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 ZUSAMMENFASSUNG 1 

1 Zusammenfassung 

Kognitiv-exekutive Funktionen, wie Entscheidungsfindung und Impulskontrolle, stellen 

essentielle Aspekte des täglichen Lebens bei Menschen und Ratten dar. Ein Ungleichgewicht 

zwischen Verhaltensaktivierung und dessen Inhibition ruft Impulsivität hervor, die durch 

rasche Entscheidungsfindung und defizitäre Impulskontrolle charakterisiert ist. Hochgradige 

Impulsivität ist in zahlreichen neuropsychiatrischen Erkrankungen mit frontostriatalen 

Dysfunktionen, einschließlich Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS), 

antisozialer Persönlichkeitsstörung, Borderline-Persönlichkeitsstörung, Schizophrenie, 

Drogenmissbrauch und anderer Suchtformen, prävalent.  

 Impulsives Verhalten gilt als ein multifaktorielles Konstrukt, das in Abhängigkeit von 

den partizipierenden neuroanatomischen Strukturen und der je nach speziellem Verhaltenstest 

abverlangten spezifischen Art von Impulsivität moduliert wird. Die Verhaltensparadigmen zur 

Bewertung von Impulsivität lassen sich weitgehend in zwei Kategorien einteilen: 1. die 

Messung impulsiver Wahl oder impulsiver Entscheidungsfindung, 2. die Messung impulsiver 

Aktion oder von Impulskontrolldefiziten. Es wird behauptet, dass jede Form von Impulsivität 

eine impulsive Aktion in der Art beinhaltet, die notwendig ist, um eine Reaktionsalternative 

auszuwählen. Der konzeptionelle Unterschied liegt darin, dass es, im Gegensatz zur 

impulsiven Handlung, bei impulsiver Wahl keine allgemein vorherrschende Reaktion gibt, die 

dann gewaltsam inhibiert wird.  

 Eine der meistgenutzten Methoden zur Messung von Impulskontrolldefiziten ist die 

5-choice serial reaction time task (5-CSRTT), in der Ratten impulsive Reaktionen in 

Erwartung eines visuellen, belohnungsankündigenden Stimulus, der randomisiert in einem 

von fünf Zielorten präsentiert wird, zurückhalten müssen. Die Anzahl der Reaktionen vor 

Onset des Lichtreizes wird generell als Maß für die Impulskontrolle angesehen, da hohe Level 

verfrühter Antworten Verhaltensdisinhibition reflektieren. Die meisten 

Entscheidungsfindungsprozeduren verwenden Diskontierungsprozesse, wobei die Individuen 

mit zwei Optionen konfrontiert werden, die in Kosten und Nutzen differieren. Da impulsive 

Probanden eine Intoleranz gegenüber Belohnungsverzögerung aufweisen, reflektiert die 

zeitliche Diskontierung, die durch die Präferenz für eine kleine sofortige über eine größere 

verzögerte Belohnung indiziert wird, am ehesten impulsives Verhalten. Bei Tieren wird die 

Verzögerungsdiskontierung üblicherweise in operanten Boxen mit zurückziehbaren Hebeln 

oder in verzögerungsbasierten Entscheidungsfindungsaufgaben in T-Labyrinthen evaluiert.  
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 Es wird angenommen, dass frontostriatale Systeme, die den präfrontalen Kortex (PFC) 

und das Striatum umfassen, welches weiter in dorsale und ventrale Abschnitte mit dem 

Nucleus accumbens (NAc) als Bestandteil des ventralen Striatums untergliedert werden kann, 

eine Schlüsselrolle bei der Impulskontrolle und impulsiven Entscheidungsfindung spielen. 

Allerdings herrschen kontroverse Theorien hinsichtlich der Beteiligung dieser Strukturen an 

distinkten Formen von Impulsivität. Unter den PFC-Regionen ist möglicherweise der ventrale 

mediale PFC (vmPFC) am meisten in impulsives Verhalten involviert. Bezüglich des NAc 

suggerieren die unterschiedlichen Konnektivitätsprofile dessen Kern- („core“) und 

Schalenregion („shell“), besonders im Hinblick auf die topographischen Projektionen vom 

mPFC, einen differentiellen Einfluss der NAc-Subregionen auf impulsive Verhaltensweisen.  

 Die vorliegende Arbeit zielte darauf ab, die Beteiligung des vmPFC auf frontaler und 

des NAc auf striataler Ebene an der Modulation von Entscheidungsfindung und 

Impulskontrolle bei Ratten anhand der reversiblen Inaktivierungstechnik mittels 

Mikroinfusion des GABAA-Rezeptoragonisten Muscimol zu erläutern. Angesichts der 

Tatsache, dass die NAc-Subregionen funktionelle Dichotomie hinsichtlich zahlreicher 

Verhaltensweisen zeigen, intendierte die Arbeit, eine potentiell heterogene Rolle von NAc 

core und shell bei impulsiver Wahl und impulsiver Aktion aufzuklären. Zudem diente die 

simultane temporäre Inaktivierung von vmPFC und NAc core oder shell dazu, die 

Verwicklung der verschiedenen frontostriatalen Verbindungen in inhibitorische Kontrolle zu 

analysieren.  

 

1.1 Studie 1 (in Behavioural Brain Research, 2014) 

„Ventral medial prefrontal cortex inactivation impairs impulse control but does not affect 

delay-discounting in rats” betrachtet die Relevanz des ventralen medialen präfrontalen Kortex 

(vmPFC) für verschiedene Formen von Impulsivität. Als Teil des PFC scheint der vmPFC 

entscheidend in die Top-down-Kontrolle von impulsiver Entscheidungsfindung und 

motorischer Impulsivität involviert zu sein. Anhand von bilateraler Mikroinfusion des 

-Aminobuttersäure (GABA)A-Rezeptoragonisten Muscimol (0,05, 0,5 μg/0,3 μl) wurden die 

Effekte der reversiblen Inaktivierung des vmPFC in der 5-choice serial reaction time task 

(5-CSRTT) und in einem Verzögerungsdiskontierungsparadigma in einer Skinner-Box 

untersucht.  
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 Die intra-vmPFC-Applikation von niedrig dosiertem Muscimol erzeugte erhöhte Level 

motorischer Impulsivität, was sich durch vermehrtes verfrühtes Antworten in der 5-CSRTT 

äußerte. Infolge der hoch dosierten Muscimol-Injektion war die 5-CSRTT-Performanz sowohl 

durch Defizite der Impuls- als auch der Aufmerksamkeitskontrolle gekennzeichnet. Im 

Gegensatz dazu induzierte die temporäre Inaktivierung des vmPFC keine impulsiv-ähnlichen 

Verhaltensweisen in der verzögerungsbasierten Entscheidungsfindungsaufgabe. Trotz einer 

Erhöhung der Auslassungsrate beeinflusste hoch dosiertes Muscimol nicht die 

Verzögerungsdiskontierung, während niedrig dosiertes Muscimol eine Abflachung der 

verzögerungsabhängigen Verschiebung in der Präferenz für die große gegenüber der kleinen 

sofortigen Belohnung verursachte.  

 Schlussfolgernd stützen diese Ergebnisse die Verhaltensdissoziation von impulsiver 

Wahl und impulsiver Aktion auf der Ebene des vmPFC bei Ratten. Demzufolge ist ein 

intakter vmPFC offensichtlich essentiell für die Aufrechterhaltung der Impulskontrolle in der 

5-CSRTT, wogegen Verzögerungsdiskontierungsprozesse scheinbar durch andere neuronale 

Pfade reguliert werden, wobei der vmPFC, wenn überhaupt, eine untergeordnete Rolle spielt.  

1.2 Studie 2 (in Progress in Neuro-Psychopharmacology & Biological 

Psychiatry, 2014) 

In „Nucleus accumbens core and shell inactivation differentially affects impulsive behaviours 

in rats” wurde die Beteiligung der Nucleus accumbens (NAc)-Subregionen core und shell an 

Aspekten der Impulskontrolle in der 5-choice serial reaction time task (5-CSRTT) und 

verzögerungsbasierter Entscheidungsfindung im T-Labyrinth bei Ratten analysiert. Zu diesem 

Zweck erfolgte die vorübergehende Inaktivierung von NAc core und shell via bilateraler 

Mikroinfusion des -Aminobuttersäure (GABA)A-Rezeptoragonisten Muscimol 

(0,05 μg/0,3 μl). Zusätzlich wurde Fluorophor-konjugiertes Muscimol (FCM) in äquimolarer 

Konzentration (0,27 μg/0,3 μl) injiziert, um die räumliche Verteilung von Muscimol in beiden 

Arealen zu evaluieren. 

 Die Inaktivierung des NAc shell führte zu einer signifikanten Verringerung der 

Impulskontrolle in der 5-CSRTT, wogegen die Muscimol-Injektion in den NAc core starke 

Beeinträchtigungen der generellen Leistung in dem Paradigma nach sich zog. Die temporäre 

Deaktivierung sowohl von NAc shell als auch von NAc core löste impulsives Wahlverhalten 

in der verzögerungsbasierten Entscheidungsfindungsaufgabe im T-Labyrinth aus, wobei die 
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intra-NAc core-Injektion von Muscimol größere Defizite in der Wartekapazität der Ratten 

verursachte als die Mikroinfusion in den NAc shell. Das Ausmaß der FCM-Diffusion war auf 

die jeweilige Subregion beschränkt. Die FCM-Behandlung zeigte jedoch keinen Effekt auf die 

Verhaltensparameter.  

 Somit scheinen beide Regionen des NAc an dem neuronalen Netzwerk zu 

partizipieren, welches für die Vermittlung von Impulsivität verantwortlich ist, allerdings mit 

variierenden Einflüssen hinsichtlich unterschiedlicher Formen von impulsivem Verhalten. 

Diese Studie deutet darauf hin, dass die shell-Region durch die Regulation sowohl von 

impulsiver Aktion als auch impulsiver Wahl eine besondere Rolle bei der Verhaltenskontrolle 

zu spielen vermag. Demgegenüber scheint der NAc core einen zusätzlichen Einfluss auf die 

lokomotorische Aktivität und motivationale Aspekte auszuüben und offenbart bezüglich der 

Impulskontrolle eine funktionale Dichotomie im Vergleich zu dem shell-Areal.  

 

1.3 Studie 3 (eingereicht bei Psychopharmacology)

„Frontostriatal systems comprising connections between ventral medial prefrontal cortex and 

nucleus accumbens subregions differentially regulate impulse control in rats” beabsichtigt, 

das neuronale Netzwerk, welches der inhibitorischen Reaktionskontrolle unterliegt, präziser 

zu erläutern. Beteiligte Hirnstrukturen bilden parallele, funktionell getrennte, jedoch partiell 

überlappende frontostriatale Schaltkreise, einschließlich des ventralen medialen präfrontalen 

Kortex (vmPFC) und des Nucleus accumbens (NAc). 

 In dieser Studie diente ein Diskonnektionsansatz in Form von reversibler Inaktivierung 

des vmPFC und NAc core oder shell bei Ratten durch simultane kontralaterale 

Mikroinfusionen des -Aminobuttersäure (GABA)A-Rezeptoragonisten Muscimol 

(0,05 μg/0,3 μl) zur Untersuchung der funktionalen Beziehung und potentiellen Abgrenzung 

der unterschiedlichen Verbindungen des vmPFC mit den NAc-Subregionen hinsichtlich der 

Impulskontrolle in der 5-choice serial reaction time task (5-CSRTT).  

 Die Diskonnektion von vmPFC und NAc shell führte zu spezifischen 

Beeinträchtigungen der inhibitorischen Kontrolle, die sich durch vermehrte antizipatorische 

Reaktionen und Antworten innerhalb der Time-out-Phase äußerten. Dagegen bewirkte die 

simultane kontralaterale Inaktivierung von vmPFC und NAc core keine Veränderung der 

Impulskontrolle, sondern resultierte lediglich in einer geringfügigen Erhöhung der 
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Auslassungsrate und der Futteraufnahmelatenz, was auf Aufmerksamkeits- und 

Motivationsdefizite schließen lässt.  

 Zusammengefasst weisen die Resultate auf eine funktionale Spezialisierung 

frontostriataler Systeme mit einer prädominanten Rolle der Verbindung von vmPFC und NAc 

shell bei der Vermittlung von Impulskontrolle in der 5-CSRTT hin, während der vmPFC-NAc 

core-Pfad einen größeren Einfluss auf Aufmerksamkeitsprozesse und motivationale Aspekte 

zu haben scheint.  

1.4 Fazit 

Insgesamt betrachtet bekräftigen die gegenwärtigen Befunde die Hypothese, dass impulsives 

Verhalten nicht nur von der Top-down-Kontrolle kortikaler Strukturen abhängt, sondern auch 

auf subkortikaler Ebene reguliert wird. Die erzielten Ergebnisse deuten auf distinkte 

Impulsivitätsprozesse im vmPFC und NAc hin, wobei die Impulskontrolle in der 5-CSRTT 

durch beide Strukturen reguliert wird, während impulsive Entscheidungsfindung vorwiegend 

einer Modulation seitens des NAc, und nicht des vmPFC, unterliegt. Des Weiteren 

suggerieren die aktuellen Untersuchungen in Bezug auf impulsive Aktion sowohl funktionelle 

Dissoziationen als auch enge Interaktionen zwischen vmPFC und NAc in Abhängigkeit von 

der involvierten accumbalen Subregion. Eine wichtige Erkenntnis der durchgeführten Studien 

besteht darin, dass der NAc shell die entscheidende Struktur bei der Vermittlung beider 

Impulsivitätsformen darstellt, wogegen der NAc core über impulsives Wahlverhalten hinaus 

an unspezifischen Verhaltensbeeinträchtigungen beteiligt zu sein scheint. Folglich deutet die 

vorliegende Arbeit auf mehrere frontostriatale Systeme hin, die auf differentielle Weise an 

verzögerungsbasierter Entscheidungsfindung und insbesondere an der Impulskontrolle 

mitwirken.      
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2 Abstract 

Cognitive-executive functions, such as decision-making and impulse control, are essential 

aspects of daily life in humans and rats. An imbalance of behavioural activation and its 

inhibition induces impulsivity, characterised by rash decision-making and deficient impulse 

control. High levels of impulsivity are prevalent in numerous neuropsychiatric disorders 

underlain by frontostriatal dysfunctions, involving attention-deficit/hyperactivity disorder 

(ADHD), antisocial personality disorder, borderline personality disorder, schizophrenia, drug 

abuse and other forms of addiction. Impulsive behaviour is considered as a multifactorial 

construct that is modulated in dependence on the participating neuroanatomical structures and 

on the specific type of impulsivity which is demanded in a particular behavioural task. 

Behavioural paradigms for assessing impulsivity can be broadly divided into two categories: 

1. measuring impulsive choice or impulsive decision-making, 2. measuring impulsive action 

or deficits of impulse control. It is assumed that each type of impulsivity involves a kind of 

impulsive action, which is necessary to choose a response alternative. The main difference is 

that impulsive choice requires no forcible inhibition of a prepotent response compared to 

impulse control.  

 One of the most commonly used methods for measuring impulse control deficits is the 

5-choice serial reaction time task (5-CSRTT), where rats are required to withhold from 

impulsive responding to a visual, reward-predicting cue, which is randomly presented in one 

of five apertures. The number of responses before the onset of the light stimulus is generally 

regarded as an index of impulse control, as high levels of premature responses reflect 

behavioural disinhibition. Most decision-making procedures utilise discounting processes and 

confront the individuals with two options differing in cost and benefit. Since impulsive 

subjects are intolerant to delay of gratification, temporal discounting indexed by the 

preference for a small immediate over a larger delayed reward is deemed to mostly reflect 

impulsive behaviour. In animals, delay discounting is typically evaluated in lever-equipped 

operant chamber versions or in delay-based decision-making T-maze tasks.  

 Frontostriatal systems comprising the prefrontal cortex (PFC) and the striatum, which 

can be further divided into dorsal and ventral parts with the ventral striatum encompassing the 

nucleus accumbens (NAc), are considered to play a key role in impulse control and impulsive 

decision-making. However, controversial assumptions exist regarding the contribution of 

these structures to distinct forms of impulsivity. Among PFC regions, the ventral medial PFC 
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(vmPFC) might be most critically involved in impulsive behaviour. Regarding the NAc, the 

distinct connectivity profiles of its subregions core and shell, particularly concerning the 

topographical projections from the mPFC, suggests a differential influence of the NAc 

subregions on impulsive behaviours.   

Using the reversible inactivation technique via microinfusion of the GABAA receptor 

agonist muscimol the thesis aimed to elucidate the participation of the vmPFC on frontal and 

of the NAc on striatal level in the modulation of decision-making and impulse control in rats. 

Given that the NAc subregions show functional dichotomy in several behaviours, the thesis 

intended to clarify a potentially heterogeneous role of NAc core and shell in impulsive choice 

and impulsive action. Moreover, simultaneous temporary inactivation of the vmPFC and NAc 

core or shell was applied to analyse the involvement of different frontostriatal connections in 

inhibitory control.      

 

2.1 Study 1 (Behavioural Brain Research, 2014) 

“Ventral medial prefrontal cortex inactivation impairs impulse control but does not affect 

delay-discounting in rats” considers the relevance of the ventral medial prefrontal cortex 

(vmPFC) for different types of impulsivity. As part of the PFC, the vmPFC seems to be 

critically involved in the top-down control of impulsive decision-making and motor 

impulsivity. By use of bilateral microinfusion of the -aminobutyric acid (GABA)A receptor 

agonist muscimol (0.05, 0.5 μg/0.3 μl), the effects of reversibly inactivating the vmPFC were 

examined in the 5-choice serial reaction time task (5-CSRTT) and in a delay-discounting 

paradigm in a Skinner box.  

 Intra-vmPFC administration of low-dose muscimol generated enhanced levels of 

motor impulsivity indicated by increased premature responding in the 5-CSRTT. Following 

injection of high-dose muscimol, 5-CSRTT performance was characterised by both impulse 

and attentional control deficits. On the contrary, temporary inactivation of the vmPFC did not 

induce impulsive-related behaviours in the delay-based decision-making task as measured by 

the preference for small immediate over large delayed rewards. High-dose muscimol did not 

affect delay-discounting though raising the rate of omissions, while low-dose muscimol 

caused a flattening of the delay-dependent shift in the preference of the large reward in the 

task.  
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 In conclusion, these data support the behavioural dissociation of impulsive choice and 

impulsive action on the level of the vmPFC in rats. Hence, an intact vmPFC is obviously 

essential for the maintenance of impulse control in the 5-CSRTT, whereas delay-discounting 

processes seem to be regulated by other neuronal pathways, with the vmPFC playing, if at all, 

a minor role. 

 

2.2 Study 2 (Progress in Neuro-Psychopharmacology & Biological Psychiatry,

2014)

In “Nucleus accumbens core and shell inactivation differentially affects impulsive behaviours 

in rats” the contribution of the nucleus accumbens (NAc) subregions core and shell to aspects 

of impulse control in the 5-choice serial reaction time task (5-CSRTT) and delay-based 

decision-making in the T-maze task was analysed in rats. For this purpose, NAc core and shell 

were transiently inactivated via bilateral microinfusion of the -aminobutyric acid (GABA)A 

receptor agonist muscimol (0.05 μg/0.3 μl). Additionally, fluorophore-conjugated muscimol 

(FCM) was injected in an equimolar concentration (0.27 μg/0.3 μl) to evaluate the spatial 

distribution of muscimol in both areas.  

 Inactivation of the NAc shell significantly reduced impulse control in the 5-CSRTT, 

whereas muscimol injection in the NAc core produced severe impairments in the general 

performance of the task. Transient deactivation of the NAc shell as well as the NAc core 

induced impulsive choice in the delay-based decision-making T-maze task, with higher 

deficits of the rats’ waiting capacity following intra-NAc core injection of muscimol 

compared to shell. FCM showed diffusion extent restricted to the respective subregion, albeit 

having no effect on any behavioural parameters.  

 Thus, both regions of the NAc seem to be part of the neural network mediating 

impulsivity, with varying influences concerning distinct types of impulsive behaviour. This 

study indicates that the shell region might play a specific role in behavioural control by 

regulating both impulsive action as well as impulsive choice. In contrast, the NAc core seems 

to have an additional impact on locomotor activity and motivational aspects and shows 

functional dichotomy regarding impulse control in comparison with the shell.  
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2.3 Study 3 (Psychopharmacology, under review)  

“Frontostriatal systems comprising connections between ventral medial prefrontal cortex and 

nucleus accumbens subregions differentially regulate impulse control in rats” aims to more 

precisely elucidate the neuronal network underlying inhibitory response control. Participating 

brain structures form parallel, functionally segregated, yet partly overlapping frontostriatal 

circuits, including the ventral medial prefrontal cortex (vmPFC) and the nucleus accumbens 

(NAc). 

 In this study, a disconnection approach by reversible inactivation of the rats’ vmPFC 

and NAc core or shell, respectively, via simultaneous contralateral microinfusions of the 

-aminobutyric acid (GABA)A receptor agonist muscimol (0.05 g/0.3 l) was used to 

investigate the functional relationship and a potential distinction between the connections of 

the vmPFC and the NAc subregions concerning impulse control in the 5-choice serial reaction 

time task (5-CSRTT).  

Disconnection of the vmPFC and the NAc shell induced specific deficits in inhibitory 

control, as indicated by increased premature and time-out responding. In contrast, 

simultaneous contralateral inactivation of the vmPFC and the NAc core had no effect on 

impulse control, but slightly increased the rate of omissions and latency of reward collection 

suggesting attentional and motivational deficits.  

Taken together, the results point out a functional specialisation of frontostriatal 

systems with a predominant role for the connection of the vmPFC and the NAc shell in 

mediating impulse control in the 5-CSRTT, while the vmPFC-NAc core pathway seems to 

have a greater impact on attentional processes and motivational aspects.  

 

2.4 Conclusion 

Summarising, the present results corroborate the hypothesis that impulsive behaviour is not 

only dependent on top-down control by cortical structures, but also regulated at subcortical 

level. The results achieved indicate distinct impulsivity processes in the vmPFC and NAc, 

with impulse control in the 5-CSRTT being regulated by both structures, while impulsive 

decision-making in delay-discounting tasks is principally modulated by the NAc, and not the 

vmPFC. Further, the current investigation suggests both functional dissociations and close 

interactions between the vmPFC and NAc in terms of impulsive action, depending on the 

involved accumbal subregion. A fundamental finding of the current studies was that the NAc 
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shell constitutes the critical region mediating both types of impulsivity, whereas the NAc core 

seems to be implicated in non-specific impairments beyond impulsive choice. Consequently, 

this work points towards various specific frontostriatal systems differentially contributing to 

delay-based decision-making and particularly impulse control.    
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3 General introduction 

3.1 Behavioural control and impulsivity 

Cognitive-executive functions, such as behavioural control, adaptation, planning, organisation 

and decision-making, are essential aspects of daily life of both humans and rats. They require 

the right balance of behavioural inhibition and activation to enable the promotion of positive 

outcomes (Chudasama 2011;Ghazizadeh et al. 2012;Paulus 2005;West and Gardner 2013). 

Behavioural inhibition is highly influenced by motivational states (‘impulses’) and is 

associated with resisting temptation, deferred gratification, motor inhibition, and impulse 

control (Aron 2007;Jentsch and Taylor 1999). Many psychological theories focus on dualistic 

processes underlying and competing for control of behaviour, often termed impulsive versus 

reflective (Gladwin et al. 2011;Strack and Deutsch 2004). Impulsivity is a behavioural 

characteristic that may beneficially affect living conditions and can function as a dimension of 

normal personality (Eysenck and Eysenck 1977). In case of dysfunctional behavioural control, 

the term ‘impulsivity’ refers to premature, unduly risky, poorly conceived actions. Impulsivity 

is characterised by deficits in attention, lack of reflection, inability to wait, insensitivity to 

unfavourable or delayed consequences, difficulty withholding responses and impaired 

decision-making (de Wit 2009;Evenden 1999b;Reynolds et al. 2006).  

 High levels of impulsivity are associated with several psychiatric disorders, like 

attention-deficit/hyperactivity disorder (ADHD), obsessive-compulsive disorder, antisocial 

personality disorder, borderline personality disorder, schizophrenia, pathological gambling 

and substance dependence (de Wit 2009;Evenden 1999a;Herpertz and Sass 1997). Moreover, 

the classification of the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition 

(DSM-5) includes a discrete diagnostic category of ‘disruptive, impulse-control, and conduct 

disorders’ (American Psychiatric Association 2013;Berlin and Hollander 2014). The 

International Classification of Diseases, 10th Revision (ICD-10) by the World Health 

Organization (WHO) lists ‘Habit and impulse disorders’ in its code set (World Health 

Organization 2010). According to the WHO World Mental Health survey on the global 

burden of mental disorders, the lifetime prevalence of impulse control disorders, such as 

ADHD, ranges from 4.1 % in the European Union up to 25.0 % in the United States 

population (Kessler et al. 2009).   
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3.2 Subdivision of impulsivity

A few decades ago, the majority of human and animal research studies assumed that 

impulsivity is a unitary construct. Over the last 40 years, the complexity of impulsivity 

became more and more apparent. Increasing evidence from human and animal studies 

indicated multiple varieties of this behavioural phenotype (Evenden 1999b). Two key terms 

have emerged among published definitions of impulsivity: decision-making and impulse 

control (Bari and Robbins 2013;Evenden 1999b). Buss and Plomin (1975) already defined 

impulse control as the core feature and decision-time as another important aspect of 

impulsivity. Other groups differentiated between motor (acting without thinking) and 

cognitive impulsiveness (quick cognitive decision-making) (Patton et al. 1995). Motor 

impulsivity is closely related to impulse control and reflects reduced response inhibition, 

whereas cognitive impulsivity affects the evaluation of alternative outcomes associated with a 

diminished waiting capacity resulting in a loss of long-term rewards (Brunner and Hen 1997). 

In line with this, other studies found that impulsive subjects show resistance to delay of 

reinforcement (Logue 1988) and prefer a rapid, but less valuable outcome to a later but more 

valuable one (Evenden 1999b). Evenden (1999b) distinguished the decisional aspect of 

impulsivity from premature responding, indicating impaired response withholding more 

related to execution processes. Accordingly, the multifaceted construct of impulsivity is 

generally determined by intolerance to delay-of-gratification (impulsive choice) and deficits 

in impulse control (impulsive action) (Bari and Robbins 2013;Winstanley et al. 2006).  

 

3.3 Assessment of impulsivity

Regarding impulsive behaviour in operant reinforcement tasks, distinct measures of impulsive 

action or motor impulsivity are distinguishable from impulsive choice or impulsive decision-

making (Pattij and Vanderschuren 2008). It has been argued that each type of impulsivity 

involves a kind of impulsive action, which is necessary to choose a response alternative. The 

main difference is that impulsive choice requires no forcible inhibition of a prepotent response 

compared to impulse control (Winstanley et al. 2006).  
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3.3.1 Impulsive action and the 5-choice serial reaction time task 

Impulsive actions (e.g., responding prematurely without foresight) are regarded as an 

endophenotype of impulsivity that results from a failure in impulse control. It can be defined 

as the inability to resist making a response. A loss of impulse control – the active inhibitory 

control mechanism that regulates internally or externally driven urges for reinforcers like 

food, drugs or money – leads to a disinhibition of rapid conditioned responses. These are 

transiently suppressed under normal conditions (Bari and Robbins 2013;Robbins 

2002;Winstanley et al. 2006). Dysfunctional response inhibition is prevalent in traditional 

impulse control disorders, such as pathological gambling, trichotillomania, kleptomania, 

pyromania and intermittent explosive disorder, in substance dependence and in Parkinson’s 

disease and characterises one of the fundamental deficits of ADHD (Bechara 2005;Dell'Osso 

et al. 2006;Nombela et al. 2014;Winstanley et al. 2006). 

 

 
 

Fig. 3.1 Schematic representation of an operant testing chamber for the 5-choice serial reaction time task (Dalley 

et al. 2004). 

 

One of the most commonly used methods for measuring response inhibition deficits is 

the 5-choice serial reaction time task (5-CSRTT). The 5-CSRTT was originally developed to 

assess visuospatial attention in rodents. Growing interest in impulse control disorders raised 

the number of studies using the 5-CSRTT for the investigation of motor impulsivity (Eagle 

and Baunez 2010;Robbins 2002). In this operant-based test paradigm, rats are required to 
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withhold from impulsive responding to a visual, reward-predicting cue, which is randomly 

presented in one of five apertures (Fig. 3.1). The number of responses before the onset of the 

light stimulus is generally regarded as an index of impulse control. Low levels of premature 

responses presuppose the ability to inhibit actions, while high levels of anticipatory 

responding reflect behavioural disinhibition (Carli et al. 1983;Muir et al. 1996;Pattij and 

Vanderschuren 2008;Robbins 2002).  

Besides the assessment of impulsive action, the 5-CSRTT allows the registration of 

perseverative responses, another aspect of inhibitory response control that is more attributable 

to compulsive rather than impulsive behaviour. Moreover, the flexibility of the 5-CSRTT 

provides dissociable measurements of reaction time, motivation and particularly sustained, 

spatially divided and selective attention (Robbins 2002).  
 

3.3.2 Impulsive choice 

Impulsive choice is more related to decision-making than to impulse control as required in the 

5-CSRTT (Winstanley et al. 2006). Many neurological patients show impairments in 

decision-making, especially subjects with damage to the prefrontal cortex (PFC) and patients 

suffering from ADHD, substance-dependence, schizophrenia and anxiety disorders (Damasio 

1996;Denk et al. 2005;Ernst and Paulus 2005;Marco et al. 2009). Decision-making is 

generally considered as the emergence of preferences between alternative conducts based on a 

rational evaluation of their outcome (Sanfey and Chang 2008). It is composed of at least three 

distinct processes: 1) the judgment of different alternatives, 2) the selection and execution of 

an action, and 3) the assessment of the corresponding consequences (Ernst and Paulus 2005). 

Most decision-making procedures utilise discounting processes and confront the individuals 

with two options differing in cost and benefit. The increment of costs for the usually more-

preferred larger reward leads to a discounting in the value of this option. Discounting models 

assess the choice behaviour in relation to delay, effort or probability of reward (Floresco et al. 

2008b). Since impulsive subjects are intolerant to delay of gratification, delay-discounting is 

deemed to mostly reflect impulsive behaviour (Bizot et al. 2007). Despite probable negative 

consequences in the future, drug addicts, obese people and pathological gamblers display 

higher rates of delay-discounting due to the highly rewarding potential of drugs, food and the 

chance of gaining money in the immediate situation (Bari and Robbins 2013;Bickel et al. 

2012). Consequently, the selection of the smaller immediate reward represents an operational 

measure for choice impulsivity, while the preference for the deferred, but more profitable 
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reinforcer indicates self-control (Bizot et al. 1999). Delay-discounting in animals is typically 

evaluated in lever-equipped operant chamber versions or in delay-based decision-making 

T-maze tasks.  

3.3.2.1 Delay-based decision-making T-maze task 

The delayed reinforcement task was originally developed by Thiébot and colleagues (1985). 

In this procedure, based on prospective timing, animals are placed in a T-shaped maze that 

initially demands the decision for one of two side arms both of which giving access to 

determinate food rewards differing in size and delay (Fig. 3.2). The preference choice of the 

arm immediately offering a low reward over the opposite arm, in which the animal is detained 

for a short period of time before achieving a high reward, is proposed as an index of delay 

aversion and thus impulsive-related behaviour (Bizot et al. 1988;Bizot et al. 1999;Thiébot et 

al. 1985).  

  

 

 

 

 

 

 

 

 

Fig. 3.2 Schematic representation of the delay-based decision-making test apparatus (T-maze). Removable 

guillotine doors are marked as D0 in the starting area, D1 at the choice area and D2 at the target area. Once a rat is 

introduced into the starting area, D1 are elevated to allow choice between the two target arms. In case of a 

decision for the high reward option (10 pellets), the rat is retained between the lowered D1 and D2 for the period 

of a 10 s-delay. The choice of the alternative side leads to unrestricted access to the low reward of two pellets. 

  

 Previous studies have shown that untreated rats usually prefer the larger but delayed 

reward under a 10-15 s delay condition, whereas a delay of 25 s induces a shift towards the 

smaller immediate option (Bizot et al. 1988;Hadamitzky et al. 2009;Thiébot et al. 

1985;Wischhof et al. 2011). Thus, under shorter delay conditions the decision-making T-maze 
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task is well-suited for the detection of drug-induced impairments in waiting capacity. Longer 

waiting periods provide a better evaluation of improved tolerance of delayed gratification 

following drug treatment (Bizot et al. 2007).    

 

 
 

Fig. 3.3 Schematic representation of the operant testing schedule of one trial in the delay-discounting task 

(Winstanley et al. 2004). 

 

3.3.2.2 Delay-discounting task in operant chambers 

Charrier and Thiébot (1996) transferred the T-maze model of Thiébot et al. (1985) into an 

operant chamber version. In this task, rats were subjected to a choice between two levers 

associated with food reinforcers varying in both magnitude and delay, closely resembling the 

paradigm of the T-maze test. Evenden and Ryan (1996) and Cardinal and colleagues (2001) 

refined the version of Charrier and Thiébot (1996). They established a progressive delay-

discounting procedure involving lever-pressing in an operant chamber (Cardinal et al. 
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2001;Charrier and Thiebot 1996;Evenden and Ryan 1996). Within this automatised paradigm 

the animals are faced with the choice between one lever leading to a small immediate reward 

or another leading to a large reinforcer. This is preceded by a delay being gradually increased 

as the test session progresses (Fig. 3.3). This operant schedule enables the evaluation of drug-

induced shifts in delay-discounting both towards preference for the low immediate reward 

(increased choice impulsivity) and towards the high but delayed reinforcer (decreased choice 

impulsivity) (Evenden and Ryan 1996).    

 

3.3.3 Translatability of animal models of impulsivity 

Particularly due to the division into distinct behavioural aspects, impulsivity is measurable in 

both human and non-human subjects. In clinical psychology, impulsivity is commonly 

identified by self-report questionnaires, such as the Barratt Impulsiveness Scale, the 

Karolinska Scales of Personality or the Tridimensional Personality Questionnaire (Winstanley 

et al. 2006). However, with the exception of delay-discounting rates, which have shown long-

term stability in a monetary choice questionnaire (Kirby 2009), impulsive traits as evaluated 

by self-reports rarely correlate with impulsivity in behavioural tests. A recent report directly 

comparing different aspects of impulsivity revealed that, in healthy volunteers, self-reported 

impulsivity is not associated with behavioural measures. A principal component analysis 

yielded three independent factors: self-evaluated impulsivity as assessed by the Barratt 

Impulsiveness Scale, impulsive choice in the delay-discounting task, and impulsive action as 

measured by the immediate and delayed memory task as well as the stop signal task (Broos et 

al. 2012).    

 Behavioural tests of impulsivity have some advantage compared to self-report studies. 

In laboratory tasks, the individuals’ behaviour is valued by the experimenter on the basis of 

observable data instead of predefined lexical categories in a set of questions potentially 

entailing various meanings in different subjects and in diverse sociocultural contexts. Further, 

behavioural models are less biased by the participants’ self-perception and social desirability, 

and thus imply greater objectivity. Moreover, the opportunity of using analogue behavioural 

measures of impulsivity in humans and animals leads to a broader range of pharmacological 

and neurological manipulations (Bari and Robbins 2013).  

 By use of a cross-species translational behavioural approach, decisional and motor 

impulsivity were successfully proven as distinct endophenotypes of impulsivity that emerge 

but do not correlate in both humans and rats supporting the concept of the non-unitary nature 
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of impulsivity (Broos et al. 2012). In rat studies, premature responding in the 5-CSRTT 

represents the most widely used behavioural index of impulsive action and deficient impulse 

control as a consequence of its high reliability and reproducibility (Dalley et al. 2008;Eagle 

and Baunez 2010;Pattij and Vanderschuren 2008;Robbins 2002;Winstanley et al. 2006). The 

5-CSRTT is modelled after its human analogues, the continuous performance test of attention 

(CPT) and Leonard’s five choice serial reaction time task, both used to monitor attentional 

processes in clinical settings. The 5-CSRTT was originally developed for the preclinical 

investigation of ADHD-related deficits in children and has meanwhile been validated by its 

sensitivity to drugs used for human ADHD treatment (Carli et al. 1983;Navarra et al. 

2008;Robbins 2002;Robinson et al. 2008b). Similar versions of the 5-CSRTT exist for mice 

(Fletcher et al. 2007;Humby et al. 2005), monkeys (Spinelli et al. 2004;Weed et al. 1999) and 

humans (Jones et al. 1995;Sahakian et al. 1993).  

 The human analogue of the 5-CSRTT, the CPT, is principally used as a model of 

human attention, but is also capable of measuring premature responding (Day et al. 2008). 

Besides, many other tests of impulsive action exist, such as the differential reinforcement of 

low rates of responding (DRL) task, the go/no-go task and the stop-signal reaction time 

(SSRT) task. While impulsive action expressed in the DRL task closely resembles premature 

responding in the 5-CSRTT, the go/no-go task is frequently used to investigate inhibitory 

deficits in patients, albeit having important differences compared to the 5-CSRTT (Eagle and 

Baunez 2010). Thus, very recently a novel analogue of the rodent 5-CSRTT was developed 

for clinical subjects, which provided evidence of translatability by provoking impairments in 

impulse control in alcohol- and methamphetamine-dependent subjects and current smokers 

compared with healthy volunteers (Voon et al. 2014). Exposure to these drugs has previously 

induced impulsive action in the 5-CSRTT in rat studies (Dalley et al. 2007b;Irimia et al. 

2013;Semenova et al. 2007).  

Similar to human substance-dependent individuals, impulsive choice behaviour has 

been found in animals following chronic drug administration in delay-discounting tasks (Bari 

and Robbins 2013;Setlow et al. 2009). As mentioned above, the majority of human delay-

discounting studies is based on questionnaires that involve imaginary delays and rewards. 

Real-time operant delay-discounting tasks including real rewards carry some difficulties due 

to the temporally limited duration of laboratory measures leading to a tendentially insufficient 

aversion to delayed rewards in human subjects (Winstanley et al. 2006). Nevertheless, in the 

more recent past there is growing evidence for the reliability of real-time discounting tasks. 

Exemplarily, methylphenidate, approved for the treatment of ADHD, reduced impulsive 
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choice in a human real-time discounting task (Pietras et al. 2003). Another report of 

undergraduate students varying in self-reported ADHD symptoms revealed that higher self-

reported levels of impulsivity were associated with greater discounting in a real-time 

discounting task but not in a hypothetical discounting task (Scheres et al. 2008). In 

accordance with this, methylphenidate treatment reduced the discounting of delayed 

experiential, but not hypothetical rewards among children with ADHD (Shiels et al. 2009).  
 

3.4 Neural substrates of impulsivity

The neuroanatomical network associated with impulsivity in rodents and humans involves 

cortical, striatal and limbic brain regions (Pattij and Vanderschuren 2008). It is generally 

assumed that impulsive behaviour is modulated depending on which neuroanatomical system 

participates and which type of impulsivity is investigated in a particular method (Evenden and 

Ryan 1999). On the one hand, lesion studies have shown considerable overlap in neuronal 

pathways mediating impulsive choice and impulsive action. On the other hand, some brain 

areas are differentially involved in distinct forms of impulsivity (Fig. 3.4). For example, parts 

of the medial prefrontal cortex (mPFC), such as the anterior cingulate cortex (AC) and the 

infralimbic cortex (IL) seem to be primarily implicated in impulsive action, while limbic 

regions like the basolateral amygdala (BLA) and the hippocampus appear to primarily 

modulate delay aversion. Frontostriatal systems comprising the PFC and the striatum, which 

can be further divided into dorsal and ventral parts with the ventral striatum encompassing the 

nucleus accumbens (NAc), are considered to play a key role in impulse control and impulsive 

decision-making (Pattij and Vanderschuren 2008). 

 

3.4.1 Medial prefrontal cortex 

The mammalian PFC is a heterogeneous structure that has been classically defined by 

anatomical criteria, such as cytoarchitectonic features (presence or absence of granular 

characteristics), reciprocal connectivity with the mediodorsal nucleus of the thalamus or input 

of dopaminergic fibers from the ventral mesencephalon. Translational research of the PFC is 

complicated by the enormous variation across species in relation to these criteria (Dalley et al. 

2004;Heidbreder and Groenewegen 2003). The human PFC comprises the dorsolateral 

prefrontal cortex (DLPFC), the orbitofrontal cortex (OFC) and the AC (Krawczyk 2002). In    
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Fig. 3.4 Schematic overview of the neural substrates in the brain involved in impulsive action and delay 

aversion. Red: lesions of these regions increase impulsive action or delay aversion; green: lesions induce 

beneficial effects on impulsivity; blue: lesions of these regions neither affect impulsive action nor delay 

aversion. ACC, anterior cingulate cortex; BLA, basolateral amygdala; HAB, habenula; HPC, hippocampus; IL, 

infralimbic cortex; MS, medial striatum; NAC, nucleus accumbens core; NAS, nucleus accumbens shell; OFC, 

orbitofrontal cortex; PL, prelimbic cortex; STN, subthalamic nucleus (Pattij and Vanderschuren 2008).  

rats, at least three different regions can be identified: firstly, the mPFC, which forms the 

major part of the medial wall of the hemisphere anterior and dorsal to the genu of the corpus 

callosum, secondly, the ventrally located OFC and thirdly a laterally situated division 

including the agranular insular and lateral orbital cortices. The mPFC of rats can be further 

divided into dorsal (anterior cingulate and medial precentral cortices) and ventral subdivisions 

(infralimbic and prelimbic cortices) (Heidbreder and Groenewegen 2003;Ongur and Price 

2000). Although lacking certain areas that arised during primate evolution, rats feature many 
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earlier evolved prefrontal regions that have a homologue in primates, such as the AC, IL and 

prelimbic cortex (PL) (Fig. 3.5) (Wise 2008). The rat mPFC seems to combine elements of 

primate AC and DLPFC (Preuss 1995;Seamans et al. 2008;Uylings et al. 2003;Vertes 2004). 

While rat dorsal mPFC is supposed to anatomically and functionally resemble primate 

DLPFC (Seamans et al. 2008;Uylings et al. 2003), the ventral medial prefrontal cortex 

(vmPFC) of rats appears to be equivalent to the primate AC (Preuss 1995). Concomitantly, 

the literature provides growing indications for a functional-behavioural differentiation of the 

mPFC into dorsal and ventral components (Heidbreder and Groenewegen 2003).  

 The mPFC as a whole is involved in a variety of cognitive and executive processes, 

including decision-making, inhibitory response control, working memory, behavioural 

flexibility, temporal processing and attentional selection (Dalley et al. 2004;Heidbreder and 

Groenewegen 2003). In humans, inconsistent conceptions of the relevance of the DLPFC to 

aspects of impulsivity exist. Dysfunctions of the DLPFC in psychopathic offenders generate 

impairments in impulse control (Yang and Raine 2009). However, the DLPFC is not linked to 

motor impulsivity evaluated with the Barratt Impulsivity Scale (Cho et al. 2013). In terms of 

impulsive choice, human OFC is heavily implicated, while the DLPFC seems to play a minor 

role (Bechara et al. 2000;Krawczyk 2002). Yet, recent investigations using repetitive 

transcranial magnetic stimulation associate the DLPFC with delay-discounting (Cho et al. 

2010;Figner et al. 2010). By contrast, human AC function is related to both impulse control 

(Bechara 2004;Brown et al. 2006;Fineberg et al. 2010;Liu et al. 2012) and delay-discounting 

(Hinvest et al. 2011;Hoffman et al. 2008;Li et al. 2013).   

 In animal studies findings of electrophysiological recordings (Hayton et al. 2011), 

lesions (Chudasama et al. 2003;Muir et al. 1996;Pezze et al. 2009) and transient inactivation 

(Izaki et al. 2007;Murphy et al. 2012;Narayanan et al. 2006;Paine et al. 2011) associate the 

rodent mPFC with impulse control. During 5-CSRTT performance, attentional control 

appears to depend selectively on dorsal parts of the mPFC, while ventral regions seem to be 

critical for inhibitory response control (Dalley et al. 2004). Accordingly, the vmPFC is 

suggested to be more critically involved in impulsive behaviour (Chudasama et al. 

2003;Kesner and Churchwell 2011). In terms of behavioural choice, the AC of rats is 

primarily associated with effort-discounting, whereas the vmPFC is more implicated in delay-

based decision-making (Kesner and Churchwell 2011). However, controversial results exist 

regarding the contribution of the mPFC to impulsive choice. Increased delay-discounting was 

observed in vmPFC-lesioned (Gill et al. 2010) or -inactivated (Churchwell et al. 2009) rats.

 



22  GENERAL INTRODUCTION 

 

 
Fig. 3.5 Architectonic maps of the medial frontal cortex of humans (a), macaque monkeys (b) and rats (c). a, 

agranular; AC, anterior cingulate cortex; c, caudal; cc, corpus callosum; Fr2, second frontal area;  ig, indusium 

griseum; IL, infralimbic cortex; m, medial; MO, medial orbital area; OB, olfactory bulb; p, posterior; PL, 

prelimbic cortex; r, rostral; tt, tenia tectum; VO, ventral orbital area. Numbers indicate cortical fields, except 

after certain regions, such as Fr2 and AC1, where they indicate subdivisions of cortical fields. The letters ‘a, b or 

c’ after a number also indicate regional subdivisions (Wise 2008).  

 

Another delay-discounting study showed that neither the AC nor the vmPFC is the primary 

site of this action (Cardinal et al. 2001).  

 

3.4.2 Nucleus accumbens 

In both rats and primates, all major regions of the cerebral cortex project to the striatum (Ferry 

et al. 2000;McGeorge and Faull 1989). This subcortical input structure of the basal ganglia 

includes the caudate-putamen complex, generally termed as dorsal striatum, and the NAc as 

part of the ventral striatum (Voorn et al. 2004). The mPFC innervates predominantly the 

respective medial parts of the NAc and the caudate-putamen complex (Berendse et al. 1992). 

On the basis of anatomical and neurochemical criteria, the rat NAc is further divided into 

distinct subterritories which are also present in the primate brain: a dorsolateral core region 

surrounding the anterior commissure, and a shell region that is located ventromedially to the 

core (Fig. 3.6) (Heimer et al. 1991;Jongen-Relo et al. 1994;Meredith et al. 1996;Sokolowski 

and Salamone 1998;Voorn et al. 1989;Voorn et al. 1996;Zaborszky et al. 1985;Zahm and 
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Brog 1992). The core region sends fibers to the conventional basal ganglia circuitry involving 

subcommissural ventral pallidum, globus pallidus and substantia nigra. In contrast, shell 

projections extensively reach subcortical limbic structures, such as lateral hypothalamus, 

ventral tegmental area (VTA), the ventromedial part of the ventral pallidum and the extended 

amygdala (Heimer et al. 1991;Zahm and Brog 1992).  

 As a critical element of the mesocorticolimbic system, the NAc is generally implicated 

in reward and motivation, integrating input signals of emotion (BLA), context (hippocampus), 

arousal (midline thalamus) and executive-cognitive information (PFC). Accumbal efferents 

reach brain sites involved in feeding and drinking (lateral hypothalamus), motivational (VTA, 

substantia nigra) and locomotor behaviour (caudal mesencephalon) as well as higher 

cognitive-executive functions, such as behavioural control and decision-making (via medial 

thalamic nuclei to the PFC) (Carlezon, Jr. and Thomas 2009;Groenewegen and Trimble 

2007).  

 

  

 
Fig. 3.6 Three-dimensional schematic representation of the rat nucleus accumbens and adjacent structures. A, 

anterior; D, dorsal; P, posterior; V, ventral (Basar et al. 2010).  

 

 The original concept of the NAc as a functional interface between the limbic and 

motor systems is still valid, but the distinct connectivity profiles of core and shell suggest that 

the NAc should be viewed much more differentiated (Groenewegen and Trimble 

2007;Heimer 2003;Mogenson et al. 1980). Previous studies have already demonstrated a 
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differential influence of the NAc subregions on a variety of behaviours. These include goal-

directed instrumental action (Corbit et al. 2001), Pavlovian-instrumental transfer (Corbit and 

Balleine 2011;Saddoris et al. 2011), behavioural flexibility (Floresco et al. 2006), stress-, cue- 

or cocaine priming-induced reinstatement of drug- or food-seeking behaviour (Floresco et al. 

2008a;McFarland et al. 2004;Vassoler et al. 2013), working memory (Jongen-Relo et al. 

2003), locomotor activity (Jongen-Relo et al. 2002;Pothuizen et al. 2005a;Robbins and Everitt 

1996), motivational behaviour (Bassareo et al. 2002;Stratford and Kelley 1997) and 

attentional processes, like prepulse and latent inhibition (Jongen-Relo et al. 2002;Pothuizen et 

al. 2005a). 

 Taken as a whole, the NAc is implicated in decision-making (Assadi et al. 2009;Day et 

al. 2011;de Visser et al. 2011a) and anticipation of reward in humans, other primates and rats 

(Cromwell and Schultz 2003;Knutson et al. 2001;Martin and Ono 2000;Rademacher et al. 

2014). Human functional magnetic resonance imaging studies found activation of the NAc 

during performance in delay-discounting tasks (Ballard and Knutson 2009;Hariri et al. 

2006;McClure et al. 2004;Wittmann et al. 2007). Evidence from rat studies indicates that the 

NAc is also heterogeneously involved in impulsive behaviours. Lesions of the core induce 

impulsive choice (Bezzina et al. 2007;Bezzina et al. 2008a;Cardinal et al. 2001;da Costa et al. 

2009;Pothuizen et al. 2005b) and deficits in impulse control in the 5-CSRTT and DRL task 

(Christakou et al. 2004;Pothuizen et al. 2005b). By contrast, shell lesions do neither affect 

delay-discounting nor premature responding in response inhibition tasks (Cole and Robbins 

1989;Murphy et al. 2008;Pothuizen et al. 2005b). However, recent pharmacological 

manipulations highlighted a potential involvement of the NAc shell in aspects of impulsivity. 

More precisely, motor impulsivity in the 5-CSRTT was found to correlate with enhanced 

dopamine (DA) release due to decreased DA D2/3 receptor availability and higher D1 

receptor messenger ribonucleic acid (mRNA) expression in the shell, but reduced DA release 

caused by lower D1 receptor binding in the core (Diergaarde et al. 2008;Jupp et al. 

2013;Simon et al. 2013). 

 

3.4.3 Frontostriatal systems

In primates, five parallel circuits connect discrete regions of the frontal lobes with specific 

subregions of the striatum. Three of these circuits comprise prefrontal regions at the cortical 

level and mediate cognitive, emotional, and motivational processes. Firstly, the projection 

from the DLPFC that terminates within the dorsolateral portion of the caudate nucleus. 
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Secondly, the lateral OFC that projects to the ventromedial sector of the caudate nucleus, and 

thirdly the AC circuit, which is connected to the ventral striatum, including the NAc. The 

dorsolateral circuit is involved in the mediation of executive functions, such as response 

inhibition. The orbitofrontal circuit is implicated in the selection and control of appropriate 

behaviour, and the AC circuitry is responsible for regulating motivation and maintaining 

activity (Alexander et al. 1986;Cummings 1995;Krawczyk 2002).  

 

 
 

Fig. 3.7 Cortical, thalamic, basal amygdaloid and hippocampal inputs to the rat striatum. Corticostriatal 

projections are topographically arranged and distribute to zones with a dorsomedial-to-ventrolateral orientation. 

Areas of the frontal cortex and their corresponding striatal projection zones are depicted in the same colours. ac, 

anterior commissure; ACd, dorsal anterior cingulate cortex; AId, dorsal agranular insular cortex; AIv, ventral 

agranular insular cortex; CeM, central medial thalamic nucleus; CL, central lateral thalamic nucleus; IL, 

infralimbic cortex; IMD, intermediodorsal thalamic nucleus; MD, mediodorsal thalamic nucleus; PC, paracentral 

thalamic nucleus; PFC, prefrontal cortex; PLd, dorsal prelimbic cortex; PLv, ventral prelimbic cortex; PV, 

paraventricular thalamic nucleus; SMC, sensorimotor cortex (Voorn et al. 2004). 
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 The organisation of frontostriatal systems of rats is similar to primates and supports 

the assumption that the frontal agranular areas in rodents, particularly the mPFC, are 

homologous to those in primates (see Fig. 3.5). The connection between the mPFC and the 

striatum in rats is highly topographically arranged, characterised by a shift along the dorsal-

ventral axis (Fig. 3.7). Consequently, dorsal regions of the mPFC primarily project to the 

dorsal striatum, whereas the ventral striatum is predominatly innervated by the vmPFC. More 

precisely, the medial precentral cortex terminates in the central part of the caudate-putamen 

complex, while the AC targets more medially and also projects to the NAc core. Efferent 

connections of the dorsal PL include the ventromedial sector of the caudate-putamen and the 

NAc core. The ventral PL and the IL primarily project to the shell region of the NAc 

(Heidbreder and Groenewegen 2003;Wise 2008).  

 Impulse control is thought to be a principal function of frontostriatal systems. 

Dysfunction of this network generates impulsivity in a number of pathological states, like 

drug abuse, pathological gambling, ADHD and Parkinson’s disease (Cho et al. 2013;Jentsch 

and Taylor 1999). Besides impulse control (Aron et al. 2007;Christakou et al. 2004;Diekhof 

and Gruber 2010;Morgane et al. 2005), a functional relationship between the PFC and NAc 

has been found to be implicated in impulsive choice (Costa Dias et al. 2013;Diergaarde et al. 

2008), behavioural flexibility (Coppens et al. 2010;Goto and Grace 2005) and drug seeking in 

both humans and rats (Bossert et al. 2012;Peters et al. 2008). Disconnecting the mPFC from 

the NAc core by lesions induces motor impulsivity in the 5-CSRTT (Christakou et al. 2004), 

whereas an implication of the mPFC-NAc shell connection was not examined as yet. 

However, there is evidence to suggest that the anatomically heterogeneous connectivity 

between the mPFC and the NAc subregions is paralleled by functional subregional specifity 

(Heidbreder and Groenewegen 2003). 

 

3.5 Permanent and reversible inactivation techniques

Numerous findings concerning impulsivity are derived from patients with damage to distinct 

cerebral regions due to traumatic brain injury, particularly lesions of the frontal lobe (Aron 

2007;Crews and Boettiger 2009;Sellitto et al. 2010). Accordingly, the lesion technique was 

most frequently used to study brain function in animals. The permanent removal or 

destruction of nervous tissue is commonly produced by physical (surgical excision or 

aspiration) or chemical ablation (injections of excitotoxins, like ibotenic or kainic acid) 
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methods. Nevertheless, the lesion technique entails some serious drawbacks. The major 

obstacle is a phenomenon known as ‘recovery of function’, characterised by significant 

behavioural deficits in the days immediately after the ablative manipulation, but followed by a 

partially or complete decline of these deficits in the subsequent time. This indicates that the 

animals’ performance in a behavioural test, which is typically carried out after a necessary 

recovery period from the manipulation lasting several days, might be compensatorily 

influenced by other brain areas. This would mean that the approach would not examine the 

true function of the lesioned tissue, but rather the functional adaptability of remaining intact 

structures, or restorative processes that occur during recovery time (Lomber 1999;Majchrzak 

and Di Scala 2000).  

 In contrast to these permanent deactivations, temporary inactivation techniques do not 

irreversibly destroy brain tissue. This allows behavioural testing of the animals and functional 

investigation of the involved region at the time of inactivation. Transient inactivation methods 

have additional advantages compared to lesion procedures. The reliability of results is 

increased by within-subject designs as the same site can be repeatedly inactivated in the same 

animal during multiple behavioural sessions (Martin and Ghez 1999). Since each animal 

serves as its own control, fewer animals are necessary in the studies. Moreover, two or more 

sites can be separately or simultaneously inactivated to investigate the specific contribution or 

the combined function of these areas in a neural network with regard to a particular behaviour 

(Lomber 1999).  

 The two principal methods for reversible inactivation are chemical and cryogenic. 

Depending on the drug or on the extent of temperature reduction, respectively, both 

techniques can either selectively block cell bodies or, non-selectively, inhibit synaptic 

transmission together with axonal action potential conduction. However, it should be 

considered that the cooling method generates a zone of neuronal hyperexcitability 

surrounding the inactivation site. On the contrary, the pharmacological technique only 

depresses neuronal activity. Another feature of chemical inactivation being more beneficial 

compared to cooling consists in the readily usability on both cortical and deep brain structures 

(Lomber 1999;Martin and Ghez 1999).  

 Pharmacological agents producing reversible inactivation are dividable into two 

groups: sodium channel blocker and inhibitory neurotransmitters, in particular -aminobutyric 

acid (GABA) and its agonists (Lomber 1999). GABA is the main inhibitory neurotransmitter 

in the adult brain and, beside glutamate, the principal fast-acting transmitter of frontal-

subcortical circuits (Cummings 1995). There are two main types of GABA receptors: the 
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GABAA receptor, a ligand-gated chloride ion channel, and the metabotropic G-protein 

coupled GABAB receptor. GABA acts primarily through activation of the GABAA receptor, 

whereas the distribution of the GABAB receptor is more limited (Wu and Sun 2014). The 

most commonly used GABAA receptor agonist is muscimol (3-hydroxy-5-

aminomethyllisoxazole), the psychoactive ingredient of the mushroom Amanita muscaria. 

Muscimol has a striking structural similarity to GABA and even a more potent 

pharmacological profile as the inhibitory neurotransmitter itself (Baraldi et al. 

1979;Krogsgaard-Larsen and Johnston 1978). The substance selectively induces a rapid 

hyperpolarisation lasting up to several hours on postsynaptic neurons via activation of 

GABAA receptors on the surface of local cell bodies without affecting fibers of passage, 

thereby allowing behavioural testing almost immediately after injection (Heiss et al. 

2010;Martin and Ghez 1999). Intracerebral microinjections of muscimol have already been 

used to induce highly site-specific reversible inactivation in diverse species in a variety of 

behavioural tasks and indeed revealed contradictory contributions of distinct brain regions in 

terms of impulsivity compared to lesion studies (Cardinal et al. 2001;Churchwell et al. 

2009;Majchrzak and Di Scala 2000;Murphy et al. 2012;Paine et al. 2011;Passetti et al. 2002).  

 Imaging the spatial distribution of muscimol via fluorescence may help to evaluate the 

spatial extent of drug-infused brain tissue and to localise drug effects more precisely. For this 

purpose, fluorophore-conjugated muscimol (FCM) molecules (Fig. 3.8) have been 

demonstrated to be useful for producing local and reversible brain inactivations resulting in 

behavioural effects similar to muscimol in order to assess the function of these regions (Allen 

et al. 2008).  

 
 

 

Fig. 3.8 Chemical structures of a) muscimol (M = 114.10 g/mol) and b) fluorophore-conjugated muscimol 

(FCM, M = 607.46 g/mol) (Allen et al. 2008).  
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3.6 Aim of the thesis 

This thesis further investigated the contribution of specific structures of the frontostriatal 

network to distinct aspects of behavioural inhibition. Dysfunctions of frontostriatal systems 

have been heavily implicated in the aetiology of impulsivity and associated psychological 

disorders. In the intact brain, frontostriatal circuits reveal highly specialised and 

heterogeneous functions depending on the involved cerebral structures and the situationally 

demanded behavioural component. Using the reversible inactivation technique via 

microinfusion of the GABAA receptor agonist muscimol, the thesis aimed to elucidate the 

participation of the vmPFC on frontal and of the NAc on striatal level in the modulation of 

decision-making and impulse control in rats. Given that the NAc subregions show functional 

dichotomy in several behaviours, the thesis attempted to clarify a potentially differential role 

of NAc core and shell in impulsive choice and impulsive action. Moreover, simultaneous 

transient inactivation of the vmPFC and NAc core or shell was applied to analyse the 

involvement of different frontostriatal connections in inhibitory control.        
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4 Ventral medial prefrontal cortex inactivation impairs 
impulse control but does not affect delay-discounting in 
rats 
 

Malte Feja · Michael Koch 

 
4 . 1  H I G H L I G H T S  

 
The GABAA agonist muscimol was used to reversibly inactivate vmPFC in rats 
Deactivating vmPFC with low-dose muscimol induced impulsive action in the 5-CSRTT 
High-dose muscimol infusion impaired impulse and attentional control in the 5-CSRTT 
Muscimol into vmPFC did not affect delay-discounting in a Skinner box 
The control function of vmPFC is impulsivity type-specific 

 
 

4 . 2  A B S T R A C T  

Maladaptive levels of impulsivity are found in several neuropsychiatric disorders, such as ADHD, addiction, aggression and 
schizophrenia. Intolerance to delay-of-gratification, or delay-discounting, and deficits in impulse control are dissociable forms 
of impulsivity top-down controlled by the prefrontal cortex, with the ventral medial prefrontal cortex (vmPFC) suggested to 
be critically involved. The present study used transient inactivation of the rats’ vmPFC via bilateral microinfusion of the 
GABAA receptor agonist muscimol (0.05, 0.5 g/0.3 l) to analyse its relevance for impulse control in a 5-choice serial 
reaction time task (5-CSRTT) and delay-discounting in a Skinner box. Intra-vmPFC injection of low-dose muscimol impaired 
impulse control indicated by enhanced premature responding in the 5-CSRTT, while flattening the delay-dependent shift in 
the preference of the large reward in the delay-discounting task. Likewise, high-dose muscimol did not affect delay-
discounting, though raising the rate of omissions. On the contrary, 5-CSRTT performance was characterised by deficits in 
impulse and attentional control. These data support the behavioural distinction of delay-discounting and impulse control on 
the level of the vmPFC in rats. Reversible inactivation with muscimol revealed an obvious implication of the vmPFC in the 
modulation of impulse control in the 5-CSRTT. By contrast, delay-discounting processes seem to be regulated by other 
neuronal pathways, with the vmPFC playing, if at all, a minor role.   

 
 
4.3 Introduction 
 
Cognitive-executive functions, such as behav-
ioural control and decision-making, are 
essential aspects of daily life in both humans and 
rats (Chudasama 2011;Paulus 2005). These 
processes are closely related to impulsive be-
haviour. Impulsivity is a behavioural 
characteristic that both adversely and benefi-
cially affects living conditions and can function 
as a dimension of normal personality (Eysenck 
and Eysenck 1977). In case of an imbalance of 
behavioural activation and its inhibition, the 
term ‘impulsivity’ refers to maladaptive behav-
iours including inability to wait, difficulty 
withholding responses and insensitivity to unfa-

vourable or delayed consequences (de Wit 
2009;Reynolds et al. 2006). High levels of im-
pulsivity are found in psychiatric disorders, 
involving attention-deficit/hyperactivity disor-
der (ADHD), antisocial personality disorder, 
borderline personality disorder, schizophrenia, 
drug abuse and other forms of addiction (de 
Wit 2009;Evenden 1999a;Herpertz and Sass 
1997). Moreover, the classification of the Diag-
nostic and Statistical Manual of Mental Disorders, 
Fifth Edition (DSM-5) lists a discrete diagnostic 
category of ‘disruptive, impulse-control, and 
conduct disorders’ (American Psychiatric Asso-
ciation 2013).  
 However, impulsivity is not a unitary 
construct, but rather a multifactorial phenome-
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non, largely determined by intolerance to de-
lay-of-gratification (impulsive choice), or delay-
discounting, and deficits in impulse control 
(impulsive action) (Evenden 1999b;Winstanley 
et al. 2006). Hence, the dominant behavioural 
measures of impulsivity are delay-discounting 
and response inhibition tasks. The delay-
discounting model is used in both humans and 
animals to assess impulsive decision-making, 
reflected in the preference for a small immedi-
ate over a larger-but-delayed reward (Broos et 
al. 2012;de Wit 2009;Moeller et al. 
2001;Swann et al. 2002). By contrast, response 
inhibition paradigms, e. g. the 5-choice serial 
reaction time task (5-CSRTT), require to with-
hold from premature responding which is 
regarded as an index of deficient impulse con-
trol (Carli et al. 1983;Robbins 2002). The 
5-CSRTT also has translational properties and is 
modelled after its human analogues, the con-
tinuous performance test of attention and 
Leonard’s five choice serial reaction time task 
(Muir et al. 1996).   

Neuropsychological evidence suggests 
that executive processing relies on the intact 
function of the frontal cortices, with the pre-
frontal cortex (PFC) playing a major role 
(Elliott 2003;Fuster 2000;Robbins et al. 1996). 
Patients with damage to the PFC show impaired 
decision-making and behavioural disinhibition 
(Elliott 2003). The human PFC is a heterogene-
ous region of the brain, comprising the 
dorsolateral prefrontal cortex (DLPFC), the 
orbitofrontal cortex (OFC) and the anterior 
cingulate cortex (AC). The PFC subregions 
appear to be engaged in separable multi-
component neural systems mediating distinct 
cognitive processes (Fuster 2001;Krawczyk 
2002). Concerning the DLPFC, inconsistent 
conceptions of its relevance to aspects of impul-
sivity exist. Decreased functioning of the 
DLPFC in psychopathic offenders generates 
impairments in impulse control (Yang and 
Raine 2009). However, the DLPFC is not asso-
ciated with motor impulsivity measured with 
the Barratt Impulsivity Scale (Cho et al. 2013). 
In terms of impulsive decision-making, the 
OFC is heavily implicated, while the DLPFC 
seems to play a minor role (Bechara et al. 
2000;Krawczyk 2002). Yet, recent studies us-

ing repetitive transcranial magnetic stimulation 
link the DLPFC with delay-discounting (Cho et 
al. 2010;Figner et al. 2010). AC function is 
related to both impulse control (Bechara 
2004;Brown et al. 2006;Fineberg et al. 
2010;Liu et al. 2012) and delay-discounting 
(Hinvest et al. 2011;Hoffman et al. 2008;Li et 
al. 2013).  

The medial prefrontal cortex (mPFC) 
of rats seems to combine elements of primate 
AC and DLPFC (Preuss 1995;Seamans et al. 
2008;Uylings et al. 2003;Vertes 2004) and 
shares many features with the human medial 
frontal cortex (Narayanan et al. 2013). Based 
on cellular structure and lamination of the cor-
tex, the mPFC of rats can be further divided 
into dorsal (anterior cingulate and medial pre-
central cortices) and ventral subdivisions 
(infralimbic and prelimbic cortices) 
(Heidbreder and Groenewegen 2003;Ongur 
and Price 2000). While rat dorsal mPFC is sup-
posed to anatomically and functionally resemble 
primate DLPFC (Seamans et al. 2008;Uylings et 
al. 2003), the ventral medial prefrontal cortex 
(vmPFC) of rats appears to be equivalent to the 
primate AC (Preuss 1995). Animal studies fur-
ther strengthen the assumption of distinct 
aspects underlying impulsive behaviour. Find-
ings of electrophysiological recordings (Hayton 
et al. 2011), lesions (Chudasama et al. 
2003;Muir et al. 1996;Pezze et al. 2009) and 
transient inactivation (Izaki et al. 2007;Murphy 
et al. 2012;Narayanan et al. 2006;Paine et al. 
2011) associate the rodent mPFC with impulse 
control. On the other hand, controversial re-
sults exist regarding the contribution of the 
mPFC to impulsive choice. For example, in-
creased delay-discounting appears in mPFC-
lesioned (Gill et al. 2010) or -inactivated 
(Churchwell et al. 2009) rats, whereas another 
delay-discounting study shows that the mPFC is 
not the primary site of this action (Cardinal et 
al. 2001). There is evidence to suggest that the 
anatomical dichotomy of the mPFC is paralleled 
by functional subregional specifity, with the 
ventral medial prefrontal cortex (vmPFC) ap-
pearing to be more critically involved in 
impulsive behaviour (Chudasama et al. 
2003;Kesner and Churchwell 2011). However, 
lesion studies revealed discrepancies in the role 
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of the vmPFC in impulsivity, ranging from di-
rect participation (Chudasama et al. 2003), a 
mere tendency of involvement (Chudasama and 
Muir 2001) to no important role (Passetti et al. 
2002).  

The lesion technique was the most 
widely used method to investigate brain func-
tion, nevertheless carrying some drawbacks in 
comparison to inactivation tools. Following 
lesions, brain tissue is destroyed irreversibly 
and a compensation of function by other brain 
areas might occur. In contrast, chemical agents 
like the GABAA receptor agonist muscimol al-
low acute, reversible inactivations of distinct 
brain regions, and hence, within-subject designs 
concomitant with increased reliability (Lomber 
1999). Muscimol is the psychoactive ingredient 
of the mushroom Amanita muscaria and has even 
a more potent pharmacological profile as the 
inhibitory neurotransmitter GABA itself 
(Krogsgaard-Larsen and Johnston 1978). After 
injection, muscimol selectively induces a rapid 
hyperpolarization lasting up to several hours on 
postsynaptic neurons via activation of GABAA 
receptors on the surface of local cell bodies 
without affecting fibers of passage (Heiss et al. 
2010;Martin and Ghez 1999).  

In the present study, temporary inacti-
vation of the rats’ vmPFC via bilateral 
microinfusion of the GABAA receptor agonist 
muscimol was used to further clarify its contri-
bution to different aspects of impulse control in 
the 5-CSRTT and delay-discounting in a Skin-
ner box. 
 

 

 
4.4 Material and methods 
 
4.4.1 Subjects 
 
A total of 23 adult male Lister Hooded rats 
(280 – 340 g) obtained from Harlan (Borchen, 
Germany) were housed in groups of four to six 
in standard Macrolon cages (type IV) under 
controlled ambient conditions (21 – 22 °C, 
45 – 55 % humidity, 12 h light/dark cycle, 
lights on at 7:00 a.m.). The animals were main-
tained on their experimental body weight by 
controlled feeding of 12 g laboratory rodent 

chow (Nohrlin GmbH, Bad Salzuflen, Ger-
many) per rat per day and received tap water ad 
libitum. Behavioural testing took place between 
8:00 a.m. and 6:00 p.m. The experiments were 
performed in accordance with the National 
Institutes of Health ethical guidelines for the 
care and use of laboratory animals for experi-
ments and were approved by the local animal 
care committee (Senatorische Behörde, Bre-
men, Germany). 
 
4.4.2 Experiment 1: 5-CSRTT 
 
4.4.2.1 Apparatus 
The 5-CSRTT was conducted in two operant 
aluminium chambers (26 x 26 x 26 cm; Camp-
den Instruments Ltd., Loughborough, UK), 
wherein five apertures (2.5 x 2.5 cm, 4 cm 
deep) were inserted 2 cm above floor level in 
the concavely curved rear wall. This assembly 
provided five response options located equidis-
tant to the food magazine on the opposite. 
Inside each hole, a light-emitting diode (LED) 
generated visual stimuli of variable duration. 
Nose-poke responses of the animals were de-
tected by infra-red photo cell beams at the 
entrance of the apertures. The rats could be 
placed in the box through a Plexiglas® door on 
the upper part of the front wall. Underneath the 
door, a small Plexiglas® panel provided access 
to the food magazine which was lighted via two 
LEDs and automatically supplied with casein 
pellets (45 mg Dustless Precision Pellets, Bio-
Serv®, UK) by an electromechanical feeder. 
Food collection was detected by a microswitch 
monitoring the movement of the hinged panel. 
Each chamber was illuminated by a 3 W house 
light mounted on the ceiling. A noise-damped 
fan served as ventilation and background noise 
of about 60 dB. The extendable grid floor facili-
tated the removal of excrements. For the 
purpose of sound attenuation, the wooden cabi-
net was reinforced with an insulating plate at 
the interior of the door. The apparatus was 
controlled by specific software written in 
Turandot (Cambridge Cognition Ltd., version 
1.23) which was run on a personal computer 
connected to the BNC Mark 2 System (Behav-
ioral Net Controller, Campden Instruments 
Ltd., Loughborough, UK). 
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4.4.2.2 Training 
The animals (n = 12) were trained to detect the 
occurrence of brief light stimuli in one of the 
five rear wall apertures. The general procedure 
was based on the protocol of Campden Instru-
ments and was divided into a habituation, 
pretraining and baseline training phase 
(Campden Instruments Limited 2005). Before 
training and tests the rats were acclimatised to 
the laboratory for at least 30 min in their home-
cages. 

The first experimental phase comprised 
two daily half-hour habituation sessions. The 
boxes were prepared as follows: before the first 
training session, the tray panel was opened to 
facilitate access to 15 freely available pellets in 
order to reinforce the meaning of the magazine 
as location of food reward. During the second 
session, no panel manipulation was carried out. 
Besides the reward in the tray, two pellets were 
placed in each aperture to promote exploration 
of these areas. The chambers were permanently 
illuminated by the house light during both ses-
sions. 
 The daily training session lasted 30 min 
or was finished after completion of 100 trials. 
Each session started with the simultaneous illu-
mination of the box and the food magazine and 
the delivery of a single pellet into the tray. 
Once the rat opened the panel for food re-
trieval, the first trial was initiated. The 
magazine light faded and a fixed intertrial inter-
val (ITI) of 5 s started. At the end of the ITI, a 
light stimulus of determinate duration (stimulus 
duration, SD) was randomly presented in one of 
the five holes. The rats had to respond with a 
nose-poke into the appropriate aperture during 
the stimulus presentation or within a subse-
quent limited hold period (LH). A correct 
response was followed by the supply of a pellet 
into the lighted food magazine. The next trial 
was triggered by the panel movement. Inappro-
priate responses led to a punishment in terms of 
a predefined 5 s period of darkness (time-out) 
without reward delivery. The task procedure 
offered various opportunities for such reactions:  

- incorrect responses in a hole where no 
stimulus appeared, 

- omissions in the form of absent reaction 
to the occurrence of the stimulus 

within the LH, 
- premature responses before the onset of 

the stimulus during the ITI in one of the 
apertures 

- and perseverative responses, meaning addi-
tional responses after a correct 
response and before reward intake.   

Every response during the time-out phase reini-
tialised the period of darkness. Following the 
time-out, the box and the tray were illuminated 
again and the next trial was started by a nose-
poke into the food magazine. Within a session, 
the visual stimuli were randomly presented in 
equal number in each hole. The progressive 
decrement of the variables SD (60  1 s) and 
LH (60  5 s) over eight training levels en-
abled the acquisition of the 5-CSRTT.  
 The baseline training session was de-
termined by the conditions of the eighth 
training level (SD = 1 s, LH = 5 s). After show-
ing a stable baseline performance (>80 % 
accuracy and <20 % omissions with <10 % 
variation over five consecutive training ses-
sions), rats underwent surgery.   
 
4.4.3 Experiment 2: delay-discounting 
 
4.4.3.1 Apparatus 
The delay-discounting procedure was carried 
out in two standard, automated Skinner boxes 
(29.8 cm long x 24.1 cm wide x 28.2 cm high; 
Modular Test Cage System, Patent No. 
3830201; Coulbourn Instruments, Whitehall, 
PA, USA). Each operant chamber consisted of 
two transparent polycarbonate side walls, one 
hinged to enable insertion of the animal, an 
aluminium rear wall, an aluminium roof and a 
grid floor composed of parallel, 6.4 mm metal-
lic rods mounted over a plastic excrement pan. 
The aluminium front panel comprised three 
modular columns including a 2 W house light 
on top and a tray at the bottom of the middle 
column. The food magazine (5.3 cm wide x 
6 cm high) was equipped with a 1 W miniature 
bulb and a hinged Plexiglas® panel connected 
with a microswitch to detect nose-poke entries 
into the receptacle. A motor-driven (50-L se-
ries; Ledex Inc., Datton, OH, USA) food 
dispenser delivered 45 mg casein pellets into 
the tray. Each lateral column included a retract-
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able lever (Bilaney Consultants GmbH, Düssel-
dorf, Germany) and a stimulus light above the 
lever. The chambers were integrated in sound-
attenuating boxes and controlled via a self-
modified interface (Med Associates, Inc., St. 
Albans, VT, USA) by self-programmed soft-
ware based on InstaCal (Measurement 
Computing Corporation, Norton, MA, USA).  
 
4.4.3.2 Training 
The delay-discounting task is a modified version 
of the procedure developed by Evenden and 
colleagues (Evenden and Ryan 1996). The 
training schedule was divided into a habituation, 
pretraining and baseline training stage. For the 
purpose of habituation, the rats (n = 11) were 
first introduced in the operant chambers for a 
period of 30 min with a few pellets placed on 
the extended levers and into the food magazine.  
 The pretraining was divided into three 
different phases: the two-lever continuous rein-
forcement (CRF) mode followed by two nose-
poke training levels. During the CRF mode, the 
animals learned to lever press for food. Both 
levers were presented at the same time with 
only one lever determined as the rewarding 
over the entire daily session of 30 min. After 
reaching the criterion of 200 presses in one 
session, the reinforcing lever shifted, counter-
balanced between the subjects. Pressing the 
rewarding lever delivered one pellet into the 
simultaneous illuminated magazine. The house 
light as well as the stimulus lights was perma-
nently active over the session.  
 The following pretraining steps served 
to associate nose-poking with trial initiation. 
Each daily session consisted of 90 trials. Each 
trial started with both levers retracted. The rats 
had the chance to nose-poke into the lighted 
tray to trigger the presentation of a single lever. 
In that case, the magazine light was shut down 
and the house light together with the lever-
corresponding stimulus light was powered on. 
If the animal failed to respond inside 30 s, the 
program proceeded to a 10 s period of darkness 
(ITI). A lever press within 30 s was rewarded 
with one pellet and accompanied by lever re-
traction and shutdown of the house light and 
stimulus light. By contrast, the food tray was 
illuminated either until the rat nose-poked again 

to collect the food or for 30 s from lever exten-
sion on. Thereafter, the next trial followed. In 
every pair of trials, each lever was presented 
once in a random order. When the animals 
performed at least 80 successful trials within a 
session over three consecutive days, they 
achieved the last pretraining stage. Herein, the 
time to initiate a trial and the duration for lever 
press and food collection were shortened to 
10 s. The criterion to reach the subsequent 
baseline training was consistent with the previ-
ous.   
 During the baseline training session, the 
pretraining sequence was expanded by a pro-
gressive delay-discounting procedure. A daily 
training session comprised 60 trials divided into 
five blocks with 12 trials. Each trial lasted 
100 s. Each block started with two forced-
choice trials with only one lever presented ran-
domly in every pair of forced-choice trials. In 
the following ten trials, the animals had the free 
choice between both levers, whereby one lever 
was always defined as the high reward (HR) 
lever while the other one was determined as the 
low reward (LR) lever, equally distributed 
among the rats. The selection of the LR lever 
delivered one pellet per press immediately, 
whereas the choice of the HR lever was associ-
ated with four pellets per press, but only 
provided after a delay increasing with each 
block (0, 10, 20, 40 and 60 s). The levers were 
retracted immediately after a press. Following 
food collection, the chambers returned to the 
ITI state. Omitted responses at the food maga-
zine or on the levers within 10 s, respectively, 
were scored as omissions and punished with the 
return into the dark ITI. The switching of the 
lights remained just as in the preceding pre-
training phase. The rats executed the baseline 
training until they achieved a stable delay-
discounting performance.   
 
4.4.4 Surgery 
 
The rats were anaesthetised with chloral hy-
drate (360 mg/kg; Sigma-Aldrich, Steinheim, 
Germany) and fixed in a stereotaxic frame 
(David Kopf Instruments, Tujunga, CA, USA). 
Stainless steel 21 gauge guide cannulae were 
implanted bilaterally 1 mm above the target 
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injection site into the vmPFC (anteroposterior 
+2.7 mm, mediolateral ±0.8 mm, dorsoventral 
-4.0 mm from Bregma). Jeweller screws were 
anchored in the skull serving to fix the cannulae 
which were embedded in dental cement and 
closed by removable 26 gauge stylets of the 
same length. After surgery, the rats were kept 
individually for three days with free access to 
food and water. Following a total recovery 
period of five days, the animals were reintro-
duced to the baseline training until they re-
established the presurgical performance.   
 
4.4.5 Microinfusion procedure  
 
The test design comprised three 4-day sessions 
for the animals. Each session started with an 
injection day, followed by a day without train-
ing. The second and third post-testing day were 
used to achieve the baseline performance and to 
ensure the washout process of the drug. Before 
infusion, the stylets were exchanged for 
27 gauge injection cannulae connected with 
microlitre syringes (SGE Scientific Glass Engi-

neering, Darmstadt, Germany) via polyethylene 
tubes. The rats received bilateral intra-vmPFC 
microinjections of the GABAA agonist muscimol 
(0.05, 0.5 g/0.3 l) and 0.9 % saline as vehi-
cle (0.3 l) according to a pseudorandom Latin 
square design. The injection rate was 
0.1 l/30 s. The injectors were left in place for 
1 min to guarantee diffusion and to avoid reflux 
of the solution. Ten minutes after the microin-
jection, the rats underwent behavioural testing. 
The sequence of the test sessions matched with 
the baseline training. 
 
4.4.6 Drugs 
 
The GABAA agonist muscimol was purchased 
from Tocris Bioscience (Ellisville, MO, USA) 
and dissolved in 0.9 % saline. Aliquots of stock 
solutions (0.5 g/0.3 l) were prepared and 
stored at -20 °C until use. If necessary, aliquots 
were further diluted to a dose of 
0.05 g/0.3 l on the treatment day. Doses 
were based on previous studies (Diederich and 
Koch 2005).  

 
 

 
Fig. 4.1 Location of the bilateral injection sites (triangles) in the ventral medial prefrontal cortex in a) the 5-choice serial 
reaction time task (n = 12) and b) the delay-discounting task (n = 10) depicted on schematic drawings from the rat brain 
atlas of Paxinos and Watson (1998). Rostral distance (in mm) to bregma is indicated by numbers.  
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4.4.7 Histology 
 
Upon termination of the experiment, the rats 
were euthanised with a lethal dose of chloral 
hydrate. The brains were removed from the 
skull and immersion-fixed in a 4 % forma-
lin/30 % sucrose solution for 48 h. Coronal 
50 m sections of the vmPFC were cut on a 
cryostat (Jung CM 3000; Leica Instrument 
GmbH, Nussloch, Germany), mounted on gela-
tine-coated glass slides and Nissl-stained with 
thionin. Then, the sections were analysed using 
a light microscope and injection sites plotted on 
standardised coronal sections of a rat brain 
stereotaxic atlas (Paxinos and Watson 1998). 
 
4.4.8 Data analysis 
 
The descriptive statistics is based on means and 
variance and is indicated by the standard error 
of the mean (±SEM). The statistical analyses 
were conducted by the software SigmaStat (ver-
sion 2.0 for Windows).   

In experiment 1, the drug effects within 
the testing group on the following behavioural 
parameters were investigated using two-way 
repeated measures analysis of variance 
(ANOVA; factors: drug treatment and behav-
ioural parameter): percentage of correct 
responses (accuracy; 100 x number of correct 
responses/number of correct and incorrect 
responses), percentage of omitted responses 
(100 x number of omitted responses/total 
number of correct, incorrect and omitted re-
sponses), number of premature responses, 
number of perseverative responses, number of 
trials completed, number of time-out re-
sponses, latency of correct responses [s] and 
latency of reward collection [s]. In the case of 
significant main effects (P < 0.05), one-way 
repeated measures ANOVA and post hoc 
Tukey`s t-tests for pairwise comparisons were 
conducted. 

In experiment 2, the training perform-
ance of the rats had to be examined statistically 
at first to verify that they achieved the baseline 
criteria. Therefore, the forced-choice trials 
were excluded from the data and the percentage 
choice of HR (HR lever responses/total re-
sponses) was calculated per day and delay for 

each animal. The data from five consecutive 
sessions were analysed by two-way repeated 
measures ANOVA with the within-subject fac-
tors day and delay. If the effect of delay was 
significant (P < 0.05) and there was no main 
effect of day or delay x day interaction, the rats 
reached a stable baseline performance. The data 
of the behavioural tests were analysed by two-
way repeated measures ANOVA with the 
within-subject factors drug treatment and delay. 
Additionally, the omission rate [%] and the 
latency of lever responses [s] were calculated.  
 
4.5 Results 
 
4.5.1 Histology 
 
A depiction of the injector tips located within 
the vmPFC is shown in Fig. 4.1.  
 The histological analysis revealed that 
all except one rat, which had to be excluded 
from the results, had acceptable injection sites 
accurately positioned to the target structure 
with minimal tissue damage as indicated in the 
representative section in Fig. 4.2.  
 
 

 
Fig. 4.2 Representative photomicrograph of the injection 
site in the ventral medial prefrontal cortex of rats 
indicated by the arrow. 
 
 
4.5.2 Experiment 1: effects of inactiva-
tion of the vmPFC on rats` performance 
in the 5-CSRTT 
 
The rats performed a stable baseline throughout 
the entire term of the experiment with high 
levels of accuracy (90.52±0.99 %), fast 
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Fig. 4.3 Effects of local bilateral infusions of the GABAA agonist muscimol (M; 0.05, 0.5 g/0.3 l) into the ventral medial 
prefrontal cortex on the rats` (n = 12) performance in the 5-choice serial reaction time task. Data of a) premature responses, 
b) perseverative responses, c) accuracy and d) omissions are means ±SEM. Statistically significant differences between drug 
treatment compared to vehicle (Veh) are indicated by asterisks (one-way repeated measures ANOVA, post-hoc Tukey`s 
t-test, P < 0.05).  
  
latencies (correct responding: 0.69± 0.01 s; 
reward collection: 1.17±0.04 s) and low per-
centages of omissions (11.16±0.71 %) as well as 
low numbers of premature (7.42±1.15) and 
perseverative responses (2.64±0.62) before 
testing. Analysis of the training data demon-
strated no significant differences in the pre- and 
postoperative sessions and the ‘drug-free days’ 
between testing excluding any carry-over ef-
fects of drug treatment or surgery (data not 
shown). Two-way repeated measures ANOVA 
on the 5-CSRTT performance showed main 
effects of drug treatment [F(2,154) = 10.829; 
P <0.001] as well as a statistically significant 
interaction between both factors 
[F(14,154) = 4.816; P <0.001]. Further one-way 
repeated measures ANOVAs and post hoc 

Tukey`s t-tests revealed that administration of 
the lower dose of muscimol (0.05 g/0.3 l) 
specifically enhanced impulsive behaviour re-
flected by a significant increase in premature 
responding compared to vehicle (P = 0.033), 
while no other measured parameter was af-
fected (Fig. 4.3 and Table 4.1). Intra-vmPFC 
injection of the higher dose of musci- 
mol (0.5 g/0.3 l) also appeared to augment 
premature responses, but this effect did not 
reach statistical significance (Fig. 4.3a). By con-
trast, this dose induced significant differences in 
perseverations (P <0.001), accuracy 
(P = 0.016), omissions (P <0.001), time-out 
responses (P = 0.035) and the latency of  
reward collection (P <0.001) in comparison  
to vehicle (Fig. 4.3 and Table 4.1).
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Table 4.1 Effects of local bilateral infusions of the GABAA agonist muscimol (0.05, 0.5 g/0.3 l) into the ventral medial 
prefrontal cortex on the rats` (n = 12) performance in the 5-choice serial reaction time task. Data are expressed as means 
±SEM. M muscimol, Veh vehicle. *P < 0.05 vs. Veh (one-way repeated measures ANOVA, post-hoc Tukey`s t-test).  

 
 
4.5.3 Experiment 2: effects of deactiva-
tion of the vmPFC on delay-discounting 
 
Vehicle microinfusions affected delay sensitivity 
of the rats in a similar way as observed in the 
baseline training phase and in the sessions be-
tween the testing days (data not shown). The 
two-way repeated measures ANOVA of the 
choice of HR resulted in a main effect of delay 
[F(4,72) = 26.770; P <0.001], but there was no 
significant effect of treatment [F(2,72) = 1.527; 
P = 0.244] indicating that none of the doses of 
muscimol affected the choice of the large rein-
forcer (Fig. 4.4a). Post-hoc comparisons 
confirmed the typical delay-dependent within-
session shift in the preference of the HR with 
statistically significant differences between no 
delay and the longer delays of 40 s (vehicle: 
P <0.001; 0.05 g/0.3 l muscimol: 
P = 0.035; 0.5 g/0.3 l muscimol: 
P = 0.013) and 60 s (P <0.001 in each case) for 
any drug treatment. The analysis of the omis-
sion rate yielded main effects of delay 
[F(4,72) = 3.201; P = 0.024] and treatment 
[F(2,72) = 6.305; P = 0.008], but the effects of 
different treatments did not depend on what 
level of delay was present [interaction: 
F(8,72) = 1.634; P = 0.130]. The omission rate 
increased with the delay, but the sole significant 
effect compared to vehicle was obtained in the 
40 s delay period by the higher dose of musci-
mol (P = 0.007) (Fig. 4.4b). After 
administration of saline (5.20 ±3.41 %) and 
0.05 g/0.3 l muscimol (7.00 ±3.89 %), the 
omission rate remained very low throughout 
the session and the latencies to respond on the 
lever were similar in all delays. Highly-dosed 
muscimol slightly prolonged the lever response    

 
 

 
Fig. 4.4 Effects of local bilateral infusions of the GABAA 
agonist muscimol (M; 0.05, 0.5 g/0.3 l) into the 
ventral medial prefrontal cortex on the rats` (n = 10) 
performance in the delay-discounting task. Data of a) 
choice of high reward (HR), b) omissions and c) lever 
response latency are means ±SEM. Statistically significant 
differences between drug treatment compared to vehicle 
(Veh) are indicated by asterisks (two-way repeated 
measures ANOVA, post-hoc Tukey`s t-test, P < 0.05). 

Treatment 
Trials 

completed [n] 
Time-out 

responses [n] 
Latency of correct 

responding [s] 
Latency of reward 

collection [s] 

Veh 100.00±0.00      12.75±2.43 0.70±0.02 1.11±0.03 

M 0.05   96.33±2.45  51.33±16.56 0.67±0.02 1.26±0.06 

M 0.5   96.42±1.92    56.67±11.76* 0.78±0.04   1.85±0.18* 
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latency (Fig. 4.4c) without reaching significance 
as shown by two-way repeated measures 
ANOVA [treatment: F(2,72) = 1.276; P = 0.303, 
delay: F(4,72) = 2.333; P = 0.074, interaction: 
F(8,72) = 1.476; P = 0.181].  
 
4.6 Discussion 
 
The main findings of this study are that reversi-
ble inactivation of the rats` vmPFC by the 
GABAA agonist muscimol induced deficits in 
impulse control but did not affect delay-
discounting. Our results support the relevance 
of the vmPFC for the control of impulsive ac-
tion in the 5-CSRTT as indicated by increased 
premature responding after administration of 
muscimol. Both doses of muscimol produced a 
marked increase of impulsive action, whereby 
the lower dose (0.05 g/0.3 l) was sufficient 
to significantly enhance anticipatory responses 
with lacking effects on any other behavioural 
parameters. The current behavioural effects of 
muscimol support previous inactivation studies 
and corroborate the theory that the ventral part 
of the mPFC, including the prelimbic (PL) and 
infralimbic (IL) cortices, is critically involved in 
controlling premature responding in the 
5-CSRTT in rats (Chudasama et al. 
2003;Murphy et al. 2012;Paine et al. 2011). 
Besides premature responses, the high dose of 
muscimol also significantly increased persevera-
tive behaviour and time-out responses, 
representing other aspects of inhibitory control, 
more related to compulsivity and behavioural 
flexibility (Robbins 2002). Perseverative re-
sponding reflects the inability to stop a 
compulsive repetition of reaction without pur-
pose after a correct response has already been 
made (Carli et al. 2006;Robbins 2002). In the 
5-CSRTT, such inappropriate responses are 
punished by a period of darkness, called time-
out (Bari et al. 2008). Hence, it is not surpris-
ing that ongoing responding during the time-out 
comes along with increased perseverative reac-
tions. In this regard, vmPFC lesions or 
inactivation result in behavioural inflexibility 
and increased perseverative errors in reversal 
learning tasks in rats (Kosaki and Watanabe 
2012;Ragozzino 2007;Ragozzino et al. 1999). 
Moreover, abnormalities in the AC, the puta-

tive human equivalent of the rodent vmPFC, 
are correlated with obsessive-compulsive disor-
der, a syndrome hallmarked by perseverative 
behaviours (Kuhn et al. 2013;Remijnse et al. 
2013). Cognitive constructs such as impulsivity, 
compulsivity and flexibility are closely interre-
lated executive processes in the context of 
inhibitory control, hierarchically top-down 
mediated by the PFC (Bari and Robbins 
2013;Wise 2008). Latest findings support the 
role of the mPFC in action monitoring and mo-
tor impulsivity in that low-frequency 
oscillations within rat and human medial frontal 
cortex synchronise local and motor cortex neu-
rons facilitating the representation and exertion 
of adaptive control (Narayanan et al. 2013).    

The methodological advantage of the 
5-CSRTT is based on the dissociation of several 
behavioural aspects like impulse control, moti-
vation, reaction time and attention (Robbins 
2002). High-dose muscimol (0.5 g/0.3 l) 
infusions caused a significant decrease in accu-
racy and an increase in the omission rate, a 
combined effect most likely reflecting an atten-
tional deficit. High numbers of omissions might 
also indicate sensory, motor or motivational 
factors (Robbins 2002). Indeed, GABAA recep-
tor activation in the vmPFC slightly increased 
the latency of reward collection following the 
high-dose injection of muscimol, suggesting 
incentive motivational influences (Rogers et al. 
2001). However, the latency of correct re-
sponding and the number of completed trials 
were not affected by muscimol excluding loco-
motor or sedative drug effects (Robbins 2002). 
Besides, GABAA-mediated inhibition of the 
vmPFC enhances feeding behaviour in rats 
(Kelley et al. 2005). The attentional impact of 
the mPFC is confirmed by results of mPFC 
lesions causing impairments in accuracy in the 
5-CSRTT and maze tasks (Passetti et al. 
2002;Pezze et al. 2009;Ragozzino et al. 1998). 
Many authors postulate that high scores of im-
pulsivity in the 5-CSRTT inversely correlate 
with attentional accuracy (Blondeau and Dellu-
Hagedorn 2007;Dalley et al. 2008;Puumala and 
Sirvio 1998). Considering the central role of 
prefrontal dysfunction to the pathophysiology of 
ADHD, incorporating attentional and impulsive 
dysfunctions (Castellanos and Tannock 2002), it 
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seems obvious that this relationship could also 
be valid for the mPFC. But there is evidence to 
suggest, as unveiled by the different pattern of 
results following both muscimol treatments in 
our study, that the mPFC of rats should not be 
viewed uniformly. Lesion studies suggest disso-
ciable roles of the dorsal and ventral subregions 
of the mPFC on the 5-CSRTT performance. IL 
and PL seem to be more implicated in impulsive 
and compulsive behaviours, whereas attentional 
and motivational parameters like accuracy, 
omissions and the latency of reward collection 
appear to be rather modulated by the dorsally 
located anterior cingulate cortex (AC) 
(Chudasama et al. 2003;Chudasama and Muir 
2001;Passetti et al. 2002). In our study, the 
effects on the latter aspects could be attributed 
to the involvement of adjacent brain areas due 
to diffusion of muscimol. According to Fick’s 
law of diffusion, the spatial extent of a drug 
correlates with its initial concentration (Edeline 
et al. 2002). Autoradiographic estimation of 
intracortical spread and glucose metabolism 
after administration of a slightly lower dose of 
muscimol (1 g/ l) revealed a mean radial 
spread of 1.66 mm and reduced neuronal activ-
ity in a radius of several millimeters (Martin 
1991;Martin and Ghez 1999). In conjunction 
with the suggestion that drug diffusion goes up 
along the cannulae by capillarity forming an 
ellipsoidal area of inactivation (Hupe et al. 
1999), the AC might additionally be affected by 
higher doses of muscimol. This hypothesis is 
supported by large lesions encompassing dorsal 
and ventral subregions of the mPFC, which 
cause deficits in both cognitive domains, namely 
attention and impulsivity, in contrast to those 
restricted to the respective subareas (Pezze et 
al. 2009).     
 To our knowledge, this is the first 
study using the inactivation technique with 
muscimol at the level of the vmPFC with re-
spect to impulsive behaviour specifically 
comparing impulse control with delay-
discounting in rats. The present study demon-
strates that in contrast to impulsive action, 
impulsive choice in the delay-discounting task is 
not significantly controlled by the vmPFC. We 
observed a flattening in the typical delay-
dependent within-session shift in the preference 

of the HR for both muscimol doses, similar to 
the findings of Cardinal et al. (2001) following 
mPFC lesions, primarily PL and IL. For clarifi-
cation, in case of no delay rats with inactivated 
vmPFC chose the HR less than controls and 
after treatment with low-dosed muscimol the 
preference of the large reward was even higher 
at the maximum delay compared to control. 
One possible explanation for this observation 
might be that reversible inactivation of the 
vmPFC caused insensitivity to the task contin-
gencies by a disruption of temporal 
discrimination (Cardinal et al. 2004). Delay-
discounting describes the function by which a 
reward is subjectively devalued by a delay to its 
delivery. The two reinforcers vary in both size 
and delay, so the the choice of the LR could 
reflect impulsivity or changes in motivational 
behaviour, as motivation in goal-directed behav-
iour depends on the expected value of the 
anticipated reward and impulsive subjects are 
characterised by a greater delay aversion com-
pared to normal individuals (Spreckelmeyer et 
al. 2009;Winstanley et al. 2006). Conse-
quently, an impulsivity-promoting or 
demotivating impact of the transiently inacti-
vated vmPFC would have been expected to 
result in a greater reduction of the delayed re-
ward choice expressed as a steeper discounting 
curve. Instead, the animals appeared to lack 
temporal stimulus control and average their 
choice of the high reward over the session, in-
dependent of delay. Aspiration lesions of the 
mPFC have shown to generate a general deficit 
in timing ability in the peak interval procedure 
in rats (Dietrich and Allen 1998). More re-
cently, intra-mPFC administration of muscimol 
in rats impaired time interval discrimination in 
the range of a few seconds indicating that the 
mPFC might be part of an internal clock in the 
brain (Kim et al. 2009;Kim et al. 2013). More 
precisely, Narayanan and colleagues lately 
found that prefrontal D1 dopamine signalling in 
rats is necessary for temporal control in fixed-
interval timing and temporal expectation in 
simple reaction time tasks (Narayanan et al. 
2012;Parker et al. 2013). Such deficits in tem-
poral control following vmPFC inactivation 
might explain our results of the 5-CSRTT and 
delay-discounting task, which both require rats’ 
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waiting capacity. However, in contrast to the 
delay-discounting paradigm, the 5-CSRTT pri-
marily demands the rats to suppress their drive 
to respond and to a lesser extent internally tim-
ing their behaviour. Since the mPFC, 
particularly the PL, plays a distinctive role in 
the detection of instrumental contingencies 
(Balleine and Dickinson 1998), another possibil-
ity could be that the present inactivations 
abolished the learned association between re-
sponse and reward delivery. Yet, recent 
findings suggest that the prelimbic sector is not 
critical for the formation of action-outcome 
associations (Tran-Tu-Yen et al. 2009).    

High-dose muscimol further led to a 
delay-dependent increase in the omission rate, 
an effect less attributable to a general impair-
ment of performance as mPFC disruptions do 
not impair primary motivation in decision-
making tasks (Gill et al. 2010;Walton et al. 
2002;Walton et al. 2003). Another explanation 
might be motor side-effects of treatment. In-
deed, the enhanced rate of omissions was 
accompanied by slowed lever response latency 
and intra-mPFC injection of muscimol 
(0.05 g/0.5 l) reduces locomotor activity in 
an open field (Paine et al. 2011). Since vmPFC-
inactivated rats did not show impairments of 
response latency in the 5-CSRTT and even re-
spond faster in a simple reaction time task 
(Narayanan et al. 2006), the impact on omis-
sions and latencies might also be more linked to 
deficits in temporal task contingencies.   

Impulsive choice is more related to de-
cision-making than to motor inhibition as 
required in the 5-CSRTT (Winstanley et al. 
2006). Decision-making is considered as the 
emergence of preferences between alternative 
conducts based on a mental evaluation of their 
outcome (Sanfey and Chang 2008). It is com-
posed of three distinct processes: 1) the 
judgment of different options, 2) the selection 
and execution of an action, and 3) the experi-
ence or evaluation of the corresponding 
consequences (Ernst and Paulus 2005). Most 
decision-making procedures confront the indi-
viduals with two alternatives differing in cost 
and benefit. The increment of costs for the usu-
ally more-preferred larger reward leads to a 
discounting in the value of this option. Dis-

counting models assess the choice behaviour in 
relation to delay, effort or probability of reward 
(Floresco et al. 2008b).The execution of a deci-
sion necessitates the interaction of multiple 
underlying systems. However, earlier investiga-
tions found remarkable discrepancies in the role 
of different subregions of the PFC in these deci-
sion-making processes (Floresco et al. 2008b). 

In humans, the DLPFC may participate by 
monitoring and timing of actions (Ernst and 
Paulus 2005). Accordingly, enhanced lateral 
prefrontal activation is observed during the 
selection of later rewards suggesting that an 
intact DLPFC is required for the choice of de-
layed gratification (Ballard and Knutson 
2009;McClure et al. 2004). Altered activity in 
human AC is associated with impulsive deci-
sion-making in delay-discounting tasks (Hinvest 
et al. 2011;Hoffman et al. 2008;Li et al. 
2013;Xu et al. 2009). In rats, lesion and re-
versible inactivation studies have already linked 
the mPFC with effort-, risk- and delay-
discounting, though revealing inconsistencies 
regarding dorsal and ventral parts of this area 
(Churchwell et al. 2009;de Visser et al. 
2011b;Paine et al. 2013;Rivalan et al. 
2011;Rudebeck et al. 2006;St Onge and Flores-
co 2010;van Enkhuizen et al. 2013;Walton et 
al. 2003;Walton et al. 2002). Among those 
three types, temporal discounting mostly re-
flects impulsive behaviour (Bari and Robbins 
2013). Unfortunately, the precise relevance of 
the mPFC for impulsive choice is still unclear. 
Delay-discounting procedures produce contra-
dictory results depending on the inactivation 
technique, the mPFC subregion and the behav-
ioural task that is used. Permanent deactivation 
via excitotoxic lesion of the AC does not affect 
rats` performance, irrespective of which delay-
discounting type is applied (Cardinal et al. 
2001;Rudebeck et al. 2006). In contrast, effects 
of lesioning the PL and IL seem to be task-
specific. While the typical paradigm measuring 
choice between large-but-delayed and small 
immediate rewards in an operant chamber, as in 
our case, also detects no impulsivity-related 
behaviour, PL/IL lesions induce impulsive 
choice in a sustained response task with a single 
response operandum (Cardinal et al. 2001;Gill 
et al. 2010). Unlike our study, transient inacti-
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vation of the ventral subareas of the mPFC by 
muscimol increases delay-discounting in a 
T-maze task (Churchwell et al. 2009). How-
ever, the findings of Churchwell et al. (2009) 
and Gill et al. (2010) have to be compared care-
fully with those of our present study. The study 
of Gill and colleagues (2010) probably reflects 
more a mixture of impulsive choice and motor 
impulsivity because subjects must make a deci-
sion to initiate responding but the task also 
requires them to maintain their response and to 
inhibit their natural tendency to withdraw. 
Generally speaking, the results of Churchwell et 
al. (2009) appear discrepant with the present, 
particularly as both tasks used different delay 
ranges. However, closer considering the dis-
crete session blocks in our study reveals a trend 
towards delay aversion for the shortest delay 
duration (10 s) following treatment with high-
dosed muscimol. Interestingly, the duration of 
the delay is similar to that of Churchwell et al. 
(2009) suggesting that the vmPFC, at least par-
tially, might be implicated in impulsive 
decision-making with rewards delayed in the 
range of a few seconds. Previous studies have 
shown that prolonged delay periods of 25 s are 
suitable to assess drug-induced improvements 
of waiting capacity, but to a lesser extent a de-
crease in the tolerance of delay (Bizot et al. 
2007). Other groups already proved the feasi-
bility of discounting paradigms using shorter 
delays to detect impulsive choice (Floresco et 
al. 2008c). Further experiments on temporal 
discounting with short delays could help to 
elucidate a potential involvement of the vmPFC 
in impulsive decision-making.  

Increasing evidence suggests that impul-
sive behaviour is controlled depending on which 
neuroanatomical system is involved and which 
aspects of impulsivity are investigated in a spe-
cial task (Evenden and Ryan 1999). Within the 
rat literature, impulse control in the 5-CSRTT 
has been most widely used as an index of impul-
sive action in comparison with impulsive choice 
in delay-discounting tasks (Eagle and Baunez 
2010). It is claimed that each form of impulsiv-
ity includes a kind of impulsive action, which is 
necessary to choose a response option. The 
conceptional difference consists in that there is 

no need to forcibly inhibit a prevalent reaction 
in impulsive choice compared to impulse con-
trol (Winstanley et al. 2006). Participating 
neuronal structures form cortico-limbic-striatal 
circuits with considerable overlap in relation to 
impulsive action and inter-temporal choice 
(Pattij and Vanderschuren 2008). Rats showing 
high levels of impulsivity in the 5-CSRTT also 
exhibit a greater propensity for impulsive deci-
sion-making in a delayed reward task (Robinson 
et al. 2009), suggesting that the vmPFC may be 
involved in both types of impulsivity. However, 
in a recent study both rats and humans display 
no correlation in measures of impulsive choice 
and impulsive action (Broos et al. 2012). Motor 
impulsivity is assumed to be principally top-
down controlled by the mPFC, while impulsive 
decision-making depends more on the func-
tional integrity of the OFC, which in turn is less 
involved in impulse control (Dalley et al. 
2008;Hadamitzky and Koch 2009;Wischhof et 
al. 2011). Together with the present findings, 
this supports the assumption that the various 
forms of impulsivity rely on separate, yet partly 
overlapping neural pathways (Dalley et al. 
2011;Pattij and Vanderschuren 2008).  
 
 
 
4.7 Conclusions 
 
This is the first study directly comparing the 
role of vmPFC in two main types of impulsiv-
ity. Taken together, the vmPFC comprising PL 
and IL is critically implicated in impulse control 
in the 5-CSRTT, but does not mediate impul-
sive decision-making in the delay-discounting 
task in rats. Our data confirm the hypothesis of 
various dimensions underlying impulsivity with 
a clear-cut distinction of impulsive choice and 
impulsive action on the level of the vmPFC.  
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5 Nucleus accumbens core and shell inactivation 
differentially affects impulsive behaviours in rats 
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5 . 1  H I G H L I G H T S  

 
The GABAA agonist muscimol was used to inactivate NAc core and shell in rats 
Deactivation of NAc core as well as shell induced impulsive choice in the T-maze 
Muscimol into NAc shell, but not core, reduced impulse control in the 5-CSRTT 
Muscimol-BODIPY was not suitable to assess the spatial extent of inactivation 
NAc subregions differentially contribute to distinct types of impulsivity 

 
 

5 . 2  A B S T R A C T  

Impulsivity is a multifactorial phenomenon, determined by deficits in decision-making (impulsive choice) and impulse control 
(impulsive action). Recent findings indicate that impulsive behaviour is not only top-down controlled by cortical areas, but 
also modulated at subcortical level. The nucleus accumbens (NAc) might be a key substrate in cortico-limbic-striatal circuits 
involved in impulsive behaviour. Dissociable effects of the NAc subregions in various behavioural paradigms point to a 
potential functional distinction between NAc core and shell concerning different types of impulsivity. The present study used 
reversible inactivation of the rats’ NAc core and shell via bilateral microinfusion of the GABAA receptor agonist muscimol 
(0.05 g/0.3 l) and fluorophore-conjugated muscimol (FCM, 0.27 g/0.3 l) in order to study their contribution to 
different aspects of impulse control in a 5-choice serial reaction time task (5-CSRTT) and impulsive choice in a delay-based 
decision-making T-maze task. Acute inactivation of NAc core as well as shell by muscimol increased impulsive choice, with 
higher impairments of the rats’ waiting capacity in the T-maze following core injections compared to shell. Intra-NAc shell 
infusion of muscimol also induced specific impulse control deficits in the 5-CSRTT, while deactivation of the core caused 
severe general impairments in task performance. FCM did not affect animal behaviour. Our findings reveal clear involvement 
of NAc shell in both forms of impulsivity. Both subareas play a key role in the regulation of impulsive decision-making, but 
show functional dichotomy regarding impulse control with the core being more implicated in motivational and motor 
aspects.   

 
 

5.3 Introduction 
 
Impulsivity is a behavioural phenomenon that 
both adversely and beneficially affects living 
conditions (Eysenck and Eysenck 1977). From a 
theoretical point of view, impulsive behaviour 
results from the relation between an incentive 
(impulsive drive) and an inhibitory dimension 
(impulse control) (Herpertz and Sass 1997). 
Impulse control is described as an active inhibi-
tory mechanism, which modulates an internally 
or externally driven prepotent desire for a pri-
mary (food) or secondary (money) reinforcer. 
Rapid, conditioned reactions are transiently 
suppressed so that slower cognitive patterns can 

guide behaviour (Eagle and Baunez 
2010;Winstanley et al. 2006). Dysfunctional 
impulse control (e.g., acting prematurely with-
out foresight) is referred to as impulsive action 
or motor impulsivity (Brunner and Hen 
1997;Dalley et al. 2011) and is often measured 
in the 5-choice serial reaction time task 
(5-CSRTT) in rats, which was modelled after its 
human analogues, the continuous performance 
test of attention and Leonard’s five choice serial 
reaction time task (Carli et al. 1983;Muir et al. 
1996;Robbins 2002). As a multifactorial phe-
nomenon, impulsivity is generally distinguished 
into impulsive action and impulsive choice 
(Evenden 1999b;Pattij and Vanderschuren 
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2008;Winstanley et al. 2006). The dominant 
behavioural model to assess impulsive decision-
making in both humans and rodents is the delay-
discounting task, where impulsive tendencies 
are reflected in the preference for a small im-
mediate over a larger-but-delayed reward due 
to delay aversion and reduced waiting capacity 
(Broos et al. 2012;de Wit 2009;Moeller et al. 
2001;Swann et al. 2002). High levels of impul-
sivity are expressed in many psychiatric 
disorders, involving attention-deficit/ 
hyperactivity disorder (ADHD), antisocial per-
sonality disorder, borderline personality 
disorder, schizophrenia, drug abuse and other 
forms of addiction (de Wit 2009;Evenden 
1999a;Herpertz and Sass 1997). Functional 
magnetic resonance imaging (fMRI) studies in 
ADHD individuals suggest a contribution of 
corticostriatal circuitry to impulse control dis-
orders, including the nucleus accumbens (NAc) 
as part of the ventral striatum (Costa Dias et al. 
2013;Jupp et al. 2013). Moreover, previous 
studies associated the NAc with impulsive co-
caine-, alcohol- and food-seeking (Kalivas and 
Volkow 2005;Koob 1992;LaLumiere et al. 
2012).  
 The NAc is implicated in decision-
making (Assadi et al. 2009;Day et al. 2011;de 
Visser et al. 2011a) and anticipation of reward 
in humans, other primates and rats (Cromwell 
and Schultz 2003;Knutson et al. 2001;Martin 
and Ono 2000;Rademacher et al. 2014). Hu-
man studies found activation of the NAc during 
performance in delay-discounting tasks (Ballard 
and Knutson 2009;Hariri et al. 2006;McClure 
et al. 2004;Wittmann et al. 2007) and a nega-
tive correlation between striatal dopamine 
D2/3 receptors and impulsive choice or action 
(Ghahremani et al. 2012;Lee et al. 2009). Such 
a reduced D2/3 receptor availability in the NAc 
was also observed in a 5-CSRTT study of impul-
sive rats (Dalley et al. 2007a).   

As a critical element of the mesocorti-
colimbic system, the NAc is generally 
implicated in reward and motivation. The 
original concept of the NAc as a functional lim-
bic-motor interface is still valid, but findings of 
the past two decades revealed much more dif-
ferentiated insights indicating that the NAc 
should not longer be viewed in the sense of an 

anatomical entity (Groenewegen and Trimble 
2007;Heimer 2003;Mogenson et al. 1980). On 
the basis of anatomical, neurochemical and elec-
trophysiological criteria, the NAc in the rat 
brain is divided into distinct subterritories 
which are also present in the human brain: a 
dorsolateral core region surrounding the ante-
rior commissure, and a shell region that is 
situated ventromedially to the core (Meredith 
et al. 1996;Sokolowski and Salamone 
1998;Zaborszky et al. 1985). In rats, consider-
able differences exist in the input-output 
features of core and shell. In particular, the 
medial prefrontal cortex (mPFC) projects to-
pographically to the NAc. Dorsal regions of the 
mPFC (anterior cingulate and dorsal prelimbic 
cortices) primarily innervate the core while the 
shell receives afferents from ventral parts of the 
mPFC, including ventral prelimbic and infra-
limbic cortices (Berendse et al. 1992;Brog et al. 
1993;Heidbreder and Groenewegen 2003). The 
efferents also contribute to the core-shell di-
chotomy. The core region sends fibers to the 
conventional basal ganglia circuitry, whereas 
shell projections extensively reach subcortical 
limbic structures (Heimer et al. 1991;Zahm and 
Brog 1992).  

These differences in connectivity sug-
gest that the NAc subregions might also differ 
functionally (Corbit et al. 2001). Lesion studies 
and intracerebral pharmacological manipula-
tions previously demonstrated that NAc core 
and shell are differentially involved in goal-
directed instrumental action (Corbit et al. 
2001), Pavlovian-instrumental transfer (Corbit 
and Balleine 2011;Saddoris et al. 2011), behav-
ioural flexibility (Floresco et al. 2006), stress-, 
cue- or cocaine priming-induced reinstatement 
of drug- or food-seeking behaviour (Floresco et 
al. 2008a;McFarland et al. 2004;Vassoler et al. 
2013), working memory (Jongen-Relo et al. 
2003), locomotor activity (Jongen-Relo et al. 
2002;Pothuizen et al. 2005a;Robbins and 
Everitt 1996), motivational behaviour (Bassareo 
et al. 2002;Stratford and Kelley 1997) and at-
tentional processes, like prepulse and latent 
inhibition (Jongen-Relo et al. 2002;Pothuizen 
et al. 2005a).  

The functional dichotomy at the level of 
the NAc also holds true for impulsive behav-
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iours. While there is strong evidence that core 
lesions promote impulsive choice (Bezzina et al. 
2007;Bezzina et al. 2008a;Cardinal et al. 
2001;da Costa et al. 2009;Pothuizen et al. 
2005b), shell lesions do not (Pothuizen et al. 
2005b). Additionally, rats’ exposure to an ad-
justing-delay schedule in inter-temporal choice 
is associated with enhanced neuronal activity in 
the NAc core (da Costa et al. 2010). However, 
the effect of core lesions remains unclear due to 
discrepancy with other studies yielding no 
choice impulsivity (Acheson et al. 
2006;Cardinal et al. 2001;Gill et al. 2010).  

Regarding impulse control, accumbal 
DA depletions as well as excitotoxic lesions of 
NAc shell lack an effect on anticipatory re-
sponding in response inhibition tasks (Cole and 
Robbins 1989;Murphy et al. 2008;Pothuizen et 
al. 2005b), whereas accumbal 5-HT depletions 
and lesions of the core show impairments in 
5-CSRTT and differential reinforcement for 
low rates of responding (DRL) tasks 
(Christakou et al. 2004;Fletcher et al. 
2009;Pothuizen et al. 2005b). More insights are 
provided by recent pharmacological manipula-
tions, highlighting a potential involvement of 
the shell. In both NAc core and shell, dopamine 
D1-like and D2-like receptors are involved in 
inhibitory response control (Pattij et al. 2007). 
Other findings support divergent roles of core 
and shell in regulating impulse control (Besson 
et al. 2010;Economidou et al. 2012;Sesia et al. 
2008). DA function in the NAc varies between 
the subregions and further underlines the het-
erogeneity of core and shell. Impulsive action in 
the 5-CSRTT correlates with increased DA 
release due to reduced dopamine D2/3 recep-
tor availability and higher D1 receptor mRNA 
expression in the shell, but decreased DA re-
lease caused by lower D1 receptor binding in 
the core (Diergaarde et al. 2008;Jupp et al. 
2013;Simon et al. 2013). 

The lesion technique was the most 
widely used method to investigate brain func-
tion, although carrying some drawbacks due to 
permanent destruction of brain tissue and a 
potential functional compensation by other 
brain areas. These shortcomings can be avoided 
using reversible acute inactivation procedures 
(Lomber 1999). Up to now only a few studies 

investigated the role of NAc subregions in im-
pulsivity using lesions or transient inactivation 
methods. Local microinfusion of the GABAA 

receptor agonist muscimol allow repeated re-
versible inactivation of distinct brain regions, 
and hence, within-subject designs with in-
creased reliability (Lomber 1999). Muscimol 
represents an appropriate inactivation tool, as 
GABAA receptors are widely distributed 
throughout the NAc located on medium-sized, 
spiny neurons (MSN) (Schwarzer et al. 2001). 
Muscimol selectively induces a rapid hyperpo-
larization lasting up to several hours on 
postsynaptic neurons via activation of GABAA 

receptors on the surface of local cell bodies 
without affecting fibers of passage, thereby al-
lowing behavioural testing almost immediately 
after injection (Edeline et al. 2002;Heiss et al. 
2010;Krupa et al. 1999;Martin and Ghez 
1999). In contrast, the lesion technique requires 
several days for the animals to recover, enabling 
the development of adaptive functions of re-
maining structures (Martin and Ghez 1999). 
Additionally, fluorescent conjugates, like 
fluorophore-conjugated muscimol (FCM), may 
help to evaluate the spatial extent of drug-
infused tissue.  

In the present study, reversible inacti-
vation of the rats’ NAc core and shell via 
bilateral microinfusion of the GABAA receptor 
agonist muscimol and FCM was used for the 
first time to analyse their contribution to im-
pulse control in the 5-CSRTT and impulsive 
choice in a delay-based decision-making T-maze 
task.   
 
5.4 Methods 
 
5.4.1 Subjects 
 
The study was conducted using a total of 32 
adult male Lister Hooded rats (210 - 310 g) 
obtained from Harlan (Borchen, Germany) 
which were assigned to two testing cohorts 
(n = 16). Each cohort was further subdivided 
into a NAc core and shell group (n = 8 each). 
The first cohort was trained in a delay-based 
decision-making task (T-maze), the second 
performed the 5-CSRTT. The animals were 
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housed in groups of four to six in standard Mac-
rolon cages (type IV) under controlled ambient 
conditions (21 – 22 °C, 45 – 55 % humidity, 
12 h light/dark cycle, lights on at 7:00 a.m.). 
The rats were kept on their experimental body 
weight by controlled feeding of 12 g laboratory 
rodent chow (Nohrlin GmbH, Bad Salzuflen, 
Germany) per rat per day and received tap wa-
ter ad libitum. Behavioural testing took place 
between 8:00 a.m. and 6:00 p.m. The experi-
ments were performed in accordance with the 
National Institutes of Health ethical guidelines 
for the care and use of laboratory animals for 
experiments and were approved by the local 
animal care committee (Senatorische Behörde, 
Bremen, Germany). 
 
5.4.2 Experiment 1: 5-CSRTT 
 
5.4.2.1 Apparatus 
The 5-CSRTT was conducted in two operant 
aluminium chambers (26 x 26 x 26 cm; Camp-
den Instruments Ltd., Loughborough, UK), 
wherein five apertures (2.5 x 2.5 cm, 4 cm 
deep) were embedded 2 cm above floor level in 
the concavely curved rear wall. This assembly 
provided five response options located equidis-
tant to the food magazine on the opposite. 
Inside each hole, a light-emitting diode (LED) 
generated visual stimuli of variable duration. 
Nose-poke responses of the animals were de-
tected by infra-red photo cell beams at the 
entrance of the apertures. The rats could be 
placed in the box through a Plexiglas® door 
which filled the upper part of the front wall. 
Underneath the door, a small Plexiglas® panel 
provided access to the food magazine which was 
lighted via two LEDs and automatically supplied 
with casein pellets (45 mg Dustless Precision 
Pellets, Bio-Serv®, UK) by an electromechani-
cal feeder. Food collection was detected by a 
microswitch monitoring the movement of the 
hinged panel. Each chamber was illuminated by 
a 3 W house light mounted on the ceiling. A 
noise-damped fan served as ventilation and 
background noise. The extendable grid floor 
facilitated the removal of excrements. For the 
purpose of sound attenuation, the wooden cabi-
net was reinforced with an insulating plate at 
the interior of the door. The apparatus was 

controlled by specific software written in 
Turandot (Cambridge Cognition Ltd., version 
1.23) which was run on a personal computer 
connected to the BNC Mark 2 System (Behav-
ioral Net Controller, Campden Instruments 
Ltd., Loughborough, UK). 
 
5.4.2.2 Training 
The animals (n = 16) were trained to detect the 
occurrence of brief light stimuli in one of the 
five rear wall apertures. The general procedure 
was based on the protocol of Campden Instru-
ments and was divided into a habituation, 
pretraining and baseline training phase 
(Campden Instruments Limited 2005). Over 
the entire course of the test procedure, the rats 
were initially positioned in the laboratory for an 
acclimatisation period of 30 min.  
 The first experimental phase comprised 
two daily half-hour habituation sessions. The 
boxes were prepared as follows: before the 
primary session, the tray panel was pasted back 
to facilitate access to 15 available pellets to rein-
force the meaning of the magazine as location of 
reward. During the second session, no panel 
manipulation was carried out. Besides the re-
ward in the tray, two pellets were placed in 
each aperture to promote exploration in these 
areas. The chambers were permanently illumi-
nated by the house light within both sessions. 
 The daily training session lasted 30 min 
or was finished after completion of 100 trials. 
Each session started with the simultaneous illu-
mination of the box and the food magazine and 
the delivery of a single pellet into the tray. 
Once the rat opened the panel for food intake, 
the first trial was initiated. The magazine light 
faded and a fixed intertrial interval (ITI) of 5 s 
started. At the end of the ITI, a light stimulus of 
determinate duration (stimulus duration, SD) 
was randomly presented in one of the five 
holes. The rats had to respond with a nose-poke 
into the appropriate aperture during the stimu-
lus presentation or within a subsequent limited 
hold period (LH). A correct response was fol-
lowed by the supply of a pellet into the lighted 
food magazine. The next trial was triggered by 
the detection of the panel movement. Inappro-
priate reactions led to a punishment in terms of 
a predefined 5 s period of darkness (time-out) 
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without reward delivery. The task procedure 
offered various opportunities for such reactions:  

- incorrect responses in a hole where no 
stimulus appeared, 

- omissions in the form of absent reaction 
to the occurrence of the stimulus 
within the LH, 

- premature responses before the onset of 
the stimulus during the ITI in one of the 
apertures 

- and perseverative responses, meaning addi-
tional responses after a correct 
response and before reward collection. 

Every response during the time-out phase reini-
tialised the period of darkness. Following the 
time-out, the box and the tray were illuminated 
again and the next trial was started by a nose-
poke into the food magazine. Within a session, 
the visual stimuli were randomly presented in 
equal number in each hole. The progressive 
decrement of the variables SD (60  1 s) and 
LH (60  5 s) over eight training levels en-
abled the acquisition of the 5-CSRTT.  
 The baseline training session was de-
termined by the conditions of the eighth 
training level (SD = 1 s, LH = 5 s). After show-
ing a stable baseline performance (>80 % 
accuracy and <20 % omissions with <10 % 
variation over five consecutive training ses-
sions), rats underwent surgery.   
 
5.4.3 Experiment 2: delay-based deci-
sion-making task 
 
5.4.3.1 Apparatus 
The delay-based decision-making task was car-
ried out in a T-shaped maze (Fig. 5.1) 
constructed of plastic. The starting runway 
(60 cm long) was vertically arranged to two 
side arms (each 58 cm long). The height of the 
apparatus was 30 cm with an inner diameter of 
15 cm elevated 80 cm above floor level. At the 
end of the side arms (target area) a metallic 
feeding dish each was inset in the maze bottom 
and refilled with casein pellets (45 mg Dustless 
Precision Pellets, Bio-Serv®, UK) before each 
run. One dish always contained a high reward 
(10 pellets), while the other contained a small 
one (two pellets). For closing the discrete areas, 
removable grey plastic guillotine doors early in 

the starting runway (D0), at the margins of the 
choice area (D1) and in front of the target areas 
(D2) were insertable into notches of the maze 
wall.  
 
 

 
Fig. 5.1 Schematic representation of the delayed reward 
apparatus (T-maze). Guillotine doors are marked as D0 in 
the starting area, D1 at the choice area and D2 at the 
target area.   
 
 

5.4.3.2 Training 
The general schedule of the experiment was 
based on previous studies (Bizot et al. 
1999;Hadamitzky et al. 2009;Wischhof et al. 
2011) and divided in a habituation, pretraining 
and baseline training stage. For the purpose of 
habituation, the rats (n = 16) were first intro-
duced in the maze for five minutes on two 
consecutive days, where they were able to 
move freely. Pellets were dispersed on the bot-
tom and in equal quantity in the food wells to 
enhance exploration of the new environment.  
 During the pretraining, the guillotine 
doors were inserted and one arm was defined as 
the high reward (HR; 10 pellets) arm while the 
other one was used as the low reward (LR; two 
pellets) arm, randomly distributed among the 
rats. The side determination of HR and LR 
remained constant throughout all subsequent 
training and testing sessions for each animal. 
The rats performed daily sessions consisting of 
nine trials. Each session started with two 
forced-choice trials, in which one side offered 
free entrance, whereas the respective opposite 
direction was blocked by D1, with changeover 
in the second trial. In the following seven trials, 
the animals had the free choice between both 
targets. Once a rat was introduced into the 
starting runway, guillotine doors were immedi-
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ately elevated to allow access to the selected 
reward. After consuming the pellets, animals 
were returned to their home cage for an inter-
trial interval of 1 min. When the rats chose the 
HR in >70 % of the trials (five of seven) within 
a session over three consecutive days, they 
achieved the baseline training stage. 
 In the baseline training section, the 
pretraining sequence was expanded by an intro-
duction of a delay in the HR arm. Once a rat 
chose the HR option, it was retained in the side 
arm between the lowered doors D1 and D2 and 
hindered of achieving the gratification for the 
period of delay. The decision for the alternative 
side with the LR led to unrestricted access to 
food. Initially, the delay of the HR was set to 
5 s. After choosing the HR in at least 70 % of 
trials over five consecutive days, the delay was 
increased to 10 s. Animals reached stable base-
line performance following manifestation of the 
10 s-delayed HR choice in more than 70 % of 
trials over five successive daily sessions and 
subsequently underwent surgery.    
 
 
5.4.4 Surgery 
 
The rats were anaesthetised with chloral hy-
drate (360 mg/kg; Sigma-Aldrich, Steinheim, 
Germany) and fixed in a stereotaxic frame 
(David Kopf Instruments, Tujunga, CA, USA). 
Stainless steel 21 gauge guide cannulae were 
implanted bilaterally 2 mm above the target 
injection site into the NAc core (anteroposte-
rior +1.2 mm, mediolateral ±1.8 mm, 
dorsoventral -6.8 mm from Bregma) or shell 
(anteroposterior +1.2 mm, mediolateral 
±0.5 mm, dorsoventral -7.3 mm from 
Bregma). Jeweller screws were anchored in the 
skull served to fix the cannulae which were 
embedded in dental cement and closed by re-
movable 26 gauge stylets of the same length. 
After surgery, the rats were kept individually 
for three days with free access to food and wa-
ter. Following a total recovery period of five 
days, the animals were reintroduced to the         
baseline training until they re-established the      

presurgical baseline performance.  
 
5.4.5 Microinfusion procedure  
 
The test design comprised three 4-day sessions 
for the animals. Each session started with a test-
ing day, followed by a day without training. The 
second and third post-testing days were used to 
achieve the baseline performance and to ensure 
the washout process of the drug. Before infu-
sion, the stylets were exchanged for 26 gauge 
injection cannulae connected with microlitre 
syringes (SGE Scientific Glass Engineering, 
Darmstadt, Germany) via polyethylene tubes. 
The rats received bilateral intra-NAc core or 
shell microinjections of the GABAA agonist 
muscimol (0.05 g/0.3 l) and phosphate-
buffered saline (PBS) as vehicle (0.3 l) accord-
ing to a pseudorandom Latin square design. For 
each subject, FCM (0.27 g/0.3 l) was admin-
istered as third and last injection to exclude 
differences in the FCM spread between the rats 
before perfusion. The injection rate was 
0.1 l/30 s. The injectors were left in place for 
1 min to guarantee diffusion and to avoid reflux 
of the solution. Ten minutes after the microin-
jection, the rats underwent behavioural testing. 
The sequence of the test sessions matched with 
the baseline training. 
 
5.4.6 Drugs 
 
The GABAA agonist muscimol 
(M = 114.10 g/mol) was purchased from Toc-
ris Bioscience (Ellisville, MO, USA) and 
dissolved in PBS. Aliquots of stock solutions 
(0.5 g/0.3 l) were stored at -20 °C until use. 
On the treatment day, aliquots were further 
diluted to a dose of 0.05 g/0.3 l. FCM 
(M = 607.46 g/mol), a stable highly lipophilic 
conjugate of muscimol and the BODIPY® 
TMR-X fluorophore, was acquired from invi-
trogen (Life Technologies GmbH, Darmstadt, 
Germany) and dissolved in PBS in an equimolar 
concentration to muscimol (0.27 g/0.3 l). 
Doses were based on previous studies (Allen et 
al. 2008;Diederich and Koch 2005).  
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Fig. 5.2 Location of the bilateral injection sites in the nucleus accumbens core (red triangles) and shell (blue triangles) in a) 
the 5-choice serial reaction time task (n = 16) and b) the delay-based decision-making task (n = 16) depicted on schematic 
drawings from the rat brain atlas of Paxinos and Watson (1998). Rostral distance (in mm) to bregma is indicated by numbers. 
 
 
 

5.4.7 Histology 
 
 
After termination of the experiment, the rats 
were euthanised with a lethal dose of chloral 
hydrate and transcardially perfused with 200 ml 
0.01 M PBS followed by 200 ml 4 % parafor-
maldehyde in 0.1 M PB. The brains were 
removed from the cranium and cryoprotected 
in 30 % sucrose solution for 48 h. Two series of 
coronal 50 m sections of the NAc were cut on 
a cryostat (Jung CM 3000; Leica Instrument 
GmbH, Nussloch, Germany). The first series 
was mounted onto gelatinised glass slides and 
Nissl-stained with thionin to identify location of 

injection. These sections were analysed using a 
light microscope and injection sites plotted on 
standardised coronal sections of a rat brain 
stereotaxic atlas (Paxinos and Watson 1998). 
The second series was mounted onto sodium 
azide-gelatinised glass sides and coverslipped 
with fluorescence mounting medium (DAKO, 
Glostrup, Denmark) for imaging. For visualis-
ing the spread of FCM, photomicrographs were 
taken using adequate band pass filter sets (FCM: 
excitation and emission peaks at 543 and 572 
nm). Images were captured by a Zeiss Axiophot 
microscope (Göttingen, Germany) and the im-
age analysis software Metamorph 4.6 (Visitron 
Systems GmbH, Puchheim, Germany).  
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5.4.8 Data analysis 
 
The descriptive statistics is based on means and 
variance and is indicated by the standard error 
of the mean (±SEM). The statistical analyses 
were conducted by the software IBM SPSS Sta-
tistics (version 20 for Windows).   

In experiment 1, the drug effects within 
the testing group on the following behavioural 
parameters were investigated using separate 
two-way split-plot-factorial analysis of variance 
(ANOVA; within-subject factor: drug treat-
ment, between-subject factor: region): 
percentage of correct responses (accuracy; 100 
x number of correct responses/number of cor-
rect and incorrect responses), percentage of 
omitted responses (100 x number of omitted 
responses/total number of correct, incorrect 
and omitted responses), number of premature 
responses , number of perseverative responses, 
number of trials completed, number of time-
out responses, latency of correct responses [s] 
and latency of reward collection [s].  

In experiment 2, the forced-choice tri-
als were excluded from the data and the 
percentage choice of HR (100 x number of HR 
choice/total number of trials) was calculated. 
The data were analysed by two-way split-plot-
factorial ANOVA with the within-subject factor 
drug treatment and the between-factor region.  

In the case of significant main effects 
(P < 0.05), one-way repeated measures 
ANOVA and post-hoc Bonferroni tests for the 
factor drug treatment as well as independent 
t-tests between the NAc subregions were con-
ducted separately for each behavioural 
parameter. 

 
 
5.5 Results 
 
 
5.5.1 Histology 
 

The location of the injector tips within the NAc 
core and shell is shown in Fig. 5.2.  
 FCM showed diffusion extent restricted 
to the respective subregion, with a larger spread 
in the dorsoventral than in the mediolateral 

axis. In both regions, fluorescence was consis-
tently observed within an average 0.5-mm 
radius of the injector tip (Fig. 5.3). The asym-
metrical spread of FCM along the dorsoventral 
axis had a mean radius of 0.8 mm and 0.7 mm 
in NAc core and shell injected animals, respec-
tively.  

 

 
 

 
 
Fig. 5.3 Representative photomicrographs of the 
injection site in the a) nucleus accumbens core and b) 
shell. The red fluorescence of fluorophore-conjugated 
muscimol (FCM) is overlaid with a bright field image of 
the corresponding Nissl-stained coronal section. aca 
anterior commissure, anterior part; LV lateral ventricle. 
Scale bar = 500 m. 
 
 
5.5.2 Experiment 1: effects of inactiva-
tion of the NAc core and shell on rats` 
performance in the 5-CSRTT 
 
The rats performed at a stable baseline through-
out the entire experiment with high levels of 
accuracy (core: 85.72±2.32 %; shell: 
86.32±1.44 %), fast correct response (core: 
0.69±0.02 s; shell: 0.71±0.02 s) and reward 
collection latencies (core: 1.14±0.04 s; shell: 
1.14±0.06 s), low percentages of omissions 
(core: 9.97±1.20 %; shell: 7.33±1.00 %) as 
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well as low numbers of premature (core: 
9.45±2.07; shell: 9.53±1.09) and persevera-
tive responses (core: 2.48±0.50; shell: 
1.96±0.20) before testing. Analysis of the 
training data demonstrated no significant differ-
ences in the pre- and postoperative sessions and 
the ‘drug-free days’ between testing excluding 
any carry-over effects of drug treatment or 
surgery (data not shown).  
 Two-way split-plot-factorial ANOVAs 
on the 5-CSRTT performance showed main 
effects of drug treatment [F(2,30) = 4.299; P = 
0.024] and region [F(1,30) = 6.64; P = 0.022] as 
well as a statistically significant treatment x 
region interaction [F(2,30) = 7.331; P = 0.003] 
for premature responses, main effects of drug 
treatment [F(2,30) = 4.115; P = 0.027] and re-
gion [F(1,30) = 4.651; P = 0.049] for 
perseverative responses, main effects of drug 
treatment [F(2,30) = 32.907; P <0.001] and re-
gion [F(1,30) = 10.531; P = 0.006] as well as a 
significant treatment x region interaction 
[F(2,30) = 24.594; P <0.001] for accuracy, main 
effects of drug treatment [F(2,30) = 51.35; 
P <0.001] and region [F(1,30) = 39.684; 
P < 0.001] as well as a significant treatment x 
region interaction [F(2,30) = 31.46; P <0.001] for 
omissions, main effects of drug treatment 
[F(2,30) = 92.535; P <0.001] and region 
[F(1,30) = 24.545; P <0.001] as well as a signifi-
cant treatment x region interaction 
[F(2,30) = 33.102; P <0.001] for completed tri-
als, main effects of drug treatment 
[F(2,30) = 24.43; P <0.001] and region 
[F(1,30) = 22.915; P <0.001] as well as a signifi-
cant treatment x region interaction 
[F(2,30) = 21.871; P <0.001] for latency of cor-
rect responses and main effects of drug 
treatment [F(2,30) = 21.031; P <0.001] and re-
gion [F(1,30) = 21.031; P <0.001] as well as a 
significant treatment x region interaction 
[F(2,30) = 21.026; P <0.001] for latency of re-
ward collection.  
 Further one-way repeated measures 
ANOVAs and post-hoc Bonferroni tests re-
vealed that administration of muscimol into 
NAc shell specifically impaired inhibitory con-
trol reflected by a significant increase in 
premature (P = 0.022) and a trend in time-out 
responding (P = 0.093) compared to vehicle, 

while no other measured parameter was af-
fected (Fig. 5.4a, b and Table 5.1). Intra-NAc 
core injection of muscimol led to gross impair-
ments in the general task performance, with the 
rats showing no anticipatory responses and 
marginally completed trials in comparison to 
control (P <0.001; Fig. 5.4a and Table 5.1). 
Additionally, inactivation of NAc core by mus-
cimol resulted in significantly decreased 
accuracy (P = 0.002; Fig. 5.4c), increased 
omission rate (P <0.001; Fig. 5.4d) as well as 
prolonged latencies of correct responding 
(P = 0.006; Table 5.1) and reward collection 
(P = 0.008; Table 5.1). Maximum correct re-
sponse latency was set to six seconds, consisting 
of SD (1 s) and LH (5 s). Maximum reward 
collection latency was set to 1800s, which cor-
responded to the duration of a complete 
session, in case an animal did not push the 
magazine panel by nose-poke and no further 
trial was initiated. FCM also slightly increased 
premature responding, but this effect did not 
reach the level of significance. Except for de-
creasing the latency of reward collection when 
injected into the shell (Table 5.1), FCM had no 
significant effect on 5-CSRTT performance. 
Independent t-tests between the NAc subre-
gions showed significant differences between 
core and shell following muscimol injection 
regarding premature (P = 0.002) and time-out 
responses (P = 0.039), accuracy (P = 0.002), 
omissions (P <0.001), trials completed 
(P <0.001) and both latency measures (correct 
response: P = 0.002; reward collection: 
P = 0.003). Microinjection of FCM into NAc 
shell significantly reduced the omission rate 
(P = 0.003) compared to NAc core. However, 
vehicle injection into the core region signifi-
cantly enhanced perseverative responding in 
comparison to NAc shell (P = 0.019), without 
exceeding baseline performance level.  
 
 
5.5.3 Experiment 2: effects of deactiva-
tion of the NAc core and shell on delay-
based decision-making in the T-maze 
 
Data analysis revealed no significant differences 
in rats` choice behaviour between baseline 
training, the sessions between the testing days 
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Fig. 5.4 Effects of local bilateral infusions of the GABAA agonist muscimol (M; 0.05 g/0.3 l) and fluorophore-conjugated 
muscimol (FCM; 0.27 g/0.3 l) into the nucleus accumbens (NAc) core (n = 8) or shell (n = 8) on the rats` performance 
in the 5-choice serial reaction time task. Data of a) premature responses, b) time-out responses, c) accuracy and d) 
omissions are means ±SEM. Statistically significant differences between drug treatment compared to vehicle (Veh) are 
indicated by asterisks (one-way repeated measures ANOVA, post-hoc Bonferroni test, P < 0.05) and between NAc core 
compared to shell by circles (independent t-test, P < 0.05). 

Table 5.1 Effects of local bilateral infusions of the GABAA agonist muscimol (M; 0.05 g/0.3 l) and fluorophore-
conjugated muscimol (FCM; 0.27 g/0.3 l) into the nucleus accumbens core (n = 8) or shell (n = 8) on the rats` 
performance in the 5-choice serial reaction time task. Data are expressed as means ±SEM. FCM fluorophore-conjugated 
muscimol, M muscimol, NAc nucleus accumbens, VEH vehicle. *P < 0.05 vs. VEH (one-way repeated measures ANOVA, 
post-hoc Bonferroni test), °P < 0.05 vs. NAc core (independent t-test). 

Treatment 
Trials completed 

[n] 
Perseverative 
responses [n] 

Latency of correct 
responding [s] 

Latency of reward 
collection [s] 

VEH     98.88±1.13  2.50±0.65  0.73±0.04        1.23±0.04 

M   17.88±4.10*  0.25±0.25    4.73±0.83*  1350.51±294.26* N
A

c 
co

re
 

FCM     91.88±5.74  1.50±0.57  0.73±0.04        1.13±0.05 

Treatment 
Trials completed 

[n] 
Perseverative 
responses [n] 

Latency of correct 
responding [s] 

Latency of reward 
collection [s] 

VEH 100.00±0.00   0.63±0.26°        0.70±0.07          1.12±0.05 

M     77.75±7.48° 0.50±0.27  0.77±0.05°    1.16±0.06° N
A

c 
sh

el
l 

FCM   94.00±3.95 1.00±0.33        0.62±0.03    1.05±0.05* 
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Fig. 5.5 Effects of local bilateral infusions of the GABAA 
agonist muscimol (M; 0.05 g/0.3 l) and fluorophore-
conjugated muscimol (FCM; 0.27 g/0.3 l) into the 
nucleus accumbens (NAc) core (n = 8) or shell (n = 8) 
on the rats` performance in the delay-based decision-
making task. Data of the percentage choice of high 
reward (HR) are means ±SEM. Statistically significant 
differences between drug treatment compared to vehicle 
(Veh) are indicated by asterisks (one-way repeated 
measures ANOVA, post-hoc Bonferroni test, P < 0.05) 
and between NAc core compared to shell by circles 
(independent t-test, P < 0.05). 

 
and control injections for both NAc subregion 
groups (data not shown). The two-way split-
plot factorial ANOVA of the percentage choice 
of HR resulted in a main effect of treatment 
[F(2,30) = 19.857; P <0.001]. Post-hoc compari-
sons revealed that reversible inactivation of both 
NAc core (P = 0.002) and shell (P = 0.001) by 
muscimol significantly induced impulsive deci-
sion-making as indicated by decreased 
preference for the large 10 s-delayed reward 
compared to control (Fig. 5.5). Administration 
of FCM did neither significantly affect choice 
behaviour in the NAc core nor in the shell 
group. Inactivation of the NAc core via musci-
mol caused a statistically significant higher 
impairment of the rats’ waiting capacity in the 
T-maze in comparison with the shell region as 
demonstrated by an additional independent 
t-test (P = 0.042) between both subregions. 
Choice- or reward consumption-latencies were 
not quantified, as we did not observe obvious 
changes in these temporal parameters following 
muscimol or FCM treatment compared to con-
trol. Moreover, all rats consumed the food 
pellets entirely in each trial, indicating that 

motor or motivational functions were not im-
paired by the treatment. 
 

5.6 Discussion 
 

In general, the NAc core region is considered to 
be primarily implicated in impulsivity since 
NAc shell lesions show no effect on inhibitory 
control (Murphy et al. 2008) and delay-
discounting (Pothuizen et al. 2005b), while 
core lesions induce impulsive choice behaviour 
(Cardinal et al. 2001) and tend to increase mo-
tor impulsivity in the 5-CSRTT (Christakou et 
al. 2004). By contrast, the present data indicate 
that both regions of the NAc are part of the 
neural network mediating impulsivity, with 
varying influences on distinct types of impulsive 
behaviour. Interestingly, the shell region might 
play a specific role in behavioural control by 
regulating both impulsive action as well as im-
pulsive choice. The NAc core appears to have 
an additional impact on locomotor activity and 
motivational aspects. FCM did not qualify as an 
adequate tool for evaluating the role of the NAc 
subregions in behavioural control.  
 The major findings of the first experi-
ment are that acute reversible inactivation of 
the rats’ NAc shell by the GABAA agonist mus-
cimol induced deficits in impulse control as 
indicated by increased premature responding in 
the 5-CSRTT, while deactivation of the core 
region resulted in general impairments of task 
performance. Both muscimol and FCM injec-
tions into the shell enhanced impulsive action, 
but only muscimol was sufficient to significantly 
increase anticipatory responding. Besides pre-
mature responses, intra-shell infusions of 
muscimol also tended to raise time-out re-
sponses, representing another aspect of 
inhibitory control, more related to cognitive 
flexibility (Robbins 2002). Other measured 
parameters indexing attentional (accuracy, 
omissions), compulsive (perseverative re-
sponses), motor (correct response latency) or 
motivational behaviour (trials completed, re-
ward collection latency) remained unaffected. 
Intra-NAc core administration of muscimol 
produced fundamental disturbances in overall 
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behavioural responding as indicated by a very 
low number of completed trials concomitant 
with a strikingly increased omission rate, absent 
premature responses, very few perseverative 
reactions and lengthened latencies of correct 
responses and reward collection.  

Damage to the core region has already 
been shown to impair response inhibition in the 
5-CSRTT and DRL task (Christakou et al. 
2004;Pothuizen et al. 2005b), even though 
core-lesioned rats do not show deficits in inhibi-
tory control during the forced choice (FC) and 
stop-signal reaction time (SSRT) task (Murphy 
et al. 2008;Eagle and Robbins 2003). While 
5-CSRTT and SSRT task measure distinct sub-
types of impulsive action, inappropriate 
premature responding in the FC and DRL task 
indeed reflects the same aspect of response 
inhibition, namely a failure of action restraint, 
as in the 5-CSRTT (Bari and Robbins 
2013;Basar et al. 2010;Robinson et al. 2009). 
The present behavioural effects evoked by mus-
cimol into the NAc shell are in contrast to 
previous studies, where permanent shell lesions 
have no effect on premature responding in the 
FC task, which is modelled after the 5-CSRTT 
(Murphy et al. 2008), and do not affect inhibi-
tory control of goal-directed behaviour in the 
DRL task (Pothuizen et al. 2005b). However, 
the findings of lesion studies have to be com-
pared carefully with those of our present 
investigation due to different tissue manipula-
tions. Hence, the lack of effect of shell lesions 
on impulse control could be explained by mask-
ing effects owing to functional compensation by 
adjacent structures.  
 The present study supports the notion 
that the core region in contrast to the shell plays 
an important role in the regulation of locomo-
tion and general responsiveness during 
5-CSRTT performance. Generally, application 
of GABA or muscimol in the NAc reduces mo-
tor activity of rats (Anden et al. 1979;Wachtel 
and Anden 1978). High-dose muscimol 
(1 g/ l) even induces cataleptic effects after 
injection into the NAc (Scheel-Kruger et al. 
1977). Considering this, we used a lower dose 
of muscimol (0.05 g/0.3 l), which is known 
to sufficiently elicit impulsivity-specific effects 
during 5-CSRTT performance following intra-

ventral mPFC injection in rats (Feja and Koch 
2014). The differential impact of the NAc 
subregions on locomotor activity in the 
5-CSRTT experiment is in accordance with 
more recent discoveries revealing that lesions, 
higher doses of muscimol and infusions of the 
NMDA-receptor antagonist AP-5 targeting the 
core generate decrements in motility or even 
induce akinesia, whereas shell-treated animals 
appear normal (Maldonado-Irizarry and Kelley 
1994;Maldonado-Irizarry and Kelley 
1995;Pothuizen et al. 2005a). In line with this, 
stimulation of the core region speeds reward 
collection and response latencies in a reaction 
time task (Sesia et al. 2010). Specifically, the 
tremendous decrease in the number of com-
pleted trials after deactivation of NAc core but 
not shell may represent a consequence of moti-
vational dysfunction and may refer to a 
differential role of both subregions in motivated 
behaviour in the 5-CSRTT. This is supported by 
evidence that muscimol injections into the core 
reduce breakpoint in a progressive ratio sched-
ule in rats (Moscarello et al. 2010), while shell 
inactivation enhances motivational behaviour in 
that task (Stratford and Wirtshafter 

2012;Wirtshafter and Stratford 2010).   
To our knowledge, this is the first study 

using the inactivation technique with muscimol 
of the NAc on impulsive behaviour specifically 
comparing impulse control with choice impul-
sivity in rats. Impulsive choice is more related 
to decision-making processes than to motor 
inhibition as required in the 5-CSRTT. It is 
widely accepted that these two forms of impul-
sivity rely on separate neuronal pathways, with 
potential overlap on the subcortical level of the 
NAc (Dalley et al. 2011;Pattij and Vander-
schuren 2008;Winstanley et al. 2006). Our 
results support these assumptions and, more 
importantly, confute the leading opinion that 
only the core, but not the shell region of the 
NAc is involved in delay-based decision-making 
(Basar et al. 2010). In the second experiment 
we show that inactivation of NAc core as well as 
shell by microinjection of muscimol signifi-
cantly decreased the preference for the large 
delayed reward in the T-maze, with a higher 
impact of core deactivation on the rats’ waiting 
capacity compared to shell. In rats, lesion and 



 STUDY 2 55 

reversible inactivation studies have already 
linked the NAc core with various forms of 
cost/benefit decision-making, including prob-
ability- (Cardinal and Howes 2005), effort- 
(Ghods-Sharifi and Floresco 2010;Hauber and 
Sommer 2009) and delay-discounting (Bezzina 
et al. 2007;Cardinal et al. 2001;Pothuizen et al. 
2005b). Among those three types, dysfunctions 
of the shell region to date only contribute to 
risk-based choice behaviour (Ghods-Sharifi and 
Floresco 2010;Pothuizen et al. 2005b;Stopper 
and Floresco 2011). However, it has to be con-
sidered that the task design of Pothuizen and 
colleagues (2005b) lacking effects of NAc shell 
lesions on choice impulsivity comprised both 
delayed and probabilistic rewards and thereby 
differed from conventional delay-discounting 
tasks. In terms of decision-making, the specific 
measurement of temporal discounting, as in our 
study, mostly reflects impulsive behaviour (Bari 
and Robbins 2013). Thus, our results 
strengthen the role of NAc core and provide 
evidence that NAc shell might also be impli-
cated in impulsive choice.  

The effects on the choice of the 
10 s-delayed high reward in our study are com-
patible with those of other findings (Bezzina et 
al. 2007;Cardinal et al. 2001;Pothuizen et al. 
2005b), in which similar delays are likewise 
discounted following NAc core damage. Previ-
ous studies using a 15-s delay condition during 
the T-maze task have shown that rats usually 
perform a HR choice in 65-70 % of trials, while 
this rate declines to less than 40 % in case of a 
25-s delay (Bizot et al. 1999;Bizot et al. 2007). 
This implies that prolonged delay periods of 

25 s are suitable to assess drug-induced im-
provements of waiting capacity, but to a lesser 
extent a decrease in the tolerance of delay. 
Consequently, we applied a shorter delay con-
dition of 10 s, which already established 
sufficiency in impulsive decision-making in the 
T-maze (Hadamitzky et al. 2009;Wischhof et 
al. 2011).  

The NAc is ideally positioned to inte-
grate information about the costs and benefits of 
different response options to regulate decision-
making (Floresco 2007;Mogenson et al. 1980). 
During the T-maze paradigm, animals choose 
between two reinforcers whose values vary in 

both size and delay. Human delay-discounting 
studies have shown that activity of the ventral 
striatum correlates with the subjective value of 
a reward and decreases with an increase of the 
delay preceding the reward, assuming that the 
NAc helps to value immediate and delayed out-
come (Kable and Glimcher 2007;Prevost et al. 
2010). A Pavlovian conditioning task using lith-
ium-devalued food reward revealed that both 
core and shell are necessary for the evaluation 
of expected outcomes, as devalued rats with 
lesions of either core or shell showed similar 
response levels to lesioned, non-devalued rats 
(Singh et al. 2010), suggesting that NAc deacti-
vation might impair the ability of delays to 
discount the reward. However, in our case 
inactivation of NAc subregions reduced the 
choice of the delayed reinforcer compared to 
control, pointing towards an effect of delay-
discounting.  

The effects of NAc core and shell inac-
tivations could not alone be explained by 
increased delay sensitivity, but also by a re-
duced sensitivity to the difference in reward 
magnitude. In a previous study, deactivation of 
the entire NAc or the shell region slightly re-
duced preference of larger rewards in a 
magnitude discrimination task (Stopper and 
Floresco 2011), but apparently only after a 
considerable larger number of trials than in our 
test. Since the rats were faced with the reward 
magnitudes before each test session due to 
forced choices and several former investigations 
indicated that the perception of the relative 
incentive value and the magnitude discrimina-
tion of the rewards remain unaffected after NAc 
lesions (Balleine and Killcross 1994;Bezzina et 
al. 2007;Bezzina et al. 2008b;Cardinal and 
Cheung 2005), the enhanced rate of delay-
discounting in our study is more likely based on 
increased impulsivity than on primary motiva-
tional aspects. The NAc is a main target of 
mesolimbic DA neurons arising in the VTA 
(Flores 2011). The mesolimbic DA system is 
more involved in the mediation of the prepara-
tory phase of behaviour and less critical in the 
consummation of primary rewards (Balleine and 
Killcross 1994;Blackburn et al. 1992;Salamone 
1996). Likewise, lesions of the core do not 
reduce food motivation in a delayed reinforce-
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ment task (Cardinal and Cheung 2005) and 
muscimol does not affect food intake when 
injected into the NAc core (Stratford and Kelley 

1997) and even increases eating behaviour fol-
lowing infusion into the shell (Basso and Kelley 
1999;Lopes et al. 2007;Reynolds and Berridge 
2002;Soderpalm and Berridge 2000;Stratford 
and Kelley 1997;Stratford and Wirtshafter 
2011). Rather, NAc function is necessary to 
bridge action-outcome delays and to maintain a 
representation of the anticipated reward 
(Cardinal and Cheung 2005;Roesch et al. 
2009).  

As the T-maze task used here puts 
higher spatial demands on the rats than operant 
chamber versions of delay-discounting, one 
might argue that deficits in spatial discrimina-
tion could have influenced task performance. 
However, previous studies found that damage 
to NAc core or shell did not affect retention of 
a previously acquired instrumental spatial dis-
crimination (Castane et al. 2010) and had little 
effect on spatial behaviour in a eight-arm radial 
maze once the rats had learned the task (Klein 
et al. 2004). Further, core- and shell-lesioned 
rats showed no deficits in reference memory, 
which is crucial for the retention of the reward 
locations (Jongen-Relo et al. 2003). Thus, inac-
tivating NAc subregions entails a delay-
dependent process of reward devaluation im-
pairing waiting capacity and favouring a smaller 
immediate over a larger delayed reward. 

In contrast to our findings, a very re-
cent study found that inactivation of accumbens 
core did not induce but rather decrease delay 
discounting in rats and that the effect of inacti-
vation depends on baseline levels of discounting 
(Moschak and Mitchell 2014). However, there 
are considerable methodical differences making 
both studies difficult to compare. Firstly and 
most importantly, the other group used a 140-
fold lower dose of muscimol than we did 
probably only resulting in a partial inactivation 
of the NAc core. Secondly, their baseline train-
ing schedule seems to be inappropriate for 
investigating delay discounting effects of brain 
manipulations with delays longer than 5 s, as the 
discounting curve declines too steep. Thirdly, 
previous and our delay discounting studies 
showed far higher levels of high reward choice 

associated with similar delays following control 
treatment (Cardinal et al. 2001;Feja and Koch 
2014).  

Compared to the T-maze paradigm, the 
5-CSRTT probably puts higher cognitive de-
mands on the rats, as inactivation of NAc core 
impaired overall performance while exclusively 
inducing impulsivity in the decision-making 
task. As already mentioned, NAc dysfunction is 
associated with decrements in motor activity 
(Anden et al. 1979;Scheel-Kruger et al. 1977). 
However, we suggest that the effects of core 
treatment were not driven by changes in gen-
eral inactivity, as we observed no effect on the 
number of time-out responses and on the num-
ber of panel pushes during the ITI in the 
5-CSRTT. Hence, we hypothesize that core 
inactivation does not lead to akinesia but rather 
to a syndrome with principal deficits in general 
motivation followed by diminished motor activ-
ity. Excitotoxic lesions and DA depletions of 
the NAc core reduce response initiation and 
general responsiveness to stimuli (Bezzina et al. 
2008b;Gill et al. 2010;Salamone et al. 1995). 
Furthermore, DA lesions in the NAc have pre-
viously shown to increase latencies in 
5-CSRTT-trained rats (Cole and Robbins 1989) 
and to increase the tendency for taking breaks in 
operant responding (Mingote et al. 
2005;Sokolowski and Salamone 1998). During 
5-CSRTT performance, the rats are not just 
required to bridge a time gap by withholding a 
response (compared to waiting as in the 
T-maze) but must also react quickly within the 
LH. Accordingly, inactivation of the core region 
might slow the behaviour of the rats generating 
an enhanced omission rate of the expected re-
ward and amplifying the already decreased 
motivational level. The T-maze paradigm con-
tains no reaction time requirements but offers 
extended pauses per se in terms of longer ITIs 
compared to the 5-CSRTT, so that the animals 
are less susceptible to demotivating aspects of 
the task. Besides, the rats were encouraged to 
perform the task by being introduced in the 
T-maze and physically touched before each 
trial. Further evidence for different cognitive 
effort required for the tasks derives from two 
other studies. Following NAc core lesions, a 
clear cost-based choice deficit was identified in 
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the T-maze using effort instead of delay 
(Hauber and Sommer 2009). In contrast, lesions 
to this site produce a general impairment in 
response output in a more complex operant 
task, where decision-making is expanded by 
aspects of impulse control (Gill et al. 2010).  

Another explanation for the task-
specific differences following NAc core inacti-
vations could be deduced from Pavlovian-
instrumental transfer (PIT) studies. Pavlovian 
conditioned stimuli (in this case, the stimulus 
light in the 5-CSRTT) can invigorate instru-
mental behaviour by altering levels of arousal or 
behavioural activation. As core lesions reduce 
responding in instrumental performance and 
abolish general PIT (general arousal) in contrast 
to lesions of the shell, it is suggested that NAc 
core mediates the general excitatory effects of 
reward-related cues (Corbit et al. 2001;Corbit 
and Balleine 2011). Deactivation of the core 
might have reduced the ability of these cues, 
which are absent in the T-maze task, to elicit 
appetitive arousal for instrumental performance 
in the 5-CSRTT. Summarised, the present re-
sults indicate that performance in the 5-CSRTT 
is more influenced by factors like motivation 
and motor activity than in the T-maze.  

Nevertheless, the findings from both 
experiments might reflect the differential be-
havioural influence of NAc subregions. In case 
of the 5-CSRTT, this becomes evident. Other 
groups have suggested that the core facilitates 
approach towards rewarding stimuli, whereas 
the shell mediates the suppression of irrelevant 
or non-rewarding behaviours (Blaiss and Janak 
2009;Floresco et al. 2008a). Thus, it is also 
possible that the similar effects on delay-
discounting following core or shell inactivation 
were underlain by different types of deficits. 
Deactivation of NAc core may have reduced 
general bias to larger, costlier options (Ghods-
Sharifi and Floresco 2010), whereas NAc shell is 
more implicated in behavioural disinhibition 
than the core (Ambroggi et al. 2011) and may 
have caused rats to prefer choice of the low-
rewarding option. These site-specific functional 
influences might also contribute to the greater 
impact of NAc core inactivation on impulsive 
choice behaviour compared to shell. Accord-
ingly, impulsivity in delay-based cost-/benefit-

paradigms, like the T-maze task, could be more 
susceptible to alterations in appetitive approach 
behaviour caused by NAc core dysfunction than 
to deficits in behavioural inhibition following 
shell inactivation, which is more crucial to mo-
tor impulsivity in the 5-CSRTT. 
 FCM was injected to evaluate its prop-
erties as an assessment tool for the spatial 
spread of the GABAA agonist in both NAc areas 
as it is suggested to be useful for exploring the 
function of small brain regions (Allen et al. 
2008). Previous studies using delayed-response 
tasks showed that performance induced by FCM 
injection into the dorsomedial PFC in rats is 
similar to that after application of standard mus-
cimol (Allen et al. 2008;Narayanan et al. 2006). 
However, one of these reports revealed signifi-
cant differences between FCM (1.6 mM) and 
muscimol (8.8 mM) regarding premature re-
sponding and ascribed this discrepancy to 
concentration differences (Allen et al. 2008). 
Unexpectedly, in our hands FCM did not re-
produce any behavioural effect of muscimol 
although injected in an equimolar concentra-
tion, with a ratio being behaviourally effective 
in a dose-response study in mice (Misane et al. 
2013). Owing to its more than five times larger 
molecular weight, the diffusion of FCM is pre-
sumably more limited compared to muscimol. 
Others already noticed brain region-dependent 
diffusion gradients in case of FCM (Allen et al. 
2008). Due to the highly lipophilic properties of 
the fluorophore portion, FCM may dissolve in 
lipid-rich myelinated fibers and cell mem-
branes, e. g., cell clusters in the shell and the 
anterior commissure integrated in the core 
(Allen et al. 2008;Zahm and Brog 1992). FCM 
was not useful for the assessment of the spatial 
extent of the action of muscimol, since it did 
not affect behaviour. In general, determining 
the extent of tissue affected by injected drugs is 
not easy to determine in vitro, since the histo-
logical procedures (e.g. rinsing brain sections 
and washing out BODIPY molecules) could also 
have changed the parenchymal distribution of 
FCM. Also, according to Fick’s law of diffusion, 
the spatial distribution of a drug correlates with 
its initial concentration (Edeline et al. 2002) 
and steeply declines with distance from the 
infusion site. Hence, the presence of fluorescent 

 



58  STUDY 2 

 

molecules does not necessarily indicate a con-
centration of the drug that is sufficient for a 
functional inactivation and reduction of brain 
activity in this area.  

Although the spread of FCM can not be 
considered to be equal to the spatial extent of 
muscimol inactivation, preceding autoradiogra-
phy studies already estimated the spread of the 
GABAA agonist in rats and demonstrated diffu-
sion of radioactive muscimol restricted to NAc 
core or shell following injection of similar vol-
umes and even higher concentrations (Martin 
1991;Martin and Ghez 1999;Pothuizen et al. 
2005a). These pieces of evidence suggest that 
muscimol diffusion in our experiments was 
restricted to either core or shell. Our behav-
ioural data further indicated region-specificity 
of injections, as they revealed clear and distinct 
differences between the NAc core and shell 
group during 5-CSRTT performance. More-
over, guide cannulae were implanted in the 
medial, and not ventral, part of the shell region 
to prevent mechanical tissue damage of the core 
and possible drug diffusion dorsally into this 
area. However, it can not be excluded that the 
injections may have involved adjacent non-

accumbal areas, such as parts of the ventral 
pallidum or the dorsal striatum, especially since  
FCM infusions showed an asymmetrical diffu-
sion along the dorsoventral axis up the cannula 
shaft.  
 
5.7 Conclusion 

Taken together, the present study corroborates 
the theory that impulsive behaviour is not only 
top-down controlled by cortical areas, but also 
modulated at subcortical level (Dalley et al. 
2011). This is the first study directly comparing 
the role of NAc core and shell in two main 
types of impulsivity, revealing an involvement 
of NAc shell in both impulsive choice and im-
pulsive action. We identified a key role for both 
subregions in the regulation of delay-based deci-
sion-making, whereas impulse control was 
differentially influenced. Muscimol inactivation 
of the shell specifically induced motor impulsiv-
ity in the 5-CSRTT, but core deactivation 
produced a more complex behavioural change, 
including motivational and motor aspects, and 
supporting the functional dichotomy of NAc 
core and shell.  
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6 Frontostriatal systems comprising connections between 
ventral medial prefrontal cortex and nucleus accumbens 
subregions differentially regulate impulse control in rats 
 

Malte Feja · Michael Koch 

 
6 . 1  H I G H L I G H T S  

 
Simultaneous contralateral application of the GABAA agonist muscimol was used to disconnect the vmPFC from 
NAc core or shell in rats 
Disconnection of vmPFC and NAc shell reduced impulse control in the 5-CSRTT 
Disconnection of vmPFC and NAc core did not significantly alter 5-CSRTT performance  
Frontostriatal systems differentially contribute to behavioural control depending on the involved NAc subregion 
The regulation of impulse control requires an intact connection between vmPFC and NAc shell 

 
 
6 . 2  A B S T R A C T  

Deficits in impulse control are prevalent in several neuropsychiatric disorders based on impaired frontostriatal 
communication. The ventral medial prefrontal cortex (vmPFC) and the nucleus accumbens (NAc) are key substrates of 
impulse control in rats. The NAc core and shell are considered to be differentially involved suggesting a functional distinction 
between the connections of the vmPFC and particular NAc subregions concerning impulse control. In the present study, 
simultaneous inactivation of the rats’ vmPFC and NAc core or shell via contralateral microinfusion of the GABAA receptor 
agonist muscimol was used to analyse their relevance for impulse control in the 5-choice serial reaction time task (5-CSRTT). 
Disconnection of the vmPFC and NAc shell produced specific impairments in inhibitory control, as indexed by significantly 
increased premature responding and an enhanced number of time-out responses, closely resembling the effects of bilateral 
inactivation of either the vmPFC or NAc shell previously reported using the same task. In contrast, disconnection of the 
vmPFC and NAc core only slightly increased the rate of omissions and latency of reward collection indicating attentional and 
motivational deficits. Our results extend previous findings pointing out the functional specialisation of frontostriatal networks 
and show a differential contribution of specific vmPFC-NAc connections to behavioural control depending on the NAc 
subregion. We conclude that the regulation of impulse control in rats requires an intact connection between the vmPFC and 
the NAc shell, while the vmPFC-NAc core projection seems to be of minor importance.  

 

6.3 Introduction 
 
Optimal adaptation to the environment is criti-
cal for animals’ inclusive fitness and requires the 
right balance of behavioural inhibition and acti-
vation (Ghazizadeh et al. 2012;West and 
Gardner 2013). Behavioral control is highly 
influenced by motivational states (‘impulses’). 
The active inhibitory mechanism, which modu-
lates such internally or externally driven 
prepotent desires for reinforcement is referred 
to as impulse control (Jentsch and Taylor 
1999;Winstanley et al. 2006). Deficient im-
pulse control leads to maladaptive impulsive 
behaviours including inability to wait and diffi-

culty withholding responses, generally defined 
as impulsive action or motor impulsivity 
(Brunner and Hen 1997;Dalley et al. 2011;de 
Wit 2009). The dominant behavioural measures 
of impulse control are response inhibition para-
digms, such as the 5-choice serial reaction time 
task (5-CSRTT). The 5-CSRTT was modelled 
after its human analogues, the continuous per-
formance test of attention and Leonard’s five 
choice serial reaction time task and provides 
dissociable measurements of behavioural con-
trol, attention and motivation. Rats are 
required to withhold from premature respond-
ing to a visual, reward-predicting stimulus, 
generally regarded as an index of impulse con-
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trol (Carli et al. 1983;Muir et al. 1996;Robbins 
2002). Impulse control is based on cortico-
limbic-striatal circuits and dysfunctions of these 
systems are associated with several psychiatric 
disorders characterised by high levels of impul-
sivity, like ADHD (Nigg and Casey 2005), 
obsessive-compulsive disorder (Anticevic et al. 
2014), pathological gambling (Fineberg et al. 
2010), schizophrenia (Meyer-Lindenberg et al. 
2002;Pantelis et al. 1997;Robbins 1990), drug 
abuse and other forms of addiction (Kalivas and 
Volkow 2005;Russo and Nestler 2013). There 
is evidence that frontostriatal connections are 
part of parallel, functionally segregated re-
entrant striatothalamocortical loops. In both 
primates and rats, frontostriatal projections are 
topographically organised so that functionally 
different subregions of the prefrontal cortex 
(PFC) have separate targets in the striatum 
(Alexander et al. 1986;Berendse et al. 
1992;McGeorge and Faull 1989). The most 
pronounced territorial partition of the rodent 
PFC occurs in the medial PFC, which can be 
divided into dorsal (anterior cingulate and me-
dial precentral cortices) and ventral subdivisions 
(prelimbic and infralimbic cortices) (Gabbott et 
al. 2005;Heidbreder and Groenewegen 
2003;Ongur and Price 2000). The anatomical 
heterogeneity of the mPFC is paralleled by 
functional subregional differentiation, with the 
ventral medial prefrontal cortex (vmPFC) being 
more critically involved in impulsive behaviour 
(Chudasama et al. 2003;Kesner and Churchwell 
2011). On striatal level, the nucleus accumbens 
(NAc) as part of the ventral striatum and as core 
element of the mesoaccumbal dopamine (DA) 
system is generally implicated in reward and 
motivation and ideally positioned to integrate 
input signals of executive-cognitive informa-
tion, such as impulse control, arising from the 
mPFC (Carlezon, Jr. and Thomas 
2009;Groenewegen and Trimble 
2007;Mogenson et al. 1980). The vmPFC of 
rats and its putative primate equivalent, the 
anterior cingulate cortex (AC), are anatomically 
and functionally interconnected with the NAc, 
whereas the rodent dorsal mPFC preferentially 
innervates the dorsomedial striatum (Alexander 
et al. 1986;Berendse et al. 1992;Brog et al. 
1993;Ding et al. 2001;Ferry et al. 

2000;Gorelova and Yang 1997;McGeorge and 
Faull 1989;Preuss 1995;Sesack et al. 
1989;Vertes 2004). Converging lines of evi-
dence further indicate a functional relationship 
between mPFC and NAc in terms of behav-
ioural inhibition, as both regions have found to 
be involved in impulse control (Aron et al. 
2007;Christakou et al. 2004;Diekhof and Gru-
ber 2010;Morgane et al. 2005), impulsive 
decision-making (Costa Dias et al. 
2013;Diergaarde et al. 2008), behavioural 
flexibility (Coppens et al. 2010;Goto and Grace 
2005) and drug seeking (Bossert et al. 
2012;Peters et al. 2008;Vassoler et al. 2013). It 
is widely accepted, that glutamatergic projec-
tions from the mPFC regulate NAc function, in 
particular the release of DA and its subsequent 
output structures (Del Arco and Mora 
2008;Morgane et al. 2005;Tzschentke and 
Schmidt 2000). Activation of serotonin 
(5-HT)2A receptors, implicated in impulsivity 
(Hadamitzky and Koch 2009;Hadamitzky et al. 
2009;Wischhof et al. 2011;Wischhof and Koch 
2012), in the mPFC was found to increase exci-
tatory transmission in the NAc (Mocci et al. 
2013). Recent findings indicate that impulsive 
behaviour is not only top-down controlled by 
cortical areas, but also modulated at subcortical 
level (Dalley et al. 2011). For instance, intra-
NAc injections of DA receptor antagonists re-
verse behavioural disinhibition induced by 
vmPFC inactivation (Ghazizadeh et al. 2012) 
and block premature responding following 
mPFC lesions in the 5-CSRTT (Pezze et al. 
2009). Findings of electrophysiological re-
cording (Hayton et al. 2011), lesion 
(Chudasama et al. 2003;Muir et al. 1996;Pezze 
et al. 2009) and reversible inactivation (Izaki et 
al. 2007;Murphy et al. 2012;Narayanan et al. 
2006;Paine et al. 2011) studies already impli-
cated the rodent mPFC in impulse control, but 
regarding the specific role of the vmPFC in 
motor impulsivity in the 5-CSRTT, lesion stud-
ies revealed discrepancies ranging from direct 
participation (Chudasama et al. 2003), a mere 
tendency of involvement (Chudasama and Muir 
2001) to no important role (Passetti et al. 
2002). The contribution of the NAc to impul-
sive behaviours turned out to be even more 
complex, as the NAc can not be regarded as an 
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anatomical and functional entity (Groenewegen 
and Trimble 2007;Heimer 2003). Based on 
anatomical, neurochemical and electrophysio-
logical criteria, the NAc in the rat brain is 
divided into distinct subterritories, which are 
also present in the human brain and show con-
siderable different input-output features: a 
dorsolateral core region surrounding the ante-
rior commissure, and a shell compartiment that 
is located ventromedially to the core (Berendse 
et al. 1992;Brog et al. 1993;Heidbreder and 
Groenewegen 2003;Meredith et al. 
1996;Sokolowski and Salamone 
1998;Zaborszky et al. 1985). The functional 
dichotomy of the NAc, as evidenced by a differ-
ential involvement of core and shell in goal-
directed instrumental action (Corbit et al. 
2001), behavioural flexibility (Floresco et al. 
2006), drug- or food-seeking behaviour 
(Floresco et al. 2008a;McFarland et al. 
2004;Vassoler et al. 2013), locomotor activity 
(Jongen-Relo et al. 2002;Pothuizen et al. 
2005a;Robbins and Everitt 1996), motivational 
behaviour (Bassareo et al. 2002;Stratford and 
Kelley 1997) and attentional processes (Jongen-
Relo et al. 2002;Pothuizen et al. 2005a), ap-
pears also to hold true for impulse control. 
While core lesions induce deficits in 5-CSRTT 
and differential reinforcement for low rates of 
responding tasks (DRL) (Christakou et al. 
2004;Pothuizen et al. 2005b), lesions of the 
NAc shell lack a significant influence on antici-
patory responding in response inhibition tasks 
(Murphy et al. 2008;Pothuizen et al. 2005b). In 
line with this, disconnection of the mPFC from 
the NAc core by lesions caused impulse control 
deficits in the 5-CSRTT (Christakou et al. 
2004), whereas an implication of the mPFC-
NAc shell connection was not examined as yet. 
However, DA D1-like receptors in NAc shell 
are involved in inhibitory response control in 
the 5-CSRTT (Pattij et al. 2007). Interestingly, 
previous results from our laboratory revealed 
that transient bilateral inactivation of the 
vmPFC (Feja and Koch 2014) as well as the 
NAc shell, but not the core (Feja et al. 2014), 
via the GABAA agonist muscimol induced im-
pulsive over-responding in the 5-CSRTT. The 
lesion technique carries some drawbacks in 
comparison to inactivation tools due to irre-

versibly destroyed brain tissue and a potential 
functional compensation by other brain areas. In 
contrast, chemical agents like muscimol allow 
repeated acute and reversible inactivations of 
distinct brain regions, and hence, within-subject 
designs accompanied by increased test-retest 
reliability (Lomber 1999).  
 The present study extended our above-
mentioned findings using an asymmetrical dis-
connection approach to investigate the 
relevance of the vmPFC-NAc connectivity to 
impulse control in the 5-CSRTT. Asymmetrical 
disconnection designs have successfully been 
used to show a functional interaction between 
mPFC and NAc in a variety of behavioural para-
digms, including effort-based decision-making 
(Hauber and Sommer 2009), Pavlovian condi-
tioning (Parkinson et al. 1999), behavioural 
flexibility (Block et al. 2007), working memory 
(Floresco et al. 1999) as well as inhibitory and 
attentional control (Christakou et al. 2004). As 
bilateral projections from the vmPFC to the 
NAc subregions are predominantly ipsilateral 
(Berendse et al. 1992;Brog et al. 1993;Gabbott 
et al. 2005;McGeorge and Faull 
1989;Montaron et al. 1996;Sesack et al. 1989), 
this procedure results in a disruption of the 
respective vmPFC-NAc circuitry in both hemi-
spheres. For that purpose, we combined 
unilateral temporary inactivations by muscimol 
of the vmPFC and the contralateral NAc core or 
shell in rats.   
 
6.4 Methods 
 
6.4.1 Subjects 
 
A total of 22 adult male Lister Hooded rats 
(260 – 340 g) obtained from Harlan (Venray, 
Netherlands) were used which were assigned to 
two testing cohorts, defined as vmPFC-NAc 
core (n = 12) and vmPFC-NAc shell (n = 10) 
group. The animals were housed in groups of 
four to six in standard Macrolon cages (type IV) 
under controlled ambient conditions 
(21 - 22 °C, 45 – 55 % humidity, 12 h 
light/dark cycle, lights on at 7:00 a.m.). The 
animals were kept on their experimental body 
weight by controlled feeding of 12 g laboratory 
rodent chow (Nohrlin GmbH, Bad Salzuflen, 
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Germany) per rat per day and received tap wa-
ter ad libitum. Behavioural testing took place 
between 8:00 a.m. and 6:00 p.m. The experi-
ments were performed in accordance with the 
National Institutes of Health ethical guidelines 
for the care and use of laboratory animals for 
experiments and were approved by the local 
animal care committee (Senatorische Behörde, 
Bremen, Germany). 
 
 
6.4.2 Apparatus 
 
The 5-CSRTT was conducted in two operant 
aluminium chambers (26 x 26 x 26 cm; Camp-
den Instruments Ltd., Loughborough, UK), 
wherein five apertures (2.5 x 2.5 cm, 4 cm 
deep) were inserted 2 cm above floor level in 
the concavely curved rear wall. This assembly 
provided five response options located equidis-
tant to the food magazine on the opposite. 
Inside each hole, a light-emitting diode (LED) 
generated visual stimuli of variable duration. 
Nose-poke responses of the animals were de-
tected by infra-red photo cell beams at the 
entrance of the apertures. The rats could be 
placed in the box through a Plexiglas® door on 
the upper part of the front wall. Underneath the 
door, a small Plexiglas® panel provided access 
to the food magazine which was lighted via two 
LEDs and automatically supplied with casein 
pellets (45 mg Dustless Precision Pellets, Bio-
Serv®, UK) by an electromechanical feeder. 
Food collection was detected by a microswitch 
monitoring the movement of the hinged panel. 
Each chamber was illuminated by a 3 W house 
light mounted on the ceiling. A noise-damped 
fan served as ventilation and background noise 
of about 60 dB. The grid floor facilitated the 
removal of excrements. For the purpose of 
sound attenuation, the wooden cabinet was 
reinforced with an insulating plate at the inte-
rior of the door. The apparatus was controlled 
by specific software written in Turandot (Cam-
bridge Cognition Ltd., version 1.23) which was 
run on a personal computer connected to the 
BNC Mark 2 System (Behavioral Net Control-
ler, Campden Instruments Ltd., Loughborough, 
UK). 
 

6.4.3 General procedure 
 
6.4.3.1 Training 
The animals (n = 22) were trained to detect the 
occurrence of brief light stimuli in one of the 
five rear wall apertures. The general procedure 
was based on the protocol of Campden Instru-
ments and was divided into a habituation, 
pretraining and baseline training phase 
(Campden Instruments Limited 2005). Before 
training and tests the rats were acclimatised to 
the laboratory for at least 30 min in their home-
cages. 
 The first experimental phase comprised 
two daily half-hour habituation sessions. The 
boxes were prepared as follows: before the first 
training session, the tray panel was opened to 
facilitate access to 15 freely available pellets in 
order to reinforce the magazine as location of 
food reward. During the second session, no 
panel manipulation was carried out. Besides the 
reward in the tray, two pellets were placed in 
each aperture to promote exploration of these 
areas. The chambers were permanently illumi-
nated by the house light during both sessions. 
 The daily training session lasted 30 min 
or was finished after completion of 100 trials. 
Each session started with the simultaneous illu-
mination of the box and the food magazine and 
the delivery of a single pellet into the tray. 
Once the rat opened the panel for food re-
trieval, the first trial was initiated. The 
magazine light faded and a fixed intertrial inter-
val (ITI) of 5 s started. At the end of the ITI, a 
light stimulus of determinate duration (stimulus 
duration, SD) was randomly presented in one of 
the five holes. The rats had to respond with a 
nose-poke into the appropriate aperture during 
the stimulus presentation or within a subse-
quent limited hold period (LH). A correct 
response was followed by the supply of a pellet 
into the lighted food magazine. The next trial 
was triggered by the panel movement. Inappro-
priate responses led to a punishment in terms of 
a predefined 5 s period of darkness (time-out) 
without reward delivery. The task procedure 
offered various opportunities for such reactions:  

- incorrect responses in a hole where no 
stimulus appeared, 
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- omissions in the form of absent reaction 
to the occurrence of the stimulus 
within the LH, 

- premature responses before the onset of 
the stimulus during the ITI in one of the 
apertures 

- and perseverative responses, meaning addi-
tional responses after a correct 
response and before reward collection.   

Every response during the time-out phase reini-
tialised the period of darkness. Following the 
time-out, the box and the tray were illuminated 
again and the next trial was started by a nose-
poke into the food magazine. Within a session, 
the visual stimuli were randomly presented in 
equal number in each hole. The progressive 
decrement of the variables SD (60  1 s) and 
LH (60  5 s) over eight training levels en-
abled the acquisition of the 5-CSRTT.  
 The baseline training session was de-
termined by the conditions of the eighth 
training level (SD = 1 s, LH = 5 s). After show-
ing a stable baseline performance (>80 % 
accuracy and <20 % omissions with <10 % 
variation over five consecutive training ses-
sions), rats underwent surgery.   
 
6.4.3.2 Surgery 
The rats were anaesthetised with chloral hy-
drate (360 mg/kg; Sigma-Aldrich, Steinheim, 
Germany) and fixed in a stereotaxic frame 
(David Kopf Instruments, Tujunga, CA, USA). 
Stainless steel 21 gauge guide cannulae were 
implanted unilaterally 1 mm above the target 
injection site into the vmPFC (anteroposterior 
+2.7 mm, mediolateral ±0.8 mm, dorsoventral 
-4.0 mm from Bregma) and 2 mm above the 
intended injection sites into the contralateral 
NAc core (anteroposterior +1.2 mm, me-
diolateral ±1.8 mm, dorsoventral -6.8 mm 
from Bregma) or shell (anteroposterior 
+1.2 mm, mediolateral ±0.5 mm, dorsoventral 
-7.3 mm from Bregma). The sides of the im-
plantations were counterbalanced, resulting in 
approximately equal numbers of rats with mi-
croinfusions in the left or right hemispheres at 
the level of vmPFC and NAc. Jeweller screws 
were anchored in the skull serving to fix the 
cannulae which were embedded in dental ce-
ment and closed by removable 26 gauge stylets 

of the same length. After surgery, the rats were 
kept individually for three days with free access 
to food and water. Following a total recovery 
period of five days, the animals were reintro-
duced to the baseline training until they re-
established the presurgical baseline perform-
ance.  
 
6.4.3.3 Microinfusion 
The test design comprised four 4-day sessions 
for the animals. Each session started with an 
injection day, followed by a day without train-
ing. The second and third post-testing day were 
used to achieve the baseline performance and to 
ensure the washout process of the drug. Before 
infusion, the stylets were exchanged for injec-
tion cannulae (vmPFC: 27 gauge; NAc: 
26 gauge) connected with microlitre syringes 
(SGE Scientific Glass Engineering, Darmstadt, 
Germany) via polyethylene tubes. The rats re-
ceived four sets of combined unilateral 
microinjections of the GABAA agonist muscimol 
(0.05 g/0.3 l) and 0.9 % saline as vehicle 
(0.3 l) into the vmPFC and the contralateral 
NAc core or shell according to a pseudorandom 
Latin square design. The subject groups were 
divided as follows:  

Disconnection group I (vmPFC + NAc 
core; n = 12): vehicle + vehicle; vehicle + 
muscimol; muscimol + vehicle; muscimol + 
muscimol. 

Disconnection group II (vmPFC + NAc 
shell; n = 10): vehicle + vehicle; vehicle + 
muscimol; muscimol + vehicle; muscimol + 
muscimol. 

The injection rate was 0.1 l/30 s. The 
injectors were left in place for 1 min to guaran-
tee diffusion and to avoid reflux of the solution. 
Ten minutes after the microinjection, the rats 
underwent behavioural testing. The sequence of 
the test sessions matched with the baseline 
training. 
 
6.4.4 Drugs 
 
The GABAA agonist muscimol was purchased 
from Tocris Bioscience (Ellisville, MO, USA) 
and dissolved in 0.9 % saline. Aliquots of stock 
solutions (0.5 g/0.3 l) were prepared and 
stored at -20 °C until use. On the treatment 
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day, aliquots were further diluted to a dose of 
0.05 g/0.3 l. Doses were based on previous 
studies (Diederich and Koch 2005).  
 
6.4.5 Histology 

Upon termination of the experiment, the rats 
were euthanised with a lethal dose of chloral 
hydrate. The brains were removed from the 
skull and immersion-fixed in a 4 % forma-
lin/30 % sucrose solution for 48 h. Coronal 
50 m sections of the mPFC were cut on a cry-
ostat (Jung CM 3000; Leica Instrument GmbH, 
Nussloch, Germany), mounted on gelatine-
coated glass slides and Nissl-stained with 
thionin. Then, the sections were analysed using 
a light microscope and injection sites plotted on 
standardised coronal sections of a rat brain 
stereotaxic atlas (Paxinos and Watson 1998). 
 
6.4.6 Data analysis 
 
The descriptive statistics is based on means and 
variance and is indicated by the standard error 
of the mean (±SEM). The statistical analyses 

were conducted by the software IBM SPSS Sta-
tistics (version 20 for Windows).   

The drug effects within the testing 
group on the following behavioural parameters 
were investigated using separate two-way split-
plot-factorial analysis of variance (ANOVA; 
within-subject factor: drug treatment, between-
subject factor: disconnection group): percent-
age of correct responses (accuracy; 100 x 
number of correct responses/number of correct 
and incorrect responses), percentage of omitted 
responses (100 x number of omitted re-
sponses/total number of correct, incorrect and 
omitted responses), number of premature re-
sponses, number of perseverative responses, 
number of trials completed, number of time-
out responses, latency of correct responses [s] 
and latency of reward collection [s]. In the case 
of significant main effects (P < 0.05), one-way 
repeated measures ANOVA and post hoc Bon-
ferroni tests for the factor drug treatment as 
well as independent t-tests between the discon-
nection groups were conducted separately for 
each behavioural parameter. 

 

Fig. 6.1 Location of the unilateral injection sites in a) the ventral medial prefrontal cortex (circles corresponding to nucleus 
accumbens core, n = 9; triangles corresponding to nucleus accumbens shell, n = 9) and in b) the contralateral nucleus 
accumbens core (circles, n = 9) or shell (triangles, n = 9) in the 5-choice serial reaction time task depicted on schematic 
drawings from the rat brain atlas of Paxinos and Watson (1998). Rostral distance (in mm) to bregma is indicated by numbers.  
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6.5 Results 
 
6.5.1 Histology 
 
In total, 22 rats received unilateral microinjec-
tions into the vmPFC combined with 
contralateral microinfusions into NAc core 
(n = 12) or shell (n = 10). The histological 
analysis revealed, as indicated in Fig. 6.1, that 
18 rats (n = 9 in each group) had acceptable 
injection sites accurately located in the target 
structures with minimal tissue damage.  
 
6.5.2 Effects of inactivation of vmPFC-
NAc core and vmPFC-NAc shell connec-
tions by muscimol on rats’ performance 
in the 5-CSRTT 
 
Before testing, the rats performed at a stable 
baseline with high levels of accuracy (disconnec- 

tion group I: 91.64±1.06 %; disconnection 
group II: 92.19±0.92 %), fast correct response 
(disconnection group I: 0.69±0.01 s; disconnec-
tion group II: 0.68±0.02 s) and reward 
collection latencies (disconnection group I: 
1.10±0.05 s; disconnection group II: 
1.05±0.03 s), low percentages of omissions 
(disconnection group I: 12.68±1.02 %; discon-
nection group II: 9.72±1.25 %) as well as low 
numbers of premature (disconnection group I: 
8.10±0.90; disconnection group II: 8.28±1.05) 
and perseverative responses (disconnection 
group I: 1.98±0.35; disconnection group II: 
2.00±0.54). Analysis of the training data dem-
onstrated no significant differences in the pre- 
and postoperative sessions and the ‘drug-free 
days’ between testing excluding any carry-over 
effects of drug treatment or surgery (data not 
shown). Two-way split-plot-factorial ANOVAs 
on the 5-CSRTT performance showed main 

Fig. 6.2 Effects of combined local unilateral infusions of the GABAA agonist muscimol (M; 0.05 g/0.3 l) and 0.9 % saline 
as vehicle (V) into the ventral medial prefrontal cortex (vmPFC) and the contralateral nucleus accumbens (NAc) core (n = 9) 
or shell (n = 9) on the rats` performance in the 5-choice serial reaction time task. Data of a) premature responses, b) time-
out responses, c) accuracy and d) omissions are means ±SEM. Statistically significant differences between drug treatment 
compared to vehicle are indicated by asterisks (one-way repeated measures ANOVA, post-hoc Bonferroni test, P < 0.05) and 
between subject groups (vmPFC + NAc core compared to vmPFC + NAc shell) by circles (independent t-test, P < 0.05).  
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Table 6.1 Effects of combined local unilateral infusions of the GABAA agonist muscimol (0.05 g/0.3 l) and 0.9 % saline as 
vehicle (V) into the ventral medial prefrontal cortex and the contralateral nucleus accumbens (NAc) core (n = 9) or shell 
(n = 9) on the rats` performance in the 5-choice serial reaction time task. Data are expressed as means ±SEM.  

Treatment 
Trials completed 

[n] 
Perseverative 
responses [n] 

Latency of correct 
responding [s] 

Latency of reward 
collection [s] 

V+V 99.22±0.78 1.67±0.37 0.69±0.03 1.21±0.09 

V+M 93.22±4.48 1.89±0.56 0.75±0.04 1.25±0.09 

M+V  100.00±0.00 2.78±0.52 0.71±0.03 1.18±0.06 

vm
PF

C
 +

 N
A

c 
co

re
 

M+M  92.22±6.22 1.89±0.61 0.86±0.11 1.51±0.24 

Treatment 
Trials completed 

[n] 
Perseverative 
responses [n] 

Latency of correct 
responding [s] 

Latency of reward 
collection [s] 

V+V 100.00±0.00 2.44±0.50 0.67±0.02 1.15±0.04 

V+M   92.44±6.37 2.44±0.58 0.66±0.02 1.11±0.03 

M+V 100.00±0.00 2.56±0.84 0.62±0.03 1.08±0.03 

vm
PF

C
 +

 N
A

c 
sh

el
l 

M+M   91.78±4.50 2.67±0.80 0.71±0.05 1.16±0.06 

  

effects of drug treatment [F(3,51)
 

= 6.119; 
P = 0.001] and disconnection group 
[F(1,51) = 5.71; P = 0.03] as well as a statistically 
significant treatment x disconnection group 
interaction [F(3,51)

 
= 7.704; P < 0.001] for pre-

mature responses, a main effect of 
disconnection group [F(1,51)

 
= 5.259; P = 0.036] 

and a statistically significant treatment x discon-
nection group interaction [F(3,51)

 
= 3.223; 

P = 0.031] for accuracy, a main effect of dis-
connection group [F(1,51)

 
= 8.228; P = 0.011] 

for omissions and a main effect of disconnection 
group [F(1,51)

 
= 4.754; P = 0.045] for completed 

trials.  
 Further one-way repeated measures 
ANOVAs and post-hoc Bonferroni tests re-
vealed that simultaneous unilateral inactivation 
of vmPFC and the contralateral NAc shell spe-
cifically enhanced impulsive behaviour reflected 
by a significant increase in premature respond-
ing compared to vehicle (P = 0.042), while no 
other measured parameter was affected 
(Fig. 6.2 and Table 6.1). Unilateral intra-NAc 
shell injection of muscimol as well as combined 
deactivation of vmPFC and NAc shell appeared 
to augment time-out responses, but this effect 
did not reach statistical significance (Fig. 6.2b). 

By contrast, neither unilateral NAc core nor 
combined vmPFC and NAc core inactivation 
had any effect on 5-CSRTT performance. Inde-
pendent t-tests between subject groups showed 
significant differences between the vmPFC-NAc 
core and vmPFC-NAc shell connection follow-
ing combined muscimol injection regarding 
premature responses (P = 0.008) and accuracy 
(P = 0.006) (Fig. 6.2a, c). Further, unilateral 
inactivation of NAc core significantly increased 
the omission rate compared to NAc shell 
(P = 0.021) (Fig. 6.2d).  

 

6.6 Discussion 

In terms of impulsivity, the vmPFC is consid-
ered to be primarily implicated in impulse 
control while there is only limited evidence for 
an involvement of the NAc, which is more asso-
ciated with impulsive decision-making. 
Previous studies revealed that NAc shell lesions 
showed no effect on premature responding and 
core lesions merely tended to increase motor 
impulsivity in the 5-CSRTT. However, the 
present data show that both the vmPFC and the 
NAc are involved in the neural network mediat-
ing impulse control in the 5-CSRTT in rats, 
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with a predominant role for the connection of 
vmPFC and NAc shell. By contrast, the 
vmPFC-NAc core connection appears to be 
more crucially involved in attentional behaviour 
and motivational aspects.  

The main findings of this study are that 
acute disconnection of the vmPFC and NAc 
shell by simultaneous contralateral inactivation 
via muscimol considerably enhanced premature 
responding indicating deficits in impulse con-
trol. In contrast, transient disruption of the 
serial communication between vmPFC and NAc 
core did not affect impulsive action. Lesion 
studies have already documented the involve-
ment of the rodent mPFC and NAc in inhibitory 
response control, but revealed discrepancies 
regarding different aspects of inhibitory control 
and specific subregions of the mPFC and NAc 
(Christakou et al. 2004;Chudasama and Muir 
2001;Chudasama et al. 2003;Muir et al. 
1996;Murphy et al. 2008;Pezze et al. 
2009;Pothuizen et al. 2005b). By use of the 
GABAA agonist muscimol, we and other groups 
have recently shown that the vmPFC, including 
the prelimbic (PL) and infralimbic (IL) cortices, 
is critically involved in controlling premature 
responding in the 5-CSRTT in rats (Feja and 
Koch 2014;Murphy et al. 2012;Paine et al. 
2011). On the subcortical level of the NAc, 
lesions of the core but not the shell region in-
creased anticipatory responding in response 
inhibition tasks (Christakou et al. 2004;Murphy 
et al. 2008;Pothuizen et al. 2005b). Coher-
ently, disconnection lesions of the vmPFC and 
the NAc core enhanced premature and per-
severative responding in the 5-CSRTT, whereas 
the vmPFC-NAc shell connection was not in-
vestigated (Christakou et al. 2004). However, 
latest work from our laboratory highlighted the 
role of the NAc shell in terms of motor impul-
sivity and revealed for the first time that 
transient deactivation of the shell, but not the 
core, reduced impulse control in the 5-CSRTT 
in rats (Feja et al. 2014). The present study 
verifies our previous findings and confirms that 
in particular the connection of vmPFC and NAc 
shell is implicated in the maintenance of im-
pulse control during 5-CSRTT performance.  
 In comparison to previous lesion studies 
primarily associating the mPFC-NAc core axis 

with impulsive action, our results may appear 
contradictory. However, since the lesion tech-
nique carries some drawbacks due to permanent 
destruction of brain tissue and animals’ recov-
ery for several days enabling a potential 
functional compensation by remaining struc-
tures, acute reversible inactivation procedures, 
as in our case, provide more conclusive evi-
dence of brain area functions (Lomber 
1999;Martin and Ghez 1999). Due to different 
tissue manipulations, the findings of lesion stud-
ies have to be compared carefully with those of 
our present investigation and the lacking effects 
of shell lesions on impulse control could be 
attributable to masking effects owing to adap-
tive functions of adjacent structures.  

Asymmetric inactivation of vmPFC and 
NAc shell also increased the number of time-
out responses, although not reaching statistical 
significance. Time-out responses represent 
another aspect of inhibitory control, more re-
lated to cognitive flexibility (Robbins 2002). 
The increase of time-out responses substantiates 
the role of the vmPFC-NAc shell connection in 
behavioural inhibition. This is further supported 
by previous findings from our laboratory show-
ing that bilateral injection of muscimol into the 
vmPFC or the NAc shell increased time-out 
responses in the 5-CSRTT (Feja and Koch 
2014;Feja et al. 2014). Cognitive constructs 
such as impulsivity and behavioural flexibility 
are closely interrelated executive processes in 
the context of inhibitory control, hierarchically 
top-down mediated by the PFC (Bari and Rob-
bins 2013;Wise 2008). In this regard, vmPFC 
lesions or inactivations result in behavioural 
inflexibility in reversal learning tasks in rats 
(Kosaki and Watanabe 2012;Ragozzino et al. 
1999;Ragozzino 2007). The neural network 
contributing to behavioural flexibility involves 
both the mPFC and NAc (Coppens et al. 2010). 
Set-shifting tasks indicated that the mPFC pro-
jection to the NAc is important for suppressing 
inappropriate responses and asymmetrical inac-
tivation of these structures impaired the ability 
to switch from one discrimination strategy to 
another (Block et al. 2007). Interestingly, the 
shell region apparently had a greater impact on 
the number of time-out responses than the 
vmPFC, as revealed by unilateral deactivations 
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of the respective structure. Admittedly, inacti-
vation of NAc shell, in contrast to core, does 
not impair performance in a set-shifting task in 
rats, but it was pointed out that the shell medi-
ates the suppression of irrelevant or no-reward 
behaviours (Blaiss and Janak 2009;Floresco et 
al. 2006;Floresco et al. 2008a). Thus, unilateral 
inactivation of NAc shell might have contrib-
uted to behavioural disinhibition during 
5-CSRTT performance.  

Other parameters indexing attentional 
(omissions), compulsive (perseverative re-
sponses), motor (correct response latency) or 
motivational behaviour (trials completed, re-
ward collection latency) remained unaffected 
following unilateral intra-vmPFC and intra-shell 
or combined vmPFC and NAc shell infusions of 
muscimol.  

Taken together, the present behavioural 
effects on 5-CSRTT performance induced by 
vmPFC-NAc shell disconnection closely resem-
ble the deficits observed following bilateral 
vmPFC (Feja and Koch 2014) or NAc shell 
(Feja et al. 2014) inactivation in the same task, 
while unilateral control deactivations of the 
respective regions alone did not produce signifi-
cant deficits. The asymmetrical manipulation 
method used in this study is particularly suited 
to investigate the interaction between compo-
nents of cortico-subcortical networks (Gaffan 
and Wilson 2008;Peters et al. 2008). Since 
neuronal projections, such as frontostriatal con-
nections from the mPFC to the NAc, are 
predominantly ipsilateral (Berendse et al. 
1992), learned behaviours can be preserved by 
an intact single hemisphere and unilateral ma-
nipulations, as in our study, often lead to minor 
or no cognitive impairments. Via crossed uni-
lateral inactivation of the vmPFC and NAc core 
or shell, the serial communication between 
these structures can be bilaterally impeded 
(Gaffan et al. 1993;Gaffan and Wilson 
2008;Setlow et al. 2002). For example, a pre-
vious study showed that disconnection of the IL 
and NAc shell reinstates cocaine seeking in rats 
after extinction learning, whereas unilateral 
inactivation of either IL or NAc shell does not 
alter seeking behaviour (Peters et al. 2008). 
Consequently, as the effects of the vmPFC-NAc 
shell disconnection on premature responding in 

the 5-CSRTT are more pronounced than the 
additive effect of the single unilateral inactiva-
tions, our findings provide evidence that 
impulse control requires serial information 
transfer between this specific frontostriatal sys-
tem.   

Unexpectedly, the transient disconnec-
tion of vmPFC and NAc core as well as 
unilateral manipulations of vmPFC or the core 
region did not produce any significant behav-
ioural effect in the 5-CSRTT compared to 
control treatment. Contralateral inactivation of 
vmPFC and NAc core tended to increase the 
omission rate as well as the reward collection 
and correct response latencies indicating mar-
ginal attentional and locomotor deficits and a 
slightly reduced motivation for food. More-
over, unilateral deactivation of the core 
significantly augmented the omission rate com-
pared to the respective manipulation of the 
shell, implying the impact of NAc core on at-
tention. Previously, we have shown that the 
core region in contrast to the shell plays an 
important role in the regulation of locomotion 
and general responsiveness with a bilaterally 
inactivated core severely impaired 5-CSRTT 
performance (Feja et al. 2014). Particularly the 
strong decrease in the number of completed 
trials after deactivation of NAc core but not 
shell represents a consequence of motivational 
dysfunction and points towards a differential 
role of both subregions in motivated behaviour 
in the 5-CSRTT. This is supported by evidence 
that muscimol injections into the core reduce 
breakpoint in a progressive ratio schedule in 
rats (Moscarello et al. 2010), while shell inacti-
vation enhances motivational behaviour in that 
task (Stratford and Wirtshafter 
2012;Wirtshafter and Stratford 2010). How-
ever, lesions of the core do not reduce food 
motivation in a delayed reinforcement task 
(Cardinal and Cheung 2005) and muscimol does 
not affect food intake when injected into the 
NAc core (Stratford and Kelley 1997) and even 
increases eating behaviour following infusion 
into the shell (Basso and Kelley 1999;Lopes et 
al. 2007;Reynolds and Berridge 
2002;Soderpalm and Berridge 2000;Stratford 
and Kelley 1997;Stratford and Wirtshafter 
2011).  
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High scores of impulsivity in the 
5-CSRTT inversely correlate with attentional 
accuracy (Blondeau and Dellu-Hagedorn 
2007;Dalley et al. 2008;Puumala and Sirvio 
1998). Considering the central role of fron-
tostriatal impairments to the pathophysiology of 
ADHD, incorporating attentional and impulsive 
dysfunctions (Nigg and Casey 2005), it seems 
obvious that this relationship could also be valid 
for the vmPFC-NAc shell connection, as simul-
taneous inactivation of vmPFC and NAc shell 
produced a significant decrease of response 
accuracy compared to vmPFC-NAc core dis-
connection. But since the effect of the vmPFC-
NAc shell disconnection on accuracy did not 
differ from control treatment, we suppose the 
reducing impact on accuracy should be rather 
seen in consequence of rash-spontaneous impul-
sive behaviour of the rats leading to some kind 
of ‘careless mistake’.      

Meanwhile there is a scientific consen-
sus that impulsive behaviour is not only 
cortically top-down controlled but also regu-
lated by subcortical areas (Dalley et al. 2011). 
Most interestingly, impulse control seems to be 
more depending on an intact NAc shell than on 
the vmPFC, as bilateral inactivation of the shell 
enhances premature responding at almost the 
same rate as the vmPFC-NAc shell disconnec-
tion, while bilateral deactivation of the vmPFC 
only produces approximately half the number of 
anticipatory responses (Feja and Koch 2014;Feja 
et al. 2014). Accordingly, we hypothesize that 
the NAc, particularly the shell region, might 
function as kind of a bottleneck for impulse        

control, receiving serial parallel information 
input from the vmPFC, integrating these input 
signals of impulse control with emotional (baso-
lateral amygdala), contextual (hippocampus) 
and arousal content (midline thalamus) and 
conveying the multiplexed information to 
downstream brain sites involved in feeding and 
drinking (lateral hypothalamus), motivation 
(ventral tegmental area, substantia nigra) and 
locomotion (caudal mesencephalon). Thus, the 
original concept of the NAc as a functional in-
terface coordinating limbic, cognitive and 
motor processes is still valid, expanded by dif-
ferential contributions of the NAc subregions so 
that the NAc should not longer be viewed in the 
sense of an anatomical entity (Carlezon, Jr. and 
Thomas 2009;Groenewegen and Trimble 
2007;Mogenson et al. 1980).    
 

 
 
6.7 Conclusion 

 
 

In conclusion, our results extend previous find-
ings pointing out the functional heterogeneity of 
frontostriatal systems and show a differential 
contribution of the vmPFC-NAc connection to 
behavioural control depending on the involved 
accumbal subregion. We hypothesize that the 
maintenance and regulation of impulse control 
particularly requires an intact connection be-
tween the vmPFC and the NAc shell, while the 
vmPFC-NAc core projection seems to be of 
minor importance. 
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7 General discussion 

In clinical research, the involvement of specific brain regions in the control of behaviour can 

be investigated by observing the behavioural alterations in people with injury to these 

structures. In general, patients with frontostriatal damage display impaired behavioural 

inhibition, particularly expressed by impulsive decision-making and deficient impulse control 

compared to healthy control subjects (Costa Dias et al. 2013;Eagle and Baunez 2010;Jentsch 

and Taylor 1999). Since the human and rat genome encode similar numbers of genes and due 

to the fact that 90 % of rat genes have orthologs in the human genome, the rat has been the 

animal model of choice for research in human neurobiology and experimental medicine 

(Gibbs et al. 2004;Mullins and Mullins 2004). Moreover, both rats and macaque monkeys 

show homologous organisation of frontostriatal projections from the PL and IL to the NAc 

(Wise 2008). Thus, lesioning discrete areas of the frontostriatal network in rats has been 

widely used for comparison with human brain damage and for complementation of clinical 

research (Eagle and Baunez 2010). Nevertheless, permanent inactivation via the lesion 

technique requires consideration of concomitant factors. The resulting behavioural effects 

might not completely be attributable to the destroyed region but could also be influenced by 

adaptive processes of adjacent remaining structures. Indeed, lesion studies yielded 

contradictory results regarding impulsive behaviour in rats. 

 Particularly lesions of the mPFC produced controversial effects on motor impulsivity 

in the 5-CSRTT, ranging from direct participation (Chudasama et al. 2003), a mere tendency 

of involvement (Chudasama and Muir 2001) to no important role (Passetti et al. 2002). 

Inconsistent findings also exist concerning the contribution of the mPFC to choice 

impulsivity. While one study found increased delay-discounting in mPFC-lesioned rats (Gill 

et al. 2010), another group declared that the mPFC is not the primary site of this action 

(Cardinal et al. 2001). In case of the NAc, the core region seems to be clearly involved in 

impulsivity since excitotoxic lesions induce impulsive choice behaviour as well as impulse 

control deficits in the 5-CSRTT and DRL task (Bezzina et al. 2007;Bezzina et al. 

2008a;Cardinal et al. 2001;Christakou et al. 2004;da Costa et al. 2009;Pothuizen et al. 2005b). 

By contrast, lesions of the NAc shell do neither influence premature responding nor delay-

discounting in rats (Murphy et al. 2008;Pothuizen et al. 2005b). However, the effect of core 

lesions on impulsive decision-making remains unclear due to discrepancy with other studies 

lacking any implication in choice impulsivity (Acheson et al. 2006;Gill et al. 2010).  
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 In animals, the lesion method can be extended to study the connectivity between 

different brain regions by combined unilateral lesioning of each structure in opposite 

hemispheres (Gaffan and Wilson 2008). Using this approach, disconnection of the mPFC and 

the NAc core enhances impulsive responding in the 5-CSRTT (Christakou et al. 2004). 

Unfortunately, a contribution of the mPFC-NAc shell connection was not examined as yet.  

 By application of transient inactivation tools, many drawbacks accompanying the 

lesion technique are avoidable, particularly the recovery of function by originally non-

involved structures, allowing acute functional investigation of the inactivated regions (Martin 

and Ghez 1999). In the present thesis, we were able to extend the current knowledge of 

integral constituents of the frontostriatal network and could further clarify its role in the 

modulation of decision-making and impulse control. This was achieved by systematically and 

reversibly inactivating the vmPFC, the NAc subregions core and shell and also by 

disconnecting the linkage between these structures via local administration of the GABAA 

agonist muscimol in rats.  

 Summarising, the present work revealed that the frontostriatal network differentially 

contributes to impulsive behaviour depending on the involved NAc subregion and distinct 

types of impulsivity. The vmPFC and the NAc shell as well as an intact connection between 

both structures were crucially implicated in the maintenance of impulse control, whereas the 

core region seems to be more involved into motivational and motor aspects. In comparison to 

the vmPFC, the NAc appears to have a greater regulative impact on delay-based decision-

making as both subareas of the NAc turned out to play a key role, while inactivation of the 

vmPFC did not affect delay-discounting. Most interestingly, our studies figured out that the 

priorly often unregarded shell region of the NAc and also its connection with the vmPFC 

might critically participate in the modulation of impulsivity, at least specifically in terms of 

impulse control.   

 

7.1 Decision-making 

The findings of study 1 and 2 strongly emphasise the NAc as a subcortical key structure in the 

regulation of impulsive choice and underline the heterogeneity of the PFC in terms of delay-

discounting as its ventral medial part displayed no relevance for the top-down control of this 

specific type of decision-making despite strong connections with the NAc. Thus, choice 

impulsivity seems to be primarily modulated by other frontocortical regions.  
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 In line with this, previous studies have shown that particularly selective lesions and 

inactivation of the OFC impair choice behaviour in delay-discounting paradigms (Mobini et 

al. 2002;Rudebeck et al. 2006;Zeeb et al. 2010). The mPFC is more sensitive to effort-related 

and probabilistic reinforcement, more associated with motivational and risk-taking behaviour, 

respectively (St Onge and Floresco 2010;Walton et al. 2002;Walton et al. 2003). The effects 

of lesioning the mPFC in rats on delay-discounting, mostly reflecting impulsivity-related 

behaviour, have been rather inconsistent.  

 The results of study 1 confirm the majority of preceding work pointing out that the 

mPFC plays a rather minor role in impulsive decision-making (Cardinal et al. 2001;Rudebeck 

et al. 2006). In our case, reversible bilateral inactivation of the rats’ vmPFC by the GABAA 

agonist muscimol did not increase the preference for smaller, immediate over larger, delayed 

rewards. The observed flattening in the typical delay-dependent within-session shift in the 

preference of the high reward, in accordance with a former report (Cardinal et al. 2001), 

might be explainable by an insensitivity to the task contingencies due to a disruption of 

temporal discrimination ability (Cardinal et al. 2004). Another reason could be an 

abolishment of the learned action-outcome association between response and reward delivery 

following deactivation of the vmPFC (Balleine and Dickinson 1998). By contrast, transient 

inactivation of both NAc subregions, independently of one another, markedly decreased 

selection of the high reward indicating enhanced delay aversion, and thus impulsive choice.  

 However, comparing study 1 and 2 it has to be considered that delay-based decision-

making was assessed using different test designs. In study 1, vmPFC-inactivated rats were 

tested via a typical delay-discounting paradigm in operant conditioning chambers, while 

study 2 was conducted in a T-maze using a delayed gratification procedure to investigate the 

effects of NAc deactivation. Both tasks differed in the range and sequence of their delays, 

with the discounting model progressively increasing the delay with each session block (0, 10, 

20, 40, 60 s) and the T-maze task maintaining the delay constant at 10 s throughout testing. 

Previous studies demonstrated the impact of the delay duration in that prolonged delay 

periods of 25 s are suitable to assess improvements of waiting capacity, but to a lesser extent 

an increase of delay aversion and the emergence of impulsive choice (Bizot et al. 2007). 

Findings from OFC lesion studies revealed that rats even increase the selection of the large 

reward when confronted with the same delay-discounting protocol as in study 1. However, 

under shorter delay conditions of 15 s this manipulation induces choice impulsivity in both 

the T-maze and operant chamber decision-making tasks (Mobini et al. 2002;Rudebeck et al. 

2006;Winstanley et al. 2004). This suggests that the vmPFC, at least partially, could also 
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contribute to impulsive decision-making with rewards delayed in the range of a few seconds. 

 In keeping with this, local administration of the DA D1 receptor antagonist SCH23390 

and the DA D2 receptor antagonist raclopride into the mPFC significantly increase impulsive 

choice in case of delay durations ranging from 0 – 8 s before reinforcer delivery (Pardey et al. 

2013). Closer considering the discrete session blocks in study 1 indeed unveiled a trend 

towards delay aversion for the shortest delay duration (10 s) following intra-vmPFC injection 

of high-dosed muscimol. Unlike our study, another group found that reversible inactivation of 

the vmPFC by muscimol causes impulsive choice in the T-maze task under a 15 s delay 

condition (Churchwell et al. 2009). However, the findings of Churchwell et al. (2009) have to 

be compared carefully with those of study 1. In contrast to our experiment, that study 

probably reflects more a mixture of impulsive choice and impulsive action since the rats were 

able to choose the small immediate reward at any time during the delay, thus requiring them 

to maintain their response and to increase behavioural inhibition. As a consequence, those 

results might also point to the fact that the vmPFC is more implicated in impulse control 

processes than in delay-based decision-making. Further investigations on temporal 

discounting with short delays could help to elucidate a potential involvement of the vmPFC in 

choice impulsivity.  

 In respect of the NAc, the core region is already associated with the principal forms of 

cost/benefit decision-making, including probability- (Cardinal and Howes 2005), effort- 

(Ghods-Sharifi and Floresco 2010;Hauber and Sommer 2009) and delay-discounting (Bezzina 

et al. 2007;Cardinal et al. 2001;Pothuizen et al. 2005b). Dysfunctions of the shell region to 

date only lead to risk-based choice behaviour (Stopper and Floresco 2011). The current 

transient deactivation of NAc core as well as shell induced choice impulsivity in the T-maze, 

with a higher impact of core inactivation on the rats’ waiting capacity compared to shell. 

Thus, the results of study 2 contradict the leading opinion that the NAc shell does not 

contribute to impulsive choice behaviour and strengthen the hypothesis that the NAc core is 

preferentially involved in the control of decision-making under delayed reinforcement 

conditions (Cardinal et al. 2001;Pothuizen et al. 2005b). 

 The fact that intra-NAc shell injection of muscimol elicited impulsive choice 

underlines the greater significance of reversible inactivation studies compared to lesion 

experiments, as selective excitotoxic NAc shell lesions have no effect on temporal 

discounting (Pothuizen et al. 2005b). The lacking impact of the permanent inactivation 

method could be attributable to the formation of adaptation processes of adjacent brain 

structures during animals’ postoperative recovery period resulting in the takeover of 
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regulating rash decision-making. By contrast, transient inactivation by muscimol allows acute 

investigation of the actual function of the manipulated region providing higher data reliability. 

Impaired waiting capacity following reversible inactivation of NAc subregions was caused by 

delay-based reward devaluation, substantiated with evidence that functional NAc is necessary 

to bridge action-outcome delays and to maintain a representation of the anticipated 

gratification (Cardinal and Cheung 2005;Roesch et al. 2009).  

 One might suggest that the disparate impact of vmPFC versus NAc inactivation on 

choice impulsivity is to be ascribed to the difference between reward ratios (4:1 in study 1, 

10:2 in study 2), as it has been proposed that increasing the proportion of the high to the low 

reward may ameliorate impulsive behaviour (Cardinal 2006). However, this would have 

implied a greater potential of the T-maze task to generate impulsive decision-making than the 

delay-discounting paradigm of study 2. Apart from this, lesions of the NAc, as well as 

bilateral inactivation of the vmPFC, do not disrupt the perception of the relative incentive 

value and the sensitivity for the magnitude discrimination of the rewards (Balleine and 

Killcross 1994;Bezzina et al. 2007;Cardinal and Cheung 2005;Churchwell et al. 2009). A 

further argument against an influence of primary motivational aspects on the delay-

discounting rate is that muscimol does not affect eating behaviour when injected into the core 

and even increases food intake following administration into the shell (Basso and Kelley 

1999;Lopes et al. 2007;Reynolds and Berridge 2002;Soderpalm and Berridge 2000;Stratford 

and Kelley 1997;Stratford and Wirtshafter 2011).  

 

7.2 Impulse control 

The results of study 1, 2 and 3 provide evidence of a frontostriatal network (comprising the 

vmPFC and the NAc) being crucially involved in the regulation of impulse control in rats. In 

study 1, reversible inactivation of the vmPFC via muscimol induced impulsive action in the 

5-CSRTT and efficiently confirmed the assumption that this specific part of the frontal cortex 

is heavily implicated in impulse control. The findings of study 2 demonstrate that the NAc 

does not only participate in the modulation of delay-based decision-making, but also 

contributes to the maintenance of inhibitory response control.  

 As in several other behaviours, the NAc subregions core and shell showed functional 

dichotomy concerning motor impulsivity in the 5-CSRTT. Interestingly, transient inactivation 

of the less explored Nac shell, but not the core, by bilateral microinjection of muscimol 
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produced impulse control deficits in the 5-CSRTT. The indication of a crucial role of the 

connection between the vmPFC and the NAc shell gained from study 1 and 2 is further 

corroborated by study 3. This work elucidates that the regulation of impulse control in the 

5-CSRTT primarily requires an intact vmPFC-NAc shell connection compared to a 

frontostriatal circuit composed of vmPFC and NAc core whose disconnection did not 

significantly alter 5-CSRTT performance. The present behavioural effects following 

muscimol injection into the NAc and resulting from disconnection of the vmPFC and the NAc 

contrast with findings of previous lesion studies. Hence, they illustrate, as above-mentioned, 

the difficulties in the comparability of both methods, with acute reversible inactivation 

procedures revealing a more realistic status of brain structure functions than the lesion 

technique (Lomber 1999;Martin and Ghez 1999).  

 The current work clearly demonstrates that impulsive action in the 5-CSRTT is not 

only contingent on top-down control by cortical areas, but is also regulated on the subcortical 

level of the NAc. Surprisingly, an intact NAc shell even seems to have a greater importance in 

the vmPFC-NAc shell circuit than the cortical structure, since bilateral inactivation of the 

shell produced approximately twice as many premature responses compared to muscimol 

application into the vmPFC.    

The present results strengthen the theory that the anatomically heterogeneous 

connectivity between the mPFC and the NAc is paralleled by functional subregional specifity. 

The mPFC projects topographically to the NAc, in that dorsal regions primarily innervate the 

core while the shell receives afferents from ventral parts of the mPFC (Berendse et al. 

1992;Brog et al. 1993;Heidbreder and Groenewegen 2003). As the vmPFC is critically 

involved in impulse control in the 5-CSRTT (Chudasama et al. 2003;Feja and Koch 2014), it 

is obvious that the NAc shell may act as the accumbal output structure of impulsive action 

from the vmPFC. Further support for the contribution of the vmPFC-NAc connection to 

impulse control comes from patch-clamp recordings investigating the mechanisms underlying 

response inhibition in the rat vmPFC. This work revealed that impulse control is encoded by a 

selective strengthening of prelimbic projections to the ventral striatum (Hayton et al. 2010).  

 The effects of the current studies support the postulated dissociation of different 

components of 5-CSRTT performance, such as attentional ability and impulse control, which 

are mediated to some extent by distinct frontostriatal circuits (Robbins 2002). Accordingly, 

we observed effects on the inhibitory control of premature responding in the absence of 

affected response accuracy and vice versa. Our investigations reveal that low-dose muscimol 

injections bilaterally into the vmPFC and NAc shell as well as combined contralateral 
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inactivation of both structures significantly increase the number of anticipatory responses. 

Other measured parameters indexing attentional (accuracy, omissions), compulsive 

(perseverative responses), motor (correct response latency) or motivational (trials completed, 

reward collection latency) behaviour remained unaffected. On the contrary, the core region 

seems to play an important role in the regulation of motivational and motor aspects during the 

5-CSRTT performance. However, the number of completed trials as well as correct response 

and reward collection latencies reflecting motivation and locomotion were not significantly 

affected following vmPFC-NAc core disconnection. 

 An explanatory approach for the divergent effects of bilateral NAc core deactivation 

compared to the vmPFC-NAc core disconnection could be that the transient disruption of this 

specific frontostriatal system induced distinct but overlapping mechanisms, via additional 

circuits, which are offset against one another. Optogenetic stimulation of mPFC DA D1 

neurons activates glutamatergic neurons in the BLA and excitatory transmission from the 

BLA to the NAc promotes motivated behavioural responding for sucrose intake in mice (Land 

et al. 2014;Stuber et al. 2011), suggesting that inactivation of the vmPFC might lead to a top-

down inhibition of feeding. On the other hand, muscimol inactivation of the mPFC in rats 

reduces overall response latencies and increases premature errors in a time-estimation task 

due to deficient adaptive control of the downstream motor cortex (Narayanan et al. 2013). 

Hence, in case of the present vmPFC-NAc core disconnection, a decreased appetitive drive 

mediated on both cortical and subcortical level might have been opposed to an enhanced 

locomotor drive elicited by the vmPFC, resulting in only a slight lengthening of speed 

latencies. 

 High numbers of omissions might also indicate motor or motivational impairments 

(Robbins 2002). We suggest that the mildly enhanced omission rate after vmPFC-NAc core 

disconnection reflects an attentional deficit. It supports the contention that frontostriatal 

systems comprising the core region of the NAc might be more involved in attentional control 

rather than in response inhibition. However, our results also imply that the vmPFC plays a 

minor role in attentional performance, as unilateral manipulations of this structure changed 

the omission rate less than core inactivation. Moreover, core-lesioned rats significantly 

increase the omission rate in a ‘forced choice’ task (Murphy et al. 2008). In line with this, 

lesion studies suggest dissociable roles of the dorsal and ventral subregions of the mPFC on 

the 5-CSRTT performance. IL and PL seem to be more implicated in impulsive and 

compulsive behaviours, whereas attentional and motivational parameters like accuracy, 

omissions and the latency of reward collection appear to be rather modulated by the dorsally 
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located AC (Chudasama et al. 2003;Chudasama and Muir 2001;Passetti et al. 2002). As the 

NAc core is more innervated by dorsal parts of the mPFC, a frontostriatal circuit composed of 

the dorsal mPFC and NAc core might make a more substantial contribution to aspects of the 

5-CSRTT performance than the vmPFC-NAc core connection.  

The vmPFC of rats and its putative primate equivalent, the AC, are anatomically and 

functionally strongly interconnected with the NAc, whereas the rodent dorsal mPFC 

preferentially innervates the dorsomedial striatum (Alexander et al. 1986;Berendse et al. 

1992;Brog et al. 1993;Ding et al. 2001;Ferry et al. 2000;Gorelova and Yang 1997;McGeorge 

and Faull 1989;Preuss 1995;Sesack et al. 1989;Vertes 2004). Previous studies already 

dissociated the mPFC-NAc core projection from the connection between mPFC and 

dorsomedial striatum regarding 5-CSRTT performance. The first system markedly affects 

aspects of response control, while the latter is principally involved in aspects of visual 

attention (Christakou et al. 2001;Christakou et al. 2004). Our results further substantiate the 

concept of functionally segregated frontostriatal connections (Alexander et al. 1986) and give 

evidence that impulse control is also differentially regulated depending on which vmPFC-

NAc subsystem is involved. Increasing evidence points to two independent limbic cortico-

basal ganglia-thalamocortical circuits, with the first network involving dorsal parts of the PFC 

and the NAc core and the second circuit comprising connections from the vmPFC to the NAc 

shell (Dalley et al. 2008;Groenewegen et al. 1999).  

 

7.3 Impulsive action versus impulsive choice 

On the basis of present knowledge it is accepted among experts that impulsivity is not a 

unitary construct and can be broadly subdivided into impulsive choice and impulsive action in 

both humans and rats, showing several dissociations particularly following neural and 

neurochemical manipulations (Broos et al. 2012;Evenden 1999b;Winstanley et al. 2006). 

However, these two types of impulsivity are similarly modulated by drugs such as the 

selective noradrenaline reuptake inhibitor atomoxetine and the psychostimulants 

methylphenidate and D-amphetamine, which are used to treat ADHD (Caballero and Nahata 

2003;de Wit et al. 2002;Robinson et al. 2008b;Robinson et al. 2009;Solanto 1998;Winstanley 

et al. 2006). Impulsive behaviour is regulated in dependence of the involved neuroanatomical 

system. As participating cortico-limbic-striatal circuits show considerable overlap regarding 

impulsive choice and impulsive action (Pattij and Vanderschuren 2008), one might 
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hypothesise that the vmPFC and the NAc contribute to both forms of impulsivity. Thus, in 

study 1 and 2, we, for the first time, directly compared the role of the vmPFC and NAc 

subregions, respectively, in these two main types of impulsive behaviour. The present 

investigations reveal that the control function of the vmPFC is impulsivity-type specific, with 

a critical contribution to impulse control in the 5-CSRTT, but without an implication in 

impulsive decision-making in the delay-discounting task. The clear-cut distinction of motor 

and choice impulsivity on the level of the vmPFC could be explained by the fact that the type 

of behavioural inhibition required in delay-based decision-making paradigms is probably 

quite different to response inhibition procedures, like the 5-CSRTT, involving the withholding 

of a motor response. In delay-discounting tasks, the organisation of motor performance is of 

minor importance and decision-making processes demanding the ability to discriminate 

between future outcomes have priority (Bari and Robbins 2013;Evenden 1999b), which are 

apparently top-down controlled by other cortical regions than the vmPFC.  

 A recent report claimed that impulsive rats in the 5-CSRTT also exhibit high levels of 

impulsive decision-making in a delay-discounting task and proposed a combined impulsive 

phenotype featuring a specific deficit in ‘waiting impulsivity’. This group further associated 

changes in a neural network including the NAc with the impulsive phenotype (Robinson et al. 

2009). The findings of study 2 indeed demonstrate the involvement of the NAc in both types 

of impulsivity, but solely with regard to the NAc shell. Hence, the present results are further 

evidence for the disparate nature of impulsive choice and impulsive action and the functional 

heterogeneity of the NAc subregions.    

Impulsivity is modulated by multiple neurotransmitter systems. Dysfunctions of the 

5-HT and DA systems have long been implicated in impulsivity. In dependence on the 

involved neuroanatomical system and participating receptor subtypes, bidirectional effects on 

distinct forms of impulsivity, namely impulsive choice versus impulsive action, are 

observable (Evenden and Ryan 1999;Pattij and Vanderschuren 2008;Robinson et al. 2008a). 

Elevated 5-HT levels in the mPFC correlate with impaired impulse control and intra-mPFC 

administration of the 5-HT2A/C receptor agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-

aminopropan hydrochloride (DOI) induces impulsive over-responding in the 5-CSRTT. On 

the other hand, 5-HT-related delay aversion is primarily regulated in the OFC among 

frontocortical structures (Dalley et al. 2002;Wischhof et al. 2011). At the level of the NAc, 

5-HT seems to play a rather minor role (Fletcher et al. 2009;Koskinen and Sirvio 

2001;Robinson et al. 2008a;Winstanley et al. 2005), whereas abnormalities in DA 
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transmission in the corticostriatal circuitry are associated with impulse control disorders 

(Genro et al. 2010;Zimmer 2009).  

 The mPFC and NAc are critical elements of the mesocorticolimbic system, comprising 

dopaminergic projections from the VTA to the mPFC (mesocortical way) and VTA DA 

neurons innervating the NAc (mesolimbic way). Hence, except for the direct glutamatergic 

excitatory projections, the mPFC can influence NAc function through cortico-limbic-striatal 

loops or connections to the VTA (Carr and Sesack 2000;Sesack et al. 2003). In turn, 

prefrontal cortical inputs are tonically and phasically modulated through D1- and D2-like 

receptors in the NAc (Goto and Grace 2005). Previous studies give reason to assume that PFC 

efferents exert an inhibitory action on DA release in the NAc and differentially modulate DA 

function in the NAc subcompartiments, underlining the heterogeneity of core and shell. The 

blockade of NMDA receptors in the PFC increases the DA release in the NAc (Del Arco and 

Mora 2008). Following systemic amphetamine administration, nuclear levels of the 

phosphorylated transcription factor CREB (calcium and cAMP response element-binding 

protein) reflecting neuronal activation are upregulated in the NAc shell, but not core, in PFC-

lesioned rats, indicating that the lesion had upregulated accumbal DA (Dalley et al. 

1999;Pezze et al. 2009). In keeping with this, impulsive action in the 5-CSRTT correlates 

with increased DA release due to reduced dopamine D2/3 receptor availability and higher D1 

receptor mRNA expression in the shell, but decreased DA release caused by lower D1 

receptor binding in the core (Diergaarde et al. 2008;Jupp et al. 2013;Simon et al. 2013). 

 Bilateral inactivation of either vmPFC or NAc shell as well as the vmPFC-NAc shell 

disconnection might have induced an increase of DA levels in the accumbens shell resulting 

in deficient impulse control. This is supported by a previous study showing that vmPFC 

inactivation results in the disinhibition of phasic excitations at the level of the NAc shell that 

can thereby be driven by dopaminergic input from the VTA promoting behavioural cue 

responding. Besides, deactivation of the vmPFC reduces the basal firing of NAc shell neurons 

that tonically suppress inappropriate actions (Ghazizadeh et al. 2012). Further evidence for 

the dependence of behavioural disinhibition on DA signalling in the NAc shell comes from 

another group demonstrating decreased reinstatement of heroine seeking following combined 

injections of muscimol and the GABAB receptor agonist baclofen into the vmPFC and the D1 

receptor antagonist SCH 23390 into the contralateral accumbens shell (Bossert et al. 2012). 

An increase in extracellular DA levels in the shell might occur in consequence of inactivation 

of this region due to its feedback loop involving the VTA. In normal conditions, terminal DA 

release in the NAc is tonically inhibited via GABAA receptors in the VTA (Ikemoto et al. 
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1997;Rahman and McBride 2002). By implication, activating GABAA receptors in the shell 

with muscimol may hyperpolarise the MSN projecting to the VTA leading to disinhibition of 

DA neurons targeting the NAc shell (see Fig. 7.1). Consistently, blockade of GABAA 

receptors within the VTA increases the discharge rate of DA neurons innervating the NAc 

(Ikemoto et al. 1997).  

 Diergaarde et al. (2008) further revealed that impulsive choice is associated with 

reduced DA reactivity in both NAc regions, confirming our findings that core as well as shell 

is involved in impulsive decision-making. The difference in the DA hypothesis in relation to 

distinct types of impulsivity suggests that impulsive behaviours are modulated by interactions 

of multiple neurotransmitters in the NAc (Winstanley et al. 2005). This might explain why the 

present inactivation of NAc shell impaired both impulse control and decision-making, 

whereas specific 5-HT lesions or DA depletions of the NAc do not change delay-discounting 

and premature responding (Cole and Robbins 1989;Fletcher et al. 2009;Winstanley et al. 

2005). Interestingly, the shell receives, as the only striatal area, significant noradrenergic 

input from regions of the caudal brainstem, like the locus coeruleus (LC) (Delfs et al. 

1998;Groenewegen and Trimble 2007). Human studies provide evidence for phasic activity of 

the neuromodulatory LC-noradrenaline system in response to the outcome of stimulus 

evaluation and internal decision-making processes (Nieuwenhuis et al. 2005). Furthermore, 

the activity of the noradrenaline (NA) transporter is known to be important in regulating 

impulsive behaviour and systemic treatment with the selective NA reuptake inhibitor 

atomoxetine decreases choice impulsivity in rats (Robinson et al. 2008b;Sun et al. 2012). The 

substantial noradrenergic innervation by the LC let suggest that NA might regulate NAc shell 

function (Berridge et al. 1997). In line with this, neurotoxic denervation of the LC projections 

reduces the DA release potential in the NAc shell (Haidkind et al. 2002). Besides, the LC 

sends noradrenergic projections to the VTA resulting in a cross-talk between dopaminergic 

and noradrenergic systems in the rat VTA with a regulative inhibitory effect of NA on VTA 

dopaminergic activity, and reciprocally (Guiard et al. 2008).  Consequently, NA dysfunctions 

or DA/NA interactions in a network comprising the mesolimbic system and caudal brainstem 

might contribute to impulsive choice behaviour (see Fig. 7.1). Moreover, intra-shell but not 

-core administration of atomoxetine decreases premature responding in the 5-CSRTT 

(Economidou et al. 2012), substantiating the shell region as a subcortical key element in the 

regulation of impulsivity.  
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Fig. 7.1 Schematic representation of anatomical connections within frontostriatal circuits (blue arrows) - 

comprising the dorsal medial prefrontal cortex (Cg1 and dorsal PL), the ventral medial prefrontal cortex (ventral 

PL and IL) and the nucleus accumbens (NAc) subregions core and shell -, the mesolimbic system from the 

ventral tegmental area (VTA) to the NAc and its noradrenergic innervation (green arrows) by the locus coeruleus 

(LC), as well as potential functional relationships between the NAc shell, the VTA and the LC regarding 

impulsive action and impulsive choice. Dopaminergic projections between the NAc and the VTA are indicated 

by red arrows, -aminobutyric acid (GABA) projections from the NAc shell to the VTA are indicated by orange 

arrows, and microinfusion sites of the GABAA receptor agonist muscimol are indicated by yellow asterisks. 

Impulsive action-modulating pathway: intra-NAc shell injection of muscimol hyperpolarises the GABAergic 

medium spiny neurons projecting to the VTA leading to a reduced tonic inhibition of dopamine (DA) neurons 

targeting the NAc shell and resulting in increased DA levels in the shell promoting impulsive action. Impulsive 

choice-modulating pathway: noradrenergic projections from the LC to the VTA induce a regulative inhibitory 

effect of noradrenaline (NA) on the firing activity of VTA DA neurons via activation of DA D2 and adrenergic 

2-receptors leading to a reduced DA release in the NAc shell associated with impulsive choice. The effects on 

neuronal activity are indicated by (+) and (-) illustrating increased and decreased neuronal firing, respectively, as 

well as green and blue circles representing the impulsive action and impulsive choice-modulating pathway, 

respectively. Cg1, dorsal cingulate cortex area 1; IL, infralimbic cortex; PL, prelimbic cortex.   
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7.4 Conclusion and future directions

Taken together, the present results corroborate the hypothesis that impulsive behaviour is not 

only subjected to top-down control by cortical structures, but also regulated at subcortical 

level. Our data indicate separable impulsivity processes in the vmPFC and NAc when rats 

make choices involving delay costs or have to control their impulses. Motor impulsivity is 

regulated by both structures, while choice impulsivity is principally modulated by the NAc, 

and not the vmPFC. Further, the current investigation suggests both functional dissociations 

and close interactions between the vmPFC and NAc in terms of impulse control, depending 

on the involved accumbal subregion. A fundamental finding of our studies is that the NAc 

shell constitutes the critical region mediating both types of impulsivity, whereas the NAc core 

caused non-specific impairments beyond impulsive choice. Consequently, our work points 

towards various specific frontostriatal systems differentially contributing to delay-based 

decision-making and particularly impulse control.   

Although it may be difficult to directly compare the gained knowledge with deficits 

following human cortical damage or with findings from animal lesion studies, the use of 

reversible inactivation techniques is an effective analytical tool in the area of basic biological 

and pharmacological research, especially for dissecting the implications of distinct 

neuroanatomical structures or systems in specific brain functions. Future animal studies could 

be conducted in a combination of functional imaging techniques (positron emission 

tomography or fMRI) with reversible inactivation procedures, like muscimol microinfusion, 

on the same experimental subjects. This would permit the verification of activated brain 

regions during performance of a specific task with the subsequent opportunity to temporarily 

deactivate the respective area and to prove its true involvement in task performance in case of 

an observed behavioural impairment. Additionally, the use of electrophysiological or 

metabolic approaches, such as measuring the change in cerebral glucose metabolism during 

inactivation, might function as an alternative to fluorescent conjugates to estimate the spatial 

extent of inactivation (Lomber 1999).  

 Impulse control disorders represent one of the main comorbidities of binge eating 

disorder (BES) (Hudson et al. 2007). Both individuals with impulse control deficits and BES 

patients display dysfunctions in the frontostriatal network (Avena and Bocarsly 2012;Balodis 

et al. 2013;Jentsch and Taylor 1999;Lock et al. 2011;Nigg and Casey 2005). The NAc is 

suggested to play a key role since reversible inactivation of the shell produces impairments of 

impulse control as well as intense hyperphagia (Feja et al. 2014;Stratford and Kelley 1997). 
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Further studies demonstrate the contribution of orexin neuropeptides to the control of binge 

eating episodes and show extensive projections of orexin neurons to the frontostriatal circuitry 

(Fadel and Deutch 2002;Piccoli et al. 2012). Thus, an interesting continuation of the current 

project could deal with the question whether both behavioural phenotypes correlate in animal 

models and, if so, which impact the orexinergic system exerts in this context within the 

frontostriatal network.   
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