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I Abstract 

As industrial products and wastes tend to end up in surface waters, it is inevitable that – with 

a rising production volume – nanomaterials (NM) and their by-products will enter the aquatic 

environment. Although we are increasingly gathering information about potential risks from 

NM for human and nature health, there is still a serious lack of knowledge about the 

environmental concentration, fate, bioavailability, biocompatibility, distribution in biota and 

food webs, and the hazard potential of NM in aquatic organisms. In order to assess potential 

risks for aquatic ecosystems, data from laboratory studies is important. However, classical, 

standardized test systems must be critically analyzed and adopted where necessary. 

This PhD thesis focuses on the investigation of iron oxide nanoparticles (IONP). Due to the 

increasing (experimental) application of iron-based NM in medicine, but especially in 

environmental remediation of contaminated groundwater and soil, tons of these NM will 

consequently be released to the environment with unknown risks to biota. For the 

assessment of effects of IONP, the big water flea Daphnia magna was used. Dahpnia was 

chosen since there are several standardized test protocols available. Furthermore, due to its 

sensitivity against most pollutants and its filter-feeding way of life it is a preferred organism 

for testing NM in aquatic ecotoxicology.  

A first study concerned the miniaturization of the Daphnia standard acute test, which allowed 

an enormous economization of the test due to reduced animals and substances needed. 

Furthermore, the possible prolongation of the acute test from 48 to 96 h was investigated and 

proven, since some NM are being presumed to affect organisms with a delay compared to 

dissolved chemicals. Another study focused on the influence of different surface coatings on 

the impact of IONP in daphnia. Each coating caused individual effects. Inhibitory effects 

could not be correlated to the hydrodynamic diameter or the type of stabilizing forces. Rather, 

effects were linked to decreasing colloidal stability and the release of iron ions from the core 

material. The effects of colloidal different IONP on life history parameters of daphnia were 

investigated with chronic tests. Increased mortality was observed indicating that acute test 

might dramatically underestimate the hazard potential of nanoparticles. Furthermore, 

colloidal instable IONP had stronger effects than colloidal stable ones. Acute and chronic 

effects were mainly attributed to physiological inhibitions of the daphnids such as disturbed 

ecdysis, increased energy demands due to IONP adsorbing to the daphnids’ exoskeleton 

and suppressed nutrient uptake. In another study, the use of IONP for remediation 

applications and the risk for the environment from this technique was studied. In combinatory 

acute toxicity tests cadmium, copper, resorcin and glyphosate were added to the IONP and 
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daphnids were expose to the mixtures. Results indicated high efficiency of IONP for heavy 

metals by significantly reducing their bioavailability and lower or no effects for the organic 

compounds. 
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II Zusammenfassung 

Oberflächengewässer sind oft Senken für industrielle Produkte und Abfälle. Mit steigenden 

Produktionsvolumina werden sich auch Nanomaterialien (NM) und ihre Nebenprodukte in der 

aquatische Umwelt anreichern. Auch wenn wir immer mehr Informationen über mögliche 

Risiken für Mensch und Umwelt erhalten, wissen wir noch relativ wenig über das Verhalten 

von künstlichen NM in der Umwelt, in welchen Konzentrationen diese dort auftreten, über 

ihre Bioverfügbarkeit, Biokompatibilität und die Anreicherung und Verteilung in Biota und 

Nahrungsnetzen sowie das Gefährdungspotential für aquatische Organismen. Um mögliche 

Risiken für aquatische Ökosysteme ermitteln zu können, sind Daten aus Laborstudien 

wichtig. Jedoch müssen die klassischen, standardisierten ökotoxikologischen Testsysteme 

kritisch analysiert und möglicherweise für die Testung von NM angepasst werden. 

Diese Dissertation fokussiert sich auf die Untersuchung von Eisenoxidnanopartikeln (IONP). 

Auf Grund ihrer zunehmenden (experimentellen) Anwendung in der Medizin, jedoch vor 

allem in der Sanierung von kontaminierten Grundwasser und Böden, werden künftig Tonnen 

eisenbasierter NM in die Umwelt entlassen – mit unbekannten Risiken für Biota. Für die 

Ermittlung der Effekte von IONP wurde der große Wasserflohe Dapnia magna gewählt, da es 

mehrere standardisierte Testprotokolle für diesen Organismus gibt. Daphnien ernähren sich 

durch filtrieren des Umgebungsmediums und reagieren sehr sensibel gegenüber vielen 

(toxischen) Substanzen, weshalb sie ein bevorzugter Organismus für die Testung von 

suspendierten NM sind. 

Die erste Untersuchung hatte die Miniaturisierung des akuten Daphnien-Standardtests zum 

Ziel, durch welche der Test erheblich ökonomisiert wurde, da weniger Tiere und 

Testsubstanzen benötigt wurden. Außerdem wurde die mögliche Verlängerung des Akuttests 

von 48 auf 96 h erprobt, da vermutet wurde, dass manche NM eine verzögerte Wirkung im 

Vergleich zu gelösten Chemikalien zeigen könnten. Die nächsten Untersuchungen 

konzentrierten sich auf die Einflüsse verschiedener Oberflächenstabilisatoren auf die 

Wirkung von IONP auf Daphnien. Inhibitorische Effekte konnten weder dem 

hydrodynamischen Durchmesser noch der Funktionsweise des Stabilisators zugerechnet 

werden. Die Effekte resultierten eher aus abnehmender kolloidaler Stabilität und der 

möglichen Freisetzung von Eisenionen. Der Einfluss von zwei IONP mit unterschiedlichen 

kolloidalen Eigenschaften auf verschiedene Parameter der Daphnienentwicklung wurde in 

chronischen Studien untersucht. Die Ergebnisse zeigten auf Grund erhöhter Mortalität der 

Daphnien, dass Akuttests möglicherweise das Gefahrenpotenzial von NM drastisch 

unterschätzen könnten. Des Weiteren wurden stärke Effekte für die kolloidal instabilen IONP 



 

 XII 

XII 

ermittelt. Akute und chronische Effekte waren hauptsächlich auf eine physiologische 

Beeinträchtigung der Daphnien, z.B. durch eine gestörte Häutung, erhöhten 

Energieverbrauch auf Grund von IONP, die an das Exoskelett der Daphnien adsorbierten, 

sowie reduzierte Nahrungsaufnahme, zurückzuführen. In einer weiteren Studie wurde der 

mögliche Einsatz der IONP in der Umweltsanierung und damit verbundene Risiken 

untersucht. In kombinatorischen Akuttests wurde jeweils Cadmium, Kupfer, Resorzin und 

Glyphosat den IONP-Suspensionen zugegeben und die Daphnien gegenüber den Mixturen 

exponiert. Die Ergebnisse deuteten auf eine hohe Effizienz der IONP bei den beiden 

Schwermetallen durch signifikant reduzierte Bioverfügbarkeiten hin. Auf die Wirkung der 

organischen Verbindungen hatten die IONP hingegen geringen bzw. keinen Einfluss. 
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V Structure of the Thesis 

This thesis is divided into four main chapters: (1) Introduction, (2) Materials and Methods, (3) 

Publications and Manuscripts and (4) the Summarizing Discussion, Conclusions and Future 

Perspectives.  

The first chapter introduces the reader to basic knowledge about nanomaterials and the 

application of the two nanomaterials which were investigated in this thesis – iron-based and 

silver nanomaterials – and their environmental relevance.  

The second part reviews “Materials and Methods” used for the investigations within the 

publications/manuscripts of this thesis to provide the reader with a more detailed background. 

It describes the synthesis of iron oxide nanoparticles, the applied silver nanoparticles, the 

analytical methods used for their physicochemical characterization, the biology of daphnids 

and the applied standardized and adopted tests systems. 

The third part presents the results obtained during the laboratory work of this thesis. This 

chapter is divided into five sub-chapters containing publications/manuscripts that describe a 

miniaturized and prolonged acute test system with Daphnia magna, acute and chronic effects 

of IONP and combinatory effects of IONP and selected contaminants in daphnids. The sub-

chapters 3.1 to 3.3 contain already published articles. The sub-chapter 3.4 contains a 

manuscript that is under revision for publication. The sub-chapter 3.5 contains a manuscript 

that was recently submitted to a journal. These manuscripts were included in the thesis in the 

form in which they have been submitted for publication. However, the format of the text and 

citations of the manuscripts was adjusted to the layout of this thesis and the figures and 

tables were positioned together with their legends directly after the respective results.  

The fourth part summarizes, discusses and concludes the key findings of the thesis. 

Furthermore, it presents an outlook and recommendations for future studies. 
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1.1 Nanomaterials: Properties and Impacts 

Many scientists call nanotechnology the key technology of the 21st century. By some 

estimates, nanotechnology even promises to far exceed the impact of the Industrial 

Revolution (Nel et al. 2006). But what is nanotechnology? “Nano” derives from the Greek 

word “nanos”, which means dwarf. By definition, nanomaterials (NM) have structures with at 

least one dimension in the range of 1 to 100 nm (e.g. Lespes & Gigault 2011, Moore 2006, 

Stone et al. 2010, Weinberg et al. 2011, Wiesner et al. 2009). This is a very arbitrary 

definition since 100 nm do not represent a physicochemical threshold that justifies the 

distinction of NM and larger (bulk) materials. Therefore, another definition says that, in order 

to be a NM, it must have properties that are different from the bulk material of the same 

chemical composition (Zänker & Schierz 2012). These “non-bulk” properties usually only 

occur in dimensions under 30 nm (Auffan et al. 2009).  

The most prominent NM are nanoparticles (NP), often (±) spherical particles with all three 

dimensions between 1 and 100 nm (ISO 2008) and manifold possible morphologies (Henry 

2005). In this dimension, the surface-to-volume ratio is highly increased; more atoms are 

distributed on the surface in relation to the volume. By this, the reactive surface is highly 

increased compared to bulk materials, which can substantially modify the materials’ behavior. 

At the nanoscale the laws of physics seem no longer to apply: materials abruptly change 

their characteristics, e.g. “opaque substances, like copper, become transparent; stable 

elements, such as aluminum, burst into flames; normally safe substances, including latex, 

become poisonous; and gold turns to liquid at room temperature” (Brown 2007). However, 

the unique advantageous properties of NM also raised concern due to unknown or 

unexpected effects at the bio-nano interface (Maurer-Jones et al. 2013). 

Today, nanotechnology is already present in numerous consumer products, although the 

risks to humans and the environment have not been fully assessed. In May of 2014, the 

Nanotechproject recorded 1885 consumer products containing nanomaterials 

(Nanotechproject 2014). The number of unreported cases might exceed this number many 

times over.  

Important NM are carbon nanotubes (CNT), fullerenes, nanowires, TiO2, ZnO, CeO2, and 

silica NP, Fe0, Ag0, and Au0 NP, and dendrimers (Zänker & Schierz 2012). The most 

prominent application of NM in consumer products is nano-silver due to its anti-bacterial 

properties (Rizzello & Pompa 2014) and nano-titanium dioxide as physical UV-blocker in 

sunscreens (Nohynek et al. 2007, Serpone et al. 2007). NM can also be found in 

colors/paints, self-cleaning surfaces, scratch-resistant coatings, fibers and fascicles in fabrics, 



Introduction 

 3 

3 

high-performance insulation and other fillers, tires, catalysts, semiconductors, 

microelectronics, and medical applications. In the broad field of food technology, NM are 

important for the optical appearance as well as for the taste of many products (Frimmel & 

Delay 2010, Wiesner et al. 2006) 

The human skin builds a dense barrier through which an uptake into the lymphatic system or 

the blood seems not to appear. NP only penetrate the first 3-5 corneocyte layers of the 

stratum corneum (Gontier et al. 2008). Lademann et al. (1999) and Mahe et al. (2009) 

showed that NP can be accumulated in the hair follicle canals and may pass through the skin 

on this route (Nohynek et al. 2007). Furthermore, Lee et al. (2013b) found evidence that 

negatively charged NP might be able to pass the stratum corneum and penetrate into deeper 

skin cells when the exposure time is increased from 24 to 48 h. Via the air and lung exposure, 

NP were shown to easily enter the blood system and to be quickly distributed in the whole 

organism (Borm & Kreyling 2004, Nemmar et al. 2002). In the digestive tract, nano- and 

microsized particles are known to be absorbed by the epithelial mucus and to pass into the 

lymphatic or the blood system. NP are known to be able to pass the blood-brain-barrier and 

even to enter cells (Oberdörster et al. 2005). This raises much concern about their impact on 

humans and organisms, especially in accidental administration. Depending on their 

characteristics, NM have a high potential to impact human health.  

Possible toxicity mechanisms of NM may include (among others) (1) disruption of 

membranes or membrane potentials, (2) formation of reactive oxygen species (ROS) and 

oxidative stress, (3) induction of apoptosis and necrosis and induction of stress-related 

genes, and (4) oxidation and denaturation of proteins and other biomolecules (Fent 2010, 

Gwinn & Vallyathan 2006). However, their possible deep penetration into the human body 

also opens the possibility for new medical applications e.g. as drug delivery system (De Jong 

& Borm 2008, Wilczewska et al. 2012). 

Industrial products and wastes tend to end-up in surface waters. With rising production 

volumes, also nanoscaled materials and their by-products will consequently enter aquatic 

systems with unknown risks to biota. In the aquatic milieu there are multiple exposure 

pathways, which might even occur simultaneously. Nanoparticular matter can be assimilated 

via the gills and other surface epithelia (Moore 2006, Mueller & Nowack 2008). The same 

NM can also enter organisms via direct ingestion or passively by eating contaminated food 

(Oberdörster et al. 2005). Potential environmental exposure routes of NP are shown in Fig. 1. 
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The determination of the (environmental) hazard potential of NP still poses a big challenge, 

since NP cannot be treated like dissolved chemicals. In general, potential risks are not just 

related to the substance and the mass concentration as in classic analytical chemistry and 

(eco)toxicology (Crane et al. 2008). The fate and transport of NM in the environment, as well 

as their bioavailability and interactions on the bio-nano interface, are determined by their 

physicochemical properties such as size, size distribution, shape, concentration, material 

composition, surface charge and functionalization, coating materials, interaction with natural 

NP, organic matter and other chemicals, and the colloidal stability, which is influenced by 

photochemical transformation, oxidation and reduction, dissolution, precipitation, 

agglomeration, adsorption, desorption, combustion, biotransformation and abrasion, among 

other bio-geochemically driven processes (Nowack et al. 2012, Zänker & Schierz 2012).  

Fig. 1: Exposure routes of NP. 
Bottom: Scheme of the various 
routes of exposure, uptake and 
distribution of NP in the enviroment 
(changed according to Oberdörster 
et al. 2005). Top: Exemplary 
illustration of exposure of aquatic 
organisms. The same substance 
(or NM) can simultaneously affect 
the organism via different exposure 
routes. 
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Although the modeling of environmental characteristics of engineered NP (ENP) is 

continuously advancing, there is still a serious lack of knowledge about their actual release 

rates and their fate in the environment as well as their risks to biota. For the latter more 

laboratory data is required. However, even on the laboratory scale, the testing of ENP still 

poses a major challenge to ecotoxicologists. Some considerations concerning standardized 

(ecotoxicological) tests systems have implicated that they might not be appropriate for the 

investigation of hazard potentials of NM (Crane et al. 2008), since these classic test systems 

were designed for the testing of dissolved chemicals. Further detailed analytical data will be 

needed. For example the way NP are dispersed into, and maintained within, the test medium, 

the measurement of NP (e.g. size, size distribution, charge) within the tests, and abiotic 

factors are important additional information for a better understanding of potential 

implications of NP (Crane et al. 2008, Handy et al. 2012a). Therefore, test operating 

procedures will have to be critically revised and adopted to the unique characteristics of NM 

as far as possible. 

 

1.2 nanoToxCom 

The nanoToxCom Graduate School was founded in 2008/2009 at the University of Bremen. 

It provided eight PhD scholarships which were funded by the Hans-Böckler Foundation (of 

the Affiliation of German Labor Unions). The name nanoToxCom derived from the idea of 

testing the single and combinatory toxicity of NP. Combinatory toxicity can be understood in 

different ways: (1) the harmful effects of NP and the materials used to improve their 

properties such as coating materials; (2) the combined exposure of NP and other toxic 

substances (secondary stressor); and (3) the harmful effects of products resulting from 

interaction between NP and additional substances. 

nanoToxCom aimed to contribute to a sound hazard assessment for manufactured NP by 

considering their whole life cycle from synthesis to application and disposal to gain deeper 

insights into the requirements for environmentally more benign particles. nanoToxCom thus 

pursued two general objectives:  

1) The hazard assessment of selected metallic and metal-oxidic nanoparticles (silver 

and iron (oxide) NP) in combination with other physical/chemical stressors in relation 

to selected exposure scenarios. 

2) The derivation of recommendations for synthesis, processing and distribution of NP. 
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The group activities were based on the special expertise generated by the synergistic 

interactions of different disciplines such as biochemistry, organic chemistry, physical 

chemistry, environmental chemistry, risk assessment, process engineering as well as aquatic 

and soil ecotoxicology (http://www.nanotoxcom.uni-bremen.de).  

 

1.3 Applications of Iron Nanomaterials 

Iron-based NM are applied due to their unique characteristics, such as their small size, 

surface chemistry and magnetic properties. Besides some special applications e.g. in 

magnetic seals and inks, data storage, and ferrofluids (Teja & Koh 2009), the two most 

prominent application fields of iron NM are in medicine and in environmental remediation. 

The following section provides a short introduction to these two application areas. 

 

1.3.1 Medical Application of Iron (oxide) Nanoparticles 

In medical applications, usually iron oxide NP (IONP) are used. Due to their 

superparamagnetic properties and relatively low harmful effects, IONP are under 

investigation for several medical applications (Pankhurst et al. 2009, Roca et al. 2009).  

The most prominent application of IONP might be the use as a contrast agent in magnetic 

resonance imaging (MRI) (Chaughule et al. 2012, Qiao et al. 2009). Currently, gadolinium 

(Gd)-based contrast agents dominate in MRI. However, Gd itself is toxic and can induce 

negative side-effects which are clinically referred to as nephrogenic system fibrosis. This 

disease has been found primarily in patients with renal insufficiencies (Berry & Green 2010) 

with symptoms of joint pain, muscle weakness and skin problems. Toxicity is related to the 

release of Gd-ions from the chelated Gd-complex and metal toxicity (Grobner & Prischl 2007). 

In contrast, IONP seem to be less toxic and can significantly enhance the contrast in some 

MRI applications. IONP-based contrast agents have a longer half-life, which is advantageous 

for repeated imaging without subsequent administration (Winer et al. 2011). IONP are able to 

pass the blood-brain barrier and can persist in the brain for several days (Murillo et al. 2005), 

which opens up the possibility for repeated or long-term investigations, e.g. of brain tumors 

without renewal of the contrast agent (Geppert 2012). 

IONP (and other NP) are also tested as controlled drug delivery systems. The nanocarrier 

can be functionalized with recognition ligands for cell-specific targeting. Here, drugs are 

precisely transported to the target location, consequently reducing the required doses 
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(Wilczewska et al. 2012). Having the ability to pass the blood-brain barrier, NP were already 

shown to serve as a possible vehicle for drug delivery to the brain, e.g., IONP were 

successfully used as a drug delivery vehicle for MRI-monitored magnetic labeling of brain 

tumors (Chertok et al. 2008). Combining the possibility of cell targeting with the MRI- 

enhancing properties, IONP can also be used for precise tissue and tumor labeling and 

imaging (Cromer Berman et al. 2011). 

Another application also uses the superparamagnetic properties of IONP for anti-tumor 

treatment. IONP are directly injected into the tumor. With a high frequency magnetic field the 

IONP are set into fast oscillation, which induces hyperthermia of the surrounding tumor 

tissue (Yu et al. 2013).  

 

1.3.2 Environmental Application of Iron Nanomaterials 

Pump-and-treat methods were often applied in the past for the environmental remediation of 

contaminated groundwater. While they are very effective, they are also very cost-intensive 

due to their huge impact on the environment. Alternatively, below-ground (in situ) 

remediation with thermal treatment or permeable reactive barriers (PRB) is possible. PRB 

are composed of materials which degrade or immobilize contaminants when the groundwater 

passes through the barrier. Currently, injection methods are often preferred due to their high 

cost efficiency and low impact on the environment compared to classic treatment methods. A 

reactive substance is injected into groundwater or soil directly into the contamination plume 

(Crane & Scott 2012, Karn et al. 2009).  

The experimental application of (iron) NM for in situ injection methods has increased in the 

past decade. Due to the highly enlarged surface of nanostructures, they provide a much 

higher reactivity compared to granular materials (Karn et al. 2009, Wang & Zhang 1997). The 

use of a smaller mass of material to achieve equal or even better results can theoretically 

conserve both raw materials and energy with significant associated cost savings (Crane & 

Scott 2012, Masciangioli & Zhang 2003). 

In water, the movement of microscale particles is largely controlled by gravity-induced 

sedimentation because of their size and high density. In contrast, nanoscale particles are so 

small that their physical movement and transport are dominated by Brownian movement or 

random motion. The small size of NP allows the material to deeply penetrate into soils, and it 

can be more easily injected into shallow and deep aquifers (Karn et al. 2009, Noubactep et al. 

2012). NM originating from wet synthesis can be directly injected as a liquid into the 
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contaminated subsurface. Furthermore, NP are often coated with a stabilizing material, e.g. 

polymers, to increase long-term colloidal stability for higher efficiency (Henn & Waddill 2006). 

Additionally, the coating material itself can have beneficial catalytic properties, whereby the 

NP may act as a carrier vehicle (see publication 3 of this thesis). However, in soil systems 

the risk of uncontrolled NP distribution and drift might be overestimated since transport 

distances are limited to a few centimeters, primarily due to heteroaggregation with soil 

surface coatings (Emerson et al. 2014, Gomes et al. 2013, Lin et al. 2010). 

For environmental remediation, often iron-based NM are used, which usually consist of 

zerovalent iron (Fe0/nZVI) because of their high redox reactivity (Tang & Lo 2013). nZVI was 

found to be 10 – 1,000 times more reactive than granular iron (Wang & Zhang 1997).  

Depending on the contaminant chemistry, various possible contaminant removal pathways 

have been identified, including sorption, complexation, (co)precipitation and surface 

mediated chemical reduction (Crane & Scott 2012). The authors summarized that iron NP 

 

Fig. 2: Simplified scheme of the application of iron-based NP (INP) for the remediation of 
contaminated groundwater. INP are injected into the plume. Due to their 
superparamagnetic properties INP may even be recovered later by magnetic treatment. 
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“are effective for the removal or degradation of a wide range of chemical pollutants, 

including: ß-lactam and nitroimidazole-based antibiotics; azo dyes; chlorinated solvents; 

chlorinated pesticides; organophosphates; nitroamines; nitroaromatics; p-chlorophenol; 

polybrominated diphenl ethers; polychlorinated biphenyls; inorganic anions, including nitrate 

and perchlorate; alkaline earth metals, including barium and beryllium; transition metals, 

including chromium, cobalt, copper, lead, molybdenum, nickel, silver, technetium and 

vanadium; post-transition metals, including zinc and cadmium; metalloids, including arsenic, 

selenium; and actinides, including uranium and plutonium” (Crane & Scott 2012 and citations 

therein).  

Due to their low toxicity (compared to other substances, e.g. reactive chemical oxidants) and 

their efficiency in relation to a broad range of pollutants, iron NP are increasingly applied in 

environmental remediation (Nanotechproject 2014). Injected in the plume, they build a highly 

efficient reaction zone in the groundwater stream (Fig. 2). Due to their superparamagnetic 

properties, iron NP might even be recovered by magnetic treatment (Rickerby & Morrison 

2007). In this way, pollutants adsorbed to the NP can be completely removed even though 

this technique might be more relevant for the treatment of contaminated surface or sewage 

water (Brame et al. 2011, Tang & Lo 2013). 

Although nZVI is referred to as being metallic, each particle exists in natural conditions with a 

thin but encapsulating layer of surface Fe oxides (Crane & Scott 2012) due to the following 

redox reactions: 

Fe0
(s) + 2H2O(aq)  Fe2+

(aq) + H2(g) + 2OH-
(aq) 

2Fe0
(s) + 4H+

(aq) + O2(aq)  2Fe2+
(aq) + 2H2O(l) 

(s = solid; aq = aqueous; g = gas; l = liquid; Matheson & Tratnyek 1994) 

The corrosion products can be Fe hydroxides or oxides, which might also impact the 

retention of contaminants, transformation products, and their colloidal stability (Noubactep et 

al. 2012). Since Fe oxides are the predominant form of iron-based NM in natural 

environments, the focus of the investigations in this thesis is on environmentally more 

relevant iron oxide nanoparticles (IONP). 

 

1.4 Potential Environmental Risks from Iron Nanomaterials 

By the application of iron NM for environmental remediation, tons of nanosized material are 

consequently released to the environment with unknown risks to organisms. “The same 
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properties that make iron NM useful for the environmental application, in particular their small 

size and their high redox reactivity, also make them potentially harmful to organisms” (Nel et 

al. 2006). Their potential environmental risks in situ are largely unknown (Kharisov et al. 

2012). Most studies have focused on the in vitro toxicity of iron NM (Grieger et al. 2010, and 

references there, Soenen & De Cuyper 2010, Tang & Lo 2013). The predominant 

mechanisms for cellular damage are considered to result from iron reduction leading to the 

formation of reactive oxygen species (ROS). Within cells, ROS can cause oxidative stress, 

lipid peroxidation, and DNA damage (Mahmoudi et al. 2012, Xia et al. 2006). 

In nature, several transformation processes are possible, such as: (1) chemical, (2) physical 

and (3) biological transformation and (4) interaction with macromolecules – all altering the 

fate, transport, and toxicity of NM (Lowry et al. 2012). Under natural conditions, Fe0 is quickly 

reduced to Fe oxides/hydroxides (Crane & Scott 2012). This natural “aging” of nZVI leads to 

corrosion products (IONP) with changed properties. In general, environmentally processed 

iron NM present a significantly reduced risk to organisms since iron oxides themselves are 

less (cyto)toxic than nZVI (Phenrat et al. 2008). Furthermore, the volume of any corrosion 

product is higher than that of Fe0 (Noubactep et al. 2012), thus increasing the iron NP size. 

The (nano)toxicity of voluminous corrosion products might decrease, as the oxidized iron NP 

might lose their nano properties.   

However, NP are often functionalized with a stabilizing surface coating to increase their 

colloidal properties and longevity, and therefore their mobility (Kim et al. 2009). The coating 

can significantly influence the physicochemical properties of NP and therefore also their risk 

to biota. Given the anticipated higher hazard potential of smaller NP, a prolonged size-

stabilization might greatly increase their potential impacts. In order to achieve a full risk 

assessment – not only of iron NM – it is essential to investigate the effects of both the core 

and the coating materials, both alone and in combination (as the final product). The 

applications of iron NM for remediation have already proven their efficiency on the laboratory 

scale (Karn et al. 2009, Khin et al. 2012). Potential risks from iron NM should normally not 

outweigh their advantages. Nevertheless, effects of the endproducts and by-products of a 

remediation have not been fully investigated and there is a serious lack of knowledge on the 

long-term data, including the persistency and migration of iron NM in natural environments 

(Grieger et al. 2010). 

However, IONP are less toxic than other metallic NP due to the low toxicity of Fe (Zhang et al. 

2012). This allows for an investigation of the effect of the NPs’ size, form, particle 

concentration, coating material, surface charge, and colloidal properties on organisms 
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without the influence of a highly toxic core material or other effects, e.g. induced by released 

toxic metal ions. 

 

1.5 Silver Nanoparticles: Applications and Implications 

Due to their antimicrobial properties, nano-silver (AgNP) is already present in many different 

(consumer) products ranging from biomedical applications, domestic appliances and 

cleaning products, functional textiles, cosmetics and personal care products (Allen et al. 

2010, Arvizo et al. 2012, Chaloupka et al. 2010, Kokura et al. 2010, Marambio-Jones & Hoek 

2010, Siripattanakul-Ratpukdi & Furhacker 2014). In May of 2014, the Nanotechproject 

database reported 424 registered consumer products worldwide containing nano-silver, 

which is about 25 % of all registered applications (Nanotechproject 2014). 

Due to their main application in biocide products, most studies of AgNP focused on the in 

vitro toxicity in microorganisms or cell systems as reviewed by Arvizo et al. (2012). Reidy et 

al. (2013) concluded that AgNP (cyto-) toxicity can be attributed to different mechanisms: (1) 

direct interactions (adhesion) of AgNP with cell surfaces, altering the membrane properties or 

inhibiting cell wall embedded components (Dasari & Hwang 2010, Wong & Liu 2010); (2) 

AgNP penetrating inside the cell and interruption of the cell metabolism; (active) transport 

might be easier for uncharged AgNP than for charged Ag+ (Choi & Hu 2008); (3) dissolution 

of AgNP releasing highly toxic silver ions (Ag+) (Asghari et al. 2012, Jo et al. 2012), which 

can interact with sulphur-containing proteins in the (bacterial) cell wall and phosphorus-

containing compounds such as the DNA (Magdolenova et al. 2014, Morones et al. 2005, 

Samberg et al. 2011, Wong & Liu 2010); (4) the formation of ROS, which can be formed by 

either AgNP (due to oxidation processes) and Ag+ inside and outside the cells, inducing 

oxidative stress (Choi & Hu 2008, Hwang et al. 2008, Marambio-Jones & Hoek 2010, Yang 

et al. 2013); and (5) the disruption of the transmembrane electrochemical gradient by 

disturbing the ATPase (and consequently the ATP synthesis), leading to cell death (Bianchini 

et al. 2005, Cao et al. 2011, Grosell et al. 2002). 

The existing results on the toxicity of AgNP are very heterogeneous. Some authors found 

that AgNP were more toxic than Ag+ (Amato et al. 2011, Choi & Hu 2008, Lok et al. 2007), 

others found contrary effects (Levard et al. 2012, Navarro et al. 2008b, Sotiriou & Pratsinis 

2010, Yang et al. 2013, Zhao & Wang 2011). The mode of toxicity highly depends on the 

specific physicochemical properties of AgNP such as size, shape, crystallinity, surface 

charge, surface coating, elemental composition, solubility, dissolution, adsorption and 

agglomeration (El Badawy et al. 2011, Levard et al. 2012, Siripattanakul-Ratpukdi & 
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Furhacker 2014), all of which define both bioavailability and biocompatibility. Furthermore, 

the (microbial) test species of choice can highly influence the outcomes due to the very 

different sensitivities against Ag exposure (Guzman et al. 2012, Marambio-Jones & Hoek 

2010). 

Because of their applications, AgNP are mainly released to waste waters. As a consequence, 

Ag may significantly damage microorganism communities in sewage treatment plants, 

leading to the failure of the treatment (Hou et al. 2012, Siripattanakul-Ratpukdi & Furhacker 

2014, Yang et al. 2013). Their potential impacts in vitro and in vivo were compared by 

Bondarenko et al. (2013). Environmentally relevant test species (crustaceans, algae and fish) 

were most sensitive, and – surprisingly – AgNP were less toxic to bacteria. This would 

indicate the need to be careful about the applications of AgNP, since there are still unknown 

risks for non-target organisms. 

 

1.6 Objectives 

The presented studies of this thesis aim to examine several aspects of IONP impacts on the 

big water flea Daphia magna, one of the preferred test organisms in aquatic nanotoxicology. 

Due to the low toxicity, it was hypothesized that IONP might only significantly harm daphnids 

at high concentrations. Due to the low toxicity of iron (oxide), IONP are useful for the 

investigation of nano-effects without the influence of additional toxicity, e.g. toxicity induced 

by ions decomposed from the metallic cores. 

The major objectives where: 

1. Toxicity of Different IONP 

Due to the low toxicity of iron (oxides), the effects of IONP on organisms are determined 

by their physicochemical properties such as surface charge or colloidal stability. These 

properties are influenced and controlled with specific surface functionalizations 

(coatings). To verify this assumption, acute tests with differently coated IONP have been 

performed. 

2. Combinatory Toxicity 

Iron-based NP are applied for the environmental remediation due to their ability to 

process and bind/complex various toxic contaminates. Not much is known about the 

risks or benefits of remediation processes for biota. Remediation products might 

represent an increased risk to the environment. For example, IONP might mobilize 
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potentially immobile chemicals and serve as a transport vehicle to organisms. For the 

investigation of combinatory effects, IONP were incubated with four different potential 

target contaminates and afterwards acute toxicity tests were performed and compared to 

the toxicity of the single substances. 

3. Long-term Toxicity 

Often acute tests underestimate the risk from substances. Especially (metallic) NP often 

induce effects much later than their corresponding dissolved ions. Thus, investigations of 

long-term effects are important to understand how NP might affect the life history 

responses of organisms. 21-day chronic exposure tests of D. magna with different IONP 

were conducted and multiple development and reproduction parameters were 

investigated. 

4. Accumulation and Depuration 

For filter-feeding organisms such as daphnids, the main exposure route appears via 

ingestion. It should thus be expected that the effects of NP exposure will mainly be 

related to the intestines. However, the ingestion of NP is not synonymous with the 

bioaccumulation of NP. Therefore, NP also have to be enriched in internal compartments 

such as the organs. In order to investigate the potential bioaccumulation of IONP in 

D. magna, ingestion and depuration tests were performed by measuring the iron 

contents of exposed and unexposed individuals over a certain period of time. 

5. Test Systems 

Standardized tests systems were developed for the testing of dissolved chemicals. Often, 

they are only partially effective for the investigation of NP due to the NP unique 

characteristics. Additional analytics are needed for a better understanding of NP effects. 

The daphnia tests were performed according to OECD standard protocols and checked 

for their suitability in NP testing. It was investigated how these tests might be adopted, 

e.g. by prolonging or miniaturizing the acute toxicity test. Due to their physicochemical 

characteristics AgNP were used as a reference NM. 
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2.1 Synthesis of Iron Oxide Nanoparticles (IONP) 

There are various ways of producing NM. They can mainly be divided into two approaches to 

the synthesis of NM and the fabrication of nanostructures: top down and bottom up. Top-

down techniques are typically based on the attrition or milling of materials. Although this is a 

relative simple production method, it has several disadvantages such as imperfect surface 

structures and difficult size distribution control. In contrast, bottom-up approaches refer to the 

building up of material from atoms, molecules, or clusters. These methods are often more 

complex, but they bring the advantage of highly controlled size distribution, surface structure 

and particle shape (Cao 2004). 

The synthesis of all IONP used within the studies of this thesis were one-pot reactions 

though bottom-up syntheses. All IONP were produced by Darius Arndt, PhD student and a 

member of the nanoToxCom graduate school. He developed the synthesis of several 

differently functionalized, water-soluble IONP (cf. Arndt et al. 2012). The synthesis was 

based on the thermal decomposition of iron(III) acetylacetonate (Fe(acac)3) in diethylenglycol 

(DEG). By varying the synthesis temperature between 453 and 523 K, the primary particle 

diameter could be controlled. Primary particle diameters ranged from 4 to 8 nm. All IONP 

obtained by this method mainly consisted of magnetite (Fe3O4). 

In order to guarantee high colloidal stability, the IONP were functionalized with different 

surface coatings. Most studies in this thesis investigated polyvinylpyrrolidone (PVP)-coated 

IONP (PVP-IONP). PVP is a polymer by which a steric repulsion of the NP is achieved. It 

provided the best (long-term) colloidal stability of all stabilizers. By the addition of PVP to the 

reaction mixture, its binding to the IONP was achieved during the NP formation process.  

To separate the IONP from DEG and possible residues, acetone was added after cooling the 

synthesis product and the mixture was centrifuged. The supernatant was decanted. The 

precipitated IONP were air-dried and re-suspended in water. 

Other ligands were attached to the IONP in a post-synthetic process. After purification, the 

IONP were re-suspended in a dispersion containing the respective ligand. Residual ligand 

material was removed by precipitating the IONP with acetone and magnetic treatment of the 

solution. The ligands ascorbate (ASC), citrate (CIT), and dextrane (DEX) delivered an 

appropriate colloidal stability of IONP in the Daphnia culturing medium (Elendt M7). Other 

coatings used by D. Arndt were not tested because of their insufficient colloidal stability in the 

medium. These IONP quickly agglomerated and settled, which would have reduced their 

bioavailability to (pelagic) organisms such as Daphnia. For this reason, they were not 

relevant to the questions examined in this thesis. 
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2.2 The Applied Silver Nanoparticles 

AgNP were used as a reference material in publication 1. They were chosen, since AgNP are 

known to show typical (critical) behaviours of metallic NP in the aquatic environment, e.g. 

agglomeration, adsorption to surfaces and micro particles (such as algae) as well as 

decomposition and release of (toxic) ions (Lau et al. 2013, Reidy et al. 2013, Siripattanakul-

Ratpukdi & Furhacker 2014). 

The applied NM-300K AgNP are part of the priority list (NM-Series) of the Representative 

Manufactured Nanomaterials (RMN) of the European Commission Joint Research Centre 

(JRC) supported by the Organization for Economic Co-operation and Development (OECD) 

Working Party on Manufactured Nanomaterials (WPMN) Sponsorship Program. They were 

purpose-made for measurement and testing for hazard identification, risk and exposure 

assessment studies. NM-300K is nano-silver with a primary particle diameter <20 nm. NM-

300K is purchased as a colloidal dispersion with a nominal silver content of 10 w/w%. The 

aqueous dispersion contains stabilizing agents consisting of 4% w/w% each of 

Polyoxyethylene Glycerol Trioleate and Polyoxyethylene (20) Sorbitan mono-Laurat (Tween 

20) (Klein et al. 2011).  

NM-300K was also used in the “UMSICHT” project partly carried out at the UFT 

(http://www.umsicht.uni-bremen.de), which gave me the opportunity to rely on existing 

knowledge – especially on the physicochemical characterization – from the project within the 

presented account. 

 

2.3 Nanoparticle Analyses 

In order to determine and to interpret effects of NP a detailed characterization of the 

physicochemical properties is essential. Size, size distribution, concentration, colloidal 

stability and agglomeration, surface charge, and degree of decomposition are parameters 

that always have to be tracked before, during and after the ecotoxicological testing of NP. 

The following section will provide a short introduction on the analytical methods applied in 

this thesis. 

2.3.1 Size Determination 

Light scattering methods, such as dynamic light scattering (DLS), belong to the most 

commonly used methods for measuring the size of colloids and NP (Kato et al. 2009, Lopez-

Serrano et al. 2014).  
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DLS allows a noninvasive characterization of particle emulsions and molecules dispersed or 

dissolved in liquids (Zanetti-Ramos et al. 2010). Usually, no further preparation of a sample 

is needed. DLS is a sensitive, accurate and reliable method to track the hydrodynamic 

diameter of colloids between 0.6 nm and 7 µm (Beckman Coulter 2010). The hydrodynamic 

diameter can be explained as the diameter of the dispersed particle and its surrounding 

dispersion molecules, which interact due to electrostatic forces. In the case of water, 

dispersed particles are always surrounded by a hydrate shell. Furthermore, dissolved ions 

can also interact with the particles surface. 

DLS also provides information on the size distribution within a colloidal dispersion, even 

though it is more powerful in monomodal particle populations. In complex particle systems 

with multiple size fractions, bigger particles often mask the signal of smaller ones (Zänker & 

Schierz 2012). At times ultrafiltration of the sample was necessary to measure smaller 

particle fractions. 

During measurement, the particles are irradiated with a laser light, so that the scattered light 

emitted from the particles is detected. Due to Brownian motion or gravity, particles are 

always in motion with movement speeds which are dependent on the particles size. 

Consequently, the relative positions of particles changes in time, and thus the time 

fluctuations of the scattered light intensity are observed and analyzed using an 

autocorrelation function (Beckman Coulter 2011). 

DLS measures the hydrodynamic diameter, which should not be understood as the NPs’ 

primary/physical diameter. Similarly, it does not provide information about the core-shell 

structure or the shape of NP. For these measurements, more invasive methods such as  

transmission electron microscopy (TEM) must be applied. TEM was used by Darius Arndt 

during the development of the particles’ synthesis as a quality control (Arndt et al. 2012). Due 

to the invasive preparation of the NP, e.g. sample drying, TEM cannot reflect the NPs’ in situ 

state (Zänker & Schierz 2012). Since NP underlie multiple transformation processes in 

ecotoxicological media and tests, such as swelling, agglomeration, sedimentation and 

dissolution, size-related measurements of this thesis focused on DLS measurements. 

 

2.3.2 Surface Charge 

The interactions of NP and biological surfaces and their colloidal properties highly depend on 

their surface charge. This is determined by the surface composition such as the surface 
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material and oxidation, the functionalization respectively the coating, and the interacting ions 

and other molecules.  

Dispersed particles usually have a positive or negative surface charge. In order to sustain 

electric neutrality, charged particles are surrounded by ions with an opposite charge, building 

an “electrical double layer”. The concentration of the counter-ions gradually decreases with 

distance from the particles’ surface. In the area far from the surface, positive and negative 

ions exist in equal numbers to maintain electric neutrality. Thus, the diffuse electrical double 

layer around a charged particle can be divided into two layers: (1) the layer of ions closely 

attached to the surface, also called the “Stern layer”; and (2) the “diffuse layer” outside the 

Stern layer. The zone between the Stern and the diffuse layer is called “Slipping plane” 

(Beckman Coulter 2011, Handy et al. 2008b). 

The surface charge is usually measured via the  ζ-potential (zeta). It is defined as the 

potential at the slipping plane. Particles with a high zeta potential are colloidally stable due to 

high electrostatic repulsion. On the hand, for particles with a low zeta potential value 

(approaching zero) the probability of particle collisions increases, thus increasing the 

possibility of building agglomerates (Beckman Coulter 2011). 

When an electric field is applied to a dispersion containing charged particles, the particles 

move towards the electrode with the opposite charge. Since the particles’ velocity is 

proportional to their charge, the zeta potential can be estimated from their movement speed. 

In order to measure the electrophoretic mobility of particles, they are irradiated with a laser 

beam, which allows to detect the scattered light emitted from the particles. This method is 

called “Electrophoretic light scattering” and is based on the “Doppler effect” 

(Beckman Coulter 2011). 

 

2.3.3 Concentration Measurements 

To conduct a sound ecotoxicological effect study of NP, exact concentrations have to be 

determined. NP concentrations can be indicated in particle concentrations (e.g. particles/L), 

the specific surface (m2/L), or the substance concentrations (e.g. mg/L). Because they can 

be directly measured in the latter case, this is often preferred. Furthermore, as in classic 

ecotoxicological studies, it allows for a direct comparison with the dissolved ionic form of the 

substance of interest. However, the two other objects of study can also provide important 

information for the interpretation of physicochemical properties and biological effects. 
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The most common way to measure NP concentration is atomic absorption spectroscopy 

(AAS). AAS allows direct measurement of NP dispersions with little or no sample preparation 

(Lopez-Serrano et al. 2014). However, due to the high adsorption potential of AgNP and Ag 

ions to the storing container walls, in this case, it was necessary to pretreat all samples with 

HNO3. 

AAS can be conducted using two different techniques: flame and graphite furnace AAS. Both 

depend on the same principal: Samples are atomized or vaporized to produce free ground-

state atoms. Ground-state atoms are able to absorb energy in the form of light to be elevated 

to an excited state. Each element absorbs light at characteristic frequencies or wavelengths. 

The amount of absorbed light is detected and can be correlated to the concentration of the 

element of interest (US EPA 2014).  

Since there is much evidence that metallic ions might be more toxic than their nanoparticular 

form, the determination of dissolved metal ions in the NP dispersion was one of the greatest 

analytical challenges in some of the presented studies. Before measuring the concentration, 

the ions were separated from the NP via ultrafiltration. Samples were transferred to tubes 

with a 3 kDa cutoff membrane in the middle. Separation was achieved by centrifuging the 

sample. This is an easy and fast approach with little sample preparation. However, 

interactions with the filtration membrane might influence actual ion concentrations (Lopez-

Serrano et al. 2014). 

Concentrations of IONP or iron, respectively, were further detected with a photometric assay. 

The “iron assay” was used to measure iron contents in (exposed) daphnids. The method was 

adopted from Riemer et al. (2004) with a detailed description in Manuscript 5. Daphnia 

tissues and IONP were digested. The dissolved iron ions were then stained with ferrozine. 

The staining signal was detected with a photometric plate reader and compared to standards, 

allowing a precise detection of iron contents. 

 

2.4 Test Organism Daphnia magna 

Daphnia magna, the big water flea on which this thesis has concentrated, is a planktonic 

invertebrate belonging to the phylum of Arthropods, the subphylum of Crustacea, the class 

Branchiopoda, the subclass Cladocera and the family of Daphniidae (Ruppert et al. 2004).  

An adult of D. magna can reach a size of 6 mm. Its phenotype is characterized by its large 

swimming antennae and the two uncalcified carapace shells building the exoskeleton, an 

attribute of all Arthropods. The exoskeleton largely consists of chitin, a polysaccharide. In 



Methodology 

 21 

21 

order to grow, all Arthropods must molt by shedding the old exhuvia in favor of a new 

exoskeleton (Ruppert et al. 2004). Daphnids have 9 joint appendages. From front to back 

these are: sensory antennules, swimming antennae, maxillae, mandibles and 5 limbs on the 

trunk which serve feeding and respiration. At the end of the abdomen they have a pair of 

claws. At the posterior end of the carapace, daphnids have a distal spike, which can become 

longer under predatory pressure. Some species are even able to form head spikes under 

predatory conditions (Ebert 2005, Vollmer 1960). All Cladocerans have an unpaired 

compound eye, which is a result of a fusion of two eyes during late embryonic development. 

Located between the compound eye and the mouth, they have an additional unpaired 

naupliar eye (Ebert 2005). The primary internal cavity, the hemocoel, contains their internal 

organs and has a hemolymph system (open circulatory blood) (Ruppert et al. 2004). 

Daphnids inhabit most types of standing freshwater like ponds and lakes, but they can also 

be found in small (temporary) pools and puddles as well as slowly flowing water. They 

colonize the shallow zones of the water body. They prefer the warm and eutroph littoral 

zones. Due to their size and slow movement, they find cover there from predators such as 

fish. 

   
Fig. 3: Female daphnids. Left: Daphnia magna. Right: The functional anatomy of 
Daphnia sp. (Vollmer 1960); A = First Antenna (antennule): sensory organ; A* = Second 
Antenna: locomotion; Au = Compound eye with 22 ommatidia and black pigment: basic 
vision and orientation; B = Brood chamber (here without eggs); Bf = first limb; 
D = Digestive tract: Divided into esophagus, mid-, and hindgut; G = Brain (cerebral 
ganglion); H = Heart: pump of open blood system; K = Gill sac; L = Hepatic caeca 
(Diverticulum): production of digestive fluids; Md = Mandible: mechanical food 
processing; N = Nauplius eye (Ocellus); Ov = paired ovary: with parthenogenetic oocyte 
clusters; S = carapace shell; Sd = shell gland; So = lateral sensory organ. 
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The pelagic-living daphnids predominantly feed on planktonic algae and detritus. The filter 

feeders effectively gather food particles from the water body with the help of their filtering 

apparatuses. With their phylopods they produce a water current flowing from anterior to 

posterior. At the same time, they collect particles with special setae that transfer the food to 

the grove. D. magna can also feed on settled detritus by actively swirling it up (Ebert 2005, 

Flößner 2000, Vollmer 1960). D. magna can ingest particles and microbes from around 1 µm 

up to 70 µm (Burns 1968, Scholten et al. 2005). 

The digestive tract resembles a tube. The gut is divided into 3 parts, the esophagus, the 

midgut, and the hindgut. Nutrient assimilation appears via microvilli of the midgut epithelial 

cells by absorption of molecules. The epithelial cells are protected by the paratrophic 

membrane (PTM) inside the lumen of the gut. It has a mesh-like structure and only lets 

particles pass which are smaller than 130 nm. Furthermore, the PTM prevents excessive 

settling of microorganisms inside the gut. With peristaltic contractions of the gut walls food is 

passed through the gut. The excretion of feces from the hindgut requires additional pressure 

of more recently acquired food (Ebert 2005). 

Under optimal conditions, the life cycle of D. magna is characterized by its asexual 

reproduction (Fig. 4). Female daphnids reproduce via parthenogenesis. After each adult 

molting, diploid eggs are released to the dorsal brood chamber under the carapace shells. 

After about 1 day the embryos hatch and remain in the brood chamber for further 

development for another 1 to 2 days. The development is immediate without a larval stage 

(Ebert 2005, Sommer 1996). The neonates are released by the mother through ventral 

movements of the abdomen. This is followed by another molting of the mother and the 

reproduction circle is repeated (Vollmer 1960). A juvenile daphnid passes 4 to 6 instars 

before it becomes primipare which is reached after around 5 to 10 days (Ebert 2005). 

Apart from the parthenogenic reproduction, daphnids also undergo sexual reproduction 

(Fig. 4). The appearance of parthenogenetic diploid males for self-fertilization of the females 

is triggered by a complex set of different stimuli, e.g. limited food availability in combination 

with a high population density. The production of males is followed by the formation of only 

two haploid eggs, which will be fertilized by the males. Afterwards, the two eggs are 

encapsulated in a strongly melanized ephippium. With the next molting, these resting eggs 

sink to the ground or float away with the water stream. Even the transportation by animals or 

with the wind is possible. Usually, the resting eggs undergo a latency phase to endure 

unfavorable seasons. Hatching is induced by external stimuli such as an appropriate 

photoperiod or temperature or simply the presence of water in a previously dry pond. From 
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the resting eggs, only females hatch, which usually continue asexual reproduction (Ebert 

2005, Sommer 1996, Vollmer 1960). 

Daphnids play an important role in many freshwater ecosystems. Because they are often the  

predominant form of the zooplanktic biomass, daphnids are an important food source for 

planktivorus fish, thus playing an essential role in the food web of surface waters (Sommer 

1996). Due to their enormous filtering capacities, daphnids are able to significantly influence 

the equilibrium of surface waters. Especially in eutrophic waters, the development of algae 

can quickly increase in spring and summer. These algae blooms are often followed by a 

quickly increasing Daphnia population density, consequently decreasing the algae density 

 

Fig. 4: Scheme of the sexual and asexual (parthenogenetic) life cycle of Daphnia sp.. 



Part 2 

 24 

24 

and sometimes also resulting in a clear-water stadium (Flößner 2000, Scholten et al. 2005). 

This phenomenon is explained by the Lotka-Volterra model, which describes predatory-prey 

relationships (Brauer & Castillo-Chavez 2000, Wittig & Streit 2004). In this way, daphnids can 

considerably contribute to the self-purification of a surface water. 

Daphnids are easy to culture. They have a quick reproduction circle, their biology is 

extensively investigated and they are sensitive to pollutants. These characteristics make 

daphnids a predestined organism for ecological testing (Zitova et al. 2009). Due to their filter 

feeding mode of life, their important role in the food chain, and the fact that they are the most 

commonly used invertebrate species in regulatory chemical testing, daphnids are often taken 

into consideration for testing NP (Baun et al. 2008a, Li et al. 2010). The enteral exposure of 

actively and passively (bond to food particles) ingested NP has already been shown (Alves 

de Matos et al. 2009, Feswick et al. 2013, Heinlaan et al. 2011, Hu et al. 2012, Lovern et al. 

2008, Mendonca et al. 2011, Rosenkranz et al. 2009, Zhu et al. 2010), but further harmful 

effects via dermal or gill exposure might also be possible. 

 

2.5 Culturing of Daphnia magna 

At the beginning of this work, it was necessary to establish cultures of living daphnids. 

Daphia magna was cultured in a semi-static setup. In each case, 30 daphids were elevated 

in a volume of 1.5 L of Elendt M7 medium (detailed composition see OECD 1998). The same 

medium was also used for all tests. The cultures were placed in a climate-controlled chamber 

at 20±1 °C and a 16:8 h day-night rhythm and gentle aeration. The medium was renewed 

twice a week or when the cultures were synchronized one day before a test to separate 

mothers and neonates. The daphnids were fed with living algae (P. subcapitata) on a basis 

of 200 µg carbon per daphnid and day. 

Two different D. magna clones were used. The first one was the Bayer clone B (Bayer, 

Monheim, Germany) obtained from the Helmholtz Center for Environmental Research (UFZ, 

Leipzig, Germany). The second clone was the IBACON clone (IBACON, Roßdorf, Germany) 

obtained from the Aquatic Ecotoxicology group of Prof. Dr. Oehlmann at Goethe University 

(Frankfurt, Germany). Each clone was cultured in 2 to 4 independent culture strains. Mothers 

in one culture were all of the same age, but usually mothers of different strains had different 

ages. This was meant to ensure that neonates were continuously available for the tests. 

Furthermore, the independent cultures ensured that possible diseases such as fungal 

infection did not infest all daphnids, which might have led in the worst case to complete 

extinction. 
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2.6 Ecotoxicological Test Systems 

Environmental chemicals can take effect on many biological levels; from single molecules to 

complete ecosystems. Despite this, most ecotoxicological studies are performed on the 

single-organism level. In ecotoxicological tests, representative species from different trophic 

levels and with different modes of life are usually applied. Typical species are easy to culture 

in the lab. Although these simplified tests cannot reflect the complex situation in nature, they 

can provide reliable information on the possible impacts of a substance in the ecosystem. A 

better estimation of environmental modes of action is only possible with a series of different 

tests with different species (Fent 2003). 

Due to the continuously rising amount of (new) chemicals in the market, the European 

Commission decided to launch the new European Chemical Regulation for the Registration, 

Evaluation, Authorization, and Restriction of Chemicals (REACH). Since gathering 

information on all chemicals would dramatically increase the use of laboratory animals, 

REACH recommends increasing the use of in vitro testing methods (European Commision 

2012). These simple tests can quickly deliver reliable results, but they are usually limited to 

the biochemical level (Fent 2003). Relying solely on such methods can underestimate the 

potentially hazardous properties of chemicals that could harm humans and the environment 

(European Commision 2012). Therefore, in vivo and single organism tests still represent the 

main pillar of ecotoxicological testing (Fent 2003).  

Most classic in vivo tests are performed with aquatic organisms, since the aquatic 

environment is the ultimate sink for any chemicals (van der Oost et al. 2003). In aquatic 

ecotoxicology, standard test systems are divided into acute and chronic tests. Test systems 

are based on static tests with and without renewal of the medium or the test substance and 

flow-through systems. The simplest tests are static and semi-static acute tests. These are 

short-term tests with a duration of between a few hours and a few days (max. 96 h). 

Endpoints are usually survival rate or mortality (Fent 2003). Although acute tests are very 

cost-efficient, they are the least representative and sensitive tests. In contrast, chronic tests 

have a usual duration of 21 or 28 days, or at least for a complete life-cycle of the test 

organism, and can be performed as semi-static or flow-through tests (Fent 2003). Chronic 

tests aim for more sensitive, sub-lethal endpoints such as individual growth or development, 

reproduction and population growth rates. Their performance is time-intensive compared to 

acute tests. However, they are more sensitive, and due to the versatile endpoints being 

investigated, they provide for far more information on the impact of (harmful) substances on 

the respective organism. This additional information is important for understanding and 

interpreting the complex processes in nature and for a consolidated hazard assessment. 
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In order to ensure standardized testing of chemicals, several ecotoxicological tests methods 

with a wide range of test species were developed and are prescribed by standard test 

guidelines. One of the most prominent test organisms are daphids. Artificial test systems with 

daphnids – mainly with Daphnia magna – are described by several guidelines and do not 

differ much from one another or are even based on one another. The most prominent acute 

test instructions are given in the OECD (Organization for Economic Co-operation and 

Development) Guideline 202 (OECD 2004), the ISO (International Organization for 

Standardization) Norm 6341 (ISO 1996) and the EPA (United States Environmental 

Protection Agency) Guideline (US EPA 1996). The acute tests are all performed as static or 

semi-static tests. The tests are conducted with neonates, since this life-stage is believed to 

be the most sensitive. At the test begin the neonates should be younger than 24 h. After 24 

and/or 48 h exposure the immobilization or mortality of the daphnids is investigated. 

Immobilization means no normal swimming movement within 15 seconds after gentle 

agitation of the test vessel. From the results, one can calculate dose-response curves and 

estimate LC/EC50 or LC/EC10 values. In the standard set-up, the guidelines stipulate a 

minimum of at least five test concentrations each with 4 replicates containing 5 neonates. 

Tests should be performed in small beakers or comparable test containers. 

 

Fig. 5: Scheme of the miniaturization of the Daphnia sp. acute toxicity test presented in 
publication 1. Due to the performance in 24-well microtiter plates, 50 % of animals and 
test substances can be saved compared to the OECD standard test. Alternatively, the 
performance of the standard test was tested in 6-well microtiter plates, which still allows 
remarkable time savings. 
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Within the context of this thesis, the miniaturization of the Daphnia sp. acute test was 

established in order to save material and to be able to perform more tests (simultaneously). 

Tests were performed in microtiter plates with 10 replicates per concentration and only 1 

neonate per replicate (Fig. 5 and Fig. 6A). The detailed adaptations of the test design are 

described in Publication 1. Nevertheless, it should be pointed out that all acute tests 

performed in this thesis used the miniaturized test design. 

The most commonly used chronic test is prescribed by the OECD Guideline 211 (OECD 

1998). The test duration is 21 days. In contrast the US EPA is using a 10 days protocol 

(US EPA 1994). All chronic tests are performed as semi-static tests, but can also be 

performed as flow-through systems. They aim to investigate sub-lethal life-cycle parameters 

of the daphnids such as overall reproduction, day of first offspring, size of first offspring and 

growth of the daphnids. Thus, they are also entitled “Reproduction Tests”. In contrast to the 

acute test, the daphnids are fed with living algae, e.g. Pseudokirchneriella subcapitata. At the 

test start, neonates not older than 24 h are placed in prepared test vessels. The daphnids 

are exposed in volumes of between 50 and 100 mL with one daphnid per replicate and 10 

replicates per test concentration. The test medium should be renewed continuously. The 

renewal interval depends on the test substance. Usually the medium is renewed every 2 to 3 

days. For this reason, new test vessels are prepared and the daphnids are carefully 

transferred with a pipette to the new test vessel. Every replicate is investigated on a daily 

basis for survivability and reproduction.  

All chronic tests of IONP were performed according to Guideline 211 (OECD 1998). Tests 

were carried out in 100 mL glass beakers covered with a glass lid against evaporation 

(Fig. 6B). In derogation from the Guideline, tests were started in a volume of 30 mL 

(assuming young daphnids have lesser space requirements), which was gradually increased 

to 50 mL with the medium renewals. Furthermore, the interval for changing the test medium 

was extended to 3 or 4 days. Both adaptations aimed to save IONP, since the synthesis of 

IONP was very time-consuming, and relatively high doses had to be applied to achieve 

effects. 
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Fig. 6: Ecotoxicological testing 
of IONP with D. magna.  
A: Acute test performed with 
the miniaturized test system in 
microtiter plates.  
B: Chronic reproduction test 
performed according to OECD 
Guideline 211 (OECD 1998). 
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Abstract 

In the past decade iron-based nanoparticles (NP) have more and more come into the focus for 

remediation of contaminated groundwater and soil. Risks from this new technology to biota are 

unknown. In this account we conducted combinatory tests with iron oxide NP (IONP) and four 

contaminants – cadmium, copper, resorcin, and glyphosate. Acute toxicity over 96 h to Daphnia 

magna was investigated. Bioavailability of cadmium and copper was significantly reduced in the 

presence of IONP, which was supported by theoretical calculations of binding capacities. IONP did 

not affect the toxicity of resorcin. The toxicity of glyphosate was halved by IONP in the first 72 h, but 

reached values comparable to the single substance after 96 h. The toxicity of Cu remained constant 

between 48 h and 96 h, whereas it increased continuously in all other substances. The strongest 

increase was found for glyphosate + IONP (EC50 48h: ~180 mg/L, 96 h: ~35 mg/L). This hints at a 

transporter effect, by which the substance is ingested bond to the IONP and then released during 

passage of the digestive tract. 

Keywords: Daphnia magna, combinatory toxicity, mixtures, iron oxide nanoparticles, heavy metals, 

organic compounds 

 

Introduction 

Remediation of contaminated groundwater and soil with traditional techniques is very expensive [1]. 

With the advancing development of nanotechnology, iron and iron compound nanoparticles (INP) 

have come into the focus of cost-effective methods [2] for (1) in-situ injection [3] and (2) ex-situ 

treatment of contaminated (ground) water [4]. The advantage of the nano form is a significantly 

enlarged reactive surface compared to bulk materials, guaranteeing higher reaction rates [5]. 

Furthermore, iron is relatively non-toxic to organisms [6] compared to commonly applied injection 

substances [1]. Mainly consisting of zero valent iron (nZVI), INP have a high redox potential. While 
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nZVI is oxidized, organic compounds can be reduced to less toxic compounds. Furthermore, INP may 

bind heavy metal ions [1, 3, 7-10]. 

nZVI easily oxidizes in air and hydrolyzes in water [11] and is quickly transformed to iron oxide 

nanoparticles (IONP) when released to the environment. Usually they remain at the contaminated site 

since recuperation and recycling are cost-intensive. Depending on their colloidal stability – often 

enforced by surface functionalizations – they can keep their nano form for a long time [12]. Their 

potentially high mobility may turn into a disadvantage when INP might prevent pollutants from 

sorption to the solid matrix, thus increasing their bioavailability. Mobilized by INP, local hazards 

might be transported to uncontaminated sites, surface-waters or even enter drinking water resources 

[13, 14]. The risks for biota from the end-products of a nanoremediation have not been investigated so 

far. 

Due to the fast oxidation of nZVI we focused on the testing of IONP consisting of magnetite (Fe3O4), 

expecting a higher environmental relevance. Furthermore, the handling of less reactive IONP is easier. 

The IONP were functionalized with polyvinyl pyrrolidone (PVP) against agglomeration. Since these 

IONP are relatively non-toxic [15] high concentrations can be applied to achieve high reaction rates. 

At the same time, the toxicity of IONP should not mask the toxicity of the contaminant or of reaction 

products. 

The combinatory toxicity was investigated with the Daphnia sp. acute immobilization test according 

to OECD guideline 202 [16] over a prolonged test span of 96 h. The used IONP had already been 

tested with daphnids in maximum concentration of 100 mg Fe/L without inducing significant effects 

[15]. Due to filter-feeding, the main uptake route for NP in daphnids occurs via ingestion [17, 18]. 

The combination tests were performed with four substances: The heavy metals cadmium und copper 

of which their ions are known to bind to INP [3, 19-22]; the organic compound glyphosate which was 

tested since it is the active ingredient in the widely used herbicide RoundUp®; the aromatic compound 

resorcin – a dihydroxy benzene – which is mainly used in the production of diazo dyes and plasticizers 

and as a UV stabilizer in polyolefins [23].  

The study aimed to investigate the possible use of PVP-coated INP for remediation by comparing the 

toxicity of the four substances with and without IONP. Furthermore, the toxicity tests should show 

whether the presence of IONP might increase toxicity, e.g. by increasing the uptake of sorbed 

compounds. 
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Materials & Methods 

Culturing of Daphnids 

The waterflea Daphnia magna was obtained from IBACON laboratories (Roßdorf, Germany) and 

cultured continuously in a climate controlled chamber at 20±1°C and a 16:8 h (light:dark) photoperiod. 

Animals were cultured in Elendt M7 medium (EM7; detailed composition in OECD guideline 211 

[24]), which was renewed twice a week. They were fed with the green algae Pseudokirchnerialla 

subcapitata (#61.81, SAG, Göttingen, Germany) on a basis of 150 μg C per daphnid & day [24]. 

Synthesis and properties of IONP 

IONP were synthesized and characterized in our laboratories. The synthesis of monodisperse and 

water-soluble magnetite IONP (Fe3O4) was based on the thermal decomposition of iron(III) 

acetylacetonate (Fe(acac)3) in diethylene glycol (DEG). IONP were functionalized with polyvinyl 

pyrrolidone (PVP) during the formation process. The IONP had a primary particle diameter of 6.1 ± 

0.6 nm (without coating) [25]. Suspended in EM7 medium, they were colloidal stable, their 

hydrodynamic diameter was around 135 nm and their zeta-potential was nearly neutral with slight 

negative charge (-1 mV) [26]. A detailed description of the synthesis and characteristics of the PVP-

IONP can be obtained from Arndt et al. [25].  

Preparation of test solutions 

Stock dilutions of cadmium chloride (CdCl2 • 2 H2O; Fluka, purum, CAS# 10108-64-2), copper 

chloride (CuCl2 • 2 H2O; Merck, p.a., CAS# 10125-13-0), and resorcin (C6H4-1,3-(OH)2; Sigma-

Aldrich, ReagentPlus®, CAS# 108-46-3) were prepared by diluting substance powders in deionized 

water (see Table 1). From these stocks a second stock in EM7 medium was made by mixing the first 

stock with deionized water and double concentrated EM7 medium. The same method was used for 

transferring RoundUp® (commercial product RoundUp® UltraMax from Monsanto, water soluble 

concentrate with 450 g glyphosate/L) and IONP (900 mg Fe/L) to EM7 medium. Test concentrations 

were diluted directly from the EM7 stocks in medium. For the combinatory test, IONP were added 

from the EM7 IONP stock (250 mg Fe/L) to achieve a final concentration of 100 mg Fe/L. To achieve 

complete equilibrium, all test dilutions were aged between 3 and 8 days on a horizontal shaker at 60 

rpm in dark at room temperature. The different aging intervals could not be avoided, since test starts 

had to be staggered over several days due to the large quantity of neonates needed and the time-

consuming test preparations. At least one single substance test was always performed simultaneously 

to the corresponding mixture tests. 
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Test design & procedure 

Tests were performed according to OECD guideline 202 [16], but with some adaptations. The test 

design was miniaturized and conducted in 24-well microtiter plates. Furthermore, the duration was 

prolonged from 48 h to 96 h. A detailed description of the changed test design and the test procedure 

can be obtained from Baumann et al. [27]. All tests were performed with a negative control and a 

minimum of 9 different substance concentrations. In the combinatory tests additional to the negative 

control an IONP control with 100 mg Fe/L was run to ensure no effect of IONP. Tests were only 

counted valid if the negative control or both controls, respectively, did not exceed a mortality of 10 % 

after 96 h. Concentration ranges are given in Table 1. Numbers of test repeats are shown in Table 2. 

Due to the heavy workload, combination tests were performed only three times, except for cadmium. 

Because in the first test series only one of the three cadmium tests was valid, the test series was 

repeated resulting in finally four valid tests. Single substance tests were performed five times. 

Different numbers of repeats are results of invalid tests. In the case of glyphosate additional tests were 

performed since there was a high variance of data after the first test series. 

Data analysis 

All statistical calculations were made with GraphPad Prism 5.0 (GraphPad Software, San Diego, 

California, USA). EC50 values were calculated separately for each test repeat. For the EC50 calculations, 

concentrations were transformed to log scale. EC50 values were calculated using a nonlinear fit/dose-

response equation (log(agonist) vs. response) with variable slope and an ordinary fit (least squares) 

with the top plateau set to 100%. Afterwards, EC50 values were re-transformed to linear scale and 

Table 1. Concentrations of stock dispersions and the range of tested concentrations 

Substance 1. stock (water) 2. stock (EM7) Tested concentration range a,b 

IONP 900 mg Fe/L 250 mg Fe/L 100 mg Fe/L 

Cadmium 2.3 g/L 50 mg/L w/o NP:  100 – 5,000 μg/L 

with NP:  100 – 10,000 μg/L 

Copper 1.9 g/L 10 mg/L w/o NP:  10 – 400 μg/L 

with NP:  750 – 2750 μg/L 

Resorcin 10.3 g/L 5 g/L w/o NP:  0,1 – 500 mg/L 

with NP:  0,1 – 1,000 mg/L 

RoundUp® 

(Glyphosate) 

450 g/L 5 g/L w/o NP:  10 – 200 mg/L 

with NP:  1 – 1,000 mg/L 

a w/o NP = single substance, with NP = combinatory test with 100 mg Fe/L IONP 
b Each test was performed with a control group and at least 9 different substance concentrations 
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mean EC50 were calculated. Statistical differences between the corresponding treatments were 

calculated with repeated measurements ANOVA.  

Theoretical calculations of binding capacities 

To support observed effects found for combinations of cadmium/copper and IONP, speciations were 

calculated using PHREEQCi (v.3.0.6-775, USGS, http://wwwbrr.cr.usgs.gov/projects/ 

GWC_coupled/phreeqci) using the database file minteq.v4 (see detailed description in SI). The 

software allows the estimation of adsorbed species of cations like Cu2+ and Cd2+ on hydro-ferrous 

oxides (Hfo) with weak and strong binding sites (Hfo_wOH & Hfo_sOH, respectivily) [28]. The 

interaction of Cd2+ and Cu2+ with PVP was estimated by integrating equilibria data to the database file 

minteq.v4 generated from experimental results of Yildiz et al. [29]. 

 

Results & Discussion 

For the comparison of combinatory toxicity of the four test substances an acute test span of 96 h was 

chosen. Previous studies have shown that the IONP used here exhibited low toxicity within this time 

span. Baumann et al. [26] and Filser et al. [15] found no or very low, but insignificant toxicity only at 

the highest test concentration of 100 mg Fe/L after 96 h. Therefore, in the present study an IONP 

concentration of 100 mg Fe/L was chosen. This is the highest concentration where no significant 

effect of the IONP was expected.  

In this scenario we expected that effects were related to (1) the toxicity of the test substance, (2) the 

combination of the substance and the IONP (due to possible addition of sublethal toxicity, leading to 

lethal effects), (3) reaction between toxicant and IONP e.g. due to increased transport of toxicants 

bound to IONP into the daphnids via ingestions (transporter effect). The reaction between toxicant and 

IONP might also (4) decrease toxicity due to decreased bioavailability of processed or NP-bound 

substances. 

The toxicity of cadmium (Fig. 1A) was about 7-times lower in the presence of IONP after 24 h. Over 

time the effect was slightly reduced, but toxicity was still about 3-times lower after 96 h. For copper 

(Fig. 1B) IONP decreased toxicity even between 20 and 15-times (24 h/96 h) compared to single 

copper. Test duration, IONP, and their interaction were highly significant for both combinations 

(Table 2). Obviously the toxicity of both heavy metals is strongly decreased by the IONP. 

The decreased toxicity of both heavy metals should be due to decreased bioavailability. In principle, 

there are three mechanisms of metal detoxification by iron: a) reduction, b) complexation, c) sorption 

[21]. Referring to Merkel et al. [28], for both cadmium and copper only b) and c) should occur on 

magnetite NP. To clarify the observed effects, theoretical calculations of sorption kinetics and 
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capacities were made (detailed description see SI). First, cadmium and copper ions should have got 

into contact with the PVP shell of the NP. PVP was already shown to have high binding capacities for 

heavy metal ions [29-31]. With 100 mg Fe/L (as IONP) about 3.75 mmol/L PVP (related to the 

monomer) was present [15]. Considering the average EC50 values for cadmium of 3677 μg/L (32.7 

μmol/L Cd2+) and copper of 1671 μg/L (26.3 μmol/L Cu2+) observed with 100 mg Fe/L IONP, about 

38.3 % of cadmium and 31.8 % of copper could have been bound to PVP (Table SI 1). The integration 

of speciation calculations using the hydro-ferrous oxide (Hfo) surface sorption model for the iron 

oxide cores suggested stronger binding of copper (78.8 %) than of cadmium (64.4 %) to IONP, 

leaving 1307.3 μg/L Cd2+ and 354.6 μg/L Cu2+ bioavailable to the daphnids (Table SI 1). These values 

do not correspond to the measured average EC50 of the pure heavy metals with 998.5 μg/L cadmium 

and 101.7 μg/L copper. Due to higher binding affinities to iron oxide, the integration of Hfo in the 

calculations led to highly reduced amounts of Cd2+ (15.1 %) and Cu2+ (0.07 %) bound to PVP. 

Unfortunately the core-shell structure of the NP cannot be integrated in the model. Therefore iron 

oxide and PVP are treated like competitive compounds in equilibrium for the binding of cadmium and 

copper, which should not be true in situ. In fact, the heavy metal ions were most likely bound to PVP 

 

Fig. 1. Daphnia magna acute toxicity shown as the EC50 of the four tested substances over 96 h with (A)

cadmium, (B) copper, (C) resorcin, and (D) RoundUp® related to glyphosate as the reactive compound. Graphs 

compare single substance toxicity and the mixture with IONP (100 mg Fe/L). Error bars = SE. 
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in the beginning and were then transferred to the iron oxide cores due to higher binding affinity until 

complete saturation of binding sites. Reduced bioavailability in the tests compared to the theoretical 

assumptions should therefore result from interaction of the heavy metal ions with the PVP shells. With 

the limited data on binding characteristics of heavy metals to PVP available in literature actual 

interactions were not completely reproducible with theoretical calculations. However, the calculations 

clearly show the higher binding potential of Cu2+ ions compared to Cd2+ ions to both the iron oxide 

cores and the PVP shell alike, which can be also deduced from the toxicity tests. 

Interestingly, when considering the slightly lower pH inside the daphnid’s anterior part of the midgut 

of pH 6 – 6.8 [32], the binding behavior of cadmium changes drastically compared to copper. 

Lowering the pH in the speciation calculations to this range for copper led to slightly stronger binding 

of Cu2+ to Hfo and PVP, leaving only 17.6 % (293.6 μg/L) bioavailable at pH 6.2. Doing the same for 

cadmium led to weakening of the binding of Cd2+ to Hfo and PVP, leaving 53.9 % (1979.6 μg/L) of 

the Cd2+ bioavailable at pH 6.6. This might be a further explanation for the generally higher binding 

affinity of copper to the IONP and the lower toxicity. Further, due to the probably weakened binding 

of cadmium during the passage of the digestive tract of the daphnids, cadmium may have been 

remobilized, which could explain the continuously increasing toxicity of cadmium especially with 

IONP over time (Fig. 1A), unlike the toxicity of copper (Fig. 1B).  

As a representative aromatic organic compound, resorcin was tested (Fig. 1C). Results showed an 

increasing toxicity between 24 h and 48 h. Between 48 h and 96 h toxicity increased only slightly. The 

toxicity for pure resorcin and in combination with IONP remained equal over the whole test period 

with no statistical differences (Table 2). Apparently there was no interaction between resorcin and the 

IONP. This is straightforward: when considering the possible interaction in terms of the TSAR 

concept [33] of the components PVP, resorcin, and water, resorcin is more likely interacting with 

water. 

Glyphosate was tested as a representative non-aromatic organic compound. In the presence of IONP it 

was significantly less toxic (Table 2). Between 24 h and 72 h toxicity decreased by about factor 2 

compared to the pure formulation (Fig 1D). After 96 h this effect had disappeared. Whereas the 

toxicity of the pure formulation of RoundUp® remained nearly equal between 72 h and 96 h, the 

combinatory toxicity strongly increased during this time span with an even slightly higher toxicity in 

the combinatory test, supported by a highly significant interaction (Table 2). This might hint at a long-

term combinatory effect. Effects should not result from reaction products of glyphosate and IONP, 

since both substances had already been mixed about one week before the tests and placed on a shaker 

to ensure complete reaction. If the effect was related to end or by-products of the reaction, stronger 

combination effects should have already been visible after 24 h. It seems likely that the effects resulted 

from a direct interaction between glyphosate and IONP. Using the TSAR approach [33] for glyphosate, 

PVP and water, due to the charges the glyphosate molecule at neutral pH is much more likely found in 
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the water phase. Borggaard et al. [34] report that glyphosate is supposed to behave similar to 

phosphates considering adsorption behavior to soil minerals like aluminium and iron oxides. Therefore, 

possible binding of glyphosate should appear directly to the iron oxide cores. Obviously, there was 

less glyphosate bioavailable in the first three days, but then its bioavailability seemed to be highly 

increased (Fig. 1D). This may hint to a transporter effect. In the beginning glyphosate may have been 

only transiently bound to the IONP, reducing its bioavailability. With continuous test span the IONP 

were ingested by the neonates and concentrated in the digestive tract. Due to digestion of the IONP 

surface, possibly bond glyphosate was released from the IONP. Normally, the passage of the digestive 

tract only takes some minutes up to a few hours [35, 36], depending on the amount of food (or 

particular matter) provided [37]. Food is expelled from the hindgut by peristaltic movement but also 

requires the pressure of more recently acquired food particles [32]. Since the juvenile daphnids were 

not fed during the tests, gut passage time should have been increased. However, this assumption 

cannot explain the late effects after 72 h. Under the given concentrations of 100 mg Fe/L IONP, pre-

tests showed high accumulation into the gastrointestinal tract of neonates, but also excretion of feces 

within a few hours, and re-ingestion of excreted IONP (personal observation). It is more likely that 

the observed effects are a combination of (1) slow gut passage (with enforced digestion due to longer 

residence time), (2) re-ingestion of excreted IONP, and (3) several passages of the digestive tract, 

leading to enforced destabilization of the glyphosate-PVP-IONP complex after 72 h.  

Table 2. Significance tests of the EC50 via repeated measurements ANOVA.  

Test a N Treatment b Time b Interaction b 

Cd2+ vs. 

Cd2+ + IONP 

5 

4 
** 0.0014 *** <0.0001 *** <0.0001 

Cu2+ vs. 

Cu2+ + IONP 

5 

3 
*** <0.0001 *** <0.0001 *** <0.0001 

Resorcin vs. 

Resorcin + IONP 

5 

3 
ns 0.5866 ** 0.0082 ns 0.8615 

RoundUp® vs. 

RoundUp® + IONP 

8 

3 
*** <0.0001 *** <0.0001 *** <0.0001 

a pure substance toxicity versus the combination with IONP (100 mg Fe/L) 
b significance level and p-value 

ns = not significant 

** p<0.01 

*** p<0.001 
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Conclusions 

Our tests have shown very different results depending on the substance tested. The combination of 

IONP and the two heavy metals – cadmium and copper – led to decreased toxicity since their 

bioavailability was significantly reduced by the IONP. Theoretical assumptions revealed possible 

binding of heavy metal ions to both, the PVP shells and the iron oxide cores. Combined with their 

superparamagnetic characteristics, which allow their recuperation by magnetic treatment [4], these 

IONP might be a highly efficient tool for the cleaning of heavy metal contaminated waters [38, 39]. 

Effects of the two organic compounds were completely different. Toxicity of resorcin was not affected 

by the IONP. The toxicity of glyphosate was reduced in the first 72 h, but then substantially increased 

up to positive control (single substance) levels, which could hint at a transporter effect. This study has 

shown that a test duration of 48 h (of the Daphnia acute test [16]) may lead to wrong conclusions – 

not only for the toxic potential of NM (e.g. Dabrunz et al. [40]) – but also for their remediation 

potential, as exemplified by glyphosate. 

Our results give a first idea of how remediation products can influence organisms. Certainly tests 

should also be conducted with potential target organisms living in soil and groundwater, since the way 

of life and further biotic and abiotic factors highly influence the exposure. Furthermore, tests should 

also be made with different target contaminants and mixtures, since contaminants might also compete 

e.g. for binding sites on the NP surface.  
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Supporting information 

The surface of the IONP in presence of water is most likely hydrated and should behave similar to 

hydro-ferrous oxide (Hfo) as described in Merkel & Planer-Friedrich [1]. The amount of binding sites 

was roughly estimated from the particle surface (707 nm2/particle or 77.4 m2/g IONP), calculated 

assuming spherical particles with diameter 15 nm [2]. The number of available binding sites should 

match the number of iron atoms on the particle surface. This number was estimated from the iron-iron 

distances, which were assumed to be the approximate twice the average atom distance (Fe-O) in 

hematite of 0.2 nm [3], which should be close to the value of magnetite, considering this rather rough 

approach. In this way the actual number of binding sites was estimated to amount to 4949 binding 

sites per particle. For 100 mg iron/L (1.823 mmol/L) the fraction of binding sites was estimated to 125 
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μmol/L (122 μmol/L weak and 3 μmol/L strong binding sites). The fractions of the weak binding sites 

Hfo_wOH (97.6 %) and of the strong binding sites Hfo_sOH (2.4 %) were assumed to be the same as 

given by Merkel & Planer-Friedrich [1]. However, our estimated fraction of binding sites was 

approximately factor 3 lower than the values given there of 0.2 mol weak binding sites and 0.005 mol 

strong binding sites per mol iron. This could be associated to higher active surface area assumed by 

Merkel & Planer-Friedrich [1] compared to our approach with a particle diameter of 15 nm. 

Speciation calculations were done using the software PHREEQCi (v.3.0.6-775, USGS, 

http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqci) with the database minteq.v4 including 

dissolved oxygen (0.26 mmol/L) and gas phase equilibrium with CO2 containing atmosphere (390 

ppm). The test medium Elendt M7 in itself contains Fe2+ 3.6 μmol/L which are then oxidized by the 

dissolved oxygene and are thermodynamically unstable and prone to precipitate completely as 

Fe(OH)2.7Cl0.3, in case strict thermodynamical equilibrium conditions are considered. However, no 

precipitation was observed, which is related to the stabilizing component EDTA in Elendt M7 medium. 

For Cu2+ concentrations up to 10 mg/L and for Cd2+ up to 50 mg/L in Elendt M7 medium likewise no 

precipitation occurred in the timeframe of the tests. Considering these facts and that all EC50 values for 

copper and cadmium were below these values, the speciation calculations were carried out not 

allowing for precipitation processes. The used equilibria data for the surface adsorption equlibria with 

Hfo as given in the database minteq.v4 is listed below: 

 

Hfo_sOH + Cd2+ = Hfo_sOCd+ + H+, log_k = 0.47 (K = 3.0) 

Hfo_wOH + Cd2+ = Hfo_wOCd+ + H+, log_k = -2.9 (K = 0.0013) 

Hfo_sOH + Cu2+ = Hfo_sOCu+ + H+, log_k = 2.89 (K = 776) 

Hfo_wOH + Cu2+ = Hfo_wOCu+ + H+, log_k = 0.6 (K = 4.0) 

 

The database uses logarithms to the base 10 for the equilibrium constants. The data suggest that the 

interaction of copper with the hydro-ferrous oxide surface is about 1000 times stronger than for 

cadmium. 

To account for the possible interaction with the PVP bound to the IONP first step calculations were 

conducted without the Hfo surface sorption model to estimate the binding of Cd2+ and Cu2+ to PVP 

alone. The results show weak binding to PVP (Table SI 1). The integration of PVP and the Hfo model 

resulted only in small changes on the final equilibrium compared to the Hfo model alone. 

 



Publications & Manuscripts 

 

89 

Table SI 1. Binding capacities of cadmium and copper to polyvinyl pyrrolidone (PVP) and hydro-ferrous 

oxide(Hfo). a, b 

 mean EC50 mean EC50   PVP Hfo Hfo + PVP 

 w/o NP with NP  3.75 mmol/L sOH wOH sOH wOH PVP 

Cadmium 998.5 μg/L 

8.88 μmol/L 

3677 μg/L 

32.71 μmol/L 

bond: 1333 μg/L 

11.86 μmol/L 

36.3 % 

293.4 μg/L 

2.61 μmol/L 

8.0 % 

1907.6 μg/L 

16.97 μmol/L 

51.9 % 

283.3 μg/L 

2.52 μmol/L 

7.7 % 

1532.2 μg/L 

13.63 μmol/L 

41.7 % 

556.4 μg/L 

4.95 μmol/L 

15.1 % 

   unbond: 2343 μg/L 

20.84 μmol/L 

63.7 % 

1476 μg/l 

13.13 μmol/L 

40.1 % 

1307.3 μg/L 

11.63 μmol/L 

35.6 % 

Copper 101.7 μg/L 

1.6 μmol/L 

1671 μg/L 

26.33 μmol/L 

bond: 531.9 μg/L 

8.37 μmol/L 

31.8 % 

76.3 μg/L 

1.20 μmol/L 

4.6 % 

1240.4 

19.52 μmol/L 

74.2 % 

75.6 μg/L 

1.19 μmol/L 

4.5 % 

1240.4 μg/L 

19.52 μmol/L 

74.2 % 

1.1 μg/L 

0.0173 μmol/L 

0.07 % 

   unbond: 1139.1 μg/L 

17.95 μmol/L 

68.2 % 

354.3 μg/L 

5.62 μmol/L 

21.4 % 

354.6 μg/L 

5.58 μmol/L 

21.2 % 

a in Elendt M7 medium at pH 7 
b Association constants of Cd2+ and Cu2+ ions to PVP (containing approx. 5 % PEG) were calculated assuming 

sorption according Langmuir isotherm behavior with experimental data of Yildiz et al. [4]. 

Cd2+ + PVP  PVPCd2+, K = 337.6 L/mol (at pH 8); Cu2+ + PVP  PVPCu2+, K = 2438 L/mol (at pH 8). 
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3.5 Publication / Manuscript 5 

Baumann J, Bertrand C, Becker M., Filser J (submitted manuscript) “Colloidal Properties 

of PVP-coated IONP affect their Bio-distribution and Life History Responses of 
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Abstract 

We studied long-term effects of iron oxide nanoparticles (IONP) on Daphnia magna using two types 

of polymer (PVP)-coated IONP: Two batches were synthesized with identical methods. One of them 

remained colloidally stable over 30 days (s-IONP), whereas the second did not (i-IONP); this resulted 

in hydrodynamic diameters of 133 and 215 nm, respectively. IONP were tested in concentrations 

between 1 and 100 mg iron L-1. 

s- and i-IONP were both effectively ingested and eliminated by mature daphnids, with higher 

accumulation rates of i-IONP. Depending on the concentration (from 1 mg iron L-1 onwards), both 

IONP induced death or significantly reduced development and reproduction, with stronger inhibition 

by i-IONP. Our data suggests that effects were mainly related to disturbed nutrient assimilation in the 

daphnids’ guts. Stronger effects of i-IONP were explained by the additional flocculation of algae and 

their adhesion to the filtering apparatuses and other exoskeleton parts of the daphnids. Increased 

specific weight and swimming resistance may have increased the daphnids’ energy demands, which 

could not be compensated for because algae clogged the filtering apparatuses. 

Our results show that even NP composed of less toxic or non-toxic materials can have significant 

impacts on filter-feeding organisms such as daphnids. Due to the long-term effects of such NP, acute 

tests might be inadequate for a reliable risk assessment. 

Keywords: iron oxide nanoparticles, colloidal properties, agglomeration, Daphnia magna, 

accumulation, elimination, chronic test, reproduction, development. 
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Introduction 

Nanomaterials (NM) and nanoparticles (NP) are increasingly used in a wide range of applications and 

products. Due to their small size and highly increased reactive surface, NM often provide new 

beneficial properties. However, with increasing application, NM will consequently be released to the 

environment and will end up in surface waters with unknown risks to human and environmental health 

[1-3]. 

Due to their small size, NP may enter non-target organisms, organs, the brain, or even penetrate 

membranes and cells [4]. The toxicity of NM, especially of metallic NP, can mainly be linked to the 

production of reactive oxygen species (ROS). ROS can be directly formed at the highly increased 

surface of the NP (primary toxicity). Furthermore, the release of toxic ions (secondary toxicity) is 

often described as the main source of toxicity [5]. This might be enforced by a “trojan horse” effect, 

by which NP are accumulated inside organisms or cells, with toxic ion release eventually exceeding 

their naturally occurring concentrations [6]. 

Most studies evaluating the risk of NM are based on in vitro assays [7]. They can provide initial data 

on comparative toxicity of NM, but can hardly estimate impacts on organisms or the environment [4]. 

To assess the environmental risk of NP, often the crustacean Daphnia magna is used for in vivo testing 

[8]. This filter feeder was already shown to actively ingest NP [8, 9]. Although it mainly feeds on 

suspended food particles, it may also browse over surface substrates to pick up small food particles, 

especially when food becomes scarce [10]. Thus, it might also be able to ingest NP which 

agglomerated and settled to the ground or which are loosely adsorbed to surfaces. 

Most studies on the effects of inorganic NP on daphnids are based on short-term investigations. 

Toxicity is usually related to the direct or indirect (via ions) induction of oxidative stress [5]. A few 

studies give reason for concern since they have revealed unexpected side effects during NP exposure. 

These effects basically provoked physiological inhibitions. Studies showed disturbed ecdysis, NP 

adsorbed to the daphnids’ exoskeleton, leading to increased swimming resistance and body weight, 

and presumably to increased energy demands [11, 12]. However, energy uptake may have been 

reduced due to NP which have disturbed natural nutrient exchange in the gut [5]. Additional effects 

such as these might have an especially strong influence on the life history of daphnids under NP 

exposure, but studies on long-term effects are rare [13]. 

In this account we investigated the chronic effects of iron oxide nanoparticles (IONP). Until now, 

IONP had not come into the focus of chronic NP investigations, since iron itself is less toxic to 

organisms than are other metals [14]. First studies on their acute toxicity revealed only moderate or no 

effects [12, 15]. Nevertheless, IONP have a huge environmental relevance. Apart from their use in 

medicine [16], they are tested for the remediation of contaminated (ground-) water and soil [17]. 

During such applications, tons of iron-based NM are released to the environment. However, there is 
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still a serious lack of knowledge about the efficiency, fate and persistence of iron-based NP released to 

the environment [18, 19]. 

Since the toxicity of metallic NP is often related to the increased release of toxic ions, direct effects of 

NP, e.g. due to their size, might be masked by the higher toxicity of the released ions. Apart from their 

environmental relevance, IONP gave us the opportunity to investigate long-term “nano-effects” on 

daphnids because of the low toxicity of the core material [14]. In an earlier study, the tested IONP 

were stabilized with a polymer coating (polyvinyl pyrrolidone, PVP) and had a high colloidal stability 

[20] with no significant release of iron ions and moderate toxicity to D. magna [12, 15]. 

However, in a second batch of the same synthesis route, agglomeration occurred. Thus, in this study 

we concentrated on colloidal stability as the influencing factor. We studied mortality, reproduction and 

a number of other life history parameters in chronic tests with D. magna. In addition, we measured 

IONP uptake and elimination. Our main hypothesis was that the measured parameters would be 

differentially affected by s- and i-IONP. 

 

Material & Methods 

Synthesis & Characterization of IONP 

IONP were synthesized and characterized in our laboratories. The synthesis of monodisperse and 

water-soluble magnetite IONP (Fe3O4) was based on the thermal decomposition of iron (III) 

acetylacetonate (Fe(acac)3) in diethylene glycol (DEG). IONP were functionalized with polyvinyl 

pyrrolidone (PVP) during the formation process. After synthesis, particle concentrations of the 

suspensions in deionized water were measured using atomic absorption spectroscopy (AAS). A mean 

primary particle diameter of 6.1±0.6 nm was determined via transmission electron microscopy (TEM). 

A detailed description of methods and characterization results is given in Arndt et al. [20]. The 

hydrodynamic diameter (HDD) was measured via dynamic light scattering (DLS; DelsaTMNano C, 

Beckman Coulter, Krefeld, Germany) in EM7 medium in 100 mg iron L-1 solutions. All stocks were 

stored in glass bottles (Duran® glass bottle with PP cap, Schott AG, Mainz, Germany) and placed in 

darkness at room temperature. 

Preparation of IONP stocks 

IONP were transferred to Elendt M7 medium (EM7; detailed composition see OECD [21]), one week 

before the tests. For this, one part of the 1 g L-1 water stock was mixed with one part of double-

concentrated EM7 medium and two parts of normal EM7 medium to achieve a 250 mg iron L-1 EM7 

stock. From these stocks, all test dilutions were freshly prepared during the tests. All 250 mg L-1 EM7 
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stocks were stored in glass bottles (Duran® glass bottle with PP cap, Schott AG, Mainz, Germany) and 

placed in darkness at room temperature. 

Culturing of daphnids 

The water flea Daphnia magna was obtained from IBACON laboratories (Roßdorf, Germany) and 

cultured continuously in a climate-controlled chamber at 20±1°C with a 16:8 h (light:dark) 

photoperiod. Four semi-static cultures each containing 30 animals were cultured in 1.5 L EM7 

medium, which was renewed twice a week. Animals were fed with the green algae 

Pseudokirchneriella subcapitata (#61.81, SAG, Göttingen, Germany) on a basis of 150 μg C per 

daphnid and day [21]. 

Accumulation and depuration tests 

Test procedure 

Tests were performed in 2 L glass beakers (Boro-siliacte) with gentle aeration in a climate-controlled 

room at 20±1°C with a 16:8 h (light : dark) photoperiod. 100 mature daphnids (21 d) were put together 

in a volume of 1.8 L EM7 medium. During the whole test they were fed with living algae (P. 

subcapitata), providing 200 μg C daphnid-1 day-1. Daphnids were exposed for 48 h to both s- and i-

IONP at a concentration of 1 mg iron L-1 and additionally to i-IONP at a concentration of 

10 mg iron L-1. s-IONP were replicated twice, i-IONP five times at 1 mg L-1 and twice at 10 mg L-1, 

and a negative control twice. After exposure, daphnids were transferred to pure medium for 144 h for 

the elimination of IONP. Medium was renewed after 12 and 24, 48, 72, 96 and 120 h. During the tests 

samples were constantly taken from each replicate. Therefore, at each time point 3 daphnids were 

caught and merged into a 1.5 mL Eppendorf tube (0030125.150; Eppendorf AG, Hamburg, Germany). 

Prior to this, each tube was weighed. Daphnids were instantly killed by shock freezing in liquid 

nitrogen. Samples were dried at 60 °C in a heating cabinet over night. After cooling to room 

temperature, samples (tube + daphnids) were weighed again for measuring the daphids’ dry weight. 

Iron measurement 

The method for photometric iron content measurement was adopted from Riemer et al. [22]. For this 

reason, we will only be providing a short description of the crucial preparation steps or parts which 

differ from the original protocol.  

Samples were re-suspended in 300 μL 50 mM NaOH (30620; for analysis; Riedel-deHaën, Seelze, 

Germany), and daphnids were milled with plastic pistils to lyse their tissue and release all iron (NP). 

After one hour, 300 μL 10 mM HCl (solvent of the Fe standard; 30720; puriss. p.a., Riedel-deHaën, 

Sigma-Aldrich, Steinheim, Germany) and 300 mL of freshly prepared iron-releasing agent were added. 

The releasing agent was composed of a 1:1 mixture of 1.4 M HCl and 4.5 % potassium permanganate 
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(60459; BioUltra ≥99.0 %; Fluka, Sigma-Aldrich, Steinheim, Germany) solutions. NP digestion was 

achieved at 60 °C in a fume hood for 16 h. 

Fe standards (FeCl3: 44944; puriss.p.a. 99.0-102 %; Fluka, Sigma-Aldrich, Steinheim, Germany) were 

prepared in accordance to Riemer et al. [22]. For measuring the iron content, the detection reagent 

composed of 2.5 M ammonium acetate (A7330; BioXtra ≥98.0; Sigma-Aldrich, Steinheim, Germany) 

1 M ascorbate (3525.1; ≥99.0 % p.a.; Carl Roth GmbH+Co, Karlsruhe, Germany), 6.5 mM ferrozin 

(82950; for spectrophotometric det. of Fe ≥97.0 %; Sigma-Aldrich, Steinheim, Germany) and 6.5 mM 

neocuproin (N1626; BioReagent, crystalline; Sigma-Aldrich, Steinheim, Germany) was freshly 

prepared. 90 μL of detection reagent was added to each sample. After 30 min of incubation samples 

were pipetted onto a 96 h well microtiter plate (82.1581.500; Sarstedt AG, Nümbrecht, Germany). 2 

repeats of each standard and 3 repeats of each sample in a volume of 280 μL were measured using a 

photometric micro plate reader (MRX; 992-8031-13; Dynatech Laboratories, Denkendorf, Germany) 

at a wavelength of 550 nm. 

Chronic test procedure 

IONP were tested in concentrations of 0, 1, 2.5, 5, 10, 25, 50, and 100 mg iron L-1. Each test 

concentration was replicated 10 times. HDD was measured in the highest test concentration of 100 mg 

iron L-1 one day before the tests started, once during the tests (day 14) and one day after the tests had 

been completed. 

The tests were performed in small glass beakers (100 mL, Boro-silicate) covered with a glass lid 

against evaporation, but leaving an opening at the spout for aeration. Test dilutions were changed 

every 3-4 days. Due to the time-consuming synthesis of IONP, the provided test volume per daphnid 

was reduced to 25 mL in the beginning under the assumption that young daphnids require less space. 

As the development of the daphnids progressed, the volume was increased to 35 mL on day 4, to 45 

mL on day 8 and to the final volume of 50 mL on day 12. The OECD guideline 211 [21] actually 

suggests a minimum volume of 50 mL per daphnid. In accordance with the OECD guideline, the 

daphnids were fed with living algae (P. subcapitata), providing between 100 and 200 μg C daphnid-1 

day-1. Algae were separated from their culture medium by centrifugation (2200 , 10 min), re-

suspended in EM7 medium, counted (Neubauer cell counting chamber), and then added during the 

renewal of test dilutions.  

24 h before the test start, the mother daphnids were transferred to freshly prepared culture vessels to 

separate them from their offspring. 16-18 h later the newly-born offspring were caught with a glass 

pipette. 22 - 24 h after separating the mothers, the neonates were put into the prepared test vessels. 

One daphnid was exposed per replicate. 
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Tests were performed in a climate controlled room at 20±1°C with a 16:8 h (light : dark) photoperiod. 

Test vessels were randomly distributed and their position was changed daily. For the periodic renewal 

of the test dilutions, new test vessels with fresh dilutions were prepared and daphnids were carefully 

transferred with a glass pipette in the smallest possible volume of old test dilution. Every replicate was 

checked daily for mortality and reproduction. Offspring were caught with a Pasteur-pipette and 

counted. Abiotic parameters (pH, oxygen) were recorded during renewal and temperature was 

measured daily. 

After the tests, daphnids were conserved in 5% formol for further investigations. Lateral pictures of 

daphnids were taken to measure their body size. The dorsal length from the rostrum to the basis of the 

distal spine was measured with the free software tool ImageJ 1.47 (http://rsbweb.nih.gov/ij/). 

Data analysis 

All chronic test data was checked for significant outliers using the Gubbs’ test with a significance 

level of 0.05 (http://graphpad.com/quickcalcs/grubbs1/). If the test found a significant outlier for a 

measured endpoint, the data of this replicate was completely excluded from all calculations. The 

validation criteria of the OECD guideline were then checked (mean control reproduction >60 and 

variance of reproduction <25 %). All test data presented fulfilled these criteria; if not, tests would have 

been repeated. 

The plotting of graphs and significance tests were made with GraphPad Prism 5.0 (GraphPad Software, 

San Diego, California, USA). For the calculation of HDD, intensity data of three independent 

measurements with 2 - 5 repeats (depending on the validity of the measurement) was exported from 

the measurement software (DelsaTMNano Version 2.31, Beckman Coulter, Krefeld, Germany) to the 

statistics software. HDD ±SD were calculated with a Gaussian distribution.  

For plotting mortality against time, a non-linear regression (dose-response curve; normalized 

response/variable slope) was used. All life history data was tested on normal distribution. Significant 

differences to the control of parametric data were compared with a students t test, and of non-

parametric data with a Mann-Whitney U test. 

The overall effect of s- and i-IONP on D. magna was compared with a principal component analysis 

(PCA) using the statistics software R (version 3.0.3, R Core Team 2014). All life history data was 

pooled and tested independently of the concentration to analyze the effect of the two treatments (s-/i-

IONP). For the PCA, a within class component analysis (library ade4; http://cran.r-

project.org/web/packages/ade4/index.html) was used. Although the PCA data was normally 

distributed, a Bartlett test revealed non-homogeneous variances of the PCA results. Therefore, the 

PCA data of the two treatments was tested for significant differences using a Mann-Whitney U test. 
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Results & Discussions 

IONP properties 

Dispersed nanoparticles often tend to agglomerate in aqueous solutions. For this reason, nanoparticles 

are usually functionalized with a stabilizing surface coating. Our IONP were stabilized with a polymer 

coating (PVP). PVP prevents agglomeration via steric stabilization. The IONP were thus only slightly 

charged with zeta potentials between 0 and -5 mV (in both water and EM7; data not shown). The 

applied synthesis of PVP-IONP led to monodisperse nanoparticles with HDD of 22.6 nm in deionized 

water (see Arndt et al. [20]). Transferred to the Daphnia culture medium EM7, the HDD slowly 

increased within a couple of days. This is a common phenomenon of PVP, which tends to swell in the 

presence of high salt concentrations such as those in EM7 medium [20, 23]. 

In this account, colloidally stable and instable PVP-IONP (s- and i-IONP) were tested and compared. 

The size distribution was continuously investigated in parallel to the reproduction tests. Figure 1a 

shows the mean HDD of s-IONP (132.9 ±31.24 nm; ±SD) before the tests. A second DLS 

measurement after the test showed nearly unchanged HDD (138.9 ±30.35 nm). An additional 

measurement of s-IONP two months after they were dispersed in EM7 showed equal HDD (data not 

shown), indicating high long-term colloidal stability. For another test series, a second batch of IONP 

was synthesized with the same method. These i-IONP did not have colloidal properties equal to s-

 

Fig. 1. Size-distribution of (a) s-IONP and (b) i-IONP during the chronic tests. The hydrodynamic diameters 

(HDD; mean values ±SE) were measured via dynamic light scattering (DLS) in three samples at a IONP 

concentration 100 mg iron L-1 one day before the chronic tests started (solid lines), at day 14 of the tests (dotted 

lines), and one day after the tests had been finished (dashed lines). 
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IONP (Fig. 1b). 7 days after transferring to EM7, the mean HDD was 100.2 ±22.7 nm, only indicating 

common swelling, and the Daphnia test was started. 14 days later (day 12 of the test), the HDD had 

already increased to 172.8 ±40.62 nm and continued to increase to 214.8 ±47.40 nm until the end of 

the test. The i-IONP were not colloidally stable and slowly agglomerated. 

Although the IONP from both batches were synthesized using the same procedure, the s-IONP were 

colloidally stable, whereas the i-IONP were colloidally instable. In the synthesis of i-IONP, PVP 

obviously did not equally bind to the iron cores like in s-IONP. PVP was most probably released from 

i-IONP over time, consequently leading to their agglomeration. Bare IONP have a high tendency to 

agglomerate, which we already proved in a previous study with the DLVO theory [12]. 

Daphnia tests 

Visible effects 

Both IONP were visibly accumulated in the digestive tract (Fig. 2a/b; [12]) during both the 

accumulation and chronic exposure tests. For i-IONP, an additional effect occurred: Algae provided as 

food flocculated in the presence of i-IONP. The algae agglomerates stick to the filtering apparatuses 

and the swimming antenna. This effect occurred in both the accumulation and chronic tests, but was 

stronger in the latter and increased with increasing i-IONP concentration. There, especially the 

younger daphnids suffered from the algae agglomerates during the first two weeks, which partly 

completely inhibited their movements (Fig. 2c). The mature daphnids used in the accumulation test 

were less affected. On the one hand, they were stronger, had more energy reserves, and were able to 

strip off the agglomerates during ecdysis (Fig. 2d). On the other hand, they were only exposed for 48h, 

which was possibly too short to induce significant effects in mature daphnids. 

At this point, we cannot completely explain this effect, but the agglomerates were obviously directly 

formed in the daphnids’ filtering apparatuses (Fig. 2c). We hypothesize that turbulences caused by the 

swimming and filtering movements of the daphnids might have accelerated the colloidal 

destabilization of the i-IONP. We had already demonstrated accelerated agglomeration of IONP due to 

the water-movements of daphnids through the Daphnia-induced agglomeration of charge-stabilized 

IONP [12].  

Since i-IONP had a tendency to swell and agglomerate (Fig. 1), the PVP-coating was most likely only 

loosely bonded to the i-IONP. Due to the Daphnia movements, PVP was probably increasingly 

detached from the i-IONP. The colloidally destabilized i-IONP, the released PVP, or a mixture of both 

then interacted with the algae. PVP is known for swelling in the presence of salt ions, cross-linking, 

and hydrogelization [23-25]. PVP – released or still loosely bonded to the i-IONP – might have 

interacted with the daphnids’ filtering apparatuses and the swimming antenna as well as with the algae 
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passing the filtering stream. This induced the strong flocculation of algae which clogged the thoracic 

legs and other fine structures of the exoskeleton.  

 

Fig. 2. Visible effects of 5 mg iron L-1 i-IONP exposure on Daphnia magna: (a/b) Daphnids at the end of the 

reproduction test; (a) i-IONP were concentrated in the digestive tract and stained the hind gut dark brown

(arrow); (b) in comparison the hind gut of control animals with green staining due to the algae diet (arrow); (c) i-

IONP induced agglomeration of algae in the filtering apparatuses of daphnids; (d) at concentrations of ≤ 10 mg 

iron L-1 daphnids were able to shed off the IONP-algae agglomerates during ecdysis.  
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Accumulation and depuration 

In general, daphnids filter particles mainly in the range of 1 to 50 μm without any selective mechanism 

[26, 27]. With their thoracic appendages, daphnids produce a constant water current along the opening 

of the carapace. Fine setulae located on the thoracic legs filter the food particles from the feeding 

current and move them to the mouth [26, 28]. Daphnids are thought to actively filter ultra-fine 

particles as small as 200 nm [29]. However, due to their size, the ingestion of NP should be a passive 

rather than an active process. NP are intercepted and transported into the esophagus with the feeding 

current or are ingested by drinking the surrounding media [28].  

Since ingestion is the most common uptake route for NP in invertebrates, their digestive system 

probably becomes the vulnerable target [30]. Different NP such as iron oxide NP [31], cerium dioxide 

NP [32], zinc oxide NP [33], copper NP [34], silver NP [35], gold NP [36], titanium dioxide NP [9], 

quantum dots [37, 38], polystyrene beads [28], diamond NP [39], and other carbon NM [40, 41] were 

already shown to be accumulated in the digestive tract of daphnids [42]. Most studies reported quick 

uptake of NP into the intestine within a few hours. In most cases, the depuration was very effective 

within the first 12 h after exposure and was stronger when daphnids were fed. In all reported cases, 

daphnids were not able to eliminate all NP within 24 to 96 h. Although authors often speak of the bio-

accumulation or bio-concentration of NP when NP are ingested. But this is a wrong use of the 

terminology. Only when the net transfer of a substance from the external environment to the systemic 

circulation of the organism (influx) exceeds the efflux, accumulation occurs. (NP) accumulation thus 

only refers to the internal compartments of an organism[43]. At the moment, only a few studies have 

reported interactions of NP with gut epithelial cells or the penetration into these structures [33, 34, 36]. 

In a previous study we showed the strong enrichment of PVP-IONP in the digestive tract of D. magna 

[12]. Now, we aimed to investigate the bioaccumulation potential of IONP by measuring the total iron 

content of daphnids over an accumulation period of 48 h and elimination period of 144 h. IONP had 

been prepared as in the chronic test. Random measurements showed equal HDD as measured at the 

beginning of the chronic tests (data not shown; see above). Tests were performed with both s- and i-

IONP at a concentration of 1 mg iron L-1.  

Figure 3a shows the results of the accumulation and depuration experiments. At the beginning of the 

test (t0), mature daphnids had a basal iron content of 0.13 μg iron mg-1 (Daphnia dry weight [dw]). In 

the first 4 h, the iron content equally increased in s- and i-IONP to 0.184 μg mg-1 (dw). Then the 

uptake of i-IONP increased compared to s-IONP. It is very likely that at that point the above-described 

destabilization of i-IONP set in. As a consequence, (1) more i-IONP bound to algae were passively 

ingested, (2) due to agglomeration i-IONP were large enough to be actively intercepted, and (3) by 

losing their colloidal stability, i-IONP adsorbed to the daphnids’ carapace, filtering apparatuses and 

swimming antennae (Fig. 2c). After 48 h, iron concentration in daphnids exposed to i-IONP (2.0 μg 
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mg-1 dw) was about five times higher than in s-IONP (0.42 μg mg-1 tw). However, the concentration in 

s-IONP was also three times higher than the basal iron content in unexposed daphnids (0.14 μg mg-1 

tw).  

For the following depuration period, daphnids were transferred to fresh medium. Both IONP were 

quickly eliminated by the daphnids within the first 2-4 h, illustrated by the quick decrease in iron 

content (Fig. 3a). Then, the reduction rate decreased for both IONP between 2-8 h. s-IONP were 

completely eliminated from the daphnids within 12 and 24 h, reaching control levels. In contrast, the 

 

Fig. 3. Accumulation of IONP in D. magna over a period of 48 h and their following depuration. The vertical 

dotted line indicates the time when daphnids were transferred from the exposure medium to clean medium for 

depuration. Iron contents were measured using a photometric ferrozine staining by which the iron concentration 

in μg per mg daphnia tissue (dw = dry weight) was calculated; error bars denote the SE. (a) 1 mg iron L-1 

comparison of s-IONP (dotted line; N=5), i-IONP (solid line; N=5) and the unexposed control (dashed line; 

N=5); (b) To evaluate the maximum possible IONP burden a test with 10 mg iron L-1 i-IONP (solid line; N=2) 

was performed. (Control: dashed line; N=2). 
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iron content in i-IONP increased between 8 and 12 h, but then also decreased to the control level 

between 12 and 24 h. In the following 5 days, the iron content was equal in both treatments and the 

control. This shows that no iron or IONP were actually bio-accumulated by the daphnids within the 

48 h exposure. The plateau phase between 4 and 8 h in both IONP and the following increase in i-

IONP occurred due to the water change rhythm. The medium was refreshed for the first time after 12 h. 

In the hours before, daphnids most likely re-ingested already excreted IONP. 

Interestingly, this is the first study to show the complete elimination of NP by daphnids. None of the  

previous studies concerning the depuration after exposure to NP ever found the complete elimination 

of the NP from the daphnids within the chosen time frames (max. 96 h) [9, 28, 31, 37, 38]. 

In order to determine the maximum uptake of IONP, a second test with 10 mg iron L-1 i-IONP 

(expecting higher accumulation rates) was performed (Fig. 3b). This test was only performed with two 

replicates due to the higher concentration and therefore to the huge amounts of IONP needed. In the 

first 8 h, the iron content quickly increased from 0.15 μg mg-1 (dw) to around 4.59 μg mg-1 (dw). 

Thereafter, the influx rate decreased and reached an iron content of 6.1 μg mg-1 after 48 h. Although 

the influx still showed a slightly increasing trend at 48 h, the approximate maximum IONP 

accumulation burden should have been reached. The iron content was three times higher than in the 1 

mg L-1 treatment (Fig. 3a) and 20 times higher than in the control (0.15 μg mg-1 dw). During the first 

24 h of the excretion experiment, the iron content fluctuated but did not significantly decrease as in the 

1 mg L-1 test although the medium was renewed after 12 h. After 24 h, a strong elimination of iron set 

in and after 96 h, the control level was reached.  

The slower excretion of i-IONP at 10 mg L-1 might also be related to the re-ingestion of already 

excreted IONP, which also explains the fluctuating iron content between 1 and 24 h. However, the 

daphnids were not able to eliminate significant amounts of IONP within the first 24 h as in the case of 

1 mg L-1. Most likely, this phenomenon had two reasons: (1) the algae-IONP agglomerates clogged the 

digestive tract, disturbing an effective elimination; and (2) a significant amount of i-IONP was 

attached to the daphnids’ exoskeleton or was incorporated in algae agglomerates, which were attached 

to the filtering and swimming apparatuses. Jacobasch et al. [44] found that titanium dioxide NP 

adsorbed to the filtering apparatuses and covered the setae. For Daphnia pulex, Auffan et al. [32] 

showed that during the depuration cerium dioxide NP were not efficiently removed by newly acquired 

food (algae). The authors identified ecdysis as the main physiological mechanism of NP depuration. 

Thus, i-IONP attached to the exoskeleton and clogging the digestive tract were most likely only 

effectively eliminated by the molting of the daphnids. Mature daphnids usually molt every 48 to 72 h 

(59±21 h [32]), which corresponds very closely to the elimination period with a 90 % decreased iron 

burden after 72 h (compared to the climax). After 96 h, all IONP were eliminated from the daphnids’ 

bodies and the iron content control reached the control level.  
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The results indicate that the applied IONP are ingested by the daphnids or at least adsorb to their 

exoskeleton. The internal iron content thus increases many times within a few hours. However, the 

IONP used here were not bio-accumulated, since all IONP were effectively eliminated after 96 h at the 

latest. We hypothesize that the depuration of IONP is a combination of direct excretion and a shedding 

of the chitinous exoskeleton. 

Chronic exposure 

Chronic and reproduction tests originally aim to investigate sub-lethal effects on organisms such as to 

their development and reproduction; wherever possible, they should not induce the death of test 

organisms. Lethal concentrations should be determined with acute toxicity tests. In previous acute 

tests – already prolonged to 96 h – the PVP-coated s-IONP had no [12] or only slight, but insignificant 

harmful effects on daphnids at concentrations between 1 and 100 mg iron L-1 [15]. For this reason, the 

same concentration range was chosen for the chronic reproduction test. 

 

 

Fig. 4. Concentration dependent mortality (% dead after 21 days) of Daphnia magna due to the exposure to (a) s-

IONP and (b) i-IONP. (c/d) The mortality of D. magna over time at the three highest test concentration of 25 

(dotted lines), 50 (solid lines), and 100 mg iron L-1 (dashed lines) for s- and i-IONP. 
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Due to the prolonged exposure, mortal concentrations were now reached. s-IONP induced slight 

mortality in all tested concentrations, except for the 5 mg L-1 treatment (Fig. 4a). However, it was only 

at the highest test concentration of 100 mg L-1 that all daphnids died. In contrast, i-IONP did not kill 

any daphnids at low concentrations between 1 and 10 mg L-1, but at the higher concentrations of 25, 

50 and 100 mg L-1 all daphnids died (Fig. 4b). Fig. 4c/d illustrate the point in time of the daphnids’ 

deaths. With the exception of the highest concentration of 100 mg L-1 (Fig. 4c), s-IONP mostly killed 

the daphnids during the last days of exposure.. In the former case, about 50 % of daphnids had died 

after 6.5 days. In contrast, i-IONP killed most daphnids in all three concentrations after 5 to 7 days 

(Fig. 4d).  

Life history responses could only be determined for test concentration with mortalities < 100 %. We 

therefore cannot provide data for s-IONP at 100 mg L-1 and i-IONP ≥ 25 mg L-1. We monitored the 

development of the daphnids by measuring their body size at the end of the tests. Their reproduction 

parameters were determined by the total mean production of progeny per mother, the mean number of 

days until they released their first brood and the mean quantity of neonates of the first brood.  

s-IONP did not significantly reduce the growth of the daphnids at concentrations between 1 and 25 mg 

L-1 as compared to the control with a mean dorsal length of 5.4 mm (Fig. 5a). Growth was only 

significantly reduced to 4.8 mm at 50 mg L-1. Daphnids were about 21.3 % smaller than in the control. 

In contrast, i-IONP had a much stronger influence on the daphnids’ development. Their growth was 

already significantly reduced from 5.76 mm in the control to 5.42 mm at the lowest test concentration 

 

Fig. 5. Effects of s-IONP (a) and i-IONP (b) on the growth of D. magna measured at the end of the reproduction

test (day 21). Shown are box plots; whiskers indicate min/max values. Significant differences to the control were

calculated using a students t test. ** p < 0.01, *** p < 0.001; n/a = data not available due to the death of all

daphnids. 
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of 1 mg L-1 (Fig. 5b). The effect increased with increasing concentration. At 10 mg L-1 daphnids had a 

dorsal length of only 4.23 mm and were about 26.6 % smaller than in the control. 

Figure 6 shows the effects of IONP on reproduction parameters. s-IONP only significantly reduced the 

overall reproduction at 50 mg L-1 from 65.6 in the control to 34.3 (Fig. 6a). i-IONP induced a much 

stronger inhibition. In the control, daphnids produced 66.2 neonates. The lowest test concentration of 

1 mg L-1 the reproduction was already significantly reduced to 43.2 neonates (Fig. 6b). With 

increasing i-IONP concentration, the reproduction continued to decrease to 11.7 neonates at 10 mg L-1. 

This is a significant reproduction inhibition of 82.3 %. Fig. 6 c-f show the IONP effect on the first 

brood. We measured the day when the mothers released their first progeny (Fig. 6c/d) and counted the 

amount of neonates in this first brood (Fig. e/f). For s-IONP, the day of first offspring was slightly, but 

not significantly, delayed at 25 and 50 mg L-1 (Fig. 6c). In contrast, i-IONP significantly delayed the 

production of first offspring between 1.5 to 3.5 days in all tested concentrations (Fig. 6d). The quantity 

of neonates in the first brood was not significantly affected by s-IONP at any concentration (Fig. 6e). 

i-IONP significantly reduced the quantities of neonates at concentrations from 2.5 to 10 mg L-1 (Fig. 

6f). However, the effect was less strong compared to the other life history responses. 

In vitro assays already showed the cytotoxicity of IONP [45] and their ability to induce oxidative 

stress [46]. Both IONP might therefore also have induced oxidative stress after ingestion inside the 

intestine. The effect of i-IONP was more pronounced due to the higher influx rates (Fig. 3a). However, 

the creation of reactive oxygen species (ROS) as a result of the Fenton reaction [20] is often connected 

to the release of free iron ions from the IONP [47]. In an earlier study, we showed that even after one 

year no iron was released from the PVP-IONP [12]. A non-quantitative test as described there 

confirmed that no diluted iron was present in either IONP dispersions (qualitative data, not shown). 

Klein et al. [47] also described that ROS might be directly produced on the reactive surface of IONP. 

However, we hypothesized that the thick PVP shell might have suppressed possible ROS production 

[12]. This was supported by the research of Arndt et al. [20], who compared different IONP and found 

the lowest production of ROS for PVP-IONP. Thus, it is to be expected that toxicity did not 

significantly originate from ROS. 

Some authors hypothesized that inhibiting effects of ingested NP were related to the mechanical 

clogging of the digestive tract and diminished energy accumulation [5, 48]. Both IONP were shown to 

be ingested by the daphnids (Fig. 2 and 3). Even at the lowest test concentration of the reproduction 

test (1 mg L-1) mature daphnids very effectively concentrated the IONP in their intestine, as 

demonstrated by the accumulation experiments (Fig. 3a).  It is thus very likely that, at the highest test 

concentrations of the reproduction tests, high amounts of IONP were concentrated in the daphnids’ 

guts and disturbed nutrient uptake or the production of energy. Different possible modes of action of 

IONP or NP which might inhibit digestion in general are: (1) NP filling the lumen of the gut. In 

consequence, fewer food particles are ingested; (2) a paratrophic membrane (PTM) regulates the 
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exchange of nutrients inside the gut, protects the epithelial cells [49, 50], and prevents the settling of 

harmful microorganisms [51, 52]. The PTM has a mesh-like structure. Its pores have diameters of 

about 130 nm. NP might block the PTM pores, suppressing nutrient exchange; (3) NP, which are able 

to pass the PTM, may get stuck between the microvilli, inhibiting nutrient uptake there; and (4) NP 

destroying the function of gut epithelial structures. This can be mechanical destruction of the PTM or 

other gut structures during passage or destruction due to direct toxicity of the NPs’ material. 

 

Fig. 6. Influence of s- and i-IONP on reproductive parameters of D. magna: (a/b) amount of progeny produced

per mother; (c/d) day when the daphnids released their first offspring; (e/f) amount of neonates (size) in the first 

brood. Shown are box plots; whiskers indicate min/max values. Significant differences where calculated using a

students t test. ** p < 0.01, *** p < 0.001; n/a = data not available due to the death of all daphnids. 
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The effects of s-IONP on D. magna were less strong than those of i-IONP, because, as shown above, 

fewer s-IONP were ingested. It was only at 100 mg L-1 that all daphnids died within a few days. We 

hypothesize that at that concentration virtually no nutrient exchange was possible due to the effects 

described above; consequently, the young daphnids starved to death. Baumann et al. [53] showed that 

neonates can survive four days without feeding. After this period, the energy reserves are depleted and 

external food uptake is needed for further development. At 100 mg L-1, s-IONP suppressed the 

efficient use of energy and the daphnids died at the age of five to eight days (Fig. 4c). Some daphnids 

also died at 50 mg L-1, but much later. This implies that most daphnids were able to ingest enough 

food to develop. However, reproduction was still significantly reduced (Fig. 6). At concentrations 

between 1 and 25 mg L-1, the presence of s-IONP did not significantly affect the life history responses 

of D. magna. 

The inhibition of the daphnids’ life history parameters by i-IONP was amplified by a second effect, 

the flocculation of algae (Fig. 2c/d), which did not occur for s-IONP. The algae stick to the filtering 

apparatuses and the swimming antenna, partly completely inhibiting the movements of the daphnids 

(Fig. 2c). The adsorption of algae to the daphnids exoskeleton (1) increased the resistance during 

swimming, leading to higher energy demands [11], which could not be compensated since (2) the 

filtering apparatuses were blocked by the algae, inhibiting normal food uptake. Furthermore, (3) 

respiration might have also been affected since the filtering current which serves to transport oxygen-

rich water to the gills was most likely reduced by the algae clogging the filtering-apparatuses. 

Additionally, the gills might have also been covered by the agglomerates, which would have disturbed 

efficient oxygen exchange. The phenomenon of algae agglomeration already occurred at the lowest 

test concentration of 1 mg L-1 and increased with increasing i-IONP concentration. In concentrations 

between 1 and 10 mg L-1, the daphnids survived due to lower effect size, but also due to the possibility 

of eliminating the algae agglomerates from their bodies during ecdysis since algae kept sticking to the 

old exuvia (Fig. 2d). At concentrations of 25 mg L-1 and higher, the inhibition was too strong and all 

daphnids died after a few days (Fig. 3d). 

The results showed the different effect size of s- and i-IONP. The effect size strongly depended on the 

exposure concentration in each treatment with stronger effects of i-IONP at lower concentrations. To 

compare the effects of both IONP on the life history parameters (size, reproduction, day of first 

offspring and size of the first brood), we performed a within-class Principal Component Analysis 

(PCA). This analysis allowed us to eliminate the concentration effect on the investigated responses 

and to compare them. The PCA, followed by a Mann-Whitney U test, revealed no significant 

differences between the responses to s- or i-IONP exposure (W = 5124, p = 0.38). This result indicates 

that both particles had the same effect on the daphnids. From this, we can hypothesize that the mode 

of action for both IONP was the same. Life history parameters were most likely affected by the 

insufficient nutrient assimilation. The effect of i-IONP was stronger due to the agglomeration of algae 
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clogging the filtering apparatuses and additionally preventing the daphnids from sufficient nutrient 

uptake.  

Conclusions 

Daphnids are able to effectively filter NP and concentrate them in their digestive tract. The main 

exposure route of NP in daphnids therefore appears via ingestion. When NP are ingested, they disturb 

nutrient uptake. NP can inhibit the function of filtering setae and clog the digestive tract or disturb the 

function of the gut epithelium. Ingested NP have no alimentary value, but when they are ingested they 

displace food. Even if NP are composed of non-toxic materials, they have strong harmful effects on 

filter-feeders, since they consequently lead to starvation. On the other hand, we demonstrated efficient 

and complete excretion of accumulated IONP after medium exchange. Filter feeders such as daphnids 

are primary consumers and play an important role in the food chain. As they are able to concentrate 

NP during permanent exposure, trophic transfer of NP to higher tier organisms such as fish is possible 

[54]. 

The tested PVP-IONP were effectively ingested by D. magna and highly concentrated in its intestine. 

Due to their low toxicity, we were able to conduct a good investigation of their physiological effects 

on daphnids. By chance, one of our IONP batches exhibited decreased colloidal stability, which gave 

us the opportunity to compare equal NP with different colloidal properties. In previous investigations, 

PVP-IONP did not induce significant acute immobilization within 96 h [12, 15]. Under chronic 

exposure, both IONP significantly affected the daphnids and even induced their death, with stronger 

effects of colloidally instable i-IONP. We were able to demonstrate the stronger physiological 

inhibition by i-IONP due to the additional clogging of the filtering apparatuses by agglomerating algae. 

Our results show that even NP composed of uncritical materials with low or no toxicity can 

significantly affect filter-feeding organisms. Since their effects were closely related to physiological 

inhibitions, effects were often pronounced only after long-term exposure. For the hazard and risk 

assessment of NM in general, acute tests might not be appropriate and toxicity cannot be exclusively 

extrapolated from the toxicity of the core material. Physicochemical properties also play an important 

role in how NM may affect (aquatic) organisms. As we showed, a little change in the colloidal 

properties can have significant influence on the impacts of NM. 
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4 Summarizing Discussion and Conclusions 

In the year 2009, at the beginning of this thesis, knowledge about NP and their possible 

impacts was limited, and the available data was very diverse and partly contradictory. From 

the outset, the focus of this thesis was placed on the effects of iron oxide NP (IONP) in the 

aquatic environment, but also investigated AgNP as a reference NM. As the research 

discussed here progressed, new goals and hypotheses were developed, changed and 

adopted. Due to the manifold different aspects influencing the mode of action of NP in the 

aquatic environment, it was decided to focus on Daphnia magna as the only exemplary test 

organism. 

The following section summarizes and discusses the key findings of this thesis and aims to 

make recommendations for future investigations of NM in aquatic, ecotoxicological tests for a 

reliable hazard assessment. 

 

4.1 Accumulation and Depuration of IONP in Daphnia 

Daphnids are small crustacean filter feeders. On their thoracic legs they carry small setae to 

filter food particles. Due to the size of their setae daphnids should be able to actively filter 

particles as small as 200 nm from the surrounding water (Hartmann & Kunkel 1991). With 

their appendages they create a water current along the opening of the carapace that funnels 

food towards their mouth and oxygen-rich water into the carapace to facilitate respiration 

(Mendonca et al. 2011, Pirow et al. 1999, Porter et al. 1982, Rosenkranz et al. 2009). Since 

the filter feeding of daphnids is not very selective, NP are ingested with the feeding current 

(Ebert 2005, Hund-Rinke & Simon 2006).  

NP including iron oxide NP (Hu et al. 2012), cerium dioxide NP (Auffan et al. 2013), zinc 

oxide NP (Santo et al. 2014), copper NP (Heinlaan et al. 2011), silver NP (Zhao & Wang 

2010), gold NP (Lovern et al. 2008), titanium dioxide NP (Zhu et al. 2010), quantum dots 

(Feswick et al. 2013, Lewinski et al. 2010), polystyrene beads (Rosenkranz et al. 2009), 

diamond NP (Mendonca et al. 2011), and other carbon NM (Petersen et al. 2009, Tervonen 

et al. 2010) were already shown to be accumulated by daphnids. Therefore, the main 

exposure route of NP in daphnids – and most likely in all filter feeding species – should be 

via ingestion (Feswick et al. 2013). 

Most studies reported quick accumulation of NP in the daphnids’ digestive tract and slower 

depuration rates. Some showed interactions between the NP and the gut epithelium such as 
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penetration into the first epithelium layers or destruction of gut epithelium structures 

(Heinlaan et al. 2011, Lovern et al. 2008, Santo et al. 2014). Due to these findings, NP bear 

a high potential to disturb natural nutrient uptake. 

It was already found during the first investigation of acute effects that different IONP were 

evidently ingested by neonate daphnids (Baumann et al. 2014, Publication 3). In order to 

determine accumulation and depuration rates of IONP, tests with mature daphnids were 

performed. The iron content of daphnids was measured with an adopted, photometric 

ferrozine-based assay (Riemer et al. 2004). The accumulation of colloidally stable and 

instable PVP-IONP was investigated over 48 h and the depuration over a period of 144 h and 

compared to the iron content of unexposed daphnids. 

Both IONP were ingested by the daphnids or adsorbed to their exoskeletons, with higher 

rates of instable IONP. During depuration daphnids excreted the whole IONP burden within 

96 h. The IONP were expelled by the pressure of more recently acquired food, but also 

ecdysis was hypothesized to play an important role in eliminating IONP from the digestive 

tract (Auffan et al. 2013). The results indicated that IONP were not bio-accumulated by the 

daphnids. 

Given the limited retrieved data, only postulates on the modes of action of IONP 

accumulation and depuration were possible. More research is needed to fully understand 

uptake and elimination mechanisms. Furthermore, the exposure of 48 h was very short. At a 

concentration of 1 mg iron/L, the internal iron concentration was still increasing at the end of 

the exposure period. Additional tests monitoring the accumulation of IONP over longer 

periods of several days, weeks or even generations might deliver new insights into the bio-

accumulation potential of (IO)NP in daphnids. 

 

4.2 The Role of Colloidal Properties of IONP on their Effects  

Colloidal characteristics of NP have the most important influence on their distribution in the 

(aquatic) environment (Wiesner et al. 2009). These properties determine whether NP build 

stable dispersions, whether they agglomerate or adsorb to surfaces and other particles, or 

whether they tend to decompose and release potentially critical substances such as toxic 

ions (Kahru et al. 2008, Navarro et al. 2008a). The colloidal stability therefore determines 

exposure routes and interactions at the bio-nano interface (Rivera-Gil et al. 2013). 

The colloidal properties of NP highly depend on their reactivity, their surface chemistry and 

the composition of the dispersion medium (Handy et al. 2008a). Usually NP are supplied with 
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a surface coating which serves to increase the colloidal stability to maintain their nano-

specific characteristics in dispersion (Batley et al. 2013, Nowack & Bucheli 2007). NP can be 

(colloidally) stabilized by increasing their charge to achieve electrostatic repulsion, or they 

can be surrounded by a sterically stabilizing shell, which suppresses direct contact between 

the NP (Segets et al. 2011, Studart et al. 2007). 

IONP with different coatings were synthesized by Darius Arndt and tested on their colloidal 

properties in different media including the Daphnia medium Elendt M7. The four colloidally 

most stable IONP were chosen for ecotoxicological investigations with D. magna. These 

IONP were present in the water column at least for several days or even months, 

guaranteeing high exposure potential to the pelagic filter feeding daphnids. One set of IONP 

was stabilized via electrostatic repulsion with ascorbate (ASC) and citrate (CIT). Sterically 

stabilized IONP were functionalized with dextrane (DEX) and polyvinylpyrrolidone (PVP).  

First, the acute toxicity of the four different IONP was investigated over a period of 96 h. 

Since (negatively) charged NP were already shown to be more (cyto-) toxic than less or 

neutrally charged NP due to increased reactivity and the potential to form more reactive 

oxygen species (ROS) (Lee et al. 2013a, Park et al. 2013, Schaeublin et al. 2011), ASC- and 

CIT-IONP were expected to be more toxic than DEX- and PVP-IONP. However, the greatest 

immobilization and toxicity was found for ASC- and DEX-IONP which was attributed to an 

increased agglomeration in the tests. Although ASC/DEX-IONP were tested to be colloidally 

stable, they quickly agglomerated in the presence of daphnids. It was hypothesized that the 

colloidal destabilization was related to turbulences induced by the filtering and swimming 

movement of the daphnids. The agglomeration and adsorption of IONP disturbed the molting 

of the neonates. The incomplete ecdysis often immobilized the neonates, but usually did not 

cause their death. Comparable agglomeration of both IONP in the Elendt M7 stocks was only 

observed after one year. Most frequent cases of incomplete ecdysis were induced by the 

colloidally instable ASC- and DEX-IONP. IONP possibly adsorbing to the carapace were 

obviously able to disturb the molting process. This effect was also less frequently observed 

for CIT-IONP and did not occur for PVP-IONP. 

In CIT-IONP additional release of iron ions was measured. However, toxicity could not 

exclusively be related to free iron since release rates were too low. Toxicity was 

hypothesized to also originate from the possible formation of ROS. For ASC- and CIT-IONP 

Arndt et al. (2012) had shown increased production of ROS. 

PVP-IONP did not have any significant harmful effects within 96 h at concentrations of up to 

100 mg iron L-1. PVP-IONP had the highest long-term stability without any agglomeration or 

decomposition even after one year in Elendt M7 stocks. The thick PVP-shell effectively 
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prevented the IONP from agglomeration (Studart et al. 2007). These IONP are therefore a 

very promising tool to investigate long-term NP effects without the influence of effects from 

released (toxic) ions or decreasing colloidal stability. 

Consequently, PVP-IONP were chosen for the investigation of the long-term effects of IONP 

on D. magna. The chronic test aimed to investigate sub-lethal endpoints such as inhibition of 

reproduction and growth over 21 days. By chance, one batch of PVP-IONP synthesized for 

the tests showed decreased colloidal stability with slow agglomeration. Although this effect 

was not desired, it opened up the opportunity to compare long-term effects of equal IONP 

with different colloidal properties.  

Both IONP induced increased mortality at concentrations ≥ 25 mg iron/L, but with stronger 

effects of instable IONP. Many or even all daphnids died after 5 to 8 days, which indicates 

that acute tests might not be sufficient for the testing of NM since effects are often delayed 

compared to those of diluted chemicals. Also the reproduction as well as the development 

(growth) was significantly reduced under exposure to both IONP. However, stable IONP only 

induced significant effects at 100 mg iron/L, instable IONP already affected the life history 

responses of daphnids significantly at 1 mg iron/L. 

When NP are present, they are very effectively concentrated by daphnids in their digestive 

tracts (see above). NP composed of non-toxic materials (such as IONP) might also 

significantly decrease nutrient uptake (Mendonca et al. 2011) by physically clogging the 

digestive tract and slowing down the gut passage (Campos et al. 2013). In consequence, 

many life history effects and even increased mortality observed under chronic IONP 

exposure should be related to the starving of daphnids as a consequence of insufficient 

nutrient uptake. For a complete understanding of effects and to confirm the developed 

hypotheses the accumulation of (IO)NP in daphnids has to be investigated in more detail. 

Investigations of the intestines of exposed daphnids with histological methods might help to 

prove the assumptions of disturbed nutrient exchange in the daphnids’ gut.  

The increased effects of colloidally instable IONP were explained by the additional 

flocculation of algae, which were administered as food. The algae flocs were concentrated 

between the filtering legs of the daphnids, partly completely inhibiting their locomotion. This 

greatly increased physiological stress, which may have even been amplified by the reduced 

food acquisition. Furthermore, respiration might also have been affected sicne the filtering 

current also serves respiration. It was hypothesized that the filtering movements and the 

associated water current accelerated the release of PVP from the IONP. Released PVP, 

colloidally instable PVP-IONP or the mixture of both interacted with the algae forming the 

visible algae agglomerates. However, since the observed effects might exclusively be related 
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to PVP, more research on the interaction of algae and i-IONP would allow a better 

understanding of this phenomenon. 

 

4.3 Combinatory Toxicity and Application of IONP for Remediation  

Iron-based NM are tested for remediation applications as a cost effective method due to their 

high efficiency in processing many different contaminants (Brame et al. 2011, Crane & Scott 

2012, Karn et al. 2009, Li et al. 2006a, Li et al. 2006b, Sanchez et al. 2011, Zhang & Elliott 

2006). Risks for the environment are largely ignored, although there is only limited data 

available concerning the fate, transport and the effects of nano-remediation products on biota 

(Grieger et al. 2010, Noubactep et al. 2012, Yin et al. 2012).  

Since iron is easily hydrolyzed or oxidized to iron oxides under environmental conditions 

(Kharisov et al. 2012, Khin et al. 2012), studies presented within this thesis focused on more 

environmentally relevant IONP. In order to identify potential benefits and risks from nano-

remediation products, combinatory tests with PVP-IONP and four exemplary contaminants, 

the heavy metals cadmium and copper and the organic compounds glyphosate and resorcin 

(aromatic compound), were performed.  

The addition of PVP-IONP reduced the toxicity of both heavy metals many times over. 

Cadmium and copper can be sorbed or complexed by IONP (Merkel & Planer-Friedrich 

2009), but also interactions with the PVP shell were demonstrated by theoretical 

assumptions (Publication/Manuscript 4). The results indicated that the bioavailability of heavy 

metals can be significantly reduced by IONP. In the case of glyphosate, the toxicity was 

reduced by the IONP within the first 72 h, but after 96 h toxicity reached the level of the 

single substance. It was hypothesized that – at first – glyphosate was incorporated within the 

PVP-IONP complex. Over time glyphosate was released from the IONP, e.g. due to digestion 

processes during passage of the daphnids’ guts. The results hint at a possible carrier effect 

where IONP serve as a transport vehicle (into biota). The toxicity of resorcin was not affected 

by the addition of IONP. 

Within the test duration of 96 h, no negative effects of the IONP-contaminant mixtures were 

observed. At least in the case of heavy metals their toxicity was even reduced. However, 

complexed or adsorbed contaminates are just immobilized at the surface of IONP, which 

temporarily reduces their bioavailability. At the moment there is only limited data available on 

the long-term remobilization of such contaminants from NP (Yin et al. 2012). NP may act as 

a carrier by which a local contamination might be induced, drift with the (ground-) water 
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stream, and be spread to uncontaminated areas (Grieger et al. 2010, Noubactep et al. 2012). 

By ingesting NP-bound substances, the NP might act as a transport vehicle for immobile 

contaminants into organisms, possibly increasing the uptake of critical substances compared 

to their natural accumulation rates. Baun et al. (2008b) found faster uptake and highly 

increased toxicity of phenanthrene in D. magna and algae (Pseudokirchneriella subcapitata) 

as a result of the presence of C60 fullerenes. C60 fullerenes also increased the toxicity of 

copper in D. magna by increasing its uptake (Tao et al. 2013). TiO2 NP increased the toxicity 

of arsenic in Ceriodaphnia dubia (Wang et al. 2011). Zhang et al. (2007) showed increased 

cadmium accumulation in carp and Hu et al. (2011) in zebra fish when TiO2 NP were present. 

However, first results on the transport of iron NP in artificial soil and groundwater systems 

indicate that their transport under natural conditions is limited to a few centimeters (Emerson 

et al. 2014, Gomes et al. 2013, Lin et al. 2010). To increase their efficiency, the mobility of 

future NP for remediation will most likely be increased (Phenrat et al. 2007), but their 

transport might still be limited. Therefore, the application of iron NP on highly contaminated 

sites is a promising future remediation tool (Karn et al. 2009), especially when taking into 

account that soil and groundwater organisms are usually no longer present in contaminated 

areas. 

Nevertheless, the unknown side effects and the behavior of iron NP under environmental 

conditions need further investigation before they can be commercially applied. Although the 

high efficiency of iron NP in decontamination was already proved in laboratory studies 

(Huang & Chen 2009), more research on long-term effects such as transport and release of 

contaminants from NP or the risks from degradation products is needed (Yin et al. 2012). 

Although Daphnia tests provided new insights into the combinatory toxicity of IONP, future 

tests should also be conducted with potential target organisms living in soil and groundwater, 

since the way of life and further biotic and abiotic factors highly influence exposure. 

Furthermore, tests should also be carried out under more environmentally relevant conditions 

and with different target contaminants and mixtures, since contaminants might also compete 

e.g. for binding sites at the NP surface. In order to determine the complete hazard potential 

of iron NP, combinatory tests would have to be performed with each iron NP and each target-

contaminant in environmentally relevant mixtures. 
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4.4 Daphnia OECD Standard Tests and their Suitability for the 
Testing of NM 

In order to gain reproducible data, it is very important to rely on standardized test protocols. 

All Daphnia tests of this thesis were performed according to OECD standards. It was a major 

objective to prove the suitability of both tests, namely the acute immobilization (OECD 2004) 

and the chronic reproduction test (OECD 1998), for testing NP.  

The OECD suggests using artificial media such as Elendt M4 and M7 (OECD 2004). Elendt 

is a very complex medium containing over 20 different substances, resulting in an ionic 

strength of 8.3 mM. High (salt) concentrations, especially those of calcium and magnesium 

present a problem for the colloidal stability of dispersed NP (Filser et al. 2013, Jin et al. 2010). 

Furthermore, the contained EDTA can complex metal ions and affect their bioavailability 

(OECD 1998). Hence, some ecotoxicologists suggest less complex media with reduced salt 

concentrations for the testing of NP (Handy et al. 2012b, Tejamaya et al. 2012). 

Chronic reproduction tests performed with different media revealed astonishing results 

(Fig. 7). The best reproduction was found in both Elendt media as well as in the UFT tap 

water. In the alternative EPA hard water medium (US EPA 2002) and ISO medium (ISO 

1996), the reproduction of Daphnia was significantly reduced, showing that the transfer of 

daphnids to other media can significantly affect life history parameters. Due to these findings 

and the reduced concentration of microelements, Elendt M7 was the preferred medium for 

the culturing of D. magna and the testing of IONP. 

Test guidelines recommend accompanying analyses of the tested substances during the 

tests to determine the bioavailable concentrations. Furthermore, abiotic factors such as 

temperature, pH, salinity, conductivity, and hardness of the medium should also be recorded 

(e.g. OECD 1998). However, for NP, additional analyses have to be recommended to 

understand the effects of NP in biotests (Crane et al. 2008). The most important information 

for ecotoxicological tests is: (1) size: the primary particle diameter usually measured via TEM, 

and the mean hydrodynamic diameter in the test medium measured via DLS; (2) size 

distribution: exact size partition determination to assess whether NP dispersions have a 

narrow or broad distribution and the tendency of NP to form agglomerates; (3) coating 

materials and (4) surface charge: the mode of action on how NP are stabilized plays an 

important role for their colloidal properties and their interactions at the bio-nano interface 

(Cunningham et al. 2013, Kim et al. 2013, Rivera-Gil et al. 2013, Zhu et al. 2013). The 

surface charge is usually measured via the zeta potential; (5) concentration: the overall mass 

concentration, e.g. measured via AAS, to assess the bioavailable concentrations as well as 
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the tendency for adsorption, but also differentiation between nanoparticular matter and 

material released from the NP such as metallic ions, e.g. achieved by a pretreatment of 

samples with ultra-filtration or centrifugation. These mentioned analytical endpoints were 

assessed in most investigations of this thesis. However, additional measurands may deliver 

important information such as the particle concentration, the overall reactive surface (Handy 

et al. 2008b) and other material-specific properties such as the photocatalytic (Hund-Rinke & 

Simon 2006) or redox reactivity and the ability to build ROS, respectively (Xia et al. 2006). 

The tests with IONP and daphnids have shown that new, unknown biological effects can 

appear under NP exposure. Test organisms and their reactions during NP exposure have to 

be carefully monitored. In daphnids more research must be done on the phenomenon of 

incomplete ecdysis and the mechanism disturbing the molting process. The effects of NP 

clogging the filtering apparatuses and the digestive tract should be investigated in more 

detail. 

 

Fig. 7: Mean reproduction (±SE) of Daphnia magna in a 21-day reproduction test with 
different (artificial) test media. Daphnids produced the most offspring in the UFT tap 
water, Elendt M4 (EM4) and Elendt M7 (EM7) media. Reproduction was significantly 
reduced in the ISO medium (ISO 1996) and the EPA hard water medium (US EPA 2002). 
Statistics: 1-way ANOVA with Dunnetts’ multiple comparison test, *** p < 0.001 
(unpublished data by kind permission of Yvonne Sakka; the experiment was designed by 
J.B. + Y.S. and conducted by Y.S.) 
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These findings reveal that “nano-effects” might often be connected to modes of action other 

than those of dissolved chemicals. Basically, the physiological fitness of the daphnids was 

affected. Since these are indirect effects, they should harm organisms much more slowly 

than the direct toxicity of dissolved substances. In order to determine “long-term acute 

effects” in daphnids, the acute toxicity test (OECD 2004) was prolonged from 48 to 96 h. This 

was the longest duration the neonates survived without changing the standard test procedure, 

for example by adding food. For both NP tested, IONP and the exemplary tested AgNP, 

additional information was gathered during the prolonged test span. These findings are 

supported by the research of Dabrunz et al. (2011) who found increasing toxicity of TiO2 NP 

and incomplete ecdysis of Daphnia during the prolonged test span. A prolongation of acute 

tests seems especially worthwhile for NP consisting of uncritical material(s). 

It appears that in most cases Daphnia standard tests (and also other ecotoxicological 

standard tests) should be appropriate for the testing of NM (Handy et al. 2012a). However, 

additional test endpoints such as incomplete ecdysis of daphnids might have to be 

introduced. Furthermore, additional physicochemical analyses have to be performed to 

understand the reactions at the bio-nano interface. Many analytical methods to characterize 

NM were launched in the market over the past decade, but we are still lacking guidelines 

prescribing standardized analytical methods which should accompany ecotoxicological tests 

(Lopez-Serrano et al. 2014).  

 

4.5 Miniaturization of the Daphnia Acute Toxicity Test 

Due to the time-consuming synthesis of IONP, a miniaturized test design of the Daphnia 

acute test (OECD 2004) was developed at the beginning of this thesis. For the 

miniaturization, 24-well microtiter plates were used, which are cheap, disposable test vessels 

made of polystyrene. This can be particularly important for the testing of NM. Cleaning 

reusable (glass) test vessels often demands a time-consuming treatment with dangerous 

chemicals such as strong acids and the additional disposal of contaminated cleaning liquids. 

With the developed miniaturized test design, not only 50 % of test substances and test 

animals were saved, but the time to setup and check the tests was also significantly reduced. 

Thus allowed for more tests to be performed simultaneously. The miniaturized test was 

compared to the classic standard test performed in glass beakers and in 6-well microtiter 

plates (in order to evaluate possible influences of the plate material). Potassium dichromate 

was used as the reference substance. The comparison tests revealed no significant 

differences between the miniaturized and the two standard tests designs. It was concluded 
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that the miniaturized test system is an appropriate alternative to the standard test system, at 

least for soluble and non-adsorbing substances. 

Since the reduction of the test volume automatically increases the surface-to-volume ratio, 

the miniaturization may influence the bioavailability of potentially adsorbing substances. Most 

AgNP and released Ag+ ions are known for their strong adsorption to surfaces (Lau et al. 

2013, Welz & Sperling 1997). For this reason, additional tests with NM-300K AgNP were 

conducted.  

Contrary to expectations, the toxicity of AgNP increased in the miniaturized test although the 

overall Ag content was measured to be lower than in the standard tests. It was hypothesized 

that the effects were related to increasing decomposition of AgNP when adsorbing to the test 

vessels’ surface, thus releasing more toxic Ag+ ions (Fig. 8). In order to confirm this 

assumption, it would have been necessary to differentiate between the partitions of AgNP 

and Ag+ ions e.g. by ultra-filtrating the samples before further processing for the AAS 

measurement. However, this requires a very sophisticated preparation of samples due to the 

extreme adsorption of AgNP/Ag+ ions. Furthermore, the available AAS measurement was 

just sensitive enough to measure the overall Ag content at concentrations corresponding to 

the EC50 values. Even with a reliable separation method, exact concentration measurements 

would have been nearly impossible. Measuring Ag at biologically and environmentally 

relevant concentrations might be improved by concentrating the samples after the drying 

process. Nevertheless, a reliable separation of AgNP and Ag+ ions and concentration 

measurement methods must be improved and further developed to understand the effects 

observed. For example Mwilu et al. (2014) have recently demonstrated a method using 

magnetic NP to capture the Ag+ ions fraction and concentrating it up to 250 times. After 

magnetic separation, Ag bound to the magnetic NP was measured via ICP-MS. 

The results showed that a miniaturization of the Daphnia acute toxicity test is possible. 

However, due to the increased surface-volume ratio the bioavailability of substances may be 

significantly affected, especially of those with a strong adsorption potential. The increasing 

toxicity of AgNP was surprising and contrary to expectations. It could only be hypothesized 

that decomposition processes might have played a role (Fig. 8).  
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Fig. 8: Scheme of the hypothetical processes causing higher toxicity of AgNP in the 
miniaturized test design. (1) AgNP adsorbed to the test vessels’ walls (2) building a 
monolayer. (3) Adsorbed AgNP increasingly released toxic Ag+ ions. Due to the increased 
surface-volume ratio in the miniaturized test, more AgNP adsorbed in less time and more 
Ag+ was released. Although the overall Ag content was lower compared to the standard 
test, more toxic Ag+ ions were present, explaining the increased toxicity. 
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4.6 Future Perspectives and Recommendations 

When iron NP enter the environment, they are quickly covered by an oxidized shell or are 

even completely oxidized or hydrolyzed. Hence, this thesis focused on the investigation of 

iron oxide NP. The tests proved that IONP had relatively low toxicity in daphnids compared to 

other metallic NP such as AgNP. They effectively reduced the bioavailability of at least two 

heavy metals. For environmental remediation, iron NP appear as a promising future tool. The 

risks to the environment are low compared to the benefits from iron NP remediation. Due to 

their moderate toxicity, IONP are also very well suited for the investigation of “nano-effects” 

without the influence of other effects such as that of toxic ions released from the NP.  

Daphnids such as Daphnia magna are one of the preferred test organisms in aquatic 

ecotoxicology. They are easy to culture, have short reproductive cycles, high reproduction 

rates, and are sensitive to most toxic substances (Griffitt et al. 2008, Kahru et al. 2008, 

Zitova et al. 2009). Daphnids are pelagic filter-feeders which feed on suspended 

microparticles such as algae. Daphnids are predestined for the testing of NM (Baun et al. 

2008a) since they are able to ingest and concentrate suspended NP in their digestive tract, 

greatly increasing internal or intestinal exposure and hence potential hazards from NP.  

The investigations have proven that both OECD Daphnia standard tests, the acute 

immobilization test (OECD 2004) and the chronic reproduction test (OECD 1998), are 

suitable for the ecotoxicological investigation of NM. However, some adaptations for future 

Daphnia tests should be made: 

1. Prolonged duration: 

The acute immobilization test is limited to 48 h. Within this period, diluted chemicals often 

induce significant effects and mortality only moderately increases thereafter. The effects 

of NM are often delayed since other mechanisms of action might take place. The 

possibility to prolong the Daphnia acute test to 96 h without changing the test procedure 

was proven. Tests have shown that within the prolonged test span, effects of NP can 

significantly increase (e.g. AgNP, DEX-IONP). Since a few NP such as PVP-IONP may 

not induce any harmful effects even within the prolonged test, the effectiveness of acute 

tests for the determination of hazard potentials of NM needs further discussions. 

2. More standardized analyses: 

The complete characterization of physicochemical properties of NP is important to 

understand their effects on biota (Crane et al. 2008). Test guidelines should be extended 

with suggestions for additional analytical endpoints and appropriate measuring methods 
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of NP. Provided that material compositions of NP are known, NP analyses should at least 

cover: (1) concentration measurement with exact determination of NP fractions; (2) 

information on the primary particle size and morphology and the hydrodynamic diameters 

in the test media as well as a time-dependent detection of size distributions since 

colloidal properties can significantly influence the effects of NP on daphnids; and (3) 

exact knowledge of the surface chemistry such as surface-coatings and surface-charge 

which might be extended by NP specific measurements such as the potential to build 

ROS. 

3. New endpoints: 

This thesis provides a number of new insights on how NP can affect the physiology of 

daphnids. First, disturbed molting or incomplete ecdysis is to be mentioned. IONP were 

also found to disturb the ecdysis, which was first described by Dabrunz et al. (2011) for 

TiO2. Although more research has to be performed to explain the mechanisms behind 

this phenomenon, researchers should already draw attention to this “nano-effect”. 

Another effect was described as the “clogging” of the filtering apparatuses and the 

digestive tract, which consequently reduced effective nutrient accumulation. This effect 

also needs further investigation, since intestinal interactions might be one of the driving 

forces of the reduced development of daphnids under chronic (sub-lethal) exposure to 

NM. 

 

Laboratory data on the effects of NM on biota is important to estimate their hazard potential. 

Nevertheless artificial laboratory single species tests can hardly simulate the complex 

processes in nature. In order to better understand how NP may actually behave in the 

environment, much more work has to be done. This begins in the laboratory, where new and 

standardized test strategies and instructions have to be developed. More research on the 

bioaccumulation potential of NM and their entrance and transport in food webs needs to be 

conducted. Environmentally relevant mixtures of NP and natural substances (e.g. NOM) or 

contaminants will need to be investigated further. At last, we need reliable, standardized 

measurement methods for NP/NM in the environment and the differentiation between natural 

and engineered NM to understand the behavior of and to predict the risks from NM to human 

and nature health. 
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