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Abstract 

ABSTRACT 

Mangroves are considered as an important source of nutrition to aquatic consumers, 

which, in return, sustain the fish population. However, there is still controversy about 

the importance of mangroves to fish communities, and furthermore, not all mangroves 

fulfill every function ascribed to them. The Persian Gulf presents the northernmost 

mangroves in the Indo-Pacific region, thriving under extreme environmental 

conditions such as very low rainfall and high salinities. Very few studies have 

addressed fish distribution patterns of mangroves in this arid region.  

The main objective of this study is to describe and compare the fish community 

structure and food web dynamics of mangrove and non-mangrove intertidal creeks in a 

low-rainfall system in Qeshm Island, Persian Gulf, Northern Indian Ocean (26.8°N, 

55.75°E). Therefore, this thesis addresses temporal changes in mangrove fish 

assemblages related to the tidal and diel cycles in the meso-tidal mangrove of Qeshm 

Island. Also, the food web’s dynamics were studied to determine the role of 

mangroves in fish food webs. Moreover, due to the arid climate along the northern 

Indian Ocean, many neighboring creeks are devoid of mangroves but still provide 

habitat for fish. This provided the necessary conditions for a natural experiment to 

compare fish assemblage structures and trophic diversity between creeks that are 

mangrove lined, and creeks without mangroves across seasons. For that, fish were 

collected with respect to the different combinations of tidal amplitude (and lunar 

phase) and day light conditions as well as seasons (winter, summer). Also, various 

potential food sources were collected for δ13C and δ15N measurements from both 

habitats across seasons.  

The findings show the impact of environmental variables (e.g. tide and 

temperature) in structuring fish assemblages in Qeshm intertidal creeks. The 

interaction between tide and time of day emerged as an important factor in organizing 

mangrove fish assemblages in this meso-tidal arid region. The highest fish biomass, 

abundance, and diversity were observed during spring tide night. High inundation 

during spring tides coinciding with the darkness provided the most favorable 

conditions for fish. When mangrove fish communities were compared with the non-

mangroves, seasonality appeared as a more important factor than habitat. Extreme 

summer water temperatures (>33°C) likely limit the fish abundances and biomass. Fish 

assemblages of mangrove and non-mangrove intertidal creeks were equally diverse 

and dominated by the same fish families (e.g. Mugilidae). Small-sized fish dominated 
1 

 



Abstract 

catches in both habitats. Also, there were no consistent differences in fish abundance 

and biomass for mangrove vs. non-mangrove fish collections. Community trophic 

diversity, measured with size-corrected standard ellipse areas (SEAc), also showed no 

significant difference across habitats. Instead, strong seasonal patterns were observed 

for the food sources and fish communities isotopic niche sizes. These findings 

demonstrate that the structuring effect of seasonality is more important than habitat in 

determining the fish distribution patterns in this region.  

Mangrove-derived organic matter contributed to a maximum of 36% to the fish 

tissue, whereas organic matter produced by microphytobenthos and plankton plays a 

major role in the diets of the most abundant fish species, with contributions of 64 - 

100%. Thus, the fish food web’s support of mangrove and non-mangrove intertidal 

creeks seems to be energetically driven by pelagic and benthic food pathways in this 

study area. Furthermore, the dominance of detritivores in both mangrove and non-

mangrove intertidal creeks suggests the importance of benthic food webs in the 

intertidal creeks at Qeshm Island.  

The outcomes of this dissertation contribute to the global understanding of the 

importance of mangrove and non-mangrove intertidal creeks for fish food webs and 

fisheries support in a low-rainfall coastal ecosystem. The findings imply some 

potentially interesting consequences on habitat conservation and indicate that the 

abundance of small fish is not always higher in complex vegetation. Like mangrove 

creeks, the bare creeks are utilized by a wide variety of fish, suggesting greater 

attention should be drawn to these habitats.  

 

Keywords Fish community structure, rainfall, tidal and diel cycles, food webs, trophic 

diversity, isotopic niche size, mangrove, non-mangrove, intertidal creeks, Qeshm 

Island, Persian Gulf, Western Indian Ocean 
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Zusammenfassung 

ZUSAMMENFASSUNG 

Mangroven werden als wichtige Nahrungsquellen für aquatische Konsumenten 

angesehen, welche ihrerseits als Nahrungsgrundlage für Fischpopulationen dienen. Die 

Bedeutung von Mangroven für Fischpopulationen ist jedoch noch nicht abschließend 

geklärt, und nicht jedes Mangrovensystem erfüllt alle Funktionen die ihm 

zugeschrieben werden. Entlang der Küstengebiete des Persischen Golfes findet man 

die am weitesten im Norden gelegenen Mangrovensysteme des Indo-Pazifiks, die dort 

unter z.T. extremen Umweltbedingungen, wie z.B. geringem Niederschlag und hohen 

Salzgehalten, gedeihen. Gerade für diese Gebiete mangelt es an Untersuchungen zur 

Bedeutung von Mangrovensystemen für die lokalen Fischpopulationen.  

Das Ziel dieser Arbeit ist die Beschreibung der Struktur und Dynamik von 

Fischgemeinschaften und der lokalen Nahrungsnetze in Gezeitenprielen mit und ohne 

Mangrovenbewuchs der durch ein arides Klima geprägten Insel Qeshm, Persischer 

Golf, Nördlicher Indischer Ozean (26.8°N, 55.75°E). Ihr Fokus liegt auf der 

Untersuchung der Einflüsse von Gezeiten- und Tag-Nacht-Zyklen auf die 

Zusammensetzung von estuarinen Fischgemeinschaften. Des weiteren wurde die 

Dynamik lokaler Nahrungsnetze untersucht, um die Rolle von Mangroven in 

Nahrungsnetzen der Fische besser deuten zu können. Durch das aride Klima sind viele 

der Gezeitenpriele ohne Vegetation, fungieren aber dennoch als Habitat für 

verschiedene Fischarten. Das Vorkommen von Gezeitenprielen mit und ohne 

Mangrovenbewuchs ermöglichte die Durchführung eines natürlichen Experimentes, 

um den Einfluß der Vegetation auf die Struktur der Fischgemeinschaften und die 

trophische Diversität während verschiedener Jahreszeiten zu untersuchen. Die 

Probenahmen für δ13C- und δ15N-Messungen der Fische und ihrer potentiellen 

Nahrungsquellen berücksichtigten mögliche Einflussfaktoren wie Gezeiten und 

Tidenhub (und Mondphasen) sowie Tageslichtbedingungen und Jahreszeiten (Winter, 

Sommer). Die Proben wurden aus den bewachsenen und unbewachsenen Habitaten 

während der Winter- und Sommermonate genommen, um anschließend Nahrungsnetze 

mittels der stabilen Isotopenverhältnisse zu ermitteln.  

Die Ergebnisse der vorliegenden Studie zeigen den Einfluss von 

Umweltfaktoren (z.B. Tide und Temperatur) auf die Strukturierung von 

Fischgemeinschaften in Gezeitenprielen der Insel Qeshm. Insbesondere die 

Wechselwirkung zwischen Tide und Tageszeitpunkt erwies sich als wichtiger Faktor 

für die Zusammensetzung der mangrovenbewohnenden Fischgemeinschaften in dieser 
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meso-tidalen, ariden Region. Die höchsten Werte an Biomasse, Abundanz und 

Diversität von Fischen wurden während nächtlicher Springtiden festgestellt. Beim 

Vergleich der Fischgemeinschaften erwies sich die Saisonalität als stärkerer 

Einflussfaktor als die Unterscheidung der Gezeitenpriele mit und ohne 

Mangrovenbewuchs. Extreme Wassertemperaturen im Sommer (> 33°) sind 

wahrscheinlich ein limitierender  Faktor für die Fischabundanz und -biomasse. Die 

Artenvielfalt der Fischgemeinschaften war ähnlich in Gezeitenprielen mit und ohne 

Mangrovenbewuchs und es dominierten jeweils Arten aus denselben taxonomischen 

Familien (z.B. Mugilidae). Fische mit kleinen Körpergrößen dominierten die Fänge in 

beiden Habitattypen. Auch bezüglich Fischabundanz und -biomasse zeigten sich keine 

deutlichen Unterschiede zwischen beiden Habitaten. Die trophische Diversität der 

Gemeinschaften, welche mittels größenkorrigierten Standardellipsenflächen (“standard 

ellipse areas“, SEAc) ermittelt wurde, unterschied sich nicht signifikant zwischen 

beiden Habitattypen. Allerdings wurden ausgeprägte saisonale Muster für 

Fischgemeinschaften und Nahrungsquellen in ihren trophischen Nischen, basierend auf 

Isotopenmessungen, sichtbar. Dies verdeutlicht, dass für die Strukturierung der 

Físchgemeinschaften in dieser Region die Sasionalität der entscheidende Einfluss ist 

und nicht die Unterscheidung der Habitate. 

Organisches Material mit Ursprung aus Mangrovensystemen machte bis zu 

36 % des Fischgewebes aus. Deutlich größer war jedoch der Anteil von organischem 

Material, das sich auf Mikrophytobenthos und Plankton zurückführen ließ (64-100 % 

desGewebes). Die Nahrungsnetze beider Habitattypen (mit und ohne Mangroven) 

erscheinen somit energetisch durch pelagische und benthische Pfade bestimmt. Die 

Dominanz detrivorer Fische in bewachsenen wie unbewachsenen Gezeitenprielen 

unterstreicht die Wichtigkeit benthischer Nahrungsnetze in den Gezeitenprielen 

entlang der Insel Qeshm. 

Die Ergebnisse der vorliegenden Dissertation tragen zum globalen Verständnis 

der Bedeutung mangrovenbewachsener und -unbewachsener Gezeitenpriele für 

Fischgemeinschaften und ihre Nahrungsnetze in regenarmen küstennahen 

Ökosystemen bei. Die Resultate lassen Rückschlüsse auf potentiell interessante 

Konsequenzen in Bezug auf den Schutz natürlicher Lebensräume zu und zeigen auf, 

dass die Abundanz kleiner Fische in Habitaten mit komplexer Vegetation nicht 

zwangsläufig höher ist. Priele mit Mangrovenbeständen werden ebenso wie Priele 

ohne Mangrovenbestände von einer Vielzahl verschiedener Fische genutzt. Dies legt 
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nahe, dass letztgenannte Habitate verstärkt in den Fokus wissenschaftlicher 

Untersuchungen gerückt werden sollten.  

 

Stichwörter Struktur von Fischgemeinschaften, Niederschlag, Tidenzyklen, 

Tagesgang, Nahrungsnetze, trophische Diversität, isotopische Nischengröße, 

Mangroven, Gezeitenpriele, Insel Qeshm, Persischer Golf, westlicher Indischer Ozean
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Chapter I 
 
 

Mangroves function and distribution 

Mangrove forests are predominantly intertidal habitats that occur along sheltered and 

shallow water coastlines in the tropics and subtropics (FAO 2007), comprising a 

worldwide area of 137,760 km2 in the year 2000 (Giri et al. 2011). Mangroves fulfill 

important socio-economic and ecological functions such as aquaculture and protection 

against shoreline erosion (Hogarth 1999; Walters et al. 2008). Mangroves are 

considered to be highly productive ecosystems with high rate of primary production, 

harboring high species diversity and thus complex food webs (Manson et al. 2005; 

Nagelkerken et al. 2008; Alongi 2014). Observation of high abundances of juvenile 

fish in mangrove have supported the idea that they are a valuable nursery habitat 

(Robertson and Duke 1987; Laegdsgaard and Johnson 1995; Nagelkerken 2009). 

Structural complexity, reduced predation pressures and abundant food have been 

hypothesized to explain the high abundances of the fish in mangroves (Robertson and 

Blaber 1992; Blaber 2000; Laegdsgaard and Johnson 2001). Over the past 50 years, 

one-third of the world’s mangrove forests have been destroyed by human disturbance 

through urban development, farming and pollution, and remain under threat for the 

same reasons (Alongi 2002).  

Mangrove species and forest structure vary with location and climate, ranging 

from the extremely arid coast of the Persian Gulf to the cool-temperate coast of 

southern Australia, to the wet equatorial coast of Asia, Africa and Latin America 

(Robertson and Alongi 1992; Sheaves 2005). Mangroves are divided into two global 

hemispheres: the Indo-West Pacific (IWP), with highest species diversity, and the 

Atlantic East Pacific (AEP) with four times less mangrove species diversity compared 

to IWP (Fig. 1) (Duke et al. 1998).  

 
Figure 1 Distributions of mangrove forest (species); Modified from Duke et al. (1998) 
and Polidoro et al. (2010). Mangroves in the Persian Gulf are shown in circle. 

9 
 



General Introduction 
  

The ecological role of mangroves is varied among regions and is constrained by 

environmental variables, thereby not all mangrove types fulfill every function ascribed 

to them (Ewel et al. 1998; Twilley and Day 1999; Faunce and Serafy 2006). Existing 

knowledge on mangrove fish is mostly from Australia, North and Latin America and 

South Asia and to a lesser extent from Africa (Faunce and Serafy 2006; Sheaves 2012; 

Blaber 2013). IWP mangroves are a subset of three regions, highly variable in climate, 

comprising East Africa, Indo-Malesia and Australasia (Duke et al. 1998). The Persian 

Gulf region is located in the East African region (Fig. 1). It is the northern edge of 

mangrove distribution in the Indian Ocean. Mangroves in the Gulf region are subject to 

extreme conditions such as very low rainfall and high salinities (Al-Khayat and Jones 

1999) which restrict the mangrove species in this area to one species, Avicennia 

marina, although possibly one or two more species occur in some locations (Sheppard 

et al. 2010). The harsh environment may influence the functionality of mangroves as a 

fish habitat in this region. To date, little is known about mangrove habitat use by fish 

in the meso-tidal coast of the Persian Gulf. There is scarcity of knowledge in this area 

in terms of variables controlling for fish distribution patterns and food webs support in 

mangrove ecosystems, indicating that there is a need to study the dynamics of fish 

communities in relation to environmental variables and food sources in this low-

rainfall system at Qeshm Island, Iranian coast of the Persian Gulf (26.8°N, 55.75°E). 

 

Drivers of structural changes in fish communities 

Variations in fish communities in mangrove habitats have been shown to be dynamic 

on a variety of temporal scales. Many variables such as abiotic parameters, prey 

availability, and predation avoidance have been suggested to determine the structural 

changes in fish assemblages (Blaber 2000; Laegdsgaard and Johnson 2001). However, 

the importance of these factors to the fish population is variable among systems 

(Blaber and Blaber 1980; Faunce and Serafy 2006). 

On tidal coasts, fish have to deal with variations in habitat availability due to 

tidal fluctuations (Quinn and Kojis 1987; Rooker and Dennis 1991). Mangrove fish of 

tidal coasts regularly move between high water level foraging and low water level 

resting sites and the interaction between tide and diel cycle may cause significant 

changes in fish assemblage composition (Krumme 2009). In the Caribbean, where tidal 

ranges are small, only a few fish species respond to changes in water level (Ellis and 

Bell 2008) and the diel cycle is the major rhythm driving short-term changes in 
10 
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mangrove fish assemblages (Nagelkerken et al. 2000). In Indo-Pacific mangroves, 

where the tidal range is greater than the Caribbean, fish assemblages are affected by 

the interactive influence of the tidal and diel cycle (Laroche et al. 1997; Wilson and 

Sheaves 2001). While tidal variations cause structural alteration in the fish 

assemblages in the tidally-infuenced mangroves, other environmental variables such as 

salinity and rainfall (Sheaves 1998; Barletta et al. 2005) and water temperature (Lin 

and Shao 1999) have been also documented as main drivers structuring fish 

assemblages in different ecoregions. Salinity might have less deterministic influence 

on organizing fish assemblages in the African mangroves, except during the rainy 

season, compared to the Brazilian mangroves (Lugendo et al. 2007; Barletta and Saint-

Paul 2010). Also, a combination of salinity and water temperature have been viewed as 

a main factor affecting mangrove fish assemblages in the Indo-Pacific region (Lin and 

Shao 1999). Arid mangroves of the Persian Gulf are influenced by meso-tides, and are 

characterized by a high seasonal water temperature fluctuation (Sheppard et al. 2010). 

Therefore, tidal changes in the water level may influence fish distribution patterns in 

the intertidal creeks in the Persian Gulf. In addition, the extreme seasonal temperature 

difference might organize the dynamics of the fish community in this region (Chapters 

II and IV).  

Habitat types and food availability are also known to partially shape the 

structure of fish assemblages (Hajisamae et al. 2003; Akin and Winemiller 2006). High 

fish abundance in mangroves has been attributed to the diversity and availability of 

food sources in this habitat (Laegdsgaard and Johnson 2001), and primary producers 

such as microphytobenthos, macroalgae and phytoplankton have been identified as 

sources of nutrition for many fish in mangrove ecosystems (Nagelkerken et al. 2008). 

The use of mangrove litter has been observed to be minor compared to other primary 

producers by invertebrates and fish communities, e.g. in African mangroves (Nyunja et 

al. 2009; Igulu et al. 2013), suggesting that mangrove derived resources are not 

important to these intertidal communities. This might affect the dynamics of the fish 

community and the mangrove-associated fisheries. Therefore, a combination of 

community descriptors and isotopic niche estimates represents a more holistic 

approach to determine the habitat use and function of mangroves for fisheries in the 

arid coast of Persian Gulf (Chapter IV). 
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Food web dynamics in mangrove ecosystems 

Studying food webs is important to determine the feeding relationships among 

organisms in aquatic ecosystem and the influence of community structure and trophic 

interactions on ecosystem functioning. Early food web studies used conventional 

techniques such as gut content analysis, which provide relatively high resolution of 

prey items ingested by a consumer but only reveal a snapshot of the consumer's diet 

within the last few hours (Hyslop 1980). Over the last decades, stable isotope analysis 

has emerged as an useful tool to investigate food web connections (Peterson and Fry 

1987; Fry 2006), with the aim to describe animal diet and identify the main sources of 

energy for the consumers (Nyunja et al. 2009; Vaslet et al. 2012) and to track the 

source of organic matter through the ecosystem (Bouillon et al. 2000; Bouillon et al. 

2009). Carbon and nitrogen stable isotope analyses provide insights into the food 

sources assimilated by a consumer in the preceding weeks to months (Gearing 1991), 

although it cannot offer the taxonomic resolution. Carbon isotopes offer insights into 

the sources of organic matter for consumers, whereas nitrogen isotopes can indicate 

trophic levels (Pinnegar and Polunin 1999; McCutchan et al. 2003; Melville and 

Connolly 2003). Enrichment of stable isotopes occurs with trophic transfers and is 

about 0 to 1.3‰ for carbon and 2.0 to 3.5‰ for nitrogen (DeNiro and Epstein 1978; 

Fry and Sherr 1984; Post 2002). However, these values have shown high variability 

with regard to taxonomic classes, specific tissues, habitat, protein quality of the diet, 

life-history level and other factors (e.g., Caut et al. 2009; Robbins et al. 2010; 

Boecklen et al. 2011), and recent stable isotope studies suggest 13C fractionations 

maybe higher than commonly assumed (Herbon and Nordhaus 2013; Bui and Lee 

2014).  

While some studies show that mangrove organic matter provides important 

nutrition to aquatic communities (Giarrizzo et al. 2011; Zagars et al. 2013; Abrantes et 

al. 2015), other studies do not show a strong nutritional linkage between mangroves 

and fish. There have been several attempts to compare interlinked mangrove, seagrass, 

and mudflat food webs through stable isotope analysis that have highlighted the low 

importance of mangrove litter as food source for fish (Marguillier et al. 1997; 

Kruitwagen et al. 2010; Igulu et al. 2013). Also, in a low-rainfall system of Gulf 

region, mangroves were an insignificant source of nutrition for benthic and epi benthic 

invertebrates and only one endemic shrimp species relies on mangrove leaves 

throughout its post settlement life cycle (Al-Maslamani et al. 2012; Al-Maslamani et 
12 
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al. 2013), but fish food web dynamics has not been studied in the Iranian mangroves 

(Chapter III).  

 

Objectives and structure of thesis 

The specific implementation of the content of this dissertation was developed by 

Maryam Shahraki, with advice and scientific guidance by Professor Saint-Paul. The 

overall objective of this thesis is to describe fish community structure and food web 

dynamics in two different ecosystems (mangrove and non-mangrove intertidal creeks), 

of the Persian Gulf, Iran. Thus, this study is aimed at better understanding of the role 

of environmental variables and food sources in the dynamics of the fish community 

and food web fisheries support in low-rainfall coastal ecosystems by addressing the 

following questions: 

1. What is the fish assemblage composition found in the intertidal mangrove and non-

mangrove creeks of Qeshm Island?  

2. How do the interaction of tide (spring-neap) with the diel cycle affect the structure 

of the intertidal mangrove fish assemblage? 

3. Do food sources in the two habitat types (mangrove vs. non-mangrove) differ in 

isotopic compositions? 

4. Do fish rely on different food sources in winter and summer?  

5. What are the main food pathways for fish in mangrove vs. non-mangrove sites?  

6. What is the importance of mangroves in supporting fish food webs? 

7. Is the fish assemblage structure similar across habitats (mangrove vs. non-

mangrove) and seasons?  

8. Do the fish have similar isotopic niche size across habitats and seasons? 

Hence, three studies were designed and implemented, corresponding to the 

three data chapters of this thesis. Chapter II was focused on temporal changes in 

mangrove fish assemblages related to tidal and diel cycle in a meso-tidal mangrove 

area of Qeshm Island. In Chapter III, carbon and nitrogen compositions of a wide 

range of food sources and fish were analyzed across habitats and seasons to determine 

the main food pathways for fish and to identify the importance of mangroves in 

supporting fish food webs. Also, identifying trophic pathways based on stable isotope 

analyses can sometimes be problematic, i.e., when multiple sources exist (as is the 

common case), there is usually no unique solution indicated from the tracer 

information. Therefore, in this chapter, a well-recognized way to evaluate 
13 
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underdetermined systems was used by focusing on minimum and maximum estimates 

rather than on means, medians or other parameters or model-generated distributions of 

solutions. Chapter IV showed whether mangroves enhance fisheries in the low-

rainfall system by comparing the community-level fish diversity, abundance, biomass 

and trophic diversity across habitats and seasons.  

Also two new concepts are profiled in this thesis: 

1- The fish abundance and biomass comparisons are made on both a per m2 basis and 

on a per sample basis, with the per m2 comparisons more appropriate when fish are 

resident, and the per sample comparisons more appropriate when fish are transient. We 

consider comparisons ecologically robust when significant differences are found in 

parallel and significant for both ways of expressing the data (e.g., results are 

considered ecologically robust when abundance is higher both on a per m2 basis and 

also on a per sample basis). Alternatively, if abundance (or biomass) results are not 

parallel and significant when expressed on a m2 and a per sample basis, results are not 

considered ecologically robust (Chapters II & IV). 

2- Fish and food standard ellipse areas (SEA) values are calculated from isotope values 

to describe food use and availability. Higher SEA values for fish communities indicate 

a broader use of foods, and higher SEA values for foods indicate a wide diversity in 

food values. A ratio of these fish/food SEA isotope values is used to test whether fish 

communities expand in isotope space just following food isotopes, or whether there is 

genuine expansion of food use by fish, once changes in food isotopes are taken into 

account. This approach seems to be a valuable first approach reinforcing the 

conclusions reach on the basis of fish-only SEA estimates (Chapter IV).  
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ABSTRACT 

Fish disturbution patterns in relation to the tidal cycle is relatively unstudied in the Persian 

Gulf. We investigated the role of temporal variations and creek topography in shaping fish 

community structure in intertidal mangrove creeks in the Strait of Hormuz, Qeshm Island, 

Iran (Western Indian Ocean). Block net sampling was carried out to examine the influence of 

tide-time of day combinations and month in intertidal fish assemblage structure. The fish 

assemblage (29 species) was dominated by Mugilidae (catch mass: 62%, abundance: 41%). 

The number of species was significantly influenced by tide-time of day interactions and was 

highest during nightly spring tide inundations, although the most abundant species occurred in 

all creeks and months. Temporal variations in fish abundance and biomass were a function of 

specific tide and time of day combinations, and high fish abundance and biomass were 

observed during spring tide night. However, inconsistent monthly and creek-level patterns in 

fish abundance and biomass per sample and per m2 were not considered ecologically robust. 

Combined results from PERMANOVA and CAP confirmed that tide-time of day drove 

changes in the structure of intertidal fish assemblage. Variations in fish assemblage structure 

were closely related to changes in water temperature and high water level. High inundation 

during spring tide coinciding with the darkness and cool water temperature provided 

favorable condition for fish. These findings emphasize the importance of tidal and diel cycle 

for fish habitat use in mesotidal mangroves in this low-rainfall ecosystem, and highlight that 

spring tides provide fish with greater accessibility to intertidal habitats. 

 

Key words Intertidal mangrove creeks, fish community, tidal cycle, Persian Gulf, Western 

Indian Ocean 
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INTRODUCTION 

Mangroves in the Persian Gulf are at the northern edge of mangrove distribution in the 

Indian Ocean. They thrive under extreme conditions and are subjected to very low 

rainfall and high salinities (Al-Khayat and Jones 1999). This harsh environment 

restiricts mangrove diversity to two species in this arid region (Duke et al. 1998). 

Worldwide, mangroves are considered important habitat for fish (Robertson and Duke 

1990; Sasekumar et al. 1992). However, change in environmental variables causes 

structural alteration in the dynamics of fish assemblages and consequently the 

importance of the mangroves to fish population among systems. Despite the socio-

economic importance of mangrove forests in terms of associated fisheries, little is 

known about the dynamics of fish assemblages in relation to the environmental 

variables in the mesotidal coast of the Persian Gulf. 

Many variables such as environmental attributes, prey availability and 

predation avoidance have been suggested to determine fish habitat use of intertidal 

mangrove creeks (Blaber 2000; Laegdsgaard and Johnson 2001). But the relative 

importance of different environmental factors is variable among the biogeographical 

regions (Blaber and Blaber 1980; Blaber 2002). Mangroves in meso/macro tidal coasts 

are inundated and exposed by the alternating tidal cycle, and fish have to cope with 

variations in habitat availability (Quinn and Kojis 1987; Rooker and Dennis 1991). In 

the Caribbean, where tidal ranges are small, only few fish species respond to changes 

in water level (Ellis and Bell 2008) and the diel cycle is the dominant rhythm driving 

short-term changes in mangrove fish assemblages (Nagelkerken et al. 2000). Indo-

West Pacific mangroves, where the tidal range is large, fish accessibility to mangroves 

is limited to periods of intertidal inundation (Wilson and Sheaves 2001; Weis et al. 

2009). On coasts with larger tidal ranges, fish exploit temporarily accessible habitats 

via tidal movements (Gibson 2003). Given the fact that the coasts of Persian Gulf are 

subjected to mesotides, the regular changes in the water level may cause significant 

variance in mangrove associated fish fauna as is known from other tidally-influenced 

shallow water habitats of Kuwait Bay (e.g. Abou-Seedo et al. 1990; Wright et al. 

1990). High-frequency trawls on a non-estuarine mud flat in Kuwait Bay showed the 

strong influence of tidal condition on fish assemblage (Wright et al. 1990). In the 

western Indo-Pacific, only few studies have examined how non-estuarine mangrove 

fish assemblages are affected by the interactive influence of the tidal cycle. Laroche et 

al. (1997) found strong lunar, tidal and diel interactions in a fish assemblage in a 
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semiarid mangrove in Madagascar (Laroche et al. 1997). How mesotides affect 

intertidal mangrove fish assemblage structure, however, are still lacking for Gulf 

mangroves communities. 

Water height and flooding frequency are important factors that influence fish 

composition and abundance in mangroves that are drained at low tide (Davis 1988; 

Laegdsgaard and Johnson 1995). Along the Iranian coast of the Persian Gulf, generally 

intertidal mangrove creeks are flooded during the high tide and become completely 

exposed at low tide. However, intertidal creeks can be located on differing topographic 

levels in a coastal plateau which affect the time of inundation during high water. Thus, 

it is important to understand the role of the attributes of a creek, i.e. relative height in 

the coastal plain, on fish habitat use in this region. 

Mangroves in the Persian Gulf have been neglected with respect to studies of 

fish population dynamics, and there is a need to assess the role of the mangrove habitat 

for fisheries in this arid system. This study aimed to examine, for the first time, 

temporal patterns of mangrove creek fish assemblage structure in the mesotidal coast 

of Qeshm Island, Iran. Therefore, this paper addressed: (i) the taxonomic composition 

of the intertidal mangrove fish fauna in this arid region, (ii) tidal and diel related 

patterns on the structure of fish assemblages considering the relative height of the 

creek in the coastal plain. Therefore, this study compliments a previous study in the 

area assessing resource use, by contributing to the understanding of fish community 

patterns in relation to changes in the abiotic variables. Furthermore, we hypothesized 

that number of fish species, abundance and biomass differ in accordance with the 

interaction of tide and time-of-day in mangrove intertidal creeks. 

 

MATERIALS AND METHODS 

Sampling sites 

The study was carried out at Qeshm Island, Iranian coast of Persian Gulf (26.8°N, 

55.75°E) (Fig. 1). Details of the study area can be found in (Shahraki et al. 2014). Four 

mangrove-lined creeks, flowing into a main channel, were chosen as sampling sites to 

test the fish creek use in relation to the tidal cycle. Creeks 2 and 3 were situated at a 

lower topographic level and were larger in size (low-lying creeks) than Creeks 1 and 4. 

Creeks 1 and 4 were located at a slightly higher topographical level of the intertidal 

plateau and were smaller and shorter (high-lying creeks) (Fig. 1 and Fig. S1). High-
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lying creeks were smaller and have a lower flooding frequency resulting in a reduced 

time allowance for intertidal visitors than low-lying creeks. 

 

 
Figure 1 Location of the study area in Qeshm Island, Strait of Hormuz, Iran (A); 
mangroves in light gray with the main channel and the 4 intertidal creeks (numbered 
dashed rectangles in B) (upper figure). Bathymetric map of high-lying creeks 1 and 4 
(C), and low-lying creeks 2 and 3 (D). 
 

Sampling design 

Fish were sampled from the four intertidal creeks with four block nets (15 - 25 m in 

length, 4 m high; 12 mm stretched mesh size) lifted simultaneously at slack high water 

during three lunar cycles in December 2011 - January 2012, February - March 2012 

and August- September 2012. The block net method is commonly used for fish 

collection in mangroves studies e.g. in South Florida and Brazil (Thayer et al. 1987; 
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Barletta et al. 2003); and this method is regarded as highly efficient in capturing the 

identity of fish fauna using intertidal habitats (Bozeman and Dean 1980).  

Overall 96 block net samples were taken (4 intertidal mangrove creeks x 3 

lunar cycles x 4 lunar phases x 2 times of day). Fish sampling accounted for the four 

most important combinations of tidal amplitude (and lunar phase) and daylight 

conditions: spring tide-night (SN; new moon/full moon-night), spring tide-day (SD; 

new moon/full moon-day), neap tide-night (NN; wax/wane moon-night) and neap tide-

day (ND; wax/wane moon-day). Lunar phases were considered as replicates for spring 

and neap tide. SN and NN sampling took place in the early morning when fishes had 

entered the creeks during the nightly flood tide and were leaving in the morning ebb 

tide. SD and ND sampling were carried out in the evening when fishes had entered 

with the afternoon flood tide and were leaving in the first part of the night. The time of 

each sampling were chosen according to the tide tables for the area 

(http://217.218.133.169/hydrography/DrawChart.aspx).  

Fish were collected during low tide and transported on ice to the laboratory. 

The high-lying creeks were dried out at each tide. However, the low-lying creeks were 

inundated at neap low tide. In this instance, a small hand net was used to collect all the 

fishes behind the block nets. Collected fishes were identified to the lowest possible 

taxonomic level (Fischer and Bianchi 1984; Kuronuma and Abe 1986; Assadi et al. 

1997), counted and wet-weighed (g ± 0.1). Fish total length was analyzed in class 

intervals of 2.5 cm, except for six large-sized species (see species name with asterisks, 

Table 1) where a 10 cm class interval was used.  

For each sampling event, surface water temperature was measured (WTW 

Multi 3430); and tidal height was recorded at the mouth of the creeks at high water 

(tidal gauge). pH values were 8.1±0.2 and salinity averaged 38.3±0.5 throughout the 

sampling period, suggesting a stable non-estuarine mangrove environment (Table S1). 

The visibility of the water measured by Secchi Disk was 52±2 cm. Additionally, a 

HOBO water data level logger (U20-001-01-Ti) was used to assess the interaction 

between water level changes and water temperature in the main mangrove channel in 

August (HOBO did not operate in December and February). This device measured 

water pressure (±0.6 KPa) and temperature (±0.44°C) every 15 minutes resulting in 

information about changes in the approximate water height and temperature over 

several spring and neap tide cycles. 
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Bathymetric surveys of the creeks were carried out at the end of the sampling 

period to assess the local topography with respect to tidal inundation and drainage 

patterns. The survey included measuring water levels at horizontal transects for each 

creek and drawing approximate inundation areas on a grid map in the field. This 

information was introduced to GIS software to produce a bathymetric map of each 

creek (Fig. 1). Relationships between high water level and inundated area and volume 

were established to standardise catch numbers and weights to density and biomass, 

respectively. Abundance and biomass for each species per sample were converted to 

abundance and biomass per m2 by dividing total values by respective inundation area 

for each creek. 

 

Creek attributes 

The area was characterized by a plateau mangrove where the mangrove forest is 

flooded only during spring tides. Average tidal range is ~ 2.5 m in the study area. The 

low-lying creeks were characterized by having greater water depths (0.37 m ± 0.2 SD) 

and greater time of inundation during high water periods when compared to the high-

lying creeks. GIS generated water surface and volume indicated that the relationship 

between surface area, volume and intertidal water level increased slowly until 

approximately 1 -1.5 m water level rise at the mouth of the creeks and inundation was 

still restricted to the creek network. Beyond 2 m water level rise, the water left the 

creek network and the mangrove plateau became flooded (Fig. S2).   

 

Data analysis 

We used the EstimateS software to produce the rarefaction curves and estimates of 

species richness for each creek (Colwell 2009). Species richness between the factors 

month and tide-time of day combination (SN, SD, NN, ND) were analyzed with 

Kruskal-Wallis One Way Analysis of Variance on Ranks (for each factor), followed by 

a Tukey test in SigmaPlot 12.5. The Shapiro-Wilk test was used to test for normality. 

The effect of water conditions on intertidal fish abundances or biomass was 

assessed with four-way permutational multivariate analysis of variance 

(PERMANOVA) model. Factors included: location (fixed, two levels: high-lying and 

low-lying creeks), creek nested in location (random, four levels: 1, 2, 3, 4), tide-time of 

day combination (fixed, four levels: SN, SD, NN, ND) and month (fixed, three levels: 

December, February, August). Additionally, differences among factors were analyzed 
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with pairwise comparisons and in the case of factor location, Monte-Carlo generated p-

values were used because there were inadequate unique permutations possible to 

determine permutational p-values (Anderson et al. 2008). Canonical analysis of 

principal coordinates (CAP) was applied as a constrained ordination procedure to 

visualize patterns revealed by PERMANOVA. The species responsible for differences 

were identified based on the strength of their correlation (|r|>0.4) with the CAP axes. 

Analyses were performed on square-root transformed data and based on Bray-Curtis 

distances. It should be noted that the abundance and biomass comparisons were made 

on both a per m2 basis and on a per sample basis, with the per m2 comparisons more 

appropriate if fish were resident, and the per sample comparisons more appropriate if 

fish were transient. Because fish communities likely represent a mix of residents and 

transients, we considered comparisons ecologically robust when significant differences 

were found in parallel and significant for both ways of expressing the data (e.g., results 

were considered ecologically robust when abundance was higher both on a per m2 

basis and also on a per sample basis). Alternatively, if abundance (or biomass) results 

were not parallel and significant when expressed on a per m2and a per sample basis, 

results were not considered ecologically robust. 

Pearson correlation tests were used to test whether HWL and surface water 

temperature correlated with intertidal fish abundance and biomass per sample in 

Statistica 11.  

 

RESULTS 

Species composition and richness 

A total of 5954 individuals from 29 fish species and 22 families were caught by 96 

block net samples. Half of the species (15 of 29 species) were abundant with 10 or 

more individuals. The most speciose families were Clupeidae (4 species), Haemulidae, 

Sparidae, Lutjanidae, and Gobiidae (2 species each). Most abundant species were Liza 

klunzingeri (Mugilidae) (41%), Leiognathus daura (Leiognathidae) (18%), Pentaprion 

longimanus (Gerreidae) (10%), Thryssa vitrirostris (Engraulidae) (8%), and all other 

species accounted for the remaining 20% of the total abundance, each with less than 

5%. In terms of catch mass, L. klunzingeri (62%), T. vitrirostris (8%) and 

Acanthopagrus latus (Sparidae) (5%) made up 75% of the catch (Table 1). The most 

abundant species (relative abundance of >0.1) occurred in all creeks (Table 1). Also, a 

general similarity in the diversity patterns was indicated in the spatial comparisons of 
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Figure 2 because the observed number of species was similar at 16-20 species when 

800 individuals were considered for comparisons between creeks.  

 
Figure 2 Individual-based rarefaction curves of fish species caught in four mangrove-
lined creeks sampled at different combinations of the tidal and diel cycle during 3 
months (December 2011, February and August 2012) in Qeshm Island, Iran. Dashed 
lines indicate 95% confidence intervals. 
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Table 1 Fish species composition from 4 intertidal mangrove creeks of Qeshm Island collected during three lunar cycles in December 2011-January 
2012, February-March 2012 and August-September 2012, accounting for the four tidal and diel combinations of spring-day (SD), spring-night (SN), 
neap-day (ND), and neap-night (NN). Fish species sorted decreasing by total number of individuals (N). Relative abundance (RA), relative biomass 
(RB) and biomass per sample is shown for tide-time of the day, month and creek. Asterisks symbols indicate large-sized species. 
 

Species Size N  RA% RB
%  Tide-time of day   Month    Creek   

        SN SD NN ND  Dec. Feb. Aug.  C1 C2 C3 C4 

Liza klunzingeri (Mugilidae) 5-20 2443  41 62   64248 9631 9079 9954  67140 13501 12270  1057
1 

2946
4 

4809
9 4777 

Leiognathus daura 
(Leiognathidae) 5-12.5 1057  18 3   2704 1081 3487 22.5  857 2475 979  366.

9 1665 1445 833.
9 

Pentaprion longimanus 
(Gerreidae) 5-12.5 577  10 4   1373.5 3214 964.5 754  2316 1506 2025  1160 3003 745.5 937.

5 
Thryssa vitrirostris 
(Engraulidae) 10-15 468  8 8   7757.7 167 773 472  565.5 4397 6921  844.

7 2994 6225 1820 

Scatophagus argus 
(Scatophagidae) 2.5-10 302  5 2   1000.6 266.5 505.5 683  876.5 170 1428  158.

5 1109 964.2 243.
1 

Acanthopagrus latus 
(Sparidae) 5-15 257  4 5   4097.8 2802 286 69.5  3937 1235 2761  1686 2119 2132 1997 

Anodontostoma chacunda 
(Clupeidae) 5-10 188  3 2   859 1696 504 361  922 1566 454  122 461 2214 145 

Sarinella longiceps 
(Clupeidae) 5-10 166  3 1   0 327 26 1567  7 1915 0  27 1228 0 667 

Pomadasys kaakan 
(Haemulidae) 5-10 161  3 3   3632.5 565 0 13.5  3193 318 986  1615 805.2 1239 837.

6 
Sardinella gibbosa 
(Clupeidae) 5-10 120  2 1   220 777 524.8 35  5 1027 0  35 232 20 745 

Lutjanus johni (Lutjanidae) 5-15 73  1 4   5488 65.5 28 11  4354 820 1164  315 2640 2682 701 
Ilisha melastoma (Clupeidae) 5-10 53  1 0   77.5 287 0 3  67 288 17.5  22.5 78 247 25 

Sillago sihama (Sillaginidae) 10-
17.5 18  0 0   192 205 600 0  276 216 132  101 294 89 140 

Pseudorhombus elevatus 
(Paralichthyidae) 10-15 15  0 0   120 0 0 215  0 335 0  0 15 320 0 

Plectorhinchus pictus 
(Haemulidae) 5-15 13  0 0   253 74 227 0  30 0 397  158 84 30 155 

Scartelaos tenuis (Gobiidae) 5-10 8  0 0   31 0 100 47.5  17 39 82.5  30.5 69 24 15 
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Species Size N  RA% RB
%  Tide-time of day   Month    Creek   

        SN SD NN ND  Dec. Feb. Aug.  C1 C2 C3 C4 
Lutjanus russelli (Lutjanidae) 10-15 6  0 0   0 7.5 0 0  0 80 7.5  0 87.5 0 0 
Platycephalus indicus 
(Platycephalidae)* 20-30 5  0 2   1200 0 5 1650  2300 0 550  0 250 2300 300 

Bathygobius fuscus 
(Gobiidae) 5-10 5  0 0   24 0 0 67  53 38 0  0 31 0 60 

Scomberoides lysan 
(Carangidae) 5-10 5  0 0   0 18 60 49.5  0 0 67.5  0 21.5 46 0 

Eleutheronema tetradactylum 
(Polynemidae)* 20-30 3  0 0   7 0 0 7  0 59 0  0 20 0 39 

Sphyraena putnamiae 
(Sphyraenidae)* 20-30 2  0 1   38.8 0 0 600  600 0 638.8  600 0 638.8 0 

Epinephelus coioides 
(Serranidae)* 30-40 2  0 1   1400 0 0 200  1400 0 200  1600 0 0 0 

Strongylura stronglura 
(Belonidae) 10-15 2  0 0   130 0 80 0  0 130 0  0 0 130 0 

Pseudosynanceia 
melanostigma 
(Synanceiidae)* 

20-30 1  0 0   395 0 0 0  395 0 0  0 261 40 94 

Abalistes stellatus 
(Balistidae)* 20-30 1  0 0   16 0 45 0  0 16 0  16 0 0 0 

Acanthopagrus  cuvieri 
(Sparidae) 15-20 1  0 0   2 109 0 0  0 4 107  0 47 4 60 

Hemiramphus archipelagicus 
(Hemiramphidae) 12.5-15 1  0 0   55 0 0 0  0 0 55  0 55 0 0 

Upeneus sulphureus 
(Mullidae) 10-15 1  0 0   2.5 0 0 0  0 0 2.5  0 0 0 2.5 

Asterisks indicate large-sized species. 

32 
 



Chapter II 
 
 

Species richness differed between tide-time of day (KW- H=32.7, P=<0.001; Tukey’s 

test, SN > NN and ND) and between months (KW- H=6.06, P=0.04; Tukey’s test; Aug>Dec). 

Significantly more species were captured at SN, and ND was responsible for the lowest 

species numbers (Fig. 3). The median number of species at SN was 7 (the 25th and 75th 

percentiles was 6-8), while for the other tide and time combinations the median ranged 

between 4-5 (Fig. 3).  

 
Figure 3 Median number of fish species captured at spring tide night, spring tide-day, neap 
tide-night and neap tide-day and three months (December 2011, February and August 2012) 
in intertidal mangrove creeks at high water (n=96 samples). The 25 to 75% quartiles and 
minimum and maximum values are shown. 
 

The median numbers of species were 4, 5 and 6 for the Dec, Feb and Aug, respectively 

(Fig. 3). Detailed species data showed the presence/absence differences among months and 

tidal and diel cycle. For example, S. longiceps was not found at SN. P. kaakan and I. 

Melastoma did not occur at NN. Also, some rare species with the relative abundance of <0.1, 

e.g. U. sulphureus, H. archipelagicus and P. melanostigma occurred mostly at SN (Table 1). 

Five species were caught in high biomass during spring tide night: L. klunzingeri, T. 

vitrirostris, A. latus, P. kaakan and L. johni. S. longiceps and S. gibbosa (Clupeidae) were 

absent in August. However, the monthly variations in species richness were mostly related to 

the occasional migrant, e.g. S. lysan, H. archipelagicus and U. sulphureus only occurred in 

August, P. elevatus, E. tetradactylum, S. stronglura, A. stellatus, A. cuvieri found in Feb and 

P. melanostigma in December. The most abundant species changed rank between months 

(Fig. S3). 
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Table 2 Results of 4-way PERMANOVA testing the effects of location (high and low-lying creeks), creeks (Creek 1, 2, 3, 4) nested in location, 
tide-time of day combination (spring tide day, spring tide night, neap tide day, neap tide night), and month (December, February, August) on 
biomass and abundance per sample and per m2. Difference were considered to be significant when P < 0.05 (bold values). 

Abund. per m2 df SS MS Pseudo-F P(perm) perms P(MC) Biomass per m2 df SS MS Pseudo-F P(perm) perms P(MC) 
Location 1 2538.4 2538.4 0.4883 1 3 0.853 Location 1 2008.9 2008.9 0.4784 1 3 0.862 
Month 2 22397 11199 6.249 0.008 998 

 
Month 2 18768 9384.1 5.4654 0.003 995 

 Tide 3 32421 10807 5.9633 0.001 999 
 

Tide 3 35670 11890 6.3456 0.001 999 
 Creek (Location) 2 10397 5198.5 2.7903 0.001 999 

 
Creek (Location) 2 8398.2 4199.1 2.1301 0.006 997 

 LocationxMonth 2 4422.6 2211.3 1.2339 0.358 999 
 

LocationxMonth 2 3577.8 1788.9 1.0419 0.458 999 
 LocationxTide 3 4365.5 1455.2 0.80295 0.68 998 

 
LocationxTide 3 4276.8 1425.6 0.76082 0.748 997 

 MonthxTide 6 23034 3839 2.6898 0.001 996 
 

MonthxTide 6 26027 4337.8 2.9852 0.001 998 
 Creek(Location)xMonth 4 7168.3 1792.1 0.9619 0.535 998 

 
Creek(Location)xMonth 4 6868 1717 0.87097 0.654 997 

 Creek(Location)xTide 6 10874 1812.3 0.97274 0.514 997 
 

Creek(Location)xTide 6 11243 1873.8 0.95049 0.583 997 
 LocationxMonthxTide 6 7861.4 1310.2 0.918 0.584 999 

 
LocationxMonthxTide 6 8350.5 1391.7 0.95777 0.546 999 

 Creek(Location)xMonthxTide 12 17127 1427.3 0.76609 0.92 997 
 

Creek(Location)xMonthxTide 12 17437 1453.1 0.73711 0.969 997 
 Residual 48 89427 1863.1 

    
Residual 48 94625 1971.4 

    Total 95 232030 
     

Total 95 237250 
     Abund. per sample df SS MS Pseudo-F P(perm) perms P(MC) Biomass per sample df SS MS Pseudo-F P(perm) perms P(MC) 

Location 1 4423.8 4423.8 1.3206 0.346 3 0.293 Location 1 4384.5 4384.5 1.497 0.335 3 0.219 
Month 2 21330 10665 6.2234 0.004 999 

 
Month 2 17265 8632.5 5.0643 0.01 997 

 Tide 3 33799 11266 6.031 0.001 998 
 

Tide 3 34244 11415 6.2851 0.001 999 
 Creek (Location) 2 6699.7 3349.9 1.8168 0.036 998 

 
Creek (Location) 2 5857.6 2928.8 1.4733 0.093 999 

 LocationxMonth 2 4749.1 2374.5 1.3856 0.251 999 
 

LocationxMonth 2 4081.9 2040.9 1.1973 0.347 997 
 LocationxTide 3 5196.3 1732.1 0.92722 0.575 999 

 
LocationxTide 3 5354.2 1784.7 0.9827 0.506 999 

 MonthxTide 6 22529 3754.8 2.62 0.001 997 
 

MonthxTide 6 26243 4373.8 2.9337 0.001 995 
 Creek(Location)xMonth 4 6854.7 1713.7 0.92943 0.561 999 

 
Creek(Location)xMonth 4 6818.3 1704.6 0.85747 0.728 995 

 Creek(Location)xTide 6 11208 1868.1 1.0132 0.446 998 
 

Creek(Location)xTide 6 10897 1816.1 0.9136 0.64 999 
 LocationxMonthxTide 6 8882.7 1480.5 1.033 0.467 998 

 
LocationxMonthxTide 6 9739.9 1623.3 1.0888 0.354 998 

 Creek(Location)xMonthxTide 12 17198 1433.1 0.77728 0.934 996 
 

Creek(Location)xMonthxTide 12 17891 1490.9 0.74998 0.965 996 
 Residual 48 88502 1843.8 

    
Residual 48 95419 1987.9 

    Total 95 231370 
     

Total 95 238200 
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Spatio-Temporal patterns  

PERMANOVA results for the effect of month were highly significant (Table 2). But the 

pairwise tests were non-significant in all monthly comparisons (t<4.3, P<0.05). Also, 

inconsistent patterns in abundance and biomass per sample and per m2 indicated that month 

cannot be considered as significant factor (Fig. 4).  

 
Figure 4 Mean abundance and biomass per sample and per m2± 1SE of fishes during different 
months: December 2011, February and August 2012 from intertidal mangrove-lined creeks in 
Qeshm Island, Iran. 
 

Highest abundance and biomass per sample and per m2 were observed at SN (Fig. 5). 

Also, tidal and diel variations were strong in PERMANOVA results with P<0.001 (Table 2).  

The pairwise comparisons for abundance and biomass per sample and per m2 showed higher 

values at SN compared with ND (t>3.1, P>0.05). While the tide-time of day combination had 

a strong effect on the fish assemblage composition, the effect was not constant between 

months (Fig. S4). For instance, unlike other NN conditions, high biomass per sample and per 

m2 and abundance per m2 occurred at NN in February. However, this pattern was not observed 
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for abundance per sample. Thus, the interaction between months and tides cannot be 

considered ecologically robust, despite being significant in the PERMANOVA (Table 2).  

 

 
Figure 5 Mean abundance and biomass per sample and per m2± 1SE of fishes at different 
combinations of the tidal-diel cycle: spring tide-night (SN), spring tide-day (SD), neap tide-
night (NN), neap tide-day (ND) from intertidal mangrove-lined creeks in Qeshm Island, Iran. 
 

Mean abundance and biomass per sample were higher at the low-lying creeks (2, 3) 

but inconsistent patterns were observed when the biomass and abundance referred to m2. 

PERMANOVA tests showed that all the location differences were insignificant (Monte-Carlo 

p values>0.05). Creek-level (nested in location) variations were significant in PERMANOVA 

results at the 0.006-0.03 level in three of four cases (Table 2). But the creek level variations 

did not consider ecologically robust because the pattern was not consistent between creeks 

(Fig. S5). 

Further examination of the significant factors in the PERMANOVA test (for the 

factors that were significant in all four cases (abundance and biomass per sample and per m2), 

with the CAP routine, indicated smaller canonical correlation coefficients for the factor month 
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(Table S2); CAP only allocated the samples according to the factor tide and time of the day 

(Fig. 6). The CAP plot showed that A. latus, L. daura and T. vitrirostris were correlated with 

the spring tide. P. longimanus was correlated with the neap tide (Fig. 6).  

 

 
Figure 6 Canonical analysis (CAP) yielded two axes regarding factor tide-time, with squared 
canonical correlations of δ1

2
 =0.68 and δ2

2=0.40. Symbols represent individual biomass per 
sample and vectors show individual species correlations with the 2 CAP axes where |r |>0.4. 
See Table 1 for full species names. 

 

Total abundance and biomass were significantly, positively, related to the high water 

level (R=0.4 and 0.2, N=96, P<0.05) and negatively correlated to the surface water 

temperature (R=-0.09 and -0.1, N=96, P<0.05). 

 

DISCUSSION 

Fish assemblage structure of Qeshm mangrove was characterized by low diversity. This could 

be explained by low habitat diversity and lack of other near shore habitats e.g. seagrass beds 

and coral reef in the vicinity of the mangroves (Pittman et al. 2004; Blaber 2007). Relatively 

high salinities and temperatures that prevail much of the year at the study area might also 

-0.3 -0.2 -0.1 0 0.1 0.2 
CAP1 

-0.2 

-0.1 

0 

0.1 

0.2 

C
 A

 P 2
 

A. latus 

P. longimanus 

T. vitrirostris 

L. daura 

Spring-Night 
Neap-Night 

Spring-Day 
Neap-Day 

37 
 



Tidal Induced Changes in Intertidal Mangrove Fish Assemblages 

 
influence species richness. The number of fish species in the mangrove intertidal creeks in 

Qeshm Island was lower than in other comparable intertidal shallow water habitats in the 

Western Indian Ocean (Table 3), despite covering the major short and mid-term time scales in 

this study. For example, intertidal fish communities were represented by 50 species in non-

estuarine Sulaibikhat Bay, in Kuwait (Wright 1989). Also, 60 and 44 species were reported 

from the mangrove creeks in Madagascar and Zanzibar, respectively (Laroche et al. 1997; 

Lugendo et al. 2007). In contrast, high species diversity has been viewed from the Kenyan 

mangrove where the seagrass bed occurred in close vicinity of mangroves (Kimani et al. 

1996). However, differing sampling methods and efforts hinder direct comparisons. At a 

global scale, the low species diversity in the study area agrees with the standard species 

gradient from the center of shallow water species richness in the coral triangle (Blaber 2000; 

Carpenter and Springer 2005).  

 

Table 3 Comparison of the number of species and families from different intertidal shallow 
water habitats in the Western Indian Ocean; studies sorted according to marine 
biogeographical regions and descending by the year of study.  
 

Western Indian Ocean Sampling  
method 

Habitat type Species 
(Families) 

Abundant fish families 

East Africa     

Gazi Bay, Kenya1  beach seine Mangrove &seagrass 128 (50) Atherinidae, Clupeidae 
and Gerreidae 

Sarodrano mangrove, Madagaascar2 Gillnet Mangrove creek 60 (35) 
 

Gerreidae and 
Teraponidae 

Chwaka Bay, Zanzibar3  seine net Mangrove creeks and 
chanles 

Mangrove creek 
(44) 
Mangrove chabnnel 
(62) 

Ambassidae, 
Apogonidae 
and Gerreidae 

Gulf Region     
     
Sulaikhat Bay, Kuwait4  Otter trawl Intertidal &subtidal 46(28) Mugilidae and 

Haemulidae 
Sulaikhat Bay, Kuwait5 Otter trawl Intertidal &subtidal 50 (30) Mugilidae, 

Haemulidae and 
Leiognathidae 

     
Kuwait Bay6  Otter trawl Intertidal &subtidal Period 1: 37 (29) 

Period 2: 38 (29) 
Leiognathidae, Ariidae 
and Soleidae 

Kuwait Bay7  Trawl &Seine Mud flat and sandy 
beaches 

37 (22) Engraulidae and 
Gobiidae 

     
Qeshm Island, Iran (persent study) Block net Mangrove 29 (21) Mugilidae and 

Leignathidae 
 
1-Kimani et al (1996); 2-Laroche et al (1997); 3-Lugendo et al (2007); 4-Wright (1988); 5-Wright (1989); 6-Wright et al 
(1990); 7-Abou-Seedo et al (1990) 
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In this study area, Mugilidae, Leiognathidae and Engraulidae dominated in 

terms of abundance. Mugilidae were also an abundant family along the coast of Gulf 

region (Wright 1988), suggesting that mullets are dominant in shallow-water intertidal 

habitats in the Gulf region (Table 3). Also, the dominant species made up more than 

75% of the total abundance and biomass. Similarly, other mangrove fish studies 

showed that many fish visited the mangrove but few species are dominant (Bell et al. 

1984; Little et al. 1988; Chong et al. 1990) this supporting a general notion that higher 

complexity and shelter of mangroves attract more fish species. 

Species richness differed between months in the low-rainfall mangroves of 

Qeshm Island, but differences were mostly related to the seasonally vagrant species 

while the highly abundant species were found during all months. This could be linked 

to very low precipitation and lack of fresh water input resulting in year-round hyper 

saline conditions with low allochthonous nutrient input. Conversely, in other semiarid 

and arid mangroves in Madagascar and Mexican Pacific coast, high species richness 

was reported in the warm and rainy season (Laroche et al. 1997; González-Acosta et 

al. 2005). Also, high food availability in the wet season explained as a reason for high 

species richness from the humid mangroves (Ikejima et al. 2003). This suggests that 

rainfall regime may play a determinant role in low species diversity in this study area. 

Tide emerged as an important and significant factor in the analyses of fish 

communities. The results demonstrated that the numbers of species, abundance and 

biomass were highest at nightly spring tide inundations. However, species did not 

avoid low tide and most abundant species were found in both spring and neap tides, 

except S. longiceps that correlated strongly with the neap tide. Qeshm Island presents 

mangroves where much larger intertidal areas are inundated at spring than at neap 

tides. Higher number of species during the night spring tide could be driven by higher 

water level and inundation time that may attract more species in the intertidal 

mangrove creeks. It has been observed that most fish using the tidal creeks at high tide 

move into main tidal channel during low tide to avoid exposure to air (Barletta and 

Saint-Paul 2010). Moreover, the high water could facilitate the movement of fish into 

the creeks, thus the fish may rely on the tide for transport (Davis 1988). 

Tide-diel related changes in fish assemblages also correlated with different 

water temperature dynamics in the creeks during spring and neap tides. This could be 

explained by different combination of high and low water level and time (day and 

night) that influenced SD, SN, NN and ND water temperature. But the inter-correction 
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of these factors (water height and water temperature) is not justifiable with the 

statistics. The results of the HOBO water level logger, operated in August, showed that 

the water temperature cooled during the nightly low water and heated during the 

daytime low water period, with higher daytime values at spring (up to 36°C) than at 

neap tide (33.5°C). Lowest water temperatures were measured during nightly neap tide 

low water (31°C) (Fig. S6). Therefore, smaller water temperature ranges during SN 

provided better conditions because of the converging of a high level of intertidal 

inundation and low water temperatures. 

Similarly, in meso/macro tidal coasts of Australia, more fish use the intertidal 

area during spring tide rather than neap tide (Laegdsgaard and Johnson 1995; Wilson 

and Sheaves 2001). Likewise, in the macrotidal mangrove in northern Brazil, catch 

weight of fish entering intertidal mangrove creeks were highest during spring tides 

(Krumme et al. 2004; Krumme and Saint-Paul 2010). But in the microtidal coast of 

Curaçao and Florida, the mangrove habitats are continuously available for fish 

resulting in a lack of pattern in fish community structure according to tidal cycle (Ley 

and Halliday 1999; Nagelkerken et al. 2001). The diel cycle is the major rhythm 

driving short-term changes in mangrove fish assemblages in non-estuarine system of 

Caribbean Sea (Nagelkerken et al. 2000). Also, catches were greater during the night 

on the falling tide than the rising tide while the day catches were greater on the falling 

tide than the rising tide in intertidal mudflat in the Gulf region (Abou-Seedo et al. 

1990). Also, tidal and diel patterns on species diversity were mostly species-specific in 

Qeshem mangroves. Lutjanidae (L. johni) was mainly caught at SN yet this family was 

largely absent during the day. It is assumed that Lutjanidae are nocturnal so to reduce 

risk of predation, and also because of higher activity of their potential prey (i.e. 

crustaceans) (Hobson 1965).  

Lastly, fish habitat use was greater in the low-lying creeks (C2 and C3) with 

regard to the biomass and abundance per sample. The longer inundations in the low-

lying creeks may provide greater habitat accessibility and consequently lead to longer 

foraging periods for the fish. But the disproportional increases in the water surface and 

the volume of water of low-lying creeks indicated inconsistency in fish biomass and 

abundance per sample and per m2. Nevertheless, the findings indicate that interaction 

of tide (spring and neap) with day-night cycles can explain the organization of fish 

assemblages using intertidal mangroves creeks in mesotidal coasts of Qeshm Island. 

Greater habitat use by fishes during spring tide night could be related to the cooler 
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water temperature at night and also spring tide provides longer foraging time for 

fishes. Thus, tides can be considered as a determinant of fish habitat use in the 

mesotidal coast of the Persian Gulf. 
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ABSTRACT  

The dietary importance of mangroves for fish production often seems to be minor. 

However, robust comparisons of fish food webs at mangrove vs. non-mangrove sites 

are largely lacking. We analyzed stable carbon (δ13C) and nitrogen (δ15N) isotope 

values of dominant fishes (in terms of number) and their potential food sources in 

summer and winter from arid mangrove-lined and un-vegetated intertidal creeks in 

Qeshm Island, Persian Gulf, Northern Indian Ocean (26.8°N, 55.75°E). Detritivorous 

Liza klunzingeri (47%) and Anodontostoma chacunda (34%) dominated the abundance 

at the un-vegetated site; at the mangrove site L. klunzingeri (41%) also dominated, 

while the zooplanktivores Leiognathus daura (18%), Thryssa vitrirostris (8%) and 

macrobenthivores Pentaprion longimanus (10%), Acanthopagrus latus (4%) also 

contributed. Our findings showed high dietary reliance by fish on food items 

associated with non-mangrove sources as indicated by 2 source mixing models. 

Mangrove-derived organic matter contributed a maximum of 36% to the fish tissue 

whereas organic matter produced by microphytobenthos and plankton played a major 

role in the diet of the most abundant fish species with contributions of 64 - 100%. Two 

trophic pathways, a pelagic pathway and a benthic pathway, were present in the fish 

food webs at both sites. The pelagic and benthic food sources of the un-vegetated site 

were 13C-enriched, consistent with stronger contributions of abundant benthic 

cyanobacteria found within that food web. Spatial δ13C variation of microphytobenthos 

and plankton was also reflected in the δ13C values of the feeding guilds and some fish 

species, suggesting that fish were relatively resident at each site. The isotope values of 

most food sources and fish did not differ significantly between seasons. Overall, 

regardless of habitat type and season, microphytobenthos and plankton largely 

sustained fishes in this region while mangroves, where present, were of minor 

importance. Our results suggest both mangrove and un-vegetatted sites act as feeding 

grounds for fishes via pelagic and benthic food pathways in this arid region. 

 

Keywords Intertidal mangrove creeks, Un-vegetated habitat, Intertidal fishes, Stable 

isotopes, Food web structure, Western Indian Ocean 
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INTRODUCTION 

Mangroves forests are known to be highly productive ecosystems with high rates of 

primary production (Alongi, 2014). However, according to the outwelling hypothesis, 

large amounts of mangrove leaves, detritus, and particulate or dissolved organic matter 

are exported to adjacent habitats and are thus thought to be important in local food 

webs (Lee, 1995; Bouillon et al., 2000). Also, mangrove ecosystems contribute to local 

fisheries by providing food and shelter (Manson et al., 2005; Chong, 2007) and thus 

act as important nursery grounds for many fish species (Robertson and Duke, 1987; 

Nagelkerken, 2009). The specific function of mangroves as feeding and nursery 

ground for fishes can vary depending on environmental factors (i.e. precipitation, 

temperature, tidal regime), and on geomorphological features such as the tidal creek 

structure within a mangrove forest (Twilley et al., 1999; Fry and Ewel, 2003; Lugendo 

et al., 2007). In the Indo-Pacific where tides are large, fish show little reliance on 

organic carbon produced by mangroves trees (Marguillier et al., 1997; Nyunja et al., 

2009). These results are also supported by studies in the Caribbean where mangroves 

are often permanently inundated, and primary producers such as microphytobenthos, 

algae, seagrass and phytoplankton have been identified as important food sources for 

many fishes in mangrove ecosystem (Nagelkerken and Velde, 2004; Nagelkerken et 

al., 2008). On the other hand, some studies in high-rainfall areas of the central Indo-

Pacific conclude that organic carbon produced by mangroves trees plays important role 

as food source in fish food webs (Rodelli et al., 1984; Zagars et al., 2013). 

Furthermore, food sources of different origins can be seasonally important for 

consumers in each particular habitat and fishes can change their food habits as a 

consequence of prey availability (Vizzini and Mazzola, 2003; Olin et al., 2012). Given 

these divergent findings, it seems possible that environmental variables could 

determine use of mangrove litter in coastal food webs. 

Mangroves in the Persian Gulf thrive under extreme conditions and are 

subjected to very low rainfall and high salinities (Al-Khayat and Jones, 1999) which 

may influence the functionality of mangroves in this region. So far, there are only a 

few studies of mangroves in the Gulf region, mainly from the southern Arabic coast. 

These studies focus on the role of different habitats including natural and planted 

mangroves on the diet of benthic invertebrates. At the east coast of Qatar, stomach 

content analysis and stable isotope approaches indicated that endemic shrimp species 

(Palaemon khori) relies on mangrove leaves throughout its post settlement life cycle, 
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while other shrimps such as Penaeus semisulcatus and Metapeneus ensis mostly feed 

on seagrass and microbial mat foods (Al-Maslamani et al., 2012; Al-Maslamani et al., 

2013). In the Sulaibikhat Bay also microphytobenthos (microbial mats) are a major 

food sources supporting benthic and pelagic macro faunal species (mostly invertebrate 

and few subtidal fish species) and the minor role of mangroves trees has been 

highlighted as food source for these organisims (Al-Zaidan et al., 2006). 

Stable carbon and nitrogen isotopes are often used to compare interlinked 

mangrove, seagrass and mudflat food webs. These studies have highlighted the limited 

role of mangrove as primary sources of carbon to higher trophic levels (Kruitwagen et 

al., 2010; Igulu et al., 2013). However, direct comparisons between mangrove-lined 

creeks and similar creeks lacking mangroves have not been previously reported. Here 

we use stable carbon and nitrogen isotopes to examine the food pathways in 

mangrove-lined and un-vegetated creeks at the arid coast of Qeshm Island, Iran during 

winter and summer. More specifically we address the following questions: 1) Do food 

sources in the two habitat types (mangrove vs. un-vegetated) differ in isotopic 

compositions? 2) What are the main food pathways for fishes in mangrove vs. non-

mangrove sites? 3) Does fish rely on different food sources in winter and summer? 4) 

What is the importance of mangroves in supporting fish food webs?  

To address these questions, carbon and nitrogen isotope values of food sources 

and fishes were considered from two sites each sampled in summer and winter. Stable 

isotope analyses provide information on the long-term feeding habits of fish and the 

relative contributions of different primary sources to fish nutrition (Peterson and Fry, 

1987; Layman, 2007). Two-source mixing models were used to set upper maximum 

and lower minimum limits on the mangrove contributions to the fish food webs at the 

mangrove site.  

 

MATERIALS AND METHODS  

Study sites 

The study was carried out at Qeshm Island, Iranian coast of the Persian Gulf, a 

protected biosphere reserve at the northern edge of mangrove distribution in the Indian 

Ocean (26.8°N, 55.75°E)(Fig. 1). The northwest of Qeshm Island has the largest 

mangrove area of Iran, composed exclusively of Avicennia marina, growing in the 

high intertidal area, with tree heights of 3 to 6 m (Spalding et al., 2010). The area is 

characterized by a plateau mangrove where the mangrove floor is flooded only during 
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spring tides. The mangroves extend 5-50m inland as a fringe along the creek banks. 

During neap tides, inundation is restricted to the creek networks. Thus, the mangrove 

forests proper is directly accessible for fishes approximately <10% of the time. The 

tide is semidiurnal, with tidal ranges from 1 - 3 m at neap tides and 3 - 4 m at spring 

tides (Reynolds, 2002). This tidal regime produces relatively strong flushing of the 

mangrove creek systems. The region is arid with an annual precipitation below 200 

mm (Reynolds, 2002). High temperatures in summer and dry winds in winter can 

cause 1 – 2 m of evaporation per year creating salinities >39, typical for most Gulf 

waters (Sheppard et al., 2010). The daily air temperatures fluctuated between 12 and 

24 °C in winter, and between 30 and 45 °C in summer; humidity was 75 % in both 

seasons; no precipitation was recorded during the entire sampling period (Qeshm 

Meteorological Station, data received as personal communication).  

Two sites on Qeshm Island were chosen as sampling sites: site A with 4 

mangrove-lined creeks and site B with 2 un-vegetated creeks. Although multiple 

creeks were sampled at each site, creeks were along the same main channels and so 

could not be considered true replicates; for this reason results have been aggregated 

into just the two sites A and B. The distance between the sites was ca. 4 km (Fig. 1). 

Site A was located in an extensive mangrove forest which was virtually devoid of 

human influence and pollution. Site B is located at the border of a small artisanal 

harbor. There are no reefs, seagrass or macroalgae beds in the vicinity of the two sites. 

 

 

Figure 1 Sampling location in Qeshm Island, Strait of Hormuz, Iran. : Location of 
study area in the region; Mangroves in light gray; A: Mangrove-lined site with 4 
intertidal creeks, B: Un-vegetated site (2 bare intertidal creeks).  
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Sample collection 

Various potential food sources (mangrove leaves, microphytobenthos (MPB), 

plankton, particulate organic matter (POM), sediment organic matter (SOM)), 

macrobenthos (shrimps & crabs) and fishes were collected for carbon and nitrogen 

isotopic analysis at both sites in December 2011 and February 2012 (cool, dry period) 

and in August 2012 (hot, dry period). 

Samples of fresh (green) A. marina leaves were hand-picked. Decomposing 

mangrove leaves (yellow) were also collected from the bottoms of the creeks and 

combined for the analysis. MPB was collected at low tide by gently scraping off the 

visible mats from the sediment surface. SOM was collected from the top layer of the 

sediment with a spoon. POM was collected during ebb tide and plankton was sampled 

at high water after sunset by filtering 10 l of water through plankton nets (10 μm mesh 

size for phytoplankton, 200 μm for zooplankton). Since it was not possible to obtain 

phytoplankton samples free of zooplankton, phytoplankton samples were a mixture of 

phyto- and zooplankton. Plankton and POM samples were filtered on pre-combusted 

(4 h, 450oC) Whatmann GF/F glass fiber filters. Each filter was sun-dried and stored in 

a clean glass vial. Benthic invertebrates (shrimps & crabs) were collected with a hand 

net. Fish were collected with block nets (20 x 5 m x 12 mm mesh size) set at slack high 

water at spring and neap tides in both habitat types and seasons (M. Shahraki Unpubl. 

data) and assigned to 4 trophic guilds (detritivores (DV), zooplanktivores (ZP), 

macrobenthivores (MB), omnivores (OV)) based on findings from previous studies 

(Woodland, 1984; Yamashita et al., 1987; Gandhi, 2002; Kiso and Mahyam, 2003; 

Elliott et al., 2007; Hajisamae and Ibrahim, 2008; Tse et al., 2008; Chew et al., 2012; 

Froese and Pauly, 2012; Uddin et al., 2012). 

For the fish samples, white muscle tissue (1 - 2 g) was taken from below the 

anterior end of the dorsal fin. For shrimps and crabs shell or exoskeleton were 

removed and soft tissues were extracted for analysis. All samples were dried at 60 °C 

for 48 h. Fish and benthic invertebrate white muscle tissue was used because it is less 

variable in the δ13C and δ15N than other tissue types (Pinnegar and Polunin, 1999) and 

because it reflects the food assimilated over a longer time period of several weeks 

(Gearing, 1991). Tissue lipid content is known to affect bulk δ13C because lipids are 

depleted in δ13C relative to proteins and carbohydrates (DeNiro and Epstein, 1978; 

McConnaughey and McRoy, 1979). To account for lipids, Following (Post et al., 

2007), prior to statistical analysis, carbon isotopic values of fish and invertebrates were 
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normalized for lipid content following the mathematical normalization technique of 

Post et al. (2007). Correction factor for δ13C was used based on C:N values (i.e. C:N 

ratios >3.5 for lipid-rich tissue). This normalization changed isotope values by an 

average of 0.2‰.  

For δ13C-DIC (dissolved inorganic carbon), 20 ml amber-colored glass bottles 

were filled with water samples and preserved with a mercury chloride solution. All 

samples were sealed and stored cool until analysis at the Leibniz Center for Tropical 

Marine Ecology (ZMT), Bremen, Germany. 

For microphytobenthos community composition, samples from daytime spring 

high tides were taken, fixed with 4% formaldehyde and in the lab, 5 samples were 

analyzed for each site. A sub-sample from each of the original mat samples was 

removed using a scalpel. Each sub-sample was placed in 100 ml of filtered seawater. A 

1 ml sub-sample was extracted from the suspension and equally divided into 3 glass 

slides. The number of cells on each slide was counted to give the number of algal cells 

per ml using Axioskop (Zeiss) and followed by taxonomical determination to genera 

level using (Al-Hasan and Jones, 1989). 

In addition, water parameters (water temperature and salinity) were regularly 

measured (WTW Multisonde 3430) in both mangrove and un-vegetated sites at slack 

high water. 

 

Sample analysis 

Samples for stable isotope analysis were ground to powder with a mortar and pestle. 

For samples rich in carbonates such as SOM and filters of POM and plankton, sub-

samples were prepared for δ13C analysis by treatment with dilute hydrochloric acid, 

followed by rinsing with deionized water and drying. Remaining untreated sub-

samples were used for δ15N analysis as acid has been reported to affect δ15N values 

(Goering et al., 1990; Bunn et al., 1995). Elemental values for C and N were 

determined with an Euro EA3000 Elemental Analyzer. Samples for δ13C and δ15N 

were analyzed with a Delta Plus isotope ratio mass spectrometer connected to the 

Carlo Erba Flash EA elemental analyzer via a Finnigan ConFloII interface. 

The carbon and nitrogen analysis are expressed in conventional delta (δ) 

notation as parts per mil (‰), where the isotopic ratio of 15N/14N is expressed relative 

to air and 13C/12C relative to the international PDB standard, as defined by the 

equation: 
52 

 



Chapter III 

δ X(‰)= [(Rsample – Rstandard)/(Rstandard)] x 1000 

where X is 13C or 15N, and R represents the ratios 13C/12C or 15N/14N. The analytical 

precision of the measurement was <0.06‰ for both δ13C and δ15N. Samples with 

higher δ13C or δ15N values are “heavier” or enriched in the heavy 13C or 15N isotope, 

while samples with lower values are “lighter” and depleted in 13C or 15N.  

Carbon isotopes in DIC were measured with a GasBench II, coupled with a 

MAT 253, both from Thermo Scientific. The reference gas used in measurements was 

calibrated with NBS19 and with Solenhofener Plattenkalk (SPK) was routinely run as 

a control along with samples.  

 

Data analysis 

Shapiro-Wilk test were used to test the normality of stable isotope data. Independent 

samples t-tests (Equal Variance Test (EV), and Mann-Whitney Rank Sum Test 

(MWR) in case the data were not normally distributed) were used to assess site and 

seasonal differences in δ13C and δ15N of food sources and fishes belonging to the same 

species collected from mangrove-lined and un-vegetated sites. Since we did not detect 

any seasonal differences in the carbon and nitrogen stable isotope values of the same 

fish species, the isotopic values of fish species were pooled by season. δ13C and δ15N 

among different feeding guilds were also tested with independent t-tests. 

Two-way ANOVAs (TA) followed by Tukey tests were used to test for the 

effects of site and season on δ13C and δ15N values of main food groups and feeding 

guilds (DV, ZP, MB). Food sources were grouped into mangrove leaves (green and 

yellow), pelagic sources (phytoplankton, zooplankton and POM), benthic sources 

(MPB, SOM) and macrobenthos (crabs). The shared species belonging to the same 

feeding guilds in two sites were considered for two-way ANOVA. Species and feeding 

guilds were grouped as LK and AC (detritivores); LD and TV (zooplanktivores) and 

PL, PK and AL (macrobenthivores). All statistical tests were performed using 

SigmaPlot 12.3.  

Potential minimum and maximum mangrove contributions to fish diets were 

calculated from δ13C data within a framework of two-source mixing models (Fry, 

2013a, b). There were several mixtures of plant food sources (mangroves, 

phytoplankton, and microphytobenthos) that could explain isotope results for fish, and 

unfortunately no source mixture was uniquely indicated. In this situation of 

underdetermined isotope solutions, it is still possible to calculate minimum and 
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maximum potential contributions of plants to fish diets, and we used conventional two-

source mixing models in these calculations (Fry, 2006). These models require end-

member sources which we characterized from measured data and literature estimates. 

Green and yellow mangrove leaves measured in this study averaged -28.3‰ and a 

recent study (Bui and Lee, 2014) indicates that macrofaunal consumers of mangroves 

average 5.2‰ enriched in δ13C when fed mangroves, so that in our system, a value of -

23.1‰ was expected for fish that were 100% reliant on mangroves. For fish that were 

0% reliant on mangroves at our sites, we used average isotope values for fish species 

or groups from our non-mangrove sites. Values between the two source values for 0% 

and 100% reliance on mangroves (sources 1 and 2, respectively) indicated possible 

maximum mangrove contributions for a fish sample of interest according to two-

source mixing: 

Maximum Mangrove Contribution (%) = 100*(δ SAMPLE – δ SOURCE1)/ (δ SOURCE2 – δ 

SOURCE1) 

Samples were fish averages at the whole community level, at the level of fish 

functional groups, and at the species level for seven species where several individuals 

were caught at both the mangrove and non-mangrove sites. Errors associated with the 

two-source calculations were evaluated using the IsoError programming (Phillips and 

Gregg, 2001). The inputs for IsoError were the δ13C values of mean, standard 

deviation, and number of samples measured for mangrove and no-mangrove sources. 

The output generated by the set of IsoError equations provides estimate contributions 

for each source (0-100%), standard errors for these contribution estimates, and 

approximate 95% confidence intervals for source contributions, considering error 

propagation. 

In our study system, we generally found that "aggregated basal plant sources" 

(phytoplankton and MPB) could be substituted for mangroves into the 2-source model 

above and also explain the observed fish isotope values without any involvement of 

mangroves. Thus, the minimum required mangrove contributions were always zero. 

Stated another way, the above two-source calculation represents a theoretical possible 

or maximum mangrove contribution, but a contribution that could also be zero based 

on measured data. Overall, the minimum and maximum mangrove contributions 

ranged between respectively 0% and 36% for the various fish groups and species 

tested in this study. Other food sources were aggregated in the 2-source model as 
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various types of “algae”, and “algal” contributions to the various fish groups ranged 

from a minimum of 64% to a maximum of 100%. 

 

RESULTS & DISCUSSION  

Isotopic composition of potential food sources 

Four groups of potential sources were considered 1) mangrove leaves (G and Y), 2) 

benthic sources (MPB and SOM), 3) pelagic sources (plankton (phyto- and 

zooplankton) and POM), 4) macrobenthos (shrimps & crabs).  

In mangrove-lined creeks, mangrove leaves were isotopically distinct from 

plankton and MPB (Fig. 2), with the most 13C-depleted values for mangroves (-

28.2±1.1‰), intermediate values for plankton (-22.8±1.5‰) and enriched values for 

MPB (-17.8±2.1‰) (Table 2). In the un-vegetated site, plankton was the most 13C-

depleted (-21.8±1.7‰), whereas MPB was even more 13C-enriched (-13.8±3‰) (Table 

2). Tracing the origin of POM and SOM can be complex due to the many potential 

sources (Wu et al., 2003). However, the isotopic composition of POM in both sites was 

similar to plankton, suggesting a high contribution of phyto- and zooplankton to POM, 

while δ13C values of SOM were closely linked to MPB (Fig. 2).  

 
Figure 2 Plot of mean δ13C and δ15N (±SD) of different food sources from the 
mangrove-lined and un-vegetated sites in winter and summer, Qeshm Island, Iran. 
Black and white dots represent mangrove and non-mangrove sources, respectively. 
Green and yellow mangrove leaves (ML-G and ML-Y); phytoplankton (PHY), 
zooplankton (ZOO), particulate organic matter (POM), sediment (SOM), 
microphytobenthos (MPB). 
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The mangrove leaves had a mean δ13C value of -28.2‰, which is in the range 

calculated for mangroves (median= -28.1‰; the 25th and 75th percentiles -29.4‰ to -

27.0‰) (Bouillon et al., 2008), and falls well within the ranges found for mangroves 

around the globe (Marguillier et al., 1997; Abrantes and Sheaves, 2008; Giarrizzo et 

al., 2011). In this study, MPB had δ13C range from -17‰ to -13‰ and fall in the most 
13C-enriched part of the spectrum for carbon sources in aquatic environment reported 

by (Bouillon et al., 2008). In relation to plankton that rangeded from -23‰ to -21‰, 

MPB was enriched in δ13C in both sites due to cyanobacteria which is known to be 

enriched in δ13C owing CO2-concentrating-mechanism (CCM) (Price et al., 2008). 

Benthic microalgae in marine waters are known to be more 13C-enriched (by an 

average of ∼5‰) relative to phytoplankton due to the thicker boundary layer 

experienced by benthic algae (France, 1995; MacLeod and Barton, 1998). 

The mean δ13C values of MPB and POM food sources in the mangrove-lined 

site were 4-5‰ more depleted than in the un-vegetated site. In the presence of 

mangroves, aquatic primary producers can have lower than expected δ13C due to the 

incorporation of 13C-depleted DIC of mangrove origin (Bouillon et al., 2008). In our 

study, however, the δ13C DIC values were very similar at -0.6‰ and -0.9‰ for 

mangrove and un-vegetated sites, respectively. δ13C DIC measurements in the 

oligotrophic surface waters of the Arabian Sea close the Strait of Hormuz show values 

of 1.5‰ (Rixen et al., 2011). These values are in line with those of Bouillon et al. 

(2008), indicating that the respiration of organic matter affects the δ13C DIC value in 

our sites of study. The reasons for the 13C depletion in MPB and POM at the mangrove 

site remain unknown at this time, but may be related to differences in the MPB 

community itself, a community that can contribute to POM when tides resuspend 

sediments. Cyanobacteria dominated the MPB community at the un-vegetated site, 

while diatoms dominated the MPB community at the mangrove site. (see Table S1 in 

the Supplement). Cyanobacteria typically show the most enriched δ13C values among 

aquatic autotrophs (e.g., Al-Zaidan et al., 2006). Higher δ13C values of plankton could 

be also partly explained by the slightly more saline condition in the un-vegetated site. 

Higher δ13C values of zooplankton and POM were partly related to increased salinities 

in estuarine mangroves in India (Bouillon et al., 2000). 

δ15N values of food sources did not differ between sites (EV, p>0.05). δ15N 

values averaged 3.2‰ and 2.0‰ for MPB at the mangrove and un-vegetated sites, 

respectively, and to 7‰ and 6.5‰ for zooplankton (Table 2). The mean δ15N values of 
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mangrove leaves were 4.6‰ and 5.2‰ for green and yellow leaves, respectively. Low 

δ15N values of MPB would be consistent with presence of benthic nitrogen-fixing 

cyanobacteria in both sites. Low δ15N values are related to a large contribution of fixed 

nitrogen from the atmosphere, as the δ15N value of atmospheric N2 is defined as 0% 

(Yamamuro et al., 1995; France et al., 1998). High δ15N values of phytoplankton 

(6.2‰) may reflect some contribution from zooplankton (6.5‰; Table 2). 

Mean δ13C and δ15N values of macrobenthos did not show significant 

difference between sites (EV; p>0.05). δ13C values of macrobenthos were very close 

to the values of MPB, suggesting that macrobenthos relied on MPB. In other 

mangroves, e.g. along the southeast coast of India and Tanzania, δ13C values of benthic 

invertebrates were very close to the δ13C values of benthic algae (Bouillon et al., 2002; 

Kruitwagen et al., 2010). Similarly in another study in the Caribbean, the mean value 

of δ13C of invertebrate spanned in the range of algae (Kieckbusch et al., 2004).  

 

Abundant feeding guilds  

The fish communities were dominated by 12 and 8 species (with relative abundance 

>1%) from the mangrove and un-vegetated sites, respectively. These species were 

selected for the carbon and nitrogen isotope analysis because of their high abundance 

and because they are the representative species in the region. Overall, a total of 29 and 

22 fish species were caught in the mangrove-lined and un-vegetated sites, respectively 

and the Chao1 species richness estimator (SChao1) reached an asymptote in both sites 

(M. Shahraki Unpubl. data), emphasizing that the species richness of the intertidal fish 

communities was well-characterized by our sampling so that additional sampling 

should not have yielded additional species (Gotelli and Colwell, 2011). In our study, 

the low fish species richness and dominance of just a few species compared to other 

tropical regions is likely due to the extreme environmental conditions. Salinity 

averaged 38.3±0.5 in the mangrove-lined site and 40.3±2.3 in the un-vegetated site. 

Moreover, >20°C seasonal fluctuations in water temperature likely enhance the 

stressful condition for fishes (Table S2 in the Supplement).  

Detritivores were the most abundant feeding guild in both sites (44% and 81% 

in the mangrove-lined and un-vegetated sites, respectively), followed by 

zooplanktivores (32%; 8%), macrobenthivores (18%; 7%), and omnivores (5%; <1%) 

(Table 1). The dominance of detritivores in our study sites suggests the importance of 

benthic (detritus) food webs in the intertidal creeks at Qeshm Island.  
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Isotopic composition of fish  

The δ13C values of different feeding guilds differed between the mangrove-lined and 

the un-vegetated sites (Table 3; TA, p<0.05). However, differences in δ13C values at 

the species level were only observed for P. longimanus, A. latus, and Pomadasys 

kaakan (Table 2; EV, p<0.05). The spatial variability in isotopic values of the feeding 

guilds and some species could be explained by difference in δ13C of sources between 

habitats. The spatial differences in δ13C of benthic sources (e.g. MPB) were reflected 

in the δ13C of fishes (DV and MB) and spatial shift in δ13C of pelagic sources can be 

tracked in the δ13C zooplanktivorous fishes. This was consistent with strong overall 

fish residency at the sites, even while recognizing fish make at least limited 

movements with tides to avoid being stranded (Lugendo et al., 2007; Kruitwagen et al., 

2010). 

 
Table 1 Dominant fish (species with relative abundance >1%) in mangrove-lined and 
un-vegetated sites in Qeshm Island, Iran. Relative abundance of dominant species 
(measured on the total number of fish in each habitat type) (RA). Trophic guilds (TG): 
detritivores (DV), zooplanktivores (ZP), macrobenthivores (MB) and omnivores (OV) 
according to available literature (see Material & Method section). Dash lines indicate 
0. 

Species RA(Mangrove) RA(Un-vegetated) TG 
Liza klunzingeri 41 47 DV1 
Leiognathus daura 18 5 ZP2 
Pentaprion longimanus 10 5 MB3 
Thryssa vitrirostris 8 2 ZP4 
Scatophagus argus 5 - OV5 
Acanthopagrus latus 4 2 MB6 
Anodontostoma chacunda  3 34 DV7 
Sardinella longiceps  3 - ZP2 
Pomadasys kaakan 3 - MB1,2 
Sardinella gibbosa 2 - ZP2 
Lutjanus johnii 1 - MB8 
Ilisha melastoma 1 - ZP4 
Gerres longirostris - 2 MB9 

Sillago sihama - 1 ZP2,6 
1: Uddin et al (2012); 2: Hajisamae and Ibrahim (2008); 3: Yamashita et al (1987); 4. Elliot et 
al (2007), 5. Gandhi (2002); 6: Tse et al (2008); 7: Chew et al. (2012); 8: Kiso and Mahyam 
(2003); 9: Woodland (1984). 
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Table 2 Mean carbon and nitrogen isotope values (±SD) of food sources and consumers in mangrove-lined and un-vegetated intertidal creeks, 
Qeshm Island, Iran. N: Number of replicates. Differences were considered to be significant when p < 0.05 (bold values). 
 

  Mangrove-lined site Un-vegetated site p values 
 Key N δ15N δ13C  N δ15N δ13C  δ15N δ13C  

Food Sources          
Avicennia marina (green) ML(G) 20 4.6±0.7 -28.2±1.1      

Avicennia marina (yellow) ML(Y) 6 5.4±1.0 -28.9±0.7      
Microphytobenthos MPB 22 3.2±1.6 -17.9±1.9 11 2.0±1.2 -13.1±2.8 0.06 0.001 
Sediment organic matter SOM 12 3.6±1.2 -19.5±2.1 10 4.5±0.8 -17.4±2.4 0.08 0.4 
Phytoplankton PHY 26 6.9±0.7 -22.3±1.6 14 6.2±1.1 -21.8±1.6 0.7 0.001 
Zooplankton ZOO 24 7.0±0.5 -23.5±0.9 13 6.5±1 -22.6±1.3 0.1 0.01 
Particulate organic matter POM 30 5.0±1.1 -22.8±0.8 11 4.7±0.7 -19.1±1.2 0.3 0.001 
Macrobenthos          
Eurycarcinus spp. EUR 4 9.1±0.4 -14.6±0.5 3 6.8±2.5 -11.6±1.6 0.4 0.06 
Macrophetalmus spp. MAC 2 7.1±1.6 -12.1±2.3 2 6.5±1.7 -11.3±1.5 0.1 0.3 
Portunus spp. POR 2 6.9±0 -16.2±0.1 2 7.8±1.3 -17.1±3.2 0.2 0.5 
Penaeus merguinsis 
 

PM 16 8.2±1.9 -15.0 ±1.1      

Fish          
Detritivores (DV)   6.7±0.6 -14.1±0.7  7.6±1.4 -12.1±1.5   
Liza klunzingeri LK 8 6.5±0.6 -14.3±0.8 12 8.0±1.7 -11.5±1.3 0.07 0.1 
Anodontostoma chacunda  AC 6 7.0±0.5 -13.8±0.6 6 6.9±0.6 -13.5±1.0 0.03 0.7 
Zooplanktivores (ZP)   12.1±1.1 -16.6±1.6  11.5±1 -15.6±2.1   
Leiognathus daura LD 6 12.9±0.5 -19.0±1.3 5 12.3±0.7 -17.9±2.0 0.08 0.2 
Thryssa vitrirostris TV 5 11.4±0.7 -14.6±0.5 6 10.9±0.7 -14.2±0.5 0.03 0.8 
Sardinella longiceps  SL 3 11.3±0.7 -17.9±0.3      
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  Mangrove-lined site Un-vegetated site p values 
 Key N δ15N δ13C  N δ15N δ13C  δ15N δ13C  
Sardinella gibbosa SG 2 11.4±0.6 -18.1±0.7      
Ilisha melastoma IM 3 12.3±1.8 -16.5±1.6      
Sillago sihama SS 3 13.1±0.2 -15.4±0.5 3 11.7±1.0 -14.5±0.8 0.3 0.7 
Macrobenthivores (MB)   9.9±1.9 -16.5±1.5  11.1±1.6 -14.5±2.5   
Pentaprion longimanus PL 6 12.5±1.1 -17.8±1.1 5 12.6±0.6 -16.7±0.9 0.3 0.001 
Pomadasys kaakan PK 8 9.9±1.7 -16.4±0.6 6 10.5±0.5 -13.3±0.9 0.3 0.004 
Acanthopagrus latus AL 8 8.0±0.7 -16.1±1.4 3 8.6±1.2 -12.2±0.7 0.3 0.001 
Lutjanus johnii LJ 8 9.9±1.0 -15.2±1.8      
Omnivores (OV)          
Scatophagus argus SA 3 9.7±0.5 -13.9±0.8      
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Table 3 Mean carbon and nitrogen isotope values (±SD) of main food source groups and feeding guilds (DV, ZP, MB) in mangrove-lined and 
un-vegetated intertidal creeks in winter and summer, Qeshm Island, Iran. Differences were considered to be significant when p<0.05. Food 
sources were mangrove leaves, pelagic sources (phytoplankton, zooplankton and POM), benthic sources (MPB & SOM) and macrobenthos 
(crabs). Fish species considered for each trophic guilds are provided in brackets. Bold p values indicate significant differences.

 Mangrove-lined site Un-vegetated site 2 way ANOVA (p<0.05) 
( δ13C) winter summer winter summer site season site*season 
Food sources        

A. marina (G &Y) -27.3±0.7(11) -29.7±0.7(15) - - - 0.9  

Benthic sources -18.3±2.7(14) -18.5±1.2(20) -16.1±3.1(10) -14.3±3.7(11) <0.001 0.7 0.9 
Pelagic sources -23.5±0.6(45) -21.9±1.4(35) -21.7±2.0(21) -20.1±1.6(17) <0.001 <0.001 0.04 
Macrobenthos (crabs) -15.8±0.7(5) -12.0±3.8(3) -15.3±3.2(2) -12.2±1.5(5) 0.6 0.02 0.5 
Feeding guilds        
Detritivores (LK, AC) -14.2±0.9(8) -14.1±0.4(6) -12.0±2.1(9) -12.1±0.8(9) <0.001 0.2 0.1 
Zooplanktivores (LD, TV) -16.8±2.2(5) -15.9±1.3(6) -17.3±2.7(5) -14.7±1.1(6) 0.007 0.6 0.1 
Macrobenthivores (PL, PK, 
AL) -16.6±1.5(13) -16.8±0.6(9) -14.8±3.2(7) -14.2±0.3(6) <0.001 0.06 0.4 

( δ15N)        
Food sources        
A. marina  4.2±0.8(11) 5.1±0.8(15) - - - 0.2  
Benthic sources 3.3±1.7(14) 3.4±1.9(20) 3.1±1.5(10) 3.2±1.7(11) 0.7 0.3 0.1 
Pelagic sources 6.0±1.4(45) 6.5±1.0(35) 5.4±1.2(21) 6.4±0.9(17) 0.1 0.004 0.2 
Macrobenthos (crabs) 8.0±0.1(5) 8.1±1.9(3) 6.0±1.1(2) 7.4±2.0(5) 0.1 0.1 0.5 
Feeding guilds        
Detritivores (LK, AC) 6.3±0.4(8) 7.2±0.2(6) 7.9±1.3(9) 7.4±1.6(9) 0.06 0.6 0.1 
Zooplanktivores (LD, TV) 11.9±0.0 (5) 12.4±1.0(6) 12.0±0.4(5) 11.1±1.2(6) 0.06 0.2 0.1 
Macrobenthivores (PL, PK, 
AL) 9.2±1.8(13) 10.9±2.3(9) 11.0±1.9(7) 11.2 ±1.2(6) 0.7 0.1 0.4 
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Regarding fish feeding guilds respectively, average δ13C values were lowest for 

zooplanktivores (δ13Cmean= -16.6±1.6‰ and -15.6±2.1‰ respectively in the mangrove-

lined and un-vegetated sites), intermediate for macrobenthivores (δ13Cmean= -

16.5±1.5‰ and -14.5±2.5‰) and the highest for detritivorores (δ13Cmean= -14.1±0.7‰ 

and -12.1±1.5‰), (Table 2; EV, p>0.05). This pattern indicates that zooplanktivorores 

rely on more 13C-depleted food sources, while detritivores feed on the more 13C-

enriched food sources. This suggests high dietary reliance of detrtivores on benthic 

sources and zooplanktivorores on pelagic sources. Different carbon isotopic values for 

benthic and planktonic sources are the likely reason for the relative δ13C enrichment of 

benthic and pelagic consumers, with heavier δ13C values in the benthic than pelagic 

pathway. The δ13C values of herbivorous, omnivorous and planktivorous fishes were 

more depleted than the predatory fish in fringe mangrove in the Caribbean region 

(Kieckbusch et al., 2004). This has been explained by the dietary reliance of non-

predatory fish on more local sources. 

The δ15N values did not differ significantly between habitats at the species or 

trophic guild level, with exceptions observed in 2 species (A. chacunda, T. vitrirostris) 

(Table 2 & 3, TA, p>0.05 and EV, p<0.05). Mean δ15N values of all fish species 

ranged between 6.5‰ and 13.1‰ in the mangrove-lined and from 6.6‰ to 12.6‰ in 

the un-vegetated site (Table 2). The δ15N values differed significantly among trophic 

guilds in both sites (MWR; p<0.05), with lowest values for detritivores (δ15Nmean= 

6.7±0.6‰ in the mangrove-lined, and 7.6±1.4‰ in the un-vegetated sites) and highest 

values for zooplanktivores (δ15Nmean= 12.1±1.1‰ in the mangrove-lined, and 11.5±1‰ 

in the un-vegetated sites). Macrobenthivores and omnivores showed intermediate δ15N 

values. Similar to other food web studies, the zooplanktivores in Qehsm Island had the 

highest δ15N values, while detritivores had the lowest δ15N values and carnivores had 

similar or even higher δ15N than zooplanktivores. (Abrantes and Sheaves, 2009; Vaslet 

et al., 2012). These differences in δ15N between zooplanktivores and detritivores are 

most likely due to the approximately 4‰ differences in δ15N between phytoplankton 

and MPB (Table 2).  

The isotope data and known feeding biology of the fish were consistent with 

the views that there were two main pathways for potential food sources to support the 

fish community in the area, irrespective of habitat type (mangrove-lined vs. un-

vegetated site) (Fig. 3 a, b): 
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1- Pelagic pathway: plankton (phyto- and zooplankton) and POM contributing directly 

or indirectly to zooplanktivores.  

2- Benthic pathway: MPB and SOM assimilated directly by detritivores (e.g. L. 

klunzingeri) or indirectly assimilated by shrimps and crabs and transferred to 

macrobenthivores and omnivores. 

 
Figure 3 Plot of δ13C and δ15N of food sources and consumers in (a) mangrove-lined 
and (b) un-vegetated sites. White dots represent food sources: Green and yellow 
mangrove leaves (ML-G and ML-Y, respectively), phytoplankton (PHY), zooplankton 
(ZOO), particulate organic matter (POM), sediment (SOM), microphytobenthos 
(MPB). Light gray dots symbolize macrobenthos (crabs & shrimps) and black dots 
represent different feeding guilds: Zooplanktivores (ZP), Macrobenthivores (MB), 
Detritivores (DV), Omnivores (OV). 
 

The majority of fish species relied on the benthic pathway via feeding on MPB 

and organic sediment and also macrobenthos (i.e. crabs, shrimps). Carbon isotope 

values of macrobenthos and macrobenthivores widely overlapped and the values were 

very close to the values of MPB, suggesting that macrobenthos relied on MPB as a 

food source. Zooplanktivores relied on the pelagic pathway by feeding on plankton 

and particulate organic matter. The low δ13C values of zooplanktivores corresponded 

to the low δ13C values of zooplankton and phytoplankton, indicating that these items 

comprise the major food sources for these consumers. Also, zooplanktivores had their 

δ15N close to the pelagic food sources, which had relatively high δ15N values. On the 

other hand, detritivores relied on the more 13C-enriched sources (MPB and SOM). The 

greater dependance of pelagic consumers on phytoplankton and of benthic consumers 

on benthic macroalgae and marsh vegetation also has been reported from an estuarine 

food web on the USA east coast (Deegan and Garritt, 1997).  
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Temporal variability in isotope composition of food sources and fish feeding 

guilds 

There were few significant seasonal differences in the stable carbon and nitrogen 

isotope values of the potential food sources, although most δ13C values were slightly 

higher in summer. Pelagic sources (phyto- zooplankton and POM) were the only food 

resource with significantly (TA, p<0.05) higher δ13C values in summer (Table 3), with 

an average summer increase in δ13C of 1.6‰. The seasonal variability of plankton 

(phyto- and zooplankton) could be related to higher water temperatures in summer 

which provide suitable condition for photosynthetic production, which was reflected 

by a slightly higher phytoplankton biomass in summer (0.35±0.08 mg ml-1 in summer 

and 0.28±0.1 mg ml-1 in winter). But further experiments are needed to confirm this 

hypothesis. Higher δ13C in zooplankton during the periods of higher phytoplankton 

abundance and biomass has been reported from an Indian mangrove estuary (Bouillon 

et al., 2000).  

The δ13C and δ15N values of the different feeding guilds did not show any 

seasonal variability (TA, p>0.05) (Table 3). The seasonal variabilty of plankton was 

also not reflected in the feeding guilds. However, seasonal variability in the carbon and 

nitrogen isotopic values of species from different trophic guilds (i.e., primary, 

secondary, and tertiary consumers) in an estuarine system in Florida were associated 

with food source availability (Olin et al., 2012). The lack of seasonal shifts in fish 

isotope values could be partly explained by no shifts in diet, habitat and stable isotope 

composition of sources. Our results of no seasonal shifts in fish isotopes contrast to 

those for a western Mediterranean lagoon where seasonal shifts were explained by 

dietary ontogenetic shift and intra-specific food partitioning (Vizzini and Mazzola, 

2003). More studies are needed to elucidate controls of seasonal shifts in food webs.  

 

Contribution of Mangrove leaves in aquatic food webs 

At the level of the whole community and functional groups, maximum mangrove 

contributions ranged from 13 to 23%, with means and SE of 22+4% for the whole 

community, 13+8% for zooplanktivores, 18+3% for detritivores, and 23+7% for 

macrobenthivores (Fig. 4). For individual species caught at both mangrove and non-

mangrove habitats, maximum potential mangrove contributions ranged from 3 to 35% 

with means and SE of 24+3% for L. klunzingeri, 3+5% for A. chacunda, 21+17% for 

L. daura, 4+3% for T. vitrirostri, 10+9% for Sillago sihama, 17+9% for P. 
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longimanus, 32+3 for P. kaakan, and 36+5 for A. latus (Fig. 4; see also Table S3 in the 

Supplement).  

 

 
Figure 4 Potential maximum contributions of mangroves to fish diets (mean ± 95% 
confidence interval) calculated by IsoError program for the whole fish community 
(FC), fish functional groups (DV, ZP, MB) and individual fish species (LK, AC, LD, 
TV, SS, PL, PK, AL; see Table 2 for full species name). Left panel includes a large 5.2 
fractionation (F= 5.2‰) from mangroves to fish, and the right panel shows low 
estimates for potential mangrove contributions assuming no fractionation (F = 0) with 
from mangroves to fish. Cumulative trophic δ13C fractionation from plants to fish diets 
(F). This figure shows potential maximum mangrove contributions; required minimum 
contributions to fish diets were 0% in all cases. 
 

Among these averages for maximum possible mangrove contributions, there 

was no obvious pattern of detritivore species (L. klunzingeri and A. chacunda) being 

markedly more reliant on mangroves than other species, and as stated in Methods, no 

mangrove contribution was actually required to explain fish isotopes at the mangrove 

sites. The calculated maximum contributions were non-zero due to 1-4‰ negative 

shifts in average fish isotope values at the mangrove sites, but at these sites, MPB also 

shifted in the same negative direction by 4.8‰ (Table 2). Thus, reliance on MPB 

rather than mangroves could account for the negative isotope shifts for fish at the 

mangrove sites. Lastly, our maximum calculations for mangroves assumed a large 

5.2‰ trophic fractionation between mangroves and fish, with this assumption based on 

a newly published study (Bui and Lee, 2014). However, older studies indicate that 

trophic fractionations are smaller for stable carbon isotopes (McCutchan et al., 2003), 

and values between 0 and 3‰ have been used for fish food webs (e.g., (Schwamborn 

et al., 2002; Abrantes and Sheaves, 2008). Using these smaller values reduces the 
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maximum food web support from mangroves, i.e., values would be half the maximum 

values given above if there is 0‰ trophic fractionation (Fig. 4). Also, if the isotope 

values for yellow leaves (-28.9‰) is used as the more appropriate value for mangrove 

detritus instead of the -28.3‰ average of yellow and green leaves, potential maximum 

mangrove contributions are slightly less than the maxima show in the left panel of Fig. 

4, for example 20+3% instead of 22+4% for the whole fish community. 

In summary, there were four reasons pointing to a conclusion that mangrove 

food web support is likely quite small or zero at the mangrove sites, i.e., 1) maximum 

potential contributions averaged only 21% for the mangrove fish community, 2) 

trophic fractionations, if smaller, would have resulted in lower maximum mangrove 

inputs, 3) there was not an obvious pattern of detrivorous fishes having a much higher 

potential trophic reliance on mangroves, and 4) shifts in isotope values of MPB 

provided a reasonable explanation for the relatively small shifts in fish isotope values 

at the mangrove sites. 

Given the lack of other productive habitats in the proximities of the Qeshm 

Island mangroves, the low mangrove contribution to fish diets may be mainly due to 

the low overall productivity of arid mangrove systems, linked to a lack of freshwater 

input and very low precipitation. This finding is in line with previous observations in 

Gulf mangroves which pointed out the limited role of mangroves as primary food 

sources of epibenthic invertebrates (Al-Zaidan et al., 2006; Al-Maslamani et al., 2012). 

It was also argued that cyanophyta-dominated algal mats associated with tidal flats 

were a greater contributor to primary productivity in the Gulf as a whole compared to 

mangroves (Price et al., 1993). However, strong contributions of mangroves in aquatic 

food webs has been reported in the diet of an endemic shrimp species (Palaemon 

khori) from the east coast of Qatar (Al-Maslamani et al., 2013). Al-Maslamani et al, 

(2013) suggested that inwelling of external seagrass and plankton foods partially 

supported resident mangrove fauna. In contrast, invertebrates and fishes in several 

estuarine mangrove systems, such as in Brazil, Malaysia and Thailand showed a 

potentially higher reliance on mangroves, along with a generally mixed food web 

(Rodelli et al., 1984; Giarrizzo et al., 2011; Zagars et al., 2013). This suggests that the 

rainfall setting, tidal regime and habitat settings may influence how much mangroves 

contribute to coastal food webs. Furthermore, mangrove forests in Qeshm Island are 

flooded only during spring tides. This might also influence the role of mangrove as 

feeding habitat and provide less chance for fishes to utilize mangrove foods.  
66 

 



Chapter III 

The mean C/N value of green mangrove leaves was high (C/N ratio of 20) and 

increased during the degradation (to values of up to 65) (see Fig. S2 in the 

Supplement). Apparently, there is a faster loss of N than C during mangrove leave 

decomposition. The dissolved organic nitrogen (DON) might be preferentially leached 

and sustain the microbial food web in the mangrove site, which may lead to a high C/N 

ratio and heavier δ15N values in decomposed mangrove leaves. Senescent mangrove 

leaf litter has been reported as an unattractive food for most animals because it is 

nutritionally poor (high C/N ratio) (Wolcott and O'Connor, 1992). The carbon of 

mangrove leaves was likely not stored in the sediment due to the low sediment C/N 

values (see Fig. S2 in the Supplement). Mangrove carbon might be exported out of the 

system by the tide probably in the form of dissolved organic carbon (DOC), DIC and 

particulate organic carbon (POC). Further measurements of δ13C of DOC are likely 

needed to know the fate of most exported mangrove productivity in this region. 

 

CONCLUSIONS  

Our findings suggest that intertidal fish in Qeshm Island have little dependency on 

organic carbon produced by mangrove trees but a high dependency on planktonic and 

MPB sources. The overall reliance on mangrove carbon by fish was low for the 

dominant fish species in the mangrove-lined creeks. Organic matter formed by 

mangrove leaves contributed 0-36% to the fish diets in mangrove creeks whereas 

organic carbon produced by MPB and plankton contributed 64-100%. High salinities 

and a wide temperature range likely restrict mangrove productivity in the Gulf region. 

Detritivores were the most abundant feeding guild, with isotope measurements 

strongly linking them to MPB in both mangrove-lined and un-vegetated intertidal 

creeks. MPB thus appeared very important in structuring the aquatic food web in this 

arid coastal area. Both mangrove and un-vegetated sites act as feeding grounds for 

fishes via pelagic and benthic food pathways. 

 

Supplementary data is given in Annex II 
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ABSTRACT  

To determine the role of mangroves for fisheries in the arid region of the Persian Gulf, 

we investigated fish community structure and trophic diversity in intertidal creeks with 

and without mangroves. Fish community abundance and biomass were compared 

across habitats and seasons. To identify variations in overall community trophic niches 

among habitats and seasons, we measured niches with size-corrected standard ellipse 

areas (SEAc) calculated from C and N stable isotope values. We found a general 

similarity in the diversity patterns, although slightly greater species richness occurred 

at mangrove sites. However, there were no consistent differences in fish abundance 

and biomass for mangrove vs. non-mangrove fish collections. Community trophic 

diversity measured as SEAc also showed no significant difference between mangrove 

and non-mangrove sites. Instead, strong seasonal patterns were observed in the fish 

assemblages. Winter samples had consistently higher fish abundance and biomass than 

summer samples. Winter SEAc values were significantly higher, indicating that the fish 

community had a larger isotopic niche in winter than summer. Overall, we found that 

seasonality was much stronger than habitat in determining fish community structure 

and trophic diversity in the mangrove and non-mangrove ecosystems of Qeshm Island, 

Iran. 

 

Key words Fish community structure, isotopic niche size, mangrove, non-mangrove, 

Qeshm Island, Iran 

77 
 



Seasonal Fisheries Changes in Low-Rainfall Mangrove Ecosystems 
 

INTRODUCTION 

Mangrove forests are highly productive coastal ecosystems with high rates of primary 

production that help support complex local food webs (Blaber 2007; Chong 2007; 

Alongi 2014). Over the past 50 years, one-third of the world’s mangrove forests have 

been destroyed by human disturbance through urban development, farming and 

pollution, and the remaining mangrove forests are under continuing threat from these 

factors (Alongi 2002). Rationales for conserving mangrove ecosystems are partly 

based on hypotheses that mangroves are important for fisheries (Fry and Ewel 2003). 

Fish abundance in mangroves has been attributed to the diversity and availability of 

food sources in this habitat (Laegdsgaard and Johnson 2001), and primary producers 

such as microphytobenthos, macroalgae and phytoplankton have been identified as 

sources of nutrition for many fish in mangrove ecosystems (Nagelkerken et al. 2008). 

But a number of other variables are also known to influence mangrove-associated fish 

assemblages. High structural complexity and shelter from predation have been 

recognized as major factors responsible for the greater abundance of mangrove-

associated fish (Blaber 2000; Manson et al. 2005; Verweij et al. 2006). Overall, clear 

tests of how mangroves influence fish communities and fisheries sustainability are 

relatively rare. 

Most studies have examined the role of mangrove as fish habitat from the 

perspective of either community structure or trophic diversity. Community approach 

studies have documented greater abundance of juvenile species in mangroves than in 

other nearshore habitats e.g. in Australia (Robertson and Duke 1987; Laegdsgaard and 

Johnson 1995), Malaysia (Chong et al. 1990) and the Caribbean (Nagelkerken and 

Velde 2002). However, any changes in the trophic web may have strong effects on the 

whole community, and result in major changes to ecosystem structure and function 

(Williams et al. 2002; Duffy 2003). The analysis of trophic structure can be used to 

complement the commonly used community descriptors, by giving a different set of 

quantitative measures of community structure (Bersier et al. 2002; Kaartinen and 

Roslin 2012). Newsome et al. (2007) emphasized that stable isotope analysis can 

provide quantitative information on animal food use and trophic niche sizes. We used a 

combination of community descriptors and isotopic niche estimates as a more holistic 

approach to determining the habitat use and function of mangrove fisheries. 

While some studies show that mangrove organic matter provides important 

nutrition to aquatic communities (Giarrizzo et al. 2011; Zagars et al. 2013; Abrantes et 
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al. 2015), other studies do not show a strong nutritional linkage between mangroves 

and fisheries, especially in the Caribbean and Gulf region (Nagelkerken and Velde 

2004; Al-Maslamani et al. 2012). Factors that may help explain these divergent results 

include environmental parameters such rainfall and tidal regimes that may affect 

outwelling of mangrove derived organic carbon (Alongi 2009). This study focused on 

a low rainfall region in the Persian Gulf to test the idea that low rainfall might lead to 

low mangrove use in fisheries food webs. Mangroves in this area are the northernmost 

mangroves in the Indo-Pacific region and are subjected to very low rainfall and high 

salinities (Al-Khayat and Jones 1999). Along the Iranian coast of Persian Gulf, natural 

mangroves stands are limited to 10 sites (Spalding et al. 2010) and the understanding 

of the relationship between mangroves and fisheries has received little study in this 

area.  

 A recent stable isotope study of the contribution of carbon sources supporting 

mangrove food webs suggested that the direct importance of mangrove litter as 

assimilated food was surprisingly low for Persian Gulf mangroves (Shahraki et al. 

2014). Also, possible nutritional use of mangroves was less than use of other primary 

producers for benthic and epibenthic invertebrates in the Gulf region (Al-Zaidan et al. 

2006; Al-Maslamani et al. 2012). Therefore, there was a need to assess the role of 

mangroves for fisheries in the Persian Gulf region. Due to the aridity of the coast of 

Persian Gulf, many intertidal creeks are devoid of mangroves but still may be 

important habitats for fish. This provides a unique opportunity to evaluate the fisheries 

support of mangroves by comparing mangrove and non-mangrove habitats. We 

hypothesized that fish community structure is the same in our low-rainfall mangrove 

and non-mangrove habitats, and also the communities have the same isotopic niche 

size across habitats. We also considered whether the high seasonal fluctuations in 

water temperature (>20°C) in Qeshm mangroves might have strong impact on the 

variability of food sources with resultant in changes fish communities. Sampling was 

designed to contrast the effects of habitats (mangroves vs. non-mangroves) versus 

season as controls of fisheries food webs in the Persian Gulf. We tested whether 

mangroves enhance fisheries support by comparing the community-level fish diversity, 

abundance, biomass and trophic diversity across habitats and seasons. 
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MATERIALS AND METHODS 

Study sites 

The  study  was  carried  out  at  Qeshm  Island,  Strait  of  Hormuz,  Iranian  coast  of  the 

Persian Gulf (26.8°N, 55.75°E) (Fig. 1A,  B). Mangrove sampling sites included four 

intertidal  creeks  (C1,  C2,  C3,  C4)  that  drained  into  a  main  channel.  The  mangroves 

extended  5-50  m  inland  as  a  fringe  along  the  creek  banks,  and  were  3-6  m  tall;  and 

non-mangrove  sites  included  two  intertidal  creeks  (C5  and  C6)  (Fig.  1C,  D).  The 

distance between the two sets of creeks was ca. 4 km.  

 

Figure  1 Study  area  in  Qeshm  Island,  Iran.  Location  of  the  study  area  in  the  region 
(A),  sampling  sites  (mangroves  in  light  gray)  (B),  mangrove  site  (with  4  intertidal 
creeks) (C), non-mangrove site (with 2 intertidal bare creeks) (D), bathymetric maps of 
creeks 1, 2, 3, 4, 5 and 6 (E).  
 

Sample collection 

Fish  were  sampled  by  setting  block  nets  (15 - 25  m  in  length,  4  m  high;  12  mm 

stretched mesh size) at slack high water during four different combinations of tide and 

daylight conditions. The block net method is regarded as highly efficient in recording 

the  fish  fauna  using  intertidal  habitats (Bozeman  and  Dean  1980) and  used  for  fish 
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collection in some mangroves studies e.g. in South Florida (Thayer et al. 1987) and 

Brazil (Barletta et al. 2003). Block net sampling is an area-based method and results 

are reported here both on a per sample and per area (m-2) basis.  

Six nets were deployed simultaneously at low tide along the mouth of the 

creeks and were buried in the sediment and held in place with wooden stakes. The nets 

were rolled down to the level of the sediment and left until high tide. At high tide, the 

top of the nets were lifted onto wooden stakes. In the following low tide when the 

creeks were almost empty the fish were collected. Prawns were also collected 

simultaneously by the nets with 2 mm mesh size. A total of 96 and 32 block net 

samples were taken from mangrove and non-mangrove intertidal creeks in winter 

(December and February) and summer (August) 2011-2012. December sampling was 

carried out only in mangrove creeks and results were therefore excluded from this 

study.  

All fish and prawns were transported on ice to the laboratory. They were 

identified to the lowest possible taxonomic level (Fischer and Bianchi 1984; 

Kuronuma and Abe 1986; Assadi et al. 1997), counted and weighed (g ± 0.1). Fish 

total length was measured to the nearest 0.1 cm and analyzed in class intervals of 2.5 

cm, except for five large-sized species (see species name with # symbols, Table 1) 

where a 10 cm class interval was used. Abundance estimates were based on the 

number of individual fish collected. 

Bathymetric surveys of the creeks were carried out at the end of the sampling 

period to assess the local topography with respect to tidal inundation and drainage 

patterns. A survey included measuring water levels at different horizontal transects for 

each creek using a tape measure, GPS and a compass, then drawing approximate 

inundation areas on a grid map in the field. This information was used with GIS 

software to produce a bathymetric map of each creek (Fig. 1E). Abundance and 

biomass for each species per sample were converted to abundance and biomass per m2 

by dividing total values by respective inundation area for each creek. The inundation 

areas and volumes of water of the creeks are presented in Table S1.  

Carbon and nitrogen isotopic values of various potential food sources 

(mangrove leaves, microphytobenthos (MPB), plankton, particulate organic matter 

(POM), sediment organic matter (SOM), macrobenthos and fishes were measured to 

estimate the trophic diversity in mangrove and non-mangrove sites. Details of this data 

set have been published previously (Shahraki et al. 2014). 
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Data analysis  

Since the objective of the present study was to determine habitat, creek and seasonal 

effects rather than tide-diel variations, statistical analyses were performed for each site 

per season. We used the EstimateS software (Colwell 2009) to produce the rarefaction 

curves and estimate species richness.  

To assess whether intertidal fish assemblages differed in abundance or biomass 

between habitats, creeks and seasons, three-way PERMANOVA (permutational 

multivariate analysis of variance) models were used with the factors: habitat (fixed, 

two levels: mangrove and non-mangrove), creek (random, six levels, C1, C2, C3, C4, 

C5, C6) nested in habitat and season (fixed, two levels, winter and summer). 

Additionally, with the same set up in PERMANOVA, differences between 

habitats were tested using Monte-Carlo p-values, because not enough unique 

permutations were possible to determine permutational p-values for the factor habitat. 

Monte-Carlo p-values provide an approximation of significance based on asymptotic 

theory and should be used in preference to the permutational p-values when the 

number of unique permutations is < 100 (Anderson et al. 2008). Canonical analysis of 

principal coordinates (CAP) was used as a constrained ordination procedure to 

visualize fish abundance patterns revealed by PERMANOVA. CAP is a canonical 

multivariate discriminant analysis which maximizes the differences among a priori 

defined groups. The main species responsible for differences were identified based on 

the strength of their correlation (|r|>0.4) with the CAP axes. Analyses were performed 

on square-root transformed data and based on Bray-Curtis distances (Anderson et al. 

2008). 

Fish abundance and biomass comparisons were made on both a per m2 basis 

and on a per sample basis, with the per m2 comparisons more appropriate if fish were 

resident, and the per sample comparisons more appropriate if fish were transient. 

Because fish communities likely represent a mix of residents and transients, we 

considered comparisons ecologically robust when significant differences were found in 

parallel and significant for both ways of expressing the data (e.g., results were 

considered ecologically robust when abundance was higher both on a per m2 basis and 

also on a per sample basis). Alternatively, if abundance (or biomass) results were not 

parallel and significant when expressed on a m-2 and a per sample basis, results were 

not considered ecologically robust. This logic showed that seasonal differences in 

abundance and biomass were consistently parallel, significant and robust for the fish 
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communities, but that the habitat-level differences between mangroves and non-

mangroves were usually inconsistent and therefore much less robust. 

To assess the influence of habitat and season on isotopic niche sizes we 

calculated the standard ellipse areas (SEA, expressed in ‰2) using SIBER (Stable 

Isotope Bayesian Ellipses in R). These ellipses for bivariate C and N isotope data are 

analogous to univariate standard deviations, and are calculated from the variance and 

covariance of δ13C and δ15N values. The resulting ellipses typically contain c. 40% of 

the data, and provide a description of the isotopic niche of a population or community 

(Bearhop et al. 2003; Jackson et al. 2012). A corrected version of the standard ellipse 

area (SEAc) is used to correct bias towards underestimation when sample sizes are 

small (Jackson et al. 2011). A Bayesian ellipse estimate (SEAB) captures all the same 

properties as SEAc and was used in probabilistic comparisons (for detailed 

explanations, see Jackson et al. 2011). 

 The differences in SEAB were tested to compare the isotopic niche sizes of 

food sources and fish communities, and to make isotopic niche comparisons of 

communities across habitats and seasons. For these community-level comparisons, we 

used the ten most abundant species that occurred in both mangrove and non-mangrove 

habitats with relative abundance (RA) of >1% (species with * in Table 1). In some 

cases, we estimated the SEAc of fish and also foods, then calculated the (SEAc-

fish)/(SEAc-food) ratios to see if fish niche changes were related to changes in niche 

sizes of food sources.  

 

RESULTS  

Community Overview 

A total of 6120 individuals were caught by 96 block net samples, including 3653 fish 

from 64 samples in mangrove sites and 2467 fish from 32 samples in non-mangrove 

sites. 3471 fish were caught in winter and 2467 fish in summer, with 48 block net 

samples collected in each season. Generally small-sized fishes (5-15 cm) dominated 

catches (Table 1). A total of 31 species was caught during the study. The majority of 

species (19 of 31 species) were found in both the mangrove and non-mangrove 

ecosystems (Table 1). 
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Table 1 Fish species composition in mangrove and non-mangrove intertidal creeks of 
Qeshm Island from winter (February 2012) and summer (August 2012). Relative 
abundance (RA) = 100* total individuals in the species/total individuals in the study; 
Occurrence (M %, NM %) are % samples where individuals of the species occurred (in 
mangrove and non-mangrove habitats). # symbols indicate large-sized species, and 
asterisks indicate the species considered for the SEA.  
 

  
Size range 

(cm) 
RA 
(%) 

Occurrence 
(M %) 

Occurrence  
(NM %) 

Mangrove and Non-mangrove   
   Scatophagus argus (Scatophagidae)* 2.5 - 10 2 96 4 

Pomadasys kaakan (Haemulidae)* 5 - 15 2 90 10 
Ilisha melastoma (Clupeidae) 5 - 10 0 82 18 
Sarinella longiceps (Clupeidae)* 5 - 10 3 88 12 
Leiognathus daura (Leiognathidae)* 5 - 12.5 15 75 25 
Thryssa vitrirostris (Engraulidae)* 10 - 15 8 78 22 
Acanthopagrus  cuvieri (Sparidae) 15 - 20 0 79 21 
Pentaprion longimanus (Gerreidae)* 5 - 12.5 8 60 40 
Acanthopagrus latus (Sparidae)* 5 - 15 3 55 45 
Eleutheronema tetradactylum (Polynemidae)# 20 - 30 0 60 40 
Scomberoides lysan (Carangidae) 5 - 10 0 56 44 
Liza klunzingeri (Mugilidae)* 5 - 20 38 34 66 
Pseudorhombus elevatus (Paralichthyidae) 10 - 15 0 43 57 
Platycephalus indicus (Platycephalidae)# 30 - 40 0 33 67 
Sphyraena putnamiae (Sphyraenidae)# 30 - 40 0 20 80 
Hemiramphus archipelagicus (Hemiramphidae) 12.5 - 15 0 33 67 
Sillago sihama (Sillaginidae)* 10 - 17.5 1 19 81 
Upeneus sulphureus (Mullidae) 10 - 15 0 20 80 
Anodontostoma chacunda (Clupeidae)* 5 - 10 16 7 93 
Mangroves only 

    Lutjanus johni (Lutjanidae) 5 - 15 0 100 0 
Plectorhinchus pictus (Haemulidae) 5 - 15 0 100 0 
Sardinella gibbosa (Clupeidae) 5 - 10 2 100 0 
Scartelaos tenuis (Gobiidae) 5 - 10 0 100 0 
Bathygobius fuscus (Gobiidae) 5 - 10 0 100 0 
Epinephelus coioides (Serranidae)# 30 - 40 0 100 0 
Abalistes stellatus (Balistidae)# 20 -30 0 100 0 
Lutjanus russelli (Lutjanidae) 10 - 15 0 100 0 
Strongylura stronglura (Belonidae) 10 - 15 0 100 0 
Non-mangrove only 

    Terapon jarbua (Terapontidae ) 7.5 - 10 0 0 100 
Euryglossa orientalis (Soleidae ) 12.5 - 15 0 0 100 
Gerres poieti (Gerreidae) 5 - 12.5 1 0 100 
Crustacean 

    Penaeus merguiensis (Penaeidae) 
 

  100 0 
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Fish diversity 

Diversity was generally similar for both seasons and habitats (Fig. 2). The observed 

number of species was similar at 20-22 species when 2000 individuals were considered 

for comparisons between mangrove and non-mangrove sites or between winter and 

summer collections (Fig. 2). The Chao1 species richness estimator reached asymptotic 

values for fish from different sites (at 28 and 21 species for mangrove and non-

mangrove, respectively) and seasons (at 24 and 22 species for winter and summer, 

respectively), well before all the individuals were collected in each habitat and season. 

This indicated that species richness of the intertidal fish communities was well-

characterized by our sampling, and that additional sampling should not have yielded 

additional species (Gotelli and Colwell 2011). 

 

 
Figure 2 Individual-based rarefaction curves of fish species sampled in different 
habitats (mangrove vs. non-mangrove) and seasons (winter vs. summer). Dashed lines 
indicate 95% confidence intervals.  

 

Nine species from seven families were caught only in mangrove creeks 

descending by abundance: Sardinella gibbosa (Clupeidae), Lutjanus johni 

(Lutjanidae), Plectorhinchus pictus (Haemulidae), Bathygobius fuscus and Scartelaos 

tenuis (Gobiidae), Lutjanus russelli (Lutjanidae) Epinephelus coioides (Serranidae), 

Abalistes stellatus (Balistidae) and Strongylura stronglura (Belonidae). One species of 
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prawn (P. merguiensis) also occurred only in the mangrove creeks, and at relatively 

high abundance. Three fish species from three families were caught only in the non-

mangrove creeks: Gerres poieti (Gerreidae), Euryglossa orientalis (Soleidae) and 

Terapon jarbua (Terapontidae). Regarding seasonal results, G. poieti was only found 

in summer, while S. longiceps and S. gibbosa were only found in winter. Most of these 

species occurred at low (<1%) relative abundance as rare species e.g., S. lysan, S. 

putnamiae, P. pictus, E. coioides and P. indicus occurred in summer, and P. elevates, 

A. stellatus, S. stronglura, T. jarbua, E. orientalis and B. fuscus occurred in winter. 

Detailed species data for each habitat and season are presented in Table S2. 

 

Fish abundance and biomass  

 Total fish abundance (individuals) and biomass per sample and per m2 was dominated 

by Mugilidae (L. klunzingeri) in both mangrove vs. non-mangrove habitats. Also, 

Leiognathidae, Gerreidae, Engraulidae and Clupeidae were among the most abundant 

families in both sites. In spite of these similarities, we found inconsistent differences 

for mean abundance and biomass for mangrove vs. non-mangrove fish collections. 

These inconsistent differences reflected how the comparisons were made, on a per m2 

or per sample basis (Fig. 3). Thus, fish from mangroves showed higher abundance and 

biomass per m2 than fish from non-mangrove sites, but the opposite pattern pertained 

when data was expressed on a per sample basis, i.e., fish from mangroves showed 

lower abundance and biomass per sample than fish from non-mangrove sites (Fig. 3). 

Only biomass data is shown in Figure 3; additional graphs for abundance and 

correlations relating abundance and biomass are presented in the Figures S1 and S2.  
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Figure 3 Mean fish biomass (g) per sample and per m2 (±SE) in different habitats (left 
panels) and seasons (right panels). Left panels show fish can be more abundant at 
greater biomass when results are expressed on a per m2 basis (top panels), but the 
opposite result pertains when results are expressed on a per sample basis (bottom 
panels). Right panels show the consistent seasonal differences between winter and 
summer fish assemblages, regardless of a per sample or per m2 basis used to scale the 
data. 
 

PERMANOVA tests showed that all these habitat differences were significant 

at the 0.004-0.01 level for Monte- Carlo p-values (Table 2). Thus, the habitat-level 

comparisons showed significant trends but had opposite directions depending on how 

data were expressed. The inconsistent habitat differences were not considered 

ecologically robust.  

Seasonal effects were much more consistent. Mean winter fish assemblages had 

higher biomass and abundance in all comparisons made on a per m2 or per sample 

basis (Fig. 3), and seasonal effects were all significant at the 0.015-0.023 level (Table 

2). Interactions between season and habitat (mangrove vs. non-mangrove) were also 

significant (P <0.05) in three of four cases (Table 2). The seasonal patterns were partly 

due to the high abundance of S. argus in summer and Clupeidae (A. chacunda, S. 

longiceps and S. gibbosa) during winter. The rare species (e.g. P. elevatus) also 

contributed to the high biomass in winter. Lastly, creek-level variations were strong in 

PERMANOVA results with P<0.03 (Table 2), but patterns were not consistent 

between creeks as shown in Figure S3. Statistical tests showed no significant 

interactions between creeks and seasons (Table 2). 
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Table 2 Results of 3-way PERMANOVA, testing the effects of habitats, creeks and seasons on biomass and abundance per sample and 
per m2. Biomass and abundance per sample (top matrix) and biomass and abundance per m2 (bottom matrix). Difference were considered 
to be significant when P < 0.05 (bold values). 
 

Biomass per sample df SS MS Pseudo-F P(perm) perms P(MC) Abundance per sample df       SS     MS Pseudo-F P(perm)  perms P(MC) 

Habitat 1 11222 11222 3.221 0.081 15 0.014 Habitat 1 13391 13391 4.12 0.054 15 0.003 

Season 1 7555.8 7555.8 4.5085 0.015 998 

 

Season 1 9600.5 9600.5 4.9082 0.016 996 

 Creek  (Habitat) 4 13937 3484.1 1.792 0.006 998 

 

Creek (Habitat) 4 13001 3250.3 1.7139 0.014 998 

 Habitat x Season 1 4710.9 4710.9 2.811 0.07 997 

 

HabitatxSeason 1 7084.2 7084.2 3.6218 0.037 997 

 Creek(Habitat)xSeason 4 6703.6 1675.9 0.862 0.664 999 

 

Creek (Habitat) x Season 4 7824 1956 1.0314 0.412 998 

 Residual 84 163320 1944.3 

    

Residual 84 159300 1896.5 

    Total 95 209670 

     

Total 95 214110 

     Biomass per m2 df SS MS Pseudo-F P(perm) perms P(MC) Abundance per m2 df SS MS Pseudo-F P(perm) perms P(MC) 

Habitat 1 11945 11945 4.0799 0.067 15 0.004 Habitat 1 16115 16115 5.1394 0.071 15 0.001 

Season 1 8341.5 8341.5 5.0361 0.023 997 

 

Season 1 7707.7 7707.7 4.0688 0.018 999 

 Creek (Habitat) 4 11711 2927.8 1.5134 0.025 998 

 

Creek (Habitat) 4 12543 3135.6 1.6583 0.016 998 

 Habitat x Season 1 5420 5420 3.2722 0.038 999 

 

Habitat x Season 1 10173 10173 5.37 0.012 997 

 Creek (Habitat) x Season 4 6625.4 1656.3 0.8562 0.693 998 

 

Creek (Habitat) x Season 4 7577.4 1894.3 1.0018 0.486 997 

 Residual 84 162510 1934.6 

    

Residual 84 158840 1890.9 

    Total 95 208720 

     

Total 95 217080 

     

88 
 



Chapter IV 

 

 A further examination of the significant factors in the PERMANOVA tests of 

Table 2 was performed using the CAP routine with leave-one-out procedures, and 

indicated a low overall allocation success for the factor creek (<30%). Thus creeks 

were not identified as consistent factor that could separate samples based on the CAP 

ordination, despite being significant in PERMANOVA tests. CAP analysis also 

showed smaller canonical correlation coefficients for the factor habitat and CAP only 

allocated the samples according to the factor season (Fig. 4). Summer samples were 

divided from the winter samples along the CAP1 axis. Two species (S. argus and P. 

pictus) were correlated with the summer and three species L. daura, S. longiceps and 

P. longimanus were correlated with winter (Fig. 4). Detailed CAP results are presented 

in Table S3. 

 
Figure 4 Canonical analysis (CAP) yielded two axes regarding factor season, with 
squared canonical correlations of δ1

2
 =0.63 and δ2

2=0.50. Symbols represent biomass 
(g m-2) for individual block net samples and vectors show individual species 
correlations with the two CAP axes where |r |>0.4. See Table 1 for full species names. 
 

Isotope niche diversity 

The standard ellipses based on fish carbon and nitrogen isotope compositions showed 

some differences in niche size among sites and seasons (Fig. 5). The standard ellipse 
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sizes for fish were more variable between seasons than habitats, with winter ellipses 

estimated to be significantly larger than summer ellipses at the 96% probability 

indicated by SEAB (Table 3). Mangrove and non-mangrove fish assemblages showed a 

much lower 30% probability of difference based on SEAB (Table 3). To examine 

whether the seasonal comparisons for fish were due to a larger food isotope variability, 

we calculated standard ellipses using food isotopic values (Fig. 5). Food isotope 

variability was similar in mangrove vs. non-mangrove sites, but significantly less 

diverse in winter than in summer (probability of 99%; Table 3). Density plots showing 

the credibility intervals of the standard ellipses areas (SEA) for fish and food sources 

are presented in Figure S4. 

 

 
Figure 5 Standard ellipses areas (SEA) based on carbon and nitrogen stable isotope 
compositions of fish and food sources from different sites (left panels) and seasons 
(right panels); upper panels show data for fish, lower panels show data for potential 
foods.  Solid and dashed lines enclose the standard ellipses area (SEAC) that contain 
ca. 40% of the data and show the isotopic niche of communities and sources at each 
habitat and season. 

 

We used the fish and food SEA values of Table 3 to calculate (SEAc-

fish)/(SEAc-food) ratios, finding a convergence towards similar results of no difference 

for mangrove vs. non-mangrove fish (ratios of 0.4 and 0.5 respectively; Table 3) but 

more pronounced differences for winter vs. summer (respective ratios of 0.7 vs. 0.3). 

These ratio calculations of larger niche diversity in winter matched those when fish 

abundance and biomass were considered, so that this winter increase in the community 

feeding niche appeared relatively robust. Also, much less seasonality was observed in 
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these ratios at the mangrove sites (0.4 and 0.3 for winter and summer, respectively) 

versus at non-mangrove sites (0.8 and 0.4 for winter and summer, respectively). 

 

Table 3 Small size-corrected standard ellipse areas (SEAC) for food sources and fish. 
Probability that the SEA of food sources and fish from one group is smaller than the 
other group (habitats & seasons) is indicated based on Bayesian standard ellipse areas 
(SEAB). The SEAc ratios (SEAc fish)/(SEAc food sources) are shown for different 
habitats and seasons. Bold numbers indicate the high probability of significant 
differences in SEA. 
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Non-mangrove 24.0 
   

13.1 
   

0.5 

Winter 25.0 - 0.99 
 

16.5 - 0.96 
 

0.7 

Summer 34.3 
   

11.6 
   

0.3 

 

DISCUSSION 

Season emerged as the most important and significant factor in our analyses of fish 

communities of Qeshm Island. Fish were less abundant in summer than in winter. Very 

low precipitation and lack of fresh water inputs in the region result in year-round 

hyper-saline conditions (salinities of 39 and above), and summer water temperatures 

are often high >33oC (Shahraki et al. 2014). Our findings on seasonality are not 

unexpected and agree with other studies that have shown that fish abundance and 

biomass in tropical mangrove habitats can be related to the environmental parameters 

such as salinity (Wright 1986), rainfall (Robertson and Duke 1990; Rooker and Dennis 

1991), and turbidity (Little et al. 1988). Fish seasonal patterns in abundance occur 

against a wider biogeographic variation in fish diversity, with relatively low diversity 

characteristic of the study region (Wright 1989; Blaber 1997; Blaber 2000). The lack 

of seagrass in the area may also partly explain the observed low fish diversity (Pittman 

et al. 2004).  
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In contrast to the clear seasonal differences in fish communities, habitat 

differences were much weaker, so that creeks with and without mangroves seemed 

more similar than different in terms of fish diversity and biomass. For example, the 

most abundant species were common in both mangrove and non-mangrove creeks 

(Table 1), and a single species L. klunzingeri made up almost more than 50% of the 

biomass of all fish sampled in both habitats. The strongest difference we observed 

between mangrove and non-mangrove habitats was in the rarer species, with 8 of these 

found only in mangrove habitats. In contrast, only two of the rarer species were found 

in the non-mangrove habitats, so that non-mangrove creeks seemed to offer fewer 

unique characteristics than the mangrove creeks. This is consistent with the idea that 

higher complexity and shelter of mangroves may attract more fish species due to 

abundant food, increased microhabitat availability and shelter from predation (Blaber 

and Blaber 1980; Laegdsgaard and Johnson 2001; Nanjo et al. 2014b). Also, presence 

of some species only in mangroves may be significant for fisheries in some cases, with 

mangrove snapper and a commercial shrimp (Vance et al. 1996; Rönnbäck 1999). The 

fact that many species occurred in the mangrove creeks but only a few were abundant 

seems to be a common feature observed also in other mangroves studies (Little et al. 

1988; Chong et al. 1990). This can be related to the opportunistic species that shift 

their habitats based on food availability and predation risk (Hammerschlag-Peyer and 

Layman 2010). Not enough survey has been done in our study region to make good 

comparative estimates of the nursery function of creeks versus more offshore habitats. 

But most fish collected in the study were small juveniles so that the creeks should be 

considered in future surveys of nursery areas.  

Our estimates of fish abundance and biomass varied depending on whether 

results were expressed on a per sample basis or a per m2 basis, with mangrove creeks 

supporting a less fish biomass/abundance per sample, but a more biomass/abundance 

per m2. This may seem somewhat contradictory, but reflects a real dichotomy in results 

observed in other studies where it also has been observed that fish can be either more 

or less abundant than in mangroves than in other nearby habitats. For example, studies 

that have observed higher biomass (abundance) of fish per area include those from 

south Florida (Thayer et al. 1987), the Caribbean (Nagelkerken and Velde 2002) and 

Japan (Nanjo et al. 2014a). Structural complexity and reduced predation pressures in 

mangrove habitats have been hypothesized to help explain the relatively high fish 

densities found in these habitats (Blaber 2007; Nagelkerken et al. 2008). On the other 
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hand, a study in the Barwon River Estuary in Australia reported less fish biomass per 

area in mangrove habitats than in other microtidal habitats (Smith and Hindell 2005). 

Also a study that made per sample comparisons found that the vegetated areas of 

mangroves had lower fish abundances compared to nearby treeless mudflats and 

creeks (Wang et al. 2009). Lack of uniform methods and sampling strategies among 

the various studies make it difficult at this time to generally assess mangrove 

importance for fish abundances and densities. Also, block net studies show varying 

abundance and biomass in mangroves with different environmental settings, limiting 

direct comparisons to this study. Nevertheless, we did not define the life history of fish 

in this study, and future surveys need to consider fish residency status. 

It is possible that food may contribute to these often conflicting patterns of fish 

abundance and biomass. Greater food availability has been suggested as a factor 

responsible for greater fish numbers in mangroves compared to other habitats 

(Robertson and Blaber 1992; Laegdsgaard and Johnson 2001). But in our study area, 

there is a low estimated role of mangrove detritus and a likely shared dependence on 

mudflat algal food resources (Shahraki et al. 2014). Thus, similarity in the food 

resources may partially account for similarities in fish communities in the mangrove 

and non-mangrove creeks of Qeshm Island.  

The SEAc analyses showed that fish communities had similar isotopic niche 

sizes in both mangrove and non-mangrove habitats. This might reflect the similarity in 

fish compositions among sites and a common reliance on algal food resources in both 

habitats (Shahraki et al. 2014). Also, fish movement between habitats could lead to 

connectivity of food webs across habitats (Layman 2007; Hammerschlag-Peyer and 

Layman 2010). However, there was a broader trophic diversity among fish in winter. 

The presence/ absence of some species largely accounted for this seasonal variation in 

the isotopic niche size. Especially the zooplanktivores L. daura and S. longiceps were 

present at high abundances in winter and their presence increased the isotopic niche 

size. High δ15N values for zooplanktivores are reported in other food webs studies 

(Abrantes and Sheaves 2009; Vaslet et al. 2012). If these fish were removed from the 

SEA analysis, seasonal differences in SEA were no longer significant as indicated by 

lower (15%) probability of difference based on SEAB.  

Our summer fish isotope diversity results are similar in some respects to those 

of Layman et al. (2007) who found less isotopic diversity in stressed ecosystems 

(Layman et al. 2007). High water temperature in summer (>31°C) may decrease 
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fisheries productivity by increasing energy costs in juvenile fishes (Wuenschel et al. 

2004; Wuenschel et al. 2005). However, our results contrast to those of Abrantes et al. 

(2014) who found trophic diversity increased with increased food isotope diversity 

following wet season flooding (Abrantes et al. 2014). In our study, we found the 

opposite pattern, namely that fish trophic diversity decreased in summer at a time 

when food isotope diversity increased. Because of these similarities and differences 

across studies, further research about isotope niche sizes and isotope trophic diversity 

seems warranted. Some caution must be used in these studies because the isotope 

values are usually (as in this study) measured for many potential foods rather than just 

the actual important foods, and because isotope diversity in foods does not necessarily 

equate to an increased availability of foods themselves (Matthews and Mazumder 

2004; Newsome et al. 2007). Future studies should probably be conducted in concert 

with gut content studies to better identify important foods and the relationship of fish 

isotope diversity to the diversity of those important foods. However, seasonal changes 

in fish/food isotope niche ratios agreed with and magnified the seasonal patterns 

observed in fish isotope diversity in this study, so that our coarse-level view of food 

isotope diversity based on all foods, not just important foods, seemed to be a 

reasonable first approach.  

Our findings emphasized that fish had different niche sizes across the seasons 

in Qeshm Island. The lower seasonality observed in the fish/food isotope niche ratios 

at the mangrove sites may indicate more consistent food web dynamics at the 

mangrove sites. Fish communities at both mangrove and non-mangrove sites had 

similar isotopic niche sizes, and both habitats appeared to support juvenile fish. Our 

findings indicate that the abundance and biomass of small fish is not always higher in 

mangrove areas. Like mangrove creeks, the non-mangrove creeks are utilized by a 

wide variety of fish suggesting greater attention should be given to these habitats. 

 

Supplementary data is given in Annex III 
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Chapter V 

Synoptic discussion and outlook 

This thesis provides new information on variables structuring fish assemblages in the 

low-rainfall coastal ecosystem of Qeshm Island, Iran, and helps to fill a gap in 

knowledge regarding fish communities in the northern edge of mangrove distribution 

in the Indian Ocean. The findings show the influence of environmental variables (e.g. 

tide and temperature) in structuring fish assemblages in a meso-tidal area of the 

Persian Gulf (Chapters II and IV). The unique aspect of this study is to combine the 

community descriptors and isotopic niche diversity to determine the patterns of 

changes in the fish assemblages of Qeshm Island. With respect to this, the structuring 

effect of seasonality is more important than habitat in determining the fish distribution 

patterns (Chapter IV). Moreover, the outcomes of this dissertation demonstrate the 

main food pathways sustaining fish communities in mangrove and non-mangrove 

intertidal creeks (Chapters III). The conceptual framework describing the factors 

structuring Qeshm Island fish communities and food web dynamics is shown in figure 

1. 

 
Figure 1 Simplified model of the factors shaping fish communities and food webs in 
Qeshm Island, Iran. Arrows indicate the direction of the influence.  
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Factors determining structural changes in fish communities 

Environmental factors  

Changes in environmental variables cause a structural alteration among fish 

assemblages, although the relative importance of different factors is variable between 

the biogeographical regions (Blaber and Blaber 1980; Blaber 2002). While seasonal 

fluctuations of salinity structure fish communities in humid regions (Barletta et al. 

2003; Barletta and Saint-Paul 2010), this effect is negligible in the low-rainfall system 

of Qeshm Island. Given the fact that the coasts of the Persian Gulf are subjected to 

mesotides, the regular changes in the water level cause significant variance in fish 

distribution. The results of this study show that the interaction between tides (spring 

and neap) and day-night cycles influence the organization of fish assemblages. The 

highest fish biomass, abundance and diversity are observed during spring tide night. 

Qeshm Island presents mangroves where much larger intertidal areas are inundated at 

spring, rather than at neap tides. Therefore, high inundation during spring tide 

coinciding with the darkness provided favorable conditions for fish. This minimizes 

the predation effect and provides longer habitat accessibility for fish. These findings 

are not unexpected and are consistent with other studies that have viewed tidal cycles 

as one of the major factors in determining the dynamics of mangrove fish assemblages 

in tidal coasts e.g. in the Indo-West Pacific (Laroche et al. 1997; Rönnbäck et al. 1999; 

Wilson and Sheaves 2001). Conversely, in the Caribbean, the tidal cycle plays a 

negligible role in structuring fish assemblages, and instead, the diel cycle is the major 

rhythm driving short-term changes in mangrove fish assemblages (Nagelkerken et al. 

2000). Thus, tidal dynamics’ effect on Qeshm fish assemblages is similar to other 

mangroves exposed to median to large tidal regimes (range 2 to >5).  

There, exist a unique attribute of high seasonal fluctuations in water 

temperatures (>20°C). Thereby, this contrasting characteristic of arid mangroves is 

crucial for structuring fish assemblages. In this context, low fish abundance and 

biomass are observed in summer. Extreme summer water temperatures (>33°C) likely 

limit the fish abundance and biomass. The observation of a decline in fish assemblages 

in summer due to an increase in water temperature is characteristic in the Gulf’s 

shallow water habitats (Wright 1989).  

Also, intertidal mangrove creeks in Qeshm Island do not support many fish 

species. Seasonal fluctuations in water temperatures of >20°C likely limit the 

suitability of this shallow-water habitat for coastal-marine fish species in Qeshm 
104 

 



Chapter V 

mangroves. Therefore, the diversity of fish may also be closely linked to the 

environmental conditions. While high species diversity (>80 species) has been 

reported among the humid mangroves in the Indo-Malaysian region (Tongnunui et al. 

2002; Ikejima et al. 2003), the species richness is relatively low in the arid mangroves 

of Qeshm Island (<30 species). This difference in species richness could partly reflect 

the effect of different environmental settings across regions e.g., the lack of fresh water 

and rainfall in the Persian Gulf as compared to South East Asia’s high precipitation 

rate. The low species diversity could also be driven by the lack of other productive 

habitats in the proximities of the Qeshm mangroves, such as seagrass and coral reef. 

However, at a global scale, the low species diversity in the western Indian Ocean 

reflects the standard species gradient from the center of shallow water species richness 

in the coral triangle in all directions (Blaber 2000; Carpenter and Springer 2005).  

Changes in fish communities are most likely linked to the biogeography of the 

mangroves, whereby distinctive environmental factors contribute to the organization of 

fish distribution patterns. Qeshm mangroves are characterized by stable salinities and 

other variables such as tide-diel cycle, and seasonal changes in water temperature have 

been shown to be an important determinant in shaping fish community structure in this 

region (see Chapters II and IV). Also, stressful environmental conditions at the 

northern edge of mangrove distribution in the Western Indian Ocean influence fish 

species diversity in this region.  

 

Food sources 

Larger inundation areas during spring tides enable fish to access intertidal forest rich in 

prey resources that are not available during inundations at neap tides. This can be 

linked to higher fish abundance and biomass during spring tide in Qeshm’s intertidal 

mangrove creeks. It has been observed that during high tide, fish from adjacent 

habitats such as mud flats and seagrass beds migrate into the mangroves to feed 

(Vance et al. 1996; Sheaves and Molony 2000). Depending on local conditions, 

phytoplankton, algae and seagrass detritus imported with tides may represent a 

significant supplementary food input (Kristensen et al. 2008; Nagelkerken et al. 2008). 

In Qeshm’s mangrove-lined creeks, mangrove leaves are isotopically distinct from 

other food sources. The findings of this study do not support mangrove litter as a major 

feeding source for fish in Qeshm Island; and algal sources sustain food webs in 

intertidal arid habitats (Shahraki et al. 2014). Algal material could be a readily 
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available food source for fish and invertebrates on flooding tides. Also, the large 

amounts of algae covering the pneumatophore provide food for many invertebrates and 

juvenile fish (Laegdsgaard and Johnson 2001).  

High fish abundance in mangroves has been attributed to the availability of 

food sources in this habitat (Laegdsgaard and Johnson 2001; Chong 2007). To reliably 

assess the role of mangrove ecosystems in supporting aquatic food webs, mangrove 

habitats should be compared with habitats of the same type but without mangrove 

cover, recognizing that this may be a somewhat artificial comparison if the habitat type 

strongly shifts foraging opportunities. When comparing mangrove vs. non-mangrove 

food webs, both habitats fuel fish with similar food sources. Fish compositions are 

very similar between mangroves and non-mangroves, both in terms of species richness 

and especially in the contribution of dominant species (see Chapter IV). Also, 

community trophic diversity measured as size-corrected standard ellipse areas show no 

significant difference between mangrove and non-mangrove sites in Qeshm Island. 

Moreover, food sources of different origins can be seasonally important for 

consumers (Vizzini and Mazzola 2003; Olin et al. 2012). In the current work, food 

standard ellipse areas (SEA) values indicate wider diversity in food values in summer. 

Also, the δ13C of pelagic food sources (e.g. plankton) show seasonal variations, which 

are reflected in seasonal isotopic variations of zooplanktivoures. In summer, 

temperature stress decreases fish trophic diversity, and fish communities are 

characterized by low biomass and abundance. In contrast, higher SEA values for fish 

communities in winter indicate a broader use of foods, though this is mostly due to 

presence of zooplanktivores, which are not abundant in summer months.  

In addition, seasonal changes in fish/food isotope niche ratios confirm and 

magnify the seasonal patterns in fish isotope diversity in this study. Thus, the coarse-

level view of food isotope diversity based on all foods, not just important foods, 

seemed to be a reasonable first approach. However, these findings should be 

interpreted with some caution because the isotope values are usually (as in this study) 

measured for many potential foods rather than the actual foods, and because isotope 

diversity in foods does not necessarily equate to an increased availability of foods 

themselves (Matthews and Mazumder 2004; Newsome et al. 2007). 

Based on these conclusions, the structure of fish assemblages of species which 

use mangrove and non-mangrove intertidal creeks is mostly influenced by seasonal 

changes in water temperatures. These seasonal developments influence the 
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accessibility of food sources, resulting in changes among fish assemblages. Also, 

similarities in the food resources across habitats may partially account for similarities 

in fish communities in the mangrove and non-mangrove creeks of Qeshm Island.  

 

The main sources of energy for fish  

The fish food web’s support of mangrove and non-mangrove intertidal creeks seem to 

be energetically driven by pelagic and benthic food pathways in Qeshm Island (Fig. 2). 

The fish community result is indicated by the dominance of detrivores in this arid 

environment. However, there is not an obvious pattern of detrivorous fish having a 

much higher potential trophic reliance on mangrove leaves.  

 

 
Figure 2 Simplified mangrove food webs indicating two food pathways in Qeshm 
mangroves, Persian Gulf. Arrows indicate the destination of food sources (particulate 
organic matter (POM), sediment (SOM), microphytobenthos (MPB) to macrobenthos 
(crabs and shrimps) to fish (detritivores, zooplanktivores, macrobenthivores); Modified 
from Shahraki et al. (2014). 
 

As it is shown in Chapter III, fish show low reliance on organic matter derived 

by mangrove trees at multiple levels, from species to trophic guilds to communities. 

Overall, the minimum and maximum mangrove contributions range between 0% and 

36%, respectively, for the various fish groups and species tested in this study. Other 
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food sources are aggregated in the 2-source model as various types of “algae”, and 

“algal” contributions to the various fish groups ranged from a minimum of 64% to a 

maximum of 100%. A global overview of the contribution of food sources supporting 

mangrove food webs reveals a high importance of mangrove litter to fish diet in the 

Indo-Malaysian region, indicated by high precipitation (Rodelli et al. 1984; Zagars et 

al. 2013) and low mangrove litter contributions for the African region, which is 

characterized by the moderate to low rainfalls (Nyunja et al. 2009; Kruitwagen et al. 

2010). Elsewhere, such as in the Caribbean where mangroves are permanently 

inundated, this role is also limited (Nagelkerken and Velde 2004). These divergent 

results suggest that environmental parameters e.g., the precipitation regime may affect 

the outwelling of mangrove derived organic carbon (Alongi 2009). In this study area, 

the low mangrove litter contribution to fish food webs could be mainly related to a 

lack of freshwater input and very low precipitation. Similarly, the possible contribution 

of mangroves as a source of nutrition for benthic and epibenthic invertebrates was less 

than other primary producers in some other studies in the Gulf region (Al-Zaidan et al. 

2006; Al-Maslamani et al. 2012). These results therefore suggest that attributes of an 

arid environment, in other words, the dearth of rainfall, may largely reduce the 

outwelling of mangrove derived organic carbon, and thus influence the use of 

mangrove litter in aquatic food webs.  

Furthermore, the dominance of detritivores in both mangrove and non-

mangrove intertidal creeks suggests the importance of benthic (detritus) food webs in 

the intertidal creeks at Qeshm Island.  

 

Mangroves fisheries support  

Benefits to fisheries from mangroves are derived from a high availability of food 

sources as well as physical attributes (shelter from predation), as demonstrated by high 

fish abundance and diversity (Manson et al. 2005; Chong 2007). But, when mangrove 

fish food webs are compared with the non-mangroves, there is a low estimated role of 

mangrove detritus and a likely shared dependence on mudflat algal food resources in 

both sites in Qeshm Island (Shahraki et al. 2014). 

The estimates of fish abundance and biomass vary depending on whether 

results are expressed on a per sample basis or a per m2 basis, with mangrove creeks 

supporting less abundance and biomass per sample, but more abundance and biomass 

per m2. This may seem somewhat contradictory, but reflects a real dichotomy in results 
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presented in other studies where it has been also observed that fish can be either more 

or less abundant than in mangroves than in other nearby habitats. For example, studies 

that have observed higher biomass (abundance) of fish per area include those from 

south Florida (Thayer et al. 1987), the Caribbean (Nagelkerken and Velde 2002) and 

Japan (Nanjo et al. 2014a). Structural complexity and reduced predation pressures in 

mangrove habitats have been hypothesized to help explain the relatively high fish 

densities found in these habitats (Blaber 2007; Nagelkerken et al. 2008). On the other 

hand, a study in the Barwon River Estuary in Australia reported less fish biomass per 

area in mangrove habitats than in other microtidal habitats (Smith and Hindell 2005). 

Also, a study that made per sample comparisons found that the vegetated areas of 

mangroves had lower fish abundances compared to nearby treeless mudflats and 

creeks (Wang et al. 2009). Lack of uniform methods and sampling strategies among 

the various studies make it difficult at this time to generally assess mangrove 

importance for fish abundances and densities. This reinforces the need for an 

integrated approach to evaluate the role of mangrove as fish habitats. 

A somewhat more mangrove-centric view of this study is the presence of some 

economically important species (e.g. snapper and a commercial shrimp) found only in 

mangroves, suggesting Qeshm mangroves are particularly important habitats for 

associated-mangrove fisheries. Also, the numbers of rarer species (species with 

relative abundance of <1%) occur more frequently in mangroves than in non-

mangroves, which is consistent with the idea that the higher complexity and shelter of 

mangroves may attract more fish species (Verweij et al. 2006; Nanjo et al. 2014b). 

 

Perspectives and future directions  

This study compliments previous studies in the western Indian Ocean by contributing 

to the understanding of fish community patterns in relation to changes in the abiotic 

variables. Tide and season emerged as important factors for structuring fish 

assemblages in the low-rainfall mangroves of Qeshm Island. However, there is still a 

lack of ecological knowledge regarding mangrove habitat use by fish in an arid system 

and further studies, especially in the Gulf region, are needed for a more widespread 

understanding of the relationship between mangrove complexity and fish distribution 

patterns. In this study, the fish abundance and biomass comparisons are made on both 

a per m2 basis and on a per sample basis, revealing an interesting difference between 

the two expressions of the data. These contrasting results are addressed in this thesis. 
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However, the challenge lies in identifying the life history of fish to assess the 

importance of the mangroves to fish population. Further research is needed to know 

which species, when, and at what life stages rely on mangroves. Also, future research 

will address turnover rates for fish population to estimate fish productivity in Qeshm 

mangroves. 

There exists a small body of research which surveys food webs from a low 

rainfall ecosystem, like Qeshm Island, and this study not only records the first fish 

food webs knowledge based on the isotope approach for the Iranian coast of the 

Persian Gulf, but also provides valuable benchmarks for the comparison of trophic 

diversity with comparable arid and humid systems. However, it should be noted that 

only abundant fish species are included for determining fish food webs in this study. 

For having a complete picture of food web dynamics, all fish species should be 

incorporated for the stable isotope measurements. Also, future studies should be 

conducted in concert with gut content analysis to better identify important food sources 

and the relationship between fish isotope diversity and the diversity of those foods.  

The reason for the δ13C depletion in benthic and pelagic pathways of mangrove 

as compared to non-mangrove sites remains unknown in this study, although it may be 

related to differences in the microphytobenthos community itself. Cyanobacteria 

dominate the microphytobenthos at the non-mangrove sites. This might be the impact 

of an enhanced proportion of nitrogen-fixing cyanobacteria within the 

microphytobenthos. The dominant role of nitrogen-fixing cyanobacteria is also 

reflected in the nutrient concentrations (Shahraki Unpubl. data). Relatively high nitrate 

and low phosphate concentrations indicate the preferential uptake of phosphates that is 

leached from the sediments by the cyanobacteria mats, leading to phosphate-limiting 

conditions in the non-mangrove intertidal creeks (Shahraki Unpubl. data). The shading 

effect of mangrove might explain why diatoms dominated over cyanobacteria in the 

mangrove site. But, further studies are needed to clarify these hypotheses. 

It has been believed that large amounts of mangrove leaves, detritus and 

particulate organic matter are exported to adjacent habitats and drive offshore fisheries 

production (Odum and Heald 1972; Lee 1995). However, recent stable isotope studies 

find that it is not the case in humid mangroves (Rodelli et al. 1984; Newell et al. 1995; 

Chong et al. 2001). Because the export of mangrove detritus to adjacent habitats might 

be limited due to lack of fresh water input, this pattern could be more complex in arid 

mangroves. Therefore, our understanding of the role of organic matter produced by 
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mangrove trees for food webs of adjacent habitats, to which they are linked through 

tidal flows, remains restricted. Mangrove carbon might be exported out of the system 

by the tide, probably in the form of dissolved organic carbon (DOC), dissolved 

inorganic carbon (DIC) and particulate organic carbon (POC). Measuring isotopic 

values of fish along a gradient from the mangrove creeks towards open marine waters 

should be considered in future studies. Also, further measurements of δ13C of DOC are 

needed to know the fate of most exported mangrove carbon in this low rainfall region. 

Lastly, the possible roles played by benthos within Iranian mangrove systems 

in the transfer and processing of organic matter remain largely unknown. Biogenic 

activities such as bio-turbation and bio-irrigation could drive sediment–water exchange 

of nutrients and organic matter (Stieglitz et al. 2000), therefore contributing to the 

aquatic food webs. Spatio-temporal variability of solute fluxes (O2, CO2, nutrients) at 

the sediment-water interface, could act as indicators of ecosystem functioning (e.g., 

nutrient cycling) and thereby affecting the biodiversity, in particular the production of 

fish communities. Hence, further analyses and monitoring of the biogeochemical 

fluxes along the sediment-water system hold the potential to delineate the supply of 

organic matter into the food web. 
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Annex I. Supplements for Chapter II 
 

Table S1 Mean ± SD of environmental parameters measured in different months at the 
water surface during slack high tide at the mouth of intertidal mangrove creeks in 
Qeshm Island, Iran. N: Number of measurements for each variable. 
 

Sampling Time N Salinity 
Water 
temperature 
(°C) 

pH 
Oxygen 
concentration 
(mgl-1)  

December 2011 - January 2012 32 38.3±0.6 19.9±1.2 8.1±0.1 8.7±0.5 
February - March 2012 32 37.9±0.4 19.4±1.7 8.2±0.7 9.3±0.7 
August- September 2012 32 38.7±0.3 33.7±1.5 8.2±0.2 6.5±1.2 
 
 
Table S2 Canonical analysis of principal coordinates (CAP) testing the effect of tide-
time of day (spring tide-night, spring tide-day, neap tide-night, neap tide-day) and 
months (December, February and August). %Var = percentage of the total variation 
explained by the first m principal coordinate axes; allocation success = percentage of 
points correctly allocated into each group; δ2 = square canonical correlation.  
 

Factor m Var % Allocation success (%) Total δ2 P 
Tide-Time   SN SD NN ND    
 12 97 70.8 79.1 45.8 79.1 68.7 0.7 0.001 
Month   Dec Feb Aug     
 6 96 50 71.8 68.7  61.9 0.4 0.01 
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Figure S1 Intertidal mangrove creek at low water (on the left) and in high water (on 
the right), Qeshm Island, Iran. The photos on the tops indicate the low-lying creeks 
and high-lying creeks are shown in the bottom. 
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Figure S2 Relationship between level of intertidal inundation and GIS-generated 
surface area (m2) and volume (m³) in two high-lying (a) and two low-lying(b) intertidal 
mangrove-lined creeks in Qeshm Island, Iran (Note: different x axis scales). 

 

 

Figure S3 Rank-abundance plot of fishes captured from intertidal mangrove-lined 
creeks at different tide-time of day combinations during a lunar cycle in December 
2011, February and August 2012 in Qeshm Island, Iran. 
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Figure  S4 Mean  abundance  and  biomass  per  sample  and  per  m2±  1SE  of  fish  at 
different combination of the tidal-diel cycles and months. 
 
 

 

Figure S5 Mean abundance and biomass per sample and per m2± 1SE of fish from two 
low-lying  (C2,  C3)  and  two  high-lying  (C1,  C4)  intertidal  mangrove-lined  creeks  in 
Qeshm Island, Iran. 
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Figure S6 Continuous 15 min measurements of water temperature and water height 
(m) with a HOBO water level data logger installed in the subtidal area at the mouth of 
the main channel from 21.08.2012 at 6:30 PM until 5.09.2012 at 7:30 PM (August - 
September 2012). 
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Annex II. Supplements for Chapter III 
 
Table S1 List of microphytobenthos genera in mangrove-lined and un-vegetated sites. 
The numbers indicate the relative cell abundance. Bold numbers highlight site 
differences.  
 

Taxa Mangrove-lined  Un-vegetated  
Navicula spp. 62.2 2.3 
Nitzschia spp. 12.2 - 
Bacillariophyceae (Total) 74.4 2.3 
Anabaena spp. - 0.8 
Chroococcus spp. 1.4 12.3 
Gloeocapsa spp. - 0.8 
Microcoleus spp. 13.5 49.8 
Oscillatoria spp. 10.7 34.1 
Cyanophyceae (Total) 25.6 97.8 

 

Table S2 Physico-chemical characteristics of the seawater from the mangrove-lined 
and un-vegetated sites, Qeshm Island, Iran. 
 

Site Season pH Do (mg/l) Salinity Temperature (°C) 
Mangrove-

lined 
Winter 8.1 

±0.1 
9.06±0.7 38.1±0.5 19.6±1.5 

Summer 8.2±0.2 6.6±1.2 38.7±0.3 33.7±1.4 
Un-vegetated Winter 8.0±0.1 9.4±0.3 40.8±4.2 19.6±2.0 

Summer 8.2±0.0 7.2±0.9 40.4±1.1 34.0±2.0 
 

Table S3 Potential contributions of mangroves to fish diets (mean ± 95% confidence 
interval) calculated by IsoError program and two-source mixing models for the whole 
fish community, fish functional group and individual fish species using δ13C values. 
 

 
Sample 

(Mangrove 
fish) 

Source 1 
(Non-

mangrove 
sources) 

Source 2 
(Mangrove 

Leaves- green & 
yellow) 

Whole fish community    
δ13C [‰] (SD) -15.8 (1.7) -13.8 (2.5) -28.3 (1.09) 
   -23.1 (1.09) 
Sample size 66 46 26 
Source proportions (No fractionation)  87-100 0-13 
Source proportions [%] (SE)  86 (03) 14 (03) 
95% Confidence limits (%)  81-91 09-19 
Source proportions (Max fractionation)  79-100 0-21 
Source proportions [%] (SE)   78 (04) 22 (04) 
95% Confidence limits (%)  71-86 14-29 
Functional groups    
Detritivores (DV)    
δ13C [‰] (SD) -14.1 (0.7) -12.1 (1.5) -28.3 (1.09) 
   -23.1 (1.09) 
Sample size 14 18 26 
Source proportions (No fractionation)  88-100 0-12 
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Sample 

(Mangrove 
fish) 

Source 1 
(Non-

mangrove 
sources) 

Source 2 
(Mangrove 

Leaves- green & 
yellow) 

Source proportions [%] (SE)  88 (02) 12 (02) 
95% Confidence limits (%)  83-92 08-17 
Source proportions (Max fractionation)  82-100 0-18 
Source proportions [%] (SE)   82 (03) 18 (03) 
95% Confidence limits (%)  75-88 12-25 
Zooplanktivores (ZP)    
δ13C [‰] (SD) -16.6 (1.6) -15.6 (2.1) -28.3 (1.09) 
   -23.1 (1.09) 
Sample size 22 14 26 
Source proportions (No fractionation)  93-100 0-7 
Source proportions [%] (SE)  92 (05) 08 (05) 
95% Confidence limits (%)  82-100 00-18 
Source proportions (Max fractionation)  87-100 0-13 
Source proportions [%] (SE)   87 (08) 13 (08) 
95% Confidence limits (%)  70-100 00-30 
Macrobenthivores (MB)    
δ13C [‰] (SD) -16.5 (1.5) -14.5 (2.5) -28.3 (1.09) 
   -23.1 (1.09) 
Sample size 30 14 26 
Source proportions (No fractionation)  86-100 0-14 
Source proportions [%] (SE)  86 (05) 14 (05) 
95% Confidence limits (%)  76-95 05-24 
Source proportions (Max fractionation)  77-100 0-23 
Source proportions [%] (SE)   77 (07) 23 (07) 
95% Confidence limits (%)  63-91 09-37 
Fih species    
Liza klunzingeri    
δ13C [‰] (SD) -14.3 (0.8) -11.5 (1.3) -28.3 (1.09) 
   -23.1 (1.09) 
Sample size 8 12 26 
Source proportions (No fractionation)  84-100 0-16 
Source proportions [%] (SE)  83 (03) 17 (03) 
95% Confidence limits (%)  78-89 11-22 
Source proportions (Max fractionation)  76-100 0-24 
Source proportions [%] (SE)   76 (03) 24 (03) 
95% Confidence limits (%)  69-83 17-31 
Anodontostoma chacunda    
δ13C [‰] (SD) -13.8 (0.6) -13.5 (1) -28.3 (1.09) 
   -23.1 (1.09) 
Sample size 6 6 26 
Source proportions (No fractionation)  98-100 0-2 
Source proportions [%] (SE)  98 (03) 02 (03) 
95% Confidence limits (%)  91-100 00-09 
Source proportions (Max fractionation)  97-100 0-3 
Source proportions [%] (SE)   97 (05) 03 (05) 
95% Confidence limits (%)  86-100 00-14 
Leiognathus daura    
δ13C [‰] (SD) -19 (1.3) -17.9 (2) -28.3 (1.09) 
   -23.1 (1.09) 
Sample size 6 5 26 
Source proportions (No fractionation)  90-100 0-10 
Source proportions [%] (SE)  89 (09) 11 (09) 
95% Confidence limits (%)  68-100 00-32 
Source proportions (Max fractionation)  79-100 0-21 
Source proportions [%] (SE)   79 (17) 21 (17) 
95% Confidence limits (%)  39-100 00-61 
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Sample 

(Mangrove 
fish) 

Source 1 
(Non-

mangrove 
sources) 

Source 2 
(Mangrove 

Leaves- green & 
yellow) 

Thryssa vitrirostris    
δ13C [‰] (SD) -14.6 (0.5) -14.2 (0.5) -28.3 (1.09) 
   -23.1 (1.09) 
Sample size 5 6 26 
Source proportions (No fractionation)  98-100 0-2 
Source proportions [%] (SE)  97 (02) 03 (02) 
95% Confidence limits (%)  92-100 00-08 
Source proportions (Max fractionation)  96-100 0-4 
Source proportions [%] (SE)   96 (03) 04 (03) 
95% Confidence limits (%)  88-100 00-12 
Sillago sihama    
δ13C [‰] (SD) -15.4 (0.5) -14.5 (0.8) -28.3 (1.09) 
   -23.1 (1.09) 
Sample size 3 3 26 
Source proportions (No fractionation)  94-100 0-6 
Source proportions [%] (SE)  93 (04) 07 (04) 
95% Confidence limits (%)  81-100 00-19 
Source proportions (Max fractionation)  90-100 0-10 
Source proportions [%] (SE)   90 (06) 10 (06) 
95% Confidence limits (%)  71-100 00-29 
Pentaprion longimanus    
δ13C [‰] (SD) -17.8 (1.1) -16.7 (0.9) -28.3 (1.09) 
   -23.1 (1.09) 
Sample size 6 5 26 
Source proportions (No fractionation)  80-100 0-20 
Source proportions [%] (SE)  91 (05) 09 (05) 
95% Confidence limits (%)  79-100 00-21 
Source proportions (Max fractionation)  83-100 0-17 
Source proportions [%] (SE)   83 (09) 17 (09) 
95% Confidence limits (%)  63-100 00-37 
Pomadasys kaakan    
δ13C [‰] (SD) -16.4 (0.6) -13.3 (0.9) -28.3 (1.09) 
   -23.1 (1.09) 
Sample size 8 6 26 
Source proportions (No fractionation)  76-100 0-24 
Source proportions [%] (SE)  79 (02) 21 (02) 
95% Confidence limits (%)  74-85 15-26 
Source proportions (Max fractionation)  69-100 0-31 
Source proportions [%] (SE)   68 (03) 32 (03) 
95% Confidence limits (%)  61-76 24-39 
Acanthopagrus latus    
δ13C [‰] (SD) -16.1 (1.4) -12.2 (0.7) -28.3 (1.09) 
   -23.1 (1.09) 
Sample size 8 3 26 
Source proportions (No fractionation)  76-100 0-24 
Source proportions [%] (SE)  76 (04) 24 (04) 
95% Confidence limits (%)  67-84 16-33 
Source proportions (Max fractionation)  65-100 0-35 
Source proportions [%] (SE)   64 (05) 36 (05) 
95% Confidence limits (%)  53-76 24-47 
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Figure S1 Plot of δ13C and CN% values of food sources and consumers in the 
mangrove site of Qeshm Island, Iran. Green and yellow mangrove leaves: ML (G), ML 
(Y), phytoplankton (PHY), zooplankton (ZOO), particulate organic matter (POM), 
Sediment (SOM), Microphytobenthos (MPB), ∆: Macrobenthos, : Fishes. Arrow 
indicates CN% shift from green to yellow (decomposed) leaves. 
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Annex III. Supplements for Chapter IV 
 
Table S1 Mean inundation area and volume of water for each creek during spring and 
neap high tides. 
 

Creeks Spring tide Neap tide 
 Area(m2) Volume(m3) Area(m2) Volume(m3) 
C1 2774 1562 338 102 
C2 6481 4600 815 165 
C3 11460 10327 2937 1807 
C4 3811 3439 1281 220 
C5 5672 2240 282 54 
C6 10822 6034 1362 240 

 

Table S2 Detailed species data for total abundance and biomass of fish and prawn on a 
per sample and per m2 basis for each habitat and season.  
 

Factor m Var 
% Allocation success (%) Total δ2 P 

Habitat   mangrov
e 

non-
mangrove        

 5 95 76.5 78.1     74.9 0.3 0.00
4 

Season   winter summer        
 9 97 75 81.2     75.9 0.6 0.02 
Creek 
(habitat)   C1 C2 C3 C4 C5 C6    

 11 97 18.7 37.5 31.2 25 25 43
.7 29.9 0.4 0.02 
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Table S3 Table S3. Canonical analysis of principal coordinates (CAP) testing the effect of habitat (mangrove and non-mangrove), season (winter 
and summer) and creeks (C1, C2, C3, C4, C5, C6). %Var = percentage of the total variation explained by the first m principal coordinate axes; 
allocation success = percentage of points correctly allocated into each group; δ2 = square canonical correlation.  
 

  Total abundance per sample   Total abundance per m2   Total biomass per sample   Total biomass per m2 
  Habitat Season   Habitat Season  Habitat Season   Habitat Season 
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Mangrove and non-mangrove                                       
Scatophagus argus (Scatophagidae) 2.30 0.09 0.13 3.00 

 
0.040 0.001 0.00 0.04 

 
25.0 1.0 4.2 29.76 

 
0.27 0.01 0.06 0.21 

Pomadasys kaakan (Haemulidae) 1.36 0.16 0.52 1.40 
 

0.021 0.001 0.01 0.02 
 

20.4 3.9 7.7 22.10 
 

0.32 0.02 0.09 0.26 
Ilisha melastoma (Clupeidae) 0.28 0.06 0.29 0.13 

 
0.003 0.000 0.00 0.00 

 
4.8 0.7 6.0 0.80 

 
0.03 0.00 0.03 0.01 

Sarinella longiceps (Clupeidae) 2.58 0.34 3.67 0.00 
 

0.066 0.001 0.07 0.00 
 

29.9 2.3 41.4 0.00 
 

0.85 0.01 0.85 0.01 
Leiognathus daura (Leiognathidae) 12.39 4.16 16.25 3.04 

 
0.230 0.014 0.21 0.03 

 
54.0 14.8 61.3 20.55 

 
1.07 0.06 0.88 0.19 

Thryssa vitrirostris (Engraulidae) 6.83 1.88 2.88 7.48 
 

0.118 0.009 0.06 0.07 
 

176.8 48.2 105.0 162.92 
 

3.09 0.23 1.79 1.54 
Acanthopagrus  cuvieri (Sparidae) 0.23 0.06 0.04 0.31 

 
0.003 0.000 0.00 0.00 

 
1.7 6.7 0.1 6.71 

 
0.02 0.03 0.03 0.05 

Pentaprion longimanus (Gerreidae) 5.69 3.75 5.60 4.48 
 

0.092 0.014 0.05 0.06 
 

55.2 36.2 54.3 43.39 
 

0.91 0.14 0.41 0.52 
Acanthopagrus latus (Sparidae) 2.30 1.88 1.63 2.69 

 
0.046 0.008 0.02 0.03 

 
62.4 52.8 58.3 60.12 

 
1.69 0.20 1.12 0.62 

Eleutheronema tetradactylum 
(Polynemidae) 0.09 0.06 0.13 0.04 

 
0.005 0.000 0.00 0.00 

 
0.9 1.3 1.2 0.85 

 
0.05 0.00 0.05 0.00 

Scomberoides lysan (Carangidae) 0.08 0.06 0.00 0.15 
 

0.001 0.000 0.00 0.00 
 

1.1 1.3 0.0 2.27 
 

0.01 0.00 0.00 0.01 
Liza klunzingeri (Mugilidae) 18.20 36.09 24.98 23.3 

 
0.277 0.164 0.26 0.18 

 
402.7 793.2 590.5 475.16 

 
6.58 3.70 5.59 3.45 

Pseudorhombus elevatus 
(Paralichthyidae) 0.05 0.06 0.10 0.00 

 
0.001 0.000 0.00 0.00 

 
5.2 7.8 12.2 0.00 

 
0.05 0.02 0.05 0.00 

Platycephalus indicus 
(Platycephalidae) 0.06 0.13 0.00 0.17 

 
0.001 0.001 0.00 0.00 

 
8.6 45.0 0.0 41.46 

 
0.14 0.24 0.24 0.38 

Sphyraena putnamiae 
(Sphyraenidae) 0.02 0.06 0.00 0.06 

 
0.000 0.000 0.00 0.00 

 
10.0 12.8 0.0 21.85 

 
0.22 0.08 0.08 0.30 

Hemiramphus archipelagicus 0.02 0.03 0.02 0.02 
 

0.001 0.000 0.00 0.00 
 

0.9 0.3 0.2 1.15 
 

0.01 0.00 0.00 0.01 
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  Total abundance per sample   Total abundance per m2   Total biomass per sample   Total biomass per m2 
  Habitat Season   Habitat Season  Habitat Season   Habitat Season 

  

M
an

gr
ov

e 

N
on

-m
an

gr
ov

e 

W
in

te
r 

Su
m

m
er

 

  

M
an

gr
ov

e 

N
on

-m
an

gr
ov

e 

W
in

te
r 

Su
m

m
er

 

 

M
an

gr
ov

e 

N
on

-m
an

gr
ov

e 

W
in

te
r 

Su
m

m
er

 

  

M
an

gr
ov

e 

N
on

-m
an

gr
ov

e 

W
in

te
r 

Su
m

m
er

 

(Hemiramphidae) 

Sillago sihama (Sillaginidae) 0.16 0.69 0.58 0.08 
 

0.004 0.004 0.01 0.00 
 

5.4 21.2 17.6 3.79 
 

0.16 0.12 0.14 0.04 
Upeneus sulphureus (Mullidae) 0.02 0.06 0.04 0.02 

 
0.000 0.000 0.00 0.00 

 
0.0 1.3 0.8 0.05 

 
0.00 0.01 0.00 0.00 

Anodontostoma chacunda 
(Clupeidae) 2.00 26.06 18.40 1.65 

 
0.016 0.089 0.09 0.01 

 
31.6 221.2 163.1 26.44 

 
0.24 0.78 0.27 0.18 

Mangroves only 
                   Lutjanus johni (Lutjanidae) 0.27 0.00 0.15 0.21 

 
0.008 0.000 0.01 0.00 

 
31.0 0.0 17.1 24.24 

 
0.97 0.00 0.73 0.24 

Plectorhinchus pictus (Haemulidae) 0.11 0.00 0.00 0.15 
 

0.002 0.000 0.00 0.00 
 

6.2 0.0 0.0 8.27 
 

0.12 0.00 0.00 0.12 
Sardinella gibbosa (Clupeidae) 1.84 0.00 2.46 0.00 

 
0.029 0.000 0.03 0.00 

 
16.0 0.0 21.4 0.00 

 
0.24 0.00 0.24 0.00 

Scartelaos tenuis (Gobiidae) 0.11 0.00 0.04 0.10 
 

0.002 0.000 0.00 0.00 
 

1.9 0.0 0.8 1.72 
 

0.04 0.00 0.01 0.02 
Bathygobius fuscus (Gobiidae) 0.03 0.00 0.04 0.00 

 
0.001 0.000 0.00 0.00 

 
0.6 0.0 0.8 0.00 

 
0.01 0.00 0.01 0.00 

Epinephelus coioides (Serranidae) 0.02 0.00 0.00 0.02 
 

0.000 0.000 0.00 0.00 
 

3.1 0.0 0.0 4.17 
 

0.07 0.00 0.00 0.07 
Abalistes stellatus (Balistidae) 0.02 0.00 0.02 0.00 

 
0.000 0.000 0.00 0.00 

 
0.3 0.0 0.3 0.00 

 
0.01 0.00 0.01 0.00 

Lutjanus russelli (Lutjanidae) 0.03 0.00 0.02 0.02 
 

0.001 0.000 0.00 0.00 
 

1.4 0.0 1.7 0.16 
 

0.10 0.00 0.10 0.00 
Strongylura stronglura (Belonidae) 0.02 0.00 0.02 0.00 

 
0.000 0.000 0.00 0.00 

 
2.0 0.0 2.7 0.00 

 
0.01 0.00 0.01 0.00 

Non-mangrove only 
                   Terapon jarbua (Terapontidae ) 0.00 0.03 0.02 0.00 

 
0.000 0.000 0.00 0.00 

 
0.0 1.1 0.7 0.00 

 
0.00 0.00 0.00 0.00 

Euryglossa orientalis (Soleidae ) 0.00 0.03 0.02 0.00 
 

0.000 0.000 0.00 0.00 
 

0.0 0.4 0.3 0.00 
 

0.00 0.00 0.00 0.00 
Gerres poieti (Gerreidae) 0.00 1.34 0.00 0.90 

 
0.000 0.004 0.00 0.00 

 
0.0 20.5 0.0 13.66 

 
0.00 0.06 0.06 0.06 

Crustacean 
                   Penaeus merguiensis (Penaeidae) 25.547 0 31.04 3.02 

 
0.4 0 0.37 0.04 

 
126.5 0 157.8 11.53 

 
0.03 0 0.04 0.002 

Number of species  28 22 25 23                               
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Figure S1 Correlation analyses between abundance and biomass per sample and per 
area. The correlation between abundance and biomass are significant for both per 
sample (r=0.9, N=96, P<0.05) and per area (r=0.6, N=96, P<0.05). 
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Figure S2 Mean fish abundance per sample and per m2 (±SE) in different habitats (left 
panels) and seasons (right panels). 
 

 

Figure S3 Mean fish abundance and biomass (±SE) per m2 (upper panels) and per 
sample (lower panels), indicates inconsistent patterns between creeks (Note: different 
y axis scales).  
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Figure S4 Density plots showing the credibility intervals of the standard ellipses areas 
(SEA) for fish species (upper panels) and food sources (lower panels). Black circles 
are the mode SEA, gray squares are the small sample size corrected SEA (SEAc), and 
boxes indicate the 50%, 75% and 95% credibility intervals.  
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