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Summary 

In the last few decades, the Arctic has experienced rapid changes in the physical and 

biological marine environment. The sea ice cover shrinks, sea surface temperatures 

increase and the ice-free season prolongs, which results in profound changes in the food 

and light regime. In Arctic shelf seas, zooplankton communities are dominated by the 

large calanoid copepod Calanus glacialis, which links primary production with higher 

trophic levels. C. glacialis accumulates energy reserves in surface waters during the 

productive season and overwinters in a state referred to as diapause in deep waters. 

Diapause is characterized by arrested development and metabolic depression. The 

physiology and metabolism and the factors that determine the duration and timing of 

diapause in C. glacialis are, however, poorly understood. With ongoing environmental 

changes it is most important to understand the physiology and timing of life cycle 

events of C. glacialis in order to predict the effects of climate change on the pelagic 

food web. Thus, in a comprehensive approach, this study aims to tackle seasonal 

patterns in the physiology of C. glacialis and elucidate if changes in the metabolic 

activity are related to external cues, i.e. light, food and temperature, or if they are 

internally regulated.    

 

Within the framework of the Norwegian research project CLEOPATRA II (Climate 

effects on food quality and trophic transfer in the Arctic marginal ice zone), C. glacialis 

was sampled monthly in Billefjorden, a high-Arctic sill fjord on the western coast of 

Svalbard. In order to investigate the influence of different environments on the 

physiology of C. glacialis, the copepods were also collected in Kongsfjorden and 

Rijpfjorden whenever logistically possible. In a combined field and experimental study, 

the biochemical composition, digestive and metabolic enzyme activities and pH and ion 

concentration in the haemolymph of the C. glacialis in different phases of diapause 

were related to depth distribution of the copepods and different food and light 

conditions.  

 

The present study showed a clear seasonal pattern in digestive and metabolic enzyme 

activities as well as acid-base regulation and extracellular ion concentrations in C. 

glacialis. The physiological patterns were similar between C. glacialis populations from 

three fjords in the Svalbard archipelago. The timing of diapause, however, differed 

among the populations and was adjusted to the prevailing environmental conditions, i.e. 
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food, light and temperature regime. These findings suggest that C. glacialis may also be 

able to adjust its physiology and the timing of life cycle events to future climate driven 

changes in the physical and biological environment.  

 

During overwintering, C. glacialis needs to be neutrally buoyant to save energy and 

minimize the risk to attract predators. Recently, ion replacement has been suggested as a 

means to fine-tune buoyancy in Antarctic diapausing copepods. In our study, we found 

that high-density cations (Na+, Mg2+, Ca2+) in the haemolymph of C. glacialis are 

exchanged for low-density Li+ ions during the winter and spring transition. The 

maximum Li+ concentration in the copepods exceeded by far the Li+ concentration in 

seawater, which suggests that this ion has a biological function and might support 

upward migration in C. glacialis. Our study did not find a correlation between the pH 

and ion concentration in the haemolymph, however, the pH followed a clear seasonal 

pattern and was low (pH 5.5) in winter and high (pH 7.9) in summer. Low extracellular 

pH values have previously been related to metabolic depression in marine organisms.  

 

Besides the low pH in diapausing C. glacialis, we found low digestive enzyme activities 

(proteinase and lipase/esterase) in copepods at depth in winter and high activities during 

the productive season, when the copepods resided in surface waters. Digestive enzyme 

activities correlated closely with food availability in copepods from Billefjorden and 

also in individuals from the incubation experiments at different food and light 

conditions: the synthesis of enzymes increased with food availability. During the 

experiments, however, the increase in activity started about five days earlier in 

copepods which were in the activation phase of diapause compared to the ones which 

were in the beginning of the diapause period. Thus, the response time of C. glacialis to 

changes in environmental conditions varies depending on the diapause phase. 

 

 Metabolic enzyme activities were about 50% lower in diapausing C. glacialis as 

compared to active individuals, while it was the other way around for catabolic enzyme 

activity. During the activation phase of diapause in late winter, high catabolic enzyme 

activities were followed by profound changes in the biochemical composition and a 

drop in lipid content, which was probably related to moulting, gonad maturation and 

egg production. Thus, metabolic activities of the shelf species C. glacialis were 

relatively high during diapause and in conclusion, our findings suggest that this species 
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does not overwinter in ‘true’ diapause. Future studies should investigate intra- and 

interspecific variability in the physiology of copepods during diapause to provide a 

comprehensive definition of metabolic and physiological characteristics of diapausing 

copepods. 
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Zusammenfassung 

In den letzten Jahrzehnten haben sich die physikalischen und biologischen 

Umweltbedingungen in der Arktis zunehmend verändert. Die Meereisfläche nimmt 

kontinuierlich ab, die Temperaturen an der Meeresoberfläche steigen an und die 

Zeiträume, in denen die Arktis gebietsweise eisfrei ist, verlängern sich. Die 

Zooplanktongemeinschaften der arktischen Schelfmeere werden von der calanoiden 

Copepodenart Calanus glacialis dominiert, die ein Bindeglied zwischen den 

Primärproduzenten und höheren trophischen Ebenen darstellt. C. glacialis akkumuliert 

Energiereserven in Form von Lipiden in den Oberflächengewässern während der 

produktiven Jahreszeit und überwintert in so genannter Diapause im Tiefenwasser. 

Diapause ist durch eine gehemmte Entwicklung der Copepoden und stark reduzierte 

Stoffwechselprozesse charakterisiert. Die zugrundeliegenden Stoffwechselprozesse und 

die Faktoren, die den Zeitpunkt und die Dauer der Diapause bestimmen, sind jedoch 

kaum verstanden. Bei anhaltenden Veränderungen der arktischen Meeresumwelt ist es 

jedoch wichtig, die Physiologie während der verschiedenen Lebenszyklusereignisse von 

C. glacialis zu verstehen, um die Auswirkungen des Klimawandels auf das pelagische 

Nahrungsnetz vorhersehen zu können. Aus diesem Grund untersucht die vorliegende 

Studie saisonale physiologische Veränderungen in C. glacialis in einem umfassenden 

Ansatz und versucht zu erklären, ob Stoffwechselaktivitäten sich aufgrund externer 

Signale wie Licht, Futter und Temperatur ändern, oder ob diese Prozesse intern geregelt 

sind.  

 

Im Rahmen des norwegischen Projektes CLEOPATRA II (Climate effects on food 

quality and trophic transfer in the Arctic marginal ice zone) wurde C. glacialis ein Jahr 

lang monatlich in dem arktischen Schwellenfjord Billefjorden, an der Westküste von 

Spitzbergen, gesammelt. Um den Einfluss von verschiedenen Habitaten auf die 

Physiologie von C. glacialis zu untersuchen, wurden zudem Proben im Kongsfjord und 

Rijpfjord genommen, sofern dies logistisch möglich war. Im Zusammenhang mit dem 

Nahrungsangebot und der Tiefenverteilung der Tiere wurde die biochemische 

Zusammensetzung, Aktivitäten von Verdauungsenzymen und metabolischen Enzymen 

sowie der extrazelluläre pH und die Ionenkonzentration in der Hämolymphe der 

Copepoden bestimmt. In einer kombinierten Feld- und experimentellen Studie wurde 

die physiologische Reaktion von C. glacialis in verschiedenen Diapausephasen auf 

unterschiedliche Futter- und Lichtbedingungen untersucht.  
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Im Rahmen der vorliegenden Studie wurden deutliche saisonale Veränderungen in der 

Aktivität von Verdauungsenzymen und metabolischen Enzymen sowie in der Säure-

Base-Regulation und Ionenkonzentration in der Hämolymphe von C. glacialis 

gefunden. Die physiologischen Veränderungen waren ähnlich zwischen den 

Populationen in den drei Fjorden im Spitzbergen-Archipel. Abhängig von den 

vorherrschenden Umweltbedingungen unterscheiden sich jedoch der Zeitpunkt und die 

Dauer der Diapause in den Populationen. Diese Anpassungen an äußere Bedingungen 

lassen vermuten, dass C. glacialis möglicherweise in der Lage sein wird, seinen 

Lebenszyklus an klimabedingte Änderungen in der physikalischen und biologischen 

Umwelt anzupassen.  

 

Ein neutraler Auftrieb ermöglicht es den überwinternden Copepoden, möglichst wenige 

Energiereserven zu verbrauchen und den Fraßdruck zu verringern. Vor Kurzem wurde 

im Rahmen einer Studie mit antarktischen Copepoden ein Ionenaustausch als möglicher 

Mechanismus zur Feinregulation des Auftriebs vorgeschlagen. Im Rahmen unserer 

Studie haben wir herausgefunden, dass während des Überwinterns Li+-Ionen gegen 

solche Ionen, die die Dichte erhöhen (Na+, Mg2+, Ca2+), in der Hämolymphe von C. 

glacialis ausgetauscht werden. Die maximale Li+-Konzentration in den Copepoden 

überschritt bei Weitem die Li+-Konzentration im Meerwasser. Dies lässt Rückschlüsse 

auf eine mögliche biologische Funktion des Lithiums zu und lässt vermuten, dass es 

eine unterstützende Funktion beim Aufstieg in die Oberflächengewässer hat. Unsere 

Studie konnte keine Korrelation zwischen der Ionenkonzentration und dem pH in der 

Hämolymphe der Copepoden nachweisen, jedoch war ein klarer saisonaler Verlauf im 

extrazellulären pH zu erkennen. Der pH war niedrig im Winter (pH 5,5) und hoch im 

Sommer (pH 7,9). Ein niedriger extrazellulärer pH wurde bereits in anderen Studien mit 

einer verringerten Stoffwechselaktivität in marinen Organismen in Verbindung 

gebracht.  

 

Neben einem niedrigen extrazellulären pH wurden im Rahmen dieser Studie eine 

geringe Verdauungsenzymaktivität (Proteinase und Lipase/Esterase) in überwinternden 

Copepoden und hohe Aktivitäten in Individuen aus Oberflächengewässern im Frühjahr 

und Sommer gefunden. Die Verdauungsenzymaktivität war eng mit der 

Nahrungsverfügbarkeit im Billefjord verknüpft, und auch während der 

Inkubationsexperimente unter verschiedenen Futter- und Lichtbedingungen konnte eine 
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Zunahme der Aktivität mit vorhandener Nahrung nachgewiesen werden. Die Zunahme 

der Verdauungsenzymaktivität zeigte sich fünf Tage später in den Copepoden, die sich 

zur Versuchszeit im Beginn der Diapause befanden, im Vergleich zu den in Copepoden 

in der Aktivierungsphase. Somit kann die Diapausephase möglicherweise 

Auswirkungen auf die Reaktionszeit der Copepoden haben.  

 

In überwinternden Copepoden waren die metabolischen Enzymaktivitäten halb so hoch 

wie in aktiven Tieren, wohingegen die katabolischen Enzymaktivitäten in den 

Copepoden im Winter höher waren als im Sommer. Während sich die Copepoden in der 

Aktivierungsphase der Diapause befanden, wurde im Zusammenhang mit hohen 

katabolischen Enzymaktivitäten eine starke Veränderung in der biochemischen 

Zusammensetzung und ein Abfall im Lipidgehalt beobachtet, was vermutlich auf 

Prozesse wie Häutung, Gonadenreife und Eiproduktion zurückzuführen ist. Aus den 

relativ hohen metabolischen Aktivitäten in überwinternden Individuen lässt sich 

schlussfolgern, dass die Schelfart C. glacialis möglicherweise nicht in einer ‚echten‘ 

Diapause überwintert. Zukünftige Studien sollten die intra- und interspezifische 

Variabilität in der Physiologie von überwinternden Copepoden untersuchen, um eine 

umfassende Definition der physiologischen und metabolischen Anpassungen, die der 

Diapause zugrunde liegen, zu ermöglichen.  
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1 Introduction  

1.1 Scientific background 

Zooplankton communities worldwide are dominated by calanoid copepods (Longhurst 

1985, Fransz and Gonzalez 1997) and three Calanus species, i.e. C. finmarchicus, C. 

glacialis and C. hyperboreus are particularly abundant in terms of biomass in Arctic 

ecosystems (Jaschnov 1970). As mainly herbivores, Calanus spp. link primary 

production with higher trophic levels, such as carnivorous zooplankton and 

commercially important fish, but also whales and seabirds (Runge 1988, Beaugrand et 

al. 2003, Wold et al. 2011, Kraft et al. 2013). Calanus spp. are important contributors to 

the energy flux in Arctic ecosystems, since they transform low-energy carbohydrates 

and proteins from their algae nutrition into energy-rich wax esters (Falk-Petersen et al. 

2009). 

 

The life cycles of the three Calanus species are well adapted to the strong seasonality in 

food availability and light regime, which makes them good indicators of environmental 

changes and the factors that influence the health and productivity of the Arctic 

ecosystem (Hays et al. 2005, Blachowiak-Samolyk et al. 2008). Calanus spp. perform 

ontogenetic vertical migration to survive food scarcity and avoid predation risk in deep 

waters during winter and accumulate energy reserves in surface waters during the 

productive season (Conover 1988, Kaartvedt 2000). The three species differ in their 

distribution, which is displayed in differences in their life history traits, i.e. life cycle 

length, reproduction and body mass (Conover & Huntley 1991, Falk-Petersen et al. 

2009).  

 

The smallest and boreal species C. finmarchicus (Gunnerus) is mainly associated with 

Atlantic water masses. It is transported northwards by the North Atlantic current into 

the Arctic Ocean and the Barents Sea. Its center of distribution is the Norwegian Sea 

and the Labrador Sea (e.g. Fleminger & Hulsemann 1977, Conover 1988, Planque et al. 

1997). Depending on the environmental conditions, C. finmarchicus has one to three 

generations per year (Marshall and Orr 1955, Conover 1988). Gonad maturation and 

reproduction depend strongly on food availability and egg production only occurs at 

low rates before the phytoplankton bloom (Niehoff et al. 1999, Campbell et al. 2001). 
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The largest species, C. hyperboreus Krøyer is an oceanic species and its distribution 

extends into the Arctic Basin, the Greenland Sea, the Baffin Bay, the Canadian 

Archipelago and southwards into the Norwegian Sea and the Gulf of Maine (Grainger 

1961, Jaschnov 1970, Conover 1988, Hirche 1991, Hirche and Mumm 1992). The life 

cycle of C. hyperboreus is two to four years (Hirche 1997, Arnkværn et al. 2005). C. 

hyperboreus reproduces based on its internal energy reserves and thus, uncoupled from 

the phytoplankton bloom (Niehoff et al. 2002).  

 

The medium-sized C. glacialis Jaschnov (Fig. 1.1) is a shelf species and endemic to the 

Arctic. It is transported southwards with the East Greenland Current and also inhabits 

the northwest coast of North America and the White Sea (Grainger 1961, Conover 

1988, Falk-Petersen et al. 2009). Dependent on the temperature and food availability, 

the life cycle of C. glacialis is completed within one or two years (Hirche 1998, 

Kosobokova 1999). C. glacialis has a mixed reproductive strategy: gonad maturation 

and egg production start based on internal energy reserves and then, females increase 

spawning frequency by feeding on the icealgae and phytoplankton bloom (Smith 1990, 

Hirche & Kattner 1993). The offspring then exploits the phytoplankton bloom to grow 

and develop (Søreide et al. 2010, Box 1). This flexible reproductive strategy of C. 

glacialis makes this species so successful and abundant in Arctic shelf areas. Important 

predators, such as the little auk (Alle alle) and the bowhead whale (Balaena mysticetus), 

rely on the energy-rich C. glacialis (Karnovsky et al. 2003, Rogachev et al. 2008). With 

proceeding changes in sea surface temperature, ice coverage and subsequent changes in 

food supply (Arrigo et al. 2008, Stroeve et al. 2012), C. glacialis might be replaced by 

the smaller and less energy-rich C. finmarchicus, with yet unpredictable consequences 

for the Arctic ecosystem (Reygondeau & Beaugrand 2011, Wassmann et al. 2011).      

 

Numerous publications have considered the morphology, distribution, life cycle and 

body composition of the Arctic Calanus species (see reviews by Conover & Huntley 

1991, Niehoff 2007 and Falk-Petersen et al. 2009). Studies on the physiology and the 

metabolism of C. glacialis, in contrast, are rare. The few available studies investigated 

respiration rates or feeding activity in spring and summer or early autumn (e.g. 

Båmstedt 1984, Båmstedt & Tande 1985, Tande 1988, Seuthe et al. 2007), but winter 

studies on the physiology of C. glacialis are completely lacking. Thus, the 

overwintering strategy and the physiology of C. glacialis in a seasonal context are yet 
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poorly understood. This knowledge, however, is crucial to assess the influence of a 

changing environment on the survival success of this important Arctic shelf species. 

This study investigates in a comprehensive approach how C. glacialis adjusts its 

metabolism and physiology during all seasons in a high Arctic fjord.   

 

 

 

Fig. 1.1 The Arctic shelf copepod species Calanus glacialis 
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Arctic shelf seas, which are the habitat of Calanus glacialis, are characterized by two 
distinct algal blooms, i.e. the ice algae bloom and the phytoplankton bloom. The ice 
algae bloom starts in March, when the light returns and the phytoplankton bloom 
begins with the ice break-up (Hegseth 1998). Timing and magnitude of both blooms 
are strongly dependent on the prevailing ice conditions (Ji et al. 2013). As climate 
changes, the sea-ice cover shrinks and ice-free seasons become longer (Gough et al. 
2004, Comiso et al. 2008, Stroeve et al. 2012). This will alter the underwater light 
regime and have severe effects on the timing and intensity of primary production 
(Arrigo et al. 2008, Kahru et al. 2011). 
 
The reproduction and growth success of C. glacialis depends on the quantity and 
quality of the algae diet. C. glacialis females feed on the ice algae and phytoplankton 
bloom to fuel gonad maturation and spawning. Then, nauplii and copepodites rely on 
the phytoplankton bloom to grow and develop. With a changing climate in the future, 
the match between the reproduction of C. glacialis and both blooms may be disturbed 
with yet unpredictable consequences for the entire lipid-driven Arctic ecosystem (Fig. 
B1.1).    
 

 
Fig. B1.1 Timing of algal blooms (poly unsaturated fatty acid peaks, PUFA) in Arctic shelf 
seas. The current time lag (a) between both blooms allows Calanus glacialis to start 
reproduction with the ice algae bloom and the offspring (nauplii and copepodites) to grow 
with the phytoplankton bloom. With the future scenario of an earlier ice break-up, the growth 
season for icealgae shortens and the time lag between both peaks becomes shorter (b). This 
may lead to a decrease in C. glacialis population biomass (from Søreide et al. 2010).     
 

Box 1 Reproductive strategy of Calanus glacialis and mismatch-hypothesis after Søreide et al. 
(2010). 
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1.2 Dormancy 

Dormancy is defined as a state of arrested development and growth of an organism 

(Danks 1987). The range of physiological adjustments in organisms performing 

dormancy is manifold and shows a broad intra- and interspecific variability due to (i) 

differences in environmental conditions, (ii) differences in the evolutionary history of 

taxa and (iii) the necessity to time life cycle events with environmental conditions 

(Danks 2002). Dormancy occurs in animals from all taxa and latitudes and is a 

physiological response to various biotic and abiotic environmental stressors, such as 

temperature, oxygen availability, photoperiod, hypersalinity, predation risk or food 

scarcity (Dahms 1995). To save energy, the metabolic activity of an organism during 

dormancy is adjusted. The intensity of this metabolic adjustment varies intra- and 

interspecific from almost zero to around 80% of the normal resting metabolic rate 

(Guppy & Withers 1999). 

 

The following forms of dormancy may be distinguished (Mansingh 1971, Danks 1987, 

Guppy & Withers 1999): 

 

 Quiescence is defined as a direct physiological response to unfavorable 

environmental conditions. Quiescence is a short-term phenomenon which may 

occur irregularly whenever adverse environmental conditions arise (Mansingh 

1971, Danks 1987). The maximal metabolic depression can occur within hours. 

In embryos of the brine shrimp Artemia franciscana, for example, the 

concentration of the high-energy molecule adenosine triphosphate (ATP) 

declines by 80% within a few hours as a response to anoxic conditions (Hand & 

Podrabsky 2000).  

 

 Diapause: In contrast to quiescence, diapause is controlled endogenously and 

thus, a compulsory physiological reaction to recurring adverse environmental 

conditions (Dahms 1995). Diapause is performed by specific ontogenetic stages 

(Dahms 1995, Guppy & Withers 1999) and it is mainly common in arthropods, 

especially insects and crustaceans (Elgmork & Nilssen 1978, Dahms 1995).  

 

 Hibernation: Metabolic depression in endotherms is termed hibernation. 

Hibernation is characterized by reduced heart rates and body temperature in 
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mammals and birds during winter (review by Guppy & Withers 1999). The top 

predator of the Arctic food chain, the polar bear (Ursus maritimus), is one of the 

most common examples of an Arctic hibernating mammal (Nelson et al. 1983).  

 

Dormancy in copepods 

In copepods, dormancy is distinguished into quiescence and diapause (Dahms 1995, 

Hirche 1996). It is noteworthy that most studies on copepods do not provide an accurate 

differentiation into one of the two dormancy forms. In the following, the term dormancy 

will be used, whenever referring to a study in which a clear definition of quiescence and 

diapause is not given.  

 

Dormancy is exclusively performed by free-living copepods of the taxa Harpacticoida, 

Cyclopoida and Calanoida of freshwater and marine habitats (review by Williams-

Howze 1997). Ontogenetic stages that can initiate dormancy are resting eggs, nauplii 

and copepodites (Dahms 1995). Quiescence in copepods is mostly found in the form of 

dormant eggs in sediments (Uye 1985, Dahms 1995). Dormant nauplii are only 

described for four harpacticoid and two calanoid species (Coull & Dudley 1976, Uye 

1980). The importance of dormancy in later copepodite and adult developmental stages 

increases generally towards the poles (Watson 1986). For dormant cyclopoid 

copepodites the term “active diapause” was formed and is defined by arrested 

development and reproduction, but only minimal reduction in activity (Elgmork 1980, 

Krylov et al. 1996). 

 

Mansingh (1971) classified diapause in insects into five phases and a few years later the 

same phases were also described in copepods (Elgmork & Nilssen 1978, Hirche 1996): 

 

 During the preparatory phase, organisms accumulate energy reserves and arrest 

their development and growth.  

 

 During the induction phase, the metabolic activity of organisms is low and they 

stop feeding.  

 

 The refractory phase is usually the longest phase of diapause and can last more 

than half a year. Organisms are torpid and some species are potentially able to 
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survive anaerobiosis. The metabolic activity reaches the lowest levels during the 

refractory phase.  

 

 The activation phase usually starts when half of the diapause time is reached. 

The animals regain their ability to develop and processes like gonadogenesis 

start.   

 

 During the termination phase, organisms regain their full potential of metabolic 

activity, growth and development. The termination phase usually takes place in 

spring.    

 

Depending on habitat, latitude and season, dormancy strategies may vary profoundly 

among species and even within populations of the same species (Dahms 1995). The 

calanoid Labidocera aestiva is an example for intraspecific variation in dormancy 

features. It produces resting eggs in a population off the northeast coast of the US, close 

to Woods Hole, while a population further south does not show this feature (Marcus 

1980). Interspecific differences are found in the overwintering strategies of copepods 

from the Arctic and the Antarctic.  Dormant species are found in both hemispheres, 

however, as the tendency to perform dormancy increases towards the poles, there are 

less dormant species in the Antarctic.  

 

The calanoid copepod species Calanoides acutus, Calanus propinquus and Metridia 

gerlachei dominate the Antarctic zooplankton communities in terms of biomass 

(Schnack-Schiel et al. 1991, Hopkins 1993). All three species perform ontogenetic 

vertical migration and accumulate lipid reserves during the productive season in spring 

and summer (Schnack-Schiel & Hagen 1995), however, C. acutus seems to be the only 

species which performs diapause (Atkinson 1998). C. propinquus mainly remains in the 

upper 200 m and M. gerlachei is more dispersed over the water column, while C. acutus 

is almost exclusively found in deep waters during winter. Moreover, the former two 

species accumulate triacylglycerols, while C. acutus accumulates wax esters as lipid 

reserves during the productive season (see 1.3.1 characteristics of lipids, Schnack-Schiel 

& Hagen 1995). 
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In the Arctic, three of the largest copepod species, i.e. Calanus finmarchicus, C. 

glacialis and C. hyperboreus, are known to perform ontogenetic vertical migration and 

overwinter in diapause (Hirche 1998). C. glacialis is similar to C. acutus, as both 

species are able to start reproduction before the phytoplankton bloom, but their 

spawning frequency increases with food availability (Smith 1990, Hirche & Kattner 

1993). The Arctic counterpart to M. gerlachei is Metridia longa. Both species are 

omnivorous and active during winter, but M. longa accumulates more wax esters 

(Hopkins et al. 1984). At both poles, life history traits of the copepods are adapted to a 

strong seasonality in light and food regime (reviews by Conover and Huntley 1991 and 

Smith and Schnack-Schiel 1990). However, the hydrography and ice-cover differs 

between the Arctic and the Antarctic. The Antarctic Circumpolar Current is the 

dominant circulation that flows clockwise around the Antarctic, while the Arctic 

experiences a constant inflow of the North Atlantic Current. The light regime in the 

Arctic is characterized by a longer polar night compared to the Antarctic. Moreover, 

multiyear ice is more common in the Arctic. These difference in photoperiod and ice-

coverage result in a higher primary production in the Antarctic (Codispoti et al. 1991), 

which may be a reason for the different overwintering strategies of the dominant 

copepods between the poles (review by Smith and Schnack-Schiel 1990).  

 

All Arctic Calanus species perform ontogenetic vertical migration, accumulate wax 

esters in surface waters during the productive season and rely on these internal energy 

reserves when they are in deep waters during winter (Conover 1988, Falk-Petersen et al. 

2009 and see Fig. 1.2 for C. glacialis). Depending on the habitat and especially the food 

supply, the copepods are able to develop and overwinter in different stages, i.e. mainly 

CIV, CV and adult females in C. finmarchicus and C. glacialis (Fig. 1.2), while C. 

hyperboreus may also accumulate enough energy reserves and overwinter as CIII 

(Hirche 1998). Overwintering Calanus spp. were characterized by torpidity (Hirche 

1983), low digestive enzyme activity (Head and Conover 1983, Hirche 1983), low 

respiration rates (Marshall and Orr 1958, Ingvarsdóttir et al. 1999) and high content of 

polyunsaturated fatty acids in their wax esters (Clark et al. 2012). However, to what 

extent these characteristics apply to all three Calanus species in open ocean and shelf 

habitats has yet to be clarified. Most of the available knowledge on the overwintering 

strategy in Calanus spp. derives from studies on C. finmarchicus (Hirche 1996, Hind et 

al. 2000). This species has been studied extensively as it is an important food source for 
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commercially important fish and occurs in logistically easier accessible areas compared 

to C. glacialis and C. hyperboreus, which inhabit mostly high Arctic ecosystems.  

 

 

 

Fig. 1.2 Schematic overview of the life cycle of Calanus glacialis in Arctic shelf seas. The 
system is ice-covered from December to early June. The ice algae (IA) bloom starts in March 
and the phytoplankton (PP) bloom begins with the ice break-up. Adult females (AF) of C. 

glacialis reproduce in surface waters in spring. C. glaclialis develops from nauplii to copepodite 
stages I to V during spring and summer and descend mainly as stage V in late autumn. Before 
the population ascends in late winter/ early spring, individuals moult to adult males and females. 
(Picture credit: Malin Daase) 
 

 

The factors, which determine the timing and intensity of diapause in Calanus spp. are 

still not identified and an external and internal regulation of the onset and the 

termination of diapause were suggested. As external cues, sea surface temperature 

(Kosobokova 1999, Niehoff & Hirche 2005), food availability (Søreide et al. 2008, 

2010, Daase et al. 2013) and photoperiod (Miller et al. 1991) were suggested. Possible 

internal factors that were discussed to regulate diapause in Calanus spp. are endogenous 

clocks (Miller et al. 1991), neurosecretion of hormones (Carlisle & Pitman 1961), lipid 

content (Irigoien 2004) or a changes in the extracellular pH (Schründer et al. 2013).  
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1.3 Physiological characteristics of copepods 

Copepods have evolved life strategies that are well adapted to the prevailing biotic and 

abiotic conditions of the environment they inhabit. In the following, characteristic 

biochemical and physiological adaptations of copepods will be listed with a focus on 

species from polar regions.  

 

1.3.1 Biochemical composition 

The major organic components in copepods are proteins, lipids and carbohydrates. 

Depending on the seasonality in environmental factors, the composition of these 

components differs in copepods.   

 

 Proteins: Proteins are involved in building up muscle tissue, catalyzing 

metabolic reactions as enzymes and transporting molecules over membranes. 

Their amino acid sequence and the resulting three dimensional structure 

determine the characteristics and functioning of proteins. New proteins are 

formed during protein synthesis from amino acids, which are obtained either 

from internal stores or from dietary proteins. Copepods from high latitudes 

possess relatively lower protein contents compared to species from temperate or 

tropical regions, i.e. the protein content in copepods per dry mass ranges from 

approximately 20 to 80% (Båmstedt 1986).  

 

 Lipids: Lipids are very suitable to store large amounts of energy on small 

volumes, because they have a high energy content (39 kJ g-1) compared to 

proteins (18 kJ g-1). The role of lipids is manifold: they are components of 

biomembranes (phospholipids), as hormones and antioxidants, they are 

involved in various physiological processes, they are used as energy stores and 

they regulate buoyancy (Lee et al. 2006). In copepods, the lipid content per dry 

mass ranges from 5 to 20% in species from temperate and tropical regions to 

75% in species from high latitudes (Båmstedt 1986, Lee et al. 2006). Especially 

in copepods from polar regions, lipid reserves play a crucial role for surviving 

several months of food deprivation (Falk-Petersen et al. 2009). Marine 

zooplankton show four types of storages lipids, i.e. triacylglycerols (TAG), wax 

esters, phospholipids and diacylglycerol ethers (Lee et al. 2006). In copepods 

the first two are the main energy stores. Wax esters are especially found in polar 



   Introduction 

11 

species (Scott et al. 2000), while TAGs are more common in species from 

temperate regions (Kattner et al. 1981, Kreibich et al. 2008, 2010). Wax esters 

are less rapidly metabolized than TAGs and thus, are more suitable for long-

term deposits over several months during winter (Lee et al. 2006). In contrast, 

relatively high amounts of TAGs in copepods point to a continuous food supply 

(Kreibich et al. 2011). The composition of lipids provides information on 

dietary relationships between phytoplankton and zooplankton (Dalsgaard et al. 

2003). This so called trophic biomarker concept is based on studies, which 

showed that dietary fatty acids are transferred conservatively into lipid stores of 

the primary consumers (e.g. Graeve et al. 1994, Graeve et al. 2005, Søreide et 

al. 2008).  

 

 Carbohydrates: In terms of quantity, carbohydrates play a minor role in 

copepods and constitute less than 5% per dry mass (Båmstedt 1986). 

Carbohydrates mainly occur as polysaccharides in copepods, e.g. as chitin that 

constitutes the exoskeleton (Ikeda 1972, Båmstedt 1986). 

 

1.3.2 Enzyme activities 

Digestive activities 

Digestive enzymes are the functional link between food ingestion and assimilation. 

Mayzaud (1986) divides digestion into three steps, i.e. the mechanical phase, the 

chemical phase and the intracellular phase. In the mechanical phase food particles are 

grinded by the mandible blades. During the chemical phase, so called B-and F-cells 

produce digestive enzymes in the mid-gut. These enzymes hydrolyze organic 

macromolecules, i.e. proteinases act on peptide bonds; lipases and esterases act on 

carboxyl ester bonds and glycosidases act on polysaccharides. In the intracellular phase, 

semi-digested dietary particles are absorbed into gastrodermal cells, where they are 

further hydrolyzed by intracellular enzymes into basic molecules, i.e. amino acids, fatty 

acids and hexoses.  

 

Enzyme functioning is influenced by temperature and pH (Feller & Gerday 1997, 

Freese et al. 2012). Activities increase until a specific temperature and pH optimum and 

then decrease due to thermal instability and denaturation of the enzyme (Cornish-

Bowden 1995). The temperature optimum of enzyme activity in crustaceans is usually 
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between 30 and 50°C (Vetter 1995, López-López et al. 2003, Solgaard et al. 2007). In a 

recent study Freese et al. (2012) found thermal adaptation in digestive enzyme activity 

in C. glacialis. In C. glacialis, lipase/esterase activities were higher between 0 and 20°C 

compared to the activities in two boreal species. Cold adaptation is defined as all 

physiological adjustments that allow the copepods to survive in cold environments 

(Clarke 1991, Somero 1997). On the enzymatic level, cold adaptation results in low 

activation energies or a shift of the optimum to low temperatures (Clarke 1991, Feller 

2003). The median gut pH in copepods is between pH 6 and 8 (Pond et al. 1995). In this 

pH range, enzyme classes, which cleave dietary proteins in crustaceans, reach their 

optimum pH (Saborowski et al. 2004, Solgaard et al. 2007). 

 

Since the early 1930’s, researchers have assessed the feeding activity of copepods by 

using digestive enzyme activities as proxies (Bond 1934, Hasler 1935). Since then, 

some authors discovered a positive correlation between digestive enzyme activity and 

food availability (Mayzaud & Conover 1976, Hirche 1981), whereas others found a 

negative (Hassett & Landry 1983) or no correlation (Båmstedt 1984). Thus, it has been 

under debate if enzymes may be used as proxies for the feeding activity in copepods 

(Oosterhuis & Baars 1985). However, in a seasonal context or compared at different 

experimental conditions, digestive enzymes can reflect a correlation between the 

availability and uptake of food (Boucher & Samain 1974, Hassett & Landry 1983). 

 

Metabolic activities 

The metabolism of an organism includes anabolic processes, during which 

macromolecules are synthesized and catabolic processes, during which internal 

substances are degraded and converted into energy. Metabolic activity scales with 

temperature and, thus, the metabolic rate of ectothermic animals is severely affected by 

the temperature of the surrounding environment (Kinne 1963, Somero 1997, Pörtner 

2002). Moreover, metabolic activity negatively correlates with body size, i.e. the 

smaller a copepod, the higher its specific metabolic activity (Hassett 2006). Copepods 

with high lipid stores per dry mass show low specific metabolic rates, because lipids are 

metabolic inactive tissue (Hassett 2006). 

 

In crustaceans, the metabolic potential is usually either assessed by measuring 

respiration rates (Marshall & Orr 1958, Mayzaud 1976, Morata & Søreide 2013) or 
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enzyme activities (Saborowski & Buchholz 2002, Kreibich et al. 2008, Meyer et al. 

2010). The rationale behind the latter is based on the observation that changes in basic 

metabolic and catabolic pathways are reflected in changes of enzyme activities 

(Auerswald et al. 2009). In contrast to respiration measurements, the determination of 

enzyme activities minimizes artifacts, like for example stress, which are caused by 

handling the animals in the laboratory (Ohman et al. 1998).  

 

The following enzymes are representatives of important metabolic processes in 

crustaceans and were investigated in this study of C. glacialis: Citrate synthase (CS) 

and malate dehydrogenase (MDH) are an index for the overall metabolic activity; they 

are both enzymes of the citric acid cycle (Meyer et al. 2002, Kreibich et al. 2008, 

Teschke et al. 2007). MDH also transports electrons between the cytosol and the 

mitochondrion and correlates with respiration (Meyer et al. 2010), while CS was 

correlates with egg production in calanoid copepods (Kreibich et al. 2008). Aminoacyl-

tRNA synthethase (AARS) catalyzes the first step of the protein synthesis and has been 

used as a proxy for growth and state of dormancy in C. finmarchicus (Yebra et al. 

2006). Three-hydroxyacyl-CoA dehydrogenase (HOAD) is a key enzyme of the β-

oxidation of fatty acids and thus, it is a proxy for the lipid catabolism (Auerswald & 

Gäde 1999, Hassett 2006).  

 

So far, most studies on crustaceans only concern enzymes of one specific metabolic 

pathway, e.g. citrate synthase as a key enzyme for the citric acid cycle (Clarke & Walsh 

1993, Vetter 1995). Studies that measure enzymes of various pathways in a 

comprehensive approach are rare in the research of copepods, but allow observing 

switches between metabolic pathways (Auerswald et al. 2009, Hassett 2006).  

 

1.4 Vertical migration - The role of buoyancy  

The overwintering success of C. glacialis depends on its ability to remain in deep 

waters without depleting its energy reserves by moving around and attracting predators 

(Varpe et al. 2007). To stay in a certain water depth, the copepods need to be neutrally 

buoyant with the surrounding seawater. Low-density lipids have been discussed to play 

a major role in buoyancy regulation during overwintering (Irigoien 2004, Pond 2012). 

These lipids are compressed at water depths below 500 m and then, the copepods 

become heavier and sink until they reach neutral buoyancy (Pond 2012). The lipid 
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content of the copepods, however, changes during winter because of energy consuming 

processes such as moulting, gonad maturation and reproduction (Campbell and Dower 

2003, Campbell 2004).  

 

Recently, ion replacement has been suggested as another mechanism to fine-tune 

buoyancy in diapausing copepods (Sartoris et al. 2010, Schründer et al. 2013, 2014). 

During winter, ions that increase the density of the copepods (e.g. Na+, Mg2+) are 

replaced by ions that reduce the density (e.g. NH3/NH4
+) in order to prevent the 

organism from sinking. This ion replacement causes an increase in the concentration of 

NH3/NH4
+ in the haemolymph of copepods. NH3 is potentially toxic and thus, the 

copepods need to shift the chemical equilibrium to the less diffusible NH4
+ by lowering 

their extracellular pH (Sartoris et al. 2010, Schründer et al. 2013). A seasonal 

correlation between a low pH and high concentrations of NH4
+ ions, however, has not 

yet been shown in Arctic copepods. Beside a potential influence on the NH3/NH4
+ 

equilibrium in the haemolymph (Sartoris et al. 2010, Schründer et al. 2013), a low 

extracellular pH has been suggested to be associated with metabolic depression in the 

marine worm Sipunculus nudus (Reipschläger and Pörtner 1996). In copepods, 

however, a seasonal relation between extracellular pH and metabolic depression has not 

yet been observed.  

 

1.5 Aims and outline of this thesis 

Physical and biological conditions in the Arctic are changing with yet unpredictable 

consequences for marine life. The duration and extent of sea ice cover diminish due to 

an increased inflow of relatively warm Atlantic water masses and rising sea surface 

temperatures. This severely affects the timing and intensity of primary production. The 

consequences of these changes on the physiology of the mainly herbivorous shelf 

species C. glacialis are yet not foreseeable. Calanus glacialis is an important 

contributor to the energy flux in Arctic shelf areas. At present, however, the metabolic 

and physiological processes underlying the life cycle of C. glacialis are not well 

understood and the mechanisms that induce and terminate diapause are still elusive. 

Specifically, previous studies did not determine if the overwintering period is regulated 

by environmental cues or internal processes. Moreover, the timing and intensity of 

metabolic adjustments during diapause of C. glacialis are not yet characterized. Thus, 

this study aims to tackle seasonal patterns in metabolic and physiological processes in 
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C. glacialis by combining an extensive field study with experiments at different food 

and light conditions in the laboratory.   

 

This thesis addresses the following main objectives:  

 

I. Investigating to what extent C. glacialis regulates its cation concentration and pH in 

the haemolymph during activity and diapause (Manuscript I) 

 Hypothesis: C. glacialis accumulates cations that reduce its density, like e.g. NH4
+, 

and has a low extracellular pH during winter and vice versa during summer 

 

II. Relating digestive enzyme activities to the seasonal migration of C. glacialis 

(Manuscript II) 

 Hypothesis: Digestive enzyme activities of C. glacialis relate solely to food 

availability 

 

III. Relating the activities of enzymes of key metabolic processes to the seasonal 

migration of C. glacialis (Manuscript III) 

 Hypothesis: The metabolic activity of C. glacialis is close to zero in individuals that 

reached the overwintering water depth 

 

IV. Comparing the physiology of C. glacialis populations from three fjords in the 

Svalbard archipelago (Synopsis chapter 4.1) 

 Hypothesis: Depending on the environmental conditions the physiological 

adjustments vary between the C. glacialis populations 

 

V. Investigating the physiological response of C. glacialis during diapause to different 

food and light conditions (Synopsis chapter 4.2) 

 Hypothesis: The physiological response of diapausing C. glacialis will be faster in 

individuals, which are in the activation phase compared to copepods, which are in the 

beginning of diapause. 

 

Ultimately, this study aims to elucidate the seasonal patterns in the metabolism and 

biochemical composition of C. glacialis. The study was conducted within the 

framework of the Norwegian research project CLEOPATRA II (Climate effects on food 
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quality and trophic transfer in the Arctic marginal ice zone funded by the Research 

Council of Norway), which is a cooperation project between scientists from the 

University Centre in Svalbard (UNIS) and the Alfred Wegener Institute, Helmholtz 

Centre for Polar and Marine Research (AWI) in Bremerhaven. By analyzing C. glacialis 

that was sampled year-round from July 2012 to July 2013, manuscript I to III evaluate 

physiological and metabolic adjustments in the copepods. Cation concentrations and pH 

in the haemolymph (Manuscript I), quantitative and qualitative digestive enzyme 

activities (Manuscript II) and metabolic enzyme activities and the biochemical 

composition (Manuscript III) of C. glacialis are related to water depth and seasons. 

The synopsis summarizes the major results from manuscript I to III and compares the 

physiology of C. glacialis populations from three fjords of the Svalbard archipelago. 

Moreover, it presents and discusses the findings from incubation experiments, which 

tested the effect of different food and light conditions on the physiology of C. glacialis 

and relates them to the seasonal study.  
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2 Material and methods 

This chapter gives a brief overview of the sampling procedure and the analytical 

methods, which were used in this thesis. Detailed descriptions are given in the 

respective chapters (Manuscript I - III).  

 

2.1 Field work 

To compare the impact of environmental conditions on the physiology of Calanus 

glacialis, the copepods were sampled in three fjords of the Svalbard archipelago. 

Billefjorden (78°N; 16°E) and Kongsfjorden (79°N, 12°E) are both located on the 

western coast, while Rijpfjorden (80ºN, 22ºE) is on the northern side of Svalbard (Fig. 

2.1).  

 

 

 

Fig. 2.1 The three fjords (Billefjorden, Kongsfjorden and Rijpfjorden) around the Svalbard 
archipelago, in which Calanus glacialis was sampled. The map was created with TopoSvalbard, 
Norwegian Polar Institute (http://toposvalbard.npolar.no/) 
 

 

Billefjorden was chosen as the main sampling area and sampling was conducted 

monthly from July 2012 to July 2013. Billefjorden is a sill fjord that consists of an outer 

basin (maximum depth ~230 m) and an inner basin (maximum depth ~190m). Both 

basins are isolated by a sill from each other and from the outer fjord system (Nilsen et 
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al. 2008). The two sills restrict the water exchange with the open ocean, which limits 

zooplankton advection. Thus, we assume to have sampled the same C. glacialis 

population over the year (Grigor et al. 2014). The fjord was ice-covered from February 

to early June 2013. In the upper 50 m, the water temperatures ranged between -1.7°C 

during ice-coverage and 5°C in late summer. At depth below 100 m, temperature was 

around -1°C throughout the year (Fig. 2.2). 

 

 

Fig. 2.2 Sea ice-cover (grey bar), photosynthetically active radiation (PAR) and fluorescence in 
the upper 19 m (upper panels) in Billefjorden from July 2012 to July 2013. The lower panels 
shows the temperature profile [°C] and fluorescence of the water column. Data were obtained 
from a mooring equipped with CTDs and miniloggers at 19, 30, 46, 56, 90, 111, 126 and 180 m 
water depth.  
      

 

Kongsfjorden is an open fjord with water depths ranging from 400 m in the outer basin 

to 60 m in the inner basin (Kwasniewski et al. 2003). The fjord opens into the West 

Spitsbergen Shelf and is highly influenced by the West Spitsbergen Current that 

transports warm and saline Atlantic water into the fjord. In the fjord, the Atlantic water 

masses are mixed with Arctic water and local water masses from two glaciers and 

terrestrial run-off (Cottier et al. 2005, Svendsen et al. 2002).  
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Rijpfjorden is the northernmost fjord of the Svalbard archipelago and at maximum 240 

m deep. It opens towards the deep Polar Basin and is dominated by cold Arctic water 

masses. Rijpfjorden is ice-covered for six to eight months every year (Wallace et al. 

2010).  

Depending on the ice-conditions, Billefjorden was reached either by boat (RV Helmer 

Hanssen, KV Svalbard or Farm), by zodiac or snow mobile. Sampling in Kongsfjorden 

and Rijpfjorden was conducted whenever possible during research cruises with RV 

Helmer Hanssen, RV Lance or KV Svalbard (see Table 1 for sampling schedule). The 

copepods were sampled with a WP-3 or WP-2 plankton net (1000 µm and 200 µm mesh 

size, respectively) from 180 m to 100 m water depth (from July 2012 to February 2013 

and again in July 2013) and from 50 m to surface (in July 2012 and from March to June 

2013) in Billefjorden. In Kongsfjorden, C. glacialis was sampled in the upper 50 m in 

July 2012 and below 200 m in January and February 2013. In Rijpfjorden, copepods 

were captured in the upper 50 m in July 2012, below 150 m from September 2012 to 

February 2013 and under the ice in May 2013. The sampling depth was chosen 

according to the highest abundance of the individuals. In July 2012, copepods started to 

migrate and thus, were distributed throughout the water column. We used the 

opportunity to sample and compare individuals from both depth layers in Billefjorden.  

 

 

Table 1 Sampling in the three fjords Billefjorden, Kongsfjorden and Rijpfjorden from July 2012 
to July 2013.  
 Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr May Jun Jul 

Billefjorden x x x x x x x x x x x x x 

Kongsfjorden x      x x      

Rijpfjorden x  x    x x   x   

 

 

Immediately after capture, the animals were transported to the laboratories at the 

University Centre in Svalbard (UNIS) or sorted onboard a research vessel in a 

laboratory at ambient temperature. Under a stereo-microscope, C. glacialis of 

copepodite stage IV (CIV), V (CV) and adult females (CVIF) were sorted alive. 

Individuals were briefly rinsed in demineralized water. Then, they were either snap-

frozen in liquid nitrogen for analyses of enzyme activities, water-soluble protein content 

and lipid content or placed in pre-weighed Sn-cartridges for analyses of dry mass (DM), 

carbon (C) and nitrogen (N) content or haemolymph was extracted (see Fig. 2.3 for 
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sample processing). Samples for biochemical analyses were stored at -20°C and 

samples for enzyme activity analyses were stored at -80°C until processing. In addition, 

healthy looking CV were sorted alive under the stereo-microscope and placed in barrels 

for incubation experiments (see chapter 2.3).  
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Fig. 2.3 Overview of all physiological and biochemical parameters, which were analyzed for Calanus glacialis copepodite IV, V and adult females from 
Billefjorden (Manuscript I - III), Kongsfjorden and Rijpfjorden (chapter 4.1.2) and CV of an incubation experiment at different food and light 
conditions (chapter 4.2). Shown are the number of individuals, which were frozen for the different parameters, the method of freezing and the storage 
temperature and the measurement method for the determination of the biochemical composition, the pH and ion concentration in the haemolymph and 
enzyme activities of C. glacialis. Abbreviations of analyzed parameters: malate dehydrogenase (MDH), aminoacyl-tRNA synthetase (AARS), 3-
hydroxyacyl-CoA dehydrogenase (HOAD), citrate synthase (CS), lipase/esterase (lipase), water-soluble protein content (protein), total lipid content 
(lipid), dry mass (DM), carbon (C) and nitrogen (N) content, extracellular pH (pHe) and cation concentration (cation). 
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2.2 Analytical work 

In the following, the analytical methods, which were performed to assess the physiology 

of C. glacialis are described (see Fig. 2.3 for an overview of all analyzed parameters). 

 

2.2.1 Biochemical composition 

The biochemical composition of C. glacialis was determined in terms of DM, C and N 

content (Manuscript II, III), total lipid content (Manuscript III) and water-soluble 

protein content (Manuscript III).  

 

To determine DM, individual C. glacialis CIV, CV and adult females were dried in Sn-

cartridges at 60°C for 48 hours. Then, the pre-weighed cartridges were weighed on an 

ultra-microbalance. C and N content were determined by combustion with a CHN-

Analyzer (EuroVector, EuroEA3000), using acetanilide as standard and the software 

Callidus Version 2E3. Between the procedures, the samples were kept in an exsiccator 

to prevent absorption of condensation water.  

 

The total lipid content of C. glacialis CV was determined after Bligh & Dyer (1959). 

The frozen samples were lyophilized for 24 hours. Afterwards, 

dichloromethane/methanol (2:1, v/v) was added and the lipids were extracted by 

homogenizing the samples with a Potter-Elvehjem homogenizer. This was followed by 

two sonication steps. In between the steps, the supernatants were transferred into 

centrifuge vials and the solvent was added to a final volume of 8 ml. The extracts were 

cleaned with 0.88% potassiumchlorid solution and the total lipid content was 

determined gravimetrically after evaporation of the solvent.  

 

Water-soluble protein content was quantified after Bradford (1976) by applying a Bio-

Rad protein assay (BIO-RAD 500-0006). Bovine serum albumin was used as a standard 

(0 to 0.1 mg/ml). The samples were homogenized in Tris/HCl buffer at pH 7.0 (Table 2) 

and centrifuged at 15,000 g at 4°C for 15 min (Thermo Scientific, Heraeus Fresco 17). 

The homogenates (1:27 diluted with distilled water) were then added to 250 µl of 1:5 

diluted protein assay. After incubating the assay for 15 min at 25°C in a 96-well plate, 

the absorption of the assay was measured in triplicates at 600 nm and 25°C with a 

Synergy HTX Multi-Mode Reader and the software KC4 3.4 Rev. 21. 
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2.2.2 Enzyme analyses 

The homogenates from all samples for enzyme analyses were gained by homogenizing 

the copepods in Tris/HCl buffer at pH 7.0 and centrifuging the sample at 15,000 g at 

4°C for 15 min. (Thermo Scientific, Heraeus Fresco 17). The homogenates were then 

transferred into new reaction tubes and kept on ice until further processing.  

 

As part of this thesis, it was aimed to measure as many different enzyme groups from 

the same sample of copepods as possible. Digestive enzyme activity (qualitative and 

quantitative), citrate synthase (CS) activity and water-soluble protein content were all 

measured from the same sample. An aim of this thesis was to also measure malate 

dehydrogenase (MDH), 3-hydroxyacyl CoA dehydrogenase (HOAD) and aminoacyl- 

tRNA-synthetase (AARS) from the same sample. Therefore it was necessary to 

homogenize the copepods for all enzyme measurements in the same buffer. However, 

Tris/HCl buffer at pH 7.0 proved to be an unsuitable buffer system for MDH, HOAD 

and AARS, since enzyme activities were either to variable or below the detection limit. 

The different enzyme classes require buffer systems, which stabilize their activities and 

diminish an interference with metals or any other compounds (Mayzaud 1986, Table 2).  

 

 

Table 2 Buffer systems and respective abbreviations, which were used for the enzymes assays 
of the following enzymes: proteinase, lipase/esterase, malate dehydrogenase (MDH), citrate 
synthase (CS), aminoacyl-tRNA synthetase (AARS) and 3-hydroxyacyl-CoA dehydrogenase 
(HOAD). 
enzymes  buffer system abbreviations for 

buffer systems 

Proteinase 0.1 M Tris/HCl (supplemented with 10 mM CaCl2) at pH 7.0  Tris/HCl 

Lipase 0.1 M Tris/HCl (supplemented with 10 mM CaCl2) at pH 7.0 Tris/HCl 

CS 0.1 M Tris/HCl (supplemented with 10 mM CaCl2) at pH 7.0 Tris/HCl 

MDH 0.1 M potassium phosphate at pH 7.0 PP 

AARS 0.1 M Tris/HCl (supplemented with 10 mM CaCl2) at pH 7.8 Tris/HCl 

HOAD 107 mM triethanolamine/HCl (supplemented with 5.3 mM EDTA) 

at pH 7.0 

TRA/HCl 
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Another aim was to reduce the number of copepods, which are necessary for analyses of 

MDH, HOAD and AARS activity. Thus, the sample volume was decreased from 30 µl 

to 6.7 µl for MDH and HOAD and from 250 µl to 66.7 µl for AARS activity 

measurements (Table 3). Accordingly, the total volume of the respective assays was 

reduced from 900 µl to 200 µ for MDH and HOAD and from 750 µl to 200 µl for 

AARS activity determination. Thus, instead of micro-cuvettes, 96-well plates were used 

and subsequently, more measurements could be performed in parallel. 

 

 

Table 3 Adjustments of the methods for malate dehydrogenase (MDH), 3-hydroxyacyl-CoA 
dehydrogenase (HOAD) and aminoacyl-tRNA synthetase (AARS) activity measurements. 
Instead of  micro-cuvettes, 96-well plates were used for the photometrical determination of 
enzyme activities.   
 MDH HOAD AARS 

 mirco-

cuvette 

96-well 

plate 

mirco-

cuvette 

96-well 

plate 

mirco-

cuvette 

96-well 

plate 

number of  individuals 5 2 5 3 20 10 

sample homogenate (µl)  30 6.7 30 6.7 250 66.7 

substrate (µl) 30 6.7 30 6.7 200 53.2 

total volume (µl) 900 200 900 200 750 200 

 

 

2.2.2.1 Digestive enzyme activities (Manuscript II) 

Total proteinase (EC 3.4.21-24) activity was quantified after Saborowski et al. (2004), 

modified after Kreibich et al. (2008). Twenty µl of the homogenates or Tris/HCl buffer 

at pH 7.0 for the controls were pre-incubated on a thermo shaker for 5 min at 30°C. 

After 5 µl azocasein (1% in aqua dem., Fluka BioChemika, 11615) were added to the 

homogenates or controls, the assays were incubated for 60 min at 30°C. The reaction 

was stopped by adding 50 µl trichloroacetic acid (TCA, 8% in aqua dem.) and 

homogenates and controls were centrifuged at 15,000 g at 4°C for 15 min. The 

absorbance of the supernatants was measured in an ultra micro-cuvette (Hellma 

105.203-QS) with a spectrophotometer (Thermo Scientific, UV1) at 366 nm and 

recorded with the software VisionLite (Version 2.2).  

 

Lipase/esterase (carboxylic ester hydrolases; EC 3.1.1) activity was determined after 

Knotz et al. (2006). As substrate 4-methylumbelliferyl butyrate dissolved in dimethyl 
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sulfoxide (MUF-butyrate, Fluka BioChemika, 19362; DMSO, AppliChem A3608) was 

used. Ten µl of the substrate were added to 20 µl homogenate or 20 µl Tris/HCl buffer 

at pH 7.0 for controls and 470 µl Tris/HCl buffer at pH 7.0. Standard curves were 

determined with 4-methylubelliferone (MUF, Sigma M1381) in DMSO (15.625 to 1000 

µmol l-1). Samples and controls were incubated on a thermo shaker for 30 min at 25°C 

and then, the fluorescence was measured with a NanoDrop 3300 at 450 nm (emission) 

and recorded with the software ND-3300 V 2.7.0. The autolysis of MUF-butyrate was 

measured and subtracted from the assay-results.   

 

2.2.2.2 Metabolic enzyme activities (Manuscript III) 

CS (EC 4.1.3.7) activity was measured after Stitt (1984), modified after Saborowski and 

Buchholz (2002). To 20 µl of the homogenate or buffer Tris/HCl buffer at pH 7.0 for 

controls, 20 µl 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB, Sigma Aldrich, D8130), 20 

µl acetyl-CoA (Acetyl-Coenzyme A trilithium salt, Roche Diagnostics, 13893324) and 

520 µl Tris/HCl buffer at pH 7.0 were added in a semi-microcuvette. The assays were 

incubated for 5 min at 25°C (Peltier element, Krüss Optronic) and then, the reaction was 

started with 20 µl oxalacetic acid (Sigma Aldrich, O4126). The absorbance was 

measured continuously for 3 min at 25°C and 405 nm. Measurements were recorded 

with the software VisionLite (Version 2.2).  

 

MDH (EC 1.1.1.37) activity was modified after Teschke et al. (2007). Samples were 

homogenized in PP buffer at pH 7.0. NADH (Roche Diagnostics 10107735001) in a 

volume of 6.7 µl was added to 6.7 µl homogenate and 180 µl  PP buffer at pH 7.0 in a 

96-well plate. The assay was incubated for 5 min at 25°C and then, the reaction was 

started with 6.7 µl oxalacetic acid (Sigma Aldrich, O4126). The absorbance was 

measured continuously for 5 min at 25°C and 340 nm with a Synergy HTX Multi-Mode 

Reader and the software KC4 3.4 Rev. 21. 

 

HOAD (EC 1.1.1.35) activity was modified after Auerswald and Gäde (1999). Samples 

were homogenized in TRA/HCl buffer at pH 7.0. NADH (Roche Diagnostics 

10107735001) was added in a volume of 6.7 µl to 6.7 µl homogenate and 180 µl 

TRA/HCl buffer at pH 7.0 in a 96-well plate. The assay was incubated for 5 min at 

25°C and the reaction was started with of 6.7 µl acetoacetyl-CoA (Sigma A-1625). The 
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absorbance was measured continuously for 5 min at 25°C and 340 nm with a Synergy 

HTX Multi-Mode Reader and the software KC4 3.4 Rev. 21. 

 

AARS (EC 6.1.1.) activity was modified after Chang et al. (1984). Samples were 

homogenized in Tris/HCl buffer at pH 7.8. 66.7 µl homogenate were added to 80 µl 

demineralized water and 53.2 µl pyrophosphate reagent (PPi, Sigma, P7275) in a 96-

well plate. The assay was incubated for 5 min at room temperature. The absorbance was 

measured continuously for 10 min at 37°C and 340 nm with a Synergy HTX Multi-

Mode Reader and the software KC4 3.4 Rev. 21.  

 

2.2.2.3 Substrate SDS-PAGE (Manuscript II) 

Proteins were separated by discontinuous substrate sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (substrate SDS-PAGE) modified after Laemmli 

(1970) and Kreibich et al. (2011) for lipase/esterase and after Freese et al. (2012) for 

proteinase patterns. This method allows to separate proteins according to their size and 

thus, their molecular weight can be determined. Components of the solutions, which 

were used to prepare the gels are described in table 4. Mini-gels (8 cm x 10 cm x 0.75 

cm) consisted of a running gel and a stacking gel (Table 5). To make proteinase bands 

visible, FITC (Sigma C0528) was mixed in one running gel.  

 

For SDS-PAGE, the homogenates were diluted 1:2 with sample buffer and applied on 

mini-gels. Ten µl of homogenate and 5 µl of a molecular marker (Roti®-Mark Standard, 

Roth T851) were pipetted onto the gels. Two gels were run at the same time for 

approximately 1 h at maximum 300 V, 30 mA and 2°C in a vertical gel electrophoresis 

chamber (Hoefer, Mighty Small II SE 250). The gel chamber was filled with electrode 

buffer. During the run, gels were kept in darkness and temperature was kept constant at 

2°C with a thermostat (ThermoHaake, DC 10).  

 

After the run, the gel for the documentation of lipolytic activity pattern was treated as 

described in Díaz et al. 1999. The gel was first placed in 2.5% Triton X 100 (in 

phosphate buffer) for 30 min and then washed in phosphate buffer. Afterwards, the gel 

was placed in a 100 µM MUF-butyrate solution in phosphate buffer for approximately 

10 min. Proteolytic activity bands were made visible by placing the gel in 2.5% Triton 

X 100 (in Tris/HCl buffer at pH 8.0). Then, it was rinsed with demineralized water and 



   Material and methods 

27 

transferred into Tris/HCl buffer at pH 8.0 for 120 min. The lipase gel was stained in a 

CBB G®-250 solution. The proteinase gel was stained in a CBB R®-250 solution. 

Images of the gels were taken with a gel documentation system (Gel DocTM EZ Imager, 

Bio Rad) under UV light (for lipolytic enzyme patterns) and under transmission light 

(for proteolytic enzyme patterns and documentation of markers). Analysis was 

performed with Image Lab 5.0 software (Bio-Rad).  

 

 

Table 4 Overview of the solutions and buffers, which were used for the preparation of the mini-
gels for discontinuous substrate sodium dodecyl sulphate polyacrylamide gel electrophoresis 
(substrate SDS-PAGE). 

solutions substances 

running gel buffer 1.5 M Tris/HCl buffer adjusted to pH 8.8 

stacking gel buffer 0.5 M Tris/HCl adjusted to pH 6.8 

acrylamide/ bisacrylamide 30% acrylamide, 0.8% bisacrylamide 

sodium dodecyl sulfate 10% SDS solution 

ammoniumpersulfate 10% APS solution 

TEMED N,N,N´,N´-Tetramethylethylendiamin 

sample buffer 25% stacking gel buffer, 20% bromophenol blue, 30% glycerine, 
4% SDS, 21% aqua dem. 

electrode buffer 0.025 mol l-1 Tris/HCl buffer adjusted to pH 8.3 with 0.192 mol 
l-1 Glycine and 0.1% SDS 

FITC 0.05% casein fluorescein isothiocyanate from bovine milk 

phosphate buffer 50 mM phosphate buffer at pH 8.0 

CBB G®-250 solution 0.02% Commassie brilliant blue G®-250 in 5% aluminium 
sulphate, 10 % ethanol, 2 % phosphoric acid 
 

CBB R®-250 solution 0.05% Commassie brilliant blue R®-250 in 50% methanol and 
7% acetic acid 
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Table 5 Overview of the solutions in ml, which were used for the running and stacking gel of 
the mini-gels for discontinuous substrate sodium dodecyl sulphate polyacrylamide gel 
electrophoresis (substrate SDS-PAGE). 
 

solutions running gel [ml] stacking gel [ml] 

aqua dem. 4.180 2.750 
running gel buffer 3.310 - 
stacking gel buffer - 1.120 

acrylamide 5.000 0.583 
10% SDS 0.125 0.045 
10% APS 0.063 0.022 
TEMED 0.010 0.010 

total volume 12.5 4.5 
 

 

2.2.3 Extracellular pH and cation concentrations (Manuscript I) 

Extracellular pH (pHe) and cation concentrations (Li+, NH4
+, Na+, Mg2+, K+, Ca2+) in the 

haemolymph of C. glacialis were analyzed according to Sartoris et al. (2010) and 

Schründer et al. (2013). On every sampling occasion, haemolymph was extracted from 

individual copepods, which were placed on a petri dish under a stereo-microscope in a 

controlled temperature room at ambient temperature. Each individual was dried 

carefully with tissue paper and the haemolymph was extracted with an ultra-thin 

borosilicate glass capillary. Immediately after the extraction, 8-Hydroxypyrene-1,3,6-

trisulfonic acid trisodium salt (HPTS) was added in a final concentration of 1 nM to a 

minimum of 400 nl haemolyph. The pHe was measured fluorometrically with a 

NanoDrop 3300. To measure the cation concentrations, the remaining haemolymph was 

diluted in 40 µL distilled water. Cation concentrations were measured 

chromatographically with a Dionex ICS-1500 at 40°C. An IonPac CS 16 column with 

methane sulfonic acid (MSA, 30 mmol L-1) was used as an eluent at 0.36 ml min-1. The 

peak area of each cation was referred to a standard (Dionex Six Cation-I Standard, 

Thermo Scientific, 040187) of known concentration.  

 

2.3 Incubation experiments under different food and light conditions (chapter 4.2) 

Alongside the field campaign in Billefjorden, incubation experiments were performed to 

assess how changes in light and food regime affect the digestive (proteinase and 

lipase/esterase) and metabolic enzyme (CS) activity and the biochemical composition 

(DM, C and N content) of C. glacialis. The aim was to investigate of copepods respond 
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differently depending on the time of the year and thus, two experiments were 

conducted:  

 

 in November/December 2009 (21.11.2009 - 17.12.2009) as part of my Master 

thesis 

 in August/September 2012 (28.08.2012 - 17.09.2012) as part of this PhD project 

 

For both experiments, C. glacialis CV were placed either in barrels with only GFF-

filtered seawater or in barrels with GFF-filtered seawater, which was enriched with the 

fast growing diatom Thalassiosira weissflogii in a concentration of approximately 4500 

cells ml-1. Every second day, approximately 60% of the water in the barrels was 

removed by inverse filtration and the barrels were refilled with new filtered seawater 

(0.2 µm pore size). The barrels were either kept under continuous light or in darkness, 

which resulted in four treatments: with food and light; with food and in darkness; 

without food and with light; without food and in darkness. Both experiments were 

performed at the laboratories of the University Centre of Svalbard (UNIS), but the 

experiment in 2009 was continued at the Alfred Wegener Institute (AWI) in 

Bremerhaven after 10 days. For the transport, the copepods were placed in 1 L plastic 

bottles and stored in a cooling container with ice. The experiment lasted for 26 days in 

November 2009 and for 21 days in August 2012 (for experimental conditions see Table 

6).    

 

 
Table 6 Overview of incubation experiments at different food and light conditions with Calanus 

glacialis CV in November/December 2009 (November experiment) and August/September 
2012 (August experiment). The table shows the incubation time in days, the number of 
sampling events (sampling frequency), the number of replicates, the volume of the incubation 
barrels and the number of individuals placed in each barrel.  
 incubation  

time [days] 

sampling  

frequency 

number of replicates volume of 

barrels [L] 

individuals 

per barrel 

November 

2009  
26 8 times 

1 barrel per treatment 

sampled in triplicates 
35 600 

August 

2012 
21 7 times 

2 barrels per 

treatment sampled in 

duplicates 

20 500 
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2.4 Statistics 

Data were analyzed with the free software R 3.0.1 (Manuscript I - III) or SigmaStat 

3.5 (Systat Software, Inc.). In tables and figures, data are presented as mean ± standard 

deviation, unless, the variation was very high, then the standard error was shown for 

clarity reasons. To test data for normal distribution, a Shapiro-Wilk test was applied. 

For normally distributed data showing variance homogeneity, an ANOVA was 

performed and followed by Tukey post-hoc tests or Holm-Sidak post-hoc tests. For non-

normally distributed data, a Kruskal-Wallis test was used and followed by Tukey post-

hoc tests or pairwise Wilcoxon signed-rank tests. To test for dependencies between 

parameters, a Spearman Rank Order correlation was applied. For comparison among 

two groups a Student’s t-test was performed. As level of significance, 5% (α = 0.05) 

was determined. Results were regarded as statistically significant and the null 

hypothesis was rejected, when the p-value was lower than the α-level. The software 

PRIMER V 6.1.6 was used to examine similarities among biochemical parameters and 

enzyme activities of C. glacialis CV over the year. Non-metric multidimensional 

scaling (MDS) plots were based on Bray-Curtis similarity analyses on square root 

transformed data. 
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3 Manuscripts 

In the following an overview of the three manuscripts, which are part of this thesis will 

be given and the contributions of the authors will be presented.  

 

Manuscript I 

Daniela Freese, Barbara Niehoff, Janne E. Søreide, Franz Josef Sartoris 

Seasonal patterns in extracellular ion concentrations and pH of the Arctic copepod 

Calanus glacialis  

 

The study design was done by all authors. The field work was performed by myself and 

Janne E. Søreide. Ion and extracellular pH measurements were conducted by myself. 

Data analysis and writing of the manuscript was done by myself in close cooperation 

with B. Niehoff, F. J. Sartoris and J.E. Søreide.  

 

The manuscript was submitted to Limnology and Oceanography.  

 

Manuscript II 

Daniela Freese, Janne E. Søreide, Barbara Niehoff 

Digestive enzyme activities in the Arctic copepod Calanus glacialis reflect its 

ontogenetic vertical migration  

 

The study was designed and planned by all authors. The field work was conducted by 

myself and Janne E. Søreide. The biochemical analyses of the samples were done by 

myself. I analyzed the data and wrote the manuscript in close cooperation with B. 

Niehoff and J.E. Søreide.  

 

The manuscript was submitted to PLOS ONE.  

 

Manuscript III 

Daniela Freese, Janne E. Søreide, Martin Graeve, Barbara Niehoff 

Metabolic enzyme activities and body composition during the ontogenetic vertical 

migration of the Arctic copepod Calanus glacialis 
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Design and planning of the study was done by all authors. The field work was 

conducted by myself and Janne E. Søreide. Enzyme analysis and adjustment of methods 

was performed by myself. The analysis of the data and writing of the manuscript was 

done by myself in close cooperation with B. Niehoff, J.E. Søreide and M. Graeve.  

 

The manuscript is in preparation for submission to Marine Biology.  
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Abstract 

Arctic shelf zooplankton communities are dominated by the copepod Calanus glacialis. 

This species feeds in surface waters during spring and summer, accumulating large 

amounts of lipids. Autumn and winter are spent in dormancy in deeper waters. Lipids 

are believed to play a major role in regulating buoyancy, however, they cannot explain 

fine-tuning of the depth distribution. To investigate whether ion exchange processes and 

acid-base regulation support ontogenetic migration as suggested for Antarctic copepods, 

we sampled C. glacialis in monthly intervals for one year in a high-Arctic fjord and 

determined cation concentrations and the extracellular pH (pHe) in its haemolymph. 

During the winter/ spring transition, individuals exchanged Li+ ions against high-density 

cations (Na+, Mg2+, Ca2+), which likely decreased the density of the copepods. At that 

time, maximum Li+ concentrations of 197 ± 102 mmol L-1 suggest that this cation 

promotes upward migration in C. glacialis, indicating that this element has a biological 

function. Ion and pHe regulation in the haemolymph were not directly correlated, but the 

pHe revealed a seasonal pattern and was low (5.5) in winter and high (7.9) in summer. 

Low pHe during overwintering might be related to metabolic depression and, thus, may 

support diapause. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   Manuscript I 

35 

1 Introduction 

In high latitudes, zooplankton communities are often dominated by large calanoid 

copepod species of the genus Calanus (Jaschnov 1970) and C. glacialis is particularly 

abundant in cold Arctic fjords and trenches of the Svalbard archipelago (Blachowiak-

Samolyk et al. 2008, Søreide et al. 2008). These copepods link primary production with 

higher trophic levels (Falk-Petersen et al. 1990) and are important contributors to the 

energy flux in the marine realm (review by Falk-Petersen et al. 2009).  

 

Calanus glacialis performs ontogenetic vertical migration and enters a dormancy state 

referred to as diapause as copepodite stage IV, V or VI to overcome the long periods of 

food scarcity in polar winter (Conover 1988). Diapause in Calanus spp. is characterized 

by low metabolic activity, arrested development and reliance on internal energy reserves 

(reviews by Hirche 1996 and Conover and Huntley 1991). It has been discussed that the 

copepods float motionless in the water column during this time, possibly to save energy, 

and their large internal lipid stores are considered to play a major role for reaching 

neutral buoyancy (e.g. Campbell & Dower 2003). Pond (2012) suggests that the 

copepods swim down to 500 m depth. At that depth, the lipids are compressed and 

consequently the copepods become heavier and sink until they reach neutral buoyancy. 

Thus, the content of low-density lipids could determine diapause depth (Irigoien 2004, 

Pond 2012). In contrast, other studies point out that lipids represent a barrier to descent 

and rather promote upward migration (Yayanos et al. 1978, Visser and Jónasdóttir 

1999). Lipid-based buoyancy is, however, in any case unstable as it is affected by the 

biochemical composition of the copepods which may change over winter due to gonad 

maturation and reproduction (Campbell and Dower 2003, Campbell 2004). Moreover, 

in ecosystems where the copepods overwinter in water depths less than 500 m, lipids do 

not undergo phase transition and therefore, are easier to metabolize and used more 

extensively (Jónasdóttir 1999, Pond & Tarling 2011, Clark et al. 2012). Therefore, lipid 

content and fatty acid composition alone cannot explain fine-tuning of buoyancy on 

seasonal time scales. A mechanism, which can contribute to changing the density of an 

organism while it remains iso-osmotic with the surrounding seawater, is ion 

replacement: To reduce the density and prevent the animal from sinking, e.g. Na+, Mg2+, 

SO4
2- are selectively replaced by such ions that lead to a reduced density (e.g. 

NH3/NH4
+). Due to its low density, Li+ could also be involved in density reduction. In a 

study on trophic interactions using ions as trophic tracers, high concentrations of Li+ 
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ions have previously been found in the Arctic copepod Calanus hyperboreus (Campbell 

et al. 2005). These authors did, however, not discuss potential consequences of such 

high Li+ concentrations and to date the biological role of Li+ in crustaceans has not 

gained much attention. Ion replacement has been known as a mechanism regulating 

buoyancy for decades from deep-water shrimps (Sanders & Childress 1988) and pelagic 

deep-water cephalopods (Denton et al. 1969). Also in diapausing Antarctic copepods 

ion regulation may contribute to buoyancy control as high ammonium concentrations 

were measured in the haemolymph of Calanoides acutus and Rhincalanus gigas as 

representatives of species which can perform diapause, while no ammonium was found 

in species which remain active in winter (Sartoris et al. 2010, Schründer et al. 2013, 

Schründer et al. 2014). 

 

NH4
+ is in a chemical equilibrium with NH3, which is potentially toxic. Therefore, 

animals which exhibit NH4
+ aided buoyancy need to shift the NH3/NH4

+ equilibrium 

towards the less diffusible NH4
+. Cephalopods and deep-water shrimps have evolved 

specialized chambers to store NH4
+ in a low pH environment (Clarke et al. 1979, 

Sanders and Childress 1988). Copepods, however, do not have such chambers and 

instead they reduce their pHe to values as low as 5 to shift the NH3/ NH4
+ equilibrium 

towards the less toxic NH4
+ (Sartoris et al. 2010, Schründer et al. 2013). However, the 

relation of pHe and NH4
+ over seasonal cycles is yet to be shown in Antarctic copepods 

and data on Arctic copepods are completely lacking. 

 

As part of the Norwegian research project CLEOPATRA II we sampled the copepod C. 

glacialis in approximately monthly intervals over one year in Billefjorden, a high-Arctic 

fjord in Svalbard waters. This study seeks to verify the hypothesis of Sartoris et al. 

(2010) that copepod species, in which activity and diapause alternate, regulate NH4
+ and 

pHe in order to support migration and/or to obtain neutral buoyancy. Based on this, we 

hypothesize that NH4
+ concentrations and pHe change over the year, with high NH4

+ 

concentrations and low pHe found in diapausing Arctic copepods in winter and low 

NH4
+ concentrations and high pHe in active copepods in summer. 
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2 Material and methods 

2.1 Sampling area and sample processing 

Calanus glacialis was sampled monthly in Billefjorden (78°40′N; 16°40′E) in Svalbard 

waters from July 2012 to July 2013. Billefjorden is a high-Arctic sill fjord, which is 

located at the west-coast of Spitsbergen, Svalbard with a maximum water depth of 

around 190 m (Nilsen et al. 2008). The shallow sill (40-50 m) restricts exchange of fjord 

water with the ocean (Nilsen et al. 2008) and we can assume that we are sampling the 

same zooplankton population throughout the year (Grigor et al. 2014). Locally formed 

cold water persists in this seasonal ice covered fjord, which is inhabited by a large 

population of C. glacialis. The abundance of the two other Calanus species, i.e. C. 

finmarchicus and C. hyperboreus, is low in Billefjorden (Arnkværn et al. 2005). 

 

Billefjorden was ice-covered from February to early June 2013 and ice-free during the 

rest of the year. Temperatures in the upper 50 m ranged from -1.7°C during the ice-

covered period and up to 5°C in late summer. Below 100 m, temperature was around -

1°C throughout the year. Related to sea-ice conditions the sampling location was either 

assessed by boat (RV Helmer Hanssen, KV Svalbard, Farm), by zodiac or by snow 

mobile. Copepods were collected with a WP-3 or WP-2 closing plankton net (1000 µm 

and 200 µm mesh size, respectively). The closing depth was dependent on the water 

layer where animals occurred in the highest abundances, which was from 180 to 100 m 

during winter and from 50 m to the surface during spring and summer. Immediately 

after capture, plankton samples were transported to the cold rooms of the University 

Centre in Svalbard (UNIS) or to a controlled temperature room onboard a research 

vessel. The copepods were then sorted alive under a stereo-microscope close to in situ 

temperatures and haemolymph was extracted from mainly copepodite stage V (CV), but 

also copepodite stage IV (CIV) and females, whenever these were abundant. We believe 

that misidentification of C. glacialis is unlikely as identification of the live copepods 

was based on new morphological size distributions and pigmentation characters 

confirmed by molecular analyses (Gabrielsen et al. 2012, Nielsen et al. 2014). 

 

2.2 Haemolymph extraction and processing  

Haemolymph was extracted to fluorometrically measure the extracellular pH (pHe) and 

to determine the cation concentrations (for detailed description see Sartoris et al. 2010 

and Schründer et al. 2013). In summary, in a controlled temperature room at ambient 
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temperature copepods were placed on a petri dish under a stereo-microscope and 

adherent seawater was removed from the animals with tissue. By inserting ultra-thin 

borosilicate glass capillaries, the haemolymph was extracted from individual copepods 

and the pHe was measured immediately after extraction. For measuring cation 

concentrations, the rest of the haemolymph was diluted in 40 µL distilled water and 

stored at -20°C until further processing.  

 

2.3 pHe measurements 

pH of the haemolymph was measured according to Schründer et al. (2013). 8-

Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) was added to a minimum 

of 400 nl haemolymph as 5% of the sample volume. This resulted in a final HPTS 

concentration of about 1 nM. Then, the fluorescence was measured with a NanoDrop 

3300 at about 511 nm (emission) and recorded with the software ND-3300 V 2.7.0.  

pHe was calculated from the fluorescence ratios (RFU), which were applied to a 

calibration curve of seawater in a pH range from 5.0 to 8.5 buffered with 50 mM 

Imidazole (Sigma-Aldrich, I5513). 

 

2.4 Determination of cation concentrations  

Cation concentrations (Li+, NH4
+, Na+, Mg2+, K+, Ca2+) in the haemolymph of the 

copepods were measured chromatographically with a Dionex ICS-1500 at 40°C, 

according to Sartoris et al. (2010), using an IonPac CS 16 column with methane 

sulfonic acid (MSA, 30 mmol L-1) at 0.36 ml min-1 as eluent. The ion peak area was 

measured and referred to a standard (Dionex Six Cation-I Standard, Thermo Scientific, 

040187) of known cation concentrations. 

 

Potassium concentrations are not considered to be regulated by copepods and we 

attribute deviations from the concentration in seawater (10 mmol L-1) to methodological 

restrictions. K+ concentration ranged from 3 mmol L-1 to 244 mmol L-1. Possible error 

sources are tissue rapture by inserting the glass capillaries into the copepod with a 

consequent allocation of K+ from the intracellular to the extracellular space. We 

therefore do not present K+ concentrations.  
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2.5 Statistical analysis 

Statistical analysis was performed using the free software R 3.0.1. Normal distribution 

was tested with the Shapiro-wilk test. For normally distributed data showing variance 

homogeneity, one-way ANOVA was used and followed by a Tukey post-hoc test. For 

non-normally distributed data, a Kruskal-Wallis test was applied and followed by a 

pairwise Wilcoxon signed-rank test. A spearman rank order correlation (SR) was 

performed in order to identify dependencies between cations that reduce the density, i.e. 

Li+ and NH4
+; and all other cations that were measured, i.e. Na+, Mg2+, Ca2+. 5% (α = 

0.05) was chosen as level of significance. Results were referred to as statistically 

significant and the null hypothesis was rejected if the p-value was lower than the α-

level.   

 

3 Results  

3.1 Haemolymph cation concentrations of Calanus glacialis during the year 

Over the year, the five cations measured i.e. Li+, Na+, NH4
+, Ca2+, Mg2+, were found in 

varying concentrations in C. glacialis CV (Table 1). NH4
+ concentrations differed 

significantly among months but without a clear trend in relation to ontogenetic 

migration (Fig. 1A). The Li+ concentrations, in contrast, followed a clear seasonal 

pattern (Fig. 1 B) and changed significantly over the year. Changes with season were 

less clear in Na+ ion concentration, it was, however, correlated negatively to the Li+ 

concentration (SR: -0.84, p < 0.001; Table 4), suggesting that the low-density Li+ ions 

have been exchanged for the high-density Na+ ions and vice versa. 

 

At the start of our study, C. glacialis CV were still found in reasonably high numbers in 

the upper 50 m of the water column and we were thus able to measure the cation 

concentrations in the haemolymph before the descent (Fig. 1, Table 1). One month later, 

in August, most CV resided in water depth >100 m and their cation concentrations, 

including NH4
+, Li+ and Na+, were in the same range as in July suggesting that the 

downward migration did not relate directly to measurable ion exchange processes. Also, 

from September until the end of November 2012, there were no significant changes in 

the concentration of these cations. No data are available for December, but in January 

and February 2013 when the population prepared to ascend, the Li+ concentration in CV 

had increased from around 70 mmol L-1 to >125 mmol L-1 (Fig. 1 B). During the 

following months, from March through May 2013, the Li+ concentration remained 
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similarly high in the CV, which at that time resided in the upper 50 m of the water 

column. In June and July 2013, the Li+ concentrations had dropped to <10 mmol L-1 

which overall were the lowest values during the present study.  

 

 

 

Fig. 1 NH4 
+ (A) and Li+ (B) concentrations in mmol L-1 in Calanus glacialis copepodite stage V 

from July 2012 to July 2013 (mean ± SD, n = see Table 1). Individuals were sampled in the 
upper 50 m of the water column in July 2012 and from March 2013 to July 2013 and between 
180 and 100 m from August 2012 to February 2013. The fjord was ice covered from February 
to early June 2013.   
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Table 1 Cation concentrations (Li+, Na+, NH4
+, Mg2+ and Ca2+) in mmol L-1 in Calanus glacialis 

copepodite stage V from July 2012 to July 2013 (mean ± SD, n = number of individuals). 
Cation concentration [mmol L

-1
] 

 Li
+
 n Na

+
 n NH4

+
 n Mg

2+
 n Ca

2+
 n 

23.07.2012 69.9 ± 18.4 6 347.5 ± 60.8 6 54.0 ± 29.4 5 23.7 ± 9.7 4 7.2 1 

28.08.2012 75.3 ± 31.8 6 322.9 ± 30.9 6 68.6 ± 20.6 6 24.5 ± 7.9 6 9.8 1 

06.11.2012 60.9 ± 69.1 6 394.2 ± 62.2 6 35.4 ± 18.6 3 22.8 ± 10.7 6 6.3 ± 1.0 2 

10.01.2013 132.2 ± 58.9 6 324.9 ± 73.0 6 29.2 ± 16.9 6 24.7 ± 5.8 6 7.0 ± 3.9 6 

04.02.2013 197.2 ± 101.8 6 298.4 ± 106.4 6 26.5 ± 33.1 2 20.3 ± 8.2 6 5.8 ± 1.1 3 

13.03.2013 128.5 ± 106.9 6 285.7 ± 145.8 6 58.1 ± 38.8 5 12.5 ± 8.5 6 1.9 ± 1.3 3 

09.04.2013 104.5 ± 103.9 6 368.4 ± 101.8 6 10.7 ± 10.9 3 29.9 ± 14.0 6 7.9 ± 1.7 3 

26.04.2013 160.7 ± 85.7 6 298.2 ± 103.9 6 42.2 ± 14.6 5 17.9 ± 8.1 6 8.2 ± 2.2 3 

07.05.2013 106.8 ± 72.9 6 361.8 ± 71.3 6 39.6 ± 15.4 4 15.5 ± 7.3 4 18.0 ± 2.2 2 

18.06.2013 9.9 ± 10.9 2 470.6 ± 13.8 4 8.7 ± 4.9 3 30.8 ± 12.6 4 8.8 ± 1.4 4 

23.07.2013 8.8 ± 8.9 6 456.8 ± 36.4 6 18.9 ± 19.9 6 29.3 ± 9.7 6 8.2 ± 2.8 4 

 

 

In March, April and May 2013, CIV and adult females were more abundant than CV 

and, thus, we were able to sample these stages in addition to CV. At that time, both 

stages were found in the upper 50 m of the water column. The general cation 

composition was similar to that of the CV and there were no significant differences 

among the cation concentrations in individuals sampled in different months (Table 2 

and 3). 

 

 

Table 2 Cation concentrations (Li+, Na+, NH4
+, Mg2+ and Ca2+) in mmol L-1 in Calanus glacialis 

copepodite stage IV from March 2013 to May 2013 (mean ± SD, n = number of individuals). 
Cation concentrations [mmol L

-1
] 

 Li
+
 n Na

+
 n NH4

+
 n Mg

2+
 n Ca

2+
 n 

13.03.2013 37.9 ± 16.2 6 447.2 ± 17.7 6 4.3 1 41.5 ± 8.4 6 5.7 ± 1.9 6 

09.04.2013 161.9 ± 86.3 6 309.5 ± 83.6 6 25.7 ± 3.3 5 18.8 ± 10.8 6 5.6 1 

26.04.2013 78.0 ± 49.4 6 353.0 ± 60.1 6 26.6 ± 10.3 3 22.2 ± 10.2 6 8.5 1 

07.05.2013 49.5 ± 42.6 6 349.8 ± 88.2 6 52.9 ± 16.9 3 26.8 ± 8.8 5 7.3 1 
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Table 3 Cation concentrations (Li+, Na+, NH4
+, Mg2+ and Ca2+) in mmol L-1 in Calanus glacialis 

females from March 2013 to April 2013 (mean ± SD, n = number of individuals). 
Cation concentrations [mmol L

-1
] 

 Li
+
 n Na

+
 n NH4

+
 n Mg

2+
 n Ca

2+
 n 

13.03.2013 103.3 ± 40.0 6 363.8 ± 81.9 6 23.9 ± 11.0 6 21.8 ± 11.3 6 4.5 ± 1.9 6 

09.04.2013 67.4 ± 62.2 6 406.5 ± 66.0 6 21.1 ± 15.3 5 25.5 ± 16.7 6 6.3 ± 4.2 5 

26.04.2013 22.3 1 449.8 ± 54.9 6 7.9 ± 8.4 2 29.7 ± 16.0 6 8.5 ± 1.0 5 

 

 

Table 4 Spearman rank order correlation of the concentrations of cations that reduce the density 
(Li+ and NH4

+) with the concentrations of other cations (Na+, Mg2+ and Ca2+) in Calanus 

glacialis copepodite stage V from July 2012 to July 2013. 
  Correlation coefficient p value 

Li+ Na+ -0.836 <0.001 

Li+ Mg2+ -0.427 0.178 

Li+ Ca2+ -0.736 0.008 

NH4
+ Na+ -0.682 0.019 

NH4
+ Mg2+ -0.609 0.043 

NH4
+ Ca2+ -0.036 0.903 

 

 

3.2 pH of the haemolymph of Calanus glacialis  

The pHe in CV at the surface in July 2012 at the beginning of our study was 7.8 and 

thus as high as expected for marine crustaceans. In August when the population had 

descended to depths >100 m, the pHe in CV decreased to 6.7. In November 2012 and 

January 2013 the pHe was even lower at pH 6.2 and 5.7, respectively. The pHe remained 

low until late April 2013. In May, the pHe increased to about 7.0 and in June and July, 

when CV were found actively feeding in surface waters, pHe was 7.8 again (one-way 

ANOVA p<0.05, Tukey post hoc test).  
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Fig. 2 Extracellular pH values of the haemolymph of Calanus glacialis copepodite stage V from 
July 2012 to July 2013 (mean ± SD, n = 6). Individuals were sampled in the upper 50 m of the 
water column in July 2012 and from March 2013 to July 2013 and between 180 and 100 m from 
August 2012 to February 2013. The fjord was ice covered from February to early June 2013.   
 

 

The pHe in females, which we were able to measure in March and April 2013, was 

relatively high compared to the copepodites with a pHe close to 7 in March and 

approximately 8 in April (Table 5). The pHe in CIV was low (5.4) in March while it was 

significantly higher in April at about 7. Females had almost vanished in May, but the 

abundance of the CIV was still high enough to allow for measurements and 

interestingly, at that time it again was as low as 5.9 (Table 5; one-way ANOVA p<0.05, 

Tukey post hoc test).  

 

 

Table 5 Extracellular pH values of the haemolymph of Calanus glacialis copepodite stage IV  
and adult females (CVIF) from March 2013 to May 2013 and March 2013 to late April 2013, 
respectively (mean ± SD, n = number of individuals). 

Haemolymph pH 

 CIV n CVIF n 

13.03.2013 5.4 ± 0.4 6 6.7 ± 0.8 6 

09.04.2013 7.1 ± 0.9 6 8.2 ± 0.6 6 

26.04.2013 6.2 ± 0.7 6 7.9 ± 0.6 6 

07.05.2013 5.9 ± 0.6 6   
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4 Discussion  

Until to date, we have limited knowledge about the overwintering physiology of 

Calanus spp. in high latitudes. Logistic challenges make it difficult to reach polar areas 

in winter and therefore, in situ studies are rare. Laboratory studies, on the other hand, 

have failed to induce the overwintering state ex situ (Miller and Grigg 1991). Our study 

is the first to investigate the pH and ion concentrations in an Arctic copepod species 

over an entire year, providing the opportunity to test the hypothesis introduced by 

Sartoris et al. (2010) and Schründer et al. (2013, 2014) that polar diapausing copepod 

species exchange high-density with low-density ions to fine-tune buoyancy during 

overwintering. Their studies report much higher concentrations (> 250 mmol L-1) of 

NH4
+, a low-density ion, in diapausing Antarctic copepod species, i.e. Calanoides 

acutus and Rhincalanus gigas as compared to NH4
+ concentrations in non-diapausing 

species (< 20 mmol L-1), i.e. Paraeuchaeta antarctica and Calanus propinquus 

(Schründer et al. 2013). This led the authors to the conclusion that the exchange of 

NH4
+ for Na+, Mg2+ and Ca2+ may be an important mechanism to achieve neutral 

buoyancy during diapause at greater depths. The high NH4
+ concentrations in Antarctic 

diapausing copepods were generally accompanied by low pHe (Schründer et al. 2013), 

possibly because the proton concentration must be high to shift the NH3/NH4
+ 

equilibrium from the highly toxic NH3 towards the less toxic NH4
+ (Sartoris et al. 2010).  

 

If NH4
+ and pHe are regulated in order to support migration and/or obtaining neutral 

buoyancy in diapausing species, we can hypothesize that NH4
+ concentration and pHe 

change over the year, with high NH4
+ concentrations and low pHe in diapausing 

individuals in winter and low NH4
+ concentrations and high pHe in active individuals in 

summer. 

 

Our study on the Arctic diapausing species Calanus glacialis showed that indeed both, 

NH4
+ concentrations and pHe, changed significantly over the year. The NH4

+ 

concentration, however, did not follow a seasonal trend nor was it related to copepod 

development, i.e. to the different stages CIV, CV and females. High and low 

concentrations alternated rather randomly and we did not discover a relation to 

ontogenetic migration or overwintering. It also has to be noted that the NH4
+ 

concentrations were considerably lower than those measured in the two Antarctic 

species (Sartoris et al. 2010, Schründer et al. 2013). The NH4
+ concentrations, which we 



   Manuscript I 

45 

found, were however always higher than those generally to be expected in active 

crustaceans (0.8 mmol L-1, Weihrauch et al. 2004). This suggests that this cation could 

have a biological function even though our data cannot clearly relate NH4
+ 

concentration to seasonal migration. Future studies are thus required to explain 

differences in the NH4
+ concentrations in Antarctic and Arctic copepod species and to 

investigate the general role of ammonium buoyancy and accumulation in diapausing 

copepods from different ecosystems. 

 

Another striking difference as compared to Antarctic copepods was that Li+ was found 

in considerable amounts in the haemolymph of C. glacialis and, as shown in CV, its 

concentrations followed a clear seasonal pattern. The physiological role of Li+ is not 

well understood (Leonard et al. 1995), especially in aquatic ecosystems. There are only 

few studies, which reported high Li+ concentrations in marine species. Campbell et al. 

(2005) found Li+ (89.6 ± 115.6 µg Li+ gww-1) in Calanus hyperboreus samples from the 

northern Baffin Bay, but this study focused on the trophic transfer of elements through 

the food web and did not discuss whether Li+ accumulation could help regulating 

buoyancy. Another study reported bioaccumulation of Li+ in marine organisms from 

different habitats, but did not explain its function (Chassard-Bouchaud et al. 1984). The 

concentration of Li+ in seawater is about 0.028 mmol L-1 (Riley & Tongudai 1964). 

With a mean of 100 mmol L-1 over the year, the Li+ concentration in our study exceeded 

by far the concentrations in seawater. As bioaccumulation of Li+ through the food web 

is unlikely due to its low affinity to particles (review by Aral & Vecchio-Sadus 2008), 

this suggests that C. glacialis actively accumulates Li+ by a transmembrane ion 

transport, which would depend on energy supply. This in turn, is a strong argument for 

a biological function of lithium.  

 

Our study suggests that the copepods may benefit from Li+ accumulation towards the 

end of the overwintering period as the exchange of Li+ for Na+ and other high-density 

ions reduces the density of the copepods and, thus, could support upward migration. Li+ 

is also known to affect circadian rhythms in plant and animal systems by lengthening 

the circadian period (Östgaard et al. 1982) and its accumulation is a predator-defense 

mechanism in some plants and fresh water fish (Ralphs 1997, Creson et al. 2003). 

However, we cannot evaluate in our study if these functions could also be effective in 
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C. glacialis. It also remains an open question why Arctic copepods contain Li+ in high 

concentrations while there was no Li+ detected in Antarctic species. 

 

The pHe followed a clear seasonal pattern. In CV, it was close to seawater in July 2012 

and then decreased throughout autumn to minimum values lower than pH 6 in winter 

(January to March 2013). When individuals were actively feeding in surface waters, the 

pHe was again almost 8 in June and July 2013. However, low pHe did not relate to high 

NH4
+ concentrations and, thus, compensation for NH4

+ cannot explain the low pHe in C. 

glacialis as suggested for Antarctic copepods (Sartoris et al. 2010, Schründer et al. 

2013). Low pHe has previously been related to a reduction in metabolic activity 

(metabolic depression) in Sipunculus nudus, the peanut worm (Reipschläger and Pörtner 

1996). It is thus possible that low pHe in C. glacialis is an indication of diapause rather 

than of buoyancy regulation by means of ion exchange. This matches the relatively high 

pHe (6.7 - 8.2) in females, as early gonad development in C. glacialis is fueled by 

internal reserves (for review see Niehoff 2007) and starts prior to their ascend. The pHe 

of CIV, however, was always low (5.4-7.1), even in the beginning of May, when the 

copepods should have been active. This could suggest that CIV become active and start 

feeding later compared to females in spring. The very distinct seasonal development of 

the pHe indicates that it could have a biological function for, or is a result of metabolic 

processes during overwintering. It could thus potentially be used to determine the grade 

of diapause in C. glacialis and possibly other copepod species. 
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Abstract 

Zooplankton communities in Arctic shelf regions are dominated by the large calanoid 

copepod Calanus glacialis. This species overwinters in deeper waters with low 

metabolism. In late winter, it migrates to the surface where it feeds on ice algae and 

phytoplankton to reproduce, grow and accumulate lipid reserves for overwintering. To 

date, it is not fully understood what regulates the activity of the copepods and how it 

coincides with food availability. We therefore sampled C. glacialis in a high Arctic 

fjord in monthly intervals for one year and determined proteinase and lipase/esterase 

activities in relation to food availability and depth distribution of the copepods. We also 

tackled changes in specific isoforms of the enzymes by substrate SDS-PAGE (sodium 

dodecylsulfate polyacrylamide gel electrophoresis). In both enzyme classes, we found a 

clear seasonal activity pattern; activities of individuals in deep waters in winter were 

only half of those found in copepods actively feeding in surface waters during the 

productive summer season. SDS-PAGE showed a high heterogeneity of lipolytic 

enzymes in C. glacialis, which reflects the extensive accumulation and metabolization 

of internal lipid reserves in this species. One band of proteolytic activity was found and 

it intensified with the onset of the ice-algae and phytoplankton bloom. High digestive 

enzyme activities were closely correlated to food availability. Our results suggest that 

enzyme synthesis in C. glacialis is largely determined by the nutritional feeding 

condition, rather than being internally regulated. Thus, C. glacialis should be capable to 

adjust its digestive enzyme activities in accordance to climate driven changes in the 

algal food regime due to changes in the duration and extension of the Arctic sea ice 

coverage. 
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1 Introduction 

Copepods of the genus Calanus dominate zooplankton communities in northern high 

latitudes (Jaschnov 1970). In Svalbard waters, C. glacialis is a major contributor to the 

zooplankton biomass and as a link between primary production and higher trophic 

levels, it plays an important role for the energy flux in the ecosystem (Falk-Petersen et 

al. 1990, Blachowiak-Samolyk et al. 2008, Søreide et al. 2008). During its one to two 

year life cycle, C. glacialis performs ontogenetic vertical migration and overwinters in 

greater water depths (Smith & Schnack-Schiel 1990, Kosobokova 1999). The 

overwintering state is commonly referred to as diapause (Conover 1988). During 

diapause, copepods arrest their development (Hirche 1991, Scott et al. 2000), they do 

not feed but rely on internal energy reserves, and fuel gonad maturation from lipid 

reserves which they accumulated during the previous productive season in spring and 

summer (reviews by Hirche 1996 and by Conover and Huntley 1991). The length of the 

life cycle and also the timing of diapause differ among populations from different 

ecosystems, and have been related to water temperatures (Kosobokova 1999, Niehoff & 

Hirche 2005) or food availability (Søreide et al. 2008, 2010, Daase et al. 2013). In 

Svalbard waters, C. glacialis usually enters diapause in late July/ early August (Søreide 

et al. 2010, Daase et al. 2013). 

 

Digestive enzymes link food uptake with the biochemical transformation and 

assimilation of the ingested components (Mayzaud 1986). Different enzyme classes 

catalyse the hydrolysis of alimental components, i.e. proteinases hydrolyze peptide 

bonds (Mayzaud 1986) and lipases/esterases cleave the ester bonds of carboxylic acids 

(Luppa & Andrä 1983). At present, the methods allow to measuring only maximum 

potential activities, but not the actual in situ activity. Moreover, enzyme activities do 

not always respond linearly to food supply but may be influenced by other factors, e.g. 

metabolic requirements and feeding history (e.g. Hasset & Landry 1983, Roche-

Mayzaud et al. 1991). It is thus difficult to use digestive enzyme activities as a proxy for 

feeding activity in copepods (Oosterhuis & Baars 1985). However, when digestive 

enzymes are studied in a seasonal context or compared at different experimental 

conditions, they can provide detailed insight on the relation between food occurrence 

and uptake by the copepods (Boucher & Samain 1974, Hassett & Landry 1983). 

Accordingly, several laboratory studies, in which either food quantity or quality was 

manipulated, showed how distinctly enzyme activity can change with dietary conditions 
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(e.g. Harris et al. 1986, Kreibich et al. 2008, 2011, Freese et al. 2012). Studies 

addressing seasonal aspects of digestive enzyme activities in copepods and especially in 

Calanus spp. are rare, but indicate less activity during winter than during summer 

(Hirche 1981, Hirche 1983, Hassett & Landry 1990). Hallberg & Hirche (1980) have 

shown in overwintering non-feeding C. finmarchicus and C. helgolandicus that cells in 

the gut epithelium, which are believed to produce digestive enzymes, were reduced in 

winter, thus limiting the ability to digest dietary components even if food were 

available. However, in order to effectively exploit the short productive season for 

reproduction and growth, it is important that the copepods can respond immediately 

when ice or pelagic algae become available in spring (Kosobokova 1990, Niehoff et al. 

2002, Søreide et al. 2010). After winter, the copepods thus need to regain a certain level 

of digestive enzyme activity. In C. hyperboreus, it has been shown that digestive 

enzyme activity increased already in late winter and this allows the copepods to 

assimilate dietary components immediately when food becomes available and feeding 

starts in spring (Head & Conover 1983). Such information are lacking for other calanoid 

copepods, including C. glacialis. It is however, important to understand how C. 

glacialis regulates the digestive activity in order to predict its ability to adjust to climate 

driven changes in the algal food regime. 

 

Most enzyme studies measured net enzyme activities only. This approach, however, 

may mask shifts between iso-enzymes while the total activity does not change (Kreibich 

et al. 2011). As the capability to synthesize different enzymes may reflect physiological 

capacities of a species to respond to food of varying quality, we combined total activity 

measurements with substrate SDS-PAGE (sodium dodecyl sulphate polyacrylamide). 

With SDS-PAGE, enzymes are separated according to their molecular weight by 

gelelectrophoresis (Laemmli 1970). This method shows that the enzyme patterns, i.e. 

the number and location of bands of active proteolytic or lipolytic enzymes on the gels, 

can change considerably with different feeding conditions (Kreibich et al. 2011, Freese 

et al. 2012) and over one day as related to the feeding cycle (Guérin and Kerambrun, 

1982, Kerambrun and Champalbert, 1993).  

 

To investigate how digestive enzyme activities in an Arctic copepod species change 

with season and depth distribution, we conducted the first year-round study on C. 

glacialis. Samples were taken monthly in Billefjorden, a high-Arctic sill fjord in 
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Svalbard waters, from July 2012 to July 2013. Relating the enzyme activities to feeding 

conditions and depth, we discuss whether enzyme synthesis is solely related to food 

supply or whether the activities decrease prior to the descent and/or increase prior the 

ascent, which would suggest internal regulation of enzyme synthesis. We also analysed 

the enzyme patterns in copepods captured at different seasons. Our study thus aimed at 

physiological aspects of the feeding biology of C. glacialis to enhance our 

understanding of how this key species of the Arctic shelf ecosystem may respond to a 

changing food regime, i.e. possible shifts in the timing and composition of algal blooms 

associated with receding ice-cover. 

 

2 Material and methods  

2.1 Ethics Statement 

The present study on Arctic copepods does not include protected or endangered species 

and the use of the species Calanus glacialis for research purposes does not require any 

specific authorization, neither in Norway, where individuals were sampled, nor in 

Germany were samples were analyzed.  

 

2.2 Sampling area and sample processing 

From July 2012 to July 2013, C. glacialis was sampled monthly in Billefjorden 

(78°40′N; 16°40′E) in Svalbard waters. Depending on the sea-ice conditions the 

sampling location was either assessed by boat (RV Helmer Hanssen, KV Svalbard, 

Farm), by zodiac or by snow mobile. Billefjorden is a high-Arctic sill fjord, which is 

located on the west-coast of Svalbard (Nilsen et al. 2008). In the sampling year, the 

fjord was ice-covered from February until June 2013 with water temperatures ranging 

from -1.7 to 5.0°C in the surface. Below 100 depth, the temperature was around -1°C 

year-round. Copepods were collected with a WP-3 or WP-2 plankton net (1000 µm and 

200 µm mesh size, respectively) from 180 m to 100 m in autumn and winter and from 

50 m to the surface in spring and summer, depending on where animals occurred in the 

highest abundances. Immediately after capture, the samples were either processed in a 

controlled temperature room onboard a research vessel or transported to the laboratories 

of the University Centre in Svalbard (UNIS). Copepods of copepodite stage IV (CIV), 

V (CV) and adult females (CVIF) were sorted alive under a stereo-microscope at 

ambient temperature and snap-frozen in liquid nitrogen. Samples were stored at -80°C 

until further analysis.  
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2.3 Analyses of enzyme activity  

Digestive enzyme activities, i.e. proteinase and lipase/esterase activities, were 

determined in triplicates in each sample, which contained ten individuals each. All 

samples were homogenized in 200 µl ice-cold 0.1 M Tris/HCl (supplemented with 10 

mM CaCl2) buffer at pH 7.0. Homogenates were centrifuged at 15,000 g at 4°C for 15 

min (Thermo Scientific, Heraeus Fresco 17).  

 

2.3.1 Proteinase activity 

Total proteinase activity (EC 3.4.21-24) was measured after Saborowski et al. (2004), 

modified after Kreibich et al. (2008). Twenty µl of sample or 20 µl buffer for the 

controls were pre-incubated on a thermo shaker for 5 min at 30°C. Subsequently, 5 µl 

azocasein (1% in aqua dem., Fluka BioChemika, 11615) were added to the reaction 

tubes, which were incubated for another 60 min at 30°C. Fifty-microliter trichloroacetic 

acid (TCA, 8% in aqua dem.) were added to stop the reaction and samples/controls were 

centrifuged at 15,000 g at 4°C for 15 min to obtain supernatants, which then were 

transferred into an ultra micro-cuvette (Hellma 105.203-QS). The absorbance of the 

supernatants was measured with a spectrophotometer (Thermo Scientific, UV1) at 366 

nm and recorded with the software VisionLite (Version 2.2).  

 

2.3.2 Lipase/esterase activity 

Lipase/esterase (carboxylic ester hydrolases; EC 3.1.1) activities were measured after 

Knotz et al. (2006). As substrate, 10 µl 4-methylumbelliferyl butyrate dissolved in 

dimethyl sulfoxide (MUF-butyrate, Fluka BioChemika, 19362; DMSO, AppliChem 

A3608) was added to 20 µl sample or 20 µl buffer (controls) and 470 µl 0.1 M Tris/HCl 

(supplemented with 10 mM CaCl2) buffer at pH 7.0. Standard curves were made with 4-

methylubelliferone (MUF, Sigma M1381) in DMSO (15.625 to 1000 µmol l-1). Samples 

and controls were incubated in the dark on a thermo shaker at 25°C for 30 min. Enzyme 

activities were calculated from the fluorescence, which was determined with the 

NanoDrop 3300 at 450 nm (emission) and recorded with a software ND-3300 V 2.7.0. 

Autolysis of MUF-butyrate was measured and subtracted from the assay-results.   

 

2.3.3 SDS-PAGE 

To reveal proteinase and lipase/esterase enzyme activity bands, proteins were separated 

by discontinuous substrate sodium dodecyl sulphate polyacrylamide gel electrophoresis 
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(substrate SDS-PAGE) modified after Laemmli (1970) and Kreibich et al. (2011) for 

lipase/esterase and after Freese et al. (2012) for proteinase patterns. Sample 

homogenates were diluted 1:2 with sample buffer (25% 0.5 Tris/HCl buffer at pH 6.8, 

0.02% bromophenol blue, 30% glycerine, 4% SDS) and were applied on Mini-gels, 

which consisted of a running gel (1.5 M Tris/HCl buffer at pH 8.8) and a stacking gel 

(0.5 Tris/HCl buffer at pH 6.8). Before the run, 0.05% casein fluorescein isothiocyanate 

from bovine milk (FITC-casein, Sigma C0528) was pipetted into the running gel to 

make proteinase bands visible. Ten µL of sample and 5 µL of a molecular marker 

(Roti®-Mark Standard, Roth T851) were applied onto the gels. The running conditions 

for two (proteinase and lipase/esterase) gels were 300 V, 30 mA and 2°C for 

approximately 1 h in a vertical gel electrophoresis chamber (Hoefer, Mighty Small II SE 

250), which was filled with electrode buffer (25 mM Tris/HCl buffer with 0.192 M 

glycine and 0.1% SDS, pH 8.3).  

 

After the run, the gel for the documentation of the lipolytic activity patterns was first 

placed in 2.5% Triton X 100 (in 50 mM phosphate buffer at pH 8.0) for 30 min and then 

washed in 50 mM phosphate buffer at pH 8.0. Thereafter, the gel was incubated in a 100 

µM MUF-butyrate solution in 50 mM phosphate buffer at pH 8.0 for approximately 10 

min (Díaz et al. 1999). The proteinase gel was washed in 2.5% Triton X 100 (in 0.1 M 

Tris/HCl (supplemented with 10 mM CaCl2) pH 8.0), rinsed with with aqua dem. and 

placed in 0.1 M Tris/HCl (supplemented with 10 mM CaCl2) pH 8.0 for 120 min. Then, 

the lipase gel was stained in a Commassie brilliant blue (CBB) G®-250 solution (5% 

aluminium sulphate, 10% ethanol, 2% phosphoric acid) and the proteinase gel was 

stained in a CBB R®-250 solution (50% methanol, 7% acetic acid). Gel images were 

taken with a gel documentation system (Gel DocTM EZ Imager, Bio Rad) under UV 

light (for lipolytic enzyme patterns) and under transmission light (for proteolytic 

enzyme patterns and documentation of markers). Analysis was performed with Image 

Lab 5.0 software (Bio-Rad). 

 

2.4 Statistical analysis 

Statistical analysis was performed using the free software R 3.0.1. The Shapiro-Wilk 

test was applied to test data for normal distribution. For normally distributed data, 

which showed variance homogeneity, one-way ANOVA was applied and followed by 

Tukey post-hoc tests. For non-normally distributed data, Kruskal-Wallis tests were used 
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and followed by Tukey post-hoc tests. Spearman Rank Order Correlation was 

performed in order to identify dependencies between digestive enzymes and 

Chlorophyll a. Five % (α = 0.05) was determined as level of significance. Results were 

regarded as statistically significant and the null hypothesis was rejected, if the p-value 

was lower than the α-level.   

 

3 Results 

3.1 Digestive enzyme activity over one year 

In July 2012, when our study started, the copepods began to migrate from the surface to 

deeper water layers. They were therefore found in relatively high abundances 

throughout the water column at that time. We used this opportunity to compare 

individuals from the upper 50 m and from deep waters and found that the proteinase 

activity was high in CV from surface waters (5.6 ± 0.3 dE366 h
-1 mg DM-1) and low in 

CV captured at depth >100 m (1.3 ± 0.3 dE366 h
-1 mg DM-1). For the rest of the year, 

until December 2012, most CV were found below 100 m and their proteinase activities 

remained low. Also in CIV, sampled in October 2012 during a cruise with RV Helmar 

Hanssen, the specific enzyme activity was low (Fig. 1). In January and February 2013, 

before the copepods began their ascent to the surface, the specific proteinase activities 

in CV were slightly, but not significantly, higher as compared to those in December 

(Fig. 1A). The individual activity (Fig. 1B), however had not changed, and thus the 

increase can be attributed to a loss in body carbon which we observed at that time. In 

January and February, also females were abundant at depth, possibly due to moulting of 

the CV. Their activities were as low as that of the CV (Fig. 1 A, B). From March to 

May 2013, the numbers of CV were too low for measuring enzyme activities. We 

therefore focused on CIV and CVIF, which then were the most abundant stages. From 

January to March, the proteinase activities of both developmental stages were low 

(specific enzyme activity below 1.5 dE366 h
-1 mg DM-1). Ice algae developed at the end 

of March and later, in April, the chlorophyll a concentrations in the water column 

increased. Coincidently, the proteinase activities had increased significantly in April 

(one-way ANOVA p<0.05, Tukey post hoc test). At that time, the copepods had 

migrated upwards and were found mainly above 50 m. Females almost vanished during 

April while CIV were still abundant at the end of April and in May 2013 and could thus 

be analyzed. In both months, the specific activities of the CIV were higher as compared 

to all other stages. In June and July 2013, CV again reached high abundances. They 
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concentrated in the upper water column and in June their specific proteinase activity 

was significantly higher as compared to all other sampling days during the rest of the 

year (one-way ANOVA p<0.05, Tukey post hoc test). In July 2013, most of the CV had 

already descended and at depths >100 m their proteinase activity was as low as that at 

of the overwintering CV of the previous generation.  

 

 

Fig. 1 Specific proteinase activity (A; dE366 h
-1 DM-1) and activity per individual (B; dE366 h

-1 
indv.-1) of Calanus glacialis copepodite stages IV, V and adult females from July 2012 to July 
2013 (n = 3 x 10 individuals, mean ± SD, except for CIV begin April n = 2). In July 2012 and 
from March 2013 to July 2013, C. glacialis was sampled in the upper 50 m and from August 
2012 to February 2013 from 180 to 100 m water depth. From February to early June, the fjord 
was covered by ice. Chlorophyll a (Chl a, mg m-2) was integrated over the water column from 
75 m to surface, except for July 2013 (from 35 m to surface). Ice algae were present from 
mid-March to end of April/beginning of May. 
 
 
In general, the lipase/esterase activities followed a similar pattern and accordingly, 

proteinase and lipase/esterase activities correlated significantly in all three stages (CIV: 

Spearman Rank Order Correlation (SR): 0.90, p < 0.001; CV: SR: 0.83, p < 0.001; 

CVIF: SR of 0.92 p < 0.001). In July 2012, the lipase/esterase activity was relatively 
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high (221.3 ± 43.2 nmol h-1 mg DM-1) in CV captured at the surface, while it was low in 

those, which had already descended to depth >100 m (178.4 ± 38.8 nmol h-1 mg DM-1). 

During the rest of the year, the lipase/esterase activities were low at about 120 nmol h-1 

mg D-1 in CV as was the activity in the CIV captured in October 2012 at depth >100 m 

(Fig. 2). In January and February, when the specific proteinase activity had increased, 

also the specific lipase/esterase activities in the CV increased (one-way ANOVA 

p<0.05, Tukey post hoc test). The activities in females at that time were in a similar 

range (around 150 nmol h-1 mg DM-1). In March, when only females and CIV were 

present in high numbers, the specific lipase/esterase activity of the CIV was less than 

half of that of the females and the CV in January and February. In early April the 

activities had increased significantly in both females and CIV (one-way ANOVA 

p<0.05, Tukey post hoc test), and in CIV they reached maximum values in May (351.5 

± 25.4 nmol h-1 mg DM-1). Overall maximum activities, however, were found in the CV 

from the upper 50 m in June 2013 (458.4 ± 29.7 nmol h-1 mg DM-1). In July, when most 

of the CV had migrated to below 100 m depth, the activities were significantly lower 

than in June (one-way ANOVA p<0.05, Tukey post hoc test), but still higher than 

during autumn and winter 2012.  
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Fig. 2 Specific lipase/esterase activity (A; nmol h-1 DM-1) and activity per individual (B; nmol  
h-1 indv.-1) of Calanus glacialis copepodite stages IV, V and adult females from July 2012 to 
July 2013 (n = 3 x 10 individuals, mean ± SD, except for CIV begin April n = 2). In July 2012 
and from March 2013 to July 2013, C. glacialis was sampled in the upper 50 m and from 
August 2012 to February 2013 from 180 to 100 m water depth. From February to early June, the 
fjord was covered by ice. Chlorophyll a (Chl a, mg m-2) was integrated over the water column 
from 75 m to surface, except for July 2013 (from 35 m to surface). Ice algae were present 
from mid-March to end of April/beginning of May. 

 

 

3.2 Enzyme pattern unraveled by substrate SDS-PAGE 

Substrate SDS-PAGE was applied to reveal if the composition of iso-enzymes was 

different among the different stages of C. glacialis or seasons. We sampled the different 

stages whenever abundant, and thus we managed to cover all seasons, i.e. late summer 

(August, CV), autumn (October, CV), winter (January, CV and females), spring (March 

CIV and May, CIV) and again summer (June, CV). Most samples did not show any 

proteolytic bands and the variety of iso-enzymes was poor as we found only one band at 

23 kDa. This band was found in CV in June (Fig. 3 a) and CIV (Fig. 4 b) in May, when 

they resided in the upper 50 m. Interestingly, the proteolytic band appeared in females 

already in January when they still inhabited deeper waters (Fig. 4 a).   
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Fig. 3 Proteolytic activity bands (a) and lipolytic activity bands (b) in Calanus glacialis 
copepodite stage V at different times of the year (August 2012: lane 2-4, October 2012: lane 5-
7, January 2013: lane 8-10, June 2013: lane 11-13) and the molecular marker (lane 1, 20-200 
kDa).  
 

 

In contrast to proteolytic activity, lipolytic activity was found in all samples, and the 

intensity of the bands varied among the CV from the different seasons (Fig. 3 b). When 

the CV resided in surface waters, activity was the highest in June and numerous bands 

were found between 30 and 169 kDa. In August, when CV were captured below 100 m, 

there was only one major band of activity at 169 kDa. Minor bands were found at 117 

kDa and between 30 and 40 kDa. In October and January, all bands were more intense, 

suggesting higher lipolytic activity, which was also reflected in net enzyme activities 

(Fig. 2). Like in CV, lipolytic activity bands in females were visible between 30 and 
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169 kDa in January and intensified in early April (Fig 5 a). In CIV in March, the 

lipolytic activity was reflected by only one major band of lipolytic activity at 169 kDa, 

while in May, there were major activity bands between 30 and 169 kDa (Fig. 5 b). 

 

 

 

Fig. 4 Proteolytic activity bands in Calanus glacialis adult females (CVIF) (a) and copepodite 
stage IV (b). (a): lane 1: molecular marker (20-200 kDa), lane 2-4: CIV from January 2013, 
lane: 5-7: CIV from begin of April 2013. (b): lane 1: molecular marker (20-200 kDa), lane 2-4: 
CVIF from March 2013, lane: 5-7: CVIF from May. 
 

 

 

Fig. 5 Lipolytic activity bands in Calanus glacialis adult females (CVIF) (a) and copepodite 
stage IV (b). (a): lane 1: molecular marker (20-200 kDa), lane 2-4: CIV from January 2013, 
lane: 5-7: CIV from begin of April 2013. (b): lane 1: molecular marker (20-200 kDa), lane 2-4: 
CVIF from March 2013, lane: 5-7: CVIF from May. 
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4 Discussion 

On the shelf around Svalbard, C. glacialis dominates the mesozooplankton communities 

and, as in the sibling species C. finmarchicus and C. hyperboreus, its life cycle is 

characterized by profound changes between activity and dormancy (review by Hirche 

1996). Similar to C. finmarchicus and C. hyperboreus, C. glacialis performs 

ontogenetic vertical migration and spends autumn and winter at greater water depth 

(reviews by Conover 1988 and Hirche 1996). Due to its concentration on the shelf, 

however, overwintering depth is usually much lower than that of the two sibling species 

(Kaartvedt 1996, Dale et al. 1999). Knowledge of the overwintering physiology of C. 

finmarchicus and C. hyperboreus may thus not be simply applied to C. glacialis.  

 

Seasonal data on C. glacialis are scarce and our field study is the first, which 

investigated the physiology over an entire year. As the inner Billefjorden is separated 

from the outer water masses due to its sill of 45 m depth advection is negligible, 

providing the unique opportunity to follow one population over the year. Food 

availability in the fjord changed, as expected, from high in spring and early summer to 

low in autumn and winter. Our study aimed at relating the digestive activity to depth 

and feeding conditions to test whether it is solely related to food supply or whether the 

activities decrease prior to the descent and/or increase prior the ascent, which would 

suggest internal regulation of enzyme synthesis. As a proxy for digestive activity, we 

have measured the activity of proteinases and lipases. The usefulness of enzymes as 

proxies for the feeding activity in copepods has been under debate (Oosterhuis & Baars 

1985) as some authors found positive correlations between digestive enzyme activity 

and food availability (Mayzaud & Conover 1976, Hirche 1981), whereas others 

discovered negative (Hassett & Landry 1983) or no correlations (Båmstedt 1984). In a 

seasonal context or comparing different experimental conditions, however, digestive 

enzymes well reflect the relation between the availability and intake of food (Boucher & 

Samain 1974, Hassett & Landry 1983).  

 

The digestive activity of C. glacialis followed a clear seasonal pattern with high values 

when the copepods were feeding in surface waters and low values when they resided at 

overwintering depth. In C. finmarchicus and C. helgolandicus, the numbers of so called 

B-cells, which are located in the gut epithelium and which are responsible for the 

production of digestive enzymes, are reduced during winter (Hallberg & Hirche 1980). 



   Manuscript II 

67 

These species would thus not be capable to efficiently digest food even if algae were 

available. Other authors, in contrast, suggested that C. finmarchicus feeds on 

microzooplankton and detritus during winter (Marshall & Orr 1958). Their study, 

however, focused on a population in the Clyde Sea, where food availability does not 

cease completely. In the Arctic, winter-feeding of the mainly herbivorous C. glacialis is 

not likely for the population that overwinters in deep waters and minimum lipase and 

proteinase activities in our study should reflect the basic digestive potential without 

feeding. Low digestive enzyme activity at starvation has previously been shown in other 

copepod species and was explained as a metabolic adjustment to save energy (Hassett & 

Landry 1983). In Temora longicornis from the Southern North Sea, for example, the 

proteinase activity in females starving for only three days had decreased to 25% of that 

of feeding females (Kreibich et al. 2008). As compared to this small copepods species, 

which lives in a habitat with continuous food supply, C. glacialis kept relatively high 

lipolytic and proteolytic potentials over the entire winter with approximately 25% and 

10%, respectively, of the maximum activities. According to Hassett & Landry (1983) 

such strategy might be advantageous for copepods that live in environments with strong 

variations in food supply. This should also be true for C. finmarchicus and C. 

helgolandicus, which overwinter the winter season also at greater depth without food. 

Hirche (1983), however, found trypsin and amylase activities close to zero in 

overwintering individuals and up to 20-fold higher values in feeding individuals. It has 

to be kept in mind that Hiche (1983) measured activities of specific enzyme classes 

while we studied the total proteolytic and lipolytic activities as not to exclude potential 

enzymes. It is thus possible that the comparably high proteolytic activities, which we 

measured, reflect the potential of proteinases other than trypsin. In C. glacialis, SDS-

PAGE revealed a proteolytic activity band at 23 kDa. This molecular weight is typical 

for isoforms of both trypsin and chemotrypsin and both cleave dietary proteins 

(Saborowski et al. 2004). To compare digestive activities among species in different 

overwintering habitats, it would thus be helpful to measure the total enzyme potential 

rather than measuring specific enzyme classes.  

 

In comparison to other crustaceans, like e.g. the crabs Cancer pagurus and Maja 

brachydactyla, which showed several proteolytic activity bands in the range from 20 to 

70 kDa (Saborowski et al. 2004, Andrés et al. 2010), C. glacialis exhibits little variety 

in proteolytic isoenzymes since SDS-PAGE shows only one band at 23 kDa (Freese et 
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al. 2012, this study). The variety of lipolytic activity bands was larger in comparison to 

the proteolytic bands and also in comparison to Temora longicornis (Kreibich et al. 

2011). Lipases are distinguished in digestive lipases, which cleave nutritive lipids (Vogt 

2002) and intracellular lipases, which cleave triacylglycerides in tissue lipids 

(Vihervaara & Puig 2008, Rivera-Pérez et al. 2010). Thus, the heterogeneity of lipolytic 

enzymes and the relatively high lipolytic potential during winter in C. glacialis might 

reflect the importance of the lipid metabolisms in this species. 

 

The mechanisms that control timing and duration of dormancy in winter and activity 

during the productive Arctic season are controversially discussed. Some authors suggest 

that internal cues, i.e. threshold levels of total lipid content or hormones (e.g. Irigoien, 

2004, Clark et al. 2013) regulate onset and end of overwintering while others discuss 

environmental conditions such as temperature and light (Kosobokova 1990, Miller et 

al.1991, Hirche 1996, Niehoff & Hirche 2005, Varpe et al. 2007). Since the seasonal 

cycle in the food regime is most prominent in Arctic ecosystems, also food availability 

has often been suggested to have a major influence on the timing of diapause (Mayzaud 

& Poulet 1978, Hirche 1981, Søreide et al. 2010). In our study, the digestive activities 

increased in female and CIV of C. glacialis in late March/early April, when ice algae 

developed, and high digestive enzyme activities corresponded to the phytoplankton 

bloom. We thus did not find evidence for the internal regulation of enzyme synthesis 

prior to food supply as has been shown in C. hyperboreus (Head & Conover 1983). 

Similarly, enzyme activities in the CV at the surface, in July 2012 were relatively high 

indicating that the copepods were still actively feeding, while the activity of the CV at 

depth was only half of that of individuals from the surface. These results suggest that 

also the decrease in digestive enzyme activity is the result of starvation in C. glacialis at 

depth rather than that of internal regulation. It has to be noted that the copepods 

migrated downward and upward, respectively, in only a few weeks while our sampling 

interval was approximately one month. As we covered an entire year, sampling at 

higher frequency was not possible due to logistical constraints and to closely follow the 

changes in digestive activity during these transition phases in July/August and 

March/April would be essential. 

 

In conclusion, our study showed a clear seasonal pattern in digestion of C. glacialis, 

with high digestive activities in individuals in surface waters during the productive 
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season and low activities in diapausing individuals in deep waters. Digestive enzyme 

synthesis was related to food availability, rather than being regulated internally or being 

triggered by the vertical distribution of the copepods in the water column. The copepods 

ascended well before algae developed and, as probably feeding initiated digestive 

activity, C. glacialis should be capable to exploit earlier phytoplankton blooms. The 

descent started, however, before food supply had ceased in surface waters suggesting 

that the copepods would not benefit from phytoplankton late in the season. 
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Abstract 

In polar seas, zooplankton have evolved special adaptations to survive long periods of 

continuous darkness with insufficient food supply. Accumulation of large lipid reserves 

in spring and summer are followed by a profound reduction in metabolism in autumn 

and winter. In large calanoid copepods of the genus Calanus spp. the metabolic 

adjustments during winter are referred to as diapause. These lipid-rich copepods 

comprise up to 80% of the mesozooplankton biomass in Arctic seas, and play a key role 

in Arctic marine food webs. They overwinter in deep waters for >6 months a year, but 

their physiology during this time is poorly understood. The Arctic is experiencing rapid 

changes in climate and more knowledge on the physiology of Calanus spp. is crucial to 

predict potential effects on this species. In this study we aimed to determine to what 

extent the Arctic shelf species Calanus glacialis adjusts its key metabolic pathways 

during overwintering. We followed metabolic and catabolic enzyme activities and the 

biochemical composition of this species monthly from July 2012 to July 2013 in 

Billefjorden, a high-Arctic sill fjord. During overwintering, metabolic enzyme activities 

were only reduced by half compared to activity levels we observed in spring and 

summer. The reduction in metabolic enzyme activities were most likely a response to 

starvation, since enzyme activities decreased gradually over the time the copepods were 

at their overwintering depth. From the descent in July to December, we found little 

changes in the biochemical composition of the copepods. Then, a steep drop in lipid 

reserves was observed, which coincided with high catabolic enzyme activities. The 

increase in lipid catabolism suggests moulting, gonad maturation and egg production in 

females. The relatively high metabolic activity in C. glacialis during winter suggests 

that older developmental stages (>CIV) of this shelf species are not entering a ‘real’ 

diapause. 
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1 Introduction 

Dormancy is a key behavioral adjustment to adverse environmental conditions in 

copepod taxa from various habitats. In higher latitudes, dormancy can last for more than 

half a year in large calanoid copepods as a response to the strong seasonality. Copepods 

of the genus Calanus spp. comprise up to 80% of the mesozooplankton biomass in 

Arctic and sub-Arctic seas and are important contributor to the energy flux in high-

latitude marine ecosystems (Falk-Petersen et al. 1990, Blachowiak-Samolyk et al. 2008, 

Søreide et al. 2008). They perform extensive ontogenetic vertical migrations every year 

and are in deep waters during winter in a state known as diapause. The metabolic 

processes of this dormant state are, however, poorly understood. Reasons for this are 

that so far it has been impossible to induce diapause in Calanus spp. in the laboratory 

and it is logistically very challenging to conduct seasonal studies in polar environments 

(Miller & Grigg 1991). Moreover, the variability in the onset and termination of 

diapause differs among species and regions, like e.g. open ocean systems versus shallow 

fjord systems, and this makes a clear definition of diapause in Calanus spp. difficult 

(Johnson et al. 2008, Clark et al. 2012). In general, diapause is characterized by an 

accumulation of internal energy reserves during the productive season and metabolic 

depression during winter (Atkinson et al. 2002). During overwintering, copepods are 

believed to stop feeding and fuel their basal metabolism by using internal lipid and 

protein reserves (reviews by Hirche 1996 and Conover & Huntley 1991). Moreover, 

internal energy reserves are consumed to fuel the ascent, gonad maturation and 

reproduction in early spring (Jønasdottir 1999, review by Falk-Peterson et al. 2009).  

 

The switch from feeding during the productive season and starvation during 

overwintering requires metabolic adjustments of basic metabolic pathways, which are 

reflected in changes of enzyme activities (Ohman et al. 1998, Auerswald et al. 2009). 

This has already been shown in insects, which are believed to be closely related to 

crustaceans with regard to their metabolic adjustments during adverse environmental 

conditions (Elgmork & Nilssen 1978, Auerswald & Gäde 1999). However, seasonal 

studies that relate metabolic enzyme activities to the physiological state in marine 

crustaceans are rare. A recent study on the Antarctic krill Euphausia superba found low 

metabolic enzyme activity, but high catabolic enzyme activity and a metabolization of 

lipid reserves in overwintering krill (Meyer et al. 2010). A seasonal study on C. 

finmarchicus in Loch Etive, a sill fjord on the west coast of Scotland, investigated the 
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lipid composition in the copepods in relation to their state of physiological activity and 

found a pronounced catabolism of polyunsaturated wax esters during winter (Clark et al. 

2012). A key enzyme of the β-oxidation of fatty acids is 3-hydroxyacyl-CoA 

dehydrogenase (HOAD) and thus, it is used as an indicator for the catabolism of body 

lipids (Auerswald & Gäde 1999, Hassett 2006). To correlate changes in the biochemical 

composition with metabolic/ catabolic enzyme activities, provides information on the 

metabolic status of an organism and reveals shifts in the utilization of energy reserves. 

This approach, however, is barely performed in copepod research, although, it provides 

information on the extent and timing of diapause in copepods. For instance a study on 

the North Atlantic C. finmarchicus showed that aminoacyl-tRNA synthethase (AARS), 

which is an enzyme related to protein synthesis, can be used as a proxy for growth and 

state of dormancy (Yebra et al. 2006). During dormancy, C. finmarchicus built-up less 

structural body proteins and thus, showed low AARS activities (Yebra et al. 2006).  

 

Two enzymes which were shown to be reliable proxies of the overall metabolic activity 

in crustaceans are citrate synthase (CS) and malate dehydrogenase (MDH) (Meyer et al. 

2002, Kreibich et al. 2008, Teschke et al. 2007). Both enzymes catalyze a reaction in the 

citric acid cycle and thus, can be used as an index for the aerobic potential of an animal 

(Torres & Somero 1988). The MDH also shuttles electrons between the cytosol and the 

mitochondrion. CS was shown to correlate with egg production in calanoid copepods 

(Kreibich et al. 2008), while MDH is strongly correlated to respiration (Meyer et al. 

2010). To assess the metabolic potential of a copepod by measuring specific metabolic 

enzyme activities is of advantage compared to determine the metabolic activity by 

incubation methods, since artifacts caused by the handling of the animals are reduced to 

a minimum (Ohman et al. 1998). 

 

In the shelf regions around Svalbard, zooplankton communities are dominated by C. 

glacialis (Jaschnov 1970). During its one to two year life cycle C. glacialis descends to 

deeper water layers in late July/ early August (Smith & Schnack-Schiel 1990, Søreide et 

al. 2010, Daase et al. 2013). It overwinters mainly as copepodite stages IV and V 

(reviews by Conover 1988 and Hirche 1998). The strong seasonality in the Arctic 

requires metabolic adjustments of C. glacialis, which determine the survival and 

overwintering success of the population and thus, of the productivity of the Arctic 

marine ecosystem (Varpe et al. 2009). We focused sampling on the main overwintering 
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stage CV and sampled monthly from July 2012 to July 2013 in Billefjorden, a high-

Arctic sill fjord on the west coast of Svalbard. We aimed to better understand to what 

extent the metabolism of C. glacialis is reduced during winter and if the metabolic 

adjustments happen prior or after the descent and ascent. By relating activities of key 

metabolic and catabolic enzymes with the biochemical composition, we aimed to first 

elucidate if C. glacialis adjust their metabolic activity seasonally, and second if they 

switch between protein and lipid catabolism during winter.  

 

2 Material and methods 

2.1 Sampling area and sample processing 

The calanoid copepod Calanus glacialis was collected monthly in Billefjorden, a high-

Arctic sill fjord (78°40′N; 16°40′E), on the west-coast of Svalbard, for one year from 

July 2012 to July 2013. The maximum water depth of Billefjorden is around 190 m and 

the sill depth is between 40 to 50 m, which restricts the water exchange in the fjord 

(Nilsen et al. 2008). We can therefore assume that we sampled the same C. glacialis 

population over the year (Grigor et al. 2014). Since we presumably sampled the same 

population, we can exclude strong changes in structural body weight of the copepods 

and thus, enzyme activities and lipid and protein content were calculated per individual. 

Billefjorden was ice-covered from February to early June 2013. Water temperatures in 

the upper 50 m ranged from -1.7°C during ice-coverage to 5°C in late summer. The 

water temperature below 100 m was always around -1°C. Depending on the sea-ice 

conditions the sampling location was either assessed by boat (RV Helmer Hanssen, KV 

Svalbard, Farm), by the zodiac or snow mobile. Copepods were sampled with a WP-3 

or WP-2 closing plankton net (1000 µm and 200 µm mesh size, respectively). 

Individuals were either sampled between 180 m to 100 m (July 2012 to February 2013 

and July 2013) or between 50 m to surface (March to June 2013). The depth range was 

chosen according to where individuals occurred in the highest abundances. Immediately 

after capture, the plankton samples were transported to the laboratories of the University 

Centre in Svalbard (UNIS), where they were sorted alive under a stereo-microscope in a 

temperature controlled room at close to in situ temperature. We believe that 

misidentification of C. glacialis and confusion with C. finmarchicus is unlikely, since 

we based our identification on a size and pigmentation categorization that was affirmed 

by molecular analyses (Gabrielsen et al. 2012, Nielsen et al. 2014). Samples were snap-

frozen in liquid nitrogen and stored at -80°C until further analysis.  
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2.2 Analyses of enzyme activity  

Activities of four different metabolic enzymes were measured in order to assess 

metabolic activities of metabolic and catabolic pathways. Activities of all enzymes were 

determined in triplicates in each sample. Samples were homogenized in the respective 

buffer and centrifuged at 15,000 g at 4°C for 15 min (Thermo Scientific, Heraeus 

Fresco 17).  

 

2.2.1 Citrate synthase activity (CS) 

CS (EC 4.1.3.7) activity was determined after Stitt (1984), modified after Saborowski 

and Buchholz (2002). Enzyme activity was determined by adding 20 µl 5,5'-dithiobis-

(2-nitrobenzoic acid) (DTNB, Sigma Aldrich, D8130), 20 µl acetyl-CoA (Acetyl-

Coenzyme A trilithium salt, Roche Diagnostics, 13893324) and 20 µl sample or 20 µl 

buffer as controls to 520 µl 0.1 M Tris/HCl (supplemented with 10 mM CaCl2) buffer at 

pH 7.0 in a semi-microcuvette. Samples were incubated for 5 min at 25°C and then 20 

µl oxalacetic acid (Sigma Aldrich, O4126) was added to start the reaction. Temperature 

in the spectrophotometer was kept constant with a Peltier element (Krüss Optronic). The 

absorbance was measured continuously for 3 min at 25°C and 405 nm. Measurements 

were recorded with the software VisionLite (Version 2.2).  

 

2.2.2 Malat Dehydrogenase (MDH) 

Measurement of MDH (EC 1.1.1.37) activity was modified after Teschke et al. (2007). 

Samples were homogenized in 0.1 M potassium phosphate buffer at pH 7.0. 6.7 µl 

NADH (Roche Diagnostics 10107735001), and 6.7 µl sample were added to 180 µl 0.1 

M potassium phosphate buffer at pH 7.0 in a 96-well plate. After 5 min of incubation at 

25°C, the reaction was started by adding 6.7 µl oxalacetic acid (Sigma Aldrich, O4126). 

The absorbance was measured for 5 min at 25°C and 340 nm with a Synergy HTX 

Multi-Mode Reader and the software KC4 3.4 Rev. 21. 

 

2.2.3 Three-hydroxyacyl CoA dehydrogenase (HOAD) 

HOAD (EC 1.1.1.35) activity was determined modified after Auerswald and Gäde 

(1999). Samples were homogenized in 180 µl 107 mM triethanolamine/ HCl 

(supplemented with 5.3 mM EDTA) buffer at pH 7.0. 6.7 µl NADH (Roche Diagnostics 

10107735001) and 6.7 µl sample were added to 180 µl 107 mM triethanolamine/ HCl 

(supplemented with 5.3 mM EDTA) buffer at pH 7.0 in a 96-well plate. After 5 min of 
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incubation at 25°C, the reaction was started by adding of 6.7 µl acetoacetyl-CoA 

(Sigma A-1625). The change in absorbance was recorded for 5 min at 25°C and 340 nm 

with a Synergy HTX Multi-Mode Reader and the software KC4 3.4 Rev. 21. 

 

2.2.4 Aminoacyl- tRNA-synthetase (AARS)  

AARS (EC 6.1.1.) activity was measured modified after Chang et al. (1984). Samples 

were homogenized in 0.1 M Tris/HCl (supplemented with 10 mM CaCl2) buffer at pH 

7.8. 66.7 µl sample were added to 80 µl Milli-Q and 53.2 µl pyrophosphate reagent 

(PPi, Sigma, P7275) in a 96-well plate. The reaction mixture was kept at room 

temperature for 5 min and afterwards, the decrease in absorbance was measured 

continuously for 10 min at 37°C and 340 nm with a Synergy HTX Multi-Mode Reader 

and the software KC4 3.4 Rev. 21.  

 

2.3 Water-soluble protein content 

Water-soluble protein content was determined after Bradford (1976) using a Bio-Rad 

protein assay (BIO-RAD 500-0006). As a standard, bovine serum albumin was used (0 

to 0.1 mg/ml). Samples were homogenized in 0.1 M Tris/HCl (supplemented with 10 

mM CaCl2) buffer at pH 7.0. Homogenates were centrifuged at 15,000 g at 4°C for 15 

min (Thermo Scientific, Heraeus Fresco 17). Samples were diluted 1:27 in distilled 

water and 50 µl diluted sample was added to 250 µl protein assay, which was diluted 

1:5 in distilled water. The assay was incubated for 15 min at 25°C in a 96-well plate. 

The absorbance of standard and samples was measured in triplicates at 600 nm and 

25°C with a Synergy HTX Multi-Mode Reader and the software KC4 3.4 Rev. 21. 

 

2.4 Lipid content 

Lipid extraction was modified after Bligh & Dyer (1959). Frozen samples of C. 

glacialis copepodite stage V were lyophilized for 24 hours and then, lipids were 

extracted with dichloromethane/methanol (2:1, v/v) using a Potter-Elvehjem 

homogenizer. Extracted lipids were cleaned up with 0.88% Potassiumchlorid solution. 

Total lipid content was determined gravimetrically after evaporation of the solvent.  
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2.5 Statistical analysis 

Statistical analysis was done with the free software R 3.0.1. To test for normal 

distribution, the Shapiro-Wilk test was used. For data, which were normally distributed 

and showed variance homogeneity, one-way ANOVA was used and followed by Tukey 

post-hoc tests. For non-normally distributed data, a Kruskal-Wallis test was applied and 

followed by Tukey post-hoc tests. When the p-value was lower than the α-level (α = 

0.05), the results were regarded as statistically significant and the null hypothesis was 

rejected.  

 

3 Results 

In the following, enzyme activities are presented per individual, except if stages or 

different generations, i.e. CV from July 2012 to February 2013 versus CV from June 

and July 2013 or deep-living versus surface-living individuals, are compared, then they 

are given per dry mass (DM).   

 

3.1 Metabolic enzyme activities  

3.1.1 Malate dehydrogenase (MDH) and citrate synthase (CS)  

In our study we used CS and MDH as proxies of the overall metabolic activity in C. 

glacialis. Our sampling started in July 2012, which coincided with the descent of the C. 

glacialis population in Billefjorden. Both, CS and MDH, followed a similar decreasing 

activity-pattern in CV from the middle of July to early November 2012 and December 

2012 (one-way ANOVA p<0.05, Tukey post hoc test, Fig. 1 and 2). In July 2012, part 

of the population remained in surface waters, while most individuals of the population 

were already down in deep waters. To assess if metabolic activities were adjusted prior 

or after the descent, we sampled CV from the surface (50-0 m) and compared their 

specific CS activity (10.7 ± 0.3 units mg DM-1) with CV from depths below 100 m (7.3 

± 1.1 units mg DM-1).  

 

In October 2012, we had the opportunity to also sample CIV. When specific activities 

are considered, the specific CS activity was around 9 units mg DM-1 in both CIV and 

CV in October. MDH activities in CIV and CV in October were 32.4 ± 6.5 units mg 

DM-1 and 36.9 ± 8.9 units mg DM-1. During winter, from December 2012 to February 

2013, there were no significant changes in MDH and CS activities in CV (Fig. 1 and 2). 

Due to moulting to adults, the abundance of CV from March to May 2013 was too low 
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for measuring enzyme activities. However, from January onwards, we found adult 

females in high abundances in the water column. In females, MDH activities were 

relatively low and did not change significantly from January to March 2013. CS 

activities in females increased significantly from January to April. In April 2013, the ice 

algae bloom started in Billefjorden and thus, we sampled twice per month. In April/ 

May, only CIV were sampled in sufficient numbers. In this developmental stage, we 

found an increase in MDH activity from approximately 2.5 units indv.-1 in April to 4.3 ± 

1.2 units indv.-1 in May, when a phytoplankton bloom was observed. CS activity of CIV 

increased continuously from 0.1 ± 0.0 units indv.-1 in March to 0.3 ± 0.0 units indv.-1 in 

May 2013 (one-way ANOVA p<0.05, Tukey post hoc test). In June and July 2013, we 

again sampled CV, newly moulted from CIV. The low abundances of CIV and females 

in June did not allow us to sample them for analyses. In these last two sampling months, 

both metabolic enzymes showed specific activities similar to the year before. Specific 

MDH activity was around 30 units mg DM-1 in June and July 2013 (July 2012: 45.6 ± 

10.8 units mg DM-1) and specific CS activity in CV was around 10 units mg DM-1 in 

July 2012 and June/ July 2013.  

 

3.1.2 Aminoacyl- tRNA-synthetase (AARS) 

The AARS activity, which is related to protein synthesis, was relatively high and stable 

(around 8 nmol PPi h-1 indv.-1) in C. glacialis CV from July to November 2012 (Fig. 4). 

Only thereafter, it decreased significantly and reached the lowest values in February 

2013 (4.2 ± 1.1 nmol PPi h-1 indv.-1), after the population had been at overwintering 

depth for more than half a year (one-way ANOVA p<0.05, Tukey post hoc test). In 

October 2012, the specific AARS activity was around 0.3 nmol PPi h-1 mg DM-1 in CIV 

and CV. Females appeared in January 2013 and their AARS activity decreased until 

March, however, not significantly. In CIV from surface waters, AARS activity was still 

low, around 2.5 nmol PPi h-1 indv.-1 from March to late April 2013. In CV, however, 

which were again abundant in surface waters June 2013, AARS activities were high 

(12.7 ± 2.5 nmol PPi h-1 indv.-1) compared to July 2013, when individuals were again 

found at depths below 100 m.  
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3.2 Catabolic enzyme activities  

3.2.1 Three-hydroxyacyl CoA dehydrogenase (HOAD) 

The HOAD activity, which is an indicator for the catabolism of body lipids, showed a 

development, which was opposite to that of the metabolic enzymes. In July 2012, when 

most individuals of the C. glacialis population in Billefjorden were below 100 m water 

depth, the HOAD activity was low in CV (0.4 ± 0.2 units indv.-1; Fig. 3). During the 

following months, the activity increased to approximately 1.0 units indv.-1 in November 

and remained between 0.6 to 1.0 units indv-1 until February 2013. Females appeared in 

January and their HOAD activities ranged between 0.65 to 0.85 units indv.-1 in March. 

The CIV, inhabiting the surface layer, in April and May 2013, showed a continuous and 

significant decrease in HOAD activity (one-way ANOVA p<0.05, Tukey post hoc test). 

In June 2013, CV were again present in sufficient numbers and their HOAD activities 

were low (0.1 ± 0.1 units indv.-1). In July 2013, however the HOAD activity in CV was 

again as high as 0.8 ± 0.3 units indv.-1. 
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Fig. 1 Metabolic enzyme activities, i.e. malate dehydrogenase activity (MDH; a), citrate synthase activity (CS; b), aminoacyl-tRNA synthetase activity 
(AARS; c) and catabolic enzyme activity, i.e. 3-hydroxyacyl-CoA dehydrogenase activity (HOAD; d) in Calanus glacialis copepodite stages IV, V and 
adult females (CVIF) from July 2012 to July 2013 (n = 3, mean ± SD, except for MDH: CVIF in February n = 2; AARS: July 2012 n = 2; HOAD: CVFI 
in February and CIV in May n =2). From July 2012 to February 2013 and in July 2013, C. glacialis was sampled from 180 to 100 m water depth and 
from March 2013 to June 2013, it was collected in the upper 50 m. From February to early June 2013, the fjord was ice-covered.  
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3.3 Water-soluble protein and total lipid content 

The water-soluble protein content in CV was around 75 µg indv.-1 from July 2012 to 

February 2013 and thus, did not exhibit significant changes (Fig. 6). In June/July 2013, 

when the next generation of CV appeared it was, however, significantly lower (45 µg 

indv.-1) compared to the year before. The female protein content decreased from 91.9 ± 

26.1 µg indv.-1 in January to 35.4 ± 2.1 µg indv.-1 in April, however, the decrease was 

not significant. In CIV, the water-soluble protein content was high (72.2 ± 16.4 µg 

indv.-1) in March and low in May 2013 (27.8 ± 1.8 µg indv.-1). 

 

Due to limited man-power and, in winter, limited number of individuals, total lipid 

content was determined only in CV and only from July 2012 to April 2013. As 

expected, the total lipid content of the CV was high between July and October 2012 

(around 210 µg indv.-1; Fig. 5). From October to December 2012, however, the total 

lipid content dropped drastically to around 70 µg indv.-1 and remained at that level until 

April 2013.  
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Fig. 2 Water-soluble protein content in Calanus glacialis copepodite stages IV, V and adult 
females (CVIF) from July 2012 to July 2013 (n = 3, mean ± SD). From July 2012 to February 
2013 and in July 2013, C. glacialis was samples from 180 to 100 m water depth and from 
March 2013 to June 2013, it was collected in the upper 50 m. From February to early June 2013, 
the fjord was ice-covered.  
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Fig. 3 Total lipid content in Calanus glacialis copepodite stages V from July 2012 to April 2013 
(mean of 25 individuals). From July 2012 to February 2013, individuals were sampled from 180 
to 100 m water depth and in March and April 2013, they were collected in the upper 50 m. From 
February 2013 on, the fjord was ice-covered.  
 

 

4 Discussion 

Calanoid copepod species of the genus Calanus have developed metabolic adjustments 

to survive long periods of food scarcity in diapause. The interactions of factors that 

initiate or terminate diapause are still not understood. Some authors suggest that 

environmental cues like food, temperature and light affect the timing of diapause 

(Kosobokova 1990, Miller et al.1991, Hirche 1996, Niehoff & Hirche 2005), while 

others believe that internal cues, like the amount of storage lipids or hormones 

determine diapause duration (e.g. Irigoien, 2004, Clark et al. 2013). Beside the factors 

that influence the timing of diapause, the intensity or level of changes in activity during 

diapause in calanoid copepods is not yet understood. The term diapause is commonly 

used in research concerned with the physiology of overwintering copepods (review by 

Dahms 1995 and Hirche 1996). However, the definition of true diapause is based on the 

physiological changes observed in insect during harsh environmental conditions. It is 

defined as arrested development, no movement and metabolic depression (Elgmork & 

Nilssen 1978). In contrast to this definition, we observed that C. glacialis moved around 

as soon as it was brought up to surface waters during winter and handled in the 

laboratory. Such short-term mobility has also been observed in Antarctic krill during 

winter and was explained by the metabolization of readily usable glycogen stores 

(Auerswald et al. 2009). This short-term mobility suggests that the copepods are not in a 

true state of diapause, which would imply total torpidity (Elgmork & Nilssen 1978).  
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The larvae and pupae of insects in true diapause show a metabolism that is depressed to 

values close to zero compared to activity (Guppy & Withers 1999). With only a 

threefold reduction of the respiration rate in C. glacialis, which was found in a study by 

Morata and Soreide (2013) in Billefjorden in 2009, the metabolic depression in 

copepods seems not to be as drastic as in insects. Another study on C. finmarchicus 

found 2.6 times lower AARS activities, an enzyme which is involved in protein 

synthesis, in dormant compared to pre-dormant individuals (Yebra et al. 2006).  

 

In this study, we chose key enzymes of specific metabolic pathways to assess the 

overall metabolic activity in C. glacialis. The value of enzyme activities as proxies for 

basic metabolic processes has also been shown for crustacean in other studies (Meyer et 

al. 2002, Kreibich et al. 2008, Auerswald et al. 2009). Citrate synthase and malate 

dehydrogenase are both enzymes, which are connected to the tricarboxylic acid cycle 

and thus, give a good idea of the overall metabolic activity of an organism. During 

winter, the activity in both enzymes was still about half of the peak activity in C. 

glacialis during summer.  

 

The intensity of diapause is affected by the water depth in which the copepods 

overwinter. Copepods that overwinter in shallow fjord areas are believed to depress 

their metabolism less compared to individuals that overwinter in the open ocean. 

Calanus spp. which overwinter in the open ocean, at depth below 500 m have low rates 

of lipid utilization (Jønasdøttir 1999), while individuals, which overwinter in shallow 

coastal habitats, have higher lipid turn-over rates (Clark et al. 2012). C. glacialis can be 

assigned to the latter category, as it is a shelf species, which predominantly inhabits the 

shelf and fjord systems in the Svalbard archipelago (Jaschnov 1970, Søreide et al. 

2008). Since C. glacialis lives in shallow fjord environments, it can be assumed that its 

lipid reserves are steadily exploited during winter. However, from July to October no 

change in lipid content was seen. From October on the lipid content decreased 

significantly The initial lipid content (around 200 µg indv.-1) of C. glacialis CV from 

Billefjorden dropped for more than 35%. An explanation for that might be moulting of 

the large CV to adult females and males (Jønasdottir 1999, Falk-Peterson et al. 2009). 

The drop in lipid reserves coincided with high HOAD activities, a key enzyme for the 

catabolism of fatty acids in the β-oxidation. This suggests that individuals were 

producing energy for metabolic processes by internal lipid utilization.  
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In general, it can be assumed that when the copepods use one internal reserve more than 

the other, i.e. lipid versus protein reserves, the enzyme activities of the respective 

metabolic pathways should either decline or increase (Auerswald et al. 2009). We found 

that the lipid catabolism, i.e. HOAD activities, was high between October and January, 

which coincided with the lowest values of AARS activity and thus, with the protein 

metabolism. This would suggest a switch from protein to lipid utilization. However, we 

found no significant changes in water-soluble protein content during winter. The protein 

content decreased during late winter/ early spring, which is when gonad maturation and 

spawning in females occurs (Niehoff et al. 2002).  

 

Investigating metabolic enzyme activities does not only allow to follow switches from 

one metabolic pathway to another, it also gives insight into the timing of the metabolic 

adjustment. To date it is not understood if the copepods slow down their metabolism 

while they are still in surface waters or when they are already at their overwintering 

depth. We found that the activities of CS and MDH decreased continuously while C. 

glacialis was already at its overwintering depth and the lowest activities were found 

from December to February. This suggests that individuals adjust their metabolism after 

the descent. In a study on C. hyperboreus, Head and Harris (1985) did also not find a 

metabolic adjustment in the copepods before the population descended and concluded 

that this must happen when the individuals are already at their overwintering depth. The 

reduction in metabolic activity may thus be a result of starvation of the copepods during 

winter (Hassett 2006). Low CS activities were already connected with feeding cessation 

in individuals of the small temperate calanoid copepod Temora longicornis (Kreibich et 

al. 2008). Also in other crustaceans, CS activity decreased with a degradation of the 

nutritional state (Clarke and Walsh 1993, Meyer et al. 2002, Saborowski & Buchholz 

2002). Reduced metabolic activities allow the animals to survive on a minimum energy 

demand during the time of food deprivation.  

 

In conclusion, the metabolic activity of C. glacialis during winter is approximately half 

of the activity in individuals during the productive season. This adjustment, however, 

took several weeks and happened after the population had descended to their 

overwintering depth. By using metabolic enzyme activities as a proxy, our study 

revealed that C. glacialis might not overwinter in what is called true diapause, but rather 
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overwinter in a milder form of diapause, which allows it to move around in case of 

external disturbance.   
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4 Results and synoptic discussion 

In the past decade, the Arctic has faced rapid changes in sea ice thickness and extension 

(Gough et al. 2004, Comiso et al. 2008, Stroeve et al. 2012). These alterations cause 

changes in the underwater light regime and thus, severely affect timing and magnitude 

of primary production (Arrigo et al. 2008, Kahru et al. 2011). The ice conditions 

determine the timing and intensity of two distinct algal blooms, i.e. the ice algae and the 

phytoplankton bloom (Ji et al. 2013). The onset of the ice algae bloom is coupled to the 

return of light in March, and the phytoplankton bloom starts with the ice break-up 

(Hegseth 1998). Calanus glacialis spawns at reduced rates based on internal energy 

reserves, however, it needs algal food from the ice algae and phytoplankton bloom to 

reproduce at high rates (Smith 1990, Hirche and Kattner 1993, Niehoff et al. 2002). The 

offspring then grows and develops based on the phytoplankton bloom (Søreide et al. 

2010). The synchronization of its life cycle with both blooms makes C. glacialis a 

successful and important contributor to the energy flux in Arctic shelf areas, and it most 

important to understand the effects of climate change on the survival success of this 

pelagic copepod.  

 

This thesis focuses on the physiology of C. glacialis and assesses its capacity to adjust 

to changing environmental conditions. In the following a multidimensional analysis of 

all data (Manuscript I - III) characterizing the physiological state of C. glacialis during 

all seasons in a high-Arctic fjord will be presented. To assess the influence of 

environmental conditions, the biochemical composition and enzyme activities of C. 

glacialis from three fjords and from individuals, which were experimentally exposed to 

different food and light conditions, will be compared.  

 

4.1 Physiological and biochemical adaptations during activity and diapause  

The core of this thesis is a seasonal case study in Billefjorden, a high-Arctic fjord on the 

western coast of Svalbard. The following chapter presents physiological characteristics 

of active and diapausing copepods from Billefjorden (chapter 4.1.1). In a 

comprehensive approach, the physiology of C. glacialis from Kongsfjorden, which is 

influenced by Atlantic water, and Rijpfjorden, which is influenced by Arctic water, is 

described (chapter 4.1.2).  
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4.1.1 Seasonal study on the physiology of Calanus glacialis in Billefjorden 

The life cycle of C. glacialis is well adapted to the strong seasonality in the high Arctic. 

The copepods accumulate energy reserves in surface waters during the productive 

season and spend the winter in diapause in deep waters (Conover 1988). The life 

strategy is reflected in the physiology of the copepods. In the present study, we found 

clear seasonal enzyme activity patterns: digestive and metabolic enzyme activities were 

high during spring and summer, when individuals were in surface waters, and low in 

autumn and winter, when individuals were in deep waters. For the catabolic enzymes, 

the activity patterns were vice versa. In the following, the seasonal patterns in enzyme 

activities, the biochemical composition and the extracellular pH and cation composition 

of C. glacialis are described in relation to the vertical migration of the copepods (Fig. 

4.1 and Fig 4.2). Finally, the attempt is made to assign the physiological changes in C. 

glacialis to the diapause phases defined by Hirche (1996) in relation to a multi-

dimensional scaling analysis (Fig. 4.3 and Fig. 4.4). 
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Fig. 4.1 Abundance and stage composition of Calanus glacialis from 180 m water depth to surface in Billefjorden from June 2012 to July 2013. 
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In Billefjorden, C. glacialis descended in late July and early August (Fig. 4.1; Søreide et 

al. 2010, Daase et al. 2013), before algal food is absent, probably to minimize the risk of 

predation (Fiksen & Carlotti 1998, Kaartvedt 2000). Interestingly, the descent coincided 

with an increase in sea surface temperature (Fig. 2.2) and indeed, sea surface 

temperature was suggested as an external trigger for the timing of diapause in C. 

glacialis (Kosobokova 1999, Niehoff & Hirche 2005).   

 

In July 2012, the beginning of the overwintering period, dry mass (~600 µg indv.-1) and 

lipid content (~200 µg indv.-1) of C. glacialis CV were high as compared to the rest of 

the year (Fig. 4.2). This is a general pattern which enables the copepods to survive 

several months of food deprivation (Scott et al. 2000, Falk-Petersen et al. 2009). The 

high amount of lipid stores was also reflected in high carbon to nitrogen ratios (C:N) 

(Fig. 4.2). C. glacialis CV had a C:N ratio of approximatly eight during overwintering, 

which is twice as high as in copepods from medium and low latitudes (Båmstedt 1986). 
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Fig. 4.2 Overview of the environmental conditions in Billefjorden and the physiology of 
Calanus glacialis copepodite stages IV (CIV), V (CV) and adult females (CVIF) from July 
2012 to July 2013. The fjord was ice-covered from February to early June 2013. Chlorophyll a 
(Chl a) was integrated over the water column from 75 m to surface, except for July 2013 (from 
35 m to surface) (a). The following biochemical and physiological parameters are shown: dry 
mass (DM) and carbon to nitrogen ratio (C:N) (b); digestive enzyme activities (proteinase and 
lipase/esterase (lipase)) (c); metabolic enzyme activities (citrate synthase (CS) and malate 
dehydrogenase (MDH)) (d); catabolic enzyme activity (3-hydroxyacyl-CoA dehydrogenase 
(HOAD)) and lipid content (e); pH (pHe) and lithium concentration (Li+ conc.) of the 
haemolymph (f) (mean ± SE, for numbers of replicates see Table A 1 - 3 in the appendix). 
Individuals were sampled in the upper 50 m of the water column from March to July 2013 and 
below 150 m from July 2012 to February 2013, except for individuals for pHe and Li+ 
measurements, which were sampled in the upper 50 m in July 2012.  
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Shortly after C. glacialis reached its overwintering depth, digestive enzyme activities 

were low (Fig. 4.2, Manuscript II), which suggests that C. glacialis stopped feeding 

and entered diapause. During winter, autotrophic organisms which are the main food 

source of C. glacialis are not available and thus, the copepods are most likely starving 

during overwintering (Fleming 1939, Hirche 1983). Previous studies showed that 

starving calanoid copepods have low digestive enzyme activities (Hassett & Landry 

1983, Kreibich et al. 2008) and B- and F-cells, which are located in the gut epithelium, 

synthesize fewer enzymes (Hallberg & Hirche 1980, Mayzaud 1986). Other studies 

revealed low respiration rates as a consequence of starvation (Ikeda 1977, Morata and 

Søreide 2013). In this study, we measured the activity of a key metabolic enzyme, 

malate dehydrogenase (MDH), which shuttles electrons between the cytosol and the 

mitochondrion and is closely correlated to the respiration rates of organisms (Meyer et 

al. 2010). MDH activity decreased continuously in overwintering C. glacialis from July 

to December 2012 (Fig. 4.2, Manuscript III). In addition to MDH activity, we assessed 

the metabolic activity in C. glacialis by means of citrate synthase (CS) activity 

measurements. Both enzymes are key enzymes of the tricarboxylic acid cycle and thus 

are a proxy for the overall metabolic activity of an organism. MDH and CS activity 

were only half as high in overwintering C. glacialis as compared to active individuals. 

A low metabolic activity enables the copepods to save energy in times of food scarcity 

(Meyer et al. 2002, Saborowski & Buchholz 2002, Kreibich et al. 2008).   

 

Metabolic processes in general are related to the acid-base status of an organism 

(Reipschläger & Pörtner 1996) and enzyme activities are pH-dependent (Feller & 

Gerday 1997, Freese et al. 2012). In overwintering C. glacialis low enzyme activities 

were accompanied by a low extracellular pH (pHe) (Fig. 4.2). The pHe decreased 

continuously from pH 8 in July 2012 to less than pH 6 in January 2013 (Manuscript I). 

A change in the intracellular  as well as extracellular pH has previously been related to 

metabolic depression in embryos of the brine shrimp (Artemia salina) and the peanut 

worm Sipunculus nudus (Busa & Crowe 1983, Reipschläger & Pörtner 1996). Recently, 

Schründer et al. (2013) suggested that pHe may be related to metabolic depression also 

in Antarctic copepods, however, so far no seasonal study investigated this correlation in 

copepods. The distinct seasonal pattern of pHe we found may thus be correlated to 

metabolic adjustments in C. glacialis and the low values during winter may indicate 

metabolic depression.   
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During metabolic depression the energy requirements of an organism are minimal. 

Copepods use only a small proportion of internal lipid reserves to fuel the basal 

metabolism. Instead, lipid reserves are depleted to a larger extent for moulting, gonad 

maturation and egg production (Jónasdóttir 1999, Falk-Peterson et al. 2009). We 

observed a decrease in lipid content and dry mass in C. glacialis CV in December and 

January (Fig. 4.2). This may be explained by moulting of large CV into adult females, 

which consequently increased in abundance at this time (Fig. 4.1). The lipid catabolism 

is regulated by the enzyme 3-hydroxyacyl-CoA dehydrogenase (HOAD), which fuels 

the β-oxidation of fatty acids (Auerswald & Gäde 1999). In accordance with the drop in 

lipid content, we observed high HOAD activities in C. glacialis (Manuscript III). 

Combined measurements of the biochemical composition and activities of key 

metabolic enzymes allow to observe switches in energy utilization and metabolic 

pathways (Auerswald et al. 2009). Thus, we assessed the lipid catabolism by means of 

HOAD activity and the protein metabolism by means of aminoacyl-tRNA synthetase 

(AARS) activity (Manuscript III). AARS catalyses the first step of the protein 

synthesis in organisms. AARS activity was low when HOAD activity was high from 

October to January, which suggests that C. glacialis relied on internal lipids, while the 

protein metabolism was low. In accordance, the water-soluble protein content did not 

change profoundly during winter (Manuscript III), and the C:N ratio decreased only 

slightly from December to January (Fig. 4.2).  

 

A decrease in lipid content in C. glacialis in the end of winter would hinder lipid-based 

buoyancy, since lipids are suggested to support upward migration in copepods (Yayanos 

et al. 1978, Visser & Jónasdóttir 1999). In our study, we suggest ion replacement as 

another mechanism to fine-tune buoyancy (Manuscript I). During ion replacement, 

ions that increase the density of copepods, e.g. Na+ and Mg2+, are exchanged by ions 

that reduce the density, e.g. NH4
+ and Li+, in winter and vice versa in summer (Sartoris 

et al. 2010, Schründer et al. 2013, 2014). C. glacialis showed high concentrations of Li+ 

towards the end of the overwintering period, when the copepods ascend into surface 

waters (Fig. 4.2). Thus, Li+ could support upward migration.  

 

From March on, when the C. glacialis population resided in the upper 50 m, digestive 

and metabolic enzyme activities increased and individuals started feeding on ice algae. 

The chlorophyll a concentration in the water column increased from 2.9 mg m-2 in 
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January to 192.9 mg m-2 in May 2013, when also digestive enzyme activity peaked in C. 

glacialis CIV. The copepods feed in surface waters in spring- and summertime and 

accumulate energy reserves (Båmstedt 1984). 

 

 

 

Fig. 4.3 Overview of the diapause phases and the seasonal vertical migration pattern of Calanus 

finmarchicus after Hirche (1996). The dashed line indicates the timing of descent of C. glacialis 
in Billefjorden, the ascent in both species matches. Diapause phases in C. glacialis are delayed 
by about one months in C. glacialis compared to C. finmarchicus.  
 

 

Hirche (1996) assigned the seasonal changes in the physiology of C. finmarchicus to 

specific phases, i.e. the preparatory, induction, refractory, activation and termination 

phase (see chapter 1.2 for definition, Fig. 4.3). The present study on C. glacialis in 

Billefjorden showed clear seasonal patterns in the physiology and in the following, I 

compare the diapause phases of C. finmarchicus with those of its larger sibling species 

C. glacialis (Fig. 4.3). To illustrate and reveal if enzyme activities and the biochemical 

composition of C. glacialis CV were similar in certain months, a multi-dimensional 

analysis was performed (Fig. 4.4).   

 

Hirche (1996) assigned the seasonal changes in the physiology of C. finmarchicus to 

specific phases, i.e. the preparatory, induction, refractory, activation and termination 

phase (see chapter 1.2 for definition). The present study on C. glacialis in Billefjorden 

showed clear seasonal patterns in the physiology, and in the following, I compare the 

diapause phases of C. glacialis with those of its smaller sibling species C. finmarchicus 

(Fig. 4.3). To illustrate and reveal if enzyme activities and the biochemical composition 
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of C. glacialis CV were similar in certain months, a multi-dimensional analysis was 

performed (Fig. 4.4).   

 

According to Hirche (1996), the preparatory phase of diapause lasts from April to June 

in C. finmarchicus. In agreement, we observed that C. glacialis was actively feeding 

and growing in surface waters from April to July (Fig. 4.1 and Fig. 4.2). The duration 

and intensity of the productive season is critical for the development of Calanus spp. 

During the productive season, internal energy reserves are accumulated (Falk-Petersen 

et al. 2009). The lipid content was suggested as a possible cue for the timing of diapause 

(Irigoien 2004) and thus, food availability may indirectly play an important role in the 

timing of diapause (Søreide et al. 2008, 2010, Daase et al. 2013). Moreover, external 

cues like sea surface temperature (Kosobokova 1999, Niehoff & Hirche 2005) and 

photoperiod (Miller et al. 1991) may determine the timing of descent and explain 

discrepancies in the onset of diapause among Calanus species and populations from 

different habitats. The MDS analysis revealed a relatively scattered distribution of the 

productive months June and July 2012 and July 2013, which may indicate that the 

environmental conditions differed between the years and thus, the enzymatic and 

biochemical adjustments in the C. glacialis populations were dissimilar (Fig. 4.4).   

 

Shortly after the descent, diapause is induced in C. finmarchicus, which is indicated by 

a cessation of feeding activity and low metabolic activity (Hirche 1996). Digestive 

enzyme activities of C. glacialis were low after the copepods reached the overwintering 

depth in Billefjorden. In comparison, also in C. finmarchicus from Gullmarfjorden, 

Sweden, and Korsfjorden, Norway, digestive enzyme activities were low in the 

beginning of overwintering (Hirche 1983). Metabolic enzyme activities in copepods at 

depths, i.e. CS and MDH activities, were not significantly lower compared to active 

individuals before November and December 2012 (Fig. 4.2). According to Hirche 

(1996), the copepods are in the refractory phase at that time, which is characterized by 

low metabolic activity and torpidity. Torpid behavior has been observed in 

overwintering C. finmarchicus (Hirche 1983) and C. hyperboreus (Conover 1962, Auel 

et al. 2003), however, C. glacialis showed no signs of torpidity after capture. The 

diapause intensity of the shelf species C. glacialis, which mainly overwinters in areas of 

less than 500 m water depth, may be less compared to C. finmarchicus, which is known 

to overwinter in water depth between 500 and 1500 m in the open ocean (Kaartvedt 



Results and synoptic discussion          

108 

1996, Dale et al. 1999). Correspondingly, metabolic enzyme activity decreased only by 

50% (Manuscript III) and respiration rates in overwintering individuals were still one-

third of those of active C. glacialis (Morata & Soreide 2013), while Hirche (1983) 

observed respiration rates in diapausing C. finmarchicus which were only one-fifth of 

those found in active individuals. Also digestive enzyme activities of C. glacialis in our 

study were only three to seven times lower in overwintering individuals compared to 

active ones, while activities of overwintering C. finmarchicus were 20 times lower 

compared to actively feeding copepods (Hirche 1983). The MDS plot revealed a 

clustering of August, October and November 2012 for enzyme activities (Fig. 4.4 a), 

however, it did not show a cluster for the biochemical composition (Fig. 4.4 b). This 

suggests that the metabolic activity is a better indicator for the state of diapause than the 

biochemical composition.    

 

According to Hirche (1996), the activation and termination phase in C. finmarchicus 

lasts from December to March. During this time, the individuals moult, develop into 

males and females and ascent. By the end of the termination phase, the full metabolic 

potential is regained. We observed profound changes in dry mass and lipid content in C. 

glacialis during that time (Fig 4.2), which is probably due to an energy allocation into 

gonad maturation and moulting (Tande 1982). Digestive and metabolic enzyme 

activities were low from December to March, while HOAD activities were relatively 

high in C. glacialis compared to individuals during spring and summer.   

 

Adaptations to the physical and biological environment of different habitats may 

explain the differences in the physiology of C. finmarchicus and C. glacialis during 

diapause (Hairston & Olds 1987, Dahms 1995). Both Calanus species, however, exhibit 

the five phases as described by Hirche (1996), which suggests an evolutionary 

establishment of diapause (Dahms 1995). Future studies should compare the physiology 

of the two Calanus species from the same habitat to assess to what extent environmental 

factors influence diapause behavior. In a first attempt, we investigated the physiology of 

C. glacialis from different habitats and compared enzyme activities and the biochemical 

composition of populations from different fjords. The results are described in the 

following chapter.    
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Fig. 4.4 Multi-dimensional scaling (MDS) plots based on Bray-Curtis similarity analysis on 
square root transformed digestive and metabolic enzyme activities (a) and biochemical 
composition data (b) of Calanus glacialis copepodite stage V from July 2012 to July 2013. CV 
were not sufficient to provide enough samples for enzyme activities and biochemical analysis in 
September 2012 and in March to May 2013. For (a), data on proteinase, lipase/esterase, citrate 
synthase, malate dehydrogenase, 3-hydroxyacyl CoA dehydrogenase and aminoacyl- tRNA-
synthetase activities are included, and for (b), data on the lipid, water-soluble protein, carbon 
and nitrogen content and dry mass are included. The distance between months on the MDS plot 
shows the similarity, i.e. the closer two months are to each other, the more similar they are.   
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4.1.2 Spatial variations in the physiology of Calanus glacialis 

The marine realm around Svalbard is a transition zone between Atlantic and Arctic 

water masses (Daase & Eiane 2007). The West Spitsbergen Current transports warm 

and saline Atlantic water northwards around the west of Svalbard, while the East 

Spitsbergen Current brings cold and less saline Arctic water from the Polar Basin 

(Svendsen et al. 2002, Schauer et al. 2004). This results in different hydrographical 

regimes in the fjords around Svalbard (Fig. 4.5). To study the effects of prevailing 

environmental conditions on the physiology of C. glacialis, we compared the 

populations of (i) Billefjorden, a sill fjord which is mainly influenced by locally formed 

Arctic water masses, (ii) Kongsfjorden, an open fjord which is strongly influenced by 

Atlantic water and (iii) Rijpfjorden, which opens towards the deep Polar Basin and is 

considered a true Arctic fjord (Kwasniewski et al. 2003, Nilsen et al. 2008, Wallace et 

al. 2010). Water temperatures differ among the fjords. Sea surface temperatures in 

Billefjorden ranged between -1.7°C and 5°C from July 2012 to July 2013 (Fig. 2.2). In 

Kongsfjorden in the same year, temperatures varied from 3°C to 6°C over the entire 

water column for more than seven months (Nahrgang et al. 2014). In contrast, sea 

surface temperatures in Rijpfjorden exceeded 3°C merely for one month, while during 

the rest of the year temperatures were around 0°C throughout the water column 

(Nahrgang et al. 2014). Sea ice conditions also vary among the fjords: Kongsfjorden is 

ice-free during the entire year (Cottier et al. 2007), while Billefjorden is ice-covered for 

around six months until May or early June and Rijpfjorden is covered by ice during 

most of the year from December to July (Søreide et al. 2010). As the start of the 

phytoplankton bloom is strongly dependent on the ice cover and light regime, the onset 

is delayed by several weeks in Rijpfjorden (Leu et al. 2006).        
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Fig. 4.5 Schematic comparison of the environmental conditions in six habitats of Calanus 

glacialis after Søreide et al. (2010) and Daase et al. (2013). Shown are the sea ice-cover, the 
solar radiation, the timing of ice algae and phytoplankton bloom and the timing of vertical 
migration of Calanus glacialis in three fjords in the Svalbard archipelago, i.e. Billefjorden, 
Kongsfjorden and Rijpfjorden, the Disko Bay (west Greenland), the White Sea and Lurefjorden 
(west Norway).  
 

 

The prevailing water masses and environmental conditions determine the zooplankton 

population structures and species abundances in the three fjords. C. finmarchicus 

dominates the pelagic community in Kongsfjorden, since this species is mainly 

associated with Atlantic water (Daase & Eiana 2007, Daase et al. 2007). C. glacialis 

predominates in Billefjorden (Arnkværn et al. 2005) and also in Rijpfjorden (Søreide et 

al. 2008). C. hyperboreus prefers Arctic water masses and deeper waters and mainly 

occurs off the Svalbard shelf (Hassel 1986, Blachowiak-Samolyk et al. 2006). The 

adaptation to different habitats is reflected in the physiological characteristics of the 

three species, i.e. life cycle length, reproduction and size (Conover & Huntley 1991, 
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Falk-Petersen et al. 2009). By comparing C. glacialis populations from three fjords, we 

aimed to elucidate if environmental conditions cause intraspecific differences in 

physiological parameters. The focus of this study is on the CV as the main 

overwintering stage, but whenever these were not sufficiently abundant for biochemical 

analyses, adult females were analyzed. It has to be noted that due to logistical 

constraints sampling in Kongsfjorden and Rijpfjorden was not performed as frequently 

as in Billefjorden. 

 

We observed a similar seasonal pattern in enzyme activities in all three fjords, i.e. low 

digestive and metabolic enzyme activities in autumn and winter and high activities in 

spring and summer and vice versa for catabolic enzyme activities (Fig. 4.6). There were, 

however, differences in the physiology of the three C. glacialis populations, which may 

be attributed to the prevailing environmental conditions.  

 

In July 2012, C. glacialis CV were sampled in the upper 50 m of the water column and 

digestive and metabolic enzyme activities were relatively high in all fjords. However, 

proteinase, MDH and AARS activities of copepods from Rijpfjorden were significantly 

higher compared to CV in Kongsfjorden and in Billefjorden (one-way ANOVA p<0.05, 

Tukey post hoc test). The phytoplankton bloom starts later in Rijpfjorden compared to 

the other two fjords. The timing of the phytoplankton bloom strongly determines the 

time of descent in C. glacialis. In locations where the bloom starts early, e.g. in the ice-

free Kongsfjorden and Lurefjorden (west Norway), the copepods descend as early as 

June, while in areas, which are ice-covered for several months, like e.g. the Disko Bay, 

the White Sea and Rijpfjorden, C. glacialis descends between July and August (Fig. 4.5, 

Søreide et al. 2008, Daase et al. 2013). Thus, maximal metabolic activities can be 

expected earlier in the more southerly located fjords as compared to Rijpfjorden.  

 

In September individuals resided at their overwintering depth in Rijpfjorden (Fig. 4.5). 

Digestive enzyme activities were less than half of the activity in July, and also 

metabolic enzyme activities were only half of the activity of individuals from surface 

waters in July. HOAD activity, however, was ten times higher in CV at overwintering 

depth compared to individuals from the surface in Rijpfjorden (Fig. 4.6). In January and 

February, digestive and metabolic enzyme activities were still low, while HOAD 

activity was high in all three C. glacialis populations. In contrast to Rijpfjorden, 
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however, adult females appeared in higher abundances in Billefjorden and 

Kongsfjorden, possibly due to earlier moulting of the CV southwest off Svalbard, where 

warm Atlantic water prevails (Søreide et al. 2008). Indeed, CS and lipolytic activity of 

C. glacialis adult females in Kongsfjorden in February were already almost as high as 

for adult females in Rijpfjorden in May 2013 (Fig. 4.6). Generally, C. glacialis ascends 

and reproduces earlier in ice-free habitats with an early onset of the phytoplankton 

bloom (Fig. 4.5, Daase et al. 2013). Rijpfjorden is located very far north (81°N), which 

results in a shorter period of solar radiation and longer period of ice coverage compared 

to the more southerly, but also ice-covered Disko Bay (69°N) and White Sea (66°N) 

(Daase et al. 2013). The extreme environmental conditions in Rijpfjorden probably 

explain the long diapause period in the C. glacialis populations in Rijpfjorden compared 

to the populations of other locations (Fig. 4.5). In May, the copepods were feeding on 

ice algae in surface waters in Billefjorden and Rijpfjorden and the activities of all 

enzymes, except HOAD, were high. 
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Fig. 4.6 Comparison of enzyme activities of Calanus glacialis copepodite stage V (CV) and 
adult  females (CVIF) from Billefjorden, Kongsfjorden and Rijpfjorden from July 2012 to July 
2013: proteinase (a), lipase/esterase (lipase) (b), citrate synthase (CS) (c), malate dehydrogenase 
(MDH) (d), aminoacyl-tRNA synthetase (AARS) (e) and 3-hydroxyacyl-CoA dehydrogenase 
(HOAD) (f) activity (mean ± SD, n varied between 2 and 3, for exact numbers see appendix 
Table A 4 - 9 in the appendix). Individuals were sampled in the upper 50 m of the water column 
in July 2012 and from March to July 2013 and below 150 m from August 2012 to February 
2013 (for exact sampling depths see chapter 2.1).  
 

 

Despite the difference in food availability between the fjords, dry mass and C and N 

content did not differ significantly among the C. glacialis populations (Fig. 4.7). Dry 

mass and C and N content were high in the beginning of the overwintering period in 
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July and September 2012 and significantly lower in January/February 2013, when 

individuals started to moult and to prepare for the ascent (Kruskal-Wallis p<0.05, 

Dunn’s post hoc test). In the future, a higher sampling frequency would be desirable to 

tackle when exactly the biochemical composition of the copepods changes in 

Kongsfjorden and Rijpfjorden. Presumably, the drop in dry mass should be earlier in 

Kongsfjorden and Billefjorden than in Rijpfjorden, because copepods moult earlier in 

the southern fjords (Søreide et al. 2008).  

 

 

Fig. 4.7 Comparison of the biochemical composition of Calanus glacialis copepodite stage V 
(CV) and adult females (CVIF) from Billefjorden, Kongsfjorden and Rijpfjorden from July 
2012 to July 2013: dry mass (DM) (a), carbon (C) (b) and nitrogen (N) content (c)  (mean ± SE, 
n varied between 2 and 3, for exact numbers see Table A 10 - 12 in the appendix). Individuals 
were sampled in the upper 50 m of the water column in July 2012 and from March to July 2013 
and below 150 m from August 2012 to February 2013 (for exact sampling depth see chapter 
2.1). 
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Besides food availability, the temperature difference among the fjords may influence the 

physiology and timing of life cycle events of C. glacialis. For instance, the smaller 

species C. finmarchicus overwinters in diapause for nine months at 0°C (Saumweber & 

Durbin 2006), and this duration may shorten by one month at a temperature increase of 

2°C (Pierson et al. 2013). In C. glacialis, in contrast, it was observed that the diapause 

duration is shorter in the cold Rijpfjorden compared to the warmer Kongsfjorden and 

Lurefjorden (Fig. 4.5, Daase et al. 2013). Other studies observed an effect of 

temperature on the reproduction period and showed that females stopped to reproduce 

and descended to their overwintering depth when sea surface temperatures increased to 

around 5°C in Lurefjorden and the White Sea (Kosobokova 1999, Niehoff & Hirche 

2005). A study by Niehoff et al. (2002), however, found that C. glacialis remained in 

surface waters in Disko Bay even after the temperature had reached 6°C. In conclusion, 

the life cycle of C. glacialis is well adapted to ice-free areas with warmer water 

temperatures as well as to habitats with extensive ice coverage, less algal food and low 

temperatures. Future studies under controlled laboratory conditions should investigate if 

C. glacialis is also able to adjust its physiology on a short-term when temperature and 

food conditions change.  
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______________________________________________________________________ 

Key results of chapter 4.1: 

 C. glacialis shows a clear seasonal pattern in digestive and metabolic enzyme 

activities, with high activities in spring and summer during the productive 

season and low activities in autumn and winter during diapause; and vice versa 

for catabolic enzyme activities.  

 The biochemical composition, i.e. dry mass, C:N ratio and lipid content changed 

profoundly at the end of the overwintering period, possibly due to moulting, 

gonad maturation and the ascent. 

 Diapause in C. glacialis can be categorized into phases, during which the 

copepods differ in their metabolic activity, and enzyme activities are a useful 

approach to characterize the physiological state of C. glacialis. 

 Adjustments in metabolism are similar among C. glacialis populations of 

different environments, suggesting an evolutionary basis of diapause. Prevailing 

environmental conditions, however, result in differences in timing and intensity 

of metabolic activity. 

_____________________________________________________________________________ 

 

 

4.2 Effect of different food and light conditions on the physiology of Calanus 

glacialis  

In the framework of two incubation experiments at different food and light conditions, 

the physiological ability of C. glacialis CV to adjust to external cues during diapause 

was investigated. One experiment was performed in August/September 2012 (in the 

following referred to as August experiment) during this PhD thesis and another in 

November/December 2009 (in the following referred to as November experiment) 

during my Master thesis. According to the seasonal study in Billefjorden, C. glacialis 

was in the refractory phase with little changes in enzyme activities and biochemical 

composition in August, and copepods were in the activation phase, during which the 

biochemical composition changed profoundly, in November. It has to be noted that 

incubation experiments involve the risk of artifacts, i.e. stress and subsequent changes 

in the behavior of the copepods due to extensive handling (Ohman et al. 1998). 

Nevertheless, if the response of C. glacialis is dependent on the diapause phase, we 
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hypothesize that copepods will react faster during the November experiment than during 

the August experiment.  

 

Digestive enzyme activities, i.e. proteinase and lipase/esterase activities, were measured 

to assess the potential feeding activity of the copepods. Citrate synthase activity was 

determined as a proxy for the metabolic activity (Meyer et al. 2002, Saborowski & 

Buchholz 2002, Kreibich et al. 2008). Moreover, to assess if C. glacialis assimilated the 

dietary components, the biochemical composition was determined by means of 

measuring dry mass and C and N content. In the following these parameters will be 

compared between the August and November experiment. 

 

Proteinase activity increased in all treatments in both experiments regardless of food 

and light conditions (Fig. 4.8). The increase, however, was only significant for 

copepods from the food and light treatment of the November experiment (Kruskal-

Wallis p < 0.05, Tukey post hoc test). In the August experiment, the increase in 

proteinase activity was stronger when copepods were exposed to food and darkness 

compared to the copepods kept with food and light. Thus, food availability intensified 

proteinase activity, regardless if light was present. During the November experiment, 

the copepods which were kept with food and in darkness were in bad shape and we 

assume that there was some contamination in the barrel. Unfortunately, we can thus not 

compare the response of this group in November with that in August. In the Arctic, the 

return of light in spring is followed by the occurrence of algal food (Arrigo et al. 2008). 

This suggests that a combination of both environmental factors causes a stronger 

increase of the metabolic activity of C. glacialis than light or food alone (Morata & 

Soreide 2013), which matches with the results of the November experiment.   
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Fig. 4.8 Comparison of the proteinase (a), lipase/esterase (lipase; b) and citrate synthase (CS; c) 

activity of Calanus glacialis copepodite stage V kept with food and light (light green, solid 

line), with food and in darkness (dark green, solid line), without food and with light (light grey, 

dashed line) and without food and in darkness (dark grey, dashed line) in November/ December 

2009 and August/ September 2012 (mean ± SD, n = 3, except for Nov., day 9 n = 2). In the 

August experiment individuals were kept in the laboratory for 21 days and the November 

experiment lasted for 26 days.  

 

 

Proteinase activity increased in less than ten days in individuals of the November 

experiment, while it took more than ten days in individuals of the August experiment. 

One to two weeks has been suggested as acclimation period for enzyme activities in 
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copepods in other studies (Hassett & Laundry 1983, Head & Conover 1983). Our 

experiments suggest that diapausing copepods respond faster to external cues in 

November compared to August. At the end of both experiments, the maximum 

proteinase activities were more than twice as high as in C. glacialis CV from the field in 

September and December 2012. The highest proteinase activities of individuals from 

the experiments, however, were only half of those of actively feeding CV from 

Billefjorden in June 2013 (see chapter 4.1).   

 

Lipase/esterase activities increased in C. glacialis during the November experiment 

(one-way ANOVA p<0.05, Holm-Sidak post hoc), while they did not change 

significantly throughout the August experiment (Fig. 4.8). At the end of the November 

experiment, lipolytic activity was the highest in individuals which were kept with food 

and light, and it was twice as high as the activity in copepods from Billefjorden in 

December 2012 (see chapter 4.1). This suggests an unspecific mobilization of digestive 

enzymes, which has already been found during incubation experiments with C. 

hyperboreus (Head & Conover 1983). The seasonal study in Billefjorden, however, did 

not reveal such an unspecific induction of digestive enzyme activity before food was 

available (Manuscript II).  

   

CS activities were similar to the activities which were found in the field in August and 

September 2012 and November and December 2012 (see chapter 4.1). The CS activity 

revealed no clear differences among the treatments (Fig. 4.8). This contrasts other 

studies, which found significantly lower CS activities in starving compared to feeding 

crustaceans (Meyer et al. 2002, Saborowski & Buchholz 2002, Kreibich et al. 2008). 

Also the biochemical composition of C. glacialis did not change significantly in any of 

the experiments (Fig. 4.9), which suggests that the experimental period was too short 

for the copepods to assimilate the available food in detectable amounts into their body 

tissue. Thus, more extensive and comparative studies with copepods captured during the 

productive season should be performed in the future to further elucidate if the 

physiological response differs between active and diapausing copepods, and if C. 

glacialis is able to cope with changes in the food regime. An earlier onset of the 

phytoplankton bloom is a likely future scenario since duration and thickness of sea-ice 

cover change, with subsequent changes in light and food regime (Arrigo et al. 2008, 

Kahru et al. 2011).  
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Fig. 4.9 Comparison of dry mass (DM; a), carbon content (C; b) and nitrogen content (N; c) of 

Calanus glacialis copepodite stage V kept with food and light (light green, solid line), with food 

and in darkness (dark green, solid line), without food and with light (light grey, dashed line) and 

without food and in darkness (dark grey, dashed line) in November/ December 2009 and 

August/ September 2012 (mean ± SD, n = 24, except for Nov., day 6 and 23, n = 19 and 12; 

Aug., day 15, n= 12). In the August experiment, the last sampling day for DM, C and N content 

was after 21 days and in the November experiment, the last sampling was performed after 23 

days. 

 

 

 

 



Results and synoptic discussion          

122 

______________________________________________________________________ 

Key results of chapter 4.2: 

 Digestive enzyme activities increased faster in C. glacialis which were in the 

activation phase of diapause (November experiment) compared to the ones of 

individuals, which were in the refractory phase (August experiment). 

 Food availability intensified digestive enzyme activity independent of the light 

regime.  

 Digestive enzyme activities, however, did not reach the same activities like in 

actively feeding copepods in surface waters in Billefjorden in spring and 

summer. Also, metabolic enzyme activity and the biochemical composition did 

not change significantly during the experiments, which may suggest that the 

experimental period was too short for the copepods to assimilate the food in 

detectable amounts into body tissue.  

______________________________________________________________________ 
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5 Conclusions and future perspectives 

This is the first study to characterize seasonal patterns in the physiology of the calanoid 

copepod C. glacialis. Diapause and activity were related to profound changes in 

metabolic and digestive enzyme activities as well as acid-base regulation and 

extracellular ion concentrations. In future studies, this set of physiological parameters 

could thus be used as a proxy for determining the activity level of copepods in relation 

to the timing and duration of diapause. It has to be noted, however, that our study 

investigated seasonal patterns in the physiology of a shelf species, which mainly 

inhabits fjords with less than 200 m depth. Other studies, for example, showed that 

respiration rates and enzyme activities are close to zero in diapausing individuals of the 

sibling species C. finmarchicus and C. hyperboreus, which overwinter at greater depths. 

It further has to be noted that the present study focused on CV, which prepare for 

moulting and gonad maturation in the end of overwintering. The younger overwintering 

stage CIV does not develop gonads and thus, the specific metabolic activities may 

increase later in the year compared to CV during winter. Future studies should 

investigate if the intensity of diapause is related to overwintering depth and stage. 

Comprehensive studies on species from different latitudes and locations should be 

performed to manifest a clear definition of the physiological adjustments in copepods 

during diapause.  

 

The present study reflect that diapause is an evolutionary developed life history 

characteristic in copepods, however, the timing and intensity of diapause in C. glacialis 

is adjusted to prevailing environmental conditions. Depending on the habitat, C. 

glacialis is able to use either only the phytoplankton bloom (ice-free areas) or shows a 

life cycle that is synchronized with ice algae and phytoplankton bloom (ice-covered 

environments). C. glacialis should be able to respond flexible to shifts in the timing of 

algal blooms related to an earlier ice break-up, since digestive enzyme activities of the 

copepods correlated to food availability. The present study showed that the physiology 

of C. glacialis changes over the year triggered by an interplay of environmental factors 

and internal processes. To assess these factors and processes, higher sampling 

frequencies in future studies should be combined with molecular approaches to gain 

more precise information on the timing and intensity of physiological adjustments in 

copepods during diapause. 
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Appendix  

Table A 1 Chlorophyll a (Chl a) in Billefjorden, it was integrated over the water column from 75 m to surface, except for July 2013 (from 35 m to 
surface). Dry mass (DM; µg indv.-1), carbon to nitrogen ratio (C:N) and lipid content (µg indv.-1)  of Calanus glacialis copepodite stages IV (CIV), V 
(CV) and adult females (CVIF) in Billefjorden from July 2012 to July 2013 (mean ± SE and number of replicates (n), if not shown then n = 1). 

 Chl a DM C:N Lipid content 

  CV n CIV n CVIF n CV CIV CVIF CV 

23.07.2012  666.5 ± 46.2 24     8.7   208.0 

28.08.2012  582.8 ± 54.3 24     8.7   212.0 

17.09.2012  724.7 ± 69.8 10         

05.10.2012 39.0 497.9 ± 51.5 23     7.5   217.3 

06.11.2012  653.5 ± 36.9 24     8.0   172.0 

04.12.2012  502.2 ± 67.1 17     8.1   76.0 

10.01.2013 2.9 242.4 ± 29.6 17   565 2 7.1  7.9 73.3 

04.02.2013 3.8 389.2 ± 55.1 24   612.5 ± 28.2 24 7.1  6.9 52.0 

13.03.2013    222.2 ± 26.7 23 517.5 ± 56.3 24  6.5 7.1 81.3 

09.04.2013 39.5   108.3 ± 6.9 24 449.2 ± 61.2 12  6.1 5.8 42.7 

26.04.2013 164.1   184.6 ± 11.7 13    5.7   

07.05.2013 192.9   163. 7 ± 9.1 24    5.9   

17.06.2013  493.0 ± 54.3 23     8.1    

23.07.2013 29.3 519.5 ± 49.2 20     8.2    
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Table A 2 Proteinase activity (dE366 h
-1 indv.-1),  lipase/esterase activity (nmol h-1 indv.-1) and 3-hydroxyacyl-CoA dehydrogenase activity (HOAD, units 

indv.-1) of Calanus glacialis copepodite stages IV (CIV), V (CV) and adult females (CVIF) in Billefjorden from July 2012 to July 2013 (mean ± SE, n = 
3, except for HOAD activity of CIV in May n = 2). 

 

 Proteinase  Lipase/esterase HOAD 

 CV CIV CVIF CV CIV CVIF CV CIV CVIF 

23.07.2012 0.87 ± 0.13   106.27 ± 11.26   0.39 ± 0.13   

28.08.2012 0.52 ± 0.01   74.99 ± 7.02   0.61 ± 021   

17.09.2012 0.14 ± 0.02   50.67 ± 4.48      

05.10.2012 0.40 ± 0.03   68.53 ± 0.32   0.80 ± 0.02   

06.11.2012 0.36 ± 0.01   75.3 ± 1.03   0.99 ± 0.19   

04.12.2012 0.35 ± 0.12   53.86 ± 2.49   0.57 ± 0.09   

10.01.2013 0.46 ± 0.22  0.49 ± 0.10 48.91 ± 5.08  73.01 ± 4.60 0.98 ± 0.16  0.73 ± 0.73 

04.02.2013 0.54 ± 0.02  0.53 ± 0.11 62.52 ± 0.87  85.01 ± 6.59 0.75 ± 0.08  0.85 ± 0.85 

13.03.2013  0.12 ± 0.04 0.76 ± 0.18  18.14 ± 3.48 78.33 ± 18.31   0.66 ± 0.66 

09.04.2013  0.61 ± 0.30 2.03 ± 0.33  18.74 ± 3.55 104.75 ± 3.10  0.41 ± 0.09   

26.04.2013  0.95 ± 0.02   33.79 ± 4.53   0.17 ± 0.02  

07.05.2013  1.36 ± 0.19   59.94 ± 0.46   0.05   

17.06.2013 2.93 ± 0.16   246.59 ± 3.87   0.07 ± 0.03   

23.07.2013 0.88 ± 0.23   168.35 ± 11.02   0.79 ± 0.18   
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Table A 3 Citrate synthase activity (CS, units indv.-1) and  malate dehydrogenase activity (MDH, units indv.-1)  of Calanus glacialis copepodite stages 

IV (CIV), V (CV) and adult females (CVIF) in Billefjorden from July 2012 to July 2013 (mean ± SE, n = 3, except for MDH activity of CVIF in 

February n = 2). The extracellular pH (pHe) and Li+ concentration (mmol L-1) are shown for CV 2013 (mean ± SE, n = 6, except for Li+ in June n = 2).  

 CS MDH pHe Li
+
 

 CV CIV CVIF CV CIV CVIF CV CV 

23.07.2012 0.48 ± 0.04   12.38 ± 1.52   7.9 ± 0.3 69.9 ± 18.4  

28.08.2012 0.38 ± 0.02   8.83 ± 1.64   6.7 ± 03 75.3 ± 31.8 

17.09.2012 0.35 ± 0.03        

05.10.2012 0.42 ± 0.02   9.17 ± 1.29     

06.11.2012 0.41 ± 0.02   5.83 ± 0.57   6.3 ± 0.6 60.9 ± 69.1 

04.12.2012 0.27 ± 0.01   6.05 ± 1.08     

10.01.2013 0.31 ± 0.03  0.43 ± 0.01 5.14 ± 0.65  8.00 ± 0.35 5.7 ± 0.5 132.2 ± 58.9 

04.02.2013 0.26 ± 0.01  0.39 ± 0.03 5.49 ± 0.19  5.88  5.9 ± 0.5 197.2 ± 101.8 

13.03.2013  0.14 ± 0.01 0.43 ± 0.00   6.42 ± 1.05 5.5 ± 0.7 128.5 ± 106.9 

09.04.2013  0.12 ± 0.01 0.49 ± 0.02  2.18 ± 0.35  6.3 ± 1.2 104.5 ± 103.9 

26.04.2013  0.18 ± 0.01   2.71 ± 056  5.9 ± 0.6 160.7 ± 85.7 

07.05.2013  0.30 ± 0.01   4.34 ± 068  7.0 ± 0.8 106.8 ± 72.9 

17.06.2013 0.54 ± 0.02   7.13 ± 0.39   7.9 ± 0.4 9.9  

23.07.2013 0.43 ± 0.02   8.38 ± 0.46   7.8 ± 0.5 8.8 ± 8.9 
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Table A 4 Proteinase activity (dE366 h-1 mg DM-1) of Calanus glacialis copepodite stages V (CV) and adult females (CVIF) in Billefjorden, 
Kongsfjorden and Rijpfjorden from July 2012 to July 2013 (mean ± SD, n = 3). 

 

 

 

 Billefjorden Kongsfjorden Rijpfjorden 

 CV CVIF CV CVIF CV CVIF 

23.07.2012 5.6 ± 0.3  3.9 ± 0.7  7.9 ± 0.6  

28.08.2012 0.9 ± 0.0      

17.09.2012 0.2 ± 0.0    0.8 ± 0.1  

05.10.2012 0.8 ± 0.1      

06.11.2012 0.5 ± 0.0      

04.12.2012 0.7 ± 0.4      

10.01.2013 1.5 ± 1.3 1.2 ± 0.4 1.2 ± 0.1  0.8 ± 0.0  

04.02.2013 1.4 ± 0.1 0.9 ± 0.3  1.4 ± 0.2 1.8 ± 0.1  

13.03.2013  1.5 ± 0.6     

09.04.2013  4.9 ± 1.3     

07.05.2013      4.9 ± 0.9 

17.06.2013 5.7 ± 0.6      

23.07.2013 1.7 ± 0.8      
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Table A 5 Lipase/esterase activity (nmol h-1 mg DM-1) of Calanus glacialis copepodite stages V (CV) and adult females (CVIF) in Billefjorden, 
Kongsfjorden and Rijpfjorden from July 2012 to July 2013 (mean ± SD, n = 3, except for CV in Rijpfjorden July 2012 and CVIF in Rijpjforden in May 
n = 2). 

 

 

 Billefjorden Kongsfjorden Rijpfjorden 

 CV CVIF CV CVIF CV CVIF 

23.07.2012 221.3 ± 43.2  163.9 ± 41.3  204.8   

28.08.2012 139.5 ± 24.0      

17.09.2012 71.7 ± 13.4    129.8 ± 3.7  

05.10.2012 136.1 ± 2.8      

06.11.2012 105.9 ± 16.2      

04.12.2012 97.6 ± 17.8      

10.01.2013 155.9 ± 29.1 169.9 ± 18.6 182.1 ± 8.1  108.0 ± 4.5  

04.02.2013 146.0 ± 25.5 130.7 ± 19.2  178.3 ± 22.8 177.8 ± 33.03  

13.03.2013  172.3 ± 56.5     

09.04.2013  230.5 ± 36.1     

07.05.2013      237.6 

17.06.2013 458.4 ± 29.7      

23.07.2013 398.8 ± 47.9      
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Table A 6 Citrate synthase activity (units mg DM-1) of Calanus glacialis copepodite stages V (CV) and adult females (CVIF) in Billefjorden, 
Kongsfjorden and Rijpfjorden from July 2012 to July 2013 (mean ± SD, n = 3). 

 

 

 

 Billefjorden Kongsfjorden Rijpfjorden 

 CV CVIF CV CVIF CV CVIF 

23.07.2012 10.7 ± 0.3  9.5 ± 1.2  10.6 ± 0.3   

28.08.2012 6.6 ± 0.6      

17.09.2012 5.3 ± 0.7    7.3 ± 0.7  

05.10.2012 8.5 ± 0.6      

06.11.2012 6.2 ± 0.5      

04.12.2012 5.1 ± 0.2      

10.01.2013 10.3 ± 1.8 10.5 ± 0.5 8.7 ± 0.1  7.3 ± 0.3  

04.02.2013 6.7 ± 0.6 6.4 ± 0.9  9.8 ± 0.9 8.8 ± 1.0  

13.03.2013  6.7 ± 2.8     

09.04.2013  11.7 ± 0.9     

07.05.2013      10.7 ± 2.3 

17.06.2013 10.6 ± 0.8      

23.07.2013 8.4 ± 0.8      
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Table A 7 Malate dehydrogenase activity (units mg DM-1) of Calanus glacialis copepodite stages V (CV) and adult females (CVIF) in Billefjorden, 
Kongsfjorden and Rijpfjorden from July 2012 to July 2013 (mean ± SD, n = 3). 

 

 

 

 Billefjorden Kongsfjorden Rijpfjorden 

 CV CVIF CV CVIF CV CVIF 

23.07.2012 45.6 ± 10.8  15.5 ± 6.2  60.5 ± 13.9   

28.08.2012 30.3 ± 9.7      

17.09.2012     32.5 ± 4.7  

05.10.2012 36.9 ± 8.9      

06.11.2012 17.9 ± 3.0      

04.12.2012 24.1 ± 7.5      

10.01.2013 30.0 ± 6.6 38.8 ± 2.9   30.6 ± 3.6  

04.02.2013 28.2 ± 1.7 19.2 ± 8.8   34.7 ± 3.9  

13.03.2013  24.8 ± 10.1     

09.04.2013       

07.05.2013      25.6 ± 2.8 

17.06.2013 27.8 ± 2.6      

23.07.2013 32.3 ± 3.0      
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Table A 8 Aminoacyl-tRNA synthetase activity (nmol PPi h-1 mg DM-1) of Calanus glacialis copepodite stages V (CV) and adult females (CVIF) in 
Billefjorden, Kongsfjorden and Rijpfjorden from July 2012 to July 2013 (mean ± SD, n = 3, except for CVIF in Rijpfjorden in May n = 2). 

 

 

 

 Billefjorden Kongsfjorden Rijpfjorden 

 CV CVIF CV CVIF CV CVIF 

23.07.2012 0.3 ± 0.0  0.1 ± 0.0  0.5 ± 0.0   

28.08.2012 0.2 ± 0.1      

17.09.2012     0.2 ± 0.1  

05.10.2012 0.3 ± 0.0      

06.11.2012 0.2 ± 0.1      

04.12.2012 0.2 ± 0.0      

10.01.2013 0.2 ± 0.1 0.2 ± 0.0     

04.02.2013 0.2 ± 0.0 0.1 ± 0.0   0.2 ± 0.0  

13.03.2013  0.1 ± 0.0     

09.04.2013       

07.05.2013      0.5 

17.06.2013 0.2 ± 0.0      

23.07.2013 0.2 ± 0.0      
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Table A 9 Three-hydroxyacyl-CoA dehydrogenase activity (units mg DM-1) of Calanus glacialis copepodite stages V (CV) and adult females (CVIF) 
in Billefjorden, Kongsfjorden and Rijpfjorden from July 2012 to July 2013 (mean ± SD, n = 3, except for CVIF in Kongsfjorden in July 2012 and CVIF 
in Rijpfjorden in February n = 2). 

 

 

 

 Billefjorden Kongsfjorden Rijpfjorden 

 CV CVIF CV CVIF CV CVIF 

23.07.2012 0.6 ± 0.5  0.2 ± 0.2  0.3 ± 0.1   

28.08.2012 3.1 ± 1.9      

17.09.2012     3.6 ± 0.7  

05.10.2012 4.8 ± 0.2      

06.11.2012 4.6 ± 1.5      

04.12.2012 3.4 ± 0.9      

10.01.2013 8.8 ± 2.4 38.8 ± 2.9     

04.02.2013 5.8 ± 1.1 19.2 ± 8.8   3.2   

13.03.2013  24.8 ± 10.1     

09.04.2013       

07.05.2013      0.5 ± 0.3 

17.06.2013 0.4 ± 0.3      

23.07.2013 4.6 ± 1.8      
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Table A 10 Dry mass (µg indv.-1) of Calanus glacialis copepodite stages V (CV) and adult females (CVIF) in Billefjorden, Kongsfjorden and 
Rijpfjorden from July 2012 to July 2013 (mean ± SE and number of replicates (n)). 

 
 

 

 Billefjorden Kongsfjorden Rijpfjorden 

 CV n CVIF n CV n CVIF CV n CVIF n 

23.07.2012 328.3 ± 46.3 24   594.7 ± 47.7 24  476.5 ± 35.4  24   

28.08.2012 582.8 ± 54.3 24          

17.09.2012 686.9 ± 69.8 10      720.3 ± 71.7 24   

05.10.2012 497.9 ± 51.5 23          

06.11.2012 653.5 ± 36.9 24          

04.12.2012 502.2 ± 67.1 17 565.0 2        

10.01.2013 260.7 ± 29.6 17 612.5 ± 28.2 24 330.9 ± 22.7 24  447.5 ± 37.7 16   

04.02.2013 389.2 ± 55.1 24 517.5 ± 56.3 24   393.3 ± 24.6 279.2 ± 15.7 24   

13.03.2013   449.2 ± 61.2 12        

09.04.2013            

07.05.2013          418.8 ± 22.9 24 

17.06.2013 49.3 ± 54.3 23          

23.07.2013 519.5 ± 49.2 20          
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Table A 11 Carbon content (µg indv.-1) of Calanus glacialis copepodite stages V (CV) and adult females (CVIF) in Billefjorden, Kongsfjorden and 
Rijpfjorden from July 2012 to July 2013 (mean ± SE and number of replicates (n)). 

 

 

 

 Billefjorden Kongsfjorden Rijpfjorden 

 CV n CVIF n CV n CVIF CV n CVIF n 

23.07.2012 181.6 ± 16.1 24   347.9 ± 28.9 24  256.3 ± 25.2  24   

28.08.2012 347.0 ± 36.9 24          

17.09.2012  24      465.5 ± 44.4 23   

05.10.2012 284.8 ± 35.2 24          

06.11.2012 398.9 ± 26.8 21          

04.12.2012 259.1 ± 30.2 17 305.2 2        

10.01.2013 127.1 ± 15.4 15 331.9 ± 15.2 23 180.5 ± 15.3 24  226.1 ± 18.2 16   

04.02.2013 177.3 ± 17.6 24 271.3 ± 22.1 24   202.9 ± 17.5 142.5 ± 9.7 24   

13.03.2013   238.7 ± 34.9 13        

09.04.2013            

07.05.2013          172.0 ± 12.2 24 

17.06.2013 277.7 ± 36.7 23          

23.07.2013 282.3 ± 34.7 21          
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Table A 12 Nitrogen content (µg indv.-1) of Calanus glacialis copepodite stages V (CV) and adult females (CVIF) in Billefjorden, Kongsfjorden and 
Rijpfjorden from July 2012 to July 2013 (mean ± SE and number of replicates (n)). 

 

 

 Billefjorden Kongsfjorden Rijpfjorden 

 CV n CVIF n CV n CVIF CV n CVIF n 

23.07.2012 28.6 ± 1.4 24   44.5 ± 2.5 24  34.6 ± 1.9 24   

28.08.2012 39.9 ± 3.2 24          

17.09.2012  24      48.7 ± 4.3 23   

05.10.2012 38.1 ± 3.4 24          

06.11.2012 49.7 ± 4.7 21          

04.12.2012 31.9 ± 3.3 17 38.5 2        

10.01.2013 17.9 ± 2.0 15 44.2 ± 1.7 23 23.1 ± 1.6 24  28.2 ± 2.0 16   

04.02.2013 24.7 ± 1.9 24 37.9 ± 2.6 24   26.9 ± 2.1 21.0 ± 1.1 24   

13.03.2013   41.5 ± 5.5 13        

09.04.2013            

07.05.2013          42.1 ± 2.6 24 

17.06.2013 34.5 ± 3.6 23          

23.07.2013 34.4 ± 3.1 21          
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