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Zusammenfassung

Die vorliegende Arbeit liefert einen Ansatz fiir die Parameteridentifikation in allge-
meinen seminlinearen parabolischen partiellen Differentialgleichungen. Dabei wird
auf zwei Dinge eingegangen. Zum einen wird ein Losungsansatz via Tikhonov-
Regularisierung vorgeschlagen um eventuelle unstetige Abhingigkeiten der Pa-
rameter von den Daten in den Griff zu bekommen und zum anderen wird die
Eindeutigkeit einer Losung des Problems diskutiert.

Dazu wird zunichst eine allgemeine Differentialgleichung formuliert, die tat-
sichlich als Grundlage von vielen Realweltmodellen dient. Anschliefsend wird das
allgemeine Konzept der Parameteridentifikaton eingegangen. Bevor dieses auf
die allgemeine Differentialgleichung angewendet wird, werden aktuelle Resultate
aus der Losungstheorie fiir ebensolche Gleichungen vorgestellt, welche vonnoten
ist um Stetigkeits- und Differentierbarkeitseigenschaften des Operators zu zeigen,
der Parameter auf eine Losung der Differentialgleichung abbildet. Diese Eigen-
schaften, werden, soweit moglich, nachgewiesen und diskutiert. Aufserdem wird
sich der Interpretation von Quellbedingungen fiir diesen Operator gewidmet. Fin
besonderes Augenmerk wird auch darauf gelegt, verschiedene Arten von Messop-
eratoren zu untersuchen. Dabei wird gezeigt, dass man ausgehend von limitierten
Messungen unter gewissen Voraussetzungen tatsachlich eine eindeutige Losung
des Parameteridentifikationsproblems erhilt. Im letzten Teil der Arbeit werden
schlieflich numerische Experimente anhand eines konkreten Beispiels vorgestellt,
die die vorherigen theoretischen Ergebnisse bekraftigen.






Vil

Abstract

This thesis provides an approach for parameter identification in general semilinear
parabolic partial differential equations. We investigate the problem of parameter
identification from two different angles. On one hand, Tikhonov regularization is
proposed to deal with possible non continuous dependence of the parameters onto
the data and on the other hand the uniqueness of a solution of the parameter
identification problem is discussed.

For this, a general differential equation is formulated that serves as the basic
model for many real world applications. Then the concept of parameter identifi-
cation is addressed. Before we apply this concept to our general equation, recent
results for the solution of such equations are introduced, because they are needed
to show continuity and differentiability properties of the operator that maps a
parameter to a solution. These properties then are, as far as possible, proved and
discussed. Furthermore, source conditions for our kind of problems are investi-
gated. Special attention is paid to different kinds of measurement operators. It
is shown that the parameter identification can be uniquely solved under certain
restrictions, if a concrete, applicationally relevant measurement operator is given.
The last part of the work shows numerical results for a concrete example that
support our theoretical findings.
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CHAPTER 1

Introduction

If one wants to study the evolution of a certain process over time, the change of the
object over time and space can be modeled mathematically by the help of physical
laws. This usually leads to a partial differential equation or in the case of several
interacting processes to a system of partial differential equations. For every process
modeled in this way, there are certain quantities that determine the outcome of
the process, which are the parameters in the partial differential equation. If one
knows all of these parameters one can solve the equation and thus determine the
function that describes the evolution of the quantity of interest. This problem
is usually called the forward problem and can easily described by the operator
equation

F(p) = u,

where F'is the operator that maps a parameter p to the solution u. This operator
is given implicitly through the differential equation and is usually a nonlinear
map. The operator F' will be referred as parameter-to-state or control-to-state
map throughout this work. However, in many real life problems, the situation is
exactly the opposite. Here, one can observe (and also measure) the evolution of
the quantity of interest u, at least partially. What remains unknown is the exact
shape of the parameters. So one wants to find p with u given, or in other words,
one wants to perform a parameter identification.

A first idea to deal with such a problem is the well known data fitting or least
squares approach

argmin || F(p) — ul|>. (1.1)
P

In the context of parameter identification this process is not ideal, because the
fact that a parameter is unknown is not the only difficulty one has to deal with.



Parameter identification problems coming from partial differential equations tend
to be ill-posed, which in common understandings can mean three things

1. Different parameters yield the same solution, i.e. F' is not injective.

2. For given (noisy) data u, there are no parameters that could have caused
them, i.e. F'is not surjective.

3. The parameters do not depend continuously on the data.

For the moment, we will take a look at the third point. No matter, how good a
measurement process is, there will always be noise, so instead of u, one measures
a noisy version of w, which, for given noise level § will be denoted as u%. On top
of this, in most applications it can not be expected that a measurement of u is
possible over the whole domain for every time point, so one faces limited and noisy
data. If one includes this information, the fitting problem (1.1), becomes

argmin ||OF (p) — u°||?, (1.2)
P

where O is an operator that describes the limitation in the measurements. Now,
if the parameters do not depend continuously on the data, one adds an additional
constraint to the functional (1.2) and gets

Jo(p) = argmin |OF (p) — v’||* + aR(p)
p

Jo is called a Tikhonov type functional. The functional R is called penalty term
or prior and stabilizes the data fitting process. The name prior comes from the
second feature of R. It forces the minimizer of J, to have certain properties, which
can be used to improve the quality of the solution based on a priori information.
The parameter « fulfills two functions, it regulates the degree of stabilization as
well as the degree of special features of R that the function p adapts. Originally,
the Tikhonov functional was introduced for R(p) = ||p||* in [67]. The classical
Tikhonov functional, i.e. R(p) = ||p||?, is very well understood and comprehensive
results can be found in the textbooks [23, 59]. In the past decade, one began to
study more general convex penalty terms [11, 17, 36, 40, 56|, especially sparsity
enforcing priors have become very popular and were studied extensively [17, 31,
46]. The reason for this is that many natural problems inhibit a sparse structure
in some suitable basis, where action and interaction only takes place locally.

It can be shown that the minimization of Tikhonov-type functionals is a regu-
larization (in other words a stabilization of the inversion of F'), i.e. it has certain
properties that are wanted in practice, such as stability and a good approximation
of the real solution for a small noise level if F' and R fulfill the right continuity
properties. There are other regularization techniques that perform equally well or
even better in certain situations, but they are less general and often have special
requirements, see for example the standard references |23, 59].



Among the large variety of partial differential equations, usually the ones that
involve two space derivatives are the most interesting ones, because many real
world applications lead to models involving this type of equations. These equations
are classified in different types, elliptic, hyperbolic and parabolic equations [25]
and each have their rich theory for solving them as well as for solving inverse
problems arising from them. In this work we will focus on a very important
subclass of parabolic equations, so called reaction-diffusion equations, motivated
from chemical reactions happening in a medium or biochemical evolution in real
world organisms and there is a broad range of applications modeled by these type
of equations, see [12, 29, 45, 49, 51, 55| for a few examples. Throughout the
work we consider a general open, bounded and connected subset 2 of R? with
sufficiently smooth boundary, where d = 1,2,3 and a real interval I = [0, T]. For
the rest of the work, we will also use the notation Q7 = Q x (0,7"). Then a general
system of semilinear parabolic reaction-diffusion equations can be described in the
following way:

%ui(:c, t) — V- Di(z,t)Vu;(z,t)
+gi(p(x,t),u(x,t)) = fi(x,t)  in Qp, (1.3)
zui(z, t) + Zz%’di(l’,t) =0 on 99 x [0,T],

ui(z,0) = ug;(z) on 2 x {0},

where i = 1,... N, u = (u1,...,un), p = (P1,--,0Pm), 21 € {0,1}, 20 = 1 —
2z and g : RM x RV — RYM. The parameters D; are diffusion coefficients for
which we assume that 0 < D; < C, while the parameter p can describe multiple
things, like interaction of the solutions or just synthesis and decay of one solution.
More concrete, the exact function of the parameter vector p is determined by
the application that is modeled. For the sake of readability we only consider
homogeneous Dirichlet or Neumann boundary conditions. The extension of the
theory we propose to more general (but linear) boundary conditions is mostly
straightforward, in particular when it comes to analyzing the inverse problem. At
places, where this comes into effect, we will make appropriate remarks.

1.1 Organization

In Chapter 2 we get more deeply into possible applications and give a more detailed
motivation for what we are doing. Some general cases for the nonlinear function g
are discussed. After that we also give some real world applications that fit in our
setting. One is coming from predator prey models, whilst the other one models
the evolution of genes in simple organisms as the drosophila fly. Later on, we will
use this last example for illustrations and numerical simulations.



Chapter 3 gathers all the necessary functional analytic tools that will help us
with the analysis of the forward and the inverse problem.

Chapter 4 explains the difficulties in parameter identification. This section
is split in two parts, the first one introduces the concept of identifiability and an
example is given where identifiability fails. The second part then gives an overview
over regularization of ill posed problems (ill posed in the sense of continuity)
via Tikhonov-regularization, introduces source conditions and the application of
sparsity constraints and discusses the minimization of Tikhonov-type functionals.

After that, in Chapter 5, we motivate the weak solution theory for (1.3) with
the help of a simple example. Then we give a general concept for the solution
theory of systems of parabolic partial differential equations with a special focus
on solution spaces and their embeddings.

Chapter 6 then deals with the inverse problem. With the solution spaces from
the previous section at hand, we will show necessary properties like differentiabil-
ity and weak sequential closedness for our testproblem, that are needed for the
application of Tikhonov-regularization, following the approach of [57, 58]. Also
source conditions are discussed. We close this section with some remarks how the
results can be generalized further.

The next big block, Chapter 7 then returns back to the identifiability of coef-
ficients. For this, an adjoint approach derived in [21] is generalized for our needs
and for a simple case identifiability is shown. Also the case if identifiability does
not hold is discussed.

The last part of the work, Chapter 8, concentrates on concrete numerical tests
with simulated data. Here, we explain, how numerical schemes for parabolic equa-
tions usually work and use this combined with existing theory to design a solver
for the inverse problem. Then we will use a very special approach applying spar-
sity regularization, introduced in [30]. This approach uses the finite element basis
for reconstructions. Finally, some numerical results are shown and commented.

1.2 Contribution of this work

The first main contribution of this work is the comprehensive discussion of the
parameter identification problem itself, highlighting difficulties and certain prop-
erties of the problem. It is especially discussed how to deal with it when using
Tikhonov-type regularization under various circumstances. Our work regarding
this continues the approach of Ressel |[57], where a similar analysis was performed
for a concrete semilinear system. Staying close to the work [57], we consider a
broad range of different nonlinear functions as well as the somewhat straight-
forward linear case which should give the reader a good understanding of what
is going on. Also, we extend the theory proposed in [57] to space or time in-
dependent parameters and discuss source conditions, i.e. conditions that ensure
a convergence rate for noisy data for this parameter identification problem. The
second contribution is the identifiability, i.e. the injectivity of the forward operator



in certain situations for space time dependent parameters. For this, recent results
concerning an adjoint approach proposed in [21] are generalized and discussed for
our type of equations. Also the case, if uniqueness does not hold is discussed.
The last major contribution concerns the application of sparsity regularization
to semilinear parameter identification problems and especially the numerical part
where the finite element basis functions are used for reconstructions. It turns out,
that this approach indeed is very potent for identifying space and time dependent
parameters in a reaction term in the presence of noisy data.






CHAPTER 2

Examples for semilinear reaction diffusion equations of
second order

Before we start addressing the parameter identification problem, we want to go
into detail concerning equation (1.3). This especially concerns the possibly non-
linear function g. At first we examine some typical cases in an academic sense.
Then we look into more specific examples that will help the reader to understand
the abstract concepts in more concrete situations. The first example of this series
is of simple nature, while the second and third examples are coming from real
world applications.

2.1 Examples for typical nonlinearities g

Whilst one can imagine almost any nonlinearities, in applications only a few of
them are really relevant. Here we will highlight some typical classes of nonlinear
functions ¢ that often appear in applications. The reason we are doing this is
because they have to be treated differently when it comes to the inverse problem
context, especially when one has to choose a parameter space. For the rest of
this section, let Ay € {0,1},¢4% : RN - R, i = 1,...,N, k = 1,..., M, with
SV M Nk = M. We give the following examples:

1. Linear combinations, where N = M, i.e.

N
9i(p, u) = Z AikDik -
k=1

A special case of this is a matrix vector multiplication, where all \;;, = 1,
e, gi(p ) = (W),



2. Functions that are a linear in p and possibly nonlinear in u:

M
u) = Z AikDikPik (U1, -, UN ).
k=1

A special case of this are functions that are polynomial in u:
Z Nikpikui gy

3. General nonlinear functions v; : R — R componentwise applied to the
previous case, 1.e.

M
gz’(p; U) = Z Az’kpik@k(uh ey UN)
k=1

4. Combinations of the above, where multiplications of different parameters
are allowed, i.e.

L M
u) = Z Napati Z Aikpik¢ik<ula ) UN)
=1

k=L+1

Each of these cases can and has to be treated differently when it comes to the
inverse problem, since certain continuity and differentiability properties of the
function g do not carry over to the operator case, see Chapters 3.7 and 6.4 for
details. So we will make different assumptions for the different examples discussed
in this section and the involved function spaces.

2.2 Reaction diffusion networks with matrix
Interaction

A prototypical example for equations of type (1.3) that are linear are equations,
where the interaction between the involved functions is singularly determined by
a matrix vector multiplication:

auig;z,t) — V- Dy, t)Vu(z,t) = (W(z,t)u(z,t));  in Qr, (2.1)
%Ui($7t) =0 on 02 x [0, 7], (2.2)

u; (0, ) = ug;(z) on 2 x {0}, (2.3)



The Neumann boundary condition ensures that diffusion over the boundary is
not possible and therefore the system is not influenced by external factors. As one
can see, the equation is of the form of (1.3), where g(W,u) = Wu. One can see
that the values of u; are either decaying if Wu is negative, or growing if Wu is
positive. Assuming u; > 0, the entries of W play the decisive role in this process.
Negative entries describe a damaging influence, while positive entries a promoting
influence.

In the later chapters we will use (2.1) as an introductory example to highlight
the ideas of certain theories before we apply these to more complex and general
partial differential equations. Now that we are familiar with the basic concept of
neural network equations, we fill these equations with life.

2.3 Lotka-Volterra-like equations

A biological application, where semilinear parabolic evolution equations come into
play are competetive models between species. These describe the development of
a set of different species in an environment. A special case are for example so
called predator prey models, where, the predator cannot survive, when the prey
is not present. Also species radiate to new habitats, which can be modeled by a
diffusion term. Here again, the growth and decay of a species is influenced by the
presence or absence of other species (often in a certain manner that is known a
priori). A typical two species model as proposed in [60] reads as

ou
E — DlAU +riu = (Z11U2 + ajpuv,
ov
a — DQAU + rov = CL22U2 + as1uv,

with some additional boundary conditions, that have to be adapted to the re-
spective habitat. Additional a priori information can be used to determine the
structure coefficients a;;. For example if species u is a predator of species v, then
a;; has a positive sign, while a;; has a negative sign. If both species compete for
the same food sources, both signs are negative. Compared with the example from
the last section, we have a similar structure but a nonlinearity of polynomial type.
While general Lotka-Volterra models often assume constant competition rates, the
situation in the real world is more complicated. For example if there are hide-
out places for the prey which predators can not reach. Time dependencies in a
predator prey model are also a factor to be considered, since for example certain
seasons may change the general behaviour and biological fitness drastically. A lot
more examples of this type can be found in the textbook [12].
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2.4 Biochemical evolution in embryogenesis

Another practical example is given by a nonlinear system that is directly derived
from a biochemical application. In biochemical evolution, processes are often
following equations like (1.3). A very special example is the early embryotic
development of small organisms, where gene networks control the development of
some very specific expressions or properties of the embryo. Most times, a specific
genetic network consists of a few genes and is often controlled by a maternal
gene. A very special example is the drosophila fly, where the first few stages
of embryogenesis take place in only on multinuclear cell [51, 55]. If one tries to
keep the model as simple as possible only very few natural processes have to be
considered in the network. These are diffusion, decay and synthesis. Further we
want to keep the interaction as direct as possible, meaning, that the synthesis
rate is only controlled by the presence or absence of other genes. This ignores the
interaction between mRNA and proteins, but for simple organisms like drosophila,
it is believed that a model like this is sufficient for describing the evolutionary
process [51]. The model is then given as a semilinear PDE. Here we only state
the equation in its simplest form, where we ignore the presence of maternal genes,
transport terms for moving cells or mRNA /gene interaction:

W — V- Di(z,t)Vu;(z,t) + \i(x, t)u;(x, t)
—Ri(z, t)o(W (z, t)u(z,t));) = in Qr, (2.4)
88 i(x,t) =0 on 02 x (0,77,
)

u;(z,0

upi(x)  on Q x {0}.

The function ¢ : R — R is a smooth sigmoidal signal response function. In our
example we utilize the function

1 z
2)==|——=+1].
4(2) 2 (\/ 22 +1 )
Note that its derivative is given as

1
/
e =
which we will need later on.

More complex models would lead to similar equations, but would probably in-
clude transport terms due to moving cells as well as the interaction of mRNA
concentrations with the respective gene concentrations. This would lead to an-
other set of PDEs following its own laws [13]. Also the resulting systems would
be way more complex, but we believe that the techniques that are discussed in
this thesis can be used to treat these equations in a similar fashion.
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Analytic properties for this example have been studied extensively in [57]. Also,
this example will accompany us throughout the thesis and will help us to under-
stand certain key features of semilinear equations. Further, we will develop our
numerical framework mainly for this example, i.e. (2.4), which will be highlighting
some properties of sparsity regularization for these types of equations.
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CHAPTER 3

Preliminaries

In this chapter, we introduce the functional analysis necessary for the regulariza-
tion of parameter identification problems. Although we try to keep our work as
self contained as possible, we expect that the reader is familar with basic func-
tional analysis. This especially includes the concepts of dual spaces, weak and
weak® convergence and L, spaces. Also knowledge of classical theorems like the
Banach-Steinhaus Theorem, the Banach-Alaoglu Theorem or the Dominated Con-
vergence Theorem for L, spaces are assumed to be known. If this is not the case,
we refer to the textbooks [1, 70]. Also basic knowledge about the weak solution
theory for elliptic PDEs will be helpful for understanding the concepts presented
in the later sections, but is not necessary to follow this work.

3.1 Bochner integration

For the right treatment of equation (1.3), namely the definition of weak solutions,
we need a more general concept of integration. It turns out that a right concept to
handle this is the Bochner integral which allows the integration of Banach space
valued functions. For the sake of simplicity, we restrict ourselves to real inter-
vals, which is all we need in this work. The generalization to arbitrary Lebesgue
spaces with finite measure is mostly straight forward. For more information about
Bochner integration, we refer to the standard references [18, 70|, where most of
the statements made can be found in general fashion. For the rest of this section
let I:=1[0,7] C R and Y a Banach space.

Definition 3.1.1. A function u : [0,T] — Y is called simple, if there is a finite
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number of subsets Iy, of [0,T),k =1,..,N with

N
Ui -
k=1

and it holds u(t) := y, on Iy for k = 1,...,N. Further, the integral of a simple
function is defined as

T
/U ) dt —Zﬂfkyk7
0

where 1 1s the Lebesgue measure on R.

Now, as in the case of Lebesgue integration, one can define measurable and
integrable functions as the limit of simple functions.

Definition 3.1.2. A function u : [0,7] — Y is called Bochner measurable if
there exists a sequence of simple functions {uy }ren, such that

lim ug(t) — u(t)
k—o0

for almost every t € [0,T]. Further, if

hm/Huk —u(t)|]y dt =0

the function f is called Bochner integrable and

/T ult) dt == /T un(t) dt

is called the Bochner integral of u.

An important characterization of Bochner integrable functions is the following
one:

Theorem 3.1.3 (|70, Theorem 5.1]). A function u : [0,7] — Y is Bochner
integrable, if and only if ||ully : [0,T] — R is integrable.

Similar to Lebesgue integrable functions, one can define the seminorm
1/p

lullz, oy = / lu(®) 2 dt (3.1)
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for 1 <p < oo and

||| Lo (f0,77,y) := esssup ||u(t)]|y
tel

for p = co. Then one can define the spaces

L,([0,T],Y) := {u Bochner measurable | |lu|L,qo,r1y) < 0o}
and the set
N :={f Bochner measurable | f = 0 almost everywhere}.

If one now builds the quotient space, the following holds true:

Proposition 3.1.4 (|63, Ch. IIL.1]). The space
Ly([0,T],Y) := Ly([0, T, Y) /N
equipped with (3.1) is a Banach space for 1 < p < 0.

We can also get a generalization of the well known Hoélder inequality:

Proposition 3.1.5 (|57, Remark 2.25]). Let p,q € R with 1/p+ 1/q = 1. For
u € Ly([0,T],Y) and v € Ly([0,T],Y*), the function (v(t),u(t))y=y) is Lebesgue
measurable and it holds

T

/(U(t)au(t»(ww dt < |[v||z, oy llullL,o,mv)-
0

An important property of Bochner integrable functions is the following, also
known as Phillip’s theorem, which characterizes the dual space of a Bochner space:

Theorem 3.1.6 (|63, Theorem 1.5]). Let 1 < p < oo with 1/p+1/qg=1. Let Y
be reflexive. Then it holds

(Lp([0,T], )" = Ly([0, T1,Y7).

It is also good to know that testing a Bochner integral with a function out of
the dual space of Y and integration over the dual product yield the same results

Proposition 3.1.7 (|25, Theorem E.5.8|). Suppose uw € L,([0,T],Y) and v € Y*,
then it holds

T

<U,/u(t) dt> = /T<'U,U(t)>(y*7y) dt
y 0

0 (Y*Y

Next, we cite a few results concerning embeddings and the Bochner integral:
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Proposition 3.1.8 (|70, Corollary 5.1]). Let J : X — Y be a continuous embed-
ding and u : [0,T] — X, then it holds

T

T
J /udt :/Judt.
0

0

Proposition 3.1.9. Let the embedding J : X — Y be continuous, then the em-
bedding

Ly([0, 71, X) = Ly ([0, T1],Y)
are also continuous.

Proof. Let u in X. Then the assertion follows directly from ||Ju|ly < ||J]||lu||x-
[

The last statement we will need is the following useful isometry
Proposition 3.1.10 (|57, Remark 2.8|). For 1 <p < oo it holds
Ly([0, T), L ()" = Ly([0,T] x ).

We will use this isometry very frequently throughout the work, without explic-
itly mentioning it.

3.2 Controllability of parabolic equations

In partial differential equations, one usually speaks of control and state. The
state is the outcome of the equation, located at a solution space and the control
is a parameter that allows us to control the outcome. Basically, every parameter
in a differential equation can be used as control. If one speaks of a controllable
problem, one usually means that every function at a certain time point in an
appropriate function space can be reached by inserting the right control in the
equation. As before, we restrict ourselves to equations that will matter for our
analysis.

Definition 3.2.1. A parabolic differential equation, where the solution u is inter-
preted as a mapping F from a control space C to a solution space W is said to be
controllable, if for every initial data ug, it holds F(C) =W.

Exact controllability is a rather strong condition and thus is unlikely to hold
for complex equations, thus one slightly weakens the above definition:

Definition 3.2.2. A parabolic differential equation, where the solution wu is inter-
preted as a mapping F from a control space C to a solution space W is said to be
approximately controllable, if for every initial data ug it holds that F(C) C W is
dense.
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Note that both of these definitions are rather vague regarding the spaces C,
W and which parameter to use as control. Equations of type (1.3) are usually
approximately controllable if N = 1, if one uses the right hand side f as control
or certain boundary data.

3.3 Weak derivatives

It turns out that the classical concept of differentiation from functions u : R™ —
R is often too strict. Instead, one uses the formula for partial integration to
generalize it and allow a much wider range of functions to be differentiable. So
we introduce weak derivatives of functions.

Definition 3.3.1. Let Q@ C R", u € L1(Q) and o = (aq,...,a,) a multiinder.
Then the function u has a a-th weak derivative, if there exists a function u, €

/Do‘ugo dr = (—1) /uaDo‘go dx Vo € C5°(2).
Q 0

Remark 3.3.2. The weak derivative of a function is unique, if it exists. Further,
if a function is differentiable in a classical sense, it is also weakly differentiable.

A similar concept can also be applied in the case of Bochner integration and
is a straight forward generalization of the definition of the weak derivative in the
case of real valued functions.

Definition 3.3.3. Let X be a separable Banach space, u € Ly([0,T],X) and
a = (ag,...,an) a multiindex. Then the function u has a a-th weak derivative, if
there exists a function u, € L1([0,T], X) with

/u(t)D“go(t) dt = (—1)l /ua(t)Do‘gp(t) dt Ve e Ce(0,T)).

Using this concept of a weak derivative, one gets the following important em-
bedding theorem.

Theorem 3.3.4 (Lions-Aubin). Let X,Y, Z be reflexive Banach spaces with em-
beddings Y1 — Z < Yo, where the first embedding is compact and the second
embedding is continuous. Then for

W= A{u € Ly([0, T}, Y1) | v’ € Ly([0, TT, Y2)}

the embedding W — L,([0,T), Z) is compact.
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3.4 Sobolev spaces

Similar to spaces of continuously differentiable functions, one can introduce the
same concept of spaces for weakly differentiable functions.

Definition 3.4.1. Letm € N, 1 < p < 0o and a = (ay, ..., ) a multiindez, then
H™P(Q) :={ue€ L,(Q) | D% € L,(Q) Vo : |a] < m}

15 called Sobolev space of order m.

Remark 3.4.2. For p = 2, we use the notation H™(Q) instead of H™?(Q).

Proposition 3.4.3. The spaces H™P(S)) equipped with the norm

p

lllgmo = { D (1D,
la|<m
for 1 <p < oo and
[ull gy = max [[D%ul|,
la|<m

for p = oo are Banach spaces for all m € Ny. For p = 2, the spaces H™ ()
equipped with the inner product

(u,v)gm = Z /Do‘uDav dx.

0<lal<m §
are Hilbert spaces

Another interesting property of Sobolev spaces is the relation to their dual
spaces. Let 1/¢ + 1/¢" = 1. Tt is not hard too see that one can identify any
element of (H™9(Q2))* by a sequence of L, functions [19, Chapter 6.9]. Yet, this
fact itself is not that useful for our work. More important for our analysis is the
following. It is well known that (L,(Q2))* = L, (2) for 1 < ¢ < oo, i.e. for any
element L € (L,(92))*, there exists a v € Ly(€2), such that

L(u) = /vu dz. (3.2)

Q

Now suppose that u is an element of H"9(Q2). The element v € L, (£2) also defines
a linear functional on H™9(Q2) in the same way it does on L,({2) and therefore v
can be viewed as an element of (H"%(£2))*. This way one gets a natural embedding
of dual spaces, i.e. Ly(Q) = (L,(2))* — (H™(Q2))*. Further, by the definition
of the norm of a linear functional, one gets for v € L,(Q):

(H™1(Q))* = sup /vu dx

ueH™9(Q), [|ull gm.a <1 o
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and therefore applying the Holder inequality, combined with the continuity of the
embedding H™? — L, yields

[ollzma@) < Cllvlle,-
So the embedding L, (Q) — (H™%(2))* is indeed continuous. By the canonical
embedding H™7 () < L, () one gets the triple inclusion
H™7(Q) = Ly () = (Ly(Q))* — (H™())*. (3.3)
In fact, we can even get a little bit more than that:
Proposition 3.4.4. Let q,p € (1,00), such that

-5 (3.4)
q p

and p', ¢ the respective dual exponents. Then the following embeddings are con-
linuous

HY(Q) = Ly(Q)
and
Ly (Q) — (H"(Q))".

Proof. The first embedding follows directly from the Sobolev embedding Theorem
[1, Theorem 8.9]. Using this embedding, we find for v € L, (Q2) that [wvu dz is
a linear functional on H'4(Q). Thus we can define an embedding L, (Q) —
(H%1(Q))* via v — [ou dx. Obviously this operator is linear and it is also
continuous due to:

vl (e = sup /vu dx

wEHLI(Q),uly1,0<1 )
< sup [vllz,, llullz,
uEHl’q(Q)vnunHlqul

< sup Cll]

ueHH4(Q),[|ull 1,4 <1

< Clollg, -

Ly ul| s

Corollary 3.4.5. For ¢ > max{1,2d/(d + 2)}, the embeddings
HM(Q) = Ly(Q) < (H(Q))"
are continuous.

Proof. Follows directly from the previous proposition with p = 2. O
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3.5 Differentiation of operators

Differentiation of functions plays a crucial role in their analysis, especially when
it comes to an optimization task. Since in our case we are working with functions
that are operating between Banach spaces, an appropriate concept of differentia-
tion has to be introduced.

Definition 3.5.1. Let X,Y be Banach spaces and U C X open. A function
F:U C X — Y is called Fréchet-differentiable at x € U if there exists a linear
and bounded function A : X — 'Y with

F(z+h)=F(x)+ Ah+r(h), lim rth) — 0.
Inllx—0 ||h]|x

The operator A then is called the (Fréchet-)derivative of F' in x and is denoted by
F'(x).

Due to special domains that are needed in parameter identification problems (in
our case almost everywhere bounded subsets of L, spaces), we are using a more
adapted version of the derivative. The main reason behind this is the fact that
a set of almost everywhere bounded functions has no open subsets regarding the
L, topology. We state an explicit definition, which is taken from [57|, for such
an adapted derivative. Such a version of differentiability is commonly used for
operators between function spaces with restricted domain of definition.

Definition 3.5.2. Let U C X. A function F': U C X — Y is called strongly
differentiable in x € U if there exists a linear and bounded function A : X — Y
with

r(h)

F(z+h) = F(z) + Ah+r(h), heDspV ()l x—0 ||| x

— 0,

where DspV (xz) := {h € X | x + h € U} is the set of admissable displacement
vectors. The operator A then is called (strong) derivative of F' in x and is denoted

by F'(x).

By the above definitions it is clear that every Fréchet differentiable function is
also strongly differentiable on any subset of the space, but the converse is obviously
not true. However, any results that are holding for the Fréchet derivative mainly
relying on norm estimates (which are all the statements we do need in our work)
do also hold in the case of a strong derivative. In the rest of the work, we will
often only speak of differentiable functions, especially when it is clear from the
context if a strong or Fréchet-derivative is meant.

Remark 3.5.3. The strong derivative can be interpreted as the Fréchet derivative
with respect to the subspace topology on U, i.e. in the subspace topology a set
S C U is open, if and only if the intersection of S with X is an open set.
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A weaker version of the derivative can be given via the Gateaux derivative:

Definition 3.5.4. Let X,Y be Banach spaces and U C X. A function F : U C
X — Y is called strongly Gateaux-differentiable at x € U if there exists a linear
and bounded function A : X —'Y with
F th) — F
lim @) = F@) 4 e DspV(a).

t—0 t

The function A then is called strong Gateaux derivative of F' in direction h and is
denoted by Fy (z). If further U C X is open, then F is called Gateauz-differentiable
and Fj(x) is called Gateaux derivative

If a function F' is Fréchet-differentiable at a point z, it is also Gateaux differ-
entiable. The same goes for the strong version. An important result related to
differentiability is the Implicit Function Theorem.

Theorem 3.5.5 (Implicit Function Theorem, [57, Theorem 8.7.8, Theorem 8.7.9]).
Let W be a Banach space, P a subset of a normed vector space and Z be a normed
vector space. For the map

C:PxW-—=sZ

we assume
1. C is continuous, C(pg,ug) = 0 for (po,ug) € P x W.

2. The (partial) derivative C,, exists and is continuous in a neighborhood M x N
Of (p07 U'O)'

3. The (partial) derivative C,, exists and is continuous in a neighborhood M x N
of (po, uo), and at each point in (p,u) of this neighborhood, C, is invertible.

4. The neighbourhood N can be chosen convex.

Then we can find a constant r > 0 such that for all p € B,(po) there exists exactly
one u(p), such that C(p,u(p))) = 0 and the resulting map

u:B.(p)CP—>W
p = u(p)

15 continuously differentiable and the derivative is given as

uy(p) = (Culp, u(p)) "' Cp(p, u(p)).

3.6 Convex analysis

Convex functions play an important role in the analysis of general Tikhonov func-
tionals. Thus we give a short overview over their basis properties.
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Definition 3.6.1. Let X be a normed space. A function f : X — R is called
convex, if D(f) :={x € X | f(x) < oo} is convex and for all x,y € X it holds:

fltz+ (1 =t)y) <tf(z)+ (1 =1)f(y).
f is called proper if D(f) is nonempty and f(x) > —oo for all z € X.
For a convex function one can generalize the notion of a derivative

Definition 3.6.2. Let X be a Banach space, let f : X — R be conver. z* € X*
is called subderivative of f at a point x, when

f) > fla)+ @y —2)x-x) VyeX.
The set of all subderivatives of f at a point x is called subdifferential of f.

If f is convex, lower semicontinuous and has a nonempty domain of definition,
one can show that the subdifferential is nonempty for every x € D(f). One now
can show that the notion of a subdifferential is indeed a generalization of the
derivative.

Proposition 3.6.3 ([52, Proposition 2.3.10]). If f : X — R is convezr and
Gateaux differentiable at a point x € X, then it holds

Of (x) = {f'(z)}.

An important property when it comes to optimization of functionals is the
following one:

Proposition 3.6.4. If f : X — R is conver, x € X is a minimizer of f if and
only if D(f) is nonempty and 0 € Of(x).

Proof. This follows immediately from the definition of subdifferential. O]

The sum of convex functions is indeed convex and we can compute the subdif-
ferential in a very natural way:

Proposition 3.6.5 ([52, Proposition 2.4.4]). Let fi, fo, ..., fa : X — R be convez
and let all f; except one be continuous. Let D := D(f1) N D(f2) N ...ND(fn)

nonempty. Then the sum f1+ fo+ ...+ f, is a convex function and for each x € D
it holds

0 (Z f(x)) =2 0f().

An important concept in convex optimization is the following one:
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Proposition 3.6.6 ([15, Chapter 2|). Let X be a Hilbert space and f : X — R
a proper, convez, lower semicontinuous function, then for x € D(f), the operator
prozs(z) : X — X defined by

2
) —x
prox;(z) = argmin lly = I + f(y)
yeX 2
exists, 1s well defined and 1s called proximal mapping of f at a point x.
The following characterization for the proximal mapping can be given:

Proposition 3.6.7. Let X be a Hilbert space and f : X — R proper, conver and
lower semicontinuous then the proximal mapping al a point x is given by

prox(z) = (I +9f) " (z),
where I : X — X 1s the identity mapping.

Proof. From Proposition 3.6.4 it follows that
Ocy—x+09f(ly) <= ze(l+09f)y,

which immediately proves the claim. ]

The above assertion will play an important role when we analyze the minimiza-
tion of Tikhonov type functional later on. Another

Definition 3.6.8. Let X be a Banach space and f : X — R convex. Further let
y € D(f) and £ € 0f(y), then d¢ : X x X — R given by

de(z,y) = f(x) = f(y) = (&7 = Y)xx)
15 called Bregman distance with respect to f and &.

The Bregman distance is at least always greater or equal than zero, but it does
not hold de(x) # de(y), if © # .

3.7 Superposition operators

Let us consider a general, possibly nonlinear function f : R — R. If fou € L,(Q)
for all u € L,(2), we surely can define an operator F': L,(2) — L,(Q2), u— f(u).
This operator is called a superposition operator. In many situations one wants to
survey analytical properties of the function F' regarding continuity and Fréchet
differentiability. One might even think that the continuity and differentiability
properties of f directly carry over to the function F'. But this is not always the
case. In fact, the function f has to fulfill a certain growth estimate to guarantee
the differentiability of the operator F, along with certain restrictions onto the



24

exponents p and ¢. In this section, we will give a short overview over these facts.
The statements we cite in this section are quite technical and thus we will give a
short explanation afterwards. Also we try to keep this section as short as possible
and refer to the standard reference [5] for more information about superposition
operators.

Definition 3.7.1. Let Q C R™. A function f : QxR — R is called Caratheodory
function if f is measurable in the first argument and continuous in the second
argument.

First of all we address the existence question concerning superposition operators:

Theorem 3.7.2 (|5, Theorem 3.1]). Let f : QxR — R be a Caratheodory function
and 1 < p < oo. The superposition operator I generated by f maps L,(S2) into
L,(Q) if and only if there exists a function a € L,(2) and a constant C > 0 such
that

|f(z,u)| < a(x) + Clul?/.

Usually, superposition operators generated by Caratheodory functions are con-
tinuous between L,(£2) and L,(f2) for appropriate p and ¢ (cf. [5] for this state-
ment). So the first result we cite is concerning the Lipschitz continuity of super-
position operators

Theorem 3.7.3 (|5, Theorem 3.10]). Let f be a Caratheodory function and sup-
pose that the superposition operator F generated by f acts from L,(Q2) — L,(S2)
with p > q. Then the following conditions are equivalent

1. The operator F satisfies a Lipschitz condition
[F(h1) = F(ho)l|r, < k(r)[[ha = ha|lz,,  hi,he € Bi(Ly).

2. The function f satisfies a Lipschitz condition

[f(z,u) = f(z,0)] < gz, w)|u—o]  (|u, |v] < w),
where the function g generates a superposition operator G, which maps the
ball B,.(L,(S2)) into the ball Bk(T)(L%(Q)) in the case p > q and into the
ball Byty(Loo(€2)) in the case p = q.
So, roughly speaking superposition operators generated by Lipschitz continuous
functions are at least locally Lipschitz continuous. Global Lipschitz continuity

holds for example if the operator GG generated by ¢ is a linear operator and then
the global Lipschitz constant is given by ||G|| [57, Theorem 3.2.8].

Theorem 3.7.4 (|5, Theorem 3.12|). Let f be a Caratheodory function and sup-
pose that the superposition operator F' generated by f acts from L,(2) — L,().
If F' is differentiable at w € L,, the derivative has the form

F'(u(z))h(x) = a(z)h(z) (3:5)
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with

o(z) = lim fla,u(@) +2) — flz,u(z)

z—0 V4

(3.6)

In case p > q the function a belongs to L »s (2). In the case p = q the function f
r—q
has the form

f(@,u(x)) = c(z) + a(r)u(z)
with w € Ly() and a € L(Q). In case p < q the function f is constant.
Conversely, if p > q and the superposition operator G generated by the function

1
(f(z,u(r) + 2) — flz,u(w z2#0
g(w):{u (2) +2) = f(xu())

a(x) z2=0 3.7)

is continuous from L,(2) — L.a (), then F is differentiable with derivative
(3.5).

Theorem 3.7.4 essentially says, that if a function f(z,u(z)) is truly nonlinear
in u, then its superposition operator can only be differentiable if p > ¢. Further,
in condition (3.7) a sufficient condition for differentiability is given in the case
p > q. Since this is the only interesting case, we are looking deeper into it in the
following theorem.

Theorem 3.7.5 (|5, Theorem 3.13|). Let p > q and suppose that the superposition
operator ' generated by f acts from Ly(2) — L,(2). Then F is differentiable if
and only if the limit (3.6) exists, belongs to L%(Q) and satisfies the following
condition: for each X\ > 0 there ezists ay € L1(Q), such that ||ay]| — 0 as A — oo
and

|f(z,u(z) + h) — f(z,u(x)) —a(x)h]|? < X %y(x) + AP~ A|P. (3.8)

Remark 3.7.6. The exponent pq/(p — q) is exactly chosen in a way that the
multiplication in (3.5) for a € L,/(,—q) With a function h € L, is in L, as one can
derive from the Hélder inequality.

Remark 3.7.7. By Theorem 3.7.4 the derivative of a superposition operator F'
coming from a differentiable function f is a multiplication operator. The reader
is encouraged to remember that, since it will be very important later on. This
multiplication operator consists of the two components a = f’ and the direction
h. This also explains the restrictions that have to be made on the exponents. For
example if we consider an operator F': Ly — Lo, it must hold |lah|z, < C|h||L,,
which only holds if a € L. Finally, the growth condition (3.8) from Theorem
3.7.5 basically ensures the convergence of the remainder r(h) for h — 0. So if
one wants to check differentiability of superposition operators, one has basically
to check if the condition (3.8) holds. Note that for well behaved functions f, one
might assume growth conditions on the superposition operator that are easier to
verify than (3.8) to achieve differentiability as it has been done in [57].
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Since we will also be dealing with weak convergences between L, spaces the
following result will be also of interest

Theorem 3.7.8 ([5, Theorem 3.9]). Let f be a Caratheodory function, and sup-
pose that the superposition operator F' generated by f acts from L,(£2) into L,(2).
Then F' is weakly continuous if and only if f satisfies

f(@,u(@)) = (@) + alz)ua)

So superposition operators that come from a truly nonlinear function f can not
be weakly continuous.

Remark 3.7.9. The theorems regarding differentiability and weak continuity will
explain the extended analysis that we have to make for the parameter identification
problem compared to the usual analysis of parameter identification problems in
Hilbert spaces. We will come back to this when we analyze the parameter-to-state
map of our parameter identification problem in Chapter 6.

3.8 Unbounded operators

Let us consider a linear operator A : D(A) C X — Y, where X and Y are
Banach spaces. Further we do not assume that this operator is bounded. Typical
examples for unbounded operators are differential operators mapping between Lo
spaces, 1.e.
A HY Q) C Ly(2) — Lo()
u = Vu.

The following concept will be helpful:

Definition 3.8.1. Let {u,} C D(A) with u, — u € X and Au, - v €Y. Then
A is called closed if u € D(A) and Au = v.

For an unbounded operator with a dense domain of definition, i.e. D(A) = X,
it is possible to define an adjoint operator.

Theorem 3.8.2 ([42, Chapter 5]). Let A : D(A) C X — Y be densely defined.
Then, there exist a unique linear operator A* : D(A*) C Y* — X* such that

(y*s Az) vy = (A", ) (x+ %), Ve € D(A),y" € D(A")
and for any other linear operator B satisfying
<y*,A$>(y*,Y) = <By*7x>(X*,X)7 Vo € D(A)7y* S D(B)>

B is a restriction of A*. A* then is called the adjoint of A.
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In particular, we need the following

Theorem 3.8.3 ([42, Theorem 5.30]). Let A: D(A) C X — Y be a linear, closed
and densely defined operator. If A~ exists and is bounded, then (A*)~1: Y* — X*
exists and is bounded and it holds

(A*)—l — (A_l)*.
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CHAPTER 4

Parameter identification

In a parameter identification problem, the outcome of a system like in (1.3) is at
least partially known, that means one can measure the solutions of the differential
equation on a subset €y C QT, and one wants to extract certain parameters
from these measurements. For example, in (2.4) we can measure the genetic
concentrations at certain time instances and one wants to know the interaction
of different genes. A problem that almost always comes with this task is the
ill-posedness of this inverse problem. We distinguish two different kinds of ill-
posedness. The first question one always has to ask if there is a unique dependence
of the parameters onto the data or mathematically spoken, if the forward operator
is injective. The second question then is, if the parameters depend continuously
on the data. Especially in problems involving partial differential equations this is
usually not the case and one has to deal with this.

4.1 ldentifiability

The first question one may ask is, if for a given solution of a differential equation
one can obtain an at least locally unique set of parameters. To examine this
question further, we introduce the concept of identifiability, which we adapt from
[7]:

Definition 4.1.1. Let P be the parameter space of a parameter identification
problem F': P —Y and d: P x P — R be a distance function. In a parameter
identification problem F(p) =y, p is called globally identifiable if F' is injective.
The parameter p s called locally identifiable if there exists a € > 0 such that for
each p* with d(p,p*) < € and F(p) = F(p*) it holds p = p*. Otherwise, p is called
unidentifiable.
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Local non identifiability in fact is much worse than non continuous dependence
of the parameters on the data, because even with perfect data, one can not expect
to come close to the true solution in general. In this case, one can only hope to
characterize the set of parameters S := {p € P | F(p) = F(p")} and possibly
use a priori information to pick the right parameter. However, depending on the
structure of the problem, characterizing such a set might be impossible.

4.1.1 Identifiability in parabolic systems

In systems of differential equations, identifiability is always a problem and often
only holds under strong restrictions on the parameters [60, 16]. In scalar equations,
where only one parameter has to be identified, identifiability often can be shown,
at least locally under mild assumptions on the measurements, see Chapter 7. The
more variables are involved in a system and the bigger the system becomes, it
seems more and more unlikely that identifiability holds and thus the conditions
needed to show identifiability become more and more restrictive. Especially in
parabolic equations or systems with more than one parameter involved, one cannot
expect identifiability in general if all parameters are space and time dependent.
To show this, we consider our example from Section 2.2.

Theorem 4.1.2. Let N > 2. Let P and U be Banach spaces, with P = Px...x P
and W = U X ... x U and let both spaces be equipped with the product-one-norm.
Assume that for every parameter W € P the equation (2.1) has a unique solution
in the space W. Further assume U — P. Then the interaction parameter W € P
in equation (2.1) is unidentifiable with respect to the P-norm.

Proof. Without loss of generality we assume N = 2. We show that in any e-
neighbourhood of a given parameter W € W there is at least one W* with || —
W*| < ebut F(IW) = F(W*). Let ¢ > 0, W € W and let u be the solution
corresponding to W. Without loss of generality, we assume u # 0. Note that
if u;(x,t) = 0, then the parameter W has no influence at the point (z,¢). Let
Jull = flesll + Jfus | and define

E Uy g U

and W, =W+ ——

Wi = Wi —
! ! 2 ||ullp

2 [Jullp

as well as

W2*1 = W21 and W2*2 = WQQ.

The parameter W* is a well defined element from P because of the continuous
embedding U < P. Further, let u* be the solution to (2.1) with the parameter
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W*. For t € (0,T] we get

U9 * (51
HUH H H
* Uy
=— —F7Uu + — — — U2
IIUH H H g H || [l
Uz
= — o (u] — ) + o (uh — ).
[l || I

Since both, u and u* solve a differential equation, we get by subtracting the
respective equations

(u] —u1)e — V- DV (u] —u1) + Wii(u] —ur) + Wia(us — us)
L Ewm

2{full 2 ful 2

:(UT —ul)t—V DV(Ul —U1)+W11( —U1> +W12( —UQ)

g U2

- §m(u>{ —u) + ém(% — uz)
=(uy —uy) — V- DV (u] —uy) + Wi (u] —uy) + Wih(uy —ug) =0
and
(uy —ug)y — V- DV (uy — ug) + Wiy (ui — uy) + Wy (ul — ug) = 0.
Hence, v = u* — u solves the differential equation

v, — V- -DVo+W*v =0 in Qr
%U(O,t) =0 on  00Qx]0,T]
v(z,00=0 on  Qx{0}.

Clearly, v = 0 is a solution of this differential equation as well. Thus, by our
assumption that the solution is unique, it must hold v = u*. Hence, F(W) =
F(W=). Further it holds

2 2
W =W e =3 > [IWy = Wile

i=1 j=1
< lusllp + 5l |
> oygriiuzile — S5y lHuLlp
2] ull 2]|ull
<e.
This concludes the proof. O

Remark 4.1.3. The assumptions we made to show the non-uniqueness are not
very strong. For example, if one chooses P = Ly(€2) and U = W? (and restricts the
domain of F' in an appropriate way), existence and uniqueness follows by classical
weak solution theory (see Chapter 5 or cf. [25]).
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Remark 4.1.4.

i) In the case of Theorem 4.1.2, N? space and time dependent parameters have
to be identified, but there is only data for two space and time dependent
functions. So the data is highly underspecified.

ii) One can easily construct similar examples for non uniqueness in the case that
multiple parameters that have to be identified in a scalar equation (or in a
system).

iii) We have used the norm of the parameter space as distance function in The-
orem 4.1.2. But even for more general distance functions that can be related
to the spaces P and W the parameter stays unidentifiable. This is especially
interesting for Tikhonov-regularization, because here, usually certain norms
are used as a prior to highlight properties of the function.

For now on, we will leave the identifiability issue and will return to it in
Section 7.

4.2 Tikhonov type regularization

Usually, when someone speaks of ill-posedness of a problem, he means that the
parameters are not continuously dependent on the data. In this case, one needs to
perform some kind of regularization (which means a stabilization of the inversion
process). A very general regularization method is Tikhonov type regularization.
For this section, let X and Y be arbitrary Hilbert spaces and F : D(F) C X — Y
an arbitrary operator. In the respective inverse problem, one wants to find x € X,
with F(x) =y, if only a noisy version ° of y is known. As already stated in the
introduction, Tikhonov type regularization is the minimization of the functional

Jo(x) = [|F(z) = 9|5 + aR(x), (4.1)

where R : X — [0,00]. In the following we will denote a minimizer of J, by 2
and the true solution by zf. First of all one might ask questions about existence
of a minimizer as well as the behaviour of the Tikhonov functional for « — 0.
Remember that the penalty R should be chosen in a way to include a priori
information about the true solution in order to find a good approximation of
o', especially if the solution of F'(z) = y is not unique. If the parameter is at
least locally identifiable, the right choice of R can improve the quality of the
solution drastically, depending on available a priori information of 2. To put this
concept into mathematical language, we introduce the notation of an R minimizing
solution:

Definition 4.2.1. A solution z' to the problem F(z) = y is called R minimizing-
solution, if F(z") =y and

R(z") < R(x) Ve € {z | F(x) =y}.
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Note that an R minimizing solution might not be unique either. To ensure reg-
ularizing properties, one usually has to make some assumptions on F' and R. Note
that we are dealing with a somewhat special problem. Therefore we modify the
standard assumptions from [36] to better fit our parameter identification problem.
The reason for this is that the key ingredient for regularization to happen, the
so called weak sequential closedness introduced in [24], can often not be shown
with standard weak topologies for nonlinear PDEs. This is a direct consequence
of Theorem 3.7.8, where it is stated that a truly nonlinear superposition operator
between L, spaces (which are the preferred choice for our problem) cannot be
weak to weak continuous. The approach we are using here was introduced in [57]
and is further extended to fit our needs.

Assumption 4.2.2.

(i) X is a Banach space and X — X continuously.

(11) X can be equipped with a topology T and z,, — x in X implies x, — x in X.
(iii) D(F) C X.

(iv) F is T-weakly sequentially closed, i.e. x, — x and F(zx,) — y implies v €

D(F) and F(x) =y.

(v) R:X — R is proper, conver and weakly lower semicontinuous.

(vi) D :=D(R)ND(F) is nonempty and z' € D.
(vii) The level sets

M:={xeD| R(x)<C, C>0}

are T sequentially precompact in the following sense: every sequence {xy} C
M has a subsequence, that is convergent in M with respect to the T-topology.

One might replace the assumption (vii) by the following one
(vii’) The domain D is T sequentially precompact.

Remark 4.2.3. A typical example for a topology 7 that fulfills Assumption 4.2.2
conditions (i) and (ii) is of course the weak topology on X. Another one is the
strong topology. Another trivial example is the case, where Q C R? is bounded,
X = Ly(Q), X = Loo(Q) and 7 is the weak* topology on Le(f2), since weak*
convergence in L., implies weak convergence in Lo.

One can now show regularization properties for Tikhonov type regularization,
which consists of three parts. The proofs of the following theorems can mostly be
done along the lines of the equivalent ones in [36]. For the sake of completeness,
we include them here. The first one is existence of solutions
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Theorem 4.2.4. Let Assumption 4.2.2 hold. Then for any o > 0, there exists a
minimizer of Jo.

Proof. Since D is nonempty, there exists an & € X such that J,(z) == C < oc.
Further it holds J, > 0 and hence there exists M; = inf,cp J,(z) and therefore
a sequence {x} with J,(xy) — M; and J,(z;) < C. One can easily show that
the sequences {F'(x)} and {R(zy)} are bounded. By Assumption 4.2.2 (vii) the
sequence {xy} has a T convergent subsequence that we again denote by {z;}. By
(7) this sequence also converges weakly in X. Further, by the boundness of the
sequence F'(z) there exists subsequence {x,} of {x;} with z, — y in Y. By the
T-weak sequential closedness of F' we therefore get F'(z) = y. Now we use the
weak lower semicontinuity of the norm and the penalty to arrive at

IF(z) = y°|I* + aR(x) < liminf || F(2,) — y°||* + aR(z,) = M.

Hence, z is a minimum of the Tikhonov functional. O

The second part is the continuity in the data, if y° varies in a small portion,
also the minimizer should only vary a small bit. Note that for general penalty
terms we only obtain a weak continuity result:

Theorem 4.2.5. Let Assumption 4.2.2 hold. Further, let {y}ren converge to 1°
'Y and let

7 € argmin ||[F(z) — yi|® + aR(x).
z€D(F)

Then there exists a T convergent subsequence of {xy }ren converging to a minimizer
20 of Jo with R(xy) — R(x2).

Proof. The definition of {z}} implies that
| F(z) — yrll* + aR(xr) < ||F(z) — yil]* + aR(x) Va € D. (4.2)
Using the norm convergence of y;, — y° and (4.2) we get

1F(2x) = I* + aR(ar) < (1F(xr) = well* + llye = v°|1%) + aR(z)
< 2| F(x) = yell* + 2]lyx — ¢°|* + 2aR(x)

Therefore the sequences {F(zx)} and {R(xy)} are bounded. Just like in the
proof of the previous theorem, we can deduce that Assumption 4.2.2 yields a 7
convergent subsequence {z,,} with the following properties: z,, = Z, ,, — T and
F(z,) = F(z). The weak lower semicontinuity of the norm and the penalty then
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allow the following estimate
IF(z) = y°|* + aR(z) < liminf |F(z,) = yall* + aR(2,)
n—oo
< limsup ||F(z,) = ynl* + aR(z,)

< lim [|F(z) = yul* + aR(2)
= |F(x) — °||> + aR(z) Vx € D. (4.3)

Hence, T is a minimizer of the Tikhonov functional. Further, it follows from (4.3)
that

IF(@) — |+ aR(@) = lim [ F(z,) - | + 0R(a,).
If we now assume that R(x,) does not converge to R(Z) and define
¢ = limsup R(z,) > R(Z),
we can find a subsequence {x;} C {z,}, such that x; — Z. Then we estimate
lim || F () — wl)* = [F(@) = "I + a(R(@) — o) < | F(@) = ||,
which is a contradiction to the weak lower semicontinuity of the norm. Hence,
R(z,) — R(z). O

The most important property to proof is the regularization property, i.e. if 6 — 0
and « is chosen appropriately, then the minimizer approaches a true solution for
the problem.

Theorem 4.2.6. Let Assumption 4.2.2 hold. Let x' be a R minimizing solution
of F(x) = y. Further assume, that the sequence & converges monotonically to 0
and y° satisfies ||y — y°*|| < 6. Then, if a = a(d) is chosen such that

2

a(é)%Oandm—H) as 0 — 0

and oy = «(d), every sequence of minimizers

xi‘; € argmin || F(z) — ¢ ||* + ax R(x)
z€D(F)

has a T convergent subsequence {x,}, that converges to a R-minimizing solution.
Additionally it holds R(x,) — R(z). If the R minimizing solution z' is unique,
then x, — zt.

Proof. The definition of % implies that

1P (0s) = 9™ 1 + e R(xt ) < 0 + anR(aT)

k
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and therefore limy_. F(2%) = y and limsup, ., R(z%) < R(z') < C. By
Assumption 4.2.2 there exists a 7 convergent subsequence {z,} that converges
to x € D. By the fact that 7 convergence implies weak convergence, we deduce
that = is also the weak limit of {z,}. Since strong convergence implies weak
convergence and the weak limit is unique, the 7-weak sequential closedness of F'

implies F'(Z) = y. The weak lower semicontinuity of the penalty gives

R(Z) < liminf R(z,) < limsup R(z,) < R(z') < R(z). (4.4)

n—00 n—00

Hence, 7 is also an R minimizing solution. From (4.4) it further follows that
lim, o R(z,) = R(z). If the R minimizing solution is unique, the convergence
z, — x' follows from the fact that every subsequence has a subsequence, that
converges to z! with respect to 7. O

Remark 4.2.7. If one assumes Assumption 4.2.2 (vii)’ instead of (vii) one obtains
a 7 convergent subsequence in the proofs of theorems 4.2.4, 4.2.5 and 4.2.6 directly
by the fact that this sequence is in D. An even stronger assumption would be to
have a compact domain of F', in this case continuity of F'is enough to prove the
above statements and a weak closedness statement on F is not needed (note that
the case of a compact domain is basically included in Assumption 4.2.2). This
becomes relevant, when we discuss regularization properties for nonlinear partial
differential equations.

Remark 4.2.8. If {z;} C X converges to x € X with respect to R, i.e. R(x) —
x) — 0, one automatically gets convergence of {z} with respect to the norm if R
is coercive due to ||z — z|| < CR(xp —x) — 0.

Last but not least, one wants to know a direct estimate between true and
regularized solution. This can only be derived under very special assumptions, so
called source conditions. While there are several general formulations of source
conditions, mostly given through variational inequalities, see |28] for an overview,
in our work we only want to look at the more classical setting. In this case, an
element ¢ € OR(z') has to exist, such that & is an element of the range of F'(x7)*
to ensure a convergence rate.

Theorem 4.2.9 (|40, Theorem 3.5]). Let Assumption 4.2.2 be fulfilled. Further
assume

(i) F is Gateauz differentiable,

(ii) x' fulfills a source condition, i.e. there exist a w € Y and & € OR(x") with

¢ = F'(z)*w € OR(x"), (4.5)

(iii) there exists a v > 0, such that |[F(z) — F(z") — F'(2")(z — 2")|| < vde(z, 2T)
in a sufficiently large ball around z7,
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(i) yllwll < 1.

Then, for a parameter choice a ~ & the minimizer x° of J, fulfills
de(x,2) = O(9).

Remark 4.2.10. The nonlinearity conditions (i), (i27) and (iv) can be replaced
by the condition ||F(x) — F(2) — F'(a")(x — 21)|| < vw||F(x) — F (2| ||z — 27|,
0 <c <1,0 <y <1, see [34]. In fact it is not completely clear if and how
different nonlinearity conditions influence the convergence behaviour for 6 — 0
and to which degree they are necessary for a convergence rate to hold.

A relaxation to source conditions are so called approximate source conditions,
introduced in [35] and for general inverse problems investigated in 28, 34|, which
in our case are very interesting to look at. First of all we introduce the following
distance function for £ € OR(z")

d(r) == inf{[}¢ = F'(a")"w | w € Y, [lw]| < r},r >0 (4.6)

This is a convex function and only zero, if a z' fulfills (4.5), see [28]. One now
can define the concept of an approximate source condition:

Definition 4.2.11 (|28, Definition 12.6]). The ezact solution x' satisfies an ap-
prozimate source condition with respect to the stabilizing functional R and the
operator F'(z') if there is a subgradient ¢ € OR(x") such that the associated dis-
tance function defined by (4.6) decays to zero at infinity.

Now one can indeed show a convergence rate result if such an approximate
source condition is fulfilled:

Theorem 4.2.12 ([34, Theorem 4.3]). Let Assumption 4.2.2 be fulfilled. Assume
that ' satisfies an approxvimate source condition for & € OR(z'). Further let
0<ec1 <1,0< ¢ <1 withcy+co <1 and let F' be differentiable satisfying the
nonlinearity condition ||F(z) — F(z") — F'(2")(z — 2| < || F(z) — F(a)||* ||z —
zt||2. Moreover, we set k = c1/(1 — ¢3) and introduce for r > 0 the functions
U(r) = d(r)?=9/% jr2ler gnd ®(r) := d(r)"/*/r'/er. Then, for a parameter choice
a = a(6), where a satisfies the equation § ~ /ad(V=1(«a)), the minimizer x°, of
Jo fulfills

dg(wo — 2T) = O(d(®7(9))).

Remark 4.2.13. The convergence rate in Theorem 4.2.12 depends on the decay
of the distance function d, since ®1(§) — oo as § — 0. It is always lower than the
archievable rate that is granted by a source condition and the discrepancy in rates
becomes greater, the slower the distance function d decays to zero as R — oo, cf.
[34, Remark 4.5].
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For parameter identification problems, the source condition 7 = F(z")*w is
usually interpretable in some way [22, 38, 40]. In particular that means we can
directly establish properties that the true solution z' must fulfill for a source
condition to hold. From an applicational point of view, this means we can directly
motivate if a source condition is likely to hold or if it cannot hold at all because the
solutions generated by the application do not fit into this setting. For a detailed
discussion for semilinear reaction diffusion systems we refer to Section 6.8.

Remark 4.2.14. Although we assumed X and Y to be Hilbert spaces, all the
above results can be easily transferred to the case where X and Y are Banach
spaces, see for example |28, 34, 36, 40, 56].

4.2.1 Regularization with sparsity constraints

We already mentioned several times before that the prior R in the Tikhonov
functional can be used to highlight certain features of the solution. One very
important feature that many applicational problems have in common is sparsity
of the solution in a certain basis. Sparsity means that the solution can be expanded
into a sum with only finitely many coefficients in that basis. So if we assume that
the true solution is sparse in a basis or frame {; };en, the idea is to penalize the
number of coefficients of the expansion of the true solution into this basis, which
would lead to a penalty

R(x) = [lzlle == #{i | (z, i) # 0} (4.7)

However, the this choice of a penalty does not fulfill the requirements of Assump-
tion 4.2.2. In fact, the minimization of a Tikhonov type functional with an £,
penalty is not even a regularization in the general case [46] and can therefore not
be considered for our problem. Hence, instead one replaces this penalty by

R(z) = [lalle = D |z @i)l- (4.8)

neN
This penalty now is well suited for Tikhonov regularization:

Proposition 4.2.15 (|31, Chapter 3|). R(x) = ||z|ls, is convex, weakly lower
semicontinuous and coercive. Further, for ||zglle, — ||x|le, and x, — x, it holds
ka — .15”41 — 0.

An immediate consequence from this proposition is the fact that Tikhonov reg-
ularization is applicable and all stability results hold with respect to the ¢;-norm.
Note that the ¢, penalty term indeed produces sparse minimizers:

Proposition 4.2.16 (|40, Theorem 3.2|). Let F' be differentiable, then every min-
imizer of the Tikhonov functional with the penalty from (4.8) has a finite expansion
in the basis {y; }ien-
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Finally, one can obtain better convergence rates as in the general case, if the
right assumptions are matched:

Theorem 4.2.17 ([40, Theorem 3.7|). Let (i) — (iv) from Theorem 4.2.9 be ful-
filled. Further assume

(v) F'(x") fulfills the FBI property, i.e. for every finite set J C N the restriction
of its derivative F'(zV) to {p; | j € J} is injective.

Then, for a parameter choice o ~ & the minimizer x° of the {1 penalized Tikhonov
functional fulfills
o — afl| = O(6).

Remark 4.2.18. If only assumption (v) from 4.2.17 is not fulfilled, but (i) — (iv)
do hold, then one only obtains a convergence rate O(J) in the Bregman distance
derived in Theorem 4.2.9.

Again, as stated already above, these source-conditions are unlikely to hold for
practical problems, since they enforce a special structure (usually some kind of
smoothness, cf. for example [23])of the true solution, which usually cannot be
verified, because the true solution is unknown.

Remark 4.2.19. Even if a source condition can be verified, the results of Theorem
4.2.9, Theorem 4.2.12 and Theorem 4.2.17 are still just theoretical, because the
convergence rate only holds for 6 — 0 and with an optimal parameter choice for
«. In applications, ¢ often is a good quantity away from zero and a good choice
of a regularization parameter is always a problem, especially if § is not known.
So one might think that even if a convergence rate can be verified, it has very
little practical impact. This however is not always true. It can be observed in
experiments that the reconstructions behave very well if a source condition holds,
see [22] for example. This is even more true in the case of sparsity constraints,
where (at least for linear problems) a source condition always holds if the solution
is sparse [31, 46]. Thus, the study of source conditions might also be of interest
for practical problems.

4.2.2 Minimization of Tikhonov type functionals

To apply Tikhonov regularization to a concrete problem, one must possess a prac-
tical way to determine a minimizer of the Tikhonov functional. This usually is
done iteratively. For the classical Hilbert space penalty ||z — z*||% this is easily
done, since the Tikhonov-functional is differentiable (as long as F' is differentiable)
in this case. Its derivative can be computed as

Jo(w) = 2(F'(2)"(F(z) = ¢°) + a(z = a™)),

where the first summand is the derivative of the discrepancy term and the second
summand is the derivative of the penalty term. For a sparsity promoting penalty
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term, the minimization of the Tikhonov functional becomes more complicated. In
this chapter we study the functional

J(z) = F(z) + R(z), (4.9)

where F : X — R is differentiable but not necessarily convex and R : X —
(—00, 00| is convex but not necessarily differentiable. One approach in that case
is, that instead of choosing a descent direction as the negative gradient, one makes
the approach to choose a descent direction as min,ex (F”(x),v) + R(v). This leads
to

Algorithm 4.2.20.
1. Choose z, with R(z) < oo, set n = 0 and determine a stopping rule.

2. Determine a descent direction v,, as solution of

min(F'(x),v) + R(v).

veX

3. Determine a step size s,, as solution of

IIl[iH] F(n 4 s(vy — ) + aR(2p + s(vy — 22)).
s€|0,1

4. Perform a descent step x,.1 =z, + sp(v, — ).
5. Check if the stopping rule is met, if not set n =n + 1 and go to step 2.
To show convergence of this algorithm, one has to make some assumptions.
Assumption 4.2.21.
(i) A stationary point of J(x) exists.
(ii) There exists © € X with R(z) < oc.

(7ii) R is convex and lower semicontinuous.

&)

[l

(iv) R is coercive, i.e. — o0 if [|z]] = oo.

(v) Fisa continuously differentiable functional which is bounded on bounded
sets.

(vi) F + R is coercive.

For functionals of type (4.9) the following convergence statement holds:
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Theorem 4.2.22 ([10, Theorem 1]). Let R satisfy Assumption 4.2.21 and assume
E, = {x € X | R(z) <t} to be compact for every t € R. Then there ezists a
subsequence of the sequence {x,} generated by Algorithm 4.2.20 that converges to
a stationary point of the functional (4.9).

Remember that the main goal was to minimize the Tikhonov functional with
an ¢, penalty term. This fits into the above framework in the following way. If
we define

1 A A
J(@) = SI1F@) = IP = Sllell” + Sl + allzle

J/ J/

=:F(x) =:R(z)

then the ¢; penalized Tikhonov functional can be fit into the framework of the
generalized conditional gradient method and as a result we get the well known
iterative soft shrinkage method from [17|, where we utilize the proximity operator
of the absolute value function, which can be expressed through the shrinkage
function

Se = sgn(x) max{|z| — «, 0}.
Algorithm 4.2.20 now becomes:
Algorithm 4.2.23.
1. Choose xg with R(:L') < 00, set n = 0 and determine a stopping rule.

2. Determine a descent direction v, via

Up = Z Sa//\(<xn - )‘_lFl(xn>*(F($n) - ?J&)a ©i))Pi

3. Determine a step size s, as solution of

min [P+ 5(0n = 2)) =11+ 3 o+ sl =), 0
’ ieN

4. Update the iterate x,, = x,, + s, (v, — x,).
5. Check if the stopping rule is met, if not set n = n + 1 and go to step 2.

In [65] it is furthermore shown, that this sequence converges for constant step
size s = 1, if the parameter A is chosen big enough. So the line search in algorithm
4.2.23 can be omitted. Moreover, in [57] this method was generalized to Banach
spaces.

The iterative shrinkage method proposed in Algorithm 4.2.23 converges rather
slow in practice, especially if one uses a constant step size. Therefore it is desirable
to find faster methods or to speed up the iteration. In [47] the authors therefore



42

considered a quadratic approximation approach of the functional at the current
iterate x,,, where one choses a step size A\, and determines the next iterate as the
minimizer of

. . A, 8
I, (T, 20) = F(x,) + (F'(2,), 0 — x,) + 7Hx — z,|]* + R(x)
A descent direction then can be computed as

argmin Jy (z, x) = prOXR(zk)(z)
rzeX

For the moment, we only consider the case R = af - ||s,, in that case the
proximity operator is given as

prox . (#) =Y Sa((z, ¢:))ei,

ieN
The trick is now to choose a clever step size that ensures the decay condition

J(ns1) < I, (Tpa1, ). (4.10)

A good approximation on a step size satisfying this condition can be done by the
so called Barzilai-Borwein rule introduced in [8]. The idea is to chose the step size
as

_ (Tn — ain—la F’(IT) - F/(Iri—l»
(F'(wn) = F'(xp), F'(20) — F'(2-1))

Sp =
Nevertheless the condition (4.10) still has to be verified. The algorithm proposed

in [47] then is

Algorithm 4.2.24.

1. Choose zy with R(z) < oo, ¢ € (0,1), set n = 0 and determine a stopping
rule.

2. Compute F'(z,)
3. Compute the step size via the Barzilai-Borwein rule.

4. Determine a candidate for the next iterate via

Un = Z Ssna{Tn — Snﬁl(xn)a ©i)) s

1€N

5. Check if v, is a valid update, i.e. condition (4.10) is fulfilled, otherwise
decrease the step size via s, = ¢s,, and go to step 4.

6. Check if the stopping rule is met, if not set n =n + 1 and go to step 2.
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Note that in the case of a constant step size s = s, this algorithm resembles
the generalized conditional gradient method from Algorithm 4.2.23.
To show convergence of this algorithm, the following assumption is needed:

Assumption 4.2.25.
(i) A minimizer of J(x) ezists.

(i1) I? 15 convex, proper, weakly lower semicontinuous and weakly coercive, 1i.e.
R(z) — oo for ||z|| = oo.

(111) F is a continuously differentiable functional with Lipschitz continuous deriva-
tive, t.e.

1F'(z) — F'(y) || ixyy < Lllz — yllx

(iv) If x,, converges weakly to x, so that J(x,) is monotonically decreasing, then
there exists a subsequence {x;,} C {x,} such that

F'(zp) = F'(x)

Note that the assumptions on F are stronger than the one made in Assumption
4.2.25, while the coercivity assumption on R is weakened. Under this assumption,
one is able to prove

Theorem 4.2.26. Let Assumption 4.2.25 be fulfilled. Assume that the sequence
of step sizes {\,} satisfies A, € [Ay, A°] with 0 < A\, < L < X° < 00, such that

J<J7n+1) S J)\n (xn+1>xn)

Then the sequence {x,} generated by Algorithm 4.2.24 is bounded and therefore has
a weakly convergent subsequence {x,,}. This subsequence converges to a stationary
point of (4.9). If F'(x,,) — F(x,,) in the norm topology, then the sequence {x,}
converges strongly to a stationary point.

Often, the operator [ is not defined on the whole space X, but only on a subset
D(F). To work around this, one can check if the next iteration step stays in D(F')
and only continues if this is the case. If it is not the case, one then just has restart
the iteration with a different starting value and hope for better results. It is to
be expected that if the starting value z( is chosen well enough and there is at
least one stationary point in X this is always possible. In our numerical experi-
ments (see Chapter 8), the restricted domain of the forward operator was never
a problem. Also, instead of a weak continuity result we use a 7-weak continuity
result (see Assumption 4.2.2, which makes Tikhonov-regularization applicable for
a broader class of problems. Theorem 4.2.26 is thus not directly applicable, since
the boundedness of the sequence {x,} does not necessarily yield a 7 convergent
subsequence. So we propose the following generalization of Theorem 4.2.26.
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Theorem 4.2.27. Let condition (i),(it) and (vii') of Assumption 4.2.2 and (1)-
(1ii) of Assumption 4.2.25 hold. Assume that if a sequence {xy} C X converges
to x in the T-topology, so that J(xy) is monotonically decreasing, there erists a
subsequence {x;} C {x} such that F'(z;) — F(x). Further assume that the
sequence of step sizes A, satisfies N, € [y, A°] with 0 < A\, < L < \° < 00, such
that

J(In+1) < (anrlJ $n)

and that for sequence {x,} generated by Algorithm 4.2.24 it holds {x,} C D(F).
Then the sequence x,, generated by Algorithm 4.2.24 has a weakly convergent sub-
sequence that converges to a stationary point of (4.9). If F'(zn) — F(x,,) in the
norm topology, then the sequence {x,,} converges strongly to a stationary point.

Proof. The fact that the sequence generated by Algorithm 4.2.24 stays in D(F)
and that D(F) is 7-sequentially compact ensures the existence of a subsequence
that converges in the 7-topology. Since this sequence also converges weakly in X,
the rest the proof can be carried out exactly as in [47]. O

Remark 4.2.28. Another approach to ensure that the iteration stays in the set
D(F) is to extend the penalty via an additional indicator function of a convex set
C C D(F).

0 zeC
o) = {oo r¢C

If the set C' is closed, convex and bounded, so the indicator function fulfills con-
dition 4.2.21 and so does

R(z) = [|l=[* + ollzlle, + tor)

So in principle, Algorithm 4.2.20 is applicable. The challenge now is to compute
a valid descent direction, which is to solve the minimization problem
min(F'(z),v) + f%(v)
veC
which is surprisingly highly nontrivial.
If wants to use the quadratic approximation approach one has to compute the
proximity operator of the penalty

R(z) = [|z]le, + 1oy

For a general convex set C' it holds PrOX, . 4|1 i,, # Prox,, O Proxy.,. #+ prox, ©

prox, . This can for example be seen with f € Ly([0,27]), f(z) = 1.1msin(z),
where the convex set is given as C := {f € Ls([0,27]) | 0 < f(z) < oo} and
the basis is the Fourier basis. Nevertheless, at least the computation is possible
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numerically as one has to basically compute a sum of proximity operators, which
can be done as proposed in [14]. Note that the sequence generated by the quadratic
approximation approach still has a convergent subsequence [47]. The challenge in
this case is to show that this subsequence converges to a stationary point of J.
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CHAPTER b

A general solution theory

In Section 4.2, we have seen, that the forward operator of the inverse problem has
to fulfill some kind of weak closedness to guarantee the regularization properties
of Tikhonov regularization or even the existence of a minimizer of the Tikhonov
functional in appropriate function spaces. Further, the forward operator of the
problem must have a uniformly continuous derivative if we want to apply numerical
minimization schemes. So, the first thing that we have to address if we want to
perform parameter identification for the problem (1.3) is to find a solution space.
That means, that one searches for a function space, where problem (1.3) has a
unique solution for all parameters and in which the above properties can hold.
In this section we will define general solution spaces and make some assumptions
that we will need, when we discuss the parameter-to-state map later on. All in
all, this gives a rather complex model of general function spaces that interact with
each other.

5.1 Weak solutions and solution spaces

Classical solutions of a PDE-system like (1.3) are solutions that are located in
CY([0,T7],C?(2)N). Tt turns out, that these spaces are not well suited when dealing
with inverse problems. Often, if one wants to show the existence of a classical
solution of a PDE like (1.3), one needs some regularity or smoothness assumptions
on the parameters involved, as well as onto the boundary, boundary conditions
and the nonlinear function g that are usually not given in real world applications.
So we need a weaker approach to a solution which we will establish in this section.
This approach will also be useful for numerical comparisons later on.
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5.1.1 A motivation of the weak solution theory

In this chapter, we will start with a classical solution of the PDE and motivate a
weak formulation as well as the appropriate spaces suitable for this formulation.
Note that this motivation is much easier to understand, if the reader is familiar
with the weak solution theory of elliptic equations. An excellent introduction is
for example given in the lecture notes [37]. For simplicity reasons, we restrict
ourselves to the case of a linear equation and N = 1. The generalization of this
motivation to higher order systems is straightforward as we will see in the next
section. So let us assume that u is a classical solution of the PDE

u(z,t) — Au(x,t) + Au(x, t) = f(z,1) in Qp
u(z,t) =0 on 082 x [0, 7]
u(z,0) = ug on Q x {0}

i.e. u € C'([0,7T],C*)). For every time instance, we can multiply the equation
with a test function ¢ € C3°(Q2) and integrate over ) afterwards.

/u'(t)gp iz +/Vu(t) Vo + v dr — /m dz. (5.1)
Q

We will use this integral equation to define a weak formulation for the problem.
First, we look at the part, where no time derivative is involved. Similar to elliptic
problems, we can handle this, if we define a solution space for the space variable
and a space of test functions. In our simple example, H} () is a well suited space
for this task.

Now, one has to think about a solution space for the time dependent problem.
For this, we will fall back to the Bochner spaces defined in Section 3.1 as well as
to the definition of the weak time derivative. From many points of view, it makes
sense to interpret the variational formulation (5.1) as a differential equation again
(especially from a numerical point of view). By knowing u € H} (), it holds
Vu € Ly(Q2). If we now iterate that process, i.e. differentiate u again, we arrive
at Au € H1(Q). Now we consider the time derivative. For this, we look at the
the variational inequality that represents the weak derivative of u with respect to

the time component:
T T
/u’go dt = —/ugp’ dt.
0 0

If we want to test this inequality with a test function in H'(f2), this is only well
defined if v and u’ are elements H (). This fact is dictated by properties of the
Bochner Integral, since we want to use the Holder like estimates in Proposition
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3.1.5 as well as Proposition 3.1.7. By these properties it holds for p € C5°([0,17):

T

T
/<ulav>(H—1,H01)p dt = </ u'p dt U> (H-1,H})

0

T
/up dt, v) - L HD)
0
T

= —/<U7U>(H17Ha)pl dt,

0

hence the weak derivative is compatible with multiplication with a test function
from H~' and the weak derivative of (u,v)y-1 g1 is exactly (v, v)-1 g1y. So
we replace the weak formulation (5.1) by the following one:

(W' (), ) -1,m3) + /Vu(t) Vv dz = /u(t)gp dr Vo€ Hy(Q). (5.2)
We can now define a solution space for weak solutions:
W3 = {u € Ly(0,T, H;(Q)) | v € Ly(0, T, H*(Q))}. (5.3)
Based on this, we can define a weak solution of problem (1.3):

Definition 5.1.1. A function uw € W3 is called a weak solution of (1.3), if (5.2)
is fulfilled for almost every t € [0,T] and the initial condition u(0) = ug is fulfilled
for almost every x € €.

For this definition to make sense, the function v has to be continuous in time.
This is indeed the case, as the embedding Wi < C([0,T], L(f2)) is continuous,
see for example [25].

5.1.2 General solution spaces

In the previous section, we have dealt with a rather simple example. In this section
we generalize the above theory to systems of semilinear equations and more general
function spaces. The generalization to the system case is very simple. One just
chooses vector-versions of the above function spaces and treats the solution of
each equation in the system in the above manner. We also want to include (in
addition to the classical Hilbert space theory) recent results concerning maximal
parabolic regularity [32] that allow more general function spaces which then allow
showing existence and uniqueness results for a more general class of semilinear
parabolic equations. An example for such an equation is given in [48]. Also,
the existence of solutions for the embryogenesis equation from Section 2.4 was
shown in the general setting discussed in this section. In this case, instead of the
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spaces H'(Q) or H}(f2) one adapts the solution space for the space variable to
H(Q), i.e. a space of more regular functions. We will see later on that this more
general approach is also well suited for the analysis of the inverse problem and the
exponent ¢ does barely influence its analysis at all, as long as some embeddings
of the solution space are met and the non-linearity g is well behaved in the sense
of continuity and differentiability of its superposition operator.

Definition 5.1.2. Let ¢ € [r,72) and 1/q+1/¢d =1, 2 < 71 < 1 < o0.
Depending on the type of boundary conditions, we set

Y =Y, = H"(Q)N (5.4)

Y =Y, = H"(Q)V

q

in the case of Neumann type boundary conditions and

Y =Y, = Hy(Q)N (5.5)
Y =Y, = H" ()N

in the case of Dirichlet type boundary conditions.

For the spaces Y and Y*, we get an analogon to the classical Gelfand-triple [25]:

Lemma 5.1.3. ForY, Y as in definition 5.1.2 the embeddings

Y < Ly(Q)N — Y~ (5.6)
are continuous. Further, if ¢ € (max{1,2d/(d + 2)},2|, the embeddings

Y s Ly(QN — V™ (5.7)
are continuous.

Proof. This lemma is a direct consequence of Proposition 3.4.4 and Corollary
3.4.5. .

One can now define a solution space in the same way as we did in (5.3):
W i=W,, = {uc LJ0,T],Y,) | v € L[0,T], (Y;)")}, 2 <s<o0.

We collect some basic properties of W:

Proposition 5.1.4. For q,s > 2, the space W equipped with the norm

ullwy = Nl qomyy) + 112, qomy 5

15 a reflexive Banach space.
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Proof. Let {ux} be a Cauchy sequence in WW. Then, {u;} and {u,} are Cauchy
sequences in the spaces L([0,7],Y) and Ly([0,7],Y*). These are Banach spaces
by Proposition 3.1.4, so there exist z and zp with u, — 2z in L4([0,7],Y) and
w), — 2o in Ly([0,T],Y*). All we have to show now is that 2’ = z,. Because of the
embedding Y < Y* and Proposition 3.1.9 it is clear that u; € Ly([0,T],Y*) and
because of Proposition 3.1.8 the following holds for all p € C§°(]0,T7):

T T
[ w000 dt =l [ w00 at
0 0
T
= lim [ ui(t)p'(t) dt
k—oo

Hence, 2, is the weak derivative of z in L,([0,T],Y*) and therefore the limit is in
W as desired. For the reflexivity, we define the operator

T:W— Ls([OvTLY) X LS([O’TLY/*)
u s (u,u’),

which obviously is an isometry. By the reflexivity of Y and Y* it follows, that
L([0,T),Y) and L,([0,T],Y*) are reflexive spaces and thus the product (note that
our definition of the norm is exactly the product one norm) is a reflexive space
as well. Hence, T'(W) is a closed subset of a reflexive Banach space and therefore
has to be reflexive [19, Satz 3.31]. This concludes the proof. O

For functions in W the following rule of integration holds:

Theorem 5.1.5. Let u,v € W, ¢ € (max{1,2d/(d + 2)},2] and s > 2. Then
W — C([0,T], Ly(QD)N) continuously and the following rule of integration holds

(W), v(T)) (Ls,2) — (w(0),0(0)) (15,10) = (W, V) (7 3y + (Vs W) 5y (5.8)
Proof. We only sketch parts the proof, for a detailed version see [61, Lemma 7.3].
Let W = {u € Ly([0,T],Y) | ' € Ls([0,T],Y*)}. For u,v € C*([0,T],Y), the
formula (5.8) is valid by classical calculus. This is a direct consequence of the
embeddings from (5.7) as we get

<u7 /U>(L2,L2) = <u/7 U>(L2,L2) + <vl> u)(L27L2) = <u/7 U>(f/*,f/) + <U/7 u>()7*,17)'

Further, it holds C*([0,T],Y) < W dense, cf. [61, Lemma 7.2]. Thus the formula
also holds for u,v € W&q. Further, by [61, Lemma 7.3] the embedding W
C([0,T], Ly(Q)N) is continuous. Clearly W < W continuous by the continuous
embedding H(Q)N — HY(Q)N for ¢ < 2, so the assertion also follows for
u,v € W. ]
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If ¢ is greater than the space dimension and s is chosen appropriately, we get
stronger embeddings for the solution space:

Proposition 5.1.6. Let 2 < s < q and q > d such that 1 —2/s — d/q > 0, then
the embeddings

W = C([0,T],C(NN) = Ly([0,T], L,(2)™) (5.9)
for p > 1 are continuous.

Proof. The assertion is a combination of the statements from [44, Corollary A.28|
and |2, Theorem 4.10.2]. O

Remark 5.1.7. The embedding from Proposition 5.1.6 will be important, when
we are analyzing the inverse problem in certain concrete situations, since it guar-
antees that the solution of the equation is an L., function in space and time
simultaneously, which we later on will use for various estimates. Note that if
s=gq, then 1 —2/q—d/q > 0 is equivalent to ¢ > d + 2.

One obtains a weak formulation for the general semilinear problem as follows

Z< A1), sz> vy 4‘Z/DVUZ -V, dx
— 2/ — gi(p(t),u;(t)))pi dx, a.e. in [0, 7] VoeY (5.10)

From now on we will often omit the summation in all appearing weak formulations
and define uv := Zf\il w;v; as well as DVu - Vo = Efil D;Vu; - Vuv; foru ey,
v € Y. For the rest of the work, we assume for given p € Loo(Q7)™ and v € W
that g(p,u) € Ly(Q7)" (note that this restricts the growth of g, see Theorem
3.7.2). In this case for v € Ly([0,7],Y) it holds

/T Lo([0,T], "), Ly ([0, T), 7)) /T/ W d dt.

This directly follows from Proposition 3.4.4. For derivatives of g that will occur
later on we make the same assumption. Note that this assumption is just technical
in order to work with the weak formulation in an integral sense, which we will
need for numerical discretezation, but it is not necessary in the functional analytic
part of analyzing the parameter identification problem. Depending on a concrete
problem, one may be able to omit this assumption.

Before we can now utilize this weak formulation generalize weak solutions to
our abstract setting, we introduce another function space for the initial values.

Definition 5.1.8. Let Z be a function space with the following properties:
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(i) The embedding
W — C([0,T],2) (5.11)
s conlinuous.
(ii) The embedding Z — Lo(Q)N is continuous.

(111) The embedding Y — Z* is continuous and for u € W,v € Z it holds

(u(t),v(t))(z+2) = /u v dx.

Q

Remark 5.1.9. Such a space Z exists, since Z = Ly(Q)V fulfills all wanted
properties. However, depending on the differential equation, Z = Ly(Q)" may
not have enough regularity to ensure existence of solutions. Especially in the H4
setting, more regularity of the initial values is needed, which we will see in the
next section. At this point, we just assume properties on Z that we need later on

to analyze the parameter identification problem.
The definition for a weak solution then generalizes to:

Definition 5.1.10. A function uw € W is called a (weak) solution of (1.3), if
(5.10) is fulfilled for almost every t € [0,T] and u(0) = ug in Z.

A weak solution of (1.3) can indeed be interpreted as a solution of a Cauchy
problem in the Banach space Lo([0,T7],Y™).

Proposition 5.1.11. u € W is a weak solution of (1.3), if and only if
u — V- DVu+ g(p,u) = f in Ly([0,T],Y™), (5.12)

i.e for allv e Ly([0,T],Y) it holds

T T T
/(u’,v>(y*y) dt + //DVU Vo + g(p,u)v de dt = //fv de dt, (5.13)
0 0 9 0 ©

and u(0) = g in Z.

Proof. Tt (5.13) holds, it holds especially for all functions of the form wv(z)p(t)
with v € Y, p € C5°(0,T) and thus the assertion follows from the Fundamental
Lemma of Calculus of Variations, cf. [19, Satz 5.1|. If u € W is a weak solution, all
the integrals in (5.13) are well defined and the integrand is zero by the definition
of a weak solution. Thus (5.13) holds. O
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Remark 5.1.12. If ¢ is well behaved in u, the above proposition allows us to
define a differential operator that describes the partial differential equation for a
given parameter p, that is:

A(u) : W — Z x L,([0,T],Y™")
u— (u(0) — ug,uy — V- DVu+ g(p,u) — f)

It is easy to see, that A is injective, if the weak solution is unique. If a weak
solution exists for every initial condition and every right hand side, this operator
is surjective. To see this one picks (vg,h) € Z x Ly([0,T],Y*) and solves the
differential equation with initial condition vy and right hand side f = f + h.

Now, we make the following central assumption

Assumption 5.1.13.  There ezists a q € [2, min{2%,00}) and s > 2 such that

the equation (1.3) has a unique weak solution in W.

5.1.3 Existence of solutions

While we introduced a general solution theory in the previous section, the question
remains if solutions in this setting even exists and if so, under which conditions,
i.e. how reasonable Assumption 5.1.13 really is. In this section we will give a short
insight into results concerning weak solutions of parabolic partial differential equa-
tions without going to much into detail. While there are different approaches to
the topic of showing existence of solutions, we focus one one approach that involves
the so called maximal parabolic regularity property, which utilizes semigroup the-
ory to show the existence of solutions.

In this section let 1 < s < oo, X be a Banach space, A : D(A) C X be
a closed and densely defined, but not necessarily bounded operator with dense
domain D(A) (which we assume to be equipped with the graph norm). Let
Whs([0,T], X) := {u € Ly([0,T],X) | v € Ly([0,T],X)}. Further we denote

the maximal regularity space
MR(0,T) = WH([0,T], X) N Ly([0, T], D(A)),

which is a Banach space for the norm

[ullarr = [[ullwrsqom,x) + lullLoor),004))-

Often in parabolic equations, the time derivative u, is less regular than the
right hand side f. This is a problem for us, since we want to be able to interpret
the differential operator that describes the differential equations as an invertible
mapping between two function spaces, So, one wants to find function spaces, where
this is possible. This leads to the following
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Definition 5.1.14. Let 1 < s < oco. Then A : D(A) — X satisfies mazimal
parabolic Ly reqularity if for any f € Ls([0,T], X) there exists a unique function
u € MR(0,T) with

u'(t) + Au(t) = f(t)  a.e. in (0,T], w(0)=0 a.e. in €,
where the time derivative is taken in the sense of X -valued distributions.

Remark 5.1.15. If A satisfies maximal parabolic L, regularity for an s € (1, 00),
it satisfies maximal parabolic L, regularity for all s € (1,00) and the maximal
regularity property is independent of T', see [32, Remark 5.2].

This regularity property can now be utilized to show the existence of solutions
for very general parabolic partial differential equations. For this let

1
58

Xo = (D(A), X),

the real interpolation space of order 1 — 1/s, s between D(A) and X, see [68] for
an introduction to interpolation spaces and their properties. Then we have the
following two existence results:

Theorem 5.1.16 (|6, Proposition 1.3]). Assume that A fulfills mazimal parabolic
Lg-reqularity. Let and B : (0,T) — L(D(A), X) be Bochner measurable for each

€ (0,T). Assume that M is a constant such that for the operator L = u; + Au
mapping from the space {u € MR(0,T) | u(0) =0} to X the estimate

IO+ La) . omx)mrory) <M and [[(14+X) (A= La) " o@.qonx) <M

holds for all X > 0. Further suppose that there exists an n > 0 such that for all
xr € D(A)

1
1B)elx < 5 llelogs +7lXx (5.14)
Then for all f € Ly([0,T],X) and uy € Xy there exists a unique u € MR(0,T)
satisfying
ur(t) + Au(t) + B(t)u(t) = f(t) a.e. in (0,7, u(0) = ug in Xo.

Remark 5.1.17. If A fulfills maximal parabolic regularity, a constant M as
needed in Theorem 5.1.16 always exists, see |6, Lemma 1.2].

Theorem 5.1.18 (|54, Theorem 3.1|). Assume that A fulfills maximal parabolic
L regularity and B : [0, T] x Xo — X is a Caratheodory function. Further assume
the following Lipschitz condition for B:

For each R > 0 there is a function ¢r € Ls([0,T]) such that

|1B(t,u) = B(t,u)||lx < ¢r(t)|u—tllx (5.15)
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for almost all t € [0, T] and u,u € Xo with ||ul|x,, [|]|x, < R.
Then there exists T' < T such that the equation

u(t) + Au(t) + B(t,u(t)) = f(t) a.e. in (0,7, u(0) = ug in Xo

has a unique solution u € MR(0,T).

Note that the previous results all are given for scalar equations, but it is high-
lighted in [32, Remark 8.3] that all results carry over in a straightforward way to
diagonal systems. With this in mind, we can set D(A) = Y and X = Y* and
then the space M R(0,T) becomes the space W from the previous section. For
D € Lo(Q)Y with 0 < €} < D < Cy, we can define a bilinearform a(u,v) :
HY ()N x HY' (Q)N via

a(u,v) = /DVU - Vv dx
Q

and an operator A:Y — Y* u+— —V - DVu via
(Au, v) (g 3y = a(u, v). (5.16)
For this operator, the following result holds:

Theorem 5.1.19 (|32, Section 3|). Let A : Y — Y* be as in (5.16) and 99
be sufficiently smooth. Then the operator A has mazimal parabolic reqularity on
HY ()N for all ¢ € [2,00) if d =2 and q € [2,6] if d = 3, i.e. problem

u'(t) + Au(t) = f(t) a.e. in (0,7T], u(0) =0,
has a solution u € W for all f € Y*.

By combining Theorems 5.1.18 and 5.1.19 we get:

Corollary 5.1.20. Let s > 1, A be as in (5.16) and ug € (Y*,Y)1_1/s,. Assume
that g : [0,T) x (Y*,Y )1_1/s,s = Y™, (t,u) = g(p(t),u) is a Caratheodory function
and fulfills the condition (5.15). Then (1.3) has a unique (local in time) solution
ueW.

The condition (5.15) is very abstract. But if we utilize the right Lipschitz-
condition on g between Lebesgue spaces, we are still able to show the existence of
solutions:

Corollary 5.1.21. Let b>1, a > b and s > 1 be given in a way that the embed-
dings Ly(Q)N — Y* and Xo — Lo(Qr)" are continuous. Let A be as in (5.16)
and ug € (Y*,Y)1_1/ss. Further assume that there exists h € Lg([0,T], L%(Q))

such that each component g; : Qr X Lo(Qp)N — Ly(Qr)Y, (2, t,u) = gi(p(x,t),u)
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of g is a Caratheodory function that fulfills the condition

N
|gi(w7tv u) - gi<x7tv ﬂ)| < h(:E,t) Z |uj - aj| (517)

J=1

for a given parameter p. Then the equation (1.3) has a unique (local in time)
solution u € W.

Proof. By taking the ath power of (5.17), integrating over {2 and applying the
Holder inequality we get

N
b
oo, t0) = ot Doy < [l (3 - ) o
=1

Q

b/a

@ N
< /h(z,t)aabb dx /(Zm —az-\)
Q o =1
< CHh(t)H%Lb(Q)NHU —all}, @y
a—b

where the last inequality follows from the equivalence of norms in finite dimensions.
With the help of the continuous embeddings Ly(Q2)Y — Y* and Xo — L, (Q7)Y
the summation over ¢ = 1, ..., N yields

y* S CHg(pv U) - g(ﬁ7 /ZL)HLI;(Q)N
< Ol ., @ llu—al L, @

a—b

< OOz g @ llw = llx,,

where C' is a generic constant that may change in each line.
With [|h(?)]|L,, @~ € Ls([0,T]), condition (5.15) is fulfilled. The claim now
follows from Theorem 5.1.18. ]

Example 5.1.22. Let us assume the most general case from Section 2.1, that is
L M
gi(p,u) = Z Aipithi Z AikPik ik (U1, ..., un) |,
=1 k=L

Further let us assume that all ¢; : R — R and all ¢; : RN — R are globally
Lipschitz-continuous and it holds C; < p;; < Cy uniformly for each k = L, ..., M,
i=1,...,N and j = 1,...M, then condition (5.17) if fulfilled, as the following
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estimate shows:

L M
19i(p, w) — gi(p, u)| = Z Aipatbi Z AikPik@ir(ur — Un, ..oy Un — Un)
=1 k=L
L M
<C Z (05 Z AikPik @i (Ur — Uy, ...y uy — Un)
=1 k=L
< 2CLy,|pi(ug — Uy, ..., uny — Up)|
N
<2CLy, max_{Ly, } Y |u; — i),
=1

ke{L,..,M}

[\

=:h(z,t)

where C' = max{Cy, Cy}. If further each p;; is a measurable function, then each
g; is a Caratheodory function in the sense of Corollary 5.1.21. Note that this
example especially includes the embryogenesis equation from Section 2.4.

Remark 5.1.23. The embedding W — C([0,T], Xy) is continuous by interpo-
lation theory, see |2, Theorem 4.10.2]. By [44, Corollary A.28|, the embedding
(Y*,Y)s, into the (fractional) Sobolev space H2~14(Q)" is continuous for § > 1/2
(which then continuosly embeds into spaces of Holder continuous functions if ¢ is
sufficiently large). Further by interpolation theory (}7*, Y)ic1/ss = (37*, Y)i-1/sq
for s < g. Also note that for s = 2, > 2 it holds (Y*,Y)1/2, = L,(Q)". Thus the
space Z = (}7*, Y)1-1/s,s fulfills the wanted properties on the space for the initial
value from Definition 5.1.8 for 2 < s < g.

Theorem 5.1.19 can be generalized further, i.e. existence can be shown for exam-
ple for time dependent diffusion coefficients, see |6, Chapter 2] and [32, Chapter 6]
for an outline. Also global solutions, i.e. solutions on the whole interval [0, T are
possible, see [54, Chapter 3]. Note that a global solution under the assumptions
of Theorem 5.1.19 always exists if ¢ and s are chosen large enough, for example if
s =q > d+ 2, which is a consequence from [54, Corollary 3.2| combined with [48,
Theorem 3.1.2]. It is also a consequence from [54, Corollary 3.2| that global solu-
tions are always possible if it holds |g;(p, )| < C uniformly for v € W and a given
set of parameters. This is for example the case in the embryogenesis equation
(2.4), as the function ¢ is globally bounded.

Maximal parabolic regularity can further be used to derive solutions for very
general quasilinear equations, as long as the involved nonlinear functions are
Caratheodory-functions that satisfy the right Lipschitz-conditions, see |32, Chap-
ter 6, Chapter 7]. Note that the Lipschitz-conditions given in Theorem 5.1.18
(and in the Theorems in [6, 32] if the diffusion is also time dependent) are very
general. For more specific problems weaker or different Lipschitz conditions on the
nonlinear function g along with the right fixed point theorems might be sufficient
to show the existence of solutions. Examples for such an approach can be found
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in [48, 49] and |57, 58]. In both examples it is required that ¢ > d + 2 to arrive at
an existence result. Important for the upcoming chapters is the following result
concerning the embryogenesis equation:

Theorem 5.1.24 (|57, Theorem 3.3.4|). There exists 7 > 0 and ¢ € (d+ 2,d +
2+ 1) such that equation (2.4) has a unique weak solution in W, , for a given set
of parameters (D, \, R, W) € Loo(Qp)3N TN,

Remark 5.1.25. Another approach to show existence of solutions is to construct
a sequence of finite dimensional subspaces X},, where the finite dimensional prob-
lem has a solution uj,. Then one shows convergence of these sequences by using
the right compactness arguments. These methods are known as Galerkin method
and Rothe method, see |25, 37, 61] for a detailed explanation and they are espe-
cially attractive in the case of space and time dependent parameters and more
general diffusion coefficients, since less regularity on the parameters is demanded
compared to the semigroup approach.
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CHAPTER 6

The parameter-to-state map

In this chapter we investigate the parameter-to-state map of the partial differ-
ential equation (1.3). We discuss the properties needed to ensure the existence
of a minimizer of the Tikhonov functional, as well as to ensure the stabilizing
properties of Tikhonov regularization. These properties are the continuity and
some kind of weak closedness of the forward operator, depending on the involved
function spaces. Additionally, for numerical minimization, the derivative of the
Tikhonov functional must fulfill at least a uniform continuity property to guar-
antee convergence of iterative algorithms. Additionally, we look at certain types
of measurements and source conditions for our parameter identification problem.
Spaces and notations appearing in this chapter, that are not explicitly introduced,
are the ones from the previous chapter.

6.1 Definition

As we have seen in the sections before, there are various function spaces involved
in the process of regularization. Formally the parameter-to-state map maps a
function from a set of parameter spaces into the solution space, which are Ba-
nach spaces in our case. However, for the inverse problem it is better to have a
parameter-to-state map mapping between Hilbert spaces, because they are easier
to handle. This is, at least concerning the topology of the parameter space, not
always possible. To verify the sufficient properties for Tikhonov regularization to
admit a solution, we have to restrict the domain of the parameter identification
problem in the following way.

D(F) = {p € LQ(QT)]\/[ | C < p; < CQ,O <Ci<Oy< OO}
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This domain restriction is primarily needed to ensure the well definedness of
the weak formulation for the partial differential equation, but it is also useful
in various estimates and some of them crucially depend on having a restricted
domain like this. Note especially, that D(F') is obviously a convex, closed and
bounded subset of LT(QT)M, 1 < r < oo, but it is not compact as a subset of
L,(Q7)M, since for example if we consider M = d = 1, the sequence z,, = sin(nx)
possesses no convergent subsequence on this set with respect to the L, topology
if r < 0o. In fact the introduction of pointwise bounds for the parameters is done
in many parameter identification problems and thus not a strong assumption.
Often at least one of the constants C; or (5 is defined as an arbitrary constant.
Depending on the situation, we will restrict this domain even further to verify
needed properties from Section 4.2.

Now we define the parameter-to-state map:

F:D(F) C Ly(Qp)™ = Ly(Qp)N
p— u(p), (6.1)

where u(p) is the weak solution of (1.3). Further we define P := L,(Q7)", where
2 < r < oo will be adapted to specific situations. We equip this space with the
product one norm, i.e.

Il = lIp1llz, + -+ [Pz,

Note that D(F') C P for all » > 2. Further note that the range of F' is a subset
of the solution space W of the parameter identification problem. This will be
important, when we compute the derivative of F' and its adjoint.

Remark 6.1.1. The set D(F) does not contain open subsets with respect to the
L, topology for r < oco. To circumvent this problem, one can try to enlarge the
domain in the following way to achieve a nonempty interior of D(F):

D(F):={p € L(Qr)" | 35 € D(F) : [lp — pllz, < B},

where 8 > 0 is sufficiently small. This technique has been widely used for pa-
rameter identification problems, see for example [59]. Usually simple continuity
arguments are enough to justify such an extension of the domain. However, such
an extension is not always possible depending on the form of ¢ and the concrete
application, where certain pointwise bounds on the parameters are required. In
that case, one can only hope to show differentiability in the sense of Definition
3.5.2. For example, this technique has been used in [39] to show differentiability
of the forward operator for a parameter identification problem arising electrical
impedance tomography with respect to an L, topology.

6.2 7 - weak sequential closedness

A weak sequential closedness property of the forward operator of the inverse prob-
lem is the key ingredient to show the existence of a minimizer of the Tikhonov-
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functional as well as its regularization properties (cf. Section 4.2). For param-
eter identification problems, this is usually done by combining weak continuity
properties of the operator with compact embeddings. We make the following
assumptions:

Assumption 6.2.1.

i) For a bounded sequence {p,} C D(F), the sequence F({p,}) is bounded in
W.

ii) For p, — pin P and u, — u in Ls([0,T], L,(Q)N), it holds

T
// pn,unvdwdt%// (p,u)v dx dt Vv € Ly ([0,T),Y).
0

We will see, that this assumption is all we need to show the weak sequential
closedness of the forward operator. In fact, it turns out that this assumption can
be fulfilled for general equations, at least on a subdomain of D(F'). For this one
has to choose the subspace X with topology 7 introduced in Assumption 4.2.2 in
the right way. A detailed discussion of some examples will follow in Section 6.4.

Theorem 6.2.2. Let the Assumptions 5.1.13 and 6.2.1 hold and D(F) C P C P.
Further assume that T is a topology on P and convergence with respect to T implies
weak convergence in P. Then the forward operator F : D(F) C P — Lo(Qr)V
given through (6.1) is T-weakly sequentially closed.

Proof. We start with a sequence {p,} that converges in the 7 topology in P,
i.e. there exists p € P with p, — p. This sequence converges weakly in P by
assumption and is therefore bounded in P. By assumption F({p,}) is bounded
in W, and hence the sequence {u,} is bounded in the Banach space . By
Proposition 5.1.4 the space W is reflexive and therefore applying the Banach-
Alaoglu Theorem yields a weak convergent subsequence that we again denote by
{u,} with u,, — z. Further, the sequence {u,} is bounded in L([0,T],Y) and the
sequence {(uy);} in Ly([0,T],Y*) by the definition of the W-norm. Hence, there
exists a subsequence of this sequence that we again denote by {u,} with u, — 2
in L,([0,7],Y) and (u,); — 2’ in L ([0,T],Y*). Also this sequence converges
strongly in L,([0, 7], L,(Q)") by the Lions-Aubin Theorem. Hence, we get

T
/ un t, P ()/*7~ dt +
0

/DVunVU dx dt
Q

St ~— 5 TT—
S

T
9(Pn, up)v da dt = //fv dr dt Ve Lg([0,T],Y).
00
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Passing this to the limit, we get

T

T
/<zt,<p>(y*y) dt + //DVUVU dx dt
0

0 0
T T

—l—//g(p,z)v dx dt://fv dr dt Vv e Ly([0,T],Y),
0 Q 0 ©

where the first summand converges by the weak convergence of (uy, ), in L,([0, T],Y™),
the second by the weak convergence of u,, in Ls([0,7],Y) and the third by As-
sumption 6.2.1. Further, it can be shown that lim w,(0) = 2o in Z (see [57,
n—oo
Lemma 2.3.12]) and hence z(0) = lim wu,(0) = uo in Z. Hence, by Proposition
n—oo
5.1.11 z is a weak solution for the differential equation for p and since the solu-
tion is unique, it holds F(p) = u. Therefore, the forward operator is T-weakly
sequentially closed. O]

Remark 6.2.3. Since u, converges strongly in L¢([0, 7], L,(Q)"), it also con-
verges strongly in Ly(Q7)". This means that the forward operator is even 7-strong
sequentially continuous.

Remark 6.2.4. Weak convergence g(p,, u,,) — g(p,u) in Ly([0,T],Y*) is a nec-
essary condition for 7-weak sequential closedness to hold for the forward operator.
This can easily be seen by substracting the weak formulations for (p,,w,) and
(p,u) and passing to the limit.

6.3 Differentiability

For any parameter identification problem, one can easily find a candidate for the
derivative just by formal differentiation of the equation. For this we look at the
implicit formulation of (1.3), that can be written as

A(p,u) = Alp, F(p)) = 0.
Formal differentiation with respect to p in direction h of this equation now yields:
Au(p,u) o F'(p)h + Ay(p,u)h =0
and therefore
F'(p)h = —(Au(p, u)) A, (p, ). (6.2)

However, to show that this candidate is the actual derivative is a bit more
complex, since existence and continuity properties have to be verified. One elegant
way to show the differentiability of the forward operator is the implicit function
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theorem, which seems a natural choice due to the implicit definition of the forward
operator F'. To apply the implicit function theorem it is necessary to show that
the involved partial derivatives fulfill some continuity properties, as well as that
the operator A, is continuously invertible. In our case the differential operator A
has the following form

AP xW — Zx L[0,T),Y*)
(p,u) — (u(0) —ug,us + V- DVu + g(p,u) — f).

The partial derivatives in (6.2) then take the form

Ayv = (0(0),v; — V- DVv + g, (p, u)v), veW,

and
A’Ph = (07gp<p7 u)h)7 heP,
where
M
(gp(p: )i =) (9i)p, (P )y, (6.3)
k=1
and
N
k=1

with ¢ = 1,...., M, j = 1,..., N. The existence and continuity of the derivatives
gu(p,u) and g,(p,u) strongly depends on the form of g. Also, one has to ensure
enough regularity on the parameter space, as discussed in Section 3.7. All in all
continuity and differentiability properties of the parameter-to-state map mainly
depend on the properties of the superposition operator

G:P xW — Ly([0,T],Y")
(p,u) = g(p, )

So, for an analysis that can provide the needed properties for Tikhonov regu-
larization, we have to make the following assumptions

Assumption 6.3.1.

(i) For given r > 2 and s,q > 2 the (partial) derivatives gy, (p,u) and g,,(p,u),
i=1,...,M,j=1,....N of the operator G (in terms of the respective super-
position operators associated with the mappings p; — g(pj,-), w; — g(-,u;))
exist and are continuous.
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(ii) For every p € D(F) and every y € Ly([0,T],Y*) , the (linear) differential
equation A,(p,u) =y has a unique weak solution in W .

Remark 6.3.2. Assumption 6.3.1 (i) is enough to ensure the differentiability of
the operator G with respect to u and p, because we compute the derivative of
the associated superposition operator with the help of partial derivatives any-
ways. Partial continuous differentiability implies total differentiability and the
derivatives g,(p, u) and g,(p, u) are then computed as in (6.3) and (6.4). Assump-
tion 6.3.1 (ii) ensures the invertibility of A, and hence the well-definedness of the
operator proposed in (6.2).

Now, with Assumption 6.3.1 at hand, it is easy to show the differentiability
of the parameter-to-state map via the implicit function theorem. The proofs are
mostly straightforward and almost the same as in |57]:

Proposition 6.3.3. Let the Assumptions 5.1.13 and 6.3.1 hold for given r,s,q >
2. Then, the operator

AP = Zx Ly(0,T],Y*)
p— (u(0) —ug,us + V- DVu+ g(p,u) — f)

15 continuously differentiable and its derivative is given through

Ap(p)h = (0, g(p, u)h).

Proof. The only part that depends on p is the nonlinear function g(p,u). The
superposition operator G(p) is differentiable by Assumption 6.3.1 with derivative

9p(p, w)h. O

Proposition 6.3.4. Let the Assumptions 5.1.13 and 6.5.1 holds for givenr,s,q >
2. Then, the operator

AW = 7 x Ly([0,T], V)
u— (u(0) —ug,us + V- DVu + g(p,u) — f)

15 continuously differentiable with derivative
AU(U)’U = (U(O)7vt —V.-DVuv + gu(p7 U)U)
Further, for p € D(F) the derivative is invertible.

Proof. The first component of the map A is affine linear in u and because of the
embedding from (5.11), it is of course continuous. Hence, it is differentiable in w.
The first part of the second component, that is u; + V - DVu, is just linear in u.
The continuity follows directly from the definition of the respective norms. Hence,
the first part of the second component is continuously differentiable. The differ-
entiability of the superposition operator (p,u) — g(p,u) is given via Assumption
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6.3.1. Hence, the second component is continuously differentiable as well. Now
we look at the invertibility of the derivative. Let y € Lo([0,T],Y™) be arbitrary,
we now define the differential equation

vy — V- DV + gu(p,u)v = y.

This is a linear parabolic partial differential equation. This equation has a unique
weak solution by Assumption 6.3.1. Hence, there exists a v € W with A, (u)v = y.
It follows that the operator A, is surjective. Now assume A, (u)v = A,(uv)w = y.
Since the solution of the differential equation is unique, it must hold v = w and
therefore, the operator A, is injective. So it is invertible. O]

Theorem 6.3.5. Let the Assumptions 5.1.13 and 6.5.1 hold for given r,s,q >
2. Then the operator F : D(F) C P — W is continuously differentiable. The
derivative is given through

F'(p)h = —(A,) T A,h,
which corresponds to the weak solution of the differential equation
vy — V- DV + gu(p,u)v = —g,(p,u)h
with initial condition v(0) = 0.

Proof. The existence of a unique weak solution of the forward problem ensures
a solution of the equation A(p,u) = 0. With the help of Propositions 6.3.3 and
6.3.4 the claim follows directly from the implicit function theorem. ]

Corollary 6.3.6. Let the Assumptions 5.1.18 and 6.3.1 hold for given r,s,q > 2.
Then the operator F : D(F) C P — Lo(Qr)N is continuously differentiable and
the derivative is the same as in Theorem 6.3.5.

Proof. Clear by the continuous embeddings from (5.9), since
W — C([Ov TL L2(Q)N> — LQ(QT)N' ]

Remark 6.3.7. Due to the restriction of the domain D(F'), the differentiability
results derived in this section have to be understood as strong derivatives, i.e. as
derivatives with respect to the relative topology. Note that differentiation of A
with respect to p is possible on the whole space P if u is regular enough (i.e. an
L+ function). On the other hand, differentiability (and invertibility) of A and A,
can only be guaranteed on a subset of the parameters (which ideally is a bounded
subset of L., (Q7)™), especially if one wants to utilize differentiability of G in
Lebesgue spaces (see also Remark 6.3.10 below).

Finally, we want to analyze conditions onto r, ¢ and g(p,u) that are sufficient
to guarantee differentiability in the case that ¢ is a nonlinear function. For this
we apply our findings from Section 5.1.3:
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Proposition 6.3.8. Let 2 < s < q and q > d such that 1 —2/s —1/q > 0. Let
Z = (Y, Y*)1_1/s,s and let D, g(p,u) fulfill the assumptions from Corollary 5.1.20
for all p € D(F'). Further let the operator

G(p) : Lo(Qr)" — Ly(Qr)"
p— g(p,u)

be differentiable for r > s. Additionally assume that there exists a € R with
s < a < oo such that the operator

G(u) : La<QT)N — LS(QT>N
u > g(p,u)

is differentiable and for every p € D(F), u € W and g,(p,u) fulfills condition
(5.14). Then u € Loo(Qr)YN and F : P — W is differentiable.

Proof. The existence of a solution u € L., (7)Y of the partial differential equation
is guaranteed by Corollary 5.1.20. By the continuous embeddings W < L, (Q7)Y
from Proposition 5.1.6 and Ly(Q7)N < L,([0,T],Y*), the first part of Assumption
6.3.1 is fulfilled. The existence of a solution for the differential equation A,v = 0
follows from Theorem 5.1.16. O

The advantage of the Proposition 6.3.8 over the approach of showing differ-
entiability of G directly between P (respectively W) and L([0,T],Y*) is that
differentiability of superposition operators between Lebesgue spaces is well under-
stood and concrete conditions for differentiability to hold are given in Theorem
3.7.4. In the next remark, we take a closer look at these conditions.

Remark 6.3.9. To verify differentiability of G with respect to p between L, (Qp)M
and L,(Qr)" one has to check certain conditions for each p € P and u € W. At
first one has to verify that each of the functions

Gij : QT X LT‘(QT) — LS(QT)
(LU, t7p]) = gl(pl(x7 t)a -y Pjs "'7pM<x7 t)7 U(ZE, t))
is a Caratheodory function. Additionally the limits

g tpi(at) + 2) — flx,t,pi(,t)
(90)p, (0,1) = lim =4 j : ;

have to be an element from L rs (7) and a growth condition of the form

T—5

|gi($7tvpj(xﬁt) + h) - gi(x7tapj(x7t)) - (gi)pj ($,t>h|s < )\_Sb)\ij(x7t) + /\T_S|h|r'

has to be fulfilled for any given X\;; > 0 and ¢ = 1,...,N, 7 = 1,..., M with
by, € L1(Qr). Finally one has to verify that the mappings

Lo(Qr) = L(L(Qr), L(Qr))
pj = (h= (gi)p, 1)
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are continuous for each 7, j. In analogue fashion one verifies differentiability of G
with respect to u between L,(Qr)Y and Ly(Q7)".

Remark 6.3.10. One might ask, if an exponents 2 < s < ¢ and ¢ > d such that
1—2/s—1/q>0and r > s > 2 are really necessary in the nonlinear case.

For one part of this question, let us take a look at the second component
of g. Here we made the restriction 1 — 2/s — 1/¢g > 0. However, this is not
necessary. From computations in [61, Section 8.6] it follows that there exists
a continuous embedding from W,, < L;(Qr)Y, where ¢ < b < (d + 2)q/d.
So if g is differentiable between L,(Qr)" and L,(Q7)Y, we have the continu-
ous embedding W,, — L;([0,T], Ly(2)"). This ensures enough regularity so
that Ly(Qr)N-L,(Qr)V differentiability guarantees differentiability between W
and Lq([O,T],f/*). This especially is possible for ¢ = 2. However in this situ-
ation, one loses that u € Lo(Qr)" which will be important in some estimates
later on.

We now proceed to answer the second part of the question in two steps. If we
want a solution u € Lo (Q7)" and want to utilize the maximal parabolic regularity
approach, we need an exponent r > s > 2. The reason for this is the time axis,
where at least L regularity on the parameters is demanded in time and thus by
Theorem 3.7.5, differentiability can not hold if » = 2 and s > 2. Instead we need
an exponent exponent r > s. We further require g,(p, w) to be in L4([0, 1], Y+,
where s > 2 to utilize the continuous embedding from Proposition 5.1.6. While
a continuous embedding Ly(Q)N — Y* does exist, we can not guarantee the
existence of a continuous embedding Ly ([0, T, Ly(Q)N) < L([0,T],Y*) for s > 2
and therefore we have to choose r > s > 2.

If now w is not needed to be in Lo, (Q7)" and each g;(p, u) is linear in each p;, we
can have better results. In this case we may be able to choose an exponent r = 2
for the parameter space, if one utilizes the embedding W, < Lgs2)4/a(Qr)".

An approach to get an exponent r = 2 even in the nonlinear case would be
to show differentiability of the operator G(p) : Ly(Qr)M — L(Qr)Y, G(p) =
g(p,u) where s € (max{1,dq/(d — q)},2). Then by Proposition 3.4.4 one has
the continuous embedding L,(Q7)" < Ly([0,T],Y*). One then can interpret F
as mapping from Lo(Q7)" — W, , and deduce differentiability of the parameter
to state map again with the help of the implicit function theorem (existence of
solutions is ensured by W < W, , and invertibility of the equation A,v = g,(p, u)
can be deduced with the help of maximal parabolic regularity results). But in this
case a continuous embedding W; , — LQ(QT)N does not exist without any further
restrictions on u. Thus we are only shifting the problem of not having a Hilbert
space to the data site.

Note that stronger growth conditions on g or certain equations arising from
applications might yield solutions that have more regularity. That allows greater
flexiblility on the parameter space as long as each g; is at least linear in every
involved component of the parameter p. Also note that for only space dependent
parameters, differentiability with respect to Lo(Q)* should possible to achieve
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with the help of Sobolev embeddings, since in this case g(p) can be viewed as
constant in time.

6.4 The reaction term g and the parameter space

As we have seen in the two sections before, we have to make certain assumptions
to get weak sequential closedness and differentiability of the forward operator.
For this, we will investigate the function g. As we have seen in Section 3.7 truly
nonlinear functions have to fulfill certain requirements to ensure continuity and
differentiability of the associated superposition operators. These are required to
verify the 7-weak sequential closedness and the differentiability of the parameter-
to-state map, which is expressed in Assumption 6.3.1 and Assumption 6.2.1. To-
gether with conditions on ¢ there are also conditions onto the parameter space
that have to be fulfilled. Hence, the parameter space P has to be chosen wisely
and the limitations on that parameter space are given through the restrictions
in Section 3.7. We take a look what this means in the concrete examples from
Section 2.1. So let M, i, ¢ir. be as in Section 2.1. Further, we assume the in-
volved functions ¢;; : RY — R, 1, : R — R to be continuously differentiable and
to fulfill a growth estimate of the form (3.8) with respect to the exponents b > ¢
and a > b so that we can deduce differentiability of the superposition operator
as a map from L,(Qr) — Ly(Qr), which is sufficient for differentiability of the
forward operator by Proposition 6.3.8, where a is sufficiently large. Note that by
our restrictions on D(F) and the fact that u € Lo ([0, T], Loo(2)") by embedding
(5.9) (at least if exponents ¢ > d and s > 2 sufficiently large are chosen for the so-
lution space, which we assume at this point), it holds in all of the upcoming cases
that g(p,u) € Loo([0,T], Loo(Q)Y), since the pointwise application of a continuous
function to an L., function is again an L., function (see also Remark 6.4.2 at the
end of this section).

1. First we look at linear combinations of the form
N

gi<p7 U) = Z NikDik Uk -
k=1

In this case it is possible to choose P = Ly(Q7)™. For this let ¢ = ab, where
2>a>2d/(d+2) and 2 < b < oo such that ab’ < 2. Further we assume
u € Wy,. Then we can estimate (with the help of the Holder-inequality in
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space and Wy, < C([0,T], L,(2)") continuous)

N
9P, Wl L0154y < C D 9i(P, Wl Lagio.). L)

=1
N N

<CY Y lpwtl oo pae))
=1 k=1
N N

<CY Y lpiellao 11,2 o 11kl oo 0,77, 2000
=1 k=1

< C|Ipllp|lwllw,

where C'is a generic constant and hence, the map (p,u) — g(p, ) is bilinear
and (Lipschitz)-continuous and therefore continuously differentiable with re-
spect to p and u (which directly coincides with the findings of Theorem 3.7.4
concerning superposition operators). The partial derivatives from (6.3) and
(6.4) are then given as

(9i)pi; hig = Nijujhi;
and
(gi)ujvj = )\z‘jpz'jvj~

One can now directly deduce, that Assumption 6.3.1 is fulfilled. For As-
sumption 6.2.1 to be fulfilled, we choose the L, topology as 7-topology on
D(F). Tt is well known that for p, — pin Lg, u, — w in Ly with u, € L,
it directly follows p,u — pu in L. Since the sum of weakly convergent
sequences converges weakly, we can directly deduce, that Assumption 6.2.1
is fulfilled as well.

. For functions that are a linear combinations in p and nonlinear in u, i.e.

Nt
gi(pu) =Y Naepiwdin(t, .., un),
K1

we can assume the existence of a solution, where ¢,s > 2 and then utilize
Proposition 6.3.8 (with possible addition of Remark 6.3.10) to show differen-
tiability of F'. Differentiability with respect to p (again with P = Ly(Qp)M)
directly follows from its linearity along with continuity and can be deduced
as in the last example. For the differentiability with respect to u we re-
fer to the assumption that the with ¢;; associated superposition operator
is differentiable as an operator from L,(2r) — Ly(€27), which then implies
differentiability of the forward operator as stated in Proposition 6.3.8. The
respective partial derivatives are then given as
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and

M
(9i)u; v = Z AirDik (Pir )y (W15 oy UN V5,
k=1

as (3.5) dictates. Since we assumed a continuous derivative for ¢, we find
that at least (g;)u; € Loo(€2), so that the linear partial differential equation
has a solution for all f € Y* by standard solution theory. Hence, Assumption
6.3.1 is fulfilled. Assumption 6.2.1 can be deduced as before.

. In the case, where general nonlinear functions v; : R — R are involved

additionally, i.e.

Nt
gi(pu) =i | > Npandin (v, .o un) |
k=1

the situation gets a lot more complicated. Now the parameter p itself is an
argument of a nonlinear function. Differentiability of g with respect to p
can be ensured by the properties of the functions ;. In case of exponents
q,s > 2, we have to restrict the parameter space to L,(Qr)M for some
r > s, so that we have Ls-regularity in time for the derivative g,(p,u). So
in this case the parameter space (formally) becomes a Banach space. The
differentiability with respect to u can be handled as in the previous case.
Even more difficult to handle is the fact that establishing a weak continuity
result with respect to the Ly topology (or with respect to any L, topology
with 7 > 2) is not possible due to Theorem 3.7.8.

Again we can compute the derivatives of the superposition operators via
(3.5)

M
(9i)pi;hig = v Z AirPik @ik (U1, -y un) | Aij@ij(u, oo, un ) hi

k=1

and
M M
(gz)ujvj =; Z AikDik @it (U1, -, UN) Z Aikpik(¢ik)uj (U1, oy un)0;.
k=1 k=1

As stated before, we cannot directly show the weak closedness property
on the original domain D(F) for this example. The goal would be to find
a topology 7 as in Assumption 4.2.2, such that Assumption 6.2.1 can be
verified. It is highly unlikely that such a topology 7 exists, because if we
assume for example a L, weak topology or the L., weak star topology on
D(F), it can be shown that g;(p,,u,) has a subsequence with g;(p,u) = y
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in Lo, but y # g;(p, u) in general (see Remark 6.4.2 below). So if one wants
to ensure the existence of a minimizer, we have to choose a parameter space
P and a topology 7 on P, such that p, — p in P implies the existence of
a strongly convergent subsequence p, — p in L,(€2). Then we can use the
continuity of ¢; to verify Assumption 6.2.1. An example of such a domain
would be

D(F)={peD(F) | |pls < C}, (6.5)
A first idea to choose P could be
P = {p e Lu([0, T}, HY (M), p' € Lo([0, T), (H ("))}, (6.6)

Then the 7-topology would be the weak topology on P. Since P is reflexive,
a sequence in @(F ) has a weakly convergent subsequence (by the almost
everywhere bound on the P-norm combined with the Banach-Alaoglu the-
orem). A weak convergent sequence in P converges strongly in L,(Qz)™
by Theorem 3.3.4. But of course, this is not optimal in terms of parameter
identification since it basically excludes all non continuous functions.

A much better idea in fact is to choose

P = BV (Qr)M, (6.7)

the space of functions of bounded variation, see [3] for the definition and
properties of BV. The advantage of (6.7) in comparison with (6.6) is, that
the space of bounded variation includes much more functions than the space
from (6.6), especially functions that have jumps and most likely any param-
eter p! that appears in practical applications. For showing regularization
properties on @(F), one now chooses the 7-topology as the weak* topology
in BV (Qr)M. Note that the Banach-Alaoglu Theorem is not directly appli-
cable in this case, since BV (Q7)™ is not a separable space and thus weak*
compactness is not necessarily equivalent to sequential weak* compactness.
But there exists a generalization, the so called sequential Banach-Alaoglu
Theorem [62, Lemma 4.10], which, combined with (6.5), yields a weakly
star convergent subsequence in BV (Qr). It is known that a BV weakly
star convergent sequence converges strongly in L;(Q7) and by the Dom-
inated Convergence Theorem combined with the almost everywhere bound
on D(F) this sequence even converges strongly in L,(Q7)™. If the penalty
appears to have sequentially compact level sets with respect to the topology
of P (ie. R(p) = Ip[1%), the restriction [|p||5 < C can be omitted. Another
way to secure the existence of a minimizer of the Tikhonov functional would
be the restriction of D(F) to any compact subset of Lo(Q)M ] as explained
in Remark 4.2.7.
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4. Our last example are combinations of the above, where multiplications of
different parameters are allowed, i.e.

L i
u) = Z Apiti Z NikDik @ik (U1, ..., unN)
=1 k=L

Here, parameter space and solution space can be chosen as in the last ex-
ample. To verify a weak closedness property, one has to basically restrict
the domain as in the last example. We just show, how the derivatives are
computed in this case. It holds for j < L,

M
(gi>pij hij = Nijhij; Z AikDik @ik (U1, .., UN)
k=L+1

and for 5 > L

gz Dij 2] Z Azlpzl¢ Z )\zkpqubzk Upy ooy U ) Aij¢ij<u1a [EEE) UN)hij-

The derivative for v can basically be computed as in the example before, i.e.
M

(i), v Z)\zlpzﬂ/) Z)\zkpzk¢zk (U1, ey uN) ZAikpik(Qbik)uj(ula o UN )V
k=1

The above calculations are still very abstract, so we now look at our primary
example from Section 2.4

Example 6.4.1. Let us consider the nonlinear reaction part
gz((Aa Rv W)a ) =\ iU + Rz¢< Ul + ...+ WinuN)a

so we are in the fourth of the above situations. Continuity and differentiability
of the involved superposition operators have been shown in [57]. For the partial
derivatives we find

(Wzlul + ...+ W N),
'(Wiuy + ... + W,

in

uy)Wiju;
and

(.%')uj?)j = R@’(W}lul —+ ...+ W UN)VV”UJ
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So in total we get
Go((A, R, W), u) (A, R, W) = Au+ Rp(Wu) + R¢/(Wu)Wu (6.8)
and
g\, R, W), u)v = Av + R (Wu)Wo. (6.9)

Again, 7-weak sequential continuity cannot be shown for weak L, topologies, so we
cannot guarantee the existence of a minimizer of the Tikhonov-functional on D(F)
at the moment. To ensure the existence of minimizer of the Tikhonov functional
on a subset of D(F'), one can formally restrict the domain as in (6.7). In our
numerical experiments, we just utilize parameters that are elements of BV (Qr),
so that we do not have to worry too much about domain restrictions. But in
numerical experiments the situation is a lot easier anyways, since all computations
are done in finite dimensional subspaces, where weak convergence is equivalent to
strong convergence.

Remark 6.4.2. Let ¢ : R — R be continuous and u,, € Lo(2) be a L., weakly*
convergent sequence with limit u € L., (€2). Since u, is bounded in L, it es-
pecially holds |u,(z)| < C almost everywhere and therefore sup |¢(u,(x))| < Cy
almost everywhere by continuity of ¢. So {¢(u,)} is uniformly bounded in L, and
therefore has a weakly* convergent subsequence by the Banach-Alaoglu Theorem,
i.e. p(uy) = z. But usually, z # ¢(u). For this consider the sequence w,, := sin(nz)
on Ly(0,27) and ¢(-) = (-)?. The sequence {u,} converges weakly with respect to
the L, topology for 1 < r < oo and weakly* in L., (0,27). However, it holds

2w

[ otun) do =

0

Therefore z # 0 = ¢(u).

6.5 The adjoint of the derivative

For the computation of the gradient of the Tikhonov functional, it is necessary
to know the adjoint of the derivative of the parameter-to-state map. Since we
assume our data to be in Ly(Q7)", we need to compute the adjoint of the operator
F'(p) : P — Ly(Qr)N, where the exponent of P is determined by the shape of
g, see Proposition 6.3.8. We have seen, that we can write the derivative as the
concatenation of two linear operators, i.e. F'(p)h = (A,)"*(A,h). Hence, we can
compute its adjoint by computing the adjoint of the two involved linear operators
(note that these are mapping between Banach spaces) and it holds

F(p)'w = —(A,)" o ((A) ™) w
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For the rest of the work let g,(p, u)* and g,(p,u)* be the adjoints of the respec-
tive multiplication operators

W — L([0,T],Y7)
v = gu(p, u)v
and
L ()™ — Ly([0, 7], V)
h — g,(p,u)h.

Then, we can get an explicit expression for the adjoint

Theorem 6.5.1. Let Assumption 6.3.1 hold. Then, for fized p in P the adjoint
of F'(p) is given as
F'(p)* : Lo(Qr)™ — P
w s —gy(p, u)*o(w),
where v(w) is given as the unique solution of the differential equation
—v, — V- DV + g,(p, u)"v = w, v(T)=0 (6.10)

Proof. The claim follows immediately from Corollary 6.5.5 and Lemma 6.5.7 be-
low. ]

Remark 6.5.2. The adjoint g,(p, u)*w of the multiplication operator
gu(p,w)v can be computed via

N

Z(guj (p, w)vj)kw

17

WE

<gu (p7 U)U, w>RN =

B
Il

<
Il
i

WE
WE

(9u; (p, w)wy) jv;
1

= (gu(p, u)"w, v)ry

<.
Il

i

—_

and the adjoint g,(p, u)*m of the multiplication operator g,(p,u)h via

N M

Z(gpj (p, w)hj)pmi

17

(]

(gu(p, w)h, m)py =

£
I

<
Il
—

M-
NE

(gpj (p7 u>mk’)jhj (6'11)

=: (gp(p,w)"m, h)gm.

<.
Il

Eonl
Il

—

Basically we transpose the Jacobi matrices g, and g,,, which is nothing else reorder-
ing the brackets and the summation to compute the respective adjoints. Especially
note that it holds pointwise g,(p(z,t), u(z,t))*m(z,t) € RM.
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Before we proof Theorem 6.5.1 successively in the next two parts of this section,
we want to look more closely to the computation of the adjoints of the multipli-
cation operator with the help of a concrete example.

Example 6.5.3.

e In the no system / one parameter case, i.e. M = N = 1, the operators
gu(p,u) and g¢,(p,u) are basically self adjoint (if one pays no attention to
the topology).

e Now we consider the embryogenesis example from Section 2.4. Here, the
respective derivatives are given via (6.8) and (6.9). Let s; := Wjus +... +
Winuy. For the parameter part (note that we have M = 2N + N? in this
case), we have by reordering summands

go(A B, W), u)(A, R, W)m ZZ (Nitt; + Rido(s:) + Ridt' (s:) Wiz )m

=1 j=1

N N
= Z miu;A; + Z m;¢(s;)R;
=1 NN =1 )
+ Z Z qub'(sl)mlujm]

i=1 j=1
So it holds
miuq myun
m1¢(8i) mN¢(5i)
gp((/\7 R’ W)7 u)*m — qub’(si)mlul R1¢I(Si>m1UN
Rn¢'(s )mNul .. Ry¢'(s )mNUN

where the first row denotes the adjoint with respect to A, the second row
the adjoint with respect to R and the last N rows the adjoint with respect
to W. For the multiplication operator with respect to u we find

gu((N, R, W), u)v = ZZ (At + Rid' (s:)Wiju;)v;

=1 j=1
N N
= Z Z(/\ZUZ + Rz‘gbl(si)VVijUZ‘)Uj,

j=1 i=1
so we deduce
)\11}1 + R1¢,(81)W11U1 + ...+ RN¢/(SN)WN1UN
gu((A, Ry W), u) v = :
)\NUN -+ ngﬁ/(Sl)Wu\ﬂJl + ...+ RN(b/(SN)WNNUN
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6.5.1 The adjoint of (A4,)™!

In this subsection we derive the adjoint of (A,)~!, which is the more difficult part,
since (A,) ! is only implicitly known. First note, that this part of the computation
is more or less independent of the parameter space and therefore can be done in a
general fashion. Note that our approach of computing the adjoint as well as proof
ideas are inspired by [57|. Since

(A) ™' Z x Ly([0,T],Y*) = Lo(Qp)N
is bounded the adjoint maps
(A)™)" : La(Qr)Y — Z* x Ly([0,T],Y).

Because of the implicit definition of the operator it is not possible to compute
its adjoint directly. Instead we take the indirect route via computing the adjoint
of the operator A,. First of all note that

Au W C LQ(QT)N — Z X Ls([()?T]J}N/*)

is an unbounded operator. This operator is densely defined because of the inclu-
sions

CEQr)Y N NW cW C Ly(Qr)N

and the fact that C§°(Qr) C Ls(Qr) is dense with respect to the Ly topology.
Therefore, we can still compute an adjoint operator

(Ay)* - Z* x Ly([0,T],Y) — Ly(Qr)",

which follows from Theorem 3.8.2. Furthermore, the operator A, is closed. For
this take a sequence {u,} C W with u,, — u in Ly(Q7)" and A,u, — v. Since
A7t L([0,T),Y*) — Ly(Qr)N is bounded, it follows u, — A;'v and hence
u € D(F) with Au = v. So we can make use of the fact that for invertible
operators that are densely defined, closed and have a dense range, it holds that
the inverse of the adjoint is the adjoint of the inverse, see Theorem 3.8.3. Thus
we can compute ((A,)71)* as ((A,)*)~L

Lemma 6.5.4. The adjoint of the operator A, is given by

(Au)": D((A)*) C Z" x Ly ([0, T],Y) = Lo(Qr)™
(r,w) = —w; — V- DVw + g, (p, u)*w,

with domain

D((A)*) = {(r,w) € Z* x Ly([0,T),Y) | w € Why, 3z € Ly(Qp)V
((Ay) w,v) = (z,v) Yo e W, w(T) =0,r = w(O)},
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Proof. Let v € W and (r,w) € Z* x Ly([0,T],Y), then it must hold

(Ay, (r, w))(ZXLS([O,T],Y *),Z*x L ([0,T],Y
T

/@—V DVv + gu(u)v, / 0)r da

T

T
/v W) ey dt—l—//DVv Vw + gu(u)v - wd:cdt—i—/ (0)r dex.
0

0 Q
We can now use Theorem 5.1.5 and get

T

T
(Ayv, (r,w)) = /(—w',v>(y/*y) dt — //DV'LU -V + gu(p,u)w-v de dt
0 0

+ /U(T)w(T) dx+/v(0)(r — w(0)) da.

Q

We define an operator (that has to be interpreted in the weak sense)

(Ay)* : D((A)") C 2" x Ly ([0,T],Y) = La(Q7)"
(r,w) — —w" =V - DVw + g,(p,u) w

with domain of definition

D((A,)") = {(r,w) € Z* x Ly([0,T],Y) | w € W, 3z € Ly(Qp)" :
((Au) w,v) = (2,v) Yo € W,w(T) = 0,7 = w(0)}.

By our assumptions D((A,)*) is nonempty, because the equation

—w' = V- DVw + g,(p,u) w = z, w(T) =0 (6.12)

has a unique weak solution in the solution space W for any z € Lo(Qp)".
This is a direct consequence of the solution theory, the embedding Lo(Qp)Y —

Lo([0,T],Y*) and the fact that g,(p, u)* is sufficiently regular by Assumption 6.3.

1.

Since Wy, — C([0,T], L,(2)Y), the point evaluation r = w(0) is possible as well.

It follows
T

T
(A, (r,w)) = / (—', v)y g dt — / / DV - Vo + gulp ) w - v dz di
0

0 Q

+ /v(T)w(T) dx + /U(O)(T —w(0)) dz

Q Q

= ((Au)"w, v) (L2(Q7)N,La(Qr)N)
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From this computation it is obvious, that the restrictions r = w(0) and w(7T") = 0
are necessary. Since the equation (6.12) has a unique solution in W, for all
f € Ly(Qr)Y, so that any domain, where (A4,)* can be defined is already part of
D((A.)*). Hence, by Theorem 3.8.2 (A,)* is the adjoint of A,. O

Now we can compute the adjoint of (A4,)':

Corollary 6.5.5. The adjoint of (A,)! is given by the operator
((A) ™ Lo(Q7)N — Z* x La([0,T),Y)
2= (w(0), w),
where w is the unique weak solution of the differential equation
—w' — V- DVw + gu(p, u)*w = z, w(T) = 0.

Proof. By Theorem 3.8.3 we can compute ((A,)™!)* as ((A,)*)™!, which directly

proves the claim. O
We can derive the following regularity result for the adjoint:

Lemma 6.5.6. Let g,(p,u)* be sufficiently regular and assume that z € L,([0, T])Y

with s > 2 then (A,)™1)*z € Wi,.

Proof. Under sufficient regularity assumptions on g,(p, u)* and z, the adjoint equa-
tion has a solution in W , by Theorem 5.1.16. The claim follows with W, ; < W 4
and by uniqueness of the solution. O

6.5.2 The adjoint of A,

In this section we will compute the adjoint of the operator A,. The computation
of the adjoint of this operator itself is indeed very simple, because it is just a
multiplication operator. We only have to ensure that the adjoint maps between
the right spaces:

Lemma 6.5.7. The adjoint of A, is given by

(A" Z" x Ly([0,T],Y) =P
(z,h) = gy(p,u)*h.
Proof. Tt holds

(Ap(p,u)h, U>(LS([O,T],Y/*)xZ,LS,([o,T]y)xZ*))
=(9p (P, W)V, W) (1, 0,11,7,.(f0,71,7)) + O
:<gp(p7 U)*U}, U)(P*,’P)7

where the last equality follows directly from the fact that the derivative of the
superposition operator is a linear operator that maps P — L,([0,T],Y™*) and thus

its adjoint maps from Ly ([0,7],Y) — P*. O
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6.6 Application of gradient descent methods

In the previous section, we derived an expression for the adjoint of the deriva-
tive. Formally, the adjoint of the derivative is just an element of the dual pace
of an L, space. As explained in Remark 6.3.10 the choice » = 2 is not always
possible. In fact has to assume r > 2 if ¢ is truly nonlinear to ensure differentia-
bility of the parameter to state map. Hence, by r > 2 the dual of L, is L,, with
r" < 2. In this case, it might be difficult to show convergence of the minimiza-
tion algorithms discussed in Section 4.2.2 and thus one may have to fall back to
minimization schemes between Banach spaces or other minimization algorithms
that are not directly depending on continuity properties of the derivative. Also
the quadratic expansion approach that we discussed in Section 4.2.2 to speed up
the minimization of the Tikhonov functional is not directly applicable in this case,
since P is not a Hilbert space. But in our case we have more information, namely
regularity for the solution of the adjoint equation from Lemma 6.5.6 as well as a
restricted domain of definition for F. This allows us to justify the Hilbert space
Ly as parameter space for the problem, since we are only working with strong
derivatives and all involved functions have enough regularity to still make this
approach work, even though differentiability of the forward operator possibly can
only be established with respect to the L, topology, where r > 2.
We make the following assumptions:

Assumption 6.6.1.

(i) The forward operator F is Lipschitz continuous with respect to the topology
0f73 = LT(QT)]W,

(i5) u’ € Loo(Qr)Y,
(1ii) It holds for pi,ps € P
19p(P1; )" = 9p(p2, )" |, < Collpr — P2l
and for uy,us € W
1gp (- u1)™ = gp (- u2) ||z, < Cullur — uallw,
i.e. gp s Lipschitz-continuous in both arguments.

(i) It holds for 1—2/s—d/q > 0, g,(p,uw)* fulfills (5.14) and the adjoint equation
w — v(w) fulfills an energy estimate of the form

[ollw < Collwll g, qo.7,7+)-

Remark 6.6.2. To show that the forward operator F' is Lipschitz-continuous is
a difficult task and has to be done individually in dependence of ¢g. If it can
be shown, that the derivatives ¢,(p,u) and g,(p,u) are uniformly bounded on P,
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then one can easily show, that F’ : P — L(P, Ly(Qr)") is uniformly bounded
with the help of an energy estimate for the differential equation that describes the
derivative (cf. [58, Lemma 3.4]). Lipschitz continuity of F' then follows from the
Mean Value Theorem (cf. [58, Lemma 3.5]).

Now we can show Lipschitz continuity of the derivative of the Tikhonov func-
tional (at least with respect to the topology of P):

Theorem 6.6.3. Let Assumption 6.3.1 and Assumption 6.6.1 hold and 1—2/s—
1/q > 0. Then the derivative F' of the discrepancy term F := ||F(p) — u’||?

F'(p): P — L(P,R)
p e F'(p)"(F(p) — o)
s Lipschitz continuous with respect to the topology of P.

Proof. Let uy = F(p1) and up = F(pz). By the restriction of the domain and the
Lipschitz-continuity of u there exists C' > 0 such that

lu(p)llw < C
uniformly for all p € D(F). Further it holds

lg(p1, u1)* — g(pa, uz)||
<llg(pr,u1)" — g(p2, ua)*[| + lg(p2; u1)* — g(p2, u2) ||
<Cyllpr — p2 — uz|[w)
<Cy(|lpr — p2l»)

where the last inequality follows with the Lipschitz-continuity of F. Hence, again
by the restriction of the domain, there exists C' with

lgp(p, u(p)|z, < C

uniformly for all p € D(F). Finally we estimate (with the help of Proposition
3.4.4 and Proposition 3.1.9 and the fact that the adjoint equation is linear)

F/(Pl)h - Fl(]h)h = <F'(p1)*(u1 - Ua) - F/(P2)*(U2 - Ua), h)(P*,P)
< [F'(p1)* (ur = ®) = F'(p2)* (ug — ) |1, IR,
= |lgp (pr, 1) "0 (w2 — w*) = gy (p2, u2) v (w2 — )|, |IBlL,
= ng(p17u1> [ v{ur — Uz))}
+ [Qp(ph U1) - gp(p2, U2)*)] (U(U2 - U6)) HLT/ ||h||Lr
< |19y (p1, u1) N, v (ur — u2) | o
+[1gp (P15 u1)” = gp (P2, u2) |1z, o (ue — w1
< (Cllv(ur = uz)w + CCyllpr = pallo) IRz,
< Cllp1 = pallplhlz,
So the Lipschitz continuity is established. O
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Remark 6.6.4. It is in fact much easier to derive Lipschitz continuity of the
derivative of the Tikhonov-functional than of the derivative of the forward oper-
ator, if one already knows that F' is Lipschitz continuous. The reason for this is
that we can directly use the a priori energy estimate for the solution of the ad-
joint equation and do not have to care about further occurences of parameters in
this equation. Nevertheless, a Lipschitz-estimate for the derivative of the forward
operator is also possible under the right conditions on g and can be derived as in
[58, Chapter 3.4].

Remark 6.6.5. The fact that we only get a Lipschitz estimate with respect to
the L,-topology does barely influence the applicability of Theorem 4.2.27. The
reason for this is that we only work on the set D(F’) instead of the whole space.
On this subset convergence with respect to L, is equivalent to convergence with
respect Lo, which follows from the Dominated Convergence Theorem. Also, the
minimizer of the Tikhonov-functional is not dependent on the exponent r > 2. As
one can easily deduce from the proof of the convergence result in the original paper
[47], a Lipschitz result with respect to the L, topology is enough to ensure the
convergence of the quadratic approximation method under these circumstances if
it can be ensured that the iteration generated by Algorithm 4.2.24 stays in D(F).

Finally we need to show, that the derivative of the Tikhonov functional is 7-
strongly closed.

Theorem 6.6.6. Let Assumption 5.1.13, Assumption 6.2.1 and Assumption 6.6.1
hold. For p, = p in P C P,u, — u in W assume that g,(pn, u,)* — gp(p,u)* in
P*. Then

F'(pa)*(F(pn) —u’) = F'(p)*(F(p) — u’)
in P*. Additionally, if g,(pn, un)* — gp(p,u)* in P*, then
F'(pa)* (F(pa) —u’) = F'(p)*(F(p) — ).
Proof. Let p, — p in P. Since F is r-strongly closed, it holds u(p,) — u in
LQ(QT)N. Thus
[0(F(pa) = u°)) = v(F(p) = u’)lw = [[0(F(pa) — F()lw
< Cl[F(pa) = F(0)ll 2020)
— 0 as n — oo.

In the next two estimates, let v, := v(F(p,) — u°) and v := v(F(p) — u®), so that
we get

[(F'(pa)" (F(pn) = u*) = F'(p)"(F(p) = u’), w)(p )]
=[(Gp (P> tn) 0n = gp(p, w)"v, W)

|<gp(pnv un)* - gp(pa u)*> wv>|

+ Cllvn = vllwllgp(pn, un)|
— 0 as n — oo,

P*
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where we utilized P = L.(Q)Y, v(F(p) — u®) € Loo([0,T], Loo()™) and the uni-
form boundness from the sequence {g,(pn,u,)*} that follows from the Banach-
Steinhaus Theorem. If g,(pn,u,)* — ¢p(p,u)* in P* we can estimate in similar
fashion

IF' (pn)*(F(pn) — u’) — F'(p)*(F(p) — u’)|
:ng(pm un)*vn - gp(p7 u>*v|
<I(gp(Pn, tn)* — gp(p, w)")vn

P

o
P+ 1gp (s w)* (v — 0))]

7)*
<Cllonlwll(gp(Pn; un)* = gp(p; w))llp+ + Cligp(p, w)* |l lvn — v) [
<C(I1(gp(Prs un)* = gp(p, u)*) lp+ + [Jon — vllw)

— 0 as n — oo,
which proves the claim. O

Remark 6.6.7. Ttems (i7) and (iii) of Assumption 6.6.1 as well as the restriction
1 —2/s—d/q > 0 are not needed in the linear case if r = s = 2, since 7-strong-
closedness of u together with Lipschitz-continuity already yield the claim.

Remark 6.6.8. Another needed condition in Theorem 4.2.27 is that the iteration
stays in D(F'), which in the case of a truly nonlinear function could be a bounded
subset of the space BV (Q7) N Lo (§2) restricted functions that satisfy an almost
everywhere bound. In all of the situations explained in Section 6.4, if we start the
algorithm with a smooth parameter p, € D(F') and assume that that the data is
Lo, we will at least have that the gradient F'(po)*(F(py) — u°) is a continuous
function in the case 1—2/s—1/q > 0 (or a reasonably smooth function in the case
q = 2), because g,(po, u)*v(w) is just a sum of products of continuous functions.
Depending on the penalty, the sequence {p,} generated by Algorithm 4.2.24 is
then sequence of continuous functions that converge with respect to the L, norm
to an L., function, which indicates that at least an arbitrary almost everywhere
bound should be fulfilled for this sequence. Also, since all of the ongoing processes
are rather smooth, one can most likely expect this sequence to stay in BV (Q2r) as
well.

6.7 Restricted measurements

As mentioned before, in practical applications, one does not have access to mea-
surements on the whole set {27 but only on a subset of this set. In this section, we
consider three types of measurements, which seem to make sense in the biological
context of our key applications and should give a good insight into the problem
of restricted measurements. For this section we consider

e measurements on an interior subset of positive measure,

e measurements of Dirichlet data on the boundary,
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e measurements at certain timesteps, so called snapshots.

In all these cases, the measurement operator O turns out to be a linear and
bounded operator between function spaces. So all (weak) continuity and differen-
tiability properties directly carry over to the operator F := O o F. For computing
the gradient of the Tikhonov functional, we thus only have to compute the ad-
joint of the observation operator and how its concatenation with the adjoint of
F" interacts. Of course, there are a lot more possibilities for measurements. For
example in [16] measurements at a single point over time are considered for the
equation from Section 2.3.

6.7.1 Measurements on an interior subset of positive
measure

This is probably the easiest case of measurements to occur. So let Q0 C Qp be
of positive measure. Then we can define the measurement operator via

O : LQ(QT> — LQ(QTl)

U +—r 'LL|QT1 .
It can easily be seen that the adjoint of O is the operator
O : LQ(QTl) — LQ(QT>

v(z,t) — {

v(z,t) on Qp,

0 otherwise,
since it clearly holds

/ Ujey, U d(z,t) = /uO*v d(z,t) Yo € Ly(Qpy).

QTI QT

6.7.2 Measurements of Dirichlet data on the boundary

In this case we do not assume zero boundary values, but instead the Dirichlet
boundary condition

u=>bon 09 x [0,T].
In this case, we can utilize the measurement operator:

O : LQ([Ov T]> HSQ(Q)N) - LQ([O’ TL LZ(aQ)N)>
U +— UjoQ-

which certainly can be applied to every u € W. The operator O is linear and
bounded, which follows immediately from the definition of the trace operator for
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Sobolev functions [19, Satz 6.15] and Proposition 3.1.9. Note that if we want
to compute an adjoint of this operator, it is only located in Lo([0,T], H=*(2)N)
so we cannot directly apply the adjoint of F’ to O*. Nevertheless, an explicit
expression for the adjoint of the combined operator ((A,)™!)*oO*w can be derived
analogously to the computations from Section 6.5 and is given via (v(0), v), where
v is the solution of the partial differential equation

—v; — V- DV + gu(p,u)v =0 in Qp
v=w on 082 x [0, 7]
v(z, T)=0 on 2 x {T'}

6.7.3 Measurements at certain points in time

This case is rather difficult and not as easy as the ones before. Here, we have the
measurement operator

O : C([0,T], Ly(Q)N) — Ly(Q)N*E
u (u(ty), ..., u(ty)).

This operator is obviously bounded and linear, but it is not a bounded operator
from Ly(Q7)Y — Ly(Q)V*E and even though it is densely defined, the explicit
computation of an adjoint in the L, sense fails, since the operator O is not closed.
So we have to compute an adjoint for the bounded linear operator mapping into
the dual space of continuous functions and thus its adjoint is only an atomic
measure. The computation of the adjoint itself is rather easy, and it turns out
to be the well known Dirac-Delta Function (with respect to the time axis). A
detailed discussion of such a situation can be found in [57]. In this case one splits
the adjoint equation (6.10) into several partial differential equations of the form

oD L ®) k< K,

—(v®)Y, -V . DV (k)_|_u (k) —

If we extend each function v™®) with zero, so that it is defined on the whole interval
[0, T, we can define

and then express the adjoint of the combined operator via
(A)™1)" 0 0" = v(w).

A much easier approach is just to assume that we do have a little bit more
information, so instead of point evaluations as measurement, we could assume to
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have measurements at a small interval around these as proposed in [57]. In this
case we are back in the situation of Section 6.7.1.

A third way to deal with this data would just be to interpolate the data on the
time axis, so that we get an approximation u% of u’ in Q7. So, in this case one
just adds additional noise to the data. Since u is continuous, and assuming the
variance of the noise is not to high, we would get a reasonably good approximation
of u°, if the number of measurements K is big enough. The drawback is of course
that the noiselevel d5 is unknown, even if 4 can be estimated.

6.8 Source conditions and restriction of
nonlinearity for semilinear reaction-diffusion
equations

Since we have derived the adjoint of the derivative, we now can discuss how source
conditions can be interpreted for a parabolic parameter identification problem.
The approach we are using is inspired by a similar approach for linear elliptic
equations proposed in [22, 24|. We will see that a similar result as in [22, 24| also
holds for our parameter identification problem defined through (6.1). That means
that the fulfillment of a source condition mainly depends on smoothness of the
true solution and its boundary and initial conditions. In the system case, also
the structure of the system itself is important. Moreover an interesting relation
between controllability of the adjoint equation (6.10) and approximate source
conditions is highlighted in this section.

6.8.1 An interpretation of the source condition

If we directly write down the source condition (note that we can do this indepen-
dently of topologies), we get

Jw € Ly(Qr)V : F'(p)w = g,(p', u(p")) v(w) € OR(p"). (6.13)

The goal is to find conditions under which such a w exists. First we take a look
at the scalar case, where only one parameter has to be identified, i.e. N = M = 1.
In this case (6.13) becomes

v(w)gy(p', u(ph)) € OR(p'), (6.14)

*

where we use that g,(p', u(p')) = g,(p', u(p’))* in the scalar case. From (6.14) it

follows that there exists a £ € OR(p') with

¢ =v(w)gp(p', u(ph)).
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We can formally divide by g,(p', u(p') and get

—5 =v(w
ity
€ Ay
= Ly )
(&N
= W) <9p(p*,U(p*))) - (6:15)
We arrive at the abstract condition
z:= & € D((A,)), (6.16)

9p(p", u(p'))
which basically reduces to

z €W, 2(T) =0.

Two cases that we previously highlighted for the penalty term are
R(p) = i|lp — p*||* and R(p) = |lp — p*|le,. We first consider the squared norm
penalty. Condition (6.16) then becomes

L PPy AT) = 0.
9p(PT, u(p?))

The condition z € W implies that the function z has to be at least continuous in
time and weakly differentiable in space. This means especially that z has to be an
L, function, if we assume 1—2/s—d/q > 2 and thus, if g,(p'(z,t), u(p')(z,t)) =0
at a point (z,t), the estimate p* has to be exact at this point (and possibly even in
small neighbourhood of (x,t)). The same goes for the case if the function z does
not fulfill the needed smoothness conditions. Special attention has to be paid to
the final and boundary conditions. The final condition immediately implies that
the estimate p* at the point T has to be exact on the whole domain 2. If either
Dirichlet or Neumann boundary conditions are involved, we have either

u(z,t) =0 or %u(m,t} =0 on OS2

These properties of v usually (but not necessarily) imply that

gp(p(x,t),u(z,t)) =0 or %gp(p(x,t), u(z,t)) = 0 on ON.

Since the adjoint equation (6.10) fulfills the same boundary conditions as the
original equation, an exact estimate of p' is thus not enough at this point, since
we do not only need that z is continuous at these points but we have also to
enforce a special value, i.e.

z(z,t) =0 or %z(m,t) =0 on OS2

Hence, in this case we need to find an exact estimate of p' (or its derivatives) in
a reasonably big neighbourhood of 0.
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Example 6.8.1. First we consider the easiest case, namely g(p,u) = pu as well
as Dirichlet boundary conditions. Further let us assume that p is smooth in Qp
and u > 0. Then identity (6.16) becomes

pT(xv t) — p*(x, t)
u(p’)(z, 1)

thus by assumption the knowledge of p' in a small environment of the boundary
as well as the knowledge of p' at time T is enough to ensure a source condition.
Especially no further information on the source representer w is needed. If we con-
sider the embryogenesis example from Section 2.4 and restrict us to the parameter
W (so that we have M =1 and N = 1) the identity (6.16) now becomes

Wi —w+
Re!(Whu(WT))u(W)

e W,

e W.

We can see that the parameter W appears in the denominator as an argument of
¢ as well as the parameter R. Again, if W' is assumed to be smooth in the interior,
R > 0and u > 0, we can deduce a source condition under the same assumptions as
before (note the ¢/(WT(x,t)u(x,t)) is differentiable by the chain rule for Sobolev
functions [19, Lemma 5.14] and the fact that ¢ is a C*°(R) function [57, Appendix
8.1]).

In the case of sparsity constraints, we can derive a similar result, the source
condition now becomes

3¢ e Sen((pnp—pNei: &= v(w)g,(p' ulph)),

ieN
so we can perform the same computations as in the squared case and arrive at

z:zLEW, 2(T) = 0.

gp(p", u(p"))
In this situation however, we cannot control the smoothness of z with the help of
an a priori estimate. Instead one has to find a basis {(;} such that p' is sparse in
this basis and z € W fulfills z(T') = 0 and the respective boundary conditions.

Remark 6.8.2. We can conclude a source condition enforces strong restrictions
onto the parameters. In the squared norm case, we need to basically know the
true solution in a neighbourhood of all points, where it is non smooth. Additional
information of the values of the true solution on the boundary and at the final
point of the experiment is needed as well. In usual practical applications, none
of this information is available. In the sparsity case, a basis has to be found
in which the true solution is sparse. Furthermore the basis itself has to possess
certain smoothness properties. While in applications, the true solution can often
be assumed as sparse in a certain basis, this basis will usually not have the exact
smoothness properties that are needed for a source condition to hold.
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In the system case the interpretation of a source condition becomes more diffi-
cult. The reason for this is that the adjoint equation itself is a coupled system and
we possibly have a different number of parameters and solutions. So we remind the
reader, that we have three cases M < N, more equations than parameters, M = N
equal number of parameters and M > N, more parameters than equations. If we
write down the source condition in the system case, we get

I €ORMY) : &= (g, w)v);, J=1,.... M,
that is in particular (see (6.11))

N

&= Y (9 (0, wor(w));. (6.17)

k=1

If we further assume

g1 (Pna D1y, U)
g<p7u>: ) M].?"'7MN207

9(PN1, s PNMy» )
equation (6.17) can be rewritten to
§ij = (90)py,; (P, w)vs(w), j=1, .. M,
This especially means that it holds pointwise

iélﬂ = (i(gl)pz;) Uz(w) (618)

j=1
N e’
:Bv,

and if we formally assume B; # 0, we get
| &
B ; §ij, M #0,
0 M; = 0.

vi(w) = (6.19)

Thus, a w as in (6.19) exists, if

c=| o |epqa.

Be 2 &N

=1

| 4
3—1251]'

A discussion on necessary conditions for z can now be done as in the scalar
case. If a sufficiently function h exists, where each component of i can be split in
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functions &, such that £ € OR(p') and (1/Byhy,...,1/Byh,) € D((A,)*) then a
source condition is fulfilled. Note that if the number of parameters M is greater
than the number of solutions N this condition reflects the overdetermination of
the system.

Remark 6.8.3. Equation (6.19) defines an operator

B:R™ — RV,
1 o
=(x,1 iilx,t M, >0
O Mz:O,

which will be used in the next section.

6.8.2 Approximate source conditions

In the section before we found that it is rather unlikely that a source condition can
be fulfilled, especially for problems that are motivated by real world applications,
since the exact knowledge of boundary and final values as well as smoothness
for the true solution p' is highly unrealistic. Approximate source conditions as
introduced in Section 4.2 are way more likely to hold. Note that approximated
source conditions are automatically fulfilled if the derivative F’(p') is injective
(see |34, Remark 4.2]). But injectivity of the derivative of the forward operator
cannot be guaranteed in our case. A slightly different assumption than injectivity
of F'(p") can be given through approximate controllability of the adjoint equation
by the right hand side (which is a property that at least can be shown for scalar
semilinear equations, see [26]). With this, an approximate source condition can
be verified under the assumption A71¢ € Loo(Qr), where £ € OR(p'). Smoothness
assumptions on p' can be dropped in this case. Note that this can and most likely
will still mean that boundary and final conditions as well as zeros of this function
have to be known exactly if we assume a quadratic penalty or that the solution
has to be sparse and the basis functions have to be chosen accordingly in the case
of sparsity constraints, depending on the shape of the function A=1(¢).

Theorem 6.8.4. Let the penalty R be as in Assumption 4.2.2 and B be as in
(6.20). Assume there exists & € OR(p') with BE € Loo(Qr) and let the adjoint
equation (6.10) be approximately controllable by the right hand side. Then p!
fulfills an approximate source condition with respect to R.

Proof. To verify an approximate source condition we have to secure, that the
distance function d in (4.6) decays to zero as 7 — oo. This is for example fulfilled,
if for any € > 0, we can find w € Ly(€r), such that

1€ — gp(p", u(ph)) v(w)||, < e
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or equivalently
1BE —v(w)|z, < <.

Since D((A,)*) is dense in Ly(Qp) and BE € Lyo(Qy), for every € > 0 we can
find a function @, such that || B¢ — || < e/2. Further, since the adjoint equation
is approximately controllable by the right hand side, we can find a w, such that
|v(w) — 9|, < e/2,s0in total ||BE —v(w)]|L, < e. Hence, an approximate source
condition holds. ]

In the situation of Theorem 6.8.4 the distance function d is not known explicitly,
so even though we get a convergence rate in terms of d, we cannot state how slow
or fast this convergence is. In the case of Ly functions that are approximated
by smooth functions the convergence is usually very slow, so the knowledge of a
fulfilled approximate source condition does most likely not give a huge advantage
over the convergence induced by Theorem 4.2.6.

6.8.3 Nonlinearity conditions and smallness assumptions

Nonlinearity conditions are a property on the operator itself. In Chapter 4.2,
we have introduced two different nonlinearity conditions (and a combination of
those): One that relates the nonlinearity to the Bregman distance

1 (p) — F(p') — F'(p")(p — p")|| < 7ele(p, p"), (6.21)
and another condition that restricts the nonlinearity purely in the operator domain
1F(p) = F(p') = F'(0")(p = )| < el F(p) = F(p")]. (6.22)

For many problems, the first condition is much more accessible, when it comes to
source conditions. To see this, we look at the following example.

Example 6.8.5. Let the penalty be the classical squared Hilbert space norm of X.
Then condition (6.21) follows directly from Lipschitz continuity of the derivative
of p. On the other hand, if F itself is (locally) Lipschitz-continuous (which is not a
strong assumption as for example continuously differentiable functions are at least
locally Lipschitz continuous), condition (6.22) implies (6.21). However, to verify
the assumptions of Theorem 4.2.9, we would simultaneously have to estimate the
constant v and the norm of the function w, if a source condition does hold to prove
a possible convergence rate. If we write this down for our parameter identification
problem in the case N = M = 1, we get by (6.15)

T %
p —Dp
) gp(p', u(p))
so theoretically, if the estimate p* on p' is good enough (by the fact that (A,)* is
bounded on D((A,)*)), the smallness condition can be fulfilled. Again, since p is
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unknown in practice, it is not likely to find an estimate that good (especially on the
derivatives as it is needed here) and if one knows such an estimate, regularization
is probably not needed anymore. In the tangential cone condition on the other
hand, no estimate on the norm of w is needed.

Hence, the condition (6.22) is way more practical, since it demands no infor-
mation about the element w and is also sufficient, when it comes to approximate
source conditions. In fact, it is very difficult to verify. Nevertheless, in the case of
a linear system, it is indeed possible to verify this condition on D(F).

Proposition 6.8.6. Assume a general system of the form (1.3). Further let
N

g(p,w); = > pijuj. Then the forward operator F' fulfills condition (6.22) on D(F).
j=1

N
Proof. First note, that (g,(p,u)h); = 3 hiu; and A, = A. Let p,p' € D(F).
=1

Then for the difference we get

(A" (u(p) — u(p'));

=(u(p)i)e — (u(p)i)e — V - DV (u(p); — u(p')) + Y _ pl;(u(p); — ulp’);)

=(u(p)i); — V - D;Vu(p f+2p”
Thus we can estimate
1E(p) = F(") = F'(p") (P = ) ooy
=ue) = ue + (4 1(2% P )|, o
= AH ™ (4@ () — up) + i@ phu')|, o
AW | (A () = wo1) + D0y =),

> (vl = pi)ulp); + D _(pi; — plu(’);

j=1 i=1

IHA(PT)AHL(LM)
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:HA<pT)71HL(L2,L2)

Z(ij — pij)(u(p); — U(pT)j)

Jj=1

N N
<[AG) etz Y D M@l = pis)llan lul@); = w®);] L0

i=1 j=1

SHA<pT)71HL(Lz,Lz)2]\] maX{Clv Cg}Hu(p) - u(pT>HL2(QT)N
=C||F(p) = F(")|l o)~

which establishes the claim. O

Lo (Qr)N

The derivation of a similar estimate in the nonlinear case is much more com-
plicated, since a direct relation between p and u cannot be derived. However for
special functions (especially for functions that are linear in p and only nonlinear
u) a similar estimate might be possible to achieve.

Remark 6.8.7. Besides the application to show source conditions, the condition
(6.22) is also an assumption that appears in many iterative regularization schemes.
Here, one additionally has to show that the constant c in (6.22) is smaller then one
to assure convergence or regularization properties of the iterative regularization
schemes. In this case, condition (6.22) is also called tangential cone condition.
However, the constant we derived in Proposition 6.8.6 is usually not good enough
for these methods, because considering applications the bound on the functions
(s is already much bigger than one. For more information about this topic we
refer to |23, 59, 64].

6.9 Parameters that are only space dependent,
only time dependent or neither space nor
time dependent

Parameters not always have to be assumed to be space and time dependent. Nev-

ertheless, the analysis from Chapter 5 still can be applied. This is just a straight
forward result, since one can use the following parameter spaces

Ps = Ly(Q)M (only space dependent),
Pr = Lo([0, )M (only time dependent),
Py =RM (space time independent).

All those spaces continuously embed into our initial parameter space P. Therefore
the computation of the derivative of the parameter-to-state map can be done in
absolutely similar fashion as for space and time dependent parameters. Also the
results concerning the 7-weak closedness property carry over to this case, The
adjoint of the derivative has to be computed for each case individually. This is
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again an easy task, since the adjoint of the respective embedding operators is just
the integration over space or time respectively, so in each of the three cases we can
simply compute the shape of the adjoint of the derivative of the parameter-to-state
map via

T
Fo)h= [ Fipcmp)h dt,
0
Forh= [ Finpp)h da,
Q
T
Forh= [ [ Fnp)hdo it
0 Q

A discussion of source conditions can also be done in this case. While smoothness
conditions remain the same, either the restriction on the boundary conditions in
case of only time dependent parameters or the restriction on the final condition
in case of only space dependent parameters can be dropped.

6.10 Identification of the diffusion coefficient

The simultaneous identification of a diffusion coefficient in addition to parameters
appearing in the reaction term has been extensively discussed in [57]. Essentially,
the results were that if the parameter space for the diffusion coefficient is chosen
as Pp = Loo(Qr)", an analysis like the above is possible. Note that again, the
weak sequential closedness may give some trouble and probably requires a domain
restriction for the diffusion parameter D. The overall parameter space then can be
chosen as the product space Pp x P. Since the differential operator is linear with
respect to the diffusion coefficient the derivative of this part is easy to compute.
We then get the following differential equation for the derivative of the parameter-
to-state map, i.e. F'(D,p)h is the solution of the differential equation

vy —V - DV + g,(p,u)v =V - hVu — g,(p, u)h,

so we get an additional term in the right hand side of the partial differential
equation for the derivative. The computation of the adjoint of the derivative is
also straightforward, only one part for D is added, it holds

F'(p")* = (Vv - Vg, g,(p, u)*v),

where v is the solution of the adjoint equation (6.10).
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6.11 Some remarks on semilinear elliptic
differential equations

To conclude this chapter, we want to add some final remarks concerning elliptic
partial differential equations. As it is known, the weak solution theory, that we
derived in Chapter 5 for parabolic partial differential equations is a generalization
of the solution theory for elliptic partial differential equations. This means, that
the results derived in the previous chapter can be transferred one to one to the
case of elliptic equations under even slightly weaker assumptions, since there is
no time derivative involved. In fact the only part that needs some attention is
the nonlinear function g. Depending on g, similar restrictions onto the parameter
space have to be made to show differentiability of ¢ with respect to the parameter
p, depending on the superposition operator associated with ¢ and we face the
same problems showing weak sequential closedness as in Chapter 6.4.
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CHAPTER [

|dentifiability of solutions

Now, that we have adressed the regularization, the question whether the solutions
are or are not identifiable from certain types of measurements (as discussed in
Section 6.7 remains. In this section we will show identifiability of parameters in
a semilinear parabolic PDE in the case N = M =1 for certain types of measure-
ments. Especially the case, where the measurements are given by snapshots at
certain time instances, which is for example very relevant in the embryogenesis
example from Section 2.4, is discussed. For this, we will use an adjoint approach
proposed in [21] and generalize it to our model PDE (1.3).

7.1 Uniqueness in scalar reaction-diffusion
equations

This section is split in two parts. First, we derive an adjoint equation for a semilin-
ear PDE and introduce some technical conditions for the approach to work. Then
we show uniqueness with the help of an approximate controllability assumption
on an adjoint PDE for different kinds of measurements. The motivation behind
this and the main idea of the paper [21] is the relation of the original partial
differential equation to the above mentioned adjoint PDE with solution operator
F*, where one aims at an identity

(1 = P2, F*(f N sy = (F(01) = F02), [ 1y Q0 CQp (7.1)

for parameters p;,p, € P and f* € LQ(QT). If now F' was a linear operator and its
range was dense, it would immediately follow that F' is injective. However, since
Fis not linear and F™ is not the adjoint of F' in a strict sense, one can not directly
derive injectivity. But something similar to injectivity is granted by approximate
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controllability, which we will indeed use to show uniqueness. In this section we
consider the following types of measurements:

(i) On a subset Q C Q over the whole time domain,
(ii) on the boundary 9 over the whole time domain,

(iii) over the whole domain €2 via snapshots at times {t, ..., tx }.

7.1.1 Derivation of an adjoint equation

So let p1,p2 € P and u(py), u(ps) the respective solution of (1.3). In the following,
let Au = u(p;) — u(pz). Then for Au we get the differential equation.

Auy(z,t) — V- D(x,t)VAu(z,t)
+g(p1(x,t),us(z,t)) — g(pa(x,t), us(z,t)) =0 in Qp,
Au(z,t) =0 on 09) x (0,71,
Au(z,0) =0 on 2 x {0}.

We can multiply both sides of this equation with a test function ¢ € C5°(Qr),
add g(p1,us2) — g(p1,us2) and integrate over space and time, so we get

T
//Autcp — V-DVAup + (g(p1,u1) — g(p1,u2))p dx dt
0 Q

- /T/(g(pmuz) — g(p1,u2))p dx dt

Partial integration with respect to space and time then yields

T
/ / Au(—g1 =V - DV + (g(pr, 1) — glpas uz))p) dar dt + / Aupl=T d
0 Q Q

(7.2)

T T
0 0
—F//QO%AU — Aua—ngp dS dt = //(g(pg,UQ) — g(p1,u2))p dx dt
0 0

0 00

Now we are facing a problem. In the paper [21] a direct relationship between
the differences of parameters and solutions as in (7.1) can be derived. In our
case, this is not directly possible, because the possibly nonlinear function g is still
involved. To generalize the results from [21], we need some conditions to get a
relation between parameters and solutions. For this we define

9(p1,u1)—g(p1,u2) Au 0

~ Au
, U, U2) =
g(pl 1 2) {O Au =0
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This definition however is not as great as it might seem. Because for Au — 0,
1/Au — oo and therefore an adjoint equation with the reaction term § might not
be solvable anymore, since the reaction term can not be considered as an element
of L. Hence, we introduce a condition that handles this problem:

Assumption 7.1.1. For all uy,us € F(P) and p € P it holds

|9(p, ur) — g(p, u2)| = O(Aw). (7.3)

This assumption is for example fulfilled if ¢ is Lipschitz continuous with respect
to the second argument. Now, in the case of measurements of type (i), we can
have ¢ to fulfill the differential equation

f* inQx[0,7T]

(7.4)
0 elsewhere

_Sot - v ° DVSD +g(p1au17u2) — {

o(x,t) =0 on 98 x [0, T,
o(x, T)=0 on 2 x {T},

and in case of measurements of type (ii) the equation

—(pt—V~DV90+§(p1,u1,u2) =0 in QT;
o(z,t) = f* on I x [0, T,
oz, T)=0 on Q x {T}.

If we now denote the map f* — ¢ via F** the identity (7.2) reduces to

(9(p1,u2) — g(p2, u2), F*(f*)) Lair) = ([ Fi(p1) — F(P2)>L2(Qx[o,T])a (7.5)

for interior measurements (i) and for boundary measurements (ii) to

(9(p1;u2) — g(p2,u2), F* (f*)) Lar) = (f* F(p1) — F(p2)) a0axpory-  (7-6)

As we can see, both these identities are of the form (7.1).

For measurements at certain points in time, we propose a slightly different
approach. First, we split the original differential equation into K equations and
get:

Aug)i(x,t) = V- D(x, )V Auy(x,t)
+g(p1($’t)> (uk)l(xvt))

—g(pg(x, t)? (uk)Q(xa t)) - in QT?
t)

on 0f) x {tk,tk+1],

0
0
Ay 1
weor(@st) k> on © x {0}.
0 k=1
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Now, we treat each equation on its own. We multiply each equation by a function
¢r and perform the same analysis as above, that means (7.2) holds for each equa-
tion separately. Now we can have each ;. to fulfill an adjoint differential equation
of the form:

—(r)t =V - DV + g(p1,u1,uz) =0 in Q X [tg_1, ],
wp(z,t) =0 on 09 x [0, T, (7.7)
or(z,ty) = fr on Q x {t}.

and thus, in the case of snapshots (iii) we get the identity.

K
(g(p1,u2) — g(P2, u2), F*(f)) Latrr) Z fi F F(p2)) o)
k=1
K
+ Z er(tr), — F(p2)) 120, (7.8)
k=2
if we define

F*(f*) = QY on [tk}—17tk]'

Based on the identities (7.5), (7.6) and (7.8), there is well-founded hope to show
that if g(p1, u2) — g(p2, ug) differ from each other, the solutions must as well. This
is of course not enough to ensure the identifiability of the parameters. So on must
impose a limited injectivity condition for the second argument of g, that is

Assumption 7.1.2. For all p1,ps € P, and almost all (x,t) € Qq, C Qr it holds

g(p1,u(p2)) = g(p2, u(p2)) == p1 = po.

Remark 7.1.3. This assumption is in fact necessary for the uniqueness of pa-
rameters, as one can easily imagine. For this consider the following example: Let
g(p,u) = pu and u(x,t) = 0in Qp, C Q. Then Assumption 7.1.2 cannot hold on
Qr, since then for every parameter p; we can define

D1 in QT27
b2 = .
p+1 inQp\Qp,

but clearly u(p;) = u(p2). In other words, if u is zero on a set with a positive
measure, the parameter p has no influence at that set on the evolution of u. Hence,
the solution of the inverse problem cannot be unique in this case. However, if it
for example can be ensured that w > 0 on a subset Qp, C Qp, then Assumption
7.1.2 can be fulfilled on this subset.

Remark 7.1.4. If assumption 7.1.2 holds, uniqueness of the parameters can be
directly deduced, if measurements on the whole set Q0 are given. In this case,
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if we assume u(p;) = u(ps), substracting the corresponding differential equations
gives

g(pbu) - g(pg,U) = 07

and the uniqueness of the parameters directly follows from assumption 7.1.2.

7.1.2 Uniqueness via approximate controllability

Now we can show uniqueness of parameters under the right assumptions onto
parameters and measurements. As stated before, the proof can mostly be carried
out along the lines of [21, Theorem 2.1], one only has to pay attention to the fact
that now space and time dependent parameters are involved. First, we start with
the uniqueness result for interior and boundary measurements:

Theorem 7.1.5. Let measurements of type (i) or (ii) be given and Ag = g(p1(x,t),
ug(z,t)) — g(p2(x,t), us(x,t)) be piecewise smooth in time with only finitely many
jumps and assume that on a subset Qg x [T1,Ty] C Qr of positive measure Ag is
continuous in time and it holds Ag > g* > 0. Then it holds F(p1) # F(p2).

Proof. Let F(py) = F(P,), then it follows from (7.5) that

T
//Aga:t (x,t, f)de dt=0  Vf*e Ly(Qr).
0 0

Now we can find an equidistant partition P := {0 = t¢,...,t, = T} of the time
interval [0, 7] so that we can replace the time integration by a discrete sum

n—1

/ AtAg(x,t)p(x.ti, f7) da + C(AL?,
Q

=0

where the error estimator is associated with the trapezoid rule (here the piecewiese
continuity of Ag comes into play). The last summand can be dropped because of
the final condition for . For each timepoint ¢; € [T}, T3], we can find a smooth
function r(x,t;) with support contained in €2y, such that

/Ag(:c,ti)r(:c,t,-) dx = /Ag(m,ti)r(x,ti) de == Cy > 0,

since Ag > 0 on 2y and the point evaluation makes sense, because Ag is continuous
in time on [}, T5]. Now we define the function

Vi) = {g(:)j,ti) (2,t) € Qo x 11, T3],

otherwise.
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The linear parabolic equation of type (7.4) is approximately controllable by the
right hand side multiplied with an indicator function of a subset as well as by the
boundary data (see for example [26] for the case of spatial measurements and [20]
for the case of boundary measurements). So on each subinterval (¢;_1,t;), we can
choose f* in a way that the initial state V; is mapped to the target state V;_; with
starting point Vp = 0, such that

* € .
HSO(.?ti’f ) _‘/Z()”Lz(QO) S LQZKZ’ Z:O,...,n—l. (79)
Now we estimate
n—1
1| > Z/AtAgx t)ol b, ) d| — C(A)?
=0 Q
n—1
_ /AtAgxt)( (2.8, F*) =+ £5) + (2, 1)) dz| — C(AL)?
=09
> > AtAg(w, ti)r(z,t;) del
{i€No,ti€[T1,T2]}q)
—‘Z/AtAgxt)( (2, t;, f*) — r(z,t;)) dz|| — C(AL). (7.10)
=0 Q
Now, if we choose K; := ||Ag||1.., we have from (7.9)
Z/AtAgxt (p(z, t;, f*) —r(x,t;)) do
=0 Q
n—1
S OE Z ||Ag||Loo HQO(ZL‘, ti? f*> - T(‘T’ ti)”LQ(QO)At
i=0
< ELCsT (7.11)
2
If we denote T := > At, the calculations from (7.10) and (7.11) imply

{iENo,tiG[Tl,Tz]}
HE L( - 5CET/2> C(AD? >0  if e and At sufficiently small. (7.12)

So, since f* # 0, this is a contradiction to F'(p;) = F(p2). ]

For snapshot-measurements (iii), the situation is slightly more complicated. In
this case, we have to ensure, that enough measurements are taken.
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Theorem 7.1.6. Let m € N measurements of type (iii) be given and Ag :=
g(p1(x,t), us(x,t)) — g(pe(z,t), us(x, 1)) be sufficiently smooth in time and assume
that on a subset Qo x [T1,Tz] C Qr of positive measure Ag is continuous in time
and it holds Ag > g* > 0. Further assume the number of measurements K to be

sufficiently big. Then, it holds F(py) # F(ps).

Proof. We start out as in the proof of Theorem 7.1.5. So let F'(p;) = F/(P2), then
it follows from (7.8) that

T
I:= O/Q/Ag(a:7t)gok(x,t, fr) dx dt =0 Ve e Ly().

Now, we choose a partition of the time interval, where each t; resembles the time
measurement ¢ was taken and get

K
I= Z/AtAg(Lti)gok(x,ti,f;) dx + C(At)?.

1=0 Q

Let now r(x,t;), L and V; be as in the proof of Theorem 7.1.5. From a density
result [27, Theorem 1.1] follows, that on each subinterval (tx_1, ), we can choose
fr in a way that the initial state f; is mapped to the target state V;_;, such that

€

(st fi) = Vil Lot SLQi_}(i’ i=0,..,n—1.

Now we can proceed as in Theorem 7.1.5 and we arrive at an equation
~ T
1] > L(T - %) — (AL

This identity is greater than zero, if ¢ and At are small enough, which can only
be guaranteed, if enough measurements are taken. So, if K is sufficiently large,
this is a contradiction to F'(p1) = F(pa). O

Remark 7.1.7. The result of Theorem 7.1.6 is not surprising, since without suf-
ficient data uniqueness cannot be guaranteed in most cases. Theorem 7.1.6 gives
no exact number of measurements needed, but in practice this number can be
assumed to be reasonably low depending on the length of the experiment and the
total variation of the solution and the parameters.

Corollary 7.1.8. Let all the assumptions from Theorem 7.1.5 or Theorem 7.1.6
hold, depending on the type of measurements. Further let assumption 7.1.2 hold.
Then py # po implies uy # ug on Qp, and hence the solution to the inverse problem
s unique in Q.

Proof. The claim follows immediately from Theorem 7.1.5, Theorem 7.1.6 and
Assumption 7.1.2. ]
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Remark 7.1.9. One could extend the results of Theorem 7.1.5 even further, by
just using a subset of the parameter space and the solution space to show local
uniqueness. For this, one would have to introduce a local approximate controlla-
bility condition, so that every u € F(Py) C W, where Py C P is approximately
controllable by the right hand side of the adjoint equation. However, in this case it
has to be ensured that Vj(x,t;) € F(F) for every (z,t;). In this case the same ar-
gument as in Theorem 7.1.5 can be applied to show the uniqueness of parameters
in P(]-

Remark 7.1.10. State of the art until recent years was the derivation of unique-
ness results with the help of Ly weighted inequalities, the so called Carleman
estimates, that often can give very general results that come with other benefits
like Lipschitz continuity of the forward operator [43, 69]. However, so far the the-
ory of Carleman estimates seems to be restricted to space dependent parameters
only and thus does not fit well into our analysis.

Remark 7.1.11. An adjoint equation like (7.4) can also be derived in the system
case. This has been done in [21] for the example equation from Section 2.3.
At this point, we do not compute the explicit adjoint equation for (1.3). In a
general case it provides little information. Also, if one can get uniqueness by
an adjoint approach in the system case (if one makes the right restriction onto
the parameters) is questionable. The adjoint equation itself is a coupled system.
For example in that case, approximate controllability results are less general than
in the scalar case [4]. However, in a concrete application an adjoint approach
could help to derive conditions under which uniqueness holds. This might be an
interesting starting point for future research.

7.2 Dealing with non-uniqueness in parabolic
systems

In the previous sections we discussed an approach to showing that the solution of
a specific inverse problem is unique. However, in many cases, especially in biolog-
ical pattern formation, uniqueness does not hold. If one still performs Tikhonov
regularization, one wants to find a way to improve the solution based on a priori
knowledge available. In this section we propose an approach that is incorporating
a priori information to improve the quality of solutions.

Assume that the solution of the system (1.3) in not unique, that means there
exist p1, po with u(p;) = u(p2). Let us make the assumption

g(p1,u) = g(p2, ) a.e. in Qp,

which surely is fulfilled, if measurements on the full dataset are taken. Now assume
additional a priori information. One may then want to consider the optimization
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problem

min || F(p) —° | s.t. a priori information.
peD(F)

However, depending on the type of a priori information, this might not be the
smartest approach, since the optimal solution is often not accessible in a reasonable
amount of time. On the other hand, if one performs some kind of Tikhonov-
regularization, the solution is probably not the one that one was looking for. But
assume that we found a minimizer p’ of a Tikhonov functional for given data u’,
then it should approximately hold

9(p1,w) = g(pa,w) ~ g(pl, u(p},)).
Now we can define an operator

F:P = Ly(Qr)
p = g(p,u)

and then, it is only natural to consider the following optimization problem

min || EF(p) — g2, u(p’))|? s.t. a priori information.
pED(F)

Note that this problem (depending on F) may still be hard to solve, but here, at
least the forward operator is explicitly known and often of a much easier type. Also

note that this problem can still be ill-posed, so it needs again to be regularized.
Whether such an approach will work in practice proposes an interesting question.
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CHAPTER 8

Numerics

There are lots of different methods to solve a PDE like (1.3). In our case we will
use a finite element method combined with an implicit-explicit Euler method for
the forward solver, i.e. the numerical solver of the PDE. In this chapter we will
introduce the and discuss its advantages for our kind of problem. Then, we will
show the applicability of the above theory with the help of the embryogenesis
example from Section 2.4. This also highlights our findings of non-uniqueness of
parameters as highlighted in Section 4.1.1.

8.1 Numerical solution of the forward problem

In this section, we shortly introduce the method that we used to solve the forward
problem in our numerical experiments. The following overview is taken from the
textbook [66]. Let us start with a weak solution of the problem (1.3), defined in
(5.10), i.e.

N

Z(u;(t),gpi)(p*y) + Z/Vuz(t) -V, do = Z/gl(ul(t))apZ dr  YoeY
i=1 i=1{

i=1

To discretize this equation, two steps are performed. First we discretize the
equation in space via finite elements and then in time via finite differences. For the
discretization in space, we utilize a partition of €2 into disjoint triangles such that
no vertice of any triangle lies on the interior of a side of another triangle and such
that the union of triangles determine a polygonal domain €2, C 2 with boundary
vertices on 0f). Further we assume that there is a parameter A that is related to
the maximal length of the edges of the triangles. This set of triangles is called
a triangulation S) of €. We can now define a finite dimensional function space
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X, on a triangulation Sy, a so called finite element space, such that X, C H*().
This function space is uniquely determined by its basis functions, which in the
simplest case can be chosen as so called hat or pyramid functions. These are
piecewise linear functions that are uniquely determined by

i = 0; P,

where the set {P;} denotes the set of vertices of the triangles. So each function
in X}, can be expressed via

np
X=)_ajp;.
j=1

Now we can perform a space discretization of the weak formulation and get a
differential equation on the finite dimensional space X,

S (@)e(t), x) + (DD )Vl (t), V)

N
h
g™ @), u" (®)).x) =D (F®).x) Yy € Xnt>0,
i=1
with finite dimensional approximations Di(h), fi(h) and p™ of D;, f; and p, i =
1,..., N (note that this demands some regularity on D and p). By expanding uy,
into the basis we get an expression

s

h
(t) = Z ai; (t)e;,
j=1

so the goal is to find coeflicients «;; with

Z Z ol (£) (05, px) + i () DI (£) (Vs Vi)
=1 j5=1
N

Z f(h {(pM (1), u™ (1)), 1), Vk=1,...,np,t >0,

where it is utilized that it is enough to test the equation with every basis function
of X, instead of testing with every function y € X},. This identity can be rewritten
in dependence of « as

Ma!(t) + Sa(t) = F(a(t)),

where
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with M; = ({p7, k) j=1,.nn k=1,...n, a0d S; = ((V;, Vo)) j=1,.np k=1,...n,- By our
choice of the basis functions, the matrices M and D (under a positivity constraint
onto the diffusion coefficient) are invertible and thus we get an equation for « via

() =M 1F(a(t)) — M 'Sa(t).

So our discrete scheme is just a system of ordinary differential equations. This
system can now be solved by the well known Euler method, where one discretizes
the time axis via finite differences and then integrates over time. In our case, we
just assume equidistant time steps, i.e. for [to = 0,...,tx = 1] it holds t; = KI.
Further we set u™(to) = Iug, where I is the function that interpolates the initial
value ug to our triangulation S,. To solve problem (1.3), we approximate the
derivative

(h) Cu () — (1)
(u; " )e(t) = 7

and insert this into the weak formulation in the following way

N

> WM (tia), x) + KD () Vu (t111), V)

1

)

W () + K" () — g:0™ (1), u® (1), x)  x € Xa,

-

=1

which can be seen as an implicit-explicit Euler method. The implicit part (the

evaluation of Vul(-h) at the point ¢, is recommended due to possible stiffness of
the equation). Again expanding this into the basis coefficients gives us

N np

SN it (s on) + () K D (1) (Vs Tipi)

i=1 j=1

tl +K f( ( )_gi(p(h)(tl)7u(h)(tl))7ka>v k=1, .. n, (81)

||Mz

This is just a linear system in « of the form
(M +S)a=F

It can be shown, that the matrix M + S is invertible. Further, the matrix M + S
is sparse and has a blockdiagonal structure, so (8.1) can efficiently be solved
via numerical inversion methods, even if the discretization is fine. So we finally
arrive at a solution on the fully discrete space (X;,)% C Lo([0,T], H*(Q)"). Under
appropriate regularity assumptions on the parameters D and p (which are of course
needed to make point evaluations of these functions on a finite grid possible), the
above method can be shown to converge to a solution of (1.3) if A — 0 and
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K — o0, see |66, Chapter 13]. Note that the adjoint equation from (6.10), which
is needed to compute the adjoint of the gradient of the Tikhonov functional, can
be solved in an absolute similar way, that means a discrete solution v(w) of (6.10)
can be computed through v(tx) = 0 and

N np
Z Bii(tie1) (s, or) + ﬁz’j(tlfl)KDz(h) (t)(Ve,, Vi)
i=1 j=1
N
=@ 1) + K(w (t) — ()i (0" (80), u® (00" (1), o) VE = 1, ... .
=1

(8.2)

Remark 8.1.1. There are many different methods to solve problems like (1.3)
numerically, for example one could consider a discretization in time before the
space variable is discretized. For an overview over these methods, we refer to |66].
The method we proposed in this section just seems to fit our problem very well.

Remark 8.1.2. One could consider adaptive methods to compute solutions of
a desired precision. In these, a triangulation is chosen based on an a posteriori
error estimator. Then, for a given precision 7, an optimal number of nodes is
found such that |lu(t;) — u™(#;)|| < 7. In addition the time discretization can be
chosen adaptively as well. Adaptive methods can greatly reduce the computational
cost of the solution of the forward problem, especially, if a specific accuracy of
the discretized solution is desired. In the case of inverse problems however, the
situation is more complicated. It is known, that if X; C X is an increasing
sequence of subspaces (i.e. X; C X, for i > j) with UX), = X, the sequence of
minimizers
(2o)n € argmin [|Fy(z) — y°|I* + aR(z),
zeXy

where F}, is a finite dimensional approximations of F', is still a regularization if
« is chosen in dependence of h and 0 [53]. A similar result could so far only
be shown for adaptive discretizations only under the additional assumption of
the tangential cone condition [41]. Another problem is the minimization of the
Tikhonov functional. If one uses an algorithm like Algorithm 4.2.23 to minimize
the Tikhonov functional, an adaptive grid is likely to change in each iteration step,
so convergence is not necessarily given. So far, only convergence of the iterative
thresholding algorithm under the assumption of a linear operator has been shown
[9]. If and under which assumptions these results can be generalized to nonlinear
operators is an open problem.

8.2 Numerical Solution of the inverse problem

So let us assume that we have discretized the problem as described in the section
before. To solve (and regularize) the inverse problem in the finite dimensional
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subspace (X)X defined in the section before, we will utilize the penalty
K np
Ru(p) = R(pm) = Y Y om0}, m=1,.,M (83
1=0 j=1

i.e. we use a sparsity enforcing penalty term (or || - ||, penalty term). So the basis
that we are using is the pixel basis for the time axis and the finite element basis in
the space dimension. Note that the basis functions are not orthogonal, but since
the mass matrix ({¢x, ;))x; is invertible, every function p € (X;)¥ has a unique
representation in this basis, so that the results of Section 4.2.1 are applicable. As
a second basis we also consider the pixel basis in space, where we penalize the
parameter at all vertices of our triangulation, i.e.

R..(p) == R(pm) ::ZZ]pm(Pj,tl)|, m=1,.., M. (8.4)
1=0 j=1

The inverse problem itself will then be solved by Algorithm 4.2.24 (note that in
our experiments we are assuming that data is given on the whole set Q). If we
write this down for our problem, we arrive at

Algorithm 8.2.1.
1. Choose a triangulation of 2 and a step size 1/K for the time variable.
2. Interpolate the data u® and the initial value ug to the chosen grid.

3. Choose a starting value py for the iteration, i.e. pg = 0. Choose an exit
condition.

4. Solve the (discrete) forward problem
(un)t =V - DVuy + g(pn,un) = f, n(0) = u,
where u,(p,)(0) = u,(pn)(to) = up and u,(p,)(ti41) is computed via (8.1).
5. Solve the (discrete) adjoint problem
—(n)e = V- DV + Gu(Pn, tn) v =ty — 0, 00 (T) = 0,
where vy, (p,)(T) = v(pn)(tx) = 0 and v, (p,)(t;—1) is computed via (8.2).

6. Generate the adjoint h,, of F' at the point p, as

hy, = F/<pn)(F(pn) - ud) = 9(Pn, Un) vy
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7. If n > 2 compute a step size s, by

5. — <pn — Pn—1, hn - hn—1>
" <hn - hn—h hn - hn—1>.

8. Compute an update for p, as
ﬁn—&-l = Pn — thn-

9. Expand p,,1 into the given basis, perform shrinkage and map the result
back into the space (X;,)* to obtain an update p, 1.

10. Check if p, 4 is a valid update. If not set s,, = 0.1s,, and go to step 8.
11. Check if the exit condition is met. If not go to step 4.

Remark 8.2.2. We compute the adjoint of F'(p,) by discretizing the infinite
dimensional adjoint. This operator however is not necessarily the adjoint of the
finite dimensional solution operator, so if one applies Algorithm 8.2.1 one has
to keep this in mind. From our experience this is not a problem in case of the
identification of space and time dependent parameters, if the discretization is fine
enough. However, if the parameters are only space or only time dependent, it can
become a severe issue, since an additional numerical integration step is involved.

8.3 Experiments

For our numerical experiments, we consider the embryogenesis example from Sec-
tion 2.4, where we only consider the cases N = 1, the case that one gene regulates
itself and the case N = 2, where two genes interact with each other. We keep the
parameters D, A\ and R fixed, so that we only have to identify the parameter W
in the equation

ur — V- DVu+ A = Ro(Wu), u(0) = up.
The gradient of the Tikhonov functional then becomes
(F'(W) (F(W) = u®)); = v(F(W) —u)id/ (Wu)u;,  1<i,5 <N,
where v; is the solution of the adjoint equation

N

IR
=1

i=1,.. N.

Note that the presence of ¢’ makes the gradient of the Tikhonov-functional very
flat at places, where high concentrations are present, as it can be seen in Figure
8.3, which makes the minimization difficult.
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Figure 8.1: The function ¢ (left) and its derivative ¢’ (right).

In both cases we performed a considerable number of experiments, and the
results for some characteristic examples are shown in this chapter. The bottom
line of all our experiments is basically that the reconstruction of parameters in
the case N = 1 works very well for space time dependent parameters (as long as
the respective coefficients are chosen appropriately, see remark 8.3.1 below), but it
does not in the case of a system. The main reason for this is local non-uniqueness
of the parameter W as stated in Theorem 4.1.2. In this case, it can be seen the
parameter W inherits certain structure from the solution w.

All our experiments are performed within the PDE-toolbox FreeFemt+, see
[33], where we implemented Algorithm 8.2.1. The visualizations are then done in
MATLAB [50]. Note that all experiments are based on simulated data. To avoid
a so called inverse crime, our simulated data is generated on a finer / different
finite dimensional space (Xh)K by choosing an initial value uy and then applying
the method from Section 8.1 to solve the forward problem with parameter W' to
generate the data. Then the data is interpolated to the grid (X;)¥ that we use for
the inversion. Note that the interpolation from one grid to another automatically
generates a considerable amount of noise.

Remark 8.3.1. The coefficients for the forward problem have to be chosen, such
that an influence of the parameter onto the solution can be measured in our finite
dimensional subspace, i.e. a change of the pattern is recognizable. If this is not
the case, the problem is too ill posed when noisy data is given. This is for example
the case, if the diffusion or decay coefficients are too large so that every change in
the pattern v immediately diffuses or decays.
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8.3.1 Space and time dependent parameter in a scalar
equation

In this section we consider the identification of a space time dependent parameter
in a scalar equation. For the domain ) we choose the unit circle, i.e.

Q={(x,y) eR? | 2* +4* < 1}.

The initial value we use is given as

wo(z,y) =1+6- (1— (3(\/W)2—2(\/W)3>>. (8.5)

We fix the following parameters
D =0.05,A=4.0,R =40.0
and the parameter we want to identify is set to

—14 (2,y,t) €0.2,0.5)* x [0.2,0.6]
Wiz, y,t) =< —0.6 (z,y,t) € [-0.6,-0.2] x [0.2,0.6] x [0.2,0.8] ,
0 elsewhere

i.e. it is piecewise constant. The data generation is performed on a (uniform)
triangulation with 7921 nodes, where 1000 timesteps are given. In addition 1%
gaussian noise is added to the data. Then the data is interpolated to a mesh with
2023 nodes and 100 timesteps, where inversion is performed.

The solution of the forward problem with this initial value is displayed in Figure
8.2. Tt can be seen that the pattern quickly evolves over time before it completely
diffuses. At places, where W1 has a negative entry, the inhibiting influence of W1
on the synthesis of u is clearly visible.

This data is now used for the reconstruction of the parameter. In all our ex-
periments we set a tolerance ¢ = 107!° and a maximum number of iterations
IT = 10000 and terminated Algorithm 8.2.1, when either ||p, — pn_1]| < € or the
maximum number of iterations was reached. For a < 107% the full number of
10000 iterations was needed.

Reconstructions over time are displayed in Figure 8.4 for the finite element basis
and in Figure 8.5 for the pixel basis. In both cases the smaller peak is reconstructed
very well at all points in time. While the larger peak in the center is detected
immediately, the reconstruction of its height is slightly off and only good in the
middle of the time interval. This, on the one hand is related to the strong diffusion
that is present, but also might have to do with the nonlinear function ¢, which is
almost linear for input arguments around zero and almost constant for large input
arguments, see Figure 8.3. If we compare the best achievable reconstructions done
in the pixel basis with the ones done in the finite element basis the Lo-error in the
finite element basis is considerably smaller. On the other hand, the best achievable
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reconstruction from a visual point of view seems to be better in the pixel basis.
Note that both reconstructions (with respect to the norm) already inherit some
noise artifacts in both cases. If « is chosen smaller, these become much stronger,
but the reconstruction of the peaks becomes better, see Figure 8.3. Note that for
a = 107, the original peaks could hardly be distinguished from noise artifacts
anymore.

If we used the squared L, norm as penalty, the best achievable reconstructions
were not even close to those in the sparsity case, see Figure 8.6. The reconstruction
of the peaks is much worse than in the original. Also the noise artifacts are larger.

Further, we performed experiments, where instead of the original gradient F’
of the discrepancy term F := ||[F(z) — u’||?, a smoothed version F of F” is used.
We compute D, as

KAFL(t) + Fl(t) = F'(t),  inQ,
F'(t) =0, on 09,

which is also called Sobolev smoothing of F' [30]. This approach lead to great
improvements in an elliptic parameter identification problem [30]. While for our
problem, noise artifacts are smoothed out very well, the reconstruction of the
peaks is not as good as it was before, see Figure 8.6. However, we did only a
very limited number of experiments and might have chosen x to large. With a
more optimized parameter choice for x, the results concerning this can probably
be improved.

Also, note that in all reconstructions, there were big noise artifacts in the first
few time points, peaking at the initial value. This indicates that the degree of ill
posedness of the problem has somewhat of a time dependence.

Finally, for future experiments, one could for example consider a total variation
penalty term, which based on the structure of our solution should yield good
results.
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using the penalty term (8.3) at times ¢ = 0.25, t = 0.5, ¢ = 0.75. The
reconstructions were done with regularization parameter o = 107°.
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The parameter W1 (top left) and its reconstructions at time ¢ = 0.5.
In the top right, the finite element penalty term (8.3) with o = 107
used for reconstruction. In the bottom left the Lo-norm with av = 10~*
is used. In the bottom right reconstructions with the Sobolev gradient
F! combined with the finite element penalty term (8.3) are shown. The
parameters used for this reconstruction were x = 0.8 and a = 1072,
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8.3.2 Parameter identification in a system

In this section we discuss how parameter identification in a system works out,
when we want to identify a matrix of parameters. The domain 2 is given as

Q={(z,y) e R? | 2* +¢* < 4}.
Again we fix the parameters
Dy = Dy =0.002, \; = Ay = 1.0, Ry =35.0, Ry =45.0.
As initial values we choose

30.0(1 — (3K12 — 2Kf)) K, <1
Ug1 = .
0 otherwise

30.0(1 — (3K22 — 2K§’)) Ky, <1
Up2 = .
0 otherwise

with

K =+/(z —0.25)2 4 (y +0.25)2,
Ky = /(2 +0.25)2 4+ (y — 0.25)2.

The functions ug; and wugy are two (smooth) hills of the same structure, where one
is located to the top left, while the other one is located to the bottom right of the
center of €.

The parameter W' is the matrix

—-0.5 0.5
wi= (—0.5 —0.05) ’
so presence of u; has an inhibiting influence on its own synthesis, while the pres-
ence of us promotes the synthesis of u;. On the other hand, strong presence of u;
inhibits the synthesis of uy, while us inhibits its own synthesis.

Here, data generation is performed on a mesh with 926 nodes and 1000 time
steps, while inversion is performed on a mesh with 243 nodes and 100 time steps.
For the reconstruction, we still used a small regularization parameter (o = 1078)
due to possible interpolation noise. Also we only performed 10000 iterations in
our iterative scheme, where we ended with a discrepancy [Ju(p) — u’||, ) = 0.2,
which is an almost non visible difference.

One can see in Figure 8.7 that in u; the hill grows to the right side but its
height gets smaller. In us a valley begins to form, where concentrations of u; are
high. These are exactly the results that we expected to see, when we have chosen
the parameter W1,

We can see the reconstruction of the space time dependent parameters Wiy,
Wia, Wa1 and Wy from the simulated data in Figure 8.8. There are some spatial
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and temporal changes, but only where the functions u; > 0 and us > 0. This is
no surprise, since where u is close to zero, the parameter W does hardly influence
the solution. On the set where the peaks are located, the reconstruction of W is
much better. At some points however parameter W;; has some artifacts of Wi,
and vice versa. This can be attributed to the non uniqueness shown in Theorem
4.1.2 for these kind of problems. At points, where u; and wuy are peaking, the
values of Wy, and Wy, are overestimated by quite a margin. The reason for this is
the function ¢ combined with the large values of the functions u; and us at their
peak. For this to see, note that the argument of ¢, i.e. Wijuy + Wasus is big at
those points as well (especially much greater than 2 for almost all components of
W). The function ¢ is very flat at those points, that means a sizable discrepancy
between W and W' at those points has only minimal effect. On the other hand
a very slight discrepancy between true solution and reconstructed solution can
completely destroy a lot of information at those points. So alone the presence of
the function ¢ amplifies the ill posedness of the problem a lot.

Remark 8.3.2. Note that we were not able to identify the constant parameters
(using the real number gradient from Section 6.9 instead of the space time de-
pendent gradient), as soon as data generation was done on a different grid than
inversion. Algorithm 8.2.1 did still converge, but to a local minimum that had no
visible relation to the parameters we originally used to generate the data. If the
grid for data generation was the same as for inversion and no noise was present,
we always found the true solution W7, when we used the starting value W = 0.
Even with small noise, we could still achieve good results in this cases. Note that
it cannot be ruled out that there might just be some numerical reasons (for ex-
ample related to numerical integration, the interior interpolation process, or the
grid being not fine enough) that caused the problems, when the data is generated
on a different grid.
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Figure 8.7: Evolution of u; on the left and us on the right. Snapshots were taken
at t =0,t=0.25and t = 0.5.
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Figure 8.8: Space time dependent reconstruction of W at time ¢ = 0.5. From the
top left to the bottom right the order is Wy, Wio, Woy, Was.
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CHAPTER 9

Conclusion

In this thesis we have investigated parameter identification in general systems
of semilinear reaction-diffusion equations, where the parameters are space and
time dependent. The first thing we noticed is that the solution of a parameter
identification problem associated with those systems is not unique in general and
in some cases not even locally. To deal with ill-posedness in the sense of non
continuous dependence of the parameters on the data, we analyzed regularization
properties of the parameter-to-state map associated with the underlying partial
differential equation. We only proposed a variational regularization approach, i.e.
Tikhonov regularization, but in principle the introduced concepts should carry
over to other regularization methods.

Before we analyzed the problem itself, we stated the well known regularization
theory of Tikhonov regularization for nonlinear inverse problems, which we slightly
adapted for our needs. We therefore introduced a special concept of the weak
sequential closedness property, which we called 7-weak sequential closedness and
can includes stronger compactness properties. Also the minimization of Tikhonov
functionals under certain constraints onto the forward operator was discussed.

Then, we introduced the weak solution theory for nonlinear parabolic PDEs in
general manner and a regularity theory from [32|, which allows to obtain stronger
embeddings for the solution space. This then can be used to show that the
parameter-to-state is differentiable, as long as the superposition operator that
is given through the nonlinearity ¢ is well behaved. The differentiability of the
parameter-to-state map was derived as in [58, 57| with the help of the implicit
function theorem. For this, results concerning superposition operators [5] dictated
that the growth of the nonlinearity g has to be examined. Depending on this, the
parameter space for the problem may have to be chosen as an L, space with p > 2,
if the function g is nonlinear in one of the arguments.

To ensure that regularization happens, assumptions that help showing the 7-
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weak sequential closedness property of the forward operator are discussed. It
turned out, that if ¢ is not linear in p, we had to restrict the domain of definition
operator. We have shown, that if the domain is chosen as a subset of L (Q27) N
BV (Qr) the 7-weak sequential closedness property can still be shown. Further,
this restriction turned out to be not too strong for most parameter identification
problems.

In order to minimize the Tikhonov functional numerically, we derived the adjoint
of the derivative of the parameter-to-state map. This was done strict functional
analytic sense for general semilinear systems, where we exploited the theory of
densely defined unbounded operators to stay in the correct spaces for our setting.
After that we also looked at restricted measurements which are given via a linear
observation operator and ensured, that all previous results stay applicable in three
common cases of measurements.

The adjoint of the derivative of the parameter-to-state map is also necessary
if one wants discuss source conditions. It turned out that source conditions for
equations of our type can indeed be interpreted as smoothness conditions. In
particular, an element of the subdifferential of the penalty term can only fulfill
a source condition if it is located in a subspace of the solution space and fulfills
a final condition. In the case of a system of equations, there is also a coupling
condition onto the parameters. Also, we found an interesting connection between
approximate controllability and approximate source conditions.

While we were not able to survey restrictions that can lead to uniqueness of so-
lutions of the parameter identification problem in systems, we at least showed that
for three different types of measurement restrictions in scalar equations uniqueness
can be shown. This was done with the help of an adjoint approach proposed in
|21]|. Especially the results concerning snapshot measurements are to the authors
best knowledge new results.

Finally, we discussed the numerical implementation and performed numerical
experiments in the scalar as well as in the system case, with special focus on the
application of sparsity regularization. In the scalar case we were able to recon-
struct parameters in a nonlinear example equation coming from the biochemical
evolution of genes. While we were not able to obtain similar results in the system
case due to non uniqueness, at least we have shown that the numerical identifica-
tion of space time dependent parameters in a system in principle is possible.

Future research can for example be concerned with the derivation of properties
of parameters, under which uniqueness of a solution of the parameter identification
can be shown. Also an extension of the proposed theory to quasilinear parabolic
partial differential including nonlinear boundary equations could be considered. At
least the solution theory we utilized stays valid in this case [32]. For the numerical
part one could try utilizing adaptive solvers to speed up the inversion process or
more advanced algorithms in order to minimize the Tikhonov functional. Also
an application of the theory to real world problems is desirable, especially for the
embryogenesis example that we frequently used to explain our abstract concepts
in concrete situations.
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