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TÓM TẮT LUẬN ÁN 

Rừng ngập mặn giữ nhiều vai trò quan trọng trong đời sống cũng như các hoạt 

động kinh tế - xã hội của con người. Tuy nhiên, diện tích rừng ngập mặn trên toàn thế 

giới đang suy giảm do nhiều nguyên nhân trong khi hiểu biết cụ thể về vai trò, chức năng 

của hệ sinh thái này vẫn chưa đầy đủ. Là quốc gia ven biển có diện tích rừng ngập mặn 

lớn, rừng ngập mặn ở Việt Nam là đối tượng của rất nhiều nghiên cứu khoa học. Tuy 

nhiên, những kiến thức về động thái dinh dưỡng và chất hữu cơ ở Việt Nam nói chung, 

và ở đồng bằng sông Cửu Long, hiện vẫn rất thiếu hụt. Nghiên cứu này được thực hiện để 

tìm hiểu động thái dinh dưỡng trong một hệ sinh thái rừng ngập mặn trồng lại trên ruộng 

muối bỏ hoang ở Gành Hào, tỉnh Bạc Liêu – một tỉnh ven biển miền nam Việt Nam – để 

tìm hiểu mối liên hệ giữa tình trạng dinh dưỡng với điều kiện môi trường nền trầm tích và 

động thái của chất hữu cơ trong nền. 

Mẫu trầm tích và mẫu lá tươi của các loài thực vật được thu tại 8 kiểu sinh cảnh 

khác nhau dọc theo đường cắt dài khoảng 700 m trong mùa khô và mùa mưa năm 2009. 

Mẫu trầm tích được dùng để xác định hàm lượng chất dinh dưỡng (NH4
+, NO2

-, NO3
- và 

P khả dụng cho thực vật) cùng với tổng lượng carbon hữu cơ (Corg) và nitrogen (N). 

Những số liệu này sẽ giúp đánh giá tình trạng dinh dưỡng trong khu vực nghiên cứu. 

Thành phần và hàm lượng các acid amin trong trầm tích được xác định để tìm hiểu quá 

trình phong hóa hữu cơ trong khu vực. Glucosamine, galactosamine cùng với thành phần 

và hàm lượng acid amin trong mẫu lá tươi được sử dụng để đánh giá nguồn gốc của vật 

liệu hữu cơ trong trầm tích. Phần đóng góp của chitin vào nguồn hữu cơ trầm tích cũng 

được định lượng theo 2 phương pháp. Việc xác định hàm lượng chitin trong trầm tích 

được thực hiện một cách trực tiếp qua sự tạo nối giữa 3 phân tử N-acetylglucosamine của 

chitin với wheat-germ-agglutinin được đánh dấu huỳnh quang (WGA-FITC). Bên cạnh 

đó, hàm lượng chitin còn được xác định thông qua hàm lượng glucosamine trong trầm 

tích. 

Khu vực nghiên cứu bị thiếu hụt dưỡng chất nghiêm trọng, đặc biệt là N. Sự thiếu 

hụt N dẫn đến sự thiếu hụt P trong nền trầm tích. Hàm lượng N và P trong nền trầm tích 
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chịu sự chi phối của các đặc điểm lý hóa trong nền và sự có mặt hay vắng mặt thảm thực 

vật. Tỷ lệ C:N cho thấy vật liệu hữu cơ ở các tầng sâu trong khu vực nghiên cứu chủ yếu 

đến từ biển. Phần vật liệu hữu cơ có nguồn gốc từ thực vật trên cạn được tìm thấy chủ 

yếu ở tầng mặt, cho thấy rừng trồng và sự xâm lấn của Sam biển chỉ mới đóng góp vào 

nguồn hữu cơ trầm tích trong thời gian gần đây.  

Hàm lượng hữu cơ trong trầm tích thấp hơn các rừng ngập mặn và các vùng ven 

biển khác, có lẽ là do tốc độ quay vòng hữu cơ trong nền trầm tích nhanh do nhiệt độ cao 

và các vết nứt sâu làm cho nền thoáng khí. Thành phần và hàm lượng acid amin trong 

trầm tích chịu ảnh hưởng của sinh khối cũng như thành phần và hàm lượng acid amin 

trong thực vật. Nhìn chung, hàm lượng acid amin giảm theo độ sâu trầm tích. Tuy nhiên, 

các hoạt động chuẩn bị đất khi trồng rừng đã gây xáo trộn xu hướng biến đổi theo tầng 

sâu của acid amin dưới tán rừng Cóc trồng. 

Hàm lượng chitin xác định trực tiếp qua liên kết giữa N-acetylglucosamine với 

WGA vượt quá tổng lượng Corg trầm tích. Tuy nhiên, số liệu này vẫn cho thấy một liên hệ 

với số lượng mảnh vỏ khuê tảo tìm thấy trong nền. Hàm lượng chitin xác định thông qua 

glucosamine cho thấy chitin chiếm không đến 2% tổng lượng Corg và dưới 3% lượng Ntot. 

Trong các lớp trầm tích dưới sâu (30-35 cm), vỏ lột của cua là nguồn chitin chủ đạo trong 

khi ở các lớp trầm tích phía trên, chitin có nguồn gốc chủ yếu từ khuê tảo. 

Tóm lại, những kết quả của nghiên cứu này cho thấy tình trạng dinh dưỡng cũng 

như động thái của chất hữu cơ trong nền trầm tích rừng ngập mặn trồng trong điều kiện 

khắc nghiệt như ruộng muối bỏ hoang chịu sự chi phối mạnh mẽ của thủy triều, thảm 

thực vật, bản chất nền trầm tích. Những ảnh hưởng này có thể liên quan đến hoạt tính của 

các vi khuẩn trầm tích giữ vai trò khoáng hóa và hòa tan N và P. Việc cải thiện điều kiện 

nền bằng những biện pháp lâm sinh và thủy lợi thích hợp sẽ tối ưu hóa hoạt tính của vi 

khuẩn, giúp nâng cao hiệu quả trồng rừng.  
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SUMMARY 

Mangroves play many significant roles in human life and socio-economical 

activities. However, their coverage has seriously declined worldwide due to various 

reasons while understanding of the roles and functions of this ecosystem is still 

insufficient. With a vast area of mangroves along the coast line, several studies on this 

ecosystem have been done in Viet Nam. Notwithstanding, the knowledge of nutrient and 

organic matter dynamics in the mangroves of Viet Nam, in general, and in the Mekong 

Delta, in particular, is still a gap. This study was conducted to understand the nutrient 

dynamics in a mangrove replanted in an abandoned salt-pan in Ganh Hao, Bac Lieu 

province – a coastal area in the South of Viet Nam.  

Sediments and fresh leaves were collected from 8 different landscapes along a 

transect which was ca. 700 m in length. Sampling was conducted in the dry and rainy 

season in 2009. The nutrient contents (NH4
+, NO2

-, NO3
- and available P for plant 

uptake), total organic carbon and total nitrogen were determined to assess the nutritional 

state in the study area. The composition and concentration of the amino acids in the 

sediments were quantified to understand the organic matter diagenesis in the area. 

Glucosamine, galactosamine and amino acids in the fresh leaves were analyzed to find 

the source of the organic matter. The chitin content in the sediments was determined by 2 

methods to calculate the contribution of chitin to the N pool. Chitin was directly 

quantified through the binding of N-acetylglucosamine and WGA-FITC. On the other 

hand, chitin was calculated from the concentration of glucosamine in the sediments. 

The study area was subject to a serious deficiency of nutrients, especially nitrogen. 

The deficiency of nitrogen resulted in the deficiency of phosphorus in the sediments. The 

nitrogen and phosphorus contents in the sediments were controlled by the physico-

chemical properties of the sediments and the vegetation. The carbon-to-nitrogen ratios 

showed that the organic matter in the deep sediments (30-35 cm) mostly derived from 

marine sources. The organic matter derived from terrestrial plants was found mostly in 
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the surface sediments. The forestation and the invasion of Sesuvium portulacastrum, 

therefore, have recently contributed to the pool of organic matter in the sediments. 

The organic matter content in the study area was lower compared to other coastal 

areas, probably due to the higher turnover rate in the sediments, which resulted from the 

high temperature and the aeration in the sediment. The composition and contents of the 

sedimentary amino acids were affected by the composition and contents of the amino 

acids in leaves. In general, the contents of sedimentary amino acids decreased with depth. 

However, the soil preparation for mangrove plantation resulted in a disturbance in the 

variation trend with depth in the amino acid contents under the planted mangrove. 

The chitin content directly quantified through the binding between N-

acetylglucosamine and WGA-FITC exceeded the organic carbon content in the 

sediments. However, these chitin data revealed an ecological relationship between chitin 

and the diatom frustules. The content of chitin calculated from glucosamine concentration 

showed that chitin contributes less than 2% to the OC pool and less than 3% to the N 

pool. In the deep sediments (30-35 cm), the crustacean sheaths was the major source of 

chitin while in the shallow sediments, chitin mostly derived from diatoms. 

In conclusion, this study showed that the nutritional state and the organic matter 

dynamics in a mangrove planed in extreme conditions was driven by tides, vegetation and 

the physico-chemical properties of the sediments. These effects might relate to the 

activities of sediment bacteria functioning in the nitrogen and phosphorus mineralization 

and solubilization. Improving the sediment conditions by irrigational solutions will help 

to maximize the bacterial activities and enhance the efficiency of mangrove plantation in 

abandoned salt-pans. 
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ZUSAMMENFASSUNG 

Mangroven spielen eine bedeutende Rolle im Leben und den sozio-ökonomischen 

Aktivitäten der Menschen. Allerdings hat ihre Ausbreitung aus verschiedensten Gründen 

weltweit abgenommen, während das Verständnis über ihre Bedeutung und ihre 

Funktionen immer noch unzureichend ist. In einer großen Fläche von Mangroven entlang 

der Küste wurden in Vietnam zahlreiche Forschungen über dieses Ökosystem 

durchgeführt. Ungeachtet dessen gibt es in der Erkenntnis zur Dynamik von Nährstoff 

und organischem Material in den Mangroven Vietnams, im Allgemeinen, und im 

Mekong Delta, im Besonderen immer noch Lücken. Diese Studie wurde durchgeführt, 

um die Nährstoffdynamik in einer Mangrovenaufforstung in einem verlassenen 

Salinengebiet in Ganh Hao, Provinz BacLieu - einer Küstenregion im Süden Vietnams - 

zu verstehen.  

Sedimente und frische Blätter wurden aus 8 verschiedenen Regionen entlang eines 

Transekts von ca. 700 m Länge gesammelt. Die Probenahme erfolgte in der Trocken und 

der Regenzeit im Jahr 2009. Die Nährstoffgehalte (NH4
+, NO2

-, NO3
- und P verfügbar für 

Pflanzenaufnahme), der Gesamtgehalt organischen Kohlenstoffs und der 

Gesamtstickstoffgehalt wurden bestimmt, um den Nahrungszustand des Substrats im 

Untersuchungsgebiet zu erfassen. Die Zusammensetzung und die Konzentration der 

Aminosäuren im Sediment wurden quantifiziert, um die Diagenese des organischen 

Materials in diesem Gebiet zu verstehen. Glukosamin, Galaktosamin und Aminosäuren 

der frischen Blätter wurden analysiert, um die Herkunft des organischen Materials zu 

bestimmen. Der Chitingehalt in den Sedimenten wurde mittels zweier Methoden 

bestimmt, um den Beitrag des Chitins zum N-Pool zu berechnen. Chitin wurde direkt 

durch die Verbindung von N-Acetylglukosamin und WGA-FITC quantifiziert. 

Andererseits wurde Chitin aufgrund der Konzentration von Glukosamin im Sediment 

berechnet.  

Das Untersuchungsgebiet unterlag einem ernsthaften Mangel an Nährstoffen, vor 

allem Stickstoff. Der Mangel an Stickstoff führte zu einem Mangel an Phosphor im 
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Sediment. Der Stickstoff und Phosphorgehalt in den Sedimenten wird von den 

physikalisch-chemischen Eigenschaften der Sedimente und der Vegetation beeinflusst. 

Das Kohlenstoff zu Stickstoff (C/N)-Verhältnis zeigte, das die organische Substanz in 

den tiefen Sedimenten (30-35 cm) hauptsächlich aus marinen Quellen stammt. Die 

organische Substanz aus terrestrischen Pflanzen wurde vor allem in den 

Oberflächensedimenten gefunden. Die Aufforstung und eine Invasion von Sesuvium 

portulacastrum haben in letzter Zeit zum Gesamtbestand der organischen Substanz in den 

Sedimenten beigetragen.  

Der Gehalt an organischer Substanz in der Studie war niedriger im Vergleich zu 

anderen Küstengebieten wahrscheinlich aufgrund der höheren Umsatzrate in den 

Sedimenten des Untersuchungsgebietes, die auf die hohe Temperatur und die Belüftung 

im Sediment zurückzuführen sind. Die Zusammensetzung und die Konzentration der 

Aminosäuren im Sediment wurden durch die Zusammensetzung und die Inhalte der 

Aminosäuren im Laub beeinflusst. Generell wurde festgestellt, dass der Inhalt der 

Aminosäuren im Sediment mit der Tiefe abnimmt. Die Bodenvorbereitung für die 

Mangrovenanpflanzung führte jedoch zu einer Störung des Sediments. Dies wiederum 

führte zu einer Veränderung in der Schichtung der Aminosäuren unter der 

Mangrovenpflanzung. Der Chitingehalt  übertraf den Gehalt an organischem Kohlenstoff 

im Sediment. Die Daten zum Chitingehalt weisen auf eine ökologische Beziehung 

zwischen Chitin und den Kieselalgentheken hin. Der Gehalt an Chitin, berechnet aus der 

Glukosamin-Konzentration zeigt, dass Chitin weniger als 2% zum OC-Pool und weniger 

als 3% zum N-Pool beiträgt. In den tiefen Sedimenten (30-35 cm) waren die Krebstier-

Ausscheidungen die Hauptquelle von Chitin, während in den flachen Sedimenten Chitin 

hauptsächlich aus Kieselalgen stammt.  

Zusammenfassend zeigte diese Studie, dass der Ernährungszustand und die 

Dynamik organischen Materials in einem Gebiet in dem Mangroven unter extremen 

Bedingungen angepflanzt wurden von den Gezeiten, der Vegetation und den 

physikalisch-chemischen Eigenschaften des Sediments geprägt sind. Der Einfluss dieser 
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Faktoren könnte in Beziehung zu Aktivitäten von Sedimentbakterien stehen, die in der 

Stickstoff und Phosphormineralisierung und Solubilisierung tätig sind.  

Um die Produktivität von Mangrovenanpflanzungen in verlassenen 

Salinengebieten zu fördern, ist es sinnvoll Bewässerungssysteme einzurichten, um die 

Bakterientätigkeit zu erhöhen, die zur Verbesserung des Sediments führen. 
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 1 INTRODUCTION 

Mangroves are plant communities growing in the intertidal areas along the tropical 

and subtropical coasts (Clough 2013). They constitute a significant proportion of coastal 

flooded forests in these regions (Feller and Sitnik 1996). The term “mangrove” refers to 

an assemblage of 20 families with approximately 73 species (Spalding et al. 2010) 

including trees, shrubs and ground ferns (Clough 2013). The mangrove plants comprise 

40-52 of true mangrove species (Feller and Sitnik 1996, Giesen et al. 2007) and many 

other species called “associate species” (Phan and Hoang 1993, Clough 2013). The true 

mangrove species are confined to the saline or brackish environments; the associate 

species are the inland plants which can be found behind the mangroves (Santisuk 1989). 

However, salts and tides are not obligatory for the mangrove plant species. All of those 

species can grow well in freshwater habitat but there they are out competed by the 

freshwater species (Kathiresan and Qasim 2005). The tidal flood and salinity are, 

therefore, the factors to eliminate other vascular plants which are not adapted to grow in 

the saline environments. 

Mangroves distribute between the latitudes of 33oN and 37oS (Walsh 1974). Their 

growth, tree height, biomass and diversity decrease with the distance from the equator 

(Clough 1998). The range of mangrove occupation in terms of elevation is between the 

mean sea level and the mean high water. Consequently, mangroves are an indicator for 

the sea level changes. 

There are many factors influencing the mangrove distribution. The mangrove 

plants require warm temperature for their growth. The temperature of sea water 

controlled the mangrove species composition (Blasco 1984). The best growth of 

mangrove was recorded in the brackish habitats (Kathiresan et al. 1996). Therefore, the 

high-biomass and well-developed mangroves colonized the coastal areas with high 

precipitation. The high input of rainfall maintains the mild salinity of the mangrove 

sediments through the salts dilution (Jimenez 1992).  
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Mangrove distribution is affected by tidal action, sedimentation and wave energy.   

It is found that mangroves hardly colonize the coasts with high wave energy and their 

growth is weak in stagnant waters (Kathiresan and Qasim 2005). Extensive mangroves 

occur on the vast deltaic plains formed by the accumulation of the fine sediments 

transported by large rivers (Feller and Sitnik 1996). The species distribution in the 

mangroves is controlled by the level and frequency of tidal inundation (Ong and Gong 

2013). The inundation frequency, together with the temperature of sea water and the 

salinity of pore-water, determine the occupation of mangroves in the tropical coastal 

areas (Lara and Cohen 2006). 

The best growth of mangrove plants is found in sediments formed by fine grains 

(e.g. clay) and mangroves help to increase organic content in sediments through litter fall 

(Bouillon et al. 2003). Leaf litter is the major contribution to the total litter production in 

mangroves (Sasekumar and Loi 1983, Siddiqui and Qasim 1990, Tam et al. 1998, Nga et 

al. 2005, Pham 2007). The atmospheric carbon sequestered in mangrove leaves can be 

transported to deep sediments by dwelling organisms (Camilleri 1992). Therefore, 

organic carbon (OC) is accumulated in the mangrove sediments. The organic matter 

(OM) can be also exported from mangroves through tidal action (Moran et al. 1991, 

Dittmar and Lara 2001). Consequently, mangrove ecosystems are at the same time a 

source and a sink for OC (Ong 1993).  

Mangroves play a very important role in coastal fisheries as they supply vital 

nutrients to adjacent water bodies. Moreover, they are also a shelter for larvae and 

juveniles of marine organisms which are of high commercial values. Other values and 

benefits of mangrove ecosystems are summarized in Baba et al. (2013). In addition to the 

important socio-economical roles, mangroves are considered as a green rampart which 

can stabilize the shore lines and protect inland areas from natural calamities rising from 

the sea (Odum and Heald 1975, Pearce 1996, Mazda et al. 1997, Pearce 1999, Upadhyay 

et al. 2002, Dahdouh-Guebas 2006). An example for the safety of the hinterland 
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communities under mangrove’s protection was recorded by Kathiresan and Qasim 

(2005). 

In spite of many vital roles for human life, mangrove coverage seriously declined 

worldwide (Giri et al. 2011) due to various reasons (Alongi 2002, Giri et al. 2008). The 

loss of mangroves will be much more serious in the context of global climate change and 

related sea level rise (Gilman et al. 2008). The tidal inundation contributes significantly 

to mangrove plant growth and the stable development of this ecosystem through oxygen 

transportation to the roots (Clough and Attiwill 1975), supplying the ecosystem with 

nutrients (Pham 2007), sustaining the sediment salinity and spreading the propagules 

(Saenger et al. 1983). Nevertheless, the increase in the level and frequency of the tidal 

inundation may result in the decline of mangrove areas (Ong and Tan 2008). Once this 

green rampart collapses, the communities in the coastal areas will be threatened. 

Consequently, mangrove protection and rehabilitation in the coastal areas are exigent. 

Notwithstanding, there are various obstacles for this business. The failure of 

rehabilitation in tidal flats is mainly caused by the death of propagules once they are 

buried in the mud or eaten by macrofauna, or by restricted colonization due to the strong 

waves. The ratio of dead mangrove trees replanted in an eroded area was up to 50% 

(Conservation and Development of the Kien Giang Biosphere Reserve Project 2011). 

Therefore, site selection for mangrove restoration must be firstly considered. 

Many sheltered areas along coasts are favorable sites for mangrove plantation.   In 

Vietnam, those areas may include salt production sites in some coastal provinces, such as 

Thanh Hoa, Binh Dinh, Tra Vinh, Bac Lieu. The sea salt is mostly produced in 

accordance with traditional practices. In general, grounds for salt production must be 

compressed and smoothened before the sea water is conducted to the salt-pans. The water 

subsequently evaporates and the salt crystals are left in the surface sediments. The fine 

grains, e.g. clay, are predominant in the salt-pans structure in order to reduce the 

infiltration of saline water into deeper layers of sediments. The best infiltration 

coefficient for salt production is of 1-3 mm.day-1 (Uong 1963). The compression and 
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smoothering of the ground carried out regularly during sea salt production result in strong 

reduction of the sediments. Thus, sulfate of ferric (Fe), manganese (Mn), and aluminum 

(Al) are removed from the sediments by sulfate reducing bacteria (McIntire et al. 1990, 

Machemer and Wildeman 1992). Therefore, sulfides accumulate in surface sediments and 

reduce salt quality. Consequently, salt-pans are left fallow after some years of production. 

These abandoned salt-pans may offer appropriate environments for mangrove restoration 

because they are less impacted by wave energy. Furthermore, the compressed sediments 

may cause the high levels of products from reducing processes which may be taken up by 

plants as nutrients (Bradley and Morris 1990). However, abandoned salt-pans are also a 

harsh environment for plant to survive. The sediments are very dry with extreme salinity. 

Thus, plant growth is restricted (Bernstein 1975, Sheldon 2004). The extreme salinity 

reduces the rate of gas exchange and light reactions in the photosynthesis (Biber 2006), 

impacts the nutrient absorption of plants (Brown et al. 2006), germination and growth of 

seedlings (Ye et al. 2005). High sediment salinity inhibits the nitrate (NO3
-) and 

ammonium (NH4
+) absorption of the mangrove plants (Odum 1988, Bradley and Morris 

1991, Flores et al. 2000, Feller et al. 2003).  

There were many trials on mangrove restoration in abandoned salt-pans in Can 

Gio (Vien Ngoc Nam pers. com.). Pham et al. (2007) planted the black mangrove 

(Lumnitzera racemosa Willd.) and yellow mangrove (Ceriops tagal (Perr.) C. b. Rob.) in 

an abandoned salt-pan previously colonized by Sea purslane (Sesuvium portulacastrum 

L.) and found that the survival rate was of 96 % and 34 % for Lumnitzera and Ceriops, 

respectively. S. portulacastrum is a prostrate succulent halophyte. They demand high 

light intensity for growth and can survive in the hypersaline coastal areas which are rarely 

inundated (Lonar and Judd 1997, Le et al. 2002). S. portulacastrum is able to accumulate 

the sodium (Na+) ion in their leaves, stems and roots (Venkatesalu 1994). Under drought 

stress, concentrations of potassium (K+), Na+ and chloride (Cl-) ion increase in plant 

tissues and hence, synthesis of proline is enhanced (Slama et al. 2006). The high 

concentration of proline in plant tissues helps to maintain the cell osmotic pressure for the 
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survival of S. portulacastrum, as well as other halophytes, in the hypersaline areas (Joshi 

1980, Jenci and Natarajan 2003). 

S. portulacastrum was proved to be able to enhance the sedimentary nutritional 

state through increasing the levels of OC, total nitrogen (TN) and phosphorus (P) in the 

abandoned salt-pans (Schmitt 2006, Tran 2007). However, the effects of this halophyte 

on the nutrient levels seem to be restricted in surface sediments and were attributed to 

atmospheric N fixation mediated by arbuscular mycorrhiza (Schmitt 2006). Intrusion of 

mycorrhiza into halophyte roots was recorded by many authors (Mason 1928, Khan 1974, 

Brundrett 1991, Beena et al. 2001). Tran (2007) found that the levels of TN and OC in 

the surface sediments occupied by S. portulacastrum were lower compared to the sites 

under young mangrove stands. The contribution of S. portulacastrum to the N pool of the 

sediments is probably not as important as the litter. Oxmann et al. (2010) recorded 

significant correlations between the concentrations of N and P in mangrove fresh leaves 

and the sediment pH within the root zone of 30-40 cm. This finding implies that the 

mangrove trees take up the required nutrients from the deep layers rather than the 

sediment surface. 

The mangrove plant growth is influenced by sediment nutritional state. This state 

is controlled by environmental biotic and abiotic factors (Reef et al. 2010). Abandoned 

salt-pans are usually located at higher elevations in comparison with natural mangroves 

and the tidal inundation level and frequency at these salt-pans are lower than in 

mangroves. Therefore, they are more deficient in P compared to the areas at lower 

elevations (Lara et al. 2009). Many authors have recorded the deficiency of P as well as 

N in the coastal ecosystems (Boto and Wellington 1983, Feller 1995, Feller et al. 1999, 

Feller et al. 2002, Feller et al. 2003). The P deficiency results in the limited growth of the 

mangrove plants, their morphological and physico-ecological characteristics, and the 

primary production of the ecosystems (Feller 1996, Feller et al. 1999, Lovelock et al. 

2004, Lovelock et al. 2006a, Lovelock et al. 2006b). However, Mendoza et al. (2011) 
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found that the concentration of available P for plant uptake (AP) in the sediments may 

control the species distribution in the mangrove ecosystems rather than their growth. 

The AP concentration is influenced by tidal inundation (Silva and Sampaio 1998), 

tree density and biomass (Fabre et al. 1999). The sediment salinity and pH affects the AP 

concentration by controlling P sorption by OM (Koch et al. 2001). At the high 

concentration of chloride (Cl-) and sulfate (SO4
2-), phosphate (PO4

3-) is competed by 

these anions for the sorption sites (Lara et al. 2009). The P sorption is promoted in the 

low-pH sediments because of the positive charge of the Al and Fe hydroxides under the 

acidic condition (Stumm and Morgan 1981). The sediment pH may also result in the shift 

in N, P limitation in the mangrove ecosystems (Oxmann 2007).  

Although the low pH values support desorption of P from ferric oxyhydroxide and 

liberate AP (Mortimer 1971, Lindsay and Vlek 1977), they may cause unfavorable 

conditions for mangroves in terms of N nutrition. In anaerobic sediments such as 

compressed salt-pan, the pH is low due to the high level of hydrogen sulfide (H2S) 

(Portela et al. 2011). Therefore, ammonia (NH3) is produced and hence, nitrification is 

inhibited (Smith and Burns 1965, Joye and Hollibaugh 1995, Joye and Anderson 2008). 

Because of the low pH of the sediments, the balance NH3 + H2O  NH4
+ + OH- shifts 

towards NH4
+ accumulation (Fan and Mackenzie 1993), which results in poisonous 

effects on plants (Schenk and Wehrman 1979, Britto and Kronzucker 2002). The toxicity 

of NH4
+ on the higher plants was reviewed by Britto and Kronzucker (2002).  

Mangroves are known as one of the most productive ecosystems (Odum and Heald 

1975) although they are subject to nutrient deficiency (Alongi and Sasekumar 1992). This 

paradox is explained by effective nutrient preservation (Reef et al. 2010) and nutrient 

recycling (Lee 1995) mediated mainly by sediment bacteria (Lathwell and Grove 1986, 

Vitousek and Sanford 1986, Lewis 1987, Ruess and McNaughton 1987, Alongi 1989, 

Hatcher et al. 1989, Singh et al. 1989, Furtado et al. 1990, Singh et al. 1991, Riviera-

Monroy and Twilley 1996). The nutrient recycling is particularly requisite for the 

ecosystems which are usually subject to the nutrient deficiency (Sengupta and Chaudhuri 
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1991, Alongi et al. 1993, Vazquez et al. 2000). It is influenced by sediment conditions 

and more effective under aerobic condition (Hansen and Blackburn 1991, Alongi 1994, 

Dauwe et al. 2001). The number of sediment bacteria and their growth rates depend on 

the nutrient contents (Alongi 1994) and hence, correlate with the level of dissolved OM 

(DOM) and particulate OM (POM) in the environments (Meyer-Reil 1984, Moriarty 

1986, Herndl et al. 1987). According to many authors, the sediment bacteria can absorb a 

great amount of NH4
+ in marine and estuary environments (Wheeler and Kirchman 1986, 

Hoch et al. 1992, Middelburg and Nieuwenhuize 2000, Tungaraza et al. 2003). NH4
+ is 

an important source of N for plants (Salsac et al. 1987) and acts as an intermediate in 

several metabolism processes (Joy 1988), but it can also inhibit the plant growth (Schenk 

and Wehrmann 1979). Hence, the NH4
+ uptake by sediment bacteria may cause either a 

competition with plants for this N source or a reduction of ammonium toxicity on plants. 

The sediment bacteria can also take up dissolved organic nitrogen (DON) such as amino 

acids and urea in the oligotrophic ecosystems (Goldman and Dennett 1991, Kirchman 

1994, Hoch and Kirchman 1995, Veuger et al. 2004). In addition to the important roles in 

recycling nutrients, the sediment bacteria act on the OM alteration through the 

preferential consumption of the organic compounds in the sediments (Wakeham et al. 

1997, Benner 2003, Lee et al. 2004). 

The diagenesis of OM in sediments is revealed through changes in composition 

and content of organic compounds resulted from their alteration. Organic compounds 

which can be subject to either loss or preservation, such as lignin and pigment (Cowie et 

al. 1992, Hedges and Prahl 1993, Boon and Duineveld 1996), can be used as indicators 

for the diagenesis. However, the distribution of these biomarkers can be limited in a 

certain group or found as traces only in the sediments (Dauwe and Middelburg 1998). 

Therefore, usage of these biomarkers may be limited in sediments receiving multiple 

sources of OM (Cowie and Hedges 1994).  

Amino acids are biomarkers which have been used widely in recent studies on OM 

diagenesis (Lee 1988, Mingju et al. 1991, Cowie and Hedges 1994, Dauwe and 
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Middelburg 1998, Grutter et al. 2002, Unger et al. 2005, Davis et al. 2009, Zhang et al. 

2012). These are biologically important organic molecules because they are the 

precursors of proteins which perform a vast array of functions within living organisms. 

Moreover, proteins account for a large proportion of POM (Cowie and Hedges 1994) and 

are an important source of N for the organisms, as N is a limiting factor in the coastal 

ecosystems (Tenore 1983, Le et al. 2012).  Amino acids can be preferentially consumed 

or preserved during the diagenesis of OM in sediments (Knicker and Hatcher 1997). 

Consequently, changes in composition of the amino acids through depth profile can 

provide information of sediment history and help to predict reactivity of sedimentary OM 

(Davis et al. 2009). 

The input of OM in mangroves or coastal hypersaline areas is very abundant, 

including autochthonous and allochthonous sources. In addition to leaf litter, dead 

animals, microbial necromass, planktons and marine bacteria also contribute to the 

sedimentary OM. Of the precursors of sedimentary OM, chitin is the second most 

abundant biopolymer, after cellulose only. This is a source of C and N (Montgomery et 

al. 1990) and its degradation plays significant roles in the C and N cycling (Gooday 

1990). Nevertheless, the dynamics of chitin in the biosphere, in general and in the 

sediments of certain ecosystems, in particular, is still to a large extent unknown.  

OBJECTIVES 

There have been several studies on mangrove ecosystems in Vietnam, mostly 

focused on the biodiversity in mangroves (Phan and Nguyen 1999), mangrove structure 

and composition (Pham et al. 2012), and recently, the carbon sequestration of different 

plant species in mangroves (Vien et al. 2011, Nguyen 2012, Le 2013). Yet, studies on 

nutrient and organic matter dynamics in Vietnam mangroves are limited. Most of the 

available studies in this field were conducted in Can Gio Mangrove Biosphere Reserve, 

Ho Chi Minh City, e.g. the behavior of nutrients in a tidal creek (Pham 2007), P 

dynamics (Oxmann 2008), P exchange between mangrove and its adjacent river (Ho 
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2009), OM decomposition (Le 2011). The understanding of nutrient and OM dynamics in 

the vast mangrove area in the Lower Mekong Delta is still a gap. 

In this context, the present study deals with the nutrient dynamics in an ecotone of 

a hypersaline surface and planted mangrove in the southern coastal sector of the Lower 

Mekong Delta. This is an abandoned saltpan, partly intruded by Sea purslane (Sesuvium 

portulacastrum L.) and partly covered by planted black mangrove (Lumnitzera racemosa 

Willd.). The ecotone, therefore, is exposed to the influence of various OM sources and 

expresses difference in physico-chemical conditions caused by the variation of elevations 

and the effects of vegetations. Thus, the tested hypotheses of the present study are: 

1. Variation in topographic elevation, sediment physico-chemical properties and 

vegetation lead to the variation in sediment nutritional state along the ecotone. 

In this study, the coupling between the sediment physico-chemical conditions 

and its nutritional state is determined. 

2. Contribution of different sources to the OM pool and their efficiency of 

mineralization are revealed in C:N ratios. Chitin is significant precursor of the 

sedimentary OM in the coastal area. The sedimentary chitin and C:N ratio 

along the ecotone were quantified to determine probable sources of chitin and 

their contributions to the N pool. 

3. The history of sedimentary OM and their reactivity can be read and predicted 

through the characterization of the OM diagenetic status. The depth profiles of 

amino acids composition and concentrations, along with their contributions to 

the OC and N pool, allow assessing the diagenetic status of OM in the ecotone. 
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2 STUDY AREA 

The sampling campaigns were conducted in a mangrove replanted in an 

abandoned salt-pan in Ganh Hao, Dong Hai district, Bac Lieu province, Vietnam. The 

territory of Bac Lieu province spreads from 9o00’00” N, 105o14’15” E to 9o38’9” N, 

105o51’54” E. Bac Lieu is a coastal province locating in Ca Mau Peninsula, the South of 

Vietnam. The terrain is relatively even and flat but there are some sandy hills and 

stagnant hollows. The mean elevation is of 1.2 m above the mean sea level. There is an 

interlacing network of waterways in Bac Lieu province with the large canals such as 

Quan Lo, Phung Hiep, Canh Den, Pho Sinh and Gia Rai. 

The climate in Bac Lieu province is driven by the tropical monsoon regime. The 

rainy season lasts from May to November and the dry season lasts from December to 

April. The annual precipitation is 2000-2300 mm. year-1. The annual mean temperature is 

26oC. The yearly temperature fluctuation is moderate. The highest and lowest 

temperature is 31.5oC and 22.5oC, respectively. The sunny periods varies between 2500 

and 2600 hours. year-1. The average relative humidity in the dry and rainy season is 80% 

and 85%, respectively. Bac Lieu province is located in a region which is rarely affected 

by typhoons and tropical low pressure. The influence of the flood regime of the Mekong 

River on Bac Lieu province is negligible. However, this region is strongly affected by a 

semi-diurnal tidal regime from the East Sea and the monsoon.  

Acidic and saline soils predominate in Bac Lieu province. It accounts for ca. 93% 

of the total territory. Most of the soils in Bac Lieu are steady as they result from the 

deposition of alluvium over a long period. The forests account for ca. 2% of the 

provincial territory (5070 ha). Most of the forests are the replanted mangroves. The 

dominant planted genera are Rhizophora, Avicennia, Lumnitzera and Ceriops. In addition 

to the mangrove trees, Casuarina equisetifolia L. was also planted in the interior sandy 

sections and along the roads.  
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Figure 2.1: Position of the study area and vegetation distribution in Long Dien Tay 
Commune, Dong Hai District, Bac Lieu Province. The map of vegetation 
distribution was acquired from the Department of Forest Management in 
Bac Lieu province. 
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Due to the extended coastline (56 km) and the high species diversity and 

enormous productivity of adjacent fishing grounds, the economical development in Bac 

Lieu province focuses on seafood culturing, catching and processing. In the districts 

adjacent to the sea, including Dong Hai and Hoa Binh, salt production is also an 

important economic line. There are more than 2000 ha of salt-pans in Dong Hai district. 

The salt yield in Dong Hai district accounts for 80% of the whole provincial yield. The 

“Bac Lieu salt” is a well-known trade name because of its high quality and good taste. 

This salt does not have a tart flavor because the content of MgCl2 is low and this area is 

not affected by Ca2+ in the sea water. The low concentration of OM in the salt-pan 

surface sediments, along with the negligible quantity of alluvium from the Mekong River, 

results in the low impurities in the salt. The high yield of salt results from the dominance 

of fine grains in the ground surface which reduces the downward infiltration of sea water. 

Since 2009, the salt farmers in Bac Lieu province have applied a new method of 

salt production in which the salt-pan sediments are covered by canvas. The economical 

benefit from this method is higher compared to the traditional practices (Sach pers. 

comm.). Furthermore, the application of canvas may prevent the sediments from 

salinization. Nevertheless, a vast area of salt-pans used for salt production in accordance 

with the traditional protocol was abandoned due to the accumulation of the sulfate salts of 

heavy metals in the surface sediments. The wide area of abandoned salt-pans offers an 

ideal place for mangrove replantation. Lumnitzera racemosa (black mangrove) Willd. is 

often chosen because this species prefers low humidity, well-drained sandy mixed clay 

and grows well at higher elevations than other mangrove plants (FAO 2006). 

The samples of this study were collected from a black mangrove replanted in an 

abandoned salt-pan in Long Dien Tay commune, Dong Hai district. This mangrove was 

replanted in 1998 and is expected to function as a protective forest. In accordance with 

the data acquired from the Department of Forest Management in Bac Lieu province, the 

area of the replanted protective forest in Long Dien Tay commune is ca. 33 ha. The 

density is 10000 seedlings.ha-1. Due to this low density, Lumnitzera racemosa ramify 
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rather than grow in height (Cao Huy Binh pers. comm.). The height of Lumnitzera 

racemosa trees measured in 2010 was of ca. 1 m. However, the stunt of Lumnizera trees 

may also result from the harsh conditions of the sediments, including high salinity and 

low humidity. Although L. racemosa is generally believed to be a drought and salt 

tolerant mangrove species, their growth is suppressed at salinity of 30-32 ‰ 

(Dissanayake and Amarasena 2009, Estomata and Abit 2011). In the dry season, the 

surface sediment in the salt-pans was partitioned by many deep rifts due to the sparse 

vegetation. In the interior sections, the replanted Lumnitzera growth was better and the 

trees are higher (Le Hoang Vu pers. comm.).  

In the sampling area, there is a section of ca. 1 ha covered by Sesuvium 

portulacastrum and the mix stand of Avicennia lanata and Sesuvium portulacastrum 

(figure 2.2). The tree height of A. lanata measured in 2010 was ca. 2 m. The inundation 

frequency in this section is very low. It is flooded only during the very high tides. 

Dong Hai district is strongly affected by a semi-diurnal tidal regime and the 

monsoon. Therefore, the shoreline is alternatively subject to the erosion and aggradation 

(Le et al. 2012). The drastic erosion occurs in the end of the year (October, November 

and December). The annual erosion rate from Ganh Hao to Rach Goc is of 20-30 m.year-1 

horizontally and ca. 1 m.year-1 vertically (Hoang 2003). There is a natural regeneration of 

A. lanata in the tidal flat resulting in a fringe of this species which mean height is of ca. 

3m along the shoreline. 

Based on the difference in vegetation and visible characteristics of the sediments, 

a transect of ca. 700 m was set through eight different landscapes to catch the changes in 

nutrient dynamics and driving forces with the variable sediment conditions. The order of 

sampling sites is displayed in the figure 2.2. The codes and descriptions of the sampling 

sites are presented in the table 2.1. 
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Figure 2.2: The ecotones and elevations of the sampling sites. The topographic 

landmark, of which elevation was considered as 0 m, was the road along 

the study area. 

  

GH01 

GH02 

GH03 

GH04 
GH05 

GH06 

GH07 GH08 

Sea 

GH_01 GH_02 GH_03 GH_04 

GH_05 GH_06 GH_07 GH_08 



15 
 

Table 2.1: Codes and description of the sampling sites 

Site code Description 

GH01 the mat of Sesuvium portulacastrum 

GH02 the mix-stand of Avicennia lanata and Sesuvium portulacastrum 

GH03 the man-made shallow creek parallel to the shoreline 

GH04 the dwarf planted forest of Lumnizera racemosa (dwarf black mangrove) 

GH05 the line of black mangrove with shell accumulation and exposed roots 

GH06 the fringe of Avicennia lanata at the inner mud flat 

GH07 the outer mud flat where Avicennia lanata was regeneting 

GH08 the sand flat 
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3 METHODS 

3.1 Sampling campaigns 

The samples for this study were collected in May and October 2009, 

corresponding with dry and rainy season, respectively.  

3.2 Sediments collection and preparation 

In order to determine the sedimentary nutrient concentrations, elemental 

composition, composition patterns of amino acid and chitin amount, sediment samples 

were selected to cover all of the landscapes in the study area. Forty-centimeter sediment 

cores were taken by the piston corers. Physico-chemical properties, including 

temperature, pH and redox potential (Eh), were measured immediately by inserting 

electrodes into the sediment core through inlets on the wall of the corer. The sediment pH 

and Eh were measured with a sulfide resistant electrode ® SEA/SE (Schott, Germany). 

After the measurements, the sediment cores were sectioned into five-centimeter 

subsamples by a sterile knife. The subsamples at the depth from 0 to15 cm and 30-35 cm 

were stored at 4oC during transportation to the laboratory.  

3.3 Plant materials collection and preparation 

At each sampling site, leaves of the dominant species were collected to survey the 

contribution of above ground plant biomass to the pool of OM in the sediment. Plant 

materials were washed with distilled water prior to wrapping in papers and drying at 90oC 

in oven (Shell Lab, USA). When the samples reached the constant weight, they were 

homogenized by a Retsch ZM 100 (Germany) grinder and stored at room temperature 

until analysis. 
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3.4 Determination of sediment physico-chemical properties  

3.4.1 Humidity 

Fresh sediments from different depth intervals (0-5 cm, 5-10 cm, 10-15 cm and 

30-35 cm) were homogenized in the container by a spatula prior to spreading in a sterile 

petri plate. The plates containing sediments were dried at 60oC until their weights were 

constant. Humidity was calculated by the following formula:  

� % = �����

�����
× 100  

with  m0 : weight of the petri plate (g) 

 m1 : weight of petri plate and fresh sediment (g) 

 m2 : weight of petri plate and dry sediment (g) 

The dry sediment was subsequently homogenized by grinding and passing through 

a sieve which was 250 μm in the mesh size.  

3.4.2 Salinity 

Fresh sediment (5 g) was suspended in 25 mL of distilled water during 12 hours at 

room temperature. The conductivity and temperature of the suspension were measured 

(TetraCon 96, WTW, Germany) afterwards and sediment salinity was calculated 

according to Ensminger (1996): 

� ‰ =
�� (�� + ��)

��
 

with  Kg : salinity of the suspension (‰) 

 Vs : water volume for sediment suspension (25 mL) 

 Vp : the volume of water in fresh sample calculated out of humidity and 

fresh weight of the sediment 

�� =  
� . �

100
 

with  m : fresh weight of the sediment (m1 – m0) (g) and H : humidity (%).            
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3.4.3 Grain sizes 

The fresh sediments were suspended in 30 mL of distilled water with 5 g.L-1 

Na3PO4. Dispersion was additionally facilitated by putting the beaker in an ultrasonic 

bath for a few seconds and subsequent heating in a sand bath at ca. 60oC for 10 minutes. 

Grain sizes distribution in the sediments was determined by a laser diffractometer 

Horiba LA-300 (Japan). 

3.4.4 Extractable inorganic N  

Ammonium (NH4
+), nitrate (NO3

-) and nitrite (NO2
-) were analyzed automatically 

by a continuous flow analyzer Skalar-SAN-C++ (Germany). Prior to the determination, 

extractable NH4
+ and NO3

- were extracted by 2M KCl according to Keeney and Nelson 

(1982) and shaken for 30 minutes at 175 rpm at room temperature. The suspension was 

subsequently filtered to remove the sediment particles. The supernatants were transferred 

to test tubes for the analysis with the CFA Skalar-SAN-C++.  

The tube order and reagent compounds of the analyses were adjusted for the 

analysis of saline water. The salt effects were mostly compensated by the matrix 

photometer and the linearity range was bigger in comparison with single beam 

photometers.  

The extractable inorganic N was analyzed in accordance with the method of 

Hansen and Grasshoff (1983) and the 5 cm cuvettes were used for the analyses of 3 mL 

of each sample. A ten point calibration was conducted with the mix standards for all 

parameters and the 5th standard was used as a quality control after every ten samples. 

(i) NO2
- and NO2

- + NO3
- analyses 

NO3
- was reduced to NO2

- in a column of copperized cadmium. The buffer 

solution for this measurement was Imidazol 17 g.L-1 adjusted to pH 7.5 with 32% HCl. 

The standard solution for nitrate was Merck  Nr. 1.19811.0500 1000 mg/L NO3 and for 

nitrite was Merck  Nr. 9866 Titrisol 1000 mg/L NO2. The absorbance was measured at 
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the wavelength of 540 nm and NO3
- concentration was calculated by the difference 

between the sum of NO2
- + NO3

- and NO2
-.  

(ii) NH4
+ analysis 

Extractable NH4
+ concentration was determined by a colorimetric method based 

upon a reaction between ammonia and Berthelot’s reagent to form blue indophenols. 

Berthelot’s reagent is an alkaline solution of phenol and hypochlorite. Method accuracy 

was monitored using commercial standard (Merck  Nr. 1.9812.0500 1000 mg/L NH4) 

3.4.5 Available P for plant uptake (AP) 

AP in the sediment was extracted with Morgan solution according to the protocol 

of Morgan (1941) as described in Oxmann et al. (2010). The solution contains 100 g 

CH3COONa in ca. 950 mL distilled water. After adjusting the solution pH to 4.8 by 

glacial acetic acid, distilled water was added to the final volume of 1000 mL. An amount 

of 0.25 g dry and homogenized sediment was suspended in 2.5 mL of Morgan solution by 

shaking at 175 rpm for 30 minutes at room temperature and subsequently centrifuged at 

3500 rpm for 5 minutes. The supernatant was diluted for 10 times with distilled water and 

PO4
3- determination was performed according to Riley and Murphy (1962). 

3.4.6 Inorganic phosphorus (IP) and organic phosphorus (OP) 

The dry and homogenized sediments were weighed into 2 ampoules with the same 

amounts (0.25 g). One ampoule was combusted at 245oC for one hour in order to convert 

the organic forms of PO4
3- to inorganic forms, while the other was placed at the room 

temperature. The combusted ampoule was used for total phosphorus (TP) and the other 

was used for IP determination. For PO4
3- extraction, both of the ampoules were treated 

with 32 % HCl, sealed tightly and sonified for 10 minutes before heated at 110oC for one 

hour. The supernatant was centrifuged and diluted for 50 times and PO4
3- was determined 

according to Riley and Murphy (1962). The OP content was calculated by the difference 

between TP and IP.  
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3.4.7 Elemental composition in the sediments 

For the quantification of TN and total OC, 10 mg of dry and homogenized 

sediment was weighed into tin cup and wrapped. Silver cups were used for OC analysis, 

because the sediment had to be acidified by 1 N HCl. Standard Leco 1013 was utilized 

for a fifteen-point calibration and as a quality control after every five samples. C and N 

were quantified with an elemental analyzer Fisons NA 2100 (Germany). 

Samples and standards were delivered into the top of a quartz combustion tube by 

a rotating multiplace sample dropper which contained granulated chromium (III) oxide 

combustion catalyst. All combustible materials in the sample were flash burned in a 

pulse of pure oxygen at 1200oC and the combustion products including CO2, NOx and 

H2O were swept out the bottom of the tube by a constant stream of non-reactive helium 

carrier gas. CO2 and other nitrogen bearing combustion products such as N2 and NOx 

passed over the combustion tube to another furnace containing copper granules at 6500C 

where all molecules of NOx gave up their oxygen to the hot copper and emerged as pure 

N2. Water from the sample was removed by a trap containing magnesium perchlorate.  

After passing through a gas chromatograph column, the clean gases were separated into 

N2 and CO2 and these ones reached the mass spectrometer at different times: N2 was the 

first one eluted and CO2 was the latter. These molecules were ionized by a beam of 

electron generated from the ion source and subsequently the ions were collimated in a 

focused beam and accelerated into the flight tube. The ion beams entered a strong 

magnetic field created by an electromagnet which performed the actual mass separation. 

Ions in the field were deflected into circular paths whose radii were proportional to their 

masses. 
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3.4.8 Amino acids and amino sugars 

The weight of sediment for amino acids and amino sugars analyses were 

calculated based on their level of OC to determine the range of OM in the samples. The 

sediments were spiked with 4 mL of 6 N HCl in the ampoules. Oxygen was purged from 

the ampoule by a flow of nitrogen gas to avoid oxidation. After sealing the ampoules, 

amino acids and amino sugars were hydrolyzed at 110oC for 22 hours. When the 

hydrolysis was accomplished, 1 mL of the hydrolysate was evaporated at 60oC, 40 mbar. 

The residue was dissolved by the sodium citrate buffer, pH 2.65 and frozen until the 

determination of amino acids and amino sugars were performed with low pressure liquid 

chromatography (Analyzer: Biochrom 30, Fluoreszenzdetector: F-1080 by Merck 

Hitachi). The amino acids, Gluam and galactosamine were detected in the following 

order: 

Abbreviation Aminoacid Formula M [g/mol] 

TAU Taurine* C2H7NO3S 125.1 

MET-Sulfon Methionine sulfone* C5H11NO4S 181.2 

ASP Aspartic acid* C4H7NO4 133.103 

THR Threonine* C4H9NO3 119.119 

SER Serine* C3H7O3N 105.093 

GLU Glutamic acid* C5H9NO4 147.129 

GLY Glycine* C2H5NO2 75.067 

ALA Alanine* C3H7NO2 89.093 

VAL Valine* C5H11O2N  117.146 

MET Methionine* C5H11NO2S 149.212 

ILE Isoleucine* 
C6H13NO2 131.173 

LEU Leucine*  
C6H13NO2 131.173 

TYR Tyrosine* C9H11NO2 182.197 

PHE Phenylalanine* C9H11NO2 165.189 

GLUAM Gluam-hydrochloride C6H13NO5 215.64 

GALAM Galactosamine-hydrochloride C6H13NO5 215.64 

b-ALA ß-Alanine C3H7NO2 89.093 

g-ABA g-Amino-butyric acid* C4H9NO2 103.1 
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HIS Histidine* C6H9N3O2 155.155 

ORN Ornithine* C5H12N2O2 168.6 

LYS Lysine* C6H14N2O2 146.188 

AMM Ammoniumsulfate* (NH4)2SO4 132.1 

ARG Arginine* C6H14N4O2 174.201 

*Amino acids containing a concentration of 2.5mM (Lab-service Onken) GALAM, GLUAM and b-

ALA in hydrolysate have been purchased from Sigma Aldrich and added manually. 

3.4.9 Chitin 

Chitin in the sediment was quantified directly through the coupling between chitin 

and fluorescein isocyathionate-labelled (FITC) wheat germ agglutinin (WGA) according 

to Montgomery et al. (1990). This method was successfully applied for chitin 

quantification in the sediment traps. In addition, they demonstrated that the clay grains, 

cellulose and bacteria, which are abundant in our study area, did not interfere the 

fluorescence signals. The method of Montgomery et al. (1990) based on the binding 

between wheat germ agglutinin (WGA) and sugar (Allen et al. 1973, Roth 1978), and the 

utilization of flurorescein isothiocyanate-labeled (FITC) as fluorescent probes 

(Kruszewski et al. 2008). The fluorescence of FITC-labeled WGA molecules binding 

with chitin is eliminated. Therefore, the fluorescence intensity is inversely correlated with 

chitin concentration.  

FITC-WGA solution was prepared by mixing 200 μL stock FITC-WGA (Biozol, 

Germany) with 50 mL phosphate buffer (Na2HPO4 0.1 M, pH 9.2). The decrease in 

fluorescent signal which referred to the chitin concentration was measured against a six-

point calibration curve. Chitin stock standard solution was prepared by manually 

suspending 1.8 mg chitin from crab shell (Sigma-Aldrich, USA) in 15 mL phosphate 

buffer. Concentrations of six calibration points are present in the table 3.1. The stock 

standard solution was shaken well before every pipetting to make sure that the chitin 

flakes distributed evenly in the buffer. As the chitin flakes do not dissolve in phosphate 

buffer, the transfer of chitin from the stock to the working standard solutions might not be 

exact. This error was reduced by the duplicate calibrations. 
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Table 3.1: Concentrations of chitin calibration points 

Calibration 
point 

Chitin stock 
standard (mL) 

Phosphate 
buffer (mL) 

Chitin 
concentration 

(µg/5mL) 

Chitin 
concentration 

(µg/mL) 
1 0.000 5.000 0 0 
2 0.500 4.500 60 12 
3 1.000 4.000 120 24 
4 1.500 3.500 180 36 
5 2.000 3.000 240 48 
6 2.500 2.500 300 60 

 

Firstly, 30 mg of the dry and homogenized sediments were incubated in 5 mL 

phosphate buffer and 2 mL FITC-WGA solution by shaking at 1000 rpm at 30oC for 16 

hours. The sediment grains were subsequently removed by filtering through GF/F (0.7 

μm pore size) and the aqueous phase were used for fluorescence signal measurements. 

The amounts of sediments were then reduced to 10 mg to minimize the impacts of humic 

substance on the fluorescence intensity while the volume of buffer and FITC were kept 

intact. An amount of 10 mg of each sample was duplicated weighed. One subsample was 

used to measure the fluorescent intensity of the sediment itself (RFUs) and the other was 

used to determine the total fluorescent signal of chitin concentration in the sediment and 

the sediment itself (RFUt). The chitin concentration is the difference between these two 

fluorescent units (RFUc = RFUt – RFUs). Kinetics of the blank and calibration points 

were carried out to find out the large and stable calibration range with the highest slope. 

The samples for kinetics experiment were incubated in 8 mL vials with 5 mL phosphate 

buffer and 2 mL FITC-WGA and shaken at 2062 rpm at room temperature.  
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3.5 Elemental composition, amino acids and amino sugars in plant materials 

3.5.1 Elemental composition 

A quantity of 1000 μg of Standard Reference Material (SRM) 1515 and powdered 

samples were weighed into the tin cups. The standard was used for a fifteen point 

calibration and as a quality control after every five samples. Because of the very low 

content of inorganic C in plant materials, the samples were not acidified with 1N HCl 

acid. Consequently, total C was considered as total OC in the samples. 

C and N content in the plant materials were quantified with the elemental analyzer 

Fisons NA 2100 (for details see 3.4.7). 

3.5.2 Amino acids and amino sugars 

The powdered plant materials were treated in the similar protocol with the 

sediments for the determination of amino acids and amino sugars. For details see 3.4.8. 

3.6 Data analysis 

The data analysis was carried out with Statgraphic Centurion XV. The 

comparison of means was conducted by running a t-test with α = 0.05. The effects of site 

and depths on the sediment properties, as well as the interaction between those factors 

are tested by multifactor-ANOVA analysis. Correlations between the properties are 

tested by the Pearson product-moment correlation. The correlations are accepted when p-

values are less than 0.05.  
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4 RESULTS 

4.1 Grain size distribution 

The grain size distribution in Ganh Hao sediments is presented in figure 4.1. The 

study area was dominated by the medium silt with a proportion of 32.2 %. Sand and clay 

accounted for 3.1 and 12.5 %, respectively. The grain size distribution was comparatively 

similar through the sediment depths at the interior sites. However, at GH02, the fine sand 

decreased more than 90% from 0-5 cm to 5-10 cm. The proportion of sand at the more 

tidal-affected sites were higher compared to the interior sites. The medium sand 

accounted for 53 % in the surface sediment at GH08 and 23 % in 5-10 cm at GH05.  

The clay, fine and medium silt content significantly decreased from the dry and 

saline sites towards the tidal-affected sites (p < 0.001). Within 0-15 cm, clay, fine and 

medium silt decreased more than 95 % from GH04 to GH08 but the difference between 

their contents in GH01 and GH03 was less (lower than 37 %). In 30-35 cm, the clay, fine 

and medium silt decreased ca. 75 % from GH04 to GH08 and ca. 5 % from GH01 to 

GH03. On the contrary, the fine sand proportion significantly increased towards the sea 

(p < 0.001). The fine sand content at GH08 was 3 times higher than at GH05. No 

significant difference between depths was found at any class of grain size (p > 0.05). The 

large proportion of medium sand found at 5-10 cm depth at GH05 indicated the influence 

of tidal action in the past. The topography at GH05 was elevated as this is the saltpan 

wall. Hence, the coarse grains transported from the sea during erosion were accumulated 

here. The absence of medium sand in the surface sediment at this site can be a proof that 

in the recent times deposition was a more dominant process in the hydrological regime in 

Ganh Hao. 
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Figure 4.1: The grain size distribution in Ganh Hao sediments.       clay,      fine silt,                    

medium silt,      coarse silt,      fine sand,      medium sand.   
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4.2 Physico-chemical properties 

The basic physico-chemical properties of the sediments are presented in table 4.1 

as the averages of the whole study area (8 sampling sites) at each depth. Sediment 

humidity varied from 17.7 % to 42.2 % and from 21.1 % to 40.4 % in the dry and rainy 

season, respectively. Within the 0-15 cm sediment interval, humidity increased from 

GH01 to GH03 and from GH04 towards the sea (figure 4.2). The highest values of 

humidity were found at GH07 in both of the sampling seasons in the upper layers (figure 

4.2). The tendency of variation was not evident in the depth of 30-35 cm and the high 

values of humidity (higher than 35 %) were found at the creek (figure 4.2). Neither depth 

trends nor seasonal effects were found for sediment humidity (table 4.2). Nevertheless, 

there were significant interactions between season, depth and location (table 4.2).  

 

Table 4.1: The basic physico-chemical properties of the sediment in the dry and rainy 

season. The presented values are averages of 8 sampling sites. 

Depth 
(cm) 

pH Humidity (%) Salinity (‰) 

Dry season Rainy season Dry season Rainy season Dry season Rainy season 

00-05 7.28 ± 0.37 7.36 ± 0.12 29.79 ± 3.77 31.19 ± 2.80 33.22 ± 11.82 18.94 ± 4.19 

05-10 7.23 ± 0.29 7.28 ± 0.09 29.84 ± 3.35 29.77 ± 2.81 35.01 ± 8.13 26.68 ± 6.34 

10-15 7.18 ± 0.28 7.18 ± 0.15 28.88 ± 3.17 29.34 ± 2.48 33.85 ± 6.72 27.02 ± 5.98 

30-35 7.05 ± 0.26 7.07 ± 0.15 30.84 ± 2.36 30.04 ± 3.01 32.45 ± 4.65 30.18 ± 5.71 
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Figure 4.2: Variation and seasonal comparison of sediment humidity.      dry season,   

rainy season 
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Sediment salinity decreased from GH01 to GH05 with a sudden increase in the 

dwarf black mangrove (GH04) before smoothly increasing towards the sea (figure 4.3). 

The salinity was significantly higher in the dry season (table 4.2). There were significant 

interactions between depth, season, and location (table 4.2). The salinity was extremely 

high at the site of dwarf Lumnitzera racemosa (GH04) and the Sea purslane mat (GH01), 

especially in the dry season, up to 76.46 ‰ and 89.55 ‰, respectively. The sediment 

salinity was lower in the depth of 30-35 cm and the fluctuation was more stable, but the 

highest values were even found in the sites where S. portulacastrum occurred (figure 

4.3).  

 

Table 4.2: The influence of sediment depth, seasons, and sampling sites on the sediment 

characteristics. (a) x (b), (b) x (c), (a) x (c) and (a) x (b) x (c) express the 

interactions between depth (a), season (b) and site (c). Season, sampling 

depth and site are the factors and coded for the multifactor-ANOVA 

analysis. Season (1): dry and (2): rainy. Depth (1): 0-5 cm, (2): 5-10 cm, 

(3): 10-15 cm and (4): 30-35 cm. Site (1): GH01, (2): GH02, (3): GH03, 

(4): GH04, (5): GH05, (6): GH06, (7): GH07 and (8): GH08. 

  
Humidity 

(%) 
Salinity 

(‰) pH 
N-NH4

+ 
(umol g1-) 

NO2 + NO3 
(ug g-1) 

AP (umol 
g-1) 

OC (umol 
g-1) 

TN (umol 
g-1) 

Ptot (umol 
g-1) 

IP (umol 
g-1) 

OP (umol 
g-1) 

Depth (a) ns * ** * ns ns ** ** ** ** ns 

Season (b) ns ** ns ** ** ns ns ns ns ns ** 

Site (c) ** ** ** ** ** ** ** ** ** ** ** 

(a) x (b) ns ** ns ns ns ns ns ns ns ns ns 

(a) x (c) ** * ns * ns ns ** ** ** ** ns 

(b) x (c) * ** ** ** * * ** ** ns * ns 

(a)x(b)x(c) ns ns ns ns ns ns ns ns ns ns ns 

**: p < 0.01; *: p < 0.05; ns: non-significant 

 

 



30 
 

 

 

 

 

Figure 4.3: Variation and seasonal comparison of sediment salinity.      dry season,   

rainy season. 
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The sediment pH decreased gradually with depth (table 4.1). The pH values tended 

to increase from GH01 to the carbonate site (GH05) and from the mangrove fringe 

(GH06) to the sand flat (figure 4.4). Spatial pH variations were more pronounced in the 

dry season. In all of the sampling depths, the pH was higher during the rainy season as 

compared to the dry season, but no statistically significant difference between the periods 

was recorded (table 4.2). In the dry season, pH varied between 5.92 and 8.63. The range 

was narrower in the rainy season with the variation between 6.37 and 7.91. The interior 

sites were influenced by the seasonal factors while the pH values of the flooded sites 

were stable during the sampling year (figure 4.4). 

The Eh varied between -242 and 295 mV in the dry season. The sediments of 

GH01, GH02, GH04 and GH05 were very aerated in the dry season (figure 4.5). There 

were no remarkable changes in Eh in the upper layers from GH01 to GH05. The Eh may 

be influenced by the tidal inundation and the grain size composition in the sediments. The 

proportion of the grains whose diameters were smaller than 20 μm (clay to medium silt 

fractions) in the surface sediment at GH07 was ca. 60%, lower as compared to the other 

landward sites. Nevertheless, the Eh at this site was the only negative value in the surface 

sediments at all depths (figure 4.5) and probably resulted from the water logging, as this 

site is topographically lower than the others (figure 2.2). Clay and fine silt significantly 

correlated with the Eh (figure 4.6). 
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Figure 4.4: Variation and seasonal comparison of sediment pH.       dry season,       rainy 

season.  



33 
 

 

 

 

 

 

 

Figure 4.5: Variation of sediment Eh in the dry season.  
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Figure 4.6: Correlations between the proportion of clay and fine silts and Eh (p < 0.001).    

The correlation coefficient (r) between Eh and clay is 0.83.  The correlation 

coefficient between Eh and fine silt is 0.78.        clay and       fine silt. 

 

4.3 Nutrient levels in the sediments 

Nutrient concentrations are presented in table 4.3. The nitrogenous oxides in this 

study are considered as the sum of NO2
- and NO3

-. The NO2
- + NO3

- concentration varied 

between 0.56 and 4.50 ug.g-1 dry weight sediment in the dry season and between 1.05 and 

5.04 μg.g-1 in the rainy season. The fluctuation of NO2
- + NO3

- concentrations in the 

surface sediment was not apparent in the dry season. In general, NO2
- + NO3

- 

concentrations decreased from GH01 to GH03 and from GH04 towards the sand flat 

(figure 4.7). The concentrations of NO2
- + NO3

- were significantly different among the 

sites (p < 0.001) with the highest values found at GH01 and another peak was seen at 

GH04 at all depths.  The concentration of NO2
- + NO3

- tended to decrease down-core, but 

the differences between depths were not significant (p > 0.05).  
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Figure 4.7: Variation of NO2
- + NO3

- concentration along the transect.     dry season;                                                               

rainy season 
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Table 4.3: Nutrient concentrations of the sediments in the dry and rainy season. The 

presented values are the averages of 8 sampling sites. 

Content 
 (μg.g-1) 

Season 00-05 cm 05-10 cm 10-15 cm 30-35 cm 

NO2
- + NO3

-  
Dry 2.50± 1.05 1.90 ± 0.83 1.82 ± 1.07 1.34 ± 0.53 
Rainy 2.30 ± 0.56 2.31 ± 0.80 2.49 ± 1.13 2.25 ± 1.19 

NH4
+  

Dry 7.72 ± 2.20 7.39 ± 2.07 7.00 ± 2.86 6.54 ± 1.81 
Rainy 9.61 ± 2.91 8.55 ± 2.64 8.60 ± 2.35 7.53 ± 2.14 

AP 
Dry 13.31 ± 1.24 13.21 ± 2.09 12.20 ± 2.21 14.51 ± 2.80 
Rainy 12.85 ± 3.17 12.23 ± 2.93 12.12 ± 2.25 13.35 ± 3.08 

 

The range of NH4
+ concentration was from 3.71 to 15.04 and from 3.74 to 14.66 

μg.g-1 in the dry and rainy season, respectively. Sediment depth, season and location of 

the sampling sites are the factors that significantly controlled the NH4
+ concentration 

(table 4.2). The concentrations of NH4
+ decreased gradually with depth, consistent with 

aeration of the deep sediments. The NH4
+ concentrations were significantly higher in the 

rainy season (table 4.2). No apparent tendency of NH4
+ concentration fluctuation was 

found through the landscapes in the surface sediments. However, in the layers beneath 5 

cm, the NH4
+ concentration seemed to increase towards the more tidally affected sites 

(figure 4.8). NH4
+ seemed to be more dominant than NO2

- and NO3
-. The NH4

+ to (NO2
- + 

NO3
-) ratio varied between 0.8 and 12.9 during the sampling year.  
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Figure 4.8: Variation of NH4
+ concentration along the transect.      dry season;       rainy 

season. 
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The range of AP varied from 7.50 to 21.04 μg.g-1 in the dry season, and from 4.01 

to 19.35 μg.g-1 in the rainy season. There was no significant difference in AP 

concentrations between the dry and rainy season, or among the sampling depths (table 

4.2). It was even not revealed in a specific trend down-core. Within the 0-15 cm sediment 

interval, AP concentration seemed to increase towards the more tidally affected sites. 

However, the highest concentration of AP occurred at the dwarf black mangrove (GH04), 

where the sediment was extremely dry and saline while the lowest values was found at 

the sand flat (figure 4.9). Nevertheless, in the depth of 30-35 cm, the peaks of AP 

concentration were found at the creek (GH03) and the mangrove fringe (GH06) in the 

rainy season (figure 4.9). 
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Figure 4.9: The variation of AP concentration along the transect.     dry season;     rainy 

season. 
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4.4 Elemental composition in the sediments 

The level of OC and TN at sites occupied by Sesuvium portulacastrum (including 

GH01 and GH02), which will be referred to “Sea purslane sites” in the following, were 

significantly higher than in the area of pure mangrove stands (p < 0.05 and 0.01, for the 

difference in OC and TN level, respectively). Nevertheless, these differences were found 

exclusively in the surface sediment in the dry season (figure 4.10). The quantity of OC 

and TN decreased from the vegetated sites towards the sea (figure 4.11) and the values at 

the sand flat (GH08) were significantly lower than the other sampling sites (table 4.2). 

The levels of OC and TN tended to decrease down-core within the 0-15 cm interval 

during the sampling year (figure 4.11). A negligible increase of these properties was seen 

at the depth of 30-35 cm, but no significant difference between the studied depths was 

recorded (table 4.2). The sediment depth, season and location of the sampling sites 

controlled the quantity of OC and TN in the sediments (table 4.2). 

 

 

 

 

 

 

Figure 4.10: Differences in OC and TN levels in surface sediments of the areas occupied 

by Sesuvium portulacastrum and pure mangrove stands in the dry season. 

OC content (mg.g-1) 

TN content (mg.g-1) 
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Figure 4.11: Down-core variation of OC and TN along the transect.     dry season,    

rainy season. 
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4.5 Fractions of IP and OP in the sediments 

The TP content varied from 400.6 to 968.9 μg.g-1 in the dry season and from 369.9 

to 771.4 μg.g-1 in the rainy season. IP was the major contributor to sedimentary P pool. 

The average IP:TP ratio in the sediment was 92.8 and 94.1% in the dry and rainy season, 

respectively.  

There were significant differences in TP and IP contents between the four 

investigated depths (p < 0.01), but there was no consistent trend of down-core variation 

among the sampling sites. The quantities of TP and IP decreased continuously down-core 

at GH04, GH05, GH06 and GH08 (figure 4.12 and 4.13). No seasonal influence on TP 

and IP contents was found in the sampling year (table 4.2). Within the 0-10 cm interval, 

the content of IP increased from GH01 to GH05 then decreased gradually to GH07 and 

reached another peak at the sand flat (GH08). The variation of IP in 10-15 cm was 

negligible but in the layer of 30-35 cm, IP content tended to decrease towards the sea 

(figure 4.13). 

In the whole study area, the level of OP in the dry season was significantly higher 

as compared to the rainy season (p < 0.01). No significant difference in OP content 

between depths was found in the sampling year (table 4.2). The level of OP was highest 

at the mix stand of Avicennia and Sesuvium (GH02) (figure 4.14), but no significant 

difference was found in the group of the other sites. 
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Figure 4.12: Down-core variation of TP content (μg.g-1) at each sampling site during the 

sampling year.      dry,       rainy season. 
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Figure 4.13: Down-core variation of IP content (μg.g-1) at each sampling site during the 

sampling year.      dry,        rainy season. 
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Figure 4.14: Variation of OP content in each depth along the transect.     dry,     rainy 

season. 
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On average, AP accounted for 2.54 and 2.39 % of the IP in the dry and rainy 

season, respectively. Although P solubilization tended to be more effective in the dry 

season, the difference is not significant (p > 0.05). The down-core variation of AP:IP 

ratio within 0-15 cm was negligible (figure 4.15), but it was significantly higher in 30-35 

cm (p < 0.05). The values of AP:IP ratio fluctuated between 2.4 and 2.9% at GH01, 

GH02, GH03, GH04 and GH06 indicating a similar rate of P solubilization in these 

sediments. The lowest ratios were found at GH05 and GH08 (figure 4.15), probably due 

to the high pH which resulted from the abundance of carbonate in these sediments. The 

remarkable high values of AP:IP ratio was acquired at GH06 and GH07 in 30-35 cm 

(figure 4.15). There was no consistent trend of down-core variation in IP:OP ratio (figure 

4.16). The IP:OP ratio was higher in the rainy season as compared to the dry season, but 

the difference was not significant (p > 0.05).   
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Figure 4.15: Down-core variation of AP:IP ratio at each sampling site during the 

sampling year.       dry,       rainy season. 
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Figure 4.16: Down-core variation of IP:OP ratio at each sampling site during the 

sampling year.       dry,       rainy season.  
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4.6 Chitin  

4.6.1 Kinetics experiments 

The first calibration point did not contain any chitin flake. Consequently, its 

fluorescence intensity was the highest. However, the decrease of fluorescence intensity 

with the increasing of chitin concentration was not linear for the calibration (figure 4.17). 

The figure 4.17 shows that each concentration of the calibration express the different 

fluorescence intensity in the duplication .The variability of calibration values, especially 

the wide variation range of the blank after 16 hours of incubation (table 4.4), suggested 

that the incubation during sixteen hours might affect the stability of FITC-WGA in the 

phosphate buffer. 

 

Figure 4.17: Duplicate calibration of chitin incubated for 16 hours at 30oC.   first,   

second calibration. The slope and coefficient correlation from the first 

calibration are -0.175 and 0.92, respectively. The slope and coefficient 

correlation from the second calibration are -0.114 and 0.90, respectively. 
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Table 4.4: The sixteen-hour incubation calibrations. The calibration was repeated for 6 

times. 

Chitin concentration 
(ug/mL) 

RFU_Ex 426, Em 520, V 510 

0 165.4 165.0 115.2 110.7 126.5 128.3 
12 176.5 174.4 113.3 111.1 126.2 127.5 
24 174.6 189.0 109.8 109.4 124.1 127.1 
36 172.5 OFL 108.6 108.1 121.8 123.8 
48 154.1 157.4 103.8 103.9 121.2 122.3 
60 160.9 173.1 106.4 105.7 

 

The kinetics was set up for the blank and the fourth calibration point (36 μg chitin. 

mL-1) with different incubation time. The fluorescent intensity of the blank and the 

calibration point were measured at 15, 30, 60, 120, 180, 240 and 300 minutes. The 

fluorescent units of the blanks changed quickly within the 180 first minutes but seemed to 

become stable afterwards (table 4.5). The fluorescence units of the duplicated blank were 

different from each other within 15 and 60 minutes, indicating that this period was not 

long enough for FITC-WGA to reach the stable state (table 4.5). The fluorescence units 

of the calibration point reached the stable state also after 180 minutes and the stability 

lasted until the minute 240 (table 4.6). The increase of the fluorescence units after 240 

minutes may indicate liberation of FITC-WGA from the complex chitin-FITC-WGA. 

The kinetics of the blank and fourth calibration point suggest that 240 minutes can be the 

appropriate time for chitin incubation in the phosphate buffer with 2 mL FITC-WGA. 

Table 4.5: The kinetics experiment of the blank (5 mL phosphate buffer + 2 mL FITC-

labeled WGA) 

Minute RFU1 RFU2 
15 111.9 112.7 
30 110.7 112.1 
60 111.4 112.0 

120 110.9 111.2 
180 109.2 109.5 
240 109.8 110.5 
300 108.6 109.6 
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The kinetics of sediment indicated that 240 minutes is also the sufficient time for 

the incubation of sediment samples (table 4.7). The difference between the duplicated 

calibrations during 3, 4 and 5 hours are presented in figure 4.18. The highest slope and 

correlation coefficients, associated with the stable intercepts of the four-hour incubation 

as compare to three- and five-hour incubation, result in the application of 4 hours for the 

incubation of all sediment samples. 

Table 4.6: The kinetics experiment of the fourth calibration point (180 μg chitin in 5 mL 

phosphate buffer + 2 mL FITC-labeled WGA) 

Minute RFU 
15 114.5 
30 112.4 
60 111.2 

120 109.9 
180 108.8 
240 108.3 
300 109.5 

 

Table 4.7: The kinetics experiment of 10 mg sediment incubated at room temperature in 

5 mL phosphate buffer and 2 mL FITC-WGA. 

Minute RFUt RFUs 

15 113.3 9.1 

30 111.5 9.5 

60 111.8 10.4 

120 111.2 10.8 

180 108.8 10.9 

240 108.8 10.8 

300 106.9 12.5 
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Figure 4.18: Comparison of calibration curves from the incubation during (a): 3 hours, 

(b): 4 hours and (c): 5 hours 
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4.6.2 Chitin quantity in the sediment 

The chitin quantity in the sediments varied between 10.2 and 77.2 mg.g-1 in the 

sampling year. The mean concentration of chitin in the dry and rainy season was 46.2 and 

47.5 mg.g-1, respectively. No significant difference in chitin concentration was found 

between depths (p > 0.05) and the down-core variations were not consistent through the 

landscapes (figure 4.19). The highest quantities of chitin were usually found in 30-35 cm 

(figure 4.19).  

The concentration of chitin apparently decreased towards the tidal flat and this 

tendency was identical in all depths during the sampling year (figure 4.19). The decrease 

from GH06 to GH08 was comparable for all depths in the dry as well as rainy season. 

The chitin quantities were significant lower at the more alkaline sites, including GH05, 

GH07 and GH08 (p < 0.001), but the difference between the other sites was negligible. 

There was no significant seasonal difference in the chitin contents (p > 0.05). 
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Figure 4.19: Down-core variation of the chitin concentration at each site.     dry,      rainy 

season, respectively. 
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4.7 Amino acids and amino sugars in the sediment 

4.7.1 Amino acids 

The content of total hydrolysable amino acids (THAA) was calculated by the sum 

of proteinaceous and non-proteinaceous amino acids in the sediments. The THAA 

content varied from 0.28 to 2.95 mg.g-1 in the dry season and from 0.20 to 3.12 mg.g-1 in 

the rainy season. The down-core decreases in THAA content were found at most of the 

sampling sites during the sampling year with disturbances in the rainy season which 

probably resulted from dwelling-organisms (figure 4.20), but sediment depth was not the 

factor influencing the THAA content (p > 0.05). In the surface sediments (0-5 cm), the 

content of THAA drastically increased from GH01 to GH02 (ca. 36 % in the dry season 

and 50 % in the rainy season) and tended to decrease towards the sea in both sampling 

seasons (figure 4.21). On the contrary, within 5-15 cm, in the dry season, the THAA 

content increased seaward and the peak was found at the mud flat (GH07) (figure 4.21). 

In the rainy season, the THAA content decreased from GH03 to GH06 in 5-10 cm. The 

THAA fluctuation through the ecotones was not apparent in the deeper sediments, but the 

lowest content of THAA was found always at the sand flat (GH08) (figure 4.21), 

corresponding with the lowest content of OC and TN in this sediment (figure 4.11). 
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Figure 4.20: Down-core variation of THAA content at each sampling site.       dry,    

rainy season. 

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 5 10 15 20 25 30 35

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 5 10 15 20 25 30 35

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 5 10 15 20 25 30 35

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 5 10 15 20 25 30 35

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 5 10 15 20 25 30 35

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 5 10 15 20 25 30 35

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 5 10 15 20 25 30 35

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 5 10 15 20 25 30 35

GH01 

GH02 

GH03 

GH04 

GH05 

GH06 

GH07 

GH08 

Depth (cm) Depth (cm) 

T
H

A
A

 c
on

te
nt

 (
m

g.
g-1

) 
T

H
A

A
 c

on
te

nt
 (

m
g.

g-1
) 

T
H

A
A

 c
on

te
nt

 (
m

g.
g-1

) 
T

H
A

A
 c

on
te

nt
 (

m
g.

g-1
) 

T
H

A
A

 c
on

te
nt

 (
m

g.
g-1

) 
T

H
A

A
 c

on
te

nt
 (

m
g.

g-1
) 

T
H

A
A

 c
on

te
nt

 (
m

g.
g-1

) 
T

H
A

A
 c

on
te

nt
 (

m
g.

g-1
) 



57 
 

 

 

 

 

 

 

Figure 4.21: Variation of THAA content along the transect at each depth.     dry,      rainy 

season. 
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Nitrogen in the THAA (Naa) accounted for 25.5 and 27 % of the N pool in the dry 

and rainy season, respectively. OC in the THAA (Caa) averaged 8.8 and 10.7 % of the 

total sedimentary OC in the dry and rainy season, respectively. The Naa:TN ratio 

significantly decreased down-core in the sampling year (p < 0.01) (figure 4.22) while the 

significant decrease in Caa:OC ratio was just found in the dry season (figure 4.23). 

However, the increases at 5-10 cm of the Caa:OC ratio were found at GH03, GH05 and 

GH07 in both seasons (figure 4.23). A similar finding in Naa:TN ratio was seen at GH05 

and GH07 in the dry season (figure 4.22). 

The total contribution of THAA to the pool of OC at GH08 was drastically higher 

than the other sites in the rainy season (approximately 60 % within 0-10 cm and 45 % in 

the deeper layers) (figure 4.23). Although there was not a significant difference in Caa:OC 

ratio from GH01 to GH07, it seemed to be higher at GH02 and GH07. 

In the rainy season, the Naa:TN ratio tended to decrease from GH03 to GH06 

within 0-15 cm (figure 4.22). The tendency was not clear in the dry season. The ratio 

consistently increased from GH01 to GH03 in all depths. The highest ratios were found at 

GH03, GH07 within 5-15 cm and at GH03, GH06 in 30-35 cm. In the surface sediments, 

the peaks were acquired at GH02 and GH08 (figure 4.22). In general, the Naa:TN ratios 

were significantly different between the sampling sites (p < 0.05). The mean ratio was 

higher in the rainy season, but the difference was not significant (p > 0.05). 
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Figure 4.22: Down-core variation of Naa:TN ratio in the sediments.     dry,    rainy 

season. 
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Figure 4.23: Down-core variation of Caa:OC ratio in the sediments.     dry,    rainy 

season. 
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Neutral amino acids were the most dominant group in Ganh Hao in the sampling 

year. The relative abundance of the amino acid groups followed the order: neutral > 

acidic > basic > aromatic > sulfur-containing > non-protein (figure 4.24). The relative 

abundance pattern of the amino acid groups was not affected by either season or depth in 

the sediments. 

The neutral group accounted for more than 50% of the THAAs. Consequently, 

their contributions to the pool of OC and TN in the sediments were higher than the other 

groups. The contribution of each amino acid group to the pool of OC and TN in the 

sampling year is presented in figure 4.25, 4.26, 4.27 and 4.28.  

 

 

Figure 4.24: Concentration of amino acid groups in the sediment.       dry,     rainy 

season. 
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Figure 4.25: Down-core variation in contribution of each amino acid group to the pool of 

OC in the dry season.   0-5 cm,   5-10 cm, 1 0-15 cm and    30-35 cm, 

respectively. 
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Figure 4.26: Down-core variation in contribution of each amino acid group to the pool of 

N in 8the dry season.     0-5 cm,     5-10 cm,     10-15 cm and     30-35 cm. 
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Figure 4.27: Down-core variation in contribution of each amino acid group to the pool of 

OC in the rainy season.     0-5 cm,      5-10 cm,     10-15 cm and     30-35 

cm. 
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Figure 4.28: Down-core variation in contribution of each amino acid group to the pool of 

N in the rainy season.      0-5 cm,     5-10 cm,      10-15 cm and     30-35 cm. 
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The relative abundance of acidic amino acids did not vary significantly with depth 

(p > 0.05). It was significantly higher in the dry season and tended to be lower at the sites 

which were more affected by the inundation as compared to the drier and more saline 

sediments (table 4.8). On the contrary, the contribution of acidic amino acids to the pool 

of OC and TN was significantly different between depths and sites (p < 0.001). The 

Caa:OC ratio was significantly higher in the rainy season (p < 0.001) while there was no 

significant difference in Naa:TN ratio between the seasons (p > 0.05). 

The relative abundance of basic amino acids did not vary significantly between 

depths and seasons (p > 0.05). Contrary to the acidic group, the mole % of basic amino 

acids was higher at the sites that were more affected by tidal water (table 4.8). The 

contribution of basic amino acids to the pool of OC and TN in the sediments significantly 

decreased with depth (p < 0.001). These ratios were higher in the rainy season but the 

significant difference was seen in the Caa:OC ratio exclusively (p < 0.001).  

The neutral amino acids relative abundance significantly decreased down-core 

(table 4.8) (p < 0.001). They tended to be more abundant at the tidal-affected-sites. 

Similar to the acidic and basic group, the Caa:OC and Naa:TN in the neutral amino acids 

also significantly decreased with depth (p < 0.001). These ratios were higher in the rainy 

season but the significant seasonal difference was found in Caa:OC ratio exclusively (p < 

0.001).  
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Table 4.8: Relative abundance (mole %) of the amino acid groups in the sediments at 

each site. 

acidic basic neutral aromatic non-protein 
sulfur-

containing 

Site 
Depth 
(cm) 

dry rainy dry rainy dry rainy dry rainy dry rainy dry rainy 

GH01 

00-05 26.1 25.9 9.6 9.9 53.6 52.4 4.3 4.0 3.5 4.2 2.9 3.5 

05-10 26.4 26.6 9.7 10.0 52.6 51.3 3.9 3.7 4.1 4.8 3.4 3.7 

10-15 27.2 26.7 9.7 10.0 51.2 51.1 3.5 3.5 4.6 5.3 3.8 3.5 

30-35 28.0 26.9 9.9 10.0 48.7 49.7 2.6 2.9 6.2 6.3 4.5 4.2 

GH02 

00-05 26.8 25.1 9.1 9.4 54.5 54.8 4.8 5.4 2.5 2.5 2.4 2.9 

05-10 27.6 20.8 9.6 10.6 52.1 57.0 3.6 4.7 3.8 3.5 3.3 3.4 

10-15 27.6 26.4 10.0 10.1 50.4 51.1 3.1 3.8 4.9 4.4 4.1 4.2 

30-35 27.2 26.5 9.8 9.7 51.2 51.0 3.0 3.5 4.8 5.1 4.0 4.1 

GH03 

00-05 25.4 24.3 10.0 9.9 54.1 54.8 4.4 5.3 3.0 2.6 3.1 3.2 

05-10 26.0 24.9 10.3 9.8 53.0 55.1 4.2 4.9 3.3 2.4 3.2 2.9 

10-15 26.5 25.2 10.2 10.1 52.1 53.0 4.0 4.6 4.0 3.4 3.2 3.7 

30-35 26.7 25.2 10.0 9.8 51.5 52.0 4.0 4.9 4.2 4.6 3.6 3.6 

GH04 

00-05 25.4 25.2 10.1 9.9 53.8 53.6 4.2 4.5 3.3 3.3 3.2 3.4 

05-10 26.7 25.3 10.2 9.8 52.0 54.2 3.5 4.3 4.3 3.3 3.5 3.1 

10-15 27.6 26.1 9.9 10.1 51.2 52.0 3.3 3.6 4.4 4.5 3.6 3.6 

30-35 28.0 27.1 10.3 10.2 49.9 50.0 3.1 3.1 5.0 5.7 3.7 3.9 

GH05 

00-05 26.0 25.0 10.7 10.2 52.2 54.0 3.7 4.5 3.1 2.7 4.3 3.7 

05-10 26.4 24.6 10.4 10.4 53.1 53.3 3.8 4.4 3.0 3.2 3.3 4.1 

10-15 27.1 25.4 10.5 10.2 50.8 51.7 3.4 4.1 4.0 4.1 4.2 4.4 

30-35 22.9 26.3 10.9 9.8 53.1 50.6 3.3 3.7 5.6 5.2 4.2 4.5 

GH06 

00-05 26.1 25.7 10.0 10.1 52.6 50.9 4.4 4.2 3.7 5.0 3.2 4.1 

05-10 25.5 25.3 10.4 10.0 53.0 50.8 4.6 4.4 3.4 5.2 3.0 4.3 

10-15 25.9 25.3 10.3 10.0 52.8 51.0 4.7 4.6 3.1 4.8 3.2 4.3 

30-35 26.4 24.7 10.4 9.9 52.1 51.9 4.6 5.3 3.7 4.3 2.9 3.9 

GH07 

00-05 25.4 24.4 10.5 10.4 53.7 53.2 4.9 5.3 3.0 3.2 2.6 3.5 

05-10 25.2 24.6 10.4 10.3 53.8 53.4 4.5 5.3 3.0 3.1 3.0 3.3 

10-15 25.2 24.9 10.3 10.1 53.7 53.7 5.0 5.3 3.1 3.0 2.7 3.1 

30-35 24.8 23.7 10.6 10.2 51.6 52.1 4.9 5.3 4.1 3.4 3.9 5.3 

GH08 

00-05 24.2 21.7 10.0 11.2 52.6 56.1 4.1 5.2 2.1 1.9 7.0 3.9 

05-10 23.2 22.2 10.3 10.7 53.3 54.8 4.4 5.4 2.1 1.9 6.7 5.0 

10-15 22.6 23.3 10.6 10.8 54.4 54.6 5.1 5.4 1.8 1.7 5.6 4.2 

30-35 24.0 23.4 10.0 10.6 55.5 53.4 5.4 5.5 2.3 2.2 2.9 4.9 
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The mole % of sulfur-containing and non-proteinaceous amino acids did not vary 

significantly between the dry and rainy season (p > 0.05). Their relative abundance, 

however, significantly increased down-core (p < 0.001 for the non-protein amino acids 

and p < 0.05 for the sulfur-containing amino acids). The relative abundance of non-

protein amino acids was highest at the dry and saline sites (table 4.8) (p < 0.001) while 

the relative abundance of sulfur-containing amino acids tended to increase with the 

sediment pH (table 4.8).  

The contribution of sulfur-containing amino acids to the pool of OC and TN also 

decreased with depth (p < 0.05 for Caa:OC and p < 0.001 for Naa:TN ratio). These ratios 

were significantly higher in the rainy season (p < 0.001). The significant difference 

between depths in the contribution of non-protein amino acids to the total OC and TN 

was found in the Caa:OC ratio only (p < 0.001). Due to their relative abundance, the 

Caa:OC and Naa:TN ratio in the non-protein amino acids were highest at GH01 while 

these ratios in the sulfur-containing amino acids were highest at the carbonate site 

(GH05) (table 4.8).  

The composition pattern of amino acids in the dry and rainy season is presented in 

figure 4.29 and 4.30, respectively. Aspartic acid (Asp), glutamic acid (Glu), glycine (Gly) 

and alanine (Ala) were the most abundant amino acids in the sediments in the sampling 

year, while taurine (Tau) and methionine (Met) were found as traces only. This finding is 

consistent through the depths and landscapes, regardless of the seasonal periods. The 

average contribution of Gly to the THAAs in the sediment was 14.4 and 13.6 mole % in 

the dry and rainy season, respectively. The total acidic amino acids, calculated by the 

sum of Glu and Asp, accounted for 13 and 12.5 mole % in the dry and rainy season, 

respectively. Asp was more abundant as compared to Glu, as the Asp:Glu ratio was ca. 

1.2 in both sampling seasons. Ala contributed 10.3 and 10.03 % to the total mole 

concentration of the hydrolysable amino acids in the dry and rainy season, respectively. 
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Figure 4.29: Composition pattern of amino acids in the sediments in the dry season.     
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Figure 4.30: Composition pattern of amino acids in the sediments in the rainy season. 
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The individual amino acids showed the varied tendency of downward variation at 

each sampling site. The downward variation of Gly mole % at the sampling sites is 

presented in the figure 4.31.  It increased from 0-15 cm at GH01, GH02 and varied 

negligibly with depth at GH04 in the dry season. The down-core increases were also 

found at GH3, GH7 and GH8 in the dry season while the down-core decrease was seen at 

GH06 in both seasons. No trend was seen at GH05 as the Gly mole fraction increased at 

5-10 and 30-35 cm. 

The mole % of Ser was higher than Thr in both sampling seasons (p > 0.05), with 

an exception found at GH08 in the both seasons (figure 4.32 and 4.33). The mole % of 

these two neutral amino acids tended to decrease with depth at most of the sampling sites, 

but increased down-core at GH08 in the dry season. In the rainy season, the mole % of 

Thr and Ser at GH02 increase at 5-10 cm before falling to lower values at 10-15 cm.  The 

downward variations of Ile and Leu were similar to the variations of Ser and Thr (figure 

4. 34 and 4.35).  

Val and Ala decreased with depth (figure 4.36 and 4.37) but the variation range 

was narrow, from 5.8 to 7.3 mole % in the sampling year for Val, and from 9.4 to 11.2 

mole % for Ala. The downward variations of Ala were similar in the dry and rainy 

season. However, in the rainy season, sudden increases at 5-10 cm in Ala and Val mole 

% were seen at GH02.   
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Figure 4.31: The downward variation of neutral amino acids (Gly) at each sampling site 

in 2 seasons.     dry season;     rainy season . 
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Figure 4.32: The downward variation of neutral amino acids (Thr and Ser) at each 

sampling site in the dry seasons.     Thr;     Ser . 
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Figure 4.33: The downward variation of neutral amino acids (Thr and Ser) at each 

sampling site in the rainy seasons.     Thr;       Ser . 
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Figure 4.34: The downward variation of neutral amino acids (Ile and Leu) at each 

sampling site in the dry seasons.      Ile;       Leu . 
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Figure 4.35: The downward variation of neutral amino acids (Ile and Leu) at each 

sampling site in the rainy seasons.      Ile;       Leu . 
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Figure 4.36: The downward variation of neutral amino acids (Ala and Val) at each 

sampling site in the dry seasons.        Ala;       Val . 
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Figure 4.37: The downward variation of neutral amino acids (Ala and Val) at each 

sampling site in the rainy seasons.       Ala;       Val. 
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There were no significant differences in Asp and Glu concentration found between 

depths in the sampling year (p > 0.05). In general, Asp and Glu mole % increased down-

core negligibly (figure 4.39 and 4.40), indicating their production in the deeper 

sediments. At the interior sites, the mole % of Asp and Glu increased down-core but the 

downward variations were negligible at the exterior sites (figure 4.39 and 4.40). Within 

0-15 cm, the Asp:Glu ratio was ca. 1.3 and increased towards the tidal affected sites in 

both seasons (figure 4.38). There was a sudden high of Asp:Glu ratio at GH05 in the dry 

season, corresponding with the high pH value at 30-35 cm (figure 4.38).  

At the Avicennia fringe (GH06), the mole % of β-Ala and γ-Aba decreased down-

core in both of the sampling times (figure 4.48 and 4.49), suggesting a loss of these non-

protein amino acids in the sediment beneath the surface. The down-core increase in β-Ala 

and γ-Aba were significant only in the dry season (p < 0.05). The Asp:β-Ala and Glu:γ-

Aba ratios were significantly different from site to site in both of the sampling seasons (p 

< 0.01). The Asp:β-Ala in the dry and rainy season was similar to each other with the 

values is of ca. 4. On average, the Glu:γ-Aba ratios, on the other hand, varied from 2.9 in 

the dry season to 4.6 in the rainy season. Seasonal changes in sediment conditions did not 

influence the values of these ratios, as well as the mole % of the non-protein amino acids.  
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Figure 4.38: Variation of Asp:Glu ratio along the transect in the dry and rainy season.   

Dry season;     rainy season. 
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Figure 4.39: The downward variation of acidic amino acids (Asp and Glu) at each 

sampling site in the dry season.       Asp;       Glu. 
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Figure 4.40: The downward variation of acidic amino acids (Asp and Glu) at each 

sampling site in the rainy season.       Asp;       Glu. 
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In general, the depth variation of His was very negligible at most of the samling 

sites, except for an increase at 5-10 cm at GH02 in both seasons (figure 4.41). Another 

exception was seen at 5-10 cm at GH06 in the dry season. Arg decreased with depth at 

most of the sampling sites. However, a slight increase from 0-5 (3.55 mole %) to 5-10 cm 

3.74 mole %) at GH08 was found in the dry season. The mole % of Lys increased down-

core at GH01, GH02, GH03 and GH04 in both seasons but tended to decreased downcore 

at the other sites (figure 4.42 and 4.43). 

The mole % of Orn consistently increased with depth, inversely proportional to the 

down-core variation of Arg (figure 4.44). The Arg:Orn ratio consistently decreased with 

depth in the sediments (figure 4.45), but the significant difference was found in the rainy 

season only (p < 0.01). The Arg:Orn ratio varied between 1.9 and 5.5 in the dry season 

and from 2.1 to 5.1 in the rainy season. There was no seasonal difference in the Arg:Orn 

ratio, similar to the Asp:β-Ala and Glu:γ-Aba ratios (p > 0.05). 

The mole fraction of Tyr and Phe decreased down-core at most of the sampling 

sites in the dry and rainy season (figure 4.46 and 4.47). The mole % of the non-protein 

amino acids (β-ala and γ-aba) increased with depth at all of the sampling sites. However, 

the variation is more apparent in the interior sites compared to the exterior sites (figure 

4.48 and 4.49). The mole % of β-Ala and γ-Aba increased with depth at all sampling sites 

from GH01 to GH05 but it tended to increase down-core at GH06, GH07 and GH08 in 

both seasons (figure 4.48 and 4.49). 
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Figure 4.41: The downward variation of basic amino acids (His) at each sampling site in 

both seasons.        dry season;          rainy season. 
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Figure 4.42: The downward variation of basic amino acids (Lys and Arg) at each 

sampling site in the dry season.        Lys;        Arg. 
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Figure 4.43: The downward variation of basic amino acids (Lys and Arg) at each 

sampling site in the rainy season.        Lys;       Arg. 
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Figure 4.44: The downward variation of basic amino acids (Orn) at each sampling site in 

both seasons.         Dry season;       rainy season. 
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Figure 4.45: Down-core variation of Arg:Orn ratio in the sediments at each sampling 

site.       Dry season,       rainy season. 
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Figure 4.46: The downward variation of aromatic amino acids (Tyr and Phe) at each 

sampling site in the dry seasons.          Tyr;        Phe. 
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Figure 4.47: The downward variation of aromatic amino acids (Tyr and Phe) at each 

sampling site in the rainy seasons.        Tyr;       Phe. 
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Figure 4.48: The downward variation of non-proteinaceous amino acids (β-Ala and γ-

Aba) at each sampling site in the dry seasons.        β-Ala;        γ-Aba . 
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Figure 4.49: The downward variation of non-proteinaceous amino acids (β-Ala and γ-

Aba) at each sampling site in the rainy seasons.       β-Ala;       γ-Aba . 
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4.7.2 Amino sugars 

The amino sugars determined in this study include glucosamine (Gluam) and 

galactosamine (Galam) only. The mean content of both Gluam and Galam was ca. 265 

μg.g-1 in the dry season and 210 μg.g-1 in the rainy season. In the dry season, the mean 

content of Gluam and Galam was 158 and 107 μg.g-1, respectively. There were 

significant decreases in their concentration in the rainy season. Gluam decreased to 127 

μg.g-1 and Galam decreased to 83 μg.g-1. Gluam averaged ca. 58% and Galam account for 

ca. 42% of the total determined hydrolysable hexosamines. The relative abundance of 

Gluam tended to decrease down-core while Galam increased with the sediment depths (p 

> 0.05). However, there seemed to be an accumulation of Gluam in 30-35 cm at GH08 

(table 4.9). 

The contributions of nitrogen from Gluam and Galam to the N pool are presented 

in the table 4.10. Gluam accounted for 1.66 and 1.45 % of the TN in the dry and rainy 

season, respectively. Galam contributed 1.15 and 0.99 % to the TN in the dry and rainy 

season, respectively. The NGluam:TN and NGalam:TN did not significantly vary with depth 

(p > 0.05). Their contribution to the N pool was significantly higher in the dry season as 

compared to the rainy season (p < 0.001 for NGalam: TN and p < 0.05 for NGluam: TN 

ratio). There were significant differences in their contribution to the N pool between the 

sampling sites (p < 0.001). Although a clear trend of variation was not seen along the 

transect, it seemed that the contribution of amino sugars to the N pool was low at the 

more alkaline sites (GH05, GH08), and higher at the dry and more saline sites (GH01, 

GH02 and GH04) (table 4.10). 
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Table 4.9: Relative abundance of Gluam and Galam in the sediments (mole %) at each 

site. 

Dry season Rainy season 

Site Depth (cm) GLUAM GALAM GLUAM GALAM 

GH01 

00-05 61.6 38.4 62.0 38.0 

05-10 60.1 39.9 60.5 39.5 
10-15 59.7 40.3 60.7 39.3 
30-35 57.5 42.5 58.0 42.0 

GH02 

00-05 61.7 38.3 63.4 36.6 
05-10 60.3 39.7 62.6 37.4 
10-15 59.2 40.8 59.6 40.4 
30-35 59.0 41.0 60.2 39.8 

GH03 

00-05 61.0 39.0 64.5 35.5 
05-10 59.7 40.3 62.9 37.1 
10-15 59.5 40.5 60.4 39.6 
30-35 58.1 41.9 59.9 40.1 

GH04 

00-05 61.4 38.6 61.5 38.5 
05-10 60.3 39.7 62.1 37.9 
10-15 59.6 40.4 61.3 38.7 
30-35 59.0 41.0 59.3 40.7 

GH05 

00-05 59.0 41.0 61.4 38.6 
05-10 59.0 41.0 59.1 40.9 
10-15 59.0 41.0 59.9 40.1 
30-35 60.4 39.6 59.8 40.2 

GH06 

00-05 59.8 40.2 58.5 41.5 
05-10 60.1 39.9 59.3 40.7 
10-15 59.1 40.9 58.5 41.5 
30-35 59.6 40.4 58.7 41.3 

GH07 

00-05 60.9 39.1 60.4 39.6 
05-10 60.8 39.2 60.3 39.7 
10-15 60.8 39.2 60.2 39.8 
30-35 56.6 43.4 51.4 48.6 

GH08 

00-05 47.4 52.6 50.9 49.1 
05-10 47.1 52.9 49.6 50.4 
10-15 49.0 51.0 49.9 50.1 
30-35 58.7 41.3 51.4 48.6 
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Table 4.10: Contribution of Gluam and Galam to the N pool (%) in the sediments at each 

site. 

Dry season Rainy season 

Site Depth (cm) GLUAM GALAM GLUAM GALAM 

GH01 

00-05 1.65 1.03 1.91 1.17 

05-10 1.58 1.05 1.74 1.14 
10-15 1.56 1.05 1.75 1.13 
30-35 1.51 1.12 1.71 1.24 

GH02 

00-05 1.90 1.18 1.48 0.85 
05-10 1.82 1.20 1.69 1.01 
10-15 1.73 1.19 1.75 1.19 
30-35 1.77 1.23 1.79 1.18 

GH03 

00-05 1.71 1.10 1.60 0.88 
05-10 1.74 1.17 1.58 0.94 
10-15 1.82 1.24 1.63 1.07 
30-35 1.72 1.24 1.12 0.75 

GH04 

00-05 1.95 1.23 1.82 1.14 
05-10 1.92 1.26 1.84 1.12 
10-15 1.84 1.24 1.94 1.22 
30-35 1.81 1.26 1.50 1.01 

GH05 

00-05 1.51 1.05 1.52 0.96 
05-10 1.54 1.07 1.12 0.77 
10-15 1.46 1.02 0.95 0.63 
30-35 1.59 1.04 1.19 0.80 

GH06 

00-05 1.84 1.24 1.03 0.74 
05-10 1.68 1.12 1.14 0.78 
10-15 1.93 1.33 1.22 0.87 
30-35 1.89 1.28 1.14 0.80 

GH07 

00-05 1.95 1.25 1.81 1.19 
05-10 2.38 1.54 1.86 1.23 
10-15 2.06 1.33 1.85 1.22 
30-35 1.61 1.22 1.12 1.02 

GH08 

00-05 0.95 1.06 1.26 1.20 
05-10 0.78 0.88 0.77 0.78 
10-15 0.73 0.75 0.87 0.87 
30-35 1.28 0.89 0.82 0.77 
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Gluam contents were used to calculate the content of chitin in the sediments, 

assuming that all chitin was hydrolyzed with 6N HCl and the hydrolyzation of 221 g 

chitin produces 179 g Gluam. The concentrations of chitin calculated from Gluam values 

(chitin~Gluam) are presented in table 4.11. The chitin~Gluam concentration tended to 

decrease down-core at the dry and saline sites (GH01, GH02 and GH04) and no clear 

down-core variation was found at the tidal-affected-sites. The differences between 

depths, however, were not statistically significant (p > 0.05).  

In the dry season, the contribution of chitin~Gluam to the OC pool and TN in the 

sediments varied from 0.7 to 1.8 % and from 0.7 to 2.8 %, respectively. These ranges 

were extended in the rainy season: the contribution of OC-chitin~Gluam to the total OC varied 

between 0.4 and 7.7 % while the contribution of Nchitin~Gluam to the TN varied from 0.5 

and 4.5 %. Chitin calculated through the Gluam quantities seemed to be an important 

contributor to the pool of OM in the sediments at GH08 (figure 4.50 and 4.51). The 

contribution of OC-chitin~Gluam to the total OC and contribution of  Nchitin~Gluam to the TN did 

not vary significantly with depth (p > 0.05) and their down-core variation did not follow a 

clear trend even. No significant seasonal difference in these proportions of contribution 

was found in the sampling year (p > 0.05). 
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Table 4.11: Concentration of chitin~Gluam in the sediments (μg.g-1) at each sampling 

site. 

Site Depth (cm) Dry season Rainy season 

GH01 

00-05 263.5 246.3 

05-10 201.2 179.9 
10-15 195.6 183.6 
30-35 185.7 180.7 

GH02 

00-05 306.0 260.3 
05-10 224.6 173.8 
10-15 166.0 157.8 
30-35 192.5 186.6 

GH03 

00-05 204.6 141.7 
05-10 217.2 161.5 
10-15 208.9 153.1 
30-35 243.6 114.5 

GH04 

00-05 245.7 221.3 
05-10 222.7 210.7 
10-15 187.0 190.4 
30-35 203.9 204.1 

GH05 

00-05 149.0 156.3 
05-10 213.5 139.1 
10-15 142.6 63.0 
30-35 195.3 112.1 

GH06 

00-05 224.1 118.2 
05-10 236.6 131.9 
10-15 180.7 89.9 
30-35 244.6 99.9 

GH07 

00-05 249.3 166.1 
05-10 299.8 203.6 
10-15 293.0 267.7 
30-35 92.1 55.9 

GH08 

00-05 36.2 31.2 
05-10 32.0 33.7 
10-15 18.4 11.3 
30-35 198.1 74.3 
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Figure 4.50: Contribution of chitin~Gluam to the OC pool in the sediments along the 

transect.       dry,       rainy season. 
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Figure 4.51: Contribution of chitin~Gluam to the N pool in the sediments along the 

transect.      dry,       rainy season. 
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4.8 Amino acids and amino sugars in plant materials 

Galam was absent from the amino sugar composition in all plant materials. Glu, 

Asp, Gly and Ala were the most abundant amino acids in the plant materials. Tau, Orn 

and β-Ala were detected as traces only. The sediment conditions and seasonal changes 

did not affect the composition patterns of amino acids in the plant materials (figure 4.52). 

The concentrations of THAA in plant materials were significantly different 

between the plant species (p < 0.001). The mean concentration of THAA was lowest in 

Sesuvium and highest in Avicennia but there was no significant difference between 

Avicennia and Lumnitzera (figure 4.53 and 4.54). The mean THAA concentration was 

significantly higher in the dry season (p < 0.01) and similar between the plant species (p 

> 0.05).  

The contribution of Caa to OC pool in the plant materials was significantly 

different between the plant species (p < 0.01). It was highest in Avicennia and lowest in 

Sesuvium in the dry season (figure 4.55). However, in the rainy season, the highest 

contribution of Caa to the OC pool was found in Sesuvium leaves (figure 4.56). Sesuvium 

stems contained a significantly lower proportion of Caa to OC, in the comparison with the 

leaves (p < 0.001). On the contrary, the contribution of Naa to TN in plant materials was 

significantly different between the plant materials (p < 0.001). It was highest in 

Lumnitzera in both sampling seasons (figure 4.57 and 4.58). In the rainy season, the 

lowest contribution of Naa to the TN was found in Avicennia leaves (figure 4.58). In 

contrast, the difference in Naa contribution to the TN between the leaves of Avicennia and 

Sesuvium, as well as the difference between the Sesuvium stem and leaves, were 

negligible in the dry season (figure 4.57). 
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Figure 4.52: Composition pattern of amino acids in plant materials in (a): dry season and 

(b): rainy season.    Sesuvium stems,    Sesuvium leaves,     Lumnitzera 

leaves and      Avicennia leaves, respectively. 
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Figure 4.53: Mean comparison of THAA concentration (mg.g-1 dry weight) in plant 

materials collected in the dry season.  

 

 

Figure 4.54: Mean comparison of THAA concentration (mg.g-1 dry weight) in plant 

materials collected in the rainy season.  
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Figure 4.55: Mean contribution of Caa to OC pool (%) in plant materials collected in the 

dry season. 

 

 

Figure 4.56: Mean contribution of Caa to OC pool (%) in plant materials collected in the 

rainy season. 
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Figure 4.57: Mean contribution of Naa to TN pool (%) in plant materials collected in the 

dry season. 

 

 

Figure 4.58: Mean contribution of Naa to TN pool (%) in plant materials collected in the 

rainy season. 

  

Avi leaf Lum leaf Ses leaf Ses stem

Means and 95.0 Percent LSD Intervals

31

41

51

61

71

M
e

a
n

Avi leaf Lum leaf Ses leaf Ses stem

Means and 95.0 Percent LSD Intervals

30

40

50

60

70

M
e

a
n



105 
 

 
 

5 DISCUSSION 

5.1 Sediment nutritional state along the ecotone 

Due to the effects of monsoon, the study area is subject to complicated erosion and 

deposition processes (Le et al. 2012) which were partly revealed in the down-core 

distribution of the grain size in this study. The site GH05 is a deteriorated wall of the salt-

pan. Therefore, it probably prevented the interior area from the influences of sea water 

and resulted in the accumulation of the medium sands at this site in 5-10 cm (figure 4.1), 

which might refer to strong erosion in the past. The high energy of waves and tidal action 

during that period probably led to the higher percentage of fine sand at GH03 compared 

to the other sites behind the wall. In the recent time, the erosion probably has been 

reduced as the medium sand seemed to be blocked at GH08 in the surface layer. A study 

on geology and sediment structure in the Lower Mekong Delta basin claimed that the 

deposition in Ganh Hao was interrupted. At present, the study area is deposited with the 

rate is of ca. 2.07 cm. y-1 (Le et al. 2012).  

 

 

 

Figure 5.1: Carbonate distribution in the sediments.        dry,       rainy season. 
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The distribution of grain sizes and tidal inundation are the factors which control 

the characteristics of the sediments. The low humidity at GH08 might result from the 

high percentage of coarse grains (figure 4.1), in spite of the high inundation level and 

frequency at this sand flat. GH01, GH02 and GH04 were the salt-pan and in the sampling 

year, they were less affected by the tidal water. Consequently, when the values of 

humidity recorded at these sites were eliminated, a significant correlation between the 

sediment humidity and percentage of silt–clay fraction was found (p < 0.01, r = 0.57).  

The topographical slope probably prevented the trespassing of sea water on the 

sites GH01, GH02 and GH04 from the shallow creek (GH03) (figure 2.2). The relative 

isolation from tidal water resulted in the salt accumulation in the sediments of these three 

sites during the dry season. Saline water which infiltrated into the sediments during the 

periods of salt production moved up through capillarity and salts accumulated in the 

surface sediments (Chhabra 1996, Fujimaki et al. 2006). The low density of plants can 

promote the evaporation (Smith 1987, Passioura et al. 1992) and result in the extremely 

high sediment salinity of tropical estuaries and mangrove-salt flats ecotones (Wolanski 

1986, Hollins and Ridd 1997). Accordingly, the highest salinity values were recorded at 

GH01 and GH04. In the surface sediment at GH02, the salinity was lower than GH01 and 

GH04 though this site was also a part of the salt-pan (Vu pers.comm.). This finding can 

be attributed to the cover of Avicennia lanata at GH02 (figure 2.2). In the dry season, the 

salinity of the surface layer at GH01 and GH04 was 69.5 ‰ and 60.7 ‰, respectively, 

while it was only 24.7 ‰ in the same layer at GH02.  

In the rainy season, the down-core decreases in salinity were recorded at all 

sampling sites, indicating that the salt-washing had taken place in the upper layers of the 

whole study area. The intrusion of rainfall water towards the deep layers was limited 

because of the high percentage of the fine grains at GH01 and GH04 (figure 4.1). 

Consequently, the difference in salinity between the dry and rainy season at these sites 

was much more obvious in 0-5 cm (figure 4.3). Due to the influence of tidal water, a 

significant negative correlation between the sediment humidity and salinity was recorded 
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from the sites GH01, GH02 and GH04 only (p < 0.05, r = -0.70). The seasonal difference 

in salinity at the layers beneath 5 cm was negligible.  

The elevation at GH05 is the cause of bivalve shells accumulation at this site, 

which in turn resulted in the high pH in the surface sediment (figure 4.4). The distribution 

of carbonate along the transect (figure 5.1) shows that it was transported to the interior 

sector from GH08 by tidal waters and blocked at GH05. Carbonate trace (0.36 mg.g-1) in 

the surface sediment at GH03 is a proof of its transportation to this site. However, tidal 

water could not reach GH01, GH02 and GH04 in the dry season. In the rainy season, 

carbonate data shows that tidal water could reach GH02 and GH04 only. The carbonate 

content, therefore, affected the sediment pH at GH03, GH05, GH06, GH07 and GH08 (p 

< 0.001, r = 0.71).  

Within 0-10 cm, the pH values at GH04 and GH05 were almost identical and close 

to the values recorded at GH06 (figure 4.4). This can be attributed to the influence of sea 

water on the sediment at GH04 in the past. During the period of strong erosion, sea water 

probably intruded into GH04. Nevertheless, the low percentage of coarse grains and the 

absence of carbonate at GH04 (figure 5.1) did not support this argument. Tidal water 

probably reached GH04 through rising from GH03 rather than crossing GH05. The lower 

energy of tidal water in the creek might result in the carbonate trace in GH03 (figure 5.1).  

In the upper layers (0-15 cm), the pH values were quite stable in the whole study 

area in the rainy season. The variation trend along the transect was not as evident as in 

the dry season, except the increase in pH from GH06 to GH08 (figure 4.4). The buffering 

influence of seawater compensated the rainfall-driven changes in pH and resulted in the 

stability of pH in the rainy season. The remarkable difference in pH values between the 

dry and rainy season was found in the surface sediment at GH01. The pH value in the 

rainy season was 1.2 times higher than the value recorded in the dry season. GH01, GH02 

and GH04 were used for salt production. Therefore, these sediments were compressed 

and smoothened to avoid the infiltration of saline water. Thus, these sediments were 

reduced and resulted in the high concentration of H2S, which in turn caused the low pH 
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(Pomeroy and Wiegert 1981, Bradley and Morris 1990). Nevertheless, the pH values at 

GH02 and GH04 in the dry season were not significantly different from GH03 and 

GH06, which were inundated by the tidal water more frequently. The human activities in 

the soil preparation for Lumnitzera plantation at GH04 and Avicennia plantation at GH02 

probably reduced the H2S concentration and favored the oxygenation in these sediments. 

Consequently, the pH values at these sites increased.  

At GH01, there was the natural invasion of Sesuvium only. The low coverage at 

this site promoted the evaporation from the sediment (Smith 1987, Passioura et al. 1992) 

and let the sediments be drier. The low humidity at GH01 in the dry season (23.4 %) 

might relate to the low pH value (6.3). Furthermore, high salinity is also a reason of the 

low pH. Kissel et al. (2009) claimed that the measured sediment pH decreased with the 

increase in salt concentration. Camberato and Joern (2012) found that soil pH increased 

when the humidity increased. The results in Ganh Hao show a significant correlation 

between the sediment pH and humidity when those values from the sites with high 

carbonate contents (GH05 and GH08) were eliminated (p < 0.05, r = 0.47).  

Due to the organic adhesive on the large contact surface of the fine grains (clay 

and fine silt), they can easily aggregate to form the blocks. Thus, the cracks were created 

in the sediments under the dry condition. These cracks, in turn, allowed air intrusion into 

the sediments and resulted in the positive Eh values even at the deep layers (30-35 cm) 

(figure 4.5). The cracks on surface sediments resulted in the higher Eh values at the sites 

which were less affected by the tidal water compared to the sites dominated by the 

medium sand (figure 4.5). 

The aerobic condition of the sediments promoted the turnover rate of OM and 

resulted in the higher pH values in comparison with other saltpans and salt-marshes. The 

average pH values at each depth interval in Ganh Hao were ca. 7 and reached ca. 7.3 in 

the surface sediments (table 4.1). The pH of a saltpan recorded by Kamat and Kerkar 

(2011) in Goa was 6.5 and 7.1 in the summer. The range of pH variation in a salt-marsh 

in Delaware was from 5.5 and 7 (Luther et al. 1992). In an abandoned salt-pan in Can 
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Gio, which was covered by Sesuvium portulacastrum and planted Ceriops, the sediment 

pH values were less than 6.1 (Tran 2007). The difference in pH between Ganh Hao and 

Can Gio probably resulted from the nature of the sediments. Can Gio develops on an acid 

sulfate substrate which contains a high level of aluminous materials (Thuyen pers. 

comm.).  

The redox-potential controls microbial activities which decompose OM (Stumm 

1978). Consequently, the sedimentary nutritional state is significantly affected by Eh. The 

NH4
+ content in sediment is influenced by OM degradation, excretion of benthic 

macrofauna, nitrification and microbial uptake (Fenchel and Blackburn 1979). In the 

surface sediments, the high NH4
+ contents were recorded at GH01, GH02 and GH07 in 

the dry season (figure 4.8). GH01 and GH02 were occupied by Sesuvium portulacastrum, 

which was proved to be able to ameliorate the N level in sediment (Tran 2007). This 

ability was attributed to the fixation of atmospheric N mediated by arbuscular mycorrhiza 

(Schmitt 2006). The N fixation probably resulted in the high content of NH4
+ at these two 

sites. Furthermore, the light acidic pH in the sediments at GH01 and GH02 might drive to 

the accumulation of NH4
+ while the high pH at GH05 promoted the NH4

+ oxidization 

(Khalil et al. 2005) and led to its low content. Within 5-10 cm, the NH4
+ contents 

decreased from GH01 to GH04 corresponded with the increase in pH. The reverse 

correlation between the NH4
+ content and pH was reported by Kusum and Aranuchalam 

(2001), Aciego-Pietri and Brookes (2008).  

Due to the predominance of clay and fine silt in the sediments at GH06 and GH07, 

along with the higher inundation frequency and level, these sediments were more reduced 

(figure 4.5). Therefore, the OM degradation was limited at these sites. Moreover, the pH 

value at GH07 was ca. 7.5. Thus, the NH4
+ content at GH07 was expected to be lower 

than the interior sites which were more aerated. Nevertheless, the highest NH4
+ contents 

in the study area were recorded at GH07 in both seasons (figure 4.8). The mud flat is 

subject to an intermittent drying and wetting due to the tidal inundation. The sediment 

cores were taken in the dry period when the mud flat was exposed. The N mineralization 
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in this period was probably stimulated and hence, the mobility of N increased (Venterink 

et al. 2002). The increase in N mineralization when wet soils are drained and aerated was 

reported by Birch 1960, Bridgham et al. 1998, Cabrera 1993, Updegraft et al. 1995). The 

high NH4
+ content at GH07 could be a factor resulting in the natural regeneration of 

Avicennia lanata at this site. NH4
+ is an important source of N for plant growth and 

regeneration (Salsac et al. 1987). 

The NH4
+ contents in the rainy season were higher than in the dry season at most 

of the sampling sites, with an exception seen at GH01 (figure 4.8). Within 0-10 cm, the 

NH4
+ content at GH01 in the dry season was 1.5 times higher than in the rainy season. 

The difference in pH between the dry and rainy season at GH01 was remarkable (figure 

4.4) (20% in 0-5 cm, 8 and 10% in 5-10 cm and 10-15 cm, respectively). The high pH in 

the rainy season probably resulted to the low NH4
+ contents as it was oxidized (Khalil et 

al. 2005). The higher NH4
+ contents at the other sites might relate to the sediment 

bacteria. Nguyen (2011) found Vibrio aesturianus at most of the sampling sites in the 

rainy season, except GH01 and GH02. The ability of this bacterium in N fixation was 

claimed by Holguin et al. 2001. V. aesturianus is common in aquatic environments and 

coastal waters (Thompson et al. 2004). The wider inundated area in the rainy season (Vu 

pers. comm.) brought the study area to a milder condition, i.e. higher humidity and lower 

salinity. Thus, V. aesturianus was more abundant in the rainy season (Nguyen 2011). 

Their ability in N fixation could have led to the higher NH4
+ content in the rainy season 

compared to the dry season.  
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Figure 5.2: The correlation between N and NH4
+ in the dry and rainy season, p < 0.01, r 

= 0.54 in the dry season and p < 0.001, r = 0.64 in the rainy season. 

 

 

 

 

 

 

 

 

 

Figure 5.3: The correlation between OC and NH4
+ in the dry and rainy season, p < 

0.0001, r = 0.70 in the dry season and p < 0.0001, r = 0.71 in the rainy 

season. 
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In addition to N fixation, NH4
+ can be also produced by OM decomposition. In the 

whole study area, the OC and N content were higher in the rainy season than in the dry 

season (figure 4.11), except GH07 and GH08. These exceptions corresponded with the 

higher NH4
+ contents. The ammonification was probably promoted by the supplement of 

OM. This finding was supported by the significant correlation between OC, N and NH4
+ 

content in both seasons (figure 5.2 and 5.3). Burger and Jackson (2003) claimed that OM 

inputs gradually liberate NH4
+. Schnitzer and Khan (1978) found that NH4

+ may 

accumulate in soils with low water contents due to the inhibited nitrification. However, in 

Ganh Hao, the NH4
+ contents increased with the increase of the sediment humidity (p < 

0.001, r = 0.62 and 0.70 in the dry and rainy season, respectively). The correlations 

suggest that NH4
+ content in the study area was probably strongly influenced by sediment 

bacteria, whose abundance is controlled mostly by sediment humidity. 

The absence of vegetation at GH08, along with the abundance of sand fraction in 

the sediment, is likely the reason for the low OC and N content at this site in comparison 

with the other sites (figure 4.11). Nevertheless, the drastic increase in OC and N in 30-35 

cm at this site in the dry season might refer to an accumulation of OM in this depth, 

which was probably linked to the reduced condition of the sediment (figure 4.5).  The 

OM deficiency and the predominance of sand are the reasons for the low NH4
+ content at 

GH08 within 0-15 cm. In the depth of 30-35 cm, the NH4
+ content at GH08 was higher 

than 7.5 ug.g-1 corresponding to the negative Eh value in the dry season. In the anaerobic 

environments, NO3
- is reduced to form NH4

+. Therefore, the level of NH4
+ increases in 

the anoxic sediments (Buresh and Patrick 1978).  

In the depth of 30-35 cm in the whole study area, the NH4
+ content tended to 

increase towards the inundated sites in both seasons. The inverse relationship between 

grain size and OM content was recorded by Hargrave (1972), Dale (1974), de Flaun and 

Mayer (1983), Meyer-Reil (1986), Mayer (1994). The low content of NH4
+ at the sandy 

sediments was claimed by Dorota and Halina (2001).  
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The total content of NO3
- and NO2

- in Ganh Hao varied between 0.56 and 5.04 

ug.g-1. The values from the abandoned salt-pan (GH01 and GH02) were lower compared 

to the study of George and Antoine (1982). This finding probably resulted from the rapid 

denitrification which caused the N loss. The denitrification tended to be faster towards 

the sea in the dry and rainy season (figure 4.7). In agreement with George and Antoine 

(1982), this study showed that NO3
- and NO2

- levels were higher at the vegetated sites 

(GH01 and GH04).  

In accordance with Garcia (1974), the NO3
- concentration increased with the 

increasing of the soil pH. However, the sediment pH values at the site GH05, GH07 and 

GH08 were higher than 7.5 in the dry season, corresponding with the low concentration 

of NO3
- and NO2

-. This finding suggested that the denitrification was supported by the 

alkaline pH. These results are in the agreement with George and Antoine (1982). 

Nevertheless, this agreement was restricted to the flooded sector. In the dry sector 

(GH01, GH02 and GH04), the concentration of NO3
- and NO2

- at these sites were higher 

due to the low pH. Similarly, the sediment pH at GH04 and GH05 beneath 5 cm was not 

remarkably different in both seasons. Meanwhile, the concentration of NO3
- and NO2

- at 

GH04 was considerably higher than GH05. There was a significant relationship between 

the sediment salinity and the concentration of NO3
- plus NO2

- throughout the sampling 

year (p < 0.05; r = 0.35 in the dry season and p < 0.001; r = 0.58 in the rainy season). The 

sediment salinity probably precluded the denitrification in the sediment (Seo et al. 2008) 

through reducing the diversity of NO2
- reductase gene in denitrifying bacteria (Yoshie et 

al. 2004). 

The content of AP in Ganh Hao varied between 0.0075 and 0.021 mg.g-1 dry 

weight of the sediments. This range is in agreement with Oxmann et al. (2010) and Tran 

(2007) concerning the AP contents in mangroves in Can Gio. However, the AP content in 

Ganh Hao was lower compared to the results of Mendoza et al. (2011). The AP content in 

the dry season exhibited a highly significant correlation with the sediment Eh (p < 0.05, r 

= -0.41). This significant inverse correlation indicated the important contribution of 
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phosphate reduction from P-Fe/Al compounds to the quantity of AP in Ganh Hao. 

Liberation of AP in the anoxic sediments was reported by Shapiro (1958), Silva and 

Sampaio (1998), Mendoza (2007). 

Within 0-15 cm, the AP content did not vary remarkably along the transect though 

their peaks were seen at GH01, GH04 and GH07 (figure 4.9). The difference in AP 

content between the dry and rainy season at each sampling site was not significant. An 

exception was recorded in 0-10 cm at GH08. The AP content in the dry season was 3 

times higher than in the rainy season in 0-5 cm. The difference in 5-10 cm was 2 times. 

Due to the totally absence of vegetation, the OM content at GH08 was the lowest value in 

the study area. Moreover, the predominance of sand and high level of carbonate at this 

site may restrict the P mineralization as the phosphate solubilizer population in these 

sediments is poor (de Souza et al. 2000). In addition, the C:P ratio at GH08 was very low 

(ca. 5). This result shows that GH08 was subject to a serious deficiency of OC and P. 

Thus, AP in the sediment could be absorbed by the sediment microorganisms (Espinoza 

et al. 1914). The drastic decrease of OM within 0-10 cm at GH08 in the rainy season 

compared to the dry season probably limited the microbial-mediated degradation of OM 

and mineralization of P in the rainy season. The absence of vegetation could also explain 

the lowest AP content at GH08. Plants can excrete organic acids to solubilize phosphate 

and hence, improve their nutrient acquisition in carbonate sediments (Long et al. 2008). 

In addition, organic compounds in plant root exudates can promote the intrusion and 

development of mycorrhizal fungi in roots which are essential for phosphate uptake 

(Dakora and Phillips 2002). 

In the aerobic zone, AP content can be influenced by the sediment bacteria. 

Phosphate solubilization can be conducted by various sediment bacteria (Rodriguez and 

Fraga 1999, Vazquez et al. 2000, Bashan and Holguin 2002, Bashan and Bashan 2005, 

Chen et al. 2006, Ivanova et al. 2006, Khan et al. 2009). Low-molecular-weight organic 

acids liberated by phosphate solubilizing bacteria (Goldstein 1995, Kim et al. 1997) 

chelate the cations that bind to P and convert it into soluble forms (Kpomblekeu and 
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Tabatabai 1994). The peaks of AP were seen at GH01, GH04 and GH07 in both seasons 

(figure 4.9). Nguyen (2011) found Enterobacter within 0-15 cm at GH05 and GH07 in 

both seasons in the same sampling year. This bacteria was demonstrated to be able to 

solubilize mineral phosphate (Kim et al. 1998, Vazquez et al. 2000, Ahemad and Khan 

2010, Shahid et al. 2012). However, the high content of carbonate at GH05 probably 

limited their activity on phosphate solubilization. The effect of carbonate on phosphate 

solubilization in this circumstance is separated from the sediment pH, as the pH values at 

GH05 and GH07 were similar to each other (figure 4.4). The adsorption of P on the 

carbonate grains (De Kanel and Morse 1978, McGlathery et al. 1994) probably protected 

them from the activity of the phosphate solubilizer. Nguyen (2011) found Vibrio 

proteolyticus at GH01 and GH04 at the same sampling time. Moreover, the peaks of AP 

content at GH01, GH04 and GH07 in the rainy season corresponded with the abundance 

of Bacillus (Nguyen 2011). V. proteolyticus and Bacillus spp. can solubilize the 

phosphate minerals (Vazquez et al. 2000, Bashan and Holguin 2002). 

The air diffusion likely resulted in the non-significant difference in AP contents 

among depths in the dry season.  In 30-35 cm, the peaks of AP content were seen at 

GH03, GH06 and GH07 (figure 4.9) corresponded with the negative value of Eh. This 

finding agreed with Fekete et al. (1976) that the AP level was higher in the anoxic 

sediments. The fluctuations of AP content along the transect were almost identical within 

0-15 cm in the dry and rainy season (figure 4.9). However, in the rainy season, at GH07, 

there was a decrease of ca. 39% in the AP content as compared to the dry season. This 

finding probably resulted from the strong regeneration and growth of A. lanata at this site 

in the rainy season. Oxmann et al. (2010) recognized that the AP content in the deep 

layers (30-40 cm) significantly affected the P content in leaves, indicating a preferential P 

uptake from the deep sediment by vegetation. 

In agreement with Chen & Twilley (1999), this study found significant 

correlations between NH4
+ and AP concentration in the dry and rainy season within 0-15 

cm (figure 5.4). The requisition of ammonium for phosphate solubilization was recorded 
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by Asea et al. (1988). As mentioned above, the rapid denitrification likely resulted in the 

loss of N from the system. Consequently, the phosphate solubilization in Ganh Hao 

propably depended on the ammonification mediated by microbes. This finding was 

advocated by the low N:P ratios in the sediment. The deficiency of N in hypersaline areas 

was claimed by Whitney et al. (1981) and Seneca and Broome (1992). Consequently, N 

may become a serious limiting factor for bacteria rather than P. NH4
+ is a major source of 

N for marine sediment bacteria (Hoch et al. 1992, Middelburg and Nieuwenhuize 2000). 

Hence, NH4
+ can also limit the activities of the sediment bacteria, for instance, the 

microbial mediated phosphate solubilization. Although correlation does not necessarily 

imply causality, the correlations might reflect a complex interaction between the 

sediment conditions, as well as their qualities, and activities of sediment microbes in the 

N mineralization and P mobilization.  

 

Figure 5.4: Correlation between NH4
+ and AP concentration in (a): the dry season and 

(b): rainy season (p < 0.01). The correlation coefficient in the dry and rainy 

season were 0.5542 and 0.6307, respectively.  
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against the OP was in the agreement with Fabre et al. (1999), but contrary to Hesse 

(1962), Boto (1988) and Alongi et al. (1992). The low OP:TP ratio was claimed by Silva 

and Mozeto (1997). The variation range of TP in Ganh Hao was wider than in a 

mangrove in Pichavaram, India. The TP content in Ganh Hao varied between 370 and ca. 

970 μg.g-1 while this range was from 459 to 736 μg.g-1 in Pichavaram mangrove (Prasad 

and Ramanathan 2010). 

The IP content within 0-15 cm did not strongly fluctuated along the transect, 

except the peaks seen at GH05 and GH08. Probably due to the high carbonate level at 

these sites, more P was immobilized in the Ca-P complex. Fabre et al. (1999) claimed 

that IP content was high in dead mangrove at the hinterland and decreased in the pioneer 

mangrove at the mud flat. The decrease was attributed to desorption of P from sediment 

grains caused by the resuspension by tides. This can explain the lowest IP content at 

GH07 (figure 4.13). The high OP level at the vegetated sites agreed with Fabre et al. 

(1999), probably because of the high OM content in the sediments. 

 The IP:OP ratio tended to increase from GH01 towards GH05 in the dry season 

(figure 5.6) due to a higher concentration of IP. The IP:OP ratio was significantly 

correlated to the sediment pH (p < 0.01, r = 0.68 in the dry season and p < 0.05, r = 0.40 

in the rainy season). The influence of pH on the mineralization of P was demonstrated by 

Thompson et al. (1954), Mandal and Islam (1978) and Harrison (1982) and it was 

attributed to the recalcitrant character of OP when the soil pH decreased (Enwezor 1967). 

In addition, the P mineralization in Ganh Hao was probably also controlled by the 

carbonate contents in the sediment, as there were significant correlations between the 

IP:OP ratio and the carbonate concentration (p < 0.01, r = 0.50).  

The high values of IP:OP ratio at GH05 and GH08 in the surface sediments 

probably were resulted from the abundance of Ca-P complex. However, in the surface 

sediments, despite the similar carbonate concentration, the value of IP:OP ratio at GH07 

was remarkably lower compared to GH06 (figure 5.6), indicating a lower mineralization 

of P at this site. The relationship between OC and IP concentration in the dry season 
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(figure 5.5) probably reflected the influence of sediment microorganisms on P 

mineralization, as OC was utilized as a source of energy for bacteria taking place in the 

mineralization of P (McGill and Cole 1981), inducing the decrease in OC level with 

increasing concentration of IP. However, in the rainy season, the level of OC was not 

correlated to the concentration of IP, probably due to the elevated microbial biomass 

(Nguyen 2011). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Correlation between the content of OC and IP concentration in the dry season 

(p < 0.01, r = -0.46). 
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Figure 5.6: Variation of IP:OP ratio along the transect.       dry,       rainy season. 
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5.2 Chitin analysis 

5.2.1 Method evaluation 

Chitin is an important source of nitrogen in the coastal environments and 

originates from shells, diatoms, exoskeleton of zooplanktons, fecal pellets of crustaceans 

(Montgomery et al. 1990) and fungal cell wall (Mӧlleken et al. 2011, Nitschke et al. 

2011). The quantification of chitin in surface water, sediment traps and sediments have 

been conducted by many authors (Jeuniaux et al. 1982, Poulicek and Jeuniaux 1982). 

Chitin can be determined indirectly through conversion to chitosan and quantified by 

colorimetric assay (Donald and Mirocha 1977, Mӧlleken et al. 2011, Nitschke et al. 

2011). Subramanyam and Rao (1987) developed an enzymatic method to determine 

chitin in the fungal cell walls. In the samples containing mostly chitin besides minerals 

and proteins, chitin can be simply quantified through weighing as mentioned in Einbu 

(2007). Holan et al. (1980) determined chitin through the quantification of acetic acid 

liberated in the acidic or alkaline hydrolysis of chitin. 

According to the applied method for this study, the first calibration point did not 

contain any chitin flake. Consequently, its fluorescence intensity was the highest. The 

decrease of fluorescence intensity with the increasing of chitin concentration, however, 

was not linear enough for calibration. The non-linear correlation between chitin 

concentration and fluorescent units can be attributed to the uncertainty in the actual 

amount of chitin in each standard, particularly at low concentrations. Consequently, the 

transfer of chitin stock solution to the vials as working standard solutions may be not 

correct as calculation although the stock solution was shaken well before pipetting. The 

fluorescent units of the calibration points which share a concentration gave the different 

values (table 4.4), confirms the error in the transferred chitin quantity. In addition, the 

height of vials used for this assay can be also a reason for the confusion in the fluorescent 

intensity of the calibration points as explained in the following. The sizes of chitin flake 

(Sigma, USA) are not homogenous. Shaking in narrow and high vials likely resulted in 



121 
 

 
 

the attachment of chitin flakes on the wall due to the high initial velocity of shaking. The 

loss of chitin from the suspension caused errors on the chitin concentration. 

The measured fluorescence units of all sediments were higher than the first 

calibration point. This means there was another source of fluorescence in the sediments. 

Furthermore, the variability of the calibration values, especially the wide variation range 

of the blank after sixteen hours of incubation (table 4.4), may emphasize the influence of 

incubation time on the stability of FITC-WGA in the phosphate buffer.  

All of the kinetics samples were subject to the same incubation conditions. The 

fluorescent values of duplicates were very different from each other when measured after 

the minute 15, 30 and 60 minutes, indicating that this period was not long enough for 

FITC-WGA to reach the stable state. The table 4.5 shows that the least minor variations 

of blank fluorescent units were reached within 180 and 240 minutes. The kinetics 

experiment of the fourth calibration points also expressed the stable values of the 

fluorescent units after 180 minutes and lasted until the minute 240 (table 4.6). This can be 

a base to assume that the period of 180 to 240 minutes is the necessary time for the FITC-

WGA to bind to chitin. After 240 minutes, the increase in the fluorescence unit may 

indicate liberation of FITC-WGA from the complex chitin~WGA-FITC. Nevertheless, 

the fluorescence intensity of FITC-WGA released from that complex is obscured. This 

kinetics experiment again suggests that 240 minute can be the appropriate time for 

incubation of chitin in the phosphate buffer with 2 mL FITC-labeled WGA. 

The stable fluorescent units observed after 180 and 240 minutes indicated 

sufficient incubation, even for the sediment samples. Within this time, the stability was 

not only shown for the binding between FITC-WGA and chitin, but also for the 

fluorescence of the sediment itself. It is therefore apparent that four hours is the best 

choice for the incubation of chitin/ sediment in 5 mL phosphate buffer with 2 mL FITC-

labeled WGA.  

This assay (10 mg dry sediment incubated in 5 mL phosphate buffer with 2 mL 

FITC-labeled WGA during 4 hours at 2062 rpm at room temperature) revealed chitin 
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contents in the sediments of 10.2 - 77.2 mg.g-1. These chitin contents exceeded the OC 

and TN contents in the sediments and were much higher than those values derived from 

Gluam. Nevertheless, the contents of chitin~FITC-WGA significantly correlated with the 

amount of diatom frustules (Nguyen and Pham unpublished) (figure 5.7). This finding 

suggested that in spite of the overestimation, chitin quantified through the binding with 

FITC-labeled WGA could reflect the ecological relationship, as diatoms are also a source 

of chitin in the sediments (Durkin et al. 2009, Gooday 1990, Smucker and Dawson 

1986). 

 

Figure 5.7: Correlation between the diatom frustules amount and chitin~FITC-WGA (p = 

0.0001 and r = 0.86). 
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5.2.2 Chitin as a source of the sedimentary OM 

Due to the overestimation of chitin quantified through the binding between Gluam 

and FITC-WGA, the chitin~Gluam contents were used for the calculation of the 

Cchitin:OC and Nchitin:TN ratio in the sediments (figure 4.50 and 4.51). Chitin~gluam 

contributed less than 2% of the total OC and less than 3% of the TN in the study area in 

the sampling year. Probably due to the entirely absence of the vegetation at the sand flat 

(GH08), the contribution of chitin~gluam to the pool of OC and TN at this site was 

significantly higher compared to the other sites, while there was no considerable 

difference in this ratio from GH01 to GH07 (figure 4.50 and 4.51). 

As discussed above, the study area can be divided into the interior and exterior 

sector. Due to the low inundation frequency, the occurrence of planktons in the interior 

sector, namely GH01, GH02 and GH04, should be rare. Therefore, the contribution of 

marine planktons to chitin content in the interior sediment was negligible. However, the 

sedimentary chitin can derive from the sheath and fecal pellets of macrobenthos or 

diatom frustules (Montgomery et al. 1990). The concentration of chitin~WGA in the 

interior sediments decreased continuously from GH01 to GH04, corresponding with the 

decrease of burrow openings counted on the surface sediment, with an exception at GH03 

where the number of burrow opening was higher than the other sites in the interior sector. 

(table 5.1). Thus, the concentration of chitin~WGA in the rarely inundated sites (GH01, 

GH02 and GH04) were likely derived from the fecal pellets of macrobenthos in the dry 

season. The high concentration of chitin at 30-35 cm at these sites probably resulted from 

the crustacean sheath at the bottom of the burrows. 

The coincidence between the high number of burrow opening at GH03 (table 5.1) 

and the highest chitin~FITC concentration in the whole study area found in the depth of 

30-35 cm (figure 4.19) showed that crustacean sheath was probably the major source of 

chitin in the deeper sediments. The concentration of chitin~FITC and chitin~Gluam in the 

surface sediments at GH03 were lower than GH01 and GH02 in the dry season (figure 

5.11). These curves suggest that the sheath, as well as the fecal pellets of macrobenthos, 
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did not contribute remarkably to the surficial sedimentary chitin at GH03. The higher 

inundation at GH03 probably erased, or faded, the remnants of fecal pellets from 

macrobenthos.  

In accordance with Nguyen (unpublished), the peaks of diatoms in the surface 

sediments were found at GH03 throughout the sampling year (figure 5.9). In addition, 

significant correlations between the concentration of chitin~Gluam, chitin~WGA and 

diatom frustules suggest that diatoms were a considerable source of chitin in this shallow 

creek (GH03). Nevertheless, as diatom chitin is fully acetylated, the calculation of chitin 

through the Gluam content may underestimate the total quantity of chitin in the sediment 

(McLachlan et al. 1965). Consequently, the peaks of chitin~Gluam contents did not 

coincide with the peaks of diatom frustules (figure 5.11). 

 

 

 

 

 

 

 

 

 

Figure 5.8: Correlation between the diatom frustules amount and chitin~Gluam in the 

rainy season (p = 0.0006 and r = 0.76). 
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Figure 5.9: Variation of diatom frustules along the transect in the rainy season.    0-5 cm, 

and       05-10 cm. Data are kindly provided by Nguyen Thi Gia Hang. 
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concentration of chitin~FITC was found at GH06 while the peak of chitin~Gluam was 

acquired at GH07 (figure 5.11). The peak of chitin~Gluam at GH07 coincided with the 

highest value of Gluam:Galam ratio (figure 5.10). This ratio is an indicator of the chitin-

rich OM derived from zooplankton (Müller et al. 1986, Gupta and Kawahata 2000). In 

both seasons, zooplankton was probably the major contributor to the sedimentary chitin 

at GH07 while the peaks of chitin~WGA at GH06 coincided with the highest quantity of 

diatom frustules. These findings imply an important contribution of marine plankton and 

diatoms to the sedimentary chitin at the more-tidal-affected sampling sites.  
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Figure 5.10: Variation of Gluam:Galam ratio in the surface sediments along the transect.   

dry,      rainy season. 

 

Table 5.1: Crab burrow opening counted in the sediment surface in the dry season. Data 

was kindly provided by Dr. Diele. 
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Figure 5.11: Variation of OC, TN, chitin~WGA and chitin~gluam in the surface 

sediments.        dry,       rainy season.  
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The chitinous OM derived from planktons also influenced the interior sector in the 

rainy season. Sea water could intrude the interior sector through the man-made shallow 

creek (GH03). Due to the effects of monsoon in the rainy season, a higher volume of 

water and particulates might enter the interior sector and the inundated area in this sector 

might be wider. The Gluam:Galam ratio at GH03 was higher in the rainy season 

compared to the dry season (figure 5.10) revealing the more predominant contribution of 

marine zooplankton to chitin pool at GH03 and GH02 in the rainy season. Furthermore, 

the abundance of Vibrio at GH02 and GH03 in the rainy season (Pham and Nguyen 

unpublished) probably resulted in the lower chitin in the sediment as they can effectively 

break down this biopolymer (Cottrell and Kirchman 2000, Riemann and Azam 2002, 

Suginta et al. 2004). 

Chitin~gluam and chitin~FITC significantly increased with the increase in the 

proportion of the grains smaller than 63 μm (figure 5.12).  The large contact area of these 

fine grains likely favored the attachment of diatoms on their surface, resulting in the high 

content of chitin in these sediments. This result may indicate that the dominant source of 

chitin in the interior sediments where the silt clay fraction dominated in the sediment 

structure was diatoms besides the fecal pellets and sheath of the macrobenthos. 

Moreover, figure 5.10 indicates a more planktonic OM at GH01, GH02 and GH04.  The 

marine zooplanktons were probably introduced to these sites by the sea water when they 

were used for salt production. The similarity between both chitins and the total OC and 

TN in the exterior sector suggested that the contribution of vegetation to the pool of OC 

and TN in this area is negligible. This is also supported by the finding that the C:N ratio 

in the exterior sector was lower than the interior sector. 
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Figure 5.12: Correlation between the proportion of grains smaller than 63 μm and (a): 

chitin~FITC (p = 0.0001, r = 0.87); (b): chitin~gluam (p = 0.0001, r = 

0.87). 

 

Contrary to the expectance, the average values of chitin~Gluam and chitin~FITC 

in the exterior sector were lower as compared to the interior sector while the abundance 

of planktons in the exterior sector should be higher, due to the higher inundation 

frequency. The highest quantities of chitins were found at GH01 and GH02, where the 

burrow opening density was lower than the other sites, yet the fine grains were more 

dominant in the sediments. The difference in chitins between the interior and exterior 

sector may therefore be related to the grain size distribution in the sediments. The 

predominance of the fine grains (silt-clay fraction) associated with the harsher condition 

in the interior sector (eg. dry and saline) probably promotes the preservation of chitin. On 

the contrary, the high proportion of the coarse grains, along with the better sediment 

conditions, e.g. higher humidity and lower salinity, caused by the frequent tidal 

inundation probably accelerated the proliferation of the bacteria which in turn carry out 

the chitin degradation. Many bacteria are shown to degrade chitin in marine 
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environments (Soto-Gil 1988, Bassler et al. 1991, Montgomery and Kirchman 1993, 

Montgomery and Kirchmann 1994, Svitil et al. 1997, Park et al. 2000, Meibom et al. 

2005, Pruzzo et al. 2008, Suresh 2012). These bacteria originate from sea water. 

Consequently, their demand of humidity is high. Their abundance in the exterior 

sediments probably accelerated the chitin degradation. 

5.3 Characterization and composition pattern of amino acids 

The constituent and composition pattern of amino acids in the study area were 

consistent through the sampling year, regardless of the dominant plant species and 

inundation frequency. Asp, Gly, Glu and Ala were the most abundant amino acids 

whereas Tau and Met were found only as traces (figure 4.29 and 4.30). Similar results 

were claimed by many authors (Stevenson 1956, Gupta and Reuszer 1967, Sowden 1968, 

Christensen and Bech-Andersen 1989, Campbell et al. 1991, Senwo and Tabatabai 1998, 

Friedel and Scheller 2002). Land use was thought not to affect the proportion of 

individual amino acids to THAAs (Huntjens 1972, Kowalenko 1978). However, these 

authors compared the soil of forests, grasslands, and agricultures. The stability in amino 

acids composition through depths in marine sediments was recorded by Henrichs (1987). 

Our results agreed with the available studies that soil/sediment conditions do not 

significantly influence the constituent and composition pattern of the individual amino 

acids. 

The down-core variation of the THAAs was different from site to site and also 

different between the dry and rainy season (figure 4.20). In the dry season, the content of 

THAAs decreased with depth at GH01, GH02 and GH06, probably due to the 

consumption by microorganisms as a source of OC (Burdige and Martens 1988). The 

downward decrease of THAA concentration in sediments was recorded by many authors 

(Rittenberg et al. 1963, Degens et al. 1964, Brown et al. 1972, Boski et al. 1998, 

Andersson 2000, Grutters et al. 2002, Schmitt 2006). On the contrary, the down-core 

increase in THAA content was found at GH04 and GH05 probably due to the artificial 

disturbance in the past (soil digging at GH04 for plantation and building the saltpan wall 
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at GH05). However, the disturbance from building the saltpan wall was seen down-core 

to 10 cm which is the usual height of the saltpan walls. The contents of THAA in the 

surface sediments were similar at all sites with an exception at the saltpan wall (GH05), 

which was comparable to the THAA contents in 30-35 cm at the interior sites. These 

findings suggest that the so-called “surface sediment” at GH05 was actually deep 

sediments transported from other sites of the study area. Below this “surface sediment”, 

the down-core variation of THAA contents followed the general trend. The continuous 

down-core increase at GH04 probably resulted from the digging for plantation. The 

sediments were dug and built up the mounds keeping the Lumnitzera saplings straight 

(Vu pers. comm.). The high THAA contents at GH02 were probably related to the THAA 

content in the dominant plant species. The mean content of THAA in Avicennia leaves in 

the dry season was 72 mg.g-1, while it was 28 and 46 mg.g-1 in Sesuvium leaves and 

Lumnitzera leaves, respectively. The highest THAA concentration in the surface 

sediment at GH02 probably resulted from the high biomass of plants (Vu pers. comm.). 

Litter from vascular plants is a major source of amino acid in mangroves and hypersaline 

sediments (Woodroffe 1985). 

The highest concentration of THAA in the sediments was 3.12 mg.g-1. This is 

lower than the quantity of THAA recorded in Brazil by Jennerjahn and Ittekkot (1997) 

and Schmitt (2006). The THAA concentration in a mangrove located in the East of Brazil 

was 14.3 mg.g-1 (Jennerjahn and Ittekkot 1997). In the North of Brazil, the THAA 

concentration varied between 2.08 and 11.16 mg.g-1 (Schmitt 2006). The difference in 

THAA concentration between the studied mangrove and other regions were probably 

related to the content of sedimentary OC and N due to the different vegetation densities. 

The extremely low values of OC and TN contents in Ganh Hao occurred at the sand flat 

where the coarse sand predominated in the grain size distribution. In the mangrove in the 

East of Brazil, the OC and TN accounted for 4.82 % and 0.42 % of the dry weight 

sediment (Jennerjahn and Ittekkot 1997). The OC content in Indian mangroves varied 

from 17.68 to 53.57 mg.g-1 (Ravi 2005). 
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Before the plantation in 1998, the interior sector of the study area was used for salt 

production. During that period, these sediments received mostly marine OM input, e.g. 

planktons which enter the sediments via tidal water. After the mangrove plantation in 

1998, due to the sparse vegetation and the high rate of evaporation (higher than 1000 

mm.year-1), there are many cracks on the surface sediments. Consequently, the sediments 

were more aerated due to the intrusion of air or well-oxygenated water. Thus, the 

turnover rate of OM was probably higher (Twilley et al. 1992, Reghunath and Murthy 

1996, Bridgham et al. 1998, Lallier-Verges et al. 1998), resulting in the low 

accumulation of OM in this sector. 

The level of sedimentary OC and TN in the study area was lower than another 

mangrove that was also replanted in abandoned salt-pan. In a mangrove of Ceriops and 

Rhizophora replanted in an abandoned salt-pan in Can Gio, Ho Chi Minh City, the 

sedimentary OC varied from 0.80 to 5.16 % in the dry season and 0.68 to 5.41 % in the 

rainy season (Tran 2007). This is probably related to the quality of the OM input. The 

dominant species in Can Gio are Rhizphora and Ceriops. Due to the high content of 

tannin in the leaves of Rhizophoraceae species, the C:N ratio in these leaves is high. The 

C:N ratio in the Rhizophora leaf litter was ca. 60 (Pham 2007) while in Ganh Hao, the 

C:N ratio of Avicennia and Lumnitzera was 22 and 44, respectively. The C:N ratio in 

plant material is an indicator of the mineralization rate of the tissue in the sediments. The 

OM with high C:N ratio are more resistant to degradation (Miller 2000, Khalil et al. 

2005) resulting in the high content of OM in the sediments.  

According to Meyers (1994) and Prahl et al. (1994), the sedimentary C:N ratios 

higher than 20 reflects the contribution of terrestrial plants to the pool of OM. The values 

of C:N ratio in marine plankton and algae are less than 10 (Jenkinson and Ladd 1981, 

Emerson and Hedges 1988, Dehairs et al. 2000, Marchand et al. 2003). The sedimentary 

C:N ratio in Ganh Hao did not exceed 18. This value suggested that the sediments 

received OM from both marine plankton and terrestrial plants. In the rainy season, the 

increase of C:N ratio in the surface sediment at GH03 and GH05 (figure 5.13) relative to 
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the dry season probably reflected an increase in the contribution of mangrove plants to 

the pool of sedimentary OM (Guilizzoni et al. 1996). Because the sites GH03 and GH05 

were topographically lower than GH01, GH02 and GH04 (figure 2.2), these two sites 

probably received the OM washed from the higher sites by the rainfall. The down-core 

decrease of C:N ratio at the interior sites (figure 5.14) shows that prior to the mangrove 

plantation, the marine plankton entering the interior site via sea water for salt production 

was the major source of sedimentary pool of OM. 

 

Figure 5.13: Fluctuation of C:N ratio in the surface sediment.       dry,        rainy season. 

 

 

Figure 5.14: Down-core variation of sedimentary C:N ratio along the transect in the dry 

season.       0-5 cm,      5-10 cm,      10-15 cm,      30-35 cm. 
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The THAAs accounted for ca. 26% of the TN pool in the sediments in Ganh Hao. 

This is lower than the finding of Jennerjahn and Ittekkot (1997) in Brazilian mangroves. 

However, our results are in agreement with Friedel and Scheller (2002) in an arable land. 

The mean contribution of Caa to OC pool in the sediment was ca. 9 and 11% in the dry 

and rainy season, respectively. This finding agreed with the contribution of amino acids 

to the sedimentary OC pool in Bengal Bay (Unger et al. 2005). The significantly higher 

(p < 0.01) Caa:OC ratio in the rainy season, as compared to the Naa:TN ratio suggested 

that organic nitrogen was preferentially consumed in the rainy season. The C:N ratio in 

Ganh Hao was less than 18 and thus, it is advantageous to nitrogen mobilization (Boto 

1982). The slight increase of Naa:TN ratio in the rainy season probably reflected a 

preference in nitrogen mineralization as compared to OC. 

In general, the Naa:TN and Caa:OC ratio decreased slightly down-core with an 

exception at the disturbed sites (GH04 and GH05) (figure 4.22 and 4.23). The decrease of 

Caa:OC and Naa:TN ratio suggested that the amino acids were consumed within 0-15 cm. 

The consumption could be faster at some sites such as GH02 and GH04 but the 

consumption rate was probably lower in the depth of 30-35 cm. The amino acids were 

likely preserved under aerobic condition. Burdige and Martens (1988) also found the 

slightly down-core decrease in Caa:OC and Naa:TN ratio. 

The acidic amino acids are usually more abundant in the tropical soils (Friedel and 

Scheller 2002). The finding that acidic amino acids were more abundant than basic amino 

acids in Ganh Hao agreed with the finding of Ravi (2005) in two mangroves in India. The 

acidic amino acids mostly originate from the terrestrial plants (Akiyama and Johns 1972, 

Kemp and Mudrochova 1973) and, hence, their contents and composition pattern were 

higher at the site occupied by vascular plants in Ganh Hao (table 4.8). The acidic amino 

acids were probably preserved in the deeper layers of the sediments, especially in the 

rainy season (table 4.8). 

In the dry season, the content of acidic and basic amino acids tended to increase 

with depth at most of the sites, with an exception at GH04. The dwarf Lumnitzera forest 
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was replanted in 1998 and the soil was dug to build mounds to keep the saplings straight 

(Vu pers. comm.). Consequently, the sediments in this replanted forest were subject to a 

disturbance and result in the reverse tendency of the down-core variation in the quantity 

of the acidic, as well as the basic amino acids. Contrary to the acidic amino acids, the 

basic amino acids increased towards the sea. The basic amino acids are more stable in 

depositional environments (Gonzalez et al. 1983), or increase during degradation in 

sediments of continental slopes over a large time scale Steinberg et al. (1987). 

Neutral and acidic amino acids were the most dominant groups in the sediments of 

Ganh Hao (figure 4.24). Neutral amino acids contributed ca. 53% to the THAAs. This is 

the most abundant group of amino acids in Ganh Hao, similar to the available studies 

conducted in the coastal and deltaic environments (Gonzalez et al. 1983, Burdige and 

Martens 1988). There is a similar contribution of acidic amino acids to the THAA in 

mangrove sediments. Acidic amino acids accounted for 25.94 ± 0.44 mole % and 24.95 ± 

0.44 mole % of the THAA in the dry and rainy season, respectively. In a mangrove in the 

eastern of Brazil, the mole % value of acidic amino acid was 24.4 ± 1.2 (Jennerjahn and 

Ittekkot 1997). However, the more abundance of non-protein amino acid in the study area 

(3.66 ± 0.26 mole % in the dry season and 3.77 ± 0.32 mole % in the rainy season) in 

comparison with that Brazilian mangrove (2.3 ± 0.3 mole %) (Jennerjahn and Ittekkot 

1997) indicated that the diagenesis state of OM in Ganh Hao was probably higher. The 

increase of non-protein amino acids (β-Ala and γ-Aba) with the degradation of OM has 

been shown by many authors in different environments (Casagrande 1974, Schroeder 

1975, Whelan 1977, Given 1980, Lee and Cronin 1982, Hatcher et al. 1983, Henrichs and 

Farrington 1984, Cowie and Hedges 1992, Cowie and Hedges 1994, Casagrande and Keil 

et al. 2000, Xing et al. 2007).  

Although no apparent trend of variation through landscapes was seen in the neutral 

amino acids, their mean values showed that they were more abundant at the sites affected 

by the tidal water and no vegetation, including GH03, GH07 and GH08. Thr, Ser, Gly are 

the dominant amino acids in diatom cell walls and marine planktons (Siezen and Magne 
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1978). In accordance with Nguyen (unpublished), the diatom frustule number was highest 

at GH03 in the rainy season (figure 5.9). The abundance of diatom at GH03 probably 

resulted from the tidal influence and high proportion of fine grains in the sediments. Due 

to the abundance of the coarse grains at GH07 and GH08, together with the sweeping of 

tidal water, the diatoms were probably washed up while they accumulated in the creek 

(GH03), resulting in the more abundance of Thr and Ser - the major components in 

diatom cell walls and hence, the more abundance of neutral amino acids at GH03. 

However, diatoms cannot account for the abundance of the neutral amino acids at the 

mud and sand flat. Marine planktons probably were the major contributors to the relative 

abundance of the neutral amino acids at these sites, due to the richness of Thr, Gly and 

Ser in their biomass (Siezen and Magne 1978).  

Aromatic amino acids, inclusive of Phe and Tyr, were more abundant at the sites 

which were more affected by the tides, namely at GH03, GH06, GH07 and GH08. 

Similar to a study in deltaic sediment conducted by Gonzalez et al. (1983), Phe was more 

abundant than Tyr in Ganh Hao (more than 64% of the total abundance of Tyr and Phe). 

Phe was claimed to be more abundant in the marine sediments (Gonzalez et al. 1983).  

In the dry season, Met was found in the surface sediments at the dry and saline 

sites and seemed to be more abundant at the sites frequently affected by the tides. The 

total sulfur-containing amino acids were higher in the rainy season and they were the 

most abundant at the sand flat. According to Gonzalez et al. (1983), the sulfur-containing 

amino acids were absent in the aerobic marine sediments. In our hypersaline area, due to 

the high proportion of coarse sand at the sand flat, the redox-potential was positive down-

core to 15 cm. The reason for the higher mole fraction of sulfur-containing amino acids in 

the sand flat is, therefore, uncertain and cannot be explained by the present data. 

Non-protein amino acids were less abundant at the sites which were more affected 

by the tidal waters (GH06, GH07 and GH08). In general, their mole fraction tended to 

increase from the dry and saline sites towards the wet and non-vegetated sites. Salinity 

may affect the abundance of non-protein amino acid in sediments, as γ-Aba was shown to 
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accumulate under salt stress from the polyamine degradation (Xing et al. 2007). The 

abundance of β-Ala and γ-Aba at GH01, GH02, GH04 and GH05 were possibly resulted 

from the degradation of plant materials. The low mole fraction at the frequently flooded 

sites GH03, GH07 and GH08 corresponded with the absence of OM derived from plants, 

or due to the tidal export of the OM. 

In the upper sediments (within 0-15 cm), the reactivity index (RI), the Asp:β-Ala 

and Glu:γ-Aba ratio tended to increase from the dry and saline sites towards the sea 

(figure 5.15, 5.16 and 5.17). The RI is used as an indicator for the degradation state of the 

OM and calculated by the ratio of aromatic amino acids to non-protein amino acid 

(Alkhatib et al. 2012). The highest values of RI and these ratios was found in the surface 

sediment at GH02 indicating a comparatively weak degradation or a fresh input of OM. 

Avicennia was the dominant species at GH02 and this plant can remove the leaves based 

on the salt concentration in their vacuoles, independent of the senescence of the leaves. 

Thus, the OM input at GH02 was probably more frequent, particularly in the dry season. 

The sudden increase in these values at GH02 was seen only in the top sediment (0-5 cm). 

Within 5-15 cm, the RI, the Asp:β-Ala and Glu:γ-Aba ratio increased from GH01 to 

GH03 and from GH04 to GH08, indicating an OM renewal in the sites affected by the 

tides. 

Our data confirmed the finding of Alkhatib et al. (2012) that the mole fraction of 

β-Ala and γ-Aba increased significantly down-core, indicating a more degradation state 

of OM in the deeper layer of the sediments. Nevertheless, there was an exception at 

GH06, where the Asp:β-Ala and Glu:γ-Aba ratio increased down-core within 0-15 cm 

(figure 5.16a and 5.17a). This can be attributed to the biodisturbance caused by the 

dwelling organisms which can be seen in the down-core variation of OC and TN. The 

similar variation trends were found in the rainy season. However, the biodisturbance 

seemed to increase in the rainy season, as indicated by the increase in the Asp:β-Ala ratio 

and Glu:γ-Aba ratio within 0-15 cm. This can be attributed to the behavior of the fiddler 

crabs living in the sand flat. In the depth of 30-35 cm, there was a similar variation in the 
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Asp:β-Ala and Glu:γ-Aba ratio along the transect between the dry and rainy season. Our 

study agreed with Hedges and Keil (1995) that the interior sediments which were more 

dominated by the terrestrial plants were less reactive or more refractory as compared to 

the outer sediments which were probably more dominated by the marine-derived OM.  

The down-core variation of the Asp:β-Ala ratio and Glu:γ-Aba ratio at GH07 

suggested a comparatively strong biodisturbance within 0 and 15 cm, with the higher 

ratios in the deeper sediments, indicating a preferential preservation of Asp and Glu  in 

the deeper sediments. The Caa:OC ratio at GH07 in 30-35 cm (figure 4.23) also indicated 

fresher OM in the rainy season. Due to the high proportion of the coarse grains in this 

depth at GH07, the OC content of this sample was lower than the other sites in the same 

depth (figure 4.11). Meanwhile, the highest Caa:OC ratio was found in this depth. The 

low organic content at this depth resulted in the weak degradation and hence, the 

inorganic nutrient content, e.g. NH4
+ and AP, ought to have been limited here. However, 

the contents of these nutrients were high at this depth (figure 4.8 and 4.9). This can be 

attributed to the root exudation of Avicennia, which contains organic acids, amino acids 

and amino sugars, to enhance the nutrient acquisition (Dakora and Phillips 2002). 

The C:N ratio at GH07 decreased from 12 in the dry season to 9.8 in the rainy 

season, suggesting a bacterial source of OM (Jenkinson and Ladd 1981). At GH07, the 

high percentage of fine grains within 0 and 15 cm probably resulted in the strong 

reduction at 30-35 cm and hence, the anaerobic bacteria proliferation was promoted. The 

Gluam:Galam ratio varied between 0.89 and 1.82 indicated a strong degradation in the 

whole study area or a bacterial source of OM (Liebezeit 1993, Ogawa et al. 2001, Benner 

and Kaiser 2003). 
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Figure 5.15: The seaward increase of RI in the dry season along the transect in (a): 

within 0 and 15 cm and (b): 30-35 cm. In (a),       00-05 cm,      05-10 cm, 

and       10-15 cm. 
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Figure 5.16: The seaward increase of Asp:β-Ala in the dry season along the transect in 

(a): within 0-15 cm and (b): 30-35 cm. In (a),      00-05 cm,      05-10 cm 

and         10-15 cm. 
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Figure 5.17: The seaward increase of Glu:γ-Aba in the dry season along the transect in 

(a): within 0-15 cm and (b): 30-35 cm. In (a),      00-05 cm,      05-10 cm 

and         10-15 cm.  
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Gly accumulated during the degradation process (Lee and Cronin 1984) as it is the 

major component in diatom cell wall and bacteria to form the protein-silica complex 

(Muller et al. 1986, Ingalls et al. 2003), a kind of refractory OM in the sediments (Siezen 

and Magne 1978, Lee et al. 2000). Moreover, its nutritional value for the organisms in 

sediments is low (Dauwe and Middelburg 1998). Therefore, it should tend to increase 

with depth (Haugen and Lichtentaler 1991, Cowie et al. 1992). In the study area, the 

mole fraction of Gly increased from 0 to 15 cm at GH01, GH02, GH03, GH04, GH06 

and GH07 in the dry season, indicated that Gly was preserved in the sediments. 

Nevertheless, at GH02, GH03, GH06, GH07 and GH08 in the rainy season, the 

continuous decrease in Gly mole fraction referred to a preferential loss of this amino acid, 

but it was negligible. This finding shows that there could be another fate for Gly in the 

sediments which are subjected to the alternation of exposed and flooded.  

 In addition to Gly, the hydroxy amino acids (Ser and Thr) are also predominant in 

the diatom cell wall (Siezen and Magen 1978, Lee and Cronin 1984, Müller et al. 1986). 

They are resistant to the degradation due to their reaction with phenolic compounds to 

form humic complex (Degens 1970, Siezen and Magne 1978). Consequently, their mole 

fractions were expected to increase with depth, as they are preferentially preserved during 

the degradation process. However, similar to Gly, the down-core decrease of Ser and Thr 

exhibited a loss of these amino acids. These findings are contrary to the literature. 

Nevertheless, at GH01, GH02 and GH04 in the dry season, the mole fraction of Ser and 

Thr decreased down-core, similar to the study of Alkhatib et al. (2012). However, in the 

rainy season, the negligible variation of Ser and Thr within 5-10 cm  suggested that they 

were preferentially preserved in this depth. The trend of variation related with depth 

disappeared in the sediments at GH05 and GH08. The similar results were reported in the 

study of Alkhatib et al. (2012) and they attributed it to the increasing contribution of 

bacterial necromass to the bulk sediments OM with ongoing degradation (Keil et al. 

2000). In Ganh Hao, the mole fraction of Ser was higher than Thr during the sampling 
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year (p > 0.05), suggesting a more marine source of OM in the sediments (Gonzalez et al. 

1983). 

According to Gonzalez et al. (1983), Val, Leu and Ile are less stable and thus, they 

are probably easy to be degraded or consumed. Furthermore, they are essential amino 

acids. Thus, their mole fraction down-core decline in the hypersaline sediments probably 

resulted from the preferential consumption by sediment microorganisms (Burdige and 

Martens 1988) or preferential degradation in the aerobic layers of the sediments. The 

down-core decrease in mole fraction of Val, Ile and Leu agreed with the finding of 

Gonzalez et al. (1983) that these branched chain amino acids are easy to be degraded.  

The down-core decrease of Ala mole % at the sites from GH02 to GH04 and from 

GH06 to GH07 indicated a preferential loss in the sediments from the surface to the depth 

of 30-35 cm. Nevertheless, the mole fraction of Ala increased in the depth of 5-10 cm in 

the rainy season indicating a preservation of Ala in this depth. Meanwhile, in the 

sediments at GH05 and GH08, Ala seemed to be preferentially preserved in the deeper 

sediments. However, the sediments at GH05 and GH08 were probably subject to 

bioturbation caused by the dwelling animals, resulting in the vague relationship between 

depth and the trend of amino acid mineralization. 

Of the acidic amino acids, the mole fraction of Asp was significantly higher than 

the mole fraction of Glu (p < 0.001), indicating that most of the study area received the 

OM derived from terrestrial plants (Khan and Sowden 1972, Pelet and Debyser 1977). 

Within 0-15 cm, the Asp:Glu ratio was ca. 1.3 and increased towards the tidal affected 

sites in the dry as well as the rainy season. This finding indicated an accumulation of OM 

derived from terrestrial plants or the plant-derived OM was transported from the interior 

sector to the sea. There was a sudden high of Asp:Glu at GH05 in the dry season, 

corresponding with the high value of pH at this site at 30-35 cm. This coincidence can be 

attributed to the affinity bonds between the acidic amino acids and carbonate grains 

(Carter and Mitterer 1978, Ittekkot et al. 1984, Wakeham et al. 1993, de Lange et al. 

1994, Cowie et al. 1995). 
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The mole fraction of Tyr and Phe decreased down-core at most of the sampling 

sites indicating that these amino acids were preferentially lost during the decomposition 

progress (Dauwe and Middelburg 1998) as these are the dominant amino acids in the 

cytoplasm. The down-core decrease of Phe, Ile and Leu indicated that the degradation 

state was stronger in the deep sediments or the OM in the deep sediments was more 

refractory. 

Arg tended to decrease down-core at most of the sampling sites, regardless of the 

occurrence of vegetation. Arg is mineralized to NH4
+ and its ammonification rate was 

proportional to the soil microbial biomass (Alef and Kleiner 1987). The down-core 

decrease of Arg suggested a strong ammonification in the deep sediments. The positive 

relationship between Arg and NH4
+ content (figure 5.18) was highly significant in the dry 

season (p < 0.001). However, the correlation became less pronounced in the rainy season 

(p < 0.01).  

Arg, His and Met are the essential amino acids. Therefore, they are preferentially 

consumed by the microorganisms in the soils/sediments, resulting in the down-core 

decrease of their mole fraction.  Met was the most consumed amino acid as it particularly 

disappeared under 10 cm in the dry and vegetated sites. The down-core decrease of His 

was very negligible.  
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Plot of Fitted Model
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Figure 5.18: Correlation between Arg and NH4
+ content in the dry season. The p-value 

and correlation coefficient was 0.0001 and 0.69, respectively 

 

At GH01, GH02 and GH04, the sediments were characterized by the high salinity 

and low humidity in the dry season. The down-core increase in the mole fraction of Asp 

and Glu throughout the sampling year indicated a preferentially microbial utilization in 

the upper layers (figure 4.39 and 4.40). Meanwhile, the mole fraction of β-Ala and γ-Aba 

also increased down-core (figure 4.48 and 4.49), contrary to the finding of other authors 

(Casagrande 1974, Schroeder 1975, Whelan 1977, Casagrande and Given 1980, Lee and 

Cronin 1982, Hatcher et al. 1983, Henrichs and Farrington 1984, Cowie and Hedges 

1992, Cowie and Hedges 1994, Keil et al. 2000, Xing et al. 2007). Their increase 

indicated a higher degradation state and it usually results from the degradation of Asp and 

Glu. Nevertheless, β-Ala and γ-Aba can be also formed by other processes rather than the 

carboxyl reduction of Asp and Glu (Cowie and Hedges 1994). The sediments at GH01, 

GH02 and GH04 were very aerated in the dry season due to the low humidity which in 

turn resulted in the fractures in the sediments. Consequently, the P content may be a 

limiting factor for the plant growth. Thus, in order to enhance the nutrient acquisition, 
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plants probably promoted the root exudation to attract the microbial colonization. This 

finding is advocated by the highest AP:IP ratio in the depth of 30-35 cm and the high 

content of AP at the dwarf forest of Lumnitzera racemosa (figure 4.15). 

At GH03, GH06 and GH07, the mole fraction of Asp increased continuously 

down-core in the dry season while it was lost at 30-35 cm in the rainy season (figure 4.39 

and 4.40). The mole fraction of β-Ala consistently increased down-core in both seasons 

(figure 4.48 and 4.49). The mole fraction of Glu did not change within 0 and 15 cm but 

significantly decreased in 30-35 cm in the rainy season (figure 4.40). The mole fraction 

of γ-Aba consistently increased down-core indicating the higher state of OM degradation 

in these sediments (figure 4.48 and 4.49). The sediments in this group were disturbed by 

the crabs together with the tidal effects. The down-core increase of Asp and Glu probably 

resulted from the downward transportation of plant debris which was carried out by the 

macro invertebrates. The predominance of Asp relative to Glu indicated the terrestrial 

plant-derived of the sedimentary OM. The Glu is an indicator of planktonic source of the 

sedimentary OM. Consequently, the consistence of Glu mole fraction probably reflected 

the biodisturbance influence on the planktonic sedimentary OM. The low mole fraction 

of Glu in 30-35 cm indicated a limitation of planktonic OM input, probably due to the 

fine grains in the upper layers. 

      The sediments at GH05 and GH08 were characterized by the high pH and the 

predominance of the coarse grains resulting from the carbonate break down. The down-

core decrease of Asp mole fraction in these sediments within 0-15 cm probably reflected 

the limited influence of plants at these sites. GH08 was totally non-vegetated and GH05 

was subject to drastic erosion. The down-core decrease of Asp in these sediments can be 

attributed to the consumption of microorganisms. On the contrary, the mole fraction of 

Glu increased from 0 to 15 cm, probably due to the contribution of OM from marine 

planktons. GH05 and GH08 were predominated by the marine planktons while most of 

the sedimentary OM in the other sites originated from the terrestrial plants. 
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The down-core increase in Lys mole % in the sediments at GH01, GH02 and 

GH04 within 0 and 35 cm indicated a preferentially preservation of this amino acid in the 

dry and rainy season. Lys is enriched in vascular plants OM (Cowie and Hedges 1992). 

Consequently, it is more refractory and tends to be accumulated during the degradation. 

Nevertheless, no apparent trend was found in the sediments at the other sites. The 

sediments in these sites were subject to physical and biological disturbance by tides and 

macro invertebrates. The down-core variation, therefore, may be a faulty tool for the OM 

degradation assessment. 

       The preferential loss of Ile, Leu, Tyr and Phe in the sediments during early 

diagenesis was claimed by many authors and they were attributed to the high nutritional 

value for bacteria (Burdige and Martens 1988, Dauwe et al. 1999, Lee et al. 2000). 

Alkhatib et al. (2012) found an increase of OM degradation state towards the open waters 

through the lower concentration of these amino acids downstream relative to their 

concentration upstream. In Ganh Hao, in the sediments at GH01, GH02 and GH04, the 

down-core decrease in mole % of Ile, Leu and Phe in the dry and rainy season and the 

drastic decrease of Tyr within 0-10 cm suggested a preferential consumption by the 

sediments organisms living in the sub-surface sediments. These results indicated an 

increase in OM degradation state in the deep sediments at GH01, GH02 and GH04. 

At GH03, GH06 and GH07, the down-core decrease in the mole fraction of Ile, 

Leu and Phe were acquired in the dry season exclusively. This finding indicated the 

preferential consumption of these amino acids by sediment bacteria for these amino acids 

cannot be synthesized by organisms. In the rainy season, their mole fraction did not show 

any consistent tendency of variation probably due to the biodisturbance caused by the 

dwelling animals. There was no tendency of down-core variation in Tyr mole fraction in 

both seasons, but in the rainy season, a drastic increase in Tyr in the depth of 30-35 cm 

indicated an accumulation or a supplement of Tyr in the sediments. 

At GH05 and GH08, the mole fraction of Ile, Leu, and Phe in 30-35 cm were 

higher compared to the sediment in the dry season. However, in the rainy season, the 
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mole fraction of Ile, Leu and Tyr showed a preferentially loss and hence, indicated an 

increase in OM degradation while no variation trend was found in Tyr contents. At the 

other sites, the mole fraction of Val increased down-core in the dry season. There was a 

drastic loss of Val in the sediments within 0 and 15 cm at GH01, GH02 and GH04 while 

it was negligible at GH03, GH06 and GH07. The significant loss of Val at GH03, GH06 

and GH07 occurred exclusively in the depth of 30-35 cm in the dry season. The down-

core variation trend at these three sutes was similar to the dry and saline sediments in the 

study area (GH01, GH02 and GH04) but more linear and found only in the rainy season. 

These findings suggested a preferential loss of Val in the dry season.  

Dauwe and Middelburg (1998) claimed that the concentration of the essential 

amino acids did not increase with the increase of Naa contents in a bioturbated sediment. 

In the dry season, the mole fraction of Arg and Met exhibited a down-core decrease in the 

dry and rainy season. These amino acids are deficient even in the source organisms 

(Dauwe and Middelburg 1998). Our data also agreed with their finding as Met was found 

as traces only in the sediments. Consequently, they are usually taken up by the sediment 

organisms for their nutritional requirements (Phillips 1984). On the contrary, His content 

showed a down-core increase between 0 and 15 cm and significantly decreased in 30-35 

cm. Based on these findings, the degradation state of the OM tended to increase in the 

deep sediments. 

The mole fraction of Orn consistently increased down-core, inversely proportional 

to the down-core variation of Arg. Orn is the product of Arg degradation and this non-

protein amino acid was found to accumulate during the degradation of sedimentary OM 

(Funck et al. 2008). 

In general, the down-core variation of the individual amino acids at the dry and 

saline sediments (GH01, GH02 and GH04) where the biodisturbance was negligible, was 

similar to the published results. However, the sediments at the sites with low carbonate 

content (GH01, GH02, GH03, GH04, GH06 and GH07) were subject to a more 

considerable artificial disturbance (e.g physical disturbance by tides and digging during 
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the soil preparation for plantation) which may restrict the feasibility of assessing the 

changes in the degradation state in the relation with depth and other physico-chemical 

properties e.g redox-potential.  
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6 CONCLUSIONS 

1. The grain size distribution, tidal inundation and vegetation are the factors 

which control the sediments characteristics in the study area. The high content of NH4+ 

at the abandoned saltpan resulted from the N fixation mediated by arbuscular mycorrhiza 

in Sea purslane roots. The content of NH4+ in the sediments inversely correlated to the 

pH in the aerobic layers. The absence of vegetation and the overwhelming dominance of 

sand at GH08 resulted in the lowest content of OC and N in the study area. The high 

NH4+ content at GH07 might relate to the stimulated N mineralization when the wet 

sediments were drained during the ebbs. The NH4+ content in the rainy season was 

higher than in the dry season, due to the increase of OC and N in the rainy season. 

However, the source of this OM supplement has not been determined in this study. 

The data showed that P adsorbing on the carbonate grains were protected from 

phosphate solubilizer population. The deficiency of OM in the bare sediments caused the 

deficiency of P. The content of P in the study area inversely correlated to Eh, suggested 

that AP was liberated in the anoxic sediments. In the aerobic zone, the IP content did not 

strongly fluctuated along the transect, except for the peaks seen at GH05 and GH08, due 

to the immobilization pf P in the Ca-P complex. The low IP content at the mud flat was 

resulted from the desorption of P from the grains caused by the resuspension by tides. 

The IP:OP ratios showed that the pH and carbonate contents in the sediment influenced 

the P mineralization. 

2. Chitin quantification by the binding with FITC-WGA resulted in the 

overestimation of sedimentary chitin. However, the chitin data reflected the relationship 

between the chitin content in sediments and the numbers of diatoms frustules – a source 

of chitin in coastal environments. Similarities among the variations of chitin~WGA, 

chitin~Gluam, and elemental compositions along the transect were also found. The chitin 

content calculated by Gluam showed that chitin contributed less than 2 % and 3 % to the 

sedimentary OC and nitrogen content. The dominant source of chitin may differ between 

the sampling sites. In the surface sediments of the interior sector, chitin might come from 

the macrobenthos while in the exterior sector, marine planktons seemed to be a more 
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dominant contributor to the chitin content. The monsoon regime probably influenced the 

chitin quantity of the interior sediments in the rainy season through the expansion of the 

tidal flooded area and, hence, marine plankton could reach further towards the hinterland. 

The higher content of chitin in the interior sediments in comparison with the exterior sites 

can be attributed to the dominance of silt-clay fraction in the interior sector which 

assisted the attachment of diatoms.  

3. The sedimentary C:N ratio showed that the major source of OM probably 

originated from the sea in the past. During the salt production, the marine planktons in 

sea water intruded the salt-pan and accumulated there. The mangrove plantation in 1998, 

along with the intrusion of Sesuvium portulacastrum, resulted in the traces of terrestrial 

plants in the pool of OM in the surface sediments. As the OM content within the study 

area was relatively low, the THAA concentration was lower compared to other 

mangroves and coastal environments. The high temperature, along with the aeration of 

the sediments caused by the cracks on the surface, probably promoted the turnover rate of 

OM in the sediments. The concentration of amino acids in the sediments was affected by 

the plant biomass and amino acid composition of plant materials. The variation in depth-

profiles of the individual amino acids between the sampling sites was probably resulted 

from the disturbances caused by dwelling-organisms and the preparation of soil for 

mangrove plantation. 

The data showed that the nutritional state in the study area is influenced by the 

sediment characteristics. Moreover, it might relate to the activity of sediment bacteria, 

which is also affected by the sediment properties. Therefore, further studies on the 

coupling between sediment bacteria playing role in the N and P cycling will be needed to 

understand the dynamics of these essential elements in hypersaline areas. Such 

knowledge will be a potential tool for an effective pattern of mangrove plantation in 

harsh environment, besides the appropriate irrigational works. 
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Table 1a: Grain size distribution in the sediments at each sampling station. 

 

  

Station 
Depth 
(cm) 

Clay (%)  Fine silt (%) Medium silt (%) Coarse silt (%) Fine sand (%) Medium sand (%) 
transect 

1 
transect 

2 
transect 

1 
transect 

2 
transect 

1 
transect 

2 
transect 

1 
transect 

2 
transect 

1 
transect 

2 
transect 

1 
transect 

2 

GH01 00-05 15.51 17.15 29.86 33.16 36.44 40.31 11.14 9.02 7.06 0.37 0.00 0.00 

GH01 05-10 16.46 18.34 31.04 34.43 38.57 42.02 11.92 5.22 2.02 0.00 0.00 0.00 

GH01 10-15 18.24 19.38 33.33 36.88 41.31 41.69 7.03 2.05 0.11 0.00 0.00 0.00 

GH01 30-35 17.44 18.86 34.78 38.78 42.47 40.32 5.20 2.04 0.11 0.00 0.00 0.00 

                          

GH02 00-05 11.64 12.42 22.55 24.08 36.10 34.85 17.68 15.07 12.03 13.58 0.00 0.00 

GH02 05-10 14.10 16.39 25.98 31.09 44.27 39.34 14.80 11.73 0.85 1.45 0.00 0.00 

GH02 10-15 14.93 17.90 28.15 32.30 39.15 37.38 15.42 11.08 2.35 1.34 0.00 0.00 

GH02 30-35 17.66 19.51 32.99 35.61 44.21 38.24 5.15 6.35 0.00 0.29 0.00 0.00 

                          

GH03 00-05 11.18 10.85 19.16 20.91 36.80 36.44 27.02 24.27 5.85 7.54 0.00 0.00 

GH03 05-10 11.94 13.82 19.48 25.81 36.84 36.79 27.97 19.27 3.76 4.31 0.00 0.00 

GH03 10-15 12.86 15.59 21.63 29.27 37.54 40.31 22.32 13.50 5.65 1.33 0.00 0.00 

GH03 30-35 17.41 16.56 35.47 34.75 39.23 41.74 7.58 6.69 0.32 0.26 0.00 0.00 

                          

GH04 00-05 14.75 15.66 27.89 29.67 43.43 40.57 13.63 13.20 0.29 0.91 0.00 0.00 

GH04 05-10 16.21 15.17 28.94 27.50 45.63 41.15 9.09 14.73 0.13 1.45 0.00 0.00 

GH04 10-15 16.36 17.23 30.72 31.60 38.87 40.28 11.26 10.55 2.80 0.35 0.00 0.00 

GH04 30-35 17.09 18.86 32.01 35.47 37.92 41.58 10.47 4.09 2.51 0.00 0.00 0.00 



b 
 

Table 1b: Grain size distribution in the sediments at each sampling station (cont.).  

Station 
Depth 
(cm) 

Clay (%)  Fine silt (%) Medium silt (%) Coarse silt (%) Fine sand (%) Medium sand (%) 
transect 

1 
transect 

2 
transect 

1 
transect 

2 
transect 

1 
transect 

2 
transect 

1 
transect 

2 
transect 

1 
transect 

2 
transect 

1 
transect 

2 

GH05 00-05 14.03 11.27 27.74 22.09 36.70 34.70 12.55 19.07 8.98 12.87 0.00 0.00 

GH05 05-10 6.90 15.50 12.88 28.02 17.78 44.09 5.62 12.05 11.16 0.34 45.67 0.00 

GH05 10-15 11.35 11.33 22.02 21.90 29.20 21.69 11.10 24.38 24.01 20.71 2.32 0.00 

GH05 30-35 18.38 20.35 33.38 40.34 46.01 37.52 2.23 1.79 0.00 0.00 0.00 0.00 

                      

GH06 00-05 12.76 14.15 24.50 28.06 33.41 37.65 17.94 12.57 11.38 7.56 0.00 0.00 

GH06 05-10 9.93 15.36 17.96 29.51 29.86 43.99 28.23 10.80 14.02 0.35 0.00 0.00 

GH06 10-15 3.42 16.77 5.84 30.58 8.21 47.57 25.16 5.08 52.90 0.00 4.48 0.00 

GH06 30-35 15.92 11.24 30.41 19.61 39.34 37.54 12.24 26.47 2.09 5.13 0.00 0.00 

                      

GH07 00-05 9.64 8.92 19.18 17.64 32.91 31.52 31.90 31.83 6.37 10.09 0.00 0.00 

GH07 05-10 14.14 12.25 26.47 22.21 38.53 32.99 18.56 23.81 2.30 8.76 0.00 0.00 

GH07 10-15 10.59 9.04 20.21 18.46 32.51 24.41 26.89 16.37 9.82 30.56 0.00 1.17 

GH07 30-35 6.30 1.65 12.13 3.56 14.64 2.94 13.40 2.68 51.64 78.66 1.89 10.52 

                      

GH08 00-05 0.84 0.00 1.70 0.00 1.85 0.39 8.40 2.52 64.55 14.02 22.65 83.07 

GH08 05-10 0.73 0.74 1.58 1.91 0.42 2.00 12.44 4.53 82.19 71.16 2.63 19.66 

GH08 10-15 0.84 0.82 1.10 1.60 0.00 0.27 23.51 17.15 73.71 77.52 0.85 2.65 

GH08 30-35 6.74 1.58 11.80 2.49 24.17 1.47 43.41 34.87 13.89 59.23 0.00 0.37 



c 
 

Table 2a: Physico-chemical properties of the sediments in the dry season. 

Station 
Depth 
(cm) 

pH Humidity (%) Salinity (‰) Eh (mV) 

transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 

GH01 00-05 6.67 5.92 28.09 18.65 49.38 89.55 254 260 

GH01 05-10 6.59 7.10 23.35 21.96 67.65 55.69 286 250 

GH01 10-15 6.54 6.65 25.14 24.17 54.89 54.55 285 265 

GH01 30-35 6.20 7.15 32.51 32.84 44.26 40.98 257 187 

                  

GH02 00-05 6.48 7.31 31.74 29.63 17.74 31.65 151 243 

GH02 05-10 6.44 7.05 27.33 25.00 38.03 54.62 205 249 

GH02 10-15 6.47 7.1 26.01 25.15 44.98 51.03 250 262 

GH02 30-35 6.26 6.83 27.88 27.85 44.28 50.09 258 267 

                  

GH03 00-05 7.38 6.83 17.71 41.11 40.74 17.97 140 226 

GH03 05-10 7.30 6.71 38.27 24.31 19.79 31.94 -167 266 

GH03 10-15 7.24 6.73 32.35 31.06 24.66 21.63 -208 276 

GH03 30-35 7.15 6.76 39.58 34.09 26.17 26.44 -213 -59 

                  

GH04 00-05 7.78 6.65 29.57 25.59 44.94 76.46 175 263 

GH04 05-10 7.64 7.28 27.35 26.85 50.93 47.36 173 258 

GH04 10-15 7.59 7.34 27.01 25.29 44.75 41.07 224 255 

GH04 30-35 7.00 7.19 28.71 26.36 39.78 33.12 281 176 

 

  



d 
 

Table 2b: Physico-chemical properties of the sediments in the dry season (cont.). 

Station 
Depth 
(cm) 

pH Humidity (%) Salinity (‰) Eh (mV) 

transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 

GH05 00-05 8.18 7.41 27.53 25.57 14.39 19.67 292 280 

GH05 05-10 7.64 7.17 31.98 27.28 24.65 19.59 242 292 

GH05 10-15 7.60 7.16 26.69 26.32 21.46 22.43 289 300 

GH05 30-35 7.55 7.00 27.05 26.37 29.88 23.23 293 278 

                  

GH06 00-05 6.75 7.41 32.54 36.39 20.54 20.84 -100 148 

GH06 05-10 6.57 7.07 32.33 37.53 25.12 22.68 109 -138 

GH06 10-15 6.65 6.92 25.90 36.54 35.25 22.01 -104 -235 

GH06 30-35 6.62 7.09 36.50 35.52 31.53 23.35 -203 -181 

                  

GH07 00-05 8.14 7.44 41.35 38.69 20.69 24.43 -16 -168 

GH07 05-10 7.44 7.28 40.46 40.46 25.80 26.05 -220 -212 

GH07 10-15 7.40 7.29 42.18 40.32 24.72 26.83 -239 -222 

GH07 30-35 7.24 7.14 34.46 24.46 30.18 28.24 -208 -200 

                  

GH08 00-05 8.39 7.79 23.25 29.28 25.54 17.06 195 134 

GH08 05-10 8.63 7.78 23.62 29.41 26.41 23.80 116 215 

GH08 10-15 8.48 7.70 22.26 25.66 26.60 24.75 69 218 

GH08 30-35 8.15 7.52 32.30 27.00 24.14 23.49 -213 -160 
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Table 3a: Physico-chemical properties of the sediments in the rainy season. 

 

Station 
Depth 
(cm) 

pH Humidity (%) Salinity (ppt) 

transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 

GH01 00-05 7.53 7.59 30.13 29.81 26.76 29.66 

GH01 05-10 7.52 7.29 24.74 24.92 44.73 46.18 

GH01 10-15 7.26 7.25 25.31 26.14 51.57 41.19 

GH01 30-35 6.86 7.12 34.73 32.58 37.33 43.92 

              

GH02 00-05 7.10 7.08 32.17 30.00 15.90 23.83 

GH02 05-10 7.09 7.19 30.16 27.52 31.26 36.92 

GH02 10-15 6.99 7.15 25.58 26.43 31.58 38.68 

GH02 30-35 6.80 6.65 26.48 27.57 45.46 53.34 

              

GH03 00-05 7.38 7.19 37.37 32.05 11.56 18.71 

GH03 05-10 7.45 7.24 36.07 29.62 14.91 23.61 

GH03 10-15 7.22 7.16 36.29 30.06 20.23 24.11 

GH03 30-35 7.08 7.01 40.37 38.64 29.50 26.49 

              

GH04 00-05 7.58 7.37 31.36 28.43 17.01 33.57 

GH04 05-10 7.37 7.23 27.93 29.46 29.15 47.17 

GH04 10-15 7.29 7.27 28.07 27.79 27.21 41.12 

GH04 30-35 7.00 7.04 29.66 25.94 29.00 35.76 
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Table 3b: Physico-chemical properties of the sediments in the rainy season (cont.). 

Station 
Depth 
(cm) 

pH Humidity (%) Salinity (ppt) 

transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 

GH05 00-05 7.30 7.41 29.67 27.93 4.54 5.87 

GH05 05-10 7.26 7.18 30.25 25.95 10.28 12.82 

GH05 10-15 7.00 6.37 30.90 28.72 11.63 11.64 

GH05 30-35 7.01 7.07 26.05 26.42 12.62 16.55 

              

GH06 00-05 7.34 6.97 33.89 36.33 16.33 14.15 

GH06 05-10 6.95 7.08 36.09 35.66 17.46 15.16 

GH06 10-15 6.96 7.20 34.58 35.14 19.16 17.91 

GH06 30-35 6.97 6.99 37.60 35.25 24.56 27.67 

              

GH07 00-05 7.17 7.41 39.70 37.82 22.51 21.13 

GH07 05-10 7.24 7.29 40.36 32.83 27.32 25.27 

GH07 10-15 7.24 7.19 37.17 31.93 28.15 23.09 

GH07 30-35 7.15 7.13 27.17 25.70 27.71 27.93 

              

GH08 00-05 7.67 7.72 21.26 21.13 23.26 18.31 

GH08 05-10 7.55 7.52 22.34 22.44 21.89 22.78 

GH08 10-15 7.68 7.61 22.18 23.11 22.79 22.29 

GH08 30-35 7.36 7.91 23.35 23.12 24.12 20.97 
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Table 4a: Sedimentary nutrient levels at each sampling site in the dry season. 

Station 
Depth 
(cm) 

NO2
- + NO3

- (μg.g-1) N-NH4
+ (μgN.g-1) IP (μg P.g-1) OP (μg P.g-1) TP (μg P.g-1) AP (μgP.g-1) 

transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 

GH01 00-05 1.00 6.90 5.74 8.96 503.58 512.59 56.84 61.42 560.42 574.00 14.06 14.54 

GH01 05-10 2.63 5.44 4.28 8.30 534.39 494.15 22.02 83.04 556.40 577.19 14.91 15.00 

GH01 10-15 2.78 4.10 4.34 5.20 551.52 521.79 14.33 31.55 565.85 553.34 13.70 14.89 

GH01 30-35 1.40 3.54 2.60 3.30 546.72 578.59 50.28 56.50 597.00 635.09 12.41 15.70 

                          

GH02 00-05 1.20 1.91 7.27 7.65 572.60 500.76 52.82 70.76 625.41 571.52 10.20 14.88 

GH02 05-10 1.03 1.73 6.05 4.57 506.63 434.93 50.87 109.37 557.51 544.31 12.01 14.29 

GH02 10-15 0.61 1.01 5.09 4.80 539.31 568.62 37.24 52.73 576.55 621.34 10.09 12.79 

GH02 30-35 0.29 0.83 4.02 3.76 509.65 543.85 68.51 76.42 578.15 620.27 11.09 13.97 

                          

GH03 00-05 4.36 1.64 4.47 5.26 491.23 561.28 56.91 34.96 548.14 596.24 14.13 12.56 

GH03 05-10 2.30 0.78 4.84 6.06 517.71 566.34 32.10 56.47 549.82 622.82 14.24 13.35 

GH03 10-15 2.45 0.77 5.37 6.57 524.17 532.88 32.81 40.69 556.98 573.58 11.48 13.89 

GH03 30-35 0.54 0.88 3.59 8.13 581.78 533.85 54.81 47.63 636.59 581.48 10.48 12.69 

                          

GH04 00-05 0.67 3.06 6.37 4.44 564.16 535.20 33.63 45.60 597.79 580.80 15.73 16.08 

GH04 05-10 2.46 1.14 5.02 3.91 568.76 497.63 7.44 37.53 576.20 535.16 17.23 15.75 

GH04 10-15 5.54 2.68 2.25 4.86 520.20 504.56 48.15 53.13 568.35 557.69 14.01 12.78 

GH04 30-35 1.19 2.64 3.18 3.62 494.03 509.69 63.24 52.97 557.26 562.66 12.67 13.93 
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Table 4b: Sedimentary nutrient levels at each sampling site in the dry season (cont.). 

Station 
Depth 
(cm) 

NO2
- + NO3

- (μg.g-1) N-NH4
+ (μgN.g-1) IP (μg P.g-1) OP (μg P.g-1) TP (μg P.g-1) AP (μgP.g-1) 

transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 

GH05 00-05 1.20 4.33 5.55 5.96 915.60 711.10 29.16 28.05 944.75 739.15 12.85 11.92 

GH05 05-10 0.75 4.57 6.72 5.60 647.98 669.39 24.68 37.53 672.66 706.92 9.70 9.39 

GH05 10-15 1.25 2.34 4.59 4.87 662.70 511.31 25.80 46.11 688.50 557.41 10.40 9.09 

GH05 30-35 1.04 2.18 3.05 5.38 517.16 522.60 49.68 59.84 566.84 582.44 11.66 12.54 

                          

GH06 00-05 0.90 1.36 5.14 4.24 572.37 574.25 2.02 41.45 574.38 615.70 12.73 11.51 

GH06 05-10 1.52 0.99 6.60 4.77 511.55 496.28 54.33 44.69 565.88 540.97 13.21 14.19 

GH06 10-15 0.62 1.35 3.80 5.24 533.30 548.49 24.50 14.77 557.80 563.26 10.34 14.91 

GH06 30-35 1.47 0.74 6.29 5.70 512.42 398.08 51.50 37.85 563.92 435.93 17.53 18.99 

                          

GH07 00-05 1.24 1.30 10.07 8.97 466.12 479.21 67.41 49.20 533.54 528.42 14.95 13.84 

GH07 05-10 1.19 1.99 8.61 10.71 456.50 507.61 62.72 22.74 519.22 530.35 14.62 14.60 

GH07 10-15 1.21 1.13 11.95 11.40 481.11 582.69 67.80 9.17 548.92 591.86 15.69 16.12 

GH07 30-35 1.41 1.22 8.48 5.53 362.14 397.37 29.95 11.69 392.08 409.06 22.41 19.66 

                          

GH08 00-05 0.43 8.57 3.36 2.46 711.10 1183.63 16.12 26.98 727.23 1210.60 9.11 13.78 

GH08 05-10 0.80 1.13 2.92 2.84 572.86 1204.95 20.28 87.07 593.14 1292.02 7.68 11.21 

GH08 10-15 0.39 0.96 4.18 2.49 534.22 656.02 9.23 27.04 543.45 683.06 5.48 9.53 

GH08 30-35 1.73 0.33 9.79 4.86 401.81 413.07 9.76 5.45 411.57 418.52 17.14 9.20 
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Table 5a: Sedimentary nutrient levels at each sampling site in the rainy season. 

Station 
Depth 
(cm) 

NO2
- + NO3

- (μg.g-1) N-NH4
+ (μg.g-1) IP (μgP/g-1) OP (μgP.g-1) TP (μgP.g-1) AP (μgP.g-1) 

transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 

GH01 00-05 2.85 3.91 5.05 4.54 494.90 500.63 38.90 30.03 533.80 530.66 16.54 15.93 

GH01 05-10 5.00 3.72 4.04 4.17 506.10 477.35 24.93 24.75 531.04 502.10 15.90 13.65 

GH01 10-15 4.74 5.33 4.40 5.25 503.32 512.42 37.81 18.57 541.13 530.99 15.58 13.45 

GH01 30-35 3.91 4.71 4.70 3.88 631.60 575.19 49.64 14.63 681.25 589.82 11.97 11.91 

                          

GH02 00-05 2.01 1.57 10.18 7.67 520.69 483.19 60.59 72.39 581.27 555.58 11.05 15.17 

GH02 05-10 2.30 1.85 9.11 5.89 513.44 484.91 48.53 49.78 561.96 534.69 11.75 14.56 

GH02 10-15 2.65 2.38 7.38 5.28 508.78 486.29 30.82 42.63 539.60 528.92 12.17 13.90 

GH02 30-35 3.12 2.43 4.65 7.16 538.00 533.29 33.28 47.56 571.28 580.84 11.50 13.27 

                          

GH03 00-05 2.17 1.33 11.13 6.56 567.86 515.53 42.38 30.00 610.24 545.53 14.42 13.38 

GH03 05-10 1.70 1.39 10.96 5.94 591.87 523.18 40.00 40.51 631.87 563.69 16.35 12.04 

GH03 10-15 1.09 1.61 11.63 5.64 586.33 498.03 31.07 43.37 617.40 541.41 14.14 5.93 

GH03 30-35 1.11 1.21 11.00 9.03 662.87 571.82 46.53 31.62 709.40 603.44 21.55 11.53 

                          

GH04 00-05 1.53 4.92 6.04 6.58 529.36 630.05 46.11 30.55 575.47 660.61 17.34 14.35 

GH04 05-10 4.96 1.18 6.58 3.96 527.90 529.95 38.15 49.93 566.06 579.88 17.55 14.31 

GH04 10-15 5.46 2.64 5.12 4.93 488.42 497.40 41.29 44.70 529.71 542.10 16.19 15.29 

GH04 30-35 4.85 4.00 5.92 5.04 549.36 501.27 53.81 42.91 603.18 544.18 16.42 13.39 
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Table 5b: Sedimentary nutrient levels at each sampling site in the rainy season (cont.). 

Station 
Depth 
(cm) 

NO2
- + NO3

- (μg.g-1) N-NH4
+ (μgN.g-1) IP (μg P.g-1) OP (μg P.g-1) TP (μg P.g-1) AP (μgP.g-1) 

transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 

GH05 00-05 2.44 2.25 11.82 10.94 835.39 623.83 46.81 36.83 882.20 660.66 14.61 11.25 

GH05 05-10 1.93 2.01 8.95 6.65 654.95 690.48 61.97 17.73 716.93 708.21 9.21 9.91 

GH05 10-15 3.00 1.43 9.14 5.90 582.22 562.05 61.98 29.16 644.20 591.21 8.81 10.02 

GH05 30-35 1.92 1.91 4.59 4.60 534.82 497.86 33.09 36.05 567.91 533.91 12.80 10.98 

                          

GH06 00-05 2.23 2.08 4.50 10.53 604.84 591.46 27.86 25.99 632.70 617.45 13.71 13.39 

GH06 05-10 1.44 2.41 3.90 8.73 556.00 593.44 41.48 30.53 597.47 623.96 11.05 12.73 

GH06 10-15 1.18 2.29 4.78 9.29 548.78 588.61 33.50 31.12 582.28 619.74 10.28 13.48 

GH06 30-35 1.47 0.96 6.00 6.60 552.18 479.02 28.46 14.84 580.64 493.86 20.92 17.78 

                          

GH07 00-05 1.67 1.50 10.18 7.82 452.47 466.39 20.72 29.79 473.19 496.18 12.91 13.52 

GH07 05-10 1.53 1.49 11.80 9.40 455.18 530.85 37.01 11.63 492.19 542.48 13.57 13.14 

GH07 10-15 1.61 1.42 11.20 9.54 471.87 501.86 24.92 26.63 496.79 528.49 14.00 14.25 

GH07 30-35 1.18 1.10 6.66 6.66 395.27 317.84 9.39 17.21 404.66 335.05 15.29 10.44 

                          

GH08 00-05 2.98 1.42 2.77 3.04 574.98 578.30 12.15 33.97 587.13 612.27 4.80 3.21 

GH08 05-10 2.12 1.95 2.93 3.23 616.89 579.99 12.62 19.48 629.52 599.47 6.60 3.33 

GH08 10-15 2.13 0.84 3.41 4.03 539.85 509.24 26.52 25.31 566.37 534.55 13.41 3.04 

GH08 30-35 1.07 1.02 3.97 3.13 517.28 431.89 30.57 14.75 547.84 446.64 6.97 6.90 
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Table 6a: Elemental composition in the sediments in the dry and rainy season. 

Station 
Depth 
(cm) 

DRY SEASON RAINY SEASON 

%C_org %N_tot %C_org %N_tot 

transect 1  transect 2 transect 1  transect 2 transect 1  transect 2 transect 1  transect 2 

GH01 00-05 0.859 0.882 0.108 0.095 0.684 0.606 0.076 0.069 

GH01 05-10 0.603 0.659 0.082 0.079 0.544 0.418 0.064 0.053 

GH01 10-15 0.546 0.628 0.082 0.077 0.562 0.498 0.065 0.067 

GH01 30-35 0.499 0.511 0.082 0.074 0.553 0.546 0.064 0.070 

                  

GH02 00-05 1.178 0.971 0.107 0.097 1.392 0.992 0.123 0.101 

GH02 05-10 0.706 0.494 0.084 0.072 0.924 0.688 0.095 0.078 

GH02 10-15 0.591 0.469 0.063 0.059 0.571 0.487 0.059 0.055 

GH02 30-35 0.556 0.554 0.071 0.067 0.552 0.563 0.065 0.067 

                  

GH03 00-05 0.787 0.824 0.075 0.076 1.249 1.066 0.083 0.094 

GH03 05-10 0.618 0.926 0.068 0.090 1.437 0.956 0.091 0.080 

GH03 10-15 0.599 0.750 0.069 0.077 0.918 0.714 0.082 0.074 

GH03 30-35 0.618 1.140 0.076 0.102 1.039 0.817 0.103 0.090 

                  

GH04 00-05 0.932 0.732 0.089 0.071 0.971 0.697 0.098 0.060 

GH04 05-10 0.628 0.578 0.076 0.071 0.895 1.001 0.088 0.080 

GH04 10-15 0.564 0.445 0.069 0.060 0.609 0.622 0.078 0.067 

GH04 30-35 0.607 0.617 0.072 0.071 0.561 0.486 0.120 0.056 
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Table 6b: Elemental composition in the sediments in the dry and rainy season (cont.). 

Station 
Depth 
(cm) 

DRY SEASON RAINY SEASON 

%C_org %N_tot %C_org %N_tot 

transect 1  transect 2 transect 1  transect 2 transect 1  transect 2 transect 1  transect 2 

GH05 00-05 0.643 0.697 0.067 0.077 1.242 0.835 0.094 0.083 

GH05 05-10 1.031 0.607 0.105 0.070 1.137 0.455 0.095 0.050 

GH05 10-15 0.455 0.550 0.056 0.067 1.241 0.564 0.108 0.071 

GH05 30-35 0.510 0.539 0.077 0.079 0.523 0.453 0.062 0.057 

                  

GH06 00-05 0.750 0.789 0.074 0.081 0.597 0.866 0.070 0.078 

GH06 05-10 0.798 0.986 0.080 0.097 0.625 0.712 0.074 0.072 

GH06 10-15 0.326 1.140 0.033 0.078 0.653 0.694 0.076 0.061 

GH06 30-35 0.716 1.137 0.074 0.089 1.076 0.755 0.097 0.072 

                  

GH07 00-05 0.853 0.664 0.086 0.074 0.525 0.506 0.062 0.054 

GH07 05-10 0.831 0.907 0.100 0.087 0.619 0.470 0.065 0.049 

GH07 10-15 1.036 0.913 0.100 0.078 0.586 0.546 0.063 0.059 

GH07 30-35 0.502 0.222 0.044 0.025 0.336 0.061 0.034 0.013 

                  

GH08 00-05 0.204 0.208 0.018 0.032 0.032 0.029 0.041 0.004 

GH08 05-10 0.141 0.302 0.017 0.034 0.029 0.041 0.012 0.014 

GH08 10-15 0.068 0.126 0.014 0.023 0.053 0.037 0.012 0.010 

GH08 30-35 0.896 0.415 0.063 0.024 0.054 0.055 0.015 0.013 
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Table 7a: Fractions of P in the sediments in the dry season. 

Station 
Depth 
(cm) 

TP (μg P.g-1) IP (μg P.g-1) OP (μg P. g-1) AP (μg P.g-1) 

transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 

GH01 00-05 560.42 574.00 503.58 512.59 56.84 61.42 14.06 14.54 

GH01 05-10 556.40 577.19 534.39 494.15 22.02 83.04 14.91 15.00 

GH01 10-15 565.85 553.34 551.52 521.79 14.33 31.55 13.70 14.89 

GH01 30-35 597.00 635.09 546.72 578.59 50.28 56.50 12.41 15.70 

                  

GH02 00-05 625.41 571.52 572.60 500.76 52.82 70.76 10.20 14.88 

GH02 05-10 557.51 544.31 506.63 434.93 50.87 109.37 12.01 14.29 

GH02 10-15 576.55 621.34 539.31 568.62 37.24 52.73 10.09 12.79 

GH02 30-35 578.15 620.27 509.65 543.85 68.51 76.42 11.09 13.97 

                  

GH03 00-05 548.14 596.24 491.23 561.28 56.91 34.96 14.13 12.56 

GH03 05-10 549.82 622.82 517.71 566.34 32.10 56.47 14.24 13.35 

GH03 10-15 556.98 573.58 524.17 532.88 32.81 40.69 11.48 13.89 

GH03 30-35 636.59 581.48 581.78 533.85 54.81 47.63 10.48 12.69 

                  

GH04 00-05 597.79 580.80 564.16 535.20 33.63 45.60 15.73 16.08 

GH04 05-10 576.20 535.16 568.76 497.63 7.44 37.53 17.23 15.75 

GH04 10-15 568.35 557.69 520.20 504.56 48.15 53.13 14.01 12.78 

GH04 30-35 557.26 562.66 494.03 509.69 63.24 52.97 12.67 13.93 

 

  



n 
 

Table 7b: Fractions of P in the sediments in the dry season (cont.). 

Station 
Depth 
(cm) 

TP (μg P.g-1) IP (μg P.g-1) OP (μg P. g-1) AP (μg P.g-1) 

transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 

GH05 00-05 944.75 739.15 915.60 711.10 29.16 28.05 12.85 11.92 

GH05 05-10 672.66 706.92 647.98 669.39 24.68 37.53 9.70 9.39 

GH05 10-15 688.50 557.41 662.70 511.31 25.80 46.11 10.40 9.09 

GH05 30-35 566.84 582.44 517.16 522.60 49.68 59.84 11.66 12.54 

                  

GH06 00-05 574.38 615.70 572.37 574.25 2.02 41.45 12.73 11.51 

GH06 05-10 565.88 540.97 511.55 496.28 54.33 44.69 13.21 14.19 

GH06 10-15 557.80 563.26 533.30 548.49 24.50 14.77 10.34 14.91 

GH06 30-35 563.92 435.93 512.42 398.08 51.50 37.85 17.53 18.99 

                  

GH07 00-05 533.54 528.42 466.12 479.21 67.41 49.20 14.95 13.84 

GH07 05-10 519.22 530.35 456.50 507.61 62.72 22.74 14.62 14.60 

GH07 10-15 548.92 591.86 481.11 582.69 67.80 9.17 15.69 16.12 

GH07 30-35 392.08 409.06 362.14 397.37 29.95 11.69 22.41 19.66 

                  

GH08 00-05 727.23 1210.60 711.10 1183.63 16.12 26.98 9.11 13.78 

GH08 05-10 593.14 1292.02 572.86 1204.95 20.28 87.07 7.68 11.21 

GH08 10-15 543.45 683.06 534.22 656.02 9.23 27.04 5.48 9.53 

GH08 30-35 411.57 418.52 401.81 413.07 9.76 5.45 17.14 9.20 
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Table 8a: Fractions of P in the sediments in the rainy season. 

Station Depth 
TP (μg P.g-1) IP (μg P.g-1) OP (μg P.g-1) AP (μg P.g-1) 

transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 

GH01 00-05 533.8 530.7 494.9 500.6 38.9 30.0 16.5 15.9 

GH01 05-10 531.0 502.1 506.1 477.4 24.9 24.7 15.9 13.7 

GH01 10-15 541.1 531.0 503.3 512.4 37.8 18.6 15.6 13.4 

GH01 30-35 681.2 589.8 631.6 575.2 49.6 14.6 12.0 11.9 

                  

GH02 00-05 581.3 555.6 520.7 483.2 60.6 72.4 11.0 15.2 

GH02 05-10 562.0 534.7 513.4 484.9 48.5 49.8 11.7 14.6 

GH02 10-15 539.6 528.9 508.8 486.3 30.8 42.6 12.2 13.9 

GH02 30-35 571.3 580.8 538.0 533.3 33.3 47.6 11.5 13.3 

                  

GH03 00-05 610.2 545.5 567.9 515.5 42.4 30.0 14.4 13.4 

GH03 05-10 631.9 563.7 591.9 523.2 40.0 40.5 16.4 12.0 

GH03 10-15 617.4 541.4 586.3 498.0 31.1 43.4 14.1 5.9 

GH03 30-35 709.4 603.4 662.9 571.8 46.5 31.6 21.6 11.5 

                  

GH04 00-05 575.5 660.6 529.4 630.1 46.1 30.6 17.3 14.4 

GH04 05-10 566.1 579.9 527.9 530.0 38.2 49.9 17.5 14.3 

GH04 10-15 529.7 542.1 488.4 497.4 41.3 44.7 16.2 15.3 

GH04 30-35 603.2 544.2 549.4 501.3 53.8 42.9 16.4 13.4 
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Table 8b: Fractions of P in the sediments in the rainy season (cont.). 

Station Depth TP (μg P.g-1) IP (μg P.g-1) OP (μg P.g-1) AP (μg P.g-1) 

    transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 

GH05 00-05 882.2 660.7 835.4 623.8 46.8 36.8 14.6 11.3 

GH05 05-10 716.9 708.2 655.0 690.5 62.0 17.7 9.2 9.9 

GH05 10-15 644.2 591.2 582.2 562.1 62.0 29.2 8.8 10.0 

GH05 30-35 567.9 533.9 534.8 497.9 33.1 36.1 12.8 11.0 

                  

GH06 00-05 632.7 617.4 604.8 591.5 27.9 26.0 13.7 13.4 

GH06 05-10 597.5 624.0 556.0 593.4 41.5 30.5 11.0 12.7 

GH06 10-15 582.3 619.7 548.8 588.6 33.5 31.1 10.3 13.5 

GH06 30-35 580.6 493.9 552.2 479.0 28.5 14.8 20.9 17.8 

                  

GH07 00-05 473.2 496.2 452.5 466.4 20.7 29.8 12.9 13.5 

GH07 05-10 492.2 542.5 455.2 530.9 37.0 11.6 13.6 13.1 

GH07 10-15 496.8 528.5 471.9 501.9 24.9 26.6 14.0 14.3 

GH07 30-35 404.7 335.1 395.3 317.8 9.4 17.2 15.3 10.4 

                  

GH08 00-05 587.1 612.3 575.0 578.3 12.1 34.0 4.8 3.2 

GH08 05-10 629.5 599.5 616.9 580.0 12.6 19.5 6.6 3.3 

GH08 10-15 566.4 534.6 539.9 509.2 26.5 25.3 13.4 3.0 

GH08 30-35 547.8 446.6 517.3 431.9 30.6 14.8 7.0 6.9 
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Table 9a: Chitin~FITC in the sediments in the dry and rainy season. 

Site 
Depth 
(cm) 

chitin-FITC (mg/g) 

DRY SEASON RAINY SEASON 

transect 1  transect 2 transect 1  transect 2 

GH01 00-05 56.96 55.49 53.93 51.86 

GH01 05-10 56.56 58.95 63.20 43.66 

GH01 10-15 54.23 61.92 68.72 55.78 

GH01 30-35 57.13 73.14 67.22 53.87 

          

GH02 00-05 51.05 56.41 44.43 47.73 

GH02 05-10 53.20 47.20 47.33 101.63 

GH02 10-15 46.55 45.99 53.98 67.19 

GH02 30-35 63.05 54.17 49.16 79.79 

          

GH03 00-05 52.42 46.24 37.17 67.29 

GH03 05-10 42.77 43.57 35.51 70.80 

GH03 10-15 53.29 48.18 39.28 57.61 

GH03 30-35 83.76 47.26 47.86 106.55 

          

GH04 00-05 52.99 39.81 40.67 78.49 

GH04 05-10 53.60 36.80 41.22 56.24 

GH04 10-15 43.96 31.47 44.99 68.87 

GH04 30-35 52.52 58.75 49.69 67.26 
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Table 9b: Chitin~FITC in the sediments in the dry and rainy season (cont.). 

Site 
Depth 
(cm) 

chitin-FITC (mg/g) 

DRY SEASON RAINY SEASON 

transect 1  transect 2 transect 1  transect 2 

GH05 00-05 35.06 42.68 33.44 43.04 

GH05 05-10 45.41 36.15 37.49 45.86 

GH05 10-15 38.79 43.11 42.79 60.62 

GH05 30-35 65.14 56.84 42.01 51.34 

          

GH06 00-05 51.76 47.12 53.27 59.48 

GH06 05-10 47.65 65.11 58.64 74.77 

GH06 10-15 25.58 64.05 58.58 52.33 

GH06 30-35 51.43 62.76 59.40 64.14 

          

GH07 00-05 53.63 35.00 37.30 32.47 

GH07 05-10 42.47 44.68 34.12 30.07 

GH07 10-15 44.02 38.66 33.61 29.66 

GH07 30-35 46.76 38.03 31.79 13.63 

          

GH08 00-05 14.51 19.73 8.58 16.29 

GH08 05-10 13.17 18.79 12.63 16.26 

GH08 10-15 15.27 15.33 12.23 8.14 

GH08 30-35 41.37 18.87 12.31 15.12 

 

  



s 
 

Table 10a: Glucosamine and galactosamine in the sediments in the dry and rainy season. 

Sample 
Depth 
(cm) 

DRY SEASON RAINY SEASON 

Gluam (μg/g) Galam (μg/g) Gluam (μg/g) Galam (μg/g) 

transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 

GH01 00-05 216.54 210.30 135.69 130.62 176.76 222.19 111.55 132.66 

GH01 05-10 147.30 178.60 98.09 118.03 138.80 152.61 91.57 98.33 

GH01 10-15 156.84 159.97 106.81 106.87 146.18 151.31 96.62 95.58 

GH01 30-35 147.99 152.83 108.58 114.19 143.39 149.38 107.63 104.15 

                  

GH02 00-05 254.74 240.95 161.96 145.68 217.94 203.65 126.87 116.62 

GH02 05-10 203.55 160.29 128.31 109.98 149.53 131.99 89.22 78.86 

GH02 10-15 137.36 131.52 91.24 93.95 131.82 123.77 86.15 86.85 

GH02 30-35 152.61 159.25 106.89 109.99 149.91 152.31 101.16 98.46 

                  

GH03 00-05 161.08 170.38 103.02 109.02 83.44 146.15 48.38 76.60 

GH03 05-10 147.12 204.74 99.71 137.25 81.38 180.31 44.83 113.32 

GH03 10-15 168.93 169.42 113.71 116.78 73.59 174.38 47.38 116.45 

GH03 30-35 159.31 235.28 116.56 166.59 96.12 89.42 65.65 58.52 

                  

GH04 00-05 217.78 180.19 138.97 111.83 200.98 157.54 131.09 94.77 

GH04 05-10 189.07 171.61 125.35 111.86 186.87 154.48 117.48 91.17 

GH04 10-15 165.55 137.45 112.05 93.00 166.86 141.56 109.21 86.04 

GH04 30-35 167.89 162.39 119.91 110.22 148.43 182.16 106.13 119.58 
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Table 10b: Glucosamine and galactosamine in the sediments in the dry and rainy season (cont.). 

Sample 
Depth 
(cm) 

DRY SEASON RAINY SEASON 

Gluam (μg/g) Galam (μg/g) Gluam (μg/g) Galam (μg/g) 

transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 transect 1 transect 2 

GH05 00-05 129.58 111.80 85.04 82.02 89.72 163.44 53.32 108.80 

GH05 05-10 216.01 129.87 141.26 96.18 171.23 54.15 112.46 39.56 

GH05 10-15 104.69 126.29 74.19 86.34 43.39 58.61 28.79 39.73 

GH05 30-35 157.57 158.79 102.72 104.53 116.64 64.88 80.03 42.78 

                  

GH06 00-05 191.64 171.44 129.45 114.47 125.83 65.56 92.87 44.57 

GH06 05-10 159.56 223.71 106.14 147.65 133.25 80.36 91.94 55.00 

GH06 10-15 66.53 226.24 46.42 155.37 71.24 74.41 51.68 51.42 

GH06 30-35 167.86 228.38 112.59 155.90 99.38 62.42 69.77 43.86 

                  

GH07 00-05 238.65 165.16 153.05 106.04 144.47 124.57 96.81 79.81 

GH07 05-10 277.43 208.23 179.53 133.94 155.89 173.92 102.74 114.61 

GH07 10-15 286.14 188.54 177.22 126.14 239.69 193.88 158.95 128.31 

GH07 30-35 105.97 43.16 76.62 35.10 64.85 25.76 49.35 30.28 

                  

GH08 00-05 26.48 32.13 28.67 36.59 25.71 24.90 25.03 23.83 

GH08 05-10 16.87 34.90 18.15 40.95 16.32 38.34 16.60 38.86 

GH08 10-15 11.58 18.18 11.24 20.38 6.47 11.76 6.40 11.98 

GH08 30-35 262.54 58.35 169.96 44.62 79.17 41.23 73.78 39.43 
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Table 11a: Mole % of the amino acids in the sediments of transect 1 in the dry season. 

Station 
Depth 
(cm) Tau Asp Thr Ser Glu Gly Ala Val Met Ile Leu Tyr Phe b-Ala 

g-
Aba His Orn Lys Arg 

GH01 00-05 0.18 13.42 5.93 6.31 12.72 15.04 10.69 6.38 0.11 3.77 6.22 0.81 3.28 1.96 1.41 1.41 0.52 4.35 3.11 

GH01 05-10 0.23 13.50 5.60 5.83 13.34 14.79 10.67 6.16 0.14 3.64 5.93 0.51 3.15 2.40 1.81 1.32 0.59 4.45 3.04 

GH01 10-15 0.24 14.20 4.85 5.29 13.96 15.10 10.81 6.01 0.00 3.42 5.54 0.26 2.93 2.67 1.95 1.39 0.62 4.50 2.78 

GH01 30-35 0.25 14.65 5.15 5.09 13.65 15.01 10.24 5.75 0.00 3.04 4.71 0.00 2.30 3.69 2.65 1.25 0.70 5.24 2.45 

GH02 00-05 0.15 14.26 6.35 6.74 12.92 13.81 10.84 6.72 0.15 4.00 6.63 1.35 3.47 1.27 0.86 1.36 0.40 3.79 3.22 

GH02 05-10 0.18 14.49 6.26 6.34 12.95 14.09 10.74 6.43 0.00 3.70 5.94 0.53 3.16 1.92 1.36 1.44 0.50 4.34 2.99 

GH02 10-15 0.23 14.04 5.59 5.89 13.65 14.61 10.44 6.10 0.00 3.37 5.52 0.18 2.84 2.54 1.84 1.56 0.57 4.58 3.00 

GH02 30-35 0.22 13.98 5.64 5.69 13.43 14.64 10.44 6.10 0.00 3.50 5.57 0.18 2.86 2.71 1.98 1.45 0.60 4.67 2.82 

GH03 00-05 0.17 13.94 6.15 6.37 12.26 14.33 10.48 6.92 0.12 3.93 6.32 0.83 3.28 1.51 1.17 1.55 0.95 4.46 3.05 

GH03 05-10 0.17 14.27 6.04 6.12 12.42 14.42 10.36 6.64 0.13 3.69 5.86 0.54 3.10 1.76 1.33 1.57 1.04 4.79 2.94 

GH03 10-15 0.19 14.52 6.00 5.93 12.77 14.38 10.37 6.45 0.00 3.33 5.24 0.31 2.88 2.07 1.64 1.69 1.18 4.97 2.81 

GH03 30-35 0.23 14.95 5.47 5.31 12.95 14.36 10.17 6.32 0.00 3.20 4.89 0.21 2.56 2.78 2.20 1.64 1.40 5.09 2.37 

GH04 00-05 0.17 13.78 6.10 6.42 12.36 14.48 10.42 6.69 0.14 3.82 6.09 0.87 3.19 1.66 1.33 1.55 1.06 4.55 3.08 

GH04 05-10 0.20 14.23 5.86 5.72 12.93 14.40 10.53 6.45 0.00 3.51 5.52 0.32 2.88 2.18 1.89 1.55 1.18 4.71 2.87 

GH04 10-15 0.21 14.71 5.82 5.58 13.47 14.29 10.55 6.31 0.00 3.41 5.34 0.25 2.81 2.22 1.93 1.50 1.19 4.52 2.81 

GH04 30-35 0.29 14.99 5.41 5.23 13.86 14.40 10.74 6.30 0.00 3.12 4.82 0.23 2.56 2.64 2.07 1.50 1.41 4.94 2.51 
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Table 11b: Mole % of the amino acids in the sediments of transect 1 in the dry season (cont.). 

Station 
Depth 
(cm) Tau Asp Thr Ser Glu Gly Ala Val Met Ile Leu Tyr Phe b-Ala 

g-
Aba His Orn Lys Arg 

GH05 00-05 0.18 14.34 5.86 6.27 12.38 14.51 9.96 6.26 0.00 3.33 5.46 0.22 2.95 1.75 1.00 1.92 1.06 4.85 3.05 

GH05 05-10 0.16 14.34 6.14 6.46 12.45 14.85 10.02 6.56 0.00 3.71 5.84 0.63 3.10 1.60 1.06 1.78 0.90 4.78 3.10 

GH05 10-15 0.19 14.46 5.77 5.88 12.87 14.06 10.04 6.27 0.00 3.27 5.16 0.25 2.80 2.18 1.59 1.81 1.17 5.13 2.87 

GH05 30-35 0.25 17.17 5.81 5.66 0.98 16.17 12.12 7.26 0.00 3.70 5.72 0.18 3.07 3.38 2.60 1.92 1.55 5.40 2.98 

                    

GH06 00-05 0.19 14.44 6.08 6.17 12.25 15.06 9.93 6.37 0.10 3.65 5.53 1.25 3.01 2.00 1.46 1.62 1.01 4.82 2.81 

GH06 05-10 0.49 13.98 6.09 6.17 11.77 13.94 10.46 6.72 0.16 3.84 5.88 1.22 3.09 1.89 1.26 1.94 1.07 5.09 2.82 

GH06 10-15 0.17 14.76 6.23 6.20 11.79 14.31 10.15 6.70 0.15 3.60 5.50 1.15 3.04 1.57 1.18 1.84 1.00 4.96 2.76 

GH06 30-35 0.19 15.18 6.09 6.00 12.20 14.64 10.08 6.40 0.20 3.47 5.15 1.09 2.84 2.05 1.71 1.80 1.19 5.04 2.52 

                    

GH07 00-05 0.26 14.18 6.46 6.73 11.60 13.95 10.24 6.50 0.00 3.81 5.93 1.58 3.31 1.67 1.07 1.51 0.90 4.82 3.26 

GH07 05-10 0.23 14.13 6.50 6.84 11.34 14.29 10.28 6.51 0.00 3.76 5.88 1.06 3.28 1.65 1.18 1.53 0.84 4.77 3.22 

GH07 10-15 0.26 14.29 6.38 6.61 11.34 14.29 10.18 6.63 0.00 3.85 5.87 1.71 3.27 1.77 1.18 1.54 0.89 4.76 3.14 

GH07 30-35 0.39 14.06 5.68 5.48 10.87 14.69 9.88 6.59 0.00 3.78 5.62 1.60 3.20 2.44 1.81 1.78 1.18 5.04 3.03 

                    

GH08 00-05 0.26 13.69 6.32 5.83 10.64 13.47 10.22 6.89 0.64 3.93 6.27 0.76 3.55 1.37 0.62 1.81 0.69 4.22 3.51 

GH08 05-10 0.27 12.45 6.52 6.07 9.98 13.71 10.41 7.12 0.79 4.05 6.51 1.24 3.67 1.32 0.55 1.86 0.69 4.32 3.68 

GH08 10-15 0.28 11.62 6.73 6.35 9.78 13.76 10.60 7.06 0.97 4.10 6.78 1.88 3.69 1.12 0.47 1.76 0.78 4.75 3.74 

GH08 30-35 0.23 13.09 5.93 6.42 10.98 14.75 10.12 7.07 0.00 4.22 6.83 1.70 3.70 1.58 0.96 1.45 0.81 4.62 3.24 
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Table 12a: Mole % of the amino acids in the sediments of transect 1 in the rainy season. 

Station 
Depth 
(cm) TAU ASP THR SER GLU GLY ALA VAL MET ILE LEU TYR PHE 

b-
ALA 

g-
ABA HIS ORN LYS ARG 

GH01 00-05 0.40 13.21 5.87 5.93 12.63 13.95 10.31 6.40 0.53 3.90 5.98 0.97 3.33 2.20 1.76 1.60 0.94 4.10 3.24 

GH01 05-10 0.42 13.34 5.64 5.78 13.03 14.01 10.33 6.21 0.46 3.71 5.67 0.76 3.17 2.62 2.13 1.51 1.02 4.17 3.12 

GH01 10-15 0.43 13.76 5.50 5.60 13.03 14.17 10.17 6.10 0.00 3.63 5.47 0.62 3.05 2.95 2.44 1.42 1.10 4.38 2.93 

GH01 30-35 0.46 14.07 5.27 5.18 13.06 14.28 9.56 6.15 0.00 3.41 4.98 0.37 2.18 3.72 2.91 1.31 1.28 4.85 2.63 

                                        

GH02 00-05 0.27 12.55 6.02 6.59 12.18 13.81 10.45 6.90 0.94 4.29 7.05 1.77 3.76 1.35 0.90 1.60 0.65 3.78 3.56 

GH02 05-10 0.26 14.92 6.98 7.36 0.75 15.92 11.56 7.56 0.78 4.60 7.48 1.43 4.00 1.82 1.24 1.73 0.84 4.70 3.86 

GH02 10-15 0.40 13.15 5.75 6.14 12.93 13.78 10.07 6.29 0.43 3.75 5.88 0.73 3.23 2.27 1.83 1.77 0.97 4.24 3.24 

GH02 30-35 0.40 13.67 5.74 5.74 12.84 13.94 10.21 6.33 0.40 3.72 5.62 0.57 3.12 2.60 2.12 1.65 1.03 4.14 2.92 

                                        

GH03 00-05 0.43 12.41 5.81 6.30 11.27 14.25 9.89 6.78 1.04 4.47 6.87 1.83 3.76 1.58 1.12 1.70 0.90 4.17 3.39 

GH03 05-10 0.23 12.96 6.13 6.65 11.46 14.36 10.05 6.86 0.83 4.46 7.05 1.43 3.70 1.31 0.87 1.68 0.77 4.19 3.29 

GH03 10-15 0.44 13.08 5.93 6.29 11.36 13.97 9.86 6.54 1.06 4.29 6.45 1.65 3.57 1.88 1.36 1.61 0.95 4.31 3.19 

GH03 30-35 0.45 13.58 5.80 5.97 11.32 13.71 9.90 6.68 0.90 4.22 6.20 1.66 3.52 2.30 1.73 1.57 1.07 4.24 2.83 

                                        

GH04 00-05 0.35 13.23 6.02 6.43 11.91 14.27 10.12 6.43 0.89 4.02 6.25 1.33 3.46 1.85 1.42 1.43 0.90 4.29 3.22 

GH04 05-10 0.30 13.12 5.90 6.23 12.58 14.49 10.32 6.36 0.57 3.94 6.25 0.90 3.33 2.07 1.59 1.37 0.86 4.10 3.28 

GH04 10-15 0.38 13.38 5.85 5.87 12.49 14.44 10.10 6.24 0.41 3.71 5.63 0.63 3.11 2.65 2.11 1.36 1.03 4.57 3.08 

GH04 30-35 0.51 14.04 5.27 5.21 13.14 14.43 9.93 6.12 0.00 3.48 5.12 0.33 2.64 3.39 2.73 1.33 1.25 4.80 2.79 

 

  



x 
 

Table 12b: Mole % of the amino acids in the sediments of transect 1 in the rainy season (cont.). 

Station 
Depth 
(cm) Tau Asp Thr Ser Glu Gly Ala Val Met Ile Leu Tyr Phe b-Ala 

g-
Aba His Orn Lys Arg 

GH05 00-05 0.37 12.92 6.01 6.55 11.64 14.14 9.83 6.70 0.64 4.21 6.46 1.02 3.58 1.43 1.04 1.76 0.79 4.43 3.57 

GH05 05-10 0.32 13.15 5.79 6.44 11.62 15.56 9.61 6.39 0.77 4.00 6.17 1.29 3.45 1.55 1.09 1.68 0.76 4.46 3.40 

GH05 10-15 0.57 12.92 5.55 5.95 11.61 14.59 9.63 6.36 0.90 3.99 6.01 1.02 3.43 2.06 1.44 1.84 1.09 4.45 3.34 

GH05 30-35 0.38 13.61 5.59 5.73 12.66 14.20 9.80 6.18 0.42 3.73 5.63 0.54 3.06 2.68 2.16 1.50 1.02 4.42 3.05 

                                        

GH06 00-05 0.50 13.64 5.26 5.45 12.27 14.14 9.48 6.17 0.58 3.64 5.29 0.70 2.96 3.28 2.46 1.52 1.21 4.65 2.86 

GH06 05-10 0.50 13.56 5.34 5.50 12.04 13.84 9.63 6.33 0.59 3.79 5.50 0.79 3.06 3.21 2.41 1.57 1.17 4.57 2.83 

GH06 10-15 0.46 13.97 5.52 5.72 12.07 14.19 9.81 6.04 0.72 3.65 5.51 0.93 3.06 3.04 2.06 1.52 1.21 4.40 2.69 

GH06 30-35 0.51 13.34 5.73 5.98 11.15 13.90 9.79 6.50 1.12 4.11 6.33 1.84 3.62 2.16 1.51 1.78 1.14 4.10 2.92 

                                        

GH07 00-05 0.43 13.30 6.16 6.40 11.22 13.99 9.98 6.20 0.94 3.89 5.95 1.85 3.41 1.96 1.36 1.64 0.97 4.68 3.37 

GH07 05-10 0.38 13.50 6.23 6.56 11.17 14.08 10.00 6.24 0.89 3.91 6.01 1.86 3.41 1.85 1.26 1.57 0.90 4.70 3.30 

GH07 10-15 0.34 13.74 6.29 6.67 11.26 14.32 9.98 6.22 0.62 3.85 5.89 1.93 3.34 1.75 1.21 1.58 0.85 4.68 3.24 

GH07 30-35 0.56 13.22 5.70 5.78 10.69 14.23 9.59 6.31 0.89 3.96 5.79 1.91 3.41 2.37 1.60 1.74 1.17 4.69 3.00 

                                        

GH08 00-05 0.24 12.16 6.81 6.54 10.20 14.06 10.43 6.88 0.67 4.05 6.55 1.43 3.61 1.16 0.69 1.62 0.78 4.73 3.78 

GH08 05-10 0.25 11.72 6.76 6.48 9.84 14.18 10.47 6.82 0.80 3.98 6.53 1.75 3.67 1.13 0.59 1.71 0.83 4.60 3.72 

GH08 10-15 0.28 12.86 6.56 6.26 10.53 13.95 10.30 6.65 0.84 3.91 6.40 1.64 3.57 1.13 0.59 1.74 0.84 4.46 3.56 

GH08 30-35 0.31 12.95 6.22 6.44 10.54 14.79 9.49 6.73 0.00 3.81 6.04 1.74 3.46 1.32 0.75 2.05 0.99 4.41 3.46 
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Table 13a: Mole % of the amino acids in the sediments of transect 2 in the dry season. 

Station 
Depth 
(cm) Tau Asp Thr Ser Glu Gly Ala Val Met Ile Leu Tyr Phe b-Ala 

g-
Aba His Orn Lys Arg 

GH01 00-05 0.35 13.38 5.75 6.11 12.63 14.34 10.38 6.37 0.00 3.78 6.16 1.02 3.40 2.13 1.59 1.44 1.02 4.05 3.36 

GH01 05-10 0.36 13.17 5.68 5.98 12.79 14.52 10.55 6.29 0.00 3.68 5.97 0.78 3.31 2.23 1.68 1.49 1.08 4.09 3.30 

GH01 10-15 0.41 13.39 5.54 5.63 12.91 14.48 10.40 6.18 0.00 3.55 5.62 0.59 3.14 2.64 2.03 1.51 1.19 4.24 3.09 

GH01 30-35 0.43 14.28 5.08 5.04 13.48 14.38 9.94 5.87 0.00 3.24 4.86 0.41 2.54 3.48 2.59 1.42 1.39 4.72 2.68 

                    

GH02 00-05 0.25 13.76 6.07 6.54 12.64 13.33 10.44 6.79 0.00 4.00 6.71 1.14 3.54 1.59 1.20 1.51 0.83 3.72 3.31 

GH02 05-10 0.32 14.37 5.67 5.79 13.34 13.84 10.26 6.23 0.00 3.48 5.53 0.46 3.02 2.45 1.81 1.56 1.10 4.30 2.93 

GH02 10-15 0.45 13.84 5.13 5.25 13.61 14.20 10.21 6.01 0.00 3.32 5.16 0.44 2.77 3.13 2.25 1.50 1.29 4.57 2.88 

GH02 30-35 0.41 13.85 5.57 5.55 13.09 14.35 10.36 6.12 0.00 3.44 5.40 0.41 2.61 2.89 2.05 1.45 1.25 4.41 2.94 

                    

GH03 00-05 0.36 13.01 5.90 6.35 11.62 14.45 10.12 6.57 0.60 3.94 6.32 1.27 3.50 1.92 1.33 1.55 0.98 4.24 3.20 

GH03 05-10 0.36 13.73 5.93 6.22 11.61 14.46 10.04 6.47 0.00 3.84 5.96 1.32 3.36 2.04 1.52 1.55 1.05 4.49 3.11 

GH03 10-15 0.39 13.90 5.72 6.07 11.84 14.70 10.06 6.38 0.00 3.78 5.78 1.49 3.24 2.43 1.77 1.47 1.10 4.32 2.95 

GH03 30-35 0.39 13.92 5.72 6.09 11.58 14.43 10.17 6.68 0.00 3.99 6.29 1.66 3.52 2.01 1.51 1.47 1.08 4.05 2.86 

                    

GH04 00-05 0.36 12.51 5.83 6.19 12.15 14.51 10.45 6.56 0.58 3.88 6.23 0.92 3.41 2.12 1.52 1.43 1.03 4.16 3.33 

GH04 05-10 0.39 13.48 5.77 5.75 12.69 14.44 10.51 6.32 0.00 3.57 5.62 0.61 3.11 2.55 1.89 1.50 1.13 4.35 3.09 

GH04 10-15 0.38 13.83 5.64 5.65 13.26 14.47 10.43 6.10 0.00 3.46 5.40 0.49 3.00 2.59 1.99 1.39 1.14 4.24 3.07 

GH04 30-35 0.47 14.03 5.42 5.33 13.18 14.10 10.30 6.07 0.00 3.41 5.20 0.54 2.92 2.98 2.25 1.47 1.39 4.45 2.88 
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Table 13b: Mole % of the amino acids in the sediments of transect 2 in the dry season (cont.). 

Station 
Depth 
(cm) Tau Asp Thr Ser Glu Gly Ala Val Met Ile Leu Tyr Phe 

b-
Ala 

g-
Aba His Orn Lys Arg 

GH05 00-05 0.40 13.29 5.59 6.16 12.06 15.11 9.84 6.44 0.00 3.75 5.86 0.84 3.30 2.08 1.32 1.66 1.03 4.46 3.37 

GH05 05-10 0.35 13.56 5.58 6.07 12.47 15.17 9.89 6.38 0.00 3.69 5.76 0.72 3.19 1.99 1.44 1.57 0.95 4.37 3.29 

GH05 10-15 0.40 13.74 5.51 5.72 13.05 14.47 10.11 6.16 0.00 3.54 5.59 0.58 3.11 2.43 1.84 1.51 1.10 4.31 3.15 

GH05 30-35 0.41 14.38 5.34 5.32 13.27 13.97 10.22 6.12 0.00 3.49 5.29 0.48 2.93 2.94 2.34 1.43 1.20 4.34 2.89 

                      

GH06 00-05 0.42 13.74 5.58 5.82 11.80 14.40 9.96 6.66 0.00 3.96 6.09 1.09 3.42 2.29 1.73 1.43 1.02 4.30 2.94 

GH06 05-10 0.40 13.69 5.73 6.07 11.55 14.22 10.08 6.66 0.00 3.95 6.21 1.50 3.47 2.11 1.47 1.58 1.02 4.37 3.00 

GH06 10-15 0.40 13.81 5.74 5.94 11.45 14.18 10.02 6.74 0.00 4.00 6.24 1.70 3.52 2.01 1.48 1.69 1.11 4.31 2.94 

GH06 30-35 0.43 14.03 5.67 5.81 11.38 14.48 9.97 6.67 0.00 3.76 5.93 1.75 3.53 2.07 1.47 1.56 1.19 4.56 3.00 

                      

GH07 00-05 0.31 13.50 6.18 6.54 11.49 14.32 10.18 6.63 0.00 3.92 6.01 1.49 3.42 1.80 1.36 1.31 0.90 4.89 3.36 

GH07 05-10 0.32 13.70 6.16 6.46 11.31 14.35 10.11 6.61 0.00 3.89 5.94 1.40 3.35 1.87 1.38 1.46 0.85 4.80 3.32 

GH07 10-15 0.36 13.65 5.92 6.35 11.22 14.59 9.95 6.69 0.00 3.97 6.05 1.50 3.44 1.88 1.44 1.33 1.02 4.72 3.19 

GH07 30-35 0.41 13.82 5.64 5.56 10.92 14.82 9.73 6.43 0.73 3.80 5.56 1.63 3.29 2.39 1.64 1.47 1.07 4.72 2.96 

                      

GH08 00-05 0.23 13.46 6.00 5.40 10.54 13.82 10.16 6.80 0.00 3.89 6.19 0.47 3.49 1.52 0.70 1.48 0.61 4.08 3.59 

GH08 05-10 0.28 13.42 5.93 5.28 10.54 13.72 10.05 6.98 0.00 3.96 6.21 0.48 3.47 1.63 0.79 1.54 0.66 4.01 3.81 

GH08 10-15 0.26 13.12 6.12 5.75 10.63 14.12 10.18 6.86 0.57 3.95 6.36 0.95 3.61 1.44 0.64 1.59 0.64 4.17 3.70 

GH08 30-35 0.28 12.95 5.71 6.39 11.03 14.55 9.85 7.45 0.00 4.41 7.21 1.56 3.93 1.29 0.71 1.39 0.70 4.31 3.42 
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Table 14a: Mole % of the amino acids in the sediments of transect 2 in the rainy season. 

Station 
Depth 
(cm) Tau Asp Thr Ser Glu Gly Ala Val Met Ile Leu Tyr Phe b-Ala 

g-
Aba His Orn Lys Arg 

GH01 00-05 0.29 13.33 5.86 5.94 12.62 14.48 10.46 6.28 0.31 3.67 5.80 0.60 3.12 2.58 1.85 1.51 1.08 4.29 3.10 

GH01 05-10 0.32 13.69 5.75 5.66 13.12 14.28 10.47 6.10 0.32 3.53 5.49 0.42 2.98 2.75 2.08 1.52 1.15 4.33 3.08 

GH01 10-15 0.32 13.72 5.71 5.60 12.82 14.35 10.56 6.21 0.00 3.55 5.52 0.41 2.98 2.93 2.20 1.54 1.16 4.43 2.95 

GH01 30-35 0.32 14.06 5.58 5.41 12.64 14.55 10.11 6.27 0.30 3.45 5.21 0.44 2.78 3.42 2.46 1.40 1.29 4.65 2.64 

                                        

GH02 00-05 0.28 12.85 6.02 6.60 12.55 13.41 10.44 6.67 0.82 4.20 7.09 1.53 3.73 1.60 1.12 1.36 0.73 3.54 3.48 

GH02 05-10 0.28 13.27 6.01 6.25 12.69 13.87 9.98 6.44 0.31 3.76 6.14 0.63 3.28 2.29 1.69 1.58 0.98 4.32 3.19 

GH02 10-15 0.40 13.62 5.55 5.84 13.06 13.72 9.98 6.11 0.43 3.62 5.65 0.64 3.10 2.65 2.06 1.32 1.08 4.54 3.03 

GH02 30-35 0.43 13.84 5.74 5.72 12.75 13.95 10.03 6.14 0.00 3.61 5.44 0.47 2.87 3.18 2.32 1.04 1.13 4.68 2.83 

                                        

GH03 00-05 0.24 13.01 6.18 6.64 11.86 14.24 10.29 6.69 0.65 4.16 6.94 1.42 3.64 1.54 0.93 1.57 0.80 3.93 3.31 

GH03 05-10 0.23 13.34 6.18 6.61 12.10 14.26 10.08 6.63 0.51 4.07 6.72 1.03 3.55 1.56 1.08 1.53 0.85 4.05 3.28 

GH03 10-15 0.27 13.77 6.12 6.25 12.15 14.30 9.91 6.37 0.37 3.77 6.01 0.66 3.24 2.11 1.49 1.58 1.01 4.56 3.07 

GH03 30-35 0.35 14.03 5.48 5.11 11.44 14.28 9.64 7.00 0.56 4.20 5.80 1.35 3.21 2.85 2.29 1.47 1.20 4.56 2.62 

                                        

GH04 00-05 0.27 13.15 6.08 6.41 12.16 14.45 10.14 6.50 0.40 3.84 6.29 0.83 3.37 2.08 1.28 1.65 0.97 4.21 3.19 

GH04 05-10 0.22 12.99 6.26 6.65 11.92 14.43 10.31 6.62 0.49 3.98 6.66 0.83 3.51 1.83 1.16 1.55 0.88 4.27 3.22 

GH04 10-15 0.27 13.75 5.98 6.01 12.62 14.39 10.52 6.15 0.27 3.53 5.69 0.47 3.05 2.55 1.73 1.53 1.05 4.46 3.04 

GH04 30-35 0.32 14.14 5.68 5.49 12.86 14.37 10.21 6.12 0.28 3.39 5.26 0.33 2.83 3.11 2.21 1.52 1.25 4.58 2.77 
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Table 14b: Mole % of the amino acids in the sediments of transect 2 in the rainy season (cont.). 

Station 
Depth 
(cm) Tau Asp Thr Ser Glu Gly Ala Val Met Ile Leu Tyr Phe b-Ala 

g-
Aba His Orn Lys Arg 

GH05 00-05 0.31 13.36 6.14 6.74 12.05 14.91 9.90 6.30 0.51 3.88 6.17 0.96 3.39 1.75 1.15 1.22 0.80 4.50 3.32 

GH05 05-10 0.41 12.63 5.77 5.83 11.85 14.35 9.78 6.70 0.50 4.17 6.02 0.82 3.33 2.09 1.68 1.13 0.98 4.96 3.35 

GH05 10-15 0.38 13.66 5.64 5.38 12.63 13.98 9.86 6.63 0.41 4.07 5.84 0.66 3.19 2.50 2.21 0.98 0.95 4.59 3.09 

GH05 30-35 0.46 13.70 5.60 5.25 12.57 13.71 9.68 6.47 0.51 3.99 5.63 0.65 3.15 2.98 2.62 0.82 1.14 4.61 2.96 

                                      

GH06 00-05 0.36 13.99 5.82 5.53 11.43 14.37 9.77 6.70 0.83 4.25 5.82 1.55 3.27 2.35 1.93 0.95 1.01 5.06 2.94 

GH06 05-10 0.47 13.65 5.76 5.50 11.30 14.21 9.74 6.52 0.92 4.24 5.74 1.68 3.31 2.58 2.13 0.86 1.15 4.93 2.94 

GH06 10-15 0.56 13.33 5.67 5.62 11.15 13.74 9.58 6.69 0.88 4.37 5.99 1.82 3.44 2.46 1.99 0.89 1.28 4.93 3.05 

GH06 30-35 0.52 13.70 5.58 5.24 11.18 14.22 9.61 6.65 0.92 4.35 5.78 1.76 3.35 2.67 2.22 0.84 1.23 5.03 2.86 

                                      

GH07 00-05 0.39 13.20 6.46 6.64 11.07 14.09 10.04 6.39 0.89 4.04 6.12 1.83 3.45 1.81 1.35 1.09 0.62 5.01 3.37 

GH07 05-10 0.36 13.47 6.44 6.70 11.13 14.16 10.05 6.36 0.72 3.99 6.01 1.91 3.40 1.75 1.24 1.07 0.92 4.88 3.26 

GH07 10-15 0.35 13.52 6.47 6.73 11.19 14.24 10.08 6.43 0.62 4.02 6.11 1.87 3.43 1.72 1.23 1.07 0.64 4.88 3.29 

GH07 30-35 0.44 13.45 6.36 6.84 10.00 13.81 9.25 6.49 0.90 4.01 6.05 1.82 3.53 1.88 0.96 1.22 1.03 4.69 2.95 

                                      

GH08 00-05 0.27 11.11 7.01 6.80 9.87 14.32 10.79 7.08 0.81 4.17 6.79 1.64 3.76 1.15 0.71 1.78 0.80 5.02 3.94 

GH08 05-10 0.36 12.13 6.83 6.66 10.68 13.53 9.80 6.75 0.91 4.17 6.60 1.75 3.72 1.23 0.79 1.17 0.82 4.74 3.78 

GH08 10-15 0.30 12.68 6.72 6.40 10.57 14.29 10.47 6.83 0.87 3.95 6.46 1.91 3.63 1.14 0.63 1.85 0.90 4.57 3.74 

GH08 30-35 0.49 12.90 6.53 6.25 10.40 14.01 9.76 6.46 1.08 4.15 6.16 2.26 3.53 1.42 0.88 1.17 1.08 4.72 3.38 
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Table 15: Mole % of amino acids in the plant materials in the dry season. 

Station Plant 
MOLE 

% 

Tau Asp Thr Ser Glu Gly Ala Val Met Ile 
trs. 
1 

trs. 
2 

trs.  
1 

trs.  
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs.  
1 

trs.  
2 

trs.  
1 

trs.  
2 

trs. 
1 

trs.  
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

GH01 Sesuvium stem 0.36 0.23 9.97 9.99 5.07 5.28 6.40 7.36 15.44 13.27 10.88 11.54 9.99 10.52 7.19 7.29 0.68 0.57 4.40 4.33 

GH01 Sesuvium leaf 0.29 0.23 10.12 10.05 5.08 5.19 7.01 6.88 13.15 12.41 12.90 13.02 9.43 10.17 6.51 6.89 1.14 0.47 4.41 4.60 

GH02 Sesuvium stem 0.39 0.28 10.55 9.43 4.86 4.78 6.98 6.13 19.01 18.03 10.20 10.62 9.57 9.82 6.59 7.34 0.00 0.00 3.74 4.39 

GH02 Sesuvium leaf 0.29 0.25 9.98 10.07 5.01 5.13 6.46 6.90 13.81 14.12 12.69 12.49 9.44 9.62 7.27 6.70 0.00 1.24 4.89 4.53 

GH02 Avicennia leaf 0.31 0.24 11.13 10.94 5.95 5.95 6.50 6.97 11.26 11.36 12.07 12.51 9.75 9.94 7.92 7.44 0.53 0.48 5.45 5.04 

GH04 Lumnitzera leaf 0.20 0.30 10.34 10.25 5.53 5.44 6.75 6.62 11.49 12.28 11.88 11.78 9.49 9.35 7.04 7.09 0.42 0.00 4.92 4.91 

GH05 Lumnitzera leaf 0.19 0.19 10.90 10.74 6.01 5.36 6.73 5.95 11.07 10.83 11.41 11.66 9.77 9.42 7.12 7.72 0.37 0.00 5.10 5.52 

GH05 Avicennia leaf   0.29   11.57   6.20   7.00   11.64   11.79   9.90   7.46   0.47   4.97 

GH06 Avicennia leaf 0.24 0.23 10.97 11.43 5.82 5.79 6.16 6.32 11.51 11.43 11.91 11.96 9.96 9.67 8.03 7.71 0.40 0.53 5.47 5.33 

 

Station Plant 
MOLE 

% 

Leu Tyr Phe b-Ala g-Aba His Orn Lys Arg 
trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

GH01 Sesuvium stem 6.67 7.52 3.09 3.18 3.77 4.00 0.42 0.33 1.28 1.35 2.26 2.66 0.45 0.00 4.44 4.55 5.55 4.30 

GH01 Sesuvium leaf 7.61 8.23 3.06 2.60 4.16 4.33 0.36 0.32 0.95 1.31 2.38 2.40 0.00 0.00 4.32 4.66 5.97 4.74 

GH02 Sesuvium stem 6.20 6.72 2.96 2.36 3.57 3.70 0.47 0.47 1.67 1.72 2.63 2.51 0.00 0.47 4.17 4.22 4.26 4.08 

GH02 Sesuvium leaf 7.84 8.11 1.72 3.06 4.22 4.36 0.41 0.33 1.39 1.00 2.35 2.30 0.56 0.00 4.39 4.01 4.86 4.51 

GH02 Avicennia leaf 9.49 9.93 2.70 2.66 4.61 4.70 0.29 0.30 0.45 0.44 1.69 1.88 0.00 0.36 3.68 3.33 4.52 4.40 

GH04 Lumnitzera leaf 9.21 9.04 3.16 2.85 4.85 4.81 0.27 0.40 0.46 0.73 2.52 2.62 0.27 0.00 4.94 4.74 5.10 4.99 

GH05 Lumnitzera leaf 9.52 9.61 2.97 2.96 5.02 5.11 0.24 0.31 0.33 0.47 2.34 2.47 0.27 0.00 4.70 5.12 4.73 4.86 

GH05 Avicennia leaf   9.70   2.85   4.79   0.32   0.74   1.65   0.00   3.13   4.29 

GH06 Avicennia leaf 9.79 9.58 2.80 3.07 4.75 4.71 0.28 0.43 0.82 0.77 1.71 1.65 0.26 0.23 3.86 3.65 4.46 4.59 

 



dd 
 

Table 16: Mole % of amino acids in the plant materials in the rainy season. 

Station Plant 
MOLE 

% 

Tau Asp Thr Ser Glu Gly Ala Val Met Ile 
trs. 
1 

trs. 
2 

trs. 
 1 

trs.  
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
 1 

trs. 
 2 

trs. 
 1 

trs. 
 2 

trs. 
 1 

trs. 
 2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

GH01 Sesuvium stem 0.15 0.18 9.24 9.25 5.00 4.80 6.77 6.73 18.74 20.73 9.25 9.64 11.21 10.87 6.22 5.94 1.01 0.73 3.83 3.70 

GH01 Sesuvium leaf 0.38 0.39 10.13 10.12 5.48 5.47 6.44 6.43 14.15 14.39 10.54 10.49 9.96 10.06 6.39 6.28 1.26 1.41 4.49 4.45 

GH02 Sesuvium stem 0.21 0.41 9.04 9.11 4.74 4.90 6.49 6.55 25.12 22.81 8.28 8.43 9.87 10.11 5.82 5.89 0.60 1.21 3.37 3.82 

GH02 Sesuvium leaf 0.29 0.42 10.87 10.32 5.38 5.41 6.73 6.88 15.27 16.02 10.37 10.64 9.62 9.83 6.21 6.19 1.24 0.79 4.44 4.43 

GH02 Avicennia leaf 0.23 0.17 11.65 11.38 6.20 6.15 7.23 7.19 11.37 11.42 12.15 11.99 9.82 9.82 7.22 7.31 0.90 0.50 5.02 5.17 

GH04 Lumnitzera leaf 0.34 0.34 10.38 10.13 5.92 5.87 6.50 6.37 11.70 11.77 10.69 10.57 9.36 9.37 6.92 6.95 0.70 1.00 5.02 5.07 

GH05 Lumnitzera leaf 0.17 0.14 10.04 10.16 5.71 5.78 6.46 6.52 11.35 11.54 10.79 10.64 10.01 9.86 7.03 7.05 0.50 0.45 5.04 5.07 

GH05 Avicennia leaf   0.35   11.18   6.30   7.15   11.52   11.07   9.74   7.18   1.07   4.99 

GH06 Avicennia leaf 0.38 0.42 11.14 11.09 6.31 6.33 7.04 7.03 11.38 11.63 10.84 10.84 9.70 9.74 7.03 7.04 1.05 1.03 4.90 4.88 

 

Station Plant 
MOLE 

% 

Leu Tyr Phe b-Ala g-Aba His Orn Lys Arg 
trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

trs. 
1 

trs. 
2 

GH01 Sesuvium stem 6.38 6.15 2.92 2.76 3.36 3.33 0.32 0.38 1.14 1.14 2.24 2.23 0.33 0.43 4.97 4.65 4.22 4.28 

GH01 Sesuvium leaf 7.79 7.74 3.22 3.20 4.24 4.18 0.48 0.49 0.97 1.05 1.84 1.82 0.71 0.67 5.18 4.97 4.84 4.81 

GH02 Sesuvium stem 5.35 5.85 2.63 2.97 3.04 3.39 0.42 0.53 1.35 1.32 2.45 1.70 0.57 0.71 4.52 4.49 4.27 4.08 

GH02 Sesuvium leaf 7.67 7.40 2.98 2.95 4.23 4.15 0.42 0.51 0.87 1.04 1.86 1.63 0.52 0.79 5.11 4.79 4.76 4.42 

GH02 Avicennia leaf 9.52 9.63 2.44 2.82 4.65 4.66 0.44 0.39 0.50 0.52 1.83 1.67 0.46 0.35 3.05 3.11 3.73 4.23 

GH04 Lumnitzera leaf 9.25 9.32 2.98 3.10 4.75 4.82 0.40 0.39 0.93 0.93 2.03 1.98 0.57 0.46 5.50 5.41 4.90 5.04 

GH05 Lumnitzera leaf 9.73 9.91 3.00 3.02 4.91 4.98 0.23 0.18 0.98 0.78 2.19 2.20 0.00 0.27 5.55 5.53 4.67 4.82 

GH05 Avicennia leaf   9.54   2.86   4.70   0.31   1.50   1.23   0.56   3.15   4.20 

GH06 Avicennia leaf 9.41 9.40 3.00 2.88 4.67 4.64 0.34 0.35 1.88 1.86 1.27 1.26 0.57 0.62 3.41 3.36 4.35 4.19 
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