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Abstract

The Mumford-Shah functional has provided an important approach

for image denoising and segmentation. Recently, it has been applied

to image reconstruction in fields such as X-ray tomography and elec-

tric impedance tomography. In this thesis we study the applicability

of the Mumford-Shah model to a setting, where a priori edge informa-

tion is available and reliable. Such a situation occurs for example in

biomedical imaging, where multimodal imaging systems have received

a lot of interest.

The regularization terms in the Mumford-Shah functional force

smoothness of the image within individual regions and simultaneously

detect edges across which smoothing is prevented. We propose to di-

vide the edge penalty into two parts depending on the a priori edge in-

formation. We investigate the proposed model for well-posedness and

regularization properties under an assumption of pointwise bounded-

ness of the underlying image.

Furthermore, we present two variational approximations that allow

numerical implementations. For one we prove that it Γ-converges to

a special case of our proposed model, the other we motivate heuris-

tically. The resulting algorithm alternates between an image recon-

struction and an image evaluation step. We illustrate the feasibility

with two numerical examples.
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Chapter 1

Introduction

In this thesis, we study a novel approach to image reconstruction from ill-posed

operator equations, using a priori edge knowledge. The proposed model is based

on the well-known Mumford-Shah regularization for image denoising and segmen-

tation.

In this introduction we will first state the underlying motivation and then

describe our proposed approach. Finally, we describe our contributions and give

an outline of the thesis.

1.1 Multimodal image reconstruction

The underlying motivation to our work stems from multimodal image reconstruc-

tion in medical imaging. This field has gained considerable interest in recent years

and is still rapidly developing Ehrhardt et al. [2014]; Kazantsev et al. [2014]; Leahy

and Yan [1991]; Schweiger and Arridge [1999]; Townsend [2008]; Vauhkonen et al.

[1998].

Over the last decades, a number of imaging modalities have emerged in the

field of biomedical imaging. For example there are well established procedures,

such as X-ray computed tomography (X-ray CT) or magnetic resonance imag-

ing (MRI), that can visualize anatomical information with a high resolution and

newer methods, such as diffuse optical tomography (DOT), positron emission to-

mography (PET) or electric impedance tomography (EIT), which are capable of
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visualizing chemical or biological processes, but have a poor resolution, see Bush-

berg and Boone [2011]; Intes [2008]. The natural observation that motivates this

thesis is that images of the same object, but obtained from different modalities,

possess similar complementary feature information.

A multimodal imaging approach treats the reconstruction from two or more

imaging modalities as a combined task, rather than solving each imaging prob-

lem individually, see Intes [2008]. The terminology covers both innovations on

the hardware side, where scanners have been developed that can acquire data

from different modalities, either sequentially or simultaneously Cherry [2006],

and innovations on the algorithmic side, where methods have been developed

making use of the cross modal information in the inversion of the data, see for

example Ehrhardt et al. [2014]; Somayajula et al. [2005]. Bi-modal examples are

PET/MRI and PET/X-ray CT that are also in commercial use, where PET gives

functional and MRI or X-ray CT yield anatomical information.

In applications, the measured data is almost always incomplete or inaccurate,

due to limitations for example in the measurement geometry or accuracy. Fur-

thermore, indirect imaging problems lead to inverse problems, that are typically

ill-posed, see Engl et al. [1996]. In light of the ill-posedness and corrupted mea-

sured data it is therefore desirable to make use of all available information from

different methods in a complementary manner to narrow the solution space.

Steps for a multimodal imaging approach are to identify the features that are

shared across the considered modalities, model these features and design algo-

rithms that can make use of the additional complementary information. For many

applications, such as PET/X-ray CT and DOT/X-ray CT, the edges of the un-

derlying images are correlated as different anatomical regions usually also present

different functional information. We therefore want to use edges as the connect-

ing feature, see also Kazantsev et al. [2014]; Leahy and Yan [1991]; Schweiger and

Arridge [1999]. Other possible features are information theoretic similarities as

in Somayajula et al. [2005].

In this work we consider a variational approach to bimodal image reconstruc-

tion. In the following section we present the model we base our approach on.
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1.2 The Mumford-Shah model for image seg-

mentation and denoising

In the following, we consider an image as a function on a two dimensional bounded

domain Ω ⊂ R2.

Computing a segmentation of an image is a key step in image processing.

The segmentation problem for an image g ∈ L∞(Ω) can be defined as finding a

decomposition

Ω = R1 ∪R2 ∪ ... ∪Rl ∪K

of Ω, where Ri ⊂ Ω are disjoint connected open subsets and K is the union of

the boundaries of Ri in Ω. We consider a decomposition meaningful if

1. the image g varies smoothly and/or slowly within each Ri,

2. the image g varies discontinuously and/or rapidly across K between differ-

ent Ri.

A segmentation is often used as a starting point for further analysis and thus

plays a key role in image processing.

Inspired by the discrete Gibbs energy of Geman and Geman [1984], in Mum-

ford and Shah [1989] a variational approach to the image segmentation problem

was introduced. They proposed to minimize a functional (see equation (1.1)) with

the aim to find a piecewise smooth approximation of an image and also detect

its edges. Since its introduction the Mumford-Shah model has received a lot of

attention, see for example Ambrosio et al. [2000]; David [2005]; Fusco [2003].

To a given noisy image g ∈ L∞(Ω), the Mumford-Shah functional is

defined as

MS(f,K) :=

∫
Ω

|f − g|2dx+ α

∫
Ω\K

|∇f |2dx+ βH1(K) (1.1)

for every closed subset K ⊂ Ω, every f ∈ W 1,2(Ω \K) and positive parameters

α and β. The one dimensional Hausdorff measure H1(K) measures a generalized
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length of K, see Section 2.2 for the definition. The last term forces K to be a

1-dimensional rectifiable curve for a minimizing pair (f,K).

A minimizer (f,K) of the Mumford-Shah functional (1.1) must balance three

requirements each coming from one of the terms:

1. f must be a good approximation of g in the L2 norm,

2. f must be smooth everywhere in Ω except at the edges K,

3. the edges K must be as “short” as possible.

The minimizer (f,K) can be understood as a simplification of the original picture

g. Regions in Ω\K are drawn smoothly and details are lost, but main objects are

sharply marked through K. In this thesis we consider a pair (f,K) fulfilling the

above described requirements as a “good segmentation”, i.e. the smaller MS(f,K)

the better.

The Mumford-Shah functional has a natural generalization for signals on N -

dimensional domains Ω ⊂ RN . Instead of penalizing the length of an edge, in

dimension N the discontinuity set K is penalized by its N − 1 dimensional Haus-

dorff measure HN−1(K). As a result, for minimizers (f,K) the set K essentially

is a N − 1 dimensional subset of Ω (in the sense of Hausdorff dimension).

1.3 Regularizing with the Mumford-Shah func-

tional

The Mumford-Shah functional and its variants have been applied to many imaging

applications. Examples are electric impedance tomography Rondi and Santosa

[2001], image inpainting Esedoglu and Shen [2002], image deblurring Bar et al.

[2006], X-ray tomography Ramlau and Ring [2007], electron tomography Klann

[2011] and SPECT Klann and Ramlau [2013].

Let A : X → Y be a forward operator of an imaging application mapping

from its image space X to its data space Y (both spaces suitably defined). The

4



Mumford-Shah functional with corresponding least squares fidelity term then is

MS(f,K) := ‖A(f)− g‖2Y + α

∫
Ω\K

|∇f |2dx+ βHN−1(K). (1.2)

With a non-trivial operator A, the original existence and regularity theory cannot

be applied directly. In fact, the functional (1.2) may not have a minimizer without

extra constraint, as shown in Fornasier et al. [2011] for the image deblurring

problem. Therefore it is necessary to introduce reasonable constraints on the

image f , edge set K or forward operator A to establish existence results, see

Rondi [2007, 2008a,b]; Rondi and Santosa [2001]. In Rondi [2008b], it was shown

that for electric impedance tomography and for certain linear forward operators

under a pointwise boundedness constraint on f , the Mumford-Shah functional

yields a regularization on the image. In Jiang et al. [2014] it was shown that

under the same pointwise boundedness constraint the Mumford-Shah functional

yields a regularization for both the image and edge for an a priori parameter

choice rule. When the image f is restricted to piecewise constants, existence and

other regularization properties have also been established by Klann and Ramlau

[2013]; Ramlau and Ring [2010]. In Fornasier et al. [2011] it was shown that

under an additional regularity constraint on K, the Mumford-Shah functional

yields a minimizer for linear forward operators, provided they are either compact

and injective or first-order differential operators.

1.4 Image reconstruction with the Mumford-Shah

model using a priori edge information

We now present the model we propose to bimodal imaging based on the Mumford-

Shah model.

We study one specific case of feature based bimodal image reconstruction,

where one modality is severely more ill-posed than the other. Examples for such

a setting are PET/X-ray CT and DOT/X-ray CT , where DOT and PET are the

more ill-posed problems.

Because of this asymmetrical setting we use the feature similarity only in one
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direction, which is from the less to the more ill-posed problem. We will presume

that the less ill-posed problem is already solved and its edge set K0 ⊂ Ω is

available and reliable. Our approach is to use the a priori edge knowledge of K0

in the reconstruction of the more ill-posed problem.

We propose to separate the edge penalty HN−1(K) into two parts depending

on K0 leading to the Mumford-Shah type functional with a priori edge

knowledge

MS(f,K)K0 = ‖A(f)− g‖2Y + α

∫
Ω\K

|∇f |2dx (1.3)

+ βHN−1(K \K0) + γHN−1(K ∩K0),

with parameters 0 ≤ γ < β and 0 < α.

In the modified functional (1.3), edges K that coincide with a priori edges

K0 are penalized less (with factor γ), than edges not included in K0 (with factor

β). Thus, edges coinciding with K0 are more likely to be reconstructed. In the

early work Leahy and Yan [1991] a closely related approach based on the discrete

model of Geman and Geman [1984] was proposed for coupled PET/MRI.

In Chapter 3 we will study the proposed functional with regard to existence

of a minimizer, stability and parameter choice rules.

1.5 Variational approximation in the sense of Γ-

convergence

In applying the Mumford-Shah regularization to practical applications, several

issues arise. The primary difficulty comes from the edge part because it is not

easy to represent in programming and to trace its updates. One solution is to

use the level-set method Chan and Vese [2001]. Another approach is based on

the Γ-convergence theory by approximating the edge set with smooth indicator

functions Ambrosio and Tortorelli [1992].

In this work we study the latter approach for the above described Mumford-

Shah functional with a priori edge information (1.3). The aim is to define a

sequence of regular functionals, that on the one hand can easily be implemented,
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and on the other hand yield minimizers that approximate solutions of the original

problem. A suitable notion of convergence for such variational approximations is

Γ-convergence, see Braides [2002].

In Chapter 4 we follow the Γ-convergence approximation of the Mumford-

Shah functional with elliptic functionals from Ambrosio and Tortorelli [1992]. In

Ambrosio and Tortorelli [1992] a phase field approach, where the edges are ap-

proximated by smooth indicator functions v ∈ W 1,2(Ω), 0 ≤ v ≤ 1, was proposed.

There v ≈ 0 indicates the presence and v ≈ 1 the absence of an edge.

There are several advantages in choosing a phase field approach to model

edges. Firstly, it gives a non-parametric global description of edges with which

topological changes, such as introducing new edges, do not require extra effort.

Secondly, the edges are available in a format that is easy to access and therefore

can be used for other image processing tasks such as image registration, see Droske

et al. [2009]. Thirdly, in contrast to sharp edge representations, the phase-field

function only indicates the approximate position of edges in a blurry way. As a

result, stronger and weaker edges can be distinguished with the indicator function.

Naturally, these characteristics are disadvantageous for certain tasks, for example

if a sharp segmentation into different regions is desired.

For the original Mumford-Shah penalty, the Γ-approximation of Ambrosio-

Tortorelli is

ATεn(f, v) = α

∫
Ω

(v2 + kεn)|∇f |2dx+ β

∫
Ω

εn|∇v|2 + (1− v)2

4εn
dx, (1.4)

where f, v ∈ W 1,2(Ω), εn, kεn ∈ R+ and kεn is of higher order than εn. As for the

Mumford-Shah penalty, the first integral of (1.4) enforces smoothness whenever

there is no edge, i.e. v ≈ 1, and the second integral penalizes edges.

To derive a variational approximation for (1.3) we need to describe the a priori

edges in a suitable way. We assume that for the a priori edge set K0 we have a

sequence of smooth functions {v0n}, for which v0n(x) → 0 if x ∈ K0 and otherwise

v0n(x) → 1. We will add further technical assumptions later, see Assumption 4.1.
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In this work we study the modified penalty

ATεn,v0n
(f, v) = α

∫
Ω

(v2 + kεn)|∇f |2dx+ β

∫
Ω

εn|∇v|2 + (v0n − v)2

4εn
dx, (1.5)

where the last quadratic term was changed from (1 − v)2 to (v0n − v)2. In areas

where no a priori edge information is available, that is locally v0n ≈ 1 for all n

large enough, the penalties ATεn and ATεn,v0n are approximately the same. In

areas where there is a priori edge information, that is locally v0n ≈ 0 for all n

large enough, the penalty guides v to take an edge at the location.

In Chapter 4 we will present sufficient conditions under which the proposed se-

quence of functionals (1.5) Γ-converges to the Mumford-Shah penalty including a

priori edge information. Unfortunately, we can only establish the Γ-convergence

under the condition γ = 0. Nevertheless, we propose a heuristic approxima-

tion which overcomes shortcomings of the above proposed penalty in numerical

implementations.

1.6 Contribution and related work

There are several similar variational models to (1.3) in the literature. For exam-

ple in the already mentioned work Leahy and Yan [1991] a finite difference model

using the same idea of penalizing jumps differently according to some a priori

known set is studied. Mathematically very close variational problems are studied

in the context of fracture mechanics by Amar et al. [2010]; Babadjian and Giaco-

mini [2013]; Dal Maso et al. [2005]; Giacomini and Ponsiglione [2006]. Motivated

by crack evolution in anisotropic materials these works cover rather general edge

penalty terms. The same compactness and lower semicontinuity properties in the

aforementioned work are used in this thesis, for example to obtain existence of

a solution. For this reason the main contribution of Chapter 3 are the results

on the regularization properties of the Mumford-Shah penalty (also for the case

K0 = ∅). As shown by Fornasier et al. [2011] the topologies and assumptions

have to be chosen with care to ensure that the regularization is well posed. Once

a setting is fixed, the actual proofs for stability and the regularization properties
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follow established paths such as in Anzengruber and Ramlau [2010]; Klann and

Ramlau [2013]; Ramlau and Ring [2010]. However, the proofs still needed to be

verified in detail, for example to see what constraints on the parameters are nec-

essary. Our work extends the regularization results of Jiang et al. [2014]; Rondi

[2008b] and gives further justification of using the Mumford-Shah approach as a

regularization.

There are many approximations of the original Mumford-Shah functional that

allow numerical implementations. For example, there are finite difference approxi-

mations Chambolle [1995], finite element approximations Bourdin and Chambolle

[2000], elliptic approximations Ambrosio and Tortorelli [1992] or non local ap-

proximations Braides and Dal Maso [1997]. See also Braides [2002]. In Chapter 4

we extend the classic approach of Ambrosio and Tortorelli [1992], which is still

used as the reference algorithm for comparisons with new implementations of the

Mumford-Shah functional. To our knowledge this kind of extension is new. The

difference to other generalizations is that our approximations depend not only on

a scalar parameter but also on a sequence of functions.

Our numerical results are meant as a first illustration of the proposed model

rather than an exhaustive study. The resulting algorithm alternates between an

image reconstruction and image evaluation step. Such a procedure can also be

understood in the context of adaptive regularization methods with non constant

regularization parameter, see for example Alexandrov et al. [2010]; Gilboa et al.

[2006]; Grasmair [2009].

1.7 Outline

The thesis is structured as follows.

In Chapter 2 we state some notations and results needed in the later parts of

the thesis.

In Chapter 3 we study the proposed model regarding existence of a minimizer,

stability with respect to the data and regularization parameters and parameter

choice rules.

In Chapter 4 we study the proposed approximation. We first investigate the

a priori sequence {v0n} and note the assumptions we impose. Then we establish
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convergence in one dimension for the case γ = 0 and lift the result to dimension

N ≥ 2 by standard arguments in the theory of Γ-convergence. Finally, we give a

heuristic motivation for a second variational approximation.

In Chapter 5 we evaluate the approach for two inverse problems with simulated

data. One is X-ray CT and one is 2 dimensional DOT. Both applications are

covered by our theoretical results.

In Chapter 6 we draw a conclusion and provide an outlook for future work.
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Chapter 2

Preliminaries

2.1 Inverse Problems

In this section a brief introduction on ill-posed inverse problems is provided. The

reference for this section are Engl et al. [1996]; Louis [1989]; Rieder [2003].

Let X and Y be Banach spaces and A : X → Y a operator, possibly non-

linear. Computing for a given f ∈ X its effect under the operator A(f) = g is

called the direct problem. In many applications the opposite is desired, that is

for a given observation g ∈ Y the cause f ∈ X resulting in g is wanted. Solving

the operator equation

A(f) = g (2.1)

for a g, is called the inverse problem. If the operator A is linear and bounded, it is

called a linear inverse problem. Inverse problems arise in many branches of science

and engineering, including computer vision, geophysics, medical imaging and

nondestructive testing Rieder [2003]. In most applications the inverse problem is

ill-posed, which leads to sever difficulties due to the inaccuracy in the model and

the noise in the data.

Hadamard [1923] proposed the following definition for the well-posedness of

an inverse problem.

Definition 2.1. Let A : X → Y be a map between the topological spaces X and
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Y . The problem (A,X, Y ) is called well-posed, if the following properties hold.

(i) The equation Af = g has a solution for every g ∈ Y .

(ii) The solution is uniquely determined by the data g.

(iii) The inverse map A−1 : Y → X is continuous, that is the solution f is

continuously dependent on the data g.

If one of the conditions does not hold, the problem is called ill-posed.

We denote by R(A) := A(X) the range of A. Condition (iii) is usually the

crucial one. In applications, the measurement typically carries some errors. Often

instead of the exact data g ∈ R(A) only a corrupted version gδ ∈ Y is measured.

A simple way to characterize the noise is by its noise level δ, with ‖gδ − g‖Y ≤ δ.

As gδ is not necessarily in the range of A, more general solutions to the inverse

problem have to be considered. A possible approach is to consider least square

solutions f ∈ X for which

f := argminf∈X‖Af − gδ‖2Y . (2.2)

Other criteria might also be used in 2.2, for example the Kullback-Leibler diver-

gence. If least square solutions exist there might be infinite many and in order

to uniquely determine a solution an additional selection is needed. Furthermore,

the least squares approach does not resolve the crucial problem of condition (iii).

To stabilize the inversion often the minimization of penalized least squares

functionals

F (f) = ‖A(f)− gδ‖2L2 + αΨ(f) (2.3)

is considered, as in Tikhonov [1963]. In this approach, besides the fitting to

the observed data gδ enforced through the first term (called the fidelity term),

a priori knowledge on the solution f can be introduced into the reconstruction

through the penalty functional Ψ. Some choices of the regularization term are

Ψ(f) = ‖∇f‖2L2 , Ψ(f) = ‖f‖2L2 Tikhonov [1963] or Ψ(f) = ‖∇f‖L1 (the total

variation of f) Rudin et al. [1992]. Other choices of Ψ could be norms or semi-

norms of f and/or ∇f or “norms” with respect to a certain basis or frame as in
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sparsity regularization Daubechies et al. [2004]. The parameter α > 0 balances

the influence of the data fitting term and the penalty term Ψ.

The choice of α has a big influence on the quality of the reconstruction. A too

large α leads to a minimizer that might not approximate the data well enough,

a too small α leads to a minimizer where the errors of the data might be carried

over and amplified. Furthermore it has to be ensured that the bias introduced

through the penalty is reasonable. That is the a priori knowledge is used to

deal with the errors and noise in the data, but it can be ensured, with a suitable

parameter choice rule, that for decreasing noise the reconstruction tends to the

true solution.

In our work we consider non-linear operators and non-convex variational meth-

ods. Therefore we can not ask for uniqueness of the minimizer and hence also

not for convergence in norm. Moreover we have multiple parameters. These re-

quirements, together with the need of stability, lead to the following definition of

a regularization we will use.

Definition 2.2. Let A† : R(A) → X be an operator that maps g ∈ R(A) to a

solution f † = A†(g) of (2.1). A family of operators Rα : Y → 2X for α ∈ RN is

called a regularization for A† if:

(i) (Existence) The set Rα(g) is non-empty for all g ∈ Y .

(ii) (Stability) For every α ∈ RN
+ , {gn}, g ∈ Y , if gn → g, then there exists

a sequence {fn} ∈ Rα(gn) that convergences, at least subsequentially, to a

f ∈ Rα(g).

(iii) (Convergence) For gδ ∈ Y such that ‖gδ−g‖Y ≤ δ and suitably chosen α =

α(δ, gδ) with α(δ, gδ) → 0 as δ → 0, there exists a sequence {fδ} ∈ Rα(gδ)

that convergences, at least subsequentially, to a solution of (2.1) as δ → 0.

2.2 Radon measures and the Hausdorff measure

In this section the theory of measures needed for the space of bounded variation

is recalled. Moreover the Hausdorff measure is defined. The main reference is

[Ambrosio et al., 2000, Chapter 1].
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First the σ-algebra and measure spaces are defined.

Definition 2.3 ([Ambrosio et al., 2000, p.1 Definition 1.1]). LetM be a nonempty

set and let A be a collection of subsets of M .

(i) We say that A is a σ-algebra if ∅ ∈ A, M/E1 ∈ A whenever E1 ∈ A and

for every sequence (En)n ⊂ A the union
⋃

nEn ∈ A.

(ii) If A is a σ-algebra in M , we call the pair (M,A) a measure space.

(iii) The smallest σ-algebra containing all open subsets of M is called Borel-

algebra and is denoted by B(M), when M is a topological space.

For simplicity we restrict the following definitions to bounded domains Ω ⊂
RN .

Definition 2.4 ([Ambrosio et al., 2000, p.2 Definition 1.4, p.19 Definition 1.40]).

Let (Ω,A) be a measure space.

(i) We say that μ : A → Rm is a measure if μ(∅) = 0 and for any sequence

(En)n of pairwise disjoint elements of A

μ
(⋃

n

En

)
=
∑
n

μ(En).

(ii) A set function defined on the relatively compact Borel subsets of Ω that is

a measure on (K,B(K)) for every compact set K ⊂ Ω is called a Radon

measure on Ω.

If the function is a measure on (Ω,B(Ω)) it is called a finite Radon mea-

sure.

We state a special case of the Radon-Nykodim Theorem, which we will need

to characterize functions of bounded variation. We denote the N dimensional

Lebesgue measure by LN .

Theorem 2.5 ([Ambrosio et al., 2000, p.14 Theorem 1.28] Radon-Nykodim). Let

ν be a Rm-valued finite Radon measure on Ω. Then there exists a unique pair of

14



Rm-valued measures νa, νs with

ν = νa + νs,

where νa is absolutely continuous with respect to LN and νs is singular with respect

to LN . Moreover there is a unique function f ∈ (L1(Ω)
)m

so that νa = fLN .

The Hausdorff measure below is a generalized volume for lower dimensional

sets. We will use the Hausdorff measure to penalize the discontinuities in the

Mumford-Shah functional.

Definition 2.6 ([Ambrosio et al., 2000, p.72 Definition 2.46]). Let k ∈ N and

E ⊂ RN . The k-dimensional Hausdorff measure of E is given by

Hk(E) = lim
ρ↓0

Hk
ρ(E)

where, for 0 < δ ≤ ∞,Hk
ρ is defined by

Hk
ρ(E) :=

ωk

2k
inf{
∑
i∈I

(diam(Ei))
k : diam(Ei) < ρ,E ⊂ ∪i∈IEi}

for finite or countable covers {Ei}i∈I , with the convention diam(∅) = 0. The

constant ωk is the Lebesgue measure of the unit ball in Rk.

We will need the following lemma to lift our Γ-convergence result from one

dimension to N dimensions in Chapter 4.

Lemma 2.7 ([Attouch et al., 2006, p.122 Lemma 4.22]). Let μ be a non-negative

R−valued Radon measure, {fn} be a family of non-negative functions in L1
μ(Ω).

Then ∫
Ω

supnfndμ = sup
[∑

i∈I

∫
Ai

fidμ
]
,

where the supremum is taken over all finite families {Ai}i∈I of pairwise disjoint

open subsets of Ω.
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2.3 Sobolev spaces

In this section Sobolev spaces are introduced. The reference is [Ambrosio et al.,

2000, Chapter 2]. Let Ω ⊂ RN be an open domain.

We denote the Banach space of real valued p-integrable functions as Lp(Ω,R)

for 1 ≤ p <∞, i.e. f ∈ Lp(Ω,R) if and only if

‖f‖Lp(Ω) :=

(∫
Ω

|f |pdx
) 1

p

<∞.

The Banach space of essentially bounded functions is written as L∞(Ω,R) with

norm

‖f‖L∞(Ω) := inf
N⊂Ω : Ln(N)=0

(
sup

x∈Ω\N
|f(x)|).

In the following we will write Lp(Ω) := Lp(Ω,R) for 1 ≤ p ≤ ∞ and also omit R

for the Sobolev spaces Wm,p(Ω) which we define in the following.

We first need the definition of weak derivatives.

Definition 2.8 ([Ambrosio et al., 2000, p.43 Definition 2.3 + p.45 Remark 2.10]).

Let α be a multiindex and f ∈ L1
loc(Ω); if there is gα ∈ L1

loc such that

∫
Ω

f
∂|α|

∂xα
ϕdx = (−1)|α|

∫
Ω

gαϕdx ∀ϕ ∈ C∞
0 (Ω),

then we say that gα is the weak α-th derivative of f . The α-th weak derivative

if exists is unique and is denoted by ∂|α|
∂xαf or ∇αf .

We can now define the Sobolev spaces.

Definition 2.9 ([Ambrosio et al., 2000, p.43 Definition 2.4 and p.45 Remark

2.10] ). We say that f ∈ Wm,p(Ω) if f ∈ Lp(Ω) and for every |α| ≤ m all weak

derivatives ∂|α|
∂xαf exist and belong to Lp(Ω).
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The Sobolev spaces Wm,p(Ω) for 1 ≤ p <∞ endowed with the norm

‖f‖Wm,p =

⎛
⎝‖f‖pLp +

m∑
i=1

∑
|α|=i

‖∇αf‖pLp

⎞
⎠

1
p

and for p = ∞ with

‖f‖Wm,∞ = ‖f‖L∞ +
m∑
i=1

∑
|α|=i

‖∇αf‖L∞

are Banach spaces (for p = 2 Hilbert spaces).

We make a remark about the weak convergence in Sobolev spaces, which we

will need later. First we note the weak convergence in Lp(Ω) and in Wm,p(Ω).

Remark 2.10 ([Alt, 1985, p.228 example 1 and 3]). Let 1 ≤ p <∞ and 1
p
+ 1

q
= 1.

If p = 1 set q = ∞.

(i) For fn, f ∈ Lp(Ω):

fn ⇀ f weakly in Lp(Ω)

⇐⇒
∫
Ω

fn g dx→
∫
Ω

f g dx for all g ∈ Lq(Ω).

(ii) For fn, f ∈ Wm,p(Ω):

fn ⇀ f weakly in Wm,p(Ω)

⇐⇒ ∂α

∂xα
fn ⇀

∂α

∂xα
f weakly in Lp(Ω) for all |α| ≤ m.

Now we show that for bounded domains weak convergence in Wm,p(Ω) for

1 < p <∞ implies weak convergence in Wm,1(Ω).

Remark 2.11. Let Ω ⊂ RN be a bounded domain and fn ⇀ f weakly in Wm,p(Ω)

with 1 < p <∞ and 1
p
+ 1

q
= 1.

As the domain is bounded for every |α| ≤ m the functions ∂|α|
∂xαfn,

∂|α|
∂xαf ∈ Lp(Ω)
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are also in L1(Ω). Moreover L∞(Ω) ⊂ Lq(Ω) and therefore for every g ∈ L∞(Ω)

∫
Ω

∂|α|

∂xα
fn g dx→

∫
Ω

∂|α|

∂xα
f g dx.

2.4 Functions of bounded variation

In this section the space of functions of bounded variations BV (Ω,R) is intro-

duced. It is the space that we use to model images for a relaxed version of

the Mumford-Shah functional. The reference for this chapter is Ambrosio et al.

[2000]. Let Ω ⊂ RN be open and bounded. We again write BV (Ω) := BV (Ω,R)

Definition 2.12 ([Ambrosio et al., 2000, p. 117 Definition 3.1] The spaceBV (Ω)).

Let f ∈ L1(Ω); we say that f is a function of bounded variation in Ω if the

distributional derivative of f is representable by a finite Radon measure in Ω, i.e.

if

∫
Ω

f
∂ϕ

∂xi
dx = −

∫
Ω

ϕdDif ∀ϕ ∈ C∞
0 (Ω), i = 1, ...., n

for some RN -valued measure Df = (D1f, ..., DNf) in Ω. The vector space of all

functions of bounded variation in Ω is denoted by BV (Ω) .

Moreover we define the total variation of Df as

|Df | := sup

{ ∞∑
n=0

|Df(En)| : En ∈ B(Ω) pairwise disjoint,Ω =
∞⋃
n

En

}

To explain the name of BV (Ω) the following definition of variation is needed.

Definition 2.13 ([Ambrosio et al., 2000, p. 119 Definition 3.4]). Let f ∈ L1
loc(Ω).

The variation V (f,Ω) of f in Ω is defined by

V (f,Ω) := sup

{∫
Ω

f div(ϕ) dx : ϕ ∈ C1
0(Ω)

n, ‖ϕ‖∞ ≤ 1

}

The space BV (Ω) contains exactly those functions f ∈ L1(Ω) for which the

variation V (f,Ω) is bounded.
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Proposition 2.14 ([Ambrosio et al., 2000, p. 120 Proposition 3.6]). Let f ∈
L1
loc(Ω). Then, f belongs to BV (Ω) if and only if V (f,Ω) < ∞. In addition for

any f ∈ BV (Ω) it holds V (f,Ω) = |Df |(Ω).

The space BV (Ω) is a Banach space with the norm

‖f‖BV (Ω) := ‖f‖L1(Ω) + |Df |(Ω).

For every f ∈ W 1,1(Ω) it is ‖f‖W 1,1(Ω) = ‖f‖BV (Ω). The inclusion W 1,1(Ω) ⊂
BV (Ω) is strict, as for example the Heaviside function h : (−1, 1) → R

h(x) :=

{
1, x > 0

0, x ≤ 0.

is in BV (−1, 1) \W 1,1(−1, 1).

The notion of continuity and differentiability has to be generalized suitably

for functions in BV (Ω).

Definition 2.15 ([Ambrosio et al., 2000, p. 160 Definition 3.63] Approximate

limit). Let f ∈ L1
loc(Ω); we say that f has an approximate limit at x ∈ Ω if

there exists z ∈ R such that

lim
ρ↓0

1

LN(Bρ(x))

∫
Bρ(x)

|f(y)− z|dy = 0. (2.4)

The set Sf⊂ Ω without an approximate limit is called the approximate discon-

tinuity set. For any x ∈ Ω \ Sf the value z, uniquely determined by (2.4), is

called the approximate limit of f at x and is denoted by f̃(x). A function f is

called approximately continuous at x if x /∈ Sf and f̃(x) = f(x).

For a function in BV (Ω) the approximate discontinuity set is of zero Lebesgue

measure LN(Sf ) = 0.

Proposition 2.16 ([Ambrosio et al., 2000, p. 160 Proposition 3.64 (a)]). Let

f ∈ L1
loc(Ω). Then Sf is a LN -negligible set and f̃(x) : Ω \ Sf → R coincides

LN -almost everywhere in Ω \ Sf with f .

In the same idea the approximate gradient is defined.
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Definition 2.17 ([Ambrosio et al., 2000, p. 165 Definition 3.70] Approximate

differentiability). Let f ∈ L1
loc(Ω) and let x ∈ Ω \ Sf ; we say that f is approxi-

mately differentiable at x if there exists a 1×N matrix L such that

lim
ρ↓0

1

LN(Bρ(x))

∫
Bρ(x)

|f(y)− f̃(x)− L(y − x)|
ρ

dy = 0. (2.5)

If f is approximately differentiable at x the matrix, uniquely determined by (2.5),

is called the approximate differential of f at x and is denoted by ∇f(x).
For the definition of the approximate jump set the following notations for two

halves of a ball Bρ(x) cut by a hyperplane is used. Let ν ∈ RN and 〈·, ·〉 denote
the euclidean inner product in RN . We define:

B+
ρ (x, ν) := {y ∈ Bρ(x)| 〈y − x, ν〉 > 0},

B−
ρ (x, ν) := {y ∈ Bρ(x)| 〈y − x, ν〉 < 0.}.

We write the unit sphere as SN−1.

Definition 2.18 ([Ambrosio et al., 2000, p. 163 Definition 3.67] Approximate

jump points). Let f ∈ L1
loc(Ω) and x ∈ Ω. We say that x is an approximate

jump point of f if there exist a, b ∈ R and ν ∈ SN−1 such that a �= b and

lim
ρ↓0

1

LN(B+
ρ (x, ν))

∫
B+

ρ (x,ν)

|f(y)− a|dy = 0, (2.6)

and

lim
ρ↓0

1

LN(B−
ρ (x, ν))

∫
B−

ρ (x,ν)

|f(y)− b|dy = 0. (2.7)

The triplet (a, b, ν), uniquely determined by equation (2.6) up to a permutation

of (a, b) and a change of sign of ν, is denoted by
(
f+(x), f−(x), νf (x)

)
. The set

of approximate jump points is denoted by Jf .

In the following the two triplets (a, b, ν) and (b, a,−ν) are viewed as equivalent.

Using the Radon-Nykodim theorem 2.5 the distributional derivative Df can

be split into an absolutely continuous part Daf , which is integrable with respect
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to the Lebesgue measure, and a singular part Dsf

Df = Daf +Dsf.

The singular part can be further divided into a jump part, restricted to the jump

set Djf = Dsf |Jf , and a diffuse part Dcf = Dsf − Djf = Dsf |Ω\Jf . The part

Dc is called Cantor part, as the Cantor-Vitali function is the most prominent

example for a function with Df = Dcf .

The density of the absolutely continuous part Da can be characterized more

precisely.

Theorem 2.19 ([Ambrosio et al., 2000, p. 177 Theorem 3.83] Calderon Zyg-

mund). Any function f ∈ BV (Ω) is approximately differentiable at LN -almost

everywhere point of Ω. Moreover, the approximate differential ∇f is the density

of the absolutely continuous part of Df with respect to LN .

The jump part Djf can also be characterized.

Theorem 2.20 ([Ambrosio et al., 2000, p. 173 Theorem 3.78]). Let f ∈ BV (Ω)

then

HN−1(Sf \ Jf ) = 0 (2.8)

and

Djf = (f+ − f−)νfHn−1|Jf .

Because of (2.8) the jump set Jf and discontinuity set Sf are essentially the

same and we will only use Sf in the following chapters.

It turns out that the space BV (Ω) is too big for minimizing Mumford-Shah

type functionals. Instead the subspace of functions with Dc = 0 will be used.

Definition 2.21 (SBV (Ω)). Let f ∈ BV (Ω); we say that f is a special func-

tion of bounded variation in Ω if

Dcf = 0. (2.9)
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The vector space of all special functions of bounded variation in Ω is denoted by

SBV (Ω).

In the following some properties are listed that will be useful in the later parts

of the thesis. The most important property is the compactness and semicontinuity

theorem in SBV (Ω).

First we states that the variation is reduced if a function is cut off at a constant

value.

Proposition 2.22 ([De Giorgi et al., 1989, p.198 Remark. 2.2]). Let f ∈ BV (Ω)

and set fa := min{a,max{f,−a}} for 0 < a <∞. The following properties hold:

|∇fa| ≤ |∇f | a.e. on Ω,

HN−1(Sfa\Sf ∩ Ω) = 0,∫
Ω

|Dfa|dx ≤
∫
Ω

|Df |dx.

From the above proposition it directly follows
∫
Ω
|∇fa|dx ≤ ∫

Ω
|∇f |dx and

HN−1(Sfa ∩ Ω) ≤ HN−1(Sf ∩ Ω).

The following propositions are about the relation between the spaces W 1,1(Ω)

and SBV (Ω).

Proposition 2.23 ([De Giorgi et al., 1989, p.198 Lemma 2.3]). Let f ∈ L∞(Ω)∩
L1(Ω). Let K ⊂ RN be closed and assume

f ∈ W 1,1(Ω \K) and HN−1(K ∩ Ω) < +∞.

Then

f ∈ SBV (Ω) and Sf ∩ Ω ⊂ K.

Also note that for a bound domain Ω if
∫
Ω\K |∇f |2dx < +∞ then also∫

Ω\K |∇f |dx < +∞.
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Proposition 2.24. Let f ∈ SBV (Ω) ∩ L∞(Ω) and

∫
Ω

|∇f |pdx < +∞,

then f ∈ W 1,p(Ω \ Sf ).

Proof. For a function f ∈ SBV (Ω) the distributional derivative restricted to

Ω\Sf is the absolutely continuous part, i.e. Df |Ω\Sf
= ∇fLN . The approximate

differential ∇f ∈ L1(Ω) is therefore the weak derivative of f in Ω \ Sf . Together

with the L∞ bound of f and the boundedness of the domain Ω we have f ∈
W 1,1(Ω \ Sf ). As the Lp-norm of the weak derivative is also bounded it follows

f ∈ W 1,p(Ω \ Sf ).

The following compactness and semicontinuity theorem was proven in Am-

brosio [1989]. We state a version from Attouch et al. [2006]. It will be the key

tool to prove the existence of a solution to the Mumford-Shah functional and for

the study of the regularization properties of the Mumford-Shah penalty.

Theorem 2.25 ([Attouch et al., 2006, p. 515 Theorem 13.4.3]). Let {fn} be a

sequence in SBV (Ω) satisfying for p > 1,

sup
k∈N

{
‖fk‖∞ +

∫
Ω

|∇fk|pdx+HN−1(Sfk)

}
< +∞.

Then there exists a subsequence, still denoted as {fn} and a function f in SBV (Ω),

such that

fk → f strongly in L1
loc(Ω),

∇fk ⇀ ∇f weakly in Lp(Ω),

HN−1(Sf ) ≤ lim inf
k→∞

HN−1(Sfk).

For the case including the a priori edge knowledge K0 ⊂ Ω we will also need

to extend the lower semicontinuity to the following penalty

K �→ βHN−1(K \K0) + γHN−1(K ∩K0)
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with 0 ≤ γ < β and K0 fixed. See [Amar et al., 2010, Theorem 3.2] for a lower

semicontinuity result that covers our penalty amongst other generalizations.

We state a different proof here.

Corollary 2.26. Let K0 be a compact subset of Ω with HN−1(K0) <∞ and {fn}
be a sequence in SBV (Ω) satisfying for p > 1,

sup
n∈N

{
‖fn‖∞ +

∫
Ω

|∇fn|pdx+HN−1(Sfn)

}
< +∞.

Then there exists a subsequence, still denoted as {fn} and a function f in SBV (Ω),

such that for α > 0 and β > γ ≥ 0

α

∫
Ω

|∇f |pdx+ βHN−1(Sf \K0) + γHN−1(Sf ∩K0) (2.10)

≤ lim inf
n→∞

[
α

∫
Ω

|∇fn|pdx+ βHN−1(Sfn \K0) + γHN−1(Sfn ∩K0)

]
.

Proof. Because of the lower semicontinuity Theorem 2.25 we directly have

γHN−1(Sf ) ≤ γ lim inf
n→∞

HN−1(Sfn) (2.11)

and ∫
Ω

|∇f |pdx ≤ lim inf
n→∞

∫
Ω

|∇fn|pdx. (2.12)

Furthermore if we define the new open domain Ω∗ := Ω \ K0 we can apply the

theorem again to obtain

HN−1(Sf \K0) ≤ lim inf
n→∞

HN−1(Sfn \K0)

⇐⇒ 0 ≤ lim inf
n→∞

[
HN−1(Sfn \K0)−HN−1(Sf \K0)

]
. (2.13)

By rearranging (2.11) we can get

γHN−1(Sf ∩K0)

≤ lim inf
n→∞

[
γ
(
HN−1(Sfn \K0)−HN−1(Sf \K0)

)
+ γHN−1(Sfn ∩K0)

]
.
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Using (2.13) together with β > γ and 0 ≤ HN−1(Sfn ∩K0) we can follow

γHN−1(Sf ∩K0)

≤ lim inf
n→∞

[
β
(
HN−1(Sfn \K0)−HN−1(Sf \K0)

)
+ γHN−1(Sfn ∩K0)

]
.

Bringing the constant βHN−1(Sf \K0) back to the left side together with (2.12)

leads to the claim.

Functions in SV B(Ω) can also be characterized through their restrictions to

one dimensional slices. The following notations are used to lift the variational

approximation in Chapter 4 from one dimension to higher dimensions. We adapt

the notation of [Attouch et al., 2006, p. 414 ]. Let SN−1 be the N−1 dimensional

sphere. For every ν ∈ SN−1 we define

πν := {y ∈ RN : 〈y, ν〉 = 0},
Ωy := {t ∈ R : y + tν ∈ Ω}, y ∈ πν ,

Ων := {y ∈ πν : Ωy �= ∅}.

Furthermore we define for all Borel functions f : Ω → R and y in Ων the Borel

Ω

πν

ν

y

Ωy

Figure 2.1: The domain Ω and a slice Ωy for a fixed ν ∈ SN−1.

function fy for all t ∈ Ωy by fy(t) = f(y + tν).
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Theorem 2.27 ([Attouch et al., 2006, p. 414 Theorem 10.5.2]). Let f be a given

function in L∞(Ω) such that for all ν ∈ SN−1

(i) fy ∈ SBV (Ωy) for HN−1 a.e. in y ∈ Ων,

(ii)
∫
Ων

( ∫
Ωy

|∇fy|dt+H0(Sfy)
)
dHN−1 ≤ ∞.

Then f belongs to SBV (Ω). Conversely, if f belongs to SBV (Ω) ∩ L∞(Ω), con-

ditions (i) and (ii) are satisfied for all ν ∈ SN−1. Moreover, for HN−1 a.e. in

y ∈ Ων

〈∇f(y + tν), ν〉 = ∇fy(t)

and ∫
Ων

H0(Sfy)dH
N−1 =

∫
Sf

|〈νf , ν〉|dHN−1.

We conclude the section by giving an example of a BV function for which the

jump set is not well behaved in the context of our segmentation problem.

Example 2.28 ([Chambolle, 2000, p. 34]). Let Ω = B1(0) ⊂ R2 and

f =
∞∑
n=1

1

2n
XB2−n (xn)∩Ω,

where (xn)n is the sequence of all points Q2∩Ω and X the characteristic function.

For every x ∈ Ω it then is

f(x) =
∑

n:x∈B2−n (xn)

1

2n
≤

∞∑
n=1

1

2n

=
1

1− 1
2

= 2.
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The Hausdorff measure of
⋃

n ∂B2−n(xn) ∩ Ω is bounded through

H1

(⋃
n

∂B2−n(xn) ∩ Ω

)
≤

∞∑
n=1

2π
1

2n

= 2π
1

1− 1
2

= 4π.

Every increase of the function f is restricted to the singular jump set
⋃

n ∂B2−n(xn)

and so the absolutely continuous part of the distributional derivative and the Can-

tor part are zero. As the highest possible jump the function can take is 2 the

function f is in SBV (Ω) with jump set ∪n∂B2−n(xn) ∩ Ω.

The jump set of f is dense in Ω

Sf =
⋃
n

∂B2−n(xn) ∩ Ω = Ω.

That a behavior as in the example above can not occur for minimizers of the

weak Mumford-Shah functional is a key step to prove the existence of a minimizer

for the strong formulation.

2.5 Γ-convergence

In this section the theory of Γ-convergence is introduced.

Γ-convergence is a convergence designed for the approximation of variational

problems. Loosely speaking, for a sequence of functionals {Fn} that Γ-converge

to a limit functional F , the minimizers of {Fn} also approximate the minimizers

of F . This allows the approximation of computational difficult problems by more

feasible ones.

The main reference for this part is Braides [2002].

Definition 2.29 ([Braides, 2002, p.22 Definition 1.5]). Let (X, d) be a metric

space. We say that a sequence Fn : X → [−∞,+∞] Γ-converges in X to

F : X → [−∞,+∞] if for all f ∈ X:
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(i) (lim inf inequality) for every sequence {fn} converging to f

F (f) ≤ lim inf
n

Fn(fn); (2.14)

(ii) (lim sup inequality / recovery sequence) there exists a sequence {fn} con-

verging to f such that

lim sup
n

Fn(fn) ≤ F (f). (2.15)

The function F is called the Γ-limit of {Fn} and we write F = Γ-limn Fn.

The Γ-limit is uniquely determined if it exists. The definition of Γ-convergence

can be extended to continuous parameters ε.

Definition 2.30. We say that a sequence Fε : X → [−∞,+∞] Γ-converges

to F : X → [−∞,+∞] if for all sequences {εn} converging to 0 we have Γ-

limn Fεn = F .

The main advantage of Γ-convergence is characterized in the Fundamental

Theorem of Γ-convergence.

Theorem 2.31 ([Braides, 2002, p.29 Theorem 1.21]Fundamental Theorem of Γ-

convergence). Let (X, d) be a metric space, let {Fn} be a sequence such that there

exists a compact set K ⊂ X, so that for all n ∈ N

inf
X
Fn = inf

K
Fn.

If {Fn} Γ-convergences to F , then there exists a minimum of F and

min
X

F = lim
n→∞

inf
X
Fn.

Moreover, if for a precompact sequence {xn}: limn→∞ Fn(xn) = limn→∞ infX Fn,

then every limit point of {xn} is a minimum point of F .

We list some properties of Γ-convergence which we will use in later chapters .
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Proposition 2.32. Let (X, d) be a metric space and let Fn : X → [−∞,+∞]

Γ-converges in X to F : X → [−∞,+∞].

(i) The Γ-limit F is a lower semicontinuous function (see [Braides, 2002, p.32

Proposition 1.28]).

(ii) Every subsequence of {Fn} Γ-convergences to the same Γ-limit F ([Braides,

2002, p.34 Proposition 1.37]).

(iii) (Stability under continuous perturbation)

If G is a continuous function, then {Fn + G} Γ-converges to (F + G)

([Braides, 2002, p.23 Remark 1.7]).

(iv) Pointwise convergence does not lead to Γ-convergence.

For example if and only if F is lower semicontinuous the constant sequence

of functions Fn = F , n = 1, 2, .. Γ-converges to F ([Braides, 2002, p.24

Remark 1.8]).

(v) If for every n ∈ N Fn is convex, then also the Γ-limit F is convex ([Braides,

2002, p.38 Exercise 1.6]).

2.6 σ-convergence

In this section the notion of σ-convergence is presented. The reference for this

part is Dal Maso et al. [2005]. In our work we will characterize the convergence

of edges in terms of σ-convergence.

First we give a definition of weak convergence in SBV (Ω) that was introduced

in Dal Maso et al. [2005].

Definition 2.33 (Weak convergence in SBV (Ω) Dal Maso et al. [2005]). We say

a sequence {fn} converges weakly to f in SBV (Ω) if and only if fn (n = 1, · · · )
and f ∈ SBV (Ω) ∩ L∞(Ω), fn → f a.e. in Ω, ∇fn ⇀ ∇f in L1(Ω), and both

sequences {‖fn‖L∞} and {H1(Sfn)} are bounded.
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Note that this weak convergence is not meant in the usual Banach Space

setting seeing as the dual of BV (Ω) is hard to characterize [Ambrosio et al.,

2000, Remark 3.12 p. 124].

Given two sets A and B ⊂ RN , we write A⊂̃B if HN−1(A\B) = 0 and A=̃B

if HN−1((A\B) ∪ (B\A)) = 0.

Definition 2.34 (Convergence of sets Dal Maso et al. [2005]). A sequence of

sets {En} is said to σ-converge to E in Ω if En (n = 1, · · · ) and E ⊂ Ω,

{HN−1(En)} is bounded, and the following conditions are satisfied:

(i) If {fk} converges weakly to f in SBV (Ω) and Sfk⊂̃Enk
for some sequence

nk → ∞, then Sf⊂̃E.
(ii) There exist a function f ∈ SBV (Ω) and a sequence {fn} converging to f

weakly in SBV (Ω) such that Sf =̃E and Sfn⊂̃En for every n.

From the second condition and the compactness and semicontinuity Theo-

rem 2.25, it follows that if {En} σ-converges to E, then

HN−1(E) ≤ lim inf
n→∞

HN−1(En). (2.16)

The following compactness property was also proven in Dal Maso et al. [2005].

Theorem 2.35 (Compactness for σ-convergence Dal Maso et al. [2005]). For

every sequence {En} ⊂ Ω, if the sequence of its Hausdorff measures {HN−1(En)}
is bounded, there is a σ-convergent subsequence of {En}.

We will also frequently use the following relation.

Lemma 2.36. For two sets A,B ⊂ RN with HN−1(A) ≤ ∞ and HN−1(B) ≤ ∞,

if B⊂̃A and HN−1(A) ≤ HN−1(B), then B=̃A.

Proof. Because B⊂̃A, by definition HN−1(B \ A) = 0. Rewriting the sets as

A = (A \B) ∪ (A ∩B) and B = (B \ A) ∪ (B ∩ A), we can follow

HN−1(A \B) +HN−1(A ∩ B) = HN−1(A)

≤ HN−1(B)

= HN−1(B \ A) +HN−1(B ∩ A)
= HN−1(B ∩ A).
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Therefore HN−1(A \B) = 0, which yields HN−1((A\B) ∪ (B\A)) = 0.
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Chapter 3

Regularizing with a priori

structural information

In this chapter we study the approximation of solutions of ill-posed inverse prob-

lems given via operator equations

A(f) = gδ

through the solutions of variational problems

min
f,K

{
‖A(f)− gδ‖2L2(Θ) + α

∫
Ω\K

|∇f |pdx+ βHN−1(K \K0) + γHN−1(K ∩K0)

}
(3.1)

in the presence of a priori edge knowledge K0 ⊂ Ω. Here Ω ⊂ RN , and Θ ⊂
RM for N,M ∈ N are bounded domains. We consider a continuous operator

A : L2(Ω) → L2(Θ), scalar parameters 0 ≤ γ < β, 0 < α and p > 1. We will

discuss existence and regularity of minimizers, stability with respect to the data

and parameters and present two parameter choice rules with which the approach

yields a regularization.

Throughout this thesis we assume that

(i) K0 is a compact subset of Ω,

(ii) HN−1(K0) <∞.
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The a priori edge K0 gives information where the true signal is likely to be

discontinuous. This information can be obtained from a secondary modality that

is less ill-posed, an application specific template or a reconstruction at a previous

time point.

Let K be defined as the set of all closed subsets in Ω. For brevity we denote

the Mumford-Shah type penalty term as

ΨK0,α,β,γ(f,K) := α

∫
Ω\K

|∇f |pdx+ βHN−1(K \K0) + γHN−1(K ∩K0) (3.2)

for f ∈ W 1,p(Ω\K), K ∈ K.

The objective functional then is

MSg,K0,α,β,γ(f,K) := ‖A(f)− g‖2L2(Θ) +ΨK0,α,β,γ(f,K) (3.3)

for f ∈ W 1,p(Ω\K), K ∈ K.

If the parameters α, β, γ or the data g are fixed and there is no chance of

confusion, we will use shorter notations such as MSK0(f,K) and ΨK0(f,K).

The main difficulty in studying the Mumford-Shah functional lies in the dif-

ferent nature of f and K with their respective parts in the penalty term. The

function f is defined on a N -dimensional domain and K is a singular set in N

dimensions. To show the existence of a minimizer the direct approach would be

to take a minimizing sequence (fn, Kn)n ∈ W 1,p(Ω\Kn)×K:

lim
n→∞

MS(fn, Kn) = inf
(f,K)∈W 1,p(Ω\K)×K

MS(f,K)

and try to extract a subsequence, still denoted as (fn, Kn)n, converging to a pair

(f,K) so that

MS(f,K) ≤ lim inf
n→∞

MS(fn, Kn)

by some lower semicontinuity property. The approach fails as the map

K �→ HN−1(K)
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(and also the modified edge term) is not lower semicontinuous with respect to any

topology that is weak enough to obtain a convergent subsequence simply from

the boundedness of {HN−1(Kn)}, see David [2005].

Nevertheless in the original paper Mumford and Shah [1989] the existence of

a minimizer was conjectured and a first proof was given shortly after in De Giorgi

et al. [1989].

In this chapter we follow ideas of De Giorgi et al. [1989] by considering a re-

laxed version of the Mumford-Shah type functional on SBV (Ω) . For f ∈ SBV (Ω)

we define

ΨK0,α,β,γ(f) := α

∫
Ω

|∇f |pdx+ βHN−1(Sf \K0) + γHN−1(Sf ∩K0), (3.4)

where ∇f is the density of the Lebesgue integrable part of Df and Sf is the jump

set. Because of the p-integral over the gradient, for f ∈ SBV (Ω) it can also be

ΨK0,α,β,γ(f) = +∞. We allow this as we are considering a minimization problem

and thus only are interested in functions for which ΨK0,α,β,γ(f) < +∞.

The weak Mumford-Shah functional on SBV (Ω) is defined as

MSg,K0,α,β,γ(f) := ‖A(f)− g‖2L2(Θ) +ΨK0,α,β,γ(f). (3.5)

We again use the more compact notation MSK0(f) and ΨK0(f) if α, β, γ or the

data g are fixed and there is no chance of confusion. In contrast, the functional

(3.3) will be called the strong Mumford-Shah functional .

To show a desired property for the strong Mumford-Shah functional, the

proofs follow the same strategy.

1. Prove the desired feature for minimizers of the weak version (3.5) using the

compactness and semicontinuity theorem in SBV (Ω).

2. Follow by the regularity results of De Giorgi et al. [1989] that the desired

property also holds for strong minimizers (f,K) ∈ W 1,p(Ω\K)×K.

The second step is necessary as it is not a priori clear that minimizers of the weak

functional are well behaved in the context of image segmentation, see Example

2.28.
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3.1 Existence

In this section results on the existence of a minimizer of MSg,K0,α,β,γ(f,K) and

MSg,K0,α,β,γ(f) are presented. A short overview on existence for the original

Mumford-Shah functional can be found in Fusco [2003]. We will use the short

notations MSK0(f,K) and MSK0(f) for (3.3) and (3.5) respectively.

Fornasier et al. [2011] showed that restrictions are necessary to establish ex-

istence of a minimizer for Mumford-Shah type functionals with non trivial oper-

ators. We study our problem with a boundedness constraint, that is we consider

functions f in the set

Xb
a(Ω) = {f ∈ L∞(Ω) : a ≤ f ≤ b a.e. in Ω} (3.6)

where −∞ < a < b < ∞ are constants. This constraint was also used in Jiang

et al. [2014]; Rondi [2008b]; Rondi and Santosa [2001].

By applying the direct method in the calculus of variations, the compactness

and lower semicontinuity Theorem 2.25 with Corollary 2.26 yield the existence of

a minimizer for the weak setting in SBV (Ω).

Lemma 3.1. Let p > 1, α > 0, β > γ ≥ 0, −∞ < a < b < ∞, K0 ⊂⊂ Ω be

fixed with HN−1(K0) <∞ and A : L2(Ω) → L2(Θ) be a continuous operator. For

every g ∈ L∞(Θ), there exists at least one minimizer of the weak Mumford-Shah

functional (3.5) in SBV (Ω) ∩Xb
a(Ω).

Proof. Let {fn}n ∈ SBV (Ω) ∩Xb
a(Ω) be a minimizing sequence:

lim
n→∞

MSK0(fn) = inf
u∈SBV

MSK0(u) < +∞.

By the minimality of the sequence and the pointwise boundedness there exists a

constant C > 0 so that for every n ∈ N

‖fn‖L∞ +

∫
Ω

|∇fn|pdx+HN−1(Sfn) ≤ C.

From Theorem 2.35 and Corollary 2.26 it follows: There exists a function f ∈
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SBV (Ω) ∩Xb
a(Ω) and a subsequence, still denoted with (fn)n, so that

fn → f in L1(Ω),

ΨK0(f) ≤ lim inf
n→∞

ΨK0(fn).

As f, fn ∈ Xb
a(Ω) we also have by Fatou’s lemma that fn → f in Lq(Ω), for any

1 ≤ q <∞.

By the continuity of the data fitting term with regards to L2(Ω) convergence

it follows

MSK0(f) = ‖A(f)− g‖2L2(Θ) +ΨK0(f)

≤ lim inf
n→∞

[‖A(fn)− g‖2L2(Θ) +ΨK0(fn)
]
= inf

u∈SBV
MSK0(u).

Therefore the function f is a minimizer of the weak Mumford-Shah functional in

SBV (Ω) ∩Xb
a(Ω).

In general a special function of bounded variation f may have a complex

jump set Sf . For example, there are functions f ∈ SBV (Ω) for which Sf = Ω,

see Example 2.28. Therefore it is necessary to find conditions that ensure certain

regularity of the jump set. In De Giorgi et al. [1989] it was proven that if the

fidelity term decays with higher order than the penalty terms, then the jump set

of minimizers of the weak Mumford-Shah functional is essentially closed, that is

HN−1(Sf\Sf ∩ Ω) = 0. (3.7)

This is sufficient for weak minimizers f ∈ SBV (Ω) to induce a strong minimizer

(f, Sf ) ∈ W 1,p(Ω\Sf ) × K. We summarize the above in the following definition

and theorem.

Definition 3.2. We say that the fidelity term f �→ ‖Af − g‖2L2(Θ) decays with

order k > 0 for pointwise bound functions if for some constant C > 0, for

every ball Bρ ⊂⊂ Ω of radius ρ, and for every f, v ∈ SBV (Ω) ∩ Xb
a(Ω) with

supp (f − v) ⊂ Bρ it is | ‖A(f)− g‖2L2(Θ) − ‖A(v)− g‖2L2(Θ) | ≤ Cρk.

Theorem 3.3. Let p > 1, α > 0, β > γ ≥ 0, −∞ < a < b < ∞, K0 ⊂⊂ Ω be

fixed with HN−1(K0) < ∞ and A : L2(Ω) → L2(Θ) be a continuous operator. If
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for some ε > 0 the fidelity term f �→ ‖A(f)− g‖2L2(Θ) decays with order N − 1+ ε

for pointwise bound functions, then there exists at least one minimizing pair of

the Mumford-Shah functional (3.3) in W 1,p(Ω\K) ∩Xb
a(Ω)×K.

Proof. As Ω is bounded and p > 1, for every (f,K) ∈ W 1,p(Ω\K)∩Xb
a ×K with

MSK0(f,K) < +∞ it holds that f ∈ SBV (Ω) ∩Xb
a and Sf ⊂ K. Therefore we

directly have

min
{
MSK0(f) : f ∈ SBV (Ω) ∩Xb

a

}
≤ inf{MSK0(f,K) : (f,K) ∈ W 1,p(Ω\K) ∩Xb

a ×K}.

For a minimizer f ∗ of the weak Mumford-Shah functional from Theorem 3.8 we

have that

HN−1(Sf∗\Sf∗ ∩ Ω) = 0.

Therefore we can follow

MSK0(f ∗)

= ‖A(f ∗)− g‖2L2(Θ) + α

∫
Ω

|∇f ∗|pdx+ βHN−1(Sf∗ \K0) + γHN−1(Sf∗ \K0)

= ‖A(f ∗)− g‖2L2(Θ) + α

∫
Ω\Sf∗

|∇f ∗|pdx+ βHN−1(Sf∗ \K0) + γHN−1(Sf∗ \K0)

= MSK0(f ∗, Sf∗).

Due to MSK0(f ∗) < ∞ the weak minimizer f ∗ is contained in W 1,p(Ω\Sf ) ∩Xb
a

and therefore the last equality above is valid. As a result

min
{
MSK0(f) : f ∈ SBV (Ω) ∩Xb

a

}
= min{MSK0(f,K) : (f,K) ∈ W 1,p(Ω\K) ∩Xb

a ×K},

with (f ∗, Sf∗) being a minimizer of the strong Mumford-Shah functional.

The above proof showed, that once the regularity of the jump set is ensured

through Theorem 3.8, weak and strong minimizers are essentially the same. In
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Proposition 3.10 we will give conditions on the operator A that ensure a decay of

the least squares fidelity term with order N−1+ε for pointwise bound functions.

Example 3.4 (Minimizers are not unique). Let Ω = [−1, 1], A = Id, α = β = 1

γ = 0, K0 = ∅, λ ∈ R, p = 2 and h : Ω → R be the Heaviside function

h(x) =

{
1, x > 0

0, x ≤ 0.

The corresponding one dimensional Mumford-Shah functional to the signal

g = λh is defined as

MS(f,K) :=

∫
Ω

(f − λh)2 dx+

∫
Ω\K

|f ′(x)|2dx+H0(K)

for (f,K) ∈ W 1,2(Ω\K)∩L∞(Ω)×K. In one dimension the discontinuity set K

is a finite set of points and H0 is the counting measure.

There are only two possible candidates for a minimizer:

1. (f1, K1) = (λh, {0}) with

MS(λh, {0}) = H0({0}) = 1,

2. (f2, K2) = (f ∗, ∅), where f ∗ is the uniquely determined minimizer of

G(f) =

∫
Ω

(λh− f)2 dx+

∫
Ω

|f ′(x)|2dx

in W 1,2([−1, 1]).

By regularity results (see for example [David, 2005, p.17 Lemma 13]) the

function f ∗ is in C1(Ω) and fulfills the linear equation

f ′′ + f = λh on [−1, 1]

f ′(−1) = f ′(1) = 0
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in a weak sense. We can find a fundamental solution f0 so that, for any λ > 0,

the solution can be represented as f ∗ = λf0. Computing MS(f ∗, ∅) therefore is,

MS(f ∗, ∅) = MS(λf0, ∅) = λ2
∫
Ω

(h− f0)
2 dx+ λ2

∫
Ω

|f ′
0(x)|2dx = λ2C,

for some C > 0 independent of λ. Therefore, if λ > 1√
C
, then (f1, K1) = (λh, {0})

is the unique minimizer. If λ < 1√
C
, then (f2, K2) = (f ∗, ∅) is the unique min-

imizer. And if λ = 1√
C
, then there are exactly two minimizers (f1, K1) and

(f2, K2).

The fact that minimizers are not unique matches the empiric experience, that

in some cases even for human vision more than one segmentation can be good.

Definition 3.5. For g ∈ L∞(Θ), p > 1, α > 0, β > γ ≥ 0, −∞ < a < b < ∞,

K0 ⊂⊂ Ω with HN−1(K0) <∞ and A continuous from L2(Ω) to L2(Θ) we define

M g,K0,α,β,γ and Mg,K0,α,β,γ as the set of minimizers of (3.5) in SBV (Ω)∩Xb
a and

(3.3) in W 1,p(Ω\K) ∩Xb
a(Ω)×K respectively.

3.2 Regularity of K

In this section we will recall conditions for the essential closedness of the edge set

following [Ambrosio et al., 2000, Chapter 7]. The essential closedness is necessary

to conclude the existence proof of the previous section.

A central point in the regularity theory of the edges is that at small scales

minimizers of the Mumford-Shah functional, for certain data fitting terms, behave

similar to minimizers of

F (f) = α

∫
Ω

|∇f |2dx+ βHN−1(Sf ).

For this it is necessary that the data fitting term f �→ ‖A(f) − g‖2L2(Θ) becomes

negligible at small scales, see Fusco [2003].

If we keep the a priori edge K0 fixed, then the proofs in [Ambrosio et al.,
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2000, Chapter 7] can also be applied to our setting by considering

FK0(f) = α

∫
Ω

|∇f |pdx+ βHN−1(Sf \K0) + γHN−1(Sf ∩K0).

The main arguments of the proof use the scaling property of the penalty terms,

that do not change, by having different but fixed weights β > 0 and γ > 0 on

different parts of the domain. As K0 ⊂⊂ Ω with HN−1(K0) <∞ the case γ = 0

can be rewritten as a classic Mumford-Shah functional on the new open domain

Ω \K0 and is therefore also covered by [Ambrosio et al., 2000, Chapter 7].

To give a more precise meaning to this the following definitions are needed.

Definition 3.6. Let the function f ∈ SBVloc(Ω) and the ball Bρ(x) ⊂ Ω be given.

We call a function v ∈ SBVloc(Ω) a competitor of f in Bρ(x) if f and v only

differ inside of Bρ(x), i.e. supp(f − v) ⊂ Bρ(x).

We define the functional

FK0(f, U) := α

∫
U

|∇f |pdx+ βH1
(
(Sf ∩ U) \K0

)
+ γH1

(
(Sf ∩ U) ∩K0

)
(3.8)

for every f ∈ SBV (Ω) and open set U ⊂ Ω.

With this it is possible to define the notion of quasiminimality.

Definition 3.7 (see [Ambrosio et al., 2000, p. 339 Definition 7.2 and p. 350

7.17]). We say that a function f ∈ SBVloc(Ω) is a quasiminimizer of FK0 in

Ω if there exists constants ω, ε ≥ 0 such that for all balls Bρ(x) ⊂⊂ Ω and all

competitors v ∈ SBVloc(Ω) of f in Bρ(x) it is

FK0(f, Bρ(x)) ≤ F(v, Bρ(x)) + ωρN−1+ε. (3.9)

Theorem 3.8. Let f be a function in SBV (Ω). If f is a quasiminimizer of FK0

in Ω, then

HN−1(Sf\Sf ∩ Ω) = 0. (3.10)
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Proof. The proof works the same as [Ambrosio et al., 2000, p. 351 Theorem 7.21]

together with [Ambrosio et al., 2000, p. 78 Theorem 2.56].

See also Babadjian and Giacomini [2013] following [Ambrosio et al., 2000,

Chap. 7] for the proof of existence and regularity of a minimizer to a similar

variational problem.

The most important example of a quasiminimizer of FK0 are minimizers of

the weak Mumford-Shah functional.

Proposition 3.9. Let the function f be a minimizer of the weak Mumford-Shah

functional (3.5) in SBV (Ω) ∩ Xb
a(Ω). If for some ε > 0 the fidelity term f �→

‖A(f)− g‖2L2(Θ) decays with order N − 1 + ε, then f is a quasiminimizer of FK0.

We will use the short notations ΨK0 for (3.4).

Proof. Let f ∈ SBV (Ω) ∩ Xb
a(Ω) be a minimizer of the weak Mumford-Shah

functional and v ∈ SBV (Ω) be a competitor of f in the ball Bρ(x) ⊂ Ω.

With the minimality of f it is

‖A(f)− g‖2L2(Θ) +ΨK0(f) ≤ ‖A(v)− g‖2L2(Θ) +ΨK0(v).

As v is also a competitor of f in Bρ(x) we follow

FK0(f, Bρ(x))

≤ ‖A(v)− g‖2L2(Θ) − ‖A(f)− g‖2L2(Θ) + FK0(v, Bρ(x)).

The decay of the fidelity term then leads to the claim.

This also concludes the existence proof of the previous section.

The following proposition is helpful to verify the decay property for least

squares penalty terms.

Proposition 3.10. Let A : L2(Ω) → L2(Θ) be the forward operator and g ∈
L∞(Θ) be the measured data. If there exist exponents 1 ≤ q and 1 ≤ q̂, q′ ≤ ∞
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with 1
q̂
+ 1

q′ = 1 such that for all functions f , v ∈ SBV (Ω) ∩Xb
a(Ω) it holds

‖A(f)− A(v)‖Lq̂(Θ) ≤ L‖f − v‖Lq(Ω) (3.11)

and

‖A(f) + A(v)‖Lq′ (Θ) ≤ C (3.12)

for some constants L and C > 0, then the fidelity term f �→ ‖A(f) − g‖2L2(Θ)

decays with order N
q
for pointwise bound functions.

Proof. We fix a ball Bρ ⊂⊂ Ω of radius ρ. For any f , v ∈ SBV (Ω)∩Xb
a(Ω) with

supp (f − v) ⊂ Bρ it holds

‖A(f)− g‖2L2(Θ) − ‖A(v)− g‖2L2(Θ) =

∫
Θ

(A(f) + A(v)− 2g)(A(f)− A(v))

≤ ‖A(f) + A(v)− 2g‖Lq′ (Θ)‖A(f)− A(v)‖Lq̂(Θ)

≤ (C + 2‖g‖Lq′ (Θ))L‖f − v‖Lq(Ω).

As supp (f − v) ⊂ Bρ and f , v ∈ Xb
a(Ω) we conclude

‖A(f)− g‖2L2(Θ) − ‖A(v)− g‖2L2(Θ) ≤ C̃‖f − v‖Lq(Bρ) ≤ ˜̃CρN/q

for some C̃, ˜̃C > 0.

As a first example we show that image deblurring fits into our framework. In

Chapter 4 we will show that the lemma above can also be applied to X-ray CT

and 2 dimensional diffuse optical tomography.

Example 3.11. A classical imaging task is image deconvolution, that is restor-

ing an image from its blurred version, see Bertero and Boccacci [1998]. Given

a blurring kernel φ ∈ L1(Ω), we define for 1 ≤ q ≤ ∞ the forward operator

A : Lq(Ω) → Lq(Ω) as

Af(x) = (φ ∗ f)(x) :=
∫
Ω

f(y)φ(x− y)dy.
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The operator A is linear and bounded for 1 ≤ q ≤ ∞. We have for f , v ∈
SBV (Ω) ∩Xb

a(Ω)

‖φ ∗ f − φ ∗ v‖L1(Ω) ≤ L‖f − v‖L1(Ω)

and

‖φ ∗ f + φ ∗ v‖L∞(Ω) ≤ C‖f + v‖L∞(Ω) ≤ C̃,

for some constants L, C̃, C > 0. By Proposition 3.10, with exponents q = q̂ = 1

and q′ = ∞, the fidelity term decays with order N for pointwise bound functions.

3.3 Stability

In this section we prove stability with respect to the data and parameters.

Again we first consider the weak setting on SBV (Ω) ∩Xb
a(Ω) for continuous

operators A : L2(Ω) → L2(Θ). If additionally the data fitting term decays with

order N − 1 + ε for pointwise bound functions for some ε > 0, then the results

also hold in the strong setting.

Lemma 3.12. Let p > 1, α > 0, β > γ ≥ 0, −∞ < a < b < ∞, K0 ⊂⊂ Ω be

fixed with HN−1(K0) <∞ and A be continuous from L2(Ω) to L2(Θ).

Assume we have a converging sequence of data gn
L2→ g, gn ∈ L∞(Θ) (n =

1, . . . ). Then every sequence of minimizers {fn}, with fn ∈ M gn,K0,α,β,γ, con-

verges subsequentially to a minimizer f ∗ ∈M g,K0,α,β,γ in L
1(Ω). Moreover MSg,K0,α,β,γ(f

∗) =

limn MSgn,K0,α,β,γ(fn).

As the parameters α, β, γ are fixed we will use the shorter notations ΨK0 and

MSg,K0 .

Proof. Because of the minimality of fn, we have that for every n ∈ N,

ΨK0(fn) ≤ ‖A(fn)− gn‖2L2(Θ) +ΨK0(fn)

≤ ‖A(a)− gn‖2L2(Θ),
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where a denotes the function of constant value a for which ΨK0(a) = 0. Since

gn
L2→ g, there is some constant C > 0 such that

sup
n∈N

{
‖fn‖L∞(Ω) +

∫
Ω

|∇fn|pdx+HN−1(Sfn)

}
≤ max{|a|, |b|}+ C.

Corollary 2.26 and Theorem 2.35 yield a function f ∗ ∈ SBV (Ω) ∩Xb
a(Ω) and a

set E ⊂ Ω, so that a subsequence of {fn}, still denoted by {fn}, weakly converges

to f ∗ in SBV and {Sfn} σ-converges to E. Because Ω is a bounded domain and

p > 1, the weak convergence ∇fn ⇀ ∇f in Lp(Ω) implies weak convergence in

L1(Ω). By the semicontinuity conclusion (2.10) of Corollary 2.26, it follows that

ΨK0(f ∗) ≤ lim inf
n→∞

(
ΨK0(fn)

)
. (3.13)

Because fn and f ∗ ∈ Xb
a(Ω), the sequence {fn} actually converges to f ∗ in Lq(Ω)

for every 1 ≤ q <∞, and consequently A(fn)
L2(Θ)→ A(f ∗). Together we have

‖A(f ∗)− g‖2L2(Θ) +ΨK0(f ∗)

≤ lim
n→∞

‖A(fn)− gn‖2L2(Θ) + lim inf
n→∞

(
ΨK0(fn)

)
. (3.14)

Let v ∈ SBV (Ω) ∩Xb
a(Ω). Then comparing MSgn,K0(fn) with MSgn,K0(v) yields

the desired minimality of f ∗ :

‖A(f ∗)− g‖2L2(Θ) +ΨK0(f ∗) ≤ lim inf
n→∞

(
‖A(v)− gn‖2L2(Θ) +ΨK0(v)

)
= ‖A(v)− g‖2L2(Θ) +ΨK0(v).

Setting v = f ∗ leads to MSg,K0(f ∗) = limn MSgn,K0(fn) for the subsequence {fn}.
The procedure can be repeated to obtain the convergence of function values for

the entire sequence.

Next we prove that for the classic Mumford-Shah regularization, that is K0 =

∅, also the edges of minimizers converge for converging data.

Lemma 3.13. Let the same assumptions as in Lemma 3.12 hold. Additionally

let K0 = ∅, then the edge sets {Sfn} σ-converge to Sf∗.
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Proof. We take the same converging subsequence {fn} with limit function f ∗ ∈
SBV (Ω) ∩ Xb

a(Ω) as in the proof of Lemma 3.12. Furthermore we have the set

E ⊂ Ω, for which {Sfn} σ-converges to E.
It remains to show that E=̃Sf∗ . As {fn} weakly converges to f ∗ in SBV (Ω) it

follows from Definition 2.34 (i) of σ-convergence that Sf∗⊂̃E. Just as in obtaining

(3.14), by the lower semicontinuity (2.16) of the Hausdorff measure regarding σ-

convergence, it follows that

‖A(f ∗)− g‖2L2(Θ) + α

∫
Ω

|∇f ∗|pdx+ βHN−1(E)

≤ lim
n→∞

‖Afn − gn‖2L2(Θ) + lim inf
n→∞

(
α

∫
Ω

|∇fn|pdx+ βHN−1(Sfn)

)

≤ ‖A(f ∗)− g‖2L2(Θ) + α

∫
Ω

|∇f ∗|pdx+ βHN−1(Sf∗).

Therefore, HN−1(E) ≤ HN−1(Sf∗), which together with Sf∗⊂̃E yields E=̃S∗
f , by

Lemma 2.36.

Theorem 3.14 (Stability with respect to g). Let p > 1, α > 0, β > γ ≥ 0,

−∞ < a < b <∞, K0 ⊂⊂ Ω be fixed with HN−1(K0) <∞ and A be continuous

from L2(Ω) to L2(Θ). Additionally let for some ε > 0 the fidelity term f �→
‖A(f)− g‖2L2(Θ) decay with order N − 1 + ε for pointwise bound functions.

Assume we have a converging sequence of data gn
L2→ g, gn ∈ L∞(Θ) (n =

1, . . . ). Then for every sequence of minimizers {(fn, Kn)}, with (fn, Kn) ∈
Mgn,K0,α,β,γ, there exists a pair (f ∗, K∗) ∈ Mg,K0,α,β,γ, for which {fn} converges

subsequentially to f ∗ in L1(Ω).

Moreover MSg,K0,α,β,γ(f
∗, K∗) = limn MSgn,K0,α,β,γ(fn, Kn).

Proof. For n ∈ N, by the regularity of the edge sets Kn, it follows that fn are

in SBV (Ω) ∩ Xb
a(Ω) with Kn=̃Sfn . Furthermore we have fn ∈ M gn,K0,α,β,γ .

Using Lemma 3.12 above there exists a function f ∗ ∈ M g,K0,α,β,γ so that for a

subsequence of {fn} it is fn
L1→ f ∗ andMSg,K0(f ∗) = limnMSgn,K0(fn). Again by

regularity of the edge sets it follows that (f ∗, Sf∗) is a minimizer inW 1,p(Ω\Sf∗)∩
Xb

a(Ω) × K to the data g for the strong Mumford-Shah functional (3.3) and

MSg,K0(f ∗, Sf∗) = limnMSgn,K0(fn, Sfn). We arrive at the claim by settingK∗ =

Sf∗ .
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Corollary 3.15 (Stability with respect to g). Let the same conditions as in

Theorem 3.14 hold. Additionally let K0 = ∅, then the edges {Kn} σ-converge to

K∗.

Proof. We take the same converging subsequence {fn} with limit function f ∗ ∈
SBV (Ω) ∩Xb

a(Ω) as above. Furthermore we have the same sequence {Kn} and

the set K∗ = Sf∗ .

It remains to show that Kn
σ→ K∗. Again for n ∈ N, by the regularity of

the edge sets Kn, it follows that fn are in SBV (Ω) ∩Xb
a(Ω) with Kn=̃Sfn=̃Sfn .

By Lemma 3.13 we have that Sfn σ-converge to Sf∗ . As Kn=̃Sfn and K∗=̃Sf∗ it

follows that Kn σ-converge to K∗.

Now let us consider stability with respect to the parameters α, β and γ.

Lemma 3.16 (Stability with respect to (α, β, γ)). Let p > 1, g ∈ L∞(Θ), −∞ <

a < b < ∞, K0 ⊂⊂ Ω be fixed with HN−1(K0) < ∞ and A be continuous from

L2(Ω) to L2(Θ).

Assume we have converging parameters (αn, βn, γn) → (α∗, β∗, γ∗) with αn ≥
α0 > 0, βn ≥ β0 > 0 and βn > γn ≥ 0. Then every sequence of min-

imizers {fn}, with fn ∈ M g,K0,αn,βn,γn(n = 1, · · · ), converges subsequentially

to a minimizer f ∗ ∈ M g,K0,α∗,β∗,γ∗ in L1(Ω). Moreover MSg,K0,α∗,β∗,γ∗(f ∗) =

limnMSg,K0,αn,βn,γn(fn).

Proof. Let (αn, βn, γn) → (α∗, β∗, γ∗) be a positive sequence as above and {fn} a

sequence of respective minimizers, that is fn ∈M g,K0,αn,βn,γn .

Because of the minimality of fn, we have that for every n ∈ N,

ΨK0,αn,βn,γn(fn) ≤ ‖A(fn)− g‖2L2(Θ) +ΨK0,αn,βn,γn(fn)

≤ ‖A(a)− g‖2L2(Θ),

where a denotes the function of constant value a for which ΨK0,αn,βn,γn(a) = 0.

Since αn and βn are bounded from below there is a constant C > 0 such that

sup
n∈N

{
‖fn‖L∞(Ω) +

∫
Ω

|∇fn|pdx+HN−1(Sfn)

}
≤ max{|a|, |b|}+ C. (3.15)
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Corollary 2.26 and Theorem 2.35 yield a function f ∗ ∈ SBV (Ω) ∩Xb
a(Ω) and a

set E ⊂ Ω, so that a subsequence of {fn}, still denoted by {fn}, weakly converges

to f ∗ in SBV and {Sfn} σ-converges to E.
For an arbitrary fixed function v ∈ SBV ∩Xb

a(Ω) we have

MSg,K0,α∗,β∗,γ∗(f ∗) = ‖A(f ∗)− g‖2 +ΨK0,α∗,β∗,γ∗(f ∗)

≤ lim inf
n

(‖A(fn)− g‖2 +Ψα∗,β∗,γ∗,K0(fn)
)

= lim inf
n

(‖A(fn)− g‖2 +Ψαn,βn,γn,K0(fn)
)

≤ lim inf
n

(‖A(v)− g‖2 +Ψαn,βn,γn,K0(v)
)

= ‖A(v)− g‖2 +ΨK0,α∗,β∗,γ∗(v).

This shows that f ∗ ∈M g,K0,α∗,β∗,γ∗ .

By setting v = f ∗ we get limnMSg,K0,αn,βn,γn(fn) =MSg,K0,α∗,β∗,γ∗(f ∗).

Next we again consider the special case of classic Mumford-Shah regulariza-

tion.

Lemma 3.17 (Stability with respect to (α, β, γ)). Let the same assumptions as

in Lemma 3.16 hold. Additionally let K0 = ∅, then the edge sets {Sfn} σ-converge
to Sf∗.

Proof. We take the same converging subsequence {fn} with limit function f ∗ ∈
SBV (Ω)∩Xb

a(Ω) as above. Furthermore we have the set E ⊂ Ω, for which {Sfn}
σ-converges to E.

It remains to show that E=̃Sf∗ . As {fn} weakly converges to f ∗ in SBV (Ω) it

follows from Definition 2.34 (i) of σ-convergence that Sf∗⊂̃E. Just as in obtaining

(3.14), by the lower semicontinuity (2.16) of the Hausdorff measure regarding σ-
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convergence, it follows that

‖A(f ∗)− g‖2L2(Θ) + α∗
∫
Ω

|∇f ∗|pdx+ β∗HN−1(E)

≤ lim inf
n→∞

(
‖Afn − g‖2L2(Θ) + αn

∫
Ω

|∇fn|pdx+ βnH
N−1(Sfn)

)

≤ lim inf
n→∞

(
‖A(f ∗)− g‖2L2(Θ) + αn

∫
Ω

|∇f ∗|pdx+ βnH
N−1(Sf∗)

)

= ‖A(f ∗)− g‖2L2(Θ) + α∗
∫
Ω

|∇f ∗|pdx+ β∗HN−1(Sf∗).

Therefore, HN−1(E) ≤ HN−1(Sf∗), which together with Sf∗⊂̃E yields E=̃Sf∗ ,

by Lemma 2.36.

We again can formulate the strong version for the case when the fidelity term

decays fast enough in small balls.

Theorem 3.18 (Stability with respect to (α, β, γ)). Let p > 1, g ∈ L∞(Θ),

−∞ < a < b <∞, K0 ⊂⊂ Ω be fixed with HN−1(K0) <∞ and A be continuous

from L2(Ω) to L2(Θ). Additionally let for some ε > 0 the fidelity term f �→
‖A(f)− g‖2L2(Θ) decay with order N − 1 + ε for pointwise bound functions.

Assume we have converging parameters (αn, βn, γn) → (α∗, β∗, γ∗) with αn ≥
α0 > 0, βn ≥ β0 > 0 and βn > γn ≥ 0. Then for every sequence of mini-

mizers {(fn, Kn)}, with (fn, Kn) ∈ Mg,K0,αn,βn,γn(n = 1, . . . ), there exists a pair

(f ∗, K∗) ∈Mg,K0,α∗,β∗,γ∗ for which {fn} converges subsequentially to f ∗ in L1(Ω).

Moreover MSg,K0,α∗,β∗,γ∗(f ∗, K∗) = limn MSg,K0,αn,βn,γn(fn, Kn).

Proof. The proof is the same as for Theorem 3.14.

Corollary 3.19 (Stability with respect to (α, β, γ)). Let the same assumptions

as in the above Theorem 3.18 hold. Additionally let K0 = ∅, then the edges {Kn}
σ-converge to K∗.

Proof. The proof is the same as for Corollary 3.15.
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3.4 Monotonicity

In this section we will discuss monotonicity of the penalty and the fidelity term

for parameters (α, β, γ) where for some constants Cβ, Cγ > 0

β = Cβα, and γ = Cγα.

Thus the problem is reduced to a single parameter setting. We will use the

monotonicity in Section 3.6 for the discrepancy principle and only state it here

for the weak setting on SBV (Ω). The results can be transferred to the strong

setting as usual. Similar work has been done Anzengruber and Ramlau [2010]

where the discrepancy principle was studied for inverse problems with non-linear

operators.

Before we state our monotonicity results, we give an example where both

decreasing and increasing the parameters α and β (but each to a different degree)

yield an increase in the residual.

Example 3.20. Let Ω = [−1, 1], A = Id, α > 0, β > 0, γ = 0, K0 = ∅, p = 2,

λ ∈ R and h : Ω → R be the Heaviside function

h(x) =

{
1, x > 0

0, x ≤ 0.

As before the one dimensional Mumford-Shah functional is

MS(f,K) :=

∫
Ω

(λh− f)2 dx+ α

∫
Ω\K

|f ′(x)|2dx+ βH0(K)

for (f,K) ∈ W 1,2(Ω\K) ∩ L∞ × K. Let λ be chosen such that (λh, {0}) is the

unique minimizer. This is possible, as shown in Example 3.4. As the first variable

of the minimizer (λh, {0}) equals the signal, the residual is zero.

We will now show that there are parameters α, β < 1 and α, β > 1 for which

the residual is greater than zero.

For any pair of parameters (α, β) > 0 there are only two possible candidates

for a minimizer: (f1, K1) = (λh, {0}) with MS(λh, {0}) = β or (f2, K2) = (f ∗, ∅)
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where f ∗ is the uniquely determined minimizer of

G(f) =

∫
Ω

(λh− f)2 dx+ α

∫
Ω

|f ′(x)|2dx

in W 1,2([−1, 1]). It is well known that for α → 0 it is G(f ∗) → 0.

We first consider α, β < 1. Let us fix β < 1, we can than choose α so small,

that G(f ∗) < β. It follows that (f ∗, ∅) is the unique minimizer of MS(f,K). As

f ∗ ∈ W 1,2([−1, 1]) ⊂ C0([−1, 1]) and λh is a step function, the residual is strictly

greater than zero.

Now consider α, β > 1. Let us fix α > 1. We can then set β := G(f ∗) + 1. It

again follows that (f ∗, ∅) is the unique minimizer of MS(f,K).

We will follow the presentation in Anzengruber and Ramlau [2010]. For g ∈
L∞(Θ), α > 0, Cβ, Cγ > 0 and K0 ⊂ Ω we use the notation:

d(α) := {‖A(f)− g‖L2(Θ)|f ∈M g,K0,α,Cβα,Cγα},
ψ(α) := {ΨK0,1,Cβ ,Cγ

(f)|f ∈M g,K0,α,Cβα,Cγα}}, (3.16)

J(α) := MSg,K0,α,Cβα,Cγα(f), f ∈M g,K0,α,Cβα,Cγα.

As the minimizers are not unique the functions d and ψ are set-valued.

Lemma 3.21. For every Cβ, Cγ > 0 the maps α �→ d(α) and α �→ J(α) are

non-decreasing and the map α �→ ψ(α) is non-increasing in the sense that for

0 < α1 < α2 we have

J(α1) ≤ J(α2), (3.17)

sup d(α1) ≤ inf d(α2), (3.18)

inf ψ(α1) ≥ supψ(α2). (3.19)

Proof. Let g ∈ L∞(Θ), 0 < α1 < α2, f1 ∈M g,α1,Cβα1,Cγα1,K0 and f2 ∈M g,α2,Cβα2,Cγα2,K0

be arbitrary but fixed. By the minimality of f1 we have

J(α1) = ‖A(f1)− g‖2L2(Θ) +ΨK0,α1,Cβα1,Cγα1
(f1)

≤ ‖A(f2)− g‖2L2(Θ) +ΨK0,α1,Cβα1,Cγα1
(f2).
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The first inequality then follows as α1 < α2 by

J(α1) ≤ ‖A(f2)− g‖2L2(Θ) +ΨK0,α1,Cβα1,Cγα1
(f2)

≤ ‖A(f2)− g‖2L2(Θ) +ΨK0,α2,Cβα2,Cγα2
(f2)

= J(α2).

For the other two inequalities, we start with

‖A(f1)− g‖2L2(Θ) +ΨK0,α1,Cβα1,Cγα1
(f1) ≤ ‖A(f2)− g‖2L2(Θ) +ΨK0,α1,Cβα1,Cγα1

(f2)

which leads to

1

α1

[‖A(f1)− g‖2 − ‖A(f2)− g‖2] ≤ ΨK0,1,Cβ ,Cγ
(f2)−ΨK0,1,Cβ ,Cγ

(f1).

And in the same way

‖A(f2)− g‖2L2(Θ) +ΨK0,α2,Cβα2,Cγα2
(f2) ≤ ‖A(f1)− g‖2L2(Θ) +ΨK0,α2,Cβα2,Cγα1

(f1)

leads to

ΨK0,1,Cβ ,Cγ
(f2)−ΨK0,1,Cβ ,Cγ

(f1) ≤ 1

α2

[‖A(f1)− g‖2 − ‖A(f2)− g‖2].
We can combine these inequalities and obtain

1

α1

(‖A(f1)− g‖2 − ‖A(f2)− g‖2) ≤ ΨK0,1,Cβ ,Cγ
(f2)−ΨK0,1,Cβ ,Cγ

(f1)

≤ 1

α2

(‖A(f1)− g‖2 − ‖A(f2)− g‖2).

As 0 < 1
α2
< 1

α1
we can follow that ‖A(f1)− g‖2−‖A(f2)− g‖2 ≤ 0 and therefore

‖A(f1)− g‖2 ≤ ‖A(f2)− g‖2.
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Furthermore we obtain

ΨK0,1,Cβ ,Cγ
(f2) ≤ ΨK0,1,Cβ ,Cγ

(f1).

As the functions f1, f2 are chosen arbitrarily we obtain the desired monotonicity.

Lemma 3.22. For every Cβ, Cγ > 0 the discontinuity set

A := {α > 0| inf d(α) < sup d(α)} (3.20)

has at most countable many points. The same holds for ψ and the respective sets

of discontinuity points coincide.

Proof. For every α ∈ A the set d(α) has at least two values and consequently the

interval (inf d(α), sup d(α)) is not empty and contains a rational number. Due

to the monotonicity Lemma 3.21, for different α1 and α2 in A the open inter-

vals (inf d(α1), sup d(α1)) and (inf d(α2), sup d(α2)) are disjoint. As the rational

numbers are countable, the set A has also countable many points at most.

As for two minimizers f1, f2 ∈M g,K0,α,Cβα,Cγα it holds

‖A(f2)− g‖2L2(Θ) +ΨK0,α,Cβα,Cγα(f2) = ‖A(f1)− g‖2L2(Θ) +ΨK0,α,Cβα,Cγα(f1),

it is clear that d(α) is set-valued if and only if ψ(α) is set-valued.

3.5 Regularization with an a priori parameter

choice

In this section we prove an a priori parameter choice rule with which our approach

yields a regularization for the image and its edges.

As before we will first state the result for the weak version on SBV (Ω) and

later lift it to the strong version by the regularity of the edge set.

Lemma 3.23. Let A : L2(Ω) → L2(Θ) be continuous, g ∈ L∞(Θ), p > 1,

−∞ < a < b < ∞, K0 ⊂⊂ Ω with HN−1(K0) < ∞ and f † ∈ SBV ∩ Xb
a(Ω) be

such that A(f †) = g.
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Assume that the noisy data gδ ∈ L∞(Θ) with ‖g − gδ‖L2(Θ) ≤ δ.

Let the regularization parameters be chosen so that as δ → 0,

α(δ) → 0, β(δ) → 0, γ(δ) → 0, (3.21)

δ2

min{α(δ), β(δ), γ(δ)} → 0 and
max{α(δ), β(δ), γ(δ)}
min{α(δ), β(δ), γ(δ)} → C, (3.22)

for some C > 0 and α(δ) > 0, β(δ) > γ(δ) > 0. For any sequence δn → 0 let f δn

(n = 1, . . . ) be in M g,K0,α(δ),β(δ),γ(δ). Then

(i) there exists a function f ∗ ∈ SBV (Ω)∩Xb
a(Ω) and a convergent subsequence

of {f δn}, still denoted as {f δn}, such that {f δn} converges weakly to f ∗ in

SBV (Ω);

(ii) it holds A(f ∗) = g;

(iii) for every other solution φ ∈ SBV (Ω) ∩ Xb
a(Ω) of the operator equation

A(f) = g, it is

∫
Ω

|∇f ∗|pdx+HN−1(Sf∗) ≤ C
( ∫

Ω

|∇φ|pdx+HN−1(Sφ)
)
. (3.23)

Proof. We first prove (i). For every n ∈ N, comparing the given true solution f †

with the minimizer f δn yields

‖A(f δn)− gδn‖2L2(Θ) +ΨK0,α(δ),β(δ),γ(δ),K0(f δn) (3.24)

≤ ‖A(f †)− gδn‖2L2(Θ) +ΨK0,α(δ),β(δ),γ(δ)(f
†)

≤ δ2n +ΨK0,α(δ),β(δ),γ(δ)(f
†).

This leads to∫
Ω

|∇f δn |pdx+HN−1(Sfδn ) (3.25)

≤ δ2n
min{α(δn), β(δn), γ(δ)} +

max{α(δn), β(δn), γ(δ)}
min{α(δn), β(δn), γ(δ)}

( ∫
Ω

|∇f †|pdx+HN−1(Sf†)
)
.

As δn → 0, by definition of the parameters, the right hand side of (3.25) is
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bounded. Therefore, there exists a constant C̃ > 0, so that:

sup
n∈N

{
‖f δn‖L∞(Ω) +

∫
Ω

|∇f δn |pdx+HN−1(Sfδn )

}
≤ max{|a|, |b|}+ C̃. (3.26)

Again Corollary 2.26 and 2.35 yield a function f ∗ ∈ SBV (Ω) ∩ Xb
a(Ω) and a

set E ⊂ Ω, so that there is a subsequence of {f δn}, still denoted by {f δn}, that
weakly converges to f ∗ in SBV and {Sfδn} σ-converges to E.

Next we prove (ii). Using (3.24) we have

‖A(f δn)− gδn‖2L2(Θ) ≤ δ2n +Ψα(δ),β(δ),γ(δ),K0(f †). (3.27)

Because ffδn and f ∗ ∈ Xb
a(Ω), the sequence {ffδn} actually converges to f ∗ in

Lq(Ω) for every 1 ≤ q < ∞, and consequently A(ffδn )
L2→ A(f ∗). Therefore, due

to the parameter choice rule for n→ ∞, it follows that

‖A(f ∗)− g‖2L2(Θ) = lim
n→∞

‖A(f δn)− gδn‖2L2(Θ) = 0, (3.28)

which proves the convergence to a solution of A(f) = g.

To prove (iii), denote that (3.25) holds for any φ in place of f †, provided

φ ∈ SBV (Ω) ∩Xb
a(Ω) is a solution of A(f) = g. Using the lower semicontinuity

Theorem 2.25 and (3.25), we obtain

∫
Ω

|∇f ∗|pdx+HN−1(Sf∗) (3.29)

≤ lim inf
n→∞

( ∫
Ω

|∇f δn |pdx+HN−1(Sfδn )
)

≤ lim inf
n→∞

( δ2n
min{α(δn), β(δn)} +

max{α(δn), β(δn)}
min{α(δn), β(δn)}

( ∫
Ω

|∇φ|pdx+HN−1(Sφ)
))

=C
( ∫

Ω

|∇φ|pdx+HN−1(Sφ)
)
. (3.30)

Corollary 3.24. Let the same assumptions as in the above Theorem 3.23 hold.

If additionally C = 1, then the edge sets {Sfδn} σ-converge to Sf∗.

Proof. We take the same converging subsequence {f δn} with limit function f ∗ ∈
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SBV (Ω) ∩Xb
a(Ω) as as in the proof above. Furthermore we have the set E ⊂ Ω,

for which {Sfδn} σ-converges to E.
It remains to show that E=̃Sf∗ . Since {f δn} weakly converges to f ∗ in

SBV (Ω), it follows from Definition 2.34 (i) that Sf∗⊂̃E. As f ∗ is a solution

of the operator equation, we can replace f † by f ∗ in (3.25). Then by using the

lower semicontinuity (2.16) and the same argument as from (3.29) to (3.30), we

obtain ∫
Ω

|∇f ∗|pdx+HN−1(E) ≤
∫
Ω

|∇f ∗|pdx+HN−1(Sf∗). (3.31)

Therefore HN−1(E) ≤ HN−1(Sf∗), which together with Sf∗⊂̃E yields E=̃Sf∗ , by

Lemma 2.36.

Theorem 3.25 (Regularization). Let the same notations and parameter choice

rule from Lemma 3.23 hold with C = 1. Additionally suppose that for some ε > 0,

the fidelty term f �→ ‖A(f)− gδ‖2L2(Θ) decays with order N − 1 + ε for pointwise

bound functions.

For any sequence δn → 0 let (f δn , Kδn) be in Mgδ ,K0,α(δ),β(δ),γ(δ). Then

(i) there exists a pair (f ∗, K∗) ∈ W 1,p(Ω\K∗) ∩ Xb
a(Ω) × K and a convergent

subsequence of {f δn , Kδn}, still denoted as {f δn , Kδn}, such that f δn L1→ f ∗

and {Kδn} σ-converge to K∗;

(ii) it holds A(f ∗) = g;

(iii) for every other solution φ ∈ W 1,p(Ω\Kφ)∩Xb
a(Ω) of the operator equation,

it is ∫
Ω\K∗

|∇f ∗|pdx+HN−1(K∗) ≤
∫
Ω\Kφ

|∇φ|pdx+HN−1(Kφ), (3.32)

where Kφ is any suitable compact set so that φ ∈ W 1,p(Ω\Kφ).

Proof. The proof is an application of Lemma 3.23 with the same arguments as in

the proof of Theorem 3.14.
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Remark 3.26. In Rondi [2008b] an a priori parameter choice rule α(δ) = β(δ) =

γ(δ) = c1δ
c2 was studied for the Mumford-Shah functional, where c1, c2 > 0. The

fidelity terms considered in Rondi [2008b] are powers of distance functions other

than least-squares functionals. Our result on the a priori parameter choice rule

is an extension in several aspects. In Rondi [2008b] convergence is only obtained

for the image f , in contrast we characterize when the edges converge in the sense

of σ-convergence. Furthermore we consider the strong setting and our parameter

choice is more general.

3.6 Regularization with the discrepancy princi-

ple

In this section we prove that a parameter choice via Morozovs discrepancy prin-

ciple yields a regularization for our approach under certain restrictions on the

parameters. We again refer to Anzengruber and Ramlau [2010] for related work.

We will make use of the results in Section 3.21, and therefore restrict ourselves

to parameters (α, β, γ) for which

β = Cβα and γ = Cγα (3.33)

for some constants Cγ, Cβ > 0.

We use the following version of the discrepancy principle.

Definition 3.27 (MDP). Let g ∈ L∞(Θ), p > 1, −∞ < a < b < ∞, K0 ⊂⊂ Ω

with HN−1(K0) <∞.

Let τ2 ≥ τ1 > 1. For δ > 0 and gδ ∈ L2(Θ) with ‖g− gδ‖L2(Θ) ≤ δ we say that

(α, β, γ) are chosen according to Morozov’s discrepancy principle (MDP) if there

exists f δ ∈M gδ ,K0,α,β,γ such that

τ1δ ≤ ‖A(f δ)− gδ‖L2(Θ) ≤ τ2δ. (3.34)

Morozov’s discrepancy principle fails if it is not possible to find parameters

such that (3.34) is true for at least one minimizer. This is the case, for ex-

ample, when the uncorrupted data is obtained from a function f † for which

56



ΨK0,α,β,γ(f
†) = 0. Because then for any (α, β, γ) we have

min
f∈SBV ∩Xb

a(Ω)
MSgδ ,K0,α,β,γ(f) ≤ ‖A(f †)− gδ‖2L2(Θ) + 0 ≤ δ2 < τ1δ

2. (3.35)

For the weak Mumford-Shah penalty on SBV (Ω) constant functions are in the

kernel.

We first study in which situation it is possible to choose (α, β, γ) according

to MDP.

Lemma 3.28. Let A : L2(Ω) → L2(Θ) be continuous, g ∈ L∞(Θ), p > 1,

−∞ < a < b <∞, K0 ⊂⊂ Ω with HN−1(K0) <∞.

For fixed Cβ, Cγ > 0, to each α > 0 there exist f1, f2 ∈M g,K0,α,Cβα,Cγα so that

for αn ↑ α and any sequence {fn} ∈M g,K0,αn,Cβαn,Cγαn
it holds

lim
n

‖A(fn)− g‖L2(Θ) = ‖A(f1)− g‖L2(Θ)

= min
f∈Mg,K0,α,Cβα,Cγα

‖A(f)− gδ‖L2(Θ).

In the same way for αn ↓ α and any sequence {fn} ∈M g,K0,αn,Cβαn,Cγαn
it holds

lim
n

‖A(fn)− g‖L2(Θ) = ‖A(f2)− g‖L2(Θ)

= max
f∈Mg,K0,α,Cβα,Cγα

‖A(f)− gδ‖L2(Θ).

Proof. Let{αn} be a positive strictly increasing sequence converging to α and fn ∈
M g,K0,αn,Cβαn,Cγαn

be a corresponding sequence of arbitrary minimizers. Lemma

3.16 yields a L2(Ω) convergent subsequence {fn} with limit f1 ∈M g,K0,α,Cβα,Cγα.

Using the monotonicity Lemma 3.21 of the fidelity term with respect to α we get

for αn ↑ α

‖A(f1)− gδ‖L2(Θ) = lim
n

‖A(fn)− gδ‖L2(Θ)

≤ inf
f∈Mg,K0,α,Cβα,Cγα

‖A(f)− g‖L2(Θ) ≤ ‖A(f1)− g‖L2(Θ).

We can repeat the reasoning for every subsequence of {fn} and obtain for the
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entire sequence

lim
n

‖A(fn)− g‖L2(Θ) = min
f∈Mg,K0,α,Cβα,Cγα

‖A(f)− g‖L2(Θ). (3.36)

The claim for {αn} strictly decreasing can be shown in exactly the same

way.

We now show that in many cases it is possible to choose α so that the data

fitting term is either very large or vanishes.

Lemma 3.29. Let A : L2(Ω) → L2(Θ) be continuous, g ∈ L∞(Θ), p > 1,

−∞ < a < b < ∞, K0 ⊂⊂ Ω with HN−1(K0) < ∞ and f † ∈ SBV ∩ Xb
a(Ω) be

such that A(f †) = g.

Assume that the noisy data gδ ∈ L∞(Θ) with ‖g − gδ‖L2(Θ) ≤ δ and that gδ

satisfies ‖A(C)− gδ‖ > τ2δ for all constant functions C(x) = C.

Then we can find parameters α1, α2 > 0 and respective minimizers f1 ∈
M gδ ,K0,α1,Cβα1,Cγα1

and f2 ∈M gδ ,K0,α2,Cβα2,Cγα2
such that

‖A(f1)− gδ‖L2(Θ) ≤ τ1δ ≤ τ2δ ≤ ‖A(f2)− gδ‖L2(Θ) (3.37)

for τ2 ≥ τ1 > 1.

Proof. First consider αn → 0 and corresponding minimizers fn ∈M gδ ,K0,αn,Cβαn,Cγαn
.

We have for each n ∈ N

‖A(fn)− gδ‖2L2(Θ) ≤ MSgδ ,K0,αn,Cβαn,Cγαn
(f †) = δ2 + αnΨK0,1,Cβ ,,Cγ

(f †) → δ2.

(3.38)

As τ1 > 1, for small enough αn, we therefore have fn ∈ M gδ ,K0,αn,Cβαn,Cγαn
with

‖A(fn)− gδ‖L2(Θ) < τ1δ.

On the other hand assume that αn → ∞, then for each n ∈ N

ΨK0,1,Cβ ,Cγ
(fn) ≤ 1

αn

MSgδ ,K0,αn,Cβαn,Cγαn
(fn)

≤ 1

αn

‖A(a)− gδ‖2L2(Θ) → 0.
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Therefore {∫
Ω
|∇fn|pdx+HN−1(Sfn)} → 0, which together with the L∞(Ω) bound

by Corollary 2.26 implies that {fn} has a convergent subsequence that converges

to a function f ∗ ∈ SBV (Ω) with
∫
Ω
|∇f ∗|pdx + HN−1(Sf∗) = 0, i.e. f ∗ is a

constant function. With the assumption that for all constant functions ‖A(C)−
gδ‖L2(Θ) > τ2δ this yields

lim
n

‖A(fn)− gδ‖L2(Θ) = ‖A(f ∗)− gδ‖L2(Θ) > τ2δ. (3.39)

Therefore for large enough αn, we have fn ∈M gδ ,K0,αn,Cβαn,Cγαn

with ‖A(fn)− gδ‖L2(Θ) > τ2δ.

We summarize the assumptions on the data.

Assumption 3.30. Assume that for δ > 0 and τ2 ≥ τ1 > 1 the measured data

gδ ∈ L2(Θ) satisfies

‖g − gδ‖L2(Θ) ≤ δ < τ2δ < ‖A(C)− gδ‖L2(Θ), (3.40)

for all constant functions C(x) = C ∈ R. Moreover assume that there is no

parameter α > 0 with minimizers f1, f2 ∈M gδ ,K0,α,Cβα,Cγα, such that

‖A(f1)− gδ‖L2(Θ) ≤ τ1δ ≤ τ2δ ≤ ‖A(f2)− gδ‖L2(Θ). (3.41)

Theorem 3.31. Let A : L2(Ω) → L2(Θ) be continuous, g ∈ L∞(Θ), p > 1,

−∞ < a < b < ∞, K0 ⊂⊂ Ω with HN−1(K0) < ∞ and f † ∈ SBV ∩ Xb
a(Ω) be

such that A(f †) = g.

If Assumption 3.30 is fulfilled then there exist parameters (α, β, γ) fulfilling

Morozovs Discrepancy Principle (3.34).

Proof. Assume no (α, β, γ) exists that fulfills the MDP. Define the sets

S1 = {α > 0 | ‖A(f)− gδ‖L2(Θ) < τ1δ for some f ∈M gδ ,K0,α,Cβα,Cγα}, (3.42)

S2 = {α > 0 | ‖A(f)− gδ‖L2(Θ) > τ2δ for some f ∈M gδ ,K0,α,Cβα,Cγα}. (3.43)

Due to Lemma 3.29 we know the sets S1 and S2 are not empty. Note that for α ∈
S1 it must actually hold ‖A(f)−gδ‖L2(Θ) < τ1δ for all f ∈M gδ ,K0,α,Cβα,Cγα or else
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either the MDP would be fulfilled or Assumption 3.30 violated. In the same way

we obtain for α ∈ S2 it holds ‖A(f)− gδ‖L2(Θ) > τ2δ for all f ∈M gδ ,K0,α,Cβα,Cγα.

Therefore we have S1 ∩ S2 = ∅ and S1 ∪ S2 = R+.

Let us define α∗ := supS1. Then it follows from the monotonicity and Lemma

3.29 that 0 < α∗ < ∞ and therefore α∗ is in S1 or S2. We treat the cases

separately.

If α∗ ∈ S1 then we can choose a strictly decreasing sequence αn → α∗ and

fn ∈M gδ ,K0,αn,Cβαn,Cγαn
. Since all αn belong to S2, with Lemma 3.28 we get

τ2δ ≤ lim
n

‖A(fn)− gδ‖L2(Θ) = sup
f∈M

gδ,K0,α∗,Cβα∗,Cγα∗

‖A(f)− gδ‖L2(Θ) < τ1δ.

(3.44)

This is a contradiction to τ1 ≤ τ2.

If α∗ ∈ S2 we can choose a strictly increasing sequence αn → α∗ and argument

in the same way.

Now we are in the position to prove the main result of this section.

Lemma 3.32. Let A : L2(Ω) → L2(Θ) be continuous, g ∈ L∞(Θ), p > 1, −∞ <

a < b <∞, K0 ⊂⊂ Ω with HN−1(K0) <∞ and f † ∈ SBV ∩Xb
a(Ω) be such that

A(f †) = g. Assume that the noisy data gδ ∈ L∞(Θ) with ‖g − gδ‖L2(Θ) ≤ δ and

Assumptions 3.30 are met.

For Cβ, Cγ > 0 and any sequence δn → 0 let (αn, βn, γn) = (αn, Cβαn, Cγαn)

and f δn ∈M gδ ,K0,αn,Cβαn,Cγαn
be chosen according to MDP. Then

(i) there exists a function f ∗ ∈ SBV (Ω)∩Xb
a(Ω) and a convergent subsequence

of {f δn}, still denoted as {f δn}, such that {f δn} converges weakly to f ∗ in

SBV (Ω);

(ii) it holds A(f ∗) = g;

(iii) for every other solution φ ∈ SBV (Ω) ∩ Xb
a(Ω) of the operator equation

A(f) = g, it is

Ψ1,Cβ ,Cγ ,K0(f ∗) ≤ Ψ1,Cβ ,Cγ ,K0(φ). (3.45)
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Proof. We first prove (i). For every n ∈ N, using MDP and comparing the given

true solution f † with the minimizer f δn ∈M gδ ,K0,αn,Cβαn,Cγαn
we have

τ1δ
2 + αnΨK0,1,Cβ ,Cγ

(f δn)

≤ ‖A(f δn)− gδn‖2L2(Θ) + αnΨK0,1,Cβ ,Cγ
(f δn)

≤ δ2n + αnΨK0,1,Cβ ,Cγ
(f †).

This leads to

0 ≤ (τ1 − 1)δ2n

≤ αnΨK0,1,Cβ ,Cγ
(f †)− αnΨK0,1,Cβ ,Cγ

(f δn).

And we can follow

0 ≤ (τ1 − 1)
δ2

αn

≤ ΨK0,1,Cβ ,Cγ
(f †)−ΨK0,1,Cβ ,Cγ

(f δn). (3.46)

As 0 ≤ (τ1 − 1) δ2

αn
for all n ∈ N it is

ΨK0,1,Cβ ,Cγ
(f δn) ≤ ΨK0,1,Cβ ,Cγ

(f †). (3.47)

Therefore, there exists a constant C̃ > 0, so that:

sup
n∈N

{
‖f δn‖L∞(Ω) +

∫
Ω

|∇f δn |pdx+HN−1(Sfδn )

}
≤ max{|a|, |b|}+ C̃. (3.48)

Again Corollary 2.26 and 2.35 yield a function f ∗ ∈ SBV (Ω) ∩ Xb
a(Ω) and a

set E ⊂ Ω, so that there is a subsequence of {f δn}, still denoted by {f δn}, that
weakly converges to f ∗ in SBV and {Sfδn} σ-converges to E.

Next we prove (ii). Using the MDP we have

‖A(f δn)− gδn‖2L2(Θ) ≤ τ 22 δ
2
n. (3.49)

As in the proof of Lemma 3.12, we have A(f δn)
L2→ A(f ∗). Therefore for δn → 0
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it follows that

‖A(f ∗)− g‖2L2(Θ) ≤ lim
n→∞

(‖A(f δn)− gδn‖2L2(Θ) + δ2n) = 0, (3.50)

which proves that the limit f ∗ is a solution of A(f) = g.

To prove (iii), note that (3.47) holds for any φ in place of f †, provided φ ∈
SBV (Ω) ∩ Xb

a(Ω) is a solution of the operator equation. Using Corollary 2.26,

we obtain

ΨK0,1,Cβ ,Cγ
(f ∗) ≤ lim inf

n→∞
ΨK0,1,Cβ ,Cγ

(f δn) ≤ lim inf
n→∞

ΨK0,1,Cβ ,Cγ
(φ) (3.51)

=ΨK0,1,Cβ ,Cγ
(φ).

For the classic Mumford-Shah regularization we can also get convergence of

the edges.

Corollary 3.33. Let the same assumptions as in the above Lemma 3.32 hold. If

additionally Cβ = Cγ = 1, then the edge sets {Sfδn} σ-converge to Sf∗.

Proof. We take the same converging subsequence {f δn} with limit function f ∗ ∈
SBV (Ω)∩Xb

a(Ω) as in the proof above. Furthermore we have the set E ⊂ Ω, for

which {Sfδn} σ-converges to E.
It remains to show that E=̃Sf∗ . Since {f δn} weakly converges to f ∗ in

SBV (Ω), it follows from Definition 2.34 (i) that Sf∗⊂̃E. Since f ∗ is a solu-

tion of the operator equation, we can replace f † by f ∗ in (3.47). By using the

lower semicontinuity (2.16) and the same argument as for (3.51), we obtain

∫
Ω

|∇f ∗|pdx+HN−1(E) ≤
∫
Ω

|∇f ∗|pdx+HN−1(Sf∗). (3.52)

Therefore HN−1(E) ≤ HN−1(Sf∗), which together with Sf∗⊂̃E yields E=̃Sf∗ by

Lemma 2.36.

We conclude the chapter by stating the strong version of the regularization

result for Cβ = Cγ = 1.
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Theorem 3.34. Let A : L2(Ω) → L2(Θ) be continuous, g ∈ L∞(Θ), p > 1,

−∞ < a < b < ∞, K0 ⊂⊂ Ω with HN−1(K0) < ∞ and f † ∈ SBV ∩ Xb
a(Ω) be

such that A(f †) = g. Assume that the noisy data gδ ∈ L∞(Θ) with ‖g−gδ‖L2(Θ) ≤
δ and Assumptions 3.30 are met.

Additionally suppose that for some ε > 0, the fidelity term f �→ ‖A(f) −
gδ‖2L2(Θ) decays with order N − 1 + ε for pointwise bound functions.

For any sequence δn → 0 let (αn, βn, γn) = (αn, αn, αn) and (f δn , Kδn) ∈
Mgδ ,K0,αn,αn,αn

be chosen according to the MDP. Then

(i) there exists a pair (f ∗, K∗) ∈ W 1,p(Ω\K∗) ∩ Xb
a(Ω) × E and a convergent

subsequence of {f δn , Kδn}, still denoted as {f δn , Kδn}, such that f δn L1→ f ∗

and {Kδn} σ-converge to K∗;

(ii) it holds A(f ∗) = g;

(iii) for every other solution φ ∈ W 1,p(Ω\Kφ) ∩Xb
a(Ω) of the operator equation

A(f) = g, we have that

∫
Ω\K∗

|∇f ∗|pdx+HN−1(K∗) ≤
∫
Ω\Kφ

|∇φ|pdx+HN−1(Kφ), (3.53)

where Kφ is any suitable compact set so that φ ∈ W 1,p(Ω\Kφ).

Proof. The proof works the same as for Theorem 3.14.
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Chapter 4

A variational approximation in

the sense of Γ-convergence

In this chapter we will study variational approximations of the weak Mumford-

Shah type functional

MSK0(f, v) = (4.1)

‖A(f)− g‖2L2 + α

∫
Ω\K

|∇f |2dx+ βHN−1(Sf \K0)

in the sense of Γ-convergence following the ideas of Ambrosio and Tortorelli [1992].

Compared to the functional (3.5) in the previous chapter, the functional (4.1)

above corresponds to the special case where γ = 0, that is edges coinciding with

the a priori edge are not penalized at all. We will also motivate a heuristic

approximation for γ �= 0 at the end of this chapter.

Sometimes it is possible to view a difficult problem, in our case the Mumford-

Shah type functional, as the limit of a series of more computational feasible or

more understandable problems. In such a scenario it is important to choose

the correct notion of convergence. A suitable convergence for our problem is Γ-

convergence. Its objective is the description of asymptotic behavior of families of

minimum problems, which are often depending on some parameters.

For the approximation, instead of a set K we consider a sequences of smooth

edge indicator functions {vn} ∈ W 1,2(Ω), 0 ≤ vn ≤ 1, where vn ≈ 0 and vn ≈ 1
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indicate an edge and no edge respectively. This smoothed setting is referred

to as the phase field setting. It is also necessary to describe the a priori edge

information K0 in the phase field setting. We assume that for a given K0 we

have a sequence {v0n} of edge indicator functions that fulfill certain conditions,

which we will specify in the next section.

If the spaces are chosen appropriately, by Proposition 2.32, it suffices to derive

an approximation of the penalty term. The data fitting term can then be regarded

as a continuous perturbation in the sense of Proposition 2.32(ii).

Let us recall that Ω ⊂ RN is a bounded domain and K0 is a compact subset of

Ω with HN−1(K0) < ∞. Without loss of generality, we assume that α = β = 1.

Furthermore, by {εn} we denote a strictly positive sequence for which εn → 0 as

n→ ∞.

In this chapter we show that under certain assumptions on the a priori edge

information {v0n} and K0 the sequence of functionals

Ψv0n,n
(f, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α
∫
Ω
v2|∇f |2dx+ β

∫
Ω

εn|∇v|2 + (v0n−v)2

4εn
dx, for

f, v ∈ W 1,2(Ω),

0 ≤ v ≤ 1

+∞, else

(4.2)

approximates

ΨK0(f, v) =

⎧⎨
⎩α
∫
Ω
|∇f |2dx+ βHN−1(Sf \K0), v = 1, f ∈ SBV (Ω)

+∞, else,
(4.3)

in the sense of Γ-convergence as n → ∞ on L2(Ω) × L2(Ω). The difference of

(4.2) to the usual Ambrosio-Tortorelli penalty is in the last term, where instead

of a constant function 1 the a priori edges {v0n} are used as a constraint.

For the case where γ �= 0 we propose the heuristically motivated penalty
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Hv0n,n
(f, v) = α

∫
Ω

v2|∇f |2dx+ β

∫
Ω

(
εn|∇v|2 + (1− v)2

4εn

)
(1 + γ(v0n − v)2)dx

(4.4)

for f , v ∈ W 1,2(Ω), 0 ≤ v ≤ 1 with 0 < β, γ, α. We do not have any convergence

results in this case and therefore only give a brief motivation at the end of this

chapter.

To apply the theory of Γ-convergence we need to show that for suitable topolo-

gies the lim inf-inequality and the lim sup-inequality from Definition 2.29 hold.

We adapt the original proof from Ambrosio and Tortorelli [1992] as it is presented

in Braides [2002]. First, we consider the approximation on an interval and then

lift the result to the N dimensional case by standard techniques. The main con-

tribution and difficulty is to establish suitable conditions on the a priori edge set

and modify the proofs accordingly.

4.1 Representing K0 in the phase field setting

In this section we note the assumptions we take on the sequence {v0n} ∈ W 1,N+1(Ω)

that represents the a priori edge information K0 ⊂ Ω in the phase field setting.

We use these assumptions to describe the asymptotic behavior of the sequence

{v0n} near K0. Furthermore, we give a second more natural set of assumptions

and show why they unfortunately do not work for the proof in the next sections.

We begin by listing the assumptions we will use in this chapter.

Assumption 4.1 (Assumptions on {v0n}). For a compact set K0 ⊂ Ω ⊂ RN with

HN−1(K0) < +∞ we assume that for every sequence {εn} with εn → 0 as n→ ∞
there exists a sequence {v0n} ∈ W 1,N+1(Ω), 0 ≤ v0n ≤ 1 such that

(i) v0n(x) → 0 uniformly in K0 as n→ ∞.

(ii) v0n(x) → 1 if x �∈ K0 as n→ ∞.

(iii) For every subset A ⊂ Ω with A∩K0 = ∅ there exists a sequence {ηA,n} ∈ R
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so that

1− ηA,n ≤ v0n(x) ≤ 1 for x ∈ A (4.5)

and

ηA,n

εn
→ 0 (4.6)

as n→ ∞.

(iv) It holds

∫
Ω

εn|∇v0n|N+1dx→ 0 (4.7)

as n→ ∞.

Assumption (i) and (ii) ensure that, in the limit, only real edges are indicated

as such, assumption (iii) ensures that away from edges the sequence converges

to 1 fast and assumption (iv) prohibits the valleys around edges to be too steep.

Note that in the assumptions above for W 1,N+1(Ω) the Sobolev number 1− N
N+1

is strictly positive and therefore for every n ∈ N it holds v0n ∈ C0(Ω).

Remark 4.2. As the domain Ω is bounded and N ≥ 1, from Assumption 4.1 (iv)

it follows that

∫
Ω

εn|∇v0n|2dx→ 0 (4.8)

as n→ ∞.

We first characterize the behavior of the indicator functions {v0n} for n→ ∞
in the neighborhood of edges. Throughout this chapter we will use the following

estimate on an interval [a, b]: for 1 < p <∞ and u ∈ W 1,p[a, b] it holds

b∫
a

|∇u|pdx ≥ |u(b)− u(a)

b− a
|p(b− a). (4.9)
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The estimate comes from the minimization of the p-Dirichlet integral

min
u∈W 1,p(Ω)

∫
Ω

|∇u|pdx

subject to (u− h) ∈ W 1,p
0 (Ω),

for some function h : Ω → R. If the boundary data h is regular enough then a

minimizer is attained and the associated Euler-Lagrange equation is

div(|∇h|p−2∇h) = 0,

see Lewis [1977]. The operator on the left hand side is called the p-Laplacian. In

one dimension linear functions solve the p-Laplacian and thus also minimize the

p-Dirichlet integral over an interval for a given set of boundary values.

Lemma 4.3. Let Ω ⊂ RN , N ≥ 2, K0 ⊂⊂ Ω, HN−1(K0) <∞ and {εn} be a se-

quence converging to 0. Furthermore, assume {v0n} fulfills Assumption 4.1 for the

given sequence {εn} and K0. Then for any sequence {xn} with lim supn
dist(xn,K0)

εn
<

∞, it holds v0n(xn) → 0 as εn → 0.

Proof. Without loss of generality we assume that in the following we are suffi-

ciently far away from the boundary of Ω.

Step one: Let {x0n} be an arbitrary sequence in K0 and {ρn} be a sequence of

positive real numbers with lim supn
ρn
εn
<∞. We first show that for almost every

x ∈ B1(0) it holds v
0
n(x

0
n + ρnx) → 0 as n→ ∞. Let us fix a c ∈ (0, 1] and SN−1

be the N − 1 dimensional sphere. Using polar coordinates we compute

∫
Ω

εn|∇v0n|N+1dx ≥ εn

∫
Bcρn (x

0
n)

|∇v0n(x)|N+1dx

= εn

∫
SN−1

∫ cρn

0

|∇v0n(x0n + t · ν)|N+1tN−1dt dHN−1,

where ν denotes an element in SN−1. We estimate the one dimensional integral

via the reverse Hölder inequality. Let u(t) = |∇v0n(x0n + t · ν)|N+1, h(t) = tN−1
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and s ∈ (1, N), then

∫ cρn

0

u hdt = ‖ u h ‖L1([0,cρn])

≥ ‖u‖L1/s([0,cρn]) ‖h‖L−1/(s−1)([0,cρn]).

The second norm can be computed as

‖h‖L−1/(s−1)([0,cρn]) =
( ∫ cρn

0

(tN−1)−
1

s−1dt
)−(s−1)

=
( s− 1

s−N
(cρn)

( s−N
s−1

)
)−(s−1)

= C(cρn)
−s+N ,

with C = ( s−N
s−1

)(s−1). Now we estimate the p-Dirichlet integral with a linear

function taking the same boundary values as v0n

‖u‖L1/s([0,cρn]) =
( ∫ cρn

0

(|∇v0n(x0n + t · ν)|N+1)
1
sdt
)s

≥ ( ∫ cρn

0

|v
0
n(x

0
n)− v0n(x

0
n + cρnν)

|cρn| |N+1
s dt

)s
=

(cρn)
s

(cρn)N+1

∣∣v0n(x0n)− v0n(x
0
n + cρnν)

∣∣N+1

= (cρn)
s−N−1

∣∣v0n(x0n)− v0n(x
0
n + cρnν)

∣∣N+1
.

We summarize with∫
Ω

εn|∇v0n|N+1dx

≥ εnC(cρn)
−s+N(cρn)

s−N−1

∫
SN−1

∣∣v0n(x0n)− v0n(x
0
n + cρnν)

∣∣N+1
dHN−1

= C
εn
cρn

∫
SN−1

∣∣v0n(x0n)− v0n(x
0
n + cρnν)

∣∣N+1
dHN−1.

The integral
∫
Ω
εn|∇v0n|N+1dx goes to zero via the Assumption 4.1 (iv). As

lim infn
εn
cρn

> 0 and v0n → 0 uniformly in K0, for HN−1 - almost every ν ∈ SN−1

it holds v0n(xn+ cρnν) → 0. As c ∈ (0, 1] was chosen arbitrarily, we can follow for

LN - almost everywhere x ∈ B1(0) it holds v0n(x
0
n + ρnx) → 0.

Step two: Now let us assume there is a sequence {xn} ∈ Ω with
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lim supn
dist(xn,K0)

εn
< ∞ and lim supn v

0
n(xn) > Ĉ > 0 as n → ∞. Because of

Assumption 4.1 (i) we can extract a subsequence such that {xn} ∈ Ω \K0. Be-

cause of lim supn
dist(xn,K0)

εn
<∞ we can find a sequence {x0n} inK0 and {ρn} ∈ R+

with lim supn
ρn
εn
<∞ such that

xn ∈ B̊ρn(x
0
n),

where B̊ρn(x
0
n) denotes the interior of Bρn(x

0
n). Due to step one for LN - almost

every x ∈ B1(0) it holds v
0
n(x

0
n + ρnx) → 0 as n → ∞. Therefore we can fine a

second sequence {τn} ∈ R+ with

Bτn(xn) ⊂ B̊ρn(x
0
n)

and for HN−1 - almost every ν ∈ SN−1 it holds v0n(xn + τnν) → 0 as n→ ∞.

Step three: We estimate the gradient over Bτn(xn) to obtain a contradiction.

As above we have∫
Ω

εn|∇v0n|N+1dx

≥
∫
Bτn (xn)

εn|∇v0n|N+1dx

= εn

∫
SN−1

∫ τn

0

|∇v0n(xn + tν)|N+1(t)N−1dt dHN−1

≥ C
εn
τn

∫
SN−1

|v0n(xn)− v0n(xn + τnν)|N+1dHN−1.

We have lim infn
εn
τn
> 0. Because of step one, for HN−1 - almost every ν ∈ SN−1

it holds v(xn + τnν) → 0. For the sequence {xn} with lim supn
dist(xn,K0)

εn
< ∞

and lim supn v
0
n(xn) > Ĉ > 0 as n→ ∞ the last integral therefore does not go to

zero. This contradicts Assumption 4.1 (iv).

Lemma 4.3 also holds for dimension N = 1, but the proof does not require the

transformation to polar coordinates and the reverse Hölder inequality. Instead

the integral can be estimated directly with linear functions to obtain the claim.

To have a consistent model, it would be desirable to only assume that the

a priori phase field functions were obtained as minimizers from a sequence of
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Ambrosio-Tortorelli functions. In this regard we show a negative result in one

dimension.

Assumption 4.4 (Desirable assumptions on {v0n}). For a given set K0 ⊂ Ω with

HN−1(K0) < +∞ we assume that for every sequence {εn} with εn → 0 as n→ ∞
there exists a sequence {v0n} ∈ W 1,2(Ω) ∩ C0(Ω), 0 ≤ v0n ≤ 1 such that

(i) v0n(x) → 0 if x ∈ K0 as n→ ∞.

(ii) v0n(x) → 1 if x �∈ K0 as n→ ∞.

(iii) For every subset A ⊂ Ω it holds

∫
A

εn|∇v0n|2 +
(1− v0n)

2

4εn
dx→ HN−1(A ∩K0) (4.10)

as n→ ∞.

We now introduce a one dimensional example to see that these assumptions

are not sufficient. We divide the example into two parts.

Example 4.5 (No recovery sequence). Let Ω = (−1, 1), K0 = {0} and {εn} be

a sequence converging to 0. Furthermore, assume {v0n} fulfills Assumption 4.4 for

the given sequence {εn}. Then for every convergent sequence {xn} with limit x:

(i) If limn
xn

εn
→ 0 then v0n(xn) → 0.

(ii) If limn
εn
xn

→ 0, then the sequence {v0n} converges to 1 on [0, xn] in the sense

that

1∫
0

(1− v0n(xn · τ))2dτ → 0.

Proof. We first show (i). The case xn = 0 is treated in the Assumptions 4.4

(i). Let {xn} be a positive sequence converging to 0 with limn
xn

εn
→ 0. Using

Assumption 4.4 (iii), we follow that the sequence {εn
∫
Ω

|(v0n)′|2dx} is uniformly
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bound by some constant C > 0 and we can estimate for all n ∈ N

C > εn

∫
Ω

|(v0n)′|2dx ≥ εn

xn∫
0

|(v0n)′|2dx

≥ εn

xn∫
0

|(v
0
n(xn)− v0n(0))

xn
|2dx =

εn
xn

(v0n(xn)− v0n(0))
2.

As εn
xn

→ ∞ for n → ∞, it is necessary that (v0n(xn) − v0n(0))
2 → 0. With

limn v
0
n(0) = 0, we can follow limn v

0
n(xn) = 0.

Now we turn to (ii). If {xn} does not converge to K0 = 0, then due to

Assumption 4.4 (ii) the claim holds. Let {xn} be a sequence converging to 0

with limn
εn
xn

→ 0. Using Assumption 4.4 (iii), we can compute for some constant

C > 0 and every n ∈ N

C >

∫
Ω

(1− v0n(x))
2

4εn
dx ≥

xn∫
0

(1− v0n(x))
2

4εn
dx

=
1

4εn

1∫
0

(1− v0n(xn · τ)))2xndτ =
xn
4εn

1∫
0

(1− v0n(xn · τ)))2dτ,

where we used a change of variable x = τxn and dx = xndτ .

As limn
εn
xn

→ 0, for the last term to be uniformly bounded it is necessary that

1∫
0

(1− v0n(xn · τ))2dτ → 0.

Now we will show that for this example, under the above Assumptions 4.4, no

sequence {vn} ∈ W 1,2(−1, 1) can be found such that

lim
n

1∫
−1

εn|v′n|2 +
(vn − v0n)

2

4εn
dx = 0.
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To be able to find such a (recovery) sequence is necessary for the variational

approximation we are pursuing.

Proof. Assume there exists a sequence {vn} ∈ W 1,2(−1, 1) such that vn(0) → c

for some c ≥ 0 and

lim

1∫
−1

εn|v′n|2 +
(vn − v0n)

2

4εn
dx = 0. (4.11)

For any sequence {xn} with lim xn

εn
<∞, as above we have

εn

xn∫
0

|v′n|2dx ≥ εn

xn∫
0

|(vn(xn)− vn(0))

xn
|2dx =

εn
xn

(vn(xn)− vn(0))
2.

As
∫
Ω

εn|v′n|2dx→ 0 and vn(0) → c we can follow that vn(xn) → c.

Therefore, for any C > 0 it holds vn(t) → c for all t ∈ [0, Cεn] and we can

compute

lim
n

1

4εn

Cεn∫
0

(vn(x)− 1)2dx = lim
n

Cεn
4εn

1∫
0

(vn(Cεnt)− 1)2dt =
C

4
(1− c)2.

Assume that c �= 1, then as C > 0 can be chosen arbitrarily large we have

1

4ε

1∫
0

(vn − 1)2dx→ ∞.

This together with lim supn
1

4εn

1∫
0

(v0n − 1)2dx ≤ H0(K0) contradicts the assump-

tion

lim
n

1∫
−1

(vn − v0n)
2

4εn
dx = 0.
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Assume that c = 1, we would then have

0 = lim
n

Cεn∫
0

(v − v0n)
2

4εn
dx = lim

n

Cεn∫
0

(1− v0n)
2

4εn
dx,

for any C > 0. This yields a contradiction to lim supn

∫
Ω

εn|(v0n)′|2dx ≤ HN−1(K0)

together with v0n(0) → 0. This can be computed by choosing C > 1
HN−1(K0)

and a

sequences {xn} in [0, Cεn] for which v
0
n(xn) → 1 and then estimating the gradient

xn∫
0

εn|(v0n)′|2dx ≥
xn∫
0

εn|v
0
n(0)− v0n(xn)

xn
|2dx

=
xnεn
(xn)2

(v0n(0)− v0n(xn))
2

≥ 1

C
(v0n(0)− v0n(xn))

2 → 1

C
.

This concludes our one dimensional example, showing that Assumption 4.4

are not sufficient.

4.2 The lim inf inequality in one dimension

In this section we prove the lim inf inequality

ΨK0(f, v) ≤ lim inf
n

Ψv0n,n
(fn, vn) (4.12)

for every sequence {fn, vn} ∈ W 1,2(Ω)×W 1,2(Ω) converging to (f, v) ∈ SBV (Ω)×
L2(Ω) in L2(Ω)× L2(Ω) for εn → 0 as n→ ∞.

Let us fix Ω = (−1, 1) and recall the definitions for the one dimensional case

Ψv0n,n
(f, v) = α

∫
Ω

v2|f ′|2dx+ β

∫
Ω

εn|v′|2 + (v0n − v)2

4εn
dx. (4.13)
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for f , v ∈ W 1,2(Ω), 0 ≤ v ≤ 1, and

ΨK0(f, v) = α

∫
Ω

|f ′|2dx+ βH0(Sf \K0) (4.14)

for f ∈ SBV (Ω), v = 1 a.e., and else ΨK0(f, v) = +∞. For restrictions to subsets

A ⊂ Ω, we use the notation

Ψv0n,n
(f, v, A) = α

∫
A

v2|f ′|2dx+ β

∫
A

εn|v′|2 + (v0n − v)2

4εn
dx

and

ΨK0(f, v, A) = α

∫
A

|f ′|2dx+ βH0(Sf \K0 ∩ A).

We will first prove the following lemma.

Lemma 4.6 (Oscillation Lemma). Let εn → 0 as n → ∞ and {v0n}, K0 fulfill

Assumptions 4.1. Then for every sequence {vn} ∈ W 1,2(Ω) with

sup
n

1∫
−1

εn|v′n|2 +
(v0n − vn)

2

4εn
dx < +∞ (4.15)

there exists a convergent subsequence of {vn} with limit v that satisfies

v = 1 a.e.

Also, for every η > 0 there exists a finite set Sη ⊂ Ω and a subsequence of {vn},
still denoted as {vn}, so that for each compact subset I of Ω \ (Sη ∪ K0) there

exists an index nη,I ∈ N such that for every n ≥ nη,I it holds 1− η ≤ vn ≤ 1 + η

on I.
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In the proof we use the notation

Gn(vn) :=

1∫
−1

εn|v′n|2 +
(v0n − vn)

2

4εn
dx. (4.16)

Proof. Let {vn} ∈ W 1,2(Ω) be a sequence with (4.15). Let us define Iηn := {x ∈
(−1, 1) : |vn(x)− v0n(x)| > η} and denote its measure as |Iηn|. Then for any η > 0

it is

|Iηn|(
η2

4
) ≤
∫
Iηn

εn(vn(x)− v0n(x))
2

εn4
dx ≤ εnGn(vn). (4.17)

As supnGn(vn) < ∞, for any η > 0 the measure |Iηn| tends to zero as n → ∞.

Also, by the triangle inequality we have

|{x ∈ (−1, 1) : |vn(x)− 1| > η}| ≤ |{x ∈ (−1, 1) : |vn(x)− v0n(x)|+ |v0n(x)− 1| > η}|
≤ |{x ∈ (−1, 1) : |vn(x)− v0n(x)| >

η

2
}|

+ |{x ∈ (−1, 1) : |v0n(x)− 1| > η

2
}|.

As {v0n} converges to 1 a.e., the right hand side converges to zero as n → ∞.

Therefore, also {vn} converges to 1 in measure and therefore also vn → 1 a.e.

It remains to show that {vn} can be bound as described above. For every

N ∈ N let us define N equidistant distributed points xiN := −1+ i 2
N
, i = 0, .., N .

We show that the number of intervals [xiN , x
i+1
N ] on which the functions {vn} are

not bound is independent of N , for large enough n and N .

We first fix N and i so that [xiN , x
i+1
N ]∩K0 = ∅. Let s, t be such that vn(s) =

min[xi
N ,xi+1

N ]vn(x) and vn(t) = max[xi
N ,xi+1

N ]vn(x). Furthermore, by Assumption

4.1 (iii) we have a sequence η0n → 0 that bounds the oscillations of v0n through

|1− v0n| ≤ η0n on [xiN , x
i+1
N ]. Note that the sequence {η0n} is independent of i.

For simplicity assume without loss of generality s < t. With the inequality
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a2 + b2 ≥ 2ab we have

∫ t

s

εn|v′n|2 +
(v0n − vn)

2

4εn
dx ≥

∫ t

s

|v′n||v0n − vn|dx ≥
∫ t

s

|v′n|
∣∣|1− vn| − |1− v0n|

∣∣dx
≥ ∣∣ ∫ t

s

|v′n|
(|1− vn| − |1− v0n|

)
dx
∣∣

≥
∫ t

s

|v′n|
(|1− vn| − η0n

)
dx

≥ · · ·

Using the substitution τ = v(x) we then have

· · · ≥
∫ vn(t)

vn(s)

(|1− τ | − η0n
)
dτ.

Now we fix 0 < η and define

Jη
n,N :={i ∈ {0, ..., N} : max[xi,xi+1]vn(x)−min[xi,xi+1]vn(x) ≥ η}

∩ {i ∈ {0, ..., N} : [xi, xi+1] ∩K0 = ∅}.

For i ∈ Jη
n,N again let s, t be such that vn(s) = min[xi

N ,xi+1
N ]vn(x) and vn(t) =

max[xi
N ,xi+1

N ]vn(x). We again assume s < t. For sufficiently small η0n, that is large

n, Lemma A 1 gives us a constant C > 0 such that

∫ xi+1

xi

εn|v′n|2 +
(v0n − vn)

2

4εn
dx ≥

∫ vn(t)

vn(s)

|1− τ | − η0ndτ

≥ C.

We can therefore follow that for every 0 < η for large n it holds

#Jη
n,N ≤ 1

C
Gn(vn). (4.18)

As supnGn < ∞, the number of intervals on which vn oscillates more than η is

bound and the bound is independent of N .

Let us then define the set Sη
n,N := {xi ∈ [−1, 1] : i ∈ Jη

n,N}. For any 0 < η ≤ 1

as #Jη
n,N is bounded so is #Sη

n,N with respect to both N and n. Therefore, letting
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N → ∞ and n → ∞ we can find a convergent subsequence of Sη
n,N with limit

Sη ⊂ Ω. We denote the according subsequence also as {vn}.
For any open set I ⊂ Ω \ (Sη ∪K0), for N large enough, we can find a cover

∪i[xi, xi+1] and an index n0 such that for all n ≥ n0 it holds I ⊂ ∪i[xi, xi+1] ⊂
Ω \ (Sη

n,N ∪K0).

As each [xi, xi+1] ∩ Sη
n,N = ∅ we have that

max[xi,xi+1]vn(x)−min[xi,xi+1]vn(x) ≤ η.

Because vn → 1 in measure, for large enough n it therefore holds

1− η ≤ vn(x) ≤ 1 + η. (4.19)

This is valid for the entire cover ∪i[xi, xi+1] and therefore also for I ⊂ Ω \ (Sη ∪
K0).

Now we turn to the proof of the lim inf inequality in one dimension.

Lemma 4.7 (The lim inf inequality). Let εn → 0 as n → ∞ and {v0n}, K0

fulfill Assumptions 4.1. For every sequence {(fn, vn)} converging to (f, v) in

L2(Ω)× L2(Ω) it then holds

ΨK0(f, v) ≤ lim inf
n

Ψv0n,n
(fn, vn). (4.20)

Proof. Let εn → 0, fn → f and vn → v in L2(Ω) as n→ ∞. Up to a subsequence,

we can suppose that

lim inf
n

Ψv0n,n
(fn, vn) = lim

n→∞
Ψv0n,n

(fn, vn) = C < +∞

and vn → 1 a.e. (else there is nothing to show).

We first show

#(Sf \K0 ∩ I) ≤ lim inf
n

Ψv0n,n
(fn, vn, I) (4.21)

for any open subset I of Ω. If Sf \K0 = ∅ there is nothing to show. Otherwise

choose {t1, .., tN} ⊂ Sf \ K0 and disjoint intervals Ii = (ai, bi) ⊂ Ω with ti ∈ Ii
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and (ai, bi) ∩K0 = ∅. Let ti ∈ I ′i ⊂⊂ Ii, and let mi = lim infn
(
inft∈I′i vn(t)

2
)
. If

mi > 0, then

∫
I′i

|f ′
n|2 ≤

1

mi

∫
I′i

vn(t)
2|f ′

n|2 ≤ Ĉ

and because of the L2(Ω) convergence of fn also

∫
I′i

|f ′
n|2 +

∫
I′i

|fn|2 ≤ ˆ̂
C,

for some constants Ĉ,
ˆ̂
C > 0. In this case fn converges weakly to f in W 1,2(I ′i) ⊂

C0(I ′i), which would imply (Sf ∩I ′i) = ∅. Therefore, it has to be mi = 0 and there

exists a sequence {sin} ∈ I ′i such that vn(s
i
n) → 0. Moreover, as vn converges to 1

a.e., we can find ri, r
′
i ∈ Ii so that ri < sin < r′i and vn(ri) → 1, vn(r

′
i) → 1. Then

we can estimate

lim inf
n
Ψv0n,n

(fn, vn, Ii) ≥ lim inf
n

∫ r′i

ri

εn|v′n|2 +
(v0n − vn)

2

4εn
dx

≥ lim inf
n

∫ sin

ri

εn|v′n|2 +
(v0n − vn)

2

4εn
dx

+ lim inf
n

∫ r′i

sin

εn|v′n|2 +
(v0n − vn)

2

4εn
dx.

Using the inequality a2 + b2 ≥ 2ab we get

lim inf
n
Ψv0n,n

(fn, vn, Ii) ≥ lim inf
n

∫ sin

ri

|v′n||v0n − vn|dx

+ lim inf
n

∫ r′i

sin

|v′n||v0n − vn|dx.
(4.22)

The two terms on the right hand side of (4.22) are of the same kind and we only
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look at the second one

lim inf
n

∫ r′i

sin

|v′n||v0n − vn|dx ≥ lim inf
n

∫ r′i

sin

|v′n|
(|vn − 1| − |v0n − 1|) dx

≥ · · ·

As (ri, r
′
i) ∩ K0 = ∅ we can use Assumption 4.1 (iii) of the a priori edge and

obtain

· · · ≥ lim inf
n

∫ r′i

sin

|v′n|
(|vn − 1| − η0n

)
dx.

Using the substitution t = vn(x) and dt = v′n(x)dx we get

lim inf
n

∫ r′i

sin

|v′n|
(|vn − 1| − η0n

)
dx ≥ lim inf

n

∫ vn(r′i)

vn(sin)

|t− 1|dt− η0n lim sup
n

∫ vn(r′i)

vn(sin)

dt

= lim inf
n

∫ vn(r′i)

vn(sin)

|t− 1|dt− η0n.

Letting the limits n→ ∞, η0n → 0, vn(r
′
i) → 1 and vn(s

i
n) → 0 pass, we arrive at

lim inf
n

∫ r′i

sin

|v′n||v0n − vn|dx ≥
∫ 1

0

|t− 1|dt = 1

2
.

This yields

lim inf
n
Ψv0n,n

(fn, vn, Ii) ≥ 1

2
+

1

2
= 1. (4.23)

Together with the arbitrary choice of points {t1, .., tN} ⊂ Sf \K0 we arrive at

#(Sf \K0) ≤ lim inf
n
Ψv0n,n

(fn, vn, I) (4.24)

if I is any open set with (Sf \K0) ⊂ I.

Now we show that for every open subset I with I ∩ (Sf ∪K0) = ∅ the limit
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f is an element of W 1,2(I) and

∫
I

|f ′|2dx ≤ lim inf
n
Ψv0n,n

(fn, vn, I). (4.25)

From Lemma 4.6 we know that there exists a set S (not the jump set Sf ) so that

for every open set I ⊂ (−1, 1)\(S∪K0) and n large enough, up to a subsequence,

it holds 1/2 ≤ vn ≤ 3/2 on I and thus

1

2
lim inf

n

∫
I

|f ′
n|2dx ≤ lim inf

n

∫ b

a

v2n|f ′
n|2dx ≤ C.

Therefore, fn also converges weakly to f in W 1,2(I). We estimate

∫
I

|f ′|2dx ≤ lim
n

∫
I

v2n|f ′|2dx ≤ lim inf
n

∫
I

v2n|f ′
n|2dx ≤ lim inf

n

∫ b

a

v2n|f ′
n|2dx.

(4.26)

In the first inequality we used Fatou’s lemma for vn → 1. In the second, we used

that the map f �→ ∫
I
v2n|f ′|2dx is convex and lower semicontinuous with regards

to the weak convergence fn ⇀ f .

Since f is in W 1,2(I), the jump set Sf is a subset of (S ∪ K0). As the

points (S ∪ K0) \ Sf are only finite, the inequality (4.26) can be extended to

f ∈ W 1,2(Ω \ Sf ). We therefore have for every I with I ∩ Sf = ∅
∫
I

|f ′|2dx ≤ lim inf
n

∫ b

a

v2n|f ′
n|2dx. ≤ lim inf

n
Ψv0n,n

(fn, vn, I). (4.27)

It remains to combine the two inequalities (4.24) and (4.27). For every τ > 0

we define the sets I0τ := Ω\(Sf+[−τ, τ ]) and I1 := (Sf \K0+[−τ, τ ])∩Ω. The two
sets are disjoint but don’t make up Ω entirely. Then using the two inequalities

(4.24) and (4.27), for every (fn, vn) → (f, v) in L2(Ω)×L2(Ω) and τ > 0 we have

∫
I0τ

|f ′|2dx+#(Sf \K0 ∩ I1τ ) ≤ lim inf
n
Ψv0n,n

(fn, vn, I
0
τ ) + lim inf

n
Ψv0n,n

(fn, vn, I
1
τ )

≤ lim inf
n
Ψv0n,n

(fn, vn).
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Letting τ → 0, we arrive at

ΨK0(f, v) ≤ lim inf
n
Ψv0n,n

(fn, vn), (4.28)

the desired inequality.

4.3 The lim sup inequality in one dimension

In this section we prove the existence of a recovery sequence {fn, vn} ∈ W 1,2(Ω)×
W 1,2(Ω) such that

lim sup
n

Ψv0n,n
(fn, vn) ≤ ΨK0(f, v). (4.29)

As usual, εn → 0 for n→ ∞.

Lemma 4.8 (The lim sup inequality). Let εn → 0 as n → ∞ and {v0n}, K0

fulfill Assumptions 4.1. For every (f, v) ∈ L2(Ω)× L2(Ω) there exists a sequence

{fn, vn} converging to (f, v) in L2(Ω)× L2(Ω) with

lim sup
n

Ψv0n,n
(fn, vn) ≤ ΨK0(f, v). (4.30)

Proof. We can assume v = 1 a.e. or else there is nothing to show. We now

construct such a recovery sequence. It suffices to consider the cases where (a, b) =

(−1, 1) and

(i) f ∈ W 1,2(−1, 1).

(ii) f ∈ W 1,2(−1, 1) \ {0}, Sf = {0} and (a, b) ∩K0 = ∅.

(iii) f ∈ W 1,2(−1, 1) \ {0}, Sf = K0 = {0}.

Other situations can be reduced to the three cases above by separation into small

intervals and shifts. We will define the sequence {vn} such that on the boundary

of each interval it is vn = v0n, at least in the limit n → ∞. Thus a continuous

patching can be done without difficulty.

82



For (i) we can simply choose fn(x) = f(x) and vn = (1 − Cn)v
0
n with Cn =

exp( −1
2
√
εn
). The factor (1−Cn) is only chosen to make the patching more straight-

forward. We can then compute

Ψv0n,n
(fn, vn) = α

∫ 1

−1

(v0n)
2|f ′|2 + β

4εn
(Cnv

0
n)

2 + βεn|(1− Cn)(v
0
n)

′|2dx

≤ α

∫ 1

−1

|f ′|2dx+ βC2
n

2εn
+ β

∫ 1

−1

εn|(v0n)′|2dx.

The term C2
n

2εn
=

exp( −1
2
√

εn
)2

2εn
=

exp( −1√
εn

)

2εn
goes to zero as εn → 0 because of the

exponential decay. By Assumption 4.1 (iv) we also have
∫ 1

−1
εn|(v0n)′|2dx → 0,

which yields

lim sup
n

Ψv0n,n
(fn, vn) ≤ ΨK0(f, v). (4.31)

We now construct a sequence for (ii). Set fn ∈ W 1,2(−1, 1) with fn(x) =

f(x) if |x| ≥ ε2n and vn = v0n · φn where

φn(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, |x| ≤ ε2n

1− exp( ε
2
n−|x|
2εn

), ε2n < |x| < ε2n +
√
εn

1− exp( −1
2
√
εn
), |x| ≥ ε2n +

√
εn.

(4.32)

We can then compute

Ψv0n,n
(fn, vn) =

∫ 1

−1

(
αv2n|f ′|2 + β

4εn
(v0n − vn)

2 + βεn|v′n|2
)

≤ α

∫ 1

−1

|f ′|2dx+ β

∫ 1

−1

1

4εn
(v0n − vn)

2 + εn|v′n|2dx.
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We rewrite the last term to∫ 1

−1

1

4εn
(v0n)

2(1− φn)
2 + εn|(v0n · φn)

′|2dx

≤
∫ 1

−1

1

4εn
(1− φn)

2 + εn|v0n · φ
′
n|2 + εn|(v0n)

′ · φn|2dx

≤
∫ 1

−1

1

4εn
(1− φn)

2 + εn|φ′
n|2 + εn|(v0n)

′ |2dx.

By Assumption 4.1 (iii) on the a priori edge {v0n} it is

∫ 1

−1

εn|(v0n)
′ |2dx→ 0. (4.33)

The remaining term is the original Ambrosio-Tortorelli approximation of the edge

penalty. Using the definition of φn, we can compute,

∫ 1

−1

1

4εn
(1− φn)

2 + εn|φ′
n|2dx

=
1

2εn

∫ ε2n

0

dx+ 2

∫ ε2n+
√
εn

ε2n

1

4εn
(1− φn)

2 + εn|φ′
n|2dx+

1

2εn
(exp(

−1

2
√
εn

))2
∫ 1

ε2n+
√
εn

dx.

The first and last integral converge to 0 as εn → 0. Finally, the second term is

2

∫ ε2n+
√
εn

ε2n

1

4εn
(1− φn)

2 + εn|φ′
n|2dx

= 2

∫ ε2n+
√
εn

ε2n

1

4εn
(exp(

ε2n − x

2εn
))2 + εn| 1

2εn
exp(

ε2n − x

2εn
)|2dx (4.34)

=
1

εn

∫ ε2n+
√
εn

ε2n

exp(
ε2n − x

εn
)dx

=
1

εn

[− εn exp(
ε2n − x

εn
)
]ε2n+√

εn

ε2n
= − exp(

−1√
εn

) + 1.

We define

On :=

∫ 1

−1

εn|(v0n)
′ |2dx+ 1

2εn

∫ ε2n

0

dx+
1

2εn
exp(

−1√
εn

)− exp(
−1√
εn

)
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for which it is On → 0 as n→ ∞. Together we have

Ψv0n,n
(fn, vn) ≤ α

∫ 1

−1

|f ′|2dx+ β
(
1 +On

)
.

In the limit this is

lim sup
n

Ψv0n,n
(fn, vn) ≤ α

∫ 1

−1

|f ′|2dx+ β (4.35)

and thus the claim for (ii) is shown.

We now construct a sequence for (iii). As in the above case, set fn ∈
W 1,2(−1, 1) with fn(x) = f(x) if |x| ≥ ε2n. We define the edge indicator as

vn := v0n · φn, with Cn := exp( −1
2
√
εn
) and

φn(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, |x| ≤ ε2n

(1− Cn) · |x|−ε2n
εn

, ε2n < |x| < ε2n + εn

1− Cn, |x| ≥ ε2n + εn.

(4.36)

In the same way as above, we arrive at

Ψv0n,n
(fn, vn) =

∫ 1

−1

(
αv2n|f ′|2 + β

4εn
(v0n − vn)

2 + βεn|v′n|2
)

≤ α

∫ 1

−1

|f ′|2dx+ β

∫ 1

−1

1

4εn
(v0n)

2(1− φn)
2 + εn|v0n · φ

′
n|2 + εn|(v0n)

′ · φn|2dx

≤ α

∫ 1

−1

|f ′|2dx+ β

∫ 1

−1

(v0n)
2
( 1

4εn
(1− φn)

2 + εn|φ′
n|2
)
dx+ β

∫ 1

−1

εn|(v0n)
′ |2dx.

We look at the following part of the second integral

∫ ε2n+εn

ε2n

(v0n)
2
( 1

4εn
(1− φn)

2 + εn|φ′
n|2
)
dx, (4.37)

85



the other parts of the edge integral can be estimated by

Ôn :=

∫ 1

−1

εn|(v0n)
′ |2dx+ 1

2εn

∫ ε2n

0

dx+
1

2εn
C2

n.

Now we use that v0n ≥ 0 and v0n is continuous. Then, by the mean value theorem

for integration, there exists a ξn ∈ [ε2n, ε
2
n + εn] such that

∫ ε2n+εn

ε2n

(v0n)
2
( 1

4εn
(1− φn)

2 + εn|φ′
n|2
)
dx

= (v0n(ξn))
2

∫ ε2n+εn

ε2n

( 1

4εn
(1− φn)

2 + εn|φ′
n|2
)
dx.

Using the definition of φn(x) = (1− Cn) · x−ε2n
εn

and straightforward, but lengthy,

calculation we have

∫ ε2n+εn

ε2n

( 1

4εn
(1− φn)

2 + εn|φ′
n|2
)
dx =

C2
n + Cn + 1

12
+ (1− Cn)

2 (4.38)

=: Ĉn.

For εn → 0, all the terms in (4.38) are bounded and we have that lim supn Ĉn <

∞. We summarize

Ψv0n,n
(fn, vn) ≤ α

∫ 1

−1

|f ′|2dx+ β
(
v0n(ξn)

2Ĉn + Ôn

)
.

By Lemma 4.3, if lim supn
dist(K0,xn)

εn
< ∞, then v0n(xn) → 0 as εn → 0. As

ξn ∈ [ε2n, ε
2
n + εn] we therefore have vn0 (ξn) → 0, and thus, letting the limit pass,

we obtain

lim sup
n

Ψv0n,n
(fn, vn) ≤ α

∫ 1

−1

|f ′|2dx. (4.39)
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4.4 The N-dimensional case

In the previous sections we established lim inf and lim sup inequalities for the

variational approximation in one dimension. In this section we will lift our results

to dimension N ≥ 2.

For the lim inf equality this is done by a slicing technique following Braides

[2002][p. 188ff] which is the standard approach for such kind of variational ap-

proximations. For the lim sup inequality we follow Attouch et al. [2006]. Other

references are Ambrosio and Tortorelli [1990]; Attouch et al. [2006]; Braides [1998].

We first fix the notation. Let Ω ⊂ RN , N ≥ 2 be an open set. We write

ΨK0(f, v) = α

∫
Ω\K

|∇f |2dx+ βHN−1(Sf \K0) (4.40)

for f ∈ SBV (Ω), v = 1 a.e., and else ΨK0(f, v) = +∞ and

Ψv0n,n
(f, v) = α

∫
Ω

v2|∇f |2dx+ β

∫
Ω

εn|∇v|2 + (v0n − v)2

4εn
dx (4.41)

for v, f ∈ W 1,2(Ω), 0 ≤ v ≤ 1.

4.4.1 The lim inf inequality through slicing

We now prove the lim inf inequality

ΨK0(f, v) ≤ lim inf
n

Ψv0n,n
(fn, vn)

for every {(fn, vn)} converging to (f, v) in L2(Ω) × L2(Ω) for dimensions N ≥
2. We follow the steps as described in Braides [2002][p. 188ff]. Once the one

dimensional convergence in Theorem 4.7 is established, the N -dimensional case

follows by standard arguments. This can also be seen in the proof below, as we

do not have to address the a priori edge in any step.

Lemma 4.9 (The lim inf inequality). Let εn → 0 as n → ∞ and {v0n}, K0

fulfill Assumptions 4.1. For every sequence {(fn, vn)} converging to (f, v) in
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L2(Ω)× L2(Ω) it then holds

ΨK0(f, v) ≤ lim inf
n

Ψv0n,n
(fn, vn). (4.42)

We will use the following notations in the proof. Let SN−1 be the N − 1

dimensional sphere. For every ν ∈ SN−1 we define

πν := {y ∈ RN : 〈y, ν〉 = 0},
Ωy := {t ∈ R : y + tν ∈ Ω}, y ∈ πν ,

Ων := {y ∈ πν : Ωy �= ∅}.

Furthermore we define for f : Ω → R and y in Ων the function fy for all t ∈ Ωy

by fy(t) = f(y + tν).

Ω

πν

ν

y

Ωy

Figure 4.1: The domain Ω and a slice Ωy for a fixed ν ∈ SN−1.

Proof. 1. ’Localize’ the functional Ψv0n,n
highlighting its dependence on the set

of integration.

For all open sets A ⊂ Ω we define

Ψv0n,n
(f, v, A) := α

∫
A

v2|∇f |2dx+ β

∫
A

εn|∇v|2 + (v0n − v)2

4εn
dx
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for v, f ∈ W 1,2(Ω), 0 ≤ v ≤ 1, and Ψv0n,n
(f, v) = ∞ else.

2. We first fix ν ∈ SN−1 and define for all y ∈ πν one dimensional functionals:

Ψ
ν,y

v0n,n
(f, v, I) := α

∫
I

v2|f ′|2dx+ β

∫
I

εn|v′|2 + (v0n − v)2

4εn
dx

for I ⊂ R open and bounded, f, v ∈ W 1,2(I), 0 ≤ v ≤ 1 and Ψ
ν,y

v0n,n
(f, v, I) :=

∞ else (actually independent of y). By integrating over all y in πν we define

the functional

Ψ
ν

v0n,n
(f, v, A) :=

∫
πν

Ψ
ν,y

v0n,n
(fy, vy, Ay)dH

N−1

for A ⊂ Ω open and bound, f, v ∈ W 1,2(A), 0 ≤ v ≤ 1. By Fubini’s theorem

this is

Ψ
ν

v0n,n
(f, v, A) = α

∫
A

v2|〈ν,∇f〉|2dx+ β

∫
A

εn|〈ν,∇v〉|2 + (v0n − v)2

4εn
dx

if 〈ν,Df〉 << LN , 〈ν,Dv〉 << LN , 0 ≤ v ≤ 1 and Ψ
ν

v0n,n
(f, v, A) = ∞

otherwise.

3. Compute the one dimensional Γ-lim infn Ψ
ν,y

v0n,n
(f, v, I).

By Theorem 4.7 we have

Ψ
ν,y

K0(f, v, I) := Γ- lim inf
n

Ψ
ν,y

v0n,n
(f, v, I) = α

∫
I

|f ′|2dx+ βH0(Sf \K0)

and we can define

Ψ
ν

K0(f, v, A) :=

∫
πν

Ψ
ν,y

K0(fy, vy, Ay)dH
N−1

for A ⊂ Ω open and bound, f, v ∈ W 1,2(A), 0 ≤ v ≤ 1.

Note that Ψ
ν

K0(f, v, A) is finite if and only if v = 1 a.e. in A, fy ∈ SBV (Ay)
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for HN−1 a.e. y ∈ πν . If in addition f ∈ L∞(Ω) we have

∫
πν

|Dfy|(Ωy)dH
N−1

≤
∫
πν

[ ∫
Ωy

(|f ′
y|2 + 2‖f‖∞H0(fy)

)]
dHN−1 <∞. (4.43)

4. Apply Fatou’s lemma.

For (fn, vn) → (f, v) in L2(Ω)× L2(Ω) we have

lim inf
n

Ψv0n,n
(f, v, A) ≥ lim inf

n
Ψ

ν

v0n,n
(f, v, A)

= lim inf
n

∫
πν

Ψ
ν,y

v0n,n
(fy, vy, Ay)dH

N−1

≥
∫
πk

lim inf
n

Ψ
ν,y

v0n,n
(fy, vy, Ay)dH

N−1

≥
∫
πk

Ψ
ν,y

K0(fy, vy, Ay)dH
N−1

= Ψ
ν

K0(f, v, A).

In the first inequality and first equality we used the definition of Ψ
ν

v0n,n
.

The second inequality follows from Fatou’s lemma and the third from The-

orem 4.7. The final equality is the definition of Ψ
ν

K0 . We can deduce that

lim infn Ψv0n,n
(f, v, A) ≥ Ψ

ν

K0(f, v, A) for all ν ∈ SN−1.

5. Describe the domain of Γ-lim infn Ψv0n,n
(f, v, A).

If f lies in L∞(Ω), by Equation (4.43) and Theorem 2.27 we deduce that

Γ-lim infn Ψv0n,n
(f, v, A) is finite if f ∈ SBV (A) and v = 1 a.e.

6. Obtain a direction dependent estimate.

If f ∈ SBV (A) and v = 1 a.e. from Theorem 2.27 we have

Ψ
ν

K0(f, v, A) = α

∫
A

|〈∇f, ν〉|2dx+ β

∫
A∩(Sf\K0)

|〈νf , ν〉|dHN−1
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where νf is the normal on Sf as defined in Definition 2.18. We can therefore

summarize

lim inf
n

Ψv0n,n
(f, v, A) ≥ (4.44)

sup
ν∈SN−1

(
α

∫
A

|〈∇f, ν〉|2dx+ β

∫
A∩(Sf\K0)

|〈νf , ν〉|dHN−1
)
.

7. Optimize the lower estimate.

We now apply Lemma 2.7 to optimize the lower estimate (4.44). Let {νi}
be a dense sequence in SN−1. We first define the measure μf = LN |Ω+νf |Sf

and the functions

φi(x)) =

{
|〈∇f, νi〉|2, x �∈ Sf \K0

|〈νf , νi〉|, x ∈ Sf \K0.
(4.45)

We then have∫
Ω

sup
i
φi(x) dμf =

∫
Ω\(Sf\K0)

sup
i
φi(x) dμf +

∫
Ω∩(Sf\K0)

sup
i
φi(x) dμf

=

∫
Ω

|∇f |2 dx+
∫
Ω∩(Sf\K0)

dHN−1.

We can then apply Lemma 2.7 to conclude

lim inf
n

Ψv0n,n
(f, v) ≥ sup

{Ai}

[∑
i∈I

lim inf
n

Ψv0n,n
(f, v, Ai)

]
(4.46)

≥ sup
{Ai}

[∑
i∈I

α

∫
Ai

|〈∇f, νi〉|2dx+ β

∫
Ai∩(Sf\K0)

|〈νf , νi〉|dHN−1
]

= α

∫
Ω

|∇f |2 dx+ βHN−1(Sf \K0)

= ΨK0(f, v),

where the supremum is taken over all finite families {Ai}i∈I of pairwise

disjoint open subsets of Ω.
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4.4.2 The lim sup inequality through density

Finally we show the existence of a recovery sequence {(fn, vn)} converging to

(f, v) so that

lim sup
n

Ψv0n,n
(fn, vn) ≤ ΨK0(f, v) (4.47)

for every (f, v) in L2(Ω) × L2(Ω) for dimensions N ≥ 2. We will reduce the N

dimensional case to the one dimensional following the presentation in [Attouch

et al., 2006, p. 492ff]. The arguments passing from the N dimensional case to

the one dimensional are again independent of our a priori edge information {v0n}
and K0.

For the proof, we need to assume certain regularity of the domain Ω. We

assume that Ω satisfies the following “refection condition“ on ∂Ω : there exists

an open neighborhood U of ∂Ω in RN and an injective Lipschitz function φ :

U ∩ Ω → U ∩ Ω such that φ−1 is Lipschitz.

Lemma 4.10 (lim sup inequality). Let εn → 0 as n → ∞ and {v0n}, K0 fulfill

Assumptions 4.1 and Ω fulfill the reflection condition. For every (f, v) in L2(Ω)×
L2(Ω) there exists a sequence {(fn, vn)} converging to (f, v) for which

lim sup
n

Ψv0n,n
(fn, vn) ≤ ΨK0(f, v). (4.48)

The idea of the proof is to modify (f, 1) in a neighborhood of Sf to obtain, from

the expression of Ψv0n,n
(fn, vn), an equivalent of α

∫
Ω
|∇f |2dx+ βHN−1(Sf \K0).

We will design the function in the same way as in the one dimensional case, only

depending on the distance of a point x to the edge set. We write for any x ∈ RN

and any set A ⊂ RN

d(x,A) = inf
y∈A

‖x− y‖2. (4.49)

Proof. We first assume the following regularity condition on the jump set Sf : It
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holds HN−1(Sf \ Sf ) = 0 and for every compact set A ⊂ Ω it holds

lim
ρ→0

LN(Ω ∩ (Sf \ A)ρ)
2ρ

= HN−1(Sf \ A), (4.50)

where (Sf )ρ is the tubular neighborhood {x ∈ RN : d(x, Sf ) < ρ} of order ρ

around Sf .

Let us fix an := ε2n+
√
εn, bn := ε2n+εn and cn := ε2n+2

√
εn with corresponding

sequence of tubular neighborhoods (Sf )an , (Sf )bn , (Sf )cn . We assume that n is

large enough, such that bn ≤ an ≤ cn. We again set Cn = exp( −1
2
√
εn
).

We will separate our domain in the following way:

Ω = Ω \ (Sf )an ∪ (Sf \K0)an ∪ (Sf ∩K0)an \ (Sf \K0)cn

∪ (
(Sf ∩K0)an ∩ (Sf \K0)cn

)
\ (Sf \K0)an .

The first three parts corresponds to the cases in dimension one, the last is needed

to make sure that the sequence can be patched such that vn ∈ W 1,2(Ω).

We set fn(x) = f(x) if d(x, Sf ) ≥ an and extend each function fn such that

fn ∈ W 1,2(Ω).

On Ω \ (Sf )an and (Sf \ K0)an we set vn(x) = v0n(x) · φn(d(x, Sf )) where

φn : R → R is defined as

φn(t) :=

⎧⎪⎨
⎪⎩

0, t ≤ ε2n

1− exp( ε
2
n−t
2εn

), ε2n < t < an

1− Cn, t ≥ an.

(4.51)

On (Sf ∩K0)an \ (Sf \K0)cn we define vn(x) = v0n(x) · φ̂n(d(x, Sf )) with

φ̂n(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t ≤ ε2n

(1− Cn) · t−ε2n
εn
, ε2n < t < bn

1− Cn, t ≥ bn.

(4.52)

On
(
(Sf∩K0)an∩(Sf\K0)cn

)
\(Sf\K0)an we define vn(x) = v0n(x)·φ̃n(d(x, Sf ))
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with

φ̃n(t) =
1

cn − an

(
(t− an)φ̂n(t) + (cn − t)φn(t)

)
. (4.53)

Now we compute the integral on each domain.

On Ω \ (Sf )an we have

Ψv0n,n
(fn, vn,Ω \ (Sf )an) ≤

∫
Ω\(Sf )an

(
α(v0n)

2|∇f |2 + β
1

4εn
(Cn)

2 + βεn|Cn∇v0n|2
)
dx

≤
∫
Ω\(Sf )an

α|∇f |2dx+ β

∫
Ω\(Sf )an

εn|∇v0n|2 + β
1

4εn
(Cn)

2dx.

We define

O1
n := β

∫
Ω\(Sf )an

εn|∇v0n|2 + β
1

4εn
(Cn)

2dx.

As in the one dimensional case O1
n → 0 as n→ ∞.

On (Sf \K0)an we compute

Ψv0n,n
(fn, vn, (Sf \K0)an) =

∫
(Sf\K0)an

(
αv2n|∇f |2 +

β

4ε
(v0n − vn)

2 + βε|∇vn|2
)

≤ α

∫
(Sf\K0)an

|∇f |2dx

+ β

∫
(Sf\K0)an

1

4ε
(1− φn(d(x, Sf )))

2 + ε|∇(φn(d(x, Sf ))|2 + ε|∇(v0n)|2dx

and define

O2
n := β

∫
(Sf\K0)an

ε|∇(v0n)|2dx.

Besides O2
n the remaining integral over the edge part is the original Ambrosio-

Tortorelli functional. We will address it in Lemma 4.11 below.
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On (Sf ∩K0)an \ (Sf \K0)cn we compute

Ψv0n,n
(fn, vn, (Sf ∩K0)an \ (Sf \K0)an)

≤
∫
(Sf∩K0)an\(Sf\K0)cn

α|∇f |2dx+
∫
(Sf∩K0)an

(
+
β

4ε
(v0n − vn)

2 + βε|∇vn|2
)
.

For the edge we focus on the integration over φ̂, as the rest vanishes in the

limit. By mean value theorem we have for some ξn ∈ (Sf ∩K0)an∫
(Sf∩K0)an

(v0n(x))
2
( 1
4ε

(1− φ̂n(d(x, Sf )))
2 + ε|∇(φ̂n(d(x, Sf )))|2

)
dx

= (v0n(ξn))
2

∫
(Sf∩K0)an

( 1
4ε

(1− φ̂n(d(x, Sf )))
2 + ε|∇(φ̂n(d(x, Sf )))|2

)
dx.

As
dist(ξn,Sf )

εn
< ∞, from Lemma 4.3 , we have that v0n(ξn) → 0. Moreover the

remaining integral is uniformly bounded by Lemma 4.11 and we define

O3
n :=β(v0n(ξn))

2

∫
(Sf∩K0)an

( 1
4ε

(1− φ̂n(d(x, Sf )))
2 + ε|∇(φ̂n(d(x, Sf )))|2

)
dx

+ β

∫
(Sf∩K0)an

ε|∇(v0n)|2dx.

On
(
(Sf ∩K0)an ∩ (Sf \K0)cn

)
\ (Sf \K0)an we write

O4
n := Ψv0n,n

(fn, vn,
(
(Sf ∩K0)an ∩ (Sf \K0)cn

)
\ (Sf \K0)an).

We estimate the integral in Lemma A 3 in the appendix and have that O4
n → 0

as n→ ∞.
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We can then conclude

lim sup
n

Ψv0n,n
(fn, vn)

≤ lim sup
n

Ψv0n,n
(fn, vn,Ω \ (Sf )an)

+ lim sup
n

Ψv0n,n
(fn, vn, (Sf \K0)an)

+ lim sup
n

Ψv0n,n
(fn, vn, (Sf ∩K0)an \ (Sf \K0)cn)

+ lim sup
n

Ψv0n,n
(fn, vn,

(
(Sf ∩K0)an ∩ (Sf \K0)cn

)
\ (Sf \K0)an)

≤ α lim sup
n

∫
Ω\Sf an

|∇f |2dx+ α lim sup
n

∫
(Sf\K0)an

|∇f |2dx

+ β lim sup
n

∫
(Sf\K0)an

1

4ε
(1− φn(d(x, Sf )))

2 + ε|∇(φn(d(x, Sf ))|2dx

+ lim sup
n

(
O1

n +O2
n +O3

n +O4
n

)
= α

∫
Ω

|∇f |2dx+ βHN−1(Sf \K0).

The second step is to construct a sequence fn → f , where every fn fulfills the

regularity assumption (4.50) and that ΨK0(f, 1) = limn ΨK0(fn, 1). The proof

then follows from a diagonalization argument. We refer to [Attouch et al., 2006,

p. 494 Second step] on how to construct such a sequence. In the mentioned proof

it suffices to take K = Ω ∩ (Sf \K0). This step also makes use of the reflection

condition .

To conclude the proof above we need the following lemma following [Ambrosio

and Tortorelli, 1990, Proposition 5.1]

Lemma 4.11. Let εn, an → 0 as n → ∞ with εn
an

→ 0 and {v0n}, K0 fulfill

Assumptions 4.1. If for f ∈ SBV (Ω) it holds

lim
ρ→0

L(Ω ∩ (Sf \K0)ρ)

2ρ
= HN−1(Sf \K0), (4.54)
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and we have a sequence of functions φn ∈ W 1,2([0, 1]), for which

lim sup
n

( 1

4εn

(
1− φn(an)

)2
+ εn|φn(an)

′|2) <∞, (4.55)

then for any A ⊂ Ω it is

lim sup
n

∫
(Sf\A)an

1

4εn

(
1− φn(d(x, Sf ))

)2
+ εn|∇φn(d(x, Sf ))|2dx

≤ lim sup
n

∫ an

0

1

4εn

(
1− φn(t)

)2
+ εn|φn(t)

′|2dt ·HN−1(Sf \ A).

Proof. Following [Ambrosio and Tortorelli, 1990, Proposition 5.1] we rewrite the

integral

∫
(Sf\A)an

1

4ε
(1− φn(d(x, Sf )))

2 + ε|∇(φn(d(x, Sf )))|2dx

=

∫ an

0

( 1

4ε
(1− φn(t))

2 + ε|∇(φn(t))|2
)
HN−1[d(x, Sf \ A) = t] dt.

We define h(t) = LN(d(x, Sf \ A) < t), then by [Attouch et al., 2006, Corollary

4.2.3, p. 138] it is h′(t) = HN−1[d(x, Sf \ A) = t]. Furthermore, we define

zn(t) :=
1

4εn
(1− φn(t))

2 + εn|(φ′
n(t))|2. We therefore can write

∫
(Sf\A)an

1

4ε
(1− φn(d(x, Sf )))

2 + ε|∇(φn(d(x, Sf )))|2dx

=

∫ an

0

zn(t)h
′(t)dt.

We can then use integration by parts and arrive at

∫ an

0

zn(t)h
′(t)dt = [z(t)h(t)]an0 −

∫ an

0

z′(t)h(t)dt.

The term [z(t)h(t)]an0 vanishes in the limit n → ∞ because of the assumption

(4.55) and (4.54). Also by (4.54) we have that for all η > 0 there exists a τ so

that for all t < τ it is h(t) ≥ 2t(HN−1(Sf \ A) − η). By this regularity and the
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definition of an we can find a sequence ηn → 0 such that

−
∫ an

0

z′n(t)h(t)dt ≤ −2(HN−1(Sf \ A)− ηn)

∫ an

0

z′n(t)tdt.

A second integration by parts leads to

∫ an

0

z′(t) tdt = [z(t)t]an0 −
∫ an

0

z(t)dt.

The term [z(t)t]an0 vanishes in the limit n→ ∞ because of the assumption (4.55).

Together we have

lim sup
n

∫
(Sf\A)an

1

4ε
(1− φn(x))

2 + ε|∇(φn)|2dx

≤ lim sup
n

(
[z(t)h(t)]an0 + (HN−1(Sf \ A)− ηn)

( ∫ an

0

z(t)dt− [z(t)t]an0
))

=

∫ an

0

z(t)dt HN−1(Sf \ A).

4.5 A heuristic approximation for γ �= 0

In this section we introduce a second penalty term, that can be considered as

an approximation of the case where γ �= 0. The penalty for which we showed

the convergence results in the sections above has numerical shortcomings. Most

importantly, our experiments indicate that the a priori edgeK0 is always included

in the detected edge, even if the data does not support an edge at a given point, see

Figure 5.4. In some cases it is desirable to give the edge detector more flexibility,

including a priori edges only when the measured data also supports this.

To this end we propose the penalty

Hv0n,n
(f, v) = α

∫
Ω

v2|∇f |2dx+ β

∫
Ω

(
εn|∇v|2 + (1− v)2

4εn

)
(1 + γ(v0n − v)2)dx

for f, v ∈ W 1,2(Ω), 0 ≤ v,≤ 1 with 0 < β, γ, α.
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We consider it a heuristic approximation of

ΨHK0 (f, v) = α

∫
Ω\K

|∇f |2dx+ βHN−1(Sf ) + γβ HN−1(Sf \K0)

for parameters 0 < β, γ, α. The reasoning behind this is as follows. In the phase

field setting, the integral

∫
Ω

(
εn|∇v|2 + (1− v)2

4εn

)
dx

approximates HN−1(Sf ). In the case where v is close to the constant function

1 , i.e. there is no edge, this integral is small and the edge part in Hv0n,n
has a

negligible contribution. Thus the factor (1+γ(v0n− v)2) is not of big importance.

In the case where v indicates an edge, that is v(x) ≈ 0, the factor (1+γ(v0n−v)2)
decides how strongly it is penalized. If v(x) is close to v0n(x) (which is the case

x ∈ Sf ∩K0), then the edges are approximately penalizes by β. If v(x) is close

to 0 but v0n(x) close to 1 (which is the case x ∈ Sf \ K0), then the edges are

approximately penalized by β(1 + γ). We show some reconstructions with this

penalty in the next chapter.
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Chapter 5

Applications

In this chapter we apply the variational approximations of

min
(f,K)

(∫
Θ

|A(f)− g|2dx+ α

∫
Ω\K

|∇f |2dx+ βHN−1(K \K0) + γHN−1(K ∩K0)

)
,

(5.1)

that we introduced in the previous chapter to two inverse problems. The first

problem is 2D X-ray CT with parallel beam geometry. The second is the identifi-

cation of the scattering coefficient in 2D diffuse optical tomography. Both inverse

problems are covered by our theoretical setting and the examples are based on

simulated data.

We compare the standard Mumford-Shah penalty (MS), the modified Mumford-

Shah penalty (4.2) (MSK0), and the heuristic penalty (4.4) (HK0). In both ex-

amples we furthermore choose an additional regularization method not making

use of the a priori knowledge. For X-ray CT we choose a smoothed TV penalty

, see Rudin et al. [1992]. For 2D diffuse optical tomography we use a Landweber

method as comparison, see Hanke et al. [1995].

The computations were done using Matlab (version R2013a). For X-ray CT we

used the implementation of the Radon Transform and the adjoint operator written

by Lutz Justen from the Software-Documentation of the Center for Industrial

Mathematics, University of Bremen. For diffuse optical tomography we use the

Toast package from Martin Schweiger and Simon Arridge Schweiger and Arridge
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[2014] for the forward operator and the adjoint of its derivative.

As we only consider simulated data we can evaluate the quality of reconstruc-

tion frec by comparing it with the true image ftrue via the peak signal to noise

ratio

PSNR(frec, ftrue) := 10 log10

(
max |ftrue|2

MSE(ftrue, frec)

)
, (5.2)

where MSE(ftrue, frec) is the mean square error and via the structural similarity

index measure

SSIM(frec, ftrue) :=
(2μftrueμfrec + c1)(2σftruefrec + c2)

(μ2
ftrue

+ μ2
frec

+ c1)(σ2
ftrue

+ σ2
frec

+ c2)
, (5.3)

where μftrue , μfrec are averages, σ
2
ftrue

, σ2
frec

are variances and σftruefrec the covari-

ance. The factors c1, c2 > 0 stabilize the division. The SSIM returns values in

[−1, 1], where the maximum similarity SSIM = 1 is obtained only for identical

images. For the PSNR the larger the value the better. The SSIM often gives

a better indication of similarity between images than the PSNR. See Hore and

Ziou [2010] for a comparison of the two quality measures.

Alternating minimization

Let Ψ1(f, v) = Ψv0n,n
(f, v) as in (4.2), Ψ2(f, v) = Hv0n,n

(f, v) as in (4.4) and

Ψ3(f, v) = ATεn(f, v) be the original Ambrosio-Tortorelli penalty as in (1.4).

For i = 1, 2, 3 we solve the minimization problem

min
(f,v)

(
‖A(f)− g‖2L2(Θ) +Ψi(f, v)

)
(5.4)
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in an alternating manner described in Algorithm 1.

Data: g, parameters

Result: reconstruction, edge indicator

Initialization;

v0 = 1;

for j = 0 to NumberOfIterations do
% Reconstruction:

fj = argminf

[
‖A(f)− g‖2L2(Θ) + α

∫
Ω

v2j |∇f |2dx
]
;

% Edge detection:

vj+1 = argminvΨi(fj, v);

end

reconstruction = fj;

edge indicator = vj+1;

Algorithm 1: The alternate minimization to compute a reconstruction and

its edge indicator function by solving the minimization problem 5.4 for i =

1, 2, 3. The three methods only differ in the edge detection step.
The algorithm alternates between a reconstruction step where f is updated

and an evaluation of f in which v is updated. The obtained information of the

second step is in form of the edge indicator function v, which is then used to

update the regularization penalty for the reconstruction step. These steps are

repeated several times. In each step we use a simple gradient descent method.

We choose the descent direction as the negative gradient and the step size by

backtracking line search with the Armijo-Goldstein stopping condition.

In the next sections we test the proposed method. For both applications we

first state the mathematical model we are using and show that they are covered

by our setting. For this it is necessary to prove that the fidelity decays of high

enough order for pointwise bound functions.

5.1 Two dimensional X-ray CT

We first give a short review of a simple mathematical model for the X-ray com-

puter tomography. The following is from [Natterer, 2001, Chapter II] and [Louis,

1989, Chapter 6].
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In X-ray tomography, the image contrast comes from the X-ray absorption

when X-ray beams pass through an object. The interaction of X-ray and the

object could be a complex process. Nevertheless, the beam path in straight lines

provides a good approximation for X-ray tomography in many cases.

A simple model is given by Beer’s law. Let I(x) be the intensity of an X-ray

and f(x) the X-ray attenuation coefficient at a point x. A X-ray passing a small

distance Δx at x has an approximate relative intensity loss of

I(x+Δx)− I(x)

I(x)
= f(x)Δx. (5.5)

Let I0 be the initial intensity of the X-ray and I1 the intensity after passing

through the object. As we assume that the beam travels in a straight line L,

from (5.5) it follows

I1
I0

= exp− ∫
L f(x)dx

and taking the logarithm it is

− ln
(I1
I0

)
=

∫
L

f(x)dx.

We see that a measurement I1 and the initial intensity I0 give us a line integral

of the X-ray attenuation coefficient f .

The operator mapping a function into the set of its line integrals in two di-

mensions is the Radon Transform. The task in X-ray computer tomography

is to invert this operator.

Let Ω ⊂ R2 be an open bounded domain and f be the X-ray attenuation coeffi-

cient function on Ω. We can assume that the domain is

the unit disk Ω := {x ∈ R2
∣∣ |x| ≤ 1}. The sphere in R2 is denoted as

S1 := {x ∈ R2
∣∣ |x| = 1}.

The Radon Transform R maps a function f into the set of its line integrals.

Let L(σ, ω) ⊂ Ω be a line in Ω, parameterized by a distance σ ∈ [−1, 1] to the

origin and a vector ω ∈ S1 perpendicular to the line. The Radon Transform is
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defined for every f ∈ {g ∈ C∞ | xk ∂l

∂xl g is bounded for every l, k ∈ N0} as

Rf(L) :=

∫
L

f(x)dx

for every line L(σ, ω) ⊂ Ω or equivalently

Rf(σ, ω) :=

∫
〈x,ω〉=0

f(σω + x)dx.

We call Z := [−1, 1] × S1 the Radon domain. The following theorem states

that the Radon Transform has a well defined extension from L2(Ω) to L2(Z).

Theorem 5.1 ([Louis, 1989, p. 166. Theorem 6.1.1]). The Radon Transform R

has a continuous extension, still denoted by R, mapping from L2(Ω) to L2(Z),

R : L2(Ω) → L2(Z).

It follows that the Radon Transform has a Hilbert space adjoint.

Theorem 5.2 ([Louis, 1989, p.168 Theorem 6.1.4 ]). Let R : L2(Ω) → L2(Z) be

the Radon Transform. Then R∗ : L2(Z) → L2(Ω) with

R∗g(x) =
∫
S1

g(〈x, ω〉, ω)dx

is the adjoint operator of R. We call R∗ the backprojection.

The function R∗g maps a point x ∈ Ω to the integral over all line integrals,

for which the line passes through x.

There exist inversion formulas for the Radon Transform (see [Natterer, 2001,

p.18 Theorem 2.1 ]), but they are not feasible as they require complete and exact

data. In practice inverting the Radon Transform from incomplete and noisy data

is an ill-posed problem. Even very small errors in the data g ∈ L2(Z), which are

not avoidable in practice, may lead to bad reconstructions.

In the following remark we discuss that the Mumford-Shah regularization can

be applied to X-ray CT with a least squares fidelity term.
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Remark 5.3. It is well known that the Radon transform is bounded as R :

L1(B1(0)) → L1([−1, 1] × S1), see Natterer [2001]. Furthermore it can easily

be shown that R : L∞(B1(0)) → L∞([−1, 1]× S1) is also a bounded operator, see

Page [2011]. Therefore, in the same way as for the image deblurring problem,

Proposition 3.10 can be applied using the exponents q = q̂ = 1 and q′ = ∞. As a

result the least squares fidelity term with the Radon Transform decays with order

N for pointwise bound functions.

5.1.1 Numerical examples I: X-ray CT

In this section we present numerical examples illustrating the behavior of our

proposed model compared to the standard Mumford-Shah regularization and TV

regularization. The examples are created with synthetically generated data and

are meant as a starting point to numerical investigations rather than an exhaus-

tive study.

We compare our results with TV regularization, which is a variational method

that is also able to reconstruct sharp edges. The minimization problem for TV

regularization is

min
f

∫
Θ

|R(f)− g|2dL+ λ

∫
Ω

|∇f |dx, (5.6)

for f ∈ BV (Ω) and λ > 0, see Rudin et al. [1992]. Compared to the smoothing

term in the Mumford-Shah penalty, here the the L1 norm instead of the L2 norm

of the gradient is measured. Unfortunately, the TV functional is not a smooth

function of the image f and requires advanced convex optimization methods to

be minimized Zhang et al. [2011]. We follow an alternative approach and replace

the absolute value by a smoothed absolute value. The smoothed TV norm reads:

Ψh
TV (f) =

∫
Ω

√
‖∇f‖2 + h2dx, (5.7)

with h > 0. When h tends to zero, the smoothed TV penalty becomes closer to

the original one.

In the following examples we reconstruct the phantom illustrated in Figure 5.1.
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f † gδ

Figure 5.1: The true image f † (left) and the corresponding noisy projection data
from 10 angles (right). The phantom is mostly piece-wise constant and has a
linear slope on the right side.

Example 5.4 (MS and TV regularization). In the first example we compare

the standard Mumford-Shah regularization without a priori edge knowledge to the

smoothed TV regularization. The data is obtained from 10 views with 4% relative

noise. The noise is additive Gaussian noise. Fig 5.2 shows the reconstructions for

different weights on the smoothing penalty. For the Mumford-Shah reconstruction

the edge weight is kept fixed. For TV the best reconstruction with regards to

the peak-signal to noise ratio (PSNR) is in the third column, for the Mumford-

Shah reconstruction it is in the second. The reconstructions from this sparsely

sampled and noisy data have comparable quality. The different regions are more

sharply divided for the Mumford-Shah reconstruction if the edges are detected.

This can be seen for the circles in bottom or top left of the phantom. Depending

on the regularization parameters the linear slope is reconstructed with or without

a staircasing effect for the Mumford-Shah regularization.

Example 5.5 (TV , MS, MSK0 and HK0 regularization). In this example we

compare the smoothed TV regularization, standard Mumford-Shah regularization

to the variational models with the Mumford-Shah priori using the a priori edge

knowledge ΨMSK0 and the heuristic penalty ΨHK0 . The data is again obtained

from 10 views with 4% relative noise. Fig 5.3 shows the reconstructions, where

the parameters were optimized with regard to the PSNR of the reconstruction

to the true image. The small circles at the bottom are reconstructed better when

then a priori knowledge is used. This is expected, as it is additional correct side
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TV

λ = 5e−3 λ = 3e−1 λ = 55 λ = 316

MS

α = 1e4,

β = 1e−5

α = 1e4,

β = 1e−4

α = 1e4,

β = 1e−3

α = 1e4,

β = 1e−2

Figure 5.2: Reconstruction from 10 views with 4% relative noise. (top) TV
reconstruction for different weights on the smoothing penalty, (middle) and (bot-
tom) the Mumford-Shah reconstruction and edge set for different weights on the
edge term and fixed weight on the smoothing parameter. For TV regularization
the best reconstruction with regards to the peak-signal to noise ratio is in the
third column with PSNR = 11.51 and SSIM = 0.67, for the Mumford-Shah
reconstruction it is in the second with PSNR = 10.89 and SSIM = 0.76. The
Mumford-Shah reconstructions also illustrate the non-convexity of the approach.
Once an edge is smoothed away in the reconstruction step, it is lost and the
reconstruction can not be guided back to it.

information. The false side information is detected if we use the ΨMSK0 penalty,

for the heuristic penalty this is not the case. If the false edges are included, they

yield artifacts in the reconstructed image.

Example 5.6 (Varying parameters for ΦMSK0 ). In this example we illustrate the

behavior of the penalty ΨMSK0 . We keep the smoothness parameter fixed and show

reconstructions for different β. The data is again obtained from 10 views with 4%
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K0

TV

λ = 55

MS

α = 1.26e3,

β = 1e−3

MSK0

α = 1e4,

β = 1e−3

HK0

α = 1e4,

β = 1e−4, γ = 5

Figure 5.3: Reconstruction from 10 views with 4% relative noise. Top: a priori
edge information. Bottom rows: reconstruction and edge set from (left) TV regu-
larization, standard Mumford-Shah regularization, Mumford-Shah regularization
using a priori edge knowledge, and (right) the heuristic model. The areas where
no a priori edge knowledge is available the Mumford-Shah reconstructions are
similar, although slightly worse for the standard Mumford-Shah regularization.
The correct side information improves the reconstruction as can be seen from
the circles in the bottom of the images. The incorrect edge knowledge is only
included in the third column, which results in some small artifacts in the recon-
struction. For the TV reconstruction we have PSNR = 11.51 and SSIM = 0.67,
for the MS reconstruction PSNR = 10.89 and SSIM = 0.76, for the MSK0 re-
construction PSNR = 12.7 and SSIM = 0.79 and for the HK0 reconstruction
PSNR = 12 and SSIM = 0.81.
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relative noise. Fig 5.4 shows the reconstructions.

K0

MSK0

α = 1e4,

β = 1e−5

α = 1e4,

β = 1e−4

α = 1e4,

β = 1e−3

α = 1e4,

β = 1e−2

Figure 5.4: Reconstruction from 10 views with 4% relative noise using the penalty
ΨMSK0 . The penalty on the smoothness term is kept fixed and the weight on the
edge penalty increases from left to right. The a priori edge is almost always
included in the detected edge set and yields strong artifacts. In regions with
correct additional knowledge the reconstructions are considerably better than
with the standard Mumford-Shah regularization.

Example 5.7 (Varying parameters for ΨHK0 ). In this example we illustrate the

behavior of the penalty ΨHK0 . We keep the smoothness parameter fixed, set γ = 5

and show reconstructions for different β. The data is again obtained from 10

views with 4% relative noise. Fig 5.5 shows the reconstructions. As can be seen,

for increasing β the a priori edges are not detected anymore.
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K0

HK0

γ = 5

α = 1e4,

β = 1e−4

α = 1e4,

β = 2.8e−4

α = 1e4,

β = 1.3e−3

α = 1e4,

β = 3.6e−3

Figure 5.5: Reconstruction from 10 views with 4% relative noise using the penalty
ΨHK0 .The weight on the smoothness penalty is kept fixed and the weight on the
edge penalty increases from left to right. The a priori edge is only used when
the data also supports an edge. In regions with correct additional knowledge the
reconstructions are considerably better than with the standard Mumford-Shah
regularization.
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5.2 Two dimensional Diffuse Optical Tomogra-

phy

We first give a description of the mathematical model we will consider for two

dimensional diffuse optical tomography. For a detailed description see for example

Arridge and Schotland [2009].

In steady-state diffuse optical tomography (DOT), the problem is to recon-

struct the diffusion and absorption coefficients of an object using measurements

of ingoing and corresponding outgoing near-infrared light passing through the

object. The governing equation used for the diffuse light u in DOT is

−div (D∇u) + μu = 0, in Ω, (5.8)

which is a diffuse approximation of the radiative transport equation. Here D

is the diffusion coefficient and μ the absorption coefficient. We assume that D,

μ ∈ L∞(Ω).

We assume a single measurement is taken by shedding light into the object

at its boundary and measuring the corresponding outgoing light at the boundary

(or part of the boundary).

The incoming light gR ∈ L2(∂Ω) can be modeled through a Robin boundary

condition

u+ 2Dν · ∇u = gR, on ∂Ω, (5.9)

where ν ∈ RN is the outer normal. The measurement gN ∈ L2(∂Ω) is the negative

Neumann boundary values of the solution u of (5.8)

gN = −Dν · ∇u, (5.10)

either on the entire boundary, ∂Ω, or part of it Γ ⊂ ∂Ω, see Arridge [1999];

Arridge and Schotland [2009] for details.

For a pair D and μ under imaging withm-incoming light sources giR ∈ L2(∂Ω),

assume we have measured the corresponding Neumann data giN ∈ L2(∂Ω) for

i = 1, 2, ...,m. We assume the light sources giR are defined by the user and

known. Therefore the measurements can be equivalently described as Dirichlet
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data

giD = ui|∂Ω = giR + 2giN, on ∂Ω. (5.11)

Then we can define the forward operator F : L2(Ω) × L2(Ω) → (L2(∂Ω))m that

maps each pair of parameters (μ,D) to the Dirichlet data F i(μ,D) = giD ∈
L2(∂Ω) of the solutions of (5.8) and (5.9) respectively, for giR, i = 1, · · · ,m. Let

gD = (g1D, ..., g
m
D ) ∈ L2(∂Ω)m be a set of measured data. DOT is then to solve

the operator equation

F (μ,D) = gD. (5.12)

5.2.1 Decay of the least squares fidelity term

First we verify that the forward operator together with a least squares fidelity

term fits into our theoretical framework, that is we need to verify that the fidelity

term decays with order N − 1 + ε for pointwise bound functions and ε > 0. As

shown below we can only prove this for dimension 2, for higher dimensions this

is still an open problem.

For the existence and uniqueness of the weak solutions of the boundary value

problem (5.8), (5.9) we assume the following conditions.

Assumption 5.8.

1. The function D is uniformly positive and bounded: there exist aD, bD > 0

such that aD ≤ D ≤ bD on Ω.

2. The function μ is non-negative and bounded from above; i.e. there exists

bμ > 0 such that 0 ≤ μ ≤ bμ.

Moreover, in this section let Ω have at least Lipschitz boundary.

By the Lax-Milgram theorem and the Sobolev trace and embedding theorems

Egger and Schlottbom [2010], for every gR ∈ L2(∂Ω) there exists a unique weak

solution u ∈ W 1,2(Ω) of (5.8) with the boundary values (5.9), that is for all

v ∈ W 1,2(Ω):

∫
Ω

(D∇u · ∇v + μuv) dx+
1

2

∫
∂Ω

uv dx =
1

2

∫
∂Ω

gRv dx. (5.13)
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We will need the following regularity theorem from Egger and Schlottbom

[2010].

Theorem 5.9. Let Assumption 5.8 hold. Then there exists a constant p0 > 2

depending only on the domain and the bounds for the coefficients, such that the

solution u of the variational problem (5.13) lies inW 1,p(Ω) whenever gR ∈ Lp(∂Ω)

for some p0
p0−1

≤ p ≤ p0. Moreover, there holds the a priori estimate

‖u‖W 1,p(Ω) ≤ C‖gR‖Lp̂(∂Ω) (5.14)

with a constant C that depends only on Ω and the bounds for the coefficients.

If the domain Ω has a smooth boundary, and if aD/bD approaches one, then the

maximal p0 such that the statement of the theorem holds, tends to infinity.

If p > N
N−1

, then p̂ = p/2 for dimension N = 2 and p̂ = 2p/3 for dimension

N = 3 respectively, see [Egger and Schlottbom, 2010, Remark 3.9]. As we will

see later this restricts us to dimension N = 2.

In the following we consider the data fidelity term

(μ,D) �→ ‖F (μ,D)− gD‖2(L2(∂Ω))m (5.15)

and show that it decays with order N − 1+ ε for some ε > 0 for pointwise bound

functions. In Rondi and Santosa [2001] a similar result is proven for electric

impedance tomography. We follow their proof here. Assume that ∂Ω and the

bounds aD, bD are such that Theorem 5.9 yields a p0 > 4. We now show that

under these conditions, in dimension two, the forward operator F is Lipschitz

continuous from Lp(Ω) × Lp(Ω) → (L2(Ω))
m

for 1 ≤ p < N
N−1

. The required

property for the fidelity term then follows from Proposition 3.10.

First we consider a single source giR ∈ L2(∂Ω) ∩ L∞(Ω). Let (μ0, D0) and

(μ1, D1) satisfy the conditions in Assumption 5.8 and u0, u1 ∈ W 1,2(Ω) be the

respective weak solutions for (5.13) with the same incoming light giR. Then we

have for all v ∈ W 1,2(Ω)

∫
Ω

(D0∇u0 · ∇v + μ0u0v) +
1

2

∫
∂Ω

u0v =

∫
Ω

(D1∇u1 · ∇v + μ1u1v) +
1

2

∫
∂Ω

u1v.
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Subtracting
∫
Ω
D0∇u1∇v and

∫
Ω
μ0u1v from each side leads to

∫
Ω

(D0∇(u0 − u1) · ∇v + μ0(u0 − u1)v) +
1

2

∫
∂Ω

(u0 − u1)v

=

∫
Ω

((D1 −D0)∇u1 · ∇v + (μ1 − μ0)u1v) . (5.16)

Let w ∈ W 1,2(Ω) be the solution to the following auxiliary boundary value prob-

lem

−div (D0∇w) + μ0w = 0, in Ω

w + 2D0ν · ∇w = (u0 − u1), on ∂Ω.

Choosing v = (u0 − u1) as a test function for the auxiliary problem and using

equation (5.16), we obtain

1

2

∫
∂Ω

(u0 − u1)
2 =

∫
Ω

(D0∇(u0 − u1) · ∇w + μ0(u0 − u1)w) +
1

2

∫
∂Ω

(u0 − u1)w

=

∫
Ω

((D1 −D0)∇u1 · ∇w + (μ1 − μ0)u1w) .

Via Hölders inequality we arrive at

1

2

∫
∂Ω

(u0 − u1)
2 ≤ C

(‖D1 −D0‖Lp1 (Ω) + ‖μ1 − μ0‖Lp1 (Ω)

) ‖u1‖W 1,p2 (Ω)‖w‖W 1,p3 (Ω)

with 1
p1

+ 1
p2

+ 1
p3

= 1.

For the decay property of the fidelity term we need not just p1 <
N

N−1
but

also p̂3 from Theorem 5.9 to be smaller than or equal to 2. For N = 2 we can

choose p2 = p0 > 4, p3 = 4 and p1 =
4p0

4p0−4−p0
< 2. From Theorem 5.9 we have

‖u1‖W 1,p2 ≤ ‖giR‖L p2
2 (∂Ω)

(5.17)

and

‖w‖W 1,p3 ≤ ‖u0 − u1‖L2(∂Ω). (5.18)
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With these inequalities it follows for some constants C > 0 and C1 > 0,

‖F i(μ1, D1)− F i(μ0, D0)‖L2(∂Ω) = ‖u1 − u0‖L2(∂Ω) (5.19)

≤ C (‖D1 −D0‖Lp1 + ‖μ1 − μ0‖Lp1 ) ‖giR‖L p2
2 (∂Ω)

≤ C1‖(μ1, D1)− (μ0, D0)‖Lp1 (Ω)×Lp1 (Ω).

In the same way it can be shown that for multiple light sources (g1R, ..., g
m
R ) ∈

L2(∂Ω)m ∩ L∞(Ω)m, it holds

‖F (μ1, D1)− F (μ0, D0)‖(L2(∂Ω))m ≤ L‖(μ1, D1)− (μ0, D0)‖Lp1 (Ω)×Lp1 (Ω) (5.20)

where L > 0 is a constant and 1 ≤ p1 <
N

N−1
. Proposition 3.10 can straight-

forwardly be extended to the case where the data is collected in (L2(∂Ω))m and

the reconstruction consists of multiple functions. If in Proposition 3.10 we choose

q′ = q̂ = 2 and q = p1, then (5.20) yields the desired decay property of the fidelity

term with order N
p1
> N − 1.
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5.2.2 Numerical examples II: recovery of the absorption

In this section we consider a special case of DOT. We are interested in recovering

the absorption coefficient μ, and will assume the diffusion coefficient D∗ to be

known in the following. This is a interesting but computational simpler example,

see Egger [2010]. It is still a non-linear and highly ill-posed problem.

We keep the notation from the section above. For a fixed D∗ ∈ L∞(Ω) and

given light sources giR, i = 1, · · · ,m, we introduce the new forward operator

G : L2(Ω) → (L2(∂Ω))m as

G(μ) = F (μ,D∗). (5.21)

The inverse problem then reduces to solve the operator equation

G(μ) = gD, (5.22)

where gD = (g1D, ..., g
m
D ) ∈ L2(∂Ω)m is the measured data.

We compare our results with the iterative scheme

μj+1 = μj + cjG
′(μj)

∗(gδ −G(μj)), (5.23)

where j is the iteration number, G′(μj)
∗ is the adjoint of the derivative of G at a

given point μj and cj is a step size, see Hanke et al. [1995] We choose the stopping

index to maximize the PSNR of the reconstruction to the true image.

In the following we investigate the reconstructions of a simple 100×100 phan-

tom, which is shown on the left in Figure 5.6. The actual computational domain

is only in the inner circle as depicted in the middle of Figure 5.6. We have 16

sources and 16 detectors equivalently distributed on the computational domain

indicated by the red and blue points respectively. The data is shown on the

(right), it is noiseless and was created on a much finer mesh to avoid the inverse

crime.

Example 5.10 (MS and Landweber regularization). In the first example we com-

pare the standard Mumford-Shah regularization without a priori edge knowledge

to the the Landweber regularization for different parameters and stopping index.
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μ† Ωn g

Figure 5.6: The true image (left), the actual computational domain for the re-
construction with light sources and detectors shown (middle) and the synthetic
data (right). The domain corresponds to an object with 2 cm diameter.

Fig 5.7 shows the reconstructions for noise free data. Visually the Mumford-Shah

reconstruction are sharper, but the ball in the center is lost, whereas it can still be

guessed for the Landweber method. Also some artifacts appear at the boundaries

of the computational domain.

Example 5.11 (LW , MS, MSK0 and HK0 regularization). In this example we

compare Landweber regularization and standard Mumford-Shah regularization to

the variational models using the a priori edge knowledge. The data is again noise

free. Fig 5.8 shows the reconstructions, where the parameters were adjusted by

hand. It can be seen that the a priori edge knowledge improves the reconstruction

if the edges coincide with the ones from the true image. The method MSK0 also

introduces the false edges from the a priori edge set, the heuristic penalty does not

do this. The false edges introduce small artifacts in the reconstruction.
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LW

n = 5 n = 10 n = 50 n = 200

MS

α = 4e4,

β = 1e−7

α = 1.8e5,

β = 1e−7

α = 3.8e5,

β = 1e−7

α = 6.5e5,

β = 1e−7

Figure 5.7: Reconstructions from noise free data. (top) Landweber reconstruc-
tion for different stopping index, (middle) and (bottom) the Mumford-Shah re-
construction and edge set for different weights on the smoothing term and a fixed
weight on the edge term. Although the edges in the Mumford-Shah reconstruc-
tion are sharper, there are some clear artifacts at the edge of the computational
domain.
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K0

LW

n = 200

MS

α = 3.8e5,

β = 1e−7

MSK0

α = 3.8e5,

β = 1e−7

HK0

α = 4.1e5,

β = 1.5e−7, γ = 3

Figure 5.8: Reconstruction from noise free data. Top: a priori edge informa-
tion. Bottom rows: reconstruction and edge set from (left) Landweber reg-
ularization, standard Mumford-Shah regularization, Mumford-Shah regulariza-
tion using a priori edge knowledge, and (right) the heuristic model. In areas
where no a priori edge knowledge is available the Mumford-Shah reconstruc-
tions are similar, although slightly worse for HK0 . The correct side informa-
tion improves the reconstruction as can be seen from the circle in the cen-
ter. The incorrect edge knowledge is only included in the third column. For
the LW reconstruction we have PSNR = 25.75 and SSIM = 0.84, for the
MS reconstruction PSNR = 25.80 and SSIM = 0.89, for the MSK0 recon-
struction PSNR = 28.04 and SSIM = 0.94 and for the HK0 reconstruction
PSNR = 26.31 and SSIM = 0.92.
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Chapter 6

Conclusions

In this thesis we study a variational approach based on the Mumford-Shah model

for image reconstruction with a priori edge information. We presume that the a

priori information was obtained beforehand, possibly from a secondary modality

that is less ill-posed, an application specific template or a reconstruction at a

previous time point. The difference of our approach to the usual Mumford-Shah

regularization is the edge penalty term. We split it into two parts, such that

the length of the edge is penalized less if it coincides with the a priori edge and

penalized more if it does not. Similar extensions of the Mumford-Shah functional

have been studied in the context of fracture mechanics, where the material has

a different hardness depending on the place and orientation, see Babadjian and

Giacomini [2013]; Giacomini and Ponsiglione [2006]. In those works the aim is

mainly to investigate the well-posedness of the problem.

Following the classic proof of De Giorgi et al. [1989] we show that our proposed

functional admits a minimizer under reasonable assumptions on the operator and

underlying image. We assume that the a priori edge is fixed and that the under-

lying image is pointwise bound. Furthermore we show that the approach is stable

and yields a regularization for the image and its edges with a general a priori

parameter choice rule and also the discrepancy principle. The regularization re-

sults are the main contribution of Chapter 3. To our knowledge these results give

the broadest justification so far to use the non-convex Mumford-Shah regulariza-

tion for ill-posed inverse problems. For example, the fact that the discrepancy

principle yields a regularization for the standard Mumford-Shah regularization
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(that is K0 = ∅) is new. Naturally, there are still open questions, for example

whether the parameter choice rules also allow convergence rates under additional

assumptions.

When applying Mumford-Shah type regularization to practical applications

several issues arise. The primary difficulty comes from the edge part because it

is not easy to represent in programming. In Chapter 4 we prove a Γ-convergence

result for the special case γ = 0. For the case γ �= 0 we motivate a heuristic

penalty that allows numerical implementation. Our approximations are in the

phase field setting of Ambrosio-Tortorelli, where edges are described by blurry

indicator functions. First we describe the a priori edge information in terms of

an edge indicator function and note our set of assumptions. We then first prove

the Γ-convergence in one dimension and lift the result to dimension N ≥ 2 by

standard arguments in the theory of Γ-convergence. Although the technique is

well known, the recovery sequence needed some tedious computations. There

are many Γ-convergence results for the Mumford-Shah functional or other free

discontinuity problems, see Braides [2002]. To our knowledge this is the first

extension of the phase field setting in this direction.

Finally, in Chapter 5 we evaluate our approach for the two inverse problems

X-ray CT and DOT. Our numerical experiments indicate that our approach yields

good reconstructions from incomplete data. A drawback of the model surely is

the additional complexity and comparatively high number of parameters.

There are several avenues for future work. The edge penalty can be understood

as being sparsity enforcing, in the sense that the discontinuity set has to be of

zero Lebesgue measure. Although this kind of sparsity does not give rise to

an efficient representation in a certain basis, it might be possible to exploit the

sparsity in the computations, for example to choose the parameters, see Strehlow

[2014]. From an applications point of view it is surely interesting to find a real

application and see if the approach is feasible and the extra effort and complexity

is justified. Looking at the resulting Algorithm 1 each of the two steps could be

modified by itself. The second step can be understood as evaluating the current

reconstruction with regards to some a priori expectation on the true image, in our

case piece wise smoothness. Depending on this step, the regularization method

in the first step is then adapted. Such kind of adaptive regularization methods
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with non constant regularization parameters have been studied before Alexandrov

et al. [2010]; Gilboa et al. [2006]; Grasmair [2009]. Viewing each step by itself

is more flexible, but on the other hand possibly does not have the mathematical

justification as a Mumford-Shah type approach. Furthermore, other important

image processing steps, such as image registration, could be incorporated into the

model, see Droske et al. [2009].

———————————————————————-
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Appendix A

Here we collect small proofs.

Lemma A 1. Let a, b ∈ R with b > a and define h := b − a > 0. Then there

exist constants C, c0 > 0, such that for all c ≤ c0 it holds

∫ b

a

|1− x| − c dx ≥ Ch. (1)

Proof. Because of symmetry, the integral is smallest for a = 1 − h/2 and b =

1 + h/2. We can compute

∫ b

a

|1− x| − c dx ≥ 2

∫ 1

1−h/2

1− c− xdx

= (1− c)h− (1− (1− h

2
)2
)

=
h2

4
− ch.

Now we can choose C and c0 such that 0 < c0 <
h
4
−C. We then obtain because

of c ≤ c0 <
h
4
− C

∫ b

a

|1− x| − cdx ≥ h2

4
− ch > Ch.
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Lemma A 2. Let {an}, {bn} be real sequences and C > 1. If lim infn an ≥ 0

then

lim inf
n

(an + bn) ≤ lim inf
n

(Can + bn). (2)

Proof. Assume the claim is false. Then we have lim infn(an + bn) <∞ and there

exists ε > 0 so that

lim inf
n

(an + bn) = lim inf
n

(Can + bn) + ε.

Then for a sufficiently large index n0 we can find a subsequence {m} ∈ N,m ≥ n0

so that for each m

Cam + bm +
ε

2
< am + bm

which yields

am < − ε

2(C − 1)
.

This contradicts the assumptions lim infn an ≥ 0.

Lemma A 3. Under the notations and assumptions of Lemma 4.10 we set

φ̃n(t) =
1

cn − an

(
(t− an)φ̂n(t) + (cn − t)φn(t)

)
. (3)
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It then is

lim
n

Ψv0n,n
(fn, vn,

(
(Sf ∩K0)an ∩ (Sf \K0)cn

)
\ (Sf \K0)an) = 0. (4)

Note that from the proof of Lemma 4.8 we know that

lim sup
n

∫ cn

0

1

4εn

(
1− φn(t)

)2
+ εn|(φn(t)

′|2dt <∞

and

lim sup
n

∫ cn

0

1

4εn

(
1− φ̂n(t)

)2
+ εn|(φ̂n(t)

′|2dt <∞.

Proof. We first note that

An :=
(
(Sf ∩K0)an ∩ (Sf \K0)cn

)
\ (Sf \K0)an

⊂ (K0)an ∩ (Sf \K0)cn

⊂ (Sf \K0 ∩ (K0)an+cn

)
cn
.

As HN−1(Sf \K0∩ (K0)an+cn) → 0 as n→ ∞ the integral
∫
An
v2n|∇fn|2 → 0. By

Lemma 4.11 it then suffices to show that

lim sup
n

∫ cn

0

1

4εn

(
1− φ̃n(t)

)2
+ εn|(φ̃n(t)

′|2dt <∞ (5)

to obtain the claim.
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We will write out the integral step by step. First we look at

(
1− φ̃n(t)

)2
=

1

(cn − an)2
(
cn − an − (t− an)φ̂n(t) + (cn − t)φn(t)

)2
=

1

(cn − an)2
(
2cn + cn(φn(t)− 1) + an(φ̂n(t)− 1)− t(φn(t) + φ̂n(t))

)2
=

1

(cn − an)2
[

c2n(1− φn(t))
2 + a2n(1− φ̂n(t))

2

+ (2cn − t(φn(t) + φ̂n(t)))
2

+ cn(1− φn(t))an(1− φ̂n(t))

+ cn(φn(t)− 1)(2cn − t(φn(t) + φ̂n(t)))

+ an(φ̂n(t)− 1)(2cn − t(φn(t) + φ̂n(t)))]
.

First note that lim supn
an

cn−an
and lim supn

cn
cn−an

are bound. We already calcu-

lated the integrals over the terms (1−φn(t))
2 and (1− φ̂n(t))

2 in Section 4.3 and

therefore know that the lim supn is bound for those two parts. Then because for

t ∈ [0, cn] it is 0 ≤ t(φn(t) + φ̂n(t)) ≤ 2cn we have

∫ cn

0

1

4εn

1

(cn − an)2
(2cn − t(φn(t) + φ̂n(t)))

2dx

≤
∫ cn

0

1

εn

c2n
(cn − an)2

dx

which is also bound as n→ ∞. The remaining three terms are products of terms

for which we know that they are square integrable and bound for n → ∞. For
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example using the Cauchy-Schwarz inequality we can estimate the 4-th term as

∫ cn

0

1

4εn
cn(1− φn(t))an(1− φ̂n(t))dx

≤
∫ cn

0

1

4εn
c2n(1− φn(t))

2dx ·
∫ cn

0

1

4εn
a2n(1− φ̂n(t))

2dx.

As a result the integral
∫ cn
0

1
4εn

(
1− φ̃n(t)

)2
dx is bound for n→ ∞.

Now we turn to the integral over the gradient. We use the definition and sort

the terms again

|(φ̃n(t)
′|2 = 1

(cn − an)2
(
anφ̂

′
n(t)− cnφ

′
n(t) + (φn(t)− φ̂n(t)) + t(φ′

n(t)− φ̂′
n(t))

)2
≤ 1

(cn − an)2
[

(6)

|anφ̂′
n(t)|2 + |cnφ′

n(t)|2

+
∣∣anφ̂′

n(t)cnφ
′
n(t)
∣∣

+
∣∣(φn(t)− φ̂n(t)) + t(φ′

n(t)− φ̂′
n(t))

∣∣2
+
∣∣anφ̂′

n(t)
(
(φn(t)− φ̂n(t)) + t(φ′

n(t)− φ̂′
n(t))

)∣∣
+
∣∣cnφ′

n(t)
(
(φn(t)− φ̂n(t)) + t(φ′

n(t)− φ̂′
n(t))

)∣∣
]
.

We already calculated the integrals over the terms |φ′
n(t)|2 and |φ̂′

n(t)|2 in Sec-

tion 4.3 and therefore know that the lim supn of these integrals are bound. We
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then look at

(
(φn(t) + φ̂n(t)) + t(φ′

n(t) + φ̂′
n(t))

)2
≤ (φn(t) + φ̂n(t)

)2
+
∣∣2(φn(t) + φ̂n(t)

)
t
(
φ′
n(t) + φ̂′

n(t)
)∣∣+ t2

(
φ′
n(t) + φ̂′

n(t)
)2
(7)

We can estimate the last term by

t2(φ′
n(t) + φ̂′

n(t))
2 ≤ c2n(φ

′
n(t) + φ̂′

n(t))
2

and as the integrals over φ′
n(t)

2 and φ̂′
n(t)

2 are bound for n → ∞ so is this. We

can also estimate

∫ cn

0

εn
1

(cn − an)2
(φn(t) + φ̂n(t))

2dt ≤ 2εncn
1

(cn − an)2

which by definition of cn and an is also bound. The second term of (7) then is

bound by Cauchy-Schwarz inequality. The remaining three terms of the gradient

part (6) can all be bounded as above by the Cauchy-Schwarz inequality.
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