DISSERTATION

CLAAS ARLRICHS

Development and Evaluation of Al-based
Parkinson’s Disease Related Motor
Symptom Detection Algorithms

A Thesis submitted to
Faculty 3 of University Bremen
in (Partial) Fulfillment of the Requirements of the
Degree of

Doktor-Ingenieur
(Dr.-Ing.)

Claas Ahlrichs
Department of Computer Science
University Bremen

First Reviewer: Prof. Dr. Michael Lawo
Second Reviewer: Dr. Albert Sama

July 6, 2015

Preface

This is the work of a computer scientist, not a medical professional. This state-
ment is not meant to have an impact on quality and dedication with which
this research has been conducted. However, it is intended to affect expectations
regarding its contents and employed methods. In other words, this statement
serves as a reminder that you, as a reader, may come from a very different back-
ground and your expectations may be very different depending on your partic-
ular field of expertise. Here, machine learning (ML) and artificial intelligence
(AI) methods are more evident than biological or neurological methodologies.
Having said this, I sincerely hope that you enjoy the results of this work and
fruits of my labor.

ii

Abstract

Parkinson’s Disease (PD) is a chronic, progressive, neurodegenerative disor-
der [12,45,69,73,146] that is typically characterized by a loss of (motor) function,
increased slowness and rigidity. It is generally attributed to elderly people and is
rarely diagnosed before the age of 40. Despite radical advancements in medicine
since its discovery, reason and cause of PD remain unknown [44, 69, 83, 146].
Thus, most treatments aim at reducing severity and frequency of motor com-
plications. Treatments are yet to be found and shown to cure or even slow the
progression of PD. Due to the lack of feasible biomarkers, progression cannot
easily be quantified with objective measures. For the same reason, neurologists
have to revert to monitoring of (motor) symptoms (i.e. by means of subjective
and often inaccurate patient diaries) in order to evaluate a medication’s effec-
tiveness. Replacing or supplementing these diaries with an automatic and ob-
jective assessment of symptoms and side effects could drastically reduce manual
efforts (by patients as well as neurologists) and potentially help in personalizing
and improving medication regime. In turn, appearance of symptoms could be
reduced and the patient’s quality of life increased.

This work presents a review of publications related to detecting several PD
motor symptoms and side effects. Building on this knowledge a set of method-
ologies for recognizing several motor deficiencies is proposed and eventually
evaluated. The proposed approach roughly consists in post processing the clas-
sification results of a support vector machine (SVM) (a supervised learning
algorithm) that has been trained to recognize a symptom (or side effect). Ac-
curacy and other measures are determined by applying the approach to a large
database (DB) with recordings from 92 patients. The resulting accuracies were
found to outperform state-of-the-art techniques in case of two symptoms (i.e.
resting tremor and freezing). However, data usage was slightly penalized. As for
dyskinesia (i.e. a side effect of some PD medications), the methodology yielded
to acceptable accuracies (above 90%) but it does heavily penalize data usage
and it does not quite reach the performance of state-of-the-art techniques.

The second part of this work focuses on a framework for data mining (DM)
applications and time series. The literature may have proposed a set of time
series frameworks for this purpose [21,22,56, 175], however, many authors still
prefer handcrafted solutions rather than utilizing a common framework. Rea-
sons for this preference include: lack of maintenance, inapplicability to the
domain or lack of flexibility and functionality. All of these complicate devel-
opment and evaluation of new algorithms. Consequently, new algorithms can
easily be published but fail to provide fundamental comparisons against an ad-
equate subset of competitive state-of-the-art techniques. This thesis highlights
the development process of a software framework that aims to nullify some of

iii

these drawbacks. The framework is constructed around the concepts of modu-
larity, reusability and configurability.

iv

Kurzdarstellung

Bei der Parkinson-Krankheit handelt es sich um eine chronische, progressive
und neurodegenerative Erkrankung [12,45,69,73,146], welche sich typischerwei-
se durch den Verlust von motorischen Fahigkeiten, zunehmender Langsamkeit
und Starrheit auszeichnet. Im Allgemeinen wird die Krankheit dlteren Menschen
zugeschrieben und wird selten vor dem vierzigsten Lebensjahr diagnostiziert.
Trotz enormer medizinischer Fortschritte seit dem Bekanntwerden der Krank-
heit bleiben Ursache und Grund weiterhin unbekannt [44, 69, 83, 146]. Dem-
nach sind die meisten Behandlungen darauf ausgerichtet, Stdrke und Haufigkeit
von motorischen Komplikationen zu verringern. Leider gibt es keine Chance
auf eine Genesung beziehungsweise darauf den Krankheitsverlauf zu verlang-
samen. Durch fehlende Biomarker und Indikatoren kann das Fortschreiten der
Krankheit nur schwierig quantifiziert werden. Daher sind Neurologen dazu ge-
zwungen auf die Kontrolle und Beobachtung von (motorischen) Symptomen
zuriickzugreifen (dies geschieht hiufig in Form von subjektiven und ungenau-
en Patiententagebiichern) um die Wirkung der Medikamentierung zu bewerten.
Das Ersetzen bzw. Ergéinzen dieser Tagebiicher mit einer automatischen und
objektiven Erhebung von Symptomen und Nebenwirkungen kénnte manuelle
Bemiihungen (sowohl von Patienten als auch von Neurologen) verringern. Des
Weiteren konnte dies zu einer Verbesserung der Medikamentierungen fiithren
und damit auch zu einem verminderten Auftreten von Symptomen. Im gleichen
Schritt wiirde die Lebensqualitét von Patienten verbessert werden.

Diese Arbeit stellt eine Reihe von Veroffentlichungen mit Bezug zu verschie-
denen (motorischen) Parkinson-Symptomen und Seiteneffekten vor. Auf diesem
Wissen aufbauend, werden Vorgehensweisen zur Erkennung solcher motorischer
Schwichen vorgestellt und schliefflich evaluiert. Die Herangehensweise basiert
im Kern auf der Nachverarbeitung von Klassifikationergebnissen einer Support
Vector Machine (SVM) (einem Verfahren aus dem Bereich des tiberwachten Ler-
nens). Die SVM wird darauf trainiert (oder angelernt) motorische Symptome
und Seiteneffekte wieder zuerkennen. Im weiteren Verlauf werden die Klassifi-
kationen der SVM zusammengefasst und im Rahmen einer so genannten Meta-
Analyse verwertet. Die Auswertung der Methode geschieht anhand einer grofien
Datenbank mit Aufzeichnungen von 92 Patienten. Bei der Erkennung von zwei
Symptomen (d.h. Tremor und akinetischen Phasen) iibertrafen die daraus re-
sultierenden Ergebnisse aktuelle Veroffentlichungen. Allerdings fiihrte das Ver-
fahren zu einer (wenn auch akzeptablen) Verringerung der Datennutzung. In
Sachen Dyskinesie (d.h. eine Nebenwirkung von manchen Medikamentierungen)
fithrte das Verfahren zwar zu akzeptablen Ergebnissen (iiber 90% Genauigkeit)
aber die Datennutzung wurde stark verkleinert und die Leistungen aktueller
Veroffentlichungen konnten nicht ganz erreicht werden.

Der zweite Teil dieser Arbeit konzentriert sich auf ein Software-Rahmenwerk
fiir Anwendungen im Bereich von Zeitreihen und Data Mining. Zwar wurden in
der Literatur einige solcher Rahmenwerke bereits vorgestellt [21,22,56,175], al-
lerdings ziehen viele Autoren eigensténdige Losungsansitze dem Einsatz dieser
Rahmenwerke vor. Griinde fiir diese Abneigung sind unter anderem fehlende
Wartung (bzw. Instandhaltung), Unbrauchbarkeit im Bezug zum Anwendungs-
feld (Rahmenwerk ist auf ein anderes Feld ausgelegt) oder einfach fehlende Fle-
xibilitdt und Funktionalitéit. All dies erschwert die Entwicklung und Bewertung
von neuen Algorithmen. Aus diesem Grund kann es leicht vorkommen, dass
neue Verfahren verdffentlicht werden, es aber nur Vergleiche und Auswertun-
gen mit einer ungeniigenden Auswahl von konkurrierenden Verfahren gibt. Die-
se Arbeit hebt den Entwicklungsprozess eines Software-Rahmenwerkes hervor,
welches zum Ziel hat einige dieser Nachteile aufzuheben. Das Rahmenwerk ist
mit Hinblick auf Konzepte wie Modularitit, Wiederverwendbarkeit und Konfi-
gurierbarkeit angelegt.

vi

Acknowledgment

Having worked on this thesis for the past three years, I came to realize that it
is not an easy task to acknowledge all those people that deserve to be named
here. For agreeing to be my supervisor, supporting this work and helping me
to manoeuvre all the way to the end of it, I thank Prof. Dr. Michael Lawo. For
his constant feedback and countless productive discussions, I deeply thank my
personal friend and supervisor Dr. Albert Sama. For accepting me as a contrib-
utor and doctoral candidate, I thank the REMPARK project and its consortium
members. For having endured me over past years, her creative feedback and vi-
sually pleasing contributions, I truly thank Nadine Freye. Furthermore, I would
like to thank my mother Barbel Ahlrichs and father Thomas Ahlrichs, brothers
Jan and Hauke Ahlrichs and sisters Swantje, Wibke, Lina and Rike Ahlrichs
without whom this work may very well never have been written or attempted.
T also like to express my gratitude toward Prof. Dr. Stefan Edelkamp, doctoral
candidate Galina Stoyanova and Carlos Pérez-Lopez. Last but not least, I thank
all participants (that contributed to the REMPARK database) without whom
this thesis would not have a sufficient set of data samples.

vil

viii

Contents

Preface

Abstract
Acknowledgment
Table of Contents
List of Figures
List of Tables
Listings

1 Introduction
1.1 Motivation

1.2 Research Questions
1.2.1 Scope and Limitations
1.2.2 Requirements Lo

1.3 Thesis Organization

2 A Brief Review of Parkinson’s Disease and Time Series

2.1 Definitions and Notations
2.2 Parkinson’s Disease L.
2.2.1 Symptoms.
2.2.2 Diagnosis
223 Treatment oL
2.24 Rating Scales o oo
2.3 Temporal Data Mining
2.3.1 Selection
2.3.2 Preprocessing o
2.3.3 Transformation
2.3.4 (Temporal) Data Mining
2.3.5 Interpretation oL
2.4 SUmMmMAary

ix

iii

vii

ix

xiii

xvii

xxiii

GO Ol

©

3 Related Work Regarding Symptom Detection
3.1 Frameworks for Time Series Analysis

3.1.1 Waikato Environment for Knowledge Analysis
3.1.2 Massive Online Analysis
3.1.3 Unstructured Information Management Architecture . . .
3.1.4 Framework: streams
3.1.5 Otherso
3.1.6 Summary
3.2 Identifying Parkinson’s Disease and Its Symptoms
3.2.1 Tremorat Rest
3.2.2 Bradykinesia oo
3.2.3 Akinesia / Freezing of Gait
3.2.4 Drug-Induced Dyskinesia
3.2.5 Dysarthria and Dysphagia
326 Others.
3.2.7 Summary
3.3 Parkinson’s Disease in Research Projects
331 HELP e
3.3.2 REMPARK
3.3.3 PERFORM
334 TREMOR
3.3.5 Summary
4 A Framework for Time Series Analysis
4.1 Design and Development
4.1.1 Design Challenges
4.1.2 Structure and Design of Modules
4.1.3 Flow In-between Modules
4.1.4 Data Sources and Sinks
4.1.5 Summary (of Used Design Patterns)
4.2 Extensibility
4.2.1 Adding Modules L.
4.2.2 Wrapping and Decorating Modules
4.2.3 Data Sources and Sinks
424 Linkso
4.2.5 Functions Across the Entire Graph
4.2.6 Alternative Traversal Methods
4.3 Applications and Scenarios,
4.3.1 Recognizing PD Motor Symptoms
4.3.2 Generating Trading Decisions
4.3.3 Analysis of Network Traffic
4.3.4 Quality Control of OpenStreetMap-Data
4.4 Included Modules and Algorithms
4.5 SUmMmMAaryo e
5 Database: Patients and Their Symptoms
5.1 Data Acquisition and Labeling
5.1.1 Sensors
5.1.2 Criteria and Demography
5.1.3 Protocolso

5.1.4 Testso
5.1.50 Labeling oo
5.2 Contents of Database
521 TremoratRest
5.2.2 Dyskinesia. oo
5.2.3 Bradykinesia oo oL
5.2.4 Freezingof Gait oL
5.2.5 Summary
Indication of Parkinson’s Disease Motor Symptoms
6.1 Tremor (at Rest)
6.1.1 Variation 1: Naive Approach
6.1.2 Variation 2: Aggregation
6.1.3 Variation 3: Two-Sided Aggregation
6.1.4 Further Variations
6.2 Dyskinesia o
6.2.1 Variation 1 to3: oL
6.2.2 Further Variations
6.3 Akinesia / Freezing of Gait
6.3.1 Variation 1to3:
6.4 Summaryo e e
Benchmark of Symptom Detecting Algorithms
7.1 Tremor (at Rest)
7.2 Dyskinesia L
7.3 Freezingof Gait. o
7.4 Discussion Lo
Conclusions
8.1 Conclusions
8.2 Contributions
8.3 Future Work
Appendix
A Parkinson’s Disease
Al Symptoms oL
A.2 Diagnosis and Treatment
Implementation Resources
B.1 Algorithm Samples
B.2 Framework Samples oL
B.3 Modules of Framework 0L
B4 Road-Map
Additional Results in Signifying Motor Symptoms
C.1 Tremor (at Rest), .
C.1.1 Any Tremor at Waist
C.1.2 Lower Tremor at Waist
C.1.3 Upper Tremor at Waist
C.2 Dyskinesia

xi

131
131
132
138
142
144
144
148
152
152
153
159

161
161
163
165
166

169
169
170
171

195

197
197
204

211
211
212
223
227

C.2.1 Any Dyskinesia at Waist
C.2.2 Trunk 4+ Strong Limb Dyskinesia at Waist

D Questionnaires

xii

List of Figures

1.1

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Illustrates structures of the brain related to the basal ganglia
circuit. Latter is located in the upper end of the brain stem.
The image is based on a figure which has been retrieved from
Wikimedia Commons and belongs to the public domain.

Shows the therapeutic window of PD and how its boundaries
narrow over time. This Figure is intended to indicate general
tendencies with regard to disease progression (i.e. decrease in ef-
fectiveness and narrowing of therapeutic window). These graphs
are not necessarily scaled properly, thus units on both axis have
been avoided. Areas identified by number 1 correspond to peri-
ods in ON, number 2 represents periods in OFF and number 3
highlights periods with dyskinesias.

Example of a person suffering from hypomimia or otherwise called
loss of facial expression. The masked face can be a result of
bradykinesia or related symptoms. The image has been retrieved
from Wikimedia Commons and belongs to the public domain. . .
Example of a person showing signs of micrography. PD symptoms
like bradykinesia may lead to a small, cramped handwriting. The
image has been retrieved from Wikimedia Commons and belongs
to the public domain. L.

The general flow of information and the five steps of the knowl-
edge discovery in databases (KDD) process are outlined. Note
that the actual process is not as linear as suggested by this rep-
resentation. Results may improve if steps are performed multiple
times. The image is based on a figure by Fayyad et al. [54].

Shows the body temperature of a child over a period of three days.
Note the two clear outliers below the “average” temperature line
(dashed). For more details on the values refer to Table 2.2.

Tllustrates mean and median binning if applied to body temper-
ature data samples shown in Table 2.2. The size of a bin is four,

so that a (single) bin represents measurements from an entire day.

Tllustrates the results when a 3-point central moving average
(CMA) and a simple 4-point weighted moving average (MA) are
applied to the body temperature data samples listed in Table 2.2.
Shows resampled body temperature data listed in Table 2.2. For
an easier reference, the original data samples are also included.

xiii

19

27

30

31

32

2.9

4.1

4.2

4.3
44

4.5

4.6

4.7

4.8

4.9

4.10

4.12

4.13

Illustrates min-max and z-score normalization applied to the
body temperature example from Table 2.2. The required (mini-
mum, maximum, etc.) values have been determined by searching
the entire dataset. For convenience, these values are: minimum =
35.8°C, maximum = 37.8 °C, mean = 37.1 °C, standard deviation

Illustrates the structure of the Strategy design pattern as defined
by [67, p. 349]. The relationship among ConcreteStrategy classes
and abstract Strategy is highlighted. 74
Shows the implementation of the Strategy design pattern. Here
the Processor interface and a few exemplary implementations are

highlighted. o 75
Shows the life circle of a module within the framework. 76

Shows the implementation of the Strategy design pattern in the
context of configurability. The classes ConfigurableAdapter and
Configurable are shown. 7

Shows the implementation of the Strategy design pattern for con-
straining configuration parameters. The Condition interface and
several concrete implementations are highlighted. 78
Illustrates the structure of the Observer design pattern as defined
by [57, p. 293]. The relationship among ConcreteObserver class
and abstract Observer is highlighted as well as their relationship
to ConcreteSubject and abstract Subject. 79

Shows the implementation of the Observer design pattern. Here
the Observer interface and an exemplary implementation are

highlighted.o oo 80
Illustrates the structure of the Adapter design pattern as defined
by [57, p. 157]. . 81

Shows the implementation of the Adapter design pattern as part
of the framework. Here, the interaction between various config-
uration related parts of the framework (i.e. Configuration, Con-
dition and Observer) is highlighted. 82

Ilustrates the structure of the Template Method design pattern

as defined by [57, p. 360]. The AbstractClass defines a set of
template methods as well as a set of function-specific operations.
ConcreteClass classes are meant to change the behavior of these
operations. The template methods are typically based on these
operations as well. L 83
Shows the implementation of the Template Method design pat-

tern. The Configurable Adapter class contains both function-specific
methods (i.e. getParameter, setParameter and getParameters)

and template methods (e.g. getBoolean, setBoolean, etc.). 84

Ilustrates the structure of the Decorator design pattern as de-
fined by [57, p. 196]. The generic Component interface is shown
as well as the Decorator classes. Their relationship is highlighted. 85
Shows the implementation of the Decorator design pattern in the
framework. Several variations of the Decorator class are shown. . 86

Xiv

4.14 Shows possible structures that can be created with tree-like and
graph-like representations. Items 4 and 5 demonstrate the main
difference between both approaches. In order of appearance, the
modeling situations refer to: “single node”, “single child, single
parent”, “multiple children, single parent”, “single child, multi-
ple parents” and “cycle”. Each box represents a single module
whereas each sub-figure depicts an “atomic” modeling situation.
One can replace a box with any other modeling situation and still
have a functional structure.

4.15 Tllustrates the concept of layering graphs. Module “A” repre-
sents the entry point of the graph (i.e. data source). From there
information is passed to module “B” and “C”. Continuing this
path the information from “B” is going to reach “E” one itera-
tion before the data from “D” would (left). This is due to the
extra module and can be avoided (if wished) by grouping mod-
ules “C” and “D” into a single one (middle). Alternatively, an
extra “dummy” module could be inserted between “B” and “E”

4.16 Tlustrates the structure of the Composite design pattern as de-
fined by [57, p. 163]. The generic Component interface is shown
as well as Leaf and Composite elements (including their imple-
mentations).

4.17 Shows the implementation of the Composite design pattern. It
supports treating compositions (e.g. class CompositeNode) as
well as individual components (e.g. class PlainNode) in a homo-
GENEOUS WAY. .+ « « v v v e vt e e e e e e e

4.18 Defines the structure of the Iterator design pattern [57, p. 257].
The Aggregate and Iterator interfaces are shown as well as spe-
cializations of both. L

4.19 Tllustrates the implementation of the Iterator design pattern.
Furthermore, the adapted Iterator and Node (former Aggregate)
interfaces are shown. Concrete implementations are presented as
well. . . e

4.20 Shows realizations of the Iterator design pattern: InfiniteLevel-
Order(bottom) and OneShotLevelOrder(top).
4.21 Shows the implementation of the Strategy design pattern for link-
ing modules together. It illustrates the relationship among Link,
Configurable and concrete implementations.
4.22 Tllustrates the structure of the Visitor design pattern as defined
by [57, p. 366]. Hierarchies for Visitor and Element classes as
well as their interaction are shown.
4.23 Shows the implementation of the Visitor design pattern as part
of the framework. oL o
4.24 Shows the implementation of the Strategy design pattern for
reading and writing arbitrary data.00
4.25 Tllustrates the structure of the Bridge design pattern as defined
by [57, p. 171]. . . .

4.26 Shows the implementation of the Bridge design pattern.

XV

96

5.1

5.2

6.1

6.2

6.3

6.4

6.5
6.6

6.7

6.8

6.9

B.1

Highlights the sensor locations in relationship to a (human) skele-
ton. The wrist sensor is placed on the left hand. The waist sensor
is located near the anterior superior illiac spine (ASIS). The im-
age has been retrieved from Wikimedia Commons and belongs to
the public domain.
Illustrates the order and length of the recording sessions.

Shows the frequency spectrum of an individual with tremor and
another individual without tremor. It can be noted that during
episodes of tremor frequencies between 4 - 6 Hz are apparent (as
well as their harmonics).o
Shows the behavior of geometric mean and accuracy with unbal-
anced datasets (number of positive and negative labels diverges).
Ilustrates the results of an evaluation for varying window sizes
with respect to Parkinsonian tremor. For each window size, an
SVM has been trained on the training dataset and evaluated on
the test dataset. oL
Indicates the effect of window aggregation ¢ and threshold th on
geometric mean. The results are shown for all four conditions. . .
Shows the overall methodology for detecting tremor.
Illustrates the results of an evaluation for varying window sizes
with respect to dyskinesia. For each window size, an SVM has
been trained on the training dataset and evaluated on the test
dataset.
Indicates the effect of window aggregation ¢ and threshold th on
geometric mean. The results are shown for all four conditions. .
Illustrates the results of an evaluation for varying window sizes
with respect to freezing episodes. For each window size, an SVM
has been trained on the training dataset and evaluated on the
test dataset. oL L
Indicates the effect of window aggregation ¢ and threshold th on
geometric mean. The results are shown for all four conditions. . .

Ilustrates a possible way of implementing the algorithms pre-
sented in Chapter 6.

xvi

141
145

147

. 151

156

157

List of Tables

2.1

2.2

2.3

24

3.1

3.2

3.3

5.1

5.2

Highlights the relationship among various commonly used termi-
nology from a ML point of view. Here terms like true positive
and false positive are listed.
Lists the body temperature of a child over a period of three days.
The average temperature is 37.1°C. The numbers are represented
as time series A with a length of m = 12 and n = 3 attributes.
Shows the calculated results based on the data samples shown in
Table 2.2 for both binning methods (i.e. mean and median). . . .
Lists DM algorithms of various categories. This is not intended
to be a complete list, but rather an overview of commonly used
techniques.

Highlights the applicability of mentioned frameworks to the com-
parison criteria. Those points that are enclosed in brackets are
partially fulfilled (v' and X indicate whether the criteria closer
is to being fulfilled or not fulfilled).
Summarization of state-of-the-art publications on PD symptom
indication algorithms. For each symptom (T: tremor, B: bradyki-
nesia, F: freezing of gait (FoG), D: dyskinesia) and reference, the
employed classification techniques and utilized sensors (A: ac-
celerometer, G: gyroscope, E: electromyograph (EMG) sensor)
are highlighted. Furthermore, their results are indicated. It
should be kept in mind that the results among these papers are
not directly comparable due to employment of different datasets.
Lists several related publications. The author(s) and title of
their respective publications are highlighted. This list is intended
to supplement state-of-the-art publications (shown in Table 3.2)
with additional noteworthy and relevant papers.

Inclusion and exclusion criteria for participation in data acqui-
sition. The contents have been summarized from parts of the
REMPARK project documentation (i.e. case report form for
screening and baseline). The original document can be found
in the appendix.
Lists the amount of time (in minutes) that each patient expe-
rienced a particular symptom. Here resting tremor, dyskinesia,
bradykinesia and FoG are listed. The values were extracted from
those parts of the DB where a gold standard was available.

xvil

11

30

64

. 122

5.3

5.4

5.5

5.6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

Lists the length of recordings (in minutes) with respect to resting
tremor. The amount of time is given for combinations of sensor
location (i.e. wrist or waist), motor state (i.e. ON, OFF and
intermediate) as well as varying types of tremor (which can occur
simultaneously). These values were extracted from those parts of
the REMPARK DB for which a gold standard was available. . . 123
Lists the length of recordings (in minutes) with respect to dysk-
inesia. The amount of time is given for combinations of sensor
location (i.e. wrist or waist), motor state (i.e. ON, OFF and
intermediate) as well as varying types of dyskinesia (which can
occur simultaneously). These values were extracted from those
parts of the REMPARK DB for which a gold standard was avail-
able. . .. 124
Lists the length of recordings (in minutes) with respect to bradyki-
nesia. The amount of time is given for combinations of sensor
location (i.e. wrist or waist), motor state (i.e. ON, OFF and
intermediate) as well as varying types of bradykinesia. These
values were extracted from those parts of the REMPARK DB for
which a gold standard was available. 125
Lists the length of recordings (in minutes) with respect to FoG.
The amount of time is given for combinations of sensor location
(i.e. wrist or waist), motor state (i.e. ON, OFF and intermediate)
as well as varying types of FoG. These values were extracted from
those parts of the REMPARK DB for which a gold standard was

available. Lo 126
Lists the number of windows (before aggregation) in each dataset
that are used for signifying tremor (i.e. left hand tremor). 134
Shows the full set of features used for tremor detection. The
reduced feature set is comprised of index 1. 134

Outlines results in recognizing tremor with the naive approach
(i.e. variation one). Various measures are listed for both datasets. 138
Summarizes results in recognizing tremor with the one-sided ap-

proach (i.e. variation 2). L. 141
Summarizes results in detecting tremor with the two-sided ap-
proach (i.e. variation 3). Lo L. 143
Lists the number of windows (before aggregation) in each dataset
that are used for signifying dyskinesia (i.e. trunk dyskinesia). . . 146
Shows the full set of features used for dyskinesia detection. The
reduced feature set is solely based on index 1. 146

Outlines results in recognizing dyskinesia with the naive approach
(i.e. variation 1). Various measures are listed for both datasets. . 150
Summarizes results in recognizing dyskinesia with the one-sided

approach (i.e. variation 2). L. 151
Summarizes results in detecting dyskinesia with the two-sided
approach (i.e. variation 3). 152
Lists the number of windows (before aggregation) in each dataset
that are used for detecting FoG. 156
Shows the full set of features used for FoG detection. The reduced
feature set is comprised of index 1. 156

xviii

6.13

6.14

6.15

7.1

7.2

7.3

A1l

A2

A3

A4

A5

A6

AT

Outlines results in recognizing FoG with the naive approach (i.e.
variation 1). Various measures are listed for both datasets. . . . 157
Summarizes results in recognizing FoG with the one-sided ap-
proach (i.e. variation 2). L L. 158
Summarizes results in detecting FoG with the two-sided approach

(ie. variation 3). L 158

Summarizes results from various algorithms for detecting Parkin-
sonian tremor. Results found in Chapter 3 and Chapter 6 are
briefly summarized. “D.U.” is used as a shorthand for “data
usage”. More details can be found in Table A.4. 162

Summarizes results from various algorithms for detecting dysk-
inesia. Results found in Chapter 3 and Chapter 6 are briefly
summarized. “D.U.” is used as a shorthand for “data usage”.
More details can be found in Table A.6. 164

Summarizes results from various algorithms for detecting FoG.
Results found in Chapter 3 and Chapter 6 are briefly summarized.
“D.U.” is used as a shorthand for “data usage”. More details can
be found in Table A.5. L. 165

Lists a collection of motor symptoms that are associated with
PD. This table has been constructed based on data found in a
publication by Jankovic [73]. oL 198

Shows a set of non motor symptoms known to be associated with
PD. The contents of this table have been gathered from publica-
tions by Jankovic [73] and Hou et al. [69]. 199

Lists a series of publications related to automatic indication algo-
rithms for bradykinesia. For each paper a set of algorithm-related
points are highlighted. Various insights on the used datasets are
also given (i.e. length, number of participants, kind of activities /
tasks). It should be noted that some values (i.e. length of dataset
and results) were estimated in order to keep the rows somewhat
comparable. Whether or not the publication was referenced in
chapter “Related Work Regarding Symptom Detection” is indi-
cated by the “State of the Art” column. Fields marked by “-”
indicated that no information was given in the corresponding paper.200

Lists a series of publications related to automatic indication algo-
rithms for tremor. For more details on the column descriptions,
please refer to Table A.3. 201
Lists a series of publications related to automatic indication algo-
rithms for FoG events. For more details on the column descrip-
tions, please refer to Table A.3. 202
Lists a series of publications related to automatic indication al-
gorithms for dyskinesia. For more details on the column descrip-
tions, please refer to Table A.3. 203
United Kingdom (UK) PD Society Brain Bank’s clinical criteria
for the diagnosis of probable Parkinson’s Disease. The contents
have been reproduced based on a publication by Jankovic [73]. . 205

Xix

A.8 National Institute of Neurological Disorders and Stroke (NINDS)
diagnostic criteria for PD. The contents have been reproduced
based on a publication by Jankovic [73] and Gelb et al. [58]. . . .

A.9 Clinical diagnostic criteria for idiopathic PD. The contents have
been reproduced based on a publication by Samii et al. [146].

A.10 Proposed inclusion and exclusion criteria for deep brain stim-
ulation (DBS). The contents have been reproduced based on a
publication by Samii et al. [146].

A.11 Lists UK PD Society Brain Bank’s criteria for diagnosis of parkin-
sonian syndrome. The contents have been reproduced based on
a publication by Davie et al. [45].

A.12 Proposed diagnostic criteria for histopathologic confirmation of
PD. The contents have been reproduced based on a publication
by Gelbetal. [B8].

C.1 Lists the number of windows (before aggregation) that are used
for signifying tremor (i.e. any tremor).
C.2 Results (any-tremor-waist) for detecting tremor using the naive
approach.
C.3 Results (any-tremor-waist) for detecting tremor using the one-
sided approach.o
C.4 Results (any-tremor-waist) for detecting tremor using the two-
sided approach. Lo L oo
C.5 Lists the number of windows (before aggregation) that are used
for signifying tremor (i.e. lower tremor).
C.6 Results (lower-tremor-waist) for detecting tremor using the naive
approach.
C.7 Results (lower-tremor-waist) for detecting tremor using the one-
sided approach.o
C.8 Results (lower-tremor-waist) for detecting tremor using the two-
sided approach. o
C.9 Lists the number of windows (before aggregation) that are used
for signifying tremor (i.e. upper tremor).
C.10 Results (upper-tremor-waist) for detecting tremor using the naive
approach.
C.11 Results (upper-tremor-waist) for detecting tremor using the one-
sided approach. L
C.12 Results (upper-tremor-waist) for detecting tremor using the two-
sided approach. Lo
C.13 Lists the number of windows (before aggregation) that are used
for signifying dyskinesia (i.e. trunk dyskinesia).
C.14 Results (any-dyskinesia-waist) for detecting dyskinesia using the
naive approach. Lo Lo
C.15 Results (any-dyskinesia-waist) for detecting dyskinesia using the
one-sided approach. L.
C.16 Results (any-dyskinesia-waist) for detecting dyskinesia using two-
sided approach.
C.17 Lists the number of windows (before aggregation) that are used
for signifying dyskinesia (i.e. trunk dyskinesia).

206

C.18 Results (trunk-and-strong-limb-dyskinesia-waist) for detecting dysk-
inesia using the naive approach. 238

C.19 Results (trunk-and-strong-limb-dyskinesia-waist) for detecting dysk-
inesia using the one-sided approach. 239

C.20 Results (trunk-and-strong-limb-dyskinesia-waist) for detecting dysk-
inesia using the two-sided approach. 239

xx1

xxii

Listings

B.1

B.2

B.3

B4

B.5

B.6

B.7

B.8

Demonstrates the implementation of mean-binning using the Awk

programming language.o 211
An example of a Processor implementation. The shown example
forwards its input values. 212

An example of a DecoratorProcessor implementation. The shown
example generates statistics on the processing time that a module

TEQUITES. © « v v v v vttt e e e e e e e e e e 213
An example of a StreamHandlerImpl implementation. The shown
example provides raw access to afile. 215
An example of a DataHandler implementation. The shown ex-
ample provides access to queue.o 216

An example of a Link implementation. The shown example
demonstrates the case where one would want to filter the flow
of data between two modules. 218
An example of a Visitor implementation. The shown example
initializes all modules within a graph by calling the setUp method.220
An example of an [lterator implementation. The shown example
provides sequential access to a graph of modules in such a way
that the items are returned with respect to their depth within the
graph (i.e. shortest distance from a root). It is a level ordered
Tterator. 221

xxiii

XXiv

Chapter 1

Introduction

1.1 Motivation

This thesis focuses on development and improvement of algorithms for detect-
ing Parkinson’s Disease (PD) related symptoms in time series data. PD is a
disorder of the central nervous system resulting in a loss of motor function, in-
creased slowness and rigidity. Artificial intelligence (AI)-based techniques can
be utilized to detect symptoms such as tremor or bradykinesia for the purpose
of monitoring and treatment improvement. Those affected by PD bear a great
burden and have to cope with a rather reduced quality of life. Considering the
leading role of Germany, this is an even more pressing issue. In 2004, Germany
inhabited the largest number of people with Parkinson’s within Europe [9].

Even though it can manifest itself at any age, PD is among other diseases
(e.g. Alzheimer’s, dementia, chronic bronchitis) usually attributed to elderly
subgroups of the population. Considering demographic changes of the last
decades, the number of cases and burden of PD is expected to increase [61, p.
36]). The World Health Organization (WHO) estimates that around 5.2 million
people were suffering from PD worldwide in 2004 [101]. Depending on the es-
timating organization, Europe inhabited 1.2 [61] - 2.0 [101] million of them in
the same year.

In the early 19th century, James Parkinson first described in “An essay on
the shaking palsy” [119] six cases showing (motor) symptoms such as a shaking
hand or slowness of movement. Even after 200 years of advancements in medical
technologies, the cause of PD remains unknown [44, 69, 83, 146]. As to what
triggers the disease, it can only be speculated. Researchers are investigating
various possibilities including viruses, environmental factors, aging and genetic
causes [12,45,146], but no definitive answer can be given at this point in time. As
a consequence, people with Parkinson’s cannot be cured yet. Current treatments
aim at slowing the progression of the disease, focus on symptomatic relief and
attempt to lift the enormous burden of PD.

PD is a chronic, progressive, neurodegenerative disorder [12,45, 69, 73, 146]
which is generally characterized by a gradual loss of (motor) function (e.g. slow-
ness and rigidity). The cardinal symptoms are bradykinesia, rigidity, tremor
and postural instability [9,45,69,73,83,146, 154]. These symptoms result from
a dopamine deficiency in the substantia nigra [10], a part of the brain that is

@ Globus Pallidus

@ Putamen

() Caudate Nudleus

@ Thalamus

@ Substantia Nigra

Figure 1.1: Illustrates structures of the brain related to the basal ganglia circuit.
Latter is located in the upper end of the brain stem. The image is based on a
figure which has been retrieved from Wikimedia Commons and belongs to the
public domain.

located within the basal ganglia circuit (see Figure 1.1). Dopamine is a neu-
rotransmitter involved in movement control [10,174]. Usually by the time of
diagnosis, a great number of dopamine-producing neurons have already dimin-
ished [146].

PD is a great burden, not just for people suffering from the disease but also
for those being indirectly affected (i.e. relatives and caretakers). In an advanced
stage of the disease and without proper treatment, patients are no longer capable
of taking care of themselves. In the Global Burden of Disease (GBD) study,
the WHO rated PD to be on the same disability level as: amputated arm,
congestive heart failure, deafness, drug dependence and tuberculosis [101, p.
33]. Considering neuropsychiatric disorders, PD is after Alzheimer and Epilepsy
the third most frequent cause of death in the world [101, p. 56].

A large number of symptoms have been shown by people with Parkin-
son’s [69,73]. The most visible and easily noticeable symptoms are related
to motor functions. However, quality of life is also affected by numerous non
motor symptoms (e.g. depression, sleep disorder, cognitive / neurobehavioral
abnormalities, autonomic and gastrointestinal dysfunction) [9, 69, 73]. As the
disease progresses, symptoms change and fluctuate (i.e. some symptoms simply
disappear, while others (re-) appear), creating a unique symptomatic history
for each individual patient. Unfortunately, in an advanced stage of Parkinson’s
further (drug-induced) symptoms may become apparent. Dyskinesia is one of
these symptoms and results from a lengthy pharmacological treatment (i.e. sev-
eral years). It manifests itself as an involuntary movement of body parts (e.g.
rhythmical moving of upper body).

In order to reduce symptoms and compensate for the loss of dopamine,
patients take medication such as levodopa. In early stages of the disease, pre-
scribed medication is commonly given in pulses (e.g. pill taken every few hours).
In later stages of PD, a continuous dose of medication may be administered to
minimize symptoms. This change is commonly justified as effectiveness of these
medications decreases and “wears off” with progression of PD. This results in

reappearance of symptoms before the next dose is taken. Furthermore, the
so-called therapeutic window, in which the medication produces the desired ef-
fects, narrows. Consequently, moderate and advanced patients cycle between
states in which they can move almost normally (ON state) and in which they
show symptoms because the effects of medication have “worn off” (OFF state).
Keeping the patient in the ON state is desirable. Depending on the stage of the
disease, patients will fluctuate between both ON and OFF states several times
during the day (e.g. medium-advanced patients cycle three to four times).

Various tools and techniques exist to help and assist PD patients. Unfor-
tunately, the loss of dopamine cannot be monitored in the same way as it can
be done with other diseases such as diabetes. Here, the blood sugar can be
observed and a system can adjust the amount of required medication based on
this observation. With PD this is a difficult and invasive task because measur-
ing dopamine levels requires direct access to the brain stem. Thus most of the
PD cases can only be confirmed after death through an autopsy [58]. To coun-
teract this shortcoming, neurologists require detailed records on symptoms and
motor states. However, instead of objective measures, neurologists have to rely
on time-consuming manual and subjective measures (e.g. diaries) to improve
treatment.

A lack of reliable and objective monitoring options is one of the primary
reasons why no successful system for monitoring PD has been built so far.
Furthermore, the large amount of symptoms and the fact that these change
as the disease progresses thwart the building of such a system. Nonetheless,
some projects pursue this very goal. E.g. HELP [65] and REMPARK [133] are
two European research projects with a focus on building a system for detecting
PD symptoms (and therefore the ON or OFF state) and administer medication
accordingly.

Publications reveal a great number of techniques for automatic detection of
PD motor symptoms which employ various Al-based methods such as neural
networks (NNs) [13, 18,34, 36,37, 51, 78, 140], hidden markov models (HMMs)
[136] and support vector machines (SVMs) [18,34,122]. Depending on the
symptom and utilized sensors, various features are calculated (e.g. entropy
[18, 34, 110, 122], spectral or fractal features [13, 31, 32, 77, 111, 115, 143, 155,
162, 171]). Over time, sensor signals are analyzed and compared to known
samples of each symptom in order to recognize them. No matter whether these
AI methods are continuous or window-based, all of them can be viewed as
either data mining (DM) techniques and / or time series (analysis) algorithms.
Much literature exists that presents algorithms for detecting a single symptom
(e.g. [13,33,34,37,51,98,113,136, 161, 171]). Considering the heterogeneous
nature of symptom profiles, this is not sufficient in case of PD. Few publications
focus on detecting multiple motor symptoms (e.g. [36,122,140,143]), but even
those rarely consider enough symptoms for use in real-world scenarios. In reality,
multiple symptoms may overlap, thus increasing the chance of false negatives
and false positives.

As there is no convenient way to effectively measure dopamine levels within
the basal ganglia circuit, detection of ON-OFF state is essential for systems
like HELP [65] and REMPARK [133]. They rely on proper recognition of
PD (motor) symptoms in order to estimate the ON-OFF state. Thus, part
of this thesis focuses on improvement of detection algorithms and development
of new approaches. These efforts could provide a foundation for better monitor-

ing systems. Treatment of PD patients can be improved and burden reduced,
consequently lowering the inconveniences for everyone involved (i.e. patients,
caretakers, relatives, friends, etc.).

Unfortunately, no unified framework for time series analysis and DM applica-
tions exists that can be easily utilized for development of the above algorithms.
Instead several frameworks and libraries would have to be used which are more
or less well maintained. The development of a unified software-framework is also
part of this thesis. Such a framework can be used for a systematic evaluation
of PD symptom detection algorithms and thus providing a foundation for com-
paring different detection approaches. The framework is going to emphasize a
stream-based processing of data samples. In doing so, the software-architecture
of the framework implicitly reminds developers to implement their algorithms
in a way that processes data samples iteratively and as they become available
(i.e. online processing). Once completed, such a framework enables an easier
development and evaluation of PD detection algorithms.

To summarize, the objective of this thesis is two-fold: (primary) develop-
ment and improvement of algorithms for detecting PD related motor symptoms
and (secondary) to develop a framework for time series analysis, whereas the
algorithms of the primary objective will leverage Al-techniques.

1.2 Research Questions

This section formulates the research questions of this thesis. Furthermore, re-
quirements, scope and limitations of a striven solution are outlined.

Due to the lack of a practical option to measure dopamine levels within the
substantia nigra (basal ganglia circuit), ON-OFF state estimation is based on
detection of motor symptoms. The difficulty of not being able to directly infer
drug needs makes the development of PD monitoring systems (e.g. HELP [65],
REMPARK [133]) unnecessarily difficult. In addition, no unified framework for
time series analysis and DM applications exists which further increases devel-
opment efforts. As it has been described above, the proposed outcome of this
thesis are: to compensate the lack of a unified framework for time series analysis
and to provide algorithms for detecting various motor symptoms of PD.

In more detail, the overall goal of this thesis is to pursue and answer the
following research questions.

1. How can a time series be represented? What is an adequate

software-architecture for a DM and time series analysis frame-
work?
Depending on the data, a time series can be represented in different ways.
However, a unified representation is essential for a proper time series anal-
ysis framework as it greatly simplifies implementation and architectural
work. Analysis of time series can be tedious work, especially when algo-
rithms need to be (re-) implemented from scratch or adapted every time
a new data source (e.g. sensor) is added.

2. Which Parkinson’s Disease symptoms can be detected and how
can they be detected?
Considering the wide range of symptoms, those must be identified that

are likely to be recognizable with off-the-shelf sensors. Whereas a reason-
able low interaction and unobtrusiveness for use in daily life are highly
desirable. Among the countless features of sensor signals and algorithms,
that could be used to classify each symptom, representative features and
appropriate algorithms need to be identified.

3. How can published state-of-the-art techniques for detecting mo-
tor symptoms of Parkinson’s Disease be improved?
Alone, the lack of a working PD monitoring system and youth of the field
suggest that further progress is possible. As does the fact that a large
number of publications consider a single motor symptom instead of mul-
tiple ones. Many publications claim to have achieved a specificity and
sensitivity of up to 90% [34,78,114,142,182], which can still be improved.
State of the art techniques need to be reviewed. The used kinds of sensors,
extracted features from their signals and applied Al algorithms should be
identified. This can then be used to develop new and / or improved ap-
proaches.

4. How well do the new / improved approaches perform when com-
pared to state-of-the-art techniques?
Competitive algorithms need to be compared to one another. Where pos-
sible, state-of-the-art algorithms and newly developed approaches should
be evaluated (i.e. in terms of speed, number of false positives and false
negatives, online vs. offline detection, etc.).

These research questions can be seen as a guideline of what will be discussed
throughout this thesis. As may be judged from the number of questions, most
attention is devoted to improvement and development of PD motor symptom
detection algorithms. Consequently latter research questions are more impor-
tant and less effort is put into answering the first question.

1.2.1 Scope and Limitations

This thesis proposes the design and implementation of a software-framework for
time series analysis and DM with reusable modules. The framework is intended
to treat all data sources and data processing modules in a unified way. A model-
driven approach and a number of design patterns, which have been described
by Gamma et al. [57], are utilized.

Even though, the design and architecture do not suggest a specific program-
ming language nor are they restricted to a specific one, the implementation is
done in Java (version 1.7). This limits the potential working environments to
those operating systems and devices supporting Java. However, future releases
might target different programming languages such as C++, Objective-C or
.Net programming environment. Thus supporting further devices and operat-
ing systems.

The second part of the thesis focuses on improvement and development of
PD related motor symptom detection algorithms. Due to the wide variety of PD
symptoms, only motor symptoms are taken into consideration. The development
will be done with respect to the state-of-the-art, knowledge about the symptoms
as well as labeled sensor signals of several PD patients that show a variety of
symptoms and that have been diagnosed with PD. The development of the

algorithms may be considered to have acceptable results if both sensitivity and
specificity are above 80%. For the final algorithms, a threshold of at least 90%
is expected to be reached.

In general, it is the idea to provide neurologists with information (e.g. motor
state or symptoms) which can then be used to make educated decisions to
improve and personalize treatments. However, this thesis merely develops the
tools and algorithms to support this scenario. The evaluation of these tools and
algorithms is done with real data from PD patients, but they are not validated
in a clinical setting.

1.2.2 Requirements

All requirements in this section have been derived from the above mentioned
research questions. For easier affiliation, they have been grouped by research
topic. The anticipated answers will be viewed in the light of these requirements.

The following requirements are related to the software-architecture of the
time series analysis framework that is developed in Chapter 4. Here, the general
idea is to implicitly promote online and modularized analysis in stream-based
data.

e Stream-based:
The framework is expected to highlight a stream-based processing ap-
proach. By doing so the framework reminds application developers that
a definitive start or end of data may not always be known. Instead, an
online analysis for each data sample is implicitly suggested.

e Iterative:
Each data sample is read, possibly transformed and processed on its own.
A module within the framework accepts individual data samples or a bulk
of them and processes them one after another.

e Scalability:
Samples in data streams are not necessarily limited to a few hundreds
or thousands, but may in fact be several million samples long (or even
infinite). A framework for stream-based analysis must be able to cope with
such diversity. Not all algorithms in the framework are required to adhere
and handle such quantities, but the framework in itself certainly has to
provide the means to handle a potentially infinite stream of information.

¢ Flexibility:
The flow of data, from one module to another module, must not neces-
sarily be static. Although in many cases a static (unchanging) flow of
information is sufficient, there are expectations in which a more flexible
way (i.e. conditional branching) can be beneficial. E.g. incoming data
does not have a statically predefined format and may vary. Depending on
the variation, a separate module may be utilized to process the received
data.

e Reusability:
The reusability of framework components and modules is essential. Use of
design patterns [57] and unified interfaces for modules and their parame-
terization is intended.

¢ Extensibility:
The striven time series analysis framework must be expandable in the sense

that adding new data sources and algorithms (i.e. adding new modules)
is not cumbersome. The cost of adding a new module must be weighted
against the usability of the rest of the framework. The frequency of adding
a new module should also be taken into account.

e Support for distribution:
A potential distribution of framework modules and components across
multiple threads, processes or devices is desirable.

Analogous, the remaining items are related to the algorithms for detecting
symptoms related to PD.

e State of the art:
The implementation of modules for newly developed algorithms and / or
improved approaches must be compared to state-of-the-art implementa-
tions.

¢ Real-time:
The algorithms should be able to provide results in real-time, where real-
time means that all required sensor signals can be either processed online
and provide results either continuously or at appropriate intervals (e.g.
every second, 10 seconds, etc.).

e Portability:
It is desirable to provide algorithms that could (at least in principle) run
on less computational capable devices such as mobile phones (e.g. Android
devices) or wearables.

e Sensors:
Data signals are to be retrieved from body-mounted sensors. In the spirit
of portability and wearable computing, the data sources should be ideally
placed as close as possible to the symptoms’ origin, rather than having
camera recordings of patients or other external measurements.

It should be kept in mind that these requirements merely present an outline.
A number of (sub-) problems and constraints are connected to each of them. All
requirements will be referred to in their corresponding chapters (mainly Chapter
4 for the framework and Chapter 6 for the algorithms).

1.3 Thesis Organization
The remaining chapters are organized as described in the following.

e Chapter 2 ‘A Brief Review of Parkinson’s Disease and Time Se-
ries’: Presents background information on the two main topics of this
thesis: Parkinson’s Disease and time series. Symptoms, diagnosis and
treatment of PD are outlined. Several common algorithms related to time
series analysis and DM are summarized. This chapter establishes a com-
mon understanding of terminology that is used throughout the thesis.

e Chapter 3 ‘Related Work Regarding Symptom Detection’: Intro-
duces various approaches of detecting symptoms of Parkinson’s Disease.
Related projects and systems with a special focus on PD and detection
of its symptoms are shown. Additionally, a number of frameworks and
toolkits for time series analysis are summarized. This chapter answers

research question two and it provides a basis for discussing the striven
solutions to the remaining research questions.

Chapter 4 ‘A Framework for Time Series Analysis’: Shows the
development of a modular framework for DM and time series analysis.
Furthermore, a few applications and scenarios are summarized. With
respect to the requirements and related work, this chapter proposes an
answer to the first research question presented in Section 1.2.

Chapter 5 ‘Database: Patients and Their Symptoms’: Briefly
describes data acquisition and contents of the utilized database (DB).
The idea of this chapter is to get an impression on the contents of the DB.
Chapter 6 ‘Indication of Parkinson’s Disease Motor Symptoms’:
Discusses several Al-based approaches for detecting motor symptoms re-
lated to Parkinson’s Disease. In the course of this chapter, a few al-
gorithms for detecting motor symptoms of PD patients are developed.
Thus, an answer to research question three is proposed. With regard to
the requirements and related work, a solution is formulated.

Chapter 7 ‘Benchmark of Symptom Detecting Algorithms’: De-
scribes benchmarks of several symptom detecting algorithms that have
been introduced in Chapter 3 and Chapter 6. The results are highlighted
and discussed. This chapter holds an answer to the fourth research ques-
tion with respect to the requirements and related work.

Chapter 8 ‘Conclusions’: A summary of contributions made to the
research fields as well as a list of conclusions and possible directions of
future work are presented. This chapter closes the thesis.

Chapter 2

A Brief Review of
Parkinson’s Disease and

Time Series

The purpose of this chapter is to constitute a common definition and under-
standing of various terminologies and notations. Therefore, terms like Parkin-
son’s Disease (PD) and time series are going to be described in the course of
this chapter. At first, notations and definitions are introduced. This is followed
by an overview of PD and its symptoms as well as an introduction to the field
of time series analysis and data mining (DM). This chapter concludes with a
brief summary.

2.1 Definitions and Notations

This section describes a set of notations that are used throughout this work.
Furthermore, several definitions are provided. It is the intention to supplement
for potentially different notions depending on the reader’s field of origin. The
author encourages the reader to look through this section in order to verify
whether an intuitive understanding of terminology and notations is present.

In later chapters, real-world data from PD patients are analyzed and pro-
cessed. There, it will be the goal to recognize symptoms when they appear.
This is a typical classification task and assumes availability of pre-recorded and
annotated data. Part of the (annotated) data are used to train an machine
learning (ML) algorithm in recognizing these symptoms, whereas the remainder
of the (annotated) data are used to verify and evaluate the trained algorithms.
Even though, the task of classification is not the only task that is commonly
performed in a ML context (e.g. regression, outlier detection and clustering are
further examples), the following notations and definitions do focus on this task
in particular.

e Algorithm: Similar to a recipe, an algorithm includes a set of ordered
instructions to reach a predefined goal. In case of a classification task, this
could consist of all steps that are required to recognize certain symptoms

in a database (DB) of recorded signals (i.e. including all preprocessing,
application of ML techniques as well as post-processing).

Data sample (or observation): A value or a set of values that is con-
sidered to have been measured at the same instant of time. An example
would be the water depth of a harbor or the location of an remote con-
trolled (RC) plane. Without loss of generality, an observation can be
represented by a vector A; measured at time 7T; such as

A = (051,052, ..,0i) (2.1)

where A; € R*; T; € N; i,n,m € N; i,n,m > 0 and ¢ < m. Heren
defines the number of attributes within vector A; (i.e. the set’s size). a; ;
represents the j** attribute within the data sample A; (j € N;0 < j < n).
1 marks the data sample’s position in a time series A with a length of m.
T; refers to the point in time at which the observation A; was made.

Time series: A series of data samples measured over the course of time.
The data points are ideally spaced at uniform time intervals (i.e. T; —T;_4
is constant Vi € 2...m). However, this is not a requirement. An example
would be to measure water depth as flood and ebb come and go. Without
loss of generality, a time series can be modeled by the matrix such as

ai,1 ai2 ... Q1n
T a1 az2 ... dA2n

A= (A, Ay, AT = (2.2)
m,1 Am,2 --- (mn

where A4; with 0 <i <m (4; € R™;i,n,m € N;i,n,m > 0 and ¢ < m) are
the corresponding data samples within the time series A. m defines the
number of observations in the time series A and n represents the number
of attributes per data sample A;. Again, T; € N identifies the point in
time at which the measurement was done.

Sampling rate (or sampling frequency): Defines the speed with
which measurements or observations are made. Here, this corresponds
to the number of data samples A; that are observed within a second.
Without loss of generality, the sampling rate for time series A can be
represented by

S, (2.3)

B m
Y T =T
where T; € N;ji,m € N; i,m > 0 and i < m. Here, m corresponds to
the length of time series A and T; identifies the point in time at which
a data sample A; was measured. The sampling rate S,. is assumed to be
constant (e.g. if S, = 10Hz then A has a length of 50 observations after
5 seconds). In more general terms, the number of observations m (in time
series A) increases linearly with m = S, * ¢ where ¢ is the timely length of
time series A.
Dataset: A collection of time series (i.e. any number of time series).
Typically, at least two different datasets are available (i.e. one for the
training phase and another one for the testing phase).
Online Processing: Measured data samples are processed as they be-
come available. In some cases, it may be beneficial to group multiple data

10

condition positive condition negative
test positive true positive (TP), | false positive (FP),
hit false alarm, type I
error
test negative false negative (FN), | true negative (TN),
type II error correct rejection

Table 2.1: Highlights the relationship among various commonly used terminol-
ogy from a ML point of view. Here terms like true positive and false positive
are listed.

points and process them in a bulk. The group can also be considered as
a single data point, but as part of time series with a lower sampling rate.
Nevertheless, the amount of data should not add up to more than a few
seconds or minutes in the context of PD (this number depends on appli-
cation and context). Calculating a moving average (see Section 2.3.2) is
an appropriate example.

e Offline Processing: Data samples are first captured and stored for later
analysis and processing. As opposed to handling data samples as they
become available, the time difference between capturing and actual pro-
cessing is rather large (i.e. typically several hours, days or even weeks).
An example would be location data (e.g. global positioning system (GPS))
from an RC plane during a flight. There the data is first recorded and
later visualized or processed.

e Real-time: A time constraint that guarantees the availability of a re-
sponse to an input within a predefined period of time (under reasonable
conditions). The actual time interval depends on the context in which the
term is used. E.g. in real-time computer gaming the response should be
available within a fraction of a second whereas the recognition of bradyki-
nesia may well be delayed by several seconds and can still be considered
real-time.

¢ Gold standard (or ground truth): The best available labeling for a
dataset (under reasonable conditions). An example would be labels from
medical professionals which describe the occurrence of tremor at rest or
other symptoms. A less preferable (but in some cases still acceptable)
labeling would be from medical novices. Without loss of generality, the
labels for a time series A can be represented in the form of another time
series B of equal length m with A; € R™; B; € RP; i,m,n,p € N and
i,m,n,p > 0. Here m represents the length of time series A and B. 1
identifies a particular data sample or label within these time series. n and
p correspond to the number of attributes.

The described terminology should provide an idea of their meaning in the
context of this work (staying within the realm of classifying PD symptoms from
pre-recorded time series). Furthermore, a set of goodness and badness measures
is shown below. These enable assessing previously trained algorithms. A few
complementary definitions can be found in Table 2.1.

¢ Positive Predictive Value (a.k.a. precision): The percentage of cor-
rectly recognized positive labels. The precision of an algorithm in detect-

11

ing a symptom (such as resting tremor) can be described with this ratio.
It highlights the number of actually detected tremor episodes among all
the tremor episodes that were believed to have occurred by the algorithm.

TP

(2.4)

Negative Predictive Value: The percentage of correctly recognized
negative labels. In case of an algorithm for detecting resting tremor, this
highlights the number of correctly classified data samples without resting
tremor among all those data samples that were believed to show no resting
tremor.

TN

NPV(TP,FN,TN,FP) = TN 1L EN (2.5)
True Positive Rate (a.k.a. recall and sensitivity): The ratio of
correctly classified positive data samples among those that should have
been classified as positive data samples. For the previously mentioned
algorithm, this corresponds to the number of tremor episodes that were
correctly detected among those that should have been detected (i.e. not
those episodes that are just believed to be tremor episodes by the algo-
rithm). It shows how sensitive the algorithm is in picking up episodes of

tremor.
TP

TPR(TP,FN,TN,FP) = TP+ FN (2.6)
True Negative Rate (a.k.a. specificity): The ratio of correctly classi-
fied negative data samples among those that should have been classified as
negative data samples. In case of the tremor algorithm, this highlights the
number of data samples that were correctly detected to not exhibit tremor
among those data samples that should have been detected (i.e. not just
those data samples that were believed to not show signs of tremor by the
algorithm). It shows how specific the algorithm is in picking up episodes
of tremor.

TN
TN+ FP

Fall-Out: The percentage of incorrectly recognized negative data samples
among those that should have been recognized as negative data samples.
This measure basically represents the opposite of the “true negative rate”
(ie. FO = 1—TNR). For the previously mentioned algorithm, this
highlights the percentage of data samples that were detected as tremor
but should not have been classified as such.

TNR(TP,FN,TN,FP) = (2.7)

FP

(2.8)
Accuracy: The overall percentage of correctly recognized labels. In case

of the tremor algorithm, this highlights its accuracy and shows the number
of correctly detected labels within the (entire) time series.

TP +TN
ACC(TP.FN, TN, FP) = zp o o (2.9)

12

2.2 Parkinson’s Disease

PD is a chronic, progressive, neurodegenerative disorder [12,45,69,73,146] that
has been first described by James Parkinson in 1817 [119]. It affects the move-
ment of those suffering from the disease and it is typically characterized by
a loss of (motor) function, increased slowness and rigidity. Despite radical ad-
vancements in medicine and medical technology over the previous two centuries,
reason and cause of PD remain unknown [44,69,83,146]. Thus, most treatments
aim at reducing severity and frequency of motor complications. They do not
cure nor have they been shown to slow the progression of Parkinson’s. Due to
PD’s heterogeneous nature (i.e. genetic vs. non-genetic, etc.), it is not even
clear whether PD can be considered a single disease [83].

Suffering from PD is a great burden as it considerably decreases the quality
of life. This is due to a gradual loss of function and increasing disability to take
care of oneself. The World Health Organization (WHO) considers the burden of
PD to be on the same disability level as an amputated arm, drug dependency, or
suffering from congestive heart failure, deafness and tuberculosis [101]. A great
number of motor and non motor symptoms are related to the disorder (see Table
A.1 and Table A.2 in Appendix). The cardinal symptoms are bradykinesia,
rigidity, tremor and postural instability [9,45,69,73,83,146,154]. However, a
number of non motor related symptoms (e.g. sleep disturbances, depression,
psychosis, autonomic and gastrointestinal dysfunction as well as dementia) may
occur as well [45,69,73,85,146].

The disease is generally attributed to elderly people and is rarely diagnosed
before the age of 40. It is estimated that the mean age of onset is about 65
years [146]. In contrast, the prevalence is about 1.5% for people at the age of
60 or above [170]. Thus, given the aging (European) population PD is expected
to become a public health problem of increasing magnitude. Nonetheless, the
disease can manifest itself at any age and cases are known in which individuals
were in their twenties or thirties. In addition, PD is after Alzheimer and Epilepsy
the third most frequent cause of death among neuropsychiatric disorders [101, p.
56).

The WHO estimated that about 5.2 million people were suffering from PD
worldwide in 2004 [101]. In the same year, it has been estimated that 1.2
million [61] to 2.0 million [101] people were suffering from PD in Europe alone.
As the authors of “Cost of disorders of the brain in Europe 2010” [61] note, a
patient bears a yearly cost of about 11.200 Euro, which adds up to a total cost of
almost 14.000 million Euro within Europe in 2010. To set this into perspective,
Germany inhabited the second largest number of people with Parkinson’s in
the same year (highest number of subjects with PD was in Italy with close
to 240.000 people, compared to about 220.000 people in Germany). They are
followed by France and United Kingdom (UK) with 190.000 and 110.000 people
respectively. In Germany, the total cost of PD was roughly 2.800 million Euro
whereas on average each subject bore a cost of about 12.800 Euro.

Although cause and reason remain unknown, it has been shown that PD
results from a loss of dopamine-producing neurons. These neurons are located
in the substantia nigra within the basal ganglia, which can be found in the
brain stem (see Figure 1.1). Those neurons produce a neurotransmitter called
dopamine that is used by the basal ganglia circuit to control motor functions
such as movement of hands, legs, etc. In order to provoke movement this neu-

13

rotransmitter is utilized to pass messages from the brain to the corresponding
body part and its muscles. Concerning people with Parkinson’s, these messages
are not smoothly transported to the corresponding part of the body. This causes
difficulties in controlling movement, a predominant sign of PD. Planning, initi-
ating and executing movements may be affected [73]. Furthermore, it has been
shown that a link between extent of Lewy bodies (LBs) / Lewy neurites (LNs)
and clinical symptoms exists [96, 126].

Unfortunately symptoms start to appear at a stage in which a great num-
ber of dopamine-producing neurons have already diminished [83]. It has been
noted [83] that not all dopaminergic tracts are equally affected. Furthermore,
additional neurotransmitter abnormalities may also occur in PD and manifest
themselves in one or more of the previously mentioned non motor symptoms
such as depression or sleep disturbances. As to what actually triggers the de-
generation of neurons it can only be speculated. Theories include aging, ge-
netic causes, environmental exposures (such as exposure to toxic material) and
viruses [12,45,158]. For more details on the genetic landscape of PD the inter-
ested reader may want to have a look at [23].

To summarize, PD motor symptoms are mainly due to a lack of dopamine
production in the substantia nigra. As a result, the smooth transmission of mes-
sages from the brain to the muscles is thwarted. Unfortunately taking dopamine
by itself does not have the desired effect as it cannot pass the brain-blood barrier.
Thus, it cannot migrate from the blood-stream to the brain where it is needed.
However, a precursor of dopamine called levodopa resolves this issue, because
the body is able to convert it into dopamine. Thus, the supply of dopamine is
refreshed by taking levodopa and patients regain control over their movements.
Nonetheless, due to reduced dopamine production or lack thereof in the basal
ganglia the refilled dopamine does not last and motor symptoms are bound to
reappear unless another dose of medication is taken. Thus patients experience
periods of mobility and immobility.

In an early stage of the disease, these fluctuations are predictable and can
almost entirely be avoided. However, as PD progresses the desired effects of
levodopa “wear off”. Thus the effectiveness of medication has a tendency to
decrease, thus causing symptoms to reappear earlier than before [45].

With continued progression (degeneration of dopamine producing neurons)
and reduced effectiveness of medication, the only working option is to increase
the dose in the hope of rendering the patient mobile. Consequently, the dosage
needs to be adjusted from time to time. This also means that fluctuations
between periods of mobility and immobility happen more frequently as the dis-
ease progresses. As mentioned above, at first these fluctuations are predictable.
However, fluctuations become less deterministic and eventually totally unpre-
dictable (ON-OFF phenomenon) in later stages of the disease [116].

The fluctuations between periods in which individuals show almost no motor
symptoms (known as ON period) and periods in which motor symptoms are
present (known as OFF period) are a major problem for people with Parkinson’s.
Depending on the stage of the disease several fluctuations between ON and OFF
periods may occur every day (e.g. medium-advanced patients cycle three to four
times per day).

In general, ON and OFF periods can be described as follows.

e ON: While being in an ON state (i.e. patient is on medication), motor

14

symptoms are almost invisible. Usually only professionals recognize them
in an ON state. Patients report to feel fairly fluid and in control of their
movements.

e OFF: While being in an OFF state (i.e. patient is off medication), patients
may experience symptoms such as tremor, freezing of gait, bradykinesia,
etc.

Recent research investigates continuous medication intake as an option to
further optimize PD treatment. It is believed that continuous intake of med-
ication (e.g. through the means of a pump) may be more effective than use
of an impulse-based intake (e.g. in form of pills taken at regular intervals).
Impulse-based intake usually delivers a higher dose at a time than continuous
intakes would require. This makes sense as pills only last for a certain period
of time and thus need to deliver more medication in order to gap the time be-
tween the actual intakes. However there is also more medication “lost” due to
metabolism outside of effective areas. A continuous medication intake could po-
tentially help patients to maintain a constant (and healthy) level of dopamine.
Thus preventing patients from entering the OFF state. Furthermore, the overall
medication intake could potentially be reduced as well as loss of medication due
to metabolism while being just as effective or even more effective at the same
time.

Due to side effects of medication further symptoms may occur. Dyskinesia
is probably the most noticeable and certainly one of the most disabling (motor)
symptoms. It presents itself as an involuntary movement of body parts (e.g.
upper body or lower extremities) and becomes apparent after having taken an
“overdose” of dopamine. The length of dopaminergic treatment and dose have
been shown to correlate with the appearance of dyskinesia [97,148]. Thus, it
is desirable to avoid unnecessarily high doses and prolong this type of medical
treatment as long as possible.

The social implications of PD are a major problem for those that are suffering
from the disorder. During ON periods PD patients are almost indistinguishable
from healthy people. However, the appearance of freezing events (i.e. the patient
literally freezes and is unable to continue walking) or dyskinesia can be most
inconvenient and embarrassing. Reasons for such events include improperly
timed medication intake (e.g. either because a pill is not taken or the dosage
is not correct) or simply because the disorder is in an advanced stage (i.e.
medication is no longer as effective as it used to be for that particular patient).

When trying to minimize the frequency of OFF states the only working
solution is usually to increase the dose of medication. However, this is likely
to give rise to dyskinesia at some point in time. Therefore, it is a common
problem for neurologists to find a medication dose within the boundaries of the
so-called therapeutic window. In other words, they try to find a dose that is just
large enough to avoid OFF periods (lower boundary of therapeutic window) but
at the same time not large enough to provoke dyskinesia (upper boundary of
therapeutic window). A major obstacle is that the therapeutic window narrows
with disease progression (see Figure 2.1). This is because the effectiveness of
medication decreases and further dopamine neurons continue to diminish as
Parkinson’s advances.

This concludes the general introduction of PD, remaining subsections will
focus on specific aspects of the disorder. Motor and non motor symptoms as well

15

Therapeutic Effect
Therapeutic Window

(a) Initial stage of PD. The therapeutic window is relatively large
and medication lasts relatively long.

Therapeutic Effect
Therapeutic Window

(b) Medium / moderate stage of PD. Effectiveness of medication
and therapeutic window have shortened.

Therapeutic Window

Therapeutic Effect

(c) Advanced stage of PD. Therapeutic window has narrowed a
lot and medication wears off relatively soon. Dyskinesias are likely
if therapeutic window is overshot.

Figure 2.1: Shows the therapeutic window of PD and how its boundaries narrow
over time. This Figure is intended to indicate general tendencies with regard to
disease progression (i.e. decrease in effectiveness and narrowing of therapeutic
window). These graphs are not necessarily scaled properly, thus units on both
axis have been avoided. Areas identified by number 1 correspond to periods in
ON, number 2 represents periods in OFF and number 3 highlights periods with
dyskinesias.

16

as diagnosis and treatment of PD are described. Furthermore, several rating
scales regarding the state and progression of PD are presented.

For a more detailed picture on how the disorder might actually progress,
Korczyn et al. [84] provide an interesting summary on the works and theories
by Braak and colleagues [25-27].

2.2.1 Symptoms

This section highlights a number of classical motor and non motor symptoms of
PD. As mentioned above, those suffering from Parkinson’s may show a broad
range of symptoms (see Table A.1 and Table A.2 in Appendix). With advance-
ment of PD, the symptomatic profile of individual patients changes. Not only
do these symptoms fluctuate in terms of rate of progression and severity but
also in terms of appearance (i.e. symptoms may disappear while others (re-)
appear). Everyone’s experience is unique [73, 85].
In general, the symptoms can be categorized as follows.

e Motor symptoms, which are symptoms related to (any kind of) move-
ment. They include but are not limited to: tremor, rigidity, freezing
(motor blocks), falls, bradykinesia (slowness of movement) and postural
instability. Among other things, speech may also be affected.

e Non motor symptoms, which are not related to movement. These
symptoms include but are not limited to: dementia, sleep disturbances,
depression, psychosis, autonomic and gastrointestinal dysfunction.

The symptoms begin to emerge after dopamine levels within the substan-
tia nigra have reduced by around 50%-70% [45,83]. This may imply that a
“long pre-clinical state, of 20 years or more, predates the appearance of motor
symptoms” [83].

Given the nature of this thesis, most attention is devoted to motor symp-
toms. Nonetheless, the latter category is not ignored and a few common non
motor symptoms are highlighted toward the end of this section. At first, various
cardinal and classical features are described.

Cardinal And Classical Symptoms

Several cardinal and classical symptoms are listed as follows.

¢ Tremor at rest (a.k.a. rest tremor or resting tremor) is an easily recog-
nized motor symptom of PD. It manifests itself as an involuntary, unilat-
eral (one-sided) shaking of an extremity (e.g. hand, foot, etc.). In general,
extremities of the upper body are more affected then those of the lower
body [85,146]. The shaking generally occurs at a frequency between 4-6
Hz [73]. However, various different frequencies can be found in literature
(e.g. 4-8 Hz [12], 3-5 Hz [146] and 4-10 Hz [48]). Given the name tremor
at rest, the tremor is only present when muscles are at rest and dissolves
during sleep as well as with action (i.e. voluntary movement of affected
extremity) [85].
Tremor at rest is a very common symptom of PD and most people with
Parkinson’s experience a shaking or trembling of one of their hands at an
early stage of the disease [146].

17

e Rigidity is a common symptom shown in early stages of PD. Gener-
ally speaking, rigidity refers to stiffness [85] and manifests itself as an
increased resistance of limbs. Leading to a reduced flexibility of the an-
kles [85]. Rigidity may be apparent both distally (e.g. wrist and ankles)
and proximally (e.g. neck and shoulders). Interestingly, the symptom is
more prominent during mental task performances [146] and reinforcing
maneuvers at the contra-lateral limb [73,146]. It is also associated with
pain [73].

An increased rigidity may give rise to postural deformities (e.g. flexed
neck, knees or elbows). However this usually becomes apparent at later
stages of PD.

¢ Bradykinesia refers to slowness of movement [73,85]. It usually appears
in very early stages of the disease [146]. Bradykinesia is a common symp-
tom of PD and other movement disorders [73,146] and it is characteristic
for basal ganglia disorders [73]. Furthermore, bradykinesia may also be
apparent as loss of facial expression (see Figure 2.2) [45,73,85], impaired
swallowing [73, 85], cramped handwriting (see Figure 2.3) [45], reduced
blinking [73] or decreased arm swing while walking [73].

Depending on the severity, movements may not only be slowed (bradykine-
sia), but also diminished (hypokinesia) or completely abrogated (akinesia).
Often family members notice a slow performance of daily activities and
decreased reaction times before affected subjects become aware of the
symptom themselves. Thus bradykinesia may be present even before PD
has been diagnosed.

Experiments indicate a dependency between bradykinesia and emotional
state of the subject. I.e. despite being immobile, subjects who become
excited were able to free themselves and make quick movements such as
catching a ball or start running if someone screams “fire”. Thus subjects
may simply have problems to initiate or continue movement without an
external trigger but otherwise have intact motor programs [73].

e Freezing of gait (FoG) (a.k.a. freezing or motor blocks) is a form

of akinesia, which presents itself as an inability to initiate or continue
movement [73,146]. Motor blocks are a common symptom, experienced
by people with Parkinson’s (although it does not occur uniformly) and can
affect various extremities (e.g. arms and legs) as well as the face [73]. After
onset of the symptom, it typically lasts for several seconds and disappears
afterward. In severe cases, it can be apparent for several minutes.
Freezing greatly impairs the quality of life of those affected and is one of
the most disabling symptoms. It is usually not seen in early stages of PD
and it is a common cause of falls [73,146].
Freezing happens in several situations such as beginning to walk (start
hesitation), crossing a busy intersection or walking through a narrow door-
way (hesitation in tight quarters). Five subtypes of situations have been
identified: start hesitation, turn hesitation, hesitation in tight quarters,
destination hesitation and open space hesitation [73,147].

e Postural instability refers to a reduced balance [73,146]. An increasing
number of falls is a common result of this symptom [73,146]. It usually
occurs in late stages of the disease and results from a loss of (postural)
reflexes [73].

18

; V,u,'x',.' J | \:_1«_,./ =~ 7z) \ A
i NSRS i
(147 /A’,l‘.’b' (NI ™ 7)
Ryl ﬁ;l" TN ';ﬂﬁ 7

i) I l NN IN T

1 1, {\n VISV 7474

\ N4
I\ i\

} Y/ / ;' .1.“:/ 4“
W7
'\’ [l//’ f i ‘)h | [
A Y/ ’1 | l ikt Tl
W A)
/ Hl“‘\l /h}l / “{//l.(,.i. W7
! ‘\\:“ |) e 17/t f:, 3
\ / / 7/ /4/‘1 ’7_}._»‘ ,’ \‘,’\
/’ / "-\ ol
N IR N

Figure 2.2: Example of a person suffering from hypomimia or otherwise called
loss of facial expression. The masked face can be a result of bradykinesia or

related symptoms. The image has been retrieved from Wikimedia Commons
and belongs to the public domain.

;3 ﬁ ¢824

Figure 2.3: Example of a person showing signs of micrography. PD symptoms
like bradykinesia may lead to a small, cramped handwriting. The image has
been retrieved from Wikimedia Commons and belongs to the public domain.

19

In addition, several other symptoms may be apparent in people with Parkin-
son’s. E.g. areduced stride length or gait speed and falls are common. As noted
earlier, symptomatic profiles change with progression of the disease. Symptoms
fluctuate in both severity and composition resulting in a unique experience for
each patient [85].

In early stages of the disorder, further motor related symptoms such as
dysarthria, dysphagia, hypophonia and sialorrhoea [73] may also be apparent in
people afflicted with PD. Such speech disorders can be marked by word finding
problems (“tip-of-the-tongue phenomenon”), breathy speech as well as soft and
monotonous speech [73].

In medium and advanced stages, drug-induced symptoms are likely to be-
come evident. Dyskinesia is a common symptom that falls into this category. It
manifests itself as an involuntary, uncontrollable movement (that unlike resting
tremor does not disappear with voluntary movement). This stands in contrast to
the otherwise typical symptoms of slowness and rigidity. A long-term treatment
of levodopa is known to increase the risk of dyskinesia.

Postural instability and FoG are common causes for falls. However, it has
also been noted that alone the fear of falling can have further negative impacts
on balance of patients.

Non Motor Symptoms

Even though this thesis focuses on recognition of motor symptoms, a few non
motor symptoms are mentioned for the sake of completeness. A more detailed
list may be found in the Appendix (see Table A.2).

e Psychosis and hallucinations may occur in PD [69,84,146]. Halluci-
nations are usually visual in nature and have a tendency to show in later
stages of the disease [69]. Patients have reported to see small animals,
children or deceased relatives [69].

e Sleep abnormalities are a common problem [68, 69, 73,146]. People
have reported to experience problems sleeping (e.g. due to depression,
illusions, restless legs and / or other causes). Another common problem
of people with Parkinson’s is excessive sleepiness [69]. In some cases,
patients having trouble to sleep at night also endure excessive (daytime)
sleepiness due to their sleep hygiene or lack thereof. Even during regular
daily activities, patients have been seen to fall asleep within seconds [69,
141]. This symptom is more often apparent in an advanced stage of the
disease and male patients [69].

e Sensory abnormalities may also be present in people with Parkinson’s
[69,73,128]. E.g. sense of smell and vision may be affected. Furthermore,
changes in weight and / or pain can be experienced [84]. All of which can
be apparent in early stages of PD and sometimes even before a clinical
diagnosis [84].

e Autonomic dysfunctions, such as excessive sweating, erectile impo-
tence and / or problems with the urinary system, may also occur in
PD [69, 73, 76,84]. Some of which have been shown to occur prior to
clinical manifestations of motor symptoms [84]. However, medication in-
take may exaggerate these features.

20

¢ Cognitive and neurobehavioral disorders present a great burden to
those affected. Dementia and cognitive slowing have been shown to be
apparent in early stages of the disease [69,84]. However, it occurs more
frequently in patients in later stages of the disease [69,73,146].

It should be noted that some of the above described non motor symptoms
are not a direct effect of PD but rather a product of pharmacological treatment.
However, this does not make them more bearable. They are a reality for people
with Parkinson’s.

2.2.2 Diagnosis

An accurate diagnosis of PD is difficult, due to the broad range of symptoms and
lack of disease-specific biomarkers [73,135]. Even though the past decades have
shown advancements in that matter, diagnosis still remains a clinical one [45].
Patients are diagnosed based on occurrence or absence of motor symptoms,
positive response to dopaminergic treatment and their health history.

The most conclusive tool for PD diagnosis is autopsy [146] and many PD
cases can only be confirmed post-mortem [58]. It can be utilized to show a
decrease in dopamine-producing neurons in the substantia nigra. Even in nowa-
days, no reliable test for a definite diagnosis of PD has been found [135]. Due
to the fact that PD is clinically diagnosed (i.e. without a definite biomarker)
and considering the diversity of symptomatic profiles, a fairly high percentage
of PD diagnosed patients is estimated to be wrong [12]. Post-mortem studies
have highlighted these difficulties and suggest an alternative diagnosis in up to
a quarter of patients [45]. This is not surprising, knowing that most symptoms
of PD can also be apparent in one or several other disorders and show only
minimal or no differences at all [83]. Nonetheless, the diagnosis of PD may be
uncomplicated when classical symptoms are shown by a patient. This, however,
is not necessarily the case. Especially in early stages of the disease, signs and
symptoms can overlap with other syndromes [73,130,163], making it difficult to
distinguish PD from other forms of parkinsonism. Thus a differential diagnosis
is typically performed in order to single out people with PD from people with
other parkinsonian disorders and conditions.

LBs can be considered a pathological hallmark of PD. These bodies are
thought to accumulate in dopamine containing neurons undergoing degeneration
within the substantia nigra [45,83]. There is a well-established link between PD
symptoms and extent of Lewy pathology. Post-mortem studies have found that
extent of LBs correlates with clinical symptoms [96]. With rare exceptions, all
sporadic and familial PD brains were found to include LBs and / or LNs [96,126].

Depending on country and institution, several guidelines for diagnosing PD
exist. These typically specify supportive and exclusion criteria and usually dif-
ferentiate between criteria for possible, probable and definite PD. However, it
can be noted that the diagnosis of PD is mostly based on the presence of a com-
bination of cardinal symptoms, a positive response to dopaminergic treatment
as well as a set of exclusionary features [45,146]. Several of these guidelines can
be reviewed in Section A.2.

Samii et al. [146] summarizes such a guideline (see Table A.9 for more de-
tails). Here a patient is diagnosed with clinically possible PD if at least one of
the conditions is met: asymmetric bradykinesia, asymmetric rigidity and / or

21

asymmetric resting tremor. If any two of these conditions are met by a patient
then PD is a clinically probable diagnosis. However, for a definite diagnosis,
conditions for clinically probable diagnosis need to be met and a positive re-
sponse to anti Parkinson drugs (such as levodopa or dopamine agonists) must
be evident. On the other hand, presence of any exclusion criteria suggests an al-
ternative diagnosis. Among the exclusion criteria are exposure to drugs (which
may cause parkinsonism), severe dysautonomia, early gait disturbance, early
dementia or family history of PD (in more than one family member).

Jankovic [73] published a similar guideline (see Table A.7) as presented by
Samii and colleagues [146]. Just like the previous one, these instructions origi-
nate from the UK PD Society Brain Bank. However, in Jankovic’s version the
clinical criteria for diagnosis of probable PD is described only. This guideline
consists of three subsequent steps: (1) bradykinesia and at least either one of
rigidity, rest tremor (4-6 Hz) or postural instability need to be apparent, (2)
other causes of parkinsonism must be ruled out and (3) at least three further
supportive conditions must be identified (see Table A.7).

Several rating scales have been proposed to quantify disease progression in
people afflicted with PD. Section 2.2.4 highlights a set of commonly employed
rating scales such as the unified Parkinson’s Disease rating scale (UPDRS) or
Hoehn & Yahr scale (HYS).

2.2.3 Treatment

As noted before, no treatment has been proven to cure PD. Instead treatments
aim at minimizing and preventing motor fluctuations, dyskinesia and symptoms
(motor and non motor) as well as slowing disease progression. Several medical
(e.g. levodopa, dopamine agonist and inhibitors) and surgical (e.g. ablation
and transplantation) options are available. Even approaches utilizing Chinese
Medicine have been proposed [74]. More recent modalities have evolved to use
ultrasound and biological therapies [160]. The more traditional options are
highlighted in the following.

Medical Options

The most common and widely used drug for treatment of PD is levodopa [12,
45,83,146]. Tt is a precursor of dopamine, which is able to cross the blood-brain
barrier. In contrast, dopamine itself cannot pass the blood-brain barrier. For
most patients levodopa is the medication of choice as it has positive effects on
motor symptoms. To prevent metabolism of levodopa outside the brain, it is
often taken in combination with further drugs. However, long-term treatment
comes at the cost of further (drug-induced) disabilities which are dependent of
the taken dose and duration. E.g. dyskinesia being a typical example of such
kinds of side effects. Thus patients often face the dilemma of keeping the same
dose and rendering themselves rigid and immobile or increasing the dose and
risk an increased chance of dyskinesia. Generally, it is preferable to use as small
doses of levodopa as possible (and postponing the appearance of dyskinesia). It
gives also rise to the question of when to introduce a dopaminergic treatment.
Even though there is no concrete answer to this question, the overall idea is to
postpone any medical treatment as long as possible until the symptoms become
troublesome [45,146].

22

As the disease progresses further dopamine-producing neurons diminish and,
thus, higher (and / or more frequent) doses of medication are required to com-
pensate the loss in order to keep the patient mobile. This, however, gives rise
to motor fluctuations (i.e. cycling between periods of mobility and immobility).
At first, these fluctuations are predictable, but they become less deterministic
over time.

Dopamine agonists work by enhancing the effectiveness of dopamine [12].
It is often used in combination with levodopa [12,146]. They are increasingly
utilized as first line treatment (on their own) due to their positive effects on
motor symptoms and delayed introduction of levodopa [45,146]. When compar-
ing to levodopa, dopamine agonists come at a price of increased side effects and
decreased UPDRS scores while remaining the same quality of life and reducing
motor symptoms [45].

Monoamine oxidase B (MAO-B) inhibitors have also been shown to have a
positive effect on motor fluctuations and symptoms [45]. They work by slowing
the breakdown of dopamine at the synapses [12]. Catechol-O-methyltransferase
(COMT) inhibitors have the ability to lengthen the half-life of levodopa [45,83].
Thus COMT inhibitors can be used to smooth out motor fluctuations while
reducing levodopa doses and periods of immobility [45,83].

To summarize, various treatments have been proposed in order to minimize
the number of motor fluctuations as well as their severity. Nonetheless, levodopa
remains the drug of choice at some point in the therapy. It is only a matter of
time until levodopa is introduced, until then the increased chance of dyskinesia
is balanced against side effects of other treatments. The interested reader may
want to have a look at [176, p. 243ff] for a more detailed view on conventional
treatment options.

Further medications are known to work against PD but has been found to
have insufficient efficiency (e.g. Amantadine [40] or Imipramine [12]).

Surgical Options

Deep-brain stimulation is currently the most preferred surgical option for treat-
ment of PD [95,146]. This is due to the fact that it is a less irreversible procedure
when compared to general ablative and restorative surgery [146]. Realistic sur-
gical options are briefly described as follows.

e Ablation: Part of the brain is either surgically destroyed (pallidotomy) or
surgically removed (thalamonotomy). Such procedures have been reported
to reduce tremor and improve motor symptoms. However, this comes at
a risk of infarct, seizures and even death [19,146,169].

e Stimulation: A procedure (deep-brain stimulation) in which one or more
electrodes are embedded in certain parts of the brain. Using those elec-
trodes to stimulate the surrounding tissue relieves tremor, but does not
improve other symptoms [149]. The general risks of brain surgery apply to
this procedure just the same. Further complications regarding implanted
hardware and stimulation itself may occur. However, stimulation related
problems can be resolved by adjusting stimulation variables (e.g. ampli-
tude and frequency).

Both options have successfully been used to improve symptoms of PD (e.g.
tremor and dyskinesia) [29,87,146]. Even though ablation is a risky and in-

23

vasive procedure, there are patients and situations where such procedures are
appropriate [146]. However the latter one remains the more preferable and
more commonly applied choice [160]. Due to its destructive nature, ablation is
generally avoided whenever possible.

Another approach transplants tissue in hopes of restoring neurodegenerated
parts of the brain. It has been reported that dopamine-producing neurons
of transplanted tissue largely survived [117]. However, despite the survival of
the neurons most patients developed dyskinesia which remained even “after
withdrawal of dopaminergic treatment” [146]. Thus, at the time of writing,
transplantation is not a feasible option and generally avoided.

Similarly to diagnostic procedures of PD (see Section 2.2.2 and Section A.2),
there exist clinical guidelines regarding the application of brain surgery in cases
of PD. An exemplary guideline for deep brain stimulation (DBS) is shown in
Table A.10. Here strong commitment from the patient (and social support by
family and friends) to keep showing up at medical appointments, a definite
diagnosis of PD (as defined in Table A.9 and Table A.8) as well as clearly
defined ON and OFF periods are among the inclusion criteria. Whilst severe
brain atrophy, drug-induced parkinsonism, dementia or psychiatric issues count
to exclusion criteria.

2.2.4 Rating Scales

Several rating scales have been proposed in order to quantify the rate of pro-
gression in people with PD. These scales and questionnaires are applied where
objective measures (i.e. biological markers, functional tests, etc.) are not avail-
able or not cost-effective. Despite their subjectivity, questionnaires and rating
scales present basic tools that are widely used throughout medical and research
communities.

The UPDRS and HY'S are two commonly utilized instruments for quantifying
the evolution of PD. Nonetheless several alternatives such as the Schwab &
England scale (SES), Webster scale and others exist. Here, several of these
rating scales are briefly described. For a more detailed review, the interested
reader is encouraged to examine the references. However, it should be noted
that most of these scales require a medical background and that these scales
can be quite extensive (e.g. in [60], a thirty-page long questionnaire is shown).

e Unified Parkinson’s Disease Rating Scale: The UPDRS is a com-
monly used multi-domain rating scale. It is used to assess the severity
of PD. It resembles a collection of questions that are to be answered by
a neurologist. These questions cover many aspects of PD (i.e. tremor,
FoG, dyskinesia, depression, sensory complaints, etc.). It is comprised of
four sub-scales (i.e. section one: mentation, behavior and mood; section
two: activities of daily living (ADL); section three: motor examinations;
section four: complications). A revised version of the original UPDRS is
described by the Movement Disorder Society (MDS) in [60]. The original
scale is described in [53].

e Hoehn & Yahr Scale: The HYS [67] is a stage-based approach that has
been widely adopted and it is largely accepted. It is focused on postural
instability as indicator for impairment and disease progression. Stages
range from “Unilateral involvement only usually with minimal or no func-

24

tional disability” (i.e. stage one) to “Confinement to bed or wheelchair
unless aided” (i.e. stage five) in increments of one. However, a modified
HYS has also been proposed which uses smaller increments. In [59], the
original HYS as well as the modified adaptation are described in more
detail.

e Schwab- & England-Scale: This scale quantifies the ability of a person
to perform ADL. Here the rating is expressed as a percentage indicating
the person’s ability to perform ADL (i.e. 100% meaning complete inde-
pendence while 0% meaning complete dependence / bedridden). More
details on the SES can be found in [150].

Depending on the version of the UPDRS, the HYS as well as Schwab- and
England-scale are actually included in the UPDRS. For the interested reader,
a comparison of the HYS and SES can be found in [102]. Here the correlation
between these scales as well as the discrepancies between the patient’s judgment
and the doctor’s impression is touched upon. Additional rating scales, such as
the clinical impression of severity index (CISI-PD) [100] and rating scale for gait
evaluation (RSGE) [99], exist. An overview of rating scales and questionnaires
can be found in [176, p. 755ff].

2.3 Temporal Data Mining

Temporal DM refers to a collection of techniques that intend to extract “use-
ful” knowledge from temporal data [105]. The definition of “useful” is highly
dependent on the target domain and task (e.g. a stockbroker would certainly
be more interested in forecasting abilities rather than knowledge about past
stock events). In nowadays, more and more data are being generated, collected,
processed and analyzed. The continued growth of the internet and increasing
use of social media platforms illustrate this fact. They have been growing in
such a way that a manual analysis is no longer possible or at least no longer
feasible and associated with great costs. However, growth is not limited to
internet-based data but instead applies to almost any kind of data (e.g. digi-
tized books, medical data, personal health records, stock and foreign exchange
markets, gene sequences, etc.). Time series (or temporal data) represent a sub-
section of all available data, which has become increasingly important over the
past few decades. Their application is of vital importance in fields like financial
data forecasting and medicine.

A great deal of this section is devoted to the process known as knowledge
discovery in databases (KDD). Fayyad et al. define KDD as a non-trivial pro-
cess which aims at “identifying valid, novel, potentially useful, and ultimately
understandable patterns in data” [54]. This process consists of five steps which
are highlighted in Figure 2.4 along with the typical flow of information. Each
of these steps is separately described in the remainder of this section. Even
though Figure 2.4 and the structure of this section suggest a fairly rigid and
linear procedure, this is not necessarily the case. In many KDD applications all
five steps are utilized to some extent. However, they are by no means required
at all times. E.g. in some cases, interpretation of patterns (see Section 2.3.5)
spawns new questions and might result in repeating one or several steps, such as
selecting further attributes and refining applied transformations to the original

25

data. Thus the KDD process should be considered more like a guideline and
good practice rather than a strict algorithm.

At the heart of the KDD process is a concept called DM. Here, temporal
DM refers a sub-field of DM but with a stronger focus on the time domain.
It inherits the basic ideas and techniques from DM while specializing them
and using them in a different context (i.e. harvesting of useful patterns and
knowledge from temporal data). Several of these techniques are introduced in
the remainder of this section (e.g. classification, regression, clustering).

There have been some confusions regarding the use of terms like DM, time
series analysis and KDD. This is likely due to the fact that DM, time series
analysis and KDD are very interwoven concepts. In general, the KDD process
addresses the problem of “mapping low-level data (which are typically too vo-
luminous to understand and digest easily) into other forms that might be more
compact (for example, a short report), more abstract (for example, a descriptive
approximation or model of the process that generated the data), or more useful
(for example, a predictive model for estimating the value of future cases)” [54].
Time series analysis is very similar to the KDD process. However, it is special-
ized to leverage information within the time domain. DM originates as a (single)
step of the KDD process, it “consists of applying data analysis and discovery
algorithms” [54] in order to harvest useful patterns. However, depending on
the domain these terms have been used almost interchangeably and have only
slightly different meanings. Independent of domain and discipline, they share
the overall goal of discovering useful knowledge and / or patterns in data. Also
certain steps and actions are common among them (i.e. selection, transforma-
tion, preprocessing, etc.). Thus, it makes sense to refer to them in the course of
this section. Part of this section is devoted to describing not only techniques of
temporal DM but rather a more global view on the whole process of discovering
patterns in (temporal) data. Thus a sequence of actions, which is part of any
reasonable serious and complex DM application, is highlighted.

For completeness’ sake, it should be mentioned that the KDD process is
not one of a kind. Several closely related processes exist (e.g. CRISP-DM
[151]). Many of them overlap to a certain extend and are tailored to a particular
domain. However, most of them can be viewed as specializations of the KDD
process described in [54].

For an easier understanding of the succeeding sections, assume to have access
to a (fictive) medical database from a local hospital. Think of it as a children
hospital, which specialized in chronic diseases. Several nurses have noticed
a strange behavior in some children and have raised concerns regarding their
well-being. Therefore, the responsible doctor has asked to review their data
(e.g. temperature levels) and look for patterns, which might shed light on their
situation. This information may also proof to be useful in the future as this
behavior might be recognized sooner and therefore appropriate actions can also
be taken earlier.

2.3.1 Selection

The general assumption is that numerous data sources may be available, but
not all of them are necessarily useful in the given context or application. Con-
sequently, this first step deals with selecting appropriate data sources and at-
tributes. However, a sufficient understanding of the target domain needs to be

26

Data

i
]

Target Data

PILLIL pevocssing
[
Preprocessed Data

| tersionatin L

Transformed Data

T
EM

Interpretation
Evaluation

Knowledge

Figure 2.4: The general flow of information and the five steps of the KDD
process are outlined. Note that the actual process is not as linear as suggested
by this representation. Results may improve if steps are performed multiple
times. The image is based on a figure by Fayyad et al. [54].

27

developed at first. This knowledge can then be utilized for a proper data se-
lection and / or acquisition. It is one of the most important steps of the KDD
process as its results will affect all succeeding steps. A sufficient knowledge of
the target domain eases a selection of appropriate attributes (i.e. variables) or
data samples, which are ultimately used to perform (temporal) DM on. Thus,
selecting inappropriate data at this point is likely going to result in discovering
meaningless patterns or no patterns at all. Consequently, the process will fail to
extract useful patterns and / or knowledge. In the absence of sufficient domain
knowledge, however, this might not be as obvious as it should be. One can
easily continue to falsely believe in having obtained new, valid knowledge while
the discovered patterns are completely meaningless to a domain expert. Instead
they are most likely to represent some random patterns in “poorly” selected
data.

Furthermore, the amount of chosen attributes should be considered. A se-
lection of too less attributes or data samples will likely result in the discovery
of meaningless patterns, if any at all. Thus, the selected data does not carry
enough information for the desired patterns to emerge. The same applies to in-
appropriate attributes or data samples. On the other hand, selecting too many
attributes or data samples is also likely to end in discovery of many useless
patterns. The more data are presented to DM algorithms the more patterns are
potentially found. Consequently, too much information causes many patterns
to emerge which makes it unnecessarily difficult to sort out and actual patterns
are likely to be overseen in the flood of “potentially” useful patterns.

Imagine to be involved in the above-described scenario, the responsible doc-
tor (i.e. domain expert) has asked you to review the children’s data. He sug-
gested looking for signs of fever and elevated body temperature first. Obviously
one should select body temperature and maybe further attributes related to
fever. In the course of the KDD process these data are then transformed, ana-
lyzed and the resulting patterns are likely to reflect an answer to the doctor’s
suspicion. However, not including the body temperature or further correlated
variables as an attributes will very unlikely result in any satisfying answer to
the doctor’s suspicion. It should be kept in mind that simply narrowing the
data selection to a few body temperature related attributes can also result in
discovering patterns that are not relevant to the actual problem or may not be
“actual” patterns at all (but rather a random finding or observation). Thus if
one wants to find temperature-related patterns and one searches long enough,
then one is likely to find them (whether these patterns are the true source or
not). Analyzing body temperatures is enough to verify the suspicion of fever
but will certainly not suggest the true source of the fever (e.g. food poisoning).

In general, the more knowledge about the target domain is available the bet-
ter. It can be used to rule out certain attributes and utilized to acquire others.
Thus, the discovered patterns are more likely to reflect useful and meaningful
patterns.

2.3.2 Preprocessing

Cleaning and preprocessing of data are dealt with in the second step of the KDD
process. The desired result is a clean and consistent dataset, where the definition
of clean and consistent heavily depends on the domain and task. However, when
talking about “cleanliness”, there are at least three aspects worth highlighting:

28

missing data fields, presence of noise and handling of errors.

In most cases, some sort of preprocessing is required especially if multiple
data sources are involved (e.g. multiple databases from different hospitals or
institutions). In such a case, it is easily possible that different names are used to
represent the same or similar attribute (e.g. “temperature” and “temp.”). How-
ever, even if attributes have identical names across all databases (or sources),
their type, precision and unit may differ nonetheless. E.g. body temperature
can be measured in degree Celsius or Fahrenheit. Another data source might
not be interested in a precise body temperature at all, instead whether the
body temperature is below 37°C, between 37°C and 40°C or above 40°C might
be of interest. This highlights that even if multiple sources contain the same
(or similar) attributes some form of preprocessing may still be required.

Consider the aforementioned scenario in which the responsible doctor sug-
gested to look for signs of fever. To ensure the well-being of all children, a nurse
measures their body temperature every few hours. Usually the measurements
are taken at 8:00h, 12:00h, 18:00h and 22:00h. Under normal conditions, several
minutes earlier or later do not have a significant influence as the body temper-
ature is not expected to change dramatically within, say, 30 minutes. But what
happens if the temperature was not measured? E.g. a reason could be that the
particular child was on a field trip with several other children (thus all partic-
ipating children missed a measurement) or the responsible nurse was tied to a
“never-ending” staff meeting (thus she could not take measurements). Those
are just two of many possible situations that can prevent measurement of the
body temperature. In some cases, missing data fields may simply be left empty.
However, there is also the option to replace empty fields with meaningful values,
where the definition of meaningful again depends on the domain and task. These
fields could be filled with a sensible default value or their value could be esti-
mated by using adjacent measurements (e.g. using linear interpolation) [105, p.
23].

Another aspect of “cleanliness” is the presence of noise (i.e. a random error).
This error can be due to several factors like faulty equipment (e.g. thermome-
ter not properly working), environmental conditions (e.g. humidity, warmth,
etc.), human error (e.g. nurse did not wait for the measurement to complete,
some nurses measure temperature underneath the tongue, while others prefer
to measure in the ear or underneath the arm), the device itself has an error
/ noise rate (even when properly working) and many others. For an example
of such noise consider Table 2.2 and the corresponding graph in Figure 2.5.
Looking at the graph it becomes clear that the body temperature of this partic-
ular child is for the most part around the average body temperature of 37.1°C.
However, there seem to be two measurements clearly below the average body
temperature. Depending on the context, these measurements may be consid-
ered outliers and may need to be smoothed out. Binning and moving averages
are two methods, which are commonly used when wanting to smooth out such
outliers / anomalies.

In binning, the data are first divided into bins (or buckets) of equal size and
then each bin is smoothed. Smoothing of bins can be done with a variety of
methods. Two popular approaches are mean and median smoothing, where all
values in a bin are replaced by either their mean or median of that particular
bucket. Listing B.1 highlights this process while Figure 2.6 and Table 2.3 illus-
trate the smoothed data in relationship to the original data. Of course, the size

29

Index Day Time Temperature

1 Qaj,1 Q4,2 4,3

1 1 08:00h 37.2°C
2 1 12:00h 37.8°C
3 1 18:00h 37.1°C
4 1 22:00h 36.9°C
5 2 08:00h 35.8°C
6 2 12:00h 37.5°C
7 2 18:00h 37.6°C
8 2 22:00h 37.1°C
9 3 08:00h 36.9°C
10 3 12:00h 36.2°C
11 3 18:00h 37.3°C
12 3 22:00h 37.8°C

Table 2.2: Lists the body temperature of a child over a period of three days.
The average temperature is 37.1°C. The numbers are represented as time series
A with a length of m = 12 and n = 3 attributes.

Bin Mean Median
37.2,37.8,37.1,36.9 37.25 37.15
35.8, 37.5, 37.6, 37.1 37.0 37.3
36.9, 36.2, 37.3, 37.8 37.05 37.1

Table 2.3: Shows the calculated results based on the data samples shown in
Table 2.2 for both binning methods (i.e. mean and median).

38

375
O a7p
£
o
]
s
3
a
5
3 365
36
=—8— body temperature
— — — average temperature
355 I I I I)
0 10 20 30 40 50 60 70
Time (in h)

Figure 2.5: Shows the body temperature of a child over a period of three days.
Note the two clear outliers below the “average” temperature line (dashed). For
more details on the values refer to Table 2.2.

30

38

37r

Temperature (in "C)

—F&— body temperature
=—©— mean binning
—#A— median binning

T

)
10 20 30 40 50 60 70
Time (in h)

Figure 2.6: Ilustrates mean and median binning if applied to body temperature
data samples shown in Table 2.2. The size of a bin is four, so that a (single)
bin represents measurements from an entire day.

38

3751

371

Temperature (in QC)

36

—+8&— body temperature

=—©— 3-point CMA

—A— 4-point weigthed MA
T T

355 I I I I]
0 10 20 30 40 50 60 70

Time (in h)

Figure 2.7: Tllustrates the results when a 3-point central moving average (CMA)
and a simple 4-point weighted moving average (MA) are applied to the body
temperature data samples listed in Table 2.2.

31

38

37.51

37+

Temperature (in “C)

36

—8— body temperature
—©— resampled

355 I I I I I
0 10 20 30 40 50 60 70

Time (in h)
Figure 2.8: Shows resampled body temperature data listed in Table 2.2. For an
easier reference, the original data samples are also included.

of the bins depends on the domain and task, so does the smoothing method.

The MA, a.k.a. rolling average (RA), can also be utilized to smooth out short
term fluctuations. Many variations of this particular approach exist, however,
it can be said that all approaches calculate some form of (weighted) mean with
respect to a set of past and / or future values. Depending on the domain, future
values may not always be available at the time of calculation (e.g. when working
with live streaming data). Thus it is generally preferable to utilize approaches
relying on past values only (as opposed to future values) whenever possible.
However, even if future values are required by the chosen approach then data
can simply be buffered and calculated once enough data has been accumulated.
This approach, however, delays calculation by as many future measurements
that are required which might not be an acceptable tradeoff in all domains.
Also depending on the domain, the number of considered values varies as well
as their weighting (i.e. more recent values may be more important than older
ones). One approach is called 3-point CMA. This particular approach uses both
past and future values around the point of interest [105, p. 24]. They are all
equally weighted. The results when applied to the data (shown in Table 2.2)
can be reviewed in Figure 2.7. Consider the function

n—1
CMA(An,ij) =" a‘% (2.10)
p=0

where a; ; corresponds to an attribute of data sample A; within the time
series A. Here, 7,j,n € N; i,5,n > 0 and n mod 2 = 1. n defines the number
of data samples that are consumed for each computation and needs to be odd.
Another variation of the MA approach might use the past four values where
the most recent value is the most important one (i.e. higher weighting). This
is also illustrated in Figure 2.7.

32

22:1 p

where a; ; corresponds to an attribute of data sample A; within the time
series A. Here, i,j,n € N and 4, j,n > 0. n defines the number of data samples
that are consumed for each computation.

Furthermore, it should be considered that at the beginning and end of time
series there are usually not enough data points available to apply MA techniques.
There are two extremes for dealing with this issue: skip them (no calculation is
done where not enough data are present) or calculate them anyway. Here, the
first option has been chosen (see Figure 2.7). For the CMA, the average of the
first two values denotes the new value for the one at 10 o’clock. This is because
the timing must also be taken into account.

Considering temporal aspects contained in the data of Table 2.2 (and Figure
2.5), the sampling rate or frequency may need to be adjusted or resampled
for certain DM algorithms (i.e. some algorithms assume that data samples were
recorded at equidistant time intervals). Reasons for this include that the samples
were recorded either at inappropriate time intervals (e.g. measurements were
not taken at equidistant time intervals) or the timing itself is not as accurate as
required (e.g. due to measurement errors or uncertainties the timing might be off
by a few seconds or minutes). However, this can also be viewed as a specialized
missing-values problem. In general when resampling data, one tries to estimate
missing values and determine what values would have been measured if they
were actually measured at that particular point in time. To estimate them,
some sort of interpolation is usually applied (e.g. linear interpolation [105, p.
23, p. 124ff]).

For example, the body temperature from Table 2.2 was not measured at
equidistant time intervals. Instead of taking the measurement every six hours,
they were taken at intervals of four, six, four and ten hours. This, of course, has
obvious practical reasons. Nonetheless, applying a simple linear interpolation
technique (as shown by Equation 2.12) may result in an estimated graph shown
in Figure 2.8. Here, a new data sample is estimated based on the attributes
of two adjacent data samples A; and A;y;. It will typically reside somewhere
between these data samples A; and A;11

n—1
WMA(A,n,i,j) =Y (= p)*aimp; (2.11)
p=0

resample(A, i, §, ®) = a; ; + (ait1,; — @i j) * P (2.12)

where A; and A;;;1 belong to time series A. i indicates the data sample
within the time series. j represents the j** attribute. ® identifies the position
of the new data sample relative to a; ; and a4 ;.

2.3.3 Transformation

Once a dataset has been cleaned up and consistency is ensured, data are usually
transformed in some way. The third step of the KDD process mainly aims at
data reduction and projection. As in previous steps, this one also depends on
the domain and goal of the task. In general, the idea is to find representable
features within the acquired data samples. Furthermore, techniques for dimen-
sionality reduction are applied to reduce the number of attributes (i.e. variables

33

under consideration) and number of data samples (i.e. decrease amount of data).
Finding appropriate invariant representations may also be helpful. Data reduc-
tion and normalization are the main objectives in many practical scenarios due
to variability and a flood of (available) data. The idea behind this is to relieve
the computational burden of DM algorithms.

Some DM algorithms perform better if all values of the variables under con-
sideration are within a certain range (e.g. [—1,...,1], [0,...,1], etc.). In theory,
the range of values does not matter. However, the range of values does have an
effect on performance of (DM) algorithms in reality where representational and
computational limitations exist. Applying normalizations techniques is a com-
mon way to avoid performance degradations through large values. Two popular
ones, called min-maz normalization and z-score normalization, are described in
the following.

Consider the same body temperature history shown in Table 2.2. In order
to compute the min-maz normalization, the minimum value and maximum
value must be available. They can be obtained by searching the dataset (i.e.
complete search or estimated by a partial search) or they are depended on the
particular domain and attribute. In latter case, they can be estimated by domain
experts. However, they can also be limited by the precision of hardware used
for taking measurements (e.g. a standard clinical thermometer has a predefined
operational range and could not be used to measure temperatures above 42°C
or below 32°C). Equation 2.13 is used to perform min-maz normalization on the
data from Table 2.2, where min and maz refer to the minimum and maximum
value of the dataset respectively. Both values are used in conjunction with a
data sample A; (from the original dataset as opposed to the normalized one)
to calculate the normalized value for each of the attributes (of A;). Figure 2.9
illustrates the results if applied to the temperature example.

a;; — min

MinMax(A,i,j) = (2.13)

max — min
For z-score normalization, mean and standard deviation of the considered
variables are assumed to be known. In some cases, those values can be esti-
mated as they are dependent on the domain and considered attributes. How-
ever, in general the entire dataset must first be iterated in order to determine
them. Once the mean and standard deviation are at hand, they can be used
to normalize the data as described by Equation 2.14. The mean and standard
deviation are represented by mean and std respectively. The normalized value
is based on the original value mean, std and a;; for time series A with data
samples A; and their corresponding attributes. Again the results of applying
z-score normalization to data samples in Table 2.2 are shown in Figure 2.9.

aq,5 — mean
std

For a proper normalization, it should be taken into account that there are
those time series which are stationary (i.e. mean, variance and auto-correlation
do not change [105, p. 122]) and those that are non-stationary. The most
pragmatic way of dealing with non-stationary is to utilize some sort of sliding
window technique (i.e. partial search of dataset) where the window size highly
depends on the task. Here the above algorithms would be applied to each
individual sliding window separately.

zScore(A,i,j) = (2.14)

34

05

Normalized Temperature
s
v
T

=—©— min-max normalization
—#— z-score normalization
)

25 I I I I
0 10 20 30 40 50 60 70

Time (in h)
Figure 2.9: Illustrates min-max and z-score normalization applied to the body
temperature example from Table 2.2. The required (minimum, maximum, etc.)
values have been determined by searching the entire dataset. For convenience,
these values are: minimum = 35.8°C, maximum = 37.8 °C, mean = 37.1 °C,
standard deviation = 0.6 °C2.

As mentioned, dimensionality reduction also plays an important role in this
step. There are several methods for reducing and summarizing data. In [131],
Ratanamahatana et al. highlight four representation approaches, which can be
used to reduce the amount of data. These approaches are shown hereafter.

e non-adaptive: The algorithms can be used independently of the data
at hand. This approach will typically reduce the number of data sam-
ples (or their dimensionality). Consequently, the representation is fixed
by the algorithm (i.e. representation does not change regardless of the
data that are being presented to the algorithm). In case of piecewise ag-
gregate approximation (PAA), time series are divided into a fixed number
of segments which are replaced by the segment’s average. This category
also includes but is not limited to: PAA [80], discrete wavelet transform
(DWT) and discrete Fourier transform (DFT).

e data-adaptive: Representation schemes of this type adapt to the data.
Here, the combination of data and algorithm determine the final represen-
tation. In case of symbolic aggregate approximation (SAX) (and assum-
ing that a Gaussian distribution is present in the time series), the PAA
method is applied and its results are further discretized. The distribution
is divided into areas of equals probability which are then used to replace
data samples with a symbol that has been assigned to the area. Singu-
lar value decomposition (SVD), SAX [90], indexable symbolic aggregate
approximation (iSAX) [153], adaptive piecewise constant approximation
(APCA) are also examples of this kind of approach.

e data-dictated: Time series are also replaced with fewer data samples
(or with data samples of reduced dimensionality) but the original data
samples influence the final representation. Here representations of time

35

series are entirely dictated by their data samples. Thus, algorithms of
this category can be applied to any time series. One approach, called
clipping [16], represents time series data by transforming it into a series of
zeros (i.e. value below average of time series) and ones (i.e. value above
average).

¢ model-based: The (time series) data are represented by some sort of
model. The time series are abstracted into states for which the probability
of transitioning from one state to another state is determined. These
probabilities can then be used to model the states as well as transitions
between them. E.g. hidden markov models (HMMs) [129] as well as
various statistical models fall into this category.

Furthermore, the authors of [131] point out that representation schemes typ-
ically have two desirable properties: (1) no false dismissals and (2) dimension-
ality reduction. Reducing the number of dimensions also lowers the complexity
(e.g. when comparing multiple datasets with each other). However, the first
property refers to the fact that two similar datasets should also be similar in
the transformation space. This means that a distance measure can be found in
the transformation space that guarantees to be less or equal than the distance
in the original data space [153]. This property is also called the lower bounding
property.

Regarding summarization techniques, rather global characteristics (e.g. mean,
median, mode, run-length, skewness, entropy, etc.) are utilized when compared
to representation approaches. Thus they typically result in a great dimension-
ality reduction and consequently in a (great) loss of information. Consequently,
it is quite common to represent data with a multitude of summarizations. This
may counteract the loss of information, while still providing a great dimension-
ality reduction.

The remainder of this section introduces several representation algorithms
and outlines various summarization techniques. Their description is not meant
to be complete but rather to provide a first impression. For more details, the
interested reader is referred to the corresponding references in literature.

Representation

Over the previous decades, numerous time series representations have been pro-
posed and evaluated in literature. Most of them have been introduced or have
their roots in the preceding century. Examples for each of the four categories
(i.e. model-based, data-adaptive, non-adaptive and data-dictated) have already
been given. Here a few of them are briefly highlighted.

PAA works in a similar way to mean binning. The authors of [80,90] describe
a method in which a time series is divided into unisized segments and eventually
each segment is replaced with its mean. This is one of the simplest represen-
tation approaches and can rival other more complex approaches like dynamic
time warping (DTW) and wavelet transforms [105, p. 37]. The representation
does not need to be complex in order to work effectively.

A related approach is APCA [79], a data-adaptive approach. It comes from
the makers of PAA. A time series is split in segments of varying length and each
segment is approximated by a constant value. The length of each segment is
chosen in a way that minimizes approximation errors. Keogh et al. [79] outline

36

that this approach is generally able to approximate areas of low details with a
single segment while multiple segments are used to approximate areas of high
detail. However, comparing to PAA, this comes at a cost of requiring to store
two values for each segment (i.e. length and value). Mitsa notes that this
approach is useful for “bursty” signals [105, p. 43].

Further approximation approaches are SAX and iSAX [90], which are also
based on PAA by Keogh et al. [80]. Both are based on results from PAA and
further discretize them with symbols (i.e. a string alphabet) of equal probability.
This is possible if the normalized time series is Gaussian distributed and thus
the time series can be divided into areas of equal probability. Each of the areas
is assigned a symbol (e.g. “a”, “b”, “¢”, etc.) and all values from the PAA are
replaced with their corresponding symbol. This approach has been successfully
applied in classification, clustering and anomaly detection scenarios [90]. In
[153], Shieh et al. introduced a multi-resolution indexing method called iSAX.
It can be applied to very large temporal datasets that were previously out of
reach.

Summarization

A large number of summarization techniques have been introduced in litera-
ture. To name a few of them: run-length-based signatures, histogram-based
signature, statistics-based and statistical measures and many more. These and
other approaches are briefly outlined in [105, p. 46ff].

Common statistics-based summarization approaches include but are not lim-
ited to: mean, median, mode, variance and standard deviation. They are all
easy to calculate and provide a great dimensionality reduction. However, they
also provide a rather simplistic and global view on a dataset, a lot of information
is lost compared to the original data. Thus, it is common to utilize multiple of
these techniques to represent time series. Mitsa briefly outlines all mentioned
approaches in [105, p. 47].

The run-length-based signature of a time series highlights the number of
occurrences and length of consecutive and identical values. In other words, run-
length corresponds to the number of consecutively occurring data points that
have identical values. Based on this signature, various measures can be formu-
lated. E.g. the presence of either short or long run-length could be emphasized
depending on the domain and task.

In [35], the authors used a histogram-based approach to summarize time
series. The histogram shows the frequency of all values within a dataset (or
window). Various statistical measures can be defined based on such a histogram.
Skewness (i.e. “asymmetry of the histogram’s shape” [105, p. 50]) kurtosis (i.e.
“peakiness of histogram” [105, p .50]) and entropy (i.e. “amount of information
and randomness” [105, p. 51] are examples of these measures.

2.3.4 (Temporal) Data Mining

Fayyad et al. suggest to apply DM algorithms to the resulting dataset after hav-
ing performed selection, preprocessing and transformation. The intention of the
fourth step should be to discover useful and meaningful patterns. It represents
the “heart” of the KDD process. Depending on the goal and type of data, sev-
eral different kinds of algorithms can be utilized. Three common categories of

37

these algorithms are classification, clustering, and regression. However, several
others, such as outlier detection or rule learning, can just as well be utilized.

Classification algorithms belong to the supervised learning approaches. This
is because data, used for training, must be labeled or pre-classified. The algo-
rithm tries to generalize from the presented training samples in order to be able
to classify future, unknown samples. The term supervised is used because the
data are annotated by a (human) teacher either directly or indirectly. A clas-
sification algorithm learns a function that maps from some input to a discrete
value. Thus, such algorithms can only be used to identify the class or category
for a (single) data sample, where the class can be one of a finite number of
different values (or choices).

Some learning tasks, however, are required to output a continuous function
which is not limited to discrete values. Algorithms of this category are grouped
under the term regression. In contrast to classification algorithms, they can also
be utilized (to some extend) to predict future values. This ability makes them
especially interesting in fields like finance or medicine where predictions about
future values can have a great impact. Otherwise, regression approaches also
belong to supervised learning tasks.

Clustering is an unsupervised learning approach. Algorithms in this category
aim to discover clusters (or groups of similar data samples) within the presented
data. These clusters provide information regarding the relationship of data
samples within a cluster and with data samples of adjacent clusters. Algorithms
in this category do not require a (human) teacher but instead solely depend on
the presented data. Thus, they are unsupervised.

In this step, the original goal of DM is revisited and used to decide on
the category of algorithms that should be utilized for the task. E.g. learn-
ing thresholds for having an increased, normal or decreased body temperature
would certainly be a classification problem. However, learning how the body
temperature varies over the course of a day, in order to be able to predict tem-
perature development, would be a classical regression problem. Finally, looking
for recurring levels of temperatures, but without knowing anything about them,
would require a clustering algorithm. The actual selection of a DM approach
should primarily be based on the goal of the task. Apart from the previously
mentioned examples, the end users’ opinion and views should also be taken into
account. They should be considered as part of the goal. Some users might be
more interested in predictive capabilities (e.g. stockbrokers would certainly be
interested in development or forecast of a share; for them, some sort of poly-
nomial regression would be appropriate), while others would rather be able to
actually understand the decision making process (e.g. medical professionals
would certainly be more interested in being able to understand why a particular
patient has been diagnosed with intestinal cancer; for them, a decision tree or
other rule-based approach would be more appropriate).

Depending on the chosen DM algorithm, different kinds of data models and
parameters might be more appropriate than others. Before continuing, one
should verify that the current data matches the algorithms expectations and
assumptions (e.g. data types, independence, correlation, Gaussian distribution,
etc.). If this is not the case then one should return to the previous step and
properly transform the data first. There can be a strong dependency between
chosen DM algorithms and the way the data are modeled, which should always
be kept in mind. Once the preconditions of the chosen algorithm are met then

38

Category Approach(es)
Unsupervised [105, k-means, hill climbing, COWEB, BIRCH, CURE,
p. 87f] DBSCAN, expectation maximization (EM)

Supervised [105, p. k-nearest neighbors (KNN), Bayes, ID3, C4.5, sup-
63f1] port vector machine (SVM), neural network (NN)

Regression / Pre- simple linear regression, linear multiple regres-

diction [105, p. 121] sion, timeweaver, MA, exponential moving average
(EMA), auto-correlation, auto-regression, autore-
gressive moving average (ARMA), ridge regression,
lasso regression

Table 2.4: Lists DM algorithms of various categories. This is not intended to
be a complete list, but rather an overview of commonly used techniques.

the actual DM can be performed. In other words, the search for (interesting)
patterns may begin. The proper handling of preceding steps (i.e. with foresight
and creativity) may substantially ease the work of DM algorithms [54].

Table 2.4 lists and references several algorithms of the aforementioned cat-
egories. It is intended to provide an overview of common DM algorithms and
by no means meant to be an exhaustive list. One way or another, all of these
algorithms require a way to determine the similarity of data samples or time
series in order to recognize reoccurring patterns. Several options for similarity
measures are shown in the following.

Similarity

Similarity measures play an important role in DM algorithms and should be
kept in mind during the entire KDD process. A large set of these similarity
measures has been proposed and evaluated. Here a few well-known approaches
are highlighted. The interested reader may want to have a look at [105] for
more details on the matter. The author points out and discusses an extensive
collection on similarity measures. A subset of this collection is briefly described
here.

e Euclidean Distance: This metric is defined for two time series A and B
(with m observations and n attributes) as shown by Equation 2.15. The
Euclidean distance dist., can only be applied if both time series do not
differ in terms of length, scale and baseline. In addition, gaps and noise
will have an impact on the results. This also applies to variations in the
time axis.

m
distey(A, B,m,n) = Z
i=1

> (ai; = bij)?

Jj=1

(2.15)

e Absolute Distance: The absolute distance dist,q (a.k.a. Manhattan
distance) is defined for time series A and B (with m observations and n
attributes) as shown in Equation 2.16. Here similarities and dissimilarities
are treated uniformly. In contrast to the Euclidean distance, dissimilarities

39

are not emphasized as much. However, this metric is also sensitive to the
presence of noise, gaps and variation in time series.

distaqa(A, Bym,n) =Y > " |ai; — b (2.16)

i=1 j=1

Maximum Distance: This measure emphasizes the maximum difference
between two time series A and B (with m observations and n attributes)
as defined by Equation 2.17. The minimum distance can just as easily be
utilized. However, both metric are sensitive to noise and require two time
series of equal length, scale and baseline.

distmaes (A, B,m,n) = max(a; ; —b;;);4,j >0,i <m,j<n (2.17)

Dynamic Time Warping: Keogh and Pazzani [81] define the distance
distprw between two time series A and B (with n attributes and with
length m 4 and mp, respectively) by a warping path W with W = wy, ...,
wi;max(ma,mp) < K <ma+mp —1 and w = dist(A, B,1,j) being
the distance between two data samples A; and B;. The general idea is to
find a warping path W that minimizes the warping costs (see Equation
2.18). Here the time series do not need to be of equal length, but noise
and outlier do affect this metric in a negative way. Overfitting can occur,
thus distorting the actual distance between both time series.

K
V 2kt W (2.18)

distprw (A, B,ma,mp,n) = min —x

Longest Common Subsequence: This metric emphasizes the longest
common subsequence (LCSS) of two time series A and B (see Equation
2.19). Here both time series are required to be of equal scale and baseline.
LCSS is not sensitive to gaps in both time series and can handle the
presence of noise better than DTW. It is also less computational expensive
and thus scales better.

A = (42,23,12,99,21,4,65,86)T
B =(17,23,4,90,87,86,20,31)" (2.19)
lcss = (23,4,86)7

As mentioned, many more similarity measures exist. E.g. slope-based simi-

larity computation, edit distance, various probabilistic models or distance mea-
sures based on principle component analysis (PCA), eigenvalues and SVD can
also be utilized. An overview is provided by Mitsa [105, p. 27ff].

2.3.5 Interpretation

The fifth and last step of the KDD process deals with interpretation and eval-
uation of discovered patterns. Afterwards, (newly) discovered knowledge can
simply be documented for later use. However, in most cases the knowledge is
going to be applied to another system or used to further refine the KDD process.
As it has been previously mentioned, the KDD process (as a whole) is not as

40

strict and linear as suggested by the structure of this section. In fact, in many
of the highlighted steps it is possible (in some cases even necessary) to go a step
back and refine the data with newly gained findings. The interpretation step is
no different in this regard. New knowledge can be used to optimize the selection
of attributes, required transformations, etc.

Interpretation of newly discovered patterns may require additional expert
knowledge of the particular domain. This further stretches the multidisciplinar-
ity of the KDD process. If necessary, one can return to any of the preceding
steps in order to refine the results of the process. It may be helpful, to re-
move obvious, irrelevant or redundant patterns at this point. This step can
also involve visualization of extracted patterns and models or visualization of
the (original) data given the extracted patterns. For a better understanding of
patterns, they can be translated into a more comprehensible form for end users.

It should always be a part of this step to evaluate the resulting patterns
and knowledge. Another part of this step is that the newly obtained knowledge
should be checked against previously discovered knowledge and other previous
beliefs [54]. The purpose is to get an idea of how well the DM algorithm has
worked and whether it produced the expected kind of results. If not, then an
improper selection of data (see Section 2.3.1) or inappropriate feature extraction
(see Section 2.3.3) are a probable cause. Depending on the chosen type of algo-
rithm, error measures like precision and recall may give an indication regarding
the achieved quality. Even though the DM step in the KDD process received
quite a bit of attention, it does not mean that the other steps are less important.
In fact, they should be considered equally, if not more, important [54].

2.4 Summary

This chapter discussed various topics related to PD and time series. Addition-
ally, a set of definitions and notations were introduced (e.g. gold standard, false
positive, positive predictive value, etc.), which are used throughout the thesis.
The Table 2.1 might be especially handy for novices.

With respect to PD, the characteristics of motor symptoms were described
and the overall progression of the disease is touched upon. Several non motor
symptoms were also introduced and their implications for those suffering from
PD were described. Well-known diagnosis methods and established treatment
options of PD were enumerated. Furthermore, a few rating scales for quantifi-
cation of progression in PD patients were highlighted.

As far as time series are concerned, the KDD process was described. Each
step of the process was elaborated (e.g. preprocessing, (temporal) DM, inter-
pretation, etc.) and simple examples (e.g. mean-binning, z-score normalization,
Euclidean distance, etc.) were presented.

41

42

Chapter 3

Related Work Regarding
Symptom Detection

In this chapter, the focal point is on computerized and automated indication
of Parkinson’s Disease (PD) motor symptoms in time series. Thus, an answer
to research question two is formulated. Additionally, various machine learning
(ML) and data mining (DM) frameworks for time series analysis are discussed.
Latter ones are viewed in the light of the requirements presented in Chapter 1.
This chapter assumes prior background knowledge on both predominant topics
(i.e. PD and ML). For a review on the matter please refer to Chapter 2.

3.1 Frameworks for Time Series Analysis

Literature has proposed a set of time series frameworks for online analysis [21,22,
56,175]. Yet, many authors of symptom indication algorithms have settled for
handcrafted solutions [34,140,142,143,166] as well as popular tools like Waikato
Environment for Knowledge Analysis (WEKA) [62], Matlab and RapidMiner.
Consequently, their implementations are not necessarily available to the general
public and much less likely to be available in any particular framework (such as
WEKA). In turn, a new algorithm can easily be published but fail to provide
fundamental comparisons against an adequate subset of competitive state-of-
the-art techniques. To facilitate a proper comparison among these algorithms,
one would have to integrate a new algorithm in multiple frameworks (potentially
having to implement the same algorithm in several programming languages) and
one would also have to get the handcrafted solutions working. Furthermore,
application of small datasets may make it tough to evaluate the algorithm’s
“true” effectiveness as it is unclear how the particular algorithm performs on
lengthy or large datasets.

Apart from the aforementioned frameworks, several other frameworks have
also been proposed. However, they are not always actively maintained [88],
specific to a particular domain [89], or do not provide desired flexibility and
functionality [66]. Here, a selected subset of these tools and frameworks is
discussed. Preference is given to those solutions that are no longer in a BETA
stage (i.e. they have reached a somewhat stable stage), frameworks that are
actively maintained, open-source and freely available. Furthermore, frameworks

43

providing the necessary flexibility in terms of transforming streamed data as
well as data types are given preference. A few of their pros and contras are
highlighted in the process.

3.1.1 Waikato Environment for Knowledge Analysis

WEKA is an ML / DM workbench [24,62,175] with an ever growing popularity in
the research community. Its basic functionalities include but are not limited to:
preprocessing (e.g. over 75 data filters and several data sources), classification
algorithms (e.g. naive Bayes, C4.5, M5, bagging, boosting, etc.), clustering (e.g.
k-means, expectation maximization (EM)-based mixture models, etc.) as well
as a set of attribute selection and data visualization methods. The framework
has been published under the GNU General Public License (GNU GPL). It
has been under active development for about two decades (i.e. since 1993).
Later versions of the WEKA workbench switched over to JAVA (first release
in 1997). Prior releases resembled a collection of C programs, shell scripts,
PROLOG programs, etc. [24,62]. Today’s version is widely adopted and used
by both researchers and practitioners. Researchers benefit from the availability
of a wide range of algorithms to compare against while practitioners can apply
these algorithms to their target domain.

The software can easily be extended (e.g. adding classification algorithms,
clustering approaches, etc.). WEKA provides several graphical user interfaces,
each focusing on a different aspect (i.e. exploration, experiment design, etc.),
and a command line interface. These can be utilized to accomplish a wide
variety of tasks. It comes with a large amount of documentation (i.e. application
programming interface (API) documentation, references to original publications
of algorithms, book [175], manuals and publications [20, 24,62, 70,132]) and a
selection of readily available algorithms even from the pre-WEKA era.

Even though WEKA can easily be extended, not everyone can add to the
software releases. A strictly limited circle of developers has the privileges to
perform changes [24]. However, from a code quality and coherence point of view,
this may very well have been a wise decision. Additionally, WEKA has been
designed for “traditional” DM and ML applications, thus it does not natively
support a stream-based analysis. Furthermore, the time domain and sequence
of data samples are not implicitly considered. It is meant to filter data, extract
features and apply learning algorithms on a finite set of data samples. The latter
are represented by predefined data types. Despite the generally good quality
of the code, the class hierarchy and interfaces appear cluttered up. They seem
historically grown and their purpose is not always clear. WEKA uses individual
unrelated interfaces for each kind of algorithm (i.e. filter, classifier, clustering,
etc.) rather than employing a common data processing entity.

3.1.2 Massive Online Analysis

Massive online analysis (MOA) is an open-source software framework that in-
cludes a set of online and offline algorithms for clustering as well as classification
of evolving data streams. MOA has been published under the GNU GPL. It
has been created as a tool for researchers and practitioners, enabling usage of a
broad range of readily available algorithms. Bifet et al. [21] have created MOA
as an expandable platform where researchers can contribute their algorithms

44

and test against others. Practitioners can utilize MOA’s capabilities to evaluate
real world problems on a set of algorithms and choose the best one.

The MOA framework is related to WEKA. Algorithms in both frameworks
can be used interchangeably. Also similarly to WEKA, this framework also pro-
vides a fundamental benchmark platform for researchers and their algorithms.
It has been noted by Bifet et al. [21] that numerous publications of new algo-
rithms do not provide sufficient benchmarks against competitive state-of-the-art
approaches. Furthermore, the capacity to function on large (or even infinite)
datasets is not always adequately demonstrated nor is the potential application
under varying memory limits shown. Here, MOA can be utilized to create (and
re-use) benchmark settings. Thus, researchers and practitioners are enabled to
create repeatable experiments as well as reproducible results. This reduces the
effort to properly evaluate and compare newly developed algorithms.

The general software architecture allows MOA to be easily extended in three
ways: (1) data sources / generators, (2) learning algorithms and (3) evaluation
methods. In principle, these points also describe the overall workflow within the
MOA framework. First a source is selected (i.e. file, artificial data generator,
etc.), then secondly one of the learning algorithms is chosen and configured.
Lastly, an evaluation method is chosen for analysis of a given scenario. Thus, a
rather simple and sequential workflow is implemented in the framework.

Additionally, MOA supports the notion of constrained computing. It can
be configured with varying memory limits to simulate different environments.
E.g. sensor networks (memory < 100KB), mobile devices (memory < 32MB)
and dedicated servers (memory ~~ 400MB) can be addressed. This enables
more realistic tests and allows evaluation of algorithm efficiency for varying
applications and environments.

The nature of the MOA framework does only allow a fairly strict work-
flow. Even though this represents a common scenario and it does make sense in
cases where processed data are at hand. However, real-world cases do typically
require at least some preprocessing. This functionality would come handy in
rapid prototyping scenarios. Of course, one could argue that such preprocessing
functionality should not be part of a framework like MOA, and one might even
be right. However, this kind of functionality greatly enhances usability and
is certainly helpful and eases prototyping efforts. Additionally, more complex
workflows are desirable (as opposed to a simple sequential processing of a data
source, learning algorithm and evaluation method). E.g. scenarios in which the
information flow serves multiple learning algorithms in parallel cannot be mod-
eled with MOA. The handling of streams is limited to an internal stream-like
interface rather than input and output stream native to JAVA. Furthermore,
the data format handling and stream handling are intertwined thus reducing
flexibility. Regression and frequent pattern mining are also not supported.

3.1.3 Unstructured Information Management Architecture

The Unstructured Information Management Architecture (UIMA) project [168]
is an open-source software, published under the terms of the Apache License,
version 2.0 (ALv2). Its ultimate goal is to aid in the transformation of unstruc-
tured information to structured information. UIMA can be used to analyze
large amounts of unstructured data with the goal of identifying previously un-
known knowledge. One of the main motivations behind the project is the idea to

45

foster reusability (e.g. reuse of analysis components) and thus reducing overall
development efforts. Its architecture was designed to be easily expandable (e.g.
adding new components for analysis or annotation). These components can be
chained together in order to form complex analysis and processing scenarios.

An implementation of the UIMA architecture is available for the JAVA and
C++ programming languages. The main concepts of the architecture are analy-
sis engines (AEs), annotators, common analysis structure (CAS) and subject of
analysis (SOFA). However, UIMA is an empty framework on its own. As such it
does not include any particular data processing, ML or DM modules. It thrives
through participation of developers and enthusiasts. It is primarily employed in
search and annotation applications. The analysis occurs through a chain of so
called analysis engines, the result of which assigns semantics to elements in the
unstructured data. The architecture allows a stream-based processing based on
a CAS data type.

UIMA includes support for distributed deployments in different middleware
environments, support for multiple-modalities, support for efficient integration
across programming languages, component discovery and composition and many
more. However, its main purpose remains: turn unstructured information into
structured information. Afterward, the structured information can be used by
ML or DM algorithms. It supports the analysis of multi-modal contents (e.g.
text, audio and video).

3.1.4 Framework: streams

The streams framework is an open-source software framework for stream-based
data processing [22] and it is published under the terms of the GNU Affero
General Public License (GNU AGPL). It provides the means for an iterative
and modularized processing of data samples and enables rapid prototyping of
compute graphs (i.e. a graph of interconnected modules that accept data, pro-
cess or compute data and forward it to the next module in the graph). The
framework utilizes XML-based definitions for processes and graphs. Thus, the
transfer and exchange of designed experiments among users is simplified which
in turn facilitates reproducibility (i.e. by other researchers and practitioners).
In this regard, the framework abstracts from implementation details and allows
focusing on the actual design task.

Graphs in the streams framework can be translated to topologies of the scal-
able tool for resource management (STORM) system [56,159]. Nonetheless,
these graphs can also be run within a JAVA virtual machine (VM). Further-
more, the MOA library has been integrated to add support for various ML ap-
proaches. The streams framework is intended to provide a high level definition
of stream processes. Thus enabling the integration of existing ML and artificial
intelligence (AI) libraries such as WEKA or MOA. In doing so, some of the orig-
inal drawbacks from the integrated libraries can be nullified. The framework
provides an “environment for implementing stream processes by combining im-
plementations of existing online algorithms, online feature extraction methods
and other preprocessing elements” [22, p. §].

On the downside, the streams framework treats data sources, data sinks and
processing modules in a different way. There should be no need for such distinc-
tions. Furthermore, computation graphs of the streams framework only allow
sequential and tree-like structures to be formed, but not fully interconnected

46

graphs. Additionally, throughput of data samples can only be throttled as op-
posed to varied in both directions. Also, only restricted data types can be pro-
cessed (i.e. existing data types cannot necessarily be easily reused). The API’s
source code is only partially documented. However, a technical report, detailing
various configuration and extensibility options, is included in the framework.

3.1.5 Others

Several other frameworks are in existence, a few of them are briefly highlighted
as follows.

e TPUS: It is a domain-independent framework which is based around for-
mal signal processing models. In contrast to stable environments where a
fixed set (and configuration) of signal processing algorithms (SPAs) may
be appropriate and sufficient, Integrated Processing and Understanding of
Signals (IPUS) can also be applied in environments which can be charac-
terized by “variable signal-to-noise ratios, unpredictable source behavior
and the simultaneous occurrence of objects whose signal signatures can
mask or otherwise distort each other” [88].

One of the key aspects of the IPUS architecture is its responsive design
loop. The front-end signal processing can be dynamically changed in ac-
cordance with changes in the environment. Parameterization and SPA
can both be adjusted in response to such changes.
TPUS is capable of processing signal data in a block-wise manner. It uses
an iterative process to adapt SPAs, their configuration and interpretation
of signals. Lesser et al. [88] state that the framework can (potentially) be
used everywhere where a “rich underlying theory” is present.
The framework does not automatically adjust parameters of SPAs, instead
it reacts to changes in the environment in a predefined manner. The
adjustments need to be modeled in the form of a domain-specific formal
processing theory. This is then used to initialize IPUS. The learning of
models and statistical relationships among components are not covered.
¢ SPARK: The SPARK [156] project is an open-source cluster computing
system, written in the Scala programming language and published under
the terms of the ALv2. The general idea of SPARK is a system that
supports a wide range of large-scale data-intensive applications. Similarly
to MapReduce [49], Dryad [72] and Map-Reduce-Merge [178], SPARK
allows parallel computing on commodity clusters with automatic fault
tolerance as well as the “reuse [of] a working set of data across multiple
parallel operations” [180]. The latter type of application is not efficiently
supported in the previously mentioned systems. Iterative algorithms (e.g.
many ML algorithms) and interactive DM tools belong to this class.
SPARK utilizes resilient distributed datasets (RDDs) to support such ap-
plications with similar properties to MapReduce (i.e. scalability and fault
tolerance). RDDs represent a collection of objects that are partitioned
across multiple machines. This collection is read-only and partitions can
be reconstructed if one is lost. These components are accessed by a drive
program, which implements the high-level control flow of user applications
(and can be used to automatically reconstruct lost partitions). RDDs
are particularly well suited for “batch applications that apply the same

47

operation to all elements of a dataset” [179]. RDDs are less effective
for “applications that make asynchronous fine-grained updates to shared
state” [179].

e STORM: The STORM project [56,159] resembles a lightweight, flexi-
ble and scalable system for management of resources on clusters. The
architecture is designed to meet two primary goals: (1) to provide re-
source management (RM) mechanisms and (2) to support a variety of job
scheduling algorithms. These goals have been realized by implementing a
set, of loosely coupled daemons, which communicate through low-level net-
work messages. STORM incorporates several scheduling algorithms such
as gang-scheduling or buffered co-scheduling [56]. Three kinds of daemons
are utilized by STORM: (1) machine manager (MM), (2) node manager
(NM) and (3) program launcher (PL). They are used to successfully dis-
tribute and execute an application. The MM performs global scheduling
and resources accounting. Local resource monitoring and scheduling is
done by the NM. The PL takes care of the actual application.

The RM tool is designed around a set of five critical points: flexibility,
usability, portability, scalability and performance. It takes full advantage
of the underlying network hardware [56] and runs in user mode (as opposed
to kernel mode). The latter point facilitates experimentation but comes
at the cost of being dependent on the operating system (OS)’s scheduler
(thus, it is susceptible to its variability).

STORM is an open-source framework and freely available [159]. It is
published under the terms of the ALv2. However, it is more an RM tool
rather than a data processing and analysis framework. It provides clusters
the ability to quickly launch applications, maximize resource utilization
and fast responses to user input. Nonetheless, the managed applications
may still perform data processing tasks even though the framework does
not. It is a relevant work in terms of RM and parallelism but it does not
resemble a data processing framework.

3.1.6 Summary

This section outlined several relevant and related frameworks to time series
processing. A brief overview to WEKA, MOA, UIMA and streams was given.
Some pros and contras were highlighted in the process. Table 3.1 summarizes
criteria for comparing the previously outlined frameworks.

These criteria are based on the requirements that were imposed on the soft-
ware framework being developed in this thesis (see Section 1.2). Consequently,
they were also used as a basis for comparison to other frameworks. In the eyes
of the author, a framework that fulfills all or at least most of these criteria can
be expected to gain popularity among researchers and time series enthusiasts.
However, such a framework could not be found by the author.

Most criteria were chosen because their fulfillment is expected to ease devel-
opment and evaluation within the framework. An open-source license helps in
terms of transparency and does not necessarily exclude commercial use but may
actually foster it (depending on the selected license). Practitioners would benefit
from flexibility, scalability, support for distribution and definitely from included
algorithms. On the other hand researchers and developers would benefit from
reusability of components (within the framework) as well as extensibility. The

48

criteria “stream-based” and “iterative” are inherent to a framework related to
time series that focuses on online processing.

Most of the presented frameworks in Table 3.1 were published under the
terms and conditions of a GNU GPL (or a derivative thereof). All of these
frameworks are freely available, open-source and written in Java. Furthermore,
all of them utilize reusable components and they are extensible in (at least) one
way. From the selected 14 criteria, the average framework fulfills 9 criteria (of
which 2 are partially fulfilled). None of the frameworks fulfill all criteria and
most of them have their weaknesses in providing preprocessing, classification
and related capabilities.

49

*(POI[YINY 90U I0 PA[YNY SUIdq 03 ST I9SO[D BLIDILID 9 IOIOYM 9JRITPUT Y pPuR A) POy Areryred ore
s1eY[oRIq Ul Paso[ud are jey) syurod 9soy], "elIolND uosiredwod oY) 0} syIomaurelj pauorjusw jo Ajqiqeoridde oy) syySIYSIH :T°€ 9[qel,

X X X X Sururur ureyjed juenbor
X X X Va UOISSOIZOY
X X Va N Surreysny)
X X N N UOTYROYISSR]))
X X X N Surssooordor g
N V X X uonnqrIsi(y 1oy jroddng
(») (r) (1) (r) ANIqIsueIxy]
2 A A, A Aymiqesnay
() () X () Ayqrxor g
N A N X Apiqereog
A () A (x) OATIRIDY]
W (x) (») X poseg-ueoI}S
a N N Vi 901
A VA Vs N somog-uad()
VAV VAV VAV VAVL (s)eSen3uer] Suruureisorg
TdOV NIND SNMIV IO AND TdD AND 9SUAOIT
g1'6°0 [e TT°€T0C 01'9°¢ UOISIDA

2 = 2 <

3 2 o =

1 > =

= > 2

n

50

3.2 Identifying Parkinson’s Disease and Its Symp-
toms

Much research has been published with a focus on biological, chemical and
genetic aspects of PD. Over the last two decades, an increasing number of
publications originate from fields like computer science or Al, focusing on signi-
fying motor symptoms in people with Parkinson’s. This information can then
be used to monitor symptom progression, (partially) evaluate treatment effec-
tiveness and could ultimately be used to personalize (and improve) medication
regime. Some of these publications are dedicated to detecting single motor
symptoms [13,33,34,37,51,98,113,136,161,171] and others to the detection of
multiple symptoms [36,122,140,143]. These publications reveal a great num-
ber of techniques for automatically indicating the presence of PD motor symp-
toms (e.g. neural networks (NNs) [13,18,34,36,37,51,78,140], hidden markov
models (HMMs) [136] and support vector machines (SVMs) [18,34,122]). De-
pending on symptom and utilized sensors, various features have been proposed
and used in this context (e.g. entropy [18,34,110,122], spectral or fractal fea-
tures [13,31,32,77,111,115,143,155,162,171]). In the course of this section
a strong focus will be on common motor symptoms that are experienced by
PD patients. This restriction is due to the otherwise extensive list of motor
and non motor symptoms as shown in Table A.1 and Table A.2. Preference is
given to those publications that do not focus on a single symptom (as opposed
to multiple symptoms) nor make use of synthetic datasets (as opposed to data
recorded from sensors on the subject’s body) but rather use unconstrained and
unscripted activities of daily living (ADL).

It should be kept in mind that there are many other publications with a
focus on PD symptom indication or their severity, but do not make use of body-
mounted sensors or otherwise do not resemble the previously elaborated criteria.
Despite this reservation, a few selected publications that do not fit these criteria
are presented nonetheless.

3.2.1 Tremor at Rest

In an early study by Salarian et al. [142], they were able to achieve a specificity
of 98% and sensitivity of 76.6% in detecting resting tremor on a dataset with ten
patients and ten control subjects. In total, close to twenty hours of data were
captured by the authors. Two tri-axial gyroscopes (i.e. one on each wrist) were
used to record data while participants performed a set of scripted everyday activ-
ities. Spectral analysis was used to filter interesting regions within the frequency
range specific to resting tremor (i.e. 3.5Hz - 7.5H z). In a later study [143] based
on the same dataset, the data stream was divided into chunks with a length of
three seconds to which the Burg method [30] was applied (i.e. a method for es-
timating power density spectra). Additionally a meta-analysis was introduced
to remove isolated segments that were classified to exhibit tremor or tremor-like
behavior (e.g. a single segment with tremor surrounded by non-tremor seg-
ments). This increased the sensitivity to 99.5% but lowered the specificity to
94.2%.

In a paper by Zwartjes et al. [182], inertial sensor data (i.e. acceleration and
angular velocity) were gathered from six patients and seven control subjects.

51

Zwartjes et al. had captured approximately 1.5 — 2 hours of data while partic-
ipants were performing a set of scripted activities in laboratory conditions. A
multi-staged algorithm is utilized to indicate regions of tremor. At first some
preprocessing is applied to the raw data, which is then used to classify the sub-
ject’s activity and posture. This pre-classification is used to highlight regions
of interest where tremor is more noticeable (e.g. arms are hanging still while
standing). If activity or posture were suitable for detection of tremor (and its
severity) then those portions of the data stream are divided into segments of
three seconds length with % overlap. For each segment, the Fourier transform
(FT) is used to identify tremor specific frequencies and thus tremor episodes as
well. In the algorithm’s last stage, a meta-analysis removes isolated segments of
tremor (very similar to the process that was utilized by Salarian et al. in [143]).
Zwartjes et al. achieved an accuracy of about 84.7%. However, in comparison to
studies by Salarian et al. [142,143], the recorded activities were less constrained.

Rigas et al. [136] achieved an accuracy of 87% in detecting tremor in an
accelerometer based dataset with twenty-three participants (i.e. ten patients
and thirteen control subjects). All participants performed daily activities in
laboratory conditions. The data stream is divided into three second windows
with 50% overlap. Having applied standard filtering and analysis techniques
(i.e. finite response (FIR) filters, fast Fourier transform (FFT), etc.) an HMM
is utilized to detect tremor episodes. This is different from most algorithms
for tremor indication. More common approaches rely on spectral features alone
[13, 31,32, 77,111, 115, 143, 155, 162, 171] while others classify based on NNs
[13,18,34,36,37,51,78,140] or SVMs [18,34,122]. Rigas et al. state that HMMs
are suitable for tremor indication because “tremor presents time-dependency”
[136]. They consider HMMs as a time sensitive extension of the naive Bayes
classifier.

Cole et al. [36] were able to detect tremor with a sensitivity of 93% and speci-
ficity of 95% in unconstrained and unscripted activities. The dataset contained
about 48 hours of acceleration and electromyograph (EMG) measurements from
twelve participants (i.e. eight patients and four control subjects). Here a dy-
namic neural network (DNN) is used in combination with a set of FIR filters
to detect tremor. It is stated by the authors that DNNs [172] were utilized be-
cause they are more capable of learning and classifying time-dependent classes
(e.g. tremor) when compared to regular and static neural networks. Cole et
al. divided the data stream into segments of two seconds length for feature ex-
traction. The features were simply passed to the DNN, where artificial neurons
did their work. However, the neurons’ outputs were not simply forwarded to
the next layer of neurons. Instead, each neuron had an FIR filter attached to
it which transformed the output before it was passed to subsequent neurons.
Their results were mainly dependent on the choice of training data. Here a
handcrafted representative subset of data was chosen.

A dataset with nineteen patients and four control subjects was used by
Roy et al. [140] to signify tremor. They achieved a sensitivity of 91.2% and
a specificity of 93.4% in EMG and acceleration data. The participants were
performing unscripted and unconstrained activities in a home-like environment
for several hours. Here the data stream is also divided into two second windows
and a combination of DNNs with FIR filters is fed with various features that
were extracted from these segments.

Niazmand et al. [114] collected data from accelerometers integrated into a

52

pullover. Ten patients and two healthy control subjects performed standardized
PD motor tasks. An average sensitivity of 80% in indicating postural tremor
and resting tremor and a specificity of 98.5% was achieved by the authors. Their
algorithm first determines the relative acceleration among the sensors and then
determines the movement frequency. This is done because sensors are not fixed
on the patient’s body but rather in a garment which position can change depend-
ing on executed movements. The raw data are simply filtered, normalized and
a noise removal method is applied. For determining the movement frequency, a
combination of thresholds and peak counting is utilized.

3.2.2 Bradykinesia

In a paper by Cancela et al. [34], the authors present a motor symptom monitor-
ing and management system. Their work originates from a European research
project called PERFORM (see Section 3.3 “Parkinson’s Disease in Research
Projects”). Here a set of classification algorithms (e.g. SVM, k-nearest neigh-
bors (KNN), NN, decision tree (DT), etc.) was evaluated. The highest accuracy
of 86% was achieved by the SVM. The corresponding dataset consists of accel-
eration data from twenty patients performing a set of ADL (within the limits
of a scripted protocol). A standard analysis procedure is used by Cancela et al.
At first a Butterworth filter is applied to raw sensor data then the data stream
is epoched in five second segments with a 50% overlap. A set of features (i.e.
sample entropy, root mean square (RMS), cross correlation, etc.) is calculated
for each segment and passed to the classification algorithms. Here, the algo-
rithms classify presence and severity of bradykinesia. Interestingly, the severity
is not derived from standard motor tasks (see Section 2.2.4) but instead from
ADL.

Cancela was also involved in a publication by Pastorino et al. [120]. Here a
slightly modified version of Cancela’s algorithm is utilized (as in [34]). A dataset
from twenty-four patients performing unconstrained and unscripted activities at
their home was gathered for a week. Twice a day, a clinician came to visit the
patient and performed a short session, which was later used to test the previously
developed algorithm. Pastorino et al. show that an additional meta-analysis can
improve classification results. Instead of using the generated outputs from the
SVM directly, they can be further smoothed to ignore impossible and unrealistic
scenarios. Using a patient independent algorithm an accuracy of 68.3% =+ 8.9%
was achieved and a 74.4% + 14.9% accuracy was achieved with the additional
meta-analysis. They indicate that a patient specific training of the algorithms
would likely lead to improved results.

Salarian et al. were not only involved in detecting tremor in time series
data, they were also using gyroscopes on the wrists to indicate the presence of
bradykinesia. In [142], ten patients and ten healthy control subjects participated
in the collection of twenty hours of data. All participants were performing
scripted ADL. Salarian et al. showed that the features rotation of hand (Rzr)
and mobility of hand (M) correlate well with the clinician’s ground truth (r =
—0.84 and r = —0.83 for My and Ry respectively and p < 0.00001). Several
years later, Salarian et al. were able to reproduce their results in [143]. However,
window sizes of five minutes and above were used in latter publication. Even
though their work does not produce results in real-time, it does give hope that
not many sensors are required for a decent accuracy in bradykinesia detection.

53

The authors Zwartjes et al. [182] were able to identify bradykinesia related
parameters that correlate well with the patient’s unified Parkinson’s Disease
rating scale (UPDRS) scores. Here a dataset based on accelerometers and gy-
roscopes from six patients and seven healthy control subjects was analyzed.
All subjects performed a mixture of standardized motor tasks and ADLs in a
random predefined order. An activity and posture classifier is used to iden-
tify a set of elementary activities (i.e. walking, standing up) and postures (i.e.
standing and sitting). For upper extremities, an average arm acceleration is
calculated while various gait-related features (i.e. step length, step velocity,
etc.) are determined from a tri-axial gyroscope and a tri-axial accelerometer
that are placed on the foot. These features provide the basis for bradykinesia
(slowness of movement) and hypokinesia (poverty of movement) quantification.
The authors’ results indicate that a significant correlation is present in almost
all bradykinesia-related parameters while “none of the hypokinesia-related pa-
rameters were significantly correlated” [182].

3.2.3 Akinesia / Freezing of Gait

In [51], Djurié¢-Jovicié¢ et al. employed a neural network and a simple threshold-
ing technique to classify walking patterns in PD patients. A set of six inertial
measurement units, each containing a tri-axial accelerometer and a tri-axial gy-
roscope, were attached to the subjects’ legs (i.e. thigh and shin) as well as
their feet. The kinematics of four patients (as they were following a predeter-
mined path) were gathered, annotated and used to train a neural network. In
total, about 30 minutes of data were collected. The path itself included several
(potential) hurdles which have been designed to provoke freezing of gait (FoG)
(e.g. start hesitation, destination hesitation, narrow path or turn hesitation,
etc.). A combination of heuristically determined thresholds and an NN were
utilized to differentiate between “normal” (i.e. standing and regular steps) and
pathological (i.e. festination, akinesia, shuffling and small steps) walking pat-
terns. The authors [51] achieved an error rate as high as 16% due to the choice
of thresholds (i.e. thresholds were independent of patients, etc.). It should be
taken into account that the algorithm was working in real-time (i.e. about 0.5
seconds delay).

A similar technique was developed by Cole et al. [37]. However, instead of
a regular (static) neural network a dynamic neural network [172] was utilized.
Their indicator algorithm showed a sensitivity of 82.9% and specificity of 97.3%
in a dataset containing unconstrained and unscripted activities. Ten patients
and two healthy control subjects contributed and helped to gather about two
hours of data from several accelerometers (i.e. forearm, thigh and shin) and an
EMG sensor (i.e. shin). The authors employed a multi-staged algorithm [37]. In
the first stage, a simple linear classifier determines whether the subject is in an
upright position (i.e. standing and not sitting or lying). If this is the case then
a DNN determines freezing episodes. The idea was to identify periods in the
data stream where FoG episodes are more likely to be apparent (both visually
and in data stream). In contrast to a static NN, Cole et al. [37] have decided to
use a DNN because they are able to better capture time-varying weights that
are present in FoG episodes.

An accelerometer based smart garment called MiMed-Pants [112] has been
used by Niazmand et al. [115] to extract and analyze gait-related features. In

54

this case, the measurement device has been successfully integrated in an item
that is “suitable for daily use” [115]. The pair of pants can be washed like a
regular textile. A sensitivity of 88.3% and specificity of 85.3% has been achieved
with this setup. Five accelerometers (i.e. each shin, each thigh and belly but-
ton) provided kinematics on six patients while they were performing standard
activities [181] (i.e. walking course, including narrow spaces, gait initialization
and reaching destination, etc.). In total about one hour of data was collected
by Niazmand et al. No use of advanced artificial intelligence methods was made
in [115], but instead a linear classification was applied to features that were
extracted from the sensors. The algorithms provided feedback with a delay of
about two seconds.

In 2009, Béachlin et al. published their work on a wearable and context-
aware system for real-time detection of FoG events [32]. The system provides
acoustic feedback within a two second window. A set of accelerometers and
gyroscopes was utilized (e.g. on shank, thigh and waist). Over eight hours
of data were gathered from ten patients performing ADL, as well as walking
in a straight line and a random walk. Bachlin et al. claim to have built the
first context-aware and wearable system to assist PD patients in detecting FoG
events. An overall sensitivity of 73.1% and a 81.6% specificity were achieved
with just two features (i.e. energy in 0.5 — 3Hz and energy in 3 — 8 Hz band)
and two thresholds. The features are used to calculate the freezing index (FI)
whenever the energy exceeds a lower threshold. FoG is detected when the FI is
above another threshold. The results were mainly due to different walking styles
(that were used by the subjects in their dataset), choice of features and use of
patient independent thresholding. They state that a personalized training and
choice of threshold might have produced better results.

In [157], Stamatakis et al. were able to show differences in walking patterns
between a PD patient and a healthy control subject. The authors identified a
set of features (e.g. variability in stride time, variability in stance phase and
others) that may be used for differentiating between PD patients and healthy
control subjects as well as for detecting FoG events and their duration. Even
though no results in terms of accuracy or significance were presented in [157],
their proposed features may prove to be beneficial.

3.2.4 Drug-Induced Dyskinesia

Keijsers et al. [78] were able to achieve an accuracy of 96.6% in detecting dysk-
inesia. Thirteen participants were enrolled in their study. Each subject con-
tributed about 2.5 hours of acceleration data while they were performing a set
of scripted activities (approximately 35) in a controlled environment. In total
six tri-axial acceleration sensors were attached to the subject’s body (i.e. one
on each thigh, one on each shoulder, one on trunk and one on wrist) during
their recording session. The algorithm, used by Keijsers et al., classified fifteen
minute segments using a regular neural network. The NN was fed with features
such as power and velocity in certain frequency bands (e.g. 1 —3Hz, > 3Hz)
and other features. The output of the NN indicated the presence (or absence)
of dyskinesia within the segment. Several segment sizes were empirically eval-
uated (e.g. fifteen and one minute segments). The best accuracy was achieved
with the fifteen minutes segments (i.e. 96.6%). However when using one minute
segments the accuracy drops to about 80% on the same dataset.

%)

In contrast to Keijsers et al. [78], Tsipouras et al. [166] were able to achieve
similar results but on smaller segments. While Keijsers et al. [78] used fif-
teen minute segments, here two second intervals with 75% overlap are utilized.
Tsipouras et al. state to have achieved a 93.7% accuracy using their dataset.
This contains inertial sensor data (i.e. acceleration and angular rate) of four
patients and six control subjects. All participants were performing a set of
scripted activities. In total two gyroscopes (i.e. one on trunk and one on waist)
and six accelerometers (i.e. one next to each gyroscope, one on each arm and
one on each leg) were used during recording sessions. Features included entropy,
mean and standard deviation for each sensor and every 2-second window (with
1.5 seconds overlap). Here five classification methods were evaluated (i.e. naive
Bayes, KNN, fuzzy lattice reasoning, DTs and random forests (RFs)). The RFs
performed best with 93.7%. C4.5 is close behind with about 93.5% while all
other remaining classification algorithms achieved an accuracy around 85%.

Cole et al. [36] used a DNN to better capture the time-based variables. The
authors were able to achieve a 91% sensitivity and a 93% specificity in detecting
dyskinesia. Here a similar procedure to their work in detecting tremor [36]
and bradykinesia [37] was utilized. Their dataset contained several hours of
acceleration data and EMG measurements from eight patients as well as four
control subjects. Participants were performing unscripted and unconstrained
activities during their recording session. A set of features is extracted from
a two second sliding window (e.g. dominant frequency and energy in given
frequency bands) and fed to the DNN. Additionally, outputs of each artificial
neuron (i.e. node within the neural network) are filtered using a five point FIR
filter.

Similarly Roy et al. [140] combine DNNs with a rule-based reasoning method.
They were able to achieve a sensitivity of 90% and specificity of 93.4% in a
dataset containing acceleration data and EMG measurements from nineteen
patients and four control subjects. One hybrid sensor (containing a tri-axial
accelerometer and an EMG sensor) was located on each arm and leg. All par-
ticipants were performing unconstrained and unscripted activities in a home-like
environment. In total about 30 hours of data were gathered and used by Roy et
al. [140]. Again, the extracted features originate from two second segments (e.g.
energy in certain frequency bands, dominant frequency, etc.). Their algorithm
uses those features to feed two DNNs (i.e. one for mobility states and one for
motor states). These DNNs provide preliminary results on patient’s mobility
state (i.e. sitting walking, standing, etc.) and motor symptoms. They are used
in combination with a framework called IPUS [88], which in turn activates dif-
ferent DNNs to maximize symptom recognition rates (e.g. based on the fact
that the subject is walking, sitting, etc.).

Patel et al. [124] utilized clustering techniques (and EM) to distinguish var-
ious levels of severity in PD patients while they were performing standardized
motor tasks. A similar approach was used by Sherrill et al. [152]. Here six
patients provided acceleration data to which clustering was applied in order to
detect dyskinesia.

3.2.5 Dysarthria and Dysphagia

In [134], Revett et al. employ a rough sets approach for distinguishing healthy
subjects and people with PD based on vocal data. Their dataset is based on

56

thirty-one participants (i.e. twenty-three patients and eight healthy controls)
performing a phonation task. Little et al. [91] originally constructed this dataset
and donated it to University of California Irvine (UCI) Machine Learning Repos-
itory [15]. On average, each participant performed six phonations of the vowel
[a], thus resulting in close to 200 samples. The authors document a set of twenty-
three features (including spectral features, shimmer, jitter, presence of PD, etc.).
They report to have achieved a 100% accuracy when using all available features
in their rough sets approach. This holds if the classification category is binary
(i.e. healthy subject or PD patient). In this case, several hundred rules are gen-
erated to identify a data sample’s category. When trying to reduce the number
of rules, the accuracy drops but stays well above 90% with about 100 rules.
However, the authors did not attempt to perform classification based on the
patient’s duration of the disease, severity or UPDRS scores.

In a publication by Bakar et al. [17], they present a speech-based assessment
tool for identifying PD. Here the same dataset (as originally constructed by Lit-
tle et al. [91]) has been utilized. The authors performed several tests in which
they compared testing accuracy, training accuracy, average mean squared error
(MSE) as well as average number of iterations of two learning algorithms for NNs
(Levenberg-Marquardt (LM) and Scaled Conjugate Gradient (SCG)). Their re-
sults indicate that LM outperforms the SCG algorithm. Generally speaking, the
LM-approach resulted in better testing and training accuracy as well as a lower
MSE while SCG performed better in terms of “number of iterations”. The best
result was achieved with a 97.9% accuracy in training and 93.0% accuracy in
testing.

Asgari and Shafran [14] utilized a similar set of features for classifying speech
and phonation data. They performed a prediction of UPDRS motor scores based
on these features. In more than one hundred recording sessions, twenty-one con-
trol subjects and sixty-one patients were asked to perform three tasks: sustained
phonation (i.e. phonation of vowel [a]), diadochokinetic test (i.e. repetition of
syllables [pa], [ta] and [ka]) and a reading task. The actual recordings were
done with a dedicated device that was designed to be an at-home testing tool.
The dataset itself was analyzed with 100 frames per second using Hamming
windows (each of 25ms length). A rather large set of features is extracted for
both voiced and unvoiced segments. About 15K features were generated based
on their recordings of phonation and speech data (including pitch, frequency,
harmony, etc.). an SVM was employed to translate these features into UPDRS
motor scores. Depending on the used features (or subset of features), a mean
absolute error between 6.1 and 5.7 (UPDRS) points was achieved (total points
of motor sub-scale: 108).

In [103], Mekyska, Rektorova and Smekal evaluate a set of features for au-
tomatic analysis of speech disorders in PD. The authors provide an extensive
summary on various speech-related parameters and highlight a few common
problems in automatic speech analysis. Their dataset is composed of forty-two
male control subjects and twelve male PD patients. Each participant was asked
to pronounce all vowels (i.e. [a], [e], [i], [0], [u]) once in a natural speed and
once slowly. The inter-intra class distance ratio (IICDR) method and minimum
redundancy maximum relevance (mRMR) method were used by Mekyska et al.
in order to sort out the top 20 parameters for each method (after having started
with 510 parameters in total). In a second step, the Jarque-Bera test was uti-
lized to see which features show a normal probability distribution. Those with a

o7

normal distribution were used in a multi-factor analysis of variance (ANOVA).
Their results show up to three features (i.e. “mean B — Fy” for p < 5% as well
as “mean Fy” and “mean NHR” for p < 10%) that can be used to distinguish
healthy control subjects from those afflicted with PD. Mekyska et al. add that
there are also several parameters, which do not show a coherent tendency in
published literature. The authors point out several papers in which a particular
feature has been shown to be significant, non-significant and indifferent in terms
of separating patients from healthy subjects. However, they also comment that
these conflicting publications usually used rather small datasets. Thus, they are
more prone to random variations and clusters.

Xiuming et al. [177] describe a diagnostic approach to PD based on principle
component analysis (PCA) and Sugeno integral. The authors employ a dataset
by Little et al. [91] from UCI Machine Learning Repository [15]. Thus, data
of thirty-one participants (i.e. eight patients and twenty-three healthy control
subjects) was analyzed. Xiuming et al. show five principle components that
account for 86.5% of the information within the signal. In order to propose a
diagnosis, the Sugeno measure and Sugeno integral are then determined for the
top five most relevant features. The authors report a classification accuracy of
81.0%.

3.2.6 Others

In 2000, Hamilton et al. [63] published their work on outcome prediction in
pallidotomy in PD patients (see ablation in Section 2.2.3). It was their goal to
build a reliable tool, which estimates an operation’s outcome based on intra-
operational recordings of neural activity. A standard NN was employed and
trained with a set of features (e.g. signal power, entropy or fractal dimensions).
This system could provide supplementary data and aid surgeons in minimizing
risks (e.g. blindness, difficulties in speaking or swallowing, etc.) and maximizing
effectiveness. Their results indicate that all evaluated NN performed similarly
in terms of overall outcome prediction. Hamilton and colleagues found that
their NNs handled exceptional cases well.

In terms of diagnosis Kupryjanow et al. [86] came up with an alternative
measurement technique for determining UPDRS sub-scores related to motor
tests (i.e. finger tapping and rapid alternating movement of hands). Instead
of relying on arguably subjective assessments from neurologists, they present
a device called Virtual-Touchpad (VTP). Here a webcam is used to capture
movements of hands and translate them into machine-readable features. In
comparison to other methods, this approach does not require equipment to be
attached to the patient (or mounted on the patient). an SVM recognizes hand
gestures and postures. The succession of those postures is used to extract the
mentioned features and determine UPDRS scores. The authors did not perform
a user study in [86].

Cunningham et al. [43] presented their work on a computerized assessment
tool. The work is intended to identify movement difficulties found in people
with PD and similar movement disorders. Here the participants’ ability to
point and click on targets on the computer screen is compared among those
afflicted with PD and healthy control subjects. A benefit of this approach
is that patients are not expected to wear “unusual” or specialized hardware.
However, on the other hand, it requires the patient to sit in front of a computer

58

and cannot be mobile (as it would considerably alter their ability to point and
click). Their results show a difference in control subjects and PD patients. The
control group was generally more accurate (i.e. clicked closer to the target’s
center and made less accidental clicks) and faster (i.e. required less time to
click once the target has been reached). This holds for both computer literates
and computer illiterates. Those being computer illiterates and suffering from
PD showed a higher variance in terms of accuracy of clicking the target center.
In [42], Cunningham et al. present their tool’s abilities in indicating akinesia,
bradykinesia, dyskinesia, rigidity and tremor.

In a preceding publication by Cunningham and colleagues [41], another study
has been performed with ten PD patients. Here participants were asked to use
a home-based assessment tool twice a day (i.e. once in ON state and once in
OFF state) for a period of four days. It is their goal to differentiate between a
participant’s ON state and OFF state based on their test performance. As in
other studies by Cunningham et al. [43], the subjects clicked on targets while
their speed, time, distance and location of click were recorded. Regarding the
time, a statistical significance was found when comparing performances in ON
and OFF states (p = 0.017). The authors also note that a few subjects showed
an increased variance in ON-OFF state which indicates that they might not have
been in a clearly defined ON-OFF state at the time of testing. Nonetheless, their
results appear to be promising and larger follow-up studies are to be seen.

Wang et al. [173] developed a new method for quantitative evaluation of
symptoms in people with PD. Their proposed method is based on free spiral
drawings with a digitizing tablet. Spiral drawings itself have been used a num-
ber of times to quantify motor dysfunctions (in particular [92,94, 104] were
highlighted by Wang et al.). However, these methods were usually employing
some sort of guidance or template. In contrast, Wang et al. utilized free spiral
drawings. A group of ten participants enrolled in their study at a hospital in
Japan (Kaizuka). All of them were asked to draw a spiral that was then used
to extract several features (e.g. number of turns, mean of radius, maximum
radius, etc.). Their results indicate that healthy control subjects can be clearly
separated from the remaining eight patients regarding the number of extreme
points in radius curve. Most PD subjects were not able to “rapidly enlarge
the circle as spiral” [173]. The authors remark that the features mean value of
radius and slope of radius curve demonstrated stiffness and could be used to
distinguish between healthy and pathological subjects.

Pradhan et al. [127] considered a similar methodology, but instead of drawing
spirals thirty PD patients were tracking waves by applying force to sensors. Here
two force sensors (i.e. one for index finger and one for thumb) were “squeezed”
in order to track a wave (i.e. simple sine wave and complex wave with multiple
frequency components) with and without mental distraction. Their goal was
to provide an assessment tool for clinical progression of PD patients. Pradhan
and colleagues state that similar studies have been performed but “which may
not be effective in documenting subtle changes in motor control” [127]. When
comparing their task of wave tracking (involving precision control), other studies
were usually employed to quantify surgical results or treatment progression.
Three features were considered: spectral density, RMS error and lag. Although
some of the features correlated significantly with UPDRS scores, there have been
no significant improvements in prediction. Nonetheless, the authors suggest that
their test may add an extra objective measure that other tests fail to capture.

59

In a publication by Brewer et al. [28], a similar approach has been used
to predict UPDRS scores. Here twenty-six participants (all PD patients) were
exhibiting pressure on force and torque sensors while they were performing
wave tracking tasks. The authors used the same parameters to summarize the
participants ability to properly track waves (i.e. spectral density, RMS error
and lag). These features were evaluated in terms of their ability to predict
UPDRS scores. The authors present four approaches: PCA| least squares linear
regression, lasso regression and ridge regression. Their results indicate that
ridge regression works best with an absolute error of 3.5 UPDRS points. This is
followed by lasso regression (i.e. 4.5 UPDRS points) and PCA (i.e. 7 UPDRS
points).

Similarly, Kondraske et al. [82] utilize ordinary computer hardware for spe-
cialized PD tests. The authors present an initial evaluation of three objective,
self-administered and web-based tests (i.e. alternating movement quality, simple
visual-based response speed and upper extremity neuromotor channel capacity).
Each test has an equivalent version in the real world based on a testing device
called “BEP 1”7. Twenty-one subjects (i.e. eight healthy controls and thirteen
PD patients) enrolled in their evaluation where both lab-based and web-based
tests were performed. The results indicate an encouraging well correlation for
lab-based and web-based “rapid alternating movement” and “neuromotor chan-
nel capacity” tests. The correlation for the “simple visual” test did not show
expected results. The authors envision a three-tiered approach that first involves
digital, web-based tests then lab-based tests and finally screening by an expert.
As suggested by its nature, web-based tests are easily accessible to a broad
population. They provide objective measurements within an uncontrolled envi-
ronment and may provide an initial assessment on whether any signs of PD are
apparent. The second tier can then be used for a complementary assessment
in a controllable environment. Afterwards a proper clinical screening can be
performed by a neurologist if previous results suggested parkinsonian behavior.

An automatic evaluation approach for early detection of PD is presented by
Jobbdgy et al. [75]. The authors propose and evaluate a set of tests that were
specifically designed to highlight features of PD symptoms. They employ a mo-
tion tracking system, called precision motion analysis system (PRIMAS), for
recording movements patterns. The system uses a combination of infrared (IR)
light, passive markers (i.e. small, lightweight reflective disks mounted on body)
and cameras in order to track the participants’ movements of their fingers and
hands. Jobbdgy and colleagues aim at providing tests and measures to indicate
the presence of early to moderate PD and subtle changes in its progression.
Twenty-nine participants took part in their study (i.e. thirteen young healthy
subjects, ten elderly healthy subjects and six subjects afflicted with PD). Three
tasks were performed: tapping task, twiddling task as well as a pinching and
circling task. The authors describe their analysis of raw movement data from
their tracking system and highlight their chosen features (e.g. frequency, sym-
metry, dexterity, amplitude, etc.). Based on these parameters a score (between
zero and one) is proposed in which people with PD achieve higher score-values
(as in UPDRS). Their empirical results indicate that their scale does indeed
separate PD patients from healthy subjects.

60

3.2.7 Summary

It is apparent that indication of PD motor symptoms in time series data is clearly
not an empty page. Alone in the past decade a great number of publications
with a focus on this very topic have been seen. Some of the mentioned authors
have published their work on several symptoms (e.g. Cole et al. [36,37], Salarian
et al. [142,143] and Zwartjes et al. [182]).

In recent years, accuracy of symptom indication and severity indication have
reached percentages well above 90%. However it should be noted that datasets
vary greatly in quality and quantity (e.g. from a few minutes to several hours or
days of data). The accuracy increases and decreases with the used datasets and
employed algorithms. Authors with small datasets or even synthetic datasets
tend to achieve higher accuracies than those that utilize medium-sized (De
Marchis et al. [98] used data from four patients and achieved a sensitivity of 99%
and a positive predictive value (PPV) of 96% in recognizing tremor) or large
datasets (Rigas et al. [136] used data from 23 subjects with roughly 20 min-
utes of data each and achieved an overall accuracy of 74% in detecting tremor)
from real people. Another aspect of quality is the task or activity which was
performed during recording sessions (i.e. scripted vs. unscripted, constrained
vs. unconstrained, etc.). This section gave preference to those publications
that were not using standardized motor tasks to identify symptoms (and their
severity). Sensitivities in the range of 90% —95% (sometimes even greater) were
achieved with today’s methods, but usually at the cost of a lower specificity.

However, publications are typically limited by the dataset that they utilize.
Most datasets contain signals from well below 30 participants. Most publica-
tions with smaller datasets achieve acceptable results, but fail to provide suffi-
cient evidence that the same approach would also work in larger datasets (e.g.
50 > patient) and under “real”-world conditions (i.e. not in a laboratory en-
vironment). The limitations of publications with reasonably sized datasets will
typically sacrifice either sensitivity and specificity in order to improve on the
other measure. These publications also have a tendency towards signals that
were obtained under laboratory conditions. They also typically consider only a
single symptom (rather than multiple), thus failing to show how their approach
performs in the presence of other symptoms. Generally speaking, the presented
state-of-the-art can be improved in the following ways: use of larger database
(e.g. > 50 patients), considering symptom diversity (i.e. signals should con-
tain multiple symptoms), signals should not have been recorded in laboratory
conditions (but rather in “real”-world conditions or close to it) and increasing
accuracy (since most publications with sufficiently sized datasets do not achieve
sensitivities and specificities of 90%, 95% or above).

Table 3.2 summarizes the papers that were presented in this section. More
elaborated tables can be viewed in the appendix (see Table A.3, Table A.4, Table
A.5 and Table A.6). They show the presented papers, but also highlight several
other relevant publications. Additionally, more details on each publication are
shown in those tables.

Despite the reservation of highlighting papers that enable indication of PD
motor symptoms and / or assessing their severity while being mobile, a set of
publications that do not fit these criteria was presented. Table 3.3 points to
several noteworthy publications with a similar focus, but not necessarily with
the intent to identify cardinal symptoms. Therefore, they do not necessarily

61

present the state-of-the-art. Nonetheless, the interested reader is encouraged to
read through them.

The presented research (i.e. publications and their approaches in identifying
PD symptoms) yields to the conclusion that commonly experienced PD motor
symptoms (e.g. bradykinesia, FoG, dyskinesia, tremor at rest) can be identified
with ML and DM techniques. The approaches and utilized feature sets have
been briefly outlined. Due to the wide variety of PD related symptoms (see Ta-
ble A.1), the list was narrowed down to the presented symptoms (i.e. commonly
experienced motor symptoms). However, one should keep in mind that addi-
tional publications on related topics exist (i.e. other symptoms, ON-OFF-state
detection, quantification of PD progression, etc.). These have been left out as
their inclusion would have exceeded the scope of this section and chapter.

62

(ponurjuoo)

QOUDISPIP [eotrtduy - Vo [291] e 90 spyejemreng d
%9°18 odg %T'EL 'Uog SPIoyseIy} DV [z€] e 9o ueg A
%¢€"G8 odg %E'8y 'uog SPIOYSOIT) v [STT] e 90 puewzeIN A
%E L6 odS %6'C8 U9 sproyseIy} ‘NNA q°V [2€] "Te 10 910D d
(00 %H]) %91 > 10110 UOIYRDYISSR])) sproyseIy) ‘NN 5 ‘v [19] e 10 9or-ouml(q I
(%g > d) seanyes])sou I0J JUROYIUSIG - 0y [28T] ‘T 10 selyremy q
(%1 > d) seanyes])sou I0J JUROYIUSIG - 0 [€7T] ‘Te 10 uwerreres q
(%1 > d) seanjyea] jsour I0j yUROYIUSIG - 0 [cP1] ‘Te 1o uelreres q
%YL 1OV INAS D'V [0z1] [e 10 ouroiseq da
%S98 12OV 910 INAS ‘NN ‘NNM v [ve] T8 10 wpEoURD d
*I0WID1} 4SoI
pue reanjsod jo oSe1oAy %6'86 :-odg %008 :'UAg spoysaIy} v [F11] Te 10 puewzery L
'S8o] pue suLre
I0] syusa1 jo ddeiony %V'€6 9dS % 16 U9 NNd q4°Vv [07T] 'Te 10 Aoy £L
%066 odg %0°¢6 ULS NNA qdv [9¢] "Te 10 910D L
%0°L8 99V ININH v [9€T] "Te 10 seSrYy L
‘saanjsod 3urdrea
SSOIDR OIJRWAULY pUR
IOWAI} 9891 JO 9FeIoAY %L FR] 00y SPIOYSaI) 0 ‘v [28T] 'Te 10 selyremy L
%G 76 9dS %G 66 USS SpIoyse D [€71] T8 90 uerrereg L
"SIXe MRA pue
[1ox ‘yogid ssoroe podero
-A® U99(Sey AYAT}ISUOG %0'86 :-odg 9%9'9), :'Uag SPOYSaIY) 0 [cP1] ‘TR 10 uelreres L
(s)yusmrto) (s)ymsoy (s)wygra081y (s)aosuag (s)aoymy wojduidg

63

‘sjesejep JueIofIp Jo juomiordure 03 onp o[qereduros A[300Irp jou ore sioded osor)
Suoure s)nsel 9Y) JRI) pUI Ul 3dey oq P[NOYS 3] "PIYeIIPUI oIk SIMNSAI 1) ‘DIOULIDYIIN] PSS o1e (1osues HINH H ‘©dodsoIL3
i) ‘I010U0IV[000R 1Y) SIOSUAS POZI[IIN PUR sonbruroe) uolyedsyissed pasojduio o1} ‘9duaIojol pue (RISOUINSAP (I ‘DO i “RISOULApRIQ
g ‘rowary :I,) wojdwihs yoeo 1o SWILIOS R uolyesipur woydwss qJ uo suoreorjgqnd 1Ie-o1)-Jo-01e)s Jo UOI)RZLIRWIWNG :g'¢ O[eL,

a[qeredos [[om SI9)SN) INA v [721] e 10 19reg a

‘spoalqns

[0IJUOd pue SJUSIY
-ed ssoIov poFeIoAY %P €6 0dS %0°06 :USS NN A" [07T] Te 10 Loy a
%0°€6 0dS %016 U NNd q4v [9€] e 39 910D a
%LE6 OOV 0% ‘1d ‘A4 ‘NNM DV [991] Te 30 semodis, a

"So1

-eINOOR JO[puR UNLI)
‘WIe SSOI0R PISRIOAY %896 00y NN v [82] ‘Te 10 s1vs(Tay] a
(s)guamrto) (s)ymnseoy (s)urygrao3ry (s)1osuag (s)aoymy woyduig

64

3.3 Parkinson’s Disease in Research Projects

Considering the aging population throughout Europe, PD is likely to become
an increasingly important health issue. As more and more people grow older
they are more likely to show parkinsonian symptoms. Thus, several research
projects have been spawned within the last two decades. In general, their focus
is to build improved management systems or monitoring systems for people
with Parkinson’s. On the one hand, some of these projects are focusing more on
symptom indication and severity indication based on time series data (coming
from sensors on the patient’s body). On the other hand, some of them pursue the
goal of building a complete and closed-loop system that does not only indicate
symptoms but also actuates upon this information in order to suppress apparent
symptoms (e.g. adjust medication intake or support patients with auditory
cueing). In latter case, no commercially successful system of this kind has been
build or is in wide use. This is mainly due to a lack of objective and reliable
monitoring options (i.e. measurement of dopamine levels). Furthermore, the
heterogeneous nature of PD and symptomatic fluctuations thwart the building of
such systems. Nonetheless, some projects pursue this very goal (e.g. HELP [65]
and REMPARK [133]). These and a few other research projects are highlighted
in the remainder of this section.

3.3.1 HELP

The primary focus of HELP (Home-based Empowered Living for Parkinson’s
disease Patients) [65] is to build a closed-loop personal health system for people
with Parkinson’s. Additionally doctors and physicians can use the system for
(remote) monitoring of their patients. It is a 36-months European Union (EU)
research project with nine participants from Spain, Israel, Italy and Germany.
The consortium is a combination of medical professionals, industry and research
partners. HELP started in July 2009 and ended in December 2012.

The basic idea is to reduce time spend in OFF state by optimizing drug
administration. Instead of pulse-based medication intake (i.e. in form of a pill
taken every few hours), an automated adjustment of continuous drug stimulation
(i.e. in form of a pump or tooth-implant) is being thrived for. It is thought that
continuous medication administration can reduce the overall drug consumption
with equal or improved effectiveness when compared to pills (i.e. impulse-based
stimulation). However, regular pumps are setup to deliver a specific dosage
which typically stays the same for several months. The general idea is that
the dosage could be adjusted much more frequently and in accordance with
the patient’s needs. E.g. going for a lengthy walk in the park might require
a different dosage than sitting and reading a book. Given this assumption,
complications and side effects would be decreased and could enable a more
effective treatment with an increased quality of life.

Similar to a diabetes system where medication is administered with respect
to measured glucose levels, the HELP system dynamically administers one of
two distinct medication dosages that are specific to each patient (i.e. “low”
and “high”). Here decisions are based on a set of features which correlate with
the ON-OFF state (e.g. amount of movement, location, etc.). Additionally, a
web-portal enables medical personal to view and override decisions made by the
HELP system. A set of patient specific settings (e.g. dosages and thresholds)

65

Author(s) Note

Brewer et al. [28] Application of Modified Regression Techniques
to a Quantitative Assessment for the Motor
Signs of Parkinson’s Disease

Cunningham et al. [43] Identifying fine movement difficulties in Parkin-
son’s disease using a computer assessment tool

Cunningham et al. [41] Home-Based Monitoring and Assessment of
Parkinson’s Disease

Hamilton et al. [63] Neural networks trained with simulation data
for outcome prediction in pallidotomy for
Parkinson’s disease

Kondraske et al. [82] Web-based evaluation of Parkinson’s Disease
subjects: Objective performance capacity mea-
surements and subjective characterization pro-

files

Wang et al. [173] A new quantitative evaluation method of
Parkinson’s disease based on free spiral draw-
ing

Jobbégy et al. [75] Early detection of Parkinson’s disease through

automatic movement evaluation

Table 3.3: Lists several related publications. The author(s) and title of their
respective publications are highlighted. This list is intended to supplement
state-of-the-art publications (shown in Table 3.2) with additional noteworthy
and relevant papers.

as well as information (e.g. appointments) are accessible through the web-
portal [8].

The main components of the HELP system are: a body sensor and actuator
network (BS&AN), a service and network infrastructure and a web-portal. On
the hardware level the BS&AN consists of a sensor platform (with accelerom-
eters, magnetic field sensors, gyroscopes and a temperature sensor), a mobile
phone and either a subcutaneous pump (for use in more advanced stages of the
disease) or an intra-oral device (for use in earlier stages). The sensor platform
is worn around the waist and extracts features regarding the presence of motor
symptoms. These features are transmitted to the mobile phone where they are
forwarded to the main HELP server and web-portal. Here data are processed
and a properly adjusted medication dosage may be send back, if necessary (i.e.
sends a command to the pump in order to adjust the drug dose).

3.3.2 REMPARK

Comparing to the HELP project, REMPARK (Personal Health Device for the
Remote and Autonomous Management of Parkinson’s Disease) [133] uses a sim-
ilar setup. However, medication is not only dynamically administered but FoG
events (freezing episodes) are actively tried to overcome. Here research is fo-
cusing on building a disease management system for people with Parkinson’s
Disease. The general idea is to enable neurologists to manage their PD pa-
tients more effectively and thus increasing patient’s quality of life. Universitat

66

Catalunya (Spain) coordinates the consortium that combines researchers, med-
ical experts and industrialist partners. REMPARK started in November 2011
and is expected to end in April 2015.

Most of the consortium’s effort is dedicated to building a personal health
system (PHS) that features a closed-loop detection of PD motor symptoms and
other gait related features, has communication abilities and treatment capabil-
ities. A wearable device is utilized to extract gait related features and thus to
determine symptoms as well as ON-OFF state. Additionally, a remote monitor-
ing and management portal is setup. Here medical professionals can review their
patient’s data and give feedback to the patient (e.g. adjustment of medication
dosage, phone call to patient, etc.).

A major objective of REMPARK is the indication of symptoms in real time.
For this purpose, two wearable sensor platforms are worn (i.e. one on wrist and
one around waist). Additionally, medication delivery components as well as a
functional electrical stimulation (FES) device or auditory cueing are utilized to
prevent and ease motor symptoms. Based on inertial data information regarding
motor status, falls and FoG events are derived. The actual process utilizes a set
of AT algorithms. Data are forwarded to a centralized server where it is further
processed, evaluated and visualized. This is also where a disease management
tool, to enable a more efficient treatment of PD patients, resides.

A smart-phone application is intended to serve as a mobile gateway between
patients and clinicians (as well as a gateway between devices and a centralized
server). The application includes a set of PD related tests for assessing the
patient’s clinical evolution. Furthermore, a communication component and a
questionnaire component enable subjective feedback by the patients (e.g. qual-
ity of sleep, etc.). A cueing system is implemented that intends to help patients
in overcoming FoG events. Here, two versions (i.e. one auditory and one haptic)
are being realized and evaluated. While the auditory cueing system uses sounds
to overcome FoG events, FES is going to be used in the haptic version.

3.3.3 PERFORM

The PERFORM (Personal Health Systems for Monitoring and Point-of-Care
Diagnostics-Personalized Monitoring) [125] project is also funded by the EU
and focuses on improving PD patients’ quality of life. Their primary concerns
are research and implementation of a system that enables an autonomous and
objective assessment of the patient’s motor status. PERFORM is led by Univer-
sidad Politecnica de Madrid (Spain). In total, fifteen partners from six countries
were part of its consortium and contributed their experiences from a variety of
fields (e.g. computer science, technology, industry, medicine and research). The
duration was 36 months (from February 2008 till January 2011).

The project’s objectives are manifold: monitoring of patients in their natural
environment, modeling of movements and symptoms in a patient-specific man-
ner and objective assessment of patients’ motor status. Furthermore, a decision
support tool for physicians and patients is among the objectives. To achieve
those goals a flexible wearable monitoring system (capable of recognizing symp-
toms as well as their severity) was developed. The system can be split into: a
remote motor behavior recorder (located in the patient’s normal environment)
and a point of care platform (central hospital processor). The former aggregates
data while the latter processes it.

67

It should be mentioned, that the consortium does not specifically focus on
PD. It rather considers problems that are of a more general nature (e.g. remote
health monitoring, motor status assessment and treatment personalization). It
is noteworthy that these problems do not necessarily apply to PD patients only
but also to patients suffering from other movement disorders or motor neurode-
generative disorders.

A set of wearable sensors, advanced processing techniques and fusion algo-
rithms are employed. They are intended to capture relevant information with
regard to the patient’s motor status. Data are stored locally and later forwarded
to a centralized server where it is further processed, fused and evaluated. The
sensors themselves are located on the patient’s body either in a garment or as
an accessory.

A modular architecture is used to facilitate different combinations of mea-
surements. This ranges from tremor with accelerometers and gyroscopes to
bradykinesia with standardized motor tasks. All sensing devices communicate
in a wireless fashion and can be monitored with a patient-customized monitor-
ing tool. Raw data from the sensor is preprocessed before it is forwarded to a
centralized server where medical personal can monitor the patient’s pathological
evolution as well as efficiency of their current treatment.

3.3.4 TREMOR

The TREMOR (An ambulatory BCI-driven tremor suppression system based
on functional electrical stimulation) [164] project does not specifically focus on
people with Parkinson’s Disease either but rather on tremor as a movement dis-
order on its own. Tremor may be apparent in varying frequencies and may affect
a variety of body parts. Patients with PD typically experience a tremor within
4 — 6Hz. This research project pursues the goal of mechanically suppressing
tremor through means of FES and a brain-to-computer interaction (BCI)-driven
analysis. TREMOR was coordinated by Agencia Estatal Consejo Superior de
Investigaciones Cientificas (Spain; a.k.a. CSIC) and further eight partners from
six countries were part of the consortium. The project started in September
2008 and ended in August 2011.

A system for monitoring motor activities and capable of indicating tremor
(i.e. involuntary motor activities) was build. The main objective was to evaluate
and validate this system on various levels (i.e. technical, clinical, functional and
conceptual). It utilizes a multi-modal brain interface (i.e. EMG and electroen-
cephalography (EEG)) and a wearable sensor unit (i.e. inertial measurements)
for signifying tremor or tremor-like behavior within the streamed data. A FES
system is applied to the patient’s symptomatic limb. Here, an array of FES
probes are used to suppress episodes of tremor once they occur.

3.3.5 Summary

In general, it can be noted that quite a bit of research has been done in the
direction of automatically indicating PD related motor symptoms in time series
data. Some of this research came directly from projects like TREMOR [164] and
REMPARK [133] (see Table A.3, Table A.4, etc.). This section has presented
four research projects related to PD. All of them have influenced this thesis
in one way or another. It is because of these research projects that some of

68

the previously highlighted publications were published at all. Thus some of the
insights and state-of-the-art papers of this chapter would not exist if it wasn’t
for these projects. Nonetheless, not all publications can be directly attributed
with such research projects.

With the exception of REMPARK, none of the presented projects are di-
rectly related to this thesis (i.e. apart from the publications that were attributed
to them). As will be pointed out in a later chapter (see Chapter 5), this thesis
has utilized a database (DB) with recordings from 92 PD patients that belongs
to the REMPARK consortium.

By highlighting these research projects, it was the author’s intention to
broaden the horizon and context in which the previously presented state-of-
the-art papers can be seen. All of these projects have contributed to the state-
of-the-art and thus it is only fair to credit them. This section has also provided
a foothold for interested readers that are looking for publications beyond the
scope of this thesis.

69

70

Chapter 4

A Framework for Time
Series Analysis

This chapter highlights the development process of a framework for time series
analysis and its applications. Thus, a solution to the first research question (see
Section 1.2) is presented. Several design aspects as well as their applicability
are discussed. Furthermore, different ways of extending and maintaining the
framework are described in the course of this chapter.

Unlike the development process, “Modules of Framework” (see Section B.3)
presents a brief description of individual modules as well as a road-map (see
Section B.4) for implementing the algorithms found in Chapter 6. Those readers,
that are interested in this part of the framework, may want to have a look at
the named chapter.

4.1 Design and Development

The framework, being designed and developed in this chapter, is intended to be
as general purpose as the topic of time series allows. Due to the nature of this
thesis, an initial selection of filters and algorithms was chosen, that is coined
toward an analysis of Parkinson’s Disease (PD) related time series. Apart from
this initial choice the framework is by no means tuned toward PD. Instead PD
provides an adequate application domain with reasonably complex scenarios,
where real people may benefit from analysis of time series data (see Section
4.3.1). However PD is not the only application scenario, other applications
include but are not limited to analysis of currency exchange rates (see Section
4.3.2), analysis of network traffic (see Section 4.3.3), quality control of Open
Street Map (OSM) data (see Section 4.3.4) and many others.

Many publications of new algorithms do not provide sufficient comparisons
against competitive state-of-the-art techniques [21]. In this context, a frame-
work (as described in this chapter) may enable researchers to evaluate their
algorithmic approaches in comparison to known techniques (under reproducible
conditions) more easily. However, this assumes that a great subset (if not all) of
state-of-the-art techniques is already implemented in the framework. Nonethe-
less, this framework could provide a decent foundation which reduces burden
and effort of future algorithm developers. Researchers and practitioners can

71

benefit from this framework alike. On the one hand, practitioners can utilize
these algorithms and apply them to their domain and problems. On the other
hand, researchers can easily develop and test their algorithms against a feasible
set of (related) techniques and approaches. The framework can also be used in
classroom scenarios (i.e. one can quickly swap out modules and one can easily
observe the behavior of modules which may be desirable attributes in this type
of scenario).

The overall idea is to implement filters, machine learning (ML) techniques
and artificial intelligence (AI) algorithms in the form of reusable modules. These
modules are then fed with data and their outputs can be utilized to feed further
modules. Thus, an entire network of interconnected modules can be created.
Keeping this in mind, the framework can be divided into two major parts: data
processing and information flow. These parts are described as follows.

e Data Processing: Each module in the framework is intended to perform
a single (specific) purpose and should be configurable to a certain de-
gree. Configurability increases reusability of modules and supports rapid
prototyping, while keeping the total number of modules manageable.

e Information Flow: Outputs of modules need to be managed and routed
to their corresponding successors. Here it is crucial that not only sequen-
tial work-flows are possible, but rather arbitrary complex ones should be
producible (e.g. loops, parallel strains of processing, etc.)

Both of these major components are intended to be kept as dynamic and
flexible as possible to a degree that is still feasible and does not degrade user
experience. The remainder of this section highlights several design challenges
and presents solutions to them.

4.1.1 Design Challenges

In the following, a set of design challenges is enumerated. Each of these design
challenges covers a particular part of the framework and a short overview of the
area that they cover is given for orientation purposes.

e Structure and Design of Modules: One of the core elements of the
framework is the representation of modules. They represent an “atom”-
like element in the framework. Their design and structure are important
and affect large parts of the framework. For these reasons, it is imperative
to state their role, functionalities, responsibilities and boundaries.

e Flow In-between Modules: Part of a module’s nature is reusability.
Inter-connectivity between modules allows them to unfold their full po-
tential. The way modules interact with each other and the way modules
can be connected with each other requires a careful design as it largely
affects the framework’s usability.

e Data Sources and Sinks: The framework must provide not only the
option to artificially generate data, but also the option to read from and
write to predefined places (e.g. files, universal resource locators (URLSs),
databases (DBs), etc.). In addition, the data format, which is read or
written, must be adjustable. The way that the framework deals with this
is captured in this design challenge. The realization can greatly influence
usability and therefore user experience.

72

Each of these design challenges cover significant parts within the framework
and thus they are discussed individually. Hereafter, each section is devoted to
a single design challenge. Within each section, the design challenges are further
divided into chunks that are more manageable. These chunks are separately
discussed and will typically be illustrated with at least a diagram showing the
general implementation idea as well as a diagram with the actual implementa-
tion. These diagrams are kept as compact and simple as possible in order to
facilitate an easier understanding of the matter in discussion. Thus, it is possi-
ble that less relevant implementation details were omitted. This was done for
the sake of simplicity as well as to keep the diagrams from cluttering up.

4.1.2 Structure and Design of Modules

Here the structure and overall design aspects of modules are discussed. This
design challenge influences large parts of the framework and must be cautiously
considered. With respect to the requirements (see Section 1.2), the following
points shall be touched upon in the course of this section.

¢ Reusability: The modules of the framework are intended to perform
tasks (i.e. reading data from a file, computing moving average, classifying
data samples, etc.) such that each module can be utilized multiple times.
Configuration of modules should also be constructed in a way that allows
reusability.

¢ Extensibility: Adding further modules to the framework must be easily
possible (e.g. new data sources, Al algorithms, etc.). Usability of the
framework needs to be weighted against the ease of adding new modules.

e Iterative: The modules of the framework must be designed such that they
are capable of handling large amounts of data. Their structure should not
limit the amount of throughput, but rather enable utilization of arbitrarily
large datasets (i.e. starting with several thousands of data samples and
going to potentially infinite datasets).

e Scalability: Similarly to the above requirement, the modules should not
only be able to handle infinite data streams, but the framework should
also cope with large amounts of utilized modules (i.e. several hundred
modules).

Which functionality must a module provide?

The concept of reusable modules is important. Their proper design is crucial
to the usability of the framework. It must be clear which responsibilities and
functions are taken care of by these modules. Each module shall perform a
single task only. The idea is that a single task per module increases reusability,
while too abstract and complex tasks or very specialized tasks in a module are
likely to decrease reusability. Here, the Strategy design pattern is utilized. It
defines a simple interface that allows the framework to pass data into modules
and retrieve data from them. This has the benefit that clients can simply utilize
the given interface for any module. Thus allowing them to use different modules
interchangeably. On the other hand, a naive implementation would likely require
a client to tightly couple with utilized modules. Thus making maintenance and
reusability difficult or even impossible.

73

Client Strategy

+operation()

ConcreteStrategyB

+operation()

ConcreteStrategy A ConcreteStrategyC

+operation() +operation()

Figure 4.1: Tllustrates the structure of the Strategy design pattern as defined
by [57, p. 349]. The relationship among ConcreteStrategy classes and abstract
Strategy is highlighted.

The Strategy design pattern is an object-based behavioral design pattern
that allows the flexibility of choosing any algorithm from a family of algorithms
at run-time. The following paragraphs are based on the description of the
Strategy design pattern as shown in [57, p. 349].

Structure: The structure of the Strategy design pattern is illustrated in Fig-
ure 4.1. Its general idea is to provide an algorithm’s interface and create a whole
family of algorithms by sub-classing or implementing this very same interface.

Participants: The Strategy design pattern has three participants, which are
described hereafter.

e Strategy: Represents the main class of this design pattern. It defines an
interface that all algorithms in a given family have in common. The Client
object references a Strategy instance and utilizes it to call the algorithm
defined by it.

e ConcreteStrategy classes: Each of them represents a concrete strategy
or algorithm within the family. These are the concrete implementations
of the Strategy interface. At run-time any of them can be chosen.

e Client: This is utilized to call Strategy classes. It references a Strategy
instance and may take care of its initialization.

Collaborations: Developers are meant to avoid working with ConcreteStrat-
egy classes directly in order to avoid tight coupling. The Client and Strategy
classes work together. The Client provides all necessary information to a Strat-
egy object (either directly or through an intermediary). In most cases, a Client
will collaborate with an intermediary Context object (e.g. instructing it to use
a particular strategy) rather than interacting with it directly.

Implementation: An implementation of the Strategy design pattern is shown
in Figure 4.2. No major adjustments of the design pattern were required for the
realization in this context.

The Processor class defines a simple interface with three methods which also
closely resemble the module’s life circle. The Strategy interface is represented

74

Client Processor

+process(in:List,out:List)
+setUp()
+dismantle()

1

ProcessorAdapter

+process(in:List,out:List)

+setUp()
+dismantle()
BufferingProcessor ComparingProcessor
—+process(in:List,out:List) —+process(in:List,out:List)

MovingAverage

+process(in:List,out:List)

Figure 4.2: Shows the implementation of the Strategy design pattern. Here the
Processor interface and a few exemplary implementations are highlighted.

by this very same interface. The process accepts input values as well as a list
for output values. It is the idea that the framework passes a set of input values
in (i.e. first parameter) and a second set of values is interpreted as output
data by the method (i.e. second parameter). Concrete implementations of the
Processor interface are meant to read the input data (if appropriate) and provide
some output values. However, utilization of the input data or output data are
optional. A module does not have to provide output data nor does input data
have to be interpreted. In any case, it should be kept in mind that altering
the input data can affect other modules as well (e.g. changing order in list or
manipulating single entries).

Furthermore, the methods setUp and dismantle are part of the interface.
They are called by the framework to initialize and to finalize a module. The
setUp method is called by the framework before the process method is called for
the first time. It is intended to allow developers to perform any configurations,
preparations and so on. The dismantle method is called by the framework when
the module is no longer needed and its allocated resources can be freed.

The overall life circle of a module is illustrated in Figure 4.3. There it also
becomes obvious that the setUp and dismantle methods may be called more
than once within the life time of a module.

How can modules be configured?

As described earlier, each module is intended to perform a single task only.
However, it is not the author’s intention to create a gigantic pool of modules in
which each module performs a very specialized task (e.g. calculate average of last
five data points, low pass filter with a cut-off frequency at 100 Hz, etc.). Instead
modules shall perform tasks with a feasible and sensible layer of abstraction
(e.g. calculate moving average of last n € Nt data points, low pass filter with

(0]

parameterized

invalid

[call: dismantle]

Figure 4.3: Shows the life circle of a module within the framework.

a frequency of m € R* Hz, etc.). Thus, a reasonable level of configuration is
desirable. It keeps the number of modules from exploding while still enabling
reusability (even fostering it).

A naive realization of such functionality could implement configurable pa-
rameters in each module individually (e.g. getFrequency and setFrequency in
case of the low pass filter). However, this approach would enforce a tight cou-
pling between modules and clients using them. Thus clients would no longer be
able to utilize the Processor interface to its full potential. Instead, they have
to remember the interface for each module separately. For these reasons the
Strategy design pattern is utilized. A common interface for configuration of pa-
rameters is defined. Thus reducing the coupling between modules and clients,
as they can again utilize the Processor interface.

Design Pattern: The structure and their corresponding participants of the
Strategy design pattern have been described earlier in this chapter. For more
details on the Strategy design pattern refer to “Which functionality must a
module provide?” (see Section 4.1.2).

Implementation: Figure 4.4 highlights the implementation of the Strategy
design pattern in this context. There was no need for major adjustments.

The Strategy interface is represented by the Configurable class. The Con-
figurable interface contains three methods for retrieving and manipulating pa-
rameters. The interface can then be implemented in various ways and may be
reused throughout the framework. It can be utilized to retrieve all available
configuration parameters (i.e. getParameters method), to retrieve actual con-
figuration parameter values (i.e. getParameter returns the corresponding value
given a parameter name) and manipulate configuration parameter values (i.e.
setParameter sets the corresponding value that is associated with a parameter
name).

76

Client Configurable

-getParameters(): List
+getParameter(parameter:string): string
+setParameter(parameter:string,value:String)

ConfigurableAdapter

“+getParameters(): List
+getParameter(parameter:String): String
+setParameter(parameter:String.value:String)

Figure 4.4: Shows the implementation of the Strategy design pattern in the
context of configurability. The classes ConfigurableAdapter and Configurable
are shown.

The reason for this interface is that there are multiple places in the frame-
work where such configuration options are useful. They are shown in “Which
functionality must a module provide?” (see Section 4.1.2), “How does informa-
tion travel in-between modules / nodes?” (see Section 4.1.4) and “Can data
format and kind of stream vary independently?” (see Section 4.1.3). If it was
not for them, the Configurable and Processor interfaces could have been merged
into a single interface.

How can parameters be constrained or conditioned?

With the introduction of configuration parameters, it also becomes necessary
to constrain them. This may not be required in all cases but certainly many
configuration parameters will need some type of constraint in order to alert
about invalid configuration options (i.e. only positive numbers, only integers,
only a set of values, etc.).

In order to allow a large diversity of such constraints and reduced coupling,
the Strategy design pattern is used once more.

Design Pattern: For more information on the Strategy design pattern refer
to “Which functionality must a module provide?” (see Section 4.1.2). There,
its structure and participants are described in more detail. The pattern itself
is an object-based behavioral design pattern that allows interchangeability of
components within a family of algorithms at run-time.

Implementation: Figure 4.5 shows the structure and implementation of the
Strategy design pattern in this context. Again, no major adjustments were
required.

The Strategy class is represented by the Condition interface which contains
a single method for determining the compliance of a value with a given configu-
ration parameter. The method complies is utilized by the framework to ensure
that all configuration parameters have valid values. Here, it can be safely as-
sumed that the configuration parameter will always have a non-empty value (i.e.
non-null). The idea is that this method is called right before a configuration
parameter would be changed. Depending on the result of this method, the new
configuration value is either accepted or rejected.

7

Client Condition

+complies(parameter:String. value:String): boolean

IsNumeric

+complies(parameter:String value:String): boolean

IsNotNull

+complies(parameter:String. value:String): boolean

IsInList

+complies(parameter:String.value:String): boolean

Figure 4.5: Shows the implementation of the Strategy design pattern for con-
straining configuration parameters. The Condition interface and several con-
crete implementations are highlighted.

How are dependencies and relations between parameters expressed?

With increasingly capable modules, it is likely that the need to express relations
among configuration parameters arises. This can be helpful to automatically
convert between a set of different units (e.g. °C and °F, seconds and minutes,
etc.), but it can also be used to further constrain configuration parameters based
on another parameter’s value. In short, it synchronizes configuration parameters
within a module as long as a relation among them has been (explicitly) defined.

A naive approach might implement such functionality directly in the cor-
responding module, which would also be a viable solution if the implemented
functionality is used only once. However, this is not necessarily the case. A
mechanism that allows to keep track of state changes can be useful for various
other purposes and not just for automatically converting between units. The
Observer design pattern provides a similar functionality but without unneces-
sary coupling and redundancies. Consequently, this design pattern is utilized.

The Observer design pattern is an object-based behavioral design pattern
that defines an one-to-many dependency between objects such that changes in
one object are automatically reflected in other objects. The following para-
graphs are based on the description of the Observer design pattern by Gamma
et al. [57, p. 293].

Structure: The general structure of the Observer design pattern is highlighted
in Figure 4.6. There it can be seen how Subject and Observer classes relate to
each other. Generally speaking, Subject classes provide methods for attaching,
detaching and notifying their observers. The corresponding Observer objects
are automatically notified every time the state of a Subject is changed.

78

observes
Subject Observer

+attach(Observer)

+detach(Observer)
+notify() O - = forall o in observers
o.update()
subject
ConcreteSubject ConcreteObserver
tsubjectState ~+observerState |
+getState() Oo-=-=-=-=--- 1 s+update() o----
+setState ! :
1

return subjectState observerState = subject.getState() ﬁ

Figure 4.6: Illustrates the structure of the Observer design pattern as defined
by [67, p. 293]. The relationship among ConcreteObserver class and abstract
Observer is highlighted as well as their relationship to ConcreteSubject and
abstract Subject.

Participants: The four participants of the Observer design pattern are de-
scribed hereafter.

e Subject: Resembles one of the main interfaces in this design pattern.
It provides an interface for attaching, detaching and notifying observers.
Any number of observers can express their interest in a particular Subject
by registering themselves.

e ConcreteSubject: Implements the Subject interface and notifies regis-
tered observers as changes occur. It also contains the state that Concre-
teObserver objects are interested in.

e Observer: The second main interface in this design pattern. It defines
methods for updating Observer objects as changes to their observed sub-
jects occur.

e ConcreteObserver: Implements the Observer interface and keeps a ref-
erence to all subjects that it observes. Furthermore it duplicates those
parts of the subject’s state that are relevant to it.

Implementation: The realization of this design pattern is shown in Figure
4.7. No major adjustments were required.

The Observer interface requires a single method to be implemented. The
update method takes the actual Configurable component as well as the con-
figuration parameter being manipulated. It can be safely assumed that the
Configurable object and configuration parameter will always have a non-empty
value (i.e. non-null). This method is called to notify observers about changes in
configuration parameters, to keep multiple of such parameters synchronized as
well as keeping track of their changes. Internally concrete implementations of
the Observer interface will make sure to adjust other configuration parameters
according to a change.

79

Configurable Observer

fom==-
= = = =3 observes ‘4 i
>
I

s+update(configurable: Configurable . parameter:String)

subject

ConfigurableAdapter ConcreteObserver
~+addObserver(observer:Observer) +update(configurable: Configurable.parameter:String)
~fremoveObserver(observer:Observer)
+notifyObservers(String:parameter) o--=--=---

forall o in observers -
o.update()

Figure 4.7: Shows the implementation of the Observer design pattern. Here the
Observer interface and an exemplary implementation are highlighted.

How do these objects (i.e. Configurable, Condition, Observer) work
together?

The last few statements were concerned with various aspects of configuration.
Here the interaction between those parts of the framework is discussed. It
is one thing to provide constraints and express relations among configuration
parameters, but it is a very different thing when and where they come into play.
The general idea is to provide a default implementation that combines all these
aspects.

This can be realized with the Adapter design pattern. It allows to combine
several interfaces while still adhering to the Configurable interface. Another
benefit is that it can be reused as often as required. In contrast, a naive approach
would likely result in code redundancies as the same functionality would be
implemented in different parts of the framework (e.g. individual modules would
utilize the Condition interface separately).

The Adapter design pattern is an object-based structural design pattern. It
allows multiple otherwise incompatible interfaces to work together and adapts
them to an interface that a client expects. The following paragraphs are based
on Gamma et al.’s view of this design pattern [57, p. 157].

Alternatively, this could also have been realized with the Facade design
pattern [57, p. 208]. However, the result would have been the same (or at least
very similar). Due to the simple nature of the would-have-been sub-system, it
was decided to utilize the Adapter design pattern instead.

Structure: Figure 4.8 shows the Adapter design pattern. The overall idea
is to adapt an interface to an expected interface and thus allowing otherwise
incompatible interfaces to work together.

Participants: The four participants of the Adapter design pattern are de-
scribed hereafter.

e SomeClass: This class defines an interface that is intended to be used
by clients.
e Client: Uses classes of the above type.

80

Client SomeClass AdaptedClass

+operation() +specificOperation()

Adapter B —

+operation() o- -

- -I call specificOperation Iﬁ

Figure 4.8: Illustrates the structure of the Adapter design pattern as defined
by [57, p. 157].

e AdaptedClass: This class defines an interface to be utilized by clients.
It can also be a set of classes, which should be used by clients.

e Adapter: This is the main class of the design pattern. It makes Some-
Class and AdapatedClass compatible.

Collaborations: Clients utilize Adapter objects in the same way they would
treat SomeClass objects. The only difference is that Adapter objects call oper-
ations on the AdaptedClass class in order to complete requests from clients.

Implementation: The implementation of the Adapter design pattern can be
reviewed in Figure 4.9. There were no major adjustments necessary.

The Adapter class is represented by the ConfigurableAdapter class and the
AdaptedClass class is represented by both Condition and Observer interfaces.
The Configurable class represents SomeClass.

The ConfigurableAdapter class acts as a Configurable class, but also allows
constraints and relations among configuration parameters. To clients the extra
functionality is completely transparent. Only those parts of the framework that
need to know about this extra functionality have the ability to manipulate con-
straints and relations. All other parts will simply be informed if a constraint
was not met. Internally, the ConfigurableAdapter class queries all related Condi-
tion implementations right before a configuration parameter would be changed.
Only if all conditions for a given parameter accept this change, then the ac-
tual change is performed. Otherwise, the change would be rejected. As for the
observers, they are notified after a change has occurred.

How can typed parameters (i.e. not just strings) be supported?

The configuration of modules and links (see “Design Challenges” in Section
4.1.1) are coined towards utilization of strings to enhance portability of the
framework (to different programming languages and operating systems). How-
ever, it is likely to become frustratingly cumbersome to convert non-string pa-
rameters back and forth all the time. To ease this burden, the framework
employs the Template Method design pattern in order to provide access to
parameters in the form of primitive data types. This enables the change of
parameters without the hassle of converting them manually.

The Template Method design pattern offers access to parameters in the
form of primitive data types (i.e. integer, boolean, floating point numbers,

81

Condition

+complies(parameter:String.value:String): boolean
0..%

Observer

+update(configurable: Configurable,parameter:String)
0.*

Client Configurable

+getParameters(): List
-+getParameter(parameter:String): String
+setParameter(parameter:String.value:String)

ConfigurableAdapter

-+getParameters(): List
+getParameter(parameter:String): String
+setParameter(parameter:String. value:String) o

evaluate conditions and notify observers

Figure 4.9: Shows the implementation of the Adapter design pattern as part of
the framework. Here, the interaction between various configuration related parts
of the framework (i.e. Configuration, Condition and Observer) is highlighted.

82

Client AbstractClass

+template() o--- 2
~FoperationA () 1
+operationB() IEREEE operationA()
operationB()
ConcreteClassA ConcreteClassB
+operationA() +operationA()
~+operationB() ~+operationB()

Figure 4.10: Ilustrates the structure of the Template Method design pattern as
defined by [57, p. 360]. The AbstractClass defines a set of template methods as
well as a set of function-specific operations. ConcreteClass classes are meant to
change the behavior of these operations. The template methods are typically
based on these operations as well.

etc.). However, it internally only utilizes the original string-based interface. In
doing so the Template Method takes care of the conversion to and from strings,
whereas a naive implementation would likely store these parameters of different
types separately. Thus affecting portability of the framework as it increases the
framework’s dependency of the chosen programming language and in some cases
the operating system as well (i.e. at the very least it makes it more difficult and
complex to port).

The following paragraphs are based on the definition of the Template Method
design pattern by Gamma et al. [57, p. 360]. It is an object-based behavioral
pattern, which defines a skeleton of an algorithm or general functionality and
defers steps of it to sub-classes. This enables sub-classes to adapt the algorithm
to their needs without changing the algorithm’s overall structure.

Structure: The structure of the Template Method pattern is illustrated in
Figure 4.10. Its general idea is to provide a unified structure for an algorithm
and defer certain parts of that algorithm to sub-classes.

Participants: The Template Method design pattern has two participants,
which are described hereafter.

e AbstractClass: This is the main class of the design pattern. It defines
the overall structure of an algorithm as well as those steps that are subject
to variations. The actual template methods then utilize this structure.

e ConcreteClass classes: These classes represent variations of the original
algorithm, but do not change its structure. Here only variations of the
original algorithm are implemented.

Collaborations: The AbstractClass class is an interface that defines a method
for each step, in which an algorithm is subject to change. It then utilizes these
methods in its template methods. The actual realization or specialization of the
algorithm’s steps is left to ConcreteClass classes.

83

ConfigurableAdapter

~+getParameters(): List
+getParameter(parameter:string): string
+setParameter(parameter:string, value:string)

+getParameter AsBoolean(parameter:string): boolean o ==
+getParameter AsInteger(parameter:string): integer L getParameter
+getParameter AsLong(parameter:string): long convert to boolean

+getParameter AsDouble(parameter:string): double
-+setParameter(parameter:string,value:boolean) o- - =1
+setParameter(parameter:string, value:integer) 1
+setParameter(parameter:string, value:long) - -]
~setParameter(parameter:string.value:double)

convert to string
setParameter

Figure 4.11: Shows the implementation of the Template Method design pat-
tern. The ConfigurableAdapter class contains both function-specific methods
(i.e. getParameter, setParameter and getParameters) and template methods
(e.g. getBoolean, setBoolean, etc.).

Implementation: The actual implementation of the Template Method de-
sign pattern can be reviewed in Figure 4.11. The naming and structure of the
interfaces have been adapted to reflect the context, in which they are used, more
accurately.

Here the AbstractClass class is represented by the class Configurable Adapter.
This class provides three primitive methods that are subject to variations and it
defines several template methods that utilize them. The actual primitive meth-
ods correspond to the interface defined by Configurable (see How can modules
be configured? in Section 4.1.2). All template methods direct their calls towards
these methods, thus allowing to store and to retrieve configuration parameters
of numerous data types (i.e. boolean, integer, etc.).

E.g. storing and retrieving of configuration parameters as a boolean value
is realized in the template methods getBoolean and setBoolean. Both of these
methods utilize the Configurable interface internally. Thus, they also take care
of any necessary conversions between string values and their boolean represen-
tations.

One of the most obvious differences is the absence of any concrete sub-
classes. This is due to the fact that ConfigurableAdapter already provides a
default implementation for each primitive method. Nonetheless, it can be sub-
classed and the desired parts can be overwritten.

Can a module’s functionality be dynamically extended?

Especially during development, it can be useful to dynamically extend a mod-
ule’s responsibilities. This can be leveraged to generate statistics such as pro-
cessing time that a module requires to compute output values, determining the
actual sampling frequency at a given module and many more. Other applica-
tions could ensure that parameters of a module are read-only or that certain
parameters are ignored.

A naive implementation could realize such suggestions by directly sub-classing
a given module and manipulating it in a way that it meets their requirements.
However, this approach is quite cumbersome and has several drawbacks. It
completely neglects the fact that all of the suggestions above can be realized in-
dependently of a concrete module. Any module could be subject to a statistical
analysis, but sub-classing all modules to include extra functionalities is neither

84

Client Component

~+operation()

I I component

ConcreteComponent Decorator 1
+operation() | tcomponent: Component : ------ -I component.operation() ﬁ
+operation() o-=-=-=-=--
ConcreteDecoratorA ConcreteDecoratorB :- 7 super.operation()
state: object - 1 extraOperation()
otate O 1 +operation() o-
toperation() +extraOperation()

Figure 4.12: Illustrates the structure of the Decorator design pattern as defined
by [57, p. 196]. The generic Component interface is shown as well as the
Decorator classes. Their relationship is highlighted.

feasible nor a practical approach. Further drawbacks are code redundancies,
increased chance of errors as well as minimal reusability. Instead the Decorator
design pattern could be utilized. It allows to dynamically wrap any module and
easily allows a module to be extended with new responsibilities, which would
not have been easily possible with the naive approach.

The Decorator design pattern is an object-based structural pattern. It allows
a class to extend its responsibilities in a dynamic way without sub-classing it.
An elaborated review of this design pattern can be found in [57, p. 196].

Structure: The structure of the Decorator pattern is illustrated in Figure
4.12. By referencing a given module, the Decorator can wrap it and extend
its responsibilities. Therefore developers can still use the component’s interface
and treat decorated objects in the same way they would treat regular modules
(i.e. without having to make a distinction between them).

Participants: The Decorator design pattern has four participants, which are
described hereafter.

e Component: Represents the main class of an object-structure. Further-
more, the class declares operations that are common to all components
and it provides default implementations where appropriate.

e ConcreteComponent classes: They are concrete realizations of the
Component interface. One or more of these implementations are meant
to be extended in terms of functionality and responsibility.

e Decorator: Is the main class of the Decorator design pattern. It defines
the same interface as a regular Component, but manages a reference to
an arbitrary component and wraps all interface calls to it. Thus, the
decorated component can only be indirectly accessed. All queries and
calls have to go through the Decorator object.

e ConcreteDecorator classes: They extend the Decorator class and add
any desired functionality to it.

85

Configurable

+getParameters(): List
+getParameter(parameter:string): string
+setParameter(parameter:string, value:String)

ConfigurableAdapter

“getParameters(): List

-+getParameter(parameter:string)
+setParameter(parameter:string, value:string)
+getParameter AsBoolean(parame
+getParameterAsInteger(parameter:string): integer
+getParameter AsLong(parameter:string): long

+getParameter AsDouble(paramete
+setParameter(parameter:string,value:boolean)
+setParameter(parameter:
+setParameter(parameter:
+setParameter(parameter:

ring,value:integer)
ring,value:long)
ring,value:double)

ring

string): double

ring): boolean

Client

Processor

+process(in:List,out:List)

processor.process...)

B'.--

+setUp()
+dismantle()
ProcessorAdapter
+process(in:List,out:List)
+setUp()
+dismantle()
DecoratorProcessor

dprocessor: Processor

+getParameters(): List
+getParameter(parameter:string): string
+setParameter(parameter:string, value:string)
+getParameter AsBoolean(parameter:string): boolean
+getParameter AsInteger (parameter:string): integer
+getParameter AsLong(parameter:string): long
+getParameterAsDouble(parameter:string): double
+setParameter(parameter:string, value:boolean)

: +setParameter(parameter:string, value:integer)
! +setParameter(parameter:string, value:long)
: -++setParameter(parameter:string, value:double)
= =Q tprocess(in:List,out:List)

+setUp()

+dismantle()

A

processor
1

Time

Logger

++process(in:List,out:List)

+process(in:List.out:List)

Sleep

—+process(in:List.out:List)

Figure 4.13: Shows the implementation of the Decorator design pattern in the
framework. Several variations of the Decorator class are shown.

86

Collaborations: The Decorator class forwards any call to the referenced
Component object and optionally executes additional operations before and
after doing so.

Implementation: An implementation of the Decorator design pattern is shown
in Figure 4.13. No adjustments of the pattern were required.

The Component class is represented by the Processor interface, while the
design pattern’s main participant Decorator is represented by the Decorator-
Processor class. The default implementation of the DecoratorProcessor class
references a single Processor instance and wraps every method call to it. When
sub-classing DecoratorProcessor, the desired functionality can be realized by
overwriting one or more methods.

4.1.3 Flow In-between Modules

This section is dedicated to the description of information flow in-between mod-
ules. More precisely, it highlights several important aspects associated with
inter-module communications. The following requirements are related to this
design challenge.

e Iterative: The modules in the framework need to be invoked with every
data sample of a data stream. This part of the framework must be designed
to enable just that.

e Scalability: This part of the framework has to make sure that mod-
ules are delivered with their data samples. It should not matter whether
the stream contains several hundred data samples nor should it matter
whether it ever ends.

e Flexibility: The data flow between two modules does not need to be
designed in a static way. Instead, it should allow filtering (i.e. only passing
integers, ignoring string values, etc.) to enable a dynamic flow and flexible
junctions between modules.

e Reusability: Just as important as the previous design challenge, the
components in this part of the framework should be designed in such a
way that they can actually be reused throughout the framework.

¢ Extensibility: It must be possible to add further kinds of Link compo-
nents and Iterator components. This should be possible without a hassle.

How can compositions and individual objects be treated in a unified
way?

Even though each module is intended to stand on its own (i.e. perform a single
task without prior assumptions on preceding and succeeding modules), their
usefulness in terms of reusability truly shows when being part of a larger struc-
ture or graph. Of course, a module can function on its own. However, its full
potential can most likely be harvested once data from one or more modules
passes through. It is important to note that the chosen representation strat-
egy of connections between modules affects the possible structures that can be
formed.

An easy realization would allow modules to have an arbitrary number of
successor modules (or “children”) as well as a preceding module (or “parent”).

87

Figure 4.14: Shows possible structures that can be created with tree-like and
graph-like representations. Items 4 and 5 demonstrate the main difference be-
tween both approaches. In order of appearance, the modeling situations refer
to: “single node”, “single child, single parent”, “multiple children, single par-
ent”, “single child, multiple parents” and “cycle”. Each box represents a single
module whereas each sub-figure depicts an “atomic” modeling situation. One
can replace a box with any other modeling situation and still have a functional
structure.

Thus effectively allowing tree-like structures to be formed. In some cases, this
may be all that is required. However, there are cases which cannot be expressed
in this way (e.g. loops, parallelism, merging of “processing” paths). Given
the constraint of having a single preceding module, only tree-like structures
with a single root (i.e. first, topmost node in the tree) can be created. This,
however, does not directly allow use of multiple data sources at the same time
(e.g. reading data from a file and reading complementary data from a second
file). However, when relaxing the above constraints, not only tree-like structures
can be formed but also graph-like structures become possible (trees only have
a single root-node and do not allow cycles while graphs do allow cycles and
can have multiple entry points). This can be achieved by allowing the presence
of multiple preceding modules (or “parents”). Figure 4.14 indicates possible
structures for both approaches.

Furthermore it is not only desirable to allow for multiple data sources, data
sinks, and so on, but also to layer graph-like structures themselves. Thus en-
abling a single node in the graph to hold an entire graph on its own. This can
effectively summarize existing graphs within a single node and allows for an
easier realization of situations as shown in Figure 4.15.

The framework developed in this thesis allows the construction of graphs
based on reusable modules. An application developer may group modules to
form a more complex module, which in turn can be grouped with other modules
to form a module with even more complexity.

Compositions and individual modules should ideally be treated in the same
way, whereas a naive implementation might favor a definition of primitive mod-
ules and modules that act as containers. There are several problems with such
an approach. Developers would have to handle containers and primitives in
different ways even if their interfaces are almost identical (i.e. compositions
and individual modules need to be distinguished). The application would gain

88

| |
| |
Figure 4.15: Illustrates the concept of layering graphs. Module “A” represents
the entry point of the graph (i.e. data source). From there information is passed
to module “B” and “C”. Continuing this path the information from “B” is going
to reach “E” one iteration before the data from “D” would (left). This is due
to the extra module and can be avoided (if wished) by grouping modules “C”

and “D” into a single one (middle). Alternatively, an extra “dummy” module
could be inserted between “B” and “E” (right).

unnecessary complexity and would increase development efforts as well as main-
tenance costs. The Composite design pattern [57, p. 163] can be used to avoid
the described problems. It allows treating primitive components and composi-
tions uniformly.

The following paragraphs are based on the definition of the Composite design
pattern by Gamma et al. [57, p. 163] and describe its implementation in the
framework. The Composite design pattern is an object-based structural pattern
and can be used to represent part-whole hierarchies.

Structure: The structure of the Composite design pattern is illustrated in
Figure 4.16. The basic idea is to create an abstract class that represents both
primitive objects and containers and defines all child-related operations. There-
fore, developers can use the interface and treat them in the same way without
having to make a distinction.

Participants: The Composite design pattern has four participants, which are
described hereafter.

e Component: Is the main class of this design pattern. The interface for
managing and accessing child components is defined by this participant.
It optionally declares the interface for accessing its parent component (if
present). Furthermore, the class declares operations that are common
to all components (compositions and primitive components) and provides
default implementations where appropriate.

e Leaf: Is a primitive Component and defines the behavior of them in a
composition. It does not have child components, thus representing a leaf
in a tree structure.

e Composite: Is a composition of Component objects. It may have child

89

Client Component

~+operation()
++addComponent()
+removeComponent()

+getChild(int

Leaf Composite j<>Ichildren

+addComponent() '= = = o forall c in children

“+removeComponent () c.operation()

+getChild(int

+operation() +operation() o --1 [T

Figure 4.16: Illustrates the structure of the Composite design pattern as defined
by [57, p. 163]. The generic Component interface is shown as well as Leaf and
Composite elements (including their implementations).

Client Node b<

-+addSuccessor (sucessor:Node,link:Link)
“removeSuccessor(sucessor:Node)
+getSucessors(): List
+getPredecessors(): List
~+getInboundLink(node:Node): Link

+getOutboundLink(node:Node): Link

PlainNode CompositeNode <> children
| teetProcessor() | +getSources(): List
+getSink(): Node

Figure 4.17: Shows the implementation of the Composite design pattern. It
supports treating compositions (e.g. class CompositeNode) as well as individual
components (e.g. class PlainNode) in a homogeneous way.

components and represents a container object that provides an implemen-
tation for child-related operations.
e Client: Accesses and manipulates objects in the composition.

Collaborations: A request is handled directly if the recipient is a Leaf and
usually forwarded to child components if the recipient is a Composite. In the
latter case, additional operations may be performed before and after forwarding.

Implementation: An implementation of the Composite design pattern is
shown in Figure 4.17. The naming of classes and operations has been modi-
fied to reflect the context in which they appear more appropriately.

The Component, Leaf and Composite classes are represented by the classes
Node, PlainNode and CompositeNode respectively. The Node class defines oper-
ations for managing and accessing child components. Furthermore a method for
accessing the parent components is provided. No further operation is required
with respect to treating compositions and individual components uniformly.

Nonetheless it should be noted that this realization of the Composite de-
sign pattern does not only allow for the presence of an arbitrary number of

90

successor nodes. The conservative interpretation of the Composite design pat-
tern only supports two kinds of basic elements (i.e. leaf elements that do not
have successors and composite nodes which do have successors). Depending on
its implementation, arbitrary complex graphs are possible. However, the lib-
eral implementation in this framework extends the pattern by adding a further
dimension. Thus allowing to layer graphs and structure them in a way that
“hides” multiple modules behind a single node in an upper layer.

How can contents of compositions be accessed sequentially?

As previously shown, the framework does enable the construction of complex
aggregate structures. However, it is possible that future versions of the frame-
work may utilize a different internal representation of these aggregates. Thus
the actual internal representation of compositions and aggregates is subject to
change. Even if such changes would occur, it is desirable to have a uniform way
of traversing such compositions without exposing their underlying representa-
tion (i.e. a unified way of accessing modules within a given structure without
actually knowing what the actual graph looks like). Thus allowing clients and
large parts of the framework to remain untouched if such an event were to occur.

It should be kept in mind that different traversal strategies may be required
for different scenarios (e.g. development vs. production environments, pre-
serving an aggregate’s structure vs. processing their data). Nonetheless, it is
certainly desirable for all traversal strategies to adhere to a uniform interface.
In addition, it may be necessary to traverse over a composition in parallel (i.e.
iterate over a composition multiple times at the same time). A naive implemen-
tation could make use of the Component interface and manually iterate over the
child components. However, this solution produces unnecessary source code be-
cause it ignores the fact that the same type of iteration might be used multiple
times throughout the framework. Thus, it causes redundancy, it is more likely
to be error-prone and it is less flexible.

The Iterator design pattern [57, p. 257] is used to accomplish this require-
ment. It does not clutter up the components interface. Instead, it provides
a unified interface for accessing children of compositions and encapsulates the
iteration strategy. An Iterator object has to keep track of visited elements and
those that are still to be visited.

Alternatively, the Visitor design pattern [57, p. 331] could have been used
to traverse aggregate structures. This pattern is designed to easily facilitate
the realization of (multiple) operations on aggregate structures. However the
Iterator design pattern is used instead because it favors a lose coupling and
allows a seamless integration of new components. In contrast, the Visitor design
pattern is less flexible with regard to extensibility of the framework. Adding a
new component would imply the modification of the Visitor interface and the
adjustment of classes implementing that interface.

The following paragraphs are based on the definition of the Iterator design
pattern by Gamma et al. [57, p. 257] and highlight several properties of it.
The Iterator design pattern is an object-based behavioral pattern. It provides
sequential access to elements within a composition without revealing the under-
lying representation.

91

Structure: The structure of the Iterator pattern is illustrated in Figure 4.18.
The basic idea is to encapsulate the iteration process and provide a uniform
interface.

Participants: The Iterator design pattern has four participants which are
described in the following.

e Iterator: Is the main class of this design pattern. It declares operations
for accessing and enumerating elements in a composition. The interface is
used for all traversal strategies.

e Concretelterator: Is an Iterator for a concrete implementation of a
traversal strategy. A Concretelterator holds knowledge on the ordering of
the elements being traversed. It is responsible for managing the current
position and choosing the next element.

e Aggregate: Is an aggregate that is supposed to be traversed. It declares
an operation for generating an appropriate Iterator object.

e ConcreteAggregate: Is an implementation of the Aggregate interface.
It is responsible for creating appropriate Concretelterator objects when
requested.

Collaborations: A ConcreteAggregate class is an Aggregate and creates Con-
cretelterator objects. A Concretelterator class implements the Iterator interface
and traverses its ConcreteAggregate. It remembers the current position in the
aggregate and knows how to determine the next element.

Implementation: An implementation of the Iterator pattern is shown in Fig-
ure 4.19. The interfaces of the Iterator design pattern have been adapted ac-
cording to the context of this design challenge. Here, the aggregate structures
do not suggest a concrete Iterator. This is because the same aggregate may be
traversed with various different traversal strategies (depending on the context).
They are simply unknown at this point and need to be dynamically instantiated
at run-time.

The Iterator interface defines three operations. The hasNext operation can
be used to determine whether there is at least one more element in the un-
derlying aggregate. The next element in the traversal is returned by the next
operation. The remove operation can be used to remove the last element from
the underlying aggregate returned by the next operation.

InfiniteLevelOrder and OneShotLevelOrder are concrete implementations of
the Iterator interface. The InfiniteLevelOrder class follows an iterative deepen-
ing approach and will never stop (i.e. hasNext will always return true). In the
first iteration, it will visit only root elements in the graph (i.e. elements without
preceding modules; elements without parents). In the second iteration, it will
visit those elements that are on level one and zero (i.e. depth equals zero and
one). The third iteration will visit elements on the first three levels (i.e. depth
< 3). As for the OneShotLevelOrder, it propagates a set of information through
the entire graph once (from data source to sink). Both of these approaches are
illustrated in Figure 4.20.

92

Client

Aggregate

+createlterator()

Iterator

+irst()
~+next()
~+isDone()
tcurrentltem

ConcreteAggregate

Concretelterator

+createlterator()

o- - -1

return new Concretelterator(this) ﬁ

Figure 4.18: Defines the structure of the Iterator design pattern [57, p. 257].
The Aggregate and Iterator interfaces are shown as well as specializations of
both.

Client Iterator
~+hasNext()
~+next()
+remove()
Node OneShotLevelOrder InfiniteLevelOrder

~+hasNext() ~hasNext()

“next() “next()

+remove() +remove()

Figure 4.19: Illustrates the implementation of the Iterator design pattern. Fur-
thermore, the adapted Iterator and Node (former Aggregate) interfaces are
shown. Concrete implementations are presented as well.

93

One-Shot-Level-Order

Figure 4.20: Shows realizations of the Iterator design pattern: InfiniteLevel-
Order(bottom) and OneShotLevelOrder(top).

94

How does information travel in-between modules / nodes?

It has already been mentioned several times, that output data from modules is
passed to their corresponding successor modules. However, it was not mentioned
how this process is implemented in the framework. An easy and quick solution
to this problem would be that the framework passes data to the next module(s)
as soon as it is available. While this approach would certainly work in situations
where modules form a tree-like structure, it does not work in situations where
a graph structure is utilized, because multiple input sources and their synchro-
nization are not taken into account. Furthermore such an approach is likely to
be infeasible and does not allow for much variations, if required from users of the
framework. On the other hand, an alternative approach would be to buffer data
that is in transit between two modules. This approach would go well with the
previously described Iterator design pattern because it allows to process each
module individually and helps to gather all data from multiple sources before
a module is processed. This buffering can easily be realized in a flexible and
extensible manner if the Strategy design pattern is employed. It would not just
allow transport of data but also to choose which data are forwarded and which
are not.

Design Pattern: The Strategy design pattern has already been described
earlier in this chapter. For more details on the subject refer to “Which func-
tionality must a module provide?” (see Section 4.1.2).

Implementation: Figure 4.21 shows the implementation of this design pat-
tern. There were no major changes required.

The Link interface represents the former Strategy class. It contains meth-
ods for adding and removing data (i.e. push an poll) from the buffer as well
as a method for checking whether the buffer is empty (isEmpty). The isEmpty
method returns an indication of whether there is no data in the buffer. The push
method is utilized by the framework to fill the buffer with data. Similarly, the
poll method will return the next data point in the buffer, if present. Addition-
ally, the Link interface is implemented in such a way that it can be configured
by implementing the Configurable interface previously described (see “How can
modules be configured?” in Section 4.1.2). This adds flexibility to the respon-
sibilities of the Link implementation.

These Link instances are meant to be placed between exactly two modules
(thus it represents exactly one connection). Once the results of a module are
determined, the framework will attempt to place them in all succeeding Link
instances (i.e. provided that the Link accepts the given data). Later the data are
read from all incoming connections and passed into the corresponding module.
The output data are again stored in the succeeding Link instances.

How are functions across the (entire) graph implemented (i.e. pro-
cessing of data or serialization of graph)?

The framework defines operations based on a set of modules. These include
but are not limited to: saving a graph of modules to a file, analysis of graph
for unreachable nodes and other unwanted side effects. Other functions are for
invoking individual modules, links, and nodes that make up the actual graph.

95

Configurable

-+getParameters(): List
+getParameter(parameter:string): string
+setParameter(parameter:string,value:String)

. |

Client Link ConfigurableAdapter
+push(in:List): boolean +getParameters(): List
+poll(): object getParameter(parameter:String): String
+isEmpty(): boolean +setParameter(parameter:String. value:String)
LinkAdapter

+push(in:List): boolean
+poll(): object
+isEmpty(): boolean

BiasedLink UnbiasedLink

“push(in:List): boolean +4push(in:List): boolean

Figure 4.21: Shows the implementation of the Strategy design pattern for linking
modules together. It illustrates the relationship among Link, Configurable and
concrete implementations.

However, none of the related classes require knowledge about these functions.
In fact, their interfaces would rapidly clutter up if these functions were imple-
mented in a naive way. Additionally, future generations of the framework are
very likely to include even more functions of this sort.

It is desirable to encapsulate this functionality in a way that does not affect
modules, links and nodes alike. Ideally, new functionalities should be addable
without the need for any changes on side of the framework. The same goes the
other way around; adding new modules should not affect functionalities in any
way. These requirements can be met by utilizing the Visitor design pattern.
However, it should be pointed out that adding further node-like classes does
have a negative impact on existing functionalities and requires modifications
of existing functions that were implemented in this way. However, it will very
rarely be necessary (if at all) to add another node-like class to the mix. This
structure will practically never change.

The Visitor design pattern represents an object-based behavioral design pat-
tern. It encapsulates an operation that is to be executed over an aggregate or
composition. Thus allowing modifying and adding operations without affecting
the corresponding aggregate and composition. The definition of this pattern
can be reviewed in [57, p. 366].

Structure: The structure of the Visitor pattern is illustrated in Figure 4.22.
The general idea is to implement operations over an object-structure of indi-
vidual objects with an identical interface. The object-structure is not affected
when new functions are added.

96

ConcreteVisitorA ConcreteVisitorB

“+visitA() +visitA()

+visitB +visitB

Visitor
FvisitA()
+visitB
Client
Element
4visit (visitor: Visitor
ConcreteElement A ConcreteElementB
t-visit (visitor: Visitor o - =1 -visit (visitor: Visitor o - =

AN AN
visitor.visitA() visitor.visitB()

Figure 4.22: Tllustrates the structure of the Visitor design pattern as defined
by [57, p. 366]. Hierarchies for Visitor and Element classes as well as their
interaction are shown.

Participants: The Visitor design pattern has four participants which are de-
scribed in the following.

e Element: Is the main class of the object-structure. It defines a wisit
operation which takes a Visitor as argument.

e ConcreteElement classes: These are realizations of the Element inter-
face. Thus they implement the visit method and call their corresponding
“visit”-method of the given Visitor instance.

e Visitor: Is the main class of the Visitor design pattern. It defines an
interface which includes a “visit”-method for each Element class. Name
and signature of each method are tied to a specific ConcreteElement class.
This enables a Visitor to determine the actual type of objects within
the object-structure and allows accessing the ConcreteFElement’s interface
(instead of the Element’s interface only).

e ConcreteVisitor classes: They implement the Visitor interface and
provide some functionality based on the object-structure. Here each in-
terface method realizes its part of the overall operation. A Concrete Visitor
will likely store some kind of context (i.e. results of preceding Elements)
which is utilized by the algorithm.

Collaborations: Visitors are typically used in conjunction with the previ-
ously described Iterator design pattern. Latter guides a Visitor through the
object-structure in a pre-determined way. The Visitor is passed to each Element
in the object-structure. Each ConcreteFElement passes itself to the appropriate
“visit”-method once visited by a Visitor.

97

ProcessingVisitor ValidatingVisitor

+visitPlainNode() +visitPlainNode()

+visitCompositeNode +visitCompositeNode

Visitor

-+visitPlainNode()
+visitCompositeNode

Client
Node
+visit(visitor: Visitor
PlainNode CompositeNode
+visit(visitor: Visitor O === [Liuisit(visitor:Visitor O----- |

visitor.visitPlainNode() ﬁ visitor.visitCompositeNode() ﬁ

Figure 4.23: Shows the implementation of the Visitor design pattern as part of
the framework.

Implementation: The implementation of the Visitor design pattern can be
seen in Figure 4.23. No major adoptions were required. However, the naming
conventions represented by the Node class and its descendants (PlainNode and
CompositeNode) were adapted to reflect the context of their usage. This object-
structure is not expected to change, if at all. Thus making a good fit for the
Visitor design pattern.

The Visitor interface contains two methods to be implemented by any vis-
itor. Both methods visitPlainNode and visitCompositeNode take a single argu-
ment which resembles the actual node that is currently being visited. Developers
can safely assume that this parameter will always be non-empty (i.e. non-null).
Furthermore, the Node class was adjusted to include another method called
visit, which takes a Visitor object as argument and calls the corresponding wvisit
method.

Even though, a Visitor could also take care of traversing the object-structure,
this has been avoided as it would likely create code redundancies. Instead the
Tterator design pattern is utilized in conjunction with the Visitor design pattern.

4.1.4 Data Sources and Sinks

This section discusses matters related to the third design challenge (i.e. Data
Sources and Sinks). Several related requirements (see Section 1.2) are picked-up
in the course of this section. The most involved ones are highlighted hereafter.

e Stream-based: This part of the framework must be designed in such
a way that it enables a stream-based processing of data samples. The
reading and writing mechanisms should work with a single data sample at
a time.

98

Client Processor

+process(in: List out:List)

DataHandler
+isReadOnly(): boolean
+isWriteOnly(): boolean
QueueHandler StreamHandler

Figure 4.24: Shows the implementation of the Strategy design pattern for read-
ing and writing arbitrary data.

e Scalability: These mechanisms must also be able to handle varying sizes
of datasets. Smaller datasets (i.e. less than 10? data samples) as well as
large datasets (i.e. greater than 10° data samples) should be supported.

¢ Reusability: The components in this part of the framework should be
designed to be reusable. The interfaces and classes for accessing data
should be utilized multiple times.

e Extensibility: It should be easy to add support for further data formats
as well as data storage places.

e Support for distribution: The components should be designed to en-
able inter-process and inter-machine communications. There should be
the option to utilize network-based communication protocols.

Where does data come from and go to?

The whole framework would not make much sense without an easy possibility
to utilize existing data sources (i.e. files, network, etc.). Thus, the framework
provides the means to read and write arbitrary data. It should enable developers
to access available data files, network-based data sources and so on. However,
there should be no tight coupling between the framework and its data sources
or data sinks. Instead, they should be an integral part of it (i.e. they should be
a regular module). This way data sources and sinks can be treated uniformly
with any other module in the framework. In order to accomplish this, the
Strategy design pattern is employed to avoid unnecessary redundancies in the
source code.

Design Pattern: The Strategy design pattern has been discussed previously.
Refer to “Which functionality must a module provide?” (see Section 4.1.2) for
more details on its structure, participants and so on.

Implementation: Figure 4.24 shows the Strategy design pattern and the way
it is implemented in the framework. There were no noteworthy adjustments
required.

99

The Strategy class is represented by the DataHandler class. It resembles a
typical module, but already provides commonly utilized configuration parame-
ters. These can be used to make the DataHandler read-only, write-only as well
as readable and writable. Additionally, it provides a minimal basis for those
modules that want to read / write data.

It should be noted that this DataHandler class merely provides an abstract
and very basic view on the topic in question. In most cases, an existing imple-
mentation of the interface might be more preferable than starting from scratch.
In particular, refer to “Can data format and kind of stream vary independently?”
(see Section 4.1.4) if stream-based resources (i.e. files, network, etc.) are in-
volved.

Can data format and kind of stream vary independently?

The data that is being processed in the framework may stem from a variety of
places and may be present in even more data formats. Naturally, the framework
should support a set of commonly employed data formats (e.g. CSV, ARFF,
JSON, etc.) as well as numerous data storage places (e.g. files, HTTP, FTP,
etc.). A naive implementation would create a module for each combination
of data format and place of origin. Only these few examples already add up
to nine combinations (i.e. CSV+file, CSV4+HTTP, CSV+FTP, ARFF+file,
ARFF+HTTP, etc.). If compression variants are included (e.g. zip and tar) then
this number grows even larger (i.e. 27 different combinations). It is obvious that
such a number of combinations cannot be easily maintained if implemented in
individual modules. It should also be mentioned that this number is very likely
to increase even more as data formats and places grow. Especially for the latter
two reasons, the manual and naive way cannot be recommended.

It is desirable to vary data formats and data storage places independently,
such that the number of components becomes manageable. In principle data for-
mats are not bound to the way they are stored (i.e. in file, database or network).
Ideally, each data format should be usable with any data storage mechanism.
This would drastically reduce code redundancies and increase reusability. At
run-time the seeked combination and place could be created dynamically. It
should also be possible to add a new format without changing any data storage
or data retrieval mechanism. The same goes the other way around. All of these
expectations can be met with the Bridge design pattern.

The Bridge design pattern represents an object-based structural design pat-
tern. The general idea is to decouple an abstraction from its implementation
and thus allowing them to vary independently. This pattern can be reviewed
in [57, p. 171].

Structure: The structure of the Bridge pattern is illustrated in Figure 4.25.
The overall structure separates an abstraction from its implementation into two
objects, which can vary independently of each other.

Participants: The Bridge design pattern has four participants, which are
highlighted hereafter.

e Abstraction: Is one of the two main classes in this design pattern. This
class represents an abstraction which references an Implementation in-

100

| implementation.operationlmpl() ﬁ
T

Specialized Abstraction

3

Client Abstraction

|_timplementation: Implementation |
~+operation() o -

Y imlementation

Implementation

+operationImpl()

ConcretelmplementationA ConcreteImplementationB

~+operationImpl() ~+operationImpl()

Figure 4.25: Illustrates the structure of the Bridge design pattern as defined
by [57, p. 171].

stance. The interface of this class resembles that of the Implementation
class but usually contains a few more methods. Whenever appropriate the
referenced implementation is called.

e SpecializedAbstraction classes: These classes are specializations of
the Abstraction class. They typically specialize one of the additional meth-
ods that the Abstraction class provides.

e Implementation: This is the second main class in the design pattern.
It defines an interface for the implementation. This interface, however, is
typically somewhat resembled in the Abstraction class.

¢ Concretelmplementation classes: These classes extend or implement
the Implementation class.

Collaborations: The Abstraction class references an instance of the Imple-
mentation class. The Implementation does not know anything about the Ab-
straction. Where appropriate the Abstraction class calls the Implementation
that it references.

Implementation: The implementation of the Bridge design pattern is shown
in Figure 4.26. Apart from name changes, no adjustments of the design pattern
were required.

The Abstraction and Implementation classes are represented by StreamHan-
dler and StreamHandlerImpl respectively. On the one hand, the StreamHandler
takes care of parsing and generating a particular data format (e.g. XML, JSON,
etc.). On the other hand, the StrearmHandlerImpl defines an interface for ac-
cessing some raw data through a stream (e.g. file, web, etc.). This StreamHan-
dlerImpl is referenced by StreamHandler and called when data are to be read
from somewhere or saved to somewhere.

The StreamHandler class defines two methods for accessing raw data. The

101

Client

imlementation

<

StreamHandler

+implementation: Implementation

+getInputStream(): InputStream

+getOQutputStream(): OutputStream

O I il

implementation.getInputStream()

Serialization

++process(in:List.out:List)

Abstract TextFormat

+process(in:List,out:List)

StreamHandlerImpl

+getInputStream(): InputStream
+getOQutputStream(): OutputStream

Filelmpl

PipedImpl

+getInputStream(): InputStream
+getOutputStream(): OutputStream

~+getInputStream(): InputStream
—+getOutputStream(): OutputStream

Urllmpl

+getInputStream(): InputStream

+getOutputStream(): OQutputStream

Figure 4.26: Shows the implementation of the Bridge design pattern.

102

operations getInputStream and getOutputStream are meant to provide access
to a stream-based resource every time they are called. Respectively, getInput-
Stream provides read access while getOutputStream provides write access to the
same resource. Depending on the concrete implementation of StreamHandler-
Impl the utilized resource will change (i.e. whether it is a file on the local
computer or somewhere on the network). As for the StreamHandler class, it
references a concrete implementation of StreamHandlerImpl. It also contains
methods getInputStream and getOutputStream which utilize the methods on the
StreamHandlerImpl interface. However, the actual streams are buffered to re-
frain from opening unnecessarily many streams. Specialized abstractions, such
as Serialization or AbstractTextFormat, utilize these methods during parsing
(i.e. process method). Here input and output streams are utilized to read or
write a particular data format.

4.1.5 Summary (of Used Design Patterns)

In the course of this chapter, several aspects have been described which are
related to the development of a framework for time series analysis. Numerous
design challenges were discussed and their solutions highlighted.

The following list represents design patterns that were utilized or adapted
in the framework to solve the problems at hand. Most of these can be reviewed
in [57]. Both, design patterns and design challenges they solved, are highlighted
hereafter in order of appearance.

e Strategy: Defines the basis for a family of algorithms or functions. All
descendants in the family can then be treated in a unified way, they are
interchangeable. This design pattern is used numerous times in the frame-
work. For details refer to “Which functionality must a module provide?”
(see Section 4.1.2), “How can modules be configured?” (see Section 4.1.2),
“How can parameters be constrained or conditioned?” (see Section 4.1.2),
“How does information travel in-between modules / nodes?” (see Section
4.1.3) and “Where does data come from and go to?” (see Section 4.1.4).

e Observer: Defines a one-to-many dependency between objects such that
changes in one object are automatically reflected in other objects. This
design pattern is primarily used to express relations among configuration
parameters and to react to changes in configuration parameters. For de-
tails refer to “How are dependencies and relations between parameters
expressed?” (see Section 4.1.2).

e Adapter: Allows multiple classes to work together, that are otherwise
incompatible. The interface is adapted to allow their cooperation. The
framework utilizes this design pattern in “How do these objects (i.e. Con-
figurable, Condition, Observer) work together?” (see Section 4.1.2).

e Template Method: Defines a structure of an algorithm or function and
defers steps of it to sub-classes. This enables sub-classes to change the
algorithm’s behavior without changing its overall structure. This design
pattern is used in “How can typed parameters (i.e. not just strings) be
supported?” (see Section 4.1.2).

e Decorator: Enables a dynamic extension of an object’s responsibilities
without the need for sub-classing it. The object in question is wrapped.

103

The framework employs this design pattern in “Can a module’s function-
ality be dynamically extended?” (see Section 4.1.2).

e Composite: Defines a structure for part-whole-hierarchies that allow
clients to treat compositions and individual objects in a unified way. The
framework utilizes this design pattern in order to avoid unnecessary com-
plexity in graph-like structures of the modules. The interested reader is
directed to “How can compositions and individual objects be treated in a
unified way?” (see Section 4.1.3) for more details.

e Iterator: Provides sequential access to components within a composition
without the need for details on the underlying structure. This design
pattern is employed for accessing all modules within a graph (i.e. for
computation, etc.). For details refer to “How can contents of compositions
be accessed sequentially?” (see Section 4.1.3).

e Visitor: Encapsulates an operation across a composition of elements in an
object. This allows creating new operations without changing the compo-
sition’s structure. This design pattern is used in “How are functions across
the (entire) graph implemented (i.e. processing of data or serialization of
graph)?” (see Section 4.1.3).

e Bridge: Allows the independent variation of an abstraction and its im-
plementations. The framework makes use of this design pattern in “Can
data format and kind of stream vary independently?” (see Section 4.1.4).

As noted at the beginning of this section, diagrams were kept as compact as
possible, thus only necessary operations and interfaces are included. The idea
was to provide simple diagrams in order to facilitate an easier understanding
of particular design challenges. More details can be found in the framework’s
implementation itself [108].

4.2 Extensibility

The framework is not complete as there will be the need to add further func-
tionalities (e.g. ML, AI and data processing algorithms) at some point in time.
Thus, providing the means to easily add new modules as well as other compo-
nents is essential. Developers can make use of this option to implement their
domain-specific functionalities and thus contribute to the framework. The re-
mainder of this section describes various ways in which the framework can be
extended. A concise summary of these possibilities is given hereafter.

e Adding Modules: One of the most obvious and most frequently per-
formed use-cases (with respect to extending the framework) is the addi-
tion of modules. This is where filters as well as all sorts of ML and Al
algorithms can be implemented.

e Wrapping and Decorating Modules: A likely rarely performed use-
case is the addition of wrapping and decorating modules. This type of
module will be added whenever a new functionality, which could in prin-
ciple be applied to any other module (e.g. logging of input and output
data, measuring frequency of input and output values or measuring the
processing times of a module) is added to the framework.

e Data Sources and Sinks: Describes a use-case in which a new data for-
mat or a new way of retrieving and storing data is added to the framework.

104

This is expected to be performed occasionally. Support for proprietary
data formats and the like can be added here.

e Links: Another occasionally performed use-case is the addition of new
links (i.e. the means of data transportation between two modules). This
can be used to implement specific data buffering behaviors, which are not
covered by the default implementation in the framework.

¢ Functions Across the Entire Graph: This represents a use-case that
is expected to be moderately often utilized. It allows adding new analysis
mechanisms as well as general functionalities or operations that operate
on a graph of modules (e.g. determining root or leaf nodes, checking for
loops, etc.).

e Alternative Traversal Methods: One of the most infrequently per-
formed used options is the addition of new traversal methods to the
framework. These traversal methods are usually used in conjunction with
methods described in “Functions Across the Entire Graph”. If the default
traversal methods do not provide access in the expected way or order,
then this is where new orderings can be realized.

4.2.1 Adding Modules

Probably the most obvious way of extending the framework is adding new data
processing modules as needed. Here “data processing module” refers to any al-
gorithm or functionality that is capable of generating data, manipulating data,
transforming data or absorbing data. This can range from simple moving aver-
age computations over function generation to writing data in a DB. It is very
likely that the necessity for adding new modules will arise at some point in the
future.

In general it is sufficient to implement the Processor interface. However, in
most cases it will suffice to actually extend ProcessorAdapter. Latter suggestion
already provides a partial implementation of the Processor interface. In par-
ticular, parameterization (i.e. getting and setting parameters) is already taken
care of. Unless it is necessary to create an alternative implementation for ma-
nipulating parameters, latter option (i.e. extending ProcessorAdapter) should
be preferred. It is the easiest way to add a new module, because it only requires
to implement a single method called process.

The process method does not directly provide a set of return values. Instead,
it accepts a set of input values and manipulates a set of output values. The entity
that calls the process method ensures the availability of input values and an
empty set of output values. The module itself has the flexibility to ignore input
values and is not required to provide any output values. If a module does choose
to ignore input values, it still has the option to generate output values. This can
be useful for generating data (e.g. reading from a file, querying a database or
generating function values) which can then be used by other modules. If, on the
other hand, a module decides to process input values, it should not manipulate
them as this can have negative effects on other modules. This also includes
adding and removing from the set of input values. However, the module can
still decide to provide output values but is not required to do so. Latter case
would be useful when writing the data to a file or database. On the other hand,
the former case (processing input data and providing output data) would be

105

considered the normal case. An example for such a behavior is demonstrated
in Listing B.2. It highlights a module that forwards its input values, which can
most easily be done by extending ProcessorAdapter.

Additionally there is always the option to extend any existing module. This
is particularly useful if a module already behaves in almost the expected way.
Regardless, whether ProcessorAdapter or any other existing module is used as
template, the process method must execute as fast as possible. The method
may be called several thousand times per seconds (or more). Thus long running
tasks should be avoided.

Related design challenges:

e Section 4.1.2 Which functionality must a module provide?
e Section 4.1.2 How do these objects (i.e. Configurable, Condition, Ob-
server) work together?

4.2.2 Wrapping and Decorating Modules

Certain situations may require a dynamic analysis of data passing through a
module, while other situations may require dynamic extension of the function-
ality or responsibility of some module. In all of these cases it is useful to create
a module that is capable of wrapping (or decorating) an existing module. Con-
crete examples are modules that log input and output values or simply ensure
the validity of input data before they are being passed into the actual module
in order to avoid faulty behavior of the wrapped module. It should be stressed
that this kind of module can be combined or can be used with any other module
in the framework. This includes other wrapping and decorating modules as well.

The framework already provides the means to create such modules. Al-
though they can be implemented by hand (see “Adding Modules”), the easiest
way is to extend the DecoratorProcessor class. In doing so, developers are able
to perform any extra operations before and after the wrapped module is called.
The DecoratorProcessor itself implements the Processor interface by simply for-
warding all interface calls to a wrapped module. Some decorating modules may
even want to decide not to call the wrapped module (this only makes sense for
a selected few methods).

An example, that demonstrates the addition of a decorating module, is shown
in Listing B.3. It can be used to generate statistics on the processing time that
a module requires.

Related design challenges:

e Section 4.1.2 Which functionality must a module provide?
e Section 4.1.2 Can a module’s functionality be dynamically extended?

4.2.3 Data Sources and Sinks

Support for new data formats, data retrieval and data storage mechanisms can
be added to the framework. The framework supports a set of commonly utilized
data formats and the like, but further proprietary data formats or domain-
specific data storage places can be added.

106

The StreamHandler and StreamHandlerImpl classes can be utilized for these
purposes. The StreamHandler class is meant to enable developers to realize
custom data formats. Overwriting the process method and accessing the raw
data via getInputStream and getOutputStream methods allows this. On the
other hand, the StreamHandlerImpl class allows developers to implement new
data retrieval and data storage mechanisms. Here, the getInputStream and
getOutputStream methods need to be implemented. They can be utilized to
provide access to information on a website, in files and the like.

In cases where no streaming is involved, the DataHandler class can be uti-
lized as a template. Here, the process method is implemented to read data from
some data source (i.e. other than an input stream; e.g. a queue or list) or write
to a data sink (i.e. other than an output stream).

An example for implementing raw access to a file is shown in Listing B.4. The
realization is done by implementing the StreamHandlerImpl interface. Another
example is listed in Listing B.5 where the DataHandler class is extended to
utilize a queue.

Related design challenges:

e Section 4.1.4 Can data format and kind of stream vary independently?
e Section 4.1.4 Where does data come from and go to?

4.2.4 Links

Links represent directional connections between pairs of modules, thus modeling
the flow of information from one module to the next.

It is their purpose to accept data from one module and provide it to another
module when requested. However, there are situations in which certain data
must not be transferred from one module to the next. This might be the case
when a module produces multiple kinds of output values (e.g. numbers and
strings) while an adjacent module can only handle numeric values. Here, a link
could take the responsibility of filtering out unwanted types of values. Of course
an alternative approach would be to implement this sort of filtering in a separate
module (see “Adding Modules”). However, a mechanism that transports data
is required nonetheless (i.e. it cannot be done by modules alone). Thus, it does
not really matter and the decision is left to the developer’s preferences.

Even though several common types of links are already implemented in the
framework, there may be the need to add new ones in the future, which cover
special use-cases. If such a need arises then the implementation is most easily
done by extending the LinkAdapter class or any other concrete Link imple-
mentation. Of course, it is sufficient to implement the Link interface but this
requires more effort. In almost all cases, it will suffice to specialize either the
push or the poll method of the LinkAdatper. This would be the case if the Link
is supposed to perform more than simple data validation. Thus requiring the
developer to implement the push and poll methods. They are utilized by the
framework to push any given output data from a module into an intermediate
buffer and to poll this data from the buffer.

An example for implementing the push method is shown in Listing B.6. It
demonstrates the case where one would want to filter the flow of data between

107

two modules, then this is most easily done by extending the LinkAdapter class
and specializing the push behavior.

Related design challenges:

e Section 4.1.3 How does information travel in-between modules / nodes?
e Section 4.1.2 How can modules be configured?

4.2.5 Functions Across the Entire Graph

From time to time, it may be beneficial to add an analysis mechanism or function
that operates on a graph of modules. Examples of this functionality range from
simply saving the graph to a file, determining leaf and root nodes to ensure
that all modules are potentially reachable (i.e. they can potentially be fed with
data). The framework provides the means to realize such functionalities via the
Visitor interface.

The general idea is that an Iterator is utilized (by the framework) to visit
all nodes within a graph in an orderly fashion. For each type of node, the
Visitor interface provides a corresponding method (e.g. wisitPlainNode and
visitCompositeNode). Both of which can be freely implemented. When visiting
a node, a method that corresponds to the type of node (i.e. PlainNode and
CompositeNode), is called on the Visitor interface. Functions of this sort may
have certain assumptions on the ordering of modules. Thus one should consider
available Iterator implementations and check whether they already fulfill the
requirements. If not, it may be necessary to implement a corresponding Iterator
as well.

For example if one wanted to initialize all modules within a graph, this
functionality is easily created by implementing the Visitor interface. The Listing
B.7 shows a Visitor that visits all modules exactly once and calls there setUp
method.

Related design challenges:

e Section 4.1.3 How are functions across the (entire) graph implemented
(i.e. processing of data or serialization of graph)?
e Section 4.1.3 How can contents of compositions be accessed sequentially?

4.2.6 Alternative Traversal Methods

Considering the various analysis techniques and endless possibilities of transfor-
mations of a module-graph, it becomes apparent that certain techniques require
certain traversal methods. Thus, a specific traversal method is usually depen-
dent on the kind of function that is to be performed on the graph. Of course,
the same applies the other way around. Functions will likely produce different
results depending on the chosen traversal method. Whenever another analysis
technique or function is added to the framework, it may be required to add a
new traversal method as well. This can be most easily done by implementing
the Iterator interface or by sub-classing an existing lterator implementation.
The main methods of this interface are hasNext and next. They are utilized
to tell the framework that there are still more items which can be traversed (i.e.

108

hasNexzt method) and provides the means to access these items in a sequential
fashion (i.e. next method).

An example of an [lterator implementation is shown in Listing B.8. The
shown example provides sequential access to a graph of modules in such a way
that the items are returned with respect to their depth within the graph (i.e.
shortest distance from a root). It is a level ordered Iterator.

Related design challenges:

e Section 4.1.3 How can contents of compositions be accessed sequentially?
e Section 4.1.3 How are functions across the (entire) graph implemented
(i.e. processing of data or serialization of graph)?

4.3 Applications and Scenarios

Here, a few exemplary applications and use-case scenarios of the proposed frame-
work are briefly outlined.

4.3.1 Recognizing PD Motor Symptoms

The described framework can be used as an ML and Al toolkit for recognition
of patterns in time series. Such applications include classifying PD symptoms
as well as decision support systems for PD care givers and doctors.

A similar system is described in “Indication of Parkinson’s Disease Motor
Symptoms” (see Chapter 6). It details numerous algorithms for recognizing PD
motor symptoms (i.e. tremor at rest, dyskinesia and freezing of gait (FoG)).
These algorithms can be broken down into smaller pieces which can then be
individually implemented in the framework. In such a scenario, modules can be
utilized to perform preprocessing of raw sensor data as well as the actual recog-
nition of symptoms. Assuming that recorded signals are organized in separate
files for each patient and recording session, then one module could be imple-
mented that looks up all files containing recorded signals and another module
could load these files. Once the signals have been loaded into memory, further
modules could perform resampling, feature extraction, performance evaluation
and other tasks. These modules can then be connected to form a system such
as the one described in Chapter 6.

Some examples for such modules are described in the appendix (see Section
B.3). This chapter also includes a road-map for implementing the algorithms
described in Chapter 6 (see Section B.4).

4.3.2 Generating Trading Decisions

Autonomous trading systems and financial data analysis systems typically uti-
lize time series data on foreign exchange currencies, bonds, stocks, etc. Their
goal is to optimize trading strategies in order to maximize profit returns and
minimize losses (ideas for such systems can be found in [107,109]). These sys-
tems provide a set of rules, which can be utilized to estimate future movement
of some financial instrument with a certain probability and confidence. Such a
system can also be realized with the framework described in this chapter.

109

Some modules can be utilized to read financial data (i.e. from file, web,
stock exchange, broker, etc.), which can then be resampled and processed to
evaluate trading strategies. Alternatively, it can also be used to predict future
price changes and automatically trigger trading actions.

4.3.3 Analysis of Network Traffic

Another application of the framework could be the systematic analysis of net-
work traffic. The framework is not only able to perform passive analysis, but
can also be utilized to reproduce (parts of) network traffic or manipulate traf-
fic as it is being processed. The overall idea would be to create an input and
output module for the corresponding type of network traffic (i.e. user datagram
protocol (UDP), transmission control protocol (TCP), etc.). Each data packet
can then be passed as regular input value through the framework. Once that
is possible, succeeding modules can analyze and manipulate the information in
each data packet. In the end, the (possibly modified) data packet is sent to the
intended recipient. This mechanism could be utilized for network traffic from
and to a client.

4.3.4 Quality Control of OpenStreetMap-Data

The developed framework can also be utilized on large-scale datasets. Within
this category resides OSM data from the entire planet. The data contains,
among many other things, all recorded streets, intersections, parks, houses.
Here the framework can be used to parse various OSM data formats, analyze
and transform the data as well as write it again. An exemplary application
could analyze OSM nodes and paths for an overall quality assessment on the
utilized key-value pairs.

4.4 Included Modules and Algorithms

For a global overview on the included modules in the framework refer to “Mod-
ules of Framework” (see Section B.3) in the appendix. The reader interested
may want to have a look at the entire Chapter B or visit the framework’s repos-
itory [108].

4.5 Summary

This chapter has provided an answer to the first research question of this thesis.
A software framework for time series has been proposed. The original require-
ments were analyzed and grouped into design challenges which were than evalu-
ated and solved on their own. These design challenges were further sub-divided
into manageable parts which were individually solved and implemented. The
implementation focused on software design patterns that facilitate reusability
and maintainability.

Additionally, several important ways of extending the framework were de-
duced from the implementation and explicitly highlighted for easy reference.
Furthermore, several applications and use-case scenarios were pointed out.

110

The interested reader may want to obtain a copy of the framework [108]. A
short description of individual modules as well as a road-map for implementing
the algorithms presented in Chapter 6 can be found in the appendix (see Section
B.3 and Section B.4, respectively).

111

112

Chapter 5

Database: Patients and
Their Symptoms

This chapter describes the acquisition of data as well as the contents of the
database (DB). The DB was specifically designed for development of algorithms
that are intended to indicate Parkinson’s Disease (PD) motor symptoms in non-
laboratory conditions [144]. The summarized data are those that are utilized
during the remainder of this thesis. Consequently, the data aided in the devel-
opment and evaluation of all algorithms that are presented in Chapter 6.

5.1 Data Acquisition and Labeling

Data acquisition was not part of this thesis, instead the data has been pro-
vided to the author as part of the REMPARK project [133]. Sensors and their
locations on the patient’s body were also fixed prior to this thesis.

5.1.1 Sensors

During data acquisition, three kinds of measurements were recorded and were
stored for offline analysis. Two different sensor platforms were placed on the
participant’s body (i.e. one on the wrist and one on the waist). Both devices
were able to communicate with each other via Bluetooth. The primary objective
of the wrist worn sensor platform was to ease the detection of tremor. The waist
sensor platform is used to detect other gait related symptoms (e.g. dyskinesia
and bradykinesia) [144].

The wrist-mounted platform recorded three-dimensional acceleration data
from the left wrist. The position is reflected in Figure 5.1. In addition to
the acceleration sensor, the platform contains a microprocessor as well as a
communication unit. The components are utilized to capture acceleration data
at 80 Hz and send them to the waist platform, where the data are further
processed. In the data acquisition phase, data are recorded for offline analysis.
During final trials, most of the processing could potentially be performed on
the sensor platform itself (e.g. preprocessing for symptom recognition). All in
all, the complete device (including the power supply) weights around 50g and
is 70x42x13mm? (i.e. length, width and height) in size [139,144].

113

The waist measurement platform recorded three-dimensional acceleration
data, three-dimensional orientation data and three-dimensional compass data.
The device is placed near the anterior superior illiac spine (ASIS), which is also
highlighted in Figure 5.1. Furthermore, a microprocessor, a data storage unit
and a communication unit are part of the platform. They are utilized to capture
the acceleration, orientation and compass data with a sampling frequency of 200
Hz. The communication unit receives data from the wrist sensor. During data
acquisition, the signals are stored for offline analysis. During trials, part of
the symptom recognition could be done on the platform itself. The platform is
approximately 99x53x19mm? (i.e. length, width and height) in size and weights
around 125g (including the power supply) [144].

5.1.2 Criteria and Demography

The database contains recordings from 92 participants (i.e. 36 females and 56
males). The average participant was 68 years (7.9 years). Most of them were
either married or live with a partner (74 participants). The remainder was
either single (5 participants), widowed (8 participants) or separated / divorced
(5 participants). All participants have a clinical diagnosis of PD and a score
of at least two on the Hoehn & Yahr scale (HYS) (i.e. moderate to severe
phase of PD). The median score on the HYS is 3 with an interquartile range
(IQR) of 0.5. The median scores of the unified Parkinson’s Disease rating scale
(UPDRS) for OFF, ON and intermediate are 40 (IQR £ 21.75), 14 (IQR +
12.5) and 22 (IQR £ 17). Furthermore, 68 participants had predictable OFF
states, 54 participants had unpredictable OFF states and 33 participants had
sudden OFF states.

The inclusion and exclusion criteria have been summarized in Table 5.1. All
participants fulfilled the inclusion criteria, while none of the exclusion criteria
was present. The criteria and protocols were approved by the corresponding
local ethic committees (Ireland: NUI Galway Research Ethics Committee, Is-
rael: Assuta Hospital Helsinky Committee, Italy: Istituto di Ricovero e Cura a
Carattere Scientifico, Spain: Comité Etico de Investigacion Clinica de Centro
Médico Teknon de Barcelona).

5.1.3 Protocols

In general, the protocols can be divided into two major parts: (1) screening
/ base-lining and (2) data acquisition. Both of these parts were performed on
separate days. All participants were screened before any data acquisition took
place. The main purpose of this procedure was to ensure that all inclusion
criteria were met and none of the exclusion criteria were observed (see Table
5.1). During data acquisition, various scripted and unconstrained activities were
performed in both ON and OFF states of the participant. Both parts of the
protocols are touched upon in the remainder of this subsection.

During screening, the interviewer asked questions regarding overall health
and sociodemographic nature. Furthermore, the inclusion criteria was verified
(e.g. clinical diagnosis of PD and presence of clinical fluctuations). It was also
established that none of the exclusion criteria (e.g. treatment with intestinal
apomorphine or enrollment in another study) were met by the participant. A
special focus was put on freezing of gait (FoG) and dyskinesia.

114

Figure 5.1: Highlights the sensor locations in relationship to a (human) skeleton.
The wrist sensor is placed on the left hand. The waist sensor is located near the
ASIS. The image has been retrieved from Wikimedia Commons and belongs to
the public domain.

115

Inclusion criteria:

Signed the consent form

Clinical diagnosis of PD (see Table A.7)

Hoehn and Yahr stage of two or above (moderate-severe phase of PD)
Presence of clinical fluctuations

Aged between 50 and 75 years

Exclusion criteria:

e Other health problems that impair gait or physical activities (e.g. rheuma-
tologic, neuromuscular, respiratory, cardiologic problems or significant
pain)

Major consumption of alcohol or other drugs

Wearing a pace maker or other implantable devices

Receiving treatment with intestinal dupodopa or intestinal apomorphine
Receiving treatment with deep brain stimulation (DBS)

Enrollment in another study

Mini-Mental-Score [55] below 23

Table 5.1: Inclusion and exclusion criteria for participation in data acquisition.
The contents have been summarized from parts of the REMPARK project doc-
umentation (i.e. case report form for screening and baseline). The original
document can be found in the appendix.

116

Free Activity UPDRS
Monitoring

TESTS -

TESTS - Indoor and Qutdoor
Indoor and Outdoor Vedication

Intake

Free Activity
UPDRS Monitoring

6-8 Hours

Figure 5.2: lustrates the order and length of the recording sessions.

During data acquisition, the participant’s activities were recorded by means
of a wrist-mounted sensor and a waist-mounted sensor. The recording sessions
can be largely divided into a recording session in a clinically defined OFF-state
and a second recording session in a clinically defined ON-state. Both of these
recording sessions were partly videotaped (first part) and directly annotated
with tablet computer (second part). The general process is also highlighted in
Figure 5.2.

Before the arrival of medical professionals and researchers at the participant’s
home in the morning, the participant was asked to skip the morning dose of
medication. Thus, the participant was expected to be found in an OFF-state.
Prior any recordings, the motor state was verified and the motor section of
the UPDRS was evaluated. Afterward, the recording devices were switched on
and synchronized. Then the sensors were placed on the participant’s body (i.e.
wrist and waist) and recording started (i.e. recording of sensor data, video
recording and tablet annotation). The participant performed a series of tests
(i.e. indoors walking test, FoG provocation test, gait test, outdoors walking test
and tap test). Then the participant was asked to take his / her medication and
performed free activities. Up to the gait test (including) the participant was
videotaped. From this point onward, only annotations from the tablet computer
are provided. Once the participant has switched to the ON-state, this session

117

is over. All recording devices are stopped and sensors are removed from the
participant.

A similar procedure was repeated for the ON recording session. Again, the
participant was recorded while performing a series of tests (i.e. indoors walking
test, gait test, dyskinesia test, false positive test for tremor and OFF-state,
outdoors walking test as well as tap test). At the beginning of this session, the
motor section of the UPDRS is also evaluated. Afterward, the recording devices
are switched on, synchronized and sensors are placed on the participant’s body.
The tests are performed and afterward the participant performs free activities.
Then all recording devices are switched off.

At the end of the recording sessions, a few usability related questions are
asked. The system usability scale (SUS) and Quebec User Evaluation of Satis-
faction with Assistive Technology (QUEST) are answered by the participant.

5.1.4 Tests

The tests that were referred to in the previous subsection are summarized in
the following.

e Indoors Walking Test: The participant starts by sitting in a chair.
Then he / she is asked to stand up and start walking through the house /
apartment (e.g. as if they were selling the house / apartment or showing
it someone). Having shown several rooms, the participant returns to the
chair and sits down again. The idea is to get overall gait related infor-
mation (in OFF and ON states). The video recording is focused on the
feet.

e FoG Provocation Test: The participant starts by sitting in a chair. He
/ she is then asked to get up and walk through an opened door (approx-
imately 2 - 3 meters away), turn around, walk back to the chair and sit
down. This test is repeated several times and the door may be gradually
closed (narrowed) if FoG episodes could not be provoked. The partici-
pant’s feet must be visible in the video recording.

e Gait Test: The participant is asked to walk for around 15 - 20 meters
in a straight line (ideally on a flat and clear street, sidewalk or pavement)
and stand still for a few seconds. An odometer is used as a reference for
the walked distance. The video recording shows the participant (facing
the back of the participant) walking the entire way. This test is repeated.
However, this time the steps are counted and a stopwatch is used to mea-
sure the time required to bridge the distance.

e Outdoors Walking Test: The participant is asked to walk for a period
of 10 - 15 minutes in the nearby neighborhood or park. The idea is to
capture gait related information (in OFF and ON states).

e Tap Test: The participant is asked to perform a series of tapping move-
ments with varying degrees of difficulty. This test is performed on a mobile
phone with a touch sensitive screen [46,47].

e Dyskinesia Test: The participant starts by sitting in a chair. He / she is
then asked to stand up and keep standing for a full minute before sitting
down again for another full minute. The recordings show the entire body
of the participant. The idea is to capture dyskinesia episodes with the
recording devices.

118

e False Positive Test For OFF: The participant starts by sitting in a
chair in the kitchen. He / she is then asked to carry a glass of water to
another room (ideally the room furthest away from the kitchen). On the
way back, the participant is also asked to read out loud a text and sit
down in the kitchen. The idea is to perform and capture activities that
could potentially be interpreted as signs of an OFF-state (e.g. slowness).

e False Positive Test For Tremor: The participant is asked to perform
the following activities: brushing teeth, shaking a deodorant, erasing with
an eraser, typing on a computer keyboard, cleaning window(s) as well as
drying a glass. The idea is to perform and capture a set of activities that
could potentially be interpreted as tremor (e.g. rhythmical movements).

5.1.5 Labeling

As previously mentioned, the sessions were videotaped and annotated. A smart-
phone was used to record participants (or part thereof) and a tablet computer
was used to annotate the participants’ actions directly (e.g. walking, standing,
rough terrain, etc.). Video recordings are only available for parts of the sen-
sor signals (i.e. first part of session was videotaped while the second part was
only annotated). For this reason, proper labeling is also only available where
video recordings were available. The actual labeling was performed by medical
professionals based on the video recordings. They provided the gold standard.

5.2 Contents of Database

The data that are analyzed in this thesis are comprised of signals from 92
patients and include ~ 4500 minutes of recordings. This corresponds to those
parts that have been video taped. The entire REMPARK DB contains roughly
360 hours of labeled signals [145]. It also contains recordings from patients in
varying stages (i.e. ON, OFF, intermediate). This section is intended to give a
high-level overview on those parts of the project’s DB for which a gold standard
(based on video recordings) could be established.

The recordings originate from four countries (i.e. Spain, Italy, Israel and
Ireland). In Spain, Dr. Angels Bayes led the movement signals gathering from
Centro Médico Teknon in Barcelona. Dr. Roberta Annicchiarico coordinated
the data collection in Rome, Italy. In Israel, signals were gathered under the
coordination of Dr. Hadas Lewy in Maccabi Healthcare Services, Tel Aviv.
Finally, signals gathered in Ireland were coordinated by Prof. Geardid OLaighin
from National University of Ireland, Galway. All participants had a clinical
diagnosis of Idiopathic Parkinson’s disease according to the United Kingdom
(UK) PD Society Brain Bank [71]. Furthermore, all patients gave their signed
informed consent before their participation. The experimental protocol was
approved by the corresponding local Ethics Review Committee.

The general process was that patients started in the morning in the OFF-
state as they were asked to skip their morning dose of medication. The procedure
that followed (see Section 5.1.3) included a set of scripted activities (e.g. gait
test, walking test, showing the house / apartment, carrying a glass of water)
and an unscripted session. The scripted activities were designed to provoke cer-
tain motor symptoms (i.e. walk through a narrow doorway to initiate FoG) and

119

allowed to quantify other symptoms (e.g. dyskinesia and bradykinesia). The
free session allowed recording of patients in their own apartment and performing
arbitrary activities as they wished. Both recording sessions lasted (in total) sev-
eral hours. In the afternoon, the recording sessions were repeated, this time in a
clinically defined ON-state. During each recording session, participants wore a
wrist-mounted accelerometer on the left wrist. Additionally, a sensor platform
was attached to the patient’s waist, recording acceleration data, gyroscope data
and magnetometer data. In parallel, a video recording of all participants was
done which was later synchronized to the sensor data and served as a basis for
labeling. Also in parallel, a rough annotation was performed with a tablet com-
puter. The gold standard was provided by medical professionals who performed
the final labeling (based on the video recordings). At the beginning of the morn-
ing and afternoon session, a partial UPDRS (motor section) was determined in
order to assess the patient’s overall motor status.

The Table 5.2 shows a general overview of the symptoms that are present in
the database on a per-patient-basis. This is done regardless of them occurring
in ON, OFF or intermediate state.

Patient Tremor Dysk. Brady. FOG

1 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00
4 0.00 0.22 0.00 0.00
5 0.00 0.00 1.95 0.00
6 7.03 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00
8 0.00 0.00 1.08 0.00
9 0.00 0.32 0.00 0.00
10 2.57 0.94 0.00 0.00
11 0.00 0.37 0.00 4.34
12 0.00 0.33 0.00 0.21
13 0.00 7.02 0.00 4.40
14 0.00 0.00 0.00 8.48
15 0.00 0.00 0.00 3.05
16 1.35 0.00 1.21 1.14
17 0.00 0.00 0.00 4.88
18 0.00 0.00 6.59 4.13
19 0.00 0.00 0.00 1.05
20 0.00 7.93 0.00 2.02
21 0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00
23 0.00 1.79 0.00 0.34
24 1.18 0.00 0.00 2.25
25 0.00 0.00 0.00 0.00
26 0.03 6.73 0.00 2.20
27 2.84 3.73 30.05 4.97
28 0.63 9.08 0.00 3.98
29 0.71 10.77 0.00 0.00
30 4.42 0.00 19.67 0.71

(continued)

120

Patient Tremor Dysk. Brady. FOG

31 1.10 13.38 0.00 5.46
32 0.00 0.28 8.93 0.11
33 14.30 0.00 0.00 0.00
34 0.00 26.64 0.00 3.70
35 1.11 0.00 531 0.04
36 4.96 0.00 0.00 3.69
37 0.00 9.07 5.69 0.00
38 0.00 0.00 0.00 0.55
39 0.00 10.82 21.13 5.60
40 16.64 0.00 16.74 0.45
41 0.56 7.56 32.67 949
42 14.31 22.77 14.30 0.00
43 0.00 1.22 17.50 9.82
44 5.39 21.63 22.83 6.26
45 0.00 4.34 1583 4.39
46 0.00 1.98 11.00 0.46
47 0.00 4.57 11.87 0.06
48 0.00 22.72 9.76 0.00
49 0.00 0.00 10.12 0.00
50 0.00 16.79 2131 0.84
51 0.00 10.74 13.77 0.00
52 0.00 0.00 3532 6.49
53 0.00 0.00 18.23 1.47
54 0.00 0.00 8.25 0.66
55 0.09 0.00 0.00 0.00
56 0.00 0.00 12.09 1.07
57 0.00 0.00 14.07 1.26
58 12.71 16.30 54.75 0.18
59 0.00 0.00 9.40 0.20
60 5.79 0.00 0.00 0.88
61 0.00 0.00 0.00 0.60
62 9.54 0.00 14.71 0.54
63 37.59 20.68 16.48 3.98
64 0.00 17.26 12.52 5.89
65 68.87 0.00 4278 1.45
66 0.00 10.19 2231 237
67 0.00 0.00 11.03 0.11
68 0.00 0.00 2095 142
69 0.00 0.00 13.29 1.38
70 0.81 0.00 16.07 2.01
71 1.66 11.19 4.84 0.00
72 0.00 0.00 12.79 0.01
73 0.00 0.98 1.88 285
74 0.07 2.41 10.17 0.00
75 0.00 0.00 20.05 0.00
76 0.00 22.63 8.60 0.00
77 0.00 2.08 16.01 0.00
(continued)

121

Patient Tremor Dysk. Brady. FOG

78 0.00 3.05 18.42 12.82
79 0.00 0.00 18.12 0.00
80 0.00 6.99 2.62 0.34
81 0.00 4.92 1.82 0.11
82 46.17 0.00 25.68 0.11
83 0.18 0.00 6.37 0.00
84 1.83 11.04 11.53 0.38
85 0.00 20.87 20.74 1.84
86 0.00 3.81 5.19 1.62
87 0.00 0.00 8.09 0.00
88 12.11 0.00 3.74 0.19
89 0.00 0.00 31.85 1.49
90 4.10 7.81 22.49 7.29
91 0.66 16.14 16.27 1.50
92 12.83 1.76 10.76 0.00

Table 5.2: Lists the amount of time (in minutes) that each patient experienced
a particular symptom. Here resting tremor, dyskinesia, bradykinesia and FoG
are listed. The values were extracted from those parts of the DB where a gold
standard was available.

122

(ponuryuoo)

88T 000 740 86°0G IS YSAp Peay Yeop
881 00°0 740 L6°0G ISR NSAp peay Yeop
99°GTT G0'GET Gy'8€6 02669 ST “qSAp oI
99°GTT G0"GET 7'8€6 61°669 ISTE AP oI
EETVETL LCTL 68°0G€ 69°GT¥ IS peugepup)
EVITEL LCVL 68°09¢ 1Ly ISTEA\ peugepup
umoudu) djelpdwiidU] 2je}g-J 40 21eIS-NQ UOIjed07] [°9e]

‘o[qe[IeAR Sem PIRpUR)S P[OS ® UOIYM I0] g MUVINTY 24?2 Jo sired 9sot} WOIJ PajorIIXo oIom sonfea asot], (A[snoouejmnurs
INDO0 Ued YPIYM) IowaI) Jo sodA) urdrea se [[om se (vjeIpouLI)ul pue J O ‘N(O '°°1) 918IS 1030 ‘(ISTRM IO ISIIM 'O°T) UOIIRIO] IOSUOS
JO SUOIJRUIqUIOD I0J USAIS ST OWII) JO JUNOWR 9], "IOWSI} SUIISeI 01 100dsal 1M (Segnurtu ur) sSUIpIodsl Jo [Y)sus] oY) SIS :€'G 9[qr],

8LT 000 €a4'¢cl 81°0 ST Ioura} §91/400§ 1501
8.1 00°0 €a¢l 8T°0 ISR Iou1} 891/400§ o1y
TL°L 496 00°L. 9¢°€Y ST I0waT) ULIR /puer] 1jor]
1L°L 99°6 00°LL GGEv ISTE\ I0WaT) LR /puer] 3o
00°0 000 0070 00°0 IS IOWdI} UnIT,
00°0 000 0070 00°0 ISTe\ IOWDI} HUNIT,
200 00°0 8G°GT e€r'g ST T0waTy BAY/400§ 1YIY
200 00°0 8G°GT e€r'g ST TotwaTy BaY/400§ 1[I
891 000 G8°G0T 11°6¥ IS IowaTy LIk /puet] JySry
89T 000 G8°G0T 1T°6¥ ISTE\ IO} ULre /puey STy
1609 L7601 Gcee9 6L°€9. IS JowaI} JOYITAN
16709 87601 V¢ €€9 6L°€9L ISR IowoI} JNOYIIAN
8¢ EIVI €601 647067 ¢0'€E9 ST pougspupn
8EEIVI €€°60T 64°067 ¢c0°€€9 ST pauyepup)

UMOUNU[) 9jeIPoWIoU] 99e3S-JJI0 °181S-NQ UOIjesor PqeT

123

"9[qe[TeA®R SeM pIRpuR)s P[o3 @ YOIYM I0] g SMUVJIINTY 94 Jo sired 9S0T) WOIJ POJORIIXD 9IoM SoN[RA 9SoT], *(A[snosue)nuurs
INDDO WeD TOIYM) RISOUISAD JO sodA) Surfrea se [[om se (9jerpewIoul pue 40 ‘NO 1) 2)e)S I0j0W ‘(9sTem IO JSLIM "9°1) UOIIRIO[
IOSUSS JO SUOTJRUIQUIOD 10] UOALS ST 9UIT) JO JUNOUIR ST], "RISOUI{SADP 0 100dsol [iIm (SoInurul ul) sSUIPIoddl Jo YISUA] oY) SISIT :F°G 9[qR],

000 Ay 00°0 GGG ISLIM oruols£(q
000 Y 00°0 GGG JSTRA\ oruojsA(q
0€°0 00°0 00°0 99'62 ISLIA RIERCLS(9)
0€°0 00°0 00°0 99°6¢ JSTRAN RIER(ELs(9)
000 000 000 €OTT ISTIM “qsAp 8o[/3005 JySu Suoxyg
000 00°0 00°0 €011 JSTRA\ "ysAp 8o[/300 JySur Suorlg
121 9L°T veT GG'68 ISTIM "NsAp So[/300F 1YSLL SrOA\
121 9.1 ve1 GG 68 JSTRA\ "NsAp 8o[/300F JYSLL SrOA\
200 00°0 000 V0 IS "ysAp urre/puey JySLI SUOI}g
200 00°0 00°0 Y0 ISTRA NsAp wre/puey S Suorlg
1€°01 00°0 zro 98 7ET ISTIM YSAp uwre/puey JySLI ROA
1€°01 00°0 zro 98 7¢T JSTRA\ "YSAp uwre/puey JySLI SROA
9¢'T 000 000 8Z'1G ISTIM “SSAp yuniy Suorg
9¢'1 00°0 000 8C'TG JSTRAN sAp yunry Suong
00°¢ 67 9¥ 99°¢9 ISTIM "NSAp YunIy yeapy
00°¢ 65V iy €9'c9 JSTRA\ “MSAp unay yeop
00°0 000 000 780 ISTIM "ysAp 8o[/100§ o[Suorlg
00°0 000 000 ¥8°0 ISTeA "qsA&p 8o1/3003 3o Suong
¥9°C 9.°G ¥1°2¢ 89°8¢ ISLIA "qsAp 8o[/3003 330 e\
¥9°C 9.°G v1°C¢ 89°8¢ JSTRAN "MSAp 891/3005 1397 B
00°0 000 000 19'1 ISLIN NsAp wre/puey 35o[Suo1g
00°0 000 000 19'T JSTRAN NsAp wre/puey o[Suo1g
€6 9% eey 08'STT ISLIA “{SAp wLre /puey 130 oA
€6°C 9¢¥ sy 6L°STT JSTRA\ “sAp uLre/puey o1 LA\
000 00°0 000 81°G% ISTI “sAp peoy Suong
0070 00°0 00°0 L1°GT JSTRA\ “sAp peoy Suong

UMOUNU[) 9jeIpOULIOIU] 99eIS-JJI0 °18IS-NQ UOIjedor] Pqe

124

‘9[qe[rear sem pIepue)s pod e yorym 10j g MUYVINAY 2Y3 Jo spred aso1) WO pajorIixe
oIoMm SON[eA 98T, "RISoUDApeI] Jo sodA) Suidres se [[om se (9)eIpouLId)ul pue J 0 ‘N "©'1) 9)e)s I0j0uW ‘(ISTem IO JSLIM ‘9°T) UOIIRIO]
IOSUAS JO SUOTJRUIQUIOD I0J USALS ST 9WIT) JO JUNOWIR T, “RISOUTAPRIC 09 409dsoI Y)Im (SOINUItI Ur) SSUIPIOIDI Jo [I3us] o1} SISIT :G'G 9[qR],

80°T8 99’18 €C'L1E €L°106 ST eISOUIApRI| ON
60°18 G9°'18 €CLTE ¢L' 106 ST RISOUYAPRI ON
1674 GLGC 6€'89. 11°09 ST RISOUApRIg
1674 GLGC LE€'89L 11°09 ISTE RISOUApRI
66°'8VET G0°'TeT GLcee 0L°€cS IS peugepupn)
60°6VET G0°'Tet GLcee TL°€cS ISt peugepup)

umouun ojeIipowIoju] 9elS-JA0 °18IS-N(Q UoIjed0r] eqert

125

‘9[qe[reAR sem pIepuer)s pod e yorym 10y g MUVINAY 22 jo sired asory
WOIJ PojoRIXo dIom SoN[eA 9so], 'H)O] Jo sodA) Jurdrea se [om se (ojerpouriojul pue JJ0 ‘NQ 'o'T) 91els Iojowl ‘()sTem IO LM "9°)
UOTIBIO] JOSUDS JO SUOTYRUIGUIOD I0J WOATS ST OT) JO JUNOUTIR YT, "5)0] 04 309dsor [iim (SOINurtr ur) sSUIpIodal Jo YI3us] o1 sISIT :9°G 9[qR],

90°0 €70 69°C gco ST 1004 uoneunss(J
90°0 €70 69°C gco ISR D04 uoljeuryss(J
89°C €€°C ovLe 8L ST DO WSLL,
89°C GE'C 17 LE 8L ISTE\ DO WSLL,
1T°€ ¥6°C erey 6G°L IS Do, Surumy,
IT°€ 76°C 60°€V 65", ISR Do Surumy,
88°0 ¢s0 A4 L1 ST DO oulT JSreng
88°0 ¢s0 A4 oL ISR D0 dulT Jysreng
GL'€ 8¢C'T T0°LT y46'€ IS DO UOIYBIISIL 3183G
GL'€ 8¢C'T 00°LT €4°€ ISTE\ DO UOIYRYISOH 1B}
€T°0L 676 18874 €C°6¢8 ISLIA DO MOYITN
€1°0.L 676 08874 CG'6C8 ISR DO MOYITN
LETOVT 70°9¢1 L8979 0%°429 ST peougspupn)
iaqlia! G0'9¢1 €6'979 17°6¢9 ST paugepu()

UMOWNU[) 9jeIpouwlIoju] 99e3S-440 938IS-NO Uorjesor °qeT

126

The remaining section discusses motor symptoms and their occurrences in
the DB.

5.2.1 Tremor at Rest

The database contains 33 patients with tremor at rest. An abstract overview
of tremor occurrences in dependence of the participant’s motor state (i.e. ON,
OFF or intermediate) is shown in Table 5.3. Furthermore, the different locations
of tremor are highlighted. The most predominant location of tremor is “right
hand / arm tremor” (judged by absolute numbers). However, as the acceleration
sensor was always on the patient’s left wrist only the “left hand / arm tremor”
label can be effectively utilized.

Among the occurrences of tremor, the hands / arms are mostly affected. This
is in accordance with the literature which states that upper extremities are more
likely to be affected than lower extremities such as feet of legs [85,146]. The
database does not contain any recordings of tremor in the trunk, nor does it
contain a large percentage of recordings in the intermediate motor state. Most
recordings are labeled as either “undefined” or “without tremor”. Nonetheless,
the database contains recordings of tremor for more than five hours for each
kind of sensor and sensor platform.

The result of a x?-test (x? = 56.98, Xi99.9% = 10.828, ¢ = 0.18) suggests
a dependency between ON-OFF motor state and presence of tremor. However,
the strength of this dependency produces only a decrease of the relative error
rate by 18% (see ¢-coefficient). This indicates that the presence of tremor at rest
only contributes a rather small part to the ON-OFF motor state. Thus tremor
at rest should not solely be used to estimate the ON-OFF motor state. This is
also reflected in the following measures: sensitivity 69%, specificity 55%, positive
predictive value (PPV) 25% and negative predictive value (NPV) 89%. Similar
results are obtained when testing dependence between arm / hand tremor and
motor state as well as the dependence between left hand / arm tremor and
motor state.

In most cases, recordings from the waist and wrist sensors are aligned (in
terms of length of recorded data). However, there are several occurrences where
this is not the case due to mostly technical difficulties or human error. A
difference of several minutes in both wrist and waist recordings was observed.
The most probable explanation is that the sensor platforms were not turned off
at the same time (i.e. wrist first and later waist).

The total amount of time spent in tremor, as shown in Table 5.2, does not
necessarily correspond to the numbers found in Table 5.3. This is due to the
fact that several types of tremor may be occurring at the same time. Thus
artificially increasing the total number of time in tremor.

5.2.2 Dyskinesia

In total, the database contains 45 patients suffering from dyskinesia in the course
of their recording sessions. Table 5.4 summarizes the occurrences of dyskinesia in
the database. There the overall length of dyskinesia episodes is shown for each
sensor platform and motor state. The most predominant types of dyskinesia
were observed in the upper extremities (i.e. hand and / or arm). Alone these
recordings amount to more than four hours of recorded data for each sensor

127

(i.e. wrist and waist). As one may expect, the largest amount of dyskinesia was
recorded in the ON period. Only negligible differences in recorded data lengths
between wrist and waist data were observed.

The result of a x2-test (x? = 501.42, X%;99-9% = 10.828, ¢ = 0.47) suggests
that ON-OFF motor state and presence of dyskinesia are indeed dependent as
the literature proposes (see Chapter 2). The ¢-coefficient indicates a decrease of
the relative error rate by about half (i.e. 47%). The measures sensitivity (95%),
specificity (57%), PPV (97%) and NPV (46%) reflect this as well. Combining
detection of dyskinesia with further symptoms may produce even lower error
rates.

Similarly to the remarks on tremor, several types of dyskinesia may be oc-
curring at the same time. Thus the numbers shown on Table 5.4 are likely to
be greater than those found in Table 5.2.

5.2.3 Bradykinesia

The database contains 60 patients suffering from bradykinesia. In Table 5.5, a
summary of all occurrences is given. Here the length of recordings (in minutes)
is shown against the motor state of the patient. Additionally, the different
sensor locations (and thus the source of the recordings) are highlighted. In
general, most occurrences of bradykinesia were recorded in the OFF period. In
total fifteen hours of data, which exhibits bradykinesia, are contained in the
database. An increase in bradykinesia is observed in the OFF-state, which
stands in accordance with a typical PD profile (see Chapter 2).

The result of a y2-test (x? = 905.7, X%;99-9% = 10.828, ¢ = 0.67) suggests
that presence of bradykinesia does seem to be dependent on the ON-OFF motor
state. The ¢-coefficient indicates a decrease of the relative error rate by 67%.
The measures sensitivity (94%), specificity (74%), PPV (71%) and NPV (95%)
do support this finding. Bradykinesia (on its own) might not be enough to
estimate the patient’s motor state, but it does contribute. However, if bradyki-
nesia is used in combination with further symptoms lower error rates could be
obtained.

The recordings of both sensor locations are mostly aligned (in terms of length
of recorded data). Their length of recordings lie within tolerable differences,
except for a noteworthy difference in “Undefined” label and “Unknown” motor
state. The resulting difference can best be explained by the time difference
between turning on / off the waist sensor and turning on / off the wrist sensor
as well as possible connection problems between the two sensor platforms.

5.2.4 Freezing of Gait

In total, 62 patients in the database experienced FoG episodes during recording
sessions. This is reflected in Table 5.6, where the occurrences of several FoG
types relative to the patient’s motor status and sensors’ location are shown.
The most predominant types of FoG were observed to be “turning” and “tight”.
These two types of FoG amount to nearly to one and a half hours in the OFF
period alone, while the total number of recorded data amounts to more than
two and a half hours. Start and destination FoG were least observed. Again,
an increase of FoG occurrences was observed in the patient’s OFF-state.

128

The result of a x2-test (x2 = 109.67, Xi99~9% = 10.828, ¢ = 0.27) indicates
a dependence between the ON-OFF motor state and presence of FoG. However,
the strength of this dependence does only result in a decrease of the relative
error rate by 27% (see ¢-coefficient). As such, the presence or absence of FoG
should not be solely used to estimate the motor state. This is underlined by the
measures sensitivity (0.85), specificity (0.60), PPV (0.18) and NPV (0.98).

The predominance of “turning” and “tight” FoG could also have occurred
due to the structure of recording sessions. They included tests that may have
favored the occurrences of these freezing episodes. Recordings of both wrist and
waist sensors show nearly identical amounts of data (i.e. differences lie within
an acceptable range).

5.2.5 Summary

The data acquisition and labeling procedure for the recordings of 92 patients
were outlined. Furthermore, inclusion and exclusion criteria of the REMPARK
database were described. The general recording procedure and sequence (in-
cluding utilized sensors, their locations, and scripted activities) were outlined
as well.

The contents of the REMPARK database were (partially) summarized. Oc-
currences and statistical measures of several PD motor symptoms were pre-
sented. This includes the contributions that were made by tremor at rest,
dyskinesia, bradykinesia and FoG in terms of distinguishing motor states. The
results of the y2-test indicated that bradykinesia contributed most. On its own
bradykinesia decreased the relative error rate by 67%. The remaining symptoms
(and side effects) reduced the relative error rate by 47% (dyskinesia), 27% (FoG)
and 18% (resting tremor). This suggests that combining the contributions from
bradykinesia, dyskinesia and FoG may lead to an even greater reduction. Thus
allowing an adequate distinction between ON and OFF motor states.

129

130

Chapter 6

Indication of Parkinson’s
Disease Motor Symptoms

Several artificial intelligence (AI)-based approaches for indicating symptoms
related to Parkinson’s Disease (PD) are discussed. In the course of this chapter,
algorithms for recognizing motor symptoms in patients with PD are developed.
Furthermore, initial evaluations of these approaches are presented. Thus, most
of this chapter is dedicated to answering research question three. With respect
to the requirements and related work, a solution is formulated. The actual
comparison against the state-of-the-art is done in the next chapter (see Chapter
7).

6.1 Tremor (at Rest)

The effectiveness of therapeutic interventions (e.g. levodopa-based medica-
tions) is partially measured through tremor assessment. Consequently, detecting
tremor may improve the evaluation of such therapeutic interventions. This sec-
tion outlines the development of an algorithm for indicating the presence of
Parkinsonian tremor in PD patients. The first variation is a naive approach
and involves training a support vector machine (SVM) in directly classifying
tremor without any major pre- or post-processing. As the section progresses,
the (naive) approach is iteratively refined. Each iteration will likely add com-
plexity based on the findings of the previous approach (with the intention of
improving results). For reasons of comparability, the training and test datasets
stay the same throughout all iterations. Details on the corresponding datasets
can be found in Table 6.1.

The overall database (DB) contains 92 patients, while 33 of them experi-
enced tremor during recording sessions. The training and testing datasets are
comprised of 9 and 174 recordings (i.e. 89 patients), respectively. None of the
presented datasets overlap and recordings are used exactly once.

As it is apparent in Chapter 5 (“Database: Patients and Their Symptoms”),
the DB contains labels for several types of tremor (e.g. left hand / arm tremor,
right hand / arm tremor, trunk tremor). However only data samples labeled as
“left hand / arm tremor” or “no tremor” are used for detecting the symptom.
Consequently, Table 6.1 refers to these labels as well. The primary reason for this

131

restriction is that upper extremities are more likely to be affected (as opposed to
lower extremities; see Chapter 2) and that data from the left hand was directly
measured and available (i.e. one of the sensor platforms was located around the
left wrist). Furthermore, focus (of those performing the labeling) might have
been on trunk and left hand tremor rather than other locations such as the legs.
They might have been biased by the presence of sensors.

An analysis of the DB yielded to the conclusion that less than 1% of data
samples were “corrupted” or missing. Those parts of the recordings were not
utilized. As such, this restriction merely represents an additional measure of
quality and does not have a major effect on the datasets’ sizes. The test dataset
was automatically relabeled. This was done to increase the amount of usable
data samples and, at the same time, reduce the number of “undefined” labels.
The relabeling was performed in such a way that patients without “left hand /
arm tremor” labels or with only “no tremor” labels were automatically relabeled
as patients with “no tremor” (i.e. the entire patient is relabeled accordingly).
On the other hand, data from patients who experienced tremor during the
recorded datasets were constrained to the data with tremor. The remaining
data (i.e. everything except the tremor data) is rejected. Thus, sensitivity
is measured only from patients with tremor while those patients that did not
experience tremor (during the recording sessions) determine specificity.

As described in the related work (see Chapter 3), frequency related features
are commonly used to characterize tremor in acceleration signals. The frequency
behavior of tremor is illustrated in Figure 6.1, which shows the frequency dis-
tribution of signals obtained from a wrist-worn sensor by a patient. It is clearly
observable that frequencies from 4 Hz to 6 Hz appear when Parkinsonian tremor
is present. In addition, these frequencies are not observed when tremor is absent,
which agrees with current literature [118]. Given the main frequency behavior
of this sort of tremor, it could theoretically be detected uniquely by means of
frequency characteristics. However, many other features have been used in the
literature. Thus, in order to measure the impact of non-frequency features in
recognizing tremor, two feature sets are proposed. On the one hand, the first
set employs only frequency features while, on the other hand, the second set
will also utilize additional features that were previously used in the literature.
The specific list of features used is given in Table 6.2.

Results show that a real-time implementation of the proposed approach is
feasible. However, signals obtained while patients did not wear the system, that
is, in the beginning and end of the recordings, were rejected. In order to avoid
false positives during these situations in a real-time daily use of the proposed
approach, a courtesy period of, for instance, 10 minutes after switching on the
tremor device could be used. Similarly, the last 10 minutes before switching it
off could be rejected. As stated in Chapter 1, the development of the algorithms
may be considered to have acceptable results if both sensitivity and specificity
are above 80%. For the final algorithms, a threshold of at least 90% is expected
to be reached.

6.1.1 Variation 1: Naive Approach

The first approach for signifying PD tremor in acceleration signals shall be a
naive one. Here, a sliding window is used to directly distinguish between tremor
and normal gait with an SVM.

132

Frequency (in Hz)

220 240 260 280 300 320 340 360 380 400
Time (in seconds)

(a) Frequency spectrum from an individual with tremor.

Frequency (in Hz)

20 40 60 80 100 120 140 160 180 200
Time (in seconds)

(b) Frequency spectrum from an individual without tremor.

Figure 6.1: Shows the frequency spectrum of an individual with tremor and
another individual without tremor. It can be noted that during episodes of
tremor frequencies between 4 - 6 Hz are apparent (as well as their harmonics).

133

Training Test
Number of tremor windows 1589 3209
Number of non-tremor windows 2109 106596
Number of recordings in ON state 3 86
Number of recordings in OFF state 6 88
Overall number of recordings 9 174

Table 6.1: Lists the number of windows (before aggregation) in each dataset
that are used for signifying tremor (i.e. left hand tremor).

Indexes Feature

FFT (raw, mean frequency removed)

Peak frequency and it’s amplitude

Median and mean amplitude

Sum of every two-adjacent amplitudes

Sum of every four-adjacent amplitudes

Sum of first, second and third harmonic

Histogram (bins: 0,1,2,3,...,15)

Correlation between acceleration signals (XY, XZ, YZ, max)
Entropy of signal in time domain and frequency domain

© 00 3O Uik W —

Table 6.2: Shows the full set of features used for tremor detection. The reduced
feature set is comprised of index 1.

Methodology: The time series from the wrist sensor (i.e. left hand) are
resampled to 40 Hz. This sampling rate was chosen to reduce the amount of
data samples, but at the same time still retain the frequency characteristics
of tremor as well as (ordinary) human movements [11]. The resampled stream
is divided into equally sized windows (length denoted as ws) which overlap to
50%. A set of features is then extracted for each individual window (see Table
6.2). These features are used to train an SVM in distinguishing windows with
tremor and without tremor.

Frequency from three axes must be obtained, and their amplitudes are
summed up without taking into account the amplitude of the zero-frequency
harmonic. Thus, dependence on the sensor’s orientation is avoided. Given the
representation of a window under analysis f;, a previously trained SVM deter-
mines whether this window corresponds to tremor according to:

) <
1 { 0 notremor if fsyyp <0 (6.1)

t - = .
remor; 1 tremor if fsyvm >0

where fsym(x) = 22:1 yio; K(x;,x) + b, X1,...,%x; are the support vectors
(SVs). y; and «; are the corresponding label and lagrange multiplier of each
SV. z and b are the classified data sample and the bias [39]. Here, the one in
the superscript of tremor} identifies the first variation. Subsequent variations
will have a higher index in the superscript.

Model Selection: As previously pointed out, the training dataset does only
include “left hand / arm tremor” labels. Furthermore, only windows without
missing data samples are utilized with the intention to minimize potential side

134

effects. The SVM model is trained with the features (extracted from the win-
dows of the training set). During training, varying settings for kernel, weighting,
cost and gamma are considered. The weighting parameters are used to balance
both classes “left hand tremor” (less than 5% of available labels) and “non-
tremor” (at least 95% of available labels). The cost and gamma parameters
were systematically evaluated (i.e. 10%,z € {—3,-2,...,2,3}) depending on the
chosen kernel (i.e. radial basis function (RBF) kernel or linear kernel). Addi-
tionally, a ten-fold cross-validation is performed. However, instead of averaging
the accuracy of the training set, the geometric mean of sensitivity and specificity
is used (i.e. /sensitivity x specificity) to identify those parameter combina-
tions with high sensitivity and specificity. Then the maximum geometric mean
is used to train the final SVM model and determine its test performance.

The geometric mean was chosen as it does treat both classes (i.e. “left
hand / arm tremor” and “no tremor”) equally as opposed to accuracy which
implicitly weights classes. The weighting of latter measure can be problematic
if the classes have (very) different priors. Assuming, there is a large amount of
“no tremor” labels and comparatively few “left hand / arm tremor” labels, this
could lead to a situation in which an SVM that only recognizes “no tremor”
windows (and nothing else) achieves a higher accuracy than a properly trained
SVM (but with slightly lower specificity). This behavior is illustrated in Figure
6.2.

In total, four conditions were evaluated: two kernels (i.e. RBF and linear)
and two feature sets (i.e. frequency only and other commonly employed fea-
tures). The optimal window size ws is initially determined from the following
set of discrete values: ws € 2{5--10} samples. For each ws, an SVM is trained
with the training dataset and the respective results are taken from the test
dataset.

Results: The window size of 128 samples (i.e. 3.2 seconds and 1.6 seconds
overlap) was chosen according to the results depicted in Figure 6.3. The figure
shows measures of quality (i.e. accuracy, geometric mean, sensitivity and speci-
ficity), that were observed on the test dataset. The window size of 128 samples
represents a reasonable compromise between the aforementioned measures of
quality as well as the window size itself (i.e. length in seconds). Preference is
given to a lower window size because lower window sizes require less memory
(during operation) and thus they are more easily implemented on computation-
ally constrained devices (such as microprocessors). This has been done despite
the fact that a window size of 1024 samples (i.e. 25.6 seconds) achieved the
highest accuracy and geometric mean.

The results shown in Table 6.3 contain the geometric mean and accuracy of
the above approach on the test dataset. These results represent the groundwork
for the upcoming variations of the tremor recognition algorithm. Surprisingly,
the best performance on the test dataset was achieved with the simplest con-
dition (i.e. linear kernel and frequency features only). In terms of geometric
mean and accuracy, the conditions with a linear SVM kernel outperformed those
conditions with an RBF kernel, regardless of the chosen feature set.

Regarding sensitivity, the RBF conditions produced superior results to those
with a linear kernel. Furthermore, it is noticeable that the gap between sensitiv-
ity and specificity is larger in the RBF conditions than in the linear conditions

135

UBB\ OL}AWO0DY)

Specificity

Sensitivity

a) Geometric Mean

(

Aoeinooy

Specificity

Sensitivity

(b) Accuracy

Figure 6.2: Shows the behavior of geometric mean and accuracy with unbalanced

datasets (number of positive and negative labels diverges).

136

80

70

Percentage (%)
[¢)]
o
T

40}

30+
20
—8— accuracy
10+ geometric mean
O - sensitivity
—%*— - specificity
0 1 1 1 1 1 T |
4 5 6 7 8 9 10 11

Window Size (in Iogz)
Figure 6.3: Illustrates the results of an evaluation for varying window sizes with

respect to Parkinsonian tremor. For each window size, an SVM has been trained
on the training dataset and evaluated on the test dataset.

137

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
Sensitivity (train) 0.910 0.649 0.928 0.847
Specificity (train) 0.568 0.799 0.645 0.742
Data Usage (train) 1.000 1.000 1.000 1.000
Geometric Mean (train) || 0.719 0.720 0.774 0.792
Accuracy (train) 0.570 0.798 0.647 0.742
Sensitivity (test) 0.936 0.803 0.921 0.846
Specificity (test) 0.564 0.805 0.652 0.759
Data Usage (test) 1.000 1.000 1.000 1.000
Geometric Mean (test) 0.727 0.804 0.775 0.801
Accuracy (test) 0.576 0.805 0.661 0.762

Table 6.3: Outlines results in recognizing tremor with the naive approach (i.e.
variation one). Various measures are listed for both datasets.

where minor differences are observed. The training dataset also yields to an
increased sensitivity of conditions with an RBF kernel compared to those with
a linear one. The data usage in all conditions is marked as 100% (i.e. regardless
of kernel, feature set and dataset) which indicated that all available windows
of the corresponding dataset (see Table 6.1) have been considered. This is no
surprise, as the naive approach does not discard windows. However, succeeding
variations of this approach may be allowed to do so.

In terms of specificity, the linear kernel seems to provide a “better” general-
ization (quite possibly because of its simplicity) than the RBF kernel, regardless
of the chosen feature set and dataset. However, this comes at the cost of a re-
duced sensitivity when comparing the results of linear conditions to those with
an RBF kernel. The opposite is valid for RBF conditions, they achieve a higher
sensitivity at the cost of a reduced specificity.

Conclusion: The presented approach does not yield to reasonably good re-
sults. However, it can be seen that even this simple and arguably naive approach
may already achieve a sensitivity and specificity above 80%. Furthermore, the
conditions with an RBF kernel show a promising sensitivity, but a hardly ac-
ceptable specificity.

Overall, the naive approach seems inflexible and the results in terms of
geometric mean as well as accuracy can still be improved.

6.1.2 Variation 2: Aggregation

In order to minimize the resources needed for detecting tremor, time windows
must be short (i.e. few seconds). However, short window sizes are likely to
produce false positives (FPs) (also shown in Figure 6.3) since short rhythmical
movements may be confused with tremor (e.g. teeth-brushing, shaking deodor-
ant and typing; see Section 5.1.4). A meta-analysis, similarly to the approach by
Salarian et al. [143], is added in order to enhance the reliability of the proposed
approach by removing isolated segments that were classified to exhibit tremor
or tremor-like behavior. This is done to counteract the reduced specificity on
the test dataset for variation one (see Table 6.3).

138

Methodology: The processing is done very similarly to the previous approach
(Section 6.1.1). The signals are resampled to 40 Hz then split into windows of
3.2 seconds length (ws = 128) and a 50% overlap. Afterwards, features are
extracted and an SVM is trained to recognize tremor. However, instead of
relying on the SVM’s classification, its outputs are aggregated over a period of
time t. Thus, the final classification is less susceptible to noise in a particular
window. The classification results from n consecutive windows are aggregated
and used to provide a final classification output. If the proportion of windows
that were classified to exhibit tremor is above a threshold th then the final
classification is also that tremor is present. Otherwise, no tremor is present (see
Equation 6.4).

The meta-analysis is applied once the signals have been evaluated by the
SVMs. This method considers the algorithm’s outputs in a set of n consecutive
windows tremori, ..., tremor} that cover a period of ¢ seconds. These outputs
are aggregated into a value denoted as c; that represents the confidence degree
of having tremor in the period of ¢ seconds (starting at the j** window):

ws(n + 1)
(A S — 2
40 % 2 (6.2)

T2 tremord
Cj = Z n : (6.3)
i=j
_ 0 notremor if c; <th

tremm? o { 1 tremor if ¢j>th (6.4)

where th,c; € [0,1];4,ws,n € N;j,ws,n > 0;t € R;t > 0 and tremor; may be
found in Equation 6.1.

Model Selection: The training dataset (see Table 6.1) is used to initially
train an SVM as well as to optimize the parameters ¢ (i.e. length of aggregated
time frame) and th (i.e. minimum threshold for tremor detection). The testing
dataset is then used to evaluate the performance of this approach. For both
parameters a discrete set of values is used during evaluation (i.e. ¢t € {10, 15,
20, 25, 30,45,60} and th € {0,0.05,...,0.95,1}).

Overall, two feature sets (i.e. one with frequency features only and one with
various commonly employed features) and two kernels (i.e. linear and RBF)
are evaluated. Instead of solely evaluating the SVM’s predicted labels for each
window, consecutive windows are aggregated into blocks of fixed length (e.g.
15, 30, 45 and 60 seconds). The original labels of the test dataset were used to
determine the labels for these blocks. If at least one “left hand tremor” label
is among the labels, then the aggregated label is set to “left hand tremor” as
well. Otherwise the aggregated label is set to “no tremor”. During testing, the
predicted labels from the SVM are used to determine the proportion of tremor
windows. If the proportion is above a predefined threshold, then the label is
considered to be “left hand tremor” and otherwise “no tremor”.

Results: The best performing parameter configurations and results are listed
in Table 6.4. There it is apparent that the best performance (judging by the

139

geometric mean) is achieved when using the full feature set and an RBF ker-
nel. This condition yielded to a sensitivity and specificity of 90.2% and 93.2%
respectively. However, the full feature set with the linear kernel yielded to a
comparable result (sensitivity: 84.2%, specificity: 94.6%). Nonetheless, the
other conditions follow closely in terms of accuracy as well as geometric mean.

In general, it can be noted that conditions with the full feature set outper-
formed those with the reduced feature set. Thus suggesting an overvalue of
the additional features. Levels close to the 90% mark were reached. The same
tendency is observed in the training dataset. Furthermore, it is apparent that
longer aggregation lengths are favored (i.e. 45 and 60 seconds), which indicated
reduced specificities of the underlying SVMs. Here, the specificity for all four
conditions is above the 90% threshold, while the sensitivity is constantly above
the 80% mark. This applies to the test dataset as well as the training dataset.

Most thresholds th were found to be above the natural border of 50%. This
suggests that the number of FPs can actually be reduced in this way. Comparing
specificities of the second variation to the first approach, an improvement is
clearly observable. They are located in the upper spectrum (i.e. 80% or higher)
and only one threshold is at the intuitive border of 50%. The best configuration
(i.e. RBF kernel with full feature set) as well as its counterpart (RBF with
reduced feature set) have a threshold of 75% and 90%, respectively. This fact
suggests that the underlying SVM model produces a relatively large number of
false positives (results from Table 6.3 support this interpretation).

The impact of window aggregation ¢ and threshold th are highlighted in
Figure 6.4. A value of zero for ¢ means that no aggregation is done. This
case provides the worst case, as no meta-analysis is performed to reduce false
positives and false negatives. Optimal performance is obtained for any ¢ > 30
seconds. According to Figure 6.4, the best value for th is shown to be among
40% and 70% (for the linear kernel), which is reasonably close to 50%, meaning
that at least half of the windows in the period of ¢ seconds must be considered as
tremor in order to accept the complete period to have the symptom. However,
Figure 6.4 also shows that an optimal th for the RBF kernel is expected to be
between 70% and 90% before the geometric mean ebbs off. Such high thresholds
suggest that quite a number of FPs were apparent.

The data usage is still denoted as 100% because none of the windows are
being rejected by the proposed algorithm.

Conclusion: The results show an overvalue of the full feature set which had
not been quite as clear in the naive variation. Comparing to the naive approach,
a definitive improvement is apparent. However, the different conditions do not
benefit equally from the aggregation. The conditions with an RBF kernel clearly
improve while the linear kernel does not change as much. Nonetheless, the av-
erage geometric mean increased by roughly 11.6%. It can also be observed that
sensitivity and specificity do not benefit uniformly from the aggregation (sen-
sitivity: -4.8%, specificity: 23.9%). For the most part, the specificity benefited
from the aggregation at the cost of a slightly reduced sensitivity.

Those conditions with the RBF kernel have achieved reasonable acceptable
results. Despite the clear improvement due to the aggregation, the overall sen-
sitivity and specificity still leave room for improvements.

140

Threshold (in %)

Threshold (in %)

Length (in sec.)

(a) RBF with full feature set

Length (in sec.)

(c) Linear kernel with full feature set

(d) Linear kernel with reduced feature set

Threshold (in %)

Length (in sec.)

(b) RBF with reduced feature set

Threshold (in %)

Length (in sec.)

Figure 6.4: Indicates the effect of window aggregation ¢ and threshold th on
geometric mean. The results are shown for all four conditions.

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
t 45 60 60 45
th 0.900 0.500 0.750 0.650
Sensitivity (train) 0.800 0.875 0.875 0.900
Specificity (train) 0.949 0.916 0.926 0.934
Data Usage (train) 1.000 1.000 1.000 1.000
Geometric Mean (train) || 0.871 0.895 0.900 0.917
Accuracy (train) 0.946 0.915 0.925 0.934
Sensitivity (test) 0.820 0.848 0.902 0.842
Specificity (test) 0.946 0.911 0.932 0.946
Data Usage (test) 1.000 1.000 1.000 1.000
Geometric Mean (test) 0.881 0.879 0.917 0.892
Accuracy (test) 0.941 0.908 0.931 0.942

141

Table 6.4: Summarizes results in recognizing tremor with the one-sided approach
(i.e. variation 2).

6.1.3 Variation 3: Two-Sided Aggregation

The third variation aggregates the SVM’s outputs as well. However, this varia-
tion uses two thresholds (i.e. one for classifying an aggregated window as tremor
and a second one for classifying aggregated windows as no tremor) as opposed
to a single threshold. As with the second approach, the general assumption is
that activities of daily living (ADL) (i.e. teeth-brushing, shaking a deodorant,
typing, etc.) can easily be confused with tremor due to their rhythmical com-
ponents. However, the previous approach may be to rough as it reduced the
overall sensitivity. To reduce these issues without further lowering sensitivity,
the confidence degree (or proportion of tremor windows) is treated in a different
way in order to tune the algorithm to be more specific or sensitive in detecting
tremor. Consequently, this approach might not always provide a classification
result. It introduces uncertainty by outputting “unknown / undefined” as a
result and may ignore analyzed data samples.

Methodology: Again, the time series are resampled to 40 Hz and split into
equally sized windows (i.e. 3.2 seconds length or ws = 128 samples). The
window is slid across the time series in increments of 1.6 seconds (or 64 samples).
For each window a set of features is extracted which are then used during
training and classification. Afterwards, the SVM’s outputs are aggregated over
a time period ¢t and the proportion of windows classified as tremor ¢; (within
the time period t) is determined (see Equation 6.3). The degree of confidence
can then be used to detect the presence of tremor as follows:

0 no tremor if c; <th
tremor’ = 1 tremor if c¢j > thy (6.5)
—1 wundefined if th; <cj <thy

where th; < thy;c;j,thy,th, € [0,1];5 € N;j >0

This way, a high sensitivity could be obtained by setting a high th, or,
inversely, a high specificity could be obtained with a low th;. However, max-
imizing both performance measurements requires a suitable balance between
th; and th,. Previously, the effect of not rejecting any meta-analysis period
had been tested (i.e. th; = th,). Here, this rejection is enabled by allowing
th; # th, which, ideally, should allow the method to improve both specificity
and sensitivity . However, the larger the gap between these thresholds the more
aggregated windows are going to be labeled as “unknown / undefined” because
they cannot be labeled as tremor nor as non-tremor. This approach is tested in
the next sections.

All in all, the methodology can be summarized as illustrated in Figure 6.5.

Model Selection: The SVM models are still trained based on the training
dataset. The parameters ¢ (i.e. length of aggregated time frame), th; (i.e.
maximum threshold for non-tremor detection) and th,, (i.e. minimum threshold
for tremor detection) are evaluated and tuned. The final results are based on the
test dataset. The following sets of discrete values were evaluated: t € {10, 15, 20,
25,30, 45,60}, th; € {0,0.05,0.1,...,0.95,1.0} and th, € (th, > th|th, € {0,
0.05,0.1,...,0.95,1}).

For details on the (re-)labeling of the original labels refer to the model se-
lection of the previous approach (see Section 6.1.2).

142

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
t 60 45 60 30
thy 0.650 0.150 0.500 0.500
thy, 1.000 0.950 1.000 0.800
Sensitivity (train) 1.000 1.000 1.000 0.900
Specificity (train) 0.985 0.997 0.990 0.964
Data Usage (train) 0.783 0.541 0.701 0.858
Geometric Mean (train) || 0.992 0.998 0.995 0.932
Accuracy (train) 0.985 0.997 0.990 0.963
Sensitivity (test) 0.910 0.884 0.964 0.884
Specificity (test) 0.979 0.993 0.989 0.972
Data Usage (test) 0.772 0.539 0.713 0.871
Geometric Mean (test) 0.944 0.937 0.976 0.927
Accuracy (test) 0.976 0.989 0.988 0.969

Table 6.5: Summarizes results in detecting tremor with the two-sided approach
(i.e. variation 3).

Results: The results indicate that the condition with an RBF kernel and full
feature set (see Table 6.5) performs best on the test dataset. Regardless of the
chosen feature set, the best performing configurations with the RBF kernel were
found to achieve a similar geometric mean as well as accuracy. The linear kernel
with the reduced feature set does benefit from the third variation more than the
linear kernel with the full feature set, but at the cost of a reduced data usage.

In general it can be noted that the two-sided approach outperforms the one-
sided approach (see Table 6.5 and Table 6.4). This can be seen when comparing
the geometric mean values for each of the conditions. On average the geometric
mean for the two-sided approach is about 5.4% (sensitivity: 4.8%, specificity:
5.8%) higher than its corresponding one-sided condition. The thresholds in the
one-sided approach were consistently found to be between the thresholds of its
corresponding two-sided configuration.

The specificity for any of the four conditions was found to be above the 90%
mark and the sensitivity was found to be above or close to the 90% threshold.
On the training dataset, both sensitivity and specificity were consistently above
this threshold. In terms of geometric mean, the RBF kernel (regardless of feature
set) outperformed the conditions with a linear kernel. However, the condition
with linear kernel and reduced feature set yielded to the best accuracy on the
test dataset.

As far as data usage is concerned, it seems to be largely dependent on the
chosen condition and the difference between the two thresholds (i.e. th, — th;).
The one-sided approach does not allow for a gap between the th; and th,, thresh-
olds, consequently none of the data are rejected. For the two-sided approach, it
can only be said that a larger gap between these thresholds yields to a decreased
data usage (i.e. more windows are rejected). The improved geometric mean and
accuracy (comparing the one-sided and two-sided approaches) come at the cost
of a reduced data usage.

143

Conclusion: The conditions with an RBF kernel were superior to those with a
linear kernel. A sensitivity and specificity above 90% were achieved and indicate
an acceptable level of accuracy.

This section has also evaluated the effect of using frequency features against
using, additionally, other non-frequency features previously reported in the lit-
erature (see Table 6.2 and Chapter 3). The results show that frequency features
may be enough to obtain sensitivities and specificities above 90%, although data
usage is penalized. However, in situations where only limited computational ca-
pabilities are available (e.g. microprocessor) the reduced feature set may already
yield to suitable results. Depending on the application, the presented approach
can be tuned towards a high sensitivity or specificity by selecting appropri-
ate values for th; and th,. Furthermore, the amount of (usable) data can be
controlled with these parameters.

At this point, the tremor detection algorithm may be considered finalized
as sensitivity and specificity above 90% were achieved. The methodology is
summarized in Figure 6.5.

6.1.4 Further Variations

The SVM’s classification output in the form of a probability (rather than a class
label) of belonging to the tremor class was evaluated. However, using thresholds
at this low level did not yield to a significant improvement. This is in alignment
with the frequently asked questions (FAQ) of libSVM, where this fact is stated
as well.

Another noteworthy approach was aimed at detecting any kind of tremor
(as opposed to just left-hand tremor) based on the acceleration data from the
waist (as opposed to the previously used wrist sensor). When employing the
third variation, the results are listed in the appendix (see Section C.1). The
same analysis was also performed for detecting tremor in the upper extremities
(i.e. left and right hand / arm) as well as in the lower extremities (i.e. left /
right leg / foot). These results can also be found in the appendix.

6.2 Dyskinesia

The development of an algorithm for detecting dyskinesia is presented in the
course of this section. Due to the similarity of dyskinesia to tremor (i.e. in
terms of frequency characteristics), the same methodology that was used for
detecting tremor is also applied here. However, a different set of features and
different datasets are employed (i.e. more tuned toward dyskinesia and thus
more specific to the problem).

Datasets are not changed throughout the remainder of this section. A train-
ing dataset is used for learning to distinguish dyskinesia from none dyskinesia.
The same dataset is also used for parameter tuning (if any) and a test dataset
is utilized for the final test results. More details on the datasets can be found
in Table 6.6.

The training and test datasets are comprised of 13 and 172 recordings, re-
spectively. There are no overlaps among the datasets. Furthermore, only labels
with trunk dyskinesia are utilized. The test dataset is automatically relabeled
in order to reduce the number of “undefined” labels and consequently increase

144

Data

Selection
acceleration signals

Preprocessing

rejection of incomplete
windows

Transformation

automatic relabeling and II
feature extraction

Preprocessing
resampling

] Transformation
sliding window

Data Mining
train SVM and meta-
processing

Evaluation
summarize results

Knowledge
A A A 4

Figure 6.5: Shows the overall methodology for detecting tremor.

Training Test
Number of dyskinesia windows 631 2866
Number of non-dyskinesia windows 6528 102300
Number of recordings in ON state 7 82
Number of recordings in OFF state 6 90
Overall number of recordings 13 172

Table 6.6: Lists the number of windows (before aggregation) in each dataset
that are used for signifying dyskinesia (i.e. trunk dyskinesia).

Indexes Feature

1 FFT (raw, no filtering)

2 Mean and standard deviation of amplitude (band: 0.0-20.0 Hz)
3 Entropy of signal in time domain (band: 0.0-20.0 Hz)

4 Peak amplitude and it’s frequency (band: 0.0-20.0 Hz)

5 Mean and standard deviation of amplitude (band: 1.0-4.0 Hz)
6 Entropy of signal in time domain (band: 1.0-4.0 Hz)

7 Peak amplitude and it’s frequency (band: 1.0-4.0 Hz)

8 Mean and standard deviation of amplitude (band: 4.0-8.0 Hz)
9 Entropy of signal in time domain (band: 4.0-8.0 Hz)

10 Peak amplitude and it’s frequency (band: 4.0-8.0 Hz)

11 Mean and standard deviation of amplitude (band: 8.0-20.0 Hz)
12 Entropy of signal in time domain (band: 8.0-20.0 Hz)

13 Peak amplitude and it’s frequency (band: 8.0-20.0 Hz)

14 Histogram (bins: 0,1,2,3,...,15)

Table 6.7: Shows the full set of features used for dyskinesia detection. The
reduced feature set is solely based on index 1.

the amount of usable data. Only those patients having “no dyskinesia” or not
having “trunk dyskinesia”’-labels were automatically relabeled as “no dyskine-
sia” (i.e. entire patient is relabeled accordingly). Only the dyskinesia part from
patients suffering from dyskinesia was used (i.e. they provided the basis for true
positives and false negatives; sensitivity). The remaining recordings provided
the data for true negatives and false positives (i.e. specificity).

The utilized features are listed in Table 6.7. The features are split in the
same way that tremor features were split into two sets: reduced and full feature
set. Consequently, the reduced feature set is simply the result of an fast Fourier
transform (FFT) while the full feature set includes additional features (e.g.
peak, amplitude and frequency, mean amplitude, etc.) for several frequency
ranges (e.g. 1-4, 4-8, etc.).

The final results (i.e. third variation) indicate that sensitivities and speci-
ficities above 80% as well as 90% are possible. However, specificity is generally
above sensitivity and data usage is heavily penalized. The meta-analysis does
improve results.

146

80

70

Percentage (%)
[¢)]
o
T

40}

30+
20
—8— accuracy
10+ geometric mean
O - sensitivity
—%*— - specificity
0 1 1 1 1 1 T |
4 5 6 7 8 9 10 11

Window Size (in Iogz)
Figure 6.6: Illustrates the results of an evaluation for varying window sizes with

respect to dyskinesia. For each window size, an SVM has been trained on the
training dataset and evaluated on the test dataset.

147

6.2.1 Variation 1 to 3:

These variations are identical (in terms of their methodology and model selec-
tion) to those found in Section 6.1. Consequently, the methodology and model
selection are only briefly outlined here. The most notable differences are that
trunk dyskinesia is recognized (as opposed to “left hand / arm tremor”), that a
different set of features is used (see Table 6.7) and that the sensor platform on
the waist is used (formerly the wrist sensor was used).

Methodology: At first the acceleration signals are resampled to 40 Hz to
which a sliding window of length ws is applied (overlap of 50%). For each
window f;, a set of features is extracted (see Table 6.7), which are then used
to train an SVM in distinguishing windows with trunk dyskinesia from those
windows without dyskinesia. The classification is done in accordance with:

0 no dyskinesia if fsyyp <0
1_
dysk; = { 1 dyskinesia if fsym >0 (6.6)

where foum(z) = 2221 yio; K (x;,%) + b, x1,...,%; are the SVs. y; and «; are
the corresponding label and lagrange multiplier of each SV. z and b are the
classified data sample and the bias [39]. Again, the one in the superscript of
dysk; identifies the first variation. Subsequent variations will have a higher
index in the superscript.

A second variation aggregates m consecutive classified windows dyski, ...,
dysk). over a time frame t and determines a degree of confidence c;. If a threshold
th is reached then the aggregated time frame ¢ is considered to exhibit trunk
dyskinesia. Otherwise, dyskinesia is considered to be absent. Consequently,
dyska determines whether dyskinesia is present in n consecutive windows dyskjl-,

.. 7dysl<:]14_~_n_1 that start at the j** window and cover a time frame ¢.

ws(n + 1)

b= "0z (6.7)
j+n—1 1
dysk;
i=j

dysk? _ { 0 no dyskinesia if c; <th

1 dyskinesia if ¢; >th (6.9)

where th,c; € [0,1];j,ws,n € N;j,ws,n > 0;t € Rand t > 0.

The third variation utilizes two thresholds th; and th, instead of a single
threshold th. They are employed as shown by dysk’?. This approach introduces
the option for an “undefined” classification (i.e. neither “trunk dyskinesia” nor
“no dyskinesia”), if the confidence value c is between the thresholds th; and th,,.
Starting at the j** window, dyskg’ determines whether dyskinesia is present in
the n following windows (covering a time frame ¢).

0 nodyskinesia if c; <th
dysk? = 1 dyskinesia if c¢j > thy (6.10)
—1 wundefined if thy <cj <thy

where th; < thy;c;j,thy,th, € [0,1];5 € N;j >0

148

Model Selection: The optimal window size ws is determined in the same
way that it has been determined for tremor (see Section 6.1). The SVM models
are trained on the training dataset and the therein contained windows with their
respective features. For the second and third variation, the training dataset is
also queried in order to optimize the parameters t, th, th; and th,. Finally, the
test dataset is used to determine the overall performance.

The following set of values were evaluated for the given parameters: ws €
215510} samples; t € {10,15,20,25, 30, 45,60} seconds; th,th; € {0,0.05,0.1,
...,0.95,1.0} and th,, € (thy, > th|th, € {0,0.05,0.1,...,0.95,1}). This was
done for each of the four conditions (i.e. two kernels and two feature sets).

Results: The optimal window size ws was chosen to be 128 samples (i.e. 3.2
seconds length and 1.6 seconds overlap) as indicated by Figure 6.6. Here, any
of the window sizes 2%, 27 and 28 would be expected to work equally well as all
of them yielded to similar results. However, one may notice a slight decline in
sensitivity as ws increases. At the same time specificity has slightly grown. Con-
sequently, the window size of 128 samples was chosen as a compromise among
geometric mean, accuracy and window length. The (low) percentages of geo-
metric mean and accuracy indicate that the feature set may require refinement.

The Table 6.8 shows the results for the first variation (i.e. naive approach,
no aggregation). It is apparent that the best performance (in terms of geometric
mean and accuracy) is achieved for the linear SVM kernel. In fact it can be
noted that the full feature set does provide a minimal overvalue for most of
the three variations (see Table 6.8, Table 6.9 and Table 6.10). Their geometric
mean and accuracy are slightly higher when compared to their corresponding
configuration with the reduced feature set. The same applies to the linear kernel.
It’s geometric mean and accuracy are slightly better than their competitive
configurations with an RBF kernel.

Aggregating the classification outputs over a period of time does improve the
overall geometric mean by roughly 9.5% in comparison to the naive approach
(see Table 6.8 and Table 6.9). It is notable that all thresholds are fairly close to
the intuitive border of 50%. The threshold th of 50% suggests a roughly even
number of FPs and false negatives (FNs). Furthermore, configurations of the
second variation yield to similar parameter settings ¢t and th for the reduced
feature set. Again, the linear kernel achieved the highest geometric mean and
accuracy. Adding a second threshold does further increase the overall geometric
mean by about 9.0% (see Table 6.9 and Table 6.10).

The naive approach (first variation; see Table 6.8) yields to an average ge-
ometric mean of 71.2%. In all cases, the sensitivity is above the respective
specificity. This observation suggests that an even greater number of FPs (com-
pared to sensitivity) were raised by the SVM. In turn, this suggests that the
selected features also trigger the SVM to classify data samples as dyskinesia
where no dyskinesia is apparent or that there is a set of activities which are
similar to dyskinesia. On the training dataset, the best results are obtained for
the reduced feature set as opposed to the linear kernel on the test dataset. Fur-
thermore, it is apparent that the discrepancy between training and test dataset
with respect to sensitivity is much greater than those of specificity (sensitivity:
14.9%, specificity: 3.2%).

In the second approach the classification results are aggregated over time.

149

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
Sensitivity (train) 0.731 0.529 0.716 0.527
Specificity (train) 0.638 0.666 0.633 0.652
Data Usage (train) 1.000 1.000 1.000 1.000
Geometric Mean (train) || 0.683 0.594 0.674 0.586
Accuracy (train) 0.642 0.660 0.637 0.647
Sensitivity (test) 0.739 0.782 0.770 0.811
Specificity (test) 0.657 0.695 0.676 0.688
Data Usage (test) 1.000 1.000 1.000 1.000
Geometric Mean (test) 0.697 0.737 0.721 0.747
Accuracy (test) 0.659 0.697 0.678 0.691

Table 6.8: Outlines results in recognizing dyskinesia with the naive approach
(i.e. variation 1). Various measures are listed for both datasets.

Figure 6.7 shows the geometric mean that is observed on the training dataset
for all parameter combinations. It is apparent that a threshold around 50%-60%
works well for all four configurations. Above the threshold of 50% the geometric
mean ebbs off rapidly in case of the linear SVM kernel. For the RBF kernel,
the geometric mean peaks above the 50% threshold and then slowly declines.
These thresholds are also reflected in Table 6.9, where the results for variation
two are listed.

As far as the second approach is concerned, sensitivity did not improve
as much as specificity (0.8% and 15.3%, respectively). The accuracy notably
increased with specificity. On the training, the RBF kernel outperforms the
linear one (as it has been in the naive approach). The overall discrepancy
between training and test datasets with respect to sensitivity and specificity did
not dramatically change (sensitivity: 14.8%, specificity: 3.7%).

With the third approach, the full feature set with the RBF kernel performs
best for most measures in both datasets (i.e. train and test). The discrepancy
between training and test datasets with respect to sensitivity and specificity
has reduced (sensitivity: 1.7%, specificity: 6.0%). This is most likely due to the
reduced data usage on both datasets. All thresholds th; and th, were found to
encapsulate the thresholds th of variation two. All conditions reached acceptable
results in terms of accuracy and geometric mean. However, the data usage is
heavily penalized which suggests a high number of FPs and FNs. Nonetheless,
the accuracy and specificity were found to be above the 90% mark in all cases.
In fact, those conditions with a linear kernel also achieved a sensitivity close to
90% whereas conditions with an RBF kernel reached a sensitivity around 80%.

Conclusion: The full feature set does provide a minimal overvalue. In gen-
eral, the idea of aggregating classification output does seem to be beneficial.
With each variation the average geometric mean rises. The second variation
increases the average geometric mean by 9.5% and the third variation further
raises the geometric mean by another 9.0%. Despite the low data usage, 90%
sensitivity and specificity have been reached. Consequently, the development
may be considered as finalized within the framework of this thesis. However,
future refinements of this approach should further investigate the low data usage

150

Threshold (in %)

Threshold (in %)

Length (in sec.)

(a) RBF with full feature set

Length (in sec.)

(c) Linear kernel with full feature set

(d) Linear kernel with reduced feature set

Threshold (in %)

Length (in sec.)

(b) RBF with reduced feature set

Threshold (in %)

Length (in sec.)

Figure 6.7: Indicates the effect of window aggregation ¢ and threshold th on
geometric mean. The results are shown for all four conditions.

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
t 60 60 45 20
th 0.600 0.650 0.550 0.600
Sensitivity (train) 0.769 0.500 0.735 0.536
Specificity (train) 0.809 0.856 0.746 0.770
Data Usage (train) 1.000 1.000 1.000 1.000
Geometric Mean (train) || 0.789 0.654 0.741 0.642
Accuracy (train) 0.806 0.827 0.745 0.756
Sensitivity (test) 0.714 0.747 0.798 0.874
Specificity (test) 0.823 0.880 0.810 0.815
Data Usage (test) 1.000 1.000 1.000 1.000
Geometric Mean (test) 0.767 0.811 0.804 0.844
Accuracy (test) 0.819 0.875 0.810 0.817

151

Table 6.9: Summarizes results in recognizing dyskinesia with the one-sided ap-
proach (i.e. variation 2).

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
t 60 25 60 30
th 0.300 0.100 0.150 0.150
thy, 0.900 1.000 0.950 0.900
Sensitivity (train) 0.909 0.733 1.000 0.692
Specificity (train) 0.893 0.872 0.915 0.865
Data Usage (train) 0.525 0.359 0.272 0.359
Geometric Mean (train) || 0.901 0.800 0.956 0.774
Accuracy (train) 0.894 0.864 0.921 0.855
Sensitivity (test) 0.791 0.889 0.815 0.905
Specificity (test) 0.958 0.931 0.965 0.932
Data Usage (test) 0.522 0.341 0.272 0.354
Geometric Mean (test) 0.870 0.909 0.887 0.918
Accuracy (test) 0.953 0.929 0.960 0.931

Table 6.10: Summarizes results in detecting dyskinesia with the two-sided ap-
proach (i.e. variation 3).

which indicates that detecting dyskinesia with the selected features is difficult
(i.e. a different set of features might be more appropriate). All in all, the
methodology is the same as illustrated in Figure 6.5.

6.2.2 Further Variations

Several other variations have also been evaluated and yielded to noteworthy
results. These variations include employing the final tremor detection algorithm
to recognize varying kinds of dyskinesia from the acceleration signals at the
waist. On the one hand, any kind of dyskinesia was recognized, and on the other
hand, any kind of trunk dyskinesia as well as (strong) limb / head dyskinesia.
The corresponding results can be found in the appendix (see Section C.2) as
well as details on the datasets. The datasets themselves did not change, only a
different set of labels was used.

6.3 Akinesia / Freezing of Gait

This section outlines the development of an algorithm for indicating freezing
episodes in PD patients. The initial approach closely resembles the final algo-
rithm that is used to recognize tremor (see Section 6.1). As such, episodes of
freezing of gait (FoG) are first tried to be directly detected by an SVM. This
approach is refined to include a meta-analysis for avoiding false positives and
false negatives. However, the volatile nature of FoG episodes must be considered
during the development. In contrast to tremor (or dyskinesia for that matter)
episodes of FoG do not last for prolonged periods of time which may emphasize
the importance of the chosen window size. In any case, the contents of the
database are split into two datasets (i.e. training and testing) each of which
serve the same purpose as described in earlier sections (i.e. training an SVM
as well as optimizing additional parameters and testing). As noted earlier, the

152

datasets stay the same for all approaches within this section. Details of the
datasets are listed in Table 6.11.

The entire database contains recordings of 92 patients, while the individual
datasets hold 15 and 5 patients for the training and testing dataset, respectively.
At this point, it should be noted that not all available recordings of freezers (i.e.
patients with FoG episodes) and non-freezers were utilized. Instead, a subset
of those recordings is employed. This is largely due to the fact that episodes of
FoG were especially difficult to label and verify (mostly due to their volatility).
As a consequence only a subset of those recordings is used that could actually be
verified. The recordings are identical to those employed by Rodriguez-Martin
et al. [137,138].

As far as the actual labeling is concerned, the presence of any type of freezing
(e.g. start, turn, end, etc.) is considered to be an episode of FoG. As such,
the labeling, as it is introduced in Chapter 5 is simplified. The detection of
individual types of freezing requires additional contextual information which is
not contained within the DB. Furthermore, such a fine granularity might not
provide much of an overvalue (e.g. to a PD monitoring system). The fact that
a freezing episode is happening is more relevant than the actual type of episode.

The same type of automatic relabeling has been employed as it was done in
previous sections. Those patients without any freezing episodes were relabeled
in such a way that all available recordings could be used rather than just those
parts that were specifically labeled as “no freezing”. On the other hand, record-
ings of freezers were cut to the point where only “FoG” labels remained. This
reduced the overall amount of data but ensured that no freezing episodes (which
might not have been properly labeled) were used. Consequently, sensitivity is
determined by patients with freezing episodes while specificity is determined by
none-freezing patients.

Two feature sets are evaluated: a reduced feature set with only the FFT and
a full feature set with various additional features. The effect of adding these
additional features is quantified during the course of this section. These features
are comprised of the freezing index [31] as well as some frequency related features
for differing frequency ranges [106]. Details are listed in Table 6.12.

Results of the second and third variation indicate that sensitivities and speci-
ficities well above the 90% mark are possible. The meta-analysis does improve
results on the test dataset. However whether a one-sided or two-sided threshold
is best employed depends on the utilized SVM kernel.

6.3.1 Variation 1 to 3:

For starters, the final approach in detecting tremor in PD patients is employed.
However, the feature sets and labels are tuned toward freezing of gait episodes
(as opposed to tremor). As the methodology and model selection are almost
identical to those found in Section 6.1, they are briefly outlined. After all,
the general idea is to start with a familiar approach and then refining that
methodology to the point where suitable results are obtained.

Methodology: At first varying window sizes ws are evaluated such that freez-
ing episodes can be captured as good as possible. The comparison of different
window sizes is done on an episode level (rather than a data sample or window
level, which was the case in the previous approaches). An episode of FoG is

153

detected when at least one window within an actual FoG episode is classified as
such. As far as non-freezing episodes are concerned, an aggregation of windows
over a period of time that corresponds to the average length of a FoG episode
(plus twice the standard deviation) is performed. The data are resampled to
40Hz and split into unisized chunks of data with a certain length ws (and 50%
overlap). These windows are then used to extract features which in turn are fed
to an SVM for training and classification. Consequently, the following equation
determines whether FoG is apparent in a window f;. This represents the first
and naive variation.

0 no freezing if fsvm <0
1_
fog; = { 1 freezing if fsvm >0 (6.11)

where foum(z) = Zi:l yi; K(x4,%) + b, X1,...,%; are the SVs. y; and «; are
the corresponding label and lagrange multiplier of each SV. z and b are the
classified data sample and the bias [39]. Again, the one in the superscript of
fog! identifies the first variation. Subsequent variations will have a higher index
in the superscript.

The second variation aggregates the SVMs’ outputs f ogjl- over a time period
t and calculates the degree of confidence c;. If the confidence value exceeds a
threshold th then the aggregated time frame ¢ is considered to be an episode
of FoG, otherwise not. The result of fog? determines whether a freezing event

occurred in the time frame t starting at the j** window.

ws(n + 1)
t= —— 12
40 * 2 (6.12)

Jjtn—1 1

fog;
= =t (6.13)

i=j
9 0 no freezing if c; <th

fog; = { 1 freezing if ¢j>th (6.14)

where th,c; € [0,1]; j,ws,n € N;j,ws,n > 0;t € Rand t > 0.

The third variation introduces a second threshold. The two thresholds th;
and th, can then be used to tune sensitivity and specificity separately. One
threshold (th;) sets the maximum confidence value for “no freezing” periods
and the second threshold (th,) sets the minimum confidence value for freezing
episodes. By not requiring that these thresholds need to be equal, the final out-
put of the algorithm may indicate the presence of freezing as well as “undefined”
(when the confidence value is between the two thresholds). Consequently, some
aggregated windows may be ignored and data usage is lowered. The equation
fog;’ defines when a freezing event is considered to be present in a time frame

t starting at the j** window.

0 no freezing if c; <th
fog? = 1 freezing if ¢; >thy (6.15)
—1 wundefined if th; <c¢; <thy,

where th; < thy;c;j,thy,th, € [0,1];5 € N;j >0

154

Model Selection: The individual SVM models are trained with the features
that were extracted from the training dataset. For the second and third vari-
ation, the individual parameters ¢, th, th; and th, are also optimized on the
training dataset. The final results are then obtained from the testing dataset.

The following discrete values have been evaluated: ws € 25678} samples,
t € {10, 15,20, 25, 30,45,60} seconds, th = th; € {0,0.05,0.1,...,0.95,1.0} and
thy € (thy > thi|th, € {0,0.05,0.1,...,0.95,1}). The appropriate values and
parameters were evaluated for each of the four conditions (two kernels and two
feature sets).

Results: The average length of a FoG episode is 3.48 seconds (std +3.29
seconds). Figure 6.8 shows several measures for varying window sizes (i.e. sen-
sitivity, specificity, geometric mean and accuracy). There it can be seen that
the best values for those measures are achieved with a window size of 128 sam-
ples (i.e. 27 samples). Accuracy and geometric mean are closest at this level.
This window size is also closest to the average length of a freezing episode.
Consequently, this window size is utilized during the remainder of this section.

On the training dataset, the reduced and full feature sets yield to a sim-
ilar geometric mean regardless of the employed SVM (see Table 6.13). This,
however, diverges on the test dataset. The RBF kernel seems to benefit from
the reduced feature set while the linear kernel favors the full feature set. Ac-
ceptable levels of specificity are consistently achieved on the test dataset, while
sensitivity is reduced by FNs. Latter may be counteracted when windows are
aggregated. Nonetheless, accuracies above 90% were consistently reached.

The impact of window aggregation ¢ and threshold th are highlighted in
Figure 6.9. For all conditions, the geometric mean of all parameter combinations
are shown. The sub-figures indicate that a threshold close to 50% works best
in all cases, suggesting an even distribution of FPs and FNs. Furthermore, the
greater the aggregation level the greater the geometric mean.

After adding the meta-analysis in variation two (see Table 6.14), the geomet-
ric mean of the test dataset does increase by 9.4% (on average). This suggests
that the procedure is in fact beneficial for detecting FoG episodes. Furthermore,
all conditions yielded to a threshold close to the intuitive border of 50%, which
is consistent with the observations in Figure 6.9. Also the aggregation period ¢
is the same across all four conditions.

Having optimized parameters ¢ and th on the training dataset, the results on
the testing dataset are rather well. All conditions achieve a high specificity of
98% or greater and most conditions also reached a sensitivity of 90% or above
for an aggregation period of 60 seconds. Regardless of the kernel and feature
set reasonable results were achieved.

The results in Table 6.15 are those of the third variation. Here most con-
ditions still favor an aggregation level of 60 seconds. The lower and upper
thresholds th; and th, were consistently found to enclose the previously found
thresholds ¢h in the second approach (see Table 6.14). Allowing for two thresh-
olds increased sensitivity and specificity values on the test dataset for the linear
kernel. However, the RBF kernel did not benefit from this approach (in terms
of geometric mean). Now all conditions yielded to a sensitivity of roughly 90%
and a specificity well above the 90% mark. This comes at the cost of a slightly
reduced data usage although it is still above 90% for the most part.

155

Training Test
Number of freezing windows 93 45
Number of non-freezing windows 3883 2312
Number of recordings in ON state 0 0
Number of recordings in OFF state 15 5
Overall number of recordings 15 5

Table 6.11: Lists the number of windows (before aggregation) in each dataset
that are used for detecting FoG.

Indexes Feature

FFT (raw, no filtering)

Mean and standard deviation of amplitude (band: 0.5-3.0 Hz)
Entropy of signal in time domain (band: 0.5-3.0 Hz)

Peak amplitude and it’s frequency (band: 0.5-3.0 Hz)

Mean and standard deviation of amplitude (band: 3.0-8.0 Hz)
Entropy of signal in time domain (band: 3.0-8.0 Hz)

Peak amplitude and it’s frequency (band: 3.0-8.0 Hz)
Freezing Index

00 ~J O UL~ W N+

Table 6.12: Shows the full set of features used for FoG detection. The reduced
feature set is comprised of index 1.

100 o
90 -
80
70
< 60 -
(9]
g
£ 50
Q
o
9]
& 40+
/
*
30
20
—8— accuracy
10 geometric mean
O -+ sensitivity
—%— - specificity
0 1 1 1 1 1 1 1 T T |
4 45 5 5.5 6 6.5 7 7.5 8 8.5 9

Window Size (in Iogz)
Figure 6.8: Tllustrates the results of an evaluation for varying window sizes with

respect to freezing episodes. For each window size, an SVM has been trained
on the training dataset and evaluated on the test dataset.

156

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
Sensitivity (train) 0.946 0.903 0.946 0.925
Specificity (train) 0.860 0.903 0.901 0.932
Data Usage (train) 1.000 1.000 1.000 1.000
Geometric Mean (train) || 0.902 0.903 0.924 0.928
Accuracy (train) 0.862 0.903 0.902 0.932
Sensitivity (test) 0.822 0.667 0.711 0.822
Specificity (test) 0.928 0.949 0.946 0.956
Data Usage (test) 1.000 1.000 1.000 1.000
Geometric Mean (test) 0.873 0.796 0.820 0.887
Accuracy (test) 0.926 0.944 0.942 0.954

Table 6.13: Outlines results in recognizing FoG with the naive approach (i.e.
variation 1). Various measures are listed for both datasets.

Threshold (in %) Threshold (in %) o 0

Length (in sec.) Length (in sec.)

(a) RBF with full feature set (b) RBF with reduced feature set

Threshold (in %) o 0

Threshold (in %)

Length (in sec.) Length (in sec.)

(c) Linear kernel with full feature set (d) Linear kernel with reduced feature set

Figure 6.9: Indicates the effect of window aggregation ¢ and threshold th on
geometric mean. The results are shown for all four conditions.

157

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
t 60 60 60 60
th 0.400 0.500 0.400 0.450
Sensitivity (train) 1.000 0.885 1.000 0.923
Specificity (train) 0.911 0.991 0.946 1.000
Data Usage (train) 1.000 1.000 1.000 1.000
Geometric Mean (train) || 0.954 0.936 0.973 0.961
Accuracy (train) 0.928 0.971 0.957 0.986
Sensitivity (test) 0.923 0.769 0.923 0.923
Specificity (test) 1.000 0.985 1.000 1.000
Data Usage (test) 1.000 1.000 1.000 1.000
Geometric Mean (test) 0.961 0.870 0.961 0.961
Accuracy (test) 0.987 0.949 0.987 0.987

Table 6.14: Summarizes results in recognizing FoG with the one-sided approach
(i.e. variation 2).

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
t 60 45 60 60
th 0.150 0.250 0.300 0.350
thy, 0.900 0.800 0.800 0.500
Sensitivity (train) 1.000 0.923 1.000 0.923
Specificity (train) 1.000 1.000 1.000 1.000
Data Usage (train) 0.696 0.891 0.906 0.986
Geometric Mean (train) || 1.000 0.961 1.000 0.961
Accuracy (train) 1.000 0.987 1.000 0.985
Sensitivity (test) 0.900 0.889 0.900 0.923
Specificity (test) 1.000 1.000 1.000 1.000
Data Usage (test) 0.823 0.919 0.949 0.987
Geometric Mean (test) 0.949 0.943 0.949 0.961
Accuracy (test) 0.985 0.989 0.987 0.987

Table 6.15: Summarizes results in detecting FoG with the two-sided approach
(i.e. variation 3).

158

Conclusion: In general, it can be noted that the second and third approach
yielded to satisfactory results. Although the linear and RBF kernel do not ben-
efit equally from the third approach, combining the results from both variations
(i.e. second and third variation) shows promising results. While the RBF kernel
achieved a geometric mean greater than 95.0% and an accuracy greater than
98% with the second approach, the linear kernel reached similar levels (close to
95.0% geometric mean and 98% accuracy) with the third approach. However,
in latter case the data usage is slightly penalized. The findings suggest that the
full feature set is not required for satisfactory results. Instead, even a linear
kernel that has been trained with a result of an FFT can already be enough to
accurately detect FoG episodes within periods of 45 seconds.

The overall methodology is very similar to the methodology of the tremor
algorithm and it is summarized in Figure 6.5.

6.4 Summary

The final algorithms, that have been employed for detecting Parkinsonian tremor,
dyskinesia as well as FoG episodes, are almost identical. All of them consider
two SVM kernels (i.e. RBF and linear) and two feature sets (i.e. reduced and full
feature set). Only the full feature set differed in the approaches (and of course
the utilized datasets are different). The initial and naive approach of directly
detecting PD motor symptoms was iteratively refined to a point where sensitiv-
ities and specificities above 90% were reached. Improved results were observed
after aggregating classification outputs of the naive approach. The results were
further improved once a second threshold was introduced. Although, the second
threshold did increase geometric mean as well as accuracy, it did also penalize
data usage by rejecting data samples, that could not clearly be identified as a
motor symptom but neither could be identified as no motor symptom.

The proposed algorithms penalize data usage to achieve high sensitivity and
specificity. However, they are configurable in such a way that they consider
more data but at the cost of decreasing sensitivity or specificity. The algorithm
is flexible enough to provide a tradeoff and parameters can be tailored to the
needs of a particular application. Consequently, a balance between high sen-
sitivity, high specificity and high data usage can be configured. If necessary,
the algorithm’s aggregation level can also be adjusted to control the degree of
real-time with which the algorithm produces classification results.

159

160

Chapter 7

Benchmark of Symptom
Detecting Algorithms

Chapter 3 and Chapter 6 introduced several algorithms for detecting Parkin-
son’s Disease (PD) motor symptoms. This chapter compares the performance
of these algorithms. Thus, most of this chapter is devoted to answering the
fourth research question (see Section 1.2). The benchmarks are first described.
Afterwards, their results are highlighted and discussed.

The following sections are devoted to the proposed algorithms from the pre-
ceding chapter (see Chapter 6). The results for each of the symptoms are com-
pared to those found in the related work (see Chapter 3). However, only the
final variations of the proposed approaches are compared to the state-of-the-art
techniques in terms of sensors, number of patients, sensitivity, specificity and
accuracy whenever possible. Nonetheless, results for the full and reduced feature
set as well as the linear and radial basis function (RBF) kernel are outlined.

7.1 Tremor (at Rest)

A new methodology to detect tremor in PD patients through a single wrist-worn
accelerometer has been proposed. The approach has been tested on a database
of signals obtained, for the first time, from a relevant sample of 89 patients
while, furthermore, they were at home. The presented approach consists in a
meta-analysis applied to the output of a support vector machine (SVM) that
detects tremor in a sliding time window. It provides slightly better performances
than previous methods presented in the literature. However, these results were
obtained on a database (DB) that is much larger (i.e. 4 to 8 times as many
participants) than the DBs used in related works. Table 7.1 provides a summary
of tremor algorithms. It shows related works as well as the newly proposed
algorithm. In contrast to previous works, this approach is tested with signals
that were obtained in a non-laboratory environment and originate from a large
cohort of PD patients.

The accuracies by Zwartjes et al. [182] and Rigas et al. [136] were clearly
outperformed by all four configurations (see Table 7.1). This is also true for the
one-sided approach that has been previously described (see Table 6.4). Zwartjes
et al. [182] use four inertial sensors on 13 subjects (6 PD patients an 7 controls).

161

Variation / Author(s) Acc. Sens. Spec. D.U. Subjects

Salarian et al. [142] 0.766 0.980 20
Salarian et al. [143] 0.995 0.942 20
Zwartjes et al. [182] 0.847 13
Rigas et al. [136] 0.870 23
Cole et al. [36] 0.930 0.950 12
Roy et al. [140] 0.912 0.934 23
Niazmand et al. [114] 0.800 0.985 12
RBF+red. 0.976 0.910 0.979 0.772 89
linear+red. 0.989 0.884 0.993 0.539 89
RBF+full 0.988 0.964 0.989 0.713 89
linear+full 0.969 0.884 0.972 0.871 89

Table 7.1: Summarizes results from various algorithms for detecting Parkinso-
nian tremor. Results found in Chapter 3 and Chapter 6 are briefly summarized.
“D.U.” is used as a shorthand for “data usage”. More details can be found in
Table A 4.

Their results indicate 84.5% accuracy in detecting resting tremor (in the arm)
while subjects are in a sitting position (79.1% in the thigh). In contrast, 94.1%
accuracy is achieved for resting tremor in the arms while subjects were standing
(90.1% in the thigh). All of these results are outperformed.

In contrast to this work, Rigas et al. [136] use 6 accelerometers and 2 hidden
markov models (HMMSs) to classify resting tremor. Their results are based on
23 subjects (18 PD patients and 5 control subjects) while the proposed work
makes use of 89 patients. One HMM classifies action / posture tremor while
the second HMM assesses tremor. The output of the latter HMM yields to 87%
accuracy in classifying four tremor severities (i.e. S-0 and other, S-1, S-2 and
5-3). When combining the outputs of these HMMs to form a unified result, the
accuracy drops to 74% (in discriminating resting tremor from action / posture
tremor with their respective severities). However, Rigas et al. [136] achieve a
high specificity for S-1 (95%) with respect to other activities and symptoms
(i.e. dyskinesia, bradykinesia and freezing of gait (FoG)). For S-2 and S-3,
their methodology does separate tremor perfectly from those other activities
and symptoms.

In the approach by Salarian et al. [142] (i.e. without meta-analysis), their
sensitivity is exceeded by all four configurations while the specificity is very
similar in all cases. After adding the meta-analysis [143], their specificity is
consistently outperformed while sensitivity of the new approach stays below
their results (max. sensitivity 96.4% for RBF+full and 99.5% for Salarian et
al. [143]). The approach by Salarian et al. [142] relies on 20 subjects (10 PD
patients and 10 control subjects) and a single tri-axial gyroscope. Their results
indicate an overall specificity of 98% (min. 94% and max. 100%) and an overall
sensitivity of 86.6% (i.e. 70.8% pitch, 84.8% roll and 74.1% yaw). A similar level
of specificity is achieved. However their sensitivity is consistently exceeded. In
a later study by Salarian et al. [143] on the same dataset, they achieve a much
higher sensitivity. As in their previous study, the authors use 3 second windows.
Their results indicate a specificity of 94.2% for all axes and 99.5% sensitivity.
These results are outrivaled in terms of specificity.

162

The results by Cole et al. [36] are exceeded by the RBF kernel with the full
feature set. However, all other configurations yielded to a higher specificity even
though the sensitivity is not exceeded. In contrast to an SVM, Cole et al. [36]
use a dynamic neural network (DNN) in a study with 12 subjects (8 PD patients
and 4 control subjects). Several surface electromyograph (EMG) sensors and
accelerometers are used to detect tremor in 1-second windows. On the contrary,
the proposed approach (of this work) makes use of higher timeframes (e.g. 60
seconds), but requires only a single ti-axial accelerometer. Additionally, when
the approach by Cole et al. [36] is applied to their test dataset (i.e. 2 PD
patients with 5 minutes of tremor each) then a 89.5% sensitivity and 92.5%
specificity are achieved. These results are outperformed in most cases except
for the sensitivity of the conditions with a linear kernel.

Sensitivity and specificity by Roy et al. [140] and Niazmand et al. [114] did
not consistently exceed the new approach (in case of the RBF kernel). The
algorithm by Niazmand et al. [114] does yield to a similar level of specificity,
but their sensitivity is lower when compared to the new approach. The authors
use a pullover with 8 integrated accelerometers to assess the severity of postural
and resting tremor. They make use of data from 12 subjects (10 PD patients and
2 controls). Their sensitivity (i.e. resting tremor: 71%, postural tremor: 89%)
is almost always exceeded while their specificity for postural tremor (97%) is
consistently outperformed. However, their specificity for resting tremor (100%)
is not reached by the proposed approach (in this work). Nonetheless, their
dataset are not quite as comprehensive in terms of size as in this work.

Roy et al. [140] achieved a better sensitivity than those configurations with a
linear kernel. However, their specificity is always exceeded by the new approach.
The results by Roy et al. [140] are based on four surface EMG sensors as well
as four tri-axial accelerometers. They use data from 23 subjects (i.e. 19 PD
and 4 control subjects). They classify at a 1 second resolution, but they use less
data recordings for testing (i.e. 4 controls and 8 PD patients) and more sensors.
Here, DNNs are employed to classify motor symptoms as well as rudimentary
actions / postures which are then combined to a final outcome. On their test
dataset, Roy et al. [140] achieve 93.8% sensitivity and 91.9% specificity for the
sensors on the arms. The specificity is consistently outperformed whereas the
sensitivity is only exceeded by the RBF kernel with the full feature set.

To sum up, the presented approaches slightly outperform those found in the
literature although, qualitatively, results are comparable since roughly similar
accuracies or geometric means are provided. However, results presented in this
thesis have not only been attained with a larger dataset (i.e. 89 patients rather
than 12 to 23 patients) but also the data have been recorded in a real-world en-
vironment (i.e. at the patients’ home / apartment). Furthermore, the proposed
approach is patient-independent, only requires a single tri-axial accelerometer
and can be configured to attain a higher sensitivity or specificity.

7.2 Dyskinesia
The same methodology that has been used to detect tremor at rest in PD
patients can also be used to recognize dyskinesia events. The approach has

been verified with 172 recordings (trained with 13 recordings) of a single waist-
mounted tri-axial accelerometer. Recording sessions took place in the patient’s

163

Variation / Author(s) Acc. Sens. Spec. D.U. Subjects

Keijsers et al. [78] 0.968 13
Tsipouras et al. [166] 0.937 10
Cole et al. [36] 0.910 0.930 12
Roy et al. [140] 0.900 0.934 23
RBF+red. 0.953 0.791 0.958 0.522 90
linear+red. 0.929 0.889 0.931 0.341 90
RBF+full 0.960 0.815 0.965 0.272 90
linear+-full 0.931 0.905 0.932 0.354 90

Table 7.2: Summarizes results from various algorithms for detecting dyskinesia.
Results found in Chapter 3 and Chapter 6 are briefly summarized. “D.U.” is
used as a shorthand for “data usage”. More details can be found in Table A.6.

home / apartment. Table 7.2 lists relevant publications from the related work
(see Chapter 3). It summarizes their results and shows the results of the pro-
posed methodology.

The accuracy obtained by Keijsers et al. [78] does exceed the results by the
proposed approach. However, the RBF kernel with the full feature set achieves a
similar result. The authors use an neural network (NN) to recognize dyskinesia
in segments of 15 minutes. In doing so they achieve an accuracy of 93.7%, 99.7%
and 97.0% for the arms, trunk and legs, respectively. Six tri-axial accelerometers
were used in their study with 13 subjects (all PD patients with dyskinesia). For
1 minute segments (rather than 15 minute segments), an accuracy of 77.0%,
83.0% and 76.9% were measured (i.e. arms, trunk and legs, respectively). This
segmentation length is in fact more comparable to the proposed approach as
both use a similar length. Comparing these results, the proposed methodology
outperforms their approach not just in terms of accuracy but also in terms of
number of sensors.

The approach by Tsipouras et al. [166] is outperformed by the RBF kernel
(regardless of feature set). The linear kernel does achieve slightly lower results.
The authors used recordings from 10 subjects (i.e. 4 PD patients with dyskine-
sia, 3 PD patients without dyskinesia and 3 healthy control subject) to detect
dyskinesia in 2 second windows. They employed a set of 6 tri-axial accelerome-
ters and 2 tri-axial gyroscopes. Considering their results from the left wrist and
waist acceleration signals, an accuracy of 92.7% and 93.1% (respectively) was
achieved.

The sensitivity achieved by Cole et al. [36] is consistently above the sensi-
tivity achieved by the proposed approach. However, specificity of the proposed
approach exceeded their specificity. They utilized a dataset that is comprised
of 12 subjects (i.e. 8 PD patients and 4 control subjects). A surface EMG and
acceleration sensor were attached to the subjects wrist and their measurements
were recorded while the subjects performed unscripted activities. Applying their
approach to their test dataset (2 PD patients with 5 minutes of dyskinesia each),
an average sensitivity of 94.6% and specificity of 94.3% is achieved. Contrary
to their work, a single tri-axial accelerometer (on the waist) is used to detect
dyskinesia by the proposed methodology.

The specificity by the approach from Roy et al. [140] is below the specificity
of the proposed approach with the RBF kernel. As for the linear kernel, sim-

164

Variation / Author(s) Acc. Sens. Spec. D.U. Subjects

Djurié-Jovicié et al. [51] 0.840 4
Cole et al. [37] 0.829 0.973 12
Niazmand et al. [115] 0.883 0.853 6
Bichlin et al. [32] 0.731 0.816 10
RBF+red. 0.985 0.900 1.000 0.823 20
linear+red. 0.989 0.889 1.000 0.919 20
RBF+full 0.987 0.900 1.000 0.949 20
linear+full 0.987 0.923 1.000 0.987 20

Table 7.3: Summarizes results from various algorithms for detecting FoG. Re-
sults found in Chapter 3 and Chapter 6 are briefly summarized. “D.U.” is used
as a shorthand for “data usage”. More details can be found in Table A.5.

ilar specificities are achieved. Sensitivity by Roy et al. [140] does exceed the
results by the proposed approach. These authors also use a surface EMG and
an acceleration sensor on the patients arm. Here a DB of 23 subjects (i.e. 19
PD patients and 4 control subjects) were used to train (11 patients) and test
(8 patients and 4 controls) a DNN. The DNN was used in combination with
the Integrated Processing and Understanding of Signals (IPUS) framework to
determine motor and mobility outcomes. An evaluation by Roy et al. [140]
indicates that mild and severe dyskinesia can be detected with 93.9% sensi-
tivity and 95.5% specificity (mild dyskinesia) as well as 95.0% sensitivity and
98.6% specificity. Almost all of these measures exceed those by the proposed
methodology.

In general, the newly proposed approach achieves similar results and does
not exceed those found in the literature. However, data usage is heavily penal-
ized in order to achieve these results. Nonetheless, it has been verified with a
large cohort of patients and only requires a single tri-axial accelerometer. The
methodology is patient-independent and can be configured towards sensitivity
or specificity.

7.3 Freezing of Gait

The Chapter 6 has introduced a new approach in detecting FoG events by
means of a single waist-mounted tri-axial accelerometer. This algorithm has
been trained and verified with signals from 20 PD patients (i.e. 209 freezing
events), that have been recorded at the patient’s home. an SVM is used to recog-
nize freezing episodes in a sliding window. This classification is then aggregated
as part of a meta-analysis. The results indicate an excellent accuracy compared
to current works (see Table 7.3). The overall approach is patient-independent
and can be configured toward a high sensitivity / specificity.

Béchlin et al. [32] yielded to 73.1% sensitivity and 81.6% specificity which
are clearly outperformed by the new approach (i.e. regardless of kernel and
feature set). The same is true for Niazmand et al. [115], their results are also
clearly exceeded. Here, five accelerometers on 6 PD patients are used. Even
though the results by Béachlin et al. [32] are exceeded, they captured 237 freezing
events in 10 PD patients based on three accelerometers and three gyroscopes. In

165

contrast to this work, Bachlin et al. [32] use 0.5 second time frames. However,
the authors also point out that their results could be improved by using patient-
specific settings as opposed to an patient-independent configuration.

Djuri¢-Jovici¢ et al. [51] achieved a mean error rate of 16% (84% accuracy) in
detecting akinesia. Their results are based on 4 PD patients, six accelerometers
and six gyroscopes that are mounted on the legs. Their results are also clearly
exceeded.

The results by Cole et al. [37] are consistently exceeded. Both sensitivity and
specificity of the proposed approach are above their results. A DNN is used by
Cole et al. [37] to detect episodes of freezing. They captured 87 freezing events
in 4 PD patients (and 0 freezing events from 2 control subjects) with three
tri-axial accelerometers and a surface EMG sensor. Their results are exceeded
in terms of sensitivity and specificity, but also in terms of number of subjects.
After adding a simple meta-analysis, the results improve to 99% specificity and
82% sensitivity, which are still outperformed by the proposed approach (in this
work).

The presented approach outperformed the highlighted works. The main
advantages include: (1) patient independence, (2) use of a single tri-axial ac-
celerometer, (3) configurability (i.e. the algorithm can be tuned toward high
sensitivity or high specificity as well as high / low data usage) and (4) the op-
timal window size is determined by evaluation at episode level (as opposed to
window level, which increases specificity). Even though these results are ob-
tained for time intervals of 45 to 60 seconds, the methodology may be useful for
FoG prevention systems (and not just for FoG monitoring systems). In these
systems, a freezing event is not necessarily required to be detected immediately.
Instead an auditory cueing system could activate (even with a minute delay)
and still help patients to regain their rhythm and thus possibly prevent further
freezing events from happening.

7.4 Discussion

All proposed approaches yield to accuracies above 95% for most of the results
(except for the linear kernel in detecting dyskinesia at the waist) and the same
is true for specificity. Results for dyskinesia show that data usage is heavily
penalized and that sensitivity is found to be close to or above 80%. The low data
usage can be explained by quite a few instances in which the underlying SVM
incorrectly classified dyskinesia (see Table 6.8). To counteract this behavior, the
upper and lower thresholds were adjusted accordingly (see Table 6.10). But they
were required to be set so far away from the intuitive boundary of 50% (e.g. 10%
for the lower threshold and 90% for the upper threshold) that large portions of
data were classified as “unknown” and thus ignored. The most probable cause
for the incorrect classification of dyskinesia is that the utilized features were
not capable of capturing the subtle differences between dyskinesia and other
activities with a rhythmical component (such as walking). Nonetheless similar
results to those of state-of-the-art techniques were achieved.

In case of resting tremor and FoG, sensitivity is close to or above 90%. For
these symptoms, the data usage is also penalized but still within an acceptable
range. Both algorithms also compare reasonably well with related works. The
results for tremor at rest slightly outperform state-of-the-art techniques. In

166

case of freezing events, the results indicate good sensitivity and specificity in
comparison to state-of-the-art techniques. Furthermore, the proposed method-
ology only utilizes a single tri-axial accelerometer whereas most state-of-the-art
techniques employ a set of various sensors at various body locations. Also the
methodology is patient-independent and can be configured. All in all, the pro-
posed methodology works well in at least two of the three presented scenarios
and utilized a much larger database.

167

168

Chapter 8

Conclusions

This chapter summarizes conclusions drawn from the work and results that
have been presented in the course of this thesis. Furthermore, a summary of
contributions made to the research field and possible directions for future work
are outlined.

8.1 Conclusions

The thesis is driven by four research questions (see Section 1.2), each of which
is answered in the course of this work. For reasons of simplicity, the questions
are repeated in the following.

1. How can a time series be represented? What is an adequate software-
architecture for a data mining (DM) and time series analysis framework?

2. Which Parkinson’s Disease symptoms can be detected and how can they
be detected?

3. How can published state-of-the-art techniques for detecting motor symp-
toms of Parkinson’s Disease be improved?

4. How well do the new / improved approaches perform when compared to
state-of-the-art techniques?

The first research question has been answered in Chapter 4 (‘A Framework
for Time Series Analysis’). The design and development process of a software-
architecture for a DM and time series analysis framework is shown from be-
ginning to end. Requirements are individually discussed and broken down into
manageable pieces. The resulting framework is a general-purpose data process-
ing environment that is built around the principles of modularity, reusability
and extensibility. It can handle arbitrary data and model non-linear processes
(e.g. graph structures and cyclic processing).

Section 3.2 focuses on Parkinson’s Disease (PD) motor symptoms with re-
spect to research question two. Due to the rather large number of motor and
non motor symptoms of PD (see Table A.1 and Table A.2), the list of symptoms
was narrowed down to commonly experienced motor symptoms. A set of publi-
cations, which detail algorithms and their utilized features, is shown for relevant

169

symptoms. Identifiable symptoms are outlined by means of publications that
detect them in time series data.

Proposals for improving state-of-the-art techniques are developed in Chap-
ter 6. Here algorithms for detecting a subset of the previously outlined symp-
toms and side effects (i.e. tremor at rest, freezing episodes and dyskinesia) are
presented. A flexible, configurable and patient-independent methodology is de-
veloped around a support vector machine (SVM) and a meta-analysis. This
approach (with minor differences) is then applied to these symptoms and side
effects.

The forth research question is answered in Chapter 7. The previously pre-
sented methodology is compared to state-of-the-art techniques in terms of sen-
sors, dataset, accuracy, sensitivity and specificity where possible. The proposed
methodology is shown to outperform related works in case of resting tremor and
freezing of gait (FoG). In case of dyskinesia, the results do not exceed those of
state-of-the-art techniques but yield to similar results.

8.2 Contributions

The following publications were created during the work on this thesis (in reverse
order of appearance). Those that are yet to be published are marked as such.

e C. Ahlrichs, A. Sama, J. Cabestany, M. Lawo, C. Pérez-Lopez, D. Rodriguez-
Martin, S. Alcaine, B. Mestre, P. Quispe, A. Costa, I. Mazzid, H. Lewy,
A. Bayés, T. Counihan, and A. Rodriguez-Molinero. Real-world Contin-
uous Monitoring of Tremor in Parkinson’s Disease: A Study with 92 Pa-
tients Wearing a Wrist-Worn Accelerometer. IEEE Journal of Biomedical
and Health Informatics. Special Issue: Enabling Technologies in Parkin-
son’s Disease Management, 2015. Submitted for publication. Await-
ing acceptance.

e C. Ahlrichs, A. Sama, M. Lawo, J. Cabestany, D. Rodriguez-Martin,
C. Pérez-Lopez, D. Sweeney, L. Quinlan, G. 0 Laighin, T. Counihan,
P. Browne, L. Hadas, G. Vainstein, A. Costa, R. Annicchiarico, S. Al-
caine, B. Mestre, P. Quispe, A. Bayés, and A. Rodriguez-Molinero. De-
tecting Freezing of Gait with a Tri-Axial Accelerometer in Parkinson’s
Disease Patients. Medical € Biological Engineering € Computing, 2014.
Submitted for publication. Awaiting acceptance.

e C. Ahlrichs and A. Sama. Is “Frequency Distribution” Enough to Detect
Tremor in PD Patients Using a Wrist Worn Accelerometer? In Proceedings
of the 8th International Conference on Pervasive Computing Technologies
for Healthcare, PervasiveHealth "14, pages 65—71, ICST, Brussels, Belgium,
Belgium, 2014. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering)

e C. Ahlrichs and M. Lawo. MOSIS: An Open Source Framework for Signal
Processing and Machine Learning. Journal of Machine Learning Research
(JMLR), 2014. Submitted for publication. Awaiting acceptance.

e C. Ahlrichs and M. Lawo. Parkinson’s Disease Motor Symptoms in Ma-
chine Learning: A Review. Health Informatics: An International Journal
(HILJ), 2(3), November 2013

170

C. Ahlrichs and M. Lawo. Workshop Paper: Indicating Motor Symptoms
in PD Patients Using Al-based Algorithms. In ICT meets Medicine and
Health (ICTMH), March 2013

C. Ahlrichs. Poster Abstract: Development and Evaluation of Al-based
Parkinson’s Disease Related Motor Symptom Detection Algorithms. In K7
2012: Advances in Artificial Intelligence - 35th Annual German Confer-
ence on Al, Saarbriicken, Germany, September 24-27, 2012. Proceedings,
September 2012

These publications as well as unpublished contributions are briefly summa-
rized as done hereafter (grouped by topic).

Framework: A framework for DM applications as well as processing
and analyzing time series is presented. It focuses on online processing
rather than delayed or offline processing and employs a strictly modular-
ized structure. It counteracts the drawbacks of other related frameworks.
A copy can be obtained at [108].

Algorithm(s) for tremor at rest: A new methodology to detect Parkin-
sonian tremor was proposed. The approach has been trained and verified,
for the first time, on a database with signals from 183 recordings of PD pa-
tients. These recordings were obtained in the patient’s home. The results
show that previous works were slightly outperformed.

Algorithm(s) for dyskinesia: The same methodology (as it has been
used for tremor) can be successfully applied to recognize dyskinesia. Re-
sults are verified with a large cohort of patients (i.e. 172 recordings), but
they do not outperform related work. Nonetheless, a reasonable accuracy
is achieved even though data usage is heavily penalized.

Algorithm(s) for FoG: Applying the presented methodology to FoG,
the approach showed excellent accuracy compared to current works. The
main advantages include: (1) patient independence, (2) use of a single
tri-axial accelerometer, (3) configurability and (4) use of recordings that
were obtained in a non-laboratory setting.

Review of publications: A large set of publications (i.e. > 40) related
to PD motor symptoms, PD side effects and software frameworks were
reviewed. These were used to compile a comprehensive list of publications
for several motor symptoms and to present them in a unified and compa-
rable way (see Table A.3, Table A.4, Table A.5 and Table A.6). A similar
process yielded to a comparison of several related frameworks (see Table
3.1).

To sum up, several journal articles, conference and workshop papers have
been published as part of this thesis. Additionally, this work still contains large
parts of (previously) unpublished materials.

8.3 Future Work

The results of this work may be presented in a coherent and self-contained
way, but there remains a lot of work to be done. This section outlines possible
directions of future work.

171

The same methodology (as it has been presented in Section 6.1) may also be
useful in detecting festination, bradykinesia and other symptoms or side effects
of PD. This has not been tested nor evaluated as part of this thesis and remains
a promising path for future exploration.

The current methodology is applied to two sensors (i.e. wrist sensor for
tremor detection and waist sensor for detecting freezing events and dyskinesia).
However, it may be enough to just use a single sensor at the wrist to detect
all these symptoms. Consequently, another line of research could concentrate
on evaluating accuracies of a wrist mounted device in detecting freezing events
as well as dyskinesia. Using a single sensor platform (rather than two sensor
platforms) may increase usability and end-user acceptance of a monitoring sys-
tem. In the same line of thought, the methodology could be applied to detect
resting tremor, FoG and dyskinesia at the same time rather than having three
separate SVMs for detection. A single SVM that classifies multiple symptoms
may already be enough. This has not been evaluated and may resolve (po-
tential) performance issues on computationally constrained devices such as a
micro-processor.

Detecting dyskinesia deserves more attention than it has received during the
work on this thesis. Especially the low data usage suggests that refinements
are an appropriate path for future research. Differentiation between varying
severities of dyskinesia or other (common) activities that provoke false positives
(FPs) are just two ways which may lead to improved results.

The proposed framework still offers room for improvements in terms of num-
ber of algorithms, number of processing modules, supported data formats and
so on. In the future, it may be of interest to keep on implementing new algo-
rithms as they emerge and maintain “old” ones. With respect to the proposed
methodology of this work, a proof-of-concept implementation of several modules
and processing units was done. However, this is not yet complete and definitely
needs refinements. Furthermore, most processing in this work was done by
means of Matlab. In order to change this, a proof-of-concept implementation
was realized and a road-map of required modules was deduced. Those interested
in pursuing this goal may want to have a look at Section B.4.

This work utilized a traditional supervised learning approach (i.e. SVM) to
recognize motor symptoms and side effects. It would be interesting to evaluate
Hoeffding Trees [52], D-Stream [167], count-min [38] and related algorithms.
These approaches maintain their state over time (i.e. as the stream of sensor
signals evolves) rather than classifying on a per-sample-basis. To the knowledge
of the author, this type of algorithm has yet to be applied in this context and
the author is not aware of any preceding publication that may have done so.

172

Bibliography

[1]

C. Ahlrichs. Poster Abstract: Development and Evaluation of Al-based
Parkinson’s Disease Related Motor Symptom Detection Algorithms. In KT
2012: Advances in Artificial Intelligence - 35th Annual German Confer-
ence on Al, Saarbricken, Germany, September 24-27, 2012. Proceedings,
September 2012.

C. Ahlrichs and M. Lawo. Parkinson’s Disease Motor Symptoms in Ma-
chine Learning: A Review. Health Informatics: An International Journal
(HILJ), 2(3), November 2013.

C. Ahlrichs and M. Lawo. Workshop Paper: Indicating Motor Symptoms
in PD Patients Using Al-based Algorithms. In ICT meets Medicine and
Health (ICTMH), March 2013.

C. Ahlrichs and M. Lawo. MOSIS: An Open Source Framework for Signal
Processing and Machine Learning. Journal of Machine Learning Research
(JMLR), 2014. Submitted for publication. Awaiting acceptance.

C. Ahlrichs and A. Sama. Is “Frequency Distribution” Enough to De-
tect Tremor in PD Patients Using a Wrist Worn Accelerometer? In
Proceedings of the 8th International Conference on Pervasive Comput-
ing Technologies for Healthcare, PervasiveHealth 14, pages 65-71, ICST,
Brussels, Belgium, Belgium, 2014. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

C. Ahlrichs, A. Sama, J. Cabestany, M. Lawo, C. Pérez-Lépez,
D. Rodriguez-Martin, S. Alcaine, B. Mestre, P. Quispe, A. Costa,
I. Mazzi, H. Lewy, A. Bayés, T. Counihan, and A. Rodriguez-Molinero.
Real-world Continuous Monitoring of Tremor in Parkinson’s Disease: A
Study with 92 Patients Wearing a Wrist-Worn Accelerometer. IEEFE
Journal of Biomedical and Health Informatics. Special Issue: FEnabling
Technologies in Parkinson’s Disease Management, 2015. Submitted for
publication. Awaiting acceptance.

C. Ahlrichs, A. Sama, M. Lawo, J. Cabestany, D. Rodriguez-Martin,
C. Pérez-Lopez, D. Sweeney, L. Quinlan, G. 0 Laighin, T. Counihan,
P. Browne, L. Hadas, G. Vainstein, A. Costa, R. Annicchiarico, S. Al-
caine, B. Mestre, P. Quispe, A. Bayés, and A. Rodriguez-Molinero. De-
tecting Freezing of Gait with a Tri-Axial Accelerometer in Parkinson’s
Disease Patients. Medical & Biological Engineering & Computing, 2014.
Submitted for publication. Awaiting acceptance.

173

8]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

C. Ahlrichs, A. Sama, J. R. Simon, S. Herrlich, and A. Rodriguez-
Molinero. HELP: Optimizing Treatment of Parkinson’s Disease Patients.
In 8rd International Conference on the Elderly and New Technologies,
Castellén, Spain, Apr. 2012.

P. Andlin-Sobocki, B. Jonsson, H.-U. Wittchen, and J. Olesen. Cost of
Disorders of the Brain in Europe. Furopean Journal of Neurology, 12:1-27,
2005.

F. Antonelli and A. P. Strafella. Behavioral Disorders in Parkinson’s
Disease: The Role of Dopamine. Parkinsonism € Related Disorders, 20,
Supplement 1(0):S10 — S12, 2014. Proceedings of XX World Congress on
Parkinson’s Disease and Related Disorders.

E. K. Antonsson and R. W. Mann. The Frequency Content of Gait.
Journal of Biomechanics, 18(1):39-47, 1985.

R. A. Armstrong. Visual Signs and Symptoms of Parkinson’s Disease.
Clinical and Ezxperimental Optometry, 91(2):129-138, 2008.

R. Arvind, B. Karthik, N. Sriraam, and J. K. Kannan. Automated Detec-
tion of PD Resting Tremor Using PSD with Recurrent Neural Network
Classifier. In 2010 International Conference on Advances in Recent Tech-
nologies in Communication and Computing (ARTCom), pages 414417,
October. 2010.

M. Asgari and I. Shafran. Predicting Severity of Parkinson’s Disease from
Speech. In 2010 Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBC), pages 5201-5204, 31 2010-
September 4 2010.

K. Bache and M. Lichman. UCI Machine Learning Repository, 2013.

A. Bagnall, C. A. Ratanamahatana, E. Keogh, S. Lonardi, and
G. Janacek. A Bit Level Representation for Time Series Data Mining
with Shape Based Similarity. Data Mining and Knowledge Discovery,
13(1):11-40, 2006.

Z. A. Bakar, N. M. Tahir, and I. M. Yassin. Classification of Parkinson’s
Disease Based on Multilayer Perceptrons Neural Network. In 2010 6th In-
ternational Colloquium on Signal Processing and Its Applications (CSPA),
pages 1-4, May 2010.

E. Bakstein, K. Warwick, J. Burgess, O. Stavdahl, and T. Aziz. Features
for Detection of Parkinson’s Disease Tremor from Local Field Potentials
of the Subthalamic Nucleus. In 2010 IEEE 9th International Conference
on Cybernetic Intelligent Systems (CIS), pages 1-6, September 2010.

A. Beric, P. J. Kelly, A. Rezai, D. Sterio, A. Mogilner, M. Zonenshayn, and
B. Kopell. Complications of Deep Brain Stimulation Surgery. Stereotactic
And Functional Neurosurgery, 77(1-4):73-78, 2001.

A. Bifet, E. Frank, G. Holmes, and B. Pfahringer. Ensembles of Re-
stricted Hoeffding Trees. ACM Transactions on Intelligent Systems and
Technology, 3(2), 2012.

174

[21]

[24]

[32]

A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen,
and T. Seidl. MOA: Massive Online Analysis, a Framework for Stream
Classification and Clustering. Journal of Machine Learning Research -
Proceedings Track, 11:44-50, 2010.

C. Bockermann and H. Blom. The Streams Framework. Technical Re-
port 5, TU Dortmund University, 12 2012.

V. Bonifati. Genetics of Parkinson’s Disease - State of the Art, 2013.
Parkinsonism € Related Disorders, 20, Supplement 1(0):S23 — S28, 2014.
Proceedings of XX World Congress on Parkinson’s Disease and Related
Disorders.

R. R. Bouckaert, E. Frank, M. A. Hall, G. Holmes, B. Pfahringer,
P. Reutemann, and 1. H. Witten. WEKA—-Experiences with a Java Open-
Source Project. Journal of Machine Learning Research, 11:2533-2541,
2010.

H. Braak, J. R. Bohl, C. M. Miiller, U. Riib, R. A. I. de Vos, and
K. Del Tredici. Stanley Fahn Lecture 2005: The Staging Procedure for the
Inclusion Body Pathology Associated with Sporadic Parkinson’s Disease
Reconsidered. Movement Disorders, 21(12):2042-2051, 2006.

H. Braak, D. Sandmann-Keil, W. Gai, and E. Braak. Extensive Ax-
onal Lewy Neurites in Parkinson’s Disease: A Novel Pathological Feature
Revealed By a-synuclein Immunocytochemistry. Neuroscience Letters,
265(1):67-69, 1999.

H. Braak, K. D. Tredici, U. Riib, R. A. I. de Vos, E. N. H. J. Steur, and
E. Braak. Staging of Brain Pathology Related to Sporadic Parkinson’s
Disease. Neurobiology of Aging, 24(2):197-211, 2003.

B. R. Brewer, S. Pradhan, G. Carvell, and A. Delitto. Application of Mod-
ified Regression Techniques to a Quantitative Assessment for the Motor
Signs of Parkinson’s Disease. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 17(6):568-575, December 2009.

K. J. Burchiel. Thalamotomy for Movement Disorders. Neurosurgery
Clinics Of North America, 6(1):55-71, 1995.

J. P. Burg. Maximum Entropy Spectral Analysis. PhD thesis, Stanford
University, 1975.

M. Béchlin, M. Plotnik, D. Roggen, I. Maidan, J. M. Hausdorff, N. Gi-
ladi, and G. Troster. Wearable Assistant for Parkinson’s Disease Patients
with the Freezing of Gait Symptom. IEEE Transactions on Information
Technology in Biomedicine, 14(2):436-446, March 2010.

M. Béchlin, D. Roggen, G. Troster, M. Plotnik, N. Inbar, I. Meidan,
T. Herman, M. Brozgol, E. Shaviv, N. Giladi, and J. M. Hausdorff. Poten-
tials of Enhanced Context Awareness in Wearable Assistants for Parkin-
son’s Disease Patients with the Freezing of Gait Syndrome. In 2009 In-
ternational Symposium on Wearable Computers (ISWC), pages 123-130,
September 2009.

175

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

A. P. L. B6, P. Poignet, and C. Geny. Pathological Tremor and Volun-
tary Motion Modeling and Online Estimation for Active Compensation.
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
19(2):177-185, April 2011.

J. Cancela, M. Pansera, M. T. Arredondo, J. J. Estrada, M. Pastorino,
L. Pastor-Sanz, and J. L. Villalar. A Comprehensive Motor Symptom
Monitoring and Management System: The Bradykinesia Case. In 2010
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pages 1008-1011, 31 2010-September 4 2010.

L. Chen and M. T. Ozsu. Multi-Scale Histograms for Answering Queries
Over Time Series Data. In Z. M. Ozsoyoglu and S. B. Zdonik, editors,
ICDE, page 838. IEEE Computer Society, 2004.

B. T. Cole, S. H. Roy, C. J. De Luca, and S. H. Nawab. Dynamic Neu-
ral Network Detection of Tremor and Dyskinesia from Wearable Sensor
Data. In 2010 Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBC), pages 6062—6065, 31 2010-
September 4 2010.

B. T. Cole, S. H. Roy, and S. H. Nawab. Detecting Freezing-of-gait
During Unscripted and Unconstrained Activity. In 2011 Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pages 5649-5652, 30 2011-September 3 2011.

G. Cormode and S. Muthukrishnan. An Improved Data Stream Sum-
mary: The Count-min Sketch and Its Applications. Journal of Algorithms,
55(1):58-75, April 2005.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods. Cambridge Univer-
sity Press, New York, NY, USA, 2000.

N. Crosby, K. H. Deane, and C. E. Clarke. Amantadine in Parkinson’s
Disease. Cochrane Database Syst Rev, 1:CD003468, 2003.

L. Cunningham, S. Mason, C. Nugent, G. Moore, D. Finlay, and D. Craig.
Home-Based Monitoring and Assessment of Parkinson’s Disease. [EEE
Transactions on Information Technology in Biomedicine, 15(1):47-53,
January 2011.

L. Cunningham, C. Nugent, G. Moore, D. Finlay, and D. Craig.
Computer-Based Assessment of Bradykinesia, Akinesia and Rigidity in
Parkinson’s Disease. In M. Mokhtari, I. Khalil, J. Bauchet, D. Zhang,
and C. Nugent, editors, Ambient Assistive Health and Wellness Manage-
ment in the Heart of the City, volume 5597 of Lecture Notes in Computer
Science, pages 1-8. Springer Berlin Heidelberg, 2009.

L. Cunningham, C. Nugent, G. Moore, D. Finlay, and D. Craig. Identify-
ing Fine Movement Difficulties in Parkinson’s Disease Using a Computer
Assessment Tool. In 9th International Conference on Information Tech-
nology and Applications in Biomedicine, pages 1-4, November 2009.

176

[44]

[45]

[46]

[47]

[48]

[53]

[54]

[55]

W. Dauer and S. Przedborski. Parkinson’s Disease: Mechanisms and
Models. Neuron, 39(6):889-909, 2003.

C. A. Davie. A Review of Parkinson’s Disease. British Medical Bulletin,
86(1):109-127, 2008.

A. de Barros, J. a. Cevada, A. Bayés, S. Alcaine, and B. Mestre. Design
and Evaluation of a Medication Application for People with Parkinson’s
Disease. In G. Memmi and U. Blanke, editors, Mobile Computing, Ap-
plications, and Services, volume 130 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineer-
ing, pages 273-276. Springer International Publishing, 2014.

A. C. de Barros, J. a. Cevada, A. Bayés, S. Alcaine, and B. Mestre.
User-centred Design of a Mobile Self-management Solution for Parkinson’s
Disease. In Proceedings of the 12th International Conference on Mobile
and Ubiquitous Multimedia, MUM ’13, pages 23:1-23:10, New York, NY,
USA, 2013. ACM.

C. De Marchis, S. Conforto, G. Severini, M. Schmid, and T. D’Alessio.
Detection of Tremor Bursts from the SEMG Signal: An Optimization
Procedure for Different Detection Methods. In 2011 Annual International
Conference of the IEEE FEngineering in Medicine and Biology Society
(EMBC), pages 7508-7511, 30 2011-September 3 2011.

J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Communications of the ACM, 51(1):107-113, 2008.

J. L. Dideriksen, F. Gianfelici, L. Z. P. Maneski, and D. Farina. EMG-
Based Characterization of Pathological Tremor Using the Iterated Hilbert
Transform. IEEE Transactions on Biomedical Engineering, 58(10):2911—
2921, October. 2011.

M. Djurié¢-Jovici¢, N. S. Jovici¢, I. Milovanovié, S. Radovanovié, N. Kreso-
jevié, and M. B. Popovié. Classification of Walking Patterns in Parkinson’s
Disease Patients Based on Inertial Sensor Data. In 2010 10th Symposium
on Neural Network Applications in Electrical Engineering (NEUREL),
pages 3—6, September 2010.

P. Domingos and G. Hulten. Mining High-speed Data Streams. In Proceed-
ings of the sixzth ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD 00, pages 71-80, New York, NY, USA,
2000. ACM.

S. Fahn and R. Elton. Recent Developments in Parkinson’s Disease, chap-
ter Unified Parkinson’s disease rating scale, pages 153-163. Macmillan
Healthcare Information, Florham Park, NJ, 1987.

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Mining
to Knowledge Discovery in Databases. AT Magazine, 17(3):37-54, 1996.

M. F. Folstein, S. E. Folstein, and P. R. McHugh. Mini-mental State:
A Practical Method for Grading the Cognitive State of Patients for the
Clinician. Journal of Psychiatric Research, 12(3):189-198, 1975.

177

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

E. Frachtenberg, F. Petrini, J. Fernandez, and S. Pakin. STORM: Scalable
Resource Management for Large-Scale Parallel Computers. IEEE Trans.
Comput., 55(12):1572-1587, December 2006.

E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, 1994.

D. J. Gelb, E. Oliver, and S. Gilman. Diagnostic Criteria for Parkinson
Disease. Arch Neurol, 56(1):33-39, 1999.

C. G. Goetz, W. Poewe, O. Rascol, C. Sampaio, G. T. Stebbins, C. Coun-
sell, N. Giladi, R. G. Holloway, C. G. Moore, G. K. Wenning, M. D.
Yahr, and L. Seidl. Movement Disorder Society Task Force Report on the
Hoehn and Yahr Staging Scale: Status and Recommendations. Movement
Disorders, 19(9):1020-1028, 2004.

C. G. Goetz, B. C. Tilley, S. R. Shaftman, G. T. Stebbins, S. Fahn,
P. Martinez-Martin, W. Poewe, C. Sampaio, M. B. Stern, R. Dodel,
B. Dubois, R. Holloway, J. Jankovic, J. Kulisevsky, A. E. Lang, A. Lees,
S. Leurgans, P. A. LeWitt, D. Nyenhuis, C. W. Olanow, O. Rascol,
A. Schrag, J. A. Teresi, J. J. van Hilten, and N. LaPelle. Movement
Disorder Society-sponsored Revision of the Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing
Results. Movement Disorders, 23(15):2129-2170, 2008.

A. Gustavsson, M. Svensson, F. Jacobi, C. Allgulander, J. Alonso,
E. Beghi, R. Dodel, M. Ekman, C. Faravelli, L. Fratiglioni, B. Gannon,
D. H. Jones, P. Jennum, A. Jordanova, L. Jonsson, K. Karampampa,
M. Knapp, G. Kobelt, T. Kurth, R. Lieb, M. Linde, C. Ljungcrantz,
A. Maercker, B. Melin, M. Moscarelli, A. Musayev, F. Norwood,
M. Preisig, M. Pugliatti, J. Rehm, L. Salvador-Carulla, B. Schlehofer,
R. Simon, H.-C. Steinhausen, L. J. Stovner, J.-M. Vallat, P. V. den Bergh,
J.van Os, P. Vos, W. Xu, H.-U. Wittchen, B. Jonsson, and J. Olesen. Cost
of Disorders of the Brain in Europe 2010. Furopean Neuropsychopharma-
cology, 21(10):718-779, 2011.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The WEKA Data Mining Software: An Update. SIGKDD Explor.
Newsl., 11(1):10-18, November 2009.

J. L. Hamilton, E. Micheli-Tzanakou, and R. M. Lehman. Neural Net-
works Trained with Simulation Data for Outcome Prediction in Pallido-
tomy for Parkinson’s Disease. In Proceedings of the 22nd Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology
Society, volume 1, pages 1 —4 vol.1, 2000.

J. H. Han, W. J. Lee, T. B. Ahn, B. S. Jeon, and K. S. Park. Gait Analysis
for Freezing Detection in Patients with Movement Disorder Using Three
Dimensional Acceleration System. In Proceedings of the 25th Annual In-
ternational Conference of the IEEE Engineering in Medicine and Biology
Society, volume 2, pages 1863 — 1865 Vol.2, September 2003.

178

[65]

[66]

[67]

[68]

[75]

HELP. Home-based Empowered Living for Parkinson’s Disease Patients,
February 2013. http://help-parkinson-aal-project.tid.es.

H. Hochheiser and B. Shneiderman. Interactive Exploration of Time Se-
ries Data. In K. Jantke and A. Shinohara, editors, Discovery Science, vol-
ume 2226 of Lecture Notes in Computer Science, pages 441-446. Springer
Berlin Heidelberg, 2001.

M. M. Hoehn. Parkinsonism: Onset, Progression, and Mortality. Neurol-
ogqy, 17:427-442, 1967.

C. N. Homann, K. Wenzel, K. Suppan, G. Ivanic, R. Crevenna, and E. Ott.
Sleep Attacks—facts and Fiction: A Critical Review. Adv Neurol, 91:335—
41, 2003.

J.-G. G. Hou and E. C. Lai. Non-motor Symptoms of Parkinson’s Disease.
International Journal of Gerontology, 1(2):53-64, 2007.

L. Huang, D. Milne, E. Frank, and 1. H. Witten. Learning a Concept-
based Document Similarity Measure. Journal of the American Society for
Information Science and Technology, 2012.

A. J. Hughes, S. E. Daniel, L. Kilford, and A. J. Lees. Accuracy of Clin-
ical Diagnosis of Idiopathic Parkinson’s Disease: A Clinico-pathological
Study of 100 Cases. Journal of Neurology, Neurosurgery € Psychiatry,
55(3):181-184, 1992.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed
Data-parallel Programs from Sequential Building Blocks. SIGOPS Oper.
Syst. Rev., 41(3):59-72, March 2007.

J. Jankovic. Parkinson’s Disease: Clinical Features and Diagnosis. Journal
of Neurology, Neurosurgery & Psychiatry, 79(4):368-376, 2008.

H. Jiancheng, W. Wenwu, and D. Hongjuan. Development of the Parkin-
son’s Disease System for Chinese Medicine Diagnosis Based on Database.
In 2008 IEEE International Symposium on IT in Medicine and Education
(ITME), pages 749-752, December 2008.

A. Jobbagy, E. Furnee, P. Harcos, and M. Tarczy. FEarly Detection of
Parkinson’s Disease Through Automatic Movement Evaluation. Engineer-
ing in Medicine and Biology Magazine, IEEFE, 17(2):81-88, March/April
1998.

W. H. Jost. Autonomic Dysfunctions in Idiopathic Parkinson’s Disease.
Journal of Neurology, 250:—, 2003. 10.1007/s00415-003-1105-z.

E. Jovanov, E. Wang, L. Verhagen, M. Fredrickson, and R. Fratangelo.
deFOG - a Real Time System for Detection and Unfreezing of Gait of
Parkinson’s Patients. In 2009 Annual International Conference of the
IEEF FEngineering in Medicine and Biology Society (EMBC), pages 5151—
5154, September 2009.

179

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[88]

[89]

N. L. W. Keijsers, M. W. I. M. Horstink, and S. C. A. M. Gielen. Au-
tomatic Assessment of Levodopa-induced Dyskinesias in Daily Life By
Neural Networks. Movement Disorders, 18(1):70-80, 2003.

E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Locally Adap-
tive Dimensionality Reduction for Indexing Large Time Series Databases.
In Proceedings of the 2001 ACM SIGMOD international conference on
Management of data, SIGMOD ’01, pages 151-162, New York, NY, USA,
2001. ACM.

E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra. Dimension-
ality Reduction for Fast Similarity Search in Large Time Series Databases.
Knowl. Inf. Syst., 3(3):263-286, 2001.

E. J. Keogh and M. J. Pazzani. Derivative Dynamic Time Warping.
Science, pages 1-11, 2001.

G. V. Kondraske and R. M. Stewart. Web-based Evaluation of Parkin-
son’s Disease Subjects: Objective Performance Capacity Measurements
and Subjective Characterization Profiles. In 2008 30th Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology
Society (EMBS), pages 799-802, August 2008.

A. D. Korczyn. Parkinson’s Disease. In E. in Chief: Kris Heggenhougen,
editor, International Encyclopedia of Public Health, pages 10-17. Aca-
demic Press, Oxford, 2008.

A. D. Korczyn and T. Gurevich. Parkinson’s Disease: Before the Motor
Symptoms and Beyond. Journal of the Neurological Sciences, 289(1-2):2—
6, 2010.

A. Krenz. The Pathological Role of Synphilin-1 and the Therapeutic Po-
tential of Hsp70 in Models of Parkinson’s Disease Using Viral Vectors.
PhD thesis, Universitat Tiibingen, Wilhelmstr. 32, 72074 Tiibingen, 2010.

A. Kupryjanow, B. Kunka, and B. Kostek. UPDRS Tests for Diagnosis
of Parkinson’s Disease Employing Virtual-Touchpad. In 2010 Workshop
on Database and FExpert Systems Applications (DEXA), pages 132-136,
30 2010-September 3 2010.

L. V. Laitinen, A. T. Bergenheim, and M. I. Hariz. Leksell’s Posteroven-
tral Pallidotomy in the Treatment of Parkinson’s Disease. Journal of
Neurosurgery, 76(1):53-61, 1992. PMID: 1727169.

V. R. Lesser, S. Nawab, and F. I. Klassner. IPUS: An Architecture for
the Integrated Processing and Understanding of Signals. Artificial Intel-
ligence, 77(1):129-171, 1995.

J. Lin, E. Keogh, S. Lonardi, J. P. Lankford, and D. M. Nystrom. Visually
Mining and Monitoring Massive Time Series. In Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 460-469. ACM, 2004.

180

[90]

[99]

[100]

[101]

J. Lin, E. J. Keogh, S. Lonardi, and B. Y. Chiu. A Symbolic Representa-
tion of Time Series, with Implications for Streaming Algorithms. In M. J.
Zaki and C. C. Aggarwal, editors, DMKD, pages 2-11. ACM, 2003.

M. A. Little, P. E. McSharry, E. J. Hunter, J. Spielman, and L. O. Ramig.
Suitability of Dysphonia Measurements for Telemonitoring of Parkinson’s
Disease. IEEFE Transactions on Biomedical Engineering, 56(4):1015-1022,
April 2009.

X. Liu, C. B. Carroll, S.-Y. Wang, J. Zajicek, and P. G. Bain. Quantify-
ing Drug-induced Dyskinesias in the Arms Using Digitised Spiral-drawing
Tasks. Journal of Neuroscience Methods, 144(1):47-52, 2005.

G. Lo, A. R. Suresh, L. Stocco, S. Gonzélez-Valenzuela, and V. C. M. Le-
ung. A Wireless Sensor System for Motion Analysis of Parkinson’s Disease
Patients. In 2011 IEEFE International Conference on Pervasive Computing
and Communications Workshops (PERCOM Workshops), pages 372-375,
March 2011.

M. G. Longstaff, P. R. Mahant, M. A. Stacy, A. W. A. Van Gemmert,
B. C. Leis, and G. E. Stelmach. Discrete and Dynamic Scaling of the Size
of Continuous Graphic Movements of Parkinsonian Patients and Elderly
Controls. Journal of Neurology, Neurosurgery & Psychiatry, 74(3):299-
304, 2003.

A. M. Lozano. Surgery for Parkinson’s Disease, the Five W’s: Why, Who,
What, Where, and When. Adv Neurol, 91, 2003.

K. C. Luk and V. M.-Y. Lee. Modeling Lewy Pathology Propagation in
Parkinson’s Disease. Parkinsonism € Related Disorders, 20, Supplement
1(0):S85 — S87, 2014. Proceedings of XX World Congress on Parkinson’s
Disease and Related Disorders.

M. R. Luquin, O. Scipioni, J. Vaamonde, O. Gershanik, and J. A. Obeso.
Levodopa-induced Dyskinesias in Parkinson’s Disease: Clinical and Phar-
macological Classification. Movement Disorders, 7(2):117-124, 1992.

C. D. Marchis, M. Schmid, and S. Conforto. An Optimized Method for
Tremor Detection and Temporal Tracking Through Repeated Second Or-
der Moment Calculations on the Surface EMG Signal. Medical Engineering
€ Physics, 34(9):1268-1277, 2012.

P. Martinez-Martin, T. del Ser Quijano, R. Pifieiro, M. Andrés, et al. A
New Clinical Tool for Gait Evaluation in Parkinson’s Disease. Clinical
neuropharmacology, 20(3):183-194, 1997.

P. Martinez-Martin, C. Rodriguez-Blazquez, M. J. Forjaz, and J. de Pe-
dro. The Clinical Impression of Severity Index for Parkinson’s Disease:
International Validation Study. Movement Disorders, 24(2):211-217, 20009.

C. Mathers, D. M. Fat, J. T. Boerma, and World Health Organization
(WHO). the Global Burden of Disease : 2004 Update. World Health
Organization, Geneva, Switzerland, 2008.

181

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

C. McRae, G. Diem, A. Vo, C. O’Brien, and L. Seeberger. Reliabil-
ity of Measurements of Patient Health Status: A Comparison of Physi-
cian, Patient, and Caregiver Ratings. Parkinsonism € Related Disorders,
8(3):187-192, 2002.

J. Mekyska, I. Rektorova, and Z. Smekal. Selection of Optimal Parameters
for Automatic Analysis of Speech Disorders in Parkinson’s Disease. In
2011 34th International Conference on Telecommunications and Signal
Processing (TSP), pages 408-412, August 2011.

F. Miralles, S. Tarongi, and A. Espino. Quantification of the Drawing
of An Archimedes Spiral Through the Analysis of Its Digitized Picture.
Journal of Neuroscience Methods, 152(1 - 2):18-31, 2006.

T. Mitsa. Temporal Data Mining. Chapman & Hall/CRC data mining
and knowledge discovery series. CRC Press, Boca Raton, Fla. [u.a.], 2010.
XXII, 373 S. ; 25 cm : graph. Darst.

S. T. Moore, H. G. MacDougall, and W. G. Ondo. Ambulatory Monitor-
ing of Freezing of Gait in Parkinson’s Disease. Journal of Neuroscience
Methods, 167(2):340-348, 2008.

G. Morris. Candlestick Charting Fxplained: Timeless Techniques for
Trading Stocks and Futures. Mcgraw-Hill, 3rd edition, May 2006.

MOSIS. Modularized Signal Processing and Analysis, January 2015.
http://www.github.com/claasahl/MOSIS.

J. Murphy. Technische Analyse Der Finanzmdrkte: Grundlagen, Metho-
den, Strategien, Anwendungen. Borse-online-Edition. Finanzbuch Verlag
GmbH, 2000.

L. J. Myers and C. D. MacKinnon. Quantification of Movement Regularity
During Internally Generated and Externally Cued Repetitive Movements
in Patients with Parkinson’s Disease. In 2005 2nd International IEEE
EMBS Conference on Neural Engineering, pages 281-284, March 2005.

K. Niazmand, A. Kalaras, H. Dai, and T. C. Lueth. Comparison of Meth-
ods for Tremor Frequency Analysis for Patients with Parkinson’s Disease.
In 2011 4th International Conference on Biomedical Engineering and In-
formatics (BMEI), volume 2, pages 693-697, October. 2011.

K. Niazmand, I. Somlai, S. Louizi, and T. C. Lueth. Proof of the Accu-
racy of Measuring Pants to Evaluate the Activity of the Hip and Legs in
Everyday Life. In J. C. Lin, K. S. Nikita, O. Akan, P. Bellavista, J. Cao,
F. Dressler, D. Ferrari, M. Gerla, H. Kobayashi, S. Palazzo, S. Sahni, X. S.
Shen, M. Stan, J. Xiaohua, A. ZoMaya, and G. Coulson, editors, Wire-
less Mobile Communication and Healthcare, volume 55 of Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommu-
nications FEngineering, pages 235-244. Springer Berlin Heidelberg, 2011.
10.1007/978-3-642-20865-2_30.

182

[113]

[114]

[115]

[116]

[117]

18]

[119]

[120]

[121]

[122]

[123]

K. Niazmand, K. Tonn, A. Kalaras, U. M. Fietzek, J. H. Mehrkens, and
T. C. Lueth. Quantitative Evaluation of Parkinson’s Disease Using Sensor
Based Smart Glove. In 2011 24th International Symposium on Computer-
Based Medical Systems (CBMS), pages 1-8, June 2011.

K. Niazmand, K. Tonn, A. Kalaras, S. Kammermeier, K. Boetzel, J. H.
Mehrkens, and T. C. Lueth. A Measurement Device for Motion Analysis of
Patients with Parkinson’s Disease Using Sensor Based Smart Clothes. In
2011 5th International Conference on Pervasive Computing Technologies
for Healthcare (PervasiveHealth), pages 9-16, May 2011.

K. Niazmand, K. Tonn, Y. Zhao, U. M. Fietzek, F. Schroeteler, K. Ziegler,
A. O. Ceballos-Baumann, and T. C. Lueth. Freezing of Gait Detection in
Parkinson’s Disease Using Accelerometer Based Smart Clothes. In 2011
IEEF Biomedical Circuits and Systems Conference (BioCAS), pages 201—
204, November 2011.

J. G. Nutt. Motor Fluctuations and Dyskinesia in Parkinson’s Disease.
Parkinsonism € Related Disorders, 8(2):101-108, 2001.

C. W. Olanow, C. G. Goetz, J. H. Kordower, A. J. Stoessl, V. Sossi,
M. F. Brin, K. M. Shannon, G. M. Nauert, D. P. Perl, J. Godbold, and
T. B. Freeman. A Double-blind Controlled Trial of Bilateral Fetal Nigral
Transplantation in Parkinson’s Disease. Annals of Neurology, 54:403-414,
2003.

P. E. O’Suilleabhain and J. Y. Matsumoto. Time-frequency Analysis of
Tremors. Brain, 121(11):2127-2134, 1998.

J. Parkinson. An Essay on the Shaking Palsy. 1817. The Journal of
neuropsychiatry and clinical neurosciences, 14(2):223-236; discussion 222,
2002.

M. Pastorino, J. Cancela, M. T. Arredondo, M. Pansera, L. Pastor-Sanz,
F. Villagra, M. A. Pastor, and J. A. Martin. Assessment of Bradykinesia in
Parkinson’s Disease Patients Through a Multi-parametric System. In 2011
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pages 1810-1813, 30 2011-September 3 2011.

S. Patel, T. Hester, R. Hughes, N. Huggins, D. Standaert, Alice, A. Fla-
herty, and P. Bonato. Using Wearable Sensors to Enhance DBS Parameter
Adjustment for Parkinson’s Disease Patients Through Measures of Motor
Response. In 2006 3rd IEEE/EMBS International Summer School on
Medical Devices and Biosensors, pages 141-144, September 2006.

S. Patel, K. Lorincz, R. Hughes, N. Huggins, J. Growdon, D. Standaert,
M. Akay, J. Dy, M. Welsh, and P. Bonato. Monitoring Motor Fluctua-
tions in Patients with Parkinson’s Disease Using Wearable Sensors. [EFFE

Transactions on Information Technology in Biomedicine, 13(6):864-873,
November 2009.

S. Patel, K. Lorincz, R. Hughes, N. Huggins, J. H. Growdon, M. Welsh,
and P. Bonato. Analysis of Feature Space for Monitoring Persons with

183

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

Parkinson’s Disease with Application to a Wireless Wearable Sensor Sys-
tem. In 2007 29th Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBS), pages 6290-6293, August
2007.

S. Patel, D. Sherrill, R. Hughes, T. Hester, N. Huggins, T. Lie-Nemeth,
D. Standaert, and P. Bonato. Analysis of the Severity of Dyskinesia in
Patients with Parkinson’s Disease via Wearable Sensors. In 2006 Inter-

national Workshop on Wearable and Implantable Body Sensor Networks
(BSN), pages 4 pp. —126, April 2006.

PERFORM. Personal Health Systems for Monitoring and
Point-of-Care Diagnostics-Personalized Monitoring, October 2012.
http://www.perform-project.eu.

M. Poulopoulos, O. A. Levy, and R. N. Alcalay. The Neuropathology of
Genetic Parkinson’s Disease. Movement Disorders, 27(7):831-842, 2012.

S. D. Pradhan, B. R. Brewer, G. E. Carvell, P. J. Sparto, A. Delitto,
and Y. Matsuoka. Relation Between Ability to Track Force During Dual
Tasking and Function in Individuals with Parkinson’s Disease. In IFEFE
International Conference on Rehabilitation Robotics, 2009. ICORR 2009,
pages 885-892, June 2009.

N. P. Quinn, A. E. Lang, W. C. Koller, and C. D. Marsden. PAINFUL
PARKINSON’S DISEASE. The Lancet, 327(8494):1366-1369, 1986. Orig-
inally published as Volume 1, Issue 8494.

L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Appli-
cations in Speech Recognition. Proceedings of the IEEE, 77(2):257-286,
February 1989.

G. Rao, L. Fisch, S. Srinivasan, F. D’Amico, T. Okada, C. Eaton, and
C. Robbins. Does This Patient Have Parkinson Disease? JAMA: The
Journal of the American Medical Association, 289(3):347-353, 2003.

C. A. Ratanamahatana, E. J. Keogh, A. J. Bagnall, and S. Lonardi. A
Novel Bit Level Time Series Representation with Implications for Similar-
ity Search and Clustering. In T. B. Ho, D. W.-L. Cheung, and H. Liu, ed-
itors, PAKDD, volume 3518 of Lecture Notes in Computer Science, pages
771-777. Springer, 2005.

J. Read, A. Bifet, B. Pfahringer, and G. Holmes. Batch-Incremental Ver-
sus Instance-Incremental Learning in Dynamic and Evolving Data. In
Proceedings Symposium on Advances in Intelligent Data Analysis, pages
313-323. SPRINGER, 2012.

REMPARK. Personal Health Device for the Remote and Autonomous
Management of Parkinson’s Disease, June 2012. http://www.rempark.eu.

K. Revett, F. Gorunescu, and A.-B. M. Salem. Feature Selection in Parkin-
son’s Disease: A Rough Sets Approach. In 2009 International Multiconfer-
ence on Computer Science and Information Technology (IMCSIT), pages
425-428, October. 2009.

184

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

P. Riederer, J. Sian, and M. Gerlach. Is There Neuroprotection in
Parkinson Syndrome? Journal of Neurology, 247:IV8-IV11, 2000.
10.1007/PL0O0007777.

G. Rigas, A. Tzallas, M. Tsipouras, P. Bougia, E. Tripoliti, D. Baga,
D. Fotiadis, S. Tsouli, and S. Konitsiotis. Assessment of Tremor Activ-
ity in the Parkinson’s Disease Using a Set of Wearable Sensors. [EFE
Transactions on Information Technology in Biomedicine, PP(99):1, 2012.

D. Rodriguez-Martin, A. Sama, C. Pérez-Loépez, J. Cabestany, A. Catala,
and A. Rodriguez-Molinero. Enhancing FoG Detection By Means of Pos-
tural Context Using a Waist Accelerometer. First International Freezing
of Gait Congress (IFOG 201}), Februray 2014.

D. Rodriguez-Martin, A. Sama, C. Pérez-Loépez, J. Cabestany, A. Catala,
and A. Rodriguez-Molinero. Posture Transition Identification on PD Pa-
tients Through a SVM-based Technique and a Single Waist-worn Ac-
celerometer. Accepted for publication in Neurocomputing, 2015.

D. Rodriguez-Martin, C. Pérez-Lopez, A. Sama, J. Cabestany, and
A. Catala. A Wearable Inertial Measurement Unit for Long-Term Moni-
toring in the Dependency Care Area. Sensors, 13(10):14079-14104, 2013.

S. H. Roy, B. T. Cole, L. D. Gilmore, C. J. De Luca, and S. H. Nawab.
Resolving Signal Complexities for Ambulatory Monitoring of Motor Func-
tion in Parkinson’s Disease. In 2011 Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), pages
4832-4835, 30 2011-September 3 2011.

D. Rye. Excessive Daytime Sleepiness and Unintended Sleep in Parkin-
son’s Disease. Current Neurology and Neuroscience Reports, 6:169-176,
2006. 10.1007/s11910-996-0041-8.

A. Salarian, H. Russmann, F. J. G. Vingerhoets, P. R. Burkhard, Y. Blanc,
C. Dehollain, and K. Aminian. An Ambulatory System to Quantify
Bradykinesia and Tremor in Parkinson’s Disease. In 2003 4th Interna-
tional IEEE EMBS Special Topic Conference on Information Technology
Applications in Biomedicine, pages 35-38, April 2003.

A. Salarian, H. Russmann, C. Wider, P. R. Burkhard, F. J. G. Vinger-
hoets, and K. Aminian. Quantification of Tremor and Bradykinesia in
Parkinson’s Disease Using a Novel Ambulatory Monitoring System. I[EEFE
Transactions on Biomedical Engineering, 54(2):313-322, February 2007.

A. Sama, C. Peréz, D. Rodriguez-Martin, J. Cabestany, J. M.
Moreno Aréstegui, and A. Rodriguez-Molinero. A Heterogeneous
Database for Movement Knowledge Extraction in Parkinson’s Disease.
In Furopean Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, 2013.

A. Sama, C. Pérez-Lépez, D. Rodriguez-Martin, J. M. Moreno-Ardstegui,
J. Rovira, C. Ahlrichs, R. Castro, J. a. Cevada, R. Graga, V. Guimaraes,

185

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153)]

[154]

[155]

[156]

B. Pina, T. Counihan, H. Lewy, R. Annicchiarico, A. Bayés, A. Rodriguez-
Molinero, and J. Cabestany. A Double Closed Loop to Enhance the Qual-
ity of Life of Parkinson’s Disease Patients: REMPARK System. Studies
in health technology and informatics, 207:115-24, 2014.

A. Samii, J. G. Nutt, and B. R. Ransom. Parkinson’s Disease. The Lancet,
363(9423):1783-1793, 2004.

J. D. Schaafsma, Y. Balash, T. Gurevich, A. L. Bartels, J. M. Hausdorff,
and N. Giladi. Characterization of Freezing of Gait Subtypes and the
Response of Each to Levodopa in Parkinson’s Disease. European Journal
of Neurology, 10(4):391-398, 2003.

A. Schrag and N. Quinn. Dyskinesias and Motor Fluctuations in Parkin-
son’s Disease. Brain, 123(11):2297-2305, 2000.

P. R. Schuurman, D. A. Bosch, P. M. M. Bossuyt, G. J. Bonsel, E. J. W.
van Someren, R. M. A. de Bie, M. P. Merkus, and J. D. Speelman. A Com-
parison of Continuous Thalamic Stimulation and Thalamotomy for Sup-
pression of Severe Tremor. New England Journal of Medicine, 342(7):461—
468, 2000.

R. S. Schwab and A. C. England. Projection Technique for Evaluating
Surgery in Parkinson’s Disease. In Third symposium on Parkinson’s dis-
ease. Edinburgh: Livingstone, pages 152-157, 1969.

C. Shearer. The CRISP-DM Model: The New Blueprint for Data Mining.
Journal of Data Warehousing, 5(4), 2000.

D. M. Sherrill, R. Hughes, S. S. Salles, T. Lie-Nemeth, M. Akay, D. G.
Standaert, and P. Bonato. Advanced Analysis of Wearable Sensor Data to
Adjust Medication Intake in Patients with Parkinson’s Disease. In 2005
2nd International IEEE EMBS Conference on Neural Engineering, pages
202-205, March 2005.

J. Shieh and E. Keogh. iSAX: Indexing and Mining Terabyte Sized Time
Series. In Proceedings of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining, KDD ’08, pages 623—-631, New
York, NY, USA, 2008. ACM.

J. Sian, M. Gerlach, M. B. H. Youdim, and P. Riederer. Parkinson’s
Disease: A Major Hypokinetic Basal Ganglia Disorder. Journal of Neural
Transmission, 106:443-476, 1999. 10.1007/s007020050171.

S. L. Smith and K. Shannon. Vector-based Analysis of Motor Activities in
Patients with Parkinson’s Disease. In EUROMICRO 97. 'New Frontiers
of Information Technology’. Short Contributions., Proceedings of the 23rd
Euromicro Conference, pages 50-55, September 1997.

SPARK. Lightning-Fast Cluster Computing, January 2014.
http://www.spark-project.org.

186

[157]

[158]

[159]

[160]

[161]

162]

[163]

[164]

[165)

[166]

[167]

[168]

J. Stamatakis, J. Crémers, D. Maquet, B. Macq, and G. Garraux. Gait
Feature Extraction in Parkinson’s Disease Using Low-cost Accelerome-
ters. In 2011 Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBC), pages 7900-7903, 30 2011-
September 3 2011.

K. Steece-Collier, E. Maries, and J. H. Kordower. Etiology of Parkinson’s
Disease: Genetics and Environment Revisited. Proceedings of the National
Academy of Sciences, 99(22):13972-13974, 2002.

STORM. Scalable Tool for Resource Management, January 2014.
http://www.storm-project.net.

I. Strauss, S. K. Kalia, and A. M. Lozano. Where Are We with Surgical
Therapies for Parkinson’s Disease? Parkinsonism € Related Disorders, 20,
Supplement 1(0):S187 — S191, 2014. Proceedings of XX World Congress
on Parkinson’s Disease and Related Disorders.

Y. Su, C. R. Allen, D. Geng, D. Burn, U. Brechany, G. D. Bell, and
R. Rowland. 3-D Motion System (”data-gloves”): Application for Parkin-
son’s Disease. IFEE Transactions on Instrumentation and Measurement,
52(3):662—674, June 2003.

T. Sugiura, N. Sugiura, K. Sugiyama, and T. Yokoyama. Chaotic Ap-
proach to the Quantitative Analysis of Parkinson’s Disease. In Proceedings
of the 20th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, volume 3, pages 1583 —1586 vol.3, October-
1 November 1998.

E. Tolosa, G. Wenning, and W. Poewe. The Diagnosis of Parkinson’s
Disease. Lancet Neurol, 5(1):75-86, 2006.

TREMOR. An Ambulatory BCI-driven Tremor Suppression
System Based on Functional Electrical Stimulation, July 2011.
http://www.iai.csic.es/tremor.

M. G. Tsipouras, A. T. Tzallas, D. I. Fotiadis, and S. Konitsiotis. On
Automated Assessment of Levodopa-induced Dyskinesia in Parkinson’s
Disease. In 2011 Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC), pages 2679-2682, 30
2011-September 3 2011.

M. G. Tsipouras, A. T. Tzallas, G. Rigas, P. Bougia, D. I. Fotiadis,
and S. Konitsiotis. Automated Levodopa-induced Dyskinesia Assess-
ment. In 2010 Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBC), pages 2411-2414, 31 2010-
September 4 2010.

L. Tu and Y. Chen. Stream Data Clustering Based on Grid Density and
Attraction. ACM Trans. Knowl. Discov. Data, 3(3):12:1-12:27, July 2009.

UIMA. Unstructured Information Management Architecture, January
2014. http://uima.apache.org.

187

[169)]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

A. Umemura, J. L. Jaggi, H. I. Hurtig, A. D. Siderowf, A. Colcher, M. B.
Stern, and G. H. Baltuch. Deep Brain Stimulation for Movement Disor-
ders: Morbidity and Mortality in 109 Patients. Journal Of Neurosurgery,
98(4):779-784, 2003.

S. von Campenhausen, B. Bornschein, R. Wick, K. Boétzel, C. Sampaio,
W. Poewe, W. Oertel, U. Siebert, K. Berger, and R. Dodel. Prevalence and
Incidence of Parkinson’s Disease in Europe. Fur Neuropsychopharmacol,
15(4):473-90, 2005.

0. Sprdlik, Z. Hurdk, M. Hoskovcové, and E. Ruzicka. Tremor Analysis
By Decomposition of Acceleration Into Gravity and Inertial Acceleration
Using Inertial Measurement Unit. In 2009 9th International Conference on
Information Technology and Applications in Biomedicine (ITAB), pages
1-4, November 2009.

E. A. Wan. Discrete Time Neural Networks. Applied Intelligence, 3:91—
105, 1993. 10.1007/BF00871724.

M. Wang, B. Wang, J. Zou, L. Chen, F. Shima, and M. Nakamura. A
New Quantitative Evaluation Method of Parkinson’s Disease Based on
Free Spiral Drawing. In 2010 3rd International Conference on Biomedical
Engineering and Informatics (BMEI), volume 2, pages 694-698, October.
2010.

C. Watson, M. Kirkcaldie, and G. Paxinos. The Brain: An Introduc-
tion to Functional Neuroanatomy. Elsevier/Academic, Amsterdam, 1st
ed edition, 2010.

I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine
Learning, Tools and Techniques. Morgan Kaufmann series in data man-
agement systems. Elsevier/Morgan Kaufmann, Amsterdam [u.a.], 3. ed.
edition, 2011. XXXIII, 629 S. : Ill., graph. Darst.

E. Wolters and C. Baumann, editors. Parkinson Disease and Other Move-
ment Disorders: Motor Behavioural Disorders and Behavioural Motor
Disorders. VU University Press, De Boelelaan 1105, 1081 HV Amster-
dam, The Netherlands, January 2014. ISBN: 978 90 8659 666 9.

C. Xiuming, S. Jinjie, and Z. Caipo. Diagnose Model of Parkinson’s Dis-
ease Based on Principal Component Analysis and Sugeno Integral. In 2011
30th Chinese Control Conference (CCC), pages 2830-2834, July 2011.

H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-reduce-merge:
Simplified Relational Data Processing on Large Clusters. In Proceedings
of the 2007 ACM SIGMOD international conference on Management of
data, pages 1029-1040. ACM, 2007.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets: A
Fault-tolerant Abstraction for In-memory Cluster Computing. In Pro-
ceedings of the 9th USENIX conference on Networked Systems Design and
Implementation, NSDI'12, pages 22, Berkeley, CA, USA, 2012. USENIX
Association.

188

[180]

[181]

[182]

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster Computing with Working Sets. In Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,
pages 10-10, Berkeley, CA, USA, 2010. USENIX Association.

K. Ziegler, F. Schroeteler, A. O. Ceballos-Baumann, and U. M. Fietzek.
A New Rating Instrument to Assess Festination and Freezing Gait in
Parkinsonian Patients. Movement Disorders, 25(8):1012-1018, 2010.

D. G. M. Zwartjes, T. Heida, J. P. P. van Vugt, J. A. G. Geelen, and
P. H. Veltink. Ambulatory Monitoring of Activities and Motor Symptoms
in Parkinson’s Disease. IEEFE Transactions on Biomedical Engineering,
57(11):2778-2786, November 2010.

189

190

Glossary

a.k.a. also known as.

ADL activities of daily living.

AE analysis engine.

AT artificial intelligence.

ALv2 Apache License, version 2.0.

ANOVA analysis of variance.

APCA adaptive piecewise constant approximation.
API application programming interface.

ARMA autoregressive moving average.

ASIS anterior superior illiac spine.

BCI brain-to-computer interaction.

BS&AN body sensor and actuator network.

CAS common analysis structure.

CISI-PD clinical impression of severity index.
CMA central moving average.

COMT catechol-O-methyltransferase.

CT computed tomography.

DAPHNet Dynamic Analysis of Physiological Networks.
DB database.

DBS deep brain stimulation.

DFT discrete Fourier transform.

DM data mining.

DNN dynamic neural network.

191

DT decision tree.
DTW dynamic time warping.

DWT discrete wavelet transform.

e.g. exempli gratia (for example).
EEG electroencephalography.
EM expectation maximization.
EMA exponential moving average.
EMG electromyograph.

EU European Union.

FAQ frequently asked questions.

FES functional electrical stimulation.

FFT fast Fourier transform.

FI freezing index.

FIR finite response.

FitForAge Bayerischer Forschungsverbund FitForAge.
FN false negative.

FoG freezing of gait.

FP false positive.

FT Fourier transform.

GBD Global Burden of Disease.
GNU AGPL GNU Affero General Public License.
GNU GPL GNU General Public License.

GPS global positioning system.

HELP Home-based Empowered Living for Parkinson’s disease Patients.
HMM hidden markov model.
HYS Hoehn & Yahr scale.

i.e. id est (that is).
IICDR inter-intra class distance ratio.

IPUS Integrated Processing and Understanding of Signals.

192

IQR interquartile range.
IR infrared.

iSAX indexable symbolic aggregate approximation.

KDD knowledge discovery in databases.
KNN k-nearest neighbors.

LB Lewy body.
LCSS longest common subsequence.
LM Levenberg-Marquardt.

LN Lewy neurite.

MA moving average.

MAO-B monoamine oxidase B.

MDS Movement Disorder Society.

ML machine learning.

MM machine manager.

MOA massive online analysis.

MRI magnetic resonance imaging.

mRMR minimum redundancy maximum relevance.

MSE mean squared error.

NINDS National Institute of Neurological Disorders and Stroke.
NM node manager.
NN neural network.

NPV negative predictive value.

OS operating system.
OSM Open Street Map.

PAA piecewise aggregate approximation.
PCA principle component analysis.
PD Parkinson’s Disease.

PERFORM Personal Health Systems for Monitoring and Point-of-Care Diagnostics-
Personalized Monitoring.

193

PHS personal health system.
PL program launcher.
PPV positive predictive value.

PRIMAS precision motion analysis system.
QUEST Quebec User Evaluation of Satisfaction with Assistive Technology.

RA rolling average.

RBF radial basis function.

RC remote controlled.

RDD resilient distributed dataset.
REM rapid eye movement.

REMPARK Personal Health Device for the Remote and Autonomous Man-
agement of Parkinson’s Disease.

RF random forest.
RM resource management.
RMS root mean square.

RSGE rating scale for gait evaluation.

SAX symbolic aggregate approximation.

SCG Scaled Conjugate Gradient.

SES Schwab & England scale.

SOFA subject of analysis.

SPA signal processing algorithm.

STORM scalable tool for resource management.
SUS system usability scale.

SV support vector.

SVD singular value decomposition.

SVM support vector machine.

TCP transmission control protocol.
TN true negative.

TP true positive.

194

TREMOR An ambulatory BCI-driven tremor suppression system based on
functional electrical stimulation.

UCI University of California Irvine.

UDP user datagram protocol.

UIMA Unstructured Information Management Architecture.
UK United Kingdom.

UPDRS unified Parkinson’s Disease rating scale.

URL universal resource locator.

VM virtual machine.

VTP Virtual-Touchpad.

WEKA Waikato Environment for Knowledge Analysis.
WHO World Health Organization.

195

196

Appendix A

Parkinson’s Disease

A.1 Symptoms

197

tremor

bradykinesia
rigidity

postural instability
hypominia
dysarthria
dysphagia
sialorrhoea
decreased arm swing
shuffling gait

festination difficulty arising from
chair
e turning in bed

micropraphia
cutting food
feeding

hygiene

slow activities of daily living
glabellar reflex
blepharospasm
dystonia

striatal deformity
scoliosis
camptocormia

Table A.1: Lists a collection of motor symptoms that are associated with Parkin-
son’s Disease (PD). This table has been constructed based on data found in a

publication by Jankovic [73].

198

depression

apathy

anxiety

compulsive-obsessive behavior
repetitive behavior

attention deficit

hallucinations

illusions

delusions

delirium

anxiety and panic attacks
dementia

Rapid eye movement (REM) sleep
behavior disorder

REM loss of atonia
Non-REM-sleep
ment disorders

related move-

insomnia

excessive daytime somnolence
restless legs

periodic limb movements
nightmares

vivid dreams

sleep disordered breathing
cardiovascular system:
orthostatic hypotension

falls related to orthostatic hy-
potension

bradycardia or arrhythmia

gastrointestinal system:
sialorrhea

dysphagia and choking
reflux

vomiting

nausea

fecal constipation

fecal incontinence
urinary system:
bladder disturbances
urgency and frequency
nocturia

incontinence
reproductive system:
sexual dysfunction
erectile impotence
hypersexuality
thermoregulation:
sweating

dry eyes

heat or cold intolerance
pain

paraesthesia

olfactory disturbance
fatigue

weight changes

Table A.2: Shows a set of non motor symptoms known to be associated with PD.
The contents of this table have been gathered from publications by Jankovic [73]
and Hou et al. [69].

199

‘1oded Surpuodsoliod oY} Ul USALS sem UOIJRULIOJUI OU YR} PIJedIpul -, AQ POXIeW SP[ol "UWN[0d 1Y 9} JO 93818, oY)
Aq pojesIpur ST u0190919(] WwoldwAg SUuIpIesoy] JI0A\ poje[ey,, Iojdeyns ur peousisjel sem uorpedrqnd oy} J0U 10 IYPRYA -o[qrereduoo
JRYMOUIOS SMOI 9T} dooy 01 I9PIO Ul POJRIIISO dIom (SINSOI pUR JoseIep JO YISUS] "O°1) SON[RA SWIOS JBY) POIOU o¢ pnoys 3] ‘(syse} /
sery1AIOR Jo pury ‘sjuedoijred Jo Ioquunu ‘YUl 'o'T) USALS OS[B oIe S}oSBIRD Posh oY) U0 SIYSISUI SNOLIRA PoIYSIYSIY o1e sjutod poje[al
-y I03[e Jo 398 ' 1oded yoeo 10 -RISOUINAPRIQ IO SW}LIOS[® UOIYedIPUI JIjewiojnNe 0} Paje[dd suoryedrqnd Jo soLs © SIS €'Y 9[qel,

(%e > d)
SoInjesy JSOWl I0J JUROYIUSIS | L 9 |WwOT | X | A | X | X | A A 2~ 2 - [281] 'Te 10 seljremy
oqrs
9] SI (SIOSUS o[qereom (M)
9)e)S I0jOW JO UOIPNUS0IY | () 9 - X 21X | X| X | 22| 21X - [2GT] TR 70 [MuiTeySg
(%1 > d)
soImjesy sowr I0j queogrudig | 0 [[T | UG | X | A | X [X | M| X[/| A - | [ev1] TR 10 werrereg
(%1 > d)
soInjeoy jsowl Ioj juedHIUSIS | O | O | WOy | X | A | X | X | A | X | M| A - | [ev1] ‘e 10 uelrereg
13u9]
mopurm pue Jupjuer amyedsy | O | gl | WG | ¥ | M| X | X | X | /| /X - [e21] T8 10 [ored
TOLId WOTYRTYsd %z'g | 0 [T | WS | X | M | X | X [X [M| A X - [cet] Te 10 Pred
9Jel UOTYROYISSed YSIH | O | € - XX | A X LA X X - [121] T8 10 [ored
YYTL OV | 0 |0 | BT | X | A X | X | A | A X | A INHOLgdd | [0g1] ‘T8 10 ourtoyseq
oouwmgpetnduy | ¢ | 9 | - | X | A A X[X | M| A X | 98VIofNA | [€T1] Te 10 puewzey
ol e lwr [X | A X | A XA XX - 01T Te 90 SIA
%S98 ™Y | 0 |08 | - | X | A X |X|X|A]X]| A NHOIHAD [Pe] Te 30 eEOUR)
sy nsoy = w0 w 109foxg sIoym
! gI2| & |7 22|& %5 ¢ v
= o = = Q = (] = Q ok -+
=+ I 09 o | = 9] o+ @) @ =+ | o
= = -+ = g] J ® = =.
[} = = e} w ! e o L T |0
7y n A w Q]) =
) < @ ko] =+
o = M d | B wn| =
pﬂ S| R 21g|°
S INEOIE RN ENE
o+
= o
< =
n

200

"€y 91qe], 0} Iojor osea[d
‘suor)dLIosep UWN0d JY} UO S[IRISP SIOWL 10 *IOWSI) I0J SWILIOF R UOTIRIIPUI DIRWOINR 0} Paje[al suoryesr[qnd Jo saLIes ® 9IS "y S[qR],

(weowr) 94)F8 2y | L | 9 |WOL | X | M [X | X | M| A A2 - | [e81] Te 1o solyremy
ooudmepIp edtndwry | ¢z [8¢ | WOT | X | M| A X | A M X | X - [121] T2 30 prpadg
%% 6 0dS %666 UG | 0T | OT | WGy | X | M [X | X [A | X | /A | 2 - | [ep1] e 90 werrereg
(weowr) 9486 :0dg %9°9L wdg | OT | OT | WOy | X | A | X | X | A [X | M| A - | [ep1] TR 10 uetrereg
(weot)
%ye6 edS %T16 WS | F |61 | W | X | S X | LI X [AL L - [07T] Te 190 Aoy
%L ™V | €1 |01 |W0g | X | M [X [X [X | M| X | A - [9€1] "T& 10 sesry
I0LId UOTeWNISd %p¢ | 0 | gl | WG | ¥ | A | X | X | X | M| M| X - [c21] e 10 [Pred
%001 :2d§ %TL > WS | ¢ | 0| - [X [A | X [X | X | A | X | /| oSyioqng | [PI1] T8 90 puewzeiN
%96 0dg %66 g | T | G - X | A XX | A, X | 98YIoqNg | [€1T] T8 90 puewzRIN
%¢€8 0dg %00T WS | T | ¥ - IX AL A XX | A A X | 98YIoqng | [€1T] T 39 puewzely
ZH 88°0F T
Iolre uorjewyse Aouenbary | () T wg | X | A X | X | X | 2| X | X | 98vioqng | [T11] Te 9o puewzeiN
%96 ‘Add %66: S | 0 | ¥ | WG | A A AL AL A AKX | X | MOWNHYL | [86] T8 99 SIPIRN 97
ol vl W | A A XA AIX X | X | HONAIL | [08] Te 10 uesyuopiq
%96 *:Add %96 TS | 0 | T - U X | A XXX | X | HOWNEYL | [87] T8 90 sTpIeN o
%G6 0dS %e6 WS | ¥ | 8 | U | X | M| X | A X | AL A - [9¢] "Te 39 810D
%966 PV | - | - Jwog | X | A X | S| X [X[X|X - [e1] Te 90 puiary
S)nso -) w 109l0a sioyjn

mewlolzl g lelmlofEloly 2lg d oy

sl | 8 |BEle|lE|&8|2|g|E|S

O A N = T - I I =

s | B = e | O mlelael8|2|e

m| = |8 | o | B ..m o) o | ™

e o =) < o m wm Qq.v

g oK 215°

—~ = @
5 205 -t 1
= o | =
< =
n

201

"€V 9[qe], 03 19Ja1 oseald ‘suorydLIosep UWN{od oY}
UO S[TR)OP I0OUWT 10 "SIU0AD (H)0,]) 188 Jo JuIZoal] 10 SWILIOZ[e UOIJedIPUL J1JeUOjNE 0) Paje[al suorjeorqnd Jo SoLIos ® SIS Gy 9[qR],

Supqueromyeo | T | 1T | Wl | X | A | X | X | X | A X | 2 - | [261] ‘T8 30 sp{eyewRlg
%¢°6¢8 odg %e'88 WS | 0 | 9 - | x|l x|l x|x |22l x| 2 - [GTT] ‘Te 30 puewizeIN
oouazoyIp [eondwy] | ¢ | g - | x| 2 x| x|x |2l x| X - [79] Te 10 uey
%9T S domuogedyisse) | 0 | ¥ | w9 | X | A | X [X | A A X |2 - | [rg] ‘1o %0 onmor-sumlq
%e L6 edg %68 ruwS | g o1 | W | X | A x| Al x| 2| x| 2 - [2€] T8 10 910D
%918 odg %TgL ueg | g | 8 |wWeg | X | A | X | X | X | A | X | X | BNHAVA [1¢] Te 10 uIPRg
%918 sadg yrgL swog [g | 8 |wos | X | A X | X | A A X | 2| BNHAVA [ze] Te 10 uIPRg
S)nso -) (0)) 100loa sioyjn
N HEIEIEIREE a v
= H.T. = = 1Y = a = («] .nl. =
S|] |2|Z2|8|g|g 2|0
s|l2| = |a|U AR EERERR
> | w | o w0 = o | & 5 ™
o o @ ke] -
o = < o) w n | =
)l e | e ® | < |
g =% 8 | 8
5 25 Sl | B
=g =+
= o
< E
wn

202

€'y o[qe], 0} IojaI asea[d ‘suorydrrosep
UWN[0D 9} UO S[IRJOP SIOWL IO RISOULNSAP I0J SWIILIOS[R UOIJRIIPUI dIjeIojNe 0} paje[dl suorjedrqnd Jo SoLes ® SISIT 9y O[qRL

%EF OY | 6T | OT | WOT | X | A | X | X | A | A | X | X | WHOATAd | [$91] ‘T8 10 semodis,
%LE6 MY | 9 | ¥ |wog | X | A X | X | A A X | A | INHOAYHd | [991] ‘e 30 semodis,
-lol9 | - x| lx x| X[22X - [ge1] e % [ueyg
(weowr) %566 »0dS %06 WS | ¥ |61 | U | X | A X | LA X | AL AL - [071] ‘T8 30 Loy
opqeredos [am sy | 0 | gl | WG | X | A | X | X | X | A X | A - [F1] Te 10 [ored
REELS)|
Mopum pue Jupjuel emyedy | (0 | gl | WG | X | A | X | X [X | M| A X - [egT] Te 10 [ored
TOLIS UOTYRWINIS® %z'e | 0 [T | WG | ¥ | A | X | X | X [A | /| X - [c21] Te 10 [Pred
-1 lo] - X[A XX A2 X X - [€6] T2 30 07
(weour) %8°96 ©2V | 0 [€T | UYST | X | M | X | X | X [A | X |/ - [8L] ‘T8 10 suos(to3]
%€6 0dS %16 WS | ¥ | 8 | U | X | M| X | M X || LA - [9¢] "Te 39 10D
S)nso -) w 109loa sIoymy
IR I

u m.T- u u o q [¢] = Q e o+

Sl S 5lgl% g5l 0

=] = = o) IS o |8 |= o

= | & S sl @258 |||

) o @ i} -+

o = < o w wn =

g SR 2158

5 z m ¢ =l 1

= o |~

< =
»n

203

A.2 Diagnosis and Treatment

204

Step 1:

e Bradykinesia

e At least one of the following criteria:
— Rigidity
— 4-6 Hz rest tremor

— Postural instability not caused by primary visual, vestibular, cere-
bellar or proprioceptive dysfunction

Step 2:

e Exclude other causes of parkinsonism

Step 3:

e At least three of the following supportive (prospective) criteria:

— Unilateral onset

— Rest tremor

— Progressive disorder

— Persistent asymmetry primarily affecting side of onset
Excellent response (70-100%) to levodopa

— Severe levodopa induced chorea (dyskinesia)

— Levodopa response for five years or more

Clinical course of ten years or more

Table A.7: United Kingdom (UK) PD Society Brain Bank’s clinical criteria for
the diagnosis of probable Parkinson’s Disease. The contents have been repro-
duced based on a publication by Jankovic [73].

205

Group A features (characteristic of PD):

Resting tremor
Bradykinesia
Rigidity
Asymmetric onset

Group B features (suggestive of alternative diagnoses):

Features unusual early in the clinical course

Prominent postural instability in the first three years after symptom onset
Freezing phenomenon in the first three years

Hallucinations unrelated to medications in the first three years
Dementia preceding motor symptoms or in the first year

Supranuclear gaze palsy (other than restriction of upward gaze) or slowing
of vertical saccades

Severe, symptomatic dysautonomia unrelated to medications

e Documentation of condition known to produce parkinsonism and plausibly
connected to the patient’s symptoms (such as suitably located focal brain
lesions or neuroleptic use within the past six months)

Criteria for definite PD:

e All criteria for probable Parkinson’s are met and
e Histopathological confirmation of the diagnosis is obtained at autopsy

Criteria for probable PD:

e At least three of the four features in group A are present and

e None of the features in group B is present (note: symptom duration >
three years is necessary to meet this requirement) and

e Substantial and sustained response to levodopa or a dopamine agonist has
been documented

Criteria for possible PD:

e At least two of the four features in group A are present; at least one of
these is tremor or bradykinesia and

e Either none of the features in group B is present or symptoms have been
present < three years and none of the features in group B is present and

e Either substantial and sustained response to levodopa or dopamine agonist
have been documented or the patient has not had an adequate trial of
levodopa or dopamine agonist

Table A.8: National Institute of Neurological Disorders and Stroke (NINDS)
diagnostic criteria for PD. The contents have been reproduced based on a pub-
lication by Jankovic [73] and Gelb et al. [58].

206

Clinically possible (at least one of):

Asymmetric resting tremor
Asymmetric rigidity
Asymmetric bradykinesia

Clinically probable (any two of):

Asymmetric resting tremor
Asymmetric rigidity
Asymmetric bradykinesia

Clinically definite:

Criteria for clinically probable
Definitive response to anti Parkinson drugs

Exclusion criteria:

Exposure to drugs that can cause parkinsonism such as neuroleptics, some
antiemetic drugs, tetrabenazine, and reserpine, flunarizine, and cinnar-
izine

Cerebellar signs

Corticospinal tract signs

Eye movement abnormalities other than slight limitations of upward gaze
Severe dysautonomia

Early moderate to severe gait disturbance or dementia

History of encephalitis, recurrent head injury (such as seen in boxers), or
family history of PD in two or more family members

Evidence of severe subcortical white-matter disease, hydrocephalus, or
other structural lesions on magnetic resonance imaging (MRI) that may
account for parkinsonism

Table A.9: Clinical diagnostic criteria for idiopathic PD. The contents have
been reproduced based on a publication by Samii et al. [146].

207

Inclusion criteria:

e Clinically definite PD

e Hoehn and Yahr stage 2-4 (moderate to severe bilateral disease, but still
ambulatory when ON)

e Levodopa response with clearly defined ON and OFF periods

e Persistent disabling motor fluctuations despite best drug treatment with
some combination of

— At least three hours of OFF period daily
— Unpredictable OFF periods
— Disabling dyskinesia
e Intact cognition as measured by neuropsychological testing and no active
psychiatric disturbances

e Strong social support system and commitment from patient and family
members to keep follow-up appointments

Exclusion criteria:

Parkinson-plus syndromes
Atypical parkinsonism (e.g. vascular parkinsonism)
Drug-induced parkinsonism

Medical contraindications to surgery or stimulation (serious comorbid

medical disorders, chronic anticoagulation with warfarin, cardiac pace-

makers, etc.)

e Dementia or psychiatric issues (untreated depression, psychosis, etc.)

e Intracranial abnormalities that would contraindicate surgery (e.g. stroke,
tumor, vascular abnormality affecting the target area)

e Severe brain atrophy on imaging (makes target localization difficult)

e Serious doubt about patient’s commitment to return to follow-up visits

(several no-shows in the past, poor compliance record, etc.)

Table A.10: Proposed inclusion and exclusion criteria for deep brain stimulation
(DBS). The contents have been reproduced based on a publication by Samii et
al. [146].

208

Step 1: Diagnosis of parkinsonian syndrome

e Bradykinesia (slowness of initiation of voluntary movement with progres-
sive reduction in speed and amplitude of repetitive actions and
e At least one of the following:

— Muscular rigidity

— 4-6 Hz rest tremor

— Postural instability not caused by primary visual vestibular, cerebel-
lar or prosprioceptive dysfunction

Step 2: Exclusion criteria

e History of repeated strokes with stepwise progression of parkinsonian fea-
tures

History of repeated head injury

History of definite encephalitis

Oculogyric crises

Neuroleptic treatment at the onset of symptoms

More than one affected relative

Sustained remission

Strictly unilateral features after three years

Supranuclear gaze palsy

Cerebellar signs

Early severe autonomic involvement

Early severe dementia with disturbances of memory, language and praxis
Babiski’s sign

Presence of cerebral tumor or communicating hydrocephalus on computed
tomography (CT) scan

e Negative response to large doses of levodopa (if malabsorption excluded)

Step 3: Supportive criteria for PD (three or more required for diag-
nosis of definite PD)

Unilateral onset

Rest tremor present

Progressive disorder

Persistent asymmetry affecting side of onset
Excellent response (70-100%) to levodopa
Severe levodopa-induced chorea

Levodopa response for five years or more

Clinical course of ten years or more

Table A.11: Lists UK PD Society Brain Bank’s criteria for diagnosis of parkin-
sonian syndrome. The contents have been reproduced based on a publication
by Davie et al. [45].

209

e Substantial nerve cell depletion with accompanying gliosis in the substan-
tia nigra.

e At least 1 Lewy body in the substantia nigra or in the locus ceruleus

e No pathologic evidence of other diseases that produce parkinsonism

Table A.12: Proposed diagnostic criteria for histopathologic confirmation of PD.
The contents have been reproduced based on a publication by Gelb et al. [58].

210

Appendix B

Implementation Resources

B.1 Algorithm Samples

Listing B.1: Demonstrates the implementation of mean-binning using the Awk
programming language.

1 # Assumptions:
2 # — Input data in separated by ”;” (e.g. body—temperature

” .

.CSV)

3 # — Second column contains the actual data (e.g. body—

4
)
6
7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

temperature.csv)
BEGIN{
FS:77 ;77 ’

}

NF>=2{
VAL=$2;

Put data in BIN
if (CNTI=SIZE){

BIN [CNT4+|=VAL;
}

Process BIN, once it is full
if (CNI=SIZE){
for (1=0;i<SIZE; i++){
SUMH+=BIN [i | ;
}

for (i=0;i<SIZE; i++){
print SUM/SIZE;

211

29

O © 00O U W

—_

—_
[t

12

13
14
15

16
17
18
19
20
21
22
23
24

25

26
27
28
29
30
31
32
33

}
B.2 Framework Samples

Listing B.2: An example of a Processor implementation. The shown example
forwards its input values.

package de.claas.mosis.processing.debug;

import de.claas.mosis.annotation.Category;
import de.claas.mosis.annotation.Documentation;
import de.claas.mosis.model.ProcessorAdapter;

import java.util.List;

/%%

* The class {@link de.claas.mosis.processing.debug.

Forward}. It is intended for

x debugging purposes. This {@link de.claas.mosis.model.
Processor}

* implementation returns the input values directly. It

performs no operation
other than forwarding the received input values.

x @param <I> type of data. See {@link de.claas.mosis.
model. Processor} for
* details.
* @author Claas Ahlrichs (claasahl@tzi.de)
*/
@Documentation (
supportMultipleInputs = true,
canHandelMissingData = true,
category = Category.Other,
author = {”Claas Ahlrichs”},
description = ”This module is mostly intended for
debugging purposes. It forwards all input
data as output data. This can be useful when
two or more paths within the graph of modules
need to be normalized (i.e. their length must
be identical before they can be merged).”
purpose = ”"This implementation is intended for
debugging purposes.”)
public class Forward<I> extends ProcessorAdapter<I, I> {

@OQOverride

public void process(List<I> in, List<I> out) {
out.addAll(in);
}

212

© 00O Ui Wi+

—
N = O

[
w

14
15
16
17
18
19
20
21
22
23
24
25

26
27

28

29

30
31

Listing B.3: An example of a DecoratorProcessor implementation. The shown
example generates statistics on the processing time that a module requires.

package de.claas.mosis.processing.debug;

import de.claas.mosis.annotation.Category;
import de.claas.mosis.annotation.Documentation;
import de.claas.mosis.annotation.Parameter;
import de.claas.mosis.model. Condition;

import de.claas.mosis.model.DecoratorProcessor;

import java.util.List;

IEE:

x The class {@link de.claas.mosis.processing.debug.Time

}. It is intended for

debugging purposes. This {@link de.claas.mosis.model.

DecoratorProcessor}

* implementation measures the time (measured in
milliseconds) required to

* execute {@link de.claas.mosis.model. Processor#process(
java.util. List ,

*x java.util.List)} of the wrapped {@link de.claas.mosis.
model. Processor}

* object. Furthermore it provides the time that the
wrapped {@link

* de.claas.mosis.model. Processor} object was first
called and the time it was

x last called (measured in milliseconds , between the
current time and midnight ,

* January 1, 1970 UTC).

*

* @author Claas Ahlrichs (claasahl@tzi.de)

*

/

@Documentation (

*

category = Category.Decorator
author = {”"Claas Ahlrichs”},
description = ”"This is a realization of a

DecoratorProcessor that is mostly intended for
debugging purposes. This implementation
measures the number of milliseconds that the
decorated module requires for processing. It
can be used to analyze processing time of
modules and optimize time efficiency.”,
purpose = ”"This implementation is intended for

debugging purposes.”)

public class Time extends DecoratorProcessor<Object ,

Object> {

@Parameter (”Number of milliseconds the last

213

32
33

34
35

36
37

38
39
40
41
42
43
44
45

46

47
48

49

50
51

52

93
54

55

o6
o7
58
59

60
61
62
63
64
65
66
67

invocation of the process—method took.”)

public static final String TIME = ”time”;

@Parameter (” Total number of milliseconds spend in
process —method (since first call of process—method
and not just last invocation).”)

public static final String TOTALTIME = " total time”;

@Parameter (" Timestamp of first invocation of process—
method.”)

public static final String FIRST.CALL = 7 first call”;

@Parameter (" Timestamp of last invocation of process—
method.”)

public static final String LAST-CALL = ”last call”;

JET
* Initializes the class with default values.
*
/
public Time() {

setParameter (LOCAL + TIME, ”7);

addCondition (LOCAL + TIME, new Condition.
IsInteger ());

addCondition (LOCAL + TIME, new Condition.
IsGreaterOrEqual (0d)) ;

setParameter (LOCAL + TOTAL.TIME, 0);

addCondition (LOCAL + TOTAL.TIME, new Condition.
IsInteger ());

addCondition (LOCAL + TOTALTIME, new Condition.
IsGreaterOrEqual (0d)) ;

setParameter (LOCAL + FIRST_CALL, ”7);

addCondition (LOCAL + FIRST_CALL, new Condition.
IsInteger ());

addCondition (LOCAL + FIRST_CALL, new Condition.
IsGreaterOrEqual (0d)) ;

setParameter (LOCAL + LAST_ CALL, ”7);

addCondition (LOCAL + LAST_CALL, new Condition.
IsInteger ());

addCondition (LOCAL + LAST_CALL, new Condition.
IsGreaterOrEqual (0d)) ;

}

@Override
public void process(List<Object> in, List<Object> out
) A
long started = System.currentTimeMillis () ;
super.process (in, out);
long ended = System.currentTimeMillis () ;
long total = getParameterAsLong (TOTALTIME) ;
if (getParameter (FIRST_-CALL) .isEmpty ()) {
setParameter (FIRST_.CALL, started);
}

setParameter (LAST_.CALL, started);

214

68
69

70
71
72

© 00~ O Uk W+

10

11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36

setParameter (TIME, ended — started);

setParameter (TOTAL.TIME, total + ended — started)

)

Listing B.4: An example of a StreamHandlerImpl implementation. The shown

example provides raw access to a file.

package de.claas.mosis.io;

import de.claas.mosis.annotation.Parameter;
import de.claas.mosis.model. Condition;

import java.io.x;

IEE:

* The class {@link de.claas.mosis.io.Filelmpl}. It is

intended to provide

x access to files , such that {@link de.claas.mosis.io.

StreamHandler }
* implementations can process them.
*

x @author Claas Ahlrichs (claasahl@tzi.de)
*/

public class Filelmpl extends StreamHandlerImpl {

@QParameter ("The file that is to be accessed /
processed.”)
public static final String FILE = ”filename”;

public static final String APPEND = "append to file”;

/%%
* Initializes the class with default values.
*/

{

public FileImpl(

addCondition (FILE, new Condition.IsNotNull());

addCondition (APPEND, new Condition.IsBoolean());

)
(
setParameter (FILE, ”values.ser”);
(
(

setParameter (APPEND, false);
}

@Override
public InputStream getInputStream () throws
IOException {

return new FileInputStream (getParameter (FILE));

}

@OQOverride

215

37 public OutputStream getOutputStream () throws
IOException {

38 return new FileOutputStream (getParameter (FILE) ,
39 getParameter AsBoolean (APPEND)) ;

40 }

41

42 '}

Listing B.5: An example of a DataHandler implementation. The shown example
provides access to queue.

package de.claas.mosis.io;

import de.claas.mosis.annotation.Category;
import de.claas.mosis.annotation.Documentation;
import de.claas.mosis.annotation.Parameter;
import de.claas.mosis.model. Condition;

import de.claas.mosis.util. Utils;

0 1O Ui Wi =

9 import java.util.LinkedList;
10 import java.util.List;
11 import java.util.Queue;

13 /xx
* The class {@link de.claas.mosis.io.QueueHandler}. It
is intended to enable
15 % communication with external entities through a {@link
java.util.Queue}. This
16 = {@link de.claas.mosis.io.DataHandler} provide an
alternative to the otherwise
17 % (mostly) stream—based communication. This will
typically be utilized in
18 % scenarios where an external entity needs to push {
@link java.lang.Object}s
19 % directly into the framework (and not through other
means such as files or
20 x databases).

21

22 % @param <T> type of (incoming and outgoing) data. See {
@link

23 x de.claas.mosis.model.Processor} for details

24 % @author Claas Ahlrichs (claasahl@tzi.de)

25 x/

26 Q@Documentation (

27 category = Category.InputOutput ,

28 author = {”Claas Ahlrichs”},

29 description = "This is a realization of a

DataHandler which allows external programs to
programatically feed data into the framework

216

30

31
32
33

34
35
36
37
38
39
40
41
42
43
44
45
46

47

48

49

50

o1

52
53

and programatically read data from the
framework. This module is intended to create a
simple way of interfacing external programs
with the framework. The actual implementation
of the utilized queue can be configured (by
default a LinkedList is used). In contrast to
the BlockingQueueHandler, this module expects
external entities to provide their data
samples in a timely manner. The framework will
process all data samples in the queue until
it is empty. This assumes that the external
entity can provide data samples with at least
the same timing that the framework requires to
process them. Once the queue is empty (either
because all samples were processed or the
external entity could not keep up) processing
will stop.”,

purpose = "To allow storage and retrieval of
objects within a queue.”)

public class QueueHandler<T> extends DataHandler<T> {

@Parameter ("Name of class from queue. An instance of
this class backs this handler. Any class ,
implementing java.util.Queue, can be used.”)

public static final String CLASS = ”class (queue)”;

private Queue<I> _Queue;

/%%

* Initializes the class with default values.

*/

public QueueHandler () {
addCondition (CLASS, new Condition.ClassExists());
setParameter (CLASS, LinkedList.class.getName());

/%

x Returns the (input / output) {@link java.util.
Queue }. When in ”reading”

* mode (see {@link #isReadOnly(List)}), then the
head of the queue is

x removed and returned every time {@link #process(
java.util.List,

* java.util.List)} is called. When in ”writing” mode

(see {@Qlink

x #isWriteOnly (List)}), then all incoming elements
are appended to the

x queue every time {@link #process(java.util.List,
java.util.List)} is
called .

217

54 * @Qreturn the (input / output) {@link java.util.

Queue}
55 * /
56 public Queue<T> getQueue() {
57 return _Queue;
58 }
59
60 @SuppressWarnings (" unchecked”)
61 @Override
62 public void setUp() {
63 super.setUp () ;
64 try {
65 _Queue = (Queue) Utils.instance(Class.forName
(getParameter (CLASS)));
66 } catch (Exception e) {
67 e.printStackTrace () ;
68 }
69 }
70
71 @Override
72 public void dismantle () {
73 super.dismantle () ;
74 _Queue = null;
75 }
76
7 @Override
78 public void process(List<I> in, List<I> out) {
79 if (isReadOnly(in)) {
80 if (!getQueue().isEmpty()) {
81 out .add (getQueue().poll());
82
83 } oelse {
84 for (T obj : in) {
85 getQueue () . offer (obj);
86
87 if (shouldForward()) {
88 out.addAll(in);
89 }
90 }
91 }
92 }

Listing B.6: An example of a Link implementation. The shown example demon-
strates the case where one would want to filter the flow of data between two
modules.

package de.claas.mosis. flow;

import de.claas.mosis.model. Condition;
import de.claas.mosis.model. Configurable;

=W N

218

= O © 0 O Ot

—_ =

13

14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45

46
47
48

import de.claas.mosis.model. Observer;

import java.util.ArrayList;
import java.util.List;

/%%

* The class {@link de.claas.mosis.flow.BiasedLink}. Tt
is intended to act as a

x link between two {@link de.claas.mosis.flow.Node}
objects that only allows

* objects of a certain type to pass through. Other
objects are discarded.

*

* @author Claas Ahlrichs (claasahl@tzi.de)

*/

public class BiasedLink extends LinkAdapter implements
Observer {

public static final String CLASS = "class”;
private final List<Object> _Accepted;
private Class<?> _Class;

/%%

* Initializes the class with default values.

*

/

public BiasedLink () {
_Accepted = new ArrayList<>();
addCondition (CLASS, new Condition.IsNotNull());
addObserver (this) ;
setParameter (CLASS, Object. class.getName());

}

@Override
public boolean push(List<Object> in) {
_Accepted.clear ();
for (Object o : in) {
if (o = null || _Class.isAssignableFrom (o.

getClass ())) {
_Accepted.add(o);

}
}
return super.push(_Accepted);

}

@Override
public void update(Configurable configurable, String
parameter) {
if (CLASS.equals(parameter)) {
try {
_Class = Class.forName (getParameter (CLASS

219

49
50
51
52
93
54

0 1O Ui Wi~

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35

Listing B.7: An example of a Visitor implementation.

));
} catch (ClassNotFoundException e) {
e.printStackTrace () ;
}

The shown example

initializes all modules within a graph by calling the setUp method.

package de.claas.mosis.flow. visitor;

import de.claas.mosis.flow.CompositeNode;

import de.claas.mosis.flow.PlainNode;

import de.claas.mosis.flow. Visitor;

import de.claas.mosis.flow.iterator.OneShotLevelOrder;
import de.claas.mosis.model.Processor;

import java.util.HashSet;
import java.util.Set;

/%%

* The class {@link de.claas.mosis.flow.visitor.

*

*

*
*

*/

SettingUpVisitor }. It is an

implementation of the {@link de.claas.mosis.flow.
Visitor} interface. It is

intended to initialize all processing modules within a
graph.

@author Claas Ahlrichs (claasahl@tzi.de)

public class SettingUpVisitor implements Visitor {

private final Set<Processor> setup = new HashSet<>();

@Override

public boolean visitPlainNode (PlainNode node) {
Processor p = node.getProcessor();
if (!setup.contains(p)) {

p.setUp();
setup.add(p);

}

return true;

}

@QOverride
public boolean visitCompositeNode (CompositeNode node)

{
OneShotLevelOrder levelOrder = new

220

36
37
38
39
40
41
42
43
44

OneShotLevelOrder (node. getSources ()) ;
while (levelOrder.hasNext()) {
if (!levelOrder.next().visit(this)) {
break;
}
}

return true;

Listing B.8: An example of an [terator implementation. The shown example
provides sequential access to a graph of modules in such a way that the items
are returned with respect to their depth within the graph (i.e. shortest distance

© 00~ Tk Wi+

10

11

12

13

14

15

16

17

18

19

20

21
22

from a root). It is a level ordered Iterator.

package de.claas.mosis.flow.iterator;

import de.claas.mosis.flow.Node;

import java.util.x;

IEE:

« The class {@link de.claas.mosis.flow.iterator.
OneShotLevelOrder }. It is

* intended to provide sequential access to all {@link de
.claas . mosis. flow .Node}

x objects in a {@link de.claas.mosis.flow.Graph}. This {
@link

x java.util.Iterator} is meant for a single iteration
across all objects in a

* {@link de.claas.mosis.flow.Graph}. The objects are
returned based on their

* shortest distance to a root (or data source). Data
sources are returned first

* (i.e. level 0), then their successors (i.e. level 1),
then the successors’

¥ successors (i.e. level 2), and so on (i.e. level
3,4,...). This is repeated

* until the deepest {@link de.claas.mosis.flow.Node} ({
@link

* de.claas.mosis.flow.Node} with longest distance to a
root) was returned.

* There are no ordering constraints for {@link de.claas.
mosis . flow . Node}

* objects that have the same depth. They are essentially

randomly returned.
% <p/>

% iteration: level 0 (data sources)

221

23

24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
92
53
54
55
56
o7
o8
59
60
61
62
63
64
65
66
67

iteration: level 1

* iteration: level 2 iteration: level 3 ...</1li>

*

* @author Claas Ahlrichs (c.ahlrichs@neusta.de)
*/

public class OneShotLevelOrder implements Iterator <Node>

{

private final Set<Node> _Visited;
private final Queue<Node> _Nodes;

JET
x Initializes the class with the given parameter.
*
* @param sources the data sources to start with
*/
public OneShotLevelOrder (Set<Node> sources) {

_Visited = new HashSet<>(sources);

_Nodes = new LinkedList <>();

for (Node src : sources) {

_Nodes.add(src);
}

}

@Override

public boolean hasNext () {
return ! _Nodes.isEmpty () ;

}

@Override
public Node next () {
Node next = _Nodes.poll();
for (Node successor : next.getSuccessors()) {
if (!_Visited.contains(successor)) {
_Visited .add(successor);
_Nodes.add(successor);
}
}
return next;

}

@OQOverride
public void remove() {

throw new UnsupportedOperationException () ;
}

222

B.3 Modules of Framework

Main Modules

e Processor: This represents the interface to which all modules within the
framework adhere. Here all basic functionalities that a module must im-
plement are listed and described. Most notably, it provides a common
interface for processing time series data as well as handling of parameters.
When adding (new) modules to the framework, this interface must be
implemented either directly or indirectly by another (partial) implemen-
tation (e.g. ProcessorAdapter, BufferingProcessor, ComparingProcessor,
etc.). It is encouraged to use these modules as reference implementations.

e ProcessorAdapter: This is a partial implementation of the main inter-
face (i.e. Processor). It is intended to provide a unified way of handling
parameters. Most modules within the framework use this implementation
for getting, setting and constraining parameters. When a new module is
created, then this implementation is likely to be referenced. It provides
functionality that is expected to be common to almost all modules. Those
wanting to implement new modules may also want to use BufferingPro-
cessor or Linear as reference implementations.

e DecoratorProcessor: This implementation is meant to be overridden
in one way or another. It is intended to wrap another module and to
forward all method calls to it. Subclasses may want to override some
(or all methods) to add functionality and behavior to existing modules.
Most decorators within the framework use this default implementation
to realize their specific functionality. When new decorators are added
to the framework, then this module is likely to provide all the required
default behavior. It is encouraged to use concrete decorators as reference
implementations (e.g. Time or Logger).

e DataHandler: This represents a partial implementation for modules
that intend to act as data sources and data sinks. Here, a common set of
functions and configuration options are defined. Most modules within the
framework, that are capable of reading data from some external source
and capable of writing data to some external sink, will make use of this
module as their basis. When creating new data sources and data sinks, one
is encouraged to use modules that built on this module as reference (e.g.
StreamHandler or QueueHandler). This partial implementation allows
setting the mode of operation (i.e. read-only, write-only or read-and-
write).

o StreamHandler: This is a partial implementation of a DataHandler
which allows reading and writing of stream-based resources. This imple-
mentation manages input and output streams. It represents the middle
piece between implementations of data formats and data storage options.
This implementation will read and write to the standard input and out-
put by default. But it can also be configured to any stream-based resource
(see implementations of StreamHandlerImpl such as FileImpl or UrlImpl).
This module is most useful when creating a new data format which is also
why most data formats in this framework utilize this module. One may
want to use concrete implementations such as PlainText or Transmission-
ControlProtocollmpl as reference.

223

Input and Output

e FileHandler: This is a realization of a DataHandler which accesses file
systems entries. It is used to recursively list files and directories. By
default, it will list all files of the root file system (e.g. “/” on unix-
based operating systems and “C:” on Windows-based operating systems).
However, it can be configured to point to any directory. During reading
operations, the module will list all files and directories. During writing
operations, the module will create the files and directories that are passed
into it.

e QueueHandler: This is a realization of a DataHandler which allows
external programs to programatically feed data into the framework and
programatically read data from the framework. This module is intended to
create a simple way of interfacing external programs with the framework.
The actual implementation of the utilized queue can be configured (by
default a LinkedList is used). In contrast to the BlockingQueueHandler,
this module expects external entities to provide their data samples in a
timely manner. The framework will process all data samples in the queue
until it is empty. This assumes that the external entity can provide data
samples with at least the same timing that the framework requires to
process them. Once the queue is empty (either because all samples were
processed or the external entity could not keep up) processing will stop.

e BlockingQueueHandler: This is a realization of a DataHandler which
allows external programs to communicate with the framework. It allows
external entities to push and pull data into / from the framework thus cir-
cumventing the otherwise (mostly) stream-based interface options. The
actual implementation of the utilized queue can be configured to any
BlockingQueue (by default a LinkedBlockingQueue us used). In contrast
to the QueueHandler, this module will block during reading and writing
operations when necessary. This can be especially useful when the ex-
ternal entity wants to provide data samples at its own pace rather than
adhering to the timing requirements of the framework.

e UserDatagramProtocolHandler: This is a realization of a DataHan-
dler which provides access to UDP-based services. The module can be
used to retrieve and transmit UDP-based datagrams. Depending on the
the mode, this implementation can either retrieve (read-only), send (write-
only) or both (read-and-write). The server and port with which the com-
munication is established are configurable. The buffer used for reading
datagrams can also be configured (by default 2048 bytes are allocated).

e Linear: This implementation acts as a data source for a predefined (and
linear) sequence of numbers. The generated numbers follow the pattern
y = mx*x + b, where y corresponds to the returned number, m defines the
slope, b represents the offset (for z = 0) and x sets the starting point. Any
variable on the right hand-side of the expression can be configured. Every
call to this module will increase the value of x by one (default value) and
return the y-value. However, the step width (for x) between two successive
calls can also be configured to any real number.

e Random: This implementation acts as a data source for pseudo random
numbers. By default, it outputs a random number between zero (inclusive)
and one (exclusive). The upper and lower boundary can be configured.

224

The seed that is used to generate pseudo random numbers can also be
configured.

e Time: This implementation acts as a data source. By default it outputs
the current time in milliseconds since January first 1970. The implemen-
tation will do so regardless of the input data, if any. The module can also
be configured to return relative time values. In this mode, the first call to
this module will output zero and all succeeding calls will output the time
(in milliseconds) that elapsed since the first call.

e Null: This module is mostly intended for debugging purposes. Regardless
of the input data, it will always return exactly one “null”-value. This is
basically an empty generator.

e Classes: This implementation iterates all accessible classes within the
current class path and outputs their fully-qualified name. The returned
classes are in no particular order. The class path can be configured to
consider only classes within a particular directory or jar-file. By default,
the entire Java class path is searched and returned (i.e. including all
classes within the Java runtime environment).

Data Formats

o AbstractTextFormat: This is a partial realization of a StreamHandler
which provides common functionality for reading and writing text-based
data formats. Here, the character set, size of buffer for reading and writ-
ing operations as well as the line separator can be configured. When
creating new text-based data formats, one may want to use PlainText or
CommaSeparated Values as reference implementations.

e CommaSeparatedValues: This is a realization of an AbstractTextFor-
mat. It allows the framework to read and write data samples in the form of
comma separated values (CSV). In addition to the configuration options
from AbstractTextFormat (i.e. buffer size, line separator and character
set) and StreamHandler (i.e. whether data is read from files, websites,
etc.), this module can also be configured to include a header line. The
separator between fields can be configured as well.

e PlainText: This is a realization of an AbstractTextFormat. 1t allows the
framework to read and write plain text. The module can be configured
to enforce a line separator after writing a data sample. It can also be
configured to prepend a prefix before any writing operation.

e Serialization: This is a realization of a StreamHandler. It allows the
framework to read and write Java objects directly from files, network
streams, etc. It utilizes the serialization mechanism that are part of the
Java runtime environment.

Decorators

e BreakQOut: This is a realization of a DecoratorProcessor that is mostly
intended for debugging purposes. This implementation provides access
to the most recent set of input and output data that were passed to the
process-method. It also counts the number of calls to various methods
(e.g. setUp, process and dismantle).

225

Counter: This is a realization of a DecoratorProcessor that is mostly
intended for debugging purposes. This implementation counts the number
of times that the process-method of the decorated module was called.
Here, the count can be retrieved as a parameter.

e Logger: This is a realization of a DecoratorProcessor that is mostly in-
tended for debugging purposes. This implementation logs all method calls
including their parameters and return values. It utilizes Java’s built-in
logging mechanisms and it can be configured to use any available logger.
This implementation is most likely to be used when detailed access logs
are required.

e Sleep: This is a realization of a DecoratorProcessor that is mostly in-
tended for debugging purposes. This implementation waits a defined
number of milliseconds before calling the decorated module. It is use-
ful for slowing down the processing of data within the framework. The
wait time could be configured to a length that processing can be observed
as it happens (e.g. log messages can be read by a human as processing
happens).

e SystemOwut: This is a realization of a DecoratorProcessor that is mostly
intended for debugging purposes. This implementation outputs the input
and output data of the decorated module. A name can be configured
which would also be outputted.

e Time: This is a realization of a DecoratorProcessor that is mostly in-

tended for debugging purposes. This implementation measures the num-

ber of milliseconds that the decorated module requires for processing. It
can be used to analyze processing time of modules and optimize time
efficiency.

Miscellaneous

e BufferingProcessor: This is a partial implementation of a module
which provides a sliding window. It is intended to buffer incoming data
(in an ordered fashion) and provide access to it. The size if the sliding
window can be configured to any positive integer (including zero). Setting
the length to zero will disable buffering and all input data are directly
accessible.

e ComparingProcessor: This is a partial implementation of the main
interface (i.e. Processor) which buffers a single sample. The idea is to
provide the ability to compare an incoming sample to the previous sample
without having to use a BufferingProcessor module. By default it com-
pares input data from the first port (i.e. if multiple modules output their
data into this implementation then data from the first one is used only).
However, this number can be configured to any inbound module.

e MowvingAverage: This is a realization of the BufferingProcessor which is
used to calculate a moving average for its input data. The number of data
samples that are considered for the moving average can be configured. By
setting the mode, it can also be configured how the moving average is
calculated in the initial phase where the buffer is only partially filled (i.e.
the number of data samples in the buffer is smaller than the actual size
of the buffer). In general, the options include: waiting for the buffer to

226

fill up, using the current size of the buffer or using the actual size of the
buffer.

e Forward: This module is mostly intended for debugging purposes. It
forwards all input data as output data. This can be useful when two or
more paths within the graph of modules need to be normalized (i.e. their
length must be identical before they can be merged).

e NoOperation: This module is intended for debugging purposes. This
implementation does nothing (i.e. no forwarding, no processing, etc.) and
basically represents a dead end in the graph of modules.

e ToString: This implementation is mostly intended for debugging pur-
poses. It converts all input values into String-objects. Null values are
simply forwarded. This is especially useful when a sequence of data needs
to be dumped in a plain text file or written to the standard input-output
(i.e. terminal or console).

e Delay: This is a realization of the BufferingProcessor which allows the
delayed forwarding of input data. The delay can be configured to any
positive integer (including zero). Setting the delay to zero forwards input
data without a delay. This implementation can be used (similarly to
Forward) to avoid misalignments when multiple paths of varying lengths
within a graph of modules need to be merged.

e Distance: This is a realization of the ComparingProcessor which deter-
mines the distance between two successive input data. The module can
be configured to use any port (i.e. if multiple modules output their data
into this module then any one of them can be used). By default the first
module is used.

e Function: This is a realization of a ProcessingAdapter and it returns a
predefined sequence of numbers (similarly to Linear). This implementa-
tion returns one by default. However, the mathematical expression that is
used to generate the sequence can be configured. The input data from one
or multiple inbound modules are used as input values for the expression.
This module is especially powerful when used in combination with Linear.
Not just linear expressions, but also functions (e.g. sin, cos, etc.) as well
as exponential expressions can be utilized.

B.4 Road-Map

This section describes those modules that are required to implement the al-
gorithms presented in Chapter 6. For each of the modules, their purpose is
outlined and special attention is given to their function within the implemented
algorithm. Figure B.1 shows a general overview of how the modules can be
organized to implement the proposed algorithms.

e FileHandler: Assuming that recorded signals are stored in separate files
for each patient and recording session (see Chapter 5), then a module is
required to find and list these files. This module would be configured
to point at the root directory of the database. The module would then
recursively find all files and output them (e.g. the recordings could be
organized by medical site and patient).

227

FileHandler LoadRecording FilterPatients

Relabeling SlidingWindow Resampling

< FeatureExtraction > ’< SaveResults >

Classify

SavePerformance Performance

Figure B.1: Illustrates a possible way of implementing the algorithms presented
in Chapter 6.

e LoadRecording: This module would be fed with the files found by File-
Handler and it will have to figure out whether a particular file corresponds
to recorded signals or some other arbitrary file (e.g. patient consent form,
summary file, etc.). This could be done by inspecting the file ending or
analyzing the filename. Once the module has identified a file with recorded
signals, the contents need to be loaded into memory. Here, the module
should be configurable to only load data from the wrist sensor or only data
from the waist sensor platform. Furthermore, the actual sensor should be
specifiable (i.e. accelerometer, magnetometer or gyroscope) and whether
the recorded signals should be trimmed (i.e. whether those parts of the
recording that correspond to signals before / after the sensor was attached
to the patient should be removed).

e FilterPatient: The loaded recordings may need to be filtered. Training
of a support vector machine (SVM) requires only patients from the train-
ing dataset while testing expects only patients from the testing dataset.
The configuration of this module needs to specify which patients are re-
quired for the current goal or action (i.e. training or testing). Depending
on the structure of database, this might already be possible without load-
ing the actual signals.

e Resampling: This module resamples the raw sensor data. It is intended
to reduce the overall data and thus ease the processing within successive
modules. Here, the module only requires a sampling frequency to be
configured (e.g. 40Hz compared to the original sampling rate of 80Hz and
200Hz of the wrist and waist sensor platform).

o SlidingWindow: This module would extract the starting and ending
point for each window within the recorded signals. Each window would
be expected to have the same size and successive windows should always

228

have the same overlap (i.e. they should start at regular intervals). Both
values, length and step, need to be configurable.

Relabeling: The labels for each window are analyzed and unified for
further processing. This module needs to be supplied with details on how
positive labels, negative labels and “undefined” labels can be identified.
This module is responsible for aggregating the original (and resampled)
labels into a single label for each window. Depending on whether an SVM
is currently being trained or whether an SVM is being tested, the module
may offer the option to automatically relabel signals (i.e. when a patient
only has negative labels or “undefined” labels but not a single positive
label, then the entire recording could be relabeled with negative labels).
FeatureExtraction: This module would also utilize the starting and
ending points for the windows to extract a set of features . Only the data
within each window are used to extract features that are related to the
symptom being trained or tested. The module should have at least an
option to specify whether the full or reduced feature set should be used
(see Chapter 6).

Train: This module performs the actual training of an SVM. It requires
a kernel function (e.g. linear or radial basis function (RBF)), cost and
gamma values. Furthermore, the number of folds used during cross val-
idation needs to be specified as well as a place where the trained SVM
model should be stored (including any normalization parameters).
Classify: This module uses the extracted features to classify each window
and determine whether a particular symptom is detected (or not). This
module needs to be told where the SVM model resides such that it can
load the model, normalize the data and start recognizing the symptom.
SaveResults: This module is used to persist or save any results that
were obtained up to this point. This is mainly to have something for later
reference and for verifying the correct functioning of preceding modules.
Here, only a path for storing the results and whether they should be
appended to existing results are required.

Performance: This module uses the classification results to determine
the actual performance. Here, the module may be configured to perform
another aggregation in order to apply a meta-analysis. The level of aggre-
gation should be specified (i.e. if any aggregation is to be performed). In
case of any aggregation, the lower and upper thresholds (see Chapter 6)
need to be specified as well.

SavePerformance: This module is much like the SaveResults module,
but instead of persisting the features and classification results, the actual
performance in terms of true positives (TPs), true negatives (TNs), false
positives (FPs) and false negatives (FNs) are stored. This module also
only requires a place to store the data and whether it should append the
data to existing performance results.

229

230

Appendix C

Additional Results in
Signifying Motor Symptoms

C.1 Tremor (at Rest)
C.1.1 Any Tremor at Waist

See Table C.1, Table C.2, Table C.3 and Table C.4.

C.1.2 Lower Tremor at Waist
See Table C.5, Table C.6, Table C.7 and Table C.8.

C.1.3 Upper Tremor at Waist
See Table C.9, Table C.10, Table C.11 and Table C.12.

C.2 Dyskinesia

C.2.1 Any Dyskinesia at Waist
See Table C.13, Table C.14, Table C.15 and Table C.16.

Training Test
Number of tremor windows 1689 8591
Number of non-tremor windows 1077 97244
Number of recordings in ON state 3 86
Number of recordings in OFF state 6 90
Overall number of recordings 9 176

Table C.1: Lists the number of windows (before aggregation) that are used for
signifying tremor (i.e. any tremor).

231

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
Sensitivity (train) 0.673 0.531 0.756 0.780
Specificity (train) 0.492 0.525 0.411 0.499
Data Usage (train) 1.000 1.000 1.000 1.000
Geometric Mean (train) || 0.575 0.528 0.557 0.624
Accuracy (train) 0.495 0.525 0.418 0.504
Sensitivity (test) 0.646 0.600 0.752 0.646
Specificity (test) 0.533 0.559 0.408 0.504
Data Usage (test) 1.000 1.000 1.000 1.000
Geometric Mean (test) 0.587 0.579 0.554 0.571
Accuracy (test) 0.543 0.563 0.438 0.517

Table C.2: Results (any-tremor-waist) for detecting tremor using the naive ap-
proach.

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
t 60 45 60 15
th 0.750 0.550 0.800 0.900
Sensitivity (train) 0.533 0.500 0.600 0.750
Specificity (train) 0.780 0.625 0.770 0.815
Data Usage (train) 1.000 1.000 1.000 1.000
Geometric Mean (train) || 0.645 0.559 0.679 0.782
Accuracy (train) 0.768 0.619 0.762 0.813
Sensitivity (test) 0.434 0.579 0.565 0.349
Specificity (test) 0.827 0.636 0.695 0.808
Data Usage (test) 1.000 1.000 1.000 1.000
Geometric Mean (test) 0.599 0.607 0.626 0.531
Accuracy (test) 0.785 0.630 0.681 0.765

Table C.3: Results (any-tremor-waist) for detecting tremor using the one-sided
approach.

232

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
t 25 20 60 45
th 0.150 0.100 0.350 0.400
thy, 1.000 0.950 1.000 1.000
Sensitivity (train) 0.777 0.750 1.000 0.769
Specificity (train) 0.807 0.715 0.871 0.880
Data Usage (train) 0.218 0.215 0.206 0.452
Geometric Mean (train) || 0.792 0.732 0.933 0.823
Accuracy (train) 0.806 0.715 0.878 0.873
Sensitivity (test) 0.645 0.670 0.681 0.480
Specificity (test) 0.811 0.755 0.790 0.821
Data Usage (test) 0.261 0.257 0.296 0.508
Geometric Mean (test) 0.723 0.711 0.733 0.628
Accuracy (test) 0.793 0.747 0.774 0.787

Table C.4: Results (any-tremor-waist) for detecting tremor using the two-sided
approach.

Training Test
Number of tremor windows 44 1204
Number of non-tremor windows 4071 112747
Number of recordings in ON state 3 86
Number of recordings in OFF state 6 87
Overall number of recordings 9 173

Table C.5: Lists the number of windows (before aggregation) that are used for
signifying tremor (i.e. lower tremor).

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
Sensitivity (train) 0.000 0.107 0.160 0.178
Specificity (train) 0.999 0.996 0.996 0.995
Data Usage (train) 1.000 1.000 1.000 1.000
Geometric Mean (train) || 0.000 0.326 0.400 0.421
Accuracy (train) 0.994 0.993 0.993 0.992
Sensitivity (test) 0.040 0.042 0.064 0.041
Specificity (test) 0.998 0.994 0.991 0.991
Data Usage (test) 1.000 1.000 1.000 1.000
Geometric Mean (test) 0.202 0.206 0.252 0.203
Accuracy (test) 0.987 0.984 0.981 0.980

Table C.6: Results (lower-tremor-waist) for detecting tremor using the naive
approach.

233

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
t 45 25 25 25
th 0.300 0.100 0.200 0.250
Sensitivity (train) 0.000 0.400 0.400 0.400
Specificity (train) 1.000 0.990 0.996 0.995
Data Usage (train) 1.000 1.000 1.000 1.000
Geometric Mean (train) || 0.000 0.629 0.631 0.631
Accuracy (train) 0.992 0.986 0.993 0.992
Sensitivity (test) 0.089 0.112 0.146 0.101
Specificity (test) 1.000 0.981 0.985 0.989
Data Usage (test) 1.000 1.000 1.000 1.000
Geometric Mean (test) 0.298 0.332 0.379 0.316
Accuracy (test) 0.986 0.970 0.974 0.977

Table C.7: Results (lower-tremor-waist) for detecting tremor using the one-sided
approach.

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
t 10 25 25 25
th; 0.100 0.100 0.250 0.250
thy 0.400 0.300 0.350 0.300
Sensitivity (train) 0.000 0.400 0.400 0.400
Specificity (train) 0.999 1.000 1.000 1.000
Data Usage (train) 0.996 0.990 0.997 0.995
Geometric Mean (train) || 0.000 0.632 0.632 0.632
Accuracy (train) 0.994 0.996 0.996 0.996
Sensitivity (test) 0.053 0.092 0.113 0.090
Specificity (test) 0.999 0.996 0.994 0.992
Data Usage (test) 0.994 0.984 0.992 0.996
Geometric Mean (test) 0.230 0.302 0.336 0.300
Accuracy (test) 0.988 0.984 0.983 0.980

Table C.8: Results (lower-tremor-waist) for detecting tremor using the two-sided
approach.

Training Test
Number of tremor windows 1645 7455
Number of non-tremor windows 1077 98864
Number of recordings in ON state 3 86
Number of recordings in OFF state 6 90
Overall number of recordings 9 176

Table C.9: Lists the number of windows (before aggregation) that are used for
signifying tremor (i.e. upper tremor).

234

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
Sensitivity (train) 0.590 0.536 0.751 0.926
Specificity (train) 0.482 0.474 0.405 0.493
Data Usage (train) 1.000 1.000 1.000 1.000
Geometric Mean (train) || 0.533 0.504 0.551 0.676
Accuracy (train) 0.483 0.474 0.409 0.499
Sensitivity (test) 0.665 0.668 0.751 0.621
Specificity (test) 0.528 0.515 0.404 0.499
Data Usage (test) 1.000 1.000 1.000 1.000
Geometric Mean (test) 0.593 0.587 0.551 0.556
Accuracy (test) 0.539 0.527 0.431 0.508

Table C.10: Results (upper-tremor-waist) for detecting tremor using the naive
approach.

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
t 30 20 15 15
th 0.700 0.650 0.850 0.900
Sensitivity (train) 0.555 0.523 0.642 0.892
Specificity (train) 0.679 0.620 0.717 0.812
Data Usage (train) 1.000 1.000 1.000 1.000
Geometric Mean (train) || 0.614 0.569 0.679 0.851
Accuracy (train) 0.676 0.617 0.716 0.814
Sensitivity (test) 0.509 0.599 0.539 0.305
Specificity (test) 0.741 0.658 0.675 0.804
Data Usage (test) 1.000 1.000 1.000 1.000
Geometric Mean (test) 0.614 0.628 0.603 0.495
Accuracy (test) 0.721 0.653 0.664 0.763

Table C.11: Results (upper-tremor-waist) for detecting tremor using the one-
sided approach.

235

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
t 45 45 60 60
th 0.200 0.150 0.250 0.400
thy, 0.950 1.000 1.000 1.000
Sensitivity (train) 0.666 1.000 1.000 1.000
Specificity (train) 0.791 0.853 0.755 0.858
Data Usage (train) 0.213 0.095 0.157 0.421
Geometric Mean (train) || 0.726 0.923 0.868 0.926
Accuracy (train) 0.787 0.857 0.773 0.866
Sensitivity (test) 0.696 0.787 0.777 0.410
Specificity (test) 0.836 0.850 0.714 0.812
Data Usage (test) 0.248 0.157 0.228 0.488
Geometric Mean (test) 0.763 0.818 0.745 0.577
Accuracy (test) 0.823 0.845 0.723 0.778

Table C.12: Results (upper-tremor-waist) for detecting tremor using the two-
sided approach.

Training Test
Number of dyskinesia windows 2825 10639
Number of non-dyskinesia windows 5721 84031
Number of recordings in ON state 7 82
Number of recordings in OFF state 6 90
Overall number of recordings 13 172

Table C.13: Lists the number of windows (before aggregation) that are used for
signifying dyskinesia (i.e. trunk dyskinesia).

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
Sensitivity (train) 0.747 0.814 0.787 0.788
Specificity (train) 0.598 0.568 0.559 0.513
Data Usage (train) 1.000 1.000 1.000 1.000
Geometric Mean (train) || 0.668 0.680 0.663 0.636
Accuracy (train) 0.622 0.609 0.597 0.559
Sensitivity (test) 0.678 0.672 0.676 0.732
Specificity (test) 0.573 0.545 0.540 0.519
Data Usage (test) 1.000 1.000 1.000 1.000
Geometric Mean (test) 0.623 0.605 0.604 0.616
Accuracy (test) 0.584 0.559 0.555 0.542

Table C.14: Results (any-dyskinesia-waist) for detecting dyskinesia using the
naive approach.

236

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
t 60 60 60 60
th 0.600 0.750 0.750 0.700
Sensitivity (train) 0.753 0.726 0.685 0.685
Specificity (train) 0.759 0.844 0.808 0.826
Data Usage (train) 1.000 1.000 1.000 1.000
Geometric Mean (train) || 0.756 0.783 0.744 0.752
Accuracy (train) 0.758 0.815 0.778 0.791
Sensitivity (test) 0.660 0.514 0.584 0.541
Specificity (test) 0.739 0.835 0.846 0.809
Data Usage (test) 1.000 1.000 1.000 1.000
Geometric Mean (test) 0.698 0.655 0.703 0.661
Accuracy (test) 0.727 0.788 0.807 0.769

Table C.15: Results (any-dyskinesia-waist) for detecting dyskinesia using the
one-sided approach.

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
t 30 45 60 60
th 0.100 0.100 0.300 0.250
thy 1.000 1.000 0.900 0.900
Sensitivity (train) 0.830 0.900 0.833 0.886
Specificity (train) 0.938 0.979 0.914 0.937
Data Usage (train) 0.200 0.229 0.357 0.330
Geometric Mean (train) || 0.882 0.939 0.873 0.911
Accuracy (train) 0.892 0.943 0.887 0.918
Sensitivity (test) 0.787 0.717 0.770 0.733
Specificity (test) 0.845 0.818 0.860 0.841
Data Usage (test) 0.160 0.161 0.300 0.271
Geometric Mean (test) 0.815 0.766 0.813 0.785
Accuracy (test) 0.833 0.792 0.842 0.820

Table C.16: Results (any-dyskinesia-waist) for detecting dyskinesia using two-
sided approach.

237

Training Test
Number of dyskinesia windows 660 4111
Number of non-dyskinesia windows 5721 99144
Number of recordings in ON state 7 82
Number of recordings in OFF state 6 90
Overall number of recordings 13 172

Table C.17: Lists the number of windows (before aggregation) that are used for
signifying dyskinesia (i.e. trunk dyskinesia).

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
Sensitivity (train) 0.761 0.562 0.738 0.558
Specificity (train) 0.632 0.672 0.632 0.655
Data Usage (train) 1.000 1.000 1.000 1.000
Geometric Mean (train) || 0.694 0.614 0.682 0.605
Accuracy (train) 0.639 0.666 0.637 0.651
Sensitivity (test) 0.671 0.618 0.673 0.636
Specificity (test) 0.659 0.704 0.682 0.696
Data Usage (test) 1.000 1.000 1.000 1.000
Geometric Mean (test) 0.665 0.660 0.678 0.666
Accuracy (test) 0.660 0.701 0.682 0.694

Table C.18: Results (trunk-and-strong-limb-dyskinesia-waist) for detecting
dyskinesia using the naive approach.

C.2.2 Trunk + Strong Limb Dyskinesia at Waist
See Table C.17, Table C.18, Table C.19 and Table C.20.

238

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
t 45 60 45 60
th 0.550 0.550 0.550 0.450
Sensitivity (train) 0.778 0.593 0.750 0.667
Specificity (train) 0.744 0.795 0.741 0.671
Data Usage (train) 1.000 1.000 1.000 1.000
Geometric Mean (train) || 0.760 0.687 0.745 0.669
Accuracy (train) 0.747 0.779 0.742 0.671
Sensitivity (test) 0.677 0.593 0.706 0.721
Specificity (test) 0.780 0.824 0.820 0.747
Data Usage (test) 1.000 1.000 1.000 1.000
Geometric Mean (test) 0.726 0.699 0.761 0.734
Accuracy (test) 0.775 0.812 0.814 0.746

Table C.19: Results (trunk-and-strong-limb-dyskinesia-waist) for detecting
dyskinesia using the one-sided approach.

Kernel RBF Linear RBF Linear
Features Freq. Freq. All All
t 60 25 60 30
th 0.150 0.100 0.150 0.150
thy, 0.950 0.900 0.950 0.900
Sensitivity (train) 1.000 0.778 1.000 0.706
Specificity (train) 0.881 0.835 0.915 0.871
Data Usage (train) 0.286 0.385 0.277 0.366
Geometric Mean (train) || 0.939 0.806 0.956 0.784
Accuracy (train) 0.893 0.832 0.922 0.858
Sensitivity (test) 0.737 0.692 0.718 0.620
Specificity (test) 0.962 0.893 0.973 0.946
Data Usage (test) 0.262 0.369 0.273 0.354
Geometric Mean (test) 0.842 0.786 0.836 0.766
Accuracy (test) 0.950 0.883 0.959 0.932

Table C.20: Results (trunk-and-strong-limb-dyskinesia-waist) for detecting
dyskinesia using the two-sided approach.

239

240

Appendix D

Questionnaires

241

Personal Health Device for the Remote
gg;l _ and Autonomous Management of ., -
Parkinson’s Disease PROGRAME
Documento . . Revisio: 1
CRF_ Scra;nnlnr;:g%;n}g baseline Data: 1/10/2012
Pag.:
PARTNER QUESTIONNAIRE NUMBER:......cc00ue1se
TEKNON ..t eeeeeeeeeeeeeeneeeensesssesensesesenesens 1 | Date:
NUIG vttt eeeeee e et et eeeeeeeeeeeeneeeeneenseeennaeeanas 2 .
FSL oo, 3 REMPARK Project
== P 4 Screening visit and baseline visit
NAME: IDENTIFYING LABEL
SURNAME:
PHONE NUMBER:
ADDRESS:
INFORMATION:

The object of study is to create a technological device that automatically recognizes different motor symptoms in
Parkinson's patients. To do so, you will be visited by researchers at home twice. The first day will be asked questions
about your Parkinson's disease and your overall health. The second day will be placed two devices at the waist and
wrist and will be asked to perform a series of activities and movements both in ON phase and OFF phase. To induce
the OFF state, you may be asked to discontinue your Parkinson'’s pills for 12 hours prior to the experiment (as you
know, your neurologist is aware of the experiment and the possible discontinuation of treatment for 12 hours). The
second day will also be asked to perform their normal activity for a few hours, taking positions devices. During those
hours will be accompanied at all times by a researcher will collect data about your symptoms and their movements,
which are important to develop the device. Some of the test will be video recorded.

We appreciate very much your cooperation. Please read carefully the information sheet we deliver. We are always
available to answer your questions.

INTERVIEWER
0O I have informed the patient of the study procedures..........ooeevriiiiiiiiiiiiiiccc e, 1
O I have left a copy of the patient information sheet........ccccovvviiiiii . 2
INCLUSION CRITERIA:
1.1 - Did he/she sign the consent form?
. NO ettt 1
® YES.iiiiiiiiii 2

A. SOCIODEMOGRAPHIC

A.3 Marital Status (/N7, read).

Single
A.1 Sex: Married
o Male.oooviiiiiiiiiieenn, 1 Living with partner
e Femalecccceevunnnnnn 2 Separated
Widowed
(Don’t read) NO ANSWER

O UVD[WIN |

A.2Age: ... ears old
9 year A.4 Until what age studied?

Age: ... years old

B. HUGHES et al DIAGNOSIS CRITERIA FOR PARKINSON’S DISEASE.

B. 1. DIAGNOSIS OF PARKINSONIAN SYNDROME

B. 1. 1 Bradykinesia

(Slowness of initiation of voluntary movement with
progressive reduction in speed and amplitude of
repetitive actions)

B. 2. EXCLUSION CRITERIA FOR PARKINSON'S DISEASE:

1.- History of repeated strokes with stepwise
progression of parkinsonian features
B NO i 1
(R =P 2

B NO it e 1
R €U PPN 2

X NO 1o 1
O € =PRI 2

X NO 1o 1
B YES tiiiiriiiieeitrriee e e e s e e rnn 2

B NO it e 1
R =P PPTRUPN 2

K NO tireeei et rr e 1

O [TR 1

B NO it e 1
R €=U PPTUPN 2

B. 1. 2 And at least one of the following:

1.- Muscular rigidity
B NOccciri 1

O [TP 1

3.- Postural instability not caused by primary visual,
vestibular, cerebellar, or proprioceptive dysfunction.
R [T 1

<R 1o T OO 1

O [TP 1

B NOuier e e e 1

12.- Early severe dementia with disturbances of
memory, language, and praxis
B NOrii 1

B NOiier it 1

14.- Presence of cerebral tumour or communicating
hydrocephalus on CT scan
B NOccciie 1

15.- Negative response to large doses of Levodopa (if
malabsorption excluded)
X NOL .t s 1

R [T OO 1

INCLUSION CRITERIA:

1.2 - ¢Does the patient fulfill the Parkinson’s Disease criteria?

C. MODIFIED HOEHN AND YAHR STAGING

(Mark the appropriate option).

NO SIGNS Of AISEASE. . ..eiutruiiiiiiiiiiiiie et e e e e e s e e s e e e e a e e s e e et e e s b e e e e eeenanaaneeeeeennnen 0
Unilateral diSEASEoooviiiiiie e 1
Unilateral plus axial INVOIVEMENTuuuiiiiiiiiiie e e e e e e e b e 1,5
Bilateral disease, without impairment of balanCe........cviviiiiiiiiii 2
Mild bilateral disease, with recovery on pull tESt.........ccuiuiiiiiiii s 2,5
Mild to moderate bilateral disease; some postural instability; physically independentccccceeeeeee 3
Severe disability; still able to walk or stand UNASSISTEM..........cceiiiiiiiiiiiiirrier e 4
Wheelchair bound or bedridden unless aidedccccciviiiiiniinii 5

INCLUSION CRITERIA:

1.3 - In the best state (ON state)... does he/she have a score on the Hoehn and Yahr staging
greater than 2?

NOTE: Patients with Hoehn and Yahr of 2 could be included if it is expressly authorized by the recruitment coordinator.

D. CLINICAL FLUCTUATIONS

1. Are "off" periods predictable? 3. Do "off" periods come on suddenly, within
a few seconds?
. NO cevvr s 0
® YES . 1 0 NG e
® YES i

. NO tiiiiiiiri i eeereeaeaeeas 0 patlent "Off" on average?

1-25% Of daY wevvveveeirreeeee e
26-50% Of day.....ceevvriiininnniiinniiiiiinens
51-75% Of day....ceeeeeerierinnnreeneeseninneees
76-100% Of dayeevrruveeniniininssrninennnne

4. What proportion of the waking day is the

INCLUSION CRITERIA:
I.4a - Does he/she have clinical fluctuations?
(Any positive answer to the 4 previous questions)

INCLUSION CRITERIA:

1.4b —Can you walk without human or technical (cane, walker, ...) assistance when you are “off"?

INCLUSION CRITERIA:
1.5 - Is he/she aged between 50 and 75 years old?

NOTE: in some cases the recruitment coordinator may authorized the inclusion of patients ageing up to 80.

Does he meet all the criteria for inclusion?

QT N T 1 (END OFF QUESTIONNAIRE)

E. FREEZING OF GAIT:

All answers, except in response to item 3, should be based on the experience over the last week.

This questionnaire should be completed by the researcher after asking and demonstrating freezing

phenomenon, if necessary.

1.- During your worst state — do you walk:

o NOrMAllY .cooeeviiiiiiiiieiieeeeeeeeeeeeeeeeeees 0 e never happened...................
e almost normally ... somewhat slow..1 e 1-2seconds.....cccceeerrnnnnnnn.
e slow but fully independent.............. 2 e 3 -—10seconds........cceerrvnnnnn
e need assistance or walking aid........ 3 e 11 —-30seconds......ccccuvnnnnnn.
e unabletowalk........ccevvreerieiriiinennns 4 e unable to walk for more

than 30 seconds...................
2.- Are your gait difficulties affecting your daily
activities and independence?

5.- How long is your typical start hesitation

4.- How long is your longest freezing episode?

episode

e notatall....ceeeeiiiii 0 (freezing when initiating the first step)?

o mildly.....oovieeiiiiiieieee 1

e moderately.....cccceiiiiiiiiiiiiiiiiiiiinnes 2 ® NONE .oiiiieiiiri e

® SEVETEIY wiiieiiieieere e 3 takes longer than 1 second to

e unabletowalk.......cccevriirriiiiiiinennns 4 start walking.......coooeviiiiin,

o takes longer than 3 seconds to
start walking.......ccoovvieeiiiniinnneeen,

3.- Do you feel that your feet get glued to the floor e takes longer than 10 seconds to
while walking, making a turn or when trying to initiate start walking.......ccovvvieeeveniiniiceen,
walking (freezing)? e takes longer than 30 seconds to

LI 1= =] R 0 start walking.......coooeviiniin,

e very rarely: about once a month..... 1

e rarely: about once a week............... 2

e often: about once a day 3 6.- How long is your typical turning hesitation: (freezing

e always: whenever walking.............. when turning)

(10] o = TP 0
resume turning in 1 to 2 seconds.......... 1
resume turning in 3 to 10 seconds........ 2

resume turning in 11 to 30 seconds...... 3
unable to resume turning for more
than 30 SecoNdS ..vu.vverruerieennerirennenens 4

F. DYSKINESIAS

1.- Duration: What proportion of the waking
day are dyskinesias present?
(Historical information.)

L (] o 0
o 1-25% of day......cccevvvnniiiiiinnens 1
o 26-50% of day......cccevvvuiinrnnnnn. 2
e 51-75% of day......cceevuuuiennnnnn. 3
e 76-100% of day.....ccvvvvuuierrnnnnn. 4

2.- Disability: How disabling are the
dyskinesias?

3.- Painful Dyskinesias: How painful are the
dyskinesias?

e No painful dyskinesias 0
LYY [T] | 1
e Moderate......ccoevvvniiiinnnnennn. 2
o SEVEre...covviiiiiiiiiieeinee e, 3
o Marked......ooieeiiiiiiiniiienees 4

4.- Presence of Early Morning Dystonia
(Historical information)

(Historical information; may be modified by ¢ NO.iiin 0
Ofﬁce examination.) L YeS ... 1

e Notdisabling.......cccvvvuiiiniiennn. 0

e Mildly disabling........cc.ccooviunnes 1

e Moderately disabling................ 2

e Severely disabling.................... 3

e Completely disabled................. 4
G. CLINICAL EVALUATION
G. 1. Past medical history
DISEASE YES | NO | DK DISEASE YES | NO | DK
1. High blood pressure 1 2 9 11. Urinary incontinence 1 2 9
2. Heart infarct 1 2 9 12. High cholesterol 1 2 9
3. Other heart conditions 1 2 9 13. Depression 1 2 9
4. Arthritis, osteoarthritis or 14. Anxiety disorder (diagnosed by a

rheumatic conditions 1 2 9 doctor) 1 2 9
15, Stroke, cerebral embolism,
cerebral infarct or cerebral
5. Back ache (cervical) 1 2 9 bleeding in the past. 1 2 9
6. Back ache (lumbar) 1 2 9 16. Cancer (malignant tumors) 1 2 9
7. Asthma 1 2 9 17. Osteoporosis 1 2 9
8. Chronic bronchitis 1 2 9 18. Dementia (diagnosed by a doctor) 1 2 9
9. Diabetes 1 2 9 19. Thyroid disease 1 2 9
10. Pacemaker or other implantable
devices 1 2 9 20. Drugs or alcohol abuse 1 2 9

G. 2. Other past medical history

G2.1

G2.2

G3.3

G. 3. Parkinson'’s disease

G. 3.1 Year of onset of symptoms:

G. 3.2 Year of diagnosis:

EXCLUSION CRITERIA:

EXCLUSION CRITERIA:

EXCLUSION CRITERIA:

G. 4. Current drug regimen

G4.a - Drug 1 name

G4.b - Dose and timing of drug 1

E.1 - Does he / she have other health problems that impair gait or physical activity?

E.2 - Is a major consumer of drugs or alcohol?

E.3 - Does he/she wear a pacemaker or other implantable devices?

G4.i - Drug 5 name

G4.j - Dose and timing of drug 5

G4.c - Drug 2 name

G4.d - Dose and timing of drug 2

G4.k - Drug 6 name

G4.l - Dose and timing of drug 6

G4.e - Drug 3 name

G4.f - Dose and timing of drug 3

G4.m - Drug 7 name

G4.n - Dose and timing of drug 7

G4.g - Drug 4 name

G4.h - Dose and timing of drug 4

G4.6 - Drug 8 name

G4.p - Dose and timing of drug 8

H. CINICAIFLUCTUATINS REPORTED BYHE PA'ENT:

Mark in the box below each dose of L-dopa (milligrams) and its relationship to the ON and OFF periods.
Mark also sleeping hours (see example below).

5h 6h 7h 8h 9h 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 20h 21h 22h 23h 24h 1h 2h 3h 4h

L-DOPA
ON
OFF
Sleep
Example:
[T
| EXCLUSON CRIERRA: |
: E4 -E heghe under tatment whdupodopa (gmp}) |
|
I B NOweeeeeereeeeeseeeeesesesesesesesseseseeeeseessnees 1 :
| I (= 2 I
' |
. _ _ |
[T e e
| EXCLUSON CRIERIA: |
: E.5 Does he/she haweapomorphine pump |
|
I B NOweeeeeereeeeeeeeeeseseeeesesesesseseseeesseessnees 1 :
| I (= 2 I
' |
. _ _ |
S 5 0 S
| EXCLUSON CRIERRA: :
: E.6 - Is Heshe on deep brain stiriomlateatment? I
|
| B NOuvvvrumesesseessssssssssssessssssssssssssssssens 1 :
| R (= 2 I
' |
L |
S 5 S 0 S
| EXCLUSON CRIERRA: :
: EZ7 - Are yoanrolled ianother cligil tridl |
|
| B NOuvvvurresvseeessssssessssssessssssessssssessssens 1 :
| O = 2 |
' |
|

I. Mini-Mental:

IFolstein Mini-Mental State Exam

I. ORIENTATION (Ask the following
questions; cormect = &)

Record Each Answer:

(Maximum Score = 10)

first repetition determines the score. If
hefshe does not repeat all three correctly,
keep saying them up to six tries until
hefshe can repeat them

What is today's date? Date (eg, May 21) 10
What is today's year? Year 10
What is the month? Maonth 10
What day is today? Day (eg, Monday) 10
Can you also tell me what season it is? Season 10
Can you also tell me the name of this - -

hospital/dinic? Hospital/Clinic 10
What floor are we on? Floor 10
What cty are we in? City 10
What county are we in? County 10
What state are we in? State 10
II. IMMEDIATE RECALL (comect =&) (Maximum Score = 3)
Ask the subject if you may test his/her Ball 10
memory. Say "ball, "flag,” "tree" clearly

and slowly, about on second for each. Then Fl3 10
ask the subject to repeat them. Check the g

box at right for each correct response. The Tree 10

NUMBER OF TRIALS:

III. ATTENTION AND CALCULATION

A. Counting Backwards Test

(Record each response, correct = 6)

(Maximum Score = 5)

box labeled FINAL SCORE at right, and use
it in deniving the TOTAL SCORE.

Ask the subject to begin with 100 and count a3 10

backwards by 7. Record each response.

Check one box at nght for each correct 86 ||1 O

response. Any response 7 or less than the

previous response is a correct response, 79 10

The socre is the number of correct

subtractions. For example, 93, 87, 80, 72, 72 10

66 is a score of 4; 93, 86, 78 70, 62, is 2;

92, 87, 78, 70, 6515 0. 65 i0d

B. Spelling Backwards Test

Ask the subject to spell the word "WORLD" D 10

backwards. Record each response. Use the

instructions to determine which are correct L 10

responses, and check one box at right fore

each correct response. R 10

[c. Final Score | o 1o |
Compare the scores of the Counting | W ||1 O ‘
Backwards and Spelling Backwards tests.

Write the greater of the two socres in the FINAL SCORE (Max of 5 or Greater of

the two Scores)

—m

V. RECALL (cormrect = E) (Maximum Score = 3)
Ask the subject to recall the three words Ball 10

you previously asked him/her to Fi3 =

remember, Check the Box at right for each g

cormrect response. Tree 10

V. Language (cormmect =B) (Maximum Score = 9)

Naming Watch 10

Show the subject a wrist watch and ask

him/her what it is. Repeat for a pendil. pencil 1d
Repetition

ask t.'.-'e subject to repeat "No, ifs, ands, or Repetition 10
buts.

Three -Stage Command

Establish the subject’s dominant hand. Give Takes paper in hand 10
the subject a sheet of blank paper and say, -

"Take the paper in your nght/left hand, Folds paper in half 1d
fold it in half and put it an the floor.” Puts paper on floor 10
Reading

Hald up the card that reads, "Close your Closes eyes 10

eyes,” So the subject can see it clearly.

Ask him/her to read it and do what it says.

Check the box at nght anly if he/she
actually closes his/her eyes.

Writing

Give the subject a sheet of blank paper and
ask him/her to write a sentence. It is to be
written sponataneously. If the sentence
contains a subject and a verb, and is Writes sentence 10
sensible, check the box at nght. Correct
grammar and punctuation are not
necessary.

[Copying | |

Show the subject the drawing of the i
intersecting pentagons. Ask him/her to Copies pentagons 10
draw the pentagons {about one inch each

side) on the paper provided. If ten angles
are present and two intersect, check the
box at right. Ignore tremor and rotation.

DERIVING THE TOTAL SCORE

Add the number of correi;tggsponses. The maximum TOTAL SCORE

| EXCLUSION CRITERIA: :
: &Total score under 23? |

|
: € NOevvvvvesesssnnns 1 :
| . Y €S ittt 2 I
I |
- I
r ___ =

Does the patient meet any of the exclusion criteria?

|
|
: . No, he/she does not meet

| exclusion Criteriaccvveeeeeeeeeeeeeeeeennennnnns 2
|

|

|

|

|

e Yes, he /she meet any
of the exclusion criteriaccccvvveeenn. 1 (END OFF QUESTIONNAIRE)

CLOSE YOUR EYES

J. USUAL ACTIVITIES IN THE EXPERIMENTAL VISIT:

Make a date with the participant for the experimental sessions. Explain that the recruiting coordinator must
authorize further study with him, so that the date is tentative.

e Date of experimental visit

The participant will describe what usually he/she does in a day like that the scheduled day for the
experimental visit

Morning

Afternoon

K. CONTACT THE RECRUITMENT COORDINATOR:

e Patient refused................... 1

e Patient accepted................. 2

L. DRUGS DISCONTINUATION: SCHEDULE A REMINDER PHONE CALL

e Date of phone call

11

Personal Health Device for the Remote
REM and Autonomous Management of Parkinson’s HE___
PAR . SEVENTH FRAMEWORK
Disease PROGRAMME
Documento . Revisio: 1
CRF—REI’\‘A';eAr:;";“ta' Data: 1/10/2012
Pag.:
PARTNER QUESTIONNAIRE NUMBER:.......:1000000
TEKNON ...t eeee e eeeeeeeeneeeeeeeeeneeenennaens 1 | Date:
NUIG ettt et eeee et eeeeeseeeseeeseeseeesnessessneenns 2 .
FSL voovvossomoooesssooosossssoesess oo 3 REMPARK Project
NEVET coovvveoooososoeoeeseeeeseesessoeesesseseeeseeeooe 4 Experimental session
NAME: IDENTIFYING LABEL
SURNAME:
PHONE NUMBER:
ADDRESS:

INTERVIEWERS'S NAME:

INTERVIEWERS'S SURNAME:

OFF PERIOD

S.1 UPDRS (OFF PERIOD)

0.1 In terms of mobility are you now:

0.2 Last L-Dopa dose time and date:

o At your worst moment (OFF).......cccceuninininsssisinsisininnns 0 h/ m date_/_ [/
o At your best moment (ON).....cccvrereerienirnrreeee e sssnnneeeeenns 1
o In an intermediate SitUationcccceervcvveeevireeeciieee e, 2 0.3 UPDRS time:
_h/___m

NOTE: do not continue until the patient enters an OFF period (or is really close to it).
0.4 Describe how the patient describes his clinical status:
Mark the option that corresponds to the patient

2. Facial Expression
1. Speech

© NOMAL...uuiriiieii i 0
LI\ o] 03 = N 0

e Minimal hypomimia, could be normal "Poker Face" 1
o Slight loss of expression, diction and/or volume................ 1

e Monotone, slurred but understandable; moderately

IMPAIrEd oo 2
e Marked impairment, difficult to understand 3
o UNINtelligibleceeeeeeiiriieeee e 4

e Slight but definitely abnormal diminution of facial
EXPIESSION 1evvviiiiiiiriiiiiiiiiiiiirrrrsrrrrrrrrrr . 2

e Moderate hypomimia; lips parted some of the time........... 3

e Masked or fixed facies with severe or complete loss
of facial expression; lips parted 1/4 inch or more.................. 4

3. Tremor at rest (lower extremities)

® ADSENE ..uiiiiiirie 0
o Slight and infrequently present.........ccoccvvvviviniiiinnnneennnn, 1
e Mild in amplitude and persistent. Or moderate in

amplitude, but only intermittently present............cccceeiiinnnn. 2
e Moderate in amplitude and present most of the time......... 3
e Marked in amplitude and present most of the time............ 4

4. Tremor at rest (face, lips, chin)

® ADSENT ...t 0
o Slight and infrequently present.........ccccvvveeeeeisssiinnneennen. 1
e Mild in amplitude and persistent. Or moderate in

amplitude, but only intermittently present...........cccceeeiiiinnnnn. 2
e Moderate in amplitude and present most of the time......... 3
e Marked in amplitude and present most of the time............ 4

5. Tremor at rest (upper extremities)

® ADSENE ..iiiiiiirie i 0
o Slight and infrequently present..........cccvvveeveniiiniinnniennnn, 1
e Mild in amplitude and persistent. Or moderate in

amplitude, but only intermittently present..........cccccoviiiiinnnns 2
e Moderate in amplitude and present most of the time......... 3
e Marked in amplitude and present most of the time............ 4

6. Action or Postural Tremor of hands

® ADSENT ...uiiiiiiri 0
o Slight; present with action........ccccceeviiiiiiiniiinieee, 1
e Moderate in amplitude, present with action...........cccccee.... 2

e Moderate in amplitude with posture holding as well
AS ACHION ...uuiiiiii 3

e Marked in amplitude; interferes with feeding..............uuu... 4

7. Axial rigidity (Judged on passive movement of
the neck with patient relaxed in sitting position.
Cogwheeling to be ignored)

o ADSENt ... 0
o Slight or detectable only when activated by mirror or

other movementsccccviiiiniiii 1
e Mild to moderatec.cocvvvviiiniiniii 2
e Marked, but full range of motion easily achieved 3

e Severe, range of motion achieved with difficulty 4

8. Right upper extremity rigidity (Judged on
passive movement of major joints with patient
relaxed in sitting position. Cogwheeling to be
ignored)

® ADSENE .oviiiiiriii i 0
e Slight or detectable only when activated by mirror or

other MOVEMENEScccvviiiiiii i 1
o Mild to moderateccccvviiiiiiiii 2
e Marked, but full range of motion easily achieved 3
e Severe, range of motion achieved with difficulty 4

9. Left upper extremity rigidity (Judged on
passive movement of major joints with patient
relaxed in sitting position. Cogwheeling to be
ignored)

® ADSENT ...viiiiiiiii i 0
e Slight or detectable only when activated by mirror or

other MovemMENtScccvvviiiiiir 1
e Mild to moderatecccvvviininiiin i 2
e Marked, but full range of motion easily achieved 3
e Severe, range of motion achieved with difficulty 4

10. Right lower extremity rigidity (Judged on
passive movement of major joints with patient
relaxed in sitting position. Cogwheeling to be
ignored)

® ADSENT ...iiiiiiiii 0
o Slight or detectable only when activated by mirror or

other movementscccoccvveiiiiiin i 1
o Mild to moderateccccvivviininiiin 2
e Marked, but full range of motion easily achieved 3
e Severe, range of motion achieved with difficulty 4

11. Left lower extremity rigidity (Judged on
passive movement of major joints with patient
relaxed in sitting position. Cogwheeling to be
ignored.)

® ADSENE ..viiiiiriii i 0
o Slight or detectable only when activated by mirror or

other movementscccccvviiiiiin i 1
o Mild to moderatecccooviiiiiiiiini 2
e Marked, but full range of motion easily achieved 3
e Severe, range of motion achieved with difficulty 4

12. Finger Taps (Patient taps thumb with index
finger in rapid succession) (Right)

© NOMMAl.uuiiiiiiiiir e 0
e Mild slowing and/or reduction in amplitudeccccce..... 1

e Moderately impaired. Definite and early fatiguing.
May have occasional arrests in movementcccceveveeeens 2

e Severely impaired. Frequent hesitation in initiating
movements or arrests in ongoing movement...........cccevvveeens 3

e Can barely perform the task.........ccuuvvevveviiiiiiiiiiiiiiiiinn, 4

13. Finger Taps (Patient taps thumb with index
finger in rapid succession) (Left)

e NOrMal..vviiiiiriiir 0
e Mild slowing and/or reduction in amplitudeccccee... 1

e Moderately impaired. Definite and early fatiguing.
May have occasional arrests in movementccceeeeeeees 2

e Severely impaired. Frequent hesitation in initiating
movements or arrests in ongoing movement............ccoeeeeeens 3

o Can barely perform the task.........ceevvveverevivennnnnennin, 4

14. Hand grips (Patient opens and closes hands
in rapid succesion) (Right)

o NOrMal..vviiiiiriir 0
o Mild slowing and/or reduction in amplitudecccceen... 1

e Moderately impaired. Definite and early fatiguing.
May have occasional arrests in movementccccuvvveeennn, 2

e Severely impaired. Frequent hesitation in initiating
movements or arrests in ongoing movement............ccoeeeeeenns 3

e Can barely perform the task.........ceuvvervvreenvinennnnnniiiiinnnn, 4

15. Hand grips (Patient opens and closes hands
in rapid succesion) (Left)

© NOMMALceiiiieiiriiiiieieererererreerrrarrrrrrrrrrr . 0
e Mild slowing and/or reduction in amplitudecccveeen... 1

e Moderately impaired. Definite and early fatiguing.
May have occasional arrests in movementcccccvveeeennn. 2

e Severely impaired. Frequent hesitation in initiating
movements or arrests in ongoing movement...........ccccvvennnnns 3

e Can barely perform the task..........euvvvvevveiiinininiiiiniiiiinnn, 4

16. Rapid Alternating Movements of Hands
(Pronation-supination movements of hands,
vertically and horizontally, with as large an
amplitude as possible, both hands
simultaneously) (Right)

® NOMMALL..ciiiiiiii i 0
o Mild slowing and/or reduction in amplitude...........ccccooenee 1

e Moderately impaired. Definite and early fatiguing.
May have occasional arrests in movement...........cccoeeeiiiiennn. 2

e Severely impaired. Frequent hesitation in initiating
movements or arrests in ongoing movement...........ccooeeeennn. 3

e Can barely perform the task ... 4

17. Rapid Alternating Movements of Hands
(Pronation-supination movements of hands,
vertically and horizontally, with as large an
amplitude as possible, both hands
simultaneously) (Left)

® NOMMAl...ciiiiiiii it 0
o Mild slowing and/or reduction in amplitude............c..cceuuee 1

e Moderately impaired. Definite and early fatiguing.
May have occasional arrests in movement.........ccccevviniinnnnns 2

e Severely impaired. Frequent hesitation in initiating
movements or arrests in ongoing movement............ccoeeeennn. 3

e Can barely perform the taskcooveviiiiiiiiiiies 4

18. Leg Agility (Patient taps heel on the ground
in rapid succession picking up entire leg.
Amplitude should be at least 3 inches.) (Right)

® NOMMALL..ciiiiiiiiiiiir 0
o Mild slowing and/or reduction in amplitude...........cc..eeunee 1

e Moderately impaired. Definite and early fatiguing.
May have occasional arrests in movement...........ccceeeeiiiinnnnn. 2

e Severely impaired. Frequent hesitation in initiating
movements or arrests in ongoing movement.........ccooeeeeeennnns 3

e Can barely perform the task ... 4

19. Leg Agility (Patient taps heel on the ground
in rapid succession picking up entire leg.
Amplitude should be at least 3 inches.) (Left)

o NOMMAl....ciiiiiiiiiii 0
o Mild slowing and/or reduction in amplitude..........cccceevnnns 1

e Moderately impaired. Definite and early fatiguing.
May have occasional arrests in movement........ccccceeeveriinnenns 2

e Severely impaired. Frequent hesitation in initiating
movements or arrests in ongoing movement.............oeeeeeenees 3

e Can barely perform the taskcooeevviiiiiiiiiiees 4

20. Arising from Chair (Patient attempts to rise
from a straight-backed chair, with arms folded
across chest.)

© NOMMALceiiiiiiieiiirieerireeererreerrrrrrrrrrrrr . 0
e Slow; or may need more than one attemptccccvvvvnnnne 1
o Pushes self up from arms of seat......cccccevvvvvvrrreerennnnnnnnnnn 2

e Tends to fall back and may have to try more than
one time, but can get up without helpccccooeiiiiiiiiiiinnnn. 3

e Unable to arise without help.........ceevvveeiieiiiiiiiiiiie 4

21. Posture

© NOrMal €reCt ..ccvviiiiiiiiiiiiiiiiirieriseeerrrrrr . 0

e Not quite erect, slightly stooped posture; could be
normal for older Personeeeeeeeeeeeeeeeeemmemsrrnrrrr——— 1

e Moderately stooped posture, definitely abnormal; can
be slightly leaning to one Side..........uuuvvevvivviviirememieiinnin. 2

e Severely stooped posture with kyphosis; can be

moderately leaning to one sideccccovviiiiiiinin 3
e Marked flexion with extreme abnormality of posture......... 4
22, Gait

® NOMMAL...uiviiiiirii i 0

e Walks slowly, may shuffle with short steps, but no
festination (hastening steps) or propulsion...........cccceeveiinnnnn. 1

e Walks with difficulty, but requires little or no
assistance; may have some festination, short steps, or
[9](e] o101 (oo F N 2

e Severe disturbance of gait, requiring assistance................ 3

e Cannot walk at all, even with assistancecccccvvvvvvnnnns 4

23. Postural Stability (Response to sudden,
strong posterior displacement produced by pull
on shoulders while patient erect with eyes open
and feet slightly apart. Patient is prepared)

® NOMMAl...ciiiiiiii it 0
e Retropulsion, but recovers unaided..............ccceeeeeiiiiiinnnns 1

e Absence of postural response; would fall if not

caught by eXaminer........ccevviiiiiieeieiiemirieieisrirsre——.. 2
e Very unstable, tends to lose balance spontaneously.......... 3
e Unable to stand without assistance...........ccooevvvvviiniiinnnns 4

24. Body Bradykinesia and Hypokinesia
(Combining slowness, hesitancy, decreased
armswing, small amplitude, and poverty of
movement in general)

e Minimal slowness, giving movement a deliberate
character; could be normal for some persons.
Possibly reduced amplitudecccviviiiiiiiiiiiicrrrereesse e, 1

e Mild degree of slowness and poverty of movement
which is definitely abnormal. Alternatively, some
reduced amplitude.........iiiiiiirrrr 2

e Moderate slowness, poverty or small amplitude of
MOVEMENT. ... 3

e Marked slowness, poverty or small amplitude of
L0}V =T 0 0T o PPN 4

S.2. SYNCHRONIZATION

1. Sync phone with Tablet:
a. Connect the tablet to the mobile phone by the USB cable
b. Run the App ‘Synchronization tablet-smartphone’ in the tablet
c. Disconnect cable

2. Start recording data with sensors:
a. Turn on the sensors
b. Sync the tablet and the sensors with the app ‘Switch On Sensors’

c. If everything is correct the waist sensor must blink in green and blue and the wrist sensor must blink

in blue

3. Start video recording in the mobile phone (app ‘REMPARK Video"). The name of the video must follow the
convention 'PARTNER patient_n® 1’, where 1 means OFF (in S15 the motor state is changed to 2=0N).

4. Make visual synchronization while the mobile phone is recording it:
a. Put the waist sensor standing on the table
b. Leave it still during 10sec,
c. Dropit
d. Leave it lying over the table during 10 sec

5. Place the sensors to the patient and videotape it

S.3. RECORDING OF THE OFF PHASE

Equipment required:
Mobile Phone Video

Procedure:
Patient will be asked to walk at the preferred speed and following the preferred trajectory for 20 seconds. Turns
are allowed (no matter if the patient walks indoors or outdoors).

S.4. INDOORS WALKING TEST IN OFF PHASE

Equipment required:
Mobile Phone Video

Procedure:

In the indoors walking test the patient will start sitting on a chair in the living room. They will stand up and
show their house to the researchers, showing each room and explaining what the room is for, just like if they
were trying to sell the house. After the whole visit, the patient will return to the chair in the living room and will
sit down again and the test will be over.

1. Start: Hour / minute (Tablet PC time)

2. End: Hour / minute (Tablet PC time)
NOTE: If the visit lasts less than two minutes, the test will be performed twice. If the test has lasted more than two
minutes, move to the next section.

1. Start: Hour / minute (Tablet PC time)

2. End: Hour / minute (Tablet PC time)

S.5. FOG PROVOCATION TEST

Equipment required:
Mobile Phone Video

Procedure:

The test will start with the patient sitting on a chair. The patient will first stand up, walk through the door (2-3
meters away), turn around and walk through the door again, and sit down in the same chair. He/she will repeat
this movement up to 10 times. If FOG phenomenon does not appear, then the door can be partially shut to get
a narrower path. The test will be more successful if the place where the patient turns before returning through
the door is a narrow site, like a bathroom or a corner of the kitchen.

During the testing, the patient’s feet shall be videotaped at all times.

CAUTION: Falls could happen during this test, the interviewers will be especially careful when performing this test. One
of the interviewers shall stay close to the patient when FOG appears, and when the patient turns around.

1. Start: Hour / minute (Tablet PC time)

2. End: Hour / minute (Tablet PC time)

S.6a. GAIT TEST (OFF)

Equipment required:
Mobile Phone Video y odometer

Procedure:

The patient will walk 15 meters on a flat, bare street. First the camera is placed on a tripod behind the patient;
the camera can be on the floor, or on street furniture (bench, trash ...). The patient is placed standing in front
of the camera (backwards to the camera) so that his/her feet appear in the image from the beginning to the
end of the ride. The interviewer will be placed next to the patient and will set to zero the odometer. Both will
walk a minimum distance of 15 meters, straight and then will stop.

1. Start: Hour___ /minute__ (Tablet PC time)

2. End: Hour__ /minute_ (Tablet PC time)

3. Distance (shown in odometer at the end of the walk): __ metersand ____ cm
4. The patient does not want or cannot perform the test. O

5. Explain why the patient did not perform the test:

S.6b. Gait test (OFF)

Equipment required:
Odometer and chronometer

Procedure:

The patient will need to walk a minimum of 15 meters in a flat and clear street

The test will start with the patient standing still in a convenient street of their neighbourhood. Then he will start
walking straight forward a minimum distance of 15 meters. One of the researchers will operate an odometer to
measure the distance during the walk. The other will operate a chronometer to time the walk. Both will count
the total number of steps of the walk. After a minimum of 15 meters the patient will stop and stay still.

1. Start: Hour___ /minute__ (Tablet PC time)
2. End: Hour___ /minute___ (Tablet PC time)
3. Distance (shown in odometer at the end of thewalk): _ metersand __ cm
4. Number of steps
5. Time (chronometer): Minutes_ /Seconds_ [/ Tenths_
6. The patient does not want or cannot perform the test. O

7. Explain why the patient did not perform the test:

S.7. SHUT DOWN THE VIDEO AND SENSORS

1. Take out the sensors from the patient

2. Make visual synchronization while the mobile phone is recording it:
a. Put the waist sensor standing on the table
b. Leave it still during 10sec,
c. Dropit
d. Leave it lying over the table during 10 sec

3. Switch the sensors off by pressing the central button in the waist sensor while the mobile is recording

4. Stop video recording and check the integrity of the video (check that the video is listed in the application and its
date is correct).

5. Sync phone with Tablet:
a. Connect cable and video sync
b. Run the App ‘Synchronization tablet-smartphone’ in the tablet
c. Disconnect cable

S.8. START SENSORS AND TABLET APP

1. Start recording data with sensors:
a. Turn on the sensors
b. Sync the tablet and the sensors with the app ‘Switch On Sensors’
c. If everything is correct the waist sensor must blink in green and blue and the wrist sensor must blink
in blue

2. Launch the monitoring application in the Tablet PC (‘Tablet annotations’)

S.9. OUTDOORS WALKING TEST IN OFF PHASE

Equipment required:
Tablet PC

Procedure:

The patient will go for a 10 to 15 minute walk in the neighbourhood (he/she can follow the preferred route).
The entire patient's movements, the slope of the path, and the ground characteristics will be continuously
recorded by the researchers on the tablet PC. Please, press the ‘Outdoors walking test’ in the tablet annotations
application to mark that this activity is being performed.

1. Start: Hour / minute (Tablet PC time)

2. End: Hour / minute (Tablet PC time)

S.10. TAP
Start TAP in the mobile phone (app ‘REMPARK Prompts”).

Equipment required:
Mobile Phone

Procedure:
Mobile phone will be placed on a table and the TAP test will be performed.
Please, press the 'TAP test’ in the tablet annotations application to mark that this activity is being performed

S.11. THE PATIENT CAN TAKE THEIR USUAL MEDICATIONS IN ORDER TO RETURN TO THE ON
STATE

Depending on the time, the instructions of the neurologist and patient's preferences, the patient can take the medication
which was not taken in morning, or he/she can move to the next dose. If the patient prefers to use a rescue by
apomorphine injection or other procedure can do it too.

If in doubt call: (phone number)

S.12. FREE ACTIVITY MONITORING DURING OFF PHASE

Equipment required:
Tablet PC

Procedure:

The remaining time in OFF state, the patient will freely choose what they want to do, when and where, until
he/she switches to an evident ON state. As patients may change their usual activity due to the observation
process, researchers will encourage the patient to perform their usual activity, as recorded in the basal visit.
Nevertheless, the patient will be free to change the day activity if they desire.

During the free-activity monitoring period, one researcher will accompany the patient recording in the tablet PC
all the movements, postures, terrain conditions, symptoms and drugs doses taken.

Press the “rest of the observer” button if you cannot follow the activity of the patient, if the patient goes to the
bathroom or if the observer needs to rest.

The unforeseen postures and activities can be reported as "other" 1,2,3 or "other" a, b, c, respectively.
Whether the patient is an ON, OFF or intermediate state will be reviewed and recorded periodically. The test is

over when the patient unequivocally declares to be in the ON state (moves to the next section of the
questionnaire).

UNFORESEEN POSTURES: describe the postures that has been assigned to each of the labels "other” (“otros”)

Other 1:
Other 2:
Other 3:

UNFORESEEN ACTIVITIES: describe the activity that has been assigned to each of the labels "other” (“otros”)

Other a:
Other b:
Other c:

Case Report Form for the free activity monitoring session: describe every relevant event

1. Start: Hour_____ / minute___ (Tablet PC time)
Hour___ /minute__(Tablet PC time)
Hour____ / minute_____

Hour____ / minute__
Hour____ / minute____
Hour___ / minute____
Hour____/ minute____
Hour___ / minute____
Hour____ / minute____
Hour____ / minute_____
Hour____ / minute____
Hour____ / minute_____
Hour___ / minute__
Hour____ / minute____
Hour___ / minute__
Hour____ / minute____
Hour___ / minute___
Hour____ / minute_____
Hour___ / minute____
Hour____ / minute____
Hour___ / minute_____
Hour____ / minute__
Hour____ / minute_____
Hour___ / minute__
Hour____ / minute____
Hour___ / minute___
Hour____ / minute____
2. End: Hour_____ / minute___ (Tablet PC time)

S.13. SHUT DOWN THE SENSORS

1. Take out the sensors from the patient
2. Switch the sensors off by pressing the central button of the waist sensor

3. Close the ‘Tablet annotations’ app in the Tablet

ON PERIOD

S.14 UPDRS (ON PERIOD)

0.1 In terms of mobility, you are:

o In the optimum state.......cccviiiiiiiiiiiiiiiiiiiii.

e In an acceptable stateocccvvviiiiiiniii

Mark the option that corresponds to the patient.

1. Speech
© NOMMAL ... e
o Slight loss of expression, diction and/or volume................

e Monotone, slurred but understandable; moderately
IMPAIrEd .o

e Marked impairment, difficult to understandcccece....

o UNINtelligibleceeoeeeeiieeee e
2. Facial Expression
® NOMMAL....oiiiieiiii

e Minimal hypomimia, could be normal "Poker Face"

e Slight but definitely abnormal diminution of facial
EXPIESSION 1vvvvrrrasssrerrrrssssesseernnnsssesssernnnnsssssesennnsnssssesennnnnns

e Moderate hypomimia; lips parted some of the time...........

e Masked or fixed facies with severe or complete loss
of facial expression; lips parted 1/4 inch or more

3. Tremor at rest (lower extremities)

o ADSENt ...
o Slight and infrequently present.........cccccvveeeeeiinsiinnneennen.

e Mild in amplitude and persistent. Or moderate in
amplitude, but only intermittently present...........cccceeviiiinnnn.

e Moderate in amplitude and present most of the time.........

e Marked in amplitude and present most of the time............
4. Tremor at rest (face, lips, chin)
© ADSENT .eiiiiiiiiiiiierrrrerrrerrrerrerrnrrrrrrrrrrr i ——————————

o Slight and infrequently present.........cccccvvvveviniiiniinnniennn,

e Mild in amplitude and persistent. Or moderate in
amplitude, but only intermittently present.........cccccvvveiiinnnns

e Moderate in amplitude and present most of the time.........

e Marked in amplitude and present most of the time............

0.2 UPDRS time:

h/ m (Tablet PC time)

5. Tremor at rest (upper extremities)

® ADSENT ...viiiiiiiii i 0
e Slight and infrequently present.........ccccccveierriinneeeennennnnns 1
e Mild in amplitude and persistent. Or moderate in

amplitude, but only intermittently present.......ccccccvvvvvvvvvnnnnns 2
e Moderate in amplitude and present most of the time 3
e Marked in amplitude and present most of the time 4

6. Action or Postural Tremor of hands

® ADSENE ..viiiiiiiii i 0
o Slight; present with action........ccccovviviiiniiii e 1
e Moderate in amplitude, present with actionccceeenne 2

e Moderate in amplitude with posture holding as well
AS ACHION ..vvvirrrr i 3

e Marked in amplitude; interferes with feeding.................... 4

7. Axial rigidity (Judged on passive movement of
the neck with patient relaxed in sitting position.
Cogwheeling to be ignored)

® ADSENE ..viiiiiriii i 0
o Slight or detectable only when activated by mirror or

other movementsccciviiiiin i, 1
o Mild to moderateccovviiiiiiiiiii 2
e Marked, but full range of motion easily achieved 3
e Severe, range of motion achieved with difficulty 4

8. Right upper extremity rigidity (Judged on
passive movement of major joints with patient
relaxed in sitting position. Cogwheeling to be
ignored)

® ADSENT ...viiiiiiii i 0
e Slight or detectable only when activated by mirror or

other MoOVEMENtScccuvveiiiiiiirr 1
e Mild to moderateccovvvreiiiniiin e 2
e Marked, but full range of motion easily achieved 3

e Severe, range of motion achieved with difficulty 4

9. Left upper extremity rigidity (Judged on
passive movement of major joints with patient
relaxed in sitting position. Cogwheeling to be
ignored)

® ADSENE ...uiiiiiiri 0
o Slight or detectable only when activated by mirror or

other MOVEMENTSccvviiiiiiiiriii e 1
o Mild to moderatecccvviviiiiiiiinii 2
e Marked, but full range of motion easily achieved 3
e Severe, range of motion achieved with difficulty 4

10. Right lower extremity rigidity (Judged on
passive movement of major joints with patient
relaxed in sitting position. Cogwheeling to be
ignored)

® ADSENE ...uiiiiiiri 0
e Slight or detectable only when activated by mirror or

Oother MOVEMENTScuvviiiiiiiriee e 1
o Mild to moderateccceviviiiiiiiiii 2
e Marked, but full range of motion easily achieved 3
e Severe, range of motion achieved with difficulty 4

11. Left lower extremity rigidity (Judged on
passive movement of major joints with patient
relaxed in sitting position. Cogwheeling to be
ignored.)

® ADSENT ...t 0
e Slight or detectable only when activated by mirror or

other MOVEMENTSo 1
e Mild to moderatec..ocveviiiiiininii s 2
e Marked, but full range of motion easily achieved 3
e Severe, range of motion achieved with difficulty 4

12, Finger Taps (Patient taps thumb with index
finger in rapid succession) (Right)

® NOMMAL....oiiiriiiii 0
¢ Mild slowing and/or reduction in amplitudeccccee.... 1

e Moderately impaired. Definite and early fatiguing.
May have occasional arrests in movementccceeeeeeeens 2

e Severely impaired. Frequent hesitation in initiating
movements or arrests in ongoing movement...........ccevvveeeens 3

o Can barely perform the task.......cccceeviiniimnrinnninieenn, 4

13. Finger Taps (Patient taps thumb with index
finger in rapid succession) (Left)
© NOMMALceiieieiiriirenirrrerrrrrerrrrrrnrrrrrrrrrr i —————— 0

¢ Mild slowing and/or reduction in amplitudecccveee.... 1

e Moderately impaired. Definite and early fatiguing.
May have occasional arrests in movementccccvvveeennnn. 2

e Severely impaired. Frequent hesitation in initiating
movements or arrests in ongoing movement...........ccccvvennnnns 3

e Can barely perform the taskccoovviiiiiiiiiieees 4
14. Hand grips (Patient opens and closes hands
in rapid succesion) (Right)

o NOMMAl....coiiiiiiiiie 0
¢ Mild slowing and/or reduction in amplitude....................... 1

e Moderately impaired. Definite and early fatiguing.
May have occasional arrests in movement..........cccceeeiiiininnn. 2

e Severely impaired. Frequent hesitation in initiating
movements or arrests in ongoing movement...........ccoevvinnnn. 3

e Can barely perform the task ... 4

15. Hand grips (Patient opens and closes hands
in rapid succesion) (Left)

© NOMMAl. . iiiiiiii i 0
e Mild slowing and/or reduction in amplitude.........cccceeeennnee 1

e Moderately impaired. Definite and early fatiguing.
May have occasional arrests in movement..........cccceeveiirinnnnn. 2

e Severely impaired. Frequent hesitation in initiating
movements or arrests in oNgoing Movement..........cceevviinnnn, 3

o Can barely perform the taskc.ccceecvervreeeiiisniinneeneennnnns 4

16. Rapid Alternating Movements of Hands
(Pronation-supination movements of hands,
vertically and horizontally, with as large an
amplitude as possible, both hands
simultaneously) (Right)

o NOMAl....cooiiiiiieee 0
e Mild slowing and/or reduction in amplitude....................... 1

e Moderately impaired. Definite and early fatiguing.
May have occasional arrests in movement..........cccceeevieiiennn. 2

e Severely impaired. Frequent hesitation in initiating
movements or arrests in oNgoing Movement.........ccceeevvinnnn, 3

e Can barely perform the task ... 4

17. Rapid Alternating Movements of Hands
(Pronation-supination movements of hands,
vertically and horizontally, with as large an
amplitude as possible, both hands
simultaneously) (Left)

® NOMMAl..cciiiiiiiiiiii 0
o Mild slowing and/or reduction in amplitude...........cc..ceeunee 1

e Moderately impaired. Definite and early fatiguing.
May have occasional arrests in movement.........cccceevvininnnnnns 2

e Severely impaired. Frequent hesitation in initiating
movements or arrests in ongoing movement...........cccoeeeeennn. 3

e Can barely perform the taskcccooevveiiiiiiies 4

18. Leg Agility (Patient taps heel on the ground
in rapid succession picking up entire leg.
Amplitude should be at least 3 inches.) (Right)

© NOIMAl..ui i 0
e Mild slowing and/or reduction in amplitudeccccee.... 1

e Moderately impaired. Definite and early fatiguing.
May have occasional arrests in movementccceeeeeeeens 2

e Severely impaired. Frequent hesitation in initiating
movements or arrests in ongoing movement...........ccceveveeeens 3

e Can barely perform the task.........ceevvveeveeiiiiiiiiiiiiiiininnn, 4
19. Leg Agility (Patient taps heel on the ground

in rapid succession picking up entire leg.
Amplitude should be at least 3 inches.) (Left)

LI (o] 03 =N 0
e Mild slowing and/or reduction in amplitudeeuuuene. 1

e Moderately impaired. Definite and early fatiguing.
May have occasional arrests in movementccceeeeeeens 2

e Severely impaired. Frequent hesitation in initiating
movements or arrests in ongoing movement............ceeeeeeeens 3

o Can barely perform the task......cccccerierrinnnreneessssirneenenn, 4

20. Arising from Chair (Patient attempts to rise
from a straight-backed chair, with arms folded
across chest.)

© NOMMALceiiiiiiieiiiiierrirereerererrrrrrrrrrrrrrr . 0
o Slow; or may need more than one attemptcccvveeeen. 1
o Pushes self up from arms of seat......cccccvvvrrvverrernnnnnnnnnnnn. 2

e Tends to fall back and may have to try more than
one time, but can get up without helpcccccoviiiiiiiiiiiiinnnn. 3

e Unable to arise without help......cccccoiviiiiiiiiiiee, 4
21. Posture

o NOrMal EreCt .cvvvvuiiiiiiiiiiie e e 0

e Not quite erect, slightly stooped posture; could be
normal for older Personcccoviereiiiiniri 1

e Moderately stooped posture, definitely abnormal; can
be slightly leaning to one Sideccccceveieerinneeeeee e, 2

e Severely stooped posture with kyphosis; can be
moderately leaning to one Sideccccvvvvciireeiini e, 3

e Marked flexion with extreme abnormality of posture......... 4

22, Gait

o NOrMal.....coooiiiiiii 0

e Walks slowly, may shuffle with short steps, but no
festination (hastening steps) or propulSion.............cccvveeeeesn. 1

o Walks with difficulty, but requires little or no
assistance; may have some festination, short steps, or

PrOPUISION ...t 2
e Severe disturbance of gait, requiring assistance................ 3
e Cannot walk at all, even with assistance.............ccccevvvnnnnns 4

23. Postural Stability (Response to sudden,
strong posterior displacement produced by pull
on shoulders while patient erect with eyes open
and feet slightly apart. Patient is prepared)

o NOrMal.....coooiiiiiii 0
e Retropulsion, but recovers unaided..............cceeeveeeveiiiennns 1

e Absence of postural response; would fall if not

caught by eXaminer........ccevviviiiiieiiirireeeieeeererne———. 2
o Very unstable, tends to lose balance spontaneously.......... 3
e Unable to stand without assistance............ccccceeeveieiiiinnnns 4

24. Body Bradykinesia and Hypokinesia
(Combining slowness, hesitancy, decreased
armswing, small amplitude, and poverty of
movement in general)

e Minimal slowness, giving movement a deliberate
character; could be normal for some persons.
Possibly reduced amplitudecccvveiiiniiininnii e 1

e Mild degree of slowness and poverty of movement
which is definitely abnormal. Alternatively, some
reduced amplitude.........ccccoeiiiiiii s 2

e Moderate slowness, poverty or small amplitude of
MOVEMENT. ... 3

e Marked slowness, poverty or small amplitude of
MOVEMENT. ... 4

S.15. SYNCHRONIZATION

1. Sync phone with Tablet:
a. Connect the tablet to the mobile phone by the USB cable
b. Run the App ‘Synchronization tablet-smartphone’ in the tablet
c. Disconnect cable

2. Start recording data with sensors:
a. Turn on the sensors
b. Sync the tablet and the sensors with the app ‘Switch On Sensors’
c. If everything is correct the waist sensor must blink in green and blue and the wrist sensor
must blink in blue

3. Start video recording in the mobile (app ‘REMPARK Video’). The name of the video must follow the
convention ‘PARTNER patient_n® 2’ (2 means ON).

4. Make Visual synchronization:
a. Put the waist sensor standing on the table
b. Leave it still during 10sec,
c. Dropit
d. Leave it lying over the table during 10 sec

5. Place the sensors to the patient and videotape it

S.16. RECORDING OF THE ON PHASE

Equipment required:
Mobile Phone Video

Procedure:
Patient will be asked to walk at the preferred speed and following the preferred trajectory for 20 seconds. Turns
are allowed (no matter if the patient walks indoors or outdoors).

S.17. INDOORS WALKING TEST IN ON PHASE

Equipment required:
Mobile Phone Video

Procedure:

In the indoors walking test the patient will start sitting on a chair in the living room. They will stand up and
show their house to the researchers, showing each room and explaining what the room is for, just like if they
were trying to sell the house. After the whole visit, the patient will return to the chair in the living room and will
sit down again and the test will be over.

1. Start: Hour / minute (Tablet PC time)

2. End: Hour / minute (Tablet PC time)
NOTE: If the visit lasts less than two minutes, the test will be performed twice. If the test has lasted more than
two minutes, move to the next section.

1. Start: Hour / minute (Tablet PC time)

2. End: Hour / minute (Tablet PC time)

S.17a. GAIT TEST (ON)

Equipment required:
Mobile Phone Video y odometer

Procedure:

The patient will walk 15 meters on a flat, bare street. First the camera is placed on a tripod behind the patient;
the camera can be on the floor, or on street furniture (bench, trash ...). The patient is placed standing in front
of the camera (backwards to the camera) so that his/her feet appear in the image from the beginning to the
end of the ride. The interviewer will be placed next to the patient and will set to zero the odometer. Both will
walk a minimum distance of 15 meters, straight and then will stop.

1. Start: Hour___ /minute_ (Tablet PC time)

2. End: Hour___ /minute___ (Tablet PC time)

3. Distance (shown in odometer at the end of the walk): __ metersand ___ cm
4. The patient does not want or cannot perform the test. O

5. Explain why the patient did not perform the test:

S.17b. GAIT TEST (ON)

Equipment required:
Odometer and chronometer

Procedure:

The patient will need to walk a minimum of 20 meters in a flat and clear street

The test will start with the patient standing still in a convenient street of their neighbourhood. The he will start
walking straight forward a minimum distance of 20 meters. One of the researchers will operate an odometer to
measure the distance during the walk. The other will operate a chronometer to time the walk. Both will count
the total number of steps of the walk. After a minimum of 20 meters the patient will stop and stay still.

1. Start: Hour / minute (Tablet PC time)
2. End: Hour / minute (Tablet PC time)
3. Distance (shown in odometer at the end of the walk): meters and cm

4. Number of steps

5. Time (chronometer): Minutes / Seconds / Tenths

S.18. DYSKINESIA TEST (when the patient presents dyskinesia)

Equipment required:
Mobile Phone Video

Procedure:

The dyskinesia test starts with the patient sitting on a chair, then he/she stands up, and stays still for 1 minute,
afterwards he/she sits down again and stays at rest for another minute. Then the test is over. The test will be
video recorded by a researcher. Start and end timings will be registered.

1. Start: Hour / minute (Tablet PC time)

2. End: Hour / minute (Tablet PC time)

3. Did the patient have tremor during this test?

4. Where?

@ Right l€g .. uurreeiiiii i 1
o Leftleg. i 2
® Right @rm ..evveeeiii e 3
o Left @arm . 4
LI o 1= =T I o = PP 5

S.19. OFF FALSE POSITIVE TEST & DUAL TASK TEST

Equipment required:
Mobile Phone Video. Glass of water. Text to read.

Procedure:

The test will start with the patient sitting on a chair in the kitchen. The patient will be invited to stand up, and
to walk from the kitchen to the furthest room in the house, carrying a full glass of water. The patient will return
from the room walking while they read a given text in loud voice. Once they are again in the kitchen, they will
sit down again.

La prueba comienza con el paciente sentado en una silla en la cocina. El paciente se levantara y caminara de la
cocina a la habitacion mas alejada de la casa llevando un vaso lleno de agua. El paciente retornara de la
habitacion leyendo un texto en voz alta. Cuando llegue a la cocina se volvera a sentar en la silla.

1. Start: Hour / minute (Tablet PC time)

2. End: Hour / minute (Tablet PC time)

S.20. TREMOR FALSE POSITIVE TEST

Equipment required:
Mobile Phone Video.

Procedure:

The patient will perform the following activities

- Brushing teeth (with both hands)

- Shake a deodorant (with both hands)

- Erase with a rubber (with both hands)

- Type on the computer

- Clean the window glass or the furniture (with both hands)
- Draying a glass

1. Start: Hour / minute (Tablet PC time)

2. End: Hour / minute (Tablet PC time)

S.21. SHUT DOWN THE VIDEO AND SENSORS

1. Make Visual synchronization
a. Put the waist sensor standing on the table
b. Leave it still during 10sec,
c. Dropit
d. Leave it lying over the table during 10 sec

2. Switch the sensors off by pressing the central button in the waist sensor while the mobile is recording

3. Stop video recording and check the integrity of the video (check that the video is listed in the
application and its date is correct).

4. Sync phone with Tablet:
a. Connect cable and video sync
b. Run the App ‘Synchronization tablet-smartphone’ in the tablet
c. Disconnect cable

S.22. START SENSORS AND TABLET APP

1. Start recording data with sensors:
a. Turn on the sensors
b. Sync the tablet and the sensors with the app ‘Switch On Sensors’
c. If everything is correct the waist sensor must blink in green and blue and the wrist sensor
must blink in blue

2. Launch the monitoring application in the Tablet PC (‘Tablet annotations’)

S.23. OUTDOORS WALKING TEST IN ON PHASE

Equipment required:
Tablet PC

Procedure:

The patient will go for a 10 to 15 minute walk in the neighbourhood (he/she can follow the preferred route).
The entire patient’'s movements, the slope of the path, and the ground characteristics will be continuously
recorded by the researchers on the tablet PC.

Please, press the ‘Outdoors walking test’ in the tablet annotations application to mark that this activity is being
performed

1. Start: Hour / minute (Tablet PC time)
2. End: Hour / minute (Tablet PC time)
S.24. TAP
Equipment required:
Mobile Phone
Procedure:

Mobile phone will be placed on a table and the TAP test will be performed.
Please, press the 'TAP test’ in the tablet annotations application to mark that this activity is being performed

S.25. FREE ACTIVITY MONITORING DURING ON PHASE

Equipment required:
Tablet PC

Procedure:

The remaining time of the experimental session (which last about 6 hours since the first contact with the patient
in the morning), the patient will freely choose what they want to do, when and where. As patients may change
their usual activity due to the observation process, researchers will encourage the patient to perform their usual
activity, as recorded in the basal visit. Nevertheless, the patient will be free to change the day activity if they
desire.

During the free-activity monitoring period, one researcher will accompany the patient recording in the tablet PC
all the movements, postures, terrain conditions, symptoms and drugs doses taken.

Press the “rest of the observer” button if you cannot follow the activity of the patient, if the patient goes to the
bathroom or if the observer needs to rest.

The unforeseen postures and activities can be reported as "other" 1,2,3 or "other" a, b, c, respectively.
Whether the patient is an ON, OFF or intermediate state will be reviewed and recorded periodically.

Do not forget to perform dyskinesia test at least once when the patient presents with dyskinesia (next section of
the questionnaire)

UNFORESEEN POSTURES: describe the postures that has been assigned to each of the labels "other”
(“otros™)

Other 1:

Other 2:

Other 3:

UNFORESEEN ACTIVITIES: describe the activity that has been assigned to each of the labels "other”
(Motros™)

Other a:

Other b:

Other c:

Case Report Form for the free activity monitoring session: describe every relevant event

1. Start: Hour / minute_____ (Tablet PC time)
Hour__ /minute_ (Tablet PC time)
Hour____ / minute____
Hour___ / minute___
Hour____ / minute____
Hour__ / minute__
Hour____ / minute____
Hour____ / minute____
Hour____ / minute__
Hour____ / minute____
Hour____ / minute__
Hour____ / minute____
Hour___ / minute___
Hour____ / minute____
Hour__ / minute__
Hour____ / minute____
Hour____ / minute____
Hour____ / minute__
Hour____ / minute____
Hour____ / minute__
Hour____ / minute____
Hour___ / minute___
Hour____ / minute____
Hour___ / minute___
Hour____ / minute____
Hour____ / minute____

Hour / minute

Hour / minute

Hour____ / minute__
Hour____ / minute____
Hour____ / minute__
Hour____ / minute____
Hour___ / minute__
Hour____ / minute__
Hour____ / minute____
Hour____ / minute__
Hour____ / minute____
Hour____ / minute__
Hour____ / minute____
Hour____ / minute__
Hour____ / minute____
Hour___ / minute____
Hour____ / minute__
Hour____ / minute____
Hour____ / minute__
Hour____ / minute____
Hour____ / minute__
Hour____ / minute____
Hour____ / minute__
Hour____ / minute____
Hour___ / minute___
Hour____ / minute____
Hour____ / minute____
Hour____ / minute__
Hour____ / minute____
Hour____ / minute__
Hour____ / minute____
Hour____ / minute__
Hour____ / minute____
Hour____ / minute__
Hour____ / minute____
Hour____ / minute____

Hour / minute

2. End: Hour / minute (Tablet PC time)

S.26. SHUT DOWN THE SENSORS

1. Switch the sensors off by pressing the central button in the waist sensor.

2. Close the ‘Tablet annotations’ app in the Tablet

S.27. USABILITY

S$27.1 The system usability scale (SUS)

Strongly
disagree

Strongly
agree

1. | think that | would like to

use this system frequently

2. | found the system unnecessarily

complex

3. I thought the system was easy

to use

4. | think that | would need the

support of a technical person to

be able to use this system

5. | found the various functions in
this system were well integrated

6. | thought there was too much
inconsistency in this system

7. I would imagine that most people
would learn to use this system

very quickly]

b

8. | found the system very

cumbersome to use

9. I felt very confident using the
system

10. | needed to learn a lot of

things before | could get going
with this system 1

b

S$27.2 The Quebec User Evaluation of Satisfaction with Assistive Technology

1 2 3 4 5
Not satisfied Not very More or less Quite satisfied Very satisfied
at all satisfied satisfied

How satisfied are you with,

1. the dimensions (size, height, length,
width) of your assistive device?

Comments:

2. the weight of your assistive device?

Comments:

3. the ease in adjusting (fixing, fastening)
the parts of your assistive device?

Comments:

4. how safe and secure your assistive device
is?

Comments:

5. the ease in using your assistive
device?

Comments:

6. the comfort of your assistive device?

Comments:

7. What is your overall satisfaction with the
assistive device?

Comments:

