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“Food is brought to them, waste is taken away.  

For them in their eternal abyss, with its time-like stream, there is no hurry, there is no return. Such an 

organism becomes a mere living screen between the used half of the universe and the unused half – a moment 

of active metabolism between the unknown future and the exhausted past.” 

 

 

 

Bidder, GP (1923) 

The relation of the form of a sponge to its currents. 

Q J Microsc Sci 266:293-323 
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SUMMARY 

Sponges are a dominant component of coral reefs where they fulfil a number of important 

structural and functional roles that make them key ecosystems engineers. In particular, their high 

filtering capacity and association with diverse microbial communities enables sponges to moderate 

flows of organic matter and inorganic nutrients, thereby influencing the biogeochemical cycling of 

carbon (C) and nitrogen (N) on coral reefs (summarized in Chapter 1). This cycling of C and N is 

central to understanding how coral reefs, some of the most productive and diverse ecosystems on 

Earth, can thrive in such nutrient poor environments. Studying the fluxes of organic matter and 

nutrients mediated by sponges is therefore essential to understanding coral reef ecosystem 

functioning. However, many of these fluxes are poorly understood. By investigating the mechanisms 

and rates at which sponges retain, transform, and transfer organic matter and inorganic nutrients 

within coral reef ecosystems, this thesis provides new insights into the roles that sponges play in the 

biogeochemical cycling of C and N on coral reefs. 

The first part of the thesis focuses on organic matter cycling by the newly described “sponge 

loop” in the northern Red Sea. This sponge-mediated pathway for dissolved organic matter (DOM) 

cycling has major implications for reef ecosystem functioning, but to date has not been investigated 

on reefs outside of the Caribbean. Chapter 2 provides the first evidence for the cycling of coral- and 

algal-derived DOM by coral reef sponges. Importantly, this elucidates a direct trophic link between 

coral reef benthic primary producers and sponges that enables the large quantities of DOM produced 

by corals and algae to be transferred to reef fauna that otherwise would not be able to capitalize on 

this ubiquitous resource. Interestingly, the two DOM sources are processed differently by the 

sponge-microbe holobiont, with higher uptake and transformation rates for algal- compared to coral-

derived DOM. This has direct implications for the magnitude of DOM shunted into the coral reef 

trophic web by the sponge loop under scenarios of coral reef degradation that lead to phase-shifts 

from coral to algal dominance. Chapter 2 provides mainly qualitative evidence for the occurrence of a 

sponge loop in the Red Sea, but does not resolve its quantitative importance to reef ecosystem 

functioning. 

Therefore, in Chapter 3 an inverse linear trophic food web model is constructed to examine 

organic C cycling by the water column, benthos, and cryptic cavity sponge community at the 

ecosystem level. The findings provide quantitative evidence that C cycling by the sponge loop 

represents a major flux of dissolved and particulate organic carbon (DOC and POC) in the Red Sea. 

Uptake of DOC by sponges approximates the gross primary production of the entire reef ecosystem, 

exceeding recycling via the microbial loop. This demonstrates that sponges play a quantitatively 

important role in the retention and cycling of organic C on oligotrophic warm-water coral reefs.   
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Coral reefs, however, not only flourish in the warm, shallow, oligotrophic waters of the 

tropics, but are also found in the cold, deep, and nutrient-rich waters of the deep-sea. Chapter 4, 

therefore, compares the functioning of the sponge loop on a north Atlantic cold-water (CW) coral 

reef and a warm-water (WW) reef in the Red Sea. Despite vast environmental differences in the two 

reef ecosystems, both the WW and CW sponges assimilate and transform coral mucus into particulate 

detritus at remarkably similar rates. The discovery of a sponge loop also on CW reefs, suggests it may 

be a ubiquitous feature of coral reefs that, by retaining and cycling coral-derived organic matter to 

higher trophic levels, contributes to the high capacity for biogeochemical element cycling in these N-

limited (WW) and C-depleted (CW) ecosystems. However, due to ambient differences in C and N 

availability on WW and CW reefs, the key function of the sponge loop may differ, with N-cycling on 

WW and C-cycling on CW reefs disproportionately contributing to ecosystem functioning.  

The role of sponge detritus in sponge N cycling is further examined in Chapter 5 by 

comparing fluxes of dissolved inorganic nitrogen (DIN), particulate organic nitrogen (PON), and the 

generation of new N via N2 fixation by six Red Sea sponge species. Findings reveal that DIN release 

represents the largest flux of N mediated by sponges with community efflux rates potentially 

supplying up to 17% of the N required for net primary productivity of the entire reef. Release of 

PON via the production of sponge detritus accounts for approximately 30 ± 3% of the total sponge 

N released, providing the first measurements of PON release by reef sponges. The high release of 

DIN and PON leads to an imbalance in the sponge N budgets that cannot be accounted for by the 

low rates of N2 fixation. Dietary stable isotope analysis indicates this missing N is supplied via DON 

uptake, suggesting these sponges rely on DON uptake to meet their N demands. This highlights the 

functional importance of sponge DOM uptake at the organism level, complementing the ecosystem 

processes described in the previous chapters. 

Finally, Chapter 6 addresses the paucity of knowledge regarding potential linkages between 

C and N cycling by examining the potential for N2 fixation to support primary productivity (C 

fixation) in a coral reef sponge and two other dominant reef framework substrates; turf algae and 

coral rock. The results show that N2 fixation can provide up to 27% of the N demand for net primary 

productivity in turf algae and coral rock, while, in contrast, there is no relationship between N2 

fixation and primary productivity in the more heterotrophic sponge. This demonstrates the potential 

for N2 fixation to be a key mechanism sustaining primary productivity in coral reef substrates 

displaying net photosynthesis, and further highlights how interactions between C and N cycling 

contribute to sustaining the high rates of gross primary productivity characteristic of coral reef 

ecosystems despite their oligotrophic environments.  

Collectively, the findings of this thesis show that coral reef sponges play a critical role in the 

biogeochemical cycling of C and N on coral reefs by contributing to the efficient retention, 

transformation and recycling of both organic matter and inorganic nutrients that enables these 

diverse, productive and unique ecosystems to thrive in the equivalent of a marine desert. 
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ZUSAMMENFASSUNG 

Schwämme stellen eine Hauptkomponente der Biozönose in Korallenriffen dar und 

übernehmen dort als Ökosystemingenieure eine Reihe von essentiellen, strukturellen und 

funktionellen Aufgaben. Diese werden insbesondere durch ihr hohes Filtrationsvermögen und ihre 

Vergesellschaftung mit vielfältigen Mikrobengemeinschaften ermöglicht. Aufgrund dieser 

Eigenschaften sind Schwämme in der Lage, Stoffflüsse von organischem Material und anorganischen 

Nährstoffen zu beeinflussen, und somit die biogeochemischen Kohlenstoff (C) und Stickstoff (N) 

Kreisläufe im Korallenriff mitzusteuern (Kapitel 1). Diese Stoffkreisläufe von C und N spielen eine 

zentrale Rolle in der Erklärung warum Korallenriffe, trotz der sie umgebenden oligotrophen 

(nährstoffarmen) Umweltbedingungen, zu den produktivsten und artenreichsten Ökosystemen auf 

diesem Planeten zählen. Um die Funktionsweise von Korallenriffökosystemen besser zu verstehen, 

ist es daher entscheidend, die von Schwämmen regulierten Stoffflüsse von organischem Material und 

anorganischen Nährstoffen zu untersuchen, denn bislang sind die meisten dieser Flüsse noch 

unerforscht. In dieser Dissertation werden daher Funktionen von Schwämmen untersucht, welche 

zur Retention, Umwandlung und zum Recycling von organischem Material und anorganischen 

Nährstoffen im Korallenriff beitragen. Durch diese Studien werden wichtige neue Erkenntnisse zur 

Rolle von Schwämmen in biogeochemischen C und N Kreisläufen des Riffökosystems erlangt. 

Der erste Teil dieser Arbeit beschäftigt sich mit dem Kreislauf von organischem Material in 

einem Korallenriff des nördlichen Roten Meeres im Kontext des kürzlich beschriebenen „Sponge 

Loop“. Diese von Schwämmen induzierte Umwandlung von gelöstem (DOM) zu partikulärem 

organischen Material (POM) nimmt womöglich eine funktionelle Schlüsselrolle in Riffökosystemen 

ein, wurde aber bislang nur in karibischen Riffen untersucht. DOM stellt eine allgegenwärtige 

Ressource  von organischem Material in Korallenriffen dar, die aber physiologisch vom Grossteil der 

Rifffauna nicht genutzt werden kann. Kapitel 2 behandelt den ersten Nachweis für Stoffkreisläufe 

von durch Korallen und Algen produziertem DOM in Schwämmen des Roten Meeres. Von 

entscheidender Bedeutung ist hier das Aufzeigen einer direkten trophischen Verbindung zwischen 

benthischen Primärproduzenten (Korallen und Algen) und Schwämmen im Riff, durch die eine große 

Menge des von Korallen und Algen produzierten DOM der Rifffauna als POM Nahrungsquelle 

zugänglich gemacht wird. Interessanterweise werden diese zwei DOM Quellen vom Schwamm-

Holobiont (Gemeinschaft aus Schwamm und Mikroben) unterschiedlich erschlossen, wobei Algen 

DOM im Vergleich zu Korallen DOM verstärkt aufgenommen und in POM umgewandelt wird. Die 

Menge an DOM, welche über den „Sponge Loop“ in biogeochemische C und N Kreisläufe des 

Korallenriffs eingebracht wird, kann dadurch beeinflusst werden. Dies gilt besonders im Hinblick auf 

strukturelle Veränderungen im Riffbenthos, die oft eine Verschiebung der Dominanz von Korallen 

zu Algen mit sich bringen. Kapitel 2 behandelt somit vorrangig den qualitativen Nachweis für das 
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Vorhandensein des „Sponge Loop“ im Roten Meer, klärt jedoch nicht dessen quantitative Bedeutung 

für die Funktionsweise des Ökosystems Korallenriff auf. 

 Daher werden in Kapitel 3 C Stoffkreisläufe auf Ökosystemebene, in der 

Wassersäule, im Riffbenthos und durch kryptische Riffschwämme anhand eines inversen linearen 

Modells untersucht. Die Modell-Ergebnisse liefern einen quantitativen Nachweis dafür, dass C 

Kreisläufe mittels des „Sponge Loop“ eine Schlüsselfunktion in Stoffflüssen von gelöstem und 

partikulärem organischen C (DOC und POC) in Korallenriffen des Roten Meeres darstellen. Die 

DOC Aufnahme durch Schwämme entspricht dabei in etwa der Bruttoprimärproduktion des 

gesamten Riffökosystems und übertrifft dabei das C Recycling des etablierten „Microbial Loop“. 

Diese Vergleiche verdeutlichen dabei anschaulich die Schlüsselfunktion der Schwämme in 

biogeochemischen Kreisläufen von organischem Material in oligotrophen Warmwasserkorallenriffen. 

Korallenriffe gedeihen jedoch nicht nur in den warmen, seichten und nährstoffarmen 

Gewässern der tropischen Meere, sondern auch in den kalten und nährstoffreichen Gewässern der 

Tiefsee. Kapitel 4 vergleicht daher die Funktionsweise des „Sponge Loop“ in einem Warmwasser- 

(WW) Korallenriff des Roten Meeres mit einem Kaltwasser- (KW) Korallenriff des Nordatlantik. 

Erstaunlicherweise zeigen trotz enorm unterschiedlicher Umweltbedingungen die Raten für die 

Aufnahme und Umwandlung von durch WW und KW Korallen produzierten organischen Materials 

in partikulären WW und KW Schwammdetritus ähnliche Werte. Damit wird der „Sponge Loop“ hier 

erstmals auch für Schwämme aus Kaltwasserkorallenriffen nachgewiesen, und könnte somit eine 

universelle Funktion in Korallenriffen darstellen. Indem das von Korallen produzierte organische 

Material höheren trophischen Ebenen zugänglich gemacht wird, trägt der „Sponge Loop“ wesentlich 

zur Kapazität biogeochemischer C und N Kreisläufe in N-limitierten (WW) und C-armen (KW) 

Riffökosystemen bei. Aufgrund der unterschiedlichen Limitierung von N (WW) und C (KW) in 

diesen gegensätzlichen Riffökosystemen, könnte die Funktion des „Sponge Loop“ variieren. Somit 

wäre der Beitrag zum N-Kreislauf in WW Riffen und der Beitrag zum C-Kreislauf in KW Riffen 

entsprechend höher. 

Die Rolle des von Schwämmen produzierten Detritus im N-Kreislauf von Schwämmen wird 

weiterführend in Kapitel 5 behandelt. Hier werden die Stoffflüsse von gelöstem anorganischen 

Stickstoff (DIN), partikulärem organischen Stickstoff (PON) und der Eintrag von neuem N durch N2 

Fixierung an sechs verschiedenen Schwammarten des Roten Meeres miteinander verglichen. Die 

Ergebnisse zeigen, dass die Abgabe von DIN den bedeutendsten durch Schwämme vermittelten N-

Stofffluss repräsentiert, und dass dieser DIN-Fluss bis zu 17% des N Bedarfs der 

Nettoprimärproduktion auf Riffökosystemebene entspricht. Die Abgabe von PON als 

Schwammdetritus, die hier erstmal quantifiziert wurde, kommt dabei ca. 30 ± 3% der gesamten N 

Abgabe von Schwämmen gleich. Diese hohen DIN und PON Stoffflüsse bewirken ein 

Ungleichgewicht im Schwamm N Haushalt, welches durch die wiederum niedrigen N2 

Fixierungsraten nicht ausgeglichen werden kann. Analysen der stabilen Isotope der 
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Schwammnahrung zeigen, dass dieses N Defizit durch die Aufnahme von DON kompensiert wird, 

und dass Schwämme anscheinend ihren N Bedarf über die Aufnahme von DON decken können. 

Dies bestätigt die entscheidende Funktion der DOM Aufnahme für Schwämme auf 

Organismenebene, und ergänzt damit die in den vorhergehenden Kapiteln beschriebenen Prozesse 

auf Riffökosystemebene. 

Abschliessend behandelt Kapitel 6 die potentielle Kopplung von C und N Fixierung auf 

Organismenebene und untersucht dabei inwieweit der Prozess der Primärproduktion (C Fixierung) in 

einem Schwamm und zwei weiteren Riffsubstraten (Aufwuchsalgen und Korallengestein) durch N2 

Fixierung unterstützt werden kann. Die Ergebnisse zeigen, dass N2 Fixierung bis zu 27% des N 

Bedarfs der Nettoprimärproduktion von Aufwuchsalgen und Korallengestein decken kann, dennoch 

nicht den N Bedarf des heterotrophen Schwamms. Die N2 Fixierung stellt also einen potentiellen 

Schlüsselprozess für die Aufrechterhaltung der Nettoprimärproduktion von Korallenriffsubstraten 

dar. Darüber hinaus zeigt sich, dass die Kopplung von C und N2 Fixierungsprozessen entscheidend 

zur für oligotrophe Korallenriffökosysteme typischen hohen Bruttoprimärproduktion beiträgt. 

Zusammenfassend zeigt diese Arbeit, dass Schwämme in Korallenriffen eine entscheidende 

Rolle in biogeochemischen C und N Kreisläufen einnehmen, indem sie effizient zur Retention, zur 

Umwandlung und zum Recycling von organischem Material und anorganischen Nährstoffen 

beitragen, und damit diese artenreichen, produktiven und einzigartigen Ökosysteme in die Lage 

versetzen, in einer marinen Nährstoffwüste zu überleben. 
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N Nitrogen 
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PN Particulate nitrogen 
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Coral reefs: Oases in a marine desert 

Tropical coral reefs are among the most biologically diverse (Jackson 1991, Sebens 1994, 

Knowlton et al. 2010) and productive (Odum & Odum 1955, Kinsey 1985, Crossland et al. 1991) 

ecosystems on Earth. Coral reef gross primary production (GPP) ranges from 100 – 2000 mmol C  

m-2 d-1, far exceeding that of the surrounding plankton-dominated open water and rivaling that of the 

most productive terrestrial ecosystems (Atkinson 2011). High productivity in marine environments is 

typically limited to areas of high nutrient concentration, such as coastal upwelling regions, yet coral 

reefs are typically found in low nutrient (i.e. oligotrophic) tropical waters (Webb et al. 1975, Crossland 

& Barnes 1983, Kleypas et al. 1999, Atkinson & Falter 2003). This paradox has long generated 

scientific interest in coral reef nutrient cycling and remains a fundamental question to understanding 

the complexities of coral reef ecosystem functioning.  

Scleractinian corals are the foundation upon which the reef ecosystem is built. They form the 

reef framework that the rest of the community calls home and supply the energy that sustains the 

community. Their high primary productivity is made possible by their association with photosynthetic 

algae of the genus Symbiodiniun (i.e. zooxanthellae) that provide the majority of the energetic 

requirements for the coral host (Muscatine & Porter 1977, Muscatine et al. 1984). The carbon (C) 

fixed by corals and other reef primary producers is the main source of C supporting the heterotrophic 

community and thereby places constraints on community biomass and secondary production 

(Szmant-Froelich 1983, Hatcher 1990). While coral reef GPP is high, community respiration (R) is 

equally high, such that the net production of the ecosystem (GPP – R) tends to approximate zero 

(Hatcher 1990, Crossland et al. 1991, Gattuso et al. 1996). There is then little net gain of organic 

matter within the system, indicating most of the C fixed by coral reef primary producers is consumed 

within the reef and implying rapid recycling and remineralization of organic matter (Kinsey 1985, 

Hatcher 1988, Crossland et al. 1991). This tight recycling between the autotrophic and heterotrophic 

reef compartments plays an essential role in retaining the nutrients required to support the demands 

of high reef GPP (Muscatine & Porter 1977, Wild et al. 2004, de Goeij et al. 2013). Nevertheless, new 

nutrients, particularly nitrogen (N) and phosphate (P), are required to sustain net production and 

growth. The demand for P can be met via uptake from the surrounding water despite its low 

concentrations, as the volume of water flowing over the reef is high (Atkinson & Falter 2003, Falter 

et al. 2004). However, the uptake of N is insufficient to meet community demands, making it the key 

limiting nutrient for primary productivity. The demand for additional N can be met by the capture of 

allochthonous dissolved and particulate organic matter as well as the generation of new N via 

dinitrogen (N2) fixation (Falter et al. 2004, Atkinson 2011). Due to its limiting availability, the 

biogeochemical cycling of N influences the dominant metabolic processes on the reef: 

photosynthesis, calcification, and respiration - thereby moderating the flow of C, the reef’s energetic 
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currency. Understanding the relationship between C and N cycling on coral reefs is, therefore, central 

to understanding the functioning of these diverse, complex, and threatened ecosystems.  

Carbon and nitrogen on coral reefs 

Much of the C and N on coral reefs is bound in organic matter, and the flow of this matter 

plays a key role in coral reef trophodynamics (Alongi 1988, Hansen et al. 1992). Organic C in 

seawater is found in two fractions; dissolved organic carbon (DOC) and particulate organic carbon 

(POC). DOC is operationally defined as the fraction that passes through a fine filter, typically a GF/F 

filter with a pore size of ~ 0.7 µm, but represents a heterogeneous mixture of both small colloidal 

compounds and truly dissolved material (Nebbioso & Piccolo 2013, Carlson & Hansell 2015). POC 

in oligotrophic coral reef waters is dominated by picoplankton, including eukaryotic phytoplankton 

(picoeukaryotes) as well as photoautotrophic and heterotrophic bacterioplantkon (Ferrier-Pagès & 

Gattuso 1998, Charpy & Blanchot 1999, Ferrier-Pagès & Furla 2001). POC is readily incorporated 

into the food chain primarily by benthic filter feeders (Gili & Coma 1998, Ribes et al. 2003) and 

planktivorous fish (Hamner et al. 1988, Pinnegar & Polunin 2006, Hamner et al. 2007), and many 

studies show coral reefs are a sink for POC (Ayukai 1995, Yahel et al. 1998, Richter et al. 2001, 

Houlbreque et al. 2006, Wyatt et al. 2010, Patten et al. 2011). However, the POC pool accounts for 

only a fraction (<10%) of the total organic carbon (TOC) pool, while the dissolved pool accounts for 

the remaining >90%, and therefore represents the largest pool of organic C in the oceans (Carlson & 

Hansell 2015). Despite its ubiquity, DOC is largely unavailable to most heterotrophic reef fauna. 

Microbes are the primary consumers of reactive DOC in the ocean (Fenchel 2008, Worden et al. 

2015), and via the microbial loop, they mediate the cycling of DOC back into the marine food web 

through the assimilation of biomass (Azam et al. 1983). Only a small fraction of the DOC in seawater 

is labile and readily available for uptake and degradation (Hansell & Carlson 1998, Carlson & Hansell 

2015), but this labile fraction is higher on coral reefs than the surrounding ocean due to high rates of 

DOC release by coral reef benthic primary producers (Dinsdale et al. 2008, Tanaka et al. 2011). DOC 

has been found to influence the metabolism and composition of reef microbial communities, which 

ultimately affects coral health (Kline et al. 2006, Haas et al. 2013, Nelson et al. 2013). Thus, there is 

growing evidence that DOC plays a more widespread role in coral reef health, trophodynamics, and 

biogeochemical cycling than previously recognized (Smith et al. 2006, Barott & Rohwer 2012, de 

Goeij et al. 2013). However, concentrations of DOC, rates of DOC metabolism, and DOC cycling at 

the community and ecosystem level are still poorly understood.  

Nitrogen is an essential building block for life and yet most N in the oceans (>95%) is bound 

in the form of N2, and therefore largely inaccessible for most marine organisms (Voss et al. 2013). 

Only specialized N-fixing microbes, termed diazotrophs, are capable of breaking its strong triple 

bond and the N they fix plays an essential role in supplying reefs with new N (Wiebe et al. 1975, 
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Larkum et al. 1988, O'Neil & Capone 1989, Charpy et al. 2007, Bednarz et al. 2015). Most 

bioavailable N on coral reefs is bound into dissolved organic nitrogen (DON) and to a lesser extent 

particulate organic nitrogen (PON), while concentrations of dissolved inorganic nitrogen (DIN) are 

typically extremely low (Kleypas et al. 1999, Atkinson 2011). Nitrogen cycling on coral reefs, 

therefore, involves the fixation of inorganic N into organic N for use by reef heterotrophs and the 

remineralization of organic N back into the inorganic forms that fuel reef primary production. This N 

cycling is strongly mediated by processes including nitrogen fixation, nitrification and denitrification 

(Zehr & Ward 2002, Gruber et al. 2008, Hewson et al. 2008) that are carried out exclusively by 

microbes and the animals that host them (Fiore et al. 2010). 

Sponges 

Sponges (phylum Porifera) represent the oldest extant animal phylum (Wörheide et al. 2012). 

These early metazoans have been immensely successful, evolving to form a highly diverse group of 

more than 8000 species (Cardenas et al. 2012) that occupy marine and freshwater benthic habitats 

from the tropics to the poles (Dayton 1989, Diaz 2005, McClintock et al. 2005, Bell 2008). On coral 

reefs, sponge biomass and diversity can exceed that of reef-building corals (Diaz & Rutzler 2001, 

Richter et al. 2001, Lesser et al. 2009, McMurray et al. 2010), and sponge abundances have been 

increasing on many coral reefs worldwide (McMurray et al. 2010, Bell et al. 2013). Sponges are a 

particularly important component of the cryptic reef habitat; the hidden cavities and crevices that 

account for over two-thirds of the total reef volume and exceed the surface area of the exposed reef 

by a factor of eight (Jackson et al. 1971, Ginsberg 1983, Richter et al. 2001, Scheffers et al. 2004). 

Here, sponges dominate the thin living layer of primarily encrusting organisms that cover more than 

90% of the available hard substratum (Buss & Jackson 1979, Richter et al. 2001, Wunsch et al. 2000).  

Sponges perform a variety of important functional roles such as habitat provision, reef 

cementation and bio-erosion that make them key coral reef ecosystem engineers (Diaz & Rutzler 

2001, Wulff 2001, Bell 2008). However, perhaps most importantly is their ability to influence C and 

N biogeochemical cycling through the mediation of flows of organic matter and inorganic nutrients 

(Maldonado et al. 2012). Unlike other metazoans, sponges lack organ systems and instead are sessile 

filter feeders that rely on a constant flow of water through their highly vascularized internal canals in 

order to obtain food and oxygen and to remove metabolic end products. Sponges pump vast 

quantities of water through their bodies per day, up to 50,000 times their own volume (Reiswig 1971, 

1974, Weisz et al. 2008), and it is this exceptional capacity for processing water that allows them to 

influence the availability and composition of C and N in the water column. 
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Microbial symbionts in sponges 

Sponges host a remarkable diversity of inter- and intracellular symbionts, including 

photosynthetic and heterotrophic bacteria, archaea, fungi, and unicellular algae that together form the 

sponge holobiont. Microbes can account for up to 35% of the sponge biomass (Vacelet 1975, 

Wilkinson 1978, Hentschel et al. 2006), representing at least 32 bacterial and archaeal phyla ranging 

from generalists found in the surrounding seawater to specialists found only in sponges (Taylor et al. 

2007, Schmitt et al. 2012, Simister et al. 2012, Webster & Taylor 2012, Taylor et al. 2013). Sponges 

can be classified based on their microbial abundances. High-microbial abundance (HMA) sponges 

contain 106-108 bacteria per gram of sponge wet weight, exceeding the microbial abundance of 

seawater by 2-4 orders of magnitude, while low-microbial abundance (LMA) sponges have microbial 

abundances in the range of the seawater, between 105-106 bacteria per gram of sponge wet weight 

(Hentschel et al. 2006, Gloeckner et al. 2014). These microbial symbionts equip the sponge host with 

a variety of complex metabolic pathways, including C and N fixation (Taylor et al. 2007), thereby 

contributing to the ability of the sponge holobiont to transform C and N.  

Sponge and benthic-pelagic coupling 

Sponges are exceptionally efficient suspension feeders that can filter particles varying in size 

from small virioplankton (Hadas et al. 2006) up to larger zooplankton (Vacelet & Bouryesnault 1995), 

but they are most efficient at removing small particles in the size range of 0.2 to 2.0 µm (Pile et al. 

1997, Ribes et al. 1999, Kötter & Pernthaler 2002). Retention rates for nano- and picoplankton can 

reach up to 99% (Pile et al. 1997, Ribes et al. 1999, Hadas et al. 2009), and these are also the most 

abundant plankton types available in coral reef waters (Ferrier-Pagès & Gattuso 1998, Gast et al. 

1998, Charpy & Blanchot 1999, Ferrier-Pagès & Furla 2001). Due to their high biomass and large 

filtering capacity, sponges play an important role in benthic-pelagic coupling by mediating the flow of 

pelagic POM to the benthos (Gili & Coma 1998, Lesser 2006, Pile & Young 2006, Perea-Blazquez et 

al. 2012a). This influx of POM represents a significant flow of C and N to the benthos (Richter et al. 

2001, Ribes et al. 2003, 2005). Nevertheless, the majority of organic matter in coral reef waters is 

found in dissolved form, and sponges have also recently been found to play a major role in the 

cycling of dissolved organic matter (DOM) on coral reefs via the so-called “sponge loop” (de Goeij et 

al. 2013).  

The “Sponge Loop” 

While sponges are traditionally considered particle feeders (Reiswig 1971, Pile et al. 1997), it 

has recently been discovered that many sponges also take up DOM (Yahel et al. 2003, de Goeij et al. 
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2008, van Duyl et al. 2008, Ribes et al. 2012, Mueller et al. 2014a). For the coral reef sponges 

investigated, DOM accounts for the majority (>90%) of their total diet (Yahel et al. 2003, de Goeij et 

al. 2008, Mueller et al. 2014a), suggesting these sponges are actually “DOM feeders”. In addition to 

taking up DOM, sponges produce large quantities of detritus (POM) via massive cell shedding of 

their filtering (choanocyte) cells. These choanocyte cells have the shortest cell cycle of any known 

animal and as a result are rapidly turned over and shed by the sponge (de Goeij et al. 2009, Alexander 

et al. 2014, Alexander et al. 2015, Maldonado 2015). Thus, sponges take up DOM and transform into 

POM, effectively turning over up to 35% of their body C per day (de Goeij et al. 2013). Sponge 

detritus is then fed on by motile and filter-feeding detritivores, enabling the energy stored in DOM 

that is otherwise unavailable to most reef heterotrophs to be utilized by higher trophic levels (de 

Goeij et al. 2013). This “sponge loop” thereby functions in a way analogous to the established 

microbial loop (Azam et al. 1983). DOM uptake by cryptic sponges in the Caribbean is estimated to 

approach the same order of magnitude as the total GPP of the entire reef ecosystem (de Goeij & van 

Duyl 2007, de Goeij et al. 2013). The sponge loop, therefore, is suspected to play a major role in the 

retention and cycling of nutrients and organic matter on Caribbean reefs but has not yet been 

investigated in other oceanic regions. Sponges are a ubiquitous component of coral reef ecosystems 

worldwide from the tropics to the cold-water reefs of the deep-sea suggesting the potential for this 

process to be widespread. Moreover, to date the sponge loop has only been demonstrated using 

laboratory-produced diatom DOM, which may not be representative of the DOM naturally produced 

on the reef. DOM uptake by cavity sponges is orders of magnitude higher than the supply of pelagic 

primary production to reefs (de Goeij & van Duyl 2007), indicating that pelagic primary production is 

unable to support the carbon requirements of cavity sponges. Further, stable isotope analysis 

indicates a substantial portion of the sponge diet originates from organic matter produced on the reef 

by corals and crustose coralline algae (van Duyl et al. 2011), suggesting a direct trophic link between 

sponges and coral reef benthic primary producers.  

Linking sponges and coral reef benthic primary producers 

Many aquatic primary producers release a fraction of their excess photosynthates into the 

water column as DOM (Khailov & Burlakov 1969, Moebus & Johnson 1974, Mague et al. 1980, 

Zlotnik & Dubinsky 1989, Brocke et al. 2015). Scleractinian corals and benthic algae are the dominant  

primary producers on coral reefs (Hatcher 1990) and, through high organic matter release, contribute 

substantially to the labile DOM that may potentially fuel the sponge loop (Crossland 1987, Ferrier-

Pagès et al. 1998, Haas et al. 2010b, Naumann et al. 2010). Thus, a direct trophic link may exist 

between benthic primary producers and reef sponges, but the uptake of coral- or macroalgal-derived 

DOM by reef sponges has not been demonstrated. On coral-dominated reefs, coral mucus can 

dominate the water column organic matter pool, with up to 80% of the released mucus dissolving in 
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the surrounding reef water (Johannes 1967, Marshall 1968, Wild et al. 2004). However, coral reef 

degradation is leading to decreased hard coral cover, frequently in combination with increases in 

macro- and turf algae abundances, on many reefs worldwide (Done 1992, Hughes 1994, McCook et 

al. 2001, Hughes et al. 2007, Sandin et al. 2008). Macroalgae typically release larger quantities of 

DOM compared to corals (Haas et al. 2010a, Haas et al. 2011, Haas et al. 2013, Mueller et al. 2014b), 

which release organic matter primarily as coral mucus with a comparatively larger particulate fraction 

(Naumann et al. 2010, Wild et al. 2010b). Further, the quality and composition of coral- and algal-

derived DOM differs (Haas & Wild 2010, Wild et al. 2010a, Nelson et al. 2013). Algal-derived DOM 

promotes more rapid microbial growth and respiration in the water column and reef sediments (Wild 

et al. 2010b, Haas et al. 2011), leading to localized anoxia and the proliferation of pathogenic bacteria 

(Nelson et al. 2013). As a result, algal-exudates can have negative consequences for coral health 

(Kline et al. 2006, Smith et al. 2006, Barott & Rohwer 2012, Gregg et al. 2013). Changes in the 

relative benthic cover of corals and algae can, therefore, alter the quality and quantity of organic 

matter on coral reefs, which may affect biogeochemical cycles and overall ecosystem functioning 

(Wild et al. 2011). However, the potential impacts of different DOM sources on the functioning of 

the sponge loop are still unknown. 

Biogeochemical N cycling processes hosted by sponges 

The remineralization of ingested POM is an important metabolic pathway for all marine 

sponges, leading to the excretion of ammonia and phosphate (Maldonado et al. 2012, Perea-Blazquez 

et al. 2012b, Ribes et al. 2012). Additionally, due to their diverse microbial symbionts, the microbial-

mediated processes of N2 fixation, nitrification, denitrification, and ANAMMOX (anaerobic 

ammonium oxidation) are all known to occur in marine sponges; further contributing to their role as 

significant players in coral reef N cycling. Coral reef sponges are a major source of nitrate via 

nitrification, the biological conversion of ammonia and nitrite to nitrate (Corredor et al. 1988, Diaz & 

Ward 1997, Southwell et al. 2008a). Sponge-mediated nitrate fluxes in the Caribbean are high, 

reaching up to 15 mmol m-2 d-1 and exceeding the highest benthic nitrification rates from sediments 

(Diaz & Ward 1997, Southwell et al. 2008b). Nitrification appears to be a particularly common 

feature of HMA sponges (Jimenez & Ribes 2007, Southwell et al. 2008b, Ribes et al. 2012). Some 

marine sponges also host the opposing processes of denitrification or ANAMMOX (Hoffmann et al. 

2009, Schläppy et al. 2010), but these processes have not yet been confirmed in tropical coral reef 

sponges. In addition to recycling N, sponges may also be a source of new N via dinitrogen (N2) 

fixation. Many sponges are known to host microbes capable of fixing N2 (Mohamed et al. 2008, Fiore 

et al. 2015, Ribes et al. 2015), suggesting this process may be widespread, particularly on coral reefs 

where low nitrate and ammonium concentrations may favour the energetically costly process of N2 

fixation. However, measurements of N2 fixation rates in sponges remain scarce (Wilkinson & Fay 
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1979, Shashar et al. 1994, Shieh & Lin 1994, Wilkinson et al. 1999). The discovery of rapid cell 

shedding and detritus production in sponges offers a potential new N flux – the production of PON. 

Yet, detritus production in sponges has not been quantified. N cycling in marine sponges is thus 

complex, representing a variety of metabolic pathways conducted by the sponge host and a diverse 

array of microbes (Hentschel et al. 2006, Taylor et al. 2007, Hoffmann et al. 2009). As sponges are a 

significant source of N on coral reefs (Diaz & Ward 1997, Southwell et al. 2008b), quantifying these 

fluxes and understanding sponge N metabolism is important for understanding the availability of N 

on coral reefs.  

Research Gaps 

As scleractinian corals are the primary ecosystem engineers on coral reefs, it is not surprising 

that coral reef research has focused disproportionately on the corals themselves. However, given their 

widespread distribution, high biomass, and potential to exert major influence on the overall 

functioning of the ecosystems they occupy, sponges are key ecosystem engineers in their own right. 

Nevertheless, they remain an understudied component of coral reefs (Wulff 2001, Bell 2008, Wulff 

2012). Despite recent advances in knowledge on sponge C and N metabolism, more research is 

required to fully understand the role of sponges in coral reef C and N cycling, particularly regarding 

the newly described sponge loop. Many sponge feeding studies fail to consider DOM as a potential 

food source (Koopmans et al. 2011, Perea-Blazquez et al. 2013), even when evaluating the role of 

food limitation in governing sponge populations (Lesser & Slattery 2013). Coral mucus and algal 

exudates represent the largest source of labile DOM available for sponge consumption, and yet the 

uptake of these DOM sources has not been investigated. The role of sponge-associated microbes in 

DOM uptake as well as the exchange of C and N between sponges and their symbionts is poorly 

understood (Taylor et al. 2007, Webster & Blackall 2009, Thacker & Freeman 2012). The 

mechanisms by which sponges produce detritus and the role of this detritus in reef trophodynamics 

are only recently beginning to be unraveled (de Goeij et al. 2009, 2013; Alexander et al. 2014, 2015; 

Maldonado et al. 2015). Only one study has attempted to quantify sponge detritus production but 

considered exclusively bulk detritus, thus the labile organic fraction (POC and PON) remains 

unknown (Alexander et al. 2014). Detrital PON production may contribute to the complex N cycling 

exhibited by sponges but has not previously been considered. Additionally, the quantification of other 

aspects of coral reef sponge N cycling such as nitrification and N2 fixation remain scarce (Corredor et 

al. 1988, Diaz & Ward 1997, Southland 2007, 2008a). Further, the contribution of sponges to C and 

N cycling at the community and ecosystem is still relatively unknown. The sponge loop may represent 

a major flux of C and N on coral reefs, but it has not been investigated or quantified outside of the 

Caribbean (de Goeij et al. 2013). Given the abundance of sponges in other aquatic ecosystems, 

including temperate and cold-water deep-sea coral reefs, there is high potential for the sponge loop to 
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function in ecosystems other than tropical coral reefs. Coral reefs are increasingly under threat from a 

multitude of anthropogenic stressors that are altering coral reef community structure and impairing 

the ability of coral reefs to maintain their ecosystem functions and services, upon which millions of 

people worldwide depend (Moberg & Folke 1999). Understanding how coral reefs will respond to 

these impacts requires comprehensive understanding of the key factors that control reef productivity 

and metabolism, such as organic matter and inorganic nutrient cycling, and this cannot be 

accomplished without improved understanding of the role sponges play in coral reef biogeochemical 

cycles and trophic webs. 

AIMS AND SPECIFIC RESEARCH QUESTIONS: 

This thesis aims to address the above mentioned research gaps by studying the role of 

sponges in C and N flows on coral reefs. The overall goal is to further our understanding of the 

biogeochemical organic matter and nutrient cycles within coral reef ecosystems. In order to achieve 

this, the following specific questions were addressed:  

1. Is there evidence for a “sponge loop” functioning in organic matter cycling on coral reefs in 

oceanic regions other than the Caribbean Sea? Are there differences in the functioning of the 

sponge loop between shallow, warm-water and deep-sea, cold-water coral reef ecosystems? 

 

2. Is there a direct trophic link between the key benthic primary producers (corals and algae) 

and the sponge community on coral reefs? How do different DOM sources influence the 

uptake and transformation of organic matter by reef sponges? 

 

3. What role do sponge-associated microbes play in the uptake of reef-derived DOM by the 

sponge holobiont? Are there differences in the processing of DOM by high‐ and low 

microbial abundance sponge species? 

 

4. How important is organic C cycling by the sponge loop at the ecosystem level?  

 

5. How do PON production and N2 fixation quantitatively compare to other sponge-mediated 

N fluxes, and how important are these N fluxes at the ecosystem level?  

 

6. Does N2 fixation support C fixation (primary productivity) in sponges and other key reef 

framework substrates? 
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THESIS OUTLINE  

This thesis consists of a general introduction (Chapter 1), five chapters presenting the core 

research of the PhD, and a general discussion of the key findings (Chapter 7). Each chapter is 

intended for publication as an independent research article.  Additional publications that were 

completed during the PhD, and are related to the work presented in thesis, but not included in it, are 

listed below and the abstracts presented at the end of the thesis.  

 

Chapter 2: 

 

Coral reef sponges transfer coral- and algal-derived dissolved organic matter (DOM) as 

particulate organic matter (POM) to higher trophic levels 

 

Rix L, Wild C, de Goeij JM, van Oevelen D, Struck U, Al-Horani FA, Naumann MS 

 

This chapter experimentally investigates the functioning of a sponge loop in the Red Sea 

using naturally produced sources of coral reef dissolved organic matter: coral and algal exudates. The 

aim is to demonstrate a direct trophic link between coral reef benthic primary producers and the 

primarily heterotrophic sponge community and elucidate a novel pathway by which the DOM 

produced on the reef can be transferred to higher trophic levels. Stable isotope pulse-chase 

experiments were conducted to demonstrate the uptake of coral- and algal-derived DOM and its 

subsequent transformation in sponge detritus (POM) by three encrusting sponge species. Additional 

longer-term isotope tracer experiments using flow-through set-ups were used to show the uptake of 

sponge detritus by two sponge-associated detritivores. Lastly, we compare how DOM produced by 

different coral reef primary producers (corals and algae) is processed by reef sponges and generate 

hypotheses about how shifts in coral reef benthic communities may impact organic matter cycling by 

the sponge loop.   

 

This study was initiated by L. Rix, C. Wild, J. M. de Goeij, and M. S. Naumann. Sampling and 

experimental work was conducted by L. Rix with support from M. S. Naumann. U. Stuck analyzed 

the samples. F. A. Al-Horani provided field work support. L. Rix analyzed the data and wrote the 

manuscript with input from all authors. This chapter is in preparation for Functional Ecology. 
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Chapter 3:  

 

Ecosystem-engineered seasonal carbon cycling in a Red Sea coral reef  

 

van Hoytema N, van Oevelen D, Rix L, Cardini U, Bednarz VN, Naumann MS, Al- Horani FA, 

Wild C  

 

 This chapter investigates carbon cycling at the coral reef ecosystem level using a linear 

inverse trophic food web model. Measurements of photosynthetic primary production and organic 

carbon fluxes in the water column, benthos, and cryptic cavity sponge communities are combined to 

provide a quantitative overview of carbon cycling on a northern Red Sea fringing coral reef.  The 

model specifically investigates the role of carbon cycling by epi-reefal and cryptic cavity sponge 

communities in order to quantify the importance of the sponge loop for coral reef trophic webs and 

reef biogeochemical cycling. 

 

This study was designed by N. van Hoytema, L. Rix, U. Cardini, V. N. Bednarz, and C. Wild. 

Fieldwork and sample analyses were performed by N. van Hoytema, L. Rix, U. Cardini, and V. N. 

Bednarz with support from M. S. Naumann and F. A. Al-Horani. The linear inverse trophic food web 

model was designed by N. van Hoytema and D. van Oevelen with input from L. Rix and M. S. 

Naumann. The manuscript was written by N. van Hoytema with critical revision by all authors. This 

manuscript is in preparation for Coral Reefs. 
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Chapter 4:  

 

Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems 

 

Rix L, Naumann MS, Mueller CE, de Goeij JM, Struck U, Middelburg JJ, van Duyl FC, Al-Horani 

FA, Wild C, van Oevelen D 

 

This chapter explores the potential for the sponge loop to function in different coral reef 

ecosystems in the Red Sea (Indo-Pacific) and in cold-water reefs of the deep-sea (Tisler Reef, 

northeast Atlantic). We hypothesize that a direct trophic link between corals and sponges, two key 

reef ecosystem engineers, enables the recycling of coral mucus via the sponge loop on both warm-

water (WW) and cold-water (CW) reefs. Stable isotope tracer experiments were conducted to 

investigate the uptake of naturally produced coral mucus from 13C- and 15N-labeled corals (WW: 

Fungiidae; CW: Lophelia pertusa) by the sponges Mycale fistulifera (WW) and Hymedesmia coriacea (CW). 

Additional incubations were conducted to demonstrate the transfer of coral mucus into sponge-

produced detritus. Assimilation of coral mucus C into sponge phospholipid-derived fatty acid (PLFA) 

biomarkers was measured to evaluate the potential role of sponge-associated bacteria in its uptake. 

Finally we compare differences in the functioning of the warm-water and cold-water sponge loops 

and generate hypotheses regarding the importance of C versus N cycling in these vastly different 

coral reef ecosystems.  

 

This study was initiated by L. Rix, M. S. Naumann, C. Mueller, J. M. de Goeij, J. J. Middelburg, C. 

Wild, and D. van Oevelen. Fieldwork was conducted by L. Rix, M. S. Naumann, C. Mueller, and F. C. 

van Duyl. U. Stuck contributed to sample analyses. F. A. Al-Horani provided field work support. L. 

Rix analyzed the data and wrote the manuscript with critical input from all authors. This manuscript 

is in revision at Scientific Reports. 
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Chapter 5:  

 

Organic and inorganic nitrogen release by Red Sea coral reef sponges 

 

Rix L, Wild C, Cardini U, Bednarz VN, Struck U, Al-Horani FA, Naumann MS.  

 

Coral reef sponges are known to be a significant source of DIN in coral reef ecosystems, but 

the importance of the production of PON, generated as sponge detritus, has not been quantified. 

Further, many sponges host symbiotic microbes capable of N2 fixation, but actual measured rates of 

N2 fixation in coral reef sponges are scarce. This chapter therefore uses incubation experiments to 

compare inorganic and organic N fluxes (DIN production, PON production, and N2 fixation) in six 

dominant Red Sea coral reef sponges and evaluates their relative contributions to overall sponge N 

cycling. These fluxes are combined with sponge benthic cover data to determine community N 

sponge fluxes and in order to evaluate their importance at the ecosystem level.  

 

This study was initiated by L. Rix, M. S. Naumann, and C. Wild. Fieldwork and sample analyses were 

performed by L. Rix, U. Cardini, and V. N. Bednarz with support from FA Al-Horani. L Rix analyzed 

the data and wrote the manuscript with critical revision from all authors. This chapter is in 

preparation for Marine Ecology Progress Series. 
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Chapter 6:  

 

Seasonality in dinitrogen fixation and primary productivity by coral reef framework 

substrates from the northern Red Sea 

 

Rix L, Bednarz VN, Cardini U, van Hoytema N, Al-Horani FA, Wild C, Naumann MS 

 

This chapter measures N2 fixation (via acetylene reduction) and photosynthetic primary 

productivity (via oxygen fluxes) in three common reef framework substrates: turf algae, coral rock, 

and an encrusting sponge in order to investigate a potential link between C and N fixation. N2 

fixation, photosynthesis, and respiration are quantified on a seasonal resolution (winter, spring, 

summer, fall) on a high latitude Red Sea fringing reef experiencing seasonally variable environmental 

conditions in order to evaluate the effect of environmental parameters (irradiance, temperature, and 

inorganic nutrient availability) on these key metabolic processes. The contribution of N2 fixation to 

the N requirement for primary productivity is estimated and correlations between the two processes 

are investigated in order to evaluate the potential importance of N2 fixation for sustaining net primary 

productivity. Finally we calculate the respective contributions of turf algae, coral rock, and the non-

cryptic sponge community to benthic N2 fixation to assess the importance of each substrate to fixed 

N generation on a northern Red Sea fringing reef.  

 

This study was initiated by V. N. Bednarz, U. Cardini, N. van Hoytema, and C. Wild. Fieldwork and 

sample analyses were performed by L. Rix, V. N. Bednarz, U. Cardini, and N. van Hoytema with 

support from F. A. Al-Horani and M. S. Naumann. L. Rix analyzed the data and wrote the 

manuscript with input from all authors. This manuscript has been accepted for publication in Marine 

Ecology Progress Series. 
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RELATED PUBLICATIONS 

 

Naumann MS, Rix L, Al-Horani FA, Wild C Polydorid polychaetes as frequent associates of the 

toxic reef sponge Negombata magnifica – evidence for a trophic relation? In preparation for Marine 

Biodiversity. 

 

Bednarz VN, Rix L, Cardini U, van Hoytema N, Naumann MS, Al-Rshaidat MMD, Wild C 

Dinitrogen fixation and nitrogen fractionation in scleractinian corals along a depth- gradient in the 

northern Red Sea. In preparation for The Journal of Experimental Biology.   

 

Cardini U, van Hoytema N, Bednarz VN, Rix L, Foster RA, Al-Rshaidat MMD, Wild C Diazotrophs 

contribute towards the resilience of the coral holobiont to ocean warming. In preparation for 

Environmental Microbiology.  

 

Cardini U, Bednarz VN, Naumann MS, van Hoytema N, Rix L, Foster RA, Al- Rshaidat MMD, Wild 

C. Microbial dinitrogen fixation sustains high coral productivity in oligotrophic reef ecosystems. In 

preparation for Ecology.  

 

Jessen C, Bednarz VN, Rix L, Teichberg M, Wild C (2015) Marine eutropication – Overview of 

indicators. In: Armon RH, Hänninen O (eds) Environmental Indicators. Springer Netherlands, pp. 

177-203. 

 

van Hoytema N, Cardini U, Bednarz VN, Rix L, Naumann MS, Al-Horani FA, Wild C. Effects of 

seasonality on planktonic primary production and dinitrogen fixation in a Red Sea coral reef. In 

preparation for Marine Environmental Research. 
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ABSTRACT 

Recently the so-called sponge loop has been proposed to play a key role in the retention and 

recycling of nutrients on coral reefs via sponge uptake of dissolved organic matter (DOM). Excess 

photosynthates released by corals and macroalgae contribute to the reef water pool of labile DOM 

that may be available for sponges, but differ in their quality and composition. However, the influence 

of different reef DOM sources on recycling via the sponge loop has not been investigated. Here we 

applied stable isotope pulse-chase experiments to compare the processing of coral- and algal-derived 

DOM by three Red Sea reef sponge species: Chondrilla sacciformis, Hemimycale arabica, and Mycale 

fistulifera. All three species assimilated both coral- and algal-derived DOM into their tissues, but 

incorporation rates were significantly higher for algal-derived DOM. The two DOM sources were 

also differentially utilized by the sponge holobiont as algal-derived DOM was preferentially 

incorporated into bacteria-specific PLFAs, but coral-derived DOM was incorporated at a higher rate 

into sponge-specific phospholipid fatty acids (PLFAs). A substantial fraction of the dissolved organic 

carbon (C) and nitrogen (N) assimilated by the sponges was subsequently released as particulate 

detritus (15 – 24% C and 27 – 49% N), with higher DOM to POM transformation rates for algal-

derived DOM. Additional isotope tracer experiments revealed that sponge detritus was transferred up 

the food web into sponge-associated detritivores: ophiuroids (Ophiothrix savignyi, Ophiocoma 

scolopendrina) and a polychaete (Polydorella smurovi). The observed higher uptake and transformation 

rates of algal- compared with coral-derived DOM suggests that reef community phase-shifts from 

coral to algal dominance, with their corresponding increases in DOM quantity and quality, may 

stimulate DOM cycling through the sponge loop with potential consequences for coral reef 

biogeochemical cycles and trophic food webs. 
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INTRODUCTION 

Sponges are key components of coral reefs and other aquatic ecosystems where their high 

filtering capacity and association with diverse microbial communities enables them to influence major 

biogeochemical cycles (Taylor et al. 2007, Weisz et al. 2008, Maldonado et al. 2012). By efficiently 

removing particulate organic matter (POM) from the water column (Reiswig 1971, Pile et al. 1997, 

Ribes et al. 1999), sponges contribute to benthic-pelagic coupling (Gili & Coma 1998, Richter et al. 

2001, Perea-Blazquez et al. 2012). More recently, sponges have also been found to play a major role 

in the cycling of dissolved organic matter (DOM) on coral reefs via the so-called “sponge loop” (de 

Goeij et al. 2013).  

Sponges have long been hypothesized to be capable of retaining DOM (Reiswig 1974), a 

food source largely unavailable to most reef heterotrophs, and recently DOM uptake has been 

confirmed in sponges from tropical (Yahel et al. 2003, de Goeij et al. 2008b, Mueller et al. 2014a), 

temperate (Ribes et al. 2012), to deep-sea habitats (van Duyl et al. 2008). For the coral reef sponges 

investigated, DOM constitutes the majority (up to ~90%) of their total carbon (C) uptake (Yahel et 

al. 2003, de Goeij et al. 2008b, Mueller et al. 2014a), and reef framework cavities hosting dense 

sponge populations act as a major sink for DOM on coral reefs (de Goeij & van Duyl 2007). The 

mechanisms that enable sponges to take up and assimilate DOM are poorly understood. However, 

many sponges host dense communities of associated microbes that can account for up to 35% of 

their biomass (Hentschel et al. 2006, Gloeckner et al. 2014). As microbes are the main DOM 

consumers in the ocean (Azam et al. 1983), they are suspected to play a role in sponge DOM uptake, 

with higher uptake rates expected in high-microbial abundance (HMA) compared to low-microbial 

abundance (LMA) sponges (Reiswig 1974, Weisz et al. 2007, Maldonado et al. 2012).  

A substantial fraction of the DOM assimilated by coral reef sponges (up to 35%) is 

subsequently released as POM via the production of sponge detritus(de Goeij et al. 2009, Alexander 

et al. 2014, Maldonado 2015), which is readily consumed by other reef fauna (de Goeij et al. 2013). 

Therefore, this sponge-mediated pathway for DOM recycling functions similarly to the established 

microbial loop (Azam et al. 1983), facilitating the transfer of the energy and nutrients stored in DOM 

to higher trophic levels that otherwise would be unable to utilize it. Sponge detritus may then provide 

a food source for the various reef fauna commonly associated with reef sponges (Wulff 2006), but 

such trophic interactions have not been documented. DOM uptake by cryptic sponges in Caribbean 

reefs approximates the gross primary production of the entire ecosystem, indicating sponges play a 

key role in the cycling of energy and nutrients within coral reefs (de Goeij et al. 2013). However, to 

date the sponge loop has only been demonstrated with laboratory-produced diatom DOM, which is 

unlikely representative of the main DOM sources produced on coral reefs.  

Coral reef primary producers, such as scleractinian corals and macroalgae, release a 

substantial fraction of excess photosynthates into the water column, thereby fueling the labile DOM 
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pool on coral reefs available for recycling by the sponge loop (Crossland 1987, Ferrier-Pagès et al. 

1998, Haas et al. 2010b, Brocke et al. 2015). Macroalgae typically release larger quantities of DOM 

compared to corals (Haas et al. 2010a, Haas et al. 2011, Haas et al. 2013, Mueller et al. 2014b), which 

release organic matter primarily as coral mucus with a comparatively larger particulate fraction 

(Naumann et al. 2010a, Wild et al. 2010b). Further, the quality and composition of coral- and algal-

derived DOM varies with corresponding different impacts on the respiration, growth and 

composition of microbial communities in the water column and reef sediments (Haas & Wild 2010, 

Wild et al. 2010a, Nelson et al. 2013). Algal exudates induce accelerated microbial growth and 

respiration leading to localized hypoxia and shifts towards more pathogenic microbial communities 

(Haas et al. 2010a, Haas et al. 2011, Haas et al. 2013, Nelson et al. 2013). Consequently, macroalgal 

exudates have been implicated in microbial-mediated coral mortality (Smith et al. 2006, Gregg et al. 

2013) and are suspected to initiate a feedback loop favouring the growth of macroalgae at the 

expense of corals (Barott & Rohwer 2012). Changes in the benthic cover of corals and algae can 

therefore alter the quality and quantity of organic matter on coral reefs, which may affect 

biogeochemical cycles and overall ecosystem functioning (Wild et al. 2011). In this context, potential 

impacts on the functioning of the sponge loop are not known. Reef community shifts from coral to 

algal dominance are hypothesized to benefit sponges by increasing the availability of  DOM (de Goeij 

et al. 2013, Mueller et al. 2014a, Pawlik et al. 2015), but differences in the uptake and processing of 

coral- vs. algal-derived DOM by sponges have not been investigated. 

This study, therefore, compared the uptake and transformation of coral- and algal-derived 

DOM by Red Sea reef sponges. Stable isotope pulse-chase experiments using dissolved coral and 

algal exudates enriched in 13C and 15N were conducted to trace coral- and algal-derived DOM into the 

tissues and detritus of three species of encrusting Red Sea sponges: Chondrilla sacciformis, Hemimycale 

arabica, and Mycale fistulifera. Phospholipid fatty acid analysis was applied to differentiate uptake and 

assimilation by the sponge host versus its associated microbes. Additional longer-term tracer 

experiments using 13C and 15N labeled corals (Fungiidae) were conducted to demonstrate the transfer 

of detritus from the sponges M. fistulifera and Negombata magnifica, into the tissues of sponge-associated 

detritivores: the brittle stars (ophiuroids) Ophiothrix savignyi and Ophiocoma scolopendrina, and the 

polychaete Polydorella smurovi. 

MATERIALS AND METHODS  

Study site and organism collection:  

Sampling and experimental work was conducted at the Marine Science Station (MSS), Aqaba, 

Jordan, at the northern Gulf of Aqaba, Red Sea (29°27’ N, 34°58’ E) during 2013. Free-living fungiid 
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corals (family: Fungiidae, genera: Fungia, Ctenactis, and Herpolitha, n = 30) and the macroalgae Caulerpa 

serrulata (n = 6) were collected from the MSS reef between 8 – 12 m by SCUBA. Fungiid corals can be 

removed from the reef without physical damage, are dominant coral genera on reefs in the region, 

and produce large quantities of coral mucus (Naumann et al. 2010a). C. serrulata is a dominant 

macroalgal species on reefs in the Gulf of Aqaba that exhibits high DOM release (Haas et al. 2010b). 

Corals and algae were collected using SCUBA and immediately transported without air exposure to 

the MSS aquarium facilities for maintenance in 1000 L flow-through aquaria (flow rate ~100 L min-1) 

supplied with seawater pumped directly from the reef at 10 m water depth. Natural light levels were 

adjusted using layers of black mesh and parallel measurements with a quantum sensor (Model LI-

192SA; Li-Cor) in aquaria and in situ at 10 m water depth to ensure photosynthetically active radiation 

(PAR μmol photons m-2 s-1, wavelength 400 – 700 nm) levels in the aquaria corresponded to in situ 

conditions. Corals and algae were acclimated for at least 72 h prior to the start of experiments.  

For the stable isotope pulse-chase incubations, three species of common encrusting sponge 

were collected using SCUBA: Chondrilla sacciformis, Hemimycale arabica, and Mycale fistulifera. H. arabica 

and M. fistulifera represent abundant non-cryptic species, while C. sacciformis is a dominant species in 

the cryptic reef habitat (Kötter 2002, Wunsch et al. 2000). Both H. arabica and M. fistulifera belong to 

the Poecilosclerida, an order of LMA species (Gloeckner et al. 2014), while  C. sacciformis by contrast, 

contains high densities of associated bacteria (Kötter 2002). Sponge specimens (3 – 12 cm-3) were 

chiseled from their respective substrates at 10 – 20 m water depth and immediately transferred 

without air exposure to the MSS aquarium facilities where they were cleared of epibionts. Each 

sponge species was maintained in a separate 100 L flow-through aquarium (flow rate ~6 L min-1) 

under controlled irradiance levels corresponding to their respective in situ habitats (shaded for C. 

sacciformis and light for M. fistulifera, H. Arabica). Sponges were allowed to heal and acclimate for at 

least 1 week prior to incubations and only visually healthy specimens (no tissue damage, open oscula, 

actively pumping) were used. For the longer-term stable isotope labeling experiment, M. fistulifera 

fragments (20 ± 8 cm-3) were collected from dead branching corals as previously described, and 

fragments were cut from the branching sponge Negombata magnifica (10 – 20 m water depth; 67 ± 22 

cm3). The brittle stars Ophiothrix savignyi and Ophiocoma scolopendrina (Echinodermata, Ophiuroidea) 

were collected from the surface of sponges (5 – 15 m water depth) and supplemented with O. 

scolopendrina specimens collected from the shallow reef flat. Polychaetes of the species Polydorella 

smurovi (Polychaeta, Spionidae) were collected attached to branches of densely infested N. magnifica 

specimens (10 – 20 m water depth) where they are found living attached to the sponge tissue. 

Sponges and their associated detritivores were maintained in the MSS aquarium facilities as described 

above for 1 wk and 48 h, respectively, prior to experimentation. 
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Coral and algae stable isotope labeling:  

Coral (Fungiidae) and algae (C. serrulata) stable isotope labeling was conducted over 6 

(January 2013) and 8 (September 2013) consecutive days. Each morning at 8:00 the inflow to the 

coral and algae aquaria were stopped and 36 mg L-1 NaH13CO3 and 1 mg L-1 Na15NO3 (Cambridge 

Isotope Laboratories, 98%) were added. Both inorganic labeled compounds are rapidly taken up via 

photosynthesis (Naumann et al. 2010b). Aquaria pumps maintained water circulation and gas 

exchange while seawater flow-through was stopped (8 h). Oxygen concentration and saturation, 

temperature, and pH of the aquaria were continuously monitored with a multi‐probe (Hach HQ40d). 

Water temperature was maintained within ± 1°C of ambient flow-through by placing aquaria in a 

raceway water bath (flow rate ~1000 L h-1).  

Collection of labeled coral- and algal-derived DOM: 

On labeling days 2, 4, 6, and 8 coral mucus was collected from each fungiid coral 1 h after 

aquarium flow-through was resumed. Corals were rinsed thoroughly with fresh-pumped label-free 

flowing seawater and mucus was collected via air exposure, a naturally occurring phenomenon at the 

study site during low tides (Loya 1976) that stimulates mucus production (Wild et al. 2005b). The first 

30 s of mucus production was discarded to prevent contamination or dilution by adhered seawater. 

The corals were then transferred into clean zip-lock bags and the released mucus was collected for 5 

min before corals were returned to flow-through aquaria overnight.  

Algal-derived organic matter was collected using the beaker incubation method  (Herndl & 

Velimirov 1986) as described by Haas et al. (2010b). On algae labeling days 2, 4, 6, and 8 C. serrulata 

specimens (n = 6) were removed from labeling aquaria at 14:00 and rinsed for 10 min in fresh-

pumped label‐free flowing seawater. Algae were transferred to individual 1 L chambers (n = 6) filled 

with fresh seawater and placed in a flow-through water bath to ensure in situ temperature during the 2 

h incubation period. Oxygen concentration and saturation, temperature and pH were monitored with 

a multi-probe (HACH HQ40d). After 2 h incubation, the algae were returned to the labeling aquaria 

and flow‐through was resumed overnight.  

The collected mucus and algae incubation medium were each pooled and immediately 

refrigerated prior to same-day vacuum filtration through pre-combusted (450°C, 5 h) GF/F filters 

(VWR: 0.7 µm pore size). The filtrate representing the dissolved fraction of coral- and algae-derived 

organic matter was collected and stored frozen at -20°C. On the last day of coral and algae labeling all 

previously collected coral- and algal-derived DOM was defrosted, homogenized, and sub-samples (5 

ml, n = 5) were frozen at ‐80°C for stable isotope analysis. The final mixtures of labeled coral- and 

algal-derived DOM were divided into aliquots and refrozen at -20°C until use in sponge stable 
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isotope pulse‐chase incubations. The relatively low recovery of coral- and algal-derived DOM meant 

that we could not analyze fatty acid content of the DOM sources. 

Sponge stable isotope pulse-chase incubations:  

The sponges C. sacciformis, H. arabica, and M. fistulifera were incubated independently with 

each of the two labeled substrates; coral- and algal-derived DOM (n = 3 per species and substrate). 

Immediately prior to the start of the incubations aliquots of the labeled substrates were defrosted, 

homogenized, measured into glass cylinders and adjusted to ambient seawater temperature. The 

incubations were conducted in 2 L gas-tight chambers filled with fresh natural seawater for a total 

duration of 12 h. Every 3 h, the water in the chambers was refreshed and new, labeled substrate 

(coral- or algal-derived DOM) was added at approximately 1.5 times the local dissolved organic 

carbon (DOC) concentration measured in situ at 10 m water depth (range: 65 - 90 μmol L-1; Table 

2.1). Control incubations were conducted in parallel with the addition of labeled substrate but no 

sponge (n = 3 per substrate) and sponge but no labeled substrate (n = 3 per species). Incubations 

were conducted in the dark to ensure any potential photosynthetic activity by the sponge or seawater 

would not affect dissolved oxygen concentrations, which were monitored continuously using multi-

probes (Hach HQ40d) inserted into an airtight fitting in the chamber lid. Chambers were stirred at 

~400 rpm using magnetic stirring plates (CimarecTM  i Telesystem Multipoint Stirrers, Thermo 

Scientific) and placed in a flow-through water bath to ensure near in situ temperatures. 

For each 3 h interval, POM samples for particulate organic carbon and nitrogen (POC and 

PON) were taken to determine the production of sponge detritus. Seawater POM samples were taken 

from the inflow used to fill the chambers (t0, n = 3) and after 3 h incubation (t3) from each chamber. 

The sample volume (~1800 ml) was recorded, vacuum filtered onto pre-combusted GF/F filters, and 

the filter dried at 40°C for at least 48 h. After the final 3 h interval (12 h total), sponge fragments 

were removed from the chambers and rinsed in label-free flowing seawater (10 min) followed by 0.2 

μm filtered seawater (10 min). Sponge surface area and thickness were measured with calipers before 

the sponge tissue was removed from the attached substrate using a sterile scalpel blade. Tissue 

samples were collected in 4 mL pre-weighed, pre‐combusted glass vials and stored frozen at -80°C 

for stable isotope and phospholipid fatty acid analysis. 

Transfer of sponge detritus to detritivores: 

The transfer of sponge detritus to sponge-associated detritivores was investigated in two 

separate long-term tracer experiments. Experiment 1 examined the transfer of detritus produced by 

the sponge N. magnifica to its associated polychaete P. smurovi. Experiment 2 tested the consumption 

of detritus released from M. fistulifera by the two ophiuroids O. savignyi and O. scolopendrina. A two-
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tiered flow-through aquaria set-up, consisting of six paired upper and lower aquaria (100 L each) 

connected via constant flow-through was used in both experiments. The six upper aquaria were each 

supplied with fresh-pumped reef water at a rate of ~10 L min-1, and from there seawater flowed into 

the lower aquaria. Fungiid corals (10 individuals per aquarium) were labeled with 13C and 15N as 

previously described and maintained in three of the upper aquaria. The remaining three served as 

controls. The lower aquaria contained the sponges (each n = 4), ensuring the treatment sponges were 

continuously supplied with water exposed to the labeled corals. Artificial aquaria lights provided the 

corals with ~120 μmol quanta m-2 s-1. After five days exposure to the labeled corals, one sponge per 

tank was removed from the experimental set-up, rinsed in label-free seawater, and the tissue collected 

for stable isotope analysis as described above. The labeled corals were removed from the upper 

aquaria and the tanks cleaned to remove any labeled organic matter originating from the corals. 

Detritivores were then introduced to the lower aquaria holding the remaining sponges. In 

Experiment 1, P. smurovi was introduced by transferring the polychaetes with a pipette onto the 

surface of N. magnifica. The polychaetes quickly re-established themselves on the surface of the 

labelled sponges, resumed normal behaviour, and remained attached for the duration of the 

experiment. In Experiment 2, the ophiuroids O. savignyi and O. scolopendrina (n = 4 per aquaria) were 

introduced to the aquaria with M. fistulifera, where they immediately took refuge in crevices in the 

sponge. After being associated with the labeled sponges for five days; the polychaetes, ophiuroids, 

and remaining sponges were collected for stable isotope analysis as previously described. Due to their 

minute size, all polychaetes from each aquarium were pooled onto a single GF/F filter for stable 

isotope analysis (n = 3).   

Sample treatment and stable isotope analysis:  

Sponge tissue samples for stable isotope analysis were lyophilized, weighed, and 

homogenized with mortar and pestle. Subsamples were weighed and transferred to silver cups for 

bulk δ13C and δ15N isotope analysis. Tissue samples for δ13C analysis were decalcified by acidification 

with 0.4 M HCl. POC filters for δ13C analysis were decalcified with fuming HCL, re-dried at 40°C for 

24 h and folded into silver cups. Isotopic ratios and C/N content were measured simultaneously 

using a THERMO NA 2500 elemental analyzer coupled to a THERMO/Finnigan MAT Delta plus 

isotope ratio mass spectrometer (IRMS) via a THERMO/Finnigan Conflo III- interface. Standard 

deviations of C and N content are < 3% of the concentrations analyzed and < 0.15‰ for repeated 

δ13C and δ15N measurements of standard material (peptone). 

C and nitrogen (N) stable isotope ratios are expressed in delta notation as: δ13C or δ15N (‰) 

= (Rsample / Rref - 1) × 1000, where Rsample is the ratio of heavy/light isotope (13C/12C or 15N/14N) in 

the sample and Rref is the heavy/light isotope ratio of the reference material, the Vienna Pee Dee 

Belemnite standard for C (Rref = 0.01118) and atmospheric nitrogen for N (Rref = 0.00368). The 
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atomic % (atm%) heavy isotope in the sample (13C/[13C  + 12C] or 15N/[15N + 14N]) was calculated as 

Fsample = Rsample/ Rsample + 1. The excess (above background) atm % (E) is the difference between the 

F of the samples and the background atm % in a control sample: E = Fsample – Fbackground. To quantify 

the total uptake of coral- and algal-derived DOM, the excess incorporation was divided by the atm% 

of the labeled substrates. Stable isotope data were then expressed as the total elemental uptake and 

reported as µmol Ctracer mmol Csponge
-1 and µmol Ntracer mmol Nsponge

-1 (mean ± SD), with tracer 

indicating the C or N deriving from the coral- or algal-derived DOM. Sponge detritus production 

rates were corrected for any labelled POM produced in the seawater controls to which labeled coral- 

and algal-derived DOM was added but no sponge, to ensure only activity by the sponge was 

considered. Relative enrichments, expressed as Δδ13C and Δδ15N values, were calculated by 

subtracting the δ13C and δ15N values of the control sponges from the values of the sponges exposed 

to labeled coral- or algal-derived DOM. 

Phospholipid fatty acid analysis: 

Ground and lyophilized sponge tissue samples (~0.018 g) were prepared for analysis of the 

composition and isotope enrichment of phospholipid-derived fatty acids (PLFAs) according to 

Boschker et al. (2002). Total fatty acids were extracted using a modification of the Bligh Dyer 

method. PLFAs were separated on a silicic-acid column (Merck Kieselgel 60) and derivatized by mild 

alkaline transmethylation to generate fatty acid methyl esters (FAMEs). Concentration and C isotopic 

composition of individual FAMEs were determined with a gas-chromatograph combustion interface 

isotope ratio mass spectrometer (GC-c-IRMS). Identification of individual FAMEs was based on the 

comparison of retention times with known standards using columns with different polarity and use of 

GC-MS when required.  

Data analysis: 

Statistical analyses were conducted in PRIMER-E version 6 (Clarke & Gorley 2006) with the 

PERMANOVA+ add-on (Anderson 2001). Due to the low sample size (n = 3), differences between 

coral- and algal-derived DOM treatments were analysed by non-parametric PERMANOVA with 

Monte Carlo tests. One-factor PERMANOVAs with type 111 (partial) sum of squares and 

unrestricted permutation of raw data (9999 permutations) were used to test for differences in DOC 

and dissolved organic nitrogen (DON) incorporation, POC and PON production, and PLFA 

incorporation between coral- and algal-derived treatments and between species within treatments. 

Pairwise tests were carried out when species was identified as a significant factor to determine the 

pairs of species exhibiting differences.  

 



 

54 
 

RESULTS  

Coral- and algal-derived DOM labeling: 

The coral- and algal-derived DOM was substantially enriched in both 13C and 15N, 

demonstrating that both stable isotope tracer compounds (NaH13CO3 and Na15NO3) were taken up 

and rapidly incorporated into the released coral mucus and algae exudates (Table 2.1). Overall, the 

coral-derived DOM was more highly enriched in both 13C and 15N compared to the algal-derived 

DOM, therefore these differences were accounted for when calculating the rates of incorporation of 

coral- and algal-derived DOM. The total amount of C and N added to the incubations over 12 h were 

comparable between the coral- and algal-derived DOM treatments (Table 2.1), and the C:N ratios of 

the coral- (12.8 ± 1.2) and algal-derived DOM (12.1 ± 2.2) were not significantly different. 

Sponge tissue incorporation: 

The three investigated sponge species assimilated both coral- and algal-derived DOM into 

their tissue, but algal-derived DOC and DON was incorporated at a higher rate than coral-derived 

DOC and DON (Fig. 2.1a, b). This was significant in all cases except for DON uptake by C. 

sacciformis and DOC uptake by M. fistulifera (Table 2.2), possibly due to the larger standard deviations 

(Fig. 2.1a, b). Differences between coral- and algal-derived DOC and DON incorporation by H. 

arabica and M. fistulifera were relatively small (1.4 – 1.7 times), but for C. sacciformis the uptake of algal-

derived DOC was 4-times higher (DON: 3.5-times). Over the 12 h incubation period 19 – 35% of 

the coral-derived DOC and 42 – 62% of the added coral-derived DON was assimilated into the 

tissue of the three sponges, while higher percentages of algal-derived DOC and DON were 

assimilated (32 - 42% and 79 – 91%, respectively). For both substrates the percentage of DON 

incorporated was higher than for DOC; however it should be noted that the assimilated DOC lost 

due to respiration was not measured here, and therefore the total DOC assimilation is 

underestimated.  

Incorporation rates of coral- and algal-derived DOM were species-specific. M. fistulifera and 

H. arabica incorporated coral-derived DOC at a significantly higher rate (2.4-times higher) than C. 

sacciformis, while incorporation of coral-derived DON was significantly higher for M. fistulifera  

compared to C. sacciformis and H. arabica (Fig. 2.1a, Table 2.3). Incorporation rates of algal-derived 

DOC were similar among the three species, but H. arabica assimilated algal-derived DON at a 

comparably lower rate, although this difference was significant only compared to M. fistulifera (Fig. 

2.1b; Table 2.3). C. sacciformis and M. fistulifera incorporated DOC and DON at a similar rate, while H. 

arabica assimilated DOC into its tissue at twice the rate of DON (Fig. 2.1a, b). 
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Table 2.1  Coral- and algal-derived DOM labeling. Total amount of tracer DOC and DON added over the 

12 h labeling period, delta δ13C and δ15N enrichment of the coral- and algal-derived DOC and DON, and the 

percentage of 13C and 15N labeling of the coral- and algal-derived DOM.   

 
 

 C added 
(µmol) 

Δδ13C  %13C 
labeling 

N added 
(µmol) 

Δδ15N %15N 
labeling 

Coral-derived DOM 
 C. sacciformis 256 407 ± 59 0.46 20 1293 ± 251 0.34 
 H. arabica 236 128 ± 28 0.15 18 408 ± 32 0.15 
 M. fistulifera 256 407 ± 59 0.46 20 1293 ± 251 0.34 
Algal-derived DOM 
 C. sacciformis 272 74 ± 16 0.10 19 457 ± 84 0.17 
 H. arabica 272 74 ± 16 0.10 19 457 ± 84 0.17 
 M. fistulifera 272 74 ± 16 0.10 19 457 ± 84 0.17 

 

Figure 2.1.  Processing of coral- and algal-derived DOC and DON by the three sponge species; C. 

sacciformis, H. arabica, and M. fistulifera. Shown are the rates of incorporation of a) coral- and b) algal-

derived DOC and DON assimilated into the sponge tissue (mol C or Ntracer mmol C or Nsponge
-1 12 h-1) and 

the release rate of c) coral- and d) algal-derived DOC and DON as sponge detritus (mol C or Ntracer mmol C 

or Nsponge
-1 12 h-1). Data presented as mean ± SD (n = 3). 



 

56 
 

Transformation into sponge detritus: 

All three sponge-species produced detritus enriched in 13C and 15N after exposure to 13C- and 

15N-enriched coral- and algal DOM, demonstrating the rapid transfer of coral- and algal-derived 

DOC and DON into sponge detritus (Fig. 2.1c, d). Control experiments with labeled coral- and algal-

derived DOM but no sponge yielded low amounts of labeled POM, indicating the production of 13C- 

and 15N-enriched POM could be attributed to sponge activity. Similar to tissue incorporation rates, 

algal-derived DOM was transferred into sponge detritus at higher rates compared to coral-derived 

DOM (Fig. 2.1c, d). This was significant for all comparisons except the transfer of DON to sponge 

detritus by M. fistulifera (Table 2.2). Across all species coral- and algal-derived DON was released as 

detritus at a higher rate than DOC (PERMANOVA: df = 1, SS = 3, MS = 3, F = 7.8, p = 0.018 and 

df = 1, SS = 8, MS = 8, F = 13.4, p = 0.004 for coral- and algal-derived DOM, respectively). Among 

species, C. sacciformis transferred both coral- and algal-derived DOC and DON to detritus at lower 

rates compared to the other two species (Table 2.3). Overall, 15 – 24% of the coral- and algal-derived 

DOC assimilated by the three sponges was transformed into detritus compared to a significantly 

higher fraction of DON (27 – 49%; PERMANOVA: df = 1, SS = 3408, MS = 3408, F = 33.8, p < 

0.001). Equivalent percentages of coral- and algal-derived DOM were transferred into detritus with 

no significant differences between species. 

 

Table 2.2. Results of one-factor Monte Carlo PERMANOVAs testing for differences in the processing 

of coral- and algal-derived DOM by the three sponge species; Chondrilla sacciformis, Hemimycale 

arabica, and Mycale fistulifera. Factors tested were incorporation of coral-vs algal-derived DOC and DON 

and transfer of coral-vs algal-derived DOC and DON into sponge detritus. PERMANOVAs were based on 

Euclidian distance and Type III (partial) sums of squares were used with unrestricted permutations of raw data 

(9999 permutations). Significant Monte Carlo (MC) p-values are in bold. 

Coral- vs. algal-derived DOM df SS MS F P (MC) 

DOC incorporation 

 C. sacciformis 1 183 183 93.5 0.001 

 H. arabica 1 45 45 15.0 0.02 

 M. fistulifera 1 61 61 2.8 0.17 

DON incorporation 

 C. sacciformis 1 86 86 7.1 0.055 

 H. arabica 1 11 11 12.8 0.024 

 M. fistulifera 1 31 31 8.4 0.048 

Detritus C transfer 

 C. sacciformis 1 1 1 26.5 0.006 

 H. arabica 1 4 4 35.7 0.005 

 M. fistulifera 1 4 4 15.6 0.019 

Detritus N transfer 

 C. sacciformis 1 5 5 25.9 0.006 

 H. arabica 1 5 5 7.9 0.046 

 M. fistulifera 1 6 6 4.5 0.093 



CHAPTER 2 

57 
  

Transfer of sponge detritus to detritivores: 

The long-term labeling experiment showed transfer of coral-derived C and N into the tissue 

and detritus of the two sponges M. fistulifera (Fig. 2.2a) and N. magnifica (Fig. 2.2b). Sponge tissue 

incorporation rates were higher in M. fistulifera (3.0 ± 0.9 µmol Ctracer mmol Csponge d-1 and 3.2 ± 1.6 

µmol Ntracer mmol Nsponge d-1) compared to N. magnifica (1.1 ± 0.1 µmol Ctracer mmol Csponge d-1 and 0.9 

± 0.2 µmol Ntracer mmol Nsponge d-1). Subsequently, after five days exposure to the labeled sponges, 

enrichment of both 13C and 15N was detectable in the tissues of the investigated sponge detritus 

consumers; the ophiuroids O. savignyi and O. scolopendrina (Fig. 2.2a) and the polychaete P. smurovi (Fig. 

2.2b). The brittle stars incorporated sponge detritus at rates of 7.6 ± 6.5 µmol Cdetritus mmol Cdetritivore 

d-1 and 6.8 ± 4.1 µmol Ndetritus mmol Ndetritivore d-1, while the polychaetes assimilated sponge detritus at 

higher rates of 32.3 ± 13.0 µmol Cdetritus mmol Cdetritivore d-1 and 24.4 ± 11.3 µmol Ndetritus mmol 

Ndetritivore d-1 (Fig. 2.3). 

 

Table 2.3. Results of one-factor Monte Carlo PERMANOVAs testing for species-specific differences in 

the processing of coral- and algal-derived DOM between the three sponge species: Chondrilla 

sacciformis (CS), Hemimycale arabica (HA), and Mycale fistulifera (MF). Factors tested were 

incorporation of coral-vs algal-derived DOC and DON and transfer of coral-vs algal-derived DOC and DON 

into sponge detritus. PERMANOVAs were based on Euclidian distance and Type III (partial) sums of squares 

were used with unrestricted permutations of raw data (9999 permutations) and Monte Carlo tests. 

PERMANOVA reported as F-statistic, degrees of freedom, and p-value. Pairwise tests are shown with t-value 

and p-value. Significant p-values are in bold. 

DOM source Species CS – HA CS - MF HA - MF 

Tissue incorporation              PERMANOVA Pairwise tests  

Coral – DOC 14.5, 2, 0.004 3.8, 0.02 7.4, 0.001 0.2, 0.8 

Coral - DON 22.3, 2, 0.002 0.9, 0.4 5.0, 0.006 5.1, 0.006 

Algal - DOC 0.1, 2, 0.939 - - - 

Algal - DON 7.2, 2, 0.025 1.4, 0.2 1.7, 0.1 8.9, 0.001 

Detritus transfer                      PERMANOVA Pairwise tests  

Coral – DOC 11.8, 2, 0.0083 3.2, 0.03 1.2, 0.01 2.7, 0.05 

Coral - DON 5.7, 2, 0.0425 1.9, 0.13 3.4, 0.03 1.6, 0.19 

Algal - DOC 20.8, 2, 0.0014 3.9, 0.02 6.8, 0.002 2.5, 0.06 

Algal - DON 5.6, 2, 0.0454 1.9, 0.14 3.2, 0.03 1.7, 0.17 

 

 

 



 

58 
 

 

Figure 2.2.  Stable isotope (13C and 15N) enrichment in coral mucus, sponge tissue, sponge detritus, 

and sponge detritus-consumers. Values are presented as mean above-background tracer incorporation Δδ13C 

(‰) (black bars) and Δδ15N (‰) (white bars) in: a) coral-derived C and N, sponge tissue and detritus of 

Negombata magnifica, and the polychaete Polydorella smurovi with sponge tissue and detritus (n = 3) sampled after 

five days exposure to 13C and 15N labeled corals and polychaete tissue (n = 3) sampled after five days exposure 

to 13C and 15N labeled sponges, and b) coral-derived C and N, sponge tissue and detritus of Mycale fistulifera, and 

tissue of the detritus feeding ophiuroids Ophiotrhix savignyi Ophiocoma scolopendrina with sponge tissue and detritus 

(n = 3) sampled after five days exposure to 13C and 15N labeled corals and ophiuroid tissue samples (n = 12) 

after five days exposure to 13C and 15N labeled sponges. Data presented as mean  SD. 
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Figure 2.3.  Incorporation of sponge detritus by epizoic detritivores. Shown are incorporation rates of 

sponge detritus POC (black bars) and PON (white bars) by the brittle stars Ophiothrix savignyi and Ophiocoma 

scolopendrina (n = 12) and the polychaete Polydorella smurovi (n = 3) presented as (mol Cdetritus or Ndetritus mmol 

Cdetritivore or Ndetritivore
-1 12 h-1). Data presented as mean  SD. 

Incorporation into sponge- vs. bacteria-specific fatty acids: 

The three investigated sponge species exhibited distinct PLFA profiles (Appendix 1 - Fig. 1). 

Besides common unspecific PLFAs (e.g. C14:0, C16:0), all three species contained PLFAs that could 

be identified as bacterial or sponge biomarkers (Appendix 1 - Fig. 1, 2). Typical bacterial biomarkers 

included iso-, anteiso-, methyl-branched, and odd numbered branching PLFAs (Boschker & 

Middelburg 2002; Appendix 1 - Fig. 1). Sponge-specific PLFAs consisted of known sponge 

biomarkers such as C25:2(5,9), 22MeC28:(2(5,9), and C30:3(5,9,23); as well as several unidentified 

long-chain fatty acids (> C:24) characteristic of demosponges (Carballeira & Reyes 1990, Koopmans 

et al. 2015). These long-chain sponge-specific PLFAs accounted for the 59.4 – 63.2% of the total 

PLFA composition of the three species with C26:2(5,9) as the most abundant PLFA in H. arabica and 

M. fistulifera and C30:3(5,9,23) dominating the PLFA composition of C. sacciformis (Appendix 1 - Fig. 

1, 2). The abundances of bacterial PLFAs present were significantly different between species 

(PERMANOVA: df = 2, SS = 576, MS = 288, F = 699, p = 0.0001). The PLFA composition of C. 

sacciformis consisted of 21.2% bacterial PLFAs; significantly higher than for both H. arabica (7.4%) and 

M. fistulifera (2.5%) (PERMANOVA pairwise test: t = 24.2, p = 0.0001 and t = 34.5, p = 0.0001, for 

H. arabica and M. fistulifera respectively; Appendix 1 - Fig. 2). 
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Figure 2.4. Distribution of coral- 

and algal-derived DOC in 

sponge phospholipid fatty acids 

(PLFAs). Data presented as % of 

total coral-derived C assimilated 

into PLFAs (mean  SD) in a) C. 

sacciformis, b) H. arabica, and c) M. 

fistulifera and % of total algal-

derived C assimilated into PLFAs 

in d) C. sacciformis, e) H. arabica, and 

f) M. fistulifera. Depicted are PLFAs 

exhibiting ≥ 0.5% of total coral- or 

algal-derived DOC incorporation. 

Bacterial-specific PLFAs are shown 

in red, sponge-specific PLFAs in 

blue, and all other PLFAs in black. 

Total PLFA incorporation rates are 

presented in the box in the upper 

right of each panel (mol Ctracer 

mmol Csponge
-1 12 h-1). Data 

presented as mean ± SD (n = 3). 
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Figure 2.5. Percent distribution of coral- and algal-derived DOC assimilated into bacterial, sponge, 

and all other phospholipid fatty acids (PLFAs). Data shown for a) C. sacciformis, b) H. arabica, and C) M. 

fistulifera (each n = 3).  
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All three species assimilated coral- and algal-derived DOC into PLFAs (Fig. 2.4). As for bulk 

DOC tissue incorporation, PLFA incorporation rates were higher for algal-derived DOC compared 

to coral-derived DOC, although this difference was significant only for C. sacciformis (Fig. 2.4, 

Appendix 1 - Table 1). The individual PLFAs exhibiting incorporation of coral- and algal-derived 

DOC differed between the three sponge species, although all species exhibited high uptake into the 

unspecific PLFAs C16:0 and C18:0 (Fig. 2.4). Since C16:0 is the first fatty acid (FA) produced during 

FA synthesis, this demonstrates de novo synthesis of PLFAs from non-PLFA C sources (eg. 

carbohydrates). For both the coral and algae treatments, label was only incorporated into PLFAs 

present in the control sponges, further suggesting de novo synthesis of PLFAs rather than dietary 

uptake of PLFAs from the dissolved food sources (Fig. 2.4, Appendix 1 Fig. 1). Overall, C. sacciformis 

showed significantly higher bacterial-PLFA uptake compared to H. arabica and M. fistulifera 

(PERMANOVA pairwise test; t = 2.6, p = 0.0277 and t = 7.3, p = 0.0001, respectively; Fig. 2.4, 2.5). 

When the two DOC sources were compared, algal-derived DOC was incorporated into bacterial-

specific PLFAs at a higher percentage and this difference was significant for H. arabica and M. 

fistulifera (Fig. 2.4, 2.5; Appendix 1 - Table 1). By contrast, a higher percentage of coral-derived DOC 

was incorporated into sponge-specific PLFAs (Fig. 2.5), although this difference was significant only 

for C. sacciformis and M. fistulifera (Table 1). When the specific rates were examined, algal-derived DOC 

was incorporated into bacterial PLFAs at twice the rate of coral-derived DOC in C. sacciformis and 7 – 

8 times in H. arabica and M. fistulifera. Coral-derived DOC by contrast was incorporated into sponge-

specific PLFAs at 1.5 – 4 times higher the rate of algal-derived DOC, despite the lower overall PLFA 

uptake rates for coral-derived DOC.  

DISCUSSION 

Uptake and transformation of reef-derived DOM into POM by coral reef sponges: 

Here we show the uptake of naturally produced coral- and algal-derived DOM by coral reef 

sponges, providing the first direct evidence that sponges utilize DOM originating from a variety of 

primary producers as a food source. Tracer incorporation into sponge phospholipid fatty acids 

(PLFAs) also indicates that both substrates are actively processed by the sponges and used for cellular 

components. Sponge tissue incorporation rates of coral- and algal-derived DOM (3.4 – 14.7 µmol 

Ctracer mmol Csponge 12 h-1 and 3.1 – 15.6 µmol Ntracer mmol Nsponge 12 h-1) are in the range, but up to 

twice as high, compared to diatom-derived DOM assimilation by four Caribbean sponges species (5.2 

– 7.9 µmol Ctracer mmol Csponge 12 h-1 and 4.6 – 8.1 µmol Ntracer mmol Nsponge 12 h-1; de Goeij et al. 

2013). The similar DOM incorporation rates for Red Sea and Caribbean sponges suggests that 

utilizing reef-derived DOM may be a widely employed and advantageous strategy for sponges on 
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oligotrophic coral reefs where DOM represents the largest pool of available organic matter (Benner 

2002, Yahel et al. 2003) and low POM concentrations may limit sponge growth (Wilkinson & 

Cheshire 1990). Given the high benthic cover and DOM release rates of corals and algae (Haas et al. 

2010a; 2011; 2013, Naumann et al. 2010, Mueller et al. 2014), their exudates likely represent a readily 

available food source for reef sponges. However, research on DOM feeding by coral reef sponges has 

focused disproportionately on small encrusting and excavating species (de Goeij et al 2008a,b; 2013, 

Mueller et al. 2014, this study). These sponges may be better able to capitalize on the DOM released 

by corals and algae due to their close proximity to such “leaky” benthic primary producers (Pawlik et 

al. 2015, Slattery & Lesser 2015) that locally elevate labile DOC concentrations (van Duyl & Gast 

2001). Interestingly, however, our findings of coral mucus uptake and detritus production also by the 

branching sponge N. magnifica suggests the sponge loop may not be limited to cryptic encrusting 

sponges as recently suggested (Slattery & Lesser 2015). 

A substantial portion of the incorporated coral- and algal-derived DOC and DON was 

subsequently released as particulate sponge detritus (15 – 24% C and 27 – 49% N). This is 

remarkably consistent with the turnover of diatom DOM by Caribbean sponges (11 – 24% C and 18 

– 36%; de Goeij at al. 2013). DOM uptake by cryptic Caribbean sponges is estimated to approximate 

reef gross primary production. Given the similarly high uptake and transformation rates, as well as 

the high sponge coverage in the abundant cryptic reef habitat in the Red Sea (Richter et al. 2001, 

Wunsch et al. 2000), the sponge loop may also represent a substantial biogeochemical pathway for 

DOM cycling in also Red Sea reef ecosystems. However, our findings show for the first time that 

different DOM sources may influence the amount of DOM cycled via the sponge loop. The higher 

incorporation rate of algal-derived C and N resulted in algal-derived DOM being transferred into 

sponge detritus at a higher rate, indicating that algal-derived DOM may enhance the functioning of 

the sponge loop. Regardless of the DOM source, N was transferred into sponge detritus at a higher 

rate than C. This resulted in the production of detritus with a lower C:N ratio (6.5 ± 1.5) than the 

ambient POM (8.6 ± 1.2), suggesting sponge detritus is a higher quality food source. However, the 

quality of sponge detritus as a food source also depends on its composition. Sponge detritus is 

composed of relatively labile shed cells as well as undigested food and metabolic waste products of a 

more refractory nature, and the relative proportions of each appear to differ between species (de 

Goeij et al. 2009, Alexander et al. 2014, Maldonado 2015). Additionally, while high detritus release 

rates have been observed ex situ by this and other studies (de Goeij et al. 2013, Alexander et al. 2014), 

cell proliferation and shedding is significantly reduced in wounded sponges (Alexander et al. 2015). 

Since sponges in situ can be subject to high predation pressure (Pawlik et al. 1995, Wulff 2006, Pawlik 

et al. 2013), this may have implications for the amount of coral- and algal-derived C and N made 

available to other fauna via the sponge loop on reefs experiencing different predation levels. 
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Uptake of sponge detritus by associated detritivores – closing the loop: 

The transfer of coral-derived C and N into the tissues of the ophiuroids (O. scolopendrina and 

O. savignyi) and polychaete (P. smurovi) confirms the last step of a Red Sea sponge loop – the sponge-

mediated transfer of DOM to higher trophic levels. There are two possible pathways for this transfer: 

1) the direct uptake of living sponge tissue or 2) the uptake of sponge detritus. O. scolopendrina and the 

genera Ophiothrix are known suspension or deposit feeders (Oak & Scheibling 2006, Tamura & 

Tsuchiya 2011). In fact, both ophiuroids were observed feeding on detritus on the sponge surface 

(Rix pers. obs.) as reported for the brittle star O. lineata associated with the sponge Callyspongia vaginalis 

(Hendler 1984). The feeding ecology of Polydorella polychaetes is poorly studied, but all species are 

believed to exhibit suspension and deposit feeding (Dauer et al. 1981, Williams & McDermott 1997, 

Williams 2004); suggesting predatory feeding on sponge tissue is unlikely.  

While detritus incorporation rates were ~ 4-times higher in the polychaetes compared to the 

ophiuroids, the rates for both are within the same order of magnitude as those for sponge detritus 

consumers in the Caribbean (16 – 760 µmol Cdetritus mmol Cdetritivore d-1 and 16 – 144 µmol Ndetritus 

mmol Ndetritivore d-1; de Goeij et al. 2013). In contrast to the detritivores investigated in the Caribbean, 

which included motile crustaceans and molluscs as well as fauna residing in the reef sediments, the 

organisms investigated here are sponge associates. Brittle stars are commonly found living in or on 

reef sponges (Duarte & Nalesso 1996, Wulff 2006), sometimes forming obligate species-specific 

associations (Henkel & Pawlik 2005, Henkel & Pawlik 2011), and all known species of Polydorella are 

associated with sponges (Tzetlin & Britayev 1985, Radashevsky 1996, Williams, 2004). Sponges 

provide associated fauna with a refuge against predation, increased mating success, as well as access 

to a greater particle supply for suspension feeders and a feeding surface for deposit feeders (Hendler 

1984). Our findings show that sponge detritus provides an additional food source for sponge-

dwelling detritivores as an added benefit. Brittle stars further experience heavy predation, particularly 

by reef fish (Hendler 1984), providing a short conduit for the trophic transfer of coral- and algal-

derived DOM up the reef food web.  

DOM processing within the sponge holobiont 

HMA sponges are suspected to be better adapted for and more reliant on DOM uptake than 

their LMA counterparts (Reiswig 1974, Weisz et al. 2007, Maldonado et al. 2012). Despite this, 

several LMA sponges also take up DOM (de Goeij et al. 2008b, 2013; Mueller et al. 2014). 

Interestingly, incorporation rates of algal-derived DOM were similar across all species regardless of 

their microbial abundances. C. sacciformis actually displayed the lowest incorporation rate for coral-

derived DOM, providing further evidence that high microbial abundance is not a prerequisite for 

high DOM uptake. However, the relative contribution of DOM to the overall diets of the 
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investigated sponges remains to be determined. Due to their lower pumping rates, and therefore 

lower filtering capacity (Weisz et al. 2008), HMA sponges may depend more on DOM to meet their 

energetic demands. Despite similar bulk tissue incorporation rates, we detected differences in the 

specific PLFA processing by the LMA and HMA sponges. The HMA sponge C. sacciformis 

incorporated significantly more coral- and algal-derived DOM into bacteria-specific PLFAs (33 – 

42%); indicating bacteria were more active in the uptake and processing of DOM compared to the 

two LMA sponges, particularly M. fistulifera, which showed minimal uptake into bacterial PLFAs (2 – 

10%). C. sacciformis may then be more reliant on its associated microbes for DOM uptake compared 

to the LMA sponges. Similar to the Caribbean sponge Halisarca caerulea (de Goeij et al. 2008a), all 

three sponges exhibited uptake of both coral- and algal-derived DOM into sponge-specific PLFAs. 

This suggests sponge cells are directly involved in DOM-uptake, which could explain the high 

incorporation rates in the two LMA sponges. DOM is a poorly characterized and heterogeneous 

mixture of compounds ranging from small colloidal to truly dissolved material (Carlson 2002, 

Nebbioso & Piccolo 2013). Bacterial and sponge cells may take up different fractions of DOM. 

Although sponge uptake of dissolved material cannot be excluded, sponge cells may predominately 

take up larger colloidal material, while their associated bacteria assimilate the truly dissolved fraction 

(de Goeij et al. 2008). These differing strategies may enable both LMA and HMA sponges to exploit 

this ubiquitous resource.  

Algal-derived DOM was consistently incorporated into both sponge tissue and total PLFAs 

at a significantly higher rate compared to coral-derived DOM, suggesting it is more readily available 

to the sponge-microbe association. However, this appeared to be largely due to higher bacterial 

incorporation, as sponges incubated with algal-derived DOM showed 2 to 8-times higher 

incorporation of tracer C into bacterial-specific PLFAs compared with sponges fed coral-derived 

DOM. This suggests bacteria were more active in the uptake of algal-compared to coral-derived 

DOM, which is consistent with findings that compared to coral exudates, algal exudates stimulate 

higher respiration and growth in microbes in the water column and reef sediments (Wild et al. 2008, 

Haas et al. 2011, Haas et al. 2013, Nelson et al. 2013). Coral-derived DOM by contrast promotes 

slower microbial growth and respiration (Haas et al. 2011, Haas et al. 2013, Nelson et al. 2013), 

suggesting it is less labile for microbes. Despite exhibiting lower total incorporation into PLFAs, 

sponges fed coral-derived DOM actually showed higher (1.5 – 4 times) incorporation into sponge-

specific PLFAs (synthesized de novo or by modification of dietary PLFAs) suggesting coral-derived 

DOM is more readily available or of higher quality to the sponge host. Coral-derived DOM, 

particularly from fungiid corals, may contain a higher proportion of proteins and lipids compared to 

algal-derived DOM (Ducklow & Mitchell 1979, Meikle et al. 1988, Haas & Wild 2010), while algal-

derived DOM is relatively enriched in neutral sugars that promote rapid microbial metabolism (Haas 

& Wild 2010, Wild et al. 2010a, Nelson et al. 2013). DOM originating from coral mucus may also 

contain more colloidal material compared to algal-derived DOM due to its gel-like nature (Crossland 
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1987, Brown & Bythell 2005, Bythell & Wild 2011), potentially increasing its availability for sponge 

cells. Co-uptake of DOM components by sponge and bacterial cells would allow the sponge-microbe 

holobiont access to a wider range of dissolved compounds (de Goeij et al. 2008a). While this may 

increase the resilience of the holobiont to fluctuations in POM and DOM availability in the water 

column, it also implies that coral- and algal-derived DOM differentially affect the metabolism and 

nutrition of the sponge and its associated microbes. If algal-derived DOM preferentially enhances the 

metabolism of the sponge-associated microbes, the increase in the bacterial food supply could result 

in competition between the symbiotic microbes and sponge host for limiting nutrients or increase the 

costs for the host in regulating its microbial populations (Thacker & Freeman 2012). 

Implications of coral-algal phase-shifts for reef biogeochemical cycles: 

Coral reef degradation has led to coral decline and increased algal cover on coral reefs 

worldwide (Hughes 1994, McCook et al. 2001, Sandin et al. 2008). Macro- and turf algae typically 

release higher quantities of DOM than corals (Haas et al. 2010a, Wild et al. 2010b, Haas et al. 2011, 

Mueller et al. 2014b) and produce labile DOM that accelerates microbial growth in the water column 

(Barott & Rohwer 2012, Haas et al. 2013, Nelson et al. 2013). The enhanced microbial respiration, 

and resulting decrease in oxygen concentrations, combined with the proliferation of pathogenic 

microbes has negative consequences for scleractinian corals (Kline et al. 2006, Smith et al.. 2006, 

Gregg et al. 2013). By contrast, sponges may benefit from higher algal cover due to the 

corresponding increase in dissolved and particulate food supply (de Goeij et al. 2013, Mueller et al. 

2014a). While the role of food availability in structuring sponge communities is uncertain (Lesser & 

Slattery 2013, Pawlik et al. 2015), there is evidence for increased sponge abundances on reefs in the 

Caribbean and Indo-Pacific (McMurray et al. 2010, Bell et al. 2013, Powell et al. 2014), which may 

increase the magnitude of recycling by the sponge loop. Our findings also reveal that similarly to the 

microbial loop (Haas et al. 2013, Nelson et al. 2013), recycling via the sponge loop may increase if the 

reef DOM pool is dominated by algal-derived DOM. By retaining and cycling reef nutrients, the 

sponge loop serves an essential function in supporting primary productivity on oligotrophic reefs (de 

Goeij et al. 2013). However, enhanced DON retention and PON production by the sponge loop on 

already degraded reefs could exacerbate N enrichment and further promote algal growth. Thus, the 

interaction between sponges and algae may function in a feedback loop promoting their continued 

growth at the expense of scleractinian corals, and this may compound the negative effects of algal-

induced enhancement of the microbial loop (Barrot & Rohwer 2012, Nelson et al. 2013). Given its 

potential capacity to influence coral reef trophic structure and biogeochemical cycling, future studies 

should quantify the magnitude of DOM recycling by the sponge loop in order to evaluate its current 

and potential future impacts on coral reef functioning.  



CHAPTER 2 

67 
  

ACKNOWLEDGEMENTS 

We are grateful to V. Bednarz, U. Cardini, S. Helber, N. van Hoytema and the staff at the 

Marine Science Station for fieldwork assistance and logistical support; R. van Soest for sponge 

identification; and P. van Rijswijk and the analytical lab of NIOZ-Yerseke for sample analysis. This 

work was funded by the German Leibniz Association (WGL) and by a VIDI-grant from the 

Netherlands Organisation for Scientific Research (grant no. 864.13.007) awarded to D. van Oevelen. 

  



 

68 
 

REFERENCES 

 

Alexander BE, Liebrand K, Osinga R, van der Geest HG, Admiraal W, Cleutjens JPM, Schutte B, 

Verheyen F, Ribes M, van Loon E, de Goeij JM (2014) Cell turnover and detritus production 

in marine sponges from tropical and temperate benthic ecosystems. PLoS ONE 9 doi: 

10.1371/journal.pone.0109486 

Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral 

Ecol 26:32-46 

Azam F, Fenchel T, Field JG, Gray JS, Meyerreil LA, Thingstad F (1983) The ecological role of 

water-column microbes in the sea. Mar Ecol Prog Ser 10:257-263 

Barott KL, Rohwer FL (2012) Unseen players shape benthic competition on coral reefs. Trends 

Microbiol 20:621-628 

Benner R (2002) Chemical composition and reactivity. In: Hansell DA, Carlson CA (eds) 

Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, CA, USA 

Brocke HJ, Wenzhoefer F, de Beer D, Mueller B, van Duyl FC, Nugues MM (2015) High dissolved 

organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem. 

Scientific Reports 5:7 doi: 10.1038/srep08852 

Brown BE, Bythell JC (2005) Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser 

296:291-309 

Bythell JC, Wild C (2011) Biology and ecology of coral mucus release. J Exp Mar Biol Ecol 408:88-93 

Carballeira NM, Reyes ED (1990) Novel very long-chain fatty-acids from the sponge Petrosia 

pellasarca. J Nat Prod 53:836-840 

Clarke KR, Gorley RN (2006) PRIMER version 6: User Manual/Tutorial. PRIMER-E, Plymouth 

Crossland CJ (1987) In situ release of mucus and DOC-lipid from the corals Acropora variabilis and 

Stylophora pistillata in different light regimes. Coral Reefs 6:35-42 

Dauer DM, Maybury CA, Ewing RM (1981) Feeding behaviour and general ecology of several 

spionid polychaetes from the Chesapeake Bay. J Exp Mar Biol Ecol 54:21-38 



CHAPTER 2 

69 
  

de Goeij JM, de Kluijver A, van Duyl FC, Vacelet J, Wijffels RH, de Goeij AFPM, Cleutjens JPM, 

Schutte B (2009) Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell 

turnover and shedding. J Exp Biol 212:3892-3900 

de Goeij JM, Moodley L, Houtekamer M, Carballeira NM, van Duyl FC (2008a) Tracing C-13-

enriched dissolved and particulate organic carbon in the bacteria-containing coral reef sponge 

Halisarca caerulea: Evidence for DOM feeding. Limnol Oceanogr 53:1376-1386 

de Goeij JM, van den Berg H, van Oostveen MM, Epping EHG, Van Duyl FC (2008b) Major bulk 

dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar Ecol 

Prog Ser 357:139-151 

de Goeij JM, van Duyl FC (2007) Coral cavities are sinks of dissolved organic carbon (DOC). Limnol 

Oceanogr 52:2608-2617 

de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AFPM, Admiraal W 

(2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. 

Science 342:108-110 

Duarte LFL, Nalesso RC (1996) The sponge Zygomycale parishii (Bowerbank) and its endobiotic fauna. 

Estuarine Coastal Shelf Sci 42:139-151 

Ducklow HW, Mitchell R (1979) Composition of mucus released by coral-reef coelenterates. Limnol 

Oceanogr 24:706-714 

Ferrier-Pagès C, Gattuso JP, Cauwet G, Jaubert J, Allemand D (1998) Release of dissolved organic 

carbon and nitrogen by the zooxanthellate coral Galaxea fascicularis. Mar Ecol Prog Ser 

172:265-274 

Gili JM, Coma R (1998) Benthic suspension feeders: their paramount role in littoral marine food 

webs. Trends Ecol Evol 13:316-321 

Gloeckner V, Wehrl M, Moitinho-Silva L, Gernert C, Schupp P, Pawlik JR, Lindquist NL, Erpenbeck 

D, Woerheide G, Hentschel U (2014) The HMA-LMA dichotomy revisited: an electron 

microscopical survey of 56 sponge species. Biol Bull 227:78-88 

Gregg AK, Hatay M, Haas AF, Robinett NL, Barott K, Vermeij MJA, Marhaver KL, Meirelles P, 

Thompson F, Rohwer F (2013) Biological oxygen demand optode analysis of coral reef-

associated microbial communities exposed to algal exudates. Peerj 1 doi: 10.7717/peerj.107 



 

70 
 

Haas AF, Jantzen C, Naumann MS, Iglesias-Prieto R, Wild C (2010a) Organic matter release by the 

dominant primary producers in a Caribbean reef lagoon: implication for in situ O-2 

availability. Mar Ecol Prog Ser 409:27-39 

Haas AF, Naumann MS, Struck U, Mayr C, el-Zibdah M, Wild C (2010b) Organic matter release by 

coral reef associated benthic algae in the Northern Red Sea. J Exp Mar Biol Ecol 389:53-60 

Haas AF, Nelson CE, Kelly LW, Carlson CA, Rohwer F, Leichter JJ, Wyatt A, Smith JE (2011) 

Effects of coral reef benthic primary producers on dissolved organic carbon and microbial 

activity. PLoS ONE 6 doi: 10.1371/journal.pone.0027973 

Haas AF, Nelson CE, Rohwer F, Wegley-Kelly L, Quistad SD, Carlson CA, Leichter JJ, Hatay M, 

Smith JE (2013) Influence of coral and algal exudates on microbially mediated reef 

metabolism. Peerj 1 doi: 10.7717/peerj.108 

Haas AF, Wild C (2010) Composition analysis of organic matter released by cosmopolitan coral reef-

associated green algae. Aquat Biol 10:131-138 

Hendler G (1984) The association of Ophiothric lineata and Callyspongia vaginalis - a brittle star  - sponge 

cleaning symbiosis. Mar Ecol 5:9-27 

Henkel TP, Pawlik JR (2005) Habitat use by sponge-dwelling brittlestars. Mar Biol 146:301-313 

Henkel TP, Pawlik JR (2011) Host specialization of an obligate sponge-dwelling brittlestar. Aquat 

Biol 12:37-46 

Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS 

Microbiol Ecol 55:167-177 

Herndl GJ, Velimirov B (1986) Microheterotrophic utilization of mucus released by the 

Mediterranean coral Cladocora cespitosa. Mar Biol 90:363-369 

Hughes TP (1994) Catastrophes, phase-shifts, and large-scale degradations of a Caribbean coral reef 

Science 265:1547-1551 

Kline DI, Kuntz NM, Breitbart M, Knowlton N, Rohwer F (2006) Role of elevated organic carbon 

levels and microbial activity in coral mortality. Mar Ecol Prog Ser 314:119-125 

Koopmans M, van Rijswijk P, Boschker HTS, Marco H, Martens D, Wijffels RH (2015) Seasonal 

variation of fatty acids and stable carbon isotopes in sponges as indicators for nutrition: 

Biomarkers in sponges identified. Mar Biotechnol 17:43-54 



CHAPTER 2 

71 
  

Koopmans M, van Rijswijk P, Martens D, Egorova-Zachernyuk TA, Middelburg JJ, Wijffels RH 

(2011) Carbon conversion and metabolic rate in two marine sponges. Mar Biol 158:9-20 

Kötter I (2002) Feeding ecology of coral reef sponges. Ph.D. thesis, Bremen University, Bremen. 

Loya Y (1976) Recolonization of Red Sea corals affected by natural catastrophes and man-made 

perturbations. Ecology 57:278-289 

Maldonado M (2015) Sponge waste that fuels marine oligotrophic food webs: a re-assessment of its 

origin and nature. Mar Ecol doi: 10.1111/maec.12256 

Maldonado M, Ribes M, van Duyl FC (2012) Nutrient fluxes through sponges: biology, budgets, and 

ecological implications. Adv Mar Biol 62:113-182 

McCook LJ, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a 

review of evidence and mechanisms. Coral Reefs 19:400-417 

Meikle P, Richards GN, Yellowlees D (1988) Structural investigations on the mucus from 6 species of 

coral. Mar Biol 99:187-193 

Mueller B, de Goeij JM, Vermeij MJA, Mulders Y, van der Ent E, Ribes M, van Duyl FC (2014a) 

Natural diet of coral-excavating sponges consists mainly of dissolved organic carbon (DOC). 

PLoS ONE 9 doi: 10.1371/journal.pone.0090152 

Mueller B, van der Zande RM, van Leent PJM, Meesters EH, Vermeij MJA, van Duyl FC (2014b) 

Effect of light availability on dissolved organic carbon release by Caribbean reef algae and 

corals. Bull Mar Sci 90:875-893 

Naumann MS, Haas A, Struck U, Mayr C, El-Zibdah M, Wild C (2010a) Organic matter release by 

dominant hermatypic corals of the Northern Red Sea. Coral Reefs 29:649-659 

Naumann MS, Mayr C, Struck U, Wild C (2010b) Coral mucus stable isotope composition and 

labeling: experimental evidence for mucus uptake by epizoic acoelomorph worms. Mar Biol 

157:2521-2531 

Nelson CE, Goldberg SJ, Kelly LW, Haas AF, Smith JE, Rohwer F, Carlson CA (2013) Coral and 

macroalgal exudates vary in neutral sugar composition and differentially enrich reef 

bacterioplankton lineages. ISME J 7:962-979 

Oak T, Scheibling RE (2006) Tidal activity pattern and feeding behaviour of the ophiuroid Ophiocoma 

scolopendrina on a Kenyan reef flat. Coral Reefs 25:213-222 



 

72 
 

Pawlik JR, Chanas B, Toonen RJ, Fenical W (1995) Defenses of Caribbean sponges against predatory 

fish. 1. Chemical deterrency. Mar Ecol Prog Ser 127:183-194 

Pawlik JR, Loh T-L, McMurray SE, Finelli CM (2013) Sponge communities on Caribbean Coral reefs 

are structured by factors that are top-down, not bottom-up. PLoS ONE 8 doi: 

10.1371/journal.pone.0062573 

Pawlik JR, McMurray SE, Erwin P, Zea S (2015) A review of evidence for food limitation of sponges 

on Caribbean reefs. Mar Ecol Prog Ser 519:265-283 

Perea-Blazquez A, Davy SK, Bell JJ (2012) Estimates of particulate organic carbon flowing from the 

pelagic environment to the benthos through sponge assemblages. PLoS ONE 7 doi: 

10.1371/journal.pone.0029569 

Pile AJ, Patterson MR, Savarese M, Chernykh VI, Fialkov VA (1997) Trophic effects of sponge 

feeding within Lake Baikal's littoral zone. 2. Sponge abundance, diet, feeding efficiency, and 

carbon flux. Limnol Oceanogr 42:178-184 

Reiswig HM (1971) Particle feeding in natural populations of 3 marine demosponges. Biol Bull 

141:568-591 

Reiswig HM (1974) Water transport, respiration and energetics of 3 tropical marine sponges. J Exp 

Mar Biol Ecol 14:231-249 

Ribes M, Coma R, Gili JM (1999) Natural diet and grazing rate of the temperate sponge Dysidea avara 

(Demospongiae, Dendroceratida) throughout an annual cycle. Mar Ecol Prog Ser 176:179-

190 

Ribes M, Jimenez E, Yahel G, Lopez-Sendino P, Diez B, Massana R, Sharp JH, Coma R (2012) 

Functional convergence of microbes associated with temperate marine sponges. Environ 

Microbiol 14:1224-1239 

Richter C, Wunsch M, Rasheed M, Kotter I, Badran MI (2001) Endoscopic exploration of Red Sea 

coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413:726-730 

Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, Konotchick T, 

Malay M, Maragos JE, Obura D, Pantos O, Paulay G, Richie M, Rohwer F, Schroeder RE, 

Walsh S, Jackson JBC, Knowlton N, Sala E (2008) Baselines and degradation of coral reefs in 

the northern Line Islands. PLoS ONE 3 doi: 10.1371/journal.pone.0001548 



CHAPTER 2 

73 
  

Silveira CB, Silva-Lima AW, Francini-Filho RB, Marques JSM, Almeida MG, Thompson CC, 

Rezende CE, Paranhos R, Moura RL, Salomon PS, Thompson FL (2015) Microbial and 

sponge loops modify fish production in phase-shifting coral reefs. Environ Microbiol doi: 

10.1111/1462-2920.12851 

Slattery M, Lesser MP (2015) Trophic ecology of sponges from shallow to mesophotic depths (3 to 

150 m): Comment on Pawlik et al. (2015). Mar Ecol Prog Ser 527:275-279 

Smith JE, Shaw M, Edwards RA, Obura D, Pantos O, Sala E, Sandin SA, Smriga S, Hatay M, Rohwer 

FL (2006) Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. 

Ecol Lett 9:835-845 

Tamura Y, Tsuchiya M (2011) Floating mucus aggregates derived from benthic microorganisms on 

rocky intertidal reefs: Potential as food sources for benthic animals. Estuar Coast Shelf Sci 

94:199-209 

Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: Evolution, 

ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295-347 

van Duyl FC, Gast GJ (2001) Linkage of small-scale spatial variations in DOC, inorganic nutrients 

and bacterioplankton growth with different coral reef water types. Aquat Microb Ecol 24:17-

26 

van Duyl FC, Hegeman J, Hoogstraten A, Maier C (2008) Dissolved carbon fixation by sponge-

microbe consortia of deep water coral mounds in the northeastern Atlantic Ocean. Mar Ecol 

Prog Ser 358:137-150 

Weisz JB, Hentschel U, Lindquist N, Martens CS (2007) Linking abundance and diversity of sponge-

associated microbial communities to metabolic differences in host sponges. Mar Biol 

152:475-483 

Weisz JB, Lindquist N, Martens CS (2008) Do associated microbial abundances impact marine 

demosponge pumping rates and tissue densities? Oecologia 155:367-376 

Wild C, Haas A, Naumann M, Mayr C, el-Zibdah M (2008) Comparative investigation of organic 

matter release by corals and benthic reef algae - implications for pelagic and benthic 

microbial metabolism. Procs 11th Int Coral Reef Symp, Ft Lauderdale, 5:1319-1323 

Wild C, Hoegh-Guldberg O, Naumann MS, Florencia Colombo-Pallotta M, Ateweberhan M, Fitt 

WK, Iglesias-Prieto R, Palmer C, Bythell JC, Ortiz J-C, Loya Y, van Woesik R (2011) Climate 



 

74 
 

change impedes scleractinian corals as primary reef ecosystem engineers. Mar Freshw Res 

62:205-215 

Wild C, Naumann M, Niggl W, Haas A (2010a) Carbohydrate composition of mucus released by 

scleractinian warm- and cold-water reef corals. Aquat Biol 10:41-45 

Wild C, Niggl W, Naumann MS, Haas AF (2010b) Organic matter release by Red Sea coral reef 

organisms-potential effects on microbial activity and in situ O-2 availability. Mar Ecol Prog 

Ser 411:61-71 

Wilkinson CR, Cheshire AC (1990) Comparisons of sponge populations across the barrier reefs of 

Australia and Belize - Evidence for higher productivity in the Caribbean. Mar Ecol Prog Ser 

67:285-294 

Williams JD (2004) Reproduction and morphology of Polydorella (Polychaeta : Spionidae), including 

the description of a new species from the Philippines. J Nat Hist 38:1339-1358 

Williams JD, McDermott JJ (1997) Feeding behavior of Dipolydora commensalis (Polychaeta: Spionidae): 

Particle capture, transport, and selection. Invertebr Biol 116:115-123 

Wulff JL (2006) Ecological interactions of marine sponges. Can J Zool 84:146-166 

Wunsch M, Al-Moghrabi SM, Koetter I, Moosa MK, Soemodihardjo S, Romimohtarto K, Nontji A, 

Soekarno, Suharsono (2000) Communities of coral reef cavities in Jordan, Gulf of Aqaba 

(Red Sea). Proc 9th Int Coral Reef Symp, Bali 1: 595-600 

Yahel G, Sharp JH, Marie D, Hase C, Genin A (2003) In situ feeding and element removal in the 

symbiont-bearing sponge Theonella swinhoei: Bulk DOC is the major source for carbon. 

Limnol Oceanogr 48:141-149 

 

 

  



 

75 
  

 

CHAPTER 3 

 

ECOSYSTEM-ENGINEERED SEASONAL CARBON 

CYCLING IN A RED SEA CORAL REEF 

 

 

 

 

 

 

 

 

 

 

 

van Hoytema N, van Oevelen D, Rix L, Cardini U, Bednarz VN, de Goeij JM, Naumann MS, Al-

Horani FA, Wild C. Ecosystem-engineered seasonal carbon cycling in a Red Sea coral reef. This 

chapter is in preparation for submission to Coral Reefs: 



 

76 
 

ABSTRACT 

Coral reefs in the northern Red Sea experience oligotrophic conditions, particularly in 

summer due to water column stratification. These conditions may limit reef carbon (C) fixation via 

gross primary production (GPP). Recent research revealed that reef cavity sponges in the Pacific and 

Caribbean potentially take up dissolved organic carbon (DOC) at rates comparable to GPP. This 

sponge mediated C uptake may exceed pelagic microbial DOC uptake via the microbial loop. Coral 

reefs in the northern Red Sea harbor high densities of cavity sponges that could play a major role in 

local reef C cycling, but related knowledge is lacking. Therefore, this study investigated the 

contributions of GPP and sponge DOC uptake to the coral reef C cycle over all seasons of the year 

2013 in a fringing reef close to Aqaba, Jordan. C fluxes of the benthic, pelagic, and cavity 

communities were empirically quantified using a series of incubation experiments conducted in 

seasonal resolution. These data were then combined into inverse trophic models to quantify the 

contributions by the different processes to overall reef C uptake. Findings revealed that DOC uptake 

by cavity sponges and primary production by hard and soft corals dominated the C flows through the 

reef in all seasons. Primary production was highest during spring with its relatively high light and 

nutrient availability (spring GPP: 308 mmol C m-2 d-1). Sponge DOC uptake was more than 3-fold 

higher during summer and fall compared to winter and spring (summer DOC uptake: 535 mmol C m-

2 d-1), and between 3-fold (winter) and 10-fold (summer) higher than pelagic microbial DOC uptake 

(seasonal means: 43 – 48 mmol C m-2 d-1). These results indicate that the sponge loop is a vital 

process in C cycling in this high latitude fringing reef, especially so during strongly oligotrophic 

summer and fall when GPP struggled to meet the metabolic demand of the system. 
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INTRODUCTION 

Coral reefs thrive under oligotrophic conditions (Kleypas et al. 1999). They maintain high 

gross primary production (GPP) due to efficient utilization and recycling of scarcely available 

dissolved and particulate nutritious organic material (Wild et al. 2004, de Goeij et al. 2013). Coral reef 

primary production is characterized by the symbiosis of coral hosts with photosynthetic 

dinoflagellates of the genus Symbiodinium (i.e. zooxanthellae; Wooldridge 2010, Stambler 2011). This 

symbiosis thrives in oligotrophic surroundings because the coral host supplements the zooxanthellae 

with nutrients from heterotrophic feeding or nitrogen fixation by symbiotic microbes, while the 

zooxanthellae provide carbohydrates to the host (Yellowlees et al. 2008, Cardini et al. 2014). Part of 

the zooxanthellate photosynthates is released as mucus by the coral and enters the pelagic particulate 

and dissolved organic carbon (POC and DOC respectively) pools in the coral reef (Naumann et al. 

2010). POC released as mucus may function as a pelagic particle trap, forming highly enriched 

aggregates with suspended materials that then sink rapidly to the coral reef where they are 

remineralized, thereby providing vital nutrients and organic matter to the reef system (Wild et al. 

2004, Mayer & Wild 2010). Besides corals, algae also release substantial DOC (Haas et al. 2010). Up 

to 80% of carbon (C) released by reef primary producers dissolves immediately in seawater (Wild et 

al. 2004). The primary pathway in which this DOC is made re-available to higher trophic levels in 

oceanic waters is through the microbial loop (Azam & Malfatti 2007). However, bacterioplankton 

uptake rates were insufficient to explain DOC removal from coral reef waters (de Goeij & van Duyl 

2007). Another pathway of DOC recycling to higher trophic levels is mediated by sponges (Yahel et 

al. 2003, de Goeij et al. 2008a). They take up vast quantities of DOC and simultaneously expel large 

amounts of choanocytes and mesohyl cells which are available for consumption by higher trophic 

levels (de Goeij et al. 2013, Alexander et al. 2014, Maldonado 2015). Sponges can be very abundant in 

cavities riddling coral reefs (Richter et al. 2001). Their total C uptake and release may therefore have a 

substantial impact on total reef C cycling. To gain a holistic understanding of coral reef C cycling, it is 

important to assess all C cycling processes described above together.  

The coral reefs of the northern Red Sea experience relatively strong variation in light 

availability and water temperature due to their high latitude location. The annual fluctuation in sea 

surface temperature (21 – 29°C) combined with relatively warm deeper water layers (year round 

~21°C, water depth > 200 m) result in an annual cycle of deep water mixing from December until 

May and stratification down to 200 m water depth from June until November (Carlson et al. 2014). 

Inorganic nutrients are brought up to surface water layers during deep water mixing, while they are 

trapped in deeper waters during stratification, creating extremely oligotrophic conditions in coral reef 

surrounding surface waters (Rasheed et al. 2002, Silverman et al. 2007, Rasheed et al. 2012). These 

local conditions offer the rare opportunity to study the effects of seasonal variation in key 

environmental factors on C cycling within the coral reefs. 
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Several studies have investigated coral reef primary production and organic C cycling (e.g. 

Charpy & Charpy-Roubaud 1991, Hata et al. 2002, Alldredge et al. 2013). However none have done 

so, while also taking the sponge C cycling loop into account. The vast majority of previous studies 

have been performed on platform reefs, or reef flats of fringing reefs, leaving the deeper reef slopes 

of fringing reefs relatively unexamined (e.g. Gattuso et al. 1993, Chisholm & Barnes 1998, Silverman 

et al. 2007), while reef slopes can comprise up to 85% of total coral reef area (Smith 1978). In 

addition, many coral reef primary production studies have investigated the reef community as a whole 

through methods such as flow respirometry, or eddy correlation, making it impossible to determine 

the relative contributions by functional groups (Long et al. 2013, Koweek et al. 2015). Finally, the 

Red Sea has received less research effort than the Caribbean and Pacific regions (Berumen et al. 2013, 

Loya et al. 2014), while its seasonal variation in environmental conditions makes it an ideal natural 

laboratory to investigate the effect of that variation on coral reef functioning.   

This study combines measurements of benthic and pelagic primary production and C cycling 

in a seasonal resolution to study the effect of changing environmental conditions on these processes 

in a northern Red Sea reef. Thereby, it differentiates dominant groups of benthic primary producers, 

enabling the assessment of their individual contributions to C cycling. To combine the various data, 

four seasonal trophic food web models were developed. Such models have been developed for coral 

reefs (e.g. Johnson et al. 1995, Opitz 1996, Niquil et al. 1998, Varkey et al. 2012, Heymans et al. 

2014), but to our knowledge only one model exists for the Red Sea with a focus on the Eritrean coast 

(Tsehaye & Nagelkerke 2008). It, like most other coral reef food web models, focuses on fisheries 

aspects and therefore the top of the food web. The models presented here incorporate the seasonal 

aspect of the northern Red Sea and studies the foundation of the food web for the less researched 

reef fore-slope and its overlying water column. 

MATERIALS AND METHODS 

Study site  

The field work for this study was conducted in the Gulf of Aqaba, at the Marine Science 

Station (MSS) of the University of Jordan and Yarmouk University, 10 km south of Aqaba. Just off 

the MSS is a ca. 1 km long fringing reef in which all monitoring data and samples were collected at 

29° 27' 31" N, 34° 58' 26" E and 10 m water depth. This location on the fore-reef slope, known as 

“U7”, has been studied over the last 40 years (e.g. Mergner & Schuhmacher 1974, Bednarz et al. 

2015). All sampling and monitoring was performed at 10 m water depth within 100 m of  "U7" 

during four 4-week periods in 2013 in February, April, September, and November. The timing of 

these periods (hereafter called winter, spring, summer, and fall) was previously determined from 
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literature to best cover the annual cycle of environmental conditions in the Gulf of Aqaba (Silverman 

et al. 2007, Carlson et al. 2014). 

Benthic cover 

The "U7" area contains a 5 x 5 m2 rope grid. Vertical pictures were taken of the 25 grid cells 

on one day in each season and the benthic composition of the research area was quantified using 

digital image analysis (CPCe image analysis software; Kohler & Gill 2006). 100 random points were 

placed on every photo and the benthic group underneath was determined down to the lowest 

possible taxa or substrate type. These data were then grouped into functional groups (Table 3.1). 

Sediment and coral rock were defined as "bare" reef sand and solid reef structure which were not 

overgrown by any of the other categories. The functional group data were recalculated to percentage 

benthic cover in each season. Surface sponge benthic cover was determined by in-situ measurements 

of sponge surface area within a 0.25 m2 planar quadrat which was placed every 10 m along three serial 

50 m transect lines through the research area at 10 m water depth (n = 15). This was done to improve 

the estimate of sponge cover as many surface sponges are relatively small and found within cracks 

and crevices, making them hard to quantify from planar photographs. The benthic cover of sponges 

in reef cavities within the reef structure was taken from literature at 0.82 m2 sponge cover per m2 

planar reef surface (Richter et al. 2001). The water column above the reef was assumed to include 8 

m3. Current measurements throughout the water column indicated that the top 2 m were more wind-

driven than the 8 m below, reaching substantially higher flow rates than the bottom 8 m (annual 

mean 25 ± 13 cm s-1 and 5 ± 1 cm s-1 respectively (mean ± SD); N. van Hoytema unpublished data). 

It was therefore assumed that there was little exchange between the top layer and the deeper water 

column.  

Environmental monitoring and metabolic incubations 

The following describes the methods used for monitoring of environmental conditions in-

situ, measurements of heterotrophic bacterial abundance in-situ, metabolic incubations of benthic 

functional groups and plankton, and sampling and maintenance of specimens for those incubations. 

Light (lux) and water temperature at 10 m water depth were measured during all seasons. The 

lux measurements were converted to photosynthetically active radiation (PAR) by a conversion factor 

calculated from a simultaneous minute-by-minute measurement of lux and PAR (08:00 to 14:00 on 

one day, n = 353) using a HOBO pendant logger and a LI-COR LI192SA underwater quantum 

sensor: lux = PAR x 52.0, R2 = 0.83 (Long et al. 2012). Water samples were collected on a weekly 

basis in the four weeks encompassing each study period for measurements of water column status 

parameters and planktonic net photosynthesis (Pn) and respiration (R), as briefly described below, (n 
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week-1 = 4 - 6). Samples were collected 1 m above the seafloor in clean high density poly-ethylene 

(HDPE) containers (volume: 5 L) using SCUBA. Subsamples were taken from the containers within 

20 min of collection to measure concentrations of inorganic nutrients (NH4
+, PO4

3-, and NOx; NOx = 

NO2
- + NO3

-), particulate organic carbon (POC), dissolved organic carbon (DOC), and chlorophyll a 

(Chl a). Nutrient concentrations were measured according to Murphy and Riley (1962), Strickland and 

Parsons (1968), and Holmes et al. (1999) using a Trilogy Fluorometer (Turner Designs) for NH4
+, 

and a JASCO-V630 photometer for PO4
3- and NOx. Subsamples for POC (1L), filtered onto pre-

combusted (450 °C, 5 h) GF/F filters (nominal pore size 0.7 µm), were dried (40 °C for 48 h) 

pending analysis. Filters were acidified (0.1 N HCl) prior to measurement to remove any inorganic C. 

Measurements were performed on a EuroVector elemental analyzer (EURO EA 3000; analytical 

precision ≤ 0.1 %). Subsamples for DOC (50 mL) were vacuum filtered (max. pressure 20kPa) 

through pre-combusted GF/F filters straight into pre-acid-washed (0.4 mol L-1 HCl ) 30 mL HDPE 

sample bottles, directly acidified with 80 µL of 18.5 % HCl, and stored at 4 °C in the dark until 

analysis by high-temperature catalytic oxidation on a Shimadzu TOC-VCPH total organic C analyser 

using reference water samples (CRM program, Hansell Research Lab, USA, DA Hansell and W Chan; 

Batch 13, Lot #08-13, 41-45 µmol C L-1) as a positive control after every 10 samples. Chl a 

subsamples (1L) were filtered onto pre-combusted GF/F filters and stored in the dark at -80 °C. Chl 

a was later extracted in 90 % acetone for 12 h at 4 °C in the dark and measured on a Trilogy 

fluorometer using the non-acidification module (CHL NA #046, Turner Designs).  

Specimens of benthic functional groups hard and soft corals, macroalgae, turf algae, coral 

rock, and sediment as well as surface and cavity sponges were collected for quantification of 

metabolic fluxes (n = 8). The hard corals were represented by the four genera Acropora, Stylophora, 

Goniastrea, and Pocillopora, the two main groups of soft corals were the family Xeniidae, and genus 

Sarcophyton, and macroalgae benthic cover was dominated by the genera Lobophora and Caulerpa. Turf 

algae, sediment, and coral rock were treated as bulk groups containing communities of various biotas 

(Larkum et al. 2003, Schottner et al. 2011). Surface sponges were represented by the genera Mycale, 

Hemimycale, Amphimedon, Callyspongia, and Negombata, and cavity sponges by Chondrilla. Fragments of 

hard corals, soft corals, macroalgae, turf algae covered dead coral branches, coral rock, and sponges 

were collected with hammer and chisel or tweezers. Sediment samples were collected with corers. 

Sediment cores were extruded from their corers and the top 1 cm was sliced off and placed in a Petri 

dish with the same surface area as the core (14.52 cm2). All specimens were maintained in an outside 

flow through aquarium (800 L, 4000 L h-1 flow rate) with water coming from the coral reef at 10 m 

water depth, thus resembling ambient in-situ conditions of temperature and inorganic nutrients. Light 

conditions were adjusted to in-situ conditions at 10 m water depth using layers of plastic mesh and 

monitored with data loggers (Onset HOBO Pendant UA-002-64). The same specimens (or a subset 

thereof) were used for all metabolic incubations.  
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Closed cell respirometric incubations under in-situ-like conditions for measurements of net 

photosynthesis (Pn) and respiration (R) took place in the flow-through aquarium. Planktonic 

metabolic rates were measured with 0.5L glass chambers filled with water from the weekly 

environmental monitoring. Start O2 measurements were taken with an O2 optode and a conductivity 

probe (MultiLine® IDS 3430, WTW GmbH, Weilheim, Germany, accuracy: ± 0.5% of measured 

value). The chambers were then closed while removing all air. Chambers for R were placed in dense 

plastic bags for incubation in the dark and all chambers were moved to the flow through aquarium. 

Pn incubations under in-situ like conditions lasted from 10:00 until sunset. R incubations lasted for 

24 h. After the incubations, end O2 concentrations were immediately measured. Difference between 

start and end measurements were normalized for time and volume resulting in rates of nmol O2 L-1 h-

1. Benthic specimen incubations were performed using water from the flow through aquarium in 1 L 

glass chambers for hard corals, soft corals, macroalgae, turf algae, and coral rock, 2 L chambers for 

sponges (see below), and 0.5 L chambers for sediment (n = 6 - 8). In addition, seawater controls (n = 

8) were run in parallel to correct for metabolic activity in the incubation seawater. Chambers were 

stirred with magnetic stirrer plates. R measurements took place in the dark at least 1 h after sunset to 

ensure full darkness, while Pn measurements were performed the following day between 12:00 and 

14:00 (10:00 and 16:00 for sediment incubations), which represents the most stable and maximum 

light conditions of the day as determined by light measurements. All specimens, except for sediments 

and sponges, were incubated for 60 - 90 min for Pn, and 90 - 120 min for R. Sediments were 

incubated for 120 - 330 min for Pn and 180 - 360 min for R due to lower metabolic activity, and 

sponges were incubated for 180 min for R due to the larger chamber volume. The measurement 

procedure was identical to that of the water column incubations. Pn and R rates were calculated by 

subtracting start from end O2 concentrations and relating to incubation duration (mg O2 

production/consumption L-1 hour-1). These O2 rates were then corrected for the seawater control O2 

fluxes before being normalized to chamber volume and organism surface area (see below). Fluxes 

were recalculated to nmol O2 cm-2 specimen surface area h-1. Photosynthetic and respiratory quotients 

were assumed to be 1 for all measured specimens, leading to a direct conversion to nmol C cm-2 h-1 

(Gattuso et al. 1996, Carpenter & Williams 2007).  

Organic matter uptake and release by corals, macroalgae, turf algae, coral rock, and sponges 

were quantified using beaker incubations (Herndl & Velimirov 1986, Naumann et al. 2010). A 

selection of specimens used for the O2 flux incubations (n = 6) were incubated from 10:00 until 16:00 

h in open 1L glass chambers in the flow through aquarium with simultaneous seawater control 

incubations. Sponge methodology was different, see below. The setup was covered with transparent 

plastic foil to prevent contamination with airborne particles while leaving small openings on the sides 

for air exchange. Chambers were not stirred to prevent water currents from modifying the structural 

composition through e.g. POC dissolution to DOC. DOC and POC samples were collected at the 

start and end of the incubation and measured as described in the environmental monitoring section. 
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Differences in DOC and POC between start and end samples were corrected for the control 

incubations and then normalized to time, volume, and specimen surface area. Incubations of cavity 

and surface sponges were conducted in chambers containing 2 L of seawater and over 3 h to take 

into account the fast filtration activity of sponges. These incubations were stirred to keep POC 

suspended and thereby available to the sponges for filtration. All organic matter fluxes were 

recalculated to nmol C cm-2 h-1.  

The surface area of all specimens used in all metabolic incubations was quantified to 

normalize metabolic fluxes. Specimen surface areas were calculated using advanced geometry and 

digital image analysis (Naumann et al. 2009).  

Heterotrophic bacterial abundance in the water column was measured to constrain flows 

pertaining to the microbial loop. Samples (2 ml) were collected in March (n = 4; used for winter and 

spring) and November (n = 53; used for summer and fall) and fixed with 0.1 % paraformaldehyde 

(final concentration), frozen with liquid nitrogen, and then stored at -80°C until analysis. The analysis 

was performed with a flow cytometer (FACSCalibur, Becton Dickinson, 488 nm excitation laser). 

Samples were stained with SYBR Green 1 (conc. 1 per 1000) for 30 min prior to analysis, sorted at a 

flowrate of ca. 0.06 µl min-1 for 1 min and subsequently gated on a side scatter versus green 

fluorescence density plot. 

Food web model 

To comparatively study C flows through the coral community, linear inverse food web 

models (LIMs) were developed for the four seasons. A LIM consists of matrix equations with 

equalities and inequalities (Soetaert & van Oevelen 2009). Model constructions and solutions were 

run in R (version 3.0.2, R Development Core Team, 2013) using the R-package LIM 

(http://lib.stat.cmu.edu/R/CRAN/web/packages/LIM/index.html). The equalities contain the 

topology of the food web and single value real world data from measurements on the flows such as 

respiration and primary production. The inequalities place constraints on the food web flows such as 

a minimal fraction of assimilated C must go to respiration or respiration must fall between two 

values. The LIM is the same for all four seasons and consists of three major areas: the water column, 

the coral reef benthos, and the cavity sponge community within the coral reef. The water column 

food web is based on a LIM for the water column in a Pacific Atoll (Niquil et al. 1998). It consists of 

phytoplankton, zooplankton, bacterioplankton, protozoa, POC and DOC. These C compartments 

are termed pelagic particulate organic carbon (PPC) and pelagic dissolved organic carbon (PDC) from 

hereon to differentiate them from organic C in sediment and cavities. It is assumed that all biotic 

compartments respire. In addition to this, phytoplankton performs photosynthesis and is grazed by 

protozoa and zooplankton. It also releases PPC and PDC to the water column. Zooplankton excretes 

PPC and PDC and grazes on phytoplankton, protozoa and PPC. Protozoa excrete PPC and PDC, 
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and feed on PPC, PDC, bacterioplankton, and phytoplankton. Bacterioplankton feeds on PDC and 

releases PDC. Finally, PPC dissolves into PDC, and there is an export flow from zooplankton to 

higher trophic levels not described in the model. As the modeled fringing reef is relatively 

hydrodynamically open, the water residence time is measured in hours, compared to years for a 

Pacific atoll lagoon (Niquil et al. 1998, Naumann et al. 2012), inflows of C are allowed for all water 

column compartments. The consistency of the imported C has to reflect the relative biomasses of C 

for the water column compartments as calculated from the environmental monitoring and from 

literature on the research area (see below). The coral reef benthos consists of hard corals, soft corals, 

macroalgae, turf algae, coral rock, sediment, and surface sponges. All these compartments respire and 

all photosynthesize except for surface sponges (see discussion). Hard and soft corals feed 

heterotrophically on zooplankton, protozoa, and bacteria. Coral rock with its filter feeding 

community does the same, but also feeds on phytoplankton (Yahel et al. 2006). In addition, all these 

compartments can take up, and release, PDC and PPC. Sediment consists of the following sub-

compartments: sediment biota, sediment dissolved organic carbon (SDC) and sediment particulate 

organic carbon (SPC). The sediment biota both takes up and releases SPC and SDC. PPC settles out 

of the water column to the SPC, and SDC diffuses out to PDC (Chipman et al. 2012). There is also a 

direct flow from hard corals to SPC based on the release of mucus strings which quickly settle to the 

sediment (Mayer & Wild 2010, Naumann et al. 2012). All benthic compartments have an export flow 

which simulates removal of C by processes such as feeding by organisms not included in the model. 

The surface and cavity sponges respire and it was assumed for the sponges that any C fluxes into and 

out of the organisms are through assimilation. C which flows through the sponge without being 

assimilated was ignored. Both sponge compartments assimilate PPC, PDC, phytoplankton, protozoa, 

and bacteria. The release of sponge cells as part of the sponge loop was simulated as release to PPC 

for surface sponges. Cavity sponges release cells to cavity particulate organic carbon (CPC). It was 

assumed that CPC was separate from PPC and only available to detritivores not included in the 

model. Additionally, both surface and cavity sponges have an export flow to spongivores not 

included in the model.  

The LIM in each season consists of 104 flows, 16 compartments, and 133 equalities, or 

inequalities. All data introduced to the model was added as ranges (inequalities) to incorporate 

variability in measurements, or uncertainty of literature values, except for when a flow was 0. This 

occurred only for certain PPC or PDC uptake rates for the benthos when functional groups in certain 

seasons only showed release of either PPC or PDC, the uptake rate was then set to 0 (max. 4 flows 

per model). The models were solved for the flow values by a Monte-Carlo sampling method (Soetaert 

& van Oevelen 2009). Briefly, 10.000 food web structures were sequentially sampled resulting in 

10.000 estimates for each C flow. All estimates were different, but consistent with the matrix 

equations constructed from the food web topology and entered values. The mean and standard 

deviation of the sample collection for each flow as presented in the results section represent the best 
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estimate and a measure of its uncertainty respectively. The model unit for all flows is mmol C m-2 reef 

surface d-1; see below for respective conversions of rates to this unit. 

Data treatment for model input 

Benthic cover 

The two dimensional (2D) benthic cover percentages for the benthic compartments 

measured using the photo-quadrats were recalculated to three dimensional (3D) surface areas per 

planar m2 of reef surface. This was done by 3D/2D conversion factors which were calculated from 

two measurements of specimens used for the primary production incubations (Table 3.1). First, the 

3D surface area of specimens was determined using the same methodologies as used in the metabolic 

incubations. Second, vertical photographs were taken from all specimens under natural conditions. 

The vertical pictures were then digitally analyzed with Image J (Schneider et al. 2012) to quantify 

specimen 2D planar surface area. The 3D surface areas were divided by corresponding 2D planar 

surface areas to obtain conversion factors. The soft coral conversion was based on measurements of 

Xeniidae since this group dominated soft coral benthic cover. Branching hard coral conversion was 

based on the average of measurements on Acropora and Stylophora by Naumann et al. (2009). Their 

measurements, which were done on larger fragments and coral colonies than the fragments used here 

for the primary production incubations, better resembled the size of colonies in-situ, therefore 

resulting in more accurate conversion factors. Other hard coral and coral rock conversion factors 

were based on incubated specimens of the genus Goniastrea and coral rock respectively. The benthic 

cover analysis from the "U7" photographs included more categories than incubated. Conversion 

factors for these categories were derived from conversion factors that were available from direct 

measurements. Dead coral (no live tissue, but skeletal structure more clear than in coral rock) was 

assumed to be the average of branching and other corals. The macroalgae Caulerpa, growing in loose 

bundles, was directly measured for its 3D/2D conversion, while Lobophora and other macroalgae were 

assumed to adhere to their substrate. Their conversion was therefore based on an average of coral 

rock and dead coral. Rubble (small fragments of reef structure lying on sediment areas) was assumed 

to have the same conversion factor as coral rock. Carbonate sediment was given a conversion factor 

of 1. The turf algae conversion factor was calculated as the average of its underlying substrates (coral 

rock, rubble, dead coral, and sediment) weighed by the relative cover of turf algae on each of these 

substrates. All these conversions resulted in cm2 3D functional group surface per 2D planar m2 reef 

area (Table 3.1) which were then combined with the measured C fluxes from the incubations to 

produce values per group per m2 reef area (Appendix 2 - Tables 2-3). The 8 m3 water column was 

integrated to the planar reef surface. Surface sponges benthic cover was already measured three 
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dimensionally in the planar quadrat measurements and could be used directly while the 3D cavity 

sponge surface area was already available per 2D m2 reef area from Richter et al. (2001).  

Biomasses 

To specify the consistency of the C entering the reef from offshore, estimates were made in 

each season for biomasses of the water column compartments (Appendix 2 - Table 1). PDC and total 

PPC (including all plankton) concentrations were measured in the environmental monitoring (Table 

3.2). Phytoplankton biomass was based on Chl a concentration assuming µg C = 60 x µg Chl a (Yahel 

et al. 1998). Bacterioplankton biomass was based on measured heterotrophic bacteria abundances; 

assuming 20 femtogram C bacterial cell-1 (Lee & Fuhrman 1987). The protozoa compartment was 

assumed to consist of ciliates and heterotrophic flagellates. Ciliate biomass was taken as minimum 

and maximum values for Gulf of Aqaba surface waters from Claessens et al. (2008). Heterotrophic 

flagellate biomass was calculated from cell abundances ranging from 5 x 105 to 1 x 106 L-1 (Berninger 

& Wickham 2005), a flagellate cell volume of 15.09 µm3 (Borsheim and Bratbak 1987), and a mass of 

200 femtogram C µm3 flagellate cell-1 (Van Duyl et al. 1990). Zooplankton biomass in Jordanian 

fringing reefs ranges between 10 and 20 mg dry weight m-3 (Al-Najjar & El-Sherbiny 2008). C content 

was assumed to be 40% of dry weight (Parsons et al. 1984). The detrital component of total PPC 

(described in other sections as PPC) was determined by subtracting plankton biomasses from total 

PPC. Ranges were used for the biomasses based on seasonal mean ± SD of the weekly environmental 

monitoring to incorporate variation within each season. The fractions that pelagic compartments 

comprised of total water column C were used to constrain the consistency of C entering the reef 

(Appendix 2 - Table 1). In addition, a range of 2 - 12 mmol C m-2 d-1 PPC sedimentation to SPC was 

entered (Naumann et al. 2012), as well as a direct hard coral to SPC mucus string flow of 1.0 - 2.6 

mmol C m-2 d-1 (Mayer & Wild 2010, Naumann et al. 2012).  
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Table 3.1. Surface areas of dominant benthic functional groups. Benthic cover quantified from 25 1 m2 

photoquadrats per season (100 random points per photoquadrat). 3D/2D conversion factors used to 

recalculate benthic cover % to 3D cm2 for each functional group per planar 2D m2 reef area. Surface sponge 

surface area determined by in-situ 3D measurements with a quadrat placed every 10 m along 150 m line 

transect. Cavity sponge surface area based on Richter et al. (2001). NA = not applicable. 

 

Benthic cover (%) 3D/2D Surface area (cm2 m2 planar reef-1) 

 

Winter Spring Summer Fall 

 

Winter Spring Summer Fall 

Branching corals 2.71 2.99 2.72 3.97 7.58 2051 2265 2060 3007 

Other corals 12.17 12.32 12.94 13.96 2.89 3516 3558 3739 4035 

Xeniidae 32.04 28.61 17.96 19.21 6.45 20676 18461 11588 12395 

Other soft coral 0.98 2.19 1.85 2.30 6.45 635 1415 1195 1487 

Lobophora 0.49 0.86 0.86 0.86 3.88 191 332 335 335 

Caulerpa 0.50 2.72 0.24 0.12 1.84 92 500 45 23 

Other macroalgae 0.00 0.45 0.12 0.17 3.88 0 175 48 64 

Turf algae 3.33 3.28 3.38 3.30 2.77 921 910 936 914 

Coral Rock 13.96 13.16 18.84 17.56 2.53 3539 3337 4776 4451 

Sediment 28.21 25.22 31.10 30.16 1.00 2821 2522 3110 3016 

Surface sponges 

    

NA 400 400 400 400 

Total  94.39 91.80 90.02 91.62 

 

34842 33875 28231 28326 

Cavity sponges 

    

NA 8200 8200 8200 8200 

 

Metabolic rates 

The hourly benthic and water column Pn and R rates were extrapolated to daily fluxes by the 

following calculations. Pn and corresponding R were summed and then multiplied by average 

seasonal hours of daylight (Table 3.2) to calculate daily gross primary production (GPP). R was 

multiplied by 24 h to obtain daily community respiration (Rday). Net community production (NCP) 

was calculated by subtracting Rday from GPP. The PR ratio was finally calculated by dividing GPP by 

Rday. PPC and PDC uptake/release rates of all benthos compartments were extrapolated to d-1 by 

multiplying by 24 h while taking into account relative differences between day and night. Night PPC 

fluxes are 0.67 and 0.55 times those during the day for corals and algae respectively (Haas et al. 2010, 

Naumann et al. 2010). The algae factor was applied to all non-coral groups. It was assumed that PDC 

fluxes behaved similarly to PPC fluxes. All these extrapolations were performed on the original rates 

measured for all replicates incubated. Flows to and from compartments were constrained by the 
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minimum and maximum measured rates from the incubations to incorporate variation between 

replicate specimens or samples (Appendix 2 - Tables 2-3). For the PPC and PDC fluxes, this meant 

that groups might both take up and release C as some replicates showed net uptake while others 

showed release. Planktonic GPP resulted in negative values for some replicates in each season due to 

higher O2 consumption in Pn incubations than in R incubations. Because of this, minimum 

Planktonic GPP in all seasons was set to 0. Planktonic Rday was used as the sum of respiration by all 

planktonic compartments. Seasonal sponge Rday and PPC or CPC release rates were based on values 

measured during October. These values were assumed to be applicable to summer and fall, but were 

adjusted for winter and spring. The sponge genus Mycale was incubated in all seasons (chapter 6). 

Relative differences in summer-fall vs. winter and spring in Rday and PPC or CPC flows in those 

incubations were used to adjust the overall surface and cavity sponge flows to winter and spring 

conditions.  

Metabolic constraints 

Metabolic constraints were placed on compartments which flows were less defined by 

measurement data to regulate the balance between uptake (i.e. ingestion), assimilation, and 

production of biomass. Sediment, coral rock, zooplankton, and protozoa all were constrained by 

assimilation efficiencies: assimilation is 40 - 80% of uptake (Banse 1979, Hendriks 1999), and 

production efficiencies: production is 30 - 60% of assimilation (Calow 1977, Banse 1979, Hendriks 

1999). In addition, coral rock grazing on phytoplankton was constrained specifically (Yahel et al. 

2006). Rates in ng Chl a cm-2 rock surface h-1 for March and September - November were converted 

for winter-spring and summer-fall respectively to daily fluxes in the reef assuming the Chl a to C 

conversion mentioned above and the benthic cover of coral rock in the reef in each season. Total 

zooplankton uptake was constrained by an upper limit using the maximum biomass estimate and 

water temperature with the following formula: uptake = 0.49 x biomass x e0.0693T (Vezina & Platt 

1988). Zooplankton and protozoa grazing on other biota were constrained by grazing rates: 

zooplankton: 0.007 to 0.013 d-1, protozoa: 0.15 to 1.1 d-1 for bacteria and 0.15 to 1.3 d-1 for 

phytoplankton (Grossart & Simon 2002, Sommer et al. 2002). Protozoan production was also 

constrained by a growth rate of 0.15 d-1: range implemented in the models: 0.05 d-1* min biomass to 

0.25 d-1* max biomass (Sakka et al. 2000). In addition, zooplankton and protozoa excretion (excretion 

= uptake - assimilation) was constrained as 0.33 to 1 x Rday (Niquil et al. 1998). Bacterioplankton 

flows were constrained by production = 0.1 to 0.6 x uptake (del Giorgio & Cole 1998) and growth = 

0.15 to 1.3 d-1 x biomass (Grossart & Simon 2002, Sommer et al. 2002). Phytoplankton flows were 

constrained by Rday = 0.05 to 0.3 x GPP, and excretion = 0.05 to 0.5 x GPP (Niquil et al. 1998). 

Heterotrophic feeding by hard corals was constrained as 0.2 to 0.6 x Rday (Grottoli et al. 2006). The 

same constraint was placed on the soft corals, but heterotrophic feeding was only assumed for the 
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fraction not consisting of Xeniidae since this family has an almost completely autotrophic lifestyle 

(Schlichter et al. 1983). Sponge flows not directly measured were constrained by Rday and POC 

release data from incubations, as well as a C assimilation (PPC + PDC) to POC release efficiency of 

11 to 24% (de Goeij et al. 2013). 

Statistical analyses 

The first 1000 solutions sets of every season were analyzed using Primer-E v6 (Clarke & 

Gorley 2006) with PERMANOVA extension (Anderson 2001) for univariate distance-based 

permutational nonparametric analyses of variance (PERMANOVA). Solution sets were square root 

transformed, after which a Bray-Curtis similarity matrix was constructed. A PERMANOVA with 

Type III sums of squares was used with 999 permutations and residuals under a reduced model due 

to the size of the dataset. A main test and subsequent pair-wise tests were performed for the factor 

season assuming a significant difference at p < 0.05. The comparison between reduced solution sets 

was visualized with a multi-dimensional scaling plot (MDS). 

RESULTS  

The environmental monitoring revealed a clear separation between seasons in light, 

temperature, and inorganic nutrient concentrations (Table 3.2). Chl a concentrations were lower 

during low nutrient summer, while PDC concentrations were higher in that season.  

All seasonal models were solvable when allochthonous C was allowed to flow into the reef. 

However, when this inflow was turned off, the summer and fall models were no longer solvable. The 

models in those seasons required inflow of external organic C to balance their loss terms, while the 

winter and spring models could rely solely on internal GPP. Significant differences were found 

between all seasons overall, and between each two seasons separately for the reduced solution sets 

used in the PERMANOVA (Appendix 2 - Table 4). The MDS visualized a strong difference between 

the flow estimate collections of winter and spring vs. summer and fall. Additionally, summer and fall 

were more comparable to each other than winter and spring (Fig. 3.1).  
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Table 3.2. Seasonal measurements of environmental parameters in the research area. Temperature and 

irradiance values based on 1 min frequency measurements between 12:00 and 14:00 on all days encompassing 

each respective sampling period (n = 18-27 days). Inorganic nutrient, Chl a, PPC, and PDC concentrations 

based on weekly measurements in the four weeks encompassing each sampling period. Values are given as 

mean ± SD. Feb = February, Apr = April, Sep = September, Nov = November. PAR = photosynthetically 

active radiation. Nitrogen oxides = nitrate + nitrite concentrations. Chl a = chlorophyll a, PPC = pelagic 

particulate organic carbon, PDC = pelagic dissolved organic carbon. 

 Winter (Feb) Spring (Apr) Summer (Sep) Fall (Nov) 

Temperature (°C) 22.7 ± 0.2 23.0 ± 0.2 27.2 ± 0.3 25.3 ± 0.2 

PAR (µmol photons m-2 s-1) 147 ± 60 281 ± 61 320 ± 63 162 ± 63 

Hours of daylight 11.22 12.82 12.38 10.65 

Ammonium (μmol L-1) 0.32 ± 0.09 0.46 ± 0.07 0.11 ± 0.01 0.28 ± 0.12 

Phosphate (μmol L-1) 0.11 ± 0.01 0.10 ± 0.02 0.04 ± 0.02 0.04 ± 0.01 

Nitrogen oxides (μmol L-1) 0.71 ± 0.15 0.56 ± 0.12 0.06 ± 0.02 0.22 ± 0.23 

Chl a (μg L-1) 0.21 ± 0.03 0.21 ± 0.01 0.10 ± 0.01 0.19 ± 0.05 

PPC (μmol L-1) 6.16 ± 1.29 10.25 ± 2.95 7.96 ± 2.46 8.81 ± 0.98 

PDC (μmol L-1) 72.92 ± 5.21 71.95 ± 7.54 90.49 ± 1.03 86.24 ± 2.50 

 

Benthic cover  

The combination of planar benthic cover estimates and 3D/2D conversion factors resulted 

in a benthic cover dominated by soft corals (Table 3.1). Soft coral benthic cover declined from spring 

to summer, coinciding with an overall reduction in total 3D surface area per planar m2. The decline of 

soft coral cover led to an increase in coral rock as this substrate was uncovered. However, the lower 

3D/2D conversion factor of coral rock compared to soft corals resulted in the overall decline in 3D 

surface area. Macroalgae benthic cover peaked in spring, while turf algae cover was stable over the 

seasons.  
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Fig. 3.1. Multi-Dimensional Scaling plot of first 1000 solution sets of every season. Based on Bray-Curtis 

similarity matrix after solution sets were square root transformed. 

Model output 

The mean flow values returned by the four seasonal models cover five orders of magnitude 

(Fig. 3.2), the one exception being DOC uptake by macroalgae in spring (mean: 6.2 x 10-4 mmol C m-

2 d-1, not depicted in Fig. 3.2 and Appendix 2 - Fig 2). The largest flows in all seasons were cavity 

sponge DOC uptake, hard and soft coral GPP, and bacterioplankton DOC uptake, ranging from ca. 

40 to 540 mmol C m-2 d-1 (Fig. 3.2, Appendix 2 - Fig. 1-4 ). The smallest flows in all seasons were 

grazing by zooplankton and soft corals, as well as organic C uptake and release by macroalgae: all 

flows < 1 mmol C m-2 d-1. The standard deviations of the flows are a measure of how well they are 

constrained. Overall, the flows in each season appear well constrained, especially so for the larger and 

therefore more important flows (Appendix 2 - Fig. 1-4). The coefficient of variation (CoV, i.e. 

standard deviation normalized to its corresponding mean) for the flows in each season also reveals 

good constraint. CoV < 0.5 for 51 to 56% of the flows and < 0.7 for 73 to 75% of the flows over the 

seasons. Total reef GPP was highest in spring, while Rday was highest in summer and fall (Fig. 3.3). 

Mean NCP was positive in winter and spring, close to 0 in summer, and negative in fall. 

Correspondingly, mean PR ratio was 1.3 and 1.4 for winter and spring respectively. Summer mean PR 

was 1.0 and fall mean PR was 0.83, indicating that the reef C balance was more heterotrophic in 

summer and fall than winter and spring. This is also visible in the relative balance between GPP and 

the required inflow of external organic C (Fig. 3.3; Table 3.3). GPP/inflow was 1.3 and 1.5 in winter 

and spring, but declined strongly to 0.4 and 0.3 in summer and fall. Organic C inflow was dominated 

by DOC; it constituted 88 - 92% of total inflow (Table 3.3).   
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Fig. 3.2. Means of all flows in the seasonal food web models. Ordered for flows in the summer model 

(high to low). cpc = cavity particulate organic carbon. csp = cavity sponges, dic = dissolved organic carbon, exp 

= export, hco = hard corals, in = import, mac = macroalgae, pba = pelagic bacteria, pdc = pelagic dissolved 

organic carbon, phy = phytoplankton, ppc = pelagic particulate organic carbon, pro = pelagic protozoa, roc = 

coral rock, sbi = sediment biota, sco = soft corals, sdc = sediment dissolved organic carbon, spc = sediment 

particulate organic carbon, ssp = surface sponges, tur = turf algae, zoo = zooplankton.  
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Hard and soft corals were the dominant contributors to GPP (Fig. 3.4). Their combined 

contribution ranged from 59% in summer to 71% in spring. Planktonic GPP was relatively stable and 

contributed between 11 and 14% to total GPP. The benthos was most important for Rday during 

winter (26, 30, 43% contribution to Rday for sponges, water column, and benthos respectively). 

However, sponge respiration increased strongly from spring to summer and fall, causing higher 

overall Rday, and a relative contribution of sponges up to 48%, while benthos contribution declined 

to 31% (Fig. 3.5). Combined surface and cavity sponge DOC uptake is one of the largest processes in 

the reef, outranking system GPP in summer and fall (Fig. 3.6). Sponge DOC uptake was also up to 

more than 10-fold higher than either benthic or pelagic DOC uptake in summer and fall (Fig. 3.7).  

 

 

 

 

 

Fig. 3.3. Metabolic parameters of the coral reef community over the seasons. Error bars indicate ± SD. 

GPP = gross primary production, Rday = community respiration, NCP = net community production, PR = 

gross primary production to community respiration ratio. GPP, Rday, and NCP are related to the left y-axis, PR 

ratio is related to the right y-axis.   
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Table 3.3. Inflow of C into the model over the seasons. Composition of inflow was constrained by water 

column biomasses from environmental monitoring and literature (Appendix 2 - Table 1). Water column 

integrated to reef surface:  all values in mmol C m-2 d-1, values given as mean ± SD.    

 

 

Winter Spring Summer Fall 

Protozoa 0.84 ± 0.18 1.05 ± 0.20 2.74 ± 0.53 2.92 ± 0.57 

Zooplankton 1.00 ± 0.15 1.26 ± 0.17 3.13 ± 0.52 3.34 ± 0.54 

Bacteria 1.30 ± 0.06 1.68 ± 0.13 3.93 ± 0.09 4.17 ± 0.10 

Phytoplankton 2.06 ± 0.10 2.71 ± 0.17 2.98 ± 0.16 6.02 ± 0.70 

PPC 7.17 ± 0.64 19.23 ± 2.34 37.55 ± 6.18 40.82 ± 1.14 

PDC 146.08 ± 5.23 183.73 ± 8.29 548.50 ± 12.74 556.41 ± 12.87 

Total 158.44 ± 5.70 209.66 ± 9.63 598.85 ± 14.01 613.67 ± 14.24 

 

 

 

 

Fig. 3.4. Gross primary production (GPP) over the seasons for the photosynthetic functional groups. 
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Fig. 3.5. Community respiration (Rday) for the main coral reef compartments over the seasons. Sponge 

= surface sponges and cavity sponges.  
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Fig. 3.6. Summed carbon flows of the cavity and surface sponges over the seasons, values given as 

mean ± SD. DOC = dissolved organic carbon, POC = particulate organic carbon, Resp = respiration.  

 

 

 

Fig. 3.7. Net dissolved organic carbon (DOC) uptake by the main coral reef compartments over the 

seasons. Sponges = surface sponges + cavity sponges.   
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Table 3.4. Export of C from model compartments over the seasons. Export flows simulate processes not 

included in the model. All values in mmol C m-2 d-1, values given as mean ± SD.     

 

DISCUSSION 

Modeled community C cycling  

The annual ranges of mean GPP, Rday, NCP, and PR are comparable to values found for 

other reefs (Table 3.5). In general, metabolic rates were more comparable to other reef slopes than 

reef crests and flats. Those shallower reef areas receive substantially more light, and may have 

increased rugosity covered by primary producers, leading to increased levels of GPP and 

corresponding Rday (Long et al. 2013). NCP and PR show that the reef community is net autotrophic 

in winter and spring, relatively balanced in summer, and net heterotrophic in fall. This is similar to 

measurements from a reef flat across the Gulf of Aqaba in Eilat, Israel (Silverman et al. 2007). GPP 

was highest in spring when light levels and inorganic nutrients were relatively high. The reduced 

nutrient concentrations in summer may have limited GPP while light was readily available (Larned 

1998). Rday was highest in summer and fall, coinciding with highest temperatures. Metabolism of 

organisms in general increases with increasing temperature (Gillooly et al. 2001). These parameters 

together with the autotrophic and heterotrophic character of the community during the winter-spring 

and summer-fall seasons respectively indicate that community metabolism in this reef is strongly 

affected by seasonal changes in environmental conditions. 

 

Winter Spring Summer Fall 

Zooplankton 1.02 ± 0.87 1.19 ± 0.96 1.75 ± 1.46 1.70 ± 1.39 

Macroalgae 1.26 ± 0.59 8.38 ± 3.90 1.82 ± 0.59 0.62 ± 0.42 

Turf algae 2.55 ± 0.72 4.25 ± 1.14 6.95 ± 1.09 2.49 ± 0.51 

Sediment 2.57 ± 1.83 3.00 ± 1.68 8.42 ± 3.12 4.14 ± 2.07 

Coral rock 27.84 ± 8.41 21.42 ± 9.97 49.88 ± 11.83 49.09 ± 15.02 

Hard corals 32.66 ± 17.71 55.26 ± 21.94 44.58 ± 27.67 41.40 ± 25.37 

Soft corals 48.59 ± 25.65 92.12 ± 19.26 21.87 ± 13.79 26.10 ± 14.93 

Surface sponges 0.70 ± 0.49 0.90 ± 0.62 3.74 ± 2.33 3.81 ± 2.36 

Cavity sponges 73.23 ± 13.82 86.27 ± 21.50 398.63 ± 28.26 380.23 ± 32.18 
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Table 3.5. Comparison of metabolic parameters with literature. All values in mmol C m-2 d-1 and given as 

means, or ranges. GPP = gross primary production, Rday = community respiration, NCP = net community 

production, PR = gross primary production to community respiration ratio. An O2:C factor of 1 was assumed 

when O2 fluxes were transformed to C fluxes (Gattuso et al. 1996; Carpenter & Williams 2007). 

 

Site GPP Rday NCP PR Reference 

Aqaba, Jordan, Reef slope, seasonal range  200 - 308 154 - 248 -41 - 87 0.8 - 1.4 This study 

Eilat, Israel, Reef crest, winter 260 180 80 1.4 Silverman et al. (2007) 

Eilat, Israel, Reef crest, summer 400 390 8 1.0 Silverman et al. (2007) 

French Frigate Shoals, Reef flat, winter 356 213 142 1.67 Atkinson and Grigg (1984) 

French Frigate shoals, Reef flat, summer 710 405 305 1.75 Atkinson and Grigg (1984) 

Kaneohe bay, Hawaii, Reef flat 400 465 -65 0.86 Falter et al. (2008) 

Florida Keys, Reef crest 944 566 378 1.7 Long et al. (2013) 

Florida Keys, Reef slope 193 199 -6 0.97 Long et al. (2013) 

Colombian Caribbean, Reef slope, seasonal 

range 

250 - 305 136 - 147 103 - 169 1.7 - 2.2 Eidens et al. (2014) 

Various Caribbean/Pacific, Reef slope 167 - 583 158 - 250 -83 - 425 0.5 - 5.5 Hatcher (1988) 

 

Organic matter release by corals has been identified as an essential process in coral reef 

dynamics since this matter becomes available to other reef organisms and functions as a particle trap 

for planktonic matter, which is then brought into the reef C and nutrient cycles (Wild et al. 2004, 

Mayer & Wild 2010). Total annual mean net organic C release by hard and soft corals (2.7 and 7.3 

mmol C m-2 d-1 respectively) and their relation to total benthic GPP (1.1 and 3.1% respectively) are 

comparable to values previously estimated for the studied reef (Naumann et al. 2012). The organic 

matter flows through the sponge compartments were based solely on POC release measured during 

incubations and a (POC+DOCin) / POCout turnover efficiency of 11-24% (de Goeij et al. 2013). 

Model estimations of sponge-related flows will therefore be compared to measurements from 

literature. The sponge POC release rates were lower, but comparable to those found for three sponge 

genera from other locations when assuming cavity sponge biomass of 1.76 mol C m-2 planar reef 

(Table 3.6; Richter et al. 2001, Alexander et al. 2014). DOC uptake rates during summer and fall were 

comparable to measurements in the Caribbean (de Goeij et al. 2008b). Temperatures during those 

seasons were similar to those in the Caribbean research site on the island of Curacao (Alexander et al. 

2014). The contribution of DOC to total TOC (TOC = POC + DOC) uptake was comparable to 

measurements of another sponge from the Gulf of Aqaba (Yahel et al. 2003). Summer and fall 

respiration rates measured for the sponges were also comparable to those measured by de Goeij et al. 

(2008b). Richter et al. (2001) estimated cavity community phytoplankton grazing in the studied reef. 

Seasonal mean phytoplankton grazing by cavity sponges as estimated by the model was lower, but did 

not include the remaining cavity community of filter feeders. All these data indicate that the flows 
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estimated by the model fall within natural ranges measured in other sponges. Rates of DOC to POC 

transformation by the sponge loop were comparable to those estimated for Caribbean and Indo-

Pacific reefs (de Goeij et al. 2013). Pelagic microbial DOC uptake and subsequent C availability to 

higher trophic levels through the microbial loop were also comparable to estimates from that study, 

and the sponge loop activity was up to tenfold higher than that of the microbial loop (Table 3.7).  

 

Table 3.6. Comparison of sponge flows to literature. All values given as mmol C m-2 d-1 and ranges or mean 

± SD. DOC = dissolved organic carbon, POC = particulate organic carbon, TOC = total organic carbon = 

DOC + POC. 

 This study Literature Location Reference 

DOC uptake 118 - 535 645 ± 123 Curacao de Goeij et al. (2008b) 

DOC/TOC uptake 85 - 94% >90% Eilat, Israel Yahel et al. (2003) 

POC production 15 - 65 44 - 316 Curacao Alexander et al. (2014) 

Phytoplankton uptake 6 - 13 74 ± 4 Aqaba, Jordan Richter et al. (2001) 

Respiration 41 - 118 137 ± 37 Curacao de Goeij et al. (2008b) 

 

Table 3.7. Comparison of carbon cycling processes over the seasons as estimated by the models. All 

values in mmol C m-2 d-1 and given as mean ± SD. DOC = dissolved organic carbon, POC = particulate 

organic carbon, micr. = microbial. Pelagic micr. available = carbon from the microbial loop available to higher 

trophic levels = DOC uptake by bacteria and protozoa - excretion and respiration. The external POC trapping 

estimate is based on an 8-fold increase in carbon content by released coral mucus (Wild et al. 2004), it was 

calculated from coral POC release, not produced by the model.  

 

 

 

 

 

 

 

 

 

Winter Spring Summer Fall 

GPP 200 ± 30 308 ± 28 250 ± 32 203 ± 30 

Rday 154 ± 15 221 ± 24 248 ± 29 245 ± 32 

Sponge DOC uptake 166 ± 5 209 ± 9 590 ± 14 602 ± 15 

Sponge net POC release 15 ± 0 20 ± 1 64 ± 1 64 ± 1 

Pelagic micr. DOC uptake 44 ± 3 48 ± 10 46 ± 6 46 ± 6 

Pelagic micr. available 3 ± 1 3 ± 1 3 ± 2 3 ± 2 

Benthic heterotrophic feeding 17 ± 3 19 ± 3 33 ± 2 32 ± 2 

Coral POC release 8 ± 3 5 ± 5 14 ± 5 15 ± 8 

External POC trapping  61 ± 23 43 ± 27 116 ± 42 118 ± 60 
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Data quality 

Food web flows estimated by a model are only as good as the data that were entered into it. 

Many of the data entered into the model were based on metabolic incubations performed ex-situ. 

Incubations such as these will always have an effect on measured rates since it is impossible to fully 

simulate in-situ conditions. Care was taken to create in-situ like conditions by using flow through 

water which was pumped straight from the coral reef at the correct water depth and screens to mimic 

in-situ light conditions. Photosynthesis and respiration incubations were kept to a minimum duration 

to prevent hyper- and hypo-oxic conditions. These incubations were stirred to minimize buildup of a 

boundary layer around specimens which may influence metabolic rates (Dennison & Barnes 1988, 

Shashar et al. 1993). Organic matter incubations (except for sponges) were not stirred to prevent 

water currents from modifying the structural composition through e.g. POC dissolution to DOC. 

However, organic matter release is stimulated by water movement (Wild et al. 2012); organic matter 

flow rates given here should therefore be interpreted as conservative estimates. The midday 

incubations for Pn were performed under the highest and most stable light conditions of the day as 

measured during the environmental monitoring. It is however possible that photosynthetic organisms 

experience photoinhibition during midday when peak light levels can damage their photosynthetic 

apparatus (Long et al. 1994, Franklin et al. 1996). However, coral reef primary producers in the Gulf 

of Aqaba were not found to show signs of photoinhibition, even at light levels far exceeding those 

found in this study (Levy et al. 2004, Schneider et al. 2009). The use of night time R as an estimate to 

calculate GPP is common practice (Falter et al. 2008, Long et al. 2013). However, R of organisms and 

substrates during daylight can be substantially higher than at night (Al-Horani et al. 2003, Glud 2008). 

Values given for GPP may therefore be underestimated. As incubations did not cover the entire daily 

cycle, rates were extrapolated to d-1. Especially GPP may be overestimated by this since highest 

photosynthetic rates are reached during midday, assuming no photoinhibition (Levy et al. 2004, 

Schneider et al. 2009). The extrapolation of incubation rates to planar m2 reef area may introduce 

substantial errors. However, metabolic rates for the reef community are within the range of those 

found in coral reefs using in-situ whole community methods as further discussed below, see Table 3.5 

(e.g. Hatcher 1988, Silverman et al. 2007). Sponges can have photosynthetic symbionts (Erwin & 

Thacker 2007). However, the dominant surface sponge in the study site displayed minimal levels of 

photosynthesis (chapter 6), and surface sponge 3D benthic surface area per planar m2 reef area was 

0.01 % of total 3D surface area. The potential surface sponge contribution to GPP was therefore 

assumed to be minimal and sponge photosynthesis was ignored. Uncertainty due to extrapolations 

and simulated in-situ conditions during measurements was introduced into the model by constraining 

flows where possible only to their minimum and maximum measured values.  

The LIM as used in this study was solved under the assumption of steady state for each 

season. This assumption may be in error for a highly active community such as a coral reef. However, 
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coral reefs generally display a balanced PR ratio, indicating that net growth of the system as a whole is 

minimal (Hatcher 1988). PR in the Aqaba reef varied over the seasons, but fluctuated around unity 

and was comparable to other reef communities. Additionally, Vezina and Pahlow (2003) investigated 

the effect of the steady state assumption in LIMs on simulated food webs which were in steady and 

transient state. They found that the steady state assumption did not significantly alter the accuracy of 

the ecosystem flow reconstructions.  

The modeled reef community received allochthonous C in every season ranging from 158 to 

614 mmol C m-2 d-1. The mean water flow speed over the seasons was very stable at ca. 5 cm s-1 (van 

Hoytema unpublished data). This results in a water flow speed of 4.3 km d-1. Total water moving 

through the model's 8 m3 water column was therefore 34.6 x 103 m3 d-1. Total water column C ranged 

from 71.8 to 95 mmol C m-3, resulting in a potential C flow of 2.4 x 106 to 3.3 x 106 mmol C m-2 d-1. 

Offshore waters most likely have reduced total organic C due to a lack of benthic activity, but the 

massive amounts of water moving through the reef per day indicate that the inflows of C as modeled 

are possible, and the vast majority of C flowing through would not be used by the model.  

Ecological implications 

The community of this relatively high latitude reef revealed a clear response to the strong 

seasonality in environmental factors. The metabolic balance shifted from an autotrophic period 

during relatively high nutrient availability to a heterotrophic period during strongly oligotrophic 

conditions due to stratification, and increased temperatures. Concurrently, the amount of DOC taken 

up by the sponge loop increased more than 3-fold between these periods, reaching levels 10-fold 

higher than the pelagic microbial loop. This primarily cavity sponge-mediated pathway therefore may 

play an essential role in fulfilling this seasonally increased energy demand of the community. Trapping 

planktonic particles may increase the C concentration of coral released POM up to eightfold (Wild et 

al. 2004). This factor which was measured in the Great Barrier Reef and corrected for compaction of 

the aggregates as applied there, is unavailable for the studied reef. However, comparable gross 

enrichment of POM was found for the studied reef by Mayer and Wild (2010). A particle trapping 

capacity of seven times its own C content with subsequent introduction of that allochthonous C into 

the reef C cycle would place this pathway among the top processes bringing C into the reef 

community (Table 3.7). Potentially increased particle trapping rates in summer and fall as estimated in 

Table 3.7 may additionally support the coral reef community during more heterotrophic seasons.  

The cavities that riddle the coral reef framework have been described as the largest but least 

researched habitat in coral reefs (Richter et al. 2001). The high sponge DOC uptake values should be 

seen as conservative since the assumed cavity sponge benthic cover per planar reef m2 was an average 

of several Gulf of Aqaba reefs; mean cavity surface area was higher for the studied reef specifically 

(Richter et al. 2001). In addition, cavities in the reef structure extended deeper than could be 
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measured by the experimental setup of Richter et al. (2001), indicating that rates of processes 

mediated by cavity-dwelling organisms may be higher per planar reef surface area than presently 

assumed. Further research into these cavities is warranted since the sponges and their microbial 

symbionts that inhabit them may additionally play a presently unquantified role in the nitrogen cycle 

which could provide essential nutrients to the wider reef community in its oligotrophic surroundings 

(Wilkinson & Fay 1979, Webster & Taylor 2012).   
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ABSTRACT 

Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and 

fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). 

By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and 

nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral 

mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been 

demonstrated. Here we show the transfer of coral mucus into the bulk tissue and phospholipid fatty 

acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, 

demonstrating a direct trophic link between corals and reef sponges. Further, 21 – 40% of the mucus 

carbon (C) and 32 – 39% of the nitrogen (N) assimilated by the sponges was subsequently released as 

detritus, confirming a sponge loop on Indo-Pacific warm-water and Atlantic cold-water coral reefs. 

Preferential uptake of mucus N by M. fistulifera resulted in enhanced N recycling, indicating the 

importance of the sponge loop in nutrient retention on oligotrophic warm-water reefs. Higher mucus 

C uptake by H. coriacea suggests a key role of the sponge loop in energy conservation on cold-water 

reefs. 
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INTRODUCTION 

Scleractinian corals act as ecosystem engineers on warm-water (WW) and cold-water (CW) 

coral reefs by forming the complex 3D-reef framework and driving reef biogeochemical cycles 

(Freiwald et al. 2004, Wild et al. 2011). While WW coral reefs thrive in the warm, shallow and 

oligotrophic waters of the tropics, CW reefs are globally distributed along continental shelves, slopes 

and seamounts in the cold, deep, nutrient-rich waters below the photic zone (Roberts et al. 2006). On 

shallow WW reefs, corals form endosymbiotic associations with photosynthetic dinoflagellates 

(zooxanthellae), enabling them to contribute to high benthic autotrophic productivity (Muscatine et 

al. 1984, Hatcher 1990). Deep-sea CW corals by contrast lack zooxanthellae and instead rely on 

heterotrophic feeding to meet their energetic requirements (Mortensen 2001, Naumann et al. 2011, 

Mueller et al. 2014b). Inorganic nutrient availability may limit the autotrophic primary productivity of 

WW coral reefs in oligotrophic waters (Hatcher 1990). Conversely, the metabolism of CW reefs relies 

on secondary production and is therefore limited by the quality and quantity of external organic 

carbon (C) input (Roberts et al. 2006). Consequently, CW reefs are typically restricted to oceanic 

regions with high surface primary production and enhanced vertical transport due to elevated 

currents (Duineveld et al. 2004, Mienis et al. 2007, Davies et al. 2009). Despite these pronounced 

environmental differences (Appendix 1 - Table 1) both WW and CW reefs are considered hotspots of 

marine biodiversity and biological activity (Roberts et al. 2006). The mechanisms by which they 

manage inorganic nutrient (WW) and organic carbon (CW) limitation are under debate, but efficient 

pathways of energy and nutrient cycling are essential for maintaining the high productivity and 

biodiversity of these contrasting reef ecosystems. Here, we propose that a trophic link between two 

reef ecosystem engineers, corals and sponges, contributes to sustaining WW and CW reef ecosystems 

through the recycling of coral mucus, a key organic resource on shallow and deep-sea coral reefs 

(Wild et al. 2004a, Wild et al. 2008, Wild et al. 2009).  

Scleractinian corals secrete a surface mucus layer that is continuously released into the water 

column in particulate and dissolved forms, thereby substantially contributing to reef organic matter 

pools (Johannes 1967, Wild et al. 2004a, Wild et al. 2008). Despite environmental and metabolic 

differences, WW and CW corals release mucus at comparable rates (Wild et al. 2008, Naumann et al. 

2010a, Naumann et al. 2014) and devote substantial energy into mucus production; up to 40% of the 

net C fixed by WW corals (Crossland et al. 1980, Naumann et al. 2011, Tremblay et al. 2012). 

Composed of a complex mixture of carbohydrates, lipids, and proteins (Ducklow & Mitchell 1979, 

Meikle et al. 1988, Wild et al. 2010), coral mucus is an energy-rich substrate that acts as an important 

energy and nutrient carrier on coral reefs (Wild et al. 2004a). The particulate fraction of released 

mucus functions as a particle trap (Wild et al. 2004a, Mayer & Wild 2010) facilitating the formation of 

aggregates that can act as a substrate for various reef organisms (Bythell & Wild 2011). However, the 

majority of released mucus (56 – 80%) dissolves in surrounding reef waters (Wild et al. 2004a, Wild et 
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al. 2008), making it largely unavailable for most reef fauna. Research on mucus recycling has primarily 

focused on microbial degradation in the water column and reef sediments where it rapidly stimulates 

bacterial growth and respiration enabling remineralization and recycling via the microbial loop (Wild 

et al. 2004b, Wild et al. 2009, Maier et al. 2011). 

Recently, the so-called “sponge loop” has been identified as an alternative pathway for 

transferring dissolved organic matter (DOM) to higher trophic levels on Caribbean WW reefs (de 

Goeij et al. 2013). Despite largely being considered particle feeders (Reiswig 1971, Pile et al. 1997) a 

number of sponges have been found to feed on DOM, with DOM accounting for up to 90% of the 

sponge diet (Yahel et al. 2003, de Goeij et al. 2008b, van Duyl et al. 2008, Ribes et al. 2012, Mueller et 

al. 2014a). Sponges subsequently transform a substantial fraction of this DOM into particulate 

organic matter (POM) via detritus production, effectively turning over up to 35% of their body C per 

day (de Goeij et al. 2008a, de Goeij et al. 2009, Alexander et al. 2014). Sponge detritus is fed on by a 

variety of motile and filter-feeding detritivores, enabling the energy bound in DOM that is otherwise 

unavailable to most reef heterotrophs to be utilized by higher trophic levels (de Goeij et al. 2013). In 

the Caribbean, DOM turnover through sponges amounts to the same order of magnitude as the total 

gross primary production rates of the entire reef ecosystem (de Goeij et al. 2013). The sponge loop 

therefore plays a major role in organic matter cycling on Caribbean reefs, but has not yet been 

investigated in other oceanic regions. Moreover, de Goeij et al. (2013) were only able to show sponge 

uptake of laboratory-produced diatom DOM, which may not be representative of natural reef DOM. 

Since coral mucus contributes to reef DOM pools, the sponge loop may play a role in its recycling, 

but uptake of coral mucus by reef sponges has not been demonstrated.  

Here we hypothesize that a direct trophic link between corals and sponges enables the 

recycling of coral mucus via the sponge loop on WW and CW reefs. Stable isotope tracer experiments 

using flow-through and incubation set-ups were conducted to investigate the uptake of naturally 

produced coral mucus from 13C- and 15N-labeled corals (WW: Fungiidae; CW: Lophelia pertusa) by the 

sponges Mycale fistulifera (WW) and Hymedesmia coriacea (CW). Additional incubations were conducted 

to demonstrate the transfer of coral mucus into the sponge-produced detritus. Assimilation of coral 

mucus C into sponge phospholipid-derived fatty acids (PLFAs) was measured to further examine the 

processing of coral mucus by the sponges and evaluate the potential role of sponge-associated 

bacteria in its uptake. 
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MATERIALS AND METHODS 

Sample collection and maintenance. 

 WW corals and sponges were collected from the Marine Science Station (MSS) reef, Aqaba, 

Jordan (29°27’ N, 34°58’ E) located in the northern Gulf of Aqaba, Red Sea. Free-living Fungiidae 

corals from the genera Fungia, Ctenactis, and Herpolitha were collected from the reef between 8 – 20 m 

water depth by SCUBA. These genera can be removed from the reef without causing physical 

damage, are locally abundant, and produce large quantities of mucus (Naumann et al. 2010b). The 

encrusting sponge Mycale fistulifera was selected for experimentation as it is locally abundant and is 

found in close proximity to living corals. Fragments of M. fistulifera were collected between 8 – 12 m 

water depth by chiseling fragments of dead coral skeleton overgrown by the sponge. Corals and 

sponges were immediately transferred to the aquarium facilities at the MSS without air exposure. 

Sponge specimens were trimmed to approximately the same size (0.08 ± 0.04 g DW sponge-1), 

cleaned of epibionts, and attached to ceramic tiles with coral glue. Corals and sponges were 

maintained in flow-through aquaria supplied with seawater pumped directly from the reef at 10 m 

water depth at a rate of ~10 L min-1.  Natural light levels were adjusted to in situ levels at ~15 m 

depth (~120 μmol photons m-2 s-1 PAR) using layers of black mesh and parallel in situ and aquarium 

measurements of photosynthetically active radiation (PAR μmol photons m-2 s-1, wavelength 400 - 

700 nm) using a quantum sensor (Model LI-192SA; Li-Cor). Sponges were acclimated for 1 week 

prior to the start of experiments and only healthy individuals that were actively pumping were used. 

Corals were acclimated for at least 72 h. 

The CW coral Lophelia pertusa and cold-water encrusting sponge Hymedesmia coriacea were 

collected from Tisler Reef, located at 70 – 155 m depth in the Skagerrak at the border between 

Norway and Sweden (58°59’ N 10°58’ E). L. pertusa is the main reef-building coral on Tisler Reef, 

while the sponge H. coriacea is locally abundant and commonly found in close contact with L. pertusa 

(Mortensen 2001). Specimens were collected from a depth of 110 m using the remotely operated 

vehicle Sperre Subfighter 7500 DC and transported in cooling boxes filled with cold seawater           

(7 – 8°C) within a few hours to the laboratory facilities at the Sven Lovén Centre in Tjärnö, Sweden. 

Sponge specimens were trimmed to approximately the same size (0.04 ± 0.02 g DW sponge-1) and 

specimens were cleared of epibionts. All specimens were maintained in flow-through aquaria (~20 L) 

with sand-filtered water pumped from 45 m depth from the Koster-fjord at a rate of ~1 L min-1. 

Aquaria were kept in a dark climate-controlled room at 7°C corresponding to in situ temperatures on 

Tisler reef that range from 6 – 9°C. Coral specimens were acclimated for up to 6 weeks, while sponge 

specimens were acclimated for 1 week prior to experimentation. 
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Coral labeling.  

WW corals were enriched with 13C and 15N by addition of 13C-NaHCO3 and 15N-NaNO3 

label compounds (Cambridge Isotope Laboratories, 99% 13C and 98% 15N), which are taken up and 

transferred to the coral host via photosynthetic endosymbionts (i.e. zooxanthellae) (Naumann et al. 

2010b). For 8 days, each morning at 08:00 the inflows to the coral aquaria were stopped and            

36 mg L-1 NaH13CO3 and 1 mg L-1 Na15NO3 were added to each aquaria. Aquaria pumps maintained 

water circulation and air exchange for the 8 h labeling period and the flow-through was resumed 

over-night. Water temperature was maintained with a flow-through water bath. Ambient water 

temperature over the day ranged from 26.7 – 27.5 °C and temperatures in coral aquaria were always 

within ± 1 °C of ambient. 

CW corals were enriched with 13C and 15N by repeated feeding with 13C and 15N-enriched 

diatoms, a food source readily assimilated by L. pertusa (Mueller et al. 2014b). Isotopically labeled 

diatoms were produced by injecting a sterile inoculum of the diatom Thalassiosira pseudonana into an 

f/2 culture medium composed of 80% 13C-NaHCO3 and 70% 15N-NaNO3 (Cambridge Isotope 

Laboratories, 99% 13C, 99% 15N). The diatoms were axenically (i.e. bacteria-free) cultured for three 

weeks at a 12 h light-dark cycle and then concentrated by centrifugation at 450 g, rinsed three times 

with 0.2 µm filtered seawater to remove residual label, and stored frozen until use. Corals were 

incubated in 10 L incubations chambers and fed the enriched diatoms at a concentration of             

1.6 mg C L-1 d-1 and 0.3 mg N L-1 d-1 for three weeks. Water in the incubation chambers was 

exchanged every 12 h to prevent accumulation of waste products. 

Transfer of coral mucus to sponges.  

For the WW experiment, the transfer of coral mucus to M. fistulifera was investigated using 6 

two-tiered flow-through aquaria set-ups, each consisting of a paired upper and lower aquarium 

connected via flow-through. The six upper aquaria were supplied with fresh flowing seawater 

pumped directly from the reef (10 m water depth) at ~10 L min-1. Water from the upper aquaria 

flowed into the lower aquaria below. Isotopically labeled fungiid corals (10 individuals per aquaria) 

were maintained in three of the upper aquaria, while the additional three upper aquaria without 

labeled corals served as controls. The lower aquaria each contained 6 replicate sponges (n = 18 per 

treatment). Thus, the sponges were continuously supplied with water exposed to the labeled corals. 

Artificial aquaria lights provided the corals with ~120 μmol quanta m-2 s-1 PAR and aquaria pumps 

(~150 L h-1) enhanced water-flow. To investigate the incorporation of mucus into sponge tissue over 

time, three of the six replicate sponges from each of tank (n = 9) were collected after three days 

exposure to the labeled corals and the remaining three sponges were collected after five days 

exposure (n = 9). On days three and five the collected sponges were removed from the labeling set-
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up and rinsed in label-free flowing seawater for 10 min.  Each sponge specimen was then transferred 

to individual 2 L incubation chambers filled with fresh label-free seawater, and incubated for three 

hours to determine the production of sponge detritus. At the end of the incubation, the sponges were 

removed and the incubation water (~ 1.8 L) was filtered onto pre-combusted (450°C, 4 h) GF/F 

filters to collect the produced particulate organic matter (POM). Filters were then dried at 40 °C for 

48 h. Sponge tissue was removed from the attached substrate with a sterile scalpel blade and stored 

frozen in pre-combusted glass vials at -80°C until further processing. On days one and five, three 

corals per tank were removed from the experimental set-up, rinsed in label-free seawater and air 

exposed for mucus production (2 min). The collected mucus was frozen at -80°C for δ13C and δ15N 

determination. 

For the CW experiment, the transfer of coral mucus to H. coriacea was investigated using a 

set-up of paired cylindrical incubation chambers filled with GF/F filtered water pumped from 45 m 

in the Koster-fjord. Isotopically labeled L. pertusa fragments (75 g DW coral) were placed in the first 

chamber while the second chamber contained the sponges (n = 3). The coral chamber was connected 

to the sponge chamber by a set of two tubes and water was re-circulated between the two chambers 

at a rate of 200 ml min-1 via a pump system. The coral chamber was equipped with an additional 

pump (150 L h-1) to enhance water circulation. Every 24 h half the water in the set-up was replaced 

with fresh filtered seawater to prevent the accumulation of metabolic waste products. Control 

sponges (n = 6) were incubated in parallel but without labeled corals. At the beginning and end of the 

experiment, water samples were taken from the coral chamber and filtered onto pre-combusted 

GF/F filters for mucus δ13C and δ15N determination. After four days, the sponge fragments were 

transferred to individual 1 L incubation chambers containing fresh filtered (GF/F) label-free seawater 

and incubated for 24 h to determine the production of sponge detritus. At the end of the incubation 

the sponge fragments were removed and the water was filtered onto pre-combusted GF/F filters to 

collect the produced POM. All POM filters, coral tissue, and sponge tissue samples were frozen at -

20°C until further processing. 

Sample treatment and analysis.  

WW and CW sponge tissues were lyophilized. Dried sponge tissue samples were weighed 

and homogenized by mortar and pestle. Subsamples of sponge tissue and dried POM filters were 

weighed and transferred to silver boats for bulk δ13C and δ15N isotope analysis. Samples for δ13C 

were decalcified by acidification with HCl for analysis of the organic carbon content. Isotopic ratios 

and C/N content were measured simultaneously using a THERMO NA 2500 elemental analyzer 

coupled to a THERMO/Finnigan MAT Delta plus isotope ratio mass spectrometer (IRMS) via a 

THERMO/Finnigan Conflo III- interface (WW) and a Thermo Electron Flash EA 1112 analyzer 

(EA) coupled to a Delta V IRMS (CW).  
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Carbon and nitrogen stable isotope ratios are expressed in delta notation as: δ13C or δ15N 

(‰) = (Rsample / Rref - 1) × 1000, where Rsample is the ratio of heavy/light isotope (13C/12C or 15N/14N) 

in the sample and Rref is the heavy/light isotope ratio of the reference material, the Vienna Pee Dee 

Belemnite standard for C (Rref = 0.01118) and atmospheric nitrogen for N (Rref = 0.00368 N). The 

atomic % (atm %) heavy isotope in the sample (13C/[13C  + 12C] or 15N/[15N + 14N]) was calculated as 

Fsample = Rsample/ Rsample + 1. The excess (above background) atm % (E) was calculated as the 

difference between the F of the samples and the background atm % in a control sample: E = Fsample – 

Fbackground. To correct for the differing enrichment of the WW and CW coral mucus, the excess 

incorporation was divided by the atm% of the coral mucus supplied to the sponges. Stable isotope 

data were then expressed as the total elemental uptake and reported as µmol Cmucus mmol Csponge
-1 and 

µmol Nmucus mmol Nsponge
-1 (mean ± SD). Specific enrichment or Δδ13C and Δδ15N values were 

calculated by subtracting the δ13C and δ15N values of the control sponges from the values of the 

sponges exposed to labeled corals to present the increase in δ13C and δ15N of the labeled sponges 

relative to the controls.  

Phospholipid fatty acid analysis.  

Phospholipid-derived fatty acids (PLFAs) of the sponge samples (~0.018 g) were extracted 

according to Boschker et al. (Boschker et al. 1999). Total fatty acids were extracted using a modified 

Bligh Dyer method and then separated on a silicic-acid column (Merck Kieselgel 60) to obtain the 

PLFAs, which were then derivatized by mild alkaline transmethylation to generate fatty acid methyl 

esters (FAMEs). Concentration and C isotopic composition of individual FAMEs were determined 

with a gas-chromatograph combustion interface isotope ratio mass spectrometer (GC-c-IRMS). 

Identification of individual FAMEs was based on the comparison of retention times with known 

standards using columns with different polarity and use of GC-MS, if needed.  

Data analysis.  

For the WW data (n = 9), statistical differences were tested using analysis of variance 

(ANOVA). To confirm assumptions of normally distributed and homogenous residuals, qqplots and 

scatter plots of residuals against fitted values were visually inspected, and data were log-transformed 

where necessary. Due to the low sample size of the CW data (n = 3) statistical differences were tested 

with the Mann-Whitney U test. All statistical tests were carried out in R version 3.1.1 

(R Development Core Team, 2014). 
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RESULTS 

Coral mucus labeling.  

The WW and CW corals produced and released mucus that was enriched in both 13C and 15N 

(Fig. 4.1). The WW coral mucus was enriched by 913 ± 250‰ for δ13C and 3518 ± 1360‰ for δ15N, 

while the CW mucus was enriched by 492 ± 212‰ for δ13C and 3219 ± 536‰ for δ15N (Fig 4.1). 

Data are presented as mean ± SD. The C:N ratio of the WW mucus (12.7 ± 1.1) was twice as for 

high as the CW mucus (6.1 ± 0.4) (ANOVA: F1,19 = 196.5, p < 0.001, reflecting the higher C but 

lower N availability on the WW reef. 

Incorporation of coral mucus C and N into sponge tissue. 

 Both M. fistulifera and H. coriacea displayed enrichment of δ13C and δ15N in their tissue, 

indicating uptake of coral mucus (Fig. 4.1). On average M. fistulifera assimilated 3.6 ± 1.7 µmol Cmucus 

mmol Csponge
-1 d-1 and 3.7 ± 1.2 µmol Nmucus mmol Nsponge

-1 d-1. The CW sponge H. coriacea, 

incorporated coral mucus at lower but comparable rates of 1.7 ± 1.6 µmol Cmucus mmol Csponge
-1 d-1 

and 2.0 ± 2.0 µmol Nmucus mmol Nsponge
-1 d-1, although the variability was higher, likely due to the 

lower sample size (n = 3; Fig. 4.2). The WW sponge M. fistulifera, exhibited an increase in δ13C and 

δ15N values compared to background values (i.e. the Δδ13C and Δδ15N) from day 3 to day 5, 

indicating the accumulation of mucus-derived C and N over time (Fig. 4.1). However, this increase 

was significant only for mucus N (F1,16 = 7.3, p = 0.02). There was no significant difference in the 

actual incorporation rate of mucus-derived C and N by M. fistulifera on day 3 compared to day 5 

indicating that the sponge accumulated mucus C and N at a constant daily rate (Fig. 4.2).  

Despite being supplied with coral mucus with a high C:N ratio of 12.7 ± 1.1, the WW 

sponge, M. fistulifera, assimilated coral mucus into its tissue at a lower C:N ratio of 5.5 ± 0.7 (Fig. 4.3). 

This was also significantly lower than the C:N ratio of the bulk tissue of M. fistulifera (6.2 ± 0.3) (F1,31 

= 9.6, p = 0.004), suggesting a higher demand for N by the WW sponge. However, it should be noted 

that potential respiration of mucus C was not quantified here. By contrast, the CW sponge H. coriacea 

had a lower tissue C:N ratio (5.4 ± 0.2) than M. fistulifera but assimilated coral mucus at a higher C:N 

ratio of 6.4 ± 0.3 (Fig. 4.3). On average this was similar to or higher than the C:N ratio of the coral 

mucus supplied (6.1 ± 0.4), suggesting a relatively higher preference for C incorporation in H. coriacea 

compared to M. fistulifera.  
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Figure 4.1. Stable isotope enrichment of 13C and 15N in coral mucus, sponge tissue and sponge 

detritus. Values are presented as the mean above-background isotope tracer incorporation Δδ13C (‰) (dark 

bars) and Δδ15N (‰) (light bars) in: a) coral mucus, sponge tissue, and sponge detritus from the warm-water 

sponge Mycale fistulifera; with tissue and detritus sampled after 3 and 5 days exposure to 13C and 15N labeled 

warm-water coral mucus (n = 9), and b) coral mucus, sponge tissue, and sponge detritus from the cold-water 

sponge Hymedesmia coriacea sampled after 4 days exposure to 13C and 15N labeled cold-water coral mucus (n = 3). 

Data presented as mean  SD. 
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Figure 4.2. Processing of coral mucus C and N by the warm-water sponge Mycale fistulifera and the 

cold-water sponge Hymedesmia coriacea. Data presented as daily incorporation rates (mean  SD) of coral 

mucus C and N assimilated into sponge tissue (mol Cmucus or Nmucus mmol Csponge or Nsponge
-1 d-1), and daily 

release rates of coral mucus C and N in sponge detritus (mol Cmucus or Nmucus mmol Csponge or Nsponge
-1 d-1). 

Rates shown for M. fistulifera after 3 and 5 days exposure to labeled warm-water coral mucus (n = 9) and for H. 

coriacea after 4 days exposure to labeled cold-water coral mucus (n = 3). 
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Figure 4.3. Recycling of coral mucus carbon (C) and coral mucus nitrogen (N) in a) the warm-water sponge loop b) the cold-water sponge loop. Numbers inside 

red boxes indicate the C:N ratio of coral mucus C and N that is transferred at each step of the sponge loop. Solid lines indicate trophic transfer of coral mucus confirmed in the 

current study and dotted lines indicate trophic transfers inferred from literature. Downward red arrow indicates overall higher N retention by the warm-water sponge loop (a) 

and higher C retention by the cold-water sponge loop (b). Photograph in (a) © Malik Naumann and (b) © Solvin Zankl. 
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Transfer of coral mucus C and N into sponge detritus.  

The transfer of coral mucus C and N through sponges into sponge detritus is shown by the 

release of 13C- and 15N-enriched detritus after exposure to labeled coral mucus (Fig. 4.1). The WW 

sponge, M. fistulifera transformed coral mucus C and N into detritus at rates of 0.9 ± 0.5 µmol Cmucus 

mmol Csponge
-1 d-1 and 1.5 ± 0.8 µmol Nmucus mmol Nsponge

-1 d-1, with no significant differences 

between day 3 and day 5 (Fig. 4.2). The CW sponge H. coriacea, released coral mucus C and N as 

detritus at rates of 0.6 ± 0.4 µmol Cmucus mmol Csponge
-1 d-1 and 0.4 ± 0.3 µmol Nmucus mmol Nsponge

-1 

d-1 (Fig. 4.2). While M. fistulifera released mucus-derived N at a significantly higher rate than C (F1,16  = 

13.3, p = 0.002), there was no significant difference in the release of mucus-derived C and N by H. 

coriacea.  

Both sponges produced detritus with a lower C:N ratio of mucus-derived C and N compared 

to tissue values (Fig. 4.3), suggesting differential processing of the C and N. Similar to the tissue 

results, however, the C:N ratio of mucus-derived C and N in the detritus of M. fistulifera (3.4  0.8) 

was significantly lower compared to H. coriacea (5.0  0.1; F1,19 
 = 4.9, p = 0.04). Thus at each step, M. 

fistulifera preferentially took up and transferred mucus N, while H. coriacea recycled comparatively 

more mucus C (Fig. 4.3).   

Overall, the WW sponge, M. fistulifera released as detritus 21  11% of the mucus C and 32  

10 % of the mucus N it assimilated, turning over a significantly higher percentage of mucus N (F1,33 

= 4.548, p = 0.04). The CW sponge H. coriacea transformed a similar percentage of assimilated mucus 

N (39  10%) into detritus as M. fistulifera, but a higher amount of mucus C (40  29%). However, 

this difference was not significant and when one high outlying value was removed from the CW data, 

mucus C turnover by the CW sponge was even more comparable at 23  0.5%.  

Sponge versus associated bacterial specific incorporation of coral mucus C. 

 In addition to bulk uptake, the WW and CW sponges assimilated coral mucus C into 

phospholipid derived fatty acids (PLFAs), demonstrating active processing of coral mucus (Fig. 4.4). 

Incorporation into PLFAs was the fate of 1.8  0.3% of the total mucus C assimilated by the WW 

sponge M. fistulifera. There was no significant difference in the daily PLFA incorporation rates on day 

3 and day 5 (0.07  0.03 µmol Cmucus mmol Csponge
-1 d-1 and 0.06  0.02 µmol Cmucus mmol Csponge

-1 d-1, 

respectively). The CW sponge H. coriacea transferred a similar percentage (1.9  0.4%) of the total 

assimilated mucus C into PLFAs at a comparable rate of 0.05  0.03 µmol C mmol Csponge
-1 d-1. 

In both species, mucus-derived C could be traced into PLFAs identified as bacterial, coral, 

algal or sponge biomarkers (Fig. 4.4). In addition to known sponge PLFAs, such as C26:2(5,9), both 
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species contained a number of unidentified long chain (> C:24) PLFAs characteristic of 

demosponges (Koopmans et al. 2015), that were therefore considered sponge biomarkers (Fig. 4.4). 

In the WW sponge, M. fistulifera, the amount of mucus-derived C traced into these sponge biomarkers 

increased from 6% on day 3 to 11% on day 5, although this increase was not significant (Fig. 4.5). A 

similar percentage (10%) was traced into sponge biomarkers in the CW sponge, H. coriacea (Fig. 4.5). 

Typical bacterial PLFAs, including iso-, anteiso-, methyl-branched, and odd numbered branching 

PLFAs (Boschker & Middelburg 2002; Fig. 4.3), accounted for only 2% of the total coral mucus C 

assimilated into PLFAs by M. fistulifera (Fig. 4.5), but 24% for H. coriacea (Fig. 4.5), suggesting higher 

uptake of coral mucus by sponge-associated bacteria in the CW sponge. Additionally, mucus C was 

traced into PLFAs likely originating from the mucus-producing coral hosts, including typical coral 

biomarkers C20:3ω6, C20:4ω6 and C22:4ω6 (Papina et al. 2003, Treignier et al. 2008, Mueller et al. 

2014b), but also including common algal biomarkers C18:4ω3, C20:5ω3, and C22:6ω3 (Fig. 4.4). For 

the WW coral, these algal biomarkers likely originated from their symbiotic zooxanthellae (Papina et 

al. 2003, Treignier et al. 2008), as the zooxanthellae were responsible for the photosynthetic uptake of 

13C -NaHCO3 and 15N -NaNO3, which are then transferred to their coral host. The heterotrophic CW 

corals were initially fed with 13C- and 15N-labeled diatoms, explaining the presence of algal 

biomarkers. PLFAs of coral-host origin accounted for 42 - 46% of the coral-derived C traced into the 

PLFA fraction in the WW sponge, M. fistulifera, higher than the 22% for the CW sponge H. coriacea 

(Fig. 5). In M. fistulifera, typical coral PLFAs also accounted for 10 – 17% of the total PLFAs in the 

natural unlabeled control sponges, suggesting that coral mucus could be a key source of dietary 

PLFAs in M. fistulifera. In H. coriacea, the majority (80 ± 12%) of the PLFAs in the unlabeled control 

sponges were identified as sponge biomarkers resulting from de novo synthesis and modification of 

dietary PLFAs by the sponge. However, coral biomarkers were also present and accounted for 4 ± 

3% of the total PLFA content. 

 

 



CHAPTER 4 
 

125 
  

 

 

 

 

Figure 4.4. Distribution of coral mucus carbon (C) in sponge phospholipid fatty acids (PLFAs). Data 

presented as % of total coral mucus C assimilated into PLFAs (mean  SD) in a) the warm-water sponge Mycale 

fistulifera, after 3 and 5 days exposure to labeled warm-water coral mucus (n = 9), and b) the cold-water sponge 

Hymedesmia coriacea, after 4 days exposure to labeled cold-water coral mucus (n = 3).  
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Figure 5.4 Percent distribution of coral mucus carbon (C) assimilation into bacterial, sponge, coral, 

and algal phospholipid fatty acids (PLFAs). Data shown for warm-water sponge M. fistulifera after 3 and 5 

days exposure to labeled coral mucus (n = 9), and for the cold-water sponge H. coriacea after 4 days exposure to 

labeled coral mucus (n = 3).  

DISCUSSION 

By demonstrating the uptake of coral mucus by warm- and cold-water reef sponges and its 

subsequent transformation into sponge detritus, we provide the first evidence that the sponge loop 

recently identified in the Caribbean (de Goeij et al. 2013) also functions within shallow coastal reefs 

of other oceanic regions (i.e. Red Sea, Indo-Pacific) and even in cold-water reefs of the deep sea. 

Despite pronounced differences in the environmental characteristics of warm-water (WW) and cold-

water (CW) reef ecosystems, both sponges assimilated and transformed coral mucus C and N into 

particulate detritus at remarkably similar rates. Previously, the sponge loop has only been 

demonstrated using laboratory-produced diatom DOM. Therefore, we not only extend the spatial 

validity of the sponge loop, but also demonstrate its functioning using a resource naturally produced 

on the reef: coral mucus. Importantly, this elucidates a direct trophic link between two fundamental 

reef ecosystem engineers, scleractinian corals and sponges, on both shallow WW and deep-sea CW 

reefs, hinting at an alternative mechanism for coral mucus recycling in reef ecosystems.  
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The similar rate of assimilation of coral mucus into the bulk tissue of the two sponges 

indicates that WW and CW sponges have a similar capacity for mucus uptake. Based on natural stable 

isotope analysis, coral mucus has been suspected to be a major component (48 – 73%) of the diet of 

Caribbean cavity sponges (van Duyl et al. 2011), but our findings provide unequivocal and 

quantitative evidence for the uptake and assimilation of coral mucus by sponges originating from 

shallow coastal and deep-sea habitats. Furthermore, the assimilation of coral mucus C into sponge 

phospholipid fatty acids (PLFAs) synthesized de novo or by modification of coral-derived PLFAs 

demonstrates that sponges actively process coral mucus similarly to algal and bacterial food sources, 

confirming its nutritional value (de Goeij et al. 2008a, Koopmans et al. 2011). Given the dominant 

coral cover and high release rates of coral mucus on Tisler Reef (Norwegian Shelf) (Wild et al. 2009) 

and in the Red Sea (Naumann et al. 2010a), as well as the close proximity of the two sponge species 

to corals in their respective habitats (Mortensen 2001, L. Rix pers. obs.), coral mucus likely represents 

a readily available food source for the two investigated sponges. Considering the extremely 

oligotrophic conditions in the Red Sea (Silverman et al. 2007) and the spatially and temporally 

variable input of organic matter to CW reefs (Duineveld et al. 2004, Wagner et al. 2011), the ability to 

utilize coral mucus as a reef-produced resource may be an advantageous strategy for reef sponges. 

However, it remains to be determined how much coral mucus contributes to the overall diet of the 

two investigated sponges.  

In addition to generating an alternative food source for sponges, this trophic link between 

corals and sponges also has ecosystem level implications. As coral mucus represents an important 

resource and energy carrier on WW and CW coral reefs, its uptake and recycling by the sponge loop 

provides a key ecosystem function by preventing the loss of the energy and nutrients bound in coral 

mucus (Wild et al. 2004a, Wild et al. 2011). Previously, bacteria were believed to be the primary 

consumers of coral mucus on WW and CW reefs, contributing to its rapid degradation and 

remineralization in the water column and reef sediments (Wild et al. 2004b, Wild et al. 2009). In 

combination with microbial degradation processes, uptake by sponges may ensure high retention of 

coral mucus C and N within WW and CW reef ecosystems. Further, since corals release up 40% of 

their net photosynthetically fixed C (Crossland et al. 1980, Tremblay et al. 2012), the uptake and 

transformation of coral mucus by sponges may be a key mechanism by which the energy and 

nutrients harvested by corals can be transferred to other reef fauna – first to sponges and 

subsequently to detritivores via the production of sponge detritus. Both the WW and CW sponge 

released a substantial fraction of assimilated coral mucus C and N: 21% C and 32% N for M. fistulifera 

and 40% C and 39% N for H. coriacea. These rates are comparable to detritus conversion rates of 

Caribbean sponges that released 11 – 24% (C) and 18 – 36% (N) of assimilated diatom DOM (de 

Goeij et al. 2013), demonstrating that release as detritus is the fate of a substantial fraction of organic 

matter assimilated by sponges in both WW and CW reef ecosystems and may represent a significant 

flow of energy and nutrients. In the Caribbean, recycling via the sponge loop approaches reef gross 
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primary production, exceeding recycling by the microbial loop by one order of magnitude (de Goeij 

et al. 2013). Mucus release rates by WW and CW corals are comparable (Wild et al. 2008, Naumann et 

al. 2010a, Naumann et al. 2014) and sponges are also highly abundant on CW reefs (Mortensen et al. 

1995, Van Soest & Lavaleye 2005). Given the similar coral mucus uptake and transformation rates by 

the two sponges, the sponge loop may be similarly important for the recycling of energy and nutrients 

on CW reefs.  

Although their overall mucus uptake and transformation rates were similar, there were 

differences in the specific processing of coral mucus C and N between the two studied sponges.  The 

WW sponge M. fistulifera seemed to exhibit preferential incorporation of N as compared with its CW 

counterpart. M. fistulifera assimilated coral mucus C and N at a lower (i.e. more N) ratio (5.5) than H. 

coriacea (6.4), even though the Red Sea mucus C:N ratio was twice as high (12.7) as for the mucus 

provided to the CW sponge (6.1; Fig. 4.3). As a consequence, the WW sponge effectively reduced the 

C:N ratio of coral mucus by half compared to the original mucus ratio. This strongly suggests a high 

demand for N in the WW sponge through selective uptake of N from its mucus food source (Fig. 

4.3). In contrast, H. coriacea assimilated coral mucus C and N at a C:N ratio similar to or higher than 

the supplied coral mucus, which could indicate a relatively higher demand for C in the CW sponge 

(Fig. 4.3). This may be explained by the differences of the respective sponge environments (Table 

S1). Low N availability on oligotrophic WW reefs, such as in the Red Sea (Silverman et al. 2007, 

Bednarz et al. 2015, Chapter 6), likely renders efficient nutrient uptake a key strategy for WW 

sponges. CW reefs, by contrast, are located in nutrient-rich waters and receive organic matter rich in 

N, but the input of organic C is limited (Kiriakoulakis et al. 2007, Wagner et al. 2011), possibly 

necessitating efficient C uptake. The preferential uptake of either coral mucus C or N was also 

translated into the detritus produced by the two sponges, with the WW sponge producing detritus 

displaying a significantly lower ratio of mucus-derived C and N (ie. relatively enriched in mucus N) 

compared to the detritus of the CW sponge (Fig. 4.3). This enrichment of coral mucus N at each step 

of the WW sponge loop resulted in particularly efficient retention of mucus N, while the CW sponge 

loop conserved comparatively more mucus C (Fig. 4.3). Overall this suggests the key function of the 

sponge loop may differ in the two contrasting reef ecosystems. On oligotrophic WW reefs, the 

retention of coral mucus N may contribute to the efficient N cycling necessary for sustaining high 

benthic primary productivity. By contrast, retention of organic C (energy) may be the key functional 

role of the sponge loop on C-limited deep-sea CW reef ecosystems.  

Interestingly, both species produced detritus that was relatively enriched in coral mucus N 

compared to the tissue incorporation (Fig. 4.3), a phenomenon also observed for Caribbean sponges 

fed with diatom DOM (de Goeij et al. 2013). This suggests a common decoupling of C and N 

processing by marine sponges. Consequently, sponges not only transform mucus C and N into 

detrital C and N, enabling its transfer to reef fauna otherwise unable to directly utilize it, but they also 
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modify the relative availability of this C and N for higher trophic levels thereby providing a high 

quality food source.  

Sponges host diverse microbial populations and can be classified into high microbial 

abundance (HMA) and low microbial abundance (LMA) species based on the number of associated 

microbes in their tissue (Gloeckner et al. 2014). Since bacteria are the main consumers of DOM in 

the ocean, it has been suspected that sponge-associated bacteria play an important role in DOM 

uptake by sponges with higher uptake predicted for HMA compared to LMA sponges (Maldonado et 

al. 2012, Ribes et al. 2012). Higher incorporation into bacterial PLFAs in H. coriacea (24%) compared 

to M. fistulifera (2%) suggests bacteria were more active in coral mucus uptake in the CW sponge. 

However, both sponge species belong to the order Poecilosclerida, which appears to exclusively 

consist of LMA species (Gloeckner et al. 2014). There was also no significant difference in the overall 

coral mucus incorporation between the two sponges, and mucus-derived C was also incorporated 

into sponge-specific PLFAs (5 − 10%). This suggests the involvement of sponge cells in coral mucus 

uptake, particularly in M. fistulifera where associated bacteria appeared to play a minor role. Moreover, 

high DOM uptake, also into sponge-specific PLFAs, is known for other LMA species (de Goeij et al. 

2008a, de Goeij et al. 2008b, Mueller et al. 2014a) reviewed by Pawlik et al. (Pawlik et al. 2015). This 

suggests DOM uptake is not limited to HMA sponges. Alternatively, the variation in specific PLFA 

incorporation may point to compositional differences in the mucus of L. pertusa (CW source) and 

fungiid corals (WW source). Several studies have found differences in the lipid, protein, and 

carbohydrate composition of mucus between coral species (Ducklow & Mitchell 1979, Meikle et al. 

1988, Wild et al. 2010). L. pertusa produces mucus with high DOC:POC ratios (Wild et al. 2008) and a 

high percentage of labile monosaccharides (Wild et al. 2010), which may promote high uptake by 

sponge-associated bacteria. Fungiid corals release mucus with a larger particulate fraction (Naumann 

et al. 2010a), high lipid content (Ducklow & Mitchell 1979, Meikle et al. 1988), and a higher 

percentage of carbohydrates with low microbial degradability (Wild et al. 2010), possibly favouring 

sponge cell uptake. Higher lipid content could explain the higher proportion of mucus-derived C 

traced into PLFAs of coral origin in M. fistulifera (42 - 44%) compared to H. coriacea (22%). Sponges 

and their associated microbes may, therefore, be able to utilize a wider range of coral mucus 

components than free-living bacteria, further contributing to high retention of coral mucus on the 

reef (de Goeij et al. 2008a). 

Detritus production by sponges is a phenomenon that has been observed in tropical (Ribes 

et al. 1999, Alexander et al. 2014) and deep-sea sponges (Witte et al. 1997); but the mechanisms by 

which sponges produce detritus are not fully understood. Rapid cell-turnover and shedding is 

believed to be a key source of sponge detritus, although excretory byproducts are also a component 

(de Goeij et al. 2009, Alexander et al. 2014, Maldonado 2015). On Caribbean reefs, sponge detritus is 

rapidly utilized by a variety of filter-feeding and motile detritivores (de Goeij et al. 2013). On CW 

coral reefs, the consumption of sponge detritus has not been established, but detritivores are an 
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important component of CW benthic communities (Mortensen et al. 1995, Duineveld et al. 2007). 

Furthermore, trophic models indicate that detritus can account for 51% of the total C ingested by 

CW reef communities (van Oevelen et al. 2009), suggesting sponge detritus may be widely utilized by 

CW reef fauna.  

While the transfer of coral mucus C and N to higher trophic levels via sponge detritus 

remains to be confirmed, our findings strongly suggest coral mucus contributes to fueling a sponge 

loop in both WW and CW reef ecosystems. This trophic pathway has the potential to substantially 

impact our understanding of food web dynamics and biogeochemical cycles on reefs. A recent study 

suggests that phase-shifts from coral to macroalgal dominance will impact fish productivity on WW 

reefs by altering DOM availability for the sponge loop (Silveira et al. 2015), demonstrating the 

potential for the sponge loop to impact the entire coral reef food web. Given the potential 

importance of the sponge loop to ecosystem function on WW and CW reefs, future studies should 

quantify the magnitude of recycling by the sponge loop to evaluate its role in trophodynamics and 

biogeochemical cycling in these two complex reef ecosystems. In this context, our present findings 

suggest that due to differences in ambient C and N availability on WW and CW reefs, the functional 

role of the sponge loop may differ in the two ecosystems, with N cycling in WW and C cycling in CW 

reefs disproportionately contributing to ecosystem functioning.  
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ABSTRACT 

Sponges exhibit complex nitrogen (N) cycling, but many aspects of the related N fluxes are 

poorly understood. The recent discovery of massive cell shedding and detritus production in coral 

reef sponges suggests that in addition to dissolved inorganic N (DIN), particulate organic N (PON) 

may play a significant role in the sponge N budget. However, to date PON production by sponges 

has not been quantified. Therefore, we investigated N cycling mediated by six species of common 

Red Sea sponges using incubation experiments to measure fluxes of DIN and PON as well as the 

generation of new N via N2 fixation. Our results confirm DIN as the largest efflux of N mediated by 

coral reef sponges (120 ± 47 µmol cm-3 h-1; mean ± SD), but for the first time highlight their 

substantial production of PON (52 ± 23 µmol cm-3 h-1), which accounted for approximately 30 ± 3% 

of the total N released by the six sponges. Upscaling these rates to the community scale resulted in 

efflux rates of 19.6 ± 7.7 µmol DIN m-2 reef h-1 and 8.5 ± 1.3 µmol PON m-2 reef h-1, representing a 

substantial flux of N. In contrast, only two of the investigated sponge species displayed significant N2 

fixation activity with rates 3 – 4 orders of magnitude lower than for the other N fluxes. Generation of 

new N by N2 fixation accounted for only 0.006 ± 0.005 µmol N m-2 reef h-1, indicating it cannot 

balance the N loss via PON and DIN release or contribute substantially to N cycling at the 

ecosystem scale. Dietary stable isotope analysis suggests the imbalance in the sponge N budget due to 

net PON and DIN release may be resolved by the uptake of DON.  
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INTRODUCTION 

Sponges represent the oldest extant animal phylum (Wörheide et al. 2012), but despite being 

considered the simplest metazoans, sponges exhibit very complex nitrogen (N) cycling that enables 

them to contribute to N fluxes in the ecosystems they inhabit. Sponges possess a remarkable capacity 

for filtering seawater, pumping up to 50 000 times their own volume in a day (Reiswig 1974, Weisz et 

al. 2008) while effectively removing small particulate organic matter (POM), in particular 

picoplankton in the size range of 0.2 – 2.0 µm (Pile et al. 1997, Ribes et al. 1999). The 

remineralization of this ingested POM leads to the release of dissolved inorganic nitrogen (DIN) 

compounds, particularly ammonium (NH4
+), and therefore sponges can act as a net source of DIN 

(Southwell et al. 2008b, Perea-Blazquez et al. 2012).  

Sponges also form symbiotic associations with diverse communities of microbes (Schmitt et 

al. 2012, Simister et al. 2012) that provide them with a varied suite of additional metabolic N 

pathways (Taylor et al. 2007). Based on their microbial densities, sponges can be classified as either 

high-microbial abundance (HMA) or low-microbial abundance (LMA) species, with HMA sponges 

hosting more dense and diverse communities than LMA sponges (Hentschel et al. 2006, Gloeckner et 

al. 2014). To date, all microbial-mediated biogeochemical N cycling pathways occurring in the marine 

environment have also been reported to occur in sponges including nitrification (Corredor et al. 1988, 

Diaz & Ward 1997, Southwell et al. 2008a), denitrification (Schläppy et al. 2010), ANAMMOX 

(Hoffmann et al. 2009), and N2 fixation (Wilkinson & Fay 1979). Nitrification, the two-step oxidation 

of ammonium to nitrite and nitrate, appears to be particularly common in HMA sponges, and is 

responsible for the high rates of nitrate released by many sponges in temperate and tropical coral reef 

habitats (Diaz & Ward 1997, Jimenez & Ribes 2007, Southwell et al. 2008a, Fiore et al. 2013a). Only a 

few studies have measured denitrification or ANNAMOX in sponges (Hoffmann et al. 2009, 

Schläppy et al. 2010), but such competing assimilatory and dissimilatory N pathways are suspected to 

account for the variation in DIN fluxes observed for some sponges that enable them to act as both a 

source and sink for DIN (Fiore et al. 2013a). In addition to recycling N, sponges can generate new 

bioavailable N via dinitrogen (N2) fixation. Many sponges are known to host microbes capable of 

fixing N2 (Taylor et al. 2007, Mohamed et al. 2008, Fiore et al. 2015), suggesting this process may be 

widespread. However, measurements of N2 fixation rates for sponges remain scarce (Wilkinson & 

Fay 1979, Shashar et al. 1994, Shieh & Lin 1994, Wilkinson et al. 1999).  

In addition to transforming inorganic nutrients, it has recently been demonstrated that 

sponges also effectively transform organic matter by taking up DOM and producing POM as sponge 

detritus via the so-called sponge loop (de Goeij et al. 2013). Sponge detritus is still poorly 

characterized but is believed to originate largely from the rapid turnover and shedding of cells 

recently discovered in many tropical and temperate sponges (de Goeij et al. 2009, Alexander et al. 

2014, Maldonado 2015). Detritus production may represent a potential new sponge N flux, but so far 
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detrital PON production by sponges has not been quantified, and therefore its role in sponge N 

cycling is unknown. Understanding N cycling in sponges is important as they have the capacity to 

substantially influence the availability of N in the habitats where they are abundant. The contribution 

of sponges to the biogeochemical cycling of N may be particularly important within oligotrophic 

environments such as tropical coral reefs where low concentrations of N make it a key limiting 

nutrient for production processes. Next to scleractinian corals, sponges are the second most 

abundant benthic functional group on many coral reefs, and indeed, coral reef sponges are known to 

release substantial quantities of DIN (Corredor et al. 1988, Diaz & Ward 1997, Fiore et al. 2013a), 

reaching fluxes of up to 640 ± 130 µmol m-2 reef h-1 (Southwell et al. 2008b). 

Despite the fact that sponges are widely acknowledged as significant players in N 

biogeochemical cycling, more studies have focused on characterizing sponge microbial communities 

and identifying the microbes potentially involved in mediating specific N metabolic pathways (Taylor 

et al. 2007, Mohamed et al. 2008, Lopez-Legentil et al. 2010, Mohamed et al. 2010, Fiore et al. 2013b, 

Zhang et al. 2014, Fiore et al. 2015). By contrast, fewer studies have actually attempted to quantify 

sponge-mediated N fluxes (Jimenez & Ribes 2007, Schläppy et al. 2010, Perea-Blazquez et al. 2012, 

Ribes et al. 2012), particularly for coral reef sponges (Corredor et al. 1988, Diaz & Ward 1997, 

Southwell et al. 2008b, Fiore et al. 2013a) where all studies have focused on Caribbean sponges. In 

additional to measuring N fluxes, stable isotope analysis is a useful tool that has been used extensively 

in coral reef and other marine ecosystems to investigate trophic relationships (Thurber 2007, Topcu 

et al. 2010, Freeman & Thacker 2011, van Duyl et al. 2011), and biogeochemical N processes 

(Southwell 2007, Weisz et al. 2007, Mohamed et al. 2008) in marine sponges.  

The objectives of this study were first to quantify and compare DIN and PON flux rates in 

six species of common Red Sea sponges and measure their generation of new N via N2 fixation. We 

then combined these physiological rates with sponge biomass data for a Red Sea benthic reef 

community, in order to estimate the total rates of the respective N fluxes by the entire benthic 

sponge community and to evaluate their importance at the ecosystem scale. Finally, 13C and 15N stable 

isotope analysis was conducted to provide additional insight to the dominant N sources for the 

different sponges and examine differences in N metabolism between the different sponge species.  

MATERIALS AND METHODS 

Study site and sponge benthic cover 

This study was conducted in the northern Gulf of Aqaba at the Marine Science Station 

(MSS) Aqaba, Jordan (29°27’ N, 34°58’ E) during November 2013. Sampling was carried out on the 1 

km long fringing reef in front of the MSS, and all experimental work was carried out in the MSS 
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laboratories. As determined by replicated line point intercept transects, the benthic reef community 

was dominated by hard and soft corals (58.1 ± 13.8%). Percent sponge cover was determined using 

quadrat surveys. Six 50 m transects were laid out at the sampling site at 10 m water depth. Every 10 m 

along each transect a 0.25 m2 quadrat was laid out (n = 36 total). All sponges found inside the quadrat 

were counted and their dimensions measured using a tape measure. Sponge surface area and volume 

were then determined using geometric formulas.  

Organism collection and maintenance 

Six species of common reef sponges were collected for the incubation experiments: 

Amphimedon chloros, Callyspongia (Euplacella) densa, Chondrilla sacciformis, Hemimycale arabica, Mycale fistulifera 

and Negombata magnifica. Tissue samples for all species were deposited at the Naturalis Biodiversity 

Center, RMNH.POR.9146. These six species accounted for ~70% of the sponge cover at 10 m water 

depth. H. arabica, M. fistulifera, and N. magnifica exhibit low densities of associated microbes (Gillor et 

al. 2000, Kötter 2002) and belong to the Poecilosclerida, an order of exclusively LMA sponges 

(Gloeckner et al. 2014). C. sacciformis contains high densities of microbes in its tissues (Kötter 2002). 

The microbial abundances of A. chloros and C. densa have not been quantified but other species of 

these genera are LMA (Gloeckner et al. 2014). Sponge specimens were collected from the reef 

between 10 – 15 m water depth by SCUBA and immediately transferred without air exposure to the 

MSS aquarium facilities. Encrusting sponges were collected by chiselling small fragments from the 

reef framework and clearing the attached substrate of epibionts. The two branching sponges (A. 

chloros, N. magnifica) were sampled by clipping small branches from larger specimens and were 

maintained in flow-through aquaria by hanging branches upside down on fishing line. For each 

sponge, 6 replicates were collected with an overall mean volume of 11.7 ± 6.2 cm3. Specimens were 

maintained in 100 L flow-through tanks supplied with seawater pumped directly from the reef at 10 

m water depth at approximately ~6 L min-1, ensuring key environmental parameters (e.g. 

temperature, inorganic and organic nutrient concentrations, food availability) corresponded to 

seasonal in situ conditions. Each species was maintained in a separate aquarium and irradiance (PAR) 

was adjusted according to the in situ habitats of the respective sponges (shaded for the cryptic cavity 

sponge C. sacciformis, partial shading for H. arabica and C. densa and full in situ light levels at 15 m water 

depth for the remaining sponges) using black mesh and a quantum sensor (Model LI-192SA; Li-Cor). 

Sponge specimens were allowed to heal and acclimate for at least 1 wk prior to experiments and only 

healthy sponges with no damaged tissue that were actively pumping seawater (visualized with 

fluorescein dye) were used for incubations.  
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Determination of DIN and PON fluxes  

Sponges were incubated individually in 2 L gas-tight acrylic chambers filled with fresh, 

unfiltered seawater for 3 h (n = 6 specimens per species). Seawater control incubations were 

conducted in parallel without sponges (n = 3). Additional control incubations were run with bare 

coral rock to account for any potential activity caused by the attached substrate of the encrusting 

species (n = 6). Incubations were conducted from ~10:00 – 13:00. Sponges were transferred to 

chambers without air exposure and incubations were conducted under the conditions described 

above for the maintenance aquaria. Chambers were stirred at ~400 rpm using magnetic stirring plates 

(CimarecTM  i Telesystem Multipoint Stirrers, Thermo Scientific) and placed in a flow-through water 

bath to ensure maintenance of in situ temperature. Dissolved oxygen concentrations were monitored 

continuously using multi-probes (Hach HQ40d) inserted into airtight fittings in the chamber lids. 

Inorganic nutrient samples (60 ml) were collected from each chamber at the start and end of 

the 3 h incubation period. Samples were collected with an acid-washed 60 ml syringe from a sampling 

port in the chamber lid. Syringes were rinsed once with chamber water before samples were collected. 

After the initial sample was taken, chambers were refilled with ambient water to ensure there was no 

headspace. All samples were stored at 4°C and processed within 1 h of collection.  

Samples for particulate organic carbon (POC) and nitrogen (PON) were taken to determine 

the production of sponge detritus. Seawater control samples were taken at the start of the incubation 

experiment from the inflow water used to fill the chambers (n = 3). At the end of the incubation, the 

water remaining after sampling for inorganic nutrients was collected from each chamber. The sample 

volume (~1800 ml) was recorded, divided equally, and vacuum filtered separately onto two separate 

pre-combusted (450 °C, 4 h) GF/F filters (VWR; nominal pore size 0.7 µm). One filter was used for 

POC determination and the other for PON. Filters were dried at 40°C for at least 48 h and stored dry 

until CN elemental analysis. Sponge surface area and thickness were measured with callipers to 

determine the sponge volume using geometric formulas. Sponge physiological fluxes of DIN, POC, 

and PON were corrected for differences in seawater controls (or rock controls for encrusting 

species), normalized to sponge volume, and rates presented as µmol cm-3 h-1. Community scale fluxes 

were estimated by multiplying the rate of each physiological flux (nmol cm-3 h-1) for each sponge 

species by its estimated total volume on the reef (cm-3 m-2) in order to determine the respective 

contribution to the total community flux (µmol m-2 reef h-1). To estimate total sponge community 

DIN, POC, and PON fluxes, the results for the six investigated sponge species were summed and 

added to the flux for the uninvestigated species derived from multiplication of their total volume and 

the respective mean flux rates. 
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Quantification of dinitrogen fixation 

N2 fixation rates were quantified by the acetylene (C2H2) reduction assay method (Capone 

1993, Wilson et al. 2012) in a separate incubation experiment using the same sponge specimens. 

Sponges (n = 6 specimens per species) were transferred without air exposure to individual 1000 mL 

transparent glass chambers containing 800 mL of natural seawater and 200 ml headspace. 

Immediately prior to the start of the incubations 10% of the seawater was replaced with C2H2-

saturated seawater. Chambers were then sealed gas-tight with a spring-loaded glass lid and 10% of the 

200 mL headspace was replaced with freshly generated C2H2 gas via a needle injection port in the 

glass lid. Sealed chambers were stirred with magnetic stirrers (400 rpm) and placed in a flow-through 

water bath as describes above to maintain temperature throughout the 6 h incubation period. Each 

species was incubated once during the day and once at night to determine differences in light and 

dark N2 fixation. Daytime incubations were conducted from ~10:00 – 16:00 and nighttime 

incubations from 22:00 – 04:00. Gas samples (1 ml) were taken at 0, 1 and 6 h from the headspace of 

each chamber with a gas-tight syringe and transferred into gas-tight 2 mL glass vials that were fitted 

with butyl septa and previously filled with distilled water. Vials were stored frozen upside down until 

analysis.  

Ethylene (C2H4) concentrations in the gas samples were measured using a reducing 

compound photometer (RCP) (Peak Laboratories) with a detection limit of 100 ppb. Calibration of 

the RCP was routinely conducted using serial dilutions of a 200 ppm (± 2%) C2H4 standard in air 

(Restek, USA). Differences in C2H4 concentration between the 1h and 6 h incubation time intervals 

were converted into C2H4 evolution rates according to Breitbarth et al. (2004). Since preliminary 

incubations conducted with bare coral rock exhibited substantially higher C2H4 evolution than 

incubations with sponges, only branching sponges and encrusting sponges that could be separated 

from the substratum without damaging the sponge tissue or that completely covered the substrate 

were used (ie. A. chloros, C. densa, M. fistulifera, N. magnifica). Measured C2H4 concentrations were 

corrected for the signal detected in unfiltered seawater controls (n = 6) and normalized to incubation 

time and sponge volume in order to calculate C2H4 evolution rates (nmol C2H4 cm-3 h-1). Additional 

controls were conducted using 0.2 µm filtered seawater (n = 6) and unfiltered seawater with sponges 

but no addition of C2H2 (i.e. natural C2H4 production, n = 6). However, these showed negligible C2H4 

evolution. Sponge volume was determined as described above. To convert C2H4 evolution rates to N2 

fixation rates, a conservative theoretical ratio of 4:1 (C2H4:N2) was used, which assumes that 4 mol of 

C2H4 are reduced per 1 mol of N2 (Capone 1993, Mulholland et al. 2004). Community N2 fixation 

rates were calculated as described above for DIN and PON.  
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Stable isotope sampling 

Sponge tissue samples were collected for 13C and 15N stable isotope analysis along a 50 m 

transect at 10 m water depth. Samples were collected by chiselling or cutting fragments of the six 

sponge species described above (n = 10 per species). Samples were rinsed in 0.2 µm filtered seawater 

and encrusting sponges were removed from the underlying substrate with a sterile scalpel blade. 

Tissue samples were transferred to pre-combusted glass vials and stored at -80˚C until further 

processing. Seawater samples for 13C and 15N stable isotope analysis of suspended particulate organic 

matter (SPOM) and water column bacterioplankton (BP) were collected from the same sampling 

location on the reef at 10 m water depth (~1 m above the benthos). Replicate samples were collected 

on 4 days (n = 2 per day) over 10 days prior to sampling the sponges. Seawater samples were 

collected in 10 L acid-washed HDPE canisters and transferred to the laboratory for immediate 

processing.  Subsamples from each canister were filtered for PO13C (1 L) and PO15N (2 L) analyses 

onto pre-combusted GF/F filters. Filters were dried at 40°C for at least 48 h and stored dry until 

analysis. Subsamples (6 – 8 L) for BP were first filtered through pre-combusted (450 °C, 4 h) GF/F 

filters (0.7 µm nominal pore-size) before the filtrate was filtered onto aluminum oxide membrane 

filters (0.2 µm pore size; Whatman Anodisc). BP filters were stored frozen at -80˚C until further 

processing. 

Sample processing  

Inorganic nutrient water samples were syringe-filtered through cellulose acetate filters 

(nominal pore size 0.45 µm) for determination of ammonium (NH4
+), nitrate + nitrite (NOx

-), and 

phosphate (PO4
3-) concentrations using standard methods (Murphy & Riley 1962, Strickland & 

Parsons 1972, Holmes et al. 1999). NH4
+ samples were immediately processed and measured 

fluorometrically on the day of collection using a Trilogy Fluorometer (Turner Designs). All other 

nutrients were frozen for later photometric determination with a continuous flow analyzer. The 

detection limits for NH4
+, PO4

3-, and NOx
- were 0.09, 0.01, and 0.02 µM, respectively.  

Filters for POC and PON analysis were folded into silver and tin cups, respectively. POC 

filters were decalcified with 0.1 N HCl and then re-dried at 40°C. C and N content were determined 

with a EuroVector elemental analyzer (EURO EA 3000). Analytical precision was ≤0.1% (C) and 

≤0.03% (N) using Acetanilide OAS (certificate 187560) as the elemental standard. 

Sponge tissue samples, SPOM, and BP samples for 13C and 15N stable isotope analysis were 

lyophilized and sponge tissues were homogenized with a mortar and pestle. SPOM samples on GF/F 

filters and sponge tissue samples were transferred to silver (POC) or tin (PON) cups. For the BP 

samples, the plastic ring was removed from the aluminum oxide filters and the filters were crumbled 

into silver cups. Sponge tissue samples and GF/F filters were decalcified with 0.4 M HCl. C and N 
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stable isotope ratios and elemental content of sponge tissue samples, SPOM and BP samples were 

measured simultaneously using a THERMO NA 2500 elemental analyzer coupled to a 

THERMO/Finnigan MAT Delta plus isotope ratio mass spectrometer (IRMS) via a 

THERMO/Finnigan Conflo III- interface. Standard deviations of C and N content were < 3% of the 

concentrations analyzed and < 0.15‰ for repeated δ13C and δ15N measurements of standard material 

(peptone). C and N stable isotope ratios are expressed using the delta (δ) notation in units per mil 

(‰) and calculated as: δ13C or δ15N = (Rsample / Rref - 1) × 1000, where Rsample is the ratio of 

heavy/light isotope (13C/12C or 15N/14N) in the sample, and Rref is the heavy/light isotope ratio of the 

reference material (the Vienna Pee Dee Belemnite for C: Rref = 0.01118 and atmospheric nitrogen for 

N: Rref = 0.00368 N). 

RESULTS 

Sponge benthic cover 

Overall sponge cover accounted for 1.2 ± 0.9% of the non-cryptic benthic reef community 

at 10 m water depth. In total 18 sponge species were identified in the quadrats. M. fistulifera was the 

most abundant sponge accounting for 65% of the total sponge surface area and 20% of the total 

sponge volume on the reef. The volume of the entire sponge community per m2 reef area amounted 

to 163 ± 31 cm3. The six investigated species accounted for 30% of the total volume of sponges in 

the study site. 

Sponge DIN fluxes 

All six sponge species released DIN, but the composition of DIN released differed by 

species (Fig. 5.1a). There was no significant difference in start and end concentration of the seawater 

and rock controls, indicating DIN production was due to sponge activity. Only C. sacciformis released 

DIN entirely (100%) as NOx
-, while exhibiting uptake of NH4

+. All other sponges released DIN 

primarily as NH4
+  (>65%). C. densa and H. arabica also produced moderate amounts of NOx

- (~30% 

of their total DIN release), while NOx
- production accounted for <20% of the total DIN released by 

the remaining sponge species (Fig. 5.1a). Total DIN fluxes ranged from 64 ± 29 nmol cm-3 h-1 in A. 

chloros up to 203 ± 28 nmol cm-3 h-1 in C. sacciformis (Fig. 5.1c), averaging 120 ± 47 nmol cm-3 h-1 over 

all species. DIN release represented the largest N flux in all six sponge species. The total DIN release 

by the non-cryptic reef sponge community amounted to 19.6 ± 2.5 µmol N m-2 reef h-1. 
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Figure 5.1: Nitrogen fluxes in the six investigated sponge species: Amphimedon chloros (AC), Callyspongia 

densa (CD), Chondrilla sacciformis (CS), Hemimycale arabica (HA), Mycale fistulifera (MF), and Negombata magnifica 

(NM). Shown are A) Fluxes of ammonia (NH4
+), nitrate + nitrite (NOx

-), B) Detritus production of particulate 

organic carbon (POC) and particulate organic nitrogen (PON), and C) Total fluxes of dissolved inorganic 

nitrogen (DON) and particulate organic nitrogen (PON). Data are normalized to sponge volume and rates are 

presented as nmol cm-3 h-1 (mean ± SD; n = 6).  

 



CHAPTER 5 

147 
  

Sponge detritus production 

All six investigated sponge species released detritus as POC and PON in detectable quantities 

(Fig. 5.1b). POC release rates exceeded the release of PON, but all six sponges produced detritus 

with relatively low C:N ratios ranging from 6.5 – 8.7. On average, the C:N ratios of sponge detritus 

were substantially lower than the C:N ratio of ambient reef water POM (10.3 ± 1.6). PON fluxes 

ranged from 29.8 nmol cm-3 h-1 in A. chloros and up to 93.5 nmol cm-3 h-1 in C. sacciformis. Thus, the 

sponge species with the highest and lowest DIN release also exhibited the highest and lowest PON 

release (Fig. 5.1a, b). Overall, PON production averaged 52 ± 23 nmol cm-3 h-1 and accounted for a 

substantial fraction (30 ± 3%) of the total organic and inorganic N released. This percentage was 

remarkably consistent across all six species, ranging from 25 – 33% (Fig. 5.1c). Based on the 

measured release rates, the total PON production by the sponge community was estimated at 8.5 ± 

1.3 µmol N m-2 reef h-1. The estimated community flux of POC was 63.5 ± 18.9 µmol C m-2 reef h-1. 

Sponge dinitrogen fixation 

Only M. fistulifera (day and night) and A. chloros (day only) exhibited significant N2 fixation 

activity (Fig. 5.2). For both of these sponges, N2 fixation was up to 5-times higher in the day 

compared to at night (Fig. 5.2). The N2 fixation activity of C. euplacella and N. magnifica did not exceed 

the background activity in the unfiltered seawater controls, indicating N2 fixation by these two species 

was negligible. Overall, sponge N2 fixation rates were several orders of magnitude lower than their 

DIN and PON fluxes, resulting in comparatively low scale community N2 fixation rates (0.006 ± 

0.005 µmol N m-2 reef h-1). 

 
Figure 5.2: N2 fixation measured as acetylene reduction rates of the four investigated sponge species: 

Amphimedon chloros (AC), Callyspongia densa (CD), Mycale fistulifera (MF), and Negombata magnifica (NM).  Shown are 

the mean light (white bars) and dark (black bars) acetylene reduction rates presented nmol C2H4 cm-2 h-1 (mean 

± SD; n = 6).  
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Stable isotope analysis  

The C and N stable isotope analysis of the six sponge species showed considerable inter-

species variation, with no overlap in δ13C and δ15N signatures between species (Fig. 5.3). The sponges 

clustered into two groups with group A (A. chloros, H. arabica, M. fistulifera) showing lower δ15N values 

(< 2‰) and lighter δ13C values (< -20‰). By comparison, group B (C. densa, C. sacciformis, N. 

magnifica) exhibited higher δ15N values (> 2‰) and relatively enriched δ13C values (> -20‰; Fig. 5.3). 

All six sponge species had δ13C values that were more enriched in 13C compared to both the ambient 

SPOM and water column BP (Fig. 5.3), with no overlap between the sponges and either of their 

potential particulate food sources. Furthermore, all sponges exhibited δ15N values that were either 

lower or overlapped with both the SPOM and BP. Thus, none of the sponge showed evidence for an 

expected trophic increase of 3.4‰ compared to either food source. M. fistulifera exhibited the lowest 

δ15N values (approaching 0‰), while C. sacciformis showed the most enriched δ13C values (Fig 5.3).  

 

 

 

Figure 5.3: Stable isotope signatures of the six investigated sponge species, suspended particulate 

organic matter (SPOM), and water column bacterioplankton. Plotted are the δ13C vs δ15N values of 

sponges collected in situ at 10 – 15 m water depth and SPOM and bacterioplankton sampled from the water 

column at 10 m water depth, 1 m above the substrate. Values presented as mean ± SD (n = 10).   
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DISCUSSION 

Sponge N fluxes 

Our findings reveal that DIN release represents the major physiological N flux quantified for 

all six sponge species, exceeding rates for both PON release and N2 fixation. Mean DIN release rates 

by Red Sea sponges (120 ± 47 nmol cm-3 h-1) appear directly comparable to rates determined for 14 

species of Caribbean sponges (200 ± 77 nmol cm-3 h-1; Southwell et al. 2008b). Eight of these 14 

Caribbean species released the majority of their DIN as NOx
- (Southwell et al. 2008b). By contrast 

only one of the six Red Sea sponges, C. sacciformis, released DIN primarily as NOx
-
 while the 

remaining sponges predominately released NH4
+. Release of NOx

- provides evidence for microbial-

mediated nitrification as only ammonium oxidizing bacteria and archaea can oxidize ammonium to 

nitrate (Zehr & Ward 2002, Wuchter et al. 2006). Several studies have found that nitrification is 

widespread only in HMA sponges (Jimenez & Ribes 2007, Bayer et al. 2008, Southwell et al. 2008a, 

Southwell et al. 2008b, Ribes et al. 2012, Fiore et al. 2013a). As C. sacciformis was the only HMA 

sponge investigated, our findings provide further support that high nitrifying activity is common only 

in HMA sponges and implies that the relative composition of HMA and LMA species in the sponge 

community will influence the dominant type of DIN released. Nitrification in HMA sponges may 

function in removing toxic NH4
+ that could build up due to the lower pumping rates of HMA 

compared to LMA sponges (Weisz et al. 2008, Ribes et al. 2012). The uptake of NH4
+ combined with 

NOx release by C. sacciformis may suggest that in addition to utilizing NH4
+ remineralized by the 

sponge host, its nitrifying microbes also directly took up ambient NH4
+. However, NH4

+ uptake can 

also be mediated by other autotrophic and heterotrophic microbes (Kirchman et al. 1990, Hoch & 

Kirchman 1995, Kowalchuk & Stephen 2001). Although the presence of photoautotrophic microbes 

is unlikely given C. sacciformis is a strictly found in shaded habitats, additional heterotrophic pathways 

cannot be excluded.  

Despite numerous reports of sponges producing detrital material (Reiswig 1971, Witte et al. 

1997, Ribes et al. 1999, Yahel et al. 2003), detritus production has so far only been demonstrated in a 

limited number of sponges (de Goeij et al. 2013, Alexander et al. 2014). Alexander et al. (2014) found 

that eight species of tropical and temperate sponges turned over 2.5 – 18% of their bodyweight in 

detritus per day, but did not determine the organic C and N content of the produced detritus. Our 

findings present the first rates of POC and PON release by sponges, demonstrating that detrital PON 

can account for approximately one third of the total N released by coral reef sponges. Interestingly, 

the percentage of total N released as PON was remarkably consistent across all six sponges 

investigated (30 ± 3%), regardless of their microbial abundance (HMA vs. LMA) or growth form 

(encrusting vs. branching). Thus, species exhibiting higher DIN release also released higher quantities 
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of PON. However, other studies measuring sponge POM fluxes have found net POM uptake 

(Jimenez & Ribes 2007), including for N. magnifica (Hadas et al. 2009). This may be due to 

methodological differences in measuring POM. Jimenez & Ribes (2007) sampled SPOM rather than 

total incubation POM possibly leading to the exclusion of larger sinking particles. Hadas et al. (2009) 

pre-filtered their POM samples to remove particles considered too large to be digested by the sponge, 

which may have removed larger detrital particles such as sponge cells. Massive cell shedding of 

choanocyte cells is proposed to be the key mechanism by which sponges produce detritus (de Goeij 

et al. 2009, Alexander et al. 2014). However, it has not been possible to directly link detritus 

production to choanocyte shedding either due to rapid cellular degradation (Alexander et al. 2014) or 

due to the contribution of other cell types and metabolic waste products to sponge detritus 

(Maldonado 2015). Sponge detritus is consumed by detritus feeding reef fauna (de Goeij et al. 2013), 

but the relative contribution of metabolic waste products vs. shed cells has been suggested to the 

quality of sponge detritus as a food source (Maldonado 2015). Our findings, however, show that 

sponge detritus is relatively enriched in N (i.e. has a lower C:N ratio) compared to ambient seawater 

SPOM, suggesting that it may be a relatively high quality food source for detritus feeding organisms.  

Unlike for the fluxes of DIN and PON, only two of the four sponges investigated, A. chloros 

and M. fistulifera, exhibited detectable N2 fixation activity, although at low rates. This is consistent with 

the low sponge N2 fixation activity measured by the few studies quantifying sponge N2 fixation rates 

(Wilkinson et al. 1999, Southwell 2007, Ribes et al. 2015, Rix et al. 2015). M. fistulifera showed the 

highest N2 fixation activity of the four species investigated and also the lowest δ15N values (0.1 ± 

0.2‰). Depleted δ15N values are consistent with the incorporation of newly fixed N (Mariotti 1983, 

Montoya et al. 2002), suggesting M. fistulifera may have been the only sponge receiving a significant 

input of N from N2 fixation. However, isotope fractionation during other microbial-mediated N 

processes could also contribute to its depleted δ15N values (e.g. Altabet 2001). The lack of NOx
- 

production by M. fistulifera suggests it does not host nitrification, but there is evidence for low rates of 

photosynthesis (Rix et al. 2015) and evidence that photosynthetic microbes can transfer N to their 

sponge hosts (Freeman & Thacker 2011, Freeman et al. 2013). Interestingly, M. fistulifera belongs to 

the LMA sponge order Poecilosclerida (Gloeckner et al. 2014), indicating N2 fixation may not be 

limited to HMA sponges. This is supported by recent evidence for nitrogenase genes (nifH) in three 

LMA, but not the three HMA sponges investigated by Ribes et al. (2015). N2 fixation has been 

hypothesized to be a source of reduced inorganic N required for the high nitrification rates observed 

in some coral reef sponges (Corredor et al. 1988, Diaz & Ward 1997). However, our N2 fixation rates 

were orders of magnitude lower than respective NOx
- production, suggesting this linkage is unlikely. 

Sponge nitrification is more likely supported by metabolic ammonium released by the sponge host or 

by uptake from the ambient seawater. Overall, N2 fixation appears not to play a major role in sponge 

N cycling and is unable to account for the apparent loss of N due to the net release of DIN and 

PON.  
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Sponge N budgets 

Importantly, the net release of PON and DIN by the six sponge species implies that they 

must be utilizing an additional source of N in order to balance the efflux of both DIN and PON. 

Sponges feed preferentially on particles within the size range of 0.2 – 2.0 µm, with highest retention 

efficiencies for particles of 1.0 µm (Hadas et al. 2009). Since we used GF/F filters to measure POM, 

some heterotrophic bacteria falling beneath the 0.7 µm pore size may have been excluded. Thus, 

some of this imbalance between N ingestion and excretion may be accounted for by the uptake of 

small bacteria. However, previous studies measuring picoplankton feeding have found similar 

imbalances between PON ingestion and DIN excretion in sponges and have attributed this to the 

uptake of DON (Jimenez & Ribes 2007, Hadas et al. 2009). Indeed, de Goeij et al. showed that 18 – 

36% of the DON assimilated by four encrusting Caribbean sponges was converted into detrital PON 

(de Goeij et al. 2013), and this may explain the net PON efflux in the investigated Red Sea sponges. 

This is further supported by our stable isotope data as consumers typically reflect the δ13C signatures 

of their food sources, exhibiting at most a small δ13C increase of 0.5 – 1.0‰ (Peterson & Fry 1987, 

Michener et al. 1994); yet none of the sponges displayed δ13C signatures within a 0 – 1.0‰ range of 

the ambient SPOM, and only Group A sponges were within range of the water column BP. 

Moreover, the δ15N values of the sponges either did not differ significantly or were lower than those 

of SPOM and BP. Since consumers typically show a δ15N increase of 3.4‰ per trophic level 

(Peterson & Fry 1987, Michener et al. 1994, Vander Zanden & Rasmussen 2001, McCutchan et al. 

2003), this indicates that other metabolic N processes may have influenced δ15N signatures of the six 

sponges. Isotopic fractionation during microbial-mediated N processes was hypothesized to account 

for lower δ15N values in HMA compared to LMA sponges in the Florida Keys (Southwell 2007, 

Weisz et al. 2007). However, we found the lowest δ15N values in the LMA sponges H. arabica and M. 

fistulifera and no evident relationship between δ15N values and nitrification. N2 fixation may have 

contributed to the depleted δ15N values in M. fistulifera, but fixation rates for the other sponges were 

low. Therefore, our results suggest that SPOM and BP are not the only dietary sources of C and N 

for the investigated sponges. We hypothesize that DON uptake may account for this imbalance as 

DOM has recently been found to contribute ~80 - 90% of the total carbon uptake by several coral 

reef sponges (Yahel et al. 2003, de Goeij et al. 2008, Mueller et al. 2014a). On coral reefs, DOM 

predominately originates from the high release of photosynthates by benthic primary producers (Wild 

et al. 2004, Haas et al. 2010, Naumann et al. 2010a, Mueller et al. 2014b, Brocke et al. 2015). These 

exudates are typically relatively depleted in 15N and enriched in 13C compared to SPOM and BP 

(Naumann et al. 2010b, van Duyl et al. 2011), which could explain the isotopic signatures of the six 

sponges (van Duyl et al. 2011). Thus our findings are consistent with the transformation of DOM to 

POM by the newly described sponge loop (de Goeij et al. 2013).  
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Ecological implications 

There are few estimates of sponge-mediated community N fluxes. Our sponge-mediated 

benthic N efflux rates in a Red Sea reef are much lower compared to previous findings from Key 

Largo, Florida (19 ± 7 vs. 640 ± 130 µmol N m-2 reef h-1), despite the fact that Red Sea and 

Caribbean sponges exhibited similar DIN efflux rates (Southwell et al. 2008b). This was due to lower 

sponge biomass in the Red Sea compared to Key Largo, which is dominated by the massive barrel 

sponge Xestospongia muta that accounts for 73% of the DIN efflux (Southwell et al. 2008b). By 

contrast, the majority of sponges in our study site were small encrusting species. However, neither 

study considered the abundant cryptic cavity sponge community. In the Red Sea, cavity sponge 

biomass far outweighs that of the surface sponge community (Richter et al. 2001). If the estimated 

cover of cavity sponges is considered (82 ± 55% per unit reef area; Richter et al. 2001), and their 

average DIN release rates are assumed to be equal to the rates measured for the cavity sponge C. 

sacciformis, this amounts to an additional DIN efflux of 83 ± 23 µmol N m-2 reef h-1 and PON efflux 

of 38 ± 6 µmol N m-2 reef h-1. Although the generation of new N fixed by the sponge community 

remains negligible even when cavity sponges are considered (0.006 ± 0.005 µmol N m-2 h-1), overall 

this demonstrates the importance of the cryptic reef habitat for N cycling. Indeed, cavity sponges 

have been linked to the increased concentrations of DIN observed in coral reef cavities in the Red 

Sea (Richter et al. 2001) and in the Caribbean (Scheffers et al. 2004, van Duyl et al. 2006). 

Furthermore, coral reef cavities in the Caribbean and Indo-Pacific have also been shown to be sinks 

of DOM (de Goeij & van Duyl 2007). Due to the oligotrophic conditions in the Gulf of Aqaba 

(Silverman et al. 2007, Bednarz et al. 2015), the N fluxes estimated for our sponge community may 

represent an ecologically important flux of N. DIN released by sponges has been shown to facilitate 

coral growth (Slattery et al. 2013) and support nearby algae (Davy et al. 2002, Easson et al. 2014). 

Sponge detritus represents an additional but poorly investigated N flux that may contribute to coral 

reef detrital food webs but requires further investigation. Collectively our findings hint at the 

potential functioning of a sponge loop in the Red Sea as we hypothesize that the high N demand 

resulting from net DIN and PON release in the six sponge species must be met by DON uptake to 

balance their N budgets.  
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ABSTRACT 

N2 fixation by coral reef benthic substrates may support primary productivity on oligotrophic 

coral reefs. However, little is known regarding the influence of environmental parameters on coral 

reef benthic N2 fixation. This study quantified N2 fixation and photosynthesis by three common reef 

framework substrates: turf algae, coral rock, and the abundant encrusting sponge Mycale fistulifera over 

four seasons in the northern Gulf of Aqaba. N2 fixation activity was detected during day and night 

for all substrates, but on an annual average was significantly higher for turf algae (4.4 ± 3.9 nmol 

C2H4 cm-2 h-1) and coral rock (3.5 ± 2.8 nmol C2H4 cm-2 h-1) compared to M. fistulifera (0.2 ± 0.2 nmol 

C2H4 cm-2 h-1). There was strong seasonality in N2 fixation, with rates one order of magnitude higher 

in summer when temperature and irradiance were highest but inorganic nutrient concentrations 

lowest. During summer and fall, when nutrients were low, we found a significant positive linear 

relationship between gross photosynthesis (Pgross) and N2 fixation in turf algae and coral rock. 

Further, we estimate N2 fixation can supply up to 20 and 27% of the N demand for net 

photosynthesis (Pnet) in coral rock and turf algae, respectively. By contrast there was no significant 

relationship between N2 fixation and Pgross in M. fistulifera, which displayed negative Pnet and 

heterotrophic metabolism (Pgross:Respiration <1). These findings highlight the role of environmental 

parameters in regulating benthic substrate-associated N2 fixation and the potential importance of 

fixed N for supporting primary production, particularly during nutrient-depleted conditions. 
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INTRODUCTION 

Coral reefs are characterized by high productivity but are typically surrounded by 

oligotrophic waters (Odum & Odum 1955, Hatcher 1988), where nitrogen (N) is a key limiting 

nutrient for growth (Delgado & Lapointe 1994, Eyre et al. 2008). Efficient internal nutrient recycling 

in the benthos contributes to this high productivity, but input of new N is essential to sustain net 

ecosystem production and growth. Though energetically costly, numerous studies demonstrate that 

dinitrogen (N2) fixation represents a substantial source of new N on coral reefs (Webb et al. 1975, 

Larkum et al. 1988, O’Neil & Capone 1989, Charpy et al. 2007). 

Biological N2 fixation is carried out by a diverse group of heterotrophic and 

photoautotrophic bacteria (Zehr et al. 2003), but cyanobacteria are a key contributor to benthic N2 

fixation on coral reefs (Casareto et al. 2008, Charpy et al. 2012). Cyanobacterial mats have attracted 

much research focus due to their high N2 fixation rates (e.g. Charpy et al. 2007, Bauer et al. 2008, 

Casareto et al. 2008). However, cyanobacteria are also important components of the various reef 

framework substrates that are ubiquitous on coral reefs; including algal turfs, endolithic algal 

communities associated with calcium carbonate structures, and endosymbiotic communities of 

sponges (Charpy et al. 2012). In coral reefs in the northern Gulf of Aqaba, these reef framework 

substrates are a dominant component of the benthos. Turf algae make up 72% of the benthic 

community on reefs in Eilat (Israel), while on the Jordanian side of the Gulf, biogenic reef framework 

with only sparse epilithic overgrowth (hereafter: coral rock) can account for up to 58% of the benthic 

cover (Bahartan et al. 2010). Sponges meanwhile dominate the cryptic reef habitat (Richter et al. 

2001). High rates of N2 fixation have been measured in both turf algae and coral rock (eg. Larkum et 

al. 1988, Williams & Carpenter 1998), therefore these reef framework substrates may contribute 

importantly to fixed N on reefs in the Gulf of Aqaba. Evidence for active N2 fixation in sponges is 

scarce (Wilkinson & Fay, 1979, Shashar et al. 1994a, Shieh & Lin 1994), but many species harbor 

microbial symbionts capable of fixing N (Taylor et al. 2007, Mohamed et al. 2008, Fiore et al. 2015) 

suggesting N2 fixation in sponges may be widespread. 

Due to their association with photosynthetic cyanobacteria and algae, reef framework 

substrates also contribute to reef photoautotrophic primary production. Turf algae are dominant 

primary producers on many reefs (Adey & Goertemiller 1987, Carpenter & Williams 2007) and more 

than one third of sponges in the Caribbean, Great Barrier Reef (GBR) and West Indian Ocean harbor 

photosynthetic symbionts (Wilkinson 1987, Steindler et al. 2002, Erwin & Thacker 2007). Due to the 

oxygen (O2) sensitivity of nitrogenase, the enzyme responsible for N2 fixation, photosynthesizing 

diazotrophs have evolved strategies to allow photosynthesis and N2 fixation to co-occur (Berman-

Frank et al. 2003). Spatial separation in heterocystous cyanobacteria allows the fixation of N2 during 

the day (Gallon 2001), while non-heterocystous cyanobacteria typically fix N2 at night, relying on 

energy derived from the carbon (C) fixed during the previous daylight period (Bergman et al. 1997, 
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Charpy et al. 2007). In marine sponges, hypoxic zones may facilitate O2-sensitive processes such as 

N2 fixation (Hoffmann et al. 2005). N2 fixation may provide an additional source of N to support 

benthic primary production, however, little is known regarding the interaction between N2 fixation 

and photosynthesis in benthic substrates, and few studies have quantified both processes in parallel 

(Williams & Carpenter 1997, Lesser et al. 2007, Charpy et al. 2007, Casareto et al. 2008).  

Fringing reefs in the Gulf of Aqaba experience strong seasonal variation in key 

environmental parameters as a result of the annual stratification cycle in the water column that occurs 

due to their northern latitude. Winter and early spring are characterized by low temperature and 

irradiance but high inorganic nutrient concentrations as deep convective mixing of the water column 

transports nutrient-enriched deep water into the photic zone (Carlson et al. 2014). Increasing 

irradiance followed by warming sea surface temperatures throughout spring and summer lead to the 

development of a thermocline  >100 m deep (Carlson et al. 2014) with a nutrient-depleted surface 

layer (Silverman et al. 2007). This results in summer conditions of high temperature and irradiance 

but low inorganic nutrient concentrations. Near-surface temperatures range from 21 – 28 °C 

throughout the year while inorganic nutrient concentrations can vary by an order of magnitude 

(Silverman et al. 2007, Carlson et al. 2014). Such environmental parameters are known to influence 

planktonic N2 fixation (Sohm et al. 2011), but their effect on N2 fixation by benthic reef diazotrophs 

is largely unknown (Cardini et al. 2014). 

The objectives of this study, therefore, were 1) to quantify rates of N2 fixation and primary 

productivity (i.e. photosynthesis) in three dominant reef framework substrates; turf algae, coral rock, 

and an abundant encrusting sponge in seasonal resolution in order to evaluate the effect of seasonally 

variable key environmental parameters on these processes, and 2) to estimate the contribution of N2 

fixation to the N requirements for primary production in the three investigated substrates. 

MATERIALS AND METHODS 

Study site  

This study was conducted in the northern Gulf of Aqaba at the Marine Science Station 

(MSS) Aqaba, Jordan (29°27’ N, 34°58’ E). Sampling was carried out on the 1 km long fringing reef 

in front of the MSS, which is designated as a marine reserve, and experimental work was carried out 

in the MSS laboratories. In order to examine the effect of seasonality, all experiments were repeated 

over four seasonal periods in 2013: winter (February), spring (April), summer (September), and fall 

(November). 

The benthic reef community was dominated by hard and soft corals (58.1 ± 13.8%), while 

coral rock represented the third most abundant benthic substrate type at 10 m water depth, covering 
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on an annual average 14.2 ± 5.0% of the available substrate. The percent cover of turf algae (annual 

average: 4.4 ± 4.5%) was seasonally variable reaching a maximum of 10.3 ± 4.2% in winter and 

decreasing to a minimum of 1.0 ± 1.0% in fall. Sponge cover was constant throughout the year 

averaging 1.2 ± 0.9%. The non-cryptic sponge community was dominated by the abundant 

encrusting sponge Mycale fistulifera, which accounted for 65% of the visible sponge cover at 10 m 

water depth. Together the three investigated substrates accounted for 19.8 ± 10.3% of the total 

benthic coverage. 

Environmental monitoring 

During each season in situ water temperature and irradiance were continuously monitored 

over four weeks at one minute intervals at the sampling site using a data logger (Onset HOBO 

Pendant UA-002-64; temperature accuracy: ± 0.53 °C, spectral detection range: 150 – 1200 nm) 

placed in an unshaded position on the reef at 10 m water depth. Parallel irradiance measurements 

with a quantum sensor (Model LI-192SA; Li-Cor) allowed the conversion of lux measurements to 

photosynthetically active radiation (PAR μmol photons m-2 s-1, wavelength 400 – 700 nm) using a 

conversion factor of 1 μmol quanta m-2 s-1 = 52 lux. Irradiance data are presented as seasonal means 

(± SD) of daily maximum values (μmol quanta m-2 s-1) and integrated diurnal values (mol quanta m-2 

d-1; Table 1.1). Weekly seawater samples (n = 4 per season) were collected by SCUBA using acid-

washed high-density polyethylene canisters (n = 4, 5 L) at 10 m water depth (~1 m above the 

bottom) and immediately transferred to the laboratory for further processing. Subsamples (n = 4) 

were taken for quantification of inorganic nutrients, particulate organic carbon (POC), particulate 

nitrogen (PN), and chlorophyll a (Chl a). Inorganic nutrient subsamples were syringe-filtered through 

cellulose acetate filters (nominal pore size 0.45 µm) for determination of ammonium (NH4
+), nitrate 

(NO3
2-), nitrite (NO2

-), and phosphate (PO4
3-) concentrations using standard methods, although a 

modification of the cadmium column method for NO3
2- determination using a cadmium sponge was 

used to enable field analysis (Murphy & Riley 1962, Strickland & Parsons 1972, Holmes et al. 1999). 

NH4
+ was determined fluorometrically using a Trilogy Fluorometer (Turner Designs), while all other 

nutrients were measured photometrically with a JASCO-V630 spectrophotometer (Jasco Analytical 

Instruments). The detection limits for NH4
+, PO4

3-, and NO3
2- + NO2

- were 0.09, 0.01, and 0.02 µM, 

respectively. Subsamples for Chl a determination (n = 4, 1 L) were filtered onto pre-combusted (450 

˚C, 4 h) GF/F filters (VWR: nominal pore size 0.7 µm) and stored frozen at -80 °C in the dark until 

further processing. Chl a was extracted with 90% acetone (12 h in the dark at 4˚C) and analysed 

fluorometrically using a Trilogy fluorometer fitted with the non-acidification module (CHL NA 

#046, Turner Designs). Subsamples for POC (1 L) and PN (2 L) were filtered onto pre-combusted 

GF/F filters and dried in the oven (40 °C, 48 h). Prior to analysis POC filters were decalcified with 

0.1 N HCl. POC and PN filter contents were measured on a EuroVector elemental analyzer (EURO 
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EA 3000) with analytical precision of ≤0.1% (C) and ≤0.03% (N) using the elemental standard 

Acetanilide OAS (certificate 187560). 

Substrate collection and maintenance 

Samples of the three investigated reef framework substrates; turf algae, coral rock, and the 

encrusting sponge M. fistulifera, were collected from the reef at 10 m water depth by SCUBA and 

immediately transferred to the aquarium facility without air exposure. Turf algae were defined as a 

thick mat consisting of a heterogeneous assemblage of filamentous algae, crustose coralline algae 

(CCA), and filamentous cyanobacteria. In the Gulf of Aqaba, turf algae are composed predominately 

of Phaeophyta and Rhodophyta of the order Ceramiales as well as green algae of the genus Cladophora 

and cyanobacteria (Bahartan et al. 2010, Haas et al. 2010). Coral rock was considered biogenic reef 

framework lacking coverage by a single dominant visible epilithic group with the carbonate structure 

clearly visible and open for settling organisms. In the Gulf of Aqaba this hard substrate can cover 

large areas of the reef and is commonly referred to as “bare rock” or “bare substrate” (eg. Shashar et 

al. 1994a, Bahartan et al. 2010), although it is associated with endolithic algae, epilithic microbial 

biofilms, and sparse patches of CCA, cyanobacteria and filamentous algae (Charpy et al. 2012, 

Bahartan et al. 2010). M. fistulifera is an encrusting sponge approximately 0.2 – 0.5 cm thick, typically 

found encrusting coral skeletons. Turf algae and M. fistulifera were collected by chiseling small pieces 

of dead branching corals overgrown by either turf or M. fistulifera, and were attached to ceramic tiles 

with coral glue (Reef Construct, Aqua Medic®) to minimize stress during experimental handling. 

Coral rock was sampled by chiseling pieces of reef framework. For each substrate, 8 replicates per 

season were collected with a mean height of 5-6 cm and mean surface area of 33.5 ± 18.9 cm2. 

Specimens were maintained in an outdoor 1000 L flow-through tank supplied with seawater pumped 

directly from the reef at 10 m water depth at approximately 4000 L h-1, ensuring key environmental 

parameters (e.g. temperature and inorganic nutrient concentrations) corresponded to seasonal in situ 

conditions. Irradiance (PAR) was adjusted to in situ levels at 10 m water depth with layers of black 

mesh. Parallel irradiance measurements with a quantum PAR sensor (Model LI-192SA; Li-Cor) in situ 

at 10 m and in the maintenance tank ensured irradiance corresponded to seasonal in situ conditions as 

presented in Table 6.1 with the following standard deviations: 21.8, 56.4, 26.4, 19.6 µmol photons m-2 

s-1 for winter, spring, summer and fall, respectively. All incubation measurements were conducted in 

the same maintenance tank to ensure consistent temperature and irradiance values. M. fistulifera 

specimens were allowed to heal and acclimate for 1 wk prior to experiments and only healthy, actively 

pumping specimens were incubated. Turf algae and coral rock were collected 24 h before incubations 

were conducted. 
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Quantification of dinitrogen fixation 

N2 fixation rates were quantified using the acetylene (C2H2) reduction assay method (Capone 

1993, Wilson et al. 2012). Specimens (n = 8 per substrate) were incubated in individual 1000 mL 

transparent glass chambers containing 800 mL of natural seawater and 200 ml headspace. Organisms 

were transferred into chambers without air exposure and positioned to ensure comparable irradiances 

in all chambers. Immediately prior to the start of the incubations 10% of the seawater was replaced 

with C2H2-saturated seawater. Chambers were then sealed gas-tight with a spring-loaded glass lid and 

10% of the 200 mL headspace was replaced with freshly generated C2H2 gas via a needle injection 

port in the glass lid. Sealed chambers were stirred with magnetic stirrers (600 rpm) and positioned in 

the flow-through tank to ensure in situ temperature and irradiance throughout the 24 h incubation 

period. Parallel measurements of irradiance inside the chambers and in the flow-through tank 

revealed no significant differences ensuring irradiances inside the chambers corresponded to the 

seasonal values provided in Table 1. Incubations started and ended just prior to sunset 

(approximately 17:00) and gas samples were taken at 0, 4, 12, 16 and 24 h, except during spring when 

samples were taken only at 0 and 24 h. These sampling intervals were selected to capture the periods 

of dusk, night, dawn, and full daylight as N2 fixation during low light conditions (dawn and dusk) is a 

strategy by some diazotrophs to manage the oxygen inhibition of nitrogenase (Lesser et al. 2007). At 

each time interval 1 mL of gas sample was collected from the headspace of each chamber with a 

gastight syringe and transferred into gas-tight 2 mL glass vials fitted with butyl septa and filled with 

distilled water. Vials were stored frozen upside down until analysis.  

Ethylene (C2H4) concentrations in the gas samples were measured using a reducing 

compound photometer (RCP) (Peak Laboratories) with a detection limit of 100 ppb. Calibration of 

the RCP was routinely conducted using serial dilutions of a 200 ppm (± 2%) C2H4 standard in air 

(Restek, USA). Differences in C2H4 concentration between the time intervals of the incubation period 

were converted into C2H4 evolution rates according to Breitbarth et al. (2004). The C2H4 

concentrations of the samples were corrected for the signal of unfiltered seawater controls (n = 8) 

and normalized to incubation time and surface area of the specimen in order to calculate C2H4 

evolution rates (nmol C2H4 cm-2 h-1). Additional controls for 0.2 µm filtered seawater (n = 6), 

unfiltered seawater and ceramic tile (n = 6), and unfiltered seawater with specimens but no addition 

of C2H2 (natural C2H4 production, n = 6), showed negligible C2H4 evolution. Surface areas were 

measured using a standard geometric technique (Advanced Geometry) as described by Naumann et 

al. (2009). To convert C2H4 evolution rates to N2 fixation rates, a conservative theoretical ratio of 4:1 

(C2H4:N2) was used, which assumes that 4 mol of C2H4 are reduced per 1 mol of N2. This is more 

conservative than the theoretical stoichiometric ratio of 3:1 as it accounts for the inhibition of the 

hydrogenase reaction of nitrogenase under C2H4-reducing conditions (Capone 1993, Mulholland et al. 

2004). 
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Quantification of primary productivity 

Primary productivity (i.e. photosynthesis) was quantified via dissolved O2 fluxes. Substrates 

and seawater controls (n = 8 replicates each) were incubated in individual 1000 mL airtight 

transparent glass chambers filled with natural seawater and sealed with a transparent glass lid. The 

sealed chambers were incubated under identical conditions as described above for N2 fixation 

measurements. Incubations for respiration (R) were conducted 1-2 h after sunset in complete 

darkness for 90 – 120 min. Incubations for net photosynthesis (Pnet) were carried out at between 

12:00 – 14:00 the following day during maximum light intensity for 60 – 90 min. Dissolved O2 

concentrations were measured at the start and end of each incubation period using a salinity and 

temperature corrected O2 optode sensor (MultiLine ® IDS 3430, WTW GmbH). Start O2 

concentrations were subtracted from end O2 concentrations to quantify Pnet and R. O2 fluxes were 

corrected for the mean O2 difference found in the seawater controls and normalized to incubation 

time and surface area of the respective specimen. R is presented as a positive rate and gross 

photosynthesis (Pgross) rates were calculated as: Pgross = Pnet + R. 

To calculate the contribution of fixed N to the N demand for primary production, O2 fluxes 

were converted into dissolved inorganic C fluxes using a photosynthetic quotient (PQ) of 1.04 and 

respiratory quotient (RQ) of 0.96 for turf algae and coral rock (Carpenter & Williams, 2007). Since no 

literature values were available for marine sponges, a PQ/RQ of 1 was used for M. fistulifera. It was 

assumed that turf algae and M. fistulifera assimilate biomass with C:N ratios of 13.7 ± 1.3 and 6.2 ± 

0.3, respectively, based on C and N elemental analyses of macroalgae and M. fistulifera from the study 

site (L. Rix unpublished data). Since no data were available for coral rock from the Gulf of Aqaba, 

C:N ratios of epi- and endolithic algae associated with coral rubble from Le Reunion and Sesoko 

Islands were used (9.7 ± 1.5; Casareto et al. 2008). These reefs also belong to the Indo-Pacific and 

display comparable inorganic nutrient concentrations (Casareto et al. 2008), and were therefore 

deemed representative. However, variations in community assemblages may result in corresponding 

variations in tissue C:N ratios. Nevertheless, our intention is to provide a mainly qualitative estimate 

of the importance of N2 fixation for primary production by demonstrating how much new N is made 

available by N2 fixation that could potentially be used to meet the demand for net primary production 

and biomass generation.  

Statistical analysis 

The influence of “season” and “substrate” on all physiological parameters was estimated 

using fully crossed general linear models fitted in R version 3.1.1 (R Development Core Team, 2014). 

A second model was run examining the effect of “season” and “substrate” and “time of day” (day or 

night) on N2 fixation. Season was used as a fixed factor encompassing the combined effects of all 
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environmental parameters. The influence of individual environmental parameters was further 

examined using linear regressions. To confirm the assumptions of normally distributed and 

homogenous residuals, qqplots and scatter plots of residuals against fitted values were visually 

inspected (Quinn & Keough 2002), and data were log-transformed where necessary. Model stability 

was checked by examining leverage and Cook’s distance as well as dffits and dfbetas, and all values 

were deemed acceptable. Model significance was tested using likelihood ratio tests, comparing the 

deviances of full models with those of the null models comprising only the intercept. The significance 

of individual factors was tested by removing the factor of interest and comparing the deviance to the 

respective full models. If factors were found to be significant, pairwise post-hoc comparisons (t –

tests) were used to check the comparisons of interest. 

RESULTS 

Environmental monitoring 

All environmental parameters monitored showed marked seasonal variability over the study 

period, with the most pronounced differences occurring between winter and summer (Table 6.1). 

Both the daily maximum irradiance and integrated diurnal irradiance were higher in spring and 

summer compared to winter and fall (Table 6.1).  In situ temperature at 10 m water depth ranged 

from 22.4 to 28.0 °C over the year, remaining low throughout winter and spring then reaching a 

maximum in summer before decreasing again in fall (Table 6.1). Concentrations of NH4
+, NOx and 

PO4
3- exhibited a negative correlation with temperature (lm: all p < 0.001), with concentrations more 

than twice as high in winter and spring compared to summer and fall, reflecting the deep winter 

mixing and summer stratification of the water column (Silverman et al. 2007). The ratio of dissolved 

inorganic nitrogen to phosphate (DIN:PO4
3-) ranged from 3.4 to 15.6 over the year but was 

consistently lower than the Redfield ratio (16:1), while POC:PN ratios always exceeded the Redfield 

ratio (106:16), indicating a deficiency of N compared to Redfield proportions. Chl a decreased by half 

in summer compared to all other seasons, while POC and PN were highest in spring during the 

seasonal plankton bloom (Table 6.1). 
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Table 6.1 Environmental parameters monitored at 10 m water depth over four seasonal periods in 2013; 

Winter (February), Spring (April), Summer (September), Fall (November). Parameters include irradiance 

measured as both the mean daily maximum (µmol photons m-2 s-2) and integrated diurnal mean (mol photons 

m-2 d-1), temperature (°C), ammonium (NH4
+), nitrate + nitrite (NO3

2- + NO2
-), total dissolved inorganic 

nitrogen (DIN), phosphate (PO4
3-), particulate organic carbon (POC), particulate nitrogen (PN), and 

chlorophyll a (Chl a). Temperature and irradiance were measured continuously during each seasonal period 

while other parameters were measured once weekly over four weeks (n = 4). Values are presented as mean ± 

SD. 

Parameter Winter Spring Summer Fall 

Daily maximum PAR 180 ± 43 252 ± 38 307 ± 25 171 ± 20 

Integrated diurnal PAR  3.43 ± 0.66 5.71 ± 0.32 7.25 ± 0.47 3.51 ± 0.47 

Temperature (°C) 22.5 ± 0.1 22.8 ± 0.3 27.5 ± 0.2 25.2 ± 0.2 

NH4
+ (µM) 0.32 ± 0.09 0.46 ± 0.11 0.14 ± 0.07 0.28 ± 0.07 

NO3
2- + NO2

-  (µM) 0.79 ± 0.16 0.49 ± 0.19 0.09 ± 0.21 0.18 ± 0.05 

DIN (µM) 1.11 ± 0.19 0.96 ± 0.08 0.23 ± 0.07 0.46 ± 0.10 

PO4
3- (µM) 0.11 ± 0.01 0.10 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 

DIN:PO4
3- 10.50 ± 1.09  9.68 ± 0.43 8.10 ± 3.40 12.93 ± 2.22 

POC (µM) 6.33 ± 0.70 10.25 ± 0.72 7.96 ± 1.35 8.81 ± 2.10 

PN (µM) 0.85 ± 0.07 1.27 ± 0.05 0.96 ± 0.28 0.87 ± 0.37 

POC:PN  7.34 ± 1.15 8.18 ± 1.29 8.34 ± 1.17 10.20 ± 1.62 

Chl a (µg L-1) 0.21 ± 0.02 0.22 ± 0.04 0.10 ± 0.04 0.19 ± 0.04 

Dinitrogen fixation 

N2 fixation activity varied significantly by substrate, season, and an interaction between the 

two factors (Fig. 6.1, Appendix 4 - Table 1). On annual average, N2 fixation was significantly higher 

in turf algae (4.4 ± 3.9 nmol C2H4 cm-2 h-1) and coral rock (3.5 ± 2.8 nmol C2H4 cm-2 h-1) compared 

to M. fistulifera (0.2 ± 0.2 nmol C2H4 cm-2 h-1) (post hoc paired t-test: both p < 0.001). N2 fixation of 

turf algae and coral rock were similar on annual average but significantly higher for turf algae in 

winter and summer, although in summer this was due to higher nighttime N2 fixation by turf algae 

(post hoc paired t-test: all p < 0.001). N2 fixation rates for all substrates were significantly and up to 

an order of magnitude higher in summer compared to all other seasons (post hoc paired t-test: all p < 

0.001) (Fig. 6.1). Coral rock and M. fistulifera also displayed significantly lower N2 fixation activity in 

winter (post hoc paired t-test: all p < 0.05), with the winter N2 fixation activity in M. fistulifera not 

significantly different from seawater controls. There were no significant differences in N2 fixation 

between spring and fall for any substrate (Fig. 6.1). Irradiance and temperature had a positive effect 

on N2 fixation, while inorganic nutrient concentrations had a negative effect (Table 6.2). Irradiance 

explained more variation in N2 fixation in turf algae and M. fistulifera than in coral rock, and for all 

substrates DIN explained more variation in N2 fixation than PO4
3- concentrations (Table 6.2).  
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N2 fixation activity also varied significantly by time of day (Fig. 6.2, Appendix – 4 Table 2). 

However, no significant differences were observed during dawn and dusk, and therefore we present 

only the day and night rates (Fig. 6.2). M. fistulifera exhibited significantly higher N2 fixation during the 

day compared to the night in all three seasons examined (i.e. winter, summer, and fall) (post hoc 

paired t-test: all p < 0.01). N2 fixation in turf algae showed a seasonally variable response to time of 

day, with significantly higher daytime N2 fixation in winter but significantly higher nighttime N2 

fixation in summer (Fig. 6.2). This was the only instance of significantly higher N2 fixation at night 

but it was also the highest N2 fixation rate measured over all substrates and seasons, with a rate of 

17.8 ± 5.5 nmol C2H4 cm-2 h-1. Coral rock displayed no significant differences in N2 fixation between 

day and night (Fig. 6.2). 

 

 

 

 

 

Figure 6.1 Mean N2 fixation measured as acetylene reduction rates of the three investigated benthic 

substrates over the four seasonal periods in 2013; winter (February), spring (April), summer 

(September), fall (November). Values (acetylene reduction nmol C2H4 cm-2 h-1) are presented as mean (n = 8) 

± SD. Different letters indicate statistical differences within each substrate. Note the different y-axis scale for 

Mycale fistulifera. 
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Table 6.2 Linear regression analysis of the influence of key environmental parameters on the Pgross and 

N2 fixation rates of the three investigated substrates. Data are presented as R-squared values at significance 

levels of <0.05*, <0.01**, <0.001***. Bold values indicate a significant positive linear relationship and italicized 

values indicate a significant negative linear relationship. Abbreviations: Pgross =  gross photosynthesis, DIN = 

dissolved inorganic nitrogen, PO4
3- = phosphate. 

  Irradiance Temperature DIN PO4
3- 

N2 fixation Turf algae 0.542*** 0.696*** 0.586*** 0.399*** 

 Coral rock 0.415*** 0.458*** 0.511*** 0.396*** 

 Mycale  fistulifera 0.503*** 0.714*** 0.696*** 0.584*** 

      

Pgross Turf algae 0.505*** 0.424*** 0.305** 0.163 * 

 Coral rock 0.028 NS 0.122 NS 0.096 NS 0.088 NS 

 Mycale fistulifera 0.403*** 0.212** 0.244** 0.162* 

 

 

 

 

Figure 6.2. Mean day (light bars) and night (dark bars) N2 fixation measured as acetylene reduction 

rates of a) turf algae, b) coral rock, and c) Mycale fistulifera over three seasons in 2013 (winter, 

summer, and fall). Values (acetylene reduction nmol C2H4 cm-2 h-1) are presented as mean (n = 8) ± SD. 

Different letters indicate statistical differences within each substrate. Note the changes in scale of the y-axis. 
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Primary productivity 

There were significant effects of substrate and season as well as a significant interaction 

between the two factors for all physiological parameters measured (Appendix 4 - Table 1). Over all 

seasons, rates of Pgross were significantly higher in turf algae compared to coral rock (post hoc paired 

t-test: p < 0.001) and significantly lower in M. fistulifera compared to both other substrates (post hoc 

paired t-test: both p < 0.001). Despite low positive Pgross rates, M. fistulifera exhibited negative Pnet rates 

(Table 6.3). This was due to high R rates, which were significantly higher than for turf algae and coral 

rock (post hoc paired t-test: both p < 0.001) and resulted in low Pgross:R ratios (< 1) indicating 

heterotrophic metabolism by the sponge (Wilkinson 1987). Coral rock exhibited significantly higher R 

and lower Pgross:R ratios than turf algae (post hoc paired t-test: both p < 0.001) (Table 6.3).  

Seasonal variations in Pgross were less pronounced than for N2 fixation (Table 6.3). Pgross was 

significantly higher in turf algae in summer (post hoc paired t-test: all p < 0.001) and significantly 

lower in coral rock in spring (post hoc paired t-test: p < 0.01) (Table 6.3). It should be noted that 

Pgross and Pnet rates for turf algae in spring may represent the lower end of typical spring values due to 

unseasonably low irradiances during the turf algae photosynthesis incubations (73.8 ± 26.3 μmol 

photons m-2 s-1 compared to the seasonal mean of 252 ± 38 μmol photons m-2 s-1). Pgross in M. 

fistulifera was significantly higher in spring compared to winter and in summer compared at all other 

seasons (post hoc paired t-test: all p < 0.001). Irradiance and temperature were positively correlated 

with Pgross in turf algae and M. fistulifera and explained more of the seasonal variation in Pgross than 

DIN and PO4
3-, which were negatively correlated (Table 6.2). There was little seasonal variation in 

Pgross of coral rock with no significant effect of any monitored environmental parameter (Table 6.2). 

 

Table 6.3. Metabolic parameters measured in the three investigated substrates over four seasonal 

periods. Rates are presented as nmol O2 cm-2 h-1 (mean ± SD, n = 8). Abbreviations: Pgross =  gross 

photosynthesis, R = respiration, Pnet = net photosynthesis. 

Substrate Season Pgross  R Pnet Pgross:R 

Turf algae 

 

Winter 528 ± 85 95 ± 12 433 ± 77 5.6 ± 0.7 

Spring 550 ± 107 78 ± 19 473 ± 95 7.2 ± 1.1 

 Summer 894 ± 162 119 ± 27 775 ± 155 7.8 ± 2.1 

 Fall 509 ± 84 95 ± 19 415 ± 68 5.4 ± 0.6 

 Mean 620 ± 195 97 ± 24 524 ± 179 6.5 ± 1.6 

Coral rock Winter 472 ± 237 96 ± 55 379 ± 186 4.7 ± 0.4 

 Spring 354 ± 165 69 ± 38 271 ± 136 3.4 ± 1.9 

 Summer 553 ± 152 179 ± 95 374 ± 124 3.5 ± 1.2 

 Fall 446 ± 134 144 ±35 302 ± 105 3.1 ± 0.5 

 Mean 438 ± 189 122 ± 72 316 ± 158 3.7 ± 1.9 

Mycale fistulifera Winter 64 ± 49 238 ± 38 -174 ± 27 0.3 ± 0.1 

Spring 220 ± 42 348 ± 103 -139 ± 109 0.7 ± 0.2 

 Summer 307 ± 108 563 ± 55 -256 ± 80 0.5 ± 0.2 

 Fall 139 ± 68 564 ± 106 -393 ± 190 0.3 ± 0.2 

 Mean 190 ± 121 431 ± 164 -240 ± 149 0.5 ± 0.3 
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Contribution of dinitrogen fixation to primary productivity 

There was a significant positive linear relationship between Pgross and N2 fixation for turf 

algae and coral rock only during summer and fall (Table 6.4). N2 fixation explained 65 – 76% of the 

variation in Pgross in turf algae and 62 – 74% in coral rock during these seasons. In contrast there was 

no significant relationship between N2 fixation and Pgross in M. fistulifera during any of the four seasons 

(Table 6.4). The potential contributions of N2 fixation to the N demand for  Pnet, which represents 

the new production available for growth after accounting for respiration, were on average 10.5% for 

turf algae and 14.5%, for coral rock, but non-calculable for M. fistulifera, which displayed negative Pnet 

(Table 6.5). This contribution was seasonally variable with N2 fixation having the potential to supply 

the highest amounts of N in summer (up to 19.8 and 26.8% of the N required to meet the demand 

for Pnet in turf algae and coral rock, respectively), while the contributions in winter were estimated to 

be less than 6% for all substrates (Table. 6.5). 

Table 6.4. Linear regression analysis between the gross photosynthesis (Pgross) rates and N2 fixation 

rates of each of the three substrates during each of the four seasonal periods. Data are presented as R-

squared values at significance levels of <0.05*, <0.01**, <0.001***, and NS which indicates no significance. 

Bold values indicate a significant positive linear relationship.  

 Turf algae Coral rock Mycale fistulifera 

Winter 0.245 NS 0.216 NS 0.022 NS 
Spring 0.064 NS 0.318 NS 0.205 NS 

Summer 0.653*   0.626* 0.199 NS 
Fall 0.741** 0.704** 0.374 NS 

Table 6.5. Dinitrogen (N2) fixation, net primary production, nitrogen (N) required to meet the demand 

for net production and the percentage of the N requirement for net production met by N2 fixation in 

the three investigated substrates. Values are reported as mean ± SD (n = 8). 

Substrate Season N2 fixation 

 (µmol N cm-2 d-1) 

Net production  

(µmol C cm-2 d-1) 

N requirement for 

net production 

 (µmol N cm-2 d-1) 

 % N requirement 

met 

Turf algae Winter 0.021 ± 0.006 5.0 ± 0.9 0.36 ± 0.07 5.9 ± 1.4 

 Spring 0.032 ± 0.015 5.5 ± 1.1 0.40 ± 0.08 8.1 ± 3.6 

 Summer 0.134 ± 0.031 8.9 ± 1.8 0.65 ± 0.12 19.8 ± 3.2 

  Fall 0.033 ± 0.006 4.8 ± 0.8 0.35 ± 0.06 9.3 ± 0.9 

 Mean 0.052 ± 0.047 6.0 ± 2.1 0.44 ± 0.15 10.5 ± 5.8 

Coral rock Winter 0.005 ± 0.004 4.4 ± 2.1 0.32 ± 0.16 2.2 ± 1.9 

 Spring 0.037 ± 0.014 3.1 ± 1.6 0.25 ± 0.11 12.6 ± 1.7 

 Summer 0.083 ± 0.032 4.3 ± 1.4 0.31 ± 0.10 26.8 ± 6.4 

 Fall 0.032 ± 0.013 3.5 ± 1.2 0.25 ± 0.09 12.5 ± 2.8 

 Mean 0.041 ± 0.034 3.9 ± 1.6 0.28 ± 0.15 14.5 ± 10.0 

Mycale  Winter 0.007 ± 0.001 -2.0 ± 0.3 - - 

fistulifera Spring 0.001 ± 0.001 -1.3 ± 0.8 - - 

 Summer 0.007 ± 0.003 -3.0 ± 0.9 - - 

 Fall 0.001 ± 0.003 -4.5 ± 2.2 - - 

 Mean 0.002 ± 0.003 -2.7 ± 1.7 - - 
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DISCUSSION 

Dinitrogen fixation in coral reef framework substrates 

N2 fixation rates presented here are comparable to those reported for turf algae, coral rock, 

and sponges on coral reefs worldwide (Table 6.6). The relatively high variability in N2 fixation 

reported for turf algae likely results from regional differences in turf community composition (Bauer 

et al. 2008) or responses to local environmental conditions (Williams & Carpenter 1998). While N2 

fixation rates previously reported for turf algae are typically higher than those of coral rock (Table 

6.6), our rates for both substrates were similar, with significantly higher N2 fixation in turf algae only 

during winter and summer at night. However, studies reporting higher rates of N2 fixation in “bare” 

rock compared to rock with epilithic algal, suggest endolithic N2 fixation can exceed that of some 

epilithic communities (Wilkinson et al. 1984, Casareto et al. 2008). This demonstrates the importance 

of apparently “bare” substrate in generating new N on coral reefs. 

N2 fixation rates in M. fistulifera were an order of magnitude lower than for turf algae and 

coral rock, but are in the range typically reported for other animal-microbe symbioses such as 

scleractinian corals (Shashar et al. 1994b, Davey et al. 2008) and other cnidarians (Shashar et al. 

1994a, Bednarz et al. 2015). There are very few reports of active N2 fixation in marine sponges, but 

the rates for M. fistulifera are consistent with those reported for other Red Sea sponges in the only 

other study presenting sponge N2 fixation rates normalized to organism surface area (Shashar et al 

1994a, Table 6.6). It should be noted that both studies used the acetylene reduction method, which 

has reportedly proven problematic for some sponges (Wilkinson 1999). However, all sponges were 

actively pumping post-incubation and the high pumping rate would ensure rapid flushing of the 

tissue, excluding the likelihood of acetylene toxicity or insufficient acetylene and ethylene transport. 

Acetylene may disrupt other N cycling processes, such as nitrification, that occur in some sponges, 

however the absence of nitrate production by M. fistulifera suggests it does not host this process (L. 

Rix unpublished data). We cannot exclude metabolism of ethylene by microbial symbionts, however 

this would affect all three substrates, not only the sponge. It may rather be that this apparent 

difficulty in measuring N2 fixation in sponges is due to in part to low N2 fixation activity, as observed 

here (particularly in winter) and in other studies (Wilkinson & Fay 1979, Shashar et al. 1994a, Shieh & 

Lin 1994, Wilkinson 1999). Despite the low rates we observed consistent and measureable N2 fixation 

with low variability and clear seasonal trends. Further, the low δ15N tissue values of M. fistulifera (< 

1‰, L. Rix unpublished data) are consistent with biological 15N fixation (Yamamuro et al. 1995, 

Montoya et al. 2002). The lower N2 fixation activity in M. fistulifera is likely due to low diazotroph 

abundances or activity in the sponge-associated microbial community compared to turf algae and 

coral rock, which can be composed largely of N2 fixing cyanobacteria (Charpy et al. 2012). Given that 
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the DIN release rates reported for sponges exceed reported rates of N2 fixation by orders of 

magnitude (Diaz & Ward 1997, Southwell 2007), N2 fixation may not be of high functional 

importance for the nutrition of the sponge host. As efficient filter feeders sponges may meet their N 

demand primarily via heterotrophic feeding (Pile et al. 2003). 

Table 6.6. Comparison of known N2 fixation rates of turf algae, coral rock, and sponges reported from 

coral reefs worldwide. Values are presented as nmol N cm-2 h-1. Original C2H4:N2 conversion rates were used 

to calculate the N2 fixation rates from acetylene reduction rates if reported in the original study. If no 

conversion rate was available the conservative ratio of 4:1 was used. 

Substrate N fixation Region Reference 

Turf algae 0.9 – 5.6 Red Sea Present study 

Turf algae 4.6 ± 0.3 Red Sea  Shashar et al. 1994a 

Turf algae  0.3 – 29.7a  Great Barrier Reef Larkum et al. 1988 

Turf algae 8.3 – 36.7 Great Barrier Reef Wilkinson & Sammarco 1983 

Turf algae 13.5 ± 5.5 Hawaiian Islands Williams & Carpenter 1998 

Turf algae 3.7 ± 5.4 Caribbean Williams & Carpenter 1997 

Turf algae 6.0 ± 0.9 Caribbean Den Haan et al. 2014 

Coral rock 0.2 – 3.5 Red Sea Present study 

Coral rock 0.3 ± 0.2 Red Sea Shashar et al. 1994a 

Coral rock 0.2 – 1.9 Great Barrier Reef Wilkinson et al. 1984 

Coral rock 0.1 – 6.4 Great Barrier Reef Davey et al. 2008 

Coral rock 6.4 ± 1.8a Great Barrier Reef Larkum et al. 1988 

Coral rock 0.6b French Polynesia Charpy-Roubaud et al. 2001 

Sponge (M. fistulifera)  0.01 – 0.3 Red Sea Present study 

Sponges  0.1 ± 0.2 Red Sea  Shashar et al. 1994a 
a Conversion factor 3.45 
b Conversion factor 3.3 

Diel dinitrogen fixation pattern 

While many studies have found substantially higher daytime N2 fixation activity in coral rock 

(Wilkinson et al. 1984, Charpy-Roubaud et al. 2001, Holmes & Johnstone 2010) and turf algae 

(Williams & Carpenter 1997, den Haan et al. 2014), our results show consistent and substantial 

nighttime N2 fixation by both substrates. Turf algae exhibited significantly higher daytime N2 fixation 

in winter but significantly (3-times) higher nighttime N2 fixation in summer. This could indicate a 

shift in the turf community towards more non-heterocystous cyanobacteria or heterotrophic 

diazotrophs in summer, as typically only heterocystous cyanobacteria can fix N2 in the presence of O2 

generated by photosynthesis (Bergman et al. 1997). While cyanobacteria have long been considered 

the primary diazotrophs responsible for benthic marine N2 fixation, the role of heterotrophic bacteria 

is increasingly being recognized (Zehr et al. 1995, Bauer et al. 2008). Identification of the diazotroph 

community would provide further insight into the patterns of N2 fixation observed here. Similar day 

and night N2 fixation rates by coral rock suggest a diazotroph community equally adapted to light and 

dark conditions. Only M. fistulifera consistently exhibited significantly higher N2 fixation activity in the 
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day compared to night (2-times), suggesting either the role of phototrophic diazotrophs or 

heterotrophic diazotrophs energetically dependent on photosynthetic products. Sponges host diverse 

communities of microbial symbionts and nitrogen fixation nifH genes affiliated with a range of 

cyanobacteria and heterotrophic bacteria have been detected in tropical sponges (Mohamed et al. 

2008, Zhang et al. 2014, Fiore et al. 2015). Evidence for active cyanobacterial nifH expression 

dominating during the day and higher proteobacterial nifH expression at night in the congeneric 

Mycale laxissima suggests multiple diazotrophs can contribute to sponge-associated N2 fixation and 

provides a potential explanation for diel patterns of sponge N2 fixation activity (Mohamed et al. 2008, 

Zhang et al. 2014). The presence of cyanobacteria could also explain our findings of Pgross in M. 

fistulifera and future studies should investigate the symbionts responsible for photosynthesis and N2 

fixation in the sponge. The lack of peaks in N2 fixation during low light levels as observed for the 

coral M. cavernosa (Lesser et al. 2007) and the co-occurrence of N2 fixation during the day with 

photosynthesis indicate that the diazotroph communities of the three investigated substrates are 

equipped with other strategies to overcome O2 inhibition of nitrogenase. 

Seasonality in dinitrogen fixation and primary productivity 

This is the first study examining seasonal N2 fixation in a diverse group of reef framework 

substrates, and our findings highlight the importance of environmental parameters in regulating 

benthic N2 fixation activity. Temperature and irradiance positively affected N2 fixation, while 

inorganic nutrients had a negative influence, resulting in the highest rates in summer when irradiance 

and temperature were highest but inorganic nutrients lowest. This seasonal pattern showed 

remarkable consistency across the three substrates despite their differing trophic strategies, and is 

consistent with reports of higher summer benthic N2 fixation in the GBR (Larkum et al. 1988) as well 

as higher summer N2 fixation  in soft corals (Bednarz et al. 2015) and pelagic communities in the Red 

Sea (Rahav et al. 2015). High temperatures can directly stimulate the enzymatic activity of nitrogenase 

and are associated with increased growth and N2 fixation in free-living cyanobacteria (Breitbarth et al 

2007). Conversely, lower temperatures can increase respiratory costs associated with N2 fixation in 

unicellular cyanobacteria (Brauer et al. 2013). However, temperature alone likely cannot explain the 

observed seasonality, as there were no significant differences in N2 fixation between spring and fall, 

despite a 2.5 ºC temperature difference. By enhancing photosynthesis, irradiance may stimulate the 

energetically costly process of N2 fixation through the provision of larger quantities of energy-rich 

photosynthates (Bebout et al. 1993), if the responsible diazotrophs are protected from the 

corresponding increase in O2 production. Although this largely appears to be the case for the 

substrates investigated here, given only turf algae and M. fistulifera exhibited significantly higher 

summer photosynthesis but all three substrates displayed an increase in N2 fixation, irradiance was 

unlikely the primary driving factor. The effect of decreased DIN concentrations during summer likely 
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played a key role and can be explained by the higher energetic costs of N2 fixation compared to DIN 

assimilation (Gallon 2001), making it a seasonal strategy when external nutrients are scarce. This is 

supported by observations of increased nitrogenase activity in N-starved cultured filamentous 

cyanobacteria (Ramos et al. 1985) and inhibition of N2 fixation in coral skeletons and reef sediments 

under elevated NH4
+ concentrations (Koop et al. 2001, Holmes & Johnstone 2010). These findings 

suggest diazotrophs are capable of altering their N2 fixation activity to adjust to the availability of 

external N sources. While elevated N2 fixation also increases iron (Fe) demand compared to NH4
+ 

assimilation (Kustka et al. 2003), Fe limitation is unlikely to be a limiting factor in the Gulf of Aqaba 

due to high dust inputs (Ying et al. 2007, Foster et al. 2009). Alternatively, seasonal variability in N2 

fixation activity may be influenced by seasonal changes in the diazotroph communities associated 

with the three substrates. Overall the combination of key environmental parameters in summer (i.e. 

high irradiance, high temperature, and low inorganic nutrients), appear to interact to cause 

substantially higher N2 fixation rates. Importantly, this results in the highest N2 fixation when the 

inorganic N supply is lowest. 

Contribution of dinitrogen fixation to primary productivity 

Interestingly, high photosynthesis rates were sustained in summer when temperature and 

irradiance were highest, despite low inorganic nutrient availability. This suggests that either primary 

production was not nutrient (DIN) limited or that additional nutrient sources contributed to 

supporting photosynthesis. Given the significant positive linear relationship between Pgross and N2 

fixation for both turf algae and coral rock only during summer and fall when inorganic nutrient 

concentrations were low, this suggests fixed N may play a role in supporting primary production, at 

least when other sources of nutrients are scarce. For turf algae, we estimated that while fixed N could 

only supply 6% of the N demand for Pnet in winter, this increased to 20% in summer, suggesting N2 

fixation has the potential to be an important N supply for photosynthesis. Williams & Carpenter 

(1997) found N2 fixation contributed less than 2% to the N demand for Pnet in turf algae in the 

Caribbean, with the estimated contribution by NH4
+ assimilation an order of magnitude higher. While 

comparable to our winter estimates, this is substantially lower than our summer values. However, the 

N2 fixation rates measured by Williams & Carpenter (1997) were lower than those measured during 

our study in summer and NH4
+ concentrations may have differed. While DIN assimilation would also 

represent an important process at our study site, increased summer N2 fixation may compensate for 

the decrease in DIN concentrations, sustaining high summer Pnet rates. For coral rock we estimate 

that N2 fixation could supply 2% of the N demand for Pnet in winter and 27% in summer. This is 

remarkably consistent to the 2 – 28% estimated for coral rock from Sesoko Island (Pacific Ocean) 

and Le Reunion (Indian Ocean) (Casareto et al. 2008). It should be noted though that these 

calculations are highly dependent on the C:N of the substrates, which may vary spatially and 
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temporally. Further, photosynthetic rates change over the day but here were measured only during 

periods of maximum irradiance.. However, since these measurements represent the maximum Pnet 

rates (preliminary photosynthesis-irradiance curves showed no photoinhibition at these irradiances), 

our estimates of the potential contribution of N2 fixation to primary production can be considered 

conservative as they may underestimate the importance of N2 fixation at lower Pnet rates occurring 

over the day. Future studies should investigate the utilization of fixed N by the turf algae and coral 

rock consortia to confirm a relationship between N2 fixation and primary production. In contrast to 

turf algae and coral rock, we found no significant relationship between N2 fixation and Pgross in M. 

fistulifera. Sponges release large quantities of DIN (eg. Southwell et al. 2008), which may provide 

another source of N for their photosynthetic symbionts and could explain the lack of correlation 

between the two processes found here. While photosynthesis supplies a significant portion of the 

energy demand of some sponge species (Wilkinson 1987, Erwin & Thacker 2007), given M. fistulifera 

exhibited negative Pnet and overall heterotrophic metabolism (Pgross:R < 1), photosynthesis is unlikely 

to be important to its overall nutrition. Nevertheless, these findings highlight the potential for N2 

fixation to contribute to sustaining high rates of Pnet in coral rock and turf algae during the period of 

water column stratification in the Gulf of Aqaba. 

Ecological implications 

In addition to directly supporting their own growth, N fixed by turf algae and coral rock may 

substantially contribute to new N on coral reefs via N release from cyanobacterial cells (Mulholland 

et al. 2004), mechanical disturbances such as grazing (Williams & Carpenter 1997), or by the recycling 

of diazotroph biomass. Using the estimated 3D-surface area of each substrate per m2 of reef, we 

calculate that N2 fixation by the three substrates introduces to the reef 47 µmol N2 m-2 d-1 of fixed N 

in winter and up to 185 µmol N m-2 d-1 in summer. These values are comparable to the benthic reef 

community N2 fixation estimated for One Tree Island (GBR) of 78 – 156 µmol N2 m-2 d-1 (Larkum 

1988), but lower than those calculated for Eilat (Red Sea) of 576 – 960 µmol N2 m-2 d-1 (Shashar et al. 

1994a). However, it is likely that N2 fixation by other benthic substrates not accounted for here, such 

as reef sands (Charpy-Roubaud et al. 2001, Casareto et al. 2008, Bednarz et al. in press), 

cyanobacterial mats (Charpy et al. 2007), and hard corals (Lesser et al. 2007), also substantially 

contribute to reef N generation. Due to the low abundance of M. fistulifera on the studied reef and the 

comparatively low rates of N2 fixation associated with the microbial community of M. fistulifera, it 

contributed < 1% of the total new N fixed by the three investigated substrates. Unless the abundant 

cryptic sponge community fixes N at higher rates, sponges likely do not contribute substantially to 

reef N generation, at least via N2 fixation. They do produce large quantities of inorganic nutrients 

through remineralization of particulate organic matter and association with nitrifying bacteria (Richter 

et al. 2001, Southwell et al. 2008). While turf algae are increasingly a dominant component on many 
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coral reefs (e.g. Bahartan et al. 2010), their low and seasonally variable abundance at the present study 

site resulted in a substantial contribution to new reef N generation only in winter (72%). Low 

abundances in other seasons resulted in a contribution of 10 – 31% of the total N fixed by the three 

investigated substrates during the rest of the year. Given their high potential for N2 fixation, turf algae 

are likely an important source of new N on turf-dominated reefs (eg. den Haan et al. 2014). High N2 

fixation and high benthic coverage (11 – 20%) characterize coral rock as the major year-round 

contributor of newly fixed N among the three investigated substrates, accounting for 28% in winter 

but 69 – 90% of the N fixed during the other seasons. Overall two- to four-times more N was fixed 

in summer compared to the other seasons. This fixed N appears to be of greater ecological 

importance during the low nutrient summer season in the Gulf of Aqaba, particularly for supporting 

primary production. This highlights the potential significance of N2 fixation by coral rock and turf 

algae in coral reef ecosystems with more constant oligotrophic conditions. 
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KEY FINDINGS 

 

The aim of this thesis was to advance the understanding of the roles that sponges play in the 

biogeochemical cycling of C and N on coral reefs, particularly in regards to the newly described 

sponge loop. Through a variety of experimental approaches, including stable isotope tracer 

experiments, fatty acid analysis, C and N flux incubations, and modeling, this thesis was able to 

provide preliminary answers to each of the six key questions formulated in the general introduction 

(Chapter 1) with the hope that future research will be able to build and expand upon these findings. 

The key findings of the thesis are synthesized and summarized in the responses to the six questions 

below.   

 

1. Is there evidence for a “sponge loop” functioning in organic matter cycling on coral reefs in 

oceanic regions other than the Caribbean Sea? Are there differences in the functioning of the 

sponge loop between shallow, warm-water and deep-sea cold-water, coral reef ecosystems? 

 

The findings of this thesis present the first evidence for the functioning of a sponge loop 

outside the initial observation in the Caribbean by de Goeij and colleagues (2013), demonstrating the 

sponge loop is not limited to shallow, warm-water (WW) coral reefs but also occurs in cold-water 

(CW) reefs of the deep sea. Remarkably, rates of organic matter uptake and transformation by 

sponges were similar on both WW (Red Sea) and CW (north Atlantic) coral reefs (Chapter 2, 4). 

Moreover, all WW and CW sponge species investigated exhibited DOM uptake, suggesting this may 

be a widespread strategy employed by coral reef sponges inhabiting environments where the 

concentrations of POM are low (e.g. Chapter 6). DOM uptake may also explain the imbalance in 

sponge carbon (C) and nitrogen (N) budgets that have been reported for several sponge species, 

including N. magnifica investigated in Chapter 2 (Reiswig 1974; 1981, Thomassen & Riisgard 1995, 

Hadas et al. 2009, Maldonado et al. 2012). Furthermore, we observed detritus (POM) production in 

all species investigated (Chapter 2, 4, 5), and consistently found that 12 – 40% of the DOC and 29 – 

49% of the DON assimilated by the sponges was subsequently turned over as sponge detritus 

(Chapter 2, 4). This demonstrates that a major fraction of the DOM assimilated by sponges is 

subsequently released in a particulate form available to other organisms. Finally, we confirm that 

sponge detritus is consumed by two reef-associated detritivores, ophiuroids and polychaetes; thereby 

demonstrating the transfer of the energy and nutrients bound in DOM to higher trophic levels that 

completes the final step of the sponge loop (Chapter 2). The demonstration of a sponge loop in 

Caribbean, Red Sea, and north Atlantic reefs suggests that this sponge-mediated recycling loop may 

be a ubiquitous pathway for organic matter cycling on coral reefs and may contribute to the high 



CHAPTER 7 

189 
  

biogeochemical cycling observed in oligotrophic (WW) carbon-deplete (CW) ecosystems by 

enhancing the retention and cycling of DOM (Hatcher 1988, Crossland et al. 1991, van Oevelen et al. 

2009, White et al. 2012).

Nevertheless, despite overall similarities in uptake and transformation rates, Chapter 4 

discovered differences in the specific processing of C and N by the WW and CW sponges. The 

slightly lower rates of DOM uptake and transformation in the CW sponge may be due to the lower 

temperatures in the CW environments; as Chapters 3 and 6 demonstrated that sponge metabolism 

was affected by seasonal changes in temperature. Furthermore, while the WW sponge M. fistulifera 

exhibited preferential uptake of mucus N; the CW sponge H. coriacea displayed relatively higher C 

uptake. This is consistent with the ambient availabilities of C and N in the respective sponge 

environments. Nitrogen limits primary production on oligotrophic WW reefs (Delgado & Lapointe 

1994, Larned 1998, Atkinson 2011, den Haan et al. 2013); whereas C is the limiting resource on 

energy-depleted CW reefs that are entirely reliant on the input of external organic matter (Duineveld 

et al. 2004, Kiriakoulakis et al. 2004, Roberts et al. 2006). Therefore, we hypothesize that due to these 

differences in C and N availability, the functional role of the sponge loop may differ in the two 

ecosystems with N cycling in WW and C cycling in CW reefs disproportionately contributing to 

ecosystem functioning. However, additional experiments with more sponge species and larger 

replication are needed to confirm this hypothesis. Nevertheless, efficient organic matter retention and 

recycling by sponges may provide key functions in these two coral reef ecosystems, that despite their 

vast environmental differences, can both be considered as oases in a marine desert. The discovery of 

functioning sponge loops in a variety of coral reef ecosystems also highlights the potential for a 

sponge loop in other oligotrophic marine ecosystems where sponges are abundant.  

 

2. Is there a direct trophic link between the key benthic primary producers (corals and algae) 

and the sponge community on coral reefs? How do different DOM sources influence the 

uptake and transformation of organic matter by reef sponges? 

 

The exudates of scleractinian corals and benthic algae constitute an important resource and a 

major source of labile DOM on coral reefs (Wild et al. 2004a, Haas et al. 2010, Naumann et al. 2010). 

Despite potentially representing a key source of DOM fueling the sponge loop, the uptake of coral- 

and algal-derived DOM by sponges has not previously been investigated. Furthermore, the impact of 

different DOM sources on recycling via the sponge loop is completely unknown. The findings of this 

thesis present the first direct evidence for the uptake of coral- and algal-derived DOM by reef 

sponges, demonstrating that both coral and algal-DOM fuel the sponge loop (Chapter 2, 4). A major 

strength of this study is the demonstration of the sponge loop with natural sources of coral reef 

DOM; a difficult feat given the challenges of producing large quantities of coral and algal-exudates 
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with sufficient labelling to follow the 13C and 15N tracers through multiple trophic steps (eg. 

zooxanthellae – coral – coral mucus – sponge – sponge detritus – detritivores). As the dominant 

primary producers on coral reefs, scleractinian corals and algae support the rest of the reef 

community through the photosynthetic fixation of C. The release of up to 40% of their net C fixed as 

organic matter (Crossland et al. 1980, Muscatine et al. 1984, Tremblay et al. 2012) presents a 

mechanism by which the C fixed by corals and algae can be transferred to other reef fauna. However, 

the majority of this released organic matter immediately dissolves in the surrounding water (Wild et 

al. 2004a, Haas et al. 2010), and therefore, is largely unavailable to most heterotrophic reef fauna. 

Previously, this DOM was believed to be consumed primarily by planktonic bacteria and recycled 

exclusively via the microbial loop (Ferrier-Pagès et al. 2000, Wild et al. 2004b, Tanaka et al. 2011). 

Therefore, the findings of this thesis demonstrate an alternative pathway by which the C fixed by 

coral reef benthic primary producers can be transferred to higher trophic levels. Bacteria exhibit high 

losses of respired carbon, such that the microbial loop is an inefficient route for the transfer of DOM 

to higher trophic levels (Williams 2000, Fenchel et al. 2008, Worden et al. 2015). Furthermore, the C 

transferred via bacteria primarily fuels a largely isolated planktonic food web. Coral reef sponges 

appear to respire only up to ~45% of their assimilated C (de Goeij et al. 2008b). By releasing POM 

near the benthos, the sponge loop may then play a pivotal role not only in capturing and retaining 

reef-derived resources on the reef, where they are subject to recycling, but also in enabling them to be 

transferred to higher trophic levels.   

Importantly, the uptake of coral- and algal-derived DOM by reef sponges elucidates a novel 

trophic link between benthic primary producers and the predominately heterotrophic sponge 

community. In particular this highlights a key trophic interaction between sponges and scleractinian 

corals, the primary ecosystem engineers on both WW and CW reefs (Freiwald et al. 2004, Wild et al. 

2011). Similarly to scleractinian corals, sponges also modify the availability of resources for other reef 

fauna by providing habitat; impacting the reef framework through calcification, cementation and 

bioerosion; and modifying C and N availability in the water column (Diaz & Rutzler 2001, Wulff 

2001, Bell 2008, Chapters 2, 3, 4, 5, 6). Therefore, sponges also embody the classic definition of an 

ecosystem engineer (Jones et al. 1994). Our findings then demonstrate how trophic interactions 

between ecosystem engineers can exert major influence on ecosystem C and N flows, providing a key 

example of how interspecific interactions between species can enhance resource use, biogeochemical 

cycling, and ecosystem functioning; thereby ultimately influencing the efficiency and productivity of 

the system (Stachowicz 2001, Bruno et al. 2003, Hooper et al. 2005). This highlights how it is not 

only the ecosystem engineers acting in isolation, but also the competitive and facilitative interactions 

between them and other organisms, that shape ecosystem structure and function. Such interactions 

are ubiquitous on coral reefs (e.g. Glynn 1976, Muscatine & Porter 1977, Hill 1998, Easson et al. 

2014) and are increasingly recognized as essential for shaping coral reefs and other ecosystems 

(Bruno & Bertness 2001, Connell et al. 2004, Bronstein 2009).  
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The findings of this thesis further suggest that the interaction between scleractinian corals 

and sponges may be mutualistic (i.e. it benefits both organisms; Bronstein 1994b), or at least 

facultative (i.e. beneficial to one organism; Bronstein 2009). Corals benefit the sponges by providing a 

food source for the sponge holobiont (Chapter 2, 4); while sponges provide a source of DIN that 

could in turn be used by the corals for primary production (Chapter 5). Indeed, sponges are 

suspected to be benefit corals through nutrient provision (Slattery et al. 2013). Still, such interspecific 

interactions are context dependent, and the costs and benefits of the interaction can shift due to 

changing environmental factors (Bronstein 1994a). For example, sponges can also compete with and 

overgrow corals (Vicente 1978, Aerts & vanSoest 1997, Lopez-Victoria et al. 2006, Gonzalez-Rivero 

et al. 2011). Coral cover is declining on coral reefs worldwide due to a multitude of anthropogenic 

stressors (Pandolfi et al. 2003, Bellwood et al. 2004, Knowlton & Jackson 2008, De'ath et al. 2012). 

Algae are replacing corals on many of these reefs (McCook et al. 2001, Hughes et al. 2007, Sandin et 

al. 2008); although, sponges have also been identified as organisms that may benefit from coral 

decline and the projected effects of climate change (Norström et al. 2009, Bell et al. 2013). Indeed, 

sponge abundances are increasing on many coral reefs worldwide (Diaz & Rutzler 2001, Ward-Paige 

et al. 2005, McMurray et al. 2010, Powell et al. 2010). Thus, benthic algae may replace corals as the 

key organisms interacting with sponges. Benthic turf- and macroalgae produce DOM in larger 

quantities than scleractinian corals (Wild et al. 2010, Haas et al. 2011, Mueller et al. 2014b), and 

sponges appear to be able to take up DOM linearly with increasing availability (Mueller et al. 2014a). 

In this context, Chapter 2 of this thesis also shows that sponges exhibit higher DOM uptake and 

transformation rates when provided with algal- compared to coral-derived DOM. Furthermore, while 

coral-derived DOM was incorporated at higher rates into sponge-specific PLFAs, algal-derived DOM 

was more rapidly incorporated into bacterial biomarkers confirming that sponges actually process 

various sources of DOM differently. Since algal-derived DOM appears to be more readily taken up 

by reef sponges, this highlights the potential for benthic community phase shifts from coral to algal 

dominance to enhance recycling by the sponge loop. This increased retention and recycling of 

nutrients may lead to increased nutrient enrichment (de Goeij et al. 2013). Eutrophication is already a 

symptom of many degraded reefs, linked to both declining coral reef and the promotion of algal 

growth (Littler & Littler 1984, Lapointe 1997, McCook 1999, Lapointe et al. 2004). Thus, accelerated 

recycling by the sponge loop under such scenarios of coral-algal phase shifts could fuel a feedback 

loop that further contributes to coral reef decline. This might compound the negative feedback loop 

induced by algal exudates through accelerated recycling of the microbial loop; where algal-exudates 

promote faster microbial growth and higher respiration leading to localized anoxia and the 

development of more pathogenic microbial communities, in turn causing increased coral mortality 

(Smith et al. 2006, Barott & Rohwer 2012, Gregg et al. 2013). This further highlights the similar 

functions and potential impacts of the sponge and microbial loops. Importantly, increased recycling 
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by the sponge and microbial loops could also influence higher trophic levels with potential wider 

impacts on trophic structure (Silveira et al. 2015), and therefore warrants more investigation. 

 

3. What role do sponge-associated microbes play in the uptake of reef-derived dissolved 

organic matter by the sponge holobiont? Are there differences in the processing of DOM by 

high‐ and low‐microbial abundance sponges? 

 

The role of symbiotic microbes in contributing to the overall health, metabolism, and 

functioning of their animal hosts is increasingly being recognized in many organisms from corals 

(Lesser et al. 2007, Rosenberg et al. 2007, Thompson et al. 2015) to humans (Dethlefsen et al. 2007, 

Turnbaugh et al. 2007). Sponges host diverse and unique communities of microbes that endow them 

with a range of metabolic pathways (Taylor et al. 2007). The fact that microbes can account for more 

than 35% of the sponge biomass (Vacelet 1975) and form stable and specific associations (Lee et al. 

2011, Schmitt et al. 2012, Simister et al. 2012, Webster et al. 2013), suggests these microbes have 

helped shape sponge evolution by playing key functional roles (Taylor et al. 2007, Webster et al. 2010, 

Webster & Taylor 2012). Consequently, at least some of these interactions are suspected to be 

mutualistic, even though evidence for such mutualism is scarce (Weisz et al. 2007, Webster & Blackall 

2009). As microbes are the dominant consumers of DOM in the ocean, DOM uptake in sponges is 

believed to be at least partially mediated by their symbiotic microbes (Reiswig 1974, Weisz et al. 2007, 

Maldonado et al. 2012). However, most microbes dwell in the inner mesophyll of the sponge, and 

therefore, are not in direct contact with DOM in the ambient water, suggesting also the involvement 

of the sponge host. By demonstrating assimilation of coral- and algal-derived DOM into both sponge 

and bacterial biomarkers, the results of this thesis were able to show that indeed both sponge cells 

and sponge-associated microbes play a role in the uptake of DOM (Chapter 2, 4). This is consistent 

with the only other comparable study examining uptake of diatom-DOM in the Caribbean sponge 

Halisarca caerulea (de Goeij et al. 2008a). As might be expected, microbes were more active in the 

uptake of DOM in the HMA compared to LMA sponges, as evidenced by higher bacterial PLFA 

incorporation in the HMA sponge C. sacciformis. Interestingly, DOM uptake has been hypothesized as 

one of the advantages to hosting dense microbial populations, potentially accounting for 

discrepancies in the sponge C budget observed particularly for HMA sponges (Reiswig 1974, Weisz et 

al. 2007, Maldonado et al. 2012). Yet, no differences were found in DOM uptake rates between HMA 

and LMA sponges, suggesting they have an equal capacity for taking up DOM. This implies that 

microbes confer no additional benefit to the sponge host in terms of the ability to access dissolved 

food sources. This finding is consistent with other reports of DOM uptake in LMA sponges (de 

Goeij et al. 2013, Mueller et al. 2014a) and indicates that other benefits such as autotrophic 
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metabolism, elimination of toxic metabolic by-products, or the production of protective secondary 

metabolites may have been more influential in the development and co-evolution of sponge-microbe 

symbioses (Taylor et al. 2007, Webster & Taylor 2012). Indeed, a recent review suggests that, at least 

on Caribbean reefs, sponges are governed primarily by top-down processes such as predation (Pawlik 

et al. 2015); while the role of food availability remains controversial (Lesser & Slattery 2013, Pawlik et 

al. 2013). Nevertheless, due to their lower pumping capacity, and therefore lower capacity for POM 

filtering (Weisz et al. 2008), DOM may be relatively more important to the diet of HMA sponges as 

hypothesized by Reiswig (1974) and others (Maldonado et al. 2012). Consequently, the actual 

contribution of coral- and algal-derived DOM to the total sponge C budget should be determined. 

Moreover, microbes may increase the proportion of the DOM pool available to the sponge holobiont 

as sponge cells may primarily take up colloidal DOM, while the truly dissolved fraction may be more 

readily available to the associated microbes (de Goeij et al. 2008a). This may explain the apparent 

differences in the contribution of bacteria to total PLFA tracer assimilation between different types 

of DOM sources (Chapter 2, 4), which demonstrates that DOM quality and composition influences 

uptake by the sponge holobiont. Finally, while we could not quantitatively determine the 

contributions of microbes vs. sponges cells in DOM incorporation, HMA sponges appear to be more 

reliant on their associated microbes for taking up DOM with bacterial PLFA incorporation 

accounting for 33-42 % of the total tracer PLFA incorporation in C. sacciformis compared to 2 - 10% 

in M. fistulifera (Chapter 2). While translocation of C and N between microbes and the sponge host is 

suspected, there is limited evidence for such transfer from heterotrophic microbes to the sponge host 

(Webster & Blackall 2009, Thacker & Freeman 2012). Given that the percentages of DOM turned 

over as POM were similar across all sponges regardless of microbial abundances, and the fact that 

this POM is derived from the sponge host, this could be taken as evidence of a trophic transfer 

between the microbes and the sponge host - particularly for the HMA sponge C. sacciformis where up 

to 42% of assimilated DOM was traced into bacterial PLFAs. This study, therefore, provides further 

support that while there are differences in the specific C and N processing between HMA and LMA 

sponges, the overall DOM uptake and transformation rates are similar; thus HMA and LMA sponges 

appear to participate equally in the sponge loop. This supports the recent hypothesis that marine 

sponges display a high level of functional convergence, where, despite differences in the specific 

microbial groups present, the functioning of the sponges remains the same (Fan et al. 2012, Ribes et 

al. 2012, Freeman et al. 2013). 

 

4. How important is organic C cycling by the sponge loop at the ecosystem level?  

Carbon is the energetic currency of the reef; thus, understanding C cycling is fundamental to 

understanding coral reef ecosystem functioning. By combining the fluxes of DOC uptake and POC 

production by reef sponges with rates of primary production and organic matter release by benthic 
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reef primary producers into a trophic model, Chapter 3 shows that C cycling by reef sponges plays a 

quantitatively important role in the overall biogeochemical cycling of C at the ecosystem level in the 

Red Sea. However, these high C fluxes were due almost entirely to the high activity of the cryptic 

sponge community, which far outweighed the contribution of the epi-reefal surface sponge 

community as the high surface area of the cryptic reef habitat and its dominant coverage by sponges 

exceeds the biomass of the epi-reefal community (Richter et al. 2001, Wunsch et al. 2000). The 

cryptic reef community is ubiquitous in reef ecosystems, representing both the largest and most 

poorly explored component of the reef habitat (Jackson et al. 1971, Ginsberg 1983, Scheffers et al. 

2004). Sponges dominate the fauna in this cryptic habitat, which acts as a major sink for both POC 

and DOC (Gast et al. 1998, de Goeij & van Duyl 2007) and as an important source of inorganic 

nutrients via the remineralization of this organic matter (Richter et al. 2001, Rasheed et al. 2002, van 

Duyl et al. 2006). Therefore, when building trophic models or considering the role of sponges in C 

and N biogeochemical cycling in reef ecosystems, it is essential to consider the unseen but abundant 

cryptic sponge community. Uptake of DOC by the cryptic sponge community represented one of the 

largest fluxes of organic C on the reef (Chapter 3). In summer and fall, sponge DOC uptake was on 

the same order of magnitude as the gross primary production of the entire reef ecosystem, exceeding 

DOC uptake by the microbial loop. These Red Sea rates are comparable to estimates of DOC uptake 

by cryptic sponges in the Caribbean and Indo-Pacific (de Goeij & van Duyl 2007, de Goeij et al. 

2013), suggesting the widespread importance of the sponge loop to coral reef C cycling on reefs 

worldwide. Sponge metabolism was strongly influenced by the high seasonality in the Gulf of Aqaba 

with lower rates of respiration, DOC and POC uptake, and POC production in winter and spring. 

Nevertheless, even in these seasons sponge, DOC uptake equaled uptake by the microbial loop. 

Thus, these two recycling loops play a major role in C cycling on coral reefs in the Red Sea, and 

combined, they may be able to retain most of the DOC produced by the reef, as well trap new DOC 

from the surrounding water. This not only provides a unique function in enabling the energy and 

nutrients bound in DOC to be shunted to higher trophic levels (Azam et al. 1983, de Goeij et al. 

2013, Worden et al. 2015), but also contributes to the efficient recycling between the autotrophic and 

heterotrophic reef compartments that ensures high retention of the energy and nutrients fixed within 

the system (Muscatine & Porter 1977, Richter et al. 2001, Wild et al. 2004a). Thus, the high recycling 

capacity of the sponge loop appears to contribute to enabling the high gross primary productivity of 

the reef ecosystem in the oligotrophic waters of the Red Sea. However, this should be confirmed by 

incorporating fluxes on N into future trophic models. Given the magnitude of C fluxes mediated by 

sponges in the Red Sea, its influence on C cycling should be quantified in other systems in order to 

determine its potential contribution to trophic webs and ecosystem functioning. In particular, CW 

coral reefs host abundant sponge populations, and have recently been identified as hotspots of deep-

sea C cycling, but the contribution of the sponge loop to this high C cycling is unknown (van 

Oevelen et al. 2009, White et al. 2012).  
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5. How do PON production and N2 fixation quantitatively compare to other sponge-mediated 

N fluxes, and how important are these N fluxes at the ecosystem level?  

Despite widespread acknowledgment that sponges are an important source of dissolved 

inorganic nitrogen (DIN) on coral reefs, many aspects of N cycling by sponges remain poorly 

characterized. Chapter 5 provides a comprehensive study on N fluxes in coral reef sponges, 

presenting the first estimates of detrital PON production by reef sponges and adding to the scarce 

literature regarding N2 fixation in sponges. Parallel measurements of DIN, PON, and the generation 

of new N via N2 fixation in six sponge species enabled comparisons of the relative magnitude of 

these fluxes. Findings showed that consistent with previous literature from Caribbean (Corredor et al. 

1988, Diaz & Ward 1997, Southwell et al. 2008) and temperate reefs (Jimenez & Ribes 2007, Perea-

Blazquez et al. 2012), sponges in the Red Sea are a substantial source of DIN. Chapter 5 also showed 

that Red Sea sponges had very comparable DIN release rates compared to Caribbean sponges 

(Southwell et al. 2008), but appeared to release a higher percentage of DIN as ammonia compared to 

most Caribbean sponges (Corredor et al. 1988, Diaz & Ward 1997, Southwell et al. 2008). This is 

likely due to the fact that only one HMA sponge was investigated, as high rates of nitrification appear 

to typically only in HMA sponges (Southwell et al. 2008, Ribes et al. 2012, Chapter 5). The findings of 

high DIN release are consistent with reports of elevated DIN concentrations in sponge-dominated 

coral reef cavities in the Red Sea (Richter et al. 2001). While DIN remained the largest efflux of N 

generated by the six sponge species, the production of PON was substantial and accounted for 

approximately 30% of the total N released by all six sponges. This is an important finding given that 

PON production is not currently considered in sponge N budgets (Maldonado et al. 2012, Ribes et al. 

2012, Fiore et al. 2013). This percentage was remarkably consistent across the six species, with the 

species releasing higher quantities of DIN also releasing the most PON. This indicates that the 

production of sponge detritus, resulting from the rapid cell renewal and shedding of sponge 

choanocyte and mesophyll cells (de Goeij et al. 2009, Alexander et al. 2014, Maldonado 2015), 

represents an important metabolic pathway in coral reef sponges, and the fate of a large portion of 

the organic matter they assimilate. This is consistent with the findings of Chapter 2 and 4 that 27 – 

49% of the DON assimilated by both warm-water and cold-water sponges is subsequently released as 

sponge detrital PON. Hence, despite feeding on PON (Pile et al. 2003, Ribes et al. 2003, 2005, Hadas 

et al. 2009), sponges may actually represent a net source, rather than a sink, of PON. If this is the 

case, the uptake of DON is likely necessary to balance the N budget of the sponge (Jimenez & Ribes 

2007, Hadas et al. 2009); particularly since the N generated via N2 fixation is orders of magnitude 

lower than the fluxes of DIN and PON, and therefore is unlikely to make a major contribution to the 

sponge N budget (Chapter 5, 6; Ribes et al. 2015).  
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Using the benthic cover of sponges on the reef we were further able to estimate that DIN 

and PON production by the epi-reefal sponge community resulted in efflux rates of 19.6 ± 7.7 µmol 

DIN m-2 h-1 and 8.5 ± 1.3 µmol PON m-2 h-1, representing a substantial flux of N. These rates are 

lower than for Caribbean reefs, where the sponge community is dominated by massive sponges with 

biomasses far exceeding those of the predominately encrusting epi-reefal sponge community in the 

Red Sea. However, when the estimated biomass of the cryptic cavity sponge community is included, 

these fluxes increase by over 400% to 83.2 ± 19.2 µmol DIN m-2 h-1. The DIN produced by the 

entire Red Sea sponge community (2468 µmol N m-2 d-1), therefore, exceeds the estimated N 

generated via N2 fixation by the entire reef communities of One Tree Island in the Great Barrier Reef 

(145-328 µmol N m-2 d-1; (Larkum et al. 1988) and the present study site in the Red Sea (160 – 920 

µmol N m-2 d-1; Cardini 2015). Moreover, this DIN is estimated to be able to supply 17% of the N 

demand for the net primary production of the entire reef ecosystem based on the primary production 

rates determined in Chapter 3 and assuming a C:N ratio of 106:16 (Redfield 1934). This is a 

conservative estimate as coral reef benthic primary producers typically have much higher C:N ratios 

than the Redfield ratio characteristic of phytoplankton (Atkinson & Smith 1983). Using the in situ 

DIN concentrations (Chapter 6), and a typical maximum coral reef coefficient value (S) of 15 

(Atkinson & Falter 2003), DIN uptake at the study site can be calculated to range from 3.5 mmol N 

m-1 d-1 in summer to 16.7 mmol N m-1 d-1 in winter. This indicates that the estimated sponge DIN 

fluxes (2.5 mmol N m-1 d-1) are not insignificant at the ecosystem level. DIN production by reef 

sponges could, therefore, play an important role in supplying N for primary productivity at the 

ecosystem scale; particularly when ambient DIN concentrations are low. In fact, cryptic cavity 

sponges have been shown to facilitate the growth and diversity of nearby coral (Slattery et al. 2013). 

While the DIN produced by sponges can support benthic primary producers, the particulate fraction 

of N released by sponges fulfills a different function by providing a food source for various detritus-

feeding reef fauna (de Goeij et al. 2013, Chapter 2). Thus, sponges not only influence N availability 

for primary producers but also play a key role in transferring the DON produced by these same 

primary producers to higher trophic levels, providing them with a unique functional role. In contrast 

to the high fluxes of DIN and PON, only two sponge species displayed significant N2 fixation, and 

the N generated by N2 fixation (0.006 ± 0.005 µmol N m-2 h-1) was 3 – 4 orders of magnitude lower. 

This demonstrates that compared to DIN and PON release, sponge N2 fixation does not contribute 

substantially at the ecosystem scale. In the Gulf of Aqaba (Red Sea), the DIN released by the sponges 

is likely to be highly beneficial to the reef community due to the extremely oligotrophic conditions - 

particularly during the stratified summer season (Chapter 5). However, many reefs worldwide are 

experiencing increased nutrient input (Burke et al. 2011), and such eutrophication has been linked to 

coral reef degradation by favouring the growth of benthic turf- and macroalgae at the expense of 

coral growth and resilience (Littler et al. 2006, Smith et al. 2010, Vermeij et al. 2010, Jessen et al. 

2013, Wiedenmann et al. 2013). Under such scenarios, the additional DIN generated by sponges may 
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have negative consequences on coral reef health by further promoting eutrophication and algal 

growth. Indeed, sponges have been shown to transfer nutrients to nearby algae (Davy et al. 2002, 

Easson et al. 2014). Therefore, on top of the effects of accelerated nutrient retention and recycling 

facilitated by the sponge loop (described in the response to question 2), DIN release provides an 

additional mechanism by which sponges could contribute to eutrophication and coral reef 

degradation on phase-shifting coral reefs. This highlights the need to consider the impact of sponges 

in influencing the trajectories of coral reefs in changing environments.  

 

6. Does N2 fixation support C fixation (primary productivity) in sponges and other key reef 

framework substrates? 

 

Nitrogen is a key limiting nutrient on coral reefs, and therefore N availability directly 

influences the key metabolic process in coral reef ecosystems, placing constraints on primary 

productivity and community metabolism (Hatcher 1990). For this reason, examining links between C 

and N biogeochemical cycling is essential to understanding ecosystem function. N2 fixation has been 

estimated to supply an important source of N for photosynthesis on coral reefs at both the organism 

and ecosystem level (Wiebe et al. 1975, Larkum et al. 1988, Charpy et al. 2007, Lesser et al. 2007, 

Cardini 2015). Chapter 6 confirms the importance of N2 fixation in contributing to photosynthetic N 

demand as, despite no evidence for a relationship between photosynthesis and N2 fixation in the 

sponge M. fistulifera, there was a significant positive linear relationship between gross photosynthesis 

(Pgross) and N2 fixation in turf algae and coral rock. Furthermore, we estimate that N2 fixation can 

provide up to 20 and 27% of the N demand for net photosynthesis (Pnet) in coral rock and turf algae, 

respectively. Rates of N2 fixation were one order of magnitude higher during the stratified summer 

season when irradiance and temperature were highest and inorganic nutrient concentrations lowest, 

providing insight into the influence of environmental parameters on coral reef benthic N2 fixation, 

which to date has received limited attention (Cardini et al. 2014). Importantly, this demonstrates that 

N2 fixation can be an important source of N, particularly when ambient concentrations of inorganic 

N are low. The absence of a link between C and N2 fixation may not be surprising in M. fistulifera; 

considering it also exhibited high rates of DIN release (Chapter 5), offering a potential alternative and 

abundant supply of N for its photosynthetic symbionts. N2 fixation has been hypothesized to be 

especially beneficial for sponges which obtain the majority of their energetic requirements via 

photosynthates that are low in N (Wilkinson et al. 1999). Despite exhibiting low rates of Pgross, M. 

fistulifera, displayed negative Pnet rates and overall heterotrophic metabolism (Pgross:R <1). Thus, there 

may be potential for a link between photosynthesis and N2 fixation in the many coral reef sponges 

that do obtain the majority of their energetic demands via photosynthesis (Wilkinson 1983, 1987, 

Erwin & Thacker 2008). This may be an interesting focus of future research, particularly since N2 

fixation has recently been found to play an important role in supporting photosynthesis in other 
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animal-microbe symbioses such as corals (Cardini 2015). Finally, while sponge N2 fixation rates were 

low, turf algae and coral rock exhibited high rates of N2 fixation that exceed the rates of both 

carbonate and silicate sands at the study site (Bednarz et al. 2015). This highlights the importance of 

reef framework substrates, particularly the deceptively “bare” coral rock framework, in generating 

new N on coral reefs.  

FUTURE PERSPECTIVES 

While this thesis has provided many new insights into the role that sponges play in organic 

matter and inorganic nutrient cycling on coral reefs, the biogeochemical cycling on C and N in 

sponges is nothing if not complex; and there are many more aspects of sponge metabolism and 

function that remain to be established. Quantitative budgets of N cycling in sponges remain elusive 

(Jimenez & Ribes 2007, Hadas et al. 2009, Maldonado et al. 2012) hinting at processes that await to 

be discovered. There is evidence that sponges can also take up DIN (Jimenez & Ribes 2007, Fiore et 

al. 2013, Ribes et al. 2015), and recently denitrification has been identified in coral reef sponges (Fiore 

et al. 2013, Fiore et al. 2015); presenting competing N pathways to the established processes of 

remineralization and nitrification that generate DIN. These processes appear to vary in space and 

time (Fiore et al. 2013), with consequences for the amount of DIN released by sponges over larger 

spatial and temporal scales. The production of PON, which has previously been ignored, needs to be 

included into future sponge N budgets. The quantity of detritus released by sponges appears to be 

species specific (Alexander et al. 2014) and is influenced by the physiological state of the sponge 

(Alexander et al. 2015), indicating that POM fluxes may also vary in time and space. More research is 

needed to fully elucidate the cellular processes underlying the production of sponge detritus (de Goeij 

et al. 2009, Alexander et al. 2014, Alexander et al. 2015, Maldonado 2015) as well as the role of 

sponge detritus in coral reef trophic webs. Importantly, the magnitude of C and N cycling by the 

sponge loop needs to be quantified to determine its potential importance to the functioning of 

different coral reef ecosystems. Given the potential magnitude of sponge mediated C and N fluxes 

(Chapter 3, 5), the trophic interactions identified by this thesis should be considered in future coral 

reef trophic models. In addition to better quantifying the fluxes of C and N in sponges, there is a 

need for improved knowledge of the underlying metabolic pathways, and the for identification of the 

microbes responsible for carrying out these pathways, in order to evaluate their functional 

significance to the sponge host (Webster & Blackall 2009, Webster & Taylor 2012). Importantly, the 

quantitative contribution of bacteria in sponge DOM uptake remains to be determined. Moreover, 

the potential for the translocation of DOM and other metabolites between microbes and the sponge 

host should be established to evaluate the importance of associated microbes for sponge nutrition 

(Erwin & Thacker 2008, Thacker & Freeman 2012). Finally, understanding the stability of sponge-
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microbe associations to environmental perturbations, as well as the potential role of these microbes 

in sponge disease (Webster et al. 2002, Webster 2007, Webster et al. 2008), will likely be key to 

understanding how sponges, and their accompanying fluxes of C and N, may respond to current and 

future environmental change. Despite their many important functional roles (Bell 2008), sponges 

evidently remain a critically understudied component of coral reef ecosystems (Wulff 2001), and 

therefore offer many opportunities for future research. 

CONCLUSION  

Collectively, the findings of this thesis demonstrate that via multiple complex C and N 

transformations sponges mediate major fluxes of C and N on coral reefs in the Red Sea; thereby 

making significant contributions to the biogeochemical cycling of C and N at the ecosystem level. 

The sponge holobiont retains reef-derived C and N within the coral reef ecosystem through DOM 

uptake, transforms DOM into POM, traps and remineralizes PON into DIN, fixes C and N2, and 

transforms N through nitrification. Sponges provide a key link between benthic primary producers 

and higher trophic levels on coral reefs by transferring the energy and nutrients bound in primary 

produced DOM to other reef fauna. Conversely, by efficiently trapping and remineralizing organic 

matter, sponges generate large quantities of DIN that can again be utilized by primary producers. 

Sponges, therefore, occupy a unique niche within coral reef trophic food webs mediating multiple 

links between the autotrophic and heterotrophic reef compartments. On nutrient-limited (WW) and 

energy-depleted (CW) coral reefs, these C and N transformations and fluxes serve an important 

function by retaining and recycling the C and N essential to sustaining coral reef production. 

However, under scenarios of coral reef degradation, sponge-derived N may fuel eutrophication and 

algal growth potentially favouring community shifts from coral to algal dominance, particularly on 

reefs where overfishing, excess nutrient input, bleaching and disease have already tipped the balance 

in favor of competing benthic algae. Ultimately, the findings of this thesis show that considering the 

role of sponges in coral reef biogeochemical cycles and trophic webs is essential for understanding 

coral reef ecosystem functioning and the future trajectories of these ecosystems in the face of the 

rapid environmental changes that await them. 
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The effect of light availability on dinitrogen fixation associated with scleractinian corals 

along a depth-gradient in the Northern Red Sea 

 
Bednarz VN, Cardini U, van Hoytema N, Rix L, Naumann MS, Al-Rshaidat MMD, Wild C 

Abstract  

 
Light availability in coral reefs has a major influence on photosynthesis (PS) and dinitrogen 

fixation (NF) activity associated with scleractinian corals. Several photo-adaptive mechanisms are 

known to sustain high primary productivity under variable light regimes, but the light-dependency of 

NF and its potential physiological relationship to PS has received considerably less attention. 

Therefore, the present study simultaneously investigated PS and NF of two dominant scleractinian 

corals (Acropora sp. and Stylophora sp.) along a depth-mediated light gradient from 5 m (680 ± 140 

μmol m-2 s-1) down to 20 m (110 ± 10 μmol m-2 s-1) water depth in a northern Red Sea fringing 

reef. In addition, coral samples were analyzed for δ15N signatures, zooxanthellae density and 

chlorophyll a content. Findings revealed that PS and NF remained constant along the depth gradient, 

although NF associated with Stylophora sp. slightly decreased with increasing water depth. However, 

corals from deeper waters possessed a depleted δ15N signature thus indicating a higher usage of NF 

products that may in turn support the corals’ observed photo-adaptation (increased zooxanthellae 

density and chlorophyll a content) to low light availability. Overall, this study suggests that the 

physiological stability in corals along the depth gradient may be found in the mutual interplay and 

trade-off of PS and NF products between zooxanthellae and diazotrophs leading to an optimal 

adaptation of the involved symbiotic partners to different environmental light conditions.  

 

In preparation for the Journal of Experimental Biology: 
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Functional significance of dinitrogen fixation in sustaining coral productivity under 

oligotrophic conditions 

 

Cardini U, Bednarz VN, Naumann MS, van Hoytema N, Rix L, Foster RA, Al-Rshaidat MMD,   

Wild C 

Abstract 

1. Functional traits define species by their ecological role in the ecosystem. Evidence is 

accumulating that animals themselves are host-microbe ecosystems (holobionts) and that the 

application of ecophysiological approaches can help to understand their functioning. 

Communities of dinitrogen (N2) fixing prokaryotes (diazotrophs) may equip hard coral 

holobionts with a functional trait by providing bioavailable nitrogen (N) that could sustain 

their high productivity under oligotrophic conditions. 

2. This year-long study quantified N2 fixation by diazotrophs associated with four dominant 

genera of hermatypic corals on a northern Red Sea fringing reef exposed to high seasonality. 

3. We found N2 fixation activity to be 5- to 10-fold higher in summer, when inorganic nutrient 

concentrations were lowest and water temperature and light availability highest. 

Concurrently, gross coral productivity remained high despite lower Symbiodinium densities and 

tissue chlorophyll a contents. In contrast, chlorophyll a content per Symbiodinium cell 

increased, suggesting that algal cells overcame limitation of N, an essential element for 

chlorophyll synthesis. In fact, N2 fixation was positively correlated with coral productivity in 

summer, when its contribution was estimated to meet 11 % of the Symbiodinium N 

requirements. 

4. These results provide evidence of an important functional role of diazotrophs in sustaining 

coral productivity in the northern Red Sea when alternative external N sources are scarce. 

5. If these results are valid for other oligotrophic reef systems, the functional trait of N2 fixation 

in coral holobionts may become redundant if the worldwide trend of increasing local 

eutrophication continues. 

 

In preparation for Ecology 
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Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching 

Cardini U, van Hoytema N, Bednarz VN, Rix L, Foster RA, Al-Rshaidat MMD, Wild C 

 

Abstract 

Different coral holobionts (i.e., coral-algal-prokaryote symbioses) exhibit varying thermal 

sensitivities, which may determine if they will adapt to global warming. However, studies 

simultaneously investigating the effects of warming on all holobiont members are lacking. Here we 

show that exposure to higher temperature affects key physiological traits of all members (herein: 

animal host, Symbiodinium and diazotrophs) of both Acropora hemprichii and Stylophora pistillata during 

and after thermal stress. S. pistillata experienced severe loss of Symbiodinium (i.e., bleaching) with no 

net photosynthesis at the end of the experiment. Conversely, A. hemprichii was more resilient to 

thermal stress. Exposure to increased temperature (+6 °C) resulted in a drastic increase in daylight 

dinitrogen (N2) fixation, particularly in A. hemprichii (3-fold compared to controls). After the stress 

event, diazotrophs exhibited a reversed diel pattern of activity, with increased N2 fixation rates 

recorded only in the dark, particularly in bleached S. pistillata (2-fold compared to controls). 

Concurrently, both animal hosts, but particularly bleached S. pistillata, displayed impaired organic 

matter release and picoplankton feeding. Our findings indicate that physiological plasticity by coral-

associated diazotrophs may play an important role in determining the response of coral holobionts to 

ocean warming. 

 

In preparation for Environmental Microbiology. 
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Marine Eutrophication – Overview of Indicators 

 
Jessen C, Bednarz VN, Rix L, Teichberg M, Wild C 

 

Abstract 

Eutrophication is one of the key local stressors for coastal marine ecosystems, particularly in 

those locations with many estuaries, intense coastal development or agriculture, and a lack of coastal 

forests or mangroves. The land-derived import of not only inorganic nutrients, such as nitrate and 

phosphate, but also particulate and dissolved organic matter (POM and DOM) affects the physiology 

and growth of marine organisms with ensuing effects on pelagic and benthic community structures, 

as well as cascading effects on ecosystem functioning. Indicators for marine eutrophication are 

therefore not only key water quality parameters (inorganic and organic nutrient concentrations, 

oxygen and chlorophyll availability, and biological oxygen demand), but also benthic status and 

process parameters, such as relative cover and growth rates of indicator algae, invertebrate 

recruitment, sedimentary oxygen demand, and interactions between indicator organisms. The primary 

future challenge lies in understanding the interaction between marine eutrophication and the two 

main marine consequences of climate change, ocean warming, and acidification. Management action 

should focus on increasing the efficiency of nutrient usage in industry and agriculture, while at the 

same time minimizing the input of nutrients into marine ecosystems in order to mitigate the negative 

effects of eutrophication on the marine realm.  

 

Published as a book chapter in Environmental Indicators (2014) Ed: Armon RH, Hänninen O. 

Springer Netherlands, pp. 177 – 203. 
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The frequent association of polydorid polychaetes with a Red Sea reef sponge – new insights 

to a potential trophic relation 

Naumann MS, Rix L, Al-Horani FA, Wild C 

 

Many polychaetes are commensals or parasitic symbionts of metazoan hosts that primarily 

provide them with shelter and food. The genus Polydorella (Augener, 1914) currently contains five 

species of minute polydorid polychaetes (sized <2 mm), all described as inconspicuous epibionts of 

Indo-Pacific sponges (Martín and Britayev 1998, Williams 2004). Potential functional benefits 

generated by polydorid-sponge associations are still unresolved. Polydorid polychaetes are imagined 

to feed on sponge tissues or detrital matter released by their hosts but evidence is lacking, as is 

knowledge on more basic properties such as their employed feeding modes (Williams 2004). Here, we 

report on a frequent polydorid-sponge association observed in the Red Sea and provide new insights 

to a potential trophic relation. During a reef survey in the Gulf of Aqaba (29°27'29.93"N, 

34°58'27.67"E) in March 2013, a conspicuous red branching sponge covered with a dense population 

of whitish epibionts (≤10 ind. cm-2 sponge) was observed on the reef slope at 15 m water depth (Fig. 

1a, b). Microscopic analysis of collected specimens identified the epibionts as Polydorella smurovi 

(Polychaeta, Spionidae; Fig. 1c), while the host was classified as the Red Sea sponge Negombata 

magnifica (Demospongiae, Podospongiidae; sample deposited at Naturalis Biodiversity Center, 

RMNH.POR.9146). During subsequent surveys, this frequent polydorid-sponge association (~30% 

of N. magnifica encountered) was documented by photo and video recordings. Video analysis revealed 

a continuous bilateral palp movement performed by P. smurovi implying the capture of loose detrital 

matter on the sponge surface and its subsequent transport towards the pharynx for consumption 

(ESM 1). Besides providing a food source for P. smurovi, this potential capture of detrital matter may 

benefit N. magnifica by clearing its surface of debris, as described for other polychaete-sponge 

associations (Martín et al. 1992). Particulate matter origin (i.e. sponge-derived detritus or deposited 

material) and its nutritional value for P. smurovi remain to be investigated. 
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Figure 1. Association of the polydorid polychaete Polydorella smurovi with the Red Sea sponge 

Negombata magnifica. a the Red Sea sponge N. magnifica hosting inconspicuous polydorid epibionts, b 

dense population of P. smurovi inhabiting the sponge surface, c dorsal view (50x) of a live specimen of 

P. smurovi, scale bars: 10 (a), 0.8 (b), 0.03 cm (c) 

 

In preparation for Marine Biodiversity. 
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Effects of seasonality on planktonic primary production and dinitrogen fixation in a Red Sea 

coral reef 

 

van Hoytema N, Cardini U, Bednarz VN, Rix L, Naumann MS, Al-Horani  FA, Wild C 

Abstract 

The northern Red Sea, because of its relatively high-latitude location, experiences strong 

seasonality in environmental conditions. This allows the study of regulatory effects by key status 

parameters (temperature, inorganic nutrient and organic matter concentrations) on process 

parameters (primary production and dinitrogen (N2) fixation) and picoplanktonic abundance in the 

water column above coral reefs. Knowledge on interactions between these parameters is lacking. 

Therefore, this study, for the first time in high latitude coral reef waters, measured status and process 

parameters, and picoplankton abundance using a comparative approach between mixed (January – 

April) and stratified (September – November) water column scenarios in 2013. Findings revealed that 

inorganic nutrient concentrations were significantly higher in the mixed compared to the stratified 

season. Concurrently, daily gross primary production decreased 4-fold from the mixed to stratified 

season, while N2 fixation did not change significantly. The phytoplanktonic community changed from 

dominance by picoeukaryotes to that by Prochlorococcus sp. and indications were found for a 

diazotrophic community shift from its autotrophic to its heterotrophic component. Primary 

production was primarily regulated by inorganic N concentrations, while dissolved organic carbon 

concentrations affected both primary production and N2 fixation, emphasizing the importance of the 

microbial loop in planktonic tropho-dynamics of Red Sea coral reefs. N2 fixation could potentially 

contribute 3.4 % of N needed for primary production in the mixed season. However, this 

contribution increased drastically to 20.8 % in the stratified season, indicating planktonic N2 fixation 

as an important potential source of N to phytoplankton during very oligotrophic summer conditions. 

 

 

In preparation for Marine Environmental Research. 
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APPENDICES 

APPENDIX 1 

Appendix 1 - Table 1: Results of one-factor Monte Carlo PERMANOVAs testing for differences in 

phospholipid fatty acid (PLFA) incorporation between coral- and algal-derived DOC by the three 

sponge species; Chondrilla sacciformis, Hemimycale arabica, and Mycale fistulifera. Differences 

between coral- and algal-derived DOC incorporation were tested for total PLFA incorporation, bacterial-

specific PLFA incorporation, and sponge-specific PLFA incorporation. PERMANOVAs were based on 

Euclidian distance and Type III (partial) sums of squares were used with unrestricted permutations of raw data 

(9999 permutations). Significant Monte Carlo (MC) p-values are in bold.  

Coral- vs. algal-derived DOC df SS MS F P (MC) 

Total PLFA incorporation    

 C. sacciformis 1 118 118 9.4 0.0398 

 H. arabica 1 878 878 4.0 0.1428 

 M. fistulifera 1 1226 1226 4.0 0.1151 

Bacterial PLFA incorporation 

 C. sacciformis 1 105 105 5.5 0.0822 

 H. arabica 1 696 696 13.0 0.0353 

 M. fistulifera 1 467/10 467/10 19.2 0.0215 

Sponge PLFA incorporation 

 C. sacciformis 1 378 378 12.755 0.0386 

 H. arabica 1 266 266 3.2 0.1684 

 M. fistulifera 1 240 240 16.3 0.0155 
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Appendix 1 - Figure 1. Phospholipid fatty acids (PLFA) profiles of a) C. sacciformis, b) H. arabica, and 

c) M. fistulifera. Data presented as % of total PLFAs (mean  SD, n = 3). Depicted are PLFAs accounting for 

≥0.5% of the total PLFA composition. Bacterial-specific PLFAs are shown in red, sponge-specific PLFAs in 

blue, and other PLFAs in black.  
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Appendix 1 - Figure 2. Percent distribution of bacterial, sponge, and other phospholipid fatty acids 

(PLFAs) in the PLFA profiles of a) C. sacciformis, b) H. arabica, and C) M. fistulifera. Data presented as mean  

SD (n = 3).  
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APPENDIX 2 

Appendix 2 - Table 1. Pelagic biomass ranges used for constraining inflow of C and metabolic activity. Water 

column integrated to the reef surface area, all values in mmol C m-2. 

 

 

Winter Spring Summer Fall 

Phytoplankton 7.10 - 9.38 6.91 - 10.25 3.48 - 4.39 5.80 - 9.21 

Zooplankton 2.66 - 5.33 2.66 - 5.33 2.66 - 5.33 2.66 - 5.33 

Protozoa 1.67 - 4.67 1.67 - 4.67 1.67 - 4.67 1.67 - 4.67 

Bacteria 5.04 - 5.30 5.04 - 5.30 5.04 - 5.30 5.04 - 5.30 

POC 22.47 - 34.93 42.08 - 80.08 31.07 - 63.68 47.47 - 53.76 

DOC 541.64 - 625.03 515.25 - 635.94 715.75 - 732.16 669.94 - 709.91 

Total 580.58 - 684.65 573.62 - 741.58 759.68 - 815.52 732.58 - 788.18 
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Appendix 2 - Table 2. Ranges of gross primary production (GPP) and community respiration (Rday) rates 

entered into the models. All values in mmol C m-2 d-1.  

 

GPP Winter Spring Summer Fall 

Water column 0 - 35.07 0 - 45.35 0 - 46.02 0 - 26.59 

Hard corals 18.10 - 82.55 33.78 - 96.69 23.19 - 113.79 17.65 - 95.65 

Soft corals 46.18 - 138.95 120.66 - 192.33 51.06 - 97.01 37.86 - 91.22 

Macroalgae 0.98 - 3.02 5.24 - 21.34 1.95 - 3.82 1.06 - 2.47 

Turf algae 4.18 - 7.01 4.60 - 8.27 7.67 - 13.20 3.93 - 6.41 

Coral rock 5.12 - 38.65 0 - 33.45 21.55 - 61.60 15.47 - 67.08 

Sediment 0.28 - 9.02 11.91 - 36.67 6.54 - 17.21 2.53 - 7.51 

 
    Rday 

       Water column 22.36 - 50.68 33.65 - 110.62 35.72 - 101.07 33.28 - 99.98 

Hard corals 15.30 - 48.79 13.47 - 52.56 19.66 - 72.40 21.08 - 75.32 

Soft corals 25.58 - 39.84 45.67 - 66.12 18.14 - 52.39 22.60 - 36.01 

Macroalgae 0.34 - 0.64 2.02 - 6.12 0.56 - 1.04 0.25 - 0.74 

Turf algae 1.67 - 2.50 1.03 - 2.18 1.93 - 3.45 1.48 - 2.57 

Coral rock 2.30 - 16.34 1.56 - 12.87 11.98 - 47.55 11.81 - 26.02 

Sediment 2.12 - 5.94 3.16 - 11.39 3.95 - 7.23 2.45 - 4.24 

Surface sponges 1.30 - 6.74 1.90 - 9.87 3.08 - 15.99 3.08 - 15.99 

Cavity sponges 17.25 - 69.35 25.25 - 101.52 40.92 - 164.52 40.92 - 164.52 
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Appendix 2 - Table 3. Ranges of particulate and dissolved organic carbon flow rates (POC and DOC 

respectively) entered into the models. All values in mmol C m-2 d-1. Negative values indicate net uptake, positive 

values indicate net release. 

 

POC Winter Spring Summer Fall 

Hard corals -0.43 - 4.12 -0.93 - 8.45 0.57 - 8.88 0.92 - 9.46 

Soft corals 0.42 - 9.09 1.21 - 2.92 2.31 - 17.82 3.11 - 9.59 

Macroalgae 0.001 - 0.11 -0.08 - 0.22 0.16 - 0.22 0.19 - 0.58 

Turf algae 0.24 - 1.30 0.004 - 0.69 0.38 - 0.83 0.32 - 0.64 

Coral rock 0.57 - 4.23 0.56 - 4.12 0.79 - 5.84 0.72 - 5.34 

Surface sponges 0.05 - 0.44 0.06 - 0.60 0.20 - 1.93 0.20 - 1.93 

Cavity sponges 5.33 - 14.75 7.30 - 20.20 23.32 - 64.57 23.32 - 64.57 

DOC 

       Hard corals -3.18 - 5.88 -13.67 - 14.76 -7.41 - 10.38 -20.13 - 46.16 

Soft corals 0.04 - 2.90 -1.74 - 5.91 -1.92 - 3.53 -12.99 - 26.59 

Macroalgae 0.09 - 0.31 -0.001 - 1.42 -0.36 - 0.52 -0.26 - 1.56 

Turf algae 0.01 - 0.34 0.04 - 0.43 -0.49 - 0.82 -0.63 - 0.99 

Coral rock -4.68 - 3.31 -4.56 - 3.22 -6.46 - 4.56 -5.90 - 4.17 
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Appendix 2 - Table 4. Results of PERMANOVA main and pair-wise tests for the factor season on the 

reduced model solution set of the first 1000 solutions.  

 

Comparison Effect df SS MS Pseudo-F p-value Unique perms 

Overall Season 3 4.85 x 105 1.62 x 105 3938 0.001 997 
 Residuals 3993 1.64 x 105 41.12    
 Total 3996 6.50 x 105     

     t p-value Unique perms 

Pair-wise   Winter Spring 43.61 0.001 999 
   Winter Summer 72.01 0.001 999 
   Winter Fall 74.78 0.001 998 
   Spring Summer 68.32 0.001 999 
   Spring Fall 75.27 0.001 999 
   Summer Fall 23.46 0.001 999 
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Appendix 2 - Figure 1. Means and standard deviations of all flows of the winter model. cpc = cavity 

particulate organic carbon. csp = cavity sponges, dic = dissolved organic carbon, exp = export, hco = hard 

corals, in = import, mac = macroalgae, pba = pelagic bacteria, pdc = pelagic dissolved organic carbon, phy = 

phytoplankton, ppc = pelagic particulate organic carbon, pro = pelagic protozoa, roc = coral rock, sbi = 

sediment biota, sco = soft corals, sdc = sediment dissolved organic carbon, spc = sediment particulate organic 

carbon, ssp = surface sponges, tur = turf algae, zoo = zooplankton.  
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Appendix 2 - Figure 2. Means and standard deviations of all flows of the spring model. cpc = cavity 

particulate organic carbon. csp = cavity sponges, dic = dissolved organic carbon, exp = export, hco = hard 

corals, in = import, mac = macroalgae, pba = pelagic bacteria, pdc = pelagic dissolved organic carbon, phy = 

phytoplankton, ppc = pelagic particulate organic carbon, pro = pelagic protozoa, roc = coral rock, sbi = 

sediment biota, sco = soft corals, sdc = sediment dissolved organic carbon, spc = sediment particulate organic 

carbon, ssp = surface sponges, tur = turf algae, zoo = zooplankton.   



 
 

230 
 

 

Appendix 2 - Figure 3. Means and standard deviations of all flows of the summer model. cpc = cavity 

particulate organic carbon. csp = cavity sponges, dic = dissolved organic carbon, exp = export, hco = hard 

corals, in = import, mac = macroalgae, pba = pelagic bacteria, pdc = pelagic dissolved organic carbon, phy = 

phytoplankton, ppc = pelagic particulate organic carbon, pro = pelagic protozoa, roc = coral rock, sbi = 

sediment biota, sco = soft corals, sdc = sediment dissolved organic carbon, spc = sediment particulate organic 

carbon, ssp = surface sponges, tur = turf algae, zoo = zooplankton.  
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Appendix 2 - Figure 4. Means and standard deviations of all flows of the fall model. cpc = cavity particulate 

organic carbon. csp = cavity sponges, dic = dissolved organic carbon, exp = export, hco = hard corals, in = 

import, mac = macroalgae, pba = pelagic bacteria, pdc = pelagic dissolved organic carbon, phy = 

phytoplankton, ppc = pelagic particulate organic carbon, pro = pelagic protozoa, roc = coral rock, sbi = 

sediment biota, sco = soft corals, sdc = sediment dissolved organic carbon, spc = sediment particulate organic 

carbon, ssp = surface sponges, tur = turf algae, zoo = zooplankton.
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APPENDIX 3 

Appendix 3 - Table 1. Environmental parameters characteristic of warm-water (WW), Red Sea coral 

reefs and cold-water (CW), north Atlantic Lophelia pertusa reefs. Parameters include dissolved inorganic 

nitrogen (DIN), dissolved inorganic phosphate (DIP), dissolved organic carbon (DOC), particulate organic 

carbon (POC), particulate nitrogen (PON), and chlorophyll a (Chl a). aIndicates the inorganic nutrient supply 

limiting WW coral growth and bthe organic nutrient supply limiting CW coral growth. 

 

Parameter Warm-water 

Red Sea coral reefs 

Cold-water 

North Atlantic coral reefs 

Depth (m)   1 – > 1001 50 – > 10002  

Temperature (˚C) 21 – 293 6 – 102,4,5 

DIN (µmol L-1)a 0.2 – 1.06  2.2 – 19.12 

DIP (µmol L-1)a 0.04 – 0.16 0.3 – 3.62 

DOC (µmol L-1) 76 – 877 51 – 738 

POC (µmol L-1)b 7.2 – 11.56 1.2 – 5.24,9,10 

POC:PON 7.3– 10.26 5.8 – 9.04,9,10 

Chl a  (µg L-1) 0.1 – 0.26 0.02 – 1.172 

Current (cm s-1) 0 – 103 0 – 502,4,5 

Aragonite saturation (Ωarag) 3.7 – 4.43 1.4 – 2.42 

pH 8.2 – 8.33 7.92 – 8.192 

Salinity  40.5 – 41.03 34.6 – 35.72 
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APPENDIX 4 

Appendix 4 - Table 1. Fully crossed two-factor general linear model with N2 fixation, net photosynthesis 

(Pnet), respiration (R), gross photosynthesis (Pgross), and the ratio of Pgross:R  as a function of substrate and 

season. 

Parameter Factor df, dfresidual F p 

N2 fixation Season 6, 83 5.78 <0.001 

 Substrate 3, 83 60.09 <0.001 

 Season * Substrate 2, 77 299.37 <0.001 

Pgross Season 3, 79 12.68 <0.001 

 Substrate 2, 79 63.64 <0.001 

 Season * Substrate 5, 74 3.96 <0.001 

R Season 3, 89 18.00 <0.001 

 Substrate 2, 89 156.27 <0.001 

 Season * Substrate 6, 83 15.34 <0.001 

Pnet Season 3, 80 6.65 <0.001 

 Substrate 2, 80 210.64 <0.001 

 Season * Substrate 5, 75 7.59 <0.001 

Pgross:R Season 3, 80 8.44 <0.001 

 Substrate  2, 80 409.47 <0.001 

 Season * Substrate 5, 75 6.52 <0.001 

 

 

 

Appendix 4 - Table 2. Fully crossed three-factor general linear model with N2 fixation as a function of 

substrate, season, and time of day (day vs. night). 

 df, dfresidual F p 

Season 2, 122 106.12 <0.001 

Substrate 2, 122 224.02 <0.001 

Time of day 1, 122 6.86 <0.01 

Season*Substrate 4, 114 6.22 <0.001 

Season*Time of day 2, 114 9.28 <0.001 

Substrate*Time of day 2, 114 10.39 <0.001 

Season*Substrate*Time of day 4, 110 3.70 <0.01 
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