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Zusammenfassung

Diese Dissertation befasst sich mit der Darstellung von Unsicherheiten in der Modellierung

von Meereis, vorrangig mit den Unsicherheiten in der Meereisdynamik. Ein wichtiger Bestandteil

der Impulserhaltungsgleichung zur Berechnung der Meereisdrift ist die viskos–plastische Meereis-

rheologie. Sie beschreibt das Deformationsverhalten des Eises bei konvergenten Driftverhält-

nissen. Dabei beeinflusst der Eisstärkeparameter die interne Eisstärke, die plastischer Defor-

mation und somit dem Auftürmen des Meereises entgegenwirkt. Unsicherheiten in der Wahl

dieses Parameters werden in dieser Arbeit durch symmetrische Perturbationsschemata simuliert.

Es werden sowohl zeitliche als auch örtliche Korrelationen in die Generierung der kontinuier-

lich durchgeführten stochastischen Störungen mit einbezogen. Die Parameterperturbationen

werden innerhalb eines Ozean–Meereis– und eines gekoppelten Atmosphäre–Ozean–Meereis–

Modells getestet. Ergebnisse zeigen, dass die implementierten Unsicherheitsabschätzungen zu

einer Änderung der mittleren Meereisverteilung führen, insbesondere in der Arktis. Ein zufällig

reduzierter Eisstärkeparameter führt zu einer Beschleunigung der Meerdrift bei Konvergenz,

dem ein zufällig erhöhter Wert im späteren Verlauf nicht im gleichen Maße entgegenwirkt. Dies

ist bedingt durch die hochgradig nichtlineare Formulierung der Parameterisierung und resul-

tiert in der Beschleunigung des Meereises durch die symmetrischen Perturbationen. In dem

Ozean–Meereis–Modell erfolgt dadurch eine Zunahme dicken, deformierten Eises in Regionen

mit vorrangig konvergenter Drift. Diese Zunahme baut sich in der Arktis langsam, aber stetig

über Jahrzehnte auf. Das antarktische Meereis weist eine relativ geringe Änderung der mit-

tleren Eisverteilung auf. Im gekoppelten Atmosphäre–Ozean–Meereis–Modell erfolgt durch die

Eisstärkeperturbationen ebenfalls eine Beschleunigung der Drift. Jedoch fällt der Einfluss auf

die Meereisdickenverteilung geringer aus. Die Ursache sind gekoppelte Feedback–Mechanismen,

die einer generellen Eisdickenzunahme entgegenwirken. Darüber hinaus werden im Zusammen-

hang mit Meereisvorhersagen mit dem gekoppelten Modell Ensemble-Simulationen durchgeführt.

Ein Vergleich von Ensembles mit Parameterperturbationen und solchen mit Perturbationen

der atmosphärischen Anfangsbedingungen zeigt, dass eine Inklusion von Modellunsicherheiten

während der ersten Wochen einer Simulation zu einer stärkeren Streuung der einzelnen Ensem-

blemitglieder in Bezug auf die zentralarktische Meereisverteilung führt. Dies hat bedeutende

Implikationen für Unsicherheitsabschätzungen bei Datenassimililation und Vorhersagen in den

polaren Regionen.
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Abstract

This dissertation deals with the representation of uncertainties in sea ice modelling, espe-

cially within the sea ice dynamics. An important term of the momentum balance for computing

the evolution of sea ice drift is the viscous–plastic sea ice rheology. It describes the deformation

of sea ice under convergent drift. In this context, an ice strength parameter determines the

internal ice strength, which counteracts plastic deformation and hence piling up of sea ice. Un-

certainties in the choice of the parameter are simulated in this study by application of symmetric

perturbation schemes. Temporal as well as spatial correlations are included in the generation of

continuously applied stochastic perturbations. The parameter perturbations are implemented

in an ocean–sea ice and in a coupled atmosphere–ocean–sea ice model. Results show that in-

cluding these uncertainty estimates leads to a change in the mean sea ice distribution, especially

in the Arctic. A randomly reduced ice strength parameter results in a relative acceleration of

sea ice drift under convergence, which cannot be reverted by a randomly increased ice strength

in the subsequent course of the simulation. This is caused by the highly nonlinear formulation

of the sea ice rheology and results in a general acceleration of sea ice owing to the symmetric

perturbations. As a result, the amount of thick, ridged sea ice in regions of predominantly

convergent drift is increased. In the Arctic this increase accumulates slowly, but continuously

over decades. Antarctic sea ice on the other hand exhibits relatively small changes in the mean

sea ice distribution. In the coupled atmosphere–ocean–sea ice model ice strength perturbations

lead to increased drift as well, although the impact on the sea ice thickness distribution is

reduced. The reason are coupled feedback mechanisms, which counteract a general thickness

increase. Finally, ensemble simulations are conducted with the coupled model in the context

of sea ice predictions. Comparing ensembles with parameter perturbations and ensembles with

atmospheric initial condition perturbations shows that the inclusion of model uncertainty leads

to increased ensemble spread for the sea ice distribution of the central Arctic during the first

weeks of the simulation. This has important implications for uncertainty estimations in data

assimilation and forecasts for the polar regions.
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1. Introduction

People don’t understand the earth,

but they want to, so they build a model,

and then they have two things they don’t understand

Gerard Roe

In the climate sciences, the prognostic governing equations of the Earth system are well known.

They describe the temporal evolution of the relevant variables—such as wind, water and ice

velocities—in the different components of the system—i.e. in atmosphere, ocean and sea ice.

The equations arise from general laws of physics, such as the laws of mass continuity and

conservation of energy. Solving them in a time integrated sense would allow a perfect forecast of

the future state of the respective variables. But these solutions cannot be obtained analytically.

Therefore, one has to resort to numerical approximations of the solutions. This is done by

discretizing the equations in time and space.

Starting from a prescribed initial state of the system, the discretized equations are integrated

forward in time, up to the specific date in the future that one would like to forecast. In other

words, a model has to be implemented that is a rather simplified and approximated representa-

tion of the Earth system or parts thereof.

Different climate models use different techniques for the numerical discretizations, in time

as well as space. In general they have in common that each consecutive step forward in time is

separated to the previous by a fixed length, called time step. Furthermore, the spatial discretiza-

tion usually operates on a grid or mesh with a predefined mesh size to resolve the problem at

hand (see figure 1.1). The shorter the time step and the finer the mesh size, the more accurate

are the numerical approximations. But on the downside, increasing accuracy in this fashion also

increases computational costs for solving the problem numerically, as the number of arithmetic

operations grows rapidly. Even large state of the art supercomputers that are used for simu-

lations of weather and climate have their limits as to how fast they can actually perform all

the necessary computations. Therefore, to produce a forecast for the future state of the Earth

system in a reasonable amount of time, time step and grid have to be chosen in a manner that

balances accuracy with speed.
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Chapter 1 Introduction

Figure 1.1: Illustration of (left) the discretized world ocean with (right) an unstructured trian-
gular grid. High grid resolution is applied to coast lines (see coast of Greenland in the magnified
region to the right). Shown is the Arctic sea ice concentration of January as simulated by a
climate integration of the model FESOM. The discretized ocean is blue to white, while the land
surface is green.

1.1. Uncertainties in weather and climate simulations

Discretizing the governing equations for the simulation of weather and climate leads inevitably

to errors and uncertainties in the forecasts. There are fundamentally different sources of such

uncertainties in predictions, which will be discussed in detail further below. In general, however,

as all of these sources lead to a degraded accuracy of forecasts, their combined effects need to be

estimated to allow for informed decisions to be made by stakeholders that rely on weather and

climate predictions. These stakeholders can be companies such as insurers that need to estimate

possible expenses caused by extreme weather events. Public authorities are stakeholders that

issue severe weather warnings or have to adjust a country’s infrastructure to a changing climate.

But also single individuals want to know how accurate a given weather forecast actually is, as

uncertainties of a forecast might affect their plans for the weekend.

As the impacts of human induced, i.e. anthropogenic climate change become more and more

palpable, reliable climate predictions become increasingly important as well. In the end, if the

climate is changing rapidly owing to human activities, everyone will have an interest to know how

these human interferences affect our planet. It has to be investigated what these interactions

will eventually cause, in terms of changes in the atmosphere, the land surface, the oceans and

the cryosphere, and especially the biosphere. The risks of a changing climate have to be assessed

6



1.1. Uncertainties in weather and climate simulations

to allow for useful decision making.

To start a forecast with a model, the simulation has to be initialized. As one would like to

predict the evolution of a system given a certain initial state the model has to be provided with

such an initialization for every component of the system under consideration, i.e., in case of the

Earth system, for the atmosphere, the ocean and so forth. Integrations will then be carried

out from these so called initial conditions to determine the evolution of the relevant variables

following the laws of physics. But measuring instruments will always entail some measuring

errors and will never be able to measure the state of the Earth system completely in time

and space. As a result, the initial conditions for predictions of the future state of the system

will always be flawed. It is certainly possible to continuously reduce this error, by increasing

accuracy and area coverage of measuring instruments such as satellites and weather stations.

Nevertheless, uncertainties will always remain. And in some parts (e.g. in the deep ocean)

constant, area-wide measurements will be challenging for a long time to come.

Small residual errors in the initial conditions would not be a problem if the system would

react to those small deviations from the actual initial state in a foreseeable fashion. This would

be the case for a linear system, but not for the components of the Earth system. The atmosphere

is known to behave in a very fast and chaotic manner (Lorenz , 1963). This leads to the fact that

a simulation based forecast of the future state of the atmosphere can differ substantially from

the actually observed state within days, just due to rather small errors in the initial conditions.

Therefore, forecast accuracy is limited by the accuracy of the initial state. For large parts of the

atmosphere it is basically impossible to predict the future state beyond a couple of weeks with

considerably more accuracy as would be the case for an educated guess based on the statistics

of the climate of past years.

An established method in weather forecasts to account for uncertainties in the initial condi-

tions is to set up ensemble simulations. Each ensemble member starts integration from slightly

different initial conditions but uses the same general model configuration. The aim is to sample

the uncertainty in the initial conditions. As the forecasts of the single members of the ensemble

diverge, possible states of the future atmosphere are generated. The hope is that those states

encompass the trajectory of the atmosphere that will be observed in the future (see figure 1.2).

Forecasters are then able to diagnose the ensemble and give probabilistic forecasts. A single,

deterministic forecast generated by only one single initial state might very well predict a future

far from the observed. Probabilistic forecasts, however, include the uncertainties of the initial

state. They do not claim to be a hundred percent accurate but rather report on the probability

of some future state to actually occur. If the members of the ensemble stay close together, the

forecast is comparatively certain. If, on the contrary, the members diverge strongly, uncertainty

of the forecast is large.

Aside from uncertainties in the initial conditions simulations of the climate have to deal

with uncertainties in the boundary conditions. Boundary conditions present the information

that is not itself simulated during the process of integration. An example is the solar forcing or,

for an ocean-only simulation, the atmospheric forcing. Especially for climate integrations with

forecast lead times of many decades, adequate and accurate boundary conditions are necessary to

produce useful predictions. But those conditions can in most cases only be estimated, especially

7
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Time axis

True atmosphere
Determinstic forecast

Climatology

Probabilistic forecastInitial
condition

uncertainty

Figure 1.2: Illustration of atmospheric initial condition uncertainty in probabilistic versus deter-
ministic forecasts. The probabilistic forecast takes initial condition uncertainty into account and
produces an estimate for forecast uncertainty. The single deterministic forecast is initialized with
the best guess of the current state of the atmosphere, but the forecast is far from the actually
observed state. Based on a figure at http://www.easterbrook.ca/steve/2010/07/tracking-
down-the-uncertainties-in-weather-and-climate-prediction/ (18.04.2014).

when changes therein during the course of the integration cannot be foreseen.

One well known example in this context is the evolution of CO2 concentrations in the at-

mosphere. The anthropogenic CO2 emission in the future can hardly be modelled as it depends

on changes in politics, economics, human populations and also scientific advances. The latter

might even lead to a reduction in atmospheric CO2 concentrations. All these factors make a

prediction of the evolution of atmospheric CO2 concentrations very uncertain. This, in turn,

leads to uncertainties in changes of the radiative balance of the atmosphere.

The method to tackle boundary condition uncertainty is again based on the concept of

ensemble simulations. In the case of atmospheric CO2 concentrations, the climate integrations

of the ensemble differ in the prescribed evolution of (anthropogenic) CO2 emissions. Different

scenarios are formulated, ranging from a reduction of yearly emissions in the near future, to

an unrestricted increase resulting from worldwide industrialization and population growth (see

IPCC SRES , 2000). Using these different scenarios, changes in the climate such as an increase

in surface air temperatures for the future decades can be estimated, depending on the emission

scenario that will actually occur. The fifth assessment report of the Intergovernmental Panel

on Climate Change (IPCC; see IPCC AR5 WG1 (2013))1 uses this information from a whole

1See also http://www.ipcc.ch (18.04.2014)
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1.1. Uncertainties in weather and climate simulations

variety of different climate models to give estimates on the strength of future climate change

for the different scenarios. This information might then be used by politicians and the public

in general to decide upon which emission scenario should be aimed at. The decision is based on

trading off the costs of implementing a plan to reduce CO2 emissions against future costs and

risks caused by climate change if necessary provisions are not made.

Numerical simulations on computers always produce errors. There are, among others, round-

ing errors that simply originate from the fact that numbers with infinite digits have to be trun-

cated at some point. Moreover, the accuracy of the chosen discretization methods can vary

strongly. Derivatives and integrals have to be numerically approximated. This leads to addi-

tional truncation errors. These kind of errors may differ in form and magnitude between different

model frameworks.

A whole variety of models are used around the world, each one applying more or less dif-

fering numerical strategies. A method to estimate the uncertainty related to the numerical

discretization strategies is to use an ensemble that consists of different models developed rather

independently at different research institutions (multi-model ensemble). The ensemble aims at

sampling different so called dynamical cores, i.e. the different strategies to integrate the prog-

nostic governing equations numerically in time and space. This has been done for atmospheric

models (e.g. Gates et al., 1999)2 as well as climate models that include more or less all the com-

ponents of the Earth system (e.g. Taylor et al., 2012)3. Owing to its set-up the ensemble will

also sample uncertainties related to the fact that different models might be tuned in ways to best

address a certain research or forecasting problem. Models differ in their systematic biases and

an ensemble of different models samples these systematic biases as well as a model’s particular

advantages. Unfortunately it is difficult to retrospectively separate the sources of uncertainty in

an ensemble that consist of many fundamentally different models.

When prognostic equations are discretized, processes of time and length scales smaller than

the time step and mesh size can no longer be explicitly resolved. Nevertheless, their effects on

the resolved larger scales have to be accounted for. To this end, so called parameterizations

are developed that take the variables of the resolved large scales and use them to estimate the

accumulated impact of unresolved scales on the large scales (see figure 1.3). In other words, the

resolved mean flow itself is used to estimate the effect of unresolved fluctuations on the mean flow.

Different strategies are applied to develop such parameterizations, considering theoretical results

and observational data as well as data from (usually higher resolved) numerical simulations.

Depending on the model’s resolution in time and space, parameterizations have to be adjusted to

account for those processes that are not yet resolved. In the end, though, these parameterizations

are again only approximations of the real physics that are meant to be simulated.

Many different strategies have been developed in recent decades to account for model uncer-

tainty related to unresolved scales. They range from methods that try to sample the choice of

parameters within the parameterizations (so called perturbed parameter or multi-parameter en-

sembles) (e.g. Doblas-Reyes et al., 2009; Weisheimer et al., 2011), to methods that try to sample

the choice of the parameterizations itself (multi-parameterization or multi-physics ensembles)

2See also http://www-pcmdi.llnl.gov/projects/amip/ (18.04.2014)
3See also http://cmip-pcmdi.llnl.gov/cmip5/ (18.04.2014)
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Cloud fraction

e.g. humidity

INPUT

Reality

Model

Cloud parametrization
Calculates changes in cloud and clear sky fraction

and the resulting fluxes

e.g. heat fluxes

OUTPUT

Solving discretized prognostic equations
(e.g. for temperature, humidity, wind)

Clear sky
fraction

Figure 1.3: Illustration of a simplified cloud parameterization. The real world is discretized
and simulated on a mesh with different grid boxes. Single clouds, as observed in nature, are
not resolved. But the fraction of each grid box covered by clouds is parameterized using the
information supplied by the prognostic variables. From the cloud covered area per grid box,
fluxes can be calculated that are used to compute the evolution of the prognostic variables
in time. The photograph is from http://en.m.wikipedia.org/wiki/Parameterization_

(atmospheric_modeling) (18.04.2014).

(e.g. Berner et al., 2011) and, finally, to methods that formulate the parameterizations in a more

or less stochastic fashion instead of using classical deterministic parameterizations (stochastic

parameterization or stochastic physics methods). The latter themselves can again be separated

into different categories (as distinguished and discussed in more detail in later sections).

Depending on the focus of research or forecasts, the different sources of uncertainty can

vary in their importance for estimating the total uncertainty of the simulations. Figure 1.4

illustrates the dependence of relative importance of uncertainties on the lead time. While initial

condition uncertainty is of great importance at short lead times, it is surpassed by model and

especially boundary condition uncertainty for longer integrations (Hawkins and Sutton, 2009).

For regional distributions of fractional uncertainty, relative importance of model uncertainty

compared to boundary condition uncertainty at longer lead times is increasing towards the high

latitudes, where model uncertainty is at a maximum (see figure 6 of Hawkins and Sutton, 2009).

In the end it is desirable to include all kinds of uncertainty estimates in a model to be able to

represent the total uncertainty of forecasts as best as possible (Palmer , 2012)).

Methods of uncertainty estimations can be very costly, though, concerning both time con-

sumption and computing resources. As they make use of ensembles, they are by a factor equal to

10



1.2. Sea ice simulations

Figure 1.4: Illustration of fractional uncertainty (in relation to global warming since 2000) per-
taining to the different sources of forecast uncertainty in predicting the decadal mean of the
global surface air temperature. Sources for uncertainty are the internal variability (which is
related to initial condition uncertainty), model uncertainty and uncertainty in boundary con-
ditions, i.e. in the CO2 emission scenarios. The dashed lines illustrate possible reductions in
initial condition uncertainty related to improved ocean initialization through data assimilation.
From Hawkins and Sutton (2009).

the number of ensemble members more costly than single integrations4. That is why ensemble

simulations are often less highly resolved in time and space than single high resolution control

simulations. But the advantages of probabilistic ensemble forecasts owing to their estimation

of forecast uncertainty can be considerable. Therefore ensemble forecast can complement deter-

ministic predictions that use much higher temporal and spatial resolutions5. Still, uncertainty

estimation is again a question of balancing speed and costs with accuracy.

1.2. Sea ice simulations

In recent decades the specific role of the high latitudes in the context of climate change has

attracted a lot of attention, not only in the scientific world but also in the media and public.

4The advantage in this context is that ensembles simulations, even though they are costly, can be conducted
very efficiently, as they allow for a good parallelization on supercomputers.

5The ensemble forecasts at the European Centre for Medium-Range Weather Forecast (ECMWF), as an
example, include a deterministic forecast with very high resolution (the highest resolution that has been sufficiently
tested at that time) using the best possible model configuration and initial conditions. It also includes one
forecast of lower resolution, but again with the best possible configuration and initialization. Finally, the lower
resolution forecast is perturbed in initial conditions and model configuration to produce 50 perturbed members
for the uncertainty estimation of the forecast. For further information it is referred to http://www.ecmwf.int

(18.04.2014).
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Chapter 1 Introduction

Observed temperature increase has been about twice as large in the Arctic compared to the

global mean change6, a phenomenon called the Arctic amplification (see e.g. Bekryaev et al.,

2010; Pithan and Mauritsen, 2014). Reduction in Arctic sea ice extent and thickness is claimed to

be an indisputable result of increased CO2 concentrations and the resulting enhanced greenhouse

effect.

In contrast to melting ice sheets and glaciers, reduced sea ice volume in the polar regions

does not contribute to sea level rise as sea ice is floating on the ocean surface. Nevertheless,

sea ice thickness and area extent are of great importance when it comes to atmosphere–ocean

interactions and the radiation balance at the intermediate surfaces.

Due to their very high reflectivity, called albedo, sea ice and snow on sea ice reflect large

parts of short wave solar radiation back to the atmosphere and ultimately to space, reducing

the radiative energy absorbed by the earth. This is especially important as the open ocean

generally has a very low albedo, absorbing most of the incoming solar short wave radiation.

Furthermore, sea ice acts as an insulating layer between atmosphere and ocean, reducing heat,

momentum and fresh water exchange between the two components. Heat flux from the ocean

to the atmosphere in autumn, when the ocean is still warm and the atmosphere starts to cool,

can be reduced by more than an order of magnitude by an ice cover (see e.g. Wettlaufer , 1991).

Effects of atmospheric winds will be largely shielded from the ocean by sea ice. On the other

hand, horizontally rather small scale structures of ridged sea ice can reach a couple of meters

up into the atmosphere and many meters down into the ocean, leading to additional turbulence

when sea ice is drifting or winds and currents pass by.

Aside from the fact that sea ice will largely prevent snow and rain from reaching the ocean

and evaporation from reaching the atmosphere, it influences oceanic fresh water fluxes drastically

during its formation and melt. As sea ice contains salt mainly in small so called brine pockets

and otherwise consists of fresh water, freezing and melting of sea ice produces large fresh water

fluxes. Brine is ejected during the freezing season and fresh water during the melting season.

This influences the stability of the ocean and can, by brine ejection and resulting increased water

densities, lead to deep convection, which is a main driver of the global thermohaline circulation.

To put it simply, in this circulation dense, cold, and rather salty water sinks to the ocean floor

in the high latitudes and follows bottom topography around the world until it surfaces again in

regions of strong upwelling (see figure 1.5 and for a more detailed discussion Rahmstorf , 2002,

2006; Kuhlbrodt et al., 2007).

Some of these interactions with sea ice are very sensitive to changes, leading to positive

feedbacks when the balance is perturbed. While negative feedbacks counteract disturbances

to the mean state and lead to a stabilization of the system, positive feedbacks amplify the

effects of perturbations and tend to destabilize. In this context, the sea ice–albedo feedback,

as an example, leads to increased uptake of solar radiation by the ocean when the sea ice

cover is reduced. As a consequence, ocean temperatures rise, which in turn enhances sea ice

melt. Increase in ice cover on the other hand increases reflectivity and reduces uptake of solar

radiation, which favours further sea ice growth. Figure 1.6 illustrates some of the positive

6The estimated trend for 1875–2008 is about 1.35 degrees per century for the northern high-latitudes compared
to 0.79 degrees per century for the northern hemisphere (Bekryaev et al., 2010).
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1.2. Sea ice simulations

Figure 1.5: Sketch of the global, thermohaline (i.e. driven by temperature and salinity differ-
ences) ocean circulation. Deep water formation caused by deep convection takes place in the
high latitudes. Upwelling regions are either wind-driven (i.e. caused by divergent winds) or
mixing-driven (i.e. caused by water mass properties). From Kuhlbrodt et al. (2007) (based on
Rahmstorf , 2002)

feedbacks triggered by global warming.

A question of prime scientific importance is whether or not a tipping point exists in climate,

human-induced or not, where positive feedbacks start to accelerate the change. This is especially

true for changes in future sea ice cover. Due to the many positive feedbacks that act in the high

latitudes, sensitivity to perturbations can be very large and might lead to irreversible changes.

The trends in sea ice cover in the high latitudes have been very different for the northern

and southern hemisphere. While sea ice has decreased considerably in the north, an increase

has been observed in the south (see figure 1.7). Some suggestions have been made as to why the

Antarctic sea ice does not show a similarly strong response to climate change as the Arctic (e.g.

Turner et al., 2007; Latif et al., 2013). It is quite obvious, though, that relevant processes at

the two poles differ considerably just simply owing to the topographical differences between the

north and the south. In the south a continent resides covered with ice sheets of many kilometers

thickness and surrounded by a huge, continuous ocean. The Arctic, however, consists of an

ocean surrounded by massive continents with only rather small connections through straits

to other oceans in the northern hemisphere. Still, the differences between sea ice in the two

hemispheres is a topic of continuous research and, especially in the context of climate change,

of great importance.

In addition to research on processes in the high latitudes, there has been an increasing

amount of research in the field of teleconnections in recent years. The question is whether and,

if so, how changes and generally the climate in high latitudes affect the mid-latitudes (see e.g.
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Figure 1.6: Positive Arctic sea ice feedback mechanisms initiated by an increased sea ice melt
caused by increased air temperatures. The feedbacks can be separated into a thermodynamic,
a mechanical and a dynamic feedback. The first is the so called sea ice–albedo feedback, which
is amplified by the response of the drifting sea ice. Figure adapted from Weiss (2013).

Semmler et al., 2012). The attention has so far been rather focused on the Arctic, as potential

impacts of polar amplification on weather and climate in the mid-latitudes may affect densely

populated regions in Europe, Asia and North America. But scientifically it is of equal importance

to understand teleconnections and the related processes in the southern hemisphere as well.

1.3. Focus and concept of this dissertation: Model uncertainties

in sea ice simulations

In a changing climate, knowing the future development of sea ice is of great interest. Therefore

it is also necessary to know of the uncertainties in the sea ice predictions. In the high latitudes

inaccuracies in the representation of the sub-grid scales have a large impact on the total forecast

uncertainty of climate predictions owing to the various feedback mechanisms and complex phys-

ical processes involved (Hawkins and Sutton, 2009). Additionally, for short term forecasts from

days to a few years, estimating the forecast error of sea ice through probabilistic means can be

useful in terms of local weather forecasts and hazard analysis for shipping and other economic,

but also scientific enterprises in the high latitudes. This is especially true as uncertainties in

one component of the Earth system will not remain within this component, but will translate to

uncertainties in the other components as well. In case of sea ice this means that uncertainties

are translated to the atmosphere and ocean, extending the spatial and temporal range of their
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1.3. Model uncertainties in sea ice simulations

Figure 1.7: Trend in Arctic and Antarctic standardized sea ice extent anomalies from 1979–2012,
with units in standard deviations from the 1981–2010 average. Thin lines show monthly mean
extent anomalies, thick lines are 12-month running means. From National Snow and Ice Data
Center, University of Colorado, Boulder, http://nsidc.org/cryosphere/sotc/sea_ice.html
(18.04.2014).

impacts. As an example, uncertainty estimation for the predictions of the sea ice edge—and, on

a smaller scale, open water leads—would be very useful. This is not only true for predicting the

ice edge itself, but also for the related uncertainties in fluxes between atmosphere and ocean,

which exhibit a large gradient where the surface waters change from ice-covered to ice-free.

The aim of this dissertation is to develop strategies of model uncertainty representation. More

precisely, the impact of including these representations in the simulation of sea ice are analyzed.

Up till now model uncertainty representation, especially for uncertainties in parameterizations,

has in recent years primarily been applied to atmospheric models in the context of weather

forecasts from days to seasons (e.g. Buizza et al., 1999). Uncertainties in the sea ice and also the

ocean model have largely been neglected. While this is to some extent also true for uncertainties

in the respective initial conditions, this dissertation focuses on the uncertainties related to the

model’s sub-grid scale parameterizations. Parameters of different sea ice parameterizations are

commonly used to tune a sea ice model with respect to the simulated sea ice extent and the

thickness distribution. Some of these parameters are very difficult to measure and may vary

considerably between models. In addition, the implementation of some parameterizations in the

sea ice model may be challenged, as to whether they are capable of accurately representing the

statistics of the respective sub-grid scale process or not. As a result, uncertainties related to sea

ice parameterizations are large.

I will illustrate in this dissertation that representing model uncertainty in the simulation of

sea ice is of great importance, with lead times ranging from days to decades. To do so, I will
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introduce a stochastic parameter perturbation scheme aiming at parameter-related uncertainty

representation in a sea ice model. While generally employable to a range of uncertain parameters,

the main application of the scheme will be the stochastic perturbation of the so called sea

ice strength parameter. This parameter determines the internal ice strength as part of the

parameterization of the internal forces of the sea ice, which in turn determine the resistance the

sea ice exhibits towards convergent drift. It therefore influences the generation of dynamically

formed thick ice that piles up under convergent drift of a closely packed sea ice cover. The sea

ice strength parameter is commonly used to tune the simulated ice thickness distribution. It

varies considerably between models and is very difficult to measure, which suggests that related

uncertainties are large. Hence, it is a suitable candidate for the application of a stochastic

perturbation scheme.

The structure of the dissertations is as follows: The next chapter is devoted to a short intro-

duction to the two models used in this dissertation. The Finite Element Sea ice–Ocean Model

FESOM, developed at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine

Research (AWI) in Bremerhaven, is the tool employed for simulating sea ice distributions and

its characteristics. The stochastic parameter perturbations have been implemented in FESOM

to account for model uncertainty in the simulations of sea ice. The second model is the cou-

pled atmosphere–ocean–sea ice model ECHAM6-FESOM. As I was involved in the coupling of

the atmospheric model ECHAM6 and the sea ice–ocean model FESOM, chapter 2 includes a

subsection on coupled model performance regarding a multi-centennial climate integration. The

chapter is concluded with a short section on the generation of ensemble simulations.

In chapter 3 three different stochastic ice strength parameterizations of varying complexity

and their implementation in FESOM are described. The parameterizations are compared and

analyzed concerning their impact on the simulated Arctic mean climate as well as some char-

acteristics of stochastic ensemble simulations. Chapter 3 has been published in the Journal of

Climate under the title Effects of stochastic ice strength perturbation on Arctic finite element

sea ice modeling (Juricke et al., 2013).

The application of the stochastic sea ice strength perturbations in the fully coupled model

ECHAM6-FESOM is discussed in chapter 4. Impacts of the perturbations on the mean climate

are compared to those observed in a sea ice–ocean simulation with prescribed atmospheric

fluxes generated by ECHAM6. It highlights considerable differences in the climatic response to

the stochastic perturbations caused by atmospheric feedback mechanisms when an atmospheric

model is coupled to sea ice and ocean. Chapter 4 has been published in the Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences under

the title Influence of stochastic sea ice parametrization on climate and the role of atmosphere–sea

ice–ocean interaction (Juricke and Jung , 2014).

Finally, chapter 5 deals with the concept of potential predictability in the high latitudes,

focusing on sea ice. The influence of incorporating model uncertainty estimates by applying

stochastic perturbations of the ice strength parameter on potential predictability and initial

sea ice spread growth is discussed. Chapter 5 is about to be resubmitted to the Geophysical

Research Letters under the title Potential sea ice predictability and the role of stochastic sea ice

perturbations (Juricke et al., 2014).
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The dissertation is concluded with a summary of the results in chapter 6 and an outlook in

chapter 7 that includes information on additional research in stochastic parameter perturbations

and parameterizations that is currently being carried out.
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2. Model description

2.1. FESOM

This section will provide a short introduction to the Finite Element Sea ice–Ocean Model FE-

SOM. As FESOM is the main tool of this dissertation for simulating sea ice, the purpose is

to briefly describe the functioning of the model. To this end, the governing equations of the

ocean and sea ice component of FESOM are described separately in sections 2.1.1 and 2.1.2.

Afterwards the discretization procedure for these equations is laid out in section 2.1.3. Details

of the coupling procedure between the sea ice and the ocean as well as boundary conditions to

the prognostic equations are neglected in this introduction to FESOM. They are not essential

for the understanding of the results presented in chapters 3 to 5. A more detailed description

of FESOM can be found in Timmermann et al. (2009) and Wang et al. (2013). Additionally,

in chapter 3 of this dissertation model details that are relevant for the stochastic ice strength

perturbations and the conducted experiments are discussed.

2.1.1. Governing equations: Ocean

In the simulation of the ocean state the evolution of the four main variables is modelled by the

discretization of governing equations. Those variables are

� �u = �u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) the three-dimensional ocean ve-

locity vector in (m s−1,m s−1,m s−1)

� ηo = ηo(x, y, t) the sea surface height of the ocean in m

� S(x, y, z, t) the salinity of sea water in g kg−1

� θ(x, y, z, t) the potential water temperature in K

The variables depend on time t ≥ 0 (in s) and spatial coordinates x, y, and z. The horizontal

coordinates x and y are given in m, but can also be given as geographic coordinates longitude xlon

and latitude ylat in degrees or radians East/West and North/South, respectively. The vertical

coordinate z is given in m.

The evolution of the velocity vector �u is described by the equations of momentum balance

(Wang et al., 2008)

∂tu+ (�u · ∇3u)− fv +
1

ρ0
∂xp+ g∂xηo = ∇ ·Ah∇u+ ∂zAv∂zu, (2.1)
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∂tv + (�u · ∇3v) + fu+
1

ρ0
∂yp+ g∂yηo = ∇ ·Ah∇v + ∂zAv∂zv, (2.2)

as well as the continuity equation for mass conservation

∂xu+ ∂yv + ∂zw = 0, (2.3)

and the assumption of hydrostatic balance for pressure p, in N m−2,

∂zp = −gρ. (2.4)

In this context ∂tu :=
∂u

∂t
, ∇3 is the three-dimensional and ∇ the two dimensional Nabla

operator. For the density ρ, in kg m−3, the equation of state

ρ = ρ(θ, S, z)

is applied, which relates density ρ to potential temperature θ and salinity S of water at a

given depth z. In the above equations ρ0 is the reference density ρ0 = 1000 kg m−3, g is the

gravitational acceleration g = 9.81m s−2, and f is the Coriolis parameter

f =
4π

86400
sin(ylat) s

−1 (2.5)

depending on the latitude ylat. Additionally, lateral and vertical viscosities are given by Ah and

Av in m2 s−1. The equations of momentum balance (2.1) and (2.2) describe temporal changes

in horizontal velocities, i.e. accelerations that arise from the imbalance between terms from

advection, Coriolis force, pressure gradient, sea surface elevation and the terms for divergence.

The hydrostatic balance (2.4) arises from the equation of vertical momentum balance. The

continuity equation (2.3), as already stated, is a result of the law of mass conservation.

The prognostic equation for the sea surface height ηo

∂tηo +∇ ·
∫ z=ηo

z=−H

(
u

v

)
dz = P − E (2.6)

describes changes in sea surface elevation by influx or efflux of mass, with H = H(x, y) as total

ocean depth (with respect to z = 0m) in m and P−E as precipitation minus evaporation (at the

surface) in m s−1. Finally, energy conservation and mass conservation for potential temperature

θ and salinity S, respectively, are given by

∂tθ + �u · ∇3θ = ∇ ·Kh∇θ + ∂zKv∂zθ, (2.7)

∂tS + �u · ∇3S = ∇ ·Kh∇S + ∂zKv∂zS. (2.8)

In (2.7) and (2.8) Kh and Kv are the lateral and vertical diffusivity in m2 s−1. Comparable to

equations (2.1) and (2.2), (2.7) and (2.8) describe changes in θ and S due to imbalances between
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2.1. FESOM

the advection and the diffusion terms.

2.1.2. Governing equations: Sea ice

The relevant variables for the sea ice model are

� h = h(x, y, t) the (effective) ice thickness in m (volume per given area Agrid).

� hs = hs(x, y, t) the (effective) snow thickness in m (volume per given area Agrid).

� A = A(x, y, t) the sea ice concentration for a given area Agrid as a dimensionless quantity,

with A ∈ [0, 1].

� �ui = �ui(x, y, t) = (ui(x, y, t), vi(x, y, t)) the lateral sea ice (and snow on sea ice) drift

velocity in (m s−1,m s−1).

Sea ice is assumed to be a two dimensional, quasi continuous fluid. Therefore, vertical velocities

are neglected. The reference area Agrid is the area of the respective grid box under consideration,

after the equations have been discretized. It depends on location and grid configuration. The

discretization method is discussed below. Dividing sea ice thickness by area concentration h/A

results in the actual sea ice thickness of the ice-covered part of the grid box under consideration.

Changes in h, hs, and A are given by the prognostic equations

∂th+∇ · (�uih) = Sh, (2.9)

∂ths +∇ · (�uihs) = Ss, (2.10)

∂tA+∇ · (�uiA) = SA, (2.11)

each one describing increase or decrease of sea ice and snow thickness h and hs as well as sea

ice concentration A due to dynamic sea ice drift and the respective thermodynamic freezing and

melting terms Sh, Ss, and SA, with Sh and Ss in m s−1 and SA in s−1. These include changes

due to snow fall and conversion of snow to ice by flooding of snow covered ice floes. Changes in

the sea ice drift are given by the momentum balance (Hibler , 1979)

m

(
∂�ui

∂t
+ �ui · ∇�ui

)
= �τair + �τocean −mf�k× �ui −mg∇ηo + �Fint, (2.12)

with �τair and �τocean as atmospheric (wind induced) and oceanic (ocean current induced) stresses

in N m−2, �k = (0, 0, 1), m the mass per area with m = ρiceh in kg m−2, and ρice the density of

sea ice in kg m−3. Coriolis force and the force due to the sea surface elevation are similar to those

within the momentum balance for the ocean in (2.1) and (2.2). The last term on the right-hand

side, �Fint in N m−2, represents the internal forces of the sea ice (per area) which counteract

convergent or shear drift. Generally, the advection term (second term on the left-hand side) is
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neglected in the discretization of the equation as it is of relatively small magnitude compared

to the other terms. The balance of forces in equation (2.12) is illustrated by figure 2.1.

Sea ice velocity

Wind stress

Ocean stress

Internal friction

Coriolis

Turning angle

Figure 2.1: Illustration of an exemplary force balance for the sea ice dynamics. Based on Hunkins
(1975).

The major focus of this dissertation is the uncertainty estimation of parameterizations in

the sea ice model, more specifically the parameterization of the internal forces �Fint in equation

(2.12) of the sea ice dynamics. In chapter 3 the parameterization of this term is discussed in

more detail.

2.1.3. Discretization

Now that all relevant variables are identified and the prognostic equations that govern their

evolution are formulated, the next step is to find a solution for the equations for a given time

and location. To this end, the equations need to be discretized. This means, approximations

for the derivatives in time and space need to be chosen. In case of FESOM, time derivatives

are approximated by finite differences, while spatial derivatives are approximated by the finite

element method. Instead of solving the equations for the variables u, v, w, ηo, S, θ, A, h, hs, ui,

and vi continuously in time t and space (x, y, z), solutions are approximated at discrete times

and locations. The finite differences estimate the time derivatives in the governing equations by

differences between the current and previous discrete instants of time. This makes it possible

to approximate the temporal evolution of the variables. The actual numerical finite difference

schemes applied by FESOM are explained by Wang et al. (2013).

The finite element method is a specific method of numerical discretization not commonly

applied in global sea ice–ocean modelling. While the size of the time step in FESOM is fixed

during the course of the simulation and given by Δt, the finite element mesh used for the

22



2.1. FESOM

Figure 2.2: Left: Unstructured triangular surface grid and expansion in the vertical direction
by subdividing subjacent prisms at different levels. Middle: Prisms are once more subdivided
into tetrahedrons. Right: Illustration of a basis function on a grid node. Left and middle panel
from Timmermann et al. (2009).

discretization of the spatial domain is an unstructured triangular grid on the ocean surface. It

can vary in the distances between neighbouring nodes and therefore sizes of the triangles. In the

vertical, three-dimensional tetrahedrons are stacked on top of each other throughout the water

column from ocean floor to sea level height. This is done by subdividing the triangular columns

below each surface triangle in predefined levels and than again subdividing the resulting prisms

into three tetrahedrons each (see figure 2.2).

Due to the flexibility of the triangles in size and shape, different domains with complex

boundaries can be filled out more easily than would be the case for rectangular grids that are

used by spatial finite differences (see figure 2.3). This is not only true for fine details of the coastal

boundaries at the surface but also for the complex bathymetry. In addition, as larger triangles

lead to larger approximation errors, triangles can be continuously reduced in size to suit regions

of interest where fast or interesting processes occur that need to be resolved very precisely. This

may, for example, be the case in areas where rather narrow and fast ocean currents occur (e.g. for

the western boundary currents). On the downside, discretization using the finite element method

is computationally quite expensive when compared to other discretization schemes. The latter

are usually not capable of consistently implementing such a flexible spatial resolution, though.

For applications of FESOM in this dissertation the model domain is the entire ocean and

the grid is fitted as best as possible to the domain, balancing a good representation and high

resolution of the ocean with a reasonable speed of the simulations.

The sea ice model as part of FESOM makes use of the same surface mesh as the ocean.

This results in a straightforward coupling of fluxes—such as fresh water and heat—between the

two components (see Timmermann et al. (2009) for details). Informations on the specific global

ocean grids and resolutions as well as time step sizes that have been used for the applications

of this dissertation are given in the respective chapters.

The actual finite element method is based on approximating the partial differential equations

in space by weighted basis functions. On each node of the grid, that is on each vertex of each

triangle, one of those basis functions is defined. In case of FESOM, where linear basis functions
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Figure 2.3: Left: Nesting of a finer resolved, rectangular grid in a grid with lower resolution.
Boundaries between the two grids are crucial and cause additional interpolation errors during the
course of the integration. Right: Global triangular grid with smoothly and consistently varying
grid resolution. This allows for locally high resolution but causes no additional interpolation
errors. By courtesy of T. Rackow (18.04.2014).

are chosen, each of those functions is 1 at its respective node, reduces linearly to 0 towards

its direct neighbours and is 0 everywhere else (see figure 2.2, right). As the approximated

solutions of the governing differential equations are now based on linear combinations of those

basis functions—which are easy to differentiate in space—the solutions are given by continuous,

piecewise linear functions of the form

ν(x, y, z, t) =

Nν∑
k=1

νk(t)ψk(x, y, z), (2.13)

with ν = ν(x, y, z, t) as an approximated solution for one of the prognostic variables of the

ocean or sea ice model. Nν is the amount of grid points with νk(t) the value of ν at the

coordinates of node k and time t and with ψk(x, y, z) the basis function defined at node k.

In the cases of ν being a variable of the sea ice model, or ηo, Nν is equal to the amount of

surface nodes, while for all other ocean model variables Nν is equal to the amount of 3D nodes.

After inserting the approximated solution (2.13) into the respective equations, differentiating

in space and discretizing the time derivatives by finite differences, a system of linear equations

with the dimension equal to the amount of nodes needs to be solved j times in successive order

to calculate νk(jΔt). Therefore, as the mesh gets finer and the amount of 2D and 3D nodes

increases, so does the amount summands in (2.13) and the dimension of the linear system. For

a more detailed explanation of the spatial and temporal discretization it is once more referred

to Timmermann et al. (2009) and Wang et al. (2013).
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2.2. ECHAM6-FESOM

In this section the coupled atmosphere–ocean–sea ice model ECHAM6-FESOM is introduced.

A brief description of the atmospheric model ECHAM6 in section 2.2.1 is followed by some

information on the coupling procedure between the ECHAM6 and FESOM in section 2.2.2. As

I assisted in the coupling of the models and the diagnosing of the coupled system, and to give

an overview of the performance of the coupled model, a multi-centennial climate integration is

compared to observational and reanalysis data in section 2.2.3.

The configuration of FESOM in ECHAM6-FESOM is basically the same as for uncoupled

sea ice–ocean simulations, with some minor changes applied to relevant model parameters and

parameterizations in general. These changes serve the purpose to tune the model in the coupled

set-up. Also, the thermodynamics of the sea ice model concerning heat balances for open ocean

and ice-covered grid fractions have been adjusted. The atmospheric fluxes are now calculated by

the atmospheric model ECHAM6 based on the sea ice and snow thickness, sea ice concentration

and sea surface temperature fields provided by FESOM. FESOM uses these fluxes to calculate

the heat balance separately for open ocean and ice-covered node area fractions, which results in

the thermodynamic growth rates of ice (see Sidorenko et al., 2014). For a detailed discussion of

ECHAM6-FESOM it is referred to Sidorenko et al. (2014).

As a result of the coupling, FESOM simulations can be conducted using atmospheric forc-

ing generated by a coupled ECHAM6-FESOM integration carried out beforehand. To prepare

the coupled system for the simulations of chapter 4, I implemented this option for ECHAM6-

FESOM. An uncoupled FESOM simulation with prescribed ECHAM6 forcing can be used to

detect the effects of coupling. Effects of new processes or changes implemented in the sea

ice–ocean model can be compared between simulations carried out with the uncoupled configu-

ration and with the coupled system ECHAM6-FESOM, where the atmospheric model can react

to changes in the ocean and sea ice. As is shown in chapter 4, this procedure can be a very

handy tool to analyze the different behaviours of climate models of different complexity, but

accordances in some components. This is the case for FESOM compared to the much more

sophisticated ECHAM6-FESOM. Not surprisingly, impacts of new implementations in the two

models can be very different. Therefore extrapolation of results from one to the other should be

handled with utmost care. This is especially true when it comes to coupled model tuning and

the use of identical parameter and parameterization sets for uncoupled and coupled simulations.

2.2.1. ECHAM6

The atmospheric model ECHAM6 has been developed at the Max Planck Institute for Meteo-

rology in Hamburg (MPI Hamburg) and is an atmospheric climate model based on the ECMWF

atmospheric model (hence ECHAM, version 6). It is a spectral model, which means that the

basis functions for the approximation of the solutions of the relevant (dry) atmospheric variables

(i.e. vorticity, divergence, temperature, logarithmic surface pressure and surface geopotential)

are spherical harmonics. For approximations by spherical harmonics the spatial discretization

of the governing equations of the dynamical core of the model does not take place on an actual

mesh with grid points. Spherical harmonics are waves on the sphere, i.e. globe, that vary in
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Figure 2.4: Illustration of spherical harmonics for zonal wave numbers l = −3, ..., 3 (left to
right), meridional index n = 0, ..., 3 (top to bottom) and N(M) = 3 with M = 3. See text for
detail. From http://en.m.wikipedia.org/wiki/Spherical_harmonics (19.04.2014)

wave length from very large waves to infinitesimal waves (see figure 2.4). An infinite superpo-

sition of theses waves with the appropriate coefficients can represent arbitrary functions on the

sphere, as long as certain smoothness conditions are fulfilled by the function (see e.g. Freeden

and Schreiner , 2009). This is comparable to the representation of sufficiently smooth functions

by superposition of trigonometric functions with varying wavelengths and amplitude as is done

in the field of Fourier analysis.

Truncating the infinite superpositions at a certain wavelength discards the very small waves

and therefore small scale processes but allows the approximation of the solution by a finite num-

ber of numerically solvable equations, one for each complex-valued spectral coefficient included

in the approximation. The approximation has the general form

ν(xlon, ylat, ηp, t) =

M∑
l=−M

N(M)∑
n=|l|

νln(ηp, t)P
l
n(ylat)e

imxlon . (2.14)

The function ηp = ηp(p, ps) is a monotonic function of the pressure p and the surface pressure

ps with

ηp(0, ps) = 0 and ηp(ps, ps) = 1, (2.15)

i.e. ηp is zero at the top of the atmosphere and 1 at the surface. In equation (2.14) ν is the

respective discretized variable, l is the zonal wave number, n the meridional index, the P l
n are

associated Legendre functions, i is the imaginary unit, and the νln are the complex-valued spectral

coefficients (see Giorgetta et al., 2013). M is the truncation of the zonal wave number and N(M)

the appropriate truncation of the meridional index. Both are chosen in such a manner that a

triangular truncation is applied for n and l. The vertical discretization takes place on specifically

defined discrete pressure levels. For further details on the formulation of the governing equations

for temperature, divergence and vorticity (i.e. horizontal wind velocities), logarithmic surface

pressure and surface geopotential as well as their spectral discretization in the horizontal and

the finite difference scheme used for the vertical discretization, see Giorgetta et al. (2013).
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2.2. ECHAM6-FESOM

Aside from the (dry) dynamical core, which uses the spherical harmonics approximation, the

changes in atmospheric mixing ratios (i.e. humidity) concerning the different atmospheric water

species are computed in grid point space. This holds true for the different parameterization

schemes as well, as parameterized tendencies are generally also computed in grid point space.

To this end, transformations between the spherical harmonics space and a grid point space of

comparable resolution are used to supply the parameterizations with applicable representations

of the prognostic variables in grid point space and afterwards transform the calculated param-

eterized tendencies back to the spectral space. The temporal discretization in ECHAM6 uses

finite difference schemes.

The reason for using the spherical harmonics for the atmospheric model is that there are no

complex topographic boundaries aside from the surface that would need to be considered in the

atmosphere. Therefore a continuous formulation for the whole globe is adequate. Also, spherical

harmonics calculations can be very fast with state of the art algorithms. The same is true for

the transformations between grid point space and spectral space. The parameterizations, on

the other hand, are computed in grid point space as they estimate sub-grid scale processes by

using local mean values of the prognostic variables. Once again, for further information on the

parameterizations, the grid point space, and the transformation to and from spectral space, it

is referred to Giorgetta et al. (2013).

Also included in the ECHAM6 model is the land surface (including a hydrological discharge)

model JSBACH, simulating, e.g., soil moisture and river runoff as well as the seasonal cycle of

the biosphere. For the current set-up of the coupled system, atmospheric tracers such as the

CO2 concentration and aerosols are fixed. The values are approximately those of 1990 for all

coupled experiments discussed in this dissertation. More information on the formulation and

the performance of the atmospheric model ECHAM6 is provided by Stevens et al. (2013).

2.2.2. Coupling

One of the major tasks for implementing the coupled system ECHAM6-FESOM was the de-

velopment of the coupling procedure. Figure 2.5 illustrates the two different meshes used by

the two different models, the unstructured triangular grid of FESOM and the Gaussian grid of

ECHAM6. It is obvious that there are some issues that need to be addressed.

For one, the two meshes have different resolutions in different regions of the globe. FESOM

uses up to 1/4� resolution in the equatorial belt, near coastlines and an even higher resolution

in the Arctic around Greenland. The resolution of ECHAM6 on the other hand is about 1.9�

everywhere, with effectively increased resolution towards the poles as longitudes converge. The

grid set-up of ECHAM6 is T63L47, meaning that spectral truncation is applied at N(M) = 63

and that in the vertical 47 levels are used, from the ground up to 0.01 hPa (∼ 80 km) with

increased resolution in the boundary layer near the surface, decreasing upwards. Another issue

is that the two meshes do not follow the coastlines the same way, with ECHAM6 using a land-

ocean mask to determine the percental amount of ocean and land within one grid box. This mask

had to be adjusted for the coupling to minimize the discrepancy in total ocean area between the

two models.
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Figure 2.5: Grids used by (left) ECHAM6 (T63 (∼ 180 km) horizontal resolution) and (right)
FESOM. For the ECHAM6 grid the areas, where the land fraction is above 50% (between 0%
and 50%), are marked dark (light) green. For the unstructured FESOM grid the color coding
indicates the resolution (in km). From Sidorenko et al. (2014).

The general coupling procedure is described in detail by Sidorenko et al. (2014). Gener-

ally, the coupling is done by the coupler OASIS3-MCT (Valcke, 2013). The fields (FESOM

to ECHAM6) and fluxes (ECHAM6 to FESOM) that are coupled are illustrated in figure 2.6.

The coupling is done via a third intermediate mesh of approximately the same resolution as the

ECHAM6 grid. The intermediate mesh is used by OASIS3-MCT to exchange the information

between the two models.

FESOM interpolates from its own mesh to the intermediate mesh. There are two possibilities:

If the mesh is finer in FESOM than in the intermediate mesh, all FESOM nodes close to the

intermediate mesh node are used to calculate a mean. If the resolution in FESOM is locally

similar or coarser than the intermediate mesh resolution, information from the FESOM mesh is

linearly interpolated to the respective intermediate mesh node. This is especially the case in some

areas of the open oceans or near the coasts, when a grid box of the intermediate mesh covers

mainly land. The FESOM fields for the coupling are temporally averaged over the coupling

interval (6 hours).

Interpolation between the intermediate mesh and ECHAM6 grid is done by OASIS3-MCT

via bilinear interpolation, in both directions. Exchange from the intermediate grid back to the

FESOM mesh is done by an inverse distance weighting (Shepard , 1968). Also, a redistribution of

residual fluxes, either globally or regarding the respective hemisphere, is performed so that total

fluxes are conserved. Atmospheric fluxes are accumulated during the coupling interval. The

coupling procedure takes place every 6 hours, with FESOM applying a time step of 30 minutes

and ECHAM6 a time step of 10 minutes.

The second important task in coupling the two models was the tuning of the coupled system.

This was mainly done on the FESOM side, as ECHAM6 was not developed at AWI and it was

agreed upon to keep changes to ECHAM6 at a minimum to be able to compare ECHAM6-

FESOM to the coupled system of the Max Planck Institute, MPI-ESM-LR (MPI Earth System

28



2.2. ECHAM6-FESOM

Figure 2.6: Illustration of the coupling procedure between ECHAM6 and FESOM. The 4 6-
hourly averaged surface fields (FESOM to ECHAM6) and 12 6-hourly accumulated air-sea fluxes
(ECHAM6 to FESOM) are a mapped between the two components at 6-hourly intervals making
use of an intermediate grid and the OASIS3-MCT coupler. From Sidorenko et al. (2014).

Model Low Resolution), which uses the same atmospheric model but the MPI (sea ice–) ocean

model (MPI-OM). One of the main motivations for developing ECHAM6-FESOM was to develop

a tool that makes it possible to compare the effect of the variable ocean resolution of FESOMwith

the rather uniform resolution of most other ocean models (such as the MPI-OM) used in coupled

climate systems. FESOM uses a discretization method that is computationally more expensive

than other methods, but has the advantage of consistently implemented local refinements that

can be rather arbitrarily placed. Simulations with ECHAM6-FESOM might prove that this

advantage compensates for the additional computational costs.

2.2.3. Model performance7

After the model was set up, a long control integration was initialized to investigate the quality of

the simulated model climate compared to observations and reanalysis at hand. This was done in

two separate parts, one dealing with the quality of the main climate (Sidorenko et al., 2014) for

350 years of (coupled) integration, the other dealing with the quality of the simulated climate

variability (Rackow et al., 2014), with the integration extended to 1500 years. As ECHAM6-

7The results of this section are based on the article Towards multi-resolution global climate modeling with
ECHAM6-FESOM. Part I: model formulation and mean climate under review for Climate Dynamics (Sidorenko
et al., 2014).
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FESOM is the model used in chapters 4 and 5, the following section give a short overview over

the oceanic and atmospheric mean climate performance of the coupled system.

The triangular grid that was used for the climate integration is relatively coarse and exhibits

only moderate mesh stretching factors. This grid was chosen to be able to compare ECHAM6-

FESOM not only to observations but also to other climate models with a comparable oceanic

resolution. However, such a grid configuration does not make excessive use of the capability

of FESOM to finely resolve regions of specific interest. This limits the exploitation of the true

potential of FESOM.

Atmosphere

Exemplary, to give a feeling for the quality of performance of the atmospheric simulation, figure

2.7 shows mean 2-meter temperature (averaged over 300 years) for boreal winter (DJF) and

summer (JJA) simulated by ECHAM6-FESOM as well as the difference to ERA-40 reanalysis

(years 1957-2002, Uppala et al., 2005).

D
JF

JJ
A

2-meter temperature
ECHAM6-FESOM ECHAM6-FESOM – ERA-40

Figure 2.7: Top left: Simulated boreal winter (DJF) climatological 2-m temperature (◦C) from
ECHAM6-FESOM. Top right: Difference in 2-m temperature between ECHAM6-FESOM and
the ERA-40 reanalysis (Uppala et al., 2005). Bottom row: The same as for the top row, except
for boreal summer (JJA). From Sidorenko et al. (2014).

Generally, the simulations of mean 2-meter temperature are for most regions rather accurate

with an error of about 1 K when compared to the reanalysis. Also, biases are quite similar

to the biases of the MPI-ESM-LR model. The excessive bias over Antarctica is also present

in other state of the art models such as MPI-ESM-LR (Stevens et al., 2013) and HadGEM2

(Collins et al., 2011) and might also be partly caused by biases found in the reanalysis data

itself (Sidorenko et al., 2014). Noticeable is also the cold bias in the Barents sea and northern
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North Atlantic, where an excessive sea ice cover is simulated especially during the boreal winter

months. Shortcomings in the simulation of the North Atlantic circulation are partly responsi-

ble for those biases in 2-meter temperature. Another general aspect worth mentioning is the

fact that ECHAM6-FESOM simulates a climate with constant 1990 CO2 forcing, whereas the

reanalysis data from 1957 to 2002 reflects a climate under changing CO2 concentrations. For a

more thorough discussion of the atmospheric performance of ECHAM6-FESOM, see Sidorenko

et al. (2014), where aside from 2-meter temperature mean fields for precipitation, cloud cover,

radiation, winds and 500-hPa geopotential height are discussed.

Table 2.1: Modified performance index for ECHAM6-FESOM in five different regions (see text
and Sidorenko et al., 2014). Values below 1 indicate that a model performs better, above 1
indicate worse performance than the average of five CMIP5 models (MPI-ESM-LR, HadGEM2,
CCSM4 (Gent et al., 2011), GFDL CM3 (Griffies et al., 2011), and MIROC-ESM (Watanabe
et al., 2011)). Adjusted from Sidorenko et al. (2014).

Model 60-90◦S 30-60◦S 30◦N - 30◦S 30-60◦N 60-90◦N

ECHAM6-FESOM 0.93 0.86 0.84 0.79 0.90

In addition to the analysis of single atmospheric fields, table 2.1 shows performance indices

for the simulated atmosphere. These evaluate the mean absolute error of the model compared

to different atmospheric reanalysis and observational data and normalize it with the average

over the mean absolute error of five other state of the art global climate models. In cases where

ECHAM6-FESOM performs better than the mean of the other models, the value is below 1. It

is 1 if they perform equally good or bad and it is greater than 1 if ECHAM6-FESOM performs

worse. The performance indices are calculated separately for different regions of the globe.

In general, ECHAM6-FESOM performs slightly better than the mean of the five models (see

Sidorenko et al., 2014, for more details).

Ocean and model trend

When considering the performance of the ocean simulation, and the climate in general, it is of

interest to know whether the simulated mean is in equilibrium or exhibits some form of drift.

The latter would indicate that the system needs more time to end up in a balanced climatic mean

state. Figure 2.8 illustrates the changes in mean potential ocean temperature and the imbalance

of heat fluxes at the ocean surface. If the system were in equilibrium, mean temperatures would

not change on longer time scales and the global mean fluxes would be zero. The imbalance in

fluxes and increase of ocean temperature illustrate that the system is still drifting. From an

extended integration carried out with the coupled model for the analysis of climate variability

(see Rackow et al., 2014) we know that the drift is slowing down and an exponential function can

be fitted to the global mean potential temperature with rather high accuracy. The exponential

fit suggests a deep ocean equilibration time scale of about 800 years.

In general, it is not uncommon for a model to drift during the first couple of hundred years.
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Figure 2.8: Time series of the global average of potential ocean temperature (◦C; blue line) and
of the global net residual heat flux (including all components) at the ocean surface (Wm−2; red
line). In the time series for the potential temperature 60 years of an ocean-only spin-up are
included. From Sidorenko et al. (2014).

Figure 2.9: Illustration of the time scales of the different components of the Earth system. From
WOR (2010).

The initial ocean state8 is only an approximation of the actual state of the real system. Also,

the model does not exactly represent the real climatic state but simulates its own model climate

that, as would be desirable, is close to what is actually observed. But due to the very long time

scales for water mass changes in the deep ocean (centuries to millennia, see figure 2.9), it takes a

long time for the model to reach its own climate, even from slightly deviating initial conditions.

And it has to be kept in mind that the initial conditions for the ocean rely on observations for

a quite short time period in which there has been a trend in atmospheric CO2 concentrations,

whereas the model uses constant annual mean atmospheric CO2 forcing.

Figure 2.10 illustrates the changes in salinity and potential ocean temperature from the

surface down to the deep ocean, averaged for the global oceans. A freshening and cooling of the

860 years of FESOM spin-up are conducted under Common Ocean Reference Experiment (CORE), version 2
atmospheric forcing (Large and Yeager , 2009) before FESOM is coupled to ECHAM6.
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2.2. ECHAM6-FESOM

Figure 2.10: Top left: Hovmöller diagram illustrating the changes in the depth
profile of the global potential ocean temperature (◦C). Shown are the departures
from the Polar Science Center Hydrographic Climatology (PHC, Steele et al.,
2001). Top right: Depth profile of potential ocean temperature for PHC clima-
tology (blue line) and ECHAM6-FESOM model year 410 (red line). 60 years of
an ocean-only spin-up are included. Bottom row: The same as for the top row,
except for ocean salinity (PSU). From Sidorenko et al. (2014).

upper ocean can be detected in the simulation, while in the mid-depth temperatures and salinity

increases. As discussed in Sidorenko et al. (2014) this is primarily due to respective changes in

the Atlantic ocean, especially in the northern hemisphere (see their figures 12 and 13).

This might be one of the causes for periodic, multi-decadal freezing events occurring in the

Labrador sea during boreal winter, accompanied by locally reduced mixed layer depth, reduced

sea surface height in the subpolar gyre, and increased fresh water content in the Labrador sea

(see figure 2.11). Reasons for this coupled phenomenon in ECHAM6-FESOM are currently still

investigated. A hypothesis on how these oscillations might take place is given in Sidorenko

et al. (2014). In addition, a more complete discussion on simulated ocean circulations and

characteristics, as well as global heat transports can be found in Sidorenko et al. (2014).
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Figure 2.11: From top to bottom: time series of the annual maximum of the mixed layer depth
in the Labrador Sea (m); normalized annual mean sea surface elevation (red) and fresh water
content (blue) in the Labrador Sea; annual mean exports of freshwater across Davis Strait
(green), Fram Strait (red) and the sum of both (blue) (mSv); annual mean deep salinity (at
1600m depth) in the Labrador Sea (PSU). From Sidorenko et al. (2014).

Sea ice

Of great interest for the applications of the stochastic sea ice parameterization in ECHAM6-

FESOM is the simulated sea ice distribution shown in figure 2.12. Sea ice concentration in

March is overestimated in the Labrador, Greenland and Barents Sea when compared to passive

microwave satellite data (climatology from 1981-2010) from the National Snow and Ice Data

Center (NSIDC), University of Colorado, Boulder9. Still, distributions ”are similar to reanalysis

and observational estimates” as noted by Sidorenko et al. (2014). This is true for the northern

and southern hemisphere. Especially the observed large ice thicknesses north of Greenland and

the Canadian Arctic Archipelago are well represented. Also, values of integrated quantities such

9http://nsidc.org/cryosphere/sotc/sea_ice.html (25.04.2014)
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Figure 2.12: Simulated mean sea ice thickness (m) in (left) March and (right)
September for (top) the Northern Hemisphere and (bottom) the Southern Hemi-
sphere, averaged over 300 years of the coupled simulation. The thick (thin)
contours indicate a mean sea ice concentration of 15% (85%). From Sidorenko
et al. (2014).

as total Arctic and Antarctic sea ice extent seem reasonable when compared to observations (see

Sidorenko et al., 2014).

One thing that needs to be mentioned in this context, though, is that the area of the

Arctic Ocean is in the current mesh configuration not accurately represented, leading to a

reduced total ocean area (and therefore, potentially, sea ice area) of around 10% due to coastal

mismatches in the Canadian Arctic Archipelago and along the coast of Siberia. Nevertheless,

ECHAM6-FESOM seems well suited for studies concerning the effects of changes in sea ice

parameterizations on the simulated sea ice distributions and, generally, the climate in the high

latitudes.

Another issue that needs to be addressed, is the effect of the oscillations of mixed layer depth

anomalies in the Labrador Sea mentioned before (see figure 2.11). Currently these multi-annual

to multi-decadal phenomena in the simulations are not predictable years or decades ahead. The

resulting large interdecadal variability in the northern North Atlantic sea ice concentrations and

thicknesses as well as mixed layer depth poses a problem when it comes to analyzing signals

of the stochastic ice strength perturbations. As discussed in chapter 4, the impact of those

perturbations is rather small on the year to year scale, while the background noise due to
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internal model variability is comparatively large in ECHAM6-FESOM. Therefore, integrations

in the coupled set-up had to be extended and integrated longer than originally planned to see

the influence of the stochastic ice strength perturbations.

2.3. Ensemble simulations

Generally, in a fully coupled climate model, due to the presence of the atmospheric component,

small differences between otherwise identical model configurations (e.g. perturbations in the

initial or boundary conditions, a slightly differing choice of parameter sets or any stochastic

aspect of the model) will very quickly lead to model states that differ quite considerably. This

is caused by the very fast, chaotic and nonlinear nature of the atmospheric model (and also the

”real” atmosphere), which makes it very difficult to give meaningful weather forecasts beyond

a few weeks time (depending somewhat on the region and the stability of the current weather

situation, i.e. the season and atmospheric state). But due to the coupling between the atmo-

sphere and other, slower components of the climate system (see figure 2.9), in some regions (e.g.

over the oceans) some atmospheric variables (e.g. near surface temperatures) diverge some-

what slower, especially when compared to the interannual variability in the respective region.

The latter is a measure for how variable the atmosphere is at a given location (or rather, how

variable it has been in the past). As long as the ensemble spread stays below this interannual

variability, the ensemble members have not reached a level where they actually just sample all

possible atmospheric or oceanic states. In other words, it can still be information gained from

the ensemble. A forecast with more skill then just based on statistical inference of climatic

records is possible. For measures of potential predictability, where ratios of ensemble spread to

interannual variability are investigated, see e.g. Pohlmann et al. (2004).

The development of spread within an ensemble can depend on very different factors. There

is the location under consideration and the variable of interest. It also depends on the method

that is used to generate the ensemble, such as the specific initial perturbation technique that

is applied. Furthermore, it depends on the initial state from which the ensemble is initialized.

Some initial states are more stable than others, meaning that the ensemble members will diverge

less rapidly when started at or near this state. It is therefore necessary, if one is estimating the

potential of predictions by means of ensemble simulations, to sample a variety of different initial

states to be able to make a conclusion that is not only valid for a very specific atmospheric,

oceanic or climatic state. Multiplying the sampled initial states by the number of members

per ensemble—which already needs to be reasonable large to sample the ensemble spread with

sufficient accuracy—makes studies of potential predictability computationally very costly. But

many initial dates and sufficient ensemble sizes are necessary to reach relevant and statistically

significant results.

In this context three major decisions have to be made:

� A perturbation strategy has to be chosen that samples some kind of uncertainty. This will

create the ensemble members, each one slightly differing from the others, and will generate

ensemble spread.
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� The size of the ensemble has to be chosen, balancing an accurate representation of ensemble

spread (owing to a high number of members) with computational costs, which increase

linearly with an increasing amount of ensemble members.

� Different start dates need to be chosen. These should sample the same time of the year,

but should be more or less independent. This can be achieved by choosing the same cal-

ender day but from different years, with the years being sufficiently far apart to guarantee

independence. The latter is especially important for the sea ice and ocean state, which

exhibit considerable memory that can extent over many years.

To illustrate the concept, in the following one of the atmospheric perturbations applied in

chapter 5, originally introduced byMagnusson et al. (2009), is described. To a given atmospheric

stateXX, e.g. from the first of January of some more or less arbitrary model year, a perturbation

is generated by choosing randomly two other atmospheric states from the same calender day but

from different years, Y Y and ZZ. From these two states the main dynamical variables (three-

dimensional temperature and wind fields) are subtracted, one from the other, and multiplied by

a factor of 0.1 to reduce the amplitude of the perturbation. This perturbation is then added to

the respective fields of the atmospheric state XX to generate the new initial field. Exemplary,

for the temperature filed T the new perturbed temperature field Tnew
XX is given by

Tnew
XX = TXX + 0.1 · (TY Y − TZZ). (2.16)

Figure 2.13 illustrates the spread evolution produced by this kind of ensemble with 10 mem-

bers for one start date and for 2-meter temperature. The spread is here defined as the unbiased

standard deviation of the ensemble for each grid point. Ensemble spread develops very rapidly

over land, whereas the growth is much smaller over the ocean areas. This is due to the fact

that the sea surface temperatures of the ocean are changing much slower than land surface

temperatures, as the ocean has a much larger specific heat capacity and changes caused by the

perturbations from the mean state are developing much slower. The ocean has a much longer

memory than the atmosphere and, through coupling, this memory is to some extend transfered

to the lower atmosphere as well.

As soon as more than one start date is taken into account, the standard deviations calculated

for each ensemble start date are averaged to obtain a mean spread evolution for the perturbation

technique under consideration. This mean ensemble spread is in chapter 5 compared to the

interannual standard deviation calculated from a long control integration, for different times

of the year, to allow for an estimation of sea ice predictability, using different perturbation

strategies.
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Figure 2.13: Illustration of the evolution of 2-meter temperature ensemble standard deviation
for the first two days. Ensemble size is 10, with initialization on the 1st of January, 00:00 UTC.
The ensemble is generated by atmospheric initial perturbations using equation (2.16).

38



3. Effects of stochastic ice strength

perturbation on Arctic finite element

sea ice modeling10

10 This chapter has been published under the title Effects of stochastic ice strength perturbation on Arctic finite
element sea ice modeling in the Journal of Climate (see reference Juricke et al., 2013). The original layout of the
article was changed to match the layout of the dissertation. No changes to the text were made, though, except for
referencing to figures, equations and tables as well as citations. Those have been changed to match the respective
layout in the rest of the dissertation. In addition, the bibliography and the appendix of the publication have been
merged with the bibliography and the appendix of the dissertation, respectively. The abstract of the article was
retained. My contributions to the article include all the necessary implementations and model adjustments, the
experimental set-up and initialization as well as monitoring of the simulations. I carried out all of the diagnostics
and the plotting of the results. The concept for the experimental set-up as well as the evaluation, assessment,
and interpretation of the results were developed and conducted in discussions with my coauthors Peter Lemke,
Ralph Timmermann and Thomas Rackow. They have also corrected my original manuscript before submission
to the journal. In addition, I would like to point to the acknowledgments at the end of the chapter.
Please excuse any remaining inconsistencies with the other chapters of this dissertation originating from the
general layout of the original publication, including differences in spelling, figure layout, acronyms, equations and
phrasing.
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Abstract

The ice strength parameter P ∗ is a key parameter in dynamic/thermodynamic sea ice

models that cannot be measured directly. Stochastically perturbing P ∗ in the Finite Element

Sea Ice–Ocean Model (FESOM) of the Alfred Wegener Institute aims at investigating the

effect of uncertainty pertaining to this parameterization. Three different approaches using

symmetric perturbations have been applied: 1) reassignment of uncorrelated noise fields

to perturb P ∗ at every grid point, 2) a Markov chain time correlation, and 3) a Markov

chain time correlation with some spatial correlation between nodes. Despite symmetric

perturbations, results show an increase of Arctic sea ice volume and a decrease of Arctic

sea ice area for all three approaches. In particular, the introduction of spatial correlation

leads to a substantial increase in sea ice volume and mean thickness. The strongest response

can be seen for multiyear ice north of the Greenland coast. An ensemble of eight perturbed

simulations generates a spread in the multiyear ice comparable to the interannual variability

of the model. Results cannot be reproduced by a simple constant global modification of P ∗.
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3.1. Introduction

Because of the diversity in spatial and temporal scales of physical processes and the limited

resolution in climate models, parameterizations are generally needed to describe the influence

of small-scale processes on large-scale flows. This influence is mostly considered in terms of the

mean of the models’ prognostic variables, while the effect of unresolved scales on higher-order

moments such as the variance is frequently ignored. Because of the numerical implementation

of the parameterizations, model errors arise. Especially in numerical weather prediction (NWP)

the idea of applying probabilistic methods to previously deterministic models to address such

model errors and to increase the model spread has become a well-established research topic

in recent years. As summarized by Palmer (2012), the inclusion of stochastic parameteriza-

tions may help to better estimate model uncertainty and reduce biases or even the uncertainties

themselves. In this context, Buizza et al. (1999) applied a stochastic perturbation to the param-

eterized tendencies in their European Centre for Medium-Range Weather Forecasts (ECMWF)

Ensemble Prediction System (EPS) to address model error within the parameterizations of phys-

ical processes. This successfully increased the ensemble spread. This was followed by a more

sophisticated spectral stochastic kinetic energy backscatter scheme (SSBS) (Berner et al., 2009),

based on stochastic perturbations of streamfunctions.

Another approach that also aims at the inclusion of model error within the physical pro-

cesses in NWP has been applied by Lin and Neelin (2000), Bright and Mullen (2002), and Li

et al. (2008). These authors stochastically perturbed parameters of a certain parameterization

scheme to account for uncertainties that are related to a deterministic parameter choice, as

some of the parameters do not have an obvious analog in nature. A first-order Markov process

is used by Lin and Neelin (2000) to perturb the convective available potential energy within the

parameterization of deep convection. The same concept of temporal correlation is applied by

Bright and Mullen (2002) to perturb the grid-scale vertical velocity at the lifting condensation

level within the cumulus parameterization and the critical bulk Richardson number within the

planetary boundary layer scheme. Li et al. (2008) employed a more sophisticated parameter

perturbation in their convective and condensation schemes. They applied a first-order Markov

process to create random numbers as spectral coefficients of spherical and Fourier harmonics

expansions in the horizontal and vertical direction, respectively. Thereby, spatial correlation is

introduced to the stochastic parameter perturbations.

Sea ice models contain several sensitive parameters that need to be chosen carefully and

are used to tune the model. Early studies—for example, by Stössel et al. (1990), Owens and

Lemke (1990), and Harder (1996)—show that the ice strength parameter P ∗ of the viscous–

plastic sea ice rheology introduced by Hibler (1979) is among the important parameters within

the sea ice dynamics, together with parameters such as the drag coefficients for the momentum

fluxes between the ice and the ocean and atmosphere. Sensitivity experiments carried out prior

to this study have confirmed the importance of P ∗ when it comes to sea ice distribution and

drift patterns in our model. The quantity P ∗ determines the internal ice strength; for higher

values of P ∗ the ice is less easily deformed in case of a convergent drift. Changes in the sea ice

drift influence the advection of sea ice, which has an impact on the ice thickness distribution,
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especially on the formation of pressure ridges that often accrete to multiyear ice, and on the

ice concentration. As sea ice plays an important role for the surface albedo and has a strong

effect on the transport of heat and momentum between atmosphere and ocean, changes in the

ice coverage influence the thermodynamics of the model and in coupled models affect both the

ocean and the atmosphere components. So, the parameter P ∗ has an impact not only on the

sea ice drift itself and on the thickness distribution, but also on aspects such as the Arctic

freshwater export linked to sea ice drift through the straits, the heat budget of the ocean, sea

ice production rates, and bottom water formation. As a consequence, a proper representation

of the sea ice dynamics is necessary for accurate predictions of climate in the high latitudes.

The value of P ∗ is only weakly constrained, however, as it cannot be measured directly

and may vary strongly in time and space (Harder and Fischer , 1999). Tremblay and Hakakian

(2006) estimated upper and lower bounds for P ∗ based upon the deformation law of Hibler (1979)

using satellite data for sea ice drift and reanalysis data for sea level pressure. Even though they

found values of the same magnitude as other studies that used in situ measurements or drift

buoy data, the derived values vary quite considerably. They also state that the time averaged

atmospheric forcing used in any given model as well as the choice of parameters such as the

air-ice drag coefficient may have a strong influence on the appropriate value of P ∗. This leads to
further uncertainties. Because of these uncertainties and the global averaging of a highly variable

parameter, P ∗ seems a good first candidate for applying a stochastic approach as a method to

tackle the model error connected to the physical process of subgrid-scale sea ice deformation and

to investigate the changes arising in the sea ice thickness distribution due to the nonlinearity of

the parameterization.

In this work we present a first approach to include uncertainty estimates in a sea ice model

by the use of stochastic parameterizations. We introduce a new suite of schemes to stochastically

perturb the ice strength parameter P ∗ and demonstrate that this symmetric parameter pertur-

bation leads to an increase in total Arctic sea ice volume and a distinct change in the local Arctic

sea ice thickness distribution. Adding first temporal and then spatial correlation to the pertur-

bations leads to an increasing impact on the Arctic sea ice coverage. The spatial correlation in

particular will prove to be of great importance in the perturbation scheme. While the influence

of the seasonal cycle reduces the effects of the perturbed sea ice strength parameterization for

first-year ice and along the ice edge, the multiyear ice exhibits a strong sensitivity to the new

scheme and tends to increase considerably in thickness. The Arctic monthly mean sea ice thick-

ness in an ensemble simulation shows an increase of about +5% in January and about +11%

in September compared to the reference simulation. The spread in multiyear ice thickness gen-

erated by the parameter perturbation is comparable to the interannual variability of the model

and may give an indication for a range of values for P ∗ to be used in data assimilation studies.

The range chosen for most perturbations in this study is P ∗ ∈ (5000 N m−2, 35000 N m−2).

This paper has the following structure. In section 3.2 we will give a short overview of the

Finite Element Sea Ice–Ocean Model (FESOM) (Wang et al., 2008; Timmermann et al., 2009;

Sidorenko et al., 2011) of the Alfred Wegener Institute for Polar and Marine Research (AWI)

and the sea ice rheology that is used by the model. Section 3.3 describes the three different

parameter perturbation approaches that have been studied: one with no spatial correlation
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between any two nodes and just a simple form of temporal correlation, a second one again with

no spatial correlation but a temporal correlation given by a first-order Markov process, and

finally a third version featuring the temporal correlation according to the Markov process of

the second approach and also a spatial correlation between nodes with common neighbor nodes.

Results of the three approaches in comparison with a deterministic reference simulation and

with observations of sea ice draft and concentration will be analyzed in section 3.5, focusing on

the Arctic Ocean. Finally, section 3.6 will provide conclusions and a short outlook for future

work.

3.2. Model background

We use the Finite Element Sea Ice–Ocean Model to perform simulations of the Arctic sea ice.

Spatial discretization of the model is implemented via finite elements on a triangular grid at

the ocean surface and a tetrahedral grid with z levels for the three-dimensional ocean modeling.

The ocean model discretizes the momentum, heat, salt, and mass continuity equations based on

the hydrostatic assumption and is coupled to a sea ice model. The model setup in this study

is forced by the interannual varying Common Ocean Reference Experiment (CORE), version 2

atmospheric dataset by Large and Yeager (2009). FESOM under the normalized year forcing of

CORE I has been evaluated and compared to other models by Sidorenko et al. (2011). Further

details on FESOM have been presented by Wang et al. (2008) and Timmermann et al. (2009).

In the sea ice model the prognostic variables effective (mean) sea ice thickness hice, lateral

sea ice velocities uice and vice, and sea ice concentration A, as well as mean snow layer thickness

hs, are calculated. For this purpose, prognostic equations for hice, hs, and A describing the rate

of change due to freezing and melting processes and advection are solved. The dynamical part

of the model describes the rate of change in the sea ice velocities via the momentum balance

(Timmermann et al., 2009). Sea ice and ocean models use the same surface mesh, which makes

their coupling straightforward. The global finite element mesh is locally refined in the Arctic

and especially along the coastlines and in straits, the resolution ranging from over 300 km in the

Pacific Ocean to about 11 km at the coasts. The mesh of the Arctic region can be seen in figure

3.1. The time step in this study is Δt = 1h.

The momentum equation for the sea ice velocities discretized in FESOM is

m
∂�ui

∂t
= �τair + �τocean −mf�k× �ui −mg∇ηo + �Fint (3.1)

with m being the mass per unit area, �ui the horizontal sea ice velocity vector, �τair and �τocean

the atmospheric and oceanic stress, respectively, f the Coriolis parameter, �k = (0, 0, 1), g

the gravitational acceleration, and ηo the sea surface height of the ocean. For this study the

important term in equation (3.1) is the last term on the right-hand side that describes the

internal forces �Fint = (F1, F2) within the sea ice.

For the computation of the internal stress FESOM offers the classical viscous–plastic rheology

introduced by Hibler (1979) with adjustments by Harder (1996), and alternatively the elastic–

viscous–plastic rheology devised by Hunke and Dukowicz (1997) following in its implementation
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Figure 3.1: Arctic sector of the global mesh used for this study.

the documentation of the Community Ice Code (CICE) model (also known as the Los Alamos

Sea Ice Model; Hunke and Lipscomb, 2010). The latter has been used for this study. Both

rheologies describe the internal forces as the divergence of the two-dimensional stress tensor σ:

Fj =

2∑
i=1

∂σij
∂xi

, j = 1, 2. (3.2)

For the elastic–viscous–plastic rheology the tensor components σij are described by the differ-

ential equations

E
∂σij
∂t

+
1

2η
σij +

η − ζ

4ηζ

2∑
k=1

σkkδij +
P

4ζ
δij = ε̇ij , (3.3)

where ε̇ is the deformation rate tensor

ε̇ij =
1

2

{
∂ui
∂xj

+
∂uj
∂xi

}
, (3.4)

η and ζ are the nonlinear shear and bulk viscosities, respectively, δij is the Kronecker symbol,

and E is some elasticity constant (Hunke and Dukowicz , 1997).

The ice strength P is given by

P =
Pp ·Δ

Δ+Δmin
(3.5)

with

Δ =

[
(ε̇211 + ε̇222)(1 +

1

e2
) + 4

ε̇212
e2

+ 2ε̇11ε̇22(1− 1

e2
)

] 1
2

, (3.6)

where Δmin represents a small regularization value that creates a smooth transition from viscous

to plastic regimes, following the idea of Harder (1996), and e is the eccentricity of the elliptical
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flow curve (i.e., it describes the relation between ζ and η = ζ/e2).

The important parameterization concerning the perturbations introduced in the next section

is that for the sea ice strength given by

Pp = P ∗hice
A

· exp(−C(1−A)) (3.7)

with the dynamic ice strength parameters P ∗ and C. The viscosities η and ζ also depend linearly

on Pp.

Equations (3.5) and (3.7), through (3.2) and (3.3), describe the resistance of the sea ice

against deformation. For small deformation rates the internal forces increase with rising de-

formation rates, in a manner that depends on the value given by equation (3.7). But as soon

as a limiting value of Δ is reached, a further increase in deformation rates does not increase

the internal forces. The sea ice behaves plastically and, by way of its drift, tends to pile up.

Therefore equation (3.7) influences the behavior of sea ice especially in convergent drifts, where

hice and A have an impact on the rate at which the sea ice is deformed and thereby increases in

thickness.

This highly nonlinear dependence of internal stresses on ice strength and hence P ∗ will be

analyzed in the following section by a symmetric parameter perturbation.

3.3. Parameter perturbation

The stochastic perturbation in this work is applied to the sea ice strength parameter P ∗ governing
the internal forces within the sea ice dynamics. In the purely deterministic version of FESOM

the parameter P ∗ is fixed in time and space at a value of P ∗ = P ∗
ref = 20000N m−2. This

does not account for small-scale variations imposed by, for example, different local melting and

freezing histories or brine pocket formation. Furthermore, the associated natural variability in

space and time around a given mean in sea ice thickness and compactness is not resolved. Some

of this variability can be introduced by a symmetric perturbation of P ∗ around P ∗
ref .

The general approach is based on perturbing P ∗
ref via

P ∗(i, j) = (1 + x(i, j)) · P ∗
ref . (3.8)

The indices i and j give the nodal index in space and the time step, respectively. The value x(i, j)

is a random value from a preassigned distribution, bounded within some range −a < x(i, j) < a,

with 0 < a ≤ 1.

For the use in the sea ice rheology in FESOM, nodal values are averaged over elements where

rheology calculations take place.

This general kind of parameter perturbation has been used in different parameterizations

within atmospheric general circulation models, for example by Lin and Neelin (2000) in a con-

vective parameterization or by Bright and Mullen (2002) in cumulus and in planetary boundary

layer parameterizations. In both studies the random numbers x(i, j) have been correlated in

time, but not in space. In this work we will present three different possibilities for the parameter
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perturbation in equation (3.8). In the first approach, reassignment of random values will occur

after a predefined time interval and there will be no correlation between different nodes. For

the second approach the reassignment of random values will be replaced by a time correlation

via a Markov process. Finally, the third approach will include a limited correlation in space as

well as the correlation in time via a Markov process. In this context, the inclusion of correlation

in time and space seems reasonable. Sea ice has a strong memory when it comes to processes

such as formation, melting, and deformation, all of which have an impact on the resistance of

the ice toward further deformation. And even though small-scale structures such as ridges and

leads occur in the ice, there is generally considerable correlation within the spatial ice thickness

distribution, which is connected to different ice strength regimes. The relevant parameters of

spatial and temporal correlation for the new stochastic schemes will receive their values from

references given in section 3.4.

3.3.1. Reassignment time step perturbation (RP)

The RP approach is implemented as follows. At the end of each time interval with length

(Δt)pert, every ice-covered node within the model area is reassigned a random number from

some distribution. In addition, open ocean nodes that freeze over between those larger time

steps receive some random number as well.

Gaussian distributions are widely used for parameter perturbations (Lin and Neelin, 2000;

Bright and Mullen, 2002). The interval for possible values of the random numbers is bounded,

however, because P ∗ has to stay within physically realistic limits. Therefore the traditional

Gaussian distribution cannot be used. In this study three different Gaussian-like distributions

have been employed. Appendix A gives a short overview over the so-called x- and y-truncated

Gaussian distributions (Bardsley , 2007) and a third distribution, which is generated through

exponential transformation of a Gaussian distribution.

The important parameters for this first approach are the limit a of the domain of the random

number, the reassignment time step (Δt)pert, the truncated or bounded distribution function

used, and the variance of the underlying Gaussian distribution function. Values will be assigned

in section 3.4.

3.3.2. Markov process time correlated perturbation (MTP)

To include some correlation in time that does not only depend on a reassignment time step, the

approach of section 3.3.1 is adjusted. Following Bright and Mullen (2002) and Lin and Neelin

(2000) a Markov process of the general form

y(i, j) = αy(i, j − 1) + z(i, j) (3.9)

is used to keep correlation of the random value y(i, j) at the current time step with the previous

one, y(i, j − 1), with y(i, 0) = 0 as initial condition and also y(i1, j1 − 1) = 0 if j1 is the first

ice-covered time step for node i1 after an ice-free period. In equation (3.9) 0 < α < 1 denotes

the memory of the first-order Markov process (i.e., the autocorrelation). As derived in appendix
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B,

α = 1− λ(Δt), (3.10)

where λ = 1/τ and τ is the relaxation time.

The perturbation z(i, j) is an independent Gaussian random number with zero mean. We

set the variance of the z(i, j) to

σ̃2 = σ2/(Δt)pert ·Δt, (3.11)

with σ being comparable to the standard deviation of the Gaussian perturbation used in section

3.3.1, (Δt)pert the reassignment time step also used in section 3.3.1, and Δt the model time

step. Contrary to the approach in section 3.3.1, the perturbations z(i, j) are applied at each

time step.

To use the random values produced by equation (3.9) the values need to be transformed into

the respective values x(i, j) with limited range. How this is done is also described in appendix

B, for all the three possible bounded distributions. Differences in the results of the runs due to

the three different corresponding transformations will be discussed in section 3.5.

3.3.3. Markov process time and space correlated perturbation (MTSP)

To include some spatial correlation in the perturbation of P ∗, the random number z(i, j) in

equation (3.9) is adjusted as

z(i, j) =
σ
√
Δt√

(Δt)pert

⎛
⎝ξ(i, j) +

∑
k∈Ni

q(dik) · ξ(k, j)
⎞
⎠

⎛
⎝1 +

∑
k∈Ni

q(dik)
2

⎞
⎠

−1/2

. (3.12)

Here ξ(i, j) and ξ(k, j) are N(0, 1) distributed random numbers, q(·) is a weighting function

depending on the distance dik in meters between the current node i and its neighbor k, and Ni

is the set of indices of the direct neighbor nodes of node i.

Dividing by the square root of the sum in (3.12) normalizes the variance of the random

number z(i, j) so that the corresponding random variable is still Gaussian distributed with the

variance (3.11) and zero mean.

The weights q(·) are exponential functions given by

q(dik) = e−dik/dcorr (3.13)

with some correlation distance dcorr in meters.

In this approach the variance of a random variable that corresponds to (3.12) is given by

equation (3.11), while the covariance between two nodes is greater zero if they have common

neighbors. Otherwise the covariance is equal to zero.

The procedure for transforming the values y(i, j) into the respective values x(i, j) with limited

range is the same as for MTP as all variance calculations given in appendix B stay the same.
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3.4. Model setup

The three different approaches of section 3.3 for the parameter perturbations have been imple-

mented in the framework of FESOM. To analyze the changes caused by the perturbations, a

reference simulation REF with fixed parameter P ∗ = P ∗
ref = 20000N m−2 has been spun up

for 12 yr. It was continued further and also used to initialize the different test cases for the

stochastic perturbations. For the first part of this study we compared the total Arctic sea ice

volume and area as well as the monthly mean sea ice thickness and concentration distribution of

one realization of each stochastically perturbed model setup with the reference run. Integration

time for these sensitivity experiments was 3 yr, starting from 1990.

As will become clear in section 3.5.1, the approach with the strongest impact is MTSP, with

Markov process time and space correlated perturbations, which is the reason why the sensitivity

studies presented here will focus on this last approach. For the other two approaches, RP and

MTP, only one experiment each will be discussed in section 3.5.1. Table 3.1 shows the different

model setups, introduces their names, and summarizes their impact on total Arctic sea ice

volume and area.

Parameter ranges for the relaxation time τ follow Lemke et al. (1980), where the general

idea of the Markov chain has been used to estimate, among other things, relaxation times for

sea ice extent anomalies in the Arctic and Antarctic. The lower values of 2 h and 1 day have

been tested as well to reduce the temporal correlation considerably.

The range for correlation distances follows estimates of spatial scales for a valid interpretation

of the central Arctic sea ice thickness distribution function suggested by Flato (1998).

The parameter range ((1 − a)P ∗
ref , (1 + a)P ∗

ref ) for possible values of P ∗ follows several

publications concerning sensitivity studies of P ∗, among other parameters, within different

models (Owens and Lemke, 1990; Harder and Fischer , 1999). For this study we used from

P ∗ ∈ (10000 N m−2, 30000 N m−2) to P ∗ ∈ (3000 N m−2, 37000 N m−2). The value for the

variance σ2 is matched to the value of a to avoid the danger that the distribution function of the

random values becomes too flat after transformation and therefore tends to lose its Gaussian-like

shape. Values of σ that have been tested but will not be discussed here are 0.25 and 0.5, as

similar effects can be generated by changes in other parameters (e.g., (Δt)pert).

The last parameter that needs to be chosen is (Δt)pert. We chose values for (Δt)pert to be

within the range of 1 to 7 days to simulate the differences between the accumulated influence of

a diurnal up to a weekly perturbation cycle. Also a value of 1 h has been tested.

For the analysis of an ensemble run in section 3.5.2 we used an ensemble ENS of eight

members with the configurations given in table 3.1 for MTSP0. Integration time for the ensemble

was 17 yr, also starting from 1990.

In addition, we ran three deterministic experiments with fixed parameter values for P ∗

(REF1 with 12500 N m−2, REF2 with 15000 N/m2 and REF3 with 17500 N m−2) for 6 yr, to

be able to compare the changes caused by the parameter perturbations in the ensemble with

the effect of a uniform reduction of P ∗.
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Table 3.1: Parameter values of the stochastic perturbation for sensitivity experiments. For the
MTSP approach only one of the parameters has been changed from one run to another, with
the other values fixed at the default values in bold. RP0, MTP0 and MTSP0 are the default
cases for the correspondent approaches. Here ΔV and ΔA give the corresponding mean changes
in total Arctic sea ice volume and area for the time period 1990–1992 for all configurations. All
these experiments use a x-truncated Gaussian distribution.

σ Range of P ∗ (Δt)pert τ dcorr ΔV ΔA

[N m−2] [km] [103 km3] [106 km2]

RP0 0.375 (5000, 35000) 1 day −− – +0.177 −0.032

MTP0 0.375 (5000, 35000) 1 day 30 days – +0.243 −0.053

MTSP0 0.375 (5000,35000) 1 day 30 days 100 +0.566 −0.142

MTSP1 0.375 (10000, 30000) 1 day 30 days 100 +0.222 −0.051

MTSP2 0.375 (3000, 37000) 1 day 30 days 100 +0.713 −0.183

MTSP3 0.375 (5000,35000) 1 h 30 days 100 +0.580 −0.137

MTSP4 0.375 (5000,35000) 7 days 30 days 100 +0.448 −0.101

MTSP5 0.375 (5000,35000) 1 day 2 h 100 +0.027 −0.005

MTSP6 0.375 (5000,35000) 1 day 1 day 100 +0.254 −0.049

MTSP7 0.375 (5000,35000) 1 day 60 days 100 +0.564 −0.143

MTSP8 0.375 (5000,35000) 1 day 30 days 10 +0.217 −0.059

MTSP9 0.375 (5000,35000) 1 day 30 days 1000 +0.539 −0.137

3.5. Results

3.5.1. Sensitivity studies

In figure 3.2 results from experiments RP0, MTP0, and MTSP0 are shown, compared to the

change caused by a global reassignment of P ∗ = 15000 N m−2 in REF2. The differences in

monthly mean sea ice volume and concentration between each approach and the reference run

REF for the Northern Hemisphere for 3 yr reveal that the time and space correlated perturbations

in MTSP0 are by far the most influential, comparable in magnitude to the deterministic REF2

experiment with P ∗ = 15000 N m−2. It can also be seen that all three approaches lead to an

increase in total ice volume and a decrease in total ice area. This is consistent with the reasoning

by Owens and Lemke (1990): If P ∗ values in the stochastic simulations are low, sea ice thickness
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Figure 3.2: Effect of the three different perturbation approaches on the Arctic sea ice (left)
volume and (right) area. Shown is the difference in total Northern Hemisphere sea ice volume
and area between the reassignment time step perturbation RP0 (red), Markov process time
correlated perturbation MTP0 (green), Markov process time and space correlated perturbation
MTSP0 (blue), and the reference run REF with P ∗ = 20000 N m−2, respectively, for three years.
The difference is taken between monthly mean values of the respective stochastically perturbed
experiment and the reference run. For comparison, the difference between the deterministic
experiment REF2 with P ∗ = 15000 N m−2 and the reference run REF is also shown (black).
Light-colored horizontal lines give the respective mean deviations for the entire period.

increases locally along lines of convergent drift while the sea ice coverage around those areas is

decreased. This allows ice-free areas to freeze over and the cycle is repeated. Locally high P ∗

values, on the other hand, do not enforce a decrease in sea ice thickness within that area but

simply reduce convergent sea ice drift and keep the ice thickness at the current level. Therefore,

even for symmetric perturbations, the tendency is toward locally increased sea ice thickness and

decreased sea ice concentration, which leads to a slight increase in total Arctic sea ice volume.

For the cases of global parameter changes of P ∗ (e.g., REF2) all Arctic sea ice is weakened

compared to the reference run REF. This leads to the growth of thicker ice through convergence

and a resulting opening of sea ice cover. While this is a large-scale effect, in the simulations with

symmetric perturbations of P ∗ the effects are very localized, which might lead to a hindered

increase in sea ice thickness at one point in time and space (high P ∗ value) but also to a more

than compensating increase in ice thickness at another point (low P ∗ value).

Generally the effect of the stochastic perturbations on the sea ice volume is largest during

the melting season in spring, while the total sea ice area shows the strongest response in the

summer months, as will be discussed in section 3.5.2 for the ensemble simulation.

For MTSP0 figure 3.3 shows the evolution of the mean monthly difference in total ice (right)

area and (left) volume with respect to the reference run REF for 17 yr. It takes about 3 yr

until the perturbed simulation run reaches a new quasi-steady state. There is an anomaly in

the modeled sea ice volume difference around the year 1997 due to a rapid decrease in the total

REF and also MTSP0 sea ice volume in 1995 and 1996.
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Figure 3.3: Differences in total Northern Hemisphere sea ice (left) volume and (right) area
between MTSP0 and REF for 17 years. The difference is taken between respective monthly
mean values. Horizontal lines give the mean deviations for the entire period.

The mean total change in Arctic ice volume for the 17 yr simulated (+0.83×103 km3) makes

up about 4% of the reference run’s sea ice volume. For the total sea ice area the mean value

of the decrease is −0.12× 106 km2, which is only about 1% of the reference run’s mean sea ice

area.

Figure 3.4 shows the local effect of the three different approaches RP0, MTP0, and MTSP0,

revealed by the differences in monthly mean sea ice thickness and concentration between the

stochastic model runs and the reference run for the summer 1992 (June–August (JJA)). As can

be clearly seen, the magnitude of the local thickness and concentration changes is increased

by the inclusion of time and especially space correlation within the stochastic perturbations.

Especially along coastlines, in areas of convergent drift and with multiyear ice coverage, the sea

ice thickness is increased.

As the sea ice concentration is high in the central Arctic Ocean, changes of ice concentration

mostly occur along the ice edge and in areas of lower concentration where there is also convergent

drift (increase of concentration) or even divergent drift or reduced convergent drift relative to

the reference run, newly created by drift pattern changes in nearby areas. For winter months

the changes in sea ice concentration are mostly confined to a small front parallel to the eastern

Greenland coast and within the Bering Strait, as modeled sea ice concentrations farther north

are around 95%–100% in winter (not shown) and thus do not leave much space for a further

increase of concentration in convergent drift.

In summary, the effect of the stochastic perturbations on the local sea ice concentration is

rather small, with the strongest influence during the summer months. The influence on the

location of the ice edge is very limited, as the changes in sea ice concentration especially during

the winter months but also in summer are for most places not strong enough to fully remove

the sea ice cover in the monthly means.

The choice of the distribution function used for stochastic perturbations only has a moderate
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Figure 3.4: Differences in effective sea ice (top) thickness and (bottom) concentration between
(left) reassignment time step perturbation RP0, (middle) Markov process time correlated pertur-
bation MTP0, and (right) Markov process time and space correlated perturbation MTSP0 and
the reference run REF with P ∗ = 20000 N m−2, respectively. The difference is taken between
the summer 1992 (JJA) mean values at all nodes.

effect on changes in total ice concentration and volume. Especially for MTP and MTSP, the

transformation into the x-truncated Gaussian distribution shows the biggest difference in com-

parison to the reference run (not shown). This is because the truncated Gaussian distribution

function assumes a relatively flat shape with the time-step-dependent increase in variance as

given by equation (B.3) (see appendix B). As mentioned before, the small P ∗ values have a

bigger influence on the changes in sea ice concentration and volume than the high values, both

of which occur more often with random numbers that follow a distribution function with a broad

maximum.

From here on the x-truncated Gaussian distribution function will be generally used. Similar

results with a slightly smaller difference between reference run and stochastic run can be obtained

with the simpler transformation given by equation (A.1) (see appendix A) or the transformation

into the y-truncated Gaussian distribution (not shown).

The last two columns of table 3.1 show the mean deviations in sea ice volume and area of

the stochastic experiments from the reference run REF for the time period 1990 to 1992.

These sensitivity studies revealed that the most sensitive parameters in the MTSP are the

limiting value a for the range of P ∗ (MTSP1 and MTSP2) and the correlation distance dcorr

especially between values of 10 to 100 km (MTSP8 and MTSP0).

A further increase in correlation distance to 1000 km (MTSP9) does not lead to a more

pronounced impact on changes in ice volume and area compared to MTSP0 with 100-km cor-

relation distance. These results provide insight into the range of spatial correlations within the
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perturbations that are influencing the general sea ice thickness and concentration patterns.

The correlation time τ for MTP and MTSP has a quite small effect when it is varied in the

limits investigated by Lemke et al. (1980). Only very small values can decrease the influence

of the temporal correlation in a way that reduces the effect toward a no-time-correlation ap-

proach (e.g., MTSP5 and MTSP6). Changes in the redistribution time interval (Δt)pert for RP

also have a small influence on the difference between reference run and stochastic run, with an

increasing difference occurring with an increasing redistribution time interval size (not shown).

The parameter that has a strong effect on the form of the distribution function after transfor-

mation is the variance σ̃2 of the applied perturbations in MTP and MTSP, which itself can be

regulated through the parameters (Δt)pert (MTSP3 and MTSP4) and σ (see equation (3.11)).

As the time dependent total variance given by (B.3) rises quickly in the beginning but then

tends asymptotically toward its limiting value (B.4), the limiting value is of importance when it

comes to the form of the distribution function that most long-time ice-covered nodes share after

transformation. Most values for σ̃ used in this study are relatively high. Because of the design

of the transformations, the resultant form of the chosen bounded distribution function does not

vary much for high values of the total variance (B.4) of the underlying Gaussian distribution.

In our sensitivity studies medium to high values for variance lead to the biggest difference in

sea ice volume and extent. Very high total variance values that are for example reached with

(Δt)pert = 1h (MTSP3) do not only seem unlikely but also do not show a stronger impact than

values that are quite a bit smaller because the transformed distribution functions do not differ

much. Only small σ̃ and therefore total variance values actually lead to a considerable decrease

in the impact of the stochastic perturbations (e.g., with (Δt)pert = 7days (MTSP4)).

3.5.2. Ensemble run

General evaluation

The ensemble experiment with eight ensemble members is used to analyze the mean effect of the

Markov process time and space correlated perturbations of P ∗. Furthermore, we are interested

in the spread generated by the ensemble.

The parameter choice for the members is the same as for MTSP0 in table 3.1.

Figure 3.5 shows the impact of the stochastic perturbations on the monthly mean Northern

Hemisphere ensemble mean sea ice volume and area compared to the reference run for the

first 6 yr. Also shown are the differences of deterministic runs with fixed parameter values for

P ∗ (REF1 with 12500 N m−2, REF2 with 15000 N m−2 and REF3 with 17500 N m−2) to

the reference run REF with P ∗ = 20000 N m−2. It can be seen that the changes in Arctic

sea ice volume (increase) and area (decrease) that occur due to the stochastic perturbations

are persistent even after performing the ensemble mean and cannot be reproduced by simple

recalibration of fixed parameter values.

Figure 3.6 shows the changes in local sea ice thickness due to the stochastic perturbations

for the mean of ENS (top left) compared to changes produced by the fixed parameter value run

REF2 with 15000 N m−2 (top right) for March 1995. While the changes due to the constant

modification of the parameter value are very smooth in their spatial distribution in the central
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Figure 3.5: Differences in total Northern Hemisphere sea ice (left) volume and (right) area be-
tween the mean of the stochastic ensemble ENS (black) with Markov process time and space
correlated perturbations, REF1 (P ∗ = 12500 N m−2, blue), REF2 (P ∗ = 15000 N m−2, green),
REF3 (P ∗ = 17500 N m−2, red), and the reference run REF with P ∗ = 20000 N m−2, respec-
tively. The difference is taken between monthly mean values. Light-colored horizontal lines give
the respective mean deviations for the entire 6-yr period.

Arctic, the stochastic perturbations act locally and thus introduce considerable smaller-scale

variability. The tendency toward increased multiyear ice thickness is consistent in both experi-

ments. This is also visible when looking at the modeled ice thickness distribution of the reference

run REF (figure 3.6, bottom left), the ensemble mean (figure 3.6, bottom middle), and REF2

(figure 3.6, bottom right) for the entire Arctic. As can be seen, the ice thickness distribution of

the ensemble mean shows a longer right tail similar to REF2 with 15000 N m−2 when compared

with REF. Sea ice thickness in the ensemble can reach more than 9m. On the other hand, while

the general structure of the distribution is the same for the three simulations, with a peak for

thin first-year ice and another one for the thicker multiyear ice with a thickness of about 2m,

both peaks are more pronounced for the ensemble mean (figure 3.6, bottom middle). All three

distributions are reasonable when compared to measurements, as multiyear and first-year ice are

clearly distinguishable, even though the location and height of the peaks might be slightly dif-

ferent in measured samples depending on sampling time and place (S. Hendricks 2012, personal

communication; Yu et al., 2004).

The difference in monthly mean sea ice thickness averaged for the entire Arctic (monthly

mean total sea ice volume divided by monthly mean sea ice area) between the mean of the

ensemble run ENS and the reference run REF with P ∗
ref ranges from about +0.08m (about +5%

of reference run mean sea ice thickness) in January to more than +0.26m (more than +11%)

in September, here discussed for 2004. This implies that the biggest effect of the perturbations

pertains to thick multiyear ice that survives the spring melt. The ratio of the area of multiyear

ice to the area of first-year ice increases in spring toward summer when the total sea ice area

decreases.

Moreover, the changes in multiyear ice thickness are strong enough to increase the relative
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Figure 3.6: (top) Differences in effective sea ice thickness between the mean of (left) the stochas-
tic ensemble ENS and (right) REF2 (P ∗ = 15000 N m−2) and the reference run REF with
P ∗ = 20000 N m−2, respectively. The difference is taken between March 1995 mean values at
all nodes. (bottom) Northern Hemisphere sea ice thickness distribution, March 1995, for (left)
the reference run REF, (middle) the mean of the ensemble ENS, and (right) REF2. Open water
is not considered.

difference between ensemble and deterministic run even though the mean monthly ice thickness

of both experiments increases substantially during spring from about 1.7m in November to

about 2.6m in July 2004. In figure 3.7 the relative influence of the ensemble run on sea ice

volume and area compared to the reference run can be seen. Once again this figure shows the

increased influence of stochastic perturbations in the late spring and summer months.

As the effects of the stochastic perturbations in the dynamics scheme of the model add

up over time when it comes to sea ice thickness, regions with all-year ice coverage produce a

pronounced difference in ice thickness compared to the reference run REF. Figure 3.8 illustrates

this for the 14-yr mean seasonal difference between the reference run REF and the mean of the

ensemble ENS.

The first three years (1990–92) have been omitted in the averaging for figure 3.8, as the

quasi-steady state of the difference is reached around 1993.

The effect of the stochastic perturbations on the multiyear ice is of comparable magnitude

in winter and summer, whereas first-year ice exhibits only a minor response to the parameter

perturbation in the long-term mean.

In addition to the long-term means of figure 3.8, figure 3.9 presents the monthly mean sea

ice thickness standard deviations of the stochastic ensemble for the Arctic for March 1996 (top
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Figure 3.7: Relative influence of the ensemble mean of ENS on the Northern Hemisphere sea
ice (left) volume and (right) area compared to the reference run REF with P ∗ = 20000 N m−2,
(ENS-REF)/REF. The relative difference is taken between monthly mean values. Horizontal
lines give the respective mean deviations for the entire period 1990 to 2006.

Figure 3.8: Differences in effective sea ice thickness between the mean of the stochastic ensemble
ENS and the reference run REF with P ∗ = 20000 N m−2 for (left) winters (December–February
(DJF)) and (right) summers (June–August (JJA)) 1993 to 2006. The difference is taken between
mean values at all nodes.

left) and March 2004 (top right). Furthermore the long-term mean standard deviation within

the ensemble for the months of March 1993 to 2006 is illustrated by the bottom left panel of

figure 3.9. Its magnitude is comparable to the modeled interannual variability of the reference

run, shown in the bottom right panel as the sea ice thickness standard deviation for March 1993

to 2006.

The ensemble-generated spread is large in regions where dynamics has a strong influence dur-

ing the whole year, while it is low in regions with a strong impact of seasonal melting and freezing
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Standard deviation of sea ice thickness

Figure 3.9: Ensemble- and model-generated spread. (top) The monthly mean linearly interpo-
lated nodal sea ice thickness standard deviation of the stochastic ensemble ENS in the Arctic
for (left) March 1996 and (right) March 2004. (bottom) (left) The ensemble-generated mean
standard deviation for March of 1993 to 2006 and (right) the standard deviation of March from
the reference run REF for the same time period.

processes and especially where the sea ice completely melts in summer. In the high-deformation

region north of Greenland the ensemble-generated variability exceeds the interannual variability

in the reference run by a factor of 2. The small ensemble spread for regions with predominantly

first-year ice is even more visible in the summer months, even though the modeled interannual

variability of REF is high in those months, especially in September (not shown).

Comparison to observations

The effect of the stochastic perturbations on changes in sea ice concentration is small compared

to changes in the sea ice thickness distribution.
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Comparing model sea ice concentration data with satellite data from Cavalieri et al. (1996),

the reference FESOM model run REF tends to overestimate the sea ice concentration, especially

in Fram Strait and in the Greenland Sea (not shown). The stochastic ensemble exhibits only

very marginal improvements in those regions during the winter months and no noteworthy

improvements during the summer months (not shown).

Changes in sea ice velocities are generally small as well (not shown). The perturbations

influence the sea ice velocities on rather short time scales, which has an influence on the sea ice

thickness and concentration distribution, as changes concerning those variables can add up over

time. Only strong changes in the sea ice thickness may (through sea ice rheology) cause changes

in velocities that last for longer times.

Figure 3.10: (top) Mean sea ice thickness distribution for the ensemble mean of (left) ENS,
(right) the reference run REF, and (middle) the observation OBS (Kwok et al., 2007, 2009) in
the time interval 3 October to 8 November 2004. Observational data is restricted to the central
Arctic Ocean. (bottom) The difference between the observation and (left) the ensemble as well
as (right) the reference run. Modeled data has been interpolated to the grid of the observational
data in the bottom row.

Comparing reference and ensemble experiments to satellite data for sea ice thickness (e.g.,

3 October to 8 November 2004, derived by Kwok et al. (2007, 2009) from the Ice, Cloud, and

Land Elevation Satellite (ICESat)), the ensemble is in better agreement with the observations

for the multiyear ice north of Greenland, while the underestimation of the sea ice thickness in

the eastern Arctic remains mostly unaffected (figure 3.10, bottom row). This holds for most of

the five autumn and five winter months of the years 2003 to 2008, for which Kwok et al. (2007,

2009) presented observational data. The general distribution with the high sea ice thickness
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along the northern Greenland coast and the Canadian Arctic Archipelago is reproduced by the

reference run REF as well as by the mean of the ensemble run ENS (figure 3.10, top row).

When it comes to the comparison of local sea ice thickness with upward looking sonar (ULS)

data, which give time series of observed sea ice draft at fixed locations, changes due to the

stochastic perturbations are small and no general improvement of the ensemble mean compared

to the reference run can be seen. This is mostly due to the fact that the ULS data points

available for this study are located in regions where the impact of the stochastic perturbations

is low (i.e., in the Beaufort Sea, Fram Strait, and Greenland Sea).

Figure 3.11: Time series of sea ice draft at (left) one location in the Beaufort Sea (Melling and
Riedel , 2008) (74.15�N, 125.91�W, starting 16 Sep 1997) and (right) one in Fram Strait (Witte
and Fahrbach, 2005) (79.01�N, 2.04�W, starting 29 Aug 1997). The measured data are shown in
blue, the reference model REF data in green, the mean of the ensemble ENS data in red, and
the eight ensemble members in black. The right panel has some data gaps (e.g., around days
250-270). Shown are daily averaged values.

As can be seen in figure 3.11 for two ULS data series, one in Fram Strait (right) and the

other in the Beaufort Sea (left), the differences between the ensemble members of the stochastic

model run are small and decrease in times of increased thermodynamic influence or divergent

drifts, when the value of the ice strength is of little importance (e.g., around day 10 and day

130 in figure 3.11, left). The seasonal cycle has a strong effect on the ensemble spread, which

goes down to zero when the sea ice melts in summer.

We have performed root-mean-square and mean difference calculations between the obser-

vations (9 ULS data series in the Beaufort Sea (Melling and Riedel , 2008) and 11 ULS data

series in the Fram Strait and Greenland Sea (Witte and Fahrbach, 2005)) and the corresponding

modeled ensemble mean time series. The same has been done between observations and the

modeled reference run time series. Comparing the results indicated minor improvements for

some time series due to the stochastic perturbations but also some minor worsening of results

for other locations. Generally the ensemble spread is very small in these regions.

On the other hand, figure 3.12 shows that the sea ice thicknesses produced by the ensemble

members at a location near the northern Greenland coast vary considerably. This is also true
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Figure 3.12: Time series of sea ice thickness at 84�N, 40�W of the reference run REF (green),
the mean of the ensemble ENS (red) and the ensemble members (black) for three years starting
at 1 Jan 1993.

when the ensemble mean is compared to the reference run. Standard deviation of the ensemble

for the time series at 84�N, 40�W reaches, for example, 2.25m and more in January 2002, while

the mean difference between ensemble mean and reference run in, for example, the year 1994, is

0.79m (about 12% increase). The cause for this is the reduced seasonal variability produced by

thermodynamic melting and freezing compared to the variability due to dynamics in the central

Arctic Ocean. Furthermore, the high amount of multiyear ice is of major importance, especially

for the sea ice rheology.

Unfortunately, sea ice thickness data in the region north of the Greenland coast are not

available in a way that allows for a meaningful comparison. This is also true when it comes to

data necessary for calibrating the perturbation scheme correctly, with respect to the relation

between ensemble mean error and ensemble spread.

3.6. Summary and outlook

Three different approaches to randomly perturb the parameter P ∗ of the ice strength pa-

rameterization of the sea ice dynamics module in FESOM have been presented, with increasing

complexity concerning temporal and spatial correlation. Because of the nonlinearity of the sea

ice rheology, a symmetric perturbation of P ∗ leads to a general increase in Arctic sea ice vol-

ume and a decrease in the sea ice area compared to a deterministic reference run. Inclusion

of some temporal correlation via a Markov process and especially a spatial correlation between

nodes with common neighbors proved to have a strong influence on the changes in the sea ice

thickness and concentration distribution compared to the reference run. These changes cannot

be reproduced by a global reassignment (reduction) of constant parameter values for P ∗ in the

purely deterministic model.

Especially in regions where the influence of sea ice dynamics is high and where there is
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no complete melting of sea ice during summer, the most sophisticated stochastic parameter

perturbation of this study, MTSP, with a Markov process time correlation and also a spatial

correlation of nodes with common neighbors, shows a strong impact. The difference of the

ensemble mean compared to the reference run, as well as the generated ensemble spread, is

of considerable magnitude. Both increase during long-lasting periods of convergent drift and

constant ice coverage. This reflects the cumulative nature of the deformation processes in the

sea ice cover. On the other hand, the influences of melting and freezing as well as divergent

drift patterns lead to a decrease in the ensemble spread and also in the mean influence of the

P ∗ perturbations.

Because of the lack of appropriate data, especially in regions with multiyear ice where the

influence of the perturbation schemes is strongest, we cannot derive an exact calibration of

spread compared to the ensemble mean error, either for sea ice thickness or for concentration.

Compared to the model’s interannual spread in sea ice thickness, though, the ensemble spread

is of comparable magnitude. Using this finding as a first indication, the ensemble spread seems

to be reasonable. The spread of sea ice thickness within the ensemble produced by the various

P ∗ perturbations applied may indicate a range of possible P ∗ values for future data assimilation

studies. It shows the general influence local changes of P ∗ can have on the sea ice thickness

distribution patterns within the model. Within this study an appropriate range of values seems

to be P ∗ ∈ (5000 N m−2, 35000 N m−2).

To summarize the results of this paper, first of all it would be good to have a more extensive

dataset for sea ice thickness, to be able to evaluate (not only) stochastic sea ice parameterization

schemes more thoroughly. Long-time measurements at fixed locations such as ULS data are of

great value for this purpose but are hard to obtain in regions with a thick perennial ice cover.

Nevertheless, even without such observations our results prove that it is of importance to

look at the inherent uncertainties of parameterizations. One approach to do so is to include

stochasticity in the formulation of parameterizations, as Palmer (2012) suggests in view of a

probabilistic Earth-system simulator. The effect of parameterization uncertainties is going to be

even stronger in fully coupled atmosphere–ocean–sea ice models and will influence the potential

of the model to predict future states of the climate system. We are currently working on the

inclusion of stochastic sea ice parameterizations in such a fully coupled model.

Even though we have as yet only presented a first approach to stochastic perturbations in

a sea ice model, we think that such probabilistic parameterizations should be implemented in

future climate ensemble prediction systems to include the model uncertainty at a level where it

first appears in the equations. This is especially of importance when it comes to seasonal and

interannual predictions.

In the process of developing parameterizations and assessing their inherent uncertainties it

is essential to think about model resolution, as increased model resolution has an impact on

the statistics the parameterizations are based upon. These changing statistics might be more

readily applied to a stochastic parameterization than a purely deterministic one.

Perturbing P ∗ in a sea ice model is a first step toward addressing these topics and serves

as a tool to test and evaluate the sensitivities of the model and the mesh it uses. Even though

a constant P ∗ value might be sufficient for many problems, it should be kept in mind what an
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influence slightly perturbed parameters may have, even if the perturbations are symmetric.

Further work will now be directed toward other perturbation schemes, especially concerning

spatial correlation, and toward other parameters of the sea ice model, especially toward thermo-

dynamic parameters such as the sea ice albedo. In a first step, we compared our approach of a

stochastically perturbed P ∗ with a realization of the stochastically perturbed parameterization

tendencies (SPPT) scheme by Buizza et al. (1999). Here, the parameterization of the internal

forces �Fint in equation (3.1) has been perturbed by multiplicative noise. In our experiment with

the SPPT scheme there was no spatial correlation between nodes and the reassignment time

steps used were similar to those of our reassignment time step perturbation approach, RP. The

results of this first application of the SPPT scheme to sea ice dynamics showed changes of similar

magnitude as the RP approach (not shown). Therefore implementation of temporal correlation

in the Markov process time correlated approach, MTP, and implementation of temporal and

spatial correlation in the MTSP approach proved to be much more influential concerning sea

ice dynamics than this specific realization of the SPPT scheme. We have also started to apply

the general idea of perturbing traditionally fixed parameters in some preliminary experiments to

the parameter C in equation (3.7) of the sea ice rheology and also to the lead closing parameter

h0 used in the parameterizations of the continuity equation for the sea ice concentration. The

latter parameter influences the relation between increase in sea ice thickness and increase in sea

ice concentration (lead closing) during freezing conditions.

First results have shown that parameter perturbations concerning C are of less importance

compared to P ∗, whereas the perturbations of h0 show quite a strong response with respect to

the sea ice concentration in the Southern Hemisphere (not shown). For Southern Ocean sea ice,

the influence of P ∗ perturbations is small, which is partly due to the small amount of modeled

multiyear ice in this FESOM version, but probably also reflects the natural differences between

Arctic and Antarctic. Further studies connected to these first results will be directed toward the

different influences parameter perturbations have on changes in ice thickness and concentration

distribution in the Northern and Southern Hemisphere, which have shown quite diverging results

so far.

Another issue that will be investigated in the future is the influence of methods that can be

used to include spatial correlation of random values. It is of great interest to see how this cor-

relation, and therefore the entire stochastic parameterization, is influenced by the varying mesh

resolution in a finite element model. For investigations of the resolution-dependent behavior of

stochastic and also deterministic parameterizations FESOM is an excellent tool.
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4. Influence of stochastic sea ice

parametrization on climate and the

role of atmosphere–sea ice–ocean

interaction11

11This chapter has been published under the title Influence of stochastic sea ice parametrization on climate
and the role of atmosphere–sea ice–ocean interaction in the Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences (see reference Juricke and Jung , 2014). The original layout
of the article was changed to match the layout of the dissertation. No changes to the text were made, though,
except for minor misspelling corrections. Additionally, referencing to figures, equations and tables as well as
citations were altered. They have been changed to match the respective layout in the rest of the dissertation. The
following figures differ slightly from the original publication, owing to the editing by the publisher. In addition,
the bibliography of the publication has been merged with the bibliography of the dissertation. The abstract of
the article was retained. My contributions to this article include all the necessary implementations and model
adjustments, the experimental set-up and initialization as well as monitoring of the simulations. I carried out
all of the diagnostics and the plotting of the results. The concept for the experimental set-up as well as the
evaluation, assessment, and interpretation of the results were developed and conducted in discussions with my
coauthor Thomas Jung. He has also corrected my original manuscript before submission to the journal. In
addition, I would like to point to the acknowledgments at the end of the article.
Please excuse any remaining inconsistencies with the other chapters of this dissertation originating from the
general layout of the original publication, including differences in spelling, figure layout, acronyms, equations and
phrasing.
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Abstract

The influence of a stochastic sea ice strength parametrization on the mean climate is

investigated in a coupled atmosphere–sea ice–ocean model. The results are compared with

an uncoupled simulation with a prescribed atmosphere. It is found that the stochastic sea

ice parametrization causes an effective weakening of the sea ice. In the uncoupled model this

leads to an Arctic sea ice volume increase of about 10–20% after an accumulation period

of approximately 20–30 years. In the coupled model, no such increase is found. Rather,

the stochastic perturbations lead to a spatial redistribution of the Arctic sea ice thickness

field. A mechanism involving a slightly negative atmospheric feedback is proposed that can

explain the different responses in the coupled and uncoupled system. Changes in integrated

Antarctic sea ice quantities caused by the stochastic parametrization are generally small,

as memory is lost during the melting season because of an almost complete loss of sea

ice. However, stochastic sea ice perturbations affect regional sea ice characteristics in the

Southern Hemisphere, both in the uncoupled and coupled model. Remote impacts of the

stochastic sea ice parametrization on the mean climate of non-polar regions were found to

be small.
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4.1. Introduction

Accurately simulating sea ice is an essential part of coupled Earth system modelling. Sea ice has

a strong impact on the heat and momentum exchange between the atmosphere and ocean. As

an insulating layer, sea ice can partially decouple the atmosphere from the ocean, and through

the albedo feedback, it influences the radiation balance at the surface.

Sea ice also alters the freshwater content of the upper ocean and hence ocean deep convection;

therefore, sea ice is an important driver of changes in the global overturning circulation of the

ocean. Sea ice is also considered to be a main factor for the Arctic amplification of anthropogenic

climate change.

Sea ice is known to show changes on a wide range of temporal scales. There is evidence, for

example, for high interannual variability, both locally (Hendricks et al., 2011) and Arctic wide

(Laxon et al., 2003). Furthermore, recent years have shown a strong decrease in Arctic sea ice

volume (Kwok and Rothrock , 2009; Kwok et al., 2009) and area, which is only partly captured by

models (Turner et al., 2013; Johnson et al., 2012; Stroeve et al., 2012). Potential predictability

studies for the Arctic reveal the importance of an accurate simulation of the prevailing sea ice

thickness conditions to allow for skilful seasonal and interannual predictions of Arctic sea ice

(Holland et al., 2011; Chevallier and Salas-Mélia, 2012).

To simulate sea ice thickness and concentration fields realistically, it is crucial to adequately

capture the drift of the sea ice (Fichefet and Maqueda, 1997). Sea ice drift is strongly influenced

by the sea ice dynamics which, in turn, hinges on the formulation of the sea ice rheology that

describes the deformation behaviour in the presence of convergent flow. Most climate models use

the widely used viscous–plastic rheology by Hibler (1979) or the modified elastic–viscous–plastic

rheology (Hunke and Lipscomb, 2010); other formulations are being tested (Girard et al., 2011),

and different ways of solving the highly nonlinear equations are emerging from the viscous–

plastic formulation (Lemieux et al., 2012; Losch et al., 2013). Still, all existing parametrizations

have certain shortcomings when it comes to the representation of sea ice deformation and the

resulting sea ice drift. Therefore, the sea ice rheology has to be considered as a significant source

of uncertainty in coupled climate models.

In the past two decades or so, the representation of model uncertainty in models has be-

come a major area of research. Studies with simplified models such as the Lorenz ’96 system

(Lorenz , 1996) emphasize the importance of developing and analysing stochastic parametriza-

tions as a promising alternative to deterministic schemes (Wilks, 2005; Arnold et al., 2013). A

lot of progress in this field has been made in atmospheric modelling and especially weather fore-

casting. Different studies have shown the importance of stochastic approaches when it comes

to accounting for model uncertainty and for accurately representing subgrid scale processes.

Approaches range from estimating the accumulated physical tendency uncertainty in the for-

mulations of the discretized prognostic equations (Buizza et al., 1999; Weisheimer et al., 2011)

to a stochastic kinetic energy backscatter scheme which simulates the backscatter of dissipated

energy from unresolved to resolved scales (Shutts, 2005; Jung et al., 2005; Berner et al., 2009).

Moreover, stochastic parametrizations have been developed for non-orographic gravity waves

(Lott et al., 2012), convection (Lin and Neelin, 2002), and deep convection (Plant and Craig ,
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2008). In addition, stochastic perturbations have been applied to a variety of parameters within

deterministic parametrizations (Lin and Neelin, 2000; Bright and Mullen, 2002; Li et al., 2008).

While the emphasis of previous research has been on the atmosphere, more recently stochas-

tic approaches have also been developed for other parts of the Earth system. Examples include

the stochastic representation of the ice strength parameter in sea ice–ocean models (Juricke

et al., 2013), the use of stochastic perturbations for oceanic temperature and salinity fields in

the computation of the horizontal density field (Brankart , 2013) and the stochastic representa-

tion of turbulent surface fluxes at the atmosphere–ocean interface in a coupled model (Williams,

2012). Those studies demonstrate that the explicit representation of model uncertainty in mod-

els has not only the benefit of improved ensemble prediction capabilities, but that stochastic

parametrizations also have the potential to change the climate of models. It has been argued,

therefore, that stochastic parametrizations should be incorporated in the next generation of

climate models (Palmer , 2012).

In this study, the influence of using stochastic dynamical formulations in sea ice models will

be further explored building on the work of Juricke et al. (2013), in which stochastic perturba-

tions have been applied to the sea ice strength parametrization of the sea ice rheology formulation

in a sea ice–ocean model. Here, a slightly modified stochastic parametrization is tested. Fur-

thermore, it is investigated whether the substantial changes in the mean climate state caused by

the stochastic sea ice parametrizations in a sea ice–ocean model found by Juricke et al. (2013)

also translate to fully coupled climate models. It is of importance, also for future ensemble

simulations, to be aware of any impact on the mean climate owing to uncertainty estimates in

parametrizations and in this context to understand effects of perturbations in highly nonlinear

systems. This study also aims at detecting the possibly differing impacts in the more complex

coupled system compared with uncoupled models. To this end, the coupled atmosphere–ocean–

sea ice–land surface system ECHAM6-FESOM is used in a configuration with relatively high

resolution in the Arctic ocean (Sidorenko et al., 2014). More specifically, single climate simula-

tions are conducted to analyse the impact of the stochastic parametrization on the mean state of

the system. The atmospheric fluxes generated by a coupled reference simulation are then used to

carry out experiments with the uncoupled sea ice–ocean model with stochastic sea ice strength

parametrization. In this way, it is possible to explore the role of atmospheric feedback processes

in determining the response of the climate system to stochastic sea ice perturbations. As only

one single parametrization is affected by perturbations, it is still feasible to find some detailed

physical explanations for the workings and effects of the perturbations on sea ice variables in

the uncoupled as well as the coupled system.

The structure of this paper is as follows: section 4.2 gives a short summary of the model

and the stochastic parametrization, including a description of the modification of the spatial

correlation procedure for the stochastic perturbations originally developed by Juricke et al.

(2013). Furthermore, the experimental set-up is explained. In section 4.3, the impact of the

stochastic parametrization on the global mean climate is analysed and discussed. Detailed

explanations of the differing effects in the coupled and uncoupled simulations are given. Finally,

section 4.4 gives a summary, some concluding remarks and an outlook for future work.
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4.2. Experimental set-up

In this study, the coupled model ECHAM6-FESOM is used. ECHAM6 is the spectral atmo-

spheric climate model of the Max Planck Institute for Metereology in Hamburg (Stevens et al.,

2013). It is coupled through the OASIS3–MCT coupler (Valcke, 2013) to the finite-element sea

ice ocean model (FESOM) of the Alfred Wegener Institute in Bremerhaven (Danilov et al., 2004;

Wang et al., 2008; Timmermann et al., 2009; Sidorenko et al., 2011; Wang et al., 2013). While

ECHAM6 uses a T63L47 grid with a resolution of about 1.85◦ and 47 vertical levels, FESOM

uses an unstructured triangular finite-element grid for the ocean surface and the sea ice model,

with resolutions ranging from over 150 km in the open oceans to about 25–10 km in the Arctic

and near the coasts. In addition, there is a gradual increase in resolution along the equatorial

belt in the tropics to about 25 km (see figure 1 in Sidorenko et al., 2014). The three-dimensional

ocean model uses a tetrahedral grid of 46 unevenly spaced z-levels. The timestep of FESOM is

30min, whereas ECHAM6 uses a timestep of 10min. Coupling takes place every 6 h. Further

details on ECHAM6-FESOM, its set-up and mean-state performance are discussed by Sidorenko

et al. (2014). The climate variability of the model is described in Rackow et al. (2014).

The prognostic variables of the sea ice model are the effective (mean) sea ice thickness, hice,

the lateral sea ice velocities, uice and vice, and the sea ice concentration, A, as well as the mean

snow layer thickness, hs. The evolution of hice, hs and A is described by equations for advection

as well as freezing and melting processes. Changes in sea ice velocities are calculated using the

equation of momentum balance.

4.2.1. Stochastic sea ice strength parametrization

The stochastic parametrization used in this study is described in detail by Juricke et al. (2013).

In the following, therefore, only a brief explanation is given, and differences to the original

formulation are highlighted.

The equation of momentum balance for the lateral sea ice velocities is given by

m
∂�ui

∂t
= �τair + �τocean −mf�k× �ui −mg∇ηo + �Fint. (4.1)

In (4.1) m is the mass per unit area, �ui is the horizontal sea ice velocity vector, �τair and �τocean

are the atmospheric and oceanic stress, respectively, f is the Coriolis parameter, �k = (0, 0, 1), g

is the gravitational acceleration and ηo is the sea surface height of the ocean.

The internal forces �Fint = (F1, F2) are parametrized using the highly nonlinear elastic–

viscous–plastic rheology (Hunke and Lipscomb, 2010) which is based on the viscous–plastic

rheology by Hibler (1979). Some further adjustments have been made by Harder (1996). Within

this parametrization, the so-called internal ice strength P can be interpreted as a regularization

factor for the yield curve which describes all possible combinations of stresses that lead to the

yielding of the sea ice. Therefore, large values of P lead to an increased resistance of the ice

when it comes to convergent motion, whereas small values of P produce weaker sea ice and an

earlier onset of plastic deformation. This, by changes in the sea ice velocities, leads to a piling

up of sea ice and an increase of sea ice thickness. P itself depends linearly on the factor Pp given
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by

Pp = P ∗hice
A

· exp(−C(1−A)), (4.2)

where P ∗ and C are dynamic ice strength parameters.

To account for uncertainties in the choice of the empirical parameter P ∗, including temporal

and spatial variability, Juricke et al. (2013) have applied a symmetric Markov process time and

space correlated perturbation (MTSP) to P ∗. Adjustments to the spatial correlation of the

perturbations are outlined in the following.

For each timestep j and node i of the ice covered triangular surface mesh, a new value,

P ∗(i, j) = (1 + x(i, j)) · P ∗
ref , (4.3)

is calculated. P ∗
ref = 30 000N m−2 is the reference value of the regular deterministic parametriza-

tion and x(i, j) is a random number from a symmetric distribution with zero mean. In addition,

x(i, j) ∈ (−0.75, 0.75) and therefore P ∗(i, j) ∈ (7 500N m−2, 52 500N m−2). Note that the value

for P ∗
ref in the three simulations of this study differs from the value of 20 000N m−2 used in

MTSP by Juricke et al. (2013). As P ∗ is one of the tuning parameters of the sea ice model, it

was used to adjust sea ice extent and volume in the coupled set-up.

In summary, equation (4.3) describes a random perturbation of a previously fixed parameter.

To create spatially and temporally correlated perturbations x(i, j) with a bounded distribution,

transformations of Gaussian random numbers are used. First, time correlation is generated by

y(i, j) = αy(i, j − 1) + z(i, j), (4.4)

with autocorrelation α = 0.994 and z(i, j) an uncorrelated Gaussian-distributed random number

with zero mean and standard deviation σ = 0.375. The timestep of the ocean and sea ice model

is Δt = 30min. These values are within the range of values tested in Juricke et al. (2013)

even though they differ slightly from their preferred parameter choice, implying a slightly larger

maximum variance σ2
lim (for j → ∞) for the autoregressive process in (4.4).

The values y(i, j) are then spatially correlated using two correlation matrices CNH and CSH ,

one for the nodes above 45◦ and one for below −45◦, respectively, to ensure that the Northern

Hemisphere (NH) and Southern Hemisphere (SH) sea ice are uncorrelated. The entries of each

matrix are given by Cnm
X = e−dnm/dcorr , X = {NH,SH}, where dnm is the distance between

node n and m, from the respective hemisphere, and dcorr = 1000 km for both matrices. For this

new spatial correlation scheme, dcorr = 1000 km was chosen to produce large-scale patterns in

the variations of P ∗ and possibly maximize the impact of the perturbations.

Using the Cholesky decompositions of CNH and CSH , spatially correlated ŷ(i, j) can now

be generated for both hemispheres from the temporally correlated y(i, j), by simple matrix–

vector multiplication. As the resulting random numbers are still Gaussian distributed, the

transformation

x(i, j) = −a+
2a

(1 + e(−βŷ(i,j))
(4.5)

transforms the numbers into the limited range (−a, a) with a = 0.75 and β = 1/σlim with
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σlim =
√

σ2/(1− α2) (Juricke et al., 2013). For the initialization of the random numbers,

equation (4.4) is solved successively a couple of thousand times at the beginning of each climate

simulation to reach this maximum standard deviation of the autoregressive process.

4.2.2. Simulations

To investigate the impact of the stochastic parametrization several multi-decadal integrations

have been carried out. A simulation with the coupled ECHAM6-FESOM model without stochas-

tic sea ice parametrization serves as the reference integration (REF hereafter). The surface

flux fields from REF, saved for every 6 hourly coupling timestep, were used to drive FESOM

in uncoupled mode with the stochastic sea ice parametrization switched on (STOCH UNCPL

hereafter). This integration allows for a direct evaluation of the impact of stochastic sea ice

parametrization on sea ice distribution and ocean currents without an interactive atmosphere.

To analyse the impact of atmospheric feedbacks another experiment with the coupled model

ECHAM6-FESOM has been carried out in which the stochastic sea ice strength parametriza-

tion has been switched on (STOCH CPL). The uncoupled experiment STOCH UNCPL was run

for a period of 102 years; the two coupled integrations were extended to 201 years in order to

account for the larger uncertainty generated by having two completely different realizations of

the atmospheric trajectory (table 4.1). Note that all parameter values and parametrizations in

FESOM for STOCH UNCPL and STOCH CPL are exactly the same, except for the sequences

of random numbers that are used. In addition, initial conditions for all three simulations are

the same.

Table 4.1: Summary of the experiments used in this study.

Name Stochastic Coupled Years

REF No Yes 201

STOCH UNCPL Yes No 102

STOCH CPL Yes Yes 201

4.3. Results

In the following, the impact of the stochastic sea ice strength perturbations are described sepa-

rately for Arctic and Antarctic sea ice. Effects on integrated quantities such as sea ice volume as

well as regional impacts on variables such as sea ice thickness are analysed. Some explanations

on how the stochastic sea ice strength perturbation affect Arctic and Antarctic sea ice will be

proposed, focusing on the differing impacts of the stochastic parametrization in the uncoupled

compared with the coupled simulation. Furthermore, the remote influence of the stochastic

scheme on the climate in non-polar regions is explored.
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4.3.1. Arctic sea ice

Volume

Figure 4.1 (a(i,ii)) shows the Northern Hemisphere sea ice volume and area of the two stochastic

simulations and the reference simulation REF for March and September. Evidently, ECHAM6-

FESOM simulates substantial Arctic sea ice variability throughout the year across a wide range

of timescales. This appears to be rather consistent with observations and is discussed in more

detail in Sidorenko et al. (2014) and especially by Rackow et al. (2014). The Arctic sea ice

volume in the uncoupled set-up STOCH UNCPL is highly correlated to that of REF owing to

the fact that the sea ice has experienced effectively the same atmospheric forcing. However,

STOCH UNCPL shows a clear increase in Arctic sea ice volume when compared to REF (figure

4.1 (i)). The first 20–30 years can be seen as a transient phase during which Arctic sea ice

volume builds up slowly. It is worth pointing out that the year-to-year increase in the sea ice

volume is rather small during the transient phase; the fact that the quasi-equilibrium response

in the Arctic owing to the stochastic sea ice scheme amounts to 10–20% after the first three

decades of the integration can be explained through accumulation.

(i)
(a)

(i)
(b)

(ii) (ii)

Figure 4.1: (a) Northern Hemisphere total (i) sea ice volume (103 km3) and (ii) sea ice area
(106 km2) for REF (red), STOCH CPL (blue) and STOCH UNCPL (green); results are shown
for March (upper curves) and September (lower curves). (b) Monthly mean difference in North-
ern Hemisphere (i) sea ice volume (103 km3) and (ii) sea ice area (106 km2) between STOCH CPL
and REF (blue) as well as STOCH UNCPL and REF (green). Coloured horizontal lines show
respective mean values. 95% confidence intervals—using a t-test with consideration of the re-
duction of effective sample size owing to a lag-1 autocorrelation (Wilks, 2011)—are given as
vertical bars.
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A possible explanation for the increase in sea ice volume with the stochastic sea ice strength

parametrization has been given by Juricke et al. (2013). In summary, the symmetric stochastic

perturbations of the sea ice strength effectively lead to a weakening of the ice cover owing to

the highly nonlinear formulation of the internal forces of the sea ice. Low P ∗ values are more

effective at reducing sea ice strength and increasing plastic deformation under convergent drift

than the high P ∗ values are at preventing sea ice from piling up. Newly created areas of open

water owing to the increased drift then enable increased sea ice production. After the transient

phase, during which the sea ice volume has increased, a new mean state is established in which

increased sea ice volume counteracts the effective reduction of sea ice strength. The sea ice

thickness distribution function of STOCH UNCPL is shifted towards higher ice thicknesses (not

shown). Because sea ice thickness as well as the P ∗ value act linearly on the value of the sea ice

strength, larger ice thicknesses can compensate for low P ∗ values.

In contrast to the uncoupled experiment, the mean sea ice volume in STOCH CPL shows a

slight decrease compared with REF. The 95% CIs included in figure 4.1 (b(i)) for the difference

between STOCH UNCPL and REF as well as STOCH CPL and REF do not overlap. This

indicates that the response of the Arctic sea ice volume to the stochastic sea ice parametrization

in the coupled model is significantly different from that in the uncoupled set-up. This, in turn,

suggests that a negative feedback involving the atmosphere is operating in the coupled system

that prevents the Arctic sea ice volume from accumulating as observed in the uncoupled system.

Given that the accumulation of sea ice in the uncoupled system is rather slow, a relatively weak

negative atmospheric feedback would be sufficient to prevent the ice from accumulating in the

coupled model. As a variety of strong feedback mechanisms are known to be present in the

Arctic, it is difficult to provide a conclusive answer as to which negative feedback mechanism is

crucial to explain the above results. Nevertheless, at the end of this section, a possible negative

feedback is proposed that could serve as an explanation for the above-mentioned results.

Area

Time series of Arctic sea ice area and changes therein owing to the use of the stochastic scheme

are shown in figure 4.1 (a(ii),b(ii)). STOCH UNCPL shows a slight increase in area at the end

of the transient phase whereas sea ice area does not show a discernable trend for STOCH CPL.

The strong seasonal dependence of the impact of the stochastic perturbations on sea ice area

has been described in Juricke et al. (2013) although the sign of the changes is different in this

study. Juricke et al. (2013) explained the sea ice area decrease by an increased drift, away

from areas of low concentration and divergence, towards coastlines and generally the western

Arctic. This leads to reduced sea ice concentrations along the ice edge and in the eastern Arctic.

Basically, this explanation also holds for STOCH UNCPL during the first few years, when the

stochastic sea ice parametrization also reduced the sea ice area. It should be noted, though,

that the length of the integration in Juricke et al. (2013) is considerably shorter (17 years) and

was forced by common ocean ice reference experiments (CORE) version 2 atmospheric forcing

(Large and Yeager , 2009) which accounts for changes in atmospheric conditions owing to rising

CO2 concentrations.
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Regional impacts

Figure 4.2 highlights the regional changes in Arctic sea ice thickness and concentration. The left

column shows the annual mean sea ice thickness and concentration distribution of the Arctic for

REF, years 1–201. The middle and right columns illustrate the differences in the two distribu-

tions between STOCH UNCPL and REF for years 1–102 and between STOCH CPL and REF

for years 1–201, respectively. Sea ice thickness shows a uniform increase throughout the entire

Arctic in STOCH UNCPL when stochastic sea ice perturbations are used. The increase in sea

ice concentration occurs primarily in areas where the ice edge can be found during the melting

and freezing seasons.

(i)

(ii)(ii)(ii)
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(a) (b) (c)

Se
a 

ic
e 

th
ic

kn
es

s
Se

a 
ic

e 
co

nc
en

tr
at

io
n

REF STOCH_CPL  REFSTOCH_UNCPL  REF

Figure 4.2: (a) Annual mean (i) sea ice thickness (m) and (ii) sea ice concentration (%) for
REF, years 1–201. (b) Difference in annual mean (i) sea ice thickness (m) and (ii) sea ice
concentration (%) between STOCH UNCPL and REF, years 1–102. (c) Same as (b), but for
the difference between STOCH CPL and REF, years 1–201. Hatched areas indicate differences
statistically significant at the 5% level, using a Wilcoxon signed-rank test for the paired samples
of STOCH UNCPL−REF and a Wilcoxon–Mann–Whitney rank-sum test for the independent
samples of STOCH CPL−REF (Wilks, 2011). Note the different contour intervals.

For the coupled stochastic simulation, a completely different picture emerges. For

STOCH CPL, sea ice thickness increase is limited to an area along the north coast of Greenland

and the Canadian Arctic Archipelago area. The central and eastern Arctic, on the other hand,

show reduced sea ice thicknesses. A somewhat similar pattern is found for sea ice concentration

changes in STOCH CPL. These patterns point towards a redistribution of sea ice cover and

thickness from the east to the west as discussed above. Owing to the weakened ice, sea ice drift

is increased. But while in the uncoupled case STOCH UNCPL, this redistribution seems to
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lead to an increase in sea ice production during the freezing season, which compensates for the

drift and opening of leads, some atmospheric feedback mechanism appears to counteract this

increased sea ice production in STOCH CPL. As a consequence, sea ice is redistributed without

any build-up in sea ice volume.

This hypothesis is further substantiated by figure 4.3, which shows sea ice drift along with its

changes owing to the stochastic scheme. While in STOCH UNCPL, sea ice velocities are slightly

decreased in the central Arctic (anticlockwise arrows), they are increased in STOCH CPL (clock-

wise arrows). The differences between the simulations can be explained as follows: during the

transient phase of the integration, STOCH UNCPL experiences a slight increase in sea ice

velocities (not shown). The increased sea ice thickness distribution is still accumulating and

increased sea ice thicknesses do not yet balance the influence from the effective weakening of the

sea ice strength owing to the stochastic perturbations. After this transient phase, though, sea

ice drift tends to be reduced, because thicker sea ice is capable of balancing the direct impact

of the P ∗ perturbations.

The velocity changes in STOCH CPL are quite different. Most of the drift in the central

Arctic is increased or slightly redirected towards the north coasts of Canada, the Canadian

Arctic Archipelago and Greenland. Due to the fact that there is no accumulation in Arctic sea

ice, the effective decrease in sea ice strength is not balanced. Therefore, the changes in the sea

ice velocity field resemble more the transient phase of STOCH UNCPL.

Annual cycle

Figure 4.4 illustrates the annual cycle of monthly mean sea ice volume, sea ice area and the

thermodynamic growth rate for REF for the Northern as well as for the Southern Hemisphere

(a(i– iii)); also shown are their changes when the stochastic sea ice parametrization is used

(b(i–iii)). Sea ice volume in the Southern Hemisphere is only a fraction of that in the Arctic.

This is especially true when the respective summer months are compared. For sea ice area, a

similar behaviour is found with the exception that wintertime sea ice extent in the Antarctic

exceeds that in the Arctic. The annual cycle of thermodynamic growth rates is very similar in

the two hemispheres.

The influence of the stochastic sea ice parametrization on the annual cycle of Arctic sea

ice volume in the coupled model follows that of the sea ice volume in REF (figure 4.4, bottom

row) with the largest (smallest) absolute differences found in winter (summer). The influence

of the stochastic parametrization in the uncoupled integration mostly lacks any seasonality and

is much larger in magnitude. The response in STOCH UNCPL, however, took several decades

to fully develop. A comparison for the first few years of the STOCH UNCPL integration yields

much more similar results in the magnitude of changes for the coupled and uncoupled model

(not shown). The seasonality of the response for sea ice area in both models is more similar

than that for the volume. However, the response is shifted by about 0.3–0.4 106 km2.
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(a)

(b) (c)

Figure 4.3: (a) Annual mean sea ice velocity (m s−1) for REF, years 1–201. (b) Difference
in annual mean sea ice velocity (m s−1) between STOCH UNCPL and REF, years 1–102. (c)
Same as (b), but for the difference between STOCH CPL and REF, years 1–201. Arrows are
normalized and white contour lines enclose areas where the zonal and/or meridional velocity
component is significantly different from zero at the 5% level, using the same tests as in figure
4.2. Note the different contour intervals.

Growth rates and atmospheric feedback

Changes in the thermodynamic growth rates in the bottom right panel of figure 4.4 hint at

a negative atmospheric feedback mechanism in STOCH CPL. While for STOCH CPL melting

is reduced in spring and summer and freezing is reduced in autumn and winter, the opposite

changes are found for STOCH UNCPL. The behaviour of the response for STOCH UNCPL

can be explained as follows: shifting of sea ice during the freezing season opens up leads and

creates open water areas. As fluxes are fixed and the atmosphere is seen as an infinite source

or sink of heat in the uncoupled set-up, open water can freeze over and quickly produce more

ice. This newly created ice then drifts away, and the process is repeated. On the other hand,

sea ice thickness and concentration is increased in the areas of convergent motion, which leads
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to decreased growth rates in those regions. Still, the enhanced production of sea ice in areas of

open water is stronger than the reduction of growth rates owing to increased plastic deformation.

As a result mean growth rates and therefore sea ice volume are increased compared with the

reference simulation. In the annual mean, the increase in sea ice growth rates during freezing

seasons has a larger impact than the increase in melt during spring and summer, especially

during the first 20–30 years of the transient phase.

For STOCH CPL, the response to the stochastic sea ice parametrization is different. The

atmosphere is no longer an infinite source or sink of energy, because it can respond to the sea

ice changes. A feedback mechanism that explains the differences in the coupled and uncoupled

set-up is connected to the sea ice thickness and opening of leads during autumn and winter. At

the beginning of the freezing season production of sea ice is increased in the areas of open water

created in the east by enhanced sea ice drift. But because the atmosphere in STOCH CPL is

now heated from the ocean, it reacts in the coupled system and becomes warmer over open

water. This will reduce the heat loss of the ocean and hence freezing rates in open water; sea

ice production in open water areas, consequently, is no longer sufficiently strong to compensate

for the effect of reduced ice growth owing to piled up ice further to the west. Therefore, the

mean growth rate is reduced in STOCH CPL when compared with REF. Further support for

the existence of such a negative feedback mechanisms comes from a slight increase in near-

surface atmospheric air temperatures in January and February over the eastern Arctic, slightly

increased (reduced) ocean temperatures in most of the eastern (western) Arctic and slightly

reduced mixed layer depth in the central Arctic owing to reduced growth rates (not shown).

In STOCH UNCPL, these changes are very different, with generally slightly decreased ocean

temperatures and increased mixed layer depth owing to an increase in growth rates and lower

water temperatures (not shown). In summary, it is argued that in the coupled model the slight

decrease in sea ice growth during winter owing to the stochastic sea ice scheme is sufficient to

prevent a gradual build-up of sea ice volume in the Arctic that is observed in the uncoupled

model.

4.3.2. Antarctic sea ice

Volume

The difference in effects between Northern and Southern Hemisphere sea ice is especially pro-

nounced when the impact of the stochastic sea ice parametrization is considered in the uncoupled

simulation (figure 4.4). While the volume increase in the Arctic is able to accumulate over time

this is not possible in the Antarctic owing to the almost complete loss of sea ice in austral

summer. Figure 4.5 shows the time series of monthly mean sea ice volume for the Southern

Hemisphere, for March and September and all three simulations. The Antarctic sea ice volume

strongly increases from its minimum in March to its maximum in September (see also figure 4.4

(a(i–iii))). Antarctic sea ice volume shows substantial interannual to decadal variability. Com-

pared with the Arctic (figure 4.1), however, there is much less multi-decadal variability which

again is consistent with a relative lack of memory owing to Antarctic sea ice loss in summer.

The right panel of figure 4.5 illustrates the differences in sea ice volume between the in-
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(a) (b)

Figure 4.5: (a) Southern Hemisphere total sea ice volume (103 km3) for REF (red), STOCH CPL
(blue) and STOCH UNCPL (green); results are shown for March (lower curves) and September
(upper curves). (b) Monthly mean difference in Southern Hemisphere sea ice volume (103 km3)
between STOCH CPL and REF (blue) as well as STOCH UNCPL and REF (green). Coloured
horizontal lines show respective mean values.

tegration with and without the stochastic ice strength scheme for the uncoupled and coupled

model. It is confirmed that in contrast to the Arctic there is no change in the mean Southern

Hemisphere sea ice volume, neither for STOCH UNCPL nor for STOCH CPL. As sea ice area

and volume are strongly reduced during the summer months changes in sea ice thickness can

hardly accumulate over time.

Regional impacts

The annual mean sea ice thickness distribution of REF and its changes resulting from the use of

the stochastic parametrization are shown in figure 4.6. Sea ice is about two to three times thinner

in the Southern Hemisphere than it is in the Northern Hemisphere. As a result, changes in

thickness owing to the stochastic perturbations are also smaller than in the Northern Hemisphere.

In addition, the distribution of landmasses is very different in the Northern Hemisphere; whereas

the coastlines of the Canadian Arctic Archipelago present ideal conditions for a stochastic sea

ice strength parametrization to have an impact on the mean state, such confining topographic

structures are largely absent in the Southern Hemisphere high latitudes. Interestingly, the

largest thickness changes in STOCH UNCPL are located along the coast of Antarctica, where

the stochastic scheme leads to increased sea ice thickness. Those are areas of convergent or shear

drift where sea ice might also survive the melting season.

For STOCH CPL, the changes are again somewhat different. Instead of sea ice piling up

near the east coast of the Antarctic Peninsula, sea ice is drifted eastward. This leads to a shift

of ice from the west to the east. In addition, the changes are larger in amplitude and in scale

than in STOCH UNCPL. One reason might be the stronger increase in eastward sea ice drift

and the change in vertically integrated barotropic streamfunction of the ocean (not shown).

The latter shows an enhanced eastward flow and enhanced gyre strength. Even though this is

also observable in STOCH UNCPL, the impact in STOCH CPL is larger, with an annual mean

increase of about 0.5–1 Sv compared with about 2 Sv for the Weddell Gyre, respectively.
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Figure 4.6: (a) Annual mean sea ice thickness (m) for REF, years 1–201. (b) Difference in annual
mean sea ice thickness (m) between STOCH UNCPL and REF, years 1–102. (c) Same as (b),
but for the difference between STOCH CPL and REF, years 1–201. Hatched areas indicate
differences statistically significant at the 5% level, using the same tests as in figure 4.2. Note
the different contour intervals.

4.3.3. Remote impacts

Figure 4.7 shows the time series of the annual mean Atlantic meridional overturning circulation

(AMOC) at about 45◦N and 1 km depth for all three simulations. As has been the case for the

Arctic sea ice volume and area, the AMOC is highly variable with large variations from year

to year. It should also be noted that the AMOC is correlated to the Arctic sea ice volume

and area, as it transports heat to the north and is driven by the North Atlantic Deep Water

formation which, in turn, influences or is influenced, respectively, by sea ice cover and growth

rates (Mahajan et al., 2011; Jahn and Holland , 2013).

(a) (b)

Figure 4.7: (a) Time series of the annual mean AMOC (Sv) at 45◦N and a depth of approx.
1000m for REF (red), STOCH CPL (blue) and STOCH UNCPL (green). (b) Corresponding
time series of the difference in AMOC (Sv) between STOCH CPL and REF (blue) as well as
STOCH UNCPL and REF (green). Coloured horizontal lines show respective mean values.

When looking at the differences between the stochastic simulations and REF in the figure 4.7

(b) no large change in the AMOC can be observed for STOCH UNCPL. This is probably due to

the fact that changes in sea ice thickness are mostly occurring in the central Arctic and are quite

small from year to year. The increase in AMOC in STOCH CPL is presumably just a result
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of sampling variability caused by the multi-decadal variability of the AMOC. Similar results

were found for other oceanic and atmospheric parameters in non-polar regions of the globe (not

shown). In summary, it turns out that significant changes in the mean climate caused by the

stochastic perturbations are very much confined to high latitudes.

4.4. Conclusion

A symmetric stochastic perturbation of the sea ice strength parameter based on Juricke et al.

(2013) has been implemented in the coupled climate model ECHAM6-FESOM. A set of coupled

and uncoupled multi-decadal experiments has been carried out in order to explore the impact

that the stochastic sea ice parametrization has on the mean climate in coupled compared with

uncoupled models.

In the Arctic, including a stochastic sea ice parametrization in an uncoupled sea ice–ocean

model results in an increase in sea ice thickness and volume by some 10–20% (depending on

the season). This increase can be explained by the fact that the stochastic perturbations of the

sea ice strength lead to an effective weakening of the sea ice, because small stochastic values

of the ice strength are more influential than large ones. As a result, convergent sea ice drift is

enhanced, which leads to an accumulation of sea ice thickness in the central Arctic and especially

along the coastlines in the western Arctic. The first 20–30 years of uncoupled integration with

the stochastic scheme can be seen as a transient phase. During this phase, sea ice thickness

increase accumulates and increased sea ice production in areas of newly opened water leads to

an increase in sea ice volume. After the transient phase, the sea ice–ocean system reaches a

new quasi-equilibrium state in which the increased sea ice thickness counteracts the effective

weakening of the sea ice caused by the ice strength perturbations. Sea ice volume is no longer

increased. In contrast to the Arctic, the influence of the stochastic sea ice parametrization

on the mean climate of the Antarctic is relatively small in the uncoupled model. This can be

explained by the fact that Antarctic sea ice almost completely vanishes during austral summer

which inhibits the small temporal accumulation of stochastic effects.

The impact of the stochastic sea ice parametrization on the mean climate of the coupled

model ECHAM6-FESOM turns out to be very different. The mean sea ice volume in the Arctic

and Antarctic remains largely unchanged with the stochastic scheme switched on. In the Arctic,

this can be explained by the fact that in an integrated sense the increase of sea ice thickness

north of Greenland and the Canadian Arctic Archipelago is accompanied by a loss of sea ice in

the central and eastern Arctic. This reflects the increased transport of sea ice from the eastern

to the western Arctic which is also reflected in increased sea ice velocities. The same argument

holds for the Antarctic. However, in the Southern Hemisphere, sea ice shows evidence of being

increasingly transported eastward and changes in thicknesses are smaller than in the north.

The fact that the coupled system responds differently to a stochastic sea ice parametrization

compared with an uncoupled model highlights the fact that care has to be taken when results

from uncoupled experiments are extrapolated to the coupled climate system. The results sug-

gest that by incorporating the atmosphere a negative feedback is introduced that prevents the

stochastic effect in the coupled model from accumulating. Given the slowness of the accumula-
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tion process in the uncoupled model (figure 4.1), it is likely that even a relatively weak negative

atmospheric feedback would be sufficient to prevent the stochastic sea ice parametrization from

influencing the mean climate of the coupled system. Given the strong variability of sea ice on a

wide range of timescales, therefore, pinning down the exact negative mechanisms is challenging.

However, one reason for the discrepancies between the coupled and the uncoupled simulation

might have to do with the atmospheric response (or lack thereof) to an increased amount of

open water during the freezing season owing to the stochastic sea ice parametrization. In the

uncoupled stochastic simulation, the fluxes are fixed, and therefore the atmosphere is prevented

from adjusting and hence reducing the amount of sea ice production in open water areas. This

unrealistically large productivity outweighs the effect of reduced sea ice growth in the western

Arctic owing to increased sea ice thickness. In the coupled model, the incorporation of the

stochastic scheme also leads to increased sea ice production in open waters; the magnitude of

this ice growth, however, is much reduced owing to the adjustment of the overlying atmosphere.

The adjustment of the atmosphere helps to reduce the sea ice production increase and, hence,

the reduction of growth rates in the western Arctic owing to thicker sea ice becomes comparable

or even larger than the increase in growth rates owing to the generation of open water through

the stochastic sea ice parametrization.

The remote response of the climate system in non-polar regions to the incorporation of the

stochastic sea ice strength scheme turns out to be rather weak. This may be a result of the fact

that the mean response in the polar regions to the stochastic sea ice parametrization is relatively

low and that the level of natural variability is high. However, it is also possible that the mean

influence on the Atlantic overturning circulation is relatively weak, because the coupled model

ECHAM6-FESOM is relatively insensitive to buoyancy anomalies in the Labrador Sea region

(Rackow et al., 2014). Given that Labrador Sea convection is believed to be strongly affected by

freshwater anomalies of Arctic origin (Dickson et al., 1988) a stronger response of the overturning

might be found in other more sensitive models.

While the impact of the stochastic sea ice strength parametrization on the mean climate of

the coupled model seems to be somewhat reduced when compared to the impact in the uncou-

pled model, it should be pointed out that tests in an ensemble prediction framework suggest

that the stochastic sea ice parametrization does lead to additional spread during the early part

of the integration (Juricke et al., 2014). Hence, the stochastic parametrization described here

might become useful when it comes to coupled data assimilation and uncertainty estimation in

monthly and seasonal polar prediction. Another promising direction of future research will be

to look at stochastic formulations of other sea ice aspects. Given the climate relevance of the

sea ice–albedo feedback the development of a stochastic sea ice albedo scheme appears to be a

promising way forward. In addition, the P ∗ perturbations presented here might again show quite

different effects on the mean climate when combined with other stochastic parametrizations of

the sea ice model and/or using a different configuration of the parametrization, for example yet

another more sophisticated spatial correlation scheme.
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and the role of stochastic sea ice

perturbations12

12This chapter is about to be resubmitted to the Geophysical Research Letters under the title Potential sea
ice predictability and the role of stochastic sea ice perturbations (see reference Juricke et al., 2014). The original
layout of the article was changed to match the layout of the dissertation. Differences in the text when compared
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Abstract

A stochastic ice strength parameterization is implemented in a global coupled model to

assess how inclusion of uncertainty estimates in the sea ice model affects potential sea ice pre-

dictability estimates. Sets of ensemble forecasts employing different perturbation methods

are investigated with regard to ensemble spread growth for ice thickness and concentration.

Spread generated by atmospheric initial perturbations in a perfect model approach is com-

pared to spread generated by ensembles with a relaxed perfect model assumption through

incorporation of stochastic ice strength perturbations. 12-months integrations initialized in

January and July are carried out. During the first weeks of the forecasts incorporation of ice

strength perturbations significantly increases ensemble spread of ice thickness in the central

Arctic and along coastlines when compared to ensembles with atmospheric initial perturba-

tions only. The latter produce comparatively larger spread along the ice edge. Applying a

combination of both, initial and ice strength perturbations, leads to a summation of spread

from both sources during the first forecast weeks. Thereafter, ice thickness spread in the

different ensembles converges to a similar level irrespective of the perturbation method. For

the Antarctic, inclusion of ice strength perturbations does not lead to increased ice thickness

spread for more than one day into the forecasts when compared to atmospheric initial pertur-

bations. Results suggest that existing estimates of potential sea ice predictability on seasonal

and annual time scales remain unchanged if uncertainty in the parameterized ice strength is

accounted for. Ice strength perturbations become relevant, however, for sub-seasonal sea ice

predictions and data assimilation.
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5.1. Introduction

Predicting the climate of the polar regions is an important element for decision making in the

high-latitudes. In this context there has been large increase in the demand for sea ice predictions

leading to the development of sea ice prediction systems (e.g., Chevallier et al., 2014; Sigmond

et al., 2013).

There will always be limits to the skill of weather and climate forecasts due to the chaotic

nature of the climate system (e.g., Lorenz , 1963). This raises the question as to how much

predictive skill will eventually be achievable. Recently, there have been a number of studies

exploring the upper limits of predictability—or potential predictability—in the Arctic (e.g.,

Koenigk and Mikolajewicz , 2009; Blanchard-Wrigglesworth et al., 2011; Holland et al., 2011;

Tietsche et al., 2014) and the Antarctic (Holland et al., 2013), on seasonal to interannual time

scales. While these studies differ in the details of the approaches, models, and diagnostics

used, they are based on the assumption that the model itself does not provide a source of

uncertainty, that is, perfect knowledge of the initial state would result in a perfect prediction.

In general, to estimate the limits of potential predictability using the perfect model assumption,

small perturbations to the initial state are used to generate ensembles. The growth in ensemble

spread is then compared to the level of interannual model variability. For example, if the

ensemble spread of a seasonal sea ice volume forecast reaches the level of interannual variability,

potential predictability of this quantity is lost.

Independently of the above-mentioned studies, there has been an increasing number of pub-

lications dealing with ways of how to represent model uncertainty. While in a deterministic

model formulation the mean impact of the sub-grid scale processes on the resolved scale dy-

namics is simulated as best as possible, stochastic methods can be used to include higher order

moments into the formulation of sub-grid scale parameterizations. Instead of using grid cell

averaged impacts of the sub-grid scale processes, additional information such as the variability

within a grid cell can be conveyed to the resolved dynamics. By adding this kind of noise, the

simulated climate may be able to leave one trajectory to reach another, a transition that might

previously have been unlikely. This is comparable to the idealized situation of two separated

local potential minimums where a transition from one to the other can be more easily achieved

by adding random perturbations. Including stochastic aspects in the model formulation may

therefore not only improve the general representation of the sub-grid scale processes and the

related uncertainties, but in addition may also improve the simulation of the large scale flow

(Palmer , 2012). Uncertainties in the parameterizations of sub-grid scale processes have pre-

viously been estimated by the use of stochastic parameterizations (e.g., Lin and Neelin, 2002;

Bright and Mullen, 2002; Plant and Craig , 2008; Li et al., 2008; Lott et al., 2012). In weather

forecasts, incorporation of uncertainty estimates for the sub-grid scales has lead to an improved

model performance (e.g., Buizza et al., 1999; Shutts, 2005; Jung et al., 2005; Weisheimer et al.,

2011). Furthermore, the impact of incorporating stochastic aspects in climate models has been

analyzed in view of changes to the simulated mean climate (e.g., Williams, 2012; Juricke et al.,

2013; Juricke and Jung , 2014; Brankart , 2013).

In this study, potential predictability of sea ice is estimated in a coupled climate model
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for which the perfect model assumption is relaxed by employing stochastic sea ice strength

perturbations to represent uncertainties in the formulation of the rheology of the sea ice model.

More specifically, the ensemble spread generated solely by atmospheric initial perturbations is

compared to the spread that is generated when model uncertainty is accounted for by including

the stochastic sea ice strength parameterization by Juricke et al. (2013) and Juricke and Jung

(2014). In addition, ensembles comprising both, atmospheric initial perturbations and stochastic

sea ice dynamics, are analyzed. The objective is to assess the validity of the perfect model

assumption for potential sea ice predictability on sub-seasonal to seasonal time scales.

5.2. Experimental setup

5.2.1. Model

The ensemble experiments of this study were carried out with the global coupled model ECHAM6-

FESOM. The atmospheric component ECHAM6 (Stevens et al., 2013) of the Max-Planck-

Institute for Meteorology in Hamburg is a spectral model employing a horizontal resolution

of about 1.85◦ with 47 vertical levels up to 0.01 hPa (T63L47). ECHAM6 is coupled to the

Finite Element Sea ice Ocean Model (FESOM) (Danilov et al., 2004; Wang et al., 2008; Tim-

mermann et al., 2009; Sidorenko et al., 2011; Wang et al., 2013), which has been developed at

the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, through the

OASIS3-MCT (Valcke, 2013) coupler. The effective resolution of the unstructured triangular

ocean surface grid ranges from ∼ 150 km in the open ocean to ∼ 25 km near the coasts, in the

Arctic, and along the equatorial belt. In the vertical the ocean model uses a tetrahedral grid

with 46 unevenly spaced z-levels. The timesteps used for FESOM and ECHAM6 are 30 and

10 minutes, respectively, with coupling taking place every 6 hours. The mean sea ice thickness

distribution simulated under present-day (1990) forcing is in good agreement with observational

estimates (see figures C.1 and C.2 in appendix C), suggesting that the model is well suited for the

experiments of this study. Further details regarding the model formulation and its performance

in simulating the mean climate will be described in a study by Sidorenko et al. (D. Sidorenko,

personal communication, 2014).

5.2.2. Simulations

The ensemble size for each of the following configurations and each start date is 10, with 15 start

years for each setup, and initialization both on the first of January and first of July at 00:00 UTC.

Ensembles are integrated for one year. The 15 start dates are separated by 10 year intervals and

the initial conditions are provided by a multi-centennial ECHAM6-FESOM simulation under

constant present-day (1990) forcing (D. Sidorenko, personal communication, 2014) after about

440 years into the integration. The 100-year period used for the initial perturbations consists of

the first 100 years covered by the ensemble start dates. Sea ice fields are available at a 6-hourly

resolution.

Four different sets of ensembles have been generated. In the first ensemble configuration (INI)

integrations were initialized with atmospheric initial perturbations for the three-dimensional
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wind (i.e. vorticity and divergence) and temperature using the random field method introduced

by Magnusson et al. (2009). The method creates perturbations ”in approximate flow balance”

(Magnusson et al., 2009) by adding down-scaled differences between two randomly chosen at-

mospheric states of the same time of the year (here from a 100-year control integration). The

difference fields are scaled with the factor 0.1, giving on average perturbations of a similar mag-

nitude as in Magnusson et al. (2009). Other than the described perturbations all initial fields

for each of the members of the same ensemble are identical. This ensemble configuration serves

as a reference for the estimation of potential sea ice predictability, without accounting for model

uncertainty.

In the second ensemble experiment (STOCH) atmospheric and oceanic initial conditions

were left unperturbed. Instead, ensemble spread was generated by the use of the stochastic

sea ice strength parameterization described by Juricke and Jung (2014). This parameterization

implements symmetric, Gaussian-like perturbations to the ice strength parameter P ∗ of the

elastic–viscous–plastic sea ice rheology. The parameter P ∗ is not well constrained and cannot

be measured directly, leading to large related uncertainties. Under the same sea ice conditions

larger (smaller) values of P ∗ reduce (increase) convergent sea ice drift, which is why P ∗ is

commonly used as a tuning parameter for the simulated sea ice distribution. The stochastic ice

strength parameterization adds symmetric perturbations to the previously constant parameter

P ∗. The stochastic perturbations are correlated in time by a first order Markov process and in

space by a predefined correlation matrix (Juricke and Jung , 2014). They are transformed into a

limited and physically realistic range and applied to every ice covered ocean grid node during the

course of the entire integration. The method therefore simulates uncertainties, including spatial

and temporal variability, in the choice of the internal ice strength and thus in the resistance of

the ice to plastic deformation under convergent motion. Due to the highly nonlinear formulation

of the sea ice rheology and its important role in the formation of thick ice under convergence,

incorporating this uncertainty estimate in the parameterization of the sea ice rheology is expected

to lead to rapid ensemble spread generation in areas of convergent sea ice drift.

In the third ensemble configuration (STOINI) both, the initial perturbations described for

INI and the stochastic sea ice strength parameterization used for STOCH, were employed. It

therefore combines estimates of atmospheric initial condition uncertainty with estimates of model

uncertainty in the simulation of the sea ice dynamics.

Finally, in the fourth ensemble experiment (FULLINI) atmospheric (including land-surface)

initial states were chosen randomly (for the same calendar day) from the 100-year control inte-

gration also used for INI. This configuration allows to estimate the potential predictability of

sea ice arising only from the memory inherent to the sea ice and ocean components, assuming a

perfect model. It simulates a maximum level of uncertainty for the atmospheric initial states.
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IAV
INI
STOCH
STOINI
FULLINI

Figure 5.1: Ensemble spread (mean standard deviation of individual forecast ensembles) for
Arctic sea ice (left) volume (103 km3) and (right) area (106 km2) for the four different ensem-
ble configurations: atmospheric random field initial perturbations (INI, red), stochastic sea ice
strength perturbations (STOCH, green), atmospheric random field initial perturbations com-
bined with stochastic sea ice strength perturbations (STOINI, blue), and initialization with
random atmospheric states (FULLINI, cyan). 12-months forecasts were started on 1st January
and 1st July, 00:00 UTC. Also shown is the annual cycle of the interannual standard deviation
from the control simulation (IAV, black). The 6-hourly data have been smoothed by a seven-day
running-mean filter. The gray shaded area is the 95% confidence interval for STOCH and the
dashed line marks the lower limit of the 95% confidence interval for IAV, using bootstrapping
with 1000 samples.

5.3. Results

5.3.1. Arctic

The spread evolution of ensemble predictions for integrated Arctic sea ice quantities as a function

of lead time is shown in figure 5.1 for the four different experiments. The ensemble spread of

sea ice volume and area in the Arctic stays below the level of interannual variability throughout

the 12-months forecast period. Differences between individual ensemble members are smaller

than those of randomly drawn sea ice states, suggesting that Arctic sea ice area and especially

volume are potentially predictable at least 12 months ahead. This result is consistent with

previous studies (e.g., Tietsche et al., 2014).

Large differences between the different ensemble configurations concerning ensemble spread

of Arctic sea ice volume and area emerge during the first days and weeks of the forecasts, that

is, during a period of relatively strong perturbation growth. Figure 5.1 suggests that the spread

grows most rapidly for FULLINI followed by STOINI, INI and STOCH. During the first weeks

of the forecast these differences are significant, as the confidence intervals for the ensembles are

small.

An important finding of this study is, though, that the growth of the spread for the differ-

ent ensemble experiments is comparable one month into the forecast and beyond (figure 5.1),

as confidence intervals for the ensemble spread increase rapidly. This suggests that previous
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estimates of potential seasonal sea ice predictability remain largely unchanged if uncertainty in

the sea ice dynamics of the models is accounted for by employing a stochastic sea ice strength

parameterization. Furthermore, details on how atmospheric perturbations are generated play

a secondary role in estimates of potential sea ice predictability on seasonal to interannual time

scales.

The average ensemble spread of sea ice thickness during winter and summer for INI 5 days

into the forecasts is shown in figure 5.2 together with the corresponding interannual sea ice

thickness variability (top two rows). The ensemble spread is more than one order of magnitude

smaller than the interannual variability, highlighting the importance of sea ice initialization for

relatively short-term sea ice predictions. The largest ensemble spread is found close to the ice

edge, where atmospheric perturbations can have a large impact due to the presence of strong

sea ice thickness and concentration gradients; comparably small values are found in the interior

of the Arctic where sea ice thickness is relatively homogeneous and concentrations are high.

In figure 5.2, third row, the spread in sea ice thickness generated by the initial atmospheric

perturbations is compared to the spread obtained from stochastic sea ice strength perturbations

after 5 days. Evidently, the stochastic sea ice scheme provides significantly more spread during

boreal winter in the region of large sea ice thickness north of Greenland and the Canadian Arctic

Archipelago (CAA), that is, in a region where continuously thick and relatively immobile sea

ice prevents atmospheric perturbations from having a sizable impact. Additional spread with

stochastic sea ice perturbations is also found in the interior of the Arctic, both during boreal

summer and winter. In summary, the stochastic ice strength perturbations of STOCH primarily

induce significantly increased sea ice spread in the internal ice pack during the first couple of

days, due to the increased variability of the internal ice strength. In these regions the internal

forces of the sea ice are the main opposing forces to atmospheric stresses in the simulation of the

sea ice dynamics and therefore largely determine sea ice velocities. Atmospheric perturbations

transfer rather rapidly to sea ice, though, and propagate from the ice edge towards the central

ice pack. Therefore, spread gain in STOCH is surpassed almost everywhere by INI within the

first two weeks.

When atmospheric initial and ice strength perturbations are combined in STOINI, the spread

generated by the individual configurations adds up and shows generally larger spread in STOINI

than in INI after 5 days (figure 5.2, 4th row). This accumulative effect disappears after a few

weeks, though, as the spread of STOINI and INI become basically indistinguishable (not shown).

The ensemble spread of FULLINI stays significantly above levels of the other three configurations

during the first months (not shown), but eventually all configurations settle at a similar level of

spread (see figure 5.1).

Given the computational burden of running large ensembles, potential predictability esti-

mates tend to suffer from sampling issues due to the use of relatively small ensemble sizes,

especially when it comes to producing spatial maps of potential predictability. The fact that

the different ensemble experiments carried out in this study show similar levels of spread several

months into the forecasts allows us to generate a super ensemble. The difference between the

interannual standard deviation of monthly mean sea ice thickness and the average spread of the

super ensemble for monthly mean sea ice thickness for the last forecast month is shown in figure
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STD 5 days
after
01.01

STD 5 days
after
01.07

Figure 5.2: Sea ice thickness standard deviation (m) 5 days after the initialization on (left)
1st January and (right) 1st July, 00:00 UTC. Top row: interannual sea ice thickness standard
deviation IAV of the control integration for the respective day. Second row: mean ensemble
spread of INI after 5 days. Third row: difference in mean ensemble spread between STOCH
and INI after 5 days. Fourth row: difference in mean ensemble spread between STOINI and INI
after 5 days. Stippled areas indicate differences statistically significant at the 5% level, using an
F -test. Note the different contour intervals.
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STD difference June 
(July initialization)

STD difference December 
(January initialization)
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Figure 5.3: Difference between the interannual standard deviation IAV of sea ice thickness and
the ensemble mean sea ice thickness standard deviation of the super ensemble ALL (m), for
the 12th forecast month and each of the two initialization months. Mean standard deviation of
ALL is calculated as the mean of the 10-member ensemble standard deviations, averaged over
all 15 start dates and all four ensemble configurations (a total of 600 1-year-integrations for
each of the two initializations: 4 configurations × 15 start dates × 10 members). Stippled areas
indicate differences statistically significant at the 5% level, using an F -test with consideration
of the reduction of effective sample size of IAV owing to a lag-1 autocorrelation (Wilks, 2011).

5.3. Although the significant differences (suggesting potential predictability) are confined to the

ice edge and the central Arctic, only in the Bering Strait in boreal winter, and in some regions

of the southern Beaufort Gyre and close to the coasts in boreal summer, predictability is most

certainly lost. Overall, the interannual standard deviation is larger than the spread of the super

ensemble for most regions, confirming considerable potential predictability of Arctic sea ice at

least one year ahead. This is consistent with the findings of, for example, Tietsche et al. (2014).

5.3.2. Antarctic

So far, sea ice predictability studies have focused on the Arctic, with some exceptions (Holland

et al., 2013). Consequently, relatively little is known about Antarctic sea ice predictability. In

the following potential sea ice predictability in the Antarctic will be investigated as well using

the experiments described above. Figure 5.4 (left) shows the spread evolution of the ensemble

predictions for integrated Antarctic sea ice volume as a function of lead time for all experiments.

As was the case for the Arctic, an important result is that ensemble spread of Antarctic sea ice

volume stays below the level of interannual variability for the entire 12-months forecast period,

suggesting potential predictability for this quantity at least one year ahead. Results are almost

identical for Antarctic sea ice area (not shown), because Antarctic sea ice volume and area are

strongly correlated due to the virtual absence of thick multiyear ice. The spread generated by

the different ensemble configurations converges more rapidly in the Antarctic compared to the

Arctic. However, as in the Arctic, initial spread growth in the integrated sea ice quantities in

the Antarctic is largest for FULLINI, followed by STOINI and INI, and, lastly, STOCH (not
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IAV
INI
STOCH
STOINI
FULLINI

1 day after 
01.07 

5 days after 
01.07 

STD difference STOCH-INI

Figure 5.4: Left: as in figure 5.1, but for the entire Antarctic sea ice volume. Right: as in figure
5.2 but for the Antarctic sea ice and the difference between STOCH and INI, (top) 24 hours
and (bottom) 5 days after the initialization on 1st July, 00:00 UTC. Note the different contour
intervals.

shown).

Regional distributions of Antarctic sea ice spread growth of the four ensemble configurations

reveal large differences to the Arctic (figure 5.4, right). Only during the first day of the forecast

STOCH produces slightly, but nevertheless significantly larger sea ice thickness spread near

coastlines compared to INI (figure 5.4, top right). Thereafter the atmospherically induced sea

ice spread of INI is nearly everywhere significantly larger than the spread generated by STOCH

(figure 5.4, bottom right). Accordingly, spread levels of STOINI and INI converge within a

few days (not shown). The fact that Antarctic sea ice is comparatively thin and exhibits little

dynamically formed thick multiyear ice results in a more pronounced impact of atmospheric

variability on Antarctic sea ice spread compared to the role of ice strength uncertainties in the

sea ice dynamics.

5.4. Discussion

The potential predictability of sea ice has been investigated using different atmospheric initial

perturbation techniques and by relaxing the perfect model assumption through the use of a

stochastic sea ice strength parameterization. It is found that sea ice exhibits considerable po-

tential predictability on seasonal time scales, both for the Arctic and the Antarctic. From the
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ensemble experiments of this study it can be concluded that the potential predictability of sea

ice at forecast lead times from a few months to a year depends rather little on the details as

to how atmospheric initial uncertainty is represented; in this forecast range, adding stochastic

sea ice perturbations also has a negligible influence on ensemble spread and hence potential

predictability estimates.

On daily to sub-seasonal time scales, incorporation of stochastic sea ice strength perturba-

tions in coupled model forecasts plays a surprisingly large and specific (compared to atmospheric

initial perturbations) role in generating ensemble spread, especially for the Arctic. While initial

atmospheric perturbations tend to produce large sea ice spread near the ice edge at short lead

times, with the induced spread gradually propagating towards the central ice pack, stochastic

ice strength perturbations act primarily on deformed ice under convergent motion in the central

Arctic and north of Greenland and the CAA. Differences in ensemble spread relatively early on

in the forecast may have important implications, given that sub-seasonal prediction is an area of

growing relevance (e.g., Vitart , 2014) and given that proper representation of initial and model

uncertainty is crucial when it comes to developing advanced data assimilation systems.

Because the amount of thick multiyear ice is much larger in the Arctic than in the Antarctic,

the impact of stochastic sea ice strength perturbations on initial ensemble spread growth is

less pronounced for Antarctic sea ice: the different ensemble experiments (with and without

incorporation of atmospheric initial and/or sea ice model uncertainty) converge more rapidly

to a similar level of spread. In summary, including stochastic sea ice strength perturbations

to account for model uncertainty in the simulation of sea ice dynamics seems to be of greater

relevance for the Arctic than for the Antarctic.

In the future, employing a more complete set of uncertainty representations in the sea ice

model, for example in the albedo parameterization, might lead to different impacts on potential

predictability estimates.
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6. Summary and conclusions

The main focus of this dissertation is the application of stochastic sea ice strength perturbations

as a measure of model uncertainty in the context of climate and ensemble predictions. To this

end I have developed a perturbation scheme and tested it in a sea ice–ocean as well as in a

sea ice–ocean–atmosphere model and evaluated the impact of the perturbations with respect

to changes in the simulated climate and to the spread generation and evolution in ensemble

simulations.

The ice strength parameter is crucial when it comes to simulating the sea ice drift under

conditions of convergent motion, where it impacts on the onset of plastic sea ice deformation.

Low values of the sea ice strength parameter weaken the ice and lead to a relative increase in

sea ice drift under convergence, whereas high values simulate a more compact, resistant sea

ice cover where sea ice drift under convergence is more strongly decelerated. As this value

is very uncertain due to its role as a tuning parameter and missing observations, a symmetric

perturbation during the course of the sea ice simulations was applied to simulate the uncertainty,

temporally and spatially.

Stochastic ice strength perturbations in a sea ice–ocean model

In chapter 3 of this dissertation three different strategies to perturb the ice strength parameter

in the modelling of the sea ice dynamics in a sea ice–ocean model have been introduced. The

three perturbation methods differ in the way they simulate spatial and temporal correlations:

� The first method has no spatial correlation for the ice-covered nodes of the mesh. All

nodes receive independently perturbed ice strength parameters. A simple time correlation

is applied by keeping the perturbations fixed for a given amount of time steps and choosing

new, independent perturbations afterwards for the next fixed time interval.

� The second method is similarly not applying any spatially correlated perturbations, but

uses a Markov process to generate a more sophisticated temporal correlation for the per-

turbations.

� The third method applies the same temporal correlation as the second method, but ad-

ditionally incorporates some form of spatial correlation. Perturbations for nodes with

common neighbours are spatially correlated.

All three perturbation schemes have been implemented in the Finite Element Sea ice–Ocean

Model FESOM and tested in multi-annual sensitivity simulations. Results showed that all
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three perturbation strategies lead to an increase of Arctic sea ice volume and increased sea ice

thicknesses in the central Arctic and along coastlines compared to a reference simulation with a

deterministic, spatially and temporally fixed ice strength parameter.

The inclusion of spatial correlation has the largest impact when it comes to changes in mean

Arctic sea ice distribution caused by the uncertainty estimates for the ice strength parameter,

followed by the method using the Markov process time correlation, but no spatial correlation.

This shows that a more sophisticated perturbation strategy can have a strong impact on the

mean response of the stochastic parameterization.

The general increase of Arctic sea ice volume and central Arctic sea ice thickness is caused by

the fact that the parameterization of the sea ice rheology is highly nonlinear. Therefore, changes

in the ice strength parameter have a nonlinear impact as well. In this context, randomly small

values of the ice strength have a stronger impact on sea ice distributions than large values. When

values are small, sea ice drift and plastic deformation under convergence is increased and leads

to thicker ice. High values on the other hand decrease sea ice drift and plastic deformation,

but do not lead to a decrease in sea ice thickness. Instead they impede the thickness increase,

but only as long as high ice strength parameter values prevail. Summarizing, small values lead

to increased ice thicknesses that cannot be reversed by high values. Additionally, due to the

resulting effectively increased sea ice drift, open water areas emerge where new ice can form

rapidly. This is then drifted away and accumulated in the central Arctic, leaving again open

water areas to produce more ice. This effect leads to the increase in sea ice volume compared

to the deterministic reference simulation with a fixed ice strength parameter.

Furthermore, for the perturbation scheme using temporal and spatial correlations an ensem-

ble simulation was conducted, using for each ensemble member different sets of random numbers

for the perturbations. The ensemble simulation showed that the largest sea ice thickness ensem-

ble spread due to stochastic ice strength perturbations is generated in the central Arctic and

along the coastlines. It exceeds interannual model spread by a factor of more than 2 along the

northern coast of Greenland and the Canadian Arctic Archipelago. Near the ice edge ensemble

spread is small. This is owing to the fact that the effects of the uncertainties in the sea ice rhe-

ology are of greater relevance in areas of thick, compact sea ice, where the term of the internal

ice strength plays a major role in the momentum balance.

Stochastic ice strength perturbations in a sea ice–ocean–atmosphere model

In chapter 4 the impact of incorporating spatially and temporally correlated ice strength per-

turbations in the fully coupled sea ice–ocean–atmosphere model ECHAM6-FESOM was inves-

tigated. The purpose was to analyze the responses to the ice strength perturbations in a sea

ice–ocean model compared to a sea ice–ocean–atmosphere model in view of atmospheric feed-

backs. The spatial correlation strategy introduced in chapter 3 was revised to allow for spatial

correlations between the grid nodes following a predefined decorrelation distance. This made it

possible to increase the spatial patterns of the perturbations and to generate patterns more or

less independent of the structure of the mesh.
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Several climate integrations were carried out:

� a fully coupled reference simulation

� a sea ice–ocean simulation with stochastic ice strength perturbations using the atmospheric

fluxes generated by the reference simulation as atmospheric forcing

� a fully coupled simulation with stochastic ice strength perturbations

Results showed that the responses to the ice strength perturbations in the fully coupled and

the sea ice–ocean model were significantly different, both for Arctic and Antarctic sea ice.

For the uncoupled sea ice–ocean simulation with ice strength perturbations the response on

the Arctic sea ice thickness distribution is basically similar to what has been observed in chapter

3: a slowly accumulating increase in sea ice thickness in the central Arctic and along coast lines

compared to the reference simulation. This is accompanied by an increase in sea ice volume

during the first few decades and a stabilization of the increased sea ice volume thereafter.

In the coupled sea ice–ocean–atmosphere model, however, Arctic sea ice volume is not in-

creased. Even though sea ice drift is effectively increased—as has been the case for the uncoupled

simulation during the accumulation period—this does not result in increased sea ice volume. In-

stead, the sea ice thickness distribution experiences a shift from the east to the west, especially to

the northern coast of Greenland, the Canadian Arctic Archipelago and into the southern Beau-

fort Gyre. While this redistribution leads to increased sea ice production over newly created

open water areas in the eastern Arctic in the uncoupled simulation, this increased production is

reduced in the coupled simulation due to an atmospheric feedback. The atmosphere is heated in

the coupled simulation by the ocean during the freezing season and hence production of sea ice

over open water is reduced, owing to decreased fluxes. Even though this feedback is rather small,

it is capable of preventing the increase in sea ice volume observed in the uncoupled simulation,

where atmospheric fluxes are prescribed. This is because of the relatively small year-to-year

impact of the stochastic perturbations that unfold their true potential to change the mean state

only when accumulated over many years.

For the Antarctic, results are generally different, for both simulations. Antarctic sea ice

is comparatively thin, the amount of dynamically formed multiyear ice is small and sea ice

is strongly reduced during austral summer. Therefore, no large accumulative effect is visible,

neither for the uncoupled nor the coupled stochastic simulation, when compared to the de-

terministic reference simulation. Instead, eastward drift is increased, more so in the coupled

simulation, leading to a slight shift of the sea ice thickness distribution from west to east.

Stochastic ice strength perturbations in a sea ice–ocean–atmosphere model in the

context of potential sea ice predictability

In chapter 5 the stochastic ice strength perturbations are used to generate ensembles with

ECHAM6-FESOM in the context of potential seasonal sea ice predictability. The spread gener-

ated by ensembles with stochastic ice strength perturbations is compared to the spread generated

by ensembles with perturbed atmospheric initial conditions. The aim is to challenge the per-

fect model assumption commonly used in potential predictability studies, where the model is
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assumed to be perfect with the only uncertainties residing in the initial conditions (most studies

merely address initial condition uncertainty pertaining to the atmosphere).

Results show that integrated sea ice quantities such as sea ice volume and area in both

hemispheres are potentially predictable with lead times of one year, irrespective of whether

uncertainty estimates in the sea ice strength parameterization are included or not. This is also

true for most regions when sea ice thickness distributions are analyzed.

On daily to sub-seasonal time scales however, incorporation of stochastic sea ice strength

perturbations leads to larger sea ice thickness ensemble spread growth in the central Arctic when

compared to ensemble spread generated by solely atmospheric initial perturbations. This has

implications for uncertainty estimation in sub-seasonal forecasts and data assimilation, where

sea ice thickness ensemble spread is generally too low when compared to the models root mean

square error (which, ideally, should be captured by the ensemble spread, see e.g. diagnostics for

forecasting systems in Doblas-Reyes et al., 2009; Berner et al., 2011; Weisheimer et al., 2011).

For the Antarctic, increase of sea ice ensemble spread due to the stochastic sea ice strength

perturbations is only observable during the first few days of the forecast and is superseded by the

spread generated by atmospheric initial perturbations thereafter. This suggests that accounting

for uncertainties in the parameterization of the sea ice rheology is of minor importance regarding

sea ice model spread in the southern hemisphere.

Conclusions

In summary, incorporating uncertainty estimates in the parameterization of the sea ice rheology

has significant impacts on model simulations of sea ice, not only in the context of ensemble

spread generation, but also concerning shifts in the simulated mean sea ice distribution. This

is especially noteworthy as the schemes included up to now are only addressing the uncertainty

of one single parameter. Incorporating additional uncertainty estimates in other parts of the

(coupled) model might lead to an even larger impact. Additionally, it is found that results of

implementations in a less complex model should only be extrapolated to a more sophisticated

model with utmost care, as the responses might be very different and unexpected.

In general, the schemes that I have introduced in chapters 3 to 5 for perturbing the sea ice

strength parameter can basically be used to perturb any parameter within a climate model to

include a first estimate of the inherent uncertainty.
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7. Outlook

The field of model uncertainty estimation for global coupled climate simulations is still developing

and numerous questions remain to be answered. Some of those might be tackled by the methods

which I have introduced in the last chapters. The perturbation schemes described in chapters 3

and 4 for P ∗ can easily be extended to other important, yet uncertain and not well constrained

parameters within a sea (or climate) model in order to assess the related uncertainty.

Aside from the thorough testing and discussion of the P ∗ perturbations, I have started to

apply and test spatially and temporally correlated parameter perturbations to other parameters

of the sea ice model. Of major relevance for tuning a sea ice model are for example the sea

ice albedo αi, the parameter C in the exponential function of the ice strength calculations

(see equation (3.7)), and the so called lead closing parameter h0 in the formulation of the

thermodynamic sea ice growth. The latter describes how fast open water areas are closing up

under freezing conditions (see e.g. Hibler , 1979). By that it influences the ratio of lateral to

vertical sea ice growth. In appendix D.1 some preliminary results of stochastic perturbations to

these parameters are discussed.

Even though the stochastic parameter perturbations can basically be applied to any param-

eter, they need to be tuned and adjusted to the uncertainties they are supposed to sample. This

involves adjustments to the spatial and temporal correlation schemes and the characteristics of

the distribution functions of the random numbers used to perturb the parameter. Appendix D.2

gives some examples for alternative perturbation design.

Aside from the above mentioned parameters there are also the stress coefficients cair and

cocean in the atmospheric and oceanic stress terms �τair and �τocean of equation (2.12) which may

exhibit substantial uncertainties. They may vary considerably in time and space as a result

of the sub-scale structure of the ice floes. Leads and ice ridging may enhance the influence of

atmospheric and oceanic stresses, effects that are not or only partly accounted for in sea ice

models.

Furthermore, the entire rheology parameterization itself is quite uncertain. Its capability of

actually representing the observed behaviour of sea ice floes under convergent and shear motion is

still debated and alternatives are being put forward (see e.g. Girard et al., 2011). In this context,

newly developed parameterization schemes might benefit from the introduction of stochastic

aspects that are included right from the start (see, for example, the randomly chosen values of

the cohesion for the elasto–brittle rheology of Girard et al. (2011)). On the other hand, including

uncertainty estimates in sea ice and climate models at every level has to be implemented with

caution. It is not desirable to account for a single uncertainty more than once. This might
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lead to a large overestimation of uncertainty. Therefore, the accumulated effects of uncertainty

estimates have to be considered, especially when these uncertainty estimates are included in the

model on different levels, accounting both for sub-scale and resolved scale uncertainties.

In addition to the representation of model uncertainty, the uncertainty in the initial sea

ice conditions needs to be sampled as well. As it is already common practice for simulations

of the atmosphere to include uncertainty estimates for the initial conditions, this should and

certainly will be adapted for sea ice and ocean modelling as well. The ultimate aim should be

the incorporation of a complete set of uncertainty estimates in climate models. This is valid for

all components of the model and includes stochastic parameterizations in the atmosphere, the

ocean, the sea ice and the land surface model. In this context one should bear in mind that

aside from the model uncertainty within each component there is also uncertainty related to

the coupling between the components. Especially when the models of a coupled climate simu-

lator apply very different discretization strategies and grids, the coupling between the models

can cause inaccuracies. An example is ECHAM6-FESOM, for which the ocean resolution can

be considerably higher than the resolution in the atmosphere (see figure 7.1). Appendix D.3

discusses a stochastic coupling scheme, in the development of which I am currently engaged. It

aims at transferring some of the increased spatial variability of the higher resolved ocean model

to the low resolution atmospheric model.

Number of  ocean grid nodes
per intermediate grid node

Figure 7.1: Illustration of the resolution difference between the FESOM grid and the intermedi-
ate grid used for the coupling to ECHAM6. The color coding indicates the number of FESOM
grid nodes associated with the respective intermediate grid node.
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Glossary

AMOC Atlantic meridional overturning circulation
AWI Alfred Wegener Institute,

Helmholtz Centre for Polar and Marine Research
CAA Canadian Arctic Archipelago
CCSM4 Community Climate System Model (version 4)
CICE Community Ice Code model
CMIP5 Coupled Model Intercomparison Project phase 5
CORE (I and II) Common Ocean Reference Experiment (atmospheric)

forcing (versions 1 and 2)
ECHAM6 atmospheric climate model based on the

ECHMWF atmospheric model,
developed at the MPI Hamburg (version 6)

ECMWF European Centre for Medium Range Weather Forecasts
ECMWF EPS ECMWF Ensemble Prediction System
ERA-40 ECMWF reanalysis (atmosphere and surface fields)
FESOM Finite Element Sea ice-Ocean Model
GFDL CM3 Geophysical Fluid Dynamics Laboratory Climate Model (version 3)
HadGEM2 Hadley Centre Global Environment Model (version 2)
ICESat Ice, Cloud, and Land Elevation Satellite
IPCC Intergovernmental Panel on Climate Change
JSBACH land surface model (part of ECHAM6)
MIROC-ESM Model for Interdisciplinary Research On Climate Earth System Model
MPI (Hamburg) Max Planck Institute (for Meteorology in Hamburg) (also MPI-M)
MPI-ESM-LR MPI Earth System Model Low Resolution
MPI-OM MPI (sea ice–) ocean model
MTP Markov process time correlated perturbation
MTSP Markov process time and space correlated perturbation
NSIDC National Snow and Ice Data Center
NWP numerical weather prediction
OASIS3-MCT OASIS3 Model Coupling Toolkit (coupler ECHAM6 and FESOM)
PHC Polar Science Center Hydrographic Climatology
PIOMAS Pan-Arctic Ice Ocean Modeling and Assimilation System
RP reassignment time step perturbation
SHEBA Surface Heat Budget of the Arctic Ocean
SPPT stochastically perturbed parameterization tendencies
SSBS spectral stochastic kinetic energy backscatter scheme
ULS upward looking sonar
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List of relevant variables and

parameters

a lower boundary of transformed distribution function

A (fractional) sea ice concentration per Agrid

Agrid reference area of a grid node [m2]

α autocorrelation coefficient of Markov process

αi sea ice albedo

b upper boundary of transformed distribution function

β tuning parameter of random number transformation

C dynamic ice strength parameter (of exponential function)

dcorr correlation distance [m]

Δt time step length [s]

(Δt)pert reassignment time step [s]

ε̇ij two-dimensional deformation rate tensor [s−1]

ηo oceanic sea surface height [m]

f Coriolis parameter [s−1]
�Fint internal forces of sea ice (per area) [N m−2]

g gravitational acceleration [9.81m s−2]

h (effective) sea ice thickness [m] (volume per Agrid)

h0 lead closing parameter [m]

hs (effective) snow (on ice) thickness [m] (volume per Agrid)

m (sea ice) mass per area [kg m−2]

p pressure p (ocean and atmosphere) [N m−2]

P sea ice strength [N m−1]

P ∗ dynamic ice strength parameter [N m−2]

P ∗
ref deterministic reference value of P ∗ [N m−2]
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ρ (oceanic) density [kg m−3]

ρ0 (oceanic) reference density [1000 kg m−3]

ρice sea ice density [kg m−3]

S ocean salinity [g kg−1]

Sh thermodynamic growth rate for h [m s−1]

Ss thermodynamic growth rate for hs [m s−1]

SA thermodynamic growth rate for A [s−1]

σ standard deviation (of Gaussian distribution)

σij two-dimensional stress tensor [N m−1]

t time [s]

τ relaxation time [s]

�τair atmospheric stress (on ice) [N m−2]

�τocean oceanic stress (on ice) [N m−2]

θ oceanic potential temperature [K]

�u ocean velocity vector [(m s−1,m s−1,m s−1)]

�ui lateral sea ice velocity [(m s−1,m s−1)]

u zonal ocean velocity [m s−1]

ui zonal sea ice velocity [m s−1]

v meridional ocean velocity [m s−1]

vi meridional sea ice velocity [m s−1]

w vertical ocean velocity [m s−1]

x zonal coordinate [m]

xlon longitude [degrees or radians East/West ]

y meridional coordinate [m]

ylat latitude [degrees or radians North/South]

z vertical coordinate for ocean (in reference to mean sea level) [m]
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Appendix A

Bounded distributions

For this study bounded distribution functions for the random numbers of the perturbations are

needed. In figure A.1 the corresponding distribution functions of the so-called x- and y-truncated

Gaussian distributions (Bardsley , 2007) can be seen, with a fixed variance σ2 and zero mean of

the initial Gaussian distribution. An additional bounded, Gaussian-like random number can be

generated by the transformation

x(i, j) = −a+ (2a)/(1 + e−βy(i,j)), (A.1)

where y(i, j) is a random number from a Gaussian distribution, again with variance σ2 and zero

mean, and a is the bounding parameter. In this transformation β is some fixed value that meets

the inequality 0 < β <
√
2/σlim, with β = 1.4/σlim used here. The value β is necessary to keep

the maximum of the transformed distribution function at 0. σlim is a value greater or equal to

the standard deviation σ of the Gaussian distribution that is going to be transformed.

The distribution function after the transformation of a Gaussian distributed random number

y(i, j) is also shown in figure A.1.

Figure A.1: The Gaussian distribution function (cyan), the corresponding x-truncated and y-
truncated Gaussian distribution functions (red and blue, respectively), and the distribution
function of a random variable after the transformation (A.1) with β = 1.4/σ is applied to
the Gaussian distributed random variable (green). The standard deviation is σ = 0.5 for the
Gaussian distribution, the mean is 0 and the bounding parameter is a = 0.75 for the three
truncated distributions.
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Appendix B

Derivation of the Markov process

time correlated perturbation

Equation (3.9) in section 3.3.2 can be derived by discretizing a stochastic differential equation

of the form

dyt = −λytdt+ σWdWt (in Itô formulation), (B.1)

using the Euler–Maruyama scheme (Kloeden and Platen, 1992), with (Wt)t≥0 a Wiener process

and σ2
W = σ2/(Δt)pert.

Under these conditions the discretization of equation (B.1) yields

α = 1− λ(Δt), (B.2)

with λ = 1/τ and τ the relaxation time, as already mentioned in section 3.3.2. The mean of a

random variable y at node i described by equation (3.9) is zero for all time steps j, while the

variance is given by

V ar(y(i, j)) =
σ2Δt

(Δt)pert

(α2)(j−j′) − 1

α2 − 1
= σ̃2 (α

2)(j−j′) − 1

α2 − 1
(B.3)

and depends on the amount of time steps the node has been covered by ice since it was last

ice-free, (j− j′), with j being the current time step and j′ the time step when the node was last

ice-free. The resulting random variable is Gaussian distributed because all the summands are

Gaussian distributed.

For (j − j′) → ∞ the variance is limited by

σ2Δt

(Δt)pert(1− α2)
=

σ̃2

(1− α2)
. (B.4)

For the transformation of the random number y(i, j) into the bounded x(i, j) used in equation

(3.9) the simple equation (A.1) can be used, or corresponding transformations for the cases of x-

and y-truncated Gaussian distributions. Kotecha and Djurić (1999) gave such a transformation

for the x-truncated Gaussian distribution. In case of the more complicated y-truncated Gaus-
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Appendix B Derivation of the Markov process time correlated perturbation

sian distribution the corresponding transformation needs to be implemented via, for instance,

Newton’s method. For both transformations the variance at the current time step is needed.

For the simple transformation via equation (A.1) the value σlim is set to the limiting variance

in equation (B.4) for all time steps.
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Supporting material for chapter 5

Mean sea ice thickness
ECHAM6-FESOM PIOMAS (2003-2013)

M
ar
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Figure C.1: Mean Arctic sea ice thickness distribution (m) for (top) March and (bottom) Septem-
ber: (left) simulated by ECHAM6-FESOM (averaged over 150 years of a climate simulation) and
from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) reanalysis (from
the Polar Science Center at http://psc.apl.washingto.edu; Zhang and Rothrock , 2003) for
(middle) 2003–2013 and (right) 1978–2013.
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Mean sea level pressure 
ECHAM6-FESOM (150y)

hPa

hPa

Difference mean sea level pressure
ECHAM6-FESOM (150y) – ERA40 (1957-2002)

Figure C.2: Top: Annual mean sea level pressure (hPa) simulated by ECHAM6-FESOM (av-
eraged over 150 years of a climate simulation). Bottom: Difference in annual mean sea level
pressure (hPa) between ECHAM6-FESOM (150 year average) and ERA40 reanalysis (1957–2002
average; Uppala et al., 2005).
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Appendix D

Other stochastic perturbation

schemes

D.1. Perturbations of alternative parameters

All the preliminary tests with perturbations of the parameters discussed below have been con-

ducted for uncoupled FESOM simulations with CORE version 2 atmospheric forcing (Large and

Yeager , 2009).

D.1.1. C and h0 perturbations

While P ∗ impacts linearly on the internal ice strength, C enters into the exponential function

relating sea ice concentration to the ice strength. With increasing sea ice concentrations, the

exponential term in equation (3.7) increases. It reaches its maximum of 1 at an ice concentration

of A = 1 (i.e. 100% coverage). The term stays close to 0 for low to medium sea ice concentration

and rises quickly at concentrations of above 0.8 to 0.9 (see figure D.1). The parameter C impacts

the range of sea ice concentration values for which internal forces play a considerable role in

the simulation of the sea ice dynamics. For larger values of C higher ice concentrations are

necessary for sea ice to resist deformation. In contrast to P ∗, variations of the parameter C do

not impact the maximum value of the internal ice strength for a given sea ice thickness. For low

ice concentrations the value of C is generally of little importance and so is the whole internal

stress term of equation (2.12).

The lead closing parameter h0 is an important parameter in the formulation of the thermo-

dynamic sea ice growth. It determines the rate at which open water areas (leads, i.e. (1 − A))

are covered by sea ice under freezing conditions. Under freezing conditions the right-hand side

SA of equation (2.11) includes the term

1−A

h0

(
∂h

∂t

)
o,freezing

, (D.1)

where

(
∂h

∂t

)
o,freezing

is the thermodynamic growth rate of sea ice over open water. h0 is also
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Appendix D Other stochastic perturbation schemes

Figure D.1: The term e(−C(1−A)) of the internal ice strength parameterization (see equation
(3.7)) as a function of sea ice concentration A, for different values of the parameter C, i.e. for
C = 10 (green), the FESOM default value C = 20 (blue), and C = 30 (red).

called the demarcation thickness, as it discriminates between the thick ice h and the thin ice

that is generated in leads and on open water (see Hibler , 1979). Small values of h0 increase the

rate with which leads are closing, while large values decelerate lead closing. As a consequence,

the actual ice thickness h/A is affected in the opposite way. An increase of A leads to a decrease

of h/A if h is not increased by the same factor.

To get an idea of the uncertainty related to the choice of both parameters, I have conducted

single 3-year simulations applying the stochastic parameter perturbation introduced in chapter

3 separately to C and h0 (keeping the other values fixed). The setting of the parameter per-

turbations is the same as for experiment MTSP0 of chapter 3 (see table 3.1). This means that

the perturbation scheme has not been tuned separately for the different parameters. The only

(minor) difference to the scheme described in section 3.3.3 concerns perturbations of h0. In this

case, perturbed values are not averaged over the three nodes of an element (see chapter 3), as

thermodynamic calculations take place on the nodes themselves. The three perturbed simu-

lations (P ∗, C, and h0) are compared to a deterministic simulation with fixed default values

P ∗ = 20000N m−2, C = 20, and h0 = 0.5m.

Figures D.2 to D.5 show the impact of the parameter perturbations for P ∗, C, and h0

when compared to the unperturbed reference simulation. Shown is the seasonally averaged

difference of one single stochastic realization to the reference simulation, for both thickness h

and concentration A, and the northern as well as southern hemisphere. Differences have been

calculated for the third year after the stochastic perturbations have been switched on. The

simulation with P ∗ perturbations (left columns) is the simulation MTSP0 of chapter 3 (compare

figures D.2 and D.3, third panel, left, with figure 3.4, right column; note the different contour

intervals).

Figure D.2 (left column) confirms the large impact of the P ∗ perturbations on Arctic sea

ice thickness. Affected areas show a large deviation from the reference simulation and are also
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D.1. C and h0 perturbations

Difference in ice thickness (stochastic - deterministic)
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Figure D.2: Difference in northern hemisphere sea ice thickness (m) between simulations with
(left column) P ∗ perturbations, (middle) h0 perturbations, (right) C perturbations, and a deter-
ministic reference simulation without parameter perturbations. Simulations have been carried
out with FESOM, applying CORE version 2 atmospheric forcing (Large and Yeager , 2009).
Shown are the mean differences for the four seasons (top to bottom) DJF, MAM, JJA and SNO
of the third year after initialization.
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Difference in ice concentration (stochastic - deterministic)
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Figure D.3: As in figure D.2, but for sea ice concentration.
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D.1. C and h0 perturbations

Difference in ice thickness (stochastic - deterministic)
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Figure D.4: As in figure D.2, but for the southern hemisphere. Note the differing contour
intervals.
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Difference in ice concentration (stochastic - deterministic)
P* C
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Figure D.5: As in figure D.3, but for the southern hemisphere. Note the differing contour
intervals.

138



D.1. C and h0 perturbations

of considerable spatial scale. Sea ice concentration (figure D.3, left column) is less affected and

changes are localized near the ice edge, especially during winter, when concentrations in the

central Arctic are high.

Changes in h and A due to perturbations of C (figures D.2 and D.3, right columns) are

generally not very large and are of rather small scale. While differences are confined to similar

regions as those caused by P ∗ perturbations, the sign of these changes seems more or less random.

This suggests that the C perturbations are not leading to significant shifts in the mean sea ice

distribution. It is also an indication for presumably smaller ensemble spread when compared to

the large changes caused by the P ∗ perturbations.

Differences caused by h0 on the other hand show a clear preference towards reduced sea

ice thickness in most areas (D.2, middle column) and a rather contrary behaviour for sea ice

concentration (figure D.3, middle column), at least during winter and autumn. Although the

amplitude of the changes is also rather small, spatial scales are large. For sea ice thickness most

of the Arctic sea ice is affected, while changes in sea ice concentration are again confined to the

ice edge.

Looking at the impacts of the perturbations on southern hemisphere sea ice (figures D.4

and D.5), these preliminary results present quite substantial differences when compared to the

response of Arctic sea ice. The first thing to notice is the reduced amplitude of the changes. As

has been discussed before, it is caused by the comparatively thin Antarctic sea ice and the large

reduction of sea ice area during austral summer months.

Changes due to C perturbations (right columns) are again rather small, localized and seem

more or less randomly distributed.

The differences caused by P ∗ perturbations (left columns) are still quite large scale, at least

for sea ice thickness. They are mainly located near coastal areas and in the Weddell Sea.

h0 perturbations (middle columns), however, produce very large scale impacts in the southern

hemisphere, leading generally to an increase in sea ice concentration and a decrease in (effective)

sea ice thickness. This is consistent with the fact that h0 determines the ratio between lateral

and vertical sea ice growth, which leads to contrary behaviour for sea ice concentration and

thickness. However, whether or not these differences are significant and lead to a shift in the

mean distribution cannot be answered by a single simulation. But if they do not lead to a shift

in the mean, these first results consequently suggest that comparatively large ensemble spread

can be expected for h0 perturbations. Further simulations will have to be carried out in the

future to clarify this.

Nevertheless, the single simulations presented here reveal the differing magnitude of uncer-

tainties related to different sea ice parameters. In addition, this preliminary evaluation illustrates

that uncertainty estimation might lead to quite different conclusions for southern and northern

hemisphere sea ice, due to the different feedbacks and physical processes involved.

D.1.2. Sea ice albedo perturbations

The sea ice albedo parameterization applied by FESOM is rather simple. It discriminates

between snow-covered and snow-free sea ice, as well as between melting and dry snow or ice
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conditions, respectively, given a predefined melting temperature threshold (Tm = 0◦C). The ice

albedo αi can take on one of the following values, given the respective conditions:

� ice albedo αdi = 0.7 (for Ti <= Tm and hs = 0),

� melting ice albedo αmi = 0.68 (for Ti > Tm and hs = 0),

� snow albedo αds = 0.81 (for Ti <= Tm and hs > 0),

� melting snow albedo αms = 0.77 (for Ti > Tm and hs > 0),

where Ti is the temperature in ◦C at the snow or ice surface (towards the atmosphere), respec-

tively. Fluxes over open water are calculated separately using a fixed ocean albedo αo = 0.1.

I have conducted some preliminary tests concerning perturbations to αi. Tests include

perturbing only the ice albedos αdi and αmi, and perturbing αi after it has been calculated. In

addition, I applied not only symmetric perturbations, as was the case for P ∗, but I also tested

the asymmetric perturbations described in appendix D.2. This seems reasonable, as sub-scale

features on sea ice such as melt ponds and soot can lower the albedo considerably. Therefore

the perturbation scheme should allow for low values of αi, with a low probability of occurrence,

though. A symmetric perturbation of values already close to the upper boundary 1 would

prevent this. Furthermore, I have tested different spatial correlation schemes for the albedo

perturbations. All of these tests have been sensitivity studies and results can only be viewed as

preliminary. Therefore, I will restrict this discussion to one single example of a sea ice albedo

perturbation.

Figure D.6 shows the relative difference in Arctic sea ice thickness caused by P ∗ and αi

perturbations, separately, when compared to a deterministic FESOM simulation. The pertur-

bations of αi are spatially correlated by a correlation matrix comparable to the one used in

chapter 4 for the P ∗ perturbations, with a very large correlation distance of dcorr = 4000 km.

The only other difference in the spatial correlation method is that a correlation matrix on a

coarser rectangular grid is used to generate the pattern. This reduces the computational costs

of the pattern generation. After the generation, values of the correlation pattern are interpo-

lated to the finer FESOM grid. Another difference to the P ∗ perturbations is the application

of an asymmetric transformation for the Gaussian random numbers (see appendix D.2). A

perturbation in the range of −80% to +20% is applied to the albedo αi after its calculation.

A single 3-year simulation with albedo perturbations has been conducted. The simulation

applying P ∗ perturbations is the same as the MTSP0 simulation of chapter 3.

Figure D.6 illustrates that the impacts of the P ∗ perturbations are especially strong near

the coast lines and in the eastern Arctic, while the albedo perturbations primarily affect regions

close to the ice edge. Furthermore, the albedo perturbations show a general decrease in sea ice

thickness, which is mainly caused by the asymmetric perturbations. These allow for much lower

albedos to occur. Generally, figure D.6 highlights the different areas effected by uncertainties

in the formulation of the sea ice dynamics and thermodynamics. Further investigations in this

context will be necessary.

Additionally, it is also important to note that albedo parameterizations differ quite consid-

erably between models. While FESOM uses a rather simple sea ice albedo parameterization,

140



D.2. Alternative perturbation designs

Relative difference in ice thickness ( )
P*

Figure D.6: Relative difference in northern hemisphere sea ice thickness between simulations
with (left) P ∗ and (right) αi perturbations and the respective deterministic reference simulation
without parameter perturbations. Simulations have been carried out with FESOM, applying
CORE version 2 atmospheric forcing (Large and Yeager , 2009). Shown are the monthly mean
differences of March for one year, three years after initialization.

ECHAM6 applies a much more sophisticated parameterization (Giorgetta et al., 2013). It in-

cludes among others effects of melt ponds fraction, snow cover fraction and separation of radia-

tion into different spectral bands. This makes albedo perturbations for different models difficult

to compare. Furthermore, strong atmospheric feedback mechanisms in response to albedo per-

turbations might result in quite different responses in a fully coupled compared to sea ice–ocean

models.

Due to the diversity of albedo parameterizations it is reasonable to develop a new stochastic

parameterization for sea ice albedo. It should include the stochastic aspects right from the

beginning and could be validated against observational data 13.

D.2. Alternative perturbation designs

For the albedo perturbations of appendix D.1.2 I have developed an asymmetric transformation.

It is based on the transformation given by equation (A.1) in the appendix A. The purpose is

to transform a Gaussian distributed random number into a limited range to keep perturbations

within physically realistic limits.

All the necessary calculations for generating temporal and spatial correlations are carried

13See for example the observational data (including albedo measurements) of the Surface Heat Budget of the
Arctic Ocean (SHEBA) project at http://www.ral.ucar.edu/projects/GCSS/WG5/shebasid.html (16.05.2014).
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out with Gaussian distributed random numbers prior to the transformation. The advantage is

that linear combinations of Gaussian distributed random numbers are still Gaussian distributed.

Therefore, transformation into a limited range is applied only after all other necessary calcula-

tions have been carried out.

The transformation should meet the condition that it transforms the random numbers into a

bounded distribution with a single probability maximum at 0 and zero probability at the limits.

The transformation of equation (A.1) meets these requirements. And so does the generalized

transformation

x = −a+
b− a

1− b
ae

−βy
(D.2)

with y some Gaussian distributed random variable with zero mean and standard deviation

σ. The parameter β lies in the range 0 < β <
√
2/σ. It arises from the necessity to keep the

maximum of the transformed distribution at 0. This can be shown by calculating the distribution

function using a transformation theorem for random numbers (see e.g. Lefebvre, 2007) and then

calculating the first and second derivatives of the distribution function (calculations not shown).

For a local maximum the conditions are for the first derivative to be equal to 0 and for the

second derivative to be smaller than 0. Applying these conditions to the distribution function

of the transformed random numbers at 0, the above condition for β can be derived.
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Probability density functions and normalized histograms of random numbers

Gaussian, =0, =1 Symmetric transformation
-a=b=0.5, =1

Asymmetric transformation
a=-0.25, b=0.5, =1

Figure D.7: Distribution functions of (left) a Gaussian distributed random number (μ = 0 and
σ = 1), (middle) a symmetric transformation of the Gaussian distributed random number using
equation (D.2) (limits −a = b = 0.5, β = 1) and (right) an asymmetric transformation of the
Gaussian distributed random number using equation (D.2) (limits a = −0.25 and b = 0.5, β = 1).
Shown are the theoretic distribution functions (red lines) and the (normalized) histograms of
the respective computer-generated random numbers (blue bars).

The parameters a < 0 and 0 < b are the lower and upper bound of the transformed dis-

tribution function. Inserting a = −b for a symmetric transformation results in equation (A.1).

It should be noted that, for the transformation of equation (D.2), 0 is also an invariant point.

Figure D.7 illustrates the symmetric and asymmetric distribution functions, as well as the respec-

tive Gaussian distribution function. Results from theoretical calculations as well as transformed

computer-generated random numbers assort well.

Using different transformations such as the one given by equation (D.2) can be very useful

when the perturbations have to be adjusted for different parameters. Another aspect of pertur-
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Random number patterns
Gaussian, =0, =1 Symmetric transformation
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Figure D.8: Patterns of random numbers with (left) a Gaussian distribution (μ = 0 and σ = 1),
(middle) after a symmetric transformation of the Gaussian distributed random numbers using
equation (D.2) (limits −a = b = 0.5, β = 1) and (right) after an asymmetric transformation of
the Gaussian distributed random numbers using equation (D.2) (limits a = −0.25 and b = 0.5,
β = 1). Patterns are generated for two different correlation distances, (top) dcorr = 100 km and
(bottom) dcorr = 1000 km, using the pattern generation strategy described in chapter 4.

bation design is the strategy applied to create the spatial correlation. Chapters 3 and 4 have

introduced two different spatial correlation schemes, both of which have been isotropic. Many

other schemes are imaginable, isotropic as well as anisotropic. Figure D.8 illustrates the impact

of changes in the spatial correlation parameter dcorr of the correlation matrix described in chap-

ter 4, using the same pattern generation scheme. In addition, transformation (D.2) is applied

to the patterns of Gaussian distributed random numbers, both for a symmetric and an asym-

metric configuration, to illustrate the combined effect of spatial correlation and transformation

of random numbers into a bounded distribution.

D.3. Coupling uncertainty

Another application of stochastic perturbations that is currently being investigated is connected

to the coupling procedure between FESOM and ECHAM6 described in section 2.2.2. In the

deterministic ECHAM6-FESOM model spatially averaged snow and sea ice thickness, sea ice

concentration, and sea surface temperature fields are calculated on the FESOM grid and passed

to the intermediate grid. The OASIS3-MCT coupler uses a bilinear interpolation to communi-
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cate these fields from the intermediate grid to the ECHAM6 grid. In some regions, where the

FESOM grid resolution is very high, dozens of FESOM grid points are associated with one single

intermediate grid node. When FESOM values are averaged, information on spatial variability of

the respective surface field is lost. From the perspective of the intermediate and the ECHAM6

grid, this variability belongs to the sub-grid scale.

Number of  ocean grid nodes
per intermediate grid node

(Spatial) Mean and STD of SST 
(for intermediate grid nodes with # ocean grid nodes > 5; 1st of January, 00:00 UTC)

Figure D.9: Illustration of the resolution difference between the FESOM grid and the intermedi-
ate grid used for the coupling to ECHAM6: (top) the number of FESOM grid nodes associated
with the respective intermediate grid node; (bottom left) the mean sea surface temperature [◦C]
as an average over the associated FESOM grid nodes as seen by the intermediate grid; (bottom
right) the standard deviation of sea surface temperature of the associated FESOM grid nodes
[◦C] for each intermediate grid node. The bottom panel shows values for the first of January,
00:00 UTC, of an arbitrary year of the coupled simulation and only for those intermediate grid
nodes with more than 5 FESOM grid nodes.

Figure D.9 (top) illustrates the number of FESOM grid nodes associated to each of the

intermediate grid nodes. This number varies from less than three in the open oceans, where

FESOM grid resolution is coarse, to well above 40 nodes along the highly resolved equatorial

belt and the coast of Greenland. Relatively higher resolution can also be found along most

coastlines.

In addition, figure D.9 (bottom left) shows spatially averaged sea surface temperature of the
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intermediate grid exemplary for the first of January of some arbitrary model year. Shown are

only the sea surface temperatures of those intermediate grid nodes to which more than 5 FESOM

grid nodes belong. The rather coarse intermediate grid resolution is sufficient to be able to make

out regions of strong temperature gradients, especially in the equatorial Pacific region and along

the western boundary currents. These strong gradients can also be found when considering sea

ice fields (not shown). Especially along the ice edge and the coastal regions, values of sea ice

thickness and concentration can vary considerably from one intermediate grid node to another.

The spatial variability of the FESOM grid nodes belonging to an intermediate grid node can

be even larger. Spatial averaging smoothes out small-scale features originating from localized

sea ice ridging, the steep concentration gradients along the ice edge, or sea surface temperature

gradients along fronts or eddies. This sub-grid scale variability of the ocean surface fields can

be illustrated by looking at the spatial standard deviation, for intermediate grid nodes to which

more than 5 FESOM grid nodes are associated. This is shown in figure D.9 (bottom right) for

sea surface temperature. Temperature standard deviations can be larger than 2◦C along the

equatorial belt, the western coastlines and the ice edge in the North Atlantic. Similarly strong

variability can be observed for the sea ice fields (not shown).

Figure D.10: Evolution of sea surface temperature [◦C] at two locations in the equatorial Pacific
(at 2.8125◦N, 128.4375◦W and 0.9375◦N, 128.4375◦W ), for a January of an arbitrary year of
the coupled simulation. Shown are the unperturbed sea surface temperature fields (blue) and
the stochastically perturbed fields (red). See text for details on the perturbation method.

While FESOM is capable of very localized grid refinements, ECHAM6 is not. Averaging of

FESOM fields causes uncertainties in the simulations, as ECHAM6 cannot process the actually

simulated surface fields due to its coarser resolution. To include a measure of coupling uncer-

tainty and possibly even increase the accuracy of the coupling procedure, the basic idea is to

communicate not only the mean fields, but to calculate in addition the spatial standard devia-

tions of the FESOM grid. This is done for intermediate grid nodes with more than 5 FESOM

grid nodes and every 6-hourly coupling interval. Based on these standard deviations, the mean

fields can be perturbed on the intermediate grid to estimate the uncertainty of the flow.
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Independent Gaussian distributed random numbers with the respective standard deviations

are used for the perturbations at the selected intermediate grid nodes. By that uncertainty in the

actual choice of the nodal field value can be sampled and the variability of the surface fields used

by ECHAM6 is increased. The perturbations are applied to the sea surface temperature, to h/A,

and to hs/A. The perturbations of the latter two terms are used to calculate the perturbations

of the separate fields A, h, and hs. This procedure has been chosen to keep the ratios h/A and

hs/A within reasonable bounds. After the perturbations have been applied, values need to be

additionally transformed into a physically realistic range. Details of the perturbation procedure

are currently investigated.

Figure D.10 provides a first impression of the perturbations of sea surface temperature at

two different locations in the equatorial Pacific. Shown are both unperturbed mean values and

randomly perturbed values (following the procedure described above) at the two locations. It

illustrates how the sub-grid scale temperature variability varies over time, as sub-grid scale

features exhibiting strong temperature gradients pass through. First results of this perturbation

method are currently being evaluated, in view of impacts on global mean climate and climate

variability.


