dynamical comes from the ancient greek word ‘d0voyic’ (‘dynamis’), which means
force. In physics, it is the study of force and its impact on mass, hence the study
of motion. In mathematics, studying dynamical systems means studying, how a
system changes. Usually, the term system in general means something isolated.
In reality this can for instance be a bowl of dough or a population on a planet;
in mathematics, a system is usually a space X on which further properties are
imposed.

It is a dynamical system if a force is applied to the system, for instance the dough
is kneaded, the population is, for example due to births and deaths, changed, or
from the mathematical point of view, if a map T maps the space X into itself.

134

The term ergodic comes from the two ancient greek words ‘€pyov’ and ‘666¢’
(‘ergon’ and ‘hodos’), meaning work and path. This term dates back to the 1930s
and the ergodic hypothesis by Boltzmann. As it turned out this hypothesis was
wrong in its original form, so that additional assumptions on the system were
required; but nevertheless, it was the starting point of ergodic theory in its current
form.

This thesis, in particular, is dealing with measure theoretical dynamical systems. A
measure theoretical dynamical system is a quadruplet (X, B, u, T), where (X, B, 1)

13
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is a standard measure space. That means X is a complete and separable metric
space, equipped with the Borel o-algebra B and a not necessarily finite but o-finite
measure u. A o-algebra is called the Borel o-algebra, if it is generated by the
collection of open subsets of X (compare [Aar97, §1.0]). Here and throughout
this thesis, the Borel o-algebra of a space X is denoted by By. If it is clear from
the context to which space X we refer to, the subscript is omitted and simply B is
written.

Moreover, the transformation T is a measurable map that maps X into itself. If
it is implicitly clear, to which system it is referred to, the phrases system and
transformation are used interchangeably, both meaning the quadruplet (X, B, u, T).
We recall a few definitions from measure theory, see for instance [Aar97, Chapter 1].

Definition 3.1 (measure/probability preserving, absolutely continuous, non-
singular, ergodic). Let (X, B, u, T) denote a measure theoretical dynamical sys-
tem and let T~!(A) denote the preimage of Aunder T.

We call a transformation (or a system) measure preserving, if u is T-invariant.
That is, for every Borel set A we have that u(A) = u(T~'(A)). If u is a probability
measure, we call T probability preserving.

A transformation is said to be absolutely continuous, if preimages of Borel sets of
measure zero have zero measure.

The system is said to be non-singular, if B is a set of zero measure is equivalent to
T-1(B) is a set of zero measure.

Finally, we call the system ergodic, if every invariant set has measure zero or its
complement has measure zero.

Each finite measure u can be normalised by dividing by u(X). So the case that
the invariant measure is finite but not a probability measure is neglected, as it is
common in literature. Ergodicity means that a system can not be decomposed into
subsystems acting independently of each other.

This thesis studies long term behaviour of a system. That is, the multiple iteration of
the map T. Thus, we consider n-fold iterations 7", meaning for x € X and n € IN,

T0(x) := x and T"(x) := T (T(x)).

We focus on conservative dynamical systems, which is defined after introducing
the notion of wandering sets.

Definition 3.2 (Wandering set [Aar97, §1.1]). Let (X, B,u, T) denote a non-
singular dynamical system. A set W € B is called a wandering set for T, if
the sets {T-"(W)}}., are disjoint aimost everywhere.

Definition 3.3 (Conservative). A non-singular dynamical system (X, 38, u, T) is
called conservative, if each wandering set has measure zero.

A useful parameter to partition a system is the first return time. Linked hereto are
the level sets of the first return time and the induced transformation.
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Definition 3.4 (First return time, induced transormation). Let (X, 8, u, T) de-
note a conservative and ergodic dynamical system. Let A C X. We define the first
return time by ¢4: A — IN U {+00}, by

da(x) == inf{n € IN: T"(x) € A}

and call the collection of sets {¢pa = Ntnew = {y € A: da(y) = n}pew the level sets
of the first return time.

As common, we define the infimum over the empty set to be +c0. Since the system
is conservative, the set of points for which the return time is +co has zero measure.
The notion of the first return time leads straight to the induced transformation. The
induced transformation, with respect to a set A, with finite and positive measure,
is a way to look at a dynamical system with a possibly infinite invariant measure
through “finite measure glasses”, by cutting out the excursions between two visits
tothe set A. ltis given by T4: A — A, with

TPX(x) if pa(x) < +00,
Ta(x) = { (3.1)
X else.
The first return time and the induced transformation is not to be confused with the
first entry time and the jump transformation, defined next.

Definition 3.5 (First entry time, Jump transformation). Adopt the setting of
Definition 3.4. The first entry time, ea(x): X — IN U oo is given by

eax) == inf{ne IN: T"!(x) € Al.
The jump transformation, Tyymp a(X): X — X is given by

T (x) if ea(x) < +oo,
nump,A(X) = {X

else.

In a conservative dynamical system and for a set of positive measure A, we can
define the level sets of the first entry time by

Ar={ea=n}={xe X: ealx) =n}, (3.2)
which gives a partition of X by {ea = n}pen.

As we can see, the jump transformation and the induced transformation are similar,
but not the same. It turns out, under certain circumstances these modifications
of the same transformation are isomorphic. This is explained more thoroughly in
[Kau11, Section 3.2].

Yet another important characteristic of a dynamical system is the wandering rate. It
characterises how fast a set is spread under the dynamics of a system.
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Definition 3.6 (Wandering rate). Let (X, B, u, T) denote a measure theoretical
dynamical system, and let A € B with 0 < u(A) < co. The wandering rate wy, is
given by

n—1
W, = “[U T‘k(A)].
k=0

As we will see later, the wandering rate is under certain assumptions on the system
independent of the set A up to asymptotic equivalence.

A first step to determine the long term behaviour of a system is to look at ergodic
sums, which leads straight to Birkhoff’'s Ergodic Theorem and the questions that
arise naturally for infinite invariant measures.

Definition 3.7 (Ergodic sum). Let (X, B, u, T) denote a measure theoretical dy-
namical system. We call S,f = ZZ;& f o T the ergodic sum for a measurable,
complex valued function f.

If f is a characteristic function of a measurable set of finite and positive measure, A,
that is f = 1 4, we call S,(1 4) the soujourn time of A. This describes the spent time
in A.

A central theorem in ergodic theory is Birkhoff’s ergodic theorem. For the purpose
of this thesis, we look at a slightly less general version than the one used elsewhere,
compare for instance [Aar97, 2.2.6].

Heuristically, it states that in the long run the average over time tends to the average
over space.

Theorem 3.8 (Birkhoff’s ergodic theorem). Suppose that (X,B,u, T) is an er-
godic, probability preserving system. That is, y is a T invariant probability measure.
Then we have for all f € L}l,

Snf

lim = = f fdu for u-almost every x € X.
n—oo N X

If(X, B, u, T) is a conservative, ergodic, measure preserving, system with a o -finite,

infinite measure, then we have for all f € L}l,

Spf
lim T" = 0 for u-almost every x € X.
n—oo

The second part of this theorem gives rise to further questions, one being, whether
there is a better normalizing sequence than 1/n. It is not possible to answer this
question affirmatively, as Aaronson proves with his theorem.

Theorem 3.9 ([Aar97, Theorem 2.4.2.]). Suppose T is a conservative, ergodic,
measure preserving transformation of the o -finite, infinite measure space (X, B, ),
and let (ap)new > 0, then for all non-negative f € L},

Shf
lim inf a—" = 0 almost everywhere
n—oo n
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or for all non-negative f € L}, there exists a subsequence (nk)kew tending to infinity,
such that

Nk

lim = oo almost everywhere.

k—oo ap,
This theorem shows, that in infinite ergodic theory the ergodic sum is underesti-
mated or overestimated infinitely often. So the question that naturally arises is
whether we can do better.
Sure, we can do better, as it was shown by Hopf’s ratio ergodic theorem [Hop37].
More explicitly, Hopf’s ratio ergodic theorem states that for two L}l functions f and
g, with g > 0 and fgdu > 0, the quotient of the ergodic sums S,f/S,g converges
almost surely to [ fdu/ [ gdu.
Besides the ratio ergodic theorem by Hopf, this question leads to the transfer
operator and the transfer operator method. When using this method ergodic
theorists are interested in the long term behaviour of densities and not just single
points. In other words distributional convergence is investigated. Before we turn
towards the transfer operator method, two further chapters are included. Chapter 4
deals with regular varying functions and because number theory offers models to
learn, understand and apply ergodic theory, Chapter 5 introduces relevant topics
of number theory. After these two sections we return to the current questions in
infinite ergodic theory, discuss distributional convergence, give a justification, why
the term distributional convergence is used and give an overview of the state of the
art.
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Chapter 4

Regular variation

In this chapter we state several theorems, propositions and lemmata on regular
varying functions that are needed in the sequel. The proofs of the following
statements are omitted and can be found in the given sources or various other
standard literature.

Definition 4.1 (Slowly varying_function, regular varying function). Let a € R*.
We call a function ¢€: [a, o) — R slowly varying, if it is measurable, locally Riemann
integrable and for each > 0, we have that

tnx)

=1.
x1—>nc>lo f(x)

A function r: [a, ) — R is called regular varying of order ¢, if there exists a slowly
varying function €: [a, c0) — R, such that r(x) can be written as

r(x) = x° - (x).
We also say €(x) varies slowly, respectively regularly, at infinity.
The next lemma states several properties of slowly varying functions.

Lemma 4.2 ([KKSS15, Lemma 2.6]). Letaec IN and let L: [a,+c0) — R denote a
positive slowly varying function.

(i) [Sen76, page 2] For a compact interval | C R* we have that

Lp-x) _
im =1
X—+00 L(x)

holds uniformly with respect to p € 1, and hence, for a fixed b € R*,

L(x - b)
im =1
X—+00 L( X)

19
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(i) [Sen76, page 18] For a fixed b € R* we have that

L
lim (—’2) =0 and lim L(x)-x? = +co.
X—+c0 X X—+00
(iii) [Sen76, page 41] If L is continuous and strictly increasing, we denote the
inverse function of L by L™'. If we further have

lim L(x) = +oo,

X—+co

then, for a fixed ¢ € (0, 1),

“1(n.
lim €% _
X—+00 L_I(X)

(iv) [Sen76, page 50] If M: [a+ 1,+c0) — R is defined to be the linear interpo-
lation of the function

L(k
ne Y Lo
k=a+1
then M is a slowly varying function and
L
™ _q

m —-—=
X—00 M(X)

The next theorem states, how asymptotics of summands imply the asymptotic
behaviour of a sum and vice versa. It is needed in the proof of the main results.
We let '(-) denote the I'-function.

Theorem 4.3 (Karamata’s Tauberian theorem). Let, forn € IN, g, > 0 and let
0 < p < 0. Suppose that L: IN — R varies slowly at infinity. If

—np_l L) asn— (4.1)
~ o0 .
Qn r: ) 1 3
then we have that
n-1
n®-L(n)
~——" ,asn — oo, 4.2
Ak MNo+1) (4.2)

b
Il

0
If the sequence {qn}newis eventually monotone (4.2) implies (4.1).

The first part of the theorem, also known as an Abelian theorem, is a consequence
of [Fel71, Chapter VIII.9, Theorem 1]. The second part, the Tauberian theorem,
follows from [Fel71, Chapter XlII, Theorem 5].

With this theorem we conclude this chapter. For further details on functions of slow
and regular variation, the reader is, for instance, referred to [BGT87, Sen786].



Chapter 5

Number theory - the two
examples

5.1 The Farey map and a family of interval maps

This section introduces the notation of [KKS16], so parts of it are published therein.

5.1.1 Continued fractions

“When Huygens set about constructing a model of the solar system
by using toothed wheels, he was confronted with the problem of deter-
mining what numbers of teeth for the wheels would give a ratio for two
interconnected wheels (equal to the ratio of their periods of rotation)
that would be as close as possible to the ratio a of the periods of
revolution of the corresponding planets. At the same time the number
of teeth obviously could not, for technical reasons, be too high. Thus,
Huygens’s problem was to find a rational number with numerator and
denominator not exceeding a certain bound that would still be as close
as possible to the given number «.” [Khi97, page 28]

Continued fractions give means to solve this problem, as they yield ‘best ap-
proximations’ to a given real number. For an explicit definition of the term ‘best
approximation’ the reader is referred to [Khi97, Section 2.6]. So continued fractions
have an application in both engineering and diophantine approximation. Part Il will
rely heavily on continued fractions, so let us turn to continued fractions in general
and to the techniques we need in this thesis in particular.

Every number x € R \ Q has a unique continued fraction expansion (see for

21
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example [Khi97]), given by

X =aqy+ )

a +
1

as + ...

a +

where the so-called continued fraction entries a; are natural numbers for i € IN
and ap € INg. The number g is the integer part | x| of the number x, that is the
biggest integer not exceeding x. The other entries are generated by the Gau3 map
G:[0,1] — [0, 1],

1 1
G(x) = —— {—J
X |x
via the following algorithm,
4= 1
= G-'(x) |

Here and throughout this thesis, we restrict ourselves to the unit interval, that is
in this thesis we always assume ag = 0. Furthermore, we denote the continued
fraction expansion of an irrational 8 € [0, 1] by 8 = [a;, &, ...] = [0; a;, a2, ... ],
where a, € IN, for all n € IN. Continued fraction expansions are as well declared for
rational numbers S € [0, 1]. In this case the continued fraction expansion is finite
and since

aa+—— a+

1

ak 1
ak—1+ 1

this continued fraction expansion is no longer unique. Hence, if 8 € [0, 1] N Q \ {1},

we set 8 := [ay, &, ... @] and assume without loss of generality, that the last con-

tinued fraction entry, ay, is greater than one.

If there exists an M € INy and n € IN, such that for all m > M, a,, = am+n, then

we say that 8 is pre-periodic with period length n or that 8 has period length n and

write 8 = [a1, &, .-, @u, 8M+1, @M+25 -+ » AM+n]-

Moreover, for 8 € [0, 1], we define p, = pn(8) and g, = gn(B) recursively by

p-1=1, g-1=0, pp:=0, q =1,
Pn = an* Pn-1 t Pn-2, and Qn = an* gn-1 t Qn-2.
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For n € IN, we have that

& = [ali 32, ey an]
an
and pn-1 - gn — Pn - gn—1 = 1. Closely related to continued fractions is the Farey

Map, which is part of a family of Markov interval maps. This family is introduced in
the next section.

5.1.2 A family of interval maps on the threshold to intermittency

In this paragraph, a family {T,: [0,1] — [0, 1]},¢0,17 of Markov interval maps
interpolating between the Tent map Ty and the Farey map T; is considered. This
family of maps was considered in [DEIK07, GI05, KS08], recently its spectrum was
studied numerically in [BABCI15]. The current notation is the one used in [KKS16].
For r € [0,1], the map T,: [0, 1] — [0, 1] is given by

2-n-x

1= x if0<x<1/2,

T.(x)=4 (5.2)
@-n-ad-x if1/2<x<1.
l—-r+r-x

The jump transformation with respect to [1/2,1] of the Farey map T, is the
GauB map that encodes the continued fraction expansion algorithm, see Sec-
tion 5.1.1. For r € (0, 1], the map T, has two fixed points, one at zero and one at
1-B3-+vV9-4-n/2-r). If r =0, the map has as well two fixed points, one at
zero, the other at 2/3. The inverse branches f, o, f,1: [0, 1] — [0, 1] of T, are given
by

X

000 = (Tro1/21) ™" (%) = 2—r+r-x

1+(1=r-(1=x)

and  £,100 = (Tpua,) ™ () = T x

For a picture of the Farey map the reader is referred to Figure 5.1.
It was shown, for r € [0, 1) in [GIO5] and for r = 1 in [KS08], that the absolutely
continuous invariant measure u, of T, is given by

1 if r=0,
-r 1 ,
d it r e (0, 1),
hr(x) = ,ur(x) _JIn(l-nNl-r+r-x (5.4)
da
1
- if r=1.
X

For r € [0, 1), the density with respect to the Lebesgue measure, h, gives rise to a
probability measure, whereas h is the density of an infinite and o-finite measure.
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SR

Bl— W=
T T

1
1
2

W | =

1
1
876 5 4

Figure 5.1: The Farey map, T;(x)

5.1.3 The r-coding and the Farey coding

Similar to other codings known in number theory such as codings for continued
fractions and S-transformations, the family of maps T,, with r € [0, 1], gives rise
to a coding for numbers in the unit interval, see [KKS16, Section 4]. To this end
we let ¥ := {0, 1}, ¥":= {0, 1}", for n € IN, and let £ denote the set of all infinite
words over the alphabet 2. For 8 € [0, 1] we let ,(8) denote the infinite word
@18, 92(B) ...) € £, where we define

0 if T <1/2,
1 otherwise.

ﬁr,n(ﬁ) = {

We define the r-coding of 8 by 8 := [3,.1(8), }r2(B), ... ],. A similar coding is used
for a-Farey systems lateron, see Section 6.1.2.

For n € IN and for & = (94,3, ...) € IV, we define 9|, := (¥4, ...,9,) € " and,
for o = (¢1,¢2, ..., n) € X", we set

frp =t 00l (5.5)
and [So]r = [(SOI! P2y ey (Pn)]r = ff,(p([05 1])
The set [¢], is referred to as a cylinder set of length n with respect to T,.

In the proof of the main results we need the adjacent cylinder sets of a given
cylinder set. Hence, for later purpose, we let 97(B)l, € L" denote unique finite
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words such that

[97 B)lnlr N [F:Blalr # 0, [; B)lnlr N [F(B)lnlr # O (5.6)

and such that, for all x € (0, 1), either one of the following sets of inequalities hold.

fo; )1, (X) < T, 81, (X) < Fgrpy,(X) OF -y, (X) < Fg,8)1, (X) < fz gy, (X)-

In the case when there exists ¢ € ¥, for an m € IN, such that either f, 3(0) = 8
or fr9(1) = B, then it can occur that 97 (B)|m = 9+(B)|m or that 37 (B)m = F+(B)|m-
We call such points r-rationals. If 5 is an r-rational, it is mapped to zero under
the iteration of T, eventually. If r = 1, the set of r-rationals is precisely the set
of rational numbers in the closed unit interval [0, 1] and all rational numbers are
mapped to zero under the action of the Farey map eventually.

For ease of notation, we set

ﬂBr,n(ﬁ) = {19;(,8)|n= 3 (B)ln, 0:w)|n}

5.7
and  [W;n(B)] = [9; Blnlr U [+(Blnlr U [97 B)lnlr. &7

W, (B) refers to a collection of words, whereas [W; ,(5)] refers to a interval consist-
ing of the cylinder set of length n and its adjacent cylinder set or sets respectively.
If we look at two adjacent cylinders or more exactly at their coding, we observe that
it differs in exactly one letter, as described in the following lemma. This observation
is needed in the proofs of the main theorems in Part Il.

Lemma 5.1 ([KKS16, Lemma 4.1]). Let r € [0,1] and n € IN be fixed. If
9 = (9,%,,...,9,) and v = (vi,va, ..., vp) denote two distinct, yet adjacent, ele-
ments of X". That is, we have that [9], # [v], and [9], N [v], # O, then there exists
aunique i € {1,2, ..., n} such that¥; # v and 9; = v; forall j € {1,2, ..., n} \ {i}.

Proof of Lemma 5.1. For n = 1, we have that [(0)], = fo([0, 1]) = [0, 1/2] and
[(D]; = f1([0, 1]) = [1/2, 1] and we proceed by induction on n. So, suppose the
statement is true for n € IN. Let & = (¢4, P2, ..., 1) @and v = (v1, V2, .eoy Visl)
denote two distinct elements of ™!, with [9], N [v], # 0. We have two cases to
consider, namely, if there exists a word & € X" such that [¢#], U [v], = [£],, or not.
In the case that there exists a word & = (&1, ...,&p) € L with [9], U V], = [£],,
then, by construction, either 4 = (£1,&2,...,&r,0) and v = (£1,&2, ...,¢&n, 1), OF
® = (&1, 62, ...,&n, 1) and v = (&1, &2, ..., &, 0), in which case the result follows.

In the case that there does not exist a word & € ¥" with [#], U [v], = [£],, then,
by construction, there exist & = (£1,&,...,&n),n = (71,2, ..., 1n) € X" such that
€] N 7], # 0, [#], C [€]r and [v], C [5],. Since .1 is monotonically decreasing,
an odd number of applications of f; ; is order reversing and an even number or no
applications of f; | is order preserving. Therefore, by the inductive hypothesis, we
have that either f, ¢ is order preserving and f,, is order reversing, or f s is order
reversing and f ,, is order preserving. Assuming the former of these two cases,
by construction we have that ¢ = (¢1,...,&n, 1) and v = (11, ..., 1, 1), in which



26 Chapter 5. Number theory - the two examples

case the result follows. In the remaining case, namely that £, ¢ is order reversing
and f;, is order preserving, by construction we have that ¢ = (¢1, ..., &5, 0) and
v = (1, ..., 7n, 0), which concludes the proof.

O

For the case r = 1, the Farey-coding and the Continued Fraction coding is linked,
as the GauB transformation is the jump transformation with respect to [1/2, 1] of
the Farey map. The number of consecutive zeroes in the Farey coding determines
the continued fraction entry and vice versa. If for two natural numbers k, m a
number has a block of (k — 1) consecutive zeroes in the Farey-coding, and this
block is followed by the m™ one, the m™ continued fraction entry is a, = k. For
example,

x:=1[0,0,0,1, 0,0,1, 0,0,0,0,0,0,1,..1; =14,3,7,...]=
4+
3+

1
T+ ..

Considering the Farey coding we observe two further technical results, Lemmata 5.2
and 5.3. To state and prove the lemma we introduce further variables.
For ne IN and B € (0, 1], We recall that p, = p,(8) and g, = gn(B) are as defined
in (5.1), and define k(n) = k(n,B), m(n) = m(n,B) and r(n) = r(n,B) by

k(n) = max{k € {1,2,...,n}: 9 x(B) = 1},

m(n) =#{€ e {1,2,...,n}: ¢ ¢B) = 1} (5.8)

and r(n):=n-k(n).

The first lemma is a list of properties that can be discerned from the given defini-
tions.

Lemma 5.2 ((KKS16]). For k(n), m(n) and r(n), given in (5.8), and the Farey map
T, we have the following properties.

1. Ifk(n) = n, then ampny = n— k(n—1).
2. If (bm)melN IS @ sequence of positive real numbers, then we have that

[0;61 —1,b2,b5...] ifb >1,

T1([0; b1, by, b3 ... ]) =
(0B BB {[O;bz,b3---] ifbr = 1.

3. Forn € IN, we have that

o)
fi.0,8)1,(0) = 0~ fo; ar, a, ..., amn]
Am(n)
and
(r(n) + 1) - Pmny + Pm(ny-1
Lo (1) = mo =IO~ 10; @y, @, e s Ay, 1() + 11,

(r(n) + 1) - Gmny + Gm(n)-1
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Proof of Lemma 5.2. 1. The first and the third statement follow by definition.

2. The second statement follows by the definition of the Farey map and the fact,
that the Gau3 map is the jump transformation of the Farey map. This property
is very important in the proof of the main result in Part Il. In fact, it states
that for each natural number n > 1, we have that T, ([1/(n+1),1/n]) =
[1/n,1/(n— 1] and T ([1/2,1]) = [0, 1]. This can be seen in Figure 5.1.

Lemma 5.3 ([KKS16, Lemma 4.11]). Forn e IN and g € (0, 1], we have that

(r(n) * Pm(n) + pm(n)—l) X+ Pm(n)
(r(n) - Amn) + Clm(n)—l) X+ Qm(n)’

fLo08)1,(X) = (5.9)

where p, = pp(B) and g, = qn(B) are as defined in (5.1).

Proof of Lemma 5.3. The function f; 4, ), is @ Mobius transformation and as such
it is uniquely determined by its values at three distinct points. Let us consider the
case when 91 ,(8) = 1. By definition we have that r(n) = 0 and so the function of
(5.9) becomes

1o X+
. Pm(n)-1 Pm(n)

X .
Am(m-1 * X + Qm(n)

(5.10)

By Lemma 5.2.3. given above,

Pm(n)

i
= f9,p1,(0) and 1+ Pm(n)~1 + Pm(n)
(n)

Amn)-1 + Gm(n)

0

= Ty, 8, (1)

Since f| 9,3, is a contraction, by Banach’s fixed point theorem, there exists a
unique x € [0, 1] such that f; ,5),(x) = x. By Lemma 5.2.1. and 2. given above
the pre-periodic point

[0’ als ey am(n)] = [0’ al: ey am(n)y a11 ey am(n)s als ey am(n)s ey a11 ey am(n), ]

is a fixed point of f ,(3),. Further, by [DK02, Exercise 1.3.10] it follows that the
point [0; ai, ..., am(m] is a fixed point of the map given in (5.10). This completes the
proof of the result for #,(8) = 1.

The result for the case when ¥ ,(5) = 0, follows from the definition of r(n) and the
case when ¥ ,(8) = 1, together with the observation that we have for n € IN and
all x € [0, 1], that fl’fo(x) =x/(1+n-x).
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5.2 The family of a-Farey systems

Another family of systems that is relevant in this thesis is given by the family of
a-Farey maps. This family is important in Part Ill. These maps are interesting from
a number-theoretical point of view as well as from a dynamical viewpoint, since they
offer piecewise linear versions of transformations with infinite (and finite) measures
having different wandering rates. To introduce these maps, this thesis follows the
notation used in [KKSS15], hence, parts of this section are published in [KKSS15].
For further details about the a-Farey system, see [KMS12, Mun11].

For the definition of the a-Farey transformation, we define a countable infinite
partition @ = {A, : n € IN} of (0,1) by non-empty, right-open and left-closed
intervals A,. It is assumed throughout that the atoms of a are ordered from right to
left, starting with A;, and that these atoms only accumulate at zero. We let a, denote
the Lebesgue measure A(A,) of the atom A, € a. Furthermore, f, = Z;":n ag
denotes the Lebesgue measure of the n-th tail of @, namely A(U,f;n Ak).

The a-Farey map F,: [0, 1] — [0, 1] is defined by

1— _
X if x € A = A U {1},
aj ¢
Fa(X) = %)H it x €Ay, forn>2, (5.11)
n
0 if x = 0.

For a picture of two a-Farey maps with respect to different partitions see Figure 5.2.

Lly B 2} =1 Ly B 12 =1

(a) 6 = 65/128. b)s=1.
Figure 5.2: The a-Farey map, where t, = n%, for all n € IN.

Throughout, we will assume that the partition « satisfies the condition that the
sequence (fp)neN is Not summable. For ¢ € (0, 1], an a-Farey map F, is said to
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be §-expansive if the sequence (ap)nen is regularly varying of order —(1 + 6), that
is, if there exists a slowly varying function £: R — R such that, for all n € IN,
an=06-4(n)-n1+9,

In this situation, the Abelian part of 4.3 implies that

o lny-n® . n-n? &n)-n°
lim —— = lim o — — um =
n—oo t, n—oco Zk:n ax n—oo Z;o:n(s . f(n) . n-(1+6)

. (5.12)

By definition we have for all n € IN, that f,+; < f,. This in combination with (5.12)
implies by the Tauberian part of Theorem 4.3, for ¢ € (0, 1), that

Wy~ [s-n'=0 - €(n), (5.13)
where
- (-9
[s:= . 14
= T2 ze) (5.14)

Therefore, the Lebesgue measure of the n-th tail of « is asymptotic to a regularly
varying function of order —¢, which is called expansive of order ¢ in [KMS12]. Thus,
o-expansive implies expansive of order ¢ in the sense of [KMS12]. However, an
expansive a-Farey map of order ¢ is not necessarily J-expansive.

This can be seen by observing that the Abelian part of Theorem 4.3 requires less
assumptions than the Tauberian part.

For the dyadic partition, namely {[1/2",1/2"*1) : n e IN} U {[1/2, 1]}, the a-Farey
map coincides with the tent map Ty, introduced in Subsection 5.1.2, see [KMS12].
In this case t, ~ 27", and hence the sequence (t,)nev Would be summable which
contradicts our assumption for this part of the thesis. This partition would give rise
to an invariant probability measure, namely the Lebesgue measure. Hence, in that
case we could apply tools from finite ergodic theory.

By [KMS12, Lemma 2.5], a-Farey transformations give rise to an invariant measure
U Whose density with respect to the Lebesgue measure is given by

due tn
h, = — = — 1,4 . 5.15
“7da ,;va” An (5-19)

See [KMS12] for a proof of this statement and see Figure 5.3 for a plot of the
invariant density.
As in the previous section, we define the inverse branches of the a-Farey map by

fr.00¥) = (Falior) ') and  f1(x) = (Falipi) ™ (0). (5.16)

These inverse branches are needed in the pointwise representation of the transfer
operator. Note, that in the last formula the index a refers to a partition, whereas the
index r in (5.3) is an element in [0, 1]. In the sequel it will be clear from the context,
to which system we refer to, so no confusion will appear.
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LA A Al ] LA Ay A
s l4 B3 [ =1 PR n =1

(a) 6 = 65/128. b)s=1.

Figure 5.3: Plot of the density function h, for the a-Farey map, where t, = n° for
all ne IN.

We denote the induced transformation, as defin%:i in foinition 3.4, of the a-Farey
map for the set A; by Fy 4,. Itis given by Fy 4, : Al = A,
FoY ) i x e Ay,

b if x=1.

Foa (x) = { (5.17)

See Figure 5.4 for two examples of the induced transformation with respect to the
same partitions as in Figure 5.2.

oty 13 bh=l-aiy .. 1 ol B th=1-an l—-ajn .. 1

(a) 6 = 65/128. b)s=1.

Figure 5.4: Plot of F, 4,, where f, = n~dforall ne IN.



Chapter 6

The transfer operator method

After introducing some topics of number theory, we return to the questions being
asked at the end of Chapter 3.

The first section of this chapter is split up into two parts. First we introduce the
general theory and the necessary relations in Subsection 6.1.1, afterwards, in
Subsection 6.1.2, we apply these tools to the example systems given in Chapter 5.
The second section, Section 6.2, gives an overview on the state of the art of
distributional convergence. Finally, Section 6.3 introduces operator renewal theory,
by first giving a short introduction to classical renewal theory and secondly by
introducing renewal equations for operators. We conclude this section, and hence
this chapter, with Subsection 6.3.3 in which two example systems are given that
give rise to Banach spaces for which operator renewal theory can be applied.

6.1 The transfer operator

6.1.1 The theory behind the transfer operator - defining relations

As mentioned before, an important tool to examine limiting behaviour of dynamical
systems is the transfer operator, whose job it is to describe the iterations of densities
and hence distributions over time. The transfer operator plays the crucial role in this
thesis and therefore a short introduction to this operator is given. For a thorough
introduction to this operator the reader is referred to [LM94, Wal82], or a variety of
lecture notes.

This chapter gives the definition used in [LM94], with a slight adjustment of the
notation to be in accordance with the rest of this thesis.

Definition 6.1 (Transfer operator [LM94, Definition 3.2.3]). Let (X, 3B, i) denote
a measure space and f € Llll(X). If T: X — X is a non-singular transformation, the

unique operator T : L,(X) = L(X) that satisfies for each A € B, with u(A) < o,

31



32 Chapter 6. The transfer operator method

that
f TH0)du(x) = f FO0d(0),
A T_I(A)

is called the transfer operator with respect to u.

The uniqueness of the operator follows by the Radon-Nykodym theorem (compare
[LM94, Theorem 2.2.1]). Approximation arguments from measure theory yield the
more common dual relation of the transfer operator, namely for g € L;’(X) and
each f € L)(X), we have that

| o Tt = [ @o 00 fo0ducn. (6.1)

The operator U': L;"(X) - L;"(X), given by U(g(x)) == (g o T)(x), is known as the
Koopman operator.

From a probabilistic point of view, this operator can be described in the following
way. Let Z denote a random variable on the space X, whose density on X with
respect to the invariant measure u is given by f. Then, the random variable 7" o Z
has the density T"f.

In literature the Perron-Frobenius operator is often defined by the following relation:
Let f denote the invariant density of T with respect to the Lebesgue measure. For
all Borel sets A [0, 1], let vi(A) := [ 1,4+ fdA. We have that

dvs o 71

da
The name of the transfer operator varies in literature. Throughout this thesis, we
call the transfer operator with respect to the invariant measure for a transformation
T, transfer operator and denote it by T. The transfer operator with respect to the
Lebesgue measure will be called Perron-Frobenius operator and is denoted by .
There is a relation between these two operators, which is given in the next lemma,
Lemma 6.2.

P(f) = (6.2)

Lemma 6.2. Let (X,B, T,u) denote a measure preserving, ergodic dynamical
system. Let u be absolutey continuous with respect to the Lebesgue measure A
and let h denote the density of u with respect to A. For f € L, we have that

~  P(f-h
T(f) = (h ).

Proof of Lemma 6.2. Letg € L and f € L,ll- We have that

fg-?(f)dﬂzf(gor)-f-hda

:fg-SD(f-h)d/l

1
=fg-50(f-h)-77dp.
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Sincege L; and f € L}l were chosen arbitrarily, the lemma is proven.
O

Working with the transfer operator is often easier with a pointwise defined version
of it. By a pointwise version of the transfer operator we understand a function in L,‘J
that satisfies the dual relation given in (6.1). Its equivalence class is an element in
L}l. Such a version for the Perron-Frobenius operator is given by

1 .
T'(y)

PO = f(y). (6.3)

yeT-1(x)

This formula together with Lemma 6.2 allows us to calculate explicit pointwise
versions of the transfer operator, which is done for the two main examples in
Subsection 6.1.2.

Afterwards, with the transfer operator at hand, we give an overview of the state of
the art of distributional convergence.

6.1.2 The two examples - Part 2

To calculate explicit pointwise versions of the transfer operator, recall the general
Definition 6.1, the defining relations of Chapter 5 and in particular Lemma 6.2 and
Equation (6.3).

The transfer operator of the family 7,

Let the derivatives of the contractions f,o and f.; be denoted by ' and f/,
respectively, see (5.3).
For r € [0, 1], a pointwise version of the Perron-Frobenius operator

Pr: L3([0,1]) > L3([0,1])
of T, can be obtained by (6.3). For f € L1([0, 11), we have that
Pf) = |fo| - folho+]|f ] fofi (6.4)

This representation coincides with (6.2). The definition of $, can be extended to
well-defined C-valued or R-valued functions, which will be of use in Part II. To apply
Lemma 6.2 we need to recall the invariant density of T, from Equation (5.4). Let us
now focus on the case r = 1. This is also the case we require most in Part Il. The
proofs of the statements for the cases r € [0, 1) can be done by considering the
Perron-Frobenius operator only.
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It turns out, see for instance [KS08, Kau11], that the operator ?1 can be written in
terms of the inverse branches of T;. We have,

= 1
Ti(H(x) = h -P1(hy - 1)

[1 () +f(ﬁ)]

x (1+x)? 1+x

(6.5)

1 X X 1
= 'f( )+ - f
(1+x) 1+x 1+x 1+x
= fio(x) - fofi1(x)+ fi1(x)-fofio(x).

This representation and the “symmetry” in the formula comes in very handy in the
sequel. The results presented later do not require this symmetry, but calculations
become considerably easier with formula (6.5).

The «a-Farey transfer operator

By (6.1), the transfer operator for the a-Farey map is given for all v € L}M([o, 1])
and all measurable functions w with ||w||s < oo by the defining dual relation

f?a(v).wdua = fv- w o Fy dg. (6.6)

In a similar manner as in the previous example we can calculate a pointwise defined
version of this operator which satisfies (6.6). To distinguish between the pointwise
version and the L},a-version of the transfer operator, in [KKSS15] the pointwise
version is called the a-Farey transfer operator. It is given by the positive linear
operator F, : L, ([0,1]) = £}, ([0, 1]), with

— Iy 4
Fo(v) = Z ( nt+1 vofy,o+ (1 - ';H ) vo fa,l) 14, (6.7)

nelN n n

where f, o and f, 1 refer to the inverse branches of F,, see (5.16).

Equation (6.7) is a consequence of Lemma 6.2 and Equation (5.15). The explicit
calculation follows the same path as in the other example in the previous subsection.
It is explicitly caried out in [Kau11, Section 3.3.5].

Later in this thesis we want to look at the individual iterates of the transfer operator.
Thus, we have to calculate pointwise versions of it as well. To this end, let 9 € ¥
denote a word of length k over the alphabet > := {0, 1} and define the following set
of constants recursively by

Z‘n+1
Cn,(0) = P Cn,(91,....9%,0) = Cn,0) * Cn+1,9»
n

fn+1 W
1- o Cn,(d1,....9x,1) = Cn+1,(1) * C1,9-
n

Cn,1) -
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In particular, letting O, := (0,0, ..., 0), we have for each k € IN that
————

k-times
C1,0x = lk+1-

As in (5.5), we define for n € IN and each word ¢ € ¥.",

fop =T 0+ 0 fug,

Pointwise versions of the iterations of the transfer operator of the a-Farey map are
given by the following lemma. The proof of it is technical but straight forward.

Lemma 6.3 ([KKSS15, Lemma 2.2]). Let F,: [0, 1] — [0, 1] denote an arbitrary
a-Farey map and let u € L), . For each k € IN, we have that

(o)

F) = Z Z Cng-Uo Ty -la,.

n=1 gexk

Proof of Lemma 6.3. We proceed by induction on k. The start of the induction is
an immediate consequence of (6.7). If we suppose that the statement is true for a
natural number k € IN, we have that

Fk+l( ) (Fk(u)) (Z Z Cn,ﬂu © fa,ﬂ . ]lAn]

nelN ge3k

i(z Z thCnﬂUOfafﬂofaO Ta, o fapo

m=1 \nelN geyk

(1 - ’:H)Cn,ﬂu ofygofy-1a,0 a,l) g,

m

[} " 1 t
:Z(Z m+ Cm+119U°faz9°fa0+(1_t—)ClﬂUOfm90f[“] Ta,.
Pexk

1 m m

Using the defining relations given in (6.8), this completes the proof of Lemma 6.3.
O
We state yet another technical lemma that is needed in the sequel.
Lemma 6.4 ([KKSS15, Lemma 2.5]). For each n € IN, we define
10, :=(1,0,0,...,0).
—
n-times

We have for each a-Farey map F,, that

C1,10,.; = #a({¢A1 =n}) = ap = th — the1,



36 Chapter 6. The transfer operator method

Proof of Lemma 6.4. By construction of the a-Farey map, we have that

{pa, =1} =[1-ait,1 —aib]
and, for all integers n > 1, we have that

{pa, =N} =1 —aity, 1 — aytye].

Thus,
Ha({pa, = n}) = f]l;¢ =n) - d"—"dﬁ -4 th— ths1. (6.9)
‘ A‘ da A{pa, = nh
We show by induction on n that we have for each k € IN, that
Yern—1 — 1
Ck, 10, = % (6.10)

By (6.7), we have for each k € IN, that ¢k 1) = 1 — lk+1/t = (& — tk+1)/ . which is
the start of the induction. Hence, suppose that the statement in (6.10) is true for an
n e IN. From (6.8), we have that

tk+1
Ck,10, = (_t * Ck+1,10p_; 5
k

for each k € IN, which gives

kvl Tken = Tkensl | B — lkene
Ck,10, = —— = .
t fk+1 t
This completes the proof of the statement in (6.10).
Setting k = 1in (6.10), we obtain that ¢y 10, , = t — {441, for all n € IN. Combining
this with (6.9), completes the proof.

6.2 Distributional convergence - state of the art

This paragraph gives an overview of known convergence results for the transfer
operator. In particular it will point out, why the problems turn out to be considerably
more delicate in infinite ergodic theory.

Theorem 3.9 shows that it is not possible to find a normalising sequence for the
ergodic sum for a dynamical system with an infinite invariant measure. Can we
ask a more suitable question? A good starting point is to look at the evolution
of densities instead of the pointwise behaviour of a dynamical system. For this
procedure we need the transfer operator introduced in Chapter 6.1. That means
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that instead of considering ergodic sums we look at the dual analogs, namely we
try to find suitable constants (r,), with n € IN, and look at

1 n-1 .
—- > T, (6.11)
=

Furthermore, the transfer operator is an important tool to prove the existence of
invariant measures itself, because we have that if a transformation T is invariant
with respect to u, the constant one function 1 is a fixed point of the transfer operator,
that is, 7(]1) = 1. Lasota and Yorke used this approach in [LY73] for differentiable,
uniformly hyperbolic interval maps. Additionally they point out, for the example of
the Pomeau-Manneville map, which challenges might occur if one considers maps
with indifferent fixed points.

To find analogue statements for maps with indifferent fixed points, we need the
notion of pointwise dual ergodicity introduced by Aaronson.

For the next two definitions let (X, B, u, T) denote a conservative, ergodic, measure
preserving system.

Definition 6.5 (Pointwise dual ergodic [Aar97, § 3.7]). T is called pointwise dual
ergodic if there are constants r, such that for all f € L}l

1 n-1 .
—- Z TX(f) — f fdu almost everywhere as n — co.
n =0 X

n

The sequence (r)nen is called return sequence.

The wandering rate of a pointwise dual ergodic system is independent of the set
A up to asymptotic equivalence, if A has positive and finite measure and A is a
so-called uniform set. For further details and the definition of a uniform set, see
[Aar97, Section 3.8]. Closely linked to pointwise dual ergodicity is the notion of
Darling-Kac sets.

Definition 6.6 (Darling-Kac set [Aar97, § 3.7]). Aset Ae B, with 0 < u(A) < o
is called a Darling-Kac set, if there are constants r, > 0 such that

=]

1 ©— =
- TK14 — u(A) almost everywhere uniformly on A as n — co.
n

0

=
Il

The wandering rate and the return sequence (r,)ncv are linked via the relation, see
[Aar97, Proposition 3.8.7],

n
TTA+6)-T2=6) w,’

where we assume that the wandering rate is regularly varying with index 6. The
notion of Darling-Kac sets is important, because under certain circumstances the
existence of such a set implies pointwise dual ergodicity as the next proposition
shows.

(6.12)

I'n



38 Chapter 6. The transfer operator method

Proposition 6.7 ([Aar97, Proposition 3.7.5]). Suppose T is a conservative, ergodic,
measure preserving transformation of (X, B, u). If T has a Darling-Kac set, then T
is pointwise dual ergodic.

Aaronson, Denker and Urbanski show in [ADU93] that Gibbs-Markov maps are
pointwise dual ergodic. Furthermore, exactness of such maps is shown and
sufficient conditions are given, to see whether the invariant measure is finite or
infinite. In the infinite measure case they prove the existence of Darling-Kac sets
and investigate return times and the asymptotics of the return sequences.
Further investigations of the limiting behaviour of (6.11) have been made by Collet
and Ferrero in [CF90], in which they examine this limiting behaviour for maps of
the form T: [0,1] — [0, 1] with T(x) := x + a- x* + o(x?), in a neighbourhood
of zero. Thaler proves a limit theorem for a class of functions, nowadays known
as Thaler maps in [Tha95] and Zweimuller extends in [Zwe98, Zwe00] this class
of transformations to so-called AFN maps and gives further sufficient conditions
for the existence of Darling-Kac maps. An AFN map with full branches is a Thaler
map.

When investigating the asymptotic behaviour of (6.11), it seems natural to ask,
what can be said about the individual iterates of the transfer operator. Of course,
these kind of questions have first been asked in finite ergodic theory. These results
translated to our setting read as follows. That is, we consider the Perron Frobenius
operator P, of T, for r € [0, 1).

Theorem 6.8 ([Bal00, Col96, Kel84, Ryc83]). Forr € [0, 1) there exist constants
M= M(r)> 0 andp = p(r) € (0, 1) such that

|

This result is called exponential decay of correlation and is needed in the proof of
Theorem 8.1. However, we can not always expect exponential decay of correlations,
as Gouézel shows in [Gou04]. In his paper, systems for which we have polynomial
decay of correlations are considered.

In the infinite ergodic theory setting, first investigations in that direction date back to
Thaler in [Tha00] in which, once more, Thaler maps are considered. Thaler discerns
statements about the limiting behaviour of the individual iterates of the transfer
operator. Since the Farey map, Ti, is not a Thaler map, further investigations were
necessary. Kessebéhmer and Slassi show in [KS08] that for each

P(f) - ffd/l-h,

<M-p"-|fllgy.
BV

feD:= (f € -£,lﬁ fe C*(0,1)) with f > 0and f’ < O), (6.13)

Wh - ?"(f) converges to ffd,u1 almmost everywhere uniformly on (v/(2) - 1, 1].

The results of Theorem 6.8 rely on the fact that in finite ergodic theory, the Perron-
Frobenius operator has a spectral gap, a property that the transfer operator in
infinite ergodic theory lacks in general. This fact is the starting point of operator
renewal theory, in which ideas from classical renewal theory are transferred to
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the operator setting. With the help of these ideas, it is possible to obtain further
convergence results for the individual iterates of the transfer operator. This is the
topic of the next section, Section 6.3.

6.3 Operator renewal theory

6.3.1 Classical renewal theory

This section begins with a subsection about classical renewal theory. It is included
to give a short overview of the main results in renewal theory. Afterwards it is
explained how these methods can be used to obtain results in infinite ergodic
theory.

Classical renewal theory is a part of probability theory and has its origin in the
twentieth century. The first landmark result in this area was achieved by Erdos,
Feller and Pollard in [EFP49]. Originally it arose from questions of self renewing
aggregates. As an example, it is good to have the replacement of light bulbs in
mind.

For an introduction to elementary renewal theory, the reader is referred to [Fel68,
Fel71]. In this subsection we stick with Feller’s notation. We let (22, ¥, IP) denote
a probability space and we let & denote an event, for instance, we say a certain
success occurs, whatever success might mean in a specific setting. For instance,
it could mean the replacement, the renewal, of a light bulb. The two non-negative
sequences of real numbers (f)iew, and (U;)iew, are defined by f := 0, up := 1 and
for n € IN by

up = IP (€ occurs at the n-th trial) ,
f, .= IP (& occurs for the first time at the n-th trial) .

This setting yields 3.7 fi < 1, however, we assume that }.° f; = 1. This property
is, in the language of probability theory, known as the Event & being persistent.
Furthermore, we assume, without loss of generality, that the greatest common
divisor of all the indices i € IN for wich u; > 0 is one. That is, & is non-periodic. The
periodic case can be traced back to the non-periodic case.

The probability of the event ‘€ occurs for the first time at trial k, kK € IN, and then
again at trial number n € IN, with n > K’ is given by f - u,_x. These events are
mutually exclusive for different k and hence we have for n > 1, that (compare
[Fel68, Section XI11.3])

u,,=f1-un_1+f2-un_1+---+f,,-uo.

By [Fel68, Section XIII.3, Theorem 3], we have that

1
oo Z/‘:l/ G
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and interpret the limit as zero, if Zj'ilf' fi = oo.

In the case of an infinite mean and under additional assumptions, namely that the
tail of the random variable is regularly varying, Garsia and Lamperti in [GL62] as
well as Erickson in [Eri70] and Doney in [Don97] prove statements about the exact
asymptotic behaviour, that is how fast the limit in (6.14) tends to zero. How this
probability theoretic results help to answer the questions that are asked in this
thesis is explained in the next subsection.

6.3.2 The theory of operator renewal theory

In [Sar02] Sarig generalised the previously known results from renewal theory by
combining renewal theoretical arguments with operator theory; a new approach
was born. To describe the general setting, let (X, B, u, T) denote a conservative
and non-singular dynamical system and let D denote the open unit ball in C and
D its closure. Further, let A € B be such that 0 < u(A) < oo and let T4(x) denote
the induced transformation with respect to A, defined in (3.1). Sarig showed the
following.

Proposition 6.9 ([Sar02, Proposition 1]). For n € Ny, we define the return time
operator
To(f) =1, T"(f-1p)

and the first return time operator
Ra(f) i= T4~ T(Ff - Ligpmn))-

Furthermore, we denote the identity operator by | and define R(z) .= 3., 2" - Ry
and T(z) =1+ ,2" T,
Then for all z € D, we have that

T(z)=(I- R2)™". (6.15)

Furthermore, R(1) = 3. | Ry is the transfer operator of the induced transformation
Ta.

Besides Proposition 6.9, [Sar02] proves lower bounds on the decay of correlations.
In the case of finite ergodic theory, [Gou04] generalizes Sarigs results. A general
proof of this proposition can be found in [Sar02]. For the case, that T is the Farey
map, a down to earth proof, which follows Sarigs arguments but gives more details,
can be found in [Kau11]. It has also been shown in [Kau11] that these operator
renewal equations yield the classical renewal relation for the so-called sum level
sets found for the a-Farey map in [KMS12].

Gouézel generalised Sarigs methods [Gou04, Gou05] and combining this approach,
with classical results from probability theory by Garsia and Lamperti [GL62] as well
as Erickson [Eri70], Melbourne and Terhesiu [MT12] proved a landmark result on
the asymptotic rate of convergence of the return time operator T,,. We adopt their
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setting which is as follows.

Let (X, B, T, u) denote an infinite, o-finite measure preserving system. We fix a
set Y € B with 0 < u(Y) < oo. Without loss of generality we can rescale u such
that u(Y) = 1. Furthermore, let ¢y denote the first return time with respect to Y,
see Definition 3.4. We assume that the tail probabilities u (y € Y: ¢y(y) > n) are
regularly varying of order 6 € (1/2, 1], that is, there exists a slowly varying function
¢: IN — R, such that

t(n)

Uy € Y gy(y)>n) = P

We impose further functional analytic conditions on the first return map, namely
we assume the existence of a function space 8 c L™ that contains the constant
functions and satisfies the following conditions:

(R1) If f € B, then f € L>([0, 1]) and R(1)(f) € B.
(R2) The inequality ||f||z~ < ||fllg holds for all f € B.

(R3) For all n € IN, the operator Ry|g is bounded and linear. Moreover, there
exists a constant C > 0, such that

IRnll< C - u(ty = ni).

(R4) Spectral Gap: The operator R(1) restricted to $ has a simple and isolated
eigenvalue at 1.

(R5) Aperiodocity: For z € ﬁ\ {1}, the value 1 is not in the spectrum of R(z).

As before, let I'(-) denote the I'-function and define

1
I'(;'

TTA+0) T2-06) (6.16)

For 6 € (1/2, 1], Melbourne and Terhesiu obtain the following theorem, which is
stated without a proof here.

Theorem 6.10 ([MT12, Theorem 2.1]). Given the above setting, for 6 € (1/2,1],
we have that

lim  sup
1= yeg: |v|ig=1

]ly-Wn-T,,(v)—F(;-fvduH =0.
B

Gouézel shows in [Gou11] that the result holds true for ¢ € (0, 1/2] as well if we
impose further assumptions on the tails of ¢vy.

This theorem relies on the fact, that although actual transfer operator does not have
a spectral gap, the transfer operator of the induced map, R(1), has one. Using
operator renewal theory, the convergence of the induced transfer operator can,
under certain circumstances, be extended to the convergence of the actual transfer
operator on Y. This is done in detail in Part Il and Part Ill.
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If we have the convergence of the transfer operator on a set of positive and finite
measure, here Y, it is possible to extend this convergence result to each set of
positive and finite measure. In [MT12] this is done using a method involving a
Young tower construction. An extension theorem that uses more down to earth
calculations was given in [Kau11]. To keep this thesis as self-contained as possible
a slightly generalised version of this theorem and a proof of it is included. The
theorem is stated and proven for an a-Farey system. This version of the theorem
and the proof was given in [KKSS15]. The statement can be transfered to the
Farey system. Since the proof follows the exact same route, with slightly adapted
calculations, it will be omitted in the latter case.

Theorem 6.11 ([KKSS15, Theorem 1.1]). Assume that the wandering rate of an
a-Farey system ([0, 1], B, uq, Fo) satisfies limp_,o, Wp/wny1 = 1. We have that, if
v e £} ([0, 1]) satisfies

nl_i)rfm Wn-Fg(v) =Is- fvdua

uniformly on Ai, then the same holds on any compact subset of (0,1]. The
same statement holds when replacing uniform convergence by almost everywhere
uniform convergence.

For 6 € (0, 1], the wandering rate of a d-expansive a-Farey system satisfies
limn—)oo Wn/Wn+1 =1

Proof of Theorem 6.11. Let us first recall that, for x € (0, 1] and n € NN,

(P2 (he - 1)) (%) = Po (Piha - V) (X))
= (Po(ha - V) (F,0(2)) - | £, o ()]
+ (P(he - v)) (0 (X)) - |1, 1)

which gives

(P21 (o - V) () = (PI (B - V)) (Fa0(X)) -

f;,o(x)|

f;,l(x)|

(P (he - V) (F0(0)) =

(6.17)
We proceed by induction on n as follows. The start of the induction is given by the
assumption in the theorem. That is, the convergence holds on the first partition
element A;. For the inductive step, assume that the statement holds for Uf‘zl A,
for some k € IN. Then consider an arbitrary y € Ax+1, and let x denote the unique
element in A such that £, o(x) = y. Using (6.17), the fact that 7—2 = h;l -Py(hy - V)
and the inductive hypothesis in tandem with the assumption that lim w,/ w1 = 1,
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we obtain that

wo - (FI)) (1) = wn - (FI(V)) (fa0(0))
= Wn - (Pn (ha : V)) (ﬁx,O(X))

R (f40(X))
w - (P! (o - ) 00 = |1, O wa - (P (e - 1) (00)
= o (£200)) - [£, o)
~ ha) = o (fa0(x) - fé*‘(x)’ .r(;-deua

h(l (fa,O(X)) :

:F(;'fvdua.

The last equality is a consequence of the eigenequation

fc’ho(x)‘

Po (ha(X)) = ha(X) = ho (F,000) - |1, 00| + ha (F20(0)) - |50

The analogous statement for the Farey system reads as follows.

Theorem 6.12 ([KKS16, Theorem 4.10]). Iff € LL([O, 1]) satisfies

In(n) - T(f) — f m
uniformly on'Y, then the same convergence holds on any compact subset of (0, 1].

The same statement holds when replacing uniform convergence by almost every-
where uniform convergence.

Proof of Theorem 6.12. Since the wandering rate of the Farey map is asymptotic
to In(n), which satisfies In(n)/In(n + 1) ~ 1, the proof follows in the same way as
the proof of Theorem 6.11.

O

By similar proofs to the ones given above, we can obtain the result of Theorem 6.11
for further interval maps, such as Gibbs-Markov maps, Thaler maps and Pomeau-
Manneville maps.

In the next subsection we give two examples of Banach spaces which satisfy
conditions (R1)-(R5).
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6.3.3 The two examples - Part 3

As in Chapter 5 and Section 6.1, we conclude this chapter with two examples
elucidating the theory. That is, two examples of Banach spaces are given, where
conditions (R1)-(R5) are satisfied. As before, the first one is published in [KKS16],
the second one in [KKSS15]. The fact that these Banach spaces satisfy these
conditions is widely considered as folklore, but thorough proofs are included here.
In both cases condition (R4) relies on the notion of quasi-compactness of an
operator and on a theorem which is known as the theorem on the difference of
two norms. The first version of this theorem is due to Doeblin and Fortet [DF37].
The generalisations are due to lonescu-Tulcea and Marinescu [ITM50] and due to
Hennion and Hervé [HHO1]. The theorem is used in each of the two examples and
hence needed for the main results in Parts Il and Ill. We thus state the version of
[HHO1] slightly adapted to fit our notation before giving the two examples explicitly.
We start by introducing the notion of quasi-compactness. For a bounded linear
operator L on a Banach space £, we let p(L) denote its spectral radius.

Definition 6.13 (Quasi-compact). A bounded linear operator L on a Banach
space Y is called quasi-compact if there is a direct sum decomposition £ = F @ 9
and 0 < p < p(L) where

1. &, 9 are closed and L-invariant, that is, L($) C $ and L(§) C &,

2. ¥ is finite dimensional and all eigenvalues of L|z: § — & have modulus
larger than p and

3. the spectral radius of L|g: $ — 9 is smaller than p.
To show the validity of condition (R4), and hence the existence of a spectral gap, it

suffices to show, that the operator R(1) is quasi-compact, which is done in the next
theorem.

Theorem 6.14 ([HHO1, Theorem XIV.3]). Suppose that (L, ||-||¢) is a Banach space
and L: £ — £ is a bounded linear operator with spectral radius p(L). Assume that
there exists a semi-norm ||-||’2 with the following properties.

Continuity The semi-norm ||-||§ is continuous on L.

Pre-compactness For a sequence (fy)ney in L, if suplifalle < +oo, there
exists a subsequence (ni)kew of IN and g € € such that

Jim [IL(fo,) — glig = 0.

Boundedness There exists M > 0 such that ||L(f)||; < M-|Ifll,, forall f € L.

Doeblin-Fortet Inequality There existk € IN, r € (0, p(L)) and R > 0 such that,
forall f € £,

ILK(Flle < - NIflle + R - 1IFIl,.
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Under these conditions the operator L: £ — £ is quasi-compact.

The Banach space of functions of bounded variation

The class of functions that is used in Part Il of this thesis is the class of functions of
bounded variation. Firstly, a short recapitulation of functions of bounded variation
is given, including various properties that are required in the sequel. Secondly, the
Banach space is defined and it is shown that this Banach space satisfies conditions
(R1)-(R5). For a more thorough account on functions of bounded variation the
reader is referred to [BG97, Fre03], for example. We begin with the terms variation
and bounded variation.

Definition 6.15 (Varation, bounded variation). Let [c, d] denote a compact in-
terval in R and let f denote a function such that f: [c, d] — C. The variation is
defined by

Vican(f) := sup {mek) - f(xk_1>|} .
k=1

We take the supremum over all finite partitions P := {/; = [xji_1, xi]: i € {1,2, ..., n}},
for which ¢ == xp < x; < -+ < Xp—1 < Xp = d, is a chain of points belonging to
[c, d], foran n € IN.

We say f is of bounded variation, if and only if V|¢ q1(f) is finite.

The following two propositions state various properties of functions of bounded
variation that are used in the sequel.

Proposition 6.16 is concerned with R-valued functions and Proposition 6.17 is
concerned with C-valued functions.

Proposition 6.16 ([BG97, Chapter 2]). Letf, g € L}l([a, b)) denote two R-valued
functions of bounded variation.

1. The supremum norm ||f||. of f is finite.

2. For x € [a, b] we have that

l1£lx

fx)| <V f
fOOl < Viani() + —

3. The sum, difference and product of two functions of bounded variation are of
bounded variation, and moreover,

Viao)(f £ @) < Viapi(f) + Viap(9)
and Viap(f- @) < Vian)(9) - Iflle + Viap)(F) - 19lco-

4. Ifc € (a, b), then f is of bounded variation on the intervals [a, c] and [c, d]
and moreover, Viap(f) = Viae)(F) + Viep)(F).
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5. The function f has a representation as the difference of two non-decreasing
functions.

6. A function of bounded variation is differentiable Lebesgue almost everywhere.

7. ForasetU C Y, let C'(U) denote the differentiable real-valued functions
defined on U. Letting

Wigp =Y € C'([a, b]): Wl < 1 and y(a) = y(b) = 0},

we have that

Vo) = sup [ 10/

VeV ap)

Proposition 6.17 ([Fre03, page 74 1.]). Letf,g € Lz([a, b]) denote two C-valued
functions of bounded variation.

1. The supremum norm ||f||. of f is finite.

2. The sum, difference and product of two functions of bounded variation are of
bounded variation.

3. A C-valued function is of bounded variation, if and only if its real and imag-
inary parts are of bounded variation. In particular, if f = Re(f) + i - Im(f),
then

max{Via p)(Re(h), Vg1 (SM(N)} < Vigp)(f) < Viap(Re(h)) + Vigp (Sm(h).

In particular, by Proposition 6.17.3. and additional regularity conditions, for instance
the linearity of the transfer operator, we can simplify the matter and restrict our
thoughts without loss of generality to positive real-valued functions.

The class of functions of bounded variation that vanish on the complement of a
certain set leads to our example, which is in line with the first main example in this
thesis.

Proposition 6.18 ([KKS16, Proposition 4.8]). Let Y = [1/2,1] and let BV(Y)
denote the space of C-valued right-continuous functions with domain [0, 1] that
vanish on the complement of Y and which are of bounded variation. We define,
for all f € BV(Y), the norm ||f|lgv = ||fll + Vy(f). The space BV(Y) is a Banach
space and satisfies conditions (R1) to (R5).

Proof of Proposition 6.18. A short sketch of the proof of this proposition can be
found in [KKS16], though more details are given here. Since Y is compact, each
f € BV(Y) is an Llil(Y) function. Furthermore, by [Fre03, p.74] we have that
BV(Y),|Illsv) is a Banach space.

We start with showing conditions (R2) and (R1).
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(R2) The inequality ||f||z~ < ||fllg holds for all f € B.
By the definition of the BV(Y)-norm, we have for f € BV(Y) that

IfllBv = llfllo + Vy(f) = [Iflleo

and hence condition (R2) follows from the definition of the BV-norm. This obser-
vation turns out to be useful in the proof that condition (R17) is satisfied for BV(Y),
which follows next.

(R1) If f € B, then f € L>([0, 1]) and R(1)(f) € B.

There are two possible ways of showing condition (R7). One of them, certainly
the faster one, is to deduct (R7) from condition (R3) as a corollary, because
R(1) = > ,»1 An. The other one is more straight forward and since the calculations
done there are also needed in showing (R4), we follow this route.

As seen in the proof of (R2), we have that f € BV(Y) implies f € L. Thus, it
remains to show that for all f € BV(Y), we have that R(1)(f) € BV(Y). To do so,
we first recall the Proposition by Sarig, Proposition 6.9, that states that R(1) is the
transfer operator of the on Y induced transformation. That is, for all w € L}q(Y)
and u € L=(Y), we have that

fR(l)(w)-udm:fw-uorf’ymdm, (6.18)
Y Y

where ¢y is the first return time of y € Y. This observation in combination with
Proposition 6.16.2. leads to

1ROl = IRl + Vy (R)(F))
-f/:i’(l)fd/l+ Vy(R(D)() + Vy(R(1)(f))

1
2

<2- (f R(Dfdu; + Vy(R(l)(f))) (6.19)

=2((Vy(R(1)(f))+ffdﬂ1)

= 2(Vy(RQ)(H) + IIflly,1) -

Hence, it suffices to show that Vy(R(1)(f)) is bounded, which will be done in the
next lemma.

Lemma 6.19. Forf € BV(Y), we have that R(1)(f) is of bounded variation.

Proof of Lemma 6.19. The proof is technical and has its key in Proposition 6.16.7.
Furthermore, by Proposition 6.17.3., we can assume, without loss of generality,
that f is real-valued. Let further, for an interval [c, d)

Viea = Viea) = (¥ € Cl(lc, dD): Wil < w0, Y() = y(d) = 0},
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and let Uy denote the level sets of the first return times to Y. That is

k k+1
Uc={yeY:oy(y) =k} = [m, k_:2) (6.20)

It follows, that

Vy (R(1)(f)) = sup j;/?(l)(f)(X)'lﬂ'(X)dﬂ-

YeVy

Furthermore, we have that

fR(l)(f)(X)w//(X)d/Hfﬁ(l)(f)(X) W' () ——dw
y hy ( )

= (T -;d
fy o) -y (T () (77 00) m

=> f Ly, (x) - 1) -0 (TFO) - (T 0) day
k=1

=> f Ly, (%) - 1) -0 (TFO) - (TF0) - h(x) da.
k=1
For each ¢ € Wy and each k € IN, we define

Yk(x) = {l//o Ti(x) ifxe L.jk \ OUk,
0 otherwise.

We can conclude, for k € IN, that ¢« € W, and by the chain rule, we have for x
lying in the interior of Uy and for each k € IN, that

w0 = (¢ (TF)) = v (TFw) - (TF) 0.

If we furthermore define on the interior of Uk and for each k € IN,

gk(x) =
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an application of Proposition 6.16.3., 4. and 7. yields for all f € BV(Y), that
Y (X)

Vy(R(1)(f)) = sup f]luk(x) f(X) s ——— Tk(x) - h(x)dAa
; vy, (T 00

= > sup f Ly, (0 - £00) - ge(X) - Y, () dA

[

< Z Vu (k) - Ifllee + Vi (F) - lIgklleo

Vy(f
< 0.461 - ||flloo + Yz( ), (6.21)

which implies that R(1)(f) is of bounded variation. To see that (6.21) holds we have
to look at le and its properties. We have that,

K B 1-x
Lo H00) =Sy
K\ _ -1
(Tl) () = (k,x_(k_l))z’
and hence
kox—2- k14 EZD _ =D Gex=G=D) 4
gk(x) = b%
otherwise.

We note that gx has no roots in Uk and is negative on each Uk. The roots would be
at x; = (k—1)/k and x, = 1, neither of them lies inside Uy. Further calculations
yield on the interior of each Uk, that

0 k-1
8_xgk(x)=k_ >
0 k-1
ﬁgk(x)=2' 3

Hence, g;(x) is negative and linearly increasing on U;. Likewise, g»(x) is negative
on U, and attains its minimum at x = (2+ \/5) /2 € U,. For k > 3 we have
that gk (x) is negative and monotonically decreasing, hence it attains its maximal
absolute value on each Uy at the right edge. These observations yield, that

: itk =1,
loklu |, =43 -2- V2 ifk=2,

2 .
HD-(k+2) otherwise.
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Hence, we have that

= ¢ itk =1,

D=
W —

Vu(go=1{2-[t-(3-2-V2)| = % -4- V2 itk=2,

k+1 k=2 .
|gk k+1 9k(k+z)’ gy Otherwise.

In particular, we have that ||gk|lc < 1 and that

s 1
;vuk<gk>s +——4 V2 Zk (k+1) <k+2>

1 17
<—+——-4-V2+

=6 3 Z(k 12

1 17 © 11 (6.22)
=+ ——4.-V2 —_— ===

6 3 +;(k)2 479

1 17 2 11

e A R AR R

6" 3 V2+ 5 479

<0461,

which proves the assertion of the lemma and hence condition (R2) is satisfied.

Note that (6.21) in particular implies that we have

Ifllo + Vv () _ lifllBvcy
Vy(RID)(F < -2 (6.23)
2 2
This observation is useful in the proof of the Doeblin-Fortet inequality, which is

needed in the proof of condition (R4). Yet, let us first focus on condition (R3).

(R3) For all n € IN, the operator Ry|g is bounded and linear. Moreover, there
exists a constant C > 0, such that [|R|I< C-ui({y € Y: ¢dy(y) = n}).

The linearity of powers of ?1 is inherited by the linearity of the operator /7:1 and so,
for all n € IN, we have that R, is a linear operator. The next aim is to show that there
exists C < oo such that the operator norm of Rylgv(y) < C-ui({y € Y: ¢y(y) = n}).
First, we prove the result for n € {1, 2} by an explicit calculation. Afterwards, the
result is proven for integers n > 3. To this end, observe that for x € [0, 1], we have
that 1y, o fio(x) =0and 1y, o fi; o fi,1(x) = 0. Hence, we discern,

lfl(]lul -f)(x) = fio(x) - Ly, o fi1(x) - fof1(x)and (6.24)
?12(]1U2 D) = 1) - hoofiox)-fofiiofox) Ly, ofhofipx). (6.25)
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(6.24) in tandem with the definition of the BV(Y)-norm and Proposition 6.16.3.
implies, for a real-valued function f € BV(Y), that
IR (HllBvey) = Iy TiLy, - Dllsvyy = My - Ti(ALy, - Dl + Vy (Ly - Ti(Ly, - )
<[ty fro- Ty o fiall I o fiall,
+ Vy(Ly - fig-Ly o fiy)-||fofii,
+ ||y fio- Ly o fia|, - Vv (fofi)
<|[frolle - Lo © fill 1o
+ Vy (Ly - fip)- Vy (T, o fi1) - [Iflleo
ol - tur o Aally, - v )
< Ifllo + 2+ Iflleo + Vy ()
< 3lIfllBy,-

The same follows for n = 2, by using (6.25).
Let us now consider the case n > 3. First, we observe that

1
fl,(): [0, 1] d [0, §:|
1
and fl,li [0,1] g [5,1},
which implies for n € N, that
Un =1ty € Y: gy(y) = n} = fiy o 5[0, 1)).
Together with the representation of ’7:1 given in (6.5) and an inductive argument,

this yields for f € BV(Y) that
. n-2
T]n(]lU,7 -f)= f]n’O . 1_[ fiqo flk’0 . 11[1/2,1) . (f ofi1o f]nﬁl).
k=0
Furthermore, for k € IN and x € [0, 1], we have that

1+k-x

£ (x) = X
100 I+ k+1)-x

and fi1 o f((x) = (6.26)

X
1+k-x

Hence, since f1ko is a positive monotonically increasing function and since f; ; o fl"0
is a positive monotonic decreasing contracting C'-function, it follows, that

1 K 2+ k
o2 ol = 757 and Loz - fue fgll, = ST
Hence, it follows that
n-2 n-2
1 2+k 2
Lipny - fo ]_[ fiofioll < - = .
0 5 1+n k:02+(k+1) (n+1)
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Moreover, we discern

Vy(fofiyofl oh < Vy(f)

n-2

2

and vy[ﬂf“ofm] nf“ofm R
k=0

This in tandem with Proposition 6.16.3. implies, for a R-valued function f € BV(Y),
that

IRA(DllBv(yy = [Ty - i"(ﬂun - DllBv(y)
=y Ty, - p|_+ w (v Ty, - n)

n-2

= Lo - ]_[ fiio iy (fohfiioff!)
k=0

n-2
+ Vy (]1[1/2‘1) . f1,30 . l_[ f1‘1 o) flk,O . (f o f1,1 ) flnal)]

k=0

(o8]

n-2

ALz - l—[ frio £l
k=0

. H(f ofi1o0 flrjal)Hoo

()

<Ly - o]l

-2
]_[Hof]O (fofiiofls)

+ ”11[1/271) . f1n,0||oo [ fi1o fl 0" fo fi1o f{'Bl)]

+ Vy (T2 - 1)

< [0 - ol - |fEnan - ]—[ Ao ffol Il
k=0 w0
n-2
+ 1Lz - Holl, - o2 - l_[ fio il 1l
k=0 w0
n-2
+ T2 - foll - T2 - l_[ fioffol - Wy (h)
k=0 w0
n-2
<|u2n - ol [z - l—[ fio fioll - @2 lIflleo + Vy(£)
k=0 o
1 2
< S
nrl (e l? IfllBv(y)
4
= ——|If .
IR IfllBv(y)

By linearity of the operators R, with n € IN, the triangle inequality and Proposi-
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tion 6.17.3., it follows for all f € BV(Y) that

8 - IfllBv(y)

R, f <
IR fllBv, 1P

Finally, observing

#(Un)=f]1un(x)~%-dﬂ:ln(1+;)

n-(n+2)

ot 1 1\

“n-(n+1) 2 \n-(n+1)
1

T (n+ 13’

yields the required result, which shows that condition (R3) is satisfied.

(R4) Spectral Gap: The operator R(1) restricted to B has a simple isolated
eigenvalue at 1.

We start with showing that 1 is an eigenvalue of R(1). Recall that h;(x) = 1/x and
that, for all k € IN,

k k+1
k+1 k+2

U=y e Y:oy(y) =kl =

Utilising (6.26), we conclude that for x € [0, 1]

ROANE) = Tim 3 Ty(x)- Tf(Ly)00
k=1

m
im0 10 - Pl - o)

. m X
=mll>r-¥—loozk:1]lY(X)'(1+(k_1)'x)’(1+k'x)
=1y(x)-x- lim ( Lok + . )

m—+co (1+(k—1)X) (1+kX)

k=1
=1 y(X).

Hence, the function 1y is an eigenfunction of the operator R(1) with eigenvalue
one and therefore the spectral radius p(R(1)|gv(y)) of R(1) restricted to the Banach
space BV(Y) is equal to one. In order to show that 1 is an isolated eigenvalue
it is sufficient to show that R(1) is quasi-compact. By Theorem 6.14, this follows
from the three properties, continuity, pre-compactness and boundedness and the
Doeblin-Fortet inequality.

We let the semi-norm of Theorem 6.14 be ||-|1,1.
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Continuity Let (f,),ev denote a convergent sequence in BV(Y) and denote its
limit by f € BV(Y). By the definition of ||-|[gv(y), we have that

lim ”fn - f”oo = Os
n—+o0
and hence

lim [, —fll;; < lim f”fn_ fllo dur = lim In(2) - ||fy — flloo = 0.
n—+oo ’ n—+oo n—+oo

Pre-compactness From (6.18) one can deduce that

IR z1v) = Ml g1y,

Therefore, by linearity of the operator R(1), Egorov’s theorem [Bog07, Theo-
rem 2.2.1], Proposition 6.16.5. and Proposition 6.17.2. and 3., it is sufficient
to show the following. Given a sequence (f,: Y — R),e of non-decreasing,
non-negative functions which are bounded everywhere such that there exists
a constant M € R with [[fs|lgy(y) = 2-[Ifllc < 2-M, then there exists a mono-
tonic subsequence (nk)kew of IN such that the sequence (f,,k)nkelN converges
to a function f, with finite BV(Y)-norm, pointwise almost everywhere. Recall
that, by the definition of BV(Y), the functions f, and f are right-continuous.
To this end, let R denote a countable dense subset of Y and let {rx}«en be
an enumeration of R. Since the sequence {f,(r)},cn is @ bounded subse-
quence, by the Bolzano-Weierstral3 theorem, there exists an accumulation
point j; € [0, M] and a monotonic sequence of natural numbers (nij))kelN
such that limg— 40 fn(kn(rl) = ji1. The same argument applied to the sequence

(fn<1>(r2)) produces an accumulation point j, € [0, M] and a monotonic
K kelN

sequence (ni?)ke]N of natural numbers such that limy_ 4 fna)(rz) = j». Con-
tinuing this procedure ad infinitum leads to a sequence of points (k) ke
which belongs to the interval [0, M], and therefore it leads to a nested se-
quence of monotonic subsequences ((ni(’”))keﬂ\l)mdN of the natural numbers
such that for all m € IN,

Jm fm (1) = i,

forall i € {1,2,3,..., m}. We will show that there exists a positive function
f: Y = R with [|fllgy(y) < 2 - M which is the almost everywhere pointwise

limit of the sequence of functions (fn(k) . Define

k )ke]N

lim fx(x) ifxeR
f(X) = K—+o0 k
lim f(r) ifxeY\R

rix; reR
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This is well defined since, for all k € IN, the function fn<kk> is right-continuous,
non-decreasing, non-negative and bounded above by M everywhere, and so,
on R the function f is right-continuous, non-decreasing, non-negative and
bounded above by M. Therefore, we have that

Ifllay =2 [Ifll <2 - M.

In particular we have that f is of bounded variation and so differentiable
almost everywhere, and hence continuous almost everywhere. Let U denote
the set of points where f is discontinuous. If x € R\ U, then the pointwise
convergence follows by construction. If x € Y \ (R U U), then since f is
continuous on this set, we have that

fx)= lim f(y)= lim lim liminff (r) <liminf f @« (x)
y1x: yix; orlys k—oeo Tk k—too
yeY\(UUR) yeY\(UUR) reR
and that

fx)=lim f(y)
yix;
yeY\(UUR)
= lim [lim (lim sup f (r))]
yix; rly; \ k—+oco 'k
yeY\(UUR) \reR
> lim sup fn(k) (x).
k

k—+oc0
Thus, the limit limg_, 4o fn<k) (x) exists and equals f(x) for all x € Y'\ U, which
k
yields pre-compactness.

Boundedness Indeed, as mentioned above, from (6.18) we can deduce that
IRl £1¢y) = 1.
Doeblin-Fortet Inequality By Proposition 6.16.2., (6.19), (6.21) and (6.23) we
have for an R-valued f € BV(Y), that
IR (Dllsvey) < 2 11fll1 + 2+ Vy(R(D*(F)
<2 Iflli + Vy(R()(H) +2-0.461 - |IR(1)(Dlle
< 2-Iflli + Vy(R(1)(H)
+0.922 -2 -||fll11 +0.922 - Vy(R)(f))
<2-(1.922) -|Iflly 1 + 1.922 - Vy(R(1)(F))

<4-[fllin + “NIfllBv(y)-

Hence,
1.922

2
IR*(Pllsveyy < 4 Ifll11 +4 - [1fll1 +( ) “fllBv(y)

= 8- Iflli1 +(0.961) - [Ifllv(y).
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Inductively, we discern for a real-valued f € BV(Y)

IRA (llaveyy <2 - K - [IFllg + (0.961)F - [Ifllvcy).
For a complex-valued f € BV(Y), this yields

IR (Dllsvey) < 4k -lIfllig +2- (0.961)% - Ifllgv(y)-

In particular we have that 0.961 < 1. Thus, choosing k sufficiently large,
here k > 36, we have that

2-(0.961)% < 1,
hence the Doeblin-Fortet inequality is fulfilled.

Thus, the operator R(1) is quasi-compact, in particular we have shown that R(1)
has a spectral gap, which finishes the proof of condition (R4) and only condition
(R5) is left to be shown.

(R5) Aperiodocity: For z € E\ {1}, the value 1 is not in the spectrum of R(z).

For z € D, we define the operator T(2): L}, (Y) — L, (Y) by

+00

T(2)(f) = Z 2"y - Ty - f).

n=1

By Proposition 6.9 we have that
R(z) o T(2)(f) = T(2)(f) — f = T(2) o R(2)(f).

This implies that 1 does not belong to the spectrum of the operator R(z). If we
assume it would be an eigenvector, we would immediately get T(z2)(f) = T(z)(f)—f,
which is equivalent to f = 0 and thus a contradiction. Hence, it is sufficient to
show the result for z € $ \ {1}. For this, we will follow the arguments given in the
proof of [Gou04, Lemma 6.7]. To this end let t € (0,27) and let z = ¢! be fixed.
Suppose, by way of contradiction, that R(z)(f) = f for a non-zero f € BV(Y). Let
L%(Y) denote the space of C-valued square integrable functions with respect to
the measure u; that have domain [0, 1] and are supported on Y. Further, let (-, )
denote the associated bilinear form and define the operator W : L;‘;(Y) - L;‘;(Y),
by

W(u) = e . uo T
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for u e L2(Y). We observe that

[ee)

R(2)(v) = Y 2" Re(V)

n=0
—Z Ly - T y:n})

&My T (v Ligyen)

gk EMSZ

Ly -T"(v- Ligyn - €*7)

—R(l)( o y).

Combining this observation with the dual relation given in (6.18), we have for all
veBV(Y)and ue L7 (Y), that

(u, R(2)(v)) = fU- R(z)(v) du; = fU-Ff(l)(ei't"pY V) du

_ on quby X ei~f~¢Y . Vd/fll = <W(U), V>:

and thus,
W) = sy, = IW DIy = 2+ ReCWD, 1) + 1l
= Wz, = 2+ Re (F, R@DO) + Il
= IWOI =2+ Re (F, ) + lfll? (e:27)
= IWDIa(y, = 15,

By another application of (6.18), we also have that

WOz o, f 1P o T{ duy = f P dur = Wz, (6:28)

From (6.27) and (6.28), we obtain that W(f)—f is zero u-almost everywhere. Since
by definition of BV(Y), we have that f is right-continuous, W(f) is right-continuous,
and so the function W(f) — f is zero everywhere.

We now have a right-continuous function f so that e"## - f o Tf’y = f. Since T is
ergodic with respect to u; by [Aar97, Proposition 1.4.8, 1.5.1 and 1.5.3] we have
that T]‘Z’Y is ergodic with respect to u;. Thus, by [Wal82, Theorem 1.6], we obtain
that |f| is constant everywhere. As f is non-zero, this constant is non-zero, and so,
we obtain that e %Y = f/(f o Tl"’y). However, since for each n € N, there exists
an x € Y such that Tfy(x) = x and such that ¢y(x) = n. Hence, we have that
e "1 =1 for all n € IN. This contradicts the choice of t, namely that t belongs to
the open interval (0,2 - 7).

This finishes the proof of condition R(5) and hence proves Proposition 6.18.
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The Banach space of piece-wise Lipschitz continuous functions

The second example is published in [KKSS15]. Its underlying dynamical system
is a d-expansive a-Farey system, so recall the definitions of this system from
Section 5.2.Further, note that conditions (R1)-(R5) coincide with the conditions
called (H1) and (H2) in [KKSS15].

To define the Banach space and its norm we use the level sets of first return time
to A; given in Definition 3.4. These level sets of the first return times define a
countable-infinite partition of A, via {{¢4, = n} : n € IN} which we denote by S,.

Furthermore, let
f(x)—f
Dy (f) := sup sup —| ) = 1Y)l
aef, x+yea |X - yl

and define
I8, = Il + Da("). (6.29)

Let B, denote the set of functions with domain [0, 1] that vanish on the complement
of A; and which have finite Illg,-norm. In particular, if f € B,, then f is Lipschitz
continuous on each atom of 3,, zero outside of A, and bounded everywhere.
We show that for every §-expansive a-Farey system, the Banach space (B, |Ills,)
satisfies conditions (R1)-(R5). The proof follows the arguments of [KKSS15].

Proposition 6.20 ((KKSS15, Proposition 2.4]). For a 6-expansive a-Farey system,
the pair (8., |I'lg,) forms a Banach space and conditions (R1)-(R5) are satisfied.

A very similar space was previously considered in [ADO1], the only difference being
that in this thesis we consider functions with finite ||-||..-norm whereas Aaronson
and Denker consider functions that are bounded almost everywhere. That is, this
thesis distinguishes between functions that differ on a set of measure zero, [ADO1]
does not. In [ADO1, Section 1] it is also shown, that the pair (8., ||llg,) forms
a Banach space. The slight differences between the Banach space considered
in [ADO1] and the one considered here do not change any of the calculations
considerably.

Proof of Proposition 6.20. Let us start with the first three conditions.
(R1) If f € B,, then f € L£7([0,1]) and R,(1)(f) € B,.
(R2) The inequality [|fl| s~ < |Ifllg, holds for all f € B,,.

(R3) For all n € IN, the operator R, nlg, is bounded and linear. Moreover, there
exists a constant C > 0, such that

IRanll< C - palia, = nh.
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As in the previous example, condition R(2) is satisfied by the definition of the norm.
Furthermore, by the definition of the current Banach space itself and the definition
of its norm, we have that f € £L°([0, 1]), whenever f € B,. So it is left to show that
R, (1) maps B, into itself. To show this, we make use of Lemmata 6.3 and 6.4. We
let f € B, and fix kK € IN. We have that

Ras(f) = Tz - Fi (g =ty - 1) = 15, - pta((da, = kD) - 0 Fu 10,
This in combination with the definition of the partition S, yields that

1Rwk(Dll8, < pada, =k} - [Ifllz,- (6.30)

Hence, for each k € IN the operator R, x maps B, into itself and by the definition
of R,(1) and since ) ,ew to({da, = N}) = (A1) = 1, we have that

IR(Dfllg, < Z”Ra,n(f)”f}a < Zua({ml =n}) - Ifllg, = lIflls,-
nelN nelN
That shows, that R, (1) maps B, into itself. Hence, conditions R(7) and R(2) are
satisfied and we can turn towards condition R(3).
For all n € N, the linearity of R, , follows from the linearity of the operator 7—'}.
Furthermore, as seen in (6.30), we have that

sup ”R(x,n(f)”B” < pol(p = n).
feBy: Ifllg, =1

Hence, condition (R3) holds true as well and we can focus on the last two conditions.

(R4) Spectral Gap: The operator R(1) restricted to B has a simple isolated
eigenvalue at 1.

To proof this condition we make use of [AD01, Theorem 1.6], which is based on
Theorem 6.14. We state this theorem slightly adapted to fit our notation and omit
the proof.

Heuristically, this theorem states that the transfer operator restricted to the Banach
space B, can be decomposed into a projection, namely to the integral with respect
to the invariant measure and another operator Q, which is orthogonal in the space
of linear operators of the current Banach space to the projection and has spectral
radius less than one. The projection has eigenvalue one. That means that the
iterated application of FQ has a smoothing property on functions of 8,,.

Theorem 6.21 ([ADO1, Theorem 1.6]). Adopt the setting of Proposition 6.20. If
Faa, Is a piecewise linear expansive Markov map, we have for f € B, that

Ry (1)f = ffd,ua +Q(h),

with p(Q) < 1 and for all for g € B,, we have that

fO(g)d/l ~hy = Q(f(g)d/l . ha) =0.
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This theorem vyields condition (R4). To apply it we need to show that the induced
map is a piecewise linear expansive Markov map. That means that the induced
map Fq 4,(X) is expansive on each partition element {¢ = n}, which follows from
the following observations.

Firstly, we observe that on the set {¢ = n} the absolute value of the derivative of
Fa a,(x) is constant and equal to 1/(t, — t,—1). Since, by definition, () is @
monotonically decreasing sequence which is bounded above by one, it follows that
there exists a constant ¢ > 0, such that for all n € IN, we have that 1/(t, — t,_1) >
¢ > 1. Hence, the induced map is expansive.
Secondly, the partition 3, is a countable partition of A; and we have for all n € N,
that 1o (Fo 4, (X)({¢ = n}) = 1.
Moreover, the o-algebra generated by {F(’JAl ({¢ = n}): n,m € IN} is equal to the
Borel o-algebra on A;.
Lastly, for each n € IN and the word ¥ == (1, 0,0, ..., 0, 1), we have that,

N

(n—1)—times

fay(10,1]) = {¢ = n}.

Given these properties condition (R4) is a consequence of Theorem 6.21. Hence,
condition R(5) is left to be shown.

(R5) Aperiodocity: For z € E\ {1}, the value 1 is not in the spectrum of R(z).

As in the previous example we let $ := {z € C: |z| = 1}. To show condition (R5)
we distinguish between the cases ze Dand z € $ \ {1}

Similar as in the other example, we obtain that 1 is not an eigenvalue for z € D.
Since if we assume that there exists an eigenfunction w € 8B,, with w # 0, such
that R(z)w = w, we obtain a contradiction if we substitute this into the formula
(T(2) o R(2))(w) = T(2)(w) — w.

The remaining case is z € $ \ {1} and follows the same calculations as in the
previous example, with minor technical differences. Thus, conditions (R1)—(R5) are
satisfied.

O

This concludes the first part of this thesis and we turn towards the second main
part which deals with the convergence to equilibrium of unbounded observables.



Part Il

Convergence to equilibrium of
unbounded observables in
infinite ergodic theory
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Chapter 7

Central definitions |

Before the main results of this part are stated in Chapter 8, important notation and
some definitions, as used in [KKS16], are needed and hence introduced in the
current chapter. After the main results are stated, pictures and heuristics are given
to elucidate the theory, see Chapter 9, followed by thorough proofs of Theorems
8.1, 8.2 and 8.6 in Chapter 10.

This part works with the family of maps T,, which was introduced in Section 5.1, so
recall the definitions and formulas given therein, in particular Equation (5.2).

Two important function spaces which we will use are defined below.

Definition 7.1 (BV(A)). Let A C [0, 1]. We define the space BV (A) to be the set of
right-continuous functions f: [0, 1] — C such that the norm ||f|[gy = Vi4)(f) + ||fll
is finite.

Definition 7.2 (Ug ). Let a€ (0, 1) and g € [0, 1]. We define the space 1l , to be
the set of functions v: [0,1] — R such that

1. limxw v(x) = limxw v(x) = 400,
2. for each compact subset K c [0, 1] \ {8}, we have that v - Tx € BV(0, 1).

3. there exists a connected open neighbourhood U c [0, 1] of 8, under the
Euclidean subspace topology, and two constants C;, C, such that for all
x e U,withx £

&)

B - x1*

G <v(x) <

B-x° "

Conditions (b) and (c) immediately imply that if v € g 5, then v belongs to the so-
called improper Riemann integrable functions. Moreover, without loss of generality,
throughout we assume that v is positive. Note that, by the linearity of the transfer
operator, the crucial condition is C; - |[8— x| < v(x) < C, - |B— x|™2. So for a
simplification of the matter the reader might think, without loss of generality, of the
observable being v(x) = |8 — x| 2.
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As it is common in literature, we define the w-limit set of 8 € [0, 1] with respect to
T, to be the set of accumulation points of the orbit (7,'(8))rei, and denote it by

w/B) = [ (THB) < €= k). (7.1)

kEINO

As in the continued fraction setting, we call a point 8 € (0, 1] pre-periodic with
respect to T,, if there exists an M € INg and n € N, such that for all m > M,

bm = bm+n. (72)

For a given pre-periodic point 5 with respect to T, we define the period length of
B with respect to T, to be the minimal n such that the equality in (7.2) holds. We
write 8 = [by, ba, ..., bag, Brs1, Bv+2s - s Bvmenlr

Indeed, for r € (0, 1], we have that 1 —(3— V9 —4-r)/(2- r) is periodic and hence
pre-periodic with respect to T,. For r = 1, an example for a pre-periodic number is

V2/(3- V2+1)=[3,1]1=[0,0, 1];.

Before we turn towards the main results we need to introduce yet another definition.
Namely, the main results of this part for the case r = 1 require the notion of
intermediate a-type introduced in [KKS16].

Definition 7.3 ([KKS16], Intermediate a-type). Let 8 be an irrational number. For
B =lai,a,..1€[0,1], we let s,;/t,; = [ai, ..., @n-1, j1, with s, tp; € IN co-prime.
Using the terminology from continued fraction expansion one refers to s, ;/t,; as
an intermediate approximant to (.

Given an a € (0, 1) we say that g is of intermediate a-type if and only if there exists
an € > 0, such that

+o00  ap

Z Z(tn,/)_z'(l‘a)“ < 400,

n=1 k=1
Remark 7.4. A closer look at the term intermediate a-type shows the following.

1. If a < 1/2, every irrational g, is of intermediate a-type.

2. If Bis pre-periodic, or more generally, if the continued fraction entries a; of 8
are bounded, then g is of intermediate a-type, for all a € (0, 1).

3. Iffor B8 = [ay, a, ...], there exists a fixed K € IN, such that the sequence of
continued fraction entries of 8 satisfies a, = o(n), then 8 is of intermediate
a-type.

4. It follows from the results of [KS07] that

dimg ({8 € [0, 1]: B is of intermediate a-type for all a € (0, 1)}) = 1.
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Here and throughout we will denote the Hausdorff dimension of a set A ¢ R
by dimg¢,(A), see for instance [Fal14] for the definition and further details on the
Hausdorff dimension of a set.

Heuristically we can say that, if a number is of intermediate a-type, we have some
kind of control over the growth rate of its continued fraction entries.



66

Chapter 7. Central definitions |



Chapter 8

Convergence to equilibrium -
Statement of the main results

With the definitions of the previous section at hand and the notion given in Sec-
tion 5.1, we are in the position to state the main results of Part II.

The first theorem deals with the case r € [0, 1). That means, we have a finite in-
variant measure, the transformation is piecewise expanding and the transformation
is of bounded distortion, which makes the proofs considerably easier.

The second and the third theorem deal with the case r = 1. So more sophisticated
methods involving methods from infinite ergodic theory are applied in the proofs
of Theorem 8.2 and Theorem 8.6. Yet, many of the ideas behind the proofs are
similar.

Theorem 8.1 ([KKS16, Theorem 3.1]). Forr € [0,1), ifa€ (0,1) and B € [0, 1],
then, for each v € Ug 5, we have that

lim Pf(v):fvd/l-h,, (8.1)
n—oo

uniformly on compact subsets of [0, 1] \ w,(B) and pointwise outside a set with
Hausdorff dimension equal to zero.

IfB € [0, 1] is pre-periodic with respect to T, and has period length strictly greater
than one, then on the finite set w,(B8) we have that

lim inf P7(v) = de/l'hr and limsupP}(v) = +oo.

n—+oo N—+00

In the case that 8 € [0, 1] is pre-periodic with respect to T, and has period length
equal to one then on the singleton w/(B), the limit in (8.1) is equal to +co.

Theorem 8.2 ([KKS16, Theorem 3.2]). Ifa € (0,1) andifg € (0, 1] is either rational
or irrational of intermediate a-type, then, for each v € g 5, we have that

lim In(n) - P(v) = f vda- hy, (8.2)
n—oo [0’1]
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uniformly on compact subsets of (0, 1] \ w(B8) and pointwise outside a set with
Hausdorff dimension equal to zero. If B € (0, 1] is pre-periodic with respect to T,
and has period length strictly greater than one, then on the finite set w(8) we have
that

liminf In(n) - P{(v) = fvdﬂ ~h; and limsupln(n) - P{(v) = +co.  (8.3)
n—+00 n—+oco
In the case that 8 € (0, 1] is pre-periodic with respect to T, and has period length
equal to one, then on the singleton w1(B), the limit in (8.2) is equal to +co.

Before we state a theorem about convergence on the set of exceptional points, that
is the w-limit set of the pole, we make a few remarks on the statements of the first
two theorems.

Remark 8.3 ([KKS16, Remark 2]). The In(n)-term in (8.2) and (8.3) is the wander-
ing rate of the Farey map T, introduced in Definition 3.6. The wandering rate for
r € [0, 1) is asymptotic to a constant.

Remark 8.4 ([KKS16, Remark 3]). We highlight an interesting difference between
Theorems 8.1 and 8.2, which is a result of the Farey map having an indifference
fixed point at zero. In the case that r € [0, 1), a € (0, 1), if 8 is an r-rational (see
Subsection 5.1.3) and v € Ug 5, we have that

lim P (v)(0) = +oo.
n—oo
Forr=1,a€(0,1),if §is a rational number and v € g 5, we have that
lim In(n) - P{(v)(0) = 0.
n—oo

The points 0, 1/2 and 1 are r-rationals for all r € [0, 1].

Remark 8.5 ([KKS16, Remark 4]). In the case that one replaces the norm ||-||c
by the essential supremum norm in the definition of BV(0, 1), and hence in the
definition of Upg 5, the limit in (8.2) holds uniformly Lebesgue almost everywhere on
compact subsets of (0, 1) \ w1(B) and pointwise Lebesgue almost everywhere on
0, 1].

In the following theorem, for the observable v 4(x) = |8 — x|~2 and a non-periodic
[, we demonstrate that on the w-limit set, the values of the limit inferior and limit
superior depend on the diophantine properties of 5. We let g, be as defined in
(5.1).

Theorem 8.6 ((KKS16, Theorem 3.3]). We have the following.

1. There exist non-periodic B and o € (0, 1] both with bounded continued
fraction entries but such that, on the one hand, if a € (0, 1), then on w(B),
we have that

nllr_P ln(n) . P?(Vﬁ,a) = fVﬁ’a da- hy.
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On the other hand, if a € (0, 1/2), then on w(0), we have that
lim In(n) - P7(Vp,a) = fvg,a da- hy;
n—oo

otherwise, ifa € [1/2,1), then on w;(0)

hnrlli?of In(n) - P (Vp,a) = f Vo,ada - hy
and limsupIn(n) - P(v,q) = +oo.

n—+o00
. Leta € (0,1) and let B = [0; a1, &, ...] € (0, 1] be of intermediate a-type
such that

llm an = +09,

n—+o0

which implies that w(B) = {1/n: n € IN} U {0}.

Fix k € IN and let I(k) .= min{i € IN: a, > k forall m > i}. Forall j > I(k),
set nij € IN to be the unique integer satisfying Tln “(B) = [0; K, ajs1, @42, - ]
and set

_ (@js1)? - In (nk,j)

| (1—
T (g0

where qy, is as defined in (5.1). Iflim sup Yk,,- =0, then

J—
: n 1 .
nglllmln(n)'Pl(Vlg’a) E = Vﬁ,ad/l'hl,
otherwise,
liminf In(n) - P( )l = di-h
R Pisa ) = ] vpadt-h
k

n—+oc0

1
and limsupIn(n) - P](vsa) (—) > fvﬁ,a da- hy.
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Chapter 9

Heuristics behind Theorem 8.2

The aim of the current chapter is to elucidate the ideas behind Theorem 8.2. The
pictures illustrate various examples of the stated convergence results. Throughout
this chapter we set r = 1.

The pictures in the current chapter deal with the individual iterates of the transfer
operator, whereas Theorem 8.2 deals with the individual iterates of the Perron-
Frobenius operator. By Lemma 6.2 however, we can change between these two
operators back and forth.

We begin with an example for which convergence results of the individual iterates
of the transfer operator were previously known. We let g; : [0, 1] — R be given by

Vx

g1(x) = >

Figure 9.1 shows the observable g, together with a horizontal line at the value

fg1dﬂ1

0 i

Figure 9.1: Graph of the observable g, and of the function fgld,ul ~TLo,11 = Ljo,1-
of its uj-integral. This observable is in many ways nice, in particular it is twice
differentiable and concave on (0, 1). Furthermore, it belongs to the class D con-

sidered in [KS08], see (6.13). These facts together with the extension theorem,
Theorem 6.11, yield uniformly on compact subsets of (0, 1], that

lim 7o) = [ gid = 1.
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This convergence result is also known as the smoothing property of the transfer
operator and can be seen in Figure 9.2.

fg1d/11 fg1d.u1
0 1 0 3
(@) In(k + 1) - ﬁk(gl), for k € {0, 1} (b) In(k + 1) - ﬁk(gl), for k € {0, 1,2}.
Jarduy Jarduy
0 1 0 3
(c)In(k+1)- ﬂk(gl), for k € {0, 1, 3, 5} (d)In(k + 1) - ﬂk(gl), for k € {0, 1,2,5, 10}.
Jarduy Jarduy
0 1 0 3

() In(k + 1)- T, (gu), for k € {0,1,2,5,10,12) () In(k+1)- T, (gy), for k € {0, 1,2, 5, 10, 12, 15).

Figure 9.2: lterates of the transfer operator applied to g; normalised with the
wandering rate.
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The question that naturally arises is, what can we do to extend these well-known
convergence results. This was the starting point for the research that led to
the results of Part Il. So far it had always been assumed that the considered
observables were bounded. However, since the definition of the transfer operator
can be extended to .E}l-functions, this restriction is not necessary. So what happens,
if we look at the individual iterates of the transfer operator applied to an unbounded
and integrable observable?
To this end, let a € (0,1) and 8 € [0, 1]. We consider observables of the form
g: [0,1] - R with g(x) = x/|x — B|%. These observables are u-integrable and
have a pole of order a at 5. As it turns out, the position of the pole is crucial for the
behaviour of the iterates of the transfer operator.
To get a first impression, we start with a pole at a rational number, namely 8 = 1/3
and choose a:= 1/3. We let g>: [0, 1] — R be given by

X

R(x) = T
x=3[’

See Figure 9.3 for the graph of g» and a constant function of its u;-integral. Taking

f 920u4 ,Jk_,

Figure 9.3: Graph of the observable g, and of the function fgzd,ul - T1yo0,1-

the representation of the transfer operator (6.5), see page 34, into account, we
observe two facts. The first is, that T;(1/3) = 1/2. Since the transfer operator can
be written via preimages of the transformation, we have that if g, has a pole at 1/3,
the first iteration, ’f](gz) has a pole at 1/2. The second observation is, that the
first iteration splits into a sum of two summands. One of them is an observable for
which convergence results are known and the other summand has a pole at 1/2.
Applying the transfer operator once more, we see that we have four summands.
For three of them, the convergence is known and one having pole at 1. After the
third iteration, the pole vanishes. This has to happen, since T1(1) = 0 and u; has
infinite mass at zero. Hence, an observable which is not zero for x = 0, or even
unbounded at zero, is not y; integrable, but we have for all v € LI], that

fﬂ(V)d,Ul =de,Ul-

So, after the third iteration of the transfer operator applied to our observable, we
are in a class of observables for which the convergence of the individual iterates of
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the transfer operator is known. Hence, we get the convergence,

Jim TG00 = [ gadn

This pattern holds for all rational numbers, since each rational number is mapped

- »A( -

0 1 0 i
(a) In(k + 1) - ﬂk(gz), for k € {0, 1} (b) In(k + 1) - ﬁk(gz), for k € {0, 1, 2}.
fgzdlh fgzdlh
0 1 0 i
(c) In(k+1) - ﬁk(gz), for k € {0, 1,2, 3} (d) In(k + 1) - ﬁk(gz), fork € {0,1,2,3,4}.
fgzd/h fgzdlh
0 1 0 i

(@ In(k + 1)- T, (qn), for k € {0,1,2,3,4,5 () In(k +1)- T, (gn), for k € {0,1,2,3,4,5, 10}.

Figure 9.4: lterates of the transfer operator applied to the observable g, normalised
with the wandering rate.

to zero under the Farey map after a finite number of iterations. This behaviour can
be seen in Figure 9.4 and is an important difference to the finite measure case, as
explained in Remark 8.4.
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What happens if the pole is not mapped to zero eventually? One example that
comes to mind is the fixed point of the Farey map at y := (V5 -1)/2.
So let us have a look at the observable g;: [0,1] — R,

X
93(x) = .
Ix — I3

A picture of the observable gs is displayed in Figure 9.5 together with a graph of the
constant function with the value f[o 1 g3du;. We observe, that the pole does not

Jgsduy 7

0 i
Figure 9.5: Graph of the observable g; and of the function fg3d,u1 - Tjo.17-

move, if we apply the transfer operator to the observable. Nevertheless, we observe,
that the pointwise version of the first iteration of the transfer operator splits up into
two summands. One of them is without the pole and convergence for it is known,
the other summand has a pole. Inductively we can see, that the n-th iteration of
the transfer operator consists of a sum of 2”7 summands. One of them has a pole
and for the remaining 2”7 — 1 summands without a pole the convergence is known.
What essentially happens is, that the part containing the pole gets less important
in the long run. It still has the pole, but the diameter of the cusp gets thinner, in the
sense that for a constant C > fg3d,u1, we have that p;({x: 7(g3)(x) > C}) gets
smaller. The sum of the remaining 2" — 1 parts converges to the integral on each
compact subset not containing y. This can be seen in Figure 9.6.
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f 9adu4

/’,

f 9aduy

o i 0o i

(@) In(k + 1) - ﬁk(g3), for k € {0, 1} (b) In(k + 1) - ﬁk(g3), for k € {0, 1,2,4}.

Figure 9.6: lterates of the transfer operator applied to the observable g3 normalised
with the wandering rate.

Having seen the case in which the pole does not move under the iterations of the
transfer operator, a natural question to ask is what happens if it does, without being
a rational number. A natural point to look at, is a periodic point. Such a point
is for instance 1/ V2 = [0, 1,5] = [0, m]l, which is pre-periodic with respect to
the Gaul3 map and purely periodic under the Farey map. Thus, we look at the
observable gy, displayed in Figure 9.7, which is given by g4: [0,1] — R,

94(x) =

f Gady4 /

Figure 9.7: Graph of the observable g, and of the function fg4d,ul < Tjo,1)-

In this case the pole moves along its orbit and we observe, that the cusp get thinner.
Furthermore, on each compact subset outside the orbit, the individual iterates of
the transfer operator normalised by the wandering rate, converge to the constant
function with the value fg4du1. On the orbit we observe that the limit inferior is
as well equal to fg4d,u1, but each time the pole comes back to the orbit point, the
convergence can of course not hold. This scenario can be seen in Figure 9.8.
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Jauduy % Jgadu \x
0 1

0 1
(@ In(k + 1) - T, (gu), for k € {0, 1) () In(k + 1) - T, (ge), for k € {0, 1,2).
Jgudity jj& Jgudity ! % ?
0 1 0 i
(© In(k + 1) - T (qu), for k € {0, 1,2, 3) (d) In(k + 1) - T (ga), for k € {0, 1,2, 3, 4).
fg4dll1 /}L fg4dll1
0 1 0 3

(@ In(k + 1)- T, (go), for k € {0,1,2,3,4,5) (B In(k + 1)- T, (ge), for k € {0, 1,2, 3, 4,5, 6.

Figure 9.8: lterates of the transfer operator applied to the observable g4 normalised
with the wandering rate.
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Finally, we have a look at a pole that is neither rational nor periodic. We choose
B =213 and a = 9/20. Still, we have that a < 1/2, so the pole is of intermediate
a-type, see Remark 7.4, and hence we fall into the case, considered in Theorem 8.2.
Thus, let gs: [0, 1] — R be given by

X
g5(x) = ———-.
1 20
X~ %

See Figure 9.9 for a picture of the observable gs.

f 9504

0 i
Figure 9.9: Graph of the observable gs and of the function fg5d,u1 - To,17-

We observe that the diameter of the cusp gets smaller with each iteration of
the transfer operator normalised by the wandering rate. Although the pole can
get “close” to where it has been before, after the pole has been mapped to a
certain point, we discern convergence at this point. This behaviour is described in
Theorem 8.2 and can be seen in Figure 9.10.



79

Jgsdiy } / \ Jgsdy } J\ / \
0 i 0 i

(@ In(k + 1) - T,(gs), for k € {0, 1) (b) In(k + 1) - T, (gs), for k € {0, 1,2).

fngﬂ1 } ]\ /\ / \ fngﬂ1 } J\ /\ / jk
0 1 0 i
(© In(k + 1) - T, (gs), for k € {0, 1,2, 3) (d) In(k + 1) - T, (gs), for k € {0, 1,2, 3, 4}.
0 1 0 3

(e)In(k+1)- ﬁk(gs), fork €{0,1,2,3,4,5} (f)In(k +1) - ﬂk(gs), fork €{0,1,2,3,4,5,10}.

Figure 9.10: lterates of the transfer operator applied to an observable with a
non-periodic pole normalised with the wandering rate
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Chapter 10

Proofs of the main resulis

10.1 Thecaser €[0,1)

Before we start with the proof, recall the definition of [ W, ,(5)] as defined in (5.7).
The definition of this set is crucial, since by the linearity of the Perron-Frobenius
operator we have that

Pr(v) = PL(v - Lo w1 + Pr(v - Liw, .e0)-

Having this equality in mind, the proof splits up into three parts. The first part is
to show that we have lim,,. P7(vV - Lo 1\w;,@)1) = f vdA - hy. The second part
is to show that lim, .. P7(v - 11w, ,8)7) is equal to zero outside a set of Hausforff
dimension equal to zero. These two first parts yield the first statement of the
theorem. Finally, we have to consider pre-periodic points to get the final statement
of Theorem 8.1.

A sketch of the proof is published in [KKS16], though more details are given here.
Before we start with the first part of the proof, we state a lemma from [KK12]
without a proof and its corollary about bounded distortion, which helps throughout
the proof.

Lemma 10.1 ([KK12, Lemma 3.2]). Letr € [0, 1) be fixed. There is a sequence
(0om)men,, dependent on r, with o, > 0 for each m € Ny and limpy1000m = 1,
such that, forallm,ne Ny, ¢ € ¥, o € £" and x, y € [¥],, we have that

-1
m =

f7 o (X)

S < Om-
s

Here ¥° denotes the set containing the empty set and fr0 denotes the identity
function [0, 1] > x — x.

Corollary 10.2 ([KKS16, Lemma 4.3]). Let n € IN be fixed. If 9 = (1,02, ..., In)
andv = (vi, v, ..., vp) denote two distinct, yet adjacent elements of X.". That is,

81
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[9] N [v] # 0, then there exists a positive constant K such that, for all x,y € [0, 1],

£ 5(X) -
N1

_1<

K.

Proof of Corollary 10.2. This corollary follows by combining the chain rule with
Lemma 5.1 and Lemma 10.1.

O
Proof of Theorem 8.1. The first part of the proof is dealt with in the following lemma

and follows from results on distributional convergence in finite ergodic theory stated
in Theorem 6.8.

Lemma 10.3 ([KKS16, Lemma 4.5]). Forr € [0,1), a € (0,1), 8 € [0,1] and
v € Ug 5, we have that

lim P?’(V']1[0,11\[W,,n<,6)1)=de/1'hn

n—.oo
uniformly on [0, 1].

Proof of Lemma 10.3. Let N € IN be fixed. Since v - 1o, 1)\w,In1 € BV(0, 1), we
have by Theorem 6.8, that

Jim PRV Lo, mw,giny = f V- Lo, mw,gin dA- hr
uniformly on [0, 1]. We will shortly show, with the aid of Lemmata 5.1 and Corol-
lary 10.2, that, uniformly on [0, 1], there exists a positive constant K € R such that
for all x € [0, 1]

+00
- 1
lim LI L, @i @) () < K- Z G- (10.1)
k=N

As v is improper Riemann integrable and as limy_, 1. A([¢(8)|n]) = 0, we have
that

lim v o inw @i d/1=de/l

N—+co

and by the properties of a geometric series we have that

+00 1
lim — =0.
—+00 — k-(1-
N—+oo £ (2~ 1) (1-a)
Thus, assuming the inequality given in (10.1), since P, is a positive linear operator

and since N was chosen arbitrarily, the result follows. Hence, all that is left to show,
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is the inequality stated in (10.1). To this end, let U c [0, 1] denote an open set and
let C, be a constant such that Condition (c) in the definition of g ,, see page 63, is
satisfied. Let n > N > 2 with [W,(8)|y] C U be fixed. For all x € [0, 1], we have
that

2 -

T <[fo00] <

2 —
and —— X
7 =<
This in tandem with Lemma 10.1 and corrolary 10.2 and the mean value theorem,
gives that there exists a positive constant o € R such that the following chain of

inequalities hold, for all x € [0, 1]. In the last equality we set

2-r (10.2)

—_—

B QZ' CQ'41+a

Taorpa

PrV - L@ iw, @1, (X)
= Z |f ﬂ(X)| Vo frﬂ(X)

ﬂezn\mr,n(ﬁ)
[HISIW (B)In]

< D, oA -sup(v(y): y € [}

19€zn\wr,n(ﬁ)
[PV, (B)In]

n

IA

D, o ad - suplviy): y € [91)
k=N+1 9exk\B, 4(p)
[ [Wr B)lk-1]

n

IA

D 0 G- aqd) - supfly -7 y € [9])
k=N+1 9e3 \W, ()
[FISIWr (B)lk-1]

4 a. N 1-a a, + 1-a
D Z.Qz.cz.(“ A7 Ble-aD'™2 47 A7 B)l-1]) )

<

S (2-nla (2-n)l+a

n
< Z Qz . C,-41a. 2 - r)—(1+a)—(k—l)-(l—a)
k=N+1
n
- K- Z 2 - ry k-2
k=N-+1

Hence, the proof is completed. m|

The second part of this proof considers the part of the observable, that contains
the pole. To this end we define the tail of an observable.
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Definition 10.4 (r-tail of the observable, [KKS16, Definition 4.1]). Let r € [0, 1),
ae€ (0,1)and g € [0,1] and let vz 4(x) = |x — B]72. We define the r-tail of the
observable vg 5 by

V= Vanr = Plsa - Twae) = D, [F500|- vgao fa. (10.3)
JeW; (B)

For n > 0, we further define
Anrn = {x €[0,1]: v (x) > n}.
Since P, is a positive linear operator and v is non-negative we discern that
0< I}i_{rolopf(v “Tiw, @) < Cr - r}l_)tgo Pr(V™.
We show in the next lemma that the latter limit is equal to zero outside a set of
Hausdorff dimension zero.

For s > 0 and ¢ > 0, we let H; denote the 5-approximation to the s-dimensional
Hausdorff measure and we let {5 denote the s-dimensional Hausdorff measure.

Lemma 10.5 ([KKS16, Lemma 4.6]). Forr € [0,1),a€ (0,1),8€[0,1],ne N
andn > 0, we have that

dimgy (lim sup An,r,n) =0.

n—+o00

Proof of Lemma 10.5. Set z = T]'(8) and observe that z is the unique real number
in [0, 1] with £, ,(8),(2) = B. By the mean value theorem there exists u € (0, 1)
such that

|ﬂ - fr,ﬁ,(ﬂ)l,,(x)| = |fr,ﬁ,(ﬁ)|,,(z) - fr,1‘},(ﬂ)\,,(x)|
70,91,
== 720|445, )] -

By construction, we have that |,8 - ,,ﬂ;(ﬁ)‘n(x)| > |,8 - ,,,9,(ﬁ)|n(x)|. Recall, that 97
are the unique words that code the adjacent cylinders of the cylinder coded by
3r(B)|n, see (5.6). This in tandem with (10.2) and Lemma 10.1 and Corollary 10.2,
yields the following set inclusions. We let B(y, p) denote the open Euclidean ball of
radius p centred at y.

Anrn =1{x€10,1]: v*(x) > n}
= {X € [0, 1]: Xoem, 8 fr’,19(x)| “Vg,aofrg > 77}
— —a
{x € 10,115 Soew, 0 [/, 00| - e = 2@ |10, 0| > )
c{xel0,11: [x-T/®)| < 2= "7 3.5 k)4
B(T(B). - (=13, 3. K)'12).

=|x-2z|:
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Hence, given 6 > 0, there exists a natural number M = M(6) € IN such that
{B(T7(), 2= n""Va". 3.7 K)'/@) : n> Mand n e NJ

is an open ¢-cover of limsup,,_,, ., Anr,. We have that

W§ (lim sup Anm) < io A(B(T,”(ﬁ), Q- r)(l—l/a).n 37 K)l/a))s

n—+oo =M

+00
S (2 _ r)(l—l/a)~s~n . (3 . 77 . K)s/a

3-n-K)®s2.2-ri-lasm
- 1—@2-n-/as

Since a € (0, 1), this last quantity is finite for all s > 0 and 6 > 0, and so
HE(lim sup,,_, , ., An,rp) is finite for all s > 0, which implies

dimg/(limsup A, ) = 0,
n—+oo
as required and the first two parts of Theorem 8.1 are proven.
All that remains to show is the third part of the theorem, namely that if 8 € [0, 1] is
pre-periodic with respect to T, and has period length strictly greater than one, then
on w,(B) we have that

I}Iminfpf(v) = fvd/l ~hy and limsup P7(v); = +oo;
—+oo n—+oo0

and in the case that 8 € [0, 1] is pre-periodic with respect to T, and has period
length equal to one then on the singleton w,(8) we have that the limit in (8.1) is
equal to +oo.

By linearity of £} and Lemma 10.3, it suffices to show, if 8 € [0, 1] is pre-periodic
with respect to T, and has period length strictly greater than one, then on w,(8)

liminf v =0 and limsupv™ = +oo;

n—=+oo n—+o0

and in the case that 8 € [0, 1] is pre-periodic with respect to T, and has period
length equal to one, then on the singleton w,(B)

lim v = +co.
n—+oo

Indeed if 8 is pre-periodic with respect to T, and has period length m > 1, then
letting n € INo, be the minimal integer so that T4 (8) = TM+k+m(p), for all k € INy,
we have that

FrOrrgor @it (T B)) = TE(B),
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forallj€{0,1,..., m— 1}. Further, w,(B) = {T,”(,B), T,”*’”‘l(ﬁ)}, and hence, for
j€{0,1,...,m— 1}, it follows for all k € INj that

yHkemr (Trn+j(ﬁ)) = +oo.

To complete the proof we will show, for m> 1 and i,j € {0, 1,..., m— 1} with j # j,
that
: n+j+k-m,r n+i _
im0 (7)<
To this end set L := min{|T"(8) = T™(B): i,j € {0,1,...,m— 1} and i # j}. By
(10.2) and Corollary 10.2, there exists a positive constant o € R such that the

following chain of inequalities hold. Here, we apply the mean value theorem in a
similar manner as in the proof of Lemma 10.5.

lim Vn+j+k-m,r (T;’)+I' (B))

k—+00
= Jim, Lo (1770 o= (77|

PEW; nyjrk-m(B)
< lim 30|y (T ®)|- |8~ fr01sen (T7 +"(ﬁ))|_a
< kEToo 3.0 f’f:ﬁl(ﬁ)ln+/+k-m (Tfn+l(ﬁ))’

N @i (7T = b @gonn (T B))]
< kEer 3 .Ql+a . frlﬁl(ﬂ)lmﬂkm (TrnH(ﬁ))r_a . Trn+j+k-m<ﬂ) . Trn+/(ﬂ)|—a
=3.0".|TM(B) - T,’7+’(ﬂ)’_a lim (2 — p)(@ Dnejtem)

k—o0

_ 1+a ja; (a-1)-(n+j+k-m)
=3- L lim @2 -r
=0.

This completes the proof of Theorem 8.1.

oa

10.2 Thecaser =1

In the previous proof, the bounded distortion property of the family of maps T,, with
r € [0, 1), played a crucial role. Unfortunately, T; does no longer have this property,
since the absolut value of the derivative of T;(x) equals one for x =0 and x = 1.
So more sophisticated methods are required in the proof of Theorem 8.2.

In addition, we have to divide the proof of Theorem 8.2 into two cases. Firstly, the
case, when S is a rational number is conidered. Secondly, the case when S is an
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irrational number of intermediate a-type is considered. In this case similar methods
to the ones used in Theorem 8.1 are applied. These methods are not applicable for
the rational case and hence this case is considered separately.

This part is published as [KKS16, Subsection 5.2], though more details are given
here.

Before we start with the proof of the theorem we have to discuss, how the conver-
gence of the induced transfer operator stated in Theorem 6.10 can be extended to
convergence of the actual transfer operator. In [KKSS15], it has been shown, that
we have to be careful for regular varying wandering rates. Yet, In(-) is slowly varying
and even moderately increasing, see Part Il for further details, so no problems arise
in this case. For the next theorem, we recall the definition of the level sets of the
first entry time Y given in (3.2) on page 15.The next theorem was first published in
[MT12], however, in the current form it was used in [KKS16, Theorem 4.9], where
the notation is slightly adapted.

Theorem 10.6 ((MT12, Theorem 10.4]). Letf € BV([0, 1]) be such that||f||cc < +00
and let

=1y, - f.

If
i [TE|_ < +eo, (10.4)
k=0

thenonY

lim In(n)- T(f) = f fdu,.
n—+oo

Before we prove this theorem we give a lemma, that shows that the class of
observables that satisfies the conditions of Theorem 10.6 is not vain.

Lemma 10.7 ((KKS16, Remark 8]). Iff € BV(0, 1), then f/ h, satisfies the condi-
tions of Theorem 10.6.

Proof of Lemma 10.7. Observe that, by the pointwise version of the transfer ope-
rator given in (6.5), we have that

fof”

T”(— Ty, ) [l—lf“oflo] Pty y.

Therefore, since f, f; o and f; ; are of bounded variation and the composition and
product of functions of bounded is again of bounded variation, see Lemma 6.16.3.,
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it follows that ?”(f/hl -1y,) € BV(Y). Further, we observe that

o0 = Ty
e 0 = TG
ﬁfl,l o 10 = 1+1nx’ (10.5)
k=0
1 X
hy o 50 v = ey o

Combining (10.5) with the fact that a function of bounded variation has finite
supremum norm (see Lemma 6.16.1.), we have that

= [ f
Kk
(1)

+00

+00

Il
< <+
kZ::‘) k+12

(o)

Proof of Theorem 10.6. In this proof we use the Landau notation, little o(:). The
first part of this proof is inspired by the first paragraph of the proof of [MT12,
Theorem 10.4]. However, to keep this thesis as self contained as possible, a
thorough proof is given here.

By Theorem 6.10 and Proposition 6.18, we have, for each n € INg, that there exist
6n: [0, 1] — C supported on a subset of Y with ||0,]|, = 0 ((ln(n + 2))‘1) and

ILY Tn(]ly f) 2) ffd/Jl ]1y+9,~, f.

As before, we define?,- = ]lyj - f and observe that we have on Y,

T =T (T (H) = Z]ly (T (F) 1v)
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Thus, for all natural numbers n > 1, we have on Y, that

In(n) - T (f) - ffd,ul
= [In(n)- > T (1y - T4 (F)) - ffdm
=0
n 1 .
1 Y 0o - [1v - T ()]
j=0
d In(n)
<Z(ln(n 3 —1) f[?k| duy (10.6)

IA

+ In(n) - Z lonil.. - [y - T )| (10.7)
+ Z fﬂ du. (10.8)
Jj=n+1

We now proceed by showing that the three terms (10.6), (10.7) and (10.8) converge
to zero as ntends to infinity, for all x € Y.

(a) Since

1 1
Y)=In|l+ — |~ —
A n( +j+1) j+1

and since f € L°([0, 1)), there exists a constant ¢ > 0 such that for all

J € No,
7l < 7+

Fore > 0,if 0 <j < n—n/0+9) 4 2 then for all n € IN, we have that

I
_ e
In(n—j+2)

For a real number x we let [ x] denote the smallest integer greater or equal
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to x. Thus, for a given € > 0, we have that

In(n)
n—>+ooz ln(nn 7+ 2) f[ﬂ du

n—n1+e}+l n
) . c-In(n)
sim % avo [Flaaem 3 et

j:n—[nm%2

<(+e)- f|f| dur + 111?2) ' ngl}—loo ([,(7:_] :112)+1;1)(n)

=(1+6)-f|fldu1-

Moreover, since for all integers n > 1 and for j € {0, 1, 2, ..., n}, we have that

In(n)
In(n—j+2)

L]

it follows that,

n
n—>+ooZ]n(nln(7)+ > f[ﬂ du zngxfwjzzofm dy =f|f| du.

Hence, (10.6) tends to zero.
Forje INg,themap fj ;o f |s order reversing and an inductive argument
can be used to show that
- I1+j-x
f f(x)= ————.
e o) = T X

Using the fact that Y C f1ko o f1,1((0, 1]), for k € IN, and the representation

of Ty given in (6.5), an inductive argument yields, for all j € IN, that

t — l_l — .
T = (]—[ fii o ff,o(x)] TFofl j0,
k=0

and thus, that

k
o 7@, <[] .

L oo
< 2 lIfllo
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Since ||0,llo = 0(1/In(n + 2)), given an € > 0, there exists N, € IN such that
[10mlleo < 2 - €/1In(m), for all m > N,. Moreover, the value

© = sup{[lfplleo : N € No}
is positive and finite. Combining these statements, we have the following

inequality.

In(n)
In(n)- jzouen_,uw Tl <2 Z FreR 0N
1

+2-0 - |flle - In(n) - Z -

—Ne+

.

Using (10.4) and (10.9) a similar argument to that given in (a) yields that

i e 3 R, <20 ve Y@,

n—+oo

Thus, for a given € > 0, we have that

lim_In(n)- Zn: Jon-i1l - |77 ().

n—+o0o
j=0
n
1

Jj=n—Ne+1 J

<2-e-(l+e)- i 7/ ()| + lim 2-©-lflle-n(m -

<2.e-(1 +e)-§|]?{@)”m +2-e-||f||mngrpm1n(n>-ln(n_,\, )
—0 €

Finally, an application of LHépital’s rule yields that

o

lim In(n) - ln( n
n—co n— N

which in turn implies, that

i - o [T, 2210 3[R
=0 j=0

n—+oo

Since € was arbitrarily chosen, and taking (10.4) into account, we have that

(10.7) tends to zero
(c) Since f € L1 ([0, 1), using the definition of?,-, we obtain that (10.8) converges

to zero and the proof is complete.
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Now we are in the position to give a proof of Theorem 8.2. We start with the case,
where § is a rational number.

Proof of Theorem 8.2 for B rational. Let a € (0,1), and let 8 € (0, 1] be a rational
number. As before, let v € g ;. As S is a rational number, there exists a minimal
n € IN such that T"(B) = 0, let n be fixed as such. Further, we have that w;(8) = {0}.
Since the case 8 = 1 is a simplification of the matter, we can, without loss of
generality, assume that 8 # 1. By the definition of the Farey map, there exist exactly
two finite words n, 7 € £ such that

(@) f40)=8=f,y(0),
(b) fi,(x) <B < fiy(x), forall x € (0, 1], and
(c) fig(x) # B, forallwords é € X"\ {n, 7'} and all x € [0, 1].

The pointwise version of the Perron-Frobenius operator yields, for k € IN, that

PR = Y [ ] vohi

ek
Hence, by linearity of the operator P, we have, for all natural numbers k > n, that
Ph(v) = P (PIv)
K— k—
=PI (P] (v - Loanmromen)) + PE" (7 (v - Do)

D vonie

gexk\{nn}

=P" +P " (PT (V ' ]l[n]u[n’])) :

If £ € {0, 11y {n,n'}, then since B ¢ f; £([0, 1]), since the functions f; ¢, ff,g’ 1/l
are all of bounded variation, since v € g, and since [£] is a compact interval
bounded away from S, by Proposition 6.16, it follows that for x € [0, 1], the function

Z ’fll,g(x)‘ Vo fig(x)

Eexi\(nr')

1
H
hi(x)

is of bounded variation. Hence, by Proposition 6.18 and Theorems 10.6 and 6.12
together with Lemma 10.7, we have that

: k
Jim In(k) - P (v- Lo mmewo.ner) = ffDT (v- Lo mumero. i) dA - hy

= fV Lo nminio,npy1 daA - by

Therefore, to complete the proof we need to show that

kEIPOO In(k) - Py (V ' IL[n]u[n’]) = f‘/ “Lpgupyrda - by
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To this end let m > n be a fixed natural number which satisfies for all £ € ¥ that

A([¢]) < minfla—-pl, b - B, }

where U = (a, b) is the open connected set such that there exist constants C;, G,
sothat C; - vga < v < G- vg40n U, asin condition (c) in the description of U 3.
Let v,V € £ be the unique words satisfying

In[]=1{8} [clyl and [V]c[r].

Indeed, we necessarily have that f; ,(0) = 5 = f;,,,(0). Using identical arguments
to those above, we can conclude that

. K
Jm In(k) - 5 (v Lopnaomne) = fV Lo da - hr
Moreover, by positivity of the operator 1 we have that
Ci-Pf (- Lpiuw) < P (v Tpup) < Co- P (vga- Lpjup) -

We claim, and will shortly prove, that

Jim k) P (vga - Lpor) = f Vs.a- Ipjupy da - by (10.10)

Assuming this, we conclude, for all m € IN, that

liminf In(k) - P¥(v) > C; - fvﬁ,a Apjop da - hy
k—+00

(10.11)
¥ f v - Lo inpinio, 11 da -

and

lim sup In(k) - P¥(v) < C, - f Vga- Lpjuprdd - hy
k—+00

(10.12)
+f‘/']l[O,l]\[v]m[o,l]\[v/] da - hy.

The words v, v are dependent on m. Since the left hand side of (10.11) and (10.12)
are independent of m and since A(v), A(v’) both converge to zero as n tends to
infinity in combination with the fact that vz , is improper Riemann integrable, the
statement follows. All that is left to show is the euqality given in (10.10).

By Proposition 6.18, Theorem 10.6 and Theorem 6.12 together with Lemma 10.7 it
is sufficient to show that, for x € [0, 1], the function

— V . 1 ’
AR Tlm( B.a h[v]u[v])(x)
1
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is of bounded variation. In order to show this, recall that f; , and f; ,» are Mdbius
transformations and can, for i € {1, 2}, with a;, b;, ¢;, d; € Z., be written as

a-x+ b a-X+b
f, =—— and f,(x)= —.
V(X) cI-x+d V(X) - x+d

We observe that

2 . a
Fm(Ya [v]u[v] Z (-t
1 L CI X + dl)z IB _ai-xtb; )

C,‘-X+d,'

The desired conclusion, namely that "flm (vﬁ,a . ]l[v]u[vl]/hl) is of bounded variation
follows from the following four observations.

1. Forall t € (0, 1], we have that

— Ve, 1 ,
V[t,l](Tf"(—ﬁ'a hl[v]u[y]))<+oo.

2. Fori e {1,2}, by LHé6pital’s rule we have that

] -1 i+1 %
tim "X g
x=0 5 — ai-X+b;

C,'-X+d,'

3. By LHépital’s rule, we have that

. a
e Vv -1 , 2 0% -1 i+1
Jim T{"(M)(X) = S lim [y,
x=0 g oG X+ d)T B - 35ad

4. We have that

d (=n(VBa: L
dx (Tl ( hl (X)

Salevar -2
— (¢i-x+ dl)z B- ai-x+bj

ci- x+d,
2 i1 )2 i1 v\
-y —¢i X +d; [ (—1) ] (-)*! . a-x [ (—1) J
N 3 i-X+bj 4 - X+bj ’
— (ci-x+d) ﬁ_% (ci-x+dp ﬂ_%

which is non-negative on an open neighbourhood of zero.

Hence, ?{"(vﬁ,a . ]l[yjulv’J/hl) is of bounded variation and the statement of the
theorem follows.
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To finish the proof of Theorem 8.2 we have to consider the case when S is an
irrational number of intermediate a-type

Proof of Theorem 8.2 for 3 irrational of intermediate a-type. As before, we observe
that, by the linearity of the Perron-Frobenius operator, we have that

In(n) - P(v) = In(n) - PI(v - Lo, 119, 8)1,) + In(n) - PV - Ly, gy1,)-

Since h; -?l(f) = Pi(f - hy), it is sufficient to show two statements. The first
statement is

= (v-1
lim In(n) - 77 (—[O’E\Wﬁ"”])z f vdi
n—oo 1

uniformly on compact subsets of (0, 1]. This is done in Lemma 10.9. For the second
statement, we have to introduce, similar to the case r € [0, 1), see Equation (10.3),
the tail of an observable.

Definition 10.8 (1-tail of the observable, [KKS16, Definition 4.1]). For a € (0, 1),
B €[0,1] and n € IN, we define the 1-tail of the observable vg 5: x + |x — |72 by

n,1

V= vgant = PI(ea Liw,en) = |f{,m<ﬂ>|n(x)| “Vga© @l (10.13)
Further, for n > 0, set
Antn = {x €10,1]: In(n) - v*'(x) > i}

Further, we observe that since v € Upg , is non-negative and ¥ is a positive linear
operator, that there exists a positive constant C with

0< ,}Lrgo In(n) - P} (V : ]1[19.<ﬂ>|n1)

< lim In(n) - C - 77 (v- L)

= lim In(n)- C - v™!.

n—oo

Hence, the second part to show is, similar to the case r € [0, 1), that the last
limit is equal to zero outside a set of Hausdorff dimension zero. This is done in
Lemma 10.10.

Lemma 10.9 ([KKS16, Lemma 4.12]). For a € (0,1), 8 € (0, 1] of intermediate
a-type and v € g 5, we have that

~ (v-1
lim In(n) - 77 (—[O’;j\m]w)'"])= f vdi
n—oo 1

uniformly on compact subsets of (0, 1].
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Proof of Lemma 10.9. Recall the definition of k(n), m(n) and r(n) given in (5.8).
Let K denote a compact subset of (0, 1] and let ¢, b € (0, 1] be such that K C [c, b].
Let N € IN be fixed. By Proposition 6.18, Theorem 10.6 and Theorem 6.12 together
with Lemma 10.7, since the function v - 1o, 1)\(9,(g)x1 IS Of bounded variation, it
follows that

~ (v-1
lim In(n) - 77 (M) = f v 10,109, )1 A uniformly on K.
n—oo 1

Let t,,; be as in Definition 7.3, page 64 and let N denote the unique integer such
thata+ax+..ag<N<a +a+..ay,,-

Then, by linearity and positivity of the transfer operator T,, since
Jim A1 B)lD) = 0,

since the observable v is Lebesgue integrable and since 8 is of intermediate a-type,
it suffices to show that there exists a positive constant C such that

n—+oo h K. ’

. v 1 5 +00  ag o
lim In(n)- Tln( pa- L 1w>|N]\wl(ﬂ>|n]) <c. Y Yy
k=N J=1

forane € (0,2 - (1 — a)).

To this end, for each integer k > 1, let 9,(B)lx € ¥ denote the unique word of
length k such that [ (B)|k-1] = [ (B)Ik] U [?1(B)|x].- By Lemma 5.3 we have for
all x € K, that

1
£ (x)| < ’
G1(B)lk ’ (c-((rtk)+1)- Amk) + Qm(k)—1)2

2. it r(k) + 1 # amx), then

LB‘ ’ﬂl(ﬁ)|k(x)|
(r(k) +2) - pmey + Pmi-1 (r(K) + 1) - Pk + Pmcko-1

(r(k) +2) - Qmk) + Amky-1 - (r(K) + 1) Qmek) + Gmek)-1
1

> ,
2 ((r(k) + 1) - Gk + Gmiioy-1)°

>

3. if r(k) + 1 = am), letting

B b if m(k) is even,
~ e it mk)is odd,
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then

B~ 3, )

(r(k) + 1) - Pmeky + Pmio-1 (r(k) - Pmky + Pmk)=1) = X + Pmk)

TR+ 1) - Gmky + Gmio-1 (r(K) - Qmeky + Gmeko-1) - X + Qmk)
1- Zk

> .
((r(k) + 1) - Qme) + qm(k)—l)2

Since constant functions are of bounded variation, we have by Proposition 6.18,
Theorem 10.6 and Proposition 6.12 together with Lemma 10.7, that there exists a
positive constant C’, so that forall k € IN and x € K

(L o
n (hl)(x) “hk+D’

Noting that tmu), rky+1 = (r(K) + 1) - Gmky + Gmx)-1 and, letting € be such that

+o0  ap

ZZ —2(1 a)+e +oo,

n=1 k=1

we have that

lim In(n) - T”

( Ba- ]1[191(ﬂ)|N]\[191(ﬂ)n])

n—-+co
n—-1 v,
B,
= lim In(n) Y Trk(TE ( i [ﬂ‘(ﬁ)'“))
n—+co
K=N+1
n—1
. 1 1
- n1—1>r-+l:loo In(n) Tn k[ 7oK 1. . 2 h_l
h=hl ~ 5@k
- c’ = ln(n) 1
S 2ea (=20 Lol In(n -k + D ((r(K) + 1) * Gy + Grmcro-1)" 2
< b c Ln/2] In(n) 1
< 11m
o2t (- 20 4 In(n/2) ((r(k) + 1) * Qi) + Gmci—1)> 1 727¢
i c’ = 2-1In(n) 1
T Re2 2 (=20 e Tare
k) k=(np2)+1 ((r(k) + 1) Gmeky + Gmik)-1)
c’ O 1

S -
a - (1= 20 Wi ((r(K) + 1) - Gy + Qm(k)—l)z(l_a)_e

+o00 Ak

<~ az (1 _Zk) ZZ —2(a 1)+e
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This completes the proof of Lemma 10.9.

O

The aim of the next lemma is to provide an analogous result for r = 1 of Lemma 10.5.
The idea behind the proofs of Lemmata 10.5 and 10.10 are similar, however, in the
case that r = 1, several technical difficulties arise and thus need to be taken care
of.

Lemma 10.10 ([KKS16, Lemma 4.13]). Fora € (0, 1), 8 € [0, 1] irrational and of
intermediate a-type, n € IN and n > 0, we have that

dimgy (lim sup A,,,l‘,,) =0.

n—+oo

Proof of Lemma 10.10. 1t is sufficient to prove, for all k € N, n > 0 and € €
0,2 k- (k+ 1)), that

) ) 1 1
dimgy (hm sup Ap1,, N (m +€ —— 6)) =0.

n—+oo k
To this end, for n € IN, observe that T," (8) is the unique real number in [0, 1] such
that fi,9,(p), (T{’(ﬁ)) = B. In the sequel we distinguish between the two cases
T'(B) € E and T/(B) ¢ 11
! kK k+1 ! kK k+1)
Since g is irrational, the case that there exists a k € IN, such that T{’(ﬂ) = 1/k can

not occur.

If T(B) € (ﬁ %), then, for all x € (1/(k + 1) + €, 1 /k — €), by the mean value

theorem and Lemma 5.3, there exists u € (k—}rl %) such that

1B = fi0,1,(0] = ‘fl,ﬂ.(ﬂ»n (T'®) - fl,m(ﬂ»n(x)’

= |x - T7®)- ff,m(ﬂ>\n(“)|
_ x - TP
|(r(Mu + 1) - Gy + Gimny-1 - U|2
k2

> .
X = T0@®)| - [(r(n) + K) - Gty + G|

If T(B) ¢ (k—}rl %) then, for all x € (ﬁ +€ 73— e), since fi 9,(p), is order preserv-
ing or order reversing, we have that

B = f1,00] = [, (T7B) = fronien, )|

> min{

1 1
fi.0,8), (;) —= fLo), O (L@, (m) = hLo1B)1,(X)
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and so by the mean value theorem and Lemma 5.3, there exists u € (1/(k + 1), 1/k)
such that

/ €
1B~ 01001, 00] = € |1 5,5, =

2
’(r(n) U+ 1) Qmeny + Gmeny-1 - Ul

€-k?
> .

= 2
|(r(n) + k) - Q) + Gomny—1 |

Hence, for x € (1(k + 1) + €, 1/k — €), we have that
In(n) 1
((r(M) - X + 1) - Gty + Gmin—1 - X B = Fr, 891,00

In(n) - v™(x) =

(k + 1)? - In(n)

— it T'B) € (717: %) »
|Tln (B) — X|a . k2.a . ((r(n) + k) . qm(n) + Qm(n)—1)2 (1-a) 1 (k+1 k)

<
(k + 1)? - In(n)

- it T'(B) ¢ (77 %) -
€ k*a. ((r(n) + k) “Qm(n) T qm(n)—l)z(] ? ! (k+1 k)

Since,

. (k + 1)? - In(n)
o @ p2a (-2
€2 - k2. ((r(n) + k) - Gmny + Gm(ny-1)
< lim (k + 1)> - In ((r(n) + k) - Gm(n) + Gm(n)-1)
v @ k22 ((r(n) + K) - Gty + Q1)

there exists M € IN such that, forall x € (1/(k+ 1)+ €,1/k —€) and n > M, if we
have Tl”(ﬂ) ¢ (1/(k + 1), 1/k), then we have that In(n) - v!(x) < n. Therefore, for
all n > M, we have that

1 1
A,,,ly,]ﬂ( +6,——6)=®;

K+ 1 k
otherwise, if TI”(,B) e (1/(k+1),1/k), then
1 1
An,l,T] N (m + €, E — 6)
={x¢ ! + ! S In(n) - v™(x) >
- k+1 ©k € =1
CiXx € ! + ! :
= k+1 Ok
(k + 1) -In(n) N }
—— 21
|T78) = x|* - k22 ((r(n) + K)  Qmiry + Grmmy-1)> 2
c8(mp (k + D)?@ . In(n)}/2 A 1 .\ 1
- , €,— —€].
P A k2 ((r(n) + K) - Gy + G2 &0 ] k+ 1 Tk
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Hence, given 6 > 0, there exists a natural number K = K(6) = M such that
. (k + 1?2 In(n)}/2
B 11 (®B), 1/a. k2 2(1/a-1) :
nt'a-k=-((r(n) + k) - Gmny + Gmn)-1)

i
nzKandEl/e]Nsothatn:—k+Zai}
i=1

is an open ¢-cover of limsup,, ., An 1, N (1/(k +1) + €, 1/k — €). Therefore, for
s> 0andé > 0, we have that

1 1
H; (lim sup Ayn N ( +€ —— E))

n—+co k+1 k
too 2-(1/a-1) 2/a 1/a
2 (k+1 -In(n
<> /I(B(Tf’(ﬁ), — (ex D77 In(m) 2,(1/3_1))
n=M nt/a- k2 ((r(n) + k+ 1) - Gmn) + Gmin)-1)
s
A 1 N 1
€, — —€
k+1 k
m+1 s/a
7s+2:(1/a-1) (k + 1)2-s/a f ln(zt’:l af)
ns/a . k2s it (qm+1)2-s-(1/a—1)
os+2:(1/a-1) (k + 1)2~s/a T In (qm+1)s/a
- ns/a ke m=m(K) (qm+1)2-s~(1/a—1)'

In the above we have used that if y € [1/(£ + 2),1/(€ + 1)], for an £ € IN, then
Ti(y) € [1/(€+ 1), 1/€].

The last infinite sum is finite for all s > 0 and § > 0 since, by the recursive
definition of g,, we have that g, grows at least at an exponential rate as n tends
to infinity. Thus, HS(limsup,,_, ., An1,,) is finite for all s > 0. This yields that
dimg/(limsup,,_,, ., An1,,) = 0 as required.

O

Thus, all that remains to show is that if 5 € (0, 1] is irrational, pre-periodic with
respect to T; and has period length strictly greater than one, then on w;(8) we
have that

l£m+inf In(n) - PI(v) = fvd/l ~h; and limsupIn(n) - P(v) = +oo;

=+ n—+co

and in the case that 8 € (0, 1] is pre-periodic with respect to T; and has period
length equal to one then on the singleton w;(B8) we have that the limit in (8.1) is
equal to +oco.

By positivity and linearity of ] and Lemma 10.9, it suffices to show, if 8 € (0, 1] is
irrational, pre-periodic with respect to T; and has period length strictly greater than
one, then on w;(B),

liminfIn(n) - v*' =0 and limsupln(n) - v™' = +oo;
p

n—+oo n—+00
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and in the case that 8 € (0, 1] is pre-periodic with respect to T; and has period
length equal to one, then on the singleton w{(B),

lim In(n) - v™! = +c0.

n—-+oo

Indeed if S is pre-periodic with respect to T; and has period length / > 1, then
letting n € Ny, be the minimal integer so that 7" (8) = T***/(8), for all k € Ny,
we have that

fl!(ﬂl,nﬂ'ﬂ(ﬁ) ..... S1,04j+1(B)) (T1n+/ (ﬂ)) — T1n+j ®),

forall j € {0,1,...,/—1}. Further, w(B8) = {Tl”(,B), T('+’—1(ﬁ)}, and hence, for
j€{0,1,...,1— 1}, it follows, for all k € INg, that

VLS (TI"H (,3)) = 400,
To complete the proof we will show, for / > 1 and i,j € {0, 1,...,/— 1} with j # j, that

lim Vn+j+k-l,l (Tln-H(ﬂ)) — O

k—+o0

To this end set L := min{
set

T]"+j(,8) - Tf*’(ﬂ)l ci,je{0,1,...,/-1}and i ;tj} and

¢c:=min{T/(p): je(0,1,....1- 1}}
and b= max{T/7(B): j€(0,1,..../- 1}}.

Since S is irrational and pre-periodic with period m > 1, it follows that0 < c < b < 1
and therefore, we have for all i,j € {0, 1, ...,/ — 1}, with i # j and k € IN, that

1

fll G (Blnjrket (Tlm—i (ﬁ))| < 2"
I c?- ((r(n +j+k-D+ 1) Qmnsjrken + Clm(n+j+k~/)—1)

Further, we have, for all i,j € {0, 1, ...,/ — 1} with j # j and k € IN, that

. kel .
‘ﬁ ~ A1 Bk (Tlr’+l(ﬂ))’ 2 ’fls79l(ﬁ)|n+j+k»/ (T1n+]+ (ﬂ)) ~ AL\ Blnsjeks (Tlm—l(ﬁ))’

. , . n+j _Tn+i
2 ué{g‘b] flﬁl(ﬁ)ln+j+k-/(u)| Tl ) Tl ('B)|
L

>
> . 5.
((f(” +j+k-D+ 1) Amnejekn + qm(n+j+k-l)—l)
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Hence, for all i,j € {0, 1, ...,/ — 1} with i # j, we have

0 < llm Vn+j+l-m,1 (T{H—I(ﬁ))

|—+c0
f ‘ Tn+i(ﬂ) ‘
< hm 1,791(ﬁ)|n+/+l»m( 1 )

T >4 i
’ IB - flﬂl(ﬁ)ln+/+/-m (T{]+I(B))|

a

. 1
< fim — ) 2(1-a)
c>-La. ((f (n+j+k-D+1) Qmnsjskn + qm(n+j+k-l)—l)
=0.

This completes the proof of Theorem 8.2 and we begin with the proof of Theo-
rem 8.6.

oa

Proof of Theorem 8.6.1. This proof is a constructive proof. Within this proof set

p=1[0; 1,1,2,1,1,1,1,2,1,1,1,1,1,1,2,...]
~——  —— —_
2-1 22 2.3
and «:=10; 1,1,2,1,1,1,1,2,1,1,...,1,2,...].
PR SR
21 22 23
Furthermore, for n € IN, set
An,B)=n-(n+2) and A(n«):=2"+n-2.

We observe that 8,k € [1/2, 1]. As before, we let a,(8) and a,(x) denote the n-th
continued fraction entry of 8 and k respectively. Hence, a calculation yields that
aninp-1B) = an(nw-1() = 2. Further, we can show that

w1(B) = w1 (k) = {[0; 1,1,...,1,2,1]: ke Nog U{[0:11}.
k

We have that y := (V5= 1)/2 = [0; 1]. By (10.13), we have for each n € IN, that

!
flnﬁh(f)ln

Vzanl = ER
[* = Ao

Following the same arguments as in beginning of the proof of Theorem 8.2, it is
sufficient to show, on w(B) = w;(x), that
limsup In(n) - vg 4n1 =0
n—+o0o
; 1
0 itac(03), (10.14)
and limsuplIn(n)- v gn1 =

n—+oo

+oo ifae(i1).
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To this end fix kK € INy and set

— 1
Go=10:1,1,..,1,2,T] € [—, 1]-
—— 3
k

We will show that the equalities given in (10.14) hold for {x, the result for y is a
simplification of this case.
To this end let T € {8, x}. By the mean value theorem, for each n € IN, there exists
up(t) € (1/3, 1) such that

It = fL9.01, (Gl = |fl,01(‘r)|n (7'1" (T)) — ho@lh (fk)l

=|T7() = & -

fll,ﬂl(r)|,, (Un(T))’
_ |T7(@) — |
((r(n, DU + 1) - Qi (T) + A1 (T) - Un(T))?

|TP(0) - &
52, (Qm(n,r)(T))z’

|TP(r) = &
< — -
(Qm(n,‘r) (T))

See definition (5.8), page 26 for m(n, 7) and r(n, 7). For | € INy, the integers p(7)
and gy(t) are as defined in (5.1), page 22.
Thus, for 7 € {8, k} and k € Ny, we have that

lim sup In(n) - V¢ an,1({k)

n—,oo
. In(n) 1
= lim sup 5 5
oo ((F(1,7) - &k + 1) - Qo (@) + Gmino-1 - $k)° |1 = Froucon, (0|
. In(n)
> lim sup

"

o0 52+ (Qoin, (D)7 | TN = &

. 5%a. In(n)
< lim sup (R
e (Qm(n,o)(7)) TP - &

|a

In(n)
Tln—(k+1)(T) _ y|a . |(flk,1 ofipo fl,l), (O)’a

> lim sup ™
n—eo 52, (Qm(n,r)(T)) (1-a)

5%2.In(n)
Tln—(k+1)(,,.) _ y’a ) ’(flk,l ofigo fl,l), (1)’a'

< lim sup
n—ee (qm(n,r)(T))

2(1-a) .
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’ a
Since |(fk ofipo fl,l) (x)| is bounded and bounded away from zero, it suffices

11
to show, for a € (0, 1), that
) In(n)
lim sup =0 (10.15)
2-(1-a) _ a
e (qm(n,ﬁ)(ﬂ)) AT D) - 7|
and
0 ifae(0,3),
1
lim sup n(m) - (10.16)

._ — a
= (@mino @)V T V0 -] | fae [3.1):

We will first show the equality given in (10.15) after which we will show the equality
given in (10.16). We observe, for | € IN, thatif n— (k + 1) = A(/, 8) + (I — 1), for an
| € N, then

11
Tl”‘“‘“)(ﬁ)z[0;2,1,1,...,1,2,1,1,...,1,2,1,1,...,1,2,...]e[ ]
—— S—— ——

32
2-(I+1) 2-(I+2) 2-(I+3)
and hence,
In(n) AL+ U=+ (k+ 1)
2-(1-a) —(k+1 a = 2(1-a) a
) I L C R R C ) R R A,
2 -In(/) '

"

(@B 2L -y

Since the sequence (q/>jem grows exponentially, the last term converges to zero as
| — oo. In the first inequality of (10.17), we have used the fact that

n—(k+DH=ANIp+U-1.

Inthe casethatn—(k+ 1) ¢ {A(,B)+ (j—1): j € IN}, set | = I(n) € IN to be the
maximal integer such that n— (k + 1) > A(/, 8) + (I — 1), in which case we observe,
that n— (k+ 1) — A(/,8) = I. That implies

2-(I+)+1=3-(I+1)-1
23-(I+1)—(n=(k+1) =N\, pB))
=3-(I+1)—=n+(k+1)+A(p),

and hence, we have that

Ve =101,1, .. ,1,2,1,1,..,1,2,1,1,..,1,2,..].
— —
3-(+D+(k+D)+A(,B)—n 2-(I+2) 2-(I+3)

<2-(I+1)+1
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By Lemma 5.2, the at most 2 - (/ + 1) + 1 first ones come from at most 2 - (/ + 1)
ones in the first place and one additional one that has been a two one iteration
earlier.

This yields
In(n)
(qm(n,ﬁ)(ﬂ))z.(l_a) AT by - V‘a
B In(n)
( mng) (ﬁ))Z'(l—a? f13"f/+l)+(k+1)+/\(l,ﬁ)—n( TI/\(/+1,/3)+/ (,8)) B f13’~l(l+1)+(k+1)+/\(l,,3)—n () a

< In((/+2)-(/+5))

< (Gen) (ﬂ))z-(l—a) - infueo,1] |( f137-l(l+1)+(k+1)+A(I,ﬁ)—n)’ (u)
_In((+2)-(1+5))- (C73-(/+1)+(k+1)+/\(/,,5')—n(7’))a

B (qrasB) - |1 - ?’|a
_In((I+2)-(1+5) - (Qu+n+1(B)°
Q@) 1-9"

Since the sequence (g;(5))jenv grows exponentially, (10.18) converges to zero as
| = I(n) — oo. The equality stated in (10.15) follows from (10.17) and (10.18) and
we can turn our attention towards the case 7 = «.

We will prove the equality given in (10.16). The result for, a € (0, 1/2), follows in a
similar manner to the previous case. Indeed, observe that if

N

|a

-y

(10.18)

n—(k+1)=AL)+{-1),

for an / € IN, then

1
T D =102, 1,1,..,1,2,1,1,..,1,2,1,1,..., 1,2, .. 1€ |5, = |, (10.19)
21+1 21+2 243
and hence, for n sufficiently large,
In(n) < (I+1)-1n(2)
(1= _ a— 2(1-a) |1 a (10.20)
(mini )72 T D00 — o (@)™ -5 -

The sequence (qj(K))de grows exponentially, in particular there exists a positive
constant ¢ so that we have for j € IN, that 1/(c - ¥/) < gj(k) < ¢/« Therefore, the
latter term in (10.20) converges to zero as | — oo.

Inthe casethat n—(k+ 1) ¢ {A(j,k) +(j—1): j € N}, set | = I(n) € IN to be the

maximal integer such that n — (k + 1) > A(/, ) + (I — 1), in which case

D =10, 1,1, o L2110, 152,110, 1,2, 00
—_— Y—

2H (14 D)+ (k+ D) +A(LK)-n 2/+2 2043
<2l
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We also observe that gj(y) < qj(x), for all i € INy. Therefore, it follows that
In(n) . 1 < (I+2)-1In(2)
(Gmin@))> =3 T+ D ) —gja ™ (gu(K))> (-2
< (I+2)-1In(2)
T (Qu()FID (o ()
Thus, if a € (0,1/2), the last term of (10.21) converges to zero as /| = I(n) — oo.
The equality in (10.16) for a € (0, 1/2) follows from (10.20) and (10.21).
Let us now examine the case, where a € [1/2,1).
It follows from an inductive argument that we have for all n € IN, that g;(x) < 2"-q(y)
for all integers I € [A(n, k), A(n + 1, «)). Further, by (10.19) we have for all n € N,
that

(Gro2(Y))?

(10.21)

1.
y - T{“”’”*”‘I(K)’ =ly-10:2,1,...,1,2,1,..,1,2....]]
2n+l 2n+2
> 1’ and
e 3
2.
y= TN o =y = (01,0, 1,21, 1,2, )
~— ~—
2n 2n+l1
s‘ Py
qn(y)

1
S [ —
(qon(7))?

Therefore, if a € [1/2, 1), since there exists a positive constant ¢ such that

¢
’yn'c Sqn()’)s Fs

for all n € IN, since 2271 < y=271-3) gnd since
2Mla_2.n-(1-a-2-(1-a)-Q2"+n-2)
=2".2.a-1)-4-(n-1)-(1 - a),

we have that

In(A(n,k) + n+ 1)
2:(1-a) A(n,)+n+1
. |7'1 K

lim sup
e (Q/\(n,K)(K))

. n-1n(2) - (g (y))*?
> lim sup 5
nteo 221018 - (gon,n_o(y))* 172
n-In(2)
20+1.(2-g-1)+4-(n-1)-(1-a)

(K)—Va

> lim sup
n—+oo 2. Y

= +o00.
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Moreover, since the sequence (g;(k))jew grows exponentially, it follows that
In(A(n, k) + n—1)

(arno-1G) 7 TR0 ) o

In(A 1
< liminf —nA@O =D

e (q/\(n,m—l(K))z'(l_a) : | 1|a

2

lim inf

n—+00

which proofs the assertion. The case a = 1/2 is included here which has not been
included in [KKS16].

O

Proof of Theorem 8.6.2. Since lim,_, 1+ an = +c0, we have that the w-Limit set of
B is given by

wi(B) = {% ke]N}U{O}.

Following the same arguments as in beginning of the proof of Theorem 8.2, it is
sufficient to show, for a fixed k € IN, that

=0 iflim sup yk,j = 0,

rms ln . 1 J—0
erJjop () - Vg.an, (k) >0 if limsup % > 0.
jooo

and

1
liminf In(n) - Vg an 1 (—) =0.

n—+co k

For n € IN, T/(B) i the unique real number in [0, 1] such that 1 s,¢sy, ( T7(8)) = 8.
We fix k € IN. It is sufficient to show the validity of the limes inferior statement for
the case T{’(ﬁ) ¢ (1/(k + 1), 1/k) and the limes superior statement for the case
T7(B) € (1/(k + 1), 1/k). If T'(B) € (1/(k + 1), 1/k), we first observe, that, by the
mean value theorem, there exists u := u(n) € (1/(k + 1), 1/k), such that

1
LH— fi.0,8), (;)‘ =

— ‘l - T{’(ﬁ)‘ : ’ff,ﬂlw)ln(“)|

1
frovg (T7B) = fLowg), (;)’

k
K~ 6
|(r(n) - U+ 1) - Gy + Gy - U
11

= 7
|(r(n)+k)'Qm(n)+Qm(n)—l |

k+ 1> |+ =T
= AR D -Gy + Gy |
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Furthermore, we have that T['(8) = [0;k, am(n)» @mny+1, - |; that is n = Nk m(n)
which in turn implies, that

. 1
lim sup In (nk,,-) “VB.anm.1 P

Jjo+oo

2, .
= lim sup fod (nk’])

Joteo ((r(nk,]) + k) ' qm(nk,j) + qm(nk,,-)—l)2 : lﬁ— flﬁl(ﬁ)'”k,/ (%)

a

. Kk2(1-a (nk,j)

< limsup 1 PR ()
s 1)) '((r(nk,/‘) +K)  Qm(ny)) + Qm(nk,,.)—l)
. k2(+a) . 1n (nk!j)

> lim sup va |l 2Ma 2(-2)
Joveo 2a. |4 — TV (B)| '((f(nk,j) +K) - Qminy)) + Qm(nk,,-)—l)

k2 . (a,-+1 + l)a -In (nk,,-)
)2~(1—a)

< lim sup

jo+oo (qj

K20+29) - (g,1)" - In (g )

> lim sup ——
jo+oo 22-3 . (qj)z (1-a)

= limsup k* - S
jo+00

= limsup k*(1%29 . 472 7, .
j—o+00

and the first statement follows. Hence, the case Tl”(ﬂ) ¢ (1/(k+1),1/k)is left to
be considered. Since fi g, (), is either order preserving or order reversing, we have
for n € IN sufficiently large that

1
}ﬂ— fLoi@ln (;)‘

1
L9, (TTB) = FL.o,8)s (;)‘

|f1,m<ﬁ)|n (3)- fl,m(ﬁnn(l)l if k=1,

v

min {|f1,,91(’3)|n (ﬁ) - fl,ﬂl(ﬂ)ln (%)’ )

|f1,z91(ﬁ)|n (%) — fLo@ (%)|} otherwise.
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By the mean value theorem there exists u e (1/(k+1),2-k—-1)/2- k- (k- 1)))
if k #1and u € (1/2,1)if k = 1 such that

g | LBl (“)|
Lo1B)n k k-t D
1

S Qk-(k+ 1) |(r(n) - u+ 1) - Gty + Goniny-1 - u|2
1

>
> ;.
3.2 k-|(r(n) + max{k = 1, 1}) - Gmny + Grmn—1]

Hence, we have that

1
0 <1In(n) - vgan (E)

In(n)
m(n 2 a
((r(n) ) Gy + Gm(n)- 1) ‘,3— fLo.6), (%)
6%2. k*(178 . In(n)
((f(n)+ D) Gminy + Q-1 > 172"

Since (r(n) + 1) - Gmn) + Gmny-1 > n, for all n € IN, it follows that

1
liminf In(n) - Vg an 1 (k) =0,

n—+oo

which completes the proof of Theorem 8.6.

oo
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Chapter 11

Central definitions I

This chapter introduces the necessary definitions that are needed in this part of the
thesis and begins with the notion of moderately increasing. This notion classifies
different slowly varying functions and shows that there is a variety in the class of
slowly varying functions. The major parts of this part are published in [KKSS15].

Definition 11.1 (Moderately increasing). A slowly varying function w,: N — R
is called moderately increasing, if

)
Wr”‘WFZ] nelN

Note that the constant function and for instance the slowly varying functions In(n),

is a bounded sequence.

In(n) ) .
e VIn(" and et are moderately increasing. Yet, we have that

In(n)
nl_)Igem =0,
In(n)
=0 (11.1)
g Vin(n)
and lim o = 0,
n—oo em

which demonstrates that three moderately increasing functions, although they are
all slowly varying, lie in different asymptotic classes.

The fact that slowly varying does not imply moderately increasing can be seen in
the following example.

Example 11.2. This is an example of a slowly varying function that is not modera-
tely increasing. Given a function m: [0, c0) — R, we let I(x) = exp(m(x) - (log x)).
By the definition of m and /, we observe the following two equivalences.
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1. limy_ I(c- x)/I(x) =1, for all ¢ > 1, if and only if

lim m(x + d) — m(x) =0, forall d > 0. (11.2)
X—00

2. l(x)//(x//(x)z) is bounded, if and only if
m(x) — m(x — 2 - m(x)) is bounded from above. (11.3)

Thus, a function m that satisfies (11.2) but not (11.3) would give a counterexample.
To this end, we let (cx)kev denote a decreasing sequence of positive numbers that
converges to zero. Let xy.1 == k/2 - cl%. Further, let by = 0 and for k > 2 let

br+1 = (Ck — Ck+1) * Xk+1 + b
Define m to be the continuous piecewise linear function given by
m(x) = ¢k - X + by, for x € [ Xk, Xk+1]-

Since ¢ — 0, for kK — oo, we have that m satisfies (11.2). On the other hand, we
have that

M(Xk1) — M(Xks1 — 2 - M(Xk11)) = Ck * Xks1 + Bk — (Ck * (Xkv1 — 2 - M(Xk+1)) + by)

k
=2 Ck - M(Xks1) = 2‘C£'F+2‘Ck+1‘bk+l

K
> k.

Hence, (11.3) is violated and m is a slowly varying function that is not moderately
increasing.
| am grateful to F. Ekstrédm and T. Samuel for providing this example.

We continue with the introduction of the function space for which convergence
results are going to be discussed in the sequel.

Recall from Paragraph 6.3.3 that if f € 8B,, then f is Lipschitz continuous on each
atom of 8,, zero outside of Zl and bounded everywhere. We define

Wil < o0 B3 R L) < v |
and E?_I(V' 1) € B, forallne N

Ay = {v € L, ([0, 1]):

For examples of observables belonging to A,, the reader is referred to Exam-
ple 11.3 and the discussion succeeding Theorem 12.3. We call the condition

|
k=1

FKl(v-1a,)

< 400, (11.5)

the summability condition.
The next example shows that the definition of A, is not vain.
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Example 11.3. We assume that ([0, 1], &, u., F.) is a 1-expansive a-Farey system
with a moderately increasing wandering rate. Let &, , be given by

Dy, ={f: fe L} ([0,1]) and f € C*((0, 1)) with ' > 0 and f” <0},

and for f € 9, set u := f/h,. We claim that u € A,.

To proof this claim we have a look at a technical Lemma, which is also crucial in
the proof of the main results.

Lemma 11.4 ([KKSS15, Lemma 2.3]). For each n € IN, we have that
Fr i) = t,- 1g, (11.6)
Fol(1a,)

and hence, by the definition of the norm, | Fr (1)

= tn.

5
Proof of Lemma 11.4. For n = 1 the result follows, since t; = 1. By Lemma 6.3,
we have for n # 1, on [0, 1), that

(o) (o9

=n-1

Fo (La) = ) s - Lay 0 oo - Lo = D G0y - Loy - T = tn- Lay.
k=1 k=1

This completes the proof and we can show the claim of Example 11.3.
]

We are required to show that u € L}M([O, 1]), that ||u]leo < +o0, that for all j € N,

Fé_l(u - 14) € B,, and that the summability condition (11.5) holds.

By definition, each function belonging to ,,, is convex and continuous on (0, 1),
twice differentiable and u,-integrable. Thus, f € LLQ([O, 1]) and [|ullee < +00.
Combining this with the fact that 1/h, is u, integrable, non-negative and bounded,
we have that u € L}M([O, 1D and ||u||le < +co. Let us now turn to the second
assertion, namely that Ef‘l(u- 14,) € By, for all n € IN. We immediately have that
Fg(u ~14) =u-14 € 8B,. For n > 2, note that, if g is a differentiable Lipschitz
function on Aj, then D,(g) = sup{|g’| : x € A;}. Thus, by Lemma 11.4 and the
chain rule, we have that, for each integer n > 2,

f
| Clyon—l ' h_ ° @,0n-1
(04

= ||lan - f o f0,,

Folu-1a)|,

q
a

By
|3a (11.7)
+ Da(anf o fa,On_l)

o)

Since f € Z,,,, we have that ||f|lc < +c0andthat0 < '(x) < (f(th+1) — f(th+2))/ @n+1,
for all x € A,. That is, the derivative of f on each level set of the first return time is
less than or equal to the slope of the straight line through the endpoints of the level

|00

< an (Iflleo + || - 1a,

= ||an - £ o fr0, ,
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set of the first return time on the right side of it. Therefore, since a, = £(n) - n~2, it
follows, that

S 00 00 (f _f f
Z an Hf, ’ ]lAn ) < Z an- fl (fl’H—l) = Z &n ( (tn+1) (tn+2)) < 22 (t3) .
n=2 =2 = an+1 a

Combining this with (11.7) and using the facts that the sequence (ap)new is
summable and that ||fll. and |[u - 14,llg, are finite, the summability condition
in (11.5) follows. Hence, it follows that u € A,.



Chapter 12

Convergence and
non-convergence
— main results of Part Il

Using the definitions of the previous chapter and the notion given in Section 5.2, we
are in the position to state the main results of this part. The first theorem is a gener-
alisation of [KKSS15, Theorem 1.3 (ii)], inspired by recent developments published
in [MT15]. The second theorem is an improvement in a certain situation. Finally,
the third theorem shows that convergence results do not hold in full generality.

In Chapter 14 and after the statement of the theorems, we discuss how the results
of Theorem 12.1, Theorem 12.2 and Theorem 12.3 complement, extend and follow
from the results of [MT15] and [KKSS15] and other previously known results.

Theorem 12.1. Let 6§ € (1/2,1] and let ([0, 1], &, uq, Fo) denote a 6-expansive
a-Farey system. If v e L1([0, 1]) and if

Da (nAl ! (1 : ILA”)) =0(1) (12.1)
he

1
and ||v-1a). = 0(—), (122

(o] tn

then uniformly on compact subsets of (0, 1],
. — "4 "4

31_)1’[010 Wp - F(g (h_a) = r5 . fh_w d/,la, (123)

The constant I's is given by (6.16).

Conditions (12.1) and (12.2) are quite restrictive. We can do better, if we have
more information on the system as Theorem 12.2 shows.

117
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Theorem 12.2 ([KKSS15, Theorem 1.3 (i)]). Let ([0, 1], &, uq, F,) denote a 1-
expansive a-Farey system and assume that the wandering rate is moderately
increasing. If v € A,, then we have, uniformly on compact subsets of (0, 1] that

lim Wn-Fg(v):fvdya. (12.4)
n—oo

However, we have to be pre-cautious, if the assumption become too weak, as the
next theorem shows.

Theorem 12.3 ([KKSS15, Theorem 1.3 (iii)]). Ford € (1/2,1), let ([0, 1], A, uq, Fa)
denote a 6-expansive a-Farey system. There exists a positive, locally constant,
Riemann integrable function v € A, of bounded variation, such that, for all x € Ay,

liminf w, - F7(v)(x) = [ - f vdu,
e _ (12.5)
and limsup w, - FJ(v)(x) = +co.

n—oo

The limes inferior in (12.5) can be replaced by a limes, if we exclude a set of
integers having asymptotic upper density zero.

The asymptotic upper density d(-) of a subset L of the natural numbers is defined
to be

= . #Hkel: k<n}

d(L) := limsup —— . (12.6)

n—oo n

Theorem 12.1 resembles [KKSS15, Theorem 1.3 (ii)]. In the latter, the authors
assumed as well two properties, namely that

1. the sequence (D, (14, -F(Q"l(v -1 4,)))nen is bounded and

2. there exist constants ¢ € R and 7 € (0,6) with ||v - 14,[|, < ¢~ ", forall ne IN.

We observe that, by the definition of h,, the first condition implies (12.1), since
Do(La, - FI7Y(v/hy - 14,) = 1/n- Du(1a, - F77Y(v - 1,4,). The second condition
implies (12.2), because we have that

) tn
OOSI}I_)I’EIOC~7-I‘I =0.

lim ty - [|v- 1a,
n—oo

We end this chapter with a series of examples and remarks which indicate how the
current results can be extended.

Example 12.4 ([KKSS15, Remark 1.4]). It is immediate that if a, = n~! - (n+ 1)1,
then t, = n~! and w, ~ In(n), and that these parameters give rise to an example of
an a-Farey system which satisfies the conditions of Theorem 12.2. Indeed there
exist many examples of a-Farey systems for which the conditions of Theorem 12.2
are satisfied, but where the wandering rate behaves very differently to the function
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n + In(n). Letting 6 = 1, as we see in Lemma 4.2 (iv), the sequence (Wp)nely is
slowly varying and lim,_,. 1 - t,/w, = 0. We also have that

W,,—Zt/—n Z aj+Z/ a=n-: tn+1+Zj a;.

j=n+1

Using this we deduce the following two examples.

VIn(n) VIn(n)
Example 12.5. If a, = nf]—hi()n) then t, ~ e\/I(T and w,, ~ e Vin(n)_

— 1
Example 12.6. Let x(n) = Tt~ e

CIn(n) _In(n)

K(”) . e and w, ~ ehmm)

K(n)

If an_16 = eln(ln(nD then t, ~

Indeed the above two sets of parameters give rise to examples of 1-expansive
a-Farey systems whose wandering rate is moderately increasing. Equation (11.1)
demonstrates the difference between these wandering rates.

Remark 12.7 ((KKSS15, Remark 1.6]). If in the definition of the norm ||||g,, one
replaces the norm |||l by the essential supremum norm ||-|less sup, then by ap-
propriately adapting the proofs given in the sequel, one can obtain a proof of
Theorem 12.1 where the uniform convergence on compact subsets of (0, 1] is
replaced by uniform convergence almost everywhere on compact subsets of (0, 1].

Remark 12.8. As the proof of Theorem 10.6, parts of the proof of Theorem 12.1
and Theorem 12.2 are inspired by the proof of [MT15, Theorem 10.4].

Remark 12.9 ([KKSS15, Remark 1.8]). Thaler [Tha00] discerned the precise
asymptotic behaviour of iterates of the associated Perron-Frobenius operator £
for certain interval maps T: [0,1] — [0, 1] with two monotonically increasing,
differentiable branches whose invariant measure has infinite mass and whose talil
probabilities are regularly varying with exponent —¢ € [—-1, 0). He proved that one
has for all Riemann integrable functions u with domain [0, 1] that

Tim wi(T) - P"() = I'(g-(fud/l)-h (12.7)

uniformly almost everywhere on compact subsets of (0, 1]. Here, h denotes the
associated invariant density. However, a-Farey maps do not fall into this class
of interval maps. Using the relationship between the transfer and the Perron-
Frobenius operator, Theorem 12.2 together with the assumption that the Banach
space of functions of bounded variation with the norm ||-[|ess sup + Var(-) satisfies
the functional analytic conditions (R17) -(R5), given in Section 6.3.2, shows that
Thaler’s result can be extended to §-expansive a-Farey maps. Results of this form
have also been obtained in [TZ06] for AFN maps. Yet, an a-Farey map is also not
an AFN map.
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Remark 12.10. In the last remark of this chapter, we rewrite our results in terms
of the maps F, and in the context of probability theory. To this end, we fix a
[0, 1]-valued random variable Xy with distribution Py, := P o X! absolutely con-
tinuous with respect to u, and with probability density v € L}M([o, 1]), namely
dPyx, = vdu,. We now consider the process (Xj)nev With X, := FJ o Xo. The con-
vergence results in the above theorem means that the scaled distribution w, - D(X},)
of X, converges weakly to p, - I's f v du,. This follows since for all compact intervals
A C (0, 1] we have for n tending to infinity, that

Wn‘f]leXnd]P:Wn‘f]lAOFC?OXOd]P

:Wn‘f]lAOF(g'Vdﬂa

=f11A-F£<v> dhta

S ATy f v dita.

In the case of an ergodic probability preserving dynamical system (X, B,1P, T),
estimates on the rate of mixing of the system have been well studied in [Gou04], in
particular the rate of convergence of

fV-WO T”d]P—fvdIP-fwd]P,

where v, w € L]IP(X). Indeed the current results imply the following

lim Wn'fV‘WOFan']lFa”(A)d,ua_ré‘de,Ua‘fW‘]lAd/Joz:O,

n—oo

where w € .[j;j‘; [0, 1], v satisfies the conditions of Theorem12.1 or 12.2 depending
on ¢ and A is a compact subset of (0, 1].
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Proof of Theorems 12.1 - 12.3

13.1 Asymptotics of the a-Farey transfer operator
fordo € (1/2,1]

Proof of Theorem 12.1. To apply Theorem 6.10 to the observable v/h,, we need to
show, that HL‘] F (v /By - nAn)HB is bounded. By Conditions (12.1) and (12.2),
it is bounded, since by (5.15) and (1 (1Y.6), we have, for all n € IN, that

—n_ 4
Ta, - F" 1(h_,]1An)
(02

By

— v — 4
R R
@ 00 @

=n-1( Vv
oo+Da ]lAl'Fa h—-]lAn .

@

= a,,-“v-]lAn

We also discern that H]IA1 CFN(v/hy - 14)
condition (12.2), we have that

is summable for ¢ € (1/2, 1], as by

N < 3 (L(K))
D av-tall, <<Zak~tk~z(kf%. (13.1)
k=0 k=0 k=0

For the proof of Theorem 12.1, we make use of Theorem 6.10 and Proposition 6.20.
We have that there is a 6, : [0, 1] — R, such that sup{|6,(x)| : x € A1} = o (1/wp)
and, for each n € INp, we have that

[V T B v
Fa(h—a)']lAl—Wn'de/l']lAl-l‘en'h—a']].Al.

This in combination with the observation that, for g € Ll(y, we have

S [ 9 N (= (9
fgd/l = th_ g, due = Zf,:(jx (h_ ) ]lA/+|)dlla,
j=0 @ j=0 @
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yields, on Aj, that
Wi Fg (hl) —Is- fvd/l‘
a
n
= Wn-Z]lAl (l_j(F(jI( ILA]H))—F(;-de/l
j=0

I fvd/l+w,, ZG”‘J F (hV .]lAjH)
(0%

Sl e
n—j

+ Wy - 2”9,7_1”00 F(g( ]1AM) (13.3)

Z f|v 1a,.,|d (13.4)

j=n+1

To prove the theorem, we need to show, that each of the summands (13.2), (13.3)
and (13.4) tends to zero as n tends to infinity.

To see that (13.2) converges to zero, we split the sum in it up into two parts. To this

end, fix an €, with 0 < € < 1 and write
n
Z( - 1)-f|v-]1Aj+1 da
=0 \Wn-j

/o(Wn—/_l) f|v 4]
+ Z (Wn _1) f|v 1a,,|d

Jj=Lle-n]+1

We observe that

€n w
n
Z(Wn_/’ - 1) ’ flv']lAjH

j=0

d/1<<f|v|d/l-( Wn —1)
W(-e)n

n'~ - £(n)
~flvld”((l_e>1—6-n1—6-€<<1—6>-”>_

1
< Jmor(G=g=-1)
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Furthermore, we observe, using Theorem 4.3, that

n W,
n
Z (Wn—j_l)'f|v'h’“

j=len]+1
w, ¢ 1
n .
S5 Z W .'/'f|v']lAf+1
j=leny 7
n

1 ,
V,:n, Z ” ,'(]+1)‘aj+1'”V']lA,-+1

j=len) "

n
Wh 1
< —- Z - max t,--||v-]1A,+1
n . Wn—j | O<i<en

=le-n]
[(1-e)-n] 1
n. Z — |- max t,‘-”V-]lAI.+1
n = w; 0<i<en

[e9)

da

da

IA
|

(o)

(o)

(o)

.L. max t”v.]]_
(1—€)-n) osi<en At

00"

By Condition (12.2), the last term tends to zero as n tends to infinity, and since €
was chosen arbitrarily, we obtain that (13.2) tends so zero.

The next aim is to show that (13.3) tends to zero.

By (5.13) and the fact that sup{|6,(x)| : x € Al =o(1/wy), given & > 0 there exists
M(&) € IN such that, for all m > M(¢),

F Ny . ml-6 —
% < W <Ts e lm)-m'™ and [l < =

Moreover, there exist constants ¢y, ¢; € R such that, for all n € IN,

(%]
+ c1) and  ||0nlle < o

n

Wn>r6' ef

= (l(n) -n'?

Furthermore, since F, is J-expansive, by (13.1), we have that the sequence
(a,, v+ 1a, oo)ndN is summable and

Fs-6-((n))?
a,, cWp-1 ~ T

These properties together with Lemma 11.4, imply the existence of a constant
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¢z > 0 such that

SO VY
Fj . +1
()

n
o<timsup vy 3" ..

j=0 s3]
n—-M(&) 1-6
. &n)-n
< limsup ¢ - €*¢- : : Av-1a,,l| - ai
n—+00 /=ZO tn-j-(n _j)l—é ” Vi1 lloo =
. C-Wy-a
+ hm Sup u
n—+o0 Wo
n—1
; I(n) - n'~?
+limsup c; - €7 - . . -ajp1 - ||V La,
e jen ity (=D - (n=)'= +cr - e | i1 lloo
:é‘-‘-GZ'f.Zaj_H .”V']lAjJrl -
j=0

Since € > 0 was chosen arbitrarily, the result for (13.3) follows.
Finally, since v € L;([o, 11]), we discern, that (13.4) tends to zero. Since the

arguments given above are independent of a given point in A, an application of
Theorem 6.11 finishes the proof of Theorem 12.1.

oa

13.2 Asymptotics of the a-Farey transfer operator for
0=1

Throughout this section, we let ([0, 1], %, uq, F,) denote a 1-expansive a-Farey
system with wandering rate w,. In order to prove Theorem 12.2, we will use the
auxiliary results, Lemmata 13.1 and 13.2. Before which we require the linear
interpolation of the wandering rate, which we denote by w(-). That is, we define the
function w: [0, ) — R by

+ if x € [0, 1],
w(x) = (13.5)
b1 -(X=n)+w, ifxe[nn+1], forneN.

[NSTE
D=

Further, for o € R*, we define for all x > w™'((1 + 0)/2),

w(x) )

: R |
JrfxX)=x—-w (1+o-

Lemma 13.1 ((KKSS15, Lemma 4.1]). For agiveno € R*, we have that j,(x) ~ x.
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Proof of Lemma 13.1. For o € R*, we have that

-1 (wXx) -1 (wXx)
w (== w (==

lim M — lim M =0,
X—00 X X—00 m—l(m(x))

and the result follows. The second equality follows from the fact that w is a positive,
strictly monotonically increasing function and Lemma 4.2 (iii).

O

Lemma 13.2 ([KKSS15, Lemma 4.2]). Let (6))jew denote a sequence of positive
real numbers such that 3.2, 6; - tj < oo. If the wandering rate is moderately

increasing, then
n
lim
n—oo 0 Wn—j

Wn

Ol G = 25/'1’/-
j=1

Proof of Lemma 13.2. We assume that sup{d; : j € IN} = 1, without loss of general-
ity. Furthermore, as we will see in (13.6), we may assume, without loss of generality,
that |j(m]+1<|n—n- (w(n))~2]. If this would not be the case, we would split the
following sum only into two parts, leaving out the second summand. Let o € R* be
fixed. By definition of w, we have, for n > w=!((1 + 0)/2), that

n

Wn
.6.1.t.1
2 b

Lir(m)] {n_ o J
w(n) w(n)
S —=" Ojrt sl + ——— - Ojst * G
w(n — j,(n)) » (L)
J=0 w(n)?/) J=ls(ml+1

n
2w >
I :{n_ e JH
By Lemma 4.2 (iv) and since (fj)je is a regularly varying sequence of order —1,
we have that,

n

lim 2.+ w(n) > for < lim

N
e LU (13.6)

j=Ln=n(w(n))~2]+1

Further, since w is an unbounded monotonically increasing function we have that
n—n-(w(n))~? ~ nand, by Lemma 13.1, we have that j-(n) ~ n. These statements
in tandem with the assumptions that 3.2, 6; - §j < o and the assumption that the
wandering rate is moderately increasing, yield the following:

fim — 20 .{n_w&)zJ
(W) J=lr(m]+1

n—oo

Ojs1 - ti1 = 0.
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Finally, observing that
w(n)

w(n — jo-(n))
finishes the proof, as o was chosen arbitrarily.

=1+o0,

After these two auxiliary results, we prove the main result.

Proof of Theorem 12.2. Following the same arguments as in the proof of Theo-
rem 12.1, we have by Theorem 6.10 and Proposition 6.20, that for each n € IN,
there exists 8, : (0, 1) — R such that sup{|6,(x)| : x € A1} = o(1/w,) and

—~ 1

F(’;(]].Zl . V) . ]]'Zl = Wn . f]]'Al . Vd,ua . ]lzl +6,-v- ]lzl (137)
By (13.7), we have on A that

w20 - [ v,
= (W, ZﬂAl F /(]lAl Fj (V ]lA/H)) de/Ja

j=0
n —
—fvduﬁwn-Zen_,-F(fl(v-nAM)

j=0

Il
S
Sy
]
<
==
>
2
=
£
]

n
S (wn —1)-f|v-]1A,+1 di (13.8)
=0 \Wn-i
- W, Z||0n_,|| | (v 1) (13.9)

- flv L4, At (13.10)

j=n+1

Since v e A, C L}M([o, 1), it follows that (13.10) converges to zero. To see that
(13.8) and (13.9) converge to zero, observe that

(i) Since v € A,, we have that v L}la([o, 1]) and, moreover, we have that

t.
f|v-11A,| d,ua:a—jj-fv-]l,qjd/l.

(ii) Since v € A, we have that ||v|| is finite, and so the sequence

1
(_‘fV']IAjd/l)
aj jelN

is a bounded sequence.
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(iii) Using Lemma 11.4 together with the fact that Fa is positive and linear and the
fact that v € A,, we have that [F., (v - 1)) < IVlleo - 8.

(iv) Given € > 0, there exists N € IN such that |0l < €/w(m), for all m > N,.

Combining these observations with Lemma 13.2 and (11.5), we have that (13.8)
and (13.9) converge to zero. Since the arguments given above are independent of
a given point in Ay, an application of Theorem 6.11 now finishes the proof.

0o

In the proof of Theorem 12.1 and Theorem 12.2 we have not used the specific
structure of B,. We only used that B, is a Banach space which satisfies conditions
(R1)to (R5). Thus, we may replace B, by an arbitrary Banach space which satisfies
conditions (R1)to (R5). For such alternative Banach spaces see Remark 12.9 or
Part Il. In doing such a substitution one may change uniform convergence to almost
everywhere uniform convergence.

13.3 Non-convergence for § € (1/2,1)

This section gives a constructive proof of Theorem 12.3.

Proof of Theorem 12.3. The proof is divided into several parts. First, we define a
class of observables V. Second, in Proposition 13.7 we will show that if v € V,
then v is bounded, of bounded variation, Riemann integrable and belongs to
LLH([O, 1]). Third, in Proposition 13.8 we will show that if v € V, then it belongs to
the space A,, in particular we will show, that the summability condition given in
(11.5) is satisfied for all v € V. Finally, in Proposition 13.10 we will show that, if
v € V, then

lim inf w, - F(v)(x) =T - f vdu, and limsup w, - FA(V)(X) = +oo.
n—+o0

n—+oo

Combing these results yields a proof of Theorem 12.3. To define the set V, we let
g1, 92 and gz denote three positive constants, depending on d, such that

(C1) g1 > 15,
(C2) 691 > o,
(C3) there exists e € (0,6 —1/2), suchthatg, - (6—€) > 2-0+2-€—1)-g; + g3.

These constants give rise to three sequences, (Nx)kews (Mk)kew and (Sk)kems
whose elements are given by

N = [29""] N = [292"‘J and sy = ﬁ



128 Chapter 13. Proof of Theorems 12.1 - 12.3

Finally, we let ‘V denote the class of observables v : [0, 1] — R which are of the

form:
‘“:ZS"' Z 1a. (13.11)

The next two examples show, that the class of observables is not vain.

Example 13.3. For 6 € (1/2, 1), choose

__1+6
gl-—1_6,
. 0
92-—1_6,

Then g; and g; satisfy the conditions (C1) and (C2). With these choices we can

verify that (C3) is equivalent to

3-6+1+2-€
1-6

Hence, by choosing € > 0 sufficiently small, it follows that the conditions (C1), (C2)

and (C3) can be satisfied simultaneously.

Example 13.4. Foro € (1/2,1), set

€.

g <-0)-

1
g1 = —(1 Zop
67 +2-6-1
2= s d—op
1
93 =3
2
and €:= 0-(1-9)

2-62+12-6-2

For each ¢ € (1/2, 1), these values are positive and satisfy conditions (C1), (C2)
and (C3).

For instance, if 6 := 3/4, then we have g; = 16, go = 34/3, g3 = 1/8 and
€ = 3/520.

The main reason why we require the sequence (Sk)ken, is to ensure that v is
of bounded variation. Further, condition (C3) is only required in the proof of the
second statement of Proposition 13.10, specifically when Lemma 13.9 is used.
Before we begin with Proposition 13.7, we give two technical lemmata which we
will use in its proof.

Lemma 13.5 ((KKSS15, Lemma 4.7]). Ifse€ (0,1) and 1 < b < &°, then

(o8]

=) k
Z 219K _ (g = py1-s < Z (%) < 400,
o1 \@

k=1
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Proof of Lemma 13.5. By assumption, we have that a/b > 1 and so

<

which implies for each k € IN, that

Hence, we have that

R CRCECECCEIN

O

The next lemma shows that the sum in the definition of the observable v, given in
(13.11) is reasonable.

Lemma 13.6 ([KKSS15, Lemma 4.8]). For k € IN, we have that Ny — nk+1 > Nk.

Proof of Lemma13.6. We have, for all k € IN, that

Newt = et 20550 — g0
Ne — © 201k 4 1

201K+ (1 — @0 k+D) _ 3-1(k+ D)

200k . (1 4 2-9rk)
291 . (1 — 2(@=gn-k+1) _ 2—91'(k+1))

2-9rk 4+ 1
291 . (1 —22(@-g1) _ 27291)
>
279 + 1

By (C1) and (C2), we have that g; > (1 —6)~! and g» — g1 < 0 and hence, the last
term is strictly greater than one.

O

Proposition 13.7. An observable v defined as in (13.11) is bounded, of bounded
variation, Riemann integrable and belongs to the space L}M([O, 1.
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Proof of Proposition 13.7. By its construction, the observable v is Riemann inte-
grable. Moreover, v is measurable, as each of the atoms of « is measurable
and v is the sum of indicator functions of atoms of a. Further, the range of v is
equal to {0} U {sk : k € IN}, and thus, ||v|| = Si. By Lemma 13.6, we have that
Nk+1 — nks1 > Nk, and so the variation of v is equal to 2 - 377 | sk, which is finite,
as s := 279% and as g; is positive. This shows that v is of bounded variation. It
remains to show that v is u,-integrable. For this recall that u,(Ax) = , for each
k € IN. Choose a positive constant 7 < min{é, g3/g;} and recall that t, ~ I(n) - n™°.
By Lemma 4.2 (ii), there exists a constant ¢ > O such that {, < c- I(n)-n% < ¢-n~9,
for each n € IN. Therefore, by Lemma 13.5 and Lemma 13.6, we have that

0 Ni
[Wdn =Y Y, s
k=1 /=Nk—nk
) Ny c
< -gsk | _
DRI
k=1 /:Nk—nk
c o (avk(1=d4n) _ (20K _ 292'k)1_6+'7 =)
k
< .
T 1-06+n — 2-93K 293K
00 n—0
_°c . Z 2(@2=6g1+1g1=g3)k Nk_ )
T 1-6+n i 2-g3k

The last series converges, since n < min {8, g3/g1}, 9> < 6 - g1 and Ny > 1, for all
k € IN.

O

Our next aim is to show that v belongs to A, in particular it satisfies the summability
condition given in (11.5).

Proposition 13.8 ([KKSS15, Propositions 4.10 and 4.11]). An observable v de-
fined as in (13.11) belongs to A, .

Proof of Proposition 13.8. By Proposition 13.7, we have that v € L;a([o, 11) and

that ||v|| = 1. Moreover, by Lemma 11.4, we have on [0, 1], that, for each j € IN,

there exists a natural number k, such that

—i ti-sk if Nk —ng <j< Ngandif x € Ay,

F (v1g) 00 =4 05 D o= =T NGRS
! 0 otherwise.

Therefore, 'l-:!;_l (v . ]lA/.) € B,, for all j € IN, and hence, it is left to show, that an
observable v defined as in (13.11) satisfies the summability condition given in
(11.5).
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Lemma 11.4 and (13.12) together imply that

o 00 Ny 00 N
Z”F(l; (V']lAkH)LO :Zsk' Z tj:Zsk' Z ,ua(Aj):f|V|d,u(x-
k=0 k=1 j:Nk—nk k=1 j:Nk—I’lk

The last term is finite, since, by Proposition 13.7, we have that v € LLU([O, 1D.

In the proof of Proposition 13.10, we will require the following auxiliary result.
Lemma 13.9 ([KKSS15, Lemma 4.12]). Foreach N € IN, the sequence

”kz” N0 - I(Ni) - 1)
S
- (N =12 1N =) )

J=Nk—nk

N
diverges to infinity.

Proof of Lemma 13.9. The result follows from combining the following three obser-
vations.

(i) Using the facts that 6 € (1/2,1) and € > 0, that the sequence (Nk)xen is not
bounded above and is strictly monotonically increasing, that sx := 279K and
that N is a fixed natural number, we have that

Ne \°
1‘ Sk - . N 1-2-6-2-€ . N§—E — O
k—l>r-ll:loo K (Nk - N) «

(i) For each k € IN, we have that
Sk . N;—Z'(S—Z'Eni—e 2 2—g3~k . 2g1-(1—2~6—2-e)~k . (Zgz'(é—e) _ 1)
= 2(91-(1-2:6-2:6)+g>-(6~€)=g3)-k _ 7(gi-(1-2:6-2-€)~g3) "k
Using condition (C3) with the facts that 6 € (1/2, 1), € > 0 and that g;, g, and
g3 are positive, it follows that

lim s - Nk1—2~6—2-e : nké_f = +o00.
kelN

(iii) There exist constants «,& > 0 such that, for all kK € IN sufficiently large,

”kz‘” Nic =0 - I(Ng) - 1))
. (Nk _j)l—ci . /(Nk —j) .j6
Z( 1 )6. I(Nx = N) - I(NK) - N ™° Ni’v 1
Ni — N e f (Nie= )10 (N = )

5
K Ni 1-2-6-2-€ S—€ S—€
ZE(M(——/V) 'Nk -(nk - N )
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Here, the first inequality follows from the facts that /(-) is a slowly varying
function and that limx— (Nx — nk)/ Nk = 1 together with Lemma 4.2 (i). The
second inequality follows from Lemma 4.2 (ii), which guarantees the existence
of the constant k > 0 such that, we have for all n € IN,

n¢ K
—>1I(n)>—
K n¢

O

Proposition 13.10 ([KKSS15, Proposition 4.13]). For an observable v as defined
in (13.11), we have that, on Ay,

1iminfwn-Fg(v):r5-fvdua and limsupw, - F(v) = +o0.  (13.13)

n—+0o n—+oo

Proof of Pioposition 13.10. By Theorem 6.10 and Proposition 6.20, we have uni-
formly on A; that

: _ ~ r r
lim K(n)- '~ 1z - Fo(La) = Fj o (A 17, = F—‘S-]l;l.
0

n—+o0o s
Thus, given & > 0, there exists N(¢) € IN such that, for all n > N(¢) on Al
e ... = €. 5. o1
_5—17 > F(g(]lAl) > e_# (13.14)
s - 1(n) Cs-1(n)
We will first show the second statement in (13.13). To this end, observe that by

(5.13) it is sufficient to show that, on Ay,

lim sup /(Nk) - N!0 - FNe(v)(x) = +00. (13.15)

k—+o0

In order to see this, let & > 0 be fixed and let p(¢) € IN denote the smallest integer
for which npe) > N(&). Since F, is a positive linear operator, we have, for all
k > p(&), that

Nk=N(&)
I(NK) - N B (v) > sic- I(NK) - N0+ " F(TLg). (13.16)

J=Nic=ny.
Now, Lemma 4.2 (i) implies that

. n'=% . I(n)
lim =
n—+oo (n+ D10 I(n+ 1)

As the sequence (ap)nen is positive and since a, =6 - I(n)/n'*° the value

. { n'=% . I(n) }
r .= inf
(n+ DS I(n+1)




13.3. Non-convergence for6 € (1/2,1) 133

is finite and strictly greater than zero._Hence, by (11.6), (13.14) and (13.16) and
the fact that t, ~ /(n)/n°, we have on A that, for each k € IN sufficiently large,

I(NK) - N0 - FNe(v)
G " M= TN N 1N -
Tor e it (Ne—j+ D' I(Ne=j+ 1) (Ne= '™ - 1Ny = J)

Foorose MO NN - 1)

T Tsee L (Ne= DI (Ne= -

>

By Lemma 13.9, the last term diverges.
All that remains to show is that the first statement of (13.13) holds. For this, observe
that, by positivity and linearity of F, Theorem 6.10, Proposition 6.20 and (11.6), we

have on A, that, for each k € IN,

Ny k Npm
ré'ZfV']lA/dﬂa:ré‘Zsm' Z l
I=1 m=1 J=Nm=nm
k Nm
= Zl S NZ lim inf w, - Frt (F (14)
m= j=Nm—nm
k Nm
< I fnf F”(Z Sy ﬂ)
m=1 j=Nm=nm

< liminf wy, - F(v).

n—+00

Since k € IN was arbitrary, the above inequalities imply that on A,

liminfwn-F”(v)zrg-fvdua.

n—+oo

Suppose that this inequality is strict, namely, suppose that there exists a constant
¢ > 0 such that on A,

liminf w,, - F"(v) > ¢ > F(;-fvd,ua.

n—+o0

This assumption together with (5.13) implies that, given & > 0, there exists
M(&) € IN such that, for all n > M(¢) and x € Aj,

-1

',_:n > —.
() e -Ts-1(n)

The constant F5 is given in (5.14). Thus, by Karamata’s Tauberian theorem, Theo-
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rem 4.3, it follows that, for all n > M(&) and x € A,

M) n

. k6—1
Fr = Y P + LA
Z Z ki1 € - To - 1K)
M(&)
"
> = + M-s-c-
Z W0+ e

Hence,

lim 1nf =n Z F()(x) = lim 1nf s Z F(v)(x)

n—+o0

>Tis-c>Ts F5~fvd,ua.

This is a contradiction, since by (5.13) and by combining Theorem 6.10 with
Theorem 4.3, we have that the set A, is a Darling-Kac set and therefore, by
Proposition 6.7, the a-Farey system is pointwise dual ergodic, meaning that, for
Uq-almost every x € [0, 1], we have that

lim 2. ZF”(V)(X)—I’] s Ts- fvd,ua.

k=1
O

All that is left to show is the final statement of Theorem 12.3. We observe, that
the divergence in (13.15) occurs only along a zero density subsequence. That is a
subsequence ny of the natural numbers, such that lim,—. #nk: Nk < n}/n=0
Following similar arguments as in [GL62, p. 226], we have the following lemma.
Recall the definition of the asymptotic upper density given in (12.6).

Lemma 13.11. In a pointwise dual ergodic system (X, B, u, T), with a wandering
rate that varies at oo regularly with index 6, the limes inferior in (12.5) can be
replaced by a limes, if we exclude a set of integers having asymptotic upper density
zero.

Proof. We let (bx)kew denote a sequence of real numbers and let B € R. To prove
the lemma we claim the following implication. If we have for all subsets K € IN with
positive asymptotic upper density that

liminf by = B, (13.17)
k—o0, keK

we have that there exists a subset K € IN with asymptotic upper density equal to
zero such that

limsup by =B
k—co, kgK
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To prove this claim, we let 9t := {n € IN: b, > B + 1/k}. Then there exists an 1y,
such that we have for all n > ny that #t, N [1, n])/n < 1/k. By construction, we
have 9t C Ny41.

With
B = U O N [, mig]),
i=1

we have for n, with ng < n < ngyp, that # B N [1, n)/n < # M N [1,n])/n < 1/k.
Hence, B is a set of asymptotic upper density equal to zero and by its construction
we have

limsup by = B.

k—o0, k¢B
This proves the claim. To prove the lemma, it hence sulffices to prove (13.17) for
bk = wx - TX(f). We prove this by way of contradiction, namely, we assume the
existence of a subset of the natural numbers K c IN with positive asymptotic upper
density d(K) = p > 0 such that there exists a constant J > fx f du with

.. =k
>Ts-dJ.
kllg,ll?ef;( weT"(H) > Tg5-J

Exploiting pointwise dual ergodicity, this leads to a contradiction, since

n—1
Fl_é-ré-ffdﬂ lim - " T()
X n—oo N par

n-1 n—
lim [% > T+ ?k(f)]

e\ N OTRek MO kek
1 n-1 . 1 -1 —
:liminf(—- Z Wk-Tk(f))+limsup[—- Wk-Tk(f)]
n—co | N n—oeco N
k=0, kgK k=0, keK

2(1_P)‘Fl—é'ré'ffd#+P'Fl—6‘r&‘J
X

>F1_5'r§-ffdﬂ.
X

This finishes the proof of Lemma 13.11. | am grateful to lan Melbourne for posing
this question.

O

Finally, the proof of Theorem 12.3 is a consequence of Propositions 13.7, 13.8 and
13.10 and Lemma 13.11.

oo
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Chapter 14

Sufficient conditions for
convergence

Theorem 12.3 shows that we have to be careful when trying to obtain distributional
convergence. Melbourne and Terhesiu impose additional assumptions on the
observable in [MT15], such that convergence of the individual iterates of the transfer
operator can be obtained. In this chapter we discuss, how the results in [MT15]
extend and complement the results of Theorems 12.2 and 12.3.

We first state the version of their theorem [MT15, Theorem 10.4], slightly adapted
to fit our notation. It is assumed, that the tail probabilities are regularly varying.
That is, we assume that there exists ¢ € (1/2, 1] and a slowly varying function £(-),
such that

£(n)
Ha V€ Y2 4y) > M =ty ~ .
Furthermore, we define
€(n) itoe(3,1),

M(n) = )
AL ife =1
We state the theorem here for the Banach Space B, . Yet, the result in [MT15] is
stated for a general Banach Space that satisfies conditions (R7)-(R5), and hence
one could replace B, by another suitable Banach space.

Theorem 14.1 ([MT15, Theorem 10.4]). Suppose that v € A,. Furthermore,

suppose that
1
| 5 0(77) (14.1)

© |
or Z | F(I; l(V‘ ]]‘Ak) 8, = D(W), (142)

k=n

FKl(v-1,,)

then limp_eo M(n)- n'# - F(v) = T - fx v du, uniformly on'Y and pointwise on X.
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As mentioned before, the ‘pointwise on X’ statement relies on a Young-tower
construction in [MT12], see [MT12, Section 10.1]. In this thesis it is done via the
extension Theorem 6.11.

Conditions (12.1) and (12.2) together for an observable v are similar to condition
(14.1) of Theorem 14.1 for the observable v/h,,.

The minor differences are, that on the one hand [MT15] considers a general Banach
space not a particular one, as this thesis does. On the other hand, it assumes that
"I-:C’;‘l(v : ]lAk)HB = o(n‘l), this thesis requires this regularity assumption only in
the supremum paart of the norm, see (12.2). The assumption on the other part of
the norm is weaker, see (12.1). Yet, for a 9-expansive a-Farey system, we have
that |F£ (V/ho - 1a,,) ‘ = o(n‘l) if and only if ||v - 1a || = o(t;l). This can be
seen, since oo

an
N |

n

E(Q (V : ]lAn+l)

|OO

— (v
F”(—-]lm)‘ =n
[0 ha/ AI -

= n-a,,”v-]lAn+1

(o)

~ l'n'”V']lA,7

o0

However, our observable, constructed in the proof of Theorem 12.3, does neither
satisfy (14.1) nor (14.2). Furthermore, neither (14.1) nor (14.2) implies the condi-
tions of Theorem 12.2 and vice versa.
First, we show that an observable v € V does not satisfy (14.1), for which it is
sufficient, to show that lim sup, ., k - FX"'(v - 14,) > 0. As in Theorem 12.3, we
consider only the case 6 € (1/2,1) here.
By the definition of the $,-norm, given in (6.29), and by the definition of the class
of functions V, we observe, that if v € V, we have ||v||g, = [|v|l-~. Moreover, v
and F(f‘l(v - 1 4,) are non-negative. Furthermore, by (13.12) and Lemma 13.6, we
have for N — ni < jx < Nk, that

limsupk - ’I-:C’f—l(v -1 a,) = limsup jk - 8, - Sk

k—o0 k—o0

> limsup (Nx — ne)' ™0 - € (Ny) - sk

k—oo

> lim sup N, % - €(Ni) - sk

k—o0

. 291'(1—5)'k . 2—93'k . 5(291'(1—5)4{) )

) 1
> lim sup >0 10

k—oo
The last term diverges, since, £(-) is slowly varying and by conditions (C1)-(C3) of
YV and the fact that 1/2 < § < 1, we have that
1-0)-g-g32(0-0)-01+2-6+2-e-1)-g-(6-€ R
>(1-6)-g+2-60+2-e-1)-g1—(6—-€)-6-a1
=(6-6°+€-6+2-€)-q
> 0.
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The next aim is to show that an observable v € V does not satisfy (14.2) either.
Since ¢(-) is slowly varying, there exists a constant C € R and a sufficiently small
n>0suchthat0<1-2-6-2-n <1 and such that

limsup £(k) - k' |F§-1<v 1)
i=k

k—o0 o0
0 N; p
. _ N £
> limsup £(k) - k'Y 5+ Y v
k—eo i—k  j=Nen |
. IPERS n;
thsupC-N;(H’-ZSi- 5;7
koo L (14.3)
> limsup C - 291-(1=6-nyk Z 2(2=g3=g1-(6+m)-i
k—o0 =k
) 291-(I=6=n)yk . 7(g2—g3—g1-(6+m)k
= hfisoljp C: | = 2(@-g-g1-0+m)

2((1=2:6-2-1)-g1+92-93)-k

=limsup C -

k—oo

1 — 2(@2~g3=g1-(+m)

By condition (C3), there is an € € (0,6 — 1/2), such that
B<RP-G-€—-9g1-(2-6+2-€-1).

Combining this with condition (C2) yields, that

2 —€-6-2-6-2-e+1
5

g3 < P =9

Hence, we have that g, — g3 > 0. Combining this with the factthat 1-2-6-2-n >0
yields that the last term of (14.3) diverges and hence condition (14.2) is not satisfied.
This thesis concludes with a set of examples that show that neither (14.1) nor (14.2)
implies the conditions of Theorem 12.2 and vice versa. In examples 14.2-14.5,
the underlying system is a one expansive a-Farey system with a slowly varying
wandering rate.

Example 14.2. The first example satisfies both (14.1) and (14.2), and belongs
to the system ([0, 1], B, F,, u,), with a wandering rate w,, that is slowly varying
but not moderately increasing. That is, t, ~ £(n)/n and £(-) is slowly varying but
not moderately increasing. The reader is referred to Example 11.2 for such a
wandering rate. Moreover we define the observable ¢g: [0, 1] — R by ¢o(0) :=0
and

(o)

1
P00 = ) 5 La 0.
k=1
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We have on Aj, that
= t(n)
1
Fg (V . ]lAn) = 7
Hence, (14.1) and (14.2) are satisfied simultaneously, but the wandering rate is
not moderately increasing. Yet, the summability condition given in (11.5) is still

satisfied.

Example 14.3. The next example deals with a 1-expansive a-Farey system, with
a moderately increasing wandering rate and an observable that does not satisfy
(14.1). We assume that the wandering rate w,, is asymptotic to a slowly varying,
moderately increasing and increasing function £(-).

For k € IN, we define the observables ¢; x: [0,1] — R and the observable
¢1:[0,1] - R by

P1k(x) =Ta,,(%)

and 100 = ) ¢1x(x)

k=1
We observe on Aj, that
), ifxeApjeN

n-Frl(v-1,)=
0, otherwise.

Hence, (14.1) is not satisfied.

Example 14.4. This example is an example of a 1-expansive a-Farey system with
a moderately increasing wandering rate, such that (14.2) is not satisfied. For n € N,
we define

_ In(n)
"

1
T Un(n+ 1))

Sn

and  ¢3(x) = ) $p-Ta,(0)
n=1

Hence, t, ~ In(n)/n and we have on Ay, that
1
n - (In(n))?”

In particular, the summability condition (11.5) is satisfied. Furthermore, we note
that M(n) ~ (In(n))?/2, which implies that

F£(¢3 . ]lA,H) ~1th-Sp=

o = 1
M) Y F@3 - 1a, ) ~ 5 - In(n).
k=n

Thus, (14.2) is not satisfied.
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Examples 14.3 and 14.4 only failed to satisfy one of the conditions (14.1) and
(14.2). Example 14.3 still satisfies (14.2) and Example 14.4 satisfies (14.1). We
want to find an example that neither satisfies (14.1) nor (14.2) but still satisfies the
conditions of Theorem 12.2. A combination of the two examples 14.3 and 14.4
yields an example we are looking for.

Example 14.5. We adopt the settings of the previous examples and define the
observable ¢4: [0, 1] — R by

¢4(X) = ¢2(X) + p3(X).

This example satisfies the conditions of Theorem 12.2. Yet, neither (14.1) nor (14.2)
are satisfied.
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