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Introduction

The interpretation and the validity of the results from linear regression rely on strong

modeling assumptions (e.g. linearity of the conditional mean of Y given X1, ...,Xk) which

are known not to be satisfied in many cases. In order to overcome the problems in the

interpretation of regression results Scharpenberg (2012) and Brannath and Scharpenberg

(2014) introduced a new, population-based and generally non-linear measure of associ-

ation called mean impact. The mean impact of an independent variable X on a target

variable Y is defined as the maximum possible change in the mean of Y , when changing

the density of X (in the population) in a suitably standardized way. Based on the mean

impact further parameters, one of which is a non-linear measure for determination, were

defined. There is also a natural extension to the case of multiple independent variables

X1, ...,Xk, where we are interested in quantifying the association between Y and X1

corrected for possible associations driven by X2, ...,Xk (corresponding to multiple re-

gression). However, Scharpenberg (2012) and Brannath and Scharpenberg (2014) point

out that a restriction of the possible distributional disturbances is needed when esti-

mating the mean impact in order to avoid overfitting problems. Therefore, they restrict

themselves to functions linear in X. Doing so, they obtain conservative estimates for the

mean impact and build conservative confidence intervals on their basis. Additionally, it

is shown that this procedure leads to a new interpretation of linear regression coefficients

under mean model miss specification.

The restriction to linear distributional disturbances seems very strict and the result-

ing estimates are often very conservative. The goal of this thesis is to move from linear

distributional disturbances to non-linear ones. Doing so we expect to obtain less conser-

vative estimates of the mean impact. Estimates as well as confidence intervals for the

mean impact based on different non-linear regression techniques will be derived and their

(asymptotical) behavior will be investigated in the course of this thesis. We will do this

for the single independent variable case, as well as for the case of multiple independent

variables.

The thesis is organized as follows: In the first section we present the theoretical founda-

tions of the mean impact analysis. The main results of Scharpenberg (2012), including

the theory for the (partial) linear mean impact (which is the mean impact where we

restrict the set of distributional disturbances to linear functions), are presented as well

as major improvements of the asymptotic normality results for the signed (partial) linear

mean impact. Furthermore, the common mean impact of several variables X1, ..,Xk on



2

a target variable Y is defined. Again restriction to linear disturbances is made resulting

in the linear common mean impact. Also presented is the partial common mean im-

pact which serves to quantify the common influence of a set of variables X1, ..,Xk on a

target variable Y which goes beyond the possible influence of a second set of variables

Q1, ..., Ql. Again a restriction to linear functions is made. In a further step second order

accurate bootstrap intervals are derived for the newly defined parameters. Furthermore,

an alternative approach to the quantification of the influence of X1 which goes beyond

the possible influence of other covariates X2, ...,Xk is also introduced. In this approach

this influence is defined as the difference of the common mean impact of all variables

X1, ...,Xk and the common mean impact of X2, ...,Xk . This difference can then be seen

as the excess of dependence when adding X1 to the set of covariates considered.

The second section deals with the relaxation of the restriction to linear functions in

the single covariate case. We derive conservative estimates of the mean impact based

on non-linear regression techniques like polynomial regression and kernel smoothers.

Higher order local regression is also considered. Confidence intervals based on asymptotic

normality results as well as bootstrap confidence intervals, for the mean impact based

on non-linear regression techniques are derived.

In Section 3 we define partial mean impacts based on non-linear regression techniques,

which allows us to quantify the influence of a single covariate X1 on Y which goes beyond

the possible influence of other covariates X2, ...,Xk in a more flexible way than in the

linear partial mean impact setup. The non-linear regression techniques used include

again polynomial regression and kernel smoothing. We extend the alternative approach

to the quantification of partial influences of Section 2 to non-linear regression techniques.

In the last Section we present results from a simulation study in which we consider the

coverage probability of the confidence intervals derived in this thesis. We also investigate

the probability of exclusion of zero (i.e. the power) in cases where the mean impact is not

equal to zero. The results of the non-linear mean impact analyses are compared to the

linear mean impact analysis in order to evaluate the benefit (or the possible drawback)

when moving from linear to non-linear impact analysis.

In the appendix a brief overview of the regression techniques and the bootstrap tech-

niques which are used in this thesis as well as proofs which are left out in the course of

the thesis are given.
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1. Theoretical foundations - Impact analysis

In this section the main results of the impact analysis derived in Scharpenberg (2012)

are given.

In classical regression analysis one tries to describe the dependency of a target vari-

able Y from independent variables X1, ...,Xk (which we will call covariates in the se-

quel) by a probabilistic model. Since one usually interprets the results of regression

analysis on an individual basis the regression model describes the distribution of Y of

an individual in dependence on its covariate values. Interpreting the results in this

individual-based manner implies that they depend only on the conditional distribution

of Y given X1, ...,Xk and are independent of the marginal distribution of the covariates

in the underlying population. Assumptions like linearity of the conditional mean of Y

given X1, ...,Xk in the covariates or that no other covariates have an influence, which

justify the individual-based way of interpretation do not generally hold. This means

that the results of regression analysis may often depend on the marginal distribution of

the covariates which can make the individual-based approach misleading.

In order to avoid this type of misinterpretation, Scharpenberg (2012) and Brannath

and Scharpenberg (2014) introduce an approach in which one looks at changes in the

distribution of the target variable across the population when the marginal distribution

of the covariates is perturbed. The dependence of the results on the specific population

and the way the population is perturbed are thereby acknowledged.

Scharpenberg (2012) first investigates the scenario of one covariate whose influence on

the target variable is described. Later this approach is generalized to the case of several

observed covariates where it is aimed to investigate the influence of one covariate on the

target variable which goes beyond the possible influence of the other covariates. In this

thesis we will explain the main idea in the context of the special case of one covariate.

The results derived in Scharpenberg (2012) are only given for the general case, where the

special case is carried along as an example since large parts of this thesis are constructed

for this special case.

1.1. Mathematical presentation

As mentioned before, in order to introduce the idea of the new approach, we take a look

at the influence of a single real valued covariate X onto a real valued target variable Y ,

where we assume that Y,X ∈ L2
P and the distribution of (X,Y ) has a density on R2

with respect to the Lebesgue-measure.

In contrast to classical regression analysis we are not directly looking at the influence
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of a covariate X on the conditional mean E(Y |X) of a target variable Y . We investigate

how E(Y ) the marginal population mean of Y changes when the marginal distribution

of X in the population is changed, instead. Let f and h be the marginal densities of

X and Y . Let h(Y |X) be the conditional density of Y given X. Since X and Y are

independent if and only if h(y|x) = h(y) for all x we obtain in the case of independence

of X and Y that

Ef (Y ) =

∫∫
h(y|x)f(x)y dxdy X and Y

=
independent

∫∫
h(y)f(x)y dxdy

=

∫
h(y)y dy.

The last expression is independent of the marginal density f of X. Hence, the mean of

Y does not depend on the density f of X which means that the question “Has X got an

influence on Y ?” leads to the question “Does the mean of Y change when the density

of X is changed (in the population)?”. These considerations suggest that the change of

the mean of Y when changing the density of X in the population is a good indicator for

the influence of X on Y . Define

Efi(Y ) =

∫∫
yh(y|x)fi(x) dx dy

where fi, i = 1, 2 are densities of X. Then the change of the mean of Y when the density

of X is changed from f1 to f2 can be written as

∆E(Y ) = Ef2(Y )− Ef1(Y ) =

∫∫
yh(y|x){f2(x)− f1(x)} dxdy

=

∫∫
yh(y|x)δ(x)f1(x) dxdy = E(Y δ(x))

where δ(x) = f2(x)−f1(x)
f1(x)

= f2(x)
f1(x)

− 1. Such δ exists, according to the Radon-Nikodym

theorem, if Pf2 is absolutely continuous with respect to Pf1 , where Pfi is the measure

with Lebesgue-density fi, i = 1, 2 (cf. Klenke, 2008, p159).

The key quantity of the new approach, which is called “Mean Impact Analysis (MImA)”

in Scharpenberg (2012), is the mean impact of a covariate X on Y

ιY (X) = sup
δ∈L2

P
(R):EP{δ(X)}=0,EP{δ2(X)}=1

EP{Y δ(X)}.

It “describes the maximum change in the mean of Y when the density f of X (in

the population) is changed to (1 + δ(x))f(x) in a way that δ is L2
P(R)-integrable with
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norm equal to 1” (Scharpenberg, 2012, p. 20). One can see with the help of Cauchy´s

inequality, that the mean impact is bounded by the standard deviation
√
V arP(Y ) of Y .

Note that the name mean impact might be misleading, since we do not describe causal

influences. The mean impact is rather a measure of association.

1.2. Partial mean impact

In all considerations of this section we assume Y,X1, ...,Xk ∈ L2
P. One can generalize

the concept of the mean impact analysis to the case were we consider more than one

covariate in order to investigate the influence of X1 on the target variable Y which goes

beyond the influence of the other covariates X2, ...,Xk. Similar to the univariate case

perturbations of the distribution of the covariates in the population are considered and

one has a look at the change of the mean of Y . One only regards perturbations that

leave the means of X2, ...,Xk unchanged in order to account for the potential influence

of other covariates than X1.

1.2.1. General approach

The k regarded covariates are denoted by X1, ...,Xk and X = (X1, ...,Xk) is the vector

of the covariates. Given this set of covariates one is interested in the question if a

covariate e.g. X1 has influence on Y beyond the (potential) influence of X2, ...,Xk.

This question is answered by estimating the regression coefficient for X1 of the multiple

regression model in the theory of linear models. The regression coefficient shows how the

conditional expectation EP(Y |X) changes, when X1 is changed and the other covariates

are fixed.

In the new, population-based approach Scharpenberg (2012) defines another quantity

to characterize the influence of X1 on Y going beyond the influence of X2, ...,Xk . This

quantity is called the partial mean impact of X1 on Y and is defined as

ιX1(Y |X2, ...,Xk) = sup
δ∈L2

P
(Rk):δ(X)∈H⊥

2 ,EP{δ2(X)}=1

EP {Y δ(X)} , (1.1)

where H2 = span(1,X2,X3, ...,Xk) ⊆ L2
P.

“The partial mean impact describes the maximum change in the mean of Y when

the density f of X1, ...,Xk (in the population) is changed to (1 + δ)f in a way that

δ is L2
P(R

k)-integrable with norm equal to one and the means of the other covariates

X2, ...,Xk are not changed” (Scharpenberg, 2012, p. 54).
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With PH⊥
2

being the orthogonal projection onto H⊥
2 we obtain for δ(X) ∈ H⊥

2 with

EP(δ
2(X)) = 1 that:

EP(Y δ(X)) = EP(Zδ(X))
Cauchy
≤

√
EP(Z2)

√
EP(δ2(X)) =

√
V arP(Z)

where Z = PH⊥
2
Y and the last equation follows from EP(Z) = EP(Z · 1) = 0. In the

single-covariate case we have H2 = span(1) and PH⊥
2
X = X − EP(X).

The following theorem implies that the supremum in (1.1) is always attained. There-

fore, we could write max instead of sup in (1.1).

Theorem 1.1. Let Y ∈ L2
P. The partial mean impact ιX1(Y |X2, ...,Xk) of X1 on Y is

equal to

(1) the upper bound
√
V arP(Z) if and only if Y = g(X) for a measurable function

g : Rk → R,

(2)
√
V arP{PH⊥

2
g(X)} if Y = g(X)+ ǫ where ǫ is a square integrable random variable

with mean EP(ǫ) = 0 which is independent of X,

(3) 0 if and only if EP(Y |X) ∈ H2,

(4) if ιX1(Y |X2, ...,Xk) 6= 0, then ιX1(Y |X2, ...,Xk) = E{Y δ̂(X)} where

δ̂(X) = PH⊥
2
EP(Y |X)/

√
V arP{PH⊥

2
EP(Y |X)}.

In the singe-covariate case this theorem simplifies in the following way.

Theorem 1.2. Let Y ∈ L2
P. The mean impact ιX(Y ) of X on Y is equal to

(1) the upper bound
√
V arP(Y ) if and only if Y = g(X) for a measurable function

g : R → R, i.e., Y depends on X in a deterministic way.

(2)
√
V arP{g(X)} if Y = g(X) + ǫ where ǫ is a square integrable random variable

with mean EP(ǫ) = 0 which is independent of X.

(3) 0 if and only if EP(Y |X) = EP(Y ) almost surely.

(4) if ιX(Y ) 6= 0, then ιX(Y ) = EP{Y δ̂(X)} where

δ̂(X) = [EP(Y |X) − EP(Y )] /
√
V arP{EP(Y |X)}.

and the sign of sιX(Y ) is the sign of Cor{X,EP(Y |X)}.
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Assume that the covariates have Lebesgue-density f . In the definition of the partial

mean impact (1.1), 1+ δ is the factor which we have to multiply to the density f of X in

the population to obtain the “new” density to which f is changed. By maximizing over

all δ ∈ L2
P(R

k) it is possible that the resulting density f(1+δ) becomes negative at some

points. Since a density has to be non-negative one should only regard those δ ∈ L2
P(R

k),

for which f(X)(1 + δ(X)) ≥ 0. In Scharpenberg (2012) not exaclty this result is shown,

but it is shown that there is a sequence δn of measurable functions that are asymptotically

orthogonal to H2 and for which EP(Y δn(X))/
√
EP(δ2n(X)) →

n→∞
ιX1(Y |X2, ...,Xk).

Theorem 1.3. There is a sequence δn(X) with (1+δn(X))f(X) ≥ 0 and EP(δn(X)) = 0

for all n, EP(Xjδn(X))/
√
EP(δ2n(X)) →

n→∞
0 for all j = 2, ..., k and

EP(Y δn(X))/
√
EP(δ2n(X)) →

n→∞
ιX1(Y |X2, ...,Xk).

In the single-covariate case the desired stronger version of this theorem holds. This

means that we have:

Theorem 1.4. We have that

ιX(Y ) = sup
δ∈L2

P
(R):EP(δ(X))=0,f(X)(1+δ(X))≥0

EP(Y δ(X))/
√
EP(δ2(X)).

From the definition of the partial mean impact (1.1) follows that it only accounts for

linear influences of the covariates X2, ...,Xk . Due to this, it is possible that the partial

mean impact is positive although Y does not depend on X1. The following expample

illustrates this.

Example 1.5. Let Y = θ0 + θ1X2 + θ2X
2
2 + ǫ where X2 ∼ N(0, 1) and ǫ ∼ N(0, 1) are

stochastically independent and θl 6= 0 for l = 0, 1, 2. Then we have according to Theorem

1.1 with H2 = span(1,X2)

ιX1(Y |X2) =
√
V arP{PH⊥

2
(θ0 + θ1X2 + θ2X2

2 )} =
√
V arP{PH⊥

2
(θ2X2

2 )}

=
√
V arP{(θ2{X2

2 − EP(X2
2 )})}

= |θ2|
√
V arP(X

2
2 ) > 0.

Hence, ιX1(Y |X2) 6= 0 although X1 and Y are independent.

One possible way to account for non linear influences of the covariates is to add X2
j

to the set of covariates for all j = 2, ..., k (this procedure accounts for quadratic influ-

ences). To account for the influences of all measurable transformations of the covariates
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X2, ...,Xk one would have to demand EP(δ(X)g(Xj)) = 0 for all measurable g and all

j = 2, ..., k in the definition of the partial mean impact. This approach leads to a com-

plex statistical problem and is not followed up by Scharpenberg (2012).

It can be shown that the perturbation δ leading to the impact is almost surely uniquely

determined.

Theorem 1.6. If ιX1(Y |X2, ...,Xk) > 0 then the perturbation δ ∈ L2
P(R

k) for which

EP(δ(X)) = 0, EP(δ
2(X)) = 1 and EP(Y δ(X)) = ιX1(Y |X2, ...,Xk) is P almost surely

uniquely determined.

Note, that the partial mean impact (as well as the mean impact in the single-covariate

case) is by definition always non-negative. Hence, the partial mean impact does not give

any hint in which direction the change in the distribution of X changes the mean of Y .

In order to be able to indicate the direction of the change the so called signed partial

mean impact is defined by

sιX1(Y |X2, ...,Xk) = sign(EP{X1δ0(X)})ιX1(Y |X2, ...,Xk)

where δ0 ∈ L2
P(R

k) is such that δ0(X) ∈ H⊥
2 , EP

{
δ20(X)

}
= 1 and

ιX1(Y |X2, ...,Xk) = EP{Y δ0(X)}.

It is possible that the signed partial mean impact equals zero, although the partial mean

impact is non-negative which happens when EP(X1δ0(X)) = 0. Since this hints to a

non-linear relationship between Y andX1 one could consider a non-linear transformation

T (X1) of X1 and regard the signed partial mean impact for T (X1) in order to describe

the influence of X1 in a better way. Analogous to the signed partial mean impact, the

signed mean impact is given by

sιX(Y ) = sign (EP{Xδ0(X)}) ιX(Y )

in the single covariate case. Note that (EP{X1δ0(X)}) indicates by which amount the

mean of X1 is changed with the disturbance δ0(X) that maximizes the change of the

mean of Y .

Another quantity which is based on the partial mean impact is the partial mean slope.
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It is given by

θX1(Y |X2, ...,Xk) = ιX1(Y |X2, ...,Xk)/EP{X1δ0(X)}

if ιX1(Y |X2, ...,Xk) > 0 and EP(X1δ0(X)) 6= 0, where δ0 ∈ L2
P(R

k), δ0(X) ∈ H⊥
2 ,

EP(δ0(X)2) = 1 and ιX1(Y |X2, ...,Xk) = EP(Y δ0(X)). Note that for ιX1(Y |X2, ...,Xk) >

0 with δ0 the partial mean slope is also uniquely determined. If ιX1(Y |X2, ...,Xk) = 0

it is defined to be zero. It gives the amount the mean of Y changes if the mean of X1 is

changed (without changing the mean of the other covariates) by one unit.

Theorem 1.7. If Y = θ0+
∑k

j=1 θjXj+ ǫ where (X1, ...,Xk) and ǫ are independent and

EP(ǫ) = 0 then the partial mean slope is θX1(Y |X2, ...,Xk) = θ1 and the partial mean

impact is ιX1(Y |X2, ...,Xk) = |θ1|
√
EP{(PH⊥

2
X1)2}. The signed partial mean impact is

sιX1(Y |X2, ...,Xk) = θ1
√
EP{(PH⊥

2
X1)2}.

In the single-covariate case this theorem reduces to:

Theorem 1.8. If Y = θ0+ θ1X+ ǫ where X and ǫ are independent and EP(ǫ) = 0 then

the mean slope is θX(Y ) = θ1 and the mean impact is ιX(Y ) = |θ1|
√
V arP(X). The

signed mean impact is sιX(Y ) = θ1
√
V arP(X).

Hence, in the case of an underlying linear model the new parameters, (partial) mean

slope and signed (partial) mean impact are closely related to the coefficients of this

model. This relationship between impact analysis and linear regression in the case of the

regression model to be true is faced again when considering the asymptotic distribution

of the estimators which will be derived later. In the single covariate case we define,

additionally to the new parameters above, the population coefficient for determination,

which is given by

R2
P(X) =

ι2X(Y )

V arP(Y )
. (1.2)

Note that the population coefficient for determination is equal to Pearson´s correla-

tion ratio given in Doksum and Samarov (1995). A partial population coefficient for

determination will be introduced in Section 1.9.4.

1.2.2. Restricted and linear partial mean impact

There may be reasons to restrict the set of perturbations δ of the density f(X) in

definition (1.1) of the partial mean impact of X1 on Y . We will see later that estimation

and testing will require restrictions, otherwise we obtain meaningless results due to the
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problem of overfitting. This leads to the following general definition of the restricted

partial mean impact. Let R be a closed subset of L2
P(R

k). We define for R the restricted

partial mean impact as

ιRX1
(Y |X2, ...,Xk) = sup

δ∈R:δ(X)∈H⊥
2 ,EP{δ2(X)}=1

EP{Y δ(X)}

where H2 = span(1,X2,X3, ...,Xk). Restriction to a linear subspace R leads again

always to a non-negative number because with δ also −δ belongs to R.

When regarding the special set of perturbations RX = {h(X) = a0 +
∑k

j=1 ajXj :

ai ∈ R} ⊆ L2
P(R

k) one obtains the so called linear partial mean impact

ιlinX1
(Y |X2, ...,Xk) = ιRX

X1
(Y |X2, ...,Xk).

It “describes the maximum change in the mean of Y when the density f of X1, ...,Xk

(in the population) is to (1 + δ)f a way that δ is linear in (1,X1, ...,Xk), L
2
P(R

k)-

integrable with norm equal to one and the means of the other covariates X2, ...,Xk

are not changed” (cf. Scharpenberg, 2012, p. 61). Since the partial mean impact is

defined as the supremum over all perturbations of the density of the covariates, every

restriction of the set of perturbation leads to a smaller (restricted) impact than the

unrestricted impact (1.1). Consequently, ιlinX1
(Y |X2, ...,Xk) is a lower bound for the

unrestricted partial impact ιX1(Y |X2, ...,Xk) and consistent estimates and one-sided

tests for ιlinX1
(Y |X2, ...,Xk) with control of the type I error rate will be conservative with

regard to the unrestricted partial impact ιX1(Y |X2, ...,Xk).

Proposition 1.9. We have ιlinX1
(Y |X2, ...,Xk) =

∣∣∣∣∣EP

(
Y

P
H⊥

2
X1

√

EP((P
H⊥

2
X1)2)

)∣∣∣∣∣ .

Similar to the unrestricted partial mean impact, a signed version for the restricted

partial mean impact can be defined

sιRX1
(Y |X2, ...,Xk) = sign(EP{X1δ0(X)})ιRX1

(Y |X2, ...,Xk)

where δ0 ∈ R with δ0(X) ∈ H2 and EP(δ
2
0(X)) = 1 is the unique disturbance with

EP(Y δ0(X)) = ιRX1
(Y |X2, ...,Xk).

Lemma 1.10. We have

sιlinX1
(Y |X2, ...,Xk) = EP


Y

PH⊥
2
X1√

EP((PH⊥
2
X1)2)


 .
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In the previous section we mentioned that it can be desirable, in order to account for

the influence of all measurable transformations of the covariates X2, ...,Xk, to demand

that

EP(δ(X)g(Xj)) = 0

for all measurable functions g and all j = 2, ..., k in the definition of the partial mean

impact. For the δ from the linear mean impact we can show the following result.

Proposition 1.11. If EP(X1|X2, ...,Xk) = ξ1 +
∑k

j=2 ξjXj for suitable ξj ∈ R and

δ(X) =
P
H⊥

2
X1

√

EP((P
H⊥

2
X1)2)

then we have

EP{δ(X)g(Xj)} = 0

for all measurable functions g and all j = 2, ..., k.

Hence, when the conditional mean of X1 given the other covariates is a linear function

of those covariates, the (signed) linear partial mean impact accounts for the influence of

all measurable transformations of X2, ...,Xk.

The linear partial mean slope is defined as

θlinX1
(Y |X2, ...,Xk) = ιlinX1

(Y |X2, ...,Xk)/EP(δ0(X)X1)

where δ0 ∈ L2
P(R

k) with δ0(X) ∈ H⊥
2 , EP(δ

2
0(X)) = 1 and

ιlinX1
(Y |X2, ...,Xk) = EP(δ0(X)Y ).

Proposition 1.12. θlinX1
(Y |X2, ...,Xk) equals the coefficient for X1 in the orthogonal

projection of Y onto H = span(1,X1,X2, ...,Xk), i.e. when PHY = θ0+
∑k

j=1 θjXj then

θlinX1
(Y |X2, ...,Xk) = θ1.

Hence, in the case of a linear model EP(Y |X1, ...,Xk) = θ0 +
∑k

j=1 θjXj the linear

partial mean slope is the regression coefficient θ1.

By Theorem 1.1 we have δ0(X) = PH⊥
2
X1/

√
V arPPH⊥

2
X1. Together with the fact that

the linear partial mean impact ιlinX1
(Y |X2, ...,Xk) is a lower bound for the unrestricted

partial mean impact ιX1(Y |X2, ...,Xk) we obtain that |θlinX1
(Y |X2, ...,Xk)| is a lower

bound for the absolute value of the unrestricted partial mean impact |θX1(Y |X2, ...,Xk)|.
Therefore, tests for the hypothesis H0 : |θlinX1

(Y |X2, ...,Xk)| ≤ v for v > 0 with control
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of the type I error rate will be conservative for H ′
0 : |θX1(Y |X2, ...,Xk)| ≤ v.

In the single-covariate case we can write the linear versions of the parameters as

ιlinX (Y ) =

∣∣∣∣∣EP

(
Y
X − EP(X)√
V arP(X)

)∣∣∣∣∣ , sι
lin
X (Y ) = EP

(
Y
X − EP(X)√
V arP(X)

)

and

θlinX (Y ) = EP

(
Y
X − EP(X)

V arP(X)

)
.

1.3. Examples

In this section we give the values of ιX(Y ), sιX(Y ) and θX(Y ) in the case where

Y = g(X) + ǫ for a square integrable random variable ǫ with mean E(ǫ) = 0 which

is independent of X. Obviously ιX(Y ) and θX(Y ) depend on g(X) and the distribution

of X, L(X). In the following we consider a specific g(X) and L(X) and compute the

resulting ιX(Y ) and θX(Y ). The example presented here originates from Scharpenberg

(2012), more examples can be found there. Let L(X) = N(µ, σ2) and g(X) = aeX for

a 6= 0. Then we have

ιX(Y ) = |a|
√
e2(µ+σ2) − e2(µ+

σ2

2
) = |a|eµeσ2/2

√
eσ2 − 1.

Furthermore, it can be shown that

θX(Y ) = aeµeσ
2/2(eσ

2 − 1)/σ2

and

sιX(Y ) = sign(EP{Xδ(X)})ιX (Y ) = aeµeσ
2/2
√
eσ2 − 1.

For the linear versions of the parameters we obtain

sιlinX (Y ) = aσeµ+
σ2

2 ,

which implies

ιlinX (Y ) = |sιlinX (Y )| = |a|σeµ+σ2

2

and

θlinX (Y ) = |a|eµ+σ2

2 .
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The following table presents values of ιX(Y ), ιlinX (Y ), sιX(Y ), sιlinX (Y ), θX(Y ) and

θlinX (Y ) for a = 1 and different µ and σ2:

µ σ2 ιX(Y ) ιlinX (Y ) sιX(Y ) sιlinX (Y ) θX(Y ) θlinX (Y )

0 1 2.161 1.649 2.161 1.649 2.833 1.649
-1 1 0.795 0.607 0.795 0.607 1.042 0.607
1 1 5.875 4.482 5.875 4.482 7.701 4.482
1 0.25 1.642 1.540 1.642 1.540 3.499 3.080

Table 1: Parameter values which are used in Figure 1

We can see that the absolute mean slope as well as the linear absolute mean slope

are less dependent on the variance σ2 than their mean impact counterparts. Figure 1

presents the graph of g(X) = eX , the densities of different normal distributions and a

straight line with slope θX(Y ) which crosses the point

(EP(X), g(EP(X))).

Figure 1: Behavior of the absolute mean slope for g(X) = eX and different normal
distributions for X.

Figure 1 suggests, that for σ2 → 0 the mean slope θX(Y ) will converge to the derivative
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of g(X) in the point x = µ = EP(X) which indeed is the case.

1.4. Estimation of the partial mean impact

We now deal with the estimation of the partial mean impact and the other new pa-

rameters. To this end we consider observations (Yi,Xi1, ...,Xik), i = 1, ..., n. The most

intuitive way of estimating ιX1(Y |X2, ...,Xk) is using the estimator

ι̂X1(Y |X2, ...,Xk) = sup
δ∈L2

P
(Rk):δ(x)⊥Xi i=2,...,n, 1

n
‖δ(x)‖2

Rn
=1,δ(x)⊥1

1

n
YT δ(X),

where ‖a‖Rn =
√∑n

i=1 a
2
i for a ∈ Rn is the euclidean norm on Rn, Xj = (x1j , ..., xnj)

T ,

x = (X1, ...,Xk), δ(x) = (δ(X11, ...,X1k), ..., δ(Xn1 , ...,Xnk))
T , Y = (y1, ..., yn)

T and

1=(1, ..., 1)T . Here⊥means orthogonality in Rn, hence δ(x)⊥Xi ⇔
∑n

j=1(δ(x))j(Xi)j =

0. As we will show next this way of estimating the impact leads to overfitting. With

M2 = span(1,X2, ...Xk) the linear subspace of Rn spanned by the observation vectors

X2, ...,Xk and the assumption that the observation vector Y does not belong to M2 we

obtain for

δ(x) =
Ẑ

1√
n
‖Ẑ‖Rn

where PM⊥
2
Y = Ẑ = (Ẑ1, ..., Ẑn) that δ ∈ L2

P(R
k). Furthermore,

1

n
‖δ(x)‖2Rn =

1
n‖Ẑ‖2Rn
1
n‖Ẑ‖2Rn

= 1

δ(x) =
Ẑ

1√
n
‖Ẑ‖Rn

∈ M⊥
2

⇒ δ(x)⊥1, δ(x)⊥Xi i = 2, ..., n.

Therefore,

ι̂X1(Y |X2, ...,Xk) ≥
1

n
YT Ẑ

1√
n
‖Ẑ‖Rn

=
1√
n
‖Ẑ‖Rn .

Since ‖Ẑ‖Rn > 0 for Y /∈ M2, a positive impact of X1 on Y could always be found

by using the estimator ι̂X1(Y |X2, ...,Xk), even when ιX1(Y |X2, ...,Xk) = 0. Therefore,

using this estimator leads to meaningless results.
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One can avoid the problem of overfitting by restricting the set of functions for δ and

estimate restricted partial mean impacts. We consider the special case of linear functions

and use the estimator

ι̂linX1
(Y |X2, ...,Xk) = sup

δ(x)=a01+a1X1+...+akXk,δ(x)∈M⊥
2 ,

1
n
‖δ(x)‖2

Rn
=1

1

n
YT δ(x).

One can show that, with PM⊥
2
X1 = Û = (Û1, ..., Ûn), the estimator for the linear partial

mean impact can be written as

ι̂linX1
(Y |X2, ...,Xk) =

∣∣∣∣∣∣
1

n
YT Û√

1
n‖Û‖2

Rn

∣∣∣∣∣∣

= |θ̂1|
1√
n
‖Û‖Rn

where θ̂1 is the least squares estimator of the coefficient θ1 in the multivariate linear

regression model. The second equation is valid due to the fact that the least squares

estimator of the regression coefficient θ1 can be estimated by the least squares estimator

of a simple linear regression model with Y as dependent and the residual vector PM⊥
2
X1

as independent variable.

Analogously to this the signed linear partial mean impact can be estimated by

ŝιlinX1
(Y |X2, ...,Xk) =

1

n
YT Û√

1
n‖Û‖2

Rn

= θ̂1
1√
n
‖Û‖Rn .

Hence, estimating the linear signed impact of X1 on Y leads to a scaled version of the

coefficient from a multiple linear regression. For the estimators of the parameters from

the single-covariate setup we have

ι̂linX (Y ) =

∣∣∣∣∣∣
1

n

n∑

i=1

Yi(Xi − X̄)√
1
n

∑n
i=1(Xi − X̄)2

∣∣∣∣∣∣
= |θ̂1|

√√√√ 1

n

n∑

i=1

(Xi − X̄)2,

ŝιlinX (Y ) =
1

n

n∑

i=1

Yi(Xi − X̄)√
1
n

∑n
i=1(Xi − X̄)2

= θ̂1

√√√√ 1

n

n∑

i=1

(Xi − X̄)2,
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and

θ̂linX (Y ) =

n∑

i=1

(Xi − X̄)Yi/

n∑

i=1

(Xi − X̄)2.

Here θ̂1 is the regression coefficient from the univariate regression model.

1.4.1. Asymptotic normality and hypothesis testing

Let (Yi,Xi1, ...,Xik), i = 1, ..., n, be i.i.d. observations with the same multivariate distri-

bution as the real random variables Y,X1, ...,Xk ∈ L2
P. In order to simplify the notation

we write Y = (Y1, ..., Yn) and Xj = (X1j , ...,Xnj) for j = 1, ..., k. In application of the

theory derived before, one surely will be interested in testing for v ∈ R the one-sided

hypothesis

H0 : sι
lin
X1

(Y |X2, ...,Xk) ≤ v vs. H1 : sι
lin
X1

(Y |X2, ...,Xk) > v (1.3)

or for v ≥ 0 the hypothesis

H0 : ι
lin
X1

(Y |X2, ...,Xk) ≤ v vs. H1 : ι
lin
X1

(Y |X2, ...,Xk) > v. (1.4)

Furthermore, confidence intervals for the parameters are of great interest. Since we have

ιlinX1
(Y |X2, ...,Xk) = |sιlinX1

(Y |X2, ...,Xk)| the one-sided null hypothesis (1.4) coincides

with the null hypothesis H0 : −v ≤ sιlinX1
(Y |X2, ...,Xk) ≤ v. Hence, we start constructing

a test for (1.3) and build from this a test for (1.4). We know that a level α test for

H0 : ιlinX1
(Y |X2, ...,Xk) ≤ v is a conservative level α test for H0 : ιX1(Y |X2, ...,Xk) ≤ v.

We are also interested in testing for v ∈ R the one-sided hypothesis

H0 : θ
lin
X1

(Y |X2, ...,Xk) ≤ v vs. H1 : θ
lin
X1

(Y |X2, ...,Xk) > v. (1.5)

Asymptotic normality

Remember the subspace

H2 = span(1,X2, ...,Xk) = {β1 +
k∑

j=2

Xjβj : β = (β1, ..., βk)
T ∈ Rk}

and its orthogonal complement H1 = H⊥
2 in L2

P. We consider the decomposition of X1

X1 = U + X̃1 with X̃1 = ξ1 +

k∑

j=2

Xjξj ∈ H2 and U ∈ H1.
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Hence, X̃1 is the orthogonal projection of X1 onto H2. The same decomposition can be

made for Xi1, namely Xi1 = Ui + X̃i1 where X̃i1 = ξ1 +
∑k

j=2Xijξj ∈ H2. To establish

asymptotic results we need the assumption

EP{U2Y 2} <∞ (1.6)

which implies that the random variable UY has finite variance. This assumption follows,

for instance, if Y,X1, ...,Xk ∈ L2
P, Y = g(X1, ...,Xk) + ǫ where ǫ is a random variable

independent of X1, ...,Xk with ǫ ∈ L2
P and g(X1, ...,Xk) is bounded or g(X1, ...,Xk) and

U are stochastically independent. (1.6) also follows if

EP(Y
4) <∞ and EP(X

4
j ) <∞ for all j = 1, . . . , k.

A similar decomposition of X1 as vector in Rn can be considered. With the ran-

dom matrix Dn = (1,X2, ...,Xk) where 1 = (1, ..., 1)T ∈ Rn and the assumption

that rank(Dn) = k we can define ξ̂ = (DT
nDn)

−1DT
nX1, the least squares estimate

of ξ = (ξ1, . . . , ξk). Obviously we have

M2 = span(Dn) = {Dnβ : β ∈ Rk} ⊆ Rn.

Therefore, the definition X̂i1 = (Dnξ̂)i = (ξ̂1 +
∑k

j=2Xij ξ̂j)
n
i=1 leads to the conclusion

X̂i1 = (PM2X1)i which implies Ûi = (Û)i = Xi1 − X̂i1.

Lemma 1.13. We have ξ̂
p→ ξ.

Lemma 1.14. Let V1, V2, ... be an i.i.d. sequence of random variables in L2
P. Then, for

Ui and Ûi defined above the following statements are true.

(a)
∑n

i=1(Ui − Ûi)
2 =

∑n
i=1(X̃i1 − X̂i1)

2 is bounded in probability.

(b) If EP(Vi) = EP(ViXij) = 0 for j = 2, ..., k then

(1/
√
n)

n∑

i=1

(Ui − Ûi)Vi
p→ 0.

(c) If EP(|ViXij |) <∞ and EP(|ViXijXil|) <∞ for all 2 ≤ j, l ≤ k then

(1/n)

n∑

i=1

(Ui − Ûi)
2Vi

p→ 0.
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In the following let again Z = PH⊥
2
Y . In order to show the asymptotic normality of

the linear signed partial mean impact we first show a proposition.

Proposition 1.15. We have that

√
n

(
1

n

n∑

i=1

Û2
i − 1

n

n∑

i=1

U2
i

)
p→ 0.

Proof. We have

√
n

(
1

n

n∑

i=1

Û2
i − 1

n

n∑

i=1

U2
i

)
=

1√
n

n∑

i=1

(Ûi − Ui)
2

︸ ︷︷ ︸
(1)

+
2√
n

n∑

i=1

(Ûi − Ui)Ui

︸ ︷︷ ︸
(2)

,

where both (1) and (2) converge to 0 in probability by Lemma 1.14.

With the help of Proposition 1.15 we are able to show the asymptotic normality of

sιlinX1
(Y |X2, ...,Xk) stated in the following theorem (In Scharpenberg (2012) this result

was not shown).

Theorem 1.16. We have

√
n(ŝιlinX1

(Y |X2, ...,Xk)− sιlinX1
(Y |X2, ...,Xk))

L→ N

(
0,
ϕ

η2

)
,

where

ϕ =κ2 −
sιlinX1

(Y |X2, ...,Xk)

η

(
EP(U

3
i Zi)− sιlinX1

(Y |X2, ...,Xk)η
3
)

+

(
sιlinX1

(Y |X2, ...,Xk)

2η

)2

V arP(U
2
i ),

with η2 = EP(U
2) and κ2 = EP(UZ).

Proof. We have

√
n(ŝιlinX1

(Y |X2, ...,Xk)η̂ − sιlinX1
(Y |X2, ...,Xk)η̂)

=
√
n(ŝιlinX1

(Y |X2, ...,Xk)η̂ − sιlinX1
(Y |X2, ...,Xk)η)

−√
n(sιlinX1

(Y |X2, ...,Xk)η̂ − sιlinX1
(Y |X2, ...,Xk)η).
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We regard the random vector
(UiZi
U2
i

)
which has mean

EP

(
UiZi
U2
i

)
=

(
sιlinX1

(Y |X2, ...,Xk)η

η2

)

and covariance matrix

CovP

(
UiZi
U2
i

)
=

(
κ2 ρ

ρ γ2

)
= Σ,

where κ2 = V arP(UZ), γ
2 = V arP(U

2) and ρ = CovP(UiZi, U
2
i ) = EP(U

3
i Zi) −

EP(UiZi)EP(U
2
i ) = EP(U

3
i Zi)− sιlinX1

(Y |X2, ...,Xk)η
3.

By the strong law of large numbers ((cf. van der Vaart, 2000, p. 16)) we obtain

√
n

(
1

n

n∑

i=1

(
UiZi
U2
i

)
−
(
sιlinX1

(Y |X2, ...,Xk)η

η2

))
L→ N2

((
0

0

)
,Σ

)
. (1.10)

From Proposition 1.15 we know that

√
n

(
ŝιlinX1

(Y |X2, ...,Xk)η̂ − 1
n

∑n
i=1 UiZi

1
n

∑n
i=1 Û

2
i − 1

n

∑n
i=1 U

2
i

)
p→
(
0

0

)
. (1.11)

Additionally we have


1 0

0
sιlinX1

(Y |X2,...,Xk)

η+η̂


 p→


1 0

0
sιlinX1

(Y |X2,...,Xk)

2η


 =: A. (1.12)

Therefore, it follows, when adding (1.10) and (1.11), by (van der Vaart, 2000, p.11) that

√
n

(
1

n

n∑

i=1

(
ÛiZi
Û2
i

)
−
(
sιlinX1

(Y |X2, ...,Xk)η

η2

))
L→ N2

((
0

0

)
,Σ

)

and in conclusion by multiplying with (1.12)


1 0

0
sιlin
X1

(Y |X2,...,Xk)

η+η̂


√

n

(
1

n

n∑

i=1

(
ÛiZi
Û2
i

)
−
(
sιlinX1

(Y |X2, ...,Xk)η

η2

))

=
√
n

(
ŝιlinX1

(Y |X2, ...,Xk)η̂ − sιlinX1
(Y |X2, ...,Xk)η

sιlinX1
(Y |X2, ...,Xk)η̂ − sιlinX1

(Y |X2, ...,Xk)η

)
L→ N2

((
0

0

)
,Σ′
)
,
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where

Σ′ = AΣAT =




κ2
sιlinX1

(Y |X2,...,Xk)ρ

2η

sιlin
X1

(Y |X2,...,Xk)ρ

2η

(
sιlin
X1

(Y |X2,...,Xk)

2η

)2

γ2


 .

From this it follows by the Cramér-Wold Device and the properties of the normal dis-

tribution that

√
n(ŝιlinX1

(Y |X2, ...,Xk)η̂ − sιlinX1
(Y |X2, ...,Xk)η̂)

=
(
1 −1

)√
n

(
ŝιlinX1

(Y |X2, ...,Xk)η̂ − sιlinX1
(Y |X2, ...,Xk)η

sιlinX1
(Y |X2, ...,Xk)η̂ − sιlinX1

(Y |X2, ...,Xk)η

)

L→N

(
0,
(
1 −1

)
Σ′
(

1

−1

))
= N(0, ϕ),

and therefore

√
n(ŝιlinX1

(Y |X2, ...,Xk)− sιlinX1
(Y |X2, ...,Xk))

L→ N

(
0,
ϕ

η2

)
.

In order to estimate the asymptotic normal distribution of ŝιlinX1
(Y |X2, ...,Xk) we need

to estimate the variance ϕ/η2. The next theorem shows how ϕ/η2 can be consistently

estimated.

Theorem 1.17. We have that

ϕ̂/η̂2
p→ ϕ/η2,

with

ϕ̂ = κ̂2 − ŝιlinX1
(Y |X2, ...,Xk)

η̂
ρ̂+

(
ŝιlinX1

(Y |X2, ...,Xk)

2η̂

)2

γ̂2,

where ρ̂ = 1
n

∑n
i=1 Û

3
i Ẑi − ŝιlinX1

(Y |X2, ...,Xk)η̂
3, γ̂2 = 1

n

∑n
i=1(Û

2
i − 1

n

∑n
i=1 Û

2
i )

2, κ̂2 =
1
n

∑n
i=1{ÛiẐi − ŝιlinX1

(Y |X2, ...,Xk)η̂}2 and η̂2 = 1
n

∑n
i=1 Û

2
i .

Proof. From Scharpenberg (2012) we know that κ̂2, ŝιlinX1
(Y |X2, ...,Xk) and η̂ are consis-

tent estimators of κ2, sιlinX1
(Y |X2, ...,Xk) and η. This implies that we only have to show

the consistency of ρ̂ and γ̂2 for ρ and γ2. This follows directly from the assumptions

(e.g. existing means, i.i.d. random variables, ...) and the fact that ξ̂
p→ ξ.
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Note that in Scharpenberg (2012) it was only shown that

√
n{ŝιlinX1

(Y |X2, ...,Xk)η̂ − sιlinX1
(Y |X2, ...,Xk)η} L→ N(0, κ2)

where κ2 = V arP(UZ) and η̂2 = 1
n

∑n
j=1 Û

2
i

p→ η2 = EP(U
2). This result is less

satisfactory than Theorem 1.16 since it only allows the derivation of a confidence inter-

val for sιlinX1
(Y |X2, ...,Xk)η instead of sιlinX1

(Y |X2, ...,Xk). The asymptotic normality of

θ̂linX1
(Y |X2, ...,Xk) can also be shown. According to Proposition 1.9 we have that

θlinX1
(Y |X2, ...,Xk) = EP(UY )/EP(U

2)

which leads to the estimator

θ̂linX1
(Y |X2, ...,Xk) =

n∑

i=1

ÛiYi/
n∑

i=1

Û2
i .

θ̂linX1
(Y |X2, ...,Xk) is identical to the least squares estimate of the regression coefficient

from the linear model with Y as dependent variable and X1, ...,Xk as independent co-

variables. It can be shown that

θ̂linX1
(Y |X2, ...,Xk) =

n∑

i=1

ÛiYi/

n∑

i=1

Û2
i =

n∑

i=1

ÛiZi/

n∑

i=1

Û2
i .

In order to show the asymptotic normality of the estimate θ̂linX1
(Y |X2, ...,Xk) we need

the assumption

EP(|XiXjXlXm|) <∞ for all 1 ≤ i, j, l,m ≤ k (1.13)

which follows, for instance, if all Xj are bounded. Conclusions of (1.13) are e.g. that

EP{U2
i Z

2
i } <∞ and EP(U

4
i ) <∞.

Theorem 1.18. If (Yi,Xi1, ...,Xik), i = 1, ..., n, are i.i.d. and satisfy assumption (1.13)

then
√
n{θ̂linX1

(Y |X2, ...,Xk)− θlinX1
(Y |X2, ...,Xk)} L→ N

(
0,
τ2

η4

)

where τ2 = EP[U
2{Z − UθlinX1

(Y |X2, ...,Xk)}2] and η2 = EP(U
2).

We already know how to estimate η2. The following theorem gives a consistent esti-

mate for τ2.
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Theorem 1.19. Using the same assumptions as for Theorem 1.18 we can state that

τ̂2 =
1

n

n∑

i=1

Û2
i ǫ̂

2
i
p→ τ2

where ǫ̂i are the residuals from a linear regression analysis with dependent variable Yi

and independent variables Xi1, ...,Xik.

If ǫ and the covariates X1, ...,Xk are independent we obtain

τ2 = EP(U
2
i ǫ

2
i ) = EP(U

2
i )EP(ǫ

2
i ) = η2σ2,

which implies
τ2

η4
=
σ2

η2
.

Hence,
√
n{θ̂linX1

(Y |X2, ...,Xk)− θlinX1
(Y |X2, ...,Xk)} converges to the same normal distri-

bution as
√
n{θ̂1−θ1} where θ̂1 is the least squares estimate for the regression coefficient

θ1 from a linear regression analysis with dependent variable Y and independent variables

X1, ...,Xk. Additionally τ2/η4 would be estimated by σ̂2/η̂2 where σ̂2 is the estimate

for the residual variance form the linear model.

Transferring these results into the case of a linear regression model Y = θ1X1 + ... +

θkXk+ǫ with EP(ǫ) = 0 and ǫ uncorrelated to the covariates, Theorems 1.18 and 1.19 are

similar to the results in White (1980a) and White (1980b) for the regression coefficient

θ1.

The single-covariate versions of Theorems 1.18 and 1.19 are

Theorem 1.20. Under the setup of this section we have that

√
n{θ̂linX (Y )− θlinX (Y )} L→ N

(
0,
τ2

η4

)

where τ2 = EP{(X−EP(X))2[(Y −EP(Y ))−(X−EP(X))θlinX (Y )]2} and η2 = EP({X−
EP(X)}2) = V arP(X)

and

Theorem 1.21. Under the same assumptions as in Theorem 1.20 we have that

τ̂2 =
1

n

n∑

i=1

(Xi − X̄)2ǫ̂2i
p→ τ2
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where ǫ̂i are the residuals from a linear regression analysis with target variable Yi and

covariates 1,Xi.

Hypothesis testing and confidence intervals for the partial linear mean slope

A direct consequence of Theorems 1.18 and 1.19 is that with

Tv =
√
n{θ̂linX1

(Y |X2, ...,Xk)− v}(η̂2/τ̂)

the rejection rule Tv ≥ Φ−1(1 − α) provides a test with significance level close to α for

the hypothesis (1.5). Analogous

CIθα = [θ̂linX1
(Y |X2, ...,Xk)− (τ̂ /η̂2)Φ−1(1− α)/

√
n,∞)

is expected to have coverage probability close to 1− α for θlinX1
(Y |X2, ...,Xk).

Similar to this the rejection rule |Tv| ≥ Φ−1(1− α
2 ) is expected to provide an approx-

imate level α test for the two-sided hypothesis

H0 : θ
lin
X1

(Y |X2, ...,Xk) = v vs. H1 : θ
lin
X1

(Y |X2, ...,Xk) 6= v

where v ∈ R. An approximate two-sided confidence interval for the linear partial mean

impact is then given by

CIθα,2-sided = (θ̂linX1
(Y |X2, ...,Xk)± (τ̂ /η̂2)Φ−1(1− α

2
)/
√
n).

In order to improve the type one error rate of the tests and the coverage probability

of the confidence intervals one could follow the heuristic approach replace the quantile

Φ−1(1− α
2 ) of the normal distribution by the (1− α

2 )-quantile of the t-distribution with

n− (k + 1) degrees of freedom.

Hypothesis testing and confidence intervals for the partial linear signed mean

impact

Since in Scharpenberg (2012) it was only shown that

√
n{ŝιlinX1

(Y |X2, ...,Xk)η̂ − sι
(n)
X1

(Y |X2, ...,Xk)η} L→ N(0, κ2)

only confidence intervals for sιlinX1
(Y |X2, ...,Xk)η could be constructed. A heuristic ap-

proach to the construction of a confidence interval for sιlinX1
(Y |X2, ...,Xk) from those of
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sιlinX1
(Y |X2, ...,Xk)η and θlinX1

(Y |X2, ...,Xk) is given there. We have that

CIsιηα = [ŝιlinX1
(Y |X2, ...,Xk)η̂ − κ̂Φ−1(1− α)/

√
n,∞)

is expected to have coverage probability close to 1− α for sιlinX1
(Y |X2, ...,Xk)η for suffi-

ciently large sample sizes. Again one could improve the coverage probability of this inter-

val by replacing the normal quantile by the quantile of the t-distribution with n−(k+1)

degrees of freedom. Note, that this consideration is only heuristic.

To construct the confidence interval for sιlinX1
(Y |X2, ...,Xk) we note that both, CI

sιη
α /η

and CIθαη, are approximate one-sided (1 − α) confidence intervals for the linear signed

impact. We can rewrite them as

CIsιηα /η = (CIsιηα /η̂)

(
η̂

η

)
and CIθαη = CIθαη̂

η

η̂
(1.14)

where one of the terms η̂
η and η

η̂ is always smaller than 1 while the other one is greater

than one. Therefore, we choose our confidence interval for the linear signed mean impact

to be

CIsι,oldα = CIsιηα /η̂ ∪ CIθαη̂ = [ŝιlinX1
(Y |X2, ...,Xk)− c,∞)

where c = (Φ−1(1− α)/
√
n)max{κ̂/η̂, τ̂ /η̂}. Since this interval always contains at least

one of the two intervals in (1.14). Hence, we expect this interval to have asymptotic

coverage probability of 1 − α. Similarly, the rejection rule v /∈ CIsι,oldα is expected to

provide an approximate level α test for (1.3). A test for the two-sided hypothesis

H0 : sι
lin
X1

(Y |X2, ...,Xk) = v vs. H1 : sι
lin
X1

(Y |X2, ...,Xk) 6= v

can be derived from the two-sided confidence interval

CIsι,oldα,2-sided = (ŝιlinX1
(Y |X2, ...,Xk)− c, ŝιlinX1

(Y |X2, ...,Xk) + c)

where c = (Φ−1(1− α/2)/
√
n)max{κ̂/η̂, τ̂/η̂}.

However, this approach to the construction of a confidence interval for the linear singed

mean impact is only heuristic. Theorem 1.16 implies that

CI
sιlinX1

(Y |X2,...,Xk)
α = [ŝιlinX1

(Y |X2, ...,Xk)−
√
ϕ̂

η̂
Φ−1(1− α)/

√
n,∞).

is a one-sided asymptotic (1−α)% confidence interval for sιlinX1
(Y |X2, ...,Xk) Therefore,
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the rejection rule v /∈ CI
sιlinX1

(Y |X2,...,Xk)
α is expected to provide an approximate level α

test for the null hypothesis H0 : sι
lin
X1

(Y |X2, ...,Xk) ≤ v for v ∈ R.

As a next step we want to construct a test for (1.4). For v ≥ 0 we have

ιlinX1
(Y |X2, ...,Xk) ≤ v ⇔ −v ≤ sιlinX1

(Y |X2, ...,Xk) ≤ v.

This implies that the rejection rule

v < min{|a| : a ∈ CIsια,2-sided}

provides an approximate level α test for (1.4). Thus, an approximate level α confidence

interval is given by

CIια = [min{|a| : a ∈ CIsια,2-sided},∞). (1.15)

1.4.2. Simulations

In order to investigate if the derived confidence interval for sιlinX1
(Y |X2, ...,Xk) really im-

proves the old one we make some simulations and compare the two intervals with respect

to the coverage probability and the probability of not covering zero. For the comparison

of the intervals we choose the scenarios (1) and (2) of Section 5.1 Scharpenberg (2012).

All simulations used n = 100 observations and 1000 repetitions.

(1) We assume that Y = 1
8e
X+ǫ whereX ∼ N(µ, σ2) and ǫ ∼ N(0, 1) are independent.

Table 2 gives the power of the test of H0 : ιlinY (X) ≤ v with v = 0 and the

power of the z-test from linear regression for the one-sided null hypothesis that

the first regression coefficient is less or equal zero (H0 : θ1 ≤ 0) assuming that

X ∼ N(µ, σ2). The tables also give the linear mean slope and the mean slope.

µ σ2 θlinX (Y ) θX(Y ) Power linear-slope-test Power z-test

0 1 0.206 0.354 0.6041 0.6216
-1 1 0.076 0.130 0.1896 0.1807
1 1 0.560 0.963 0.9942 0.9971
1 0.25 0.385 0.437 0.6067 0.5980

Table 2: Power of the test for θlinX (Y ) and the z-test from linear regression.

One can see that the linear mean slope test may suffer a slight loss in power

compared to the z-test but it can also be more powerful in some cases.
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µ σ2 sιlinX (Y ) sιX(Y ) Power new impact test Power old test

0 1 0.206 0.270 0.6018 0.5695
-1 1 0.076 0.099 0.1904 0.1723
1 1 0.560 0.734 0.9929 0.9878
1 0.25 0.193 0.205 0.6073 0.5822

Table 3: Power of the new test for sιlinX (Y ) and the old test.

One can see, that using the new confidence interval increases the power by up to

3% compared to the use of the interval from Scharpenberg (2012). The power of

the new test is now near to the power of the test for the linear slope.

µ σ2 sιlinX (Y ) sιX(Y ) CIsι,newα ∋ sιlinX (Y ) CIsι,oldα ∋ sιlinX (Y )

0 1 0.206 0.270 0.9427 0.9692
-1 1 0.076 0.099 0.9417 0.9552
1 1 0.560 0.734 0.9600 0.9938
1 0.25 0.193 0.205 0.9660 0.9385

Table 4: Coverage probabilities of the two confidence intervals for sι for different normal
distributions of X.

In some cases the new confidence interval tends to undercoverage although it im-

proves the old interval in terms of coverage probability in the last case.

(2) We now let Y = 1
2e
X + ǫ where X ∼ Exp(λ) is independent from ǫ ∼ N(0, 1). The

simulations gave the following results.

λ θlinX (Y ) θX(Y ) Power linear-slope-test Power z-test

3 1.125 1.500 0.9059 0.9050
5 0.781 0.833 0.4540 0.4634

Table 5: Power of the test for θlinX (Y ) and the z-test from linear regression.
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λ sιlinX (Y ) sιX(Y ) Power new impact test Power old test

3 0.375 0.433 0.8873 0.8027
5 0.156 0.161 0.4634 0.3842

Table 6: Power of the new test for sιlinX (Y ) and the old test.

In these scenarios the power of the tests could be improved by approximately 8%

by using the new confidence intervals. In this case as well the power of the test

for the signed linear mean impact is now close to the one of the linear slope. One

λ sιlinX (Y ) sιX(Y ) CIsιnewα ∋ sιlinX (Y ) CIsιoldα ∋ sιlinX (Y )

3 0.375 0.433 0.9667 0.9983
5 0.156 0.161 0.9424 0.9824

Table 7: Coverage probabilities of the two confidence intervals for sι for different normal
distributions of X.

can see, that similar to the first simulations the use of the new confidence intervals

reduces the coverage probability. Nevertheless the new coverage probabilities are

much closer to stated level than the old ones.

1.5. Absolute mean slope

Up to this point the mean slope was defined by

θX1(Y |X2, ...,Xk) =
ιX1(Y |X2, ...,Xk)

EP(X1δ0(X))
.

Here, δ0 is the almost surely uniquely defined perturbation for which we have that

ιX1(Y |X2, ...,Xk) = EP(Y δ0(X)). It describes the maximum change in the mean of Y

when changing the distribution of the covariates in a way that the mean of X1 is changed

by one unit with the same distributional change. However, such a statement is only useful

if there is a linear relationship between Y and X1. When moving to non-linear and

therefore possibly non-monotonous relationships the mean slope becomes meaningless.

For example when regarding quadratic influences of X1 on Y (say Y = X2
1 + ǫ) the term

EP(X1δ0(X)) could become very small or zero. Therefore, we suggest a new measure

of association which we call partial absolute mean slope. It is defined as the maximum
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change in the mean of Y relative to the maximum possible change in the mean of X1

when changing the density of the covariates. This can be formalized as follows:

θX1(Y |X2, ...,Xk) =
ιX1(Y |X2, ...,Xk)

ιX1(X1|X2, ...,Xk)
=
ιX1(Y |X2, ...,Xk)√
V arP(PH⊥

2
X1)

, (1.16)

where H2 = span(X2, ...,Xk). With the definition as the ratio of maximum possible

changes in the means of Y and X1 under distributional changes of the covariates, the

absolute mean slope becomes meaningful again. Note that the mean impact depends

strongly on the distribution of X1. The mean slope is not completely but more invariant

with respect to this distribution (see also Brannath and Scharpenberg (2014)).

In the single covariate case the absolute mean slope simplifies to

θX(Y ) =
ιX(Y )

ιX(X)
=

ιX(Y )

SDP(X)
. (1.17)

As already pointed out there may be reasons to regard restricted versions of the partial

absolute mean slope (1.16) (e.g. to avoid overfitting). Let R be a closed subset of L2
P(R).

We define the restricted partial absolute mean slope as

θRX1
(Y |X2, ...,Xk) =

ιRX1
(Y |X2, ...,Xk)

ιRX1
(X1|X2, ...,Xk)

where ιRX1
(Y |X2, ...,Xk) is the restricted partial mean impact. In the special case of

restriction to linear subspaces we obtain that the linear partial absolute mean slope is

the absolute value of the linear partial mean slope. Hence, when we restrict to linear

functions δ the absolute mean slope has still the interpretation of the maximum change

in the mean of Y when we change X1 by one unit, which has a simple interpretation

in the linear setup. In the course of this thesis we will regard the absolute mean slope

instead of the mean slope.

1.6. Common mean impact of several variables

In generalization to the mean impact we can define the common mean impact of a set

of covariates X = (X(1), ...,X(k)). It is given by

ιX(1),...,X(k)(Y ) = sup
δ(X)∈L2

P
(R), EP[δ(X)]=0, EP[δ2(X)]=1

EP[Y δ(X)]. (1.18)
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The common mean impact quantifies the maximum change in the mean of the target

variable Y , when the common density f of X(1), ...,X(k) is changed to f(1+ δ), where δ

has mean zero and variance equal to one. Hence, the common mean impact is a measure

of the multivariate association between Y and X(1), ...,X(k).

Theorem 1.22. Let X(1), ...,X(k) and Y be square integrable. Then

(a) ιX(Y ) =
√
V arP[EP(Y |X)]

(b) ιX(Y ) = 0 if and only if EP(Y |X) = EP(Y ) is independent from X.

(c) 0 ≤ ιX(Y ) ≤ ιY (Y ) = SDP(Y ) where SDP(Y ) =
√
V arP(Y ).

(d) ιX(Y ) = ιY (Y ) if and only if Y depends on X deterministically, i.e., Y = g(X)

for a measurable function g : Rm+1 → R.

(e) if Y = g(X)+U , where g : Rm+1 → R is measurable and U and X are stochastically

independent, then ιX(Y ) = ιX[g(X)] = SD[g(X)].

Proof. (a) follows from Cauchy-Schwartz´s inequality in L2(R), which implies

EP[Y δ(X)] = EP[EP(Y |X)δ(X)] = EP[{EP(Y |X)− EP(Y )}δ(X)]

≤ SDP[EP(Y |X)].

For δ(X) = {EP(Y |X)−EP(Y )}/SDP[EP(Y |X)] we obtain EP[δ(X)] = 0, EP[δ
2(X)] =

1 and EP[Y δ(X)] = SDP[EP(Y |X)]. This implies ιX(Y ) = SDP[EP(Y |X)]. Statements

(b) to (e) follow from (a) and V arP(Y ) = V arP[EP(Y |X)] + EP[V arP(Y |X)].

1.7. Common linear mean impact of several variables

Similar to the case of the mean impact we would run into overfitting problems, when

trying to estimate the common mean impact (1.18). As a solution to this, we restrict

the set of allowed perturbations δ to the set of functions linear in random variables

X(1), ...,X(k) (we write X = (X(1), ...,X(k))), where we assume that X(1) = 1. This

means we have

ιlinX (Y ) = sup
δ(X)∈H;EP{δ(X)}=0;EP{δ2(X)}=1

EP{Y δ(X)}

where H = span(X(1), ...,X(k)) ⊆ L2
P. This common linear mean impact is clearly

a lower bound for the common mean impact (1.18). Applications of this scenario will
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cover polynomial fits or fitting natural splines and are further described in later sections.

However, the common linear impact can be used to describe non-linear associations

between the target variable Y and one (ore more) independent variables.

As a next step, we show that the common linear impact of X equals
√
V arP(PHY ). By

Cauchy´s inequality we obtain for all δ ∈ H with EP(δ(X)) = 0 and EP(δ
2(X)) = 1

that

EP(Y δ(X)) =EP(PHY δ(X)) = EP({PHY − EP(PHY )}δ(X))

≤
√
V arP(PHY ).

Hence, if
√
V arP(PHY ) = 0 then ιlinX (Y ) = 0, otherwise chose δ(X) = {PHY −

EP(PHY )}/
√
V arP(PHY ) and obtain ιlinX (Y ) =

√
V arP(PHY ). Note that V arP(PHY ) =

EP{(PH1Y )2}, where H1 = H ∩ span(1)⊥ = H− span(1).

By these arguments the linear mean impact can be estimated by

ι̂linX (Y ) =

√√√√ 1

n

n∑

i=1

[
(PMY)i −

1

n

n∑

i=1

(PMY)i

]2

=

√√√√ 1

n

n∑

i=1

(PMY)2i −
(
1

n

n∑

i=1

(PMY)i

)2

(1.19)

where Y = (Y1, ..., Yn)
T , M = span(X(1), ...,X(k)) ⊆ Rn and X(j) =

(
X

(j)
1 , ...,X

(j)
n

)T
is

the vector of observations of X(j). Consistency of this estimator can be shown as follows.

Let ξ̂1, ..., ξ̂k be the coefficients of the projection of Y onto M in Rn and ξ1, ..., ξk the

coefficients of the projection of Y onto H in L2
P. We know that (ξ̂1, ..., ξ̂k)

p→ (ξ1, ..., ξk).

Therefore we have

1

n

n∑

i=1

(PMY)i =
1

n

n∑

i=1

(ξ̂1X
(1)
i + ...+ ξ̂kX

(k)
i )

= ξ̂1
1

n

n∑

i=1

X
(1)
i + ...+ ξ̂k

1

n

n∑

i=1

X
(k)
i

p→ ξ1EP(X
(1)) + ...+ ξkEP(X

(k))

= EP(PHY ).
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Analogously it can be shown that 1
n

∑n
i=1(PMY)2i

p→ EP([PHY ]2) and therefore ι̂linX (Y )
p→

ι̂linX (Y ).

1.7.1. A test for the linear common mean impact being zero

As a next step we want to derive a test for

H0 : ι
lin
X (Y ) = 0 vs. H1 : ι

lin
X (Y ) 6= 0 ⇔ H1 : ι

lin
X (Y ) > 0.

We make the assumption

Assumption 1.23. There exists no ξ ∈ Rk with ξ 6= 0 so that the linear combination

ξ1X
(1) + ...+ ξkX

(k) is almost surely constant.

With this assumption we obtain

ιlinX (Y ) = 0 ⇔ PHY = const. almost surely ⇔ Rξ = 0,

where R =




0
... Ik−1

0


, with Ik−1 being the (k−1) dimensional identity matrix and ξ =

(ξ1, ..., ξk)
T the vector of coefficients of the orthogonal projection of Y on H. Therefore,

H0 : ι
lin
X (Y ) = 0 ⇔ H ′

0 : Rξ = 0.

To construct a test for H ′
0 we make the following assumptions which originate from

White (1980b).

Assumption 1.24. The true model is

Yi = g(Wi) + ǫi, i = 1, ..., n

where g is an unknown measurable function and (Wi, ǫi) are i.i.d. random (p+1) vectors

(p ≥ 1) such that E(Wi) = 0, E(W T
i Wi) = MWW finite and non-singular, E(ǫi) = 0,

E(ǫ2i ) = σ2ǫ <∞, E(W T
i ǫi) = 0 and E(g(Wi)

2) = σ2g <∞.

Assumption 1.25. X = (X(1), ...,X(k)) is a measurable function of W .

Assumption 1.25 means that the elements ofXi are functions ofWi, but not necessarily

functions of every element ofWi, some variables may be omitted. We also need to assume
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Assumption 1.26. EP(g(Wi)ǫi) = 0, EP(X
T
i ǫi) = 0, EP(X

T
i Xi) =MXX is finite and

nonsingular.

White (1980b) shows that under assumptions 1.24, 1.25 and 1.26 the following asymp-

totic result holds: √
n(ξ̂ − ξ)

L→ Nk(0,Σ)

where Σ can be consistently estimated by (XTX/n)−1V̂ (XTX/n)−1 with

V̂ = n−1
∑n

i=1(Yi−Xiξ̂)
2XT

i Xi and ξ̂ is the vector of estimated coefficients from a linear

regression with target variable Y and covariates X(1), ...,X(k). Since R has rank k − 1

we obtain √
nR(ξ̂ − ξ)

L→ Nk−1(0, RΣR
T )

which implies

n[R(ξ̂ − ξ)]T [R(XTX/n)−1V̂ (XTX/n)−1RT ]−1[R(ξ̂ − ξ)]
L→ χ2

k−1,

thus under H ′
0 : Rξ = 0

n[Rξ̂]T [R(XTX/n)−1V̂ (XTX/n)−1RT ]−1[Rξ̂]
L→ χ2

k−1.

This implies that we can reject H ′
0 at an asymptotic significance level α if

T = n[Rξ̂]T [R(XTX/n)−1V̂ (XTX/n)−1RT ]−1[Rξ̂] ≥ Qχ
2

k−1(1− α),

where Qχ
2

k−1(1− α) is the (1− α)−quantile of the χ2
k−1 distribution.

1.7.2. A shrinkage-like approach to the construction of confidence intervals for the

linear common mean impact

In this section we want to derive lower confidence intervals for ιlinX (Y ). We will start

by constructing confidence intervals for the squared impact, from which one can easily

obtain the desired confidence bounds for the unsquared restricted impact. First of all

we assume that the assumptions 1.23, 1.24, 1.25 and 1.26 hold. It was shown in the

previous section that these assumptions imply

n(ξ̂ − ξ)T Σ̂−1(ξ̂ − ξ)
L→ χ2

k,

with Σ̂ = (XTX/n)−1V̂n(X
TX/n)−1 from above. When testing the squared impact via

the coefficient vector ξ of the orthogonal projection of Y onto H one has to keep in mind
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that multiple ξ can lead to the same squared impact. Thus, to be able to reject a certain

impact we have to be able to reject all coefficient vectors leading to this impact. To this

end we note that

ι̂lin
2

X (Y ) = ξ̂T


XTX/n−XT




1 · · · 1
...

. . .
...

1 · · · 1


X/n2




︸ ︷︷ ︸
=:U

ξ̂

and choose a shrinkage-like approach. The idea is to find for λ > 0

argminξ n(ξ̂ − ξ)T Σ̂−1(ξ̂ − ξ) + λξTUξ. (1.20)

In this approach we penalize the χ2-test forH ′
0 by the estimated squared impact obtained

by ξ. In the following we will show that this minimization problem is equivalent to finding

the minimum of

n(ξ̂ − ξ)T Σ̂−1(ξ̂ − ξ)

under the constraint ξTUξ ≤ s(λ) for s(λ) = ξTλUξλ, where ξλ is the unique solution to

(1.20). This means that by testing the coefficient ξλ which solves (1.20), we essentially

test the hypotheses

H0 : ι
lin2

X (Y ) ≤ s(λ) vs. H1 : ι
lin2

X (Y ) > s(λ). (1.21)

By testing these hypotheses for all s(λ) in a decreasing manner we will be able to find the

desired asymptotic lower confidence interval (the last s(λ) which cannot be rejected). In

order to understand the behavior of ξλ and s(λ) when λ changes we make the following

considerations.

Proposition 1.27. ξλ = [nΣ̂−1 + λU]−1nΣ̂−1ξ̂ is the unique solution to (1.20).

Proof. First of all we show that nΣ̂−1 + λU is non-singular. We have

Σ̂ = (XTX/n)−1V̂n(X
TX/n)−1

= (XTX/n)−1XTΩ/nX(XTX/n)−1,

with Ω = diag(ǫ̂21, ..., ǫ̂
2
n) and ǫ̂2i = (Yi − Xiξ̂)

2 ≥ 0. Therefore, for c 6= 0, c ∈ Rk we

obtain

cT Σ̂c = cT (XTX/n)−1XTΩ/nX(XTX/n)−1c = c̃TΩ/nc̃ ≥ 0
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with c̃ = X(XTX/n)−1c 6= 0 since X has full rank. Hence Σ̂ is positive-semidefinite and

since it is non-singular it is positive-definite. This implies that nΣ̂−1 is also positive-

definite. Furthermore, we have for c 6= 0, c ∈ Rk and 1 =




1 · · · 1
...

. . .
...

1 · · · 1




cTUc =cTXTX/nc− cTXT
1X/n2c

=
1

n

n∑

i=1




k∑

j=1

cjXij




2

−


 1

n

n∑

i=1

k∑

j=1

cjXij




2

≥ 0,

where “=” in ≥ only holds if rank(X) < k. Hence we have > 0 instead of ≥ 0. In

consequence we obtain for c 6= 0, c ∈ Rk

cT (nΣ̂−1 + λU)c = cTnΣ̂−1c︸ ︷︷ ︸
>0

+λcTUc︸ ︷︷ ︸
>0

> 0.

Hence nΣ̂−1 + λU is positive-definite and thereby invertible.

Now we show the statement of the proposition. To this end we consider

∂

∂ξ
n(ξ̂ − ξ)T Σ̂−1(ξ̂ − ξ) + λξTUξ = 0

⇔2[nΣ̂−1(ξ − ξ̂) + λUξ] = 0

⇔nΣ̂−1ξ − nΣ̂−1ξ̂ + λUξ = 0

⇔[nΣ̂−1 + λU]ξ = nΣ̂−1ξ̂

⇔ξ = ξλ = [nΣ̂−1 + λU]−1nΣ−1ξ̂.

Hence ξλ is the unique solution to (1.20).

Proposition 1.28. Let λ > 0. ξλ is also a minimizer of the expression

n(ξ̂ − ξ)T Σ̂−1(ξ̂ − ξ)

under the constraint ξTUξ ≤ s(λ) = ξTλUξλ.
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Proof. Let ξ̃Uξ̃ ≤ s(λ). Then we have

0 ≤ n(ξ̂ − ξ̃)T Σ̂−1(ξ̂ − ξ̃)− n(ξ̂ − ξλ)
T Σ̂−1(ξ̂ − ξλ) + λξ̃TUξ̃ − λs(λ)︸ ︷︷ ︸

≤0

≤ n(ξ̂ − ξ̃)T Σ̂−1(ξ̂ − ξ̃)− n(ξ̂ − ξλ)
T Σ̂−1(ξ̂ − ξλ).

Therefore, ξλ is also a minimizer of the expression

n(ξ̂ − ξ)T Σ̂−1(ξ̂ − ξ)

under the constraint ξTUξ ≤ s(λ).

Proposition 1.29. Let λ > 0. A minimizer of n(ξ̂−ξ)T Σ̂−1(ξ̂−ξ) under the constraint

ξTUξ ≤ s(λ) is also a minimizer of n(ξ̂ − ξ)T Σ̂−1(ξ̂ − ξ) + λξTUξ.

Proof. Let ξ̃ be a minimizer of n(ξ̂ − ξ)T Σ̂−1(ξ̂ − ξ) under the constraint ξTUξ ≤ s(λ).

Since ξλ obviously fulfills the constraint we have

n(ξ̂ − ξ̃)T Σ̂−1(ξ̂ − ξ̃) ≤ n(ξ̂ − ξλ)
T Σ̂−1(ξ̂ − ξλ)

which implies

n(ξ̂ − ξ̃)T Σ̂−1(ξ̂ − ξ̃) + λξ̃TUξ̃ ≤ n(ξ̂ − ξλ)
T Σ̂−1(ξ̂ − ξλ) + λξ̃TUξ̃

≤ n(ξ̂ − ξλ)
T Σ̂−1(ξ̂ − ξλ) + λξTλUξλ.

Hence the required minimization.

The latter two propositions imply that the minimization problem (1.20) is equivalent

to the minimization of n(ξ̂− ξ)T Σ̂−1(ξ̂− ξ) under the constraint ξTUξ ≤ s(λ) = ξTλUξλ.

Proposition 1.30. s(λ) is decreasing in λ > 0.

Proof. Let 0 < λ1 ≤ λ2. Due to the minimization property of ξλ2 we have

n(ξ̂ − ξλ2)
T Σ̂−1(ξ̂ − ξλ2) + λ2s(λ2) ≤ n(ξ̂ − ξλ1)

T Σ̂−1(ξ̂ − ξλ1) + λ2s(λ1)

which implies

λ2 (s(λ2)− s(λ1)) ≤ n(ξ̂ − ξλ1)
T Σ̂−1(ξ̂ − ξλ1)− n(ξ̂ − ξλ2)

T Σ̂−1(ξ̂ − ξλ2).
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Analogously we obtain

λ1(s(λ2)− s(λ1)) ≥ n(ξ̂ − ξλ1)
T Σ̂−1(ξ̂ − ξλ1)− n(ξ̂ − ξλ2)

T Σ̂−1(ξ̂ − ξλ2).

Hence

λ2(s(λ2)− s(λ1)) ≤ λ1(s(λ2)− s(λ1)).

Since 0 < λ1 ≤ λ2 this implies that s(λ2) ≤ s(λ1).

We have already observed that we have to reject all coefficient vectors ξ that lead to a

specific squared impact to be able to reject this squared impact. We have shown that ξλ

minimizes the test statistic n(ξ̂−ξ)T Σ̂−1(ξ̂−ξ) for all ξ with ιlin2

X,ξ (Y ) = ξTUξ ≤ ξTλUξλ =

ιlin
2

X,ξλ
(Y ). Which means that by testing ξλ we essentially test the hypotheses (1.21). This

implies that being able to reject ξλ means being able to reject ιlin
2

X,ξλ
(Y ) and all smaller

values. Since s(λ) is monotonously decreasing in λ the expression n(ξ̂− ξλ)T Σ̂−1(ξ̂− ξλ)
is monotonously increasing in λ. Therefore, we can test ξλ for all λ and construct a

lower confidence interval out of all ιlin
2

X,ξλ
(Y ) for which ξλ could not be rejected. Since

it is impossible to test for all λ > 0 we choose a different procedure in applications. In

a first step we perform the test for ιlinX (Y ) = 0 from the previous section. If we cannot

reject we choose our lower confidence limit to be 0. In the case where ιlinX (Y ) = 0 can

be rejected we test for an arbitrary increasing sequence of λ until ξλ can be rejected the

first time. Let λl be the first λ of the sequence for which we can reject ξλ. Then we

undertake a bisection search between λl−1 and λl and stop when the difference between

the smallest squared impact which could not be rejected and the largest squared impact

which could be rejected is less or equal a pre-chosen margin ǫ. We then choose the

lower bound of the confidence interval to be the largest squared impact which could

be rejected. A lower bound for the ιlinX (Y ) is then just the square root of this bound.

However, as will turn out in Section 4 these intervals have poor coverage probability,

when the mean impact equals zero and the sample size is small (i.e. n ≈ 100). This

may be due to the fact that the use of the robust covariance estimate of White (1980b)

leads to type-I error inflation. In order to overcome this lack of performance for small

impacts and small sample sizes, we will derive bootstrap intervals for the mean impact in

Section 1.7.5, which will have better coverage properties. Simulations with larger sample

sizes (n = 200, n = 500) showed that the coverage probabilities of the intervals derived

here come close to the nominal level. Therefore, bootstrap methods are only necessary

when the sample size is small.
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1.7.3. Common population coefficient for determination

We can also define the population coefficient for determination in the given setup. Re-

member, that the unrestricted population coefficient for determination (1.2) for a single

variable X1 is defined by

R2
P = ι2X1

(Y )/V arP(Y )

and quantifies how close ιX1(Y ) is to its upper bound
√
V arP(Y ). In generalization

to this we define the common population coefficient for determination of X(1), ...,X(k),

which coincides with Pearson´s correlation ratio considered in Doksum and Samarov

(1995), by

R2
P = ι2X(Y )/V arP(Y ).

This expression quantifies how close ιX(Y ) is to its upper bound
√
V arP(Y ). The natu-

ral restriction to linear perturbations leads to the linear common population coefficient

for determination of X(1), ...,X(k)

Rlin
2

P = ιlin
2

X (Y )/V arP(Y ). (1.22)

We can rewrite (1.22) as Rlin
2

P = V arP(PHY )/V arP(Y ) and estimate this by

R̂lin
2

P = ι̂lin
2

X (Y )/σ̂2Y , (1.23)

where σ̂2Y = 1
n

∑n
i=1(Yi − Ȳ )2 and H = span(X(1), ...,X(k)).

1.7.4. Common absolute mean slope

We recall the definition (1.17) for the absolute mean slope of a singe covariate X1:

θX1(Y ) =
ιX1(Y )

ιX1(X1)
.

When X(1), ...,X(k) are functions of X1 we can use the common linear mean impact of

X(1), ...,X(k) to approximate the the absolute mean slope of X1, namely by the common

linear absolute mean slope

θlinX (Y ) =
ιlinX (Y )

ιX1(X1)
=

ιlinX (Y )√
V arP(X1)

, (1.24)

which does not necessarily equal the linear slope of X1 alone.
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It can be estimated by

θ̂linX (Y ) =
ι̂linX (Y )√

1
n

∑n
i=1(Xi1 − X̄1)2

.

Note, that in theory we could also define a signed version of the polynomial based

impact. Since the consideration of a signed impact is questionable in non-monotonous

relationships this approach is not followed up further in this thesis.

The common absolute mean slope will be called “mean slope” in the sequel.

1.7.5. Bootstrap intervals for the common linear mean impact

As it was already said, the confidence intervals for the common linear mean impact

based on the shrinkage-like approach of Section 1.7.2 tend to undercoverage, when the

sample size is not sufficiently large and the mean impact is close (or equal) to zero. In

the following we will give a theoretical justification for using bootstrap methods in the

construction of confidence intervals for the common linear mean impact based on the

variables X(1), ...,X(k) in order to overcome these undercoverage issues. Therefore, we

will show that the conditions of the “smooth function model” of Hall (Hall (1988) and

Hall (1992)) which is reviewed in Section A.3 are fulfilled.

Theorem 1.31. If EP(|X(j)X(l)X(m)X(o)|) < ∞ and EP(|X(j)X(l)Y 2|) < ∞ for all

1 ≤ j, l,m, o ≤ k bootstrap BCa and studentized bootstrap intervals for ιlin
2

X (Y ) based on

ι̂lin
2

X (Y ) are second order accurate.

Proof. We show that ι̂lin
2

X (Y ) is a smooth function of arithmetic means of certain i.i.d.

random vectors and ιlin
2

X (Y ) is the same smooth function of the expectation of these

variables. To show this we only need to show that the terms arising in (1.19), namely

1

n

n∑

i=1

(PMY)2i and
1

n

n∑

i=1

(PMY)i

are smooth functions of i.i.d.means. Since square and subtraction are smooth this would

imply the smoothness of ι̂lin
2

X (Y ). We make the following considerations:

1

n

n∑

i=1

(PMY)2i =
1

n
YTX(XTX/n)−1 1

n
XTY

=V TC−1V,
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where

V =
1

n
XTY =

(
1

n

n∑

i=1

X
(1)
i Yi, ...,

1

n

n∑

i=1

X
(k)
i Yi

)T

and

C−1 = (XTX/n)−1 =



(
1

n

n∑

l=1

X
(i)
l X

(j)
l

)

i,j=1,...,k



−1

.

Hence, 1
n

∑n
i=1(PMY)2i is a polynomial in the entry of the mean of the i.i.d. vectors

Zi = (X
(1)
i Yi, ...,X

(k)
i Yi,X

(1)
i X

(1)
i , ...,X

(1)
i X

(k)
i , ...,X

(k)
i X

(k)
i )

for i = 1, ..., n. Since all partial derivatives of this quotient of polynomials are quotients

of polynomials themselves they are also differentiable. Induction yields the smoothness

of 1
n

∑n
i=1(PMY)2i . Note that the denominator of 1

n

∑n
i=1(PMY)2i , which is the deter-

minant of C, is always greater than zero since it is the determinant of a (by assumption)

non-singular matrix. It follows by similar arguments, that 1
n

∑n
i=1(PMY)i is a smooth

function of i.i.d.means. We have

1

n

n∑

i=1

(PMY)i =
1

n
1

TX(XTX/n)−1 1

n
XTY =W TC−1V,

where C and V are defined as before and 1 = (1, ..., 1)T , consequently

W =
1

n
XT

1 =

(
1

n

n∑

i=1

X
(1)
i , ...,

1

n

n∑

i=1

X
(k)
i

)T
.

This implies that 1
n

∑n
i=1(PMY)i also is a quotient of polynomials of means of i.i.d.

random variables and therefore, by the argumentation above a smooth function in

i.i.d.means. Note that the matrices W,C and V converge to the same matrices, but

with expected values instead of arithmetic means as entries. Hence, since ι̂lin
2

X (Y ) is

consistent for ιlin
2

X (Y ), ιlin
2

X (Y ) can be written as the same smooth function as ι̂lin
2

X (Y )

but of the corresponding expectations instead of arithmetic means. Thus, ι̂lin
2

X (Y ) fulfills

the conditions of Halls smooth function model. This means that bootstrap BCa and stu-

dentized bootstrap intervals for ιlin
2

X (Y ) based on ι̂lin
2

X (Y ) are second order accurate.

From these intervals we can derive second order accurate confidence intervals for
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ιlinX (Y ) by choosing the lower bound

lα =




0 if lbootα ≤ 0
√
lbootα if lbootα > 0

,

where lbootα is the bootstrap confidence bound for ιlin
2

X (Y ). The second order accuracy of

this bounds is due to the second order accuracy of the bootstrap bound, the monotony

of
√· and the fact that the impact is non-negative.

Note, that if ιlinX (Y ) 6= 0 the estimated linear common mean impact itself (instead of

its squared version) fulfills the conditions of the smooth function model (
√· is smooth

on R+). Hence, when the common linear mean impact is strictly positive, bootstrap

BCa and studentized bootstrap intervals based on ι̂linX (Y ) are second order accurate for

ιlinX (Y ) > 0. However, when using bootstrap bounds based on the unsquared estimate

ι̂linX (Y ) we have to make sure that ιlinX (Y ) > 0. To ensure this, we can pre perform the

test for the null-hypothesis ιlinX (Y ) = 0 of Section 1.7.1 prior to the calculation of the

confidence intervals. In Section 4 we compare the method of computing the confidence

bounds via the squared estimate to the approach where we bootstrap the unsquared

estimate with pre-performed test for ιlinX (Y ) = 0 (Set the confidence bound to zero,

when the test can not reject the null-hypothesis).

From the results above it follows that θ̂lin
2

X (Y ) also fulfills the smooth function model

leading to second order accuracy of bootstrap BCa and studentized bootstrap inter-

vals. From these intervals we can obtain confidence bounds for θlinX (Y ) by the same

transformation as in Section 1.9.3 namely by

lα =




0 if lbootα ≤ 0
√
lbootα if lbootα > 0

,

where lbootα is the bootstrap confidence bound for θlin
2

X (Y ).

Note, that if θlinX (Y ) > 0 its estimate θ̂linX (Y ) fulfills the smooth function model.

Hence, we could also compute bootstrap bounds based on the unsqared estimate θ̂linX (Y )

when pre-performing a test for ιlinX (Y ) = 0 (which is essentially the same as to test for

θlinX (Y ) = 0).

We can also show that in this setup the linear common population coefficient for de-

termination (1.22) with its estimate (1.23) meets the conditions of the smooth function
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model. To this end, we note that

R̂lin
2

P = ι̂lin
2

X (Y )/σ̂2Y ,

with σ̂2Y = 1
n

∑n
i=1(Yi − Ȳ )2 contains the smooth function ιlin

2

X (Y ). Obviously the

expression σ̂2Y is a smooth function of means of i.i.d. random variables. Furthermore, it

is consistent for σ2Y = V arP(Y ). Thus, the conditions of the smooth function model are

met and bootstrap BCa and studentized bootstrap intervals for Rlin
2

P are second order

accurate.

1.8. Partial common mean impact

Again we consider the case where we want to quantify the association between a target

variable Y and a set of covariates X = (X(1), ...,X(k)) which goes beyond the possible

influence of further variables Q = (Q1, ..., Ql). We define the partial common mean

impact by

ιX(1),...,X(k)(Y |Q1, ..., Ql)

= sup
δ∈L2

P
(Rk+l):E(δ(X,Q))=0, E(δ2(X,Q))=1, E(δ(X,Q)Qj)=0 ∀j=1,...,l

EP[Y δ(X,Q)]. (1.25)

It describes the maximum change in the mean of Y , when the common density f of

(X(1), ...,X(k), Q1, ..., Ql) is changed to f(1 + δ), where δ has mean zero and variance

equal to one and the means of (Q1, ..., Ql) remain unchanged.

When the variables X(1), ...,X(k) are functions of a single variable X1 we can in gener-

alization to the common mean slope (1.24) define a partial common mean slope by

θX(1),...,X(k)(Y |Q1, ..., Ql) =
ιX(1),...,X(k)(Y |Q1, ..., Ql)

ιX(1),...,X(k)(X1|Q1, ..., Ql)
.

1.9. Linear partial common impact analysis

1.9.1. Definition of the linear partial common mean impact

In order to avoid the problem of overfitting which arises in the estimation of the common

partial mean impact (1.25), we regard the common linear influence of the set of covariates

X(1), ...,X(k) which goes beyond the possible influence of Q1, ..., Ql. Hence, we regard
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the linear partial common mean impact which is given by

ιlin
X(1),...,X(k)(Y |Q1, ..., Ql) = sup

δ∈H∩H⊥
2 , EP{δ2(X,Q)}=1

EP{Y δ(X,Q)}, (1.26)

where H = span(Q1, ..., Ql, 1,X
(1), ...,X(k)) and H2 = span(1, Q1, ..., Ql). The linear

partial mean impact ιlin
X(1),...,X(k)(Y |Q1, ..., Ql) describes in a sense the maximum change

of the mean of Y when the density f of the variables X(1), ...,X(k), Q1, ..., Ql in the

population is changed to (1 + δ)f in a way that δ is linear in X(1), ...,X(k), Q1, ..., Ql,

L2(Rk+l)-integrable with norm equal to one and the means of the covariates Q1, ..., Ql

remain unchanged. Obviously the linear partial common mean impact (1.26) is a lower

bound for the (unrestricted) partial common mean impact (1.25). In order to be able to

calculate this impact, we make the following consideration.

Proposition 1.32. With the above definitions of H and H2 we have that

PH∩H⊥
2
Z = PHPH⊥

2
Z = PH⊥

2
PHZ,

for all Z ∈ L2(Rk+l).

Proof. First of all, since H2 ⊂ H we have for all Z ∈ L2(Rk+l) that

PHPH⊥
2
Z =PHZ − PHPH2Z = PHZ − PH2Z

= PHZ − PH2PHZ = PH⊥
2
PHZ.

Thus, PHPH⊥
2
Z = PH⊥

2
PHZ ∈ H∩H⊥

2 . This, together with the definition of the projec-

tion provides for all U ∈ H ∩H⊥
2

EP(UPH∩H⊥
2
Z) =EP(UZ)

=EP(UPHZ)

=EP(UPH⊥
2
PHZ) = EP(UPHPH⊥

2
Z).

Thus, since the projection is uniquely defined, we obtain

PH∩H⊥
2
Z = PHPH⊥

2
Z = PH⊥

2
PHZ.
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We can rewrite the impact (1.26) as

ιlin
X(1),...,X(k)(Y |Q1, ..., Ql) = sup

δ∈L2
P
, V arP(δ(X,Q))>0

EP

(
Y

PH̃δ(X,Q)√
EP{(PH̃δ(X,Q))2}

)
,

where H̃ = H ∩H⊥
2 . The same argumentation as in Section 1.7 gives

ιlin
X(1),...,X(k)(Y |Q1, ..., Ql) =

√
EP{(PH̃Y )2} =

√
V arP(PH̃Y ).

Proposition 1.33. With the definitions of this section we have that

H̃ = H ∩H⊥
2 = H1,

where H1 = span(PH⊥
2
X(1), ..., PH⊥

2
X(k)).

Proof. We start by showing that H̃ ⊆ H1. Let Z ∈ H̃, then we have trivially that

PH̃Z = Z. By Proposition 1.32 we can rewrite this as PH̃Z = PH⊥
2
PHZ = Z. This

means that we have

Z =PH⊥
2
PHZ = PH⊥

2




k∑

j=1

ηjX
(j) + η0 +

l∑

m=1

ηk+mQl




for some coefficients η0, ..., ηj+m,

=

k∑

j=1

ηjPH⊥
2
X(j) ∈ H1.

Consequently, we obtain H̃ ⊆ H1. Next we show the reverse statement H1 ⊆ H̃. Since

we obviously have that H1 ⊆ H⊥
2 it suffices to show that H1 ⊆ H. To this end let

Z ∈ H1, this means that we can write for some coefficients ν1, ..., νj and ζ0, ..., ζl

Z =

k∑

j=1

νjPH⊥
2
X(j) =

k∑

j=1

νj(X
(j) − PH2X

(j))

=
k∑

j=1

νj(X
(j) − ζ0 −

l∑

m=1

ζmQm)

=
k∑

j=1

νjXj − ζ0

k∑

j=1

νj −
k∑

j=1

νj

l∑

m=1

ζmQm ∈ H.
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From this we obtain H1 ⊆ H and consequently H1 ⊆ H̃. Together with H̃ ⊆ H1 the

assertion follows.

With the result of Proposition 1.33, we can also write

ιlin
X(1),...,X(k)(Y |Q1, ..., Ql) =

√
V arP {PH1Y },

where H1 = span(PH⊥
2
X(1), ..., PH⊥

2
X(k)).

In the case of X(1), ...,X(k) being functions of a single variable X1 (with X(j) = X1 for

one j), the linear partial common mean slope is defined as

θlin
X(1),...,X(k)(Y |Q1, ..., Ql) =

ιlin
X(1),...,X(k)(Y |Q1, ..., Ql)

ιlin
X(1),...,X(k)(X1|Q1, ..., Ql)

=

√
V arP (PH1Y )√
V arP(PH⊥

2
X1)

.

1.9.2. Estimation of the linear partial common mean impact

Given i.i.d. observationsY = (Y1, ..., Yn)
T , Qj = (Q1j , ..., Qnj)

T , X(m) = (X
(m)
1 , ...,X

(m)
n )T

of Y , Qj and X
(m) for j = 1, ..., l and m = 1, ..., k we estimate ιlin

X(1),...,X(k)(Y |Q1, ..., Ql)

by

ι̂lin
X(1),...,X(k)(Y |Q1, ..., Ql) =

√
n−1‖PM1Y‖2 = 1√

n
‖PM1Y‖,

where M1 = span
(
X̂

(1)
, ..., X̂

(k)
)
, with X̂

(j)
= PM⊥

2
X(j) and M2 = span (1,Q1, ...,Ql).

When X(1), ...,X(k) are functions of a single variable X1 (with X(j) = X1 for one j),

the linear partial common mean slope is well defined and can be estimated by

θ̂linX(1),...,X(k)(Y |Q1, ..., Ql) =
ι̂lin
X(1),...,X(k)(Y |Q1, ..., Ql)√

1
n

∑n
i=1

(
(PM⊥

2
X1)i − PM⊥

2
X1

)2 .

Here, X1 is the vector of i.i.d. observations of the variable X1.

1.9.3. Bootstrap confidence intervals in linear partial common impact analysis

We will show that ι̂lin
2

X(1),...,X(k)(Y |Q1, ..., Ql) meets the conditions of the smooth function

model of Hall described in Section A.3.3 which implies that bootstrap-BCa and studen-
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tized bootstrap intervals are second order accurate. From these intervals one can easily

derive confidence intervals for ιlin
2

X(1),...,X(k)(Y |Q1, ..., Ql).

Theorem 1.34. Bootstrap BCa and studentized bootstrap confidence intervals for

ιlin
2

X(1),...,X(k)(Y |Q1, ..., Ql) based on ι̂lin
2

X(1),...,X(k)(Y |Q1, ..., Ql) are second order accurate.

Proof. With X̂ being the matrix with j-th column X̂
(j)

we have that

ι̂lin
2

X(1),...,X(k)(Y |Q1, ..., Ql) =
1

n
YT X̂

(
X̂
T
X̂
)−1

X̂
T
X̂
(
X̂
T
X̂
)−1

X̂
T

︸ ︷︷ ︸
PM1

Y

=
1

n
YT X̂

(
X̂
T
X̂/n

)−1 1

n
X̂
T
Y.

We can rewrite X̂
(j)

as

X̂
(j)

= X(j) −Q(QTQ/n)−1 1

n
QTX(j),

where Q = (1,Q1, ...,Ql). We can see that

1

n
QTX(j) =




1
n

∑n
i=1X

(j)
i

1
n

∑n
i=1X

(j)
i Qi1

...
1
n

∑n
i=1X

(j)
i Qil




is a vector of means of i.i.d. random variables. Obviously, (QTQ/n)−1 is a matrix whose

entries are smooth functions of means of i.i.d. random variables (this was already shown

in Section 1.7). Hence, we can write

(QTQ/n)−1 1

n
QTX(j) =

(
f (j)m

)
m=1,...,l+1

,

where f
(j)
m are smooth functions of means of i.i.d. random variables. Consequently X̂

(j)

is given by

X̂
(j)

= X(j) −Q




f
(j)
1
...

f
(j)
l+1


 =

{
X

(j)
i −

(
f
(j)
1 +

l+1∑

m=2

f (j)m Qi(m−1)

)}

i=1,...,n

.
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This implies that

1

n
X̂
T
Y =

{
1

n

n∑

i=1

X
(j)
i Yi −

(
f
(j)
1

1

n
Yi +

l+1∑

m=2

f (j)m

1

n

n∑

i=1

YiQi(m−1)

)}

j=1,...,k

is a vector of smooth function of means of i.i.d. random variables. Analogously it can

be shown that
(
X̂
T
X̂/n

)−1
is a matrix with smooth functions of means i.i.d. random

variables as entries. From this it follows that ι̂lin
2

X(1),...,X(k)(Y |Q1, ..., Ql) meets the con-

ditions of the smooth function model. If we can show that ι̂lin
2

X(1),...,X(k)(Y |Q1, ..., Ql) →
ιlin

2

X(1),...,X(k)(Y |Q1, ..., Ql) the considerations in Hall (1988) and Hall (1992) concerning

the smooth function model give the second order accuracy of the BCa and the studen-

tized bootstrap interval for ιlin
2

X(1),...,X(k)(Y |Q1, ..., Ql). For the consistency we make the

following considerations. A direct conclusion of the proof of Lemma 1.13 (which is also

given in Appendix B) is that

ιlin
2

X(1),...,X(k)(Y |Q1, ..., Ql)

=

{
EP

(
PH⊥

2
X(j)

)
j=1,...,k

}{
EP

(
PH⊥

2
X(a)PH⊥

2
X(b)

)
a,b

}−1 {
EP

(
PH⊥

2
X(j)

)}T
j=1,...,k

.

(1.27)

As mentioned before we have

ι̂lin
2

X(1),...,X(k)(Y |Q1, ..., Ql) =
1

n
YT X̂

(
X̂
T
X̂/n

)−1 1

n
X̂
T
Y,

with

X̂ = X−Q(QTQ)−1QTX, where X = (X(1), ...,X(k)).

Using this notation we obtain

1

n
X̂
T
Y =

1

n

(
〈X(j),Y〉

)
j=1,...,k

− 1

n

(
〈X(j), PM2Y〉

)
j=1,...,k

=
1

n

(
〈X(j),Y〉

)
j=1,...,k

− 1

n

(
〈PM2X

(j),Y〉
)
j=1,...,k

=
1

n

(
〈PM⊥

2
X(j),Y〉

)
j=1,...,k

p→EP

(
PH⊥

2
X(j)Y

)
j=1,...,k

, (1.28)

where 〈·, ·〉 denotes the inner product in Rn. The convergence in (1.28) follows instantly
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from the convergence of the coefficients of the projection in Rn to those of the projection

in L2 (see for example Lemma 1.13). Let (ξ̂1, ..., ξ̂l+1) be the coefficients of the projection

of X(j) onto M2 and (ξ1, ..., ξl+1) the coefficients of the projection of X(j) onto H2. Then

we have

1

n
〈PM2X

(j),Y〉 =1

n

n∑

i=1


Yiξ̂1 +

l+1∑

j=2

ξ̂jQi(j−1)Yi


 = ξ̂1

1

n

n∑

i=1

Yi +

l+1∑

j=2

ξ̂j
1

n

n∑

i=1

Qi(j−1)Yi

p→ξ1EP(Y ) + EP


Y

l+1∑

j=2

ξjQj−1


 = EP

(
Y PH2X

(j)
)
,

thus, (1.28) holds. For 1
nX̂

T
X̂ we obtain

1

n
X̂
T
X̂ =

1

n

(
XT −XTQ(QTQ)−1QT

) (
X−Q(QTQ)−1QTX

)

=
1

n
XTX− 1

n
XTQ(QTQ)−1QTX

=

(
1

n
〈X(a),X(b)〉

)

a,b

−
(
1

n
〈X(a), PM2X

(b)〉
)

a,b

p→
{
EP

(
X(a)X(b)

)}
a,b

−
{
EP

(
X(a)PH2X

(b)
)}

a,b
(1.29)

=
{
EP

(
X(a)PH⊥

2
X(b)

)}
a,b

=
{
EP

(
PH⊥

2
X(a)PH⊥

2
X(b)

)}
a,b
, (1.30)

where the convergence in (1.29) follows analogous to that in (1.28). Combining (1.27),

(1.28) and (1.30) gives

ι̂lin
2

X(1),...,X(k)(Y |Q1, ..., Ql)
p→ ιlin

2

X(1),...,X(k)(Y |Q1, ..., Ql).

Thus, bootstrap BCa and studentized bootstrap confidence intervals for

ιlin
2

X(1),...,X(k)(Y |Q1, ..., Ql) based on ι̂lin
2

X(1),...,X(k)(Y |Q1, ..., Ql) are second order accurate.

From these intervals we can derive second order accurate confidence intervals for

ιlin
X(1),...,X(k)(Y |Q1, ..., Ql) by choosing the lower bound

lα =




0 if lbootα ≤ 0
√
lbootα if lbootα > 0

, (1.31)
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where lbootα is the bootstrap confidence bound for ιlin
2

X(1),...,X(k)(Y |Q1, ..., Ql). The second

order accuracy of this bounds is due to the second order accuracy of the bootstrap

bound, the monotony of
√· and the fact that the impact is non-negative. Analogously

to Section 1.7.5 one can see that the unsquared estimate ι̂lin
X(1),...,X(k)(Y |Q1, ..., Ql) also

fulfills the smooth function model, if ιlin
2

X(1),...,X(k)(Y |Q1, ..., Ql) 6= 0. Thus, we could also

use bootstrap bounds based on ι̂lin
X(1),...,X(k)(Y |Q1, ..., Ql) when performing a test for the

null-hypothesis ιlin
X(1),...,X(k)(Y |Q1, ..., Ql) = 0 prior to the calculation of the confidence

bounds (set the bound to be zero if the test does not reject).

In the same manner it can be shown that bootstrap BCa and studentized bootstrap

intervals for θlin
2

X(1),...,X(k)(Y |Q1, ..., Ql) based on θ̂lin
2

X(1),...,X(k)(Y |Q1, ..., Ql) are second order

accurate. Using the same transformation as in (1.31) we obtain confidence intervals for

θlin
X(1),...,X(k)(Y |Q1, ..., Ql).

1.9.4. Alternative Approach

Alternative partial mean impact

Another approach to quantify the influence of covariates X(1), ...,X(k) on Y which goes

beyond the possible influence of the other covariates Q1, ..., Ql is to regard the differ-

ence in the common influence of X(1), ...,X(k), Q1, ..., Ql and the common influence of

Q1, ..., Ql. Hence we look at

ιX(1),...,X(k),Q1,...,Ql
(Y )− ιQ1,...,Ql(Y ). (1.32)

This difference describes the additional maximum change in the mean of Y , when chang-

ing the distribution of X(1), ...,X(k), Q1, ..., Ql instead of Q1, ..., Ql in the population. It

is therefore a measure of the influence of X(1), ...,X(k) which goes beyond the influence

of Q1, ..., Ql. Moving to the linear versions of the common impacts leads to

ιlin
X(1),...,X(k),Q1,...,Ql

(Y )− ιlinQ1,...,Ql
(Y ).

Note that this difference is not necessarily a lower bound for the difference of the un-

restricted impacts (1.32). To obtain a lower bound for (1.32) one would need to have

a conservative estimate of ιX(1),...,X(k),Q1,...,Ql
(Y ) (which can be done by using the lin-

ear impact) and a consistent or anticonservative estimate of ιQ1,...,Ql(Y ). Moreover, to

be able to make use of the smooth function model asymptotic, we need to look at the
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difference of the squared impacts

ιlin
2

X(1),...,X(k),Q1,...,Ql
(Y )− ιlin

2

Q1,...,Ql
(Y ).

Since ι̂lin
2

X(1),...,X(k),Q1,...,Ql
(Y ) and ι̂lin

2

Q1,...,Ql
(Y ) both fulfill the smooth function model of

Hall (1988) and Hall (1992), their difference does so as well. This implies that bootstrap

BCa and studentized bootstrap intervals for ιlin
2

X(1),...,X(k),Q1,...,Ql
(Y )− ιlin

2

Q1,...,Ql
(Y ) based

on ι̂lin
2

X(1),...,X(k),Q1,...,Ql
(Y ) − ι̂lin

2

Q1,...,Ql
(Y ) are second order accurate. When regarding the

difference of the squared impacts it follows from orthogonality that

ιlin
2

X(1),...,X(k),Q1,...,Ql
(Y )− ιlin

2

Q1,...,Ql
(Y ) = ιlin

2

X(1),...,X(k)(Y |Q1, ..., Ql). (1.33)

Similar to the previous cases the smooth function model also applies to the difference

of the unsquared impacts, when both ιlin
X(1),...,X(k),Q1,...,Ql

(Y ) and ιlinQ1,...,Ql
(Y ) are strictly

positive.

Alternative partial mean slope

In the setup where X(1), ...,X(k) are functions of a single covariate X1 (assuming that

X(j) = X1 for one j), the partial absolute common mean slope was defined as

θX(1),...,X(k)(Y |Q1, ..., Ql) =
ιX(1),...,X(k)(Y |Q1, ..., Ql)

ιX(1),...,X(k)(X1|Q1, ..., Ql)
.

A straightforward application of the alternative approach to is then given by

θalt
X(1),...,X(k)(Y |Q1, ..., Ql) =

ιX(1),...,X(k),Q1,...,Ql
(Y )− ιQ1,...,Ql(Y )

ιX(1),...,X(k),Q1,...,Ql
(X1)− ιQ1,...,Ql(X1)

=
ιX(1),...,X(k),Q1,...,Ql

(Y )− ιQ1,...,Ql(Y )

SDP(X1)− ιQ1,...,Ql(X1)
.

It shows how much more the mean of Y can be changed by adding X(1), ...,X(k) to the

set of covariates relative to the excess in the maximum change of the mean of X1 when

adding those covariates. A linear version of this parameter is given by

θalt, lin
X(1),...,X(k)(Y |Q1, ..., Ql) =

ιlin
X(1),...,X(k),Q1,...,Ql

(Y )− ιlinQ1,...,Ql
(Y )

ιlin
X(1),...,X(k),Q1,...,Ql

(X1)− ιlinQ1,...,Ql
(X1)

=
ιlin
X(1),...,X(k),Q1,...,Ql

(Y )− ιlinQ1,...,Ql
(Y )

SDP(X1)− ιlinQ1,...,Ql
(X1)

.
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This can be estimated by

θ̂alt, lin
X(1),...,X(k)(Y |Q1, ..., Ql) =

ι̂lin
X(1),...,X(k),Q1,...,Ql

(Y )− ι̂linQ1,...,Ql
(Y )

ŜDP(X1)− ι̂linQ1,...,Ql
(X1)

,

where ŜDP(X1) = n−1
∑n

i=1(Xi1 − X̄1)
2. If we want to use the smooth function model

we need look at the squares of the impacts again. Thus, we consider the parameter

ιlin
2

X(1),...,X(k),Q1,...,Ql
(Y )− ιlin

2

Q1,...,Ql
(Y )

V arP(X1)− ιlin
2

Q1,...,Ql
(X1)

.

Orthogonality provides that this equals

ιlin
2

X(1),...,X(k)(Y |Q1, ..., Ql)

ιlin
2

X(1),...,X(k)(X1|Q1, ..., Ql)
= θlin

2

X(1),...,X(k)(Y |Q1, ..., Ql).

Thus, in the linear case, the alternative approach leads to similar results as the classical

approach. However, when moving away from linear restrictions, as will be done in

Section 3.2 this is no longer the case.

Partial coefficient for determination

The alternative approach enables us to define a partial measure of determination, namely

by
R2
X(1),...,X(k),Q1,...,Ql

−R2
Q1,...,Ql

1−R2
Q1,...,Ql

. (1.34)

Note, that this quantity is not defined for R2
Q1,...,Ql

= 1, however, in this case all variation

of EP(Y |X) can be explained by Q1, ..., Ql and one would not need to add further

variables to the set of explanatory variables. Hence, without loss of generality we will

assume R2
Q1,...,Ql

< 1 in the sequel. Furthermore, this definition is very similar to the

partial coefficient for determination of the linear regression which is for example defined

in Paulson (2007, Ch. 5). This quantity explains how much of the variation of Y that

could not be explained by Q1, ..., Ql can be explained by adding X(1), ...,X(k) to the

model. It lies between zero and one and is zero if and only if ιX(1),...,X(k),Q1,...,Ql
(Y ) =

ιQ1,...,Ql(Y ), which can be interpreted as that X(1), ...,X(k) do not have an effect on Y

which goes beyond the effect of Q1, ..., Ql. It is one if R2
X(1),...,X(k),Q1,...,Ql

= 1, which

means that adding X(1), ...,X(k) to the set of explanatory variables explains all variation

of EP(Y |X) that could not already be explained by Q1, ..., Ql alone. The linear version
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of (1.34) is given by

Rlin
2

X(1),...,X(k),Q1,...,Ql
−Rlin

2

Q1,...,Ql

1−Rlin
2

Q1,...,Ql

and can be estimated by its natural estimate

R̂lin
2

X(1),...,X(k),Q1,...,Ql
− R̂lin

2

Q1,...,Ql

1− R̂lin
2

Q1,...,Ql

.

In this setup as well, the smooth function model holds, leading to second order accurate

bootstrap BCa and studentized bootstrap intervals.

1.9.5. Example

In this section we want to investigate the difference between the two approaches to

quantify the influence of X1 on Y which goes beyond the possible influence of X2, ...,Xk

of the Sections 1.9.1 and 1.9.4. In this example we examine the case of two covariates

X1 and X2. For simplicity we only look at linear influences. Let

Y = a1X1 + a2X2 + ǫ,

where ǫ has mean zero and is independent of X1 and X2. Furthermore, assume that

EP(Xi) = 0 and V arP(Xi) = 1 for i = 1, 2 as well as CorrP(X1,X2) = ρ. The common

linear mean impact of X1 and X2 on Y is then given as

ιlinY (X1,X2) =
√
V arP (a1X1 + a2X2) =

√
a21 + 2a1a2ρ+ a22.

The (linear) mean impact of X2 on Y can be seen to equal

ιlinY (X2) =

∣∣∣∣∣EP

(
Y
X2 − EP(X2)√
V arP(X2)

)∣∣∣∣∣ = |a1ρ+ a2| .

Hence the alternative approach to the quantification of the influence of X1 on Y which

goes beyond the possible influence of X2 gives

ιlinY (X1,X2)− ιlinY (X2) =
√
a21 + 2a1a2ρ+ a22 − |a1ρ+ a2| .

Note that, if a1 = 0 also ιlinY (X1,X2)− ιlinY (X2) = 0. However, if a1 6= 0 this expression

depends on the coefficient a2 of X2.
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The partial mean impact of interest is in this setup given by

ιlinY :X2
(X1) =

∣∣∣∣∣∣
EP


Y

PH⊥
2
X1√

V arP(PH⊥
2
X1)



∣∣∣∣∣∣
= |a1|

√
1− ρ2,

where H2 = span(1,X2). One can see that the partial mean impact is independent of

a2 and is therefore preferred to the alternative approach.

In simulations no substantial differences between the alternative approach and the com-

mon partial mean impact approach could be discovered for the scenario of this example.

Therefore, the simulation results are not shown here. However, in Section 4 additional

simulation results for other scenarios are provided.

1.10. Application of Impact analysis to data with a zero-inflated covariate

Another example for the application of the impact analysis and the smooth function

model is given, when the variable X has a compound distribution with a probability

mass at zero and an otherwise continuous distribution. We restrict ourselves to the

case where we have a metric target variable Y and a single independent variable X. In

this case an ordinary linear regression is questionable, because the part of the data for

which X is zero has a strong influence on the fit for the part of the data where X 6= 0.

Hence, the results of a linear regression are difficult to interpret. With the help of the

impact analysis we can overcome this problem. We do so by estimating the mean impact

(conservatively) by

ι̂X(Y ) =
1

n

n∑

i=1

Yi
Ŷi − ¯̂

Y√
n−1

∑n
i=1(Ŷi −

¯̂
Y )2

, (1.35)

where the prognoses Ŷi are equal to the mean of all observations Yi for which Xi = 0, if

Xi = 0 and equal to the prognoses of a linear regression with all data-points for which

X 6= 0, if X 6= 0. This means that we split the data in the parts where Xi = 0 and

Xi 6= 0 and fit different models in each part. Formally, we can obtain these prognoses by

a linear regression with covariates 1{X=0},1{X 6=0}, X without intercept. Obviously the

estimate (1.35) is the estimate of the common linear mean impact of 1{X=0},1{X 6=0},X.

Hence, by the argumentation of Section 1.7 we obtain that its square fulfills the smooth

function model and that it is consistent for

ι
1{X=0},1{X 6=0},X(Y ) =

√
V arP(PHY ),
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with H = span(1{X=0}, 1{X 6=0}, X). Hence Bootstrap BCa and studentized bootstrap

intervals are second order accurate for the squared common impact. Transformation of

the confidence bounds yields confidence bounds for the common mean impact itself.

Note that the linear fit in the data where X 6= 0 can be generalized to non-linear

fits of polynomial regression and spline-methods with fixed knots (or any other additive

model, namely by adding the required basis terms to the model) without affecting the

theoretical results. When doing so, one has to keep in mind, that it is necessary to

multiply the resulting basis-terms by 1{X 6=0} in order to perform the fitting only in the

subset of the data, where X 6= 0. Another advantage of the splitting of the data set is

that we can now use transformations to the data in one subset of the data which was

not possible on the whole data set (e.g. we could use a log-transformation for X 6= 0

and then fit models in log(X)). This means that the impact analysis gives us the ability

to interpret models (namely by the estimated mean impact as the inner product of Y

and the standardized prognoses) that were hardly interpretable before.

Table 8 gives the simulation results of 10,000 simulation runs with n = 100 observa-

tions. Compared are the classical linear regression with robust variance estimate and

the application of the mean impact analysis described in this section (prognoses taken

from the linear regression independent variables 1{X=0}, 1{X 6=0}, X). The test for the

impact analysis is based on basic bootstrap intervals with two pre-performed tests (to

check if the impact is larger than zero). Performed were the test of Section 1.7.1 and

a global F-test from linear regression. Further details on this tests can be found in

Section 4.1.2, where different methods for the calculation of confidence intervals for the

linear common mean impact are compared. One can see that in the models I-III (defined

below) the impact analysis outperforms the linear regression in terms of rejection prob-

ability by 9%(Model II) − 84%(Model I). In Model IV the coefficient from the linear

regression and the mean impact are both equal to zero. Therefore, the given rejection

probability is equal to the type-I-error. One can see that linear regression suffers from

slight type-I-error inflation, whereas the impact analysis does not.
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Model p0 Rejection Probability Parameter Estimate
Linear model Impact analysis Regression coefficient Mean impact

I 0.3 0.106 1.000 0.066 0.648
I 0.5 0.159 1.000 -0.156 0.612
II 0.3 0.898 0.983 0.534 0.512
II 0.5 0.740 0.935 0.424 0.437
III 0.3 0.876 1.000 1.339 1.617
III 0.5 0.528 1.000 0.885 1.359
IV 0.3 0.060 0.039 0.001 0.126
IV 0.5 0.067 0.044 0.005 0.127

Table 8: Simulation results comparing classical linear regression with the robust variance
estimate to impact analysis in four different set-ups (Model I: Y = 2 ·1{X=0} +
X+ǫ; Model II: Y = 1{X=0}+X+ǫ ; Model III: Y = 2 ·1{X=0}+X

2+ǫ; Model
IV: Y = ǫ). In each scenario X = 0 with probability p0 and follows a log-normal
distribution otherwise. The error ǫ ∼ N(0, 1) is independent from X. Given
are the rejection probabilities (tests performed at significance level 0.05) of the
hypothesis that the parameters (the regression coefficient respectively the mean
impact) are zero.
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2. Non-linear impact analysis

The theoretical framework derived in White (1980a), White (1980b), Scharpenberg

(2012) and Brannath and Scharpenberg (2014) gives a justification for using linear re-

gression techniques even when the assumptions of the linear model are not valid. In this

case one estimates the linear impact, which is a lower bound for the mean impact. This

implies that even when the assumptions of linear regressions are violated using linear

regression techniques in estimation of the mean impact is a conservative method.

In the further course of this thesis we will use non-linear and non-parametric regression

techniques such as Splines and Kernel Smoothers (cf. Sections A.1.2 and A.1.1) to

estimate non-linear versions of the mean impact. We will restrict ourselves to the case

of one observed covariate and, since according to (4) of Theorem 1.2, the mean impact

is given by

EP

(
Y
EP(Y |X)− EP(Y )√
V arP(EP(Y |X))

)
,

estimate the mean impact by

ι̂RX(Y ) =
1

n

n∑

i=1

Yi
δ̂(Xi)− n−1

∑n
j=1 δ̂(Xj)√

1
n

∑n
i=1

{
δ̂(Xi)− n−1

∑n
j=1 δ̂(Xj)

}2
,

where δ̂(Xi) will be estimates of E(Y |X) at the Xi obtained by methods like natural

cubic splines, polynomial regression or kernel smoothers. Furthermore, we will derive

the asymptotic distribution of these estimators so that confidence intervals for the mean

impact can be derived.

Another advantage of using non-linear or non-parametric regression techniques to

estimate the mean impact is that users of these methods can easily compute an estimate

and a confidence bound for the mean impact when fitting curves to their data. Hence,

whenever fitting curves to the data we get a parameter quantifying the influence of the

covariate X on Y .

2.1. Impact analysis based on polynomials and splines

With the help of the restricted common mean impact defined in Section 1.7 we are able

to investigate the common linear influence of two ore more covariates X(1), ...,X(k).

An application of this scenario involves polynomial fitting. In this case the variables

X(1), ...,X(k) are taken to be 1,X,X2, ...,X(k−1). With this set of variables we can detect
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polynomial influences of X up to (k − 1)st order. We expect a restricted impact based

on polynomials to be closer to the true impact than the linear mean impact. Another

way for covering non-linear influences of a covariate X on the target variable Y enabled

by the setup provided here is fitting natural splines. For natural cubic splines with

fixed knot sequence ζ1, ..., ζm we obtain according to (Hastie et al., 2001, p.121 f) that

X(1), ...,X(k) = N1(X), ..., Nm+2(X), where

N1(X) = 1, N2(X) = X, Nl+2(X) = dl(X) − dm−1(X),

for l = 1, ...,m with

dl(X) =
(X − ζl)

3
+ − (X − ζm)

3
+

ζm − ζl
,

as mentioned in Appendix A.1.2. The problem of how to choose the knot sequence

immediately arises. A data dependent choice of the knots, like empirical quantiles of

X will usually cause a violation of the smooth function model, since then Nl+2(Xi)

are not i.i.d. anymore. This means that the theoretical results derived here are not valid

anymore. However, simulations indicate that the spline based impact analysis still works

(in terms of coverage probability of confidence intervals) when employing data dependent

knot sequences. When choosing knot sequences one has to keep in mind that it must be

guaranteed that all knots lie inside of the range of the observations X. Especially when

using bootstrap methods this condition can easily fail when drawing from the observed

data.

The setup provided above gives us not only the opportunity to detect non-linear

influences of one covariate but also to investigate the common non-linear influence of

two ore more covariates X1, ...,Xk on the target Variable Y . To this end we can fit

polynomials in X1, ...,Xk and proceed in the same way as above. Another way to detect

non-linear influences of several covariates is fitting multidimensional splines with pre-

chosen knot-grid. The same knot-choosing problems as in the univariate case arise here

too. One should be aware that the number of basis functions (when for example using

the tensor product basis already introduced in Section A.1.2) grows exponentially fast

with the number of covariates included (Hastie et al., 2001, p. 139).

All setups described here can trivially also be applied to the absolute mean slope.

2.2. Kernel-method-based impacts

In this section we write Z1 = (X1, Y1), Z2 = (X2, Y2), ... for the i.i.d. observations of the

random variables X and Y . We are now interested in estimating the mean impact of a
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single covariate X on Y (The case of a common impact of several covariates is a straight-

forward generalization of the theory derived here an will be discussed in Section 2.2.6).

The definition of the mean impact ιX(Y ) suggests the use of an estimator which has the

form
1

n

n∑

i=1

Yi
δ̂(Xi)− δ̄√

1
n

∑n
i=1

(
δ̂(Xi)− δ̄

)2 , (2.1)

where δ̂ is a perturbation estimated from the data and δ̄ = 1
n

∑n
i=1 δ̂(Xi). In the following

sections we will choose perturbations δ̂ based on kernel smoothers and other kernel

methods. Application of the theory of U-statistics and the delta method will yield

asymptotic normality of this estimators. Furthermore, as pointed out in Section A.3, it

follows from Bickel and Freedman (1981) and an additional argument that the bootstrap

is valid in these cases.

All cases which are considered below use kernels with fixed bandwidth. For practical

application of the derived methods there is the difficulty to choose the bandwidth. For

the argumentation for the asymptotic normality derived below the bandwidth must be

chosen data independent. For the comparison of methods in Section 4 we will compute

the restricted impacts for several fixed bandwidths h as well as for data dependent

bandwidths.

2.2.1. Kernel-smoother-based impact analysis

We now use a perturbation δ̂ inspired by a Nadaraya-Watson kernel regression estimator.

Let

δ̂(x) =
1

n

n∑

j=1

Kh(x−Xj)Yj , (2.2)

where Kh(u) = K(u/h) is a symmetric kernel weight function with fixed bandwidth

h > 0. Note that we obtain δ̂(x) from the Nadaraya-Watson kernel regression estimator

m̂(x) =
1

n

n∑

j=1

Kh(x−Xj)Yj
n−1

∑n
l=1Kh(x−Xl)

by multiplying to each value m̂(x) the kernel density estimator

f̂(x) =
1

n

n∑

l=1

Kh(x−Xl)
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of the density f of X. This means that values of Y whose X values lead to higher

values of f(X) are given a higher weight than in the kernel regression estimator. A

natural estimator for a restricted kernel smoother-based impact is then as mentioned

before given by

1

n

n∑

i=1

Yi
δ̂(Xi)− δ̄√

1
n

∑n
i=1

(
δ̂(Xi)− δ̄

)2 ,

where δ̄ = 1
n

∑n
i=1 δ̂(Xi). We name this estimator ι̂ksX (Y ) (ks for kernel smoother) and

rewrite it in the following way:

ι̂ksX (Y ) =
ι̃1 − ι̃2√
ι̃3 − ι̃24

,

where ι̃1 =
1
n

∑n
i=1 Yiδ̂(Xi), ι̃2 =

1
n

∑n
i=1 Yiδ̄, ι̃3 =

1
n

∑n
i=1 δ̂(Xi)

2 and ι̃4 =
1
n

∑n
i=1 δ̂(Xi).

We aim to show that ι̃ = (ι̃1, ..., ι̃4)
T is essentially a third order U-statistic and therefore

asymptotically normal. Application of the delta method will yield asymptotic normality

of ι̂ksX (Y ).

For the proof of the asymptotic normality we need the following lemma and assumption.

Lemma 2.1. Let w : Rm → Rp be a permutation-symmetric function of the random

vectors Zj1 , ..., Zjm such that EP (w(Zj1 , ..., Zjm)) and EP

(
w2(Zj1 , ..., Zjm)

)
exist for all

(j1, ..., jm) ∈ {1, ..., n}m. Then we have that

√
n

1

nm

n∑

j1=1

· · ·
n∑

jm=1

w(Zj1 , ..., Zjm) =
√
n

1

nm

∑

C({j1,...,jm})
w(Zj1 , ..., Zjm) + op(1),

where C ({j1, ..., jm}) is the set of all combinations which can be drawn without replace-

ment from {1, ..., n} in m draws.

Proof. Because of the symmetry of w we can write

√
n

nm

n∑

j1=1

· · ·
n∑

jm=1

w(Zj1 , ..., Zjm)

=

√
n

nm

∑

C({j1,...,jm})
w(Zj1 , ..., Zjm)

+
m−1∑

k=1

∑

a∈A(k)
ϕ(a)

√
n

nm

∑

C({j1,...,jk})
w(Zj1 , ..., Zj1︸ ︷︷ ︸

a1

, ..., Zjk , ..., Zjk︸ ︷︷ ︸
ak

),
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where A(k) = {(a1, ..., ak) :
∑k

l=1 al = m,al ∈ N>0}, ϕ(a) is independent of n, and Zjl
appears al-times in the function w. Hence, we only need to show, that for given k and

a ∈ A(k) the term

√
n

nm

∑

C({j1,...,jk})
w(Zj1 , ..., Zj1 , ..., Zjk , ..., Zjk )

converges to zero in probability. At first we rewrite this expression as

√
n

nm

∑

C({j1,...,jk})
w∗(Zj1 , ..., Zjk),

where w∗(Zj1 , ..., Zjk ) = w(Zj1 , ..., Zj1 , ..., Zjk , ..., Zjk) with Zjl appearing al-times. Ob-

viously, with S ({1, ..., k}) being the set off all permutations of {1, ..., k} this equals

√
n

nm

∑

C({j1,...,jk})

1

k!

∑

π∈S({1,...,k})
w∗(Zjπ(1) , ..., Zjπ(k))

=

√
n

nm
k!

∑

j1<...<jk

1

k!

∑

π∈S({1,...,k})
w∗(Zjπ(1) , ..., Zjπ(k))

=

√
n

nm−k
n!

(n− k)!nk

(
n

k

)−1 ∑

j1<...<jk

1

k!

∑

π∈S({1,...,k})
w∗(Zjπ(1) , ..., Zjπ(k)).

Sincem−k > 1/2, the term
√
n

nm−k converges to zero. Furthermore, we have n!
(n−k)!nk → 1.

With the assumptions of this lemma, Theorem A.7 gives that

(
n

k

)−1 ∑

j1<...<jk

1

k!

∑

π∈S({1,...,k})
w∗(Zjπ(1) , ..., Zjπ(k))

converges to its (existing) mean and is therefore bounded in probability. We obtain

√
n

nm

∑

C({j1,...,jk})
w(Zj1 , ..., Zj1 , ..., Zjk , ..., Zjk) = op(1).

Assumption 2.2. Let

g1(Zi, Zj , Zl) = Kh(Xi −Xj)YiYj, g2(Zi, Zj , Zl) = Kh(Xj −Xl)YiYl,
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g3(Zi, Zj , Zl) = Kh(Xi −Xj)YjKh(Xi −Xl)Yl, g4(Zi, Zj , Zl) = Kh(Xi −Xj)Yj .

Furthermore, let g = (g1, ..., g4) and

w(Zi, Zj , Zl) =
1

6
{g(Zi, Zj , Zl) + g(Zi, Zl, Zj) + g(Zj , Zi, Zl) (2.3)

+ g(Zj , Zl, Zi) + g(Zl, Zi, Zj) + g(Zl, Zj , Zi)}.

Assume that

EP(w(Zi, Zj , Zl)) and EP(w
2(Zi, Zj , Zl))

exist for all (i, j, l) ∈ {1, ..., n}3 and define ϑ = EP(w(Zi, Zj , Zl)) for i 6= j 6= l 6= i.

Theorem 2.3. Under Assumption 2.2 we have that

√
n(ι̂ksX (Y )− ιksX (Y ))

L→ N(0, σ2),

with σ2 = DF (ϑ)TV DF (ϑ),

F
(
(a1, ..., a4)

T
)
7→ a1 − a2√

a3 − a24
,

ιksX (Y ) = F (ϑ) and

V = 9EP

(
w̃(Zi)w̃

T (Zi)
)
,

for w̃(Zi) = EP(w(Zi, Zj , Zl)|Zi)− ϑ.

Proof. With the notation of this section we have

ι̃1 =
1

n

n∑

i=1

Yiδ̂(Xi) =
1

n2

n∑

i=1

n∑

j=1

Kh(Xi −Xj)YiYj︸ ︷︷ ︸
=g1(Zi,Zj ,Zl)

=
1

n3

n∑

i=1

n∑

j=1

n∑

l=1

w1(Zi, Zj , Zl).

Similarly,

ι̃2 =
1

n

n∑

i=1

Yiδ̄ =
1

n3

n∑

i=1

n∑

j=1

n∑

l=1

Kh(Xj −Xl)YiYl︸ ︷︷ ︸
=g2(Zi,Zj ,Zl)

=
1

n3

n∑

i=1

n∑

j=1

n∑

l=1

w2(Zi, Zj , Zl),

ι̃3 =
1

n3

n∑

i=1

n∑

j=1

n∑

l=1

Kh(Xi −Xj)YjKh(Xi −Xl)Yl︸ ︷︷ ︸
=g3(Zi,Zj ,Zl)

=
1

n3

n∑

i=1

n∑

j=1

n∑

l=1

w3(Zi, Zj , Zl)
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and

ι̃4 =
1

n

n∑

i=1

δ(Xi) =
1

n2

n∑

i=1

n∑

j=1

Kh(Xi −Xj)Yj︸ ︷︷ ︸
=:g4(Zi,Zj,Zl)

=
1

n3

n∑

i=1

n∑

j=1

n∑

l=1

w4(Zi, Zj , Zl).

Hence, we obtain for ι̃ = (ι̃1, ..., ι̃4)
T that

√
nι̃ =

√
n

n3

n∑

i=1

n∑

j=1

n∑

l=1

w(Zi, Zj , Zl).

By Lemma 2.1 and Assumption 2.2 we obtain

√
nι̃ =

√
n

n3

∑∑∑

i6=j 6=l 6=i
w(Zi, Zj , Zl) + op(1)

=

√
n

n3
6
∑∑∑

i<j<l

w(Zi, Zj , Zl) + op(1)

=
n(n− 1)(n − 2)

n3
√
n

(
n

3

)−1∑∑∑

i<j<l

w(Zi, Zj , Zl)

︸ ︷︷ ︸
=:Un

+op(1)

where Un is a third-order U-statistics. Consequently, we have

√
n(ι̃− ϑ) =

n(n− 1)(n − 2)

n3
√
nUn + op(1) −

√
nϑ

=
n(n− 1)(n− 2)

n3︸ ︷︷ ︸
→1

√
n(Un − ϑ)︸ ︷︷ ︸
L→N(0,V )

+op(1) +

(
n(n− 1)(n − 2)

n3
√
n−

√
n

)
ϑ

︸ ︷︷ ︸
→0

L−→N(0, V )

with

V = 9EP

(
w̃(Zi)w̃

T (Zi)
)

(2.4)

where w̃(Zi) = EP(w(Zi, Zj , Zl)|Zi)− ϑ. Since the mapping

F
(
(a1, ..., a4)

T
)
7→ a1 − a2√

a3 − a24

is continuously differentiable application of the delta-method with ιksX (Y ) = F (ϑ) yields
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√
n(ι̂ksX (Y )− ιksX (Y )) =

√
n (F (ι̃)− F (ϑ))

L→ DF (ϑ)TN(0, V ) = N(0, σ2), (2.5)

where σ2 = DF (ϑ)TV DF (ϑ).

The next lemma shows how σ2 can be consistently estimated.

Lemma 2.4. σ2 can be consistently estimated by

σ̂2 = DF (ι̃)T V̂ DF (ι̃),

where

V̂ = 9



(
n

5

)−1 ∑

i<j<l<a<b

1

5!

∑

π∈S({i,j,l,a,b})
g̃(Zπ(i), Zπ(j), Zπ(l), Zπ(a), Zπ(b))− ι̃ι̃T




and g̃(Zi, Zj , Zl, Za, Zb) = w(Zi, Zj , Zl)w
T (Zi, Za, Zb).

Proof. Since ι̃ is consistent for ϑ, DF (ϑ) can be consistently estimated by DF (ι̃). To

find a consistent estimator for V we make the following considerations (which are similar

to those in Kowalski and Tu (2008, p. 259))

V/9 =EP

(
w̃(Zi)w̃

T (Zi)
)

=EP

(
EP {w(Zi, Zj , Zl)|Zi}EP

{
wT (Zi, Zj , Zl)|Zi

})

− 2ϑEP (EP {w(Zi, Zj , Zl)|Zi}) + ϑϑT

=EP

(
EP {w(Zi, Zj , Zl)|Zi}EP

{
wT (Zi, Zj , Zl)|Zi

})
− ϑϑT

=EP

(
EP

{
w(Zi, Zj , Zl)w

T (Zi, Za, Zb)|Zi
})

− ϑϑT

=EP

(
w(Zi, Zj , Zl)w

T (Zi, Za, Zb)
)

︸ ︷︷ ︸
=:g̃(Zi,Zj ,Zl,Za,Zb)

−ϑϑT ,

where a /∈ {i, j, l}, b /∈ {i, j, l, a}. By the theory of U-statistics (cf. Kowalski and Tu

(2008)) EP (g̃(Zi, Zj , Zl, Za, Zb)) can be consistently estimated by

(
n

5

)−1 ∑

i<j<l<a<b

˜̃g(Zi, Zj , Zl, Za, Zb),
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where ˜̃g(Zi, Zj , Zl, Za, Zb) is a symmetric version of g̃(Zi, Zj , Zl, Za, Zb) say

˜̃g(Zi, Zj , Zl, Za, Zb) =
1

5!

∑

π∈S({i,j,l,a,b})
g̃(Zπ(i), Zπ(j), Zπ(l), Zπ(a), Zπ(b))

with S ({i, j, l, a, b}) being the set of all permutations of {i, j, l, a, b}. Hence a consistent

estimator for V is given by

V̂ = 9



(
n

5

)−1 ∑

i<j<l<a<b

1

5!

∑

π∈S({i,j,l,a,b})
g̃(Zπ(i), Zπ(j), Zπ(l), Zπ(a), Zπ(b))− ι̃ι̃T


 (2.6)

which leads to

σ̂2 = DF (ι̃)T V̂ DF (ι̃) (2.7)

as consistent estimator for σ.

Combining (2.5) and (2.7) we obtain

√
n
ι̂ksX (Y )− ιksX (Y )

σ̂

L→ N(0, 1).

Once we have an asymptotic normality result like that, an asymptotic level α confidence

interval for ιksX (Y ) is given by

CI = [ι̂ksX (Y )− z1−ασ̂/
√
n,∞) (2.8)

where z1−α is the 1− α quantile of the standard normal distribution.

It will turn out in the simulations of Section 4 that the estimator ι̂ksX (Y ) may be

anti conservative especially when ιksX (Y ) = 0. In a late state of this thesis we became

aware of the work of Doksum and Samarov (1995), which deals with obtaining reliable

estimators for a nonparametric coefficient of determination. Their results suggest that

using a “leave-one-out” estimator where we replace δ̂(Xi) in (2.2) by

δ̂′(Xi) =
1

n− 1

∑

j 6=i
Kh(Xi −Xj)Yj ,

thus leaving the i-th observation of Y out, leads to more conservative estimates. A proof

of asymptotic normality of the leave-one-out estimator in our case can be done in the

same spirit as the proof of Theorem 2.3. In fact, Lemma 2.1 would only be needed to

ensure that
√
nι̃3 is a U-statistics plus a term which is op(1). The other terms can easily
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be seen to be U-Statistics without this lemma. The leave-one-out type of estimation can

also be applied to all the following Kernel-method based estimators for the mean impact.

The investigation of the leave-one-out estimator will not be subject of this thesis, but is

clearly an interesting topic for further research.

We now come back to the estimator using all observations. We have to check, if

ιksX (Y ) is a lower bound for the “true” impact ιX(Y ). This would imply that the con-

fidence interval in (2.8) is conservative for ιX(Y ). To this end we make the following

considerations. We have that

ϑ = EP(w(Zi, Zj , Zl)) =




EP(Kh(Xi −Xj)YiYj)

EP(Kh(Xj −Xl)YlYi)

EP(Kh(Xi −Xj)Kh(Xi −Xl)YjYl)

EP(Kh(Xi −Xj)Yj)



.

From this it follows that

ϑ1 − ϑ2

=EP(YiKh(Xi −Xj)Yj)− EP(Yi)EP(Kh(Xj −Xl)Yj)

=EP {EP[YiKh(Xi −Xj)Yj |Xi]} −EP(Yi)EP {EP[Kh(Xj −Xl)Yj |Xi]}
=EP {EP(Yi|Xi)EP[Kh(Xi −Xj)Yj |Xi]} − EP(Yi)EP {EP[Kh(Xj −Xl)Yj |Xi]}
=EP {YiEP[Kh(Xi −Xj)Yj |Xi]} −EP(Yi)EP {EP[Kh(Xj −Xl)Yj |Xi]}
=CovP(Yi, EP[Kh(Xi −Xj)Yj |Xi])

=EP {Yi [EP(Kh(Xi −Xj)Yj|Xi)− EP(EP(Kh(Xi −Xj)Yj|Xi))]} ,

where the third equality follows from EP(EP(Y |X)h(X)) = EP(EP[Y h(X)|X]) =

EP(Y h(X)), for every measurable function h (see for example Klenke (2008)). Ad-

ditionally, we have

ϑ3 − ϑ24

=EP(Kh(Xi −Xj)YjKh(Xi −Xl)Yl)− EP(Kh(Xi −Xj)Yj)
2

=EP {EP[Kh(Xi −Xj)Yj|Xi]EP[Kh(Xi −Xl)Yl|Xi]} − EP {EP[Kh(Xi −Xj)Yj |Xi]}2

=EP

{
EP[Kh(Xi −Xj)Yj |Xi]

2
}
− EP {EP[Kh(Xi −Xj)Yj|Xi]}2

=V arP (EP{Kh(Xi −Xj)Yj |Xi}) .
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Hence

ιksX (Y ) =
ϑ1 − ϑ2√
ϑ3 − ϑ24

= EP

{
Y
δ(X) − EP(δ(X))√

V arP(X)

}
,

where δ(X) = EP {Kh(X −Xj)Yj |X},

≤ sup
δ∈L2

P
(R)

EP

{
Y
δ(X) − EP(δ(X))√

V arP(δ(X))

}
= ιX(Y ).

Thus ιksX (Y ) ≤ ιX(Y ) and (2.8) is a (potentially conservative) asymptotic level α confi-

dence interval for ιX(Y ).

Since the computation of σ̂ in (2.7) requires substantial computational effort for typical

n it would be more convenient to use bootstrap methods to calculate a confidence interval

for ιksX (Y ). In order to establish the consistency of the bootstrap in this setup we will

need a “bootstrap version” of Lemma 2.1.

Lemma 2.5. Let w : Rm → Rp be a permutation-symmetric function of the random

vectors Zj1 , ..., Zjm such that EP (w(Zj1 , ..., Zjm)) and EP

(
w2(Zj1 , ..., Zjm)

)
exist for all

(j1, ..., jm) ∈ {1, ..., n}m. Furthermore, let Z∗
1 , ..., Z

∗
n be bootstrap repetitions of Z1, ..., Zn,

i.e. i.i.d. random vectors which are distributed according to the empirical distribution

function Fn of Z1, ..., Zn. Then we have for almost all sequences Z1, Z2, ... that

√
n

1

nm

n∑

j1=1

· · ·
n∑

jm=1

w(Z∗
j1 , ..., Z

∗
jm) =

√
n

1

nm

∑

C({j1,...,jm})
w(Z∗

j1 , ..., Z
∗
jm) + op|Z(1),

where

An = op|Z(1) ⇔ P(|An| ≥ ǫ|Z1, ..., Zn) → 0 ∀ǫ > 0, almost surely

and C ({j1, ..., jm}) is the set of all combinations which can be drawn without replacement

from {1, ..., n} in m draws.

Proof. By the same argumentation as in the proof of Lemma 2.1 it suffices to show that

for a given integer k with 1 ≤ k ≤ m− 1 and

a ∈ A(k) =

{
(a1, ..., ak) :

k∑

l=1

al = m,al ∈ N>0

}
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the expression √
n

nm

∑

C({j1,...,jk})
w(Z∗

j1 , ..., Z
∗
j1 , ..., Z

∗
jk
, ..., Z∗

jk
),

where Z∗
jl
appears al times, converges to zero in probability given Z1, ..., Zn for almost

all Z1, Z2, .... We can rewrite this as

√
n

nm−k
n!

(n− k)!nk

(
n

k

)−1 ∑

j1<...<jk

1

k!

∑

π∈S({1,...,k})
w∗(Z∗

jπ(1)
, ..., Z∗

jπ(k)
)

︸ ︷︷ ︸
ha(Gn)

, (2.9)

where Gn is the empirical distribution function of Z∗
1 , ..., Z

∗
n and w∗(Z∗

j1
, ..., Z∗

jk
) =

w(Z∗
j1
, ..., Z∗

j1
, ..., Z∗

jk
, ..., Z∗

jk
) with Z∗

jl
appearing al-times. With the notation

ha(Fn) =

(
n

k

)−1 ∑

j1<...<jk

1

k!

∑

π∈S({1,...,k})
w∗(Zjπ(1) , ..., Zjπ(k))

we obtain that (2.9) equals

√
n

nm−k
n!

(n− k)!nk
(ha(Gn)− ha(Fn)) +

√
n

nm−k
n!

(n− k)!nk
ha(Fn).

One can see that
√
n

nm−k
n!

(n−k)!nk converges to zero. According to Bickel and Freedman

(1981) we have that the term (ha(Gn)− ha(Fn)) is op|Z(1) for almost all Z1, Z2, ... .

Lemma 2.1 implies that
√
n

nm−k
n!

(n−k)!nkha(Fn) is op|Z(1) for almost all Z1, Z2, ... too. Hence

the statement of the Lemma is shown.

Theorem 2.6. Let ι̂ks
∗

X (Y ) be ι̂ksX (Y ) based on the bootstrap sample Z∗
1 , ..., Z

∗
n. The

conditional distribution of
√
n(ι̂ks

∗

X (Y ) − ι̂ksX (Y )) (given Z1, ..., Zn) and the distribution

of
√
n(ι̂ksX (Y )− ιksX (Y )) converge to the same limit for almost all Z1, Z2, ... .

Proof. Let ι̃∗ be ι̃ based on the bootstrap sample Z∗
1 , ..., Z

∗
n. Performing the same cal-

culations as in the proof of Theorem 2.3 and replacing Lemma 2.1 by Lemma 2.5 in this

argumentation we obtain for almost all sequences Z1, Z2, ... and all a ∈ R4

P
(√
n(ι̃∗ − ι̃) ≤ a|Z1, ..., Zn

)

=P

(
n(n− 1)(n − 2)

n3
√
n (h(Gn)− h(Fn)) + op|Z(1) ≤ a

∣∣∣∣Z1, ..., Zn

)
→ Φ0,V (a),
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where

h(Gn) =

(
n

3

)−1∑∑∑

i<j<l

w(Z∗
i , Z

∗
j , Z

∗
l ), h(Fn) =

(
n

3

)−1∑∑∑

i<j<l

w(Zi, Zj , Zl),

with w from Assumption 2.2 and Φ0,V (a) is the distribution function of N(0, V ) and

V is as in (2.4). The convergence to the normal distribution follows from Bickel and

Freedman (1981). Application of the delta-method yields that for almost all sequences

Z1, Z2, ... and all b ∈ R

P

(√
n(ι̂ks

∗

X (Y )− ι̂ksX (Y )) ≤ b
∣∣∣Z1, ..., Zn

)
→ Φ0,σ2(b),

with Φ0,σ2 being the distribution function ofN(0, σ2), σ2 from (2.5) and ι̂ks
∗

X (Y ) being the

bootstrap version of ι̂ksX (Y ). Hence, the conditional distribution of
√
n(ι̂ks

∗

X (Y )− ι̂ksX (Y ))

(given Z1, ..., Zn) and the distribution of
√
n(ι̂ksX (Y )− ιksX (Y )) converge to the same limit

for almost all Z1, Z2, ... .

Theorem 2.6 states that the bootstrap is consistent for the kernel smoother based

impact. This consistency of the bootstrap justifies the use of bootstrap confidence in-

tervals.

Another possibility to reduce the computation time for the variance estimator (2.7) is

to modify the covariance estimator V̂ . We will show that it is sufficient to take the first

sum in (2.6) not over all i < j < l < a < b but to sample from these combinations of

indices in a suitable manner for the estimator to remain consistent. To this end we state

the following lemma.

Lemma 2.7. Let

Σ̃ =
1

B

∑

(i,j,k,a,b)∈W

1

5!

∑

π∈S({i,j,l,a,b})
g̃(Zπ(i), ..., Zπ(b))

︸ ︷︷ ︸
v(i,...,b)

,

where W = {W1, ...,WB} and the Wi are sampled without replacement (using a uniform

distribution) from C5
n := {i < j < l < a < b : i, ..., b ∈ {1, ..., n}}. Let further

(n
5

)
/B → 1

for n→ ∞. Then we have

Σ̂− Σ̃
p→ 0,
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where

Σ̂ =

(
n

5

)−1 ∑

i<j<l<a<b

v(i, ..., b)

is as in (2.6).

Proof. We have that

Σ̂− Σ̃ =

(
n

5

)−1 ∑

(i,...,b)∈C5
n

v(i, ..., b) − 1

B

∑

(i,...,b)∈W
v(i, ..., b)

=

(
1−

(n
5

)

B

)(
n

5

)−1 ∑

(i,...,b)∈C5
n

v(i, ..., b)

+
1

B


 ∑

(i,...,b)∈C5
n

v(i, ..., b) −
∑

(i,...,b)∈W
v(i, ..., b)




=

(
1−

(n
5

)

B

)
Σ̂ +

1

B

∑

(i,...,b)∈C5
n\W

v(i, ..., b).

The term 1 −
(n
5

)
/B converges to zero, Σ̂ is as seen above consistent for some finite

matrix and
∑

(i,...,b)∈C5
n\W v(i, ..., b) converges to zero, since |C5

n \W | =
(n
5

)
− B → 0.

Hence the statement of the lemma holds.

From this lemma it follows that we can replace Σ̂ by Σ̃ in the estimation of the variance

σ̂2 without losing the consistency of the estimator. Choosing this procedure leads to a

reduction of computation time but requires to choose the sample size B. Since there is

no intuitive way for doing so we will not pursue this approach any further.

2.2.2. Population coefficient for determination based on kernel smoothers

We can also give an estimate for the population coefficient for determination which is

based on kernel smoothers. We estimate the parameter

Rks
2

P = ιks
2

X (Y )/V arP(Y )

by

R̂ks
2

P = ι̂ks
2

X (Y )/σ̂2Y , (2.10)

where σ̂2Y = 1
n

∑n
i=1(Yi − Ȳ )2. Our aim is to show that R̂ks

2

P converges to a normal

distribution and that the bootstrap is consistent in this setup. We do so by applying
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the the theory of U-statistics similar to Section 2.2.1, where we examined ι̂ksX (Y ).

Assumption 2.8. Let g1, ..., g4 as in Assumption 2.2 and additionally g5(Zi, Zj , Zl) =
1
2(Yi − Yj)

2. Furthermore, let w be defined analogous to (2.3) and assume that

EP(w(Zi, Zj , Zl)) and EP(w
2(Zi, Zj , Zl))

exist for all (i, j, l) ∈ {1, ..., n}3 and define ϑ = EP(w(Zi, Zj , Zl)) for i 6= j 6= l 6= i.

Assume that additionally ϑ5 6= 0, which is equivalent to V arP(Y ) 6= 0.

Theorem 2.9. Under Assumption 2.8 we have that

√
n
(
R̂ks

2

P −Rks
2

P

) L→ N(0, σ2),

with σ2 = DF (ϑ)TV DF (ϑ),

F
(
(a1, ..., a5)

T
)
=

[
a1 − a2√
a3 − a24

]2
/a5 and V = 9EP

(
w̃(Zi)w̃

T (Zi)
)

as well as w̃(Zi) = EP(w(Zi, Zj , Zl)|Zi)− ϑ.

Proof. We define ι̃5 =
1
n

∑n
i=1(Yi − Ȳ )2 = σ̂2Y . We have that

ι̃5 =
1

n2

n∑

i=1

n∑

j=1

1

2
(Yi − Yj)

2 =
1

n3

n∑

i=1

n∑

j=1

n∑

l=1

1

2
(Yi − Yj)

2

︸ ︷︷ ︸
g5(Zi,Zj,Zl)

=
1

n3

n∑

i=1

n∑

j=1

n∑

l=1

w5(Zi, Zj , Zl).

We now regard the vectors ι̃ = (ι̃1, ..., ι̃5)
T and ϑ. With the same argumentation as in

the proof of Theorem 2.3, but with w = (w1, ..., w5)
T instead of w = (w1, ..., w4)

T , we

obtain

√
n(ι̃− ϑ) =

n(n− 1)(n − 2)

n3
√
nUn + op(1) −

√
nϑ

=
n(n− 1)(n− 2)

n3︸ ︷︷ ︸
→1

√
n(Un − ϑ)︸ ︷︷ ︸
L→N(0,V )

+op(1) +

(
n(n− 1)(n − 2)

n3
√
n−

√
n

)
ϑ

︸ ︷︷ ︸
→0

L−→N(0, V )

with

V = 9EP

(
w̃(Zi)w̃

T (Zi)
)
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where w̃(Zi) = EP(w(Zi, Zj , Zl)|Zi)− ϑ. The mapping

F
(
(a1, ..., a5)

T
)
=

[
a1 − a2√
a3 − a24

]2
/a5

is continuously differentiable with F (ι̃) = R̂ks
2

P and F (ϑ) = Rks
2

P . Hence, by applying

the delta method we obtain

√
n
(
R̂ks

2

P −Rks
2

P

)
L→ N(0, σ2),

with σ2 = DF (ϑ)TV DF (ϑ).

For the estimation of σ2 we can use the estimator (2.7) or the same estimator but

with the modified estimator for V from Lemma 2.7 (in both cases with the new w, F

and ι̃).

It can be shown analogously to Section 2.2.1 that the bootstrap is consistent in this

case, which implies that we can also compute bootstrap confidence intervals for Rks
2

P .

Every confidence interval for Rks
2

P will be a conservative confidence interval for R2
P.

Note that the estimator (2.10) is very similar to (and in a sense a special case of) one

of the estimates Doksum and Samarov (1995) propose for Person´s correlation ratio

η2 =
V arP(EP(Y |X))

V arP(Y )
.

However, our results differ from those of Doksum and Samarov (1995) as they use a

leave-one-out type estimator (which can also be employed here, as seen in Section 2.2.1)

and do not derive a result of bootstrap consistency, as we do in this thesis.

2.2.3. Mean slope based on kernel-smoothers

In a similar spirit we can show that the canonical estimate of the mean slope based

on kernel-smoothers is also a differentiable function of a U-statistics under suitable ad-

ditional assumptions. This implies that the construction of confidence intervals with

and without the usage of bootstrap-methods works in the same manner as for the mean

impact and the population coefficient for determination based on kernel-smoothing. We

estimate the mean slope based on kernel smoothing by

θ̂ksX (Y ) =
ι̂ksY (X)√

1
n

∑n
i=1(Xi − X̄)2

.
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Assumption 2.10. Let g1, ..., g4 as in Assumption 2.2 and additionally g5(Zi, Zj , Zl) =
1
2(Xi −Xj)

2. Furthermore, let w be defined analogous to (2.3) and assume that

EP(w(Zi, Zj , Zl)) and EP(w
2(Zi, Zj , Zl))

exist for all (i, j, l) ∈ {1, ..., n}3 and define ϑ = EP(w(Zi, Zj , Zl)) for i 6= j 6= l 6= i.

Assume that additionally ϑ5 6= 0, which is equivalent to V arP(X) 6= 0.

Theorem 2.11. Under Assumption 2.10 we have that

√
n(θ̂ksY (X)− θksX (Y ))

L→ N(0, σ2),

with σ2 = DF (ϑ)TV DF (ϑ), ϑ = EP(w(Zi, Zj , Zl)),

F
(
(a1, ..., a5)

T
)
=

(a1 − a2)/
√
a5√

a3 − a24
and V = 9EP

(
w̃(Zi)w̃

T (Zi)
)
,

as well as w̃(Zi) = EP(w(Zi, Zj , Zl)|Zi)− ϑ.

Proof. The proof is similar to that of Theorem 2.9. One only has to replace Y by X

in the definition of ι̃5 and to use the new function F in the application of the delta

method.

Similar to the previous sections bootstrap and non-bootstrap methods can be applied

in order to construct asymptotic confidence intervals.

2.2.4. Loess-based impact analysis

In this section we choose a perturbation δ̂ inspired by a local linear regression estimator.

We choose

δ̂(x) =
1

n2

n∑

j=1

n∑

l=1

(Xj − x)(Xj −Xl)Kh(x−Xj)Kh(x−Xl)Yl,

where Kh(u) = K(u/h) is a symmetric kernel weight function with fixed bandwidth

h > 0. Note that we obtain δ̂(x) from the local linear regression regression estimator

1
n2

∑n
j=1

∑n
l=1(Xj − x)(Xj −Xl)Kh(x−Xj)Kh(x−Xl)Yl

1
n2

∑n
j=1

∑n
l=1(X

2
j −XjXl)Kh(x−Xj)Kh(x−Xl)

,
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derived in (A.3) by dropping the denominator. Again, we use the natural estimator

1

n

n∑

i=1

Yi
δ̂(Xi)− δ̄√

1
n

∑n
i=1

(
δ̂(Xi)− δ̄

)2 ,

where δ̄ = 1
n

∑n
i=1 δ̂(Xi), and rewrite it as

ι̂loessX (Y ) =
ι̃1 − ι̃2√
ι̃3 − ι̃24

,

where ι̃1 =
1
n

∑n
i=1 Yiδ̂(Xi), ι̃2 =

1
n

∑n
i=1 Yiδ̄, ι̃3 =

1
n

∑n
i=1 δ̂(Xi)

2 and ι̃4 =
1
n

∑n
i=1 δ̂(Xi).

We define ι̃ = (ι̃1, ..., ι̃4)
T . Analogous to the case where δ̂ is based on a kernel smoother

(see Section 2.2.1) we will prove that ι̂loessX (Y ) is asymptotically normal by showing that

it is essentially a function of a fifth order U-statistic. All steps in the following exam-

ination are very similar to those in the kernel smoother case. We aim to show that

ι̃ = (ι̃1, ..., ι̃4)
T is essentially a fifth order U-statistic and therefore asymptotic normal.

Application of the delta method yields asymptotic normality of ι̂loessX (Y ).

Assumption 2.12. Let

g1(Zi, Zj , Zl, Zk, Zm) = (Xj −Xi)(Xj −Xl)Kh(Xi −Xj)Kh(Xi −Xl)YlYi,

g2(Zi, Zj , Zl, Zk, Zm) = (Xj −Xk)(Xj −Xl)Kh(Xk −Xj)Kh(Xk −Xl)YlYi,

g3(Zi, Zj , Zl, Zk, Zm) ={(Xj −Xi)(Xj −Xl)Kh(Xi −Xj)Kh(Xi −Xl)Yl

(Xk −Xi)(Xk −Xm)Kh(Xi −Xk)Kh(Xi −Xm)Ym},

and

g4(Zi, Zj , Zl, Zk, Zm) = (Xj −Xi)(Xj −Xl)Kh(Xi −Xj)Kh(Xi −Xl)Yl.

Furthermore let g = (g1, ..., g4) and

w(Zi, Zj , Zl, Zk, Zm) =
1

5!

∑

π∈S({i,j,l,k,m})
g(Zπ(i), Zπ(j), Zπ(l), Zπ(k), Zπ(m))
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with S({i, j, l, k,m}) being the set of all permutations of {i, j, l, k,m}. Assume that

EP(w(Zi, Zj , Zl, Zk, Zm)) and EP(w
2(Zi, Zj , Zl, Zk, Zm))

exist for all (i, j, l, k,m) ∈ {1, ..., n}5 and define ϑ = EP(w(Zi, Zj , Zl, Zk, Zm)) for i <

j < ... < m.

Theorem 2.13. Under Assumption 2.12 we have that

√
n(ι̂loessX (Y )− ιloessX (Y ))

L→ N(0, σ2), (2.11)

where σ2 = DF (ϑ)TV DF (ϑ),

F
(
(a1, ..., a4)

T
)
=

a1 − a2√
a3 − a24

V = 9EP

(
w̃(Zi)w̃

T (Zi)
)
,

as well as ιloessX (Y ) = F (ϑ) and w̃(Zi) = EP(w(Zi, Zj , Zl, Zk, Zm)|Zi)− ϑ.

Proof. The proof is similar to the one of Theorem 2.3 for the kernel smoother based

mean impact can be found in Appendix B.

Our next task is finding a consistent estimator for σ2. The following lemma gives such

an estimator.

Lemma 2.14. A consistent estimator for σ2 is given by

σ̂2 = DF (ι̃)T V̂ DF (ι̃), (2.12)

where

V̂ = 25



(
n

9

)−1 ∑

i<...<d

1

9!

∑

π∈S({i,...,d})
g̃(Zπ(i), ..., Zπ(d))− ι̃ι̃T




and

g̃(Zi, Zj , Zl, Zk, Zm, Za, Zb, Zc, Zd) = w(Zi, Zj , Zl, Zk, Zm)w
T (Zi, Za, Zb, Zc, Zd).

Proof. This proof can also be found in Appendix B.

Combining (2.11) and (2.12) we obtain

√
n
ι̂loessX (Y )− ιloessX (Y )

σ̂

L→ N(0, 1).
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For the confidence interval based on the above asymptotic result to be a (potentially

conservative) asymptotic level α confidence interval for ιX(Y ) it is crucial to know that

ιloessX (Y ) ≤ ιX(Y ). This can be shown as follows. Let a(Zi, Zj , Zl) = (Xj − Xi)(Xj −
Xl)Kh(Xi −Xj)Kh(Xi −Xl)Yl, then we can rewrite ϑ as

ϑ1 =EP {a(Zi, Zj , Zl)Yi} = EP {EP[Yia(Zi, Zj , Zl)|Xi]}
=EP {EP(Yi|Xi)EP[a(Zi, Zj , Zl)|Xi]} = EP {YiEP[a(Zi, Zj , Zl)|Xi]} ,

ϑ2 =EP {a(Zk, Zj , Zl)Yi} = EP(Yi)EP {a(Zk, Zj , Zl)}
=EP(Yi)EP {EP[a(Zk, Zj , Zl)|Xi]} ,

hence,

ϑ1 − ϑ2 = CovP(Yi, δ(Xi)) = EP {Yi[δ(Xi)− EP(δ(Xi))]} ,

where δ(Xi) = EP[(Xj −Xi)(Xj −Xl)Kh(Xi−Xj)Kh(Xi−Xl)Yl|Xi]. Furthermore, we

have

ϑ3 =EP {a(Zi, Zj , Zl)a(Zi, Zk, Zm)} = EP {EP[a(Zi, Zj , Zl)a(Zi, Zk, Zm)|Xi]}
=EP {EP[a(Zi, Zj , Zl)|Xi]EP[a(Zi, Zk, Zm)|Xi]} = EP

{
EP[a(Zi, Zj , Zl)|Xi]

2
}

=EP(δ(Xi)
2),

where the third equality follows from the structure of a (given Xi all variables occurring

in a(Zi, Zj , Zl) are independent of those occurring in a(Zi, Zk, Zm)). Additionally, we

have

ϑ4 = EP {a(Zi, Zj , Zl)} = EP {EP[a(Zi, Zj , Zl)|Xi]} = EP(δ(Xi)).

Therefore, we obtain

ιloessX (Y ) =
ϑ1 − ϑ2√
ϑ3 − ϑ24

= EP

{
Y
δ(X) − EP(δ(X))√

V arP(X)

}
,

where δ(X) = EP[(Xj −X)(Xj −Xl)Kh(X −Xj)Kh(X −Xl)Yl|Xi],

≤ sup
δ∈L2

P
(R)

EP

{
Y
δ(X) − EP(δ(X))√

V arP(δ(X))

}
= ιX(Y ).

Thus ιloessX (Y ) ≤ ιX(Y ) and an asymptotic level α confidence interval for ιloessX (Y ) is a

(potentially conservative) asymptotic level α confidence interval for ιX(Y ).
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Since the computation of σ̂ in (2.12) requires similar to the case in Section 2.2.1

great computational effort if n is not very small it may be convenient to use bootstrap

methods to calculate a confidence interval for ιloessY (X) rather than to compute the

variance estimator. Using the same arguments as in the previous section we obtain that

the bootstrap is consistent in this setup, i.e. when we denote the estimator ι̂loessX (Y )

computed based on a bootstrap sample Z∗
1 , ..., Z

∗
n by ι̂loess

∗

X (Y ) we have that for almost

all sequences Z1, Z2, ... the conditional distribution of
√
n(ι̂loess

∗

X (Y ) − ι̂loessX (Y )) (given

Z1, ..., Zn) and the distribution of
√
n(ι̂loessX (Y )−ιloessX (Y )) converge to the same limiting

distribution.

2.2.5. Impact analysis based on local polynomials

In generalization to Sections 2.2.1 and 2.2.4 we now choose a perturbation δ̂ based

on the predictions of a degree k local polynomial fit. The case k = 1 then gives the

ordinary kernel smoother, and k = 2 leads to local linear regression. The local polynomial

regression estimator of degree k at x is, as also presented in Section A.1.1 given by

m̂(x) = (1, x, ..., xk)
(
n−1BTW(x)B

)−1 1

n
BTW(x)Y,

whereB is the matrix with (1,Xi, ...,X
k
i ) as i-th row, W(x) = diag {(Kh(Xi − x))i=1,..,n}

for a symmetric kernel Kh(u) = K(u/h) with bandwidth h and Y = (Y1, ..., Yn)
T is the

vector of observations of the target variable. For the estimation of the mean impact we

will use

δ̂(x) = (1, x, ..., xk) cof
{(
n−1BTW(x)B

)} 1

n
BTW(x)Y,

in (2.1). Note that δ̂ arises from m̂ by replacing

(
n−1BTW(x)B

)−1

by

cof
{(
n−1BTW(x)B

)}
,

where cof denotes the matrix of cofactors. The matrix of cofactors of a quadratic k× k-

matrix A is given by

{cof(A)}ij = (−1)i+jMij,

whereMij is the determinant of the sub-matrix arising from A by canceling the i-th row
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and the j-column. Additionally, we have according to Fischer (2005) that

(
n−1BTW(x)B

)−1
= det

{(
n−1BTW(x)B

)}−1 {
cof
(
n−1BTW(x)B

)}T
.

Since
(
n−1BTW(x)B

)
is symmetric its matrix of cofactors is symmetric too. Hence, by

replacing
(
n−1BTW(x)B

)−1
by cof

{(
n−1BTW(x)B

)}
we only drop the determinant

in the denomiator. In the following we will show that the estimator

ι̂locpolX (Y ) =
ι̃1 − ι̃2√
ι̃3 − ι̃24

,

with ι̃1 = 1
n

∑n
i=1 Yiδ̂(Xi), ι̃2 = 1

n

∑n
i=1 Yiδ̄, ι̃3 = 1

n

∑n
i=1 δ̂(Xi)

2 and ι̃4 = 1
n

∑n
i=1 δ̂(Xi)

is asymptotically normal. We do so by showing that ι̃ = (ι̃1, ..., ι̃4)
T is essentially a

(2k+3)rd-order U-statistics. Application of the delta-method yields the desired asymp-

totic normality of the estimator. As in the special cases above Bickel and Freedman

(1981) provide the validity of the bootstrap in this scenario.

As a first step we note that

n−1BTW(Xi)B =





1

n

n∑

j=1

Kh(Xj −Xi)X
(m+l−1)
j




l,m=1,...,k+1

.

Since the elements of the matrix of cofactors of this matrix are the signed determinants

of k × k sub-matrices they are of the form

1

nk

n∑

j1=1

· · ·
n∑

jk=1

h(Zj1 , ..., Zjk),

where h(Zj1 , ..., Zjk ) is a sum respectively a difference of products of terms of the form

Kh(Xja −Xi)X
v
ja for suitable vs. Hence, we can rewrite the matrix of cofactors as

cof
{
n−1BTW(Xi)B

}
=





1

nk

n∑

j1=1

· · ·
n∑

jk=1

hlm(Zj1 , ..., Zjk)




l,m=1,...,k+1

.

Assumption 2.15. Let

g1(Zj1 , ..., Zj2k+3
) = Yjk+2

w̃(Zj1 , ..., Zjk+1
, Zjk+2

),

g2(Zj1 , ..., Zj2k+3
) = Yjk+3

w̃(Zj1 , ..., Zjk+2
),
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g3(Zj1 , ..., Zj2k+3
) = w̃(Zj1 , ..., Zjk+1

, Zj2k+3
)w̃(Zjk+2

, ..., Zj2k+2
, Zj2k+3

),

g4(Zj1 , ..., Zj2k+3
) = w̃(Zj1 , ..., Zjk+2

),

with

w̃(Zj1 , ..., Zjk+1
, Zi) =

k+1∑

l=1

k+1∑

m=1

hlm(Zj1 , ..., Zjk )Kh(Xjk+1
−Xi)Yjk+1

Xm−1
jk+1

Xm−1
i .

Furthermore, define g = (g1, ..., g4) and let

w(Zj1 , ..., Zj2k+3
) =

1

(2k + 3)!

∑

π∈S({1,...,2k+3})
g(Zjπ(1) , ..., Zjπ(2k+3)

).

Additionally, assume that

EP(w(Zj1 , ..., Zj2k+3
)) and EP(w

2(Zj1 , ..., Zj2k+3
))

exist for all (j1, ..., j2k+3) ∈ {1, ..., n}2k+3 and define ϑ = EP(w(Zj1 , ..., Zj2k+3
)) for

j1 < ... < jk+3.

Theorem 2.16. Under Assumption 2.15 we have that

√
n
{
ι̂locpolX (Y )− ιlocpolX (Y )

}
L→ N(0, σ2),

where σ2 = DF (ϑ)TΣDF (ϑ), F
(
(a1, ..., a4)

T
)
= a1−a2√

a3−a24
, ιlocpolX (Y ) = F (ϑ) and

Σ = (2k+3)2EP

{(
EP

[
w(Zj1 , ..., Zj2k+3

)|Zj1
]
− ϑ

) (
EP

[
wT (Zj1 , ..., Zj2k+3

)|Zj1
]
− ϑT

)}
.

Proof. The proof of this theorem can be found in Appendix B.

Lemma 2.17. The variance σ2 can be consistently estimated by

σ̂2 = DF (ι̃)T Σ̂DF (ι̃),

where

Σ̂ = (2k+3)2



(

n

4k + 5

)−1 ∑

j1<...<j4k+5

1

(4k + 5)!

∑

π∈S({1,...,4k+5})
g̃(Zjπ(1) , ..., Zjπ(4k+5)

)− ι̃ι̃T



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and

g̃(Zj1 , ..., Zj4k+5
) = w(Zj1 , ..., Zj2k+3

)wT (Zj1 , Zj2k+4
, ..., Zj4k+5

).

Proof. For the proof see Appendix B.

From this result we obtain

√
n
ι̂locpolX (Y )− ιlocpolX (Y )

σ̂
L−→ N(0, 1).

For polynomial regression the argumentation of the previous sections, ensuring the con-

sistency of the bootstrap and thus justifying the use of bootstrap confidence intervals

apply as well. Finally, we will show that ιlocpolX (Y ) ≤ ιX(Y ). To this end we note that

we can rewrite the elements of ϑ as

ϑ1 = EP

(
Yiw̃(Zj1 , ..., Zjk+1

, Zi)
)

ϑ2 = EP

(
Yiw̃(Zj1 , ..., Zjk+2

)
)

ϑ3 = EP

(
w̃(Zj1 , ..., Zjk+1

, Zi)w̃(Zjk+2
, ..., Zj2k+2

, Zi)
)

ϑ4 = EP

(
w̃(Zj1 , ..., Zjk+2

)
)
.

From this it follows that

ϑ1 = EP

{
EP

(
Yiw̃(Zj1 , ..., Zjk+1

, Zi)|Xi

)}

= EP{EP(Yi|Xi)EP[w̃(Zj1 , ..., Zjk+1
, Zi)|Xi]}

= EP{YiEP[w̃(Zj1 , ..., Zjk+1
, Zi)|Xi]︸ ︷︷ ︸

=:δ(Xi)

}

and

ϑ2 = EP(Yi)EP(w̃(Zj1 , ..., Zjk+1
, Zi)) = EP(Yi)EP(δ(Xi)),

hence, ϑ1 − ϑ2 = CovP(Yi, δ(Xi)) = EP {Yi[δ(Xi)− EP(δ(Xi))]}. Furthermore, we have

ϑ3 =EP

(
EP

{
w̃(Zj1 , ..., Zjk+1

, Zi)w̃(Zjk+2
, ..., Zj2k+2

, Zi)|Xi

})

=EP

{
EP

[
w̃(Zj1 , ..., Zjk+1

, Zi)|Xi

]
EP

[
w̃(Zjk+2

, ..., Zj2k+2
, Zi)|Xi

]}

=EP

{
EP

[
w̃(Zj1 , ..., Zjk+1

, Zi)|Xi

]2}
= EP(δ(Xi)

2),

where the second equality holds because of the structure of w̃ (w̃(Zj1 , ..., Zjk+1
, Zi) does

not use Yi which implies that the conditional independence needed for the second equality
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holds). Additionally we have

ϑ4 = EP

{
EP

(
w̃(Zj1 , ..., Zjk+1

, Zi)|Xi

)}
= EP(δ(Xi)).

Consequently we obtain

ιlocpolX (Y ) =
ϑ1 − ϑ2√
ϑ3 − ϑ24

= EP

{
Y
δ(X) − EP(δ(X))√

V arP(δ(X))

}

≤ sup
δ∈L2

P
(R)

EP

{
Y
δ(X) − EP(δ(X))√

V arP(δ(X))

}
= ιX(Y ).

2.2.6. Common impact based on kernel-smoothing

In this section we generalize the approach of the kernel method based impact to the

case where we want to quantify the common influence of a set of covariates X1, ...,Xk

onto the target variable Y . Therefore, we estimate the impact of X = (X1, ...,Xk) on Y

based on kernel smoothing by

ι̂ksX (Y ) =
1

n

n∑

i=1

Yi
δ̂1(Xi)− δ̄1(X)√

1
n

∑n
j=1

(
δ̂1(Xj)− δ̄1(X)

)2 ,

where Xi = (Xi1, ...,Xik) and

δ̂1(Xi) =
1

n

n∑

j=1

Kh(Xi −Xj)Yj,

for a kernel

Kh(Xi −Xj) = D

(‖Xi −Xj‖
h

)

and D from Section A.1.1. With this choice of the estimated impact we are essentially

in the situation of Section 2.2.1. The same argumentation applies here and leads to

asymptotic normality of the estimator for the restricted impact. Furthermore, it follows,

that the bootstrap is consistent in this case.

A generalization to higher order local regression in the variables X1, ...,Xk is straight

forward and leads to the setup of Section 2.2.5.
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2.2.7. Modification of the Kernel-smoother-based impact

In Section 2.2.1 we dealt with an impact based on the predictions of kernel smoothing

where the denominator of the kernel-smoother was left out. We now consider a kernel-

smoother based impact without dropping the denominator. Since the denominator is a

function of all observations and the estimator of the impact is therefore not a U-statistics

anymore the methods to derive the asymptotic distribution of the estimator used in 2.2.1

do not apply here. Nevertheless we can deal with this problem by modifying the way

we estimate the impact. We will use all observations to compute the denominator of

the kernel smoother but only mn < n observations to compute the estimator for the

impact. Choosing a suitable mn we can show the asymptotic normality of the estimator.

This procedure is particularly useful and interesting in cases where we do not have

observations of the target variable Y for all individuals. This might occur in large health

insurance data sets, where the covariates (e.g. sex, age) are present for all insured people

but the target variable is only observed for a subset of the insured people.

Note, that the results of Doksum and Samarov (1995) may be used to derive an

asymptotic theory for an estimator for the kernel smoother based impact without drop-

ping the denominator using all observations by using a leave-one-out type estimator for

δ̂. However, this approach is not pursued in this thesis.

Again we need to assume that the bandwidth h > 0 of the symmetric kernel Kh(u) =

K(|u/h|) is fixed. We now need the additional assumptions

Assumption 2.18. 1. K is non-negative and bounded;

2.
∫
K(x)dx = 1;

3. K(x) = p(|x|), where p is a monotone decreasing function on [0,∞).

Note that for example the Gaussian kernel or the Epanechnikov quadratic kernel meet

these assumptions. We now choose the perturbation

δ̂(x) =
1

mn

mn∑

j=1

Kh(x−Xj)Yj
1
n

∑n
l=1Kh(x−Xl)

,

where mn → ∞ and the following assumption holds.

Assumption 2.19. Let mn → ∞ such that n log(n)−1

mn
→ ∞.



81

We then estimate the impact by

ι̂ks,modX (Y ) =
1

mn

mn∑

i=1

Yi
δ̂(Xi)− ¯̂

δ√
1
mn

∑mn
i=1

(
δ̂(Xi)− ¯̂

δ
)2 ,

where
¯̂
δ = 1

mn

∑mn
i=1 δ̂(Xi). Similar to the cases before we decompose the estimator to

ι̃1 =
1

mn

mn∑

i=1

Yiδ̂(Xi), ι̃2 =
1

mn

mn∑

i=1

Yi
¯̂
δ, ι̃3 =

1

mn

mn∑

i=1

δ̂(Xi)
2, ι̃4 =

1

mn

mn∑

i=1

δ̂(Xi),

with ι̂ks,modX (Y ) = ι̃1−ι̃2√
ι̃3−ι̃24

. Let ι̃ = (ι̃1, ..., ι̃4)
T and

f̃(u) = EP (Kh(u−X)) ,

assuming this exists.

Assumption 2.20. Let

g1(Zi, Zj , Zl) =
Kh(Xi −Xj)

f̃(Xi)
YiYj, g2(Zi, Zj , Zl) =

Kh(Xj −Xl)

f̃(Xj)
YiYj,

g3(Zi, Zj , Zl) =
Kh(Xi −Xj)Kh(Xi −Xl)

f̃(Xi)2
YjYl, and g4(Zi, Zj , Zl) =

Kh(Xi −Xj)

f̃(Xi)
Yj

and define g = (g1, ..., g4). Let w be defined as in (2.3). We assume that the following

quantities exist for all (i, j, l) ∈ {1, ..., n}3:

EP(w(Zi, Zj , Zl)), EP(w
2(Zi, Zj , Zl)).

Definition 2.21. Let i 6= j 6= l 6= i the following parameters exist by Assumption 2.20

ϑk := EP (gk(Zi, Zj , Zl)) , for k ∈ {1, ..., 4}.

Assumption 2.22. There exsists η > 0 such that f̃(x) ≥ η ∀x ∈ supp(X), where

supp(X) denotes the support of X. Furthermore let the density f of X be bounded.

With this assumption we can state the following lemma.
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Lemma 2.23. We have that

√
mn sup

x∈R
|f̃(x)− f̂(x)| a.s.→ 0,

where f̂(x) = 1
n

∑n
j=1Kh(x−Xj).

Proof. Adopting the notation of Pollard (1984) we write f̂(x) = PnKh,x and f̃(x) =

PKh,x and obtain

sup
x∈R

|f̂(x)− f̃(x)| = sup
x∈R

|PnKh,x − PKh,x|.

Let K̃h(u) = Kh(u)/c, where c is an upper bound of K which exists according to

Assumption 2.18. Note that we have 0 ≤ K̃ ≤ 1. We then have

sup
x∈R

|PnKh,x − PKh,x| = c sup
x∈R

|PnK̃h,x − PK̃h,x|.

According to Pollard (1984, p.36) and his Lemma 25 all kernels that meet Assumption

2.18 also meet the assumptions of his Theorem 37 which we will apply here. Denoting

the density of X by f we obtain

PK̃2
h,x =

∫
K̃2

(
x− y

h

)
f(y)dy ≤

∫
K̃

(
x− y

h

)
f(y)dy

= h

∫
K̃(t)f(x+ ht)dt ≤ qh

∫
K̃(t)dt = qh

1

c
,

where q is an upper bound of f , which exists by Assumption 2.22. We choose δ = qh/c

and αn = m
−1/2
n and obtain, since n log(n)−1

mn
→ ∞, that nδ2α2

n log(n)
−1 → ∞. Hence we

can apply Theorem 37 of Pollard (1984) which gives

δ−2√mn sup
x∈R

|PnK̃h,x − PK̃h,x| a.s.→ 0,

which implies
√
mn sup

x∈R
|f̃(x)− f̂(x)| a.s.→ 0.

We now show that we can replace f̂ by f̃ in δ̂ without affecting the asymptotic behavior

of ι̃1, ..., ι̃4.



83

Lemma 2.24. Under the assumptions of this section have that

√
mnι̃ =

√
mn

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

w(Zi, Zj , Zl) + op(1).

Proof. To this end let

Ln,i = Yiδ̂(Xi)
f̂(Xi)

f̃(Xi)

and

An,i = Yiδ̂(Xi)
f̃(Xi)− f̂(Xi)

f̃(Xi)
.

We then obtain

√
mnι̃1 =

√
mn

mn

mn∑

i=1

(Ln,i +An,i)

=

√
mn

mn

mn∑

i=1

Ln,i +

√
mn

mn

mn∑

i=1

Ln,i
An,i
Ln,i

For the second term of this expression we make the observation that

∣∣∣∣∣

√
mn

mn

mn∑

i=1

Ln,i
An,i
Ln,i

∣∣∣∣∣ ≤
√
mn

mn

mn∑

i=1

|Ln,i|
∣∣∣∣∣
f̃(Xi)− f̂(Xi)

f̂(Xi)

∣∣∣∣∣

≤√
mn sup

x∈R

∣∣∣∣∣
f̃(x)− f̂(x)

f̂(x)

∣∣∣∣∣
1

mn

mn∑

i=1

|Ln,i|.

Since f̃ is bounded away from zero on its support and supx∈R |f̃(x) − f̂(x)| a.s.→ 0 (by

Lemma 2.23) we have that f̂(x) ≥ η̃ for all x ∈ supp(X) for suitable large n. Hence, for

those n we can write

√
mn sup

x∈R

∣∣∣∣∣
f̃(x)− f̂(x)

f̂(x)

∣∣∣∣∣ ≤
1

η̃

√
mn sup

x∈R

∣∣∣f̃(x)− f̂(x)
∣∣∣ a.s.→ 0.

Furthermore, we have

0 ≤ 1

mn

mn∑

i=1

|Ln,i| ≤
1

m2
n

mn∑

i=1

mn∑

j=1

∣∣∣∣
Kh(Xi −Xj)YiYj

f̃(Xi)

∣∣∣∣
︸ ︷︷ ︸

=:γ(Zi,Zj)
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=
1

m2
n

mn∑

i=1

mn∑

j=1

λ(Zi, Zj)

=
1

m2
n

mn∑

i6=j
λ(Zi, Zj) +

1

m2
n

mn∑

i=1

λ(Zi, Zi),

where λ(Zi, Zj) = 1/2{γ(Zi, Zj) + γ(Zj , Zi)}. Since by Assumption 2.20 E(λ(Zi, Zj))

exists for all (i, j) ∈ {1, ..., n}2 this equals

=
1

m2
n

∑

i<j

2λ(Zi, Zj) + op(1)

=
mn(mn − 1)

m2
n

(
mn

2

)−1∑

i<j

λ(Zi, Zj) + op(1)

p→E{λ(Zi, Zj)} <∞

according to the theory of U-statistics (cf. Theorem A.7). Hence,

√
mnι̃1 =

√
mn

mn

mn∑

i=1

Ln,i + op(1)

=
√
mn

1

m2
n

mn∑

i=1

mn∑

j=1

Kh(Xi −Xj)YiYj

f̃(Xi)︸ ︷︷ ︸
=:g1(Zi,Zj,Zl)

+op(1)

=
√
mn

1

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

w1(Zi, Zj , Zl) + op(1),

where w1(Zi, Zj , Zl) =
1
6

∑
π∈S({i,j,l}) g1(Zπ(i), Zπ(j), Zπ(l)). In the following we will show,

that we can replace the denominators in the expressions
√
mnι̃2,

√
mnι̃3,

√
mnι̃4 similarly.

We can decompose
√
mnι̃2 to

√
mnι̃2 =

√
mn

mn

mn∑

l=1

δ̂(Xl)Ȳ

=

√
mn

mn

mn∑

l=1

(L̃n,l + Ãn,l)

=

√
mn

mn

mn∑

l=1

L̃n,l +

√
mn

mn

mn∑

l=1

L̃n,l
f̃(Xl)− f̂(Xl)

f̂(Xl)
,
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where L̃n,l = δ̂(Xl)Ȳ
f̂(Xl)

f̃(Xl)
and Ãn,l = δ̂(Xl)Ȳ

f̃(Xl)−f̂(Xl)
f̃(Xl)

. Again, we can show that the

second term converges to zero in probability. We do so by observing

∣∣∣∣∣

√
mn

mn

mn∑

l=1

L̃n,l
f̃(Xl)− f̂(Xl)

f̂(Xl)

∣∣∣∣∣ ≤
√
mn sup

x∈R

∣∣∣∣∣
f̃(x)− f̂(x)

f̂(x)

∣∣∣∣∣
1

mn

mn∑

l=1

|L̃n,l|.

The first term of this expression converges to zero by Lemma 2.23. For the second term

we have

1

mn

mn∑

l=1

|L̃n,l| ≤
1

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

∣∣∣∣
Kh(Xl −Xj)YiYj

f̃(Xl)

∣∣∣∣
︸ ︷︷ ︸

γ2(Zi,Zj ,Zl)

=
1

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

λ2(Zi, Zj , Zl),

where λ2(Zi, Zj , Zl) = 1/3!
∑

π∈S({i,j,l}) γ2(Zπ(i), Zπ(j), Zπ(l)). With Assumption 2.20

and Lemma 2.1 it follows that

=
1

m3
n

∑

C({i,j,l})
λ2(Zi, Zj , Zl) + op(m

−1/2
n )

=
m3
n − 3m2

n + 2mn

m3
n

(
mn

3

)−1 ∑

i<j<l

λ2(Zi, Zj , Zl) + op(m
−1/2
n )

p→E{λ2(Zi, Zj)} <∞

by Theorem A.7. Concluding, we have that

√
mnι̃2 =

√
mn

mn

mn∑

l=1

L̃n,l + op(1)

=
√
mn

1

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

Kh(Xi −Xj)YjYl

f̃(Xi)︸ ︷︷ ︸
=:g2(Zi,Zj ,Zl)

+op(1)

=
√
mn

1

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

w2(Zi, Zj , Zl) + op(1),

where w2(Zi, Zj , Zl) =
1
6

∑
π∈S({i,j,l}) g2(Zπ(i), Zπ(j), Zπ(l)). By decomposing analogously
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to the previous two cases and by application of Lemma 2.23 it follows that we have

√
mnι̃3 =

√
mn

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

Kh(Xi −Xl)Kh(Xi −Xj)YjYl

f̂(Xi)2

=

√
mn

m3
n

mn∑

i=1

(Li +Ai)

=

√
mn

m3
n

mn∑

i=1

Li +

√
mn

m3
n

mn∑

i=1

Li
Ai
Li
,

where

Li =
1

m2
n

∑mn
j=1

∑mn
l=1Kh(Xi −Xj)Kh(Xi −Xl)YjYl

f̂(Xi)f̃(Xi)

and

Ai =
1

m2
n

∑mn
j=1

∑mn
l=1Kh(Xi −Xj)Kh(Xi −Xl)YjYl

f̂(Xi)2
f̃(Xi)− f̂(Xi)

f̃(Xi)
.

Thus,

√
mnι̃3 =

√
mn

m3
n

mn∑

i=1

Li +

√
mn

m3
n

mn∑

i=1

Li
f̃(Xi)− f̂(Xi)

f̂(Xi)
.

For the last term we obtain,

∣∣∣∣∣

√
mn

m3
n

mn∑

i=1

Li
f̃(Xi)− f̂(Xi)

f̂(Xi)

∣∣∣∣∣

≤√
mn sup

x∈R

∣∣∣∣∣
f̃(x)− f̂(x)

f̂(x)

∣∣∣∣∣
︸ ︷︷ ︸

=op(1)

1

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

∣∣∣∣∣
Kh(Xi −Xj)Kh(Xi −Xl)YjYl

f̂(Xi)f̃(Xi)

∣∣∣∣∣
︸ ︷︷ ︸

(a)

.

As a next step we examine the term (a).

(a) =
1

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

|Kh(Xi −Xj)Kh(Xi −Xl)YjYl|
f̃(Xi)2

+
1

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

|Kh(Xi −Xj)Kh(Xi −Xl)YjYl|
f̃(Xi)2

f̃(Xi)− f̂(Xi)

f̂(Xi)
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≤ 1

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

|Kh(Xi −Xj)Kh(Xi −Xl)YjYl|
f̃(Xi)2

+ sup
x∈R

∣∣∣∣∣
f̃(x)− f̂(x)

f̂(x)

∣∣∣∣∣
1

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

|Kh(Xi −Xj)Kh(Xi −Xl)YjYl|
f̃(Xi)2

.

By application of the theory of U-statistics together with Assumption 2.20 it can be

shown that the expression

1

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

|Kh(Xi −Xj)Kh(Xi −Xl)YjYl|
f̃(Xi)2

converges to

EP

( |Kh(Xi −Xj)Kh(Xi −Xl)YjYl|
f̃(Xi)2

)
<∞.

Furthermore, supx∈R

∣∣∣ f̃(x)−f̂(x)
f̂(x)

∣∣∣ = op(1) by Lemma 2.23. Thus, we obtain that

(a)
p→ EP

( |Kh(Xi −Xj)Kh(Xi −Xl)YjYl|
f̃(Xi)2

)
<∞.

Thereby ∣∣∣∣∣

√
mn

m3
n

mn∑

i=1

Li
f̃(Xi)− f̂(Xi)

f̂(Xi)

∣∣∣∣∣ = op(1).

This implies

√
mnι̃3 =

√
mn

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

Kh(Xi −Xl)Kh(Xi −Xj)YjYl

f̂(Xi)2

=

√
mn

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

Kh(Xi −Xl)Kh(Xi −Xj)YjYl

f̂(Xi)f̃(Xi)
+ op(1).

Repeated application of Lemma 2.23 gives

=

√
mn

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

Kh(Xi −Xl)Kh(Xi −Xj)YjYl

f̃(Xi)2︸ ︷︷ ︸
=:g3(Zi,Zj ,Zl)

+op(1)

=

√
mn

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

w3(Zi, Zj , Zl) + op(1),
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where w3(Zi, Zj , Zl) =
1
6

∑
π∈S({i,j,l}) g3(Zπ(i), Zπ(j), Zπ(l)). Similar to the cases of ι̃1, ..., ι̃3

we obtain that

√
mnι̃4 =

√
mn

mn

mn∑

i=1

δ̂(Xi)

which equals by suitable decomposition and application of Lemma 2.23

=

√
mn

mn

mn∑

i=1

δ̂(Xi)
f̂(Xi)

f̃(Xi)
+ op(1)

=

√
mn

m2
n

mn∑

i=1

mn∑

j=1

Kh(Xi −Xj)Yj

f̃(Xi)︸ ︷︷ ︸
=:g4(Zi,Zj ,Zl)

+op(1)

=

√
mn

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

w4(Zi, Zj , Zl) + op(1),

where w4(Zi, Zj , Zl) = 1
6

∑
π∈S({i,j,l}) g4(Zπ(i), Zπ(j), Zπ(l)). Thus, summarizing the re-

sults we obtain:
√
mnι̃ =

√
mn

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

w(Zi, Zj , Zl) + op(1)

With the preceding results we are able to prove the asymptotic normality of the

modified version of the kernel smoother based impact estimator.

Theorem 2.25. Under the assumptions of this section we have

√
mn(ι̂

ks,mod
X (Y )− ιks,modX (Y ))

L−→ N(0,DF (ϑ)TV DF (ϑ)︸ ︷︷ ︸
σ2

),

where F (a, b, c, d) = a−b√
c−d2 , ι̂

ks,mod
X (Y ) = F (ι̃) and ιks,modX (Y ) = F (ϑ) (ks,mod stands

for kernel smoother modified). In this case the covariance matrix V is given by V =

9EP

{
w̃(Zi)w̃(Zi)

T
}
with w̃(Zi) = EP (w(Zi, Zj , Zl)|Zi)− ϑ.

Proof. We obtain

√
mn(ι̃− ϑ) =

√
mn


 1

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

w(Zi, Zj , Zl)− ϑ


+ op(1).
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According to Lemma 2.1 we have

1

m3
n

mn∑

i=1

mn∑

j=1

mn∑

l=1

w(Zi, Zj , Zl) =
1

m3
n

∑

C({i,j,l})
w(Zi, Zj , Zl) + op(m

−1/2
n ).

Furthermore, we can rewrite this as

1

m3
n

∑

C({i,j,l})
w(Zi, Zj , Zl) + op(m

−1/2
n )

=
m3
n − 3m2

n + 2mn

m3
n︸ ︷︷ ︸

cn

(
mn

3

)−1 ∑

i<j<l

w(Zi, Zj , Zl)

︸ ︷︷ ︸
Un

+op(m
−1/2
n ).

This means that we have

√
mn(ι̃− ϑ) = cn

√
mn(Un − ϑ) + op(1) + (cn − 1)

√
mnϑ,

where (cn−1)
√
mn → 0 and cn → 1. Theorem A.7 together with Assumption 2.20 gives

that
√
mn(Un − ϑ)

L−→ N(0, V )

and consequently
√
mn(ι̃− ϑ)

L−→ N(0, V ),

where V = 9EP

{
w̃(Zi)w̃(Zi)

T
}
with w̃(Zi) = EP (w(Zi, Zj , Zl)|Zi) − ϑ. Application

of the delta method with F (a, b, c, d) = a−b√
c−d2 yields the asymptotic normality of the

estimator for the impact

√
mn(ι̂

ks,mod
X (Y )− ιks,modX (Y ))

L−→ N(0,DF (ϑ)TV DF (ϑ)︸ ︷︷ ︸
σ2

),

where ι̂ks,modX (Y ) = F (ι̃) and ιks,modX (Y ) = F (ϑ).

Similarly to the other kernel method based impacts it can be shown that ιks,modX (Y ) ≤
ιX(Y ) (the proof is omitted here). We are now interested in finding a consistent estimator

for σ2.

Lemma 2.26. The variance σ2 can be consistently estimated by DF (ι̃)T 9(ĝ∗−ι̃ι̃T )DF (ι̃),
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where

ĝ∗ =

(
n

5

)−1 ∑

i<j<l<a<b

1

5!

∑

π∈S({i,j,l,a,b})
ŵ(Zi, Zj , Zl)ŵ

T (Zi, Za, Zb)

and ŵ(Zi, Zj , Zl) is obtained from w(Zi, Zj , Zl) by replacing all f̃s by f̂ s.

Proof. The proof makes use of Lemma 2.23 and is otherwise very similar to the proofs

of the analogous results of the preceding sections but with more complex sums. It can

be found in Appendix B.

Similar to the cases before, the computation of that variance estimate is very computer

intensive for usual sample sizes. However, we do not yet have a justification for bootstrap

methods in this scenario. This could be the subject of future research.

2.2.8. Another modification of the Kernel-smoother-based impact

In the previous section we introduced a modification to the kernel-smoother-based im-

pact, where we did not need to drop the denominator of the kernel smoother at the

cost that we could not use all data in the estimation of the impact. Furthermore, in all

considerations up to this point we needed the bandwidth of the kernel smoother to be

fixed. In this section we present an alternative modification to the estimator based on

kernel smoothing, which enables us to keep the denominator of the kernel smoother as

well as to use a bandwidth h that decreases with the sample size. However, the price

to be paid for these advantages is that again we can not use all available data in the

estimation of the mean impact and that we need to assume that X has bounded support.

The new modification makes use of the results of Mack and Silverman (1982) and uses

the estimator

ι̂ks,mod2X (Y ) =
1

mn

mn∑

i=1

Yi
δ̂(Xi)− δ̂(X)√

1
n

∑n
i=1

(
δ̂(Xi)− ¯̂

δ(X)
)2 , (2.13)

where

δ̂(x) =

∑n
j=1Kh(x−Xj)Yj∑n
j=1Kh(x−Xj)

,

the ordinary kernel smoother. Note, that we use all data in the kernel-smoothing while

we only use the first mn < n observations for the estimation of the mean impact.

Furthermore, we do no longer need to assume that the bandwidth h is fixed. In order for
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the asymptotic to work we need the following assumptions which originate from Mack

and Silverman (1982).

Assumption 2.27. • K is uniformly continuous with modulus of continuity wK ,

i.e. |K(x)−K(y)| ≤ wK(|x− y|) for all x, y ∈ supp(K) and wK : [0,∞] → [0,∞]

is continuous at zero with wK(0) = 0. Furthermore K is of bounded variation

V (K);

• K is absolutely integrable with respect to the Lebesgue measure on the line;

• K(x) → 0 as |x| → ∞;

•
∫
|x log |x|| 12 |dK(x)| <∞,

Assumption 2.28. • EP|Y |s <∞ and supx
∫
|y|sf(x, y)dy <∞, s ≥ 2;

• f , g and l are continuous on an open interval containing the bounded interval

J , where f is the joint density of X and Y , g is the marginal density of X and

l(x) =
∫
yf(x, y)dy

Assumption 2.29. mn → ∞ and h→ 0 as n→ ∞ in a way that

(mn

nh
log(1/h)

)1/2
→ 0

and mn < n for all n ∈ N.

Assumption 2.30. (a) The support J of X is a bounded interval, on which its density

is bounded away from zero.

(b) The density of X and
∫
f(x, y)y dy have bounded second derivatives, where f(x, y)

is the joint density of X and Y .

(c) h2 = o(an), where

an =

(
1

nh
log

1

h

)1/2

.

(d) n2η−1h→ ∞ for some η < 1− s−1 and s > 2.

(e) The kernel function K is symmetric.

With this we can state the following theorem.
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Theorem 2.31. Assume that Assumptions 2.27, 2.28 and 2.30 hold. Then we have that

a−1
n sup

x∈J

∣∣∣δ̂(x)− EP(Y |x)
∣∣∣ = Op(1).

Proof. For the proof see Theorem B from Mack and Silverman (1982).

The following Corollary follows immediately.

Corollary 2.32. Assume that the Assumption 2.29 as well as conditions of Theorem

2.31 are met. Then we have that

√
mn sup

x∈J

∣∣∣δ̂(x)− EP(Y |x)
∣∣∣ = op(1).

To show the asymptotic normality of the estimate ι̂ks,mod2X (Y ) from (2.13) we need an

additional assumption.

Assumption 2.33. We define

g1(Zi, Zj) = YiEP(Y |Xi) g2(Zi, Zj) = YiEP(Y |Xj)

g3(Zi, Zj) = EP(Y |Xi)EP(Y |Xj) g4(Zi, Zj) = EP(Y |Xi)

as well as g = (g1, ..., g4)
T and w(Zi, Zj) =

1
2 (g(Zi, Zj) + g(Zj , Zi)) and assume that

EP (w(Zi, Zj)) and EP

(
w2(Zi, Zj)

)

exist for all (i, j) ∈ {1, ...,mn}2. Additionally, define ϑ = E(w(Zi, Zj)) for i 6= j.

Theorem 2.34. Under the assumptions of this section we have that

√
mn

(
ι̂ks,mod2X (Y )− ιX(Y )

) L→ N(0, σ2),

where σ2 = DF (ϑ)TΣDF (ϑ), Σ = 2EP

(
w̃(Zi)w̃

T (Zi)
)
, where w̃(Zi) = EP (w(Zi, Zj)|Zi)−

ϑ and F (a1, ..., a4) =
a1−a2√
a3−a24

.

Proof. For the proof see Appendix B.

Note that this is the first asymptotic result we obtained directly for the (unrestricted)

mean impact, and not for a lower bound of it. This means that, under the comparatively

strong conditions imposed in this setup, we are able to make statements for the mean

impact itself.
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In order to be able to give an asymptotic confidence interval for the impact, we need

to find a consistent estimate of the variance σ2. The following lemma shows how this

can be achieved.

Lemma 2.35. Under the setup of this section a consistent estimate for σ2 is given by

σ̂2 = DF (ι̃)T Σ̂DF (ι̃),

where Σ̂ = ˆ̂g−ι̃ι̃T with ι̃ = (ι̃1, ..., ι̃4)
T , where ι̃1 =

1
mn

∑mn
i=1 Yiδ̂(Xi), ι̃2 =

1
mn

∑mn
i=1 Yiδ̂(X),

ι̃3 =
1
mn

∑mn
i=1 δ̂(Xi)

2 and ι̃4 =
1
mn

∑mn
i=1 δ̂(Xi) and

ˆ̂gu,v =

(
mn

3

)−1 ∑

i<j<l

1

24

∑

π∈S({i,j,l})

∑

ψ∈S({π(i),π(j)})

ρ∈S({π(i),π(l)})

ǧu(Zψ(π(i)), Zψ(π(j)))ǧv(Zρ(π(i)), Zρ(π(l))).

ǧ is obtained from g by replacing EP(Y |x) with δ̂(x).

Proof. For the proof see Appendix B.

A consequence of this lemma is that a confidence interval for ιX(Y ) is given by

CI = [ι̂ks,mod2X (Y )− σ̂√
n
z1−α,∞).

Since we have an asymptotic result directly for the mean impact ιX(Y ) we can also give

a two-sided asymptotic confidence interval

CI2−sided =

[
ι̂ks,mod2X (Y )− σ̂√

n
z1−α/2, ι̂

ks,mod2
X (Y ) +

σ̂√
n
z1−α/2

]
.

One disadvantage of this alternative modification of the kernel smoother based estima-

tion of the mean impact is that we do not have a theoretical justification to use bootstrap

methods in the calculation of the confidence intervals for the mean impact. Such a result

would need a bootstrap version of Corollary 2.32 which we do not have at hand. Finding

such a corollary could be the subject of future research.
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3. Partial non-linear impact analysis

So far we focused on finding methods for non-linear impact estimation. It might as well

be desirable to find methods which allow us to describe non-linear partial mean impacts,

that means non-linear influences of one covariate X1 on the target variable Y , which go

beyond the influence of other covariates Q1, ..., Ql. In the following we will discuss two

approaches to this problem. The first one is a direct generalization of the procedures

in Section 1.7 where we fitted functions linear in a set of covariates X(1), ...,X(k) to the

data. The second approach tries to answer the question of a non-linear influence of one

covariate which goes beyond the possible influence of other covariates via the application

of kernel smoothers.

3.1. Partial non-linear impact based on polynomials and splines

In Section 1.9.1 we derived the theory to quantify the dependence of Y on a set of co-

variates X(1), ...,X(k) which goes beyond the possible influence of another set of random

variables Q1, ..., Ql. An application of this framework includes the fitting of polynomials

and splines in a single variable X1 (analogous to Section 2.1). In that case one would

simply choose X(1), ...,X(k) to be the respective basis terms. Furthermore, we could

choose Q1, ..., Ql to be polynomial or spline basis terms in other covariates, allowing

us to characterize the non-linear influence of X1 on Y while correcting for non-linear

influences of other variables.

The scenarios outlined here can also be applied to the partial common absolute mean

slope.

3.2. Partial non-linear impact based on kernel smoothers

We will derive the theory for a partial mean impact based on kernel smoothers for the

scenario where we consider the influence of a single covariate X1 on Y which goes beyond

the influence of other covariates X2, ...,Xk . An extension to non-linear influence of more

than one variable is straight forward. One simply replaces the one-dimensional kernel-fit

in the following by the higher-dimensional fit (as it was already done in Section 2.2.6).

3.2.1. Direct approach via density-changes

In the definition of the partial mean impact (1.1), we focused on perturbations δ of

the common density of X1, ...,Xk which leave the means of the covariates X2, ...,Xk

unchanged. In order to construct an estimate for the partial mean impact which is
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based on kernel smoothers we choose the perturbation

δ̂(X) =
PM⊥m̂(X1)√

n−1
∑n

j=1{PM⊥m̂(X1)}2j
, (3.1)

where

m̂(X1)i =
1

n

n∑

j=1

Kh(Xi1 −Xj1)Yj,

Xj = (X1j , ...,Xnj) are the observations of Xj and M = span(1,X2, ...,Xk). This leads

to the following estimate for the partial kernel-smoother-based impact

ι̂ksX1
(Y |X2, ...,Xk) =

1

n
YT δ̂(X)

=
1
nY

T m̂(X1)− 1
nY

TPMm̂(X1)√
n−1‖m̂(X1)‖22 − n−1‖PMm̂(X1)‖22

=
1
nY

T m̂(X1)− 1
nY

T m̃/d√
n−1‖m̂(X1)‖22 − n−1‖m̃‖22/d2

,

where

m̃ = X̌ cof(X̌T X̌/n)
1

n
X̌T m̂(X1),

d = det(X̌T X̌/n) and X̌ = (X̌1, ..., X̌k) with X̌1 = 1 and X̌j = Xj for j=2,...,k. With

the notation

s(X) =
1

n
m̂(X1)

T X̌ cof(X̌T X̌/n)
1

n
X̌T m̂(X1)

(note that n−1‖m̃‖22/d2 = s(X)/d) we aim to show that

ι̃ =

(
1

n
YT m̂(X1),

1

n
YT m̃(X1), d,

1

n
‖m̂(X1)‖22, s(X)

)T

is essentially a five-dimensional U-statistics. With the same argumentation as in Section

2.2.1, where we considered the ordinary impact based on kernel smoothers, we can then

deduce asymptotic normality of our estimate. Furthermore, the bootstrap can then be

shown to be consistent.

As a first step we investigate the expression cof(X̌T X̌/n). We have that

(X̌T X̌/n)ab =
1

n

n∑

i=1

X̌iaX̌ib,

where X̌ib is the i-th element of X̌b (analogous for a). Since the entries of cof(X̌T X̌/n)
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are signed determinants of (k− 1)× (k− 1)-sub-matrices of X̌T X̌/n they can be written

as
1

nk−1

n∑

j1=1

...

n∑

jk−1=1

g(Zj1 , ..., Zjk−1
), (3.2)

where Zi = (Yi,Xi1, ...,Xik)
T and g(Zj1 , ..., Zjk−1

) is a sum respectively a difference of

products and quotients of terms of the form X̌joaX̌jpb, o, p = 1, ..., k − 1 (the specific

form of g depends on which element of cof(X̌T X̌/n) is expressed). Hence

cof(X̌T X̌/n) =





1

nk−1

n∑

j1=1

...

n∑

jk−1=1

glm(Zj1 , ..., Zjk−1
)




l,m=1,...,k

,

where glm is that function g from (3.2) which leads to the l,m-th entry of cof(X̌T X̌/n).

Furthermore, we have

1

n
YT X̌ =

{
1

n

n∑

i=1

X̌ilYi

}T

l=1,...,k

and

1

n
X̌T m̂(X1) =





1

n2

n∑

i=1

n∑

j=1

Kh(Xi1 −Xj1)YjX̌il




l=1,...,k

.

Defining fl(Zjk , Zjk+1
) = Kh(Xjk1 −Xjk+11)Yjk+1

X̌jkl we can write

ι̃2 =
1

n
YT X̌ cof(X̌T X̌/n)

1

n
X̌T m̃

=

k∑

l=1

k∑

j=1

1

nk+2

n∑

j1=1

...

n∑

jk+2=1

glm(Zj1 , ..., Zjk−1
)fl(Zjk , Zjk+1

)X̌jk+2mYjk+2

=
1

nk+2

n∑

j1=1

...

n∑

jk+2=1

k∑

l=1

k∑

j=1

glm(Zj1 , ..., Zjk−1
)fl(Zjk , Zjk+1

)X̌jk+2mYjk+2

︸ ︷︷ ︸
ṽ2(Zj1 ,...,Zjk+2

)

=
1

nk+3

n∑

j1=1

...

n∑

jk+3=1

v2(Zj1 , ..., Zjk+3
),

where v2(Zj1 , ..., Zjk+3
) = ṽ2(Zj1 , ..., Zjk+2

). Analogously it can be seen that

ι̃5 =
1

nk+3

n∑

j1=1

...
n∑

jk+3=1

v5(Zj1 , ..., Zjk+3
),
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with

v5(Zj1 , ..., Zjk+3
) =

l∑

l=1

k∑

m=1

glm(Zj1 , ..., Zjk−1
)fl(Zjk , Zjk+1

)fm(Zjk+2
, Zjk+3

).

For ι̃3 we obtain

ι̃3 =
1

nk+3

n∑

j1=1

...

n∑

jk+3=1

v3(Zj1 , ..., Zjk+3
),

where v3(Zj1 , ..., Zjk+3
) contains sums and products of terms of the form X̌iaX̌ib, a, b =

1, ..., k, i = 1, ..., n. Furthermore, we have

ι̃1 =
1

nk+3

n∑

j1=1

...

n∑

jk+3=1

v1(Zj1 , ..., Zjk+3
)

where v1(Zj1 , ..., Zjk+3
) = Kh(Xj11 −Xj21)Yj1Yj2 and

ι̃4 =
1

nk+3

n∑

j1=1

...
n∑

jk+3=1

v4(Zj1 , ..., Zjk+3
)

with v4(Zj1 , ..., Zjk+3
) = Kh(Xj11−Xj21)

2Y 2
j1
. Thereby, with the definition v = (v1, ..., v5)

T ,

we obtain

ι̃ =
1

nk+3

n∑

j1=1

...

n∑

jk+3=1

v(Zj1 , ..., Zjk+3
)

=
1

nk+3

n∑

j1=1

...
n∑

jk+3=1

w(Zj1 , ..., Zjk+3
),

where

w(Zj1 , ..., Zjk+3
) =

1

(k + 1)!

∑

π∈S({1,...,k+3})
v(Zjπ(1) , ..., Zjπ(k+3)

).

Assumption 3.1. Assume that

EP(w(Zj1 , ..., Zjk+3
)) and EP(w

2(Zj1 , ..., Zjk+3
))

exist for all (j1, ..., jk+3) ∈ {1, ..., n}k+3 and define ϑ = EP(w(Zj1 , ..., Zjk+3
)) for j1 <

... < jk+3.
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With Assumption 3.1 we obtain that ι̃ = Un+op(n
−1/2), where Un is a five-dimensional

k+3rd order U-statistics. Hence, we can use the argumentation of Section 2.2.1 to infer,

that √
n(ι̃− ϑ)

L→ N5(0, V ),

with V = (k+3)!EP

(
h̃(Zj1)h̃

T (Zj1)
)
, where h̃(Zj1) = EP

(
w(Zj1 , ..., Zjk+3

)|Zj1
)
. Thus,

application of the delta-method yields

√
n(ι̂ksX1

(Y |X2, ...,Xk)− ιksX1
(Y |X2, ...,Xk))

L→ N(0, σ2),

where ιksX1
(Y |X2, ...,Xk) = F (ϑ), with F (a1, ..., a5) = a1−a2/a3√

a4−a5/a3
and the variance is

given by σ2 = DF (ϑ)V DF (ϑ)T . Furthermore, it follows that the bootstrap is consistent

in this scenario.

In the above considerations we built the estimator for the partial mean impact based

on a kernel fit of Y in X1. We could also use all covariates X1, ...,Xk in the kernel fitting,

which would result in a different m̂(X) in (3.1), namely

m̂(X)i = Xi cof(X
TW(Xi)X)XTW(Xi)Y,

where W(Xi) = diag (Kh(‖X1 −Xi‖), ...,Kh(‖Xn −Xi‖)). With this choice of m̂ we

would also obtain that our estimate for the kernel smoother-based partial mean impact

is essentially a U-statistics (the order of the U-statistics increases). Concluding, we also

obtain asymptotic normality of the estimate and consistency of the bootstrap.

3.2.2. An alternative approach

Similar to Section 1.9.4 we can regard an alternative approach to decide whether there

is an influence of the covariate X1 which goes beyond the possible influence of other

covariates X2, ...,Xk. We do no longer regard changes of the density of the covariates

which leave the means of X2, ...,Xk unchanged. Instead of this we estimate the impacts

based on kernel smoothing in X1, ...,Xk and in X2, ...,Xk and say that X1 has an influ-

ence on Y which goes beyond that of X2, ...,Xk , if the estimated impact based on kernel

smoothing in X1, ...,Xk is significantly larger than the that of X2, ...,Xk. Remember

that we estimate the impact of X = (X1, ...,Xk) on Y based on kernel smoothing by

ι̂ksX (Y ) =
1

n

n∑

i=1

Yi
δ̂1(Xi)− δ̄1(X)√

1
n

∑n
j=1

(
δ̂1(Xj)− δ̄1(X)

)2 ,
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where Xi = (Xi1, ...,Xik) and

δ̂1(Xi) =
1

n

n∑

j=1

Kh(Xi −Xj)Yj,

for a kernel

Kh(Xi −Xj) = D

(‖Xi −Xj‖
h

)

and D from Section A.1.1. Let the estimator ι̂ks
X̃
(Y ) of the impact of X̃ = (X2, ...,Xk)

on Y be analogously defined as ι̂ks
X̃
(Y ) but with

δ̂2(X̃i) =
1

n

n∑

j=1

K̃h(X̃i − X̃j)Yj and K̃h(X̃i − X̃j) = D

(
‖X̃i − X̃j‖

h

)
,

instead of δ̂1 and Kh. As described above we now regard the difference between these

two estimated impacts ι̂ksX (Y )− ι̂ks
X̃
(Y ).

Assumption 3.2. Let

g1(Zi, Zj , Zl) = Kh(Xi −Xj)YiYj, g2(Zi, Zj , Zl) = Kh(Xj −Xl)YiYl,

g3(Zi, Zj , Zl) = Kh(Xi −Xj)YiKh(Xi −Xl)Yl, g4(Zi, Zj , Zl) = Kh(Xi −Xj)Yj ,

g5(Zi, Zj , Zl) = K̃h(X̃i − X̃j)YiYj, g6(Zi, Zj , Zl) = K̃h(X̃j − X̃l)YiYl,

and

g7(Zi, Zj , Zl) = K̃h(X̃i − X̃j)K̃h(X̃i − X̃l)Yl, g8(Zi, Zj , Zl) = K̃h(X̃i − X̃j)Yj.

We use the notation g = (g1, ..., g8) and define w analogously to (2.3). Furthermore, we

let ϑ = E(w(Zi, Zj , Zl)), for i 6= j 6= l 6= i.

Theorem 3.3. Under Assumption 3.2 we can conclude that

ι̂ks,altX1
(Y |X2, ...,Xk)− ιks,altX1

(Y |X2, ...,Xk)
L→ N(0, σ2),

where ι̂ks,altX1
(Y |X2, ...,Xk) = ι̂ksX (Y )−ι̂ks

X̃
(Y ) and ιks,altX1

(Y |X2, ...,Xk) = ιksX (Y )−ιks
X̃
(Y ) =

F (ϑ), σ2 = DF (ϑ)TV DF (ϑ), F ((a1, ..., a8)
T ) = a1−a2√

a3−a24
− a5−a6√

a7−a28
and

V = 9EP

(
w̃(Zi)w̃

T (Zi)
)
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where w̃(Zi) = EP(w(Zi, Zj , Zl)|Zi)− ϑ.

Proof. The key to determining the asymptotic distribution of this difference is once again

the theory of U-statistics. We can rewrite the difference as

ι̂ksX (Y )− ι̂ks
X̃
(Y ) =

ι̃1 − ι̃2√
ι̃3 − ι̃24

− ι̃5 − ι̃6√
ι̃7 − ι̃28

,

with

ι̃1 =
1

n

n∑

i=1

Yiδ̂1(Xi), ι̃2 =
1

n

n∑

i=1

Yiδ̄1(X), ι̃3 =
1

n

n∑

i=1

δ̂1(Xi)
2, ι̃4 =

1

n

n∑

i=1

δ̂1(Xi),

ι̃5 =
1

n

n∑

i=1

Yiδ̂2(X̃i) ι̃6 =
1

n

n∑

i=1

Yiδ̄2(X̃), ι̃7 =
1

n

n∑

i=1

δ̂2(X̃i)
2 ι̃8 =

1

n

n∑

i=1

δ̂2(X̃i).

We obtain in analogy to the proof of Theorem 2.3

ι̃ =
1

n3

n∑

i=1

n∑

j=1

n∑

l=1

w(Zi, Zj , Zl).

With Assumption 3.2 we can follow the argumentation of the proof of Theorem 2.3 to

obtain

√
n(ι̃− ϑ)

L−→N(0, V )

and

V = 9EP

(
w̃(Zi)w̃

T (Zi)
)

where w̃(Zi) = EP(w(Zi, Zj , Zl)|Zi)− ϑ. Application of the delta method with

F ((a1, ..., a8)
T ) =

a1 − a2√
a3 − a24

− a5 − a6√
a7 − a28

yields

ι̂ks,altX1
(Y |X2, ...,Xk)− ιks,altX1

(Y |X2, ...,Xk)
L→ N(0, σ2),

where ι̂ks,altX1
(Y |X2, ...,Xk) = ι̂ksX (Y )−ι̂ks

X̃
(Y ) and ιks,altX1

(Y |X2, ...,Xk) = ιksX (Y )−ιks
X̃
(Y ) =

F (ϑ) as well as σ2 = DF (ϑ)TV DF (ϑ).

By replacing F and ι̃ in Section 2.2.1 by our new F and ι̃ we can also apply the results

of Section 2.2.1 concerning estimation of σ2. The same considerations as in Section
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2.2.1 show that the bootstrap is consistent in this case as well which is a justification for

computing bootstrap confidence intervals in this case (e.g. in order to save computational

time).

In the case of the linear common mean impact orthogonality provided (1.33), which

means

ιlin
2

X1,...,Xk
(Y )− ιlin

2

X2,...,Xk
(Y ) = ιlin

2

X1
(Y |X2, ...,Xk).

However, due to the lack of orthogonality, in the case of kernel smoothing such a decom-

position does not hold in general.

3.2.3. Partial mean slope based on kernel smoothing

Direct approach

The partial mean slope based on kernel smoothing is defined as

θksX1
(Y |X2, ...,Xk) =

ιksX1
(Y |X2, ...,Xk)

ιX1(X1|X2, ...,Xk)
=
ιksX1

(Y |X2, ...,Xk)√
V arP(PH⊥

2
X1)

,

where H2 = span(1,X2, ...,Xk). It is estimated by

θ̂ksX1
(Y |X2, ...,Xk) =

ι̂ksX1
(Y |X2, ...,Xk)√

1
n

∑n
i=1

(
(PH⊥

2
X1)i − PH⊥

2
X1

)2 ,

where M2 = span(1,X2, ...,Xk). We use the notation from Section 3.2.1 and define

ι̃6 =
1

n

n∑

i=1

X2
i1 =

1

nk+3

n∑

j1=1

...

n∑

jk+3=1

v6(Zj1 , ..., Zjk+3
),

where v6(Zj1 , ..., Zjk+3
) = X2

i1 and

ι̃7 =
d

n
PMXT

1 PMX1 =
1

n
XT

1 X cof(XTX/n)
1

n
XTX1.

Analogous to the discussion of ι̃2 one can see that we have

ι̃7 =
1

nk+2

n∑

j1=1

...

n∑

jk+1=1

k∑

l=1

k∑

j=1

glm(Zj1 , ..., Zjk−1
)X̃jklXjk1X̃jk+1mXjk+11
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=
1

nk+3

n∑

j1=1

...
n∑

jk+3=1

v7(Zj1 , ..., Zjk+3
),

where v7(Zj1 , ..., Zjk+3
) =

∑k
l=1

∑k
j=1 glm(Zj1 , ..., Zjk−1

)X̃jklXjk1X̃jk+1mXjk+11. Let v =

(v1, ..., v7) and as before

w(Zj1 , ..., Zjk+3
) =

1

(k + 1)!

∑

π∈S({1,...,k+3})
v(Zjπ(1), ..., Zjπ(k+3)).

Then we obtain for ι̃ = (ι̃1, ..., ι̃7)
T

ι̃ =
1

nk+3

n∑

j1=1

...
n∑

jk+3=1

v(Zj1 , ..., Zjk+3
) =

1

nk+3

n∑

j1=1

...
n∑

jk+3=1

w(Zj1 , ..., Zjk+3
),

where w(Zj1 , ..., Zjk+3
) = (k + 3)!−1

∑
π∈S({j1,...,jk+3}) v(Zj1 , ..., Zjk+3

). Assume that the

following holds:

Assumption 3.4. Assume that

P(w(Zj1 , ..., Zjk+3
)) and EP(w

2(Zj1 , ..., Zjk+3
))

exist for all (j1, ..., jk+3) ∈ {1, ..., n}k+3 and define ϑ = EP(w(Zj1 , ..., Zjk+3
)) for j1 <

... < jk+3.

It follows from Lemma 2.1 and the theory of U-statistics that

√
n (ι̃− ϑ)

L→ N7(0,Σ),

with V = (k+3)!EP

(
h̃(Zj1)h̃

T (Zj1)
)
, where w̃(Zj1) = EP

(
w(Zj1 , ..., Zjk+3

)|Zj1
)
−ϑ and

ϑ = EP(w(Zj1 , ..., Zjk+3
)). Thus, application of the delta-method with F (a1, ..., a7) =

(a1−a2/a3)√
a4−a5/a3

√
a6−a7/a3

yields

√
n
(
θ̂ksX1

(Y |X2, ...,Xk)− θksX1
(Y |X2, ...,Xk)

)
L→ N(0, σ2),

where θksX1
(Y |X2, ...,Xk) = F (ϑ) and

σ2 = DF (ϑ)TΣDF (ϑ).

By the same argumentation as in Section 2.2.1 we can find a consistent estimate σ̂2 of
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σ2. Application of Lemma 2.5 together with the results of Bickel and Freedman (1981)

gives consistency of the bootstrap in this case.

Alternative approach

We now adopt the notation of Section 3.2.2 where we considered the alternative approach

for the partial mean impact. The extension to the partial mean slope can be done by

regarding the difference

θks,altX1
(Y |X2, ...,Xk) =

ιksX (Y )− ιks
X̃
(Y )

ιX(X1)− ιks
X̃
(X1)

which can be estimated by

θ̂ks,altX1
(Y |X2, ...,Xk) =

ι̂ksX (Y )− ι̂ks
X̃
(Y )

√
1
n

∑n
i=1

(
Xi1 − X̄1

)2 − ι̂ks
X̃
(X1)

.

We define g9(Zi, Zj , Zl) =
1
n(Xi1 −Xj1)

2 as well as

g10(Zi, Zj , Zl) = K̃h(X̃i − X̃j)Xi1Xj1, g11(Zi, Zj , Zl) = K̃h(X̃j − X̃l)Xi1Xl1,

and

g12(Zi, Zj , Zl) = K̃h(X̃i − X̃j)K̃h(X̃i − X̃l)Xl1, g13(Zi, Zj , Zl) = K̃h(X̃i − X̃j)Xj1.

Furthermore, let

ι̃ :=
1

n3

n∑

i=1

n∑

j=1

n∑

l=1

w(Zi, Zj , Zl),

where still w(Zi, Zj , Zl) =
1
6{g(Zi, Zj , Zl) + g(Zi, Zl, Zj) + g(Zj , Zi, Zl) + g(Zj , Zl, Zi)

+g(Zl, Zi, Zj) + g(Zl, Zj , Zi)}, with g = (g1, ..., g13). Assume, that Assumption 3.2 still

holds for this w. With this assumption we can follow the argumentation of Section 2.2.1

to obtain √
n(ι̃− ϑ)

L−→ N(0, V )

where ϑ is defined as in Assumption 3.2 but with the new w derived in this section and

V = 9EP

(
w̃(Zi)w̃

T (Zi)
)
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where w̃(Zi) = EP(w(Zi, Zj , Zl)|Zi)− ϑ. Application of the delta method with

F ((a1, ..., a13)
T ) =

(
a1 − a2√
a3 − a24

− a5 − a6√
a7 − a28

)
/

(
a
1/2
9 − a10 − a11√

a12 − a213

)

yields

θ̂ks,altX1
(Y |X2, ...,Xk)− θks,altX1

(Y |X2, ...,Xk)
L→ N(0, σ2),

where θ̂ks,altX1
(Y |X2, ...,Xk) = θ̂ksX (Y ) − θ̂ks

X̃
(Y ) and θks,altX1

(Y |X2, ...,Xk) = θksX (Y ) −
θks
X̃
(Y ) = F (ϑ) as well as σ2 = DF (ϑ)TV DF (ϑ). By replacing the function F in Section

2.2.1 by our new F we can also apply the results of that section concerning estimation

of σ2 (including Lemma 2.7). The same considerations as in Section 2.2.1 show that

the bootstrap is consistent in this case as well which is a justification for computing

bootstrap confidence intervals in this case (e.g. in order to save computational time).

3.2.4. Partial population coefficient for determination based on kernel smoothing

Similar to Section 1.9.4 we can define a partial population coefficient for determination

based on kernel smoothing. We consider the expression

Rks
2

X1
(Y |X2, ...,Xk) =

Rks
2

X (Y )−Rks
2

X̃
(Y )

1−Rks
2

X̃
(Y )

, (3.3)

where Rks
2

X (Y ) = ιks
2

X (Y )/V arP(Y ) and Rks
2

X̃
(Y ) = ιks

2

X̃
(Y )/V arP(Y ). Thus, we can

rewrite (3.3) as

Rks
2

X1
(Y |X2, ...,Xk) =

ιks
2

X (Y )− ιks
2

X̃
(Y )

V arP(Y )− ιks
2

X̃
(Y )

.

This can be estimated by

R̂ks
2

X1
(Y |X2, ...,Xk) =

ι̂ks
2

X (Y )− ι̂ks
2

X̃
(Y )

V̂ arP(Y )− ι̂ks
2

X̃
(Y )

, (3.4)

where V̂ arP(Y ) = n−2
∑n

i=1

∑n
j=1(Yi−Yj)2. As a next step we will derive an asymptotic

normality result for (3.4). To this end we use the notation of Section 3.2.2, and define

g9(Zi, Zj , Zl) = (Yi−Yj)2 and ι̃9 = n−3
∑n

i=1

∑n
j=1

∑n
l=1 g9(Zi, Zj , Zl). Hence, we obtain

ι̃ =
1

n3

n∑

i=1

n∑

j=1

n∑

l=1

w(Zi, Zj , Zl),
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where ι̃ = (ι̃1, ..., ι̃9)
T and still w(Zi, Zj , Zl) =

1
6{g(Zi, Zj , Zl)+g(Zi, Zl, Zj)+g(Zj , Zi, Zl)+

g(Zj , Zl, Zi) + g(Zl, Zi, Zj) + g(Zl, Zj , Zi)}. Assume, that Assumption 3.2 still holds for

this w. With this assumption we can follow the argumentation of Section 2.2.1 to obtain

√
n(ι̃− ϑ)

L−→N(0, V )

with ϑ = EP(w(Zi, Zj , Zl)) and

V = 9EP

(
w̃(Zi)w̃

T (Zi)
)

where w̃(Zi) = EP(w(Zi, Zj , Zl)|Zi)− ϑ. Application of the delta method with

F ((a1, ..., a9)
T ) =

(
a1−a2√
a3−a24

)2

−
(

a5−a6√
a7−a28

)2

a9 −
(

a5−a6√
a7−a28

)2

yields √
n
(
R̂ks

2

X1
(Y |X2, ...,Xk)−Rks

2

X1
(Y |X2, ...,Xk)

) L→ N(0, σ2),

where σ2 = DF (ϑ)TV DF (ϑ). The considerations of Section 2.2.1 regarding an estimate

for the variance σ2 do also apply in this section. Hence, we can compute a consistent es-

timator σ̂2 for σ2. Using this estimator we can compute an asymptotic level α confidence

interval for Rks
2

X1
(Y |X2, ...,Xk) by

CI =
[
R̂ks

2

X1
(Y |X2, ...,Xk)− σ̂/

√
nz1−α,∞

)
.

Application of Lemma 2.5 together with the results of Bickel and Freedman (1981) gives

consistency of the bootstrap in this case as well.

Doksum and Samarov (1995) define a “measure of relative importance” which is very

similar to our partial population coefficient for determination based on kernel smoothers.

However, they use a different estimator than we do. Translating their estimator into our

framework would lead to the estimator

Ĉorr
2 (
δ̂i(X)− δ̂i(X̃), Y − δ̂i(X̃)

)

where Ĉorr is the empirical correlation coefficient and δ̂i is the leave-one-out version of

δ̂ already introduced in Section 2.2.1. A comparison between this estimator and ours

could be the subject of future research and is not done in this thesis.
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4. Simulations - Comparison of methods

In this section we want to investigate the performance of the different methods derived

in the previous sections in a simulation study. We aim to compare the different methods

with respect to the coverage probability of the confidence intervals as well as the power

in cases where the respective impact is greater than zero. We will also compare the

newly derived methods to the linear mean impact of Scharpenberg (2012) and Brannath

and Scharpenberg (2014). For the results in this section we computed 1,000 repetitions

with n=100 observations. The comparably small number of repetitions and observations

is due to the processor-intensive nature of the bootstrap methods applied. A more

thorough investigation with different sample sizes and more repetitions should be the

subject of future research. All confidence intervals are computed at a significance level of

α = 0.05. Bootstrap intervals are based on 1,000 bootstrap repetitions. All simulations

where run using the statistical software R.

4.1. Single Covariate Case

In the single covariate case we investigate the performance of the methods derived in the

previous sections on six models. The first model is a linear one, where Y = 0.3X + ǫ,

where ǫ ∼ N(0, 1) is independent from X ∼ N(0, 1). In the second model we have

Y = sin((X + 1)3π/2) + ǫ. Here we have again that ǫ ∼ N(0, 1) is independent from X,

but X ∼ U(−1, 1). Model 3 is given by Y = sin(5X)+ ǫ where X and ǫ are independent

and both follow a standard normal distribution. In the fourth model we have X ∼ U(0, 1)

independent from ǫ and Y = sin(12(X +0.2))/(X +0.2)+ ǫ. The fifth model states that

Y and X are independent and both follow a standard normal distribution. The sixth

model is a heteroscedastic one where we chose the impact to equal zero. We assume that

X ∼ N(0, 1) and Y ∼ N(0, x2/2). Figure 2 gives a graphical overview of the different

models, and how the different regression techniques fit data, that arise from this model.

Furthermore, the value of the mean impact in each scenario is given in Table 9.
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Figure 2: Display of the models of the simulation study. Upper left: Model 1, upper
right: Model 2, mid left: Model 3, mid right: Model 4, lower left panel: Model
5, lower right panel: Model 6. In each case a randomly generated data set
according is plotted. The black curves show the underlying true relationship
between X and Y . The red curves give the density of X. Three different
regression fits are also given: Linear model (green), Polynomial of degree 3
(purple) and Kernel Smoother (blue).
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Model ιX(Y )

Y = 0.3X + ǫ 0.3
Y = sin((X + 1)3π/2) + ǫ 0.675
Y = sin(5X) + ǫ 0.707
Y = sin(12(X + 0.2))/(X + 0.2) + ǫ 1.270
Y = ǫ 0
Heteroscedasticity 0

Table 9: Value of mean impact in the different simulation models

In Tables 10, 11 and 12 we can see an overview of the estimated mean impacts, their

bias as well as their variance and MSE for the methods based on linear regression, poly-

nomial regression and kernel smoothing. We can see that the kernel smoother based

impact tends to have smaller bias than the other two methods in the scenarios where

the mean impact is not equal to zero. However, in the scenarios where it equals zero

the bias is clearly greater than with the other two methods. We chose a data dependent

bandwidth for the kernel smoother based mean impact because it will turn out in Sec-

tion 4.1.3 that doing so yields better results than using a fixed bandwidth. Whenever

we will speak of bootstrap intervals using “transformations” in the course of this section

we mean that the bootstrap confidence bounds are computed based on an estimate for

the squared mean impact (allowing us to make use of the smooth function model which

yields second order accurate bootstrap intervals) and then transform these bounds (just

by taking the square root whenever they are positve) to obtain confidence bounds on

the (unsquared) impact scale as described in the derivation of the theory.

Model ιX(Y ) ι̂linX (Y ) Bias Variance MSE

Y = 0.3X + ǫ 0.3 0.297 -0.003 0.010 0.010
Y = sin((X + 1)3π/2) + ǫ 0.675 0.089 -0.586 0.005 0.347
Y = sin(5X) + ǫ 0.707 0.097 -0.610 0.006 0.378
Y = sin(12(X + 0.2))/(X + 0.2) + ǫ 1.270 0.277 -0.993 0.024 1.010
Y = ǫ 0 0.080 0.080 0.004 0.010
Heteroscedasticity 0 0.093 0.093 0.005 0.014

Table 10: Overview of the estimated linear mean impact. Given are the mean estimate
as well as the empirical bias (for the unrestricted mean impact), variance and
mse based on 1,000 simulation runs.
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Model ιX(Y ) ι̂polX (Y ) Bias Variance MSE

Y = 0.3X + ǫ 0.3 0.331 0.031 0.009 0.010
Y = sin((X + 1)3π/2) + ǫ 0.675 0.447 -0.227 0.012 0.063
Y = sin(5X) + ǫ 0.707 0.197 -0.510 0.007 0.267
Y = sin(12(X + 0.2))/(X + 0.2) + ǫ 1.270 0.401 -0.869 0.022 0.777
Y = ǫ 0 0.160 0.160 0.005 0.030
Heteroscedasticity 0 0.216 0.216 0.012 0.058

Table 11: Overview of the estimated polynomial mean impact. Used were cubic poly-
nomials. Given are the mean estimate as well as the empirical bias (for the
unrestricted mean impact), variance and mse based on 1,000 simulation runs.

Model ιX(Y ) ι̂ksX (Y ) Bias Variance MSE

Y = 0.3X + ǫ 0.3 0.319 0.019 0.008 0.008
Y = sin((X + 1)3π/2) + ǫ 0.675 0.695 0.020 0.010 0.011
Y = sin(5X) + ǫ 0.707 0.481 -0.226 0.015 0.066
Y = sin(12(X + 0.2))/(X + 0.2) + ǫ 1.270 1.184 -0.086 0.015 0.022
Y = ǫ 0 0.200 0.200 0.005 0.044
Heteroscedasticity 0 0.207 0.207 0.006 0.049

Table 12: Overview of the estimated kernel smoother mean impact with data dependent
bandwidth. Given are the mean estimate as well as the empirical bias (for the
unrestricted mean impact), variance and mse based on 1,000 simulation runs.

We will compare many different methods in the sequel. Table 13 gives an overview

over all performed simulations and displays which table contains which results.
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Type of Impact Type of Bootstrap Transformation used Bandwidth Pre-performed tests Table Page

Linear Studentized Yes NA No Table 14 Page 111

Polynomial

Shrinkage* Yes NA Yes Table 15 Page 112
Studentized Yes NA No Table 16 Page 112
Studentized No NA Yes Table 17 Page 113
Basic Yes NA No Table 18 Page 114
Basic No NA Yes Table 19 Page 115

Kernel-Smoother

Basic No Fixed No Table 20 Page 116
Basic No Optimal Yes Table 23 Page 118
Studentized No Optimal Yes Table 24 Page 119
Studentized** No Optimal Yes Table 25 Page 119
Basic*** No Fixed No Table 26 Page 120
Basic*** No Optimal Yes Table 27 Page 120

Local Linear Basic No Fixed No Table 21 Page 116

Local Squared Basic No Fixed No Table 22 Page 117

Table 13: Overview of simulation scenarios in the single covariate case. *: The shrinkage approach for the calculation of
confidence intervals from Section 1.7.2, no bootstrap performed. **: In this scenario the regression functions were
normalized such that the true mean impact equals one. ***: Kernel-Smoother based impact estimate without
deletion of denominator.
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4.1.1. Linear mean impact

First we compute the simulations for the linear mean impact analysis. This allows

us to compare the performance of the intervals based on the normal approximation

(see (1.15)) to the studentized bootstrap interval (where we consider the “common”

impact of X alone). Furthermore, these results will be used for the comparison to

the non-linear methods to assess their benefit. One can see from Table 14 that both

types of confidence intervals maintain the pre specified level in all cases but the case

of heteroscedasticity. Here the confidence interval based on the normal approximation

shows slight undercoverage. With both methods one has very low power in all scenarios

but the linear one. The normal approximation based confidence interval outperforms the

bootstrap interval in terms of power. In the scenario of a linear underlying regression

function both methods maintain the confidence level. However the power of the normal

approximation interval (0.853) is greater than the one of the bootstrap interval (0.625).

Model ιX(Y ) Covernorm Powernorm Coverboot Powerboot

Y = 0.3X + ǫ 0.3 0.974 0.853 0.957 0.625
Y = sin((X + 1)32π) + ǫ 0.6745 1.000 0.060 1.000 0.008
Y = sin(5X) + ǫ 0.707 1.000 0.051 1.000 0.009

Y = sin(12(X+0.2))
(X+0.2) + ǫ 1.2698 1.000 0.380 1.000 0.150

Y = ǫ 0 0.941 0.059 0.989 0.011
Heteroscedasticity 0 0.939 0.061 0.983 0.017

Table 14: Simulation results for the linear mean impact. Compared are the confidence
interval based on the asymptotic normality (norm) result and the bootstrap
confidence interval (boot). For each interval the coverage probability for the
(unrestricted) mean impact and the probability of exclusion of zero (power)
are given.

4.1.2. Polynomial based impact

As a next step we investigate the confidence intervals based on the shrinkage like ap-

proach of Section 1.7.2 for polynomial regression. We chose to use polynomials of degree

3. Table 15 shows that the confidence intervals resulting from the shrinkage like ap-

proach perform very good in all scenarios where the mean impact is greater than zero.

However, the coverage probability of 0.837 in the case where the mean impact is zero is

very low and far from tolerable. Hence, other methods for the computation of confidence
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Model ιX(Y ) Cover Power

Y = 0.3X + ǫ 0.3 0.988 0.731
Y = sin((X + 1)32π) + ǫ 0.6745 1.000 0.820
Y = sin(5X) + ǫ 0.707 1.000 0.169

Y = sin(12(X+0.2))
(X+0.2) + ǫ 1.2698 1.000 0.541

Y = ǫ 0 0.837 0.163
Heteroscedasticity 0 0.693 0.307

Table 15: Simulation results for the shrinkage approach confidence intervals for the cubic
polynomial based mean impact. Given are the coverage probability of the
interval for the (unrestricted) mean impact and the probability of exclusion of
zero (power).

intervals are needed.

Since the confidence intervals based on the shrinkage like approach to not perform very

good, we want to investigate the performance of the intervals based on the polynomial

mean impact. We now compute studentized bootstrap intervals. We used the functional

delta method variance estimate which is further introduced in Section A.3.2. The results

Model ιX(Y ) Coverage Power

Y = 0.3X + ǫ 0.3 0.949 0.610
Y = sin((X + 1)32π) + ǫ 0.6745 1.000 0.732
Y = sin(5X) + ǫ 0.707 1.000 0.066

Y = sin(12(X+0.2))
(X+0.2) + ǫ 1.2698 1.000 0.180

Y = ǫ 0 0.936 0.064
Heteroscedasticity 0 0.855 0.145

Table 16: Simulation results for studentized bootstrap intervals for the cubic polynomial
based mean impact. Given are the coverage probability of the interval for the
(unrestricted) mean impact and the probability of exclusion of zero (power).

of Table 16 indicate, that the coverage probability of the studentized intervals is main-

tained in scenarios 2-4. In the case of a linear model and when there is no relationship

between X and Y the coverage probability lies slightly below 0.95. However, this small

deviations from the nominal confidence level is explainable by simulation error.

In Section 1.7.5 it was also mentioned that it is possible to compute bootstrap in-

tervals based directly on the estimate ι̂linX (Y ) instead of using its square (as we did in
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the calculations for Table 16), when we can preclude that the mean impact is zero. To

this end we computed studentized bootstrap intervals, again using the functional delta

method estimate of the variance, and pre performed different test for the hypothesis that

the polynomial based impact is zero. The first test we used is the test from Section 1.7.1.

Since this test is based on the results of White (1980b) we denote the coverage prob-

ability and power of the confidence intervals arising from pre performing this test by

Coverwhite and Powerwhite. We also investigated whether or not the use of the global

F-test (H0 : ξ1 = ξ2 = ξ3 = 0 where ξ0, ..., ξ3 are the coefficients from the projection

of Y onto span(1,X,X2,X3)) from the linear regression (without robust variance esti-

mate) as pre-performed test delivers better results (coverage probability and power of

this procedure are denoted by CoverF and PowerF in Table 17). The performance of

the procedure where both, the F-test and the test from Section 1.7.1 are performed prior

to the calculation of confidence intervals was also investigated. The results of Table 17

Model ιX(Y ) Coverno test Powerno test Coverwhite Powerwhite

Y = 0.3X + ǫ 0.3 0.931 0.927 0.931 0.689
Y = sin((X + 1)32π) + ǫ 0.6745 1.000 0.950 1.000 0.855
Y = sin(5X) + ǫ 0.707 1.000 0.315 1.000 0.045

Y = sin(12(X+0.2))
(X+0.2) + ǫ 1.2698 1.000 0.592 1.000 0.334

Y = ǫ 0 0.688 0.312 0.960 0.040
Heteroscedasticity 0 0.543 0.457 0.592 0.408

Model ιX(Y ) CoverF PowerF Coverboth Powerboth

Y = 0.3X + ǫ 0.3 0.931 0.836 0.931 0.685
Y = sin((X + 1)32π) + ǫ 0.6745 1.000 0.862 1.000 0.841
Y = sin(5X) + ǫ 0.707 1.000 0.167 1.000 0.043

Y = sin(12(X+0.2))
(X+0.2) + ǫ 1.2698 1.000 0.391 1.000 0.320

Y = ǫ 0 0.821 0.179 0.960 0.040
Heteroscedasticity 0 0.671 0.329 0.679 0.321

Table 17: Simulation results for studentized bootstrap intervals for the cubic polynomial
based mean impact (not using transformations). Given are the coverage prob-
ability of the interval for the (unrestricted) mean impact and the probability
of exclusion of zero (power), when pre-performing different test for the impact
being zero.

show that the studentized bootstrap intervals based on the polynomial mean impact,

not using the transformation performs very bad in the case, where the mean impact is
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zero. This is due to the fact, that in this case the smooth function model does not hold,

and we do not have any theoretical justification for the use of bootstrap methods in this

case. This issue is resolved by the use of the test from Section 1.7.1. However, when

using this test, we still have slight undercoverage in the case of a linear relationship

between X and Y . The use of the F-test does not give any benefit. The improvement

of the coverage probability to 0.821 in the zero impact case is not sufficient. Therefore,

the best choice seems to be to use the test from Section 1.7.1 prior to the calculation of

the confidence intervals.

When comparing the results of the procedure where we compute the studentized boot-

strap intervals via transformation of the estimated polynomial mean impact (Table 16)

with the results of the procedure where we did not use the transformation but pre

performed a test for the mean impact being zero (Table 17), we can see that the lat-

ter procedure yields a higher coverage probability as well as a higher power in most

scenarios. In the presence of heteroscedasticity both procedures do not perform very

good, although we should mention that the transformation procedure beats the non-

transformation procedure in this case. However, this scenario is not covered by the

theory derived in this thesis.

The computation of studentized bootstrap confidence intervals can be very time consum-

ing, especially when using the functional delta method variance estimate. This is why

it might be preferable to calculate the less cpu-intensive basic bootstrap intervals. We

performed the same simulations as for Tables 16 and 17 but with basic bootstrap inter-

vals instead of studentized intervals. We can see from Table 18 that the basic bootstrap

Model ιX(Y ) Coverage Power

Y = 0.3X + ǫ 0.3 0.988 0.010
Y = sin((X + 1)32π) + ǫ 0.6745 1.000 0.358
Y = sin(5X) + ǫ 0.707 1.000 0.001

Y = sin(12(X+0.2))
(X+0.2) + ǫ 1.2698 1.000 0.010

Y = ǫ 0 0.997 0.003
Heteroscedasticity 0 0.994 0.006

Table 18: Simulation results for basic bootstrap intervals for the cubic polynomial based
mean impact. Given are the coverage probability of the interval for the (un-
restricted) mean impact and the probability of exclusion of zero (power).

intervals using the transformation of the estimated mean impact are very conservative
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and have close to no power.

Model ιX(Y ) Coverno test Powerno test Coverwhite Powerwhite

Y = 0.3X + ǫ 0.3 0.931 0.940 0.931 0.700
Y = sin((X + 1)32π) + ǫ 0.6745 1.000 0.973 1.000 0.857
Y = sin(5X) + ǫ 0.707 1.000 0.329 1.000 0.045

Y = sin(12(X+0.2))
(X+0.2) + ǫ 1.2698 1.000 0.614 1.000 0.361

Y = ǫ 0 0.554 0.446 0.573 0.427
Heteroscedasticity 0 0.457 0.180 0.200 0.673

Model ιX(Y ) Coverf Powerf Coverboth Powerboth

Y = 0.3X + ǫ 0.3 0.931 0.835 0.931 0.685
Y = sin((X + 1)32π) + ǫ 0.6745 1.000 0.864 1.000 0.842
Y = sin(5X) + ǫ 0.707 1.000 0.172 1.000 0.043

Y = sin(12(X+0.2))
(X+0.2) + ǫ 1.2698 1.000 0.411 1.000 0.338

Y = ǫ 0 0.818 0.182 0.959 0.041
Heteroscedasticity 0 0.656 0.344 0.662 0.338

Table 19: Simulation results for basic bootstrap intervals for the cubic polynomial based
mean impact (not using transformations). Given are the coverage probabil-
ity of the interval for the (unrestricted) mean impact and the probability of
exclusion of zero (power), when pre-performing different test for the impact
being zero.

Moving to the intervals where we do not use the transformation of the estimated

impact (Table 19) increases the power at the cost of resulting severe undercoverage

in the case where the mean impact is zero. In this case pre-performing the test from

Section 1.7.1 does not resolve the issue. However, using this test and the F-test leads

to confidence intervals that maintain the coverage probability and have a power which

is comparable to the power of the studentized intervals using no transformation but the

test from Section 1.7.1.

4.1.3. Kernel-smoother based impact analysis

In this section we compare the performance of the mean impact analysis based on

kernel methods. Since we assumed fixed bandwidths in the derivation of the asymp-

totic results of the kernel-method based impact analysis we consider the three cases of

h ∈ {0.05, 0.1, 0.5}. The computation of the variance estimates derived in Section 2.2

is very time consuming, which is why we compare the methods using basic bootstrap
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intervals. We use a normal kernel for the kernel-smoother and higher order regression

based mean impact. We can see from Table 20 that the performance of the kernel-

Model ιX(Y ) Cov0.05 Pow0.05 Cov0.1 Pow0.1 Cov0.5 Pow0.5

Y = 0.3X + ǫ 0.3 0.227 1.000 0.770 0.998 0.975 0.895
Y = sin((X + 1)32π) + ǫ 0.6745 0.893 1.000 0.936 1.000 0.969 1.000
Y = sin(5X) + ǫ 0.707 0.872 1.000 0.952 1.000 0.998 0.989

Y = sin(12(X+0.2))
(X+0.2) + ǫ 1.2698 0.969 1.000 0.995 1.000 1.000 0.592

Y = ǫ 0 0.528 0.472 0.838 0.162 0.923 0.077
Heteroscedasticity 0 0.000 1.000 0.028 0.972 0.648 0.352

Table 20: Simulation results for basic bootstrap intervals of the kernel smoother based
impact for different bandwidths. Given are the coverage probability for the
(unrestricted) mean impact and the probability of excluding zero (power).

smoother based impact analysis is highly dependent on the choice of the bandwidth h.

The fact which of the three bandwidths performs best is also depends on the underlying

model. Small bandwidths allow for more flexible modeling which is advantageous when

the true regression function is very curvy (e.g. in Model 2) while large bandwidths are

preferable when the true structure is less curvy (e.g. Model 5). Later in this section we

will investigate whether a data dependent choice of the bandwidth (which we have no

theoretical justification for) gives good results in simulations. The results for the local

Model ιX(Y ) Cov0.05 Pow0.05 Cov0.1 Pow0.1 Cov0.5 Pow0.5

Y = 0.3X + ǫ 0.3 1.000 0.108 1.000 0.209 0.987 0.714
Y = sin((X + 1)32π) + ǫ 0.6745 1.000 0.097 1.000 0.064 1.000 0.022
Y = sin(5X) + ǫ 0.707 1.000 0.110 1.000 0.147 1.000 0.118

Y = sin(12(X+0.2))
(X+0.2) + ǫ 1.2698 1.000 0.374 1.000 0.406 1.000 0.513

Y = ǫ 0 0.907 0.093 0.922 0.078 0.926 0.074
Heteroscedasticity 0 0.927 0.073 0.929 0.071 0.926 0.074

Table 21: Simulation results for basic bootstrap intervals of the local linear regression
based impact for different bandwidths. Given are the coverage probability for
the (unrestricted) mean impact and the probability of excluding zero (power).

linear regression based impact analysis in Table 21 show that in this case too the per-

formance is highly dependent on the choice of the kernel bandwidth. However, we can

also see that this method has low power compared to the kernel smoother based impact.
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Hence, we will not further investigate the local linear regression based mean impact. In

Model ιX(Y ) Cov0.05 Pow0.05 Cov0.1 Pow0.1 Cov0.5 Pow0.5

Y = 0.3X + ǫ 0.3 0.989 0.505 0.989 0.553 0.995 0.598
Y = sin((X + 1)32π) + ǫ 0.6745 1.000 0.106 1.000 0.104 0.995 0.105
Y = sin(5X) + ǫ 0.707 1.000 0.242 1.000 0.222 1.000 0.160

Y = sin(12(X+0.2))
(X+0.2) + ǫ 1.2698 1.000 0.286 1.000 0.125 1.000 0.311

Y = ǫ 0 0.877 0.123 0.914 0.086 0.925 0.075
Heteroscedasticity 0 0.772 0.228 0.793 0.207 0.873 0.127

Table 22: Simulation results for basic bootstrap intervals of the local quadratic regression
based impact for different bandwidths. Given are the coverage probability for
the (unrestricted) mean impact and the probability of excluding zero (power).

Table 22 the simulation results for the local quadratic regression based impact analysis

are given. Similar to the kernel-smoother based and the local linear regression based

mean impact analysis the results depend on the chosen bandwidth h. This methods does

not show a good power and is therefore not followed up any further.

As a next step we want to examine how the kernel-smoother based impact analy-

sis performs when we choose the bandwidth data dependent. For the simulations the

bandwidth was chosen with the R function h.select which selects a bandwidth asso-

ciated with approximate degrees of freedom equal to 6 (this is the default setup for

non-parametric regression, for further details of degrees of freedom of kernel smoothers

see Hastie et al. (2001)). Since it turned out that the data-based choice of h leads to

undercoverage in scenarios where the mean impact equals zero we also computed some

intervals where tests for the the hypothesis that the mean impact is zero were pre-

performed. The first test is a permutation test. Another test is the wild bootstrap test

explained in Section A.3.5. The third test is a residual bootstrap test, which is similar

to the wild bootstrap test with the difference that the residuals for each observation are

drawn from the full set of residuals instead of from a two point distribution. The results

of these simulations can be found in Table 23. Note, that the results of Doksum and

Samarov (1995) suggest that using a leave-one-out type estimator for the mean impact

may lead to more conservative results, even without pre-performing any tests. However,

since the simulations of this thesis were very computer intensive, such methods were not

investigated. This is an interesting subject of possible future research.

We can see in Table 23 that the coverage probability of the confidence intervals where

we do not perform any test prior to their calculation is very poor in the cases where
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Model ιX(Y ) Coverno test Powerno test Coverperm Powerperm

Y = 0.3X + ǫ 0.3 0.970 0.873 0.970 0.482
Y = sin((X + 1)32π) + ǫ 0.6745 0.949 1.000 0.949 1.000
Y = sin(5X) + ǫ 0.707 0.996 0.919 0.996 0.850

Y = sin(12(X+0.2))
(X+0.2) + ǫ 1.2698 0.992 1.000 0.992 1.000

Y = ǫ 0 0.601 0.399 0.943 0.057
Heteroscedasticity 0 0.673 0.327 0.726 0.274

Model ιX(Y ) Coverwild Powerwild Coverresid Powerresid

Y = 0.3X + ǫ 0.3 0.971 0.429 0.971 0.494
Y = sin((X + 1)32π) + ǫ 0.6745 0.949 1.000 0.948 1.000
Y = sin(5X) + ǫ 0.707 0.996 0.830 0.997 0.853

Y = sin(12(X+0.2))
(X+0.2) + ǫ 1.2698 0.992 1.000 0.992 1.000

Y = ǫ 0 0.951 0.049 0.943 0.057
Heteroscedasticity 0 0.963 0.037 0.726 0.274

Table 23: Simulation results for basic bootstrap intervals of the kernel-smoother based
impact for data dependent bandwidth. Given are the coverage probability
for the (unrestricted) mean impact and the probability of excluding zero
(power) when performing no test (no test), when pre-performing a permuta-
tion test (perm), when pre-performing a wild bootstrap test (wild) and when
pre-performing a residual bootstrap test (resid).

the mean impact equals zero. All three tests improve the coverage probability of the

tests, where it should be mentioned that only the wild bootstrap test leads to confidence

intervals that maintain the desired coverage probability. Furthermore, the use of the

wild bootstrap procedure gives good results in terms of power and coverage even in

the presence of heteroscedasticity. The confidence intervals with pre performed wild

bootstrap test and data dependent bandwidth are therefore preferable.

As it is well known, studentized bootstrap intervals are sometimes second order ac-

curate. In order to investigate whether or not the calculation of studentized bootstrap

intervals has a benefit in the case of kernel-smoother based mean impact analysis (where

there is no proof of second order accuracy), we computed studentized bootstrap inter-

vals using the functional delta method variance estimate. In the simulations we pre-

performed a wild bootstrap test to rule out that the mean impact equals zero. One can

see (Table 24) that the studentized intervals are more conservative than the basic boot-

strap intervals in most cases which results in a loss of power of up to 0.4 in the case of a

linear model. Therefore, there is no benefit from calculating studentized intervals. For
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Model ιX(Y ) Coverage Power

Y = 0.3X + ǫ 0.3 1 0.037
Y = sin((X + 1)32π) + ǫ 0.6745 0.994 0.881
Y = sin(5X) + ǫ 0.707 0.997 0.853

Y = sin(12(X+0.2))
(X+0.2) + ǫ 1.2698 0.9644 0.971

Y = ǫ 0 0.996 0.004
Heteroscedasticity 0 0.999 0.001

Table 24: Simulation results for studentized bootstrap intervals for the kernel-smoother
based impact with data dependent bandwidth and pre-performed wild boot-
strap test.

explorational purposes we also computed the same simulations as for Table 24 but with

standardized regression functions where the mean impact equals one in each scenario.

The results can be found in Table 25 and show that the power for the standardized

scenarios is much higher than for the unstandardized scenarios.

Model ι̂ksX (Y ) Coverage Power

Y = X + ǫ 0.8719 1 0.992
Y = sin((X + 1)32π)/0.6745 + ǫ 1.018 0.985 1

Y = sin(5X)/
√
0.5 + ǫ 0.9185 1 0.917

Y = sin(12(X+0.2))
(X+0.2)1.2698 + ǫ 1.0140 0.980 0.998

Table 25: Simulation results for studentized bootstrap intervals for the kernel-smoother
based impact with data dependent bandwidth and pre-performed wild boot-
strap test. The regression functions have been modified so that the resulting
mean impact equals 1 in each scenario.

Additionally to the fact that the bandwidth of the kernel smoother has to be fixed,

we also dropped the denominator of the kernel smoother when deriving the theory of

the kernel smoother based impact analysis. In the following we will show some exem-

plary simulation results where we did not drop the denominator of the kernel smoother.

Table 26 shows that the performance of the intervals based on kernel smoothers with

fixed bandwidth but inclusion of the denominator also depends on the choice of the

bandwidth h. In the zero impact scenario these intervals have much poorer coverage

probability than the intervals based on the kernel smoothers without denominator. The
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Model ιX(Y ) Cov0.05 Pow0.05 Cov0.1 Pow0.1 Cov0.5 Pow0.5

Y = 0.3X + ǫ 0.3 0.043 1.000 0.414 1.000 0.917 0.972
Y = sin((X + 1)32π) + ǫ 0.6745 0.839 1.000 0.921 1.000 0.997 1.000
Y = sin(5X) + ǫ 0.707 0.511 1.000 0.800 1.000 0.999 0.999

Y = sin(12(X+0.2))
(X+0.2) + ǫ 1.2698 0.950 1.000 0.997 1.000 1.000 0.570

Y = ǫ 0 0.001 0.999 0.015 0.985 0.443 0.557
Heteroscedasticity 0 0.000 1.000 0.001 0.999 0.331 0.669

Table 26: Simulation results for basic bootstrap intervals of the kernel-smoother based
impact without deletion of the denominator for different bandwidths. Given
are the coverage probability for the (unrestricted) mean impact and the prob-
ability of excluding zero (power).

results in the remaining setups are comparable. Table 27 gives simulation results for the

kernel smoother based impact with denominator but data dependent bandwidth. We

also performed a wild bootstrap test prior to the calculation of the intervals. Table 27

Model ιX(Y ) Coverno test Powerno test Coverwild Powerwild

Y = 0.3X + ǫ 0.3 0.889 0.978 0.889 0.735
Y = sin((X + 1)32π) + ǫ 0.6745 0.942 1.000 0.942 1.000
Y = sin(5X) + ǫ 0.707 0.999 0.983 0.999 0.937

Y = sin(12(X+0.2))
(X+0.2) + ǫ 1.2698 0.956 1.000 0.956 1.000

Y = ǫ 0 0.318 0.682 0.839 0.161
Heteroscedasticity 0 0.245 0.755 0.605 0.395

Table 27: Simulation results for basic bootstrap intervals of the kernel-smoother based
impact without deletion of the denominator for data dependent bandwidth.
Given are the coverage probability for the (unrestricted) mean impact and the
probability of excluding zero (power).

shows that when regarding the kernel smoother based mean impact with data dependent

bandwidth where we do not leave out the denominator of the kernel smoother we observe

severe undercoverage in the scenarios where the mean impact is zero and in the linear

scenario of the first model. In contrast to the case where we dropped the denominator,

pre performing of the wild bootstrap test does not improve the coverage probability to

an acceptable level.
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4.2. Partial impact analysis

To assess the performance of the different methods for a non-linear partial mean impact

analysis we use four different models. In all models we have one target variable Y and

two independent variables X1 and X2. In each case we are interested in the partial

mean impact of X1 on Y . The first two scenarios were also investigated in Scharpenberg

(2012) and are given a follows. Model I is given by a linear relationship between Y and

X2, whereas X1 has no direct influence on the target variable. The model equation is

given by Y = 2 + 0.2X2 + ǫ, where ǫ ∼ N(0, 1) is independent from (X1,X2), X1 ∼
N(0, 1.5625), X2 ∼ N(0, 1) and the correlation between the independent variables is

given by Corr(X1,X2) = 0.6. The second model is similar to the fist one, but now

X1 has a linear influence on Y . The model is given by Y = 0.3X1 + 0.2X2 + ǫ, where

ǫ ∼ N(0, 1) is independent from (X1,X2), X1 ∼ N(0, 1.5625), X2 ∼ N(0, 1) and the

correlation between the independent variables is given by Corr(X1,X2) = 0.6. In the

third model, we assume the independent variables to be stochastically independent. We

write the model as Y = X2
1+X2+ǫ, where ǫ ∼ N(0, 1) is independent from (X1,X2) and

X1 ∼ N(0, 1) and X2 ∼ N(0, 1) are stochastically independent. In this case, X1 has a

quadratic influence on the target variable. However this scenario is constructed in a way

that the linear partial mean impact equals zero, which is why we expect the non-linear

mean impact analysis to outperform the linear partial mean impact when trying to infer

about the unrestricted partial mean impact, which is strictly positive in this case. In

the fourth scenario we also have that X1 and X2 are independent. The model is given

as Y = sin(12(X1 + 0.2))/(X1 + 0.2) + X2 + ǫ, where ǫ ∼ N(0, 1) independent from

X1 ∼ U [0, 1] and X2 ∼ N(0, 1). We use a normal kernel for the kernel-smoother based

partial mean impact.

4.2.1. Partial linear mean impact analysis

As a first step we investigate the performance of the partial linear mean impact analysis.

To this end, we perform simulation runs in the three models specified above. Similar

to the singe covariate case we compute the confidence intervals based on the normal

approximation and studentized confidence intervals (using the functional delta method

variance estimate). The results of Table 28 show that the confidence interval based on

the normal approximation for the partial linear mean impact outperforms the studen-

tized bootstrap interval in scenario II. The power loss when moving from the normal

approximation to the bootstrap interval amounts to 0.2. In the first model, where the

partial mean impact ιX1(Y |X2) is zero, both methods hold the coverage probability.



122

Model ιX1(Y |X2) Covernorm Powernorm Coverboot Powerboot

I 0 0.950 0.005 0.989 0.011
II 0.3 0.980 0.838 0.964 0.613
III 1.414 1.000 0.071 1.000 0.023
IV 1.2698 1.000 0.383 1.000 0.145

Table 28: Simulation results for the partial linear mean impact. Compared are the con-
fidence intervals based on the asymptotic normality (norm) result and the
bootstrap confidence interval (boot). For each interval the coverage probabil-
ity for the (unrestricted) partial mean impact and the probability of exclusion
of zero (power) are given.

In models III an IV, where the true linear partial mean impact ιlinX1
(Y |X2) equals zero

but the unrestricted partial mean impact is strictly positive, we can observe that both

methods have very low power, which shows the limitations of the linear partial mean

impact.

4.2.2. Partial polynomial impact analysis

Now we want to compare the two procedures for a partial mean impact based on polyno-

mials (again of degree 3). Calculated are the studentized bootstrap confidence intervals

for ιX1(Y |X2) and for ι2X1,X2
(Y )− ι2X1

(Y ). We learn from Table 29 that the polynomial

Model ιX1(Y |X2) ι2X1,X2
(Y )− ι2X1

(Y ) Coverpart Powerpart Coveralt Poweralt

I 0 0 0.934 0.066 0.934 0.066
II 0.3 0.266 0.924 0.619 1.000 0.619
III 1.414 2 0.973 1.000 0.973 1.000
IV 1.2698 1.6212 0.979 0.184 0.979 0.184

Table 29: Simulation results for the partial polynomial mean impact. Compared are the
confidence intervals based on the direct approach via density changes, i.e. the
partial polynomial impact (part), and the intervals for the alternative approach
(alt). For each interval the coverage probability for the (unrestricted) partial
mean impact (respectively for the difference of the squared impacts) and the
probability of exclusion of zero (power) are given.

based partial mean impact leads to anti-conservative confidence intervals in the first two

scenarios. The alternative approach leads to under coverage in scenario I (ιX1(Y |X2)=0)
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and a coverage probability of 1 in scenario II. In scenario III both methods perform

equally well with a coverage of 0.975 and a power equal to 1. When regarding the re-

sults of scenario IV, we see that the power of the partial mean impact analysis based

on polynomials drops to 0.184. We observe that both methods lead to the same power,

which is due to the fact that

ιlin
2

X1
(Y |X2) = ιlin

2

X1,X2
(Y )− ιlin

2

X1
(Y ),

which implies that the confidence bounds for ιlin
2

X1
(Y |X2) and ιlin

2

X1,X2
(Y ) − ιlin

2

X1
(Y ) are

the same. Since we obtain from this confidence bound the bound for ιlin
2

X1
(Y |X2) by a

simple transformation, which does not change the fact if zero is included or not in the

confidence interval, we obtain the same power in both approaches.

4.2.3. Kernel-smoother based partial impact analysis

In this section we investigate the performance of the kernel smoother based partial

mean impact. Compared are the performances of the intervals based on the “direct”

approach via density changes and of the approach where we consider the difference

ιX1,X2(Y )− ιX1(Y ). We computed basic bootstrap intervals in all scenarios. The results

Model ιX1(Y |X2) ιX1,X2(Y )− ιX1(Y ) Coverpart Powerpart Coveralt Poweralt

I 0 0 0.941 0.059 0.971 0.029
II 0.3 0.320 0.999 0.159 1.000 0.019
III 1.414 0.732 1.000 0.700 0.984 0.550
IV 1.2698 0.6163 0.997 1.000 0.996 0.993

Table 30: Simulation results for the partial kernel smoother based mean impact. Com-
pared are the confidence intervals based on the direct approach via density
changes, i.e. the partial polynomial impact (part), and the intervals for the
alternative approach (alt). For each interval the coverage probability for the
(unrestricted) partial mean impact and the probability of exclusion of zero
(power) are given.

of Table 30 show that the kernel-smoother based partial mean impact tends to slight

undercoverage (0.941) when the mean impact is zero. In each scenario the partial mean

impact approach is more powerful than the alternative approach, the loss of power,

when applying the alternative approach amounts to 0.15 in scenario III. However, when

regarding scenario IV, we can see that the kernel smoother based partial mean impact
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analysis outperforms both the linear and the polynomial based analysis in that setup

with a gain in power of about 0.61 respectively 0.81. This indicates that the kernel

smoother based partial mean impact analysis is the best method when the underlying

relationship is highly non-linear.

4.3. Summary of simulation results

In this section we give a summary of the simulation results above. In the single covariate

case we observed that the linear mean impact analysis works good when the underlying

model is indeed linear, but has very low power in highly non-linear setups.

The shrinkage like approach to the construction of confidence intervals for the polyno-

mial based mean impact led to undercoverage in the case where the mean impact equals

zero. This implies that the test from Section 1.7.1 which is essentially an application

of the result of White (1980b) does not maintain its level in small sample sizes (e.g.

n = 100 like it is the case in this thesis). However, increasing the sample size to 200 and

500 in additional simulations not shown here improved the results substantially and led

to coverage probabilities close to the nominal level.

The bootstrap confidence intervals for the polynomial based mean impact resolved the

issue of undercoverage for small sample sizes. Using studentized bootstrap confidence

intervals as described in Section 1.7.5 led to higher coverage probabilities. However, in

the case where the mean impact equals zero we still observed a slight undercoverage

(0.936, see Table 16). The power of this method could be improved by using studentized

bootstrap intervals which do not make use of the transformation to the ι2X(Y )-scale and

back. In that case, when pre performing the test of Section 1.7.1, we obtain confidence

intervals that hold the level of significance with the exception of the linear case, where the

coverage probability drops to 0.931. Using basic bootstrap intervals leads to very similar

results. Nevertheless, the intervals for the polynomial based mean impact have much

larger probability to exclude zero, when the mean impact is greater than zero. Hence,

using these intervals instead of the intervals from the linear mean impact analysis leads

to a more powerful procedure. The gain in power amounts to approximately 0.79 in

scenario 2. However, when the underlying model gets too curvy the gain from fitting

polynomials instead of straight lines vanishes, which is due to the limited flexibility of

polynomials.

The performance of the kernel-smoother based impact analysis was shown to depend

highly on the chosen kernel-bandwidth h. Furthermore, it could be seen that moving

from kernel-smoothers to higher order local regression has no benefit. On the contrary
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doing so leads to confidence intervals which perform worse in terms of power. In the

simulations it could be shown that kernel-smoothing with data dependent bandwidth

leads to severe undercoverage when the mean impact is small. However, pre performing

a wild bootstrap test for the hypothesis that the mean impact is zero resolved this issue

and lead to confidence intervals which maintained the coverage probability and had high

power in the non-linear scenarios. However, these intervals experience a huge loss of

power when the underlying relationship is linear compared to the intervals from the

linear mean impact analysis (0.429 vs. 0.853).

To summarize the simulation results for the single covariate case, we can conclude

that the linear mean impact analysis performs good when the underlying relationship

between X and Y is indeed linear. When we assume non-linear relationships, the kernel-

smoother based impact analysis (with pre-performed wild bootstrap test) was shown to

give the most satisfying results, since we had powers of 1, 0.83 and 1 in the scenarios

2-4, where the linear mean impact analysis was not able to identify an effect. When the

non-linearities are of moderate order (e.g. in scenario 2), the polynomial based mean

impact also gave good results.

The simulations for the linear partial mean impact indicate, that the confidence intervals

based on the normal approximation outperform the studentized bootstrap intervals.

Both types of confidence intervals maintained the coverage probability in all scenarios

under investigation. However, as was expected, the linear partial mean impact performed

well in the scenarios where the relationship between Y and X1 was linear (Model I and

II) but had very low power (0.071) when moving the a quadratic relationship. In model

IV (non-linear in X1 and linear in X2; X1, X2 independent) however the power increased

to 0.383, which is still not very high.

For the polynomial partial mean impact we observed undercoverage for the confidence

intervals originating from the approach via density changes. In the setup where the

influence of X1 on Y is linear (scenario II) we observe a loss of power of about 0.2

compared to the linear mean impact. A similar power loss is observed in scenario IV.

However, in scenario III (quadratic influence of X1) we observe a power of 1 which is

considerably higher than that of the linear mean impact.

When regarding the partial mean impact based on kernel-smoothers we observed slight

undercoverage (0.941) in the scenario where the mean impact is zero. The alternative

approach to the quantification of the influence of X1 showed a better coverage (0.971).

However, in the other two scenarios this approach led to a loss of power of about 0.2

compared to the direct approach. It was noticeable that the kernel-smoother based



126

partial mean impact only has a power of 0.159 in the linear scenario resulting in a loss of

about 0.68 compared to the linear partial mean impact. In the non-linear scenario III the

kernel-smoother based partial mean impact showed a power of 0.7 which is considerably

higher than the power of the linear partial mean impact but still 0.3 less than the power

of the polynomial based approach. In scenario IV the partial mean impact based on

kernel smoothing showed the best performance with a coverage probability and a power

both close to 1, clearly outperforming the other methods at hand.

The simulation results for the partial mean impact analysis can be summarized as

follows. The linear partial mean impact analysis only performed well, when the under-

lying relationship between Y and X1 was indeed linear. In some non-linear setups we

observed close to no power for this methods. In the setup of a quadratic relationship the

polynomial based mean impact outperformed its opponents. When we face higher order

non-linear relationships the kernel smoother based mean impact is the best method at

hand. Hence, when we expect the true relationship to be non-linear but not of a high

order, we should use the polynomial based mean impact analysis. In cases of higher

order non linearities the method of choice should be the kernel smoother based partial

mean impact analysis.
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5. Conclusion and outlook

In this thesis we filled a gap in the work of Scharpenberg (2012) and derived an asymp-

totic normality result for the linear signed (partial) mean impact. From this followed a

test and consequently a method to the construction of confidence intervals for the linear

(partial) mean impact. Furthermore we extended the idea of the mean impact which

was originally derived in Scharpenberg (2012) and Brannath and Scharpenberg (2014)

to non-linear associations. We defined a common mean impact of several variables which

could be estimated by restriction to linear functions. This common mean impact allows

for the analysis of associations based on polynomial regression, spline regression with

fixed knots or (nearly) any other additive model in one ore more covariates. Another

application of the scenario of a common linear mean impact is given by the scenario

where we have a zero inflated covariate, i.e. a covariate which has a high probability

of becoming zero. In this case the common linear mean impact allows us to model the

part where the covariate is zero independent from the part where it differs from zero.

This means that we can, in a sense, combine an ANVOA and a linear model and obtain

a single measure of association. Using the smooth function model of Hall (1988) and

Hall (1992), we have shown that bootstrap BCa and studentized bootstrap intervals are

second order accurate in the setup of the linear common mean impact.

To obtain higher flexibility we also regarded a mean impact based on kernel-smoothing.

In this case we chose the distributional disturbance for the estimation of the mean impact

as the standardized prediction of a kernel smoother fit where the denominator of the

kernel smoother is left out. Using this estimate we were able to show that the resulting

estimate is a function of a U-statistics and thereby asymptotically normally distributed.

Furthermore we justified the use of bootstrap methods in this case. Higher order local

regression was also looked at but did not perform good in simulations. Finally a modifi-

cation of the kernel-smoother based mean impact gave a consistent and asymptotically

normally distributed estimate for the unrestricted mean impact. However, the fact that

we have do not use all data in this approach makes it hard to apply in praxis.

In all single-covariate non-linear mean impact analyses we also derived a mean slope

and a measure for determination, as generalizations of the measured derived in Scharp-

enberg (2012).

In extension to the single covariate case we also defined non-linear partial mean impacts

which quantify the association between the target variable Y and an independent variable

X1 which goes beyond the possible associations driven by other covariates X2, ...,Xk.
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In this setup as well we defined and investigated a common linear partial mean impact.

Applications of this common linear mean impact are again polynomial impacts which

account for possible polynomial influences or more general we can fit (almost) any ad-

ditive model in X1 and account for (almost) any influences of X2, ...,Xk which can be

expressed by additive models.

For the kernel-smoother based mean impact we also derived a partial mean impact.

The partial mean impact from Scharpenberg (2012) uses orthogonal projections. In this

thesis we also derived an approach that does not need such projections. It quantifies the

influence of X1 on Y which goes beyond the possible influence of other covariates by the

difference of the common mean impact of all variables and the common mean impact of

all variables except X1. In all partial non-linear impact analyses we also derived partial

non-linear mean slopes and partial non-linear measures for determination.

Simulations indicated that in the single covariate case the kernel-smoother based mean

impact is the most powerful approach except when the true underlying regression rela-

tionship is linear. In that case, obviously, the linear mean impact performed best. The

results from the simulation for the non-linear partial mean impact analysis showed that

the performance of the different methods are more dependent on the underlying scenario

than in the single covariate case. The linear partial mean impact analysis did by far

outperform the other methods in a linear scenario. In moderately non-linear setups the

polynomial partial mean impact performed best, while the kernel smoother based par-

tial mean impact analysis was the only method that still had reasonable power in highly

non-linear scenarios.

The framework of the mean impact analysis still offers many opportunities for further

research. First of all it is desirable to justify the use of data dependent bandwidth in the

case of kernel-smoothing theoretically. We are also interested in a theoretically justified

method allowing for the use of a kernel-smoother where we do not need to drop the

denominator, which uses the full data set available and maintains the coverage probabil-

ity. Furthermore, it might be valuable to allow for splines with a data dependent knot

sequence. Another interesting topic for further research is the application of the mean

impact analysis to high dimensional setups. It might be possible to apply data reduc-

ing methods like the principal component analysis and use the mean impact analysis to

obtain an interpretable and sensible measure of association.
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A. Methodology

All literature used in this appendix can be found in the main literature list.

A.1. Nonparametric regression

Since we make extensive use of non-linear regression techniques in the course of this

thesis we will give an introduction to them in the following sections. Besides polynomial

regression, which is expected to be known to the reader we will make use of kernel- and

spline-methods.

A.1.1. Kernel methods

This section is based on Chapter 6 of Hastie et al. (2001). As in the case of linear

regression we are interested in estimating the regression function f(x) = EP(Y |X = x)

in order to characterize the dependence of Y on X. Since linear regression delivers a

rather rough idea of the regression function we are searching for more flexible estimates

which give a closer fit to the data.

Kernel regression methods are regression techniques which achieve such flexibility. Let

us assume that we have independent observations (xi, yi)i=1,...,n of the covariate X and

the response Y . As we will see, kernel regression estimates are mainly weighted averages

of the observations of Y , where the weight depends on the distance of the observations

of X to the point where we try to estimate the regression function. They result from

fitting different models at each evaluation point. In the sequel we will explain how this

is done. One way to estimate the regression function is using the k-nearest neighbor

estimator which is simply the average of the responses of the k observations of X which

are nearest to the evaluation point x. This means the k-nearest neighbor estimator is

given by

f̂(x) =
1

k

n∑

i=1

yi1{xi∈Nk(x)},

where Nk(x) is the set of k points nearest to x, where “closeness” is defined by the

Euclidean distance. This method leads to a very bumpy fit (see right panel of Figure 3)

since f̂ is discontinuous. This is because the fit remains constant as we move on the X-

axis until one point to the right becomes closer to the evaluation point than the farthest

point to the left in Nk(x). In that moment the point to the right replaces the one to the

left in the fit and leads to a different value of f̂ . Hence f̂ changes in a discrete way and

is therefore discontinuous.
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Since this discontinuity seems inappropriate we use methods which produce a smoother

fit.

Kernel Smoother

One method leading to smoother fits is the Nadaraya-Watson kernel-weighted average

which goes back to Nadaraya (1964) and Watson (1964) and is given by

f̂(x0) =

∑n
i=1Kh(xi − x0)yi∑n
i=1Kh(xi − x0)

,

where Kh(xi − x0) is a kernel weight function with window width h. Typical kernel

weight functions are

• The Epanechnikov quadratic kernel which is given by

Kh(xi − x0) = D

( |xi − x0|
h

)
,

where

D(t) =





3
4(1− t2) if |t| ≤ 1;

0 otherwise.
(A.1)

Epanechnikov (1969) suggested

D(t) =





3
4
√
5
(1− t2

5 ) if |t| ≤
√
5;

0 otherwise

instead of (A.1) which is also commonly referred to as “Epanechnikov quadratic

kernel”,

• The tri-cube function where

Kh(xi − x0) = D

( |xi − x0|
h

)
,

with

D(t) =




(1− |t|3)3 if |t| ≤ 1;

0 otherwise,

• The Gaussian Kernel, where D(t) = ϕ(t) is the density function of the standard

normal distribution.
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Figure 3: Comparison of a kernel-smoother fit (red curve in the left panel) and a 15-
nearest neighbor fit (red curve in the right panel) to a data set of 150 pairs
xi, yi generated at random from Y = X2 + ǫ, X ∼ N(0, 1), ǫ ∼ N(0, 1).
The blue curve displays the underlying relationship f(X) = X2. For the
kernel smoother a Gaussian kernel with automatically chosen window width
h = 0.247 was used.

Figure 3 shows a kernel smoother fit and the k-nearest neighbor fit for a given dataset.

One can see that the kernel smoother fit is much smoother than the bumpy fit of the

nearest neighbor estimator. In practice one has to choose either the bandwidth h when

using the kernel smoother or the number k of neighbors involved in the nearest neighbor

fit. When choosing this parameter one has to do a trade off between bias and variance.

Large bandwidths (respectively large number of neighbors) will decrease the variance of

the estimator, since one averages over more observations, while increasing its bias. Vice

versa a small bandwidths leads to higher variance and lower bias. There are asymptotic

results which state that the kernel regression smoother is consistent for the regression

function under certain conditions on the kernel, its bandwidth and the common density

of X and Y .

Mack and Silverman (1982) show such a convergence result. Let (X,Y ), (Xi, Yi), i =

1, 2, ... be i.i.d. bivariate random variables with common joint density r(x, y). Further-

more, let g(x) be the marginal density of X and f(x) = EP(Y |X = x) the regression

function of Y on X and hn the bandwidth of the Kernel Khn(u) = K(u/hn). The

assumptions used in their consistency proof are already given in Assumption 2.27 and

Assumption 2.28 but are repeated here for better readability.
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Assumption A.1. • K is uniformly continuous with modulus of continuity wK , i.e.

|K(x) −K(y)| ≤ wK(|x − y|) for all x, y ∈ supp(K) and wK : [0,∞] → [0,∞] is

continuous at zero with wK(0) = 0. Furthermore K is of bounded variation V (K);

• K is absolutely integrable with respect to the Lebesgue measure on the line;

• K(x) → 0 as |x| → ∞;

•
∫
|x log |x|| 12 |dK(x)| <∞,

and

Assumption A.2. • EP|Y |s <∞ and supx
∫
|y|sr(x, y)dy <∞, s ≥ 2;

• r, g and l are continuous on an open interval containing the bounded interval J ,

where l(x) =
∫
yr(x, y)dy.

Theorem A.3. Suppose K satisfies Assumption A.1 and Assumption A.2 holds. Sup-

pose J is a bounded interval on which g is bounded away from zero. Suppose that∑
n h

λ
n <∞ for some λ > 0 and that nηhn → ∞ for some η < 1− s−1. Then

sup
J

|f̂(x)− f(x)| = o(1)

with probability one.

Hence, under suitable conditions the Nadaraya-Watson kernel regression estimator is

consistent for the regression function.

Local Linear Regression

As one can see in Figure 3 the kernel regression estimator can be biased at the boundary

because of the asymmetry of the kernel in that region. There are several methods that

address the boundary issues of kernel smoothing. For example Gasser and Müller (1979),

Gasser et al. (1984) and Gasser et al. (1985) recommend using “boundary kernels”,

which are kernels with asymmetric support. This approach is not followed further in

this thesis. Karunamuni and Alberts (2005) give an overview of other methods which

could be applied. One of these methods, which reduces the bias to first order is the local

linear regression. Note that the kernel regression estimator α̂(x0) at the point x0 is the

solution to the weighted least squares problem

min
α∈R

n∑

i=1

Kh(xi − x0)[yi − α]2.
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Hence, by using the Nadaraya-Watson kernel regression estimator we essentially fit local

constants to the data. Local linear regression (also called loess) was initially proposed

by Cleveland (1979) and goes one step further. It does local linear fits at each evaluation

point. Thus, we consider at each point x0 the weighted least squares problem

min
α,β

n∑

i=1

Kh(xi − x0)[yi − α− βxi]
2. (A.2)

The estimator for the regression function is then given by f̂(x0) = α̂(x0) + x0β̂(x0),

where α̂(x0) and β̂(x0) are solutions to (A.2). With b(x)T = (1, x), B the n × 2 matrix

with ith row b(xi)
T and W(x0) = diag (Kh(x1 − x0), ...,Kh(xn − x0)) we have

f̂(x0) = b(x0)
T
(
BTW(x0)B

)−1
BTW(x0)y.

For the analyses of Section 2.2.4 we rearrange this expression in the following way

f̂(x0)

=(1, x0)

( ∑n
j=1Kh(xj − x0)

∑n
j=1 xjKh(xj − x0)∑n

j=1 xjKh(xj − x0)
∑n

j=1 x
2
jKh(xj − x0)

)−1( ∑n
j=1 yjKh(xj − x0)∑n
j=1 xjyjKh(xj − x0)

)

=
1

det(BTW(x0)B)
(1, xi)

(∑n
j=1

∑n
l=1(x

2
j − xjxl)Kh(xj − x0)Kh(xl − x0)yl∑n

j=1

∑n
l=1(xl − xj)Kh(xj − x0)Kh(xl − x0)yl

)

=

∑n
j=1

∑n
l=1(xj − x0)(xj − xl)Kh(xj − x0)Kh(xl − x0)yl∑n

j=1

∑n
l=1(x

2
j − xjxl)Kh(xj − x0)Kh(xl − x0)

. (A.3)

It can be shown that local linear regression reduces bias to first order. This means

that EP(f̂(x0))− f(x0) only depends on quadratic and higher-order terms in (x0 − xi),

i = 1, .., n (cf. Hastie et al. (2001)).

Local Polynomial Regression

As a generalization to the Nadaraya-Watson kernel regression estimator and the local

linear regression we now introduce local polynomial fitting. Hence, we locally fit polyno-

mials of arbitrary degree k ≥ 0 and therefore regard the weighted least squares problem

min
α,βj ,j=1,...,k

n∑

i=1

Kh(xi − x0)[yi − α−
k∑

j=1

βjx
j
i ]
2
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at x0, whose solution we denote by (α̂(x0), β̂1(x0), ..., β̂k(x0)) and estimate the regression

function via f̂(x0) = α̂(x0) +
∑d

j=1 β̂j(x0)x
j
0. We can obtain f̂ via

f̂(x0) = b(x0)
T
(
BTW(x0)B

)−1
BTW(x0)y,

where b(x0)
T = (1, x0, ..., x

k
0), B is the n × (k + 1) matrix with ith row b(xi) and

W(x0) = diag (Kh(x1 − x0), ...,Kh(xn − x0)). Local polynomial regression reduces bias

in regions of high curvature of the regression function compared to local linear regression.

The price to be paid for this is an increase of the variance. Hastie et al. (2001) summarize

the behavior of local fits as follows:

• “Local linear fits can help bias dramatically at the boundaries at a modest cost in

variance. Local quadratic fits do little at the boundaries for bias, but increase the

variance a lot.

• Local quadratic fits tend to be most helpful in reducing bias due to curvature in

the interior of the domain.

• Asymptotic analysis suggest that local polynomials of odd degree dominate those

of even degree. This is largely due to the fact that asymptotically the MSE is

dominated by boundary effects.”

As mentioned before we have to choose the bandwidth h when applying kernel methods.

For the theory of non-linear impact analysis derived in this thesis this choice is not

allowed to depend on the data. In practice, when one is only interested in estimating the

regression function (and not necessarily in impact analysis) the choice of the bandwidth

can be done by cross-validation.

Local Regression in Rk

Up to this point we only considered one-dimensional kernel methods. We can easily

generalize this concept to the multidimensional case where we observe a set of variables

X1, ...,Xk and want to fit local polynomials in this variables with maximum degree d

to the data in order to describe the regression function f(x1, ..., xk) = EP(Y |X1 =

x1, ...,Xk = xk). Hence, letting b(x) consist of all polynomial terms with maximum

degree d (e.g. we have b(X) = (1,X1,X
2
1 ,X

3
1 ,X2,X

2
2 ,X

3
2 ,X1X2,X

2
1X2,X1X

2
2 ) for d = 3

and k = 2), one solves at x0 the following equation for β ∈ Rm, wherem is the dimension

of b(X)

min
β∈Rm

n∑

i=1

Kh(xi − x0)[yi − b(xi)
Tβ]2. (A.4)
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Usually we have for the kernel function

Kh(xi − x0) = D

(‖xi − x0‖
h

)
,

with ‖ · ‖ being the Euclidean norm and D a one-dimensional kernel. The least squares

fit at a specified point x0 is then given by f̂(x0) = b(x0)
T β̂(x0), where β̂(x0) is a solution

to (A.4). We can rewrite this as

f̂(x0) = b(x0)
T
(
BTW(x0)B

)−1
BTW(x0)y,

whereB is the matrix with ith row b(xi) andW(x0) = diag (Kh(x1 − x0), ...,Kh(xn − x0)).

Hastie et al. (2001, p 174) recommend the standardization of each predictor prior to

smoothing “since the Euclidean norm depends on the units in each coordinate”.

Additionally to this, the rise in dimensionality comes along with undesired side ef-

fects. The boundary effects of kernel smoothing in one dimension “are a much bigger

problem in two or higher dimensions, since the fraction of points on the boundary is

larger” (Hastie et al., 2001, p. 147). Furthermore, it is claimed that local regression

loses it usefulness in dimension much higher than two or three, due to the impossibility

of simultaneously maintaining low bias and low variance without a sample size which

increases exponentially fast in k.

A.1.2. Spline methods

In this section we will present spline methods including cubic splines and natural cubic

splines. This section is based on Chapter 5 of Hastie et al. (2001).

Piecewise Polynomials and Splines

We are still interested in fitting functions to data which are obtained from i.i.d. obser-

vations (Xi, Yi)i=1,...,n. In this section we present methods that divide the domain of X

into several areas and fit functions in each area. The function fitted in a certain area

is used to derive predictions for all points in this area. To this end we will choose a so

called knot sequence ξ1 < ... < ξk. Between each two knots a function will be fitted

to the data. Then all functions are combined to obtain a global fit. When we are for

example interested in fitting constant functions between each two knots we can do so by

performing a linear regression with target variable Y and dependent variables

h1(X) = 1{X<ξ1}, h2(X) = 1{ξ1≤X<ξ2}, ..., hk(X) = 1{ξk−1≤X<ξk}, hk+1(X) = 1{ξk≤X}.
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The fitted function is then given by f̂(x) =
∑k+1

j=1 θ̂jhj(x), where θ̂j are the least squares

estimators from the linear model. The functions h1, ..., hk+1 are called basis functions

in the sequel. If we want a piecewise linear fit to the data we need the additional basis

functions

hm+k+1(X) = hm(X)X, m = 1, ..., k + 1

in the model. As a next step we can make the piecewise linear fit continuous by imposing

adequate conditions on the coefficients of the linear model. Alternatively one could use

the following set of basis functions, which already incorporates the constrains:

h1(X) = 1, h2(X) = X, hj+2(X) = (X − ξj)+, j = 1, ..., k,

where (·)+ denotes the positive part. The fact that the constraint of continuous piecewise

linearity is already incorporated in these basis functions is due to the fact that we use the

positive part in hj+2. Thereby the function hj+2 changes the fit f̂(x) only if x > ξj and

only by changing the slope (by its coefficient θ̂j+2) of the fit after ξj. Hence the resulting

fit is continuous and piecewise linear. Figure 4 shows a piecewise constant, a piecewise

linear and a continuous piecewise linear fit to the same data. The continuous piecewise

linear fit seems to provide the best fit of the three. Since it is very angular we proceed

by fitting local polynomials. Additionally to the continuity we can demand continuous

derivatives up to a certain order. We define an order-M spline with knots ξ1, ..., ξk as a

piecewise polynomial of order M − 1 with continuous derivatives up to order M − 2. We

call an order 4 spline cubic spline. One can see that the local constant fit is an order 1

spline, while the continuous piecewise linear fit is an order 2 spline. We can compute an

order M spline via linear regression with target variable Y and covariates

hj(X) = Xj−1, j = 1, ...,M,

hM+l = (X − ξl)
M−1
+ , l = 1, ..., k.

Hastie et al. (2001) state that “it is claimed that cubic splines are the lowest-order

splines for which the knot-discontinuity is not visible to the human eye.” Hence, unless

one is interested in smooth derivatives there is no reason to go beyond cubic splines.

When using splines, the goodness of the fit depends on the placement of the knots. In

the applications of splines to impact analysis, we will assume that the knot sequence

is chosen independent from the data in order to prove consistency of the bootstrap.

Simulations indicate that the impact analysis also works with a data dependent choice

of the knots. Usually, a convenient procedure to choose the knots, which is also applied
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in practice, is to place them at empirical quantiles of X.

Figure 4: Piecewise constant (upper left panel), piecewise linear (upper right panel) and
continuous piecewise linear (lower panel) fit with two knots to a data set of 150
pairs xi, yi generated at random from Y = X2 + ǫ, X ∼ N(0, 1), ǫ ∼ N(0, 1).
The blue curve displays the underlying relationship f(X) = X2.

Natural Cubic Splines

It is well known that polynomial fits tend to be very variable at the boundaries and

extrapolation may be dangerous. Hastie et al. (2001) claim that these problems get

worse when using splines. Therefore, we want to impose additional constrains to the

fitted functions to reduce the variability of the fit outside the range of the data. One

common constrain is that the function is linear beyond the boundary knots. A cubic

spline which fulfills this condition is called natural cubic spline. Of course, reducing

variance by forcing the fitted function to be linear at the boundaries leads to bias in

that regions. Nevertheless, according to Hastie et al. (2001) the assumption of linearity
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near the boundaries is often considered reasonable. We can represent a natural cubic

spline with k knots by k basis functions. One such set is

N1(X) = 1, N2(X) = X, Nl+2(X) = dl(X) − dk−1(X),

where

dl(X) =
(X − ξl)

3
+ − (X − ξk)

3
+

ξk − ξl
.

Each of these basis functions has zero second and third derivative outside the boundary

knots.

There are many sets of basis functions that represent the same cubic spline. The set

of basis functions given here is very simple to understand but lacks numerically attrac-

tiveness. Therefore, for numerically reasons, other basis functions such as the so called

B-spline basis (which will not illustrated here) are used in the practical computation of

splines. In R the function ns of the package splines can be used to compute the basis

functions for natural splines for a given data set.

Multidimensional splines

One can also fit smooth functions of several variables X1, ...,Xk to a given data set. One

can do so by choosing appropriate multivariable basis functions. For example in the case

of two variables with basis functions h1j(X1), j = 1, ..,M1 for representing functions of

X1 and basis functions h2j(X2), j = 1, ..,M2 for representing functions of X2 we can

define the so called tensor product basis by

gjl = h1j(X1)h2l(X2), j = 1, ...,M1, l = 1, ...,M2

to represent the two-dimensional function

g(X) =

M1∑

j=1

M2∑

l=1

θjlgjl(X1,X2).

It is important to note that the dimension of the basis grows exponentially fast in the

number of covariates included.
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A.2. U-Statistics

In this section, which is based on Kowalski and Tu (2008) we give an introduction to

the theory of U-statistics, which is a powerful tool to investigate the asymptotic behav-

ior of sums of correlated random variables. The methods explained here will be used

extensively in sections 2.2.1, 2.2.4 and 2.2.5. U-Statistics were originally introduced by

Hoeffding (1948) and are closely related to the von Mises statistics which were presented

by von Mises (1947).

Often it is the case that we have a statistic which is not the sum of i.i.d. variables. In

these cases the classical theorems concerning the asymptotic behavior of the statistic do

not apply. In some of these scenarios the theory of U-statistics might be used to derive

the asymptotic properties. Let Z1, Z2, ..., Zn be i.i.d. random variables.

Definition A.4. A statistic Un is called a k-dimensional order-m U-statistic if it can

be written as

Un =

(
n

m

)−1 ∑

(j1,...,jm)∈Cnm

w(Zj1 , ..., Zjm), (A.5)

where w is a k-dimensional function which is symmetric in its arguments (i.e. all per-

mutations of its arguments lead to the same value of w) and Cnm = {(j1, ..., jm)|1 ≤ j1 <

... < jm ≤ n} is the set of all distinct combinations of m indices from the integer set

{1, ..., n}.

One example of an one-dimensional order-2 U-statistic is the estimator of the variance

σ̂ =
1

n− 1

n∑

i=1


Zi −

1

n

n∑

j=1

Zj




2

.

We have

σ̂2 =
n

n− 1


 1

n

n∑

i=1


Zi −

1

n

n∑

j=1

Zj




2


=
1

n− 1




n∑

i=1

Z2
i −

1

n

n∑

i=1

n∑

j=1

ZiZj




=
1

n(n− 1)


(n− 1)

n∑

i=1

Z2
i −

∑∑

i6=j
ZiZj



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=
1

n(n− 1)


∑∑

i6=j

1

2
(Z2

i + Z2
j )−

∑∑

i6=j
ZiZj




=
1

n(n− 1)

∑∑

i6=j

1

2
(Zi − Zj)

2 =
2

n(n− 1)

∑

(i,j)∈Cn2

1

2
(Zi − Zj)

2.

Since 1
2 (Zi − Zj)

2 is obviously symmetric, σ̂2 is an one-dimensional order-2 U-statistic.

It is obvious, since we have i.i.d. random variables, that Un defined in (A.5) is an

unbiased estimator for EP(w(Zj1 , ..., Zjm)), provided this exists. Under mild conditions

we can say much more about Un than just that it is unbiased. To this end we need the

following assumption.

Assumption A.5.

θ = EP(w(Zj1 , ..., Zjm)) and EP(w
2(Zj1 , ..., Zjm))

exist.

We define the “projection” of Un by

Ûn =

n∑

i=1

E(Un|Zi)− θ(n− 1). (A.6)

We have

EP(Un|Zi) =
(
n

m

)−1 ∑

(j1,...,jm)∈Cnm

EP(w(Zj1 , ..., Zjm)|Zi)

with the notation EP[w(Zj1 , ..., Zjm)|Zi] = g(Zi) if i ∈ {j1, ..., jm} we obtain (note that

EP[w(Zj1 , ..., Zjm)|Zi] = θ if i /∈ {j1, ..., jm})

=

(
n

m

)−1 [(n− 1

m− 1

)
g(Zi) +

(
n− 1

m

)
θ

]

=
m

n
g(Zi) +

n−m

n
θ.

Hence, we can rewrite the projection (A.6) as

Ûn =
m

n

n∑

i=1

(g(Zi)− θ) + θ.
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It follows for the centered projection

Ûn − θ =
m

n

n∑

i=1

g̃(Zi),

where g̃(Zi) = g(Zi)− θ. Since Ûn − θ is a sum of i.i.d. random vectors with mean zero,

the law of large numbers and the central limit theorem imply

Ûn
p→ θ,

√
n
(
Ûn − θ

)
L→ N(0,m2Σg), (A.7)

where Σg is the covariance matrix of g̃(Z1). Since g̃(Z1) has mean zero Σg is given by

Σg = EP

[
g(Z1)g

T (Z1)
]
.

One can show (cf Kowalski and Tu (2008)) that under Assumption A.5 the following

lemma holds.

Lemma A.6.

V arP(Un) =
m2

n
V arP(g(Z1)) +O(n−2),

V arP(Ûn) =
m2

n
V ar(g(Z1)), CovP(Un, Ûn) =

m2

n
Σg.

We are now able to proof the following theorem which states the consistency and

asymptotic normality of U-statistics.

Theorem A.7. (cf. Kowalski and Tu (2008)). Given Assumption A.5 we have

Un
p→ θ,

√
n (Un − θ)

L→ N(0,m2Σg). (A.8)

Proof. We write

√
n(Un − θ) =

√
n(Ûn − θ) +

√
n(Un − Ûn) =

√
n(Ûn − θ) + en,

where en =
√
n(Un − Ûn) =

√
n((Un − θ) − (Ûn − θ)). The statement of the theorem

follows from (A.7) and Slutzky´s lemma when we show that en
p→ 0. We show this by

showing EP(ene
T
n )

p→ 0. We have

EP(ene
T
n ) =nV arP(Un)− 2nCovP(Un, Ûn) + nV arP(Un)
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which equals according to Lemma A.6

=m2V arP(g(Z1))− 2m2Σg +m2V arP(g(Z1)) +O(n−2)

=m2Σg − 2m2Σg +m2Σg +O(n−2)
p→ 0.

Since θ is usually unknown the covariance matrix of the limiting distribution in (A.8)

is unknown too. Hence, in many applications (like those in the impact analysis derived

in Section 2.2) we have to estimate it. To this end we consider

Σg =EP

[
(g(Z1)− θ) (g(Z1)− θ)T

]

=EP

[
EP {w(Z1, ..., Zm)|Z1}EP

{
wT (Z1, ..., Zm)|Z1

}]
− θθT

=EP

[
EP

{
w(Z1, ..., Zm)w

T (Z1, Zm+1, ..., Z2m−1)|Z1

}]
− θθT

=EP

[
w(Z1, ..., Zm)w

T (Z1, Zm+1, ..., Z2m−1)
]
− θθT .

This means that we have to estimate EP

[
w(Z1, ..., Zm)w

T (Z1, Zm+1, ..., Z2m−1)
]
and θ

in order to estimate Σg. θ can simply be consistently estimated by the U-statistic defined

in (A.5). To estimate EP

[
w(Z1, ..., Zm)w

T (Z1, Zm+1, ..., Z2m−1)
]
we construct an other

multivariate U-statistic. To this end, let

f(Z1, ..., Z2m−1) = w(Z1, ..., Zm)w
T (Z1, Zm+1, ..., Z2m−1)

and f̃(Z1, ..., Z2m−1) a symmetric version of f(Z1, ..., Z2m−1) for example

f̃(Z1, ..., Z2m−1) =
1

(2m− 1)!

∑

π∈S({1,...,2m−1})
f(Zπ(1), ..., Zπ(2m−1)).

Then according to Theorem A.7 the U-statistic

(
n

2m− 1

)−1 ∑

(j1,...,j2m−1)∈Cn2m−1

f̃(Z1, ..., Z2m−1)

is a consistent estimator for EP

[
w(Z1, ..., Zm)w

T (Z1, Zm+1, ..., Z2m−1)
]
. Hence we can

estimate Σg consistently by

Σ̂g =

(
n

2m− 1

)−1 ∑

(j1,...,j2m−1)∈Cn2m−1

f̃(Z1, ..., Z2m−1)− UnU
T
n .
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In the course of Section 2.2 we will derive estimators for the impact (which is introduced

in Section 1) that are functions of multivariate U-statistics. Then by application of

the delta method the asymptotic normality of the derived estimators follows from the

asymptotic normality of the U-statistics.

Note that the function w in (A.5) is not allowed to depend on n. Powell et al. (1989)

generalize the results above for the case m = 2 to functions wn that do depend on n.

They define for an i.i.d. random sample Z1, Z2, ..., Zn a general second order U-statistic

by

Un =

(
n

2

)−1 n−1∑

i=1

n∑

j=i+1

wn(Zi, Zj),

where wn is a k-dimensional symmetric function. With the additional definitions

rn(Zi) = EP[wn(Zi, Zj)|Zi], θn = EP[rn(Zi)] = EP[wn(Zi, Zj)]

and

Ûn = θn +
2

n

n∑

i=1

[rn(Zi)− θn],

where it is assumed that θn exists they show the following lemma.

Lemma A.8. If EP[‖wn(Zi, Zj)‖2] = o(n), then
√
n(Un − Ûn) = op(1).

Note that this does not necessarily imply the normality of Un, since further assump-

tions must be fulfilled for the central limit theorem to be applicable to Ûn.



147

A.3. The Bootstrap

This section, which is based on Davison and Hinkley (2009) gives a brief introduction

to the bootstrap and explains the methods used in the course of this thesis. The name

bootstrap goes back to Efron (1979). A lot of research was performed on this field and

bootstrap methods were applied to various statistical problems.

A.3.1. The idea of the bootstrap

The setup for this section is the following one: Assume we have data z1, ..., zn which are

realizations of i.i.d. random variables Z1, ..., Zn. Let F be the distribution function of Zi,

while f denotes its density. We are interested in a (scalar) parameter θ which is estimated

by the statistic T which has the realization t. In order to be able to construct confidence

intervals for θ we have to know the distribution of T . Usually one distinguishes between

two cases:

• Parametric, i.e. we have a model with parameters ψ that uniquely determine

f = fψ and F = Fψ . θ is then a component or function of ψ;

• Nonparametric, i.e. we do not have a model.

In the applications of bootstrap methods in this thesis we only use nonparametric boot-

strap methods. The parametric bootstrap is used once, in order to introduce the adjusted

percentile method for constructing confidence intervals in the following section. The idea

of the bootstrap is basically to replace the unknown distribution function F in the quan-

tities of interest by an estimate. When using the parametric bootstrap one estimates ψ

by ψ̂ (for example by maximum likelihood estimation) and replaces the true distribution

function Fψ by the estimated distribution function Fψ̂ . In the non-parametric case the

empirical distribution function F̂ is used instead.

We explain the idea of the nonparametric bootstrap by a simple example. Assume

θ = t(F ) and we are interested in the bias β and the variance v of T :

β = b(F ) = EP(T |F )− t(F ), v = v(F ) = V arP(T |F ). (A.9)

Since F is unknown we are not able to make any statements about β or v. The idea of

the bootstrap is to replace the unknown F by its estimator, the empirical distribution

function F̂ . Note that we have

F̂ (u) =
#{zi ≤ u}

n
= n−1

n∑

i=1

1{zi≤u}.
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Hence when replacing F by F̂ in (A.9) we obtain

B = b(F̂ ) = EP(T |F̂ )− t(F̂ ), V = v(F̂ ) = V arP(T |F̂ ).

B and V are called bootstrap estimates of β and v. Often it is very hard or even

impossible to determine these bootstrap estimators. In these cases it helps to use Monte

Carlo simulations. These are performed following these steps:

1. Draw Z∗
1 , ..., Z

∗
n independently from F̂ ;

2. Compute from this data the statistic T and name it T ∗;

3. Repeat 1. and 2. R-times to obtain T ∗
1 , ..., T

∗
R;

4. Regard

B = b(F̂ ) = EP(T |F )− t = E∗(T ∗)− t

and estimate it by

BR = R−1
R∑

r=1

T ∗
r − t = T̄ ∗ − t; (A.10)

5. Analogously obtain

VR =
1

R− 1

R∑

r=1

(T ∗
R − T̄ ∗)2. (A.11)

Here and in the following the superscript “∗” denotes the distribution respectively expec-

tation according to F̂ . From this procedure it gets clear why the bootstrap is also called

a resampling method. We estimate the bias and variance by resampling independently

from the data. For large R we expect according to the laws of large numbers BR to be

near the true bootstrap estimator B.

A.3.2. Bootstrap confidence intervals

All confidence intervals which are presented here are meant to be computed by non-

parametric bootstrap. Only in the introduction of the bias corrected percentile method

we assume a parametric model. For the computation of confidence intervals for θ we

will need quantiles of the distribution of T − θ. Since this distribution is unknown we

approximate it by the distribution of T ∗−t. Hence we estimate the distribution function

G of T − θ by

ĜR(u) =
#{t∗r − t ≤ u}

R
= R−1

R∑

r=1

1{t∗r−t≤u}.
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Note that there are two sources of error: One comes from variability of the data (we

only have n observations) and the other arises from finite simulation. In order to keep

the error due to finite simulation small we have to choose R “large”. Usually one sets

R ≥ 1000. Nevertheless for the choice of R it should be considered that large R may

require large amounts of computational time. This issue has become smaller in the past

years due to the improvement of computers.

Since we approximate G by ĜR we approximate the p-Quantile q(p) of G by the p-

quantile q̂(p) of ĜR, which is given by q̂(p) = t∗(p) − t, where t∗(p) is the p-quantile of

the bootstrapped values t∗1, ..., t
∗
R. There are several methods for computing bootstrap

confidence intervals for θ. We will give five of them here.

Basic bootstrap confidence intervals

We have for given α ∈ (0, 1) that

P(q(α) ≤ T − θ ≤ q(1− α)) = 1− 2α

⇒P(T − q(1− α) ≤ θ ≤ T − q(α)) = 1− 2α. (A.12)

Hence, by replacing the quantiles by their estimates and T by its realization t we obtain

the following approximate 1− 2α confidence interval for θ:

CIbasic =(t− q̂(1− α), t− q̂(α))

=
(
2t− t∗(1−α), 2t− t∗(α)

)
.

This confidence interval is called basic bootstrap confidence interval. As explained before

the accuracy of this interval depends on R, so we would choose R large to make the

interval more accurate.

Studentized intervals

We now consider a “studentized” version of T − θ namely

Y =
T − θ

V 1/2
, (A.13)

where V is an estimator of V ar(T |F ). One way to find such an estimator for V ar(T |F )
is the so called nonparametric delta method or functional delta method. We introduce

the nonparametric delta method for functionals t(·) which are Fréchet-differentiable.

Functional delta method theorems for more general cases can be found in Serfling (1980)
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and van der Vaart (2000, ch. 20). Let t(·) be Fréchet-differentiable at F , this means

that for all distribution functions G exists a linear functional L(F −G) such that

t(G) = t(F ) + L(G− F ) + o(‖G − F‖), as ‖G− F‖ → 0, (A.14)

where ‖·‖ is a norm on the linear space generated by differences of distribution functions.

An example for such a norm is ‖G − F‖ = supx∈R |G(x) − F (x)|. L(G − F ) is called

Fréchet-derivative of t at F in the direction G−F . Huber (1981, p. 37) shows that if t(·)
is weakly continuous in a neighborhood of F the function L(G− F ) can be represented

as

L(G− F ) =

∫
Lt(z, F )dG(z),

where

Lt(z;F ) = lim
ǫ→0

t{(1 − ǫ)F + ǫHz} − t(F )

ǫ
=
∂t{(1− ǫ)F + ǫHz}

∂ǫ

∣∣∣∣
ǫ=0

,

with Hy(u) = 1{u≥z} is called the influence function of T . According to van der Vaart

(2000, p.292) the name “influence function” originated in developing robust statistics.

“The function measures the change in the value t(F ) if an infinitesimally small part of

F is replaced by a pointmass at x”. One can see by setting G = F in the approximation

(A.14), that ∫
Lt(x, F )dF (x) = 0.

Choosing F̂ for G in (A.14) gives

t(F̂ ) = t(F ) +

∫
Lt(z;F )dF̂ (z) + o(‖F̂ − F‖) ≈ t(F ) +

1

n

n∑

j=1

Lt(zj ;F ). (A.15)

Application of the central limit theorem to the sum in (A.15) gives

T − θ
·∼ N(0, vL(F )),

where since we have
∫
Lt(z;F )dF (z) = 0

vL(F ) = n−1V ar(Lt(Z)) = n−1

∫
L2
t (z)dF (z).
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Since F is unknown we replace F by F̂ and obtain the nonparametric delta method

variance estimate

v̂l = n−2
n∑

j=1

l2j ,

where

lj = Lt(zj ; F̂ ) (A.16)

are called the empirical influence values. The R function empinf of the library boot

delivers several methods for the computation of the empirical influence values.

The idea behind using the studentized statistic (A.13) is to mimic the Student-t statis-

tic which has this form and eliminates the unknown standard deviation when making

inference about a normal distribution mean. Recall the Student-t (1 − 2α) confidence

interval for a normal distribution mean which is given by

(
z̄ − v1/2tn−1(1− α), z̄ − v1/2tn−1(α)

)
,

where v is an estimator for the variance and tn−1(p) is the p-quantile of a central t-

distribution with n − 1 degrees of freedom. Confidence intervals for θ based on (A.13)

have the analogue form (
t− v1/2y(1−α), t− v1/2y(α)

)
,

where y(p) is the p-quantile of the distribution of Y . We estimate the quantiles of Y by

the empirical quantiles of repetitions of the studentized bootstrap statistic

Y ∗ =
T ∗ − t

V ∗1/2 ,

where T ∗ and V ∗ are based on a simulated random sample Z∗
1 , ..., Z

∗
n. Let ŷ(p) denote

the p-quantile of (Y ∗
1 , ..., Y

∗
R) then an approximate level (1− 2α) confidence interval for

θ is given by

CIstud =
(
t− v1/2ŷ(1−α), t+ v1/2ŷ(α)

)
.

This confidence interval is called studentized bootstrap confidence interval.

Bootstrap normal confidence interval

Another way to construct a confidence interval for θ is to assume the normal approxi-

mation

T − θ
approx∼ N(β, v),
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where β and v are the bias and the variance of T . Since we then have

(T − β − θ)/v1/2
approx∼ N(0, 1)

an approximate level (1− 2α) confidence interval is given by

CInorm = (t−BR ∓ V
1/2
R z1−α),

where z1−α is the 1 − α quantile of the standard normal distribution and BR and VR

are the bootstrap estimates for bias and variance defined in (A.10) and (A.11). This

confidence interval is referred to as bootstrap normal confidence interval.

Percentile interval

For the percentile method we assume that there exists a transformation U = h(T ) which

has a symmetric distribution. We want to construct a confidence interval for φ = h(θ) by

applying the basic bootstrap confidence interval method. The equation (A.12) becomes

P(U − q(1− α) ≤ θ ≤ U − q(α)) = 1− 2α,

where now q(α) is the α quantile of the distribution of U − φ. Because of the assumed

symmetry we can replace q(α) by −q(1− α) and q(1− α) by −q(α) and obtain

P(U + q(α) ≤ θ ≤ U + q(1− α)) = 1− 2α.

Replacing the quantiles q(α) and q(1 − α) by their estimates q̂(α) = u∗(α) − u and

q̂(1 − α) = u∗(1 − α) − u (where u∗(p) is the p-quantile of the bootstrapped values

u∗1, ..., u
∗
R) gives the interval

CIφ =
(
u∗(α), u

∗
(1−α)

)

for φ. Transformation back to the θ scale gives us the bootstrap percentile intervall

CIperc =
(
t∗(α), t

∗
(1−α)

)
.

According to Davison and Hinkley (2009, p.203) this “method turns out to not work

very well with the nonparametric bootstrap even when a suitable transformation h does

exist.”



153

Adjusted percentile interval

Since the percentile method does not work very well we need improvements of this

method. One such improvement is the so called adjusted percentile method. This method

can be explained simplest by transformation theory in the parametric framework with

no nuisance parameters and then be extended to the non-parametric case. Hence, for

the beginning we assume that the data are described by a parametric model with the

single unknown parameter θ. We estimate θ by its maximum likelihood estimate t = θ̂

and make the assumption that there exists a monotone increasing transformation h as

well as an unknown bias correction factor w and an unknown skewness correction factor

a such that we have for h(T ) = U and h(θ) = φ

U ∼ N(φ−wσ(φ), σ2(φ)), where σ(φ) = 1 + aφ. (A.17)

We will derive confidence limits for φ and transform them to the θ scale with the help

of the bootstrap distribution of T (note that we use parametric bootstrapping here).

Assuming that a and w are known we obtain

U = φ+ (1 + aφ)(Z − w),

where Z ∼ N(0, 1). Efron (1987, ch. 3) discusses that via suitable transformation one

can obtain the level α confidence limit for φ as

φ̂α = u+ σ(u)
w + zα

1− a(w + zα)
.

The confidence limit for θ is then given as θ̂α = h−1(φ̂α). Since we do not know h

we cannot compute this bound. We can overcome this lack of knowledge by using the

distribution function of the (parametric) bootstrap replications T ∗ which we denote by

Ĝ. We then have

Ĝ(θ̂α) = P∗(T ∗ < θ̂α|t) = P∗(U∗ < φ̂α|u)

= Φ

(
φ̂α − u

σ(u)
+ w

)
= Φ

(
w +

w + zα
1− a(w + zα)

)
,

hence,

θ̂α = Ĝ−1

(
Φ

(
w +

w + zα
1− a(w + zα)

))
.
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Thus, a level α confidence limit for θ is given by

θ̂α = t∗(α̃) with α̃ = Φ

(
w +

w + zα
1− a(w + zα)

)
.

We see that we do not need to know the underlying transformation h for the computation

of the confidence bound θ̂α. Nevertheless, the constants w and a remain unknown and

need to be estimated. To this end we make use of the normal distribution of U and write

P∗(T ∗ < t|t) = P∗(U∗ < u|u) = P(U < φ|φ) = Φ(w),

which implies

w = Φ−1(Ĝ(t)).

Hence we estimate w by

ŵ = Φ−1

(
#{t∗r ≤ t}

R

)
. (A.18)

For the estimation of a we denote the log-likelihood which is given by the transformation

(A.17) by l(φ). One can show that a good transformation for a (ignoring terms of order

n−1) is

a =
1

6

EP

{
l′(φ)3

}

V arP {l′(φ)}3/2
,

which, transformed back to the θ scale (again ignoring terms of order n−1), gives

a =
1

6

EP

{
l′(θ)3

}

V arP {l′(θ)}3/2
.

Hence we can estimate a by

â =
1

6

E∗
{
l∗′(θ̂)3

}

V ar
{
l∗′(θ̂)

}3/2
, (A.19)

where l∗ is the log likelihood of a set of data simulated form the fitted model. This

implies that an approximate level α confidence limit for θ is given by

θ̂α = t∗(α̃) with α̃ = Φ

(
ŵ +

ŵ + zα
1− â(ŵ + zα)

)
, (A.20)
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with ŵ from (A.18) and â from (A.19). The limit θ̂α is commonly referred to as bootstrap

BCa limit.

(A.20) gives the BCa limit only for the parametric case without nuisance parameters.

This method can be extended to the nonparametric case as well which is done by ap-

plying the method for the parametric case to a specially constructed exponential tilted

distribution. This approach does not affect the form of θ̂α but only the way we estimate

a. The estimator for a in the nonparametric case is given by

â =
1

6

∑n
j=1 l

3
j

{∑n
j=1 l

2
j}3/2

,

where lj is the empirical influence value of t at zj derived in (A.16). More details are

given in Davison and Hinkley (2009).

A.3.3. Second order accuracy and the smooth function model

A desirable property of some bootstrap confidence intervals is that they are second order

accurate in many cases. We call a level α lower bound un for θ first order accurate, if

P(θ ≤ un) = α+O(n−1/2).

un is said to be second order accurate if

P(θ ≤ un) = α+O(n−1).

Confidence intervals derived via limiting normal distributions are often only first order

accurate. Hall (cf. Hall (1988), Hall (1992)) gives a setup, the so called smooth function

model, in which bootstrap BCa intervals and studentized bootstrap intervals are second

order accurate. The smooth function model is given as follows: Assume we have i.i.d. d-

vectors X1, ...,Xn with E(Xi) = µ and X̄ = 1
n

∑n
i=1Xi. Assume further, that our

parameter of interest is θ = f(µ) for a smooth real-valued function f . Let θ̂ = f(X̄) be

the estimator of θ with asymptotic variance n−1σ2, where σ2 = g(µ) for a real-valued

smooth function g. (Hall shows without using the smoothness of g that σ2 is a smooth

function of µ, which means that it is not necessary to demand the smoothness of g.) Hall

then shows that the BCa critical points and the studentized bootstrap critical points

are second order accurate.
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A.3.4. Bootstrapping U-statistics

In the course of this thesis we will apply bootstrap methods to U-statistics. A theoretical

justification for this is given by Bickel and Freedman (1981). Let X1, ...,Xn be an

i.i.d. sample of d-vectors with distribution function F and empirical distribution function

Fn. Define

g(F ) =

∫ ∫
w(x, y)dF (x)dF (y)

respectively

g(Fn) = n−2
n∑

i=1

n∑

j=1

w(Xi,Xj),

where w is a symmetric function. g is called a von Mises statistic (cf. von Mises (1947))

and is closely related to U-statistics (see (A.5)). It follows similar to the case of U-

statistics that if ∫
w2(x, y)dF (x)dF (y) <∞ (A.21)

and ∫
w2(x, x)dF (x) <∞

we obtain √
n{g(Fn)− g(F )} L→ N(0, σ2)

where σ2 is given by

σ2 = 4

[∫ {∫
w(x, y)dF (y)

}2

dF (x)− g2(F )

]
.

Bickel and Freedman (1981) show that under the same conditions, for almost allX1,X2, ...,

given (X1, ...,Xn), √
n{g(Gn)− g(Fn)} L→ N(0, σ2),

where Gn is the empirical distribution function of X∗
1 , ...,X

∗
n. Note, that the condi-

tion (A.21) is necessary for the bootstrap to work. Bickel and Freedman (1981) give a

counterexample to show the inconsistency of the bootstrap, when (A.21) does not hold.

Nevertheless, the considerations above show that under suitable conditions the bootstrap

is valid for second order von Mises statistics. Bickel and Freedman (1981) argue that

under the respective conditions on w analogous results also hold for von Mises statis-

tics and U-statistics of arbitrary order. Hence the use of the bootstrap when handling

U-statistics is justified. However, these results do not offer second order accuracy.
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A.3.5. Wild-bootstrap

In this section we introduce the method of the wild-bootstrap, which is used for the

computation of confidence intervals for the kernel smoother based impact of Section 2.2.1.

Let m̂(x) be an estimator for EP(Y |X = x), e.g. a kernel-smoothing fit. The wild-

bootstrap is a method where we do not sample form the data pairs (Xi, Yi) but from the

residuals ǫi = Yi − m̂(Xi). The method was introduced by Wu (1968). In this thesis we

use the modification of Härdle and Marron (1991). They draw the bootstrap residual ǫ∗i
from the distribution

ǫ∗i =




ǫ̂i(1−

√
5)/2 with probability (5 +

√
5)/10,

ǫ̂i(1 +
√
5)/2 with probability 1− (5 +

√
5)/10

. (A.22)

Using this distribution they obtain that EP(ǫ
∗
i ) = 0, EP(ǫ

∗2
i ) = ǫ̂2i and EP(ǫ

∗3
i ) = ǫ̂3i ,

which means that the first three moments of ǫ∗i coincide with those of ǫ̂i. Thus, Härdle

and Marron (1991) note that “In a certain sense the resampling distribution [...] can

be thought of as attempting to reconstruct the distribution of each residual through the

use of one single observation.” Using this resampling distribution Härdle and Marron

(1991) construct R bootstrap repetitions Y ∗
i = m̂(Xi) + ǫ∗i for i = 1, ..., n and calculate

bootstrap confidence bands for kernel smoothers on their basis.

We will use the wild bootstrap approach to perform a test for the null hypothesis H0 :

ιksX (Y ) = 0. The procedure is as follows:

1. Perform a kernel smoother fit to the data, obtaining residuals ǫi = Yi − m̂(Xi),

2. Generate R sets of bootstrap residuals according to (A.22),

3. Compute ι̂ksX (Y ) in each of the R data sets (ǫ̂∗i ,Xi)i=1,...,n obtaining ι̂ksX (Y )r for

r = 1, ..., R,

4. Calculate the wild bootstrap p-value for H0 as:

p = #{ι̂ks,∗X (Y )r ≥ ι̂ksX (Y )}/R,

where ι̂ksX (Y ) is calculated using the original data,

5. Reject H0 if p falls below the level of significance.
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B. Theorems and Proofs

Lemma 1.13.

Let (X1, ...,Xk) ∈ L2
P and (Xi1, ...,Xik)i=1,...,n i.i.d. observations of (X1, ...,Xk). We

have that

ξ̂
p→ ξ,

where ξ̂ is the vector of coefficients from the projection of X1 = (X11, ...,Xn1) onto

span(1,X2, ...,Xk) ⊆ Rn with 1 = (1, ..., 1) ∈ Rn and ξ are the coefficients form the

corresponding projection of X1 onto span(1,X2, ...,Xk) in L
2
P.

Proof. Let Dn = (1,X2, ...,Xk). Since we have i.i.d. observations

1

n
DT
nDn =

1

n




n ...
∑n

i=1Xik

...
. . .

...∑n
i=1Xik ...

∑n
i=1X

2
ik




p→




1 ... EP(Xk)
...

. . .
...

EP(Xk) ... EP(X
2
k )


 =: C (B.1)

where C is obviously symmetric and positive definite.

In order to simplify the following exposition let W1 = 1 in L2
P and Wj = Xj in L2

P,

j = 2, ..., k. We know that ξ minimizes the expression

EP{(X1 −
k∑

j=1

ξjWj)
2} = EP(X

2
1 )− 2EP(

k∑

j=1

ξjWjX1) +

k∑

j=1

k∑

l=1

ξjξlEP(WjWl)

= EP(Y
2)− 2ξTA+ ξCξT (B.2)

where A = (EP(W1X1), ..., EP(WkX1))
T and C = (EP(WiWj))ij is the same symmetric

matrix as in (B.1). Since C is positive definite, the minimum of the quadratic form (B.2)

is the root of its derivative.

∂

∂ξ
[EP(Y

2)− 2ξTA+ ξCξT ] = 2(−A+ Cξ).

Setting the derivative to zero leads to ξ = C−1A. As a next step we consider

ξ̂ = (DT
nDn)

−1DT
nX1 = n(DT

nDn)
−1 1

n
DT
nX1.
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Since n(DT
nDn)

−1 p→ C−1 by (B.1) and 1
nD

T
nX1

p→ A by the law of large numbers we

obtain

ξ̂
p→ C−1A = ξ.
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Theorem 2.13.

Under Assumption 2.12 we have that

√
n(ι̂loessX (Y )− ιloessX (Y ))

L→ N(0, σ2),

where σ2 = DF (ϑ)TV DF (ϑ),

F
(
(a1, ..., a4)

T
)
=

a1 − a2√
a3 − a24

V = 9EP

(
w̃(Zi)w̃

T (Zi)
)
,

as well as ιloessX (Y ) = F (ϑ) and w̃(Zi) = EP(w(Zi, Zj , Zl, Zk, Zm)|Zi)− ϑ.

Proof. We have

ι̃1 =
1

n

n∑

i=1

Yiδ̂(Xi) =
1

n3

n∑

i=1

n∑

j=1

n∑

l=1

(Xj −Xi)(Xj −Xl)Kh(Xi −Xj)Kh(Xi −Xl)YlYi

=
1

n5

n∑

i=1

n∑

j=1

n∑

l=1

n∑

k=1

n∑

m=1

g1(Zi, Zj, Zl, Zk, Zm).

Furthermore,

ι̃2 =
1

n

n∑

i=1

Yiδ̄ =
1

n4

n∑

i=1

n∑

k=1

n∑

j=1

n∑

l=1

(Xj −Xk)(Xj −Xl)Kh(Xk −Xj)Kh(Xk −Xl)YlYi

=
1

n4

n∑

i=1

n∑

k=1

n∑

j=1

n∑

l=1

n∑

k=1

g2(Zi, Zj , Zl, Zk, Zm).

Analogous to this we obtain

ι̃3 =
1

n

n∑

i=1

δ(Xi)
2

=
1

n5

∑

i,j,l,k,m

{(Xj −Xi)(Xj −Xl)Kh(Xi −Xj)Kh(Xi −Xl)Yl

(Xk −Xi)(Xk −Xm)Kh(Xi −Xk)Kh(Xi −Xm)Ym}

=
1

n5

n∑

i=1

n∑

j=1

n∑

l=1

n∑

k=1

n∑

m=1

g3(Zi, Zj , Zl, Zk, Zm)
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and

ι̃4 =
1

n

n∑

i=1

δ(Xi) =
1

n3

n∑

i=1

n∑

j=1

n∑

l=1

(Xj −Xi)(Xj −Xl)Kh(Xi −Xj)Kh(Xi −Xl)Yl

=
1

n5

n∑

i=1

n∑

j=1

n∑

l=1

n∑

k=1

n∑

m=1

g4(Zi, Zj , Zl, Zk, Zm).

Hence, we obtain that

ι̃ =
1

n5

∑

i,j,l,k,m

g(Zi, Zj , Zl, Zk, Zm) =
1

n5

∑

i,j,l,k,m

w(Zi, Zj , Zl, Zk, Zm).

Analogous to the case of ι̂ksX (Y ) Lemma 2.1 gives that under Assumption 2.12, we have

√
nι̃ =

√
n

n5

∑

C({i,j,l,k,m})
w(Zi, Zj , Zl, Zk, Zm) + op(1),

where C({i, j, l, k,m}) is the set of all combinations which can be drawn without re-

placement from {1, ..., n} in five draws. It follows that

√
nι̃ =

√
n

n5

∑

C({i,j,l,k,m})
w(Zi, Zj , Zl, Zk, Zm) + op(1)

=

√
n

n4
5!

∑

i<j<l<k<m

w(Zi, Zj , Zl, Zk, Zm) + op(1)

=
n(n− 1)(n − 2)(n − 3)(n − 4)

n5
√
n

(
n

5

)−1 ∑

i<j<l<k<m

w(Zi, Zj , Zl, Zk, Zm)

︸ ︷︷ ︸
=:Un

+op(1)

where Un is a fifth-order U-statistics. We now have

√
n(ι̃− ϑ) =

n(n− 1)(n − 2)(n − 3)(n − 4)

n5
√
nUn + op(1)−

√
nϑ

= cn︸︷︷︸
→1

√
n(Un − ϑ)︸ ︷︷ ︸
L→N(0,V )

+op(1) +
(
cn
√
n−

√
n
)
ϑ︸ ︷︷ ︸

→0

L−→N(0, V ),
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where cn
n(n−1)(n−2)(n−3)(n−4)

n5 and

V = 25EP

(
w̃(Zi)w̃

T (Zi)
)

with w̃(Zi) = EP(w(Zi, Zj , Zl, Zk, Zm)|Zi)− ϑ. Since the mapping

F
(
(a1, ..., a4)

T
)
=

a1 − a2√
a3 − a24

is continuously differentiable, application of the delta-method with ιloessX (Y ) = F (ϑ)

yields

√
n(ι̂loessX (Y )− ιloessX (Y )) =

√
n (F (ι̃)− F (ϑ))

L→ DF (ϑ)TN(0, V ) = N(0, σ2),

where σ2 = DF (ϑ)TV DF (ϑ).
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Lemma 2.14. A consistent estimator for σ2 is given by

σ̂2 = DF (ι̃)T V̂ DF (ι̃),

where

V̂ = 25



(
n

9

)−1 ∑

i<...<d

1

9!

∑

π∈S({i,...,d})
g̃(Zπ(i), ..., Zπ(d))− ι̃ι̃T




and

g(Zi, Zj , Zl, Zk, Zm, Za, Zb, Zc, Zd) = w(Zi, Zj , Zl, Zk, Zm)w
T (Zi, Za, Zb, Zc, Zd).

Proof. Since ι̃ is consistent for ϑ, DF (ϑ) can be consistently estimated by DF (ι̃). To

find a consistent estimator for V we make the following considerations (which are similar

to those in (Kowalski and Tu, 2008, p. 259) and to those in the kernel smoother case in

Section 2.2.1).

V/25 =EP

(
w̃(Zi)w̃

T (Zi)
)

=EP

(
EP {w(Zi, Zj , Zl, Zk, Zm)|Zi}EP

{
wT (Zi, Zj , Zl, Zk, Zm)|Zi

})
− ϑϑT

=EP

(
EP

{
w(Zi, Zj , Zl, Zk, Zm)w

T (Zi, Za, Zb, Zc, Zd)|Zi
})

− ϑϑT

=EP

(
w(Zi, Zj , Zl, Zk, Zm)w

T (Zi, Za, Zb, Zc, Zd)
)

︸ ︷︷ ︸
=:g̃(Zi,Zj ,Zl,Zk,Zm,Za,Zb,Zc,Zd)

−ϑϑT .

EP (g̃(Zi, Zj , Zl, Zk, Zm, Za, Zb, Zc, Zd)) can be consistently estimated by

(
n

9

)−1 ∑

i<j<l<k<m<a<b<c<d

˜̃g(Zi, Zj , Zl, Zk, Zm, Za, Zb, Zc, Zd),

where ˜̃g(Zi..., Zd) is a symmetric version of g̃(Zi, ..., Zd) say

˜̃g(Zi, ..., Zd) =
1

9!

∑

π∈S({i,...,d})
g̃(Zπ(i), ..., Zπ(d))

with S ({i, ..., d}) being the set off all permutations of {i, ..., d}. Hence a consistent

estimator for V is given by

V̂ = 25



(
n

9

)−1 ∑

i<...<d

1

9!

∑

π∈S({i,...,d})
g̃(Zπ(i), ..., Zπ(d))− ι̃ι̃T



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which leads to

σ̂2 = DF (ι̃)T V̂ DF (ι̃)

as consistent estimator for σ.
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Theorem 2.16. Under Assumption 2.15 we have that

√
n
{
ι̂locpolX (Y )− ιlocpolX (Y )

} L→ N(0, σ2),

where σ2 = DF (ϑ)TΣDF (ϑ), F
(
(a1, ..., a4)

T
)
= a1−a2√

a3−a24
, ιlocpolX (Y ) = F (ϑ), and

Σ = (2k+3)2EP

{(
EP

[
w(Zj1 , ..., Zj2k+3

)|Zj1
]
− ϑ

) (
EP

[
wT (Zj1 , ..., Zj2k+3

)|Zj1
]
− ϑT

)}
.

Proof. We have that

cof
{
n−1BTW(Xi)B

} 1

n
BTW(Xi)Y

=




∑k+1
m=1

1
nk+1

∑n
j1=1 · · ·

∑n
jk+1=1 h1m(Zj1 , ..., Zjk)Kh(Xjk+1

−Xi)Yjk+1

...∑k+1
m=1

1
nk+1

∑n
j1=1 · · ·

∑n
jk+1=1 h(k+1)m(Zj1 , ..., Zjk )Kh(Xjk+1

−Xi)Yjk+1
Xk
jk+1




and thereby

δ̂(Xi) =
k+1∑

l=1

k+1∑

m=1

1

nk+1

n∑

j1=1

· · ·
n∑

jk+1=1

hlm(Zj1 , ..., Zjk)Kh(Xjk+1
−Xi)Yjk+1

Xm−1
jk+1

Xm−1
i

=
1

nk+1

n∑

j1=1

· · ·
n∑

jk+1=1

k+1∑

l=1

k+1∑

m=1

hlm(Zj1 , ..., Zjk )Kh(Xjk+1
−Xi)Yjk+1

Xm−1
jk+1

Xm−1
i

︸ ︷︷ ︸
=w̃(Zj1 ,...,Zjk+1

,Zi)

.

With this we obtain

ι̃1 =
1

n

n∑

i=1

Yiδ̂(Xi) =
1

nk+2

n∑

i=1

n∑

j1=1

· · ·
n∑

jk+1=1

Yiw̃(Zj1 , ..., Zjk+1
, Zi)

=
1

n2k+3

n∑

j1=1

· · ·
n∑

j2k+3=1

g1(Zj1 , ..., Zj2k+3
).

Furthermore,

ι̃2 =
1

n

n∑

i=1

Yi
1

n

n∑

l=1

δ̂(Xl)

=
1

n2

n∑

i=1

n∑

l=1

Yi
1

nk+2

n∑

j1=1

· · ·
n∑

jk+1=1

w̃(Zj1 , ..., Zjk+1
, Zl)
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=
1

nk+3

n∑

j1=1

· · ·
n∑

jk+3=1

Yk+3w̃(Zj1 , ..., Zk+2)

=
1

n2k+3

n∑

j1=1

· · ·
n∑

j2k+3=1

g2(Zj1 , ..., Zj2k+3
).

For ι̃3 and ι̃4 we obtain

ι̃3 =
1

n

n∑

i=1

δ̂(Xi)
2

=
1

n

n∑

i=1





1

nk+1

n∑

j1=1

· · ·
n∑

jk+1=1

w̃(Zj1 , ..., Zjk+1
, Zi)

1

nk+1

n∑

m1=1

· · ·
n∑

mk+1=1

w̃(Zm1 , ..., Zmk+1
, Zi)





=
1

n2k+3

n∑

j1=1

· · ·
n∑

j2k+3=1

w̃(Zj1 , ..., Zjk+1
, Z2k+3)w̃(Zjk+2

, ..., Zj2k+2
, Z2k+3)︸ ︷︷ ︸

=g3(Zj1 ,...,Zj2k+3
)

and

ι̃4 =
1

n

n∑

i=1

δ̂(Xi) =
1

n

n∑

i=1

1

nk+1

n∑

j1=1

· · ·
n∑

jk+1=1

w̃(Zj1 , ..., Zjk+1
, Zi)

=
1

nk+2

n∑

j1=1

· · ·
n∑

jk+2=1

w̃(Zj1 , ..., Zjk+2
)

=
1

n2k+3

n∑

j1=1

· · ·
n∑

jk+2=1

g4(Zj1 , ..., Zj2k+3
).

Consequently, we have

ι̃ =
1

n2k+3

n∑

j1=1

· · ·
n∑

j2k+3=1

g(Zj1 , ..., Zj2k+3
)

=
1

n2k+3

n∑

j1=1

· · ·
n∑

j2k+3=1

w(Zj1 , ..., Zj2k+3
).
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We now consider

√
nι̃ =

√
n

n2k+3

n∑

j1=1

· · ·
n∑

j2k+3=1

w(Zj1 , ..., Zj2k+3
)

which we can decompose under Assumption 2.15 according to Lemma 2.1 to

=

√
n

n2k+3

n∑

C({j1,...,j2k+3})
w(Zj1 , ..., Zj2k+3

) + op(1)

=

√
n

n2k+3
(2k + 3)!

n∑

j1<...<j2k+3

w(Zj1 , ..., Zj2k+3
) + op(1)

=
n!/(n− [2k + 3])!

n2k+3︸ ︷︷ ︸
=:cn

√
n

(
n

2k + 3

)−1 n∑

j1<...<j2k+3

w(Zj1 , ..., Zj2k+3
)

︸ ︷︷ ︸
=:Un

+op(1).

Hence, it follows that

√
n(ι̃− ϑ) =cn

√
nUn −

√
nϑ

= cn︸︷︷︸
→1

√
n(Un − ϑn)︸ ︷︷ ︸

L→N(0,Σ)

+(cn − 1)
√
nϑ︸ ︷︷ ︸

→0

L→ N(0,Σ),

where

Σ = (2k+3)2EP

{(
EP

[
w(Zj1 , ..., Zj2k+3

)|Zj1
]
− ϑ

) (
EP

[
wT (Zj1 , ..., Zj2k+3

)|Zj1
]
− ϑT

)}
.

With F
(
(a1, ..., a4)

T
)
= a1−a2√

a3−a24
and ιlocpolX (Y ) = F (ϑ) application of the delta-method

yields

√
n
{
ι̂locpolX (Y )− ιlocpolX (Y )

}
=

√
n {F (ι̃)− F (ϑ)} L→ N(0,DF (ϑ)TΣDF (ϑ)︸ ︷︷ ︸

=:σ2

).
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Lemma 2.17. The variance σ2 can be consistently estimated by

σ̂2 = DF (ι̃)T Σ̂DF (ι̃),

where

Σ̂ = (2k+3)2



(

n

4k + 5

)−1 ∑

j1<...<j4k+5

1

(4k + 5)!

∑

π∈S({1,...,4k+5})
g̃(Zjπ(1) , ..., Zjπ(4k+5)

)− ι̃ι̃T




and

g̃(Zj1 , ..., Zj4k+5
) = w(Zj1 , ..., Zj2k+3

)wT (Zj1 , Zj2k+4
, ..., Zj4k+5

).

Proof. We note that as a direct consequence of the theory of U-statistics DF (ϑ) can be

consistently estimated by DF (ι̃). Hence, if we find a consistent estimator for Σ we can

estimate σ consistently. Again we will estimate Σ based on U-statistics, following the

idea in Kowalski and Tu (2008) and the previous sections. To this end we consider

Σ/(2k + 3)2 =EP

{
E[w(Zj1 , ..., Zj2k+3

)|Zj1 ]EP[w
T (Zj1 , ..., Zj2k+3

)|Zj1 ]
}
− ϑϑT

=EP

{
EP[w(Zj1 , ..., Zj2k+3

)wT (Zj1 , Zj2k+4
, ..., Zj4k+5

)|Zj1 ]
}
− ϑϑT

=EP

{
w(Zj1 , ..., Zj2k+3

)wT (Zj1 , Zj2k+4
, ..., Zj4k+5

)
}

︸ ︷︷ ︸
Σh

−ϑϑT .

We can estimate Σh by a (4k + 5)-th oder U-statistics. To this end let

g̃(Zj1 , ..., Zj4k+5
) = w(Zj1 , ..., Zj2k+3

)wT (Zj1 , Zj2k+4
, ..., Zj4k+5

)

and ˜̃g a symmetric version of g̃, for example

˜̃g(Zj1 , ..., Zj4k+5
) =

1

(4k + 5)!

∑

π∈S({1,...,4k+5})
g̃(Zjπ(1) , ..., Zjπ(4k+5)

).

It follows that the U-statistics

Σ̂h =

(
n

4k + 5

)−1 ∑

j1<...<j4k+5

˜̃g(Zj1 , ..., Zj4k+5
)
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is a consistent estimator for Σh. Hence, a consistent estimator for Σ is given by

Σ̂ = (2k+3)2



(

n

4k + 5

)−1 ∑

j1<...<j4k+5

1

(4k + 5)!

∑

π∈S({1,...,4k+5})
g̃(Zjπ(1) , ..., Zjπ(4k+5)

) + ι̃ι̃T


 .

This implies that σ2 can be consistently estimated by

σ̂2 = DF (ι̃)T Σ̂DF (ι̃).



170

Lemma 2.26. The variance σ2 can be consistently estimated byDF (ι̃)T 9(ĝ∗−ι̃ι̃T )DF (ι̃),
where

ĝ∗ =

(
n

5

)−1 ∑

i<j<l<a<b

1

5!

∑

π∈S({i,j,l,a,b})
ŵ(Zi, Zj , Zl)ŵ

T (Zi, Za, Zb)

and ŵ(Zi, Zj , Zl) is obtained from w(Zi, Zj , Zl) by replacing all f̃s by f̂ s.

Proof. Since ι̃ is consistent for ϑ we can estimate DF (ϑ) consistently by DF (ι̃). Hence,

a consistent estimator for V remains to be found. Applying the same calculus as in

Section 2.2.1 we obtain that

V/9 = EP(w(Zi, Zj , Zl)w
T (Zi, Za, Zb)︸ ︷︷ ︸

g̃(Zi,...Zb)

)− ϑϑT .

In this case as well, for estimation, we can replace ϑ by ι̃. The mean of g̃ can be

consistently estimated by the U-statistic

ĝ =

(
n

5

)−1 ∑

i<j<l<a<b

1

5!

∑

π∈S({i,j,l,a,b})
g̃(Zπ(i), ..., Zπ(b)).

Since g̃ contains the unknown f̃ we can not compute g̃. Nevertheless, we can replace f̃

by its estimator f̂ without changing the asymptotic behavior of the estimator. This can

be seen as follows:

(ĝ)u,v =

(
n

5

)−1 ∑

i<j<l<a<b

1

5!

∑

π∈S({i,j,l,a,b})
wu(Zπ(i), Zπ(j), Zπ(l))wv(Zπ(i), Zπ(a), Zπ(b))

=

(
n

5

)−1 ∑

i<j<l<a<b

1

5!

1

6!2

∑

π∈S({i,j,l,a,b})

∑

ψ∈S({π(i),π(a),π(b)})

ρ∈S({π(i),π(j),π(l)})

{
gu(Zρ(π(i)), Zρ(π(j)), Zρ(π(l)))

gv(Zψ(π(i)), Zψ(π(a)), Zψ(π(b)))
}
.

The replacement of f̃ by f̂ can be justified similar to the reverse replacement before.

Let u 6= 3 and define

Lπ,ρ,ψ =
(
gu(Zρ(i), Zρ(j), Zρ(l))gv(Zψ(i), Zψ(a), Zψ(b))

) f̃(Xρ(π(i)))

f̂(Xρ(π(i)))
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and

Aπ,ρ,ψ =
(
gu(Zρ(i), Zρ(j), Zρ(l))gv(Zψ(i), Zψ(a), Zψ(b))

) f̂(Xρ(π(i)))− f̃(Xρ(π(i)))

f̂(Xρ(π(i)))
.

With this definitions we can rewrite the estimator ĝ as

(ĝ)u,v

=

(
n

5

)−1 ∑

i<j<l<a<b

1

5!

1

6!2

∑

π∈S({i,j,l,a,b})

∑

ψ∈S({π(i),π(a),π(b)})

ρ∈S({π(i),π(j),π(l)})

(Lπ,ρ,ψ +Aπ,ρ,ψ)

=

(
n

5

)−1 ∑

i<j<l<a<b

1

5!

1

6!2

∑

π∈S({i,j,l,a,b})

∑

ψ∈S({π(i),π(a),π(b)})

ρ∈S({π(i),π(j),π(l)})

Lπ,ρ,ψ

+

(
n

5

)−1 ∑

i<j<l<a<b

1

5!

1

6!2

∑

π∈S({i,j,l,a,b})

∑

ψ∈S({π(i),π(a),π(b)})

ρ∈S({π(i),π(j),π(l)})

Lπ,ρ,ψ
f̂(Xρ(π(i)))− f̃(Xρ(π(i)))

f̃(Xρ(π(i)))
.

The last term can be shown to be op(1). To this end regard

∣∣∣∣∣∣∣∣

(
n

5

)−1 ∑

i<j<l<a<b

1

5!

1

6!2

∑

π∈S({i,j,l,a,b})

∑

ψ∈S({π(i),π(a),π(b)})

ρ∈S({π(i),π(j),π(l)})

Lπ,ρ,ψ
f̂(Xρ(π(i)))− f̃(Xρ(π(i)))

f̃(Xρ(π(i)))

∣∣∣∣∣∣∣∣

≤ sup
x∈R

∣∣∣∣∣
f̂(x)− f̃(x)

f̃(x)

∣∣∣∣∣

(
n

5

)−1 ∑

i<j<l<a<b

1

5!

1

6!2

∑

π∈S({i,j,l,a,b})

∑

ψ∈S({π(i),π(a),π(b)})

ρ∈S({π(i),π(j),π(l)})

|Lπ,ρ,ψ|.

The first term converges to zero in probability by Lemma 2.23 and the second term

converges to E(|Lπ,ρ,ψ|), provided this exists, by Theorem A.7. Therefore,

(
n

5

)−1 ∑

i<j<l<a<b

1

5!

1

6!2

∑

π∈S({i,j,l,a,b})

∑

ψ∈S({π(i),π(a),π(b)})

ρ∈S({π(i),π(j),π(l)})

Lπ,ρ,ψ
f̂(Xρ(π(i)))− f̃(Xρ(π(i)))

f̃(Xρ(π(i)))
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is op(1) and we have

(ĝ)u,v =

(
n

5

)−1 ∑

i<j<l<a<b

1

5!

1

6!2

∑

π∈S({i,j,l,a,b})

∑

ψ∈S({π(i),π(a),π(b)})

ρ∈S({π(i),π(j),π(l)})

{
νu(Zρ(π(i)), Zρ(π(j)), Zρ(π(l)))

gv(Zψ(π(i)), Zψ(π(a)), Zψ(π(b)))
}
+ op(1),

where νu is gu except for f̃ is replaced by f̂ . By symmetry this argumentation also

holds for v 6= 3. If either u or v (or possibly both) equals 3 we can also replace f̃2 by

f̂2 by twofold application of the argumentation above. Hence, when replacing all f̃s by

f̂s in the definition of ĝ we obtain a consistent estimator ĝ∗ for the mean of g̃. Thus a

consistent estimator for σ2 is given by

σ̂2 = DF (ι̃)T 9(ĝ∗ − ι̃ι̃T )DF (ι̃).
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Theorem 2.34. Under the assumptions of Section 2.2.8 we have that

√
mn

(
ι̂ks,mod2X (Y )− ιX(Y )

) L→ N(0, σ2),

where σ2 = DF (ϑ)TΣDF (ϑ), Σ = 2EP

(
w̃(Zi)w̃

T (Zi)
)
, where w̃(Zi) = EP (w(Zi, Zj)|Zi)−

ϑ and F (a1, ..., a4) =
a1−a2√
a3−a24

.

Proof. We choose the same procedure as in the preceding sections to show the assertion.

This means that we show that the vector ι̃ = (ι̃1, ..., ι̃4)
T , where ι̃1 = 1

mn

∑mn
i=1 Yiδ̂(Xi),

ι̃2 = 1
mn

∑mn
i=1 Yiδ̂(X), ι̃3 = 1

mn

∑mn
i=1 δ̂(Xi)

2 and ι̃4 = 1
mn

∑mn
i=1 δ̂(Xi) is essentially a

U-statistics. After that application of the delta method will give the desired asymptotic

distribution result. For the first element of ι̃ we obtain

√
mnι̃1 =

√
mn

mn

mn∑

i=1

Yiδ̂(Xi)

=

√
mn

mn

mn∑

i=1

YiEP(Y |Xi) +

√
mn

mn

mn∑

i=1

Yi

(
δ̂(Xi)− EP(Y |Xi)

)
.

For the last term we have

∣∣∣∣∣

√
mn

mn

mn∑

i=1

Yi

(
δ̂(Xi)−EP(Y |Xi)

)∣∣∣∣∣ ≤
√
mn sup

x∈J

∣∣∣δ̂(x)−EP(Y |x)
∣∣∣

︸ ︷︷ ︸
=op(1)

1

mn

mn∑

i=1

|Yi|
︸ ︷︷ ︸
→EP(|Y |)<∞

= op(1).

(B.3)

The fact that the first term here is op(1) follows from Corollary 2.32. As a consequence

to (B.3) we have that

√
mnι̃1 =

√
mn

mn

mn∑

i=1

YiEP(Y |Xi) + op(1)

=

√
mn

m2
n

mn∑

i=1

mn∑

j=1

YiEP(Y |Xi) + op(1). (B.4)

Furthermore, for ι̃2 we can show that

√
mnι̃2 =

√
mn

mn

mn∑

i=1

Yiδ̂(X) =

√
mn

mn
Ȳ

mn∑

i=1

δ̂(Xi)

=

√
mn

mn
Ȳ

mn∑

i=1

EP(Y |Xi) +

√
mn

mn
Ȳ

mn∑

i=1

(
δ̂(Xi)− EP(Y |Xi)

)
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where it follows again from Corollary 2.32 that the second summand is op(1), hence

=

√
mn

m2
n

mn∑

i=1

mn∑

j=1

YiEP(Y |Xj) + op(1). (B.5)

For the third element of ι̃ we need the twofold application of Corollary 2.32 to get our

desired result. As a first step note that similar to the considerations before, we have

that

√
mnι̃3 =

√
mn

m2
n

mn∑

i=1

mn∑

j=1

δ̂(Xi)δ̂(Xj)

=

√
mn

m2
n

mn∑

i=1

mn∑

j=1

δ̂(Xi)EP(Y |Xj) +

√
mn

m2
n

mn∑

i=1

mn∑

j=1

δ̂(Xi)
(
δ̂(Xj)− EP(Y |Xj)

)

︸ ︷︷ ︸
(∗)

.

As a next step we show that the term (∗) is op(1). We have that

|(∗)| ≤ √
mn sup

x∈J

∣∣∣δ̂(x)− EP(Y |x)
∣∣∣ 1

mn

mn∑

i=1

∣∣∣δ̂(Xi)
∣∣∣ .

The first summand is op(1) by Corollary 2.32. Hence, it remains to show that 1
mn

∑mn
i=1

∣∣∣δ̂(Xi)
∣∣∣

is bounded as n→ ∞. To this end, we regard

1

mn

mn∑

i=1

∣∣∣δ̂(Xi)
∣∣∣ = 1

mn

mn∑

i=1

∣∣∣δ̂(Xi)− EP(Y |Xi) + EP(Y |Xi)
∣∣∣

≤ 1

mn

mn∑

i=1

|EP(Y |Xi)|+
1

mn

mn∑

i=1

∣∣∣δ̂(Xi)− EP(Y |Xi)
∣∣∣

≤ 1

mn

mn∑

i=1

|EP(Y |Xi)|
︸ ︷︷ ︸

→EP{|EP(Y |X)|}

+sup
x∈J

∣∣∣δ̂(x)− EP(Y |x)
∣∣∣

︸ ︷︷ ︸
=op(1)

p→EP {|EP(Y |X)|} <∞.

Thus, we have that

√
mnι̃3 =

√
mn

m2
n

mn∑

i=1

mn∑

j=1

δ̂(Xi)EP(Y |Xj) + op(1).



175

Applying Corollary 2.32 again leads to

√
mnι̃3 =

√
mn

m2
n

mn∑

i=1

mn∑

j=1

EP(Y |Xi)EP(Y |Xj) + op(1). (B.6)

The considerations for ι̃4 are

√
mnι̃4 =

√
mn

mn

mn∑

i=1

δ̂(Xi)

=

√
mn

mn

mn∑

i=1

EP(Y |Xi) +

√
mn

mn

mn∑

i=1

(
δ̂(Xi)− EP(Y |Xi)

)

︸ ︷︷ ︸
=op(1)

=

√
mn

m2
n

mn∑

i=1

mn∑

j=1

EP(Y |Xi) + op(1). (B.7)

We have according to Assumption 2.33

g1(Zi, Zj) = YiEP(Y |Xi) g2(Zi, Zj) = YiEP(Y |Xj)

g3(Zi, Zj) = EP(Y |Xi)EP(Y |Xj) g4(Zi, Zj) = EP(Y |Xi)

as well as g = (g1, ..., g4)
T and w(Zi, Zj) =

1
2 (g(Zi, Zj) + g(Zj , Zi)). With these defini-

tions and equations (B.4), (B.5), (B.6) and (B.7) we obtain

√
mnι̃ =

√
mn

1

m2
n

mn∑

i=1

mn∑

i=1

w(Zi, Zj) + op(1).

With Assumption 2.33 it follows from Lemma 2.1 that

√
mnι̃ =

√
mn

2

m2
n

∑∑

i<j

w(Zi, Zj) + op(1)

which implies
√
mn (ι̃− ϑ) = cn

√
mn (Un − ϑ) + op(1),

where cn = mn−1
mn

→ 1 and

Un =

(
mn

2

)−1∑∑

i<j

w(Zi, Zj)



176

is a second order U-statistics. Consequently, we have that

√
mn (ι̃− ϑ)

L→ N4(0,Σ),

with Σ = 2EP

(
w̃(Zi)w̃

T (Zi)
)
, where w̃(Zi) = EP (w(Zi, Zj)|Zi)−ϑ. As a next step, we

apply the delta-method to this result and obtain,

√
mn

(
ι̂ks,mod2X (Y )− ιX(Y )

)
L→ N(0, σ2),

where σ2 = DF (ϑ)TΣDF (ϑ), and F (a1, ..., a4) =
a1−a2√
a3−a24

.
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Lemma 2.35. Under the setup of this section a consistent estimate for σ2 is given by

σ̂2 = DF (ι̃)T Σ̂DF (ι̃),

where Σ̂ = ˆ̂g−ι̃ι̃T with ι̃ = (ι̃1, ..., ι̃4)
T , where ι̃1 =

1
mn

∑mn
i=1 Yiδ̂(Xi), ι̃2 =

1
mn

∑mn
i=1 Yiδ̂(X),

ι̃3 =
1
mn

∑mn
i=1 δ̂(Xi)

2 and ι̃4 =
1
mn

∑mn
i=1 δ̂(Xi) and

ˆ̂gu,v =

(
mn

3

)−1 ∑

i<j<l

1

24

∑

π∈S({i,j,l})

∑

ψ∈S({π(i),π(j)})

ρ∈S({π(i),π(l)})

ǧu(Zψ(π(i)), Zψ(π(j)))ǧv(Zρ(π(i)), Zρ(π(l))).

As in the proof of the previous theorem ǧ is obtained from g by replacing EP(Y |x) with
δ̂(x).

Proof. Since we can estimate ϑ consistently by ι̃ it suffices to find a consistent estimate

for Σ. To this end we note that

1

2
Σ =EP

(
w̃(Zi)w̃

T (Zi)
)

=EP

(
EP {w(Zi, Zj)|Zi}EP

{
wT (Zi, Zj)|Zi

})
− ϑϑT

=EP

(
EP {w(Zi, Zj)|Zi}EP

{
wT (Zi, Zl)|Zi

})
− ϑϑT

=EP

(
w(Zi, Zj)w

T (Zi, Zl)
)

︸ ︷︷ ︸
=g̃(Zi,Zj ,Zl)

−ϑϑT .

Again we can estimate ϑ consistently by ι̃. EP

(
w(Zi, Zj)w

T (Zi, Zl)
)
can be, according

to the theory of U-statistics, consistently estimated by

ĝ =

(
mn

3

)−1 ∑

i<j<l

˜̃g(Zi, Zj , Zl),

where

˜̃g(Zi, Zj , Zl) =
1

3!

∑

π∈S({i,j,l})
g̃(Zπ(i), Zπ(j), Zπ(l)),

where S({i, j, l}) is the symmetric group of the set {i, j, l}. The estimate ĝ can then be

written as

ĝ =

(
mn

3

)−1 ∑

i<j<l

1

3!

∑

π∈S({i,j,l})
g̃(Zπ(i), Zπ(j), Zπ(l)).

However, g̃ contains the unknown EP(Y |Xi) which means that we cannot compute this
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estimate. The solution to this problem is to replace this conditional expectation by the

kernel smoother δ̂(Xi). Note, that from the considerations that lead to (B.4), (B.5),

(B.6) and (B.7) it follows that

√
mn

m2
n

mn∑

i=1

mn∑

j=1

|gu(Zi, Zj)− ǧu(Zi, Zj)| = op(1) ∀u ∈ {1, ..., 4}, (B.8)

where ǧu(Zψ(π(i)), Zψ(π(j))) is the same function as gu(Zψ(π(i)), Zψ(π(j))) but with δ̂(x)

instead of EP(Y |x). In the following, we will show that the replacement of the conditional

expectation by the kernel smoother does not affect the consistency of ĝ. We do so by

showing that replacement does not affect the consistency in each element of ĝ. Therefore,

have a look at

ĝu,v

=

(
mn

3

)−1 ∑

i<j<l

1

3!

∑

π∈S({i,j,l})
wu(Zπ(i), Zπ(j))wv(Zπ(i), Zπ(l))

=

(
mn

3

)−1 ∑

i<j<l

1

3!

∑

π∈S({i,j,l})

1

2!2

∑

ψ∈S({π(i),π(j)})

ρ∈S({π(i),π(l)})

gu(Zψ(π(i)), Zψ(π(j)))gv(Zρ(π(i)), Zρ(π(l)))

We show that we can replace gu(Zψ(π(i)), Zψ(π(j))) in this expression by ǧu(Zψ(π(i)), Zψ(π(j))).

By symmetry it then follows that we can also replace gv(Zρ(π(i)), Zρ(π(l))) by ǧv(Zρ(π(i)), Zρ(π(l))).

Obviously, it suffices to show that

(
mn

3

)−1 ∑

i<j<l

1

3!2

∑

π∈S({i,j,l})

∑

ψ∈S({π(i),π(j)})

{
gu(Zψ(π(i)), Zψ(π(j)))− ǧu(Zψ(π(i)), Zψ(π(j)))

}

(B.9)

converges to zero as mn → ∞. To this end, we make the following considerations.

∣∣∣∣∣∣

(
mn

3

)−1 ∑

i<j<l

1

3!2

∑

π∈S({i,j,l})

∑

ψ∈S({π(i),π(j)})

{
gu(Zψ(π(i)), Zψ(π(j)))− ǧu(Zψ(π(i)), Zψ(π(j)))

}
∣∣∣∣∣∣

≤
(
mn

3

)−1 ∑

i<j<l

1

3!2

∑

π∈S({i,j,l})

∑

ψ∈S({π(i),π(j)})

∣∣{gu(Zψ(π(i)), Zψ(π(j)))− ǧu(Zψ(π(i)), Zψ(π(j)))
}∣∣ .

To show that this converges to zero it suffices to regard each of the 12 summands for



179

which π and ψ are fixed. Hence, we regard for fixed π and ψ

(
mn

3

)−1 ∑

i<j<l

1

3!2

∣∣{gu(Zψ(π(i)), Zψ(π(j)))− ǧu(Zψ(π(i)), Zψ(π(j)))
}∣∣

≤ 1

12

(
mn

3

)−1∑

i,j,l

∣∣{gu(Zψ(π(i)), Zψ(π(j)))− ǧu(Zψ(π(i)), Zψ(π(j)))
}∣∣

=
mn

12

(
mn

3

)−1∑

i,j

|{gu(Zi, Zj)− ǧu(Zi, Zj}| = op(1)

by (B.8). From this it follows that (B.9) is also op(1), which implies that the estimate ˆ̂g

with

ˆ̂gu,v =

(
mn

3

)−1 ∑

i<j<l

1

24

∑

π∈S({i,j,l})

∑

ψ∈S({π(i),π(j)})

ρ∈S({π(i),π(l)})

ǧu(Zψ(π(i)), Zψ(π(j)))ǧv(Zρ(π(i)), Zρ(π(l)))

is also consistent for EP

(
w(Zi, Zj)w

T (Zi, Zl)
)
. Consequently, Σ can be consistently

estimated by

Σ̂ = ˆ̂g − ι̃ι̃T .

This leads to the estimate

σ̂2 = DF (ι̃)T Σ̂DF (ι̃)

which is consistent for σ2.


	Introduction
	1 Theoretical foundations - Impact analysis
	1.1 Mathematical presentation
	1.2 Partial mean impact
	1.2.1 General approach
	1.2.2 Restricted and linear partial mean impact

	1.3 Examples
	1.4 Estimation of the partial mean impact
	1.4.1 Asymptotic normality and hypothesis testing
	1.4.2 Simulations

	1.5 Absolute mean slope
	1.6 Common mean impact of several variables
	1.7 Common linear mean impact of several variables
	1.7.1 A test for the linear common mean impact being zero
	1.7.2 A shrinkage-like approach to the construction of confidence intervals for the linear common mean impact
	1.7.3 Common population coefficient for determination
	1.7.4 Common absolute mean slope
	1.7.5 Bootstrap intervals for the common linear mean impact

	1.8 Partial common mean impact
	1.9 Linear partial common impact analysis
	1.9.1 Definition of the linear partial common mean impact
	1.9.2 Estimation of the linear partial common mean impact
	1.9.3 Bootstrap confidence intervals in linear partial common impact analysis
	1.9.4 Alternative Approach
	1.9.5 Example

	1.10 Application of Impact analysis to data with a zero-inflated covariate

	2 Non-linear impact analysis
	2.1 Impact analysis based on polynomials and splines
	2.2 Kernel-method-based impacts
	2.2.1 Kernel-smoother-based impact analysis
	2.2.2 Population coefficient for determination based on kernel smoothers
	2.2.3 Mean slope based on kernel-smoothers
	2.2.4 Loess-based impact analysis
	2.2.5 Impact analysis based on local polynomials
	2.2.6 Common impact based on kernel-smoothing
	2.2.7 Modification of the Kernel-smoother-based impact
	2.2.8 Another modification of the Kernel-smoother-based impact


	3 Partial non-linear impact analysis
	3.1 Partial non-linear impact based on polynomials and splines
	3.2 Partial non-linear impact based on kernel smoothers
	3.2.1 Direct approach via density-changes
	3.2.2 An alternative approach
	3.2.3 Partial mean slope based on kernel smoothing
	3.2.4 Partial population coefficient for determination based on kernel smoothing


	4 Simulations - Comparison of methods
	4.1 Single Covariate Case
	4.1.1 Linear mean impact
	4.1.2 Polynomial based impact
	4.1.3 Kernel-smoother based impact analysis

	4.2 Partial impact analysis
	4.2.1 Partial linear mean impact analysis
	4.2.2 Partial polynomial impact analysis
	4.2.3 Kernel-smoother based partial impact analysis

	4.3 Summary of simulation results

	5 Conclusion and outlook
	References
	A Methodology
	A.1 Nonparametric regression
	A.1.1 Kernel methods
	A.1.2 Spline methods

	A.2 U-Statistics
	A.3 The Bootstrap
	A.3.1 The idea of the bootstrap
	A.3.2 Bootstrap confidence intervals
	A.3.3 Second order accuracy and the smooth function model
	A.3.4 Bootstrapping U-statistics
	A.3.5 Wild-bootstrap


	B Theorems and Proofs

