
x1

x2

x3

b

c

d

a

f

g

h

e

The Convex Hull Problem in Practice
Improving the Running Time of the Double Description Method

Dissertation

zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

- Dr.-Ing. -

vorgelegt von

Blagoy Genov

Fachbereich 3: Mathematik und Informatik

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-LIB Dokumentserver - Staats und Universitätsbibliothek Bremen

https://core.ac.uk/display/46920179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Convex Hull Problem in Practice
Improving the Running Time of the Double Description Method

Dissertation

zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

- Dr.-Ing. -

vorgelegt von

Blagoy Genov

im Fachbereich 3 (Informatik/Mathematik)
der Universität Bremen

im Juli 2014

Tag der mündlichen Prüfung: 28. Januar 2015

Gutachter:
Prof. Dr. Jan Peleska (Universität Bremen)
Prof. Dr. Udo Frese (Universität Bremen)

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig und ohne uner-
laubte fremde Hilfe angefertigt habe, dass ich alle benutzen Quellen und Hilfsmittel
vollständig angegeben habe und dass alle Stellen, die ich wörtlich oder dem Sinne nach
aus anderen Arbeiten entnommen habe, kenntlich gemacht worden sind.

Ort, Datum Unterschrift

3

Zusammenfassung

Die Double-Description-Methode ist ein weit verbreiteter Algorithmus zur Berechnung
von konvexen Hüllen und anderen verwandten Problemen. Wegen seiner unkomplizierten
Umsetzung wird er oft in der Praxis bevorzugt, obwohl seine Laufzeitkomplexität nicht
durch die Größe der Ausgabe beeinflusst wird. Aufgrund seiner zunehmenden Bedeutung
in der Programmverifikation und der Analyse von metabolischen Netzwerken ist der
Bedarf nach schnellen und zuverlässigen Implementierungen in den letzten Jahren rasant
gestiegen. Bei den aktuellen Anwendungen besteht erhebliches Potenzial zur Verkürzung
der Rechenzeit.
Die Aufzählung von benachbarten extremalen Halbgeraden gehört zu den rechenin-

tensivsten Aktivitäten innerhalb der Double-Description-Methode und ist damit ein po-
tentieller Optimierungskandidat. Zudem ist die praktische Seite dieses kombinatorischen
Problems nicht ausgiebig erforscht worden. In dieser Dissertation werden zwei bedeut-
same Beiträge zur Beschleunigung des Aufzählungsprozesses präsentiert. Zum einen
werden die gängigen Datenstrukturen evaluiert und daraufhin diverse Optimierungen
vorgeschlagen. Ihre Wirksamkeit wird durch empirische Daten demonstriert. Zum an-
deren wird ein neuer Nachbarschaftstest für extremale Halbgeraden vorgestellt. Dieser
ist eine Weiterentwicklung des bekannten algebraischen Tests mit dem Vorteil, dass re-
dundante Rechenoperationen eliminiert werden. Die Korrektheit des neuen Ansatzes
wird formal bewiesen. Seine Wirksamkeit bei ausgearteten Problemen wird ebenfalls
durch empirische Daten belegt.
Nebenläufigkeit ist ein weiterer Aspekt der Double-Description-Methode, der zusätz-

liche Untersuchung verlangt. Ein neulich vorgestellter Ansatz, aufgebaut nach dem teile-
und-herrsche Prinzip, hat vielversprechende Ergebnisse in der Bioinformatik gezeigt. In
dieser Dissertation werden allerdings massive praktische Einschränkungen dargelegt. Für
eine Klasse von Schnitt-Polytopen hat die vorgestellte Technik beträchtliche Erhöhung
der Rechenzeit verursacht. Dieses Problem wurde umgangen, indem die Methode weit-
erentwickelt wurde, um partielle Nebenläufigkeit zu ermöglichen. Diese hat sich in prak-
tischen Bedingungen als stabil genug erwiesen, obwohl nur moderate Beschleunigung
erzielt werden konnte.
Im Laufe dieser Arbeit wurde eine neue Implementierung der Double-Description-

Methode entwickelt. Diese enthält nicht nur die oben angesprochenen konzeptionellen
sondern auch viele technische Verbesserungen. Sie ist besonders auf die neuen Gen-
erationen von Prozessoren optimiert worden und ist in vielen Aspekten den gängigen
frei verfügbaren Implementierungen überlegen. Diese Schlussfolgerung wird durch em-
pirische Daten unterstützt.

5

Abstract

The double description method is a widely spread algorithm for computation of convex
hulls and other related problems. Even though not being output sensitive, it is often
preferred in practical applications due to its general simplicity. In recent years, the
demand for faster and more reliable implementations has rapidly increased in view of
its growing application in program verification, analysis of metabolic networks, etc.
Although several implementations are available, there is a considerable potential for
further performance related improvements.
The enumeration of adjacent extreme rays is arguably the most performance critical

part of the double description method and hence a natural candidate for optimization.
Moreover, the practical side of this combinatorial problem has not been extensively stud-
ied yet. In this dissertation, two significant contributions related to adjacency testing are
presented. First, the currently used data structures are revisited and various optimiza-
tions are proposed. Empirical evidence is provided to demonstrate their competitiveness.
Second, a new adjacency test is introduced. It is a refinement of the well known algebraic
test featuring a technique for avoiding redundant computations. Its correctness is for-
mally proven. Its superiority in multiple degenerate scenarios is demonstrated through
experimental results.
Parallel computation is one further aspect of the double description method which de-

serves particular attention. A recently introduced divide-and-conquer technique showed
promising results in bioinformatic applications. In this dissertation, however, some severe
practical limitations are demonstrated. For a class of cut polytopes, the proposed tech-
nique caused a serious computational explosion on at least one of the resulting threads.
As an alternative, the technique was refined to perform a partial parallel computation
which eliminated the described explosion and brought a moderate speed-up.
In the course of this work, a new double description implementation was developed.

It embodies not only the conceptional improvements presented in this work but also
technical ones. It is particularly optimized for the latest generation of processors and
is highly competitive with other freely available double description implementations.
Empirical evidence is provided to back up that conclusion.

7

Acknowledgements

Starting my dissertation four years ago in the working group for operating and dis-
tributed systems, I knew very little about convex hulls and the problems related to
them. To be honest, I had never planned to write a thesis on that subject. But as
time went by, one open problem led to another, until I found myself working on that
challenging but very interesting subject.
I owe my deepest gratitude to my advisor Professor Jan Peleska for his patience and

the freedom he gave me to put my ideas into realization. Without his support, this work
would not have been possible.
I wish to extend special thanks to Professor Wen-ling Huang for helping me polish

the formal proofs. I am also very grateful to my colleges Florian Lapschies and Elena
Gorbachuk for their readiness to proofread my work. Florian had to endure countless
discussions on software efficacy, performance and optimization. I deeply appreciate that.
Last but not least, I wish to thank my family for all their support and encouragement.

I could hardly imagine finishing this work without having my wife Genka by my side.

Hamburg, Juni 2014

9

Contents

1 Introduction 17
1.1 Objectives and Motivation . 17

1.2 Contributions . 18

1.3 Thesis Overview . 20

1.4 Notation and Conventions . 20

2 Preliminaries: Linear Inequalities and Polyhedra 21
2.1 Polyhedra, Polyhedral Cones and Polytopes 21

2.2 Faces, Extreme Rays and Vertices . 24

2.3 Duality . 27

2.3.1 Properties of Duality . 27

2.3.2 Duality of Polytopes . 29

2.3.3 Duality of Cones . 33

2.4 Degeneracy . 36

3 The Convex Hull Problem: Theory and Practice 39
3.1 Definition and Related Problems . 39

3.2 Complexity . 41

3.3 Pivoting Algorithms . 42

3.3.1 The Linear Programming Problem 43

3.3.2 The Simplex Method . 44

3.3.3 Reverse Search . 46

3.3.4 Dual Space Algorithms . 49

3.3.5 Primal Space Algorithms . 51

3.4 Incremental Algorithms . 53

3.4.1 Dual Space Algorithms . 53

3.4.2 Primal Space Algorithms . 55

4 The Double Description Method: Definition and Implementation 59
4.1 Algorithm . 59

4.2 Adjacency Test . 61

4.3 Implementation Details . 63

4.3.1 Extreme Ray Representation . 63

4.3.2 Narrowing and Verification . 65

4.3.3 Bit Pattern Trees . 66

11

Contents

5 Combinatorial Test: Comparison of Data Structures 69
5.1 Generic Binary Tree Container . 69

5.1.1 Requirements and Complexity . 69
5.1.2 Implementation . 70

5.2 Bit Pattern Tree Container . 73
5.2.1 Implementation . 74
5.2.2 Efficacy and Limitations . 75
5.2.3 Query Bits Neutralization . 76
5.2.4 Cross-Narrowing . 79
5.2.5 Highly Degenerate First Verification 80
5.2.6 The Adjacency Test Revisited . 82

5.3 Extended Bit Pattern Tree Container . 84
5.4 Population Tree Container . 86
5.5 Vantage Point Tree Container . 90
5.6 Experimental Results . 93

6 Algebraic Test: Redundancy Elimination 97
6.1 Active Set Partitioning . 97

6.1.1 Matrix Matroid . 98
6.1.2 Observations . 98
6.1.3 Partitioning Function . 101
6.1.4 Completeness . 102

6.2 Data Structures . 104
6.3 The Refined Algebraic Test . 107

6.3.1 Correctness and Formal Proof . 107
6.3.2 Adjacency Algorithm . 111

6.4 The Double Description Method Enhanced 116
6.5 Experimental Results . 118

7 Divide and Conquer: Advantages and Limitations 119
7.1 From a Sequence to a Tree . 120
7.2 The Distributed Double Description Method 122
7.3 Experimental Results . 123
7.4 Discussion . 124

8 Addibit: Benchmark and Results 129

9 Conclusions 139

References 141

12

List of Figures

2.1 Decomposition of a polyhedron into a polytope and a cone 24

2.2 The face lattice of a 3-Simplex . 27

2.3 Properties of duality . 28

2.4 Pair of dual polyhedra . 29

2.5 Isomorphic vertices and facets of dual polytopes 32

2.6 Pair of dual polyhedral cones . 35

2.7 Perturbed octahedron . 38

3.1 Transformation of a polyhedral cone into a polytope 40

3.2 Variations of the convex hull problem . 41

3.3 The impact of degeneracy on the number of feasible bases 44

3.4 Neighbors exploration in the reverse search method 48

3.5 Spanning a reverse search tree over the linear programming graph 49

3.6 Geometric interpretation of Balinski’s algorithm 50

3.7 Geometric interpretation of the shelling algorithm 52

3.8 Geometric interpretation of cutting plane algorithms 54

3.9 Geometric interpretation of the beneath-beyond method 56

4.1 Geometric interpretation of the double description method 61

4.2 Structure of bit pattern trees . 68

5.1 Generic binary tree container . 71

5.2 Query bits neutralization (narrowing query) 77

5.3 Example for an ineffective verification container 79

5.4 Cross-Narrowing on bit pattern tree containers 80

5.5 Verification queries on bit pattern tree containers 81

5.6 Highly degenerate first verification . 82

5.7 Regular vs. extended bit pattern tree containers (narrowing query) 85

5.8 Bit pattern vs. population tree containers (narrowing query) 87

5.9 Bit pattern vs. population tree containers (verification query) 88

5.10 Bit pattern vs. vantage point tree containers (narrowing query) 91

5.11 Population vs. vantage point tree containers (verification query) 92

6.1 Adjacency proof by means of active set partitioning 100

6.2 Active set partitioning for nonadjacent rays 101

6.3 Repartitioning of active sets . 103

6.4 Construction of dependence maps . 105

13

List of Figures

6.5 Redundancy-free storage of dependence maps 106
6.6 Update of dependence maps after repartitioning 113

7.1 Divide-and-Conquer . 122
7.2 Early split on two threads for ccp 7 . 126
7.3 Early split on four threads for ccp 7 (l1 = 60) 127
7.4 Early split on four threads for ccp 7 (l1 = 61) 127
7.5 Early split on eight threads for ccp 7 . 128

8.1 Computational results for products of cyclic polytopes 132
8.2 Computational results for SSC-polytopes 133
8.3 Computational results for truncated polytopes 134
8.4 Computational results for dwarfed cubes 135
8.5 Computational results for cut polytopes 136
8.6 Computational results for products of hypercubes and 0/1 polytopes . . . 137

14

List of Tables

5.1 Benchmark for adjacency tests . 93
5.2 Computational results for bp-tree containers 94
5.3 Computational results for ebp-tree containers 95
5.4 Computational results for pop/vp-tree containers 96

6.1 Combinatorial vs. algebraic test . 118

7.1 Early split on cut polytopes (time per thread) 124
7.2 Late split on cut polytopes (overall time) 124
7.3 Late/Early split on randomly generated polytopes 126

8.1 Noncommercial programs for convex hull computations 129
8.2 Computational results for random problems 130
8.3 Computational results for specific problems 131

15

1 Introduction

1.1 Objectives and Motivation

The convex hull problem is one of the oldest and most intensively studied problems in
computational geometry. A great amount of algorithms have been developed, each of
them claiming some small or substantial advantage towards the previous ones. Still,
none of them is able to solve the problem in time polynomial in the size of the input and
the output. On the other hand, there exists no formal proof ruling out the existence of
such an algorithm; hence, the question of whether the convex hull problem is an NP-hard
one is so far open.
The theoretical aspects of the convex hull problem did not lie within the scope of this

work; hence, no new insights in that regard are presented. Instead, efforts were directed
towards the practical application of one particular algorithm called the double descrip-
tion method [116]. A primary objective was to improve its running time by applying
a series of optimizations related to data structures, elimination of redundant compu-
tations and parallelization. In particular, the focus was laid on degenerate problems
and rational arithmetic. For nondegenerate problems, the reverse search method of Avis
and Fukuda [13] is known to be superior and thus a primary choice for this particular
problem group.
One particular application field of the double description method is the automated

test case generation where efficient libraries for polyhedral computations become more
and more important. This dissertation can be seen as a complementary work to the
test case generator of Peleska et al. [121] which employs an SMT-solver (Satisfiability
Modulo Theories) [20] to calculate the inputs necessary to reach a certain state of the
system under test. In addition, abstract interpretation [55, 56] serves as a guiding tool
for the solver, assisting it in the calculation of the input values and supplying it with
information about potentially unsolvable constraints. The quality of assistance depends
highly on the precision which the abstract interpretation can offer. In this respect,
Cousot and Halbwachs [57] demonstrated the application of abstract interpretation on
the polyhedral domain to determine linear constraints among program variables. This
particular technique proved to be far more powerful in comparison to other non-relational
domains such as interval arithmetic where the relationship between program variables
is not explicitly considered. The higher precision, however, comes at the cost of some
highly intensive polyhedral computations related to the convex hull problem. That
was one of the reasons for the initially limited applicability of Cousot and Halbwachs’
approach. As explained by Bagnara et al. [16], no library for polyhedral computations
could meet the performance and robustness demands of the new technique by the time of
its introduction. During that period, the geometric community was mainly debating on

17

1 Introduction

the theoretical nature of the convex hull problem; thus, it was not until the nineties that
such libraries were developed. Some of them were particularly designed for program
analysis and verification. Such are new polka, as part of Jeannet and Miné’s tool
APRON [91], and the more recent ppl of Bagnara et al. [15], both using the double
description method. Other libraries such as Fukuda’s cddlib [75] and Avis’ lrslib [9]
were designed with focus on the general nature of the problem, but were also successfully
applied in the context of program analysis and verification.

Apart from program verification, the double description method has been applied in
bioinformatics to compute elementary flux modes and extreme pathways in metabolic
networks [132, 151, 79]. Multiple implementations were introduced as part of different
analysis tools [21, 150, 141]. Moreover, noteworthy efforts were spent to obtain an
applicable divide-and-conquer parallelization technique [100, 93, 92].

Despite the considerably large number of implementations, the evolution of the double
description method can hardly be declared as finished. The new ideas proposed in
this work were successfully employed to obtain a meaningful performance gain. Those
optimizations are not related to any particular application area. The scope of this work
is to bring together the strengths of the available implementations into one application.

1.2 Contributions

This work involves three major contributions. First, analysis, refinement and enhance-
ment of the currently used data structures. Second, elimination of redundant calcula-
tions by caching intermediate results. Third, running the double description method on
a distributed system.

Data Structures. Testing extreme rays for adjacency is arguably the most time con-
suming part of the double description method and requires the execution of a huge
amount of search queries. Depending on the problem size, the number of those queries
may easily reach tens or even hundreds of millions. The choice of appropriate data struc-
tures is therefore essential for achieving an efficient implementation. Even a minimal
performance gain per query may deliver a substantial speed-up in view of the overall
calculation time. With the bit pattern tree [143, 144], Terzer and Stelling introduced a
new data structure which allows to effectively narrow down the search region. Here, its
performance is revisited and several strategies for more efficient application are proposed.
Furthermore, two additional data structures are introduced,

(1) an extended bit pattern tree, which narrows down the search region even more ag-
gressively, and

(2) a population tree, which is an abstraction of the bit pattern tree and hence a more
powerful solution from a theoretical point of view.

Finally, the application of vantage point trees [155] (aka metric trees [147]) within the
double description method is demonstrated.

18

1.2 Contributions

The given data structures were investigated in the context of a benchmark consisting
of random problems with different level of degeneracy. First results had been published
in [83]. The performed experiments clearly indicated the general superiority of bit pat-
tern trees when applied in conjunction with the proposed heuristics. The extended bit
pattern trees did not bring any additional improvement when used as a standalone so-
lution; however, they brought a small speed-up for low degenerate problems when used
as a complement to bit pattern trees. Population and vantage point trees were unable
to deliver a general improvement. Yet, they showed superiority in some specific areas.

Redundancy Elimination. In an alternative form of adjacency testing, known as al-
gebraic test, search queries are substituted by matrix rank computations; that is, the
combinatorial problem is transformed to an algebraic one. That algebraic test, however,
performs a great amount of redundant computations as many of the processed matrices
differ in several rows only. Identical algebraic operations are thus repeated over and over
again on each rank computation.

In order to overcome the above problem, the matrix rank algorithm was redesigned by
integrating a global cache which holds information about linear dependencies of matrix
row vectors. The underlying idea is to use the available cache information at the start
of each new matrix rank computation in order to reduce the initial problem as much
as possible. Consequently, the algorithm deals with much smaller matrices and in some
cases, the problem can be reduced to a trivially solvable one.

The new technique was tested against different degenerate problems to compare its
performance to the classic algebraic test and the combinatorial one. It performed best for
a broad spectrum of problems with various degeneracy. The combinatorial test remained
superior for problems featuring very high degeneracy.

Parallelization. Modern processors offer new parallelization possibilities in view of their
multi-core architecture. Designing a multi-core version of the double description method
can substantially improve its running time and is mostly a matter of technical realization.
A much more complicated issue, however, is running the algorithm on a distributed
system. In that respect, a recent contribution of Jevremović et al. [93] pointed out an
easy to implement divide-and-conquer technique. The idea has been tried out in practice,
achieving a substantial performance gain in the context of metabolic networks.

The complementary computational experience provided in this work demonstrates
that for certain problems, a family of cut polytopes [18], the divide-and-conquer approach
results in a serious computational explosion. After experimenting with different load
balancing techniques, the explosion could be reduced but still not avoided. In the course
of those experiments, however, another way of performing a partial divide-and-conquer
computation emerged. In contrast to the approach of Jevremović et al., the distribution
of the computation on all available processors is not done until the last steps of the
algorithm. Despite the reduced achievable performance gain, this strategy performed
robustly enough in practical conditions.

19

1 Introduction

1.3 Thesis Overview

The thesis is organized as follows:

In Chapter 2, the necessary mathematical foundations are presented. The book of
Schrijver [131] served as reference work during the preparation of this chapter.

In Chapter 3, the convex hull problem is introduced. Related problems are presented
and the computational complexity is discussed. Furthermore, an overview of ex-
isting algorithms is given.

In Chapter 4, the double description method is presented. Implementation tech-
niques and data structures resulting from the work of Fukuda and Prodon [77]
and Terzer [141] are described.

In Chapter 5, several weaknesses of the bit pattern trees are pointed out and optimiza-
tions to deal with them are proposed. Furthermore, new data structures suitable
for adjacency testing are introduced.

In Chapter 6, the new algebraic test is described and its correctness is proven.

In Chapter 7, the divide-and-conquer technique is revisited and its general applicability
is discussed.

In Chapter 8, the developed double description implementation is compared with other
noncommercial programs in terms of performance.

Chapter 9 is devoted to conclusions.

1.4 Notation and Conventions

Throughout this work, certain symbols are used with exclusively predefined meaning. If
not stated otherwise,

A denotes an n× d matrix with n > d which has full column rank,

ai denotes the i-th row vector of A,

AQ with Q ⊂ N denotes an m× d submatrix of A in the sense that each row vector ai
of A is also a row vector of AQ if and only if i ∈ Q,

C denotes a polyhedral cone,

N≤k denotes the set of successive natural numbers {1, . . . , k} for k ≥ 1,

P denotes a (possibly bounded) polyhedron,

r denotes an extreme ray,

R denotes a set of extreme rays, and

V denotes a set of vertices.

20

2 Preliminaries: Linear Inequalities and
Polyhedra

The convex hull problem is closely related to systems of linear inequalities and the
therefrom resulting convex polyhedra (see Section 2.1). Polyhedra are structurally de-
composable into finitely many faces (see Section 2.2) which have important isomorphic
properties emerging from the concept of duality (see Section 2.3). Those aspects play a
central role in convex hull computations.

Convex polyhedra do not always come up in general form. Such non-general problems
are said to be degenerate and pose a particular challenge for algorithmic computations
(see Section 2.4).

2.1 Polyhedra, Polyhedral Cones and Polytopes

Let C ⊆ Rd be an arbitrary set of vectors. C is a convex set if

λx+ (1− λ)y ∈ C

holds for every x, y ∈ C and λ ∈ R, 0 ≤ λ ≤ 1. If λ is not explicitly bounded, then C
is affine. By definition, every affine set is automatically convex. The convex hull of a
vector set X = {x1, . . . , xm} ⊆ Rd with m ∈ N

conv.hull(X) =


m
i=1

λixi |
m
i=1

λi = 1, λi ∈ R, λi ≥ 0


(2.1)

is the smallest convex set containing X. Analogously, the affine hull of X

aff.hull(X) =


m
i=1

λixi |
m
i=1

λi = 1, λi ∈ R


(2.2)

is the smallest affine set containing X. Finally, the linear hull (aka linear span) of X

lin.hull(X) =


m
i=1

λixi | λi ∈ R


(2.3)

is the smallest subspace of Rd containing X.

The set C ⊆ Rd is a cone if

λx+ µy ∈ C

21

2 Preliminaries: Linear Inequalities and Polyhedra

holds for every x, y ∈ C and λ, µ ∈ R, λ ≥ 0, µ ≥ 0. The cone generated by the vector
set X = {x1, . . . , xm} ⊆ Rd

cone (X) =


m
i=1

λixi | λi ≥ 0


(2.4)

is the smallest cone containing X. X is said to be minimal if there is no proper subset
X ′ ⊂ X generating the same cone. Another way of showing that X is minimal is by
showing the nonexistence of a vector xj ∈ X which can be represented as a nonnegative
combination of vectors in X − {xj }; that is,

xj ̸=
j−1
i=1

λixi +
m

i=j+1

λixi for all λ ∈ Rm with λi ≥ 0, i ∈ [1,m] . (2.5)

Definition 2.1 [Polyhedral Cone]. A nonempty set of vectors C ⊆ Rd is called a
polyhedral cone if for some matrix A ∈ Rn×d,

C = {x | Ax ≤ 0} . (2.6)

A polyhedral cone defined by a matrix A is denoted as C (A).

In geometric terms, the polyhedral cone C is the intersection of finitely many linear
halfspaces {x | aix ≤ 0} defined by the row vectors ai of the matrix A. As each such
halfspace contains the origin, it is guaranteed that C is never empty. The linear subspace
which is shared among all halfspaces is called lineality space of C. It is the linear span
of those solutions y ∈ C which satisfy each inequality in (2.6) with equality, i.e.

lin.space(C) = C ∩ C̄ = {y | Ay = 0} .

The cone C is said to be pointed if its lineality space contains only the origin. Conse-
quently, C is pointed if and only if rank [A] = d.

The dimension of C is equivalent to the dimension of the linear subspace in which it
resides, thus

dim (C) = dim (lin.hull(C)) .

The cone dimension can be easily obtained from the matrix A. For the sake of simplicity,
assume that A has a strictly predefined form such that

A =


A=

A+


with A=y = 0 and A+y ̸= 0 for all y ∈ C − {0} . (2.7)

Reaching (2.7) is obviously a matter of preprocessing. This decomposition of A allows
another representation of the cone

C =

x | A=x = 0, A+x ≤ 0



22

2.1 Polyhedra, Polyhedral Cones and Polytopes

with tighter constraints. In geometric terms, C is now the intersection of both linear
halfspaces defined by A+ and linear hyperplanes {x | aix = 0} defined by A=. Each
such hyperplane has a dimension d − 1, the intersection of two hyperplanes, unless not
parallel, has a dimension d − 2, etc. Consequently, the intersection of all hyperplanes
defined by A= defines a linear subspace with dimension

d− rank [A=]

which is equivalent to the linear hull of C. C is said to be full-dimensional if A= is empty
and thus dim (C) = d.

Theorem 2.1 [Minkowski-Weyl]. Let C ⊆ Rd be a cone. Then C is polyhedral if and
only if it is generated by finitely many vectors.

As a consequence of Theorem 2.1, each polyhedral cone can be specified either explic-
itly by a set of generators as given in (2.4), or implicitly by a homogeneous system of
linear inequalities as given in (2.6). Those two specifications are known as a V- and an
H-representation respectively.

Definition 2.2 [Polyhedron]. A set of vectors P ⊆ Rd is called a polyhedron if for a
matrix A ∈ Rn×d and a vector b ∈ Rn

P = {x | Ax ≤ b} . (2.8)

A polyhedron defined by a matrix A and a vector b is denoted as P (A, b).

Obviously, the polyhedron is a more general form of a polyhedral cone, as it emerges
as an intersection of affine halfspaces in the form {x | aix ≤ bi}. Each polyhedron has
a recession cone which is obtained by substituting the vector b with the zero vector.
In other words, C (A) is the recession cone of P (A, b). A polyhedron is pointed if its
recession cone is pointed.
The dimension of a polyhedron P (A, b) is the dimension of its affine hull. In order to

determine it, the same technique as on polyhedral cones can be applied. First, assume
the decomposition

A b

=


A= b=

A+ b+


with A=y = b= and A+y ̸= b+ for all y ∈ P .

This allows the refinement of (2.8) into

P =

x | A=x = b=, A+x ≤ b+


.

Next, it is easy to verify that

aff.hull(P) = {y | A=y = b=}

and hence
dim (P) = dim (aff.hull(P)) = d− rank [A=] . (2.9)

23

2 Preliminaries: Linear Inequalities and Polyhedra

Theorem 2.2 [Decomposition Theorem for Polyhedra]. P ⊆ Rd is a polyhedron
if and only if

P = conv.hull(X) + cone (Y) for two finite sets X,Y ⊂ Rd .

Following Schrijver [131], we can think of a polyhedron as a set of points X and a
set of directions Y . In Figure 2.1, the consequences of Theorem 2.2 are illustrated for
a two-dimensional polyhedron. If Y contains merely the origin then the polyhedron has
no directions and is said to be bounded. A bounded polyhedron is the convex hull of
finitely many points and hence a polytope (see Definition 2.3). On the other hand, if X
is empty, then the polyhedron is defined only by a set of directions and thus reduces to
a polyhedral cone.

Definition 2.3 [Polytope]. The convex hull of a finite set X ⊂ Rd is called a polytope.

x1

x2

x

y
z

a⃗

b⃗

(a) Polyhedron

x1

x2

x

y
z

(b) Polytope

x1

x2
a⃗

b⃗

(c) Polyhedral Cone

Figure 2.1: Decomposition of a polyhedron into a polytope and a cone

2.2 Faces, Extreme Rays and Vertices

Let X ⊂ Rd be an arbitrary vector set. A hyperplane H = {x | cx = z} is said to support
X if H ∩ X ̸= ∅ and X ⊆ {x | cx ≤ z}. In geometric terms, a supporting hyperplane
touches the convex hull of X without dividing it.

Definition 2.4 [Face]. For a polyhedron P, a nonempty set F ⊆ P is called a face of
P if either F = P or F = P ∩H where H is a supporting hyperplane of P.

Each face defined by a supporting hyperplane, that is each face up to P, is a structural
part of the polyhedron’s surface. Assuming that the H-representation of P is free of
redundancies, it is evident that each affine hyperplane

Hi = {x | aix = bi}

is a supporting one. Consequently, each Hi defines a face

Fi = {x ∈ P : aix = bi} (2.10)

24

2.2 Faces, Extreme Rays and Vertices

which is maximal in the sense that no other face defined by a supporting hyperplane
contains Fi. Such faces which are distinct from P and not included in any other face
than P are called facets.

Let Fi and Fj be two adjacent facets defined by Hi and Hj , and let Fij be their
intersection. We can easily define a supporting hyperplane which includes Fij but is
distinct from both Hi and Hj , and thus show that Fij is another valid face of P. For
example, such a hyperplane can be constructed by rotating either Hi or Hj along their
intersection Fij . We can proceed exploring new faces by intersecting already known ones
until we reach the point where no new faces can be found. In the end, a hierarchical
structure of faces emerges where each face is either a facet or is included in some other
face. Faces which do not contain any other faces are called minimal.

As a consequence of the described face exploration procedure, each face FZ of P can
be implicitly defined by a subset Z ⊂ N≤n indexing those supporting hyperplanes Hi
that FZ lies on in the sense that

FZ = {x ∈ P : ∀i ∈ Z (aix = bi)} . (2.11)

According to (2.11), each FZ is again a nonempty polyhedron. The dimension of FZ is
the dimension of its affine hull as given in (2.9); hence,

dim (FZ) = d− rank [AZ] .

Obviously, a face of dimension zero is a minimal one. Such faces are also called vertices.
A face of dimension one corresponds to a fragment of a line. If the fragment is bounded
by two vertices, then the face is called an edge. The bounding vertices are called adjacent .
If the fragment is bounded by only one vertex and hence a half-line, then the face is
called an extreme ray .

Faces of Cones. Let C (A) be a polyhedral cone generated by a minimal set X. As a
consequence of (2.11), each face of C (A)

FZ = {x ∈ C (A) : ∀i ∈ Z (aix = 0)} (2.12)

is again a polyhedral cone. Moreover, if X ′ ⊆ X is the maximal subset of generators
lying on FZ , then FZ is generated by X ′; that is,

X ′ = X ∩ FZ ⇔ FZ = cone

X ′ . (2.13)

Each extreme ray of C (A)
ri = cone ({xi})

corresponds to a single generator in X = {x1, . . . , xm}. Furthermore, each extreme ray
is bounded by the origin, which is a trivial vertex of the cone. Although all extreme
rays share that trivial vertex, we shall view them as the minimal faces of C (A). As a
consequence of (2.12) and (2.13), each face of C (A) has a unique representation either
as a set of generators which it contains or as a set of facets in which it is contained.

25

2 Preliminaries: Linear Inequalities and Polyhedra

Faces of Polytopes. Let P (A, b) be the convex hull of X and hence a polytope. Then,
each face FZ of P as given in (2.11) is a again polytope. Moreover, FZ is the convex
hull of some subset X ′ ⊆ X of the initial vector set, i.e.

X ′ = X ∩ FZ ⇔ FZ = conv.hull(X ′) .

Assuming that X is minimal, each x ∈ X is a vertex of P. Consequently, each face of P
has a unique representation either as the set of vertices which it contains or the set of
facets in which it is contained.

Face Lattice. The set of all faces of a polyhedron P together with the empty set

LF = {F ⊆ P : F is a face of P or F = ∅}

forms a partially ordered set (LF ,⊆) relative to inclusion. This fact is a direct implication
from the face definition given in (2.11). Furthermore, for each two faces F ′ and F ′′ there
exists

an infimum F ′ ∧ F ′′ which is either the largest face contained in both F ′ and F ′′, or
the empty set if no such face exists, and

a supremum F ′ ∨ F ′′ which is the smallest face containing both F ′ and F ′′.

Consequently, (LF ,∨,∧) is a lattice, also called the face lattice of P. Moreover, each
face is the supremum of the minimal faces which it includes and the infimum of the
facets in which it resides. Those two properties make (LF ,∨,∧) atomic and coatomic
respectively [107].

Each lattice has an isomorphic graphical representation known as an Hasse diagram.
In Figure 2.2, a three-dimensional simplex (see Definition 2.5) is given together with
the Hasse diagram of its face lattice. Lattices and their graphical representations are
described in greater detail by Birkhoff [26] and Davey and Priestley [59].

Definition 2.5 [Simplex]. A d-dimensional polytope with d + 1 vertices is called a
simplex .

Incidence Graph. The incidence graph (aka vertex or edge graph) of the polytope P is
the undirected graph Γ (P) = (V,E) with

V containing all vertices of P and

E = {(v′, v′′) | dim (v′ ∨ v′′) = 1} containing all edges.

Consequently, the incidence graph introduces another possible representation of P which
extends its V-representation with additional information about adjacency of the vertices.

26

2.3 Duality

a
b

c

d

(a) 3-Simplex

abcd

abc abd dim 2 acd bcd

ab ac bc dim 1 ad bd cd

a b dim 0 c d

∅

(b) Face Lattice

Figure 2.2: The face lattice of a 3-Simplex

2.3 Duality

Let X ⊂ Rd be a finite vector set. The set

X⋆ =

y ∈ Rd : ∀x ∈ X


xT y ≤ 1


(2.14)

is called dual to X. The concept of the duality has immediate consequences for poly-
hedra, assigning to each polyhedron a dual one (see Section 2.3.1). It also implies an
isomorphic mapping between the faces of dual polytopes (see Section 2.3.2) and dual
polyhedral cones (see Section 2.3.3).

2.3.1 Properties of Duality

Each vector x ∈ X − {0} is mapped to an affine halfspace

hs (x) =

y | xT y ≤ 1


with X⋆ =


x∈X

hs (x) (2.15)

the closure of all affine halfspaces and hence a convex polyhedron. Let

hp (x) =

y | xT y = 1


be a further mapping of x to the hyperplane bounding hs (x). The following geometric
properties apply to each vector x ∈ X − {0}.

(i) The line L = lin.hull({x}), which crosses the origin and x, is orthogonal to
hp (x).

27

2 Preliminaries: Linear Inequalities and Polyhedra

(ii) If ∥x∥ is the distance from x to the origin, then ∥x∥−1 is the distance from hp (x)
to the origin. Consequently, hs (x) encloses x if and only if ∥x∥ ≤ 1. Furthermore,
for all λ ≥ 1,

x′ = λx⇒ hs

x′

⊆ hs (x) .

(iii) The halfspace hs (x) always encloses the origin as y = 0 is a trivial solution in
(2.14) and hence an element of X⋆.

In Figure 2.3, the above properties of duality are illustrated for R3.

hp (x′) hp (x)

x
x′

L

Figure 2.3: Properties of duality

Let P be a polyhedron containing the origin. As a consequence of (2.15), P⋆ is a
polyhedron as well. An important phenomenon arises when building P⋆⋆, the dual of
P⋆. It is easy to show that P and P⋆⋆ are identical (see Theorem 2.3).

Theorem 2.3 [Duality of Polyhedra]. Let P be a polyhedron such that
P = P ∪ {0}. Then P⋆⋆ = P.

Proof. Following Schrijver [131], it is easy to show that P ⊆ P⋆⋆ (i) and P⋆⋆ ⊆ P (ii).

(i) ∀x ∈ P ∀y ∈ P⋆

xT y ≤ 1


⇒ ∀x ∈ P ∀y ∈ P⋆


yTx ≤ 1


⇒ ∀x ∈ P (x ∈ P⋆⋆)⇒ P ⊆ P⋆⋆ .

(ii) First, assume that P⋆⋆ ̸⊆ P. As a consequence, there exists a constraint αx ≤ β
which holds on P but not on P⋆⋆; hence,

∃x′ ∈ P⋆⋆

αx′ > β


. (2.16)

Since P contains the origin, it is guaranteed that β ≥ 0. Next, the following two
cases are to be considered.

If β > 0, then ∀x ∈ P

β−1(αx) ≤ 1


⇒ ∀x ∈ P


xT (β−1αT) ≤ 1


⇒ (β−1αT) ∈ P⋆ ⇒ (β−1α)x′ ≤ 1 which contradicts with (2.16).

28

2.3 Duality

If β = 0, then ∀x ∈ P (αx ≤ 0)⇒ ∀x ∈ P

xTαT ≤ 0


⇒ ∀λ ≥ 0


λαT ∈ P⋆


⇒ ∀λ ≥ 0 ((λα)x′ ≤ 1) ⇒ ∀λ ≥ 0


αx′ ≤ λ−1


which

again contradicts with (2.16) as lim
λ→∞

λ−1 = 0 and hence αx′ ≤ 0 .

□

In Figure 2.4, two dual polyhedra are illustrated.

x1

x2

x3

b

c

d

a

f

g

h

e

(a) Cube

x1

x2

x3

jk

o

i

p

q

(b) Regular Octahedron

Figure 2.4: Pair of dual polyhedra

2.3.2 Duality of Polytopes

Let X = {x1, . . . , xm} ⊂ Rd be a finite set of vectors with a convex hull equivalent to
the d-dimensional polytope P (A, b). Furthermore, assume the following preconditions.
First, X is minimal in the sense that each vector in X is a vertex of P. Second, P
encloses the origin. Third, the origin does not lie on any facet of P; that is, each ray
starting at the origin and shooting in any direction intersects a facet of P in a point
distinct from the origin.
Each xi is a zero-dimensional polyhedron which is dual to the affine halfspace hs (xi).

The intersection of all those affine halfspaces

P ′ =

m
i=1

hs (xi) =
m
i=1


y | xTi y ≤ 1


(2.17)

is obviously another polyhedron and has the following properties:

(i) P ′ = P⋆ (see Lemma 2.4),

(ii) P ′ is a polytope (see Lemma 2.5),

(iii) the facets of P are isomorphic to the vertices of P ′ (see Theorem 2.7), and

29

2 Preliminaries: Linear Inequalities and Polyhedra

(iv) the vertices of P are isomorphic to the facets of P ′ (see Corollary 2.8).

Lemma 2.4. The dual set of a nonempty finite vector set X ⊂ Rd is equivalent to the
dual set of its convex hull.

Proof. Let X = {x1, . . . , xm}. From (2.14), it follows that

∀y ∈ X⋆


m
i=1

xTi y ≤ 1



⇒ ∀y ∈ X⋆


m
i=1

λix
T
i y ≤ λi


with λi ∈ R, λi ≥ 0 and

m
i=1

λi = 1

⇒ ∀y ∈ X⋆


(
m
i=1

λixi)
T y ≤ 1


with λi ∈ R, λi ≥ 0 and

m
i=1

λi = 1

⇒ ∀y ∈ X⋆

xT y ≤ 1


with x ∈ conv.hull(X)

⇒ X⋆ ⊆ conv.hull(X)⋆ .

It is easy to show that X⋆ ⊇ conv.hull(X)⋆ as conv.hull(X)⋆ is bounded by all
constraints which are also valid for X⋆. □

Lemma 2.5. The dual polyhedron of a polytope enclosing the origin is another polytope.

Proof. First, it is easy to verify the following equivalence:

P is bounded⇔ ∃q ∈ R

q ≥ 0 ∧ ∀x, x′ ∈ P


xTx′ ≤ q


. (2.18)

In other words, if P is bounded, then for each x ∈ P, we can find a hyperplane which

(i) is orthogonal to the ray starting at the origin and crossing x, and

(ii) defines a halfspace containing the whole polytope P.

Next, as the origin is enclosed by P, we can define a ray in any possible direction by
using the origin as a starting point and some vector from P as a direction. This allows
us to express each vector of P⋆ as a vector of P multiplied with some positive scalar;
that is, for each y ∈ P⋆,

∃x ∈ P ∃λ ≥ 0 (y = λx) .

Consequently, for all y, y′ ∈ P⋆,

yT y′ = (λxT)(λ′x′) = λλ′xTx′ ≤ q′ for some sufficiently large q′ ∈ R .

According to (2.18), P⋆ is then bounded as well. □

Lemma 2.6. There is a homomorphic mapping from P’s facets to P⋆’s vertices.

30

2.3 Duality

Proof. Each supporting hyperplane of P

Hi = {x | aix = bi} with i ∈ [1, n]

corresponds to a vector yi = b−1
i aTi . Furthermore, for each x ∈ P,

xT yi = xT (b−1
i aTi) = b−1

i aix ≤ 1

and thus yi ∈ P⋆. The vertices of P lying on each Hi define a polytope of dimension
d− 1; hence, for each Hi, there exists a unique maximal subset Xi ⊂ X with at least d
linear independent elements and

x∈Xi

aix = bi ⇔

x∈Xi

xT (b−1
i aTi) = 1⇔


x∈Xi

xT yi = 1 .

It is evident that yi is a vertex of P⋆ in that case. □

Theorem 2.7. There is an isomorphism between the facets of P and the vertices of
P⋆.

Proof. The homomorphism from facets to vertices was demonstrated in Lemma 2.6. By
reversing the proof given there, it can be easily shown that the mapping is isomorphic.
Let y′ be a vertex of P⋆. Then according to the construction of P⋆ given in (2.17), y′

emerges from the intersection of at least d hyperplanes
y | xT y = 1 for some x ∈ X


.

Hence, there exists a subset X ′ ⊂ X such that

dim

aff.hull(X ′)


= d− 1

and 
x′∈X′

x′T y′ = 1 and


x∈X−X′

xT y′ ≤ 1 .

The latter can be strengthened to 
x∈X−X′

xT y′ < 1

by maximizing X ′; that is, by transferring to X ′ all vectors from X−X ′ which lie within
the affine hull of X ′. The convex hull of X ′ is then a d− 1 dimensional polytope which
is a facet of P. Consequently, there exists a supporting hyperplane Hi which defines
it. □

Corollary 2.8. There is an isomorphism between the vertices of P and the facets of P⋆.

Proof. Follows from Theorems 2.3 and 2.7. □

31

2 Preliminaries: Linear Inequalities and Polyhedra

x1

x2

a

hp (a)

b

hp (b)

c

hp (c)

d

hp (d)

e

f

g

h

(a) Vertices of P and facets of P⋆

x1

x2

a

bc

d

e

hp (e)

f

hp (f)

g

hp (g)

h

hp (h)

(b) Vertices of P⋆ and facets of P

Figure 2.5: Isomorphic vertices and facets of dual polytopes

Example 2.1. Consider the set X = {a, b, c, d} ⊂ R2 where

a =


2
2


, b =


2
−2


, c =


−2
−2


and d =


−2
2



as shown in Figure 2.5a. Let P denote the convex hull of X. The polytope P⋆ is then
the intersection of four halfspaces, i.e.

P⋆ = X⋆ = hs (a) ∩ hs (b) ∩ hs (c) ∩ hs (d) =

y |


2 2
2 −2
−2 −2
−2 2

 y ≤

1
1
1
1




with

e =


1/2
0


, f =


0
1/2


, g =


−1/2
0


and h =


0
−1/2


the vertices of P⋆. As a consequence, each vertex of P can be mapped to a facet of P⋆
as follows:

a →→ conv.hull({e, f }), b →→ conv.hull({h, e}),
c →→ conv.hull({g, h}), d →→ conv.hull({g, f }) .

A similar situation arises when building P out of P⋆’s vertices (see Figure 2.5b).
According to (2.17),

P = hs (e) ∩ hs (f) ∩ hs (g) ∩ hs (h) =

x |


1/2 0
0 1/2
−1/2 0
0 −1/2

x ≤

1
1
1
1




32

2.3 Duality

where each vertex of P⋆ defines a hyperplane which supports P. For example, e defines
hp (e) =


x |

1 0


x = 2


, f defines hp (f) =


x |

0 1


x = 2


, etc. Moreover, each

such hyperplane contains a unique adjacent pair of P’s vertices which yields the following
isomorphic mapping:

e →→ conv.hull({a, b}), f →→ conv.hull({d, a}),
g →→ conv.hull({c, d}), h →→ conv.hull({b, c}) .

2.3.3 Duality of Cones

Consider again the finite vector set X = {x1, . . . , xm} ⊂ Rd, but this time from another
perspective. Let C (A) be the cone generated by X. Without loss of generality, assume
that C is both full-dimensional and pointed, and that X represents a minimal set of
generators. Thus, each xi defines an extreme ray

ri = cone ({xi}) = {λxi | λ ∈ R, λ ≥ 0} (2.19)

starting at the origin and crossing xi. By definition, each such extreme ray is a polyhe-
dron which contains the origin and has the halfspace

r⋆i = cone ({xi})⋆ =

y | xTi y ≤ λ−1, λ ∈ R, λ ≥ 0


(2.20)

as a dual set. The intersection of all such halfspaces

C′ =
m
i=1

r⋆i (2.21)

yields another polyhedron with the following properties:

(i) C′ is a polyhedral cone as each r⋆i is a linear halfspace (see Lemma 2.9),

(ii) C′ = C⋆ (see Lemma 2.10),

(iii) the facets of C are isomorphic to the extreme rays of C′ (see Theorem 2.12) and

(iv) the extreme rays of C are isomorphic to the facets of C′ (see Corollary 2.13).

In Example 2.2, the above properties are illustrated for a pair of dual polyhedral cones
in R3.

Lemma 2.9. The dual polyhedron of an extreme ray is a linear halfspace.

Proof. Consider the dual polyhedron r⋆i as given in (2.20). It is evident that

lim
λ→∞


λ−1


= 0

which allows the elimination of λ in (2.20) and hence an alternative representation

r⋆i =

y | xTi y ≤ 0


.

In other words, for each λ′ and y′ with xTi y
′ ≤ λ′−1 and xTi y

′ > 0, we can always find
another λ′′ > λ′ such that xTi y

′ > λ′′−1 and thereby prove that y′ ̸∈ r⋆i . □

33

2 Preliminaries: Linear Inequalities and Polyhedra

Lemma 2.10. Let X ⊂ Rd be a finite set of vectors. Then

cone (X)⋆ =

x∈X

cone ({x})⋆ .

Proof. Let X = {x1, . . . , xm}. Then
m
i=1

cone ({xi})⋆ =
m
i=1

{λixi | λi ≥ 0}⋆ =
m
i=1


y | λixTi y ≤ 1, λi ≥ 0


=


y |

m
i=1

λix
T
i y ≤ 1, λi ≥ 0



⊆


y |

m
i=1

λix
T
i y ≤ m,λi ≥ 0



=


y |

m
i=1

λ′ix
T
i y ≤ 1, λ′i = λi/m, λi ≥ 0


= cone (X)⋆ .

It is also evident that

cone (X)⋆ ⊆
m
i=1

cone ({xi})⋆

as for each xi ∈ X, cone (X)⋆ ⊆ cone ({xi})⋆. □

Lemma 2.11. There is a homomorphism which maps each facet of C to an extreme ray
of C⋆.

Proof. Each supporting hyperplane of C

Hi = {x | aix = 0} (2.22)

defines a facet. Thus, Hi contains at least d−1 extreme rays of C which generate a d−1
dimensional polyhedral cone; hence, for each i ∈ [1, n] there exists a unique Xi ⊂ X
such that

∀x ∈ Xi (aix = 0) ∧ ∀x ∈ X −Xi (aix < 0)

and
dim (cone (Xi)) = dim (lin.hull(Xi)) = d− 1 .

Consequently, it is easy to verify that cone

aTi


is an extreme ray of C⋆ as for each
y ∈ cone


aTi


,

∀x ∈ Xi


xT y = 0


∧ ∀x ∈ X −Xi


xT y < 0


and

dim

cone


aTi


= d− dim (lin.hull(Xi)) = 1 .

□

34

2.3 Duality

Theorem 2.12. There is an isomorphic mapping from C’s facets to C⋆’s extreme rays.

Proof. In what follows, it is shown that the homomorphism from Lemma 2.11 is indeed
an isomorphism. Each extreme ray of C⋆ emerges from the intersection of d − 1 facets,
thus for some X ′ ⊂ X,

r′ =

x∈X′


y | xT y = 0


=


y |


x∈X′

xT y = 0



is an extreme ray of C⋆ if for all y ∈ r′,

∀x ∈ X −X ′ xT y ≤ 0

and dim


lin.hull(X ′)


= d− 1 .

Moreover, we can enforce xT y < 0 for all x ∈ X−X ′ by maximizing X ′ without changing
the dimension of its linear hull. Consequently, cone (X ′) is a facet of C and thus there
exists a hyperplane Hi as given in (2.22) which defines it. □

Corollary 2.13. There is an isomorphic mapping from C’s extreme rays to C⋆’s facets.

Proof. Follows directly from Theorems 2.3 and 2.12. □

x1

x2

x3

c

a

b

d

e

f

g

h

Figure 2.6: Pair of dual polyhedral cones

Example 2.2. In Figure 2.6, the polyhedral cone

C =

y |

−1 −2 0
−1 0 −2
−1 2 0
−1 0 2

 y ≤ 0



35

2 Preliminaries: Linear Inequalities and Polyhedra

is illustrated. It is generated by the vectors

a =

 2
−1
1

 , b =
 2
−1
−1

 , c =
 2

1
−1

 and d =

21
1

 .

The dual cone of C is then

C⋆ =

y |

2 −1 1
2 −1 −1
2 1 −1
2 1 1

 y ≤ 0


with generators

e =

−1−2
0

 , f =

−10
−2

 , g =

−12
0

 and h =

−10
2

 .

The isomorphic mapping between C’s facets and C⋆’s extreme rays is defined by

cone ({a, b}) →→ cone ({e}) , cone ({b, c}) →→ cone ({f }) ,
cone ({c, d}) →→ cone ({g}) , cone ({d, a}) →→ cone ({h}) .

Analogously, we obtain the isomorphic mapping between C’s extreme rays and C⋆’s facets:

cone ({a}) →→ cone ({h, e}) , cone ({b}) →→ cone ({e, f }) ,
cone ({c}) →→ cone ({f, g}) , cone ({d}) →→ cone ({g, h}) .

2.4 Degeneracy

LetX ⊂ Rd be a finite set of points. In computational geometry, assuming that all points
in X are in general position means that they avoid the troublesome configurations, known
as degenerate situations [60, p. 40]. In other words, there are no more than two points
in X lying on the same line, no more than three lying on the same plane, etc. A lot of
algorithms are based on this assumption as it effectively allows authors to focus on the
general problem without the necessity of investigating numerous side cases. However,
those degenerate cases cannot be neglected as otherwise the affected algorithms would
remain incomplete and hence hardly applicable in practice. Moreover, many important
geometric problems turn out to be degenerate. In that regard, a bibliography referring
to all kinds of such problems appearing in various fields was compiled by Gal [80].
In the context of convex polyhedra, degeneracy is related to the number of facets on

which each vertex lies. The following definition originates (in a slightly different form)
from the work of Tijssen and Sierksma [146].

36

2.4 Degeneracy

Definition 2.6 [Degeneracy Degree]. Given a polyhedron P (A, b) with A ∈ Rn×d,
let Z ⊂ N≤n be maximal with respect to AZv = bZ for some vertex v. The degeneracy
degree of v,

σ (v) = ∥Z∥ − d (2.23)

is the number of redundant hyperplanes defining v.

As a consequence of Definition 2.6, the vertex v is called degenerate if σ (v) > 0 and
nondegenerate otherwise. Furthermore, a definition equivalent to (2.23) can be given for
each extreme ray r of P (A, b). The degeneracy degree of r is then

σ (r) =
Z ′− (d− 1)

with Z ′ ⊂ N≤n maximal with respect to AZ′x = 0 for all x ∈ r. Again, the extreme
ray r is degenerate if σ (r) > 0 and nondegenerate otherwise. Consequently, the poly-
hedron P (A, b) is nondegenerate if and only if all of its vertices and extreme rays are
nondegenerate.

Nondegerate polytopes, also called simple (see Definition 2.7), have some very distin-
guishing properties. Each vertex x lies on exactly d edges. Moreover, intersecting any
d−1 facets on which x lies automatically yields one of those edges. As we shall see later,
those properties are of great importance when dealing with the convex hull problem. It
should be pointed out that the dual of a simple polytope is not necessarily simple as
well. Such polytopes have other properties and are called simplicial (see Definition 2.8).

Definition 2.7 [Simple Polytope]. A d-dimensional polytope is called simple if and
only if each vertex lies on exactly d facets.

Definition 2.8 [Simplicial Polytope]. A d-dimensional polytope is called simplicial
if and only if each facet contains exactly d vertices.

Perturbation. As already stated, many geometric algorithms assume general position
of the input. Then an immediately arising question is how the degenerate cases are
being solved. We can think of each degenerate vertex as a set of nondegenerate ones
which have the same coordinates and hence zero distance between each other. In order
to distinguish them as independent points, we can require that the distance between
each two vertices is nonzero. Such a technique for transforming a degenerate polyhedron
into a nondegenerate one is called perturbation.

Let v0 be some arbitrary vertex such that AZv0 = bZ where AZ is a rectangular
matrix. If there exists another row vector aj of A such that ajv0 = bj and j ̸∈ Z, then
v0 is obviously degenerate. Consequently, v0 is degenerate if and only if there exists a
vector β ∈ Rn satisfying


i∈Z

βi


aTi
bi


=


aTj
bj


for some j ∈ N≤n − Z . (2.24)

37

2 Preliminaries: Linear Inequalities and Polyhedra

In the context of linear programming, Charnes [46] proposed a technique for ruling out
the existence of linear dependencies as those given in (2.24) by perturbing the vector b.
His approach involved replacing b by b(ϵ) = b+ ϵ where

ϵ =

ϵ1 ϵ2 . . . ϵn

T
is a vector consisting of very small real numbers. Furthermore, each ϵi is significantly
smaller than ϵi−1 and ϵ1 is significantly smaller than any other number coming up in the
original problem. The idea is that each ϵi acts on an entirely different scale from all the
other ϵi´s and the data for the problem [148, p. 33]. Consequently, it can be shown that
for some sufficiently small ϵmax and

ϵmax ≫ ϵ1 ≫ ϵ2 ≫ . . .≫ ϵn

the perturbed polyhedron P (A, b(ϵ)) contains no linear dependencies as given in (2.24)
and hence no degeneracies. It should be noted, however, that each degenerate vertex v0
yields up to

n+σ(v0)
σ(v0)


nondegenerate ones; hence, the number of vertices may grow expo-

nentially after perturbation. In Figure 2.7, the geometric consequences of perturbation
are illustrated. A detailed explanation of Charnes’ method was given by Hadley [85].

(i0, i1, i2, i3)
(k0, k1, k2, k3)

(o0, o1, o2, o3)

(p0, p1, p2, p3)

(j0, j1, j2, j3)

(q0, q1, q2, q3)

Figure 2.7: Perturbed octahedron

Several general perturbation schemes dealing with degeneracy in all kinds of geometric
algorithms were developed. Such are the simulation of simplicity of Edelsbrunner and
Mücke [66], the symbolic scheme of Yap [154] and the linear scheme of Emiris and
Canny [67, 68], the latter being the most efficient one. In this context, Seidel [138] and
Burnikel et al. [42] gave interesting discussions about the limitations of perturbation and
to what extent it poses a general solution for degeneracy.

38

3 The Convex Hull Problem: Theory and
Practice

The convex hull problem is one of the oldest and most intensively studied problems
in computational geometry. It is related to finding a minimal set of halfspaces whose
intersection is equivalent to the convex hull of finitely many vectors residing in the d-
dimensional space (see Section 3.1). Despite the huge amount of work being done over the
years, only the computational complexity of nondegenerate problems is known so far (see
Section 3.2). A great number of algorithms have been proposed; however, none of them is
able to solve degenerate problems in polynomial time. For nondegenerate ones, pivoting
algorithms are able to deliver such a solution (see Section 3.3). Incremental algorithms,
to which the double description method belongs, are characterized by an exponential
complexity for both degenerate and nondegenerate problems (see Section 3.4).

3.1 Definition and Related Problems

Problem 3.1 [Convex Hull]. Given a finite set of vectors X ⊂ Rd, find a polytope
in H-representation equivalent to the convex hull of X.

If X is minimal in the sense that excluding any x from X also changes the convex hull,
then each vector in X is actually a vertex of the polytope. Consequently, the convex
hull problem can be viewed as a more general form of facet enumeration.

Problem 3.2 [Facet Enumeration]. Given a polytope P as a finite set of vertices V,
find a minimal set of supporting hyperplanes defining its facets.

Suppose that we are given a polytope P in H-representation. By means of duality, the
V-representation of the dual polytope P⋆ is easily obtained. Solving the facet enumera-
tion for P⋆ automatically gives a V-representation of P; hence, we can apply duality to
perform an implicit vertex enumeration. In that regard, we shall consider Problems 3.2
and 3.3 to be equivalent.

Problem 3.3 [Vertex Enumeration]. Given a polytope P as an intersection of
finitely many affine halfspaces, find all vertices of P.

Suppose now that C is a polyhedral cone given in H-representation and that an al-
gorithm to solve Problem 3.3 is available. Then, we can use that algorithm to perform
an extreme ray enumeration for C (see Problem 3.4) by defining an additional affine
halfspace {x | cx ≤ 1} which bounds C to a polytope (see Figure 3.1). Except the zero
vector, each vertex of the so defined polytope corresponds to a single extreme ray of C.
It is also easy to show that the mapping is isomorphic.

39

3 The Convex Hull Problem: Theory and Practice

x1

x2

x3

a

b

c

d

Figure 3.1: Transformation of a polyhedral cone into a polytope

If C is given in V-representation instead, a facet enumeration (see Problem 3.5) is
easily performed by first obtaining the dual cone C⋆ and then enumerating its extreme
rays as already described. Consequently, any algorithm to run on a polytope is easily
extended to run on a polyhedral cone as well. The reverse implication is also valid. To
each polytope P ′ with a vertex set V ′, we can assign a pointed polyhedral cone

C′ = cone


1
v


| v ∈ V ′


by increasing the dimension of the problem. It is easy to verify that if

y
x


| by − cx = 0


with y ∈ R and x ∈ Rd

defines a facet of C, then {x | cx = b} defines a facet of P ′. Thus, the facet enumeration
of a polytope can be reduced to a facet enumeration of a polyhedral cone. By means of
duality, the vertex enumeration is also reducible to an extreme ray enumeration.

Problem 3.4 [Extreme Ray Enumeration]. Given a polyhedral cone C as an inter-
section of finitely many linear halfspaces, find a minimal set of generators X such that
C = cone (X).

Problem 3.5 [Facet Enumeration of Cones]. Given a finite set of vectors X ⊂ Rd,
find a minimal set of supporting hyperplanes defining the facets of cone (X).

In conclusion, we shall say that Problems 3.2, 3.3, 3.4 and 3.5 are equivalent in the
sense that an algorithm able to solve one of them is easily modifiable to solve any of them.
This equivalence is illustrated by the problem cube in Figure 3.2. The availability of an
algorithm to solve one of the four problems is sufficient to explore a path between nodes

40

3.2 Complexity

corresponding to H- and V-representations of a polytope or a cone. Such an algorithm
can also be extended to solve the general convex hull problem; that is, to accept an
input set X ⊂ Rd which is not necessarily minimal and thus contains not only vertices,
but also other redundant vectors. The double description method, which is considered
in this work, can handle such redundancies implicitly without additional modifications.
Indeed, the same is true for the majority of available algorithms. In that regard, we can
consider Problem 3.1 to have the same solution as the other four.

H (P)

V (P)

H (P⋆)

V (P⋆)

H (C)

V (C)

H (C⋆)

V (C⋆)

V
e
rt
e
x

E
n
u
m
e
ra

ti
o
n F

a
c
e
t
E
n
u
m
e
ra

tio
n

D
ua
lit
y

V
e
rt
e
x

E
n
u
m
e
ra

ti
o
n F

a
c
e
t
E
n
u
m
e
ra

tio
n

D
ua
lit
y

E
x
tre

m
e
R
a
y

E
n
u
m
e
ra

tio
n

F
a
c
e
t
E
n
u
m
e
ra

ti
o
n

D
ua
lit
yE

x
tr
e
m
e
R
a
y

E
n
u
m
e
ra

ti
o
n

F
a
c
e
t
E
n
u
m
e
ra

tio
n

D
ua
lit
y

Figure 3.2: Variations of the convex hull problem

In this work, a general differentiation between primal and dual space algorithms is
made depending on the problem which they are designed to solve. A primal space
algorithm solves Problems 3.1, 3.2 and 3.5; that is, it solves the convex hull problem
directly. A dual space algorithm solves Problems 3.3 and 3.4. It delivers a solution of
the convex hull problem implicitly while operating on the dual polytope/cone.

3.2 Complexity

Given a finite set of vectors X ⊂ Rd, the first question which arises when considering
the complexity of the convex hull problem is related to the maximal number of facets
which conv.hull(X) may have. Motzkin [115] was the first one to state a conjecture
that a specific family of cyclic polytopes (see Definition 3.1) sets an upper bound in that
respect. Given a d-dimensional cyclic polytope PC with n vertices, there is no other d-
dimensional polytope with n vertices which has more facets than PC . A substantial work
on the proof of that conjecture was done by Fieldhouse [71], Klee [101] and Gale [81]
until the matter was finally settled by McMullen [112, 113] who delivered a complete
proof. Since then it is known as the upper bound theorem.

41

3 The Convex Hull Problem: Theory and Practice

Definition 3.1 [Cyclic Polytope]. A d-dimensional cyclic polytope is the convex
hull of the vector set {x(t1), . . . , x(tn)} ⊂ Rd, n > d where

x(ti) =

t1i t2i . . . tdi

T
for ti ∈ R .

Assume now that we want to determine the complexity of an algorithm which solves
the convex hull problem. According to the upper bound theorem, the number of facets
is maximal for cyclic polytope. For n vertices the algorithm has to compute

n− ⌈d/2⌉
⌊d/2⌋


+


n− 1− ⌈(d− 1)/2⌉
⌊(d− 1)/2⌋


facets [88]. In order to emphasize the consequences of that fact more clearly, we may refer
to the asymptotic version of the upper bound theorem [137]. It states that a polytope
with n vertices (facets) has O


n⌊d/2⌋


facets (vertices) for some fixed dimension d.

Consequently, if we measure the complexity by considering the input only, then any
algorithm has an exponential running time; hence, a more appropriate approach is to
take both the input and the output into account.
For the moment, the complexity of the convex hull problem is an open issue, meaning

that there is no known algorithm which solves it in time polynomial in the number of
vertices and facets. On the other hand, there is no complete proof yet that such an
algorithm does not exist. Thus far, it has been shown by Khachiyan et al. [98] that the
vertex enumeration of an unbounded polyhedron is generally NP-hard. However, their
complexity proof does not rule out the possibility of a polynomial solution for bounded
polyhedra.
There are several classes of unbounded polyhedra which have been shown to have

polynomial solutions [82, 125, 2, 95]. For bounded polyhedra, such solutions are known
for simple [14], simplicial [36] and 0/1 polytopes [44]. With respect to the latter, the
vertex enumeration was shown to be NP-hard on unbounded 0/1 polyhedra [32].
It is worth mentioning that another closely related problem, the general face enumera-

tion, is solvable in polynomial time for polytopes [134, 78, 76]. Murty [118] has discussed
the transferability of one such algorithm, introduced by Murty and Chung [119], on the
vertex enumeration and has given an efficient solution for one class of polytopes.

3.3 Pivoting Algorithms

A whole family of convex hull algorithms emerged from the field of linear programming
and optimization (see Section 3.3.1). Those are referred to as pivoting algorithms and are
closely related to the simplex method of Dantzig [58] (see Section 3.3.2). For instance, the
reverse search method of Avis and Fukuda [12, 14] is an application of the simplex method
in reverse and arguably the most efficient pivoting algorithm so far (see Section 3.3.3).
Their method completed the long lasting development of algorithmic solutions both in
the primal (see Section 3.3.5) and the dual space (see Section 3.3.4).

42

3.3 Pivoting Algorithms

3.3.1 The Linear Programming Problem

Problem 3.6 [Linear Programming]. For c ∈ Rd, b ∈ Rn and A ∈ Rn×d maximize
the value of cTx subject to Ax ≤ b.

Definition 3.2 [Basis]. A set B ⊆ N≤n with |B| = d is called a basis if rank [AB] = d.

Definition 3.3 [Feasible Basis]. Each basis B with x ∈ Rd satisfying ABx = bB is
called feasible if x also satisfies Ax ≤ b.

The solution of Problem 3.6 involves finding a feasible basis for which x is optimal
in terms of the given condition. Problem 3.6 has also a geometric solution which cor-
responds to finding an optimal vertex within the underlying polyhedron P (A, b). This
is an obvious consequence of the fact that each feasible basis is bound to a vertex of
P (A, b). This mapping between feasible bases and vertices, however, is not necessarily
isomorphic. In case of degeneracy, several feasible bases may yield the same vertex.

Let ΓLP (A, b) = (VLP , ELP) be an undirected graph with

VLP denoting the set of all feasible bases corresponding to Ax ≤ b and

ELP = {(B′, B′′)||B′ ∩B′′| = d− 1} defining an edge between each two bases differing
in only one element; that is, B′ is obtainable out of B′′ and vice verse by exchanging
only one element.

ΓLP is called a linear programming graph. Compare now ΓLP (A, b) with the incidence
graph Γ (P ′) where P ′ is the polytope emerging from the decomposition of P (A, b)
according to Theorem 2.2. It is easy to show that both graphs are equivalent if P ′ is
nondegenerate. In the degenerate case, however, multiple elements of VLP correspond
to a single polytope vertex, thus ΓLP (A, b) is reducible to Γ (P ′), but its calculation
requires potentially more effort.

The general idea behind pivoting algorithms is to enumerate all feasible bases by visit-
ing each node of ΓLP (A, b) and hence obtain all vertices in the process. For nondegener-
ate problems, this approach allows to carry over techniques from the linear programming
without fearing any negative consequences in terms of higher computational complex-
ity. In case of degeneracy, however, a typical case of state explosion occurs as the size
of ΓLP (A, b) may grow exponentially compared to the size of the incidence graph. In
that regard, consider the polytope P (A, b) given in Figure 3.3, which has merely one
degenerate vertex. When building the graph ΓLP (A, b), this vertex yields four separate
feasible bases and thus nearly doubles the overall number of nodes compared to the
incidence graph. Clearly, enumerating all vertices does not require to visit each node
of ΓLP (A, b); hence, spanning a tree over five of ΓLP (A, b)’s nodes is both necessary
and sufficient. Finding such an optimal algorithm for the general case is a point where
current theory is struggling. Among all developed algorithms, no one is able to span a
tree for which the number of nodes is polynomially bounded by the number vertices. On
the other hand, there is no formal proof ruling out the existence of such an algorithm.

43

3 The Convex Hull Problem: Theory and Practice

{3, 4, 5}

{2, 3, 5}

{1, 2, 5}

{1, 4, 5}

{1, 2, 3, 4}

(a) Pyramid P (A, b)

{2, 3, 5}

{3, 4, 5}

{1, 4, 5}

{1, 2, 5}

{1, 3, 4}

{1, 2, 4}

{1, 2, 3}

{2, 3, 4}

(b) ΓLP (A, b)

Figure 3.3: The impact of degeneracy on the number of feasible bases

3.3.2 The Simplex Method

In geometric terms, Problem 3.6 corresponds to finding a vertex of the polyhedron

P = {x | Ax ≤ b}

which yields the maximal dot product c ·x. Assuming that at least one feasible basis B0

corresponding to a vertex x0 is known, the simplex method takes (x0, B0) as a starting
point and traverses P along the edges until it finds an optimal vertex. Let

ΓLP (A, b) = (VLP , ELP)

be the underlying linear programming graph. Each run of the simplex method corre-
sponds to exploring a single path along ΓLP (A, b). Schrijver [131] defined that process
by means of two geometric operations which are summarized in this section. First, mov-
ing from one graph node to another and second, checking whether a certain vertex is
an optimal one. Regarding the latter, it is easy to show that for any u ∈ Rn, u ≥ 0
satisfying uTA = c,

uTAx ≤ uT b⇒ cTx ≤ uT b⇒max

cTx | Ax ≤ b


≤min


uT b | u ≥ 0, uTA = c


.

Consequently, for some vertex x′, cTx′ is guaranteed to be maximal if there exists such
u′ that c = u′TA and cTx′ = u′T b. This settles the definition of the second operation. It
remains to be shown how to move along the nodes of ΓLP (A, b).

Let (x0, B0) be a known pair of a vertex and a corresponding feasible basis. It is worth
mentioning that B0 is unique only if x0 is nondegenerate. Otherwise, several feasible
bases can be found. Depending on the value of u0 = cTA−1

B0
, one of the following two

cases occurs:

44

3.3 Pivoting Algorithms

(i) u0 is a nonnegative vector. It this case, x0 is already optimal due to the existence
of a vector u ∈ Rn with

uB0 = u0 and uB̄0
= 0 .

It is evident that u ≥ 0 and

uT b = uTB0
bB0 = cTA−1

B0
bB0 = cTx0 .

(ii) u0 has at least one negative coefficient. Let j be the minimal index for such a
coefficient and ej ∈ Rn the identity vector with a positive value at position j and
zero at all other positions. Consider now the ray

r0 = {x0 + λy | AB0y = −ej , λ ≥ 0}

which starts at the vertex x0 and points either in the direction of an outgoing edge
or outward from P in the sense that r0 ∩ P = {x0}. It is important to note that
the latter case occurs only if x0 is degenerate. Depending on the value of y two
cases are possible.

If Ay ≤ 0, then r0 is an extreme ray of the polyhedron P as it is a face of dimension
one and is not bounded by any halfspace. In this case, cTx has no maximum.

If there exists a row al of A such that aly > 0, then r0 is bounded by at least
one facet of P. Consequently, by gliding along the ray r0, at some point a
supporting hyperplane is reached. The intersection of r0 with the first such
hyperplane is again a vertex

x1 = x0 + λ0y

where λ0 satisfies

∃l ∈ B̄0 (al(x0 + λ0y) = bl) and ∄k ∈ B̄0 (ak(x0 + λ0y) > bk) .

In other words, al defines the first hyperplane to cross and ak any other
hyperplane beyond that. Next, a feasible basis

B1 = (B0 − j) + l

is constructed out of B0 by swapping the elements j and l. The pair (j, l)
is called a pivot. An important special case occurs when λ0 = 0 and thus
x1 = x0. The simplex method does not move to another vertex, but simply
changes the feasible basis of x0 instead. Furthermore, al is not necessarily
unique, as there may be another l′ ∈ B̄0, l

′ ̸= l such that al′(x0 + λ0y) = bl′ ,
meaning that r0 crosses multiple supporting hyperplanes at the same point.
According to Bland’s rule [27], the row with the minimal index is preferred
in that case. The procedure then checks (x1, B1) for optimality and either
terminates or proceeds by examining further pairs until an optimal vertex is
found or it is proven that no maximum exists.

45

3 The Convex Hull Problem: Theory and Practice

In conclusion, we shall say that each execution of the simplex method produces a
trace

∇ ((x0, B0),P) = ⟨(x0, B0), . . . , (xm, Bm)⟩ (3.1)

consisting of feasible bases and their corresponding vertices. All feasible bases are
distinct; that is, the simplex method avoids loops. If P is nondegenerate then all
vertices are also distinct.

3.3.3 Reverse Search

The idea behind reverse search is to apply the simplex method in reverse; that is, to
start with an optimal pair (x0, B0) and then span a tree over the linear programming
graph ΓLP (A, b) by traversing backwards all possible paths leading to (x0, B0). For the
moment, assume that x0 is nondegenerate and B0 is a unique feasible basis. It is easy
to construct a vector c ∈ Rd such that cTx is optimal with respect to Problem 3.6 and
thus

∇ ((x0, B0) ,P) = ⟨(x0, B0)⟩

is a trivial valid trace of the simplex method. Next, assume that

simplex : VLP ↛ VLP (3.2)

is a partial mapping which corresponds to a single step of the simplex method. For any
feasible basis Bi+1, it returns another one Bi such that

∇ ((xi+1, Bi+1) ,P) = ⟨(xi+1, Bi+1) , (xi, Bi) , . . . , (x0, B0)⟩

is a valid trace or is undefined if Bi+1 is already optimal. Consequently, the execution
of the simplex method corresponds to the repeated application of the mapping given in
(3.2) as long as it is defined.
As already stated, in order to solve the vertex enumeration problem, it is sufficient to

visit each node of ΓLP (A, b) at least once. By using (x0, B0) as a starting point and the
mapping from (3.2) as an oracle, we can span a tree T∇ = (VLP , E

′
LP) over ΓLP (A, b)

by preserving only those edges which are valid simplex transitions; hence,

E′
LP =


B′, B′′ ∈ ELP : simplex


B′ = B′′ .

Obviously, constructing T∇ is sufficient to enumerate all vertices.

Algorithmic Step. The construction of T∇ depends on the existence of a procedure
rsimplex (. . .) which given the head of some valid trace

∇ ((xi, Bi) ,P) = ⟨(xi, Bi) , . . . , (x0, B0)⟩

enumerates all pairs

xi+1, ABi+1


such that each

∇ ((xi+1, Bi+1) ,P) = ⟨(xi+1, Bi+1) , (xi, Bi) , . . . , (x0, B0)⟩ (3.3)

46

3.3 Pivoting Algorithms

is again a valid trace. Indeed, such a procedure is easily obtained by reversing the step of
the simplex method. We can find all neighbors of (xi, Bi) in ΓLP (A, b) by constructing
a ray

ri = {xi + λy | λ ≥ 0, ABl
y = 0, aly = −1} for each l ∈ Bi with Bl = Bi − l (3.4)

and then intersect it with the first supporting hyperplane of P on the way. As a result,
for each ri, we reach

a vertex xi+1 = xi + λiy with λi satisfying

∃j ∈ B̄i (aj(xi + λiy) = bj) and ∄k ∈ B̄i (ak(xi + λiy) > bk) , and

a feasible basis Bi+1 = (Bi − l) + j.

The newly obtained pair (xi+1, Bi+1) is a valid output of rsimplex (xi, Bi) if and only
if simplex (Bi+1) = Bi. The so defined reverse step has two special cases to consider.
First, λ0 = 0 implies xi+1 = xi, thus Bi+1 is just another feasible basis yielding xi.
Second, if xi+1 is degenerate, then l is not necessarily unique resulting in multiple valid
feasible bases and thus multiple pairs

xi+1, B
′
i+1


,

xi+1, B

′′
i+1


, . . .

which require examination.

Thus far, we have assumed the existence of a nondegenerate starting vertex x0 with
a unique feasible basis B0. The problem with degeneracy and hence the existence of
multiple feasible bases B′

0, B
′′
0 , etc. is that the simplex method may terminate at any

of them. Therefore, selecting only one as a starting point for the reverse search, does
not guarantee the enumeration of all nodes in VLP as some paths may lead to another
feasible basis, which corresponds to an optimal solution as well. In order to bypass that
problem, the reverse search has to be applied on each feasible basis corresponding to the
initial vertex x0. In the end, we obtain a forest of reverse search trees.

Example 3.1. Consider the octahedron P = {x | Ax ≤ b} defined by

A ∈ R8×3 and b ∈ R8

as shown in Figure 3.4. Let x0 be a known vertex and B0 a corresponding feasible basis
such that

AB0 =

a1a2
a3

 .

In order to obtain the output of rsimplex (x0, B0), we have to construct three rays r′0,
r′′0 and r′′′0 as defined in (3.4) and then intersect each of them with the first supporting
hyperplane which they cross; that is,

47

3 The Convex Hull Problem: Theory and Practice

↑ a4

↓ a8

↑ a3

↓ a7
x2 ↑ a1

↓ a5
x1

↑ a2

↓ a6

x0

r′0

r′′0

r′′′0

Figure 3.4: Neighbors exploration in the reverse search method

r′0 crosses a5 and a6 simultaneously in x1 yielding two feasible bases B′
1 and B′′

1 with

AB′
1
=

a1a2
a5

 and AB′′
1
=

a1a2
a6

 ,

r′′0 crosses a5 and a7 simultaneously in x2 yielding the feasible bases B′
2 and B′′

2 with

AB′
2
=

a1a3
a5

 and AB′′
2
=

a1a3
a7

 , and

r′′′0 crosses a4 in x0 yielding another feasible basis B′
0 with

AB′
0
=

a2a3
a4

 ,

which is also optimal.

Consequently, we can build a fragment of the linear programming graph as shown in
Figure 3.5. Those edges which correspond to valid simplex transitions are the elements
returned by rsimplex (x0, B0). In the next step, the reverse search method proceeds
by examining their neighbors.

48

3.3 Pivoting Algorithms

x0, B
′
0

x1, B
′′
1 x0, B0 x2, B

′
2

x1, B
′
1 x2, B

′′
2

si
m
p
le
x

sim
p
lex

Figure 3.5: Spanning a reverse search tree over the linear programming graph

Concluding Remarks. The reverse search method given here is a short summary of [14]
and serves only as an illustration of the basic idea. For a more technical view on the
algorithm, see [5]. Avis further revised and improved the method by adopting a lex-
icographic pivoting rule [6, 8] forming the current version of the algorithm known as
lrs (lexicographic reverse search). The evolution of the reverse search method has been
discussed by Avis in [7]. A parallel version of the algorithm has been incorporated into
the ZRAM library [105, 40].

3.3.4 Dual Space Algorithms

Balinski (1961). The first pivoting algorithm to solve the vertex enumeration problem
for a polyhedron in any dimension is due to Balinski [17]. The author suggested enumer-
ating the vertices facet by facet; that is, pick a facet, find all vertices on it, then drop
the corresponding constraint from the linear system and proceed with another facet. In
order to enumerate all vertices on a certain facet F , the algorithm either

(i) makes a recursive invocation on F if dim (F) ≥ 3 or

(ii) traverses the Hamiltonian path on which all vertices lie if dim (F) = 2.

The exploration of the Hamiltonian path is accomplished by using the simplex method in
order to move from one vertex to the next one. It is worth mentioning that by dropping
an inequality from the linear system, the polyhedron is being modified and thus not all
vertices of the subsequently investigated polyhedra are also vertices of the initial one.
This problem is evident in Figure 3.6 where two subsequent steps of the algorithm are
illustrated. The point m which emerges in the i+1-th step is clearly not a vertex of the
polyhedron from the previous one. This example also points out another drawback of
the algorithm, namely that degenerate vertices are visited multiple times.

49

3 The Convex Hull Problem: Theory and Practice

j

k

o

−→ i

p

←−

−→

q

(a) Step i

j

k −→
o

i

m

←−

p

−→

q

←−

(b) Step i+ 1

Figure 3.6: Geometric interpretation of Balinski’s algorithm

Maňas and Nedoma (1968). A more direct approach to solve the vertex enumeration
has been proposed several years later by Maňas and Nedoma [111] and then revisited
and improved by Altherr [3]. The idea of their method has been to span a tree directly
over the linear programming graph. The algorithm uses a standard technique of differ-
entiation between explored nodes for which all neighbors are known and boundary nodes
which are pending for neighborhood exploration. Assuming that a starting feasible ba-
sis B0 together with a standard simplex tableaux is known, the algorithm calculates
the corresponding vertex v0 and marks B0 as a boundary node. Next, it explores the
neighborhood of B0 and marks all newly found nodes as boundary ones. Finally, B0

is marked as explored, the tableaux is transformed to match one of the neighboring
boundary nodes and the process is repeated once again. That last step requires some
additional attention in the general case. Let vi be the last calculated vertex with a
feasible basis Bi. The algorithm then proceeds with the first neighbor of Bi which is
marked as a boundary node. If such a node does not exist, backtracking is performed
until the nearest boundary node with respect to Bi is found. The algorithm terminates
when all boundary nodes have been processed.

Mattheiss (1973). The subsequent efforts to solve convex hull problem more efficiently
resulted in rather complex algorithms. In 1973, Mattheiss [109, 108] proposed a funda-
mentally different approach by embedding P into another polyhedron

P ′ =


x
y


| Ax+ ty ≤ b


, y ∈ R, t ∈ Rn

which resides one dimension higher. P ′ is constructed in such a way that each face of P ′

has a nonempty intersection with P. In other words, each vertex of P has an adjacent
one in P ′ − P. The algorithm then spans a tree over the linear programming graph of
P ′ − P and uses it to enumerate the vertices of P. The algorithm of Mattheiss rests

50

3.3 Pivoting Algorithms

on an unproven conjecture that the linear programming graph of P ′ −P has less nodes
than the one obtained directly from P (see also [102]).

Burdet (1974). A rather complex algorithm generating all faces of a polyhedron has
been proposed by Burdet [41]. The faces are enumerated by constructing a tree (referred
to as an arborescence) where the root is the polyhedron itself and each subsequent level
contains faces which reside one dimension lower than the previous one. Consequently, the
vertices are the leaves of the tree. Mattheiss and Rubin [110] assessed the computational
demands of the algorithm as enormous because the calculation of each face involves
solving the linear programming problem multiple times.

Dyer and Proll (1977). The pivoting algorithm of Dyer and Proll [62, 63, 64] rests
on the idea of spanning a tree over the linear programming graph by applying breadth-
first search. Additionally, a list identifying known neighbors is attached to each node
and continuously updated. Redundant operations are thus avoided when exploring the
neighborhood of each node. Let B0 be the feasible basis constituting the root of the tree.
Then, at some point of the calculation, all nodes B′

g, B
′′
g , . . . at distance g are known. In

order to find all nodes at distance g+1, all neighbors of B′
g, B

′′
g , . . . have to be found. By

keeping track which of them are already known that effort can be considerably reduced.
This bookkeeping strategy, however, requires to compile an adjacency list for each newly
encountered node.

Concluding Remarks. For the preparation of this section, the survey of Mattheiss and
Rubin [110] has also been consulted. It delivers an excellent overview and an empirical
comparison of the algorithmic solutions presented here.

Another approach to attack the vertex enumeration problem with linear optimization
techniques was presented by Khang and Fujiwara [99]. The authors proposed an algo-
rithm based on polyhedral annexation [89] and compared their experimental results with
the algorithms from the survey of Mattheiss and Rubin. Khang and Fujiwara concluded
that in terms of efficiency, their algorithm is unlikely to beat the existing solutions.

3.3.5 Primal Space Algorithms

Chand and Kapur (1970). Parallel to the vertex enumeration methods, an alternative
class of algorithms has emerged from the idea of exploring neighboring facets. The
algorithm of Chand and Kapur [45] was the first one to implement this idea for d > 3.
Their method uses the fact that each two neighboring facets share a face of dimension
d− 2. Assuming that such a face F together with the supporting hyperplane H of one
of the facets is known, H can be rotated along F until it coincides with the supporting
hyperplane of the other facet. As each facet is again a polytope, the same procedure
can be applied to enumerate all d− 2 faces within a facet. Then each such face is used
to visit another facet and so on until all facets have been enumerated. This approach
is mostly referred to as gift wrapping . Basically the same idea has been suggested
three years later by McRae and Davidson [114]. Their algorithm, however, works on

51

3 The Convex Hull Problem: Theory and Practice

polyhedral cones instead of polytopes. Analysis and improvements of the algorithm of
Chand and Kapur can be found in the work of Swart [140] who reached a complexity of
O (nf + f log (f)) where f denotes the overall number of faces.

Seidel (1986). Seidel [134, 135] proposed another idea to solve the convex hull problem
by enumerating the facets in a shelling order. According to Ziegler [156], a linear ordering
of the facets F1, . . . , Fm of P is called shelling if either

dim (P) = 1 or

(i) the facets of F1, which are d− 2 dimensional faces of P, have a shelling order and

(ii) for 1 < j ≤ m,

Fj ∩


j−1
i=1

Fi


= G1 ∪G2 ∪ . . . ∪Gr

where G1, G2, . . . , Gr, . . . , Gt is a valid shelling order of the facets of Fj .

The algorithm of Seidel rests on a theorem proven by Mani and Bruggesser [104] that
the facets of each polytope have a shelling order. The proof coincides with the definition
of a strategy to provide that order for any arbitrary polytope. Naturally, this solves the
facet enumeration problem as well.
Imagine an airplane p taking off from some facet of the polytope P and then following

a course defined by a line l crossing P’s center and the takeoff position. The more the
distance between p and P grows the more of P’s facets become visible from the plane
(see Figure 3.7). An observer sitting on the plane writes down the facets in that order.

�

(a) Step i

�

(b) Step i+ 1

Figure 3.7: Geometric interpretation of the shelling algorithm

At some point this process ceases with no further facets becoming visible no matter how
far the plane flies. The plane is then repositioned on the other side of P, again on the
line l, but at an infinite distance to P. The observer sees now all facets which have

52

3.4 Incremental Algorithms

been out of sight up to that point. The plane continues following the course defined
by l, but this time towards P. As it approaches the polytope, more and more facets
become invisible. The observer now appends each facet which becomes invisible to his
list. Finally, the plane reaches P landing on some facet. This is the last entry in the
observer’s list. Consequently, it can be proven that for each polytope there exists such
a takeoff position that the observer has seen all facets and that the order in which he
has written them down is a shelling one.

The shelling algorithm of Seidel can be viewed as a formalization of the described
strategy. The algorithm itself runs in time O


n2 + f log (n)


where f is the overall

number of faces in the polytope and is therefore output sensitive. It should be pointed
out that the algorithm computes the complete facial lattice and not merely the facets of
the polytope. A subsequent improvement by Matoušek [106] cut the complexity down
to O


n2−2/(1+⌊d/2⌋)+δ + f log (n)


for some small δ > 0.

Rote (1992). Rote [128] proposed an algorithm for enumerating all faces of a polytope
which rests on the same idea as the reverse search method of Avis and Fukuda, but
instead of visiting feasible bases, it visits the facets of the polytope in a way analogous
to that of Chand and Kapur’s method. The algorithm handles degeneracies explicitly
and has small storage demands.

3.4 Incremental Algorithms

An alternative approach to solve the convex hull problem is to process the input set step
by step; that is, the convex hull is constructed incrementally by inserting one element at
a time. Accordingly, the resulting algorithms are called incremental . They are mostly
easy to implement and have a very illustrative geometric interpretation. Similar to
pivoting algorithms, they operate either in the primal (see Section 3.4.2) or in the dual
space (see Section 3.4.1).

3.4.1 Dual Space Algorithms

Motzkin (1953). The double description method (aka dd method) of Motzkin
et al. [116] was the first incremental algorithm to operate in the dual space. It runs
on a homogeneous system of linear inequalities defined by the input matrix A ∈ Rn×d
and thus solves the extreme ray enumeration problem. The dd method starts by com-
puting d extreme rays corresponding to the first d linear inequalities. Following this,
the remaining constraints ad+1, . . . , an are inserted and processed in a strict sequential
order. At each step, the set of known extreme rays is being refined by removing those
which are not valid for the new constraint. Furthermore, new extreme rays are being
computed. Each of them emerges from the linear combination of one valid and one
invalid adjacent extreme rays. The differentiation between adjacent and nonadjacent
rays is thus a key aspect for the computation. The dd method has a very illustrative
geometric interpretation of a convex hull P being cut with a halfspace H at each step

53

3 The Convex Hull Problem: Theory and Practice

resulting in
P ′ = P ∩H

as shown in Figure 3.8. An example for a computational run can be found in Chapter 4
where the method is discussed in greater detail.

H

H

(a) Polytope P and a halfspace H (b) Polytope P ′ = P ∩H

Figure 3.8: Geometric interpretation of cutting plane algorithms

Fukuda (1996). In terms of complexity, the dd method has been considered inferior
to many of the other algorithms for a long time as it effectively does not guarantee
any complexity bounds in the worst case. In the nineties, however, it gained popularity
after being revisited by Fukuda and Prodon [77]. The authors provided a practical
implementation together with a survey on degenerate problems and showed that the
dd method can deal with certain classes of polyhedra quite effectively. Thereby, the
insertion order of the constraints ad+1, . . . , an played a key role for obtaining an efficient
computational run. Shortly after, Avis and Bremner [10] introduced polytope families
which are hard to solve for various pivoting and incremental algorithms (see also [11,
34]). Those results were extended by Bremner to reach a final verdict concerning the
complexity of the dd method. Bremner [33] showed that incremental algorithms are
not output sensitive in general (see also [35]). He provided counter-examples for which
any insertion order yields a superpolynomial running time. For those problems, the
intermediate results grow exponentially in the size of the final output no matter what
insertion order is being chosen.
Despite the theoretical results, the dd method has remained a viable alternative in

practical applications. The algorithm is easy to implement and allows a direct mapping
of algorithmic operations to processor instructions. Moreover, the computational experi-
ence provided by Avis et al. [11] confirmed its advantages over other algorithms in certain
domains. Naturally, pivoting algorithms are to be preferred when dealing with purely
nondegenerate problems. Borgwardt [29, 30] analyzed the average-case complexity of
both the gift-wrapping algorithm and the dd method for randomly generated nondegen-
erate input. The results of his study confirmed the superiority of pivoting algorithms
for that kind of problems.

54

3.4 Incremental Algorithms

Chernikova (1964). The algorithm of Chernikova [48, 49] is virtually an independent
reinvention of the dd method based on the same idea of incremental constraint pro-
cessing. Initially, it was defined to work on a nonnegative domain, meaning that the
H-representation of the cone is given as

C = {x | Ax ≥ 0, x ≥ 0} .

The algorithm was extended by Fernández and Quinton [70] to solve mixed linear systems
containing both equalities and inequalities and then once more revisited by Verge [149]
who improved the criterion used to verify the adjacency of extreme rays.

Clarkson and Shor (1991)/Chazelle (1993). During the years, a reasonable effort was
devoted to find an algorithm which is optimal when the complexity is measured only
with respect to the input. Given a polytope with n vertices, the number of possible facets
is bounded by O


n⌊d/2⌋


. An algorithm is thus considered optimal if it has the same

computational complexity in the worst case. A partially optimal algorithm was proposed
by Seidel [133] (see Section 3.4.2) achieving O


n log (n) + n⌊d/2⌋


for any even d. About

a decade later, as randomized algorithms (e.g. see [117]) gained momentum, Clarkson
and Shor [51] proposed a Las Vegas algorithm with optimal expected running time (see
also [54, 52, 53]). The randomized aspect is related to the choice of a random order to
process the halfspaces. The algorithm itself is a rather simple one and can be viewed as
a refined form of the dd method which additionally maintains an incidence graph to keep
track of adjacent vertices. The complexity proof, however, is a completely different story
and requires some effort to understand. With regard to that, Seidel [136] introduced a
randomized primal space algorithm which achieves the same expected complexity, but
has a proof which is much easier to understand. The complexity matter was finally settled
by Chazelle [47] who gave a derandomized version of Clarkson and Shor’s algorithm
which is optimal in any dimension.

Another closely related algorithm was introduced by Boissonnat et al. [28]. It is
an online version of Clarkson and Shor’s algorithm featuring the same running time
complexity. A couple of years later, the algorithm was revisited once more by Brönni-
mann [38, 39] who extended it to accept degenerate problems.

3.4.2 Primal Space Algorithms

Seidel/Kallay (1981). The problem of intersecting a polytope with a halfspace was
once again revisited by Seidel who in his master thesis [133] proposed an algorithm widely
known as the beneath-beyond method . It was conceived as a primal space algorithm,
but operated internally in the dual space. Later, Seidel provided a pure primal space
version which was published by Edelsbrunner [65]. In some sources, the authorship of the
beneath-beyond method also goes to Kallay referring to an unpublished manuscript [96].
His algorithm appeared later in the book of Preparata and Shamos [124].

The beneath-beyond method incrementally builds the convex hull by processing one
point at a time; that is, if P is a polytope and p some point outside of P, the algorithm

55

3 The Convex Hull Problem: Theory and Practice

computes

P ′ = conv.hull(P ∪ {p})

as illustrated in Figure 3.9. The algorithmic step rests on a theorem given by McMullen

p

(a) Polytope P and point p

p

(b) P ′ = conv.hull(P ∪ {p})

Figure 3.9: Geometric interpretation of the beneath-beyond method

and Shephard [113] stating that each face of P ′ is obtained in one of the following two
ways.

(i) A face F of P is also a face of P ′ if and only if there is a facet F of P such that
F ⊂ F and p is beneath F .

(ii) If F is a face of P, then F ′ = conv.hull(F ∪ {p}) is a face of P ′ if and only if
either

(a) p ∈ aff.hull(F) or

(b) p is beyond at least one facet of P containing F and beneath another one.

Compared to the incremental algorithms in dual space, the beneath-beyond method
maintains a lot more intermediate data during the computation. In order to update the
convex hull, it requires a nearly complete description of P in terms of a facial graph. This
information is updated at each step and then passed to the next one. In contrast, the
dd method maintains merely a list of P’s vertices. However, the latter has to perform
explicit tests for adjacency of vertices which is not necessary in the beneath-beyond
method as the adjacency information is obtainable from the facial graph.

Joswig [94] compared the beneath-beyond method with the double description method
of Fukuda [75] and the reverse search method of Avis [8] in practical conditions. The
author demonstrated that the beneath-beyond method is indeed superior over the other
two for some types of polyhedra.

Barber et al. (1996). The quickhull algorithm of Barber et al. [19] is a variation of the
beneath-beyond method which operates on strictly nondegenerate input. The authors

56

3.4 Incremental Algorithms

introduced the concept of partitioning which defines the order in which the points are
being processed. After constructing an initial convex hull, each remaining point is as-
signed to exactly one facet visible from the point. Next, an arbitrary facet is selected
and all assigned points are added to the convex hull by starting with the most distant
one. The reasoning behind this strategy is to achieve maximal widening of the convex
hull on each step and thus enclose as many of the remaining points within the partition
as possible. As a consequence, all enclosed points do not require further treatment and
can be discarded.
Barber et al. provided computational evidence that their partitioning strategy achieves

better results than processing the points in a random order. However, the benchmark
covered only three dimensional problems.

57

4 The Double Description Method:
Definition and Implementation

The double description method is arguably the convex hull algorithm which has received
most attention in practice. Due to its general simplicity (see Section 4.1), it has been
integrated into various tools resulting in numerous implementations. The development
of the algorithm is still an ongoing process as time consuming parts like the adjacency
test (see Section 4.2) are a subject of improvement. Over the years, several implemen-
tation techniques have been particularly effective and are considered best practice when
developing new double description applications (see Section 4.3).

4.1 Algorithm

The dd method solves the extreme ray enumeration problem (see Problem 3.4). The
general idea behind the algorithm is to identify an over-approximation cone C0 ⊇ C (A)
for which the set of all extreme rays R0 is known (see Initial Step) and then iteratively
intersect it with the halfspaces defined in A (see Iteration Step). At each step, the cone is
being reshaped by cutting away those parts which do not belong to the current halfspace.
The cut operation effectively corresponds to updating the set of known extreme rays.
The iterative repetition of this process yields a trace of double description pairs

(A0,R0) −→ . . . −→ (Ai,Ri) −→ . . . −→ (A,R)

which mirror H- and V-representations of intermediate cones during the refinement pro-
cess. The final set of extreme rays R is the V-representation of C (A).

In what follows, a specification of the dd method is given. For the most part, the
notation of Fukuda and Prodon [77] is adopted. Without loss of generality, assume that
C (A) is pointed and that the first d rows of A form a nonsingular matrix A0 such that
rank [A0] = d. Note that the latter is easily satisfied by reordering the row vectors in
A. It is also worth mentioning that each set of extreme rays Ri is defined if there is a
known minimal set of generators Xi such that C (Ai) = cone (Xi).

Initial Step: The intersection of the first d halfspaces produces an initial cone C0 with
exactly d extreme rays. C0 is obviously nondegenerate and thus each ray lies on
exactly d − 1 facets. A set of generators X0 = {x1, . . . , xd} can be obtained by
solving d systems of linear equations. Each generator xi satisfies the i-th row of
A0 with inequality and all other with equality; hence,

C0 = cone

x | aix < 0 ∧ABix = 0 for i ∈ N≤d, Bi = N≤d − i


.

59

4 The Double Description Method: Definition and Implementation

Consequently, X0 defines R0.

Iteration Step: Let Xi be a minimal set of generators of the cone C (Ai) where

Ai = AN≤{d+i}

is the matrix containing the first d+ i rows of the initial matrix A. Furthermore,
let

Hj = {x | ajx ≤ 0} with j = d+ i+ 1

be the next halfspace to process. The intersection of C (Ai) with Hj leads to the
creation of a new cone C (Ai+1) whose generators are obtained out of Xi and Hj .
This involves the separation of Xi into three subsets

(i) X+
i = {x ∈ Xi : ajx > 0},

(ii) X0
i = {x ∈ Xi : ajx = 0} and

(iii) X−
i = {x ∈ Xi : ajx < 0}.

All elements in X−
i and X0

i are automatically generators of C (Ai+1). Additionally,
the intersection of the hyperplane {x | ajx = 0} with each two-dimensional face F
of C (Ai) yields a new generator if there exists a pair (x′, x′′) ∈ (X+

i ×X
−
i) such

that x′, x′′ ∈ F . After collecting all pairs (x′, x′′), the set of new generators is given
by

X▽
i =


x | x = (ajx

′)x′′ − (ajx
′′)x′


. (4.1)

Consequently, the set
Xi+1 = X−

i ∪X
0
i ∪X▽

i

generates the cone C (Ai+1). Since Xi+1 is minimal, it definesRi+1. The algorithm
proceeds with the next iteration step i+ 1 or terminates if j = n.

Example 4.1. Consider the cone C (A) with

A =


−1 0 0
0 −1 0
0 0 −1
−1 1 0


for which the extreme rays should be computed. In the initial step, a cone C (A0) with
generators

x1 =

10
0

 , x2 =
01
0

 and x3 =

00
1


defining R0 = {r0, r1, r2} is constructed out of the first three rows (see Figure 4.1a).
The algorithm then proceeds with the intersection of C (A0) where the halfspace H4 is
defined by the forth row in A (see Figure 4.1b). This splits the generators of C (A0) into

X+
0 = {x2} , X0

0 = {x3} and X−
0 = {x1} .

60

4.2 Adjacency Test

r1

r2

r3

(a) Cone C (A0)

r1

r2

r3

(b) C (A0) ∩H4

r4

r1

r3

(c) Cone C (A1)

Figure 4.1: Geometric interpretation of the double description method

According to the rule from (4.1), the pair (x2, x1) yields a new vector

x4 =

11
0

 with X▽
0 = {x4} .

Consequently, the extreme rays of C (A1) are r1, r3 and r4 emerging from the minimal
set of generators X1 = {x1, x3, x4} (see Figure 4.1c).

4.2 Adjacency Test

One aspect of the dd method deserving particular attention is the enumeration of all
two-dimensional faces needed to compute X▽

i . This process involves the identification
of all pairs (x′, x′′) ∈ (X+

i × X−
i) for which F = cone ({x′, x′′}) is a valid face of

C (Ai). The problem of deciding whether a pair of generators defines a two-dimensional
face is equivalent to deciding whether the supremum of two extreme rays is a two-
dimensional face. In geometric terms, this is the problem of whether two extreme rays are
adjacent. An adjacency test can be performed in two different ways which are specified
in Lemma 4.1. Those are known as a combinatorial (i) and an algebraic test (ii) (see
also [77, Proposition 7]).

Lemma 4.1 (Adjacency Test). For each pair of extreme rays r′, r′′ of the polyhedral
cone C, showing that F = r′ ∨ r′′ is a two-dimensional face of C is equivalent to showing
that

(i) there exists no other extreme ray r′′′ of C such that r′′′ ⊂ F or

(ii) rank [AF] = d − 2 with AF the maximal submatrix of A such that AFx
′ = 0 and

AFx
′′ = 0 for all x′ ∈ r′ and x′′ ∈ r′′.

Proof. The face F is guaranteed to be a polyhedral cone itself. Therefore,

61

4 The Double Description Method: Definition and Implementation

(i) if there is no other ray r′′′ ⊂ F , then F = cone (r′ ∪ r′′) and hence dim (F) = 2,
and

(ii) dim (F) = d− rank [AF] = 2 which is a direct implication of (2.9).

□

Complexity. With regard to the combinatorial test, the existence (resp. nonexistence)
of r′′′ can be trivially proven in linear time. By using multidimensional search trees [23],
the combinatorial test can be reduced to a partial match query [127] which is a problem
solvable in O(|Ri|α) with α < 1 [73]. A general analysis on the lower bounds of this
problem, referred to as a no partial match query, was done by Borodin et al. [31].
Terzer and Stelling [143, 144] incorporated this approach into the dd method achieving
a substantial speed-up for some problems.

With regard to the algebraic test, the rank of AF can be easily calculated by trans-
forming AF into an Hermite normal form. A natural candidate for performing that
transformation is the Gauss elimination algorithm. An alternative solution is given by
the LSP matrix decomposition algorithm of Ibarra et al. [90] which has a running time in
O(nω−1d) withO(nω) the complexity of the matrix multiplication used. For the moment,
the lowest multiplication exponent ω = 2.3727 has been given by Williams [153].

An alternative to the standard adjacency test is given by a recent contribution of
Burton [43]. The author demonstrated an adjacency test in O (d) with preprocessing

which requires O

d |Ri|2 + d2 |Ri|


time. However, the test is incomplete when applied

on degenerate problems.

Combinatorial vs Algebraic Test. The algebraic test has two major advantages when
compared to the combinatorial one. First, it does not depend on the overall number of
extreme rays in Ri and second, the tests can be easily distributed on different machines.
These two advantages, however, do not necessarily make the algebraic test first choice
when it comes to practical implementations. Current processors do not offer enough
precision to natively cover the demands of large rank computations. The Gauss elim-
ination, for example, is an algorithm bounded by a polynomial number of arithmetic
operations. Due to the intermediate coefficient explosion, however, it was shown by
Fang and Havas [69] to have an exponential complexity when counting the bit opera-
tions. This coefficient explosion problem has been extensively studied over the years
with several polynomial time solutions being developed [74, 97, 139, 122]. Nevertheless,
the algebraic test still suffers from increased computational time and memory demands.

Another problem related to the algebraic test is the high computational redundancy
which emerges from the independent conduction of each adjacency test. Consider, for
instance, two matrices A′ and A′′ for which the majority of rows are identical. rank[A′]
and rank[A′′] can be calculated far more efficiently together rather than independently.
In this respect, Terzer and Stelling [144] introduced a technique called lazy rank updating
in which matrix triangulations use previous results and do not have to start every time

62

4.3 Implementation Details

from scratch. Still, for the majority of problems, the combinatorial test remained the
more efficient one.

4.3 Implementation Details

In practical applications, the dd method often spends most of the computational time
in performing adjacency tests. The efficiency of the test implementation is thus critical
for the performance of the whole application. For one thing, this involves a computer-
friendly representation of extreme rays (see Section 4.3.1). Furthermore, several heuris-
tics related to both the general structure of the test process (see Section 4.3.2) and
the applied data structures (see Section 4.3.3) are capable of delivering a significant
performance gain.

4.3.1 Extreme Ray Representation

Active Sets. Consider the iteration step of the dd method with Ri the extreme rays
of the intermediate cone C (Ai). According to the face representation given in (2.11)
on page 25, each proper face of C (Ai) emerges as an intersection of a certain number
of facets. Thus, an extreme ray r, which is a minimal face, can be represented by the
facets which it lies on. The set of those defining facets is mostly referred to as an active
set (see [77]). It can be obtained by means of an injective mapping

z : Ri → ℘ (N)

from extreme rays to a set of natural numbers indexing the rows of Ai which each r ∈ Ri
satisfies with equality; that is,

l ∈ z (r)⇔ ∀x ∈ r (alx = 0) .

With regard to the combinatorial test, active sets can be used to prove adjacency
(resp. non-adjacency) for two extreme rays by applying the following rule:

r′′′ ⊂ r′ ∨ r′′ ⇔ z

r′

∩ z

r′′

⊂ z


r′′′


for r′, r′′, r′′′ ∈ Ri . (4.2)

In other words, the supremum of two extreme rays can be obtained by intersecting their
active sets and most important, the combinatorial test can be performed by merely using
set operations.

Binary Vectors. Each active set z (r) has an equivalent representation as a binary
vector ω ∈ {0, 1}m with m = d+ i the number of rows in Ai. The l-th bit of ω is set if
and only if l ∈ z (r). Consequently, we can define a direct mapping

b : Ri → {0, 1}m (4.3)

from extreme rays to binary vectors and hence obtain a native computer representa-
tion for each r ∈ Ri. This simple mapping enables the application of processor in-
structions directly on extreme rays. Consider the logical operations ∧ (conjunction), ∨

63

4 The Double Description Method: Definition and Implementation

(disjunction), ⊕ (exclusive disjunction) and complement. Those can be easily defined
on binary vectors as done by Posthoff and Steinbach [123]. For ω, ω′ ∈ {0, 1}m with
ω = (ω1, . . . , ωm) and ω

′ = (ω′
1, . . . , ω

′
m),

ω ∧ ω′ = (ω1 ∧ ω′
1, . . . , ωm ∧ ω′

m), (4.4)

ω ∨ ω′ = (ω1 ∨ ω′
1, . . . , ωm ∨ ω′

m), (4.5)

ω ⊕ ω′ = (ω1 ⊕ ω′
1, . . . , ωm ⊕ ω′

m) and (4.6)

ω̄ = (ω̄1, . . . , ω̄m) . (4.7)

An analogous definition for the relations ≤ and < states that

ω ≤ ω′ ⇔ ω1 ≤ ω′
1, . . . , ωm ≤ ω′

m and (4.8)

ω < ω′ ⇔ ω ≤ ω′ and ω ̸= ω′ . (4.9)

The number of facets on which an extreme ray lies is defined by the population of the
binary vector

∥ω∥ : {0, 1}m → N0 , (4.10)

that is the number of its 1 values. The test whether an extreme ray belongs to a certain
facet is performed by the function

value : {0, 1}m × N≤m → {0, 1} (4.11)

which returns the vector’s value at a given position. It is easy to see that for r′, r′′ ∈ Ri,

z

r′

∩ z

r′′

⇔ b


r′

∧ b

r′′

,

z

r′

∪ z

r′′

⇔ b


r′

∨ b

r′′

,

z

r′

− z


r′′

⇔ b


r′

⊕ b̄


r′′

,

z

r′

⊂ z


r′′

⇔ b


r′

< b


r′′

,

z

r′

⊆ z


r′′

⇔ b


r′

≤ b


r′′

and

|z (r)| = ∥b (r)∥ .

Consequently, on binary level, the combinatorial test from (4.2) transforms to

b

r′

∧ b

r′′

< b


r′′′

⇔ r′′′ ⊂ r′ ∨ r′′ . (4.12)

Assuming that m is a constant, each operation on binary vectors can be mapped to a
constant number of processor instructions and hence executed in constant time. It is
worth mentioning that the population of binary vectors can be calculated by using the
instruction POP CNT [126]. This optimal realization shows the general superiority of the
combinatorial test over the algebraic one.

64

4.3 Implementation Details

4.3.2 Narrowing and Verification

Let R+
i , R

−
i and R0

i be the extreme ray sets corresponding to X+
i , X

−
i and X0

i with
respect to the iteration step of the dd method (see Section 4.1). Then, a simple imple-
mentation of the combinatorial test can be achieved as follows.

(i) Iterate over the set R+
i ×R

−
i .

(ii) For each (r′, r′′) ∈

R+
i ×R

−
i


, search for r′′′ ∈ Ri satisfying (4.12). If there is no

match, then r′ and r′′ are adjacent.

This procedure can be further optimized by taking into account the following implications
from Lemma 4.1.

Corollary 4.2. The extreme rays r′ and r′′ are nonadjacent ifb r′ ∧ b r′′ < d− 2 .

Proof. From ∥b (r′) ∧ b (r′′)∥ < d− 2, it follows that the face F = r′ ∨ r′′ lies on utmost
d− 3 facets and thus has a dimension no less than three. □

Corollary 4.3. If ∥b (r′)∥ = ∥b (r′) ∧ b (r′′)∥+ 1, then r′ and r′′ are adjacent.

Proof. This implication is easily shown by applying the algebraic test on r′ and r′′. Let
B′ = z (r′). Then, rank [AB′] = d − 1. The matrix AF needed for the algebraic test
is obtained out of AB′ by removing the row which r′′ does not satisfy with equality.
Consequently, it is evident that rank [AF] = d− 2. □

Corollary 4.4. If ∥b (r′) ∧ b (r′′)∥ ≥ ∥b (r′′′)∥ − 1, then r′ ∨ r′′ ̸⊂ r′′′.

Proof. Assume that bothb r′ ∧ b r′′ ≥ b r′′′− 1 and r′ ∨ r′′ ⊂ r′′′

hold. Thus, r′ and r′′ are nonadjacent and according to the algebraic test,

rank [AF] < d− 2 .

Furthermore, the matrix AB′′′ with B′′′ = z (r′′′) has exactly one row which does not
come up in AF ; hence,

rank [AB′′′] ≤ rank [AF] + 1

which contradicts with rank [AB′′′] = d− 1 as rank [AF] < d− 2. □

Following the work of Terzer [141], the enumeration of adjacent extreme rays can
be divided into a narrowing and a verification phase. In the narrowing phase, Corol-
lary 4.2 is applied in order to exclude from further processing those pairs (r′, r′′) for
which nonadjacency can be shown right away; that is, for those pairs the existence of
r′′′ according to (4.12) is implicitly proven. The remaining pairs, called adjacency candi-
dates, are checked once again in the verification phase. Those which satisfy Corollary 4.3

65

4 The Double Description Method: Definition and Implementation

are marked as adjacent. The status of all the others is subject to the combinatorial test;
that is, the existence (resp. nonexistence) of r′′′ has to be proven explicitly. As a result
of Corollary 4.4, the search region for r′′′ can be narrowed to some extent. If r′ and
r′′ are shown to be nonadjacent by finding a matching r′′′, then r′′′ is guaranteed to be
degenerate. The search region for r′′′ is thus reduced to the set

Rdegi =

r ∈


R+
i ∪R

−
i ∪R

0
i


: ∥b (r)∥ ≥ d


containing only degenerate extreme rays.
In Procedure 1, an implementation covering the enumeration of adjacent extreme rays

is given. In that regard, K (R) denotes a container which holds the extreme rays fromR.
We can think of K (R) as a data structure which encapsulates the elements of R without
revealing the exact internal organization. In order to be applicable within Procedure 1,
a container has to meet the following requirements. First, there has to be a function

create : R → K (R) (4.13)

responsible for its initialization. Second, it has to answer two types of queries, a nar-
rowing query

narrow

r′,K (R)


:=


r′, r′′

  r′′ ∈ R,
∥b (r′) ∧ b (r′′)∥ ≥ d− 2


, (4.14)

and a verification query

verify

r′, r′′,K (R)


:=


false, if ∃r′′′ ∈ R− {r′, r′′}

b (r′) ∧ b (r′′) < b (r′′′)

true, otherwise .

(4.15)

It is evident that the efficiency of Procedure 1 depends highly on the performance of the
two given queries; hence, a container with favorable data organization is important for
obtaining a fast implementation.

4.3.3 Bit Pattern Trees

A container satisfying the requirements of Procedure 1 is easily implemented by using
an array to store all elements in a sequential order. Let A (R) denote such a container.
At first, the running time of A (R) may be considered unsatisfactory or even poor. In
terms of practical efficacy, however, this container is indeed a feasible alternative and not
necessarily a bad choice. When implemented properly, it utilizes both maximal cache
efficiency and minimal amount of conditional branches, and thus enables the processor
to prefetch data blocks and instructions well ahead of time. A container featuring a
better running time in theory is not guaranteed to outperform A (R) in practice. On
the contrary, the more complicated the implementation gets, the more difficult it is to
transform a theoretical superiority into practical results.

66

4.3 Implementation Details

Procedure 1 enumerate: adjacent extreme ray enumeration

Input:


aj , the matrix row to be processed
R+
i , extreme rays lying within the halfspace {x | ajx > 0}
R0
i , extreme rays lying on the hyperplane {x | ajx = 0}
R−
i , extreme rays lying within the halfspace {x | ajx < 0}

Output: Ei ⊆

R+
i ×R

−
i


containing all adjacent extreme rays

1: Ei ← ∅; E◦
i ← ∅

2: {≫ Narrowing Phase ≪}
3: K


R−
i


← create


R−
i


4: for all r′ ∈ R+

i do
5: E◦

i ← E◦
i ∪ narrow


r′,K


R−
i


6: end for
7: {≫ Verification Phase ≪}
8: Rdegi ←


r ∈ R+

i ∪R0
i ∪R

−
i : ∥b (r)∥ ≥ d


9: K


Rdegi


← create


Rdegi


10: for all (r′, r′′) ∈ E◦

i do
11: if min {∥b (r′)∥ , ∥b (r′′)∥} = ∥b (r′) ∧ b (r′′)∥ − 1 then
12: adj ← true
13: else
14: adj ← verify


r′, r′′,K


Rdegi


15: end if
16: if adj = true then
17: Ei ← Ei ∪ {(r′, r′′)}
18: end if
19: end for
20: return Ei

Obtaining a container which operates faster than A (R) in the general case is a subject
which was recently brought up by Terzer and Stelling [143, 144, 141]. The authors
introduced a branch-and-bound solution involving bit pattern trees, a variation of the
well known k-d trees [23] adapted for the dd method. Generally, those are binary trees
designed to store binary vectors partitioned into finitely many disjoint subsets which
are attached to the leaf nodes. Each subset groups together vectors with equal values
at predefined positions. Each tree node p is labeled with an union map uR which is
an over-approximation vector obtained by building the disjunction of all binary vectors
which are reachable from p (see Figure 4.2).

We can think of the binary vectors within a bit pattern tree as extreme rays which
are obtainable by reversing the mapping given in (4.3). Let for some tree node p, R′ be
the set of extreme rays distributed over all leaf nodes reachable from p. Then, the union
map at p

uR′ = (u1, . . . , ud+i)

67

4 The Double Description Method: Definition and Implementation

uR = 11111 . . . 11111

uR′∪R′′ = 10111 . . . 1111

uR′ = 10001 . . . 1111

R′ =

 10001 . . . 0111
10001 . . . 1111
. . .

uR′′ = 1011 . . . 1111

R′′ =


1010 . . . 1111
1011 . . . 0111
1011 . . . 1111
. . .

uR′′′∪R′′′′ = 1111 . . . 1111

uR′′′ = 1101 . . . 1111

R′′′ =


1101 . . . 0111
1101 . . . 1111
1100 . . . 0111
1100 . . . 1111
. . .

uR′′′′ = 1111 . . . 01111

R′′′′ =


1110 . . . 01111
1111 . . . 00111
1111 . . . 01111
. . .

Figure 4.2: Structure of bit pattern trees

is a binary vector indicating those rows of Ai which are satisfied with a strict inequality
by all rays in R′. They are indexed with zero in uR′ in the sense that

ul = 0⇔ ∄r ∈ R′ (alx = 0) for all x ∈ r .

Note that for each row indexed with one in uR′ , we can merely conclude the existence
of an extreme ray in R′ satisfying it with equality.

The idea of Terzer and Stelling is to apply bit pattern trees both in the narrowing and
the verification phase. First, Corollary 4.2 can be applied on block for multiple pairs
(r′, r′′) ∈ R+

i × R
−
i . Thereby, the union maps are used to determine whether certain

branches can be eliminated. For any r′ ∈ R+
i and R−

⊆ ⊆ R−
i , it is evident that

b

r′

∧ uR−

⊆
< d− 2⇒ b


r′

∧ b

r′′

< d− 2 for all r′′ ∈ R−

⊆ .

Hence, each branch within the tree can be excluded from the search region if the union
map at the corresponding node suggests so.
In the verification phase, a query is performed for all adjacency candidates

r′, r′′


with e = b

r′

∧ b

r′′

.

For all Rdeg⊆ ⊆ Rdegi , branch elimination rests on the fact that

e ̸< uRdeg
⊆
⇒ e ̸< b (r) for all r ∈ Rdeg⊆ .

68

5 Combinatorial Test: Comparison of Data
Structures

Over the years, multiple tree-based data structures were developed in conjunction with
metric space search techniques. Their integration in the adjacency testing process
promises a considerable performance gain in practical computations (see Section 5.1).
The bit pattern trees of Terzer and Stelling were so far the only representative of that
idea. While being already an effective solution, their performance can be further im-
proved by means of several heuristics (see Section 5.2). Yet, there are particular scenarios
which bit pattern trees cannot handle well. As a consequence, three alternative data
structures were developed: extended bit pattern trees (see Section 5.3), population trees
(see Section 5.4) and vantage point trees (see Section 5.5). In practice, however, they
turned out to be weaker competitors for general problems (see Section 5.6).

5.1 Generic Binary Tree Container

The efficiency of both narrowing and verification queries is the most performance critical
issue concerning adjacency tests (see Section 5.1.1). In that regard, binary search trees
are a natural candidate to employ a branch-and-bound technique and thus obtain an
expected running time for both queries which is close to logarithmic. The broad variety
of partitioning criteria can be handled by a generic framework which both keeps the
complexity of the resulting implementation low and ensures its modular expandability
(see Section 5.1.2).

5.1.1 Requirements and Complexity

Consider the array based container A (R) with |R | = k. In terms of complexity, the nar-
rowing query requires exactly k operations on each run. The verification query requires
maximal k operations if the return value is false and exactly k if it is true.

Narrowing. In the general case, we can expect that Corollary 4.2 delivers a conclusive
result for the majority of elements in R; that is,

k ≫ |narrow (r,A (R)) | .

A natural optimization of the narrowing query is thus given by applying a branch-and-
bound technique on R. The set R is partitioned by grouping together similar elements

69

5 Combinatorial Test: Comparison of Data Structures

and labeling each partition with the criterion unifying the included elements. Conse-
quently, the narrowing query iterates over all generated partitions, but instead of inspect-
ing the elements separately, it first consults the partition label whether Corollary 4.2 is
applicable on block for all included elements. If so, the whole partition can be skipped
right away. Basically, this is the same idea which was already implemented by Terzer
and Stelling in the context of the bit pattern trees (see Section 4.3.3). Here, however, the
problem is viewed from a more abstract perspective. The goal is to define a framework
which allows branch-and-bound to be performed upon multiple criteria; that is, to be
able to define and employ different partitioning techniques without reimplementing the
whole enumeration process of adjacent extreme rays.

The application of the described branch-and-bound technique targets the execution of
narrowing queries in expected logarithmic time. It is important to note, however, that
the general problem complexity is linear. Consider, for example, a simplex polytope of
any dimension. As each two vertices are adjacent, running a narrowing query for any
arbitrary vertex will return all other vertices. This simple example outlines one major
theoretical drawback of the branch-and-bound approach; namely, the complexity related
to the narrowing query may grow up to O (k × log (k)) in the worst case. This unpleas-
ant scenario occurs when no partitions can be eliminated during the search process and
hence the query evaluates not only all stored extreme rays but also all partition labels.
In other words, in order to achieve a speed-up, we actually risk to concede a slowdown.
It should be noted that the narrowing query is equivalent to a fixed-radius near neigh-

bor search [24] if all extreme rays have the same degeneracy degree; that is, if all binary
vectors have the same population. This additional constraint allows embedding all bi-
nary vectors into a metric space as there is a distance (aka Hamming distance) between
each two binary vectors which is defined by the ⊕-operator as specified in (4.6). Con-
sequently, the distance can be used as a partitioning criterion. The condition from
Corollary 4.2 translates to a distance related problem asb r′ ∧ b r′′ ≥ d− 2⇔

b r′+ b r′′− b r′⊕ b r′′ ≥ 2 (d− 2)

where ∥b (r′)∥ and ∥b (r′′)∥ are constant values. Depending on the density of the ele-
ments, a fixed-radius near neighbor search can be performed in time O (log (k)) [25].

Verification. As already discussed in Section 4.2, the verification query is a simplified
form of a partial match query. Assuming that all potential matches are only a tiny
fraction of all elements pending for investigation, the search process can be sped up by
applying a similar branch-and-bound technique as defined for the narrowing query. By
partitioning R, the verification query can be designed to skip entire partitions which are
guaranteed to contain no extreme ray r′′′ satisfying (4.12). Again, we aim for logarithmic
running time in the average case.

5.1.2 Implementation

Following the considerations outlined in the previous section, a generic binary tree con-
tainer was developed to store an arbitrary extreme ray set R. It is called generic in

70

5.1 Generic Binary Tree Container

the sense that it allows the definition of different partitioning strategies by providing
abstract functions. Depending on their particular definition, R can be structured in a
different way allowing the application of different criteria for reducing the search region.

Definition. The backbone of the generic container is a standard binary tree featuring
two major enhancements. First, the set R is partitioned into finitely many subsets
which are then assigned to the tree nodes. Assigning a subset to each node is not
mandatory. Second, each node has a label encapsulating certain properties of all extreme
rays attached to it or to any subsequent node further down the tree. As a consequence,
the label of each node is at most as strict as the labels of its successors. The basic
structure of the generic binary tree container is shown in Figure 5.1 where s1, . . . , s5
denote labels and R′ and R′′ subsets of R.

s1

s2

...

s4

R′

s5

R′′

...

s3

...
...

Figure 5.1: Generic binary tree container

Formally, the generic binary tree container is defined as a tuple

T (R,ΣR) = (V, l, c, E) where

V is the set of tree nodes,

ΣR is a set of valid node labels,

l : V → ΣR is a node labeling function,

c : V ↛ ℘ (R) is a partial mapping assigning subsets of R to the tree nodes, and

E ⊂ V × V is the set of all edges.

The initialization of T (R,ΣR) for some set of extreme rays R is given in Procedure 2.
Starting with a root node vroot and a label sroot, the procedure creates two subnodes and
makes a recursive call on each of them until some final condition is reached. This can
be, for example, a minimal subset size or a maximal tree depth. Procedure 2 assumes
the existence of a function

partition : ℘ (R)→ ℘ (R)3 × Σ2
R

71

5 Combinatorial Test: Comparison of Data Structures

which splits a subset of R into three parts, one to be assigned to the node v, and one
to proceed the partitioning on each branch with. Furthermore, partition defines the
labels for both successors of v. Consequently, obtaining a specialization of the generic
binary tree container requires the specification of ΣR and the definition of partition.

Procedure 2 create: initialization of a generic binary tree container

Input:


R, extreme ray set
v, tree node
s, characteristic label for R

Output: T (R,ΣR), a binary tree container
if leaf condition (R, s) then

return (V := {v} , l := {(v, s)} , c := {(v,R)} , E := ∅)
else
Create a pair of tree nodes v′ and v′′

(R′,R′′,R′′′, s′, s′′)← partition (R)
(V ′, l′, c′, E′)← create (R′, v′, s′)
(V ′′, l′′, c′′, E′′)← create (R′′, v′′, s′′)
if R′′′ ̸= ∅ then
c′′′ ← {(v,R′′′)}

else
c′′′ ← ∅

end if
V ← V ′ ∪ V ′′ ∪ {v}
l← l′ ∪ l′′ ∪ {(v, s)}
c← c′ ∪ c′′ ∪ c′′′
E ← E′ ∪ E′′ ∪ {(v, v′)} ∪ {(v, v′′)}
return (V, l, c, E)

end if

Narrowing. The realization of the narrowing query is based on a depth-first search
featuring conditional branch elimination (see Procedure 3). Processing a tree node v
begins with the examination of its label l(v). The extreme rays which l(v) applies to are
defined by means of a mapping

reach : V → ℘ (R)

from tree nodes to subsets ofR. Should l(v) reveal that nonadjacency is guaranteed for r′

and any r′′ ∈ reach (v), then further searching within the current branch is unnecessary
and hence omitted. In the opposite case, the query examines the assigned extreme ray
subset c(v) and collects all adjacency candidates. Unless v is a leaf node, it proceeds by
visiting each direct successor of v. The evaluation of the node label is performed by a
forecast function

feasible : R× ΣR → B

72

5.2 Bit Pattern Tree Container

which is abstract with regard to the generic binary tree container. It returns false
when a branch is guaranteed to contain no matches, and true otherwise. Obtaining a
container specialization requires its concrete definition.

Procedure 3 narrow: narrowing query on a generic binary tree container

Input:


r′, extreme ray
T (R,ΣR) = (V, l, c, E), binary tree container
v ∈ V , starting node

Output: C = {(r′, r′′) | r′′ ∈ reach (v) , ∥b (r′) ∧ b (r′′)∥ ≥ d− 2}
C ← ∅
if feasible (r′, l(v)) then

if c(v) is defined then
C ← {(r′, r′′) | r′′ ∈ c(v) and ∥b (r′) ∧ b (r′′)∥ ≥ d− 2}

end if
for all v′ ∈ V : (v, v′) ∈ E do
C ← C ∪ narrow (r′, T (R,ΣR) , v′)

end for
end if
return C

Verification. The verification query (see Procedure 4) is structured in a similar manner
as the narrowing one. Again, a depth-first search is performed by examining the assigned
subset c(v) on each node v and delegating the query onto the successor nodes unless a
match has been encountered. The procedure is additionally sped up by omitting certain
branches which are guaranteed to produce no match. This is accomplished by applying
a forecast function

feasible : R×R× ΣR → B

which evaluates the node label l(v) and predicts the outcome of the query for the node
v and its successors. Again, false claims the nonexistence of a match within the current
branch and true suggests the opposite. As in the narrowing query, the forecast function
needs to be defined in order to obtain a container specialization.

5.2 Bit Pattern Tree Container

The bit pattern trees of Terzer and Stelling are easily applicable in the context of the
generic binary tree container (see Section 5.2.1). A deeper analysis of their performance
revealed several structural weaknesses (see Section 5.2.2) which were addressed with
three major optimizations:

query bits neutralization (see Section 5.2.3),

cross-narrowing (see Section 5.2.4) and

73

5 Combinatorial Test: Comparison of Data Structures

Procedure 4 verify: verification query on a generic binary tree container

Input:


(r′, r′′), adjacency candidate
T (R,ΣR) = (V, l, c, E), binary tree container
v ∈ V , starting node

Output:


false, if ∃r′′′ ∈ reach (v)− {r′, r′′} (b (r′) ∧ b (r′′) < b (r′′′))
true, otherwise

if feasible (r′, r′′, l(v)) then
if c(v) is defined then
if ∃r′′′ ∈ c(v)− {r′, r′′} (b (r′) ∧ b (r′′) < b (r′′′)) then

return false
end if

end if
for all v′ ∈ V : (v, v′) ∈ E do
if not verify (r′, r′′, T (R,ΣR) , v′) then
return false

end if
end for

end if
return true

highly degenerate first verification (see Section 5.2.5).

Finally, the process of adjacent rays enumeration was enhanced by the new optimizations
(see Section 5.2.6).

5.2.1 Implementation

A bit pattern tree (bp-tree) container

Tbpt (R) = T (R,ΣR := {0, 1}m)

is a specialization of the generic binary tree container with each node label being a single
binary vector. The length of the binary vectors m corresponds to the overall number
of facets. The partitioning process is covered in Procedure 5. It selects some arbitrary
bit position l ∈ [1,m] and splits the set R◦ ⊆ R into two disjoint subsets R′

◦ and R′′
◦

depending on the value at position l in each b (r) , r ∈ R◦. For each of the resulting
subsets, a union map is generated and then assigned as a label to the corresponding
node.

Let uR◦ = l(v) be the label at some tree node v. The forecast function related to the
narrowing query

feasible

r′, uR◦


:=


false, if ∥b (r′) ∧ uR◦∥ < d− 2
true, otherwise

74

5.2 Bit Pattern Tree Container

Procedure 5 partition: bp-tree container

Input: R◦, set of extreme rays
Select l ∈ [1,m] with ∃r′, r′′ ∈ R◦ (value (b (r

′) , l) ̸= value (b (r′′) , l))
R′

◦ ← {r ∈ R◦ : value (b (r) , l) = 0}
R′′

◦ ← R◦ −R′
◦

uR′
◦ ←


r′∈R′

◦

b (r′); uR′′
◦ ←


r′′∈R′′

◦

b (r′′)

return

R′

◦,R′′
◦, ∅, uR′

◦ , uR′′
◦


interprets uR◦ as an over-approximation vector for all extreme rays reachable from v.
If the narrowing condition does not hold for uR◦ , then it also does not hold for any of
those extreme rays.
The above concept remains valid for the verification query as well. Consequently, the

corresponding forecast function is defined as

feasible

r′, r′′, uR◦


:=


false, if b (r′) ∧ b (r′′) ̸< uR◦

true, otherwise .

5.2.2 Efficacy and Limitations

Narrowing. The bp-tree container does not automatically guarantee a speed-up in all
cases. One point on which the narrowing query’s efficacy depends is the population of
the union maps. The lower the population the more likely it is to eliminate a branch.
The query input r′ has also a significant impact on the performance. If b (r′) is sparsely
populated, the branch elimination rate is likely to increase. Those two conditions, how-
ever, may still not be sufficient to performing an efficient query. Consider the subset
R◦ ⊂ R and the expressionb r′+ ∥uR◦∥ −

b r′⊕ uR◦

 < 2 (d− 2) (5.1)

which is an alternative form of the narrowing conditionb r′ ∧ uR◦

 < d− 2

embodying the Hamming distance. The probability that (5.1) evaluates to true de-
creases when reducing the Hamming distance between b (r′) and uR◦ . The distance is
minimal if b (r′) < uR◦ with the expression from (5.1) being constantly false in that
case.
Consider now the partitioning function related to the bp-tree container (see Proce-

dure 5). If for each chosen l, the statistical probability of

value

b

r′

, l

= 0

turns out to be very high, then we may run into the pitfall of obtaining minimal or close
to minimal distances between b (r′) and the union maps within the tree. Consequently,
the choice of l may have a great impact on the overall query performance. In the next
section, a strategy for selecting favorable bit positions is discussed.

75

5 Combinatorial Test: Comparison of Data Structures

Verification. One important difference between narrowing and verification queries is
the behavior when a match is encountered; namely, the verification query terminates
immediately in that case. Therefore, when analyzing the requirements for an efficient
partitioning, two cases related to the query result should be differentiated.

On true, each element within the container is either explicitly or implicitly checked.
The partitioning requirements are thus very similar to those concerning the nar-
rowing query. Let (r′, r′′) be some arbitrary input. Selecting values for l which
are likely to induce

value (e, l) = 1 with e = b

r′

∧ b

r′′


are preferable in order to achieve a higher branch elimination.

On false, the efficacy considerations should be extended to cover one additional aspect.
There is at least one match within the container, thus finding it terminates the
query immediately. In view of Corollary 4.4, a match is more likely to be found
among highly degenerate extreme rays. Consequently, it is important to organize
the extreme rays in a way allowing most prosperous candidates to be checked first.
Branch elimination has a lower priority in that case.

5.2.3 Query Bits Neutralization

By making use of the fact that all potential query inputs are actually known before the
queries are executed, we can define a forecast function

τ : ℘ (R)× N≤m → [0, 1]

which returns the percentage of rays in some R◦ ⊆ R lying on the facet indexed by some
l ∈ N≤m. In the context of the binary vector representation

b (r) = (b1, . . . , bm) ,

the function τ (R◦, l) returns the probability of bl = 1 for an arbitrary r ∈ R◦. The
return value is a real number in the range between zero and one where a greater value
indicates greater probability.

Narrowing. Consider the example given in Figure 5.2a which illustrates the execution
of a narrowing query for each element in

R′ =

r′1, r

′
2, r

′
3


.

Let Tbpt (R′′) be the container on which those queries are executed and letb r′ ∧ b r′′ ≥ d− 2 with r′ ∈ R′, r′′ ∈ R′′ and d = 7

76

5.2 Bit Pattern Tree Container

be the narrowing condition. Assume also that Tbpt (R′′) is constructed by always picking
the first viable bit position at each partitioning step; that is, the minimal possible value
for l is selected on each invocation of Procedure 5. Consequently, for all r′ ∈ R′,

feasible

r′, uR′′

◦


= true and feasible


r′, uR′′

▷


= true .

Hence, Procedure 3 will force the search in both subsequent branches after evaluating
the node labels uR′′

◦ and uR′′
▷
. The outcome of the evaluation for uR′′

▷
, however, can be

changed by selecting different values for l during the partitioning process. It is easy to
see that

τ

R′, 2


= 0 while τ


R′, 3


= 1 ,

suggesting that each input has the value 0 at position 2 and 1 at position 3. Consequently,
it can be foreseen that defining l = 2 in Procedure 5 is a bad choice when aiming for
high branch elimination rate. In contrast, l = 3 is a much more promising candidate.
Figure 5.2b illustrates the reduction of the search region in the latter case.

b

r′1


=


1 0 1 0 1 1 0 1 0 1


b

r′2


=


1 0 1 1 0 1 1 0 0 1


b

r′3


=


1 0 1 1 1 1 0 0 1 0


. . .

uR′′
◦
=


0 1 1 1 1 1 1 1 1 1



uR′′
▷
=


0 0 1 1 1 1 1 1 1 1



...

L9
9

...

99K

L9
9

...

99K

L9
9

...

99K

(a) bad run

b

r′1


=


1 0 1 0 1 1 0 1 0 1


b

r′2


=


1 0 1 1 0 1 1 0 0 1


b

r′3


=


1 0 1 1 1 1 0 0 1 0


. . .

uR′′
◦
=


0 1 1 1 1 1 1 1 1 1



uR′′
▷
=


0 1 0 1 1 1 1 1 1 1



...
...

L9
9

...

99K

L9
9

...

99K

(b) good run

Figure 5.2: Query bits neutralization (narrowing query)

Considering merely the probability values emerging from the input elements in R′

does not always deliver the desired effect. Another factor to be taken into account is
the statistical data emerging from the container elements R′′. Let for some l, τ (R′, l)
return a value close to 1. The position l may still be a bad candidate if τ (R′′, l) is
another close to 1 value. In general, we may expect a satisfactory result by selecting l
such that

τ

R′, l


− τ


R′′, l


is maximal. This strategy is likely to create an unbalanced tree with long paths to the
leaves on the left side and short ones on the right. In view of the narrowing query, the
short paths are likely to be visited and the long ones to be skipped.

77

5 Combinatorial Test: Comparison of Data Structures

Verification. The considerations from the previous paragraph related to the choice of
l remain mostly valid when dealing with verification queries as well. Consider again
the bp-tree containers given in Figure 5.2, but this time from the perspective of three
verification queries executed with

b

r′

∧ b

r′′

∈



0 0 1 1 1 1 0 1 0 0


,

0 0 1 0 1 1 1 0 1 0

,

0 0 1 1 0 0 1 1 0 1



as input. With regard to the evaluation of uR′′
◦ and uR′′

▷
, the behavior of both containers

is identical to that observed in the narrowing query. The first container (see Figure 5.2a)
yields

feasible

r′, r′′, uR′′

▷


= true

for all inputs and thus forces the examination of the subsequent branches, while the
second one (see Figure 5.2b) reduces the search region as a result of

feasible

r′, r′′, uR′′

▷


= false .

When dealing with degenerate problems, the majority of narrowing queries would
produce several candidates for verification each. In the end, the number of executed
verification queries is likely to be much greater than the number of narrowing ones.
Consequently, performing a statistical evaluation on the verification input data may
easily generate a huge bottleneck and thus eliminate any potential performance gain.
As given in Procedure 1, the verification query input is an element of R+

i ×R
−
i coupled

with a container K

Rdegi


, which holds all degenerate rays from R+

i , R
−
i and R0

i .

Assuming that an independent statistical evaluation is available for each of those three
sets, the following facts are to be taken into consideration when defining a partitioning

strategy for Tbpt

Rdegi


.

(i) If for some position l, τ

R−
i , l

≪ 1 or τ


R+
i , l

≪ 1, then the probability of

value (e, l) = 1 for any

e = b

r′

∧ b

r′′


with

r′, r′′


∈ R+

i ×R
−
i

is minimal. Consequently, partitioning upon the position l is likely to cause a query
behavior close to that given in Figure 5.2a.

(ii) If τ

R−
i , l

≫ 0, τ


R+
i , l

≫ 0 and τ


R0
i , l

≫ 0, then the probability of

value (e, l) = 1

is considerably high, but so is also τ

Rdegi , l


. An example of how the resulting

tree may look like is given in Figure 5.3 where |R′| ≈ |R′′| ≈ |R′′′| ≪ |R′′′′|. In the
best case, a verification query would skip examining R′, R′′ and R′′′, but as those
contain only a small portion of all container elements, any potential speed-up can
be considered negligible.

78

5.2 Bit Pattern Tree Container

. . .

. . .

. . .

R′

L9
9

. . .

. . .

R′′

L9
9

. . .

. . .

R′′′

L9
9

. . .

R′′′′

99K

99K

99K

Figure 5.3: Example for an ineffective verification container

As a consequence of (i) and (ii), it is clear that only one potential scenario is likely to
deliver any performance speed-up, namely when

τ

R−
i , l

≫ 0, τ


R+
i , l

≫ 0 and τ


R0
i , l

≪ 1 .

In that case, extreme rays from R0
i which cannot produce a match would be effectively

eliminated from the search. Consequently, defining l such that

min

τ

R−
i , l

, τ

R+
i , l

× (τ


R0
i , l

− 1)

is maximal appears to be the most promising strategy in the context of the verification
query.

5.2.4 Cross-Narrowing

Generally, a union map uR′′
◦ assigned to some tree node v is likely to have a considerably

higher population than any b (r′′) with r′′ ∈ R′′
◦ an extreme ray reachable from v. This

fact emerges from the definition of uR′′
◦ as a disjunction of multiple binary vectors. An

unfavorable situation occurs when a narrowing query is invoked with a highly degenerate
extreme ray r′ as an input; that is, the binary vector b (r′) is highly populated as well.
Consider the example given in Figure 5.4a. It illustrates a bp-tree container together
with three narrowing query inputs r′1, r

′
2, r

′
3 ∈ R′

◦ ⊂ R6. The corresponding search
queries involve the enumeration of all extreme rays r′′ satisfyingb r′ ∧ b r′′ ≥ d− 2 with r′ ∈ R′

◦ and d = 6 .

Even though the above condition does not hold for any of the ray combinations, an
explicit examination of R′′

◦ is performed in all three query runs as

feasible

r′, uR′′

◦


= true for all r′ ∈ R′

◦ .

79

5 Combinatorial Test: Comparison of Data Structures

In other words, the label falsely claims the possibility of a match in R′′
◦.

b

r′1


=


1 0 1 1 1 1 1 0 0 1


b

r′2


=


1 0 1 1 1 1 0 1 0 1


b

r′3


=


1 0 1 1 1 0 1 1 0 1


. . .

. . .

...

L9
9

uR′′
◦
=


0 1 1 1 1 1 1 1 1 0



R′′
◦ =

 r′′1 , b

r′′1


=


0 1 1 0 0 1 1 0 1 0


r′′2 , b


r′′2


=


0 1 0 1 0 1 0 1 1 0


r′′3 , b


r′′3


=


0 1 0 0 1 0 1 1 1 0



99K

L9
9

.

..

99K

(a) bad run

b

r′′1


=


0 1 1 0 0 1 1 0 1 0


b

r′′2


=


0 1 0 1 0 1 0 1 1 0


b

r′′3


=


0 1 0 0 1 0 1 1 1 0


. . .

. . .

...

L9
9

uR′
◦
=


1 0 1 1 1 1 1 1 0 1



R′
◦ =

 r′1, b

r′1


=


1 0 1 1 1 1 1 0 0 1


r′2, b


r′2


=


1 0 1 1 1 1 0 1 0 1


r′3, b


r′3


=


1 0 1 1 1 0 1 1 0 1



99K

L9
9

.

..

99K

(b) good run

Figure 5.4: Cross-Narrowing on bit pattern tree containers

In order to reach an optimal behavior, the roles of R′
◦ and R′′

◦ have to be switched.
The search region can be effectively reduced by embedding R′

◦ in a tree and using R′′
◦

as a source for query inputs (see Figure 5.4b). Due tob r′′ ∧ uR′
◦

 < 4 with r′′ ∈ R′′
◦ ,

all three queries skip the explicit examination ofR′
◦. This difference of the query behavior

is easily explained when looking at the population of the individual extreme rays whereb r′1 =
b r′2 =

b r′3 = 7 and
b r′′1  =

b r′′2  =
b r′′3  = 5 .

The lower the population of two binary vectors, the lower the expected population of
their conjunction. If we assume that the union maps are highly populated anyway, the
only way of achieving a higher branch elimination rate is by constructing queries with
inputs inducing minimally populated binary vectors.

5.2.5 Highly Degenerate First Verification

The degeneracy degree poses an important criterion to find matches quickly within
verification queries. Performing a query for two extreme rays r′ and r′′ is pointless if the
search region contains solely rays r satisfying

∥b (r)∥ ≤
b r′ ∧ b r′′− 1 .

80

5.2 Bit Pattern Tree Container

The nonexistence of a match is provable right away in that case (see Corollary 4.4). Un-
fortunately, the bp-tree container does not consider the degeneracy degree when group-
ing together the individual rays. The only criterion involved in the partitioning process
is their position to a certain facet. Consequently, low degenerate rays may be stored
together with highly degenerate ones which causes unnecessary checks. Consider the
example given in Figure 5.5 featuring a bp-tree container Tbpt (R′). It illustrates two
verification queries defined by the input pairs (r1, r2) and (r3, r4).

b (r1) ∧ b (r2) =

0 0 1 1 1 1 0 1 0 1


b (r3) ∧ b (r4) =


0 0 1 0 0 1 1 1 0 0


. . .

. . .

...

L9
9

uR′
◦
=


1 0 1 1 1 1 1 1 1 1



R′
◦ =


r′1, b


r′1


=


1 0 0 1 1 1 1 1 1 1


r′2, b


r′2


=


1 0 1 1 1 0 1 1 1 1


r′3, b


r′3


=


1 0 1 0 0 1 0 1 1 1


r′4, b


r′4


=


1 0 1 1 0 1 1 0 0 1


. . .

99K

L9
9

...

99K

Figure 5.5: Verification queries on bit pattern tree containers

According to Corollary 4.4, the rays r′3, r
′
4 ∈ R′

◦ ⊂ R′ cannot produce a match for
(r1, r2), but are examined anyway as other elements in R′

◦ are indeed viable candidates.
In order to reduce those unnecessary checks, one can define a threshold tv ≥ d and split
the bp-tree container into two separate ones

Tbpt (R′
hd) with R′

hd = {r ∈ R′ | ∥b (r)∥ > tv } containing highly degenerate rays (see
Figure 5.6a), and

Tbpt (R′
ld) with R′

ld = {r ∈ R′ | d ≤ ∥b (r)∥ ≤ tv } containing low degenerate ones (see
Figure 5.6b).

As a consequence, examining Tbpt (R′
ld) is necessary only for the input pair (r3, r4).

In general, highly degenerate rays are more likely to produce a match than low de-
generate ones; hence, the higher the population of r′ ∈ R′, the greater the chance that

b (r3) ∧ b (r4) < b

r′

.

Therefore, performing the query first on Tbpt (R′
hd) seems to be a logical choice in view

of the probability to encounter a match. If nonadjacency is detected on that first run,
the examination of Tbpt (R′

ld) is skipped right away.

81

5 Combinatorial Test: Comparison of Data Structures

b (r1) ∧ b (r2) =

0 0 1 1 1 1 0 1 0 1


b (r3) ∧ b (r4) =


0 0 1 0 0 1 1 1 0 0


. . .

. . .

...

L9
9

uR′
◦
=


1 0 1 1 1 1 1 1 1 1



R′
◦ =

 r′1, b

r′1


=


1 0 0 1 1 1 1 1 1 1


r′2, b


r′2


=


1 0 1 1 1 0 1 1 1 1


. . .

99K

L9
9

...

99K

(a) Tbpt (R′
hd)

b (r3) ∧ b (r4) =

0 0 1 0 0 1 1 1 0 0


. . .

. . .

...

L9
9

uR′
▷
=


1 0 1 1 0 1 1 1 1 1



R′
▷ =

 r′3, b

r′3


=


1 0 1 0 0 1 0 1 1 1


r′4, b


r′4


=


1 0 1 1 0 1 1 0 0 1


. . .

99K

L9
9

...

99K

(b) Tbpt (R′
ld)

Figure 5.6: Highly degenerate first verification

5.2.6 The Adjacency Test Revisited

In Procedure 6, the enumeration of adjacent extreme rays is enhanced by cross-narrowing
and highly degenerate first verification. In contrast to the initial version in Procedure 1, a
threshold tn is introduced to differentiate between low degenerate and highly degenerate
extreme rays. Thereon, R+

i and R−
i are split into two subsets each, separating extreme

rays with low and high degeneracy degree. Consequently, the generation of all adjacency
candidates 

r∈R+
i

narrow

r, Tbpt


R−
i


can be redefined as

r∈R−
ld


narrow


r, Tbpt


R+
ld


∪ narrow


r, Tbpt


R+
hd


∪


r∈R+
ld

narrow

r, Tbpt


R−
hd


∪


r∈R+
hd

narrow

r, Tbpt


R−
hd


which maximizes the number of narrowing queries executed with low degenerate input.
A similar differentiation is applied when dealing with verification queries. Depending

on a degeneracy degree threshold tv, the set Rdegi is split into two subsets Rdegld and Rdeghd
holding low and highly degenerate extreme rays. The execution of

verify

r′, r′′, Tbpt


Rdegi


is thus equivalent to the conjunction of two separate queries

verify

r′, r′′, Tbpt


Rdeghd


and verify


r′, r′′, Tbpt


Rdegld


.

82

5.2 Bit Pattern Tree Container

It is worth mentioning that both optimizations can be disabled by setting the corre-
sponding thresholds tn and tv to zero. In that case, Procedure 6 effectively reduces to
Procedure 1.

Procedure 6 enumerate fast: optimized adjacent extreme ray enumeration

Input:


R+
i , extreme rays lying within the halfspace {x | ajx > 0}
R0
i , extreme rays lying on the hyperplane {x | ajx = 0}
R−
i , extreme rays lying within the halfspace {x | ajx < 0}

tn, narrowing threshold
tv, verification threshold

Output: Ei ⊆

R+
i ×R

−
i


containing all adjacent extreme rays

Ei ← ∅; E◦
i ← ∅

{≫ Narrowing Phase feat. Cross-Narrowing ≪}
R+
ld ←


r ∈ R+

i : ∥b (r)∥ ≤ tn

; R+

hd ← R
+
i −R

+
ld

Tbpt

R+
ld


← create


R+
ld


; Tbpt


R+
hd


← create


R+
hd


R−
ld ←


r ∈ R−

i : ∥b (r)∥ ≤ tn

; R−

hd ← R
−
i −R

−
ld

Tbpt

R−
hd


← create


R−
hd


for all r ∈ R−

ld do
E◦
i ← E◦

i ∪ narrow

r, Tbpt


R+
ld


∪ narrow


r, Tbpt


R+
hd


end for
for all r ∈ R+

i do
E◦
i ← E◦

i ∪ narrow

r, Tbpt


R−
hd


end for
{≫ Verification Phase feat. Highly Degenerate First ≪}
Rdegi ←


r ∈ R+

i ∪R0
i ∪R

−
i : ∥b (r)∥ ≥ d


Rdegld ←


r ∈ Rdegi : ∥b (r)∥ ≤ tv


; Rdeghd ← R

deg
i −Rdegld

Tbpt

Rdegld


← create


Rdegld


; Tbpt


Rdeghd


← create


Rdeghd


for all (r′, r′′) ∈ E◦

i do
if min {∥b (r′)∥ , ∥b (r′′)∥} = ∥b (r′) ∧ b (r′′)∥+ 1 then
adj ← true

else
adj ← verify


r′, r′′, Tbpt


Rdeghd


if adj = true and ∥b (r′) ∧ b (r′′)∥ < tv − 1 then

adj ← verify

r′, r′′, Tbpt


Rdegld


end if

end if
if adj = true then
Ei ← Ei ∪ {(r′, r′′)}

end if
end for
return Ei

83

5 Combinatorial Test: Comparison of Data Structures

5.3 Extended Bit Pattern Tree Container

Motivation. Despite the proposed optimizations, the bp-tree container still has several
weaknesses which arise in particular scenarios. Consider, for example, the narrowing
query illustrated in Figure 5.7a whereb r′ ∧ b r′′ ≥ d− 2 with d = 6

is the corresponding narrowing condition. An explicit examination of the set R′′
◦ is

performed although no extreme ray r′′ ∈ R′′
◦ satisfies the narrowing condition. The

reason for this unsatisfactory behavior roots in the abstract characterization of R′′
◦ which

uR′′
◦ delivers. The only information which can be extracted from uR′′

◦ is the existence
of one facet not containing any extreme rays from R′′

◦. With a minimal effort, however,
the node label can be extended with additional data which is sufficient to forecast the
nonexistence of an adjacency candidate in R′′

◦. This involves the definition of

a cut map cR′′
◦ =


r′′∈R′′

◦

b (r′′) obtained by building the conjunction of all corresponding

binary vectors and

a population coefficient pR′′
◦ = max {∥b (r′′)∥ | r′′ ∈ R′′

◦ } which is the maximal binary
vector population emerging from the extreme rays in R′′

◦.

Now, it is easy to verify thatb r′′− b r′′⊕ b̄ r′ < d− 2⇒
b r′ ∧ b r′′ < d− 2 for all r′′ ∈ R′′

◦

which can be further generalized to

pR′′
◦ −

cR′′
◦ ⊕ b̄


r′
 < d− 2⇒

b r′ ∧ b r′′ < d− 2 (5.2)

by substituting b (r′′) with cR′′
◦ and ∥b (r′′)∥ with pR′′

◦ . Consider now the container in
Figure 5.7b which embodies the proposed extensions. The inequation from (5.2) holds
and hence implies the nonexistence of an adjacency candidate (r′, r′′) with r′′ ∈ R′′

◦.

The proposed node label extension can be used in a similar manner to perform an
additional branch elimination within verification queries. Consider again the container
given in Figure 5.7a. Let

(r1, r2) with e = b (r1) ∧ b (r2) =

0 0 1 1 1 1 0 0 0 0


act as a verification query input. The container behavior is again unsatisfactory as R′′

◦ is
explicitly examined despite the obvious nonexistence of a match. However, by employing
a cut map and a population coefficient, the outcome of the search procedure on R′′

◦ can
be predicted. It is easy to show thatb r′′− b r′′⊕ ē < ∥e∥ ⇒ e ̸< b


r′′


for all r′′ ∈ R′′
◦ .

84

5.3 Extended Bit Pattern Tree Container

b (r′) =

0 0 1 1 1 1 0 0 0 1


. . .

. . .

...

L9
9

uR′′
◦
=


0 1 1 1 1 1 1 1 1 1



R′′
◦ =


r′′1 , b


r′′1


=


0 1 1 0 0 0 1 1 1 1


r′′2 , b


r′′2


=


0 1 0 1 0 0 1 1 1 1


r′′3 , b


r′′3


=


0 1 0 0 1 0 1 1 1 1


r′′4 , b


r′′4


=


0 1 0 0 0 1 1 1 1 1



99K

L9
9

...

99K

(a) bp-tree container

b (r′) =

0 0 1 1 1 1 0 0 0 1


. . .

. . .

...

L9
9

uR′′
◦

=

0 1 1 1 1 1 1 1 1 1


cR′′

◦
=


0 1 0 0 0 0 1 1 1 1


pR′′

◦
= 6

R′′
◦ =


r′′1 , b


r′′1


=


0 1 1 0 0 0 1 1 1 1


r′′2 , b


r′′2


=


0 1 0 1 0 0 1 1 1 1


r′′3 , b


r′′3


=


0 1 0 0 1 0 1 1 1 1


r′′4 , b


r′′4


=


0 1 0 0 0 1 1 1 1 1



99K

L9
9

...

99K

(b) ebp-tree container

Figure 5.7: Regular vs. extended bit pattern tree containers (narrowing query)

Again, substituting b (r′′) with cR′′
◦ and ∥b (r′′)∥ with pR′′

◦ maximizes the left side of the
inequation, thus

pR′′
◦ −

cR′′
◦ ⊕ ē

 < ∥e∥ ⇒ e ̸< b

r′′


for all r′′ ∈ R′′
◦ (5.3)

remains valid. Consequently, by running the query on the extended container from
Figure 5.7b, the nonexistence of a ray r′′ ∈ R′′

◦ satisfying the verification condition is
predicted and the corresponding branch eliminated.

Implementation. The considerations from the previous paragraph can be formalized
into an extended bit pattern tree (ebp-tree) container

Tebpt (R) = T (R,ΣR := ({0, 1}m × {0, 1}m × N)) .

It is an enhancement of the regular bp-tree container in the sense that additional data
is being assigned to each node label. Accordingly, its partitioning function (see Proce-
dure 7) is an enhanced form of Procedure 5. The same applies to the narrowing forecast
function

feasible

r′, (uR◦ , cR◦ , pR◦)


:=


false, if ∥b (r′) ∧ uR◦∥ < d− 2 orcR◦ ⊕ b̄ (r′)

+ d− 2 > pR◦

true, otherwise

which incorporates the implication given in (5.2). Correspondingly, the verification
forecast function is extended by the implication given in (5.3); hence,

feasible

r′, r′′, (uR◦ , cR◦ , pR◦)


:=


false, if e ̸< uR◦ or

∥cR◦ ⊕ ē∥+ ∥e∥ > pR◦

true, otherwise

85

5 Combinatorial Test: Comparison of Data Structures

with e denoting b (r′) ∧ b (r′′).

Procedure 7 partition: ebp-tree container

Input: R◦, set of extreme rays
Select l ∈ [1,m] with ∃r′, r′′ ∈ R◦ (value (b (r

′) , l) ̸= value (b (r′′) , l))
R′

◦ ← {r ∈ R◦ : value (b (r) , l) = 0}
R′′

◦ ← R◦ −R′
◦

uR′
◦ ←


r′∈R′

◦

b (r′); cR′
◦ ←


r′∈R′

◦

b (r′); pR′
◦ = max {∥b (r′)∥ | r′ ∈ R′

◦}

uR′′
◦ ←


r′′∈R′′

◦

b (r′′); cR′′
◦ ←


r′′∈R′′

◦

b (r′′); pR′′
◦ = max {∥b (r′′)∥ | r′′ ∈ R′′

◦ }

return

R′

◦,R′′
◦, ∅,


uR′

◦ , cR′
◦ , pR′

◦


,

uR′′

◦ , cR′′
◦ , pR′′

◦



5.4 Population Tree Container

Motivation. Unfortunately, the enhancements presented in the previous section are not
always sufficient to close the weaknesses of the bp-tree container. Consider, for example,
the container Tbpt (R′′) given in Figure 5.8a where r′ is a narrowing query input. The
query involves the enumeration of all rays r′′ ∈ R′′

◦ ⊂ R′′ which satisfyb r′ ∧ b r′′ ≥ d− 2 with d = 6 .

It is evident that no extreme ray in R′′
◦ satisfies the above condition; hence, the desired

action would be to simply eliminate the whole branch from the search region. Yet, the
union map uR′′

◦ suggests the potential presence of a viable candidate in R′′
◦ and thus

forces its explicit examination.
The query performance hardly improves when an ebp-tree container is employed.

Attaching a cut map
cR′′

◦ =

0 1 0 0 0 0 0 0 0 0 0 0


to the terminal node does not introduce a sufficiently strong characterization of R′′

◦ and
thus does not change the outcome of the forecast. Bit patterns do not seem to be suitable
for that particular scenario. A closer look at the binary vectors emerging fromR′′

◦ reveals
that those are equally populated, but have only two positions with matching values. This
constellation obstructs the extraction of a bit pattern which is strong enough to deliver
meaningful information about the extreme rays in R′′

◦. It is evident, however, that those
vectors are similar in a way; hence, another criterion to extract that similarity should
be found.
Consider the following two observations. First, reducing each binary vector b (r′′),

r′′ ∈ R′′
◦ to a four-dimensional subvector containing only positions 3, 4, 5 and 6 implies

an equal population of 1. Second, applying the same reduction to positions 7, 8, 9 and
10 implies an equal again population of 3. Those observations lead to the definition of
two fragmentation masks

f1 =

1 0 1 1 1 1 0 0 0 0


and f2 =


0 1 0 0 0 0 1 1 1 1



86

5.4 Population Tree Container

b (r′) =

0 0 1 1 1 1 0 0 0 1


. . .

. . .

...

L9
9

uR′′
◦
=


0 1 1 1 1 1 1 1 1 1



R′′
◦ =


r′′1 , b


r′′1


=


0 1 1 0 0 0 1 1 1 0


r′′2 , b


r′′2


=


0 1 0 1 0 0 1 1 0 1


r′′3 , b


r′′3


=


0 1 0 0 1 0 1 0 1 1


r′′4 , b


r′′4


=


0 1 0 0 0 1 0 1 1 1



99K

L9
9

...

99K

(a) bp-tree container

b (r′) =

0 0 1 1 1 1 0 0 0 1


ρ′ =


4 1


. . .

. . .

...

L9
9

ρR′′
◦
=


1 4



R′′
◦ =


r′′1 , b


r′′1


=


0 1 1 0 0 0 1 1 1 0


r′′2 , b


r′′2


=


0 1 0 1 0 0 1 1 0 1


r′′3 , b


r′′3


=


0 1 0 0 1 0 1 0 1 1


r′′4 , b


r′′4


=


0 1 0 0 0 1 0 1 1 1



99K

L9
9

...

99K

(b) pop-tree container

Figure 5.8: Bit pattern vs. population tree containers (narrowing query)

which indicate regions of the binary vectors featuring similar population. Thereon, the
union map uR′′

◦ is substituted by a vector

ρR′′
◦ =


ρ′′1 := max {∥f1 ∧ b (r′′)∥ | r′′ ∈ R′′

◦ }
ρ′′2 := max {∥f2 ∧ b (r′′)∥ | r′′ ∈ R′′

◦ }

T
(5.4)

storing the maximal population which emerges from the conjunction of the two masks
with each b (r′′) , r′′ ∈ R′′

◦. Such a vector

ρ′ =


ρ′1 := ∥f1 ∧ b (r′)∥
ρ′2 := ∥f2 ∧ b (r′)∥

T
(5.5)

is also generated for the query input r′ by applying both masks on b (r′). In Figure 5.8b,
the so modified container is illustrated. It is easy to verify that

min

ρ′1, ρ

′′
1


+min


ρ′2, ρ

′′
2


< d− 2 ,

which is sufficient to show the nonexistence of an extreme ray r′′ ∈ R′′
◦ satisfying the

narrowing condition.
Consider now the example given in Figure 5.9a, which illustrates a verification query on

a bp-tree container Tbpt (R). The input (r′, r′′) does not require the explicit examination
of R◦ ⊂ R as no match with respect to the verification condition exists. Again, with
the extracted union map uR◦ , this fact cannot be foreseen and thus the search region is
not being reduced. However, with the technique presented in the previous example, the
problematic tree branch can be effectively eliminated. Using again the fragment masks
f1 and f2, two vectors

ρR◦ =

ρ1 ρ2


and ρe =


ρ′1 ρ

′
2



87

5 Combinatorial Test: Comparison of Data Structures

are extracted. Their specification is identical with the one given in (5.4) and (5.5). For
the latter, the vector

e = b

r′

∧ b

r′′


is used instead of b (r′). The nonexistence of a match becomes now obvious as

ρ2 < ρ′2 ⇒ ∥b (r) ∧ f2∥ < ∥e ∧ f2∥ for all r ∈ R◦

⇒ e ̸< b (r) for all r ∈ R◦ .

b (r′) ∧ b (r′′) =

0 0 0 0 0 0 1 1 1 1


. . .

. . .

...

L9
9

uR◦ =

0 1 1 1 1 1 1 1 1 1



R◦ =


r1, b (r1) =


0 1 1 1 1 0 1 1 1 0


r2, b (r2) =


0 1 1 1 0 1 1 1 0 1


r3, b (r3) =


0 1 1 0 1 1 1 0 1 1


r4, b (r4) =


0 1 0 1 1 1 0 1 1 1



99K

L9
9

..

.

99K

(a) bp-tree container

b (r′) ∧ b (r′′) =

0 0 0 0 0 0 1 1 1 1


ρe =


0 4


. . .

. . .

...

L9
9

ρR◦ =

5 3



R◦ =


r1, b (r1) =


0 1 1 1 1 0 1 1 1 0


r2, b (r2) =


0 1 1 1 0 1 1 1 0 1


r3, b (r3) =


0 1 1 0 1 1 1 0 1 1


r4, b (r4) =


0 1 0 1 1 1 0 1 1 1



99K

L9
9

..

.

99K

(b) pop-tree container

Figure 5.9: Bit pattern vs. population tree containers (verification query)

Implementation. The branch elimination technique from the previous paragraph is
now formalized to a population tree (pop-tree) container . Its creation requires some
additional effort in comparison to the solutions involving bit patterns. For one thing, a
tuple of non-overlapping fragmentation masks

f = (f1, . . . , fk) ∈ {0, 1}m × . . .× {0, 1}m

to cover all bit positions is needed; that is,

k
i=1

∥fi∥ = m and ∀i, j ∈ N≤k (i ̸= j ⇒ ∥fi ∧ fj∥ = 0) .

Furthermore, each extreme ray r to be stored into the pop-tree container is mapped to
a k-dimensional population vector

ρ (r, f) =

ρ1 . . . ρk



88

5.4 Population Tree Container

by applying f on b (r) in the sense that

ρi = ∥b (r) ∧ fi∥ for all i ∈ [1, k] .

Each node v of the resulting tree is labeled with a population vector maximized over all
ρ (r, f) with r some arbitrary extreme ray reachable from v. Consequently, the pop-tree
container is formally defined as

Tpt (R) := T

R,ΣR := Nk


.

The extreme rays are partitioned upon the values of their population vectors. The
partitioning technique itself is equivalent to that of a k-d tree. Splitting an extreme
ray set R◦ into two subsets involves selecting a target mask fj , j ∈ [1, k] together with
some population threshold pR◦ , and then separating from the rest all extreme rays with
population vectors satisfying ρj ≤ pR◦ (see Procedure 8).

Procedure 8 partition: pop-tree container

Input: R◦, set of extreme rays
Select fj such that ∃r′, r′′ ∈ R◦ (∥b (r′) ∧ fj∥ ≠ ∥b (r′′) ∧ fj∥)
P ← {∥b (r) ∧ fj∥ | r ∈ R◦}
Select pR′

◦ such that min {P } ≤ pR′
◦ <max {P }

pR′′
◦ ←max {P }

R′
◦ ←


r ∈ R◦ : ∥b (r) ∧ fj∥ ≤ pR′

◦


R′′

◦ ← R◦ −R′
◦

ρR′
◦ ←


ρ′1 . . . ρ

′
k


with ρ′i = max {∥b (r′) ∧ fi∥ | r′ ∈ R′

◦} , i ∈ [1, k]
ρR′′

◦ ←

ρ′′1 . . . ρ

′′
k


with ρ′′i = max {∥b (r′′) ∧ fi∥ | r′′ ∈ R′′

◦ } , i ∈ [1, k]
return


R′

◦,R′′
◦, ∅, ρR′

◦ , ρR′′
◦


With regard to narrowing queries, a decision whether a particular branch requires

further processing is taken after building the population vector ρ′ of the input r′ and
then minimizing it by using the corresponding node label ρR◦ ; that is, both vectors are
merged by selecting the minimal value at each component. The so defined minimized
vector has a sum of its components not greater thanb r′ ∧ b r′′
for any r′′ stored in the underlying branch. That defines the narrowing forecast function

feasible

r′, ρR◦


:=

 false, if
k
i=1

min {ρi, ∥b (r′) ∧ fi∥} < d− 2

true, otherwise

with ρR◦ =

ρ1 . . . ρk


.

With regard to verification queries, a particular branch requires further inspection only
if the population vector in the label is at least equal in all components to the population

89

5 Combinatorial Test: Comparison of Data Structures

vector built from the query input (r′, r′′). Otherwise, there exists a fragmentation mask
fi such that

b

r′

∧ b

r′′

∧ fi ̸< b (r) ∧ fi ⇒ b


r′

∧ b

r′

̸< b (r)

with r an extreme ray lying within the inspected branch. The above implication defines
the verification forecast function

feasible

r′, r′′, ρR◦


:=


false, if ∃i ∈ [1, k] (∥e ∧ fi∥ > ρi)
true, otherwise

with e = b (r′) ∧ b (r′′) and ρR◦ =

ρ1 . . . ρk


.

5.5 Vantage Point Tree Container

Motivation. Population trees have a noteworthy relation to vantage point trees (vp-
trees), a well known data structure applicable in metric spaces [155]. Consider the
narrowing query example in Figure 5.10a. The problem has already been dealt with in
the previous section; the given bp-tree container Tbpt (R′′) fails to eliminate the branch
holding R′′

◦ ⊂ R′′ for the narrowing query input r′ with respect to the narrowing condi-
tion b r′ ∧ b r′′ ≥ d− 2 with r′′ ∈ R′′

◦ and d = 6.

The idea behind vp-trees is to mark some of the extreme rays as vantage points and
characterize all other extreme rays by determining their similarity to the vantage points.
In Figure 5.10b, this technique is applied in the context of the current example. First,
the extreme ray r′′1 is marked as a vantage point and moved into the node label. Next, the
similarity degree of all other rays towards the vantage point is determined and attached
to the node label as well. The latter involves finding a characteristic vector

pR′′
◦ =


p′′ p̄′′


where

p′′ is the maximal population emerging from the conjunction of b (r′′1) with any other
binary vector b (r′′i) with i ∈ [2, 4] and

p̄′′ is the maximal population emerging from the conjunction of the inversed vantage
point vector b̄ (r′′1) with any other binary vector b (r′′i).

It is now easy to show that for the query input r′ and any r′′ ∈ R′′
◦, the value ofb r′ ∧ b r′′

is utmost

min

p′′,
b r′′1  ∧ b r′+min


p̄′′,
b̄ r′′1  ∧ b r′ . (5.6)

Consequently, the nonexistence of an extreme ray in R′′
◦ adjacent to r′ is guaranteed as

the over-approximation given in (5.6) delivers a value of three.

90

5.5 Vantage Point Tree Container

b (r′) =

0 0 1 1 1 1 0 0 0 1


. . .

. . .

...

L9
9

uR′′
◦
=


0 1 1 1 1 1 1 1 1 1



R′′
◦ =


r′′1 , b


r′′1


=


0 1 1 0 0 0 1 1 1 0


r′′2 , b


r′′2


=


0 1 0 1 0 0 1 1 0 1


r′′3 , b


r′′3


=


0 1 0 0 1 0 1 0 1 1


r′′4 , b


r′′4


=


0 1 0 0 0 1 0 1 1 1



99K

L9
9

...

99K

(a) bp-tree container

b (r′) =

0 0 1 1 1 1 0 0 0 1


. . .

. . .

...

L9
9

b

r′′1


=


0 1 1 0 0 0 1 1 1 0


pR′′

◦
=


3 2



R′′
◦ =

 r′′2 , b

r′′2


=


0 1 0 1 0 0 1 1 0 1


r′′3 , b


r′′3


=


0 1 0 0 1 0 1 0 1 1


r′′4 , b


r′′4


=


0 1 0 0 0 1 0 1 1 1



99K

L9
9

...

99K

(b) vp-tree container

Figure 5.10: Bit pattern vs. vantage point tree containers (narrowing query)

The construction of the characteristic vector pR′′
◦ is a process equivalent to finding

the ray in R′′
◦ with the highest similarity to the vantage point and the one with the

highest deviation from it. In a metric space, high deviation would automatically imply
low similarity and vice versa, meaning that p′′ and p̄′′ could not emerge from the same
element, unless there is only one element in the set. It should be pointed out, however,
that in the general case, a single extreme ray may very well define both p′′ and p̄′′ as
there is no guarantee that all extreme rays are equally populated.
Applying the vantage point technique within verification queries has one major advan-

tage compared to the other container types presented so far, namely that nonadjacency
can be detected more quickly. This conjecture rests on the fact that extreme rays are
also planted within intermediate nodes and thus a verification query can terminate with
a match without even reaching any terminal node. In that regard, consider the verifica-
tion query example given in Figure 5.11a which features a pair of extreme rays (r′, r′′)
the nonadjacency of which is being proven after encountering r1. By using the vantage
point technique illustrated in Figure 5.11b, certain elements are effectively pulled up the
tree and therefore examined earlier than in other container types. If those elements,
such as r1 in the given example, deliver a match, then the whole verification procedure
terminates more quickly.

Implementation. The vp-tree container can be viewed as a pop-tree container where
the tuple of fragmentation masks f is not static for the whole tree, but dynamically
selected for each node. At each partitioning step, an element rvp ∈ R is selected defining

f =

b (rvp) , b̄ (rvp)


.

This guarantees a unique mask tuple for each node, because rvp remains attached to
that node and is not passed further down the tree (see Procedure 9); hence, it cannot

91

5 Combinatorial Test: Comparison of Data Structures

b (r′) ∧ b (r′′) =

0 1 0 0 0 0 1 1 1 0


. . .

. . .

...

L9
9

ρR◦ =

5 3



R◦ =


r1, b (r1) =


0 1 1 1 1 0 1 1 1 0


r2, b (r2) =


0 1 1 1 0 1 1 1 0 1


r3, b (r3) =


0 1 1 0 1 1 1 0 1 1


r4, b (r4) =


0 1 0 1 1 1 0 1 1 1



99K

L9
9

...

(a) pop-tree container

b (r′) ∧ b (r′′) =

0 1 0 0 0 0 1 1 1 0


. . .

b (r1) =

0 1 1 1 1 0 1 1 1 0



...
b (r2) =


0 1 1 1 0 1 1 1 0 1



R◦ =


r3, b (r3) =


0 1 1 0 1 1 1 0 1 1


r4, b (r4) =


0 1 0 1 1 1 0 1 1 1



L9
9

...

(b) vp-tree container

Figure 5.11: Population vs. vantage point tree containers (verification query)

be used as a vantage point again. Formally, the vp-tree container is defined as

Tvpt (R) = T

R,ΣR :=


{0, 1}m × N2


with each label being a combination of a vantage point vector and a characteristic one.

Procedure 9 partition: vp-tree container

Input: R◦, set of extreme rays
Select some rvp ∈ R◦
fvp ← b (rvp)
P ← {∥b (r) ∧ fvp∥ | r ∈ R◦ and r ̸= rvp}
Select pR′

◦ such that min {P } ≤ pR′
◦ <max {P }

pR′′
◦ ←max {P }

R′
◦ ←


r ∈ R◦ : ∥b (r) ∧ fvp∥ ≤ pR′

◦


R′′

◦ ← R◦ − (R′
◦ + rvp)

p̄R′
◦ = max

b (r′) ∧ f̄vp | r′ ∈ R′
◦


p̄R′′
◦ = max

b (r′′) ∧ f̄vp | r′′ ∈ R′′
◦


return

R′

◦,R′′
◦, {rvp} ,


fvp, pR′

◦ , p̄R′
◦


,

fvp, pR′′

◦ , p̄R′′
◦


The narrowing forecast function

feasible

r′, fvp, pR◦ , p̄R◦


:=


false, if pR◦ +

b (r′) ∧ f̄vp < d− 2 or
∥b (r′) ∧ fvp∥+ p̄R◦ < d− 2

true, otherwise

is a simplified form of the function related to pop-tree containers which admits only two

92

5.6 Experimental Results

fragments. The same applies to the verification one

feasible

r′, r′′, fvp, pR◦ , p̄R◦


:=


true, if pR◦ < ∥e ∧ fvp∥ and

p̄R◦ <
e ∧ f̄vp

false, otherwise

with e denoting b (r′) ∧ b (r′′).

5.6 Experimental Results

In order to compare all container types in practical conditions, a benchmark consisting
of problems in various dimensions and featuring a different level of degeneracy was
compiled. All problems have been randomly generated with truncation being used in
order to enforce high degeneracy levels. They are given in Table 5.1 together with the
achieved speed-up when applying the presented optimizations. It should be noted that
all execution times throughout this section are given in seconds and were obtained by
merely counting the number of the resulting extreme rays; that is, the exact generators
were not calculated.

degeneracy A |R| avg. deg. degree speed-up

random 4 16 64

low

64× 16 1 914 024 0.57 54%

random 4 16 96 96× 16 450 714 0.75 18%

random 6 64 96 96× 64 3 023 180 0.43 63%

random 8 128 157 157× 128 1 107 211 0.53 77%

random 6 16 104

medium

104× 16 2 779 391 1.1 66%

random 4 64 112 112× 64 1 790 042 1.4 64%

random 4 128 172 172× 128 1 520 534 1.8 67%

random 4 16 112

high

112× 16 448 658 3.3 55%

random 16 68 115 115× 68 185 834 5.8 67%

random 12 128 174 174× 128 134 994 6.0 58%

random 8 20 160

very high

160× 20 199 080 9.7 31%

random 16 64 179 179× 64 271 255 19 37%

random 24 128 277 277× 128 174 939 32 28%

Table 5.1: Benchmark for adjacency tests

Bit Pattern Trees. The three presented optimizations

(i) cross-narrowing,

(ii) highly degenerate first verification and

93

5 Combinatorial Test: Comparison of Data Structures

(iii) query bits neutralization

were experimentally tested, both independently and in collaboration with each other (see
Table 5.2). While the first two delivered a small to moderate performance gain, query
bits neutralization turned out to be a very strong heuristic. Moreover, it covers both
narrowing and verification, and does not require any particular parameterization. For
cross-narrowing and highly degenerate first, the thresholds tn and tv have a significant
impact on the final result and should be selected carefully.

bp-trees
heuristics

cross-nar. h.deg.first q.b.n. all in one

random 4 16 64 157.106 130.596 156.579 76.484 71.878

random 4 16 96 27.312 25.266 26.600 22.329 23.943

random 6 64 96 100.676 74.519 100.689 41.340 37.088

random 8 128 157 82.033 50.846 78.657 23.110 18.840

random 6 16 104 603.381 464.026 532.831 337.051 207.898

random 4 64 112 242.210 213.363 184.510 118.912 86.396

random 4 128 172 325.128 304.534 236.182 149.108 106.803

random 4 16 112 90.146 77.344 83.071 48.124 40.395

random 16 68 115 152.866 154.935 103.005 52.878 50.702

random 12 128 174 118.506 119.588 93.662 64.728 50.332

random 8 20 160 179.535 148.894 176.147 128.562 123.437

random 16 64 179 1 309.003 1 238.839 1 242.471 1 223.103 828.286

random 24 128 277 1 637.366 1 581.302 1 592.305 1 384.321 1185.609

Table 5.2: Computational results for bp-tree containers

Extended Bit Pattern Trees. The ebp-tree container promises a potentially better
branch elimination rate at the cost of additional operations due to the more complex
forecast functions. In practice, the direct application of those containers did not deliver
any performance improvement neither in the narrowing nor in the verification phase
(see Table 5.3). On the contrary, it even caused a slowdown which became significant
with growing degeneracy. Still, ebp-tree containers showed some advantages in the low
degenerate domain. For example, a beneficial scenario emerged when they were used as
complementary containers to handle solely low degenerate rays in the context of cross-
narrowing and highly degenerate first verification. In the last two columns of Table 5.3,
the consequences of that strategy are illustrated. It should be noted, however, that its
advantages vanished for the most part when query bits neutralization was additionally
applied.

Vantage Point/Population Trees. In terms of performance, vp-trees remained well
behind bp-trees (see Table 5.4). This fact is partially related to the more complex

94

5.6 Experimental Results

bp-trees
ebp-trees cross-nar. & h.deg.first

narrowing verification bp-trees ebp/bp-trees

random 4 16 64 157.106 157.565 158.142 127.015 123.278

random 4 16 96 27.312 27.611 27.985 25.010 25.124

random 6 64 96 100.676 104.933 104.146 72.384 66.761

random 8 128 157 82.033 82.489 83.517 44.529 42.942

random 6 16 104 603.381 606.589 605.168 381.232 379.219

random 4 64 112 242.210 244.354 254.940 144.845 145.054

random 4 128 172 325.128 326.959 339.305 202.322 203.121

random 4 16 112 90.146 91.323 99.107 70.392 70.415

random 16 68 115 152.866 153.261 176.784 145.510 145.461

random 12 128 174 118.506 118.617 140.984 113.908 114.005

random 8 20 160 179.535 180.774 227.956 152.290 152.730

random 16 64 179 1 309.003 1 313.670 1 710.538 1 261.136 1 255.095

random 24 128 277 1 637.366 1 609.675 2 008.565 1 606.097 1 605.419

Table 5.3: Computational results for ebp-tree containers

implementation which they require. With growing dimensionality, vp-trees gained some
momentum at least in the narrowing phase, but could hardly be viewed as a general
alternative. Verification queries turned out to be a particular weakness of vp-trees with
some of the computations being interrupted after reaching the preset timeout limit.
Nevertheless, it can be demonstrated that vp-trees have a domain of superiority too. The
product of a hypercube and a random 0/1 polytope, rnd 30 cube 5 and the truncated
polytope trunc 50 are two particular instances in that respect.

In many aspects, the performance of pop-trees can be viewed similar to that of vp-
trees. They turned out to be practically unsuitable for verification queries and showed
an increasingly better performance with growing degeneracy for narrowing queries. For
problems featuring high degeneracy, their performance became comparable with that of
bp-trees. It should be noted that population trees are more general data structures than
bit pattern trees and thus have broader parameterization capabilities. In this respect,
the execution times may be improved by selecting a more suitable tuple of fragments f .
The results presented here were obtained with fragments having a fixed size of 4 bits.
The bits at each fragment were selected by using the query bits neutralization technique;
that is, the first fragment had the four bits with greatest hit probability, the second one
the next four, etc.

95

5 Combinatorial Test: Comparison of Data Structures

bp-trees
pop-trees vp-trees

narrowing verification narrowing verification

random 4 16 64 157.106 160.704 278.316 468.938 639.791

random 4 16 96 27.312 28.057 41.825 69.935 48.280

random 6 64 96 100.676 205.962 291.643 248.142 240.326

random 8 128 157 82.033 102.914 210.508 95.232 174.988

random 6 16 104 603.381 643.892 � 1 253.839 2 346.667

random 4 64 112 242.210 324.381 842.792 504.753 1 228.793

random 4 128 172 325.128 470.149 1 541.379 704.531 �

random 4 16 112 90.538 95.138 377.493 137.877 264.268

random 16 68 115 152.944 165.118 217.402 188.090 205.719

random 12 128 174 118.596 122.193 219.954 148.295 766.633

random 8 20 160 179.535 186.350 1 650.890 202.719 1 256.544

random 16 64 179 1 309.003 1 337.564 � 1 480.072 �
random 24 128 277 1 637.366 1 642.699 � 1 728.037 2 921.498

rnd 30 cube 5 129.870 - 204.124 - 33.817

trunc 50 299.860 - 232.326 - 216.486

Table 5.4: Computational results for pop/vp-tree containers

96

6 Algebraic Test: Redundancy Elimination

The algebraic test, once considered a viable alternative to the combinatorial one, has
consistently lost significance due to its performance limitations. This tendency, however,
can be reversed by minimizing the number of redundant operations emerging from the
independent conduct of each test. Consider the extreme ray r′ of the polyhedral cone
C (A). In the narrowing phase, all adjacency candidates

r′, r′′1

,

r′, r′′2


, . . . ,


r′, r′′k


in which r′ participates are collected. Subsequently, an algebraic test is performed for
each of them. At each test, a different submatrix of A is being examined in terms of
rank calculation. It is easy to see, however, that those matrices are possibly similar
to each other and have a lot of common rows. Consequently, by performing each test
independently, equivalent transformations are performed multiple times.

A natural solution of the above problem is to cache those intermediate results which
may be of interest for other adjacency tests (see Section 6.1). Formally, this requires
the definition of data structures capable of holding additional structural information for
each extreme ray (see Section 6.2). When performing an adjacency test, the available
information related to both extreme rays is combined to reduce the complexity of the
problem as much as possible (see Section 6.3). After integrating the described technique
into the dd method (see Section 6.4), a considerable performance gain could be reported
for problems featuring small to moderate degeneracy (see Section 6.5).

6.1 Active Set Partitioning

Let C be a polyhedral cone with a representation matrix A ∈ Rn×d. Suppose we knew
all combinations of matrix row vectors which are linear independent. Then we could
conduct the adjacency test by checking whether the intersection of the active sets is a
superset of some known d − 2 independent row vectors. The classification of different
subsets of matrix column vectors is a well known topic in mathematics and is associated
with the term matroid [152] (see Section 6.1.1). By adapting its initial definition to
consider row vectors instead of column ones, a theoretical basis emerges to derive a
new adjacency test (see Section 6.1.2). Its general idea rests on the identification of an
independent set within each active set; that is, among the facets defining an extreme
ray, the redundant ones are explicitly marked (see Section 6.1.3). Consequently, when
performing an adjacency test for two rays r′ and r′′, particular information about linear
dependence of A’s row vectors is available prior to the test. In some cases, this is already
sufficient to deduce the dimension of r′ ∨ r′′. Otherwise, complementary computations

97

6 Algebraic Test: Redundancy Elimination

are to be performed, but those are less complex than an independent algebraic test (see
Section 6.1.4).

6.1.1 Matrix Matroid

Given a n× d matrix A, let

I = {I ⊆ E : rank [AI] = |I |}

be a collection of subsets of E = N≤n labeling only linear independent rows. The
ordered pair (E, I) is called a matrix matroid of A and is denoted as M [A]. Following
Oxley [120], two fundamental rules hold for E and I:

(a) I ∈ I ∧ I ′ ⊂ I ⇒ I ′ ∈ I and

(b) I, I ′ ∈ I ∧ |I | > |I ′ | ⇒ ∃e ∈ I − I ′ (I ′ ∪ {e} ∈ I).

Each subset K ⊆ E has a rank defined by the rank of AK . Each element of I is called
an independent set of M [A]. An independent set I is maximal if there is no other
independent set I ′ such that I ⊂ I ′. A subset which is not a member of I is called
dependent. A dependent set D is minimal if each proper subset of D is independent. A
minimal dependent set is also called a circuit of M [A]. The set containing all circuits
of M [A] is denoted as C [A]. It is obvious that C [A] can be constructed out of I and
vice versa, which makes those two representations fully interchangeable. Proposition 6.1
describes one of the important relations between independent sets and circuits. Another
meaningful property of circuits is given by the strong circuit elimination axiom (see
Proposition 6.2).

Proposition 6.1. Let I be an independent set of M [A] and I + e a dependent one for
some e ∈ E. Then there exists a unique circuit C ⊆ I + e which contains e.

Proof. See [120, Proposition 1.1.6].

Proposition 6.2. Let C1 and C2 be two distinct members of C [A] such that e ∈ C1∩C2

and f ∈ C1 − C2. Then there exists another circuit C3 ∈ C [A] such that

C3 ⊆ (C1 ∪ C2)− e and f ∈ C3 .

Proof. See [120, Proposition 1.4.11].

6.1.2 Observations

Let r be an extreme ray of C (A) with A ∈ Rn×d and M [A] = (E, I). The active
set z (r) has an alternative representation as a pair of disjoint subsets zp (r) ∈ I and
zs (r) ∈ ℘ (E) defined as follows:

zp (r) is an independent set of M [A] containing exactly d− 1 elements, and

zs (r) is a member of the power set of E which contains all other elements from z (r).

98

6.1 Active Set Partitioning

For the moment, assume that for each cone generated by R, there exists a partitioning
function

split : R → I × ℘ (E)

which produces a valid pair of subsets (zp (r) , zs (r)) according to the given definition.

Consider now a pair of extreme rays (r′, r′′) for which an adjacency test should be
performed. The standard algebraic test involves extracting the submatrix AD with
D = z (r′) ∩ z (r′′) and then calculating rank [AD]. Here, an alternative route to check
the rank of AD is proposed. Applying split on both rays produces two pairs of subsets

zp

r′

, zs

r′


and

zp

r′′

, zs

r′′


which together yield an alternative representation of the set D as
zp

r′

∩ zp


r′′

∪

zp

r′

∩ zs


r′′

∪

zs

r′

∩ zp


r′′

∪

zs

r′

∩ zs


r′′


.

The point behind this new representation is given in the following Observations 6.1
and 6.2.

Observation 6.1. The set

L =

zp

r′

∩ zp


r′′

∪

zp

r′

∩ zs


r′′

∪

zs

r′

∩ zp


r′′


is an independent one (with respect to M [A]) if the following two constraints are satis-
fied:

1. ∀i ∈ (zs (r
′) ∩ zp (r′′))


(C ′

i ∈ C [A] ∧ C ′
i ⊆ zp (r′) + i)⇒ C ′

i ⊆ N≤i

and

2. ∀i ∈ (zs (r
′′) ∩ zp (r′))


(C ′′

i ∈ C [A] ∧ C ′′
i ⊆ zp (r′′) + i)⇒ C ′′

i ⊆ N≤i

.

Corollary 6.3. If the active sets of r′ and r′′ are partitioned according to Observation 6.1
and |L| = d− 2, then r′ and r′′ are adjacent.

Observation 6.2. For each two adjacent extreme rays r′ and r′′, there always exists an
active set partitioning that satisfies Corollary 6.3.

Consequently, an adjacency test can be performed by finding a partitioning which
satisfies Corollary 6.3 or proving that it does not exist. According to Observation 6.2,
the test is complete in the sense that a conclusive result is guaranteed for each pair of
extreme rays. The idea is illustrated in the following Examples 6.1 and 6.2.

Example 6.1. Consider the matrix A′ as shown in Figure 6.1 where

x1 =


0
−1
0
0

 and x2 =


−1
0
0
1



99

6 Algebraic Test: Redundancy Elimination

1 0 0 0

1 0 0 1

1 0 1 0

1 1 0 0

1 0 1 1

1 1 0 1

1 1 1 0

1 1 1 1





a1

a2

a3

a4

a5

a6

a7

a8

A′ =

rank


a2
a4


= 2

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

z
(
r 1

)

z p
(
r 1

)

z s
(
r 1

)

z
(
r 2

)

z p
(
r 2

)

z s
(
r 2

)

L

split (r1) split (r2)

Figure 6.1: Adjacency proof by means of active set partitioning

are generators of the polyhedral cone C (A′). Let x1 and x2 define the extreme rays r1
and r2 with active sets

z (r1) = {1, 2, 3, 5} and z (r2) = {2, 5, 6, 8} .

Suppose that applying split on both extreme rays delivers

split (r1) = ({1, 2, 3} , {5}) and split (r2) = ({2, 5, 6} , {8}) .

The adjacency of r1 and r2 is easily proven by applying the algebraic test. Alternatively,
the same result is obtained by building the set L according to Corollary 6.3.

Example 6.2. Consider now another matrix A′′ (see Figure 6.2) for which the generators

x1 =


−1
1
1
0
1

 and x2 =


−1
1
1
1
0


of the polyhedral cone C (A′′) are known. Let r1 and r2 be the corresponding extreme
rays and isplit a particular implementation of split delivering the output

isplit (r1) = ({2, 3, 4, 7} , {6}) and (6.1)

isplit (r2) = ({4, 5, 6, 8} , {3}) . (6.2)

The given partitioning yields |L| = d − 2, but does not match the constraints from
Observation 6.1. It should be noticed that both active sets, z (r1) and z (r2), contain
the circuit C = {3, 4, 6}. C, however, is partitioned differently in (6.1) and (6.2).
This leads to the problem that L cannot be independent as C becomes a subset of it.

100

6.1 Active Set Partitioning

1 0 0 0 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 0 0 1 0

1 −1 2 0 0

2 0 1 0 1

2 1 0 1 0





a1

a2

a3

a4

a5

a6

a7

a8

A′′ =

rank


a3
a4
a6


= 2

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

z p
(
r 1

)

z s
(
r 1

)

z p
(
r 2

)

z s
(
r 2

)

z p
(
r 2

)

z s
(
r 2

)

L
w
it
h
is
p
li
t

L
w
it
h
c
sp

li
t

isplit (r1)
csplit (r1) isplit (r2) csplit (r2)

Observation 6.1 does not hold

Observation 6.1 holds

Figure 6.2: Active set partitioning for nonadjacent rays

The reasoning behind the constraints in Observation 6.1 becomes evident now. They
guarantee that C ⊈ L.

Suppose that we could apply another partitioning function csplit, which is again an
implementation of split, but behaves differently from isplit. Let csplit deliver the same
result for r1 as in (6.1), but a different one for r2:

csplit (r2) = ({3, 4, 5, 8} , {6}) . (6.3)

Although Observation 6.1 holds with respect to (6.1) and (6.3), the result remains in-
conclusive as now |L| < d − 2. This problem is resolved by Observation 6.2. It is easy
to verify that another partitioning satisfying the constraints from Observation 6.1 is
impossible; thus, r1 and r2 cannot be adjacent.

6.1.3 Partitioning Function

It is evident that the application of Observation 6.1 requires a great amount of effort as it
demands the calculation of certain circuits within the active sets. This calculation effort
is likely to quickly even out the benefits of the proposed adjacency proof method. With
regard to that, a simple implementation of the partitioning function, called nsplit, is
proposed in Procedure 10. It possesses the important property of partitioning the active
sets in way that they fulfill the constraints in Observation 6.1 by default. At first, this
seems to be just a calculation shift as Procedure 10 has to be invoked on each new ray.
This invocation, however, is not always necessary. Consider the iteration step of the dd
method (see Section 4.1). Assume that for two adjacent extreme rays r′, r′′ emerging

101

6 Algebraic Test: Redundancy Elimination

Procedure 10 nsplit: active set partitioning

Input: r, an extreme ray of C (A) with A ∈ Rn×d
Output: (zp (r) , zs (r)) ∈ I × ℘ (E) such that
z (r) = zp (r) ∪ zs (r) and zp (r) ∩ zs (r) = ∅ for M [A] = (E, I)
if |z (r) | = d− 1 then
zp (r)← z (r); zs (r)← ∅

else
zp (r)← ∅; zs (r)← ∅
for all l ∈ z (r) do
if |zp (r) | = d− 1 or rank


Azp(r)


= rank


Azp(r)+l


then

zs (r)← zs (r) + l
else
zp (r)← zp (r) + l

end if
end for

end if
return (zp (r) , zs (r))

from the generators x′ ∈ X+
i and x′′ ∈ X−

i , |L| = d − 2 holds with respect to the
partitioning

nsplit

r′

=

zp

r′

, zs

r′


and nsplit

r′′

=

zp

r′′

, zs

r′′


.

After building the new generator x ∈ X▽
i , the corresponding extreme ray r gains a valid

active set partitioning 
L+ j, zs


r′

∩ zs


r′′


.

Most important, the above result always matches the result of Procedure 10 and thus
makes its explicit invocation unnecessary.

6.1.4 Completeness

So far, it has been demonstrated how to partition active sets and that a favorable
partitioning can immediately indicate adjacency. It is, however, unclear how to proceed
when the partitioning delivers an initially inconclusive result as a result of |L| < d− 2.
Those cases, of course, could be covered by the classic rank computation, but as the
general focus is laid on its complete elimination from the dd method, a supplemental
strategy is introduced to provide completeness. The idea is best illustrated by the
following Example 6.3.

Example 6.3. Consider the matrix A′′′ (see Figure 6.3) and the generators

x1 =


−1
0
0
1
0

 and x2 =


−1
1
0
0
1



102

6.1 Active Set Partitioning

2 2 0 1 0

1 0 0 1 0

2 1 1 2 0

1 0 1 1 1

1 1 0 0 0

1 1 1 0 0

3 1 1 3 1

2 1 0 2 1

2 1 1 2 1





a1

a2

a3

a4

a5

a6

a7

a8

a9

A′′′ =

rank


a4
a8
a9


= 3

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

z p
(
r 1

)

z s
(
r 1

)

z p
(
r 2

)

z s
(
r 2

)

L
a
ft
er

p
a
rt
it
io
n
in
g

L
a
ft
er

1
×

re
p
a
rt
it
io
n
in
g

L
a
ft
er

2
×

re
p
a
rt
it
io
n
in
g

nsplit (r1) nsplit (r2)

Figure 6.3: Repartitioning of active sets

which define the adjacent extreme rays r1 and r2 of the polyhedral cone C (A′′′). The
partitioned active sets

nsplit (r1) = ({2, 3, 4, 7} , {8, 9}) and (6.4)

nsplit (r2) = ({1, 4, 5, 6} , {8, 9}) (6.5)

are insufficient for an adjacency proof as the cardinality of L is 1 where 3 is needed.
Suppose that the equations

a8 = −a2 − a3 − a4 + 2a7 and (6.6)

a9 = −a2 + a7 (6.7)

have been additionally attached to the active set of r1, giving particular information
of how exactly each element in zs (r1) can be represented as a linear combination of
elements from zp (r1). As a consequence, we can repartition (6.4) by moving the elements
8 and 9 from zs (r1) into zp (r1) so that |L| = 3 is reached in the end. This process
consists of two transformations

({2, 3, 4, 7} , {8, 9})→ ({x, x, x, 8} , {x, 9})→ ({x, x, 8, 9} , {x, x})

swapping each of the elements 8 and 9 with some element from zp (r1).

103

6 Algebraic Test: Redundancy Elimination

First, the element 8 is processed. From (6.6), we already know that C8 = {2, 3, 4, 7, 8}
is a circuit. We can therefore deduce that

({3, 4, 7, 8} , {2, 9}) (6.8)

represents a legitimate partitioning as well. In addition, (6.5) and (6.8) comply
with Observation 6.1.

Second, the element 9 is swapped. Before executing this transition, however, one last
problem has to be addressed. In contrast to the first step, here we have no par-
ticular information about the circuit C9 ⊆ {3, 4, 7, 8, 9}. C9 is obviously needed
in order to select an appropriate element to swap 9 with. Selecting an element
outside of it would result in an invalid partitioning. The computation of C9 is
achieved by building the sum of the equations (6.6) and (6.7) which leads to

a9 = a3 + a4 − a7 + a8

and hence C9 = {3, 4, 7, 8, 9}. As a result, we can now derive that

({4, 7, 8, 9} , {2, 3}) (6.9)

represents a valid partitioning of z (r1).

Consequently, the active set partitioning given in (6.5) and (6.9) delivers an adjacency
proof according to Corollary 6.3.

Based on Example 6.3, a general strategy for performing the adjacency test can be
outlined. To begin with, assume adjacency for the extreme rays under test. Then, try
to prove it by applying repartitioning transformations which increase the size of L. At
the same time, keep the repartitioned active sets consistent with the constraints from
Observation 6.1. At some point, a maximum is reached where no further transformation
leads to a size increase of L. If Corollary 6.3 holds at this point, then the extreme rays
are adjacent. Otherwise, nonadjacency is the case.

6.2 Data Structures

Definition 6.1 [Active Set Pair]. Let r be an extreme ray of the polyhedral cone
C (A). The ordered pair (zp, zs) is called an active set pair of r if and only if

zp ⊆ z (r) is an independent set of M [A] with |zp | = d− 1, and

zs = z (r)− zp contains elements which build a dependent set with zp.

The set containing all valid active set pairs of r ∈ R is obtainable by means of a
mapping

ϕ : R → {ω | ω = (zp, zs) is an active set pair of r} .

104

6.2 Data Structures

Definition 6.2 [Dependence Map]. Let r be an extreme ray of C (A) with

ω = (zp, zs) ∈ ϕ (r)

some active set pair of r. The set

χ (ω) = {(l,M, ρ) | l ∈ zs,
M⊆ zp andM+ l ∈ C [A] ,

ρ ∈ Rn − {0} :
n
i=1

ρiai = 0 where ρi = 0⇔ i ̸∈ M+ l}

is called a dependence map of ω.

To each active set pair a dependence map is assigned to keep track of those independent
sets of M [A] which are both subsets of zp and build a circuit with one of zs’s elements.
Consider the matrix A given in Figure 6.4. Let ω = ({2, 3, 4} , {5}) be a valid active
set pair. The dependence map of ω stores the necessary information of how to express
a5 as a linear combination of a2, a3 and a4. M5 indexes those rows which together with
a5 build a circuit of M [A]. Furthermore, a vector ρ is defined such that

6
i=1

ρiai = 0 ∧ (ρi = 0⇔ i ̸∈ M5 + 5) .

−3 1 1 1

0 1 0 0

2 −1 0 0

0 0 1 0

2 0 −1 0

0 1 1 0



A :=

a1

a2

a3

a4

a5

a6

independent set

a1

a2

a3

a4

a5

a6

minimal dependent set (circuit)

×ρ1 +

×ρ2 +

×ρ3 +

×ρ4 +

×ρ5 +

×ρ6= 0

0 1 1 −1 −1 0[]Tρ =43,2,{ }M5 =

Figure 6.4: Construction of dependence maps

It is clear that M and ρ are redundant structures in the dependence map as M
could be extracted out of ρ at any time. The reasoning behind this redundancy is the
suitability ofM to be represented by a binary vector which allows the quick execution
of set operations. The dependence map can be implemented as a hash table by using l
as a key and the pair (M, ρ) as a value. As the following Corollary 6.4 states, each l is
then associated with exactly one pair.

105

6 Algebraic Test: Redundancy Elimination

Corollary 6.4. Let r be an extreme ray of C (A) with (zp, zs) ∈ ϕ (r) some active set
pair of r. For each l ∈ zs, there exists exactly one circuit M + l ∈ C [A] such that
M⊆ zp.

Proof. Follows directly from Proposition 6.1 as zp is an independent set and zp + l a
dependent one.

It is obvious that the construction of a single dependence map χ (ω) requires |zs |
systems of linear equations to be solved. At first, this seems to be highly expensive. It
should be pointed out, however, that the dependence maps of many extreme rays are
not disjoint and thus have common entries. Actually, each dependence map can be seen
as a subset of C [A]; thus, we can define a global set X holding all known entries of
C [A]. Each dependence map χ (ω) contains links to those which are of any significance
for ω. Consequently, building a new dependence map involves checking whether the
corresponding entries are already in the global set X . If so, they are merely linked to
the active set. Otherwise, they are calculated, put into X and finally linked.

Consider the example given in Figure 6.5 where ω′ and ω′′ are two valid active set
pairs to build the dependence maps for. Starting with ω′, the tuples (l1,M5, ρ

′) and
(l2,M6, ρ

′′) are calculated, put in the global set X and finally linked with ω′. As
a consequence, the construction of χ (ω′′) requires merely linking (l2,M6, ρ

′′) as the
necessary calculation has been already performed in the previous step.

−3 1 1 1

0 1 0 0

2 −1 0 0

0 0 1 0

2 0 −1 0

0 1 1 0



A :=

a1

a2

a3

a4

a5

a6

5

1

2

3

4

5

6

0

1

1

−1

−1

0




6

1

2

3

4

5

6

0

1

0

1

0

−1





l1 M5 ρ′ l2 M6 ρ′′

Global container X

z′p : 1 2 3 4 5 6

z′s : 1 2 3 4 5 6

z′′p : 1 2 3 4 5 6

z′′s : 1 2 3 4 5 6
ω′ ω′′

Figure 6.5: Redundancy-free storage of dependence maps

Definition 6.3 [Weak Combinability]. Two active set pairs

ω′ =

z′p, z

′
s


and ω′′ =


z′′p , z

′′
s



106

6.3 The Refined Algebraic Test

are weakly combinable if

∀ (l,Ml, ρ) ∈ χ

ω′  l ∈ z′′p ⇒Ml ⊂ N≤l


and

∀ (m,Mm, ρ) ∈ χ

ω′′ m ∈ z′p ⇒Mm ⊂ N≤m


.

Definition 6.4 [Strong Combinability]. Two weakly combinable active set pairs

ω′ =

z′p, z

′
s


and ω′′ =


z′′p , z

′′
s


are also strongly combinable if

∀ (l,Ml, ρ) ∈ χ

ω′  l ∈ z′′s ⇒Ml ⊂ N≤l


and

∀ (m,Mm, ρ) ∈ χ

ω′′ m ∈ z′s ⇒Mm ⊂ N≤m


.

Definition 6.5 [Normal Form]. The active set pair ω = (zp, zs) is in normal form
(or normalized) if

∀ (l,Ml, ρ) ∈ χ (ω)

Ml ⊂ N≤l


.

It is easy to verify that Procedure 10 creates normalized active set pairs and that two
normalized active set pairs are always strongly combinable.

6.3 The Refined Algebraic Test

With the data structures introduced in the previous section, the necessary basis has
been laid out to formalize the adjacency test from Section 6.1. In order to resolve any
doubt concerning its correctness, a proof of Observations 6.1 and 6.2 is provided (see
Section 6.3.1) before specifying the actual adjacency algorithm called partitioned sets
test or shortly PST (see Section 6.3.2).

6.3.1 Correctness and Formal Proof

First, a formal proof is provided that Corollary 6.3 can be used as a sufficient (see
Proposition 6.5) and a necessary condition for adjacency (see Lemma 6.7). In that
context, a sufficient condition for nonadjacency is specified as well (see Proposition 6.8).
Finally, the necessary rules needed for repartitioning of active set pairs are provided (see
Lemma 6.9 and 6.10).

Proposition 6.5 (PST Correctness). Let r′ and r′′ be two distinct extreme rays of
C (A), with active set pairs

ω′ =

z′p, z

′
s


and ω′′ =


z′′p , z

′′
s


.

107

6 Algebraic Test: Redundancy Elimination

If ω′ and ω′′ are weakly combinable and |L| = d− 2 holds for

L =

z′p ∩ z′′p


∪

z′p ∩ z′′s


∪

z′′p ∩ z′s


,

then r′ and r′′ are adjacent.

Proof. Assume that L is a dependent set. Then for some m ∈ L, there exists a circuit
D ⊆ L ∩ N≤m. From the definition of L, it is evident that either m ∈ z′p or m ∈ z′′p . If
m ∈ z′p, then an application of Lemma 6.6 with r = r′ and K = z′s ∩ z′′p guarantees that

D ̸⊆ (z′p ∪ (z′s ∩ z′′p)) ∩ N≤m ⊇ L ∩ N≤m .

Analogously, if m ∈ z′′p , we can prove that

D ̸⊆ (z′′p ∪ (z′′s ∩ z′p)) ∩ N≤m ⊇ L ∩ N≤m

by applying Lemma 6.6 with r = r′′ and K = z′′s ∩ z′p. Consequently, we have shown the
nonexistence of the circuit D and hence the independence of L. Therefore,

|L| = d− 2⇒ rank (L) = d− 2⇒ rank [AL] = d− 2 .

Lemma 6.6. Let r be an extreme ray of C (A) where ω = (zp, zs) ∈ ϕ (r) is a valid
active set pair of r and K ⊆ zs. If

∀ (l,Ml, ρ) ∈ χ (ω)

l ∈ K ⇒Ml ⊂ N≤l


(6.10)

then for each m ∈ zp there is no circuit

D ⊆ zp ∪Km with Km = K ∩ N≤m

which contains m.

Proof. If K = ∅ then the nonexistence of D is obvious. Let K ̸= ∅ and let for some
m ∈ zp,

D ⊆ zp ∪Km (6.11)

be a circuit which contains m. From the dependence map χ (ω) we can obtain a unique
circuit

Dl =Ml + l ⊆ zp + l (6.12)

for each l ∈ Km. According to (6.10), m ̸∈ Dl for each such circuit Dl as m is greater
than any l. By applying Proposition 6.2 to D and Dl with maximal l, we can produce
another circuit

D′ ⊆ (D ∪Dl)− l

which still contains m, but avoids l. The iterative application of that last step on all
other Dl leads finally to a circuit

D′′ ⊆ (D ∪

l∈Km

Dl)−Km

108

6.3 The Refined Algebraic Test

which certainly contains m, but avoids the whole set Km. Together with (6.11) and
(6.12), the latter actually implies that

D′′ ⊆

zp ∪Km ∪

l∈Km

(zp + l)

−Km

⊆ (zp ∪Km ∪ zp ∪Km)−Km

⊆ zp

which is obviously a contradiction as zp is an independent set by definition. Conse-
quently, the nonexistence of the D is proven.

Lemma 6.7 (PST Completeness). Let r′ and r′′ be two distinct extreme rays of C (A).
If r′ and r′′ are adjacent, then there exist at least two weakly combinable active set pairs

ω′ =

z′p, z

′
s


and ω′′ =


z′′p , z

′′
s


such that |L| = d− 2 holds for

L =

z′p ∩ z′′p


∪

z′p ∩ z′′s


∪

z′′p ∩ z′s


.

Proof. The adjacency of r′ and r′′ implies that

rank

z

r′

∩ z

r′′


= d− 2

and thus the existence of an independent set

I ⊆ z

r′

∩ z

r′′


containing exactly d− 2 elements. Furthermore,

rank

z

r′


= rank

z

r′′


= d− 1

which guarantees the existence of another two distinct independent sets

I ′ ⊆ z

r′

and I ′′ ⊆ z


r′′


which are obtained by maximizing I; hence, |I ′ | = |I ′′ | = d − 1 and I = I ′ ∩ I ′′. As a
consequence, we can build the active set pairs

ω′ =

I ′, z


r′

− I ′


and ω′′ =


I ′′, z


r′′

− I ′′


with

L = I = I ′ ∩ I ′′ and I ′ ∩ (z

r′′

− I ′′) = I ′′ ∩ (z


r′

− I ′) = ∅ .

Due to z′p ∩ z′′s = z′′p ∩ z′s = ∅, the weak combinability of ω′ and ω′′ is guaranteed as
well.

109

6 Algebraic Test: Redundancy Elimination

Proposition 6.8 (PST Nonadjacency Condition). Let r′ and r′′ be two extreme rays of
C (A) with

ω′ =

z′p, z

′
s


and ω′′ =


z′′p , z

′′
s


two weakly combinable active set pairs of r′ and r′′. If for each l ∈ (zs (r

′) ∩ zs (r′′))

∃ (l,Ml, ρ) ∈

χ

ω′ ∪ χ ω′′ (Ml ⊆ L) (6.13)

and |L| < d− 2 holds for

L =

z′p ∩ z′′p


∪

z′p ∩ z′′s


∪

z′′p ∩ z′s


,

then r′ and r′′ are nonadjacent.

Proof. Condition (6.13) implies that for each l ∈ z′s ∩ z′′s there exists a circuit Dl ⊆ L+ l
which contains l and thus

rank(L ∪ (z′s ∩ z′′s)) = rank (L)
⇒rank


z

r′

∩ z

r′′


= |L|
⇒rank


z

r′

∩ z

r′′

< d− 2

showing the nonadjacency of r′ and r′′.

Lemma 6.9. Let r be an extreme ray with an active set pair ω = (zp, zs) and (l,M, ρ)
some element of its dependence map χ (ω). Then for all e ∈M

((zp − e) + l, (zs − l) + e)

is also a valid active set pair of r.

Proof. From the dependence map χ (ω), we know thatM+ l ⊆ zp+ l is a unique circuit
that definitely contains e. Therefore (zp−e)+l has to be an independent set as otherwise
zp+ l would contain at least one more circuit which contradicts with Proposition 6.1.

Lemma 6.10. Let r be an extreme ray of C (A) , A ∈ Rn×d with

ω = (zp, zs) and ω′ =

z′p, z

′
s


two active set pairs of r such that (l,Ml, ψ) ∈ χ (ω), e ∈ Ml and z

′
p = (zp − e) + l.

Then

∀ (p,Mp, ρ) ∈ χ (ω)

p ̸= l ∧ e ∈Mp ⇒


p,M′

p, φ

∈ χ


ω′

where φ = ψeρ− ρeψ andM′
p = {m | φm ̸= 0 ∧m ̸= p}.

Proof. From Definition 6.2 we obtain

n
i=1

ψiai = 0⇒
n
i=1

ρeψiai = 0 (6.14)

110

6.3 The Refined Algebraic Test

and
n
i=1

ρiai = 0⇒
n
i=1

ψeρiai = 0. (6.15)

Subtracting (6.14) from (6.15) leads to

n
i=1

(ψeρi − ρeψi)ai = 0 .

Let φ = ψeρ− ρeψ. Then

1. φe = ψeρe − ρeψe = 0,

2. φl = ψeρl − ρeψl = ψeρl ̸= 0,

3. φp = ψeρp − ρeψp = −ρeψp ̸= 0 and

4. φi = 0 for each i ̸∈ Ml + l +Mp + p (from Definition 6.2 for ρ and ψ).

Consequently, there exists an independent set

M′
p := {m | φm ̸= 0 ∧m ̸= p} ⊆ Ml + l +Mp − e ⊆ z′s

such that

p,M′

p, φ

is a valid element of χ (ω).

6.3.2 Adjacency Algorithm

Let ω′ =

z′p, z

′
s


and ω′′ =


z′′p , z

′′
s


be two weakly combinable active set pairs. In the

context of the partitioned sets test, a conclusive result regarding the adjacency of r′

and r′′ requires the fulfillment of either Proposition 6.5 or Proposition 6.8. An initially
inconclusive result, on the other hand, could be dealt with by repartitioning ω′ or ω′′

(or both) until one of the given propositions becomes applicable.

Repartitioning Strategy. Assume that ω′ and ω′′ deliver an inconclusive result. With
respect to Proposition 6.8, at least one of the following three conditions is then unsatis-
fied:

(i) weak combinability of ω′ and ω′′,

(ii) |L| < d− 2 or

(iii) fulfillment of (6.13) for all elements in z′s ∩ z′′s .

The first one is satisfied by default as weak combinability was assumed. The second
one is also satisfied as otherwise Proposition 6.5 would have held. Consequently, the
application of Proposition 6.8 fails because the third condition does not hold. Assume
that it can be satisfied by repartitioning ω′ while keeping the first one satisfied as well.
If the second condition still holds afterwards, then so does Proposition 6.8; hence, r′

111

6 Algebraic Test: Redundancy Elimination

and r′′ are nonadjacent. Otherwise, Proposition 6.5 becomes applicable and implies the
adjacency of r′ and r′′.

The process of satisfying the third condition involves to iteratively traverse all

l ∈ K = z′s ∩ z′′s (6.16)

in ascending order and, if necessary, enforce condition (6.13). The latter is achieved by
using the dependence map entry (l,M, ρ) ∈ χ (ω′) to transform ω′ into another active
set pair

ω′
1 = ((z′p − e) + l, (z′s − l) + e) (6.17)

according to Lemma 6.9. By selecting

e ∈M− z

r′′


to be an element outside of ω′′, l is virtually moved from the set K into the set L.
Moreover, the existence of such e is guaranteed as otherwise condition (6.13) would have
held for l. Consequently, K is step by step reduced to a set of elements all of which
comply with condition (6.13).
After creating a new active set pair as shown in (6.17), we have to make sure that the

corresponding dependence map χ (ω′
1) is also generated. The following three rules give

an overview of how this is accomplished.

I. All elements (p,Mp, ρ) ∈ χ (ω′) with e ̸∈ Mp are also valid for ω′
1. They can be

copied into χ (ω′
1) without modification.

II. The circuitM + l, coded by the tuple (l,M, ψ) in χ (ω′), is also valid for ω′
1. In

χ (ω′
1), it receives the representation (e, (M− e) + l, ψ).

III. All other elements (p,Mp, ρ) ∈ χ (ω′) with e ∈Mp are irrelevant for ω′
1. For each

of them, a new tuple

p,M′

p, φ

with M′

p ⊆ (Mp − e) + l has to be built. The
exact calculation ofM′

p and φ is covered in Lemma 6.10.

In Figure 6.6, the creation of χ (ω′
1) is illustrated for the extreme ray r1 from Exam-

ple 6.3. In that context,

ω1 = ({2, 3, 4, 7} , {8, 9}) and ω′
1 = ({3, 4, 7, 8} , {2, 9}) are the active set pairs before

and after the repartitioning, and

χ (ω1) = {(l1,M8, ψ) , (l2,M9, ρ)} is the dependence map of ω1.

Weak vs Strong Combinability. While the described repartitioning procedure achieves
the fulfillment of (6.13) for all elements in z′s∩z′′s , it is unclear how the weak combinability
of ω′ and ω′′ is preserved for ω′

1 and ω′′. Obviously, this property is not automatically
satisfied as for some (l,M′′, ρ′′) ∈ χ (ω′′),

M′′ ⊂ N≤l (6.18)

112

6.3 The Refined Algebraic Test

8

1

2

3

4

5

6

7

8

9

0

−1

−1

−1

0

0

2

−1

0





swap

2

1

2

3

4

5

6

7

8

9

0

−1

−1

−1

0

0

2

−1

0





9

1

2

3

4

5

6

7

8

9

0

−1

0

0

0

0

1

0

−1




substitute

9

1

2

3

4

5

6

7

8

9

0

0

1

1

0

0

−1

1

−1





l1 M8
ψ l′1 M2

ψ

l2 M9
ρ l2 M′

9
φχ (ω1) χ (ω′

1)

Figure 6.6: Update of dependence maps after repartitioning

may not hold. This obstacle can be easily cleared by requiring strong combinability for
ω′ and ω′′. In this case, (6.18) is satisfied by definition. Still, in order to guarantee
the strong combinability of ω′

1 and ω′′ as well, one last problem has to be solved. Let
p ∈ z′s ∩ z′′p be some element with associated dependence map entry (p,Mp, ρ) ∈ χ (ω′)
such that p < l and e ∈ Mp. After swapping l and e in the transformation step (6.17),
we should construct the new dependence map entry


p,M′

p, φ

∈ χ (ω′

1) according to
rule III (see previous paragraph). M′

p + p, however, is a circuit containing both l and
p which puts ω′

1 =

z′p1, z

′
s1


and ω′′ in a noncombinable form as l ∈ z′p1 ∩ z′′s and p < l

(see Definition 6.3). This issue is easily resolved by widening the range defined in (6.16)
to

K ′ = z′s ∩ (z′′p ∪ z′′s) .

By doing so, the existence of a p < l with (p,Mp, ρ) ∈ χ (ω′) is effectively ruled out as

z′s ∩ z′′p ∩ N≤l = ∅

for each transformation candidate l.

Implementation. In Procedures 11, 12, 13 and 14, one possible implementation of the
partitioned sets test is demonstrated. The starting point of the algorithm is Proce-
dure 11. It requires two strongly combinable active set pairs ω′ and ω′′ of the extreme

113

6 Algebraic Test: Redundancy Elimination

rays which the adjacency test should be performed for. Its output is one of the boolean
values true, in case of adjacency, or false, otherwise. It is worth mentioning that
optimizations have been intendedly omitted in order the preserve the algorithm’s com-
pactness and simplicity.

Procedure 11 pst: partitioned sets test

Input:


ω′ =


z′p, z

′
s


∈ ϕ (r′), an active set pair of r′

χ (ω′), dependence map of ω′

ω′′ =

z′′p , z

′′
s


∈ ϕ (r′′), an active set pair of r′′

Output:


true, if r′ and r′′ are adjacent
false, otherwise

if nonadjacent (ω′, ω′′) then
return false

else
if adjacent (ω′, ω′′) then
return true

else
L ← (z′p ∩ z′′p) ∪ (z′p ∩ z′′s) ∪ (z′′p ∩ z′s)
C ← {(p,Mp) | (p,Mp, ρ) ∈ χ (ω′) ∧Mp ̸⊆ L}
(l,M)←min (C) {Returns the tuple with minimal l}
e←min


M− (z′′p ∪ z′′s)


return pst (repartition (ω′, χ (ω′) , e, l) , ω′′)

end if
end if

Procedure 12 adjacent: partial adjacency test

Input: ω′ =

z′p, z

′
s


∈ ϕ (r′) and ω′′ =


z′′p , z

′′
s


∈ ϕ (r′′) are strongly combinable active

set pairs of r′ and r′′

Output:


true, if r′ and r′′ are adjacent
false, if the result is inconclusive

L ← (z′p ∩ z′′p) ∪ (z′p ∩ z′′s) ∪ (z′′p ∩ z′s)
if |L| = d− 2 then

return true
else
return false

end if

114

6.3 The Refined Algebraic Test

Procedure 13 nonadjacent: partial nonadjacency test

Input: ω′ =

z′p, z

′
s


∈ ϕ (r′) and ω′′ =


z′′p , z

′′
s


∈ ϕ (r′′) are strongly combinable active

set pairs of r′ and r′′

Output:


true, if r′ and r′′ are nonadjacent
false, if the result is inconclusive

L ← (z′p ∩ z′′p) ∪ (z′p ∩ z′′s) ∪ (z′′p ∩ z′s)
indep← |L|
dep← |{p ∈ z′s ∩ z′′s : (p,Mp, ρ) ∈ {χ (ω′) ∪ χ (ω′′)} andMp ⊆ L}|
inconc← |z′s ∩ z′′s | − dep
if indep+ inconc ≥ d− 2 then

return false
else
return true

end if

Procedure 14 repartition: active set pair repartitioning

Input:


ω = (zp, zs) ∈ ϕ (r), a valid active set pair of r
χ (ω), the dependence map of ω
(e, l) ∈ zp × zs, the elements to swap between zp and zs

Output:


ω1 ∈ ϕ (r), an active set pair of r distinct from ω
χ (ω1), the dependence map of ω1

ω1 ← ((zp + l)− e, (zs + e)− l)
χ (ω1)← ∅
for all (p,Mp, ρ) ∈ χ (ω) do
if p ̸= l then
if e ∈Mp then
φ← ψeρ− ρeψ {with (l,Ml, ψ) ∈ χ (ω)}
M′

p ← {m | m ̸= p ∧ φm ̸= 0}
χ (ω1)← χ (ω1) +


p,M′

p, φ


else
χ (ω1)← χ (ω1) + (p,Mp, ρ)

end if
else
χ (ω1)← χ (ω1) + (e, (Mp − e) + l, ρ)

end if
end for
return (ω1, χ (ω1))

115

6 Algebraic Test: Redundancy Elimination

6.4 The Double Description Method Enhanced

Corollary 6.11. In the context of the dd method’s iteration step, consider the extreme
rays r′, r′′ and r▽ emerging from the generators x′ ∈ X+

i , x
′′ ∈ X−

i and x▽ ∈ X▽
i where

x▽ = (ajx
′)x′′ − (ajx

′′)x′ .

Assuming that ω′ =

z′p, z

′
s


and ω′′ =


z′′p , z

′′
s


are strongly combinable active set pairs

which satisfy Proposition 6.5, then

ω▽ =

L+ j, z′s ∩ z′′s


∈ ϕ


r▽


(6.19)

is a normalized active set pair of r▽.

Proof. Assume that ω▽ is not normalized. Then for some l ∈ z′s ∩ z′′s and m ∈ L with
l < m there exists a circuit D ⊆ (L+ l) ∩ N≤m containing both m and l. It is evident
that either m ∈ z′p or m ∈ z′′p . In the former case, applying Lemma 6.6 with r = r′ and
K = z′s ∩ (z′′p ∪ z′′s) implies that

D ̸⊆ (z′p ∪ (z′s ∩ (z′′p ∪ z′′s))) ∩ N≤m ⊇ (L+ l) ∩ N≤m .

Analogously, in the latter case, we can show that

D ̸⊆ (z′′p ∪ (z′′s ∩ (z′p ∪ z′s))) ∩ N≤m ⊇ (L+ l) ∩ N≤m

by applying Lemma 6.6 with r = r′′ and K = z′′s ∩ (z′p ∪ z′s). Consequently, the nonexis-
tence of D and thus the normalization of ω▽ are proven.

The integration of the partitioned sets test requires three major changes of the dd
method:

(i) the substitution of active sets by normalized active set pairs,

(ii) the attachment of a dependence map to each such pair and

(iii) the application of Procedure 11 in place of the classic algebraic test.

It is important to note that an active set pair is valid only in the context of one iteration
step. For some extreme ray r ∈ Ri, the normalized active set pair ωni (r) is not necessarily
equal to ωni+1(r) which is the normalized active set pair related to the same ray r but
in the next iteration step. Analogously, the corresponding dependence maps χ (ωni (r))
and χ


ωni+1(r)


may differ as well.

The described changes lead to the following enhancements of dd method’s steps.

Initial Step: As described in Section 4.1, C0 has exactly d extreme rays. The normalized
active set pair of each ray ri is then

ωn0 (ri) = (z (ri) , ∅) .

The corresponding dependence map is empty; hence,

χ (ωn0 (ri)) = ∅ .

116

6.4 The Double Description Method Enhanced

Iteration Step: Assume that for each extreme ray r ∈ Ri the normalized active set pair
ωni (r) and its dependence map χ (ωni (r)) are known. The extreme rays

r′, r′′

∈ R+

i ×R
−
i

are adjacent if and only if

pst

ωni (r

′), χ

ωni (r

′)

, ωni (r

′′)

= true .

After all adjacent extreme rays have been collected, a set R▽
i containing all new

extreme rays emerges; hence,

Ri+1 = R−
i ∪R

0
i ∪R▽

i .

This is the point where the traditional dd method proceeds with the next iteration
step or terminates if all constraints have been already processed. When using the
partitioned sets test, however, additional postprecessing actions are necessary in
order to satisfy the preconditions of the next iteration step; that is, we have to make
sure that ωni+1(r) and χ


ωni+1(r)


are available for each extreme ray r ∈ Ri+1. In

this respect, the following three cases are to be considered.

If r ∈ R−
i , then the active set pair of r and the corresponding dependence map

remain unchanged; that is,

ωni+1(r) = ωni (r) and χ

ωni+1(r)


= χ (ωni (r)) .

If r ∈ R0
i , then z (r) is extended by the element j. Let ωni (r) = (zp, zs). Then

ωni+1(r) = (zp, zs + j) .

The extension of the active set pair also triggers an extension of the corre-
sponding dependence map. The new element j is part of a circuit D ⊆ zp+ j
which has to be calculated and stored in the dependence map as a tuple
(j,D − j, ψ). Provided all known circuits are organized in a global struc-
ture as described in Section 6.2, we can check whether such D is already
known. If not, D and ψ are obtained by solving the system of linear equa-

tions

ATzpx | a

T
j


. Consequently,

χ

ωni+1(r)


= χ (ωni (r)) + (j,D − j, ψ) .

If r ∈ R▽
i , then r emerges as a linear combination of two adjacent extreme rays

r′ and r′′. During the partitioned sets test two strongly combinable active set
pairs

ω′ =

z′p, z

′
s


∈ ϕ


r′

and ω′′ =


z′′p , z

′′
s


∈ ϕ


r′′


satisfying Proposition 6.5 have been found. Provided those can be accessed
after the adjacency test, the normalized active set pair of r is

ωni+1(r) =

L+ j, z′s ∩ z′′s


according to Corollary 6.11. Its dependence map is then

χ

ωni+1(r)


=

(l,M, ρ) ∈


χ

ω′ ∪ χ ω′′ : l ∈ z′s ∩ z′′s andM⊆ L


.

117

6 Algebraic Test: Redundancy Elimination

6.5 Experimental Results

The benchmark from Section 5.6 was used once again to assess the competitiveness of
the partitioned sets test with regard to the classic algebraic test and the combinatorial
one. The obtained results are summarized in Table 6.1. It should be said that each
program configuration had a time limit of four hours to solve a single problem group;
that is, sixteen hours for all problems. The classic algebraic test did not manage to
finish the computation within the given time constraints; thus, exact computational
times could not be obtained. The tendency, however, is clear: it is hardly competitive
with the other two adjacency test variants. The opposite can be said for the partitioned
sets test. It turned out to be a very promising alternative to the combinatorial test for
a broad variety of problems. Its general performance depended very much on the size of
the maintained cache. The smaller the size, the better the performance. Consequently,
high dimensional problems featuring very high degeneracy remained a domain where the
combinatorial test could still claim a superiority.

combinatorial
algebraic

pst classic

random 4 16 64 161.525 136.384 528.466

random 4 16 96 27.783 23.207 93.475

random 6 64 96 94.041 83.535 �
random 8 128 157 71.136 68.019 �

random 6 16 104 519.205 414.150 1 427.240

random 4 64 112 154.722 113.594 �
random 4 128 172 182.097 132.198 �

random 4 16 112 68.114 63.281 1 052.895

random 16 68 115 58.910 16.883 �
random 12 128 174 67.625 18.554 �

random 8 20 160 150.944 714.888 �
random 16 64 179 1 296.747 1 500.953 �
random 24 128 277 1 470.488 3 402.260 �

Table 6.1: Combinatorial vs. algebraic test

118

7 Divide and Conquer: Advantages and
Limitations

One way of fighting the computational complexity of the convex hull problem is by paral-
lelizing the computation. The dd method can be easily adapted for parallel computation
by distributing its most time consuming part, the adjacency testing of extreme rays, on
different processors. By applying the master-and-slave [129] paradigm, a central proces-
sor is given a master role of assigning adjacency tests to other available processors, the
so called slaves, and then collecting and postprocessing the results at the end of each in-
cremental step. Several implementations employing that approach have been introduced
with corresponding experimental results provided and evaluated [130, 103, 145]. This
technique, however, has some serious limitations with regard to the scalability of the
parallelization. First, we cannot effectively break the sequentiality as synchronization
is required at the end of each iteration step. If adjacency tests are to be distributed
on several machines, this may result in potentially large amounts of data being shifted
over the communication network. Moreover, another problem arises from the potentially
exponential growth of intermediate results. At some point they may not fit into the op-
erational memory of the master processor; hence, even having enough computational
capacity does not guarantee to solve a particular problem as the algorithm may still fail
due to lack of space.
In order to effectively deal with the above limitations, another parallel processing

paradigm, the divide-and-conquer one [86], can be applied. The general idea rests on
backtracking [76] and goes back as far as the algorithm of Balinski [17]. Let Ci be a
polyhedral cone with known H- and V- representations and let aj , . . . , an be a sequence
of row vectors defining linear halfspaces to cut Ci with. We can think of Ci as an
intermediate cone within the dd method where aj , . . . , an are the unprocessed rows of
A. Instead of performing the traditional sequential step with Ci+1 = Ci ∩ {x | ajx ≤ 0},
an alternative route can be followed.

(i) Split the computation into two threads, and pass Ci and aj , . . . , an to each of them.

(ii) Within the first thread, compute C′i+1 = Ci ∩ {x | ajx = 0} and then proceed the
computation with C′i+1.

(iii) Within the second thread, skip aj for the moment and proceed directly with aj+1.
At the end of the computation, when a final cone C′′ is reached, extract only those
extreme rays of C′′ which lie strictly within the halfspace {x | ajx < 0}.

In Section 7.1, the above idea is presented in greater detail. Following that, a divide-
and-conquer version of the dd method is given in Section 7.2.

119

7 Divide and Conquer: Advantages and Limitations

The divide-and-conquer approach has been discussed on several occasions by the bioin-
formatics community in the context of extreme pathway enumeration [100, 93] and re-
cently applied in practice by Jevremović et al. [92]. The authors reported a substantial
performance gain which opened the question of its applicability for general problems.
The computational experience gathered so far has been limited to the particular area
of metabolic networks; hence, no general conclusions could be derived. Here, a comple-
mentary computational experience is provided to demonstrate that for certain problems,
a class of cut polytopes [18], the divide-and-conquer approach leads to a serious com-
putational explosion (see Section 7.3). The described behavior could not be avoided by
changing the insertion order of the rows in A (see Section 7.4). However, in the course
of experiments, another way of performing a partial divide-and-conquer computation
emerged. Splitting the computation in its final stages turned out to be robust enough,
despite achieving only a moderate performance gain.

7.1 From a Sequence to a Tree

Let C (A) , A ∈ Rn×d be a polyhedral cone for which a minimal set of generators X
should be computed. In this context, the application of the dd method corresponds
to finding an initial cone C0 and then sequentially refining it by adding one halfspace
constraint at a time. In total, we obtain n− d refinement steps. At each step i, both H-
and V-representations of the intermediate cone are available forming a double description
pair

pi = (Ai, Xi)

which consists of a (d + i) × d matrix and a minimal set of the generators for C (Ai).
Consider now the tuple

t = (A◦, A•, X◦, A▷) (7.1)

with A◦, A• and A▷ disjoint row submatrices of Ai such that

A◦ and A• define an intermediate cone C◦ = {x | A◦x ≤ 0, A•x = 0},

A▷ contains all other rows of Ai not appearing in A• or A◦, and

X◦ contains a minimal set of generators corresponding to C◦.

It is obvious that the tuple given in (7.1) is at least as powerful as a dd pair due to the
trivial equivalence

(Ai, Xi) ∼ (Ai,⊥, Xi,⊥) (7.2)

with ⊥ denoting the empty matrix. Additionally, it enables partial representations of
the intermediate cone C (Ai) in the sense that

t′ =

Ai−1,


al

, X ′

i,⊥


with l = d+ i

represents one facet of C (Ai) emerging from the intersection of C (Ai−1) with the hy-
perplane Hl = {x | alx = 0}, whereas

t′′ =

Ai−1,⊥, Xi−1,


al


120

7.1 From a Sequence to a Tree

still corresponds to the cone C (Ai−1), but also suggests that an intersection with Hl has
been performed elsewhere. It is easy to see that (t′, t′′) is an equivalent representation
of pi as

Ai =


Ai−1

al


and Xi = X ′

i ∪ {x ∈ Xi−1 : alx < 0}

are trivially obtainable out of (t′, t′′). Consequently, we shall call the tuples defined
in (7.1) fragments of a dd pair.

Each fragment can be further divided by selecting a facet and expressing separately
those generators which lie on the facet and those which do not; that is, for some matrix
row aq of A◦,

(A◦, A•, X◦, A▷) ∼


A◦′,


A•

aq


, X◦′, A▷


,


A◦′, A•, X◦′′,


A▷

aq


(7.3)

where

A◦′ denotes the row submatrix of A◦ obtained by removing aq,

X◦′ ⊆ X◦ contains the generators lying on the hyperplane {x | aqx = 0}, and

X◦′′ stands for a minimal set of generators corresponding to the cone
x | A◦′x ≤ 0, A•x = 0


.

Consequently, it is easily provable that

x ∈ X◦ ⇔ x ∈ X◦′ ∨

x ∈ X◦′′ ∧ aqx < 0


,

thus the recursive application of the equivalence rules given in (7.2) and (7.3) yields an
alternative representation for each dd pair by finitely many fragments.
Let Ti = {t1, . . . , tg } be a set of fragments representing the dd pair pi with

tk = (A◦
k, A

•
k, X

◦
k , A

▷
k) for 1 ≤ k ≤ g .

In context of the dd method, the transition to pi+1 corresponds to

Ti −→
g

k=1


A◦
k

aj


, A•

k, X̂
◦
k , A

▷
k


(7.4)

with X̂◦
k a minimal set of generators satisfying

cone

X̂◦
k


= cone (X◦

k) ∩ {x | ajx ≤ 0} .

By applying the equivalence given in (7.3), we obtain an alternative transition

Ti −→
g

k=1


A◦
k,


A•
k

aj


, X◦′

k , A
▷
k


,


A◦
k, A

•
k, X

◦
k ,


A▷k
aj


(7.5)

which doubles the number of fragments. Consequently, the traditional dd method can be
redefined from performing a sequential computation of dd pairs to a divide-and-conquer
algorithm which operates on fragments instead (see Figure 7.1).

121

7 Divide and Conquer: Advantages and Limitations

. . . (Ai,⊥, Xi,⊥)


Ai,


aj


, X′

i+1,⊥



Ai,


aj
aj+1


, X′

i+2,⊥



Ai,


aj


, X′

i+1,

aj+1




Ai,⊥, Xi,


aj



Ai,


aj+1


, X′′

i+2,

aj




Ai,⊥, Xi,


aj
aj+1



Figure 7.1: Divide-and-Conquer

7.2 The Distributed Double Description Method

In Procedure 15, an extended version of the dd method is presented which is suitable
for parallel computation. The proposed algorithm is parametrized by a list L indicating
those steps at which the transition given in (7.5) is applied; that is, it indicates the steps
at which the computation is being split. All other steps are performed according to the
transition given in (7.4). Furthermore, it assumes the existence of the functions

dd cut plane (Xi, aj) = Xi+1 which executes a stricter form of the iteration step in
the sense that cone (Xi+1) = cone (Xi) ∩ {x | ajx = 0}, and

dd cut space (Xi, aj) = dd cut plane (Xi, aj)∪{x ∈ Xi : ajx < 0} which covers the
traditional form of the iteration step where aj is satisfied with inequality.

The reasoning behind the divide-and-conquer approach becomes evident when com-
paring the transitions given in (7.4) and (7.5) in the context of Procedure 15. For one
thing, dd cut plane is a stricter form of dd cut space and thus produces less inter-
mediate generators. This reduces the overall amount of data passed onto the successive
steps. Consequently, in the main thread, less computational effort is expected when
applying divide-and-conquer. The critical point, however, is the new thread which is
opened with the invocation of fork (. . .). The matrix passed to that thread is effectively
the original one reduced by one constraint; hence, the assumption is that it requires
less effort to compute as well. Assume now that an unlimited number of free processors
is available and thus each invocation of fork guarantees the exclusive assignment of a
free processor to the resulting new thread. Then, for L1 ⊃ L2, the execution time of
dd comp (. . . , L1) should not exceed that of dd comp (. . . , L2).
In practice, we have seldom the luxury of possessing an unlimited number of processors.

We thus have to decide when to split the computation and when to let it run sequentially.
Moreover, the number of fork operations grows exponentially if divide-and-conquer is to
be applied on each consecutive step. Let 2t be the number of available processors. Then,

122

7.3 Experimental Results

Procedure 15 dd comp: divide-and-conquer version of the dd method

Input:


A, H-representation of the polyhedral cone
l, current row index
t = (A◦, A•, X◦, A▷), current dd pair fragment
L, list of divide-and-conquer steps

Output: A minimal set of generators corresponding to C (A)
1: if l > rows (A) then
2: return {x ∈ X◦ : A▷x < 0}
3: else
4: if l ̸∈ L then

5: A◦′ ←

A◦

al


; X◦′ ← dd cut space (X◦, al); t

′ ← (A◦′, A•, X◦′, A▷)

6: return dd comp (A, l + 1, t′, L)
7: else

8: A•′ ←

A•

al


; X◦′ ← dd cut plane (X◦, al); t

′ ← (A◦, A•′, X◦′, A▷)

9: A▷′′ ←

A▷

al


; t′′ ← (A◦, A•, X◦, A▷′′)

10: return dd comp (A, l + 1, t′, L) ∪ fork (dd comp (A, l + 1, t′′, L))
11: end if
12: end if

we can outline two major strategies for performing the parallelization. For one thing, we
can split the computation from the beginning onto 2t threads and then proceed with the
classic dd method on each of them. This approach basically corresponds to the algorithm
proposed by Jevremović et al. [92]. We shall call it an early split. Alternatively, we can
compute the majority of steps on a single processor and then distribute the last t steps
on the available processors. This approach has not been investigated so far. We shall
call it a late split. With respect to the construction of L, an early split implies that
L = {d+ 1, . . . , d+ t}, whereas a late split is defined by L = {n− t, . . . , n− 1}. It is
evident that in both cases the preprocessing of the input matrix may have an impact on
the subsequent performance as it implicitly defines the constraints upon which divide-
and-conquer steps are executed.

7.3 Experimental Results

The facet enumeration of cut polytopes [18] has a long history of serving as a benchmark
for convex hull algorithms and thus makes a good starting point to assess the divide-and-
conquer technique. The test set considered here contains the cut polytope of a complete
graph on seven vertices ccp 7 (available in the cdd package [75]) as well as three cut poly-
topes of incomplete graphs on eight vertices with 20 to 22 edges (cp 8 20,. . . ,cp 8 22).
The experimental results for early and late split are summarized in Tables 7.1 and 7.2
with all time values given in seconds. For each problem, the rows of the input matrix

123

7 Divide and Conquer: Advantages and Limitations

were rearranged by imposing four different variations of the lexicographic order, which
is known to work well for cut polytopes (see [77]). All experiments were performed
with addibit on CentOS 6.5 running 3 Intel Xeon processors with 4 cores each and 16
gigabytes of operating memory.

order 1 thread 2 threads 4 threads

ccp 7

lex 23.3 3.5 53.3 0.9 17.3 20.1 51.3

colex 23.4 3.7 54.8 0.9 17.9 21.0 52.8

rev-lex 23.2 3.8 52.7 0.9 16.8 19.5 50.9

rev-colex 23.4 3.7 54.2 1.0 17.7 20.1 52.2

cp 8 20

lex 24.1 3.7 40.3 0.9 6.0 6.5 71.3

colex 24.9 1.6 34.3 0.3 3.1 3.2 50.6

rev-lex 24.2 3.7 40.4 0.9 6.0 6.5 71.1

rev-colex 24.5 1.6 33.8 0.3 3.1 3.2 50.6

cp 8 21

lex 70.4 4.3 106.5 1.2 20.2 20.3 121.0

colex 131.3 8.5 204.2 1.9 40.4 39.4 254.9

rev-lex 71.2 4.3 106.5 1.2 20.2 20.3 121.3

rev-colex 132.6 8.4 204.0 1.9 39.7 39.6 252.5

cp 8 22

lex 418.8 26.7 840.7 2.0 41.2 37.7 1202.8

colex 1057.4 59.0 2045.6 2.9 91.1 74.0 2718.5

rev-lex 416.9 26.9 840.3 1.9 41.3 37.6 1212.8

rev-colex 1053.3 59.2 2043.2 2.9 90.9 74.0 2710.4

Table 7.1: Early split on cut polytopes (time per thread)

n× d order 1 thread 2 threads 4 threads 8 threads 16 threads

ccp 7 64× 22

lex

23.6 20.9 17.6 16.0 15.6

cp 8 20 128× 21 24.1 23.7 23.0 22.4 22.1

cp 8 21 128× 22 70.4 68.3 66.4 63.1 60.5

cp 8 22 128× 23 418.8 398.9 386.8 360.6 349.0

Table 7.2: Late split on cut polytopes (overall time)

7.4 Discussion

The divide-and-conquer algorithm splits the computation by reducing the dimensionality
of the problem on one of the resulting threads and the number of defining halfspaces
on the other one. Another way to look at the algorithmic step is of a matrix which is
reduced by one column on the first thread and by one row on the second one. Thus, the
application of the early split strategy on two threads reduces the original n × d matrix

124

7.4 Discussion

to an n× d− 1 one on thread 1 and an n− 1× d one on thread 2. On four threads, we
obtain an n×d−2 matrix on thread 1, n−1×d−1 matrices on threads 2 and 3, and an
n− 2× d matrix on thread 4. For the here investigated cut polytopes, removing merely
rows from the input matrix has obviously an adverse effect on the problem’s complexity.
This fact may seem initially counterintuitive; however, the removal of those halfspaces
from the input changes the computational run of the dd method. In geometric terms, the
algorithm has to deal now with extreme rays which lie within the eliminated halfspaces
and as such would have been discarded in the classic computation. Consequently, the
algorithm has less steps but may still produce more intermediate rays due to the changed
geometry of the polyhedral cone.

In the previous work (see [92]), the rows of the input matrix have been rearranged
manually in order to obtain better results. Regarding the cut polytopes investigated
here, however, it is not clear how to define an ordering which both makes early split
scalable and remains competitive in the sequential scenario. Consider, for example, the
computational run on two threads for ccp 7 resulting from the reversed lexicographic
order (rev-lex). We can manually select another row al1 to be excluded from the com-
putation on thread 2 by putting al1 at position d + 1 in the input matrix A7. The
objective is obviously to bring the running time on that thread below the mark set by
the sequential computation. In total, there are five rows a60, . . . , a64 satisfying that re-
quirement (see Figure 7.2). In those cases, however, the performance of thread 1 takes a
significant hit after rearranging the rows. In the end, the parallel algorithm outperforms
the sequential one in two cases only, when either a60 or a61 is excluded. Let A′

7 and A′′
7

denote the rearranged matrices in those two cases. With both of them, the dd method
has worse execution time on four threads. Yet, following the previous strategy, we can
again manually select another row al2 to be excluded from A′

7 or A′′
7 on thread 4 in order

to rebalance the computation. All rearrangements in A′′
7 showed no improvement (see

Figure 7.4). For A′
7, a59 is the only row which brings some speedup (see Figure 7.3) On

eight threads, however, the execution time drops once again and here no rearrangements
could improve it anymore (see Figure 7.5). Similar experiments were performed with
other rearrangement strategies eventually leading to the same result.

The removal of constraints from the input matrix does not have such a strong impact
in the late split scenario as the dimensionality of the problem is reduced within each step
as soon as the parallelization starts. That particular technique delivered only a minimal
speedup for cut polytopes; however, it should be pointed out that the majority of the
computation was still performed in a sequential manner. For example, a late split on
eight threads means that one algorithmic step is distributed on eight threads, one on
four, one on two and the rest is still dealt with sequentially. Hence, for a problem like
cp 8 22 with 105 steps, we can hardly expect to gain much time as the last three steps
take a comparably small amount of time to compute. The late split strategy is better
suited for problems where most of the calculation is concentrated within the last few
steps. Indeed, such problems arise often in practice as the dd method tends to produce
more and more intermediate rays with each step which stalls the computation towards
the end. In order to demonstrate such a scenario, five additional problems are presented

125

7 Divide and Conquer: Advantages and Limitations

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

T
im

e
(s
e
c
)

l1

sequential computation

Thread 1
Thread 2

Figure 7.2: Early split on two threads for ccp 7

in Table 7.31. The first two problems feature the facet enumeration of polytopes which
arise from the union of a 4-cube with a random 0/1 polytope. The latter three require
building the convex hull of randomly generated integer vectors. Note that late split
is more competitive when more of the time intensive steps are distributed on multiple
threads (e.g., compare 2 vs 16 threads).

n× d 1 thread 2 threads 4 threads 8 threads 16 threads

rnd cube 28 45× 29 61.0 35.0/ 29.9 28.6/ 15.8 17.1/ 9.7 11.1/ 8.1

rnd cube 30 47× 31 200.4 170.2/115.1 140.9/ 96.0 83.7/ 79.4 52.6/ 64.7

rnd 6 64 96 96× 64 129.5 69.2/ 46.9 52.9/ 35.8 32.9/ 26.0 22.7/ 23.0

rnd 8 128 157 157× 128 101.8 52.9/ 38.6 27.7/ 34.2 21.8/ 17.0 14.7/ 14.6

rnd 16 64 167 167× 64 2483.1 1262.8/395.1 590.4/349.0 479.4/374.5 278.1/394.6

Table 7.3: Late/Early split on randomly generated polytopes

1Not included in the initial version of the work

126

7.4 Discussion

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

T
im

e
(s
e
c
)

l2

computation on two threads

Thread 1
Thread 2
Thread 3
Thread 4

Figure 7.3: Early split on four threads for ccp 7 (l1 = 60)

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

T
im

e
(s
e
c
)

l2

computation on two threads

Thread 1
Thread 2
Thread 3
Thread 4

Figure 7.4: Early split on four threads for ccp 7 (l1 = 61)

127

7 Divide and Conquer: Advantages and Limitations

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

T
im

e
(s
e
c
)

l3

computation on four threads

Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8

Figure 7.5: Early split on eight threads for ccp 7

128

8 Addibit: Benchmark and Results

In the course of this work, a new double description implementation addibit1 emerged
as a framework to conduct the necessary experiments on. Consequently, it is interesting
to see how it performs against other noncommercial implementations. Several freely
available programs are natural candidates in that respect: cdd [75], four-ti-two [1],
lrs [8], polco [142], porta [50], ppl [15] and skeleton [157]. An overview of their
properties is given in Table 8.1.

f
o
u
r
-t
i-
t
w
o

sk
e
l
e
t
o
n

p
p
l

c
d
d

p
o
l
c
o

p
o
r
t
a

l
r
s

a
d
d
ib
it

Algorithm pl1 dd2 dd dd dd fm3 rs4 dd

Input Format .mat .ine/.ext .ine/.ext .ine/.ext .ine/.ext .ieq .ine/.ext .ine/.ext

Preprocessing cutoff
lex

cutoff
- lex

cutoff

lex

zero

cutoff

- - lex

zero

Rational Arithmetic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Float Arithmetic ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗

Precision Library gmp5 arageli gmp gmp jdk porta gmp gmp

Prog. Language C/C++ C/C++ C/C++ C/C++ Java C C C/C++

Version 1.6.2 2.1.5 1.1 0.77a 4.7.1 1.4.1 5.0 0.3.0

Released Feb 14 May 13 Oct 13 Oct 07 Dec 09 Sep 09 May 13 Jun 14

1
Project and Lift Algorithm [87]

2 Double Description Method
3 Fourier Motzkin Elimination
4 Reverse Search
5 GNU Multiple Precision Arithmetic Library [84]

Table 8.1: Noncommercial programs for convex hull computations

All programs had to solve instances from the benchmark given in Section 5.6 as well as
some previously studied problems. The latter involved dwarfed cubes, products of cyclic
polytopes, truncated and SSC-polytopes from the work of Avis et al. [10, 11], metric
polytopes [61], cut polytopes [18] and products of randomly generated 0/1 polytopes
and hypercubes. The programs cdd, polco, skeleton and addibit were configured

1Available at www.informatik.uni-bremen.de/agbs/bgenov

129

www.informatik.uni-bremen.de/agbs/bgenov

8 Addibit: Benchmark and Results

to impose a lexicographic order on the input matrix (lexmin option). For four-ti-two
and porta, the matrix had been externally sorted in lexicographic order. Unfortunately,
ppl does not accept any preprocessing options. It sorts the matrix internally according
to its own strategy so that no real influence on the constraints ordering could be exerted.
For lrs, preprocessing was not considered significant as it employs a pivoting algorithm.

f
o
u
r
-t
i-
t
w
o

sk
e
l
e
t
o
n

p
p
l

c
d
d

p
o
l
c
o

p
o
r
t
a

l
r
s

a
d
d
ib
it

random 4 16 64 � � � � 2 605.384 � 920.066 197.003Timeout: 3600

random 4 16 96 � 938.751 � � 1 365.430 � 640.907 54.523Timeout: 3600

random 6 16 104 � � � � � � � 783.976Timeout: 3600

random 4 16 112 � 1 746.262 � � 1 108.111 � 3 339.556 78.314Timeout: 3600

random 16 68 115
372.113 � � � 1 500.815 � � 206.889Timeout: 3600

random 8 20 160 � � � � 1 449.405 � � 251.982Timeout: 3600

Table 8.2: Computational results for random problems

Table 8.2 illustrates the computational results related to the benchmark of random
problems. Table 8.3 illustrates the results related to all other problems. Here, each row
corresponds to a group of similar vertex/facet enumeration problems. For each program,
the execution time needed to solve all of them is given. If not able to solve all problems
within the given time constraints, the number of successfully computed instances is given
together with the corresponding execution time. It should be noted that the problems
within each group have been ordered by growing difficulty; that is, each problem had an
id corresponding to its position in the execution queue and was generally harder to solve
than the previous one. In Figures 8.1, 8.2, 8.3, 8.4, 8.5 and 8.6, the data from Table 8.3
is illustrated in a more detailed form. Each figure contains two different charts. In the
first one, the accumulated running time to solve all problem instances up to a certain id
is illustrated. The second one is related to the amount of operational memory required
to solve each single problem.
All experiments were made under Ubuntu 13.10 on a single core of an Intel®

Core� i7 CPU with 2.4 GHz clock frequency and 16 GB available RAM. Execution

130

f
o
u
r
-t
i-
t
w
o

sk
e
l
e
t
o
n

p
p
l

c
d
d

p
o
l
c
o

p
o
r
t
a

l
r
s

a
d
d
ib
it

cyclic 1416.923 3252.606
185.839

2609.208
3538.800 709.483

2545.142
141.376

Timeout: 3600 20/22 18/22 18/22 16/22

SSC
8.138

4.115 969.861
313.791

678.785
21.518

896.069
49.338

Timeout: 3600 9/16 13/16 11/16 6/16

truncated
633.483 1001.869

1164.061
2451.494 � 172.364

1736.209
54.951

Timeout: 3600 4/25 6/25

dwarfed
26.678 2.255

732.635 572.806
24.069

237.288
0.379 2.356

Timeout: 1000 16/18 16/18 17/18

metric 0.594 0.954 0.144 2.028 � 0.240 483.515
195.439

Timeout: 3600 4/5 4/5 4/5 4/5 4/5 4/5

cut 127.770 1280.690 778.261 3400.079 � 1102.754 1036.581
98.682

Timeout: 3600 11/13 11/13 12/13 12/13 12/13 7/13

rnd cube
24.438

1230.457 1605.315 1272.860
367.128

3458.443
59.763 161.081

Timeout: 3600 10/11 10/11 9/11 9/11

Table 8.3: Computational results for specific problems

times are given in seconds. Experiments which could not be finished due to lack of
memory or an internal error are denoted with �. Experiments which could not be solved
within the given time period are denoted with �.

131

8 Addibit: Benchmark and Results

0.001

0.01

0.1

1

10

100

1000

10000

0 5 10 15 20

T
im

e
(s
e
c
)

Number of instances solved

skeleton
ppl

cddr
polco
porta

four-ti-two
lrs

addibit

0.1

1

10

100

1000

10000

0 5 10 15 20

A
ll
o
ca

te
d
m
em

o
ry

(m
b
)

Problem id

Figure 8.1: Computational results for products of cyclic polytopes

132

0.01

0.1

1

10

100

1000

0 2 4 6 8 10 12 14 16

T
im

e
(s
e
c
)

Number of instances solved

skeleton
ppl

cddr
polco
porta

four-ti-two
lrs

addibit

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16

A
ll
o
ca

te
d
m
em

o
ry

(m
b
)

Problem id

Figure 8.2: Computational results for SSC-polytopes

133

8 Addibit: Benchmark and Results

0.01

0.1

1

10

100

1000

10000

0 5 10 15 20 25

T
im

e
(s
e
c
)

Number of instances solved

skeleton
ppl

cddr
polco
porta

four-ti-two
lrs

addibit

1

10

100

1000

10000

0 5 10 15 20 25

A
ll
o
ca

te
d
m
em

o
ry

(m
b
)

Problem id

Figure 8.3: Computational results for truncated polytopes

134

0.001

0.01

0.1

1

10

100

1000

0 2 4 6 8 10 12 14 16 18

T
im

e
(s
e
c
)

Number of instances solved

skeleton
ppl

cddr
polco
porta

four-ti-two
lrs

addibit

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18

A
ll
o
ca

te
d
m
em

o
ry

(m
b
)

Problem id

Figure 8.4: Computational results for dwarfed cubes

135

8 Addibit: Benchmark and Results

0.01

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14

T
im

e
(s
e
c
)

Number of instances solved

skeleton
ppl

cddr
polco
porta

four-ti-two
lrs

addibit

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14

A
ll
o
ca

te
d
m
em

o
ry

(m
b
)

Problem id

Figure 8.5: Computational results for cut polytopes

136

0.01

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12

T
im

e
(s
e
c
)

Number of instances solved

skeleton
ppl

cddr
polco
porta

four-ti-two
lrs

addibit

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12

A
ll
o
ca

te
d
m
em

o
ry

(m
b
)

Problem id

Figure 8.6: Computational results for products of hypercubes and 0/1 polytopes

137

9 Conclusions

The convex hull problem has been a field of intensive research for many years. The
countless theoretical contributions have been accompanied by a reasonable amount of
practical work; still, both theory and practice provide open issues. The lack of an
optimal double description implementation is one such issue arising from the practical
application of the algorithm. While, by itself, this work did not completely fill that gap,
it resulted in four noteworthy achievements related to adjacency testing and parallel
computation.

First, multiple data structures suitable for application within the adjacency testing
process were introduced. In addition, several heuristics were proposed to improve the
performance of bit pattern trees, which have been the best solution so far. All data
structures were then compared through practical experiments involving various degen-
erate problems. As a result, the optimized bit pattern trees were superior to all other
investigated data structures. The combination of simplicity and efficacy which they em-
body resulted in excellent performance. Thus, for general problems, they can be viewed
as the best candidate to obtain fast computations. Nevertheless, problems were found to
show that their superiority is not absolute. In the presented survey, only data structures
based on binary search trees have been considered. In that regard, it would be interest-
ing to see whether quad trees [72] or other tree-based data structures can be successfully
adapted for adjacency testing as well.

Second, a new improved algebraic test was introduced. Its correctness was formally
proven. Its competitiveness with the currently best solution, the combinatorial test,
was demonstrated in a series of experiments. Problems with moderate degeneracy and
problems with small numbers of constraints were identified as a potential domain of
superiority for that new adjacency test. It should be noted that it is a more complicated
solution than the currently existing ones; thus, considerable potential for further theo-
retical and practical improvements exists. The internal structure of the global cache, for
example, is one important aspect which deserves further attention. It has a consider-
able impact on the overall performance as cached data is retrieved during the majority
of adjacency tests. Furthermore, the current implementation of the new adjacency test
does not utilize as many technical optimizations as the one embodying the combinatorial
test. In that respect, the presented computational results are certainly improvable.

Third, one particular divide-and-conquer technique related to the parallelization of
the double description method was revisited. It was shown that for a class of cut poly-
topes, the parallel computation is considerably slower than the sequential one due to
a serious computational explosion. This introduced one important question. Is there a
row ordering of the input matrix such that divide-and-conquer works for cut polytopes?
A potentially positive answer, however, may still not solve the practical aspect of the

139

9 Conclusions

problem. A row ordering which is not competitive with the lexicographic one examined
here is of little help in practice. As an alternative, it was demonstrated that the compu-
tational explosion could be bypassed by splitting the computation at a later stage and
thus employing only a partial parallelization.

Finally, empirical evidence was provided that the currently existing double description
implementations are yet to reach optimum performance. A significant performance gain
was achieved by employing modern instruction sets and ideas related to cache-oblivious
data structures [37, 4, 22]. It is likely that this performance can be further improved,
albeit not by such a large margin. The recently introduced GNU Multiprecision Library
version 6, for instance, promises a better support for the latest processor generations and
is certainly worth a try in that respect. Furthermore, branch prediction can potentially
speed up the tree traversals and needs to be examined more thoroughly as well.

140

References

[1] 4ti2 team (2014). 4ti2—a software package for algebraic, geometric and combinatorial
problems on linear spaces, version 1.6.2. available at http://www.4ti2.de (last visit:
01 May 2014).

[2] Abdullahi, S. D., Dyer, M. E., and Proll, L. G. (2003). Listing vertices of simple
polyhedra associated with dual li(2) systems. In Discrete Mathematics and Theoretical
Computer Science, volume 2731 of Lecture Notes in Computer Science, pages 89–96.
Springer.

[3] Altherr, W. (1975). An algorithm for enumerating all vertices of a convex polyhedron.
Computing, 15(3):181–193.

[4] Arge, L., Brodal, G., and Fagerberg, R. (2005). Cache-oblivious data structures.
Handbook of Data Structures and Applications, 27.

[5] Avis, D. (1994). A c implementation of the reverse search vertex enumeration algo-
rithm. Technical report, McGill University of Technology, Montreal, Canada.

[6] Avis, D. (1998). Computational experience with the reverse search vertex enumera-
tion algorithm. Optimization Methods and Software, 10:107–124.

[7] Avis, D. (2000a). Living with lrs. In Japan Conference on Discrete and Compu-
tational Geometry, volume 1763 of Lecture Notes in Computer Science, pages 47–56.
Springer.

[8] Avis, D. (2000b). lrs: A revised implementation of the reverse search vertex enumera-
tion algorithm. In Kalai, G. and Ziegler, G. M., editors, Polytopes - Combinatorics and
Computation, DMV Seminar Band 29, pages 177–198. Birkhauser, Basel, Switzerland.

[9] Avis, D. (2013). lrslib: Implementation of the reverse search method, version 5.0.
available at http://cgm.cs.mcgill.ca/~avis/C/lrs.html (last visit: 01 May 2014).

[10] Avis, D. and Bremner, D. (1995). How good are convex hull algorithms? In
Proceedings of the 11th annual symposium on Computational geometry, SCG ’95, pages
20–28. ACM Press.

[11] Avis, D., Bremner, D., and Seidel, R. (1997). How good are convex hull algorithms?
Computational Geometry: Theory and Applications, 7:265–301.

[12] Avis, D. and Fukuda, K. (1991a). A basis enumeration algorithm for linear systems
with geometric applications. Applied Mathematics Letters, 4(5):39–42.

141

http://www.4ti2.de
http://cgm.cs.mcgill.ca/~avis/C/lrs.html

References

[13] Avis, D. and Fukuda, K. (1991b). A pivoting algorithm for convex hulls and ver-
tex enumeration of arrangements and polyhedra. In Proceedings of the 7th annual
symposium on Computational geometry, SCG ’91, pages 98–104. ACM Press.

[14] Avis, D. and Fukuda, K. (1992). A pivoting algorithm for convex hulls and vertex
enumeration of arrangements and polyhedra. Discrete & Computational Geometry,
8(3):295–313.

[15] Bagnara, R., Hill, P. M., and Zaffanella, E. (2008). The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and verification of
hardware and software systems. Science of Computer Programming, 72:3–21.

[16] Bagnara, R., Hill, P. M., and Zaffanella, E. (2009). Applications of polyhedral
computations to the analysis and verification of hardware and software systems. The-
oretical Computer Science, 410(46):4672–4691.

[17] Balinski, M. L. (1961). An algorithm for finding all vertices of convex polyhedral
sets. Journal of the Society for Industrial and Applied Mathematics, 9(1):72–88.

[18] Barahona, F. and Mahjoub, A. (1986). On the cut polytope. Mathematical Pro-
gramming, 36:157–173.

[19] Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996). The quickhull algorithm
for convex hulls. ACM Transactions on Mathematical Software, 22(4):469–483.

[20] Barrett, C., Sebastiani, R., Seshia, S., and Tinelli, C. (2009). Satisfiability mod-
ulo theories. In Biere, A., Heule, M. J. H., van Maaren, H., and Walsh, T., editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Ap-
plications, chapter 26, pages 825–885. IOS Press.

[21] Bell, S. L. and Palsson, B. O. (2005). expa: a program for calculating extreme
pathways in biochemical reaction networks. Bioinformatics, 21(8):1739–1740.

[22] Bender, M., Demaine, E., and Farach-Colton, M. (2005). Cache-oblivious b-trees.
SIAM Journal on Computing, 35(2):341–358.

[23] Bentley, J. L. (1975a). Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517.

[24] Bentley, J. L. (1975b). A survey of techniques for fixed radius near neighbor search-
ing. Technical report, Stanford University, California, USA.

[25] Bentley, J. L. (1980). Multidimensional divide-and-conquer. Communications of
the ACM, 23(4):214–229.

[26] Birkhoff, G. (1984). Lattice Theory. American Mathematical Society colloquium
publications. American Mathematical Society.

142

References

[27] Bland, R. G. (1977). New finite pivoting rules for the simplex method. Mathematics
of Operations Research, 2(2):103–107.

[28] Boissonnat, J.-D., Devillers, O., Schott, R., Teillaud, M., and Yvinec, M. (1992).
Applications of random sampling to on-line algorithms in computational geometry.
Discrete & Computational Geometry, 8(1):51–71.

[29] Borgwardt, K. (1997). Average complexity of a gift-wrapping algorithm for deter-
mining the convex hull of randomly given points. Discrete & Computational Geometry,
17(1):79–109.

[30] Borgwardt, K. H. (2007). Average-case analysis of the double description method
and the beneath-beyond algorithm. Discrete & Computational Geometry, 37(2):175–
204.

[31] Borodin, A., Ostrovsky, R., and Rabani, Y. (1999). Lower bounds for high dimen-
sional nearest neighbor search and related problems. In Proceedings of the 31st annual
ACM symposium on Theory of computing, STOC ’99, pages 312–321. ACM Press.

[32] Boros, E., Elbassioni, K., Gurvich, V., and Tiwary, H. (2011). The negative cycles
polyhedron and hardness of checking some polyhedral properties. Annals of Operations
Research, 188(1):63–76.

[33] Bremner, D. (1996). Incremental convex hull algorithms are not output sensitive.
In Proceedings of the 7th International Symposium on Algorithms and Computation,
ISAAC ’96, pages 26–35. Springer.

[34] Bremner, D. (1997). On the complexity of vertex and facet enumeration for convex
polytopes. PhD thesis, McGill University, Montreal, Canada.

[35] Bremner, D. (1999). Incremental convex hull algorithms are not output sensitive.
Discrete & Computational Geometry, 21(1):57–68.

[36] Bremner, D., Fukuda, K., and Marzetta, A. (1998). Primal-dual methods for vertex
and facet enumeration. Discrete & Computational Geometry, 20:333–357.

[37] Brodal, G. S., Fagerberg, R., and Jacob, R. (2002). Cache oblivious search trees via
binary trees of small height. In Proceedings of the 13th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’02, pages 39–48. Society for Industrial and Applied
Mathematics.

[38] Brönnimann, H. (1998). Degenerate convex hulls on-line in any fixed dimension. In
Proceedings of the Fourteenth Annual Symposium on Computational Geometry, SCG
’98, pages 249–258. ACM Press.

[39] Brönnimann, H. (1999). Degenerate convex hulls on-line in any fixed dimension.
Discrete & Computational Geometry, 22(4):527–545.

143

References

[40] Brüngger, A., Marzetta, A., Fukuda, K., and Nievergelt, J. (1999). The parallel
search bench ZRAM and its applications. Annals of Operations Research, 90(0):45–63.

[41] Burdet, C.-A. (1974). Generating all the faces of a polyhedron. SIAM Journal on
Applied Mathematics, 26(3):479–489.

[42] Burnikel, C., Mehlhorn, K., and Schirra, S. (1994). On degeneracy in geometric
computations. In Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’94, pages 16–23. Society for Industrial and Applied Mathematics.

[43] Burton, B. A. (2012). Complementary vertices and adjacency testing in polytopes.
In Proceedings of the 18th International Computing and Combinatorics Conference,
COCOON ’12, pages 507–518. Springer.

[44] Bussieck, M. R. and Lübbecke, M. E. (1998). The vertex set of a 0/1-polytope
is strongly p-enumerable. Computational Geometry: Theory and Applications,
11(2):103–109.

[45] Chand, D. R. and Kapur, S. S. (1970). An algorithm for convex polytopes. Journal
of the ACM, 17(1):78–86.

[46] Charnes, A. (1952). Optimality and degeneracy in linear programming. Economet-
rica, 20(2):160–170.

[47] Chazelle, B. (1993). An optimal convex hull algorithm in any fixed dimension.
Discrete & Computational Geometry, 10:377–409.

[48] Chernikova, N. V. (1964). Algorithm for finding a general formula for the non-
negative solutions of a system of linear equations. U.S.S.R. Computational Mathe-
matics and Mathematical Physics, 4(4):151–158.

[49] Chernikova, N. V. (1965). Algorithm for finding a general formula for the non-
negative solutions of system of linear inequalities. U.S.S.R. Computational Mathe-
matics and Mathematical Physics, 5:228–233.

[50] Christof, T. and Löbel, A. (2009). PORTA - POlyhedron Representation Trans-
formation Algorithm, version 1.4.1. available at http://typo.zib.de/opt-long_

projects/Software/Porta/ (last visit: 01 May 2014).

[51] Clarkson, K. and Shor, P. (1989). Applications of random sampling in computa-
tional geometry, II. Discrete & Computational Geometry, 4(1):387–421.

[52] Clarkson, K. L., Mehlhorn, K., and Seidel, R. (1992). Four results on randomized
incremental constructions. In Proceedings of the 9th Annual Symposium on Theoretical
Aspects of Computer Science, STACS ’92, pages 463–474. Springer.

[53] Clarkson, K. L., Mehlhorn, K., and Seidel, R. (1993). Four results on random-
ized incremental constructions. Computational Geometry: Theory and Applications,
3(4):185–212.

144

http://typo.zib.de/opt-long_projects/Software/Porta/
http://typo.zib.de/opt-long_projects/Software/Porta/

References

[54] Clarkson, K. L. and Shor, P. W. (1988). Algorithms for diametral pairs and convex
hulls that are optimal, randomized, and incremental. In Proceedings of the 4th annual
symposium on Computational geometry, SCG ’88, pages 12–17. ACM Press.

[55] Cousot, P. and Cousot, R. (1976). Static determination of dynamic properties of
programs. In Proceedings of the 2nd International Symposium on Programming, pages
106–130. Dunod.

[56] Cousot, P. and Cousot, R. (1977). Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL ’77, pages 238–252. ACM Press.

[57] Cousot, P. and Halbwachs, N. (1978). Automatic discovery of linear restraints
among variables of a program. In Conference Record of the 5th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 84–
97. ACM Press.

[58] Dantzig, G. B. (1963). Linear programming and extensions. Princeton University
Press.

[59] Davey, B. and Priestley, H. (2002). Introduction to Lattices and Order. Cambridge
mathematical text books. Cambridge University Press.

[60] Devadoss, S. and O’Rourke, J. (2011). Discrete and Computational Geometry.
Princeton University Press.

[61] Deza, A., Fukuda, K., Pasechnik, D., and Sato, M. (2001). On the skeleton of
the metric polytope. In Japan Conference on Discrete and Computational Geometry,
volume 2098 of Lecture Notes in Computer Science, pages 125–136. Springer.

[62] Dyer, M. and Proll, L. (1977a). An algorithm for determining all extreme points of
a convex polytope. Mathematical Programming, 12(1):81–96.

[63] Dyer, M. and Proll, L. (1977b). Vertex enumeration in convex polyhedra - a compar-
ative computational study. In Proceedings of the CP77 Combinatorial Programming
Conference, pages 23–43.

[64] Dyer, M. and Proll, L. (1982). An improved vertex enumeration algorithm. European
Journal of Operational Research, 9(4):359–368.

[65] Edelsbrunner, H. (1987). Algorithms in combinatorial geometry. Springer, New
York.

[66] Edelsbrunner, H. and Mücke, E. P. (1990). Simulation of simplicity: A technique to
cope with degenerate cases in geometric algorithms. ACM Transactions on Graphics,
9(1):66–104.

145

References

[67] Emiris, I. and Canny, J. (1992). An efficient approach to removing geometric de-
generacies. In Proceedings of the 8th Annual Symposium on Computational Geometry,
SCG ’92, pages 74–82. ACM Press.

[68] Emiris, I. Z., Canny, J. F., and Seidel, R. (1997). Efficient perturbations for handling
geometric degeneracies. Algorithmica, 19(1-2):219–242.

[69] Fang, X. G. and Havas, G. (1997). On the worst-case complexity of integer gaussian
elimination. In Proceedings of the 1997 international symposium on Symbolic and
algebraic computation, ISSAC ’97, pages 28–31. ACM Press.

[70] Fernández, F. and Quinton, P. (1988). Extension of Chernikova’s Algorithm for
Solving General Mixed Linear Programming Problems. Rapports de recherche. Institut
National de Recherche en Informatique et en Automatique.

[71] Fieldhouse, M. (1961). Linear Programming. PhD thesis, Cambridge University,
England.

[72] Finkel, R. and Bentley, J. (1974). Quad trees a data structure for retrieval on
composite keys. Acta Informatica, 4(1):1–9.

[73] Flajolet, P. and Puech, C. (1986). Partial match retrieval of multidimensional data.
Journal of the ACM, 33(2):371–407.

[74] Frumkin, M. (1977). Polynomial time algorithms in the theory of linear diophantine
equations. In Fundamentals of Computation Theory, volume 56 of Lecture Notes in
Computer Science, pages 386–392. Springer, Berlin/Heidelberg.

[75] Fukuda, K. (2007). cdd+: Implementation of the double description method,
version 0.77a. available at http://www.inf.ethz.ch/personal/fukudak/cdd_home
(last visit: 01 May 2014).

[76] Fukuda, K., Liebling, T. M., and Margot, F. (1997). Analysis of backtrack algo-
rithms for listing all vertices and all faces of a convex polyhedron. Computational
Geometry: Theory and Applications, 8:1–12.

[77] Fukuda, K. and Prodon, A. (1996). Double description method revisited. In Com-
binatorics and Computer Science, volume 1120 of Lecture Notes in Computer Science,
pages 91–111. Springer, Berlin/Heidelberg.

[78] Fukuda, K. and Rosta, V. (1994). Combinatorial face enumeration in convex poly-
topes. Computational Geometry: Theory and Applications, 4(4):191–198.

[79] Gagneur, J. and Klamt, S. (2004). Computation of elementary modes: a unifying
framework and the new binary approach. BMC Bioinformatics, 5:175.

[80] Gal, T. (1993). Selected bibliography on degeneracy. Annals of Operations Research,
46-47(1):1–7.

146

http://www.inf.ethz.ch/personal/fukudak/cdd_home

References

[81] Gale, D. (1964). On the number of faces of a convex polytope. Canadian Journal
of Mathematics, 16:12–17.

[82] Garg, N. and Vazirani, V. V. (1995). A polyhedron with all s-t cuts as vertices, and
adjacency of cuts. Mathematical Programming, pages 17–25.

[83] Genov, B. (2013). Data structures for incremental extreme ray enumeration algo-
rithms. In Proceedings of the 25th Canadian Conference on Computational Geometry,
CCCG ’13. Carleton University, Ottawa, Canada.

[84] Granlund, T. (2012). The GNU Multiple Precision Arithmetic Library, version 5.
available at http://gmplib.org/ (last visit: 01 May 2014).

[85] Hadley, G. (1962). Linear Programming. Addison-Wesley, Reading, Massachusetts.

[86] Hansen, P. B. (1993). Model programs for computational science: A programming
methodology for multicomputers. Concurrency - Practice and Experience, 5(5):407–
423.

[87] Hemmecke, R. (2002). On the computation of hilbert bases of cones. Mathematical
Software, ICMS, pages 307–317.

[88] Henk, M., Richter-Gebert, J., and Ziegler, G. M. (2004). Basic Properties of Convex
Polytopes, chapter 16, pages 355–382. Chapman and Hall/CRC, second edition.

[89] Horst, R. and Hoang, T. (1993). Global optimization: deterministic approaches.
Springer.

[90] Ibarra, O. H., Moran, S., and Hui, R. (1982). A generalization of the fast lup matrix
decomposition algorithm and applications. Journal of Algorithms, 3:45–56.

[91] Jeannet, B. and Miné, A. (2009). Apron: A library of numerical abstract domains
for static analysis. In Proceedings of the 21st International Conference on Computer
Aided Verification, CAV ’09, pages 661–667. Springer.

[92] Jevremović, D., Boley, D., and Sosa, C. P. (2011a). Divide-and-conquer approach to
the parallel computation of elementary flux modes in metabolic networks. In Proceed-
ings of the 25th International Parallel & Distributed Processing Symposium, IPDPS
’11, pages 502–511. IEEE Computer Society.

[93] Jevremović, D., Trinh, C. T., Srienc, F., Sosa, C. P., and Boley, D. (2011b). Paral-
lelization of nullspace algorithm for the computation of metabolic pathways. Parallel
Computing, 37(6-7):261–278.

[94] Joswig, M. (2003). Beneath-and-beyond revisited. In Algebra, Geometry and Soft-
ware Systems, pages 1–21. Springer.

[95] Joswig, M. and Ziegler, G. (2004). Convex hulls, oracles, and homology. Journal of
Symbolic Computation, 38(4):1247–1259.

147

http://gmplib.org/

References

[96] Kallay, M. (1981). Convex hull algorithms in higher dimensions. unpublished
manuscript.

[97] Kannan, R. and Bachem, A. (1979). Polynomial algorithms for computing the
smith and hermite normal forms of an integer matrix. SIAM Journal of Computing,
8(4):499–507.

[98] Khachiyan, L., Boros, E., Borys, K., Elbassioni, K. M., and Gurvich, V. (2008).
Generating all vertices of a polyhedron is hard. Discrete & Computational Geometry,
39(1-3):174–190.

[99] Khang, D. B. and Fujiwara, O. (1989). A new algorithm to find all vertices of a
polytope. Operations Research Letters, 8(5):261–264.

[100] Klamt, S., Gagneur, J., and von Kamp, A. (2005). Algorithmic approaches for
computing elementary modes in large biochemical reaction networks. Systems Biology,
IEE Proceedings, 152(4):249–255.

[101] Klee, V. (1964). The number of vertices of a convex polytope. Canadian Journal
of Mathematics, 16:701–720.

[102] Klee, V. (1974). Polytope pairs and their relationship to linear programming. Acta
Mathematica, 133(1):1–25.

[103] Lee, L.-Q., Varner, J., and Ko, K. (2004). Parallel extreme pathway computation
for metabolic networks. In Proceedings of the 3rd International Conference on Com-
putational Systems Bioinformatics, CSB ’04, pages 636–639. IEEE Computer Society.

[104] Mani, P. and Bruggesser, H. (1971). Shellable decompositions of cells and spheres.
Mathematica Scandinavica, 29:197–205.

[105] Marzetta, A. (1998). ZRAM: A Library of Parallel Search Algorithms and Its Use
in Enumeration and Combinatorial Optimization. PhD thesis, Swiss Federal Institute
of Technology, Zurich, Switzerland.

[106] Matoušek, J. (1993). Linear optimization queries. Journal of Algorithms,
14(3):432–448.

[107] Matoušek, J. (2002). Lectures on Discrete Geometry. Springer, New York.

[108] Mattheiss, T. and Schmidt, B. K. (1980). Computational results on an algorithm
for finding all vertices of a polytope. Mathematical Programming, 18(1):308–329.

[109] Mattheiss, T. H. (1973). An algorithm for determining irrelevant constraints and
all vertices in systems of linear inequalities. Operations Research, 21(1):247–260.

[110] Mattheiss, T. H. and Rubin, D. S. (1980). A survey and comparison of methods
for finding all vertices of convex polyhedral sets. Mathematics of Operations Research,
5(2):167–185.

148

References

[111] Maňas, M. and Nedoma, J. (1968). Finding all vertices of a convex polyhedron.
Numerische Mathematik, 12(3):226–229.

[112] McMullen, P. (1970). The maximum numbers of faces of a convex polytope. Math-
ematika, 17:179–184.

[113] McMullen, P. and Shephard, G. (1971). Convex Polytopes and the Upper Bound
Conjecture. Cambridge University Press.

[114] McRae, W. B. and Davidson, E. R. (1973). An algorithm for the extreme rays of
a pointed convex polyhedral cone. SIAM Journal of Computing, 2(4):281–293.

[115] Motzkin, T. S. (1957). Comonotone curves and polyhedra.

[116] Motzkin, T. S., Raiffa, H., Thompson, G. L., and Thrall, R. M. (1953). The double
description method, volume II, pages 51–73. Princeton University Press.

[117] Mulmuley, K. (1999). Randomized algorithms in computational geometry. In Sack,
J. R. and Urrutia, J., editors, Handbook of Computational Geometry. Elsevier Science.

[118] Murty, K. G. (2009). A problem in enumerating extreme points, and an efficient
algorithm for one class of polytopes. Optimization Letters, 3(2):211–237.

[119] Murty, K. G. and Chung, S.-J. (1995). Segments in enumerating faces. Mathemat-
ical Programming, 70(1–3):27–45.

[120] Oxley, J. G. (1992). Matroid theory. Oxford University Press.

[121] Peleska, J., Vorobev, E., and Lapschies, F. (2011). Automated test case generation
with smt-solving and abstract interpretation. In Proceedings of the 3rd international
conference on NASA Formal methods, NFM ’11, pages 298–312. Springer.

[122] Pernet, C. and Stein, W. (2010). Fast computation of hermite normal forms of
random integer matrices. Journal of Number Theory, 130(7):1675–1683.

[123] Posthoff, C. and Steinbach, B. (2004). Logic functions and equations: Binary
models for computer science. Springer, Dordrecht, The Netherlands.

[124] Preparata, F. P. and Shamos, M. I. (1985). Computational Geometry: An Intro-
duction. Springer, New York.

[125] Provan, J. (1994). Efficient enumeration of the vertices of polyhedra associated
with network LP’s. Mathematical Programming, 63(1-3):47–64.

[126] Ramanathan, R. M. (2006). Extending the world’s most popular processor archi-
tecture. Technical report, Intel Corporation. White Paper.

[127] Rivest, R. (1976). Partial-match retrieval algorithms. SIAM Journal on Comput-
ing, 5(1):19–50.

149

References

[128] Rote, G. (1992). Degenerate convex hulls in high dimensions without extra storage.
In Proceedings of the 8th Annual Symposium on Computational Geometry, SCG ’92,
pages 26–32. ACM Press.

[129] Sahni, S. and Vairaktarakis, G. (1996). The master-slave paradigm in parallel
computer and industrial settings. Journal of Global Optimization, 9(3-4):357–377.

[130] Samatova, N. F., Geist, A., Ostrouchov, G., and Melechko, A. V. (2002). Parallel
out-of-core algorithm for genome-scale enumeration of metabolic systemic pathways.
In Proceedings of the 16th International Parallel & Distributed Processing Symposium,
IPDPS ’02, pages 249–264. IEEE Computer Society.

[131] Schrijver, A. (1986). Theory of linear and integer programming. John Wiley &
Sons, Inc.

[132] Schuster, S. and Hilgetag, C. (1994). On elementary flux modes in biochemical
reaction systems at steady state. Journal of Biological Systems, 2:165–182.

[133] Seidel, R. (1981). A convex hull algorithm optimal for point sets in even dimen-
sions. Technical report, University of British Columbia, Vancouver, Canada.

[134] Seidel, R. (1986a). Constructing higher-dimensional convex hulls at logarithmic
cost per face. In Proceedings of the Eighteenth Annual ACM Symposium on Theory
of Computing, STOC ’86, pages 404–413. ACM Press.

[135] Seidel, R. (1986b). Output-size sensitive algorithms for constructive problems in
computational geometry. Technical report, Cornell University, Department of Com-
puter Science, Ithaca, USA.

[136] Seidel, R. (1991). Small-dimensional linear programming and convex hulls made
easy. Discrete & Computational Geometry, 6(1):423–434.

[137] Seidel, R. (1995). The upper bound theorem for polytopes: An easy proof of its
asymptotic version. Computational Geometry: Theory and Applications, 5(2):115–
116.

[138] Seidel, R. (1998). The nature and meaning of perturbations in geometric comput-
ing. Discrete & Computational Geometry, 19(1):1–17.

[139] Storjohann, A. (1998). Computing hermite and smith normal forms of triangular
integer matrices. Linear Algebra and its Applications, 282(1–3):25–45.

[140] Swart, G. (1985). Finding the convex hull facet by facet. J. Algorithms, 6(1):17–48.

[141] Terzer, M. (2009a). Large scale methods to enumerate extreme rays and elementary
modes. PhD thesis, ETH, Zurich, Switzerland.

[142] Terzer, M. (2009b). polco (polyhedral computations), version 4.7.1. available at
http://www.csb.ethz.ch/tools/polco (last visit: 01 May 2014).

150

http://www.csb.ethz.ch/tools/polco

References

[143] Terzer, M. and Stelling, J. (2006). Accelerating the computation of elementary
modes using pattern trees. In Proceedings of the 6th international conference on
Algorithms in Bioinformatics, WABI ’06, pages 333–343. Springer.

[144] Terzer, M. and Stelling, J. (2008). Large-scale computation of elementary flux
modes with bit pattern trees. Bioinformatics, 24:2229–2235.

[145] Terzer, M. and Stelling, J. (2010). Parallel extreme ray and pathway computation.
In Parallel Processing and Applied Mathematics, volume 6068 of Lecture Notes in
Computer Science, pages 300–309. Springer.

[146] Tijssen, G. A. and Sierksma, G. (1995). Balinski-Tucker simplex tableaus : di-
mensions, degeneracy degrees, and interior points of optimal faces. Technical Report
95A15, University of Groningen, Research Institute SOM (Systems, Organisations and
Management).

[147] Uhlmann, J. K. (1991). Metric trees. Applied Mathematics Letters, 4(5):61–62.

[148] Vanderbei, R. (1996). Linear Programming: Foundations and Extensions. Inter-
national Series in Operations Research & Management Science. Springer.

[149] Verge, H. L. (1992). A note on Chernikova’s algorithm. Technical Report 635,
IRISA, Rennes, France.

[150] von Kamp, A. and Schuster, S. (2006). Metatool 5.0: fast and flexible elementary
modes analysis. Bioinformatics, 22(15):1930–1931.

[151] Wagner, C. (2004). Nullspace approach to determine the elementary modes of
chemical reaction systems. The Journal of Physical Chemistry B, 108(7):2425–2431.

[152] Whitney, H. (1935). On the abstract properties of linear dependence. American
Journal of Mathematics, 57:509–533.

[153] Williams, V. V. (2012). Multiplying matrices faster than Coppersmith-Winograd.
In Proceedings of the 44th symposium on Theory of Computing, STOC ’12, pages
887–898. ACM Press.

[154] Yap, C.-K. (1990). Symbolic treatment of geometric degeneracies. Journal of
Symbolic Computation, 10(3–4):349–370.

[155] Yianilos, P. N. (1993). Data structures and algorithms for nearest neighbor search
in general metric spaces. In Proceedings of the 4th annual ACM-SIAM Symposium
on Discrete algorithms, SODA ’93, pages 311–321. Society for Industrial and Applied
Mathematics.

[156] Ziegler, G. (1995). Lectures on Polytopes. Graduate texts in mathematics. Springer.

[157] Zolotykh, N. (2012). New modification of the double description method for con-
structing the skeleton of a polyhedral cone. Computational Mathematics and Mathe-
matical Physics, 52:146–156.

151

	Introduction
	Objectives and Motivation
	Contributions
	Thesis Overview
	Notation and Conventions

	Preliminaries: Linear Inequalities and Polyhedra
	Polyhedra, Polyhedral Cones and Polytopes
	Faces, Extreme Rays and Vertices
	Duality
	Properties of Duality
	Duality of Polytopes
	Duality of Cones

	Degeneracy

	The Convex Hull Problem: Theory and Practice
	Definition and Related Problems
	Complexity
	Pivoting Algorithms
	The Linear Programming Problem
	The Simplex Method
	Reverse Search
	Dual Space Algorithms
	Primal Space Algorithms

	Incremental Algorithms
	Dual Space Algorithms
	Primal Space Algorithms

	The Double Description Method: Definition and Implementation
	Algorithm
	Adjacency Test
	Implementation Details
	Extreme Ray Representation
	Narrowing and Verification
	Bit Pattern Trees

	Combinatorial Test: Comparison of Data Structures
	Generic Binary Tree Container
	Requirements and Complexity
	Implementation

	Bit Pattern Tree Container
	Implementation
	Efficacy and Limitations
	Query Bits Neutralization
	Cross-Narrowing
	Highly Degenerate First Verification
	The Adjacency Test Revisited

	Extended Bit Pattern Tree Container
	Population Tree Container
	Vantage Point Tree Container
	Experimental Results

	Algebraic Test: Redundancy Elimination
	Active Set Partitioning
	Matrix Matroid
	Observations
	Partitioning Function
	Completeness

	Data Structures
	The Refined Algebraic Test
	Correctness and Formal Proof
	Adjacency Algorithm

	The Double Description Method Enhanced
	Experimental Results

	Divide and Conquer: Advantages and Limitations
	From a Sequence to a Tree
	The Distributed Double Description Method
	Experimental Results
	Discussion

	Addibit: Benchmark and Results
	Conclusions
	References

