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Abstract

Integral Equation Methods for Ocean Acoustics with Depth-Dependent Background
Sound Speed.

Time-harmonic acoustic wave propagation in an ocean with depth-dependent background
sound speed can be described by the Helmholtz equation in an infinite, two- or three-dimensional
waveguide of finite height. A crucial subproblem for the anayltic and numeric treatment of as-
sociated wave propagation problems is a Liouville eigenvalue problem that involves the depth-
dependent contrast. For different types of background sound speed profiles, we discuss discretiza-
tion schemes for the Liouville eigenvalue problem arising in the vertical variable. Due to variational
theory in Sobolev spaces, we then show well-posedness of weak solutions to the corresponding scat-
tering problem from a bounded inhomogeneity inside such an ocean: We introduce an exterior
Dirichlet-to-Neumann operator for depth-dependent sound speed and prove boundedness, coerciv-
ity, and holomorphic dependence of this operator in suitable function spaces adapted to our weak
solution theory. Analytic Fredholm theory then implies existence and uniqueness of solution for
the scattering problem for all but a countable sequence of frequencies. Introducing the Green’s
function of the waveguide, we prove equivalence of the source problem for the Helmholtz equa-
tion with depth-dependent sound speed profile, Neumann boundary condition on the bottom and
Dirichlet boundary condition on the top surface, to the Lippmann-Schwinger integral equation
in dimensions two and three. Next, we periodize the Lippmann-Schwinger integral equation in
dimensions two and three. The periodized version of the Lippmann-Schwinger integral equation
and an interpolation projection onto a space spanned by finitely many eigenfunctions in the ver-
tical variable and trigonometric polynomials in the horizontal variables, two different collocation
schemes are derived. A result of Sloan [J.Approx Theory, 39:97-117,1983] on non-polynomial in-
terpolation yields both converge and algebraic convergence rates depending on the smoothness
of the inhomogeneity and the source of both schemes. Using one collocation scheme we present
numerical results in dimension two. We further present an optimization technique of the verti-
cal transform process, when the height of the obstacle is small compared to the finite height of
the ocean, which makes computation in dimension three possible. If several scatters are present
in the waveguide, this discretization technique leads to one computational domain containing all
scatterers. For a three dimensional waveguide, we reformulate the Lippmann-Schwinger integral
equation as a coupled system in an union of several boxes, each containing one part of the scatter.
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Résumé

Equations intégrales volumiques pour ’acoustique sous marine avec vitesse dépendant
de la profondeur.

On s’intéresse a la propagation d’une onde acoustique en régime harmonique dans un milieu
océanique ou la vitesse du son dépend de la profondeur et qui peut étre modélisée par 1’équation de
Helmholtz dans un milieu infini en dimensions transverses mais a hauteur finie. Dans un premier
temps, & fin de construire 'opérateur Dirichlet-Neumann permettant de borner le domaine de
calcul, nous étudions le probleme aux valeurs propres de Liouville qui intervient sur I’axe vertical
et sa discrétisation par des approches éléments finis ou spectrales. Nous étudions ensuite a 'aide
de méthodes variationnelles le probleme de diffraction par une inhomogénéité a support borné
incluse dans I'océan en utilisant ’opérateur Dirichlet-Neumann extérieur. Nous démontrons que
dans des espaces de fonctions adaptés, I'opérateur de diffraction est borné, coercif et dépend
holomorphiquement de la fréquence. La théorie de Fredholm analytique implique alors 1’existence
et I'unicité de la solution du probleme de diffraction pour toutes les fréquences sauf pour une
suite discrete de valeurs ayant +oo comme seul point d’accumulation. Apres 'introduction de
la fonction de Green du guide d’onde océanique, nous reformulons le probleme de diffraction a
l’aide d’une équation intégrale de Lippmann-Schwinger. Cette équation est ensuite périodisée
dans les directions transverses. En considérant I’espace d’approximation engendré par les vecteurs
propres (du probléme de Liouville) suivant ’axe vertical et des polynomes trigonométriques suivant
les directions transverses, nous obtenons deux schémas de collocation différents de 1’équation
volumique (suivant la maniere de projeter Popérateur intégral). Le taux de convergence algébrique
qui dépend de la régularité d’inhomogénéité et de la source, ainsi qu’un résultat d’interpolation
non-polynomial de Sloan [J.Approx Theory, 39:97-117,1983], nous permettent de démontrer la
convergence (et sa vitesse) pour les deux schémas de collocation. La méthode est ensuite testée et
validée numériquement sur des exemples synthétiques. La derniére partie s’intéresse au cas d’un
guide contenant plusieurs objets diffractants tres espacés. Dans le cas de dimension trois, nous
pouvons reformuler ’équation intégrale de Lippmann-Schwinger en un systeme couplé de plusieurs
équations posées sur des (petits) domaines contenant chacun un seul objet. Cette technique permet
de réduire considerablement le cotit numérique.



Zusammenfassung

Volumenintegralgleichungsmethoden fiir Ozeane mit tiefenabhangiger Schallausbrei-
tungsgeschwindigkeit.

In dieser Arbeit gehen wir auf zeitharmonische Wellenausbreitung in einem Ozean mit tiefen-
abhangiger Schallausbreitungsgeschwindigkeit ein, die fiir einen in horizontaler Ebene unendlichen
Ozean mit endlicher Tiefe durch die Helmholtz-Gleichung modelliert wird. Fiir unterschiedliche
Schallprofile betrachten wir fiir das Liouville-Eigenwertproblem, das in der vertikalen Variable
auftritt, verschiedene Approximationstechniken, wie z.B. eine Finite-Element Methode und eine
spektrale Methode. Mit Hilfe der Theorie von variationellen Formulierungen in Sobolevraumen,
zeigen wir dann, dass fiir eine beschrénkte Inhomogenitiat im Ozean das Streuproblem gut gestellt
ist. Weiter fiihren wir den Dirichlet-Neumann Operator fiir tiefenabhéngige Schallausbreitungs-
geschwindigkeit ein und zeigen in einem an das Model angepassten Funktionenraum, dass dieser
Operator beschrénkt, koerziv und holomorph abhéngig von der Frequenz ist. Existenz und
Eindeutigkeit einer schwachen Losung des Streuproblems kann dann mit Hilfe von analytischer
Fredholmtheorie fiir alle Frequenzen bis auf eine abzahlbare Menge ohne endlichen Haufungspunkt,
gezeigt werden. Mit Hilfe der Greenschen Funktion wird dann Aquivalenz zwischen dem Streu-
problem, welches durch die Helmholtz Gleichung mit Dirichlet Randbedingungen an der Oberfliche
und Neumann Randbedingungen am Meeresgrund beschrieben wird und der Lippmann-Schwinger
Integralgleichung fiir Dimension zwei und drei, gezeigt. Die eingefithrte Greensche Funktion wird
dann in horizontaler Variable periodisiert. Mit Hilfe einer Interpolationsprojektion auf einem
endlichdimensionalen Raum, der in horizontaler Variable durch trigonometrische Funktionen und
in vertikaler Variable durch Eigenfunktionen des Liouville-Eigenwertproblems aufgespannt wird,
erhalten wir aus der periodisierten Integralgleichung zwei verschiedene Kollokationsmethoden.

Die algebraische Konvergenzrate der Kollokationsmethoden folgt aus der Glattheit der Inhomo-
genitdt und der Quelle, sowie einem Resultat fiir nicht-polynomiale Interpolation von Sloan
[J.Approx Theory, 39:97-117,1983]. Fiir Dimension zwei und drei fithren wir numerische Ex-
perimente fiir eine Kollokationsmethode durch. Weiter analysieren wir eine Methode, bei der
die Inhomogenitdt im Verhéltnis zu Ozeantiefe klein ist. Diese Methode spart Speicherplatz
und Rechenzeit. Wenn im dreidimensionalen Fall mehrere Inhomogenitéten im Ozean vorhan-
den sind, kénnen wir die Lippmann-Schwinger Integralgleichung zu einem gekoppelten System,
von mehreren Gleichungen auf kleinen Gebieten umschreiben. Diese Technik reduziert die nu-
merischen Kosten drastisch.
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Outline of the Thesis

To briefly indicate the structure of this thesis, Chapter 2 introduces the wave propagation problem
and the Liouville eigenvalue problem for a two- or three-dimensional ocean with depth-dependency
of the sound speed. Using different background sound speed profiles, we discuss discretization
schemes for the Liouville eigenvalue problem arising in the vertical variable.

In Chapter 3, due to variational theory in Sobolev spaces, we first show well-posedness of the
corresponding scattering problem from a bounded inhomogeneity inside such an ocean. We further
introduce an exterior Dirichlet-to-Neumann operator for depth-dependent background sound speed
and prove boundedness, coercivity, and holomorphic dependence of this operator in function spaces
adapted to our weak solution theory. Then, analytic Fredholm theory implies existence and
uniqueness of solution for the scattering problem for all but a countable sequence of frequencies.

Chapter 4 studies the Green’s function for an ocean of dimensions two and three with back-
ground sound speed dependency, Neumann boundary condition on the bottom and Dirichlet
boundary on the top. We further prove equivalence of the source problem using the Helmholtz
equation, to the Lippmann-Schwinger integral equation in dimensions two and three. We moreover
periodize the Lippmann-Schwinger integral equation.

Based on the periodized version of the Lippmann-Schwinger integral equation and an inter-
polation projection onto a space spanned by finitely many eigenfunctions in the vertical variable
and trigonometric polynomials in the horizontal variables two different collocation schemes are
derived, in Chapter 5. A algebraic convergence rate depending on the smoothness of the inhomo-
geneity and the source and a result of Sloan [J.Approx Theory, 39:97-117,1983] on non-polynomial
interpolation prove convergence of both schemes, as well as convergence rates.

Using one collocation scheme, we present in Chapter 6 numerical results in dimension two and
three. We further present an optimization technique of the vertical transform process, when the
height of the obstacle is small compared to the finite height of the ocean, which makes computation
in dimension three possible.

If several scatters are present in the waveguide, the discretization technique from Chapter 6
leads to one computational domain containing all scatterers and hence to a large linear system.
In Chapter 7, we reformulate the Lippmann-Schwinger integral equation for a three dimensional
waveguide as a coupled system with an union of several boxes, each containing one part of the
scatter.
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Chapter 1

Introduction

1.1 Motivation for Sound Propagation in an Ocean

The research of sound wave propagation inside an ocean is an active research topic in applied
mathematics and engineering at least since the mid-20th century for its crucial importance for
techniques for oil exploration or like SONAR (Sound Navigation And Ranging), see, e.g., [Buc92]
or the introduction of [BGWXO04]. In the beginning of the 21st century exact simulations for
sound propagation in an ocean became even more important since the living environment and
the communication of marine mammals is crucial affected by increasing influences of man-made
ocean noise creation, e.g. construction and the operation of offshore wind farms or shipping. Legal
thresholds for emitted sound energies requires precise models and quantitatively exact simulations
of sonic intensities for ocean explorations, e.g. for acoustic pulses produced by firing air guns. This
requirement to a model can be described by scattering of time-harmonic acoustic waves in the ocean
by different elliptic and parabolic equation approximations. (e.g. Ames and Lee give in [AL87] a
survey of the history and the beginning of researches of ocean acoustic propagation.) Accurately
describing acoustic waves with small amplitude, the Helmholtz equation is an attractive model for
time-harmonic wave propagation in an ocean of finite height, where already various established
discretization schemes for the approximation of its solutions, see, e.g. [AK77], [Buc92], exist. Well-
known techniques of approximation are for example finite elements or boundary elements methods,
however, these memory intensive techniques are limited to small oceans and shallow water, see,
e.g. [BGT85]. Furthermore, another common simple model to compute wave propagation in
ocean acoustic researches is the near field Lloyd mirror pattern with convergence-zone propagation
modification discussed in [Jenl1][Chapter 1.4].

Liouville Eigenvalue Problem. An alternative approximation using a spectral volumetric
equation method for constant background sound speed for a 3D waveguide with finite height is
presented in [LN12], however, reasonable models for sound propagation over large distances and
depth oceans imperatively require a depth-dependent background sound speed. We point out that
the background sound speed in the ocean depends, e.g. on the salinity, pressure (via depth) or the
temperature of the ocean, whereas it is well-known that the temperature can fluctuate during the
year. Figure 1.1 shows the sound speed fluctuation, depending on the season, for a depth ocean.

In this thesis we chose the approach of time-harmonic acoustic wave propagation in an ocean
with depth-dependent background sound speed by the Helmholtz equation in an infinite, two- or
three-dimensional waveguide of finite height.

Existence and Uniqueness of Solution to the Scattering Problem. Using a variational
approach for wave scattering in this ocean with depth-dependent background sound speed, we in-
troduce the theory for weak solutions. [SS10] implies that the existence of Garding inequalities is
required to obtain convergence of numerical approximations, using variation theory of weak solu-
tions in Sobolev spaces for the Helmholtz equation. For an ocean with constant background sound
speed, where eigenvectors and eigenvalues have an explicit representation, [AGLOS], [AGL11]
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Figure 1.1: Sound speed (Evolution of time, Source: Alfred-Wegener-Institut Bremerhaven)

present the theory for weak solutions using the variational approach for wave scattering using
the Helmholtz equation. The non-trivial difficulty compared to known results for constant sound
speed, is that the eigenvalues and eigenvectors have no explicitly representation. In consequence,
we prove holomorphic dependence of the eigenvalues on the frequency via abstract perturbation
theory for an ocean with depth-dependent background sound speed using tools from [AGLO08]. We
further introduce an exterior Dirichlet-to-Neumann operator for depth-dependent sound speed and
prove boundedness, coercivity, and holomorphic dependence of this operator in function spaces
adapted to our weak solution theory. Then, analytic Fredholm theory implies existence and unique-
ness of solution for the scattering problem for all but possibly a countable sequence of frequencies
with accumulation point +oo.

Lippmann-Schwinger Integral Equation. Solving the Helmholtz equation with corre-
sponding boundary conditions and radiation conditions is equivalent to solving the Lippmann-
Schwinger integral equation. For constant background sound speed this is well-known by [CK13]:
if the background sound speed depends on the depth of the ocean the proof is more challenging.
Using the eigenvectors and eigenvalues, we first introduce the Green’s function for dimension two
and three and we further introduce the volumetric integral operator V using the Green’s function
G. Existence of classical (i.e., twice differentiable) solutions to the Helmholtz equation for con-
stant and depth-dependent sound speed has been shown via integral equation techniques by Xu
and Gilbert in a series of papers in [GX89, Xu92, Xu97, GL97, BGWX04], too. Xu and Gilbert
used the fact that the fundamental solution G can be separated into a free space Green’s func-
tion and a part correcting the boundary conditions and taking into account the depth-dependent
sound speed, thus using well-known volume integral equation tools from [CK13]. We present here,
however, an alternative technique to obtain the required boundedness of the volumetric integral
operator, that V is bounded from L?(A,) into H?(A,). Then, we can proove that the Helmholtz
equation with corresponding boundary and radiation conditions is equivalent to the Lippmann-
Schwinger equation, for the volumetric integral operator. Furthermore, we periodize the Green’s
function in dimension two and three in the hoirzontal component and we moreover introduce the
periodized Lippmann-Schwinger equation. In dimension three, we discover that the decay rate of
the Fourier coefficients of the periodized Green’s function is not sufficient to prove convergence
for the discretized integral equation we use for the numerical approach, later on. This differs
from well-known convergence theory for constant background-speed, which is presented in [LN12].
Using a cut-off function, we improve this decay rate in dimension three.

Numerical Approximation of the Periodized Scattering Problem. For the numerical
approximation we follow a technique from Vainikko, see [Vai00], [SV02]. The crucial advantage
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of this technique is that we can solve the discrete system on the periodized domain by an iter-
ative method, like GMRES, and avoid the need to evaluate the volumetric integral equation V
by integration of the involved Green’s function of the problem. We consider an approximation
space, spanned by finitely many eigenfunctions of the periodized volume integral operator that
are composed by eigenfunctions of the Liouville eigenvalue problem in the vertical variable and
trigonometric polynomials in the horizontal variables. This differs again from well-known numeri-
cal approximation for constant background-speed, i.e. see [LN12], where the approximation space,
in the vertical axis is spanned by finitely many trigonometric functions. Depending on whether
the interpolation projection onto this approximation space is applied to the integral operator or
to the contrast times the integral operator, we obtain two different collocation schemes.

The error estimates for the horizontal part of the interpolation projection are well-known,
i.e. see [SV02], however, the error estimates for the vertical part of the interpolation projection
differ from well-known theory. Using an approximation result of Sloan, see [Slo83], we bound
the interpolation error of an eigenfunction interpolation in L?, by the distance in the maximum
norm of the interpolated function to the approximation space. Then, an embedding result allows
to transfer this error estimate to an estimate in Sobolev spaces. Coupling the estimates for the
horizontal and vertical part, we obtain convergence rates for the two collocation schemes and the
non-standard interpolation operator.

Numerical Computations using the Collocation Method. The fast Fourier transform
and the inverse fast Fourier transform can be used to implement the horizontal part of the trans-
form, however, a corresponding fast discrete transform for the vertical part does in general not
exist. The classical article [CT65] for the fast Fourier transform, together with [SV02] and the fact
that we use matrix vector multiplications in the horizontal axis, imply that the transfer of grid
values to Fourier coefficients costs in general for dimension two least O(N; N2 log(N1)) operations,
where N; denotes the number of collocation points in direction z; for j = 1,2 and in dimension
three O(N;N2N% log(N1N2)) operations, where N; denotes the number of collocation points in
direction z; for j =1,2,3

Once the Liouville eigenvalue problem is approximated in advance, the fully discrete collocation
scheme can be implemented numerically. Evaluating the fully discrete operator requires to transfer
point values at the grid points into Fourier coefficients. Due to the non-constant sound speed,
in the vertical component this transform consists of matrix-vector multiplications with a matrix
containing the approximated eigenvectors and its inverse matrix. Here, iterative algorithms, see
e.g. [SMO03] are used to reduce a considerable amount of memory compared to standard MATLAB
routines for matrix inversion.

As the discrete system can be restricted to the support of the inhomogeneity, an optimized
scheme depending on the support of the inhomogeneity allows to economize memory and com-
putation time compared to other volumetric methods such as finite-element techniques involving
exterior Dirichlet-to-Neumann operators, see [BGT85]. This is in particular attractive if the height
of the inhomogeneity is small compared to the height of the ocean, which is frequently the case in
ocean acoustics.

Combined Spectral/Multipole Method. If several scatters are present in the waveguide,
the discretization technique already presented leads to one computational domain containing all
scatterers. For a three dimensional waveguide, we reformulate the Lippmann-Schwinger integral
equation as a coupled system with an union of several boxes, each containing one part of the
scatter. [LN12] and [GRS87] discovered a combined spectral/multipole method applied to an
ocean with constant background sound speed. We apply this idea to non-constant background
speed to make computations for several distributed inhomogeneities and sources placed over large
distances in the ocean possible.
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Chapter 2

Liouville Eigenvalue Problem

We are interested in solutions to the Helmholtz equation in a waveguide with depth-dependent
sound speed and Dirichlet and Neumann boundary conditions on the two boundaries respectively.
We first expand u by separation of variables acting on the horizontal variable Z and acting on
the vertical variable z,,. In consequence, we obtain a Liouville eigenvalue problem. We analyze
approximation techniques for different types of background sound speed that we exploit later for
numerical computations of the solution to the wave guide problem.

2.1 Sound Propagation Model in an Ocean

This section deals with the introduction of the mathematical setting of waves traveling in an ocean
with depth-dependent background sound speed.

First, we consider some model assumptions. The domain of interest is a waveguide 2 =
R™~! x (0, H), where H > 0 is the constant depth and m = 2,3 the dimension of the ocean.
We point out that an ocean with dimension m > 3 has no physical interest and is not considered
in this work. By the fact that the vertical coordinate axis is singled out in the definition of the
waveguide (), we establish for a point x in the waveguide 2 the notation

= (z1,22)" = (2, 2,) for m = 2 and

T

Tr = (x17'r27x3)T = (-iaxm) for m = 3.

In this work, the propagation of time-harmonic waves at angular frequency w > 0 with time-
dependence exp(—iwt) in the waveguide ) is formally modeled by the Helmholtz equation

Au(z) + n?(z)u(z) =0 in Q, (2.1)

(Tm)

where n denotes the refractive index, ¢ € L*(0, H) the background sound speed depending on
the depth of the ocean. Furthermore, to model a local perturbation of the sound speed inside the
inhomogeneous waveguide €2, we suppose for n? : Q — C that n = 1 outside some bounded and
open set D C Q. In particular, we define the contrast by

q(z) ==n?(z) -1 for z € ,

and note that supp(q) C D. We rewrite (2.1) as

W
c? (xm)

We now give some details on the depth-dependent background sound speed. Figure 1.1 and
2.1 give us an idea for reasonable bounds the sound speed ¢. We point out that Figure 2.1 gives

Au(z) + (14 q(z)u(x) =0 in Q. (2.2)
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a physical motivation for our assumptions on c¢. In a nutshell, the background sound speed lies
between 1440m/s and 1540m/s. In the sequel, we consider that the background sound speed ¢
depending on the depth of the ocean is be bounded away from zero by

0<c_ <c(zm) <y, for almost all z,, € [0, H]. (2.3)
Hence, we have
0< <2 <2 for almost all z,, € [0, H]. (2.4)
cy ~ c(xm) T oo

Next, we model the free surface of the ocean by sound soft boundary conditions

R 9
25
9
25 S
7

o

L~

2 \ 20
=
~
Q Q
8 d
\ *
\\ “
:
g
i
5& o
1440 1445 1450 1455 1460 060 1440 1460 1480 1500 1520
Sound Speed [m/s] Sound Speed [m/s]

(a) (b)

Figure 2.1: Sound speed profile depending on the depth of the ocean. Profile 25: deep ocean,
profile 7: shelf, profile 9: shelf in winter. (Source: Alfred-Wegener-Institut Bremerhaven)

u=0onTy:={zeR":z, =0} (2.5)
and the seabed of the ocean by sound hard boundary conditions
;—“:OOnrH = {z € R™ : 2, = H}. (2.6)
Tm

Other boundary conditions modeling for instance interaction of elastic seabed with the ocean (e.g.
[GLIT7]), are possible. However, for simplicity, we assume Neumann boundary condition (2.6) on
the bottom of ocean describing a perfectly reflecting bottom.

2.2 The Liouville Eigenvalue Problem

Assume that ¢ = 0. Using separation of variables, we assume the series expansion of the solution

as
w(Z, xm) = Za(j)wj (T)u;(2m), with coefficients a(j) € C.
jEN
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By the definition of the Laplace operator we obtain that

0w 0%u;

Awjuy) = UjaT%J + w; 8:55 for m =2 and
0w 0w 0%u

Awjuy) = uy Bx%] + uy &U%J + w; &"c%] for m = 3.

For simplicity, we write in the following for the Laplacian acting on the horizontal variables

82wj w;  w;
0 Aw; —9 d ow; j
0x? wj (m=2) an Ox? - Ox2

=Azw; (m=3).

If an arbitrary function ¢ depends only on one variable we abbreviate its first derivative by one
prime and obviously its second derivative by two primes e.g. ¢’ := 0¢/0z,, and ¢" = 0¢?*/0x2,.
We can now replace in the Helmholtz equation (2.1) the term w(Z, z,,) to find for one series term

that o2 )
U4 w
d + 7 WUy = 0.

Ay Wi ()
m

Next, for w;(Z), u;(xm) # 0 we compute

Azw;(T) 1 0%uj(zm) w?
wi(@)  uj(em) 022, E(rn) (2.7)

The left-hand side of the last equation (2.7) depends only on the horizontal variables & and the
right-hand side of (2.7) depends only on the vertical variable x,,. This only holds if each side is
constant, say

Azw;(Z) 1 %uj(zm) w?

wj(j) B _uj(xm) 0x2, - cA(xm)

=l in €, (2.8)

where u; € C. We point out that this definition of the eigenvalue problem is not the common
way to define it. We choose this sign to work later on with positive wave numbers for propagating
modes, following the usual convention of scattering problems, where we want that the (square)
root of negative u; tends to +ico for j — oo. Note that this choice of the sign of p; influences
the definition of the radiation conditions later on. Now, we see

w .
u! + m Uj = ;U n (0, I{)7 (2'9)
and
Afcwj + pjw; = 0 in R™ 1, (210)

Next, we investigate equation (2.9) with the corresponding boundary conditions (2.5) and (2.6).
We say (i is an eigenvalue of the operator (9% /022, +w?/c?(x,,)) on [0, H] if there exists a function
¢, not identically equal zero, solving the Liouville-type eigenvalue problem

w2

d)“(l’m) + 2

p(0)=0  and  ¢'(H)=0. (2.11)

Then, function ¢ is a corresponding eigenfunction to eigenvalue .
We introduce the space of ¢-times differentiable functions by

CH (0, H) := {u € C*0, H) : u(0) = 0},

and the Sobolev space
H ([0, H]) == {u € H' (0, H) : u(0) = 0}.



8 CHAPTER 2. LIOUVILLE EIGENVALUE PROBLEM

The weak formulation of (2.11) is obtained by multiplying the first equation of (2.11) with a
test function v € Hyy, ([0, H]), formally integrating by parts, plugging in the boundary condition
from line two of (2.11) and multiplying the equation by -1. As a result the weak formulation is

H H o 2 H
/ o' v dx,, — / ¢V dT,, = —/ UOT AT, for all v € Hyy ([0, H]). (2.12)
0 0 0

(xm)
The solution to (2.12) satisfies

2

¢ + %¢> —pe=0,  inL*([0, H)),

which implies that ¢ € H2([0, H]). We now define

H H
a(p,v) ::/0 qb'?dxm—/o wizq%dxm,

and we arrive at the following variational formulation: Seek the eigenpair (¢, 1) € Hy ([0, H]) x C
such that

H
a(¢,v) = —,u/o GV AT, for all v € Hyy, ([0, H]).

By using a compact perturbation we now show that the sesquilinear form «a is coercive. We add
a term equal zero to the sesquilinear form a and we compute

H H 2 H H
aod) = [ W Tdu,— [ SEsobrt [ odn,— [ oG,

w2
> 16l — (2 Wl + 1900y ) -
+

We now see by [McL00, pg.43-44] that a is coercive, with respect to the pivot space L?([0, H]).
Next, since w/c(z,,) is real valued, we obtain that a is self-adjoint. Therefore, well-known
eigenvalues theory (see e.g. [McL00]) implies existence of a sequence of real eigenvalues {u; : j €
N} C R such that p; — —oo as j tends to infinity with corresponding eigenfunctions {¢, : j € N}
in H}([0,H]), such that orthogonality conditions hold. We consider that the eigenvalues are
ordered as
M1 = fl2 2> p3 = ... > —00.

We furthermore define their square roots A; as

Jii forp; >0
A= { K O = for all j € N. (2.13)

i/|pg| - for p; <0,

More precisely, we have extended the root function from the real axis to a holomorphic function
in the complex plane with branch cut along the negative imaginary axis. Positive eigenvalues p;
creates propagating modes ¢;, which transmit all of the energy, negative eigenvalues u; lead to
imaginary A;, creating evanescent modes.

Plugging all together, the eigenpair (¢;, A7), where ¢; € H?([0, H]) denotes the j-th eigenfunc-
tion and )\f € R the j-th eigenvalue, solves

w2
(b;-/ + m¢j — )\?qu =0 almost everywhere in (0, H),

and since H?([0, H]) ¢ CY/2([0, H]) it holds for all ¢; € C/2([0, H]) the boundary conditions

$;(0) =0 and ¢i(H) =0,
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in the classical sense of point wise evaluation. Additionally, we assume that the eigenfunctions
¢; € H} ([0, H]) are normed by

H
/ ¢ (Tm)j(Tm) drm =1 for all 7 € N.
0

Plugging all together gives us the following corollary.

Corollary 2.2.1. The eigenpair ((bj,)\?), where ¢; € H%([0, H]) denotes the j-th eigenfunction
and A? € R the j-th eigenvalue, solves

OJ2

(am)

#;(0) =0 and ¢5(H) =0,

¢ + ¢ — Ajp; =0 almost everywhere in (0, H), (2.14)

and it holds the variational formulation

H
/ {gb; v+ ()\3 — w2> quv] dz, =0 forallv e Hév([O,HD (2.15)
0

2(@m)

Remark 2.2.2. For an ocean with constant background sound speeds c the eigenvalues can be

explicitly computed by
2 . 2
2. _ W (2 —Dm .
Aj = 2 ( Vi forjeN,

and the eigenvectors are given by

(2j = m

Theorem 2.2.3 (Number of Propagating Modes). Assume that the sound speed x,, — c(xy,)
is bounded as (2.3) and assume that w > 0 is fized. We further consider that for all j € N the
pair ((bj,)\?) solves (2.14) and the pair (¢F,\%) solves the corresponding eigenvalue problem for
constant background sound speed c+. Then, it holds for ()\j')2 and ()\;)2 as defined in Remark
2.2.2 that

(AN <A< (A;)? for all j € N.

Proof. Let V; for j € N be any j-dimensional subspace of Hy;,([0, H]). By Min-Max Theorem (or
also called Courant-Fischer Theorem from [YselO, Theorem 5.9]), we obtain that

A2 = min max a(dj, dj)
/ Vi ¢;€Viilloill g0, m=1 I
" 2 w? 2
= min max & (xm)|? — —|b;(x ) dx
i, g (0P - @) da
f + w? . +
suin xR - Sl ) don = 03P foralljen
i ¢ €Villes g, m=1J0 R
This finishes the proof. O

Lemma 2.2.4. a) There exists a constant C such that \)\3| > Cj2 fur sufficient large j.
b) There are constants 0 < co < C' such that cpj < H¢;-HL2(0,H) < Cj, Vj € N. It further holds
that |65l L2(0,r) < C(1 4 [X;[%)Y/2 for all j € N.
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Proof. a) Due to Theorem 2.2.3 we know that
AN <A< (A;))? for all j € N,

and by Remark 2.2.2 we have

2 . 2
+y2_ W (2j = D)m :
)= — | ————— for all .
(A) ( 5H orall jeN

2
Aj

VA

>

e
|

where C* > 0 is independent of j.
b) Obviously, we have

’

H
167 o) 20,10y = / 6, (&) 2dr,y  forall j € N.

From (2.14) and (2.15) we have

H H 2
4 2 2 w 2 2
16 (o) 20,0y = / 16, P, = / [62(%)—&} 16,2 .

If we assume that ||¢; H2L2(0 #ry = 0 we obtain that the eigenfunction is constant, however, this will
be a contradiction to the Dirichlet boundary condition holding for ¢;. In consequence, a) yields
that

2 2 2 . 2 2 2
w N "9 5 W (25 — 1) ,Ch —c2
max (C%_ + /\j70) < ||¢j||L2(07H) < )\j + g < AH2 +w 03_62_ . (2'16)

The estimate qu; HQLZ(O,H) < Cj? follows directly from the right-hand side of (2.16). As [|¢/j||2(0, )
cannot vanish, and as the left-hand side of (2.16) grows quadratically, there is ¢g > 0 such that
0 < coj? < |¢j1320.0r) Finally, [6;llr20,r) < C(1+ A;[2)V2 for all j € N follows again by
exploiting part a).

O

Lemma 2.2.5. For the eigenvector ¢; € H' ([0, H]) it holds that

) \Lm < H j )
Jmax, ¢j(xm) < C(H) forjeN

where C(H) > 0 depends on H but not on j € N.

Proof. The proof is rather technical and uses separation of variables. For simplicity we set ¢ := ¢;
and A := );. By the definition of the eigenvalue problem with corresponding boundary conditions
given in (2.11) we have

w2

()

:5f(a7m)

¢" (xm) — N¢(zm) = P(m), (2.17)

with boundary conditions ¢'(H) = 0 and ¢(0) = 0. Now, we choose the following ansatz function
as the general solution for the eigenvalue problem

O(xm) = a(zm) exp(—Az.y,).
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Furthermore, by differentiating the ansatz function we see that
¢’ (xm)
¢Il (mm)
Next, we insert ¢ (z,,) in (2.17), multiply with exp(—Az,,) and we obtain

(" (zm) — 2iMa/ (2)) exp(—2AT 1) = f(Tm) exp(—=Azp, ).

(Tm) exp(—AZp) — A ) exp(— Az, ),
() exXp(=AZrn) — 200 (2) exp(= Ay ) + A2A(21,).

/

=«
/

=«

Furthermore, we deduce

(0 (zm) exp(=2Azm))" = f(2m) exp(—Azm).

By integration it follows that

o () exp(=Azy,) = o (H) exp(=AH) + /me f(t) exp(—=At) dt.
We moreover see -
' (Ty) = o' (H) + exp(Azy,) / f(t) exp(=At) dt.
H

Then, a second integration gives

azm) = a(0) + o (H)am + /0 " exp(0s) /H () exp(=At) dt ds. (2.18)

Since the Dirichlet boundary condition implies that «(0) = 0, we focus on o/(H). Plugging
T, = H in the last equation shows

a(H) =d (H)H + /OH exp(\s) /HS f(t) exp(—At) dt ds. (2.19)

Now, it holds for the ansatz function that

a(Tm) = d(Tm) exp(Aem).
Next, by differentiation we see that

A (2m) = &' () exp(Ar ) + X exp(AT, ) d(x, ).

Then, we use z,, = H in the last equation to write

o' (H) = Nexp(A\H)¢p(H) . (2.20)

j(’ﬂ)_/

Furthermore, it holds that the integral term in (2.19) is constant. Consequently, equation (2.19)

and (2.20) satisfying
(& ) (i) = (6)

where C' is a constant. Therefore, we obtain the boundary term

A

HH —
a(H)—Cl_/\H.

For equation (2.18) it follows that

A Ton s
a(Tm) = mem +/O exp(As) /H f(t) exp(—=At) dtds.

Plugging the last equation in the definition of the ansatz function and then applying Cauchy-
Schwarz inequality finish the proof (since || f||rz < w/c). O
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Remark 2.2.6. a) Consider that the sound speed x,, — c(x,) is bounded by constants given in
(2.3) and for all j € N the pair (¢;,A3) solving (2.14). Then there exists a finite number J € N
of propagating eigenmodes, where the number J € N depends on the parameters w, ¢ and H. We
call this assemblage of the parameters w, ¢ and H ocean configuration.

b) Due to the ocean configuration, there exists for 0 < j < J(w, ¢, H) real-valued \; and for
j > J(w,c, H) purely imaginary ones. For a special choice of w, ¢ or H, also \j = )\5 =0 could
be possible for some j € N. We call this choice exceptional ocean configuration.

¢) For fized depth H and given background sound speed, we obtain the frequency dependency of
the eigenvalues \* = \?(w) and we call the frequencies resulting vanishing eigenvalues \*(w) = 0
exceptional frequencies.

In this work we exclude these exceptional frequencies. Nevertheless, if we exclude these ex-
ceptional frequencies the analysis, however, will be influenced. We investigate the case of these
exceptional frequencies later on. We further want extend w — )\? (w) as a holomorphic function
into a complex open neighborhood of Ry in C.

Lemma 2.2.7. For all w, > 0 there exists an open neighborhood U(w,) C C of Ry and index
functions £; : U(ws) — N that satisfy Ujent;(w) = N and £;(w) # €;(w) for j # j' € N and all
w € U, such that the eigenvalue curves w — )‘?7 () (W) are real-analytic functions in U(w.) "R and
extend to holomorphic functions in U(w) for all j € N.

Proof. In the following we use results on holomorphic families of operators from [Kat95, Chapter
VII, §2 and §4]. We first choose some w, > 0. The differential operators L(w)u = u” + (w?/c?*)u
on (0, H) with boundary conditions «(0) = 0 and u'(H) = 0 yield a selfadjoint holomorphic family
of type (A) since u + (w2 /c?)u is bounded on L?(0, H), w, + (w?/c?)u is holomorphic in w, € C,
and the domain {u € H?(0, H), v(0) = 0} of L(Q) is independent of w, € C, compare [Kat95,
Ch. VII, §1.1, §2.1, Th. 2.6]. These differential operators also form of a holomorphic family of
type (B) since the associated sesquilinear form a from (2.12) is bounded. We now differ to two
cases, if )\? is multiple eigenvalue and if )\? has multiplicity one.

If A?(w.) is a multiple eigenvalue, then the function w — A?(w) is in general not differentiable
at w*, such that the eigenvalue index needs to be re-ordered to obtain smooth eigenvalue curves,
compare [Kat95, Ch. VII, §3.1, Ch. 2, Th. 6.1]. Indeed, the latter reference shows that if )\? (wy)
is a multiple eigenvalue then it has finite multiplicity and there exists a complex neighborhood
U; of w, and an index function ¢; : U; "R — N such that w Aiw) (w) can be extended
holomorphically from U; NR into Uj.

If eigenvalue )\?(w*) has multiplicity one, then [Kat95, Ch. VII, §3.1, Example 4.23] gives
for j € N that for each eigenvalue )\? (ws), there is a complex neighborhood U; of w, such that
w )\? (w) can be extended from U; NR as a holomorphic function of w into U;. In consequence,
while the curves w — )\? (w) are merely piece-wise analytic for real w > 0 and the corresponding
eigenvalue sheets are piece-wise holomorphic in a complex neighborhood of R, analyticity can
be obtained by re-ordering indices via the index functions /;.

It remains to see that the intersection of the neighborhoods N;enUj is non-empty. For N € N
this holds for any finite union Uj—; .

Due to the eigenvalue estimates in Lemma 2.2.4 we further know that the eigenvalues multi-
plicity one holds for j > jg, where j

ye— H72 2ifi +1
Jo =g (W A A ’

Then, the distance

of )\f (w4) to the rest of the spectrum

{\2(w,) where A7 (w,) # )\?(w*) for j #1},
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is bounded by one. Applying Theorem 4.8 in [Kat95, Ch. VII], compare also (4.45) in the same
chapter, we deduce that for all j > jo the holomorphic extension of /\? (ws) has a convergence
radius of at least (1+1/¢?)™'. (Sete=1,a=1,b=0,and c =1/c% > ||1/¢?| (0, u) in (4.45).)
Further, for j < jp all eigenvalues )\? (w4), can be extend to a holomorphic functions in

U(w,) == M2, U; N B(w,, 1).

This finishes the proof.
O

Theorem 2.2.8. For j € N there exists a complex neighborhood U of R~ and index functions
¢; : U — N such that the eigenvalue curves )\%j(w)(w) are real-analytic curves that extend to
holomorphic functions in U. For each compact subset W of U, the set of frequencies where some
eigenvalue vanishes

Ko ={w e W: there is j € N such that A?(w) = 0},
is composed by a finite number of discrete values.

Proof. Using Lemma 2.2.7 we cover the positive reals (0,00) with the neighborhoods U(w) of
w > 0. Then for each compact interval [1/¢,¢] with ¢ € N there exists a finite sub cover, which for
j € N allows to holomorphically continue all eigenvalue functions w — )\fj (w)(w), into a complex
neighborhood U, of [1/¢,¢]. If ¢ € N is chosen arbitrary, this holds for the claimed open set
U = UyenUy in C containing R+ .

It remains to prove the last claim of theorem. Due to Theorems 1.9 and 1.10 in [Kat95, Ch. VII,
§1.3] we obtain that for each compact subset W of U the set

Ky ={w € W : there is j € N such that )\f(w) =0} CW,

is either finite (for each w € W there exists some j = j(w) € N such that A?(w) = 0) or equals W
(the number of frequencies w in W such that there is j = j(w) € N such that )\? (w) = 0 is finite).
Obviously, the set K is finite since Lemma 2.2.4 excludes the first case. O

2.3 Discretization of the Liouville Eigenvalue Problem

In this section we will discuss the numerical discretization of the Liouville eigenvalue problem
(2.14). More precisely, we present different schemes to approximate the eigenpair (¢;, /\3)7 where
¢; € H?([0, H]) denotes the j-th eigenfunction and A% € R the j-th eigenvalue solving the Liouville
eigenvalue problem (2.14). Due to Remark 2.2.6 the eigenvalues {\3};cn and the eigenvectors
{#;}jen depend on the ocean configuration, e.g. the sound speed ¢, the frequency w and the height
H. A crucial point is the representation of the sound speed ¢, which influences the computation
technique of eigenvalues and eigenfunctions. Thus, we discuss in the following different models.
We recall that, if we assume that the background speed is constant, then the eigenfunctions and
eigenvalues have the well-known representation,

2 ; 2 ;
2_w (Qi-Drm ey — i (2D ‘
A= 2 ( 5H and  ¢;(zm) = sin 5f - Em for all j e N,z,, € [0, H].

First bounds of ¢ are motivated by Figure 2.1, where roughly speaking the background sound
speed lies between 1440m/s and 1540m/s.

In ocean acoustics the communication of blue whales is an important research topic. For
example Figure 2.2 b) shows the signal of a Z Call of a blue whale a). Thus, Figure 2.2 b) gives
us a first reasonable value for the frequencies for the computations later on.

A first motivation for the approximation of eigenvalues and eigenvectors are given in Figure
2.3, where we compute the eigenvectors {¢;},=12... 5 and the eigenvalues {)\J2 }i=1,2....0 for constant
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a) b)

Figure 2.2: Blue whale Z call: 10s. 28Hz, a downsweap of 1s from 28Hz to 19Hz, 10s. 19Hz.
(Source: Alfred-Wegener-Institut Bremerhaven)

background sound speed ¢ = 1460, height H = 10 and frequency w = 500. We use this technique
later on to evaluate the approximation error of eigenvalues and eigenvectors for different techniques,
as a first indicator. We point out that Figure 2.3 (b) shows that eigenvalues {)\?}jzl,gmj are
propagating ones.

01234567 8 9 10 1234567829
Height Eigenvalue
(a) (b)

Figure 2.3: Constant background sound speed ¢ = 1460, height H = 10 and frequency w = 500.
(a) Eigenvectors {¢;};=12...5 (b) Eigenvalues {A\3};=12 9

Due to the fact that we consider an inhomogeneous ocean, the non constant background speed
yields different computation techniques of the eigenfunction ¢;(z,,) and the eigenvalue )\?: If
we consider that we have an n-layered ocean with piecewise constant background speed on each
layer and using transmission conditions on each one, then we have a semi explicit representation
of eigenvectors and eigenvalues. If we suppose continuous background sound speed, which is
sufficiently smooth, then we can compute eigenvectors and eigenvalues by a spectral method. If
the non-constant background speed is arbitrary, but still sufficiently smooth, we can apply a finite
element method (FEM).

For completeness, we first introduce common models for the background sound speed in the
ocean. For a realistic model the background sound speed depends on the vertical axis x,, and re-
spects various parameters, e.g. temperature, depth of the ocean, material decomposition. [KPL12,
Chapter 2] gives different approaches for background sound speed models, depending on seasonal
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variability or on storm surges. For more basic sound velocity models we refer the reader to [Lurl0].
We first present the well-known and quite simple model of Medwin developed in 1975, see [MC97],
for depth oceans with depth of maximum one kilometer. The sound speed in m/s, depending on
the temperature in Celsius T, the salinity S in PSU (Practical salinity units), and the depth of
the ocean H, is denoted by

c(2m) = 1449.2 + 4.6T — 0.055T2 4 0.000297° + (1.34 — 0.01T)(S — 35) 4+ 0.0162,,, 2, € [0, H].

Here, x,, is the actual depth in meters. We note that [MC97] gives also possible reasonable values
of the salinity and temperatures.

A different approach to compute the background sound speed in the ocean is introduced by
Chen and Milero in [LurlO, Section 2.6]. This model is widely used and confirmed by UNESCO
but needs more efforts to compute since ones needs the salinity S in PSU, the temperature in
Celsius T and the hydrostatic pressure in bars P computed by Leroy formula

P(2m, ) = 10052.405(1 + 5.28 x 1073 sin® @), + 2.36 10522, + 10.196,

where ¢ is the latitude in meter. Using the following model parameters depending on the temper-
ature,

.80852 342 1.4 1464
00:1402.388+5.03711T758085 2 33420, 147800, 3146 T°

102 104 106 109 ’
c1 =0.153563 + 6'18352T - 8'115688T2 + 1’?(?72 Lps _ 6'11011§5T4,
o :3.115560 B 1.17327 T 2.153874 T2 2.1503£5 o 1.1%%25 .
o :9.175929 B 3.1%51(34 T 2.1?66133 .

and the parameters depending on the temperature and the hydrostatic pressure,

A=A+ AP+ AyP? + A3P3,

1.262 7.164 2.006 3.21
Ay =1.389 — T T° T3 — T4
0 102 1T T T e 108~ 7
0.4742  1.258 6.4885 1.0507 2.0122
— _ T_ T2 T3_ 4
TS 10° 105 © T8 1010
3.9064  9.1041 1.6002 7.988
Ay = — T — T2 T3
2 107 T 1 100+ oz
11 6.649  3.389,
As :1010 + 1012 - 1013 7",
1.922  4.42 7.3637  1.7945
B = - T)P
102 105 ( 108 107 ) ’
1727 7.9836
T 103 106

we can further compute the sound speed in meter per second by
c(xm) =co+aP+ coP? + 3P + AS + BS/? + 0S2.

For non constant background sound speed c¢(z,,) we have no explicit representation of the
eigenvectors {¢;};jen, in a form containing sine or cosine. Thus, we now present the well-known
Ritz-Galerkin approximation applied to the Liouville eigenvalue problem acting on the vertical
variable (2.14). We recall the variational formulation of the Liouville eigenvalue problem given by
equation (2.15),

c

H w2
/ [qﬁ}v'—{— (/\3_2(37)> ¢jv] dz, =0 for all v € Hyy, ([0, H)).
O m
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Let N € N denote the discretization parameter and define the grid Ny = {j € N,;1 < j < N}, and
{xg.N) = <H]‘<7> je NN} c [0, H]. (2.21)

Using piece-wise linear Ritz-Galerkin approximation to approximate the latter variational formula-

tion, we moreover represent j, N € N the approximated eigenfunction qbg-N) as a linear combination
of basis functions ¥ by

N
oV = Z§i1/fk($m)7
k=1
where
N N N N N
(xn}v— $(7)1)/(ng) - x;]})l)’ if xENi <zpy < x§N),
1/)] (mm) = (x§+% - xm)/(mg_Fi - mE ))7 if :E; ) <y < {L‘;_‘_i,
0, otherwise ,
and its derivative
1/(x(N) — J:(N)), if xgjiq <zpy, < mﬁN),
N N N N
Vi(em) = ¢ =1/@) =i, it 2l <o <ol
0, otherwise ,
where xéN) = 0. The fact that ng) = 0 yields the Dirichlet boundary conditions z,, = 0. For
j = N, we obtain
0, if0 < 2y <27,

YN (Tm) = {

(@m — a0/ (H — (7)), if 20} <@ < H,

and its derivative
ifo<az, < xg\],\[_)l,

0,
1/(H —xg\],vjl), if mS\J,le <z, <H.

Y (Tm) = {

We replace the eigenfunction ¢; in the latter variational formulation by its approximated one ¢§N)
and we denote the approximated eigenvalues by /\?’ ,, and we deduce for all j € N that the eigenpair

( ¢§N) ;A7 1) solves

H[N W2 N N
/O lz Eth (Tm )} () — FEE > Gtbr(@m) Vi (zm) + A3 wai(mm)wxm)} d, = 0.
k=1 mlg=1

k=1

Consequently, we obtain for all j € N the Raleigh-Ritz-Galerkin equation

N (i) 2
Z (/(1.\1) [ﬂ’k(ivm)i/); (zm) - c(f:i)ka(xm)wj (zm) + /\?lek(xm)wj (mm) dxm:| dxm) §k =0.
k=1 \"%;-1 m
In matrix notation we have
(S — M)¢ = -\ B, (2.22)

where the entries of the stiffness matrix S and the mass matrix M are defined by

/ o ol d a2 bt d
Skj = LY AT, Mkj,c = — 5 VkYj ATm,
9 G
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and the entries of the mass matrix B are defined by

(N)

b T ey d
kj = /m(N) VYitpj Ay,
j—1

For completeness, the mass matrix S can be computed explicitly for j =1,2,.... N — 1,

z" 1 Sk 1 1 1

J Jjt+1

Sjj:/ Wdzm_F/ dem: N N + N N)’
«$) (:Eg ) _ xg_%)Q 2 (xi_& — xg ))2 xg ) _ f;_% :cg_& — :cg )
2

/ i+1 1 d 1

Sjj+1 =~ TN g W = T
x) (x§+i—x§ ))2 :CE—_&—:EE— )

/H 1 p 1
SNN = — ATy, = —————-
20, (H =20, )2 H -z,

We further know that s;i1; = s;;+1. To calculate the mass matrix M a numerical quadrature
will be necessary to evaluate

[ it G
7 ) c(m)? (x5 —x-1)2 " 2™ c(xm)? (ISZ.\Q _ ISN))Q m
) N N
S EA
“i " (i1 —2;)?
myN = 7w (o —an)? d
NN _/a;;,N_)l m)? (H—x%\’_)ly T,

Again, the entries of the mass matrix B can be computed explicitly,

ey )

J (wm — xj71)2 xﬁzil (Igﬂ\g — .Z‘m)2
bjj = 5 dan + — g e
) (25 —m50) 2N (@l — 2tz

( y
J J

Leay oY Loy vy
L) ¢ (- ),

2V N N

b —/””éﬁ_““““”gnm = (e

j,5+1 = N N m T e\l T Yy ’
2y (afyy —a§™)? 6

B (em — 335\]/\])1)2 1

_ - _ (N)

by —/(M o) d = 5 (1 -252).
IN-1 N-1

It is well-known that by the definition of the hat functions ; stiffness matrix and mass matrix
are sparse.

Remark 2.3.1. Let M denotes the mass matriz using constant background-sound speed Cpaz
instead of depth-dependent sound speed. If we replace now the left-hand side in (2.22) by (S —
M — M)§ we can compute the eigenvalues S\,QL = A + )\fna%h on the right-hand side in (2.22).
Since Afnaz,h can be computed analytically, we deduce \i. Using this technique for background
sound speed, roughly speaking similar, to the constant one Cpqz, we see a significant speed up in
the routine computing the eigenvalues. However, if the the non constant back ground speed differs
too much from the constant one the rapid convergence is not ensured.

It is worth to see that the approximation error of the eigenvector ¢;(z,,) depends on the
number of computed eigenvalues. Motivated by Figure 2.3 (a) for constant sound speed, we see
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that for large eigenvalue the oscillation of the eigenvector increases and hence the choice of the
mesh has to be adapted. For non-constant sound speed this also holds.

To obtain error estimates of the approximated eigenvalues and eigenvectors to the exact ones
using the Ritz-Galerkin methods, we look at the variational formulation.

H 2
/0 {¢;-v’+ ()\f—czzuwm)) @v] dzy, =0 for all v € Hyy, ([0, H]).

We recall again the variational formulation of the Liouville eigenvalue problem given by equation
(2.15), and denote for simplicity (¢, \?) := (¢, A3),

H H o2 H
/ &'V dxy, —/ VU dTy, = —/ N2 ¢t d,, for all v € Hyy, ([0, H]).
0 0 0

Cz(xm)

We now rewrite for all v € Hy, ([0, H]) the last equation as

H H wz w2 H wz H
/ &'V day, — / ——— vz, + 27/ O dxy, = (22 — A2) / & Az, .
0 o € (xm) ¢ Jo c- 0

Next, we define the operator K : L?([0, H]) — L?([0, H]) by requiring that if f € L%([0, H]) then
Kf € H} ([0, H]) satisfies for all v € H}([0, H]) that

H H w2 w2 H w2 H
/ (Kf)'v dop, — / — K fvdz,, + 27/ Kfvdz,, = 2—2/ fodx,,.
0 0 cZ Jo ¢~ Jo

2(@m)

Since the sesquilinear form on the left of this variational formulation is bounded from below, Lax-
Milgrams lemma ensures that a solution to this problem exists, such that K is well-defined. Then,

we have
2 2 2 2 -1
szi(if)ﬁ) .

2 \ 2

Theorem 2.3.2. The operator K is a bounded and compact map from L?([0, H]) into L?([0, H)).

The proof follows since K maps f boundedly to ¢, ¢ € H}, ([0, H]) and H};, ([0, H]) is compactly
embedded in L2([0, H]).
Now, we denote the discrete variant of operator K by Ky, i.e. Kyf = vy is of the form

UN = Zjvzl &;1; and solves

H H 2 2 2 H
. 9 _ .
/ U A — / (” + ﬁ) ONDRdTm = 2”7/ fordzm,  k=1,..,N.
0 0 C( Cc_ c_ Jo

T )2

Then, the convergence of the approximated eigenvalues of the compact, self-adjoint operator K
to the exact one is given by [Osb75, Theorem 3] and applied to a self-adjoint operator by [Mon03,
Theorem 2.52].

Lemma 2.3.3. For the operator Ky it holds that Ky f — K f in L?([0, H]) for N tends to infinity
and the set K = {Kx : L*([0, H]) — L*([0, H])} is collectively compact.

Proof. We first consider
Xy =span{t;,j=1,...,N}.
For f € L*([0, H]) we have that uy := Ky f solves

H 2 2 2 rH
2w w 2w
! ! —_ - " dey, = — dzo, for all c Xyn.
/0 [UNUN +<02 02(.’L‘m)>UNUN] T = /0 fon dx or all vy N
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We point out that the test function vy in the last equation can equivalently replaced by all vy,
where £k = 1,..., N. We further see the corresponding continuous problem: Find u := Kf €
Hi, ([0, H]), such that

H 2 2 2 H

2 2

/ {u'v’ + (C;) - 2w> uv'} dz,, = %/ fodx,, for all vy € Xy.
0 2 A(am) ¢ Jo

Due to Lax-Milgrams lemma we know that a unique solution exists, since it holds

lullzz, o,y = 1K fllm2, 0,17y < ClI N, 0,17y

Since a unique solution exists, we know by Céa’s Lemma that

1
nf  lu—on]| < C*HU”H?([O ) — 0 for N — oo. (2.23)
XN N ’

flu— UNHH‘l,V([o,H]) < vNie

Thus,
IKf— KN flla, qo,m) =0 for N — oo and for all f € L*([0, H]).

This ends the first part of the proof.

We next show, that for every bounded set U C L?([0, H]) is K(U) = {Knyf: f€UN €N} a
relatively compact set in L2([0, H]). Due to (2.23) and since f € U and U is bounded, we discover
that

C c c
lu— KN fllaz, o,m) < NHUHH?([O,H]) < N||f||L2([o,H]) < ﬁcu-

In consequence, the reverse triangle inequality || Ky f| — ||lu]| < ||lu — Kn f]| yields
< ¢ fi f
KN fll e, 0.m7) < NCU or all f €U and for all N € N.

In particular, K (U) is bounded. As the embedding of H} ([0, H]) in L*([0, H]) is compact, every
sequence in K(U) contains a convergent subsequence. Then, K (U) is relatively compact and the
set K = {Kx : L*([0, H]) — L*([0, H])} is collectively compact. This finishes the proof. O

We have now collected all requirements to apply the convergence result from [Mon03, Theorem
2.52] to our setting.

Relative error

10 14 18

2m

Figure 2.4: Relative L2-error of the finite element method, using a uniform mesh with discretization
2™ where m = 10, ..., 18, for height h = 200, ¢ = 1400, frequency f = 27 (red), f = 50 (blue),
f =500 (yellow) and f = 2000 (magenta) compared to the exact analytic solution.
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Theorem 2.3.4. Assume ¢ > 0 such that the circle of radius € about \* encloses no other
eigenvalues of operator K. Then for h small enough the circle of radius € centered at A% encloses
precisely N eigenvalues of the discrete problem )\,2”, j=1,..N. Moreover, there holds

dim ®(\?) = dim e ®()\} ),

where ®(\?) denotes the eigenspace corresponding to the eigenvalue \* and CID()\}%J) denotes the

eigenspace corresponding to the eigenvalue /\,21’]-. Further, there exists a constant C > 0 such that
there holds

A% = Xh 1 < O[ > E = En)dj, bn) 2qo.m| + 1K = Kl 72 (0,m | (2.24)
jk=1

where (K — Kn)|o(a2) is the restriction of ®(A?).

Furthermore, we obtain the approximation error of the eigenvectors to the exact ones by [Osb75,
Theorem 5].

Theorem 2.3.5. Let )‘i,j be an approzimated eigenvalue of operator K such that limy_q )\ZJ = )\f
and let o the smallest integer such that the nullspace of (A2 —K)® equals the nullspace (\> — K)**1.
Assume for each j that (;S;N) is a unit vector satisfying ()‘%,j — Th)kqﬁgm = 0 for some positive
integer k < a. Then, for any integer | such that k <1 < «, there is a vector ¢; € ®(A\?) such that
(A7 — K)l¢; =0 and for C > 0 holds

N l—k+1)/«
65 — &5z, < CIUE = Kol s o

We want now to consider numerical examples for the introduced Ritz-Galerkin method. For
the first example, we consider the height of the ocean h = 200, the constant sound speed ¢ = 1400.
We look now to the relative error of the computation using the introduced Ritz-Galerkin method
to the the exact analytic solution. Figure 2.4 shows the relative error of the solution for a uniform
mesh with discretization parameter 2™, where m = 10, ..., 18 for different frequencies f = 27 (red),
f =50 (blue), f =500 (yellow) and f = 2000 (magenta). For the second example, we consider a
three layered ocean with height 90 with height of each layer of 30.

02 :
* % ié
1540 % x
0.15 | %
1520 ] 3%
01 f ¥
< 1500 %
& 0.05 | £
Z 1480 ¥
2 of ¥
1460 1 005 - £ |
1440 - 04 ‘ ‘ ‘ ‘
3 6 9 12 15

0 10 20 30 40 50 60 70 80 90 100 :
Height Eigenvalue

(a) (b)

Figure 2.5: Three-layered ocean with height A = 90 and constant sound speed on each layer,
¢1 = c¢3 = 1440 and ¢o = 1540. (a) Sound speed profile (b) Analytic computed eigenvalues for
frequency f = 100Hz and sound speed ¢; = 1440 (yellow, diamond) and ¢y = 1540 (red, cross).
Eigenvalues )\? computed on an uniform mesh with 2'* grid points by finite elements method
(blue, star)

Furthermore, let the constant sound speed on layer one and three be ¢; = c3 = 1440 and
on layer two co = 1540, see 2.5 a). By Theorem 2.2.3 and the Remark 2.2.2 we can give for
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each eigenvalue an upper and a lower estimate. Note that using the upper and lower estimates
of the eigenvalues in Theorem 2.2.3, we obtain an estimate of the number of positive eigenvalues
before the evaluation of the eigenvalues of the non-constant sound speed with the Ritz-Galerkin

method. Those eigenvalues (A )2 and ()\j')2 of constant sound speed ¢y and ¢_ can be computed
in an analytic way. Then, we use the eigenvalues for constant sound speed c; or c¢_ as initial-
ization parameter for the iterative eigenvalue solver of MATLAB to deduce better approximation
of the eigenvalues of non constant background sound speed. Figure 2.5 shows the eigenvalues
{)\?}j:lvn_’l57 computed by finite element methods for an 3-layered ocean, using as initialization
eigenvalues of constant sound speed (c— + ¢4)/2. We point out that the computing environment,
here MATLAB, for high frequency sources (> 500H z) and deeper oceans h > 200 does not find
all positive eigenvalues. Note that the jump of the sound speed on the layer connection provokes
this effect. A possibility to fix this effect is using a continuous background sound speed, which we
discuss later on.

A Multi Layered Ocean. We approximate an inhomogeneous ocean by a multi-layered
homogeneous ocean. In consequence, we introduce a model of an n-layered ocean, with constant
sound speed on each layer and using transmission conditions to connect each one. [ZAMOO]
presents the geometry of an upper and a lower layer. In this work, we expand this geometry to a
multi-layered homogeneous ocean geometry. We assume a n-layered homogeneous ocean and the
depth of layer k is denoted by

k
dk: E Sj,
j=1

where k = 1,...,n and s is the corresponding size of layer k. We set dy = 0 and, of course, we
have d,, = H. We denote in the following ¢ as the constant background sound speed of layer k
and we assume that the waves are modeled by the Helmholtz equation. We further assume that
for the sound speed of each layer k£ holds 0 < ¢— < ¢ < c¢y. Note that Theorem 2.2.3 gives an
estimate of the number of positive eigenvalues. Similar, like in Chapter 1, we obtain by separation
of variables the eigenpair ( f, )\?) of layer k solving

82¢§k) W k) 2Lk ~0 lmost h 1 k 2.95
812 -+ gqﬁj — J¢] = almost everywhere on layer x, ( . )

and corresponding boundary condition on layer k, which we will discuss in the following. The
boundary conditions of the our waveguide the ocean gives us the boundary condition

00"

Do) —
¢;(0) =0, and Fr

(H) = 0. (2.26)

Furthermore, we consider transmission conditions on the interfaces. For k = 1,...,n — 1 we have
continuity conditions and continuity of the derivative with respect to x,, at each layer,

apl)
0xm

B a¢§k+1)

() _ k1)
¢j (di) = ?; (dk), and Dz

(dk) (dk). (2.27)

For simplicity arguments for k = 1,...,n we set a = ,/w?/ci — )\?. Then, the general solution of
equation (2.25) is given by

¢§k) = Ay sin(agzpm) + By cos(axTm), dr—1 <y < di, (2.28)
where k = 1,...,n. Further, by the boundary condition (2.26), we deduce B; = 0 and

an Ay, cos(a,H) — o, By sin(a, H) = 0.
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We moreover compute by continuity condition (2.27) for k = 2,...,n — 1 that

Ajsin(agdy) — Az sin(agdy) — By cos(aedy) = 0,

Ay sin(aygdy) + By cos(agdy) — Agt1 sin(ag1dr) — Brt1 cos(agt1di) = 0,

a1 Az cos(ardy) — agAs cos(aadr) + aaBg sin(asdy) = 0,

ap Ay cos(agdy) — ag By sin(agdy) — a1 Aga1 cos(agr1dy) + agr1 Berq sin(agy1dy) = 0.

This gives us by Dirichlet boundary conditions at the free surface a system of (2n — 1) x (2n — 1)
unknowns. Of course, the evolution of the eigenvectors requires the normalization condition with
pr as the normalization constant of the eigenfunction of the corresponding layer,

1 H dit1
*/ (¢j)2d$m = / k+1 xm =1.
P Jo =0 Pk di,

For completeness, the integrals are given by

d 2, .
/ (¢§-1))2dxm _Ar” (—cos (o d1;:1n (o dr) + dl)7 (2.29)

i1 (k)\2 _Ak+12 cos (g1 di) sin (ag41di)  Agy1Bry1 (cos (gt dk))2
d (¢] ) dmm - +

. 2a, Q41

B Bji1? cos (ag41 di) sin (o, di) B Ajy1? cos (k41 di41) sin (g1 diy1)
20041 2041

B [ags1 dis1 — g dy] . A1’ [ags1 i1 — g dy]

+
200541 200541

 Akt1Bpt1 (cos (k41 dr11))” n Biy1? cos (ag g1 diy1) sin (g1 dit1)
Q1 2011 .
To obtain now the eigenvalues /\? for an n-layered ocean we solve the equation det(.A,(};)) = 0.
For example, if n = 2 we compute for one eigenvalue )\? that det(Az(\;)) = 0, where

sin(oqdl) — sin(agdl) — COS(agdl)
Az(Nj) == | arcos(andi) —agcos(asdr) agsin(asd:)
0 ag cos(aads)  —agsin(asds)

If n = 3 then det(A3(\;)) = 0, where

Sin(ozldl) - SiH(OLle) 0 — COS(Oéle) 0
0 sin(aeds) — sin(agds) cos(aads) — cos(aszds)
Az(Nj) == | a1 cos(ardi) —ascos(aadr) 0 g sin(aady) 0
0 ag cos(aads)  —azcos(asds) —agsin(aeds) g sin(asds)
0 0 ag cos(azds) 0 —ag sin(asds)

To reduce now the system of unknowns we chose an alternative ansatz. For layer k =1,...,n—1
the general solution of equation (2.28) holds, however, for the last layer n we assume

(éé—n) = A, sin(ay, (2, — H)) + By, cos(ay (2, — H)), for x,, € [dp—1, H].
Consequently, we deduce
a(z)(.n)
6; = an Ay sin(ap (m — H)) + an By, cos(an (X, — H)) for x,, € [dp—1, H].

From the Dirichlet boundary condition in (2.26) we obtain that B; = 0 and for the Neumann
boundary condition in (2.26) we see that 4,, = 0. Thus,

Ay sin(aydy) — Az sin(agdy) — By cos(azdy) = 0,
0

a1 Aq cos(ardy) — agAg cos(aady) + aa B sin(asdy)
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Further, for each layer k = 2,...,n — 1 we have

Ay sin(aydy) + By, cos(agdy) — Agt1 sin(agi1dy) — Brt cos(ag1di) = 0,
a Ay cos(agdy) — ag By sin(agdy) — agp41Aks1 cos(ag1dr) + a1 Bryi sin(agy1d) = 0.

To this end, for layer n we compute

A sin(ap—1dp—1) + Bp—1 cos(ap_1dy—1) — By cos(a(dp—1 — H)) =0,
0.

14,1 Cos(an—ldn—l) —ap_1Bn_1 Sin(an—ldn—l) + anBy Sin(an(dn—l - H)) =

Once more the evolution of the eigenvectors requires the normalization condition. Thus, we denote
the normalization constant § and it holds

H
LA 18,2 = 1.

Now, to obtain the eigenvalues )\? we solve det(A,();)) = 0. Plugging all together, we have to

solve a system of (2n — 2) x (2n — 2) unknowns. For example, if n = 2, then A()) is given by

&Qﬁ:(ﬁmmm —wwmm—mv_

(651 COS(O[ldl) (6%) sin(ag(dl — H))

If n = 3, then
sin(aydy) — sin(agd;) — cos(aady) 0
As(2) 1= aq cos(ardy) —agcos(aady)  agsin(asdy) 0
sV 0 sin(aads) cos(aads) —cos(ag(dy — H))
0 (%) COS(OLQdQ) —Q2 Sin(agdg) Qs Sin(ag(dg — H))

We point out that solving the non-linear equation det(.A,();)) = 0, numerical computing envi-
ronments use finite difference methods to compute the Jacobian of det(A,();)), this may can
leads for high frequencies to an error. To minimize this non negligible error, one can compute the
Jacobian in an analytic way using well-known derivation techniques for determinants. Then, we

first have
2,

a(Aj) = =20 (W /g — A3 TP = — o

To obtain the derivative of det(A2(A;)) with respect to A; we need
sin(akdk)’ = ClkOé;€ COS(OLkdk)7 and COS(akdk)/ = —dkOé;g sin(ozkdk).
Moreover, we have

cos(agdy) — apdraj, sin(agdy),

(v cos(agdy))’

o

(0%
(0%

(o sin(agdy)) sin(agdy) + apdraj, cos(agdy).

By well-known derivation techniques for determinants, it holds

ddet Az (N) . 0A2\\ aze  —aiz) (ay; Ay,
o o ad] AQ()\)W = —az  an ay  a)|’

where tr denotes the trace and adj the adjoined of a matrix. In consequence, we have

ddet A ()
)

. / / / /
= 22071 — (12091 — 2101 + A11099,
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Frequency \ Method \ Error of ¢5 ‘
27Hz FEM (uniform mesh) | 1.1 x 1078
27Hz Multi-layer approach | 8.9 x 107!
500Hz FEM (uniform mesh) | 1.1 x 1078
500Hz Multi-layer approach | 1.8 x 10710
1 Khz FEM (uniform mesh) | 1.1 x 108
1 Khz Multi-layer approach | 9.1 x 10710

Table 2.1: Error estimates for a multi layered ocean using FEM and a multi layered approach
scheme.

where agg, 12, a21,a11 denote the entries of As();) and

ayy = dia) cos(aidy),

ay, = af cos(agdy) — ardial sin(ardy),

aly = (dy — H)ad sin(az(dy — H)),

ahy = ahsin(az(dy — H)) + as(dy — H)ah cos(az(dy — H)).

By rigorously computations one can obtain the Jacobian for n = 3, too.

To evaluate this algorithm we assume for simplicity n = 3, which restrict us to a three layered
ocean. We further use MATLAB to solve the non-linear equation det(A,(\;)) = 0. To evaluate
this method and to compare it with the Ritz-Galerkin approach, we use the same sound speed
on each layer and compare the solution of the approach of one eigenvector with the solution of
an homogeneous ocean, computed by analytic techniques. Table 2.3 gives us a first motivation
for fixed height H = 250, d; = 100, dy = 200, constant background sound speed on each layer
cl = ¢2 = ¢3 = 1440 and different frequencies w. For the finite element method (FEM) mesh we
used an uniform mesh of 2'7 points.

1465 ¢ :

1460 )

1455

1450 ¢

Sound speed

1445 |

1440 - 1

1435 + 1

0 20 40 60 80 100 120 140 160 180 200
Height

Figure 2.6: Continuous background sound speed approximation of sound speed profile 7 for height
H = 200.

For a height H = 200 this approximation is given by Figure 2.6.

Indeed the error of the approximated eigenvectors for different frequencies are nearly the same
using the finite element method, since MATLAB uses a quadrature technique to approximate
the integral in the FEM. For a three-layered ocean, where the sound speed on layer one is equal
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to the sound speed of layer three and different to layer two, like in Figure 2.5 (a), this method
has difficulties to find a high number of eigenvalues. As the iterative eigenvalue solver uses an
initialization values to find eigenvalues, the finite element can be provided the start values to
compute these eigenvalues. If the eigenvalue acting as start value computed by the finite element
method, however, differs to strong from the exactly value, the iterative solver, is not able to
find a better approximated eigenvalue by the three-layered ocean model. If one computes only a
couple of eigenvalues, like to evaluate the truncated Green’s function, this approach gives better
approximations of eigenvalues and eigenvectors as using the Ritz-Galerkin approach. For the
collocation method we introduce later on, this method does not yield a sufficiently large number
of eigenvalues. We point out that to find eigenvalues by approximation in MATLAB with, roughly
speaking good initialization values, are fast operations, however, computing the initialization
values by Ritz-Galerkin methods influences significantly the runtime of this algorithm.

A Ritz-Galerkin Approximation applied to Continuous Background Sound Speed.
We want now consider a continuous background sound speed. We first approximate the sound
speed profile 7 in Figure 2.1 in Chapter 1 by a continuous function.

Figure 2.7 shows then the convergence of the eigenvalues (a) and eigenvectors (b) of the finite
element method for continuous sound speed in Figure 2.6 on [0, H], with height H = 200 and
frequency w = 27.

«10°

9.605

©
@
by

Relative Error
©
5 ©
@ 2

Relative Error

9.625

Figure 2.7: Ocean configuration: height H = 200, frequency w = 27 and continuous approximation
of sound speed profile. a) Relative L2-error of the eigenvalues computed by FEM on uniform grid
N = 2™ where m = 13,...,19. b) Relative L2-error of the eigenvectors computed by FEM on
uniform grid N = 2™ where m = 13, ..., 18.

To compare the convergence of different FEM grids of the interval [0, H] we project functions
in the finite-dimensional space defined by the IV discretized points a:lg-N) from (2.21) onto a uniform

grid of 2'* discretization points.

Since we use an uniform discretization of the interval [0, H] of 2™ points, where m = 14, ...19, an
interpolation between the grids is not necessary. We point out that the projection to the reference
grids does not influence the error. Furthermore, we fix the number of eigenvalues to compute to
J = 2% Note that the MATLAB routine eigs restricts J < N. The reference solution with
uniform discretization of the interval [0, H| in 22! points has been computed in nine hours on a
eight processors workstation, where the solution took nearly five percent of the memory of 128 GB
RAM. Note that for frequencies larger than 50, continuous sound speed given in Figure 2.7 a) and
H = 200, the MATLAB routine eigs does not find the correct eigenvectors anymore. We further
see in Figure 2.7 b) that the relative error increases for a certain choice of the mesh size. This
effect follows form the quadrature approximation of the integral in the finite element method.

A Spectral Method. We present now a spectral method to compute the eigenvalues and
the eigenfunctions in the vertical direction for smooth background sound speed. In particular,
this spectral method is a Ritz-Galerkin method with trigonometric basis functions. We recall
our 1D-eigenvalue problem from (2.14) in the vertical direction and for simplicity we denote the
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eigenpair (¢, \) := (¢, )\f) which solves
_w
c(zm)?
and corresponding boundary conditions ¢(0) = 0 and ¢'(H) = 0. We further denote for «o; :=
(2§ — 1) /(2H) a basis

"

¢ + b—Np=0, almost everywhere in (0, H),

©j(Tm) = sin(ojz,m,) for j € N, z,, € [0, H].

Then, for the vectors ¢;(,,) holds

pi(0)=0,  and @l (H) = ajcos <”(2J21)> 0.

Next, due to the variational formulation (2.15),

/OH <¢>’v’ c(mm) ¢>v) iz, — ¢(0)v(0) + ¢'(H = —)\2/ OV ATy, (2.30)

We further know that all eigenvalues A2 are real. If the background speed c is constant, then it
holds for the eigenvalues A} = w?/c* — a5 and

// w2 Wz 2 2
$5 + 2=\ Y ©j +¢;(0) + ¢ (H).

Therefore, we recall the Sobolev space
X = {¢€H2([07H])1¢( )=0and ¢'(H _0}
with norm

16511372 0,27 = 19511720, 117y + 19517210, 21) + 167 172 10,217

such that

10511372 g0,27) = 19511720, 117y + |2 N05 1172 0,27y + levs[* 1651122 (0, 717y

The basis function ¢; € X ([0, H]) are orthogonal in L?([0, H]). Next, for N € N the Ritz-Galerkin
approximation of (2.30) using Xy = span{p;,j = 1,...N} gives us for v’V € Xy that

H w? H
/ |:(UN)/(UN)/ _ QUNUN:| d(Em — _)\2/ UN’UNdifm,
0 cA(zm) 0

where
N N
V=>epr and 0N = b, (2.31)
k=1 =1
and for its derivative, it holds

N N
= Z CLOE D) and (W) = Z bpcrppy.
k=1 =1

Then, we obtain for the variational formulation

N N
/ [Z kO P Z beauspy — Z Ck Pk Z bope | dm = =X3 Y chor Y bepedin,.
k=1 =1
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Due to the definition of ¢; and its orthogonality, we have

2

(@m)

N H N N H
g ckbk/ o3 cos®(apay, )d E E Ckbg/ sin(ag ) sin(apy, )da.,
0 0

k=1

k=1 ¢=1
f)\zzckbk/ sin® (AT )T,

By partial integration and the fact that sin(2axH) = sin(mw(2k — 1)) = 0 for k € N, we obtain

H . H .
o T SIn(2apy,) H sin(2axH) H
mdm: T = 5 T . = 5
/0 sin”(ag@m)de { 2 dop |, 2 4o 2
H . H .
9 T SIn(2apy,) H sin(2apH) H
m d m = |5~ - = 5 . = 5
and further by changing the order of the unknown variables,
N
— Z aibgcy, — Z Z/ sm (apm) sin(ap ) dx., becy, = ——)\ Z b.c.
k=1 =1 k=1
By multiplication with factor 2/H we deduce in matrix notation
A-2Zp €= -N\I¢ (2.32)
H - ’ '
where
3 W
A= diag(ai)llc\[:l) = , By = / m@k(@%(ﬂﬁ)dﬂcm-
0 m
35

Next, by well-known trigonometric functions identities, we see that
. . 1
Or(@m)pe(Tm) = sin(agzy,) sin(apz,,) = i[cos((ak — ) Tym) — cos( + a;j)zm)].

In consequence, we obtain

H 2

w
= m m d m
B /O Cz(zm)wk(x )e(Tm)dx

1 7 w2 1 w2
== —57  COS - m m T 5 ] m me. 2.33
> /0 () cos((ag — ap)xp, )d 5 /0 (o) cos((ag + )z, )dx ( )

Now, we assume that the background sound speed can be extended to a 2H-periodic continuous
function. Then, the trigonometric basis for continuous function of L?([0,2H]) is given by

1
do(Tm) = \/ﬁ exp (i&r %n) for £ € Z.

Furthermore, for simplicity we set a(z,,) := w?/c*(x,,), and we can represent the 2H-periodic
function a € C([0,2H]) as a Fourier series,

1 m
a(xy,) = Worei % a(l) exp (iéﬂ' %) for £ € Z,
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with Fourier coefficients defined by

a(e) ) exp ( 1% F) dz, for ¢ € Z.

~ ),

Note that since a(x,,) is real, there holds

a(—2t) a(xm) exp (z&r %) Az, = a(f) for £ € Z.

- ),

We moreover have the orthogonality
1 20 L T L Tm
Vi /0 exp (z&r f) exp (—zkﬂ' F) dz, = dp 1 for 0,k € Z.

For M € N we consider u u
ZMVQH = {[GZZ2<€§},

2
and we set the polynomial space of 2H-periodic continuous functions by

Tm2H = span {exp (i&r %n) txm €10,2H], L € ZM,zH} )

We moreover define for a 2H-periodic function the interpolation projection Qs € Tas2m by

2Hj 2Hj
(Qura) (jwj) =a (]> , where j =0,1,...,M — 1.

M
Therefore, we have for j = 0,1,..., M — 1 the representation for the nodal values by

= /2Hj
(Quaen) = asslen) = 3 a (27 ) earsten)
§=0
1 J
om,j(Tm) = i Z exp | 2in/ ﬁ ~
LELN 2H
Here, the basis functions pas ; € Ty 2n satisfy
2Hk .
©M,j (M) = 05k for J7k/’ = 0, 1, ,M — 1,
2H 1
/ O, (Tm) ok (Tm ) AT = M(Sjk for j,k=0,1,.... M — 1.
0

For ¢ € Zprom and given Qara € Tar2p its Fourier coefficients are computed by

M- .
R T 2Hj o g ]
an (4 \/7/ M (Tm exp( Mﬂ'?> dr,, = E ( ) exp <z27rlM> ,
(2.34)

or shortly

(k5 | 2] 1) = Y i, h ot

where Fs is the one-dimensional discrete Fourier transform (1D-FFT) defined by

M—1 .
1 —2milk
.FM(k) :ﬁ ClM(k)QXp( ]7\.; ) 5
j=0

J
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where k =0, 1, ..., M —1 and aj; denotes the vector of nodal values a(2Hk/M) for k =0,..., M —1.
For M € N the orthogonal projection in L?([0,2H]) to Tar2m is given by

1 N Ny
ar(Tm) = WoT:i Z ap(0) exp (Zﬂ'éﬁ) . (2.35)

LELN 2H

Note that the computation of aps(x,,) by the orthogonal projection has high numerical costs,
since for the computation of ay;(¢) in (2.34) the integrals have to be numerically approximated.
Furthermore, for given Fourier coefficients we compute the nodal values ays € Tar2m by

. M—-1 .
2H M . . M J) .
an (S22 ) = Y ST an()exp ( —2im (k+ |-= | +1) L =0,1,., M —1,
M(M> TH,;) m(5) p( ( L 2J )M j

or shortly

M M
aM(k):ﬁf&la}\/[ (k-'— \\—2J +1> fOI‘]CZO,,M—l,

where F;,' is the one-dimensional inverse discrete Fourier transform (1D-TFFT), defined by

= 2milk
]:M(k:):\/M]Z_;) a}w(k)exp( i ) for k=0,1,..M — 1.

Now by the assumption that the sound speed c¢ is 2H-periodic continuous function, we use the
approximation of w?/c?(z,,) by ar (z.,), where x,,, € [0, H], and we obtain for the matrix element
Byj in (2.32) that

H H
By = 3 [/0 an(zm) cos((ag — aj)zm) dem, —/0 an(Tm) cos((ay + aj)a:m)da:m] .

Using the definition of a;; = (25 —1)/(2H) and the definition of the orthogonal projection (2.35),
we have for each variable of By, that

H
/ an (Tm) cos((ag — aj)zm)dem,
0

> am(0) /OH exp (Z;;Twm> cos (7T(k],_j_j)xm> A,

LELM 2H

4

and

H
/0 ant () cos((g + ) )ditm

_ \/% S a0 /OH exp (Zﬁ;xm> cos (me> .

[AVAYR Y

Furthermore, with the change of variables m = k — j and by the definition of the cosines, we
deduce

H . o
/0 exp <mH€xm) cos (W(kH])mm) dx,,
7 1/H il imm (J‘wm "
=3, exp i Tm | |€xp A T exp N Tm) | dTpm,
H . . .
= %/0 [exp <z7r(€£[rm)xm> + exp (m(me)xm>} Az, . (2.36)
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Moreover, by integration we obtain for £ # |m/| that
H .
il ™
/o exp (H:cm> Cos (?xm) dx,,
ih L (tem) N m(e—m) "
=—— X m X m .

o [C+m) “P\ T H C—m) P\ H .

Next, the binomial formula implies

[ (5 ) eos (St o

Now, we reduce the last equation to the form

/H ex @aj oS (mem) dx
o p H m H m

— 27r(£2”im2) [(£ — m) exp(im (£ 4+ m)) + (£ +m)exp(in({ —m)) — 2/
:m [6 exp(iml) [exp(imm) + exp(—imm)]

— mexp(inl) [exp(irm) — exp(—imm)] — 24 .

Since m € Z we have

H .
/0 exp (m;xm> cos (%xm) dx,,
(—=1)ih

= I —m2) exp(iml)[2€ cos(mm) — 2im sin(wm)] — 2¢
=0

Depending on m € Z the cosines is one or minus one in the sense that

H ¥ ™ th mat
/O exp (H$m> COs (me) dﬁm = m [1 — (—1) ] .

Let us now derive the form if £ = m and £ # 0 in (2.36). In particular, we have

H . . H .
im(€ 4+ m) im(l—m) B / 2iml
/0 exp ( I xm> + exp ( 7 T | AT, = ; exp 7 T | + 1) dzpy,

and by integration we arrive at

2iml ih ) ih .
/0 (exp (me> + 1) dx, = ~57 (exp(2iml) — 1)+ H = 9 (1 — exp(2inl)) + H.

/He mfx cos (me ) dzx i
X 7 Lm 7 Im m = 5 -
o P\ H H 2

Similar, for £ = —m and ¢ € Z we deduce for (2.36) that

/He @x cos (mx )d:c —E

For ¢ € 7 we have
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Next, for |¢| = m and ¢ = 0 we deduce

H . . H
14 L —
e (T ) e (T ) o = [ 2de, 2

Consequently, we have for m = k — j that

H
/0 a(xym,) cos((ag — ay) T )dTm,

int (1 - (1)’””)] i
T = k=) | e, ! [ 2 } [ =k—3,¢0

+ [H]j¢|=k—j,e=0

:J% S aw0)

LELN 2H

Similar, we have for m = k 4+ 7 — 1 that
H
/ a(xm,) cos((ak + )Ty ) AT,
0

_1 R ihﬁ(l—(_1)k+j—1+e)
=725 2 aMw)([W(gz(kHl)Q)

LELNM 2H

]Ifsékﬂ'l

H

+ {2] + [H]€|=k+j—1,é=0>~
6] =k+j—1,6£0

To this end, for given a(¢) we deduce

+ [H]k=;

1 X
Bvi =3 55 >, au() (02 — (k= j)?) ]|e|¢k—j ' [2} [tl=k—j,620

LELp 21
B [ihf(l - (—1)k+j1+2)] B [H}
T2 = (k+7=1)2) | zhtj 2 ] oj=k4j—1,6220

( {z’hf(l — (=1)k-i+t) H

- [H]|z—k+j1,e—o>-

Relative Error

2m
Figure 2.8: Relative L2-error of the eigenvalues computed by the spectral method for frequency
w = 27 (blue), w = 50 (black), w = 500 (magenta) for N = 26 eigenvalues, discretization of the
interval [0, H] of 2! points and M = 2™ where m = 6, ..., 10.

Now, we use MATLAB to compute the eigenvalues A\? in (2.32) and the coefficients ¢ in
(2.31). For more details on solving the corresponding eigenvalue equations with MATLAB we
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refer the reader to [Tre00, Chapter 9]. The first test problem that we consider is to compute the
eigenvalues and eigenvectors acting on the vertical axis by the spectral method for different ocean
configurations J(w, ¢, H). Once more, we approximate the sound speed profile 7 in Figure 2.1 by
a continuous function and its approximation is given by Figure 2.6. For simplicity, we moreover
fix the number of eigenvalues to compute to J = 2 and the number of discretization points to
N = 2 for the uniform mesh on the interval [0, H]. The choice of this discretization parameter
is an arbitrary assumption. We now analysis the error of the eigenvalues and eigenvectors for
different frequencies and discretization parameter M. Note that the eigenvalue computing package
of MATLAB requires M > J.

We first see that for discretization points M = 2™, where m = 6, ...,10, the L2-error of the
eigenvalues for the frequencies w = 27 (blue), w = 50 (black) and w = 500 (magenta) are given by
Figure 2.8. The computation of the reference solution M = 2!? was computed in reasonable time
of 29 hours on a 8 processor workstation with 128 GB RAM and used memory of two percent.

107 107 107

¥
109 10D 107
~
-
5. 5l N 5,
Lﬁ 10 LI‘] 10 Lﬁ 10
(] (] (]
2 2 2
2 & NG = .
2407 20 S0
i \ o i
AN 8
10 107 107
N N
10 o 10
0 6 7 8 9 10 0 6 7 8 9 10 0 6 7 8 9
om 2m om

Figure 2.9: Relative L2-error of the eigenvectors computed by the spectral method for H = 200,
c continuous, N = 26 eigenvalues, discretization of the interval [0, H] is 24 points, M = 2™ and
for frequencies a) w = 27 (b), w = 50 (c), w = 500.

Next, the L?-error of the eigenvectors are given in Figure 2.9. Here the L2-error of the ap-
proximated eigenvectors are given by (a) for frequency w = 27, by (b) for w = 50, and by (c) for
w = 500. Note that the memory efficient of the spectral method compared to the finite element
method is higher, since for the reconstruction of the eigenfunctions only J < M values have to
been saved. We have to point out that the eigenvectors after saving have to be computed by the
formula in (2.31), however, in general disk space is cheaper than computing time.



Chapter 3

Existence and Uniqueness of
Solution to the Scattering
Problem

In this section we want to rigorously set up a radiation condition for solutions to the Helmholtz
equation for the acoustic scattering ocean model introduced above. We first introduce the scat-
tering problem in the wave guide. Then, we set up spectral characterizations of Sobolev-type
function spaces to analyze the Dirichlet-Neumann operator in dimensions two and three for the
waveguide operator scattering problem. Our aim is to derive existence and uniqueness result by
using Fredholm theory and a Garding inequality.

3.1 Scattering in the Waveguide and Radiation Condition

We recall the eigenfunctions ¢; € H{, ([0, H])NH?([0, H]) to the eigenvalue problem (2.14), solving
2

¢§/+%¢j—ﬁ¢j:0 in L%([0, H]),

as well as the corresponding eigenvalues )\f. Based on the eigenpairs (¢;, /\3) jen solving (2.14),
we recall the construction of solutions to the Helmholtz equation by series expansion
w(Z, Tm) = Za(j)wj(i)(bj(xm), with coefficients a(j) € C,
jEN
where w; solves the Helmholtz equation in (2.10),
Azw; + /\?wj =0 in R™~1,

Together with the equations for ¢;, we obtain that incident fields represented by plane waves

x> @j(xm) exp(ir; T - 6) forz € Q,5 €N, (3.1

with direction of propagation € R™~1  |f|y = 1, solve the unperturbed Helmholtz equation,

OJ2 .

Due to the boundary conditions in (2.14), for ¢;, these waveguide modes satisfy the waveguide

boundary conditions
Ju

aTm:OOnFH.

u=0onTIY and

33
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If )\? > ( these plane waves correspond to propagating waveguide modes and obviously for )\? <0
they are associated with evanescent ones. Recall the idea of exceptional frequencies in Remark
2.2.6, that for fixed H and c for a special choice of w we obtain eigenvalues /\g = 0. For this choice
the waveguide modes are constant in the horizontal variable . In the following we exclude this
ocean configurations by the following assumption.

Assumption 3.1.1. We assume from now that the frequency w > 0 is chosen such that \; # 0
for all j € N.

Indeed, this assumption makes sense since we showed in Theorem 2.2.8 that the case of ex-
ceptional ocean configurations only holds for at a most countable set of frequencies without finite
accumulation point in (0,00) and due to Lemma 2.2.4 we have for sufficiently small frequency
w > 0 that all eigenvalues /\? are positive and therefore the only possible accumulation point of
exceptional ocean configurations is +00. We point out that [AGLOS8] treats the case of exceptional
ocean configurations for constant background speed.

To get uniqueness for the Helmholtz equation (and for physical aspects), the series represen-
tation of the solution of the Helmholtz equation for the horizontal variables (2.10) are required to
be bounded for |Z| sufficiently large enough. In consequence, we need similarly to the case where
the background sound speed is constant (see e.g. [AGLO08]) a kind of Sommerfeld’s radiation con-
ditions. We see that they differ for propagating and evanescent modes. Let Jy be the first index
of A; (counting multiplicity) such that )\? < 0. Thus, to get now uniqueness for the Helmholtz
equation for the horizontal variables (2.10) function w; € C*°(|Z| > p) is required to satisfy

. 1 [ Ow; . i in £ if
{hm@%oo \/m (Wijl — z|)\j\wj> = 0, uniformly in T if j < Jo, for all j € N. (3.3)

w;(Z) is bounded in |Z| > p if j > Jo,
We call (3.3) radiation conditions and any solution to the Helmholtz equation solving (3.3) in the
domain (|Z| > p) x [0, H] is called a radiating solution.

We have now the tools to analyze the scattering problem in an inhomogeneous ocean. We first
introduce for k = 1,2 the space of functions

Hiyoe(Q) = {u:Q = C:ulp € H*(BNQ) for every ball B = B(0,R),R > 0, and ulr, = 0}.

Then, we consider an incident field u?, satisfying the unperturbed Helmholtz equation

2

i w i
AU + mu = 0 m Q, (34)
and boundary conditions
uw=0onTyg:={zeR":z, =0} and o =0onTly:={zxeR™:z,=H}. (3.5)

In consequence, by multiplication (3.4) with a test function v € H' (), partial integration and
plugging in the boundary conditions (3.5), we deduce the weak formulation: The incident field
u' € Hyy,.(92) solves (3.4) and (3.5) weakly in €,

/ <VuZ AVOES %ul v) drx =0 for all v € Hyy, (Q) with compact support. (3.6)
Q C

Tm

The incident field u’ can be e.g. a plane wave of direction # € R™~1 |0| = 1 (see (3.1)) having the
form _
z = u' () = ¢j(zm) exp(ir; T - 0) for z € Q,

for fixed 5 € N. In the presence of a scatterer D C ), where

q(z) =n?(z) — 1 for z € Q, (3.7)
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this object creates a scattered field u®, which provides the total field
u(@) = wi(@) + (@) forzeq (3.8)

where u solves the Helmholtz equation

and boundary conditions

u=0onTy:={zeR™: 2, =0} and aa—u:OODFH::{CEERm:xm:H}.
Tm

Plugging all together, we have the following wave propagation problem: Find the total field
u € Hyy,.(Q) solving

2
/ (Vu -V7 — %)nz uv) =0, for all v € Hyy, (Q) with compact support. (3.10)
Q

Tm

We moreover require that the scattered fields satisfies the radiation conditions (3.3): More pre-
cisely, u® can be represented as

u*(z) =) alj)w; (#)¢;(zm), (3.11)

JEN
for |Z| > p, where p is such that D C B(0, p) and where w; satisfies (3.3).
Remark 3.1.2. Any solution solving (3.10) can be represented in series form as in (3.11) since

the eigenfunctions {¢;}jen C Hiy ([0, H]) are an orthonormal basis of L*(0, H). In consequence,
the assumption on the scattered field u® simply requires radiation conditions (3.3) to be satisfied.

3.2 Spectral Characterizations and Periodic Function Spaces

We first start by introducing classical Fourier theory, which is adapted to the Helmholtz problem
(2.1) with corresponding boundary conditions (2.5) and (2.6). Essentially for the analysis and,
later on, for computations, we restrict ourselves to the rectangular domain

A, ={z€Q: |z < p}, p > 0.
Linked to the notation for points x, we introduce
A, ={zeR™ 1 |F|w <p}, p>0.
Additionally, we denote for p > 0 the cylindrical domain
M, ={z e R™ ! x[0,H]:|%2 < p}, p>0.

We point out that p is chosen to be large enough, such that D C M, C € holds. Next, for
dimension two we define the boundaries of the cylindrical domain M, by

Lo, ={z€R?: —p<a1<pae=0} and T'p,={recR®:—p<a <pxs=H},
thus I'g , and 'y, are lines fixed in x3 = 0 and 2 = H. Further, let

Yip,={reQ:az=%p,22€ (0,H)} and X,:=%_,UX,,.
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Similar, we consider for dimension three
Lo, ={r€R®:|Fy<pa3=0} and Tp,:={zecR>:|iy<px3=H}
Then, we define the boundary of the cylindrical domain M, that is contained in €2 by
Y,:={zeQ:|zs =p,x3 € (0,H)}.
For dimension three we further know that this part of the boundary of M, can be represented as
¥, = {2 = (pcosep,psing,z3)" : p € (0,7), 23 € (0,H)}. (3.12)

Furthermore, we define
7t = {n € Z™ : ny, > 0}.

With respect to our notation of points we write for n € Zi the vector n = (n1,ns) and for
n € Z3 that n = (n1,n2,n3) = (n,n3). We point out that vectors are distinguished from scalars
by the use of bold typeface, however, for simplicity we use this convention not for points and
vectors in 2. Next, we establish orthonormal basis functions in L?(A,). Consider the

1
va(Z) = \/—2>pexp (ij;mm) for m=2,n; € Z,x1 € [—p, p] and
1 .
vﬁ(f):Qpexp(i;rﬁJc) form:3,ﬁ€ZQ,a~c€Ap.

Corollary 3.2.1. For the vector vy € C*(A,) holds

max |va(7)| < Clp), ez
ich,

where C(p) depends on the domain /~\p.

The proof follows directly by rigorous computations.

Since for n,, € N the eigenfunctions ¢y, () of different eigenvalues are orthonormal and
complete in L?(0, H), the composition with the orthonormal functions vz (%), where n € Z™m~1
forms a complete orthonormal system basis in L?(A,) = L?*(A, x (0, H)), for m = 2,3. More
precisely, the ¢, defined by

1 T ~ m—1
on(T) = qunm (Tm) exp (Zp - :z:) , where n € Z™ ", n, € Nyz € Ay, (3.13)
forms an orthonormal basis in L?(A,). The proof follows from [BB93] by using theory of tensor
products in Hilbert spaces.

Due to completeness of the orthonormal eigenfunctions {pk}rezr C L%*(A,), every function
u € L?(A,) can be represented as its Fourier series,

u(z) = Y ak)er(x),  with i(k) = (u, ok)r2(a,) :/ upgdr, k€L xEA,,
kezy Ap
(3.14)

where the series converges in L?(A,). As usual, we call the coefficients @ (k) the Fourier coefficients
of u. Furthermore, the integral exists by the fact that ¢y, (2,,) is in H}, ([0, H]). With respect to
the separation of horizontal and vertical variables we denote the Fourier coefficient of u € L?(A,),
still depending on the horizontal variables, by

H
W(km, ) := (U, Pr,, ) L2(0,1) = / (T, Tm) Bk, (Tm) dTm,  km €N,z € Ay,
0
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Indeed, there is no complex-conjugation of the eigenvectors {¢x,, (%)}, en since they are real-
valued. Furthermore, we set the Fourier coefficients of u € L?(A,), which still depend on the
vertical axis, by

a(k, ) = (u,v,;)Lz(;\p) = /]\ uw(Z, xy) vy (T) dz, kczZm 1 zcA,

P

Every element u € L*(A,) can hence be expanded into Fourier series of the form

U(JC) = Z ﬂ(kmai)(bn] (xm)7 T e Ap7j eN, (315)
km €N
and
u(z) = Z a(k, 2m)vg (7), x €A, (3.16)
keNm—1

With reference to the introduced Fourier series we next define periodic Sobolev space on A, by
H*(A,) = {u =Y alk)er, Y (14 [k + A, ) alk)? < oo}, seR, (3.17)
keZm kezm

with (squared) norm

lullZren,) = D U+ R+ A, [*)la(k)>
kezy

Analogously, we define Sobolev space with index s € R on 1~\p = (—p,p)™ ! and on (0, H) by

H*(A,) = {v: S ikk): > 1+ kP @(ic,a:m)f < oo}, (3.18)

kczm—1 kczm—1

where
o(k,xm) = (”»”é)LZ(Ap)a:/A v di,

P

with (squared) norm

ol5ea, = Do L+ IRPD o0k, 2m) .

kezm—1

Furthermore, let

H°(0,H) = {u} = Z W(km, Z)ok,, : Z 1+ \)\km\g)s \w(kmj)\z < oo} seR, (3.19)
km€N km €N
where .
W(km, @) = (0, bk, ) 2(R,) = / W P, AT,
0

and with (squared) norm

2) i (i, ).

[wll3s 0. = D, (14 Pk
km €N

For the special choice s = 0 we recover in (3.17) the L?(A,) space by H°(A,) = L*(A,). Due
to [AHO09, Example 7.4.2] or [SV02, Lemma 5.3.2] we prove later on that for s > m/2 the space

H*(A,) is continuously embedded in C'(A,).
As for any complete orthonormal system, due to Parseval’s identity the following lemma holds.
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Lemma 3.2.2. For u € L*(M,) we have that the Fourier coefficients a(j,-) belongs to L*({|Z| <
p}). Further, it holds

lulZony = 3 Ntk M oaiapy  and — [ulden, = 3 la(k)P
Em€eN kezy

Proof. By the definition of the L?-norm on the cylindrical domain M, it follows that

sy = [ @) do.
M,

P

Next, we obtain for fixed Z-variable by Parseval’s identity that for any continuous function u €
C(M,) there holds

H
/0 e )2 it = ([0 ) 2o ar) = Zm,

In consequence, we see

o0
lull22ar,) = Z @G, 72 (g1z1<pp)-
j=1

By the definition of continuous functions in L?(M,,), the latter equality holds for all u € L*(M,).
O

Lemma 3.2.3. a) For u € H},(M,) we have that the Fourier coefficients 0(j,-) belong to
H'({|z] < p}) and

b) If u € C*(M,) then the series expansion

2 2

ou
ox;

, where it =1,...,m — 1.
L2({1z|<p})

a(j,)

2l

L2( aﬁfz

w(@) =Y ilkm, &b, (Tm), T E A,

km €N

converges uniformly and absolutely. Further the derivative (term by term) of this series expansion
with respect to the vertical axis exists and converges uniformly and absolutely,

ou

0xTm

(z) = Za(j,:z)gxﬂ(xm) for x € M,.

jEZ m

Proof. a) Consider in this proof i = 1,...,m — 1. If u € H'(M,) then it holds for the weak
derivatives Ou/dz; € L*(M,). Conversely, if the distribution derivatives du/dz; € L?(M,) then
we know that u € H'(M,). Consequently, since

ou
85&

= < Clullm (),

L2(M,)

where C' > 0, we can interchange sum and derivation with respect to the variable z;. Furthermore,
due to the fact that {¢;},en is an orthonormal basis, we obtain

o [ o A& 9
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We moreover see by Cauchy-Schwarz inequality that

2

H
ou
0 ' L({il<py) l L2((0,H]) L2({|2|<p})
’ ou ||?
0zl L2a,)

In consequence, we see that the operator of all partial derivation z; — du(k,z;)/0x; is square-
integrable and a(k, %) € H'(M,). To this end, Parseval’s identity and (3.20) imply

oo

Z 0 5.

L2(M,) 41 Oz L2({|z|<p})

ou
axi

b) Due to [LS60, Chapter 2, §4-6] we obtain that for an expansion in terms of Sturm-Liouville
eigenfunctions {¢;};en we can interchange sum and derivative in z,, direction. O

For simplicity we set for dimension two @'(j,z1) := 0u(j,x1)/0x1. To denote in the following
lemma the existence of C' > 0 independent of u such that it holds

CHullh < Jlulls < Clluli,
we indicate by ||ul%} ~ |lul|% the equivalence of two norms || - || 4 5.

Lemma 3.2.4. For uw € H*(M,) it holds for m = 2 that

ey = [ Sl GoaPar+ [* 304 RGP 2

P j=1 P =1

The equivalence constants depend on w and J. However, they can be chosen uniformly for fre-
quencies w i any compact subset of Rsg.

Proof. Due to the fact that Hy,,(M,) N C?(M,) is a dense subset of Hy,(M,) we show the result
for uw € H},(M,) N C?*(M,). Lemma 3.2.3 b) states that we have for u € H};,(M,) N C*(M,) the
derivative (term by term) of its series expansion with respect to xo axis converges umformly and

absolutely and
ou

872(:0) - Zﬂ(j,xl)%(xz) for 2 € M,.

JEZ
Using the expression of the Fourier series in (3.15), we consider the truncated series

N
(g, 1) P, (x2) for N € N.
j=1

We note that uy — u as N — oo in H*(M,) since due to Lemma 3.2.3 it holds that u is twice
differentiable. We furthermore obtain

s |Z2ar,) = / / 84, 01) b5 (e2) a0V by (2) darady. (3.22)
J,j'=1

By the orthogonality of the eigenfunction {¢;};en we observe that

JnlBcany = [ 31t 2 sy < e

P j=1
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Next, we deduce for the gradient for m = 2 that

0 0
Vuy = 24N,
8.%2

8x1

We point out that by Lemma 3.2.3 we can then interchange sum and derivative and by the
continuity of the norm and Lemma 3.2.3 this interchange is still valid for if IV tends to infinity.
Once more exploiting Lemma 3.2.3 for the derivative in z; direction, there holds

/ Z @, e1)|? dar.

P j=1

[ where e,, = (1,0)7 and e,, = (0,1). (3.23)

8UN
81'1

L2

By taking the limit N — oo, we see

Hu||L2M)—/ Z|a(j,m1)|2dac1 and '

P =1

) /Z‘a/(j7x1)|2d$1~ (3.24)

P j=1

8x1

L2(M,

Again by Lemma 3.2.3 we can interchange sum and derivative and by the continuity of the norm
and Lemma 3.2.3 this interchange is still valid if N tends to infinity. In consequence, we treat
directly this case, where N tends to infinity. In particular, for the derivation in x5 direction we

compute that
' L2(M,) /

Using the variational formulation of the eigenvalue problem for the j-th eigenpair ()\5, ¢;) in (2.15)
we obtain

D ) J 5U1 j T diﬂl/ ¢ $2)¢ (iCz)dCCQ

Pjg'=

L2(M,) / Z a(j, x1)a(s’, x1) day /OH (C;E);) _/\?> b;(x2)pj (x2) dre.  (3.25)

Pj'=1

H Oz

Furthermore, we deduce

/ Z a(j, z1)a(j’, z1) dﬂfl/\/ ¢j(w2)pj (x2) dy = Z/\QHU]HLz [—p.0l)? (3.26)

Pj,4'=1

and

H 2
/ Z jaxl jfvl)dxl/o %%(Iz)%'(m)d@

J,3'=1
/— /
pJ0

Due to the estimate of the background sound speed in (2.4), we obtain

2

Zﬁ Jsx1)0j(x2)| drodxy. (3.27)

oW
— ||u )\2 U
Hamz L2(M,) CQJFH iz Z 51z .0
oo 2
w 2 2

=2 ((32 - AJ‘) a5 1122 (.01
j=1 +
o) OJ2 9 P o )

=> (=X (g, x1)|*da;. (3.28)
j=1 CF -p
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Next, we know by Corollary 2.2.6 and Remark 2.2.2 that there is a finite number 1 < j < J(w, ¢, H)
of positive eigenvalues /\? to control this inequality. For this finite number of eigenvalues we now
show by contradiction that there exists ¢ > 0 such that

> p
‘ >c) (14 \Aj|2)/ la(j, 1) |? day for all u € Hy, (M,). (3.29)
922 || 20, ; —p
We assume that the last inequality does not hold uniformly for all u € Hy,(M,). Then, there is
a sequence {u®},cn C Hiy, (M,) such that

ou® [1?
H Y — 0 as k — oo,
022 [l12(a,)
while
> P
>+ NP / 108 (5, 21) ]2 dzy =1 for all k € N. (3.30)
-P

Jj=1

To obtain a contradiction we prove that

v
lvllz2(ar,) < C p —(x1,") for all v € Hyy, (M,).
T2 L2(M,)
We start off by Poincaré’s inequality to see
v 2 _
[o(@1, )12 0,77y < = |3, (2 for all v € Hyy (M,) N C*(M,).
r2 L2([0,H])

Furthermore, by integration in horizontal variable we find

2

10]122ar,) < 7"372(“’”1’ )| ey Torallv e Hy(M,) 0 O*(M,),
P

Since Hijy, (M,) N C*(M,) C H},(M,) is dense in Hj,(M,), the latter estimate holds for all
v € H};,(M,). In consequence, we have for C = maxi<;<;(1+ |);|?) that

J P
>+ / @) (G, 21)|” day < Cllu™ | F2a,
P

j=1
ou® ||
<CH H —0 as k — oo. (3.31)
Oz2 L2(M,)
Together with (3.28), the last inequality shows
o P
> P [ 1) do
j=J+1 —p
ou® || J
=¢ H O0xa L2(M, + Z A - Hu (]7$1)\\%2([_p,p]) —0 as k — oo.
j=1
—0 by (3.31)
In particular, we deduce
o p
Z(1+|)\j|2)/ 108 (5, 21)|? dzy — 0 as k — 00,
j=1 —p

which contradicts our assumption (3.30) and proves the estimate (3.29). Plugging this together
with estimate (3.24), we deduce the norm equivalence of || - || g1 (ay,)-
O
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Remark 3.2.5. Using an inner product with weight w?/c?(z,,) defined by

w2

H
(¢4, k) L2 ([0,H)) :/0 m¢j(xm,)¢k(xnl)dz7na

the norm equivalence can also be shown. Using this inner product, we can define a second eigen-
value problem and there hold orthogonality conditions, too. Then, techniques from [GK69][Chapter
VI, Theorem 2.1.2] show that equivalence to the standard L?-norm holds, such that there exists a
constant C' > 0 satisfying

1

5(¢,¢)Lg([o,m) <l 2 (0,7 < C(#,¢) L2 (10,17) for all ¢ € L*([0, HJ).
Now, due to the cylindrical form of M, in dimension three, we use cylinder coordinates

x = (rcosy,rsing,x3) € M, for r € (0, p], ¢ € [0,27] and z3 € [0, H].

Moreover, since exp(iny) represents an (non-normalized) orthogonal basis of L?*(X,), we can
expand a function u € L?(M,) into the Fourier series,

u(z) = a(n, j,r) exp(ing)p;(xs), (3.32)

Jj=1n€zZ

where 4(n, j,r) denotes the Fourier coefficient in the three-dimensional case with r dependency,

1 27 H
a(n,j,r) = %/0 /0 u(r, @, x3)exp(ing)p;(x3) drs do, neZ,jeN0O<r<p.

Once more for simplicity we denote the derivative with respect to the radial variable r as

~ . (% .
u/(n,],r) = E(najvr)'

Lemma 3.2.6. For m = 3 it holds for u € H'(M,) that

P OOA' P o n? .
ANSE A D) SILICE LTy A B9 WIEH MR LR

n€z j=1 n€z j=1

The equivalence constants depend on w and J. However, they can be chosen uniformly for fre-
quencies w in any compact subset of Rsg.

Proof. Again like in dimension two, due to the fact that Hy, (M,) N C*(M,) is a dense subset of
Hyy, (M,) we claim the result for u € Hy, (M,) N C?*(M,) and Lemma 3.2.3 b) states that we have
for u € Hy,,(M,) N C%*(M,) the derivative (term by term) of its series expansion with respect to
the vertical axis 5 o6
u P j —
a—xg(x) = Zu(],x)a—x;(xg) for z € M,,
JEZ

and converges uniformly and absolutely. Next, we use the Fourier series in (3.32), apply Parseval’s
identity and exploit that {¢;};en forms an orthonormal basis to see that

o0 o0 p
MQW=ZMMMWMW=ZZAWWMWW
j=1 nez j=1

Next, we use the representation of the gradient in cylinder coordinates given by

ou 1 0u ou cos —sing 0
Vu= —e, 4+ —5—e, + 7—€u,, with e, = [ sing | ,e, = | cosp |,eq, = [0]. (3.33)
or r dp 0x3 0 0 1
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Due to Lemma 3.2.3 we can interchange sum and derivative to see for Vzu € H*({|Z| < p}) that
IVaulZecqiai<on = D 1Va00 M Eacqiai<on
j=1

Consequently, the transformation to cylinder coordinates in (3.33) and a straightforward compu-
tation shows us like in [Kirll, A.35] that

2

ou 10u
IV, )3 cga1<pp) = ‘ ou, L 1ou,
p Oor r dp L2({|31<p})
B 27{22/ {|u ny g, |2 <1 + ) |ﬂ(n,j,7‘)|2:| rdr.

nez j=1
Next we look at the derivative in the vertical variable

L2(M,) /{ .

|Z[<p} nezj,j'=1

Haxg‘ (n, j,r )W/ (15 $3)¢ (z3) dzg dr.

Analogously, like in dimension two the variational formulation of the eigenvalue problem for the
j-th eigenpair (A2, ¢;) in (2.15) shows like in the computation of equations (3.25-3.28) that

o0

2 . AN RN g~ H w? 2
L2(0,) = /{|£<p} jjz,;l U(j,.]?)’u,(] ,Z‘) dxA <02(5L'3) o AJ) ¢j($3)¢j/($3) dl‘3

_y o | [ s e [T
= Z_ \/{'Ii<p} u(j,x)u(j ,fE) dz L/O mqud)j/ di[,'g )\]A ¢j¢j/dx3]

u
6%3

J,3'=1
2
H 00 oo

- / /0 ey D0 86, ()| o= 30N

{\i|<p} =t =t

Z ||UHL2(M + > Nl Nz cqa1<pm
j=1
W2 . > w

= Z |:C2 - )\?] (i M2 gz1<pp = D L )‘2} Z/ |a(j,n, )| rdr.

j=1L"F j=1 nez

We see again by Corollary 2.2.6 and Remark 2.2.2 that the first J terms on the right-hand side
might be negative. These finitely many terms can be estimated by the L?-Norm of u, like in the
two-dimensional case in the proof of Lemma 3.2.4.

Then, plugging all the results together we observe that

2
Wl > [ S Wi+ [T S0+ A+ Dt

nez j=1 nez j=1
O

Note that the statement of Remark 3.2.5 on norm equivalences holds for m = 3, too.
We next define the trace operator for continuous functions u € C(3,) by T : u u|E Due

to [McL00] we know the trace operator T' can be extended to a bounded linear operator from
HY(M,) into HY/2(M,) C L?>(M,). Using now the definition of the Fourier series, we introduce a
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special subspace of this trace space for functions in M,. For z = (£p,z2) € R2 this special trace
space adapted to Hy;,(M,) is denoted by

Ve = Z/JELQ(ZP) Plsy, = Z¢i )9;(x2), 2 € [0, H] : Z L+ 2%) 1/2|¢i( 2 <oop,
J=1

Jj=1

and it holds Vo C L?*(¥,). Note that, the notation for Fourier coefficients ¥4 (§) indicate to which
part of the boundary these coefficients are associated.
The inner product for the Hilbert space Vs is defined by

= DN (0400 G) +0-(G)0-()  for 0.0 € Ve

The dual of V, with pivot space LQ(ZP) is denoted as V4 and is a Hilbert space. Its inner product
is defined by

= 20N (0:G)be () +0-Go-()  for B e V3.

Owing to the definition of the Fourier series in (3.32) in dimension three, we have for € R? and
x = (pcosy, psin g, x3) the space

Vs = {w € L*(3,) 1 ¢(z) = Z Zz@(n,j) exp(iny)p;(xs) for (¢, x3) € (0,27) x [0, H] :
j=1n€ez

DD Il + )20, )P < 00} € LQ(EP)}'

j=1nez

The inner product for this Hilbert space V3 is given by

0, 9)v, :=2mp Y > (L [nf* + [X\[*)/20(n, )ib(n,§)  for 0,4 € Vi,

j=1nez

We call V4 the dual space of V5 with respect to LQ(EP) and for its inner product we write

O, 0)vy =2mp Y > (L4 [nl> + NP)720(n, )d(n, j)  for 0,4 € V3.

j=1nez

Theorem 3.2.7. The trace operator T : H'(M,) — Vi, where m = 2,3, is continuous and is
onto.

Proof. Again, we prove the result for smooth functions u in the dense set Hyy, (M,) N C1(Q). We
first treat the proof in dimension two. By Lemma 3.2.4 we obtain

p p
[l Frr o, 2/0 Z|ﬂ/(j,$1)|2 d961+/0 Z(l‘f‘ X )i, @) day .
j=1 j=1

Note that we apply techniques used in [Kirll, Appendix A.5]. The Cauchy-Schwarz inequality in
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L2(—p, p) gives
2nls N2 Pd 2n s 2
oPlaGo) = [ S (@ + pPla o)) do
—p T1
p

—2 /p (@1 + p)[a(j, 21)[Pday + 2 /

—p —p

(z1 + p)*Re {ﬁ(n, p)m} dxy

P
<dp / (G, 21)|? day

—p
p p 1/2

+2 (/ (w1 +p)2|ﬂ(j,w1)l2dw1/ (21 +p)|ﬂ’(j,x1)2d$1> :
—p —p

Now, we use
2ab < a® + b2, (z1 + p)®> < 4p® and 1+ |/\§|)1/2 <1+ |/\j|2 for |z1| < p,

to obtain

(L4 X122 lull, )P < Clo) (1 + A1) /p

—p

P
G, 1) das + / [ (j, 1) 2 da.

—p
Repeating the same computation for —p instead of p and summing over j € N shows that

| Tullv, = lluls, 1}, =Y (1 + X2 Y20a, ) + [a(i, —p) ]
JEN

=C(p) > /

jENY T

p
A+ [NIDY2a, p)? + la(h, —p))?] daoy < Cllullzr (ar,),
p

where the last inequality uses the norm equivalence in dimension two from Lemma 3.2.4.
Our task is now to prove the three-dimensional case. The Cauchy-Schwarz inequality in
L2([0, p]) allows us to estimate

P d
platn, s o) = [ 50l o)) dr
0 T

p P
= 2/ rla(n, §, p)|* dr + 2Re/ a(n, j, p)u/ (n, 4, p)r? dr
0 0

p p p 1/2
< 2/ rla(n, 3, p)|* dr +2p (/ [a(n, 5, p)|*r dr/ |4’ (n, 4, p)|*r dr) .
0 0 0

Similarly to dimension two, we now obtain

p
(L4 [n? + 1222 la(n, 4, p)[F < C(L+ [nf* + I/\j|2)/O [[a(j, n, ) + [& (G, n, )] 7 dr

P 2
< cmax(t,?) [ | (24 B I ) it ) 4 1G]
0

Norm equivalence of Lemma 3.2.6, summation over j € N and n € Z yield
[Tullvy < Cllullmag,)-

Due to Lemma 3.2.4 for m = 2 and Lemma 3.2.6 for m = 3 and the definition of V,,, we further
know, that T is onto. This completes the proof. O

Owing to the fact that V), is the dual space to V,, for the pivot space L?(¥,) we write
equivalently for

(v, u)vr xv,, = (v,u)2(s,) forueV, andv eV, , m=23.
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Due to the fact that {¢;},en is an orthonormal basis,

(v,u)r2(s,) = / v ds
H o0 00 0
/ ZZ 0(j, 1) 5 (w2) 05", 1) bjr (w2) das Z 0(4, z1)0(j, z1). (3.34)
j=14'=1 j=1

Additionally, we use for dimension three the orthogonality of the basis {exp(in-)}necz. Then,
analogously like in dimension three we can compute that

(’U7U)L2(Zp)—/ avds

2#
/ / o(n, j,7)d;(xs) exp(ing)i(n’, j', r)pj(x3) exp(—in'p) drs dp
n,n'€”Zj, j' 1
209 Y S Fm o, 1), (3.35)
n€eZ j=1
This implies that
[(v,w)| < [Jvllve [Jullv,, for all v € V), and u € V,,,,m = 2, 3.

3.3 The Exterior Dirichlet-to-Neumann Operator

In this section, we construct an exterior Dirichlet-to-Neumann map on the surface X, that maps
Dirichlet boundary values on ¥, to the Neumann data on ¥, of the (unique) radiating solution in
Q\ M, to the Helmholtz equation (2.1). To analyze this exterior Dirichlet-to-Neumann map we
require that Assumption 3.1.1 holds, i.e. no eigenvalue /\? € R vanishes. In consequence, we can
denote a formal solution to the Helmholtz (2.1) on Q\ M, that satisfies the boundary conditions
(2.5) and (2.6) of the form

B a(j) exp(i)j|z1])g;(22) r=(3) €N\ M,,m=2,
M j%;! {Znez i(n, 3V H (Ajr) expling) ¢; (v3), @ = (Cifﬁ’ﬁ) € Q\ M,,m =3, (3:36)

where H{" denotes the Hankel function of the first kind and order n. Indeed, in dimension two
the mode

Ty = w;(T) = exp(id;|z1l),
satisfies the one-dimensional Helmholtz equation in (82/0x7 + A¥)v; = 0 in R\ {0}. If A2 > 0
(ie. A\j € Rsg) and if A7 < 0 (i.e. Aj € iRsg) the corresponding modes satisfies the radiation
conditions (3.3). Obviously, in dimension three the Hankel function HY of the first kind and
order n satisfies Bessel’s differential equation such that

7y win (@) = HY(iAr) expling), &= (rama), >0,

satisfies the two-dimensional Helmholtz equation in (Az + A})w, ; = 0 in R?\ {0}, see [CK13].
We further know that the asymptotic expansion of the Hankel function for large arguments shows
that each term of u satisfies the radiation conditions (3.3) such that (3.36) defines a radiating
solution.

Next, we formally obtain the normal derivative on ¥, by

ou . > {ﬁ(j))\j exp(ij|z1])¢;(z2),

X
447($)47 N . 4 . pcosep
or | Zez Asitln, N () expling) o (ws), @ = (osin ) € Tp0m = 3.
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Note that in dimension two it holds that du/0r(x) = +£0u/0x:(x), where x € ¥,. This formula
motivates the following definition.

Definition 3.3.1. For ¢ € V,,, with corresponding Fourier coefficients {1[& (J)}jen form =2 and
{¥(j,n)}jennez for m = 3 the Dirichlet-to-Neumann operator A is denoted by

A V V/ 'l)[) Z Z>\J¢i ¢J($2) x = (;;) E EI)’ m = 2’
Vi — R — A, in pcosp
JEN > onez i W()\Jp))zb(n J)em¥oi(zs), x= (psaégw) € X,,m=3.

(3.37)

The following result shows that the Dirichlet-to-Neumann operator A is well-defined and
bounded from V,, into V!

m*

Theorem 3.3.2. The Dirichlet-to-Neumann operator A from (3.37) is well-defined and bounded
from Vi, into V!,
A

v, < Clllv,, for all 4 € V,p,

m

where C' > 0 is a constant.

Proof. (1) Since all eigenvalues )\? are non-zero by Assumption 3.1.1, then in dimension three each
term of the series of the Dirichlet-to-Neumann map is well-defined. In the two-dimensional case
this holds even in the case if )\? = 0 for some j € N.

(2) By the definition of the Dirichlet-to-Neumann map for dimension two, computation (3.34)
and the fact \3 < Cj? (see Lemma 2.2.4), we find

o0 o0

Al = S0+ P [AEG)| < S+ DY [ 6) + 5G] = [l

j=1 j=1
Now, we treat the three-dimensional case. Due to [AS64, Equation 9.1.5] we know that for
z € C,z # 0 and the Hankel function H}(z2) of the first kind and order n, that the relation
H! (2) = (-=1)"H}(z) holds. In consequence, we compute
’ 1 ’
HY (p) _ HY) (yp)
200 HOOu)

For simplicity, we further introduce the Fourier coefficients

Bln. 7 = &(Anv])’ . n=70
) {<|w<n,j>|2+|w<—n,j>QW% n£0. (359

Together with the definition of the Dirichlet-to-Neumann operator, the assumption that ¢ € V3 is
given by ¢ =3, 7 oy ¥(n, j) exp(ing)d;(x3) and computation (3.35) we deduce

1A%, —27TPZZ (L4 Inl? + (A7) 72 A

ﬂﬁ(n,j)H(l)%

j=1n€z n (/\jp)

ZZ 2 1/2 H(l)l()‘jp) i
= 2mp (L [0 + X127 2w (n, ) (N gy

j=1n=0 Hv(bl)()‘jp)

Note again that all terms are well-defined since )\? # 0, for all j € N by the Assumption 3.1.1. We

point out that |H,(11)(z)| is strictly positive for z € C, z > 0. Indeed, z > 0 holds by the definition
of )\? in (2.13). Next, from the Appendix of [AGL08] we have the relation

HY' () Hipl 1 (2) )
g (z)  HnlWO(z) 2

for z € C,arg(z) € (—n/2,7/2). (3.39)
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This implies

n2

A12p°

IABIT; < Clp) Y D (L +Inl? + X272 Pla(n, )

j=1n=0

H(l) ()‘JP)
a5 (A\sp)

We separately estimate each part of the sum on the right-hand side of the last equation. By the
definition of the Fourier coefficients w(n, j) in (3.38) we obtain

o0 o0 2

- N n
DY P+ TN Pl ) P
j=1n=0 Ail%p

o0

1 oo
< S 3N+ P+ NPT (n, )P < —||w||V3

P Jj=1n€zZ

Next, by Lemma A.2 in the Appendix of [AGL08] we know that it holds

1)
H
‘ n-1(2) < C(p), for |z| > p > 0,arg(z) € (—7/2,7/2],n € N. (3.40)

HY (2)

In particular, due to fact that )\f < (32 (see Lemma 2.2.4) holds, we find that

HY, (o) ||
HYY (Ap)

(0) Y D (A [nf* + X272 Pl (n, )| < Clo)l[wl1Rs.

j=1n=0

DD Al + )TN Pl )

j=1n=0

Lemma 3.3.3. For ¢ € V,,, the function

o 7 . exp(i.)\jzl) (o 1>
uw) = {2 ) e 000 B0y e\ Mm=2 (34D
2im1 V-U) ooy i) 21 < —p,
and

) T COS ¢ R
Z Zi/) n j ()\ p; exp(iny)p;(xs), x = (rsinw) e\ M, m=3 (3.42)

j=1nez e
is the unique weak solution in Hyy . (Q2\ M,) to the Helmholtz equation
w? -
Au+ mu: 0 mQ\M, (3.43)
that satisfies boundary values for u|s, = ¢ and the waveguide boundary condition on (2.5) and

(2.6) and the radiation conditions (3.8). Further u belongs to H\ (X\ M,) and there is a constant
C = C(R) > 0 independent of 1 such that

HU”H}OC(MR\E) < Cl¥llv, for all R > p.

Proof. (1) We first proof that the function u belongs to H‘}WOC(Q \ M,) for dimension two. Due
to (3.41) we know that u can be written by

o exp(idj|z])
jze;] exp(iA;p) =
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Next, we show that the latter series converges in H Y(Mg \ M,) for arbitrary R > p, such that
uw€ HL (2\ M,). By the proof of norm equivalence in dimension two of Theorem 3.2.4 we have

Il oy = 2 [ @ ) [ i G P d
jEN p<\x1\<R
[,(Z}_

<> @+

O el = )dn) [[5-GF +16.0)]

JjEN
—a3 1+ A P) exp(—2z’/\jp)—e;p(—Mj(Rer))‘ M(j)“%(j)'z]
jEN J
<O+ 2 [i-GF + 156 | =l
jEN

This finishes the proof for dimension two. Next we treat the three-dimensional case. In this part
we abbreviate the domain Mg \ M, for R > p as M, r and the corresponding two-dimensional
domain {p < || < R} C R? by M, . For |Z| > p, the function u from (3.42) can be written as

T H7(11) )\ 7 COS
u(@) = 3, D)y (@) with a(7.7) = 3 9, m) ) expling), = (10E).
jeN neZ Hr'(Ajp)

We first show that the latter series converges in H'(M, g) for arbitrary R > p, such that u €
HE (Q\ M,). For £ € R and a parameter k? = 1 + maxjeN()\ ) < oo we set

VPmE iR
O =VETRE iR <

Then we use the latter function to write

Hy" (ra(¢))

—————~exp(ing) forz=r (‘;ﬁfg) € M, g and n € Z.
Hi (pa(€))

f)né(ii') =

Of course, the smooth function , ¢ belongs to H'(M, g). Next, [CHO7, Lemma A6] states that

1on s < Clo R) (40" +E)Y2, for (e R neZ,

where C' > 0 is independent of &,n. Due to k2 = 1 + maxjeN()\?) we know that k2 — )\]2 > 1 for
all 7 € N. Then there is a unique positive solution &; > 0 to sz =k - )\?. We point put that the
latter equation implies

(&) = 1A and & < C(R)(1+\]%).
In consequence, we estimate

[[9n,¢; IIZI(M;,R) <C(p,R)(1+n*+&)/?
=C(p,R)(1+n* + k> = X))/
< C(p, R k) (1 +n? + |\ HY2

We know that {exp(iny)}necz and its derivative {in exp(ing)},ecz are orthogonal on (0, 27). Con-
sequently, we have that the functions 0, ¢, are orthogonal for the inner product of H Y(M, g). The
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latter estimate and Parseval’s identity give us

180G Wity = 1 22 90 0 Lo

neZ
< Z |¢(]7 n)|2||7~)n7£j ”?{1(]\}[{))}?)
neZ
< Clp, R, k) Y (1402 + [N 21, m)[*. (3.44)

neEZ

We further know that the corresponding L2-estimate holds as well due to Parseval’s identity and
the orthogonality results

L TR 2 s .
||U(j, .)HQLQ(M;),R) = H Z 1/’(], n)vnvg‘j HLQ(M;),R) < Z W}(]ﬂ n)|2||vn7fj HQLQ(M,),R)' (345)
neE”Z nez
Due to the proof of norm equivalence in Theorem 3.2.6 we know that
el my < O3 (180G s, o+ L+ PGy ] (3:46)
jEN
Putting (3.44) - (3.46) together, we see
lal3rsaty py < C D00 [ 02+ I V2 (L4 ), 1227, ] 1962
JENNEZ
Applying [CHO7, Lemma A2] that for » > 0 implies that
2
‘H£1>(¢Ajr)

L "7l <1, forallj €N,
(1) 2
|H5Y )

we see that the L2-norm of o, ¢, can be estimated by

MWy |2 R
M dT<2l/ |7(Ll)(7jr)|2d7~§27r(}2—p) for all j € N.

a5 (Ajp)

rooop

R
‘lﬁn,ﬁj‘li2(]\2pﬁ) = 27r/p

If j > J, (i.e., if A3 <0, correspond to evanescent modes), then due to [CH07, Lemma A3] which
states for r > p that

(1) 2
‘Hn (Aﬂ“)‘
T S o= =)l
D )|
we further obtain
or [T 2 47 C

T, 20y < —/ e =Pl dgr < ZZ (1 —exp(—(R—p)IN) € =~ < ——————.
3 L2(M,, Rr) p o I)\jl J | j‘ (1+|>\J|2)1/2

This shows that

[ullFrsag, y < C DY (140 + N0 n))* = Cllel3,-

JENNEZ

(2) The function u satisfies the Helmholtz equation in 2\ M, in the classical sense, and for
this reason also weakly. This follows by construction of the eigenfunctions v; solving (2.12),
since for dimension m = 2 the modes v; = exp(i);|z1|) satisfies the one-dimensional Helmholtz
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equation (9/0z1 — A})v; = 0 in {|z1] > p} , since Uy ¢; solves (Az — A})Ope, = 0 in {|Z] > p}
for m = 3 and since the series in (3.41) and (3.42) was shown to converge in H'(M, r). The
same argument shows that u satisfies the waveguide boundary conditions and it is obvious that
uly, = 1. For dimension two it is obvious that the corresponding mode x — exp(iA;|z1|)d; (x2)
to A3 >0 (i.e. \j € Rsg) and to A\? < 0 (i.e. \j € iRs) satisfies the radiation conditions (3.3).
For dimension three, well-known properties of Hankel and Kelvin functions show that @, ¢, is a
radiating solution to the Helmholtz equation if 1 < j < J, i.e., )\JQ, > 0, whereas ¥y, ¢; is bounded
(and even exponentially decaying) if j > J, i.e., )\? < 0. We claimed that u satisfies the radiation
conditions (3.3).
To show now uniqueness of u we consider a further radiating solution v to the same exterior
boundary value problem and the difference w = 3,y w(j)$; of u. For arbitrary j € N, w(j) €
Hy ({|Z| > p}) satisfies (9/0x1 — A3)v; = 0 in {|a1] > p} for m = 2 and (Az — X3)Upe, = 0
in {|Z] > p} for m = 3. We further know that w(j) vanishes on {|Z|] = p}. Moreover, if
A3 < 0 the function w(j) satisfies the Sommerfeld radiation conditions (the first condition in
(3.3). Due to [CK13] the function w(j) vanishes, too. Furthermore, if A3 > 0 the function w(j) is
exponentially decaying in # and belongs in particular to H!({|Z| > p}). By partial integration we
have that

/ (|ijj|2+)\?|wj|2)di:0
{lz|>p}
In consequence, w vanishes as well. This implies uniqueness of the radiating solution. O

The following Lemma gives us now L2-coercivity of the Dirichlet-to-Neumann operator A when
applied to ¢ € V for small frequencies.

Lemma 3.3.4. There exist constants ¢ > 0 and C > 0 such that the Dirichlet-to-Neumann
operator A is L? coercive at small frequencies. Further for 0 < w < C we have that

—(AY, ) 2(x,) > CMHUH%Q(E‘,) for all ¢ € V,,,.

Proof. We assume w to be such that no propagating modes exist. Indeed this assumption makes
sense by the fact that we can find by Remark 2.2.2 bounds that only evanescent modes exist (i.e.
A2 <0).

We first treat the three-dimensional case. For ¢ € V,, we use the relation of the Fourier
coefficient, (3.38) and the fact that the eigenvectors {¢,},en form an orthonormal basis to see
that

HY (Mgp) o
—(AY, )2, = / wAwdS_—QWPZZ)\ mhﬂ(n,jﬂ :
j=1n=0

Next, identity (3.39) used in the proof of Theorem 3.3.2 gives us

HY p) o\
—(AY, ) 2 p)——QWPZZ ( /\Jp) [@(m, 5)]°.

j=1n=0 jP)

We point out that the argument of the Hankel function is purely imaginary by the choice of the
eigenvalues )\? < 0 for all j € N, . By this assumption we have only evanescent modes and we can
apply identity
H0\() _ G (D)
B RO ()

forn € Z,z € iR<q,

to obtain

()
—<A¢7¢>L2(2p)=—2ﬂpzz< A KnoaAle) ”) o, )P

S\ E (N P
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Due to [AGL08, Lemma A.1] we know that it holds

K_1(t)
Ko(t)

Then, together with the fact that for decreasing order 0 > A\? > A% > ... it holds

Ko([Asl0)/ Kx(IAlp) = 1= 2/(plAs]) = e,

K, (t) t

Ko(t) S
nat(t) — t+2n’

) > and 1>
Ky (t)

>1

forn € Z,t > 0.

SR

we have

A > Aj
SR Z[MHU}OJ|+C1|/\||w(1jl2+z>\|< b ) )P

Nilp+2n  |Njlp

j=1 n=1

Using the binomial formula for p to be chosen large enough and that n — n(|\;|p + 2n) and
j = A1/(A1p+2) increase in n and j, respectively, we see for n € N that

Aile n] [ n ]”2 { 1 T” [ A T”
A + > 2/ | ——— > 2|1\ | ——— 22)\-/ _ > 0.
M it * o) 22 s 22 ) 226 s

Now, by Theorem 2.2.3 and Remark 2.2.2 we have for constant sound speed ¢y that w/c(xy,) >
w/cy that

Aizw—)z:(“’;_”(%l))?:“ﬂ[1_<7T(2j1)0+>2] 230%2, for j € N. (3.47)

ct 2H a

Note that ()\ )2 denotes the jth-eigenvalues of the orthonormal eigensystem for the constant sound
speed cy. Now, the latter estimate shows that for w > 0 small enough yield that /\? > c,w? for
all j € N and some constant ¢, = 3/ ci. Monotonicity of the square root function directly implies
for 1 > w > 0 that

|A;] > u and IA;)1/2 > /w2 > 4y
Moreover, we choose 1 > w > 0 such that

. _ e
min (c* 1/2 25) > w,

then 1 > A? > 0 due to (3.47), i.e., I\j[1/2 > |)\;|. Consequently, for ¢ € V3 and some constant
¢ > 0 we obtain by Plancherel’s identity that

—(AY, ) pags,) =Y [A;-llw(j,o)l2 NG D+ (/I o, n)lﬂ >cw Y [ih(n, )
j=1 n=2 j=1n€ez

Now, we treat the two-dimensional case. We recall that only evanescent modes exist. Then,
again for some constants C > 0 such that C' > w > 0 we have that 0 > )\% > )\3 > .... Like in
the three-dimensional case by w/c(x,,) > w/cy we can use estimates for the eigenvalues 3. The
orthogonality of the eigenvectors {¢;};en implies that

— (MY, W12, = Dl [0+ (D + [9-G) ]

jJEN
1 > . .
- ) / ; ; _
2 1 j}ﬂju + G2 [[94 G2 + [ ()2] = ellwll,.

This completes the proof. O
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Lemma 3.3.5. We assume w > 0 such that J(w,c, H) propagating eigenmodes exist. Then there
exists some constants C' > 0 such that for all ¥ € Vy,

i{m G2+ 10— form=2,

e V) 2mp Y (2 form =3,

and
—Re(AY,Y)r2(s,) = —C||u||2L2(zp)-

Proof. Again, we treat first the three-dimensional case. By the identity (3.39) for Hankel functions
used in the proof of Theorem 3.3.2, since {¢;};en denotes an orthonormal basis and the auxiliary
Fourier coefficients w(n, j) in (3.38), we obtain that

HY (\jp)  n
—Re(AY, ) p2(s,) = —2mpRe E g (J ) [@(n, j)I.
14 = s\ HY (e e

Furthermore, since for j > J all eigenvalues A; are negative (obviously, A; > 0 for 1 < j < J), the
arguments of the proof of Lemma 3.3.4 show that for j > J all terms in the series are positive and
real. Consequently, we obtain

o0 H() JP) n . o
—Re(A, )25,y > —2mpRe ZZ 7—7 |w(n, j)|
j=1n=0 p) iP
L(g0)
> —2mp | fi(n, ).
e

Since the finite set of numbers {\; p}f:1 C R is bounded away from zero, estimate (3.40) implies
that
H, (1) 1(Ajp)

a5 (A\sp)

Therefore, we finally deduce

J oo J oo
“Re(Ad, )12 ZZ [ (n, §)I> = =CY > [dn, )P = —Cllulizs,

j=1nez

< Clw,p,H) forj=1,...,J.

The proof for dimension two uses the same techniques and follows analogously.
O

To be able to apply analytic Fredholm theory when establishing existence theory for the scat-
tering problem (3.3) and (3.10) we finally show that A = A,, depends analytically (i.e., holomor-
phically) on the frequency w.

We point out that since the sound speed depends on the depth of the ocean, we have analytic
dependency of the eigenvalue )\?, for j € N on the angular frequency w and not directly on the
wave number like in the well-known theory of [AGLOS].

Lemma 3.3.6. For all w, > 0 such that A\j(w.) # 0 for j € N and for all w* > 0 small enough
that the assumptions of Lemma 3.3.4 hold, there is an open connected set U C C containing w*
and wy such that w — A, has analytically dependency on the frequency w € U.

Proof. Theorem 8.12 b) from [Muj85, | gives us the equivalence of weak and strong analyticity of
a linear bounded operator and the operator A maps into the dual space V..
Thus it is hence sufficient to show for dimension two that

(A, ) racs,) = D0 Nl [0 ()0 G) + 0-(G)0-()| for v, € V3,

JjEN
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and for dimension three that

(Av, z/JLzz)—27TpZ)\ Z

Ai(
j=1 nez H(l ()‘ (OJ)/)

)
1)’
1(Aj (W)p) noo|L ,
= Aj - for V.
27sz_: 7% H(l )\J CU),O) )\J(w)p U(”a])d’(nd) o ’Uv'(/) € 3

— (0, )Y (n, ) (3.48)

is a holomorphic function of w in an open connect U € C that satisfies the properties claimed
in the lemma. From Lemma 2.2.8 we know that for the index functions [;,j € N all eigenvalues
w /\l @) (w) can be extended to holomorphic functions in some open neighborhood Uy of Rsg.
We set 51 > 0 such that Uy = {z € Up, 0 < Re(z) < w* + 1, |Im(z)| < 01} C U contains w, and
w*, is compact and connected. By Theorem 2.2.8, we know that

Ko ={w € Uy : there is j € N such that A\}(w) = 0} < occ.

and reducing now the parameter §; we can assume without loss of generality that Ky contains
merely real numbers. We recall that the square root function z — z'/2 that was defined for complex
numbers via a branch cut at the positive real axis is holomorphic in the slit complex plane C\iR>.
The roots w + Ay, (w)(w) are hence holomorphic functions in the set U := {z € Uy : Imz <
0 if w € Ky}. We moreover restrict this set by defining the open set Us := {z € Us, B(z,d2) C Us}
for a parameter do > 0. If Jo is small enough the open set Us is connected and contains w* and
Wy

We treat now the more challenging three-dimensional case first. Recall that the Hankel function
zZ H,gl)(z) and its derivative 2 s H. (%) are holomorphic in the domain {z € C, z # 0, —7/2 <
arg(z) < m}. Furthermore, the fraction z +— HY (z)/H,(ll)(z) is holomorphic for z # 0 and

arg(z) € [0,7) since z — Hfll)(z) does not possess zeros in this quadrant, too.

Moreover, due to the paragraph on complex zeros of the Hankel function in [AS64, page.
373/374] we know that an infinite number of zeros of z — Hy(bl)(z) in the lower complex half-
plane is contained in the domain {—7 < arg(z) < —n/2}, while at most n zeros are contained in
—7/2 < arg(z) < 0.

Then [AS64, page 374] or [CS82, Equation 2.8] state that these finitely many zeros lie in the
quadrant —7/2 < arg(z) < —e for some € > 0, independent of n and we have z — aY (z )/H,(ll)(z)
is holomorphic in {z # 0, arg(z) € (—e¢, 7r+e)}. Since the numbers ¢A; are either purely imaginary
with positive imaginary part or positive, again reducing the parameter 41 > 0 for the construction
of Uy 23 claims that the function w jii (iXe, w)( w)p )/H (Z)\[j(w) (w)p) is holomorphic for
w € Us. In consequence, each term in the series in (3.48) is holomorphic in Us and can be
developed locally into a power series in the frequency w.

We now state the holomorphy of the entire series by uniform and absolute convergence of the
series in the following. We set

e HY W),
gj(w)_ér) (Aj(w)p)vm,j)wm 9)- (3.49)

Again, identity (3.39) of the proof of Theorem 3.3.2 states

L BHY N@p)  n |
gj(w)—%(w)% HD o) N@)p| GG
HY, (A (w)p)

=X (w) (j,n)¥(j,n) — R;(u,v),

s HY (Oy(w)p)
where

Rj(u,0) == 3 20(j,n)d(j, n),

1
neEZ P
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is a bounded sesquilinear form on V3 independent of w. Due to [AGL08, Lemma A.2 & (A10)],
since for all j > J.(w* +1,¢, H) and all w € U3 NR it holds that i\;(w) € iR~(, we have

1 w
H Aj(w K

n;l(]( ‘ "1)‘()p)‘<0 for w € Uz, n € Z.
HP (A (@)p) Ai(w)e)

Next,the asymptotic expansion of the Hankel functions for large orders in [AS64, Equation
9.3.1] gives us that, for 1 < j < J.(w*+1, ¢, H) there is a constant C' > 0 such that the last bound
holds uniformly valid for all j € N. In consequence, we see

lg; @)l <

nez

HY (\p)
a5 (Np)

[6(j, )¢ (4, )ISZ<CIM(W)I+Z> [6(j, ), m)| < Cllollva ¥ llva,

nez

since w > A; (w) is holomorphic on Uy and hence bounded on Us € Uy. In particular, the series
(3.49) converges absolutely and uniformly for each w € Us. We further know, since each series
term in (3.49) depends analytic on w each term can locally be represented by its convergent Taylor

series with coefficients dl(j )(v, V),

@ =>3"d"w ) (w-w), weUs,

n€Z =0

where the d{ (u,v) are bounded sesquilinear forms on V3 x V3 and the series absolutely convergent
in Us. The limits in n and [ can be interchanged, hence the series in n € Z converges uniformly.
Then, g; has a convergent Taylor expansion as well and is hence a holomorphic function of w € Us.
In consequence, we have that

) 0
H,7 (A )
Z #ﬂ(n,j)@(nv‘j) = E :d{ (4, v)(w — w*)}, we Us.

Then analogously, like in the proof of Lemma 3.3.2 it follows that the series in (3.48) are absolutely
convergent and we arrive at

<AU ¢ L2(Z,) ZZ w—w" n—HZC]d] v ’(/))-FZAJ(’U,’(/})
n=0 =0 j=1 Jj=1

Since by [Kat95, Chapter 7.4] it follows that the coefficients c{ decrease sufficiently fast, indeed
the Taylor series expansion of g; can again be interchanged with the series in j € N.
The two-dimensional case follows analogously,

(A, )12,y = 30 Wl [04 ()84 () + 0- (DD ()]

JjEN

have an analytically expansion. This finally implies the claim of the lemma.

O

3.4 Existence and Uniqueness of the Solution to Scattering
in the Waveguide
In this section we use all prepared tools to provide existence theory for weak solutions of the

waveguide scattering problem (3.3), (3.10) and (3.11). Plugging these tools together is rather
standard and can be found for constant background sound speed in [AGLOS].
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We assume that the incident field u® € H&WOC(Q) solves the variational formulation of the
unperturbed Helmholtz equation (3.6) weakly. We moreover assume that u € H&V,IOC(Q) solves

(3.10) for all v € H‘%V with compact support, such that u® = u — u’ is radiating solution. We want

show now that )

w

Ayt —o
u + () n
Since the boundary of 2 is flat (e.g. n?w?/c? is bounded) and Au € L (), we can apply
well-known elliptic regularity results from [McLO00, Ch. 4] to obtain u € HZ (£2). Furthermore,
by assumption that the scattering field u® = u — u' satisfies radiation conditions, we know by
Theorem 3.3.3 that it holds

2u=0 in L?(Mg), for every R > 0.

ou’®
ov

= A(u’ly) inV,),

ZP
where v defines again the exterior unit normal vector to M,. Using the assumption that it holds
u® = u — v’ and by the normal derivative of v = u' + «® on ¥, we deduce

ou out  Ou® B ou? i N
v v o +A<(“_“)’zp> Vi (3.50)

Next, we multiply the Helmholtz equation with v € H&V(Mp) and formally integrate by parts to
obtain that

/ Au + Lrﬂu vdx
M c(zm)

P
2

()

du

:/ @§d5+ @ids—i-/ Eds—/ Vu~Vﬁdx+/
2, ov To,, ov Tu., ov M, M

P

n2utdr =0

for allv € Hy,,(M,), where v defines the unit normal vector corresponding normal to M,,. Note that
if we assume Dirichlet or Neumann boundary conditions on the obstacle D, indeed the expression
holds, since the boundary term of D vanishes, too. By the definition of the boundary terms 'y ,
and I'g,, we finally obtain

w? ou
/ Vu-Vde—/ nzuﬁdx:/ —7Tds for allvEHéV(Mp).
Mp M Ep (3'1/

, (@m)

Next, by the definition of the normal derivative of u = u* + u® on ¥, in (3.50) we deduce for the
right-hand side that

%deZ/ %(u—ui)@ds—k/ %:iids
2, X, P3PS

- /EPA(u)vder/Ep [8315 —A(ui)] vds.

Then, the variational formulation of the waveguide problem (3.3), (3.10) and (3.11) is: Find
u € Hyy,(M,) solving

2
B, (u,v) := / [Vu -V — C;iux)nzuv] dx f/ A(u)vds = F(v) for all v € Hyy, (M,),
M, m 2,

’ (3.51)
where

F(v) = /Z {%7“5 - A(ui)] vds for all v € Hyy, (M,,). (3.52)

We point out that (3.51) can also be considered for arbitrary continuous anti-linear forms F' :
H}, (M ») — C that can be used to tackle source problems instead of scattering problems.
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To use Fredholm theory, proving existence and uniqueness of solutions, we first show that the
sesquilinear form B, (u,v) for u,v € Hj;,(M,) defined in (3.51) and the anti-linear form F' defined
in (3.52) are bounded on Hyy,(M,). We further show that B, (u,v) satisfies a Garding inequality.

Lemma 3.4.1. a) The sesquilinear form B, defined in (3.51) and the anti-linear form F defined
in (3.52) are bounded and B, satisfies a Garding inequality.

This further implies that the Fredholm alternative holds: Whenever the variational problem
(3.51) for u* = 0 possesses only the trivial solution (i.e. for F =0),

2
/ [Vui -V7 — 2w nQuU} dx — / A(u)vds =0, for allv € Hy, (M), (3.53)
M, (zm) 2,

P

existence and uniqueness of solution in Hj,(M,) holds for any F : H},(M,) — C in (3.51).
b) There is wo > 0 such that the variational problem (8.51),

2
/ l:VU'V’U— 2w nQuU] dx—/ A(w)vds = F(v), for allv € Hy,(M,),
M, (zm) =,

P

is uniquely solvable for all incident fields u® and for all frequencies w € (0,wp).

¢) The variational problem (3.51) is uniquely solvable for all F : H},(M,) — C and all
frequencies w > 0 except possibly for a discrete set of exceptional frequencies {w(g}eLz*l C Roiys
where L, € NU {4o00}. If it holds L, = oo, then wy — oo for £ — oo.

Proof. a) (1) Due to definition of B, in (3.51), by the assumption that the background sound
speed is bounded (see estimate (2.4)) and due to the Cauchy-Schwarz inequality, one computes
that

2
w
|Bo (u,v)| < [1 tat Ay, —ve, | Nullzragllollaran,y,  w v € Hy (My).

By Lemma 3.3.2 the Dirichlet-to-Neumann operator is bounded and then B, (u,v) is bounded,
too. Next, again that the background sound speed is bounded, due to the trace estimate

and the trace estimate shown in Theorem 3.2.7, we find that the boundedness of F' on Hy (M)
follows from

ou’
ov

< divVu'|| L2 (a,) + VU |22 ar,) < Cllu i aa,)s
H-1/2(Z))

[F(v)] < [Cllu'll g agy) + | A, v [ 2y aa)] 1010,y v € Hig (M),

(2) The Garding inequality for small frequencies follows from the lower bound of A at arbitrary
frequencies. Due to the fact that the background sound speed is bounded ¢_ < ¢(z,,), we see

w2 _
Re(Bu,0) > ol gy~ (S04 Nallmaa,) + )l qu, — el [ Awwas).
- p

for u € H}y;(M,). Using Lemma 3.3.5 which states for a constant C' > 0 that

" Re (/ Auvds) > —Cllullzs,,
Zp

to show that

2

w
Re(Bu(u,w)) = [ulllyy (nr ) — ( (1+ lallpear, ) + 1>) lulZ2ar,) — Cllullzas, ),

%
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for u € Hy,(M,) and where C' > 0. Since the embedding of H}j,(M,) in L?(M,) is compact
and since further the trace operator from Hy, (M,) into L*(X,) is compact, due to the compact
embedding of H'/2(%,) in L?(X,) the latter estimate is indeed a Garding inequality for the form
B,,. Then, the variational problem (3.51) is Fredholm of index zero. In particular, uniqueness of
solution implies existence of solution together with the continuous dependence of the solution on
the right-hand side F'.

b) We first use the Lemma 3.3.4, which formulates a weak coercivity result for the Dirichlet-to-
Neumann operator A for small frequencies, and the assumption that the background sound speed
is bounded, to obtain

2
w
Re(Bo,(u,w)) = |[Vuliz,) = — U+ llalzeae)lullzz ) + cwlullzs,), € Hyp (M),
Due to the Poincaré’s inequality we know that
2 il 2 1
lullz2(ar,) < 7||VU||L2(Mp)m for all u € Hyy (M,).

This hence yields

[ V)

1 1 w
Re(B.,(u,u)) > §||VU||2L2(MP) + ﬁ”u”2L2(M,,) -5+ ||Q||L°°(Mp))||u||2Lz(M,,)-

cz

For small w > 0 we see immediately that B, is coercive on Hjy,(Q). Then using Lax-Milgram
Lemma to obtain that (3.51) is uniquely solvable for any F : H};,(M,) — C. This finishes this
part of the proof.

c¢) Due to part b) we know that (3.51) is uniquely solvable for 0 < w < wp. For w > wy
we further use that the Dirichlet-to-Neumann operator A depends analytically on w. We fix an
arbitrary w* > 0 such that )\f(w*) # 0 for all j € N and some w, € (0,wp), Lemma 3.3.6 hence
yields that there is an open connected set U C C containing w, and w* such that w — A, has
analytically dependency on the frequency w € U. In particular, the entire sesquilinear form B,
depends on the frequency w € U, too. Now since part b) holds, for w, € U the variational problem
(3.51) is uniquely solvable. Furthermore, we see that except (possibly) for a countable sequence
of exceptional frequencies without accumulation point in U analytic Fredholm theory holds and
we know that (3.51) is uniquely solvable for all w € U . In particular, there is at most a countable
set of real frequencies without finite accumulation point where uniqueness of solution fails. This
ends the proof. O

Remark 3.4.2. Analytic Fredholm theory is not able to prove uniqueness of solution for those
frequencies, where some eigenvalue )\?(w) vanishes; this does however not imply that uniqueness
of solution does indeed fail at those frequencies, compare [AGLOS].

Theorem 3.4.3. Consider that Assumption 3.1.1 holds. If the variational problem (3.51) is
uniquely solvable for any incident fields u®, then any solution u € Hiy,(M,) can be extended to a
weak solution @ € HL (Q) of the waveguide scattering problem (3.3),(5.10) and (3.11) by setting
@|p, = uln, form =2 by

| © Ly ()RR G () s -
(o) = ui(o) + 2 D el 00(82) mZ0 e 0\Tn (3
Y1 () iy @ile2) 1 < —p,

and for m =3 by

~ i “ . H,gl)()\jr) . T COoS . _
a(z) = u'(z) + Z U(na])m exp(ing)g;(xs) forxz = (rsm¢) in Q\ M,. (3.55)

x3
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The coefficients G (j) for m = 2 are defined by
H .
a+(]) = / (U—Uz)(p,x2>¢)j<$2)d$2 fO’F j7€ Na (356)
0

H
a_(j) = / (u— ) (—p,x2)by(wa) dws  for jEN,

and the coefficients 4(j,n) for m = 3 are defined by

2m pcosga )
/ / u — ) pbw) e"M?p;dpdrs,  jEN, n€L (3.57)
z3

As the restriction to M, of any solution to the scattering problem (3.10), (3.11) with the
radiation and boundedness conditions (3.3) solves the variational problem (3.51), uniqueness of
the solution (3.51) implies uniqueness of solution of the scattering problem (3.3), (3.10), (3.11).

Proof. We first assume that u € H,(M,) solves (3.51) uniquely. We further choose v € Hy, (M)
such that v|2p = 0 and by integration by parts in (3.51) we have that

w? w? ou
/ {Vu~Vv—2n uv} dx——/ (Au+2n2u>vdx+/ vds = 0.
M () M, c(xm) run{lz|<p} OTm

P

Now, using the definition of F' in (3.52) and again integrating by parts implies

/Z (gﬁ —Au )) Tds = /Z (%zj - A(ui)) vds  forallv e Hy (M,). (3.58)

We futher denote u® € Hijy, (M,) by u = u’ + u® such that (3.58) and the surjectivity of the trace

operator yields
ou®
o )|s

Next, in '\ M, we denote u® by the series in (3.54) for m = 2 and in (3.55) for m = 3, such that
U= u"+u’ holds in 2\ M,. For simplicity, we write (- )\E if a trace on X, is taken from the inside
(-) or from the outside (4) of Q. We recall that for dimension two we have Y, i=X_,UX4,. Due
to the trace estimates from the proof of Theorem 3.2.7 and the radiation conditions in (3.3) we
define the coefficients u4 (j) in (3.56) for dimension two such that it holds

= A(u'ly) holds in V,),.

5|~ s+ NEa :
’u’g|2ip = ( ’Zi Zui i — ug|2ip = (U — 'U/l)‘zip, m ‘/2
JjEN

Furthermore, the coefficients w4 (j,n) for dimension three in (3.57) is defined such that

S| in - s|+ iy |t .
u|2p: u— u?) ZZ a(j,n ¢j:u|zp:(u—u)‘2p, holds in V3.

JENNnEZ

Consequently, we have that u|£p equals the restriction ﬂ|;p7 i.e., the extension 4 is continuous
over Y, in the trace sense.

Now due to Theorem 3.3.3, due to the construction of @(z) and the Dirichlet-to-Neumann
Operator A and since it holds (9u®/0v)|s, = A(u®|y ), we know that u(z) € H},(Q) solves the

radiation conditions (3.3) to the Helmholtz equation in '\ M, with normal normal derivative

+ B aui+8us + B outl|™
2,,_ ov ov E_ ov s,

i
ov

= oul|™ )
+A(W]y) = [(;ﬂ inV,.
Ep

s o]
+A(5,) = {&J
Ef’
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Since the normal derivative of % across X, is hence also continuous in the trace sense, the latter
function is a weak solution in H}. () to the waveguide scattering problem (3.3),(3.10) and (3.11).
Again using interior elliptic regularity results [McL00, Chapter 4] to show that @ € HZ (). To
this end, uniqueness of this scattering problem finally follows from uniqueness of solution of the
variational problem (3.51), since any non-trivial solution to the scattering problem for u’ = 0 is a
non-trivial solution to the variational problem (3.53).

O

Theorem 3.4.4. Consider that Assumption 3.1.1 holds. For Im(q) > 0 on a non-empty open sub-
set D of M,, then the variational problem (3.51) and the waveguide scattering problem (3.8),(3.10)
and (3.11) are both uniquely solvable for all incident fields u® and all frequencies w > 0, satisfies
Assumption 3.1.1.

Proof. We consider first that Im(g) > 0 on a non-empty open subset D C M,. We further assume
that u € Hy;,(M,) is solution to (3.51) with vanishing incident field u* = 0 or vanishing right-hand
side F' = 0 equivalently. This v now can be extend by (3.54) for m = 2 or (3.55) for m = 3 by
Theorem 3.4.3 to a solution in Hyy, ), .(Q) N H (Q) of the scattering problem with u* = 0. Of
course, this extended function satisfies radiation conditions (3.3) to the Helmholtz equation (3.10).
Consequently, for simplicity, we call again the extended function u. Taking the imaginary part of
(3.51) with v = u and integrating by parts in Mg \ M, states for R > p that

2
Im B, (u,u) = —/ 2w7 Im(q)|u|? dz — Im/ A(u)uds
M, € (Tm) 2,
w? ou
=— Im(q u2d33—1m/ —uds
[, @ @l 5
2
=1Im {|Vu|2 - 2w |u|2} dz
MR\E c (.’L‘m)
w? Ju
— ——Im(q)|u|* dz — Im —uds =0.
[, @y 5

For u € Hy,,,.(Q) N HY

1. (92) the orthonormal expansion

w="Y_u(j,&)$;(xm),

jeN

shows that

ou / ou(j, ) ———
—uds = u(g, ) ds.
LR ov _]EZN |#|=R ov ( )

For propagating modes, as 1 < j < J, then u(j, %) is a solution to a Helmholtz equation that
satisfies the Sommerfeld radiation conditions due to (3.3) and it is well-known (see, e.g.,[CK13])
that this implies that

ou(y, &)

Im
gl=r OV

u(j,2)ds >0,

We point out that the latter expression is a multiple of the L?-norm of the far field pattern of
u(j, ). For evanescent modes, as j > J, u(j, %) is a bounded and hence exponentially decreasing
solution to a Helmholtz equation (this follows, e.g., from the estimates of the Hankel functions in
the proof of Theorem 3.3.2), such that

Im

QUG F ds =t [ [[VsulG, D + Xlu(.3)] de = 0.
|z=r OV |&|>R
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In consequence, we conclude that

21
O:Imb(u,u):/ wim(q)|u\2dz+lm/ %ﬂdSZO
c(x3) s, OV

and we deduce that u vanishes on the open, nonempty set D. Finally, due to the unique contin-
uation property for solutions to Au + (w?/c?(x))(1 4+ ¢)u = 0 in [JK85, Th. 6.3, Rem. 6.7], we
know that w vanishes in all of €2. This ends the proof.

O

Remark 3.4.5. (a) If the obstacle D described by the contrast q is replaced by an impenetrable
obstacle D @ M, with either Neumann, Dirichlet or impedance boundary conditions, the approach
from the beginning of this section implies a variational problem for the total field with restriction to
M,\ D. For a Neumann or impedance boundary condition this problem is posed in Hj, (M, \ D).
If we have Dirichlet boundary condition, the variational space additionally needs to incorporate
homogeneous Dirichlet boundary conditions on 0D. The existence and uniqueness results of The-
orem 3.4.1 and Theorem 3.4.3(a) hold for those scattering problems, too.

(b) The Garding inequality from Theorem 3.4.1(a) yields that a conforming Ritz-Galerkin
scheme applied to (3.51) converges if the sequence of discrete variational spaces is dense in
1, (M,).
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Chapter 4

Lippmann-Schwinger Integral
Equation

The aim of this chapter is to derive a volumetric integral equation of the second kind, the so called
Lippmann-Schwinger equation. We first introduce the Green’s function or fundamental solution for
the differential operator under investigation for dimensions two and three to have the basic ingre-
dients for the volumetric integral equation. Then, we show that solving the Lippmann-Schwinger
equation is equivalent to solve the Helmholtz equation (2.1) with corresponding boundary condi-
tions (2.5) and (2.6) and radiation conditions (3.3). The essential advantage of the integral equa-
tion is that boundary conditions and the radiation conditions are already included in the integral
representation. We point out that Colton and Kress have shown in [CK13] that if u € C?*(R™)

solves the Helmholtz equation
2

w
Au + 07(1+q)u =0,

for constant wavenumber w/c in R™, and if u = u’ + u® is sum of an incident field u’ and a
radiating scattered field u®, then u is a solution of

u(z) = i (x) — w? /e / B (2, y)a(y)uly) dy.

m

Here ®(x, y) is the fundamental solution of R™. Further, the converse holds, too. If the background
sound speed ¢ depends on the depth of the ocean, this result must be suitably modified.

4.1 Green’s function

We begin first by introducing the fundamental solution of the Helmholtz equation in the unbounded
region R™~! that satisfies the radiation conditions (3.3). Then, we continue our studies of the
fundamental solution of the Helmholtz equation (2.1) with boundary conditions for dimension
m =2 and m = 3.
First we define
Cit = {2z € C\{0} : Rez > 0,Imz > 0}.

Lemma 4.1.1. For A € C,4 the fundamental solution of the Helmholtz equation (2.1) in the
unbounded region R™™1 is given by

x1 —~E\ xy) = % exp(iA|x1]) form =2 and

i H%Hél)()\ﬁ:\) form =3,

63
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where Hél) denotes the Hankel function of order zero and the fundamental solution satisfies the
radiation conditions

lim [E/(A,Il) — z)\E()\,xl)} =0 fOT’ AE (C++,m = 2,

|z1|—00

Jm V] 885:| DA#]) —AHP )| =0 for A€ Coaym =3,
T|—0o0

Proof. We first treat the case m = 2. We exploit results of computing the fundamental solution
from [Wal94, Kapitel 5.6]. For fixed A € C\{0} let ¢y denote an arbitrary constant and we define

E(X\ x1) := co exp(iX|z1]), z1 € R.

We recall, for fixed A € C\{0} the function w € H?(R) solves the 1D-Helmholtz equation acting
on the horizontal axis given by equation (2.10),

w;-' + )\ij =0 in R,

and radiation conditions. We set w = E(),-) in the last equation, multiply it with a test function
1 € C§°(R) and do an integration. Then,

/ E(\ ( )\2>z/;d:1:1 (/ /) (32 )wd:cl for all 1 € C§°(R).

We use partial integration to obtain for all ¢ € C§°(R) that

[ B0 (g +3) wi
(/ “f )[ax 'QWVE(%W} Ao + 5o V(0B OV0) = S -b(0)E(0)

Using further the limit that € tends to zero, we see

7 =g%< (/_ /)[8301 -)a%wHZE(mw dz

0 0

+ 8751]3()\ e)Y(e) — 8751]3()\ W(—S))-

Rigorously computation shows that E(),-) solves the 1D-Helmholtz equation AE + w?/c*E = 0.
This and and partial integration show

113(1)(/ / )a o —¢+A2 (A, )¢ dzy = 0.

In consequence, we compute

/ Jo8) K ;4 >¢dx1] ~ lim [ailE(A,s)w(s) - %E(A,—s)w(—s)
= lim [iX exp(iAe)b(e) + i exp(—iAe ()]

We search now the constant ¢y such that

li_r}r(l) [coiA exp(ide)(e) + coil exp(—ire)y(—e)] < ¥ (0) for all ¢ € C§°(R).
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We see for ¢ = i/(2)) that

gig% [coiX exp(ide)(e) + coil exp(—ie)w(—e)]

= lim —% exp(iXe)y(e) — %exp(—i)\s)z/)(—s) =(0) for all ¢ € C5°(R).

e—0

This finishes the proof for m = 2. For the proof that i/ 4H(§1) is the fundamental solution of the
Helmholtz equation in R? we refer the reader e.g. [SV02, Chapter 2]. O

Note that, e.g. Assumption 4.2.11 supposes that all eigenvalues of the eigenvalue problem
(2.14) are non-zero, such that the case A = 0 does not have to be considered in the last lemma.
Our aim is now to determinate the fundamental solution of the Helmholtz equation (2.1) with
boundary conditions (2.5), (2.6) and radiation conditions (3.3).

We denote the Dirac distribution on 2 with mass at point x by d,,

(0, 0) =¥(x)  for ¢ € CF°(Q).
Due to [Wal94, Kapitel 5.6] and with respect to the separation of variables, a fundamental solution
G of the Helmholtz equation satisfies

AG(z,y) + ——

that is,

/ |:AG($7y) + &G(x,y)] P(y) dy = —(x) for all ¥ € C§°(Q).
Q c(Tm)

G should also satisfies the radiation conditions. We first treat the case m = 2. For a formal
computation of G, we expand d,, into its Fourier series with respect to the basis {¢; };en,

8y, (22) Zc (7)o (z2), with ¢(j) € C.
j=1

Next, multiplying the latter equation with ¢;(z2), integrating from xzo = 0 to 29 = H and using
the orthogonality of the basis {¢;} en to see that

c(j) = ¢;(y2)-

Plugging all together and using Lemma 4.1.1, we obtain the fundamental solution of the Helmholtz
equation (2.1) with boundary conditions (2.5) and (2.6) in dimension two,

i 1
§ZT¢] T2)9;(y2) exp(idjler — ), =1 # 1. (4.1)

<.

=1

This function is from now on called the waveguide Green’s function. We point out that for
r1,y1 € R, 1 = y1, such that the Green’s function in dimension two is formally defined, however,
the derivative in x;-direction is not continuous anymore, since

0 ) N T1— Y .
—exp(tAj|rr —y1|) = A ———— exp(iAj|x1 — y1])-
Gy OPUAe — 1)) = iy T explidy i)
Note, however, that the series (4.1) is merely absolutely and unconditionally convergent if z1 # y;.
For completeness, we further introduce the conjugate Green’s function. By the fact that the
eigenfunctions are real-valued the complex conjugate Green’s function is given by

Z </>J z2)¢; (y2) exp(—iXj|z1 — 1)), 1 # Y1 (4.2)

Jj=1

N)\s.
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Next, we compute the Green’s function for the three-dimensional case. Ones more, we can
expand d,, into its Fourier series with respect to the basis {@;};en,

dys (z3) Zc ), (xs), with ¢(j) € C.

j=1

Lemma 4.1.1 implies that the Green’s function in horizontal variable on the unbounded region R?
is a constant multiple with Hankel function, & — /4 Hél)()\j|§:|). Consequently,

S i)y () HD O ) = 55(3)6,4 (). (13)

Jj=1

As for m = 2, we multiply the expansion of §,, with ¢;(x3), integrate from x3 =0 to 3 = H and
use that the eigenfunctions {¢;};en are orthonormal to obtain ¢(j) = ¢;(y3). Thus, (4.3) becomes
the Green’s function for dimension three,

Gla.y) = 13 6i(a)o ) B N lE —gl), £ 7 (1.4

Again, this series is merely absolutely and unconditionally convergent for & # g, since A; is
complex-valued for j > J. Since [AS64, Equation 9.1.40],

HY) =HP @z zeC,

we see for the complex conjugate Green’s function in dimension three that

G(z,y) quj (€3)¢, (y) HSY (N2 —3), & #7.

] 1

We point out that G(x,y) = G(y, x) for £ # § holds independently of m. The expressions (4.1) and
(4.4) are called modal representations. Note that the Green’s function solves boundary conditions
and radiation conditions by construction. By Section 3.1 we know that there are two kinds of
waveguide modes. If )\f > 0 the modes are propagating and if A? < 0 they are evanescent. For a
homogeneous ocean, where the background sound speed is constant, [AK77] present an alternative
expression for the Green’s function in dimension three. This representation converges near the
singularity {Z = ¢} and is called ray representation. The ray representation is derived by the image
method, which is only valid for homogeneous media and plane boundaries, see [SW04, Chapter
3]. The idea of this method is to sum up an infinite sequence of families of rays reflected by the
sound hard and the sound soft boundaries. In our setting, this method cannot be used to give a
ray representation for expression (4.4), since the background sound speed is not constant. Thus,
the well-known theory in [CK13, Chapter 8] used to give an equivalent representation of solutions
to the Helmholtz equation, with corresponding boundary conditions and radiation conditions via
the Lippmann-Schwinger equation does not apply here, at least not straightforwardly.

4.2 The Volumetric Integral Operator

In this section we first introduce the volumetric integral operator V using the Green’s function
introduce above. We further show that V is bounded from L?(A,) into H*(A,). Then, we can prove
that the Helmholtz equation with corresponding boundary and radiation conditions is equivalent
the Lippmann-Schwinger equation, using the volumetric integral operator. Existence of classical
(i.e., twice differentiable) solutions to the Helmholtz equation for constant and depth-dependent
sound speed has been shown via integral equation techniques by Gilbert and Xu in a series of
papers in [GX89, Xu92, Xu97, GL97, BGWX04], too. Gilbert and Xu used the fact that the
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fundamental solution G can be separated into a free space Green’s function and a part correcting
the boundary conditions, thus using well-known volume integral equation tools. We present here,
however, an alternative technique to obtain the required boundedness of the volumetric integral
equation we introduce later on.

We first recall the waveguide’s Green’s function from the last section

Gla,y) = 02 N T 8(w2)0 (y2) exp(id|zy —wi|)  for m,y € Q1 # y1,m =2 and
LY bi(3) ey (ys) HEY (17 — 31 for @,y € Q, & # §,m = 3,

and formally define the volume integral operator applied to a function f by
vi= [ Gty for f € D), (45)
Lemma 4.2.1. Consider m = 2 and the operator V;, defined by
V; :L*([=p, p)) —>L2([ P p)); (4.6)

f|—>/ v exp(idjlz1 — yi]) f(y1) dyr, jeN.
Then Vj is a bounded operator from LQ([—p, pl) into L?([—p, p]), and

1VifllLz(—p,o) < ||fHL2 [—p.0)> (4.7)

with a constant C > 0.

Proof. We first estimate

p
IVif 122 (=pppy < (/

Recall that J(w,c, H) € N denotes the number of positive eigenvalues )\? and hence )\5 < 0 for
j > J(w,c, H) by (2.13). Thus, iA\; = —|);| for j > J. As V; is an integral operator with bounded
kernel it is automatically bounded on L?([—p, p]) so that it is sufficient to consider j > J to prove
(4.7). Abbreviating |\;| = p; and splitting the integral, implies

o
/ KGXP(Z)\j‘xl—ledyl

2
dxl) ||fH%2([—pypl)‘

P
[ e il b dn

1 |
= —exp(—p;(z1 — d —|—/ —exp(—p;(y1 — z1))dys.
/_p o p(—pj(z1 — y1))dy e p(—;(y1 — 21))dyr

By integration we obtain

x1
1 1 1
s—exp(—pj(r1 —y1))dyr = | 55 exp(—pi(r1 —y1))| = 55 — 53 exp(—p;(z1 +p)),
/ 24 J 2u§ J ., 2/1? 2#? J
(4.8)
and
P
| 1 1
—exp(—pi(y1 —z1))dy1 = | =5 exp(—p;(y1 — = = — — —exp(—ui(p—z1)).
= (= (y1 — 21))dys [2/@ (=5 1))] . 22 2 (—p;( 1))

(4.9)
In consequence, we see by taking exp(—pu;p) as a common factor that

Pl 1 1
[ iz eeuln —wiin = o5 = 2 epum) +eo-pm)]. (@10)
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In particular, since x1 € [—p, p|] we estimate

/p L oxp(—pyler — )y < = — = L (4.11)
——exp(—piler —ypi)dy < — — 55 = 5. :
—p 21 ! W2k 203

This is independent of 1 and we see now that

[\ o explimles = wi : (4.2
——exp(ipg|rr —y1|)dy1| dry < —. 4.12
—p 1S =p 205 2415
Now, Lemma 2.2.4 implies that ¢j < u; < Cj, such that C' > ¢ > 0 and we deduce
PP , 2 C
/ / s—exp(ipjler — yi|)dy | dxy < —,
—p 1) —p 2145 J
where C' > 0 denotes a constant. This completes the proof. O

Lemma 4.2.2. Consider m = 2 and the operator V; defined in Lemma 4.2.1. Then V; is a
bounded operator from L?([p, p]) into H([—p, p]), and

C
< =

Vi fll (= p,p)) < 7 I £l 2= p.p))

with a constant C > 0.

Proof. Similar to the proof of Lemma 4.2.1, we look at the infinite number of negative eigenvalues
A% such that A; = —/|A;[2 = —|\;[. Define

Vv L*([=p, p) = L*([=p, p)),

0 Py
= — —exp(iA;|lry — dy1, j € N.
f 8x1/p2/\j p(iNjler — 1)) f(y1)dys J

For f € C5°([—p, p]) we can interchange integral and derivation. In particular, for j > J we derive

2

) fy1) di

VI (=) =

L2([—p.p])

H/P 0 i p(nl

x — ——exp (—|\j||lz1 —

1 ,p0x12i|)\j| p F1T1 — Y1
P 2

1z — Y1
= ||lz1 '—>/ 3wl exp (—[Ajller —y1]) f(y1) dyn
- ST L2([=p.p])
For simplicity, we substitute once more |A;| = p;. As (z1 —y1)/|z1 — 1] < 1 and due to the

Cauchy-Schwarz inequality we estimate

,

T —y1 1
—— = exp (—ply — yil) flyn)

|x1 —y1] 2
P , 1/2 o , 1/2
< ( [ oo (tuler = ) dyl) ( e dyl) .
—p —p

To use the idea of the proof of Lemma 4.2.1 we first note that

dy

P P
[ lexp (s =D s <205 [ 5 exp (<2mlar =) din

—p —p “Hj
Then, equations (4.8-4.11) and Lemma 2.2.4 yield

roq 1 1 C
2,uj/ %GXP(—QNH% — 1) dyr < 2#]’% =T =T
J

—p 2H5 i~ J
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where C' > 0 denotes a constant. Now, the integral with respect to the variable 1 over [—p, p]
adds only a factor of a constant multiplied with p. In consequence,

2

P ore C
[N el -l dn| < 5,
—plJ=p J
Then,
ik A ’ 2 ¢ 2
HijHLQ([*P’P]) = 1, aim?iuj exp (_:uj‘xl - yl|)dy1 dxy ||fHL2([,p’p]) < ]7 HfHLz([,p’p]) .

To this end, due to Lemma 4.2.1 we obtain

C 2
||ij||i[1([—p,p]) - ||VJfH%2([—p,p]) + ||V_;fH%2([—p,p]) < ﬁ HfHLQ([fp,p]) :

This completes the proof.

O
Next, we treat the three-dimensional case.
Lemma 4.2.3. Consider m = 3 and the operator V;, defined by
Vi LA (A,) — L*(A,),
for [ HOOGE - DG e
P
Then V; is a bounded operator from L?(A,) into L*(A,), and
C
Vifllza,) < j”fHL?(]\p)’ (4.13)

with a constant C > 0.

Proof. As Vj is an integral operator with a weakly singular kernel, each V; is bounded on L? (Ap)
such that it suffices to prove (4.13) for all j > J(w, ¢, H) such that )\? <0.

Using the relation (A.4) between the Hankel function and the modified Bessel function for
imaginary arguments in the Appendix, we obtain for j > J that

2
1),- ~ ~ ~ ~ ~ ~
HGV (M]3 —3) = —Ko(AllE =), @ #§ <R

We abbreviate |A;| = p;. We further use the definition of the operator V;, which implies
/AP

[ 1Kotuslz ~ 50 4@)] ds

P

2 Koyl — gnf@)’ aj

. di  forj>J,jeN.
1T

. 2 - —
Vi s, = [

P

Then,
2

dzx for j > J,j e N.

2
2
i, < 2

P

Next, for p sufficient large we split the kernel of V; into

o Ko(ulE—g]) for 0 < plE—g <1,
Hl(ﬂjaxay)_{ 0 for pjlz —g| > 1,

and
0 for 0 < pj|z —g| <1,
Ko(pslz —gl)  for p;|z —g| > 1.

i) = {
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It is well-known that K, has a logarithmic singularity at the origin, and that the bound
Ko(l2]) < J2]72 |2 <1,

holds (the power could of course be chosen as —« for arbitrary a > 0 at expense of an additional
constant). Thus,

~ ~ —1/2~ ~—
|1 (1 7, 9)| < ;2|7 — g1~V
As Cj > pj > coj due to Lemma 2.2.4,
~ ~ —1/2 . ~ ~— ~ ~
|1 (g, 3, 9)| < g V2T VRE — g1 for |7 — gl < 1.

Consequently, the Cauchy-Schwarz inequality implies that

< =

2
C -

/ _ |f§y1|1/2 i
J |JB(&,1/py) 1z — 7l

c o o
<= (/A If(y)IZdy> (/B(i,Cj) 1z — g dy> , (4.14)

where B(Z,C) denotes a ball in & with radius C'j. Due to Lemma A.2.2 from the Appendix we

/ k1 (g 2, 9) £ (3)|

Ap

see that ) )
s
——=dy < —, 4.15
»/B(i,Cj) 1z — gl Cj (4.15)
such that we get that
S U O
] s, F@ ] dE < S, (4.16)

Now, we estimate the absolute value of ko. By the fact that j > J and |Z — g| > 0, it holds

(& — 9" exp(= (312 - §)/2) < max {se"} <C, (4.17)

where C' > 0. Due to [Barl0, Eq. 3.5] for x =1 and y > 0, we have for v > 0, 2 € C and z > 1
that
K,(1)exp(l — 2)y/z > K, (z) > 0. (4.18)

Thus, we obtain an estimate for ko,
|2 (s &, §)| < Ops|E = 1)"? exp(—pyl = §1)-
Then, once more using that
¢jlz — gl < pilT — gl < CjlE — g

where C' > ¢ > 0, we compute that the absolute value of k5 is bounded by

w2 (11, %, 9)] < C(j1& = )2 exp(—jlz — 31) < Cexp(=(jlz — 31)/2)- (4.19)
Then,

o 2

<c exo (2= 163

on (57 ).

2
‘/A k2 (1s, 2, 9) f (9)] dy

s0</A

/j\p\AC/J‘
o (222
o (L2 17 dy> ( Lo

P
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Next, due to Lemma A.2.3 in the Appendix we obtain

/ exp(_jk”_‘yﬂdgsf”.[%—l.h?
AN\A., 2 Jjexp(jp) Jl o

if j > 1/(2p) is large enough. Thus,

‘/Ap\}\C/j

where C' > 0 and if j > 1/(2p) is large enough. In consequence,

< - (/ o (51 f(§)|2d§> .

Thus, Fubini’s theorem and Lemma A.2.5 in the Appendix such that for j > 1/2p large enough

[ | (_m - gl)
i 2 ~ jexp(jp)
we obtain

- C T—
1wt zirsnasf o< [ o (51| [P azar< G
A, JR, J

In consequence, the latter estimate and estimate (4.16), imply

exp (—jx — 8l ) ’ aj <<,

2 J’

' [ ket 5.9 3)| dg
A/’

P

dz < 20— —-| £ —

il

47 [ 1] C

P

Vidllpea, < any iy

which completes the proof. U

Lemma 4.2.4. For m = 3, the operator V; is bounded from L?*(A,) into H'(A,), and

C
||ij||H1 Ay S *.HfHL? A
(Ap) j (

with a constant C' > 0.

Proof. Like in the proof of Lemma 4.2.3, we first split the Hankel function H(gl) into a part with
imaginary and real argument. In consequence, due to equation (A.4) in the Appendix, we deduce
for j > J that

: L 2 L
Y (i\]12 = 1) = — Ko (A1 — 1)

It is well-known that Ko has a logarithmic singularity at the origin. In consequence, for f €
C°(A,) we interchange integral and derivative. Again, for simplicity we denote p; = |A;]. All
together, we have

H oy for k=1,2.

8£Uk

% / 7K0 (1512 — 9 £ (5)dg

L2 L2(A,)

Then, due to equation (A.7) from the Appendix, we obtain

& s / py [ 5 |~ 501 5) d

)

L2(Ap)

0
N /A p G o (usl@ = 5)/ (5)dg

L2(Ap)
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where k = 1,2. Furthermore, by the fact that it holds (xy — yx)/|Z — §| < 1, we compute

Tk — Y e e g e e e e
Jo g = < € [ Kl 3059 45

Now, we abbreviate the derivative of kernel of V; and we split it into

. K1 (| — §)) for 0< |3 — g < 1,
m(uﬁx’y):{uy 1(ky1 = 91) pil% =gl <

0 for /Lj|f - g| > 1’
and
o 0 for 0 < |z — gl <1,
Y iy Ly = T U T y
2(#,%:9) { B (gl —gl) - for py|z —g[ > 1.

It is well-known by [AS64, 9.6.9] that it holds
Ki()z]) < 2|71, for |z| < 1.

We point out that due to [AS64, 9.6.9], we know that the power could be chosen as —« for arbitrary
a > 0 such that

1 Z\ T«
K. (z) < =T (7) .
2(2) < 5T
In consequence, we obtain that

k1 (g, ,9) < Cpglpid — gt < Clz — gl 7,

where C' > 0 is a constant. Now, like in the proof of Lemma 4.2.3 in equation (4.14), Cauchy-
Schwarz inequality and Lemma 2.2.4 imply that

2
f@) . 1 -
C d —d
= (/Ap |7 — 7| y> </B(5c,0j) 1z — 9 y) 7

where B(Z,C) denotes a ball in & with radius C'j. Due to Lemma A.2.2 from the Appendix we

see that
1 - 2
= po dy < -
B(&,C7) |7 — g J

o @GP
§j</]\,, fzﬂdy)'

’/A k1 (s, 2, 9) f (9)] dy

such that we get that

‘/ k1 (g, T, 9) f(9)| dy
AP

Moreover, Fubini’s theorem implies
ey a2 C
] s, 0 F@ ] dE < S0, (4.20)

Next, we look at the absolute value of k5. Using [Barl0, Eq. 3.5] with z =1 and y > 0, we
have for « > 0, z € C, and z > 1 that

Ko(1)exp(l —2)vz > Ku(z) > 0,
and due to estimate (4.17) in the proof of Lemma 4.2.3, we know that

(312 = 91"/ exp(= (12 = §1)/2) < max {se™"} <C.
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Thus,

2
‘ JlZ -y N
<C (/ _ |jexp <2|> f(y)‘ dy)
AP\AC/j
Furthermore, once more Cauchy-Schwarz inequality states
|z — gl i
. JT—Y ~ -
</ ~|Jexp (—2> f(y)’ dy)
Ap\Acy;
<c / jexp(”gc_y')'d@ /
AN\A./; 2 Ap\Aey;

Now, using Lemma A.2.4 from the Appendix,

fo

to obtain for fixed j that

’/ K2 ,U*]ay, ( )dy

jexp (”Q”Q‘y')\ f@)ﬁdy) |
Jexp (—JWQ_M) ‘ dy < 4mexp(—jp) [2/) - ;} ,

/[\/J\AC/J 2 ‘7

1F = . , Ry o)

exp —J| il dy / ~ |jexp —]l ] f@))dy | di
2 Ap\Aey; 2

C iy -
S—./ (/ ]exp< L |)If( J)| dy) d
J JA,
By Fubini’s theorem we find that

/ s <5 [ wor (/Apjexp (-757) di) .

Then, using for fixed j large enough Lemma A.2.6 from the Appendix,

, |z — 9] 1 . C
A -
A
to compute that

d < 4mexp(—jp) [2p .
2
/A p / ka1, 7, §) £ (5)d3

P
Now, the last estimate and estimate (4.20) yields

2
c C
/ 6o < (4 S Iags,y < SU12

Finally, with Lemma 4.2.3 we obtain

c/j

. 12— . C
Jexp(—JI y)’dy

Thus, we obtain

/j\p </]\p\]\cm'

/ (115, %, 5) £(7) i
A

4

P

P

. _C - ~
i< < / F@)Pdg == ||f|\L2(A

P

ﬁ 5152, 5) £ (5)di
A

P P

aV;
Oz,

oy

Vs Ws,y = V35 ey + |

L2(A, )

This ends the proof. O
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From now, for simplicity, we set Ap = (—p, p) for m = 2, too.

Remark 4.2.5. (a) The last bounds for the integral operator V; can also be shown for m = 2,3
independently via techniques from theory of partial differential equations.

(b) We could in this section as well work with any open set that contains the support of f
instead of the rectangular domains /~\p. In the subsequent sections, however, rectangular domains
become important since our analysis relies on Fourier coefficients.

Lemma 4.2.6. The operator V; previously defined (for m =2 and m = 3) satisfies

C .
||VjHL2(Ap)%L2(AP) < F forall j € N,

where C' > 0 is a constant independent from j.

Proof. We only treat the case m = 3 since the result has been already proved for m = 2. As the
kernel of V; is continuous for m = 2 and weakly singular (with logarithmic singularity) for m = 3,
we have that V; is bounded on L?(A,). In consequence, v = V; f belongs to L?(A,) if f € L*(A,).
For arbitrary large p > 0, we extend f by zero to a function in L?(R™~1).

Since V; is the convolution of the radiating or decaying fundamental solution with f, it fol-
lows from distribution theory, see [Rud91, Theorem 6.30 & Chapter 8] that v = V;f € L?(A,)
solves (Az + Aj)v = —f in the distributional sense of R™~" (see also [CK13, SV02] for m = 3).
Moreover, [Rud91, Theorem 8.12] shows that v belongs to H2(A,) for arbitrary p > 0. For j > J
the eigenvalue )\? is negative by definition of J € N, such that the kernel of V; is exponentially
decaying in & The volume potential v hence decays exponentially, too. In consequence, we can
integrate by parts to find that

/ fm:z:-/ (Aiv—i—)\?v)ﬁda}:/ (V502 — A2|of?) di > \Aj|2/ o2 dz.
]R""71 Rm—l A

m—1
R P

Since f is supported in /~\p, the Cauchy-Schwarz inequality hence implies that

1
”UHL?(AP) < |)‘j|2 HfHL?([\,,)'

Due to Lemma 2.2.4 we know |A;|> > ¢j? for all j > J. Then, the operator norms of V; for all
j > J are bounded, too. Moreover, the operator norms of V; for the finite number j < J can be
simply estimated uniformly by their maximum. This ends the proof. O

Next, we define the integral operator

H
VHE) =Y 6(wm) / 63 )V f o)y for f € L2(A,). (4.21)

JEN

Moreover, for N € N the corresponding truncated series is denoted by
N H
VN f)) =D 65(m) / 05 Wm)Vif (o ym) dym  for f € L*(A,). (4.22)
j=1 v

Lemma 4.2.7. It holds that V is bounded on L*(A,) and bounded from L?(A,) into H'(A,).

Proof. Since the functions {¢;};jen are orthonormal on L?(0, H), Parseval’s equality implies that

the mapping
H
f = (/ ¢J(ym)f(vym> dym) 3
0

JjEN
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is an isometry from L2(A,) = L*([0, H]; L*(A,)) into £2(N; L*(A,)). More precisely, we have

H
1By = [ [ 16 an)? dada,

H
/ (bj(ym)f(i'aym) dym

2
dz

j=
Z
j=1 L2(Ay)

We next reformulate the L?-norm of VIV) f for f € L?(), exploiting again orthogonality of
the eigenfunctions ¢;,

T /¢] Ym) fvym)dym

2

VO 1y =30 [ | o m) ) @ | 0
o /A, |Jo

2
dz

:Z/A /O ¢j(ym);¢e(ym)/o Ge(om) (Vef -+ 2m)) (2) dzim dym

H 2
- Z/f\ A (vzs](ym)(vjf(aym))(i) dym

dz
Now, we interchange the operator V; with the inner product of L?(0, H) due to continuity of the
operator g — fOH ¢;9 dx,, from LQ(A,,) into L'(A,). Then,

(/ 85 (um) 1 ym>dym)< |

L2(A))

)

||V(N)f\|%2(/\p)

Jj= 1

where In particular, Vf belongs to L?(A,) if the limit as N — oo of the latter right-hand side
exists. We validate that this is indeed the case by estimating

N 2
VD Al =3 0 / 040 i) i ) 2)
Jj= 1 L2(;\p)
N2 2
< Z 7 T / Qb] Ym f(l‘ ym)dym
=17 L2(&,)
<C / Z / ®j(ym) [ (@ ym)dym dz

P] 1
= C/ ”fN HL2(OH dz for fN Z/ (b] ym 1‘ ym) dym (bj(xm)

where we exploited the L?-bounds for the individual operators V; from Lemma 4.2.6. Since fy is
a Cauchy sequence in L?*(A,), the same holds for V) such that the series defining V converges
in the operator norm of L?(A,) to a bounded operator.

The same technique actually shows that the series defining V(™) f converges in H' (A,) to Vf,
such that V is even bounded from L?*(A,) into H*(A,). (Recall that we already know from the
proof of Lemma 4.2.6 that each series term even belongs to H?(A,).) To this end, we note that

V(0™ f) (@ qug Tm / i (ym)VaVif (- tm) dym  for f € L2(A,).

Jj=1
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Hence,

N H 2
VeV fl1Z24,) = Z Vchj(/O ¢j(ym)f('7ym)dym)(5?)

L2(Ay)

T / &5 (Ym) f(Z, Ym) dym

ig
<:C7}[ ji:

P]l

L2(A,)

/ ¢J Ym) F (2, Ym) dYm

dw—O/ 1 (s )20y 4,

such that the same argument used to show L? convergence of VM) f to Vf shows that VzV V) f
tends to VzVf in L?*(A,). Further,

85 VN ) (x Z¢ T / G; (Ym) Vi f(rym) dym  for f € L2(A,), (4.23)

and we use the bound ||¢%[|12(0,ir) < Cj from Lemma 2.2.4 to estimate

\ <Z/ e Idem// 105G 2 |V ) ()P i i

j=1

<c§jj / 65 (m)|? dxm// (Vi Com)) (@) dj g

0

(N)
axnzv f

L2(Ap)

SCE;PA (Vi fCym)) @17 5, dym (4.24)

<czg/ st ym>||L2A)dymch 1B

where C' > 0 is a constant. Since the series ZjeN 1/72 converges, the series defining the partial
derivative of

o2V =3 G tem) [ sV ) d
8:cm = i\ m 0 i \Ym ) V5 s Ym ) AYm,s

converges in L?(A,) as well, since it holds

We point out that for m = 3 the bound from Lemma 4.2.3 would not be sufficient to obtain
convergences in (4.24). Finally, the decomposition

2

0

0xm

V1)

N
<C E = ||f|\%2(Ap)-
=17

L2(Ap)

ov

o0 = WolBrca + 193000 + || < G,

L2(Ap)
implies boundedness of f — v = Vf from L?*(A,) into H'(A,).
Corollary 4.2.8. For L*(A,), which is defined by

L*(A,) == {f : A, = C, f measurable ,/ |f(2)Pdp < oo},

P
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we obtain with Fourier coefficients an alternative representation

L2(A,) = {F : Ay > C (@) = 3 G, )5 (wm), Z/ (j,%)Pdz < oo},

jEN JjEN

where
2/ (G #)[2dz = [|f[22a,) < oo
jeN

Then for the volume integral operator V applied to the function f we have

V=3 Vi (wf(ym, 7)) 65 (@m)s  and

Jm€EN
g f ms Y jm \Tm )
where k = 1,2 (two-dimensional case) or k = 1,2,3 (three-dimensional case). It moreover holds

”Vf”%Q(AP) = Z ”j = ij(ja g)”iz(]\p)

jEN

Note that the last corollary gives us a clear separation of L?(A,) in horizontal component acting
on the variables T and vertical component acting on x,,. In particular, we have the representation

LQ(AP) = LQ([Ov H]; LQ(AP))-

We finally show that the volume potential V is also bounded from L?*(A,) into H?(A,) and
additionally defines solutions to the Helmholtz equation.

Theorem 4.2.9. For f € L?(A,), the potentialv = V f belongs to H*(A,) and solves the Helmholtz

equation
2

w
Av+ — p=— in L2(A).

v+ c(xm)2v f in L°(A,)

Its extension to Q by (4.21) belongs to H?

= (Q) and satisfies boundary conditions (2.5), (2.6) and
radiation conditions (3.3).

Proof. We already showed in Lemma 4.2.7 f +— Vf is bounded from L?*(A,) into H'(A,), such
that v = Vf belongs to H'(A,). From the proof of Lemma 4.2.6 we moreover know that each
series term, and hence also truncated series vy = VV) f defined in (4.22), even belongs to H?(A,).
Due to the construction of the eigenfunction ¢; solving ¢7 + w?/e(zm)? ¢j = /\chﬁj, the truncated
series vy moreover solves

w?

N
Ao (e) + (@)= 3 ) [ 050m) 22 037 Coo)) @)

.
=

" (¢;’<xm> " ‘*;)) / ) V3 ) @) dym}

Z[@ T / 05 (m) [ = A2 (V3 ) (B) — 1 ym)]

<.
—

H
4 280(0m) [ 00m) V31 C)) @ dym] (4.25)

N
==Y (f(@),05)¢5(em) = —fn(x)  in L3(A,),

j=1
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for arbitrary p > 0. Indeed, interchanging the Laplacian A; with the integral in y,, from 0 to
H in the first step is valid, since Az does not act on y,,, since g — fOH ¢;9 dym, is bounded
from L2(A,) into L?(A,) by the Cauchy-Schwarz inequality and since & — (V; f (-, ym)) (%) is twice
weakly differentiable. For completeness, by Lemma A.2.7 from the Appendix, we can alternatively
compute for m = 2 that

w?

Avnt + 2z )szp de = — fn(@)y(z) de for all ¥ € Cg°(A,),
Az Aszp

where

N
Z (x1,+), 05) 20,1 D5 (22)-

It is moreover well-known from [SVO2] that this identity also holds for m = 3.
We conclude that vy € H'(A,) is a weak solution of the Helmholtz equation with right-hand
side fy € LQ(AP) and use interior regularity results, see [McL00, Theorem 4.16], to obtain that

lonllz2a,) < Clllonlla (s, + 182200 ] < CllfNI2(a

Hence, vy is a Cauchy sequence in H?(A,) and consequently converges in the norm of H%(A,) to
v € H*(A,). Taking the limit as N — oo of the left- and right-hand side in estimate (4.25) thus
shows that v indeed solves the Helmholtz equation Av + w?/c?(z,,) v = —f in L?(A,).

Extending v = Vf by (4.21) yields a function in HZ _(£2), since the series (4.21) converges in
H?(A,-) for arbitrary p* > p. The trace theorem in H'(A,+) implies that the restriction of v to
Lo MOA,- of A,- vanishes, since the eigenfunctions ¢; vanish at x,, = 0. The same argument
shows that dv/dz,, € H'(A,+) vanishes on T'yy NA,-, since ¢;(H) = 0 (recall that ¢ € CO1/2 ig
Holder continuous). Consequently, v satisfies the waveguide boundary conditions (2.5) and (2.6).

It remains to show that the extended potential v = Vf € HZ () satisfies the radiation
conditions (3.3). From the proof of Lemma 4.2.7 we know that we can write

H
= quj(xm)vj (/ (bj(ym)f('aym) dym) () for fe LQ(AP)'
JEN 0

Our goal now is to verify that the potential V; satisfies the radiation conditions

lim VZ (8V — AV ) uniformly in X
|00 olz| |z
We recall for m = 2 that the potential V; is defined by
i1 [F . ~
Vif(@) =55 [ expldlen—uil)fy)dy,  for f e L2(A,),
i J—p

and its derivative is denoted by
iV‘f(ac)—i/piex (iNjlzy — 1) f(y1) d for f € L*(A,)
3x1 J 1) = 2)\] -, 8361 p g1 Y1 Y1) ayx p)e
For 1 > p we see

Vif(w1) =Y exp(idjz1) o™ / exp(—iAjy1) f(y1) dyr¢;(w2).

jEN
We plug the latter expression in the definition of the radiation conditions and we see that
0
lim lexp(idjz1)] — @A exp(i)\jxl)] = lim [i)jexp(idjz1) — i exp(id;z1)] = 0.
Tr1—>00 a{[]l 1 —>00

Similar, we obtain the case where 1 < —p and 7 — —oo0. For m = 3 it is well-known that V f
solves the radiation conditions (see e.g. [CK13]). This completes the proof. O
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Now, we turn back to the solution of the scattering problem from Chapter 3.1. Recall, that an
incident field w' satisfy the unperturbed Helmholtz equation

i w? i .
and boundary conditions

i

u'=0onTy:={r cR™:2,, =0} and =0onTy:={xeR™:a, =H}, (4.27)

T,

and radiation conditions (3.3). We know that the incident field u’ is disturbed by an inhomoge-
neous medium D C  characterized by the refractive index n? : R™ — C. We further know that
a scatterer D creates a scattered field u® which solves

2 2

~ n?(z)ut(z) = ———qu' for x € Q, (4.28)

A (xm)

such that the total field u satisfies

Au®(z) +

u(z) = u'(z) + u®(x) for z € Q.

Therefore, the total field u solves the perturbed Helmholtz equation

w2

62(xm)

Due to Chapter 3.4 we know that the solution u € H?(Q2) can be found via variational formula-
tion. We show now that one can equivalently determine u via an integral equation of Lippmann-
Schwinger type.

If u’ solves the unperturbed Helmholtz equation (4.26), corresponding boundary conditions
(4.27) and radiation condition (3.3), we know that u® solves

Au(z) + n?(z)u(z) =0 for z € Q. (4.29)

w? w? ,
Au’ s i s in 0
u® + 02($m)u CZ(xm)q(u +u’) in Q,

together with radiation condition (3.3) and boundary conditions

us
OTm

Thus, Theorem 4.2.9 motivates to seek u® as solution to the integral equation

w=0onTy:={zeR":2,=0} and

=0onTy:={xeR™":a, =H}

ut =V (J;mq(ui + US)) in Q. (4.30)

As the contrast ¢ is supported in A,, we can restrict this integral equation to A, and seeking
v € L?(A,) such that

V-V ((;ﬂin)qu) =V (CQEU;)qu> in L2(A,). (4.31)

Now, we replace w?/c?(z,,) qu’ on the right-hand side in the last equation, by a general source
term f € L?(A,), it yields the more general problem

w2
v—y <c2(xm)q”> =-V(f) in L*(A,). (4.32)

Equation (4.32) is the so called Lippmann-Schwinger equation. By Lemma 4.2.9, any solu-
tion to this integral equation solves the Helmholtz equation. We point out that we can replace
the domain of integration in the latter equation by any domain such that the support of g is
contained, e.g. supp(q) C A,. The following theorem gives us now that the Helmholtz equation
with corresponding boundary condition and radiation conditions can equivalently described by
the Lippmann-Schwinger integral equation and that the converse holds, too.
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Theorem 4.2.10. We consider ¢ € L*(§) with supp(q) C A, satisfies Im(q) > 0 and f €
L2(A,).
(a) Let v € HY (Q) be a weak solution of our scattering problem then v|y, belongs to L*(A,)
and solves the Lippmann-Schwinger integral equation (4.32), with f = w?/c*(xy,)qu’ in L*(A,).
(b) Let v € L*(A,) be a solution of the Lippmann-Schwinger integral equation (4.52), then v
can be extended by

W2
_ _ 4.
v="Yy (cQ(xm)qv f) (4.33)
to a solution v € HZ (Q) of the source problem
w2
/ [Vu-Vv— 2n2uv:| d:c:/ fudz, (4.34)
Q (@m) A,

for all v € H,(Q) with compact support and radiation conditions (3.3).

(c) If the source problem (4.34) and radiation conditions (3.3) is uniquely solvable for all
fe L;(Ap), then the Lippmann-Schwinger equation (4.52) is uniquely solvable in L*(A,) for all
fe12(hy).

Proof. a) The proof follows directly from (4.30-4.32) as the volume potential V solves the Helmholtz
equation and satisfies radiation conditions.

b) We first suppose that v € L?(D) solves the Lippmann-Schwinger integral equation (4.32).
We can now extend v to a radiating solution of the Helmholtz equation in €. This holds since
supp(q) C A, and due to Lemma 4.2.9, which implies that (4.33),

w2
”_V<c2<xm>q”f>’

belongs to HZ .(A,), satisfies radiation conditions, solves the boundary conditions and the Helmholtz
equation. Consequently, we obtain
2 2
w w
Av+ ——v=f— ——qu.
e = T "

In particular,
2

w
Av + () 1+quv=Ff
This finishes the proof of this part.

(c) We know by Theorem 4.2.7 that the integral operator f + v = Vf is bounded from L*(A,,)
into H'(A,) and we see that V is a compact operator, such that uniqueness of solution to (4.32)
implies existence and bounded invertibility. We point out that multiplication by ¢ € L*°(Q) is a
bounded operation on L?(A,) and the integral operator f — v = V(qw?/c*f) is compact.

If the homogeneous Lippmann-Schwinger equation has only the trivial solution, then the ex-
tension of this trivial solution by (4.33) is a radiating weak solution in H2 () to

2
w

Av+ ——v=0

v+ () v )
and v solves the boundary conditions (2.5) and (2.6). Uniqueness of solution to the source problem
(4.34) and radiation conditions (3.3) hence implies that this extension must vanish, as well as v.

This proves the claim of part (c).

O

The subsequent assumption on unique solvability of the underlying source problem (4.34), (3.3)
ensures from now on that the integral equation (4.32) is uniquely solvable.
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Assumption 4.2.11. We assume that source problem (4.34) subject to the radiation conditions
(3.3) is uniquely solvable for all f € L*(M,).

Roughly speaking, this assumption excludes the discrete set (if it exists) of exceptional fre-
quencies w > 0 (see Assumption 3.1.1).

Definition 4.2.12. For f € L*(A,), the Lippman-Schwinger equation on A,, is given by

(@t (a)

We point out that for scattering theory in the following we set v = u® (the scattered field) and
f = u'® (the incident field).

(4.35)

Ap

Theorem 4.2.13. Let f € L?(D) extended by zero to A,. If u € L?(D) solves

W2

vV (CQ(SCm)qu)
then v = V(qu) + f solves (4.35). Moreover, we know that u € L*(D) solves (4.36) if we restrict
a solution v € L?(A\,) of (4.35) to D.

=/ (4.36)

D

The proof follows directly from the proof of Theorem 4.2.10.

4.3 Periodized Green’s Function in Dimension Two

We shall discretize the Lippmann-Schwinger equation (4.32) using a collocation method based on
eigenfunctions and Fourier expansions. We first periodize the integral operator ) in the horizontal
variables and compute its Fourier coefficients with respect to a complete orthonormal system
consisting of trigonometric functions in & and the eigenfunctions ¢; in 2. The periodized integral
operator is obtained by periodizing the Green’s function (4.1),

Glo.y) = 5 D 7 0i@2)6s ) exp(idlar —yl), 21 # i,
J

on the cubic domain A,,.
We first define for the eigenvalues )\?, J € N the function E,(z1, \;) for 21 € A, by

E,(z1,A;) = exp(iAj|z1]) for —p<ax; <p, forall j €N (4.37)

Recall that a finite number of eigenvalues /\? are positive, an infinite number are negative and that
any of these eigenvalues vanish on Assumption 3.1.1. For the negative eigenvalues, the value \; is
imaginary according to (2.13) and then z1 — exp(i)j|z1]) decreases exponentially as z1 — foo.
Recall that the number of the positive eigenvalues J(w, ¢, H) depends on the ocean configuration
defined in Theorem 2.2.6. Furthermore, this function z1 — E,(x1, ;) can be 2p-periodically
extended from A, to R by E,(x1 + 2pn1, \;) = E, (21, \;), for n; € Z', see Figure 4.1. By abuse
of notation the periodic extension is still denoted as E,. We moreover exploit for j € N the
2p-periodic construction of E, to obtain

2 for j > J.

{Qp for j < J,
21
(4.38)

J B —mA) e = [ B AR = [ 1B () den <
Ap—1

P P

Now, equation (4.38) and the Green’s function (4.1) allows us to define the periodized Green’s
function.
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—3p —2p —p 0 P 2p 3p —3p —2p —p 0 P 2p 3p

Figure 4.1: Real part of E, (left), real part of exponential function E (right)

Definition 4.3.1. For z,y € § the function
|
gg)\* i (12)05(y2) Ep(x1 — Y1, Aj) Jor xy #y1, 2,y € Q (4.39)

is called pertodized Green’s function for dimension two.

We point out that Parseval’s equality, the bound for the eigenvalues )\? from Lemma 2.2.4 and
(4.38) yield

1
HGP||2L2(AP><A,,)§Z/ / W'Eﬂ — 1, A dyldl’1<2pz
SR A, 2

jEN

IA 5 < oo (4.40)

In consequence, we see that every series term

Gp(,9) = 2 05(2)65 () Eylrs — 1, ),

J

belongs to L*(A, x A,). We further note that G,(z,y) = G(z,y) for z1,y1 € (—p, p]. We next
compute the Fourier coefficients of the periodized Green’s function.

We point out that in the following the index j denotes the index of the series term of the
Green’s function and the index ns is related to the Fourier coefficients.

Lemma 4.3.2. Consider m =2, j € N and ny € Z. For fired x € A, the Fourier coefficient of
one series term G, j(x,y) satisfies

Goi(m0s2,) = 85y \/A (11, 70—y (21) 5 (2),

where the Fourier coefficients of E,(\;,-) are given by
(A2 —72p2n3)~}((—1)™ exp(id;p) — 1)

if Aj Enqmpt £ 0,
VP g )k [ e (i 7o tn)p) 1)

Zf/\ +7’Llﬂ'p71 =0,
By {m (1 — exp(i(A; + 7p~'n1)p)) +p}

Zf /\jp =NnqT.

(4.41)
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Proof. We first recall for m = 2 the orthonormal basis in L?(A,) defined in Equation 3.13,

1 T ~
P, = Wexp <Zp ny a:> Dy (T2) for n = (n1,n2),n1 € Z,ny € N,z € A,

where the orthogonality of the basis {¢;};en holds,

H 1 ifng =3,
[ estmonstmran={ g
0

else,

It further holds that the eigenfunction basis {¢;};en is real-valued.
We first compute the Fourier coefficient G’p,j (n,z,-) of y — C;’p,j(m, y) for fixed y; by

GP,j(nvxv ) = /A 2/.\ ¢ ($2)¢J (y2) ( 1 — Y1, /\j)‘pn(y) dy

:/A 2x, —~—0j(x2)0;(y2) Ep(x 1*y1,/\j)¢n2(y2)mdy_

Using the fact that {¢;},en is an orthonormal basis, we have

; 4
ij(n?xv ) ]n2 ¢]($2) 2)\ / E ( yla/\ )U’m(yl)dyl for JE N,

where §; , is the Kronecker’s delta, defined by §;,, = 1 if j = no and 6, = 0 if j # na. We
moreover define the Fourier coefficient of E, by

b(n1, A / E, (-, \j)vn, (y1) dys forny € Z,5 € N.
We next compute an explicit representation of Ep(nl, Aj). Using the definition of the basis

function vy, acting on the horizontal axis, the definition of E, in (4.37) and its periodicity in its
second argument, we obtain

. 1 L . .n
E,(n1, ) = \/—27)/ exp(iA;|z1 — y1]) exp <—mp1y1> dy1
—p
5= [ ewinlen— (oo (<in 4o ) d
= — exp(iAj|z1 — (y1 +z1)|) exp | —imr—(y1 + = Y.
vl 3121 1+ , Wit o 1

Further, separation of the integral implies
. 1 P . . Ny . Ny
E,(n1,\;) z—/ exp(i\;|y1]) exp (—my1> dy1 exp (—277331>
P J 2 ), il P P
il (5 (o))
= exp|—i|Aj+7— ) y1 | din
2oL, T
P
+/ exp < ()\ — 7Tn) yl) dyl} exp (—iwnlxl) .
0 P p

We now see that we have to treat three cases. First, integrating the latter integrand, we see for
A\j £mp~ing # 0 that

0 P
/ exp <—i ()\j + 7rn1> yl) dy1 —|—/ exp ( <)\ - ’R’n) y1> dyq
—p P P
i i ny
=—|1— - —T— -1
Aj+mp~ing [ P < <A e p p>} Aj—mpTim [exp ( <)\ " > p) }

o i iexp(i(\; —mptna)p) dexp(i(\; + mp”tna)p)
T\ i W po o1 1
Aj+mp Aj—mp~ing Aj—mp~ing Aj+mping
20

—W [1— (=1)"" exp(i\;p)],
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and we have

i . (—1)™ exp(iX;p) — 1
EEP(nlﬂ)‘j) - A? — 7T2p_27’l% V—n,y (xl)

Second, if Aj + mp~'n; = 0 we obtain

~ 0 P ny
Ep(nl,)\j) = / ].dyl +/ exp <Z <>\J — 7T> y1> dyl
—p 0 P
7 . n1
=p— ——— |&X (AN —m— -1 y
== e (=) )

T A 7 ) . 1
2Aj p(nl, )‘J) 2)\] |:p )\J — ﬂ_p_lnl (exp(z(/\] ™ p )p) ):|

and we deduce

Last, if A\jp = 7n; we have

A~ 0 P
Ep(nl, )\j) = / exp <—’L ()\J + WT;)l> yl) dyl +/ ].dyl
—p 0

! 1 (A +
=—— — |1 —exp|? Y
)\J + 7Tp_1n1 p ] p p p7
and we obtain

T { 1 . ni
K Ve — | — " (1= . - )
T T S A G D)

To this end we can write

“ 7 ~ [
G,ji(n,z,-) = (5]47,“‘,\/\5/)/?Ep(/\j,nl)vn1 (1) ¢j(x2) for j € Nyny € Z.
j

This finishes the proof. O

We can now analyze the asymptotic behavior of the coefficients G, j(n, z, -), defined in Lemma
4.3.2. We first recall the definition the periodic Sobolev space (3.17),

H*(Ap) = {U =D ak)ers Y (L4 [kaf® + A, P)*lak)? < 00}7 s €R,

2 2
keZz keZz

with (squared) norm

[ullfreea,y = Y L+ [Ea]* + [, [*)*a(R) >
kez?

Lemma 4.3.3. Consider m = 2 and s < 1. Then, the periodized Green’s function in dimension
two,

Golny) = D2 Gpaley) = 5 30 - 0i(e)bs ) B E —5:2s)  for i # Gy €A,
. J

belongs to H°(A,) x H°(A,) and the series converges absolutely in H® as a function of x or y.
Further, it holds
1G5 (2, I (a,) < C8)5°72, forz e Ay,

where C(s) > 0 is independent of j € N.
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Proof. We first estimate

A -~ W 1 |l oco .
Gy, ,)| < ClEy(n1, \)) ”ﬁ” jeN,n; €2Z.
]

Based on the estimate of the vector v, in Corollary 3.2.1 and the estimate of the eigenvector ¢;
in Corollary 2.2.5, we compute

) ‘EAp(”lv/\j)’
|Gpj(n,2,-)| < Cr—re—
|A;]

The second and the third case in (4.41) hold only for a finite number n, € Z,j € N, since }; is
real valued only if j < J. Consequently, we look at |EA’p(nl7 A;j)| where \j & p~'mny # 0 . By the
definition of the coefficient of Ep in (4.41) we have

1
T e tmmal[A — p i

E : —1)™ iXip) —1
p<n1,m|:‘< )" exp(id;p) for § € N.my € Z

| N = 2

Now, for j sufficiently large, we see that \; is situated on the imaginary axis, while n; is on the
real axis. In consequence,

~ 2
1B, (m,2) | o
T SO\ ) SOOI for g €Rm, €2

Plugging all together, we see that for s < 1

D NGoi@ iy = Do QP+ NP IG, 2,
jeN ni€Z,j=n2€N
< Y At P+ N
ni1€Z,jEN
< Z (1+ |n1|2 +j2)sf2
n1€7Z,jEN

Now, due to the fact that |n1||j] < |ni|? + |j|* we know for a,b > 0 and 1+ a < b that
g |(AH@)/b1 5| AFa)/b <2 4 |2, forny € Z,j € N.
We further see for a,b > 0 and 1 4+ a < b that
[T < (L P+ 157" form €ZjEN.
In particular,for a,b > 0 and 1+ a < b it holds
Ing| 71757 > (1 + na)® + |5)7) 0 forny, € Z,5 € N.

Consequently, forb=2—sand a =b—1=1— s where s < 1 we have

Z (T4 > +45%)°72 < Z Ing |52 ZjS—Z < QZjS—Q < .

n1€Z,jEN ni1€L jEN jEN

We concluding using the symmetry of the periodized Green’s function G, (z,y). O
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4.4 Periodized Green’s Function in Dimension Three

We introduce in this section the periodized Green’s function in dimension three. To obtain the
periodized Green’s function in dimension three we use rather similar techniques as in dimension
two. We first define a function H,(-,\;) : A, = C for j € N by

. HV(\|E) i 0 < |3] < p, ,
Hp(x,Aj)z{ 0" (A121) ;lse |2 < p jeN. (4.42)

This function can be 2p-biperiodically extended on the horizontal axis from JN\p to R? by H,(Z +
2pm, ;) = H,(Z,\;), for z € Ap,n € 72, see Figure 4.2. We denote this extension again by H,.

(a) (b)

Figure 4.2: (a) Imaginary part of periodic Hankel function expansion H,. (b) Imaginary part of
Hankel function Hg.

Furthermore, from [SV02, Equation 2.17] and (4.42), we know that H,(Z —§, A;) has a logarithmic

singularity at Z = y. Note that the logarithmic singularity of the Hankel function H(gl) at the
origin implies that H,(-, A;) belongs to L?(A,) for all j € N. Using H, and the Green’s function
(4.4), we define the periodized Green’s function in dimension three by

Colr,y) = & 3 05(es)os ) Hy(F —3.%), wyeQand i, (4.43)
j=1

with series coefficients
7 . .
Gpj(@,y) = 76(w3)d;(ys) Ho(Z — 9, ;) for j €N, (4.44)

such that G,(z,y) = G(z,y) for x,y € Q, 0 < |Z — g| < p. Using the 2p-biperiodic construction
of H, and the exponential decay of Hankel functions with complex argument, we show that G,
belongs point-wise to L2(A,) as a function of either & or 7,

[ G -gaPa = [ @R = [ 18P < .

P Ap—7 Ap
We next determine Fourier coefficients of the series coefficients of the periodized Green’s func-
tion in dimension three.
Lemma 4.4.1. Consider m = 3,j € N and n € Z*. Then, for fized x € A,, the n-th Fourier
coefficient G, j(n,x,-) of y — G,(x,y) is denoted by

G (n,2,) = 60y Hy (R X T (2)6 (23). (4.45)
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where the Fourier coefficient ﬁp(’ﬁ, Nj) of Hy(-, \j) is given by

o2 |a| HY (N p) J1 (] ia]) —imp; HD (N p) Jo (|72 - -

iR O A OB o 20,3, el
T s 1 i ~ ~
H,(n,\j) = /\—jHl( )()‘jp)+p2T§ for =0, A\, p # 7|7,

TP (A lA) D (xl) + Jo(x R HSY (7[R])) - for Anup = 7.

(4.46)

Proof. We recall the definition of the basis ¢, in dimension three,
1 T L ~ 3
on(x) = 2—¢n3(x3)exp i—n-T), where n = (n,n3) € Z7,x € A,
p p

where for {¢,},en the orthogonality holds

H 1 ifng=j
/0 0 (Y3)Pns (y3) dys :{ 0 else.

We point out that the basis {¢;};en is real valued. We first compute the n-th Fourier coefficient
of one series term G, j(z,y) defined in (4.44).

Plugging the latter definition of ¢y, (x), the orthogonality result of {¢;};en and classical Fourier
theory together, yields

Gos(mo) = [ 303(w0)6, ) (@ = 5.0, el

= [ 3 ) )yl — 5.0,)0m ) 6y (o) dy
A

P
i e N -
= 3 %ns ¢j(303)/A Hy(% =, Aj)va(y) dy,
P
where J; ,, denotes the Kronecker’s delta, defined by §;,, = 1 if j = ng and 6;,, = 0 if j # ns.

Due to the definition of the basis {vs }rezz and the periodicity of H), in its second argument we
know

. g 1 [ oL T L
[ H,(Z—9,\)0a(9)dy = 2—/ H,(Z — g, ;) exp (—z n(y—x)) dy exp (—zn-x)
i, pJa, p p

— 2 / H,y (3,7, om(3) d5 om(®). (4.47)
AP
If for n € Zi the Fourier coefficient of H, is denoted by
Ayl ) = [ H (5T 2 = (- Au) o) o - (4.48)

then for x € A, we have

G (.2, = 2 b (0 Xy Yo () (). (449

We are now interested in the representation of the Fourier coefficient H »(7, Aj). The definition of
the periodic Hankel function in (4.42) yields

H, (7, ;) = HMYN\j)2)a(B)dz,  aeZ?jeN. (4.50)
[Z]<p
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We further define

2
p ~
O = m for A\jp # m|n|, (4.51)

and we see that o5 ; satisfies
Np? — 72 |n?

(Ai» + )\?) Vjp = JT’U;L(:%)

Consequently, the well-known Green’s second identity, e.g. [Mon03, Corollary 3.20] implies that

HY (O |2))77 dz

[Z|<p
= o7, lim H§Y (\12)(Az + A2)om d2
6*)0 <|2|<P
1) 0vn 0 .« - -
= on lim ( L |—s) (A2 ~ w2 ) aste), (@52)

where v denotes the exterior normal vector to the annulus {e¢ < |Z| < p} pointing towards infinity.
Using [SV02, Chapter 2.2], we first see that

Ly M) %,fé I U |
lim . <H (Aj121) n 5, Ho (Aj|z|)) ds(2) = va(0) = . (4.53)

Based on the fact that Hél)()\j\ﬂ) is constant on |Z| = p, we obtain for 1 # 0 with [SV02, Section
10.5] that

Yy _ 2|5
/ Dn 4oz) = = 7 riif)  and / Tds(Z) ds = wJo (i),
1Z]=p P

ov j2l=p

whereas, for grid points n = 0, we have

81]0 ~ ~
—ds(2) =0 and / vods(Z) = .
/2 —p OV EE

We look now at each component of equation (4.52). For n # 0 and \;p # 7|i| we obtain
(1) 8vn 0| (1) _
Tij Hy (Al Hy (Ajp)Ji(x|n), (4.54)

[Z|=p

ds(Z) = —on,;

and

0 N . _
~ons [ T S OulE) (3) = on i, StalmD ALY ) (455)
z|=p
We now turn to the case that 7 = 0 and \jp # w|n|. Then, we see
i (1 12) 22 as(z) =
oo [ HOOGE) G ds(z) =0 (4.56)
and

0 ~ ~
~0i / v 5 Hy (A [2]) ds(2) = oamd Y (Ap). (4.57)
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Putting equations (4.53-4.54) together implies the first case in (4.46), for n # 0 and \jp # 7|n|

I ip T - . -
H,(1 %) = 52— 2+ im?[al HEY (0 p) I (xlil) = imp X HY (o) Jo(lal)| - (4.58)
J

Next, for n = 0 and \;p # 7|n| we find the second case in (4.46),

I 1 T . T
(7. %) = 30w, [A_Hf”wm +4i)| = T H Ajp) + 1.
J J

We assume for a moment that p = w|n|/A;. Indeed, A\; # 0 holds by Assumption 4.2.11. We set
p = m|n|/A; and we obtain from (4.58)

0
lim —(\;%p? — 7%|n|?) = lim 2pA} = 27|n. (4.59)
p—p Op p—p

Next, we recall the derivative of the Hankel function in equation (A.6) of the Appendix,

D HO(p() = B (o)

() - THPE) and S HD () = ¢ () HD (6(2).

Thus, we obtain

.0 [p im?lalp Lu _ i\ L _
tn 22— T 0 0 el + T (Y (0o
N I i L (1) (1)
~ 1 |5+ TGl [ ) — 5 0

s ~ 1
+ Jolln) {QPA]'H{U(AJ'P) +0N (AjH(()l)(AjP) - prl)(/\jP)ﬂ ]

im?|n|
4
~ ~ 1 ~ ~ 1 ~ ~ 1 ~
Jo(rlil) [2alal B (7[a]) + 72 R 2HD (xla)) - x|l HD (xl7)|

() [wlal Y (xlr) - HD (xla)|
iir
4
im?|n

T

1
2
n

= (6ala [mtalir () al) ~ 15" o)

+ do(alil (0 el + all 5 1) )
Recall the definition of the Hankel function in equation (A.1) in the Appendix that
HY(2) = Jo(2) +iYo(z) and  HM(2) = Ji(2) + iVi(2),
and due to Lemma A.1.1 from the Appendix we claim
in®|nlJo(x[n|)Y:(x|n|) = in?|n|Jy (7|7]) Yo (r|n]) — 2i.

To simplify the notation we write in the following J, := J,(7|n|) = and Y, := Y, (x|n|), for
v =1,2. Then, we compute
_ . 2 _ .
J0H1(7r\n|) = JoJ1 +i1\ Yo — —— and J1H0(7T|n|) = JoJ1 +11Yp.

|n|7?
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In consequence, we have

1 in?ln . - - -
Lt 4'<Awmn&nm9wmu—a@wmw
+hmemme+www%wD>
L IR eyl B (rl]) + Jo el Y (rl)
2 ! 0 7l
im3|n|? . - _ -
=T et D () + oAl H (el

H,(n

?\
2
>
~
|
[N}
—
o~
E)
=l
=
E)
S
+
=
a
=l
E)
S
N

This completes the proof. O

Similar like in dimension two we analyze the asymptotic behavior of the coefficients G pi(M, 2,0,
using well-known Bessel and Hankel functions estimates from [AS64].

Lemma 4.4.2. Consider m =3 and s < 1/2. Then, the periodized Green’s function in dimension

three (4.43),

o0

ZG,J:cy 12 (23)0; (ys)Hp(& — §,2;),  x,y €A, and & # 3,  (4.60)

belongs to H*(A,) x H*(A,) and the series converges absolutely in H® for s < 1/2 as a function
of x ory. Further, it holds

Gy ()7 < C(s)5°2,
where C(s) > 0 independent of j € N and z € A,.

Proof. Due to the asymptotic expansion of the Bessel and Hankel function for large arguments in
Lemma A.1.2 in the Appendix, we can give in the following an estimate of the absolute value of
the periodic Hankel function H »(7, A;). Like in dimension two, the second and the third case in
(4.46) in Lemma 4.4.1 hold only for a finite number of min(n, j) large enough. Thus, we estimate
the first case of (4.46) in Lemma 4.4.1 for n # 0, \;p* # n%|n|*> and n € Z,j € N large enough,
such that

- C _ 1 - 1 _
I, ‘7ﬁr—pﬁﬁﬂHﬁNﬂWLWWHMMHWMMMWWWH}
N P . 1
= 12 = 2 = 2 =
N2p? =Rl T N mlRP] T 2 - Al
< O+ AP+ B4, (4.61)

where C > 0 denotes a constant. Now, due to the estimate of the eigenvector ¢; in Corollary 2.2.5
and the estimate of the vector vz in Corollary 3.2.1, we obtain

|@Anx|<cp1nx) (1+ |R[2 + |72 /4,

||OO<C‘H )| <
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Thus,
SNGoi@ Mm,y = >, A+ + NG, 2,
JEN n€Z?nz=j€N
< Y RPN
neZ?,jEN
< Z (1+ |’fl|2 _’_j2)573/2.
neZ?,jeN

Like in the proof of Lemma 4.3.3 for dimension two, due to the fact that |n|[j| < |n|? + |j|?
we know for a,b > 0 and 1 + a < b that

| (/b |0/t <R 2 4|52 forne Z%,j € N
We further see for a,b > 0 and 1+ a < b that
AT < (L [RP 4+ |i7)" for e ZPj €N,
In particular, we set b=3/2—s and a =b—1=1/2 — s to obtain
AT T e < (L [RP+ [P formeZ?jEN.
Then, we see for s < 1/2 that
Z (1+|A2 +52)" 32 < Z |7 [53/2 st—?,/z < oo,
nezZ?,5eN nez? JEN
O

The results of the latter lemma shows a decay rate of the Fourier coefficients of the periodized
Green’s function, which is however not sufficient yet to prove convergence rates for the discretized
integral equation we introduce later on. Inspecting the proof of Lemma 4.4.2 one sees that the
non-smooth truncation in (4.42) is responsible for the decay rate s — 3/2. To ensure uniqueness
for the discretized integral equation, which we discuss later on, we need a convergence rate of
$—2. This differs from well-known convergence theory e.g. [LN12] for constant background-speed,
too. To improve this decay rate we introduce a cut-off function: For 0 < § < p, we define by
X = Xp,5 € C3(R?) a function that satisfies

0 for p<|t,
x(t) =
1 for0<|t|<p-—90,
and 0 < x(¢) <1 for p— & < |t| < p. This cut-off function can be 2p-biperiodic extended by
Xo(Z +2pn) = x(|Z|) for 2 € A, and 7 € Z*.

It is obvious that x, € C3(R?). We further note that all partial derivatives of y, at Z vanish if
|Z| = p. We moreover represent the introduced cut-off function by its Fourier coefficients

xo@ = 3 Rp(@)oa(@)  with 3,(R) = / (Boa@) dE  for i ez

REL? Ap

We have now the tools to define a second periodized Green’s function in dimension three with
smoother kernel by

Gyo(r,y) =

.

> i(ws)di(ys)xp (@ — 9 HH(F—§,);)  forz,yeQand & #§.  (4.62)
j=1

By well-known Fourier theory it follows now that the Fourier coefficient of G is a discrete
convolution of the Fourier coefficient of H, and the Fourier coefficient x,(7).
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Lemma 4.4.3. For fized x € A,, the Fourier coefficients of y G;m"(x,y) are given by

A smo ] o T ~ 7 . — = .
Gp,j (Tl,x, ) = Zéj’n?’ Z Hp(ki,/\j)xp(jl — ]4}1,]2 — ]412) Uﬁ(.ﬁ)(bj(l‘g), n c Zi,j € N.
kez2
(4.63)

Proof. Due to the convolution structure of the series terms of G*"*°p in the horizontal variables,
it is sufficient to replace the Fourier coefficients of H,(-, ;) in (4.45) by those of x,H,(-, ;). In
particular we have for the smooth kernel

() )= [ Ho(13 = 31,0, on @) i

=20 3 (k) [ @)oo di

kec72 P

1 P N T -
=5 H,(k, )\j)/ X, (Z) exp <—z[(n1 —k1)xz1 + (ng — kz)!L'Q]) dz
P =, A, p
kez
1 .
=5 H,(k,\j)Xp(n1 — k1,na — ko) for all & € Z% ,j € N.
p keZ,
This ends the proof. O

If x, is € times continuously differentiable, then it is well-known that its Fourier coefficients
V(1) decay like (1 + |7i|) =%, see [Kat04, pg. 26, Theorem 4.4]. Consequently, the higher ¢, the
smaller the number of terms in the discrete convolution (4.63) required to obtain an accurate
approximation to the entire series. We not that due to [SV02] it is well-known for such x, and
¢ > m — 1, the fast Fourier transform provides a mean to compute the Fourier coefficients x,(7)
with || < N in O(N log(N)) steps with a relative ¢2-error bounded proportional to N~

To this end, we can now treat decay rate theory using the periodized Green’s function with
smooth kernel.

Lemma 4.4.4. Consider m = 3,1 > 3 and fized x. Then for s <1 it holds

)y

jEN

<C(s)Y % formye N, i,

CACAMC AL PN I
He(Ap) JEN

where C(s) > 0 independent of j € N.

Proof. The proof of this lemma uses the ideas of the proof of Lemma 4.4.1, however, further
relying on the cut-off function x, in (4.47). Inspecting the proof of Lemma 4.4.1, we see in the
following that the Fourier coefficients of x,H,(-, A;) decay faster than those of H,(-, ;). We first
assume that o ; # 0. Using x,H, (-, A;) instead of H,(-, \;) in (4.47-4.51), then we can split off
the integral into

| x@H, 0 2 d = i | o O e a2

P
— lim / +/ WGV H, (N B)on(Z) d2. (4.64)
=0\ Je<izl<p—5  Jp—d<|z|<p
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Furthermore, the well-known Green’s second identity yields

[ Xp(2)H,p(Aj, 2)va(Z) d2

AP
I B Wy 20RO )y, .
=0p, [gl_r}(l) </|2|—p—6 /|2—5> (Ho (>\]|z|)7ay va . Ho ()\jlz|)> ds(Z)

[ e A?)[XP<Z>H3”(Aj|2|>]vﬁdg].
p—d<Iz]<p

From the proof of Lemma 4.4.1 we know that the integral over {|Z| = ¢} as ¢ — 0 tends to 2i/p and
the boundary term on {|Z| = p} vanishes by the definition of the cut-off function. We moreover

write for simplicity H(()l) = Hél)()\j\ﬂ). Then, we have

Lo @ [ vaas

N / Axp(2) - H(()l) +2Vix, - viH(()l) + Xp(2) (AH(()l) + A?H(()l)) vp(2)dZ,
p—O<|2|<p

=0

where it holds H(()l) solves the two-dimensional homogeneous Helmholtz equation
AHV 12+ A2HV 1E) =0 for 2] > p — 6.
Next, we write
M(Z, %) == Ax,(3) - HSY +2Vix, - Vo) HSY  with Z € (p—6,p). (4.65)
As x, is at least three times continuously differentiable by assumption, Ay, € C! (]\p) and Vx, €
C2(A,). Additionally, the C'-norms of % — H{" (A;||) in {|Z| > p— 6} are uniformly bounded in

J € N, since \; is positive and monotonically decreasing for j > J, such that H(gl)()\j|:i|) and each

component of VH(SU()\]- |Z]) are monotonically decreasing sequences in j for j > J. In consequence,
the Cl-norm of the function M from (4.65) is uniformly bounded in j, and the two-dimensional
generalization of [Kat04, pg. 26, Theorem 4.4] implies

M,z < —C

S for n € Z?%,j € N,
_1+\n|*1 or n i

where C' > 0 is independent of 1, j. In consequence,

C
M(Z)v_p(2)dz < ——— for n € Z2. (4.66)
/p—6<£<p " 1+ |nf=2

Plugging (4.64-4.66) together yields uniformly boundedness

[ oGm0, 2 b2

) N 2 C
< |on,l [p + ‘M(n,)\j)u < |oa.l [ ] :

Sy =

p 1+|n|

For min(7n, j) large enough it is well-known from the proof of Lemma 4.4.2 that |os ;| < C(1 +
|7 |2 +|);|?) 71, the estimate of the eigenvector ¢; in Corollary 2.2.5 and the estimate of the vector
V5, in Corollary 3.2.1 imply

1Gps(mi g, < C \ | xomo
R

177651l

2 C

<Cloail |-+ —=| <@+ a2+ NP
< Clowsl | 24 | < 0+ AP+ A
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Hence, we obtain for s < 1 and fixed = that it holds

>

2

idﬁj(963)¢>j(%)Xp(f)lrfp(ﬂz —0,) = Y @A+ NP IG (n )

JEN H2(Ap)  nez? j=n,
<C Y (+RP+NPTT<C) R
(ARIS\ JjEN
This finishes the proof. O

The cut-off function x, hence increases here the regularity of the periodized Green’s function
from H*®(A,) with s < 1/2 (obtained by the proof of Lemma 4.4.3)) to H*(A,) with s < 1 by
increasing the decay rate for of the Fourier coefficients of the Green’s function from —3/2 to —2.

4.5 Periodized Lippmann-Schwinger-Integral Equation

We have now prepared all tools to introduce the periodized Lippmann-Schwinger equation, that
will be shown to be equivalent to its non-periodized variant (4.32). This periodic integral equation
is suitable for discretization by a collocation method based on trigonometric polynomials in the
horizontal variables & and the eigenfunctions ¢; to (2.14) in the vertical variable z,, as we will
show later on.

We first define the periodized convolution operator V, using for m = 2 the periodized Green’s
function G,(-,y) given in (4.39) and for m = 3 the periodized Green’s function with smooth
kernel (usmg the cut-off function Xp) G5"(+,y) from equation (4.62). More precisely, the periodic
integral operator V, : L%(A,) — L*(A, ) is denoted by

V,f = pr G,( ) f(y) dy for m = 2,
P pr szo(.’y)}t‘(y) dy for m — 3.

Note hence that in dimension three we rely on the smoothed periodized Green’s function G
instead of G, as this choice improves the mapping properties of the periodized volume potential
V,. Now, we are interested in the eigenvalues and eigenvectors of the periodized convolution
operator V,,.

Theorem 4.5.1. The complete orthonormal system {@n}nezzf is an eigensystem of V, with corre-

sponding eigenvalues i/(2)\;)E,(n1, \;) in dimension m = 2 and in dimension 3 the corresponding
eigenvalues are i/4H;™° where

ime = 37 [,k )% (— (0~ )]
kez?

Proof. We first recall the representation of the periodized Green’s function for m = 2, given in
equation (4.39) and the periodized Green’s function with smooth kernel in (4.62),

i 1
Gp(z,y) = 3 > Y¢j(152)¢j(y2)Ep($1 — Y15 Aj)s where 21 # y1,m = 2,
j=1 J

G5mo(x,y) Z (23)0; (y3)xp (T — ) H, (& — §, A5) where & # §,m = 3
=1

and due to the proof of Lemma 4.3.2 we certainly obtain the Fourier coefficient of G, in dimension
two by

i/p -~
Gy (N2, ) = 8jn, ¢j(22) \/ng(nl, AV, (T1).
]
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Then for m = 2 the eigendecomposition of V, it follows that by V,¢y,, which correspond to a
diagonalization process,

Vpspn(x) :/ Gp(xay)@n(y) dy = VP Ep(nla/\j)@n(x)a nec Z27j eN,

A, V2
where we exploited that {¢;}jen and {vn, }n,ez are orthonormal. For m = 3, Lemma 4.4.3
indicates a convolution-type representation of the Fourier coefficients of y szo(x, y). Due to

the proof of Lemma 4.4.3 we know that the term ) ;. H,(k,\;)%, (7 — k) in brackets in (4.63)
equals the nnth Fourier coefficient of x,H,();,-) . Hence, we see by simple computation that

Y, om() = / G5 (2, y) o (y) dy

/ > Gk, w,)er(y) enly) dy

Ap kEZ3 j=ks

=0 3 (B~ — B onle),  mezLjeN

kez?

Theorem 4.5.2. The integral operator V, is bounded from H®(A,) into H*T2(A,).

Proof. For m = 2 we know by Lemma 4.3.3 that the Fourier coefficients of G, ; has been estimated
by C(1+ |n|? 4+ |\;|?)~! for n € Z,j € N. Similarly estimates in dimension three holds for the
Fourier coeflicients of G} for n € Z?,j € N by Lemma 4.4.4. Due to the §;,, in the definition
of the Fourier coefficients of G, ; and G} in the following we abbreviate j = n,,. All together
shows that the eigenvalues of V, decay quadratically independent of dimension m. In particular,
it holds

Vi) < C(1L+ nf? + A, |?) 2 for n € Z™.

Hence, it follows for s € R that

25V, f(n)|?

Vo flrsa,y = D L+ 17 + A,

nezy

<C D A+ + A,
nEZT

<C Y A+ AP+ M, )P )P = Clell-2a, )
neZT

DA+ Il + (A, )2 f ()

where C' > 0 denotes a constant. O

Remark 4.5.3. Analogously, we can show for s € R that the integral operator
o [ Gty form=3

using the Green’s function in dimension three without smooth kernel is bounded from H®(A,) into
Hs+3 /2 ( Ap) )

Theorem 4.5.4. Consider m = 2. If f € L?*(\,) and p > 0 is sufficient large such that the
contrast q is inlcuded in M,)5, supp(f) C M,s, then V,f equals Vf in M, and converse.
Further, let m = 3. If f € L*(A,) and p > 0 is sufficient large that satisfy supp(f) C M,—s)/2,
then Vf equals V,f in M,_s)/2-
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Proof. We first treat the two-dimensional case. For x € M/, and f € C§°(A,) we obtain by the
definition V, and the definition of the periodized Green’s function that

Vo)) = /A Gl 9)  (4)dy

i 1
=, ST A~ ) S

JjEN

B /Mp/z % 2 %%(352)%(92) exp(idjlzr — i) f(y) dy

jeN
_ /A Gla,y)f(y) dy = (V) ().

Owing to the density of C§°(A,) in L*(A,), V, is equal V for any f € L?*(A,) and converse.

Let us now turn to dimension three. Let us first note that |z — §| < |Z| + |g] < p — ¢ for
T,y € M(,_s)/2, such that G;"(x,y) equal the waveguide Green’s function G(z,y) by definition
of the periodic function (4.43). We further need to exploit that x,(¢) =1 for |t| < p — J. Hence,
we show the required identity of Vf and V, f for x € M(,_s) /2,

Vof)(@) = / G2 (2, y) f(y) dy

jEN

:i / > 05 (x3)b;(y3)Xo (& — ) Hp(& — 5, 0;) £(y) dy
Mp—s)/2

1] S oo Bl — ) 1) dy

(r—5)/2 jEN

_ /A Gla,y) f(y) dy = (Vf)(x).

P

O

In dimension three strengthening the assumption supp(q) C M, to supp(q) C M,—s)/> allows
next to prove equivalence between the original and the periodized Lippmann-Schwinger equation.

Theorem 4.5.5. If Assumption 4.2.11 holds and if supp(q) C M(,_sy/2, then for any source
[ € L?(A,), the periodized Lippmann-Schwinger equation

u—"V, (c;é;)qu> —V,f inL*A,) (4.67)

is uniquely solvable. If f € L*(A,) with supp(f) C M,—s)/2, then restricting the solution to
(4.67) to M(,_s) /2 implies the corresponding restriction of the solution to the Lippmann-Schwinger
equation (4.32), or, equivalently, of the solution to the source problem (4.34) and (3.3) with source

term f|M,,-

Proof. The second part of the claim follows obviously from Theorem 4.5.4 and the equivalence
result from Theorem 4.2.10. Hence, we need to show the first part, i.e., existence and uniqueness of
solution to (4.67). Due to Riesz theory and the compactness of V, on L*(A,) = H°(A,) following
from Theorem 4.5.2 and Rellich’s compact embedding theorem, this reduces to proving uniqueness
of solution to (4.67). This in turn follows by noting that the restriction to M,_s)/2 of a solution
u to (4.67) with f = 0 solves, due to Theorem 4.5.4, the original Lippmann-Schwinger equation
posed in L? (M(,—s)/2) with vanishing right-hand side. By Theorem 4.2.10 and Assumption 4.2.11,
this is only possible if “|M(p,5>/2 vanishes, which shows that u € L?(A,), solution to (4.67), has to

vanish as well since supp(q) C M,_s)/2, such that qu € L%*(A,) vanishes entirely. O
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Remark 4.5.6. In dimension m = 2, Theorem 4.5.4 implies that the equivalence result of Theo-
rem 4.5.5 even holds when (6 — p)/2 is replaced by p. Moreover, we point out that Theorem 4.5.5
holds as well if one defines V, for m = 3 via the non-smoothed periodized kernel G,. However,
in this case, V, is merely bounded from H*(A,) into H5+3/2(Ap), For the analysis of the colloca-
tion method in three dimension, see Chapter 5.1 later on crucially depends on the fact that V, is

smoothing more than 3/2 orders, thus we require imperatively the cut-off function x, to construct
GSmO'
P



98

CHAPTER 4. LIPPMANN-SCHWINGER INTEGRAL EQUATION



Chapter 5

Numerical Approximation of the
Periodized Scattering Problem

5.1 The Collocation Method

In this section, we present a fast numerical solution method, which was first suggested by [SV02]
in the context of trigonometric interpolation operators. In this section, we adapt this scheme (we
call it Vainikko scheme) to approximate solutions to the introduced Lippmann-Schwinger integral
equation, where the sound speed depends on the depth of the ocean. The Vainikko scheme applied
to sufficiently smooth contrast uses the representation of Fourier coefficients of the periodized
integral operator V, and fast Fourier transform techniques. This technique avoids to compute the
integral defining the integral operator V, numerically in the domain A,,.

Let N := (N1, N;) = (N, N,,,) € N2 for m = 2 and N := (N, No, N3) = (N, N,,) € N3 for
m = 3 denote the discretization parameter and define the grid

Zh ={3 €Z*: =Ny < j1 < N1, 1 < jo < No} for m = 2, and
ZN =1{j € Z®: =Ny < jix < Ny, 1 < j3 < N3, k=1,2} for m = 3.

The corresponding set of interpolation points are denoted by

{xg.N) = (p]j\[ll7 H]]sz) 1 J€ Z?\,} C [—p, p] x (0, H] for m = 2 and
e N = pj—1 pj—2 Hj—3 D JETN Y C[—pp)* x (0, H] for m = 3.
J N17 N27 N3 ) )

To simplify the notation we write for dimension three 5 = (573'3) instead of j = (j1, jo, j3). We
point out that the grid points x;N) are not contained in the plane {x,, = 0} where all eigenfunc-
tions ¢y, (1 < £, < N,,) vanish, since Dirichlet boundary conditions hold. For simplicity, we

further introduce the grid for the horizontal component
Z’g;l ={3eZ™ Ny <jr <Np,1<k<m-1}czm! for m = 2,3.

We moreover introduce, the interpolation points acting on the horizontal component,

- J .
{x;f\r) = <le1> T j1 € ZN} C [-p, p] for m = 2 and
# N = pj—1 pj—2 L jeZE b Cl=p,p)? for m = 3.
7 va N2 N ’

99
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We point out that these interpolation points are fixed in x,,, variable and no interpolation point is
contained in the plane z,, = 0, where all eigenfunctions ¢y, (1 < ¢,, < N,,,) vanish. Furthermore,
we define the discrete eigenvector

1
b0, | Hy
H 2
¢)§Z’”) = 2 Nim e RNm where 1 < ¢,,, < N,,,.
¢, (H)
Furthermore, we denote the matrix with discretized eigenvectors as columns by
Nw) (N, N
P, = [ B g0 (51)

For simplicity, we write in the following ¢, for ¢Z\Z’")7 whenever this will not lead to confusion.
Assumption 5.1.1. The sound speed ¢ € CY([0, H]) is continuous.

Lemma 5.1.2. Suppose that Assumption 5.1.1 holds. Then ( éZM))
RN and ®y,, is an invertible matriz for all N,, € N™.

Proof. Due to [Kar68], see also [Slo83], it is well-known that for given w € C°([0, H]) the in-
terpolation problem to find wy,, = Zﬁ:’_l aj,. ¢;.. € C°([0, H]) such that wn,, (H(jm/Nm)) =
wW(H (jm/Nm)) for j = 1,..., Ny, is uniquely solvable for the indicated interpolation points and all
N,, € N. (This holds even for arbitrary N, pairwise disjoint points in (0, H]). In particular, for
all N, € Nand all jp, = 1,..., Ny, there exists a linear combination ¢y, ;= € span{é1,...,¢n,, }
such that ¢35, (H(Em/Nm)) O b fOr Uy =1, ... Ny, O

orms a basis o
Ln=1,...;Np, f f

Lemma 5.1.2 guarantee that ®y, is invertible and (¢, )¢, =1,... N, are linear independent
vectors in R"™. We denote the inverse of @, by <I>N , denote the columns of @ by ¢1 e ng
and obtain that

m

I=0y O = | @2 -+ by, | |67 @' o oy | =0y Dy, (5.2)
This implies

N
Z Pk, (em)qu_,j(kM) = 5€m,jm and Z ¢km ¢Jm( ) 5€m7jm (1 <tm < Nm)~
(5.3)

Since the eigenvectors have no explicit representation the vectors d);j have to be computed nu-
merically by computing the inverse <I>7V1 [Sol13] presents a memory optimized and fast iterative
method to compute (I>;,17 Next, we define

d)Nm Gm xm Z ¢]m ( )7 where 1 < jp, < Ny, T € [O,H]

=1

Thus, ¢y, (zm) € span{dy, ..., N, } for 1 < j,, < N, and

. L b
PN i <H Nm) Z &5, (km ( Nm)
km=1

Z &5t (k) h (b)) = 00,5 (1< Loy i < Niw). (5:4)

km=1
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Next, we consider trigonometric polynomials in the horizontal variables. We denote

N;—1 .
1 . z
UNy Gy (1) = 2N, Z exp <Z7T£1 (pl - ],7\[11)> for m = 2 and

l1=—N1

% - 1 . T jl To jz
< () = E =)+ LR f = 3.
'ni® = I, P (” [él ( p N1> & ( p NQ)D orm =3

(£1,62) €22,

y [SV02, Chapter 8] it is well-known for all 5,k € Z%fl that

k L —_ 1
VN, ( ! ) =0,k  and / UNy i (@)vg (21) doy = TNl(Sjl’kl for m = 2 and

A .
v§f (pﬁ,p?ﬁé) =05 and /[\p vg‘(:%)v};(ic) dz = ﬁ&;)k for m = 3.
With these ingredients, we define the linear subspace of L? (A,) of trigonometric polynomials by
Tn = span{goj\m VN, 5 PNojs 1T E Zx} C L*(A,) = HO(A)) for m = 2 and
TN : = span {gp?‘\,’j = ”N,§¢Ns,j3 1je Z?’V} C L*(A,) = H°(A,) for m = 3. (5.5)
Recall the definition of the basis functions acting on the horizontal variables by
- 1 T .
v;, (%) : = ﬁexp (zpjlxl) for m = 2,41 € Z,x1 € [—p, p] and
v;(i):z;lpexp (22353) form:3,3eZQ,5:€]\p.
Moreover, [SV02] shows that
span{v;, }ﬁl__Nl = span{v},, —N1 < ji < Ni} for m = 2 and
span{v; 31122_ Nio = span{v J €75} for m = 3.

(The arguments from [SV02] in one dimension are easily extended to two or three dimensions.)
Further, by Lemma 5.1.2 holds

span{¢;, . }]m_l = span{¢; ,jm = 1,..., Niu }.

By the definition of the grid Z%;, we see that dim Ty = 2N; Ny and for the grid Z3, we have that
dim Ty = 4N1N5N3. We point out that the maximum norm is well-defined for functions u € T}y,
[ulloc = max |u(z)].

TEN,
By abuse of notation, we denote the maximum norm of functions on [—p, p|™~! and on the vertical

variable [0, H] by || - || co-
Next, we define for a function u € C?(A,) the interpolation projection Qn : C%(A,) — Tn by

(Qnu) ( N )> u (;UE.N)) for all j € Z%. (5.6)
Consequently, we have
un(z) := (Qnu)(z) = Z u <p]j\;,HJj\?) on (@) for m = 2 and (5.7)
i<z, 1 2
n _ J1 J2 J3\ . _
un(z) := (Qnu)(z) = Z u (le,pM,HNg> on,;(T) for m = 3.

JEZ3,
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Lemma 5.1.3. Suppose that Assumption 5.1.1 holds. Then the interpolation operator QN is
well-defined and bounded on C°(A,) for all N € Z7.

Proof. For simplicity we set m = 3 since the two-dimensional case follows analogously. Recall that
there exists v?ir}' € span{v; : j € Z } such that

* El £2 y 2
Uy ( N1 pN ) =053 for all £ = ({1,02) € Z%,;

The last equation and Lemma 5.1.2 imply that the products ¢ ;(z) = ( L), o (Tm),
J € Z, hence belong to Ty and satisfy

@N’J( (N)) =05 fori,j € Z'§.

For N € N™/ the interpolation problem (5.6) is hence solved by un = Zjezg(; u(xg-N))go}‘VJ €
Tn. The interpolation operator Qn, u — upn is linear with finite-dimensional range and hence
continuous. O

To prove an error estimate for the difference Qnu — u in the LQ(AP)—norm, we introduce the
following interpolation operators related to horizontal and vertical variables. We point out that
the last proof gives us that for N € Z'", first, that the one-dimensional interpolation operator

N, .

Jm *

Q) wwy, = > w (HN> O, on C°([0, H]), (5.8)
Jm=1 "

is well-defined and continuous due to its finite-dimensional range. Second, also

QE;) U U = Z v (JE;N)> v}kvj on C%([—p, p|™ 1), (5.9)
—N<j<N

is well-defined and continuous as well. We point out that the notation of (5.9) holds also for
dimension two, if for simplicity we write j instead of j; and write IN instead of Nj.

(L)

Consequently, we can decompose Qn into the product Qg;) N, - These operators defined

(5.8) and (5.9) commute when applied to u € C°(A,) since the points values of Qg)u(, ZTm) and
of Qg\au(i, -) at the interpolation points {xg.N)}jGZ% both equal u(xg.N))

Furthermore, several error estimates for the difference Qg;)

interpolation theory, see, e.g., [SV02], that we will rely on later on. It is well-known by [SV02,
Chapter 10.5.4] that the structure of the basis vector vy, 1 (z1) allows us to apply a fast Fourier
transform (FFT) computed for dimension one in O(N1log(/N1)) operations. For more information
of the fast Fourier transform, we refer the reader to the classical article [CT65]. Next, we define
the matrix of nodal values up € C2N1xNz by

k1

k
UN(kl,k‘g):u< Nl H]VZ) kEZ?\r

by construction.

v —wv are known from trigonometric

Furthermore, we define discrete Fourier coefficients corresponding to the nodal values un; by

Ni—1 Na

un (j1,J2) = Z Z upn (1, k) exp (—mk;l ) @, (k2), j €z (5.10)

klz—Nl ko=1

For completeness we finally indicate that

un (k1 + [=Ni] +1,52) = 27\/]?}-1\5 (Z un( 31,k2)¢32(k2)> (k1)

k2=1 J1
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where, k1 =0,...,2N; — 1, jo = 1,...Ny and Fy;, is the one-dimensional discrete Fourier transform
(1D-FFT) defined for v € C2V1 by

;2 K
0:=Fn, (v) (k1) = Ni Z v(j1) exp< 2m]1N> k1 =0,1,...,2N; — L.

71=0
For given Fourier coeflicients we can compute the nodal values by

Ni—1

Z B(kr) exp <—2m (ki + =M1 ] +1) Jifll)

kl——Nl

v (1)

where j; =0,1,...,2N; — 1 or shortly

YAp
V2p M

Here, F &11 is the one-dimensional discrete Inverse Fourier transform (1D-IFFT) defined by

(d).

y:

2N;—1

PRl @) = 5= 3 U+ [N+ 1) da)exp <2mk1 N1>

k1=0

where j1 = 0, 1,.. 2N1 —1.

We point out that the Fourier coefficients @iy (j1,72) € C?, where j € Z%;, are different from
the Fourier coefficients introduced in Chapter 3.2, see (3.14), since we used the discrete vector
¢;, instead of the eigenfunction ¢;, in their definition. They are, however, computable once

we computed approximations to the discretized eigenvectors (],’)( Na), Moreover, we expect these
coefficients to approximate the exact Fourier coefficients from (3 14) up to the discretization error

of the eigenvectors ¢)§.iv2)
By the definition of @y, in (5.4) we have that

un (it o) = F [(in (ko)) - 65 G = (Fal (i (k) (1) ooy - 3

More precisely,

(Fat (i (k) (), - @3 Z F (i) )65 (0
kjv; P - g1l
-3 (k2)€22=:1u( i, N) ol
S !
(o) 3 e
:“< - Hﬁ) =un(ji i) J €Tk

Roughly speaking, we found the transformation up + @pn by doing a 1D FFT and a multipli-
cation with ®, of the nodal values u (p%, H%) for all j € Z%;. Conversely, we have iy — upn

by doing a (1D-IFFT) and a multiplication with @Nl. We point out, that due to the representation
the eigenfunctions ¢; it is not possible to apply, as for constant speed of sound, a sine transform
to compute coefficients with respect to these functions as done in [LN12]. Note that later on, if
we compute the eigenvalues and eigenfunction in the vertical direction by a finite element method
or a spectral method on a fine mesh, the number of the grid points will be larger than Ns. To get
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the values on grid points xg-N) we use the values on the associated grid points on the fine mesh or

we have to do an interpolation.
The presented theory is also applicable if m = 3. Next,we define the matrix of nodal values

QN e C2N1X2N2><N3 by
J1 J2 U3 . 3
- JH22 ), c 73,
U =4 ('ONl PNy Ng) J =N

Similarly like for m = 2, we see

= Nizl Nijl ig: Un (E,kg) ¢;, (k3) exp ( i [kl + kQNQ]) (7 €ZY).

ki=—Ni1 ka=—N3 kz=1
(5.11)

For completeness, for j3 = 1,..., N3 hence

Qg (k1 + [=N1) + 1, ko + |[—No| + 1, 43)

N3
4p o K .
= TN NG o (g_:l un (1,72, k3) ¢533)> (K1, ko) (upn (- J3)),

J1,d2
where 0 < ky < 2N; —land 0 < ky < 2N, — 1. Here, Fi, n, denotes the two-dimensional discrete
Fourier transform (2D-FFT) defined for v € C2V1x2Nz2 by

2N;—12Ny—1 ky I
Fny N, (01, d2) = v(j1, j2) exp <—27ri [ 5 +92N2D
31—0 j2=0 2

where 0 < k1 < 2N; — 1 and 0 < ky < 2N5 — 1. Next, for given Fourier coefficients we can now
compute the nodal values by

2N1 12Ny—1
(31,32,]3 l

Na
Z in(d,ks) o5, (ks)

k3

k}l 0 kz_O
exp 2 [(ky 4+ |=Nu) + 1) 25 4 (ko + [-No) + 1) 22| ), (5.12)
N1 N2
where 0 < j; <2N; — 1,0 < jo < 2Ny — 1 and j3 = 1,..., N3 or shortly

N{Ny . N3 _
e s (i (00 + L =Nl +1,0) 6.

N('aj?)) =

where 0 < k1 < 2N, 0 < k3 < 2N3 and j3 = 1,..., N3. Here, .7-"1?,117]\,2 is the two-dimensional
discrete Inverse Fourier transform (2D-IFFT) defined for v € C2N1*2Nz2 by

2N1—12N>—1

I, (0)0) = Z >

21@70 ka=0

o( (k1 + | =N 4+ 1), (k2 4+ [—N2] +1) ) exp <2m [kl + ko Nz]) , (5.13)

where j; =0,1,...,2N; — 1 and j, =0,1,...,2Ny — 1.

We point out that again the Fourier coefficients (7, j3) € C3, where j € Z%; is different from
the introduced Fourier coefficients in Chapter 3.2, see (3.14), since we used the discrete vector ¢,
instead of the eigenvector ¢;, in their definition. By the definition of ®y, in (5.4) we see that

un(G.d) = Fai g [ Coka)) o, - 65,1 (),
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More precisely,

: N3 _
(Fut s (A ks) (3))% = O Fal, (N ks)) ()¢5, (ks)
k3:1

\: > (0 gl
_ —1 1 2 3
- Z j, (ks) Z u <pJ\71’pZ\72’HN3) P, (13)

k=1 I3=1

o (i G ls )
. 1 2 3 -1
= u <pN1,pN2,HN3> > b5, (ka) iy (ls)
l3=1 ks=1
Ji J2 U3 . . o3
= = p= H—= ) = 7y
u<pN17pN27 Ng) EN(J) JELN
Roughly speaking, we found analogously as in dimension two the transformation ux — 4n by
doing a 2D-FFT and a multiplication with ®y, of the nodal values u (pj1 /N1, pj2/ N2, Hjsz/N3)

for all j € Z3%;. Conversely, we have in — up by doing a 2D-IFFT and a multiplication with
v

5.2 Convergence Estimates for the Interpolation Operator

In this Section, we give error estimates for the interpolation projection, defined in (5.6). For
NN € N the orthogonal projection onto T is denoted by

Pn:L*(A)) = L%(A,)  Pyu= Y a(ip;,  whereu= Y a(j)e;,

jery jezr
defined in (3.14). For error estimates of the orthogonal projection, it is convenient to use the

separation in horizontal and vertical components of this orthogonal projection. Let Py denote
the orthogonal projection onto trigonometric polynomials of functions in L2(Ap),

PKI : Lz(/ip) — L2(Ap) v = Z @5’05 — Z ’LA)‘;’U.;,

jeznl—l 362;871
and define PJ%, as orthogonal projection onto the first IV, eigenfunction ¢1,...,¢n,,,
N,
Py :L*(0,H) - L*(0,H)  w= Y i, wj, — > j,wj,, Nyl
Jm€N Jm=1
Recall that for m = 2 the vectors j and N are scalars.

Lemma 5.2.1. For N € Z'! and r > s € R it holds that

| Pnu— ul|gre(a,y < C(r,8) min(N) "9 | o) for allu € H"(A,),
I1PRv—vllgsz,) < Clr,s) min<N)“’“““)IIUHHT(Ap) for allv e H"(A,),
PR w —wl|grs 0,61y < C(ry 8)Ny "= w0 g0, 0) for all w e H"(0, H).

Proof. We only treat the proof of the first inequality since the other estimates follow in an analo-
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gous way. By the definition of the norm defined on H*(A,) we see that

1PNu = ullfren,y = D A+ 1P+ NP aG)?
FELPNLY
= > P+ P A+ P+ ) a6 1P
FELPNLG
< sup [P+ DT YT 1P+ L PGP
JELYNLY JELP\LR;
= suwp  [(1+ [P+ A )] ullza,)-
FELPNLY

The estimate cpjZ, < 1+ |);, |?, given by Lemma 2.2.4, yields the convergence rate

sup (L4 1717+ 2, )] <min(Lq "Y) sup 152 +42] 0
FELT\LT: FELT\LT:
= min(1, ca(rfs)) min(N)~2r=*)

= C(r, s) min(N)~2("==),
The estimates for P% and Pﬁ,‘m follow analogously. O

The next result shows that functions in H*(A,) belong to C°(A,) if s > m/2, while functions
in H°(A,) and H*(0, H), see (3.18) and (3.19), merely require s > (m —1)/2 and s > 1/2 to be
continuous, respectively.

Lemma 5.2.2. (a) For s > m/2, every function u € H*(A,) is continuous and |ullec <
Cllullfrs(a,) holds. Moreover,

H? (A )CCW( ) —{IUQ EC (A ) wo‘{I"L =0} ZO}.

(b) For s > (m —1)/2, every function in v € H*(A,) is continuous and ||v||le < Clivll gs(,)
holds.
(c) For s > 1/2 every function w € H*(0, H) is continuous and ||w||ec < C|lwl|gs(0,r) holds.
Furthermore,
H*([0, H]) € Cy ([0, H]) := {wo € C°([0, H]), wo(0) = 0}.

Proof. (a) Obviously, each finite sum un = ZjeZ;(} 4(g)e; is continuous. Due to Corollary 2.2.5,

the eigenvectors {¢;,, }jen are uniformly bounded, and since [[v; s = 1/(2p)™/? there holds that
lilloc = 3]l @), loc < C for all j € Z7 and a constant C' > 0. Next, the maximum norm of
un can be estimated by

lunlloo < D ()] 24l

J€Z7n
<O S @I+ P+ g PYE+FP 4 A P
jezn
. 1/2 . 1/2
< c( S (4Rt wm?rS) ( SR |Ajm2>sa<j>|2)
jczy JELY

} 1/2
< 0( S 4R+ |Ajm2>-s) ulliea .

JELR
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7L|2

Due to Lemma 2.2.4 it follows once more that cojZ < 1+ |A;, | holds for the positive constant

cg- Consequently, we see for s > 0 that
(141317 + Az, *) ™ < min(1, o) ~*[3| 7% for all j € Z]'\ {0},

For s > m/2, the series

SR+ A, B < min(Le) L+ S i) =0 < oo
Jezy 0£jEZT

converges. For two vectors N, M € Z", the difference un — ups hence satisfies

1/2

lun —unmlloo <C | D A+ 5P+ N, )70 lun — unl|ar=(a,)-
jezr

The latter expression tends to zero as min(IN ), min(M) tend to infinity since un and ups both
tend to u in H*(A,).

The same technique shows also parts (b) and (c) of the claim. The zero boundary condition
of a function u in H*(0, H) for s > 1/2 is due to the fact that all ¢;, € C°([0, H]) vanish at
Zm = 0. Indeed, the truncated Fourier series uny = Y jezm U(j)p; converges uniformly in A, as

min(N) — oo, such that u(%,0) = 3 ;czm @(3)v;(7)9;,,(0) = 0 for & € A, O

Next, we investigate the convergence of QQnu — u to zero for functions w in the Sobolev space
H*(0,H). The following theorem differs from well-known error estimates, e.g. [SV02, Theorem
8.3.1] because again the basis functions in the vertical fail to be trigonometric monomials. Fur-
thermore, to be able to apply Qn to u we need s > m/2 to ensure continuity.

Theorem 5.2.3. Suppose that Assumption 5.1.1 holds. Then for all w € H*(0,H), s > m/2,
there is a C' > 0 such that

||QNU - uHLz(AP) < Cmin(N)_(S_T)HuHHs(AP) with r > 1/2.
We point out that we use in the following s > r > 1/2 for the estimate in Theorem 5.2.3.

Proof. (1) Recall first the decomposition of the interpolation operator @ in horizontal and verti-
cal variables. We have by definition (5.8) and (5.9) the interpolation operators Qg;) DU UR on
C°([—p, p™ 1), acting on the horizontal variables #, and Qg\t)q : w— wyy, on C°([0, H]) acting

on the vertical variable z,,. Then, we decompose () into the product QE;)QE#W)I and add a zero
term,

Qnu—u=0Q%) QR u(@, )] ~ u

= QR [N uE. )] - QR u@. )] + QR u(. ) —u). (5.14)

Next, we estimate the last two terms in brackets separately.
(2) We first investigate the difference Qg\tlu(a?, -) —u from the second bracket in (5.14). Due
to Assumption 5.1.1 we have continuous sound speed ¢ € C°(]0, H]) and the given choice of the

interpolation points [Slo83, Lemma b) in Section 4, pg. 115] gives for all w € CY, ([0, H]) = {wo €
C°([0, H]), wo(0) = 0} that

HQg\JJ_,?Lw - wHLQ(O’H) —0 as IV,,, — oo.
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Note that the boundary conditions at 0 and H are exchanged in that lemma, which plays no
role since we adapted the interpolation points H (j,,/Ny,) accordingly. Due to [Slo83, Lemma, in
Section 2, pg. 101] this convergence implies the existence of a constant C' > 0 such that

w—w <C min w — w|oo for all w € CY, ([0, H]).
Q8w = wllem <€ win_ el =l 0 (10,71

For s > r > 1/2 it holds that w € H*(0, H) C C}, ([0, H]) is continuous due to Lemma 5.2.2, such
that
1Px, w = wlloe < CPy, w = wllaro,) < CNZC ™ |wl|mre 0,11y

Using this assumption we choose w’ = P]#w and we compute for s > r > 1/2 that
(B — < C||Py w— < CN,, ¢ 5.15
1Qn,, w —wlr20,1) < CllPy,, w—wllgr0,1) < CNip, lwll e+ (0, )- (5.15)

Moreover, if we use the last estimate, then we see for all u € H*(A,) and s > r > 1/2 that

@ - A s
) d
oy, [t f

< CON,, 20~ T)/~ (@, )72+ 0.1y 43

Ap

1
|k u-

Due to the definition of the (squared) norm H*([0, H]) and the definition of Fourier coefficients
acting on vertical variables, we obtain

/nu( Waromdi= [ 3 0+ Py

Ao Jm€EN

2
( ( a')a¢jm)L2(o,H) dz.

Applying Parseval’s equality to the horizontal variable gives

/ >+ A1)

2
( ( 7')7¢jm)Lz(o,H)‘ dz

ijGN
2

= Y 0P S () @)

Jm€EN Fezm-1 °
= 3 (W P )P <l

jezr

Then )
(@) —2(s—r)
|oRw—ul,.., | < ONn T i, (5.16)

(3) We next use well-known trigonometric interpolation operators to treat the difference inside

the first bracket in (5.14). For simplicity, we set v(Z, ) = | g\iiu(:%, I)](zm) to obtain
o [@kut@] - @@, = [0 =],
m A 10 L2(A)

:/0 /MHQ;;)U(-,%)} (i)—v(i,mm)rdﬁcdazm. (5.17)

Due to [SV02, Th. 8.3.1] we know that for s > (m—1) and 0 < t < s there exists a constant
C = C(s,t) such that for all v € H*(A,),

1050 vly.qs,) < Cmin(N) 2 oll2, ) = Cmin(N) > Y2 (14 G o)

N Ht(A,) = 2(A,) J J)| -

5’62771,—1
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Note that every function v € LQ(AP) can be represented as its Fourier series

v=> 0(j)v; with @(5):(U,U3)L2(Ap)=/_ VU3 di. (5.18)
- A
jeZm,—l P

For fixed x,, € (0, H) we apply (5.18) with ¢ = 0 to v(Z, ) = [Qg\iiu(:%, I (zy,) to see that

2
QG v 2m) =)l Faga,) < Cmin(N) > 35 (4GP | (vCmm).vg) ] (519)
jezm—1
and integration over z,, it holds
2 _ - H 2
HQ;;)U —v ) < C'min(N)™2* Z (1+ \j|2)5/0 (v(',xm),vJ>L2(A) dz,

5€Z7n—1

We show now that doing an interpolation projection x,, and then a Fourier series representa-
tions in Z is equal to doing first a Fourier series representation and then an interpolation projection.
By o(Z,2m) = [QK) u(Z,)](x) it follows that

(vCwm). ) 5, = (1QR) @ N m), v;)

L2(A,)

[ 8 (e Vst

P ly=1
N, E -
> [l )@ o, (o)
=178 Non ,

_ . N
=Qn. {xm — (u( T ), Uj)L?(o,H)] ) (5.20)

Then, we obtain

H 2 2
(-, T ,vr) N T = || T — (v T ,v~.> N
/0 ( ( ) ) L2(A) ( ) I/ L2(R) L2(0,H)
2
_ (L) ( ~)
= | Tm — Q Uy Tm ), U3 _ .
N 0205 )

We note that (5.15) implies in particular that Q%) is bounded from H"(0, H) into L?(0, H) for

arbitrary r > 1/2, that is, |Q ) @(f, )| 20,y < C|a(Ri, )| - (0,5r)- Thus, we find that

2
~ 1) - 1) -
o [as ] - oo,
2
< Omin(N) 37 (UG Jlom > (wlzm)sv5) - o
jezm—1 ’
= Cmin(N)™> 37 (1413 D (141 ) al)
jezm-1 FmeEN
As (1+a) <C(t)(1+a') for a > 0 and t > 0 we see that
(L4 g, )T+ 132)° < CO+ g, 27+ 1512 + 1A, 2715 1P).
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Next, by Young’s inequality one can show that

1
1+ s/r

~ 1
|J|2s|)\jm|2r <

Lzt
=7 +7‘/S"7| +

|>\j'm, |2(s+7‘) .7 c Zm,

Therefore, using the inequality (1 + a? +b?") < C(¢t)(1+a' +b')? for s+r =t >0 and a,b > 0
it holds

*12\s A (A]2 = s+ (502
Yo A+ Y] A+ RGP <O Y0 WGP+ NP ) = Cllullfer -
3ezm—1 Jm€N jEZT

Consequently, we obtain in this part of the proof that

~) [1HL), (= @, o= AP o Rr\—2s
HQN QK u(@, )] - Nmu(z,-)‘Lz(Ap)ngm(N) 2\l frearn,y  forr>1/2. (5.21)

(4) To this end, plugging together (5.14), (5.16) and (5.21) yields
Qv — ullaa,y < € [min(8) == full s a,) -+ min(N) = s,

for s1 > 1/2, s5 > (m —1)/2 and r > 1/2. Choosing s = s1 = s + r shows the claimed estimate
for the projection interpolation. O

Let us finally point out that the latter error estimate concerns the interpolation projection
Qn defined via the exact eigenfunctions ¢;. Discretizing those as in (5.1) leads to a further dis-
cretization error that will, however, not be analyzed or discussed in more detail in this thesis.
Note, however, that we derived error estimates for the numerically approximated eigenfunctions
in Section 2.3

5.3 The Collocation Method for the Periodized Integral
Equation

The error estimate for the interpolation projection () n shown in the last section is the crucial tool
to prove error estimates for a collocation discretization of the periodized Lippmann-Schwinger
equation (4.67). This collocation discretization is based on trigonometric polynomials in the
horizontal variables Z and the eigenfunctions ¢; in the vertical variable x,, spanning the finite-
dimensional space TN defined in (5.5). We recall that the Assumption 4.2.11 on the unique
solvability of the source problem (4.34) and (3.3) is still assumed to hold. In this section we
moreover exploit the error estimate for Qn from Theorem 5.2.3, which requires that the sound
speed ¢ € CY([0, H]) to be continuous, see Assumption 5.1.1.

Now, we discretize the introduced periodic integral operator V, by the interpolation operator
QN : C*(A,) = Tn. If a discretization parameter N € N™ is given, we can search, as a first
option, for a collocation discretization of the periodized Lippmann-Schwinger equation (4.67) by
requiring that upn € T solves the finite-dimensional linear system

2
UN — VpQN (C;(UJJ)LIUN) = QNfo in TN. (5.22)

We recall that V, maps Tn into T, such that (5.22) is well-defined. Note that due to the
representation of ¢y, in (5.4), it follows that V,(Qnu) # QNV,(u).

The well-known spectral discretization approach presented by [SV02, Theorem 10.5.4]) is to
multiply the Lippmann-Schwinger-Integral equation (4.32) by the contrast. Thus, as a second
option is to multiply the periodized Lippmann-Schwinger equation (4.67) by ¢/c? and to search
for w = qu/c?, where u is the solution to the periodized Lippmann-Schwinger equation (4.67). We
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point out that the fraction g/c? is well defined by the assumption of the boundedness from below
of the sound speed ¢ in (2.3). This implies the modified periodized Lippmann-Schwinger equation

to be well-defined
2

w q N
w — c—2quw = 0—2fo in L“(A,). (5.23)

We know that if u € L?*(A,) solves (4.67), then (q/c*)u solves (5.23) and we deduce that
u = w?V,(w) + f. In consequence, if w is a non-trivial solution to (5.23) for f = 0, then u must
vanish and the equality u = w?V,(w) + f shows that V,(w) = 0. Due to the fact that (5.23) yields
that w = 0, we obtain by Riesz theory existence and uniqueness of solution to (5.23). Thus, the
modified periodized Lippmann-Schwinger equation (5.23) possesses a unique solution for all right-
hand sides f € H~2(A,) if g/c* € L>°(A,). More precisely, solving for u is equivalent to solving for
w, because the periodized Lippmann-Schwinger equation (4.67) shows that u = w?V,(w) + V, f.

Next, applying for w € L?(A,) the interpolation projection Qn to (5.23), we obtain the
following discrete problem: find wpn € T solving

wn — QN <C2("va(w)> - On (qvpf> in T (5.24)

c? (Tm)

Both schemes (5.22) and (5.24) represent a solution to the discrete problem in T by finitely
many eigenfunctions g of V,, such that the application of the periodic integral operator to vy €
TN is easily computed once the representation of vy in the eigenbasis {¢e}eczm is known. In
particular, we can apply fast operator evaluation to the fully discrete version of (5.22) or (5.24),
when solving these linear systems iteratively, as we show later.

We first analyze convergence rates for the solution of the collocation method (5.22), using the
idea of [SV02, Lemma 10.5.1]) to obtain error estimates. We further show in the following that
for uniqueness of the collocation method in dimension three, we require imperatively the cut-
off function x, introduced in Chapter 4.4, leading to sufficiently large convergence rates for the
discretized integral equation. We point out, that the error of the approximation of the eigenvalues
and the eigenvectors, used for the collocation method is not focus of this chapter. The smoothness
of the fraction of the contrast ¢ and the depth-dependent sound speed ¢ = ¢(x,,) leads to a second
crucial quantity for these rates. This motivates the following assumption.

Assumption 5.3.1. We assume that the contrast q is everywhere defined in A, and that q/c? €
HY(A,).

Due to Assumption 5.3.1 for ¢ > m/2 and u € H*(A,) the multiplication u — gu is bounded
on H'(A,),

||qu||Ht(Ap) < C||uHHt(Ap) for all u € Ht(Ap), (525)
and we further know by the fact that H*(A,) is a Banach algebra for ¢ > m/2 (e.g [SV02]) that

L <|%| : for all u € H'(A 5.26
HCZU Ht(Ap) - C2 Ht(Ap) ||u||H (AP) or all u ( P)' ( ° )
For dimension one, the proof of estimate (5.25) is shown in [SV02, Lemma 5.13.1] and can analo-

gously be adapted to dimension m.

Corollary 5.3.2. We assume that Assumption 5.1.1 holds, i.e. the sound speed is continuous,
and Assumption 5.3.1 holds, i.e. q/c* € H'(A,) and s < 2. Then for r > 1/2, t > m/2 and
N € N™ it holds for all w € H*(A,) that

o (24) - (%)

where C' is independent of N .

4

< C(r) min(N)_(t_r) 5
c

||U||Ht(Ap) J

HH“"(An) Ht(Ap)
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Proof. Due to Theorem 4.5.2 we have for s < 2 that
||VpuHHs(Ap) < CHu”Hsfz(Ap) for all u € HS(AP),

where C' > 0 is a constant In consequence, we obtain for s < 2 that

P (30) -vi2n ()], <€l (23],
<o u-on ()

where C' > 0 is a constant. Then, exploiting the convergence of Q) nu — u due to Theorem 5.2.3,
we see for r > 1/2 and ¢ > m/2 that

|G (v

To this end, estimate (5.26) yields

|v-on (Gv)

where C' > 0 is a constant.

£2(a,)’

< C'min(N)~¢=7)
L2(A,)

2 HHt(Ap)'

< Cmin(N) (") el e,

L2(A,) ‘Ht(

O

Lemma 5.3.3. We assume that Assumptions 5.1.1 and 5.5.1 hold, i.e. the sound speed is con-
tinuous, and (q/c®> € HY(A,)), for t >m/2 and N € N™. Then for r > 1/2, there holds that

< C'min(N)~#=7)

L2(A,) Wl ze-2(a,) for all w € H'™2(A,).

[0 220

i,

Proof. Using the convergence of @nu — u in Theorem 5.2.3, we know for > 1/2 and ¢ > m/2
that

Hqu QN{2 pw” < Cmin(N)~#=") VwH
L2(Ap)
Once more, estimate (5.26) gives us for ¢ > m/2 that
q : —(t—r)
H Vow=Qn [ 2 pw} ‘ L2(A,) < Cmin(N) ’ HHt(A ) Wowle,).

Finally, due to Theorem 4.5.2, for ¢ > m/2 it holds |[V,w| g+ (a,) < |w|ge-2(a,), such that

Cmin(N)~ (t=r) I p'lU”Ht(Ap)

’ HHtA)

< C'min(N)~(=") w||gri-2(a,) for all w e H'?(A,). (5.27)

i,

O

The following theorem is based on the idea of [SV02, Lemma 10.5.1] and [LN12] with adaption
to the error estimate for the interpolation operator () introduced in Theorem 5.2.3 and used in
Corollary 5.3.2 and Lemma 5.3.3.

Recall that w denotes the solution to the periodized Lippmann-Schwinger equation (4.67)
and that u equals the solution of the source problem (4.34) with the radiation and boundedness
conditions (3.3) in M(,_s)/2 if supp(f) C M(,—s)/2, see Theorem 4.5.4. We first investigate
convergence of the scheme (5.22).
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Theorem 5.3.4. We assume that Assumptions 4.2.11 and 5.1.1 hold, i.e. unique solvability of
source problem (4.34) and the sound speed is continuous and r > 1/2.

(a) If q/c* € H*(A,) with s > m/2 and f € H'"2(A,) with t > m/2, then u belongs to
H™nGH20(A ). If q/c® € L®(A,) and f € H'™2(A,) for some t > 0, then the periodized
Lippmann-Schwinger equation (4.67) possesses a unique solution in Hmm(Q’t)(Ap),

(b) If Assumption 5.3.1 (q/c* € H*(A,)) holds and f € H'"%(A,) for some t € (m/2,2], then
there is N* € N such that for N € N™ with min(IN) > N* the collocation scheme (5.22) possesses
a unique solution un € T that satisfies

i
2l

where for simplicity we abbreviate H' := H*(A,) and L? := L?(A,) in the latter estimate.

lun —ullre < C|I(@n — D)Vl + min(N) ="

| ] ] 629

Proof. (a) Since unique solvability of source problem (4.34) holds by Assumption 4.2.11, we ob-
tain by Theorem 4.5.5 existence and uniqueness of the solution to the periodized Lippmann-
Schwinger equation in L? (A,), independent of dimension m. Using further linearity of the peri-
odized Lippmann-Schwinger equation and exploiting mapping properties from Theorem 4.5.2 that
for t > m/2 it holds

IVoullmea,) < llullze-—2(a,) for all u € H'(A,),
we treat that there exists a constant C' > 0 such that

el mincara,y < 2 ||Vo (25 + Vol ggmincer s

C2 ) HHmm(2 t)(A

<Ll 1 lle-2ca,)- (5.29)

Ht=2(A,

The last estimate shows the second part of the claim and for ¢t < 2 the first part, too. We point
out that the operator V, in dimension three uses the cut-off function , to have a smooth kernel
to obtain the required mapping property. Now, if f € H"%(A,) for t > 2 and ¢/c* € H*(A,), and
it m/2 < s < 2, we obtain again from Theorem 4.5.2 that

lelleca,y <2 [V (5 Vo f i a)

c? )HHt(A )

<c|4 + Cllfle-2a,

Hmax(t=2,5) (A )

H HHnnx(f 2,5 (A,) ||uHHmax(t_2’s)(Ap) + C”fHHt*z(Ap)'

If t —2 < 2, then [Jul| gmaxc—2.9(a,) < [lullm2(a,) such that the estimate in (5.29) implies that
u belongs to H'(A,), because u is H*regular as ¢/c* € H'(A,) for t > 2. If t —2 > 2 and
2 > s > m/2, then for ¢ sufficient regular we use a bootstrap argument, an iteration technique to
bound [[u| gmince—2. (s, ), Which gives

lia <€ 3]
l[wll ar (Ap) Hmax(t=2,9) (A )

] o Tty + Cllflarany | + N l-2cs, . 630

Next, we denote by p = p(s) € N the smallest integer such that ¢ — 2p < m/2 and we see for
2 > s >m/2 that

el < €| 5[ loll-=vian + O | 7 1 le-ca,,

Hmax(t—2 5)(/\ ) Hmax(t—2, =">(A )

such that (5.29) again shows that u belongs to H*(A,) if the regularity of f is sufficiently large.
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(b) We show by the fact that V, is a compact operator, the fact that we have ¢/c* € H'(A,),
the existence and uniqueness of the solution to the periodized Lippmann-Schwinger equation in
L?*(A,), and the Fredholm alternative, that I —w?V,Qn(q/c? ) is an invertible operator on H*(A,,)
for m/2 <t < 2.

Due to Corollary 5.3.2 it first holds for ¢ = s that

[l = ()] = 1= (), O i

For r > 1/2 sufficient small and min(IN) > N* sufficient large, the operator on the left-hand-
side of the latter estimate can be made arbitrarily small. By part (a) of this proof, the operator
u = u— w?V,(g/c*u) is invertible on H*(A,). In consequence, for min(IN) sufficient large a
Neumann series argument implies that

] P

u— An o =u—w?V, (QN (C%U)) )

is invertible on H*(A,), too. Moreover, their inverse Ay are uniformly bounded on H*(A,) in
the discretization parameter N € N,

[ir-wven(2 )]

Next, we apply the operator u — u — w?V,Qn(g/c*u) to the difference u — upn, where u
is solution of the periodized Lippmann Schwinger equation and un € T is solution of the
approximated Lippmann Schwinger equation (5.22). Then

<C if min(IN) > N*. (5.31)
HY(Ap)—H (Ap)

w? w2
Au =) = [1-V,n (%4 )] (=) = @ = DV 4V, (@ = D).
Now, due to the uniform boundedness of Ax' on H*(A,), we have for r > 1/2 that
lun —ullzea,) < C H(QN DV f+V, ((QN n<; 5 CJU> H
¢ )

Next, triangle inequality and the bound of the integral operator V, given in Theorem 4.5.2 imply

2
w
i = ulircn, < €@ = DWpflln, + (@ =D

H*=2(Ay) -

Exploiting once more the convergence rate of ||QnNu — ul[z2(a,) shown in Theorem 5.2.3 and
estimate (5.26), we moreover see

lun —ullzea,) < CLI@QN — DVpfllmia,)

+ min(N) T

U o 15, W20 |
Ht(Ap) Ht(Ap)

This ends the proof. O

Remark 5.3.5. Estimate (5.30) shows that the second claim of Theorem 5.3.4(a) holds even if
we merely suppose that q/c* € H™>¥=25) (M) for some s € (m/2,2).

The next result investigates convergence of the alternative scheme (5.24).
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Theorem 5.3.6. We assume that Assumptions 4.2.11, 5.1.1 and 5.3.1 hold, i.e. unique solvability
of source problem (4.34)), the sound speed is continuous and (q/c* € H'(A,)) for t > m/2.

Then there is N* € N such that if N € N™ with min(IN) > N* the collocation scheme (5.24)
possesses a unique solution wn € Tn for p = p(t) € N denotes the smallest integer such that
t—2—2p<m/2, then

=1
Ht(A,) |12

o = S
02

. —r q
< CominN)' [l + ] sy ||

(5.32)

L2(D) Ht=2(A,

Proof. Due to the uniqueness of solution w = (g/c?)u we can directly deduce the regularity of w
from the regularity of ¢/c* and u: If g/c* € H'(A,) and f € H'(A,) with ¢ > m/2, then (5.30)
implies that u € H**2(A,), such that w = (¢/c*)u belongs to H'(A,) as this space is a Banach
algebra. Next, Lemma 5.3.3 yields for ¢/c* € H'(A,) with ¢ > m/2 that

7=t v] = [r-wtan (G

for r > 1/2.

Similar like in the proof of Theorem 5.3.4 we see that w — w — w?(q/c?)V,w is invertible on
L%*(A,) and for min(IN) > N* sufficient large we know that w — By (w) := w—w?QnN((q/c*)V,w)
is invertible on L?(A,), too. We moreover see that Bz_\rl is uniformly bounded. Plugging all together
shows that the discrete problem in (5.24) possesses a unique solution wy € Tn. Analogously like
in the proof of Theorem 5.3.4 we further know that

<C min(N)_ min(2,t)+r
L2(Ap)—=L2(Ay)

al
2 e (a,)

2

w q
Bn(wny —w) = [I - QN (CQqu(-))] (wn —w) = QN — 1)V, f +w2(QN -1 (C—Qpr) .
Consequently, the uniform bound for BI_\,1 in the operator norm of L?(A,) implies that

lwn —wllz2(a,) < Cmin(N)~ ") |:||fo||H‘(Ap) + H%Hm(/\p) ||w||Ht(Ap):| ;

which shows the claim due to (5.30), as w = (¢/c¢*)u and |[wn — wl|p2(py < [wn —w|L2(a,). O

We see by Theorems 5.3.4 and 5.3.6, that the error estimate (5.28) for the first collocation
scheme (5.22) provides convergence in H'(A,) where t € (m/2,2), whereas the error estimate
(5.32) corresponding for the alternative scheme (5.24) merely provides convergence in L%(A,).
On the downside, we have no tool to estimate the interpolation error [[(Q@n — I)fl|f¢(a,) for
t € (m/2,2] in (5.28) and the convergence rate in (5.28) is limited by two.

In contrast, the error estimate (5.32) for the alternative scheme (5.24) provides a quantified
bound depending on q/c? and f, and further provides arbitrarily high convergence rates depending
on the regularity of these two functions. Due to the imperative need to estimate (q/c?)u it is
impossible to exploit the higher regularity of u € H'™2(A,)).
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Chapter 6

Numerical Computations Using
the Collocation Method

In this section we present numerical computations using the introduced collocation method. We
recall that Assumption 5.1.1 holds, i.e. the sound speed ¢ € C°([0, H]) is continuous. We first
indicate the fully discrete version of (5.22): For a discretization parameter N € N find uny € Ty
solving the finite-dimensional linear system

2
un — V,ON (CQ((J;)(]UN> =QNV,f inTn, (6.1)

and (5.24): For N € N™ find wy € TN solving

2 q N q .
We first define the array of Fourier coefficients by

%= {clj) 1 4 € 2, o(j) € O)}.

For simplicity, we write the point values of un and wn € Ty by upn = (uN(xéN)))keZ% e CL
and wy € CF. Due to Lemma 5.1.2 these point values are uniquely determined by the Fourier
coefficients apn = (@ N(k))kezg and W of these functions and vice-versa. To introduce later on
the first option for a collocation discretization of the periodized Lippmann-Schwinger equation in
(5.22) as a matrix-vector product, for simplicity, we define the element wise multiplication of two
elements a,b € CR, by aeb, so (aeb)(j) = a(j)b(j) where j € Z%. Furthermore, we define the
transfer operator by Fi,

Fn:Cy — Cx, (u(g))jezy — (an(3))jezy (6.3)
and its inverse by
FN': CR — CR, (un(3))jezy) = (u(g))jezy - (6.4)

Moreover, we write the eigenvalues of the integral operator V,, given by Theorem 4.5.1, as
Von = i/(20))E,(n1,);) in dimension two and as V, N = i/4I:[;’”°(ﬁ,)\j) in dimension three.
Therefore, we denote the point evaluations of z + ¢(z)/c*(zy,) =: a(x) by an € CR. In con-
sequence, we find for the first option of a collocation discretization of the periodized Lippmann-
Schwinger equation in (6.1) that

Un _wze:rl [f}p’N o Fin[an OQN]] = F;Jl |:]>p,N o Fin |:QN oiN” . (6.5)

117
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Further, we see for the second option of a collocation discretization of the periodized Lippmann-
Schwinger equation in (6.2) that

ON — w2 FN |:QN 'FZ:,l []A]%N od)N” =FNn |:QN ongl {f}p,N .iNH . (6.6)

Using an iterative solver for linear systems of equations like GMRES, we can in principle solve the
equation (6.5) or (6.6) for a given source term fn and unknown uy without setting up the large
and dense matrix. As the integral operator V, in (6.5) is smoothing the product an; ® b, we will
merely consider that discretization scheme in the following. The disadvantage of (6.6) indeed is
its definite requirement for a smooth contrast a = ¢/c? in order to approximate a smooth function
w. As we are ultimately interested in particular in discontinuous contrasts (without theoretical
justification), we hence prefer (6.5) instead of (6.6).

6.1 Numerical Computation of the Transform Fn

In this section we discuss the numerical computation of the transform Fpn from (6.3). We first
split the transform Fp into its "horizontal” and ”vertical” parts Fy = F ](~VN 'F J{,-m. Similar, we split

the transform Fy' into the parts Fr' = (FI(VN))_l(Fﬁm)_l. Due to Chapter 5.1 we know that

the operator F’ J(VN ) is a discrete Fourier transform in the horizontal variables (see [SV02, Theorem

10.5.4]), which can be efficiently computed by fast Fourier transform. Analogously, Chapter 5.1

implies that (F J(VN ))*1 is a inverse discrete Fourier transform in the horizontal variables and can
be computed by inverse fast Fourier transform. Exploiting again Chapter 5.1, we know that
the ”vertical” transform F A%m requires to compute the matrix of approximated eigenvectors @y,
of size N,, x N,,, as well as its inverse, which basically requires to accurately approximate the
first N, eigenfunctions to (2.12). For our numerical implementation, we need to replace the
transform Fn : up — Gn by the fully discrete transform upn +— 4 from Section 5.1, see (5.10)
and (5.11). Computing the fully discrete coefficients 4 from up requires the matrix @y, , the
inverse transform 4pn — up relies on the inverse matrix (I>7V11n, see (5.2).

The error between the transforms upx — Uy and upn — i depends basically on the dis-
cretization parameter IN and the accuracy of the approximated eigenvectors. However, we will
not attempt to estimate this error in the following, such that a convergence proof for the fully
discrete collocation scheme will remain open.

We recall that in Chapter 2.3 we discussed the approximation of eigenfunctions and eigenvalues
of the Liouville eigenvalue problem for different sound speed profiles. Independent of the chosen
method, it is best to compute the eigenfunctions and eigenvalues in advance in order to economize
computation time. Note that the column ¢y, (k) of @y, satisfy

N,

S oK), (6 / Bt ()3 () o = G105 (1 s < Nop).
km=1

The discrepancy between the left- and the right-hand side of the latter approximation basically
gives the error between Fny and its fully discrete variant upn +— N
We recall that the inverse of @, is denoted by <I>]7\771n7 which is defined by (5.2) in Chapter 5.1,

I=0y, O3t = |1 d2 - x| |61 B! o By | =03,

Therefore, we use for the inverse transform (Fy, )~' in the vertical variable the matrix ®' . We

point out that for constant sound speed [LN12] shows that the multiplication with approxnnated
eigenvectors in the vertical variable can be replaced by a Fourier cosine transform. We further
point out that a numerical computation for constant sound speed shows a relative L2-error of about
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Discretization Parameter IV, 26 27 28 29
Computation time in sec for scheme (6.7) 0.0039 0.0215 0.171 1.30
Computation time for MATLAB matrix inversion | < 1073 0.0026 0.0071 0.0365
Relative error <1071 <107 <107 < 10712
Tteration steps for scheme in (6.7) 7 8 9 10

Table 6.1: Numerical approximation of <I>j\,}n using the iterative scheme (6.7)

Discretization Parameter N,, 26 27 28 29
Computation time in sec of scheme (6.8) | 0.0062 0.0228 0.1533 1.86
Relative error <1072 <107 <107 <1010
Tteration steps for scheme in (6.8) 4 5 5 5

Table 6.2: Numerical approximation of <I>7V1 using the iterative scheme (6.8)

1075 between a Fourier cosine transform compared to evaluations at the discretization points of
the analytic eigenfunctions as transfer operator. This corresponds to well-known error estimates
of a cosine transform.

The matrix @y, is rectangular and has full rank. We point out that Lemma 5.1.2 guarantees
that @y, is invertible. Consequently, we can use MATLAB standard routines to compute CIJ;\,l
from @y, . We further note that for a computer environment with memory of 16GB for discretiza-
tion parameter N,, > 23, the MATLAB routine to invert a matrix produces memory overflow.
To avoid memory overflow for large discretization parameters, we use memory optimized and fast
iterative methods from [Soll13] instead of the MATLAB routine to compute @Niﬂ . Using for a
nonsingular real or complex matrix Equation 1.3 in [Sol13], we approximate the matrix (I);\],ln by a
sequence of matrices Ay € CN»>*Nm with start value 4 = @} by

Apy1 = A(31 — DN, Ap(3] — D, Ap)), (6.7)

where ¢ = 0,1, 2, ... denotes the iteration index and I denotes the unit matrix of dimension N,,.
In Table 6.1 we compare the MATLAB matrix inversion with scheme (6.7).

A second approximation for a nonsingular real or complex matrix is given by equation 2.2
in [Sol13]. More precisely, we approximate <I>R,71n by a sequence of matrices Ay € CNm*Nm with
start value Ay = CD%WL by

Ag+1 = Ag(7[ + @NmAg(—Qll + (I)NmAg(35I
+ ®N Ag(—35[+ Sy Ag(211 + ‘PN"LAg(—'?I—F A()))))), (68)

m m

where ¢ = 0,1, 2, ... denotes the iteration index and I denotes the unit matrix of dimension N,,.
In Table 6.2 we compare the iterative inversion scheme (6.7) compared to the MATLAB matrix
inversion. Furthermore, we stop the iterative inversion scheme (6.7) and (6.8), if the approximation
Ay satisfies

HI — AZ—H(I)NmH <1

6.2 Optimization in Solving the Collocation Method

In this section we present an optimization technique to reduce memory and computation time
in the evaluation of the integral operator when solving the collocation discretization in (6.5) by
an iterative scheme. We first recall that the point evaluations of z +— q(z)/c*(2.,) =: a(z) are
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denoted by an € CF;. We moreover see if ¢ (j) = 0 for some j € Z%;, then (an  un)(j) =0,
too. Using an iterative scheme like GMRES to solve the collocation discretization in (6.5), the
evaluation of the integral operator

UN > UN —w2F1(,1 Vo.N @ Fn[an ogN]] ,

operates on several zero entries. Furthermore, all computed entries up; at indices j where an (3) =
0 are in principle superfluous, as they are multiplied by zero in the subsequent operator evaluation.

Assuming that ap possesses L € N non-zero entries, we reduce the memory requirements for
the GMRES algorithm by introducing the restriction operator Ry : un +— vy which maps the
non-zero entries of un to a vector vy, with dimension L € N. We point out that the dimension of
the vector vy, depends on the number of non-zero entries of ap. Furthermore, we denote its right
inverse by R;VI : v, — upn, which roughly speaking recovers the full matrix containing non-zero
entries, such that Ry o RR,IUL = vy. To do numerical computations, we need to save an array of
dimension IN containing the position of the non-zero entries, to recover the full matrix. Applying
this operator to the first option of the collocation discretization in (6.5), then yields the following
operator evaluation,

v — Ry (Fg,l [f/p,N o« Py [an o R;\}(UL)]D . (6.9)

6.3 Numerical Computations

In this section, using the iterative solver GMRES, we now consider in dimension two a numerical
example for the collocation discretization (6.5),

Un —wQFI(,1 [fjp,N e Fnlan ’QN]] = Fﬁl [VP,N * v [QN .iN” '
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Figure 6.1: (a) Continuous sound speed profile depending on the depth of the ocean with height
H = 12. (b) Position of the obstacle D (with form of a squid) with contrast ¢ = 1 in the middle
of the waveguide.

We first recall that the point evaluations of x — a(z) := q(x)/c*(z2) are denoted by ap € CZ;.
We further recall that the kernel coefficient f)py ~ for dimension two is defined in Lemma 4.3.2. We

suppose the continuous sound speed from Figure 6.1 a) on [0, H] for an ocean with height H = 12
and we assume the angular frequency w = 500.
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In our computations, for N; = 29 the transfer operator in horizontal variable F I(Vr:) isa 1D FFT

and the transfer operator (F(N))_1 is a 1D IFFT. We further approximate the transfer operator
in the vertical variable FJ- by the matrix ®p,, with approximated elgenvectors (hey)e2=1.... N»
as columns. Using a unlform mesh with discretization parameter No = 27, the eigenvalues and
eigenvectors are approximated by a spectral method discussed in Chapter 2.3. To economize
computation time, these eigenvalues and eigenvectors are pre-computed. In this computation the
matrix @y, is rectangular and has full rank. For p = 1, we place the connected obstacle D (with
form of a squid) with contrast ¢ = 1 on D and 0 outside, i.e. see Figure 6.1 b) in the middle of
the ocean, where D C A/, holds.

-10

) ‘ -
-8

-12

(a) (b)

Figure 6.2: (a) Plane wave of mode 4 on [—1,1] x [0,12]. (b) Extended scattered field u*.

Using the approximated eigenvalue A4 and the approximated eigenvector q&;’f4729, we obtain the
incident field which is a plane wave in direction (1,0), i.e. see Figure 6.2 a). We stop the GMRES
iteration when the relative residual is less than 1078, Then, the computation time of the scattered
field on a i7 Quad-Core with 2,67 GHz of each core takes 2.53 seconds. Furthermore, we extend
the total field u on A, /5 by

ula,,, = Vo [an ® (ui +un)]

where u3; is the computed scattered field. Moreover, we use the truncated Green’s function to
extend the total field outside A, /s,

un (m, ) Z 05d ( J) @ (k2) exp (—z’)\j {xl + g]) , X1 < —p/2,ka =1,..., Ny and

U (ml, > Z iy (j) @ (k) exp (z)\ {xl — gD . x1>p/2, ke =1, ..., No,

where ﬁ}g\’,i denotes the Fourier coefficients of the restriction of the computed scattered field on
A,/2 to {z1 = £p/2}. We point out that the grid in our computation in horizontal variable is
chosen such that y = —p/2 corresponds exactly to the grid points :v( ) with j1 = Np/4 and
x1 = p/2 corresponds exactly to the grid points with j; = 3Ny /4.

Figure 6.2 b) shows the extended scattered field. This extension takes 56.76 seconds on the
same computation environment, due to the large number of required evaluations of the waveguide’s
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Green’s function. If we use the scheme with restriction operator R in (6.9) for this example, the
computations takes longer since the restriction operation R and the recover operation R~! create
more overhead then evaluating the scheme (6.5) acting on the matrix with a couple of zero entries.
For example, if we set in the latter computation a uniform mesh with discretization parameter
N, = 2'0 the scheme with restriction operator R takes 46.2 seconds instead of 47.8 seconds of
evaluating scheme (6.5).

6.4 Optimized Vertical Transform for Small Obstacles

In this section, we present an optimization of the vertical transform process F'y; + for the Vainikko
scheme (6.5), when the height of the obstacle D is small compared to the helght of the ocean.
In underwater sound propagation the situation that objects emitting or scattering sound in an
ocean are much smaller than the ocean depth appears frequently. This optimized scheme makes
high-resolution 3D computations with a small scattering object compared to the depth of a deep
ocean possible.

To abbreviate the notation, we assume m = 2, however, the optimization scheme applies for
m = 3, too. We first recall that the point evaluations of z + a(x) := g(x)/c*(x2) are denoted by
an € C4;. We moreover recall the discretized integral operator used in (6.5),

In=Volan e fo) = Fy' |:1>p,N o Fny [QN .LVH . (6.10)

By assumption, the scattering object D satisfies D C A,,;. Consequently, the horizontal
support of the contrast is bounded by 4p/2, however, the vertical component needs still the
whole discretization of the interval [0, H]. If the scattering object D C A, is small, the point
wise multiplication with ap creates a sparse vector for the argument of the discretized integral
operator V, in (6.10). Roughly speaking, for an ocean with H = 200 and a scattering object
with height of two, situated in the middle of the ocean, ap o f .. needs the discretization of [0, H],
however, anre f N 18 sparse. Consequently, for deep oceans the evaluation of the discretized integral
operator and the solution of the discretized Lippmann-Schwinger-Integral equation (6.5) is very
expensive. Owing to the fact that we are interested only in the domain where scattering occurs, we
use that the contrast q is zero outside the scattering object. Recall that the transform Fn can be
separated into a horizontal and a vertical component, F; (L : CNm — CNm and F :CN - CV.
Consequently, we have

~) (L ~) (L
Fnlan oiN] = F](Vl)FJ(Vz)[QN oiN] = F](Vl)l*—}(\,z)[y]\,}7 for vy = apn .iN

Here the horizontal transform, denoted by F' ](\,:)7 can be evaluated by the fast Fourier transform,
so it is not focus of this section. We see now that one column of v, has the representation

Oy = (0,..,0, Vo), Vay 415 s Varg, 0, ..o, 0)T € CN2 (6.11)

where v,, # 0 denotes the first non-zero entry and v,, # 0 the last non-zero of vy,. Note that
the indices a; and g correspond to the position of the discretized scattering object in A,. We

recall first the matrix @y, with discretized eigenvectors ¢§-N2). Again, we write for simplicity ¢;,
where j =1, ..., Ny. Then
Py, = [P12 - PN,

and we denote its transpose by A. By Lemma 5.1.2 the matrix @y, is invertible and if we use
all vectors for the vertical transform, than A has full rank and its inverse can computed, such
that In,xn, = A1 A, where I, n, denotes the identity matrix with dimension Ny x Na. In the
following we write B = A~1,

First, we assume that the scattering object D is situated in the middle of the ocean and we
use all Fourier coefficients. Based on the separation of vertical and horizontal transform, for one
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column of vy, we see that

o (HL) ... ¢1(H) 0a
1\172 'Uai (bl (H%)Ual +---+¢1(H%)Ua2
Fn, [vn.] = ) ) : = : )
’ ’ ’Ua2 ¢M f[ﬂ Vo ++¢M H% Vo
ou(Hy) o on(H)| [0, (1156 ) (113 ) o

where 0,; denotes a zero vector with length j € N. We see that this transform economizes
M(ay + No — a2) multiplications and summations compared to the full transform. Moreover, we
define the block matrices,

-B11 c R(a27a1+1)><N2 All c RNzXO[lfl A12 c RNQX(OQ*OQ*F].) A13 c RNzXNQ*OéQ
bl ) ) N

More precisely, A1; contains the first oy columns of A, Ay3 contains the last No — ap columns of
A. Aq5 contains the ajst, aq + 1st,... and so on up to the asnd column of A. The matrix Bi; is
determined by the linear system

T
O(a1—1)x N, O(as—ar+1)x(a1—-1)

B [A1n A Azl = [Ta—artD)x(as—art1) | (6.12)
O(szaz)XNQ O(a27a1+1)X(N27(X2)

where 0, xn, denotes an zero matrix with dimension o x Na.

Roughly speaking, the dimension of A11, A13 depends on the zero entries of vy and the di-
mension of A;9, By1 depends on the non-zero entries of vp;. For full rank of A, since A contains
a orthogonal basis, the orthogonality is transfered to the vectors in B, see equation (5.3). If A
has not full rank, we use a combination of identity matrix and zero block matrix, given in the
right-hand side in the last equation, to deduce orthogonality of the columns of B.

We characterize now the reduced scheme of the discretized Lippmann-Schwinger equation (6.5).
For simplicity, we denote for N € Zﬁ_ and Ny > ag > aj > 1 the vector L = (N, a0 — a1 + 1).
In consequence, there exists nodal values u; characterized by

un = (Ole(al—l)aﬂLa0N1><(N2—(12)) .

In particular, we obtain the reduced scheme to evaluate the discretized integral operator on ur,
ur, — BH}—K,} |:]>p,N ° Alg.FNl [QL .iL}} . (613)

Note that we evaluate this scheme numerically by GMRES.

Let us look at the effectiveness of the cut-version of the collocation scheme that relies on the
operator evaluation in (6.13), i.e. at the behavior of error and runtime and the reduction of zero
data elements if m = 2, for a a scattering object D of height three situated away from the boundary
(see Figure 6.3a). Suppose an inhomogeneous ocean of height h = 30, angular frequency w = 500
and continuous non-constant sound speed given in Figure 6.3b). Using 2° = 512 eigenvalues and
eigenvectors and a discretization of the horizontal component of 29 points to compute the scattered
field »® in equation (6.5). If we would use matrices A with full rank, then the computation time
on a i7 Quad-Core with 2,67 GHz of each core takes 4.45 seconds.

Figure 6.4 a) shows the computation time using the optimized scheme of A and its inverse,
if a1 and ag approach the scattering object. Due to the error curve in Figure 6.4 b), we can
easily see that the scattering object is situated between oy = 172 and as = 340. Note that the
computing time includes the pre-computation of the inverse B in (6.12). We point out that for
a large scattering object the cut-version of the collocation scheme and the pre-computation of the
inverse Bj; take longer than using the full matrices @y, and <I>7Vi. The diamond in Figure 6.4 a)
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Figure 6.3: (a) Continuous sound speed profile depending on the depth of the ocean. (b) Position
of a squid as scattering object D.

denotes the last time value, where the full rank matrices method is faster than the cut scheme.
Moreover, we can extend the total field u on A, /5 by

u|Ap/2 = VP/Q [QN ® (@ﬁ\f +ﬂ3\7)] )

where u?%; is the scattered field computed by the cut scheme. We see in Figure 6.4 b) the relative
L?-error of the extended total field to the total field computed by A with full rank.

10°

1072} /

10741

1061

Relative Error

1078}

. . 10 -10 . .
0 100 200 300 0 100 200 300

o, =N 50, a,=N,-a,

(a) (b)

Figure 6.4: (a) Computation time of the total field uls, , using cut-version. The red diamond
denotes the last value where the full rank matrices method is faster. (b) Relative L?-error of the
total field wu] Apja using cut-version to the non-cut-version.

We point out that, an alternative cut scheme for the vertical transformation, using not all

eigenfunctions (corresponding to evanescent modes) has no significant advantage to economize
computation costs.
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6.5 Convergence of the Discretized Integral Operator

In this section we want to check convergence of the collocation discretization of the periodized
integral operator from (5.22) by testing whether this operator satisfies the Helmholtz equation.

We assume that H = 30, p = 2, w/c = 1. In particular, we have 10 propagating waveguide
modes. We choose as contrast the cut-off function acting on the full height and satisfies

0 for z; < —1/2
4xq + 2 for —1/2 <z <—-1/4
q(z) =<1 for —1/4 <z, <1/4
—dry+2 forl/d<z <1/2
0 for 1 > 1/2
We denote by g the point evaluation of the contrast on the grid points x;N).
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Figure 6.5: Relative L2-error of the left-hand side and right-hand side of equation (6.14) with
discretization parameter Ny = 2™ where n = 7,8,9,10, 11 and the incident field, which is a plane
wave in direction (1,0), correspond to propagating waveguide modes j = 1 (blue), j = 6 (red),
evanescent mode j = 11 (yellow).

As the periodized integral operator satisfies the Helmholtz equation in A, /5 = Ay /5 = [-1/2,1/2]x
(0,30), we check numerically whether the discretized and period potential satisfies a discrete
Helmholtz equation obtained by a finite difference approximation Apx to the Laplace operator.

ANFRTl []}p,NoFN [gNouiN” JrgNoFer {1}p7N0FN [gNou:N” %gNoﬁN, (6.14)

where u'p € C% is the point evaluation of one of the 10 propagating waveguide modes. Using
MATLAB'’s discrete Laplacian, we evaluate the left-hand side of the latter equation for different
discretization parameter Ny = Ny = 2", where n = 7,...,11. For j = 1,6,11 we use the approxi-
mated eigenvalue A? and the approximated eigenvector ¢3. ; to obtain the incident field which is
a plane wave in direction (1,0).

We compute the solution u%; to the collocation discretization (6.5) with f N replaced by uj;

and evaluate the discrete L?-norm of

ANuy +UN + @y S UN + O ® Un-
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o\ 1/2
J >
, (6.15)

Figure 6.5 b) shows the corresponding relative L?-error that is

[Awgﬁv +un + a5y un +QN°E§V],

ENE
(Zjezﬁv QN°@§V‘ )

for the discretization parameter N = (27,2") for propagating mode j = 1 (blue), j = 6 (red)
and evanescent mode j = 11 (yellow). Moreover, for j = 1 we obtain the convergence rate of
about 1.49, for j = 6 the rate of about 1.06, and for j = 11 the rate of about 0.97. To analyze
convergence for m = 3, MATLAB’s discrete Laplacian has to act on the whole three dimensional
discretized domain A,. For the setting with height H = 30, p = 2, w/c = 1, discretization
parameter N; = N, = N3 = 22 and a cylinder as contrast with diameter one, the MATLAB’s
discrete Laplacian computation takes about 190GB of memory. (For N; = Ny = N3 = 210 the
MATLAB’s discrete Laplacian produces memory overflow.) The relative L2-error of the left-hand
side and right-hand side of equation (6.15) with discretization parameter Ny = Ny = N3 = 29
is about 2 percent, which is insufficient to give reasonable convergence rates of the collocation
discretization (6.5) in dimension three.

(Zjezﬁv
N —




Chapter 7

Combined Spectral/Multipole
Method

7.1 Diagonal Approximation of the Green’s function

In this section we present a combined spectral/multipole method applied to ocean acoustics with
depth-dependent background sound speed in dimension three. The idea of this method is to
construct an union of several domains, where each domain contains a part of the obstacle. In
consequence, we avoid one large box with multiple scatterers to compute. Thus, this technique
makes computations for multiple scattering objects placed over large distances in the waveguide
possible. In the following we use the ideas of [LN12] and [GR87], which discovered a combined
spectral /multipole method applied to an ocean with constant background sound speed.

We first introduce well-know tools from [LN12] to handle multiple scatterers in multiple boxes
with adaption to the Lippmann-Schwinger on our setting.

Let L € N denote the whole number of different disjoint local perturbations D, C {2, for
£=1,...,L. Further, let the contrast function, characterizing each D, for £ = 1, ..., L be denoted
by g¢ and

q:Zqz in €.

It moreover holds D, := supp(qr) in Q. For simplicity, we introduce the notation q = (q1, ..., qr.
and the elementwise multiplication of two vectors ¢ and v by q e v = (v1q, ...,vr.qr)".

Next, we consider for ¢ = 1,...,L, p; > 0 and o, € R, where o, = (6y,0), the cylindrical
domain

)T

MO .= M,, /2 + 00 = {x = (Z,23) : |T — 0| < %70 <3< H}
Furthermore, we suppose for £ = 1,..., L, p; > 0 and o, € R? the rectangular domain
AW = A, + o

We point out that p, is chosen to be large enough that D, ¢ M c A® c Q holds. Moreover,
our standing assumption from now on is that all domains M) satisfy that

Omin 1= inf |J~3k — 5~w| >0
zRE€EM®) 2, e M) 1<k#L<L

such that the M®) are in particular disjoint. We also introduce

Omax i= sup |2 — Z¢| > 0.
zreM®) x,e MO 1<k#I<L

127
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However, the domains A®) are not necessarily disjoint. Due to the fact that D, ¢ M©®) there
are cut-off functions x; € C5°(A®¥) such that

« 1 in Dy,
TN i AO\MO,

and 0 < x; <1in M (O\Dy. (These cut-off functions serve to separate expressions on different
domains D, and have nothing to do with the cut-off function x, in Chapter 4.4). Furthermore,
using this cut-off functions xj, we introduce the truncation and shift operators TZ‘ and T},

T, :L2(A,,) — LA(AY), (T} u)(z) = (xju)(z — o), reAND (=1L,
T, :L*(AY) = L*(A,,), (T, v)(x) = (xgv)(x — 0r), zeN, l=1,..L.
The last operators shift functions from A,, to A®) and reverse. For completeness, the component-

wise application of the truncation operators TZi on the vector u = (uq,...,ur) with up : Ay = C
is defined as T*u. Therefore, we introduce for ¢t € R the Sobolev space

H' =P H(A,,),
=1
with norm
L
lullze = el meca,,) for w = (uy, ..., ur).
/=1

We point out that for ¢ = 0 there holds H® = @, L2(A,,), which we denote by H.

Lemma 7.1.1. For arbitrary s,t € R the integral operator Ky, : L*(A,,) — L*(A,,), defined by

Ku=xi [ Gerontgu-od|,  forke ()

Pe
is continuous and for s, € R there is a constant C' > 0 such that
ke
K" ull e a,, ) < Cllullmea,,)-

The proof of this lemma follows for k # ¢ by smoothness of the integral operator K. Fur-
thermore, let V,, denotes for £ =1, ..., L the integral operator related to the domain A,,. Thus,
we define IC by K = Vy, for all £ = 1,...,L and the off-diagonal elements of K by ICF for
¢,k =1,..,L and ¢ # k We know by the mapping properties of Theorem 4.5.2 that V,, is bounded
from H*(A,,) into H¥7%(A,,). Thus K is bounded for s € R from H® into H*2, too.

Assumption 7.1.2. We assume for £ = 1,..., L that each qy of the vector of the contrast q =
(q1,..q) is compactly supported in MO and that qo/c* € H*(AY) for s > 3/2.

We want now to reformulate the Lippmann-Schwinger equation (4.35),

), ()
u— V| —5—qu =V | 55—
@mﬂAp 2
by using the disjoint domains A,,, and the vector-valued unknown

u=(T7 (ulp®), - Ty (ulaw))-

We first consider the source term f € L?(D) and contrast ¢ € L>°(D) and define f € H by

3

Ap

fo= Te_(f|A(/z)) for1 </¢<L.

Moreover, we define ¢? = (¢?|y ), ..., ¢?|y) ) and write 1/¢? for the vector (1/c2|ya), ..., 1/¢*|yw)).
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Theorem 7.1.3. Let f = (T} (flam)s - Tp (flaw)) € H. Then any solution w € H solving
W2
uK<T<20q)ou>f in H, (7.2)
c

defines a solution uw € L*(D) to (4.35) with right-hand side f by setting u|p, = T, (u)|p, for
¢=1,...,L. Any solution to (4.35) yields a solution u to (7.2) by setting v = (vp,,...,vp,) and

vk (1 (L ea)erw) o

The proof of the this theorem follows directly by the construction of the operator K and its
application to Theorem 4.2.13. Furthermore, by construction of equation (7.2), uniqueness and
regularity results of the Lippmann-Schwinger equation hold for the solution of (7.2), too. For
numerical computation, we discretize equation (7.2) using a collocation method.

We moreover recall that J(w, ¢, H) denotes the number of positive eigenvalues to the eigenvalue
problem (2.14). Following this definition we know that J + 1 is the index of the first negative
eigenvalue.

Lemma 7.1.4. For 1 < k # ¢ < L and for all z € M®, y € MY there is a constant
C(0min, J*) > 0, independent of k, ¢, such that it holds

L J"
) - - % ~ ~ *
Gla,y) = 7 D 6i(w3)di () H (AjlE — )| < Coxp(—0min ). E#§.T +1< " (13)
j=1

Proof. Due to [CL0O5, Lemma 2.2] we know that for z € C, fixed v € Ny, 0 < 6 < |z|, where
Re(z) > 0 and Im(z) > 0, it holds

2\ 1/2
|HSM (2)] < exp (Im(z) (1 - ZP) > [HD(0)].

Consequently, we deduce for v € Ny and j > J,

- - A2\ 2 -
(D (A17 = 3])] < exp (—Im(Aj)lw—yl (1—\ . () >|H£1>(AJ+1||x—y|>- (7:4)
J

We moreover see, by Lemma 2.2.4 a) that for a constant ¢y > 0 and for 7 > J + 1 yields ¢gj <
Im(A;). Thus, it holds

exp <—Im(Aj)|gz — gl (1 - ‘Agl ‘2)1/2> < exp (—Im()\j)émm (1 - ‘Agl D) (7.5)

S exp(fjm(Aj)(smin) exp()‘J+15min)
< CeXp(_éminj)a

where C' > 0 is independent of j. Next, the collection [AS64, Equation 9.6.24] and [Wat66,
p.441-444)] give for z > 0, where Re(z) > 0 and for v € Ny, that

PP = Y2(:) 4 72 = 5 [ Ko(2zsinh(e))cosh(2ut)dr, (76)
™ Jo

and we further obtain that |H 51)(z)| is monotonically decreasing in z > 0 for v > 0. Plugging this
and estimate (7.4-7.5) together, we have for d,,:, > 0 that

\HD (]2 — 1) < C exp(=0mind) | HE ([Ass1[0min)| for j > J,
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where C > 0, see estimate (7.5). Indeed the .5, > 0 on the right-hand side in the latter estimate

holds, since for 1 < k # ¢ < L for all z € M®*), y € M the difference & — § is bounded. Next

we recall that due to Lemma 2.2.4 b) it follows for eigenvector ¢; € H' ([0, H]) that it holds
max ¢J(I3) < C(H) for j € N.

msG[O

Thus, we obtain for J* > J that

o o)) B le— gl < > [HP (e - )
j=J"+1 j=J7+1
o0
<O Z exp( 6mzn.])
J=J*+1
* exp(_émin)
< — _—
C exp(—bmind )1 —exp (=)
This ends the proof. O

Next, we denote the vector & € R? in cylindrical coordinates as

- (rx cos(gox))
T = . .
2 sin(e,)
Moreover, we define for z € M*) and y € M® the numbers ¢y, and ¢ by

e coS(re)
o —op = | rresin(ere) |, 1<k#L<L. (7.7)
0

Furthermore, we introduce for 2 € M*) and y € M® functions r = r(z,y) and ¢ = ¢(x,y) such

o (2,9) cos(p(z, )
R . r(z,y) cos(p(x,y
—0K)— (T —0p) = . .
G=00) = (E=20) <T($, y) sin(ep(, y)>
(The dependence of these functions on oy and o, is suppressed, for simplicity.)

Definition 7.1.5. For 1 <n <2N +1, N € N we define

2mn
e — ; < _
f(Z, ) :==exp (:I:z)\rx cos <2N 1 apw>> ,

N
- 1 N ) 2mn
Sn(Z,A) == SN T 1 E (i) HM (Ary) exp <w <<px TON T 1)> .
v=—N

[AP99] and [BHO8] discussed a multipole expansion for fundamental solution to the 2D Helmholtz
equation for real eigenvalues. [LN12] adapted this idea for complex eigenvalues and an ocean with
constant sound speed. Based on these ideas, we introduce now a multipole expansion for an ocean
with depth depend background sound speed. The idea of the proof of the following corollary is
rather similar to [AP99, Theorem 3.1] and [LN12, Proposition 6.4].

Corollary 7.1.6. We consider j € N and for 1 < k # £ < L that x € M*® and y € M. We
moreover chose a« = a(n) € [—N, N| be such that « = n( mod 2N + 1), where n € Z and N € N.
Consequently, for all j € N it holds

2N+1

H{Y (A Z For (& = 0k, Aj)sn (0k — 00, Aj) f (5 — 00, A)

+ Z Jn(Njr(z,y)) exp(—ing(z,y)) (H,(f)()\jrkl) exp(ingk) + i”_“Hél)()\jrkl) exp(iagokl)) .
In|>N
(7.8)
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Proof. For a finite number of indices j it holds A; > 0 and the proof follows directly by the proof
of [AP99, Theorem 3.1]. Assume now that A\? < 0. Using the modified addition theorem from
Lemma A.1.3 from the Appendix,

"1z = gl) = Y B LD T (Al exp(iv(0z — 05)),  2=3+7,13] > |3,
VEZ

and using the splitting result

)

5= o) (G0 D)

wnd (ox) (n)
S N B COS|\ Pk o COS( Pk
Ok = 00 = |0k — o] <Sin(§0kl)> = ke (Sin(@kz)> ’
we see that
HP 1z —g) = 37 HD ) L (Agr(e, ) exp (ivlen — oz, ))). (7.9)
VEZL

We now replace equation (3.2) in the proof of [AP99, Theorem 3.1] by this identity. Consequently,
equation (7.8) can be now extended to complex-valued A; on the imaginary axis.
We point out that by a change of variables t — t — p(z,y) there holds

JV()\jr(‘r7 y)) = 271_1”

= 1. /027T exp (i)\jr(z, y) cos(t — o(z, y))) exp ( —wlt — p(z, y)]) dt.

2V

/02” exp (z [(\jr(z,y)cos(t) — ut}) dt

Next, we exploit

r(z,y) cos(t — p(a,y)) = r(z, y)[cos(t) cos(p(z, y)) + sin(t) sin(p(z, y))]

— (F—Or—§+00) (‘;fjg))
to obtain
Ly exp(ive(a)) = g [ e [inia = on -5+ o (Salh )] explivt

(7.10)

Next, one uses the trapezoidal rule with 2N 4+ 1 quadrature points to approximate the integral

n (7.10), and explicitly computes the resulting error precisely as in [AP99, Theorem 3.1] to obtain
(7.8).

O

Assumption 7.1.7. We assume that there is v € (0,1) such that r(x,y) < vry, for all z € M*)
and ally € M® for1 <k #0< L.

Roughly speaking, the following lemma shows that the second line of equation (7.8) is small if
N is large enough. In consequence, we can use the first part of the equation (7.8) to approximate
the Hankel function Hg(\;|Z — 7).

Lemma 7.1.8. We assume that Assumption 7.1.7 holds. We chose a = a(n) € [—=N, N]| be such
that o = n( mod 2N +1), wheren € Z and N € N. For j € N there are constants C = C(dpmaz, V)
and No = No(Aj, Omaa) such that x € M®F) andy e M©, 1<k +#(<L, there holds

‘ Z Jn(Ajr(ma y)) exp(—ingo(x, y))

|n|>N

(H( )()\ i) exp(ingg) + 1"~ aH(l)(/\ ir1) exp(iapr) ) ‘ <cv, N>N,. (7.11)
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Proof. Similar as in the last lemma, for a finite number 7 < J it holds A; > 0, and the estimate
follows directly by the proof of [AP99] and [BHOS|.

Assume now that j > J and thus )\? < 0. Then, we follow the proof of [LN12] to obtain the
estimate for imaginary \;. We know by equation (A.3) from the Appendix that for imaginary
eigenvalues A; it holds

TH{D(A|E — §]) = —2iexp (—z%) Kn([Asl12 = 91), and

Tir(@,y) = exp (i50) LA (e, 9).

Due to [AS64, equation 9.6.24], we moreover see that the modified Bessel function K, is monotonic
in n for real arguments. Plugging all this together, we compute for imaginary eigenvalues \; that

> Tn(Nr(@,y)) exp(—ing(x, y)) (Hle)@j?"kz) exp(inggr) + i “HY (Ajri) GXP(iOé<Pkl)
|n|>N

2
<2 3 Q@) [P Ogril < = 37 LAl ) Ka(Ihlria)-
[n|>N In|>N

We next use the identities for the Hankel function with only imaginary argument from [LN10,
Theorem 1.2],

Kna(r) _ oA D247 + (n 4 1)
K,(r) — r

and for Bessel functions of first kind and order v with only imaginary argument from [N&s74] we
use

0< for r > 0,n >0, (7.12)

I,
0< o T for 7 > 0,7 > 0. (7.13)
1, n—+r

We combine (7.12), (7.13) and we use estimate r(x,y) < vrg to obtain
L1 (r) Ky (r) < N7 (@, y)(V (0 +1)% + [Py +n+ 1)
L,(r)K,(r) — (Ajr(z,y) +n)|Aj|rl
Vi + 12+ N[22, +n+1
Ajr(z,y) +n

N +2 IAj120maz N +2
< = .
= \/(N+1> TN TNy T

Due to the fact that we supposed 0 < v < 1/2, setting No = No(Aj,0maz), We see vy, =
supy>n, VN < 1. Consequently, we have for N > Ny and for [n| > N the bound of the sum

D L@ ) En(Nslri) < Inga(Aglr(e, p) Ky (Aglrw) D v ¥

In|>N n>N

1
I In (Nl (s ) K v ([N ) (7.14)
.

Due to [AS64, equation 9.3.1] we now can estimate in the latter estimate the part of Ky and Iy,
Ina (e, o) Knva (D) < [Tna (Dl o) R (Al
C <exp( JAjlr(z,y >N+1 (exp Y |7"M> Nt

<v

<

“N+1 2N + 2 2N + 2
C r(z,y) N+l o N+
_ Y (r=zy) << . (7.15)
N+1 Tke ™ N+1

To this end, we plug (7.11), (7.14) and (7.15) together. This ends the proof. O
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Due to Lemma 7.1.4 and Lemma 7.1.8 we can give now an error estimate of the truncated
series of the Green’s function in dimension three,

2N+1

Gy N . Zfbj z3)9;(y3) Z fa (@ = ok, Aj)sulok — 06, \) f (5 — 00, X)), (7.16)

where 2 € M®) and y € M©).

Corollary 7.1.9. We assume that Assumption 7.1.7 holds, which defines the constant v € (0,1).
Then it exists a constant C = C(0min, Omaz, J*) such that

|G($7y) - GJ*7N($,ZJ)| < O(eXp(—(SmmJ*) + J*VN) J* > J7N > NO(kJ*757nax)a
forallz e M®  ye MO 1<k+#(<L.

Proof. Due to Lemma 7.1.4, we first see the exponential convergence of the truncated series to
the Green’s function. Then Corollary 7.1.6 yields the representation of the Hankel function and
Lemma 7.1.8 shows an estimate for the truncated representation by J*v~. All together, the three
lemmas show the proof. O

Before, we give the corresponding corollary for the error estimates of of the partial derivative
to G(x,y) — Gy« n(z,y), we further need estimates for the partial derivative of the eigenfunctions.

Lemma 7.1.10. Consider 3,, € N such that 3,, > 2. Then for ¢ € CP=~2([0, H]) there is a
constant cg > 0 such that

||¢§‘ﬁm)”L2([O,H]) < ¢pj” for all j € N.

It further holds
\¢§ﬁ’" (z3)] < cojPmHl almost everywhere in (0, H).

Proof. Due to the Helmholtz equation (2.14) for 3, = 2, we see

2
¢;/ — <)\3 - C;E).Z‘g)) bj almost everywhere in (0, H).

Similar, like in the proof of Lemma 2.2.4 b) we have for all j such that \; # w?/c%, that

" — )\2 w?
195 2000 = || (X = 207y ) ¢

L2([0,H])

2
5 W
<|(x- C+) 10550,
2 209 2 2 _ 2
2 W m(2j — 1) 204 T C- 2
SA]"FE S 4H2 +(A} Cic% SCOJ 9

where ¢y > 0. Next for 3,, = 3, we see that

r-(pr-sglo) - -l o 3zl

In particular, using the triangle inequality, we obtain

2 ¢ (3)

3 (w3)

"

9;

2
]

) 4”L2([0,H}) ’

+ ‘Qw

L2([0,H]) —
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Due to the proof of Lemma 2.2.4 b) we know that there is a constant Cy > 0 such that

< Cj3.

w2
A+ = H¢;HL2([07H]) =

If ¢ is sufficient regular for j € N we obtain

2

&

d(z3) ,
m LO ||¢j||L2([O,H]) <Cj.

Thus, it holds for a constant C' > 0 that

I

Furthermore, we discover for 3, > 3 via a bootstrap argument that there is a constant C' > 0
such that

"

i Cj for j e N.

L2([0,H]) —

(0.8 < CjPm for j € N.

H (b(/sm

This proves the first part of the claims. Finally, by the Cauchy-Schwarz inequality, we obtain

H
0

|¢§ﬁ7vz)(m3)‘ = ’A ¢§ﬁm+l)(3) dS S / |¢§Bm+1) (S)| dS

H 1/2 I 1/2
< ( / I¢§-’3’"“)<s>l2ds> ( / 1ds> < VA6 | o.my < CVEIPmH.
0 0

This finishes the proof. O

We now can give error estimates for the partial derivative of G(x,y) — G+ n(,y).

Corollary 7.1.11. We assume that Assumption 7.1.7 holds, which defines the constant v € (0,1).
We moreover consider a multi-index 3 = (83, B3) = (b1, B2, B3) € N§ with length |81 = B1+ B2+ 83
where 1 + B2 < 2 and B3 € Ng. Then it exists a constant C = C(dmin, Omaz, J 5V, |Bl1) such that

8|5\1

) (G(z,y) — Gy n(2,y))| < C(exp(—mind*) + J*VV) J* > J,N > No(ky+,0maz),

forallz e M® ye MO 1<k+£¢<L.

Proof. We first bound the truncation error due to J* and then the error obtained by neglecting
the second line of (7.8) linked to N. For 1 < k # ¢ < L and for all z € M®*), y € M® there
holds that for |Z — §| > 0min such that the series

Glay) = 5 65(a)65 (u) HE Ol — 30
j=1

converges uniformly and absolutely because A; is purely imaginary for j > J. We now apply series
truncation to

3\B\ P 3IB\ o o
550 72 (1) g (03 (@) HVN1E =), [& =31 > bins (7.17)

and estimate the remainder of the truncated series.
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We first look on the vertical derivative acting on the z3 axis. Due to Lemma 7.1.10 we have
estimates for derivatives of the eigenfunctions. We moreover use the estimate (7.4) to estimate
derivatives with respect to the variable x3,

983 .. L = *
axi? (3)6;(ys) H§ " (12 — )| < co | D 5%+ exp(=|Im(A;)|0min)| < C exp(—bmin ).
3

j=J

o0
j=J*

We point put that we used in the last estimate the monotonicity of |H(()1)(z)| in z, which follows
from estimate (7.6). Next, the horizontal derivatives of z — d(z,y) = |Z — | satisfy bounds of
the form

and <1 for |3, < 2.

APld(z,y)
oxh

2 ‘ dd(z,y) ‘
~ Omin 0x1,2
The partial derivatives in Z direction of Hél)()\j|§: — g|) are represented by higher-order Hankel
functions and x € M®*) and y € M. Due to estimate (7.4) these terms form an exponentially
decaying sequence. The eigenvalues A; can be estimated by Lemma 2.2.4 a). All together, we see
for the horizontal component that

o0 1811
> 6i(um)os(en)

j=J

HE (17 = 1) || < Cexp(=Gmin ).

Next, we estimate for j = 1, ..., J* the partial derivatives of the remainder terms in the second
line of equation (7.8). Due to equation (7.17), for the first j = 1,...,J* eigenvalues, we can
diagonalize the partial derivative in the second line of equation (7.8),

8‘5\1 ) ] o ]
> T (e, w) exp(—ing(e, ) (HE (gria) explingi) + i HO (i) expliopi )
(7.18)
We use the idea of [AP99, Lemma 3.2] and [LN12, Chapter 6] to bound the partial derivatives

Jn(Ajr(z,y)) exp(—ing(z, y)) in terms of higher-order Bessel functions. We exploit the definition
(7.7) to obtain

Oyl o1 ana Op@y)| o L
oz 0% r(z,y)
This yields for |3| < 2 and 7(z,y) > 0 that
GIEIR 2 GIEIR 3
=TT, S 3 =~ x, S .
055 @ Y) ) 555 @ v) RERAE

To this end, using well-known tools from [AP99, Lemma 3.2] and [LN12, Chapter 6], for all
j=1,...,J* we obtain

6|ﬁ~|1 ) 3\ -

O mOyrtea) ep(—inpte)| < 22 a (A ea))  for |3l < 1 and
alﬂh ) 9 -
ﬁ‘]ﬂ()\jr(x,y)) exp(—inp(z,y))| < 4N |[*Tn—2(|Nj|r(z,y)) for |B] < 2,n > 3.

All together we deduce the error estimates for the remainder term in (7.18). This finishes the
proof. O
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7.2 A Combined Spectral/Multipole Method

In this section we use now the introduced tools from the latter section to set up a combined
spectral /multipole method for scattering problems involving multiple scatterers. We recall first
the truncated Green’s function from (7.16): For 2 € M®*) and y € M) with 1 <k # /(¢ < L,

J* 2N+1

Gy n(z,y) = Z (z3);(ys) Z Fo (@ = 0k, ) sn (08 — 00, M) 17 (§ = 00, Aj).-

J_
Then, following the definition (7.1) in Lemma 7.1.1, we define the volume integral operator ICL’}{’ N

L2(A,,) — L*(A,,) with kernel G- v by

= | Xk (- + o) / G e N (- 0r, -+ 00)x7 (y + 00)(y) dy]
A

Pe

Apy

We further define for ¢1,¢2 € N and 1 < k # ¢ < L the operator K§£7N1C17C2 : LQ(AM) —
L*(A,,), acting on the separable parts of the truncated Green’s function G- y and using the
interpolation operator @ from Section 5.1, by

. Jx 2N+1

K:J* N,¢1,62P = 42 Z Qe Xk(x+0k)¢J3(x3)f (T, A )} n(0k = 0¢, Aj) (7.19)

j=1 n=1

x / Qca X0y + 00, (y3) £, (5, 2)] () (y) dy, in L?(A,,).

Pe

We first give an error estimate for the discrete schemes for the spectral approximation of the
diagonal-terms IC <N to ICF¢. Then, we present an error estimate for the discrete schemes for the

spectral approximation of the diagonal-terms Kk T N.Cr.¢a O1 the separable parts to ICF..

Lemma 7.2.1. We assume that Assumption 7.1.7 holds, which defines the constant v € (0,1).
Then it exists a constant C that for all p € H'(A,,), t > 0 such that

| (KM = K55 n) el a,, ) < Cexp(=0mind*) + T vl a,,), (7.20)
for J* > J+1,N > No(As+, Omaz)-

Proof. Using well-known interpolation theory for operators from [SV02], it is sufficient to show
that for t € Ny the estimate (7.20) holds. Due to the Cauchy-Schwarz inequality and Corollary
7.1.11 the case t = 0 follows immediately.

We now treat the case where t > 0 and note that for ¢ € N there are constants ¢y > 0 and
c1 > 0 such that

8‘B|1

collelFrea,,) < > 928

< ClH@H%{f(AM)'
[B]1<t L2(Ap,

Since G' and G j« y depends on & — ¢ one computes for 3 € N2 that

GICIR ~3\B\ GIEIR -9k
= (— ¥ — (— B _
975 Oy = ( 1)? 077 Glz,y) and  ——z G n(@y) = (-1) P

n(z,y).  (7.21)

Therefore, let 3 € N§ such that || <t + 2 and for simplicity we write for the difference of the
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Green’s function and its truncation one G(z,y) = G(z,y) — Gy+ n(z,y). Due to (7.21), we obtain

918 AN ol .
Db (KM =K ) e =) ( )ka(' + ox) o G(- + ok, y +00)x; (y — o0)p(y) dy
v<p N Ao
AN L L
::§;%<—1)W(7) i+ o)
=

JAE 1 = PG+ or)ely) d
—=G4(-+o + o -+o0 .
A, axgg o kY 1)Xe 0)P\Y) ay
Using integration by parts t times, we integrate partial derivatives acting on G upon ¢. More
precisely, we split ¥ = 1 + 2 such that |yi1|1 < 2 and |11 < t. As the cut-off function xj

eliminate the boundary terms on dA,, and we obtain

g7 9l

A, 073 0F

G(-+ ok, y +00)xi (- + 00)p(y) dy

. g3 9lmh ozl
= (0 [ O oyt o) i+ el dy
Pe

Now, exploiting again Corollary 7.1.11 and Cauchy-Schwarz inequality, we can estimate that

where J* > J, N > No(Aj+, dmaz)- O

2

g7 9lnh alrzh N d

P

L2(A(R)
* * 2
< C<9Xp(_6minJ ) +J VN) H(‘DH%”(AP@)’

Theorem 7.2.2. We assume that Assumption 7.1.7 holds, which defines the constant v € (0,1).
Then it exists a constant C = C(J*,N) such that for all ¢ € H*(A,,), s > 3/2,r > 1/2, there
holds
||(’CM - ’Ck€7N,¢1,gz)<P||L2(Apk)
< € (exp(~bind ") + I vN + (1) [min(¢)~ ¢~ 4 min(2) ] ) el o,y (722)

for J* > J,N > No(As+,0maz),C1,82 € N3, v € (0,1) and ¢ € L3(A,,) .

Proof. The error estimate of Kﬁ‘iy N.¢1.c, Telies on the smoothness of the kernel Gy, which relies
on the smoothness of

2mn
04\ — : _
f(&,\) = exp (iz/\rm cos (2N 1 <p,;))

2 2
= exp (:I:i)\rm {sin <2N7T~7: 1) cos(p,) — cos (2]\;71 1) sin(g@m)})

—e +i)\ [sin ﬂ T — COS ﬂ T
P oN+1) ™M oN+1)2 )"

Therefore, using Lemma 2.2.4 a), we obtain for the derivatives of f© with respect to & that

a‘Bh

F < 1P exp(Im(Ag)p;) < 171 exp(Im(Ny)p;), @ € Ap,, B € NG

fni(&)‘j)
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Furthermore, we know that for n € Z, j € N, s € R, s > 0 there exists a constant C' independent
of £ =1, ..., L such that

X2 (- + 00) b (w3) o (B A= (a,,) < C()3° exp(Im(X;)pe).- (7.23)

The same estimate holds for A,, , too. For € A, we have

([C5E N K5 vaca) 0) (@) = X3 (- + Ok)/A (I = Qea )Gy N (x4 0r, y + 00) X7 (y + 00)]0(y) dy

Pe

+(I = Q¢ .z) <x2(~ + ox) /A QoG N(x + 0,y + 00) X7 (y + 00)]0(y) dy) ,
e (7.24)

where ()¢, . denotes the interpolation operator applied to the variable x, whereas Q¢, , is applied
to the variable y. Using (7.24), and the triangle inequality, we see that

||(IC ICJ* ,N,C1, Cz)w”lﬁ(l\ﬂk)

<

Xl + ox) /A (I = Qes)Ge (4 00y + 00X (y + 00)oly) dy

re L2(Apy,)

(I = Q¢ z)

X5 (- + o) /A QG N (T + o,y + 00) X7 (y + 00)]0(y) dy]

L2(A,)

<C

Yo (- + 0k) / (I = Qeay) e (& + 08 + 00) X5 (y + 00)]0(y) dy

re L2(Apy)

_|_

/A (I = Qc¢y ) Xk (- 4 01)Qca yGue N (T + 01,y + 00) X7 (y + 00)]0(y) dy

Z L2(Apy,)

For simplicity, we denote
gir (2, 05) = Xi (@ + or) ¢ (x3) [ (2, A;),

and we use the definition of the truncated Green’s function from (7.16) to see that

H/ (Qcre — DIXG (- 4 01) Qs yGue N (T + 0,y + 00) X7 (y + 00)]0(y) dy
A L2(A,)
J* 2N+1

i) T X .-

Pejlnl

[ (- 4 0k) b (3) fr (2, Xj)sn ok — 00, A5)] Qeary (£ (0, X5) 05 (y3)xi (y + 00)] ¢(y) dy

L2(Apy,)

J* 2N+1

IS @ = ) Lo (0] sulor — 00,0) /A Qen [67 (2:7))] () dy

j=1 n=1

L2(Ap),)
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Next, the Cauchy-Schwarz inequality implies that

/A (Qere = DIXL( + 00)@rnGae (& + 00y y + 00X (y + 0o (y) dy

Pe

L2(Apy)
J* 2N+1

<CZ Z |sn(0r — 00, Aj)|

j=1 n=1

H(ch,z —1I) l%(%%)/A Qcalgd (0, )] (y) dy}

el 2
L2(Ap)

J* 2N+1

<CZ Z |sn — 04, A )|

j=1 n=1

1@ = D) g (Do, 1Qcaliid (AN o, 12 ca, -

Recall that for all s > 0 it holds

IN

(s)7° exp(Im(A;)pr), — and
(5)7° exp(Im(A;)pe).-

Hgl;('a )‘j)HHs(A )

C
ng_(’AJ)HH?( C

| AN

Using the convergence of (Q¢, — I) in Theorem 5.2.3, we compute for r > 1/2 and s > 3/2 that
HQC2[92_< )]”LQ(AW) < || [Qc, — I]ge HL2(A 2) + ||9e ')HL2(AM)

<C (mln(Cz = g8 CoA)] e, T eXP(Im(/\j)pe))

<C (miH(Cz) =1 5% exp(Im(A;)pe) + eXP(Im()\j)pz)> <Ch.

Analogously, we estimate for r > 1/2 and s > 3/2 that
H(QCl - I) [gl;(a )‘j)] HLQ(APk) < len(CI) (= 7)js eXp(Im()‘])pk)

Plugging all this together, we have

H / (Qer.e — DIXG( + 0k)Q¢,y Gy N (T + 01,y + 00) Xy (y + 00)] dy‘

H(Apy,)
J* 2N+1
<y Z > Isnlor = 02, ;)] (miH(Cl) (=) jo eXP(”“O\j)Pk)) Cillelzza,,) -
j=1 n=1
We define now p,q, = max{ps, ¢ =1,..., L} and, for simplicity, we introduce the constant
J* 2N+1
Cy=C3(J", N)=CY_ > |snlor — 0s, Aj)| exp(Im(X;)pr)- (7.25)
j=1 n=1

Then,

H | @ = Dixit 000G v(o + 0nsy + 00+ o) dyH
Hs(Ap,)

< Ca(J*, N)min(6a) "7 (T) [[ell 2 L)
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Now, using the truncated Green’s function from (7.16), the definition of p,q, and the Cauchy-
Schwarz inequality, for r > 1/2 and s > 3/2 we have

H/ (I = Qo )Gy N (4 01,y + 00) X7 (y + 00)]0(y) dy

L2(Apy)
J* 2N+1

<CZ Z |Sn — 0, A )‘

j=1 n=1

g;(fw\j)/ (Qcay — 1) [97 (. A))] (y) dy

Pe

L2(Apy)
J* 2N+1

SCZ Z |Sn(0k - 0€7>‘j)‘ ||g/:($’>\j)||L2(Apk) H(QCz,y - I) [gz_(ya)‘])] HL2(A,,£) ”QDHL?(AM)

j=1 n=1
J* 2N+1
<SCY 0 D Isulok = og, Ag)l exp(Im(Xy)pe) (min(G2) =775 exp(Im (X)) @l paa, )

j=1 n=1
< Cs(J*, N)(J*)* min(C2) ™" [loll 12 (a

Pz).

Plugging all together, we see

||(’C§€«, ICJ* Ngl,gz)%@HIﬂ(A )
< Cy(J*, N)()* [min(Ca) ™)+ min(Ca) ™7l aga

where the constant Cj5 is defined in (7.25). Next, Lemma 7.2.1 yields

I (KM = K55 N) @llzza,,)
< O (exp(=0in ) + N + (1) [min(¢) 07 4+ min(Ca) "] ) plliaa,, -

for J* > J4+1,N > No(Aj+,0maz) and v € (0,1). Combining the last estimates finishes the proof.
O

Now we introduce the discretization parameter ¢ = ({1, ...,{r). Following the definition of the
linear subspace of L%(A,, ) for basis functions in (5.5), we introduce a finite dimensional product
space

L
T = © 1, (Ape)-

Thus, we can now define the interpolation operator

Qq : HO — TC’ ch = (chul, ---aQCLUL)T-

We moreover introduce for ¢* = ({7, ...,{}.) a L x L matrix

Vou e ]Ccllé,N,q,Cz
KJ*JV,C* = . .
KL NCECr V.
Finally, we obtain the collocation method of the spectral/multipole discretization (7.2): Find
u¢ € T solving

2

we — Ky N Qe [T ((ZQ . q) ° uc] =Qf. (7.26)

Next, we analyze the discrete scheme (7.26). Due to Section 5.3, we already know this scheme in
the case L = 1, i.e., we basically know what happens for the diagonal terms (see Lemma 5.3.3).
In consequence, we look now on the off-diagonal terms.
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For given Fourier coefficients ¢ of ¢ € T¢,(A,,), we compute the Fourier coefficients of
KCRE N.cu.co - Due to (7.19), for simplicity, for k, ¢ =1,...,L, j =1,..,J" and n = 1,..,2N + 1,
we denote

an = Q¢ [k (@ + 0r) s (w3) [ (2, 47)] € T, (A,), and
(ng Q(:e [XZ($+05)¢j3($3)f (x Aj )] € TCe(Apz)ﬂ

and by Bin » we denote the corresponding Fourier coefficients. Note that b* is a column vector
with length corresponding to the dimension of T¢, (A,, ). For simplicity, we denote this dimension
by Ji.. Related to the Fourier coefficients we consider the matrix Bi- € C/"@N+1DxJk containing
the vectors b* as rows by,

b:t

P
1,2,k b

+ _ |7+ I+ 7+ 7+
Bk =|b 1,2N+1,k b2,1,k~ b2,2N+1,k bJ*,2N+1,k

1,1,k

We point out that B,f needs JipJ*(2N + 1) complex numbers to store, where 2N + 1 denotes the
truncation index of the diagonal approximation of the Hankel function defined in Corollary 7.1.6
and J* denotes the number of positive eigenvalues.

Furthermore, we denote for k, £ =1,...,L, j = 1,..., J* the vector S, € C/ CN+1)

Ske = [s1(0k — 04, A1), 52(0k — 02, A1), .., Son 41 (08 — 00, A1),
s1(ox — 00, X2), 52(0k — 00, A2), .oy SaN4+1(0k — 02, X2), ..y 51(0k — 02, A7),

sa(or — 04, N7), ..., san41(0k — 0g, A})}T.

Note that Si¢ needs J*(2N + 1) complex numbers to store. Plugging all together, we obtain for
k4=1,..,L j=1,...,J*andn=1,....,2N + 1 that

o —

(’C%,N,gk,gﬁo) = (BJZ)T[SM L d (B; (@(J))Jezgk)] (7-27)

We point out that the computation of the Fourier coefficients of ’Cké,N’Ck’QQO takes O(J*N(TF+T;
matrix-vector operations. We further note that we have to store (Ji +J¢ +1)J*(2N + 1) complex
entries, due to the dimensions of Sie, and Bff.

To abbreviate the notation we now denote

. L . 3xL
min(¢) = ISkSIg,IIHSESL Che for ¢ € R°*~.
Theorem 7.2.3. We assume that Assumption 7.1.2 holds, i.e. T~ (q/c*) € H® for s > 3/2,
that Assumption 4.2.11 holds, i.e. the source problem (4.34) is uniquely solvable such that the
Lippmann-Schwinger integral equation is also uniquely solvable, and that Assumption 7.1.7 holds,
which defines the constantv € (0,1). We consider for s > 3/2 that f € H® and chooser € (1/2,5).
For ¢ € N3*L ¢ > ¢* and if J*, N > No(Aj+, Omaz), min(¢), min(¢*) are large enough, then
there is a unique solution u¢ € T¢ of the discrete problem (7.26). Further, it holds for arbitrary
r>1/2,r>s>0 that

e —ullre < 1(@Qc — D) fllare
+ (exp(—émmJ*) + 7N 4 (J*)* min(C*)f(sz) +min(§)7(5*”>
17 [ (3], + 1710

Proof. Due to the Assumptions 4.2.11 and Theorem 4.5.5 the periodized Lippmann-Schwinger
equation (4.67) is uniquely solvable in L?*(A,) for any right-hand side, too. Thus, the unique
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solvability of the periodized Lippmann-Schwinger equation implies existence and uniqueness of
the system of integral equation (7.2).

If f € H® and if Assumption 7.1.2 holds, then the solution w € H to (7.2) belongs to H**+?2
by Theorem 5.3.4 a). Using the estimate from Corollary 5.3.2 we obtain the following estimate
for the difference of the diagonal terms of IC and IC s+ n ¢+Q¢: For v € H® and 3/2 < s < 2,

00 w? w?
oo () - ke ([ ()] )|
¢ ¢ He(A,,)
2 2
o (50) ) e [ ()

1 (I = Q) [T[ (i;w) W}

<Cw?min(¢,)~ (s=r)

M=

Il
-

M-

’Hs(Apn

Il
_

ﬁ%h

Ho(Ap,)

1 PO CI PV

Moreover, we deduce that

L " w2 w?
S L1 (o (S o) o 1 (7 (S50 ) |
¢ ¢ (H*(Apy)—H*(Ap,))

=1
< Cw?min(¢)~ ¢ ‘T‘ (%)HH (7.28)

Now, we consider the off-diagonal terms in the operator matrices IC and K j« n ¢«Q¢, and note
that Theorem 7.2.2 implies that for v = (vy,...,vr) € H*® and ¢ > ¢* there holds

Z KT, w—2 — (K T L‘ﬁ
e \ Tz ) v (K Ne)ieQe, | Ty e | ve

1<k#(<L o
, 2
< Z jckt (TZ <C2q€) ’U£> - IC%,N&LCZ |:Te <02CI£> UZ}
= Hs(Ap,)

+ ‘ K5 nerer (I = Qc,) {T[ <L§22ql> W}
<Cw? Z [exp(—&nmfk) + J N + (J*)Smin(C*)_(s_T)} HT_ (%)HHS V]| £

1<k#£6<L
T () . Nl

< [exp(—éminJ*) + 75N 4+ (J*)* min(¢*) "G +min(C)_(s_’")} HT‘ (%) HH V]| g

Reformulating the latter estimate as an estimate for the off-diagonal terms of I — IC and I —
K+ N+ Q¢ equation (7.28) yields that for 3/2 < s < 2, there holds

Ha k) <T— (“ . q) . ) (= Ko )Qc [T‘ (“’ . q) . ] HHMH&

< C [exp(=bmind*) + TN + (J) min(¢*) "¢~ + min(¢) =] HT‘ (%) HH

Hs(Apy,)

+ min(()_(s_T)

Now, the same arguments as in the proof of Theorems 5.3.4 and 5.3.6 show that the discrete
problem (7.26) is uniquely solvable for min(¢*) and min(¢) large enough, and if J* and N are
large enough. The indicated error estimate follows as well as in Theorem 5.3.4 b),

luc = ullz < 11(@Qc = )flla
* * *\S s *\—(s—r : —(s—r — q
+ [exp(=dmin ) + I VN + (1) min(¢*) "7 +min() ] |77 (L)l
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for 3/2 < s < 2, since ||u|g. is bounded by

-(4q
7= (&)l * 10
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Appendix A

Auxiliary Results

This section provides useful identities and estimates for Bessel and Hankel functions. We further
introduce estimates for exponential functions. Moreover, we present a couple of technical proofs
for results on integral operators.

A.1 Identities and Estimates for Special Functions

We first introduce the Bessel function of the first kind and order v € N given by

:i k'y+k) ( )V+2k z € R.

k=0

We know that for v € N it holds J, € C*°(R) and J,(0) = J,(0) = 0. Furthermore, we denote
the Bessel functions of the second kind and order v € N also called Neumann functions by

2 T
Y, (x) == (ln§ + C’) g, ()
v—1 e’}
1 (v—1—=k)! fo\v—2k (—=1)F vtk
T (Z (3 2 (v + k). (3) ) s+ )
k=0 k=0
for all € (0,00). Here, C' denotes the Euler constant

= lim Zé‘ —Ink and he=>» 070 (k=1,2,.),

k—)oo

where hy = 0. We point out that for > 0 the Bessel functions Y, (z) and J,(x) are real-valued.
Moreover, the Bessel function of third kind and order v are defined by

HV(2) = J,(2) + iV (2) and HP (2) = J,(2) — iV (2). (A1)

v

For a sufficiently smooth function ¢ the Hankel function of kind one is given by

H{V(p(2)) = Ju((2) + i¥a(0(2)).

Lemma A.1.1. For the Bessel function and the Neumann function it holds that

Tl D(A() = T (D((2) — — .
and 5
RN Yo(0(2) = (e(DVi () + —.

145
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For completeness we introduce the Bessel function of first kind and order v with imaginary
argument by I,. In consequence, for v € N, Re(z) = 0 and I'm(z) > 0 we see that

Ju(z) = I,(2).

Furthermore, the Hankel function of first kind and order v with imaginary argument is defined by
K?. In particular, for v € N, Re(z) = 0 and I'm(z) > 0 we see that

HY2)=K¥12), k=12

Due to [AS64, Eq. 9.6.3, Eq. 9.6.4] and [JZ07, 8.407] we know that for —7 < argz < 7/2 it holds
for v € N, Re(z) = 0 and Im(z) > 0 that

I,(2) = exp (-éﬁ) T, (i2), (A2)
and

K, (z) = %Wexp (;ﬁ) HW (i2). (A.3)

In consequence, we have for v = 0,1 the relation
Wy — 2 Wiy — 2
Hy /' (iz) = —Ko(2) and H 7 (iz) = —=K1(2). (A.4)
i T

Now, we discuss the derivative of the Hankel function. Using [Wat95, Chapter 3.60.9], we
obtain for z € C' and z away from zero the identity

1d

1 1
; deeHl( )(z) = zzHl( )(z) (A.5)

Moreover, due to [AS64, Equation 9.1.27] we compute for a sufficiently smooth function ¢ that it

holds 5
5.0 (0(2) = —H{" () ¢ (2). (A.6)
and
9 L)

21D () = B (p(2) ¢~ 2B (0(2),

Then, due to [AS64, Equation 9.6.27], we obtain for the derivative of the modified Bessel function
with imaginary argument that

2 ED(0(2) = KD (p() ¢ 2, (A7)

where ¢ is a sufficiently smooth function. We now introduce the following characterizations, which
can be found in [AS64].

Lemma A.1.2. For fized v and |z| — oo the Bessel function converges to

J(2) = \/2/(r2){cos(z — vr/2 — 7 /4)} for (Jarg z| < ),
the Neumann function converges to

Y, = /2/(7z){sin(z — vr/2 — w/4)} for (|arg z| < ),
and the Hankel function converges to

HV(2) = \/2/(mz) exp(i(z — v /2 — 7/4)) for (—m < argz < 2m).
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Lemma A.1.3. Let 7,7 € R? and 6 denotes the angle between & and §j. Then holds for A € C\{0}
that

HY =S HO W)L i) exp(ivd),  E=i+§l3 > 5. (AS8)
VEZL

Proof. We use the addition theorem from [CK13, Equation 3.88] given by
HEY Nz = gl) = Ho(Mz)) Jo (A7) + 2 Z HV(AE]) T, (Ag]) cos(v0),
v=1

where |z| > |y| and 0 denotes the angle between & and §. Then using the technique from [LS12,
Chapter 5.12] to obtain

Ho(\z)Jo(M|g]) + 2 ZH,EU(M [)J, (A|g]) cos(v6) ZH(I) Jy(Ag|) exp(iv(0z — 0y),
v=1 veZL
This finishes the proof. O

For more details of Bessel and Hankel functions in scattering we refer the reader to [CK13,
Chapter 3.4] and [SV02, Chapter 2], however, the collections [AS64], [JZ07] and [Wat95] give
more concise treatments of Bessel and Hankel functions properties.

A.2 Identities and Estimates for Integral Operators

The next few lemmas give us estimates for integrals of exponential functions.

Lemma A.2.1. For xy € [—p,p| and u > 0 where p > 0 there holds

<C,
L2([~p,p])

P
H/ pexp(—plrr —yi|) dys
—p

where C' > 0 is independent of u > 0.
Proof. We use for simplicity ¢ = |A;| and 2} = pzy and y} = py1. Consequently,

P PH dyl
pexp(—plrr —y1]) dyr = pexp(—|zy —vil/2) — m

—p —pp

_ / " exp(— (@ — 9)/2) dys + / " exp(— () — 2)/2) dys.

—pp z1

By integration we deduce
P
/ pexp(—pley — yi|) dyr = 2 [exp(— (2} —1)/2)]7,,, = 2exp(—(y) — =7)/2)]7)

—p
=4 —2exp(—21/2 — pu/2) — 2exp(—pp/2 + 2 /2).

Now, we see

ph . dz;
/ 4= 2exp(=at/2 = pn/2) = 2expl—pi/2 + 1 /2)] -

—pp
1
=, [+ 2exp(—a'/2 — pu/2) — 2exp(—pp/2 + x1/2)]”

=8pp +4dexp(—pu) —4 < C,
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148
for some C > 0 independent of p > 0. Then,

P
H/ pexp(—plzr — y1) dya <C,
—-p

L2([~p,p])
O

where C' > 0 independent of p. This estimate finals the proof.
Moreover, due to [JZ07, 8.432.8] we get the integral representation
t \v—1/2
) dt (A.9)

K, (zz) = \/ZW /000 exp(—at)tV~1/? (1 + 2

for |arg z| < m,Rev > —1,2 > 0.
Lemma A.2.2. Recall that A, = (—p,p)™ . Forj € A, and 0 < a < 2 it holds that

1 2
P < (Cj)>,  jeN

———dr <
/B@,cj) [z —gl* 2-a

where ¢ > 0 is independent of j and p and C independent of j.

Proof. We have
1 1
[ S S
B(#,¢j) |z — g B(0,C5) |Z|

for some C' > 0 independent of j. By converting of Cartesian coordinates into polar coordinates,

we obtain that
1 i
dz = 277/ r~%rdr.
0

/B(O,Cj) |Z[

We point out that, the integral on the left-hand-side is only defined for o > 0 and the integral on
the right hand-side holds only for o < 2. Next by integration we see

27 /Cj r~%rdr =2m [ L rza] - S (Cj)>, (j €N).
0 2 -« 0 2 -«
O
Lemma A.2.3. Fory € Ap and if j > 2p it holds that
[ few(- i< T2 Gem,
AL, 2 jexp(jp) J

where ¢ > 0.
Proof. We first convert Cartesian coordinates into polar coordinates. Then, for j > 2p we have

s~ 2p .
/ ) exp (—M)‘da?g%r/ r exp (—jr)‘ dr.
R\Aeys 2 c/j 2
Next, due to partial integration we have

2p
2 /
c/j

dr

jr 4w ir\1*  2m [? jr

rexp | —5 dr = 7 rexp | = —7 ) exp | =5

c/j c/J
87rpe (—ip) 47re (0) 4m [e ( jr)]z”

= — eXpl— — — X = | — —= X —_— .

7P — e (5) - 7 e | =G .,
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Now, one computes that

2p
2T /
c/j

gr 8mp . 47 c 47 . 47 c
rexp|—= || dr= 5 exp(—jp) — 7 exp (7) — 7 exp(—pj) + 7 exp (5)

A7 [ 1}
= 0 2P - = -
Jjexp(ip) J

Lemma A.2.4. For g € 1~\p and if j > 2p it holds that
, Jia =\|x . 1 .
e (= 41a—gl)|az < arexp(—p) |20 <] (GEN),
ANA,; J

where ¢ > 0.
The proof follows directly from Lemma A.2.3.

Lemma A.2.5. Fory € ]\p and if j > 2p it holds that
4 1

jliﬂl)‘ . { ] 4w ‘
exp| ———||de < —— |2p— = | + —= jeN).
/Ap ( 2 jepGp) |G T2 ( )

Proof. We first convert Cartesian coordinates into polar coordinates. Then, for j > 2p we have

s~ 2p .
/ exp (M) ‘ dz < 27r/ r exp (‘W>‘ dr.
A 2 0 2

Therefore, using partial integration, we see

2 r Ar s\ 2 [ jr
s rexp| —— || dr=—|rexp | ——= - lexp | =5 ) |dr
0 2 J 2 /1 J Jo 2
8mp 47 2

P

Moreover, one computes that

2p
2T /
0

gr 8mp . 4 . 4
T exp (—)‘ dr = ——exp(—jp) — — exp(—jp) + —
J J J
 4r {2 1] 4w
jexp(jp)

Lemma A.2.6. For g€ 1~\p and if 7 > 2p it holds that

[ e (= 3la i) gz < amexpi-in) [20- 1| + 2T Gem,

where C > 0.

The proof follows directly from Lemma A.2.5.
Finally, the following lemma introduces an integral identity.
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Lemma A.2.7. Consider for N € N and f € L*(AR) the truncated series
N H
N = Z%(l"z)/ 0 (y2)V; f (-, y2) dya,
=1 0
where V;j : L*([—R, R]) — L*([—R, R]) denotes the integral operator from (4.6),

fn—)/ —exp (iAjlz1 = y1l) f(y1) dya, JjeN
5y

Then for R > 0 it holds that

A’U]\ﬂﬂ +

( UN¢dl‘— / F(@1,+), 05) 02 (0,1)@5 (22)Y dz, Y € C3°(AR).
AR AR j=1

Proof. Using the definition of V;, we first see

2

Avnty) + ——vntp dx
AR ( )
_t ' / <8x1 / / exp(iA; |$1 |) J(y1, y2)dy ¢j(y2)dy2] 1/J1($1)> ¢j($2)¢2($2) dx
. N ]
+ % /A /A Z )‘?(bj (w2)0; (yz)exp(l)\jl)\x'l ) f(y) dyy(z) dx. (A.10)
RYAR j=1 J

We point out that since the sum is finite we can interchange the sum integral. Next, for simplicity
we substitute z; = 1 — y; and we define

exp(idj|1])

(I)(Zl) = )\j

Then, we have the convolution

R 3 . —
(@ * f)(21,92) = / exp(%)\JLﬂﬁ y1|)f(ylay2) dyi,
-R j

where * denotes the convolution operator. We derive the function ® in z;-direction and we deduce

0P 0%®
o i sgn(z1) exp(iXj|z1]) and el = 2idy — A7

in the sense of distributions, see [Wal94]. Consequently, by derivation in x;-direction of the
convolution operator it follows that

0? 62
(B * f) = « f==X3(®x f)+2if.
22
The last equation implies for the part of the derivation in z; direction in (A.10) that

82 H
6%/0

N

R
Z/R [Al exp(iA;|ay yll)f(yl,yz)} dy1 ¢5(y2) | dy2
g=17 R

i N N H
=3 Z/ Aj exp(idjlzr — ya|) f(y) 85 (y2) dy — Z/ f(@1,92) 95 (y2) dyo.
j=17Ar j=170



We insert this in (A.10) and obtain that

OJZ

N
s Avnt + mleﬂ dr = — /AR ;(f(%, ')v ¢j)L2(0,H)¢j(9U2)¢ dr.

This ends the proof.
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