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Zusammenfassung

In modernen Flugzeugen basiert das Design der Elektronik und der Steue-
rungssysteme auf dem Konzept der Integrierten Modularen Avionik (IMA).
Obwohl dies diverse Vorteile mit sich bringt (Gewichtsreduktion, niedrige-
rer Strom- und Treibstoffverbrauch, geringere Entwicklungs- und Zertifizie-
rungskosten und -aufwände), stellt die IMA-Plattform eine zusätzliche Kom-
plexitätsebene dar.

Aufgrund der sicherheitskritischen Eigenschaften vieler Avionikfunktio-
nen sind sorgfältige und akkurate Verifikation und Tests dieser Systeme zwin-
gend erforderlich.

Diese Dissertation beschreibt Forschungsergebnisse bezüglich des mo-
dellbasierten Testens von IMA-Systemen, welche zum Teil im Rahmen des
europäischen Forschungsprojekts SCARLETT erzielt wurden. Die Arbeit be-
schreibt ein vollständiges Rahmenwerk, welches es einem IMA-Domänen-
experten ermöglicht, modellbasierte Tests auf Modul-, Konfigurations- so-
wie Anwendungsebene zu entwerfen und in einer standardisierten Testum-
gebung auszuführen.

Der erste Teil dieser Arbeit bietet Hintergrundinformationen zu den ihr
zugrunde liegenden Themen: dem IMA-Konzept, domänenspezifischen Spra-
chen, modellbasiertem Testen und dem TTCN-3-Standard. Im zweiten Teil
werden das Rahmenwerk der IMA-Testmodellierungssprache (ITML) und
dazugehörige Komponenten eingeführt. Es wird eine hierfür maßgeschnei-
derte TTCN-3-Testumgebung mit passenden Adaptern und Codecs beschrie-
ben. Basierend auf MetaEdit+ und dem Meta-Metamodell GOPPRR werden
die drei Varianten der domänenspezifischen Sprache ITML definiert, jeweils
mit abstrakter und konkreter Syntax sowie statischer und dynamischer Se-
mantik. Die Generierung von Testprozeduren aus ITML-Modellen wird im
Detail erklärt. Darüber hinaus werden das Design und die Entwicklung ei-
nes universellen Testagenten beschrieben. Zur Steuerung des Agenten wird
ein dediziertes Kommunikationsprotokoll definiert.

Für den dritten Teil dieser Arbeit wurde eine Evaluation des Rahmen-
werks durchgeführt. Es werden Einsatzszenarien im SCARLETT-Projekt be-
schrieben und Vergleiche zwischen ITML und verwandten Werkzeugen und
Ansätzen gezogen. Außerdem wird auf die Vorteile der Benutzung des ITML-
Rahmenwerks durch IMA-Domänenexperten eingegangen.

Der letzte Teil bietet eine Reihe von ITML-Beispielmodellen. Er enthält
darüber hinaus Referenzmaterial, u. a. XML-Schemata, Quellcode des Rah-
menwerks und Modellvalidatoren.
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Abstract

In modern aircraft, electronics and control systems are designed based on the
Integrated Modular Avionics (IMA) system architecture. While this has nu-
merous advantages (reduction of weight, reduced power and fuel consump-
tion, reduction of development cost and certification effort), the IMA plat-
form also adds an additional layer of complexity.

Due to the safety-critical nature of many avionics functions careful and
accurate verification and testing are imperative.

This thesis describes results achieved from research on model-based test-
ing of IMA systems, in part obtained during the European research project
SCARLETT. It presents a complete framework which enables IMA domain
experts to design and run model-based tests on bare module, configured mod-
ule, and application level in a standardised test environment.

The first part of this thesis provides background information on the rele-
vant topics: the IMA concept, domain-specific languages, model-based test-
ing, and the TTCN-3 standard. The second part introduces the IMA Test
Modelling Language (ITML) framework and its components. It describes
a tailored TTCN-3 test environment with appropriate adapters and codecs.
Based on MetaEdit+ and its meta-metamodel GOPPRR, it defines the three
variants of the domain-specific language ITML, each with its abstract and
concrete syntax as well as static and dynamic semantics. The process of test
procedure generation from ITML models is explained in detail. Further-
more, the design and implementation of a universal Test Agent is shown.
A dedicated communication protocol for controlling the agent is defined as
well.

The third part provides an evaluation of the framework. It shows usage
scenarios in the SCARLETT project, gives a comparison to related tools and
approaches, and explains the advantages of using the ITML framework for
an IMA domain expert.

The final part presents several example ITML models. It also provides
reference material like XML schemata, framework source code, and model
validators.
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CHAPTER 1
Introduction

In today’s world we find ourselves more and more surrounded by electronic
devices. Laptop computers, smartphones, or satellite navigation systems are
a part of our everyday life. They are useful tools and make our lives easier,
provided they work properly. A malfunction of such a device is usually a
mere nuisance.

On the other hand, electronic devices are employed in safety-critical sys-
tems like aircraft engine controllers, anti-lock braking systems, electronic sig-
nal boxes, and medical life-support systems. Here, a malfunction or failure
has potentially catastrophic consequences and can result in loss of lives. As-
suring the safety and reliability of such systems is therefore crucial.

In particular, the IntegratedModular Avionics (IMA) architecture provides
an example of such a system from the aerospace domain. IMA modules can
host crucial aircraft functions like flight control, fire and smoke detection, or
braking control systems. A partitioning scheme allows for hosting of several
aircraft functions safely on the same module. Apart from having numerous
advantages, this architecture also comes with a higher level of integration
and increased complexity. This makes the development of such systems an
interesting and also very important research subject.

Domain-specific modelling (DSM) is a relatively new methodology that
allows elements and concepts from a specific application domain to be used.
In contrast to general-purpose modelling (e. g. UML), DSM is more intuitive
in its application and allows a higher level of abstraction. This brings great
advantages in usability as well as efficiency.

In Model-based testing (MBT), models are used as a means to specify or
derive test cases. The goal is to generate executable test procedures automati-
cally instead of writing them by hand. Models can represent nominal System
Under Test (SUT) behaviour or desired testing strategies.
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The Testing and Test Control Notation Version 3 (TTCN-3) is a set of stan-
dards defining a language for test specification and the infrastructure of a
runtime environment for the execution of tests. It is widely used in the area
of communication testing and protocol testing. A major benefit of TTCN-3
is the abstraction it provides from concrete test environment hardware and
interfaces.

Due to their complexity, testing of IMA modules requires considering
different levels of module testing, from low-level bare module tests to config-
ured module tests and functional tests (cf. section 2.4 for details).

1.1 Goals

The main goal of this work is to provide a framework for model-based testing
of Integrated Modular Avionics systems. The purpose of this framework is
to provide the prospective IMA test engineer with a state-of-the-art toolbox
that will support him during the design and execution of test suites for IMA-
based systems.

1.2 Main Contribution

In order to accomplish this goal, the following main contributions are pre-
sented in this dissertation:

1. A domain-specific modelling language specifically designed for the test-
ing of IMA systems, called IMA Test Modelling Language (ITML)

2. A flexible and universal Test Agent (TA)

3. A TTCN-3-based test execution environment

The combination of these features constitutes a novel approach to IMA test-
ing. They enable test designers to work on a higher level of abstraction, using
elements of the application domain instead of concepts of a particular test-
ing tool. They also allow them to specify test cases for bare and configured
module tests in a very compact manner, without explicitly referring to the
availability and distribution of system resources in the IMA module under
test. A generator produces the concrete test procedure in TTCN-3 syntax.
This procedure stimulates and controls distributed interactions between test
agents on different partitions and modules. For this purpose, the generator
evaluates both the test case specification and the IMA module configuration
(which can also generated automatically under certain circumstances) and se-
lects the concrete resources involved in compliance with the configuration.

For hardware/software integration tests with the application layer present
in each IMA module which is part of the system under test (SUT), behaviour-
al test models based on timed state machines can be used, and the generator
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derives test cases, test data and test procedures from these models by means
of a constraint solver.

A summary of parts of the research presented in this thesis has been pub-
lished in [EP11].

1.3 Related Work

Experiences in the field of bare and configured module testing result from
earlier work in the VICTORIA research project [OH05, Ott07]. In this
project, bare module tests were developed based on a library of formal Timed
CSP specification templates [Sch00, Pel02]. Unfortunately, this approach re-
quires both a substantial amount of manual programming effort as well as
a deep understanding of CSP. As a result, domain experts without knowl-
edge in the field of process algebras were unable to analyse the resulting test
procedures. In contrast to that, the methodology presented here uses an in-
tuitive graphic template formalism to describe patterns from which concrete
test cases and test data can be derived and which are automatically converted
into executable test procedures.

Moreover, the approach chosen in the VICTORIA project relied on spe-
cific test engine hardware and test execution software. Conversely, this work
shows a method to achieve independence from specific test hardware by de-
ploying a TTCN-3-based test environment [ETS]. The underlying tech-
niques for model-based functional testing are described in more detail in
[PVL11], where also references to competing approaches are given.

Domain-specific approaches to test automation are also promising in sev-
eral other areas: In [Mew10], for example, Kirsten Mewes describes patterns
for automated test generation in the railway control system domain, while in
[Feu13], Johannes Feuser uses a domain-specific language to create an open
model of ETCS. Timed Moore Automata (cf. [LP10]) can be used to model
control logic of level crossing systems, on which model-checking and auto-
matic test case generation can be performed. In [EH08] the authors describe
a systematic approach for diagnosing errors in the context of hardware/soft-
ware integration testing and explain this technique with an example from the
avionics domain.

[PHL+11] gives an example of practical model-based testing efforts in the
automotive domain, where in a collaborative effort from Daimler, Verified
Systems, and University of Bremen, a benchmarking method on real-world
models is proposed.

1.4 Outline of this Document

This document is divided into four parts. The first part will familiarise the
reader with the necessary background information concerning the topics cov-
ered in this dissertation. This includes an in-depth discussion of the applica-
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tion domain as required for the next chapters as well as an introduction to the
relevant methodologies and concepts as employed in the framework. General
information on avionics systems and their development will not be discussed
here, as this has already been done extensively, e. g. in [Ott07, ch. 1].

The second part provides an in-depth examination of the individual com-
ponents that make up the model-based IMA testing framework. It describes
the universal IMA Test Agent and its control protocol. The structure of the
TTCN-3-based test execution environment is shown. Afterwards, the domain-
specific modelling language for the testing of IMA systems, called IMA Test
Modelling Language, is presented.

The third part provides an evaluation of the framework. It discusses usage
examples, provides a comparison with other tools and approaches, and gives
a comprehensive conclusion of the results elaborated in this thesis.

The fourth part provides a collection of detailed materials, including mod-
els and source code, for the individual components introduced in the second
part.
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CHAPTER 2
Integrated Modular Avionics

The traditional federated aircraft controller architecture [Fil03, p. 4] con-
sists of a large number of different, specialised electronics devices. Each of
them is dedicated to a special, singular purpose (e. g. flight control, or fire
and smoke detection) and has its own custom sensor/actuator wiring. Some
of them are linked to each other with dedicated data connections. In the In-
tegrated Modular Avionics (IMA) architecture this multitude of device types
is replaced by a small number of modular, general-purpose component vari-
ants whose instances are linked by a high-speed data network. Due to high
processing power each module can host several avionics functions, each of
which previously required its own controller. The IMA approach has several
main advantages:

• Reduction of weight through a smaller number of physical components
and reduced wiring, thereby increasing fuel efficiency.

• Reduction of on-board power consumption by more effective use of
computing power and electrical components.

• Lower maintenance costs by reducing the number of different types of
replacement units needed to keep on stock.

• Reduction of development costs by provision of a standardised oper-
ating system, together with standardised drivers for the avionics inter-
faces most widely used.

• Reduction of certification effort and costs via incremental certification
of hard- and software.

An important aspect of module design is segregation: In order to host ap-
plications of different safety assurance levels on the same module, it must be
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ensured that those applications cannot interfere with each other. Therefore
a module must support resource partitioning via memory access protection,
strict deterministic scheduling and I/O access permissions. Bandwidth limi-
tations on the data network have to be enforced as well.

The standard aircraft documentation reference for IMA is ATA chap-
ter 42. The IMA architecture is currently in use in the Airbus A380, A400M,
the future A350XWB, and Boeing 787 Dreamliner aircraft. Predecessors of
this architecture can be found in so-called fourth-generation jet fighter air-
craft like the Dassault Rafale.

2.1 AFDX

A data network is required for communication between (redundant) IMA
modules as well as other hardware. This role is fulfilled by the Avionics Full
DupleX Switched Ethernet (AFDX) network. It is an implementation of the
ARINC specification 664 [Aer09] and is used as high-speed communication
link between aircraft controllers. It is the successor of the slower ARINC 429
networks [Aer04].

AFDX is based on 100 Mbit/s Ethernet over twisted-pair copper wires
(IEEE 802.3u, 100BASE-TX). This means it is compatible with COTS Eth-
ernet equipment on layers 1 and 2 (physical layer and link layer). Ethernet
by itself is not suitable for real-time applications as its timing is not deter-
ministic. Therefore AFDX imposes some constraints in order to achieve full
determinism and hard real-time capability.

In AFDX, so called Virtual Links (VLs) are employed for bandwidth allo-
cation and packet routing. Each VL has a 16-bit ID, which is encoded into
the destination MAC address of each frame sent through this VL. For each
VL, only one end system can send frames, while there can be one or more
receivers (unidirectional multicast communication, similar to ARINC 429).
AFDX switches use a pre-determined configuration to deliver frames based
on their VL ID to a set of receiving end systems.

Each VL is allocated a part of the full bandwidth of an AFDX link. To
that end, each VL has two attributes: a maximum frame length (𝐿𝑚𝑎𝑥) in
bytes and a bandwidth allocation gap (BAG). The BAG value represents the
minimum interval (in milliseconds) between two frames on that VL. Thus,
the maximum usable bandwidth in bit/s of a VL can be calculated as:

𝑏𝑚𝑎𝑥 = 𝐿𝑚𝑎𝑥 ⋅ 8 ⋅ 1000/𝐵𝐴𝐺

End systems use a VL scheduler to ensure minimum latency and jitter for
each VL.

Figure 2.1 shows the composition of a complete AFDX frame. The UDP
protocol is used on the transport layer, since protocols which rely on retrans-
mission (e. g. TCP) are inadequate in a deterministic network. The message
payload is organised into one or more Functional Data Sets (FDS). Each
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Figure 2.1: AFDX frame

FDS comprises a functional status set (FSS) and up to four data sets (DS).
The FSS is split into four functional status (FS) fields. Each FS field deter-
mines the validity of the data contained in a data set, similar to the SSM field
of ARINC 429 labels. Data sets contain one or more primitive values, like
integers, floats, or booleans.

In order to increase reliability, an aircraft data network consists of two
independent switched networks. AFDX frames are sent on both networks.
If no frame is lost, the other end systems will receive two frames. In order to
identify matching frames sent over the redundant links, the message payload
is followed by a sequence number field. Of two frames received on different
networks with an identical sequence number, only the first is passed up the
protocol stack.

2.2 ARINC 653

As indicated before, an IMA module can host multiple avionics functions.
The interface between avionics applications and the module’s operating sys-
tem conforms to a standardised API which is defined in the ARINC specifi-
cation 653 [Aer05].

The system architecture of an IMA module is depicted in figure 2.2. A
real-time operating system kernel constitutes the central component. It uses
a driver layer for access to the module’s I/O hardware (either solely AFDX,
or other interfaces like Discretes, CAN, and ARINC 429 buses as well, de-
pending on module type) [Aer05, p. 11].
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Figure 2.2: IMA module system architecture

2.2.1 Partitioning

In order to guarantee the same isolation of avionics functions residing on a
shared module as a federated architecture would provide, it is the operating
system’s responsibility to implement a concept called partitioning. According
to [RTC01], a partitioning implementation should comply with the follow-
ing requirements:

• A software partition should not be allowed to contaminate another
partition’s code, I/O, or data storage areas.

• A software partition should be allowed to consume shared processor
resources only during its period of execution.

• A software partition should be allowed to consume shared I/O resources
only during its period of execution.

• Failures of hardware unique to a software partition should not cause
adverse effects on other software partitions.

• Software providing partitioning should have the same or higher soft-
ware level¹ than the highest level of the partitioned software applica-
tions.

¹as defined in [RTC92]
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Table 2.1: ARINC 653 communication methods

Intra-partition Inter-partition

Queuing Buffer Queuing Port

Non-Queuing Blackboard Sampling Port

Synchronisation
Semaphore —
Event

On the IMA platform, a partition is a fixed set of the module’s resources
to be used by an avionics application. In particular, each partition is assigned
a portion of the module’s memory. The operating system ensures that other
partitions can neither modify nor access the memory of a partition, simi-
lar to memory protection in a UNIX-like operating system. Each partition
also receives a fixed amount of CPU time. The operating system’s scheduler
ensures that no partition can spend CPU time allotted to another partition
[Aer05, p. 13].

Two kinds of partitions reside on a module:

Application partitions contain application code that makes up (part of ) the
implementation of an avionics function.

System partitions on the other hand provide additional module-related ser-
vices like data loading or health monitoring.

Inside a partition there can be multiple threads of execution, called pro-
cesses. Similar to POSIX threads, all processes within a partition share the re-
sources allocated to the partition. Each process has a priority. A process with
a higher priority pre-empts any processes with a lower priority. ARINC 653
defines a set of states a process can be in (Dormant, Waiting, Ready, Run-
ning) as well as API functions for process creation and management [Aer05,
pp. 18–25].

2.2.2 Communication

The operating system must provide a set of different methods of communi-
cation. All of them fall into either of two categories: intra-partition or inter-
partition communication. Intra-partition communication always happens
between processes of the same partition, while inter-partition communica-
tion happens between processes of different partitions or even partitions on
different modules. Table 2.1 provides an overview of different communica-
tion methods.

A buffer is a communication object used to send or receive messages be-
tween processes in the same partition. The messages are queued in FIFO
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order. Messages can have variable size, but must not exceed the maximum
message size specified at buffer creation. The maximum number of messages
a buffer can hold is defined at buffer creation. When a process reads from
a buffer, the oldest message is removed from it and returned to the process
[Aer05, p. 36]. A blackboard is a similar communication object, but it does
not queue messages. Instead, each new message overwrites the current one.
A message can be read an arbitrary number of times by any process of the
partition, until it is either cleared or overwritten [Aer05, p. 37].

Semaphores and events are communication objects that cannot be used
to transport messages, but instead serve as synchronisation objects for pro-
cesses. A semaphore has a counter. The operating system provides functions
to increment and decrement the counter. If a process tries to decrement the
counter while it is already at zero, the process is forced to wait until another
process increments the counter [Aer05, p. 37]. An event object has a list of
processes waiting for the event. As soon as the event is set to its signalled
state, all waiting processes become ready again [Aer05, p. 38].

Sampling ports and queuing ports are used for inter-partition communica-
tion. A port is unidirectional (either Source or Destination). Messages sent
over a port can have variable size, but must not exceed the defined maximum
message size of the port. Ports as well as the communication channels they
are connected to are defined at module configuration time. The application
cannot influence the routing of messages at runtime. Similar to a buffer, a
queuing port stores incoming messages up to a defined maximum number.
Each message is removed from the port as it is read. When writing multiple
messages to a queuing port, all of the messages will be sent in FIFO order.
A sampling port, on the other hand, does not queue multiple messages, nei-
ther incoming nor outgoing. Instead, only the latest message is kept [Aer05,
pp. 31–35].

2.2.3 Initialisation

All the aforementioned communication objects as well as processes cannot
be created during normal operation of a partition. Instead, they must be cre-
ated during a special initialisation phase. During this phase an initialisation
process is executed. Its task is the creation and initialisation of all required
resources (processes, ports, buffers, semaphores, etc.) for the partition. Only
when this phase is complete and the partition has switched to normal oper-
ation mode will the other processes start their execution. For that purpose
ARINC 653 describes a set of states a partition can be in, as well as API
functions for partition management [Aer05, pp. 15–17].

2.3 Module Configuration

As indicated previously, an integral part of an IMA module is its configura-
tion. In order to be suitable as a general-purpose platform for avionics func-

34



2.3. MODULE CONFIGURATION

tions it must be highly configurable to its specific scope of application. This
makes the process of creating a configuration a matter of high complexity. In
particular, multiple roles are involved in the process: Global module config-
uration data is managed by the module integrator², while partition-specific
configuration data are provided by the function suppliers³ responsible for the
implementation of each avionics function.

A complete module configuration consists of a set of data table files—a so-
called Interface Control Document (ICD). The module integrator processes
the ICD with a configuration tool to generate a binary representation, which
is then loaded into the module along with the application software.

The global part of the configuration consists of tables covering the follow-
ing module-global aspects:

• Physical RAM/ROM sizes and addresses

• CPU cache settings

• Scheduling: Minor Frame duration and number

• Health Monitoring recovery actions

• AFDX VL definitions

• Properties of other I/O hardware (if available)

Each partition has its own set of partition-specific configuration tables.
They cover the following aspects of partition configuration:

• Memory allocation (code, data)

• Scheduling: Time slices assignment

• Definition of AFDX messages

• Definition of sampling and queuing ports

• Assignment of ports to communication channels (module-internal or
via AFDX)

• Definition of messages for other message-based I/O hardware (if avail-
able, e. g. CAN or ARINC 429 bus)

The properties defined in partition-specific configuration are valid for one
partition only and cannot have influence on other partitions. As there are
cross-references between global and partition-specific configuration tables,
it is the module integrator’s responsibility to keep the overall configuration
consistent and valid (at best using appropriate tool support).

²The airframer
³The airframer’s subcontractors
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2.4 Testing IMA Systems

As described above, IMA components have a complex configuration. The
fact that it covers many aspects like partitioning, resource allocation, schedul-
ing, I/O configuration, network configuration and internal health monitor-
ing makes the configuration an integral part of the system, and it must
be taken into consideration during verification and certification [RTC92,
RTC05]. As a result of these considerations, different levels of testing for
IMA modules have been defined in a previous research project [Ott07]:

Bare Module Tests are designed to test the module and its operating system
at API level. The test cases check for correct behaviour of API calls,
while robustness test cases try to violate segregation rules and check that
these violation efforts do not succeed. Bare module tests are executed
with specialised module configurations designed for these application-
independent test objectives. The application layer is substituted by
test agents that perform the stimulations on the operating system as
required by the testing environment and relay API output data to the
testing environment for further inspection.

Configured Module Tests do not focus on the module and its operating sys-
tem, but are designed to test application-specific configurations meant
to be used in the actual aircraft. The test cases check that configured
I/O interfaces are usable as defined. Again, the application layer is
replaced by test agents.

Functional Tests run with the actual application layer integrated in the mod-
ule and check for the behavioural correctness of applications as inte-
grated in the IMA module.

2.5 Research Project SCARLETT

SCARLETT (SCAlable & ReconfigurabLe elEctronics plaTforms and Tools)
is a European research and technology project [SCA]. With 38 partner or-
ganisations (airframers, large industrial companies, SMEs and universities)
it is a large-scale integrating project funded under the Seventh Framework
Programme [FP7] of the European Commission, submitted to the Trans-
port Call under the Area of Activity 7.1.3 – Ensuring Customer Satisfaction
and Safety (Level 2). SCARLETT is a successor to several earlier European
research projects in the field of avionics, like PAMELA, NEVADA and VIC-
TORIA. Its goal is the development of a new generation of IMA (IMA2G)
with increased scalability, adaptability and fault-tolerance, called Distributed
Modular Electronics (DME).

The DME concept aims at the separation of processing power from sen-
sor/ actuator interfaces, thereby reducing the number of different component
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Figure 2.3: DME Architecture

types to a minimum. This also makes DME suitable for a wider range of air-
craft types by giving system designers the possibility to scale the platform
according to required hardware interfaces and computing power. Figure 2.3
shows an example of a network of components: two Core Processing Mod-
ules (CPM), three Remote Data Concentrators (RDC), and two Remote
Power Controllers (RPC) linked via two redundant AFDX networks. The
CPM components provide the computing power and host the avionics ap-
plications, but apart from AFDX they do not provide any I/O hardware
interfaces. Instead, the RDC and RPC components provide the required
number of sensor/actuator and bus interfaces.

The project also investigates ways of increasing fault tolerance through
different reconfiguration capabilities, for example transferring avionics func-
tions from defective modules to other, still operative modules. Finally, the
design of a unified tool chain and development environment has led to im-
provements of the avionics software implementation process.

The research activities and achievements presented in this dissertation are
the results of the author’s work in the SCARLETT project, in particular in
the work packages WP2.4 (Toolset & Simulators Development) and WP4.2
(I/O Intensive Capability Demonstration).
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Domain-specific Languages

Domain-specific Languages (DSLs) are programming languages which can
be employed to solve problems of a particular application domain. Some
well-known examples for DSLs are:

• SQL is supported by almost every database system to query, add or
delete records.

• Regular Expressions are widely used to describe regular languages¹.
Implementations provide a means of matching (recognising) strings
of text.

• VHDL is a standardised hardware description language employed for
integrated circuits design.

What these languages have in common is that they were designed for a
single purpose only. In contrast to general-purpose languages like C, Pascal,
or Perl, each one of them cannot be used as a replacement for the others.
While DSLs are not capable of solving every problem, a good DSL excels at
solving problems of its domain.

A DSL employs concepts of its application domain. Its syntax and seman-
tics are based on domain knowledge. For example, keywords and operations
are named after objects or principles that occur in the problem domain. It
also means that, while it is perfectly possible to write syntactically correct
programs in general-purpose languages which do not make any sense on a
semantic level, the grammar rules of a DSL can forbid such programs be-
cause the domain knowledge of what makes sense in a program is available
at language design time.

¹Although many regular expressions libraries provide features that exceed the expressive
power of regular languages.
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Figure 3.1: Comparison of abstraction levels

Experience shows that working on a higher level of abstraction provides
an increase in productivity. Using a DSL means working on a higher level
of abstraction compared to working with a general-purpose language (cf. fig-
ure 3.1). If the level of abstraction is raised high enough and no concepts
of general-purpose programming are left in a DSL, simple knowledge of the
domain is sufficient and no general-purpose programming skills are required
any more.

However, the introduction of a DSL can only be profitable if the initial
effort invested in its development can later be saved due to increased pro-
ductivity. This means, a DSL can be employed successfully if a well-defined
problem domain exists and the problems to be solved require changes to be
made frequently to the program, but only infrequently to the DSL or its
tools.

DSLs fall into two categories: internal and external DSLs. An internal
DSL is embedded into a host language. It can, for example, make use of the
host language’s control flow features (e. g. loops) and data types. An external
DSL, on the other hand, is built from scratch. Anything that is required must
be defined anew. While this requires more effort during language design, it
makes the language more flexible and expressive.

Further examples and information on DSLs can be found, for example,
in [FP10].

3.1 Domain-specific Modelling

The ideas and principles of using DSLs instead of general-purpose languages
can be applied to modelling as well: Instead of using a general-purpose mod-
elling language (e. g. UML), a graphical domain-specific language, called a
domain-specific modelling language (DSML), can be employed. A DSML
uses graphical representations of objects and concepts from its designated
problem domain. Therefore, models built from DSMLs can easily be un-
derstood, validated, and even created by domain experts without requiring
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in-depth knowledge of software engineering principles [KT08]. Adequate
tool support makes DSMLs intuitive to use and provides a much shallower
learning curve than text-based DSLs (and, of course, general-purpose lan-
guages).

Models built from a DSML must adhere to the language syntax. In order
to clearly define the syntax of a DSML, the language needs a formal defini-
tion. The language definition of a DSML is called ametamodel. The language
in which a metamodel is defined is called ameta-metamodel. Figure 3.2 shows
their relationship (cf. [KT08, ch. 4]).

The meta-metamodel is embedded in the DSM tool that is used to design
the language. The language designer uses its features to build the metamodel.
The metamodel defines all objects, their properties, and relationships that
may occur in models of a particular DSML.

When the language designer has completed the metamodel, domain ex-
perts can start building models in the new language. They are supported in
their task by the DSM tool, as the tool will make sure that only valid models
(i. e. conforming to the metamodel) can be built.

Ultimately, the goal of modelling is the generation of code. To that end,
apart from the metamodel, the language designer also provides a domain-
specific generator. It is the generator’s task to provide a mapping from the
models of the language to the concrete code that can be compiled or inter-
preted in the target environment. The code generally relies on a domain-
specific framework, for example a library of functions and some initialisation
routines. Well-established principles of operation can be implemented here
and therefore do not have to be modelled explicitly in the DSML. The frame-
work is supplied together with the generator by the language designer.

3.2 MetaEdit+

The number of users of a DSML can be potentially very small, depending
on the problem domain. It could, for example, be just a dozen employees
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working with a language used only in-house. It would be rather expensive
to develop a complete set of tools specifically for each of those languages. In-
stead, a number of tools exist that support the design and usage of arbitrary
domain-specific modelling languages. Apart from several Eclipse-based solu-
tions, one of them is MetaEdit+ by MetaCase [MC]. MetaEdit+ was chosen
for this work due to its ease of use as well as previous positive experiences.

3.2.1 GOPPRR

MetaEdit+ is based on the meta-metamodel “GOPPRR”. Like its predeces-
sors OPRR and GOPRR [Kel97, p. 239ff], it was designed specifically for
the purpose of metamodelling. The name is an acronym of the elements
the meta-metamodel provides. These elements, called metatypes, are used in
MetaEdit+’s metamodelling mode to build metamodels, i. e. new DSMLs.

Graphs are individual models, shown as diagrams. They consist of objects,
relationships, and roles. Bindings define how objects can be connected
via relationships and in which roles.

Objects are the main elements of graphs. An object has a visual represen-
tation and a number of properties. The values of its properties can
influence the visual representation of an object.

Properties are attributes characterising objects, graphs, roles, or relation-
ships. Their values are of a pre-defined type (text string, integer, enu-
meration value, etc.)

Ports are optional connection points of an object to which a role can connect.
Each port of an object has its own visual representation and position
on the object. If an object has no ports, a role can connect to anywhere
on the object (provided an appropriate binding rule exists).

Roles connect objects into relationships. Each role can have its own visual
representation (e. g. arrow head).

Relationships connect two or more objects via a line and possibly additional
visual elements. Each kind of relationship has a specific set of roles, and
each role can have its own cardinality.

3.2.2 Metamodelling

MetaEdit+ provides a metamodelling tool for each of GOPPRR’s elements.
A typical approach would be to start with the Object tool (figure 3.3) and
create a new object type for each kind of object, giving them appropriate
names and descriptions, then to create properties and add them to the ob-
jects. The next step would be to define relationships and roles using the
respective tools. Finally, the Graph Tool is used to create graph types. This
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includes basic properties like a name and graph-level properties as well as the
definition of which types of objects, relationships, and roles may appear in
the graph. The most important part, however, is the definition of bindings
[Kel95]. A binding stores the connection information of a relationship (it is
not part of the relationship itself ). More than one binding can be defined for
each type of relationship. A binding 𝐵 can be defined as a tuple consisting
of a relationship type 𝑟 and a connection set 𝐶:

𝐵 = (𝑟, 𝐶)
𝐶 ⊂ (𝐿 × 𝑅 × 𝑃 ∪ {⊥} × 𝑂)
𝐿 = {(𝑙, 𝑙) | 𝑙 ∈ ℕ, 𝑙 ∈ ℕ+ ∪ {∞}, 𝑙 ≤ 𝑙}

with 𝑟 a relationship type
𝑙 lower bound of cardinality
𝑙 upper bound of cardinality
𝑅 set of all role types
𝑃 set of all port types
⊥ the “empty” port
𝑂 set of all object types

This makes it possible to precisely define constraints regarding the types
of objects that can be in relationships with other object types as well as their
cardinalities (figure 3.4). The Graph Tool provides two additional features:
It is possible to define nesting of graphs, i. e. objects in a graph can decom-
pose into graphs of the same or another type. Finally, graph-level constraints
can be defined. Connectivity constraints limit the number of roles or rela-
tionships an object may be in. Occurrence constraints define a maximum
number of occurrences for an object type. Uniqueness constraints require
that a specific property is unique amongst all objects of a type in the graph
(figure 3.5).

MetaEdit+ also provides a Symbol Editor. This tool is used to design the
graphical representation of objects, ports, roles, and relationships. The values
of object/port/role/relationship properties can be used as text elements. The
visibility of certain parts of a symbol can be made to depend on property
values.

3.2.3 Modelling

When the metamodelling is completed, the domain experts can use Meta-
Edit+ in its modelling mode in order to create models. For each type of
graph defined in the metamodel, MetaEdit+ provides a dedicated Diagram
Editor (figure 3.6). Only the object and relationship types applicable to the

43



CHAPTER 3. DOMAIN-SPECIFIC LANGUAGES

Figure 3.3: MetaEdit+ Object Tool

Figure 3.4: MetaEdit+ Graph Bindings
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Figure 3.5: MetaEdit+ Graph Constraints

particular graph are made available to the modeller. Objects appear in their
custom, domain-specific representation. Object properties can be edited via
customised dialogue boxes. Objects can only be combined into relationships
according to the defined bindings; the editor does not permit invalid connec-
tions. Compliance with graph-level constraints is guaranteed as well.

3.2.4 Generators

The last step is the generation of code based on the models the domain experts
created. As described before, generators are required for this task. MetaEdit+
supports the generation of code and other outputs via its integrated generator
language: MERL (MetaEdit+ Reporting Language). MetaEdit+ provides an
editor tool which is used to write MERL generators for code, generator-based
text fields in symbols, and object identifiers.

In order to better understand MERL-based generators used in the follow-
ing parts of this document, a quick overview of MERL syntax will be given
here.

MERL was designed to navigate through design models and extract in-
formation from model elements. It is stack-based, with the current model
element at the top of the stack. When a generator starts, the initial object on
the stack is the graph that the generator is given to process. Most generators
operate by looping over all or a subset of objects of a graph. This is possible
with a foreach loop:
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Figure 3.6: MetaEdit+ Diagram Editor

foreach .State
{
:name; newline

}

The foreach loop starts on the graph level and iterates over all objects of
the given type, in this case all objects of type State². Inside the loop body,
the current State event becomes the top element on the object stack and
it is possible to access its properties. In this case, the name property of each
State object in the graph is output, followed by a newline.

From the current element it is possible to navigate through bindings to
other objects:

do ~From>Link~To.State
{
:name; newline

}

Assuming the current object is a State (for example by placing this code
into the loop body of the first example), the do loop iterates through all From
roles of the current object which are part of a relationship of type Link and
visits any State objects connected via a To role to that relationship. These,

²Assuming such an object type was defined in the metamodel.
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Table 3.1: MERL metatype characters

Character Metatype

. Object
: Property
# Port
~ Role
> Relationship

in turn, become the current objects for the body of the do loop. In other
words, this code example outputs the names of all states that can be reached
from the current state.

The strange-looking special characters prefixing the identifiers in the two
examples serve a specific purpose: The character defines the kind of metatype
that the name refers to (cf. table 3.1).

Loops can be combined with filtering and ordering expressions:

foreach .atom where :radioactive = true
orderby :atomic number;

{
...

}

This example would loop over all atom objects which are radioactive, in
order of ascending atomic number. Besides loops, if-else statements can
be used as well. And, similar to function calls, a generator can also call sub-
generators.

It is also important to note that apart from the logical connections be-
tween objects and relationships, in MERL it is also possible to obtain infor-
mation about their positions and layout. You can retrieve an object’s x and y
coordinates as well as its width and height. Objects that are placed inside the
area of the current object can be obtained via the contents keyword. Sim-
ilarly, containers retrieves the set of all objects that contain the current
object.

Since it is possible to access all information contained in a model, it
quickly becomes obvious that MERL provides a very powerful and flexible
approach to generating code and other data outputs from GOPPRR-based
models. For a complete description of MERL and its syntax, see [MWUG,
ch. 5].
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Model-based Testing

Model-based testing (MBT) is a process whose purpose is the generation
of executable test procedures from models. Instead of writing tests manually,
test cases are derived from models somehow related to the SUT [ZSM11b].
In this way MBT provides great potential for test automation. Consequently,
as several studies show, the application of model-based testing results in a
reduced effort and cost for testing activities [PPW+05, Bin12].

Two different kinds of models can be used as a basis for model-based
testing: System models represent the desired behaviour of the SUT. They are
abstractions of the actual SUT implementation. Test strategy models, on the
other hand, are models that are created separately from a system model and
describe some explicit testing strategy.

Apart from test selection criteria (e. g. structural model coverage, data
coverage, requirements coverage or formal test case definitions), [ZSM11b]
describes different test generation algorithms:

Random input generation is the simplest method: Random values from
the input space of a system are selected and used as inputs. Unfor-
tunately, the time it takes to achieve acceptable model coverage is not
predictable.

Graph coverage involves graph search algorithms for finding paths that in-
clude all nodes or arcs (e. g. Chinese Postman algorithm) in order to
reach sufficient model coverage.

Model checking is used to verify properties of a system. If test cases are
specified as reachability properties, a model checker is able to generate
traces that eventually reach a given state or transition.
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Figure 4.1: Example model: Turn indicator (UML). (Source: http://
mbt-benchmarks.org/)

Symbolic execution involves the execution of a model (evaluation of expres-
sions) not with actual, but with sets of input values. The result is a
symbolic trace that can be instantiated with concrete values. Test cases
can be specified as constraints that have to be respected during the
symbolic execution.

In model-based testing, two different modes of test execution are possible:
Online testing involves the evaluation of the model during the actual test
execution. Here, the MBT tool interacts directly with the SUT. By contrast,
the generation of “conventional” test procedures by an MBT tool and the
execution of those procedures in a separate step is called offline testing.

As an example, figure 4.1 shows part of a real-world system model of
a reactive system, in this case a subset of the functionality of a turn indi-
cator control system is modelled as a UML [OMG11] state machine dia-
gram (a variant of Harel Statecharts [Har87]). A state machine diagram
consists of states (Idle, Active, Stable, TipFlashing), one of which is the ini-
tial state. Each state represents a qualitative aspect of the system’s state space.
Extended state variables capture quantitative aspects of the state space. Their
existence avoids an explosion of the number of states in systems larger than
any trivial examples. States can have entry and exit actions (lr_FlashCmd
= 0). States are linked by transitions. Each transition can have guard condi-
tions (b2_TurnIndLvr == 0) which must be satisfied for the transition to
be taken, and it can also have actions (lr_TipFlashing = 0). Guards and
actions can be expressions over extended state variables as well as external
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inputs and outputs of the system. This example models normal direction
indication as well as “tip flashing” (lane change indicator).

Test case generation from such a model requires the ability to solve reach-
ability problems [Hui11, p. 30]. In order to travel a path along state ma-
chine transitions to reach a given target state, the guard conditions along
this path represent constraints that must be solved. The solution is taken as
a sequence of inputs to the SUT. The actions defined along the path in the
model contain the observable outputs that must be checked by the generated
test procedure in order to determine the test verdict.

An important aspect that must be noted is the fact that tests generated
from models have the same level of abstraction as the models themselves. As
a consequence, implementation details not covered in the model cannot be
tested automatically.

For a more exhaustive introduction to model-based testing in the context
of embedded systems, refer to [ZSM11a, UL07]. For more information on
automated test case generation, see [LP10, Wei10, PVL11, Pel13].
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TTCN-3

The Testing and Test Control Notation Version 3 (TTCN-3) is a language
designed for writing test specifications. It is based on the Tree and Tabular
Combined Notation (TTCN, TTCN-2). While its predecessors were used
mostly in telecommunication systems testing, TTCN-3 was developed to be
a universal test language. Among its application areas are protocol testing
(IPv6, GSM, and UMTS) and its use as a test environment for AUTOSAR
[AUT] (a system architecture similar to IMA designed for the automotive
domain).

TTCN-3 has been developed and standardised by the Methods for Test-
ing and Specification Technical Committee (TC-MTS) of the European Tele-
communications Standards Institute (ETSI). The standard itself is split across
several documents, each covering different aspects of TTCN-3. Table 5.1
shows the most important documents. Other documents define alternative
representations or extensions to the language. All documents are freely avail-
able from ETSI’s TTCN-3 website [ETS].

Table 5.1: TTCN-3 Standard documents

Document No. Description Reference

ES 201 873-1 Core Language [ETS09a]
ES 201 873-4 Operational Semantics [ETS09b]
ES 201 873-5 Runtime Interface [ETS09c]
ES 201 873-6 Control Interface [ETS09d]
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Table 5.2: TTCN-3 built-in simple types

Name Description

boolean Truth values (true, false)
integer Integral values of arbitrary size
float floating point values
verdicttype Test verdicts (none, pass,

inconc, fail, error)

Table 5.3: TTCN-3 built-in string types

Name Description

charstring ASCII characters
universal charstring Unicode characters
bitstring binary digits (arbitrary number)
hexstring binary digits (multiple of 4 bits)
octetstring binary digits (multiple of 8 bits)

5.1 Language Syntax

Test procedures are written in the TTCN-3 core notation [ETS09a]. This
language, although designed specifically for testing, bears many similarities to
common programming languages. For example, TTCN-3 provides a strong
type system with many built-in types. Table 5.2 shows a list of simple types.
New types can be created via aliasing and subtyping, e. g. by constraining an
integer type to a range of values [WDT+05, pp. 127–132].

TTCN-3 provides several kinds of string types, for character as well as
binary data. Their names are listed in table 5.3. Subtypes of strings can be
created by restricting the allowed set of characters and by limiting the string
length.

Similar to other languages, it is possible to declare user-defined types.
These can be enumerations, records, unions, or sets [WDT+05, pp. 139–
150]. While a record is equivalent to a struct type as known from C, a set is
similar to them, but the order of its elements does not matter. Another spe-
cific feature is that records and sets can have optional elements. An optional
element is not required to have an actual value. It is also possible to define
lists and arrays of types. While the size of arrays is determined at compile
time, the number of elements in a list can change dynamically at runtime.
It is, however, possible to define list types with length constraints (similar to
string lengths).
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There is no implicit type conversion in TTCN-3. If a value of one type
shall be used with a value of another type, one of them must be converted ex-
plicitly, for example using int2float or float2int. Variables are declared
using the var keyword. Declarations can be at any scope level except at the
top level. Therefore, global variables are not allowed¹. Similarly, constants
can be defined with the const keyword.

A speciality of TTCN-3 is its template system [WDT+05, pp. 173–192].
A template defines one or more values of a specific type. Templates are used
when sending and receiving messages. They can define the expected contents
of a message, e. g.:

type record SomeResponse {
integer errorcode;
charstring explanation;

};

template SomeResponse myTmpl := {
errorcode := (100, 200, 300),
explanation := ?

};

This defines a template myTmpl of the record type SomeResponse. The
template matches any actual records that have an error code of 100, 200, or
300. The question mark implies that any (empty or non-empty) string is
accepted in the explanation field.

Functions in TTCN-3 are defined using the function keyword. They
can have a list of input and output parameters and a return value. A simple
example function might look like this:

function myAdd(in int i, in float f) return float {
var float result;
result := int2float(i) + f;
return result;

}

Functions contain statements as commonly known from C or Pascal.
Apart from assignments (:=) there are arithmetic (+, -, *, /, mod, rem), rela-
tional (==, <, >, !=, >=, <=), logical (not, and, or, xor), and string (&, <<,
>>, <@, >@) operators. for and while loops as well as if-else statements
can be used just like in C.

One special statement is TTCN-3’s alt statement [WDT+05, pp. 55–
59]. It is used to provide a choice between several (blocking) operations. A
typical example would look like this:

alt {
[] port1.receive(someData) {

¹This restriction avoids problems with distributed test components.
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doSomething();
};
[] port2.receive(otherData) {

doSomethingElse();
};
[] myTimer.timeout {

setverdict(fail);
};

}

In this case, execution would block until data can be received from ports
port1 or port2, or until the timer myTimer expires. someData as well as
otherData would be templates (see above) that define the acceptable types
and values to be received. In each case, execution would continue in the
adjacent block.

As indicated in the previous example, TTCN-3 provides a timer mecha-
nism. Each timer must be declared before use. Afterwards, it can be started
with a specified timeout value. Then it can either be stopped (i. e. cancelled),
or the timer creates a timeout event. For example, in order to create a delay
of two time units, the following code might be used:

timer myTimer;

...
myTimer.start(2.0);
myTimer.timeout;
...

The timeout statement has blocking semantics, therefore it is normally
used as part of an alt statement.

5.2 Components and Concurrency

In TTCN-3, a test case is a sequence of SUT stimulations and expected
results. It is written similar to a function, but instead of a return value it
generates a verdict (cf. table 5.2). A very simple test case would look like
this:

testcase MyTC() runs on MyComponent {
setverdict(pass);

};

A test case is declared to run on a particular type of component. A com-
ponent is an entity that executes TTCN-3 code. Multiple components can
exist in parallel, resulting in concurrent execution. Each component has its
own local state of variables and timers.
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The component executing the test case is called the Main Test Compo-
nent (MTC). This component can create other components, which execute
functions declared to run on such component types [WDT+05, pp. 71–76].

A special type of component is the Test System Interface (TSI). It does not
execute TTCN-3 code, but instead declares the ports that the test system can
use to communicate with the SUT.

5.3 Communication

Components can communicate with each other and with the SUT. Commu-
nication takes place via ports. The declaration of a component type consists
of a list of ports and their types, making up the interface of such a component,
e. g.:

type component MyComponent {
port Request pt_req;
port Response pt_resp;

};

This declares a component type that has two ports in its interface: pt_req
and pt_resp. Note that the port itself does not have a direction (i. e. in or
out). Instead, each type of message that can pass through a port type is
directed:

type port Request message {
in ReqMsg

};

type port Response message {
out RespMsg

};

type port ComplexPort message {
in A;
out B;
inout C;

};

This last example declares a port type which can receive messages of types
A and C and can send messages of types B and C. All the port types shown
above operate in an asynchronous, message-based manner. Both communi-
cation partners use the send and receive operations to transmit messages.

In client/server architectures communication often happens synchron-
ously in a procedure-based manner. TTCN-3 supports this via procedure-
based ports [WDT+05, pp. 87–107]. Instead of messages, a procedure-based
port has a set of function signatures:
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signature login(in charstring user,
in charstring password)
return boolean;

signature logout();

type port MyClientPort procedure {
out login, logout

};

type port MyServerPort procedure {
in login, logout

};

In this example a “client” component can use the call operation to per-
form the login and logout functions and receive their result with the ge-
treply operation. The corresponding “server” component would use the
getcall operation to wait for requests and reply to them with the reply
operation.

The remaining question is how ports are connected to each other. TTCN-
3 distinguishes between connecting two ports of different components and
mapping a port of a component to a port of the TSI, which in turn is expected
to be a connection to the SUT [WDT+05, pp. 79–83]. If, for example, the
MTC has created two subcomponents, it can connect their ports:

testcase TC1() runs on MTC system SUT {
var Component1 comp1 := Component1.create;
var Component2 comp2 := Component2.create;

connect(comp1.port1, comp2.port1);
connect(comp1.port2, comp2.port2);

}

At runtime the TTCN-3 environment checks that all messages which can
be sent on one port can also be received on the other port. If not, a test error
occurs.

In a similar manner, ports can be mapped for communication with the
SUT. The MTC can map its own ports or those of subcomponents to TSI
ports:

type component MySUT {
port MsgType MySUTPort

}

type component MyMTC {
port MsgType MyMTCPort

}
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testcase TC2() runs on MyMTC system MySUT {
map(self:MyMTCPort, system:MySUTPort);

}

In contrast to connect, mapping two ports requires that all messages that
can be sent on the MTC port can also be sent on the TSI port, as well as that
all messages that can be received on the TSI port can also be received on the
MTC port. In other words: Ports in the TSI component do not represent
ports of the SUT itself, but ports of the whole test environment towards the
SUT.

5.4 Runtime Architecture

A TTCN-3 test procedure (or test suite) is abstract. The TTCN-3 code itself
does not contain information about the concrete format of messages or how
they are physically sent to or received from the SUT. Therefore, in order
to be executable with a real SUT, a TTCN-3 test procedure needs a suitable
runtime environment. It is the runtime environment’s task to provide certain
services. In particular, its responsibilities include:

• test control functionality (starting, stopping)

• test logging

• mapping between abstract and concrete data types (codecs)

• communication with the SUT

The TTCN-3 standard provides two interfaces that define how a TTCN-
3 test system has to provide these services. Figure 5.1 depicts the architec-
ture of a TTCN-3-based test system: The Test Executable (TE) is the binary
representation of a test procedure written in the TTCN-3 language (cf. sec-
tion 5.1), produced by a TTCN-3 compiler. The TTCN-3 Control Interface
(TCI) defines how tests are started and stopped, how the TE can have data
encoded and decoded, and how it can have information logged in the test
execution log.

The second interface, the TTCN-3 Runtime Interface (TRI), provides
access to two adapters: the SUT adapter and the platform adapter. The
purpose of SUT adapter is to provide a mapping between TTCN-3 commu-
nication channels and actual hardware (or software) interfaces. This makes
it possible for the TE to actually communicate with the SUT. All knowledge
about how communication takes place is encapsulated into the SUT adapter,
thereby keeping the test procedure abstract. If necessary, the SUT adapter
must also reset and activate the System Under Test before test execution.

The platform adapter provides a notion of time on the specific execution
platform, in particular via settable timers. It can also provide an interface to
arbitrary external functions.
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Figure 5.1: TTCN-3 System Architecture

A typical TTCN-3 tool provides test control and logging (usually along
with a graphical user interface) as well as a generic platform adapter (e. g.
using Windows or POSIX timers). The SUT adapter and any special codecs²,
however, must be provided by the architect or integrator of a concrete test
environment.

While this short introduction should give the reader a general overview
of TTCN-3 and selected relevant features, a full introduction to TTCN-3,
its syntax, concepts, and architecture, including many examples and useful
tips, can be found in [WDT+05].

²Some primitive codecs may be supplied with the TTCN-3 tool.
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CHAPTER 6
Test Case Generation and

Execution Process

Before going into the details in the following chapters, this chapter will
give an overview of the general workflow and the process of generating and
executing test cases in the framework.

An IMA test engineer (domain expert) uses the model-based IMA testing
framework in order to perform tests of IMA modules. The process of test case
generation and execution is divided into four steps:

1. Step one consists of transforming test requirements into ITML mod-
els. This part might have to be repeated if new requirements arise or
intended behaviour changes. It requires knowledge about IMA/DME
module testing and about modelling in ITML, but not about the de-
tails of programming test procedures with different test systems or
tools, because ITML provides an abstraction from this.

2. In the second step each model must be processed with the ITML Test
Case Generator. This step runs fully automated and must be triggered
(from the User Interface) whenever a model has been changed. The test
cases will be generated and compiled into executable test procedures.

3. Step three consists of the preparation of the SUT for test execution:
Either the actual application software or the Test Agent as well as the
required configuration must be compiled and loaded onto the SUT be-
fore testing can begin. Manual interaction can be required depending
on the module-specific load generation and data loading tools.

4. The fourth step is to execute the compiled test procedures in the test
environment on the TTCN-3 test system. This means that the person
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Modelling Generation Preparation Execution

Figure 6.1: Test Case Generation and Execution Process

conducting the tests can select a single test procedure or a batch of
multiple test procedures in the User Interface and have them executed.
No manual interaction is required during test execution. When the
tests have completed, the verdict will be displayed and the test logs
will be available for reading or archiving.

The test procedure requires knowledge about the specific configuration of
the SUT. Depending on the level of the test (see section 2.4), this will either
be a configuration designed specifically for this test, or a pre-defined configu-
ration generated by the module integrator. In the former case, the complete
configuration tool chain is required to produce the configuration loads. In
those cases where the universal Test Agent is to be used (basically all except
Hardware/Software Integration tests), the compiler and load generation tool
chain must be available during the testing process.
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In order to test the behaviour of an embedded system’s operating system,
running actual application code¹ is generally inadequate. An application
might not make use of all functionality that is supposed to be tested, or it
might be very difficult to reach an application state where a desired feature
is actually used at runtime.

This problem can be solved by using custom applications specially pro-
grammed for testing purposes. These need to make specific API calls de-
pending on the test case that is supposed to be covered by the test. Since
the turnaround of compiling, loading, and executing an application on an
embedded system is significantly higher than on a desktop computer, it is
very desirable to have one universally usable application, instead of one ap-
plication per test procedure.

Exactly this demand is fulfilled by the universal Test Agent (TA). It has
been designed and implemented as an ARINC 653-compatible application
that can be loaded into CPM partitions. Each agent instance can execute
API calls on behalf of the running test procedure. To that end, the agent
offers a remote procedure call interface. This interface requires two AFDX
ports—one input port and one output port—per partition. These ports are
called command ports. They must be chosen (or defined) reasonably. The
following criteria apply:

• A maximum message size of at least 8 bytes (recommended: 64 bytes
or more)

• A small BAG value for low latency

¹i. e. application code used upon entry into service
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Each partition that a TA instance runs in must have its own dedicated
command ports. The remote procedure interface enables the test procedure
to trigger three different kinds of calls inside the partition:

API calls directly trigger ARINC 653 API functions.

Scenario calls are complex combinations of API calls, possibly with addi-
tional logic or time-critical processing.

Auxiliary calls are helper functions, not resulting in API calls (i. e. without
OS-visible side effects).

While the set of API calls is predefined by ARINC 653, scenario calls
are custom operations that can be implemented as needed for a specific SUT
and test campaign. Scenario call handling is implemented in a C file, which
in turn is compiled and linked to the TA binary.

Scenario calls can, for instance, be used to get and set the values of signals.
A signal, in this case, is a value that is transmitted as part of an AFDX message,
together with other signal values. The module’s configuration defines the size,
data type and exact position of each signal in the message. Using a scenario
call, it is possible to change the value of one signal within an AFDX message
without having to transfer the complete message to the test environment and
back.

Auxiliary functions do not directly trigger API calls. They provide spe-
cial functions for the preparation of API and scenario calls, especially for
handling buffers. A data table provides a mapping between index numbers
and memory for strings and data. Its use avoids the necessity to repeatedly
transmit data blocks to be used as parameters for API calls. A definition
of the auxiliary functions implemented by the Test Agent can be found in
appendix B.

7.1 Test Agent Control Protocol

A test procedure must be able to send different commands to a test agent,
while a test agent has to send its responses back to the test procedure. A
special protocol has been designed in order to facilitate this communication,
the so-called Test Agent Control Protocol (TACP).

Considering the fact that commanding a TA must be possible via ports
which were originally defined for different purposes (configured module test-
ing, section 2.4), two important requirements for TACP can be defined:

1. TACP must be usable over sampling ports as well as queuing ports.

2. TACP must be usable over ports that have a maximum message size
which is smaller than TACP’s maximum PDU size.
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Table 7.1: TACP Layer 1

Field Size (Octets) Description

Sequence Number 1 Sequence number of this Layer 1
PDU

Acknowledgement
Number

1 Sequence number of last Layer 1
PDU that was received successfully

Flags 1 Layer 1 flags (cf. table 7.2)

Spare 1 Must be set to 0

Payload variable Contains Layer 2 data (complete or
split PDU)

Transmitting protocol-based data over sampling ports is problematic in-
sofar as it is possible to lose frames when writing new data into the output
port too fast. New data must only be written into a port if it is known
that the other party has received the previous data. Therefore a flow control
mechanism is required.

Another problem arises from the fact that, although the underlying IPv4
internetworking layer provides the capability to fragment larger datagrams
into smaller units, AFDX forbids the use of fragmentation on sampling ports.
Therefore, in order to be able to transmit protocol data units exceeding the
maximum frame size, a separate fragmentation/reassembly mechanism must
be employed.

TACP defines two protocol layers. TACP layer 1 provides fragmenta-
tion/reassembly and flow control, while layer 2 provides the remote proce-
dure call service.

7.1.1 Layer 1

Table 7.1 shows the structure of a TACP layer 1 PDU. Sequence number and
acknowledgement number are used for flow control: When a sender intends
to transmit new data, it can do so only as soon as it has received a layer 1
frame where the acknowledgement number is equal to the sequence number
last transmitted by the sender. When sending the new data, the sender must
increase the sequence number by one (modulo 256). The acknowledgement
number must always be set to the sequence number last received from the
other party. Details on sequence/acknowledgement number initialisation
can be found in section 7.2.2.

The more data flag specifies if a larger layer 2 PDU has been split into
multiple fragments. For all but the last fragment this flag must be set. A
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Table 7.2: TACP Layer 1 flags

Name Value Description

L1_MORE_DATA 0x01 Payload is part of a split Layer 2 PDU (but
not the last part), more data follows

Table 7.3: TACP Layer 2

Field Size (Octets) Description

Partition 1 Source/Target partition number

Process 1 Source/Target process number

Operation ID 2 See Operations table 7.4

Parameters variable Parameters/results of operation

receiver knows that it has received a full layer 2 frame as soon as it receives
a layer 1 frame with the more data flag cleared. Layer 1 PDUs carry layer 2
PDUs as their payload. Layer 1 PDUs without payload are used for simple
reception acknowledgement.

7.1.2 Layer 2

The layer 2 PDU structure is described in table 7.3. The meaning of its
fields depends on the direction in which a PDU is sent: A layer 2 PDU sent
to the SUT is called a command PDU. In this case, the partition and process
fields address the target that is supposed to carry out the operation specified
in the operation field. The rest of the PDU contains operation-dependent
parameters.

On the other hand, a layer 2 PDU sent by a Test Agent is called a response
PDU. Here, the partition and process fields designate the source which car-
ried out the operation specified in the operation field. In this case, the re-
mainder of the PDU contains the results of the operation.

All fields in a layer 2 PDU are encoded in network byte order (Big En-
dian). Table 7.4 shows the list of valid operations and their associated values.
Each operation has a number of parameters that must be specified in the
command PDU, as well as a number of return values that must be sent back
in the response PDU. For the definition of required parameters and return
values for each operation, refer to [Aer05].
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Table 7.4: TACP Operations

Operation ID

API Calls

CLEAR_BLACKBOARD 1

CREATE_BLACKBOARD 2

CREATE_BUFFER 3

CREATE_ERROR_HANDLER 4

CREATE_EVENT 5

CREATE_PROCESS 6

CREATE_QUEUING_PORT 7

CREATE_SAMPLING_PORT 8

CREATE_SEMAPHORE 9

DELAYED_START 10

DISPLAY_BLACKBOARD 11

GET_BLACKBOARD_ID 12

GET_BLACKBOARD_STATUS 13

GET_BUFFER_ID 14

GET_BUFFER_STATUS 15

GET_ERROR_STATUS 16

GET_EVENT_ID 17

GET_EVENT_STATUS 18

GET_MY_ID 19

GET_PARTITION_STATUS 20

GET_PROCESS_ID 21

GET_PROCESS_STATUS 22

GET_QUEUING_PORT_ID 23

GET_QUEUING_PORT_STATUS 24
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Table 7.4: TACP Operations (continued)

Operation ID

GET_SAMPLING_PORT_ID 25

GET_SAMPLING_PORT_STATUS 26

GET_SEMAPHORE_ID 27

GET_SEMAPHORE_STATUS 28

GET_TIME 29

LOCK_PREEMPTION 30

PERIODIC_WAIT 31

RAISE_APPLICATION_ERROR 32

READ_BLACKBOARD 33

READ_SAMPLING_MESSAGE 34

RECEIVE_BUFFER 35

RECEIVE_QUEUING_MESSAGE 36

REPLENISH 37

REPORT_APPLICATION_MESSAGE 38

RESET_EVENT 39

RESUME 40

SEND_BUFFER 41

SEND_QUEUING_MESSAGE 42

SET_EVENT 43

SET_PARTITION_MODE 44

SET_PRIORITY 45

SIGNAL_SEMAPHORE 46

START 47

STOP 48

STOP_SELF 49
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Table 7.4: TACP Operations (continued)

Operation ID

SUSPEND 50

SUSPEND_SELF 51

TIMED_WAIT 52

UNLOCK_PREEMPTION 53

WAIT_EVENT 54

WAIT_SEMAPHORE 55

WRITE_SAMPLING_MESSAGE 56

Auxiliary Functions

AUX_CREATE_DATA_TABLE 1000

AUX_GET_DATA_TABLE_ENTRY 1001

AUX_SET_DATA_TABLE_ENTRY 1002

AUX_RESERVE_DATA_TABLE_ENTRY 1003

AUX_CLEAR_DATA_TABLE_ENTRY 1004

AUX_DELETE_DATA_TABLE 1005

Scenario Calls

SCE_OPEN_SIGNAL_PORTS 2000

SCE_READ_SIGNAL 2001

SCE_WRITE_SIGNAL 2002

The encoding of parameters and results is very similar to XDR [SM87].
In particular, the actual encoding rules for parameters and return values are
as follows:

1. Parameters are encoded in the order in which they are listed in the
standard, i.e. the leftmost parameter first. OUT parameters that are
not numeric or enumeration types are transmitted as an index number
into the data table.

2. Return values are encoded in the following order: Any OUT parame-
ters in the order in which they are listed in the standard, followed by
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the return code. Invalid OUT parameters are transmitted as value 0.
OUT parameters that are neither numeric nor enumeration types are
not transmitted in the response, as their values can be obtained from
the data table.

3. Return codes (RETURN_CODE_TYPE) and other enumeration types are
encoded as 4-byte integers in network byte order.

4. 8-bit, 16-bit, and 32-bit numeric types are encoded as 4-byte integers
in network byte order.

5. 64-bit numeric values are encoded as 8-byte integers in network byte
order.

6. The members of a record are encoded in the order in which they appear
in the standard, i. e. topmost member first.

7. Character strings and data buffers are not transmitted directly. Instead,
an index number into the data table is transmitted as a 4-byte integer
in network byte order.

8. Exception: The data buffer parameters to auxiliary functions for data
table handling are transmitted in binary coding as an array of charac-
ters. The array is preceded by its 4-byte length parameter (in network
byte order). The end of the buffer is padded to a 4-byte boundary. The
size of the padding is not included in the value of the length parameter.

7.1.3 Coding Example

As an example, the coding of an API call command and its response are
shown here:

Command
Destination: Partition 10, Process 100
Operation: CREATE_SAMPLING_PORT
Parameters:
SAMPLING_PORT_NAME: ”EXAMPLE_DATA_1”

MAX_MESSAGE_SIZE: 64

PORT_DIRECTION: DESTINATION

REFRESH_PERIOD: 500

Response
Source: Partition 10, Process 100
Operation: CREATE_SAMPLING_PORT
Parameters:
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SAMPLING_PORT_ID: 23

RETURN_CODE: NO_ERROR

Note: We assume that the zero-terminated string ”EXAMPLE_DATA_1” has
been placed in entry 3 of the data table beforehand.

Coding of command PDU on protocol layer 2:
0A 64 00 08 00 00 00 03 00 00 00 40 00 00 00 01 00 00 01 F4

Coding of response PDU on protocol layer 2:
0A 64 00 08 00 00 00 17 00 00 00 00

Coding of command and response, including acknowledgements, on proto-
col layer 1 (command split into two layer 1 PDUs, response sent as one layer
1 PDU):
→ 01 00 01 00 0A 64 00 08 00 00 00 03 00 00

← 00 01 00 00

→ 02 00 00 00 00 40 00 00 00 01 00 00 01 F4

← 01 02 00 00 0A 64 00 08 00 00 00 17 00 00 00 00

→ 02 01 00 00

7.2 Runtime Behaviour

7.2.1 Initialisation

During module start-up, all loaded Test Agent instances initialise themselves
in their partition. Initially, all partitions run in INIT mode, executing an
initialisation process (cf. section 2.2.3). The entry point for this process is
the TA initialisation routine (ta_init).

While running in INIT mode, an application must allocate the resources
it will need during normal operation. The first resources that the TA needs
are its command ports. In order to open the ports, the TA needs to know
the port parameters (name, maximum message size, direction, and refresh
rate). The correct parameters must be passed to the CREATE_SAMPLING_PORT
API call, otherwise port creation will fail. Since the TA cannot be told the
correct parameters at runtime (as communication is not possible yet), it must
know those beforehand. This is accomplished by the TA configuration parser.
This parser generates a table (ta_ports) of all ports and their parameters
from the actual module configuration for a partition. This table is linked
to the TA binary and loaded into the module partition with it. At runtime,
the initialisation process accesses this table to open the partition’s command
ports.

Next, the TA creates and initialises an array to store information about
the processes in the partition. The init process is always placed at array index
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0. Each process has its own buffer that stores commands addressed to the
process after they have been received via the partition’s input command port.
Such a buffer is created for the init process and referenced in the process
array. Then, the TA creates another buffer used as a global output queue. All
processes of the partition place their response messages in this buffer in order
to have them sent via the partition’s output command port.

7.2.2 Sequence Number Initialisation

The sequence number handling of TACP layer 1 requires a special set-up
procedure. When the TA starts up, the test environment might already be
running and its sequence and acknowledgement numbers can have arbitrary
values. If the TA simply initialised its sequence and acknowledgement num-
bers to 0, the first frame it received from the other party would likely have
a different sequence number, and the frame’s contents would be interpreted
as a new command, although it was in fact an old one².

In order to avoid this situation, there is a delay of up to one second be-
fore the TA starts transmitting. During this time it waits for an incoming
frame on its command port. If one is received, the TA’s sequence number
is initialised with the received acknowledgement number, and the TA’s ac-
knowledgement number is initialised with the received sequence number. If
no frame is received during that second, both numbers are set to 0.

7.2.3 Main Loop

When all initialisation has been completed, the init process starts the exe-
cution of the TA’s main loop (ta_main_loop). It does not set the partition
into normal operation mode, but instead leaves it in INIT mode. The reason
for this is that if the partition were switched into normal mode, it would not
be possible to command the TA to allocate more resources, open additional
ports, or perform any INIT mode testing. Therefore, the transition to nor-
mal mode is only performed when the TA executes the corresponding API
call as commanded by the Test Environment.

Any running processes in the partition execute the same main loop. It
consists of the following steps:

1. Try to receive data from the partition’s input command port. On suc-
cess, call the TACP protocol stack with the received data.

2. Check the process’ own command input buffer. If it is not empty,
retrieve the next element and call the command handler.

3. If data can be sent, check the global send queue. If it is not empty, re-
trieve the next element and send it via the partition’s output command
port.

²Recall that sampling port data is always retransmitted periodically.
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After each main loop cycle, a periodic process will call PERIODIC_WAIT,
thus suspending itself until its next activation period.

7.2.4 Protocol Handling

The Test Agent’s TACP protocol implementation handles the sending and re-
ceiving of TACP messages. Whenever a process receives a new frame from the
TACP command port, it calls the layer 1 receive function (recv_tacp_l1).
This function stores the received acknowledge number and then checks if
the sequence number differs from the sequence number of the previously re-
ceived frame. If so, the frame’s contents are new, and the function appends
the payload of the frame to a static buffer. Then it checks the frame’s flags
field. If the more data flag (L1_MORE_DATA) is set, the layer 2 PDU is not yet
complete, and so the function returns. But if the flag is not set, the contents
of the static buffer now constitute a complete layer 2 frame. This frame is
handed to the layer 2 receiving function (recv_tacp_l2).

The layer 2 receiving function’s task is very simple: It must route the layer
2 frame to the correct process command input buffer. To do that, it checks
the layer 2 header’s address fields and finds the matching process buffer in
the process information array.

When a process finds a new command in its command input buffer (while
performing the second step of the main loop), it calls the command handler
function (handle_tacp_cmd). This function examines the command’s op-
eration field. Depending on the numerical range the operation code is in,
the function calls either the API call handler, the scenario handler, or the
auxiliary function handler. These three handlers are very similar. Each has
a jump table referencing the specific handler for each operation code. After
performing a range check, the handler directly calls the function referenced
by the operation code.

Each specific handler now has to check that the number of parameters
supplied with the command matches the particular call. If so, it can extract
the parameter values from the command buffer and make the actual call.
Afterwards, it places the return code and any output parameters in the com-
mand buffer. Then it passes the buffer to the TACP layer 2 send function
(send_tacp_l2), thereby turning the command into a response.

The layer 2 send function accepts a complete layer 2 response message.
It must ensure that the layer 1 frames it generates are small enough to fit
through the command output port (i. e. frame lengths must be smaller or
equal to the maximum message size of the port). So the function generates a
layer 1 frame in a local buffer, initialises the header fields (sequence and ac-
knowledge numbers are initialised with 0 as their actual values cannot yet be
determined), and fills it with as much data of the layer 2 frame as possible. If
not all of the layer 2 frame fits, it sets the more data flag (L1_MORE_DATA) in
the layer 1 header. Then it calls the layer 1 send function (send_tacp_l1).
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The layer 2 send function repeats these steps until the complete layer 2 mes-
sage has been fragmented into layer 1 frames.

The layer 1 send function simply places each frame that is passed to it
into the global send queue of the partition and returns. As soon as a process
executes the last step of the main loop, it checks if the last received acknowl-
edgement number is equal to the last sent sequence number. If so, new data
can be sent without the risk of losing a frame. In this case, the process tries
to obtain a frame from the global send queue. If the queue is empty, no new
data needs to be sent right now, and the last frame is simply repeated (pos-
sibly with an updated acknowledgement number). If a frame was retrieved
from the queue, its sequence number is set to the sequence number of the last
frame plus 1 (modulo 256), and its acknowledgement number is set to the
last received sequence number. Then the new frame is sent via the command
output port.

7.3 Wireshark TACP Dissector

In general, during the integration phase of a newly developed system or
software, it is necessary to find problems pertaining to the communication
between the system and its (test) environment. This becomes even more
difficult with complex high-speed communication networks. A common
method of debugging is the use of a network analyser, the open-source tool
Wireshark³ being a popular choice. The framework provides a plug-in that
enables Wireshark to understand and dissect TACP frames (cf. figure 7.1).
This can be an invaluable aid for the test engineer/integrator when analysing
communication problems with a Test Agent.

In particular, the plug-in facilitates two things: First, it marks TACP traf-
fic in the overview of captured frames, making it easily recognisable. Second,
the plug-in is able to analyse frames of both TACP protocol layers. It displays
and interprets the values of all header fields. The value of the operation field
on layer 2 is decoded into a human-readable form according to table 7.4, and
the numeric values of the operation’s parameters are displayed as well.

³http://www.wireshark.org
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Figure 7.1: TACP protocol dissector for Wireshark
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CHAPTER 8
TTCN-3 Environment

While chapter 5 provided a general overview of TTCN-3, this chapter
contains a discussion of a specific test environment used in the ITML frame-
work. During the course of the SCARLETT research project, TTworkbench
from Testing Technologies [TTW] was selected as a TTCN-3-based test ex-
ecution tool.

In the ITML framework, the test environment must serve two particular
purposes:

System Under  Test

Test Environment

TTCN-3 System

Test Agent

I/O AFDXI/OAFDX

Test Procedure

I/O

Figure 8.1: Test Environment and System Under Test
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• The test environment must provide a way of communication with the
Test Agent(s) residing in the SUT. The test procedure must be able to
command the Agents and observe their responses.

• The test environment must interface with all input/output hardware
of the System Under Test. It must provide the test procedure with a
means to stimulate all types of inputs and to observe all types of outputs
of the SUT.

A test environment may consist of several different hardware components.
Each of the components may be responsible for a different kind of I/O hard-
ware interface, e. g. discrete input/output, analogue input/output, torque
sensors, temperature sensors, as well as AFDX, CAN, or ARINC 429 bus
interfaces.

In the TTCN-3 test system architecture (cf. figure 5.1 on page 60), the
SUT Adapter (SA) constitutes the interface between the test procedure and
the SUT. Therefore, the SA must translate all TTCN-3 communication tak-
ing place over TSI ports into actual hardware I/O.

8.1 Proxy SA

Implementing an SA for a single hardware interface is rather straightforward.
But, since there can exist only one SA in a test system, there are two alter-
native ways of implementing the SA in case of multiple separate hardware
interfaces:

• A single, monolithic SUT Adapter implementing access to all hardware
interfaces, or

• a Proxy SUT Adapter providing a plug-in facility for individual sub-
SAs (cf. [WDT+05, p. 211]).

Choosing the latter alternative provides some advantages. The SA be-
comes more modular and can easily be adjusted to the actual test interface
hardware. While the necessary adjustments when changing a hardware inter-
face require source code changes and recompiling of the monolithic SA, the
Proxy SA requires no changes at all, and only a different sub-SA needs to be
plugged into the architecture.

Each sub-SA implements access to one specific kind of hardware. It is
implemented exactly like a single SA, and it does not need to be aware of the
presence of other sub-SAs.

The implementation of the Proxy SA itself is very simple. The proxy
has to implement the functions required by the TRI interface for an SA. At
runtime, it has to forward function calls to the registered sub-SAs. According
to [ETS09c, p. 18ff], the following functions are required:

• triSAReset
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• triExecuteTestCase

• triMap

• triUnmap

• triEndTestCase

• triSend¹

• triCall¹

• triReply¹

• triRaise¹

The Proxy SA keeps a list of all registered sub-SAs (subsaList). The
sub-SAs, like the Proxy SA itself, are derived from class TestAdapter. Calls
to triSAReset, triExecuteTestCase, and triEndTestCase are passed
to all sub-SAs.

Calls to triMap are passed to all sub-SAs in turn, until one sub-SA indi-
cates success of mapping the port to its hardware interface (i. e. the sub-SA
responsible for the port to be mapped has been found). The Proxy SA asso-
ciates the port with this sub-SA in a hash map (portMap).

When one of the functions triSend, triCall, triReply, triRaise, or
triUnmap is called, the Proxy SA can simply look up the sub-SA responsible
for the particular port in its hash map. Then it forwards the call to that
sub-SA exclusively.

The reference implementation of the Proxy SA for the ITML framework
can be found in appendix C.1.

8.2 TACP SA

The TACP SA is one of the sub-SAs registered in the Proxy SA. Its purpose
is to provide access to two codecs² which are required in the framework: the
TACP codec and the FLOAT codec.

The TACP codec encodes and decodes messages sent via the command
ports to and from the Test Agents. On the TTCN-3 level, a TACP layer 1
PDU is defined as follows³:

type record tacp_l1_pdu {
uint8 seq_no,
uint8 ack_no,

¹These functions also have multicast and broadcast variants, which must be implemented
as well if such communication methods are used.

²Codecs are not part of the TRI interface, but they are retrieved via the getCodec function
of the SUT Adapter.

³The following type definitions can also be found in appendix C.5.
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uint8 flags,
uint8 spare,
tacp_l2_pdu l2 optional

} with {
encode ”TACP_CODEC”

};

The record contains all header fields of a TACP layer 1 PDU. The l2
payload field is marked as optional, since a layer 1 PDU does not necessarily
contain any payload. The with encode clause explicitly tells the TTCN-3
runtime system which codec to employ in order to encode instances of this
type.

Consequently, a TACP layer 2 PDU is defined in the following way:

type record tacp_l2_pdu {
uint8 partition,
uint8 process_idx,
Operation operation,
ParameterList parameters

};

The tacp_l2_pdu record contains the addressing fields of a layer 2 PDU,
an operation ID enumeration field, and a list of parameters (or return values)
for the operation. This list type is simply defined as:

type record length (0..64) of uint32 ParameterList;

The TACP codec is able to convert instances of type tacp_l1_pdu into
their correct binary representation and vice versa (cf. section 7.1). The codec’s
encode and decode functions are automatically called by the TTCN-3 run-
time system when messages of type tacp_l1_pdu are passed through a TSI
port.

On this level, all parameters and return values of operations are treated
as 4-byte integers. In order to interpret an integer parameter as a float value,
it can be converted using the FLOAT codec. A simple TTCN-3 helper func-
tion is provided for this purpose:

function intAsFloat(in uint32 i) return float32 {
var float32 f;
var bitstring bs := int2bit(i, 32);
var integer r := decvalue(bs, f);
return f;

}

As no port communication is taking place here, the codec is called di-
rectly through the decvalue function, which decodes a value from its binary
representation. The FLOAT codec is employed automatically, because the
float32 type is defined as follows:
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type float float32 with { encode ”FLOAT_CODEC” };

8.3 TACP Protocol Handling

The actual TACP protocol stack implementation on the test environment
side resides in a TTCN-3 component. This component, called TACPHan-
dler, is responsible for handling communication with one Test Agent in-
stance. If a specific test setup utilises multiple TAs, each will require its own
protocol handler instance.

The TACPHandler component is defined to have three ports. Two ports,
tacpToCPM and tacpFromCPM, must be mapped to AFDX TSI ports. The
AFDX network must be configured so that these AFDX ports are connected
to the command input and output ports of the respective Test Agent instance.
Messages sent and received through these ports are encoded and decoded
by the TACP codec (cf. section 8.2). The third port, named cmd, permits
only procedure-based communication. The test procedure connects to this
port and uses the TTCN-3 call statement to trigger API or scenario calls
according to the signatures defined for the individual commands.

Each handler component instance executes the function runHandler.
This function consists of an infinite loop. Inside this loop two alt state-
ments are employed to allow the reception of procedure-based calls via the
cmd port as well as responses from the TA via the tacpFromCPM port.

Whenever a call is made over the cmd port, the apicall alt statement de-
termines which command is requested and builds a suitable command PDU.
Depending on the operation, the required parameters, passed along via the
procedure-based call, are added to the PDU as well. The PDU is then placed
into a ring buffer which serves as a send queue. Now, according to the flow
control rules of TACP layer 1, the handler checks if it can send new data: If
the last received acknowledgement number is equal to the last sent sequence
number and the send queue is not empty, the next PDU is retrieved from the
send queue, and its sequence and acknowledgement numbers are set. Finally,
the handler sends the PDU via the tacpToCPM port to its corresponding TA
instance.

The second alt step, response, receives PDUs from the TA instance via
the tacpFromCPM port. Whenever a frame arrives, its sequence number is
checked to determine if the PDU contains new data. If there is a layer 2
payload, its operation and parameters are checked for consistency, and then
a matching reply is sent back over the cmd port to fulfil the command that
was requested before.

The full reference implementation of the TACP protocol handler compo-
nent for the ITML framework can be found in appendix C.6.
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8.4 Test Procedures

The aforementioned components and features serve as the foundation for the
actual test procedures. These test procedures are themselves implemented as
TTCN-3 modules, which have been generated from ITML models. The
next chapter will provide an in-depth discussion of ITML modelling.
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IMA Test Modelling Language

This chapter provides extensive insight into the domain-specific language
that has been developed for the ITML framework.

As explained in chapter 3, DSLs are designed for specific purposes. The
goal behind ITML modelling is to enable the user (domain expert) to de-
scribe test cases, and to automatically generate executable test procedures
from modelled behaviour.

9.1 Domain Analysis

The first step in the development of a domain-specific language is the analysis
of its intended usage domain. The analysis shall uncover the relevant entities
and concepts, their relationships, and rules governing the domain. Chapter 2
has provided a general overview of the IMA domain. Several rules shall be
kept in mind during the analysis (cf. [Wil04]):

1. Find the right level of abstraction. Allow expressiveness within the
domain, but without being too general.

2. Avoid concepts that seem good from a programming point of view,
but that do not have a counterpart in the domain (and which domain
experts might not understand).

3. Keep the language as small as possible to reduce complexity.

4. If required, prefer several languages for different aspects of the domain
instead of one big language which covers everything.

Refer to [Mew10, ch. 2.3] for a more general discussion of language design.
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Moreover, as discussed briefly in section 2.4, there are three different
scopes of IMA testing. Consequently, all of them will be examined, one by
one.

9.1.1 Bare Module Testing: Configuration

As the name suggests, Bare Module testing involves only the bare module
hardware and its operating system. There is no predefined configuration
for the module. Instead, it is the test engineer’s task to supply an adequate
configuration for each test case. Therefore, the module configuration is part
of the ITML language domain for this testing scope. An overview of module
configuration has been given in section 2.3. It lists the relevant characteristics
that must be respected for the analysis.

A module configuration specifies properties of the module on global and
partition levels. For example, suppose we would like to have a module of
type “CPM” with its pin programming set to position 1. We would like to
configure two partitions. Each partition has a specified amount of RAM as
well as its own scheduling characteristics. Each partition also has its own
inputs and outputs. Since CPM modules only support AFDX and RAM
communication, only ports of those types can be configured¹. Ports have a
direction, a port characteristic (“sampling” or “queuing”) and a maximum
message size.

We can now compile a list of all required concepts for the configuration
domain together with their properties, relationships, constraining rules, and
representation. The chosen representations are of a rather abstract nature,
as the concepts, apart from the module itself, have no physical form. These
representations will later be used in the DSL.

¹Additional types of I/O interfaces would be required in order to support other module
types.
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Module

The module represents the SUT as a whole. It has configuration parameters
affecting the module in its entirety.

Properties The name of the module.
The module’s location (i. e. pin programming).

Relationships Connected to partitions.

Rules The module name is unique within the configur-
ation.
The module location is unique within the configur-
ation.

Representation

CPM

THA
Pos. 1
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Partition

The partition represents an ARINC 653 partition inside a module. It has
partition-related configuration and links to other concepts which exist for
each partition.

Properties The name of the partition.
The scheduling period of the partition.
The slice duration of the partition.
The amount of RAM reserved for the partition.

Relationships Connected to module.
Connected to AFDX ports.
Connected to RAM ports.

Rules Cannot be connected to more than one module.
The partition name is unique within the configur-
ation.
The slice duration must be less than the scheduling
period.

Representation
Partition 1

Period: 1000 ms
Duration: 100 ms
RAM Size: 4096 KiB
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AFDX Ports

The AFDX Ports concept represents a group of AFDX ports with similar
properties. Note that the individual ports do not have names assigned to
them here, since these are not relevant.

Properties The port characteristic (sampling/queuing).
The maximum message size.
The actual number of ports.

Relationships Connected to a partition, either as inputs or outputs.

Rules Cannot be connected to more than one partition in
case of output ports.

Representation
AFDX Ports

Sampling
Size: 64 B
Count: 12
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RAM Ports

The RAM Ports concept represents a group of RAM ports with similar prop-
erties. Note that the individual ports do not have names assigned to them
here, since these are not relevant.

Properties The port characteristic (sampling/queuing).
The maximum message size.
The actual number of ports.

Relationships Connected to two partitions, to one as inputs and
to one as outputs.

Rules Cannot be connected to more than two partitions.
Cannot be input ports for more than one partition.
Cannot be output ports for more than one partition.

Representation
RAM Ports

Queuing
Size: 512 B
Count: 2

9.1.2 Bare Module Testing: Behaviour

Apart from the (static) configuration part, bare module testing requires a
specification of the (dynamic) behaviour. Bare module testing is concerned
with the module’s operating system and the API and resources it provides.
Therefore, in order to find the relevant concepts in this domain, we need to
refer to section 2.2 and [Aer05].

Since testing takes place by having the universal test agent (cf. chapter 7)
run inside the partition, we need partitions and processes. Inside a process
the possible actions, i. e. API calls, as well as their sequence have to be spec-
ified. A simple way of achieving this is by using flowcharts. They require
start and end points as well as connecting arrows. A node can have multi-
ple incoming connections, and one or more outgoing connections. If there
is more than one outgoing connection, the connections must have different
conditions assigned to them, as the behaviour is required to be deterministic.

Some ARINC 653 resources are defined and created at runtime (con-
trary to declaring them in the module configuration). This involves buffers,
blackboards, and semaphores. Ports, however, come from the module con-
figuration. Only ports which have been previously declared in the module
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configuration can be opened at runtime. We need a facility which provides
access to them, without having to re-declare what is in the configuration.

In order to work properly with ports, two other concepts are required:
First, we need messages which we can send through a port. And second, in
order to check correct reception, we need a way to reference the opposite
endpoint of a communications channel.

This information allows us to give a complete list of the concepts, their
properties, relationships, constraining rules, and representations required for
behaviour modelling.

Partition

The partition defines the context in which actions are to take place, i. e. an
ARINC 653 partition containing a Test Agent which is to be stimulated.

Properties The partition name.

Relationships Connected to process.

Rules None.

Representation
Partition 1

Process Configuration

ARINC 653 processes are created at runtime. They have process-related con-
figuration properties.

Properties The name of the process.
The scheduling period of the process.
The scheduling priority of the process.
The stack size reserved for the process.

Relationships Connected to related API calls.

Rules None.

Representation

Process p1
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Process

The process defines the context in which actions are to take place inside a
partition, i. e. a process of a Test Agent which is to execute API calls.

Properties The process name.

Relationships Connected to API call.

Rules None.

Representation
Process 1

Test Start

A control flow requires a distinguished start location. This is represented by
the start symbol.

Properties None.

Relationships Connected to partition.

Rules Must occur exactly once per graph.

Representation

START

Test Pass, Test Fail

It must be possible to set the verdict of the test procedure. This is achieved
by using the pass and fail symbols within the diagram.

Properties None.

Relationships Incoming connections from API calls.

Rules None.

Representation

PASS FAIL
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API Call

The central elements of a behaviour specification are ARINC 653 API calls.
They shall be executed by the Test Agent running in a partition on the mod-
ule. There are numerous different API calls, and for brevity not all will be
listed here.

Properties API call parameters, depending on type of API call.

Relationships Connections to and from other API calls, processes,
or complements.
Connections to parameter objects, depending on
type of API call.

Rules Depending on API call, requires the correct number
and type of connected parameters.

Representation
Create Blackboard

Complement

During I/O testing it is necessary to check for correct reception or to send a
message through the opposite endpoint of a port. The complement operation
provides a means to do this in a generic manner. This means, for example,
that aWrite complement operation on an AFDX input port will make the test
environment send a message so that the partition can receive it from the re-
spective AFDX input port with a Read_Sampling_Port/Receive_Queuing_Port
API call.

Properties The operation to be performed (read or write).

Relationships Connections to and from other API calls, processes,
or complements.
Connections to port and message pattern parameter
objects.

Rules Must be connected to exactly one message pattern.
Must be connected to exactly one port.

Representation
Read complement
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Message Pattern

Working with resources like ports, blackboards, and buffers requires messages
which can be written to and read from them. For testing purposes the actual
contents are not relevant, therefore it is sufficient to have message patterns.

Properties Message payload, either as concrete values or as sets
of allowed values, e. g. regular expressions.

Relationships Connected to message-related API calls or comple-
ment operations.

Rules None.

Representation
Message Pattern

0xFF

Blackboard

ARINC 653 blackboards can be created at runtime and can be used for intra-
partition communication.

Properties The name of the blackboard.
The maximum size of a message.

Relationships Connected to blackboard-related API calls.

Rules None.

Representation
Blackboard

bb01
Size: 128 B
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Buffer

ARINC 653 buffers can be created at runtime and can be used for intra-
partition communication.

Properties The name of the buffer.
The queuing discipline (FIFO or priority).
The maximum size of a message.
The maximum number of messages.

Relationships Connected to buffer-related API calls.

Rules None.

Representation
Buffer

buf01
FIFO
Size: 8 x 64 B

Semaphore

ARINC 653 semaphores can be created at runtime. They provide an intra-
partition synchronisation mechanism (counting semaphore) with a maxi-
mum counter value.

Properties The name of the semaphore.
The queuing discipline (FIFO or priority).
The initial counter value.
The maximum counter value.

Relationships Connected to semaphore-related API calls.

Rules None.

Representation
Semaphore

sem01
FIFO
0/1
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Event

ARINC 653 events can be created at runtime. They provide a synchronisa-
tion mechanism that allows a process to signal the occurrence of an event to
one or more other waiting processes.

Properties The name of the event object.

Relationships Connected to event-related API calls.

Rules None.

Representation
Event

ev01

Port

A port represents an API port defined in the partition configuration. It is
of a specific type and direction. In a loop (see below) it will represent each
configured port matching the characteristics in turn.

Properties The type of port (AFDX or RAM).
The port characteristic (sampling or queuing).
The direction of the port (input or output).

Relationships Connected to port-related API calls.
Connected to a loop object.

Rules Must be connected to exactly one loop object.

Representation
AFDX Sampling

Output Port
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Loop

In order to have tests that are not tailored to a specific module configuration,
it is necessary to have a means of working with an arbitrary number of ports
defined in a configuration. This is possible with a loop construct, performing
actions inside the loop for each port defined in the configuration. A loop
consists of two blocks, a loop start and a loop end, bracketing the loop body
objects.

Properties None.

Relationships Connections to and from API calls, processes,
or complements.
Connected to a port object.

Rules Must be connected to exactly one port object.

Representation
Loop

Loop End

...

9.1.3 Bare Module Testing: Test Suite

Finally, a mechanism to associate configurations and test behaviours is re-
quired, i. e. a test suite, in which all relevant configurations and behaviours
of a particular test project are grouped together.

Behaviour

A Behaviour represents an entire test behaviour model as described in sec-
tion 9.1.2. Each test behaviour has one or more links to configurations with
which the test shall be executed.

Properties The referenced Test Behaviour model.

Relationships Connected to one or more Configurations.

Rules None.

Representation
AFDX Port Test 1
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Configuration

A Configuration represents an entire configuration model as described in
section 9.1.1. Each configuration can have links to one or more behaviours
with which the configuration is to be employed.

Properties The referenced Test Configuration model.

Relationships Connected to one or more Behaviours.

Rules None.

Representation
Con�guration 1

9.1.4 Configured Module Testing

As described before in section 2.4, Configured Module Testing involves test-
ing the IMA module, its operating system, and the designated configura-
tion for the module, generated by the module integrator for the module’s
intended operation mode (i. e. the specific aircraft configuration).

When analysing the Configured Module Testing usage domain, it be-
comes apparent that it bears no new modelling requirements compared to
Bare Module Testing. Instead, module configurations are already provided
and part of the SUT now, so all that is required is to be able to use behaviour
specifications as described in section 9.1.2 with pre-existing module config-
urations.

This is fulfilled by the test generator (cf. section 10.2.2) processing the
actual module configuration files (ICDs in CSV format), rather than only
working on module configuration models as described in section 9.1.1.

9.1.5 Hardware/Software Integration Testing

The purpose of Hardware/Software Integration Testing is to verify the correct
behaviour of software implementing an actual avionics function (like flight
control, fire and smoke detection, or braking control systems) on the IMA
module hardware.

We need to be able to model the ideal (i. e. correct) behaviour of the
application software, so that the actual behaviour of the implementation can
be checked against the model. Since, at this level of testing, the module and
its software is considered a black box (i. e. we cannot examine its internal
state during testing), the only observable evidence of its behaviour are the
outputs it produces via its I/O interfaces as reaction to input stimuli.

Based on this, we wish to specify the correct behaviour by modelling the
internal states of the system and how it calculates its outputs based on the
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inputs from its environment. At the top level, we have the SUT and its en-
vironment, connected via the SUT’s input and output signals. Furthermore,
the SUT may consist of an arbitrary number of internal functional blocks,
called components. On the lowest level, we wish to model the behaviour of a
component in a formal way, e. g. by specifying statecharts. As described ear-
lier in chapter 4, it is highly desirable to have extended state variables in order
to avoid state explosion. Such variables can have different data types. Since
we wish to model real-time behaviour, we obviously need clock variables as
well.

The individual locations inside a statechart are connected via transitions.
A transition can have a guard condition and an action, while a location can
have entry, do, and exit actions. Each of these types of action can change
internal variables and/or externally visible output signals, while guard condi-
tions control state transitions depending on internal variables and/or external
input signals.

In contrast to the other language variants, here we would like to express
a hierarchy (of components). As briefly mentioned in section 3.2.2, this is
possible by employing a so-called decomposition. This means that an object
is linked to a (sub-)graph, and this graph shows the interior of the object.

The aforementioned elements are sufficient for the modelling of system
behaviour. We can now give a list summarising the concepts of the applica-
tion domain with their designated properties, relationships, constraint rules,
and their representation.

SUT

The SUT represents the module and its software as a whole. It is the top-level
component for modelling the module’s behaviour.

Properties The name of the SUT.

Decomposition To Component Diagram or Statechart.

Rules Must occur exactly once.

Representation
System Under Test (SUT)
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TE

The TE represents the Test Environment, i. e. the counterpart to the SUT.
Like the SUT, it is a top-level component, but the TE is used to model how
the environment behaves.

Properties The name of the TE.

Decomposition To Component Diagram or Statechart.

Rules Must occur exactly once.

Representation
Test Environment (TE)

Component

A component represents a functional block in either the SUT or the TE.

Properties The name of the component.

Decomposition To Component Diagram or Statechart.

Rules None.

Representation
MyComponent_1
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Input Signals List

The input signals list specifies all signals which the TE can send as inputs to
the SUT.

Properties List of signal definitions.

Relationships None.

Rules The names of all input and output signals
must be unique.

Representation
SUT Input Signals

input1: int
input2: int
input3: bool

Output Signals List

The output signals list specifies all signals which the SUT can send as outputs
to the TE.

Properties List of signal definitions.

Relationships None.

Rules The names of all input and output signals
must be unique.

Representation
SUT Output Signals

output1: bool
output2: �oat
output3: int
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Variables List

A variables list defines variables inside a component, which make up the
component’s extended state.

Properties List of variable definitions.

Relationships None.

Rules The names of all variables and constants
within a component must be unique.

Representation
Variables

index: int
�ag: bool

Variable Definition

A variable definition specifies a single variable.

Properties Name of the variable.
Type of the variable.
Default value.
Minimum value.
Maximum value.

Relationships None.

Rules None.

Representation n/a
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Constants List

A constants list defines constants, i. e. symbolic names for constant numeric
values.

Properties List of constant definitions.

Relationships None.

Rules The names of all variables and constants
within a component must be unique.

Representation
Constants

pi: �oat = 3.14159

Constant Definition

A constant definition specifies a single constant.

Properties Name of the constant.
Type of the constant.
Value of the constant.

Relationships None.

Rules None.

Representation n/a
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Start Location

The start location designates the initial location of a statechart.

Properties None.

Relationships Connected to location.

Rules Must occur exactly once per statechart.

Representation

Stop Location

The stop location designates a terminal location within a statechart.

Properties None.

Relationships Connected to locations.

Rules None.

Representation
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Location

A location describes a state within a statechart. It has lists of actions, which
can, for example, be assignments or other code statements.

Properties The name of the location.
List of entry actions.
List of do actions.
List of exit actions.
Requirement tag.

Relationships Connected to locations.

Rules None.

Representation
Processing

Entry: �ag = true
Do: output3 = 2 * input1
Exit: �ag = false

Req: SUT-REQ-ST-01
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Transition

A transition is the link between locations in a statechart. It has an outgoing
location and an ingoing location. In the graphical representation, the arrow
points at the ingoing location.

Properties The name of the transition.
A condition for the transition.
List of actions.
Requirement tag.

Relationships Outgoing location can be Start Location
or Location.
Ingoing location can be Location
or Stop Location.

Rules A transition has exactly one outgoing
and one ingoing location.

Representation
[input3 == true]

index = 5

9.1.6 Design Considerations

After completing the domain analysis, it is now possible to specify the new
language. As we can see, the language shall cover three different usage scenar-
ios (bare module, configured module, and hardware/software integration).
Adhering to the fourth rule from section 9.1, instead of covering all at once,
the language is split into three variants:

ITML-B Bare Module testing. This variant allows the definition of sets of
configurations as well as the specification of test case behaviour.

ITML-C Configured Module testing. This variant does not permit the def-
inition of configurations, but supports the specification of test case
behaviour.

ITML-A Hardware/Software Integration testing. This variant allows the
specification of application behaviour, from which test cases can be
generated automatically.

The following sections describe the implementation of the ITML lan-
guage within the domain-specific modelling framework MetaEdit+ (cf. sec-
tion 3.2). Each variant has an abstract syntax definition, as well as static and
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dynamic semantics. The abstract syntax is provided in the form of a graphi-
cal representation of GOPPRR metamodels. They show the types of objects
that make up a graph, their respective properties, and the relationships and
respective roles connecting the objects. While constraints are not visible in
these diagrams, they are provided in textual form, defining the static seman-
tics of the language.

MetaEdit+ has direct support for several types of constraints, i. e. its
framework guarantees that the models created with it always comply to the
constraints defined in the metamodel. It is not possible to perform a mod-
elling action that would result in an invalid model. As analysed in [Mew10,
ch. 4.4], this includes connectivity constraints (maximum number of roles or
relationships an object can be in), occurrence constraints (maximum number
of occurrences in a graph for an object), port constraints (same or different
values of properties of all objects in a binding), and uniqueness constraints
(uniqueness of property values per graph).

It is, however, important to note that the constraints supported by Meta-
Edit+ can only limit the maximum number of occurrences or connections,
not the minimum. It is for example possible to say “Objects of type x can be
in at most 2 y relationships”, but it is not possible to say “Objects of type x
must be in at least 1 y relationship”. The reason is that, were it possible to
define such a constraint, the model could not always be compliant: It is not
possible to create a new object and put it into all the required relationships
in an atomic operation.

Nonetheless, the generator facilities provided by MetaEdit+ can be em-
ployed to write a model validity checker. This checker can traverse the model
and check the model’s adherence to all additional constraints. It can, for ex-
ample, count the number of relationships that each object of type x is in,
and display an error message to the user if this number is below the required
minimum.

9.2 ITML-B: Bare Module Testing

The IMA Test Modelling Language variant B enables the test expert to define
bare module tests. Since there are no pre-defined configurations for bare
module testing, the language allows the definition of suitable configurations,
in addition to API-oriented test actions. Therefore, ITML-B is split into
three parts: The configuration modelling part allows the definition of a set
of configurations for a test case, while the behaviour modelling part allows
the specification of the dynamic test case behaviours. The test suite part
groups them together and makes the connection between behaviours and
configurations.

Each of these parts is realised as a graph type in MetaEdit+.
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CPM {1}

Name:String (unique per graph)
Location:Fixed List

Partition (Cfg)

ID:String (unique per graph)
Period:Number
Duration:Number
RAM Size:Number

AFDX Port Group

Port Characteristic:Fixed List
Maximum Message Size:Number
Count:Number

Objects in binding:
AFDX Port Group, RAM 
Port Group

RAM Port Group

Port Characteristic:Fixed List
Maximum Message Size:Number
Count:Number

Part of

Data�ow Data�ow

Container Containee

Sender

Receiver
1,N

Sender

Receiver

Figure 9.1: Abstract Syntax: Configuration Part

9.2.1 Configuration

The goal of the Configuration part is not to provide a full-featured configu-
ration editor, but to enable the user to describe constraints on a set of con-
figurations with a minimum of effort. The Configuration part is represented
by a graph that comprises the different components which make up a CPM
configuration.

Abstract Syntax

Figure 9.1 shows the abstract syntax of the configuration part. Object types
are represented by blue rounded rectangles. Their properties are displayed
inside the rectangle body. Objects are connected via relationships, displayed
as orange diamonds. A green circle shows the role which an object has in a
relationship.

The root object is a CPM. The module-level configuration parameters
relevant for Bare Module testing are represented as properties of this object².

One or more partition objects can be associated with a CPM object. The
partition objects are in a Part of relationship with the CPM. The partition-
level configuration parameters relevant for Bare Module testing are repre-
sented as properties of this object. Each configured partition will execute the
Test Agent. Appropriate command ports will be defined automatically.

²Other (static) configuration parameters are provided from a template.
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AFDX Port Group objects and RAM Port Group objects can be in Data-
flow relationships with a partition.

RAM port group objects have associations with two partitions. The as-
sociations have an arrow to indicate the port direction. The object has prop-
erties that represent the range of RAM port configuration parameters. That
means a RAM port group object does not represent one single RAM port, but
a set of different RAM ports, generated automatically by the configuration
generator.

AFDX port group objects have an association with one partition. The
association has an arrow to indicate the port direction. The object has prop-
erties that represent the range of AFDX port configuration parameters. That
means an AFDX port group object does not represent one single AFDX port,
but a set of different AFDX ports, generated automatically by the configura-
tion generator.

The concrete syntax of the language elements defines their actual appear-
ance in models. Appropriate symbols have been defined in MetaEdit+ to
have the elements look like their representations as shown during the do-
main analysis (cf. section 9.1).

Relationships and roles have a concrete syntax as well. The Part of re-
lationship is represented by a solid line. The Receiver role of the Dataflow
relationship has an incoming arrowhead representation, thus denoting the
direction of dataflow in the relationship.

Static Semantics

As determined during the domain analysis, a Configuration graph must ad-
here to the following constraints:

1. Property “Name” in CPM must have unique values.

2. Property “Location” in CPM must have unique values.

3. Partition may be in at most one Containee role.

4. Property “ID” in Partition must have unique values.

5. AFDX Port Group may be in at most one Dataflow relationship.

6. RAM Port Group may be in at most two Dataflow relationships.

7. RAM Port Group may be in at most one Sender role.

8. RAM Port Group may be in at most one Receiver role.

While MetaEdit+ directly allows the incorporation of the preceding con-
straints into the ITML metamodel (thus guaranteeing model compliance),
the remaining constraints cannot be checked automatically by MetaEdit+
and must instead be checked by a model validity checker:
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Partition
ID:Number

Process
Init Process:Boolean
Process Con�g:Object

Test Start

Objects in binding:
API Call, Complement, 
Loop, Loop End, 
Process

Objects in binding:
API Call, Complement, 
Loop, Loop End, 
Partition, Process, Test 
Fail, Test Pass

Condition:Collection

Control Flow

Condition:Collection

Control Flow

Condition:Collection

Control Flow

From To

From ToFrom To

Figure 9.2: Abstract Syntax: Behaviour Control Flow

9. The partition slice duration must be less than the partition scheduling
period.

10. An AFDX Port Group must be in exactly one Dataflow relationship.

11. A RAM Port Group must be in exactly one Sender role.

12. A RAM Port Group must be in exactly one Receiver role.

13. A Partition must be in exactly one Containee role.

The corresponding model validity checker can be found in appendix D.1.

9.2.2 Behaviour

The Behaviour part is a different graph type. It comprises flowchart-like
components.

Abstract Syntax

Due to its size the abstract syntax is split across several figures. Figure 9.2
shows the control-flow-related parts of the abstract syntax. The execution
flow is represented by objects connected by Control Flow relationships (ar-
rows). Each relationship can have an optional guard condition.

A behaviour part graph has exactly one flow start object and one or more
flow end objects, each denoting the test case result (pass/fail).

To give the context, i. e. partition and process, where API calls are to be
executed, a sequence of API calls must be preceded by a partition object and
a process object. A partition object defines the partition, a process object
defines the process inside a partition, by which the following sequence of
API calls is to be executed.

Figure 9.3 presents the different types of nodes in the control flow graph.
Most of them are API calls. The concrete API call objects are derived from
the abstract API call object type.

The steps in the behaviour part are API call objects which are to be exe-
cuted by the Test Agent in one or more processes. The API call parameters
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API Call {0}

Clear_Blackboard Create_Blackboard Create_Buffer Create_Event

Create_Process Create_Queuing_Port Create_Sampling_Port Create_Semaphore

Display_Blackboard
Read_Blackboard

Timeout:Number Read_Sampling_Message
Receive_Buffer

Timeout:Number

Receive_Queuing_Message
Timeout:Number Reset_Event

Send_Buffer
Timeout:Number

Send_Queuing_Message
Timeout:Number

Set_Partition_Mode
Partition Mode:Fixed List Signal_Semaphore Start

Stop Stop_Self
Wait_Event

Timeout:Number
Wait_Semaphore

Timeout:Number

Write_Sampling_Message

Complement
Operation:Fixed List

Loop

Loop End

Test Pass

Test Fail

Set_Event

Figure 9.3: Behaviour Metamodel: Nodes

are derived from parameter objects, like an API port or a blackboard. The Pa-
rameter relationships allowed between API calls and resource objects can be
seen in figure 9.4: The different kinds of API calls require different kinds of
parameter objects. A Create_Event API call, for example, must be connected
to an Event object, but it cannot be connected to a Buffer object. Some API
calls require two or more parameter objects of different types. For each kind
of parameter object there is a different role which the API call object assumes
in that relationship. For example, a Send_Buffer API call will be in an API
call [Buffer] role in its relationship to the Buffer parameter object, while at the
same time it will be in an API call [Message] role in its relationship to theMes-
sage parameter object. These different roles are necessary to create constraints
that ensure API calls have the required number of different parameters (cf.
Static Semantics below).

Read or write Complement steps allow access to the other end of a port
resource currently in use without having to know (and hard-code) where (e. g.
in which partition, or on which external AFDX port) that is actually located.

Message pattern objects specify message payloads, either as concrete val-
ues or as sets of allowed values, e. g. regular expressions.

111



CHAPTER 9. IMA TEST MODELLING LANGUAGE

Process Con�g

Name:String
Stack Size:Number
Priority:Number
Period:Number
Time Capacity:Number
Deadline:Number

Blackboard
Name:String
Maximum Message Size:Number

Buffer

Name:String
Maximum Message Size:Number
Maximum Number of Messages:Number
Queuing Discipline:Fixed List

Event
Name:String

Semaphore

Name:String
Current Value:Number
Maximum Value:Number
Queuing Discipline:Fixed List

Message
Pattern:String
Message Size:Number

Port
Type:Fixed List

Objects in binding:
Clear_Blackboard, 
Create_Blackboard, 
Display_Blackboard, 
Read_Blackboard

Objects in binding:
Create_Buffer, 
Receive_Buffer, 
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Figure 9.4: Behaviour Metamodel: Parameters

Resource objects are used to hold references to OS resources created at
runtime (e. g. blackboards). They can be associated with the applicable API
call objects as parameter objects.

Behaviour steps can be enclosed in loop start and loop end objects. This
shall allow the specification of steps that are to be executed for all port re-
sources of a specified type.

Static Semantics

Again, as determined during the domain analysis, a Behaviour graph must
adhere to the following constraints:

1. Test Start may occur at most one time.

2. Clear_Blackboard may be in at most one API call [Blackboard] role.

3. Create_Blackboard may be in at most one API call [Blackboard] role.

4. Create_Buffer may be in at most one API call [Buffer] role.
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5. Create_Event may be in at most one API call [Event] role.

6. Create_Process may be in at most one API call [Process] role.

7. Create_Queuing_Port may be in at most one API call [Port] role.

8. Create_Sampling_Port may be in at most one API call [Port] role.

9. Create_Semaphore may be in at most one API call [Semaphore] role.

10. Display_Blackboard may be in at most one API call [Blackboard] role.

11. Display_Blackboard may be in at most one API call [Message] role.

12. Read_Blackboard may be in at most one API call [Blackboard] role.

13. Read_Blackboard may be in at most one API call [Message] role.

14. Read_Sampling_Message may be in at most one API call [Message]
role.

15. Read_Sampling_Message may be in at most one API call [Port] role.

16. Receive_Buffer may be in at most one API call [Buffer] role.

17. Receive_Buffer may be in at most one API call [Message] role.

18. Receive_Queuing_Message may be in at most one API call [Message]
role.

19. Receive_Queuing_Message may be in at most one API call [Port] role.

20. Reset_Event may be in at most one API call [Event] role.

21. Send_Buffer may be in at most one API call [Buffer] role.

22. Send_Buffer may be in at most one API call [Message] role.

23. Send_Queuing_Message may be in at most one API call [Message]
role.

24. Send_Queuing_Message may be in at most one API call [Port] role.

25. Set_Event may be in at most one API call [Event] role.

26. Signal_Semaphore may be in at most one API call [Semaphore] role.

27. Start may be in at most one API call [Process] role.

28. Stop may be in at most one API call [Process] role.

29. Wait_Event may be in at most one API call [Event] role.

30. Wait_Semaphore may be in at most one API call [Semaphore] role.
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31. Write_Sampling_Message may be in at most one API call [Message]
role.

32. Write_Sampling_Message may be in at most one API call [Port] role.

33. Complement may be in at most one API call [Message] role.

34. Complement may be in at most one API call [Port] role.

While MetaEdit+ directly supports the previous constraints, the remaining
constraints cannot be checked automatically by MetaEdit+ and must instead
be checked by a model validity checker:

35. Test Start must occur exactly one time.

36. Clear_Blackboard must be in exactly one API call [Blackboard] role.

37. Create_Blackboard must be in exactly one API call [Blackboard] role.

38. Create_Buffer must be in exactly one API call [Buffer] role.

39. Create_Event must be in exactly one API call [Event] role.

40. Create_Process must be in exactly one API call [Process] role.

41. Create_Queuing_Port must be in exactly one API call [Port] role.

42. Create_Sampling_Port must be in exactly one API call [Port] role.

43. Create_Semaphore must be in exactly one API call [Semaphore] role.

44. Display_Blackboard must be in exactly one API call [Blackboard] role.

45. Display_Blackboard must be in exactly one API call [Message] role.

46. Read_Blackboard must be in exactly one API call [Blackboard] role.

47. Read_Blackboard must be in exactly one API call [Message] role.

48. Read_Sampling_Message must be in exactly one API call [Message]
role.

49. Read_Sampling_Message must be in exactly one API call [Port] role.

50. Receive_Buffer must be in exactly one API call [Buffer] role.

51. Receive_Buffer must be in exactly one API call [Message] role.

52. Receive_Queuing_Message must be in exactly one API call [Message]
role.

53. Receive_Queuing_Message must be in exactly one API call [Port] role.
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54. Reset_Event must be in exactly one API call [Event] role.

55. Send_Buffer must be in exactly one API call [Buffer] role.

56. Send_Buffer must be in exactly one API call [Message] role.

57. Send_Queuing_Message must be in exactly one API call [Message]
role.

58. Send_Queuing_Message must be in exactly one API call [Port] role.

59. Set_Event must be in exactly one API call [Event] role.

60. Signal_Semaphore must be in exactly one API call [Semaphore] role.

61. Start must be in exactly one API call [Process] role.

62. Stop must be in exactly one API call [Process] role.

63. Wait_Event must be in exactly one API call [Event] role.

64. Wait_Semaphore must be in exactly one API call [Semaphore] role.

65. Write_Sampling_Message must be in exactly one API call [Message]
role.

66. Write_Sampling_Message must be in exactly one API call [Port] role.

67. Complement must be in exactly one API call [Message] role.

68. Complement must be in exactly one API call [Port] role.

69. Conditions on outgoing Control Flow edges of a node must be deter-
ministic.

70. Nodes outside a Loop block must not have Control Flow relationships
to nodes inside a Loop block.

71. Nodes having a Control Flow relationship to a Loop End block must
be inside a loop.

The corresponding model validity checker can be found in appendix D.2.

9.2.3 Test Suite

The third graph type is the Test Suite. It combines several Configuration and
Behaviour parts.
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Con�guration
Con�guration Spec:Graph

Behaviour
Behaviour Spec:GraphUsed by

Used User

Figure 9.5: ITML-B Test Suite

Abstract Syntax

The abstract syntax of the Test Suite graph type is depicted in figure 9.5.
Here, a Behaviour object is always associated with one or more configuration
objects. Therefore, the graph specifies for each test case that is part of the test
suite the configurations with which it is to be executed.

Both Configuration and Behaviour objects have a property which directly
links to the concrete graph instance which the object represents.

Static Semantics

The relative simplicity of the Test Suite graph also reflects on its constraints.
Each graph must be compliant with the following two constraints:

1. A Behaviour must be in at least 1 Used by relationship.

2. A Configuration must be in at least 1 Used by relationship.

Since these constraints cannot be enforced directly by MetaEdit+, they must
be checked by a model validity checker. The corresponding model validity
checker can be found in appendix D.3.

9.2.4 Dynamic Semantics

For each graph type introduced until now, the previous sections gave defini-
tions of syntax and static semantics, but a definition of dynamic semantics
was still missing. The reason for this is that the behaviour can only be defined
when taking all graphs into consideration. In particular, the semantics of a
Behaviour graph can only be determined in combination with a Configura-
tion. This combination is made explicit in the Test Suite graph.

In order to precisely define the semantics of MetaEdit+ graphs, some
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auxiliary constructs are required:

𝐺𝑟𝑎𝑡𝑦𝑝𝑒 set of all graphs of type 𝑡𝑦𝑝𝑒
𝑂𝑏𝑗𝑡𝑦𝑝𝑒(𝐺) set of objects of type 𝑡𝑦𝑝𝑒 in graph 𝐺
𝑃𝑟𝑜𝑝𝑛𝑎𝑚𝑒(𝑜) value of property 𝑛𝑎𝑚𝑒 of object 𝑜
𝑃𝑟𝑜𝑝𝑛𝑎𝑚𝑒(𝑟) value of property 𝑛𝑎𝑚𝑒 of relationship 𝑟

𝑅𝑒𝑙𝑡𝑦𝑝𝑒(𝐺, 𝑜, 𝑜) set of relationships of type 𝑡𝑦𝑝𝑒 between objects 𝑜
and 𝑜 in graph 𝐺

𝑅𝑒𝑙𝑂𝑡𝑦𝑝𝑒(𝐺, 𝑜) set of objects in relationship of type 𝑡𝑦𝑝𝑒 to object 𝑜
in graph 𝐺

𝑅𝑜𝑙𝑒𝑡𝑦𝑝𝑒(𝐺, 𝑜) set of objects in role of type 𝑡𝑦𝑝𝑒 in a relationship
to object 𝑜 in graph 𝐺

From each Test Suite graph 𝑡 ∈ 𝐺𝑟𝑎𝑇𝑒𝑠𝑡𝑆𝑢𝑖𝑡𝑒 a set 𝑇𝑃 of test procedures can
be derived. The set of test procedures 𝑇𝑃 contains pairs of configuration and
behaviour graphs:

〈𝑐, 𝑏〉 ∈ 𝑇𝑃 ⇔ ∃ 𝑐′ ∈ 𝑂𝑏𝑗𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑡) ∃𝑏′ ∈ 𝑂𝑏𝑗𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟(𝑡) |
𝑐 = 𝑃𝑟𝑜𝑝𝐶𝑜𝑛𝑓𝑖𝑔𝑆𝑝𝑒𝑐(𝑐′) ∧ 𝑏 = 𝑃𝑟𝑜𝑝𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑆𝑝𝑒𝑐(𝑏′) ∧ 𝑐′ ∈ 𝑅𝑒𝑙𝑂𝑈𝑠𝑒𝑑𝑏𝑦(𝑡, 𝑏′)

A test procedure tuple 〈𝑐, 𝑏〉 is element of the test procedure set 𝑇𝑃 iff its Test
Suite graph 𝑡 contains objects 𝑐′ and 𝑏′ referencing graphs 𝑐 and 𝑏, and 𝑐′ is
in a relationship with 𝑏′.

What remains now is the semantics of a single test procedure, made up
of Configuration graph 𝑐 and Behaviour graph 𝑏. The observable effect of a
test procedure must be a sequence of ARINC 653 API calls:

𝑎 → 𝑎 → 𝑎 → …→ 𝑎𝑛

Each call 𝑎𝑖 has input and output parameters, a return value, and is addressed
to (a Test Agent in) a specific partition and process. For easy and intuitive
representation, we define a call to have the following format:

Partition : Process : API Call ( Parameters, Return Value )

The call 9:5:SET_PARTITION_MODE(WARM_START, NO_ERROR), for exam-
ple, means: “Process 5 in partition 9 makes a Set_Partition_Mode API call
with parameter Warm_Start. It returns with code No_Error.”

We will use a structural operational semantics approach [Plo81] to de-
scribe how this sequence of calls is produced from a test procedure. To that
end, we define a variant of a labelled transition system, called a behaviour
transition system, as well as transition rules on the state of the transition sys-
tem.
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Definitions

Let 𝑉 be the set of possible test verdicts and 𝑅 be the set of possible API call
return values:

𝑉 = {pass, fail,unknown}
𝑅 = {NO_ERROR,NO_ACTION,NOT_AVAILABLE, INVALID_PARAM,

INVALID_CONFIG, INVALID_MODE,TIMED_OUT}

Let 𝑃𝑎 be the set of all partition numbers and 𝑃𝑟 be the set of all process
indices:

𝑃𝑎 = {1…32}
𝑃𝑟 = {0…2 − 1}

Let 𝑂 be the set of parameter objects, 𝐿 be the set of locations in a Behaviour
graph 𝑏, and Φ be the set of all loop start locations plus a “no-loop” element
⊥:

𝑂 = 𝑂𝑏𝑗𝐵𝑙𝑎𝑐𝑘𝑏𝑜𝑎𝑟𝑑(𝑏) ∪ 𝑂𝑏𝑗𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑜𝑛𝑓𝑖𝑔(𝑏) ∪ …
𝐿 = 𝑂𝑏𝑗𝑇𝑒𝑠𝑡𝑆𝑡𝑎𝑟𝑡(𝑏) ∪ 𝑂𝑏𝑗𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑏) ∪ 𝑂𝑏𝑗𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑏) ∪ …
Φ = 𝑂𝑏𝑗𝐿𝑜𝑜𝑝(𝑏) ∪ {⊥}

Let Π be the set of all API ports in a configuration 𝑐, and let 𝑃𝑜𝑟𝑡(𝑝𝑎, 𝑡, 𝑛)
return the 𝑛-th API port object of type 𝑡 in the configuration of partition
𝑝𝑎. (Note: Here we are not talking about port groups as defined earlier, but
about individual API ports. While this definition may seem slightly vague,
it is highly convenient as we can later reuse it for ITML-C. Furthermore, we
handle API ports in the same way as graph objects, so that we can access their
properties with 𝑃𝑟𝑜𝑝.)

Let 𝑀 be a set of memory functions 𝑚 ∶ 𝑂 ∪ Π → ℕ (cf. [Plo81, p. 15]).
A memory 𝑚 stores an ID value for each parameter object and port. In order
to update stored values, we define for a given memory 𝑚, a parameter object
𝑜, and a natural number 𝑖 the memory 𝑚′ = 𝑚[𝑖/𝑜] where

𝑚′(𝑜′) =

⎧⎪⎪⎨
⎪⎪⎩
𝑖 if 𝑜′ = 𝑜,
𝑚(𝑜′) otherwise.

Now we define a behaviour transition system 𝐵 as a 5-tuple:

𝐵 = 〈𝑆,Λ, 𝑇, 𝑃, 𝑠〉
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where

𝑆 = 𝐿 × Φ ×𝑀× 𝑅 × 𝑉 × 𝑃𝑎 × 𝑃𝑟 state space,
Λ = 𝒫(𝑅) labels,
𝑇 ⊆ 𝐿 × Λ × 𝐿 transition relation,
𝑃 ⊆ 𝐿 × 𝑂 parameter relation,
𝑠 ∈ 𝑆 initial state.

The transition relation 𝑇 contains tuples representing the control flow con-
nections in the Behaviour graph 𝑏:

〈𝑙, 𝜆, 𝑙′〉 ∈ 𝑇 ⇔ 𝑙′ ∈ 𝑅𝑒𝑙𝑂𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐹𝑙𝑜𝑤(𝑏, 𝑙) ∩ 𝑅𝑜𝑙𝑒𝑇𝑜(𝑏, 𝑙) ∧
𝜆 = 𝑃𝑟𝑜𝑝𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑅𝑒𝑙𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐹𝑙𝑜𝑤(𝑏, 𝑙, 𝑙′))

A transition tuple 〈𝑙, 𝜆, 𝑙′〉 is element of the transition relation iff the Be-
haviour graph contains a Control Flow relationship from 𝑙 to 𝑙′ and that
relationship has the set of return values, 𝜆, in its condition property. Fur-
thermore, in order to simplify the state transition rules below, we define that
for a transition tuple 〈𝑙, 𝜆, 𝑙′〉 whose relationship has an empty condition (de-
fault transition), its label 𝜆 shall be set to the set of all return values 𝑅without
those return values occurring in other relationships outgoing from 𝑙:

𝜆 = 𝑅 ⧵ 𝑃𝑟𝑜𝑝𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑅𝑒𝑙𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐹𝑙𝑜𝑤(𝑏, 𝑙, 𝑙′)) | 𝑙′ ∈ 𝑅𝑜𝑙𝑒𝑇𝑜(𝑏, 𝑙)

This definition is legal due to rule no. 69 of the static semantics, which pro-
hibits more than one default transition as well as multiple occurrences of a
return value in outgoing transitions from a single location.

The parameter relation 𝑃 contains tuples representing parameter associa-
tions between control locations (API calls etc.) and parameter objects:

〈𝑙, 𝑜〉 ∈ 𝑃 ⇔ 𝑜 ∈ 𝑅𝑒𝑙𝑂𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑏, 𝑙)

A parameter tuple 〈𝑙, 𝑜〉 is element of the parameter relation iff the Behaviour
graph contains a Parameter relationship between location 𝑙 and object 𝑜.

Initial State

Next, we need to give a definition of the initial state 𝑠 of the behaviour
transition system. For a given Behaviour graph 𝑏, the initial state is the 7-
tuple

𝑠 = 〈𝑙, 𝜑, 𝑚, 𝑟, 𝑣, 𝑝𝑎, 𝑝𝑟〉
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where

𝑙 ∈ 𝑂𝑏𝑗𝑇𝑒𝑠𝑡𝑆𝑡𝑎𝑟𝑡(𝑏) start location,
𝜑 = ⊥ no current loop,

𝑚(𝑜) = 0 ∀ 𝑜 ∈ 𝑂 zero-initialised memory,
𝑟 = NO_ERROR initial return code,
𝑣 = unknown initial test verdict,
𝑝𝑎 = 1 initially addressed partition,
𝑝𝑟 = 0 initially addressed process.

In particular, the start location 𝑙 is set to the only³ Test Start object in the
graph. The definition of 𝑚 assigns the value 0 to all parameter objects. Fur-
thermore, the assignments of 𝑝𝑎 and 𝑝𝑟 just provide initial dummy values,
as the abstract syntax requires at least one partition and process object before
API calls in the graph (cf. figure 9.2).

Behaviour Transition Rules

Finally, we need a set of transition rules, which define how the state of the
behaviour transition system changes, thereby producing a sequence of API
calls. We write 𝑠 𝑎⟶𝑠′ to denote that state 𝑠 transitions to state 𝑠′, producing
API call 𝑎. If a transition does not result in an API call, we simply write
𝑠⟶ 𝑠′ instead.

If a transition rule is possible, it must be applied. If more than one transi-
tion rule can be applied in the current state, the rule with the lowest number
must be applied. If no rule can be applied in the current state, the test pro-
cedure terminates with 𝑣 as the final test verdict.

Transition rule 1:

〈𝑙, 𝜆, 𝑙′〉 ∈ 𝑇 ∧ 𝑟 ∈ 𝜆 ∧ 𝑙′ ∈ 𝑂𝑏𝑗𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑏)
〈𝑙, 𝜑,𝑚, 𝑟, 𝑣, 𝑝𝑎, 𝑝𝑟〉⟶ 〈𝑙′, 𝜑,𝑚, 𝑟, 𝑣, 𝑃𝑟𝑜𝑝𝐼𝐷(𝑙′), 𝑝𝑟〉

The first rule defines the change of state if from the current location 𝑙 a control
flow connection to a Partition object 𝑙′ exists and the condition 𝜆 on that
connection permits this transition. The successor state then has 𝑙′ as the
current location and the value of the Partition object’s ID property as the
currently addressed partition.

Transition rule 2:

〈𝑙, 𝜆, 𝑙′〉 ∈ 𝑇 ∧ 𝑟 ∈ 𝜆 ∧ 𝑙′ ∈ 𝑂𝑏𝑗𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑏) ∧ 𝑃𝑟𝑜𝑝𝐼𝑛𝑖𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑙′)
〈𝑙, 𝜑,𝑚, 𝑟, 𝑣, 𝑝𝑎, 𝑝𝑟〉⟶ 〈𝑙′, 𝜑,𝑚, 𝑟, 𝑣, 𝑝𝑎, 0〉

³as per static semantics rule no. 35
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This rule defines the change of state if from the current location 𝑙 a control
flow connection to a Process object 𝑙′ indicating the init process exists and the
condition 𝜆 on that connection permits this transition. The successor state
then has 𝑙′ as the current location and the value 0⁴ as the currently addressed
process.

Transition rule 3:

〈𝑙, 𝜆, 𝑙′〉 ∈ 𝑇 ∧ 𝑟 ∈ 𝜆 ∧ 𝑙′ ∈ 𝑂𝑏𝑗𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑏) ∧ ¬𝑃𝑟𝑜𝑝𝐼𝑛𝑖𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑙′)
〈𝑙, 𝜑,𝑚, 𝑟, 𝑣, 𝑝𝑎, 𝑝𝑟〉⟶ 〈𝑙′, 𝜑,𝑚, 𝑟, 𝑣, 𝑝𝑎, 𝑚(𝑃𝑟𝑜𝑝𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑜𝑛𝑓𝑖𝑔(𝑙′))〉

This rule defines the change of state if from the current location 𝑙 a control
flow connection to a Process object 𝑙′ not referencing the init process exists
and the condition 𝜆 on that connection permits this transition. The successor
state then has 𝑙′ as the current location and the memory-stored index value
of the process configuration object⁵ referenced by the Process object 𝑙′ as the
currently addressed process.

Transition rule 4:

〈𝑙, 𝜆, 𝑙′〉 ∈ 𝑇 ∧ 𝑟 ∈ 𝜆 ∧ 𝑙′ ∈ 𝑂𝑏𝑗𝑇𝑒𝑠𝑡𝐹𝑎𝑖𝑙(𝑏)
〈𝑙, 𝜑,𝑚, 𝑟, 𝑣, 𝑝𝑎, 𝑝𝑟〉⟶ 〈𝑙′, 𝜑,𝑚, 𝑟, fail, 𝑝𝑎, 𝑝𝑟〉

This rule defines the change of state if from the current location 𝑙 a control
flow connection to a Test Fail object 𝑙′ exists and the condition 𝜆 on that
connection permits this transition. The successor state then has 𝑙′ as the
current location and the value “fail” as the new test verdict.

Transition rule 5:

〈𝑙, 𝜆, 𝑙′〉 ∈ 𝑇 ∧ 𝑟 ∈ 𝜆 ∧ 𝑙′ ∈ 𝑂𝑏𝑗𝑇𝑒𝑠𝑡𝑃𝑎𝑠𝑠(𝑏) ∧ 𝑣 ≠ fail
〈𝑙, 𝜑,𝑚, 𝑟, 𝑣, 𝑝𝑎, 𝑝𝑟〉⟶ 〈𝑙′, 𝜑,𝑚, 𝑟,pass, 𝑝𝑎, 𝑝𝑟〉

This rule defines the change of state if from the current location 𝑙 a control
flow connection to a Test Pass object 𝑙′ exists and the condition 𝜆 on that
connection permits this transition. The successor state then has 𝑙′ as the
current location and the value “pass” as the new test verdict. However, this
transition is only allowed, as can be seen in the premise, if the previous verdict
is not “fail”, as a test that has already failed cannot be passed any more.

Transition rule 6:

〈𝑙, 𝜆, 𝑙′〉 ∈ 𝑇 ∧ 𝑟 ∈ 𝜆 ∧ 𝑙′ ∈ 𝑂𝑏𝑗𝐶𝑟𝑒𝑎𝑡𝑒_𝐵𝑙𝑎𝑐𝑘𝑏𝑜𝑎𝑟𝑑(𝑏) ∧ 〈𝑙′, 𝑜〉 ∈ 𝑃

〈𝑙, 𝜑,𝑚, 𝑟, 𝑣, 𝑝𝑎, 𝑝𝑟〉

𝑝𝑎:𝑝𝑟:Create_Blackboard(𝑃𝑟𝑜𝑝𝑁𝑎𝑚𝑒(𝑜),
𝑃𝑟𝑜𝑝𝑀𝑎𝑥𝑀𝑠𝑔𝑆𝑖𝑧𝑒(𝑜),𝑖,𝑟′)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 〈𝑙′, 𝜑,𝑚[𝑖/𝑜], 𝑟′, 𝑣, 𝑝𝑎, 𝑝𝑟〉
⁴the index of the init process as expected by the test agent
⁵This happens during the Create_Process API call, similar to the Blackboard ID in transition

rule 6.
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This rule defines the change of state if from the current location 𝑙 a control
flow connection to a Create_Blackboard object 𝑙′ associated with a Black-
board parameter object 𝑜 exists and the condition 𝜆 on the control flow con-
nection permits this transition. This transition results in a Create_Blackboard
API call addressed to the current process 𝑝𝑟 in the current partition 𝑝𝑎, with
its input parameters taken from the appropriate properties of parameter ob-
ject 𝑜, its output parameter 𝑖, and its return value 𝑟′. The successor state then
has 𝑙′ as the current location, 𝑟′ as the last return value, and memory 𝑚 is up-
dated to contain the returned blackboard ID 𝑖 as value for Blackboard object
𝑜.

Transition rule 7:

〈𝑙, 𝜆, 𝑙′〉 ∈ 𝑇 ∧ 𝑟 ∈ 𝜆 ∧ 𝑙′ ∈ 𝑂𝑏𝑗𝐶𝑙𝑒𝑎𝑟_𝐵𝑙𝑎𝑐𝑘𝑏𝑜𝑎𝑟𝑑(𝑏) ∧ 〈𝑙′, 𝑜〉 ∈ 𝑃

〈𝑙, 𝜑,𝑚, 𝑟, 𝑣, 𝑝𝑎, 𝑝𝑟〉
𝑝𝑎:𝑝𝑟:Clear_Blackboard(𝑚(𝑜),𝑟′)−−−−−−−−−−−−−−−−−−−−−−−−−→ 〈𝑙′, 𝜑,𝑚, 𝑟′, 𝑣, 𝑝𝑎, 𝑝𝑟〉

This rule defines the change of state if from the current location 𝑙 a control
flow connection to a Clear_Blackboard object 𝑙′ associated with a Blackboard
parameter object 𝑜 exists and the condition 𝜆 on the control flow connection
permits this transition. This transition results in a Clear_Blackboard API call
addressed to the current process 𝑝𝑟 in the current partition 𝑝𝑎, with the black-
board ID for parameter object 𝑜 stored in memory 𝑚 as its input parameter,
and its return value 𝑟′. The successor state then has 𝑙′ as the current location
and 𝑟′ as the last return value.

Additional transition rules must be applied for each of the other API call
objects. However, due to their similarity to the two last rules, they are very
easy to deduce and thus will not be reproduced here for the sake of brevity.
Instead, we will take a look at the transition rules for loop handling.

Transition rule 8:

〈𝑙, 𝜆, 𝑙′〉 ∈ 𝑇 ∧ 𝑟 ∈ 𝜆 ∧ 𝑙′ ∈ 𝑂𝑏𝑗𝐿𝑜𝑜𝑝(𝑏) ∧ 〈𝑙′, 𝑜〉 ∈ 𝑃
〈𝑙, 𝜑,𝑚, 𝑟, 𝑣, 𝑝𝑎, 𝑝𝑟〉⟶ 〈𝑙′, 𝑙′, 𝑚[0/𝑜], 𝑟, 𝑣, 𝑝𝑎, 𝑝𝑟〉

This rule defines the change of state if from the current location 𝑙 a control
flow connection to a Loop object 𝑙′ associated with a Port parameter object
𝑜 exists and the condition 𝜆 on that connection permits this transition. The
successor state then has 𝑙′ as the current location and as the current loop as
well. It also sets the loop index stored in memory 𝑚 for the associated port
object 𝑜 to zero.

For the next two rules, which handle the two possible loop end cases, we
define 𝑛 to be the number of API ports of type 𝑃𝑟𝑜𝑝𝑇𝑦𝑝𝑒(𝑜) in the configuration
of partition 𝑝𝑎.
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Transition rule 9:

〈𝑙, 𝜆, 𝑙′〉 ∈ 𝑇 ∧ 𝑟 ∈ 𝜆 ∧ 𝑙′ ∈ 𝑂𝑏𝑗𝐿𝑜𝑜𝑝𝐸𝑛𝑑(𝑏) ∧ 〈𝜑, 𝑜〉 ∈ 𝑃 ∧ 𝑚(𝑜) < 𝑛
〈𝑙, 𝜑,𝑚, 𝑟, 𝑣, 𝑝𝑎, 𝑝𝑟〉⟶ 〈𝜑,𝜑,𝑚[𝑚(𝑜) + 1/𝑜], 𝑟, 𝑣, 𝑝𝑎, 𝑝𝑟〉

This rule defines the change of state if from the current location 𝑙 a control
flow connection to a Loop End object 𝑙′ exists, the condition 𝜆 on that con-
nection permits this transition, and the loop index counter stored in memory
𝑚 is less than 𝑛 (i. e. the number of ports currently being looped over). The
successor state then has the current loop start object 𝜑 as the current location
and as the current loop as well. It also increments the loop index stored in
memory 𝑚 for the associated port object 𝑜 by one. In other words, this rule
starts another loop iteration.

Transition rule 10:

〈𝑙, 𝜆, 𝑙′〉 ∈ 𝑇 ∧ 𝑟 ∈ 𝜆 ∧ 𝑙′ ∈ 𝑂𝑏𝑗𝐿𝑜𝑜𝑝𝐸𝑛𝑑(𝑏) ∧ 〈𝜑, 𝑜〉 ∈ 𝑃 ∧ 𝑚(𝑜) ≥ 𝑛
〈𝑙, 𝜑,𝑚, 𝑟, 𝑣, 𝑝𝑎, 𝑝𝑟〉⟶ 〈𝑙′, ⊥,𝑚, 𝑟, 𝑣, 𝑝𝑎, 𝑝𝑟〉

This rule defines the change of state if from the current location 𝑙 a control
flow connection to a Loop End object 𝑙′ exists, the condition 𝜆 on that con-
nection permits this transition, and the loop index counter stored in mem-
ory 𝑚 is greater than or equal to 𝑛 (i. e. the number of ports currently being
looped over). The successor state then has 𝑙′ as the current location and ⊥ as
the current loop (i. e. no current loop). In other words, this rule terminates
the current loop.

The final rule shows what happens inside a loop. Aside from other API
calls as defined by previous rules, it is possible to operate on the current API
port.

Transition rule 11:

〈𝑙, 𝜆, 𝑙′〉 ∈ 𝑇 ∧ 𝑟 ∈ 𝜆 ∧ 𝑙′ ∈ 𝑂𝑏𝑗𝐶𝑟𝑒𝑎𝑡𝑒_𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑃𝑜𝑟𝑡(𝑏) ∧ 〈𝑙′, 𝑜〉 ∈ 𝑃∧
𝑝 = 𝑃𝑜𝑟𝑡(𝑝𝑎, 𝑃𝑟𝑜𝑝𝑇𝑦𝑝𝑒(𝑜), 𝑚(𝑜))

〈𝑙, 𝜑,𝑚, 𝑟, 𝑣, 𝑝𝑎, 𝑝𝑟〉
𝑝𝑎:𝑝𝑟:Create_Sampling_Port(𝑃𝑟𝑜𝑝𝑁𝑎𝑚𝑒(𝑝),
𝑃𝑟𝑜𝑝𝑀𝑎𝑥𝑀𝑠𝑔𝑆𝑖𝑧𝑒(𝑝),𝑃𝑟𝑜𝑝𝐷𝑖𝑟(𝑝),𝑃𝑟𝑜𝑝𝑅𝑒𝑓𝑟𝑒𝑠ℎ(𝑝),𝑖,𝑟′)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 〈𝑙′, 𝜑,𝑚[𝑖/𝑝], 𝑟′, 𝑣, 𝑝𝑎, 𝑝𝑟〉

This rule defines the change of state if from the current location 𝑙 a control
flow connection to a Create_Sampling_Port object 𝑙′ associated with a Port
parameter object 𝑜 exists and the condition 𝜆 on the control flow connection
permits this transition. This transition results in a Create_Sampling_Port
API call addressed to the current process 𝑝𝑟 in the current partition 𝑝𝑎, with its
input parameters taken from the appropriate properties of the port 𝑝 from the
partition’s configuration, as referenced by the loop index stored in memory𝑚
for the associated Port parameter object 𝑜. It returns the output parameter 𝑖
and the return value 𝑟′. The successor state then has 𝑙′ as the current location,
𝑟′ as the last return value, and memory 𝑚 is updated to contain the returned
API port ID 𝑖 as value for port 𝑝.
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Behaviour
Behaviour Spec:Graph

ICD
Path:String Used by

Used User

Figure 9.6: ITML-C Test Suite

The transition rules for the other port handling functions work very sim-
ilar to the last one, and are therefore omitted here.

9.3 ITML-C: Configured Module Testing

The IMA Test Modelling Language variant C (ITML-C) allows the defini-
tion of Configured Module tests. Since configurations are pre-defined in
this scenario, the language does not allow the definition of configurations.
Therefore, ITML-C only consists of a Behaviour part and a Test Suite part.
In order to implement these two parts, however, it is possible to reuse the
Behaviour and Test Suite graph types defined for ITML-B in the previous
section.

9.3.1 Behaviour

The Behaviour part of ITML-C consists of a graph, and its meta-model is
identical to the Behaviour part defined for ITML-B.

9.3.2 Test Suite

In contrast to the Behaviour graph, the Test Suite graph type cannot be com-
pletely identical to its ITML-B counterpart. The reason is simple: While an
ITML-B Test Suite refers to Configuration graphs, an ITML-C Test Suite
must refer to external configurations (which have not been created within
the ITML framework).

Abstract Syntax

As in ITML-B, a Behaviour object has a property referring to the Behaviour
graph. But in order to connect ITML-C Behaviour graphs with existing
configurations, an ITML-C Test Suite graph has an ICD object instead of a
Configuration object. The ICD object represents an external ICD, referring
to its location via the Path property. As shown in figure 9.6, a Behaviour
object is always associated with one or more ICD objects. Therefore, the
graph specifies for each test case that is part of the test suite the external
configurations with which it is to be executed.
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Static Semantics

Similar to ITML-B, each ITML-C Test Suite graph must be compliant with
the following two constraints:

1. A Behaviour must be in at least 1 Used by relationship.

2. An ICD must be in at least 1 Used by relationship.

Since these constraints cannot be enforced directly by MetaEdit+, they must
be checked by a model validity checker. The corresponding model validity
checker can be found in appendix D.4.

9.3.3 Dynamic Semantics

In order to define the dynamic semantics of ITML-C test suites, we can
completely reuse the definitions and rules from section 9.2.4. This is possible
due to the fact that we only referenced the configuration (the API ports in
particular) informally in our rules, so that it does not matter now whether we
defined the configuration as an ITML Configuration graph or as an external
ICD. Therefore, all rules from ITML-B apply to ITML-C as well, with the
exception that the configuration 𝑐 is not a MetaEdit+ graph, but an external
ICD.

9.4 ITML-A: Hardware/Software Integration Testing

The IMA Test Modelling Language variant A (ITML-A) allows the defini-
tion of hardware/software integration tests. With ITML-A, a test expert can
specify application behaviour and environment simulations in the form of
models. The ITML-A test case generator can automatically derive test cases
from these models and generate appropriate TTCN-3 test procedures.

9.4.1 System Diagram

The application behaviour is specified as a composition of functional com-
ponents, each of which can consist of subcomponents. Components that do
not consist of subcomponents must be specified as statechart graphs.

The environmental behaviour can be specified in the same manner as the
application behaviour, i. e. via a composition of components and statechart
graphs.

Both the application (SUT) and the environment (TE) appear in a system
diagram, the top-level graph type of ITML-A.

Abstract Syntax

Figure 9.7 shows the abstract syntax of the system diagram. It contains one
instance of an SUT object and one instance of a TE object, both of which
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Component {0}

Name:String

SUT {1} TE {1}

Variable List {0}
Variable De�nition

Name:String
Variable Type:Fixed List
Minimum:String
Maximum:String
Default:String

SUT Input Signal List SUT Output Signal List

Constant De�nition

Name:String
Constant Type:Fixed List
Value:String

Constant List

List

List

*

*

Figure 9.7: Abstract Syntax: System Diagram
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System Diagram

SUT {1}

TE {1}

Component Diagram

Statechart

Component 

D

D

D

Figure 9.8: Abstract Syntax: System Diagram Decomposition

are specialisations of the Component object type (which is an abstract base
type in this graph).

The graph can contain instances of SUT input signal lists and SUT out-
put signal lists. Both are derived from the (abstract) variable list object type.
Variable list objects contain a list of variable definition objects, each defini-
tion defining one variable, or in this case, one input or output signal of the
SUT.

The system diagram may also contain one or more constant lists. Each
list object contains constant definitions. Constants defined in the system
diagram have global visibility, i. e. they can be referenced in both the SUT
and the TE.

We already mentioned briefly that in ITML-A there is a hierarchy of
graphs. This is also reflected in the abstract syntax. Figure 9.8 shows the
decomposition relationships between object and graph types of ITML-A. In
particular, both the SUT object and the TE object in a system diagram can
decompose to either a component diagram or a statechart. In a component
diagram (see below), each component object can decompose to either an-
other component diagram or to a statechart. This leads to a tree of graphs,
with the system diagram as the root node, component diagrams as internal
nodes, and statecharts as leaf nodes.
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Static Semantics

As determined during the domain analysis, a system diagram graph must
adhere to the following constraints:

1. SUT may occur at most 1 time.

2. TE may occur at most 1 time.

While MetaEdit+ directly supports the previous constraints, the remaining
constraints cannot be checked automatically by MetaEdit+ and must instead
be checked by a model validity checker:

3. SUT must occur exactly 1 time.

4. TE must occur exactly 1 time.

5. The name of each signal and constant definition must be unique⁶.

6. SUT must decompose to either a component diagram or a statechart.

Note that while the SUT must decompose, this is not required for the TE,
and therefore no corresponding constraint is needed. The corresponding
model validity checker can be found in appendix D.5.

9.4.2 Component Diagram

A component diagram shows the decomposition of the SUT, TE, or a com-
ponent into subcomponents.

Abstract Syntax

Figure 9.9 shows the abstract syntax of the component diagram. The com-
ponent diagram graph type is very similar to the system diagram. However,
there are two differences. First, instead of the SUT and the TE, the diagram
shows one or more component objects. Each component has a name and can
decompose to either another component diagram or a statechart. And sec-
ond, instead of input and output signals it is possible to declare component-
local variables in variable list objects. Each variable list object has a list of
variable definitions. A variable declared in a component is visible within all
subcomponents of that component.

Like the system diagram, the component diagram may also contain one or
more constant lists. Each list object contains constant definitions. Like vari-
ables, constants defined in the component diagram have component-level
visibility, i. e. they can be referenced in all subcomponents.

Note that in contrast to the system diagram, component and variable list
are not abstract but concrete object types in the component diagram.

⁶MetaEdit+ does support uniqueness constraints of object properties in a graph type, but
not across multiple object types (i. e. signals and constants sharing a common namespace).
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Component 

Name:String

Variable De�nition

Name:String
Variable Type:Fixed List
Minimum:String
Maximum:String
Default:String

Constant De�nition

Name:String
Constant Type:Fixed List
Value:String

Constant List

Variable List 

List

List *

*

Figure 9.9: Abstract Syntax: Component Diagram

Static Semantics

As determined during the domain analysis, a component diagram graph must
adhere to the following constraints:

1. Property “Name” in Component must have unique values.

While MetaEdit+ directly supports the previous constraint, the remaining
constraints cannot be checked automatically by MetaEdit+ and must instead
be checked by a model validity checker:

2. Component must occur at least 1 time.

3. The name of each variable and constant definition must be unique.

4. A component which is part of the SUT must decompose to either a
component diagram or a statechart.

The corresponding model validity checker can be found in appendix D.6
(the last constraint is actually checked by the system diagram validator).
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Location

Name:String
Entry Action:Collection
Do Action:Collection
Exit Action:Collection
Requirement:String

Start Location {1} Stop Location

Variable De�nition

Name:String
Variable Type:Fixed List
Minimum:String
Maximum:String
Default:String

Constant De�nition

Name:String
Constant Type:Fixed List
Value:String

Constant List

Variable List 

Objects in binding:
Start Location, Location

Objects in binding:
Location, Stop Location

List

List

Name:String
Condition:Text

Action:Collection
Requirement:String

Transition

From To

*

*

Figure 9.10: Abstract Syntax: Statechart

9.4.3 Statechart

The statechart graph type represents the lowest level of the graph hierarchy.
It shows a statechart representation of the behaviour of a component which
is not divisible into subcomponents.

Abstract Syntax

Figure 9.10 shows the abstract syntax of the statechart. A statechart graph
consists of state objects, called locations. Locations have as properties: a name,
a list of entry, exit, and do actions, and a requirement tag.

Location objects are connected via directed transition relationships. A
transition has a label (i. e. name), a guard condition, and a list of actions as
properties. Like locations, it can also have a requirement tag.

A statechart graph has exactly one initial state, called the start location.
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Similar to component diagrams, a statechart can also have variable list
objects and constant list objects. These variable and constant definitions
have statechart-level visibility, i. e. they can be referenced only within the
statechart.

Action properties consist of assignments to output signals or internal vari-
ables, while guard conditions are written as predicates on input signals or
internal variables.

Static Semantics

As determined during the domain analysis, a statechart graph must adhere
to the following constraints:

1. Start Location may occur at most 1 time.

2. TE may occur at most 1 time.

While MetaEdit+ directly supports the previous constraints, the remaining
constraints cannot be checked automatically by MetaEdit+ and must instead
be checked by a model validity checker:

3. Start Location must occur exactly 1 time.

4. The name of each variable and constant definition must be unique.

The corresponding model validity checker can be found in appendix D.7.
There are, however, additional constraints that can neither be checked by
MetaEdit+ nor a model validator written in MERL:

5. Non-empty guard conditions must be logical expressions.

6. Non-empty actions must be a sequence of assignments.

7. Variable, constant, and signal names occurring in expressions must be
defined in the scope of the expression or a parent scope.

Guard conditions must be logical expressions which evaluate to true or
false. In particular, everything that can be derived from the logical-OR-expres-
sion nonterminal symbol of the C language grammar (cf. [KR88, A7.15]) is
allowed. Actions must be a list of assignments corresponding to the assign-
ment-expression of the C language grammar (cf. [KR88, A7.17]). Addition-
ally, selection-statements (cf. [KR88, A9.4]) are permitted, but their subor-
dinate statements can only be assignment-expressions or nested selection-state-
ments.

MERL generators are not adequate to check these constraints, as their
text recognition capabilities do not go beyond regular expressions. Instead,
conditions and actions have to be exported as strings from MetaEdit+ during
model export, and the test case generator checks conditions and actions for
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validity by employing appropriate Bison-based parsers and afterwards resolv-
ing symbol names.

Note also that statecharts describing environmental behaviour may be
non-deterministic, while statecharts modelling (SUT) application behaviour
must be deterministic.

9.4.4 Dynamic Semantics

The dynamic semantics of a single statechart graph 𝑐 are a variant of Harel
Statechart semantics (cf. [Har87]). They can be described as follows (we
reuse the auxiliary definitions from section 9.2.4 here):
Let 𝐿 be the set of all locations in statechart 𝑐:

𝐿 = 𝑂𝑏𝑗𝑆𝑡𝑎𝑟𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐) ∪ 𝑂𝑏𝑗𝑆𝑡𝑜𝑝𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐) ∪ 𝑂𝑏𝑗𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐)

Let 𝑁 be the set of transition relationship identifiers⁷ in statechart 𝑐:

𝑁 = {𝑃𝑟𝑜𝑝𝑖𝑑(𝑅𝑒𝑙𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑐, 𝑙, 𝑙)) | 𝑙, 𝑙 ∈ 𝐿}

Let 𝐼 be the set of defined SUT input signals, 𝑂 be the set of defined SUT
output signals, and 𝑉 be the set of internal model variables. Then let 𝑀
be a set of memory functions 𝑚 ∶ 𝐼 ∪ 𝑂 ∪ 𝑉 → 𝐷 which maps signal and
variable symbols to their current value in their respective domain (𝐷 being
the superset of all these domains).
We define a statechart transition system 𝐶 as a 9-tuple:

𝐶 = 〈𝑆,𝑁, 𝑇, 𝐺𝑇 , 𝐴𝑇 , 𝐴𝐸𝑛, 𝐴𝐷𝑜, 𝐴𝐸𝑥, 𝑠〉

where

𝑆 = 𝐿 ×𝑀 state space,
𝑇 ⊆ 𝐿 × 𝑁 × 𝐿 transition relation,
𝐺𝑇 ∶ 𝑁 ×𝑀 → {true, false} guard condition function
𝐴𝑇 ∶ 𝑁 ×𝑀 → 𝑀 transition action function
𝐴𝐸𝑛 ∶ 𝐿 ×𝑀 → 𝑀 entry action function
𝐴𝐷𝑜 ∶ 𝐿 ×𝑀 → 𝑀 do action function
𝐴𝐸𝑥 ∶ 𝐿 ×𝑀 → 𝑀 exit action function
𝑠 ∈ 𝑆 initial state.

The transition relation 𝑇 contains tuples representing transitions in the state-
chart graph 𝑐:

〈𝑙, 𝑛, 𝑙′〉 ∈ 𝑇 ⇔ 𝑙′ ∈ 𝑅𝑒𝑙𝑂𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑐, 𝑙) ∩ 𝑅𝑜𝑙𝑒𝑇𝑜(𝑐, 𝑙) ∧
𝑛 = 𝑃𝑟𝑜𝑝𝑖𝑑(𝑅𝑒𝑙𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑐, 𝑙, 𝑙′))

⁷The IDs are allocated internally by MetaEdit+ and guaranteed to be unique.
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A transition tuple 〈𝑙, 𝑛, 𝑙′〉 is element of the transition relation iff the statechart
graph contains a transition relationship from 𝑙 to 𝑙′ and that relationship has
identifier 𝑛.

The guard function 𝐺𝑇 is defined so that it returns true iff memory func-
tion 𝑚 satisfies the guard condition of the transition with identifier 𝑛:

𝐺𝑇 (𝑛,𝑚) =

⎧⎪⎪⎨
⎪⎪⎩
true if 𝑚 ⊨ 𝑃𝑟𝑜𝑝𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑟) ∧ 𝑃𝑟𝑜𝑝𝑖𝑑(𝑟) = 𝑛
false otherwise

Note that, as a special case, every memory function satisfies the empty guard
condition.

The transition action function𝐴𝑇 is defined so that it returns a copy of the
input memory 𝑚 with all actions of the transition with identifier 𝑛 applied to
it. For example, if a transition relationship 𝑟 has 𝑃𝑟𝑜𝑝𝐴𝑐𝑡𝑖𝑜𝑛(𝑟) = {output1 = 5},
then

𝐴𝑇 (𝑃𝑟𝑜𝑝𝑖𝑑(𝑟), 𝑚) = 𝑚[5/output1]

The entry action, do action, and exit action functions (𝐴𝐸𝑛, 𝐴𝐷𝑜, 𝐴𝐸𝑥) are
defined correspondingly, but with properties 𝑃𝑟𝑜𝑝𝐸𝑛𝑡𝑟𝑦𝐴𝑐𝑡𝑖𝑜𝑛(𝑙), 𝑃𝑟𝑜𝑝𝐷𝑜𝐴𝑐𝑡𝑖𝑜𝑛(𝑙),
and 𝑃𝑟𝑜𝑝𝐸𝑥𝑖𝑡𝐴𝑐𝑡𝑖𝑜𝑛(𝑙) of location 𝑙.

Initial State

For a given statechart graph 𝑐, the initial state is the tuple

𝑠 = 〈𝑙, 𝑚〉

where

𝑙 ∈ 𝑂𝑏𝑗𝑆𝑡𝑎𝑟𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐) start location,
𝑚(𝑜) = 0 ∀ 𝑜 ∈ 𝐼 ∪ 𝑂 ∪ 𝑉 zero-initialised memory.

In particular, the start location 𝑙 is set to the only⁸ Start Location object in
the graph. The definition of𝑚 assigns the value 0 to all input signals, output
signals, and model variables.

Transition Rules

A set of transition rules defines how the state of the transition system changes.
If a transition rule is possible, it must be applied. If more than one transition
rule can be applied in the current state, the rule with the lowest number must
be applied. We need to distinguish three different situations which lead to a
change in the state of the statechart transition system.

⁸as per static semantics rule no. 3
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Transition rule 1:
𝑖 ∈ 𝐼 ∧ 𝑛 ∈ 𝐷𝑖

〈𝑙, 𝑚〉⟶ 〈𝑙,𝑚[𝑛/𝑖]〉
The first situation is the change of an external input: Any SUT input 𝑖 can
change to an arbitrary value 𝑛 (from the domain of 𝑖) without restriction.
This is reflected in the update on memory 𝑚.

Transition rule 2:

〈𝑙, 𝑛, 𝑙′〉 ∈ 𝑇 ∧ 𝐺𝑇 (𝑛,𝑚)
〈𝑙, 𝑚〉⟶ 〈𝑙′, 𝐴𝐸𝑛(𝑙′, 𝐴𝑇 (𝑛, 𝐴𝐸𝑥(𝑙, 𝑚)))〉

In the second situation a guard condition is satisfied and allows the transition
into another location. A transition with identifier 𝑛 exists from the current
location 𝑙 to another location 𝑙′. The guard function for transition 𝑛 is satis-
fied with current memory state 𝑚. This leads to a transition into successor
location 𝑙′, thereby applying the exit action of location 𝑙, the action of tran-
sition 𝑛, and finally the entry action of location 𝑙′ to memory 𝑚. (Note: In
statecharts which are located in the test environment, the application of this
rule is not mandatory (in contrast to statecharts in the SUT). This means
that statechart transitions in the test environment are not urgent and can be
taken indeterministically.)

Transition rule 3:

〈𝑙, 𝑚〉⟶ 〈𝑙,𝐴𝐷𝑜(𝑙, 𝑚[𝑚(𝑡) + 𝜀/𝑡])〉 | 𝑡 ∈ 𝑉 ∧ 𝑡𝑖𝑚𝑒𝑟(𝑡)

In the third situation no transition to another location is possible. In this
case, time passes (all model variables 𝑡 which are timers are incremented by
some value 𝜀 > 0), and the do action of the current location 𝑙 is applied to
the memory 𝑚.
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This chapter gives a detailed description of the ITML Test Case Generators.
Their task is the generation of executable TTCN-3 code from ITML models.

As presented in section 3.2.4, the MetaEdit+ framework provides a spe-
cial generator language, called MERL, in which generators can be written.
While MERL (itself being a DSL) is well suited for navigating graphical
GOPPRR-based models and creating output text files, it lacks some more
general-purpose programming concepts like custom data types, scoped vari-
ables, and custom functions. Consequently, depending on the complexity
of the task demanded from the generator, it can be deemed impractical to
implement the generator completely in MERL. A reasonable solution to this
problem is to have a very simple generator, written in MERL, which gener-
ates a file containing an intermediate representation of the model. Then this
intermediate file can be processed by a more complicated generator written,
for example, in a general-purpose language like C++ or Python.

10.1 MERL Intermediate Format Generators

As the task of generating executable TTCN-3 code from ITML models is
rather complex and involves more inputs than just the model—also an ex-
ternal configuration in ICD format—it is not feasible to implement the
whole generator in MERL. Instead, the ITML generators written in MERL
produce files containing intermediate XML representations of the different
model graphs. These generators are called MERL Intermediate Format Gen-
erators (IFGs). For each graph type there is a dedicated IFG. Their defini-
tions can be found in appendix E as MERL source code. As can be seen
in figure 10.1, the IFGs produce XML representations of the model inputs.
XML schemas have been defined for these XML file formats. The appro-
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Figure 10.1: ITML-B and ITML-C generation process

priate XML Schema [W3C04] definitions can be found in appendix F. The
intermediate XML files contain information about what objects are present
in a graph, what properties the objects have, and by what relationships they
are connected. The exact graphical layout of the graph elements, however,
is not stored inside the XML files, as this information is not relevant for the
generation process.

10.2 Generation of ITML-B and ITML-C Tests

Figure 10.1 provides an overview of the generation process within the ITML
framework. It shows generators (rectangles) and artefacts (rounded boxes),
which are the generator inputs and outputs.
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10.2.1 ICD Generator

The ICD Generator (ICD-Gen) is employed within the ITML framework
to create actual ICDs from Configuration XML files (produced by the IFG).
Note that this step is only performed for Bare Module testing in ITML-B,
whereas ITML-C works with externally supplied configurations. The gener-
ator reads an XML intermediate configuration file and produces a set of CSV
files. For each partition defined in the configuration model, two files are gen-
erated. They contain configuration information as described in section 2.3,
derived from the XML configuration file contents. The files are generated so
that they are suitable for processing with the module-specific configuration
and load generation toolchain as provided by the module supplier¹.

The ICD Generator is a command-line application written in C++. It
uses the XSD Data Binding compiler [CST] to parse the XML input file
and has its own CSV file export routines. Due to its size the complete source
code is not reproduced here.

10.2.2 ICD Parser

After generating the ICD as described in the previous section, or when using
an external ICD, it has to be processed further. The test generator itself
requires it as input (cf. next section), but it is also required in order to generate
the partition-specific part of the universal Test Agent (cf. chapter 7). While
the agent main loop and protocol handling code are completely generic, the
agent requires two data tables containing information about the API ports
defined within the partition and the data signals which may be defined within
API port messages.

To that end, the ICD parser is used to generate a C source file containing
two appropriate data structures. The ICD parser is a command-line appli-
cation written in Perl. It is based on a previous parser which the author
developed during his work in the VICTORIA research project.

The resulting TA configuration C source file can now be combined with
the rest of the TA source code and processed by the compiler, linker, and
load generation tools provided by the module supplier. The generated load
is then ready for deployment on the SUT module.

10.2.3 TTCN-3 Code Generator

As shown in figure 10.1, there is a second path of generation, i. e. the pro-
cessing of the Behaviour. After having employed the Behaviour IFG in or-
der to obtain a behaviour XML file, it must be processed by the TTCN-3
Test Generator (Test-Gen). This generator takes two inputs: The aforemen-
tioned behaviour XML file, but also the ICD (either generated or supplied
externally) associated with the behaviour model (as defined in the test suite).

¹The manufacturer of the IMA module
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The test generator is the most complex of the generators described here
because it has to generate TTCN-3 code that results in API calls conforming
to the dynamic behaviour of its input model and configuration as specified
by the behaviour transition system defined in section 9.2.4.

The TTCN-3 Test Generator is a command-line application written in
C++. It uses the XSD Data Binding compiler [CST] to parse the XML input
file and has its own CSV file import routines. Due to its size the complete
source code is not reproduced here.

Goto Considered Harmful

A rather straight-forward method of generating code from a flowchart is to
create a blocks of statements prefixed by a unique label for each node and to
generate a goto statement for each edge between nodes.

...
// node 1
label b1;
stmt1;
stmt2;
if (cond1) {
goto b2;

}
goto b3;

// node 2
label b2;
stmt3;
stmt4;
goto b3;
...

Unfortunately, it was discovered during development of the generator
that the TTCN-3 compiler in TTworkbench only supports a limited number
of labels and gotos per file. Exceeding this limit results in syntactical errors in
the generated Java source. Note that the Java language has no direct support
for goto (cf. [ORC]), so the TTCN-3 compiler uses a construct of loops and
switch statements to simulate it.

A practical work-around for this problem was to perform this simula-
tion of gotos directly in TTCN-3 instead of using gotos in the TTCN-3
code. This can easily be achieved by declaring a variable node to be used as
the current label and then generating the statements for each node inside a
sequence of if-blocks. All these if-blocks are encapsulated within a while-
loop. Now, instead of performing a goto statement, the node variable is set
to the number of the next node, and a continue statement is used to restart
the while loop.

138



10.3. GENERATION OF ITML-A TESTS

int node := 1;
while (node != 0) {

// node 1
if (node == 1) {
stmt1;
stmt2;
if (cond1) {

node := 2;
continue;

}
node := 3;
continue;

}

// node 2
if (node == 2) {
stmt1;
stmt2;
node := 3;
continue;

}
...

}

10.3 Generation of ITML-A Tests

The ITML-A generation process is shown in figure 10.2. While similar, it
is not identical to the process shown before. The following steps make use
of rtt-tcgen, the model-based testing environment developed by the AGBS
research group² at the University of Bremen.

Like before, a MERL IFG is used to produce an intermediate XML rep-
resentation of the system model. The corresponding generator can be found
in appendix E.5. The XML schema for the intermediate format is presented
in appendix F.5.

Before the XML model export can be processed by the actual test case
generator, it must be processed by two additional tools.

conftool creates a configuration file for the test case generator. It contains a
list of all components and the transitions inside their statecharts. The
test engineer can use this file to set focus points (transitions that must
be covered) or mark transitions as unreachable or robustness transi-
tions.

²http://www.informatik.uni-bremen.de/agbs/
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Figure 10.2: ITML-A generation process

sigmaptool creates a table containing all signals (i. e. SUT inputs and out-
puts) defined in the system model. The value ranges as defined in the
model can be adjusted by the user. Tolerances and signal delays/laten-
cies can be specified as well.

The files created by the aforementioned tools are in CSV format. Their
contents can be adjusted, if necessary, by the test engineer before they are
processed together with the XML model export by the test case generator.

10.3.1 Test Case Generator

The actual TTCN-3 test case generator tool is based on existing test case
generators in the rtt-tcgen framework. The executable is called rtt-mbt-ttcn3.
It reads the system XML model, the configuration, and the signal map as
inputs and creates a TTCN-3 source file as output.
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Model Parser

The generator first reads the configuration file. Then it tries to parse the
model. The generator has several parser back-ends, each of which is applied
in turn until one successfully parses the model file. Apart from ITML there
are parser back-ends available for model exports from other modelling tools
like Artisan, Enterprise Architect, or Rhapsody. The purpose of the parser
back-ends is to transform the contents of the model input file into the inter-
mediate model representation (IMR) structure used internally in the genera-
tor. Compared to other model export formats, the ITML intermediate XML
format is very simple, which makes the parsing and transformation step very
straightforward.

Generator

While rtt-mbt-ttcn3 makes use of the test case generation functionality of
rtt-tcgen, the internal workflow of the generator is not a part of this thesis.
It is described in detail in [Pel13], and only a short summary will be given
here.

Figure 10.3 shows the internal structure of the generator. From the inter-
mediate model representation a transition relation and initial state are gen-
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erated. According to the configured test strategy, model paths are selected.
Such paths, expressed as LTL formulae, are transformed to so-called symbolic
test cases (cf. [Pel13, p. 14]). Now an SMT solver (cf. [RT06]) is employed to
find a solution in the form of a valid trace from the initial state to the desired
goal (test objective) in compliance with the model’s transition relation. An
abstract interpreter supports the solver by determining required transition
steps and restricting variable ranges. If a solution exists, the result is a trace
of timestamps and concrete input data for the test procedure.

TTCN-3 Output

The results of the previous step are then processed by the TTCN-3 output
back-end. The back-end’s task is the creation of a TTCN-3 source file con-
taining a test procedure which covers the generated test cases. The generated
TTCN-3 file has the following structure:

• port type declarations

• MTC component

– ports
– I/O variables
– state variables
– cycle timer
– global time-tick variable
– oracle functions
– stimulator function
– input function
– output function

• testcase

– main loop

For each input and output signal from the signal map a TTCN-3 port
type declaration with appropriate data type and direction (TTCN-3 output
port for SUT inputs, TTCN-3 input port for SUT outputs) is generated.
The MTC component contains a corresponding port definition for each sig-
nal, so that it can communicate with the SUT via the SUT adapter (cf. sec-
tion 5.4). For each port there is also a component variable (called input
variable or output variable).

The TTCN-3 testcase is generated to start a cycle timer and execute an
endless loop consisting of four steps:

1. call input function
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2. call oracle functions

3. call stimulator function

4. call output function

The input function consists of an alt statement over all input ports (i. e.
SUT output signals) plus the cycle timer. If a value can be read from an input
port, it is stored in the corresponding input variable. Then the alt statement
is repeated. The statement is only left when the cycle timer expires, in which
case the timer is restarted, the cycle time is added to the global time-tick
variable, and the main loop proceeds to the oracle functions.

The TTCN-3 output back-end generates a set of oracle functions. It tra-
verses the IMR to find all leaf components. From each component’s state-
chart it creates an abstract syntax tree (AST), which is then translated into
TTCN-3 code as the body of the component’s oracle function. A branch is
added to the AST of the function for each location of the statechart. If a
location contains do actions, they are added to the AST branch. From each
location all outgoing transitions are considered. For each outgoing transi-
tion an if statement is added to the AST branch with the transition’s guard
as condition. The body of the if statement contains the transition’s actions
and the entry actions of the destination location as well as an assignment of
the new location to the oracle’s state variable in the MTC. In other words,
running the oracle functions creates the same variable and signal assignments
as the SUT should do. This allows the oracle functions to run back-to-back
with the SUT and perform a comparison of the expected (as calculated by
the oracle) and actual SUT output signals. The oracle function contains log
statements printing the respective requirements to the test log, and setver-
dict statements to log the result of the comparison of actual and expected
values.

The purpose of the stimulator function is to provide stimuli to the SUT
in order to cover the test cases determined by the generator. The stimulator
function implements a simple state machine. Its current state is stored in
a component variable of the MTC. Depending on the global time-tick, the
function makes assignments to output variables. The TTCN-3 output back-
end traverses the computation tree built by the generator to determine the
points in time and examines the internal memory model to determine the
assignments on output variables (i. e. SUT inputs) to be made. When the
stimulator function reaches the end of its state machine, it terminates the
test procedure by executing the stop statement.

Finally, the output function is called. This function checks if the values of
output variables have changed during this cycle. For each changed variable,
its new value is sent via the corresponding port to the SUT. Then the main
loop starts again with the input function.
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Test Execution

The generated TTCN-3 source file contains the complete test procedure im-
plementation in order to cover the test cases generated by the test case gener-
ator from the model. The test engineer can now compile the test procedure
in the TTCN-3 test execution environment (cf. chapter 8). Note, however,
that for functional testing the TACP sub-SA must be removed from the SUT
adapter (because there are no agents involved). Instead, the adapter must
map the defined signal ports to the appropriate hardware interfaces of the
module (by consulting the list of signals in the actual module ICD as speci-
fied by the module integrator).
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CHAPTER 11
Usage in the SCARLETT

Project

As already mentioned earlier, the ITML framework is based in part on
research performed within the European research project SCARLETT (cf.
section 2.5).

During work package WP2.4 (Toolset & Simulators Development) a test
case generation and execution process was defined (project-internal deliv-
erable SCA-WP2.4-ADE_TECH-D_2.4-01-ICI4). Based on this process,
specifications for the framework components (DSL, Test Agent, generator
tools) were elaborated (SCA-WP2.4-ADE_TECH-D_2.4-02-ICI7). Mock-
ups and working prototypes of the framework components were developed
in order to complete the work package.

Afterwards, the developed components were used in the demonstration
phase of the project. In work package WP4.2 (I/O Intensive Capability
Demonstration), a demonstration platform was built to showcase IMA2G
technology in I/O-intensive setups.

11.1 I/O-intensive Scenarios

Several scenarios were defined in WP4.2 in order to perform I/O-intensive
tests on the available IMA2G hardware. In these scenarios the Test Agent
was running on a CPM, providing stimuli to various interface hardware.

In order to produce the load for the CPM, the ICD (provided by the
platform integrator) was processed with the TA configuration parser. Then
the resulting configuration tables and the generic Test Agent source code
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were compiled with the Wind River C compiler. The resulting image was
downloaded to the module with an ARINC 615A data loader (cf. [Aer07a]).

The test environment consisted of TTworkbench as a TTCN-3 environ-
ment and an ADS2 system for access to hardware interfaces. The Wireshark
plug-in was utilised as well to analyse communication between the test envi-
ronment and the Test Agent. A prototype version of the test generator was
used to generate appropriate TTCN-3 test procedures for the individual sce-
narios. These test procedures were compiled together with the Proxy SA, the
TACP SA, and an ADS2 SA and then executed within TTworkbench.

11.1.1 Scenario 1

The first scenario consists of a CPM, an AFDX switch, and two RDCs. The
RDCs are connected to the CPM via the switch. The two RDCs are con-
nected to each other: Each discrete output of RDC 1 is wired to a discrete
input of RDC 2 and vice versa. Similarly, analogue outputs are wired to
analogue inputs. The CAN buses of the RDCs are linked as well.

The Test Agent is employed to command the RDCs to toggle each out-
put discrete and then read back the corresponding input discrete from the
other RDC. It does the same by applying different voltages to the analogue
outputs and reading the active voltage back from the connected analogue
input. CAN bus messages are sent in both directions and received from the
respective other endpoint.

11.1.2 Scenario 2

The second scenario consists of a CPM, an AFDX switch, an REU, and a
stepper motor. The REU is connected to the CPM via the AFDX switch,
while the control interface of the stepper motor is connected to a special
interface of the REU. The stepper motor also has a read-back interface, which
is connected to the test environment.

In this scenario the test procedure commands the Test Agent to send po-
sitioning commands to the stepper motor. The test procedure checks the cor-
rect rotation by reading the current angle from the test environment (ADS2
interface).

11.1.3 Scenario 3

The third scenario consists of a CPM, an AFDX switch, an RDC, and a DC
bus monitor. The RDC is connected to the CPM via the AFDX switch. Two
DC bus interfaces of the RDC are connected with each other (loop-back),
with the DC bus monitor in between.

The Test Agent is used to repeatedly send and receive messages over the
DC bus loop-back connection. In parallel, the DC bus monitor is employed
to simulate noise and to add attenuation to the bus connection (this must
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be done manually as the monitor has no direct interface to the test environ-
ment).

11.1.4 Scenario 4

The fourth scenario consists of a CPM, an AFDX switch, an REU, and RDC,
and an RPC. The REU is connected to the CPM via the AFDX switch. The
RDC and the RPC are connected to the REU via FlexRay in a star topology
(i. e. the REU is used as a FlexRay gateway). Discrete inputs and outputs of
the RDC and RPC are connected to the test environment.

In this scenario the test procedure commands the Test Agent to send
commands to the RDC and RPC via the REU in order to toggle the outputs
of the RDC and the RPC. The test procedure checks the appropriate inputs
of its test environment. Conversely, it toggles discrete outputs of the test
environment connected to the discrete inputs of the RDC and commands
the Test Agent to read back those inputs from the RDC.

11.1.5 Models

During the implementation of the framework and generators, they were
tested with more generic example test models (i. e. not specific to the SCAR-
LETT I/O-intensive demonstrator). These models are shown and described
in appendix A.
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CHAPTER 12
Comparison with Other Tools

and Approaches

In order to give an evaluation of ITML, it is important to take a look at the
intended goals. The key aspects which must be considered are:

Learning curve: A domain expert who has not used the framework before
should be able to start using it without having to invest time in learning
and/or memorising additional languages and/or concepts.

Intuitiveness: The meaning of the framework or language elements should
be intuitively clear to a domain expert.

Efficiency: The use of the framework should provide an increase in efficiency,
i. e. reduce work effort and ultimately save money.

Maintainability: It should be easily possible to adapt previously created tests
to changes in requirements or in the test environment. A person dif-
ferent from the original author should be able to understand existing
tests and make changes.

12.1 TTCN-3

The first and very interesting question is: How does ITML compare to “bare”
TTCN-3? Is it worth having another layer on top of a language designed
specifically for testing?

A domain expert who has never written any TTCN-3 code will first have
to learn several concepts of the language. And while this is not overly difficult
for someone who has at least some experience in programming, there are
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several unique aspects of which a deeper understanding is required in order
to successfully employ TTCN-3 (cf. chapter 5, e. g. templates, ports, codecs).
In contrast, the elements of ITML have a counterpart in the application
domain, and therefore the domain expert is already familiar with them.

It is also important to note that ITML works on a higher abstraction
level than TTCN-3. This becomes particularly apparent when consider-
ing API calls in ITML-B. To perform an API call in ITML-B requires in
its simplest form a single language element. In TTCN-3 the programmer
will have to take care of creating a command message, handling the TACP
protocol, and receiving the response message. Note, however, that in both
cases (ITML and TTCN-3), an appropriate SUT adapter provides abstrac-
tion from the specifics of accessing the TE interface hardware (and therefore
allowing changes in the test environment).

The graphical representation of ITML test models makes it possible to
understand them easily. The graph editor provided by MetaEdit+ is well
suited to make modifications to existing models with manageable effort.

It is also interesting to note that the TTCN-3 standard defines a graphical
representation of TTCN-3 test procedures, called GFT (cf. [ETS07]). It
provides graphical representations for the TTCN-3 core language elements.
The standard defines a mapping between the language and the GFT. This,
however, means that GFT does not provide a higher level of abstraction as
ITML does.

Two very important disadvantages of TTCN-3 must not be ignored: The
first is its lack of support for the sampling port concept (cf. section 2.2.2).
This, however, can be remedied by making sure that re-transmissions occur
on SUT adapter or hardware level as well as storing the last received value of
a port in a variable (also note [SP13] for an interesting alternative concept).

The second aspect is that while TTCN-3 was designed for testing, it was
originally not designed for real-time testing. This becomes readily appar-
ent in the implementation of oracles and test stimulators in section 10.3.1:
TTCN-3 does not provide the concept of clocks, so they have to be simulated
with timers and counter variables. This leads to clock drift and a multitude
of “timeouts” in the TTCN-3 test logs. It should be noted, however, that
several extensions to the TTCN-3 standard have been proposed in order to
make it real-time-capable (cf. [SMD+08]).

12.2 CSP

As already mentioned in the introduction, in an earlier research project a bare
module test suite had been developed. The test specifications were written
in CSP (cf. [Hoa78, Sch00]).

Compared to ITML, the use of CSP poses a significantly higher obstacle
for a domain expert, as knowledge of the domain alone is not sufficient. In
order to understand or even write new specifications, the test engineer re-
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quires a deep understanding of the syntax and semantics of CSP. Also, the
test engineer receives no tool support¹ during the development of test spec-
ifications and has to rely on “trial and error” techniques (i. e. writing CSP
code, trying to compile it, fixing compilation errors).

In contrast, MetaEdit+ provides a much more intuitive user interface for
ITML: In the graph editor, the user can see what types of objects and rela-
tionships are available. There is no need to remember names or keywords
for language features or grammar rules. The automatic compliance with the
rules of the metamodel enforced by the framework guarantees a syntactically
correct test specification model.

The fact that CSP specifications are difficult to understand greatly affects
their maintainability. Before making changes to an existing CSP specification
it takes additional effort to analyse the current behaviour for a test engineer
unfamiliar with the existing test suite.

There is, however, an important similarity between ITML and CSP: Both
operate on an abstract level, hiding details of hardware interface access from
the test specification. In fact, for CSP tests one or more interface modules are
required, which have to provide a refinement from the abstract CSP events
to physical signals on hardware interfaces to the SUT and vice versa.

A great advantage of the ITML framework is, of course, the fully au-
tomatic generation of test cases from application models with ITML-A. In
contrast, test cases had to be derived and translated into appropriate CSP
specifications completely by hand.

12.3 UML Testing Profile

The third and final object of comparison is the UML Testing Profile (UTP, cf.
[OMG13]). UTP is a UML profile, extending UML to allow the definition
and specification of testing-related artefacts (either stand-alone or within a
“regular” UML model of an application or system).

UTP defines concepts to describe the structure of the test setup (SUT,
TestComponent, TestContext). Test behaviour can be modelled with UML
behaviour diagrams (e. g. activity diagram or state machine). Test behaviour
consists of actions like SUT stimulation, logging, or test verdict calculation
(validation actions). There are special concepts provided in order to specify
test data: data pools, partitions, and selectors. Furthermore, the concept of
test objectives supports the planning and scheduling of tests.

It quickly becomes apparent that, in terms of generalisation, UTP is the
exact opposite of ITML. UTP is a general-purpose modelling language, while
ITML is domain-specific, even though they are both designed for testing.
In order to work with UTP, the test engineer must know and understand
the special concepts of UTP in addition to the application domain. It can,

¹apart from simple syntax colouring
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however, be argued that the learning curve should be relatively shallow, since
these concepts are all testing-related.

UTP itself is not a complete framework, but only a language. Additional
tool support for the modelling as well as for the translation of test case models
into executable test procedures is required. Therefore, an appropriate set of
tools must be chosen, and the test engineer must be familiar with it. Note
that there is no direct support for the automatic generation of test cases like
in ITML-A. Instead, test cases are modelled explicitly, like in ITML-B/C.

Like ITML, the fact that UTP modelling is independent from specific
test environment hardware increases its maintainability. The fact that UML
is widely known also increases the chances of a person different from the
original modeller to understand and adapt existing models.

For a more detailed introduction to and discussion of UTP topics, refer
to [BDG+08].
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CHAPTER 13
Conclusion

The goal of this thesis was the design and development of a framework
for model-based testing of Integrated Modular Avionics systems. The key
approach to this goal was the utilisation of domain-specific modelling tech-
niques. This approach was motivated by the wish to give IMA domain ex-
perts a state-of-the-art tool that can be used with a minimum of learning
effort and allows a more productive way of working compared to manually
developing test procedures.

13.1 Results

The main contributions provided by this thesis are described in detail in
part II. These contributions together make up the model-based testing frame-
work.

The domain-specific modelling language ITML has been defined in or-
der to provide a means to specify tests and desired system behaviour. Due
to its domain-specific nature its concepts are easily understood by IMA do-
main experts. Its level of abstraction makes it possible to work directly on
the problem level instead of having to cope with the technical details of a spe-
cific test environment. ITML comes in three variants, ITML-A, ITML-B,
and ITML-C, in order to adequately cover different levels of testing. For all
variants formal definitions of abstract syntax as well as static and dynamic
semantics are provided. An implementation of all language variants is pro-
vided in the form of meta-models in the DSM tool MetaEdit+. This tool
provides an appropriate modelling front-end to be used by IMA domain ex-
perts. Furthermore, generators have been implemented that automatically
produce executable TTCN-3 test procedures based on the models designed
by the domain expert.
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The framework also provides a suitable TTCN-3-based test environment.
This includes appropriate system adapters and codecs which can be used, for
example, in TTworkbench. The choice of TTCN-3 has the advantage of
having test procedures which are independent from the underlying concrete
test system (due to the interfaces defined by the TTCN-3 standard).

To complement the TTCN-3 test environment, the framework provides
an implementation of a flexible and universal Test Agent. The agent is AR-
INC 653-compatible and is therefore suited for loading onto the target mod-
ule under test. The agent can execute API calls on behalf of the running test
procedure. As a means of controlling the agent, a control protocol has been
specified, and the framework comes with a suitable protocol implemention
in the test environment.

The appendix of this thesis contains a series of example ITML models.
When comparing the graphical model representations with the TTCN-3
code generated from them, it becomes easily apparent that an IMA domain
expert can work more effortlessly and efficiently by creating ITML models
compared to manually writing test procedures and that these models have a
higher comprehensibility compared to TTCN-3 code.

13.2 Future Work

For future work, two interesting points remain: One important aspect of
the ITML framework is usability. In order to further substantiate the con-
clusions drawn concerning framework usability in chapter 12, a case study
with IMA domain experts should be conducted. This could be performed
according to the evaluation techniques described, for example, in [GP96].

The other point concerns the user interface. Currently, several separate
tools have to be employed in order to follow the process workflow detailed
in chapter 6. From a usability perspective, it would be preferrable to have
a unified user interface that provides all functionality, from modelling to
test execution, inside a single front-end application. The Eclipse framework,
for instance, provides a suitable platform into which all the different tool
components required for IMA testing could be integrated.
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APPENDIX A
Example Models

This appendix shows several example models, both ITML-B and ITML-A.
It also shows generated intermediate XML files as well as generated TTCN-3
code.

A.1 ITML-B

Figure A.1 shows an ITML-B configuration model. It consists of a CPM
containing two partitions. Both partitions have appropriate scheduling and
RAM settings. Partition 9 has a group of AFDX input ports, while partition
10 has a group of AFDX output ports. Both partitions are connected via a
group of RAM ports.

Figure A.2 shows an ITML-B behaviour model. It shows how the black-
board API (cf. section 2.2.2) can be tested: In the init process, a blackboard
and two processes are created. Then the partition is switched into normal
mode. The first process writes a message to the blackboard by making a
DISPLAY_BLACKBOARD API call, then the second process tries to read the
message via READ_BLACKBOARD. If the call succeeds, the test verdict is set to
passed, otherwise the test has failed.

Figure A.3 shows an example model for port handling. The init process
opens all AFDX sampling output ports of the partition in a loop. Then it
creates a process and sets the partition to normal mode. The created process
then iterates over all previously created ports and writes a message to each
port by calling WRITE_SAMPLING_MESSAGE. Then a read complement is used
to receive the message (in the test environment). If writing or reading fails,
the test verdict is set to failed, otherwise the test is passed.

Figure A.4 is very similar to the previous model. The test starts by cre-
ating all RAM sampling input ports in partition 10 and creating a process,
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CPM

THA
Pos. 1

Partition 9

Period: 1000 ms
Duration: 500 ms
RAM Size: 4096 KiB

Partition 10

Period: 1000 ms
Duration: 200 ms
RAM Size: 8192 KiB

RAM Ports

Sampling
Size: 512 B
Count: 16

AFDX Ports

Queuing
Size: 1024 B
Count: 12

AFDX Ports

Sampling
Size: 64 B
Count: 10

Figure A.1: Configuration model

followed by creating all RAM sampling output ports and a process in par-
tition 9. Each partition is switched to normal mode afterwards. Then the
process in partition 9 iterates over the previously opened ports and writes
a message to each port. The following read complement will cause the pro-
cess in the other partition to perform a READ_SAMPLING_MESSAGE on the
appropriate input RAM sampling port (cf. RAM port configuration in fig-
ure A.1). If all messages are successfully received, the test is passed, otherwise
the verdict is set to failed.

Appendix A.1.1 shows the intermediate XML representation that was
created from the model in figure A.2 by the generator shown in appendix E.2.
It contains four sections. The first two, resources and nodes, contain XML
representations of the objects shown in the behaviour model (i. e. parameter
objects like blackboard and processes in the resources section, API calls in
the nodes section). The other two sections, parameters and controlflow,
contain XML representations of the relationships between the objects in the
model, i. e. parameter assignments to API calls and control flow edges.

Appendix A.1.2 finally shows the TTCN-3 test procedure generated by
the ITML-B test generator from the intermediate XML representation in ap-
pendix A.1.1. The individual nodes are translated into procedure calls to the
TACP handler. The function run_Blackboard implements the behaviour
of the flowchart as described in section 10.2.3.
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START

Partition 9

Create Blackboard

Blackboard

bb01
Size: 64 B

Create ProcessProcess p1

Start

Set Partition Mode
NORMAL

Display Blackboard

Process p2 Create Process

Start

Message
Pattern

0xFF

Read Blackboard

FAIL PASS

Init Process

Process p1

Process p2

NO_ERROR

INVALID_MODE
INVALID_PARAM
NOT_AVAILABLE

TIMED_OUT

Figure A.2: Blackboard API test model
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START

Partition 10

Create Process
Process p1

Start

Init Process

Loop

AFDX Sampling 
Output Port

Loop End

Set Partition Mode
NORMAL

Process p1

Loop

AFDX Sampling 
Output Port

FAIL

Read complement

Message
Pattern

0xFF

Loop End

FAIL

PASS

Create Sampling 
Port

Write Sampling 
Message

NO_ERROR

INVALID_CONFIG
INVALID_MODE

INVALID_PARAM
NOT_AVAILABLE

TIMED_OUT

INVALID_CONFIG
INVALID_MODE

INVALID_PARAM

NO_ERROR

Figure A.3: AFDX port API test model
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A.1.1 Intermediate XML Representation

<?xml version=”1.0”?>
<behaviour xmlns=”http://www.scarlettproject.eu/tzi/behaviour” name=”Blackboard”>
<resources>

<process id=”3_1668” name=”p1” stacksize=”32768” priority=”1” period=”1000” ↩
↪ timecapacity=”500” deadline=”SOFT”/>

<process id=”3_1767” name=”p2” stacksize=”32768” priority=”0” period=”1000” ↩
↪ timecapacity=”500” deadline=”SOFT”/>

<blackboard id=”3_1610” name=”bb01” maxmsgsize=”64”/>
<message id=”3_1840” pattern=”0xFF” size=”32”/>

</resources>
<nodes>

<test_start id=”3_1527”/>
<test_fail id=”3_1909”/>
<test_pass id=”3_1912”/>
<partition id=”3_1537” name=”9”/>
<process id=”3_2105” name=”INIT”/>
<process id=”3_2112” name=”p1”/>
<process id=”3_2119” name=”p2”/>
<Create_Blackboard id=”3_1596”/>
<Create_Process id=”3_1617”/>
<Create_Process id=”3_1782”/>
<Display_Blackboard id=”3_1744”/>
<Start id=”3_1692”/>
<Start id=”3_1785”/>
<Read_Blackboard id=”3_1865” timeout=”0”/>
<Set_Partition_Mode id=”3_1715” mode=”NORMAL”/>

</nodes>
<parameters>

<assign op=”3_1596” param=”3_1610”/>
<assign op=”3_1865” param=”3_1610”/>
<assign op=”3_1744” param=”3_1610”/>
<assign op=”3_1744” param=”3_1840”/>
<assign op=”3_1865” param=”3_1840”/>
<assign op=”3_1617” param=”3_1668”/>
<assign op=”3_1692” param=”3_1668”/>
<assign op=”3_1782” param=”3_1767”/>
<assign op=”3_1785” param=”3_1767”/>

</parameters>
<controlflow>

<edge from=”3_1527” to=”3_1537”/>
<edge from=”3_1596” to=”3_1617”/>
<edge from=”3_1617” to=”3_1692”/>
<edge from=”3_1692” to=”3_1782”/>
<edge from=”3_1782” to=”3_1785”/>
<edge from=”3_1785” to=”3_1715”/>
<edge from=”3_1537” to=”3_2105”/>
<edge from=”3_2105” to=”3_1596”/>
<edge from=”3_1715” to=”3_2112”/>
<edge from=”3_2112” to=”3_1744”/>
<edge from=”3_1744” to=”3_2119”/>
<edge from=”3_2119” to=”3_1865”/>
<edge from=”3_1865” to=”3_1909”>
<condition>INVALID_MODE</condition>
<condition>INVALID_PARAM</condition>
<condition>NOT_AVAILABLE</condition>
<condition>TIMED_OUT</condition>

</edge>
<edge from=”3_1865” to=”3_1912”>
<condition>NO_ERROR</condition>

</edge>
</controlflow>

</behaviour>
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A.1.2 TTCN-3 Code

// Generated by ITML-B/C Test Generator 1.0 on 2014-Jun-21 16:26:06
// from model ”Blackboard.xml”
// Configuration:
// ”COMMANDPORTS.csv”
// ”L1G0000M09V001I001.csv”
// ”L1G0000M10V001I001.csv”
// ”L1L0000M09V001I001.csv”
// ”L1L0000M10V001I001.csv”
// ”L1M0000M00V001I001.csv”

module m_Blackboard {

import from types all;
import from TACP all;

type component MTCType {
port CmdPort cmd_p9;

}

type component SUTType {
port TACP_Out_Port TZI_TA_P9_CMD_IN;
port TACP_In_Port TZI_TA_P9_CMD_OUT;

}

function run_Blackboard() runs on MTCType {
var charstring node;
var RETURN_CODE_TYPE return_value;
timer complement_timer;
var integer p9_blackboard_bb01_id;
template charstring p9_msg3_1840_pattern := ”0xFF0xFF0xFF0xFF0xFF0xFF0xFF0xFF”;
var integer p9_process_p2_id;
var integer p9_process_p1_id;

// pre-fill data table
cmd_p9.call(SET_DATA_TABLE_ENTRY:{0, ”bb01”, -}) {
[] cmd_p9.getreply(SET_DATA_TABLE_ENTRY:{-, -, NO_ERROR});

}
cmd_p9.call(SET_DATA_TABLE_ENTRY:{1, p9_msg3_1840_pattern, -}) {
[] cmd_p9.getreply(SET_DATA_TABLE_ENTRY:{-, -, NO_ERROR});

}
cmd_p9.call(SET_DATA_TABLE_ENTRY:{2, ”p2”, -}) {
[] cmd_p9.getreply(SET_DATA_TABLE_ENTRY:{-, -, NO_ERROR});

}
cmd_p9.call(SET_DATA_TABLE_ENTRY:{3, ”p1”, -}) {
[] cmd_p9.getreply(SET_DATA_TABLE_ENTRY:{-, -, NO_ERROR});

}

node := ”node_3_1527”;
while (node != ””) {
if (node == ”node_3_1527”) {

// start
node := ”node_3_1537”;
continue;

}

if (node == ”node_3_1537”) {
// partition 9
node := ”node_3_2105”;
continue;

}

if (node == ”node_3_2105”) {
// process INIT
cmd_p9.call(set_process_idx:{0}) {
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[] cmd_p9.getreply(set_process_idx:{-});
}
node := ”node_3_1596”;
continue;

}

if (node == ”node_3_1596”) {
// Create_Blackboard
cmd_p9.call(CREATE_BLACKBOARD:{0, 64, -, -}) {

[] cmd_p9.getreply(CREATE_BLACKBOARD:{-, -, ?, ?})
-> param(-, -, p9_blackboard_bb01_id, return_value);

}
node := ”node_3_1617”;
continue;

}

if (node == ”node_3_1617”) {
// Create_Process
cmd_p9.call(CREATE_PROCESS:{3, 0, 32768, 1, 1000, 500, SOFT, -, -}) {

[] cmd_p9.getreply(CREATE_PROCESS:{-, -, -, -, -, -, -, ?, ?})
-> param(-, -, -, -, -, -, -, p9_process_p1_id, return_value);

}
node := ”node_3_1692”;
continue;

}

if (node == ”node_3_1692”) {
// Start
cmd_p9.call(START:{p9_process_p1_id, -}) {

[] cmd_p9.getreply(START:{-, ?})
-> param(-, return_value);

}
node := ”node_3_1782”;
continue;

}

if (node == ”node_3_1782”) {
// Create_Process
cmd_p9.call(CREATE_PROCESS:{2, 0, 32768, 0, 1000, 500, SOFT, -, -}) {

[] cmd_p9.getreply(CREATE_PROCESS:{-, -, -, -, -, -, -, ?, ?})
-> param(-, -, -, -, -, -, -, p9_process_p2_id, return_value);

}
node := ”node_3_1785”;
continue;

}

if (node == ”node_3_1785”) {
// Start
cmd_p9.call(START:{p9_process_p2_id, -}) {

[] cmd_p9.getreply(START:{-, ?})
-> param(-, return_value);

}
node := ”node_3_1715”;
continue;

}

if (node == ”node_3_1715”) {
// Set_Partition_Mode
cmd_p9.call(SET_PARTITION_MODE:{NORMAL, -}) {

[] cmd_p9.getreply(SET_PARTITION_MODE:{-, ?})
-> param(-, return_value);

}
node := ”node_3_2112”;
continue;

}

if (node == ”node_3_2112”) {
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// process p1
cmd_p9.call(set_process_idx:{p9_process_p1_id}) {
[] cmd_p9.getreply(set_process_idx:{-});

}
node := ”node_3_1744”;
continue;

}

if (node == ”node_3_1744”) {
// Display_Blackboard
cmd_p9.call(DISPLAY_BLACKBOARD:{p9_blackboard_bb01_id, 1, 32, -}) {
[] cmd_p9.getreply(DISPLAY_BLACKBOARD:{-, -, -, ?})

-> param(-, -, -, return_value);
}
node := ”node_3_2119”;
continue;

}

if (node == ”node_3_2119”) {
// process p2
cmd_p9.call(set_process_idx:{p9_process_p2_id}) {
[] cmd_p9.getreply(set_process_idx:{-});

}
node := ”node_3_1865”;
continue;

}

if (node == ”node_3_1865”) {
// Read_Blackboard
cmd_p9.call(READ_BLACKBOARD:{p9_blackboard_bb01_id, 0, 1, -, -}) {
[] cmd_p9.getreply(READ_BLACKBOARD:{-, -, -, ?, ?})

-> param(-, -, -, -, return_value);
}
if (return_value == INVALID_MODE or
return_value == INVALID_PARAM or
return_value == NOT_AVAILABLE or
return_value == TIMED_OUT) {
node := ”node_3_1909”;
continue;

}
if (return_value == NO_ERROR) {
node := ”node_3_1912”;
continue;

}
node := ””;
continue;

}

if (node == ”node_3_1909”) {
setverdict(fail);
node := ””;
continue;

}

if (node == ”node_3_1912”) {
setverdict(pass);
node := ””;
continue;

}

}
}

testcase Blackboard() runs on MTCType system SUTType {
timer tacp_sync := 1.0;
var TACPHandler p9_handler;
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p9_handler := TACPHandler.create;

map(p9_handler:tacpToCPM, system:TZI_TA_P9_CMD_IN);
map(p9_handler:tacpFromCPM, system:TZI_TA_P9_CMD_OUT);
connect(mtc:cmd_p9, p9_handler:cmd);

p9_handler.start(runHandler());
tacp_sync.start;
tacp_sync.timeout;
run_Blackboard();

}
}

Due to their size the intermediate XML representations and the generated
TTCN-3 test procedures for the other models are not reproduced here.
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CPM THA (SUT)

Test Environment (TE)

SUT Input Signals
SD1A_state: int
SD1B_state: int

SUT Output Signals
Fire_Detected: bool
Maintenance_Required: bool

Constants
Standby: int = 0
Failed: int = 1
Alarm: int = 2

Figure A.5: System diagram

FSD

Figure A.6: System Under Test component diagram

A.2 ITML-A

The remainder of this appendix shows a complete ITML-A example: a Fire
and Smoke Detection application (FSD), as commonly used in modern com-
mercial aircraft. The system consists of smoke detectors (SD) which are in-
stalled in different areas of the aircraft, e. g. lavatories, galleys, or cargo com-
partments. The smoke detectors are connected to a data bus, which links
them to the module hosting the FSD application. The application receives
status updates from the smoke detectors and determines if a fire has been
detected. Upon detection the application signals the flight crew and triggers
fire extinguishing measures. If a smoke detector fails, the application gives a
signal that on-ground maintenance is required.

Figure A.5 shows the system diagram for the FSD application. It con-
sists of an SUT component representing a CPM and the test environment
(TE). The signal lists show the input and output signals that the SUT pro-
vides towards the TE. In particular, SD1A_state and SD1B_state are smoke
detector status inputs, while Fire_Detected and Maintenance_Required
are outputs from the application. The constants list contains values for the
encoding of the smoke detector status in the SD status signals.

Figure A.6 shows the interior of the SUT component: The SUT decom-
poses into a single component representing the FSD application running on
the module. Analogously, figure A.7 shows the decomposition of the TE: It
consists of a simulation component representing smoke detector SD1.

The SD1 component decomposes further into another component dia-
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SD1 Sim

Figure A.7: Test Environment component diagram

SD1A Sim

SD1B Sim

Variables
t_rep: timer

Figure A.8: SD1 simulation component diagram

gram shown in figure A.8. The smoke detector SD1 consists of two individ-
ual detectors, SD1A and SD1B. Therefore, SD1 represents a so-called dual
smoke detector, providing fault tolerance. Inside this component a timer,
t_rep, is defined. Its purpose will be explained below.

The simulation components SD1A and SD1B decompose into the state-
charts shown in figure A.9 and figure A.10, respectively. Each detector has
three primary states, Standby, Alarm, and Failed. The entry action of each
state sets the SD state SUT input signal to the respective value. Standby is
the initial state of each SD. Normally, Failed would be a terminal location
(i. e. the detector has to be replaced). In order to not have a dead end in this
model, a Repair location has been added. This simulates the replacement of
the smoke detector. Note that the guard condition only allows the transition
to the repair state when both detectors of the dual SD have failed. The entry
action starts the repair timer t_rep mentioned earlier. As soon as it expires,
both detectors can transition back to Standby.

The remaining figure A.11 shows the statechart to which the FSD com-
ponent inside the SUT decomposes. It consists of five locations. The three
locations in the centre row correspond to both detectors having the same
state, i. e. being in Alarm, Standby, and Failed states, respectively. The loca-
tion on the top, SD Inconsistent, is entered if one SD is in Alarm state while
the other is in Standby. This means that the application has detected an in-
consistency in the SD states. Upon entry, the application starts the timer t.
If it expires, the whole detector is considered failed due to the inconsistency.
If, however, the second detector also changes from Standby to Alarm state
before the timer expires, the application enters the Alarm location, and upon
entry sets its Fire_Detected output to true. Conversely, the application
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Standby

Entry: SD1A_state = Standby

Failed

Entry: SD1A_state = Failed

Alarm

Entry: SD1A_state = Alarm

Repair

Entry: t_rep = 0

[SD1A_state == Failed && 
SD1B_state == Failed]

[t_rep >= 1000]

Figure A.9: SD1A simulation statechart

Standby

Entry: SD1B_state = Standby

Failed

Entry: SD1B_state = Failed

Alarm

Entry: SD1B_state = Alarm

Repair

Entry: t_rep = 0

[SD1A_state == Failed && 
SD1B_state == Failed]

[t_rep >= 1000]

Figure A.10: SD1B simulation statechart
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Figure A.11: FSD application statechart172



A.2. ITML-A

enters the location on the bottom, Redundancy Lost, if one detector goes to
Failed state while the other is in Standby. In this state, the single Alarm signal
of the other (good) detector is sufficient to transition to the Alarm location
and report the detection of fire. If, however, the good detector also goes into
Failed state, the application transitions into the SD Failed location on the
right and sets the Maintenance_Required output signal to true.

Appendix A.2.1 shows the intermediate XML representation that was
created from the system diagram (figure A.5) by the generator shown in ap-
pendix E.5. The root element represents the system. It contains the sut and
the testenv elements. Each of these can have nested component elements.
Each nesting level has its respective signal, constant, and variable lists.
The innermost components (FSD, SD1A Sim, and SD1B Sim) contain state-
chart elements. Each one of these contains two sections: locations and
transitions. The former contains a location element for each location of
the statechart, the latter contains a transition element for each transition
between locations, including the respective guard condition.

Appendix A.2.2 finally shows the TTCN-3 test procedure generated by
the ITML-A test generator from the intermediate XML representation in
appendix A.2.1. It contains the appropriate test oracle function for the FSD
application as well as the stimulator function which provides the SUT inputs
required to reach full location and transition coverage of the SUT model.
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A.2.1 Intermediate XML Representation

<?xml version=”1.0”?>
<system xmlns=”http://www.scarlettproject.eu/tzi/system” name=”I/O Intensive ↩

↪ Demonstrator”>
<sut_inputs>

<signal name=”SD1A_state” type=”int” minimum=”0” maximum=”2” default=”0”/>
<signal name=”SD1B_state” type=”int” minimum=”0” maximum=”2” default=”0”/>

</sut_inputs>
<sut_outputs>

<signal name=”Fire_Detected” type=”bool” minimum=”0” maximum=”1” default=”0”/>
<signal name=”Maintenance_Required” type=”bool” minimum=”0” maximum=”1” ↩

↪ default=”0”/>
</sut_outputs>
<constants>

<constant name=”Standby” type=”int” value=”0”/>
<constant name=”Failed” type=”int” value=”1”/>
<constant name=”Alarm” type=”int” value=”2”/>

</constants>
<sut name=”CPM THA”>

<variables>
</variables>
<constants>
</constants>
<component name=”FSD”>
<variables>
<variable name=”t” type=”timer” minimum=”0” maximum=”0” default=”0”/>

</variables>
<constants>
</constants>
<statechart>
<locations>

<start_location id=”4_1277”/>
<location id=”4_1179” name=”Alarm”>
<req>SRD-R-FSD-03</req>
<entry>Fire_Detected = true; </entry>

</location>
<location id=”4_1194” name=”Idle”>
<req>SRD-R-FSD-01</req>
<entry>Maintenance_Required = false; Fire_Detected = false; </entry>

</location>
<location id=”4_1230” name=”Redundancy Lost”>
<req>SRD-R-FSD-05</req>

</location>
<location id=”4_1245” name=”SD Failed”>
<req>SRD-R-FSD-02</req>
<entry>Maintenance_Required = true; </entry>

</location>
<location id=”4_1213” name=”SD Inconsistent”>
<req>SRD-R-FSD-04</req>
<entry>t = 0; </entry>

</location>
</locations>
<transitions>

<transition id=”4_1295” name=”” from=”4_1277” to=”4_1194”>
</transition>
<transition id=”4_1310” name=”” from=”4_1194” to=”4_1179”>
<cond>(SD1A_state == Alarm &amp;&amp; SD1B_state == Alarm) || ↩

↪ (SD1A_state == Alarm &amp;&amp; SD1B_state == Failed) || ↩
↪ (SD1A_state == Failed &amp;&amp; SD1B_state == Alarm)</cond>

</transition>
<transition id=”4_1325” name=”” from=”4_1213” to=”4_1179”>
<cond>SD1A_state == Alarm &amp;&amp; SD1B_state == Alarm</cond>

</transition>
<transition id=”4_1340” name=”” from=”4_1194” to=”4_1213”>
<cond>(SD1A_state == Alarm &amp;&amp; SD1B_state == Standby) || ↩
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↪ (SD1A_state == Standby &amp;&amp; SD1B_state == Alarm)</cond>
</transition>
<transition id=”4_1355” name=”” from=”4_1230” to=”4_1179”>

<cond>SD1A_state == Alarm || SD1B_state == Alarm</cond>
</transition>
<transition id=”4_1370” name=”” from=”4_1194” to=”4_1230”>

<cond>(SD1A_state == Failed &amp;&amp; SD1B_state == Standby) || ↩
↪ (SD1A_state == Standby &amp;&amp; SD1B_state == Failed)</cond>

</transition>
<transition id=”4_1385” name=”” from=”4_1194” to=”4_1245”>

<cond>SD1A_state == Failed &amp;&amp; SD1B_state == Failed</cond>
</transition>
<transition id=”4_1400” name=”” from=”4_1213” to=”4_1245”>

<cond>t &gt;= 1000</cond>
</transition>
<transition id=”4_1415” name=”” from=”4_1230” to=”4_1245”>

<cond>SD1A_state == Failed &amp;&amp; SD1B_state == Failed</cond>
</transition>
<transition id=”4_2118” name=”” from=”4_1179” to=”4_1213”>

<cond>(SD1A_state == Alarm &amp;&amp; SD1B_state == Standby) || ↩
↪ (SD1A_state == Standby &amp;&amp; SD1B_state == Alarm)</cond>

</transition>
<transition id=”4_2135” name=”” from=”4_1179” to=”4_1194”>

<cond>SD1A_state == Standby &amp;&amp; SD1B_state == Standby</cond>
</transition>
<transition id=”4_2279” name=”” from=”4_1245” to=”4_1194”>

<cond>SD1A_state == Standby &amp;&amp; SD1B_state == Standby</cond>
</transition>

</transitions>
</statechart>

</component>
</sut>
<testenv name=”ADS2”>
<variables>
</variables>
<constants>
</constants>
<component name=”SD1 Sim”>
<variables>

<variable name=”t_rep” type=”timer” minimum=”0” maximum=”0” default=”0”/>
</variables>
<constants>
</constants>
<component name=”SD1A Sim”>

<variables>
</variables>
<constants>
</constants>
<statechart>
<locations>

<start_location id=”4_708”/>
<location id=”4_756” name=”Alarm”>
<entry>SD1A_state = Alarm; </entry>

</location>
<location id=”4_726” name=”Failed”>
<entry>SD1A_state = Failed; </entry>

</location>
<location id=”4_2169” name=”Repair”>
<entry>t_rep = 0; </entry>

</location>
<location id=”4_695” name=”Standby”>
<entry>SD1A_state = Standby; </entry>

</location>
</locations>
<transitions>

<transition id=”4_711” name=”” from=”4_708” to=”4_695”>
</transition>
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<transition id=”4_769” name=”” from=”4_695” to=”4_756”>
</transition>
<transition id=”4_784” name=”” from=”4_695” to=”4_726”>
</transition>
<transition id=”4_799” name=”” from=”4_756” to=”4_695”>
</transition>
<transition id=”4_829” name=”” from=”4_756” to=”4_726”>
</transition>
<transition id=”4_2184” name=”” from=”4_726” to=”4_2169”>

<cond>SD1A_state == Failed &amp;&amp; SD1B_state == Failed</cond>
</transition>
<transition id=”4_2201” name=”” from=”4_2169” to=”4_695”>

<cond>t_rep &gt;= 1000</cond>
</transition>

</transitions>
</statechart>

</component>
<component name=”SD1B Sim”>
<variables>
</variables>
<constants>
</constants>
<statechart>

<locations>
<start_location id=”4_1431”/>
<location id=”4_1441” name=”Alarm”>

<entry>SD1B_state = Alarm; </entry>
</location>
<location id=”4_1467” name=”Failed”>

<entry>SD1B_state = Failed; </entry>
</location>
<location id=”4_2218” name=”Repair”>

<entry>t_rep = 0; </entry>
</location>
<location id=”4_1493” name=”Standby”>

<entry>SD1B_state = Standby; </entry>
</location>

</locations>
<transitions>
<transition id=”4_1521” name=”” from=”4_1441” to=”4_1467”>
</transition>
<transition id=”4_1561” name=”” from=”4_1493” to=”4_1441”>
</transition>
<transition id=”4_1581” name=”” from=”4_1441” to=”4_1493”>
</transition>
<transition id=”4_1601” name=”” from=”4_1431” to=”4_1493”>
</transition>
<transition id=”4_1621” name=”” from=”4_1493” to=”4_1467”>
</transition>
<transition id=”4_2233” name=”” from=”4_1467” to=”4_2218”>

<cond>SD1A_state == Failed &amp;&amp; SD1B_state == Failed</cond>
</transition>
<transition id=”4_2250” name=”” from=”4_2218” to=”4_1493”>

<cond>t_rep &gt;= 1000</cond>
</transition>

</transitions>
</statechart>

</component>
</component>

</testenv>
</system>

A.2.2 TTCN-3 Code

/*
* Generated by ITML-A Test Generator 9.0-1.2.0-x64.83c0017.dev on 2014-Jul-05 14:14:09
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* from model IO Intensive Demonstrator.xml
*/

module m_main {

type integer clock;

type port Fire_DetectedPort message {
in boolean

}

type port Maintenance_RequiredPort message {
in boolean

}

type port SD1A_statePort message {
out integer

}

type port SD1B_statePort message {
out integer

}

type component MTCType {
// ports
port Fire_DetectedPort Fire_Detected;
port Maintenance_RequiredPort Maintenance_Required;
port SD1A_statePort SD1A_state;
port SD1B_statePort SD1B_state;

// I/O variables
var boolean IOpre_Fire_Detected := false;
var boolean IOpost_Fire_Detected := false;
var boolean IOpre_Maintenance_Required := false;
var boolean IOpost_Maintenance_Required := false;
var integer IOpre_SD1A_state := 0;
var integer IOpost_SD1A_state := 0;
var integer IOpre_SD1B_state := 0;
var integer IOpost_SD1B_state := 0;

// state variables
var clock Statepre_sut_FSD_t := 0;
var clock Statepost_sut_FSD_t := 0;
var clock Statepre_te__SD1_Sim_t_rep := 0;
var clock Statepost_te__SD1_Sim_t_rep := 0;

// oracle variables
var integer Fire_Detected_counter := 0;
var boolean Fire_Detected_passed := false;
var boolean Fire_Detected_failed := false;
var boolean Fire_Detected_expected := false;
var boolean Fire_Detected_expectedOld := false;
var integer Maintenance_Required_counter := 0;
var boolean Maintenance_Required_passed := false;
var boolean Maintenance_Required_failed := false;
var boolean Maintenance_Required_expected := false;
var boolean Maintenance_Required_expectedOld := false;
var boolean haveDiscreteTrans := false;
const float cycle_period := 0.1;
var clock _timeTick := 0;
timer cycleTimer := cycle_period;

// oracle location
var integer sut_FSD_currentLocation := 7;

// stimulator location
var integer stimulator_location := 0;

}

// operations

// oracles
function _ora_FSD() runs on MTCType
{

var integer cycleCtr := 0;
var boolean triggered := false;

177



APPENDIX A. EXAMPLE MODELS

while (not triggered)
{

/* Handle location ’FSD.Start’ */
if ((sut_FSD_currentLocation == 7) and (not triggered))
{

if (not triggered)
{

haveDiscreteTrans := true;
Maintenance_Required_expected := false;
Fire_Detected_expected := false;
/* New location is ’FSD.Idle’ */
sut_FSD_currentLocation := 10;
/**
* Model coverage goal: basic control state coverage
*
* @tag TC-mbt-fsd-BCS-0002 Cover basic control state Idle
* @condition TRUE
* @event Component IMR.SystemUnderTest.FSD
* reaches basic control state IMR.SystemUnderTest.FSD.FSD.Idle
* @expected The actions associated with the transition entering
* this control state, and the control state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-01
*/
log(”TC-mbt-fsd-BCS-0002”);
triggered := true;

}
triggered := true;

}
/* Handle location ’FSD.Alarm’ */
if ((sut_FSD_currentLocation == 8) and (not triggered))
{

if ((not triggered) and (((IOpre_SD1A_state == 2) and (IOpre_SD1B_state == 0)) or ↩
↪ ((IOpre_SD1A_state == 0) and (IOpre_SD1B_state == 2))))

{
haveDiscreteTrans := true;
Statepost_sut_FSD_t := (_timeTick + 0);
/* New location is ’FSD.SD_Inconsistent’ */
sut_FSD_currentLocation := 16;
/**
* Model coverage goal : transition coverage
* Cover transition of component IMR.SystemUnderTest.FSD
* FSD.Alarm
* -- [ (((IMR.SD1A_state == 2) && (IMR.SD1B_state == 0)) || ((IMR.SD1A_state ↩

↪ == 0) && (IMR.SD1B_state == 2))) ] -->
* FSD.SD_Inconsistent
*
* @tag TC-mbt-fsd-TR-0001 Cover transition Alarm --> SD_Inconsistent
* @condition Component IMR.SystemUnderTest.FSD
* resides in control state IMR.SystemUnderTest.FSD.FSD.Alarm
* @event Trigger condition for specified transition becomes true
* @expected The actions associated with the transition specified above,
* and the target state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-03
*/
/**
* Model coverage goal: basic control state coverage
*
* @tag TC-mbt-fsd-BCS-0005 Cover basic control state SD_Inconsistent
* @condition TRUE
* @event Component IMR.SystemUnderTest.FSD
* reaches basic control state IMR.SystemUnderTest.FSD.FSD.SD_Inconsistent
* @expected The actions associated with the transition entering
* this control state, and the control state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-04
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*/
log(”TC-mbt-fsd-TR-0001, TC-mbt-fsd-BCS-0005”);
triggered := true;

}
if ((not triggered) and ((IOpre_SD1A_state == 0) and (IOpre_SD1B_state == 0)))
{

haveDiscreteTrans := true;
Maintenance_Required_expected := false;
Fire_Detected_expected := false;
/* New location is ’FSD.Idle’ */
sut_FSD_currentLocation := 10;
/**
* Model coverage goal : transition coverage
* Cover transition of component IMR.SystemUnderTest.FSD
* FSD.Alarm
* -- [ ((IMR.SD1A_state == 0) && (IMR.SD1B_state == 0)) ] -->
* FSD.Idle
*
* @tag TC-mbt-fsd-TR-0002 Cover transition Alarm --> Idle
* @condition Component IMR.SystemUnderTest.FSD
* resides in control state IMR.SystemUnderTest.FSD.FSD.Alarm
* @event Trigger condition for specified transition becomes true
* @expected The actions associated with the transition specified above,
* and the target state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-03
*/
/**
* Model coverage goal: basic control state coverage
*
* @tag TC-mbt-fsd-BCS-0002 Cover basic control state Idle
* @condition TRUE
* @event Component IMR.SystemUnderTest.FSD
* reaches basic control state IMR.SystemUnderTest.FSD.FSD.Idle
* @expected The actions associated with the transition entering
* this control state, and the control state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-01
*/
log(”TC-mbt-fsd-TR-0002, TC-mbt-fsd-BCS-0002”);
triggered := true;

}
triggered := true;

}
/* Handle location ’FSD.Idle’ */
if ((sut_FSD_currentLocation == 10) and (not triggered))
{

if ((not triggered) and ((((IOpre_SD1A_state == 2) and (IOpre_SD1B_state == 2)) or ↩
↪ ((IOpre_SD1A_state == 2) and (IOpre_SD1B_state == 1))) or ((IOpre_SD1A_state ↩
↪ == 1) and (IOpre_SD1B_state == 2))))

{
haveDiscreteTrans := true;
Fire_Detected_expected := true;
/* New location is ’FSD.Alarm’ */
sut_FSD_currentLocation := 8;
/**
* Model coverage goal : transition coverage
* Cover transition of component IMR.SystemUnderTest.FSD
* FSD.Idle
* -- [ ((((IMR.SD1A_state == 2) && (IMR.SD1B_state == 2)) || ((IMR.SD1A_state ↩

↪ == 2) && (IMR.SD1B_state == 1))) || ((IMR.SD1A_state == 1) && ↩
↪ (IMR.SD1B_state == 2))) ] -->

* FSD.Alarm
*
* @tag TC-mbt-fsd-TR-0003 Cover transition Idle --> Alarm
* @condition Component IMR.SystemUnderTest.FSD
* resides in control state IMR.SystemUnderTest.FSD.FSD.Idle
* @event Trigger condition for specified transition becomes true
* @expected The actions associated with the transition specified above,
* and the target state’s entry actions are

179



APPENDIX A. EXAMPLE MODELS

* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-01
*/
/**
* Model coverage goal: basic control state coverage
*
* @tag TC-mbt-fsd-BCS-0001 Cover basic control state Alarm
* @condition TRUE
* @event Component IMR.SystemUnderTest.FSD
* reaches basic control state IMR.SystemUnderTest.FSD.FSD.Alarm
* @expected The actions associated with the transition entering
* this control state, and the control state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-03
*/
log(”TC-mbt-fsd-TR-0003, TC-mbt-fsd-BCS-0001”);
triggered := true;

}
if ((not triggered) and (((IOpre_SD1A_state == 2) and (IOpre_SD1B_state == 0)) or ↩

↪ ((IOpre_SD1A_state == 0) and (IOpre_SD1B_state == 2))))
{

haveDiscreteTrans := true;
Statepost_sut_FSD_t := (_timeTick + 0);
/* New location is ’FSD.SD_Inconsistent’ */
sut_FSD_currentLocation := 16;
/**
* Model coverage goal : transition coverage
* Cover transition of component IMR.SystemUnderTest.FSD
* FSD.Idle
* -- [ (((IMR.SD1A_state == 2) && (IMR.SD1B_state == 0)) || ((IMR.SD1A_state ↩

↪ == 0) && (IMR.SD1B_state == 2))) ] -->
* FSD.SD_Inconsistent
*
* @tag TC-mbt-fsd-TR-0004 Cover transition Idle --> SD_Inconsistent
* @condition Component IMR.SystemUnderTest.FSD
* resides in control state IMR.SystemUnderTest.FSD.FSD.Idle
* @event Trigger condition for specified transition becomes true
* @expected The actions associated with the transition specified above,
* and the target state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-01
*/
/**
* Model coverage goal: basic control state coverage
*
* @tag TC-mbt-fsd-BCS-0005 Cover basic control state SD_Inconsistent
* @condition TRUE
* @event Component IMR.SystemUnderTest.FSD
* reaches basic control state IMR.SystemUnderTest.FSD.FSD.SD_Inconsistent
* @expected The actions associated with the transition entering
* this control state, and the control state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-04
*/
log(”TC-mbt-fsd-TR-0004, TC-mbt-fsd-BCS-0005”);
triggered := true;

}
if ((not triggered) and (((IOpre_SD1A_state == 1) and (IOpre_SD1B_state == 0)) or ↩

↪ ((IOpre_SD1A_state == 0) and (IOpre_SD1B_state == 1))))
{

haveDiscreteTrans := true;
/* New location is ’FSD.Redundancy_Lost’ */
sut_FSD_currentLocation := 13;
/**
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* Model coverage goal : transition coverage
* Cover transition of component IMR.SystemUnderTest.FSD
* FSD.Idle
* -- [ (((IMR.SD1A_state == 1) && (IMR.SD1B_state == 0)) || ((IMR.SD1A_state ↩

↪ == 0) && (IMR.SD1B_state == 1))) ] -->
* FSD.Redundancy_Lost
*
* @tag TC-mbt-fsd-TR-0005 Cover transition Idle --> Redundancy_Lost
* @condition Component IMR.SystemUnderTest.FSD
* resides in control state IMR.SystemUnderTest.FSD.FSD.Idle
* @event Trigger condition for specified transition becomes true
* @expected The actions associated with the transition specified above,
* and the target state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-01
*/
/**
* Model coverage goal: basic control state coverage
*
* @tag TC-mbt-fsd-BCS-0003 Cover basic control state Redundancy_Lost
* @condition TRUE
* @event Component IMR.SystemUnderTest.FSD
* reaches basic control state IMR.SystemUnderTest.FSD.FSD.Redundancy_Lost
* @expected The actions associated with the transition entering
* this control state, and the control state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-05
*/
log(”TC-mbt-fsd-TR-0005, TC-mbt-fsd-BCS-0003”);
triggered := true;

}
if ((not triggered) and ((IOpre_SD1A_state == 1) and (IOpre_SD1B_state == 1)))
{

haveDiscreteTrans := true;
Maintenance_Required_expected := true;
/* New location is ’FSD.SD_Failed’ */
sut_FSD_currentLocation := 14;
/**
* Model coverage goal : transition coverage
* Cover transition of component IMR.SystemUnderTest.FSD
* FSD.Idle
* -- [ ((IMR.SD1A_state == 1) && (IMR.SD1B_state == 1)) ] -->
* FSD.SD_Failed
*
* @tag TC-mbt-fsd-TR-0006 Cover transition Idle --> SD_Failed
* @condition Component IMR.SystemUnderTest.FSD
* resides in control state IMR.SystemUnderTest.FSD.FSD.Idle
* @event Trigger condition for specified transition becomes true
* @expected The actions associated with the transition specified above,
* and the target state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-01
*/
/**
* Model coverage goal: basic control state coverage
*
* @tag TC-mbt-fsd-BCS-0004 Cover basic control state SD_Failed
* @condition TRUE
* @event Component IMR.SystemUnderTest.FSD
* reaches basic control state IMR.SystemUnderTest.FSD.FSD.SD_Failed
* @expected The actions associated with the transition entering
* this control state, and the control state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-02
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*/
log(”TC-mbt-fsd-TR-0006, TC-mbt-fsd-BCS-0004”);
triggered := true;

}
triggered := true;

}
/* Handle location ’FSD.Redundancy_Lost’ */
if ((sut_FSD_currentLocation == 13) and (not triggered))
{

if ((not triggered) and ((IOpre_SD1A_state == 2) or (IOpre_SD1B_state == 2)))
{

haveDiscreteTrans := true;
Fire_Detected_expected := true;
/* New location is ’FSD.Alarm’ */
sut_FSD_currentLocation := 8;
/**
* Model coverage goal : transition coverage
* Cover transition of component IMR.SystemUnderTest.FSD
* FSD.Redundancy_Lost
* -- [ ((IMR.SD1A_state == 2) || (IMR.SD1B_state == 2)) ] -->
* FSD.Alarm
*
* @tag TC-mbt-fsd-TR-0007 Cover transition Redundancy_Lost --> Alarm
* @condition Component IMR.SystemUnderTest.FSD
* resides in control state IMR.SystemUnderTest.FSD.FSD.Redundancy_Lost
* @event Trigger condition for specified transition becomes true
* @expected The actions associated with the transition specified above,
* and the target state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-05
*/
/**
* Model coverage goal: basic control state coverage
*
* @tag TC-mbt-fsd-BCS-0001 Cover basic control state Alarm
* @condition TRUE
* @event Component IMR.SystemUnderTest.FSD
* reaches basic control state IMR.SystemUnderTest.FSD.FSD.Alarm
* @expected The actions associated with the transition entering
* this control state, and the control state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-03
*/
log(”TC-mbt-fsd-TR-0007, TC-mbt-fsd-BCS-0001”);
triggered := true;

}
if ((not triggered) and ((IOpre_SD1A_state == 1) and (IOpre_SD1B_state == 1)))
{

haveDiscreteTrans := true;
Maintenance_Required_expected := true;
/* New location is ’FSD.SD_Failed’ */
sut_FSD_currentLocation := 14;
/**
* Model coverage goal : transition coverage
* Cover transition of component IMR.SystemUnderTest.FSD
* FSD.Redundancy_Lost
* -- [ ((IMR.SD1A_state == 1) && (IMR.SD1B_state == 1)) ] -->
* FSD.SD_Failed
*
* @tag TC-mbt-fsd-TR-0008 Cover transition Redundancy_Lost --> SD_Failed
* @condition Component IMR.SystemUnderTest.FSD
* resides in control state IMR.SystemUnderTest.FSD.FSD.Redundancy_Lost
* @event Trigger condition for specified transition becomes true
* @expected The actions associated with the transition specified above,
* and the target state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-05

182



A.2. ITML-A

*/
/**
* Model coverage goal: basic control state coverage
*
* @tag TC-mbt-fsd-BCS-0004 Cover basic control state SD_Failed
* @condition TRUE
* @event Component IMR.SystemUnderTest.FSD
* reaches basic control state IMR.SystemUnderTest.FSD.FSD.SD_Failed
* @expected The actions associated with the transition entering
* this control state, and the control state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-02
*/
log(”TC-mbt-fsd-TR-0008, TC-mbt-fsd-BCS-0004”);
triggered := true;

}
triggered := true;

}
/* Handle location ’FSD.SD_Failed’ */
if ((sut_FSD_currentLocation == 14) and (not triggered))
{

if ((not triggered) and ((IOpre_SD1A_state == 0) and (IOpre_SD1B_state == 0)))
{

haveDiscreteTrans := true;
Maintenance_Required_expected := false;
Fire_Detected_expected := false;
/* New location is ’FSD.Idle’ */
sut_FSD_currentLocation := 10;
/**
* Model coverage goal : transition coverage
* Cover transition of component IMR.SystemUnderTest.FSD
* FSD.SD_Failed
* -- [ ((IMR.SD1A_state == 0) && (IMR.SD1B_state == 0)) ] -->
* FSD.Idle
*
* @tag TC-mbt-fsd-TR-0009 Cover transition SD_Failed --> Idle
* @condition Component IMR.SystemUnderTest.FSD
* resides in control state IMR.SystemUnderTest.FSD.FSD.SD_Failed
* @event Trigger condition for specified transition becomes true
* @expected The actions associated with the transition specified above,
* and the target state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-02
*/
/**
* Model coverage goal: basic control state coverage
*
* @tag TC-mbt-fsd-BCS-0002 Cover basic control state Idle
* @condition TRUE
* @event Component IMR.SystemUnderTest.FSD
* reaches basic control state IMR.SystemUnderTest.FSD.FSD.Idle
* @expected The actions associated with the transition entering
* this control state, and the control state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-01
*/
log(”TC-mbt-fsd-TR-0009, TC-mbt-fsd-BCS-0002”);
triggered := true;

}
triggered := true;

}
/* Handle location ’FSD.SD_Inconsistent’ */
if ((sut_FSD_currentLocation == 16) and (not triggered))
{

if ((not triggered) and ((IOpre_SD1A_state == 2) and (IOpre_SD1B_state == 2)))
{

haveDiscreteTrans := true;
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Fire_Detected_expected := true;
/* New location is ’FSD.Alarm’ */
sut_FSD_currentLocation := 8;
/**
* Model coverage goal : transition coverage
* Cover transition of component IMR.SystemUnderTest.FSD
* FSD.SD_Inconsistent
* -- [ ((IMR.SD1A_state == 2) && (IMR.SD1B_state == 2)) ] -->
* FSD.Alarm
*
* @tag TC-mbt-fsd-TR-0010 Cover transition SD_Inconsistent --> Alarm
* @condition Component IMR.SystemUnderTest.FSD
* resides in control state IMR.SystemUnderTest.FSD.FSD.SD_Inconsistent
* @event Trigger condition for specified transition becomes true
* @expected The actions associated with the transition specified above,
* and the target state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-04
*/
/**
* Model coverage goal: basic control state coverage
*
* @tag TC-mbt-fsd-BCS-0001 Cover basic control state Alarm
* @condition TRUE
* @event Component IMR.SystemUnderTest.FSD
* reaches basic control state IMR.SystemUnderTest.FSD.FSD.Alarm
* @expected The actions associated with the transition entering
* this control state, and the control state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-03
*/
log(”TC-mbt-fsd-TR-0010, TC-mbt-fsd-BCS-0001”);
triggered := true;

}
if ((not triggered) and ((_timeTick - Statepre_sut_FSD_t) >= 1000))
{

haveDiscreteTrans := true;
Maintenance_Required_expected := true;
/* New location is ’FSD.SD_Failed’ */
sut_FSD_currentLocation := 14;
/**
* Model coverage goal : transition coverage
* Cover transition of component IMR.SystemUnderTest.FSD
* FSD.SD_Inconsistent
* -- [ ((_timeTick - IMR.SystemUnderTest.FSD.t) >= 1000) ] -->
* FSD.SD_Failed
*
* @tag TC-mbt-fsd-TR-0011 Cover transition SD_Inconsistent --> SD_Failed
* @condition Component IMR.SystemUnderTest.FSD
* resides in control state IMR.SystemUnderTest.FSD.FSD.SD_Inconsistent
* @event Trigger condition for specified transition becomes true
* @expected The actions associated with the transition specified above,
* and the target state’s entry actions are
* performed as specified in the model.
*
* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-04
*/
/**
* Model coverage goal: basic control state coverage
*
* @tag TC-mbt-fsd-BCS-0004 Cover basic control state SD_Failed
* @condition TRUE
* @event Component IMR.SystemUnderTest.FSD
* reaches basic control state IMR.SystemUnderTest.FSD.FSD.SD_Failed
* @expected The actions associated with the transition entering
* this control state, and the control state’s entry actions are
* performed as specified in the model.
*
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* @note These checks are performed by the test oracles associated
* with component IMR.SystemUnderTest.FSD
* @req SRD-R-FSD-02
*/
log(”TC-mbt-fsd-TR-0011, TC-mbt-fsd-BCS-0004”);
triggered := true;

}
triggered := true;

}
/* Perform checks only when system is stable (haveDiscreteTrans == false) */
if (haveDiscreteTrans == false)
{

/* Checker for signal IMR.Fire_Detected */
/* Do not perform any checks if IMR.Fire_Detected may still bounce ↩

↪ (IMR.Fire_Detected_counter < 0) */
if (Fire_Detected_counter < 0)
{

Fire_Detected_counter := (Fire_Detected_counter + 1);
}
if (Fire_Detected_counter >= 0)
{

if (Fire_Detected_expectedOld != Fire_Detected_expected)
{

Fire_Detected_expectedOld := Fire_Detected_expected;
Fire_Detected_counter := 100;
Fire_Detected_passed := false;
Fire_Detected_failed := false;

}
if (Fire_Detected_counter > 0)
{

Fire_Detected_counter := (Fire_Detected_counter - 1);
if (IOpre_Fire_Detected == Fire_Detected_expected)
{

Fire_Detected_counter := 0;
Fire_Detected_passed := true;
Fire_Detected_failed := false;
log(”(IOpre_Fire_Detected == Fire_Detected_expected)”);
setverdict(pass);

}
}
if (Fire_Detected_counter == 0)
{

if ((IOpre_Fire_Detected == Fire_Detected_expected) and (not Fire_Detected_passed))
{

Fire_Detected_passed := true;
Fire_Detected_failed := false;
log(”(IOpre_Fire_Detected == Fire_Detected_expected)”);
setverdict(pass);

}
if ((IOpre_Fire_Detected != Fire_Detected_expected) and (not Fire_Detected_failed))
{

Fire_Detected_passed := false;
Fire_Detected_failed := true;
log(”(IOpre_Fire_Detected == Fire_Detected_expected)”);
setverdict(fail);

}
}

}
/* Checker for signal IMR.Maintenance_Required */
/* Do not perform any checks if IMR.Maintenance_Required may still bounce ↩

↪ (IMR.Maintenance_Required_counter < 0) */
if (Maintenance_Required_counter < 0)
{

Maintenance_Required_counter := (Maintenance_Required_counter + 1);
}
if (Maintenance_Required_counter >= 0)
{

if (Maintenance_Required_expectedOld != Maintenance_Required_expected)
{

Maintenance_Required_expectedOld := Maintenance_Required_expected;
Maintenance_Required_counter := 100;
Maintenance_Required_passed := false;
Maintenance_Required_failed := false;

}
if (Maintenance_Required_counter > 0)
{
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Maintenance_Required_counter := (Maintenance_Required_counter - 1);
if (IOpre_Maintenance_Required == Maintenance_Required_expected)
{

Maintenance_Required_counter := 0;
Maintenance_Required_passed := true;
Maintenance_Required_failed := false;
log(”(IOpre_Maintenance_Required == Maintenance_Required_expected)”);
setverdict(pass);

}
}
if (Maintenance_Required_counter == 0)
{

if ((IOpre_Maintenance_Required == Maintenance_Required_expected) and (not ↩
↪ Maintenance_Required_passed))

{
Maintenance_Required_passed := true;
Maintenance_Required_failed := false;
log(”(IOpre_Maintenance_Required == Maintenance_Required_expected)”);
setverdict(pass);

}
if ((IOpre_Maintenance_Required != Maintenance_Required_expected) and (not ↩

↪ Maintenance_Required_failed))
{

Maintenance_Required_passed := false;
Maintenance_Required_failed := true;
log(”(IOpre_Maintenance_Required == Maintenance_Required_expected)”);
setverdict(fail);

}
}

}
}
if ( true )
{

triggered := true;
}
cycleCtr := (cycleCtr + 1);

}
}

function stimulator() runs on MTCType {
select (stimulator_location) {

case (0) {
if (_timeTick >= 0) {

IOpost_SD1A_state := 1;
IOpost_SD1B_state := 2;
stimulator_location := 1;

}
}
case (1) {

if (_timeTick >= 0) {
IOpost_SD1A_state := 1;
IOpost_SD1B_state := 2;
stimulator_location := 2;

}
}
case (2) {

if (_timeTick >= 8191) {
IOpost_SD1A_state := 2;
IOpost_SD1B_state := 0;
stimulator_location := 3;

}
}
case (3) {

if (_timeTick >= 9191) {
IOpost_SD1A_state := 1;
IOpost_SD1B_state := 2;
stimulator_location := 4;

}
}
case (4) {

if (_timeTick >= 17016) {
IOpost_SD1A_state := 0;
IOpost_SD1B_state := 0;
stimulator_location := 5;

}
}
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case (5) {
if (_timeTick >= 24768) {

IOpost_SD1A_state := 1;
IOpost_SD1B_state := 1;
stimulator_location := 6;

}
}
case (6) {

if (_timeTick >= 28660) {
IOpost_SD1A_state := 0;
IOpost_SD1B_state := 0;
stimulator_location := 7;

}
}
case (7) {

if (_timeTick >= 28670) {
IOpost_SD1A_state := 1;
stimulator_location := 8;

}
}
case (8) {

if (_timeTick >= 33671) {
IOpost_SD1B_state := 1;
stimulator_location := 9;

}
}
case (9) {

if (_timeTick >= 42999) {
IOpost_SD1A_state := 0;
IOpost_SD1B_state := 0;
stimulator_location := 10;

}
}
case (10) {

if (_timeTick >= 52736) {
IOpost_SD1A_state := 2;
stimulator_location := 11;

}
}
case (11) {

if (_timeTick >= 53632) {
IOpost_SD1B_state := 2;
stimulator_location := 12;

}
}
case (12) {

if (_timeTick >= 56464) {
IOpost_SD1A_state := 0;
IOpost_SD1B_state := 0;
stimulator_location := 13;

}
}
case (13) {

if (_timeTick >= 56490) {
IOpost_SD1B_state := 1;
stimulator_location := 14;

}
}
case (14) {

if (_timeTick >= 56500) {
IOpost_SD1A_state := 1;
IOpost_SD1B_state := 2;
stimulator_location := 15;

}
}
case (15) {

if (_timeTick >= 61500) {
stop;

}
}

}
}

function input() runs on MTCType {
haveDiscreteTrans := false;
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alt {
[] Fire_Detected.receive(boolean:?) -> value IOpre_Fire_Detected { repeat; };
[] Maintenance_Required.receive(boolean:?) -> value IOpre_Maintenance_Required { repeat; };
[] cycleTimer.timeout { cycleTimer.start; _timeTick := _timeTick + float2int(cycle_period ↩

↪ * 1000.0); };
}

}

function output() runs on MTCType {
if (IOpre_SD1A_state != IOpost_SD1A_state) {
IOpre_SD1A_state := IOpost_SD1A_state;
SD1A_state.send(IOpost_SD1A_state);

}
if (IOpre_SD1B_state != IOpost_SD1B_state) {

IOpre_SD1B_state := IOpost_SD1B_state;
SD1B_state.send(IOpost_SD1B_state);

}
Statepre_sut_FSD_t := Statepost_sut_FSD_t;
Statepre_te__SD1_Sim_t_rep := Statepost_te__SD1_Sim_t_rep;

}

testcase Test() runs on MTCType {

cycleTimer.start;
while (true) {

input();
_ora_FSD();
stimulator();
output();

}
}

}
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ARINC specification 653 contains formal definitions for API calls. This
appendix gives formal definitions of the auxiliary functions supported by the
Test Agent. The same style as used in the ARINC 653 API call definitions is
applied here.

B.1 AUX_RESERVE_DATA_TABLE_ENTRY

The function AUX_RESERVE_DATA_TABLE_ENTRY shall find a free, empty
data table entry and reserve it for use.

Procedure AUX_RESERVE_DATA_TABLE_ENTRY
(LENGTH : in NUMERIC;
INDEX : out NUMERIC;
RETURN_CODE : out RETURN_CODE_TYPE) is

error
when (no more entries available) =>

RETURN_CODE := NOT_AVAILABLE;
when (not enough memory available) =>

RETURN_CODE := INVALID_PARAM;
normal

set INDEX to next free data table entry;
initialise data at table index INDEX to 0;
RETURN_CODE := NO_ERROR;

end AUX_RESERVE_DATA_TABLE_ENTRY;
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B.2 AUX_CLEAR_DATA_TABLE_ENTRY

The function AUX_CLEAR_DATA_TABLE_ENTRY shall remove an entry from
the data table and release its memory.

Procedure AUX_CLEAR_DATA_TABLE_ENTRY
(INDEX : in NUMERIC;
RETURN_CODE : out RETURN_CODE_TYPE) is

error
when (INDEX >= size of data table) =>

RETURN_CODE := INVALID_PARAM;
normal

set data table entry at index INDEX to be unused;
RETURN_CODE := NO_ERROR;

end AUX_CLEAR_DATA_TABLE_ENTRY;

B.3 AUX_GET_DATA_TABLE_ENTRY

The function AUX_GET_DATA_TABLE_ENTRY shall read the data of an entry
and send it back to the test environment.

Procedure AUX_GET_DATA_TABLE_ENTRY
(INDEX : in NUMERIC;
LENGTH : out NUMERIC;
DATA : out BYTE_ARRAY;
RETURN_CODE : out RETURN_CODE_TYPE) is

error
when (INDEX >= size of data table) =>

RETURN_CODE := INVALID_PARAM;
normal

LENGTH := actual length of entry (0 if invalid);
DATA := data contents of entry;
RETURN_CODE := NO_ERROR;

end AUX_GET_DATA_TABLE_ENTRY;

B.4 AUX_SET_DATA_TABLE_ENTRY

The function AUX_SET_DATA_TABLE_ENTRY shall set the contents of an entry
to the data specified by the test environment.

Procedure AUX_SET_DATA_TABLE_ENTRY
(INDEX : in NUMERIC;
LENGTH : in NUMERIC;
DATA : in BYTE_ARRAY;
RETURN_CODE : out RETURN_CODE_TYPE) is
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error
when (INDEX >= size of data table) =>

RETURN_CODE := INVALID_PARAM;
when (not enough memory available) =>

RETURN_CODE := INVALID_PARAM;
normal

set size of data table entry at index INDEX
to LENGTH;

copy DATA into table entry at index INDEX;
RETURN_CODE := NO_ERROR;

end AUX_SET_DATA_TABLE_ENTRY;
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APPENDIX C
TTCN-3 Framework

Components

This appendix lists the implementations of several components that make
up the TTCN-3 SUT interface of the ITML framework. In particular, it
shows the Proxy SUT Adapter, the TACP SUT Adapter, the TACP codec
reference implementations, and the TACP protocol handler as described in
sections 8.1 to 8.3.

C.1 Proxy SA Implementation

package itml;

import java.util.HashMap;
import java.util.LinkedList;
import java.util.ListIterator;

import org.etsi.ttcn.tci.TciCDProvided;
import org.etsi.ttcn.tri.TriAddress;
import org.etsi.ttcn.tri.TriComponentId;
import org.etsi.ttcn.tri.TriMessage;
import org.etsi.ttcn.tri.TriPortId;
import org.etsi.ttcn.tri.TriPortIdList;
import org.etsi.ttcn.tri.TriStatus;
import org.etsi.ttcn.tri.TriTestCaseId;

import com.testingtech.ttcn.logging.RTLoggingConstants;
import com.testingtech.ttcn.tci.codec.SimpleCodec;
import com.testingtech.ttcn.tri.TestAdapter;
import com.testingtech.ttcn.tri.TriStatusImpl;

import de.tu_berlin.cs.uebb.muttcn.runtime.RB;

public class ProxySA extends TestAdapter {
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private static final long serialVersionUID = 42L;

// mapping of port names to sub-SAs
private HashMap<String, TestAdapter> portMap;
private HashMap<String, Integer> portRefCnt;

// list of registered sub-SAs
private LinkedList<TestAdapter> subsaList;

public ProxySA() {
super();
portMap = new HashMap<String, TestAdapter>();
portRefCnt = new HashMap<String, Integer>();
subsaList = new LinkedList<TestAdapter>();
subsaList.add(new TACP_SA());
subsaList.add(new ADSAdapter());

}

public TestAdapter setRB(RB rb) {
super.setRB(rb);

ListIterator<TestAdapter> i = subsaList.listIterator();
while (i.hasNext()) {
TestAdapter subsa = i.next();
subsa.setRB(rb);

}
return this;

}

// find codec provided by sub-SA for given encoding
public TciCDProvided getCodec(String encodingName) {

if ((encodingName == null) || encodingName.equals(””)) {
encodingName = ”SimpleCodec”;

}

TciCDProvided codec = super.getCodec(encodingName);

if (codec != null) {
return codec;

}

if (encodingName.equals(”SimpleCodec”)) {
codec = new SimpleCodec(RB);
codecs.put(encodingName, codec);

} else {
ListIterator<TestAdapter> i = subsaList.listIterator();
while (i.hasNext()) {
TestAdapter subsa = i.next();
codec = subsa.getCodec(encodingName);
if (codec != null) {

codecs.put(encodingName, codec);
break;

}
}

}

if (codec == null) {
RB.getTciTLProvidedV321TT().tliRT(””, System.currentTimeMillis(),
””, -1, null, RTLoggingConstants.RT_LOG_ERROR,
”Unknown decoding ” + encodingName);

RB.tciTMProvided.tciError(”Unknown decoding ” + encodingName);
}

return codec;
}

// reset SUT
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@Override
public TriStatus triSAReset() {
ListIterator<TestAdapter> i = subsaList.listIterator();
while (i.hasNext()) {
TestAdapter subsa = i.next();
subsa.triSAReset();

}
portMap.clear();
portRefCnt.clear();

return new TriStatusImpl();
}

// begin test case
@Override
public TriStatus triExecuteTestcase(TriTestCaseId testcase,

TriPortIdList tsiList) {
ListIterator<TestAdapter> i = subsaList.listIterator();
while (i.hasNext()) {
TestAdapter subsa = i.next();
subsa.triExecuteTestcase(testcase, tsiList);

}

return new TriStatusImpl();
}

// end test case
@Override
public TriStatus triEndTestCase() {
ListIterator<TestAdapter> i = subsaList.listIterator();
while (i.hasNext()) {
TestAdapter subsa = i.next();
subsa.triEndTestCase();

}

return new TriStatusImpl();
}

// find sub-SA responsible for mapping a TSI port
@Override
public TriStatus triMap(final TriPortId compPortId,

final TriPortId tsiPortId) {
// already in map?
String tsiPortName = tsiPortId.toString();
TestAdapter subsa = portMap.get(tsiPortName);
if (subsa != null) {
TriStatus mapStatus = subsa.triMap(compPortId, tsiPortId);
if (mapStatus.getStatus() == TriStatus.TRI_OK) {

Integer refCnt = portRefCnt.get(tsiPortName);
refCnt++;

}
return mapStatus;

} else {
// not yet mapped: go through list of Sub-SAs
ListIterator<TestAdapter> i = subsaList.listIterator();
while (i.hasNext()) {

subsa = i.next();
TriStatus mapStatus = subsa.triMap(compPortId, tsiPortId);
if (mapStatus.getStatus() == TriStatus.TRI_OK) {
portMap.put(tsiPortName, subsa);
portRefCnt.put(tsiPortName, 1);
return mapStatus;

}
}

}

return new TriStatusImpl(”ProxySA: Cannot map port ” +
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tsiPortId.getPortName());
}

// unmap a TSI port
@Override
public TriStatus triUnmap(TriPortId compPortId,

TriPortId tsiPortId) {
String tsiPortName = tsiPortId.toString();
TestAdapter subsa = portMap.get(tsiPortName);
if (subsa != null) {
TriStatus mapStatus = subsa.triUnmap(compPortId, tsiPortId);

Integer refCnt = portRefCnt.get(tsiPortName);
if (--refCnt == 0) {
portMap.remove(tsiPortName);
portRefCnt.remove(tsiPortName);

}
return mapStatus;

}

return new TriStatusImpl(”ProxySA: triUnmap on unmapped port ” +
tsiPortId.getPortName());

}

// send message over TSI port via sub-SA which mapped the port
@Override
public TriStatus triSend(final TriComponentId componentId,

final TriPortId tsiPortId,
final TriAddress sutAddress,
final TriMessage message) {

TestAdapter subsa = portMap.get(tsiPortId.toString());
if (subsa != null) {
return subsa.triSend(componentId, tsiPortId, sutAddress, message);

}

return new TriStatusImpl(”ProxySA: triSend on unmapped port ” +
tsiPortId.getPortName());

}
}

C.2 TACP SA Implementation

package itml;

import org.etsi.ttcn.tci.TciCDProvided;
import org.etsi.ttcn.tri.TriAddress;
import org.etsi.ttcn.tri.TriComponentId;
import org.etsi.ttcn.tri.TriMessage;
import org.etsi.ttcn.tri.TriPortId;
import org.etsi.ttcn.tri.TriPortIdList;
import org.etsi.ttcn.tri.TriStatus;
import org.etsi.ttcn.tri.TriTestCaseId;

import com.testingtech.ttcn.tri.TestAdapter;
import com.testingtech.ttcn.tri.TriStatusImpl;

public class TACP_SA extends TestAdapter {
private static final long serialVersionUID = 42L;

public TACP_SA() {
super();

}

// dummy implementations: TACP SA does not provide h/w access
@Override
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public TriStatus triSend(final TriComponentId componentId,
final TriPortId tsiPortId,
final TriAddress sutAddress,
final TriMessage message) {

return new TriStatusImpl(TriStatus.TRI_ERROR);
}

@Override
public TriStatus triExecuteTestcase(TriTestCaseId testcase,

TriPortIdList tsiList) {
return new TriStatusImpl();

}

@Override
public TriStatus triEndTestCase() {
return new TriStatusImpl();

}

@Override
public TriStatus triSAReset() {
return super.triSAReset();

}

@Override
public TriStatus triMap(final TriPortId compPortId,

final TriPortId tsiPortId) {
return new TriStatusImpl(TriStatus.TRI_ERROR);

}

@Override
public TriStatus triUnmap(TriPortId compPortId,

TriPortId tsiPortId) {
return new TriStatusImpl(TriStatus.TRI_ERROR);

}

// provide Codecs for TACP protocol and floats
@Override
public TciCDProvided getCodec(String encodingName) {
TciCDProvided codec = null;

if (encodingName.equals(”TACP_CODEC”)) {
codec = new TACP_CODEC(RB);

}
if (encodingName.equals(”FLOAT_CODEC”)) {
codec = new FLOAT_CODEC(RB);

}
return codec;

}
}

C.3 TACP Codec Implementation

package scarlett;

import org.etsi.ttcn.tci.TciCDProvided;
import org.etsi.ttcn.tci.TciTypeClass;
import org.etsi.ttcn.tci.Type;
import org.etsi.ttcn.tci.Value;
import org.etsi.ttcn.tci.RecordValue;
import org.etsi.ttcn.tci.RecordOfValue;
import org.etsi.ttcn.tci.UnionValue;
import org.etsi.ttcn.tci.IntegerValue;
import org.etsi.ttcn.tci.EnumeratedValue;
import org.etsi.ttcn.tci.CharstringValue;
import org.etsi.ttcn.tri.TriMessage;
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import com.testingtech.ttcn.tri.TriMessageImpl;
import de.tu_berlin.cs.uebb.muttcn.runtime.RB;

import java.io.ByteArrayOutputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.nio.ByteBuffer;

public class TACP_CODEC implements TciCDProvided {

public TACP_CODEC(RB rb) {
}

public TriMessage encode(Value v) {
//System.out.println(”TACP_CODEC.encode”);
ByteArrayOutputStream data = new ByteArrayOutputStream();
DataOutputStream os = new DataOutputStream(data);

try {
encodeValue(os, v);

} catch (IOException e) {
e.printStackTrace();

}

return new TriMessageImpl(data.toByteArray());
}

private void encodeValue(DataOutputStream os, Value v) throws IOException {
if (v.notPresent()) {
return;

}
Type vType = v.getType();
switch (vType.getTypeClass()) {
case TciTypeClass.RECORD:
encodeRecord(os, (RecordValue)v);
break;

case TciTypeClass.RECORD_OF:
encodeRecordOf(os, (RecordOfValue)v);
break;

case TciTypeClass.UNION:
encodeUnion(os, (UnionValue)v);
break;

case TciTypeClass.INTEGER:
encodeInteger(os, (IntegerValue)v);
break;

case TciTypeClass.ENUMERATED:
encodeEnumerated(os, (EnumeratedValue)v);
break;

case TciTypeClass.CHARSTRING:
encodeCharstring(os, (CharstringValue)v);
break;

default:
System.out.println(”TACP_CODEC.encode: Unknown Value type: ” + ↩

↪ vType.getTypeClass());
}

}
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private void encodeRecord(DataOutputStream os, RecordValue v) throws ↩
↪ IOException {

String[] fields = v.getFieldNames();

for (int i = 0; i < fields.length; i++) {
encodeValue(os, v.getField(fields[i]));

}
}

private void encodeRecordOf(DataOutputStream os, RecordOfValue v) throws ↩
↪ IOException {

int len = v.getLength();

for (int i = v.getOffset(); i < len; i++) {
encodeValue(os, v.getField(i));

}
}

private void encodeUnion(DataOutputStream os, UnionValue v) throws IOException {
String typeName = v.getType().getName();

if (typeName.equals(”Operation”)) {
encodeOperationUnion(os, v);

}
else {
System.out.println(”TACP_CODEC.encode: Unknown union type: ” + typeName);

}
}

private void encodeOperationUnion(DataOutputStream os, UnionValue v) throws ↩
↪ IOException {

String variant = v.getPresentVariantName();

for (int i = 0; i < OperationEnumValues.length; i++) {
if (variant.equals(OperationEnumValues[i] + ”_cmd”)) {

os.writeShort((short)i);
encodeValue(os, v.getVariant(variant));
return;

}
}
for (int i = 0; i < AuxFuncEnumValues.length; i++) {
if (variant.equals(AuxFuncEnumValues[i] + ”_cmd”)) {

os.writeShort((short)(i + 1001));
encodeValue(os, v.getVariant(variant));
return;

}
}
for (int i = 0; i < ScenarioEnumValues.length; i++) {
if (variant.equals(ScenarioEnumValues[i] + ”_cmd”)) {

os.writeShort((short)(i + 2000));
encodeValue(os, v.getVariant(variant));
return;

}
}
System.out.println(”TACP_CODEC.encode: Unknown union variant: Operation: ” + ↩

↪ variant);
}

private void encodeInteger(DataOutputStream os, IntegerValue v) throws ↩
↪ IOException {

int i = v.getInt();
String typeName = v.getType().getName();

if (typeName.equals(”uint8”)) {
os.writeByte((byte)i);

}
else if (typeName.equals(”uint16”)) {
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os.writeShort((short)i);
}
else if (typeName.equals(”uint32”)) {
os.writeInt(i);

}
else {
System.out.println(”TACP_CODEC.encode: Unknown integer type: ” + typeName);

}
}

private void encodeEnumerated(DataOutputStream os, EnumeratedValue v) throws ↩
↪ IOException {

String typeName = v.getType().getName();

System.out.println(”TACP_CODEC.encode: Unknown enum type: ” + typeName);
}

private void encodeCharstring(DataOutputStream os, CharstringValue v) throws ↩
↪ IOException {

byte[] s = v.getString().getBytes();
os.writeInt(s.length + 1);
for (int i = 0; i < s.length; i++) {
os.writeByte(s[i]);

}
os.writeByte(0);

int padding = (4 - (s.length + 1) % 4) % 4;
for (int i = 0; i < padding; i++) {
os.writeByte(0);

}
}

public Value decode(TriMessage msg, Type vType) {
//System.out.println(”TACP_CODEC.decode”);
ByteBuffer buf = ByteBuffer.wrap(msg.getEncodedMessage());
Value v = vType.newInstance();

decodeValue(buf, v);

return v;
}

private boolean decodeValue(ByteBuffer buf, Value v) {
Type vType = v.getType();
boolean valueRead = false;

switch (vType.getTypeClass()) {
case TciTypeClass.RECORD:
valueRead = decodeRecord(buf, (RecordValue)v);
break;

case TciTypeClass.RECORD_OF:
valueRead = decodeRecordOf(buf, (RecordOfValue)v);
break;

case TciTypeClass.UNION:
valueRead = decodeUnion(buf, (UnionValue)v);
break;

case TciTypeClass.INTEGER:
valueRead = decodeInteger(buf, (IntegerValue)v);
break;

case TciTypeClass.ENUMERATED:
valueRead = decodeEnumerated(buf, (EnumeratedValue)v);
break;
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case TciTypeClass.CHARSTRING:
valueRead = decodeCharstring(buf, (CharstringValue)v);
break;

default:
System.out.println(”TACP_CODEC.decode: Unknown Value type: ” + ↩

↪ vType.getTypeClass());
}
return valueRead;

}

private boolean decodeRecord(ByteBuffer buf, RecordValue v) {
String[] fields = v.getFieldNames();
boolean readValues = false;

for (int i = 0; i < fields.length; i++) {
Value fv = v.getField(fields[i]).getType().newInstance();
if (!decodeValue(buf, fv)) {

v.setFieldOmitted(fields[i]);
} else {

v.setField(fields[i], fv);
readValues = true;

}
}
return readValues || fields.length == 0;

}

private boolean decodeRecordOf(ByteBuffer buf, RecordOfValue v) {
String typeName = v.getType().getName();

System.out.println(”TACP_CODEC.decode: Unknown record-of type: ” + typeName);
return false;

}

private boolean decodeUnion(ByteBuffer buf, UnionValue v) {
String typeName = v.getType().getName();

if (typeName.equals(”Operation”)) {
return decodeOperationUnion(buf, v);

}
else {
System.out.println(”TACP_CODEC.decode: Unknown union type: ” + typeName);

}
return false;

}

private boolean decodeOperationUnion(ByteBuffer buf, UnionValue v) {
if (buf.remaining() >= 2) {
int op = buf.getShort();
String variantName;
boolean readValue;

if (op >= 0 && op < OperationEnumValues.length) {
variantName = OperationEnumValues[op] + ”_resp”;

}
else if (op >= 1001 && op < AuxFuncEnumValues.length + 1001) {

variantName = AuxFuncEnumValues[op - 1001] + ”_resp”;
}
else if (op >= 2000 && op < ScenarioEnumValues.length + 2000) {

variantName = ScenarioEnumValues[op - 2000] + ”_resp”;
}
else {

System.out.println(”TACP_CODEC.decode: Unknown value: Operation: ” + op);
variantName = ”INVALID_OPERATION_resp”;

}
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Value vv = v.getVariant(variantName).getType().newInstance();
readValue = decodeValue(buf, vv);
v.setVariant(variantName, vv);
return readValue;

}
else {
return false;

}
}

private boolean decodeInteger(ByteBuffer buf, IntegerValue v) {
String typeName = v.getType().getName();

if (typeName.equals(”uint8”)) {
if (buf.remaining() >= 1) {
v.setInt((buf.get() + 256) % 256);
return true;

}
}
else if (typeName.equals(”uint16”)) {
if (buf.remaining() >= 2) {
v.setInt(buf.getShort());
return true;

}
}
else if (typeName.equals(”uint32”)) {
if (buf.remaining() >= 4) {
v.setInt(buf.getInt());
return true;

}
}
else {
System.out.println(”TACP_CODEC.decode: Unknown integer type: ” + typeName);

}
return false;

}

private boolean decodeEnumerated(ByteBuffer buf, EnumeratedValue v) {
String typeName = v.getType().getName();

System.out.println(”TACP_CODEC.decode: Unknown enumeration type: ” + typeName);
return false;

}

private boolean decodeCharstring(ByteBuffer buf, CharstringValue v) {
if (buf.remaining() >= 4) {
int length = buf.getInt();

if (buf.remaining() >= length) {
String s = new String();

if (length - 1 > 0) {
try {
s = new String(buf.array(), buf.position(), length - 1, ”ISO-8859-1”);

} catch (UnsupportedEncodingException e) {
e.printStackTrace();

}
int padding = (4 - length % 4) % 4;
buf.position(buf.position() + length + padding);

}
v.setString(s);
return true;

}
}
return false;

}
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private static final String OperationEnumValues[] = {
”INVALID_OPERATION”,
”API_CLEAR_BLACKBOARD”,
”API_CREATE_BLACKBOARD”,
”API_CREATE_BUFFER”,
”API_CREATE_ERROR_HANDLER”,
”API_CREATE_EVENT”,
”API_CREATE_PROCESS”,
”API_CREATE_QUEUING_PORT”,
”API_CREATE_SAMPLING_PORT”,
”API_CREATE_SEMAPHORE”,
”API_DELAYED_START”,
”API_DISPLAY_BLACKBOARD”,
”API_GET_BLACKBOARD_ID”,
”API_GET_BLACKBOARD_STATUS”,
”API_GET_BUFFER_ID”,
”API_GET_BUFFER_STATUS”,
”API_GET_ERROR_STATUS”,
”API_GET_EVENT_ID”,
”API_GET_EVENT_STATUS”,
”API_GET_MY_ID”,
”API_GET_PARTITION_STATUS”,
”API_GET_PROCESS_ID”,
”API_GET_PROCESS_STATUS”,
”API_GET_QUEUING_PORT_ID”,
”API_GET_QUEUING_PORT_STATUS”,
”API_GET_SAMPLING_PORT_ID”,
”API_GET_SAMPLING_PORT_STATUS”,
”API_GET_SEMAPHORE_ID”,
”API_GET_SEMAPHORE_STATUS”,
”API_GET_TIME”,
”API_LOCK_PREEMPTION”,
”API_PERIODIC_WAIT”,
”API_RAISE_APPLICATION_ERROR”,
”API_READ_BLACKBOARD”,
”API_READ_SAMPLING_MESSAGE”,
”API_RECEIVE_BUFFER”,
”API_RECEIVE_QUEUING_MESSAGE”,
”API_REPLENISH”,
”API_REPORT_APPLICATION_MESSAGE”,
”API_RESET_EVENT”,
”API_RESUME”,
”API_SEND_BUFFER”,
”API_SEND_QUEUING_MESSAGE”,
”API_SET_EVENT”,
”API_SET_PARTITION_MODE”,
”API_SET_PRIORITY”,
”API_SIGNAL_SEMAPHORE”,
”API_START”,
”API_STOP”,
”API_STOP_SELF”,
”API_SUSPEND”,
”API_SUSPEND_SELF”,
”API_TIMED_WAIT”,
”API_UNLOCK_PREEMPTION”,
”API_WAIT_EVENT”,
”API_WAIT_SEMAPHORE”,
”API_WRITE_SAMPLING_MESSAGE”,

};

private static final String AuxFuncEnumValues[] = {
”AUX_GET_DATA_TABLE_ENTRY”,
”AUX_SET_DATA_TABLE_ENTRY”,
”AUX_RESERVE_DATA_TABLE_ENTRY”,
”AUX_CLEAR_DATA_TABLE_ENTRY”,

};
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private static final String ScenarioEnumValues[] = {
”SCE_OPEN_SIGNAL_PORTS”,
”SCE_READ_SIGNAL”,
”SCE_WRITE_SIGNAL”,
”SCE_STEPPER_INIT”,
”SCE_STEPPER_SET”,
”SCE_STEPPER_GET”,

};
}

C.4 Float Codec Implementation

package itml;

import org.etsi.ttcn.tci.TciCDProvided;
import org.etsi.ttcn.tci.TciCDRequired;
import org.etsi.ttcn.tci.TciTypeClass;
import org.etsi.ttcn.tci.Type;
import org.etsi.ttcn.tci.Value;
import org.etsi.ttcn.tci.FloatValue;
import org.etsi.ttcn.tri.TriMessage;

import com.testingtech.ttcn.tri.TriMessageImpl;
import de.tu_berlin.cs.uebb.muttcn.runtime.RB;

import java.nio.ByteBuffer;

public class FLOAT_CODEC implements TciCDProvided {

private TciCDRequired mTciCDReq;

public FLOAT_CODEC(RB rb) {
mTciCDReq = rb.getTciCDRequired();

}

// encode a float value as IEEE 754 binary32
public TriMessage encode(Value v) {

ByteBuffer buf = ByteBuffer.allocate(4);
Type vType = v.getType();

// check type
if (vType.getTypeClass() == TciTypeClass.FLOAT) {
FloatValue fv = (FloatValue)v;
float f = fv.getFloat();

buf.putFloat(f);
} else {
System.out.println(”FLOAT_CODEC.encode: wrong type class”);

}

return new TriMessageImpl(buf.array());
}

// decode a float value from IEEE 754 binary32
public Value decode(TriMessage msg, Type type) {

if (type.getTypeClass() == TciTypeClass.FLOAT) {
ByteBuffer buf = ByteBuffer.wrap(msg.getEncodedMessage());

// check message size
if (buf.limit() >= 4) {
float f = buf.getFloat();
FloatValue fv = (FloatValue)mTciCDReq.

getFloat().newInstance();
fv.setFloat(f);
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return fv;
}

} else {
System.out.println(”FLOAT_CODEC.decode: wrong type class”);

}

return mTciCDReq.getFloat().newInstance();
}

}

C.5 Common TTCN-3 Type Definitions

module types {

type integer uint8 (0..255);
type integer uint16 (0..65535);
type integer uint32 (-2147483648..2147483647);
type float float32 with { encode ”FLOAT_CODEC” };

type record INVALID_OPERATION_cmd_t {
};

type record INVALID_OPERATION_resp_t {
};

type record API_CLEAR_BLACKBOARD_cmd_t {
uint32 blackboard_id

};

type record API_CLEAR_BLACKBOARD_resp_t {
uint32 return_code

};

type record API_CREATE_BLACKBOARD_cmd_t {
uint32 name,
uint32 max_msg_size

};

type record API_CREATE_BLACKBOARD_resp_t {
uint32 blackboard_id,
uint32 return_code

};

type record API_CREATE_BUFFER_cmd_t {
uint32 name,
uint32 max_msg_size,
uint32 max_nb_msg,
uint32 queuing_disc

};

type record API_CREATE_BUFFER_resp_t {
uint32 buffer_id,
uint32 return_code

};

type record API_CREATE_ERROR_HANDLER_cmd_t {
uint32 entry_point,
uint32 stack_size

};

type record API_CREATE_ERROR_HANDLER_resp_t {
uint32 return_code

};

type record API_CREATE_EVENT_cmd_t {
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uint32 name
};

type record API_CREATE_EVENT_resp_t {
uint32 event_id,
uint32 return_code

};

type record API_CREATE_PROCESS_cmd_t {
uint32 name,
uint32 entry_point,
uint32 stack_size,
uint32 base_priority,
uint32 period,
uint32 time_capacity,
uint32 deadline

};

type record API_CREATE_PROCESS_resp_t {
uint32 process_id,
uint32 return_code

};

type record API_CREATE_QUEUING_PORT_cmd_t {
uint32 name,
uint32 max_msg_size,
uint32 max_nb_msg,
uint32 port_direction,
uint32 queuing_disc

};

type record API_CREATE_QUEUING_PORT_resp_t {
uint32 port_id,
uint32 return_code

};

type record API_CREATE_SAMPLING_PORT_cmd_t {
uint32 name,
uint32 max_msg_size,
uint32 port_direction,
uint32 refresh_period

};

type record API_CREATE_SAMPLING_PORT_resp_t {
uint32 port_id,
uint32 return_code

};

type record API_CREATE_SEMAPHORE_cmd_t {
uint32 name,
uint32 current_value,
uint32 max_value,
uint32 queuing_disc

};

type record API_CREATE_SEMAPHORE_resp_t {
uint32 semaphore_id,
uint32 return_code

};

type record API_DELAYED_START_cmd_t {
uint32 process_id,
uint32 delay_time

};

type record API_DELAYED_START_resp_t {
uint32 return_code
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};

type record API_DISPLAY_BLACKBOARD_cmd_t {
uint32 blackboard_id,
uint32 msg_addr,
uint32 msg_length

};

type record API_DISPLAY_BLACKBOARD_resp_t {
uint32 return_code

};

type record API_GET_BLACKBOARD_ID_cmd_t {
uint32 name

};

type record API_GET_BLACKBOARD_ID_resp_t {
uint32 blackboard_id,
uint32 return_code

};

type record API_GET_BLACKBOARD_STATUS_cmd_t {
uint32 blackboard_id

};

type record API_GET_BLACKBOARD_STATUS_resp_t {
uint32 empty_indicator,
uint32 max_msg_size,
uint32 waiting_processes,
uint32 return_code

};

type record API_GET_BUFFER_ID_cmd_t {
uint32 name

};

type record API_GET_BUFFER_ID_resp_t {
uint32 buffer_id,
uint32 return_code

};

type record API_GET_BUFFER_STATUS_cmd_t {
uint32 buffer_id

};

type record API_GET_BUFFER_STATUS_resp_t {
uint32 nb_msg,
uint32 max_nb_msg,
uint32 max_msg_size,
uint32 waiting_processes,
uint32 return_code

};

type record API_GET_ERROR_STATUS_cmd_t {
};

type record API_GET_ERROR_STATUS_resp_t {
//TODO
uint32 return_code

};

type record API_GET_EVENT_ID_cmd_t {
uint32 name

};

type record API_GET_EVENT_ID_resp_t {
uint32 event_id,
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uint32 return_code
};

type record API_GET_EVENT_STATUS_cmd_t {
uint32 event_id

};

type record API_GET_EVENT_STATUS_resp_t {
uint32 event_state,
uint32 waiting_processes,
uint32 return_code

};

type record API_GET_MY_ID_cmd_t {
};

type record API_GET_MY_ID_resp_t {
uint32 process_id,
uint32 return_code

};

type record API_GET_PARTITION_STATUS_cmd_t {
};

type record API_GET_PARTITION_STATUS_resp_t {
uint32 id,
uint32 period,
uint32 duration,
uint32 lock_level,
uint32 operating_mode,
uint32 start_condition,
uint32 return_code

};

type record API_GET_PROCESS_ID_cmd_t {
uint32 name

};

type record API_GET_PROCESS_ID_resp_t {
uint32 process_id,
uint32 return_code

};

type record API_GET_PROCESS_STATUS_cmd_t {
uint32 process_id

};

type record API_GET_PROCESS_STATUS_resp_t {
//TODO
uint32 return_code

};

type record API_GET_QUEUING_PORT_ID_cmd_t {
uint32 name

};

type record API_GET_QUEUING_PORT_ID_resp_t {
uint32 port_id,
uint32 return_code

};

type record API_GET_QUEUING_PORT_STATUS_cmd_t {
uint32 port_id

};

type record API_GET_QUEUING_PORT_STATUS_resp_t {
//TODO
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uint32 return_code
};

type record API_GET_SAMPLING_PORT_ID_cmd_t {
uint32 name

};

type record API_GET_SAMPLING_PORT_ID_resp_t {
uint32 port_id,
uint32 return_code

};

type record API_GET_SAMPLING_PORT_STATUS_cmd_t {
uint32 port_id

};

type record API_GET_SAMPLING_PORT_STATUS_resp_t {
//TODO
uint32 return_code

};

type record API_GET_SEMAPHORE_ID_cmd_t {
uint32 name

};

type record API_GET_SEMAPHORE_ID_resp_t {
uint32 semaphore_id,
uint32 return_code

};

type record API_GET_SEMAPHORE_STATUS_cmd_t {
uint32 semaphore_id

};

type record API_GET_SEMAPHORE_STATUS_resp_t {
//TODO
uint32 return_code

};

type record API_GET_TIME_cmd_t {
};

type record API_GET_TIME_resp_t {
uint32 system_time,
uint32 return_code

};

type record API_LOCK_PREEMPTION_cmd_t {
};

type record API_LOCK_PREEMPTION_resp_t {
uint32 lock_level,
uint32 return_code

};

type record API_PERIODIC_WAIT_cmd_t {
};

type record API_PERIODIC_WAIT_resp_t {
uint32 return_code

};

type record API_RAISE_APPLICATION_ERROR_cmd_t {
//TODO

};

type record API_RAISE_APPLICATION_ERROR_resp_t {
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uint32 return_code
};

type record API_READ_BLACKBOARD_cmd_t {
uint32 blackboard_id,
uint32 time_out,
uint32 msg_addr

};

type record API_READ_BLACKBOARD_resp_t {
uint32 msg_length,
uint32 return_code

};

type record API_READ_SAMPLING_MESSAGE_cmd_t {
uint32 port_id,
uint32 msg_addr

};

type record API_READ_SAMPLING_MESSAGE_resp_t {
uint32 msg_length,
uint32 validity,
uint32 return_code

};

type record API_RECEIVE_BUFFER_cmd_t {
uint32 buffer_id,
uint32 time_out,
uint32 msg_addr

};

type record API_RECEIVE_BUFFER_resp_t {
uint32 msg_length,
uint32 return_code

};

type record API_RECEIVE_QUEUING_MESSAGE_cmd_t {
uint32 port_id,
uint32 time_out,
uint32 msg_addr

};

type record API_RECEIVE_QUEUING_MESSAGE_resp_t {
uint32 msg_length,
uint32 return_code

};

type record API_REPLENISH_cmd_t {
uint32 budget_time

};

type record API_REPLENISH_resp_t {
uint32 return_code

};

type record API_REPORT_APPLICATION_MESSAGE_cmd_t {
//TODO

};

type record API_REPORT_APPLICATION_MESSAGE_resp_t {
uint32 return_code

};

type record API_RESET_EVENT_cmd_t {
uint32 event_id

};
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type record API_RESET_EVENT_resp_t {
uint32 return_code

};

type record API_RESUME_cmd_t {
uint32 process_id

};

type record API_RESUME_resp_t {
uint32 return_code

};

type record API_SEND_BUFFER_cmd_t {
uint32 buffer_id,
uint32 msg_addr,
uint32 msg_length,
uint32 time_out

};

type record API_SEND_BUFFER_resp_t {
uint32 return_code

};

type record API_SEND_QUEUING_MESSAGE_cmd_t {
uint32 port_id,
uint32 msg_addr,
uint32 msg_length,
uint32 time_out

};

type record API_SEND_QUEUING_MESSAGE_resp_t {
uint32 return_code

};

type record API_SET_EVENT_cmd_t {
uint32 event_id

};

type record API_SET_EVENT_resp_t {
uint32 return_code

};

type record API_SET_PARTITION_MODE_cmd_t {
uint32 operating_mode

};

type record API_SET_PARTITION_MODE_resp_t {
uint32 return_code

};

type record API_SET_PRIORITY_cmd_t {
uint32 process_id,
uint32 priority

};

type record API_SET_PRIORITY_resp_t {
uint32 return_code

};

type record API_SIGNAL_SEMAPHORE_cmd_t {
uint32 semaphore_id

};

type record API_SIGNAL_SEMAPHORE_resp_t {
uint32 return_code

};
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type record API_START_cmd_t {
uint32 process_id

};

type record API_START_resp_t {
uint32 return_code

};

type record API_STOP_cmd_t {
uint32 process_id

};

type record API_STOP_resp_t {
uint32 return_code

};

type record API_STOP_SELF_cmd_t {
};

type record API_STOP_SELF_resp_t {
};

type record API_SUSPEND_cmd_t {
uint32 process_id

};

type record API_SUSPEND_resp_t {
uint32 return_code

};

type record API_SUSPEND_SELF_cmd_t {
uint32 time_out

};

type record API_SUSPEND_SELF_resp_t {
uint32 return_code

};

type record API_TIMED_WAIT_cmd_t {
uint32 delay_time

};

type record API_TIMED_WAIT_resp_t {
uint32 return_code

};

type record API_UNLOCK_PREEMPTION_cmd_t {
};

type record API_UNLOCK_PREEMPTION_resp_t {
uint32 lock_level,
uint32 return_code

};

type record API_WAIT_EVENT_cmd_t {
uint32 event_id,
uint32 time_out

};

type record API_WAIT_EVENT_resp_t {
uint32 return_code

};

type record API_WAIT_SEMAPHORE_cmd_t {
uint32 semaphore_id,
uint32 time_out

};
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type record API_WAIT_SEMAPHORE_resp_t {
uint32 return_code

};

type record API_WRITE_SAMPLING_MESSAGE_cmd_t {
uint32 port_id,
uint32 msg_addr,
uint32 msg_length

};

type record API_WRITE_SAMPLING_MESSAGE_resp_t {
uint32 return_code

};

type record AUX_GET_DATA_TABLE_ENTRY_cmd_t {
uint32 idx

};

type record AUX_GET_DATA_TABLE_ENTRY_resp_t {
uint32 return_code,
charstring data

};

type record AUX_SET_DATA_TABLE_ENTRY_cmd_t {
uint32 idx,
charstring data

};

type record AUX_SET_DATA_TABLE_ENTRY_resp_t {
uint32 return_code

};

type record AUX_RESERVE_DATA_TABLE_ENTRY_cmd_t {
//TODO

};

type record AUX_RESERVE_DATA_TABLE_ENTRY_resp_t {
uint32 return_code

};

type record AUX_CLEAR_DATA_TABLE_ENTRY_cmd_t {
uint32 idx

};

type record AUX_CLEAR_DATA_TABLE_ENTRY_resp_t {
uint32 return_code

};

type record SCE_OPEN_SIGNAL_PORTS_cmd_t {
};

type record SCE_OPEN_SIGNAL_PORTS_resp_t {
uint32 succeeded,
uint32 failed,
uint32 return_code

};

type record SCE_READ_SIGNAL_cmd_t {
uint32 idx

};

type record SCE_READ_SIGNAL_resp_t {
uint32 signal_value,
uint32 fs,
uint32 return_code

};
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type record SCE_WRITE_SIGNAL_cmd_t {
uint32 idx,
uint32 signal_value,
uint32 fs

};

type record SCE_WRITE_SIGNAL_resp_t {
uint32 return_code

};

type record SCE_STEPPER_INIT_cmd_t {
uint32 idx

};

type record SCE_STEPPER_INIT_resp_t {
uint32 return_code

};

type record SCE_STEPPER_SET_cmd_t {
uint32 idx,
uint32 cmd,
uint32 angle

};

type record SCE_STEPPER_SET_resp_t {
uint32 return_code

};

type record SCE_STEPPER_GET_cmd_t {
uint32 idx

};

type record SCE_STEPPER_GET_resp_t {
uint32 status,
uint32 angle,
uint32 return_code

};

type union Operation {
INVALID_OPERATION_cmd_t INVALID_OPERATION_cmd,
INVALID_OPERATION_resp_t INVALID_OPERATION_resp,

API_CLEAR_BLACKBOARD_cmd_t API_CLEAR_BLACKBOARD_cmd,
API_CLEAR_BLACKBOARD_resp_t API_CLEAR_BLACKBOARD_resp,

API_CREATE_BLACKBOARD_cmd_t API_CREATE_BLACKBOARD_cmd,
API_CREATE_BLACKBOARD_resp_t API_CREATE_BLACKBOARD_resp,

API_CREATE_BUFFER_cmd_t API_CREATE_BUFFER_cmd,
API_CREATE_BUFFER_resp_t API_CREATE_BUFFER_resp,

API_CREATE_ERROR_HANDLER_cmd_t API_CREATE_ERROR_HANDLER_cmd,
API_CREATE_ERROR_HANDLER_resp_t API_CREATE_ERROR_HANDLER_resp,

API_CREATE_EVENT_cmd_t API_CREATE_EVENT_cmd,
API_CREATE_EVENT_resp_t API_CREATE_EVENT_resp,

API_CREATE_PROCESS_cmd_t API_CREATE_PROCESS_cmd,
API_CREATE_PROCESS_resp_t API_CREATE_PROCESS_resp,

API_CREATE_QUEUING_PORT_cmd_t API_CREATE_QUEUING_PORT_cmd,
API_CREATE_QUEUING_PORT_resp_t API_CREATE_QUEUING_PORT_resp,

API_CREATE_SAMPLING_PORT_cmd_t API_CREATE_SAMPLING_PORT_cmd,
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API_CREATE_SAMPLING_PORT_resp_t API_CREATE_SAMPLING_PORT_resp,

API_CREATE_SEMAPHORE_cmd_t API_CREATE_SEMAPHORE_cmd,
API_CREATE_SEMAPHORE_resp_t API_CREATE_SEMAPHORE_resp,

API_DELAYED_START_cmd_t API_DELAYED_START_cmd,
API_DELAYED_START_resp_t API_DELAYED_START_resp,

API_DISPLAY_BLACKBOARD_cmd_t API_DISPLAY_BLACKBOARD_cmd,
API_DISPLAY_BLACKBOARD_resp_t API_DISPLAY_BLACKBOARD_resp,

API_GET_BLACKBOARD_ID_cmd_t API_GET_BLACKBOARD_ID_cmd,
API_GET_BLACKBOARD_ID_resp_t API_GET_BLACKBOARD_ID_resp,

API_GET_BLACKBOARD_STATUS_cmd_t API_GET_BLACKBOARD_STATUS_cmd,
API_GET_BLACKBOARD_STATUS_resp_t API_GET_BLACKBOARD_STATUS_resp,

API_GET_BUFFER_ID_cmd_t API_GET_BUFFER_ID_cmd,
API_GET_BUFFER_ID_resp_t API_GET_BUFFER_ID_resp,

API_GET_BUFFER_STATUS_cmd_t API_GET_BUFFER_STATUS_cmd,
API_GET_BUFFER_STATUS_resp_t API_GET_BUFFER_STATUS_resp,

API_GET_ERROR_STATUS_cmd_t API_GET_ERROR_STATUS_cmd,
API_GET_ERROR_STATUS_resp_t API_GET_ERROR_STATUS_resp,

API_GET_EVENT_ID_cmd_t API_GET_EVENT_ID_cmd,
API_GET_EVENT_ID_resp_t API_GET_EVENT_ID_resp,

API_GET_EVENT_STATUS_cmd_t API_GET_EVENT_STATUS_cmd,
API_GET_EVENT_STATUS_resp_t API_GET_EVENT_STATUS_resp,

API_GET_MY_ID_cmd_t API_GET_MY_ID_cmd,
API_GET_MY_ID_resp_t API_GET_MY_ID_resp,

API_GET_PARTITION_STATUS_cmd_t API_GET_PARTITION_STATUS_cmd,
API_GET_PARTITION_STATUS_resp_t API_GET_PARTITION_STATUS_resp,

API_GET_PROCESS_ID_cmd_t API_GET_PROCESS_ID_cmd,
API_GET_PROCESS_ID_resp_t API_GET_PROCESS_ID_resp,

API_GET_PROCESS_STATUS_cmd_t API_GET_PROCESS_STATUS_cmd,
API_GET_PROCESS_STATUS_resp_t API_GET_PROCESS_STATUS_resp,

API_GET_QUEUING_PORT_ID_cmd_t API_GET_QUEUING_PORT_ID_cmd,
API_GET_QUEUING_PORT_ID_resp_t API_GET_QUEUING_PORT_ID_resp,

API_GET_QUEUING_PORT_STATUS_cmd_t API_GET_QUEUING_PORT_STATUS_cmd,
API_GET_QUEUING_PORT_STATUS_resp_t API_GET_QUEUING_PORT_STATUS_resp,

API_GET_SAMPLING_PORT_ID_cmd_t API_GET_SAMPLING_PORT_ID_cmd,
API_GET_SAMPLING_PORT_ID_resp_t API_GET_SAMPLING_PORT_ID_resp,

API_GET_SAMPLING_PORT_STATUS_cmd_t API_GET_SAMPLING_PORT_STATUS_cmd,
API_GET_SAMPLING_PORT_STATUS_resp_t API_GET_SAMPLING_PORT_STATUS_resp,

API_GET_SEMAPHORE_ID_cmd_t API_GET_SEMAPHORE_ID_cmd,
API_GET_SEMAPHORE_ID_resp_t API_GET_SEMAPHORE_ID_resp,

API_GET_SEMAPHORE_STATUS_cmd_t API_GET_SEMAPHORE_STATUS_cmd,
API_GET_SEMAPHORE_STATUS_resp_t API_GET_SEMAPHORE_STATUS_resp,

API_GET_TIME_cmd_t API_GET_TIME_cmd,
API_GET_TIME_resp_t API_GET_TIME_resp,

API_LOCK_PREEMPTION_cmd_t API_LOCK_PREEMPTION_cmd,
API_LOCK_PREEMPTION_resp_t API_LOCK_PREEMPTION_resp,
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API_PERIODIC_WAIT_cmd_t API_PERIODIC_WAIT_cmd,
API_PERIODIC_WAIT_resp_t API_PERIODIC_WAIT_resp,

API_RAISE_APPLICATION_ERROR_cmd_t API_RAISE_APPLICATION_ERROR_cmd,
API_RAISE_APPLICATION_ERROR_resp_t API_RAISE_APPLICATION_ERROR_resp,

API_READ_BLACKBOARD_cmd_t API_READ_BLACKBOARD_cmd,
API_READ_BLACKBOARD_resp_t API_READ_BLACKBOARD_resp,

API_READ_SAMPLING_MESSAGE_cmd_t API_READ_SAMPLING_MESSAGE_cmd,
API_READ_SAMPLING_MESSAGE_resp_t API_READ_SAMPLING_MESSAGE_resp,

API_RECEIVE_BUFFER_cmd_t API_RECEIVE_BUFFER_cmd,
API_RECEIVE_BUFFER_resp_t API_RECEIVE_BUFFER_resp,

API_RECEIVE_QUEUING_MESSAGE_cmd_t API_RECEIVE_QUEUING_MESSAGE_cmd,
API_RECEIVE_QUEUING_MESSAGE_resp_t API_RECEIVE_QUEUING_MESSAGE_resp,

API_REPLENISH_cmd_t API_REPLENISH_cmd,
API_REPLENISH_resp_t API_REPLENISH_resp,

API_REPORT_APPLICATION_MESSAGE_cmd_t API_REPORT_APPLICATION_MESSAGE_cmd,
API_REPORT_APPLICATION_MESSAGE_resp_t API_REPORT_APPLICATION_MESSAGE_resp,

API_RESET_EVENT_cmd_t API_RESET_EVENT_cmd,
API_RESET_EVENT_resp_t API_RESET_EVENT_resp,

API_RESUME_cmd_t API_RESUME_cmd,
API_RESUME_resp_t API_RESUME_resp,

API_SEND_BUFFER_cmd_t API_SEND_BUFFER_cmd,
API_SEND_BUFFER_resp_t API_SEND_BUFFER_resp,

API_SEND_QUEUING_MESSAGE_cmd_t API_SEND_QUEUING_MESSAGE_cmd,
API_SEND_QUEUING_MESSAGE_resp_t API_SEND_QUEUING_MESSAGE_resp,

API_SET_EVENT_cmd_t API_SET_EVENT_cmd,
API_SET_EVENT_resp_t API_SET_EVENT_resp,

API_SET_PARTITION_MODE_cmd_t API_SET_PARTITION_MODE_cmd,
API_SET_PARTITION_MODE_resp_t API_SET_PARTITION_MODE_resp,

API_SET_PRIORITY_cmd_t API_SET_PRIORITY_cmd,
API_SET_PRIORITY_resp_t API_SET_PRIORITY_resp,

API_SIGNAL_SEMAPHORE_cmd_t API_SIGNAL_SEMAPHORE_cmd,
API_SIGNAL_SEMAPHORE_resp_t API_SIGNAL_SEMAPHORE_resp,

API_START_cmd_t API_START_cmd,
API_START_resp_t API_START_resp,

API_STOP_cmd_t API_STOP_cmd,
API_STOP_resp_t API_STOP_resp,

API_STOP_SELF_cmd_t API_STOP_SELF_cmd,
API_STOP_SELF_resp_t API_STOP_SELF_resp,

API_SUSPEND_cmd_t API_SUSPEND_cmd,
API_SUSPEND_resp_t API_SUSPEND_resp,

API_SUSPEND_SELF_cmd_t API_SUSPEND_SELF_cmd,
API_SUSPEND_SELF_resp_t API_SUSPEND_SELF_resp,

API_TIMED_WAIT_cmd_t API_TIMED_WAIT_cmd,
API_TIMED_WAIT_resp_t API_TIMED_WAIT_resp,
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API_UNLOCK_PREEMPTION_cmd_t API_UNLOCK_PREEMPTION_cmd,
API_UNLOCK_PREEMPTION_resp_t API_UNLOCK_PREEMPTION_resp,

API_WAIT_EVENT_cmd_t API_WAIT_EVENT_cmd,
API_WAIT_EVENT_resp_t API_WAIT_EVENT_resp,

API_WAIT_SEMAPHORE_cmd_t API_WAIT_SEMAPHORE_cmd,
API_WAIT_SEMAPHORE_resp_t API_WAIT_SEMAPHORE_resp,

API_WRITE_SAMPLING_MESSAGE_cmd_t API_WRITE_SAMPLING_MESSAGE_cmd,
API_WRITE_SAMPLING_MESSAGE_resp_t API_WRITE_SAMPLING_MESSAGE_resp,

AUX_GET_DATA_TABLE_ENTRY_cmd_t AUX_GET_DATA_TABLE_ENTRY_cmd,
AUX_GET_DATA_TABLE_ENTRY_resp_t AUX_GET_DATA_TABLE_ENTRY_resp,

AUX_SET_DATA_TABLE_ENTRY_cmd_t AUX_SET_DATA_TABLE_ENTRY_cmd,
AUX_SET_DATA_TABLE_ENTRY_resp_t AUX_SET_DATA_TABLE_ENTRY_resp,

AUX_RESERVE_DATA_TABLE_ENTRY_cmd_t AUX_RESERVE_DATA_TABLE_ENTRY_cmd,
AUX_RESERVE_DATA_TABLE_ENTRY_resp_t AUX_RESERVE_DATA_TABLE_ENTRY_resp,

AUX_CLEAR_DATA_TABLE_ENTRY_cmd_t AUX_CLEAR_DATA_TABLE_ENTRY_cmd,
AUX_CLEAR_DATA_TABLE_ENTRY_resp_t AUX_CLEAR_DATA_TABLE_ENTRY_resp,

SCE_OPEN_SIGNAL_PORTS_cmd_t SCE_OPEN_SIGNAL_PORTS_cmd,
SCE_OPEN_SIGNAL_PORTS_resp_t SCE_OPEN_SIGNAL_PORTS_resp,

SCE_READ_SIGNAL_cmd_t SCE_READ_SIGNAL_cmd,
SCE_READ_SIGNAL_resp_t SCE_READ_SIGNAL_resp,

SCE_WRITE_SIGNAL_cmd_t SCE_WRITE_SIGNAL_cmd,
SCE_WRITE_SIGNAL_resp_t SCE_WRITE_SIGNAL_resp,

SCE_STEPPER_INIT_cmd_t SCE_STEPPER_INIT_cmd,
SCE_STEPPER_INIT_resp_t SCE_STEPPER_INIT_resp,

SCE_STEPPER_SET_cmd_t SCE_STEPPER_SET_cmd,
SCE_STEPPER_SET_resp_t SCE_STEPPER_SET_resp,

SCE_STEPPER_GET_cmd_t SCE_STEPPER_GET_cmd,
SCE_STEPPER_GET_resp_t SCE_STEPPER_GET_resp

};

type record tacp_l1_pdu {
uint8 seq_no,
uint8 ack_no,
uint8 flags,
uint8 spare,
tacp_l2_pdu l2 optional

} with {
encode ”TACP_CODEC”

};

type record tacp_l2_pdu {
uint8 partition,
uint8 process_idx,
Operation operation

};

signature set_process_idx(in uint8 new_proc_idx);

// API calls
signature CLEAR_BLACKBOARD(in uint32 blackboard_id,

out uint32 return_code);

signature CREATE_BLACKBOARD(in uint32 name,
in uint32 max_msg_size,
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out uint32 blackboard_id,
out uint32 return_code);

signature CREATE_BUFFER(in uint32 name,
in uint32 max_msg_size,
in uint32 max_nb_msg,
in uint32 queuing_disc,
out uint32 buffer_id,
out uint32 return_code);

signature CREATE_EVENT(in uint32 name,
out uint32 event_id,
out uint32 return_code);

signature CREATE_PROCESS(in uint32 name,
in uint32 entry_point,
in uint32 stack_size,
in uint32 base_priority,
in uint32 period,
in uint32 time_capacity,
in uint32 deadline,
out uint32 process_id,
out uint32 return_code);

signature CREATE_QUEUING_PORT(in uint32 name,
in uint32 max_msg_size,
in uint32 max_nb_msg,
in uint32 port_direction,
in uint32 queuing_disc,
out uint32 port_id,
out uint32 return_code);

signature CREATE_SAMPLING_PORT(in uint32 name,
in uint32 max_msg_size,
in uint32 port_direction,
in uint32 refresh_period,
out uint32 port_id,
out uint32 return_code);

signature CREATE_SEMAPHORE(in uint32 name,
in uint32 current_value,
in uint32 max_value,
in uint32 queuing_disc,
out uint32 semaphore_id,
out uint32 return_code);

signature DISPLAY_BLACKBOARD(in uint32 blackboard_id,
in uint32 msg_addr,
in uint32 msg_length,
out uint32 return_code);

signature READ_SAMPLING_MESSAGE(in uint32 port_id,
in uint32 msg_addr,
out uint32 msg_length,
out uint32 validity,
out uint32 return_code);

signature RESET_EVENT(in uint32 event_id,
out uint32 return_code);

signature SET_EVENT(in uint32 event_id,
out uint32 return_code);

signature SIGNAL_SEMAPHORE(in uint32 semaphore_id,
out uint32 return_code);

signature START(in uint32 process_id,
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out uint32 return_code);

signature STOP(in uint32 process_id,
out uint32 return_code);

signature STOP_SELF();

signature WRITE_SAMPLING_MESSAGE(in uint32 port_id,
in uint32 msg_addr,
in uint32 msg_length,
out uint32 return_code);

signature READ_BLACKBOARD(in uint32 blackboard_id,
in uint32 time_out,
in uint32 msg_addr,
out uint32 msg_length,
out uint32 return_code);

signature RECEIVE_BUFFER(in uint32 buffer_id,
in uint32 time_out,
in uint32 msg_addr,
out uint32 msg_length,
out uint32 return_code);

signature RECEIVE_QUEUING_MESSAGE(in uint32 port_id,
in uint32 time_out,
in uint32 msg_addr,
out uint32 msg_length,
out uint32 return_code);

signature SEND_BUFFER(in uint32 buffer_id,
in uint32 msg_addr,
in uint32 msg_length,
in uint32 time_out,
out uint32 return_code);

signature SEND_QUEUING_MESSAGE(in uint32 port_id,
in uint32 msg_addr,
in uint32 msg_length,
in uint32 time_out,
out uint32 return_code);

signature WAIT_EVENT(in uint32 event_id,
in uint32 time_out,
out uint32 return_code);

signature WAIT_SEMAPHORE(in uint32 semaphore_id,
in uint32 time_out,
out uint32 return_code);

signature SET_PARTITION_MODE(in uint32 operating_mode,
out uint32 return_code);

signature GET_PARTITION_STATUS(out uint32 id,
out uint32 period,
out uint32 duration,
out uint32 lock_level,
out uint32 operating_mode,
out uint32 start_condition,
out uint32 return_code);

signature GET_PROCESS_ID(in uint32 process_name,
out uint32 process_id,
out uint32 return_code);

// auxiliary functions
signature GET_DATA_TABLE_ENTRY(in uint32 idx,
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out uint32 return_code,
out charstring data);

signature SET_DATA_TABLE_ENTRY(in uint32 idx,
in charstring data,
out uint32 return_code);

signature CLEAR_DATA_TABLE_ENTRY(in uint32 idx,
out uint32 return_code);

// scenario calls
signature OPEN_SIGNAL_PORTS(out uint32 succeeded,

out uint32 failed,
out uint32 return_code);

signature READ_SIGNAL(in uint32 idx,
out uint32 signal_value,
out uint32 fs,
out uint32 return_code);

signature WRITE_SIGNAL(in uint32 idx,
in uint32 signal_value,
in uint32 fs,
out uint32 return_code);

signature STEPPER_INIT(in uint32 idx,
out uint32 return_code);

signature STEPPER_SET(in uint32 idx,
in uint32 cmd,
in uint32 angle,
out uint32 return_code);

signature STEPPER_GET(in uint32 idx,
out uint32 status,
out uint32 angle,
out uint32 return_code);

type port CmdPort procedure {
inout set_process_idx, CLEAR_BLACKBOARD, CREATE_BLACKBOARD, CREATE_BUFFER,

CREATE_EVENT, CREATE_PROCESS, CREATE_QUEUING_PORT, ↩
↪ CREATE_SAMPLING_PORT,

CREATE_SEMAPHORE, DISPLAY_BLACKBOARD, READ_SAMPLING_MESSAGE,
RESET_EVENT, SET_EVENT, SIGNAL_SEMAPHORE, START, STOP, STOP_SELF,
WRITE_SAMPLING_MESSAGE, READ_BLACKBOARD, RECEIVE_BUFFER,
RECEIVE_QUEUING_MESSAGE, SEND_BUFFER, SEND_QUEUING_MESSAGE, ↩

↪ WAIT_EVENT,
WAIT_SEMAPHORE, SET_PARTITION_MODE,
GET_PARTITION_STATUS, GET_PROCESS_ID,
GET_DATA_TABLE_ENTRY, SET_DATA_TABLE_ENTRY, CLEAR_DATA_TABLE_ENTRY,
OPEN_SIGNAL_PORTS, READ_SIGNAL, WRITE_SIGNAL,
STEPPER_INIT, STEPPER_SET, STEPPER_GET;

};

type port AFDX_In_Port message {
in octetstring

};

type port AFDX_Out_Port message {
out octetstring

};

type port TACP_In_Port message {
in tacp_l1_pdu

};

type port TACP_Out_Port message {
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out tacp_l1_pdu
};

// float helper functions
function intAsFloat(in uint32 i) return float32 {

var float32 f;
var bitstring bs := int2bit(i, 32);
var integer r := decvalue(bs, f);
return f;

}

function floatAsInt(in float32 f) return uint32 {
var bitstring bs := encvalue(f);
var uint32 i := bit2int(bs);
return i;

}

function abs(in float32 f) return float32 {
if (f < 0.0) {

return -f;
}
else {

return f;
}

}
}

C.6 TACP Protocol Handler

module TACP {

import from types all;

template tacp_l1_pdu l1_any := ?;
template tacp_l1_pdu l1_ack := {

seq_no := ?,
ack_no := ?,
flags := 0,
spare := 0,
l2 := omit

};
template tacp_l1_pdu l1_initial := {

seq_no := 0,
ack_no := 0,
flags := 0,
spare := 0,
l2 := omit

};
template tacp_l1_pdu l1_apicall := {

seq_no := 0,
ack_no := 0,
flags := 0,
spare := 0,
l2 := {

partition := 9, // not used here
process_idx := 0,
operation := { INVALID_OPERATION_cmd := {} }

}
};

const integer rbLength := 8;
type record length (rbLength) of tacp_l1_pdu Ringbuffer;
type integer RingbufferIdx (0..rbLength-1);
type record SendQueue {

Ringbuffer rb,
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RingbufferIdx ri,
RingbufferIdx wi

};

function queuePut(inout SendQueue q, in tacp_l1_pdu data) return boolean {
var integer nwi := (q.wi + 1) mod rbLength;
if (nwi != q.ri) {

q.rb[q.wi] := data;
q.wi := nwi;
return true;

}
else {

return false;
}

}

function queueGet(inout SendQueue q, out tacp_l1_pdu data) return boolean {
if (q.ri != q.wi) {

data := q.rb[q.ri];
q.ri := (q.ri + 1) mod rbLength;
return true;

}
else {

return false;
}

}

function queueEmpty(inout SendQueue q) return boolean {
return q.ri == q.wi;

}

type component TACPHandler {
var tacp_l1_pdu last_l1_pdu := l1_initial;
var uint8 last_recv_seq := 0;
var uint8 last_recv_ack := 0;
var uint8 last_sent_seq := 0;
var uint8 last_sent_ack := 0;
var uint8 process_idx := 0;
var boolean firstPacket := true;
var SendQueue sendq;

port CmdPort cmd;
port TACP_Out_Port tacpToCPM;
port TACP_In_Port tacpFromCPM;

};

altstep apicall() runs on TACPHandler {
var tacp_l1_pdu l1_pdu := l1_apicall;
var Operation op;

[] cmd.getcall(set_process_idx:{?}) ->
param(process_idx) {
cmd.reply(set_process_idx:{-});

}

[] cmd.getcall(CLEAR_BLACKBOARD:{?,-}) ->
param(op.API_CLEAR_BLACKBOARD_cmd.blackboard_id) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;

queuePut(sendq, l1_pdu);
}

[] cmd.getcall(CREATE_BLACKBOARD:{?,?,-,-}) ->
param(op.API_CREATE_BLACKBOARD_cmd.name,

op.API_CREATE_BLACKBOARD_cmd.max_msg_size) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
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queuePut(sendq, l1_pdu);
}

[] cmd.getcall(CREATE_BUFFER:{?,?,?,?,-,-}) ->
param(op.API_CREATE_BUFFER_cmd.name,

op.API_CREATE_BUFFER_cmd.max_msg_size,
op.API_CREATE_BUFFER_cmd.max_nb_msg,
op.API_CREATE_BUFFER_cmd.queuing_disc) {

l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(CREATE_EVENT:{?,-,-}) ->
param(op.API_CREATE_EVENT_cmd.name) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(CREATE_PROCESS:{?,?,?,?,?,?,?,-,-}) ->
param(op.API_CREATE_PROCESS_cmd.name,

op.API_CREATE_PROCESS_cmd.entry_point,
op.API_CREATE_PROCESS_cmd.stack_size,
op.API_CREATE_PROCESS_cmd.base_priority,
op.API_CREATE_PROCESS_cmd.period,
op.API_CREATE_PROCESS_cmd.time_capacity,
op.API_CREATE_PROCESS_cmd.deadline) {

l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;

queuePut(sendq, l1_pdu);
}

[] cmd.getcall(CREATE_QUEUING_PORT:{?,?,?,?,?,-,-}) ->
param(op.API_CREATE_QUEUING_PORT_cmd.name,

op.API_CREATE_QUEUING_PORT_cmd.max_msg_size,
op.API_CREATE_QUEUING_PORT_cmd.max_nb_msg,
op.API_CREATE_QUEUING_PORT_cmd.port_direction,
op.API_CREATE_QUEUING_PORT_cmd.queuing_disc) {

l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(CREATE_SAMPLING_PORT:{?,?,?,?,-,-}) ->
param(op.API_CREATE_SAMPLING_PORT_cmd.name,

op.API_CREATE_SAMPLING_PORT_cmd.max_msg_size,
op.API_CREATE_SAMPLING_PORT_cmd.port_direction,
op.API_CREATE_SAMPLING_PORT_cmd.refresh_period) {

l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(CREATE_SEMAPHORE:{?,?,?,?,-,-}) ->
param(op.API_CREATE_SEMAPHORE_cmd.name,

op.API_CREATE_SEMAPHORE_cmd.current_value,
op.API_CREATE_SEMAPHORE_cmd.max_value,
op.API_CREATE_SEMAPHORE_cmd.queuing_disc) {

l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(DISPLAY_BLACKBOARD:{?,?,?,-}) ->
param(op.API_DISPLAY_BLACKBOARD_cmd.blackboard_id,

op.API_DISPLAY_BLACKBOARD_cmd.msg_addr,
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op.API_DISPLAY_BLACKBOARD_cmd.msg_length) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(READ_SAMPLING_MESSAGE:{?,?,-,-,-}) ->
param(op.API_READ_SAMPLING_MESSAGE_cmd.port_id,

op.API_READ_SAMPLING_MESSAGE_cmd.msg_addr) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(RESET_EVENT:{?,-}) ->
param(op.API_RESET_EVENT_cmd.event_id) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(SET_EVENT:{?,-}) ->
param(op.API_SET_EVENT_cmd.event_id) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(SIGNAL_SEMAPHORE:{?,-}) ->
param(op.API_SIGNAL_SEMAPHORE_cmd.semaphore_id) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(START:{?,-}) ->
param(op.API_START_cmd.process_id) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(STOP:{?,-}) ->
param(op.API_STOP_cmd.process_id) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(STOP_SELF:{}) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation.API_STOP_SELF_cmd := {};
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(WRITE_SAMPLING_MESSAGE:{?,?,?,-}) ->
param(op.API_WRITE_SAMPLING_MESSAGE_cmd.port_id,

op.API_WRITE_SAMPLING_MESSAGE_cmd.msg_addr,
op.API_WRITE_SAMPLING_MESSAGE_cmd.msg_length) {

l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(READ_BLACKBOARD:{?,?,?,-,-}) ->
param(op.API_READ_BLACKBOARD_cmd.blackboard_id,

op.API_READ_BLACKBOARD_cmd.time_out,
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op.API_READ_BLACKBOARD_cmd.msg_addr) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(RECEIVE_BUFFER:{?,?,?,-,-}) ->
param(op.API_RECEIVE_BUFFER_cmd.buffer_id,

op.API_RECEIVE_BUFFER_cmd.time_out,
op.API_RECEIVE_BUFFER_cmd.msg_addr) {

l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(RECEIVE_QUEUING_MESSAGE:{?,?,?,-,-}) ->
param(op.API_RECEIVE_QUEUING_MESSAGE_cmd.port_id,

op.API_RECEIVE_QUEUING_MESSAGE_cmd.time_out,
op.API_RECEIVE_QUEUING_MESSAGE_cmd.msg_addr) {

l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(SEND_BUFFER:{?,?,?,?,-}) ->
param(op.API_SEND_BUFFER_cmd.buffer_id,

op.API_SEND_BUFFER_cmd.msg_addr,
op.API_SEND_BUFFER_cmd.msg_length,
op.API_SEND_BUFFER_cmd.time_out) {

l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(SEND_QUEUING_MESSAGE:{?,?,?,?,-}) ->
param(op.API_SEND_QUEUING_MESSAGE_cmd.port_id,

op.API_SEND_QUEUING_MESSAGE_cmd.msg_addr,
op.API_SEND_QUEUING_MESSAGE_cmd.msg_length,
op.API_SEND_QUEUING_MESSAGE_cmd.time_out) {

l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(WAIT_EVENT:{?,?,-}) ->
param(op.API_WAIT_EVENT_cmd.event_id,

op.API_WAIT_EVENT_cmd.time_out) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(WAIT_SEMAPHORE:{?,?,-}) ->
param(op.API_WAIT_SEMAPHORE_cmd.semaphore_id,

op.API_WAIT_SEMAPHORE_cmd.time_out) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(SET_PARTITION_MODE:{?,-}) ->
param(op.API_SET_PARTITION_MODE_cmd.operating_mode) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}
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[] cmd.getcall(GET_PARTITION_STATUS:{-,-,-,-,-,-,-}) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation.API_GET_PARTITION_STATUS_cmd := {};
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(GET_PROCESS_ID:{?,-,-}) ->
param(op.API_GET_PROCESS_ID_cmd.name) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(GET_DATA_TABLE_ENTRY:{?,-,-}) ->
param(op.AUX_GET_DATA_TABLE_ENTRY_cmd.idx) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(SET_DATA_TABLE_ENTRY:{?,?,-}) ->
param(op.AUX_SET_DATA_TABLE_ENTRY_cmd.idx,

op.AUX_SET_DATA_TABLE_ENTRY_cmd.data) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(CLEAR_DATA_TABLE_ENTRY:{?,-}) ->
param(op.AUX_CLEAR_DATA_TABLE_ENTRY_cmd.idx) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(OPEN_SIGNAL_PORTS:{-,-,-}) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation.SCE_OPEN_SIGNAL_PORTS_cmd := {};
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(READ_SIGNAL:{?,-,-,-}) ->
param(op.SCE_READ_SIGNAL_cmd.idx) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(WRITE_SIGNAL:{?,?,?,-}) ->
param(op.SCE_WRITE_SIGNAL_cmd.idx,

op.SCE_WRITE_SIGNAL_cmd.signal_value,
op.SCE_WRITE_SIGNAL_cmd.fs) {

l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(STEPPER_INIT:{?,-}) ->
param(op.SCE_STEPPER_INIT_cmd.idx) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(STEPPER_SET:{?,?,?,-}) ->
param(op.SCE_STEPPER_SET_cmd.idx,

op.SCE_STEPPER_SET_cmd.cmd,
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op.SCE_STEPPER_SET_cmd.angle) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}

[] cmd.getcall(STEPPER_GET:{?,-,-,-}) ->
param(op.SCE_STEPPER_GET_cmd.idx) {
l1_pdu.l2.process_idx := process_idx;
l1_pdu.l2.operation := op;
queuePut(sendq, l1_pdu);

}
}

altstep response() runs on TACPHandler {
var tacp_l1_pdu l1_pdu;

[] tacpFromCPM.receive(l1_any) -> value l1_pdu {
last_recv_ack := l1_pdu.ack_no;
if (firstPacket) {

firstPacket := false;
last_sent_ack := l1_pdu.seq_no;
last_recv_seq := l1_pdu.seq_no;
last_sent_seq := l1_pdu.ack_no;
last_l1_pdu.seq_no := last_recv_ack;
last_l1_pdu.seq_no := last_recv_ack;
last_l1_pdu.seq_no := last_recv_ack;
last_l1_pdu.ack_no := last_recv_seq;

}
if (last_recv_seq != l1_pdu.seq_no) {

if (ispresent(l1_pdu.l2) and ↩
↪ ischosen(l1_pdu.l2.operation.INVALID_OPERATION_resp)) {

log(”skipped invalid TACP packet”);
goto skip;

}
last_recv_seq := l1_pdu.seq_no;
log(”received new valid TACP response”);

if (ispresent(l1_pdu.l2)) {
log(”layer 2 present”);
var Operation op := l1_pdu.l2.operation;

if (ischosen(op.API_CLEAR_BLACKBOARD_resp)) {
cmd.reply(CLEAR_BLACKBOARD:

{-,op.API_CLEAR_BLACKBOARD_resp.return_code});
}
else if (ischosen(op.API_CREATE_BLACKBOARD_resp)) {

cmd.reply(CREATE_BLACKBOARD:
{-,-,
op.API_CREATE_BLACKBOARD_resp.blackboard_id,
op.API_CREATE_BLACKBOARD_resp.return_code});

}
else if (ischosen(op.API_CREATE_BUFFER_resp)) {

cmd.reply(CREATE_BUFFER:
{-,-,-,-,
op.API_CREATE_BUFFER_resp.buffer_id,
op.API_CREATE_BUFFER_resp.return_code});

}
else if (ischosen(op.API_CREATE_EVENT_resp)) {

cmd.reply(CREATE_EVENT:
{-,
op.API_CREATE_EVENT_resp.event_id,
op.API_CREATE_EVENT_resp.return_code});

}
else if (ischosen(op.API_CREATE_PROCESS_resp)) {

cmd.reply(CREATE_PROCESS:
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{-,-,-,-,-,-,-,
op.API_CREATE_PROCESS_resp.process_id,
op.API_CREATE_PROCESS_resp.return_code});

}
else if (ischosen(op.API_CREATE_QUEUING_PORT_resp)) {

cmd.reply(CREATE_QUEUING_PORT:
{-,-,-,-,-,
op.API_CREATE_QUEUING_PORT_resp.port_id,
op.API_CREATE_QUEUING_PORT_resp.return_code});

}
else if (ischosen(op.API_CREATE_SAMPLING_PORT_resp)) {

cmd.reply(CREATE_SAMPLING_PORT:
{-,-,-,-,
op.API_CREATE_SAMPLING_PORT_resp.port_id,
op.API_CREATE_SAMPLING_PORT_resp.return_code});

}
else if (ischosen(op.API_CREATE_SEMAPHORE_resp)) {

cmd.reply(CREATE_SEMAPHORE:
{-,-,-,-,
op.API_CREATE_SEMAPHORE_resp.semaphore_id,
op.API_CREATE_SEMAPHORE_resp.return_code});

}
else if (ischosen(op.API_DISPLAY_BLACKBOARD_resp)) {

cmd.reply(DISPLAY_BLACKBOARD:
{-,-,-,
op.API_DISPLAY_BLACKBOARD_resp.return_code});

}
else if (ischosen(op.API_READ_SAMPLING_MESSAGE_resp)) {

cmd.reply(READ_SAMPLING_MESSAGE:
{-,-,
op.API_READ_SAMPLING_MESSAGE_resp.msg_length,
op.API_READ_SAMPLING_MESSAGE_resp.validity,
op.API_READ_SAMPLING_MESSAGE_resp.return_code});

}
else if (ischosen(op.API_RESET_EVENT_resp)) {

cmd.reply(RESET_EVENT:
{-,
op.API_RESET_EVENT_resp.return_code});

}
else if (ischosen(op.API_SET_EVENT_resp)) {

cmd.reply(SET_EVENT:
{-,
op.API_SET_EVENT_resp.return_code});

}
else if (ischosen(op.API_SIGNAL_SEMAPHORE_resp)) {

cmd.reply(SIGNAL_SEMAPHORE:
{-,
op.API_SIGNAL_SEMAPHORE_resp.return_code});

}
else if (ischosen(op.API_START_resp)) {

cmd.reply(START:
{-,
op.API_START_resp.return_code});

}
else if (ischosen(op.API_STOP_resp)) {

cmd.reply(STOP:
{-,
op.API_STOP_resp.return_code});

}
else if (ischosen(op.API_STOP_SELF_resp)) {

cmd.reply(STOP_SELF:{});
}
else if (ischosen(op.API_WRITE_SAMPLING_MESSAGE_resp)) {

cmd.reply(WRITE_SAMPLING_MESSAGE:
{-,-,-,
op.API_WRITE_SAMPLING_MESSAGE_resp.return_code});

}
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else if (ischosen(op.API_READ_BLACKBOARD_resp)) {
cmd.reply(READ_BLACKBOARD:

{-,-,-,
op.API_READ_BLACKBOARD_resp.msg_length,
op.API_READ_BLACKBOARD_resp.return_code});

}
else if (ischosen(op.API_RECEIVE_BUFFER_resp)) {

cmd.reply(RECEIVE_BUFFER:
{-,-,-,
op.API_RECEIVE_BUFFER_resp.msg_length,
op.API_RECEIVE_BUFFER_resp.return_code});

}
else if (ischosen(op.API_RECEIVE_QUEUING_MESSAGE_resp)) {

cmd.reply(RECEIVE_QUEUING_MESSAGE:
{-,-,-,
op.API_RECEIVE_QUEUING_MESSAGE_resp.msg_length,
op.API_RECEIVE_QUEUING_MESSAGE_resp.return_code});

}
else if (ischosen(op.API_SEND_BUFFER_resp)) {

cmd.reply(SEND_BUFFER:
{-,-,-,-,
op.API_SEND_BUFFER_resp.return_code});

}
else if (ischosen(op.API_SEND_QUEUING_MESSAGE_resp)) {

cmd.reply(SEND_QUEUING_MESSAGE:
{-,-,-,-,
op.API_SEND_QUEUING_MESSAGE_resp.return_code});

}
else if (ischosen(op.API_WAIT_EVENT_resp)) {

cmd.reply(WAIT_EVENT:
{-,-,
op.API_WAIT_EVENT_resp.return_code});

}
else if (ischosen(op.API_WAIT_SEMAPHORE_resp)) {

cmd.reply(WAIT_SEMAPHORE:
{-,-,
op.API_WAIT_SEMAPHORE_resp.return_code});

}
else if (ischosen(op.API_SET_PARTITION_MODE_resp)) {

cmd.reply(SET_PARTITION_MODE:
{-,
op.API_SET_PARTITION_MODE_resp.return_code});

}
else if (ischosen(op.API_GET_PARTITION_STATUS_resp)) {

cmd.reply(GET_PARTITION_STATUS:
{op.API_GET_PARTITION_STATUS_resp.id,
op.API_GET_PARTITION_STATUS_resp.period,
op.API_GET_PARTITION_STATUS_resp.duration,
op.API_GET_PARTITION_STATUS_resp.lock_level,
op.API_GET_PARTITION_STATUS_resp.operating_mode,
op.API_GET_PARTITION_STATUS_resp.start_condition,
op.API_GET_PARTITION_STATUS_resp.return_code});

}
else if (ischosen(op.API_GET_PROCESS_ID_resp)) {

cmd.reply(GET_PROCESS_ID:
{-,
op.API_GET_PROCESS_ID_resp.process_id,
op.API_GET_PROCESS_ID_resp.return_code});

}
else if (ischosen(op.AUX_GET_DATA_TABLE_ENTRY_resp)) {

cmd.reply(GET_DATA_TABLE_ENTRY:
{-,
op.AUX_GET_DATA_TABLE_ENTRY_resp.return_code,
op.AUX_GET_DATA_TABLE_ENTRY_resp.data});

}
else if (ischosen(op.AUX_SET_DATA_TABLE_ENTRY_resp)) {

cmd.reply(SET_DATA_TABLE_ENTRY:
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{-,-,
op.AUX_GET_DATA_TABLE_ENTRY_resp.return_code});

}
else if (ischosen(op.AUX_CLEAR_DATA_TABLE_ENTRY_resp)) {

cmd.reply(CLEAR_DATA_TABLE_ENTRY:
{-,
op.AUX_CLEAR_DATA_TABLE_ENTRY_resp.return_code});

}
else if (ischosen(op.SCE_OPEN_SIGNAL_PORTS_resp)) {

cmd.reply(OPEN_SIGNAL_PORTS:
{op.SCE_OPEN_SIGNAL_PORTS_resp.succeeded,
op.SCE_OPEN_SIGNAL_PORTS_resp.failed,
op.SCE_OPEN_SIGNAL_PORTS_resp.return_code});

}
else if (ischosen(op.SCE_READ_SIGNAL_resp)) {

cmd.reply(READ_SIGNAL:
{-,
op.SCE_READ_SIGNAL_resp.signal_value,
op.SCE_READ_SIGNAL_resp.fs,
op.SCE_READ_SIGNAL_resp.return_code});

}
else if (ischosen(op.SCE_WRITE_SIGNAL_resp)) {

cmd.reply(WRITE_SIGNAL:
{-,-,-,
op.SCE_WRITE_SIGNAL_resp.return_code});

}
else if (ischosen(op.SCE_STEPPER_INIT_resp)) {

cmd.reply(STEPPER_INIT:
{-,
op.SCE_STEPPER_INIT_resp.return_code});

}
else if (ischosen(op.SCE_STEPPER_SET_resp)) {

cmd.reply(STEPPER_SET:
{-,-,-,
op.SCE_STEPPER_SET_resp.return_code});

}
else if (ischosen(op.SCE_STEPPER_GET_resp)) {

cmd.reply(STEPPER_GET:
{-,
op.SCE_STEPPER_GET_resp.status,
op.SCE_STEPPER_GET_resp.angle,
op.SCE_STEPPER_GET_resp.return_code});

}
}

}
label skip;

}
}

function runHandler() runs on TACPHandler {

sendq.ri := 0;
sendq.wi := 0;

while (true) {
alt {

[] apicall();
[] response();

}

if (last_recv_ack == last_sent_seq and not queueEmpty(sendq)) {
queueGet(sendq, last_l1_pdu);
last_sent_seq := (last_sent_seq + 1) mod 256;
last_l1_pdu.seq_no := last_sent_seq;
last_sent_ack := last_recv_seq;
last_l1_pdu.ack_no := last_sent_ack;
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}
else if (last_recv_seq != last_sent_ack) {

last_sent_ack := last_recv_seq;
last_l1_pdu.ack_no := last_sent_ack;

}
tacpToCPM.send(last_l1_pdu);

}
}

}
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The generators presented in this section are written in MERL (cf. sec-
tion 3.2.4). They do not generate regular outputs, but instead they check
the models built with MetaEdit+ for conformance to additional constraints
that are not directly supported in MetaEdit+.

D.1 Configuration Validator

report ’!Validate Configuration’

/* throw away all output */
to ’%null
* $’
endto

/* The partition slice duration must be less than
the partition scheduling period. */

foreach .Partition
{

if (:Duration >= :Period; num) then
’Error: ’ type ’: The slice duration must be ’
’less than the partition period.’ newline

endif
}

/* An AFDX Port Group must be in exactly one Dataflow
relationship. */

foreach .AFDX Port Group;
{

$count = ’0’
do >Dataflow
{
$count++%null

}
if ($count <> ’1’ num) then
’Error: ’ type ’: Must be connected ’
’to exactly one partition.’ newline
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endif
}

/* A RAM Port Group must be in exactly 1 Sender role. */
foreach .RAM Port Group;
{
$count = ’0’
do ~Sender
{

$count++%null
}
if ($count <> ’1’ num) then

’Error: ’ type ’: Must be in exactly ’
’one Sender role.’ newline

endif
}

/* A RAM Port Group must be in exactly 1 Receiver role. */
foreach .RAM Port Group;
{
$count = ’0’
do ~Receiver
{

$count++%null
}
if ($count <> ’1’ num) then

’Error: ’ type ’: Must be in exactly ’
’one Receiver role.’ newline

endif
}

/* A Partition must be in exactly 1 Containee role. */
foreach .Partition
{
$count = ’0’
do ~Containee
{

$count++%null
}
if ($count <> ’1’ num) then

’Error: ’ type ’: Must be connected to exactly ’
’one CPM.’ newline

endif
}

endreport

D.2 Behaviour Validator

report ’!Validate Behaviour’

/* throw away all output */
to ’%null
* $’
endto

/* make into a space-separated wildcard ’* xxx *’ */
to ’%wildsp
/^(.*)$/ $\*\ $1\ \*’
endto

/* Test Start must occur exactly 1 time */
$count = ’0’
foreach .Test Start
{
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$count++%null
}
if ($count <> ’1’ num) then

’Error: Test Start: Must occur exactly one time.’ newline
endif

/* Clear_Blackboard must be in exactly 1 API call [Blackboard] role */
/* Create_Blackboard must be in exactly 1 API call [Blackboard] role */
/* Display_Blackboard must be in exactly 1 API call [Blackboard] role */
/* Read_Blackboard must be in exactly 1 API call [Blackboard] role */
foreach .(Clear_Blackboard | Create_Blackboard | Display_Blackboard |

Read_Blackboard)
{

$count = ’0’
do ~API call [Blackboard]
{
$count++%null

}
if ($count <> ’1’ num) then
’Error: ’ type ’: Must be connected to exactly one ’
’Blackboard.’ newline

endif
}

/* Create_Buffer must be in exactly 1 API call [Buffer] role */
/* Receive_Buffer must be in exactly 1 API call [Buffer] role */
/* Send_Buffer must be in exactly 1 API call [Buffer] role */
foreach .(Create_Buffer | Receive_Buffer | Send_Buffer)
{

$count = ’0’
do ~API call [Buffer]
{
$count++%null

}
if ($count <> ’1’ num) then
’Error: ’ type ’: Must be connected to exactly one ’
’Buffer.’ newline

endif
}

/* Create_Event must be in exactly 1 API call [Event] role */
/* Reset_Event must be in exactly 1 API call [Event] role */
/* Set_Event must be in exactly 1 API call [Event] role */
/* Wait_Event must be in exactly 1 API call [Event] role */
foreach .(Create_Event | Reset_Event | Set_Event | Wait_Event)
{

$count = ’0’
do ~API call [Event]
{
$count++%null

}
if ($count <> ’1’ num) then
’Error: ’ type ’: Must be connected to exactly one ’
’Event.’ newline

endif
}

/* Create_Semaphore must be in exactly 1 API call [Semaphore] role */
/* Signal_Semaphore must be in exactly 1 API call [Semaphore] role */
/* Wait_Semaphore must be in exactly 1 API call [Semaphore] role */
foreach .(Create_Semaphore | Signal_Semaphore | Wait_Semaphore)
{

$count = ’0’
do ~API call [Semaphore]
{
$count++%null

}
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if ($count <> ’1’ num) then
’Error: ’ type ’: Must be connected to exactly one ’
’Semaphore.’ newline

endif
}

/* Create_Process must be in exactly 1 API call [Process] role */
/* Start must be in exactly 1 API call [Process] role */
/* Stop must be in exactly 1 API call [Process] role */
foreach .(Create_Process | Start | Stop)
{
$count = ’0’
do ~API call [Process]
{

$count++%null
}
if ($count <> ’1’ num) then

’Error: ’ type ’: Must be connected to exactly one ’
’Process.’ newline

endif
}

/* Create_Queuing_Port must be in exactly 1 API call [Port] role */
/* Create_Sampling_Port must be in exactly 1 API call [Port] role */
/* Read_Sampling_Message must be in exactly 1 API call [Port] role */
/* Receive_Queuing_Message must be in exactly 1 API call [Port] role */
/* Send_Queuing_Message must be in exactly 1 API call [Port] role */
/* Write_Sampling_Message must be in exactly 1 API call [Port] role */
/* Complement must be in exactly 1 API call [Port] role */
foreach .(Create_Queuing_Port | Create_Sampling_Port |

Read_Sampling_Message | Receive_Queuing_Message |
Send_Queuing_Message | Write_Sampling_Message | Complement)

{
$count = ’0’
do ~API call [Port]
{

$count++%null
}
if ($count <> ’1’ num) then

’Error: ’ type ’: Must be connected to exactly one ’
’Port.’ newline

endif
}

/* Display_Blackboard must be in exactly 1 API call [Message] role */
/* Read_Blackboard must be in exactly 1 API call [Message] role */
/* Read_Sampling_Message must be in exactly 1 API call [Message] role */
/* Receive_Buffer must be in exactly 1 API call [Message] role */
/* Receive_Queuing_Message must be in exactly 1 API call [Message] role */
/* Send_Buffer must be in exactly 1 API call [Message] role */
/* Send_Queuing_Message must be in exactly 1 API call [Message] role */
/* Write_Sampling_Message must be in exactly 1 API call [Message] role */
/* Complement must be in exactly 1 API call [Message] role */
foreach .(Display_Blackboard | Read_Blackboard |

Read_Sampling_Message | Receive_Buffer |
Receive_Queuing_Message | Send_Buffer |
Send_Queuing_Message | Write_Sampling_Message | Complement)

{
$count = ’0’
do ~API call [Message]
{

$count++%null
}
if ($count <> ’1’ num) then

’Error: ’ type ’: Must be connected to exactly one ’
’Message.’ newline

endif
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}

/* Conditions on outgoing Control Flow edges of a node must be
deterministic. */

foreach .(Test Start | Test Fail | Test Pass | Partition | Process |
Loop | Loop End | Complement | Clear_Blackboard |
Create_Blackboard | Create_Buffer | Create_Event |
Create_Process | Create_Queuing_Port |
Create_Sampling_Port | Create_Semaphore |
Display_Blackboard | Read_Sampling_Message | Reset_Event |
Set_Event | Signal_Semaphore | Start | Stop | Stop_Self |
Write_Sampling_Message | Read_Blackboard | Receive_Buffer |
Receive_Queuing_Message | Send_Buffer |
Send_Queuing_Message | Wait_Event | Wait_Semaphore |
Set_Partition_Mode)

{
/* more than one unlabeled edge? */
$count = ’0’
do ~From>Control Flow
{
if not :Condition; then
$count++%null

endif
}
if ($count > ’1’ num) then
’Error: ’ type ’: Must not have more than one unlabeled ’
’outgoing control flow edge.’ newline

endif

/* return code occurs more than once? */
$retvals = ’ ’
do ~From>Control Flow:Condition
{
if $retvals =~ type%wildsp then
’Error: ’ type;1 ’: Return code ’ type ’ must not occur ’
’more than once in outgoing control flow edges.’ newline

else
variable ’retvals’ append type ’ ’ close

endif
}

}

/* Nodes outside a Loop block must not have Control Flow relationships
to nodes inside a Loop block. */

$loopnodes = ’ ’;
foreach .Loop
{

subreport ’_findloopnodes’ run
}

foreach .(Test Start | Test Fail | Test Pass | Partition | Process |
Loop End | Complement | Clear_Blackboard |
Create_Blackboard | Create_Buffer | Create_Event |
Create_Process | Create_Queuing_Port |
Create_Sampling_Port | Create_Semaphore |
Display_Blackboard | Read_Sampling_Message | Reset_Event |
Set_Event | Signal_Semaphore | Start | Stop | Stop_Self |
Write_Sampling_Message | Read_Blackboard | Receive_Buffer |
Receive_Queuing_Message | Send_Buffer |
Send_Queuing_Message | Wait_Event | Wait_Semaphore |
Set_Partition_Mode)

{
if not $loopnodes =~ oid%wildsp then
/* node not in loop */
do ~From>Control Flow~To.(*|^Loop|^Loop End)
{
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if $loopnodes =~ oid%wildsp then
’Error: Invalid control flow from ’ type;1 ’ outside of loop ’
’to ’ type ’ inside loop.’ newline

endif
}

endif
}

/* Nodes having a Control Flow relationship to a Loop End block
must be inside a loop. */

foreach .Loop End
{
do ~To>Control Flow~From.()
{

if not $loopnodes =~ oid%wildsp then
’Error: ’ type ’ connected to ’ type;1 ’ is not inside a loop.’
newline

endif
}

}

endreport

report ’_findloopnodes’
if type <> ’Loop End’ then

if not $loopnodes =~ oid%wildsp then
variable ’loopnodes’ append oid ’ ’ close

endif
do ~From>Control Flow~To.()
{
subreport ’_findloopnodes’ run

}
endif

endreport

D.3 Test Suite Validator (ITML-B)

report ’!Validate Test Suite’

/* throw away all output */
to ’%null
* $’
endto

/* A Behaviour must be in at least 1 Used by relationship */
foreach .Behaviour
{
$count = ’0’
do >Used by
{

$count++%null
}
if ($count < ’1’ num) then

’Error: ’ type ’: Must be connected to at least one ’
’Configuration.’ newline

endif
}

/* A Configuration must be in at least 1 Used by relationship */
foreach .Configuration
{
$count = ’0’
do >Used by
{

$count++%null
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}
if ($count < ’1’ num) then
’Error: ’ type ’: Must be connected to at least one ’
’Behaviour.’ newline

endif
}

endreport

D.4 Test Suite Validator (ITML-C)

report ’!Validate Test Suite’

/* throw away all output */
to ’%null
* $’
endto

/* A Behaviour must be in at least 1 Used by relationship */
foreach .Behaviour
{

$count = ’0’
do >Used by
{
$count++%null

}
if ($count < ’1’ num) then
’Error: ’ type ’: Must be connected to at least one ’
’ICD.’ newline

endif
}

/* An ICD must be in at least 1 Used by relationship */
foreach .ICD
{

$count = ’0’
do >Used by
{
$count++%null

}
if ($count < ’1’ num) then
’Error: ’ type ’: Must be connected to at least one ’
’Behaviour.’ newline

endif
}

endreport

239



APPENDIX D. MODEL VALIDITY CHECKERS

D.5 System Diagram Validator

Report ’!Validate System Diagram’

/* throw away all output */
to ’%null
* $’
endto

/* make into a space-separated wildcard ’* xxx *’ */
to ’%wildsp
/^(.*)$/ $\*\ $1\ \*’
endto

/* SUT must occur exactly 1 time */
$count = ’0’
foreach .SUT
{
$count++%null

}
if ($count <> ’1’ num) then
’Error: SUT: Must occur exactly one time.’ newline

endif

/* TE must occur exactly 1 time */
$count = ’0’
foreach .TE
{
$count++%null

}
if ($count <> ’1’ num) then
’Error: SUT: Must occur exactly one time.’ newline

endif

/* The name of each signal and constant definition must be unique */
$names = ’ ’
foreach .(SUT Input Signal List | SUT Output Signal List | Constant List)
{
do :List
{

$tmp = :Name
if $names =~ $tmp%wildsp then
’Error: ’ :Name ’: Names of signal and constant definitions must ’
’be unique.’ newline

else
variable ’names’ append :Name ’ ’ close

endif
}

}

/* SUT must decompose to either a component diagram or a statechart. */
foreach .SUT
{
$count = ’0’
do decompositions
{

$count++%null
}
if ($count <> ’1’ num) then

’Error: ’ :Name ’: SUT must decompose to either a component ’
’diagram or a statechart.’ newline

endif
do decompositions
{

if type = ’Component Diagram’ then
subreport ’_validate_decomp’ run
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endif
}

}

endreport

Report ’_validate_decomp’

/* A component which is part of the SUT must decompose to either a
component diagram or a statechart. */

foreach .Component
{

$count = ’0’
do decompositions
{
$count++%null

}
if ($count <> ’1’ num) then
’Error: ’ :Name ’: SUT component must decompose to either a ’
’component diagram or a statechart.’ newline

endif
do decompositions
{
if type = ’Component Diagram’ then
subreport ’_validate_decomp’ run

endif
}

}

endreport

D.6 Component Diagram Validator

Report ’!Validate Component Diagram’

/* throw away all output */
to ’%null
* $’
endto

/* make into a space-separated wildcard ’* xxx *’ */
to ’%wildsp
/^(.*)$/ $\*\ $1\ \*’
endto

/* Component must occur at least 1 time */
$count = ’0’
foreach .Component
{

$count++%null
}
if ($count < ’1’ num) then

’Error: Component: Must occur at least one time.’ newline
endif

/* The name of each variable and constant definition must be unique */
$names = ’ ’
foreach .(Variable List | Constant List)
{

do :List
{
$tmp = :Name
if $names =~ $tmp%wildsp then
’Error: ’ :Name ’: Names of variable and constant definitions must ’
’be unique.’ newline
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else
variable ’names’ append :Name ’ ’ close

endif
}

}

endreport
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D.7 Statechart Validator

Report ’!Validate Statechart’

/* throw away all output */
to ’%null
* $’
endto

/* make into a space-separated wildcard ’* xxx *’ */
to ’%wildsp
/^(.*)$/ $\*\ $1\ \*’
endto

/* Start Location must occur exactly 1 time */
$count = ’0’
foreach .Start Location
{

$count++%null
}
if ($count <> ’1’ num) then

’Error: Start Location: Must occur exactly one time.’ newline
endif

/* The name of each variable and constant definition must be unique */
$names = ’ ’
foreach .(Variable List | Constant List)
{

do :List
{
$tmp = :Name
if $names =~ $tmp%wildsp then
’Error: ’ :Name ’: Names of variable and constant definitions must ’
’be unique.’ newline

else
variable ’names’ append :Name ’ ’ close

endif
}

}

endreport
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Generators

The generators presented in this section are written in MERL (cf. sec-
tion 3.2.4). They produce the intermediate XML representation (see ap-
pendix F) from models built in MetaEdit+.

E.1 Configuration Export Generator

report ’!Export Configuration’

filename id ’.xml’ write

/* translate to legal XML text or attribute value */
to ’%xml
& $&amp;
< $&lt;
> $&gt;
” $&quot;

$&#x9;
\
$&#xD;’

endto

/* convert to lowercase */
to ’%lower
A-Z a-z’
endto

’<?xml version=”1.0”?>’ newline
’<config xmlns=”http://www.scarlettproject.eu/tzi/configuration”

name=”’ :Name%xml ’”>’ newline
foreach .CPM;
{
’ <cpm name=”’ :Name%xml ’” location=”’ :Location%xml ’”>’ newline
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do ~Container>Part of~Containee.Partition;
orderby :ID; num

{
’ <partition id=”’ :ID%xml

’” period=”’ :Period%xml ’” duration=”’ :Duration%xml
’” ramsize=”’ :RAM Size%xml ’”>’ newline

do ~Sender>Dataflow~Receiver.();
{

’ <portgroupref id=”’ oid%xml ’” direction=”out”/>’ newline
}
do ~Receiver>Dataflow~Sender.();
{

’ <portgroupref id=”’ oid%xml ’” direction=”in”/>’ newline
}

’ </partition>’ newline
}

do ~Container>Part of~Containee.Partition~()>Dataflow~()
.AFDX Port Group; unique oid

{
’ <portgroup id=”’ oid%xml ’” type=”AFDX”’

’ characteristic=”’ :Port Characteristic%lower%xml
’” size=”’ :Maximum Message Size%xml
’” count=”’ :Count%xml ’”/>’ newline

}
do ~Container>Part of~Containee.Partition~()>Dataflow~()

.RAM Port Group; unique oid
{

’ <portgroup id=”’ oid%xml ’” type=”RAM”’
’ characteristic=”’ :Port Characteristic%lower%xml
’” size=”’ :Maximum Message Size%xml
’” count=”’ :Count%xml ’”/>’ newline

}

’ </cpm>’ newline
}
’</config>’ newline

close
endreport
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E.2 Behaviour Export Generator

report ’!Export Behaviour’

filename id ’.xml’ write

/* translate to upper case */
to ’%upper
a-z A-Z’
endto

/* translate to legal XML text or attribute value */
to ’%xml
& $&amp;
< $&lt;
> $&gt;
” $&quot;

$&#x9;
\
$&#xD;’

endto

’<?xml version=”1.0”?>’ newline
’<behaviour xmlns=”http://www.scarlettproject.eu/tzi/behaviour”

name=”’ :Test Case ID%xml ’”>’ newline

/*** Resources ***/
’ <resources>’ newline
foreach .Process Config;
{
’ <process id=”’ oid %xml ’” name=”’ :Name%xml

’” stacksize=”’ :Stack Size%xml ’” priority=”’ :Priority%xml
’” period=”’ :Period%xml ’” timecapacity=”’ :Time Capacity%xml
’” deadline=”’ :Deadline%xml%upper ’”/>’ newline

}

foreach .Blackboard
{
’ <blackboard id=”’ oid%xml ’” name=”’ :Name%xml

’” maxmsgsize=”’ :Maximum Message Size%xml ’”/>’ newline
}

foreach .Buffer
{
’ <buffer id=”’ oid%xml ’” name=”’ :Name%xml

’” maxmsgsize=”’ :Maximum Message Size%xml
’” maxnbmsg=”’ :Maximum Number of Messages%xml
’” queuingdisc=”’ :Queuing Discipline%xml%upper ’”/>’ newline

}

foreach .Semaphore
{
’ <semaphore id=”’ oid%xml ’” name=”’ :Name%xml

’” currentvalue=”’ :Current Value%xml
’” maxvalue=”’ :Maximum Value%xml
’” queuingdisc=”’ :Queuing Discipline%xml%upper ’”/>’ newline

}

foreach .Event
{
’ <event id=”’ oid%xml ’” name=”’ :Name%xml ’”/>’ newline
}

foreach .Port
{
’ <port id=”’ oid%xml ’” type=”’ :Type%xml ’”/>’ newline
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}

foreach .Message
{
’ <message id=”’ oid%xml ’” pattern=”’ :Pattern%xml

’” size=”’ :Message Size%xml ’”/>’ newline
}
’ </resources>’ newline

/*** Nodes ***/
’ <nodes>’ newline
foreach .Test Start;
{
’ <test_start id=”’ oid%xml ’”/>’ newline
}

foreach .Test Fail;
{
’ <test_fail id=”’ oid%xml ’”/>’ newline
}

foreach .Test Pass;
{
’ <test_pass id=”’ oid%xml ’”/>’ newline
}

foreach .Partition
{
’ <partition id=”’ oid%xml ’” name=”’ :ID%xml ’”/>’ newline
}

foreach .Process
{
’ <process id=”’ oid%xml ’” name=”’
if :Init Process; then
’INIT’

else
:Process Config%xml

endif
’”/>’ newline
}

foreach .Loop
{
’ <loop id=”’ oid%xml ’”/>’ newline
}

foreach .Loop End;
{
’ <loopend id=”’ oid%xml ’”/>’ newline
}

foreach .Complement
{
’ <complement id=”’ oid%xml

’” operation=”’ :Operation%xml ’”/>’ newline
}

foreach .(Clear_Blackboard | Create_Blackboard | Create_Buffer |
Create_Event | Create_Process | Create_Queuing_Port |
Create_Sampling_Port | Create_Semaphore |
Display_Blackboard | Read_Sampling_Message | Reset_Event |
Set_Event | Signal_Semaphore | Start | Stop | Stop_Self |
Write_Sampling_Message)

{
’ <’ type%xml ’ id=”’ oid%xml ’”/>’ newline
}
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foreach .(Read_Blackboard | Receive_Buffer | Receive_Queuing_Message |
Send_Buffer | Send_Queuing_Message | Wait_Event |
Wait_Semaphore)

{
’ <’ type%xml ’ id=”’ oid%xml

’” timeout=”’ :Timeout%xml ’”/>’ newline
}

foreach .Set_Partition_Mode
{
’ <’ type%xml ’ id=”’ oid%xml

’” mode=”’ :Partition Mode%xml ’”/>’ newline
}
’ </nodes>’ newline

/*** Parameters ***/
’ <parameters>’ newline
foreach >Parameter
{
’ <assign op=”’ do ~(API call [*]).() { oid%xml }

’” param=”’ do ~Parameter Object.() { oid%xml } ’”/>’ newline
}
’ </parameters>’ newline

/*** Control Flow ***/
’ <controlflow>’ newline
foreach >Control Flow;
{
if :Condition; then
’ <edge from=”’ do ~From.() { oid%xml }

’” to=”’ do ~To.() { oid%xml } ’”>’ newline
do :Condition
{
’ <condition>’ type ’</condition>’ newline
}
’ </edge>’ newline
else
’ <edge from=”’ do ~From.() { oid%xml }

’” to=”’ do ~To.() { oid%xml } ’”/>’ newline
endif
}
’ </controlflow>’ newline

’</behaviour>’ newline

close
endreport
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E.3 Test Suite Export Generator (ITML-B)

report ’!Export Test Suite’

filename id ’.xml’ write

/* translate to legal XML text or attribute value */
to ’%xml
& $&amp;
< $&lt;
> $&gt;
” $&quot;

$&#x9;
\
$&#xD;’
endto

’<?xml version=”1.0”?>’ newline
’<testsuite xmlns=”http://www.scarlettproject.eu/tzi/testsuite-b”

name=”’ :Name%xml ’”>’ newline

/*** Configurations ***/
’ <configurations>’ newline
foreach .Configuration
{
’ <configuration id=”’ oid%xml ’” name=”’ :Configuration Spec%xml

’” file=”’ :Configuration Spec%xml ’.xml”/>’ newline
}
’ </configurations>’ newline

/*** Behaviours ***/
’ <behaviours>’ newline
foreach .Behaviour
{
’ <behaviour name=”’ :Behaviour Spec%xml

’” file=”’ :Behaviour Spec%xml ’.xml”>’ newline
do ~User>Used by~Used.Configuration;
{

’ <configref id=”’ oid%xml ’”/>’ newline
}

’ </behaviour>’ newline
}
’ </behaviours>’ newline

’</testsuite>’ newline

close
endreport

E.4 Test Suite Export Generator (ITML-C)

report ’!Export Test Suite’

filename id ’.xml’ write

/* translate to legal XML text or attribute value */
to ’%xml
& $&amp;
< $&lt;
> $&gt;
” $&quot;

$&#x9;
\
$&#xD;’
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endto

’<?xml version=”1.0”?>’ newline
’<testsuite xmlns=”http://www.scarlettproject.eu/tzi/testsuite-c”

name=”’ :Name%xml ’”>’ newline

/*** ICDs ***/
’ <icds>’ newline
foreach .ICD
{
’ <icd id=”’ oid%xml ’” path=”’ :Path%xml ’.xml”/>’ newline
}
’ </icds>’ newline

/*** Behaviours ***/
’ <behaviours>’ newline
foreach .Behaviour
{
’ <behaviour name=”’ :Behaviour Spec%xml

’” file=”’ :Behaviour Spec%xml ’.xml”>’ newline
do ~User>Used by~Used.ICD;
{

’ <icdref id=”’ oid%xml ’”/>’ newline
}

’ </behaviour>’ newline
}
’ </behaviours>’ newline

’</testsuite>’ newline

close
endreport

E.5 System Diagram Export Generator (ITML-A)

report ’!Export System Diagram’

filename id ’.xml’ write

/* translate to legal XML text or attribute value */
to ’%xml
& $&amp;
< $&lt;
> $&gt;
” $&quot;

$&#x9;
\
$&#xD;’

endto

/* indent one level by translating newline to newline + 2 spaces */
to ’%indent
\
$\

\ \ ’ endto

/* throw away all output */
to ’%null
* $’
endto

’<?xml version=”1.0”?>’
newline ’<system xmlns=”http://www.scarlettproject.eu/tzi/system”

name=”’ :Name%xml ’”>’
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newline ’ <sut_inputs>’
foreach .SUT Input Signal List;
{
do :List
{

newline ’ <signal name=”’ :Name%xml ’” type=”’ :Variable Type%xml
’” minimum=”’ :Minimum%xml ’” maximum=”’ :Maximum%xml
’” default=”’ :Default%xml ’”/>’

}
}
newline ’ </sut_inputs>’

newline ’ <sut_outputs>’
foreach .SUT Output Signal List;
{
do :List
{

newline ’ <signal name=”’ :Name%xml ’” type=”’ :Variable Type%xml
’” minimum=”’ :Minimum%xml ’” maximum=”’ :Maximum%xml
’” default=”’ :Default%xml ’”/>’

}
}
newline ’ </sut_outputs>’

newline ’ <constants>’
foreach .Constant List;
{
do :List
{

newline ’ <constant name=”’ :Name%xml ’” type=”’ :Constant Type%xml
’” value=”’ :Value%xml ’”/>’

}
}
newline ’ </constants>’

foreach .SUT
{
newline ’ <sut name=”’ :Name%xml ’”>’
to ’%indent’ translate

do decompositions
{
subreport ’_sub_’ type run

}
endto

newline ’ </sut>’
}

foreach .TE
{
newline ’ <testenv name=”’ :Name%xml ’”>’
$count = ’0’
to ’%indent’ translate

do decompositions
{
$count++%null
subreport ’_sub_’ type run

}
endto
if ($count = ’0’ num) then

newline ’ <variables/>’
newline ’ <constants/>’
endif

newline ’ </testenv>’
}

newline ’</system>’
newline
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close

endreport

report ’_sub_Component Diagram’

newline ’ <variables>’
foreach .Variable List;
{

do :List
{

newline ’ <variable name=”’ :Name%xml ’” type=”’ :Variable Type%xml
’” minimum=”’ :Minimum%xml ’” maximum=”’ :Maximum%xml
’” default=”’ :Default%xml ’”/>’

}
}
newline ’ </variables>’

newline ’ <constants>’
foreach .Constant List;
{

do :List
{

newline ’ <constant name=”’ :Name%xml ’” type=”’ :Constant Type%xml
’” value=”’ :Value%xml ’”/>’

}
}
newline ’ </constants>’

foreach .Component
{
newline ’ <component name=”’ :Name%xml ’”>’

to ’%indent’ translate
do decompositions
{
subreport ’_sub_’ type run

}
endto

newline ’ </component>’
}

endreport

report ’_sub_Statechart’

/* translate to legal XML text value */
to ’%xmltext
& $&amp;
< $&lt;
> $&gt;
” $&quot;’
endto

newline ’ <variables>’
foreach .Variable List;
{

do :List
{

newline ’ <variable name=”’ :Name%xml ’” type=”’ :Variable Type%xml
’” minimum=”’ :Minimum%xml ’” maximum=”’ :Maximum%xml
’” default=”’ :Default%xml ’”/>’

}
}
newline ’ </variables>’
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newline ’ <constants>’
foreach .Constant List;
{
do :List
{

newline ’ <constant name=”’ :Name%xml ’” type=”’ :Constant Type%xml
’” value=”’ :Value%xml ’”/>’

}
}
newline ’ </constants>’

newline ’ <statechart>’

newline ’ <locations>’
foreach .Start Location;
{
newline ’ <start_location id=”’ oid%xml ’”/>’
}

foreach .Stop Location;
{
newline ’ <stop_location id=”’ oid%xml ’”/>’
}

foreach .Location
{
newline ’ <location id=”’ oid%xml ’” name=”’ :Name%xml ’”>’
if :Requirement; then

newline ’ <req>’ :Requirement%xmltext ’</req>’
endif

if :Invariant; then
newline ’ <invariant>’

dowhile :Invariant;
{
id%xmltext ’ ’

}
’</invariant>’
endif

if :Entry Action; then
newline ’ <entry>’

do :Entry Action;
{
id%xmltext ’; ’

}
’</entry>’
endif

if :Do Action; then
newline ’ <do>’

do :Do Action;
{
id%xmltext ’; ’

}
’</do>’
endif

if :Exit Action; then
newline ’ <exit>’

do :Exit Action;
{
id%xmltext ’; ’

}
’</exit>’
endif
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newline ’ </location>’
}
newline ’ </locations>’

newline ’ <transitions>’
foreach >Transition
{
newline ’ <transition name=”’ :Name%xml

’” from=”’ do ~Transition_From.() { oid%xml }
’” to=”’ do ~Transition_To.() { oid%xml } ’”>’

if :Condition; then
newline ’ <cond>’

dowhile :Condition;
{
id%xmltext ’ ’

}
’</cond>’

endif

if :Action; then
newline ’ <action>’

do :Action;
{
id%xmltext ’; ’

}
’</action>’

endif
newline ’ </transition>’
}
newline ’ </transitions>’

newline ’ </statechart>’

endreport
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XML Schema [W3C04] definitions for the intermediate formats produced
by the MERL generators (see appendix E) are provided in the following sec-
tions.

F.1 Configuration Schema

<?xml version=”1.0”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

xmlns=”http://www.scarlettproject.eu/tzi/configuration”
xmlns:c=”http://www.scarlettproject.eu/tzi/configuration”
targetNamespace=”http://www.scarlettproject.eu/tzi/configuration”
elementFormDefault=”qualified”>

<xs:element name=”config”>
<xs:complexType>
<xs:sequence>

<xs:element name=”cpm” type=”cpmType” minOccurs=”0” maxOccurs=”unbounded”>

<xs:key name=”portgroupKey”>
<xs:selector xpath=”c:portgroup”/>
<xs:field xpath=”@id”/>

</xs:key>

<xs:keyref name=”portgroupKeyRef” refer=”portgroupKey”>
<xs:selector xpath=”c:partition/c:portgroupref”/>
<xs:field xpath=”@id”/>

</xs:keyref>

</xs:element>
</xs:sequence>
<xs:attribute name=”name” type=”xs:string” use=”required”/>

</xs:complexType>
</xs:element>

<xs:complexType name=”cpmType”>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element name=”partition” type=”partitionType”/>
<xs:element name=”portgroup” type=”portgroupType”/>
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</xs:choice>
<xs:attribute name=”name” type=”xs:string” use=”required”/>
<xs:attribute name=”location” type=”xs:string” use=”required”/>

</xs:complexType>

<xs:complexType name=”partitionType”>
<xs:sequence>
<xs:element name=”portgroupref” type=”portgrouprefType” minOccurs=”0” ↩

↪ maxOccurs=”unbounded”/>
</xs:sequence>
<xs:attribute name=”id” type=”xs:string” use=”required”/>
<xs:attribute name=”period” type=”xs:long” use=”required”/>
<xs:attribute name=”duration” type=”xs:long” use=”required”/>
<xs:attribute name=”ramsize” type=”xs:unsignedInt” use=”required”/>

</xs:complexType>

<xs:complexType name=”portgroupType”>
<xs:attribute name=”id” type=”xs:string” use=”required”/> <!-- key -->
<xs:attribute name=”type” type=”porttypeType” use=”required”/>
<xs:attribute name=”characteristic” type=”characteristicType” use=”required”/>
<xs:attribute name=”size” type=”xs:unsignedInt” use=”required”/>
<xs:attribute name=”count” type=”xs:unsignedInt” use=”required”/>

</xs:complexType>

<xs:complexType name=”portgrouprefType”>
<xs:attribute name=”id” type=”xs:string” use=”required”/> <!-- ref -->
<xs:attribute name=”direction” type=”directionType” use=”required”/>

</xs:complexType>

<xs:simpleType name=”porttypeType”>
<xs:restriction base=”xs:string”>
<xs:enumeration value=”AFDX”/>
<xs:enumeration value=”RAM”/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name=”characteristicType”>
<xs:restriction base=”xs:string”>
<xs:enumeration value=”sampling”/>
<xs:enumeration value=”queuing”/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name=”directionType”>
<xs:restriction base=”xs:string”>
<xs:enumeration value=”in”/>
<xs:enumeration value=”out”/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

F.2 Behaviour Schema

<?xml version=”1.0”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

xmlns=”http://www.scarlettproject.eu/tzi/behaviour”
xmlns:b=”http://www.scarlettproject.eu/tzi/behaviour”
targetNamespace=”http://www.scarlettproject.eu/tzi/behaviour”
elementFormDefault=”qualified”>

<xs:element name=”behaviour”>
<xs:complexType>
<xs:sequence>
<xs:element name=”resources” type=”resourcesType”/>
<xs:element name=”nodes” type=”nodesType”/>
<xs:element name=”parameters” type=”parametersType”/>
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<xs:element name=”controlflow” type=”controlflowType”/>
</xs:sequence>
<xs:attribute name=”name” type=”xs:string” use=”required”/>

</xs:complexType>

<xs:key name=”resourcesKey”>
<xs:selector xpath=”b:resources/b:*”/>
<xs:field xpath=”@id”/>

</xs:key>
<xs:key name=”nodesKey”>
<xs:selector xpath=”b:nodes/b:*”/>
<xs:field xpath=”@id”/>

</xs:key>

<xs:keyref name=”resourcesKeyRef” refer=”resourcesKey”>
<xs:selector xpath=”b:parameters/b:assign”/>
<xs:field xpath=”@param”/>

</xs:keyref>
<xs:keyref name=”operationsKeyRef” refer=”nodesKey”>
<xs:selector xpath=”b:parameters/b:assign”/>
<xs:field xpath=”@op”/>

</xs:keyref>
<xs:keyref name=”nodesFromKeyRef” refer=”nodesKey”>
<xs:selector xpath=”b:controlflow/b:edge”/>
<xs:field xpath=”@from”/>

</xs:keyref>
<xs:keyref name=”nodesToKeyRef” refer=”nodesKey”>
<xs:selector xpath=”b:controlflow/b:edge”/>
<xs:field xpath=”@to”/>

</xs:keyref>
</xs:element>

<!-- Resources -->
<xs:complexType name=”resourcesType”>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element name=”process” type=”processConfigType”/>
<xs:element name=”blackboard” type=”blackboardType”/>
<xs:element name=”buffer” type=”bufferType”/>
<xs:element name=”port” type=”portType”/>
<xs:element name=”semaphore” type=”semaphoreType”/>
<xs:element name=”event” type=”namedResourceType”/>
<xs:element name=”message” type=”messageType”/>

</xs:choice>
</xs:complexType>

<xs:complexType name=”resourceType”>
<xs:attribute name=”id” type=”xs:string” use=”required”/> <!-- key -->

</xs:complexType>

<xs:complexType name=”namedResourceType”>
<xs:complexContent>
<xs:extension base=”resourceType”>

<xs:attribute name=”name” type=”xs:string” use=”required”/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs:complexType name=”processConfigType”>
<xs:complexContent>
<xs:extension base=”namedResourceType”>

<xs:attribute name=”stacksize” type=”xs:unsignedInt” use=”required”/>
<xs:attribute name=”priority” type=”xs:int” use=”required”/>
<xs:attribute name=”period” type=”xs:long” use=”required”/>
<xs:attribute name=”timecapacity” type=”xs:long” use=”required”/>
<xs:attribute name=”deadline” type=”deadlineType” use=”required”/>

</xs:extension>
</xs:complexContent>
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</xs:complexType>

<xs:complexType name=”blackboardType”>
<xs:complexContent>
<xs:extension base=”namedResourceType”>
<xs:attribute name=”maxmsgsize” type=”xs:unsignedInt” use=”required”/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name=”bufferType”>
<xs:complexContent>
<xs:extension base=”namedResourceType”>
<xs:attribute name=”maxmsgsize” type=”xs:unsignedInt” use=”required”/>
<xs:attribute name=”maxnbmsg” type=”xs:unsignedInt” use=”required”/>
<xs:attribute name=”queuingdisc” type=”queuingDisciplineType” ↩

↪ use=”required”/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs:complexType name=”portType”>
<xs:complexContent>
<xs:extension base=”resourceType”>
<xs:attribute name=”type” type=”portItemType” use=”required”/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name=”semaphoreType”>
<xs:complexContent>
<xs:extension base=”namedResourceType”>
<xs:attribute name=”currentvalue” type=”xs:unsignedInt” use=”required”/>
<xs:attribute name=”maxvalue” type=”xs:unsignedInt” use=”required”/>
<xs:attribute name=”queuingdisc” type=”queuingDisciplineType” ↩

↪ use=”required”/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs:complexType name=”messageType”>
<xs:complexContent>
<xs:extension base=”resourceType”>
<xs:attribute name=”pattern” type=”xs:string” use=”required”/>
<xs:attribute name=”size” type=”xs:unsignedInt” use=”required”/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<!-- Nodes -->
<xs:complexType name=”nodesType”>

<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element name=”test_start” type=”nodeType”/>
<xs:element name=”test_fail” type=”nodeType”/>
<xs:element name=”test_pass” type=”nodeType”/>
<xs:element name=”partition” type=”namedNodeType”/>
<xs:element name=”process” type=”namedNodeType”/>
<xs:element name=”loop” type=”nodeType”/>
<xs:element name=”loopend” type=”nodeType”/>
<xs:element name=”complement” type=”complementNodeType”/>
<xs:element name=”Clear_Blackboard” type=”nodeType”/>
<xs:element name=”Create_Blackboard” type=”nodeType”/>
<xs:element name=”Create_Buffer” type=”nodeType”/>
<xs:element name=”Create_Event” type=”nodeType”/>
<xs:element name=”Create_Process” type=”nodeType”/>
<xs:element name=”Create_Queuing_Port” type=”nodeType”/>
<xs:element name=”Create_Sampling_Port” type=”nodeType”/>
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<xs:element name=”Create_Semaphore” type=”nodeType”/>
<xs:element name=”Display_Blackboard” type=”nodeType”/>
<xs:element name=”Read_Sampling_Message” type=”nodeType”/>
<xs:element name=”Reset_Event” type=”nodeType”/>
<xs:element name=”Set_Event” type=”nodeType”/>
<xs:element name=”Signal_Semaphore” type=”nodeType”/>
<xs:element name=”Start” type=”nodeType”/>
<xs:element name=”Stop” type=”nodeType”/>
<xs:element name=”Stop_Self” type=”nodeType”/>
<xs:element name=”Write_Sampling_Message” type=”nodeType”/>
<xs:element name=”Read_Blackboard” type=”timeoutNodeType”/>
<xs:element name=”Receive_Buffer” type=”timeoutNodeType”/>
<xs:element name=”Receive_Queuing_Message” type=”timeoutNodeType”/>
<xs:element name=”Send_Buffer” type=”timeoutNodeType”/>
<xs:element name=”Send_Queuing_Message” type=”timeoutNodeType”/>
<xs:element name=”Wait_Event” type=”timeoutNodeType”/>
<xs:element name=”Wait_Semaphore” type=”timeoutNodeType”/>
<xs:element name=”Set_Partition_Mode” type=”setPartitionModeNodeType”/>

</xs:choice>
</xs:complexType>

<xs:complexType name=”nodeType”>
<xs:attribute name=”id” type=”xs:string” use=”required”/> <!-- key -->

</xs:complexType>

<xs:complexType name=”namedNodeType”>
<xs:complexContent>
<xs:extension base=”nodeType”>

<xs:attribute name=”name” type=”xs:string” use=”required”/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs:complexType name=”timeoutNodeType”>
<xs:complexContent>
<xs:extension base=”nodeType”>

<xs:attribute name=”timeout” type=”xs:long” use=”required”/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs:complexType name=”complementNodeType”>
<xs:complexContent>
<xs:extension base=”nodeType”>

<xs:attribute name=”operation” type=”complementOperationType” ↩
↪ use=”required”/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name=”setPartitionModeNodeType”>
<xs:complexContent>
<xs:extension base=”nodeType”>

<xs:attribute name=”mode” type=”partitionModeType” use=”required”/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<!-- Parameters -->
<xs:complexType name=”parametersType”>
<xs:sequence>
<xs:element name=”assign” type=”assignType” minOccurs=”0” ↩

↪ maxOccurs=”unbounded”/>
</xs:sequence>

</xs:complexType>

<xs:complexType name=”assignType”>
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<xs:attribute name=”op” type=”xs:string” use=”required”/> <!-- reference -->
<xs:attribute name=”param” type=”xs:string” use=”required”/> <!-- reference -->

</xs:complexType>

<!-- Control Flow -->
<xs:complexType name=”controlflowType”>

<xs:sequence>
<xs:element name=”edge” type=”edgeType” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=”edgeType”>
<xs:sequence>
<xs:element name=”condition” type=”xs:string” minOccurs=”0” ↩

↪ maxOccurs=”unbounded”/>
</xs:sequence>
<xs:attribute name=”from” type=”xs:string” use=”required”/> <!-- reference -->
<xs:attribute name=”to” type=”xs:string” use=”required”/> <!-- reference -->

</xs:complexType>

<!-- enumeration types -->
<xs:simpleType name=”deadlineType”>

<xs:restriction base=”xs:string”>
<xs:enumeration value=”SOFT”/>
<xs:enumeration value=”HARD”/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name=”queuingDisciplineType”>
<xs:restriction base=”xs:string”>
<xs:enumeration value=”FIFO”/>
<xs:enumeration value=”PRIORITY”/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name=”portItemType”>
<xs:restriction base=”xs:string”>
<xs:enumeration value=”AFDX Queuing Output Port”/>
<xs:enumeration value=”AFDX Queuing Input Port”/>
<xs:enumeration value=”AFDX Sampling Output Port”/>
<xs:enumeration value=”AFDX Sampling Input Port”/>
<xs:enumeration value=”RAM Queuing Output Port”/>
<xs:enumeration value=”RAM Queuing Input Port”/>
<xs:enumeration value=”RAM Sampling Output Port”/>
<xs:enumeration value=”RAM Sampling Input Port”/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name=”complementOperationType”>
<xs:restriction base=”xs:string”>
<xs:enumeration value=”Read”/>
<xs:enumeration value=”Write”/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name=”partitionModeType”>
<xs:restriction base=”xs:string”>
<xs:enumeration value=”IDLE”/>
<xs:enumeration value=”COLD_START”/>
<xs:enumeration value=”WARM_START”/>
<xs:enumeration value=”NORMAL”/>

</xs:restriction>
</xs:simpleType>

</xs:schema>
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F.3 Test Suite Schema (ITML-B)

<?xml version=”1.0”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

xmlns=”http://www.scarlettproject.eu/tzi/testsuite-b”
xmlns:t=”http://www.scarlettproject.eu/tzi/testsuite-b”
targetNamespace=”http://www.scarlettproject.eu/tzi/testsuite-b”
elementFormDefault=”qualified”>

<xs:element name=”testsuite”>
<xs:complexType>
<xs:sequence>

<xs:element name=”configurations” minOccurs=”0” maxOccurs=”1”>
<xs:complexType>

<xs:sequence>
<xs:element name=”configuration” type=”configurationType” ↩

↪ minOccurs=”0” maxOccurs=”unbounded”/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name=”behaviours”>
<xs:complexType>

<xs:sequence>
<xs:element name=”behaviour” type=”behaviourType” minOccurs=”0” ↩

↪ maxOccurs=”unbounded”/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name=”name” type=”xs:string” use=”required”/>

</xs:complexType>

<xs:key name=”configurationKey”>
<xs:selector xpath=”t:configurations/t:configuration”/>
<xs:field xpath=”@id”/>

</xs:key>

<xs:keyref name=”configurationKeyRef” refer=”configurationKey”>
<xs:selector xpath=”t:behaviours/t:behaviour/t:configref”/>
<xs:field xpath=”@id”/>

</xs:keyref>
</xs:element>

<xs:complexType name=”configurationType”>
<xs:attribute name=”id” type=”xs:string” use=”required”/> <!-- key -->
<xs:attribute name=”name” type=”xs:string” use=”required”/>
<xs:attribute name=”file” type=”xs:string” use=”required”/>

</xs:complexType>

<xs:complexType name=”behaviourType”>
<xs:sequence>
<xs:element name=”configref” type=”configrefType” minOccurs=”0” ↩

↪ maxOccurs=”unbounded”/>
</xs:sequence>
<xs:attribute name=”name” type=”xs:string” use=”required”/>
<xs:attribute name=”file” type=”xs:string” use=”required”/>

</xs:complexType>

<xs:complexType name=”configrefType”>
<xs:attribute name=”id” type=”xs:string” use=”required”/> <!-- ref -->

</xs:complexType>
</xs:schema>
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F.4 Test Suite Schema (ITML-C)

<?xml version=”1.0”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

xmlns=”http://www.scarlettproject.eu/tzi/testsuite-c”
xmlns:t=”http://www.scarlettproject.eu/tzi/testsuite-c”
targetNamespace=”http://www.scarlettproject.eu/tzi/testsuite-c”
elementFormDefault=”qualified”>

<xs:element name=”testsuite”>
<xs:complexType>
<xs:sequence>
<xs:element name=”icds” minOccurs=”0” maxOccurs=”1”>

<xs:complexType>
<xs:sequence>

<xs:element name=”icd” type=”icdType” minOccurs=”0” ↩
↪ maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=”behaviours”>

<xs:complexType>
<xs:sequence>

<xs:element name=”behaviour” type=”behaviourType” minOccurs=”0” ↩
↪ maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name=”name” type=”xs:string” use=”required”/>

</xs:complexType>

<xs:key name=”icdKey”>
<xs:selector xpath=”t:icds/t:icd”/>
<xs:field xpath=”@id”/>

</xs:key>

<xs:keyref name=”icdKeyRef” refer=”icdKey”>
<xs:selector xpath=”t:behaviours/t:behaviour/t:icdref”/>
<xs:field xpath=”@id”/>

</xs:keyref>
</xs:element>

<xs:complexType name=”icdType”>
<xs:attribute name=”id” type=”xs:string” use=”required”/> <!-- key -->
<xs:attribute name=”path” type=”xs:string” use=”required”/>

</xs:complexType>

<xs:complexType name=”behaviourType”>
<xs:sequence>
<xs:element name=”icdref” type=”icdrefType” minOccurs=”0” ↩

↪ maxOccurs=”unbounded”/>
</xs:sequence>
<xs:attribute name=”name” type=”xs:string” use=”required”/>
<xs:attribute name=”file” type=”xs:string” use=”required”/>

</xs:complexType>

<xs:complexType name=”icdrefType”>
<xs:attribute name=”id” type=”xs:string” use=”required”/> <!-- ref -->

</xs:complexType>
</xs:schema>
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F.5 System Diagram Schema (ITML-A)

<?xml version=”1.0”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

xmlns=”http://www.scarlettproject.eu/tzi/system”
xmlns:s=”http://www.scarlettproject.eu/tzi/system”
targetNamespace=”http://www.scarlettproject.eu/tzi/system”
elementFormDefault=”qualified”>

<xs:element name=”system”>
<xs:complexType>
<xs:sequence>

<xs:element name=”sut_inputs” type=”signalsListType”/>
<xs:element name=”sut_outputs” type=”signalsListType”/>
<xs:element name=”constants” type=”constantsListType”/>
<xs:element name=”sut” type=”componentType”/>
<xs:element name=”testenv” type=”componentType”/>

</xs:sequence>
<xs:attribute name=”name” type=”xs:string” use=”required”/>

</xs:complexType>
</xs:element>

<xs:complexType name=”signalsListType”>
<xs:sequence>
<xs:element name=”signal” type=”variableType” minOccurs=”0” ↩

↪ maxOccurs=”unbounded”/>
</xs:sequence>

</xs:complexType>

<xs:complexType name=”constantsListType”>
<xs:sequence>
<xs:element name=”constant” type=”constantType” minOccurs=”0” ↩

↪ maxOccurs=”unbounded”/>
</xs:sequence>

</xs:complexType>

<xs:complexType name=”variablesListType”>
<xs:sequence>
<xs:element name=”variable” type=”variableType” minOccurs=”0” ↩

↪ maxOccurs=”unbounded”/>
</xs:sequence>

</xs:complexType>

<xs:complexType name=”variableType”>
<xs:attribute name=”name” type=”xs:string” use=”required”/>
<xs:attribute name=”type” type=”datatypeType” use=”required”/>
<xs:attribute name=”minimum” type=”valueType” use=”required”/>
<xs:attribute name=”maximum” type=”valueType” use=”required”/>
<xs:attribute name=”default” type=”valueType” use=”required”/>

</xs:complexType>

<xs:complexType name=”constantType”>
<xs:attribute name=”name” type=”xs:string” use=”required”/>
<xs:attribute name=”type” type=”datatypeType” use=”required”/>
<xs:attribute name=”value” type=”valueType” use=”required”/>

</xs:complexType>

<xs:simpleType name=”datatypeType”>
<xs:restriction base=”xs:string”>
<xs:enumeration value=”bool”/>
<xs:enumeration value=”char”/>
<xs:enumeration value=”int”/>
<xs:enumeration value=”float”/>
<xs:enumeration value=”timer”/>

</xs:restriction>
</xs:simpleType>
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<xs:simpleType name=”valueType”>
<xs:union memberTypes=”xs:decimal boolType”/>

</xs:simpleType>

<xs:simpleType name=”boolType”>
<xs:restriction base=”xs:string”>
<xs:enumeration value=”False”/>
<xs:enumeration value=”True”/>

</xs:restriction>
</xs:simpleType>

<xs:complexType name=”componentType”>
<xs:sequence>
<xs:element name=”variables” type=”variablesListType”/>
<xs:element name=”constants” type=”constantsListType”/>
<xs:choice minOccurs=”0”>
<xs:element name=”component” type=”componentType” maxOccurs=”unbounded”/>
<xs:element name=”statechart” type=”statechartType”>

<xs:key name=”locationsKey”>
<xs:selector xpath=”s:locations/s:*”/>
<xs:field xpath=”@id”/>

</xs:key>

<xs:keyref name=”locationsFromKeyRef” refer=”locationsKey”>
<xs:selector xpath=”s:transitions/s:transition”/>
<xs:field xpath=”@from”/>

</xs:keyref>
<xs:keyref name=”locationsToKeyRef” refer=”locationsKey”>
<xs:selector xpath=”s:transitions/s:transition”/>
<xs:field xpath=”@to”/>

</xs:keyref>

</xs:element>
</xs:choice>

</xs:sequence>
<xs:attribute name=”name” type=”xs:string” use=”required”/>

</xs:complexType>

<xs:complexType name=”statechartType”>
<xs:sequence>
<xs:element name=”locations” type=”locationsListType”/>
<xs:element name=”transitions” type=”transitionsListType”/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=”locationsListType”>
<xs:sequence>
<xs:element name=”start_location” type=”unnamedLocationType” minOccurs=”1” ↩

↪ maxOccurs=”1”/>
<xs:element name=”stop_location” type=”unnamedLocationType” minOccurs=”0” ↩

↪ maxOccurs=”unbounded”/>
<xs:element name=”location” type=”namedLocationType” minOccurs=”0” ↩

↪ maxOccurs=”unbounded”/>
</xs:sequence>

</xs:complexType>

<xs:complexType name=”transitionsListType”>
<xs:sequence>
<xs:element name=”transition” type=”transitionType” minOccurs=”0” ↩

↪ maxOccurs=”unbounded”/>
</xs:sequence>

</xs:complexType>

<xs:complexType name=”unnamedLocationType”>
<xs:attribute name=”id” type=”xs:string” use=”required”/> <!-- key -->
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</xs:complexType>

<xs:complexType name=”namedLocationType”>
<xs:complexContent>
<xs:extension base=”unnamedLocationType”>

<xs:sequence>
<xs:element name=”req” type=”xs:string” minOccurs=”0”/>
<xs:element name=”entry” type=”xs:string” minOccurs=”0”/>
<xs:element name=”do” type=”xs:string” minOccurs=”0”/>
<xs:element name=”exit” type=”xs:string” minOccurs=”0”/>

</xs:sequence>
<xs:attribute name=”name” type=”xs:string” use=”required”/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name=”transitionType”>
<xs:sequence>
<xs:element name=”req” type=”xs:string” minOccurs=”0”/>
<xs:element name=”cond” type=”xs:string” minOccurs=”0”/>
<xs:element name=”action” type=”xs:string” minOccurs=”0”/>

</xs:sequence>
<xs:attribute name=”id” type=”xs:string” use=”required”/>
<xs:attribute name=”name” type=”xs:string” use=”required”/>
<xs:attribute name=”from” type=”xs:string” use=”required”/> <!-- reference -->
<xs:attribute name=”to” type=”xs:string” use=”required”/> <!-- reference -->

</xs:complexType>

</xs:schema>
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List of Acronyms

AFDX Avionics Full Duplex Switched Ethernet
API Application Programming Interface
ARINC Aeronautical Radio, Inc.
AST Abstract Syntax Tree
BAG Bandwidth Allocation Gap
CAN Controller Area Network
CPM Core Processing Module
CSV Comma-Separated Values
DME Distributed Modular Electronics
DS Data Set
DSL Domain-specific Language
DSM Domain-specific Modelling
DSML Domain-specific Modelling Language
ETSI European Telecommunications Standards Institute
FDS Functional Data Set
FS Functional Status
FSS Functional Status Set
FSD Fire and Smoke Detection
ICD Interface Control Document
IFG Intermediate Format Generator
IMA Integrated Modular Avionics
IMA2G Second-generation IMA
IMR Intermediate Model Representation
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ITML IMA Test Modelling Language
MBT Model-based testing
MERL MetaEdit+ Reporting Language
MTC Main Test Component
OS Operating System
PA Platform Adapter
PDU Protocol Data Unit
RDC Remote Data Concentrator
REU Remote Electronics Unit
RPC Remote Power Controller
SA SUT Adapter
SD Smoke Detector
SSM Sign/Status Matrix
SUT System Under Test
TA Test Agent
TACP Test Agent Control Protocol
TCI TTCN-3 Control Interface
TCP Transmission Control Protocol
TE Test Executable
TRI TTCN-3 Runtime Interface
TSI Test System Interface
TTCN-3 Testing and Test Control Notation Version 3
UDP User Datagram Protocol
UML Unified Modeling Language
VL Virtual Link
XDR External Data Representation
XML Extensible Markup Language
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