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A B S T R A C T

This thesis deals with fixed samples size, sequential and adaptive survival trials and
consists of two major parts. In the first part fixed sample size, sequential and adaptive
testing methods are derived that utilize data from a survival as well as a categorical
surrogate endpoint in a fully non-parametric way without the need to assume any
type of proportional hazards. In the second part extensions to quality-adjusted sur-
vival endpoints are discussed.

In existing adaptive methods for confirmatory survival trials with flexible adapta-
tion rules strict type-I-error control is only ensured if the interim decisions are based
solely on the primary endpoint. In trials with long-term follow-up it is often desirable
to base interim decisions also on correlated short-term endpoints, such as a surrogate
marker. Surrogate information available at the interim analysis may be used to predict
future event times. If interim decisions, such as selection of a subgroup or changes
to the recruitment process, depend on this information, control of the type-I-error
is no longer formally guaranteed for methods assuming an independent increments
structure.

In this thesis the weighted Kaplan-Meier estimator, a modification of the classical
Kaplan-Meier estimator incorporating discrete surrogate information, is used to con-
struct a non-parametric test statistic for the comparison of survival distributions, a
generalization of the average hazard ratio. It is shown in this thesis how this test
statistic can be used in fixed design, group-sequential and adaptive trials, such that
the type-I-error is controlled. Asymptotic normality of the multivariate average haz-
ard ratio is first verified in the fixed sample size context and then applied to non-
inferiority testing in a three-arm trial with non-proportional hazards survival data. In
the next step the independent increments property is shown to hold asymptotically
for the weighted Kaplan-Meier estimator. Consequently, for all test statistics based on
it. Standard methods for the calculation of group-sequential rejection boundaries are
applicable. For adaptive designs the weighted Kaplan-Meier estimator is modified to
support stage-wise left-truncated and right-censored data to ensure independence of
the stage-wise test statistics, even when interim decisions are based on surrogate in-
formation. Standard combination test methodology can then be used to ensure strict
type-I-error control.
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Quality-adjusted survival is an integrated measure of quality-of-life data, which
has gained interest in recent years. In this thesis a novel non-parametric two-sample
test for quality-adjusted survival distributions is developed, that allows adjustment
for covariate-dependent censoring, whereby the censoring is assumed to follow a pro-
portional hazards model. It is shown how this result can be used to design adaptive
trials with a quality-adjusted survival endpoint.
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1
I N T R O D U C T I O N

In randomized controlled clinical trials (RCTs) with a fixed design the data collected
during the trial is only unblinded at the end of trial. In sequential RCTs the data
is unblinded at one or more interim analyses and a decision is made to continue
or to stop the trial, allowing early rejection of the null hypothesis or stopping for
futility. No data-dependent changes to the trial design are allowed. Adaptive trial de-
signs explicitly account for the possibility of data-dependent changes, such as sample
size adjustment or subgroup selection. An important problem in these designs is the
control of the type-I-error rate. Two approaches for the strict control of the the type-I-
error are the conditional rejection probability principle by Müller and Schäfer [2004]
and the combination test approach by Bauer [1989] and Bauer and Köhne [1994].

The conditional rejection probability principle requires one to calculate the con-
ditional probability of rejection given all the information used in the interim de-
cision. The second stage must then be planned with a significance level equal to
this probability. The combination test approach combines two stochastically indepen-
dent test statistics or p-values using a pre-specified combination function. In trials,
where the outcome of interest is immediately available, stochastic independence of
the test statistics can be easily achieved by splitting the patient population into those
recruited before and those recruited after the interim analysis.

For survival data (or data with delayed response) the problem of overrunning pa-
tients arises, i.e. patients recruited before the interim analysis whose outcomes have
not yet been observed at the time of the interim analysis. These patients are included
as right-censored observations in the first stage and are followed-up in the second
stage, since stopping follow-up of these patients at the interim analysis would be
inefficient. In this case independence of the stage-wise test statistics for survival data
is achieved by exploiting the (asymptotic) independent increments property of the
efficient score (Schäfer and Müller [2001] and Wassmer [2006]). However, in general
the independent increments property does not hold, when using secondary endpoint
data, like from surrogate variables, in the interim decision from patients whose pri-
mary endpoint has not yet been observed. This can lead to an inflation of the type-
I-error rate as illustrated in an extreme scenario by Bauer and Posch [2004]. The
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2 introduction

basic idea in this example is, that the secondary endpoint information can be used
to predict the primary endpoint opening up the possibility of trial manipulations to
increase the probability of rejection.

Consider a two-sample comparison of overall survival using the log-rank test in a
two-stage trial. The interim analysis is scheduled before any overall survival event has
been observed, but after the surrogate variable has been observed for all patients. If
the surrogate variable is a perfect predictor of the event time and there is no censoring,
then the value of the log-rank test statistic and hence the future test decision can be
exactly predicted. If the log-rank test would reject, then recruitment is stopped, else
a huge number of additional patients is recruited, such that the influence of the first
stage patients is negligible. If the significance level of the log-rank test is α, then with
probability α recruitment is stopped at the interim analysis and the null hypothesis is
rejected with probability one at the end of the trial. With probability 1−α recruitment
is increased, such that the rejection probability at the end is again α. The overall type-
I-error is α + (1 − α)α = 2α − α2 (see figure 1.1). For α = 0.05 this equals 0.0975.

If the surrogate variable is binary the problem can be illustrated in the following
way. Suppose the binary surrogate indicates non-response / response to the treat-
ment. Suppose the response indicator is a perfect predictor of survival. Under the
null hypothesis the response probability is the same in the experimental and the con-
trol group. However, by pure chance (with probability α) a difference in the response
rates will be observed at the interim analysis, large enough to lead to a rejection of the
null hypothesis. By stopping recruitment at this point, the difference in the observed
response rates is retained and the null hypothesis eventually rejected. If the differ-
ence is small (with probability 1− α) recruitment is increased, such that again with
probability α a large enough difference in the response rates is observed at the final
analysis, leading to inflation of the overall type-I-error. Inflation will also occur in less
extreme scenarios, i.e. when less patients than planned are recruited, but recruitment
is not completely stopped. The stratified log-rank test, where the strata are defined
according to the levels of the surrogate variable, would control the type-I-error in this
scenario, since it completely ignores differences in the response rates. The stratified
log-rank test only estimates the effect conditional on the response indicator. A higher
response rate in the experimental group than in the control group, which would be
likely, if the treatment were effective, would not contribute to the power of the strat-
ified log-rank test. Hence, the stratified log-rank test controls the type-I-error rate,
however it does not exploit treatment effects in the surrogate endpoint. The stratified
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Figure 1.1: Type-I-error inflation strategy from Bauer and Posch [2004]. Overall type-
I-error is ≈ 2α−α2.

log-rank test has been used by Brannath et al. [2009] in the context of an adaptive
enrichment design with treatment selection based on the survival endpoint only.

Jenkins et al. [2011] propose a different solution to the problem of Bauer and Posch
[2004], by splitting the patient population into two disjunct subsets, patients recruited
before and patients recruited after interim analysis, like in the non-survival case
(patient-wise splitting). Patients recruited before the interim analysis are followed-
up after the interim analysis. The design for these patients must remain unchanged.
This also means, that the pre-specified follow-up time must not be changed as noted
by Magirr et al. [2014]. Choosing the follow-up time, such that the value of the condi-
tional error rate is maximized inflates the probability of rejection. This problem can
also be interpreted as an informative censoring problem for the overrunning patients.
The censoring of the overrunning patients is manipulated, by changing the follow-up
time. Censoring and survival time are no longer stochastically independent. How-
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ever, they are independent conditional on the surrogate variable. The validity of the
log-rank test and the Kaplan-Meier estimator depends critically on the assumption
of non-informative censoring. If a discrete surrogate variable is used, the stratified
log-rank test would also solve the informative censoring problem, since within each
stratum censoring would be non-informative, but again only the conditional effect
would be estimated.

For a discrete time-independent surrogate variable the informative censoring prob-
lem can be solved by a modification of the Kaplan-Meier estimator, called the weighed
Kaplan-Meier estimator, which incorporates the surrogate variable information, and
has been proposed by Malani [1995] and Murray and Tsiatis [1996]. The weighted
Kaplan-Meier estimator estimates the marginal survival function, by combining es-
timates of the conditional survival functions (given the surrogate) weighted by the
corresponding response probabilities. By using the surrogate variable information,
information lost due to censoring can be recovered, increasing the efficiency of the
estimator. This estimator is used in this thesis to construct an estimator for the aver-
age hazard ratio introduced by Kalbfleisch and Prentice [1981]. In group-sequential
trials and in adaptive trials, when patient-wise splitting is used, the weighted Kaplan-
Meier estimator can be used directly without modification. For adaptive trials, with
stage-wise splitting, if adaptive design changes have been made at an interim analy-
sis, then the maximum likelihood estimator of the response probability using all data,
i.e. from patients recruited before and after the interim analysis, is biased (Brannath
et al. [2006]). The weighted Kaplan-Meier estimator needs to be modified accordingly.

outline

Chapter 2 is a short introduction to the basic concepts of survival analysis, includ-
ing the Kaplan-Meier estimator and the (stratified) proportional hazards model. In
chapter 3 the weighted Kaplan-Meier estimator and the average hazard ratio are intro-
duced and their large sample properties are derived for the k-sample case (k > 0) in
a fixed sample size setting. Two interesting special cases are considered, the two sam-
ple and the three sample case. In the three sample case non-inferiority testing based
on the average hazard ratio is considered. This provides a generalization of Kom-
brink et al. [2013] to non-proportional hazards data. Related two-sample methods,
such as the test statistics proposed by Pepe and Fleming [1989] and the median are
considered. Type-I-error and power of the two-sample methods are compared with
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the log-rank test in simulations. In chapter 4 the sequential weighted Kaplan-Meier
estimator and sequential average hazard ratio test statistics are defined. The inde-
pendent increments property is shown to hold asymptotically for these test statistics
and other test statistics based on the sequential weighted Kaplan-Meier estimator. In
chapter 5 asymptotic results for the weighted Kaplan-Meier estimator for stage-wise
left-truncated and right-censored data are derived. These results and the general re-
sults from chapter 3 can be used for adaptive designs, where interim decisions are
based on discrete surrogate data. In a simulation study the method is applied to the
problem of subgroup selection in a seamless adaptive phase II/III trial.

Inverse probability of censoring weighting (IPCW) methods for handling informa-
tive censoring in the context of quality-adjusted survival with a focus on two-sample
testing are discussed in chapter 6. Asymptotic normality of a new IPCW Mann-
Whitney U-statistic is proved, when censoring is assumed to follow a proportional
hazards model. Adaptive designs for quality-adjusted survival using the patient-wise
splitting approach based on this result are discussed.

All simulations are done with the R software package and programming environ-
ment (R Core Team [2014]). The newly developed methods are implemented in a
new R package, described in the appendix. Furthermore, the appendix contains a
summary of the mathematical background required for the asymptotic methods in
survival analysis.





2
I N T R O D U C T I O N T O S U RV I VA L A N A LY S I S

This chapter introduces some basic concepts of survival analysis, including the Kaplan-
Meier estimator, the Cox proportional hazards model and the (stratified) log-rank
test.

2.1 basic concepts

In clinical with a time-to-event endpoint, such as overall survival, some patients may
still be alive, when the trial ends (administrative censoring) or they are lost to follow-
up during the trial (drop-out). This kind of missing data mechanism is called (right-)
censoring. Only the minimum Y = T ∧ C of the survival time T and the censoring
time C is observed, as well as the censoring indicator δ = 1{T 6 C}. The problem
is to estimate the distribution of the survival time based on the independent and
identically distributed observations {Yi, δi, i = 1, . . . ,n} of (Y, δ). The distribution of
T is completely determined by its hazard rate

λ(t) = lim
h→0

1

h
P(t 6 T < t+ h|T > t) t > 0.

For continous survival times the relation between the conditional survival function

S(t) = P(T > t)

and the cumulative hazard rate

Λ(t) =

∫t
0

λ(u)du

is given by
S(t) = e−Λ(t).

A basic assumption about the censoring mechanism is that the hazard rate of T is the
same with and without censoring, i.e.

λ(u) = λ#(u), (2.1.1)

7



8 introduction to survival analysis

where
λ#(u) = lim

h↓0

1

h
P(t 6 T < t+ h|T > t,C > t).

In competing risk terminology λ# is also called crude hazard rate and λ is also called
net hazard rate. The assumption in eq. (2.1.1) is called independent censoring or non-
informative censoring (section III.2.2 in Andersen [1993]).

Remark 2.1. The independent censoring assumption is, despite its name, weaker than stochas-
tic independence of the survival and censoring time, which is also called random censoring.

Besides (right-) censoring, observations may also be subject to left-truncation. This
is most often the case in observational studies, when e.g. the patient is only observed
some time after the diagnosis and the exact time of the diagnosis is unknown. Ignor-
ing this fact, i.e. assuming, that the recruitment time is also the time of the first diag-
nosis may lead to length bias, since patients with longer survival have higher chance
of being recruited (see e.g. example I.3.2 in Andersen [1993]). Only patients whose
survival time is larger than the left-truncation time V are observed. V is set to 0 for
patients, who are not left-truncated. Depending on the support of the left-truncation
time V , the marginal distribution of the survival time may not be identifiable from the
data. For example, denote the left endpoint of the support of V by τ. Then only the
conditional probability P(T > t|T > τ) can be estimated from the data. Left-truncation
is called independent or non-informative, when the hazard rate of the left-truncated sur-
vival time is the same as that of the original survival time (section III.3 in Andersen
[1993]).

2.2 counting process martingales

The derivation of the large sample properties of estimators and test statistics for
survival data is usually based on the theory of counting processes and the associated
martingales (the essential definitions and results are given in the appendix A). Most
estimators and test statistics can be written as a sum of stochastic integrals with
respect to a counting process martingale. For i = 1, . . . ,n, consider the stochastic
process Ni(s) = δi1{Yi 6 s}, which indicates, if patient i died in the interval [0, s].
Similarly, let Nci (s) = (1 − δi)1{Yi 6 s}, which indicates, if patient i was censored
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in the interval [0, s]. Moreover let F = (Ft, t > 0) be the filtration generated by the
processes Ni and Nci , i = 1, . . . ,n, where

Ft = σ(Ni(s),Nci (s), s 6 t, i = 1, . . . ,n).

The compensator of Ni with respect to F exists. Under the independent censoring
assumption it is given by the continuous predictable process∫t

0

Yi(u)λ(u)du,

i.e.

Mi(t) = Ni(t) −

∫t
0

Yi(u)λ(u)du

is a local square integrable martingale with respect to F, where λ is the hazard rate of
Ti (theorem 1.3.1 from Fleming and Harrington [2011]). If follows, that the optional
quadratic variation process [Mi] of Mi is equal to Ni and the predictable quadratic
variation process 〈Mi〉 is given by

〈Mi〉(t) =
∫t
0

Yi(u)λ(u)du t > 0.

Intuitively, every counting process can be written as the sum of a systematic part
(compensator) and mean zero noise (martingale). In this sense the properties of the
counting process are determined by the hazard rate, explaining its importance in the
mathematical treatment of time-to-event data.

If the observed times Yi, i = 1, . . . ,n, are continuous random variables and stochas-
tically independent, then the counting processes Ni, i = 1, . . . ,n, have no common
jump discontinuities, since the probability of two independent continuous random
variables having the same value is 0. Thus the sum N̄(n) = N1 + . . .+Nn is again
a counting process and the counting process martingales Mi, i = 1, . . . ,n, are inde-
pendent. Denote the number at risk at time u by Ȳ(n)(u) = Y1(u) + . . .+ Yn(u). The
sum M̄(n) =M1 + . . .+Mn is a local square integrable martingale with predictable
quadratic variation

〈
M̄(n)

〉
=

n∑
i=1

〈Mi〉 =
∫t
0

Ȳ(n)(u)λ(u)du.
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2.3 kaplan-meier estimator

The independent censoring assumption is now relaxed and the survival T and the
censoring time C are assumed to be stochastically independent conditional on a dis-
crete covariate X ∈ {1, . . . , J}, i.e. T and C are stochastically independent in each of the
strata defined by the levels of X. The observed data is

{(Yi = Ti ∧Ci, δi = 1{Ti 6 Ci},Xi), i = 1, . . . ,n}.

Denote the conditional survival function of T in stratum j by Sj(t) = P(T > t|X = j),
the conditional survival function for the censoring time C by Kj(t) = P(C > t|X = j)

and the conditional hazard rate for T in stratum j by

λj(t) = lim
h→0

1

h
P(t 6 T < t+ h|T > t,X = j).

The stratum-specific cumulative hazard rate is then

Λj(t) =

∫t
0

λj(s)ds.

In each stratum the cumulative hazard rate and the survival function can be esti-
mated by the Nelson-Aalen estimator (Andersen [1993, section IV.1]) and the Kaplan-
Meier estimator (Andersen [1993, section IV.3]), respectively, using only observations
in the specific stratum:

Definition 2.2 (stratum-specific Nelson-Aalen and Kaplan-Meier estimators). For j =
1, . . . , J, s > 0, the stratum-specific Nelson-Aalen estimator is given by

Λ̂j(s) =

∫s
0

J
(n)
j (u)

N̄
(n)
j (du)

Ȳ
(n)
j (u)

(2.3.1)

where

N̄
(n)
j (u) =

n∑
i=1

1{Xi = j}Ni(u),

is the number of events in stratum j up to time u,

Ȳ
(n)
j (u) =

n∑
i=1

1{Xi = j}Yi(u),
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is the number at risk in stratum j up to time u and

J
(n)
j (u) = 1

{
Ȳ
(n)
j (u) > 0

}
.

The stratum-specific Kaplan-Meier estimator is given by

Ŝj(s) =
∏
(0,s]

{
1− Λ̂j(ds)

}
=
∏
(0,s]

1− J(n)j (u)
N̄

(n)
j (du)

Ȳ
(n)
j (u)

 , (2.3.2)

where
∏

(0,s] denotes the product integral (section A.3), i.e.

Ŝj(s) =
∏
i:Yi6s

1− δi1{Xi = j}Ȳ
(n)
j (Yi)

 .

2.4 cox proportional hazards model

The Cox proportional hazards model is the most widely used semi-parametric model
for regression analysis of survival times. The large sample properties of the maximum
partial likelihood estimator of the regression coefficients and the closely related strat-
ified log-rank test are presented. The consequences, when the model assumptions are
incorrect, are discussed.

2.4.1 Stratified proportional hazards model

This section considers the situation in which the survival and censoring times de-
pend on a vector Z of time-independent covariates and a stratification variable Xi ∈
{1, . . . , J}, such that T and C are stochastically independent conditional on (X,Z), and
the conditional hazard rate in each stratum

λj(t|Z) = lim
h→0

1

h
P(t < T 6 t+ h|T > t,X = j,Z)

follows a stratified proportional hazards model

λj(t|Z) = λ0j(t)e
βT0Z, (2.4.1)
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where λ0j, j = 1, . . . , J are unknown baseline hazard functions and β0 is a vector
of unknown regression coefficients. Each stratum may have a different baseline haz-
ard λ0j, while the effect of the covariate Z is the same in each stratum. This allows
for stratum-specific effects on the hazard, which violate the overall proportionality
assumption. The stratified model is a special case of the more general multivariate
model of Andersen [1993]. In this model, there is a multivariate counting process

Ni(t) = (Ni1(t), . . . ,Nik(t)) k > 1

associated with each subject i = 1, . . . ,n, i.e. a vector of counting processes where
no two counting processes may jump at the same time. Moreover there are type-
specific censoring indicators δji, covariates Zji, survival times Tji, censoring time
Chi and at-risk indicators Yji for j = 1, . . . , J and i = 1, . . . ,n. For the stratified model
set Tji = 1{Xi = j}Ti, Cji = 1{Xi = j}Ci, Nji(t) = 1{Xi = j}Ni(t), δji = 1{Xi = j}δi,
Zji = 1{Xi = j}Zi, Yji(t) = 1{Xi = j}Yi(t). Then we have a multivariate counting
process model as in Andersen [1993].

The support of the censoring distribution imposes a limit on the time range on
which the survival function can be consistently estimated, namely

L < sup{u : P(T ∧C > u|X = j) > 0} ∀j = 1, . . . , J.

The following results are from Andersen [1993]. The estimator β̂PH of β0 is obtained
by maximizing the partial likelihood

L(β) =

n∏
i=1

(
eβ

TZi

S
(0)
Xi

(β, Ti)

)δi

where

S
(0)
j (β, t) =

n∑
i=1

1{Yi > t,Xi = j}eβ
TZi (2.4.2)

Equivalently, β̂ is the unique solution of the score equation U(β) = 0, where

U(β) =
∂

∂β
logL(β) =

n∑
i=1

∫L
0

[
Zi −

S
(1)
Xi

(β, t)

S
(0)
Xi

(β, t)

]
dNi(t), (2.4.3)
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and

S
(1)
j (β, t) =

∂S
(0)
j (β, t)

∂β
=

n∑
i=1

1{Yi > t,Xi = j}Zieβ
TZi . (2.4.4)

The partial derivative of the vector S(1)j (β, t) is needed to express the asymptotic
covariance matrix of the vector β̂,

S
(2)
j (β, t) =

∂S
(1)
j (β, t)

∂β
=

n∑
i=1

1{Yi > t,Xi = j}Z⊗2i eβ
TZi . (2.4.5)

(x⊗2 = xxT where x is any column-vector). Consistency and asymptotic normality of
β̂ requires the following technical conditions:

Condition 2.3 (Condition VII.2.1, Andersen [1993]). There exists a neighbourhood G of β0
and scalar, vector and matrix functions s(0)j , s(1)j and s(2)j , respectively, defined on G× [0,L]
such that for l = 0, 1, 2, j = 1, . . . , J,

(a)

sup
t∈[0,L],β∈G

∥∥∥∥ 1nS(l)j (β, t) − s(l)j (β, t)
∥∥∥∥ = op(1);

(b) s(l)j (·, t) is a continuous function of β ∈ G uniformly in t ∈ [0,L] and bounded on
G× [0,L];

(c) s(0)j (β0, ·) is bounded away from 0 on [0,L];

(d) for β ∈ G, t ∈ [0,L],

s
(1)
j (β, t) =

∂

∂β
s
(0)
j (β, t), s

(2)
j (β, t) =

∂2

∂β2
s
(0)
j (β, t)

(e) the matrix

Ω =

J∑
j=1

∫L
0

s(2)j (β0, t)

s
(0)
j (β0, t)

−
s
(1)
j (β0, t)⊗2

s
(0)
j (β0, t)2

 s(0)j (β0, t)λ0j(t)dt (2.4.6)

is positive definite;

(f) the cumulative baseline hazard is finite, i.e.∫L
0

λ0j(t)dt <∞.
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Theorem 2.4 (Theorem VII.2.1, Andersen [1993]). Assume condition 2.3. Then the prob-
ability that the equation U(β) = 0 has a unique solution β̂ tends to 1 and β̂ p→ β0 as
n→∞.

Theorem 2.5 (Theorem VII.2.2, Andersen [1993]). Assume conditions 2.3. Then, as n→∞,
√
n{β̂−β0}

L−→ N(0,Ω−1)

and
n−1Ω̂(β̂)

p−→ Ω as n→∞
where

Ω̂(β) = −
∂U(β)

∂β
=

n∑
i=1

δi

{
S
(2)
Xi

(β̂, Ti)

S
(0)
Xi

(β̂, Ti)
−
S
(1)
Xi

(β̂, Ti)⊗2

S
(0)
Xi

(β̂, Ti)2

}
. (2.4.7)

2.4.2 Stratified log-rank test

The stratified log-rank test is the score test in the stratified proportional hazards
model,

λ(t|X,Z) = λX(t)eβ
T
0Z,

where Z is a discrete covariate and X is the discrete stratification variable. The log-
rank test statistic is identical to the standardized score test statistic

U(β̂)T Ω̂−1(β̂)U(β̂).

This test statistic has asymptotically a χ2-distribution with number of degrees equal
to 1 minus the number of levels of Z. One-sided hypothesis tests are not possible
with the χ2-distribution If Z is binary, then the score test statistic can also be defined
as

U(β̂)√
Ω̂

,

which under the null hypothesis H0 : β0 = 0 (and condition 2.3) converges in distri-
bution to standard normal random variable.
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Figure 2.1: Example of two survival distributions with non-proportional hazards

2.4.3 Misspecified proportional hazards model

There exists extensive literature concerning the properties of the maximum partial
likelihood estimator and the log-rank test, when the assumptions of the proportional
hazard model are violated. Struthers and Kalbfleisch [1986] show, that the maximum
partial likelihood estimator of the misspecified model still converges in probability to
a limit β∗ defined as the solution of the equation

h(β) =

∫∞
0

s(1)(x) −

∫∞
0

s(1)(β, x)
s(0)(β, x)

s(0)(x)dx = 0, (2.4.8)

where

s(l)(x) = E[P(T ∧C > x | Z)Zlλ(x|Z)],

s(l)(β, x) = E[P(T ∧C > x | Z)ZleβZ], l = 0, 1.

The parameter β∗ is also called the least false parameter. It corresponds to the propor-
tional hazards model, which minimizes the distance to the true model with respect
to the Kullback-Leibler divergence (Hjort [1992]).
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Figure 2.2: Example of two non-proportional hazard functions

The value of β∗ will in general depend on the distribution of the censoring time
(thus implicitly also on the recruitment process and the calendar time at which the
analysis is made). Hence the power of the log-rank test will also depend on these
nuisance parameters. This is demonstrated in a simple non-proportional hazards ex-
ample with a single binary covariate (group indicator). The survival distributions are
exponential with parameter 1 in group 1 and Weibull with shape parameter 2 and
scale parameter 1.1 in group 2 (see figures 2.1 and 2.2). The log hazard ratio at time t
is approximately 0.5+ log(t). Three different censoring distributions are considered.
Table 2.1 shows the results of 104 simulation runs with a sample size of 500 in each
group at a significance level of 0.05. The maximum follow-up time was 2. The simu-
lation results show that the power of the log-rank test for non-proportional hazards
alternatives depends strongly on the shape of the censoring distribution. This is al-
ready a problem for fixed designs, but is even worse in adaptive designs, where the
adaptations may lead to a manipulation of the censoring mechanism.
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Table 2.1: Power of the log-rank test under a non-
proportional hazards alternative for different cen-
soring distributionsa.

Censoring Censored obs. (%) β∗ β̂PH Power

Uniform[0,2] 46 0.77 0.77 0.86
Weibull(1, 2.24) 35 0.84 0.89 0.32
Weibull(2, 2.3) 22 0.96 0.94 0.14

a Results from 104 simulation runs for each scenario at a significance
level of 0.05 and sample size 500 in each group.

2.5 informative censoring

All methods considered so far are sensitive to violations of the independent censoring
assumption. This may be the case, when survival and censoring times are dependent
via a common covariate. Specifically, the type-I-error of the log-rank test may be
inflated, when censoring is dependent on treatment and related to survival via a
covariate.

As an example consider the scenario described in table 2.2. Here the survival times
are distributed identically in the control and treatment group, but censoring depends
on a binary covariate (response / non-response). Responders in the treatment group
and non-responders in the control group are not censored at all (except for adminis-
trative censoring at t = 2 (study end)), while non-responders in the treatment group
and responders in the control group are censored with a probability up to 50%. The
response rate is 0.5 in both groups. Since responders have a better survival than non-
responders, this leads to an overestimation of the survival probability in the treat-
ment group and an underestimation of the survival probability in the control group.

Table 2.2: Simulation scenario with informative censoring

Control (n = 200)a Treatment (n = 200)a

Non-Resp. Responders Non-Resp. Responders

Survival Weibull(2,1) Weibull(1.5, 1.5) Weibull(2,1) Weibull(1.5, 1.5)
Drop-out - Weibull(1.5, 1.5) Weibull(2,2) -
a Response rate is 0.5.
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In 105 simulations with a sample size of 200 in each group the log-rank test showed
an inflated type-I-error of approx. 32.8%. The bias of the Kaplan-Meier estimators is
shown in figure 2.3.
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t

S
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Group Control Treatment True

Figure 2.3: Bias of Kaplan-Meier estimators in treatment and control group in depen-
dent censoring example of table 2.2. Mean of 105 replications. Sample size
was 200 in each group.

Adjustment for covariate dependent censoring is easy within the proportional
hazards model. Additional discrete and continuous covariates can be seamlessly in-
cluded in the model. A stratified proportional hazards model leads to the stratified
log-rank test. However, by including additional covariates, only the conditional treat-
ment effect can be estimated. If the covariate is correlated with treatment, as is the
case for surrogate variables, then the marginal treatment effect might differ substan-
tially from the conditional treatment effect. Consider the example from above, but this
time with a higher response rate in the treatment group than in the control group.
Then clearly there is a treatment effect, since there is a higher proportion of respon-
ders in the treatment group than in the control group, who have a better survival
than the non-responders. However, the stratified log-rank test will fail to detect any
treatment effect, since the conditional survival functions are equal in the two groups.



3
F I X E D S A M P L E S I Z E M E T H O D S

In this chapter the weighted Kaplan-Meier estimator is defined and its large sam-
ple properties are derived in a fixed design setting. Then the asymptotic distribution
of the estimator of the average hazard ratio based on arbitrary estimators of the
marginal survival function, which fulfill certain asymptotic properties, is derived.
This generalizes the work of Kalbfleisch and Prentice [1981], who only consider the
average ratio based on the Kaplan-Meier estimator. These results form the basis for
the sequential and adaptive results in the following chapters. Kalbfleisch and Pren-
tice [1981] give an incorrect formula for the asymptotic variance of the multivariate
average hazard ratio. The correct formula is derived and the results are applied to
the problem of testing non-inferiority in three-arm trials with survival data. This gen-
eralizes the results of Kombrink et al. [2013] to non-proportional hazards settings.
The two-sample special case is treated in detail. Moreover, alternative two-sample
methods based on the marginal survival functions, such as restricted mean survival
and the estimation of the median and other quantiles are described. Finally the finite-
sample performance of the two-sample methods is compared in a simulation study.

3.1 weighted kaplan-meier estimator

In this section the weighted Kaplan-Meier (WKM) estimator of Malani [1995] and Mur-
ray and Tsiatis [1996] is defined and the necessary large sample properties required
for the functional delta method are given in theorem 3.3. This extends the results of
Murray and Tsiatis [1996], by proving uniform consistency and weak convergence of
the WKM estimator in the space D[0,L] of right-continuous functions with left limits
(section A.2.1).

3.1.1 Definition

Assume that the survival time T and the censoring time C are stochastically indepen-
dent given a discrete covariate X ∈ {1, . . . , J}, i.e. T and C are stochastically indepen-

19
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dent in each of the strata defined by the levels of X. The observed data consists of the
n independent and identically distributed tuples

{(Yi = Ti ∧Ci, δi = 1{Ti 6 Ci},Xi), i = 1, . . . ,n},

The sample size in stratum j is

nj =

n∑
i=1

1{Xi = j},

and the total sample size is n = n1 + . . .+nJ. The conditional survival function given
X = j,

Sj(t) = P(T > t|X = j),

can be consistently estimated by the stratum-specific Kaplan-Meier estimator Ŝj (see
section 2.3). The marginal survival function can be written as

S(t) = E[P(T > t|X)] =

J∑
j=1

pjSj(t),

where pj = P(X = j) is the response probability for stratum j. This suggests an
estimator of the marginal survival function.

Definition 3.1 (Murray and Tsiatis [1996]). The weighted Kaplan-Meier (WKM) estimator
for a single time-independent discrete covariate X is defined by

ŜWKM(t) =

J∑
j=1

p̂jŜj(t), (3.1.1)

where Ŝj is the Kaplan-Meier estimator in the stratum defined by covariate value j and

p̂j =
nj

n

is the response rate in stratum j.

3.1.2 Large sample properties

Some technical conditions are required to derive the asymptotic distribution of the
WKM estimator. The support of the censoring distribution imposes a limit on the
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time range on which the survival function can be consistently estimated. Let Kj(x) =
P(C > x|X = j) for x > 0 and j = 1, . . . , J. Then each Ŝj is only consistent on any
interval [0,Lj], where

Lj < sup{x : Sj(x)Kj(x) > 0}.

Consequently, consistency of the WKM estimator is restricted to the interval [0,L],
where L 6 min{L1, . . . LJ}. Furthermore, the number at risk Ȳ(n)j (s) at any time s ∈
[0,L] must diverge to infinity. These two conditions ensure, that n−1Ȳ

(n)
j (s) converges

in probability to pjSj(s)Kj(s) > 0 for each s ∈ [0,L]. The following assumptions are
required for theorem 3.3 below:

Assumption 3.2. For j = 1, . . . , J and i = 1, . . . ,n,

1. pj > 0,

2. Ti is stochastically independent of Ci given Xi,

3. L < sup{x : Sj(x)Kj(x) > 0},

4. Ȳ(n)j (s)→∞, as n→∞ for all s ∈ [0,L].

Theorem 3.3 states the result on the asymptotic distribution of the weighted Kaplan-
Meier estimator and is a special case of the sequential result (theorem 4.10), which is
proved in section 4.2.

Theorem 3.3. Under assumption 3.2,

1. ŜWKM is a uniformly consistent estimator of S,

2.
√
n{ŜWKM − S} converges weakly in D[0,L] to a mean-zero Gaussian process with

covariance function ρ given by

ρWKM(s, t) =
J∑
j=1

pjSj(s)Sj(t)

∫s∧t
0

λj(u)du

Sj(u)Kj(u)

+

J∑
j=1

pjSj(s)Sj(t) −

J∑
j=1

J∑
l=1

pjplSj(s)Sl(t),

(3.1.2)
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3. a uniformly consistent estimator of the covariance function ρWKM is given by

ρ̂WKM(s, t) =
J∑
j=1

p̂jŜj(s)Ŝj(t)n

∫s∧t
0

J
(n)
j (t,u)N̄(n)

j (du)

Ȳ
(n)
j (u)2

+

J∑
j=1

p̂jŜj(s)Ŝj(t) −

J∑
j=1

J∑
l=1

p̂jp̂lŜj(s)Ŝl(t),

where J(n)j , N̄(n)
j and Ȳ(n)j are defined in section 2.3.

Asymptotic relative efficiency

The asymptotic covariance function of the Kaplan-Meier estimator is

ρKM(s, t) = S(s)S(t)
∫s∧t
0

λ(u)du

S(u)K(u)
, (3.1.3)

where S(u) =
∑J
j=1 pjSj(u) and K(u) =

∑J
j=1 pjKj(u) and λ(u) = − d

du(logS(u)).
As noted by Malani [1995], the weighted Kaplan-Meier (WKM) estimator is more

efficient, i.e. it has a smaller asymptotic variance, than the Kaplan-Meier (KM) es-
timator, whenever the stratification variable is not stochastically independent of the
survival time. There are four possible ways how the stratification variable is related
to the distributions of the survival and censoring times:

1. If Sj = S and Kj = K for all j = 1, . . . , J, then ρWKM(t, t) = ρKM(t, t) for all t.

2. If Sj = S for all j, but Kj 6= K for some j, then ρWKM(t, t) > ρKM(t, t) for all t.

3. If Sj 6= S for some j and Kj = K for all j, then ρWKM(t, t) < ρKM(t, t) for all t.

4. If Sj 6= S and Kj 6= K for all j, then censoring is informative and the KM
estimator is not valid.

It easy to see, that the equality in (1.) actually holds for all pairs (s, t), i.e. ρWKM(s, t) =
ρKM(s, t) for all s, t. Numerical calculations suggest, that the inequalities in (2.) and
(3.) also hold uniformly for all pairs (s, t). The WKM estimator is only worse than
the KM estimator in cases where the stratification variable is independent from the
survival time and at the same time related to the censoring time. It is safe to assume,
that if a surrogate variable is used for stratification, then either the third or fourth
case is valid. The interpretation for the efficiency gain in the third case is, that some
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of the information lost due to censoring can be recovered by incorporating covariate
information related to the survival endpoint. Thus it is expected, that the efficiency
gains are the largest, when the proportion of censored observations is huge. Without
any censoring, there is no difference between the stratified and the unstratified case,
no matter how the stratification variable is related to the primary endpoint. For un-
censored observations, the Kaplan-Meier estimator reduces to 1 minus the empirical
distribution function. Suppose the observations Y1, . . . , Yn are uncensored, then the
stratified and the unstratified estimates are identical:

ŜWKM(t) =

J∑
j=1

nj

n

(
1

nj

n∑
i=1

1{Yi > t,Xi = j}

)

=
1

n

n∑
i=1

1{Yi > t}

J∑
j=1

1{Xi = j}︸ ︷︷ ︸
=1

= ŜKM(t)
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Figure 3.1: Asymptotic relative efficiency (ARE) of the weighted Kaplan-Meier esti-
mator compared to the Kaplan-Meier estimator for exponential survival
times and four strata. Left: Stratification independent of the censoring
time. Right: Stratification independent of the survival time.

With censoring the reduction in the size of the asymptotic variance is small ex-
cept in extreme cases. Consider for example a situation with four strata, each with
response probability 0.25, with exponential survival times with means 1, 1.25, 1.5
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and 1.75 respectively. Censoring times are exponential with mean 0.25 in all strata,
resulting in 70− 80% censoring. The ratio

ρWKM(s, t)
ρKM(s, t)

was calculated for values of s and t ranging between 0 and 2. The result is shown in
figure 3.1 (left panel). The reduction in the size of the asymptotic variance is at most
4%. Now reversing the roles of the censoring and survival times, i.e. the censoring
times are now exponentially distributed with means 1, 1.25, 1.5 and 1.75, respectively,
and the survival times are exponentially distributed with mean 0.25, results in figure
3.1 (right panel).

The use of the WKM estimator is still justified in the non-adaptive setting, since it
can also reduce bias from informative censoring, when the stratification variable is
also related to the censoring time.

3.1.3 Missing surrogate values

In the construction of the WKM estimate it was assumed, that the value of the sur-
rogate variable is available immediately after treatment for all patients, i.e. at time
t = 0. More realistically, the response status will only be known after a certain delay
or is missing, e.g. assessement of tumor response after a fixed time span, and some
patients die before. Ignoring the delay might result in a so-called time-dependent bias
(Wolkewitz et al. [2012]) as illustrated in the following simulation. The scenario was
that of table 2.2 in section 2.5 with an important modification. For about 50% of the
responders, the response was set to missing, simulating patients, whose response sta-
tus was missing at the analysis time. Censoring for patients with missing response
status was non-informative. Clearly, the missingnes of the response variable depends
on the unobserved value of the response variable. Three different strategies for han-
dling the missing data with the WKM estimator were examined: Simply ignoring
patients with missing surrogate variable, i.e. a complete case analysis (CC), treating
all patients with missing surrogate variable as non-responders (as.NR), and adding a
new surrogate variable category containing all patients with missing surrogate vari-
able (new.cat).

Figure 3.2 clearly shows the substantial bias of the WKM estimates if patients
with missing surrogate variable values are excluded from analysis or treated as non-
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Figure 3.2: Bias of WKM estimator caused by missing surrogate. Mean of 105 replica-
tions. Sample size was 200.

responders. The curve corresponding to the WKM estimator with the additional stra-
tum is indistinguishable from the true survival curve. This approach only works, if
censoring for those patients with missing surrogate variable is non-informative, i.e.
censoring does not depend on the unobserved value of the surrogate variable. This is
plausible in the adaptive design setting, where informative censoring is only induced
through the adaptive design changes, by using surrogate variable information in the
interim decision. The censoring in the group of patients with missing surrogate vari-
able is non-informative, since their surrogate variable information cannot possibly
have been used in any interim decision. Note that using the information, that the
surrogate variable was missing, in the interim decision does not induce informative
censoring. In face of this simple strategy of handling missing surrogate variable data
it is justified to assume for simplicity, that all surrogate variable data is available at
time t = 0.
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3.2 multivariate average hazard ratio

In this section the multivariate average hazard ratio as introduced by Kalbfleisch and
Prentice [1981] is defined and its large sample properties are derived based on k+ 1
sets of independent right-censored continuous failure time data. Denote the sample
size of group i by ni, the hazard rate by λi and the survival function by Si, i = 0, . . . ,k.
The total sample size is then n = n0 + . . .+ nk. Note that the existence of a hazard
rate λi implies, that Si is continuous. The observed data is

{(Yl = Tl ∧Cl, δl = 1{Tl 6 Cl},Xl,Zl), l = 1, . . . ,n},

where Xl ∈ {1, . . . , J} is the surrogate and Zl ∈ {0, . . . ,k} is the group indicator.

3.2.1 Average hazard ratio

The multivariate average hazard ratio is defined by Kalbfleisch and Prentice [1981] as
a weighted time-average of a hazard ratio.

Definition 3.4 (average sample i to total hazard ratio). Given a survival function G
define the average sample i to ’total’ hazard ratio as

θi(G) = −

∫∞
0

λi(t)∑k
j=0 λj(t)

G(dt). (3.2.1)

A natural choice for the weight function is the product of all survival functions

G(t) =

k∏
i=0

Si(t)
α,

where α > 0 is a constant, which controls the weight given to the tails of the survival
curve. For α = 1, this leads to the relative risk

θi(G) = P(min{T0, . . . , Ti−1, Ti+1, . . . , Tk} > Ti)

(see lemma 3.6). As mentioned in section 3.1.2, the true survival function can only be
consistently estimated up to a finite time point L < ∞ depending on the support of
the survival and censoring times (see assumption 3.2). Therefore the weight function
G is truncated at a fixed point L.
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Definition 3.5 (weight function). Let α > 0 and L > 0. For given survival functions Si,
i = 0, . . . ,k define

G(t) =

k∏
i=0

Sαi (t),

and
G̃(t) =

G(t)

1−G(L)
1{t 6 L}.

The normalization factor 1−G(L) in the definition of G̃ ensures, that

k∑
i=0

θi(G̃) = −

∫∞
0

G̃(dt) = 1.

Lemma 3.6.

θi ≡ θi(G̃) = −

∫∞
0

λi(t)∑k
j=0 λj(t)

G̃(dt) =
xi

1−G(L)
,

where

xi = −

∫L
0

G(t) logSi(dt) = −

∫L
0

ξi(t)Si(dt).

and
ξi(t) =

∏
j6=i

Sj(t) =
G(t)

Si(t)
.

Proof.

G(dt) = G(t) logG(dt) = G(t)
k∑
j=0

logSj(dt) = −G(t)

k∑
j=0

λj(t)dt,

and
ξi(t)Si(dt) = G(t) logSi(dt) = −λi(t)G(t)dt.

Hence

θi(G̃) =
1

1−G(L)

∫L
0

λi(t)G(t)dt = −
1

1−G(L)

∫L
0

ξi(t)Si(dt).

Remark 3.7. The value of L is fixed throughout this and the following chapters. Therefore the
dependence on L of the average hazard ratio and other quantities is omitted in the notation.
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3.2.2 Choice of the weight function

The shape of the weight function in definition 3.5 is controlled by the parameter α.
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Figure 3.3: Left: Survival functions S0 (= Weibull(2, 0.7)) and S1 (= Exp(1)). Right:
Weight function G = Sα0 S

α
1 for α ∈ {0.25, 0.5, 1}.

The performance of the average hazard ratio based tests depends critically on the
choice of the weight function, i.e. the parameter α. Figure 3.3 gives an example in the
two-sample case. The left panel shows the two survival functions. The right panel
shows the weight function for three different values of α. Figure 3.4 shows the values
of the average hazard ratio θ1(1) for different values of α between 0 and 2. The effect
size θ1(1) − 0.5 becomes smaller with α getting larger, and it even changes sign at
α = 1.5.

In principle, weight functions, which are not of the form as in definition 3.5 are
possible, but would require modification of the proofs of the large sample properties
of the average hazard ratio. Optimal choice of the weight function, of course, requires
knowledge of the true shape of the survival curves. For simplicity and comparability,
in all the simulations the truncated weight function from definition 3.5 was used with
α = 1.
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Figure 3.4: Two-sample average hazard ratio for different weight functions G = Sα0 S
α
1 .

3.2.3 Estimation of the average hazard ratios

According to lemma 3.6, the parameters θi are functions of the survival functions
S0, . . . ,Sk, if the weight function from definition 3.5 is used. The estimation of the
average hazard ratios is based on estimators of the marginal survival function in
each sample. Any estimators can be used as long as the following assumptions hold:

Assumption 3.8. There exists L > 0, such that for i = 0, 1, . . . ,k,

1. ni/n→ νi > 0, as n→∞,

2. Ŝi is a uniformly consistent estimator of Si on [0,L],

3.
√
ni{Ŝi− Si} converges weakly in D[0,L] to a mean-zero Gaussian process with covari-

ance function ρi,

4. there exists a uniformly consistent estimator ρ̂i of the covariance function ρi.

Assumption 3.8 holds, e.g. for the Kaplan-Meier estimator and the weighted Kaplan-
Meier estimator (theorem 3.3).

Remark 3.9. The estimators Ŝi, i = 0, 1, . . . ,k are always considered as random elements of
the space D[0,L].



30 fixed sample size methods

Remark 3.10. The dependence on the parameter α in the weight function 3.5 is not made
explicit in the rest of this chapter, since if assumption 3.8 holds for Ŝi and Si it also holds for
Ŝαi and Sαi for any α > 0.

From assumption 3.8 and the independence of the samples it follows, that(√
n{Ŝi − Si}

)
06i6k

L−→
(
Ui

)
06i6k

as n→∞, where Ui, i = 0, . . . ,k are independent mean-zero Gaussian processs with
covariance functions ν−1i ρi. In the closed-form expressions for the asymptotic vari-
ance, it is convenient to use the asymptotic covariance function ρlog

i of
√
ni{log Ŝi −

logSi} instead of the covariance function ρi of
√
ni{Ŝi−Si}. The relationship between

ρi and ρlog
i is

ρi(s, t) = Si(s)Si(t)ρ
log
i (s, t),

because

√
ni{Ŝi − Si} =

√
ni{e

log Ŝi − elogSi} = elogSi√ni{log Ŝi − logSi}+ op(1),

by the functional delta method (theorem A.50). Moreover, the asymptotic covari-
ance function of

√
n{Ŝi − Si} is ν−1i ρi and the asymptotic covariance function of

√
n{log Ŝi − logSi} is ν−1i ρ

log
i . Estimators of the quantities ξi, G, xi and θi are ob-

tained by replacing the survival functions Si with their estimators Ŝi.

Definition 3.11. For any estimators Ŝi of Si, i = 0, . . . ,k, define

ξ̂i =
∏
j6=i

Ŝj,

Ĝ(L) =

k∏
i=0

Ŝi(L),

x̂i = −

∫L
0

ξ̂i(t)Ŝi(dt),

θ̂i =
x̂i

1− Ĝ(L)
.

The next lemma proves asymptotic expansions of the estimators ξ̂i, Ĝ(L) and x̂i,
i = 0, . . . ,k, which are a key step in the proof of the main result of this chapter
(theorem 3.15).
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Lemma 3.12. Under assumption 3.8, for i = 0, . . . ,k,

1.
√
n{ξ̂i − ξi} = ξi

∑
j6=i

1

Sj

√
n{Ŝj − Sj}+ op(1),

2.
√
n{Ĝ(L) −G(L)} =

k∑
i=0

ξi(L)
√
n{Ŝi(L) − Si(L)}+ op(1).

3.

√
n{x̂i − xi} =

∑
j6=i

∫L
0

√
n{Ŝi − Si}ξid logSj

−
∑
j6=i

∫L
0

ξi
Sj

√
n{Ŝj − Sj}dSi

−
√
n{Ŝi(L) − Si(L)}ξi(L) + op(1)

Proof. Let φ : B → D[0,L] be the map defined by S 7→ logS, where B ⊂ D[0,L] is the
subset of functions in D[0,L], which are strictly positive everywhere. Let ψ : R+ → R

be the function defined by x 7→ log x for x > 0. Remember that ξ̂i and Ŝi are random
elements in the space D[0,L], and are in B with probability tending to 1, since the
truncation point L was chosen, such that Si(L) > 0 for i = 0, . . . ,k.

1. Twice application of the functional delta method with the map φ and its inverse
φ−1,

√
n{ξ̂i − ξi} = ξi

√
n{log ξ̂i − log ξi}+ op(1)

= ξi
∑
j6=i

√
n{log Ŝi − logSi}+ op(1)

= ξi
∑
j6=i

1

Si

√
n{Ŝi − Si}+ op(1).

(3.2.2)
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2. Again twice application of the delta method, this time with the map ψ and its
inverse ψ−1,

√
n{Ĝ(L) −G(L)} = G(L)

√
n{log Ĝ(L) − logG(L)}+ op(1)

= G(L)

k∑
i=0

√
n{log Ŝi(L) − logSi(L)}+ op(1)

=

k∑
i=0

ξi(L)
√
n{Ŝi(L) − Si(L)}+ op(1).

3. From the definitions of ξ̂i and ξi it follows

√
n{x̂i − xi} = −

∫L
0

√
nξ̂i(·−)dŜi +

∫L
0

√
nξidSi,

where ξ̂i(·−) denotes the limit from the left, i.e. ξ̂i(t−) = lims↑t ξ̂i(s). Adding
and substracting the term

√
n
∫L
0 ξidŜi at the right hand side gives

√
n{x̂i − xi} = −

∫L
0

√
n{ξ̂i(·−)− ξi}dŜi −

∫L
0

ξid
√
n{Ŝi − Si}

Integration by parts (theorem A.28) of the second term on the right hand side,

√
n{x̂i − xi} = −

∫L
0

√
n{ξ̂i(·−)− ξi}dŜi +

∫L
0

√
n{Ŝi(·−)− Si}dξi

−
√
n{Ŝi(L) − Si(L)}ξi(L) −

[√
n{Ŝi − Si}, ξi

]
(L).

(3.2.3)

The last term on the right hand side vanishes, by lemma A.25, because the
stochastic process ξi is of bounded variation (since it is monotone decreasing
a.s.) and continuous. Adding and substracting the term∫L

0

√
n{ξ̂i(·−)− ξi}dSi

gives

√
n{x̂i − xi} =

∫L
0

√
n{Ŝi(·−)− Si}dξi −

√
n{Ŝi(L) − Si(L)}ξi(L)

−

∫L
0

√
n{ξ̂i(·−)− ξi}dSi −

∫L
0

√
n{ξ̂i(·−)− ξi}d{Ŝi − Si}.

(3.2.4)
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The process
√
n{ξ̂i − ξi} converges weakly, by (1.), and is independent of the

process
√
n{Ŝi − Si}, such that the two processes converge jointly. By lemma

A.49(2.) and the functional delta method, the sequence of (real-valued) random
variables ∫L

0

√
n{ξ̂i(·−)− ξi}d(

√
n{Ŝi − Si})

converges in distribution and is therefore tight, i.e. stochastically bounded.This
implies, that the last term on the right hand side in eq. (3.2.4) converges in
probability to 0. Hence

√
n{x̂i − xi} =

∫L
0

√
n{Ŝi(·−)− Si}dξi −

∫L
0

√
n{ξ̂i(·−)− ξi}dSi

−
√
n{Ŝi(L) − Si(L)}ξi(L) + op(1)

Now use
dξi = ξi

∑
j6=i

d logSj

for the first term on the right hand side, and the result from (1.) for the second
term on the right hand side to obtain

√
n{x̂i − xi} =

∑
j6=i

∫L
0

√
n{Ŝi(·−)− Si}ξid logSj −

∑
j6=i

∫L
0

ξi
Sj

√
n{Ŝj(·−)− Sj}dSi

−
√
n{Ŝi(L) − Si(L)}ξi(L) + op(1).

The following abbreviations are used in the expression for the asymptotic variance
in the next theorem:
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Definition 3.13 (Variance components). For 0 6 i, j 6 k, i 6= j,

V
(i)
x = V

(i,i)
x =

∑
j6=i

∑
l6=i

Bijl +
∑
j6=i

Bjii +Ci − 2
∑
j6=i

Aij

V
(i,j)
x = −

∑
l6=i

Bilj −
∑
l6=j

Bjli +
∑
l6=i,j

Blij +Aij +Aji

V
(i)
xG =

∑
j6=i

(Aij −Aji) −Ci

VG =

k∑
i=0

Ci

where

Aij = ν
−1
i G(L)

∫L
0

ρ
log
i (t,L)G(t)d logSj(t)

Bijl = ν
−1
i

∫L
0

∫L
0

ρ
log
i (s, t)G(s)G(t)d logSj(s)d logSl(t)

Ci = ν
−1
i G2(L)ρ

log
i (L,L)

The next lemma contains some rather tedious covariance calculations, which are
used in the derivation of the asymptotic covariance in theorem 3.15.

Lemma 3.14. For i = 0, . . . ,k let

fi =
∑
l6=i

∫L
0

Xiξid logSl −
∑
l6=i

∫L
0

ξi
Sl
XldSi −Xi(L)ξi(L),

and

g =

k∑
i=0

ξi(L)Xi(L),

where X0, . . . ,Xk are independent mean zero Gaussian processes with covariance functions
ν−1l ρl, l = 0, . . . ,k. Then

1. Cov(fi, fj) = V
(i,j)
x for i 6= j,

2. Var(fi) = V
(i)
x ,

3. Cov(fi,g) = V
(i)
xG.
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Proof. 1. Note that independence of Xl, l = 0, . . . ,k, together with E[Xl(s)] = 0 for
all s > 0, l = 0, . . . ,k, implies E[Xi(s)Xj(t)] = 0 for i 6= j for all s, t. Then

Cov(fi, fj) =− E

∑
l6=i

∑
h6=j

∫L
0

∫L
0

Xi(s)ξi(s)
ξj(t)

Sh(t)
Xh(t)d logSl(s)dSj(t)


− E

∑
l6=i

∑
h6=j

∫L
0

∫L
0

Xj(t)ξj(t)
ξi(s)

Sl(s)
Xl(s)dSi(s)d logSh(t)


+ E

∑
l6=i

∫L
0

ξi(s)

Sl(s)
Xl(s)Xj(L)ξj(L)dSi(s)


+ E

∑
l6=j

∫L
0

ξj(s)

Sl(s)
Xl(s)Xi(L)ξi(L)dSj(s)


+ E

∑
l6=i,j

∫L
0

∫L
0

ξi(s)ξj(t)

Sl(s)Sl(t)
Xl(s)Xl(t)dSi(s)dSj(t)


a) First term:

− E

∑
l6=i

∑
h6=j

∫L
0

∫L
0

Xi(s)ξi(s)
ξj(t)

Sh(t)
Xh(t)d logSl(s)dSj(t)


= −
∑
l6=i

ν−1i

∫L
0

∫L
0

ρi(s, t)ξi(s)
ξj(t)

Si(t)
d logSl(s)dSj(t)

= −
∑
l6=i

ν−1i

∫L
0

∫L
0

ρ
log
i (s, t)G(s)G(t)d logSl(s)d logSj(t)

= −
∑
l6=i

Bilj

b) Second term: Like first term, equals −
∑
l6=j Bjli.
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c) Third term:

E

∑
l6=i

∫L
0

ξi(s)

Sl(s)
Xl(s)Xj(L)ξj(L)dSi(s)


= ν−1j

∫L
0

ρj(s,L)
ξi(s)

Sj(s)
ξj(L)dSi(s)

= ν−1j

∫L
0

ρ
log
j (s,L)G(s)G(L)d logSi(s)

= Aji

d) Fourth term: Like third term, equals Aij.

e) Fifth term:

E

∑
l6=i,j

∫L
0

∫L
0

ξi(s)ξj(t)

Sl(s)Sl(t)
Xl(s)Xl(t)dSi(s)dSj(t)


=
∑
l6=i,j

ν−1l

∫L
0

∫L
0

ξi(s)ξj(t)

Sl(s)Sl(t)
ρl(s, t)dSi(s)dSj(t)

=
∑
l6=i,j

ν−1l

∫L
0

∫L
0

G(s)G(t)ρ
log
l (s, t)d logSi(s)d logSj(t)

=
∑
l6=i,j

Blij

Hence Cov(fi, fj) = V
(i,j)
x .
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2.

Var(fi) =E[f
2
i ]

=E

∑
j6=i

∑
l6=i

∫L
0

∫L
0

Xi(s)Xi(t)ξi(s)ξi(t)d logSj(s)d logSl(t)


+ E

∑
l6=i

∫L
0

∫L
0

ξi(s)ξi(t)

Sl(s)Sl(t)
Xl(s)Xl(t)dSi(s)dSi(t)


− 2
∑
j6=i

E

[∫L
0

Xi(s)
ξi(s)

Sj(s)
Xi(L)ξi(L)dSj(s)

]
+ E[Xi(L)

2]ξi(L)
2

=
∑
j6=i

∑
l6=i

Bijl +
∑
j6=i

Bjii − 2
∑
j6=i

Aij +Ci

3.

Cov(fi,g) =E

∑
j6=i

∫L
0

Xi(s)Xi(L)ξi(s)ξi(L)d logSj(s)


− E

∑
j6=i

∫L
0

ξi(s)

Sj(s)
ξj(L)Xj(L)Xj(s)dSi(s)

− ρi(L,L)ξi(L)2

=
∑
j6=i

Aij −
∑
j6=i

Aji −Ci = V
(i)
xG

The next theorem gives the asymptotic distribution of the k-vector
√
n{θ̄(n) − θ̄} of

average hazard ratios, where θ̄(n) = (θ̂0, . . . , θ̂k)T and θ̄ = (θ0, . . . , θk)T .

Theorem 3.15. Under assumption 3.8, as n→∞,

√
n{θ̄(n) − θ̄}

L−→ N(0,Σθ),

where Σθ is the (k+ 1)× (k+ 1)-matrix with entries

σi+1,j+1 =
1

{1−G(L)}2
{V

(i,j)
x + θjV

(i)
xG + θiV

(j)
xG + θiθjVG} for 0 6 i, j 6 k
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The covariance matrix Σθ can be estimated consistently by replacing νi, Si and ρi by their
consistent estimators ni/n, Ŝi and ρ̂i.

Proof. Define the linear map φ : D[0,L]k+1 → Rk+2 by


X0
...
Xk

 7→

∑
j6=0
∫L
0 X0Z0d logSj −

∑
j6=0
∫L
0
Zi
Sj
XjdS0 −X0(L)Z0(L)

...∑
j6=k
∫L
0 XkZkd logSj −

∑
j6=k
∫L
0
Zi
Sj
XjdSk −Xk(L)Zk(L)∑k

i=0 Zi(L)Xi(L)


From the continuous mapping theorem together with lemma 3.12 it follows

√
n{x̂0 − x0}

...
√
n{x̂k − xk}√

n{Ĝ(L) −G(L)}

 =
√
n{φ(Ŝ0, . . . , Ŝk) −φ(S0, . . . ,Sk)}+ op(1)

L−→ φ(U0, . . . ,Uk)

Since φ is linear, φ(U0, . . . ,Uk) has a (k+ 2)-variate mean-zero normal distribution
with covariance matrix

Σ =



V
(0)
x V

(0,1)
x . . . V

(0,k)
x V

(0)
xG

V
(1)
x . . . V

(1,k)
x V

(1)
xG

. . .
...

...
V
(k)
x V

(k)
xG

VG


The entries in the covariance matrix follow from lemma 3.14. Finally, consider the
function ψ : Rk+1 × (0, 1)→ Rk+1, defined by

(x0, . . . , xk,G) 7→
(

x0
1−G

, . . . ,
xk
1−G

)
The derivative of ψ at the point (x0, . . . , xk,G(L)) is given by the (k + 1)× (k + 2)-
matrix

V =
1

1−G(L)


θ0

Ik+1
...
θk
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where Ik+1 is the (k+ 1)× (k+ 1) identity matrix. Applying the delta method again,

√
n{θ̄(n) − θ̄}

L−→ N(0,VΣVT ).

It remains to show VΣVT = Σθ. To see this, let Σθ = (uij), V = (vij), Σ = (σij) and
W = (wij), where W = ΣVT . Then for 1 6 i 6 k+ 2 and 1 6 j 6 k+ 1,

vij =


1 i = j 6 k+ 1

0 i 6= j, i, j 6 k+ 1

θi−1 j = k+ 2

and

σij =



V
(i−1)
x i = j 6 k+ 1

V
(i−1,j−1)
x i 6= j, i, j 6 k+ 1

V
(i−1)
xG i 6 k+ 1, j = k+ 2

V
(j−1)
xG j 6 k+ 1, i = k+ 2

VG i = j = k+ 2

Using the matrix multiplication formula,

{1−G(L)}2uij =

k+2∑
l=1

vilwlj

=

k+2∑
l=1

vil

k+2∑
m=1

σlmvjm

=

k+1∑
l=1

vil

k+2∑
m=1

σlmvjm + vi,k+2︸ ︷︷ ︸
θi−1

k+1∑
m=1

σk+2,m︸ ︷︷ ︸
V

(m−1)
xG

vjm + σk+2,k+2︸ ︷︷ ︸
VG

vj,k+2︸ ︷︷ ︸
θj−1


=

k+2∑
m=1

σimvjm + θi−1V
j−1
xG + θi−1θj−1VG

=

k+1∑
m=1

σim︸︷︷︸
V

(i−1,m−1)
x

vjm + σi,k+2︸ ︷︷ ︸
V

(i−1)
xG

vj,k+2︸ ︷︷ ︸
θj−1

+θi−1V
j−1
xG + θi−1θj−1VG

= V
(i−1,j−1)
x + θj−1V

(i−1)
xG + θi−1V

j−1
xG + θi−1θj−1VG,
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Remark 3.16. All rows and columns of the asymptotic covariance matrix Σθ sum to 0,
because of the constraint

k∑
i=0

θi = 1,

and the fact, that

VG +

k∑
i=0

V
(i)
xG = 0,

and
V
(i)
x +

∑
j6=i

V
(i,j)
x + V

(i)
xG = 0 0 6 i 6 k.

Therefore the (k+ 1)× (k+ 1)-matrix Σθ has only rank k.

3.2.4 Estimation of the log average hazard ratios

For i = 1, . . . ,k let

βi = log
(
θi
θ0

)
= log θi − log θ0

The parameters β1, . . . ,βk indeed coincide with the usual log-hazard ratios, if the
proportional hazards model is true.

Lemma 3.17. For any i = 1, . . . ,k, if the hazards are proportional, i.e.

λi(t) = λ0(t)e
β̃i , (3.2.5)

then βi does not depend on the truncation point L or the weight function G and is identical
to the log hazard ratio β̃i.

Proof. Under the proportional hazards assumption the ratio

λi(t)∑k
j=0 λj(t)

=
eβ̃i∑k
j=0 e

β̃j

is constant. Thus

θi = −

∫∞
0

λi∑k
i=0 λj

G(dt) = −
λi∑k
j=0 λj

∫∞
0

G(dt) =
eβ̃i∑k
j=0 e

β̃j
,
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and
eβi =

θi
θ0

= eβ̃i .

Each βi is consistently estimated by β̂i = log θ̂i − log θ̂0, because of theorem 3.15.
Define the k-vectors β̄ = (β1, . . . ,βk)T and β̄(n) = (β̂1, . . . , β̂k)T .

Corollary 3.18. Under assumption 3.8, as n→∞,

√
n{β̄(n) − β̄}

L−→ N(0,Σβ),

where Σβ = (uij)16i,j6k is the k× k-matrix with entries

uij =
σ11

θ20
−
σ1,j+1

θ0θj
−
σi+1,1

θ0θi
+
σi+1,j+1

θ2j
.

Proof. Define the map f : Rk+1 → Rk by

f(y0, . . . ,yk) = (logy1 − logy0, . . . , logyk − logy0)T ,

and note that f(θ0, θ1, . . . , θk) = β. The derivative of f at the point (θ0, . . . , θk) is
given by the k× (k+ 1)-matrix

Γ = ∇f(θ0, . . . , θk) =


−θ−10 θ−11

...
. . .

−θ−10 θ−1k


Thus by theorem 3.15 and the delta method

√
n{β̂−β} =

√
n{f(θ̂0, . . . , θ̂k) − f(θ0, . . . , θk)}

L−→ N(0, ΓΣθΓT ),

where Σθ = (σij)16i,j6k+1 is the covariance matrix from theorem 3.15. It remains to
show, that Σβ = ΓΣθΓ

T . Now let ΓΣθΓT = (uij) and Γ = (Γij), then for 1 6 i 6 k and
1 6 j 6 k+ 1,

Γij =


− 1
θ0

j = 1

1
θi

j = i+ 1

0 else
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and for 1 6 i, j 6 k,

uij =

k+1∑
h=1

Γih

k+1∑
l=1

σhlΓjl

=

k+1∑
h=1

Γih

(
−
σh1
θ0

+
σh,j+1

θj

)
=
σ11

θ20
−
σ1,j+1

θ0θj
−
σi+1,1

θ0θi
+
σi+1,j+1

θ2j

3.2.5 Multivariate testing

Theorem 3.15 can be used to directly derive the asymptotic distribution of various
useful test statistics. In the following χ2k denotes the χ2-distribution with k degress
of freedom.

Corollary 3.19. Under assumption 3.8, as n→∞,

n{θ̄(n) − θ̄}T Σ̂−
θ {θ̄

(n) − θ̄}
L−→ χ2k,

where Σ̂−
θ is any generalized inverse of Σ̂θ, and for any c ∈ Rk+1,

cT
√
n{θ̄(n) − θ̄}√
cT Σ̂θc

L−→ N(0, 1).

A corresponding result holds for the k-vector β̄(n). The limiting distribution is also
χ2 with k degrees of freedom, since the asymptotic covariance matrix Σβ has full
rank.

Corollary 3.20. Under assumption 3.8, as n→∞,

n{β̄(n) − β̄}T Σ̂−1
β {β̄(n) − β̄}

L−→ χ2k,

where Σ̂−1
β is the inverse of Σ̂β, and for any linear contrast c ∈ Rk,

cT
√
n{β̄(n) − β̄}√
cT Σ̂βc

L−→ N(0, 1).
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3.2.6 Special case: two samples

In the two-sample case definition 3.4 reduces to

θi = −

∫∞
0

λi(t)

λ0(t) + λ1(t)
dG(t), (3.2.6)

for i = 0, 1. Under the proportional hazards assumption,

λ1(t) = λ0(t)e
β,

the average hazard ratio θ1 is equal to

eβ

1+ eβ
,

or equivalently

β = log
(

θ1
1− θ1

)
regardless of the weight function G. In the two-sample case it suffices to consider only
x1 and θ1, since θ0 = 1− θ1 and x0 = 1−G(L) − x1. Correspondingly θ̂0 = 1− θ̂1

and x̂0 = 1− Ĝ(L) − x̂1.

Corollary 3.21. Under assumption 3.8, as n→∞,

√
n{θ̂1 − θ1}

L−→ N(0,σ2θ),

where

σ2θ =
1

{1−G(L)}2
{Vx + 2θ1VxG + θ21VG},

and σ2θ can estimated consistently by σ̂2θ, which is obtained by replacing νi, Si and ρi by
ni/n, Ŝi and ρ̂i.

Proof. For the special case k = 1, theorem 3.15 reduces to

√
n

{(
θ̂0

θ̂1

)
−

(
θ0

θ1

)}
L−→ N(0,Σθ),
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where

Σθ =

(
σ2θ −σ2θ
−σ2θ σ2θ

)
.

Estimation of the log average hazard ratio

Define the estimator β̂ = log θ̂1 − log(1− θ̂1) for β, then

Corollary 3.22. Under assumption 3.8, as n→∞,

√
n{β̂−β}

L−→ N(0,σ2β),

where

σ2β =
σ2θ

θ21(1− θ1)
2

.

σ2β can be estimated consistently by using the consistent estimators σ̂2θ and θ̂1.

Proof.

√
n{β̂−β} =

√
n{log θ̂1 − log θ1}−

√
n{log(1− θ̂1) − log(1− θ1)}

=
1

θ1(1− θ1)

√
n{θ̂1 − θ1}+ op(1)

By corollary 3.21,
√
n{θ̂1 − θ1} converges in distribution to normal distribution with

mean zero and variance σ2θ.

Remark 3.23. Corollary 3.22 is indeed a special case of corollary 3.18 for k = 1. In the proof
of corollary 3.18 it is shown, that Σβ = ΓΣθΓ

T , where Σθ is the asymptotic covariance matrix
of theorem 3.15 and Γ = (θ−10 , θ−11 )T in the case k = 1. Thus

Σβ = ΓΣθΓ
T =

(
− 1
θ0

1
θ1

)( σ2θ −σ2θ
−σ2θ σ2θ

)(
− 1
θ0
1
θ1

)
=

σ2θ
θ20θ

2
1

(θ0 + θ1︸ ︷︷ ︸
=1

)2 = σ2β

Simulations

Table 3.1 shows the result of 105 simulations for several scenarios with exponentially
distributed survival data. Censoring is also exponential with rate adjusted to achieve
approx. 30% of censored observations. The truncation point L was set to 1 to prevent
the number at risk to become too small at time L, which could negatively impact the
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finite sample performance of the estimators. Sample size was 100 in both groups. Both
estimators exhibit about the same finite sample bias, whereas the empirical standard
deviation of the maximum partial likelihood estimator is smaller than that of the
average hazard ratio based estimator. This is expected from the efficiency results for
the maximum partial likelihood estimator for the proportional hazards model (Cox
[1972]). The estimated log hazard ratio from the Cox model is denoted by β̂PH, the
estimated log average hazard ratio by β̂AHR. The average hazard ratio is denoted
by θ and its estimate by θ̂. The score test in the Cox model, i.e. the log-rank test is
denoted by LR. The test based on the asymptotic distribution of β̂AHR by AHR(β).
Table 3.2 shows the estimated and true asymptotic variances of θ̂ and β̂ for the same

Table 3.1: Empirical mean and standard devia-
tion of the log average hazard ratio es-
timator β̂AHR compared with the max-
imum partial likelihood estimator β̂PH
of the log-hazard ratio from the Cox
proportional hazards model.

β b β̂AHR β̂PH sd(β̂AHR) sd(β̂PH)

0 0.000 0.001 0.199 0.173

-0.080 -0.081 -0.081 0.200 0.173

-0.154 -0.154 -0.155 0.201 0.172

-0.223 -0.225 -0.225 0.203 0.173

-0.288 -0.291 -0.290 0.206 0.174

-0.348 -0.351 -0.350 0.208 0.174

-0.405 -0.409 -0.409 0.210 0.175

-0.460 -0.463 -0.463 0.212 0.176

-0.511 -0.515 -0.515 0.214 0.177

-0.560 -0.564 -0.564 0.216 0.177

a Results of 105 simulation runs together with the true
log hazard ratio. The survival times are exponential in
both groups. Censoring was approx. 30% censoring.
Sample size was 100 in both groups.

b log hazard ratio

simulation scenario.
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Table 3.2: Estimated and true asymptotic variances of
√
n{θ̂− θ}

and
√
n{β̂AHR − β} and empirical bias of the asymp-

totic variance estimators for various proportional haz-
ards alternatives at a fixed sample sizea.
√
n{θ̂− θ}

√
n{β̂AHR −β} Bias (%)

β b Estimated True Estimated True θ̂ β̂AHR

0 0.479 0.480 7.819 7.684 -0.21 1.76

-0.080 0.486 0.487 7.957 7.820 -0.21 1.75

-0.154 0.491 0.492 8.105 7.965 -0.20 1.76

-0.223 0.493 0.495 8.258 8.114 -0.40 1.77

-0.288 0.495 0.496 8.421 8.269 -0.20 1.84

-0.348 0.495 0.496 8.582 8.426 -0.20 1.85

-0.405 0.493 0.495 8.746 8.585 -0.40 1.86

-0.460 0.492 0.492 8.916 8.749 -0.00 1.91

-0.511 0.489 0.490 9.087 8.912 -0.20 1.96

-0.560 0.485 0.486 9.254 9.077 -0.21 1.96

a Results of 105 simulation runs. The survival times are exponential in
both groups. Censoring was approx. 30% censoring. Sample size was 100
in both groups.

b log hazard ratio

3.2.7 Special case: three samples

Simulations

Table 3.3 shows the result of 105 simulations of a three-sample setup. Survival was
exponential with parameter 1 in all three groups with censoring also exponential,
such that the censoring probability was about 30%. The truncation points was L = 2.
Both test statistics should be approximately χ2 distributed with 2 degrees of freedom,
such that the mean should be close to 2 and the variance close to 4. The empirical
distributions of both test statistics are seen to approach the asymptotic distribution as
the sample size increases. While the LR method is clearly anti-conservative for small
sample sizes, the AHR(β) method is slightly conservative even for the smallest group
size n = 50.

Table 3.4 shows the result of 105 simulations of a scenario with proportional haz-
ards alternative and a scenario with non-proportional hazards alternative. In the first
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Table 3.3: Mean, variance and type-I-error of the multivari-
ate AHR(β) and LR methods for three-samples
for increasing group sizes n. The test statis-
tics are asymptotically χ2 distributed with two
degress of freedom. a

Mean Variance Type-I-error

n AHR(β) LR AHR(β) LR AHR(β) LR

50 1.99 2.06 3.86 4.34 0.049 0.056

100 1.99 2.02 3.91 4.16 0.048 0.052

200 1.99 2.01 3.91 4.07 0.049 0.051

a Results of 105 simulations, α = 0.05.

scenario the survival times are sampled from a Weibull distribution with shape pa-
rameter 1 in all three groups and scale parameters 1, 1.5 and 2 respectively. The true
average hazard ratios are θ0 = 0.46, θ1 = 0.31, and θ2 = 0.23. In the second scenario
the survival times are sampled from a Weibull distribution with shape parameters 1,
1.5 and 2 respectively, and scale parameter 1 in all three groups. The true average haz-
ard ratios in this scenario are θ0 = 0.42, θ1 = 0.32, and θ2 = 0.26. Censoring in both
scenarios is again exponential with rate parameter adjusted, such that the amount of
censoring is about 30% in all three groups. The table shows the power of the mul-
tivariate tests as well as the power of the trend tests (i.e. contrast c = (1, 2, 3)). The
performance of the AHR(θ) and AHR(β) methods relative to the LR method is simi-
lar to the two-sample case (cf. tables 3.7 and 3.8). The trend tests have larger power
here, since they specifically test the alternative θ0 > θ1 > θ2. The trend test for the
AHR(β) method in the three sample case is simply the one-sided test H0 : β1 = β2

vs. H1 : β1 > β2, whereas the multivariate test is the two-sided test of H0 : β1 = β2

vs. H1 : β1 6= β2.

Three-arm trial

The results of the previous section can be directly applied to test non-inferiority and
superiority in three-arm survival trials in the non-proportional hazards case. This
generalizes the results of Mielke et al. [2008] for exponentially distributed survival
times and the results of Kombrink et al. [2013] for survival times following a pro-
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Table 3.4: Power of the multivariate and trend test of the AHR(β)
and LR methods in a three-sample proportional and
a non-proportional hazards scenario at a significance
level of 0.05. a

Power (mv.) Power (trend)

θ0 θ1 θ2 n L AHR(β) LR AHR(β) LR

0.46 0.31 0.23 100 3 0.89 0.96 0.96 0.98

0.42 0.32 0.26 200 1.5 0.81 0.07 0.92 0.07

a Results of 105 simulations, α = 0.05.

portional hazards model. Mielke et al. [2008] consider the retention of control effect
hypothesis

H0 :
λT
λP

>

(
λR
λP

)∆
where ∆ ∈ [0,∞) is the non-inferiority margin and λT , λP, λR are the parameters of the
exponential distributions in the test (T), placebo (P) and reference (R) groups. Replace
λT , λP, λR with the corresponding average sample to total hazard ratios θT , θP, θR:

Hθ0 :
θT
θP

>

(
θR
θP

)∆
(3.2.7)

or equivalently
H
β
0 : βT > ∆βR, (3.2.8)

where βT = log θT − log θP and βR = log θR − log θP. Setting ∆ = 0 means testing
for efficacy of test treatment over placebo, ∆ ∈ (0, 1) means that the test treatment
achieves at least ∆× 100 per cent of the reference effect, when both are compared
to placebo, ∆ > 1 means testing for superiority of test over reference treatment. Let
η̂ = β̂T − ∆β̂R and η = βT − ∆βR. Using corollary 3.20 with the linear contrast
c = (−∆, 1)T ,

Theorem 3.24. Under assumption 3.8, as n→∞,

√
n{η̂− η} =

√
n{cT β̄(n) − cT β̄}

L−→ N(0, cTΣβc).
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Since βT and βR reduce to the usual hazard ratio in the proportional hazards case,
this result can be seen as a direct generalization of the results of Kombrink et al.
[2013].

3.3 related two-sample methods

In this section two alternative two-sample methods are considered, which are also
functions of the marginal survival functions.

3.3.1 Restricted mean survival

A totally different approach avoiding the concept of hazard rates is based on the
survival functions directly. The mean of the survival time T is equal to the area under
the survival curve

E[T ] =

∫∞
0

S(t)dt.

Again the tails of the survival distribution cannot be consistently estimated, because
of censoring. So instead the restricted mean survival

E[min(T ,L)] =
∫L
0

S(t)dt,

is considered. Two distributions can be compared, by comparing their restricted
(weighted) mean survival. This leads to the Pepe-Fleming class of test statistics (Pepe
and Fleming [1989]), ∫L

0

ŵ(t){Ŝ0(t) − Ŝ1(t)}dt,

where Ŝ0 and Ŝ1 are estimates of the survival functions S0 and S1 and ŵ is a weight
function. This kind of test statistics with the weighted Kaplan-Meier estimator has
already been considered by Murray and Tsiatis [1996]. Consistency and asymptotic
normality follow from the continuous mapping theorem under similar conditions as
for the average hazard ratio, since the map S 7→

∫L
0 w(u)S(u)du is continuous.

Theorem 3.25. If assumption 3.8 holds for k = 2 and ŵ converges uniformly in probability
to the bounded function w on [0,L], then under the null hypothesis S0 = S1, as n→∞,

√
n

(∫L
0

ŵ(u)
{
Ŝ0(u) − Ŝ1(u)

}
du

)
L−→ N(0,σ2(w,L)),
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where

σ2(w,L) =
∫L
0

∫L
0

w(s)w(t)
{
ν−10 ρ0(s, t) + ν−11 ρ1(s, t)

}
dsdt.

A consistent estimator of σ2(w,L) is given by

σ̂2(w,L) =
∫L
0

∫L
0

ŵ(s)ŵ(t)
{
ν−10 ρ̂0(s, t) + ν−11 ρ̂1(s, t)

}
dsdt.

Proof. Since S0 = S1 under the null hypothesis,

√
n

∫L
0

ŵ(s)
{
Ŝ0(s) − Ŝ1(s)

}
ds

=
√
n

∫L
0

ŵ(s)
{
Ŝ0(s) − S0(s)

}
ds−

√
n

∫L
0

ŵ(s)
{
Ŝ1(s) − S1(s)

}
ds.

The ŵ can be replaced by w, because∣∣∣∣∣√n
∫L
0

{ŵ(s) −w(s)}
{
Ŝi(s) − Si(s)

}
ds

∣∣∣∣∣
6 L sup

s∈[0,L]
|ŵ(s) −w(s)| sup

s∈[0,L]

√
n
∣∣Ŝi(s) − Si(s)∣∣

The right hand side converges to 0 in probability, because
√
n
{
Ŝi − Si

}
converges

weakly in D[0,L] to a continuous Gaussian process Zi, i = 0, 1, by assumption 3.8.
Thus

sup
s∈[0,L]

√
n
∣∣Ŝi(s) − Si(s)∣∣ = Op(1).

Moreover by assumption

sup
s∈[0,L]

|ŵ(s) −w(s)| = op(1).

This gives

√
n

∫L
0

ŵ(s)
{
Ŝ0(s) − Ŝ1(s)

}
ds

=
√
n

∫L
0

w(s)
{
Ŝ0(s) − S0(s)

}
du−

√
n

∫L
0

w(s)
{
Ŝ1(s) − S1(s)

}
ds+ op(1).
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The two terms are stochastically independent and, by the continuous mapping theo-
rem each converges in distribution to a normal random variable∫L

0

w(s)Zi(s)ds,

which has mean 0 and variance

E

(∫L
0

w(s)Zi(s)ds

)2 =

∫L
0

∫L
0

w(s)w(t)ρi(s, t)du,

since E[Zi(s)Zi(t)] = ρi(s, t). Consistency of the variance estimator follows immedi-
ately from the uniform consistency of ŵ and ρi, i = 0, 1.

It is clear, that the test from theorem 3.25 does have low power against alternatives
with crossing survival curves. This could be fixed, e.g. by considering the integrated
squared difference of the survival functions or by using an appropriate weight func-
tion. However, the optimal choice requires knowledge of the truth and might be
difficult to interpret. There is no direct multivariate generalization of this method.
More than two samples can only be compared by pairwise comparisons.

3.3.2 Median survival

The median (or any other quantile) is an attractive alternative, since it has a simple
interpretation. A consistent estimate of the median can be derived from any consis-
tent estimate of the survival function. Methods for construction of confidence inter-
vals exist requiring only pointwise consistency and weak convergence of the survival
function estimator and the corresponding asymptotic variance estimator (Brookmeyer
and Crowley [1982]). Similarly, confidence intervals for the difference and the ratio
of two medians can be constructed (Su and Wei [1993]). The true median can be con-
sistently estimated, as long as the truncation point L is larger than the true median,
since truncation right of the median does not change the median, in contrast to the
mean (see restricted mean survival above). However, if in a finite sample the esti-
mated survival curve does not drop below 0.5, then the median cannot be calculated
without extrapolating the survival curve.
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The p-th quantile of the survival distribution is defined as

zp := inf
x>0

{S(x) 6 p}.

Given an estimate Ŝ of the survival function S, the estimated quantile is

ẑp := inf
x>0

{Ŝ(x) 6 p}.

The asymptotic variance of the estimator ẑp depends on the density of the survival
time at the p-th quantile, which is difficult to estimate nonparametrically. Brookmeyer
and Crowley [1982] describe how to obtain a nonparametric asymptotic confidence
interval without the need to estimate the density. Suppose there is a consistent and
asymptotically normal estimator Ŝ(x) of S(x) for any x ∈ [0,L], and a consistent
estimator σ̂(x) of the asymptotic variance of

√
n{Ŝ(x) − S(x)}. Then the following

result follows immediately.

Theorem 3.26. If zp < L, then

n{Ŝ(zp) − p}
2

σ̂2(zp)

L−→ χ21.

An asymptotic level α test for the hypothesis H0 : z = zp is to reject H0 if

n{Ŝ(zp) − p}
2

σ̂2(zp)
> cα,

where cα is the upper α-quantile of the χ21-distribution. A confidence interval for zp is given
by

CIα =

{
z :
n{Ŝ(z) − p}2

σ̂2(z)
6 cα

}
.

Under similar conditions asymptotic confidence intervals for the difference and
ratio of two median survival times in a two-sample setting can be constructed (cf. Su
and Wei [1993]). This method is also implemented in the R package written for this
thesis (see appendix B).

Theorem 3.26 requires only the pointwise consistency and asymptotic normality
of the survival function estimator and its variance estimator (as compared with the
much stronger conditions for the results in section 3.2.6). Moreover, as long as the
true quantile is contained in the interval [0,L], the quantile of the survival time and
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not just the truncated survival time can be estimated as is the case for the mean (see
section 3.3.1). However, one of the problems of this method is, that even if the true
quantile is contained in the interval [0,L], it may happen, that for a given finite sample
the estimated survival function never falls below p. In this case the estimator would
be undefined.

3.4 comparison of two-sample methods

The finite sample performance of the various two-sample methods is compared. The
method based on the average hazard ratio is denoted by AHR(θ), the method based
on the log-odds of the average hazard ratio by AHR(β), the restricted mean survival
by RMS and the log-rank test by LR.

The survival times are sample from Weibull distributions with different shape and
scale parameters. Two Weibull distributions have proportional hazards if and only if
they have the same shape parameter. This makes it very easy to simulate proportional
and non-proportional hazards scenarios.

3.4.1 Type-I-error

Independent censoring / Non-informative censoring

To assess the actual type-I-error rate of the various methods, survival times are sam-
pled from an exponential distribution with rate parameter 1 in both groups. The
censoring times have an exponential distribution with parameter 1/2.34, resulting in
approx. 30% censoring.

Table 3.5 shows the actual type-I-error of the AHR(θ), AHR(β), RMS and LR meth-
ods for increasing group sizes n = 50, 100, 200, 400 under independent censoring for
two-sided testing of the null hypothesis of no treatment effect. All methods control
the type-I-error at the nominal level (α = 0.05) as n increases. For very small group
sizes (e.g. n = 50) all methods, except AHR(β), are anti-conservative. It is interesting
to see that the AHR(β) method is slightly conservative for all sample sizes, and is
more conservative for small than for larger sample sizes.
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Table 3.5: Type-I-error of several two-
sample methods for increasing
group sizes n under indepen-
dent censoring. a

Type-I-error

n AHR(θ) AHR(β) RMS LR

50 0.059 0.048 0.056 0.052

100 0.054 0.048 0.052 0.050

200 0.052 0.049 0.051 0.050

400 0.052 0.050 0.050 0.050

a Results of 105 simulation runs, standard error
for all estimates is ≈ 0.0007, α = 0.05.

Informative censoring

The methods based on the Kaplan-Meier estimator are now compared with the meth-
ods based on the weighted Kaplan-Meier estimator for the simulation scenario al-
ready described in section 2.5. The results are shown in table 3.6. The tests based on
the Kaplan-Meier estimator and the the log-rank test show a huge inflation of the
type-I-error rate, whereas the tests based on the weighted Kaplan-Meier estimator
and the stratified log-rank test control the type-I-error rate at the nominal level (0.05).
These results clearly show the sensitivity of the unstratified methods with respect to
a violation of the independent censoring assumption.

3.4.2 Power under proportional hazards alternatives

In this simulation scenario various proportional hazards alternatives are considered.
The survival times have a Weibull distribution with shape parameter 1 in both groups
and scale parameter 1 in group 1 and different scale parameters b in group 2. The
censoring times are exponentially distributed with the rate parameter adjusted, such
that approx. 30% of censoring are achieved. The sample size is 100 in each group.
The truncation point is L = 1. Table 3.7 shows the result of 105 simulations for each
scenario. The results are also depicted in figure 3.5. As expected the log-rank test (LR)
has the highest power of all methods. All other methods have up to 15% power loss
compared to the log-rank test.
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Figure 3.5: Power of several two-sample methods under proportional hazards alter-
natives
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Figure 3.6: Power of several two-sample methods under non-proportional hazards
alternatives
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Table 3.6: Type-I-error of several two-sample
methods under informative censor-
ing a.

Type-I-error

stratified AHR(θ) AHR(β) RMS LR

no b
0.163 0.159 0.214 0.327

yes c
0.052 0.050 0.052 0.050

a Results of 105 simulation runs, standard error of all
estimates is ≈ 0.0007, α = 0.05.

b log-rank test and methods based on the
Kaplan-Meier estimator

c stratified log-rank test and methods based on the
weighted Kaplan-Meier estimator

3.4.3 Power under non-proportional hazards alternatives

To assess the power under several non-proportional hazards alternatives survival
times are sampled from a Weibull distribution with shape parameter 1 and scale
parameter 0.3 in group 1 and different shape parameters a and scale parameter 0.4 in
group 2. The censoring times are exponentially distributed with the rate parameter
adjusted, such that approx. 30% of censoring are achieved. The sample size is 100 in
each group. The truncation point is again L = 1.

Table 3.8 shows the results of 105 simulations for each scenario. The results are also
depicted in figure 3.6. The power loss of the log-rank test compared to the relative
risk based methods (AHR(θ) and AHR(β)) becomes substantial with increasing shape
parameter. The RMS method performs even worse than the log-rank test in these
scenarios.

Remark 3.27. The power simulations were all done without stratification. In simulations not
reported here, there was no difference in the actual power of the average hazard ratio methods,
when a stratification variable was included, i.e. when the WKM estimator was used, although
the WKM based average hazard ratio had a slightly smaller asymptotic variance.
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Table 3.7: Power of several two-sample methods
under proportional hazards alterna-
tives. Total sample size was 200 with
140 observed events on average. a

Power

b θ1
θ0

AHR(θ) AHR(β) RMS LR

1.00 1 0.06 0.05 0.05 0.05

1.08 0.92 0.07 0.07 0.07 0.08

1.17 0.86 0.13 0.12 0.12 0.15

1.25 0.80 0.21 0.20 0.19 0.26

1.33 0.75 0.31 0.29 0.27 0.39

1.42 0.71 0.42 0.39 0.37 0.53

1.50 0.67 0.52 0.50 0.46 0.66

1.58 0.63 0.62 0.60 0.55 0.76

1.67 0.60 0.70 0.68 0.64 0.84

1.75 0.57 0.77 0.75 0.71 0.90

a Results of 105 simulation runs, standard error of all
estimates is ≈ 0.0007, α = 0.05, H0 : θ1

θ0
= 1 vs.

H1 : θ1
θ0
6= 1
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Table 3.8: Power of several two-sample meth-
ods under non-proportional hazards
alternatives. Total sample size was
200 with 140 observed events on av-
erage. a

Power

a θ1
θ0

AHR(θ) AHR(β) RMS LR

1.00 0.76 0.38 0.36 0.40 0.39

1.11 0.73 0.47 0.45 0.39 0.42

1.22 0.70 0.56 0.54 0.40 0.44

1.33 0.67 0.63 0.61 0.40 0.46

1.44 0.65 0.69 0.67 0.40 0.47

1.56 0.63 0.74 0.73 0.41 0.48

1.67 0.62 0.78 0.76 0.42 0.48

1.78 0.60 0.82 0.80 0.43 0.48

1.89 0.59 0.84 0.83 0.45 0.49

2.00 0.57 0.86 0.85 0.46 0.49

a Results of 105 simulations, standard error of all
estimates is ≈ 0.0007, α = 0.05, H0 : θ1

θ0
= 1 vs.

H1 : θ1
θ0
6= 1



4
S E Q U E N T I A L T W O - S A M P L E M E T H O D S

In group-sequential trials several (at least one) pre-planned interim analyses are per-
formed. At each interim analysis it is decided wether to stop the trial by an early
rejection of the null hypothesis, to continue the trial or to stop for futility. The in-
terim analyses are performed either at pre-specified calendar times or after a certain
(pre-specified) number of patients have been recruited or, in the case of survival trials,
after a certain (pre-specified) number of events have been observed. The standardized
test statistic at the k-th stage, Zk, is calculated from all data available up to the time of
k-th interim analysis. The null hypothesis is rejected and the trial stopped, if Zk < bk,
for some critical value bk. To control the familywise type-I-error, i.e. the probability
of falsely rejecting the null hypothesis at any of the interim analyses without allow-
ing futility stopping, at the level α, the rejection boundaries need to be chosen, such
that

P0(Z1 < b1, . . . ,ZK < bK) = 1−α.

The number and timing of interim analyses can be chosen flexibly, by using error
spending functions. An error spending function is any montone increasing function
α : [0, 1] 7→ [0, 1], such that α(0) = 0 and α(1) = α. If the critical values b1, . . . ,bK are
chosen, such that

P0(Z1 6 b1, . . . ,Zk−1 6 bk−1,Zk > bk) = α(tk) −α(tk−1),

then the familywise type-I-error is controlled at the level α. Note that it is straight-
forward to extend this approach to allow for early acceptance of the null hypothesis,
an option which is not considered here explicitely. To determine the critical values
b1, . . . ,bK, the joint distribution of the standardized test statistics Z1, . . . ,ZK must
be known. The rejection boundaries can be efficiently calculated, if the standardized

59
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test statistics have the canoncial joint distribution (Jennison and Turnbull [1999]), i.e.
Z1, . . . ,ZK are jointly normal with

Zk ∼ N(0, 1) k = 1, . . . ,K

Cov(Zi,Zj) =

√
Ii

Ij
i < j,

where I1, . . . , IK are the information levels. Equivalently, this can be formulated in
terms of the score statistics Sk =

√
IkZk, S1, . . . ,SK are jointly normal with

Sk ∼ N(0, Ik)

Cov(Si,Sj) = Var(Si) i < j,

i.e. the score statistics have the independent increments property. This special covari-
ance structure allows for efficient recursive computation of the rejection boundaries,
which can be calculated before the trial starts, since they only depend on the pre-
specified error spending function and the pre-specified analysis times. Many test
statistics have this property (at least asymptotically). In fact any semi-parametrically
efficient test statistics will have asymptotically the independent increments property
(Scharfstein et al. [1997]). This property also holds for the log-rank test statistics (Sel-
lke and Siegmund [1983]) or more generally for the score test statistics in the propor-
tional hazards model (Tsiatis et al. [1985]). For the log-rank test the information levels
are proportional to the expected number of events (Tsiatis et al. [1985]).

The main result of this chapter is the derivation of the asymptotic joint distribu-
tion of the sequential weighted Kaplan-Meier estimator and the average hazard ratio
test statistic at different calendar times (theorem 4.16). The independent increments
structure of the weighted Kaplan-Meier estimator is inherited by the average hazard
ratio test statistic. The result for the average hazard ratio is given in the two-sample
case only, which is the most common, to keep the notation manageable.

As with the fixed sample size methods in chapter 3, any estimator of the marginal
survival function can be used with theorem 4.16, given that it has certain large sample
properties. This is the case for the weighted Kaplan-Meier estimator as will be proved
in section 4.2. Since no adaptations are made, it is not necessary to use the weighted
Kaplan-Meier to control the type-I-error.
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4.1 staggered entry

In clinical trials patients do not enter all at the same time, but at different ’staggered’
entry times, i.e. at independent and identically distributed entry or recruitment times
Ri, i = 1, . . . ,n, which are assumed to be independent of all other data. At any calen-
dar time t only patients with Ri 6 t have entered the trial. The number of patients in
the trial by time t is given by

n(t) =

n∑
i=1

1{Ri 6 t}.

The sample size at calendar time t in stratum j is

nj(t) =

n∑
i=1

1{Xi = j,Ri 6 t} =
n(t)∑
i=1

1{Xi = j}.

Clearly, n(t) = n1(t) + . . .+nJ(t). Denote the proportion of patients recruited before
calendar time t by

π̂(t) =
n(t)

n
,

and let π(t) = P(R 6 t). It is assumed, that n(t) tends to infinity for all t, such that as
n→∞

π̂(t)
a.s.−→ π(t) > 0.

The observed data at calendar time t consists of the iid tuples

{(Yi ∧ (t− Ri)
+, δi(t),Xi,Ri), i = 1, . . . ,n(t)},

where
δi(t) = 1

{
Ti 6 Ci ∧ (t− Ri)

+
}

is the censoring indicator for patient i at calendar time t. If only one analysis is done
at a fixed calendar time t, this is equivalent to all patients entering the trial at time 0
with censoring times C′i = Ci ∧ (t− Ri)

+. The definitions of the counting processes,
the at-risk indicators and the counting process martingales need to be adjusted to
include the dependence on the calendar time t. Define for patient i at calendar time
t and survival time s, the counting process

Ni(t, s) = 1
{
Yi ∧ (t− Ri)

+ 6 s, δi(t) = 1
}

,
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and the at-risk indicator

Yi(t, s) = 1
{
Yi ∧ (t− Ri)

+ > s
}

.

The number of events in stratum j at calendar time t and survival time s is then given
by

N̄
(n)
j (t, s) =

n∑
i=1

1{Xi = j,Ri 6 t}Ni(t, s),

and the number at risk by

Ȳ
(n)
j (t, s) =

n∑
i=1

1{Xi = j,Ri 6 t}Yi(t, s).

As in the previous chapters, the conditional hazard rate of Ti given Xi = j is denoted
by λj, i.e.

λj(s) = lim
h→0

1

h
P(s 6 Ti < t+ h|Ti > t,Xi = j)

The hazard does not depend on the calendar time, which is also consistent with
the assumption, that the recruitment time Ri is independent of the survival time Ti.
Define the filtration FR as in Tsiatis et al. [1995]:

Definition 4.1. The filtration FR as the increasing sequence of σ-algebras defined by

FR(s) = σ(Ri,1{x∧ Yi 6 x, Ti 6 Ci},1{Yi 6 x, Ti > Ci},Xi; x 6 s, i = 1, . . . ,n)

for s > 0

FR(s) contains all observed survival and censoring information for all patients up
to s time units on study, as well as the entry times and all the covariate information.
This filtration does not depend on the calendar time, thus the counting processes
Ni(t, s) at any fixed calendar time t are adapted to the filtration FR and, given Xi = j,
the stochastic process

s 7→Mi(t, s) = Ni(t, s) −
∫s
0

Yi(t, s)λj(u)du s 6 t,

is a local square integrable FR-martingale for i = 1, . . . ,n. Consequently the sum

M̄
(n)
j (t, ·) =

n∑
i=1

1{Xi = j,Ri 6 t}Mi(t, ·) = N̄
(n)
j (t, s) −

∫s
0

Ȳ
(n)
j (t,u)λj(u)du,
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is, for any j and fixed t, also a local square integrable FR-martingale with

〈
M̄

(n)
j (t, ·)

〉
(s) =

∫s
0

Ȳ
(n)
j (t,u)λj(u)du.

The fact, that for any two fixed t and t′, M̄(n)
j (t, ·) and M̄(n)

j (t′, ·) are both martingales
with respect to the same filtration makes it possible to define and calculate their pre-
dictable quadratic covariation process, which is useful for the covariance calculations
in the next section:〈

M̄
(n)
j (t, ·), M̄(n)

j (t′, ·)
〉
(s) =

∫s
0

Ȳ
(n)
j (t∨ t′,u)λj(u)du. (4.1.1)

The counting process martingales M̄(n)
j (t, ·) and M̄(n)

j′ (t, ·) associated with different
strata j 6= j′ are orthogonal, i.e.〈

M̄
(n)
j (t, ·), M̄(n)

j′ (t′, ·)
〉
≡ 0. (4.1.2)

4.2 sequential weighted kaplan-meier estimator

In this section the asymptotic joint distribution of the weighted Kaplan-Meier estima-
tor at different calendar times is derived.

4.2.1 Definition

The conditional survival function of Ci∧ (t−Ri)
+ given Xi = j and Ri 6 t is denoted

by
Kj(t, s|Ri 6 t) = P(Ci ∧ (t− Ri)

+ > s|Xi = j,Ri 6 t).

The conditional survival function of Ci ∧ (t− Ri)
+ given Xi = j is denoted by

Kj(t, s) = P(Ci ∧ (t− Ri)
+ > s|Xi = j)

= P(Ci ∧ (t− Ri)
+ > s,Ri 6 t|Xi = j) = Kj(t, s|Ri 6 t)π(t).

The stratum-specific Nelson-Aalen and Kaplan-Meier estimators with staggered
entry are defined as
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Definition 4.2. Define, for j = 1, . . . , J, s, t > 0,

Λ̂j(t, s) =
∫s
0

J
(n)
j (t,u)

N̄
(n)
j (t,du)

Ȳ
(n)
j (t,u)

, (4.2.1)

where J(n)j (t,u) = 1
{
Ȳ
(n)
j (t,u) > 0

}
, and

Ŝj(t, s) =
∏
[0,s]

1− J(n)j (t,u)
N̄

(n)
j (t,du)

Ȳ
(n)
j (t,u)

 . (4.2.2)

The response probabilities at calendar time t are estimated by

p̂j(t) =
nj(t)

n(t)
for j = 1, . . . , J.

With these definitions the sequential weighted Kaplan-Meier estimator can be de-
fined.

Definition 4.3. The sequential weighted Kaplan-Meier estimator at calendar time t and
survival time s < t is defined by

Ŝ(t, s) =
J∑
j=1

p̂j(t)Ŝj(t, s).

4.2.2 Large sample properties

The large sample properties of the sequential weighted Kaplan-Meier estimator are
dervied under the following assumptions:

Assumption 4.4. For j = 1, . . . , J and i = 1, . . . ,n and given calendar time t ,

1. pj = P(Xi = j) > 0,

2. Ti is stochastically independent of Ci given Xi,

3. L < sup{s > 0 : Sj(s)Kj(t, s) > 0},

4. Ȳ(n)j (t, s)→∞, as n→∞ for all s ∈ [0,L],

5. Ri is stochastically independent of Ti, Ci and Xi,
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6. π(t) = P(Ri 6 t) > 0

The first four assumptions are essentially the same as in the fixed sample size case
(assumption 3.2), where assumption 4.4(3) implies L 6 t. Assumption 4.4(5) implies,
that p̂j(t) is a consistent estimator of pj, since

p̂j(t) =
nj(t)

n

n

n(t)

p→ P(Xi = j,Ri 6 t)
π(t)

= pj,

as n → ∞. Note that the response probability pj does not depend on the calendar
time t. The uniform convergence of the number at-risk in each stratum now follows
from the Glivenko-Cantelli theorem.

Lemma 4.5. Under assumption 4.4, as n→∞,

sup
u∈[0,L]

∣∣∣∣ 1nȲ(n)j (t,u) − pjSj(u)Kj(t,u)
∣∣∣∣ P→ 0.

Proof. n−1Ȳ
(n)
j (t,u) converges uniformly in u to P(T > u,C∧ (t− R) > u,X = j), by

the Glivenko-Cantelli theorem. Since T and C are stochastically independent given X,

P(T > u,C∧ (t− R) > u,X = j)

= P(T > u|X = j)P(C∧ (t− R) > u|X = j)P(X = j)

= Sj(u)Kj(t,u)pj.

The next lemma proves some asymptotic results of the stratum-specific Kaplan-
Meier estimator needed in the construction of the weighted Kaplan-Meier estimator.
This result is similar to asymptotic results about the Kaplan-Meier estimator found
in the literature (see e.g. Fleming and Harrington [2011]). The proof uses standard
counting process methods of survival analysis (see chapter 2 and appendix A).

Lemma 4.6. Under assumption 4.4, for any t > 0 and for j = 1, . . . , J,

1. uniformly in s ∈ [0,L],

√
n{Ŝj(t, s) − Sj(s)} = −

Sj(s)

pj

1√
n

∫s
0

M̄
(n)
j (t,du)

Sj(u)Kj(t,u)
+ oP(1).

2. Ŝj(t, ·) is a uniformly consistent estimator of S(t, ·) on [0,L],
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3.
√
n{Ŝj(t, ·) − Sj(t, ·)} converges to a mean-zero Gaussian process with covariance func-

tion
(t, s, s′) 7→ Sj(s)Sj(s

′)ρj(t, s, s′),

where

ρj(t, s, s′) =
1

pj

∫s∧s′
0

λj(u)du

Sj(u)Kj(t,u)
.

4. a uniformly consistent of the covariance function in (3) is given by

(t, s, s′) 7→ Ŝj(s)Ŝj(s
′)ρ̂j(t, s, s′),

where

ρ̂j(t, s, s′) =
n

p̂j(t)

∫s∧s′
0

J
(n)
j (t,u)N̄(n)

j (t,du)

Ȳ
(n)
j (t,u)2

.

Proof. 1. For each s write

√
n{Λ̂j(t, s) −Λj(t, s)} =

√
n

∫s
0

J
(n)
j (t,u)

N̄
(n)
j (t,du)

Ȳ
(n)
j (t,u)

− λj(t,u)du


+
√
n

∫s
0

{
J
(n)
j (t,u) − 1

}
λj(t,u)du

(4.2.3)

The second term converges to 0 in probability uniformly in s, as n→∞, since,
by lemma 4.5

P

(
|
√
n

∫s
0

{J
(n)
j (t,u) − 1}λj(t,u)du| > 0

)
6 P

(
inf

u∈[0,L]
J
(n)
j (t,u) = 0

)
→ 0.

Since Sj(t,u)Kj(t,u) is bounded away from 0 on [0,L] (by the choice of L),

sup
u∈[0,L]

∣∣∣∣∣∣nJ
(n)
j (t,u)

Ȳ
(n)
j (t,u)

−
1

pjSj(u)Kj(t,u)

∣∣∣∣∣∣ P→ 0,

as n→∞. It follows from lemma A.35, that

√
n{Λ̂j(t, s) −Λj(t, s)} =

1

pj

1√
n

∫s
0

J
(n)
j (t,u)

M̄
(n)
j (t,du)

Sj(u)Kj(t,u)
+ op(1). (4.2.4)
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uniformly in s. The martingale central limit theorem (theorem A.45) implies
weak convergence of the process

√
n{Λ̂j(t, ·) −Λj(t, ·)} in D[0,L]. The functional

delta method can now be applied with theorem A.52 to obtain

√
n{Ŝj(t, s) − Sj(s)} = −Sj(s)

√
n{Λ̂j(t, s) −Λj(t, s)}+ op(1),

uniformly in s.

2. The uniform consistency of Λ̂j follows from eq. (4.2.4) and Lenglart’s inequality
(lemma A.34) together with〈

1

n

∫L
0

M̄
(n)
j (t,ds)

Sj(s)Kj(t, s)

〉
=
1

n

∫L
0

Ȳ
(n)
j (t,u)

n

λj(t,u)du
Sj(u)2Kj(t,u)2

p→ 0.

3. The weak convergence result follows from the martingale central limit theorem
and (1.). The value of the asymptotic covariance function at (t, s, s′) is the limit
of the predictable covariation process,〈

1√
n

∫s
0

M̄
(n)
j (t,du)

Sj(t,u)Kj(t,u)
,
1√
n

∫s′
0

M̄
(n)
j (t,du)

Sj(t,u)Kj(t,u)

〉

=

∫s∧s′
0

Ȳ
(n)
j (t,u)

n

λj(t,u)du
Sj(t,u)2Kj(t,u)2

,

which converges in probability to ρj(t, s, s′), by lemma 4.5.

4. The uniform consistency of ρ̂j follows from theorem IV.1.2 in Andersen [1993]
and the consistency of p̂j(t).

The next two lemmas contain the covariance calculations necessary to determine
the covariance structure of the asymptotic joint distribution of the sequential weighted
Kaplan-Meier estimator at different calendar times.

Lemma 4.7. For t > 0 and s, s′ ∈ [0,L] let

S̄(t, s) =
1√
n

J∑
j=1

Sj(s)

∫s
0

M̄
(n)
j (t,du)

Sj(u)Kj(t,u)
,
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and

ρS(t, s, s′) =
1

π(t)

J∑
j=1

pjSj(s)Sj(s
′)

∫s∧s′
0

λj(u)

Sj(u)Kj(t,u|Ri 6 t)
du.

Then
ρS(t∨ t

′, s, s′) = Cov(S̄(t, s), S̄(t′, s′)).

Under assumption 4.4 ρS is uniformly (in s and s′) consistently estimated by

ρ̂S(t, s, s′) =
n

n(t)

J∑
j=1

p̂j(t)Ŝj(t, s)Ŝj(t, s′)n(t)
∫s∧s′
0

J
(n)
j (t,u)

N̄
(n)
j (t,du)

Ȳ
(n)
j (t,u)2

.

Proof. Define the processes Zj(x, ·) for x = t and x = t′ and j = 1, . . . , J by

Zj(x, s) =
∫s
0

M̄
(n)
j (x,du)

Sj(u)Kj(x,u)
s ∈ [0,L].

Then

S̄(x,u) =
1√
n

J∑
j=1

Sj(u)Zj(x,u),

Since Zj(t, s) and Zj′(t′, s′) are independent random variables for any s, s′,

Cov(S̄(t, s), S̄(t′, s′)) =
1

n

J∑
j=1

Sj(s)Sj(s
′)Cov(Zj(t, s),Zj(t′, s′)).

The processes Zj(t, ·) and Zj(t′, ·) are local square integrable FR-martingales for j =
1, . . . , J. By the Ito isometry (theorem A.22) and theorem A.27,

Cov(Zj(t, s),Zj′(t′, s′)) = E

∫s∧s′
0

〈
M̄

(n)
j (t,du), M̄(n)

j′ (t′,du)
〉

Sj(u)Sj′(u)Kj(t,u)Kj′(t′,u)


= 1
{
j = j′

} n∑
i=1

E

∫s∧s′
0

Ȳ
(n)
j (t∧ t′,u)λj(u)du

Sj(u)2Kj(t,u)Kj(t′,u)

 ,
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where the last equality follows from equations (4.1.1) and (4.1.2). Hence

Cov(S̄(t, s), S̄(t′, s′)) =
1

n

J∑
j=1

Sj(s)Sj(s
′)E


∫s∧s′
0

Ȳ
(n)
j (t∧ t′,u)λj(u)du

Sj(u)2(u)Kj(t,u)Kj(t′,u)


=

J∑
j=1

pjSj(s)Sj(s
′)

∫s∧s′
0

λj(u)

Sj(u)Kj(t∨ t′,u)
du,

where the last equality follows from Fubini’s theorem and

E[n−1Ȳj(t∧ t
′,u)] = pjSj(u)Kj(t∧ t′,u).

Finally, the covariance formula follows by noting that

Kj(t∨ t
′,u) = Kj(t∨ t′,u|R 6 t∨ t′)π(t∨ t′).

The consistency of the covariance estimator follows from lemma 4.6 and the consis-
tency of p̂j(t).

Lemma 4.8. Let

n̄(t, s) =
J∑
j=1

√
n

{
nj(t)

n
− pj

n(t)

n

}
Sj(s)

π(t)
,

and

ρn̄(t, s, s′) = π(t)−1
J∑
j=1

[
pjSj(s)Sj(s

′) −

J∑
l=1

pjplSj(s)Sl(s
′)

]
.

Then
ρn̄(t∨ t

′, s, s′) = Cov(n̄(t, s), n̄(t′, s′)).

Under assumption 4.4 ρn̄ can be estimated uniformly consistently by

ρ̂n̄(t, s, s′) =
n

n(t)

J∑
j=1

[
p̂j(t)Ŝj(s)Ŝj(s

′) −

J∑
l=1

p̂j(t)p̂l(t)Ŝj(s)Ŝl(s
′)

]
,

for s, s′ 6 L.

Proof. Let nij(t, s) = 1{Xi = j,Ri 6 t}− pj1{Ri 6 t}, such that

n̄(t, s) =
1√
n

J∑
j=1

n∑
i=1

nij(t, s)
Sj(s)

π(t)
,
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and note that E[nij(t, s)] = 0. The random variables nij(t, s) and ni′j′(t′, s′) are un-
correlated for i 6= i′, such that the covariance of n̄(t, s) and n̄(t′, s′) is given by

Cov(n̄(t, s), n̄(t′, s′)) =
J∑
j=1

J∑
j′=1

Cov(nij(t, s),nij′(t′, s′))
Sj(s)Sj′(s

′)

π(t)π(t′)

=

J∑
j=1

Cov(nij(t, s),nij(t′, s′))
Sj(s)Sj(s

′)

π(t)π(t′)

+

J∑
j=1

J∑
j′=1,j′ 6=j

Cov(nij(t, s),nij′(t′, s′))
Sj(s)Sj′(s

′)

π(t)π(t′)

Remember that Xi and Ri are stoch. independent, and that E[1{Xi = j}] = pj and
E[1{Ri 6 t}] = π(t). Hence

Cov(nij(t, s),nij(t′, s′)) = E[1
{
Xi = j,Ri 6 t∧ t′

}
] − 2pjE[1

{
Xi = j,Ri 6 t∧ t′

}
]

+ p2j E[1
{
Ri 6 t∧ t

′}]
= pj(1− pj)π(t∧ t

′)

For j 6= j′,

Cov(nij(t, s),nij′(t′, s′)) = −pjE[1
{
Xi = j

′,Ri 6 t∧ t′
}
] − pj′E[1

{
Xi = j,Ri 6 t∧ t′

}
]

+ pjpj′1
{
Ri 6 t∧ t

′}
= −pjpj′π(t∧ t

′)

Consistency of the covariance estimator follows from the consistency of p̂j(t) and
Ŝj.

Definition 4.9. For any s, s′, t, t′ with s, s′ 6 L 6 t, t′, let

ρ(t∨ t′, s, s′) = ρS(t∨ t′, s, s′) + ρn̄(t∨ t′, s, s′),

and
ρ̂(t∨ t′, s, s′) = ρ̂S(t∨ t′, s, s′) + ρ̂n̄(t∨ t′, s, s′),

where ρS, ρ̂S and ρn̄, ρ̂n̄ are defined in lemmas 4.7 and 4.8.

Finally the joint distribution of the sequential weighted Kaplan-Meier estimator at
different calendar times can be derived.
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Theorem 4.10. Under assumption 4.4,

1. Ŝ(t, ·) is a uniformly consistent estimator of S(·) on [0,L].

2.
√
n{Ŝ(t, ·) − S(·)} converges weakly in D[0,L] to a mean-zero Gaussian process with

covariance function (s, s′) 7→ ρ(t, s, s′),

3.
√
n
(
Ŝ(t1, ·) − S(·), . . . , Ŝ(tK, ·) − S(·)

)
converges weakly (in (D[0,L])K) to a multi-

variate Gaussian process with covariance function (t, t′, s, s′) 7→ ρ(t∨ t′, s, s′).

4. for fixed t, the covariance function ρ(t, ·, ·) can be estimated consistently uniformly in
s and s′ by ρ̂(t, ·, ·), as defined in definition 4.9.

Proof. 1. Uniform consistency of Ŝ(t, ·) follows immediately from the uniform con-
sistency of Ŝj(t, ·) for each j.

2.
√
n{Ŝ(t, s) − S(s)} can be written as the sum of two terms,

√
n{Ŝ(t, s) − S(s)} =

√
n


J∑
j=1

p̂j(t)Ŝj(t, s) −
J∑
j=1

pjSj(s)


=

J∑
j=1

pj
√
n{Ŝj(t, s) − Sj(s)}+

J∑
j=1

√
n{p̂j(t) − pj}Ŝj(t, s).

By lemma 4.6,

J∑
j=1

pj
√
n{Ŝj(t, s) − Sj(s)} = −

J∑
j=1

Sj(s)
1√
n

∫s
0

M̄
(n)
j (t,du)

Sj(u)Kj(t,u)
+ oP(1).

The second term can be written as

J∑
j=1

√
n

{
nj(t)

n
− pj

n(t)

n

}
n

n(t)
Ŝj(t, s)

=

J∑
j=1

√
n

{
nj(t)

n
− pj

n(t)

n

}
Sj(s)

π(t)
+ op(1),
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since Ŝj(t, s) = Sj(s)+oP(1) uniformly in s and n(t)/n→ π(t) > 0. This proves,
that the process

√
n{Ŝ(t, ·)− S(·)} is asymptotically equivalent to the sum of two

processes:

√
n{Ŝ(t, s) − S(s)} = −

J∑
j=1

Sj(s)
1√
n

∫s
0

M̄
(n)
j (t,du)

Sj(u)Kj(t,u)

+

J∑
j=1

√
n

{
nj(t)

n
− pj

n(t)

n

}
Sj(s)

π(t)
+ oP(1)

(4.2.5)

The two processes in eq. (4.2.5) are uncorrelated since the first process is a
FR-martingale and the second process is FR(0)-measurable. For each s, both
processes are sums of iid random variables, by (2.), such that the limiting finite
dimensional distributions are normal, by the multivariate central limit theorem,
and the covariance functions are given by lemma 4.7 and 4.8 with t = t′. Tight-
ness of the first process follows from the martingale central limit theorem (weak
convergence implies tightness by theorem A.42). Tightness of the second pro-
cess follows from the uniform continuity of each Sj on the compact interval
[0,L] and by the stochastic equicontinuity criterion for tightness (theorem A.41).
Hence the sum of the two processes is also tight.

3. Tightness of the vector is clear, since each component is tight according to (3.)
(see lemma A.40). Convergence of the finite-dimensional distributions follows
immediately from the multivariate central limit theorem, since by eq. (4.2.5)
each component of the vector is asymptotically linear. The covariance formula
follows immediately from lemmas 4.7 and 4.8.

4. The uniform consistency follows from the consistency results in lemmas 4.7 and
4.8.

4.3 sequential two-sample methods

4.3.1 Average hazard ratio

In this section the results of the previous section are applied to derive the asymptotic
joint distribution of the sequentially computed estimators of the average hazard ratio.
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For group-sequential designs it is necessary to derive the asymptotic joint distribution
of (√

n(t1){θ̂1(t1) − θ1}, . . . ,
√
n(tK){θ̂1(tK) − θ1}

)
for any finite number K > 1 of calendar times t1, . . . , tK, where θ̂1(t) is the estima-
tor of θ1 based on all data available up to calendar time t. The following assump-
tions about the asymptotic properties of the sequentially computed estimators of the
marginal survival functions S0 and S1 are made:

Assumption 4.11. There exists L > 0, such that for i = 0, 1, and t, t′ = t1, . . . , tK,

1. ni/n→ νi > 0, as n→∞,

2. Si(·) is continuous,

3. Ŝi(t, ·) is a uniformly consistent estimator of Si(·) on [0,L],

4.
√
n
(
Ŝi(t1, ·) − Si(·), . . . , Ŝi(tK, ·) − Si(·)

)
converges weakly inD[0,L] to a multivari-

ate Gaussian process with covariance function (t, t′, s, s′) 7→ ρi(t∨ t
′, s, s′),

5. there exists a uniformly consistent estimator ρ̂i(t, ·, ·) of the covariance function ρi(t, ·, ·).

Assumption 4.11 holds e.g. for the weighted Kaplan-Meier estimator (theorem
4.10).

Remark 4.12. In assumption 4.11(1.) the allocation ratio, i.e. the limit νi of ni(t)/n(t),
does not depend on the calendar time. Changes of the allocation ratio are not allowed in a
group-sequential trial, because this would destroy the independent increments structure. For
the adaptive designs in the next chapter, where the independent increments structure is not
needed, calendar time-dependence of the allocation ratio is allowed.

From assumption 4.11 and the independence of the samples it follows, that

√
n{Ŝ0(t1, ·) − S0(·)}

...
√
n{Ŝ0(tK, ·) − S0(·)}√
n{Ŝ1(t1, ·) − S1(·)}

...
√
n{Ŝ1(tK, ·) − S1(·)}


L→



U0(t1, ·)
...

U0(tK, ·)
U1(t1, ·)

...
U1(tK, ·)
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as n→∞, where Ui(tl, ·), l = 1, . . . ,K, i = 0, . . . ,k are mean-zero Gaussian processes
with covariance functions ν−1i ρi(tl, ·, ·) and

Cov(Ui(t, s),Uj(t′, s′)) = 1{i = j}ν−1i ρi(t∧ t
′, s, s′).

As in the fixed design case of chapter 3, the asymptotic covariance function
√
n{log Ŝi(tl, ·)−

logSi(·)} is

(s, s′) 7→ ρ
log
i (tl, s, s′) =

ρi(tl, s, s′)
Si(s)Si(s′)

.

Estimators of xi, G and θi are obtained by replacing the survival functions Si with
their estimators Ŝi. The estimator of the average hazard ratio from definition 3.11 is
defined in the two-sample case with explicit dependence on the calendar time.

Definition 4.13. For i = 0, 1 and t = t1, . . . , tK define the estimate of the weight function
G(L) by

Ĝ(t,L) = Ŝ0(t,L)Ŝ1(t,L),

the estimate of the relative risk xi = P(min(Tj,L) > min(Ti,L)) by

x̂i(t) = −

∫L
0

Ŝj(t, s)Ŝi(t,ds) i 6= j,

and the estimate of the average hazard ratio θi(L) by

θ̂i(t) =
x̂i(t)

1− Ĝ(t,L)
.

Definition 4.14 (Variance components). For any t > 0 and i, j, l = 0, 1, let

Vx(t) = B011(t) +B100(t) +C1(t) − 2A10(t),

VxG(t) = A10(t) −A01(t) −C1(t),

VG(t) = C0(t) +C1(t).

where

Aij(t) = ν
−1
i G(L)

∫L
0

ρ
log
i (t, s,L)G(s) logSj(ds),

Bijl(t) = ν
−1
i

∫L
0

∫L
0

ρ
log
i (t, s,u)G(s)G(u) logSj(ds) logSl(du),

Ci(t) = ν
−1
i G2(L)ρ

log
i (t,L,L),
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The next lemma is the two-sample special case of lemma 3.12:

Lemma 4.15. Under assumption 4.11, for any t = t1, . . . , tK, as n→∞,

√
n{x̂1(t) − x1} = −

∫L
0

√
n{Ŝ0(t, s) − S0(s)}S1(ds)

+

∫L
0

√
n{Ŝ1(t, s) − S1(s)}S0(ds)

−
√
n{Ŝ1(t,L) − S1(L)}S0(L) + op(1),

and

√
n{Ĝ(t,L) −G(L)} = S1(L)

√
n{Ŝ0(t,L) − S0(L)}

+ S0(L)
√
n{Ŝ1(t,L) − S1(L)}+ op(1).

Theorem 4.16. Under assumption 4.11, as n→∞,
√
n(t1){θ̂1(t1) − θ1}

...√
n(tK){θ̂1(tK) − θ1}

 L→ N(0,Σθ), (4.3.1)

where Σθ is the m×m-matrix with entries

σθ(tl, tj) =
√
π(tl)π(tj)σ̃(tl ∨ tj,L) 1 6 l, j 6 K,

and
σ̃(t) =

1

{1−G(L)}2
{Vx(t) + 2θ1VxG(t) + θ

2
1VG(t)}.

σθ(tl, tj) can be estimated consistently by replacing Si, ρi, νi, π(tl ∨ tj), and G in the
definition of σθ(s, t) by Ŝi, ρ̂i, ni(tl ∨ tj)/n(tl ∨ tj), n(tl ∨ tj)/n, and Ĝ. Note that the
resulting estimator uses only data observed up to calendar time t.
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Proof. Define the linear map φ : (D[0,L])2m → R2m by

X01
...

X0m

X11
...

X1m


7→



−
∫L
0 X01(s)S1(ds) +

∫L
0 X11(s)S0(ds) −X11(L)S0(L)

S1(L)X01(L)) + S0(L)X11(L)
...

−
∫L
0 X0m(s)S1(ds) +

∫L
0 X0m(s)S0(ds) −X0m(L)S0(L)

S1(L)X0m(L) + S0(L)X1m(L)



Define the vectors

Ū = (U0(t1, ·), . . . ,U0(tK, ·),U1(t1, ·), . . . ,U1(tK, ·)),

S̄(n) = (Ŝ0(t1, ·), . . . , Ŝ0(tK, ·), Ŝ1(t1, ·), . . . , Ŝ1(tK, ·)),

S̄ = (S0(·), . . . ,S0(·), S1(·), . . . ,S1(·)).

It then follows from lemma 4.15 and the continuous mapping theorem, that as n→∞

√
n{x̂1(t1) − x1}√

n{Ĝ(t1,L) −G(L)}
...

√
n{x̂1(tK) − x1}√

n{Ĝ(tK,L) −G(L)}


=
√
n
{
φ(S̄(n)) −φ(S̄)

}
L−→ φ(Ū)

Since φ is linear, φ(Ū) has a multivariate normal distribution with mean zero and
covariance matrix

ΣK =


Σ(t1) Σ(t2) · · · Σ(tK)

Σ(t2)
...

. . .

Σ(tK)


where

Σ(t) =

(
Vx(t) VxG(t)

VxG(t) VG(t)

)
The derivation of Σ(t) is similar to the calculations in lemma 3.14. Denote the i-th
component of the vector φ(Ū) by fi and remember that

E[Ui(t, s)Ui(t′, s′)] = ν−1i ρi(t∨ t
′, s, s′) = ν−1i ρ

log
i (t∨ t′, s∧ s′)Si(s)Si(s′)
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Then, by Fubini’s theorem,

Cov(f2i−1, f2j−1) = E[f2i−1f2j−1]

= E[

∫L
0

∫L
0

U0(ti, s)U0(tj,u)dS1(s)dS1(u)] + E[
∫L
0

∫L
0

U1(ti, s)U1(tj,u)dS0(s)dS0(u)]

+ E[U1(ti,L)U1(tj,L)]S20(L) − E[
∫L
0

U1(ti, s)U1(tj,L)dS0(L)dS0(s)]

− E[

∫L
0

U1(tj, s)U1(ti,L)S0(L)dS0(s)]

= B011(ti ∨ tj) +B100(ti ∨ tj) +C1(ti ∨ tj) − 2A10(ti ∨ tj) = Vx(ti ∨ tj)

Similarly,
Cov(f2i, f2j) = E[f2if2j] = VG(ti ∨ tj),

Cov(f2i−1, f2j) = E[f2i−1f2j] = VxG(ti ∨ tj).

Finally, consider the function ψ : RK × (0, 1)K → RK, defined by

(a1,b1, . . . ,aK,bK) 7→
(

a1
1− b1

, . . . ,
aK

1− bK

)T
Define the vectors

xG = (x1,G(L), . . . , x1,G(L))T ,

x̂G = (x̂1(t1), Ĝ(t1,L), . . . , x̂1(tK), Ĝ(tK,L))T .

Note that ψ(xG) = (θ1, . . . , θ1)T . The derivative of ψ at the point xG is given by the
K× 2K-matrix

VK =
1

1−G(L)


1 θ1

1 θ1
. . . . . .

1 θ1


Applying the delta method again,

√
n{θ̂1(t1) − θ1}

...
√
n{θ̂1(tK) − θ1}

 =
√
n{ψ(x̂G) −ψ(xG)}

L−→ N(0,VKΣKVTK) (4.3.2)
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Now define the matrix the K×K-diagonal matrices

V
(n)
π =


√
n(t1)
n

. . . √
n(tK)
n

 , Vπ =


√
π(t1)

. . . √
π(tK)


Clearly V(n)

π converges to Vπ a.s., thus by the lemma of Slutsky,
√
n(t1){θ̂1(t1) − θ1}

...√
n(tK){θ̂1(tK) − θ1}

 = V
(n)
π

√
n{ψ(x̂G) −ψ(xG)}

L→ N(0,VπVKΣKVTKVπ).

The result now follows, since Σθ = VπVKΣKV
T
KVπ.

A similar result holds for the sequentially computed log-odds of the average hazard
ratio:

Corollary 4.17. Under assumption 4.11, as n→∞,
√
n(t1){β̂(t1) −β}

...√
n(tK){β̂(tK) −β}

 L→ N(0,Σβ), (4.3.3)

where Σβ(L) is the m×m-matrix with entries

σβ(tl, tj) =
σθ(tl, tj)
θ21(1− θ1)

2
1 6 l, j 6 K.

σβ(tl, tj) can be estimated consistently by

σ̂θ(tl, tj)
θ̂1(tl ∨ tj)2{1− θ̂1(tl ∨ tj)}2

,

where σ̂θ is the consistent estimator of σθ from theorem 4.16.

Corollary 4.17 is a consequence of theorem 4.16 and the delta method, since β̂(t) =
log(θ̂1(t)) − log(1− θ̂1(t)) (confer the proof of corollary 3.22).
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Independent increments

Consider the vector of standardized test statistics (Ẑ(t1), . . . , Ẑ(tK))T , where

Ẑ(t) =

√
n(t){θ̂1(t) − θ1}√

σ̂2θ(t)
t = t1, . . . , tK,

and let σ2θ(t) = σθ(t, t). Then from theorem 4.16 it follows, that this vector converges
in distribution to a vector Z̄ = (Z1, . . . ,ZK)T , which has a multivariate normal distri-
bution with mean zero and and covariances given by

Cov(Zi,Zj) =
σθ(ti, tj)√

σ2θ(ti)
√
σ2θ(tj)

=

√
σ̃(ti ∨ tj)

σ̃(ti ∧ tj)
.

Thus Z̄ has the canonical joint distribution with information levels {I1, . . . , IK}, where

Ij =
1

σ̃(tj)
=
π(tj)

σ2θ(tj)
.

The information levels can be estimated by

Îj =
π̂(tj)

σ̂2θ(tj)
.

Equivalently, the vector (
Z1
√

I1, . . . ,ZK
√

IK

)T
is multivariate normal with mean zero and covariances

Cov
(
Zi
√
Ii,Zj

√
Ij

)
= Ii∧j,

i.e. it has the independent increments property. Thus group-sequential rejection bound-
aries can be derived with standard methods as described in Jennison and Turnbull
[1999]. The variance of the increments is

Var
(
Zk
√

Ik −Zk−1
√

Ik−1

)
= Ik − Ik−1.
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4.3.2 Restricted mean survival

The next result is a sequential version of theorem 3.25, which can be easily derived
using the existing theory of the previous chapters. Such a result has already been
proved by Murray and Tsiatis [1999] based on the Kaplan-Meier estimator only. The
weight function ŵ and its limit w may now depend on the calendar time t.

Theorem 4.18. If for each t = t1, . . . , tK, ŵ(t, ·) converges uniformly in probability to a
bounded function w(t, ·) on [0,L], then, under assumption 4.11, as n→∞,

√
n(t1)

∫L
0 ŵ(t1,u)

{
Ŝ0(t1,u) − Ŝ1(t1,u)

}
du

...√
n(tK)

∫L
0 ŵ(t1,u)

{
Ŝ0(tK,u) − Ŝ1(tK,u)

}
du

 L→ N(0,Σµ),

where Σµ = (σ(tl, tj))16l,j6K is the K×K-matrix with entries

σ(tl, tj) =
√
π(tl)π(tj)

∫L
0

∫L
0

w(tl,u)w(tj, v){ν−10 ρ0(tl ∨ tj,u, v)

+ ν−11 ρ1(tl ∨ tj,u, v)}dudv.

The proof is another application of the functional delta method, which is trivial
here, since the mapping is linear, and is similar to the proof of theorem 4.16. For
a proof of the special case with the Kaplan-Meier estimator only without the delta
method see Murray and Tsiatis [1999].

Remark 4.19. The test statistics from theorem 4.18 have the independent increments property
if and only if the weight function w does not depend on the calendar time t.

4.4 simulations

All simulations of group-sequential trials in this section were done with O’Brien-
Fleming boundaries (O’Brien and Fleming [1979]).

4.4.1 Type-I-error

Table 4.1 shows the type-I-error of the AHR(β), RMS and LR methods for different
maximum number of interim analyses under the null hypothesis of no treatment ef-
fect. The survival times were exponentially distributed with rate parameter 1 in both



4.4 simulations 81

groups. The censoring times were also exponentially distributed with rate parameter
1/2.34 in both groups truncated at 10. The maximum sample size was 500, the max-
imum information was 250 events and the maximum calendar time was 10. Interim
analyses were performed every 50 events. Recruitment was uniform on [0, 10]. The
truncation point L for the AHR and RMS methods was 2. The nominal significance
level 0.025 is maintained closely for all methods. It is interesting, that the AHR(β)
method is conservative in all scenarios.

Table 4.1: One-sided type-I-
error of the AHR(β),
RMS and LR methods
for different max-
imum number of
interim analyses.a

Type-I-error

K AHR(β) RMS LR

1 0.0248 0.0259 0.0255

2 0.0252 0.0270 0.0249

3 0.0244 0.0262 0.0255

4 0.0241 0.0269 0.0248

5 0.0243 0.0264 0.0254

a 105 replications, maximum
information = 250 events, equally
spaced interim analyses,
α = 0.025

4.4.2 Power

The same simulation scenarios as in Murray and Tsiatis [1999] are used. The first
scenario is a proportional hazards alternative with exponential survival times (rate 1)
in the control group and exponential survival times (rate 0.655) in the experimental
group. The median survival time is log(2)/0.655 ≈ 1 in the experimental group and
log(2) ≈ 0.7 in the control group. In the second scenario the experimental group
is now Weibull distributed with shape parameter 1.5 and scale parameter 1/0.737,
whereas the survival times in the control group have the same distribution as in the
first scenario. This results in non-proportional hazards. The median survival time is
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again approx. 1 in the experimental group. The corresponding survival functions are
shown in figure 4.1.

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0
t

S
(t)

Distributions Exp(1) Exp(0.655) Weibull(1.5, 1/0.737)

Survival functions

Figure 4.1: Survival functions of the control and the experimental group in both
power scenarios

The maximum information was set to 239 events, such that the log-rank test achieves
approx. 90% power. The truncation point L was set to 2 in both scenarios. The results
of 105 simulation runs for scenario 1 are shown in table 4.2, the results for scenario 2

are shown in table 4.3. In scenario 1 all methods are almost identical with respect to
power and average number of events. The log-rank outperforms the other methods
slightly, as is expected under proportional hazards. However, in scenario 2 the power
of the log-rank drops to about 80%, whereas the power of the other two methods
stays above 90%.



4.4 simulations 83

Table 4.2: Power and average number of events of the
AHR(β), RMS and LR methods for differ-
ent maximum number of interim analyses
in power scenario 1 (proportional hazards
alternative).a

Power ANE c

K b AHR(β) RMS LR AHR(β) RMS LR

1 0.87 0.87 0.90 239 239 239

2 0.86 0.87 0.90 214 209 210

3 0.86 0.87 0.89 197 193 193

4 0.86 0.87 0.89 189 184 185

5 0.86 0.87 0.89 184 180 179

a 105 replications, maximum information = 239 events,
equally spaced interim analyses, α = 0.025

b maximum number of interim analyses
c Average Number of Events

Table 4.3: Power and average number of events of the
AHR(β), RMS and LR methods for differ-
ent maximum number of interim analyses
in power scenario 2 (non-proportional haz-
ards alternative).a

Power ANE c

K b AHR(β) RMS LR AHR(β) RMS LR

1 0.94 0.91 0.79 239 239 239

2 0.94 0.90 0.79 202 205 210

3 0.94 0.90 0.79 184 188 197

4 0.94 0.90 0.79 174 180 190

5 0.94 0.90 0.80 169 175 185

a 105 replications, maximum information = 239 events,
equally spaced interim analyses, α = 0.025

b maximum number of interim analyses
c Average Number of Events





5
A D A P T I V E D E S I G N M E T H O D S

This chapter concerns methods for trials with data-dependent interim adaptations,
such as sample size reassessement or enrichment designs with subgroup selection,
where information from a discrete surrogate variable is used in the interim decision.
If data-dependent changes are made, the sequential methods of chapter 4 do not
control the type-I-error in general. The approach used in this chapter is based on com-
bination functions, which combine independent stage-wise test statistics to an overall
test statistic. Independence of the stage-wise test statistics is a critical assumption
here for the control of the type-I-error rate.

Suppose a two-stage trial is planned with sample sizes n1 in the first and n2 in the
second stage and that the data is normally distributed with mean 0 and variance 1
under the null hypothesis. After n1 patients have been recruited an interim analysis is
performed and the pre-planned second stage sample size n2 is changed to ñ2 based
on the unblinded data of the first stage. After ñ2 new patients have been recruited
in the second stage the final analysis is performed. Denote the standardized mean of
stage i by Zi, i = 1, 2. Zi is standard normal distributed for i = 1, 2 under the null
hypothesis. The test statistics Z1 and Z2 are independent, since they are calculated
from disjoint sets of independent observations. The overall standardized mean is

Z̃ =
1√

n1 + ñ2

ñ2∑
i=1

Xi =

√
n1√

n1 + ñ2
Z1 +

√
n2√

n1 + ñ2
Z2

In general Z̃ will not be standard normally distributed for data dependent choices of
ñ2, leading to an inflation of the type-I-error. If instead Z1 and Z2 are combined with
pre-fixed weights w1 and w2, with w21 +w

2
2 = 1,

Z = w1Z1 +w2Z2,

85
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then the overall Z-score Z is standard normally distributed. The test can be written
in terms of a p-value combination function C(p1,p2), where pi is the p-value from
stage i. The Z-test above corresponds to the inverse normal combination test, where

C(p1,p2) = 1−Φ(w1Φ
−1(1− p1) +w2Φ

−1(1− p2)),

where Φ denotes the cumulative distribution function of the standard normal distri-
bution. The trial is stopped for futility, if p1 > α0 and the null hypothesis is rejected
early, if p1 < α1. For arbitrary combination functions the critical value cα is chosen,
such that

α1 +

∫α0
α1

∫1
0

1{C(p1,p2) 6 cα}dp2dp1 = α.

Strictly speaking, stochastic independence of the stage-wise p-values is sufficient, but
not necessary for type-I-error control of the combination test. Brannath et al. [2002]
has shown, that the type-I-error of the combination test is controlled, when the p-
values are only p-clud, i.e. the distribution of p1 and the conditional distribution of p2
given p1 are stochastically larger than or equal to the uniform distribution on [0, 1]. In
trials, where the response is immediate, stochastic independence of the p-values can
be achieved by separating the observations into disjunct sets, those recruited before
and those recruited after the interim analysis. In survival trials the situation is more
complicated, because of overrunning patients, i.e. patients recruited before the in-
terim analysis and still followed-up after interim analysis. Adaptive group-sequential
survival trials can be designed with the inverse normal method as described by Wass-
mer [2006]. At stage k the standardized test statistic is

Z∗∗k =

(
k∑
l=1

w2l

)−1/2 k∑
l=1

wlZ
∗
l ,

where Z∗k is the standardized test statistic from stage k and wk > 0 are prefixed
weights, k = 1, . . . ,K. The test statistics Z∗∗1 , . . . ,Z∗∗K have (asymptotically) the canon-
ical joint distribution with information levels

Ik =

(
k∑
l=1

w2l

)−1/2

,

if the stage-wise test statistics Z∗k are jointly stochastically independent and (asymp-
totically) standard normal. This means, that the standard group-sequential rejection
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boundaries can be used. To ensure control of the type-I-error, the weights must re-
main fixed. Independence of the stage-wise test statistics Z∗k can be achieved by ex-
ploiting the independent increments property of the sequential test statistics Z(t)
(confer theorem 4.16 and 4.18). The stage-wise test statistics are then defined as

Z∗1 = Z(t1)

Z∗k =

√
I(tk)Z(tk) −

√
I(tk−1)Z(tk−1)√

I(tk) − I(tk−1)
k > 2,

where I(t) is the information at calendar time t.
This approach works, as long as modifications of the design are based only on

the value of the test statistic and the data of patients, who are no longer at risk at
the time of the interim analysis. Using information from secondary endpoints from
patients still at risk at the time of interim analysis is used may inflate the type-I-error
as demonstrated by Bauer and Posch [2004] (confer figure 1.1 in chapter 1). The type-
I-error in this scenario is approximately 2α−α2, where α is the nominal significance
level. This problem is not restricted to time-to-event data and the log-rank test. A
similar type-I-error inflation can also be observed e.g. for the t-test with a normal
endpoint and a binary surrogate variable.

For discrete surrogate markers two approaches are possible to ensure strict type-
I-error control in combination with the weighted Kaplan-Meier estimator. Section
5.1 describes the patient-wise splitting approach by Jenkins et al. [2011]. Section 5.2
describes the stage-wise splitting approach, which uses stage-wise left-truncated and
right-censored data.

5.1 patient-wise splitting

Jenkins et al. [2011] avoid the problem of type-I-error inflation, caused by prediction
of future events based on surrogate data, by splitting the patient population into two
disjunct sets, those recruited before the interim analysis and those recruited after the
interim analysis (figure 5.1). The interim analysis decision is based on PFS only. The
test statistics used in the combination test for the primary endpoint (OS) are calcu-
lated only at the end of the study. Hence, no efficacy testing at interim is possible in
this design. The test statistics are stochastically independent, since they are calculated
from disjunct patient populations.
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S2

Figure 5.1: Lexis diagram illustrating patient-wise splitting. x-axis: calendar time, y-
axis: survival time. S1: cohort of all patients recruited before the interim
analysis (IA). S2: cohort of all patients recruited after the interim analy-
sis. All patients in the cohorts S1 and S2 are followed-up until the final
analysis (FA).

However, follow-up of stage 1 patients must not be changed in this design after
the interim analysis (Jenkins et al. [2011] and Magirr et al. [2014]). The observed PFS
events of patient still at risk at the time of the interim analysis can be used to predict
future OS events, which in turn allows to predict the value of the stage 1 test statis-
tic calculated at the end of the follow-up. Now changing the follow-up changes the
number of observed events, i.e. the follow-up can be chosen to maximize the value of
the conditional error, inflating the type-I-error. This can also be interpreted as an in-
formative censoring problem. Changing follow-up changes the actual censoring time
C̃, since C̃ = C∧ (t− R)+, where t is the calendar time of the analysis, R is the entry
time and C is the drop-out time. Since t is chosen using the surrogate information
of the overrunning patients, the censoring time depends on the surrogate variable.
Hence the survival and the censoring time are no longer stochastically independent,
but stochastically independent conditional on the surrogate variable.

Covariate-dependent censoring can be handled in the Cox proportional hazards
model by including the surrogate variables as additional covariates (besides the group
indicator) in the model. For a discrete covariate this results in the stratified log-rank
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test. However, as explained in chapter 1, this estimates only the conditional effect (con-
ditional on the surrogate). The test statistics constructed with the weighted Kaplan-
Meier estimator (chapter 3) do not suffer from this problem, while still controlling
the type-I-error.

5.2 stage-wise splitting

If adaptive design changes have been made at an interim analysis, then the maximum
likelihood estimator of the response probability pj = P(X = j) using all data, i.e. from
patients recruited before and after the interim analysis, is biased (Brannath et al.
[2006]). An unbiased estimator of the response rate is obtained by using only data
from patients recruited after the adaptations have been made. Suppose adaptations
are made at calendar time t1 and the data is subsequently analyzed at calendar time
t2. Define the new response probability estimator by

p̂j(t1, t2) =
nj(t1, t2)
n(t1, t2)

, (5.2.1)

where

nj(t1, t2) =
n∑
i=1

1{Xi = j, t1 < Ri 6 t2},

is the number of patients recruited in stratum j in the interval (t1, t2] and

n(t1, t2) =
J∑
j=1

nj(t1, t2),

is the total number of patients recruited in the interval (t1, t2]. The recruitment rate
in the interval (t1, t2], πj(t1, t2) = P(t1 < R 6 t2|X = j), is estimated by

π̂(t1, t2) =
n(t1, t2)

n
.

It is tempting to define the weighted Kaplan-Meier estimator as

S̃(t1, t2, s) =
J∑
j=1

p̂j(t1, t2)Ŝj(t2, s), (5.2.2)
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where Ŝj(t2, ·) is the stratum-specific Kaplan-Meier estimator in stratum j at calendar
time t, i.e. the Kaplan-Meier estimator calculated from all in stratum j accrued up to
calendar time t2. However, the estimator in eq. (5.2.2) does not have the independent
increments property. This makes it impossible to define (asymptotically) independent
test statistics based on the (asymptotically) independent increments required for the
combination test approach.

t

s

0 IA FA

S1

S2

Figure 5.2: Lexis diagram illustrating stage-wise splitting. x-axis: calendar time, y-
axis: survival time. S1: cohort of all patients recruited before the interim
analysis (IA). Patients in this cohort are followed-up until the interim anal-
ysis. Patients still at-risk at time of the interim analysis are right-censored.
S2: cohort of all patients recruited after the interim analysis up to the fi-
nal analysis (FA) and all patients recruited before the interim analysis and
still at-risk at the time of the interim analysis. Patients recruited before the
interim analysis are left-truncated in this cohort. Patients in this cohort are
followed-up until the final analysis.

The approach of Keiding et al. [1987] for two-stage trials is an alternative possibility
to obtain (asymptotically) independent test statistics. Overrunning patients of the first
stage are included in the first stage as right-censored observations (right-censored at
the time of the interim analysis) and included in the second stage as left-truncated
observations (figure 5.2). The left-truncation times are the calendar time of the in-
terim analysis minus the recruitment times. This is in contrast to the usual group-
sequential splitting, where the second stage data consists of all data accrued up to
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the final analysis (cohort S1 and S2 of figure 5.1). Keiding et al. [1987] shows, that
the partial likelihood is the product of two factors. The first factor contains the likeli-
hood contribution of all patients recruited before the interim analysis, right-censored
at the interim analysis. The second factor contains the likelihood contribution of the
overrunnning patients, left-truncated at the time of the interim analysis, and all pa-
tients recruited after the interim analysis. This gives a heuristic argument for the
independence of the stage-wise right-censored and left-truncated data. The weighted
Kaplan-Meier estimator based on the stage-wise data for any two calendar times
t1 < t2 and s ∈ [0,L] is defined as

Ŝ(t1, t2, s) =
J∑
j=1

p̂j(t1, t2)Ŝj(t1, t2, s), (5.2.3)

where Ŝj(t1, t2, s) is the stratum-specific Kaplan-Meier estimator in stratum j calcu-
lated from the data in stratum j, where each patient is possibly left-truncated at
(t1 − Ri)

+ and right-censored at (t2 − Ri)+. A formal proof of the asymptotic inde-
pendence of the estimator in eq. (5.2.3) for subsequent pairs of calendar times (t1, t2)
and (t3, t4) with t1 < t2 6 t3 < t4, is based on the martingale central limit theo-
rem (theorem A.45), by showing the weak convergence to a vector of independent
Gaussian processes (theorem 5.5).

5.2.1 Right-censoring and left-truncation

Before theorem 5.5 can be proved, the counting process methods need to be extended
to handle left-truncated data. Left-truncation is seamlessly handled by the counting
process approach, with only minor modifications of the definitions of the counting
process and the risk set. The counting process for patient i at calendar time t2 started
at (t1 − Ri)+ is defined as

Ni(t1, t2, s) = 1
{
(t1 − Ri)

+ < Yi ∧ (t2 − Ri)
+ 6 s, δi(t2) = 1

}
,

for s ∈ [0,L]. Moreover let

N̄
(n)
j (t1, t2, s) =

n∑
i=1

1{Xi = j}Ni(t1, t2, s).
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A patient with observed survival time left-truncated at (t1 − R)+ is known to sur-
vive at least until (t1 − R)+, and hence is not at risk prior to (t1 − R)

+. The risk set
needs to be adjusted accordingly. Define the at-risk indicator for patient i at calendar
times t2 and survival time s with left-truncation at calendar time t1 as

Yi(t1, t2, s) = 1
{
Yi ∧ (t2 − Ri)

+ > s > (t1 − Ri)
+
}

.

The number at risk is then given by

Ȳ
(n)
j (t1, t2, s) =

n∑
i=1

1{Xi = j,Ri 6 t2}Yi(t1, t2, s).

The multiplicative structure of the intensity is preserved by random left-truncation
(Andersen [1993]). This means, that the counting process 1{Xi = j}Ni(t1, t2, s) has
compensator ∫s

0

1{Xi = j}Yi(t1, t2,u)λj(u)du

with respect to the filtration FR (definition 4.1). The process defined by

Mi(t1, t2, s) = 1{Xi = j}Ni(t1, t2, s) −
∫s
0

1{Xi = j}Yi(t1, t2,u)λj(u)du

is a local square integrable martingale. Consequently, the process defined by

M̄
(n)
j (t1, t2, s) =

n∑
i=1

1
{
Xj = j

}
Mi(t1, t2, s) = N̄(n)

j (t1, t2, s)−
∫s
0

Ȳ
(n)
j (t1, t2,u)λj(u)du,

is also a local square integrable martingale. The associated counting process N̄(n)
j (t1, t2, ·)

has continuous compensator

s 7→
∫s
0

Ȳ
(n)
j (t1, t2,u)λj(u)du.

With the modified counting process and risk set the definitions of the Nelson-Aalen
estimator is

Λ̂j(tl−1, tl, s) =
∫s
0

J
(n)
j (tl−1, tl, s)

N̄
(n)
j (tl−1, tl,du)

Ȳ
(n)
j (tl−1, tl,u)

,

where
J
(n)
j (t1, t2, s) = 1

{
Ȳ
(n)
j (t1, t2, s) > 0

}
.
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As before, the Kaplan-Meier estimator is the product integral of the Nelson-Aalen
estimator

Ŝ(tl−1, tl, s) =
∏
(0,s]

{
1− Λ̂j(tl−1, tl,ds)

}
.

Suppose interim analyses are planned at calendar times t1 < . . . < tK and the trial
starts at time t0 = 0. The the following assumptions, which are similar to those made
in chapters 3 and 4, are sufficient to derive the required large sample properties.

Assumption 5.1. 1. T and C are stochastically independent conditional on X,

2. R is independent of T , C and X,

3. P((tl − R)+ = 0) > 0 for l = 1, . . . ,K− 1,

4. L < sup{s : γj(tl−1, tl, s) > 0} for all l = 1, . . . ,K, where

γj(t1, t2, s) = P
(
(t1 − R)

+ < s 6 Y ∧ (t2 − R)
+|X = j

)
,

5. Ȳ(n)j (t1, t2, s)→∞ as n→∞ for any two calendar times t1 < t2 and all s ∈ [0,L].

The first two assumptions correspond to random right-censoring and random left-
trunctation, respectively. The third and fourth assumptions imply, that the function
s 7→ γj(tl−1, tl, s) is bounded away from 0 on the whole interval [0,L] ensuring
uniform consistency and weak convergence of the Nelson-Aalen and Kaplan-Meier
estimators (example IV.1.7 in Andersen [1993]). This assumption holds as long as
recruitment continues after any interim analysis, which is always the case for group-
sequential designs, whenever the trial is not stopped at the interim analysis.

5.2.2 Weighted Kaplan-Meier estimator

The weighted Kaplan-Meier estimator for stage-wise right-censored and left-truncated
data has been defined in eq. (5.2.3). Its large sample properties are derived in three
steps. First unbiased estimation of the response probabilities is considered, then the
stratum-specific Kaplan-Meier estimator based on left-truncated and right-censored
data, and finally the weighted Kaplan-Meier estimator itself.

Estimation of the response probabilities

The large sample properties of the estimator p̂j(t1, t2) follow directly from the law of
large numbers and the central limit theorem.
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Lemma 5.2. Under assumption 5.1, for each j = 1, . . . , J and any two calendar times t1 < t2,

1. π̂(t1, t2) is a consistent estimator of π(t1, t2) = P(t1 < R 6 t2) > 0,

2. p̂j(t1, t2) is a consistent estimator of pj if no adaptations have been made within the
interval (t1, t2],

3. p̂j(t1, t2) is asymptotically linear, i.e.

√
n{p̂j(t1, t2) − pj} =

1

π(t1, t2)
1√
n

n∑
i=1

pij(t1, t2) + op(1),

where pij(t1, t2) = 1{Xi = j, t1 < Ri 6 t2}− pj1{t1 < Ri 6 t2},

4.
√
n{p̂j(t1, t2) − pj}

L→ N(0,σ2j (t1, t2)),

where
σ2j (t1, t2) =

pj(1− pj)

π(t1, t2)
,

5. σ2j (t1, t2) is consistently estimated by

p̂j(t1, t2){1− p̂j(t1, t2)}
π̂(t1, t2)

,

6. for any calendar times t1 < t2 < t3, p̂j(t1, t2) and p̂j(t2, t3) are stochastically inde-
pendent.

Proof. 1. Follows immediately from the law of large numbers.

2. E[nj(t1, t2)] = P(X = j, t1 < R 6 t2) = pjπ(t1, t2), since X and R are indepen-
dent. Thus, by the law of large numbers, (1.) and the lemma of Slutzky (lemma
A.37).

p̂j(t1, t2) =
nj(t1, t2)

n

1

π̂(t1, t2)
p→ pj

3.
√
n{p̂j(t1, t2) − pj} =

1

π̂(t1, t2)
1√
n

n∑
i=1

pij(t1, t2).

The result now follows from (1) and the lemma of Slutsky, by noting, that

1√
n

n∑
i=1

pij(t1, t2) = Op(1),
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by the central limit theorem.

4. Asymptotic normality of
√
n{p̂j(t1, t2) − pj} follows from (3.) and the central

limit theorem. The asymptotic variance is

Var

(
1

π(t1, t2)
1√
n

n∑
i=1

pij(t1, t2)

)
=

1

π(t1, t2)2
E
[
pij(t1, t2)2

]
= σ2j (t1, t2).

5. Consistency of the variance estimator follows from the consistency of p̂j(t1, t2)
and the consistency of π̂(t1, t2).

6. Independence of p̂j(t1, t2) and p̂j(t2, t3) is clear, since the first uses only data
from patients recruited in the interval (t1, t2] and the second uses only data
from patients recruited in the interval (t2, t3].

Stratum-specific Kaplan-Meier estimator

The result from lemma 4.5 needs to be slightly modified to account for left-truncation
of the survival times.

Lemma 5.3. As n→∞,

sup
s∈[0,L]

∣∣∣∣ 1nȲ(n)j (t1, t2, s) − pjγj(t1, t2, s)
∣∣∣∣ p→ 0.

Proof. Write

1

n
Ȳ
(n)
j (t1, t2, s) =

1

n

n∑
i=1

1
{
(t1 − Ri)

+ < s,Xi = j
}
−
1

n

n∑
i=1

1
{
Yi ∧ (t2 − Ri)

+ < s,Xi = j
}

,

and apply the Glivenko-Cantelli theorem to each term on the right hand side to
obtain

sup
s∈[0,L]

∣∣∣∣ 1nȲ(n)j (t1, t2, s) − P
(
(t1 − R)

+ < s < Y ∧ (t2 − R)
+,X = j

)∣∣∣∣ p→ 0,

as n→∞. The result now follows by noting, that

P
(
(t1 − R)

+ < s 6 Y ∧ (t2 − R)
+,X = j

)
= γj(t1, t2, s)pj,
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The next lemma is a direct generalization of lemma 4.6. The proof is almost iden-
tical and is omitted. The main difference is, that now lemma 5.3 is used in the proof
instead of lemma 4.5.

Lemma 5.4. For j = 1, . . . , J and l = 1, . . . ,K,

1. uniformly in s ∈ [0,L],

√
n{Ŝj(tl−1, tl, s) − Sj(s)} = −

Sj(s)

pj

1√
n

∫s
0

M̄
(n)
j (tl−1, tl,du)

γj(tl−1, tl,u)
+ oP(1).

2. Ŝj(tl−1, tl, ·) is a uniformly consistent estimator of S(·) on [0,L],

3.
√
n{Ŝj(tl−1, tl, ·) − Sj(·)} converges to a mean-zero Gaussian process with covariance

function
(s, s′) 7→ Sj(s)Sj(s

′)ρj(tl−1, tl, s, s′),

where

ρj(tl−1, tl, s∧ s′) =
1

pj

∫s∧s′
0

λj(u)du

γj(tl−1, tl,u)
,

4. a uniformly consistent of the covariance function in (3) is given by

(s, s′) 7→ Ŝj(tl−1, tl, s)Ŝj(tl−1, tl, s′)ρ̂j(tl−1, tl, s, s′),

where

ρ̂j(tl−1, tl, s) =
n

p̂j(tl−1, tl)

∫s
0

J
(n)
j (tl−1, tl,u)

N̄
(n)
j (tl,du)

Ȳ
(n)
j (tl−1, tl,u)2

.

Large sample properties of the weighted Kaplan-Meier estimator

The next theorem is the main result of this section and proves uniform consistency
and weak convergence of the weighted Kaplan-Meier estimator based on stage-wise
left-truncated and right-censored data and gives a uniformly consistent estimator of
the asymptotic covariance function, as well as a prove of the asymptotic independence
of the stage-wise weighted Kaplan-Meier estimators.

Theorem 5.5. Under assumption 5.1, for l = 1, . . . ,K,
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1. Ŝ(tl−1, tl, ·) is a uniformly consistent estimator of S(·) on [0,L],

2.
√
n{Ŝ(tl−1, tl, ·) − S(·)} converges weakly in D[0,L] to a mean-zero Gaussian process

with covariance function (s, s′) 7→ ρsw(tl−1, tl, s, s′), where

ρsw(tl−1, tl, s, s′) =
J∑
j=1

pjSj(s)Sj(s
′)

∫s∧s′
0

λ(u)du

γj(tl−1, tl,u)

+

J∑
j=1

pjSj(s)Sj(s′) −
J∑
j′=1

pjpj′Sj(s)Sj′(s
′)

 ,

3. a uniformly consistent estimator of (s, s′) 7→ ρsw(tl−1, tl, s, s′) is given by

ρ̂sw(tl−1, tl, s, s′)

=

J∑
j=1

p̂j(tl−1, tl)Ŝj(tl−1, tl, s)Ŝj(tl−1, tl, s′)
∫s∧s′
0

J
(n)
j (tl−1, tl,u)

N̄
(n)
j (tl,du)

Ȳ
(n)
j (tl−1, tl,u)

+

J∑
j=1

p̂j(tl−1, tl)Ŝj(tl−1, tl, s)Ŝj(tl−1, tl, s′)

−

J∑
j=1

J∑
j′=1

p̂j(tl−1, tl)p̂j′(tl−1, tl)Ŝj(tl−1, tl, s)Ŝj′(tl−1, tl, s′),

4. the processes
√
n{Ŝ(tl−1, tl, ·) − S(·)}, l = 1, . . . ,K are asymptotically jointly indepen-

dent.

Proof. The proof of the first three claims is very similar to the proof of theorem 4.10

in the previous chapter and is therefore omitted. The important result here is the
asymptotic independence of the stage-wise Kaplan-Meier estimators.

The weighted Kaplan-Meier estimator is a function of the response rate estima-
tors and the stratum-specific Kaplan-Meier estimators. The response rate estimators
p̂j(tl−1, tl), j = 1, . . . , J, l = 2, . . . ,K are stochastically independent, since the response
rate p̂j(tl−1, tl) in stratum j and stage l is estimated using only data from patients
recruited in this stratum and stage. The stratum-specific Kaplan-Meier estimators
of different strata are also stochastically independent. It remains to show, that the
stratum-specific processes Ŝj(tl−1, tl, ·), l = 1, . . . ,K within the same stratum j across
different stages l = 1, . . . ,K are asymptotically independent. This is accomplished by
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proving, that these processes converge weakly to independent Gaussian processes.
From lemma 5.4 it follows, that for l = 1, . . . ,K uniformly in s ∈ [0,L]

√
n{Ŝj(tl−1, tl, s) − Sj(s)}

Sj(s)
= −

1

pj

1√
n

∫s
0

M̄
(n)
j (tl−1, tl,du)

γj(tl−1, tl,u)
+ oP(1).

Note that Sj(s) > 0 for s ∈ [0,L], by the choice of L (see assumption 5.1). Let

X
(n)
l (s) = −

1

pj

1√
n

∫s
0

M̄
(n)
j (tl−1, tl,du)

γj(tl−1, tl,u)
.

The stochastic integrals X(n) are local square integrable martingales. From the multi-
variate martingale central limit theorem (theorem A.45) follows the joint asymptotic
normality of (X(n)

1 , . . . ,X(n)
K ). The Lindeberg condition eq. (A.2.2) of theorem A.45 is

satisified, since γj(tl−1, tl,u) is bounded away from 0 (see remark A.46). It remains
to prove convergence of the quadratic covariation processes

〈
X
(n)
a ,X(n)

b

〉
(s) =

1

p2j

1

n

∫s
0

〈
M̄

(n)
j (ta−1,a, ·), M̄(n)

j (tb−1,b, ·)
〉
(du)

γj(ta−1, ta,u)γj(tb−1, tb,u)

For a = b, 〈
M̄

(n)
j (ta−1, ta, ·)

〉
(s) =

∫s
0

Ȳ(n)(ta−1, ta,u)λj(u)du.

Thus,

〈
X
(n)
a ,X(n)

b

〉
(s) =

〈
X
(n)
a

〉
(s) =

1

p2j

1

n

∫s
0

Ȳ(n)(ta−1, ta,u)λj(u)
γj(ta−1, ta,u)2

du,

which converges uniformly in s in probability to

1

pj

∫s
0

λj(u)

γj(ta−1, ta,u)
du,

by lemma 5.3. For a 6= b,〈
M̄

(n)
j (ta−1, ta, ·), M̄(n)

j (tb−1, tb, ·)
〉
(s)

=

n∑
i=1

1{Xi = j}

∫s
0

Yi(ta−1, ta,u)Yi(tb−1, tb,u)λj(u)du.
(5.2.4)
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The right hand side of eq. (5.2.4), because a patient cannot be at risk in the two
disjunct calendar time intervals (ta−1, ta] and (tb−1, tb] at the same survival time.
Formally, for all u > 0,

Yi(ta−1, ta,u)Yi(tb−1, tb,u)

= 1
{
(ta−1 − Ri)

+ < u 6 Yi ∧ (ta − Ri)
+
}
1
{
(tb−1 − Ri)

+ < u 6 Yi ∧ (tb − Ri)
+
}

= 1
{
(tb−1 − Ri)

+ < u 6 (ta − Ri)
+
}
1
{
(ta−1 − Ri)

+ < u 6 Yi
}

× 1
{
(tb−1 − Ri)

+ < u 6 Yi
}

= 0,

because (tb−1 − Ri)
+ > (ta − Ri)

+.

5.2.3 Application to testing

Any test statistics, which are (measurable) functions of the weighted Kaplan-Meier
estimator (eq. (5.2.3)), such as the test statistics in chapter 3, will also be asymptoti-
cally independent and can be used in the combination test approach. An example is
given in the next section, where the two-sample log average hazard ratio test statistic
(corollary 3.22) is used in an adaptive enrichment design with subgroup selection.

5.3 adaptive enrichment design with subgroup selection

In this section a two-stage adaptive seamless phase II/III trial with a binary surrogate
and overall survival as primary endpoint is simulated with both the patient-wise and
stage-wise splitting approaches. The average hazard ratio based test is compared
with the stratified log-rank test. The methodological aspects of adaptive seamless
phase II/III designs are described in detail in Bretz et al. [2006], Schmidli et al. [2006]
and Brannath et al. [2009]. Such adaptive designs are attractive, since they are more
powerful, than a standalone phase III trial and there is no time lag between the end of
a phase II trial and the start of a consecutive phase III trial. The role of the first stage
(phase II) is to identify a promising subgroup, the role of the second stage (phase III)
is to confirm the finding of the first stage.

Suppose the experimental treatment group (E) and the control group (C) are each
partitioned into a biomarker-positive (B) and the complementary biomarker-negative
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subgroup (Bc). The biomarker-positive subgroup is expected to have a larger benefit
from the treatment, than the biomarker-negative subgroup.

In the first stage recruitment starts with the full population. At the interim analysis
the first stage data is analyzed and it is decided, whether to continue recruitment
in full population or the biomarker-positiv subgroup only or to stop the trial for
futility. At the final analysis efficacy is tested in the selected population, i.e. in the
full population and the biomarker-positive subgroup or in the biomarker-positive
subgroup only. The null hypotheses of equal survival distributions in the control and
the experimental group in the full population and the biomarker-positive subgroup
are denoted by HF and HB, respectively. Denote the stage 1 p-values by pF and pB
and the stage 2 p-values by qF and qB. The p-values are calculated in the following
way:

1. Patient-wise splitting:

a) Stage 1 p-values: Calculated from all data accrued up to final analysis from
all patients recruited before interim analysis.

b) Stage 2 p-values: Calculated from all data accrued up to final analysis from
all patients recruited after interim analysis.

2. Stage-wise splitting:

a) Stage 1 p-values: Calculated from all data accrued up to interim analysis
from all patients. Overrunning patients are right-censored at the interim
analysis.

b) Stage 2 p-values: Calculate from all data accrued up to final analysis from
all patients. Survival times are left-truncated at the interim analysis and
right-censored at the final analysis.

Testing is done using combination tests for each hypothesis (to adjust for the adap-
tations) in conjunction with the closed testing principle (Bretz et al. [2006] and Bran-
nath et al. [2009]). In the first stage the p-value pBF of the intersection hypothesis
HBF = HB ∩HF is calculated according to Simes’ procedure:

pBF = min{2min(pB,pF), max(pB,pF)}.

In the second stage the p-value qBF of the intersection hypothesis HBF is calculated
as qBF = min{2min(qB,qF), max(qB,qF)} if recruitment was continued in the full
population and both null hypotheses, HB and HF, are tested in the final analysis. If
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Start recruitment

Calculate stage 1 p-values
pB, pF and pBF

Selection

Continue recruitment
in B and Bc

Continue recruitment
in B only

Calculate stage 2 p-value qB
Calculate stage 2 p-values

qB, qF and qBF

Reject HB if
C(pB,qB) < cα and C(pBF,qB) < cα

Reject HB if
C(pB,qB) < cα and C(pBF,qBF) < cα

Reject HF if
C(pF,qF) < cα and C(pBF,qBF) < cα

Final analysis

drop Bc keep Bc

Figure 5.3: Flowchart of an adaptive enrichment design with subgroup selection. C is
a combination function and cα is the corresponding critical value.



102 adaptive design methods

only the biomarker-positive subgroup was selected, then qBF = qB. A flowchart of
the complete procedure is shown in figure 5.3.

Simulations

The simulation study aims to compare the log average hazard ratio based test (corol-
lary 3.22) to the stratified log-rank test for the patient-wise and the stage-wise split-
ting approach. The surrogate used is a binary variable indicating response (R) to the
treatment or non-response (N), where responders have a higher survival probability,
than the non-responders. Within each biomarker group k ∈ {B,Bc} assume the fol-
lowing simple but realistic model for the conditional hazard rates:

λC,N,k(t) = λk(t) baseline hazard
λC,R,k(t) = rkλk(t) R vs. N in control group
λE,N,k(t) = ckλk(t) E vs. C for non-responders
λE,R,k(t) = ckrk λk(t) multiplicative model (no-interaction)

The baseline hazard λk(t) was taken to be equal to 0.0462. Biomarker-positive sub-
group prevalence was 50%.

Remark 5.6. Stratification is done according to response / non-response and biomarker group
membership, i.e. the stratification variable has 4 levels in the full population and 2 levels in
the subgroup.

The truncation point was L = 12. Recruitment was uniform on [0, 60]. The final
analysis was done after 500 observed events. The interim analysis was conducted
after 125 observed events, i.e. after 25% of the maximum number of events have been
observed. The weights for the inverse normal combination test were set accordingly
to
√
0.25 for the first stage and

√
0.75 for the second stage. The selection was based

on the response rate. If the response rate in the experimental biomarker positive
subgroup was higher than in the experimental full population, then the biomarker
positive subgroup was selected, else the trial continued with the full population. The
selection was based on the response rate only, such that the exactly same selection
rule can be used for the average hazard ratio based test and the stratified log-rank
test.

Four scenarios were considered in total, the null hypothesis and 3 power scenarios.
In the power scenarios, the parameters were chosen, such that the average hazard
ratio was always approx. 0.7. The first scenario is the null hypothesis. The second
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Table 5.1: Overall power of the log average hazard ra-
tio test and stratified log-rank test in an adap-
tive enrichment trial with subgroup selection
with patient-wise splitting. a

Response rates Power

r cB cBc πE,B πE,Bc πC AHR(β) SLR

0.7 1 1 0.4 0.4 0.4 0.019 0.019

0.7 0.7 0.7 0.4 0.4 0.4 0.770 0.851

0.7 0.7 0.8 0.5 0.3 0.2 0.887 0.798

0.5 1 1 0.8 0.65 0.2 0.870 0.019

a Results of 105 simulation runs, α = 0.025.

scenario (cB = cBc = 0.7, πE,B = πE,Bc = πC = 0.4) has only an effect conditional
on the response, but no difference in the response rates. The third scenario (cB = 0.7,
cBc = 0.8, πE,B = 0.5, πE,Bc = 0.3, πC = 0.2) has a slightly smaller conditional
effect than in the second scenario, but now also has a difference in the response rates.
The fourth scenario (cB = cBc = 1, πE,B = 0.8, πE,Bc = 0.65, πC = 0.2) has no
effect conditional on the response, but a large difference in the response rates. It is
expected, that the stratified log-rank test will fail to detect any treatment effect in
this scenario. The null hypothesis βE = βC was tested against one-sided alternatives
βE > βC with a significance level of α = 0.025, where βE and βC is the log (average)
hazard ratio in the experimental and the control group respectively. In the power
simulations, the overall power, i.e. the power to reject any hypothesis (HB or HF or
both) was considered.

Table 5.1 shows the result of 105 simulations of four different scenarios with patient-
wise splitting. Both methods control the type-I-error rate and are somewhat conser-
vative. In the second scenario the stratified log-rank test has slightly more power to
reject HB or HF, than the average hazard ratio based test. This is expected, since the
deviation from the proportional hazards is small and the (stratified) log-rank test is
optimal for proportional hazards alternatives. In the third scenario, the stratified log-
rank test has less power than the average hazard ratio based test, since it only draws
power from the conditional effect, and ignores differences in the response rates. In
the fourth scenario the stratified log-rank test has no power at all. Table 5.1 shows
the result of 105 simulations of four different scenarios with stage-wise splitting. The
results for stage-wise splitting are very similar to those for patient-wise splitting.
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Table 5.2: Overall power of the log average hazard ra-
tio test and stratified log-rank test in an adap-
tive enrichment trial with subgroup selection
with stage-wise splitting. a

Response rates Power

r cB cBc πE,B πE,Bc πC AHR(β) SLR

0.7 1 1 0.4 0.4 0.4 0.019 0.019

0.7 0.7 0.7 0.4 0.4 0.4 0.771 0.877

0.7 0.7 0.8 0.5 0.3 0.2 0.889 0.834

0.5 1 1 0.8 0.65 0.2 0.868 0.019

a Results of 105 simulation runs, α = 0.025.
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Q U A L I T Y- A D J U S T E D S U RV I VA L

In this chapter the results for fixed sample size, sequential and adaptive survival trials
of the previous chapters are extended to the more general quality-adjusted survival
endpoints. Quality-adjusted survival is an integrated measure of clinical benefit for
an individual patient, defined as the AUC of repeated health utility score measure-
ments up to the death time of the patient or a pre-defined time limit L (see Gelber
et al. [1989], Glasziou et al. [1998], and Gelber et al. [1995]). Overall survival is a spe-
cial case of quality-adjusted survival, when the utility scores are set equal to 1 for all
times. The same methods to the much more general setting, when the observed data
are from an increasing stochastic process, which is observed at a censored stopping
time (Strawderman [2000]). An example would be the number of recurrent events up
to a terminal event (Cook and Lawless [1997]).

Numerous methods have been proposed in the literature for this kind of data.
Among them are estimation of the mean (Bang and Tsiatis [2000] and Zhao and
Tsiatis [2000]), the survival function (Zhao and Tsiatis [1997] and Zhao and Tsiatis
[1999]), the median (Zhao et al. [2012]), and general one-sample U-statistics (Datta
et al. [2010]), as well as regression methods including linear regression (Lin [2000])
and Cox proportional hazards regression (Cole et al. [1993]), and two-sample meth-
ods for testing equality of distributions (Zhao and Tsiatis [2001] and Huang [1999]).

In order to apply the methods of chapter 3 suitable estimators of the marginal
survival functions of QAS are required. The problem is complicated by the fact, that
censoring on the scale of the summary measure is informative even in cases, where
censoring is stochastically independent of the underlying survival time. Estimators
of the survival function of QAS in the presence of induced informative censoring
based on inverse probability of censoring weighting (IPCW) methods are discussed
in section 6.3. With these estimators, the methods of chapter 3 can be used to ob-
tain test statistics for the comparison of the distribution of QAS in two or more
samples. This is dicussed in section 6.4 together with existing two-sample methods.
It is shown that the tests proposed by Zhao and Tsiatis [2001] and Huang [1999]
are in fact identical. A new two-sample IPCW test statistic is proposed, which adjusts
for covariate-dependent censoring, when censoring follows a (stratified) proportional

105
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hazards model. Moreover it is shown, how the results for QAS can be used with the
patient-wise approach of 5.

6.1 inverse probability of censoring weighting

The analysis of QAS is made difficult by the problem of induced dependent censoring,
which is intrinsic to the definition of this endpoint. The censoring of the summary
measure is dependent even if the censoring times for the underlying time-to-event
data is stochastically independent of the survival times as noted by Lin [2003]. Sup-
pose two patients are censored at the same time and one of the patients is in better
health and therefore accrues quality-adjusted survival faster than the other. The ob-
served QAS at the time of the censoring allows to predict the QAS at the future death
time. Hence censoring is informative on the QAS scale. This problem prevents the
use of the usual survival analysis methods, such as the Kaplan-Meier estimator or
proportional hazards regression.

Inverse probability weighting of censoring (IPCW) can be used to derive unbiased
estimators and tests. These methods have first been used by Horvitz and Thomp-
son [1952] in the context of sample surveys, and have later been applied to survival
problems by Koul et al. [1981] and Robins and Rotnitzky [1992]. Each patients health
history is represented by the stochastic process {Hi(u),u > 0}. The quality-adjusted
survival time is defined as

Qi =

∫Ti
0

Hi(u)du.

Consider the data

{
Qi, Ti,Ci, δi = 1{Ti 6 Ci},Vi,Wi; H̄i = {Hi(u),u 6 Ti}, i = 1, . . . ,n

}
,

consisting of iid replicates of the QAS time Q, the survival time T , the health history
H̄i up to time Ti, the censoring time C, the censoring indicator δ, the discrete covariate
V and the continuous covariate W, such that T and C are independent given (V ,W).
The censoring time is assumed to be independent of the health history process given
the covariates. Note that E[δi|Ti,Vi,Wi] = K(Ti|Vi,Wi), where K(t|v,w) = P(C >
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t|V = v,W = w) is the conditional survival function of the censoring time. Thus for
any measurable function f,

E

[
δif(Qi)

K(Ti | Vi,Wi)

]
= E

[
E

[
δif(Qi)

K(Ti|Vi,Wi)
|Ti,Vi,Wi, H̄i

]]
= E

[
f(Qi)

K(Ti | Vi,Wi)
E[δi|Ti,Vi,Wi]

]
= E[f(Qi)].

Usually the censoring probabilities K(Ti | Vi,Wi) are unknown and must be esti-
mated. Without covariates this can be done with the Kaplan-Meier estimator. In the
presence of covariate-dependent censoring an estimator based on a model, such as
the proportional hazards model, must be used. Estimation of censoring probabilities
is discussed in section 6.2. IPCW methods can be avoided, if additional modelling
assumptions about the accumulation process are made. Gelber et al. [1995] assume a
three-state model with known entry and exit times and constant utility in each state
(Q-TWiST: Time Without Symptoms or Toxicitiy, Toxicity, Relapse). Pan and Zeng
[2011] use a kernel based approach with additional covariates to model the underly-
ing survival time and the accumulation process in the context of medical cost analysis.
Such modelling assumptions and additional covariates can also be used to increase
the semiparametric efficiency of the IPCW estimators (e.g. Zhao and Tsiatis [1999],
van der Laan and Hubbard [1999], Bang and Tsiatis [2000], Strawderman [2000], and
Datta et al. [2010]).

6.2 estimation of censoring probabilities

Inverse probability of censoring weighting (IPCW) methods require estimates of the
censoring probabilities conditional on the covariates. Censoring probabilities are esti-
mated from the same data and by the same methods as survival probabilities (chapter
2) by changing the censoring indicator from δ to 1− δ, although different covariates
may be used to model the censoring distribution. Here the conditional hazard rate of
the censoring time C given the covariates (V ,W)

λc(t|V ,W) = lim
h→0

1

h
P (t 6 C < t+ h|T > t,C > t,V ,W)
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is assumed to be of the form

λc(t|V ,W) = λc0(t|V)e
γT0W , (6.2.1)

where λc0 is an unknown baseline hazard function (depending on V) and γ0 is a
vector of regression coefficients. The data is stratified according to the levels of V .
The censoring counting process is defined as

N̄c(u|v) =

n∑
i=1

Nci (u|v) =

n∑
i=1

1{Vi = v}1{Yi 6 t, δi = 0}.

The stratum-specific cumulative baseline hazard

Λc0(t|v) =

∫t
0

λc0(u|v)du

is estimated by the Breslow estimator (Andersen [1993, p. 483])

Λ̂c0(t, v) =
∫t
0

J(n)(u, v)
S(0)(γ̂,u, v)

dN̄c(u, v) =
n∑
j=1

J(n)(u, v)(1− δj)1
{
Cj 6 t,Vj = v

}
S(0)(γ̂,Cj, v)

,

(6.2.2)
where γ̂ is the maximum partial likelihood estimator of model (6.2.1),

J(n)(u, v) = 1

{
n∑
i=1

1{Vi = v}Yi(u) > 0

}
,

and

S(0)(γ, t, v) =
n∑
i=1

1{Yi > t,Vi = v}eγ
TWi .

The conditional cumulative hazard rate

Λc(t|v,w) =
∫t
0

eγ
T
0wλc0(u|v)du =

∫t
0

eγ
T
0wdΛc0(u|v)

is then estimated by

Λ̂c(t|v,w) =
∫t
0

eγ̂
TwdΛ̂c0(t, v) (6.2.3)

The conditional censoring probability

K(t|v,w) = P(C > t|V = v,W = w) = e−Λ
c(t,v,w)
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is estimated by
K̂(t|v,w) = e−Λ̂

c(t,v,w). (6.2.4)

The following technical assumptions are necessary for the asymptotic results in this
chapter:

Assumption 6.1. 1. The conditional censoring hazard rate follows the model in eq. (6.2.1),

2. V ∈ V a.s., where V is finite,

3. W ∈W a.s., where W is a bounded subset of Rd, d > 1.

4. there exists L > 0, such that infv∈V,w∈W K(L|v,w) > 0.

The last assumption ensures, that the censoring probabilities are bounded away
from 0 uniformly in the covariates. This is a technical condition needed in the proofs.
In the following supt and supt,v,w are defined by supt∈[0,L] and supt∈[0,L],v∈V,w∈W,
respectively. The next lemma proves some asymptotic properties of the estimators Λ̂c0
and K̂.

Lemma 6.2. Under assumption 6.1,

1.
sup
t

|Λ̂c0(t) −Λ
c
0(t)| = op(1),

2.
sup
t

√
n|Λ̂c0(t) −Λ

c
0(t)| = Op(1).

3.
sup
t,v,w

√
n|Λ̂c(t|v,w) −Λc(t|v,w)| = Op(1),

4.
sup
t,v,w

√
n|K̂(t|v,w) −K(t|v,w)| = Op(1),

5.
sup
t,v,w

K̂−1(t|v,w) = Op(1).

Proof. (1.) and (2.) are a direct consequence of corollary VII.2.4 in Andersen [1993].

3. Adding and substracting the term eγ0wΛ̂0(t|v),

√
n{Λ̂(t|v,w) −Λ(t|v,w)}

=
√
n{Λ̂0(t|v) −Λ0(t|v)}e

γ0w +
√
n{eγ̂w − eγ0w}Λ̂0(t|v)

(6.2.5)
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By a Taylor expansion of the second term around eγ0w, this equals

√
n{Λ̂0(t|v) −Λ0(t|v)}e

γ0w +weγ
∗w√n{γ̂− γ0}Λ̂0(t|v), (6.2.6)

where γ∗ is a point on the line segment between γ0 and γ̂. The first term on
the right hand side in eq. (6.2.6) is uniformly stochastically bounded, since
supw e

γ0w <∞ a.s. and by (2.)

sup
t|v

√
n|Λ̂0(t|v) −Λ0(t|v)| = Op(1).

The second term on the right hand side in eq. (6.2.6) is uniformly stochastically
bounded, since

√
n{γ̂− γ0} = Op(1) by theorem 2.4,

sup
w

weγ
∗w = Op(1),

since W is bounded and γ∗ → γ0 + op(1), and by (1.)

sup
t|v

Λ̂0(t|v) = Op(1).

4. Follows from (1.) and a Taylor expansion of K̂(t|v,w) around Λ(t|v,w):

√
n{K̂(t|v,w) −K(t|v,w)} = −Λ∗(t|v,w)

√
n{Λ̂(t|v,w) −Λ(t|v,w)},

where Λ∗(t|v,w) is some point on the line segment between Λ̂(t|v,w) and
Λ(t|v,w).

5. Let ε > 0 and C = inft,v,w K(t|v,w) − ε.

P

(
sup
t,v,w

1

K̂(t|v,w)
<
1

C

)
= P

(
1

inft,v,w K̂(t|v,w)
<
1

C

)
= P

(
inf
t,v,w

K̂(t|v,w) > C
)

> P
(
∀t, v,w : K̂(t|v,w) > K(t|v,w) − ε

)
> P

(
∀t, v,w : |K̂(t|v,w) −K(t|v,w)| < ε

)
= P

(
sup
t,v,w

|K̂(t|v,w) −K(t|v,w)| < ε

)
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The right hand side converges to 1, because of (4.).

6.3 estimation of the survival function

The survival function SQ(x) = P(Q > x) of quality-adjusted survival or medical cost
can be estimated with the IPCW approach, when either censoring of the underlying
survival time is independent or conditionally independent, i.e. independent condi-
tional on some covariates.

For technical reasons it is necessary, that the conditional censoring probabilities are
uniformly bounded away from 0. The survival times are truncated by the constant
τ, which is chosen, such that assumption 6.1 holds. The analysis is then based on
iid replications of the quality-adjusted survival time Q, the censored survival time
Y = T ∧C, the truncated censored survival time Y∗ = T∗ ∧C, where T∗ = T ∧ τ, the
censoring indicator δ = 1{T 6 C}, the censoring indicator of the truncated survival
time δ∗ = 1{T∗ 6 C}, a discrete covariate V and a continous covariate vector W. Note
that the quality-adjusted survival time is calculated only up to the truncated survival
time.

6.3.1 IPCW without covariates

In Zhao and Tsiatis [1997] an IPCW estimator of the survival function SQ is defined
as an IPCW version of the empirical distribution function:

ŜQ(x) =
1

n

n∑
i=1

δ∗i1{Qi > x}

K̂(T∗i )
. (6.3.1)

Remark 6.3. The independent censoring case is contained in the proportional hazards model,
by setting Vi =Wi = 0 for all i = 1, . . . ,n.

Huang and Louis [1998] derives an estimator of SQ as the non-parametric maxi-
mum likelihood estimator. It can be shown that this estimator is identical to the Zhao-
Tsiatis estimator from eq. (6.3.1) (appendix 3 in Bang and Tsiatis [2000]). ŜQ(x) can
also be seen as a special case of the one-sample IPCW U-statistics of Datta et al. [2010].
Pointwise consistency of ŜQ(x) and asymptotic normality of

√
n{ŜQ(x) − SQ(x)} for

all x > 0 is proved by Zhao and Tsiatis [1997] and Datta et al. [2010]. Zhao et al.
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[2012] use these results in the context of medical cost to construct point estimators
and confidence intervals for the median and the difference and ratio of two medians
using the method described in section 3.3.2. Uniform consistency of ŜQ and weak
convergence in D[0,L] of

√
n{ŜQ − SQ} is proved by Huang and Louis [1998].

6.3.2 IPCW with covariates

Lin [2000] considers the linear regression model

Y = βTZ+ ε, (6.3.2)

where Y is a metric response variable and Z is a p× 1-vector of covariates and β is a
p× 1-vector of unknown regression parameters, and ε is mean-zero error term with
an unspecified distribution. The first component of Z is set to 1, such that the first
component of β is the intercept. The estimator of β is defined as the solution to the
estimating equation

n∑
i=1

δ∗i
K̂(T∗i |Vi,Wi)

(Yi −β
TZi)Zi = 0, (6.3.3)

where K̂ is the estimator of the conditional survival function of the censoring time
based on the stratified proportional hazards model

λ(t|V ,W) = λ0(t|V)e
γTW , (6.3.4)

i.e.
K̂(t|V ,W) = e−e

γ̂WΛ̂0(t|V),

where
Λ̂0(t|V) =

∑
Ci6t

(1− δi)N
c
i (Ci)

Yi(Ci)

is the Breslow estimator of the censoring baseline hazard. The estimating equation
(6.3.3) has the closed-form solution

β̂ =

{
n∑
i=1

δ∗i
K̂(T∗i |Vi,Wi)

Z⊗2i

}−1 n∑
i=1

δ∗i
K̂(T∗i |Vi,Wi)

YiZi . (6.3.5)
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Consistency and asymptotic normality of the estimator in eq. (6.3.5) is proved by Lin
[2000]. If in the linear model from eq. (6.3.2) the outcome variable is Y = 1{Q > x} for
fixed x, and the covariate Z is equal 1, then

β ≡ β(x) = E[Y] = P(Q > x)

and the estimator β̂ reduces to

β̂(x) =

(
n∑
i=1

δ∗i
K̂(T∗i |Vi,Wi)

)−1 n∑
i=1

δ∗i1{Qi > x}

K̂(T∗i |Vi,Wi)
, (6.3.6)

Note that, as n→∞,

1

n

n∑
i=1

δ∗i
K̂(T∗i |Vi,Wi)

p−→ E

[
δ∗i

K(T∗i | Vi,Wi)

]
= 1,

such that asymptotically β̂(x) coincides with ŜQ(x) from eq. (6.3.1). The results of
Lin [2000] imply the pointwise consistency of β̂(x) and asymptotic normality of
√
n{β̂(x) − β(x)}. Instead of the stratified proportional hazards model eq. (6.3.4), the

estimate K̂ can also be based on an additive hazard model

λ(t|W) = β0 +

k∑
i=1

βiφi(Wi), (6.3.7)

where φi are known functions and Wi denotes the i-the component of the covariate
vector W. The resulting estimate is a special case of the one-sample IPCW U-statistics
with an additive hazard model for the censoring times introduced by Datta et al.
[2010]. The estimators of Lin [2000] and Datta et al. [2010] can be seen as a general-
ization of the estimator of Zhao and Tsiatis [1997] from eq. (6.3.1). Their results are
sufficient for the methods based on the median (section 3.3.2), but not for average haz-
ard ratio methods, which are based on the functional delta method, which requires
uniform consistency and weak convergence in D[0,L].
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6.4 two-sample tests

In the two-sample setting the data is

{Qki, Tki,Cki, δki = 1{Tki 6 Cki},Vki,Wki,

H̄ki = {Hki(u),u 6 Tki}, i = 1, . . . ,nk,k = 1, 2}.

The conditional censoring survival functions in each sample are denoted by Kk and
the corresponding Kaplan-Meier estimators by K̂k, k = 1, 2. Equivalently the data can
be represented as one-sample with a binary group indicator Z

{
Qi, Ti,Ci, δi = 1{Ti 6 Ci},Vi,Wi, H̄i = {Hi(u),u 6 Ti},Zi, i = 1, . . . ,n

}
.

6.4.1 IPCW Log-rank test

Zhao and Tsiatis [2001] have generalized the log-rank test for comparing the distribu-
tions of two survival times. They consider the IPCW test statistic

LR(ŵ) =
1√
n

n∑
i=1

δ∗i
K̂(Ti|Zi)

ŵ(Qi)

Zi −
∑n
j=1

δ∗j
K̂(Tj|Zj)

Zj1{Qj > Qi}∑n
j=1

δj

K̂(Tj|Zj)
1{Qj > Qi}

 (6.4.1)

where Z is a binary group indicator and K̂(·|Z) is the group-specific Kaplan-Meier
estimator of the censoring times. Let

ŵ(u) =
K̂(u, 1)K̂(u, 0)

K̂(u)
,

where K̂(·) is the Kaplan-Meier estimator of the pooled sample. With this choice of the
weight function the test statistic LR(ŵ) reduces to the standard log-rank test statistic
in the special case Qi = Ti (appendix in Zhao and Tsiatis [2001]).



6.4 two-sample tests 115

6.4.2 Weighted Hazard and Weighted Survival Statistics

Huang [1999] proposes two classes of test statistics for comparing two independent
samples. Let ni be the sample size and Ŝi be the estimator from eq. (6.3.1), i = 1, 2.
The weighted hazard statistics (WHS) are defined as

WHS(Ŵ) =

√
n1n2
n1 +n2

∫L
0

Ŵ(u)

{
Ŝ2(du)

Ŝ2(u−)
−
Ŝ1(du)

Ŝ1(u−)

}
(6.4.2)

where Ŵ is a uniformly consistent weight function, which converges uniformly a.s.
to a bounded function on [0,L], and

Ŝk(u) =
1

n

n∑
i=1

δ∗ki1{Qki > u}

K̂k(T
∗
ki)

.

Huang [1999] proves asymptotic normality of the WHS-type statistics by the func-
tional delta method. Intuitively the IPCW log-rank test and the weighted hazard
statistics are very similar. Indeed every weighted hazard statistic eq. (6.4.2) can be
written as IPCW log-rank test eq. (6.4.1) and vice versa:

Theorem 6.4. Let ŵ be a weight function which converges uniformly in probability to a
bounded function w on [0,L] and

Ŵ(u) =
√
n1n2

Ŝ1(u−)Ŝ2(u−)

n1Ŝ1(u−)+n2Ŝ2(u−)
ŵ(u)

If n1/(n1 +n2)→ c, then Ŵ converges uniformly to a bounded function on [0,L] and

WHS(Ŵ) = LR(ŵ)

Proof. Since n1/(n1 + n2) → c and Ŝi is strongly uniformly consistent (see Huang
and Louis [1998]) for i = 1, 2, the weight function Ŵ converges uniformly a.s. to

√
c(1− c)

S1(u−)S2(u−)

cS1(u−)+ (1− c)S2(u−)
w(u),
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which is a bounded function on [0,L]. Thus Ŵ is a valid weight function for the
weighted hazard statistics. Ŝ1 and Ŝ2 can be written as

Ŝ1(u) =
1

n1

n1∑
i=1

δ∗1i1{Q1i > u}

K̂1(T
∗
1i)

=
1

n1

n∑
i=1

δ∗i1{Qi > u}(1−Zi)

K̂(T∗i |Zi)

Ŝ2(u) =
1

n2

n2∑
i=1

δ∗2i1{Q2i > u}

K̂2(T
∗
2i)

=
1

n2

n∑
i=1

δ∗i1{Qi > u}Zi

K̂(T∗i |Zi)
,

where Zi = 0 in sample 1 and Zi = 1 in sample 2. Inserting this into equation (6.4.2)
yields

WHS(Ŵ) =

√
n1n2
n

n∑
i=1

δ∗iŴ(Qi)

K̂(T∗i |Zi)

{
Zi

n2Ŝ2(Qi−)
−

1−Zi

n1Ŝ1(Qi−)

}

=

√
n1n2
n

n∑
i=1

δ∗iŴ(Qi)

K̂(T∗i |Zi)

[Zi{n1Ŝ1(Qi−)+n2Ŝ2(Qi−)}−n2Ŝ2(Qi−)]

n1n2Ŝ1(Qi−)Ŝ2(Qi−)

=
1√
n

n∑
i=1

δ∗i ŵ(Qi)

K̂(T∗i | Zi)

{
Zi −

n2Ŝ2(Qi−)

n1Ŝ1(Qi−)+n2Ŝ2(Qi−)

}

=
1√
n

n∑
i=1

δ∗i ŵ(Qi)

K̂(T∗i | Zi)

Zi −
∑n
j=1

δ∗j
K̂(T∗j |Zj)

Zj1{Qj > Qi}∑n
j=1

δ∗j
K̂(T∗j |Zj)

1{Qj > Qi}


= LR(ŵ) .

Another class of two-sample statistics defined by Huang [1999] are the weighted
survival statistics (WHS), which are similar to the Pepe-Fleming statistics for ordi-
nary survival data (section 3.3.1), but based on IPCW survival function estimators.
Weighted survival statistics (WSS) are defined as

WSS(Ŵ) =

√
n1n2
n1 +n2

∫L
0

Ŵ(u)
{
Ŝ1(u) − Ŝ2(u)

}
du. (6.4.3)

Asymptotic normality of the weighted survival statistics is also proved by the func-
tional delta method (Huang [1999]).
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6.4.3 Relative risk

Independent censoring

The large sample properties of ŜQ eq. (6.3.1) proved by Huang and Louis [1998] are
sufficient for the methods from chapter 3. However, the true survival function SQ is
in general not continuous, since it may have a jump discontinuity at the point τ. For
example in the special case Q = T∗ = T ∧ τ,

∆S(τ) = S(τ) − S(τ−) = P(T ∧ τ > τ) − P(T ∧ τ > τ) = −P(T > τ).

The general definition of the average hazard ratio (definition 3.4) requires the exis-
tence of hazard rates, which imply continuous survival functions. This no problem
as long as L < τ, where L is the truncation point used in the definition of the average
hazard ratio (see definitions 3.4 and 3.5 and assumption 3.8), since only continuity of
the survival functions on the interval [0,L] is required. Thus, all methods from chap-
ter 3 can be applied to a quality-adjusted survival endpoint, including the results for
the multivariate average hazard ratio.

Covariate-dependent censoring

If censoring is covariate-dependent, then it is very difficult to prove large sample
properties required for the results in chapter 3 (see assumption 3.8). For any uncen-
sored observations Yki, i = 1, . . . ,nk, k = 1, 2, the Mann-Whitney U-statistic, given
by

U =
1

n1n2

n1∑
i=1

n2∑
j=1

h(Y1i, Y2j),

where

h(x,y) =


1 x > y

0.5 x = y

0 x < y

,

is an unbiased estimator of the relative risk

E[h(Y1i, Y2j)] = P(Y1i > Y2j).

Fan and Datta [2013] have already considered IPCW Mann-Whitney U-statistic
under the assumption of independent censoring, hereby extending the one-sample
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IPCW U-statistics results of Datta et al. [2010]. For the case of covariate-dependent
assume, that the censoring times follow a proportional hazards model in each sample,
i.e.

λck(t|v,w) = λ
c
0k(t|v)e

γ0kw k = 1, 2 (6.4.4)

and define the IPCW Mann-Whitney U-statistic as

Û =
1

n1

1

n2

n1∑
i=1

n2∑
j=1

δ1iδ2jh(Q1i,Q2j)
K̂1(T1i|V1i,W1i)K̂2(T2j|V2j,W2j)

,

where δki = 1{Tki 6 Cki} is the censoring indicator and K̂k are the estimators of
the conditional survival function of the censoring times in each sample k (see sec-
tion 6.2). If the model in eq. (6.4.4) is correct and the censoring times are stochasti-
cally independent from the survival times conditional on the covariates, then Û is
consistent and asymptotically normal as proved in theorem 6.7. The statement and
proof of theorem 6.7 requires some additional notation and two technical lemmas.
Let Fk(x) = P(Qki 6 x) and Sk(x) = 1− Fk(x), k = 1, 2, and

fk(x) =

F2(x−) k = 1

S1(x) k = 2

and

qk(t, v) = E

[
fk(Qk1)e

βTkWk11{Tk1 > t}

s
(0)
k (βk0, t, v)

]

w̄k(t, v) =
s
(1)
k (γ0k, t, v)

s
(0)
k (γ0k, t, v)

Hk(t, v,w) =
∫t
0

eγ
T
0kw{w− w̄k(u, v)}λck(u | v,w)du

Rk = E
[
fk(Qk1)Hk(Tk1,Vk1,Wk1)T

]
Moreover, denote byΩk the asymptotic covariance matrix of the regression parameter
vector γk in the proportional hazards model eq. (6.4.4), and by Mc

ki the counting
process martingale of the censoring counting process

Mc
ki(t) = 1{Yki 6 t, δki = 0}−

∫t
0

λc0k(s|V)e
−γT0kWki(s)Yki(s)ds.
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Lemma 6.5. For n > 1 consider a triangular array Rni, i = 1, . . . ,n. If Rn1, . . . ,Rnn are
identically distributed for each n and Rn1

P−→ 0 as n→∞, and

max
16i6n

|Rni| = Op(1), (6.4.5)

then
1

n

n∑
i=1

|Rni|
P−→ 0

Proof. Write Rni = Rni1{|Rni| 6 C}+ Rni1{|Rni| > C} for any C > 0. Let ε > 0. Then

P

(∣∣∣∣∣ 1n
n∑
i=1

Rni > ε

∣∣∣∣∣
)

6P

(
1

n

n∑
i=1

|Rni|1{|Rni| > C} >
ε

2

)

+ P

(
1

n

n∑
i=1

|Rni|1{|Rni| 6 C} >
ε

2

)

If the term
1

n

n∑
i=1

|Rni|1{|Rni| > C}

is larger than ε/2, then |Rni| > C for at least one i, i.e. maxi |Rni| > C. Thus

P

(
1

n

n∑
i=1

|Rni|1{|Rni| > C} >
ε

2

)
6 P(max

i
|Rni| > C)

The probability P(maxi |Rni| > C) can be made arbitrarily small for large n and C,
because of assumption (6.4.5). By the Markov inequality, the second term on the right
hand side is bounded by

2ε−1E [|Rn11{|Rn1| 6 C}]

which converges to 0 as n→∞, because of |Rn11{|Rn1| 6 C}
p→ 0 and the dominated

convergence theorem.

The next lemma is a special case of equation (A2) of Lin [2000].

Lemma 6.6.

1

n

n∑
i=1

fk(Qki)δki
K(Tki|Vki,Wki)

√
n
{
K̂k(Tki|Vki,Wki) −Kk(Tki|Vki,Wki)

}
K̂k(Tki|Vki,Wki)

=
1√
n

n∑
i=1

∫L
0

[
qk(t,Vki) + RkΩ−1

k {Wki − w̄k(Vki)}
]
Mc
ki(dt) + op(1),
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The next theorem gives the asymptotic distribution of the IPCW Mann-Whitney
U-statistic. The key step is to separate the U-statistics into two stochastically indepen-
dent terms (one for each sample).

Theorem 6.7. Let θ = P(Q1i > Q2i) and ck = limn→∞ nk
n , k = 1, 2. Then, as n→∞,

√
n(Û− θ)

L→ N

(
0,
σ21
c1

+
σ22
c2

)
,

where

σ2k = Var

(
fk(Qki)δki

Kk(Tki|Vki,Wki)
−

∫L
0

[
qk(t,Vki) + RkΩ−1

k {Wki − w̄k(Vki)}
]
Mc
ki(dt)

)
.

A consistent estimator of σ2k is given in lemma 6.8.

Proof. Let Kki = K(Tki|Vki,Wki) and K̂ki = K̂ki(Tki|Vki,Wki) for k = 1, 2 and i =
1, . . . ,nk. Write

√
n{Û− θ} =

√
n{U− θ}

−

√
n

√
n1

1

n1n2

n1∑
i=1

n2∑
j=1

h(Q1i,Q2j)δ1iδ2j
K1iK̂2j

√
n1{K̂1i −K1i}

K̂1i

−

√
n

√
n2

1

n1n2

n1∑
i=1

n2∑
j=1

h(Q1i,Q2j)δ1iδ2j
K̂1iK2j

√
n2{K̂2j −K2j}

K̂2j
,

(6.4.6)

where

U =
1

n1

1

n2

n1∑
i=1

n2∑
j=1

h(Q1i,Q2j)δ1iδ2j
K1iK2j

.

The orthogonal projection of U− θ onto the set of all statistics of the form

n1∑
i=1

fi(Q1i, T1i, δ1i,V1i,W1i) +
n2∑
j=1

gj(Q2j, T2j, δ2j,V2j,W2j)
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is given by the conditional expectations

Ũ =

n1∑
i=1

E [U− θ|Q1i, T1i, δ1i,V1i,W1i] +
n2∑
j=1

E
[
U− θ|Q2j, T2j, δ2j,V2j,W2j

]
=
1

n1

n1∑
i=1

{
F2(Q1i−)δ1i

K1i
− θ

}
+
1

n2

n2∑
j=1

{
S1(Q2j)δ2j

K2j
− θ

}

See van der Vaart [2000]. Therefore

√
n{U− θ} =

√
n

n1

n1∑
i=1

{
F2(Q1i−)δ1i

K1i
− θ

}
+

√
n

n2

n2∑
j=1

{
S1(Q2j)δ2j

K2j
− θ

}
+ op(1)

now consider the second term of eq. (6.4.6). The K̂2j in the denominator can be re-
placed by K2j, because of lemma 6.2 and lemma 6.5. The term can be written as

−

√
n

√
n1

1

n1n2

n1∑
i=1

µ̂2i

√
n1{K̂1i −K1i}

K̂1i
, (6.4.7)

where

µ̂2i =
1

n2

n2∑
j=1

h(Q1i,Q2j)δ1iδ2j
K1iK2j

.

Note that, √
n

√
n1
→ 1
√
c1

a.s.,

and

max
i=1,...,n1

√
n1|K̂1i −K1i|

K̂1i
= Op(1),

as n → ∞, by lemma 6.2. For fixed i, µ̂2i converges in probability to µ2i conditional
on {Q1i, T1i, δ1i,V1i,W1i}, where

µ2i = E [µ̂2i | Q1i, T1i, δ1i,V1i,W1i] =
F2(Q1i−)δ1i

K1i
,

by the law of large numbers. The conditional expectation

E [|µ̂2i − µ2i| | Q1i, T1i, δ1i,V1i,W1i]
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is bounded by some constant not depending on n, since |µ̂2i − µ2i| is bounded. The
dominated convergence theorem implies

E [|µ̂2i − µ2i| | Q1i, T1i, δ1i,V1i,W1i]→ 0,

and
E [|µ̂2i − µ2i|] = E [E [|µ̂2i − µ2i|Q1i, T1i, δ1i,V1i,W1i]]→ 0,

as n→∞. Therefore

√
n

√
n1

1

n1

n1∑
i=1

|µ̂2i − µ2i| max
i=1,...,n1

√
n1|K̂1i −K1i|

K̂1i
= op(1),

and

−

√
n

√
n1

1

n1n2

n1∑
i=1

µ̂2i

√
n1{K̂1i −K1i}

K̂1i
= −

1
√
c1

1

n1

n1∑
i=1

µ2i

√
n1{K̂1i −K1i}

K̂1i
+ op(1).

The same argument works for the third term of eq. (6.4.6), too. Hence

√
n{Û− θ} =

1
√
c1

1
√
n1

n1∑
i=1

{
F2(Q1i−)δ1i

K1i
− θ

}
+

1
√
c2

1
√
n2

n2∑
j=1

{
S1(Q2j)δ2j

K2j
− θ

}

−
1
√
c1

1

n1

n1∑
i=1

F2(Q1i−)δ1i
K1i

√
n1{K̂1i −K1i}

K̂1i

−
1
√
c2

1

n2

n2∑
j=1

S1(Q2j)δ2j
K2j

√
n2{K̂2j −K2j}

K̂2j
+ op(1)
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This can be written as a sum of iid random variables, by lemma 6.6. Thus

√
n{Û− θ} =

1
√
c1

1
√
n1

n1∑
i=1

{
F2(Q1i−)δ1i

K1i
− θ

}

+
1
√
c2

1
√
n2

n2∑
j=1

{
S1(Q2j)δ2j

K2j
− θ

}

−
1
√
c1

1
√
n1

n1∑
i=1

[
q1(t,V1i) + R1Ω−1

1 {W1i − w̄1(V1i)}
]
M1i(dt)

−
1
√
c2

1
√
n2

n2∑
j=1

[
q2(t,V2j) + R2Ω−1

2 {W2j − w̄2(V2j)}
]
M2j(dt)

+ op(1)

(6.4.8)

Asymptotic normality now follows from the central limit theorem.

Variance estimation

In this section a consistent estimator of the asymptotic variance of the IPCW Mann-
Whitney U-test of theorem 6.7 is given. Let

hk(x) =

1{Q21 < x} k = 1

1{Q11 > x} k = 2

Note that E[hk(x)] = fk(x). As in section 2.4, define the estimator of the asymptotic
variance of the maxium partial likelihood estimator γ̂k, k = 1, 2 by

Ω̂k(γ) =

nk∑
i=1

δki

{
S
(2)
k (γ̂k, Tki,Vki)

S
(0)
k (γ̂k, Tki,Vki)

−
S
(1)
k (γ̂k, Tki,Vki)⊗2

S
(0)
k (γ̂k, Tki,Vki)2

}
,

where

S
(0)
k (γ, t, v) =

nk∑
i=1

1{Yki > t,Vki = v}eγ
TWki

S
(1)
k (γ, t, v) =

∂S
(0)
k (γ, t, v)
∂γ

S
(2)
k (γ, t, v) =

∂S
(1)
k (γ, t, v)
∂γ

.
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Moreover for k = 1, 2 let

q̂k(t, v) =
1

S
(0)
k (γ̂k, t, v)

n∑
i=1

hk(Qki)δki1{Tki > t,Vki = v}eγ̂
T
kWki

K̂k(Tki | Vki,Wki)

ŵk(t, v) =
S
(1)
k (γ̂k, t, v)

S
(0)
k (γ̂, t, v)

Ĥk(t, v,w) =
nk∑
i=1

eγ̂
T
kw(1− δki)1{Cki 6 t,Vki = v}

S
(0)
k (γ̂k,Cki, v)

{w− ŵk(Cki, v)}

R̂k =
1

nk

nk∑
i=1

hk(Qki)δkiĤk(Tki,Vki,Wki)
K̂k(Tki | Vki,Wki)

D̂ki(t) = q̂k(t,Vki) + R̂knkΩ̂−1
k {Wki − ŵk(t,Vki)}

Ŝki =
hk(Qki)δki

K̂k(Tki | Vki,Wki)
+ (1− δki)D̂ki(Cki)

− eγ̂
T
kWki

nk∑
j=1

(1− δkj)1
{
Ckj 6 Tki,Vkj = Vki

}
D̂ki(Ckj)

S
(0)
k (γ̂k,Ckj,Vkj)

,

The sample variance of Ŝki, i = 1, . . . ,nk is a consistent estimator of σ2k:

Lemma 6.8. As nk →∞,

σ̂2k =
1

nk − 1

nk∑
i=1

Ŝki −n−1
k

nk∑
j=1

Ŝkj

2 p−→ σ2k

Proof. The result follows from the law of large numbers, the lemma of Slutzky (lemma
A.37) and lemma 6.5.

Simulation results

Table 6.1 shows the results of 105 simulations for the IPCW Mann-Whitney U-test
and the average hazard ratio from 3, which treats the QAS observations as ordinary
survival data. The data was simulated according to the Q-TWiST model described in
Zhao and Tsiatis [2001]. First the patients experience toxicity (TOX), then they experi-
ence time without symptoms or toxicity (TWIST) until disease replapse. Here TWIST
has an exponential distribution with rate λ = 1/52 truncated at 104. Toxicity (TOX) is
uniformly distributed on [TWIST/4, TWIST/2] in group 1 and is equal to 52 minus a
uniform random variable on [TWIST/4, TWIST/2] in group 2. Censoring is uniform



6.5 sequential and adaptive designs 125

on [10, 208] in both groups. Quality-adjusted survival is set equal to TWIST. In this
model the time to relapse (= TOX + TWiST) is different in the two groups, whereas
quality-adjusted survival (= TWiST) has the same distribution in both groups. For a
group size of 50, i.e. a total sample size of 100, the actual type-I-error of the IPCW
methods is 0.056 and approaches the nominal level 0.05 as the sample size increases.
The bias of the IPCW method is close to 0. This is a substantial improvement over the
AHR method, which is biased and has an inflated type-I-error rate, since it does not
account for the informative censoring inherent to quality-adjusted survival data.

Table 6.1: Type-I-error under the null
hypothesis θ = 0.5 for
the IPCW Mann-Whitney U-
test and the average hazard
ratio for QAS data. a

θ̂ Type-I-error

n IPCW AHR IPCW AHR

50 0.497 0.454 0.056 0.190

100 0.499 0.455 0.052 0.256

200 0.500 0.455 0.051 0.381

a Results of 105 simulation runs for
different group sizes n, α = 0.05.

6.5 sequential and adaptive designs

While the previous result was only derived for right-censored data, it is straight-
forward to extend to left-truncated and right-censored data, since the proportional
hazards model can also be fit to left-truncated data. This can be used together with
the inverse normal method for non-adaptive sequential trials or adaptive trials, where
no surrogate information is used in the interim decisions. When interim decisions are
also based on surrogate information, then the stratification approach of chapter 5 can
be combined with inverse probablitity weighting. Suppose the survival function of
QAS in each stratum is estimated by the IPCW estimator

Ŝj(t) =
1

nj

n∑
l=1

1{Ql > t}δl1{Xl = j}

K̂(Tl|Vl,Wl,Xl)
,
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where Xl is a discrete surrogate variable as in chapter 5 and Vl and Wl are the
covariates in the (stratified) proportional hazard model for the censoring times. The
estimator of the marginal survival function of QAS is then given by

Ŝ(t) =

J∑
j=1

nj

n
Ŝj(t) =

J∑
j=1

nj

n

1

nj

n∑
l=1

1{Ql > t}δl1{Xl = j}

K̂(Tl|Vl,Wl,Xl)

=
1

n

n∑
l=1

δl1{Ql > t}

K̂(Tl|Vl,Wl,Xl)

J∑
j=1

1{Xl = j}︸ ︷︷ ︸
=1

=
1

n

n∑
l=1

δl1{Ql > t}

K̂(Tl|Vl,Wl,Xl)
.

This is identical to the IPCW estimator in the whole sample, but with the additional
stratification variable X in the censoring model. Thus, the IPCW survival function esti-
mators can be used with the patient-wise splitting approach, by adding the surrogate
variable as a stratification variable to the censoring model.

6.6 discussion

QAS is an interesting integrated measure of clinical benefit, combining overall sur-
vival and longitudinal quality-of-life data. However, the definition of this endpoint
creates methodological problems. The large body of established methods for the anal-
ysis of time-to-event and longitudinal data, cannot be used for the analysis of QAS.
The repeated measures are conflated to a single number, preventing the use of meth-
ods for longitudinal data. The induced dependent censoring prevents the use of the
standard survival methods. Moreover, when using summary measures of longitudi-
nal data, careful planning is required, since the assumption of equal variances may
not be plausible, if the number and/or timing of repeated measures is different be-
tween individuals and/or groups.

The IPCW approach for time-to-event data is very general and flexible. Arbitrary
censoring patterns can be handled, including left-truncation and right-censoring. The
censoring mechanism can be modelled with discrete and continuous covariates. How-
ever, usually the censoring mechanism is considered a nuisance parameter.

Under independent censoring of the underlying survival times, the IPCW estimator
of the survival function of QAS can be used with the methods of chapter 3. For
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covariate-dependent censoring this is not possible, but the IPCW Mann-Whitney U-
test provides a direct approach to the estimation of the relative risk in this situation.
The IPCW methods can be used with the patient-wise approach of chapter 5, when
the surrogate variable is used as stratification variable in the censoring model. Thus
provding the novel possibility of adaptive designs QAS data.





7
C O N C L U S I O N

In confirmatory phase III trials strict control of the type-I-error is important. There
exists a large literature on adaptive and group-sequential designs for time-to-event
data. Most of it focuses on the log-rank test and the Cox proportional hazards model.
Much less results are available for non-proportional hazards data. In this work several
novel non-parametric sequential and adaptive methods for survival data have been
developed.

As opposed to the proportional hazards situation, where the log-rank test is the
most efficient test, there is no “best” test in the non-proportional hazards situation.
Alternative tests for comparing distributions in the non-proportional hazards case
exist, such as that of Pepe and Fleming [1989]. The average hazard ratio has been
proposed by Kalbfleisch and Prentice [1981] as a generalization of the usual hazard
ratio with a useful interpretation in situation with non-proportional hazards. If the
proportional hazards assumption holds, then the average hazard ratio reduces to the
usual hazard ratio. In this work it was proved, that the average hazard ratio based test
statistics do have (asymptotically) the independent increments structure, allowing
group-sequential rejection boundaries to be calculated with standard methods. The
average hazard ratio can now be used as an endpoint in group-sequential trials. In
fact, the result holds for many other non-parametric test statistics, which are functions
of the marginal survival function.

In adaptive designs for survival trials usually the independent increments prop-
erty of the test statistics is exploited to achieve independent stage-wise test statistics
(Wassmer [2006]). When surrogate information, e.g. short-term endpoints, is used in
the interim decision, then the independent increments property does no longer hold
in general, as noted by Bauer and Posch [2004] and Magirr et al. [2014]. This prob-
lem is not restricted to time-to-event data, but is present in any data with delayed
response or long-term follow-up.

For a discrete surrogate two solutions to this problem have been proposed in this
work, which are both based on (modifications of) the weighted Kaplan-Meier esti-
mator (Malani [1995] and Murray and Tsiatis [1996]). In the patient-wise splitting
approach of Jenkins et al. [2011] the weighted Kaplan-Meier estimator is used to ac-
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count for possible informative censoring induced by modification of the follow-up
of overrunning patients. In the stage-wise splitting approach a modified weighted
Kaplan-Meier estimator is used to account for a possible biased response rate. These
approaches can be applied to all test statistics derived from the weighted Kaplan-
Meier estimator.

The patient-wise splitting approach, where the test statistics for the primary end-
point are only calculated at the end of the trial, allows for early interim analyses and
decision making based on surrogate information, even before the primary endpoint
has been observed for most patients. The drawback is, that stopping for efficacy
based on the primary endpoint is not possible at interim. The stage-wise splitting
approach, on the other hand, is more similar to the standard group-sequential ap-
proach. Combined with the inverse normal method, the usual rejection boundaries
for group-sequential trial can be used.

The patient-wise splitting approach can also be applied to the somewhat more
general quality-adjusted survival endpoint. The major difficulty with the quality-
adjusted endpoint is, that censoring of the quality-adjusted survival times is infor-
mative even when the censoring of the underlying survival times is non-informative.
This is solved by inverse probability of censoring weighting. The inverse probabil-
ity weighting approach even allows for the inclusion of continuous covariates in or-
der to account for informative censoring cases, provided one is willing to accept a
semi-parametric model for the conditional censoring distribution. These are the first
proposed adaptive designs for a quality-adjusted survival endpoint.

The main limitation of this work is the restriction to time-independent discrete
covariates. This excludes the important cases of normal and time-to-event surrogates.
Inclusion of continuous or even censored time-to-event endpoints like progression-
free survival is not directly possible with the weighted Kaplan-Meier approach.

The restriction to a fixed time interval [0,L] is mostly a technical limitation without
much practical relevance, which is required for the asymptotic results (this could
actually be relaxed at the cost of additional regularity assumptions). In the non-
parametric case however, the time point L is a part of the definition of the endpoint,
e.g. the average hazard ratio over 1 year is a different endpoint, than the average haz-
ard ratio over 2 years. In principle, L could be changed at the interim analysis without
compromising the overall type-I-error rate, but this would amount to a selection of
a different endpoint, since e.g. the average hazard ratio over 1 year is not the same
endpoint as the average hazard ratio over 2 years.
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Another limitation is, that the asymptotic results only hold under the null hypoth-
esis, hence cannot be used for power considerations. Sample size and other design
parameters depending on a specific alternative hypothesis need to be evaluated in
simulation studies.

Furthermore, the completely non-parametric approach in the construction of the
test statistics, i.e. no assumption about the form the hazard rate, sacrifices some power
compared to a correctly specified parametric model.

Extension of the method to continuous and especially time-to-event surrogate vari-
ables is a possible route for future research. A direct extension of the weighted
Kaplan-Meier approach to continuous covariates is possible by discretization of the
continuous covariate. However this introduces additional problems, such as choos-
ing number and location of the breakpoints. Imposing a semi-parametric model for
the conditional hazard, e.g. a proportional hazard model, is another possibility (Shen
and Fleming [1997]), which, however, requires model assumptions. How to apply
such methods in sequential and adaptive designs needs to be inverstigated.

Another direction of future research is how surrogate information can be used in
the interim decision process. It is expected, that the inclusion of surrogate information
improves the interim decision process, e.g. reduce the probability of wrongly select-
ing a subgroup or treatment in adaptive enrichment trials. This has to be examined
by extensive simulation studies.





A
M AT H E M AT I C A L B A C K G R O U N D

This chapter presents the mathematical / probability theoretic background related to
stochastic processes required for the asymptotic results in this thesis. These are all
standard results and can be found in any textbook on measure theoretic probability
theory (see e.g. Billingsley [2009] and Andersen [1993]).

a.1 stochastic processes

In this section let (Ω,F,P) be a probability space, B(R) be the Borel σ-algebra on R
and I ⊂ R an arbitrary subset of the real numbers. Usually I is the set [0,∞) and is
interpreted as time. The Borel σ-algebra on I is denoted by B(I).

Definition A.1 (Stochastic process). A collection of random variables X = {X(t), t ∈ I} on
(Ω,F,P) with values in (R,B(R)) is called a stochastic process with index set I and state
space R.

Definition A.2. A stochastic process {X(t), t ∈ I} with values in R is called

1. integrable, if E[|X(t)|] <∞ for all t,

2. square integrable, if E[|X(t)|2] <∞ for all t.

A stochastic process {X(t), t ∈ I} with values in E is called

1. process with independent increments, if for all n ∈ N and all t0, . . . , tn ∈ I

with t0 < . . . < tn the random variables X(ti) − X(ti−1), i = 1, . . . ,n are (jointly)
independent.

2. (left-/right-)continuous, if its paths are (left-/right-)continuous a.s., i.e. if for almost
every ω ∈ Ω the function t 7→ Z(t,ω) is (left-/right-)continuous,

3. jointly measurable, if the map X : Ω× I → E, X(ω, t) = X(t)(ω) is F ⊗B(I) −

B(R)-measureable.

133
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Definition A.3 (Filtration). A family {Ft, t ∈ I} of σ-algebras on (Ω,F,P) with Ft ⊆ F

for each t is called filtration, if Fs ⊆ Ft for all s, t ∈ I with s 6 t. The filtration is called
complete, if F0 contains all P-null sets. The filtration is called right-continuous, if

Fs =
⋂
s<t

Ft.

Definition A.4 (adapted). A stochastic process {X(t), t ∈ I} is called adapted to the filtra-
tion (Ft, t ∈ I), if X(t) is Ft-measurable for all t ∈ I.

Definition A.5. Let RI be the set of functions from I to R. Define the product σ-algebra
B(R)⊗I on RI as the smallest σ-algebra, which contains all sets of the form

{f ∈ RI, f(t1) ∈ A1, . . . , f(tk) ∈ Ak}

for k ∈ N, t1, . . . , tk ∈ I, A1, . . . ,Ak ∈ R.

Lemma A.6. Let {X(t), t ∈ I} be a stochastic process on (Ω,F,P) with state space (R,B(R)),
then the map X : (Ω,F,P)→ (RI,B(R)⊗I), defined by

X(ω)(t) := X(t)(ω) ω ∈ Ω, t ∈ I

is measurable, i.e. X−1(B) ∈ F for all B ∈ B(R)⊗I.

Definition A.7 (Distribution of a stochastic process). Let {X(t), t ∈ I} be a jointly mea-
surable process on (Ω,F,P) with state space (R,B(R)). Define the map X as in the preceding
lemma. The probability measure PX on (RI,B(R)⊗I) defined as the image measure of the
map X,

PX(B) := P
(
X−1(B)

)
B ∈ B(R)⊗I

is called the distribution of {X(t), t ∈ I}.

Definition A.8 (finite dimensional distributions). Let {X(t), t ∈ I} be a stochastic process
and denote the distribution of X(t) by Pt,t ∈ I. The family of probability measures {Pt, t ∈
J ⊆ I, J finite} is called family of finite-dimensional distributions of {X(t), t ∈ I}.

Theorem A.9. The distribution of a stochastic process is uniquely determined by its finite-
dimensional distributions.

Definition A.10 (Martingale). A stochastic process M is called a martingale with respect
to the filtration {Ft, t ∈ I} if
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1. M is adapted to {Ft, t ∈ I},

2. M is integrable,

3. E[M(t)|Fs] =M(s) P-a.s. for s 6 t.

If E[M(t)|Fs] >M(s) P-a.s. for s 6 t holds instead of (3.), then the M is called submartin-
gale.

Definition A.11 (stopping time). A random variable τ with values in I ∪ {∞} is called
stopping time with respect to {Ft, t ∈ I}, if for all t ∈ I

{τ 6 t} ∈ Ft.

Definition A.12 (stopped process). Given a stochastic process {X(t), t ∈ I} and a stopping
time τ, the process Xτ = {Xτ(t), t ∈ I} defined by

Xτ(t)(ω) = X(t∧ τ(ω))(ω) ∀ω ∈ Ω

is called stopped process.

Definition A.13 (local martingale). A stochastic process M is called a local martingale,
if there exists an increasing sequence of stopping times Tn, with Tn → ∞ a.s., such that for
each n the stopped process MTn is a martingale.

Definition A.14 (Gaussian process). A Gaussian process is a stochastic process, whose
finite-dimensional distributions are multivariate normal.

Lemma A.15. A Gaussian process {X(t), t ∈ I} is uniquely determined by its mean function
t 7→ E[X(t)] and its covariance function ρ(s, t) = Cov(X(s),X(t)).

Example A.16 (Brownian motion). Brownian motion is a continuous square integrable
Gaussian martingale with mean zero and covariance function s∧ t.

a.1.1 Quadratic variation

Definition A.17. A stochastic process {X(t), t ∈ I} is called

1. finite variation process if its paths are right-continuous with left-hand limits every-
where and are almost surely of finite variation on all bounded subsets of I,
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2. predictable with respect to the filtration {Ft, t ∈ I}, if it is measurable with respect
to the predictable σ-algebra, i.e. the σ-algebra generated by all left-continuous adapted
processes,

3. locally bounded, if there exists a sequence of stopping times (Tn)n∈N, such that the
stopped process Xt∧Tn is bounded.

Definition A.18 (Compensator). A finite-variation predictable process A with A(0) = 0 is
called compensator of the process N with respect to the filtration {Ft, t ∈ I}, if N−A is a
local martingale with respect to {Ft, t ∈ I}.

The Doob-Meyer decomposition asserts the existence and uniqueness of a compen-
sator of a non-negative right-continuous local submartingale.

Theorem A.19 (Doob-Meyer decomposition, theorem 2.2.3 in Fleming and Harring-
ton [2011]). Let X = {X(t), t ∈ [0,∞)} be a non-negative right-continuous local submartin-
gale with respect to the right-continuous filtration {Ft, t ∈ I}. Then there exists a unique
increasing right-continuous predictable process A such that A(0) = 0 a.s., P(A(t) <∞) = 1

for t > 0, and X−A is a right-continuous local martingale.

Definition A.20 (Quadratic variation). 1. The optional quadratic covariation of two
local martingales X and Y is defined as the unique increasing process [X, Y] such that

XY − [X, Y]

is a local martingale. The optional quadratic variation of a local martingale X is
defined as [X] := [X,X].

2. The predictable quadratic covariation of two stochastic processes X and Y is defined
as the unique increasing predictable process 〈X, Y〉 such that

XY − 〈X, Y〉

is a local martingale. The predictable quadratic variation of a local square integrable
martingale X is defined as 〈X〉 := 〈X,X〉.

Theorem A.21 (Bilinearity of quadratic covariations). Let X1, . . . ,Xn and Y1, . . . , Yn be
local martingales. Then  n∑

i=1

Xi,
n∑
j=1

Yj

 =

n∑
i=1

n∑
j=1

[Xi, Yj].
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If the predictable quadratic covariations 〈Xi, Yj〉 exist, then〈
n∑
i=1

Xi,
n∑
j=1

Yj

〉
=

n∑
i=1

n∑
j=1

〈Xi, Yj〉.

Theorem A.22 (Ito isometry). Let M1 and M2 be two local martingales. If E[[M1]] < ∞
and E[[M2]] <∞, then M1 and M2 are square integrable and

Cov(M1(t),M2(t)) = E [〈M1,M2〉(t)] = E [[M1,M2] (t)] .

Definition A.23 (Orthogonal martingales). Two local martingales X and Y are called or-
thogonal, if [X, Y] ≡ 0.

Remark A.24. For independent martingales X and Y the product XY is already a martin-
gale. Hence [X, Y] ≡ 0. The converse is not true in general, but orthogonal martingales are
uncorrelated, by the Ito isometry (theorem A.22).

Lemma A.25 (Quadratic variation of finite variation processes). Let X be a local martin-
gale and Y a finite variation local martingale. Then

[X, Y](t) =
∑
s6t

∆X(s)∆Y(s),

where ∆X(s) = X(s) − X(s−) and ∆Y(s) = Y(s) − Y(s−). If X or Y is continuous, then
[X, Y] ≡ 0.

Theorem A.26. Let X = {X(t), t ∈ I} be a finite variation process and Y = {Y(t), t ∈ I} a
locally bounded stochastic process. The integral

Z(t) =

∫t
0

YdX t ∈ I

is interpreted as pathwise Lebesgue-Stieltjes integral, i.e. the process Z = {Z(t), t ∈ I} is
defined by

Z(t)(ω) =

∫t
0

Y(s)(ω)X(ds)(ω) ω ∈ Ω.

If Y is predictable, then this definition coincides with the Ito-integral of Y with respect to
X. If X is a local (square integrable) martingale, then Z is also a local (square integrable)
martingale.
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Theorem A.27. Let M1 and M2 be finite variation local square integrable martingales and
H1 and H2 be predictable locally bounded processes. Then

∫
H1dM1 and

∫
H2dM2 are local

square integrable martingales and[∫
H1dM1,

∫
H2dM2

]
=

∫
H1H2d[M1,M2]

〈∫
H1dM1,

∫
H2dM2

〉
=

∫
H1H2d〈M1,M2〉.

Theorem A.28 (Integration by parts formula). Let X and Y be local martingales. Then

X(t)Y(t) = X(0)Y(0) +

∫t
0

X(s−)Y(ds) +

∫t
0

Y(s−)X(ds) + [X, Y](t),

where X(s−) = limt↑s X(t) is the left limit of X at the point s.

Corollary A.29. Let X and Y be mean zero local martingales, such that 〈X, Y〉 exists. Then
〈X, Y〉 is the compensator of [X, Y], i.e.

[X, Y] − 〈X, Y〉

is a local martingale.

a.1.2 Counting processes

Definition A.30 (Counting process). A counting process is a stochastic process {N(t), t ∈
[0,∞)} with values in N0 adapted to a filtration {Ft, t ∈ [0,∞)} with N(0) = 0 and
N(t) < ∞ a.s. whose paths are with probability one right-continuous, piecewise constant
and have only jump discontinuities, with jumps of size +1.

Remark A.31. Counting processes are finite variation processes, because they have a.s. mono-
tone increasing paths.

By the Doob-Meyer decomposition (theorem A.19), unique predictable compen-
sators for counting processes always exists.

Definition A.32 (Counting process martingales). Let N be a counting process and A
its unique predictable compensator. The local square integrable martingale N −A is called
counting process martingale.
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Assume that A is the continuous compensator of the counting process N and let
M = N −A be the associated counting process martingale, then [M] = [N −A] =

[N] = N. Since 〈M〉 is the compensator of [M] = N it follows 〈M〉 = A, i.e. M2 −A is
square integrable local martingale and Var(M) = E[M2] = E[A], by the Ito isometry.

Lemma A.33. Let N1, . . . ,Nn (n > 1) be counting processes, which do not have any com-
mon jump discontinuities, i.e. [Ni,Nj] ≡ 0 for i 6= j. Let Ai be the compensator of Ni and
Mi = Ni−Ai the associated counting process martingales. Assume thatAi is continuous for
i = 1, . . . ,n. Then the martingales M1, . . . ,Mn are orthogonal and the sum N1 + . . .+Nn

is itself a counting process with[
n∑
i=1

Mi

]
=

[
n∑
i=1

Ni

]
=

n∑
i=1

Ni

and 〈
n∑
i=1

Mi

〉
=

〈
n∑
i=1

Ni

〉
=

n∑
i=1

Ai.

Lemma A.34 (Lenglart’s inequality for counting processes, Corollary 3.4.1, Fleming
and Harrington [2011]). Let N be a counting process, and M = N−A the corresponding
local square integrable martingale. Suppose H is an adapted left-continuous process with
right-hand limits or, more generally, a predictable and locally bounded process. Then for any
stopping time T such that P(T <∞) = 1, and any ε,η > 0,

P

(
sup
t6T

{∫t
0

H(s)M(ds)

}2
> ε

)
6
η

ε
+ P

(∫T
0

H2(s)〈M,M〉(ds) > η

)

The next lemma is a simple consequence of Lenglart’s inequality.

Lemma A.35. Consider the integrals

1√
n

∫t
0

H(n)(u)M(n)(du) t 6 τ

with respect to the (local) martingales M(n) with increasing compensators Λ(n), such that
all conditions of Lenglart’s inequality hold. Moreover suppose that there exists a function H,
such that

sup
u∈[0,τ]

|H(n)(u) −H(u)| = op(1),
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and for each t 6 τ,
Λ(n)(t) = Op(n)

then

sup
u∈[0,τ]

∣∣∣∣ 1√n
∫t
0

H(n)(u)M(n)(du) −
1√
n

∫t
0

H(u)M(n)(du)

∣∣∣∣ = op(1)
Proof. By Lenglart’s inequality, for each ε > 0 and η > 0,

P

(
sup
u∈[0,τ]

∣∣∣∣ 1√n
∫t
0

(H(n)(u) −H(u))M(n)(du)

∣∣∣∣2 > ε
)

6
η

ε
+ P

(∣∣∣∣n−1

∫τ
0

(H(n)(u) −H(u))2Λ(n)(du)

∣∣∣∣ > η)
(A.1.1)

The second term on the right hand side of A.1.1 converges to zero for each η, since∣∣∣∣∫τ
0

(H(n)(u) −H(u))2n−1Λn(du)

∣∣∣∣
6 sup
u∈[0,τ]

|H(n)(u) −H(u)|2
Λ(n)(τ)

n
= op(1)

(A.1.2)

Hence the right-hand side of A.1.1 can be made arbitrarily small for each ε and the
conclusion follows.

a.2 weak convergence of measures

a.2.1 The space D[0,L]

Denote by D[0,L] the space of all right-continuous functions on [0,L] with left limits.
This space is complete but not separable with respect to the uniform metric. Therefore
D[0,L] is equipped with the Skorohod metric (Billingsley [2009]) to make it a separa-
ble and complete metric space. The standard theory for stochastic and weak conver-
gence in metric spaces can be applied. The Skorohod metric restricted to the subspace
C([0,L]) of continuous functions on [0,L] coincides with usual uniform metric.
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a.2.2 Weak convergence in metric spaces

Definition A.36 (Weak convergence). A sequence of finite measures (µn)n∈N on a metric
space (E,d) converges weakly to a measure µ, if∫

fdµn →
∫
fdµ

as n→∞ for all continuous bounded functions from E to R. Weak convergence of (µn)n∈N
to µ is denoted by µn

L→ µ. A sequence of random variables with values in (E,d) converges
weakly if its distributions converge weakly.

Lemma A.37 (Slutzky). Let X,X1,X2, . . . and Y1, Y2, . . . be random variables with values
in the metric space (E,d) and Xn

L→ X and d(Xn, Yn) → 0 in probability as n → ∞. Then
Yn

L→ X.

Theorem A.38 (Continous mapping theorem). Let (E1,d1) and (E2,d2) be two metric
spaces and φ : E1 → E2 measurable and Uφ the set of discontinuity points of φ.

1. If µ,µ1,µ2, . . . are probability measures with µ(Uφ) = 0 and µn → µ weakly, then
µn ◦φ−1 → µ ◦φ−1 weakly.

2. If X,X1,X2, . . . are random variables with values in E1 with P(X ∈ Uφ) = 0 and
Xn

L→ X, then φ(Xn)
L→ φ(X).

Definition A.39 (Tightness). The collection M of finite measures on the topological space
(E, τ) is called tight, if for every ε > 0 there exists a compact set K ⊂ Ω, such that

sup{µ(E \K) : µ ∈M} < ε.

A sequence of random variables (Xn)n∈N on a proability space (Ω,F,P) is called tight, if the
collection {P ◦X−1

n : n ∈ N} is tight.

Lemma A.40. For each i = 1, . . . ,k let (Xin)n∈N be a tight sequence of random variables.
Then the sequences

(X1n + . . .+Xkn)n∈N

and
((X1n, . . . ,Xkn))n∈N

are tight.
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Theorem A.41 (Stochastic equicontinuity, Billingsley [2009]). A sequence of random vari-
ables (Zn)n∈N with values in a metric space (E,d) is tight, if for all ε > 0 and η > 0 there
exists δ > 0, such that

lim sup
n→∞P

(
sup

s,t∈E:d(s,t)<δ
|Zn(s) −Zn(t)| < ε

)
< η

as n→∞.

Theorem A.42 (Prohorov). Let (E,d) be a metric space and M a collection of probability
measures on E.

1. M is relatively compact, i.e. its closure is compact, if it is tight.

2. If E is polish, then M is relatively compact if and only if it is tight.

Theorem A.43. A sequence of random variables (Zn)n∈N with values in D[0,L] converges
weakly to random variable Z with values in D[0,L], if

1. the finite-dimensional distributions of Zn converge in distribution to the finite-dimensional
distributions of Z, i.e. as n → ∞, (Zn(t1), . . . ,Zn(tm)) converges in distribution to
(Z(t1), . . . ,Z(tm)), for all t1, . . . , tm ∈ [0,L], m > 1,

2. the sequence (Zn)n∈N is tight.

Definition A.44 (Asymptotic covariance function). Let (Zn)n∈N be sequence of stochas-
tic processes with state space D[0,L], which converges weakly to a stochastic process Z as
n → ∞. The covariance function of Z, (s, t) 7→ Cov(Z(s),Z(t)), is called asymptotic co-
variance function of (Zn)n∈N.

a.2.3 Martingale central limit theorem

Theorem A.45 (Andersen and Gill [1982]). For each n = 1, 2, . . . let N(n) be a multi-
variate counting process with n components. Let H(n) be a p× n (p 6 1 is fixed) matrix of
locally bounded predictable processes. Suppose that N(n) has an intensity process λ(n), and
define local square integrable martingales W(n) = (W

(n)
1 , . . . ,W(n)

p ) by

W
(n)
i (t) =

∫t
0

n∑
l=1

H
(n)
il (u){dN

(n)
l (u) − λ

(n)
l (u)du}
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Let A be a p×p matrix of continuous functions on [0,L] which form the covariance functions
of a continuous p-variate Gaussian martingale W(∞), with W(∞)(0) = 0; i.e.

Cov(W
(∞)
i (t),W(∞)

j (u)) = Aij(t∧ u)

for all i, j, t and u. Suppose that for all i, j and t

〈
W

(n)
i ,W(n)

j

〉
(t) =

∫t
0

n∑
l=1

H
(n)
il (s)H

(n)
jl (s)λ

(n)
l (s)ds

p→ Aij(t) (A.2.1)

as n→∞ and that for all i and ε > 0

∫L
0

n∑
l=1

H
(n)
il (t)2λ

(n)
l (t)1

{∣∣∣H(n)
il (t)

∣∣∣ > ε}dt p→ 0 as n→∞. (A.2.2)

Then W(n) L→W(∞) as n→∞ in D([0,L]p).

Remark A.46 (Lindeberg condition). Assume the processes H(n) of theorem A.45 are of
the form

1√
n
H̃(n),

where H̃(n) is a almost surely bounded predictable process. Then the Lindeberg condition (eq.
(A.2.2)) is trivially satisfied, since the indicator function 1

{∣∣∣H(n)
il (t)

∣∣∣ > ε} is eventually 0
a.s. for all s and any ε > 0 for large n.

Remark A.47. Independent martingales are orthogonal. The converse is not true in general,
but orthogonal martingales are uncorrelated, by the Ito isometry, and asymptotically indepen-
dent, by the martingale central limit theorem.

a.2.4 Functional delta method

Definition A.48 (Hadamard differentiability, definition II.8.1 of Andersen [1993]). Let
B,B′ be Banach spaces. φ : B → B′ is compactly or Hadamard differentiable at a point
θ ∈ B if and only if a continuous, linear map

dφ(θ) : B→ B′
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exists (called the derivative of φ at the point θ) such that for all real sequences an →∞ and
all convergent sequences hn → h ∈ B,

an(φ(θ+ a
−1
n hn) −φ(θ))→ dφ(θ) · h as n→∞.

Lemma A.49. 1. A continuous, linear map φ : B → B′ is Hadamard differentiable at
any point θ ∈ B with dφ(θ) = φ.

2. Denote the set of real-valued functions on [0,L] whose total variation is bounded by the
constant M by BVM[0,L]. The map φ : D[0,L]×BVM[0,L]→ R defined by

(F,G) 7→
∫
FdG

is Hadamard differentiable with derivative at the point (F,G) defined by

(f,g) 7→ dφ(F,G)(f,g) =
∫
Fdg+

∫
fdG.

Proof. 1. For any h ∈ B and hn → h, by linearity and continuity of φ,

an(φ(θ+ a
−1
n hn) −φ(θ)) = φ(hn)→ φ(h) = dφ(θ) · h.

2. Follows from lemma 3.9.17 in Vaart and Wellner [1996].

Theorem A.50 (Functional delta method, theorem II.8.1 of Andersen [1993]). Let Tn
be a sequence of random variables with values in a Banach space B, an →∞ a real sequence,
such that

an{Tn − θ}
L→ Z

for some fixed point θ ∈ B and a random variable Z with values in B. Suppose φ : B→ B′ is
Hadamard differentiable at θ. Then

an{φ(Tn) −φ(θ)}
L→ dφ(θ) ·Z

and, moreover,
an{φ(Tn) −φ(θ)} and dφ(θ) · an{Tn − θ}

are asymptotically equivalent.
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a.3 product integral

The survival function can also be written as the product integral (Gill and Johansen
[1990]) of the cumulative hazard rate. For our special case of univariate real-valued
functions the product integral can be defined in the following way:

Definition A.51 (Definition 4 of Gill and Johansen [1990]). Let X be any real-valued
signed-measure. Define ∏

(0,t]

(1− dX) :=
∏
s∈(0,t]

(1+X({s}))eX
c(t)

where Xc(t) = X(t) −
∑
s6t X({t}) is the continuous part of X.

Since the cumulative hazard function Λ is continuous, we get∏
(0,t]

(1− dΛ) = e−Λ(t) = S(t).

Theorem A.52 (Compact differentiability of the product integral with respect to the
supremum norm, Theorem 8 in Gill and Johansen [1990]). Consider the product integral
as a mapping P from the space of additive interval functions on (0, τ] with variation bounded
by the constant c to the space of interval functions on (0, τ], both domain and range endowed
with the supremum norm. Let α be given and define µ = P(α) =

∏
(1+ dα). Then P is

compactly differentiable at α with derivative dP(α) given by

(dP(α) · h)(s, t) =
∫
(s,t]

µ(s,u−)µ(u, t)h(du),

where the integral with respect to h is defined by the integration by parts formula.

Remark A.53. If Λ is continuous, then the Hadamard derivative of the product integral at
Λ is simply − exp(−Λ) = −S.





B
D E S C R I P T I O N O F T H E R PA C K A G E A H R

The package AHR (Average Hazard Ratio) implements the weighted Kaplan-Meier
estimator and estimation and testing of the (log-) average hazard ratio, as well as
estimation and testing of the restricted mean and arbitrary quantiles of the survival
curves estimated with the weighted Kaplan-Meier estimator. All methods are imple-
mented in pure R (R Core Team [2014]), except for the weighted Kaplan-Meier estima-
tor, which is based on a custom C++ implementation of the Kaplan-Meier estimator
for reasons of speed, since the standard survfit (package survival) and prodlim

(package prodlim) functions contain a lot of overhead, because of many additional
features not needed in the package AHR.

fastkm

Description

This function calculates the Kaplan-Meier estimator for right-censored survival data,
at arbirtrary time points. It can handle left-truncated and/or right-censored data with
ties. Avoids the overhead of the survfit or prodlim functions by stripping away most
of the features not needed here. This function simply passes the data to the C++ code,
which does the real work.

Usage

fastkm(time, status, ltrunc = rep.int(0, length(time)),

left.limit = FALSE, eval = time)

Arguments

time vector of right-censored survival times

147
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status censoring indicator for each element of time (0 = right-censored, 1 =
event)

ltrunc vector of left-truncation times

left.limit indicates wether estimated survival function is left continuous

eval points at which the estimated survival function should be evaluated

Value

A list containing the elements

time vector of evaluation times (equal to the eval argument or the time argu-
ment if eval=NULL)

surv survival estimated at each element of eval (or time if eval=NULL)

variance variance estimate (Greenwood) at each element of time

n.atrisk number at risk at each event time (only if eval=NULL)

wkm

Description

Weighted Kaplan-Meier estimator with discrete time-independent covariate.

Usage

wkm(times, data, start = 0, alpha = 1)

Arguments

times: a vector of evaluation times

data: a data frame or list containing the vectors Y (time), D (censoring indicator),
W (stratification variable), R (recruitment times) and V (left truncation times)
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start: time of interim analysis (estimation of response rates is based only on data
accruing after time start)

alpha: fractional parameter

Value

An object of class “wkm”, i.e. a list containing the elements

times: the times argument supplied to the function

start: the start argument supplied to the function

p: the estimated response rates

S: vector of survival probabilities

COV: (asymptotic) covariance matrix of the vector S

logCOV: (asymptotic) covariance matrix of the vector log S

V: (asymptotic) variances of the vector S

logV: (asymptotic) variances of the vector log S

wkm .quantile

Description

Estimate arbitrary quantiles of a survival distribution based on the weighted Kaplan-
Meier estimator.

Usage

wkm.quantile(tau, data = NULL, conf.level = 0.95, null.value = NULL,

start = 0)



150 description of the r package ahr

Arguments

tau: number between 0 and 1 specifiying quantile to estimate

data: a data frame of list containing the variables in the model (see wkm)

conf.level: confidence level at which to calculate the confidence interval

null.value: true value of quantile or NULL if no p-value should be calculated

start: time of interim analysis (estimation of response rates is based only on
data accruing after time start (passed on to wkm))

Value

A list containing the elements

quantile the estimated quantile

p.value the p-value for the null hypothesis of the true quantile being equal to
tau

conf.int the confidence interval for the quantile

wkm .compare .quantiles

Description

Compare quantiles of two independent samples (ratio or difference) based on the
weighted Kaplan-Meier estimator.

Usage

wkm.compare.quantiles(p, data, conf.level = 0.95, null.value = 1,

method = "ratio", p.value = FALSE, start=0)

Arguments

p: number between 0 and 1 specifying the quantile
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data1: a data frame or list containing the variables in model cf1

data2: a data frame or list containing the variables in model cf2

conf.level: confidence level at which to calculate the confidence interval

null.value: true value of quantile ratio or difference

method: either “ratio” or “difference”

p.value: if TRUE p.value will be calculated (requires null.value)

start: time of interim analysis (estimation of response rates is based only on
data accruing after time start (passed on to wkm))

Value

A list containing the elements

quantile1 the estimated quantile of the first sample

quantile2 the estimated quantile of the second sample

p.value the p-value of the null hypothesis of equal quantiles

conf.int confidence interval for the difference / ratio of the quantiles

ahr

Description

Estimate average hazard ratios in a k-sample trial. See theorem 3.15.

Usage

ahr(L, formula, data, groups, strata = NULL, null.theta = NULL,

contrast = NULL, start = 0, alpha = 1, multi.test = FALSE)
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Arguments

L: time-limit specifying time-interval [0,L] over which average hazard ra-
tios will be calculated

formula: an object of class “formula” the conditional survival model

data: data frame containing the variables in formula

groups: a factor specifying the k groups (at least two)

strata: a factor specifying the strata (if any) or NULL

null.theta: vector specifying the null hypothesis for the average hazard ratios

start: time of interim analysis (estimation of response rates is based only on
data accruing after time start (passed on to wkm))

alpha: parameter of the weight function

multi.test: if TRUE calculate multivariate test statistic

Value

Returns an object of class “ahr”, i.e. a list containing the elements.

k: the number of groups, i.e. number of levels of the factor Trt

n: vector of length k of sample sizes of each group

p: vector of allocation ratios

fit: list of “wkm” objects, one for each group

times: vector of times at which each WKM estimator was evaluated

n.times: length of times

null.theta: vector of length k of null values of the average hazard ratios

contrast: vector of length k

groups: factor specifying the groups
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strata: factor specifying the strata

multi.test: TRUE if multivariate test statistic has been calculated

theta: vector of length k of estimated average hazard ratios

cov.theta: (asymptotic) covariance matrix of vector theta

Z.theta: vector of standardized univariate test statistics for testing H0: theta[i]

= null.theta[i] for each i = 1, . . . ,k

Z.multi: standardized multivariate test statistic for testingH0: theta = null.theta

(only if multi.test is TRUE)

Z.contrast: standardized test statistic for testing H0: theta * contrast = 0 (only
if contrast is not NULL)

ahr .beta

Description

Estimate log average hazard ratios. See corollary 3.18.

Usage

ahr.beta(ahr.obj, null.beta = 0, contrast = NULL)

Arguments

ahr.obj: an object of class “ahr” as returned by ahr

null.beta: vector specifying the null hypothesis for the log average hazard ratios

contrast: vector of contrasts to test the null hypothesis contrast * (beta - null.beta)

= 0

Value

A list containing:
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beta: vector of estimated generalized log-hazard ratios

cov.beta: an estimated of the asymptotic covariance matrix

Z.beta: the standardized test statistic for testing beta=null.beta

null.beta: the argument null.beta passed to the function

rmean.diff .ahr

Description

Test difference of restricted means. See theorem 3.25.

Usage

rmean.diff.ahr(ahr.obj)

Arguments

ahr.obj: object of class “ahr” as returned by ahr

Value

A list containing:

rmean.diff: estimated restricted mean difference

var.rmean.diff: an estimate of the asymptotic variance of the restricted mean
difference

Z.rmean: the standardized test statistic for testing rmean.diff=0

p.value: the p-value corresponding to Z.rmean
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Die vorliegende veröffentlichte Version der Dissertation unterscheidet sich von der
eingereichten Dissertation an folgenden Stellen:

Seite 26:
For α = 1, this leads to the relative risk

θi(G) = P(min{T0, . . . , Ti−1, Ti+1, . . . , Tk} > Ti)

(see lemma 3.6).

Seite 30, Definition 3.11:

θ̂i =
x̂i

1− Ĝ(L)

Seite 80:
Table 4.1 shows the type-I-error of the AHR(β), RMS and LR methods for dif-
ferent maximum number of interim analyses under the null hypothesis of no
treatment effect.

Seite 81, Tabelle 4.1: One-sided type-I-error of the AHR(β), RMS and LR meth-
ods for different maximum number of interim analyses.

Seite 96, Lemma 5.4:

ρ̂j(tl−1, tl, s) =
n

p̂j(tl−1, tl)

∫s
0

J
(n)
j (tl−1, tl,u)

N̄
(n)
j (tl,du)

Ȳ
(n)
j (tl−1, tl,u)2

.

gez. Prof. Dr. Werner Brannath (Vorsitzender des Prüfungsausschusses)
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