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ABSTRACT

This thesis deals with the application of group sequential and adaptive methodology in three-

arm non-inferiority trials for the case of normally distributed outcomes. Whenever feasible,

use of the three-arm design including a test treatment, an active control and a placebo, is rec-

ommended by the health authorities. Nevertheless, especially from an ethical point of view, it

is desirable to keep the placebo group size as small as possible.

After giving a short introduction to two-arm non-inferiority trials, we investigate a hierar-

chical single-stage testing procedure for three-arm trials which starts by assessing the superi-

ority comparison between test and placebo and then proceeds to the test versus control non-

inferiority comparison. Based on formulas for the overall power we derive optimal sample size

allocations that minimise the overall sample size. Interestingly, the placebo group size turns

out to be very low under the optimal allocation. The optimal fixed sample size designs will

then serve both as a starting point and a benchmark for the designs determined later.

Subsequently, a general group sequential design for three-arm non-inferiority trials is pre-

sented that aims at further minimising the required sample sizes. By choosing different rejec-

tion boundaries for the two comparisons we obtain designs with quite different properties. The

influence of the boundaries on the operating characteristics such as the expected sample sizes

is investigated by means of a comprehensive comparison to the optimal fixed design. More-

over, approximately optimal boundaries are derived for different optimisation criteria such as

minimising the placebo group size. It turns out that the implementation of group sequential

methodology can further improve the optimal fixed designs, where the potential early termina-

tion of the placebo arm is a key advantage that can make the trial more acceptable for patients.

After this, the group sequential testing procedure is extended to adaptive designs that allow

data-dependent design changes at the interim analysis. In this context, we discuss optimal

mid-trial decision-making based on the observed interim data, with a special focus on sample

size re-calculation. In doing so, we will make use of the conditional power and the Bayesian

predictive power. Our investigations show the advantages of the proposed adaptive designs

over the optimal fixed designs. In particular, the possibility to adapt the sample sizes at in-

terim can help to deal with uncertainties regarding the treatment effects, that often exist in the

planning stage of three-arm non-inferiority trials.

We conclude with a discussion of the results and an outlook on possible future work.
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INTRODUCTION

At the end of a drug approval process the drug manufacturer has to provide sufficient evidence

regarding the efficacy of the respective therapy. This needs to be accomplished within two ad-

equate clinical studies comparing the experimental treatment with a control treatment. Usu-

ally, a placebo control is chosen, so that the studies aim at demonstrating that the treatment

effect of the new therapy is greater than the placebo effect, i.e. the test treatment is superior

to placebo. However, in situations when there already exists an approved treatment for the re-

spective medical indication, it does not seem to be ethically justifiable to expose patients to

placebo. Then, demonstrating the superiority over an approved active comparator would be

an obvious approach in order to prove the efficacy of the new treatment. Due to the fact that,

nowadays, most treatments on the market are highly efficacious, such a superiority claim is

infeasible in most cases as this would require extremely large sample sizes.

This is where the so-called non-inferiority trials come into play which serve as an indirect

proof of efficacy by demonstrating that the test treatment is not substantially worse than the

active control treatment. Certainly the question arises: Is there a need for a new treatment

that might be even slightly inferior to those already on the market? In this regard it could be

argued that the new therapy might have safety benefits over the standard treatment or it could

serve as a second-line treatment when the initial therapy with the standard drug has failed.

New routes of application could be another reason for approving a slightly inferior treatment.

Besides the evident problem of defining what “substantially worse” means in practical terms,

non-inferiority trials are also associated with other methodological problems. One of the ma-

jor issues is that demonstrating non-inferiority to an active control, in contrast to superiority

over placebo, does not necessarily imply a proof of efficacy for the test treatment. Without

an existing placebo group it cannot be completely ruled out that the control treatment per-

forms significantly worse than expected, potentially making the non-inferiority claim useless.

Moreover, poor study quality could diminish the treatment difference between the two groups,

resulting in a bias towards non-inferiority. Consequently, the regulatory authorities state that a

“three-armed trial with test, reference, and placebo [...] is therefore the recommended design;

it should be used whenever possible.” (CHMP, 2005b). Therefore, the three-arm design is also

denoted as the “gold standard design” (Koch and Röhmel, 2004).

After giving a short introduction to two-arm non-inferiority trials and the corresponding
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methodological issues in Chapter 1, the following chapters will deal with such three-arm ‘gold

standard’ non-inferiority trials for the case of normally distributed treatment effects. The main

focus will be placed on reducing the overall number of required patients and, in particular, on

minimising the number of subjects receiving placebo in order to make better use of the re-

sources and to make the trial more acceptable from an ethical point of view. Therefore, we will

derive optimal sample size allocations for three-arm designs with prespecified, fixed sample

sizes in Chapter 2. These optimal fixed designs will then serve both as a starting point and a

benchmark for the designs presented in the subsequent part of this work.

In most clinical trials we have prespecified, fixed sample sizes and the corresponding statis-

tical analyses are conducted only once, namely after the observations of all patients have been

recorded. In contrast, so-called group sequential designs allow to repeatedly assess the data at

various points in time and to decide on study continuation or termination, either for positive or

negative study outcomes, based on the data accrued by then. In Chapter 3 we will derive group

sequential designs for three-arm non-inferiority trials together with corresponding power and

sample size formulas. Such designs are supposed to improve the optimal fixed designs with re-

spect to overall sample size savings. Moreover, we can make use of the additional possibility to

stop allocating patients to placebo once the proof of efficacy has been shown, making the study

even more acceptable for patients. After a comprehensive comparison with the optimal fixed

designs, approximately optimal group sequential designs will be derived for certain optimality

criteria such as minimising the expected placebo group size.

In Chapter 4 we will extend the proposed group sequential designs to so-called adaptive de-

signs that allow data-dependent design changes at an interim analysis, such as sample size

re-calculations. There are various reasons for such adaptations, although the main one cer-

tainly is the ability to make better use of the available resources. In the context of three-arm

non-inferiority trials this will also give us the ability to account for uncertainties regarding the

treatment effects, which often exist in the planning stage of such trials. Moreover, we can over-

come the issue of a possible change in patient population after dropping the placebo group, by

reducing the placebo group size to a certain threshold instead of completely closing it. Through

this, potential heterogeneities can also be better identified afterwards by comparing the inde-

pendent results from the different stages. For the proposed adaptive designs we will also dis-

cuss optimal mid-trial decision-making based on the observed interim data. In doing so, we

will make use of the so-called conditional power which is the probability that the null hypothe-

sis will be rejected at the final analysis given the interim observations. The Bayesian predictive

power will also be considered, which is the Bayesian version of the conditional power.

This thesis ends with a summary and discussion of the results. In particular, we will discuss

potential issues associated with the practical application of the proposed procedures. Finally,

an outlook will give an insight into further extensions of the presented methods.



CHAPTER 1

TWO-ARM NON-INFERIORITY TRIALS

This chapter gives an introduction to two-arm non-inferiority trials starting with a short moti-

vation in Section 1.1. Section 1.2 gives an overview on the statistical methodology of a two-arm

non-inferiority trial, such as the corresponding statistical tests and sample size calculations. Fi-

nally, Section 1.3 deals with the methodological problems that arise during the planning stage

and trial conduct, such as the choice of the non-inferiority margin.

The following assumptions are made for this chapter. First of all, confirmatory phase III trials

are considered that assess the efficacy with one primary endpoint. Further, it is assumed that

higher values represent larger treatment effects. In addition, a zero treatment effect shall rep-

resent no effect and the statistical analyses are assumed to be based on the absolute difference

between the treatment effects. Thus, a treatment difference of zero means that the two treat-

ments are equally efficacious. With only few modifications the theory described is applicable

to trials based e.g. on the relative risk. No treatment difference would then be represented by

an estimated relative risk of one.

1.1 Motivation

In general, regulatory authorities such as the Food and Drug Administration (FDA) and the

European Medicines Agency (EMA) require two adequate and well-controlled trials supporting

the efficacy of the new drug for approval. Usually, the efficacy of the test treatment is assessed

in a placebo-controlled superiority trial with the set of hypotheses

H0,sup : µT −µP = 0 vs. H1,sup : µT −µP 6= 0, (1.1)

where µT , µP ∈ R represent the treatment effect of the test and the placebo treatment, respec-

tively. Superiority of the test treatment over the placebo, also denoted as efficacy of the test
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treatment, is claimed if H0,sup can be rejected and the point estimate of µT is greater than

the point estimate of µP . Superiority can similarly be shown with the one-sided hypotheses

H0,sup : µT −µP ≤ 0 vs. H1,sup : µT −µP > 0 and half of the significance level used for the two-

sided hypotheses.

Often, a placebo-controlled trial is not ethically justifiable, e.g. for oncology trials. In addi-

tion, there is a large number of proven effective treatments on the market that could also serve

as a comparator in a phase III trial. Thus, one possible approach could be to show that the test

treatment is superior to an active control treatment that has already been approved and is the

standard treatment for the medical indication of interest. However, often the treatments on the

market are highly efficacious, in which case it can be very difficult to demonstrate the superi-

ority of the new treatment, even if µT >µC , where µC ∈R represents the treatment effect of the

control treatment. This is because the treatment difference µT −µC is so small that it would

require extremely large sample sizes to obtain a sufficient power for the superiority compari-

son. In this case one could aim at demonstrating that the treatment effect of the test treatment

is comparable to that of the active comparator, which would be an indirect proof of efficacy

for the test treatment as the active control has already been shown to be superior to placebo.

Certainly, the question arises whether a treatment with a comparable or an only slightly higher

treatment effect is urgently needed. However, the new treatment could have safety benefits

over the current standard treatment or it could serve as a second-line treatment, e.g. if the ini-

tial treatment with the standard drug has failed. A new route of application (e.g. oral) could

also be a reason for approval.

A simple ad hoc approach could be to use the same set of hypotheses as for the superiority

comparison in (1.1), except that µP is replaced by µC , and try to prove the null hypothesis of

no treatment difference (Blackwelder, 1982). That means, if the null hypothesis is not rejected,

one should declare that the test treatment effect is equivalent to the treatment effect of the

active control. However, this approach is not sensible and probably leads to wrong conclusions,

because absence of evidence is not evidence of absence. In particular, it highly depends on the

sample size of the study and the true treatment difference µT −µC , that means the actual type

II error. By means of a small sample size one could thus demonstrate the equivalence of any

two treatments with this concept, even if the two treatment effects differ substantially. This

is because the type II error increases with decreasing sample size, so that the probability to

accept H0,sup , although actually µT 6=µC holds, is very high for small sample sizes. Proving the

null hypothesis of no treatment difference would thus require an infinitely large clinical trial.

However, equivalence trials provide an established approach to this problem with the set of

hypotheses

H0,eq :
∣∣µT −µC

∣∣≥∆eq vs. H1,eq :
∣∣µT −µC

∣∣<∆eq ,

where ∆eq > 0 represents the so-called equivalence margin. The margin is chosen to ensure
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that there is “no meaningful” difference between the two treatments if the null hypothesis is

rejected. A common example is the approval of a generic drug, i.e. a chemically equivalent

copy of an already approved drug, where bioequivalence trials are carried out in order to show

that the generic drug has almost the same pharmacokinetic properties as the original drug.

Another approach to trials with an active control arm are non-inferiority trials. First of all,

the term “non-inferiority” could be misleading if taken literally, because only a superiority trial

can establish real non-inferiority. The aim of a non-inferiority trial is to demonstrate that the

test treatment effect is not worse than that of the active control by more than a prespecified

amount ∆ni > 0, the so-called non-inferiority margin. The corresponding set of hypotheses of

the statistical test is given as

H0,ni : µT −µC ≤−∆ni vs. H1,ni : µT −µC >−∆ni . (1.2)

A claim for non-inferiority should then serve on the one hand as an indirect proof of efficacy,

i.e. superiority of the test treatment over putative placebo, and on the other hand as a direct

assessment of the similarity to the active comparator. In order to satisfy these two goals, the

non-inferiority margin should be determined “based on both statistical reasoning and clinical

judgment”, as it is stated in the ICH E10 guideline (International Conference on Harmonisa-

tion). The choice of ∆ni is a key element in such trials and it often turns out to be a difficult task.

Section 1.3.4 will go into more detail on this problem. Compared with equivalence trials, the

null hypothesis H0,ni is also rejected in case that the test treatment effect is substantially larger

than that of the active control. Thus, non-inferiority trials are more common in the confirma-

tory stage (phase III) than equivalence trials, not at least because one can test for superiority

without α-adjustment once H0,ni has been rejected. This follows from the closed testing prin-

ciple introduced by Marcus et al. (1976) and the fact that H0,ni is a subset of the corresponding

one-sided superiority null hypothesis, i.e. {µT −µC ≤ −∆ni } ⊂ {µT −µC ≤ 0}. An overview on

multiple testing procedures is given in Section 2.1.

Taking a look at the number of publications regarding non-inferiority trials shown in Fig-

ure 1.1, their increasing importance becomes apparent. From 1998 to 2013 there have been

33051 publications (including methodological work) that are related to non-inferiority trials

and the number of publications per year on this topic is sharply increasing. One of the first

major contributions on non-inferiority trials was by Röhmel (1998), who especially goes into

detail on the methodological problems that are associated with the design and analysis of non-

inferiority trials, such as the right choice of the non-inferiority margin ∆ni . Several issues re-

lating to non-inferiority trials are also addressed in the ICH E9 and ICH E10 guidelines, which

are two of the most important guidelines for statisticians working in the pharmaceutical indus-

try. Non-inferiority trials have become increasingly important in the recent years for many rea-

sons, especially as they raise challenging statistical problems. Not at least because of numerous

1Based on a PubMed search (accessed on May 12, 2014) for the term “non-inferiority OR noninferiority”
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Figure 1.1: Number of publications per year regarding non-inferiority trials before 2014. The
results are based on a PubMed search (accessed on May 12, 2014) for the term “non-
inferiority OR noninferiority”.
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methodological problems that are related with non-inferiority trials, there are comprehensive

regulatory guidelines regarding this topic, e.g. the Draft Guidance for Industry: Non-Inferiority

Clinical Trials by the FDA (2010b) and the Guideline on the Choice of the Non-Inferiority Mar-

gin by the Committee for Medicinal Products for Human Use (CHMP, 2005b). Furthermore,

active control non-inferiority trials are part of the FDA’s Critical Path Initiative mentioned by

O’Neill (2006), that describes emerging challenges on the critical path of drug development and

opportunities for statisticians to make contributions to these problems.

1.2 Statistical Methodology

As we have seen, non-inferiority trials have gained more and more attention in the recent years,

especially due to the increasing number of approved effective treatments on the market. Thus,

two-arm active control non-inferiority trials should serve as a substitute for placebo-controlled

superiority trials in order to obtain drug approval. The following sections will take a closer

look at the statistical methodology of two-arm non-inferiority trials with normally distributed

outcomes.

1.2.1 Statistical Model and Test Procedure

Let us first assume that all observations of the primary endpoint under the test treatment and

the active comparator are mutually independent and normally distributed with common, but
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unknown variance σ2, i.e. XT,i ∼ N (µT ,σ2), i = 1,2, ...,nT , and XC ,i ∼ N (µC ,σ2), i = 1,2, ...,nC .

The corresponding set of hypotheses for a non-inferiority trial is given in (1.2), where the

non-inferiority margin ∆ni is a small, prespecified amount greater than zero. In other words,

it should be demonstrated that the test treatment is not worse than the active comparator by

more than ∆ni (with respect to efficacy). The choice of ∆ni is not trivial and requires statistical

as well as medical considerations that need to be discussed with health authorities. Section

1.3.4 goes into more detail on this issue.

Often, the additional question arises if the test treatment significantly outperforms the active

control. Thus, a subsequent test for superiority, i.e. ∆ni = 0, could be performed once H0,ni

has been rejected. For instance, Röhmel (1998) suggests to adopt the following procedure in

a non-inferiority or superiority trial with an active control: Starting with non-inferiority and

then proceeding to superiority and, once superiority has been demonstrated, to substantial

superiority by more than ∆sup > 0 which can be data-driven. According to the closed testing

principle (Marcus et al., 1976) it is not necessary to adjust the α-level of the three hypothesis

tests, as {µT −µC ≤−∆ni } ⊂ {µT −µC ≤ 0} ⊂ {µT −µC ≤ ∆sup }. A short introduction to multiple

testing procedures will be given in Section 2.1.

The statistical analysis of H0,ni is usually based on the Student’s t-test statistic

T =
X̄T − X̄C +∆ni

σ̂

√
nT nC

nT +nC
,

where X̄T = 1
nT

∑nT

i=1 XT,i and X̄C is defined analogously. The common variance σ2 is esti-

mated by the unbiased pooled estimator σ̂2 = ((nT − 1)S2
T + (nC − 1)S2

C )/(nT +nC − 2), where

S2
i = 1

ni−1

∑ni

j=1(Xi , j − X̄i )2, i = T,C , denote the unbiased sample variances of the test and the

control group, respectively. Given H0,ni is true, it can be shown that T follows or is stochasti-

cally smaller than a t-distribution with ν= nT +nC −2 degrees of freedom. Thus, T is compared

with t1−α,ν, i.e. the (1−α)-quantile of the t-distribution with ν degrees of freedom. In confir-

matory phase III trials usually a two-sided significance level of α = 0.05 is used. According to

that, a significance level of α = 0.025 is common for phase III non-inferiority trials due to the

one-sided hypothesis testing.

In general, the interpretation of non-inferiority trials is based on a confidence interval for

the treatment difference between test and control. This has several benefits over common hy-

pothesis testing and is also recommended by the respective regulatory agencies. In accordance

with the significance level of 2.5% for the one-sided hypothesis test in confirmatory phase III

trials, one usually calculates a two-sided 95% confidence interval for µT −µC (or equivalently a

one-sided 97.5% confidence interval). For normally distributed outcomes with a common but

unknown variance σ2 the corresponding two-sided confidence interval for µT −µC is given as

X̄T − X̄C ± t1−α,nT ,nC−2 σ̂

√
1

nT
+

1

nC
.
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Figure 1.2: Six different scenarios for a non-inferiority trial with the corresponding two-sided
95% confidence intervals for the treatment difference µT −µC . Note that higher val-
ues mean that the test is better than the control treatment.
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Note that this is the two-sided (1−2α) confidence interval for µT −µC , consistent with the

one-sided hypothesis test at level α. Non-inferiority of the test treatment to the active control

is stated if the lower bound of the confidence interval exceeds −∆ni . In addition, the point esti-

mate X̄T − X̄C of the treatment difference µT −µC should not be neglected in the interpretation

of a non-inferiority trial.

Figure 1.2 shows six different outcomes of a non-inferiority trial represented by the two-sided

95% confidence interval for the treatment difference µT −µC . First of all, the scenarios can be

divided into two groups: trials, where non-inferiority of the test treatment to the active com-

parator could (scenarios (3)-(6)) and could not be concluded (scenarios (1) and (2)). However,

there are major differences between the scenarios within the two groups, depending on the

boundaries of the corresponding confidence interval and the point estimate. For the first two

scenarios the lower bound of the confidence interval is less than −∆ni , indicating that non-

inferiority could not be shown. For scenario (1) the test treatment is also significantly inferior

to the active comparator as the upper bound of the confidence interval is less than zero. In

contrast, the point estimate for scenario (2) suggests that the test treatment might be (slightly)

superior to the control. The large confidence interval indicates that the study is underpow-

ered, e.g. due to an underestimation of the standard deviation during the planning stage. In

this case a larger sample size might have saved the study resulting in a narrower confidence

interval that excludes −∆ni . In scenarios (3) and (4) the confidence interval lies completely to

the right of −∆ni , therefore non-inferiority can be concluded. Nevertheless, both scenarios dif-

fer substantially as the point estimates of these two scenarios are contrary. In scenario (3) the

point estimate indicates that the test treatment is slightly inferior to the active control, whereas
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the point estimate of scenario (4) suggests that the test treatment is even superior to the con-

trol. With an only slightly higher sample size even superiority might have been demonstrated,

as it is the case for scenario (5) where the confidence interval completely exceeds zero. The

last scenario represents an unusual outcome of a non-inferiority study, that is associated with

interpretive problems. As we can see, the point estimate favours the active control and even

superiority to the test treatment can be demonstrated as the upper bound of the confidence

interval is less than zero. Furthermore, the lower bound of the confidence interval is greater

than −∆ni . In other words, the test treatment is at the same time inferior and non-inferior to

the active comparator which is a contradiction in terms. Nonetheless, with such an outcome it

is valid to state that the test treatment is non-inferior to the active control. If this is not accept-

able, one should reconsider the choice of the non-inferiority margin which is probably chosen

too large. However, such an outcome is rather rare in practice and would require a very high

sample size, as the non-inferiority margin usually is very small. If a far too high standard de-

viation for the sample size calculation is assumed, such an outcome might occur. Thus, such

a scenario should be discussed while planning the trial, especially if there are uncertainties

regarding the standard deviation.

1.2.2 Power and Sample Size

Besides the significance level, which is also denoted as the consumer’s risk, the statistical power

is of main importance for the producer, especially during the planning stage of a clinical trial.

The power, which is the probability to correctly reject the null hypothesis, is mainly influenced

by the sample size of the study. Thus, a carefully conducted sample size determination will

help controlling the producer’s risk of falsely accepting the null hypothesis. As soon as initial

assumptions on the design parameters are made, e.g. through a literature research, one cal-

culates the required sample size to reject the null hypothesis with a certain amount of power,

given a specific alternative.

Let us assume that the sample size of the control group is defined as a fraction of the test

group sample size, i.e. nC = cC nT with cC > 0. Usually, cC = 1 is chosen as the balanced design

has the largest power of all sample size allocations if the two treatments have equal variances.

However, it is sometimes advisable to choose cC < 1, i.e. nC < nT , in order to collect more safety

data on the test treatment or to improve the patients’ willingness to participate in the study. The

test statistic T of the non-inferiority comparison is noncentral t-distributed with nT +nC −2

degrees of freedom and noncentrality parameter µT −µC+∆ni

σ

√
nT nC

nT +nC
. Thus, the power of the

non-inferiority test is given as

1−β= PµT ,µC

(
T ≥ t1−α,nT +nC−2

)

= 1−TnT +nC−2

(
t1−α,nT +nC−2

∣∣∣∣
µT −µC +∆ni

σ

√
nT nC

nT +nC

)
,
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where Tν(· | γ) denotes the cumulative distribution function of the noncentral t-distribution

with ν degrees of freedom and noncentrality parameter γ. With a predefined fraction cC , the

sample sizes nT and nC can be found as a solution of this equation. For large sample sizes,

which are common for non-inferiority trials, the test statistic is approximately normal dis-

tributed with mean µT −µC+∆ni

σ

√
nT nC

nT +nC
and variance 1. Thus, the power can be approximated

by

1−β≈Φ

(
µT −µC +∆ni

σ

√
nT nC

nT +nC
− z1−α

)
,

where Φ(·) and zγ denote the cumulative distribution function and the γ-quantile of the stan-

dard normal distribution, respectively. According to this, the approximate sample sizes of the

test and the control group are obtained as

nT =

(
z1−α+ z1−β

)2
σ2

(
1+ 1

cC

)

(
µT −µC +∆ni

)2
and nC = cC nT . (1.3)

The sample size calculation of non-inferiority trials is usually carried out under the alternative

of no treatment difference, i.e. µT = µC . However, if the true test treatment effect is less than

that of the active comparator, the sample size calculated for equal treatment effects might be

far too small. Furthermore, it becomes obvious that the non-inferiority margin has a strong

influence on the sample size. For instance, assuming µT = µC the sample sizes nT and nC get

quadrupled if ∆ni is cut in half. Equation (1.3) also illustrates why the sample size of a test

vs. control non-inferiority comparison usually is much higher than that of a test vs. placebo

superiority comparison. Assuming µT = µC , the divisor in the sample size formula of the non-

inferiority trial is ∆
2
ni , whereas for the superiority trial the divisor is (µT −µP )2. As the non-

inferiority margin is often chosen as a fraction of the treatment difference µC −µP (= µT −µP )

observed in former trials, this results in a much higher sample size in the non-inferiority trial.

However, it should be noted that the choice of ∆ni is not trivial and associated with several

issues that need to be taken into consideration.

1.3 Methodological Problems

This section addresses methodological problems that can arise in the context of two-arm non-

inferiority trials. Although there have been several publications regarding these issues (e.g.

Röhmel, 1998; D’Agostino et al., 2003), practitioners still experience difficulties in such trials.

For instance, there is often no agreement on the right choice of the non-inferiority margin,

which is one of the most crucial points in the planning stage of a non-inferiority trial. Even

though the right choice of ∆ni highly depends on certain factors such as the respective medi-

cal indication, the regulatory authorities published several guidelines regarding non-inferiority

trials (CPMP, 2000; CHMP, 2005b; FDA, 2010b) in order to give general guidance on this topic.



1.3 METHODOLOGICAL PROBLEMS 11

1.3.1 Choice of the Active Control Group

Once non-inferiority has been specified as the trial objective, e.g. for ethical reasons, the first

question that arises is which active control group should be chosen. The huge importance of

this step is reflected by the fact that the ICH E10 guideline on the Choice of the Control Group

and Related Issues in Clinical Trials has been developed specifically for this purpose.

Potential control treatments are found through an extensive literature research and need to

fulfil certain criteria. First of all, there needs to be sufficient historical evidence for the effi-

cacy of the active control. Ideally, there exist several placebo-controlled superiority trials that

consistently support the efficacy of the potential active comparator. If the active control has

a volatile treatment effect, i.e. the results of the respective trials are inconsistent with one an-

other, this could create problems in the interpretation of the non-inferiority trial. For instance,

the test treatment could be non-inferior to the active comparator, although both treatments do

not even outperform the placebo treatment with respect to efficacy. The so-called constancy

assumption is sometimes questionable, as the placebo and the control treatment effect might

have changed over time, e.g. due to improvements in the standard medical care. Thus, the

study design and conduct of the non-inferiority trial should be as similar as possible to the

historical placebo-controlled superiority trials, e.g. regarding the primary endpoint and the pa-

tient population, in order to increase the confidence in the results. However, even if the present

and the historical trials are exactly the same with respect to trial conduct and study design, the

constancy assumption might be of concern, as stated by Julious and Wang (2008). They found

evidence that the placebo effect improves over time, a phenomenon called placebo creep, which

might lead to a decrease of the drug effect. In addition, relative metrics for the primary end-

point such as the relative risk, or the risk ratio, should be preferred to absolute metrics, as they

are more likely to be constant.

Furthermore, care should be taken to ensure that the chosen active comparator is the “best”

available treatment on the market with respect to efficacy. Otherwise, a phenomenon called

Figure 1.3: Biocreep illustrated by a hypothetical example where progressively less effective ac-
tive comparators are used in three consecutive non-inferiority trials.

Treatment effect
0

∆ni

∆ni

∆ni

µ1µ2µ3µ4

Placebo effect
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biocreep might occur over the course of time, which is illustrated in Figure 1.3. Suppose treat-

ment two is shown to be non-inferior to treatment one although it is slightly inferior (µ1−∆ni <
µ2 < µ1). If treatment two is chosen as the active comparator for a slightly inferior third treat-

ment in another non-inferiority trial and so on, the active controls could become inferior to

placebo. Everson-Stewart and Emerson (2010) conducted an extensive simulation study in or-

der to investigate which factors might lead to biocreep. They found that violations of the con-

stancy assumption can lead to high rates of biocreep, although altogether biocreep was fairly

rare.

1.3.2 Assay Sensitivity

Another critical point in two-arm non-inferiority trials is the assessment of assay sensitivity,

which is “a property of a clinical trial defined as the ability to distinguish an effective treatment

from a less effective or ineffective treatment” (ICH E10, Section 1.5). In a superiority trial com-

paring an experimental treatment with an active control, the rejection of the null hypothesis

not only implies that there is a treatment difference but also that the study had sensitivity to

detect it. In contrast, the rejection of the null hypothesis in a non-inferiority trial could arise

from poor study quality as will be seen in the following and it is nearly impossible to assess the

degree of assay sensitivity.

The ICH Expert Working Group (2000) mentions two factors that indicate if a two-arm non-

inferiority trial has assay sensitivity. Firstly, there should be several similarly designed trials,

i.e. same patient population, primary endpoint etc., that were able to demonstrate a treatment

difference between two (or more) treatments (Historical evidence of sensitivity to drug effects).

In addition, the similarity of the trial conduct with that of recent trials should be assessed af-

terwards to detect potential changes, e.g. of the study population. Note that the constancy

assumption also highly depends on this similarity (cf. Section 1.3.1). Secondly, in contrast to

superiority trials where poor study quality will bias the trial towards the null hypothesis of

no treatment difference, appropriate trial conduct is even more important in two-arm non-

inferiority trials. For instance, poor compliance could diminish the difference between the two

treatments and a substantially inferior treatment might be declared as non-inferior, i.e. effec-

tive. Furthermore, there are several other potential reasons for a decrease of assay sensitivity,

such as interferences with concomitant medications and a poorly responsive study population.

In summary, high study quality and similarity to historical trials that showed sensitivity to drug

effects can serve as evidence for assay sensitivity. However, without a present placebo group a

lack of assay sensitivity can never be ruled out.

1.3.3 Choice of the Analysis Population

The right choice of the analysis population is another crucial point in two-arm non-inferiority

trials that is closely related to the assessment of assay sensitivity. However, this issue has not
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been discussed in the literature to the same extent as the previously mentioned issues. In gen-

eral, there exist two types of analysis sets, the full analysis set (FAS) on the one hand and the

per protocol set (PPS) on the other.

The FAS is defined according to the intention-to-treat (ITT) principle mentioned in the ICH

E9 guideline, where the treatment effect is evaluated on the basis of the intention to treat a

patient instead of the actual treatment given. The FAS is as close as possible to this ideal and

is generated by the set of all randomised patients with only minimal and justified eliminations

defined prior to the trial. For instance, common reasons for an exclusion from the FAS are a

failure to take at least one dose of study medication or violations of major inclusion criteria.

The use of the FAS preserves the value of randomisation and, moreover, provides results that

are more likely to reflect reality.

The PPS is derived as the subset of patients in the FAS who sufficiently complied with the

study protocol and is often characterised by the following criteria: 1. Certain minimal exposure

to the treatment; 2. Available measurements of the primary variable(s); 3. No major protocol

violations such as violations of entry criteria. The main advantage of an analysis based on the

PPS is the ability to estimate the drug’s efficacy potential under optimal conditions. However,

the exclusion of patients who do not adhere to the study protocol breaks the randomisation,

so that a per protocol analysis can be biased considerably. Depending on the relationship be-

tween adherence to the study protocol and treatment or outcome, this bias can be in both

directions. Most often, however, a per protocol (PP) analysis leads to over-optimistic estimates

of the treatment effects, as ‘problematic’ patients tend to be excluded from the PPS.

In superiority trials the FAS is commonly accepted as the primary analysis set of choice, as an

ITT analysis provides a conservative analysis approach. Non-compliers will generally diminish

the difference between the two treatment groups, resulting in a bias towards the null hypothesis

of no treatment difference. Thus, it will usually be more difficult to demonstrate superiority

with an ITT analysis than based on the PPS. In contrast, there is still no consensus on the role

of the FAS in non-inferiority trials. In the ICH E9 guideline it is stated that “in an equivalence

or non-inferiority trial the use of the full analysis set is generally not conservative and its role

should be reconsidered very carefully”. This has often been mistakenly interpreted to mean

that the PPS is a conservative choice and should be the primary analysis set in non-inferiority

trials. However, analysing a non-inferiority study based on the PPS is not conservative per se,

as e.g. major protocol deviations might be related to the treatment or outcome. For this reason

the CPMP (2000) recommends that “in a non-inferiority trial, the full analysis set and the PP

analysis set have equal importance and their use should lead to similar conclusions for a robust

interpretation”. But this strategy also not necessarily guarantees valid conclusions, as it was

shown by Sanchez and Chen (2006). Their simulation study revealed that analyses based on

the FAS and the PPS in non-inferiority studies can be both conservative and anti-conservative,

depending on the types of protocol violations and missingness. They proposed that a so-called

hybrid ITT/PP analysis, which excludes non-compliant patients as in a PP analysis and properly



14 CHAPTER 1 TWO-ARM NON-INFERIORITY TRIALS

addresses the missing data as in an ITT analysis, would result in more reliable study results.

Some other interesting issues regarding the choice of the analysis set in non-inferiority trials

have been mentioned by Wiens and Zhao (2007). They think that the justifications to use the

FAS in superiority trials also carry over to non-inferiority trials. For instance, they argue that an

analysis based on the FAS preserves the value of randomisation and estimates the “real-world”

effectiveness. Moreover, the use of different analysis sets for superiority and non-inferiority

comparisons could lead to inconsistencies. The question arises whether an α-adjustment is

necessary for a subsequent superiority test, based on the FAS, after non-inferiority has been

demonstrated, based on the PPS. The adequate handling of missing data is also closely related

to the right choice of the analysis population, as it was also mentioned by Sanchez and Chen

(2006). This topic has become more and more important in the recent years, but publications

regarding this matter almost exclusively deal with the superiority objective. Yoo (2010) con-

ducted a comprehensive simulation study to investigate the impact of different types of miss-

ingness on six different statistical analyses in a non-inferiority trial. It turned out that none of

the six statistical methods uniformly outperformed the others in terms of controlling the type

I error rate. Nevertheless, there is a need for further investigations on methods dealing with

missing data in non-inferiority trials.

1.3.4 Choice of the Non-Inferiority Margin

Last but not least, the probably most critical step is to determine the non-inferiority margin

∆ni . Due to the major importance of this step, suggestions on the right choice of ∆ni are given

in several regulatory guidelines (ICH Expert Working Group, 1998, 2000; CPMP, 2000). The

FDA’s Guidance for Industry: Non-Inferiority Clinical Trials (FDA, 2010b, Draft Version) also

contains a whole chapter on choosing the non-inferiority margin and analysing the results of

a non-inferiority trial. Moreover, the EMA published the Guideline on the Choice of the Non-

Inferiority Margin that solely addresses this problem (CHMP, 2005b).

It seems obvious that the non-inferiority margin should be chosen in advance of the study

and independently of the significance level. Furthermore, its choice should not depend on the

power, because the extent of a clinically acceptable loss of efficacy does not alter with the sam-

ple size. There is, however, a general conflict of interest between the pharmaceutical compa-

nies and the regulatory authorities. The companies tend to choose a larger margin, whereas the

authorities often want smaller margins. In the first instance, it is most important to clarify what

exactly is the objective of the trial, because “demonstrating non-inferiority” is no sufficient trial

objective. On the one hand, the main focus could be on the indirect comparison between the

test treatment and placebo, i.e. an ordinary proof of efficacy. On the other hand, the direct

comparison to the active comparator could be of major interest, e.g. to show that the treatment

difference between test and control is negligible from a medical point of view. In practice, usu-

ally both the direct and the indirect comparison are of interest and the non-inferiority margin

is chosen as a trade-off between the two. According to this, it is stated in the ICH E10 guideline
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that the choice of the non-inferiority margin should be “based on both statistical reasoning and

clinical judgment”. Statistical reasoning relates to the indirect comparison, where a margin is

chosen based on the historical placebo-controlled trials in order that non-inferiority implies

a proof of efficacy, whereas clinical judgement refers to the direct comparison, i.e. the margin

is chosen as a clinically acceptable loss of efficacy. This is also in line with the FDA (2010b),

who suggest to determine both a conservative estimate of the historical treatment difference

between the active control and placebo and the largest clinically acceptable difference between

the two treatments, with the non-inferiority margin being the smaller of these two values. In

contrast to this, the choice of the equivalence margin in bioequivalence trials is entirely based

on medical considerations, as the placebo effect is equal to zero and there is no need for an

indirect comparison to placebo.

If the aim of the non-inferiority study is to demonstrate that the test treatment has an ef-

fect greater than zero, the margin is chosen on the basis of the historical trials comparing the

active comparator with placebo. Ideally, there are more than one of these trials, so that the non-

inferiority margin is determined through a meta-analysis. In order to account for uncertainties,

the margin is usually chosen as the lower bound of the two-sided 95% confidence interval for

the treatment difference between the active comparator and placebo (µC −µP ). As it is some-

times desired that the test treatment furthermore retains a specific amount of the control treat-

ment effect, the margin is often chosen as a fraction of this lower bound, e.g. a preservation of

at least 50% of the control treatment effect is a common choice in several medical indications.

This further decrease of the margin also accounts for potential uncertainties, e.g. regarding the

constancy assumption.

The approach described above is denoted as the fixed margin approach or the 95%-95%

method, where the first 95% refer to the confidence interval used to determine the margin and

the second 95% refer to the confidence interval for the non-inferiority comparison between

the test treatment and the active comparator. “Fixed” means that the non-inferiority margin

is completely prespecified in advance by means of the historical data. The main advantage of

this approach is that it provides a good basis for sample size calculations and the margin is

clinically understandable. However, this method is rather conservative and obviously not sta-

tistically efficient, so that several other methods have been developed in the recent years to

overcome these problems.

In contrast to the fixed margin approach, which is a two-step procedure, the other meth-

ods only consist of one step that tests either if the test treatment is superior to placebo or if a

certain fraction of the control effect (relative to placebo) is retained by combining the histori-

cal and the current data as if they were from one randomised trial. According to this, no fixed

non-inferiority margin is specified. As the data from all trials over time are “synthesised”, these

procedures are also denoted as synthesis methods. They might be statistically more efficient

than the fixed margin approach, but the constancy assumption is even more crucial for them

due to the combination of data from potentially quite different trials. Hung et al. (2009) and
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the relevant references cited therein give a good overview on the advantages and drawbacks

of the two approaches. In general, the use of synthesis methods is limited in practice as med-

ical considerations cannot be incorporated. Thus, the fixed margin approach is the method

of choice, which is also reflected by the fact that, to the knowledge of the author, there have

been no non-inferiority trials evaluated based on synthesis methods. However, even though

the fixed margin approach is rather conservative, an indirect comparison to placebo remains

critical due to uncertainties about crucial assumptions.

1.4 Summary

As we have seen, non-inferiority trials have become more and more important in the recent

years, not least because of the increasing number of highly efficacious treatments on the mar-

ket. In many cases it is not ethically justifiable to expose patients to placebo, so that active-

controlled non-inferiority trials can serve as a substitute for placebo-controlled superiority tri-

als. Besides the indirect comparison to placebo, i.e. the proof of efficacy, non-inferiority trials

furthermore aim at a direct assessment of the similarity to the active comparator. As “demon-

strating non-inferiority” is no sufficient trial objective, it is essential in a non-inferiority study

to predefine the main objective, i.e. either the indirect proof of efficacy or the assessment of

similarity to the control treatment.

The statistical methodology of two-arm non-inferiority trials is straightforward and inter-

pretations are usually based on the corresponding two-sided confidence intervals. Especially

switching to a superiority test, once non-inferiority has been demonstrated, is very intuitive

using confidence intervals, also because there is no need for an adjustment of the α-level.

However, there are several methodological problems associated with the design and the

analysis of two-arm non-inferiority trials. When choosing the active comparator, it is important

to assess whether the constancy assumption might be violated. Differing results in the histori-

cal studies comparing the control with placebo may indicate that the active comparator has a

volatile treatment effect, i.e. the constancy assumption does not hold. Furthermore, the assess-

ment of assay sensitivity remains critical when there is no placebo group included in the trial.

Otherwise, it can not be ruled out that the test treatment is demonstrated to be non-inferior to

the active comparator, although both treatments are not even superior to placebo.

Thus, the three-arm design, including a test, an active control and a placebo group, is the

design of choice for therapeutic indications where these critical assumptions are question-

able. Common examples are the treatment of asthma, panic disorder or migraine, where the

three-arm design is furthermore advocated in the respective regulatory guidelines of the CPMP

(2003) and the CHMP (2005a, 2007a). In addition, the CHMP (2005b) states that a “three-armed

trial with test, reference, and placebo allows some within-trial validation of the choice of non-

inferiority margin and is therefore the recommended design; it should be used whenever pos-

sible.”.
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Finally, it should be noticed that there are also reasons to include an active comparator into

a placebo-controlled superiority trial. For instance, superiority to placebo might be less mean-

ingful if the standard treatment significantly outperforms the experimental treatment as men-

tioned by Koch and Röhmel (2004). Moreover, the preservation of a specific fraction of the

control treatment effect can be adequately addressed in a three-arm trial.





CHAPTER 2

THREE-ARM NON-INFERIORITY TRIALS

As we have seen in the previous chapter, the three-arm design, including a test treatment, an

active control and a placebo, is recommended by the regulatory authorities and “it should be

used whenever possible” (CHMP, 2005b). Therefore, it is also denoted as the “gold standard

design” (Koch and Röhmel, 2004). In particular, it is the design of choice for medical indications

where the constancy assumption and the assessment of assay sensitivity are critical, as e.g. in

the treatment of depression.

This chapter gives an overview on the design and analysis of such three-arm non-inferiority

trials and related statistical issues. As several hypotheses are of interest in three-arm trials, a

short introduction to multiple testing is given in Section 2.1. The subsequent Section 2.2 gives

a brief overview on a statistical approach for three-arm non-inferiority trials called the effect

retention approach. This approach examines whether the test treatment preserves a specific

amount of the control treatment effect relative to placebo. However, as the effect retention

test has only rarely been used in practice, the main focus of this chapter (and this work) is on

procedures with a fixed, prespecified non-inferiority margin ∆ni (cf. Section 1.3.4) which are

addressed in Section 2.3. Besides the statistical test procedure as well as power and sample size

calculations, optimal sample size allocations are determined for the proposed design. The re-

sulting optimal single-stage design should then serve as a benchmark for the group sequential

and adaptive designs derived in the subsequent part of this work.

2.1 Multiple Testing

Obviously, three different comparisons can be of interest in three-arm trials , namely: test vs.

placebo, control vs. placebo, test vs. control. Thus, we are confronted with a so-called multi-

plicity problem. Without adequately handling this problem the familywise error rate (FWER)

might not be controlled, i.e. the probability of committing at least one type I error among the
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three comparisons mentioned above. In confirmatory clinical trials control of the FWER is of

utmost importance and a fundamental prerequisite for study approval.

Multiplicity problems can also occur in several other situations, such as in clinical trials

with multiple primary endpoints, interim analyses or subgroup analyses. Switching from non-

inferiority to superiority in a two-arm trial as it was described in Section 1.2.1 is another exam-

ple. In order to cover a large variety of situations the following introduction to multiple testing

is formulated in a very general manner.

2.1.1 Motivation

To get an impression on how far the FWER gets inflated for a specific number of statistical tests

without adjustment, let us consider the following hypothetical example. Suppose k null hy-

potheses H0,1, ..., H0,k are tested with k independent local level α tests. Assuming the global null

hypothesis that all individual null hypotheses H0,1, ..., H0,k are true simultaneously, the proba-

bility to reject at least one of the null hypotheses is obtained as

P
(
∃ i ∈ {1, ...,k} : H0,i is rejected

)
= 1−P

(
∀ i ∈ {1, ...,k} : H0,i is not rejected

)

= 1−
k⋂

i=1
P

(
H0,i is not rejected

)
︸ ︷︷ ︸

=1−α

= 1− (1−α)k . (2.1)

For a differing number of statistical tests at local level α = 0.05, the probability of committing

at least one type I error is shown in Table 2.1. As we can see, only one additional test at local

level α= 0.05 results in a doubling of the FWER under the global null hypothesis. Moreover, for

k = 14 tests at local level α= 0.05 the FWER even exceeds 50%, so that committing at least one

type I error is more likely than making only correct decisions.

In the example above, the FWER was computed under the global null hypothesis that all in-

dividual null hypotheses H0,1, ..., H0,k are true at the same time. Controlling the FWER under

the global null hypothesis is also known as weak control of the FWER. Assuming that all individ-

ual null hypotheses are true simultaneously, however, is not realistic for most clinical trials. For

instance, in a dose-finding trial comparing several doses of an experimental treatment with

placebo, the treatment effects are very likely to differ across the dose levels. In this case, the

FWER should be controlled for any configuration of true or false individual null hypotheses,

Table 2.1: Probability of committing at least one type I error among k independent tests at local
level α= 0.05, assuming that all corresponding null hypotheses H0,1, ..., H0,k are true.

k 1 2 3 4 5 10 13 14 20 50
1− (1−0.05)k 0.05 0.10 0.14 0.19 0.23 0.40 0.49 0.51 0.64 0.92
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i.e. any possible scenario for the parameters of interest (e.g. the mean treatment differences be-

tween each dose and placebo). This is referred to as strong control of the FWER and the CPMP

(2002) states in their Points to Consider on Multiplicity Issues in Clinical Trials that “control of

the family-wise type I error in the strong sense [...] is a minimal prerequisite for confirmatory

claims”.

2.1.2 Šidák and Bonferroni Correction

A very simple approach to control the FWER in the strong sense can be derived by means of

(2.1) resulting in local significance levels 1− k
p

1−α. This adjustment is called the Šidák correc-

tion (Šidák, 1967) and the proof of strong FWER control is straightforward but assumes inde-

pendent local tests. Suppose, the null hypotheses H0,1, ..., H0,k are simultaneously tested using

the Šidák correction. Let further P1, ...,Pk denote the corresponding independent random p-

values and let I0 be the set of indices of all true null hypotheses, so that obviously |I0| ≤ k.

Then, it follows that

P

(
⋃

i∈I0

{
Pi ≤ 1− k

p
1−α

})
= 1−P

(
⋂

i∈I0

{
Pi > 1− k

p
1−α

})

= 1−
⋂

i∈I0

P
(
Pi > 1− k

p
1−α

)

︸ ︷︷ ︸
= kp1−α

= 1− (1−α)|I0|/k ≤α.

As this holds for any configuration of true and false null hypotheses, the Šidák method controls

the FWER in the strong sense (assuming independence). In clinical trials, the assumption of

independence often does not hold, e.g. multiple primary endpoints are almost always corre-

lated. However, it can be shown that the Šidák method provides strong FWER control if the

corresponding test statistics are positively orthant dependent which holds for many common

testing situations (Holland and DiPonzio Copenhaver, 1987).

Without further assumptions on the corresponding test statistics, Dunn (1961) provided a

simple but conservative approach for strong FWER control by dividing the local significance

levels by the number of statistical tests performed, i.e. local significance levels α/k. The proof

of strong FWER control is also straightforward and applies the Bonferroni inequality wherefore

this approach is generally known as the Bonferroni correction. For all possible combinations of

true and false null hypotheses the FWER is obtained as

P

(
⋃

i∈I0

{
Pi ≤

α

k

})
≤

∑

i∈I0

P
(
Pi ≤

α

k

)
= |I0|

α

k
≤ k

α

k
=α. (2.2)

Thus the Bonferroni correction provides a simple general approach for strong FWER control,

even though it is very conservative in most situations. As α/k < 1− k
p

1−α holds for k ≥ 2, the

Bonferroni method is less powerful than the Šidák method, but the loss in power is negligible.

A generalisation of the Bonferroni method arises when the overall significance level α is not



22 CHAPTER 2 THREE-ARM NON-INFERIORITY TRIALS

equally distributed among the individual tests, reflecting differing importance of the respective

null hypotheses. Suppose that weights wi ≥ 0, i = 1, ...,k, are chosen such that
∑k

i=1 wi = 1 and

the local significance levels are defined as αi = wiα. Then it can be shown analogously to (2.2)

that the so-called weighted Bonferroni method controls the FWER in the strong sense. This

allows to increase the probability to reject more important null hypotheses (wi > α/k), but in

turn the rejection probability of less important null hypotheses (wi <α/k) decreases.

2.1.3 Dunnett’s Test

In certain situations there is a precise knowledge of the dependencies between the respective

individual test statistics. For instance, in many-to-one comparisons where several treatments

are compared with a control, the joint distribution of the corresponding test statistics is known.

Dunnett (1955) exploited this knowledge to derive a test that is uniformly more powerful than

the Bonferroni test in case of a many-to-one comparison.

Let us consider Dunnett’s approach for simultaneously comparing two treatments (denoted

with 1 and 2) with a control (denoted with 0). Let Xi , j ∼ N (µi ,σ2), j = 1, ...,ni , i = 0,1,2, be the

independent observations of the three treatment groups with common but unknown variance

σ2. Let further N =
∑2

i=0 ni denote the overall sample size. Without loss of generality larger

values of Xi , j are assumed to be desirable. The individual one-sided null hypotheses and cor-

responding tests statistics of the two comparisons are given as

H0,i : θi =µi −µ0 ≤ 0 and Ti =
X̄i − X̄0

σ̂

√
ni n0

ni +n0
, i = 1,2,

with X̄i = 1/ni
∑ni

j=1 Xi , j , i = 0,1,2 and σ̂2 =
∑2

i=0

∑ni

j=1(Xi , j − X̄i )2/(N −3) denoting the sample

means, the unbiased sample variances and the unbiased pooled estimator of σ2, respectively.

Let us first derive a critical value dα so that the FWER under the global null hypothesis H0 =
H0,1 ∩H0,2 equals α, i.e. weak FWER control. dα can thus be derived as a solution of

Pθ=0 ({T1 ≤ dα}∩ {T2 ≤ dα}) = 1−α, (2.3)

where θ = (θ1,θ2)′ = (µ1 −µ0,µ2 −µ0)′ and 0 = (0,0)′. Note that all vectors and matrices shall be

indicated in bold in the following. The vector of test statistics (T1,T2)′ can be written as

(T1,T2)′ =

(
X̄1−X̄0

σ

√
n1n0

n1+n0
, X̄2−X̄0

σ

√
n2n0

n2+n0

)′

σ̂/σ
=:

Z

V
. (2.4)

The numerator Z obviously follows a bivariate normal distribution with mean vector θ∗ and

variance-covariance matrix Σ∗ given as

θ∗ =
(
θ1

σ

√
n1n0

n1 +n0 ,

θ2

σ

√
n2n0

n2 +n0

)′
and
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Σ
∗ =

(
1 ρ

ρ 1

)
with ρ =

√√√√
1(

1+ n0
n1

)(
1+ n0

n2

) . (2.5)

Interestingly, the correlation ρ between the two test statistics merely depends on the alloca-

tion ratios between the three treatment groups, namely n0/n1 and n0/n2. As further V 2 ∼
χ2

N−3/(N −3) and Z and V are independent it follows from (2.4) that (T1,T2)′ is bivariate non-

central t-distributed with N −3 degrees of freedom, vector of noncentrality parameters θ∗ and

variance-covariance matrix Σ∗ given in (2.5). By means of the distribution function of the bi-

variate noncentral t-distribution the left-hand side of Equation (2.3) can be calculated numer-

ically and the critical value dα is determined as a solution of this equation (depending on α, N

and the ratios n0/n1 and n0/n2).

Under the global null hypothesis, the FWER of the Bonferroni method using the critical value

tα/2,N−3 is less than (and not equal to) α, whereas the unadjusted test procedure with critical

value tα,N−3 has a FWER greater than α. Thus, we have the relationship

Pθ=0

(
2⋂

i=1

{
Ti ≤ tα,N−3

}
)
< Pθ=0

(
2⋂

i=1
{Ti ≤ dα}

)

︸ ︷︷ ︸
=1−α

< Pθ=0

(
2⋂

i=1

{
Ti ≤ tα/2,N−3

}
)

. (2.6)

As the distribution function of the bivariate t-distribution at (x, x) is strictly increasing in x, it

follows from (2.6) that

tα,N−3 < dα < tα/2,N−3. (2.7)

According to the left inequality in (2.7) we obtain

∀i = 1,2 : Pθi=0 (Ti ≥ dα) < Pθi=0
(
Ti ≥ tα,N−3

)
=α,

so that Dunnett’s test controls the FWER also in the strong sense. The right inequality in (2.7)

shows that Dunnett’s test always rejects more null hypotheses than the Bonferroni test, i.e.

Dunnett’s test is more powerful. A generalisation of Dunnett’s test to more than three treatment

groups is straightforward (see Dunnett, 1955).

2.1.4 Fixed Sequence Procedure

In many clinical studies there is a natural hierarchy between the corresponding null hypotheses

to be tested, e.g. in studies with multiple endpoints some might be clinically more important

than others. In such cases the fixed sequence procedure (Maurer et al., 1995) provides a simple

but powerful approach to deal with the multiplicity issue. It assumes that the null hypotheses

H0,1, ..., H0,k are a-priori ordered in such a way that the lower the index the more important

is the corresponding null hypothesis, i.e. if i < j then H0,i is more important than H0, j . The
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procedure starts with testing the first null hypothesis H0,1 at level α. If it is rejected, the second

null hypothesis H0,2 is tested at levelα and so on. The procedure stops as soon as an acceptance

occurs or all null hypotheses have been rejected.

In order to show that the procedure provides strong FWER control let k∗ = mini∈I0 (i ) de-

note the lowest index of all true null hypotheses, where I0 is the set of indices of all true null

hypotheses. Then obviously

P
(
∃ i ∈ I0 : H0,i is rejected

)
≤ P

(
H0,k∗ is rejected

)
=α,

because at least H0,k∗ has to be rejected in order to reject any true null hypothesis and hence

commit a type I error. In this context H0,i−1 is also called a gatekeeper for the subsequent null

hypothesis H0,i , as H0,i−1 has to be passed in order to test H0,i .

2.1.5 Closed Testing Procedure

The closed testing procedure proposed by Marcus et al. (1976) plays a key role in the field of

multiple testing procedures and nearly all multiple testing methods applied in clinical trials

can be seen as an application of the corresponding closure principle.

Suppose k individual null hypotheses H0,1, ..., H0,k should be simultaneously assessed by

means of the closed testing principle. First, all possible 2k−1 intersections of the individual null

hypotheses need to be determined with valid local level α tests for each intersection hypothe-

sis. Then an individual null hypothesis H0,i is rejected if and only if all intersection hypotheses

containing H0,i are rejected by their local level α tests. Marcus et al. (1976) showed that multi-

ple testing procedures derived by this principle control the FWER in the strong sense at level α.

It is easy to see that strong FWER control is provided if we keep in mind that strong means for

any configuration of true and false null hypotheses. This control is ensured by considering all

possible combinations of the individual null hypotheses H0,1, ..., H0,k with local level α tests.

It should be noted that for larger numbers k of individual null hypotheses the closed testing

principle can get computationally intensive, as the number of intersection hypotheses 2k −1

becomes very large. Thus so-called shortcut procedures have become popular that substantially

decrease the number of computational steps (see e.g. Grechanovsky and Hochberg, 1999).

2.1.6 Further Developments

Let us finally give a short overview on further developments in the field of multiple testing

methodology. Besides the already mentioned fixed sequence procedure there have been pro-

posed several other so-called sequentially rejective multiple test procedures, such as step-down

and step-up tests. In such step-wise tests, in contrast to fixed sequence procedures, the indi-

vidual p-values are ordered a posteriori dependent on the observed data. Step-wise versions of

the Bonferroni test have been proposed by Holm (1979) and Hochberg (1988), and for Dunnett’s

test by Naik (1975), Marcus et al. (1976) and Dunnett and Tamhane (1992). These procedures
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turn out to be uniformly more powerful than the standard versions of Bonferroni and Dunnett’s

test, respectively.

Often there are logical interrelations between the individual null hypotheses under consid-

eration, e.g. a specific set of null hypotheses can not be true at the same time. Popper Shaffer

(1986) described a general procedure to incorporate such logical restrictions. In most applica-

tions with restricted combinations the proposed method can lead to a substantial increase in

power. The fallback procedure proposed by Wiens (2003) is a more flexible approach that com-

bines the weighted Bonferroni method and the fixed sequence procedure and ensures strong

control of the FWER. A more general approach for multiple testing problems with logical re-

lations, e.g. a natural hierarchy between the hypotheses, are so-called gatekeeping procedures,

where the null hypotheses are divided into families of hypotheses. For further information

on gatekeeping procedures see Dmitrienko and Tamhane (2007). Recently, Bretz et al. (2009)

proposed a general graphical approach to sequentially rejective multiple testing procedures,

including gatekeeping/fallback procedures and fixed sequence tests. Their approach is based

on directed, weighted graphs and, due to its simplicity, well-suited for communicating complex

multiple testing procedures to non-statisticians.

As confidence intervals are of major interest especially in confirmatory clinical trials, there is

a need for appropriately adjusted versions. Simultaneous confidence intervals for a variety of

multiple testing procedures have been proposed by Strassburger and Bretz (2008) and Guilbaud

(2008).

As we have seen, the field of multiple testing methodology is an extensively growing area of

research and there is also a variety of books covering this topic (Hochberg and Tamhane, 1987;

Westfall and Young, 1993; Hsu, 1996; Dmitrienko et al., 2009). However, up-to-date regulatory

guidelines regarding the issues of multiplicity adjustment in clinical trials are urgently needed,

as the only guideline by the CPMP (2002) is more than 10 years old. This is reflected by the

recently published Concept paper on the need for a guideline on multiplicity issues in clinical

trials (CHMP, 2012). The FDA is also currently working on an appropriate guideline which is

expected to be published soon.

2.2 Effect Retention Approach

The previous section showed that there is a variety of procedures to choose from in order to

deal with the multiplicity issue in non-inferiority trials with an additional placebo arm. First

of all, the similarities with trials comparing several treatments with a control are conspicu-

ous. In three-arm trials the correlation of the corresponding test statistics is also known, but

obviously there is a natural hierarchy between the three individual hypotheses. For instance,

non-inferiority of the test treatment to the active control is meaningless without a proof of ef-

ficacy for the test treatment, i.e. test is superior to placebo. Therefore, fixed sequence testing is

the basis for statistical testing procedures in three-arm non-inferiority trials.
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One of the early contributions to the design and analysis of three-arm trials was by Koch

and Tangen (1999), who proposed the so-called effect retention approach aiming to show that

the experimental treatment preserves a certain fraction of the control treatment effect rela-

tive to placebo. Therefore, it is sometimes also referred to as the effect preservation test. The

approach was extensively studied by Pigeot et al. (2003) for the case of normally distributed

endpoints with a common but unknown variance. The corresponding hierarchically ordered

null hypotheses of the effect retention approach are

H̃01 : µC −µP ≤ 0,

H̃02 :
µT −µP

µC −µP
≤ f , (2.8)

where f , 0 ≤ f ≤ 1, is a prespecified constant and µT ,µC ,µP denote the mean treatment effect

under test, control and placebo, respectively. Obviously, the effect retention hypothesis H̃02

can be derived from the common non-inferiority hypothesis H0,ni : µT −µC ≤−∆ni (cf. Section

1.2.1) by defining ∆ni = (1 − f )(µC −µP ), i.e. ∆ni is a fraction of the difference between the

control and the placebo effect. Besides the statistical test procedure Pigeot et al. (2003) further

derived an optimal sample size allocation and a confidence interval for the parameter f .

The method was further extended to binary outcomes (Tang and Tang, 2004; Kieser and

Friede, 2007), heterogeneous variances (Hasler et al., 2008; Dette et al., 2009; Gamalo et al.,

2011) and exponentially distributed endpoints (Mielke et al., 2008). In order to deal with weak

knowledge of the active control effect, Schwartz and Denne (2006) proposed a two-stage sam-

ple size recalculation procedure based on an internal pilot, whereas Li and Gao (2010) sug-

gested a group sequential type design to address uncertainties in the placebo response rate.

Besides, Munzel (2009) derived a nonparametric design and Gosh et al. (2011) proposed a

Bayesian design to incorporate prior information gained for instance from the historical ac-

tive control trials.

As already mentioned in Section 1.4 it is also reasonable in many situations to include an ac-

tive control arm into a placebo-controlled superiority trial. For instance, superiority to placebo

might be less meaningful if the standard treatment significantly outperforms the experimen-

tal treatment (Koch and Röhmel, 2004). In this context, Hauschke and Pigeot (2005a) stated

that the inclusion of a reference arm could serve to investigate the clinical relevance of the test

treatment effect, and they adapted the effect retention design for this purpose.

There is a disagreement amongst authors on which hypotheses should be tested in the gold

standard design and especially on their hierarchical order (Lewis, 2005; Röhmel, 2005a; Koch,

2005; Mehrotra, 2005; Hung, 2005; Hauschke and Pigeot, 2005b). In general, the direct proof of

efficacy for the test treatment (H0,sup : µT ≤µP ) seems to be the most important step in a three-

arm trial. Whether H̃01 needs to be rejected or not mostly depends on the particular medical

setting. However, rejection of H̃01 is a technical prerequisite for the effect retention test in order

to be sure not to divide by zero. An approach to simultaneously deal with the contrasts µT −µP
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and µC −µP was presented by Röhmel (2005b), who constructed confidence ellipsoids.

As we can see, the design and analysis of the effect preservation approach has been exten-

sively studied in the recent years. Apparently, the approach is very appealing, especially from

a theoretical viewpoint. However, to the knowledge of the author, it has not yet been applied

for assessing non-inferiority in confirmatory clinical trials. A reason for this might be that the

CHMP (2005b) explicitly states that “a noninferiority trial aims to demonstrate that the test

product is not worse than the comparator by more than a prespecified, small amount.”. The

following section goes into more detail on such fixed margin designs that build the basis for the

rest of this work.

2.3 Fixed Margin Approach

In contrast to the large number of publications on the effect retention approach there have

been comparatively few studies on the design and analysis of three-arm non-inferiority trials

with a fixed, prespecified non-inferiority margin ∆ni . The first contribution by Koch and Röh-

mel (2004) was further modified and extended by Röhmel and Pigeot (2010) resulting in a more

powerful procedure. Hida and Tango (2011a) proposed a slightly different approach leading to

some critical debate (Röhmel and Pigeot, 2011; Hida and Tango, 2011b). Their approach has

been further extended to three-arm trials with multiple new treatments by Kwong et al. (2012).

Recently, a general approach to sample size calculations for the ‘gold standard’ design has been

proposed by Stucke and Kieser (2012).

Let us now go into more detail on the procedure proposed by Koch and Röhmel (2004) that

forms the basis for the following deliberations presented in this work. After introducing the

procedure, the overall power is derived and optimal sample size allocations are calculated ac-

cording to Stucke and Kieser (2012). This optimal single-stage design should then serve as a

benchmark for the designs derived in the subsequent part of this work.

2.3.1 Statistical Model and Test Procedure

Assume that the primary endpoints under the test, control and placebo treatment are mutually

independent and normally distributed with common, but unknown variance σ2, i.e. XT,i ∼
N (µT ,σ2), i = 1,2, ...,nT , XC ,i ∼ N (µC ,σ2), i = 1,2, ...,nC , and XP,i ∼ N (µP ,σ2), i = 1,2, ...,nP . As

in Chapter 1 it is assumed, without loss of generality, that larger treatment effects are associated

with greater benefits and thus are desired. The following two hierarchically ordered sets of

hypotheses proposed by Koch and Röhmel (2004) are considered

1. H (s)
0,T P : µT ≤µP vs. H (s)

1,T P : µT >µP ,

2. H (n)
0,TC : µT ≤µC −∆ni vs. H (n)

1,TC : µT >µC −∆ni .
(2.9)
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The superiority comparison between test and placebo acts as a gatekeeper for the subsequent

non-inferiority comparison between test and control, hence both comparisons are tested at

full level α (cf. Section 2.1.4).

As already mentioned there is a critical debate on the set of hypotheses that should be tested

in a three-arm trial. The two hypotheses H (s)
0,T P and H (n)

0,TC certainly are of main interest, but in

certain situations other hypotheses might also be relevant, e.g. the comparison between con-

trol and placebo. When further hypotheses are included in the testing procedure, one can make

use of the existing logical interrelations.

For instance, as proposed by Koch and Röhmel (2004), the hypotheses H (s)
0,C P : µC ≤ µP and

H (s)
0,TC : µT ≤ µC could be added as a third step of the testing procedure, both tested at level

α. The reason for this is simple: if H (s)
0,T P is false, i.e. µT > µP , H (s)

0,C P and H (s)
0,TC cannot be

true at the same time. With the same argument, Röhmel and Pigeot (2011) showed that once

H (s)
0,T P has been rejected, H (n)

0,TC and H (s)
0,C P can be assessed simultaneously without adjusting

the α-levels. In addition, they showed that further confirmatory testing is possible without α-

adjustment leading to sharper test decisions. For instance, if H (s)
0,T P has been rejected, one can

simultaneously assess whether the control treatment is superior to placebo and whether the

test treatment is non-inferior to the control with any non-inferiority margin δ ∈ [0,∆ni ], i.e.

even test for superiority of the test treatment over the control.

For specific medical indications, inclusion of H (s)
0,C P might be mandatory as mentioned by

Hauschke and Pigeot (2005b). For example, in trials regarding the treatment of mild persistent

asthma, failure to demonstrate the efficacy of the active control (usually a corticosteroid) will

challenge the whole study quality and even the superiority of the test treatment over placebo.

Nevertheless, the focus is on H (s)
0,T P and H (n)

0,TC as these are the fundamental hypotheses in three-

arm non-inferiority trials. H (s)
0,C P can be easily included into the procedure according to Röhmel

and Pigeot (2010), however, this should be prespecified in the study protocol.

The corresponding test statistics for the null hypotheses H (s)
0,T P and H (n)

0,TC are the common

Student’s t-test statistics

T (s)
T P =

X̄T − X̄P

σ̂

√
nT nP

nT +nP
,

T (n)
TC =

X̄T − X̄C −∆ni

σ̂

√
nT nC

nT +nC
, (2.10)

where X̄T = 1
nT

∑nT

i=1 XT,i and X̄C and X̄P are defined analogously. The common variance σ2 is

estimated by the unbiased pooled estimator σ̂2 = ((nT −1)S2
T +(nC−1)S2

C+(nP−1)S2
P )/(nT +nC+

nP−3), where S2
T , S2

C and S2
P denote the sample variances of the test, control and placebo group,

respectively. Obviously, the test statistics T (s)
T P and T (n)

TC both follow a noncentral t-distribution

with ν = N − 3 degrees of freedom, where N = nT +nC +nP denotes the overall sample size.

Thus, the test statistics are compared to t1−α,ν, the (1−α)-quantile of the t-distribution with ν

degrees of freedom. Altogether, there are three possible outcomes depending on the observed
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test statistics

T (s)
T P < t1−α,ν ⇒ Reject neither H (s)

0,T P nor H (n)
0,TC ,

T (s)
T P ≥ t1−α,ν and T (n)

TC < t1−α,ν ⇒ Reject H (s)
0,T P ,

T (s)
T P ≥ t1−α,ν and T (n)

TC ≥ t1−α,ν ⇒ Reject H (s)
0,T P and H (n)

0,TC .

(2.11)

According to Maurer et al. (1995) this fixed sequence procedure controls the FWER in the strong

sense by α (see also Section 2.1.4).

Because of the duality between confidence intervals and statistical tests, one can equiva-

lently calculate the corresponding one-sided (1−α) confidence intervals for the differences

θT P = µT −µP and θTC = µT −µC . The hypothesis H (s)
0,T P is then rejected if the lower bound of

the confidence interval for θT P lies above or is equal to zero, and H (n)
0,TC is rejected if additionally

the lower bound of the confidence interval for θTC is greater than or equal to −∆ni . However, it

should be stated that these are no simultaneous confidence intervals, see e.g. Strassburger and

Bretz (2008) and Guilbaud (2008).

2.3.2 Power and Sample Size

Let us now investigate the sample sizes and the overall power 1−β of the procedure, i.e. the

probability to correctly reject both H (s)
0,T P and H (n)

0,TC . By means of the Bonferroni inequality, a

lower bound for 1−β can be determined as follows:

1−β= PθT P ,θTC

({
T (s)

T P ≥ t1−α,ν

}
∩

{
T (n)

TC ≥ t1−α,ν

})

= 1−PθT P ,θTC

({
T (s)

T P ≤ t1−α,ν

}
∪

{
T (n)

TC ≤ t1−α,ν

})

≥ 1−PθT P

(
T (s)

T P ≤ t1−α,ν

)
−PθTC

(
T (n)

TC ≤ t1−α,ν

)
= 1−βT P −βTC ,

where βT P and βTC denote the probabilities of committing a type II error for the superiority

comparison between test and placebo and for the non-inferiority comparison of test versus

control, respectively.

According to this, a commonly applied ad hoc approach to calculate the sample sizes for the

proposed procedure takes the following form. First of all, βT P and βTC need to be prespecified

with βT P +βTC = β (usually βT P = βTC ). Then, the sample sizes of the test and control group

(often nT = nC ) are determined to achieve a power of at least 1−βTC for the non-inferiority

comparison, e.g. with the approximate formula in (1.3). Finally, the placebo group size nP is

determined to obtain a power of at least 1−βT P for the superiority comparison. The overall

power of the procedure will then be at least 1−βT P −βTC .

This ad hoc approach seems very appealing through its simplicity, but it turns out that the

overall power 1 −β can also be directly computed. Therefore it might be helpful to notice

that the procedure has some similarities with Dunnett’s test described in Section 2.1.3, de-

spite the fact that Dunnett’s test is based on the union-intersection instead of the intersection-
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union principle. Analogously, it will now be shown that (T (s)
T P ,T (n)

TC )′ is bivariate noncentral t-

distributed. First of all, the vector of test statistics can be written as

(
T (s)

T P ,T (n)
TC

)′
=

(
X̄T −X̄P

σ

√
nT nP

nT +nP
, X̄T −X̄C+∆ni

σ

√
nT nC

nT +nC

)′

σ̂/σ
=

Z

V
.

Obviously, the vector Z is bivariate normally distributed, as all linear combinations of the two

components also follow a normal distribution (each component itself is a linear combination

of normally distributed random variables). As the group means X̄T , X̄C and X̄P are mutually

independent, the covariance of the two components of Z is obtained as

Cov

(
X̄T − X̄P

σ

√
nT nP

nT +nP
,

X̄T − X̄C +∆ni

σ

√
nT nC

nT +nC

)
=

1

σ2

√
nT nP

nT +nP

√
nT nC

nT +nC
Var

(
X̄T

)
︸ ︷︷ ︸

= σ2

nT

=
√

nC nP

(nT +nC )(nT +nP )
.

As further Z and V 2 ∼ χ2
ν/ν are independent, it follows that (T (s)

T P ,T (n)
TC )′ is bivariate noncentral

t-distributed with ν= nT +nC +nP −3 degrees of freedom and vector of noncentrality param-

eters θ∗ and variance-covariance matrix Σ given as

θ∗ =
(
θT P

σ

√
nT nP

nT +nP
,
θTC +∆ni

σ

√
nT nC

nT +nC

)′
,

Σ=
(

1 ρ

ρ 1

)
with ρ =

√
nC nP

(nT +nC )(nT +nP )
. (2.12)

Thus, the overall power is obtained as

1−β=T
Σ

nT +nC+nP−3

(
−t1−α,nT +nC+nP−3,−t1−α,nT +nC+nP−3

∣∣−θ∗)
, (2.13)

where T
Σ

ν (· | γ) denotes the cumulative distribution function of the bivariate noncentral t-

distribution with ν degrees of freedom, vector of noncentrality parameters γ and variance-

covariance matrix Σ.

For large sample sizes nT , nC and nP , which are common for non-inferiority trials, the vector

of test statistics is asymptotically bivariate normally distributed, i.e. (T (s)
T P ,T (n)

TC )′ ∼ N2(θ∗,Σ)

holds approximately. Thus, the overall power can be approximated by

1−β≈Φ
Σ

(
θT P

σ

√
nT nP

nT +nP
− z1−α,

θTC +∆ni

σ

√
nT nC

nT +nC
− z1−α

)
, (2.14)

where Φ
Σ(·) denotes the cumulative distribution function of the bivariate normal distribution

with mean vector 0 and variance-covariance matrix Σ.

Calculating the right-hand sides of Equations (2.13) or (2.14) turns out to be easy since nowa-
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days many statistical software packages include functions for the cumulative distribution func-

tions of the multivariate normal and t-distribution. For instance, the software environment R

(R Core Team, 2013) provides two packages for this purpose, namely mvtnorm (Genz et al., 2012)

and mnormt (Genz and Azzalani, 2012).

By defining the sample sizes of the control and placebo group as fractions of the test group

sample size, i.e. nC = cC nT and nP = cP nT with cC ,cP > 0 (cf. Section 1.2.2), the exact and ap-

proximate sample sizes can be numerically determined by solving Equation (2.13) and (2.14)

for nT , respectively. Therefore, the non-inferiority margin ∆ni , the (one-sided) significance

level α, the overall power 1−β and the allocation ratios cC and cP need to be specified. Fur-

thermore, assumptions on the treatment differences θT P and θTC and the standard deviation

σ need to be made.

Let us now investigate the validity of the normal approximation in (2.14). For this purpose

the standard deviation σ is expressed as a fraction of the treatment difference between control

and placebo, that is σ= ǫ(µC −µP ), ǫ> 0. It is further assumed that µT =µC , which is a common

assumption in non-inferiority trials. Table 2.2 gives the required exact and approximate sample

sizes per group for the balanced design (cC = cP = 1) to achieve an overall power of 80% with

significance level α = 0.025 for different constellations of the parameters ǫ and ∆ni /(µC −µP ).

For instance, ∆ni /(µC −µP ) = 1/2 means that the non-inferiority margin is half the difference

between the control and placebo effect. For some clinical indications this is a common choice

for ∆ni and values larger than this are rather scarce in practice.

As we can see, Table 2.2 confirms the validity of the normal approximation, as the required

exact and approximate sample sizes per group are almost equal for the considered parameter

constellations. Further investigations showed that the normal approximation also stays valid

Table 2.2: Exact (first row) and approximate (second row) sample sizes per group of the bal-
anced design to achieve an overall power of 80% with significance level α= 0.025 and
assuming µT =µC .

∆ni /(µC −µP ) ǫ=σ/(µC −µP )
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1/6
36 142 319 566 884 1273 1732 2262
36 142 318 566 883 1272 1731 2261

1/5
26 99 222 394 614 884 1203 1571
25 99 221 393 614 883 1202 1570

1/4
17 64 142 252 394 566 770 1006
16 63 142 252 393 566 770 1005

1/3
10 36 81 142 222 319 434 566

9 36 80 142 221 318 433 566

1/2
5 17 36 64 99 142 193 252
4 16 36 63 99 142 193 252



32 CHAPTER 2 THREE-ARM NON-INFERIORITY TRIALS

under the optimal allocation determined in the following section (see Table A.1).

Before proceeding with the determination of an optimal allocation, let us give one comment

on the connection between the effect retention and the fixed margin approach. In terms of the

effect retention hypothesis in (2.8) the quotient ∆ni /(µC −µP ) is equal to 1− f . For example,

a choice of ∆ni /(µC −µP ) = 1/5 roughly means that the test treatment should preserve at least

80% of the control treatment effect relative to placebo. However, there is a substantial differ-

ence between the two approaches, since for the effect retention test the non-inferiority margin

is not fixed in advance and depends on the actual treatment effects of control and placebo in

the current non-inferiority trial. According to that, one should avoid interpreting a trial based

on the fixed margin approach in terms of a retention of the control treatment effect and vice

versa.

2.3.3 Optimal Sample Size Allocation

The previous section showed that the normal approximation in Equation (2.14) is valid for a

variety of parameter constellations, thus the approximate formula for calculating the overall

power will be used from now on.

Taking a look at the sample size allocation between the three groups, it is obvious that a

balanced design with equal sample sizes might, for many reasons, not be the best choice in a

three-arm non-inferiority trial. For instance, allocating too many patients to placebo might not

be ethically justifiable as the control treatment is an already approved effective drug. Further-

more, it might be reasonable to allocate more patients to the test treatment in order to obtain

sufficient safety data on the new therapy. As it is also desirable to keep the overall sample size

N as small as possible, one can use the fact that the overall power 1−β depends, among other

variables, on the allocation ratios cC and cP .

With a prespecified overall power 1−β, optimal sample size allocations cC and cP that min-

imise the overall sample size N can be calculated by means of Equation (2.14). This is done

by the numerical optimisation method proposed by Byrd et al. (1995) with the constraint cC ,

cP > 0. For ease of computation continuous sample sizes nT , nC and nP are assumed.

Figure 2.1 gives an overview on the sample size savings provided by the optimal allocation

in comparison to the balanced design with equal sample sizes in the three treatment groups.

Therefore, the optimal divided by the balanced sample sizes to achieve an overall power of

1−β= 80% with α= 2.5% and assuming µT =µC are displayed for differing values of ∆ni /(µC −
µP ). For example, a quotient of 0.8 for N means that the optimal design requires 20% less

subjects than the balanced design. As we can see, the sample size savings for N and especially

nP become larger with smaller values of ∆ni /(µC −µP ). For scenarios of practical relevance, i.e.

∆ni /(µC −µP ) ≤ 0.5, the overall sample size can be reduced by more than 20%. Furthermore,

the optimal test and control group sizes are almost equal to the balanced sample sizes, whereas

the placebo group size is substantially reduced by more than 70%. Further investigations by

Stucke and Kieser (2012) also showed that the optimal allocation leads to a substantial sample
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Figure 2.1: Quotients of the optimal sample sizes divided by the balanced sample sizes to
achieve an overall power of 1−β= 80% with α= 0.025 and assuming µT =µC .
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size reduction in comparison to the previously mentioned ad hoc method.

The same pattern as in Figure 2.1 can be seen in the left-hand side of Figure 2.2 which shows

the allocation ratios cC and cP of the optimal design with 1−β= 0.8, α= 0.025 and µT =µC . For

practically relevant values ∆ni /(µC −µP ) ≤ 0.5, the sample size of the control group is almost

equal to that of the test group under the optimal allocation, whereas the placebo group size

is substantially reduced. For example, assuming µC −µP = 2∆ni and an overall power of 1−
β = 0.80 the optimal allocation ratio is nearly nT : nC : nP = 3.3 : 3.3 : 1, which means that

approximately 13% of all patients are assigned to the placebo group. Randomising less patients

to placebo than to the active treatment groups is highly desirable from an ethical point of view.

In addition, this could reduce patient concerns and as a result enhance the recruitment process

of the trial. Moreover, it becomes evident from the right-hand side of Figure 2.2 that the power

of the first hypothesis test, i.e. the direct proof of efficacy for the test treatment, is high, while

the power of the second hypothesis test is similar to the overall power.

Let us consider a hypothetical example for calculating the sample sizes in a three-arm non-

inferiority trial. Suppose that the treatment groups have mean values µT = µC = 1 and µP =
0.6 with a common standard deviation σ = 0.8, that means ǫ = σ/(µC −µP ) = 2. The non-

inferiority margin is set to half of the difference between control and placebo effect, thus ∆ni =
0.2. According to Table 2.2 the required sample size per group for the balanced design with

α = 2.5% to achieve 1−β = 80% overall power is nT = nC = nP = 252, which means that the

overall sample size is N = 756. The corresponding optimal sample sizes are obtained as nT =
264, nC = 258 and nP = 79 with an overall sample size of N = 601. As we can see, the optimal
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Figure 2.2: Optimal sample size allocations (left) and power to reject H (s)
0,T P or H (n)

0,TC under the

optimal allocation (right) with 1−β= 80%, α= 0.025 and µT =µC .
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allocation leads to a substantial reduction of both the overall sample size N and the size of the

placebo group nP compared to the balanced design.

As already mentioned, there are situations where the inclusion of an additional proof of effi-

cacy for the active control is a mandatory requirement, e.g. for trials regarding mild persistent

asthma. It can be shown that the vector of test statistics (T (s)
T P ,T (n)

TC ,T (s)
C P )′ follows a trivariate

noncentral t-distribution (or approximately a trivariate normal distribution), so that all calcu-

lations regarding power and sample size can be performed analogously to Section 2.3.2. Our

investigations showed, that the optimal allocation ratios are only marginally affected by the in-

clusion of the null hypothesis H (s)
0,C P : µC ≤ µP (see Table A.2). Furthermore, the loss of overall

power after including H (s)
0,C P is negligible under the optimal allocation. For instance, for an op-

timal design with overall power 1−β= 80% to reject both null hypotheses H (s)
0,T P and H (n)

0,TC and

assuming µC −µP = 2∆ni , the probability to reject H (s)
0,T P , H (n)

0,TC and H (s)
0,C P is 78.39%. In order to

achieve 80% power to reject all three null hypotheses the required increase in the overall sam-

ple size would be 3.33%. For smaller non-inferiority margins and a higher overall power, e.g.

1−β= 90%, the loss of power and the necessary increase in the overall sample size are further

reduced.

2.4 Summary

In three-arm ‘gold standard’ non-inferiority trials including an experimental treatment, an ac-

tive control and a placebo there are three different comparisons of interest. These are the supe-

riority comparison between test and placebo, the non-inferiority comparison between test and
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control and the superiority comparison between control and placebo, where the former two

represent the main study objectives. The application of adequate multiple testing procedures

in such trials is therefore fundamental, not least because the regulatory authorities explicitly

require strong FWER control for confirmatory claims (CPMP, 2002) and non-inferiority studies

usually are of confirmatory nature. It was illustrated that the fixed sequence procedure pro-

vides a simple and efficient approach for multiplicity adjustment in three-arm trials, as there

is a natural hierarchy between the three hypotheses. For instance, the non-inferiority com-

parison between test and control is of little sense if the test treatment is not even superior to

placebo.

Two different approaches for analysing three-arm non-inferiority trials have been proposed

in the literature, on the one hand the effect preservation approach and on the other hand the

fixed margin approach. The former one has been extensively studied in the recent years. How-

ever, it has not yet been applied in confirmatory clinical trials, as the regulatory guidelines state

in particular that a fixed margin ∆ni should be prespecified in advance. Therefore, this chapter

concentrated on the fixed margin approach. Although the proof of efficacy for the active con-

trol might be mandatory for some clinical indications, the investigations were restricted to the

two main objectives in such trials, namely the direct proof of efficacy for the test treatment and

assessing the similarity of the test to the control.

For normally distributed endpoints with common but unknown variance it was shown that

the exact and approximate overall power of the procedure can be determined by means of

the distribution functions of the bivariate t- and normal distribution, respectively. As these

functions are implemented in most statistical software packages nowadays, sample size cal-

culations can be easily conducted. Optimal sample size allocations were derived, leading to a

substantial reduction of the overall sample size. Furthermore, it turned out that the placebo

group size is substantially reduced under the optimal allocation, which is highly desirable from

an ethical point of view. For a general approach for sample size calculation in three-arm trials

based on maximum likelihood estimators see Stucke and Kieser (2012).

Finally, the question arises whether the optimal design derived in this section can be fur-

ther improved. Interim analyses with the possibility to stop the trial early either for efficacy or

futility might be a useful option for three-arm non-inferiority trials. In particular, the placebo

group might be dropped at an interim analysis if there is enough evidence for the efficacy of the

test treatment, i.e. test is superior to placebo. This would make the trial even more acceptable

for patients and one could also exploit the high power of the superiority comparison between

test and placebo under the optimal allocation (see Figure 2.2). The next chapter will deal with

such group sequential three-arm non-inferiority designs.





CHAPTER 3

GROUP SEQUENTIAL THREE-ARM

NON-INFERIORITY DESIGNS

The previous chapter showed that the optimal sample size allocation not only minimises the

overall sample size, but also considerably reduces the placebo group size. Besides the ethical

advantage of randomising less patients to placebo, this also improves the precision of the ac-

tive drug comparison, making the trial more acceptable for both patients and investigators (cf.

Section 2.1.5.1.1 of ICH E10). Furthermore, it turned out that the power of the superiority com-

parison between test and placebo is very high under the optimal allocation. The idea is now to

utilise this high power by means of implementing a group sequential design. The possibility to

terminate the placebo arm when the test treatment is demonstrated to be superior to placebo

at an interim analysis, would make the study even more acceptable for patients.

The structure of this chapter is as follows. After an introduction to group sequential designs

in Section 3.1, different group sequential designs for three-arm non-inferiority trials are pro-

posed in the subsequent Section 3.2. Formulas for calculation of the overall power and the ex-

pected sample sizes are derived and the proposed method is applied to a hypothetical clinical

trial. Finally, the proposed designs are compared with the optimal single-stage designs derived

in the previous chapter and approximately optimal group sequential rejection boundaries are

determined for different optimisation problems, such as minimising the expected overall sam-

ple size.

3.1 Group Sequential Designs

In most clinical trials the required sample size is determined in advance and the corresponding

statistical analyses are conducted only after the observations of all patients have been recorded.

In contrast, sequential designs allow to repeatedly evaluate the data at different points in time
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while at the same time satisfying the desired error probabilities. At an interim analysis a de-

cision on the termination or continuation of the study is made based on the data accrued by

then. Although this approach seems natural, the classical statistical theory is primarily based

on prespecified sample sizes. Armitage (1993, p. 392) made an interesting supposition in this

regard:

The classical theory of experimental design deals predominantly with experiments

of predetermined size, presumably because the pioneers of the subject, particu-

larly R. A. Fisher, worked in agricultural research, where the outcome of a field trial

is not available until long after the experiment has been designed and started. It

is interesting to speculate how differently statistical theory might have evolved if

Fisher had been employed in medical or industrial research.

The reasons for implementing sequential analyses in clinical studies are numerous. Besides

cost and time savings, the application of sequential methodology can result in quicker approval

of effective treatments or early detection of harmful therapies. Thus, there are potential bene-

fits for both patients and manufacturers.

The development of sequential procedures and their application started in the late 1920s

with one of the first contributions by Dodge and Romig (1929), who proposed a two-stage ac-

ceptance sampling plan for quality control. The first idea of sequential testing was introduced

by Wald (1947) with the sequential probability ratio test (SPRT). In contrast to a fixed sample

size design, the SPRT evaluates the data after each new observation, so that the sample size

is unknown in advance. Because the procedure is also not bounded, the actual sample size

might be relatively large, especially when the true parameter of interest θ lies between the an-

ticipated null and alternative parameters θ0 and θ1, respectively. As furthermore a patient-wise

evaluation can hardly be implemented in practice, an application of the SPRT in clinical trials

is problematic. The term group sequential designs was coined by Elfring and Schultz (1973),

who suggested a stage-wise procedure for comparing two treatments with binary responses.

Several contributions in the following years finally led to the pioneering work of Pocock (1977)

and O’Brien and Fleming (1979). The underlying approach can be applied to a large variety

of testing situations and provides the basis for all further developments. For a comprehensive

summary on group sequential methodology see Jennison and Turnbull (2000) and Proschan

et al. (2006). In the following motivation we take a look at the type I error inflation caused by

unadjusted interim analyses and a possible solution.

3.1.1 Motivation

Suppose we want to demonstrate the superiority of a new treatment A over another treatment

B. Let X A,i ∼ N (µA ,σ2) , i = 1, ...,n, and XB ,i ∼ N (µB ,σ2), i = 1, ...,n, denote the mutually inde-

pendent responses of patients allocated to treatment A and B, respectively, with known com-

mon variance σ2. Assuming that larger responses are associated with greater benefits, the cor-
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responding set of hypotheses is given as

H0 : µA ≤µB vs. H1 : µA >µB .

Besides the final analysis at one-sided level α = 0.025, i.e. critical value z0.975 = 1.96, an addi-

tional analysis is scheduled when 50 percent of the responses, i.e. n/2 per treatment group, are

observed. The following test procedure shall be adopted:

When n/2 responses per group are observed:

If Zinterim > 1.96, reject H0 and stop the trial.

If Zinterim ≤ 1.96, continue recruiting and proceed to the final stage.

When all n responses per group are observed:

If Zfinal > 1.96, reject H0.

If Zfinal ≤ 1.96, accept H0.

Here, Zinterim and Zfinal denote the common Z -test statistics at interim and at the end of the

study, i.e. Zinterim = 1p
nσ2

(
∑n/2

i=1 X A,i −
∑n/2

i=1 XB ,i ) and Zfinal = 1p
2nσ2

(
∑n

i=1 X A,i −
∑n

i=1 XB ,i ). The

maximum probability to commit a type I error with this procedure is obtained as

PµA=µB

(
H0 is rejected at interim or at the final analysis

)

= PµA=µB ({Zinterim > 1.96}∪ {Zinterim ≤ 1.96, Zfinal > 1.96})

= PµA=µB ({Zinterim > 1.96})
︸ ︷︷ ︸

=0.025

+PµA=µB ({Zinterim ≤ 1.96, Zfinal > 1.96})
︸ ︷︷ ︸

>0

(3.1)

> 0.025.

Hence, the procedure does not control the overall type I error rate α = 0.025. Bearing in mind

that repeated significance testing essentially is a multiple testing problem, this is hardly sur-

prising. For instance, the type I error rate could be controlled by using the Bonferroni adjust-

ment mentioned in Section 2.1. However, this would ignore the existing dependencies between

the test statistics Zinterim and Zfinal. It can be shown that, given µA =µB , the vector of test statis-

tics (Zinterim, Zfinal)
′ follows a bivariate normal distribution with mean vector (0,0)′ and correla-

tion 1/
p

2 (see Sections 3.1.2 and 3.1.3). Consequently, the second term in (3.1) can be directly

calculated by means of the bivariate normal distribution function and is given as 0.017, so that

the maximum type I error rate of the procedure is 0.042. Table 3.1 gives an overview on the type

I error inflation for different numbers of unadjusted and equally spaced interim analyses at

one-sided significance level 2.5%. One can see that already two additional unadjusted interim

analyses lead to more than a doubling of the type I error rate. Besides calculating the exact type

I error rate, the distributional properties of the test statistics can also be used to derive appro-

priate rejection boundaries for the different stages. In order to control the type I error rate of

the above mentioned two-stage procedure by α = 0.025, the critical values at interim (cinterim)
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Table 3.1: Maximum probability of committing a type I error for different number of equally
spaced interim analyses at unadjusted one-sided significance level α= 0.025.

# Interim analyses 0 1 2 3 4 5 6 7 8 9 10
Max. type I error rate (%) 2.5 4.2 5.4 6.3 7.1 7.7 8.3 8.8 9.3 9.7 10.1

and at the final analysis (cfinal) have to satisfy the equation

PµA=µB ({Zinterim > cinterim})+PµA=µB ({Zinterim ≤ cinterim, Zfinal > cfinal}) = 0.025.

With the constraint of equal stage-wise critical values as proposed by Pocock (1977), this leads

to cinterim = cfinal = 2.178. However, this constant choice is arbitrary, as e.g. the group sequen-

tial design with cinterim = 2.797 and cfinal = 1.977 proposed by O’Brien and Fleming (1979) also

satisfies the type I error constraint just as multiple other choices.

3.1.2 General Design

Based on the same scenario as in the motivation, i.e. a superiority comparison between two

treatments A and B, the general principle of group sequential designs will now be described.

Denote by X A,i ∼ N (µA ,σ2) , i = 1,2, ..., and XB ,i ∼ N (µB ,σ2), i = 1,2, ..., the mutually indepen-

dent responses of patients allocated to treatment A and B, respectively, with known common

variance σ2. With larger responses being desirable and defining θ =µA−µB , the corresponding

set of hypotheses of the superiority comparison is H0 : θ ≤ 0 vs. H1 : θ > 0.

It should be noted that the group sequential procedure described in this subsection can be

easily transferred to other testing problems, such as comparison of binary outcomes or survival

data. For more information on the general applications of group sequential methodology see

Jennison and Turnbull (2000, Chapter 2).

Test Procedure

Suppose that patient entry is divided into K groups and the data are analysed repeatedly after

the responses of each new group have been observed. The cumulative sample sizes of the two

treatment groups A and B at the different stages shall be denoted as n(1)
A , ...,n(K )

A and n(1)
B , ...,n(K )

B ,

respectively. Note that there are no restrictions to the sample sizes such as equally sized stage-

wise groups or a balanced treatment allocation. The corresponding standardised test statistics

after each group of observations are given as

Zk =
X̄ (k)

A − X̄ (k)
B

σ

√
1

n(k)
A

+ 1
n(k)

B

=
(

X̄ (k)
A − X̄ (k)

B

)√
Ik for k = 1, ...,K , (3.2)
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where X̄ (k)
A and X̄ (k)

B denote the stage-wise sample means of treatment group A and B, respec-

tively, i.e. X̄ (k)
D = 1

n(k)
D

∑n(k)
D

i=1 XD,k with D = A,B and k = 1, ...,K . The variables Ik , k = 1, ...,K , are

also called information levels as they represent the information that is actually available at the

respective stage. The group sequential test procedure takes the following form:

At stage k = 1, ...,K −1

if Zk ≥ bk , stop and reject H0,

if Zk < bk , continue to stage k +1.

At stage K

if ZK ≥ bK , stop and reject H0,

if ZK < bK , stop and accept H0.

(3.3)

Type I Error and Rejection Boundaries

The stopping boundaries b1, ...,bK are determined in such a way that the overall type I error

rate is controlled by α. Therefore, they have to satisfy the equation

1−Pθ=0

(
K⋂

k=1
{Zk < bk }

)
=α. (3.4)

In order to calculate the left-hand side of Equation (3.4) we need to take a look at the dis-

tributional properties of the test statistics Z1, ..., ZK . The means of the test statistics at stage

k = 1, ...,K are easily obtained as

E (Zk ) = θ
√

Ik .

Before assessing the covariance between the test statistics in different stages let us first take a

look at the stage-wise sample means. The covariance of the sample means of treatment A at

two stages k1,k2 ∈ {1, ...,K } is obtained as

Cov
(

X̄ (k1)
A , X̄ (k2)

A

)
=Cov


 1

n(k1)
A

n
(k1)
A∑

i=1
X A,i ,

1

n(k2)
A

n
(k2)
A∑

i=1
X A,i




=
1

n(k1)
A n(k2)

A

n
(k1)
A∑

i=1

n
(k2)
A∑

j=1
Cov

(
X A,i , X A, j

)
︸ ︷︷ ︸

=





σ2 if i = j ,

0 else.

=
1

n(k1)
A n(k2)

A

n(min(k1,k2))
A σ2

=
σ2

n(max(k1,k2))
A

. (3.5)
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Analogously, it follows for treatment B that Cov(X̄ (k1)
B , X̄ (k2)

B ) = σ2/n(max(k1,k2))
B , so that the co-

variance of the test statistics at two stages k1,k2 ∈ {1, ...,K } is determined as

Cov
(
Zk1 , Zk2

)
=

√
Ik1Ik2Cov

(
X̄ (k1)

A − X̄ (k1)
B , X̄ (k2)

A − X̄ (k2)
B

)

=
√

Ik1Ik2

[
Cov

(
X̄ (k1)

A , X̄ (k2)
A

)
+Cov

(
X̄ (k1)

B , X̄ (k2)
B

)]

=
√

Ik1Ik2

[
σ2

n(max(k1,k2))
A

+
σ2

n(max(k1,k2))
B

]

︸ ︷︷ ︸
=1/Imax(k1,k2)

=

√
Imin(k1,k2)

Imax(k1,k2)
. (3.6)

Obviously, all possible linear combinations of the test statistics Zk , k = 1, ...,K , are normally dis-

tributed, because each Zk itself is a linear combination of normally distributed random vari-

ables. Consequently, the vector of test statistics Z = (Z1, ..., ZK )′ follows a K -variate normal

distribution with mean vector µ and variance-covariance matrix Σ given as

µ=
(
θ
√

Ii

)′
1≤i≤K

and Σ=
(√

Imin(i , j )

Imax(i , j )

)

1≤i , j≤K

. (3.7)

Interestingly, the standard deviation σ can be cancelled out in the items of the covariance ma-

trix, so that Σ only depends on the stage-wise sample sizes, or to be exact, on the sample size

allocation among the different stages and between the two groups. Consequently, Equation

(3.4) can be rewritten as

1−Φ
Σ (b1, ...,bK ) =α, (3.8)

where Φ
Σ(·) denotes the cumulative distribution function of the K -variate normal distribution

function with mean vector 0 and covariance matrix Σ given in (3.7). As mentioned in Section

2.3.2, ΦΣ(·) is implemented in many statistical software packages nowadays such as R, so that

the left-hand side of (3.8) can be easily calculated. Appropriate rejection boundaries b1, ...,bK

can be determined numerically as a solution of (3.8), so that the overall type I error rate does

not exceed α. It should be mentioned that Armitage et al. (1969) presented a recursive version

that considerably simplifies determination of the left-hand side of (3.8). However, due to the

enormous computing power of today’s computers, time gains are only marginal.

Power and Sample Size

After determination of appropriate rejection boundaries b1, ...,bK for a specific sample size al-

location among the stages and treatment groups, e.g. equal stage and treatment group sizes,

the next step is to determine the required sample size in order to have sufficient overall power.
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Similar to the type I error rate, the overall power of the group sequential procedure is deter-

mined as

1−β= 1−Pθ

(
K⋂

k=1
{Zk < bk }

)

= 1−Φ
Σ

(
b1 −θ

√
I1, ...,bK −θ

√
IK

)
. (3.9)

With prespecified sample size allocation among the stages and between the two treatment

groups, i.e.
n(k)

D

n(K )
D

, D = A,B , k = 1, ...,K − 1, and
n(K )

A

n(K )
B

, the right-hand side of (3.9) can be writ-

ten as a function of n(K )
A (or n(K )

B ). The required sample sizes are then determined by means of

a simple univariate root-finding algorithm such as bisection.

Expected Sample Size

Due to the step-wise nature of a group sequential procedure, the sample sizes actually needed

are unknown in the planning stage. Let NA and NB denote the actual sample sizes for treatment

group A and B, respectively. Similar to the overall power, NA and NB are highly dependent

on the true treatment difference θ = µA −µB . For treatment differences near zero the group

sequential procedure tends to proceed to later stages, resulting in higher actual sample sizes.

If, in contrast, the true treatment difference is high, the procedure will more likely stop at an

earlier stage with rejection of H0, so that NA and NB are small.

Obviously, the actual sample sizes NA and NB are discrete random variables with realisations

n(1)
A , ...,n(K )

A and n(1)
B , ...,n(K )

B , respectively. Hence, it seems natural to consider the expected val-

ues of NA and NB . Denote by ñ(k)
A , k = 1, ...,K , the additional number of patients that are ac-

crued at stage k, i.e. ñ(1)
A = n(1)

A and ñ(k)
A = n(k)

A −n(k−1)
A for k = 2, ...,K . The expected value of NA

for a specific treatment difference θ is then determined as

Eθ (NA) =
K∑

k=1

n(k)
A Pθ

(
NA = n(k)

A

)

=
K∑

k=1

k∑

i=1
ñ(i )

A Pθ

(
NA = n(k)

A

)

=
K∑

k=1

ñ(k)
A

K∑

i=k

Pθ

(
NA = n(i )

A

)

︸ ︷︷ ︸
=Pθ

(
NA≥n(k)

A

)

= ñ(1)
A Pθ

(
NA ≥ n(1)

A

)

︸ ︷︷ ︸
=1

+
K∑

k=2

ñ(k)
A Pθ

(
NA ≥ n(k)

A

)

︸ ︷︷ ︸
Pθ

(
k−1⋂
i=1

{Zi<bi }

)

(3.10)

= n(1)
A +

K∑

k=2

(
n(k)

A −n(k−1)
A

)
Φ
Σ(k,...,K )

(
b1 −θ

√
I1, ...,bk−1 −θ

√
Ik−1

)
,
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where Σ(i , ..., j ) with i ≤ j is the matrix that is formed by deleting the rows and columns i , ..., j

of Σ. The expectation of NB is determined analogously and the expected overall sample size is

given as the sum of Eθ(NA) and Eθ(NB ). In the literature the expected sample sizes are often

also referred to as average sample numbers. Thus, the expectations of the actual sample sizes

of treatment group A, B and overall for a specific treatment difference θ shall be denoted as

ASnA(θ), ASnB (θ) and ASN (θ), respectively.

Together with the maximum sample sizes n(K )
A and n(K )

B , the average sample numbers are

useful performance characteristics of group sequential designs. Since Equation (3.8) obviously

has an infinite number of solutions for an appropriate set of rejection boundaries b1, ...,bK ,

there are infinitely many group sequential designs to choose from. The maximum and expected

sample sizes prove to be very useful when it comes to selecting an adequate design for a par-

ticular setting. The average sample numbers at θ = 0, i.e. when H0 is true, or at the treatment

difference that was assumed in the sample size calculation are often of particular interest.

3.1.3 Classical Group Sequential Tests

The first contributions regarding group sequential designs, which are often denoted as the clas-

sical group sequential designs, assumed equal stage-wise sample sizes, i.e. n(k)
D = k

K n(K )
D for

D = A,B and k = 1, ...,K −1. With this assumption the covariance of the test statistics from two

stages k1,k2 ∈ {1, ...,K } simplifies to

Cov
(
Zk1 , Zk2

)
=

√
Imin(k1,k2)

Imax(k1,k2)

=
σ

√
1

n
(max(k1,k2))
A

+ 1

n
(max(k1,k2))
B

σ
√

1

n
(min(k1,k2))
A

+ 1

n
(min(k1,k2))
B

=

√√√√√
K

max(k1,k2)n(K )
A

+ K
max(k1,k2)n(K )

B

K
min(k1,k2)n(K )

A

+ K
min(k1,k2)n(K )

B

=

√
min(k1,k2)

max(k1,k2)
,

(3.11)

so that the variance-covariance matrix of the vector of test statistics Z is given as

Σ̃=
(√

min(i , j )

max(i , j )

)

1≤i , j≤K

.

Consequently, each set (b1, ...,bK ) satisfying (3.8) is independent of the maximum sample sizes

n(K )
A and n(K )

B , so that the rejection boundaries apply for all designs with equal stage sizes.

The different proposals for appropriate boundaries made certain assumptions on the bound-

ary value structure that further simplify the determination of b1, ...,bK . For instance, Pocock
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(1977) assumed equal boundaries at each stage, whereas O’Brien and Fleming (1979) proposed

monotone decreasing critical values, namely

Pocock boundaries: bk = bPOC for k = 1, ...,K ,

O’Brien & Fleming boundaries: bk =
√

K
k bOBF for k = 1, ...,K .

A more general class of group sequential designs was introduced by Wang and Tsiatis (1987)

who defined the boundaries in the following way:

Wang & Tsiatis boundaries: bk =
(

k
K

)
∆− 1

2
bW T for k = 1, ...,K ,

where ∆ ∈R is a prespecified constant usually chosen between 0 and 0.5, which obviously coin-

cide with the designs by O’Brien & Fleming and Pocock, respectively. The boundaries for these

designs can be easily determined by solving Equation (3.8) for bPOC , bOBF or bW T by means

of a simple univariate root-finding method such as regula falsi. For illustrative purposes, the

boundary values of the ∆-class according to Wang and Tsiatis for ∆ = 0, 0.25, 0.5 with K = 5

stages and one-sided significance level of α= 0.025 are presented in Figure 3.1.

It becomes apparent that the design by Pocock (∆= 0.5) has the lowest boundaries at earlier

stages, whereas at later stages the boundaries according to O’Brien & Fleming (∆ = 0) are the

lowest. Consequently, with Pocock boundaries the group sequential procedure tends to reject

H0 at earlier stages than with O’Brien Fleming boundaries. The O’Brien Fleming design rejects

Figure 3.1: Group sequential rejection boundaries according to the ∆-class by Wang and Tsiatis
with K = 5 and α = 0.025. The thin dotted line indicates the critical value of the
common fixed sample size design z0.975 = 1.96.
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∆= 0.25 (Intermediate)
∆= 0.50 (Pocock)
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H0 at earlier stages only if there is a substantial treatment difference and its final boundary

value is close to the critical value of the common single-stage design. This is why the O’Brien

Fleming design is often used in clinical trials, because an early study termination with rejection

of H0 is not always desirable as there might not be enough safety data available at that time

point. The intermediate design with ∆ = 0.25 is some kind of a trade-off between the designs

by Pocock and O’Brien and Fleming.

In order to get an impression on the performance of the three designs represented in Figure

3.1, the corresponding maximum sample sizes (Nmax ) as well as the average sample numbers

under H0 (ASN (0)) and the alternative of the sample size calculation (ASN (δ)) were calculated

for different amounts of power and number of stages with α = 0.025. The sample sizes were

not rounded to integers as this has only a small effect on the results. Table 3.2 shows the group

sequential sample sizes expressed as percentages of the corresponding single-stage sample size

N f i x , so that the values apply for all combinations of δ, σ2 and sample size allocation
n(K )

A

n(K )
B

. Note

that the fixed, maximum and expected sample size depend on these parameters in the same

way. It should also be considered that the group sequential designs with 80% and 90% power

Table 3.2: Maximum and expected sample sizes of group sequential ∆-class designs according
to Wang & Tsiatis represented as percentages of the fixed sample size with α= 0.025,
power 1−β at θ = δ and K stages.

1−β= 0.80 1−β= 0.90

K Nmax
N f i x

ASN (0)
N f i x

ASN (δ)
N f i x

Nmax
N f i x

ASN (0)
N f i x

ASN (δ)
N f i x

∆= 0.00 2 100.8 100.6 90.2 100.7 100.6 85.1
3 101.7 101.5 85.6 101.6 101.4 79.9
4 102.4 102.1 83.1 102.2 101.9 76.7
5 102.8 102.5 81.8 102.6 102.3 75.0

10 104.0 103.5 79.1 103.7 103.3 71.8
20 104.8 104.3 78.0 104.5 104.0 70.3

∆= 0.25 2 103.8 103.4 86.0 103.4 103.0 79.5
3 105.4 104.9 82.0 105.0 104.4 74.5
4 106.5 105.8 79.9 105.9 105.3 71.9
5 107.2 106.5 78.7 106.6 105.9 70.4

10 108.9 108.1 76.2 108.3 107.5 67.2
20 110.2 109.3 75.1 109.4 108.5 65.7

∆= 0.50 2 111.0 110.2 85.3 110.0 109.2 77.6
3 116.6 115.5 81.9 115.1 113.9 72.1
4 120.2 118.9 80.5 118.3 117.0 69.7
5 122.9 121.3 79.9 120.7 119.2 68.5

10 130.1 128.2 79.5 127.1 125.3 66.6
20 136.3 134.1 80.6 132.5 130.3 66.5



3.1 GROUP SEQUENTIAL DESIGNS 47

are compared with different fixed sample size designs.

It becomes apparent that the three designs have quite different operating characteristics. In

general, the highest gain in reduction of average sample size under the alternative is observed

by adding the first interim analysis (K = 2). With each additional interim analysis this gain

steadily decreases and the maximum sample size and ASN (0) increase. For the intermediate

design there might be some further gains with respect to ASN (δ) for more than K = 5 stages.

However, it should also be kept in mind that interim analyses in clinical trials are associated

with considerable operational challenges, so that more than five stages are generally not feasi-

ble in practice. We will go into a little more detail on this issue at the end of this section. The

designs by Pocock (∆= 0.5) have the highest maximum sample sizes and average sample num-

bers under H0, but benefit from very small expected sample sizes at θ = δ. The average sample

numbers under H1 of the O’Brien Fleming designs are also sufficiently low, while the maximum

sample size and ASN (0) are only slightly higher than the fixed sample size. Not surprisingly, the

intermediate design with ∆= 0.25 represents a trade-off between the other two designs.

When choosing an appropriate group sequential design from the ∆-class one has to balance

low expected against low maximum sample size. Designs with higher values of ∆ tend to have

higher maximum sample sizes and lower average sample numbers and vice versa for lower

∆ values. In general, it can be shown that Nmax is monotonically increasing with respect to

∆, whereas ASN (δ) as a function of ∆ has a global minimum that can be found by numeri-

cal optimisation. Wang and Tsiatis (1987) showed that the optimal designs from the ∆-class

have ASN (δ) values that are almost identical to those of the general optimal designs without

any constraints on the boundary value structure that where investigated by Pocock (1982). For

α = 0.025, K = 2, ...,5 and 1−β = 0.80,0.90 these so-called approximately optimal designs are

obtained for ∆ values around 0.4. Another interesting type of designs with low expected and

not too high maximum sample size can be determined by minimising the sum Nmax +ASN (δ).

The validity of the proposed group sequential tests is based on equal stage sizes, a restriction

that is not always sensible. If the trial is planned with unequal stage sizes, appropriate rejection

boundaries for the respective sample size allocation among the stages can be calculated by

means of Equation (3.4). It also turns out that the usual boundaries based on equal stage sizes

are fairly robust with respect to deviations from an equal allocation as it has been shown by

Proschan et al. (1992). However, in clinical trials interim analyses are usually conducted at

scheduled dates, so that irregular recruitment and drop outs can lead to considerably different

stage sizes. Besides the worst case scenario solution that has been proposed by Wassmer (1999),

a convenient and flexible solution to deal with unpredictable but data independent stage sizes

is the so-called error spending approach.

3.1.4 The Error Spending Approach

The key idea of error spending has been first mentioned by Slud and Wei (1982) and derives

from the fact that the overall type I error rate can be written as the sum of the K stage-wise
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rejection probabilities under H0. Thus, Equation (3.4) is equivalent to

Pθ=0 (Z1 ≥ b1)︸ ︷︷ ︸
π1

+Pθ=0 (Z1 < b1, Z2 ≥ b2)︸ ︷︷ ︸
π2

+...+Pθ=0 (Z1 < b1, ..., ZK−1 < bK−1, ZK ≥ bK )︸ ︷︷ ︸
πK

=α

By partitioning the type I error into probabilities prespecified π1, ...,πK which sum up to α,

appropriate boundaries b1, ...,bK are determined successively at each stage based on the data

observed by then. Starting with the first critical value after stage 1, which is easily obtained as

b1 = z1−π1 , (3.12)

the boundary values at stage k = 2, ...,K can be found as a solution of

Pθ=0 (Z1 < b1, ..., Zk−1 < bk−1, Zk ≥ bk ) =πk , (3.13)

where the left-hand side can be calculated by means of the distribution function of the k-

variate normal distribution with mean vector 0 and covariance matrix determined as a sub-

matrix of Σ in (3.7).

Although the procedure by Slud and Wei (1982) guarantees type I error control irrespective

of the observed information pattern, it has some limitations. On the one hand, the maxi-

mum number of analyses K needs to be fixed in advance and the desired power is not always

obtained. On the other hand, it seems more desirable to choose the amount of spent error

π1, ...,πK based on the actually observed information levels I1, ...,IK . For instance, if at the

first interim analysis the information level is low it seems reasonable to spend less type I error,

i.e. reduce π1, in order to save type I error for the subsequent, more informative stages.

The method proposed by Lan and DeMets (1983) is capable of dealing with these issues in a

simple but efficient way. First of all, one needs to specify the targeted maximum information

level Imax , which is the reason why such designs are also called maximum information designs.

Next, a non-decreasing error spending function f (t ) has to be defined, satisfying f (0) = 0 and

f (t ) =α for t ≥ 1. The type I error is then partitioned according to this error spending function,

in such a way that f (t ) specifies the cumulative type I error spent when the information t ·Imax

is observed. Thus, the type I error is allocated in the following way:

π1 = f (I1/Imax ) ,

πk = f (Ik /Imax )− f (Ik−1/Imax ) for k = 2, ...,K .

The corresponding rejection boundaries b1, ...,bK are then determined successively as in the

method by Slud and Wei (1982) to satisfy Equations (3.12) and (3.13). With these boundary

values the testing procedure takes the same form as for the classical group sequential tests.

Interestingly, there is no need to predefine the number of stages K in an error spending de-

sign. The final stage simply is the first stage where the observed information level exceeds the
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maximum information Imax , so that K = min{k | k ∈N, Ik /Imax ≥ 1}. According to the defi-

nition of the error spending function with f (t ) = α for t ≥ 1, the type I error is bounded above

by α as
∑K

i=1πi =α.

There have been several proposals on the choice of the error spending function f (t ) in the

literature. Lan and DeMets (1983) presented the two functions

fPOC (t ) = min
{
2−2Φ

(
z1−α/2/

p
t
)

,α
}

and

fOBF (t ) = min
{
α log(1+ (e −1)t ) ,α

}
,

that result in rejection boundaries similar to those suggested by Pocock and O’Brien & Fleming,

respectively. A more general family of error spending functions has been proposed by Kim and

DeMets (1987), who defined the ρ-class as

fK D (t ) = min
{
αtρ ,α

}
with ρ > 0.

It turns out that the ρ-class represents some kind of an error spending counterpart of the ∆-

class by Wang & Tsiatis. For ρ = 1 and ρ = 3 we obtain critical values that are close to the designs

by Pocock and O’Brien & Fleming, respectively, which are special cases of the ∆-class (∆ = 0.5

and ∆ = 0). The design with ρ = 2 consequently is similar to the intermediate design of the

Wang & Tsiatis family with ∆ = 0.25. Moreover, the maximum sample size Nmax is decreasing

with increasing ρ and approximately optimal designs with respect to minimising ASN (δ) can

be found via numerical optimisation methods.

Hwang et al. (1990) suggested another family of error spending designs which is in terms of

truncated exponential distributions. For a predefined parameter γ ∈ R they investigated the

error spending functions

fHSD (t ) =




α

(
1−e−γt

)/(
1−e−γ

)
for γ 6= 0,

αt for γ= 0.

As with the ρ-class, it turns out that the designs with γ= 1 and γ=−4 have rejection boundaries

that are similar to Pocock and O’Brien & Fleming boundaries, respectively. Furthermore, the

maximum sample size Nmax is an increasing function of γ and Hwang et al. (1990) showed

that the γ-class also possesses the (approximately) optimal property of minimising the average

sample number ASN (δ) for suitable γ.

3.1.5 Practical Considerations

It should be noted that the group sequential tests presented above rely on the assumption of

a known variance σ2 which is normally not the case in practice. In order to apply the derived

group sequential boundaries to data with unknown variance, Pocock (1977) proposed a simple
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but effective procedure that approximately controls the type I error rate:

1. Estimate the variance in (3.2) with the unbiased pooled variance estimator σ̂2.

2. Choose appropriate rejection boundaries b1, ...,bK and determine the stage-wiseα-levels

as αk = 1−Φ(bk ), k = 1, ...,K .

3. Define the adjusted boundary values by b̃k = t1−αk ,ν with ν = n(k)
A +n(k)

B − 2 degrees of

freedom for k = 1, ...,K .

By using the adjusted rejection boundaries b̃1, ..., b̃K , we obtain approximate group sequential

t-tests with only minor departures from the desired type I error rates. Exact calculations for

sequential and group sequential t-tests have been proposed by Jennison and Turnbull (1991),

who also dealt with exact sequential χ2 and F tests. For most applications the tests for known

variance are quite robust with regard to type I error control when applied in the unknown vari-

ance setting.

The previous subsections dealt with group sequential methodology to reject H0. In a pla-

cebo-controlled superiority trial this corresponds to proving the efficacy of the new drug. It

seems reasonable, not only for ethical reasons, to additionally implement so-called futility

boundaries in such trials, i.e. the possibility of early stopping to accept H0. The course of a

clinical study is usually monitored by a Data Safety Monitoring Board (DSMB) which could also

benefit from this statistical monitoring tool. In general, there are two types of futility bound-

aries, binding and non-binding. As the names imply, the trial must be stopped with accepting

H0 once a binding futility boundary is crossed, whereas non-binding futility boundaries only

serve as a guidance and the study can be continued once the test statistic falls below them.

Although this additional flexibility comes along with increased maximum sample sizes, non-

binding futility boundaries are more commonly applied in clinical trials, not least because they

can be easily determined completely independent of the rejection boundaries.

Last but not least it should not be overlooked that, besides all the benefits such as substantial

sample size savings, the realisation of a group sequential design in clinical trials is associated

with considerable operational challenges compared with a conventional fixed sample size de-

sign. First of all, it is vital to set up an Independent Data Monitoring Committee (IDMC) in

order to maintain the validity and integrity of the trial. The information that is revealed by the

IDMC after an interim analysis should be furthermore kept to a minimum. The patient popu-

lation might change due to published information about the treatment efficacy, an issue that

should be assessed by comparing the results from the different stages. Another issue in trials

with interim analyses is that there often is a delay between start of treatment and observation of

the endpoint, so that some patients are still ‘in the pipeline’ at each interim analysis. In accor-

dance with the ITT principle of analysing all randomised patients, these overrunning patients

should be included in the primary analysis. Differences between an additional analysis exclud-

ing these patients should be critically discussed. The error spending approach presented in the

previous subsection provides a simple and flexible solution to implement this strategy.
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3.2 Group Sequential Designs for Three-Arm Non-Inferiority

Trials

The previous section showed that the application of group sequential methods in clinical tri-

als can result in significant sample size and time savings. Particularly because Section 2.3.3

showed that the power of the test vs. placebo superiority comparison is very high under the

optimal allocation of the fixed sample size design, the benefits of a group sequential design

in a three-arm non-inferiority trial are expected to be substantial. Furthermore, the additional

possibility to stop allocating patients to placebo is another key benefit of implementing interim

analyses that could help to overcome ethical concerns.

Due to the fact that there is more than one hypothesis under consideration in three-arm

non-inferiority trials, the application of group sequential methodology obviously results in two

layers of multiplicity, namely multiple hypotheses and repeated significance testing. In order

to account for these two multiplicity issues, we will present an appropriate testing procedure

that controls the overall probability of committing at least one type I error. After describing the

general testing procedure and determining formulas for the overall power and the maximum

and expected sample sizes, the subsequent part of this section will provide a detailed compar-

ison of the proposed design with the optimal fixed design derived in Section 2.3.3. A special

focus will also be placed on the choice of the rejection boundaries. It should be noted that a

part of the results has already been presented in Schlömer and Brannath (2013).

3.2.1 General Design

Denote by XT,i ∼ N (µT ,σ2), i = 1,2, ..., XC ,i ∼ N (µC ,σ2), i = 1,2, ..., and XP,i ∼ N (µP ,σ2), i =
1,2, ..., the mutually independent responses of patients allocated to the test, the control and the

placebo treatment, respectively, with common known variance σ2. As in Section 2.3 we want

to assess the hierarchically ordered set of hypothesis given in (2.9), i.e. the proof of efficacy

for the test treatment (H (s)
0,T P : µT ≤ µP ) and the non-inferiority comparison between test and

control (H (n)
0,TC : µT ≤ µC −∆ni ). We now want to apply the group sequential framework in the

following way: Start with assessing H (s)
0,T P at each interim analysis. If H (s)

0,T P is rejected, say at

stage k∗, 1 ≤ k∗ ≤ K , drop the placebo arm and proceed with testing H (n)
0,TC at stages k∗, ...,K . If

furthermore H (n)
0,TC is rejected, stop the trial and state that the test treatment is both superior to

placebo and non-inferior to the control treatment.

Test Procedure

Let n(1)
T , ...,n(K )

T , n(1)
C , ...,n(K )

C and n(1)
P , ...,n(K )

P denote the cumulative sample sizes at stage 1, ...,K

of the test, control and placebo group, respectively. The cumulative sample means of the three

treatment groups shall be denoted as X̄ (1)
T , ..., X̄ (K )

T , X̄ (1)
C , ..., X̄ (K )

C and X̄ (1)
P , ..., X̄ (K )

P and defined

as X̄ (k)
D =

∑n(k)
D

i=1 XD,i /n(k)
D for D = T,C ,P and k = 1, ...,K . In accordance with (2.10) and (3.2) the
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group sequential test statistics Z (1)
T P , ..., Z (K )

T P for testing the first and Z (1)
TC , ..., Z (K )

TC for testing the

second null hypothesis are calculated as

Z (k)
T P =

X̄ (k)
T − X̄ (k)

P

σ

√
1

n(k)
T

+ 1
n(k)

P

=
(

X̄ (k)
T − X̄ (k)

P

)√
I

(k)
T P ,

Z (k)
TC =

X̄ (k)
T − X̄ (k)

C +∆ni

σ

√
1

n(k)
T

+ 1
n(k)

C

=
(

X̄ (k)
T − X̄ (k)

C +∆ni

)√
I

(k)
TC , k = 1, ...,K ,

where I
(k)

T P and I
(k)

TC denote the stage-wise information levels of the respective comparison. By

combining the fixed sequence procedure of the fixed sample size design in (2.11) and the com-

mon group sequential test procedure given in (3.3), the test procedure of the group sequential

three-arm non-inferiority design takes the following form:

Step I: At stage k = 1, ...,K −1

if Z (k)
T P ≥ b(k)

T P , reject H (s)
0,T P , drop placebo and proceed to step II,

if Z (k)
T P < b(k)

T P , continue to stage k +1.

At stage K

if Z (K )
T P ≥ b(K )

T P , reject H (s)
0,T P and proceed to step II,

if Z (K )
T P < b(K )

T P , accept H (s)
0,T P and H (n)

0,TC , stop the trial.

Step II: Suppose H (s)
0,T P has been rejected at stage k∗,1 ≤ k∗ ≤ K .

At stage k = k∗, ...,K −1

if Z (k)
TC ≥ b(k)

TC , reject H (n)
0,TC , and stop the trial,

if Z (k)
TC < b(k)

TC , continue to stage k +1.

At stage K

if Z (K )
TC ≥ b(K )

TC , reject H (n)
0,TC and stop the trial,

if Z (K )
TC < b(K )

TC , accept H (n)
0,TC and stop the trial.

(3.14)

Type I Error and Rejection Boundaries

The group sequential boundaries b(1)
T P , ...,b(K )

T P and b(1)
TC , ...,b(K )

TC in (3.14) of the test vs. placebo

superiority comparison and the test vs. control non-inferiority test are determined to satisfy

the equations

1−PθT P=0

(
K⋂

k=1

{
Z (k)

T P < b(k)
T P

})
=α, (3.15)

1−PθTC=−∆ni

(
K⋂

k=1

{
Z (k)

TC < b(k)
TC

})
=α. (3.16)



3.2 GROUP SEQUENTIAL DESIGNS FOR THREE-ARM NON-INFERIORITY TRIALS 53

That means, for both null hypotheses H (s)
0,T P and H (n)

0,TC we define separate group sequential

boundaries each at significance level α. Through this, the family-wise type I error rate is con-

trolled by α in the strong sense.

PROOF: To show that the testing procedure described in (3.14) with rejection boundaries sat-

isfying (3.15) and (3.16) provides strong family-wise error rate control, we need to consider all

possible configurations of true and false null hypotheses H (s)
0,T P and H (n)

0,TC or equivalently all

constellations of the parameters θT P =µT −µP and θTC =µT −µC .

θT P ≤ 0 : Irrespective of whether θTC ≤−∆ni or θTC >−∆ni , the procedure must, due to its

hierarchical nature, at least reject H (s)
0,T P in order to commit a type I error. Therefore we have

PθT P≤0
(
Commit a type I error

)
≤ PθT P≤0

(
K⋃

k=1

{
H (s)

0,T P is rejected at stage k
})

= 1−PθT P≤0

(
K⋂

k=1

{
Z (k)

T P < b(k)
T P

})
(3.15)
≤ α.

θT P > 0, θTC ≤−∆ni : According to the hierarchical ordering, both null hypotheses need to

be rejected in order to commit a type I error. Denote by Ak , 0 ≤ k ≤ K , the event that the

procedure rejects H (s)
0,T P at stage k (k = 0 means no rejection of H (s)

0,T P at any stage) and H (n)
0,TC

is not rejected at stages k, ...,K . That means Ak is given as

Ak =





K⋂
m=1

{
Z (m)

T P < b(m)
T P

}
, k = 0,

{
Z (1)

T P ≥ b(1)
T P

}
∩

K⋂
l=1

{
Z (l )

TC < b(l )
TC

}
, k = 1,

k−1⋂
m=1

{
Z (m)

T P < b(m)
T P

}
∩

{
Z (k)

T P ≥ b(k)
T P

}
∩

K⋂
l=k

{
Z (l )

TC < b(l )
TC

}
, 2 ≤ k ≤ K .

(3.17)

Because
K⋂

k=1

{
Z (k)

TC < b(k)
TC

}
⊆

K⋃
k=0

Ak , the probability of committing a type I error is given as

1−PθT P>0,θTC≤−∆ni

(
⋃

0≤k≤K
Ak

)
≤ 1−PθTC≤−∆ni

(
K⋂

k=1

{
Z (k)

TC < b(k)
TC

})
(3.16)
≤ α.

For θT P > 0 and θTC > −∆ni both null hypotheses are false, so that no type I error can be

committed. Consequently, the type I error rate is controlled in the strong sense. �

Analogously to Section 3.1.2 it can be easily shown that Equations (3.15) and (3.16) are equiv-

alent to

Φ
ΣT P

(
b(1)

T P , ...,b(K )
T P

)
=Φ

ΣTC

(
b(1)

TC , ...,b(K )
TC

)
= 1−α,
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where the corresponding variance-covariance matrices ΣT P and ΣTC can be determined ac-

cording to (3.6) as

ΣT P =




√√√√√
I

(min(i , j ))
T P

I
(max(i , j ))

T P




1≤i , j≤K

and ΣTC =




√√√√√
I

(min(i , j ))
TC

I
(max(i , j ))

TC




1≤i , j≤K

. (3.18)

As we have seen, the rejection boundaries for both hypotheses can be determined com-

pletely independent of each other within the common group sequential framework presented

in Section 3.1.2. Most of the established statistical software packages provide tools for design-

ing and analysing group sequential trials nowadays, making it easy to implement the proposed

procedure. For instance, SAS/STAT® software (SAS Institute Inc., 2011) contains the pro-

cedure SEQDESIGN and the package gsDesign (Anderson, 2013) is available for the software

environment R (R Core Team, 2013).

Power and Sample Sizes

The power for rejecting H (s)
0,T P , which shall be denoted as 1−βT P , can be easily determined

according to Equation (3.9) as

1−βT P = 1−PθT P

(
K⋂

k=1

{
Z (k)

T P < b(k)
T P

})

= 1−Φ
ΣT P

(
b(1)

T P −θT P

√
I

(1)
T P , ...,b(K )

T P −θT P

√
I

(K )
T P

)
. (3.19)

Determination of the overall power 1 −β to reject both null hypotheses H (s)
0,T P and H (n)

0,TC is

more complicated than in the fixed sample size design. With the events Ak , k = 0, ...,K , defined

in (3.17), the overall power of the procedure is given as

1−β= 1−PθT P ,θTC

(
K⋃

k=0
Ak

)

= 1−PθT P (A0)−
K∑

k=1

PθT P ,θTC (Ak )

= 1−βT P −
K∑

k=1

PθT P ,θTC (Ak ) , (3.20)

with the power of the test versus placebo superiority comparison 1−βT P given in Equation

(3.19). Because obviously
⋃K

k=1 Ak 6⊆
⋂K

k=1{Z (k)
TC < b(k)

TC }, we can see from Equation (3.20) that the

simple intuitive lower bound 1−βT P −βTC for the overall power cannot be easily determined as

in the fixed design, when βTC denotes the probability of committing a type II error with a com-

mon group sequential design, i.e. βTC = PθTC (
⋂K

k=1{Z (k)
TC < b(k)

TC }). Moreover, the overall power

could also be determined by using the events Rk1,k2 , 1 ≤ k1 ≤ k2 ≤ K , that the first hypothesis
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H (s)
0,T P is rejected at stage k1 and the second hypothesis H (n)

0,TC is rejected at stage k2, that means

Rk1,k2 =





{
Z (1)

T P ≥ b(1)
T P

}
∩

{
Z (1)

TC ≥ b(1)
TC

}
, k1 = k2 = 1,

{
Z (1)

T P ≥ b(1)
T P

}
∩

k2−1⋂
l=1

{
Z (l )

TC < b(l )
TC

}
∩

{
Z (k2)

TC ≥ b(k2)
TC

}
, 1 = k1 < k2 ≤ K ,

k1−1⋂
m=1

{
Z (m)

T P < b(m)
T P

}
∩

{
Z (k1)

T P ≥ b(k1)
T P

}
∩

{
Z (k1)

TC ≥ b(k1)
TC

}
, 1 < k1 = k2 ≤ K ,

k1−1⋂
m=1

{
Z (m)

T P < b(m)
T P

}
∩

{
Z (k1)

T P ≥ b(k1)
T P

}
∩

k2−1⋂
l=k1

{
Z (l )

TC < b(l )
TC

}
∩

{
Z (k2)

TC < b(k2)
TC

}
, 1 < k1 < k2 ≤ K .

The overall power would then be given as

1−β= PθT P ,θTC

(
⋃

1≤k1≤k2≤K
Rk1,k2

)
=

∑

1≤k1≤k2≤K

PθT P ,θTC

(
Rk1,k2

)
.

This formula seems much more intuitive than Equation (3.20), but it is computationally more

intensive as it involves calculating K (K+1)
2 instead of K +1 multidimensional integrals. There-

fore, we will make use of Equation (3.20).

In order to calculate the probabilities PθT P ,θTC (Ak ), k = 1, ...,K , in (3.20), we need to take a

closer look at the distribution of the vector of test statistics Z = (Z (1)
T P , ..., Z (K )

T P , Z (1)
TC , ..., Z (K )

TC )′.

As each component of Z itself is a linear combination of normally distributed random vari-

ables, all linear combinations of the components obviously follow a normal distribution. Con-

sequently, Z follows a 2K -variate normal distribution, where the mean vector is easily deter-

mined as

µ=
(
µi

)′
1≤i≤2K , where µi =




θT P

√
I

(i )
T P , 1 ≤ i ≤ K ,

(θTC +∆ni )
√

I
(i−K )

TC , K +1 ≤ i ≤ 2K .
(3.21)

The covariances Cov(Z (k1)
T P , Z (k2)

T P ) and Cov(Z (k1)
TC , Z (k2)

TC ) are determined with (3.6) analogously

to the common group sequential design. According to (3.5) we have for k1,k2 ∈ {1, ...,K }

Cov
(

Z (k1)
T P , Z (k2)

TC

)
=

√
I

(k1)
T P I

(k2)
TC Cov

(
X̄ (k1)

T − X̄ (k1)
P , X̄ (k2)

T − X̄ (k2)
C +∆ni

)

=
√

I
(k1)

T P I
(k2)

TC Cov
(

X̄ (k1)
T , X̄ (k2)

T

)

=
σ2

n(max(k1,k2))
T

√
I

(k1)
T P I

(k2)
TC , (3.22)

so that the variance-covariance matrix of Z is finally obtained as

Σ=
(
ΣT P ΣTC P

Σ
′
TC P ΣTC

)
with ΣTC P =


 σ2

n
(max(i , j))
T

√
I

(i )
T P I

( j )
TC




1≤i , j≤K

, (3.23)

where i denotes the index of the rows and j the index of the columns and ΣT P and ΣTC are
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given in (3.18).

For a specific k, 1 ≤ k ≤ K , calculation of PθT P ,θTC (Ak ) requires knowledge of the distribu-

tion of the vector (Z (1)
T P , ..., Z (k)

T P , Z (k)
TC , ..., Z (K )

TC )′, which obviously is a subvector of Z . Hence, it

is K + 1-variate normally distributed, where the mean vector and covariance matrix are eas-

ily determined as a subvector of µ given in (3.21) and a submatrix of Σ in (3.23), respectively.

More precisely they are obtained by deleting the entries k+1, ...,K +k−1 in µ and the rows and

columns k +1, ...,K +k −1 in Σ.

In contrast to previous calculations, the cumulative multivariate normal distribution func-

tion cannot be used to calculate PθT P ,θTC (Ak ), because Ak includes {Z (k)
T P ≥ b(k)

T P }. Let therefore

Φ
Σ (a;b) with a = (ai )′1≤i≤n ,b = (bi )′1≤i≤n ∈ R

n denote the distribution function of the mul-

tivariate normal distribution with mean vector 0 = (0)′1≤i≤n and covariance matrix Σ ∈ R
n×n

evaluated at lower limits a1, ..., an and upper limits b1, ...,bn . That means, we have

Φ
Σ (a;b) =

1
√
|Σ| (2π)n

b1∫

a1

b2∫

a2

· · ·
bn∫

an

e−
1
2 x

′
Σ

−1
x d x ,

so that the relationshipΦ
Σ((−∞)′1≤i≤n ;b) =Φ

Σ (b1, ...,bn) with the cumulative distribution func-

tion holds. Through this, we have

PθT P ,θTC (Ak ) =Φ
Σ(k+1,...,K+k−1) (ak ;bk ) for 1 ≤ k ≤ K , (3.24)

where the vectors ak and bk are defined as

ak =
(
ak,i

)′
1≤i≤K+1 with ak,i =





b(i )
T P −θT P

√
I

(i )
T P , i = k,

−∞, else,

bk =
(
bk,i

)′
1≤i≤K+1 with bk,i =





b(i )
T P −θT P

√
I

(i )
T P , 1 ≤ i ≤ k −1,

∞, i = k,

b(i−1)
TC − (θTC +∆ni )

√
I

(i−1)
TC , k +1 ≤ i ≤ K +1.

(3.25)

According to (3.20), the overall power of the procedure can be determined as the difference

between the power to reject H (s)
0,T P given in (3.19) and the sum of the probabilities PθT P ,θTC (Ak ),

1 ≤ k ≤ K , that are calculated according to (3.24) and (3.25). That means, we have

1−β= 1−Φ
ΣT P

(
b(1)

T P −θT P

√
I

(1)
T P , ...,b(K )

T P −θT P

√
I

(K )
T P

)

−
K∑

k=1

Φ
Σ(k+1,...,K+k−1) (ak ;bk ) ,

(3.26)

where the vectors ak and bk , 1 ≤ k ≤ K , are given in (3.25) and the variance-covariance matrices

ΣT P andΣ are given in (3.18) and (3.23), respectively. With prespecified sample size allocations
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between the groups and across the stages, the required sample size is obtained as the solution

of Equation (3.26).

Expected Sample Sizes

Of particular interest for the proposed design are the expected sample sizes of the placebo

group and overall, which shall be denoted as ASnP (θT P ) and ASN (θT P ,θTC ), respectively. It

can be easily seen that the former only depends on the true treatment difference between test

and placebo and can be derived analogously to the common group sequential design. Accord-

ing to (3.10) we have

ASnP (θT P ) = n(1)
P +

K∑

k=2

(
n(k)

P −n(k−1)
P

)
PθT P

(
k−1⋂

m=1

{
Z (m)

T P < b(m)
T P

})
(3.27)

= n(1)
P +

K∑

k=2

(
n(k)

P −n(k−1)
P

)
Φ
ΣT P (k,...,K )

(
b(1)

T P −θT P

√
I

(1)
T P , ...,b(k−1)

T P −θT P

√
I

(k−1)
T P

)
.

In contrast to the average sample number of the placebo group, the expected test and control

group sizes, which shall be denoted as ASnT (θT P ,θTC ) and ASnC (θT P ,θTC ), respectively, de-

pend on the rejection or non-rejection of both H (s)
0,T P and H (n)

0,TC . Let us therefore denote by Ek ,

2 ≤ k ≤ K , the event that the procedure enters stage k. Obviously, there are several constella-

tions of observed test statistics Z (1)
T P , ..., Z (k−1)

T P and Z (1)
TC , ..., Z (k−1)

TC that results in entering stage k.

For example, the trial enters stage 2 if H (s)
0,T P is not rejected at the first interim analysis. If H (s)

0,T P

is rejected, but H (n)
0,TC is not rejected at the first interim analysis, the trial also enters the second

stage. Thus, we have

Ek =
k−1⋃

k1=0
Ek1,k for 2 ≤ k ≤ K , where

Ek1,k =





k−1⋂
m=1

{
Z (m)

T P < b(m)
T P

}
, k1 = 0,

{
Z (1)

T P ≥ b(1)
T P

}
∩

k−1⋂
l=1

{
Z (l )

TC < b(l )
TC

}
, k1 = 1,

k1−1⋂
m=1

{
Z (m)

T P < b(m)
T P

}
∩

{
Z (k1)

T P ≥ b(k1)
T P

}
∩

k−1⋂
l=k1

{
Z (l )

TC < b(l )
TC

}
, 2 ≤ k1 ≤ k −1.

(3.28)

In other words, Ek1,k corresponds to the event that H (s)
0,T P is rejected at stage k1 (k1 = 0 means

no rejection of H (s)
0,T P ), whereas the trial enters stage k > k1, i.e. no rejection of H (n)

0,TC at stages

k1 to k −1. Note, that the relationship Ak = Ek,K+1 holds for 1 ≤ k ≤ K with the events Ak given

in (3.17). For given k, 2 ≤ k ≤ K , the events Ek1,k are pairwise disjoint, so that the probability

PθT P ,θTC (Ek ) can be expressed as the sum
∑k−1

k1=0 PθT P ,θTC (Ek1,k ). Denote by NT the actual test

group size, then we have according to (3.10)

ASnT (θT P ,θTC ) = n(1)
T +

K∑

k=2

(
n(k)

T −n(k−1)
T

)
PθT P ,θTC

(
NT ≥ n(k)

T

)

︸ ︷︷ ︸
PθT P ,θTC (Ek )
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= n(1)
T +

K∑

k=2

(
n(k)

T −n(k−1)
T

) k−1∑

k1=0

PθT P ,θTC

(
Ek1,k

)
. (3.29)

The expected sample size of the control group is determined by replacing n(k)
T with n(k)

C , 1 ≤
k ≤ K , in (3.29), so that the overall expected sample size is obtained as the sum of ASnP (θT P ),

ASnT (θT P ,θTC ) and ASnC (θT P ,θTC ), that means we have

ASN (θT P ,θTC ) = ASnP (θT P )+
(
n(1)

T +n(1)
C

)

+
K∑

k=2

((
n(k)

T +n(k)
C

)
−

(
n(k−1)

T +n(k−1)
C

)) k−1∑

k1=0

PθT P ,θTC

(
Ek1,k

)
,

where ASnP (θT P ) is calculated through (3.27). Analogous to the overall power of the procedure,

the probabilities PθT P ,θTC (Ek1,k ) can be calculated by means of the distribution function of the

multivariate normal distribution. According to (3.28), it can be seen that PθT P ,θTC (E0,k ) for 2 ≤
k ≤ K is given as

PθT P ,θTC

(
E0,k

)
=Φ

ΣT P (k,...,K )
(
b(1)

T P −θT P

√
I

(1)
T P , ...,b(k−1)

T P −θT P

√
I

(k−1)
T P

)

and for 2 ≤ k ≤ K and 1 ≤ k1 ≤ k −1 we have

PθT P ,θTC

(
Ek1,k

)
=Φ

Σk1,k
(
ak1,k ;bk1,k

)
,

where the variance-covariance matrix Σk1,k is given as

Σk1,k =Σ(k1 +1, ...,K +k1 −1,K +k, ...,2K ) (3.30)

and the vectors ak1,k and bk1,k are determined according to

ak1,k =
(
ak1,k,i

)′
1≤i≤k with ak1,k,i =





b(i )
T P −θT P

√
I

(i )
T P , i = k1,

−∞, else,

bk1,k =
(
bk1,k,i

)′
1≤i≤k with bk1,k,i =





b(i )
T P −θT P

√
I

(i )
T P , 1 ≤ i ≤ k1 −1,

∞, i = k1,

b(i−1)
TC − (θTC +∆ni )

√
I

(i−1)
TC , k1 +1 ≤ i ≤ k.

(3.31)

In conclusion the overall average sample number is given as

ASN (θT P ,θTC ) = N (1) +
K∑

k=2

(
N (k) −N (k−1)

)
Φ
ΣT P (k,...,K )

(
b(1)

T P −θT P

√
I

(1)
T P , ...,b(k−1)

T P −θT P

√
I

(k−1)
T P

)

+
K∑

k=2

((
n(k)

T +n(k)
C

)
−

(
n(k−1)

T +n(k−1)
C

)) k−1∑

k1=1

Φ
Σk1,k

(
ak1,k ;bk1,k

)
, (3.32)
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where N (k) = n(k)
T +n(k)

C +n(k)
P is the cumulative overall sample size at stage k = 1, ...,K and the

covariance matrix Σk1,k and the vectors ak1,k and bk1,k are given in (3.30) and (3.31), respec-

tively.

3.2.2 Designs with Equal Stage Sizes

Equal stage sizes are a common assumption when applying group sequential methodology in

clinical trials. Also in the planning stage of trials implementing error spending designs this

assumption is quite common. If the sample sizes of the control and placebo group are fur-

thermore defined as fractions of the test group sample size, it turns out that calculation of the

group sequential key characteristics such as maximum and expected sample size can be fur-

ther simplified. Let us therefore assume that n(k)
D = k

K n(K )
D for D = T,C ,P and n(K )

C = cC n(K )
T ,

n(K )
P = cP n(K )

T , so that we have n(k)
T = k

K n(K )
T , n(k)

C = cC
k
K n(K )

T and n(k)
P = cP

k
K n(K )

T , 1 ≤ k ≤ K .

Type I Error and Rejection Boundaries

According to (3.11), the covariance matrices ΣT P and ΣTC simplify to

Σ̃=
(√

min(i , j )

max(i , j )

)

1≤i , j≤K

,

so that the rejection boundaries can be determined as a solution of

Φ
Σ̃

(
b(1)

T P , ...,b(K )
T P

)
=Φ

Σ̃

(
b(1)

TC , ...,b(K )
TC

)
= 1−α. (3.33)

As described in Section 3.1.3 on classical group sequential tests, the rejection boundaries can

be determined independent of the maximum sample sizes. For instance, the boundaries could

be chosen from the ∆-class or also from the ρ- or γ-class of error spending designs, where the

boundaries are derived according to (3.12) and (3.13) a priori by assuming equal stage sizes.

Power and Sample Sizes

First of all, it can be easily shown that the information levels I
(k)

T P and I
(k)

TC simplify to

I
(k)

T P =
1

σ2

cP

1+ cP

k

K
n(K )

T and I
(k)

TC =
1

σ2

cC

1+ cC

k

K
n(K )

T for 1 ≤ k ≤ K .

Therefore, according to (3.22) we have for k1,k2 ∈ {1, ...,K } that

Cov
(

Z (k1)
T P , Z (k2)

TC

)
=

σ2

n(max(k1,k2))
T

√
I

(k1)
T P I

(k2)
TC

=
σ2K

max(k1,k2)n(K )
T

√
1

σ4

cC cP

(1+ cC ) (1+ cP )

k1k2

K 2
n(K )

T

2
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=
√

cC cP

(1+ cC ) (1+ cP )

√
min(k1,k2)

max(k1,k2)
.

Consequently, the mean vector µ and the covariance matrix Σ of the vector of test statistics

Z =
(

Z (1)
T P , ..., Z (K )

T P , Z (1)
TC , ..., Z (K )

TC

)′
are given as

µ=
(
µi

)′
1≤i≤2K , where µi =





θT P
σ

√
cP

1+cP

i
K n(K )

T , 1 ≤ i ≤ K ,

θTC+∆ni
σ

√
cC

1+cC

i−K
K n(K )

T , K +1 ≤ i ≤ 2K ,

Σ=
(
Σ̃ ρΣ̃

ρΣ̃ Σ̃

)
, where ρ =

√
cC cP

(1+ cC )(1+ cP )
.

Interestingly, ρ is exactly the correlation of the test statistics T (s)
T P , T (n)

TC of the single-stage design

given in (2.12). According to this and (3.19), the power to reject the first null hypothesis H (s)
0,T P

is given as

1−βT P = 1−Φ
Σ̃

(
b(1)

T P −
θT P

σ

√
cP

1+ cP

1

K
n(K )

T , ...,b(K )
T P −

θT P

σ

√
cP

1+ cP

K

K
n(K )

T

)
.

The overall power of the procedure is determined as

1−β= 1−Φ
Σ̃

(
b(1)

T P −
θT P

σ

√
cP

1+ cP

1

K
n(K )

T , ...,b(K )
T P −

θT P

σ

√
cP

1+ cP

K

K
n(K )

T

)

−
K∑

k=1

Φ
Σ(k+1,...,K+k−1) (ak ;bk ) ,

(3.34)

which follows easily from (3.26), where the vectors ak and bk are defined as

ak =
(
ak,i

)′
1≤i≤K+1 with ak,i =





b(i )
T P − θT P

σ

√
cP

1+cP

i
K n(K )

T , i = k,

−∞, else,

bk =
(
bk,i

)′
1≤i≤K+1 with bk,i =





b(i )
T P − θT P

σ

√
cP

1+cP

i
K n(K )

T , 1 ≤ i ≤ k −1,

∞, i = k,

b(i−1)
TC − θTC+∆ni

σ

√
cC

1+cC

i−1
K n(K )

T , k +1 ≤ i ≤ K +1.

As we can see, the overall power is described as a (increasing) function of the maximum test

group size n(K )
T , so that sample size calculation could proceed as follows: Based on prior infor-

mation, e.g. from historical trials, and actual requirements prespecify the variables θT P , θTC ,

∆ni , σ, cP , cC , K and define rejection boundaries b(1)
T P , ...,b(K )

T P , b(1)
TC , ...,b(K )

TC satisfying (3.33). The

required maximum test group size to obtain overall power 1−β can then be obtained by solv-

ing Equation (3.34) for n(K )
T by means of a univariate numerical root finding method. The

respective sample sizes at the preceding stages k = 1, ...,K − 1 are obtained via n(k)
T = k

K n(K )
T
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and the control and placebo group sample sizes through the relationships n(k)
C = cC

k
K n(K )

T and

n(k)
P = cP

k
K n(K )

T , 1 ≤ k ≤ K , respectively.

Strictly speaking, as the sample sizes are integers, we need to search for the smallest n(K )
T so

that the overall power given in (3.34) is greater than or equal to 1−β and n(1)
C = cC

K n(K )
T as well

as n(1)
P = cP

K n(K )
T are also integers, i.e. n(K )

T has to be an integer multiple of K
cC

and K
cP

. As this

might be difficult to ensure for all situations, it seems appropriate to determine the required

sample sizes by rounding the exact solutions of Equation (3.34). This will probably violate the

assumption of equal stage sizes, however, it has been mentioned earlier that the classical group

sequential tests are fairly robust with respect to these deviations. Moreover, error spending

designs could be used just as well, offering the advantage of exact type I error control.

Expected Sample Sizes

For equal stage sizes, the expected placebo group size given in (3.27) can be simplified to

ASnP (θT P ) =
cP n(K )

T

K

[
1+

K∑

k=2

Φ
Σ̃(k,...,K )

(
b(1)

T P −
θT P

σ

√
cP

1+ cP

1

K
n(K )

T ,

...,b(k−1)
T P −

θT P

σ

√
cP

1+ cP

k −1

K
n(K )

T

)]
.

(3.35)

Analogously, it can be easily shown with some calculus that the expected overall sample size

given in (3.32) simplifies to

ASN (θT P ,θTC ) =
n(K )

T

K

[
(1+ cC + cP )

(
1+

K∑

k=2

Φ
Σ̃(k,...,K )

(
b(1)

T P −
θT P

σ

√
cP

1+ cP

1

K
n(K )

T ,

...,b(k−1)
T P −

θT P

σ

√
cP

1+ cP

k −1

K
n(K )

T

))

+ (1+ cC )
K∑

k=2

k−1∑

k1=1

Φ
Σk1,k

(
ak1,k ;bk1,k

)
]

, (3.36)

where the covariance matrixΣk1,k and the vectors ak1,k and bk1,k for 2 ≤ k ≤ K and 1 ≤ k1 ≤ k−1

are given as

Σk1,k =Σ(k1 +1, ...,K +k1 −1,K +k, ...,2K ),

ak1,k =
(
ak1,k,i

)′
1≤i≤k with ak1,k,i =





b(i )
T P − θT P

σ

√
cP

1+cP

i
K n(K )

T , i = k1,

−∞, else,

bk1,k =
(
bk1,k,i

)′
1≤i≤k with bk1,k,i =





b(i )
T P − θT P

σ

√
cP

1+cP

i
K n(K )

T , 1 ≤ i ≤ k1 −1,

∞, i = k1,

b(i−1)
TC − θTC+∆ni

σ

√
cC

1+cC

i−1
K n(K )

T , k1 +1 ≤ i ≤ k.
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With the maximum sample size of the test group n(K )
T determined as a solution of Equation

(3.34), the expected sample sizes of the placebo group and overall can be calculated by means

of Equations (3.35) and (3.36).

3.2.3 Hypothetical Example

In order to illustrate the proposed group sequential procedure, let us consider a hypothetical

example of a three-arm non-inferiority trial, where a new therapy for the treatment of bronchial

asthma is compared with a control treatment and placebo. Treatment efficacy is assessed by

means of changes of the forced expiratory volume in one second (FEV1), which is measured in

litre (l ). The one-sided significance level is set to α= 0.025, which is a regulatory requirement

for confirmatory claims. Furthermore, a usual non-inferiority margin for this primary endpoint

of ∆ni = 0.2l is adopted and the overall power to demonstrate non-inferiority of test to control

and superiority of test over placebo should be 1−β = 0.90. The assumptions at the planning

stage on the treatment effects and the common standard deviation are µT = µC = 2.4l , µP = 2l

and σ= 1l , respectively, that means we have θT P = 0.4l and θTC = 0l .

For reference purposes, let us initially consider the optimal single-stage design proposed in

Section 2.3.3. Due to practical reasons, we assume a treatment allocation ratio of nT : nC : nP =
4 : 4 : 1, i.e. cC = 1 and cP = 0.25 which is only slightly different from the optimal allocation

determined as cC = 0.98, cP = 026. According to (2.14), the sample sizes of the fixed sample

size design are given as nT, f i x = nC , f i x = 544 and nP, f i x = 136, so that the overall sample size is

N f i x = 1224.

With the same optimal allocation ratio as in the fixed design, we now want to derive a group

sequential design with K = 3 stages and equal stage sizes, i.e. n(k)
D = k

K n(K )
D for D = T,C ,P

and k = 1, ...,K (cf. Section 3.2.2). The group sequential boundaries are chosen from the ∆-

family proposed by Wang and Tsiatis (1987), namely intermediate boundaries (∆= 0.25) for the

proof of efficacy of the test treatment and O’Brien Fleming boundaries (∆ = 0) for the test vs.

control non-inferiority comparison, so that we have (b(1)
T P ,b(2)

T P ,b(3)
T P ) = (2.741,2.305,2.083) and

(b(1)
TC ,b(2)

TC ,b(3)
TC ) = (3.471,2.454,2.004). Through this choice, the probability to reject H (s)

0,T P at

earlier stages is increased, while the second null hypothesis H (n)
0,TC will more likely be rejected

at later stages. Moreover, the maximum sample size increase compared with the fixed design

should be moderate. As it has been mentioned earlier, there are two ways to determine the

required sample size to obtain overall power 1−β= 0.90.

Let us first consider the approximative approach by rounding the exact solutions of Equation

(3.34). We obtain the maximum test group size n(3)
T = 555.6, so that, through the relationships

n(k)
T = n(k)

C = k
3 n(3)

T and n(k)
P = 0.25 k

3 n(3)
T , k = 1,2,3, and by rounding the numbers to integers, we

have (n(1)
T ,n(2)

T ,n(3)
T ) = (n(1)

C ,n(2)
C ,n(3)

C ) = (185,370,556) and (n(1)
P ,n(2)

P ,n(3)
P ) = (46,93,139). With

these sample sizes we have an overall power to reject both null hypotheses of 1−β= 0.9002 ac-

cording to (3.26). Note, that the maximum overall sample size Nmax of 1251 is only 2.2% higher

than the overall sample size of the fixed design. The average sample numbers of the placebo
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group and overall under the alternative of the power calculation are calculated by means of

(3.27) and (3.32) as ASnP (0.4) = 77.86 and ASN (0.4,0) = 975.08, respectively. That means we

have an expected reduction of the placebo group size of almost 50% compared with the fixed

design, while the overall sample size is reduced (on average) by more than 20%. As it has been

mentioned earlier, the classical group sequential tests are quite robust against deviations from

the equal stage size assumption, so that this choice would be reasonable with regard to type I

error control.

Nevertheless, because exact type I error control is desirable for confirmatory clinical trials,

we are interested in determining sample sizes with equal stage sizes. Therefore, we need to

search for the smallest n(3)
T which is a multiple of K

cC
= 3 and K

cP
= 12, so that the overall power

given in (3.34) is greater than or equal to 90%. For n(3)
T = 564 we have 1−β = 0.9047, so that

the required sample sizes of the test, control and placebo group are given as (n(1)
T ,n(2)

T ,n(3)
T ) =

(n(1)
C ,n(2)

C ,n(3)
C ) = (188,376,564) and (n(1)

P ,n(2)
P ,n(3)

P ) = (47,94,141). That means, the maximum

overall sample size is Nmax = 1269, which is a sample size increase of only 3.7% compared with

the fixed design. The expected sample sizes are calculated by means of formulas (3.35) and

(3.36) as ASnP (0.4) = 81.43 and ASN (0.4,0) = 981.58, which are around 60% of nP, f i x and 80%

of N f i x , respectively.

Via simulation we generated a hypothetical trial assuming the treatment effects and com-

mon standard deviation used for sample size determination. Table 3.3 gives an overview on the

simulated data and the corresponding test results. At the first interim analysis, the test treat-

ment is shown to be superior to placebo, as the corresponding test statistic Z (1)
T P exceeds 2.741.

As the test statistic of the non-inferiority comparison between test and control at stage one is

less than 3.471, the trial continues with randomising patients to the test and control treatment

while the placebo arm is closed. At the second interim analysis, the test statistic Z (2)
TC crosses the

critical value 2.454, so that the test treatment is demonstrated to be non-inferior to the control

and the trial is stopped.

Finally, it should be noted that the test statistics Z (k)
T P and Z (k)

TC were considered as asymp-

totically N (0,1)-distributed, although the standard deviation σ is estimated by the unbiased

pooled variance estimators σ̂(k), k = 1,2. The results stay valid if the adjusted boundaries

Table 3.3: Simulated data and test results for a hypothetical trial with µT = µC = 2.4l , µP =
2l , σ= 1l and ∆ni = 0.2l .

Stage Sample sizes Simulated data [in l ] Test results

k n(k)
T n(k)

C n(k)
P X̄ (k)

T X̄ (k)
C X̄ (k)

P σ̂(k) Z (k)
T P b(k)

T P Z (k)
TC b(k)

TC

1 188 188 47 2.404 2.373 1.968 0.953 2.805 2.741 2.350 3.471
2 376 376 – 2.433 2.417 – 0.990 – 2.305 2.992 2.454
3 – – – – – – – – 2.083 – 2.004
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(b̃(1)
T P , b̃(2)

T P , b̃(3)
T P ) = (2.766,2.313,2.087) and (b̃(1)

TC , b̃(2)
TC , b̃(3)

TC ) = (3.501,2.460,2.006) that account for

the unknown variance setting would have been used instead.

3.2.4 Design Comparison

The proposed group sequential testing procedure shall now be compared with the optimal

single-stage design derived in Section 2.3.3. Therefore we will restrict ourselves to designs with

equal stage sizes (see Section 3.2.2) and no stopping for futility will be implemented as the em-

phasis of the procedure lies on prematurely closing the placebo arm due to proven efficacy of

the test treatment. Consequently, the required overall sample size and the expected sample

sizes of the placebo group and overall can be determined by means of Equations (3.34), (3.35)

and (3.36), respectively. Moreover, we will only assess the expected sample sizes under the

alternative of the power calculation, i.e. θT P = δT P and θTC = 0 as it is often assumed for non-

inferiority comparisons. The expected sample sizes under the null hypothesis are reflected very

well by the corresponding maximum sample sizes, as Table 3.2 showed. For better clarity, the

respective average sample number of the test, control, placebo group and overall are denoted

as ASnT , ASnC , ASnP and ASN , respectively.

Wang Tsiatis Type Designs

Let us start by investigating Wang Tsiatis type designs with shape parameters ∆T P and ∆TC for

the test treatments proof of efficacy and the non-inferiority comparison between test and con-

trol, respectively. The non-inferiority margin is chosen as half of the difference between control

and placebo effect, i.e. ∆ni = θC P
2 , which is a common choice in clinical practice. The between-

group sample size allocation ratios cC and cP of the group sequential designs are chosen as the

optimal allocation ratios of the fixed sample size design derived in Chapter 2. That means for

overall power 80% and 90% we have cC = 0.98, cP = 0.30 and cC = 0.98, cP = 0.26, respectively.

Our investigations showed that the optimal group sequential allocations that minimise Nmax

are only slightly different from those of the optimal single-stage design. To be exact, for cC

we have maximum deviations of ±0.01 and ±0.04 for the placebo group allocation cP . More-

over, the additional reductions in maximum overall sample size of only up to 0.56% in absolute

terms are negligibly small, so that it seems appropriate, also for simplicity reasons, to adopt the

optimal single-stage allocations in the group sequential setting.

The required maximum overall sample sizes and the average sample numbers of the placebo

group and of all groups together are given in Table 3.4, represented as percentages of the op-

timal single-stage sample sizes Nmax and nP, f i x for overall power 1−β = 0.80,0.90 and K =
2,3,4,5 stages, respectively. Thereby, we considered all possible combinations of common

choices for the shape parameters, namely ∆T P ,∆TC ∈ {0,0.25,0.5}. It should be noted that the

tabulated values were calculated without rounding the sample sizes to the next higher inte-

ger values, since this has only a small effect and guarantees a fair comparison of two designs
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Table 3.4: Maximum overall sample size (Nmax ) and expected sample sizes of the placebo group
(ASnP ) and overall (ASN ) for different group sequential designs from the∆-class rep-
resented as percentages of the optimal fixed sample sizes N f i x and nP, f i x with overall

power 1−β, α= 0.025, θTC = 0, ∆ni = θC P
2 , K stages and shape parameters ∆T P ,∆TC .

1−β= 0.80 1−β= 0.90

∆T P ∆TC K Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

0.00 0.00 2 100.9 76.2 91.1 100.8 71.1 86.9
3 101.9 71.6 85.9 101.7 67.3 80.9
4 102.5 67.8 83.3 102.3 63.4 77.7
5 103.0 65.8 81.9 102.7 61.2 76.0

0.25 0.00 2 101.2 69.0 89.2 101.1 64.4 84.7
3 102.3 63.3 84.2 102.1 58.3 79.0
4 103.0 60.3 81.8 102.7 55.4 75.9
5 103.5 58.5 80.4 103.2 53.5 74.3

0.50 0.00 2 102.3 65.0 88.7 102.0 60.9 84.0
3 104.0 57.3 84.1 103.5 52.2 78.6
4 105.2 54.1 81.9 104.6 48.7 75.7
5 106.0 52.3 80.7 105.3 46.7 74.1

0.00 0.25 2 103.8 77.6 90.0 103.4 72.2 84.4
3 105.5 73.3 85.9 104.9 68.7 79.9
4 106.5 69.5 83.3 105.9 64.8 76.7
5 107.2 67.4 81.9 106.5 62.5 75.0

0.25 0.25 2 104.0 70.2 86.9 103.6 65.3 81.1
3 105.7 64.4 82.9 105.1 59.2 76.4
4 106.7 61.5 80.7 106.1 56.3 73.7
5 107.4 59.6 79.3 106.8 54.4 72.0

0.50 0.25 2 104.8 66.0 85.8 104.3 61.8 79.8
3 107.1 58.1 81.8 106.4 52.9 74.9
4 108.5 54.8 79.8 107.7 49.2 72.3
5 109.5 53.0 78.6 108.6 47.2 70.8

0.00 0.50 2 111.2 81.0 92.0 110.0 74.8 84.8
3 116.8 78.4 91.1 115.1 72.9 83.3
4 120.4 75.0 89.8 118.2 69.4 81.1
5 122.9 73.1 89.2 120.5 67.2 79.9

0.25 0.50 2 110.8 72.9 87.8 109.7 67.7 80.6
3 116.3 67.8 85.8 114.7 62.0 77.3
4 119.9 65.3 84.9 117.9 59.3 75.6
5 122.4 63.6 84.4 120.2 57.6 74.7

0.50 0.50 2 111.2 68.6 85.9 110.1 64.1 78.7
3 116.9 60.7 82.9 115.2 55.0 74.1
4 120.6 57.2 81.8 118.5 51.1 72.1
5 123.2 55.3 81.3 120.9 49.0 71.1
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with exact overall power 1−β. Furthermore, the values of Table 3.4 apply to all different com-

binations of true treatment difference θC P and variance σ2, because both the sample sizes of

the single-stage and the group sequential design, i.e. maximum and expected sample sizes, are

proportional to σ2

θ2
C P

.

Analogous to the common group sequential design, it can be seen that the maximum sample

size increases whereas the average sample sizes ASnP and ASN decrease with larger number

of stages. Moreover, with higher overall power 1−β the maximum as well as the average sample

sizes decrease compared with the required single-stage sample sizes. That means, the higher

the targeted overall power the further the advantages of implementing a group sequential de-

sign in a three-arm trial are outweighing the disadvantages.

Table 3.4 also shows that the shape parameter of the non-inferiority comparison ∆TC ob-

viously has a much greater effect on the maximum sample size than ∆T P . Due to the larger

sample size of the control group compared with the placebo group and βTC ≫ βT P under the

optimal allocation this is hardly surprising (cf. Figure 2.2).

Interestingly, the maximum sample size not always increases with higher ∆T P , while for in-

creasing ∆TC also Nmax increases. For instance, the designs with O’Brien Fleming type bound-

aries for the first and Pocock type boundaries for the second hypothesis test, i.e. ∆T P = 0 and

∆TC = 0.5, have higher required maximum sample sizes than the designs with ∆T P = 0.25 and

∆TC = 0.5. However, these minor differences might be due to numerical reasons and it can be

also seen that anyway, designs with ∆T P < ∆TC have less favourable operating characteristics.

Especially, the most extreme of these designs with ∆T P = 0 and ∆TC = 0.5 turns out to have

by far the highest values for the average sample sizes of the placebo group and overall, while

the maximum sample size is also very high. The reason for this can be easily seen and mainly

results from the large differences between the separate power of the first and second hypoth-

esis test under the optimal allocation. Let us therefore assume that both H (s)
0,T P and H (n)

0,TC are

false. Choosing O’Brien Fleming boundaries for the proof of efficacy of the test treatment, i.e.

∆T P = 0, will probably result in a rejection of H (s)
0,T P at latter analyses, even though 1−βT P is

high under the optimal allocation. At that time, the probability to reject H (n)
0,TC will be relatively

low because for the Pocock boundaries (∆TC = 0.5) there will not be much α left to spend.

According to Equation (3.35) the shape parameter ∆TC and the expected sample size ASnP

are only connected through the influence of ∆TC on the maximum sample size n(K )
T to fulfil

the overall power requirement, the expected placebo group size increases with increasing ∆TC .

Moreover, with increasing ∆T P the average sample number of the placebo group decreases (for

the parameter constellation considered), so that the largest average reduction of the placebo

group size is obtained for the designs with ∆T P = 0.5 and ∆TC = 0. Namely, for K = 5 stages

and an overall power of 80% (90%) we have an expected placebo group size of 52.3% (46.7%)

of the corresponding optimal single-stage placebo group size. The highest ASN reduction is

obtained by using Pocock boundaries for the first and intermediate boundaries for the second

hypothesis test, i.e. ∆T P = 0.5 and ∆TC = 0.25. More precisely, with K = 5 stages the overall
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average sample size reductions compared with the optimal fixed designs are 21.4% and 29.2%

for an overall power of 80% and 90%, respectively.

In the previous paragraphs we only considered the situation where the non-inferiority mar-

gin is chosen as half of the difference between control and placebo effect, i.e. ∆ni = θC P
2 . This is

a common choice for most clinical trials, but sometimes ∆ni is chosen smaller than this. Fur-

ther investigations showed that for smaller non-inferiority margins the deviations between the

optimal single-stage allocation minimising N f i x and the optimal group sequential allocation

that minimises Nmax get even smaller. Thus, adopting the optimal single-stage allocation in

the group sequential setting is also appropriate for smaller non-inferiority margins.

Furthermore it turns out that the observed pattern in Table 3.4 and the relationships between

the shape parameters ∆T P and ∆TC and the maximum and expected sample sizes Nmax , ASnP

and ASN carry over to group sequential designs with non-inferiority margins smaller than θC P
2 .

It can be shown, that the deviations from the numbers given in Table 3.4 get larger with smaller

∆ni , although the maximum deviations for Nmax and ASN are only around +2% and -3% in

absolute terms for ∆ni = 0.1 ·θC P . The average placebo group size can be reduced to an even

greater extent for smaller non-inferiority margins, which is not surprising due to the increasing

power 1−βT P under the optimal allocation for smaller ∆ni (cf. Table A.2). A reduction of the

non-inferiority margin by 0.1 ·θC P results in a decrease of the expected placebo group size by

about 2% to 4% absolute (relative to the respective placebo group size of the optimal fixed de-

sign). For instance, for ∆ni = 0.3 ·θC P the expected placebo group size ASnP is 4% to 8% lower

than the expected placebo group sizes given in Table 3.4.

Nevertheless, it should be kept in mind that the size of the placebo group in the optimal

fixed design further decreases with smaller non-inferiority margins, so that a relative average

reduction of the placebo group size of 50% might appear to be much greater than it really is in

absolute numbers.

Error Spending Designs

Let us now take a look at group sequential designs where the boundaries are determined based

on the error spending approach, which provides exact type I error control irrespective of the

sample size allocation across the different stages. To enhance comparability, equal stage sizes

are assumed and designs from the ρ-class by Kim and DeMets (1987) and the γ-class by Hwang

et al. (1990) are considered that are more or less equivalent to Wang Tsiatis type designs with

shape parameters ∆= 0,0.25,0.5. That means, the spending function parameters of the ρ- and

the γ-class for H (s)
0,T P and H (n)

0,TC are chosen as ρT P ,ρTC ∈ {3,2,1} and γT P ,γTC ∈ {−4,−2,1} in or-

der to approximate the O’Brien Fleming, the intermediate and the Pocock design, respectively.

Furthermore, analogous to the Wang Tsiatis designs we start with investigating the scenario

∆ni = θC P
2 .

Table 3.5 and Table 3.6 give the corresponding maximum and expected sample sizes repre-

sented as percentages of the optimal single-stage sample sizes for overall power 1−β= 0.80,0.90
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Table 3.5: Maximum overall sample size (Nmax ) and expected sample sizes of the placebo group
(ASnP ) and overall (ASN ) for different group sequential designs from the ρ-class rep-
resented as percentages of the optimal fixed sample sizes N f i x and nP, f i x with over-

all power 1−β, α = 0.025, θTC = 0, ∆ni = θC P
2 , K stages and spending parameters

ρT P ,ρTC .

1−β= 0.80 1−β= 0.90

ρT P ρTC K Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

3 3 2 101.1 75.1 90.4 101.0 70.0 86.0
3 102.2 68.9 85.1 101.9 64.0 79.7
4 102.9 65.3 82.5 102.6 60.3 76.5
5 103.4 63.2 81.0 103.1 58.1 74.7

2 3 2 101.3 70.5 89.1 101.2 65.7 84.4
3 102.4 64.1 84.0 102.2 59.0 78.4
4 103.2 60.8 81.5 102.9 55.7 75.3
5 103.8 58.8 80.0 103.4 53.6 73.5

1 3 2 102.1 66.0 88.2 101.8 61.8 83.3
3 103.4 58.7 83.3 103.0 53.6 77.4
4 104.3 55.6 80.9 103.9 50.3 74.4
5 105.0 53.9 79.5 104.5 48.5 72.7

3 2 2 102.8 75.9 89.5 102.5 70.6 84.2
3 104.5 69.8 84.8 104.1 64.8 78.7
4 105.6 66.3 82.4 105.1 61.1 75.7
5 106.4 64.1 81.0 105.8 58.9 73.9

2 2 2 102.9 71.2 87.7 102.6 66.3 82.2
3 104.7 64.9 83.2 104.3 59.7 76.9
4 105.8 61.6 80.9 105.3 56.3 74.0
5 106.6 59.6 79.5 106.0 54.2 72.3

1 2 2 103.6 66.6 86.4 103.2 62.3 80.7
3 105.6 59.3 82.0 105.0 54.1 75.4
4 106.8 56.2 79.9 106.1 50.7 72.7
5 107.7 54.5 78.6 106.9 48.9 71.1

3 1 2 108.3 78.3 90.3 107.4 72.5 83.6
3 111.7 72.6 87.0 110.5 67.0 79.5
4 113.6 69.0 85.1 112.2 63.3 77.0
5 114.8 66.8 83.9 113.3 61.0 75.4

2 1 2 108.1 73.3 87.8 107.3 68.0 81.1
3 111.6 67.1 84.6 110.4 61.5 76.8
4 113.5 63.8 82.8 112.2 58.1 74.5
5 114.8 61.7 81.7 113.3 55.9 73.0

1 1 2 108.5 68.6 85.8 107.6 64.0 79.0
3 112.0 61.1 82.4 110.8 55.6 74.3
4 114.1 57.9 80.8 112.7 52.0 72.1
5 115.4 56.0 79.8 113.8 50.1 70.8
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Table 3.6: Maximum overall sample size (Nmax ) and expected sample sizes of the placebo group
(ASnP ) and overall (ASN ) for different group sequential designs from the γ-class rep-
resented as percentages of the optimal fixed sample sizes N f i x and nP, f i x with over-

all power 1−β, α = 0.025, θTC = 0, ∆ni = θC P
2 , K stages and spending parameters

γT P ,γTC .

1−β= 0.80 1−β= 0.90

γT P γTC K Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

−4 −4 2 101.1 75.4 90.6 101.0 70.3 86.2
3 101.8 68.5 85.6 101.6 63.4 80.1
4 102.3 65.1 83.1 102.1 59.8 77.1
5 102.7 63.1 81.7 102.5 57.8 75.4

−2 −4 2 101.3 70.0 89.1 101.2 65.2 84.4
3 102.2 63.1 84.2 101.9 57.9 78.5
4 102.8 59.9 81.8 102.5 54.5 75.6
5 103.2 58.0 80.4 102.9 52.6 73.9

1 −4 2 102.6 64.8 88.3 102.3 60.7 83.4
3 104.1 57.2 83.8 103.6 52.1 77.7
4 104.9 54.1 81.5 104.4 48.7 74.9
5 105.5 52.4 80.2 104.9 46.9 73.3

−4 −2 2 103.2 76.3 89.6 102.8 71.0 84.2
3 104.8 69.7 85.1 104.3 64.2 78.7
4 105.8 66.3 82.9 105.2 60.8 76.0
5 106.5 64.3 81.6 105.9 58.7 74.3

−2 −2 2 103.3 70.8 87.4 102.9 65.9 81.8
3 105.0 64.0 83.1 104.5 58.6 76.5
4 106.0 60.8 81.0 105.5 55.3 73.9
5 106.8 58.9 79.8 106.1 53.3 72.4

1 −2 2 104.4 65.5 86.0 103.9 61.4 80.2
3 106.6 57.9 81.9 105.9 52.7 74.9
4 107.9 54.7 80.0 107.1 49.2 72.5
5 108.8 53.1 78.9 107.9 47.4 71.0

−4 1 2 112.4 80.5 91.9 111.1 74.3 84.5
3 117.2 74.1 89.0 115.4 67.7 80.5
4 119.7 70.7 87.4 117.7 64.2 78.2
5 121.3 68.6 86.4 119.1 62.0 76.8

−2 1 2 112.1 74.4 88.6 110.9 68.9 81.2
3 116.9 67.7 85.8 115.2 61.5 77.1
4 119.4 64.3 84.4 117.5 58.0 75.0
5 121.1 62.3 83.5 119.0 56.0 73.8

1 1 2 112.5 68.7 86.0 111.3 64.2 78.7
3 117.5 60.7 83.0 115.8 55.0 74.1
4 120.2 57.2 81.7 118.2 51.2 72.1
5 121.9 55.4 80.9 119.7 49.2 70.9
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and K = 2,3,4,5 stages of the designs from the ρ- and the γ-class, respectively. Note that the

values of ρ in Table 3.5 are listed in descending order to enable an easier comparison with the

performance characteristics of the Wang Tsiatis designs listed in Table 3.4, because ρ = 3 and

ρ = 1 correspond to ∆= 0 and ∆= 0.5.

Table 3.6 shows that the relationships between the spending function parameters ρT P and

ρTC and the performance parameters Nmax , ASnP and ASN are similar to the Wang Tsiatis

designs, except that the relationships are the other way round. For instance, larger ρTC result

in smaller maximum sample sizes Nmax and vice versa. In general, the characteristics of the

Kim DeMets designs are comparable to those of the Wang Tsiatis type designs. Only for the

designs with ‘approximative’ Pocock boundaries for the non-inferiority test, i.e. ρTC = 1, the

former provides better performances than the latter due to smaller maximum sample sizes.

However, as it has been mentioned before these designs turn out to be no sensible choice at all,

because of relatively large expected sample sizes.

Here, too, the highest expected placebo group size reductions are obtained for (approxima-

tive) Pocock spending functions for the first and O’Brien Fleming spending functions for the

second hypothesis test, i.e. ρT P = 1 and ρTC = 3. Namely, for K = 5 stages and overall power

80% (90%) we have an expected placebo group size of 53.9% (48.5%) of the respective optimal

single-stage placebo group size. Compared with the optimal fixed design, the actually required

overall sample size can be reduced (on average) by more than 20% for K = 5 and overall power

80% (ρT P = 1, ρTC = 2) and by almost 30% if the targeted overall power is 90% (ρT P = ρTC = 1).

For designs based on the γ-family of error spending design by Hwang et al. (1990) the same

pattern can be observed in Table 3.6 as for the corresponding Wang Tsiatis designs in Table 3.4.

The relationship between the spending function parameters γT P and γTC and the parameters

Nmax , ASnP and ASN is the same as for the shape parameters ∆T P and ∆TC . With K = 5 the

placebo group size can be reduced (on average) by around 50% for both overall power 80%

and 90%, whereas the expected overall sample size can be reduced to around 80% (70%) of the

overall fixed sample size for overall power 80% (90%).

Further investigations showed that the observations for Wang Tsiatis type designs regarding

differences between the optimal single-stage and optimal group sequential allocation minimis-

ing Nmax carry over to the presented error spending designs. Consequently, adopting the opti-

mal single-stage allocation is sensible here, too. The same applies for the influence of smaller

non-inferiority margins, i.e. ∆ni < θC P
2 , on the operating characteristics of the group sequen-

tial designs. The ratios of maximum/expected overall and the respective fixed overall sample

size are only marginally different from the values presented in Tables 3.5 and 3.6. The average

reduction of the placebo group size increases with decreasing ∆ni , however, it should be kept

in mind, once again, that smaller non-inferiority margins also result in significantly smaller

placebo group sizes under the optimal allocation.

The previous sections showed that the application of group sequential methodology in three-

arm non-inferiority trials can lead to substantial sample size savings. Especially the expected
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placebo group size can be considerably reduced with only moderate increase in the maximum

overall sample size. As the proposed error spending designs perform very similar to the Wang

Tsiatis type designs, the former seem to be a more sensible choice in practice because of their

additional flexibility with regard to deviations from the preplanned stage-wise sample size al-

location. Moreover, it turned out that the performance of the designs is highly dependent on

the choice of the shape or spending function parameters. In particular, it does not seem to be

advisable to chose ∆T P < ∆TC , ρT P > ρTC or γT P < γTC , as these designs provide by far the

worst performance characteristics with high maximum as well as high expected sample sizes.

3.2.5 Design Optimisation

In the following, the proposed designs will be examined more precisely. The emphasis will be

on the right choice of the shape parameters with respect to certain optimisation criteria, such

as minimal ASN .

Wang Tsiatis Type Designs

As it has been mentioned earlier, designs from the ∆-class proposed by Wang and Tsiatis (1987)

possess the (approximately) optimal property of minimising the average sample number. In

order to get an impression on how far the average overall sample size can be reduced by the

proposed group sequential testing procedure, we will investigate these approximately optimal

∆-class designs for different scenarios. Again, let us start by restricting to non-inferiority mar-

gins chosen as half of the difference between the control and placebo effect, i.e. ∆ni = θC P
2 . We

also adopt the optimal single-stage allocations derived in the previous chapter.

By means of the downhill simplex algorithm for non-linear optimisation proposed by Nelder

and Mead (1965) we searched for the shape parameters ∆T P and ∆TC that minimise the ex-

pected overall sample size ASN . The maximum and expected sample sizes of the respective

designs for overall power 1−β = 0.80,0.90 and K = 2,3,4,5 stages are presented in Table 3.7.

Again, the group sequential sample sizes are represented as percentages of the corresponding

optimal single-stage sample sizes, so that the results apply for all values of θC P and σ2.

First of all, it becomes obvious that Table 3.7 confirms the earlier findings of ∆T P ≥∆TC being

a sensible restriction leading to “better” designs with reasonable operating characteristics. As

it has been already suggested, the highest ASN reduction compared with the optimal single-

stage design is obtained roughly by choosing Pocock boundaries for the test treatments proof

of efficacy and boundaries between intermediate and Pocock for the non-inferiority compar-

ison, i.e. ∆T P ≈ 0.5 and 0.25 ≤ ∆TC ≤ 0.5. Namely, for 80% (90%) overall power we have an

average reduction of the overall sample size of around 20% (30%), while the average placebo

group size is almost cut in half. For designs with only one or two interim analyses, the optimal

shape parameter for the first hypothesis test ∆T P is even above 0.5. Choosing such “aggressive”

designs is quite unusual in practice, as they have the undesirable feature of increasing rejection
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Table 3.7: Optimal shape parameters of ∆-class designs minimising ASN and corresponding
operating characteristics for overall power 1−β, α= 0.025, θTC = 0, ∆ni = θC P

2 and K
stages.

1−β= 0.80 1−β= 0.90

K ∆T P ∆TC
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

∆T P ∆TC
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

2 0.609 0.392 108.5 66.3 85.2 0.674 0.477 110.2 62.7 78.3
3 0.521 0.332 109.5 58.4 81.6 0.613 0.447 113.5 53.0 73.5
4 0.471 0.297 109.4 55.6 79.6 0.557 0.407 113.6 49.2 71.4
5 0.444 0.280 109.6 54.2 78.4 0.519 0.380 113.2 47.5 70.1

boundaries. Consequently, in practice one usually restricts to designs with ∆≤ 0.5.

With increasing overall power 1−β we obtain larger optimal shape parameters ∆T P ,∆TC as

well as a higher increase in overall sample size relative to the optimal fixed design. The average

sample size reductions both in the placebo group and overall obviously increase with higher

overall power and additional interim analyses, although the additional reductions for K > 3

are relatively small. Increasing the number of stages furthermore results in smaller optimal

shape parameters and most interestingly, there is practically no increase in the required overall

sample size for more than three stages.

Another very interesting type of designs arises as a result of minimising the sum ASN+Nmax

in order to have a trade-off between low average and low maximum overall sample size (see

Table 3.8). Note, that for designs with low maximum overall sample size the expected sample

size under the global null hypothesis, i.e. ASN (0,−∆ni ), will also be reasonably low as we have

seen in Table 3.2.

Table 3.8 shows the same relationship between the number of stages K or the overall power

1−β and the respective optimal shape parameters and operating characteristics. In this con-

text, it should be underlined once again that the required overall sample size increase for ad-

Table 3.8: Optimal shape parameters of ∆-class designs minimising ASN + Nmax with cor-
responding operating characteristics for overall power 1 − β, α = 0.025, θTC = 0,
∆ni = θC P

2 and K stages.

1−β= 0.80 1−β= 0.90

K ∆T P ∆TC
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

∆T P ∆TC
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

2 0.359 0.129 102.6 67.3 87.2 0.419 0.202 103.3 62.4 80.6
3 0.286 0.045 102.8 62.3 83.7 0.358 0.151 103.8 55.5 76.5
4 0.261 0.004 103.1 60.0 81.7 0.323 0.110 104.0 53.2 74.3
5 0.248 −0.016 103.4 58.5 80.5 0.308 0.093 104.3 51.8 72.9
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ditional interim analyses is negligibly small. With virtually the same reductions in average

placebo group and expected overall sample size these designs have considerably lower max-

imum sample sizes than the designs minimising ASN . For overall power 80% the optimal de-

signs are roughly equal to intermediate designs for the first and O’Brien Fleming type designs

for the second hypothesis test. For 90% overall power the optimal shape parameters are slightly

increased, resulting in designs between intermediate and Pocock, and O’Brien Fleming and in-

termediate for testing H (s)
0,T P and H (n)

0,TC , respectively.

Since we adopted the optimal single-stage allocations for the group sequential designs, the

question arises if allowing arbitrary allocation ratios cC and cP could improve the proposed

designs with respect to further reductions of ASN or ASN+Nmax . This leads to a 4-dimensional

optimisation problem with the allocation ratios cC ,cP and the shape parameters ∆T P ,∆TC as

function parameters. Table 3.9 shows the optimal allocations and shape parameters together

with the operating characteristics of the respective “full” optimal designs minimising either

ASN or ASN +Nmax . Analogous to the designs adopting the optimal single-stage allocations,

the Nelder Mead algorithm was applied for optimisation. It should be recalled, that for overall

power 80% and 90% the optimal single-stage allocation ratios are cC = 0.98, cP = 0.30 and cC =
0.98, cP = 0.26, respectively.

Taking a closer look at the designs minimising the expected overall sample size the following

becomes apparent in comparison to the designs given in Table 3.7. First of all, the allocation

Table 3.9: Optimal allocation ratios and shape parameters of ∆-class designs minimising ASN
or ASN +Nmax with corresponding operating characteristics for overall power 1−β,
α= 0.025, θTC = 0, ∆ni = θC P

2 and K stages.

1−β K cC cP ∆T P ∆TC
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

min(ASN ) 0.80 2 0.97 0.40 0.686 0.383 109.7 79.8 84.0
3 0.97 0.46 0.648 0.349 113.5 72.8 79.4
4 0.96 0.49 0.616 0.326 115.4 69.4 77.2
5 0.96 0.51 0.594 0.314 116.6 67.6 75.8

0.90 2 0.98 0.34 0.739 0.457 110.7 74.9 77.3
3 0.98 0.40 0.728 0.448 116.8 67.1 71.4
4 0.97 0.44 0.699 0.425 119.7 63.1 68.7
5 0.97 0.47 0.674 0.411 121.6 60.8 67.1

min(ASN +Nmax ) 0.80 2 0.98 0.34 0.404 0.132 102.9 72.3 86.2
3 0.97 0.34 0.344 0.057 103.3 65.7 82.5
4 0.97 0.35 0.320 0.012 103.6 63.0 80.5
5 0.97 0.35 0.308 −0.008 103.9 61.3 79.3

0.90 2 0.98 0.30 0.462 0.201 103.5 67.3 79.7
3 0.98 0.30 0.418 0.159 104.4 58.6 75.2
4 0.98 0.30 0.384 0.113 104.5 55.5 73.0
5 0.97 0.30 0.367 0.101 104.9 53.9 71.5
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ratio of the control group cC is almost equal to the optimal single-stage allocation ratio of 0.98.

The optimal values of the shape parameter for the non-inferiority comparison∆TC are also only

slightly higher than the respective optimal values given in Table 3.7. In contrast, the allocation

ratio of the placebo group cP and the shape parameter ∆T P are significantly increased. Espe-

cially for higher number of stages, the differences to the optimal values of the 2-dimensional

optimal designs become more and more apparent. The additional expected reduction in over-

all sample size by allowing arbitrary allocation ratios is relatively small as it amounts to a max-

imum of only 3% in absolute terms. At the same time the maximum overall and the placebo

group sample size are considerably increased, so that it seems appropriate to opt for the de-

signs using the optimal single-stage allocations, not least because of their simplicity.

The same findings can be observed for the designs minimising the sum ASN + Nmax . To

be exact, there virtually are no differences in the control group allocation ratios cC and the

shape parameters ∆TC . Moreover, the differences for cP and ∆T P are even smaller for these

designs. The additional ASN reduction amounts to only up to 1%, while Nmax and ASnP are

slightly increased. In conclusion, opting for the “simple” optimal designs given in Table 3.8 is

reasonable here, too. In general, this confirms the earlier finding that it is sensible to adopt the

optimal single-stage allocation also in the group sequential setting.

Another interesting type of group sequential designs arises, if we search for the shape pa-

rameters ∆T P and ∆TC that minimise the expected placebo group size ASnP . As the average

placebo group size ASnP is only connected with ∆TC through the influence of ∆TC on the max-

imum sample sizes (cf. Equation (3.35)), minimising ASnP obviously leads to ∆TC →−∞. That

means the boundary values at analyses 1 to K −1 of the second hypothesis test b(1)
TC , ...,b(K−1)

TC

converge against ∞ whereas the final boundary b(K )
TC becomes z1−α, the critical value of the

common fixed sample size test. Thus, only the first null hypothesis H (s)
0,T P is tested in a group

sequential design, while the second null hypothesis H (n)
0,TC is tested with a common single-stage

test without having the chance to stop the study early with rejection of both null hypotheses.

These designs will henceforth be referred to as partial group sequential designs, whereas the

designs where both H (s)
0,T P and H (n)

0,TC are tested in a group sequential manner will be denoted

as full group sequential designs.

Table 3.10 shows the optimal shape parameters ∆T P of the partial group sequential designs

minimising either ASnP or ASN for overall power 1−β= 0.80,0.90 and K = 2,3,4,5 stages. Note

that minimising ASN for partial group sequential designs is somewhat similar to minimising

ASN +Nmax in full group sequential designs, as for the partial design we have ASnC = n(K )
C and

ASnT = n(K )
T so that ASN is a sum of expected and maximum sample sizes. As we can see, the

designs that minimise the average placebo group size have rejection boundaries for the first

null hypothesis H (s)
0,T P that are even more aggressive than a Pocock type design, i.e. we have

∆T P > 0.5. As mentioned previously, this choice is rather unusual and in practice one would

choose ∆T P = 0.5. However, the reduction of the placebo group size to more than 50% of the

optimal fixed placebo group size for 1−β = 0.90 is remarkable. The corresponding maximum
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Table 3.10: Optimal shape parameters of partial group sequential∆-class designs that minimise
ASnP or ASN with corresponding operating characteristics for overall power 1−β,
α= 0.025, θTC = 0, ∆ni = θC P

2 and K stages.

min(ASnP ) min(ASN )

1−β K ∆T P
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

∆T P
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

0.80 2 0.762 104.2 63.5 98.9 0.280 100.6 68.1 96.3
3 0.680 105.8 55.6 99.2 0.282 100.9 61.8 95.8
4 0.624 106.1 52.8 99.1 0.262 101.0 59.4 95.5
5 0.586 106.0 51.3 98.8 0.246 101.0 58.0 95.4

0.90 2 0.744 103.5 59.7 98.3 0.268 100.5 63.8 96.2
3 0.697 105.5 50.5 99.1 0.291 100.8 56.6 95.6
4 0.651 106.2 47.1 99.3 0.278 100.9 54.0 95.4
5 0.615 106.3 45.5 99.2 0.261 100.9 52.6 95.3

overall sample size increase is relatively small, whereas the expected overall sample size is al-

most equal to the overall sample size of the optimal single-stage design.

By minimising the expected overall sample size ASN we obtain more or less intermediate

group sequential boundaries for the superiority comparison between test and placebo, i.e.

∆T P = 0.25. The reduction of the placebo group size is still considerably large with the ad-

ditional benefit that the overall sample size needs to be only marginally increased compared

with the optimal single-stage design. However, a reduction of the overall sample size by more

than 5% is not possible with the partial group sequential design.

Finally, it should be noticed that all the results presented here were based on the assumption

of a non-inferiority margin chosen as half of the difference between control and placebo effect,

i.e.∆ni = θC P
2 . Further investigations showed that the good performances of the proposed group

sequential designs remain unaffected by decreasing the non-inferiority margin. Indeed, the

performance of the proposed designs actually gets better for smaller non-inferiority margins.

The higher power of the test versus placebo superiority comparison 1−βT P for smaller ∆ni (cf.

Table A.2) results in even smaller expected placebo group sizes. On the other hand, it turns out

that the ratios Nmax
N f i x

and ASN
N f i x

are nearly unaffected by decreasing ∆ni . The differences between

the “full” optimal and the “simple” optimal design also remain negligible, so that it is sensible

to adopt the optimal single-stage allocation in such cases, too.

Error Spending Designs

The same optimisations as for the Wang Tsiatis type designs will now be conducted within the

ρ- and γ-family of error spending designs. Thereby, we also start by restricting to the com-

mon choice ∆ni = θC P
2 for the non-inferiority margin. Furthermore, the optimal single-stage

allocation will be adopted here, too.
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Table 3.11: Optimal spending parameters of ρ- and γ-family designs minimising ASN and cor-
responding operating characteristics for overall power 1 −β, α = 0.025, θTC = 0,
∆ni = θC P

2 and K stages.

ρ-family γ-family

1−β K ρT P ρTC
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

γT P γTC
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

0.80 2 0.507 1.112 108.5 66.3 85.2 1.728 −0.297 108.5 66.3 85.2
3 0.669 1.401 109.2 58.4 81.6 1.255 −0.916 109.5 58.3 81.6
4 0.802 1.627 109.0 55.6 79.7 0.894 −1.304 109.6 55.3 79.8
5 0.898 1.767 109.0 54.2 78.5 0.670 −1.542 109.6 53.7 78.8

0.90 2 0.383 0.837 110.2 62.7 78.3 2.379 0.480 110.2 62.7 78.3
3 0.436 0.916 113.1 53.0 73.6 2.347 0.308 113.6 53.0 73.6
4 0.541 1.087 112.8 49.4 71.5 2.076 0.019 114.3 49.2 71.4
5 0.629 1.218 112.4 47.7 70.3 1.850 −0.190 114.4 47.3 70.2

Table 3.11 shows the optimal spending function parameters within the ρ- and γ-family of

error spending designs that minimise ASN with corresponding operating characteristics. The

optimal parameters were found with the same optimisation method that was applied earlier

for the ∆-class designs. In turns out, that the optimal error spending designs provide literally

the same expected reductions of placebo group size and overall sample size as the Wang Tsiatis

type designs. At the same time the respective maximum overall sample sizes are also very simi-

lar, except that the ρ-family designs require slightly smaller overall sample sizes than the other

two designs for 90% overall power and K = 4,5 stages. In practice, however, this difference is

definitely negligible. The relationships between the spending function parameters and the op-

erating characteristics can also be carried over from the Wang Tsiatis designs given in Table 3.7.

As might be expected, it turns out that the restrictions ρT P ≤ ρTC and γT P ≥ γTC are reasonable

resulting in small expected sample sizes.

This finding is confirmed by the respective error spending designs that minimise the sum

ASN + Nmax given in Table 3.12. With overall maximum sample size increases of around 3%

compared with the optimal single-stage design, the placebo group size and the overall sample

size can be reduced (on average) to less than 60% of nP, f i x and 80% of N f i x , respectively. Com-

parisons with the Wang Tsiatis type design that minimise ASN +Nmax given in Table 3.8 show

that for all three families the same observations can be made. The differences in maximum and

expected sample sizes are even smaller than for the designs that minimise the average overall

sample size ASN . In general, these designs seem to be a more sensible choice than the designs

minimising ASN , as they provide almost the same expected reductions while at the same time

the required maximum sample size is substantially smaller. This becomes particularly obvious

for overall power 1−β= 0.90, where the differences in Nmax are almost 10% in absolute terms.

It should be noted again, that the required sample size increase associated with additional in-
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Table 3.12: Optimal spending parameters of ρ- and γ-family designs minimising ASN +Nmax

and corresponding operating characteristics for overall power 1−β, α= 0.025, θTC =
0, ∆ni = θC P

2 and K stages.

ρ-family γ-family

1−β K ρT P ρTC
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

γT P γTC
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

0.80 2 1.226 2.367 102.6 67.3 87.2 −0.583 −2.850 102.6 67.3 87.2
3 1.591 3.088 102.6 61.9 83.7 −1.328 −3.837 102.5 61.4 83.8
4 1.796 3.439 102.7 59.6 81.8 −1.730 −4.336 102.6 59.1 82.0
5 1.934 3.665 102.8 58.2 80.6 −1.987 −4.655 102.6 57.8 80.9

0.90 2 1.014 1.947 103.3 62.4 80.6 −0.039 −2.098 103.3 62.4 80.6
3 1.269 2.499 103.5 55.3 76.6 −0.671 −3.013 103.3 55.1 76.6
4 1.457 2.817 103.5 52.8 74.4 −1.057 −3.491 103.3 52.4 74.5
5 1.568 3.003 103.7 51.4 73.0 −1.287 −3.787 103.4 51.0 73.3

terim analyses within the class of designs minimising ASN +Nmax is negligibly small. Further

investigations showed that allowing arbitrary allocation ratios cC and cP instead of adopting

the optimal single-stage allocations only leads to small performance gains when minimising

ASN or ASN +Nmax (see Tables A.3 and A.4). Consequently, it is sensible to adopt the optimal

single-stage allocation for error spending designs, too.

Optimising the average sample number of the placebo group within the ρ- and γ-family

designs leads to the earlier mentioned partial group sequential designs, where only the first

hypothesis is tested in a group sequential manner while the non-inferiority comparison is

assessed with a common fixed sample size test. To be exact, by minimising ASnP we have

ρTC →∞ and γTC →−∞, respectively, which follows easily from Equation (3.35). Tables 3.13

Table 3.13: Optimal spending function parameters of partial group sequential ρ-family designs
that minimise ASnP or ASN with operating characteristics for overall power 1−β,
α= 0.025, θTC = 0, ∆ni = θC P

2 and K stages.

min(ASnP ) min(ASN )

1−β K ρT P
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

ρT P
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

0.80 2 0.253 104.2 63.5 98.9 1.560 100.6 68.1 96.3
3 0.320 105.2 55.8 98.7 1.705 100.8 61.9 95.7
4 0.391 105.2 53.1 98.3 1.903 100.9 59.6 95.4
5 0.450 105.1 51.7 98.0 2.062 100.9 58.3 95.3

0.90 2 0.276 103.5 59.7 98.4 1.616 100.5 63.8 96.2
3 0.286 104.9 50.6 98.6 1.662 100.7 56.7 95.6
4 0.334 105.2 47.4 98.4 1.828 100.8 54.2 95.4
5 0.382 105.1 45.9 98.2 1.967 100.8 52.8 95.2
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Table 3.14: Optimal spending function parameters of partial group sequential γ-family designs
that minimise ASnP or ASN with operating characteristics for overall power 1−β,
α= 0.025, θTC = 0, ∆ni = θC P

2 and K stages.

min(ASnP ) min(ASN )

1−β K γT P
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

γT P
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

0.80 2 3.307 104.2 63.5 98.9 −1.334 100.6 68.1 96.3
3 3.282 106.2 55.6 99.5 −1.807 100.7 62.1 95.7
4 3.067 106.8 52.6 99.7 −2.161 100.8 59.7 95.4
5 2.865 107.0 51.1 99.6 −2.398 100.8 58.4 95.2

0.90 2 3.113 103.5 59.7 98.4 −1.450 100.5 63.8 96.2
3 3.512 105.9 50.5 99.4 −1.767 100.6 56.9 95.5
4 3.486 106.9 47.0 99.9 −2.088 100.7 54.3 95.3
5 3.364 107.3 45.3 100.1 −2.314 100.7 52.9 95.1

and 3.14 show the operating characteristics of the partial group sequential designs that min-

imise ASnP or ASN within the ρ- and γ-family of error spending designs, respectively. Again,

the differences between the two error spending designs and the respective Wang Tsiatis designs

given in Table 3.10 turn out to be negligible. For the designs that minimise ASnP , the placebo

group size can be almost cut in half, while the maximum sample sizes are not too high. With

substantially smaller maximum sample sizes, the expected placebo group reductions of the de-

signs minimising ASN are not much smaller. Particularly in situations where the potential risk

taken should be as small as possible, these designs are of practical relevance.

The observations of the Wang Tsiatis designs for smaller non-inferiority margins, i.e. ∆ni <
θC P

2 , can be carried over to the proposed error spending designs from the ρ- and γ-family. More

precisely that means, the good performances of the error spending designs are almost unaf-

fected by decreasing the non-inferiority margin. Due to the higher power 1−βT P under the

optimal single-stage allocation for smaller ∆ni , the placebo group sizes are reduced to an even

greater extent. Moreover, adopting the allocation ratios of the optimal fixed design remains

sensible in case that a smaller non-inferiority margin is chosen. In conclusion, as already indi-

cated earlier, the performances of the error spending designs turned out to be comparable to

those of the Wang Tsiatis type designs. Due to their ability of adequately handling deviations

from the preplanned sampling scheme, choosing the proposed error spending designs seems

to be more appropriate in practice.

3.3 Summary

Besides minimising the overall sample size, the optimal allocation for the single-stage design

determined at the end of Chapter 2 also leads to considerably low placebo group sizes. Fur-
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thermore it turned out that the power of the proof of efficacy for the test treatment is very high

under the optimal allocation. This led us to the idea of exploiting the high power by means of

implementing a group sequential design, giving us also the possibility to close the placebo arm

once the efficacy of the test treatment has been demonstrated.

We proposed a classical group sequential design for normally distributed outcomes where a

special emphasis was placed on the right choice of the rejection boundaries. The distributional

properties of the group sequential test statistics allowed us exact calculations of the overall

power and the expected sample sizes by means of the multivariate normal distribution func-

tion. This enabled us to conduct a detailed comparison with the optimal single-stage design

and to derive approximately optimal boundaries with respect to certain optimisation criteria

such as minimising the expected placebo group size.

First of all, it turned out that it is sensible to adopt the optimal single-stage allocation also

in the group sequential setting. Our investigations showed that the performance gain by deter-

mining the optimal group sequential allocation is negligible. Furthermore, it became apparent

that the operational characteristics of the group sequential designs are highly dependent on

the choice of the rejection boundaries. In particular, more aggressive boundaries for the proof

of efficacy than for the non-inferiority comparison lead to considerable performance gains.

That means, for the respective shape and spending function parameters of the investigated

boundary classes the restrictions ∆T P ≥∆TC , ρT P ≤ ρTC and γT P ≥ γTC are sensible. The pro-

posed designs can be separated into two approaches, the full and the partial group sequen-

tial approach. The former aims at a reduction of both the placebo and the overall sample size,

whereas the latter mainly reduces the expected placebo group size while keeping the maximum

sample size close to the optimal single-stage sample size. The full group sequential design

might be of interest if an early study termination is conceivable and the partial design is a rea-

sonable option when there is a need to collect more safety data on the experimental treatment.

In general, the application of group sequential methodology in three-arm non-inferiority trials

was demonstrated to have several benefits. Besides reducing the overall sample size and the

associated cost and time savings, the potential early termination of the placebo arm is a key

advantage that could help to overcome ethical concerns. Furthermore, as mentioned by Li and

Gao (2010) the proposed designs could help to deal with uncertainties regarding the placebo

effect. For instance, if the placebo effect is overestimated in the planning stage when determin-

ing the required sample sizes, the placebo group will most likely be closed early.

It should be noted, however, that the application of a group sequential design also involves

operational challenges. In the first instance, it is vital to set up an Independent Data Monitoring

Committee (IDMC), so that the validity and integrity of the trial are preserved. In order to

maintain the blinding of the study, the information that is revealed by the IDMC should be

furthermore kept to a minimum. The information of dropping the placebo arm (or not) should

also be limited to a specific group of people. Otherwise the patient population might change if

the patients or investigators are aware of the placebo group termination. Thus, it is generally
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advisable to assess the homogeneity of treatment effects across the different stages in the final

analysis.

Another problem observed in group sequential trials is the issue of “overrunning”. Often

primary endpoints are not observed immediately, so that some patients might still be under

treatment when the interim analysis is conducted. In accordance with the ITT principle of

evaluating all randomised patients, a primary analysis should include these patients. In ad-

dition, according to the EMA guideline on adaptive designs in confirmatory clinical trials, the

“results including and excluding the overrunning patients should be presented and differences

between these two analyses should be discussed.” (CHMP, 2007b). The proposed error spend-

ing designs from the ρ- and γ-family are a useful option to implement this strategy. As their

performances turned out to be comparable to those of the Wang Tsiatis type designs, the er-

ror spending designs are a more sensible choice in practice due to their ability to adequately

handle deviations from the preplanned sample sizes.

As it has been mentioned above, a major point of criticism on the proposed group sequential

testing procedure is that the patient population might change after dropping the placebo group

at an interim analysis. This issue might be addressed by keeping the information of terminating

the placebo arm under wraps. However, once the recruitment to the placebo group has been

stopped, no information on the placebo effect will be collected from then on. Through this,

potential differences between the patient population before and after dropping the placebo

group might be missed. A possible solution to this is the generalisation to adaptive group se-

quential designs that provide the possibility of adapting the preplanned sample sizes during

trial conduct, e.g. based on the observed treatment effects at an interim analysis. This enables

us, after rejection of H (s)
0,T P , to decrease the placebo group size at the subsequent stages to a

certain threshold instead of entirely closing the placebo arm. In addition to that, the proof of

efficacy for the control treatment can be assessed at the following stages without type I error

inflation. At last, an adaptive design offers the chance to re-calculate the sample sizes and up-

date the sample size allocation so as to deal with uncertainties regarding the treatment effects

in the planning stage. In the following chapter the proposed group sequential designs will be

extended to adaptive group sequential designs.



CHAPTER 4

EXTENSION TO ADAPTIVE DESIGNS

In a classical group sequential design the data observed at an interim analysis, as for example

the sample means, cannot be used for adapting the design of the subsequent stages. Other-

wise the distributional properties of the group sequential test statistics do not hold any longer,

so that using the common group sequential boundaries will typically result in a type I error

inflation. For instance, re-calculating the sample sizes of the subsequent stages at an interim

analysis based on the observed data can considerably inflate the type I error rate as it has been

shown by Proschan and Hunsberger (1995) and Cui et al. (1999). Besides mid-trial sample size

re-assessment other design features that might be changed at an interim analysis are the treat-

ment groups, the patient population or the multiple testing strategy, to name but a few. The

reasons for such adaptations are manifold, although one of the main reasons certainly is the

ability to make better use of the available resources.

In this chapter we will extend the group sequential testing procedure for three-arm non-

inferiority trials described in the previous chapter to adaptive designs that allow data-depen-

dent sample size re-calculations at an interim analysis. Through this, commonly present uncer-

tainties regarding the treatment effects in three-arm non-inferiority trials can be addressed by

re-calculating the sample sizes based on the observed treatment differences. Because the pos-

sibility of data-dependent design changes obviously comes along with increased operational

challenges and due to simplicity reasons, we will restrict to designs with only one interim anal-

ysis, i.e. K = 2 stages.

The chapter is structured as follows. Section 4.1 gives a short introduction to adaptive de-

signs and the related concepts of conditional power and Bayesian predictive power, which are

two useful tools for interim decision-making. In the following Section 4.2 the group sequential

testing procedure proposed in the previous chapter will be extended to adaptive designs offer-

ing the possibility of data-dependent sample size changes at the interim analysis. After deriv-

ing the corresponding conditional and predictive power formulas, the proposed procedure will
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then be applied in a hypothetical example. Finally, we will take a closer look at a special type

of adaptive design without early rejection, that uses the observed interim data only to optimise

the between-group allocation.

It should be noted that Hartung and Knapp (2009) already proposed adaptive group sequen-

tial designs for three-arm non-inferiority trials. However, they did not consider conditional and

Bayesian predictive power for assessing the mid-trial data. Moreover, they did not investigate

the overall power to reject both null hypotheses as it has been done in the previous chapter.

Our proposed adaptive designs are natural extensions of the group sequential designs from

Chapter 3, so that all previous findings also apply to the adaptive designs, such as formulas for

sample size determination.

4.1 Adaptive Designs

Historically, the idea of adaptively choosing the sample sizes based on mid-trial data goes back

to Stein (1945). Although the proposed procedure only uses the sample variance of the first

stage to determine the second-stage sample size and does not incorporate test decisions at the

interim analysis, it can be seen as the first adaptive procedure. With the introduction of the

classical group sequential designs in the late 1970s the idea of data-dependent mid-trial design

changes arose again. One of the first comments in this regard was by Fleming et al. (1984), who

mentioned that design changes, “where the decision to do so is based upon consideration of

interim results, will alter the experimental type 1 error rate”.

The subsequent publications by Bauer (1989), Bauer and Köhne (1994) and Proschan and

Hunsberger (1995) can be seen as the basis of procedures nowadays better known as adaptive

or flexible designs, allowing not only sample size re-calculations but also general study design

adaptations based on the interim results without inflating the overall type I error rate. The un-

derlying concept of the proposed procedure is surprisingly simple and based on the combina-

tion of the p-values that are formed from the data of the respective stage alone, a concept that is

also used for combining the results from different studies in meta-analyses. Bauer and Köhne

(1994) proposed to use the product of the two stage-wise p-values, leading to Fisher’s combi-

nation test. They also mentioned other possible combination methods such as the weighted

inverse normal method (Mosteller and Bush, 1954), which was investigated for adaptive de-

signs by Lehmacher and Wassmer (1999). Interestingly, it turns out that use of the weighted

inverse normal method leads to adaptive designs that are closely related to group sequential

designs. Through this, specific calculations for the group sequential setting such as sample

size determination carry over to these type of adaptive designs, which is the reasons why we

will use this approach for extending the earlier proposed group sequential testing procedure to

adaptive designs.

In the meantime Proschan and Hunsberger (1995) proposed a slightly different approach for

adaptive designs by investigating the maximum type I error inflation that can occur when the
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second-stage sample size is based on the interim data. The critical value of the final stage is

then adjusted by means of the so-called conditional error function, which gives the probability

of committing a type I error at the final stage given the interim data. Vandemeulebroecke (2006)

showed that this approach is directly linked to the p-value combination approach and that both

concepts can be expressed in terms of the other notation.

Through several publications in the following years adaptive designs became more and more

established and finally found their way into clinical trial application. The increasing impor-

tance of adaptive designs and the urgent need for specific guidance is also reflected by the

recently published reflection paper and draft guideline on this topic from the EMA and the

FDA, respectively (CHMP, 2007b; FDA, 2010a). Let us now take a closer look at the weighted

inverse normal method for combining the results from two stages as it has been investigated

by Lehmacher and Wassmer (1999).

4.1.1 Weighted Inverse Normal Method

Consider the same problem as in Section 3.1.2, i.e. demonstrating the superiority of a treatment

A over another treatment B. Let X A,i ∼ N (µA ,σ2) , i = 1,2, ..., and XB ,i ∼ N (µB ,σ2), i = 1,2, ...,

be the mutually independent responses of patients allocated to treatment A and B, respectively,

with known common variance σ2. Suppose that larger responses are desirable and denote the

treatment difference by θ = µA −µB . Then, the corresponding set of hypotheses of the superi-

ority comparison is H0 : θ ≤ 0 vs. H1 : θ > 0.

As in the group sequential setting suppose that the data are analysed successively at K = 2

different time points, i.e. at an interim and a final analysis. However, instead of using the cu-

mulative test statistics as in group sequential designs, the data from each stage shall be treated

separately. Let therefore ñ(1)
A , ñ(2)

A and ñ(1)
B , ñ(2)

B denote the stage-wise sample sizes of treat-

ment group A and B, respectively. Consequently, we have the relationships ñ(1)
D = n(1)

D and

ñ(2)
D = n(2)

D −n(1)
D for D = A,B , with the cumulative sample sizes defined in Section 3.1.2. Let

further ∆X̄ (k)
A and ∆X̄ (k)

B be the sample means formed from the data of stage k alone, that

means we have ∆X̄ (1)
D = X̄ (1)

D and ∆X̄ (2)
D =

∑n(2)
D

i=n(1)
D +1

XD,i /ñ(2)
D for D = A,B . The corresponding

stage-wise test statistics are given as

Z̃k =
∆X̄ (k)

A −∆X̄ (k)
B

σ

√√√√ ñ(k)
A ñ(k)

B

ñ(k)
A + ñ(k)

B

for k = 1,2,

which obviously coincides with the cumulative test statistic Zk given in (3.2) for k = 1, that

means we have Z̃1 = Z1. Interestingly, it can be shown that under H0 the test statistics Z̃1 and

Z̃2 are independent N (0,1) variables, irrespective of whether the second-stage sample sizes

ñ(2)
A and ñ(2)

B depend on the previously observed responses or not. For a formal proof of this

property see Brannath et al. (2012). The test statistics based on the weighted inverse normal
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combination now take the form

Z∗
k =

k∑
i=1

wi Z̃i

√
k∑

i=1
w 2

i

for k = 1,2, (4.1)

where the weights w1, w2 > 0 need to be prespecified in advance. Note, that definition (4.1)

obviously results in Z∗
1 = Z̃1 = Z1 and V ar (Z∗

k ) = 1 for k = 1,2. Furthermore, under H0 the

vector of test statistics (Z∗
1 , Z∗

2 )′ follows a bivariate normal distribution with mean vector (0,0)′

and covariance determined as

Cov
(
Z∗

1 , Z∗
2

)
=

1
√

w 2
1 +w 2

2

Cov (Z1, w1Z1 +w2Z2) =
w1√

w 2
1 +w 2

2

. (4.2)

By applying the group sequential testing procedure given in (3.3) with the test statistics in (4.1),

appropriate boundary values b1 and b2 in order to control the overall type I error rate can be

determined analogous to the group sequential setting. It should be noted, that it is crucial for

exact type I error control that the weights w1 and w2 are prespecified in advance and are not

altered during trial conduct. The sample sizes, however, can be adapted at the interim analysis

based on all available information without inflating the type I error (Brannath et al., 2012).

Lehmacher and Wassmer (1999) proposed to choose the weights as w1 = w2 = 1 so that the

two stages are equally weighted. With this choice the covariance in (4.2) becomes 1p
2

which

exactly is the covariance of the group sequential test statistics with equal stage sizes (cf. Section

3.1.3). Consequently, the critical values of the classical group sequential tests such as Pocock

or O’Brien Fleming boundaries can be used. Interestingly, by restricting to equal stages sizes,

i.e. ñ(1)
A = ñ(2)

A and ñ(1)
B = ñ(2)

B , it can be easily shown that the test statistic of the final stage Z∗
2

is equal to the respective cumulative group sequential test statistic Z2. Therefore, a possible

procedure could take the following form. Determine the boundaries b1,b2 and the required

maximum sample sizes n(2)
A ,n(2)

B for a common group sequential design with two equally sized

stages. Suppose, that H0 is not rejected at the interim analysis. Then, if no adaptation occurs,

proceed as originally planned with the group sequential design. Otherwise, calculate the final

test statistic Z∗
2 with the updated sample sizes and compare it with b2.

Another interesting option is choosing the weights as the square root of the originally plan-

ned stage-wise information levels, i.e. w1 =
√

I1 and w2 =
√

I2 −I1. This seems to be a sen-

sible choice if an unequal sample size distribution across the stages is planned. Clearly, the

covariance in (4.2) then becomes
√

I1/I2 so that appropriate boundaries can be determined

as described in Section 3.1.2. If furthermore a fixed between-treatment allocation ratio at the

two stages is specified, i.e.
ñ(1)

A

ñ(1)
B

= ñ(2)
A

ñ(2)
B

, it can be shown that the test statistic Z∗
2 coincides with

the common group sequential test statistic Z2, provided that no adaptation occurs.
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4.1.2 Conditional Power

The main question that arises now refers to the procedure that specifies how the sample sizes

of the second stage are updated at the interim analysis. A simple and very intuitive approach

would be to use the observed treatment differences X̄ (1)
T − X̄ (1)

P and X̄ (1)
T − X̄ (1)

C to determine the

sample sizes that would have been required if the study was performed again. However, this

would not adequately take into account that the interim observations considerably influence

the test results at the final stage. This is where the so-called conditional power comes into play,

which is the probability that H0 will be rejected at the final analysis given the observed interim

data.

The concept of conditional power has been first mentioned by Lan et al. (1982) who primarily

used it for monitoring repeatedly throughout a clinical trial with fixed maximum sample size.

Later, there have been several proposals for using conditional power for re-calculating the sam-

ple sizes at an interim analysis in the context of adaptive designs (Proschan and Hunsberger,

1995). Besides this, conditional power also turned out to be a useful tool for interim decision-

making in a DSMB. For instance, Betensky (1997) proposed to use conditional power for early

stopping to accept the null hypothesis, i.e. termination for futility when the conditional power

is too low.

In our context, the conditional power at the interim analysis is given as the probability that

Z∗
2 ≥ b2 at the final stage, given the true treatment difference θ and the data accumulated so far,

i.e. X A,1, ..., X A,n(1)
A

and XB ,1, ..., XB ,n(1)
B

. Since at the interim analysis Z1 is a sufficient test statistic

for θ, it can be used instead of the observed data, so that with definition (4.1) the conditional

power is determined as

C P (θ) = P




w1Z1 +w2Z̃2√
w 2

1 +w 2
2

≥ b2

∣∣∣∣∣∣∣
Z1,θ




= P


Z̃2 ≥

√
w 2

1 +w 2
2

w2
b2 −

w1

w2
Z1

∣∣∣∣∣∣∣
Z1,θ




=Φ



θ

σ

√√√√ ñ(2)
A ñ(2)

B

ñ(2)
A + ñ(2)

B

+
w1

w2

X̄ (1)
A − X̄ (1)

B

σ

√√√√ n(1)
A n(1)

B

n(1)
A +n(1)

B

−

√
w 2

1 +w 2
2

w2
b2


 . (4.3)

As we can see from (4.3) the conditional power highly depends on the true treatment difference

θ, which clearly is unknown. Consequently, the question arises how θ should be replaced. An

obvious substitute for θ is the estimator X̄ (1)
A − X̄ (1)

B , which does not, however, take into account

the information from other comparable studies that were used in the planning stage. Moreover,

this choice could potentially lead to a substantial under- or overestimation of the conditional

power when the interim analysis is performed at an early point in time where the variance

of X̄ (1)
A − X̄ (1)

B is high. Another sensible substitute for θ in (4.3) is the anticipated treatment
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difference between treatment group A and B that was used in the planning stage of the trial

to determine the required sample sizes. Combinations of these two choices also seem to be

reasonable under some circumstances, but in general this issue remains critical as there clearly

is no optimal choice.

By defining ñ(2)
B = c̃(2)

B ñ(2)
A with c̃(2)

B > 0, the required sample size of group A to obtain condi-

tional power C P ∈ (0,1) is easily determined by solving C P (θ) =C P and is given as

ñ(2)
A =

σ2

θ2

1+ c̃(2)
B

c̃(2)
B




√
w 2

1 +w 2
2

w2
b2 + zC P −

w1

w2

X̄ (1)
A − X̄ (1)

B

σ

√√√√ n(1)
A n(1)

B

n(1)
A +n(1)

B




2

.

Sample size re-calculation based on the conditional power seems to be a reasonable option es-

pecially when there is a high level of uncertainty regarding the treatment effects and the stan-

dard deviation in the planning stage. Moreover, conditional power can be an aid to decision-

making, e.g. whether the trial is terminated early for futility or not. However, the crucial point of

substituting the true treatment difference θ in (4.3) remains critical. Using the observed treat-

ment difference X̄ (1)
A − X̄ (1)

B seems to be a natural choice, but might lead to too large second-

stage sample sizes when the standard error at interim is high or the observed treatment dif-

ference is small. Nevertheless, adopting the anticipated treatment difference from the initial

sample size determination might also lead to a substantial under- or overestimation of the true

conditional power. In general, it seems advisable to prespecify an upper limit for the second-

stage size like e.g. max(ñ(2)
A ) = 2n(1)

A . For a more detailed overview on critical aspects of using

conditional power for sample size reassessment at interim analyses see Bauer and König (2006).

4.1.3 Bayesian Predictive Power

In order to avoid the previously discussed critical issue of substituting the true treatment ef-

fects, Spiegelhalter et al. (1986) proposed a Bayesian alternative to the conditional power. Let

us therefore suppose that the conditional power is written as a function of the two means µA

and µB instead of θ. The simple idea is to average the conditional power over certain reason-

able values of µA and µB by means of a weight function π(µA ,µB | interim data), which is the

joint posterior density of µA and µB . This density is obtained in a Bayesian fashion by updat-

ing the joint prior density for µA and µB , e.g. determined from previous study results, with the

information accumulated so far, namely the interim data. Consequently, the predictive power

is given as

PP =
∞∫

−∞

∞∫

−∞

C P
(
µA −µB

)
π

(
µA ,µB

∣∣∣ X A,1, ..., X A,n(1)
A

, XB ,1, ..., XB ,n(1)
B

)
dµAdµB . (4.4)

In order to determine the joint posterior density of µA and µB , let us assume independent prior

distributions for µA and µB , respectively. Under this reasonable assumption the joint prior
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distribution is given as the product of the two independent prior distributions. Moreover, the

joint posterior density of µA and µB is given as the product of the posterior densities of µA and

µB , that means we have

π
(
µA ,µB

∣∣∣ X A,1, ..., X A,n(1)
A

, XB ,1, ..., XB ,n(1)
B

)
=π

(
µA

∣∣∣ X A,1, ..., X A,n(1)
A

)
π

(
µB

∣∣∣ XB ,1, ..., XB ,n(1)
B

)
.

The posterior density of µD , D = A,B , is then obtained according to Bayes’ theorem as

π
(
µD

∣∣∣ XD,1, ..., XD,n(1)
D

)
=

L
(

XD,1, ..., XD,n(1)
D

∣∣∣µD

)
π

(
µD

)

∞∫

−∞

L
(

XD,1, ..., XD,n(1)
D

∣∣∣µD

)
π

(
µD

)
dµD

, (4.5)

where π
(
µD

)
denotes the prior density of µD and L(... |µD ) is the likelihood of the interim data

given µD . The term in the denominator is a normalising factor to ensure that the integral of the

posterior density over (−∞,∞) is equal to one and its value is not of interest. Consequently,

Equation (4.5) is often written as

π
(
µD

∣∣∣ XD,1, ..., XD,n(1)
D

)
∝ L

(
XD,1, ..., XD,n(1)

D

∣∣∣µD

)
π

(
µD

)
,

which says that the posterior density is proportional to or has the same shape as the product

of the likelihood and the prior density. For the likelihood of the interim data it is a well-known

fact that

L
(

XD,1, ..., XD,n(1)
D

∣∣∣µD

)
∝ exp


−

1

2

(
µD − X̄ (1)

D

)2

σ2/n(1)
D


 . (4.6)

Suppose now that the prior distribution of µD is normal with mean µD,0 and variance σ2
D,0.

Note, that the parameters µD,0 and σ2
D,0 are also called hyperparameters in order to distinguish

them from the parameters we want to make inference about. It can be easily shown that

π
(
µD

∣∣∣ XD,1, ..., XD,n(1)
D

)
∝ exp


−

1

2

(
µD − X̄ (1)

D

)2

σ2/n(1)
D


exp

(
−

1

2

(
µD −µD,0

)2

σ2
D,0

)

∝ exp

(
−

1

2

(
µD −µ∗

D

)2

σ∗
D

2

)
,

where µ∗
D and σ∗

D
2 are given as

µ∗
D =

1
σ2

D,0
µD,0 +

n(1)
D

σ2 X̄ (1)
D

1
σ2

D,0
+ n(1)

D

σ2

and σ∗
D

2 =
1

1
σ2

D,0
+ n(1)

D

σ2

. (4.7)
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That means, the posterior distribution is normal with mean µ∗
D and variance σ∗

D
2. Conse-

quently, the posterior density of µD is given as

π
(
µD

∣∣∣ XD,1, ..., XD,n(1)
D

)
=

1

σ∗
D

φ

(
µD −µ∗

D

σ∗
D

)
, (4.8)

where φ(·) denotes the probability density function of the standard normal distribution. As

the prior and the posterior are in the same family of distributions, namely normal with known

variance, the prior is also called a conjugate prior for the likelihood function. Choosing a con-

jugate prior has the decisive advantage that the posterior distribution can be easily obtained by

simple mathematical operations. Through this, the central practical problem of finding an an-

alytically tractable or numerical solution for the integral in (4.5) is evaded. Moreover, choosing

a conjugate prior gives direct insight on how the prior distribution is updated by the observed

interim data, thus giving a better understanding about the updating process. In case of a nor-

mal prior for normally distributed data, it becomes obvious by (4.7) that the posterior mean is

simply the weighted mean of the prior mean and the sample mean of the interim data, where

the weights are the inverse of the respective variances σ2
D,0 and σ2

n(1)
D

, respectively. That means, if

there is little or only uncertain prior information, σ2
D,0 should be chosen large, whereas a small

σ2
D,0 is adopted if comprehensive prior information is available. Note that the terms large and

small should be understood relative to the sample variance σ2

n(1)
D

, as σ2
D,0 =

σ2

n(1)
D

obviously means

that the prior and interim information are equally weighted.

In case there is no prior information, it seems natural to choose σD,0 → ∞, i.e. a so-called

non-informative prior. Then, according to (4.7) the posterior distribution is completely deter-

mined by the interim data, as clearly µ∗
D → X̄ (1)

D and σ∗
D

2 → σ2

n(1)
D

. Another way to see this, is to

adopt the non-informative prior density π(µD ) = 1 ∀µD ∈ R, which obviously is an improper

probability density function as
∫∞
−∞ 1dµD =∞. However, it follows easily by (4.5) and (4.6) that

the posterior density is a proper density function, namely that of the normal distribution with

mean and variance equal to X̄ (1)
D and σ2

n(1)
D

, respectively. Note that, for Gaussian distributions

with known variance, the improper prior π(µD ) = 1 ∀µD ∈R coincides with Jeffreys prior, which

is proportional to the square root of the Fisher information. In contrast, if we choose a highly

informative prior, i.e. σD,0 → 0, then the posterior distribution is completely described by the

prior information as we have µ∗
D →µD,0 and σ∗

D
2 → 0 according to (4.7).

Suppose now that the prior distributions of µA and µB are normal with means µA,0 and µB ,0

and variances σ2
A,0 and σ2

B ,0, respectively. Then, according to (4.4) and (4.8) the predictive

power is given as

PP =
1

σ∗
Aσ

∗
B

∞∫

−∞

∞∫

−∞

C P
(
µA −µB

)
φ

(
µA −µ∗

A

σ∗
A

)
φ

(
µB −µ∗

B

σ∗
B

)
dµAdµB

=
∞∫

−∞

∞∫

−∞

C P
(
σ∗

A x +µ∗
A −σ∗

B y −µ∗
B

)
φ (x)φ

(
y
)

dxdy,
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where the posterior means µ∗
A ,µ∗

B and variances σ∗
A

2,σ∗
B

2 are defined according to (4.7). By

substituting the conditional power given in (4.3) into this formula and carrying out the integra-

tion we obtain that

PP =Φ




√√√√√
1

1+ σ∗
A

2+σ∗
B

2

σ2

ñ(2)
A ñ(2)

B

ñ(2)
A +ñ(2)

B



µ∗

A −µ∗
B

σ

√√√√ ñ(2)
A ñ(2)

B

ñ(2)
A + ñ(2)

B

+
w1

w2

X̄ (1)
A − X̄ (1)

B

σ

√√√√ n(1)
A n(1)

B

n(1)
A +n(1)

B

−

√
w2

1 +w2
2

w2
b2





 ,

(4.9)

where the relationship
∫∞
−∞

∫∞
−∞Φ(a+bx+c y)φ(x)φ(y)dxdy =Φ(a/

p
1+b2 + c2) has been used

(see Owen, 1980, formula 10,020). Another way to obtain this formula is to realise that the pre-

dictive power in (4.4) is just the probability to reject the null hypothesis at the final stage, given

the interim data and assuming that the treatment effect µD , D = A,B , is normally distributed

with mean and variance given in (4.7). That means we have

PP = P
(

Z∗
2 ≥ b2

∣∣∣ Z1,µD ∼ N
(
µ∗

D ,σ∗
D

2
)

,D = A,B
)

= P


Z̃2 ≥

√
w 2

1 +w 2
2

w2
b2 −

w1

w2
Z1

∣∣∣∣∣∣∣
Z1,µD ∼ N

(
µ∗

D ,σ∗
D

2
)

,D = A,B


 . (4.10)

Let us now derive the so-called posterior predictive distribution of the second-stage test statistic

Z̃2, which is the distribution that a new test statistic Z̃2 would have, given the prior distributions

for µA and µB and the observed interim data. In a frequentist framework we obviously have

Z̃2 =
µA −µB

σ

√√√√ ñ(2)
A ñ(2)

B

ñ(2)
A + ñ(2)

B

+ǫ with ǫ∼ N (0,1) .

If we further assume that µD is normally distributed with mean µ∗
D and variance σ∗

D
2 given in

(4.7), i.e. µD =µ∗
D +ǫD with ǫD ∼ N (0,σ∗

D
2) and D = A,B , this results in

Z̃2 =
µ∗

A −µ∗
B

σ

√√√√ ñ(2)
A ñ(2)

B

ñ(2)
A + ñ(2)

B

+
ǫA −ǫB

σ

√√√√ ñ(2)
A ñ(2)

B

ñ(2)
A + ñ(2)

B

+ǫ.

Consequently, the posterior predictive distribution of Z̃2 is a normal distribution with mean

µ̃(2)∗ and variance σ̃(2)∗ given as

µ̃(2)∗ =
µ∗

A −µ∗
B

σ

√√√√ ñ(2)
A ñ(2)

B

ñ(2)
A + ñ(2)

B

and σ̃(2)∗ = 1+
σ∗

A
2 +σ∗

B
2

σ2

ñ(2)
A ñ(2)

B

ñ(2)
A + ñ(2)

B

.

With this knowledge, the predictive power in (4.10) can be directly calculated by means of the
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cumulative normal distribution function and we easily obtain the formula given in (4.9).

Taking a closer look at the predictive power formula given in (4.9), distinct similarities with

the conditional power in (4.3) become apparent. If the true treatment difference θ =µA −µB in

(4.3) is replaced by the posterior mean difference µ∗
A−µ

∗
B , the conditional power is almost equal

to the predictive power, despite a certain factor formed by the variances and the second-stage

sample sizes. As this factor clearly lies between zero and one, the predictive power can also be

seen as a shrinkage of the conditional power towards 0.5. With regard to mid-trial sample size

re-calculation this means that the sample sizes determined based on the predictive power will

generally be much larger than those calculated based on the conditional power, because the

targeted power is usually chosen much larger than 0.5. Intuitively, this is hardly surprising as

the predictive power takes into account all uncertainties of the second stage by integrating over

a range of potential treatment effects µA and µB .

As mentioned earlier, by using non-informative priors, i.e. σA,0,σB ,0 →∞, we have µ∗
D → X̄ (1)

D

and σ∗
D

2 → σ2

n(1)
D

for D = A,B and the predictive power becomes

PP =Φ




√√√√√
1

1+ n(1)
A +n(1)

B

n(1)
A n(1)

B

ñ(2)
A ñ(2)

B

ñ(2)
A +ñ(2)

B




X̄ (1)
A − X̄ (1)

B

σ




√√√√ ñ(2)
A ñ(2)

B

ñ(2)
A + ñ(2)

B

+
w1

w2

√√√√ n(1)
A n(1)

B

n(1)
A +n(1)

B


−

√
w2

1 +w2
2

w2
b2





 ,

which is somewhat similar to the conditional power at X̄ (1)
A − X̄ (1)

B , again, except for a factor

depending on the first and second-stage sample sizes. If, in contrast, highly informative priors

with σA,0,σB ,0 → 0 are used, we have µ∗
D →µD,0 and σ∗

D
2 → 0 for D = A,B , so that the predictive

power becomes the conditional power at the prior mean difference µA,0 −µB ,0.

If the alternative hypothesis is true, i.e. µA > µB , it can be easily seen from (4.3) that the

conditional power converges to one for increasing second-stage sample sizes. Unfortunately,

this desirable property does not hold for the predictive power. For ñ(2)
A , ñ(2)

B →∞ the first factor

on the right-hand side of (4.9) clearly converges to zero. Moreover, we have

√√√√√√√

ñ(2)
A ñ(2)

B

ñ(2)
A +ñ(2)

B

1+ σ∗
A

2+σ∗
B

2

σ2

ñ(2)
A ñ(2)

B

ñ(2)
A +ñ(2)

B

=

√√√√√
1

ñ(2)
A +ñ(2)

B

ñ(2)
A ñ(2)

B

+ σ∗
A

2+σ∗
B

2

σ2

ñ(2)
A ,ñ(2)

B →∞
−−−−−−−−→

σ
√
σ∗

A
2 +σ∗

B
2

.

Consequently, it follows for the predictive power that

PP
ñ(2)

A ,ñ(2)
B →∞

−−−−−−−−→Φ




µ∗
A −µ∗

B√
σ∗

A
2 +σ∗

B
2


 , (4.11)

which can be interpreted as one minus the unadjusted p-value at interim that is formed by

using the standardised test statistic for the posterior mean difference µ∗
A −µ∗

B . When a non-

informative prior is used, this term clearly becomes Φ (Z1), which exactly is one minus the un-
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adjusted interim p-value. That means, some levels of predictive power will never be obtained,

however large the second-stage sample sizes are. Besides the considerably larger second-stage

sizes when the sample sizes are re-calculated according to the predictive instead of the condi-

tional power, this is another very undesirable property concerning sample size re-assessment.

Incorporating prior information will reduce some of these issues since, for example, the term

in (4.11) tends towards one for more informative priors, i.e. σA,0,σB ,0 → 0. Moreover, the pre-

dictive power then converges towards the conditional power calculated at the anticipated prior

mean difference µA,0 −µB ,0. For more information on this topic see Dallow and Fina (2011),

who gave a detailed overview on the potential pitfalls when using the predictive power to as-

sess mid-trial data.

It should be kept in mind that, actually, predictive power and classical power calculations are

two totally different concepts. For standard sample size determinations in the planning stage

the power is calculated at a specific treatment difference and is not averaged over a certain

range of possible values as in the predictive power calculation. Not least because of this, the

conditional power seems to be more appropriate than the predictive power when it comes to

sample size re-calculations at an interim analysis. Nevertheless, if one is aware of the potential

perils associated with predictive power, it can be a useful tool for interim decision-making, e.g.

with regard to futility stopping. As predictive and conditional power are closely related, they

should generally be used jointly when assessing mid-trial data.

As it has been mentioned earlier, when calculating the conditional power in (4.3) it remains

critical to choose an sensible substitute for the treatment difference θ. One useful option might

also be to use the posterior mean difference µ∗
A −µ∗

B that is obtained in a Bayesian fashion as

described above by updating prior beliefs from the planning stage with the observed mid-trial

data. Note that this is a combination of choosing the preplanned or the observed treatment

difference, as the posterior mean difference simply is a weighted average of the two quantities.

4.2 Adaptive Designs for Three-Arm Non-Inferiority Trials

By means of the weighted inverse normal method the group sequential testing procedure pro-

posed in Section 3.2 will now be extended to two-stage adaptive designs that allow data-depen-

dent design changes at the interim analysis. Moreover, corresponding conditional and predic-

tive power formulas will be derived for the proposed adaptive three-arm non-inferiority de-

signs.

4.2.1 General Design

As in the previous part of this thesis suppose that all observations of the endpoint under the

test, control and placebo treatment are mutually independent and normally distributed with

common, known variance σ2, namely XT,i ∼ N (µT ,σ2), XC ,i ∼ N (µC ,σ2) and XP,i ∼ N (µP ,σ2)

for i = 1,2, .... Let furthermore ñ(1)
T , ñ(2)

T , ñ(1)
C , ñ(2)

C and ñ(1)
P , ñ(2)

P denote the stage-wise sample
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sizes of the test, control and placebo group, respectively. Again, note the difference to the

cumulative sample sizes used in the group sequential setting, i.e. we have the relationships

ñ(1)
D = n(1)

D and ñ(2)
D = n(2)

D −n(1)
D for D = T,C ,P . The independent stage-wise test statistics of the

test versus placebo superiority test and the non-inferiority comparison between the test and

control treatment are now given as

Z̃ (k)
T P =

∆X̄ (k)
T −∆X̄ (k)

P

σ

√√√√ ñ(k)
T ñ(k)

P

ñ(k)
T + ñ(k)

P

and Z̃ (k)
TC =

∆X̄ (k)
T −∆X̄ (k)

C +∆ni

σ

√√√√ ñ(k)
T ñ(k)

C

ñ(k)
T + ñ(k)

C

for k = 1,2,

where the stage-wise sample means are defined as ∆X̄ (1)
D = X̄ (1)

D and ∆X̄ (2)
D =

∑n(2)
D

i=n(1)
D +1

XD,i /ñ(2)
D

for D = T,C ,P . According to (4.1) the respective test statistics based on the inverse normal

method are given as

Z (k)∗
T P =

k∑
i=1

w (i )
T P Z̃ (i )

T P

√
k∑

i=1
w (i )

T P

2

and Z (k)∗
TC =

k∑
i=1

w (i )
TC Z̃ (i )

TC

√
k∑

i=1
w (i )

TC

2

for k = 1,2, (4.12)

with predefined weights w (1)
T P , w (2)

T P > 0 and w (1)
TC , w (2)

TC > 0. By using these test statistics the

testing procedure of the adaptive three-arm non-inferiority designs takes the same form as for

the group sequential setting given in (3.14). According to (4.2) appropriate rejection boundaries

b(1)
T P ,b(2)

T P and b(1)
TC ,b(2)

TC are determined similar to (3.15) and (3.16) as a solution of

Φ
ΣT P

(
b(1)

T P ,b(2)
T P

)
=Φ

ΣTC

(
b(1)

TC ,b(2)
TC

)
= 1−α,

where the covariance matrices ΣT P and ΣTC are defined as

ΣT P =




1
w (1)

T P√
w (1)

T P

2+w (1)
T P

2

w (1)
T P√

w (1)
T P

2+w (1)
T P

2
1


 and ΣTC =




1
w (1)

TC√
w (1)

TC

2+w (1)
TC

2

w (1)
TC√

w (1)
TC

2+w (1)
TC

2
1


 . (4.13)

Through this the adaptive testing procedure clearly controls the overall type I error rate in the

strong sense by α. The proof can be carried over from the group sequential setting (see page

53). The overall type I error rate is controlled for any data-dependent choice of the second-

stage sample sizes, however, it is vital that the weights w (1)
T P , w (2)

T P and w (1)
TC , w (2)

TC in (4.12) are

prespecified and not altered during trial conduct. Otherwise the type I error rate will be in-

flated.

As mentioned earlier it seems natural to choose the weights as the square roots of the origi-

nally planned stage-wise information levels, i.e. w (1)
T P =

√
I

(1)
T P , w (2)

T P =
√

I
(2)

T P −I
(1)

T P and w (1)
TC =

√
I

(1)
TC , w (2)

TC =
√

I
(2)

TC −I
(1)

TC . Then, the covariance matrices in (4.13) become equal to those
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of the group sequential testing procedure given in (3.18). If we furthermore assume that the

between-treatment allocation ratios are equal across the two stages, i.e.
ñ(1)

D

ñ(1)
T

= ñ(2)
D

ñ(2)
T

for D =C ,P ,

the test statistics in (4.12) coincide with those of the group sequential testing procedure sug-

gested in the previous chapter. According to this, we can start by choosing an appropriate

group sequential design according to Section 3.2 in the planning stage, including calculation of

the respective boundary values and maximum as well as expected sample sizes. If the sample

sizes are not altered at the interim analysis, the trial proceeds as in the group sequential set-

ting and uses the cumulative final test statistics Z (2)
T P and Z (2)

TC . Otherwise the weighted inverse

normal test statistics Z (2)∗
T P and Z (2)∗

TC are used at the final stage.

If a prespecified sample size re-calculation procedure is used at the interim analysis, the ac-

tual overall power and expected sample sizes of the proposed adaptive testing procedure are

clearly different from those of the group sequential testing procedure. Note that these charac-

teristics are highly dependent on the re-calculation rule used to determine the second-stage

sample sizes and can be determined by means of simulation.

4.2.2 Conditional Power

Let us now consider the conditional power of the proposed procedure in order to assess the

mid-trial data and potentially re-calculate the sample sizes of the second stage. As there are

two null hypotheses being investigated with the adaptive testing procedure, there is also more

than one conditional power of interest at the interim analysis. The first one obviously is the

conditional power to reject H (s)
0,T P at the final analysis, which generally is of interest when Z (1)

T P <
b(1)

T P is observed. According to (4.3) it is obtained as

C PT P (θT P ) =Φ



θT P

σ

√√√√ ñ(2)
T ñ(2)

P

ñ(2)
T + ñ(2)

P

+
w (1)

T P

w (2)
T P

X̄ (1)
T − X̄ (1)

P

σ

√√√√ n(1)
T n(1)

P

n(1)
T +n(1)

P

−

√
w (1)

T P

2 +w (2)
T P

2

w (2)
T P

b(2)
T P


 .

(4.14)

Sample size re-calculation based on this conditional power is generally not of interest, as this

would completely ignore the sample size of the control group.

The next one is the conditional power to reject H (n)
0,TC after the second stage. Due to the

hierarchical nature of the testing procedure this probability clearly depends on the interim test

statistic of the superiority comparison between test and placebo Z (1)
T P .

Let us first consider the case, that H (s)
0,T P has already been rejected at the interim analysis, i.e.

Z (1)
T P ≥ b(1)

T P holds. Then, the conditional power to reject H (n)
0,TC can be derived analogously to

Section 4.1.2. According to (4.3) we have

C PTC (θTC ) =Φ



θTC +∆ni

σ

√√√√ ñ(2)
T ñ(2)

C

ñ(2)
T + ñ(2)

C

+
w (1)

TC

w (2)
TC

X̄ (1)
T − X̄ (1)

C +∆ni

σ

√√√√ n(1)
T n(1)

C

n(1)
T +n(1)

C

−

√
w (1)

TC

2 +w (2)
TC

2

w (2)
TC

b(2)
TC


 .

(4.15)
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The required second-stage sample sizes to obtain a specific conditional power can be easily

determined by solving C PTC (θTC ) = C PTC , with C PTC ∈ (0,1) being the targeted conditional

power. Let therefore ñ(2)
C = c̃(2)

C ñ(2)
T with c̃(2)

C > 0, then the required test group size is determined

as

ñ(2)
T =

σ2

(θTC +∆ni )2

1+ c̃(2)
C

c̃(2)
C




√
w (1)

TC

2 +w (2)
TC

2

w (2)
TC

b(2)
TC + zC PTC −

w (1)
TC

w (2)
TC

X̄ (1)
T − X̄ (1)

C +∆ni

σ

√√√√ n(1)
T n(1)

C

n(1)
T +n(1)

C




2

.

For the case that H (s)
0,T P has not been rejected at interim, i.e. Z (1)

T P < b(1)
T P , the conditional power to

reject H (n)
0,TC furthermore depends on the rejection of H (s)

0,T P at the final analysis. The respective

conditional power to reject both null hypotheses at the final analysis can be determined in a

similar fashion as above. Therefore, we need to determine the joint distribution of the second-

stage test statistics Z̃ (2)
T P and Z̃ (2)

TC .

It can be easily seen that the vector (Z̃ (2)
T P , Z̃ (2)

TC )′ is bivariate normally distributed with mean

vector µ̃(2) and covariance matrix Σ̃
(2)

determined as

µ̃(2) =


θT P

σ

√√√√ ñ(2)
T ñ(2)

P

ñ(2)
T + ñ(2)

P

,
θTC +∆ni

σ

√√√√ ñ(2)
T ñ(2)

C

ñ(2)
T + ñ(2)

C



′

and

Σ̃
(2) =

(
1 ρ̃(2)

ρ̃(2) 1

)
with ρ̃(2) =Cov

(
Z̃ (2)

T P , Z̃ (2)
TC

)
=

√√√√√
ñ(2)

C ñ(2)
P(

ñ(2)
T + ñ(2)

C

)(
ñ(2)

T + ñ(2)
P

) . (4.16)

Consequently, the conditional power to reject both null hypotheses at the final analysis given

the data from the first stage is determined as

C PT P,TC (θT P ,θTC ) = P
({

Z (2)∗
T P ≥ b(2)

T P

}
∩

{
Z (2)∗

TC ≥ b(2)
TC

} ∣∣∣ Z (1)
T P , Z (1)

TC ,θT P ,θTC

)

= P






Z̃ (2)

T P ≥

√
w (1)

T P

2 +w (2)
T P

2

w (2)
T P

b(2)
T P −

w (1)
T P

w (2)
T P

Z (1)
T P





∩



Z̃ (2)

TC ≥

√
w (1)

TC

2 +w (2)
TC

2

w (2)
TC

b(2)
TC −

w (1)
TC

w (2)
TC

Z (1)
TC





∣∣∣∣∣∣
Z (1)

T P , Z (1)
TC ,θT P ,θTC




=Φ
Σ̃

(2)


θT P

σ

√√√√ ñ(2)
T ñ(2)

P

ñ(2)
T + ñ(2)

P

+
w (1)

T P

w (2)
T P

X̄ (1)
T − X̄ (1)

P

σ

√√√√ n(1)
T n(1)

P

n(1)
T +n(1)

P

−

√
w (1)

T P

2 +w (2)
T P

2

w (2)
T P

b(2)
T P ,

θTC +∆ni

σ

√√√√ ñ(2)
T ñ(2)

C

ñ(2)
T + ñ(2)

C

+
w (1)

TC

w (2)
TC

X̄ (1)
T − X̄ (1)

C +∆ni

σ

√√√√ n(1)
T n(1)

C

n(1)
T +n(1)

C

−

√
w (1)

TC

2 +w (2)
TC

2

w (2)
TC

b(2)
TC


,

(4.17)

with the covariance matrix Σ̃
(2)

given in (4.16). By defining ñ(2)
C = c̃(2)

C ñ(2)
T and ñ(2)

P = c̃(2)
P ñ(2)

T

for some c̃(2)
C , c̃(2)

P > 0, the required second-stage sample size of the test group can be found

by numerically solving C PT P,TC (θT P ,θTC ) = C PT P,TC , with C PT P,TC ∈ (0,1) being the targeted
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conditional power. Note, that the covariance of the test statistics in (4.16) then becomes ρ̃(2) =√
c̃ (2)

C c̃ (2)
P(

1+c̃ (2)
C

)(
1+c̃ (2)

P

) .

As it has been mentioned earlier, finding sensible substitutes for the true treatment differ-

ences θT P and θTC in (4.14), (4.15) and (4.17) remains a critical issue, so that the conditional

power must always be assessed with great caution. Useful options are the observed treatment

differences at interim, the anticipated treatment differences used for sample size calculation

and the posterior mean differences.

4.2.3 Bayesian Predictive Power

As noted in Section 1.3.1, the active comparator used in non-inferiority trials generally is an

approved treatment that has already been extensively studied in the past, namely most often

in placebo-controlled superiority trials. Therefore, in the planning stage of a three-arm non-

inferiority trial, there should be a fairly large amount of information on the control treatment

and placebo effect. It is also for this reason that the predictive power seems to be particularly

suitable for assessing the interim data in such trials.

Suppose we have mutually independent prior distributions for the treatment effects µT , µC

and µP that are normal with means µT,0, µC ,0 and µP,0 and variances σ2
T,0, σ2

C ,0 and σ2
P,0, re-

spectively. The hyperparameters of the prior distributions could, for example, be determined

by means of historical data. Analogous to Section 4.1.3 it can be shown that the respective pos-

terior distribution of µD for D = T,C ,P at the interim analysis is normal with mean µ∗
D and

variance σ∗
D

2 given in (4.7). The respective posterior density of µD , D = T,C ,P is given in (4.8).

Let us start with the superiority comparison between the test treatment and placebo. Ac-

cording to (4.9) the predictive power to reject H (s)
0,T P at the final stage is given as

PPT P =Φ




√√√√√
1

1+ σ∗
T

2+σ∗
P

2

σ2

ñ(2)
T ñ(2)

P

ñ(2)
T +ñ(2)

P


µ∗

T −µ∗
P

σ

√√√√ ñ(2)
T ñ(2)

P

ñ(2)
T + ñ(2)

P

+
w (1)

T P

w (2)
T P

X̄ (1)
T − X̄ (1)

P

σ

√√√√ n(1)
T n(1)

P

n(1)
T +n(1)

P

−

√
w (1)

T P

2 +w (2)
T P

2

w (2)
T P

b(2)
T P





. (4.18)

By using non-informative priors for the test treatment and placebo effect, i.e. σT,0,σP,0 → ∞,

the predictive power in (4.18) becomes

PPT P =Φ




√√√√√
1

1+ n(1)
T +n(1)

P

n(1)
T n(1)

P

ñ(2)
T ñ(2)

P

ñ(2)
T +ñ(2)

P


 X̄ (1)

T − X̄ (1)
P

σ




√√√√ ñ(2)
T ñ(2)

P

ñ(2)
T + ñ(2)

P

+
w (1)

T P

w (2)
T P

√√√√ n(1)
T n(1)

P

n(1)
T +n(1)

P




−

√
w (1)

T P

2 +w (2)
T P

2

w (2)
T P

b(2)
T P





.
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If instead highly informative priors are used, it can be easily seen that the predictive power

converges to the respective conditional power given in (4.14) calculated at the prior mean dif-

ference between test and placebo, i.e. C PT P (µT,0 −µP,0). Analogous to Section 4.1.3 it can also

be shown that for increasing second-stage sample sizes we have

PPT P
ñ(2)

T ,ñ(2)
P →∞

−−−−−−−−→Φ




µ∗
T −µ∗

P√
σ∗

T
2 +σ∗

P
2


 .

That means the predictive power converges to one minus the unadjusted interim p-value for

the test versus placebo supertiority comparison that is formed by using the standardised test

statistic for the posterior mean difference µ∗
T −µ∗

P . When non-informative priors are used this

limit clearly becomes Φ(Z (1)
T P ) which exactly is one minus the unadjusted interim p-value.

As for the conditional power let us now investigate the test versus control non-inferiority

comparison for the case that H (s)
0,T P has already been rejected at the interim analysis. Then, the

predictive power to reject H (n)
0,TC can be derived analogously to the predictive power to reject

H (s)
0,T P and we have

PPTC =Φ




√√√√√
1

1+ σ∗
T

2+σ∗
C

2

σ2

ñ(2)
T ñ(2)

C

ñ(2)
T +ñ(2)

C


µ∗

T −µ∗
C +∆ni

σ

√√√√ ñ(2)
T ñ(2)

C

ñ(2)
T + ñ(2)

C

+
w (1)

TC

w (2)
TC

X̄ (1)
T − X̄ (1)

C +∆ni

σ

√√√√ n(1)
T n(1)

C

n(1)
T +n(1)

C

−

√
w (1)

TC

2 +w (2)
TC

2

w (2)
TC

b(2)
TC





. (4.19)

Furthermore, all considerations on PPT P carry over to PPTC . When non-informative priors are

used for the test and control treatment effect, the predictive power in (4.19) becomes

PPTC =Φ




√√√√√
1

1+ n(1)
T +n(1)

C

n(1)
T n(1)

C

ñ(2)
T ñ(2)

C

ñ(2)
T +ñ(2)

C


 X̄ (1)

T − X̄ (1)
C +∆ni

σ




√√√√ ñ(2)
T ñ(2)

C

ñ(2)
T + ñ(2)

C

+
w (1)

TC

w (2)
TC

√√√√ n(1)
T n(1)

C

n(1)
T +n(1)

C




−

√
w (1)

TC

2 +w (2)
TC

2

w (2)
TC

b(2)
TC





.

When highly informative priors are used, i.e. σT,0,σC ,0 → 0, the predictive power converges to

C PTC (µT,0 −µC ,0). Moreover, for increasing second-stage sample sizes we have

PPTC
ñ(2)

T ,ñ(2)
C →∞

−−−−−−−−→Φ



µ∗

T −µ∗
C +∆ni

√
σ∗

T
2 +σ∗

C
2


 ,

where the limit becomes one minus the unadjusted interim p-value for testing H (n)
0,TC when

non-informative priors are used.
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The predictive power to reject both null hypotheses at the final analysis can be determined

by means of averaging the respective conditional power given in (4.17) over the posterior dis-

tributions of the treatment effects µT , µC and µP . That means, we have

PPT P,TC =
1

σ∗
T σ

∗
Pσ

∗
C

∞∫

−∞

∞∫

−∞

∞∫

−∞

C PT P,TC
(
µT −µP ,µT −µC

)

φ

(
µT −µ∗

T

σ∗
T

)
φ

(
µP −µ∗

P

σ∗
P

)
φ

(
µC −µ∗

C

σ∗
C

)
dµT dµP dµC .

As we will now see the predictive power can also be written as a double integral, which consid-

erably simplifies the computation. Let us therefore consider the posterior distributions of the

treatment differences θT P =µT −µP and θTC =µT −µC , which are obtained as

θT P

∣∣∣XT,1, ..., XT,n(1)
T

, XP,1, ..., XP,n(1)
P
∼ N

(
µ∗

T −µ∗
P ,σ∗

T
2 +σ∗

P
2
)

and

θTC

∣∣∣XT,1, ..., XT,n(1)
T

, XC ,1, ..., XC ,n(1)
C
∼ N

(
µ∗

T −µ∗
C ,σ∗

T
2 +σ∗

C
2
)

.

It can be easily seen that, conditional on the interim data, the vector (θT P ,θTC )′ follows a bi-

variate normal distribution with mean vector θ∗ and covariance matrix Σ∗ given as

θ∗ =
(
µ∗

T −µ∗
P

µ∗
T −µ∗

C

)
and Σ

∗ =
(
σ∗

T
2 +σ∗

P
2 σ∗

T
2

σ∗
T

2 σ∗
T

2 +σ∗
C

2

)
.

Consequently, it follows that the predictive power to reject H (s)
0,T P and H (n)

0,TC at the final analysis

is given as

PPT P,TC =
∞∫

−∞

∞∫

−∞

C PT P,TC (θT P ,θTC )φΣ
∗ (
θT P −µ∗

T +µ∗
P ,θTC −µ∗

T +µ∗
C

)
dθT P dθTC ,

where the respective conditional power C PT P,TC (·, ·) is given in (4.17) and φΣ (·, ·) denotes the

probability density function of the bivariate normal distribution with mean vector (0,0)′ and

covariance matrix Σ.

Finally, with the same considerations as in Section 4.1.3, we will now show that the predictive

power can be solely expressed by the cumulative bivariate normal distribution function, which

even more shortens the computation time. Obviously, the predictive power to reject both H (s)
0,T P

and H (n)
0,TC at the final analysis given the interim data is given as

PPT P,TC = P
({

Z (2)∗
T P ≥ b(2)

T P

}
∩

{
Z (2)∗

TC ≥ b(2)
TC

} ∣∣∣ Z (1)
T P , Z (1)

TC ,µD ∼ N
(
µ∗

D ,σ∗
D

2
)

,D = T,C ,P
)

= P






Z̃ (2)

T P ≥

√
w (1)

T P

2 +w (2)
T P

2

w (2)
T P

b(2)
T P −

w (1)
T P

w (2)
T P

Z (1)
T P





∩



Z̃ (2)

TC ≥

√
w (1)

TC

2 +w (2)
TC

2

w (2)
TC

b(2)
TC −

w (1)
TC

w (2)
TC

Z (1)
TC





∣∣∣∣∣∣
Z (1)

T P , Z (1)
TC ,µD ∼ N

(
µ∗

D ,σ∗
D

2
)

,D = T,C ,P


.

(4.20)
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In order to calculate the right-hand side of (4.20) we need to determine the joint posterior pre-

dictive distribution of the second-stage test statistics Z̃ (2)
T P and Z̃ (2)

TC . Again, analogous to Section

4.1.3, in a frequentist framework the vector of the second-stage test statistics can be written as

(
Z̃ (2)

T P

Z̃ (2)
TC

)
=




µT −µP
σ

√
ñ(2)

T ñ(2)
P

ñ(2)
T +ñ(2)

P

µT −µC+∆ni
σ

√
ñ(2)

T ñ(2)
C

ñ(2)
T +ñ(2)

C



+ǫ, with ǫ∼ N

(
0,Σ̃

(2)
)

,

where 0 = (0,0)′ and Σ̃
(2)

is given in (4.16). Let us now assume that the treatment effects µT ,µC

and µP are normally distributed with means µ∗
T ,µ∗

C and µ∗
P and variances σ∗

T
2,σ∗

C
2 and σ∗

P
2

according to (4.7), i.e. µD =µ∗
D +ǫD with ǫD ∼ N (0,σ∗

D
2) and D = T,C ,P . Then we easily obtain

(
Z̃ (2)

T P

Z̃ (2)
TC

)
=




µ∗
T −µ

∗
P

σ

√
ñ(2)

T ñ(2)
P

ñ(2)
T +ñ(2)

P

µ∗
T −µ

∗
C+∆ni

σ

√
ñ(2)

T ñ(2)
C

ñ(2)
T +ñ(2)

C


+




ǫT −ǫP
σ

√
ñ(2)

T ñ(2)
P

ñ(2)
T +ñ(2)

P

ǫT −ǫC
σ

√
ñ(2)

T ñ(2)
C

ñ(2)
T +ñ(2)

C


+ǫ,

so that the posterior predictive distribution of the vector of second-stage test statistics is also a

bivariate normal distribution with mean vector µ̃(2)∗ and covariance matrix Σ̃
(2)∗

determined

as

µ̃(2)∗ =




µ∗
T −µ

∗
P

σ

√
ñ(2)

T ñ(2)
P

ñ(2)
T +ñ(2)

P

µ∗
T −µ

∗
C+∆ni

σ

√
ñ(2)

T ñ(2)
C

ñ(2)
T +ñ(2)

C


 and Σ̃

(2)∗ =
(
σ̃(2)∗

T P ρ̃(2)∗

ρ̃(2)∗ σ̃(2)∗
TC

)
, where

σ̃(2)∗
T P = 1+

σ∗
T

2 +σ∗
P

2

σ2

ñ(2)
T ñ(2)

P

ñ(2)
T + ñ(2)

P

, σ̃(2)∗
TC = 1+

σ∗
T

2 +σ∗
C

2

σ2

ñ(2)
T ñ(2)

C

ñ(2)
T + ñ(2)

C

and

ρ̃(2)∗ =
(

1+
σ∗

T
2

σ2
ñ(2)

T

)√√√√√
ñ(2)

C ñ(2)
P(

ñ(2)
T + ñ(2)

C

)(
ñ(2)

T + ñ(2)
P

) .

Consequently, by standardising the random vector (Z̃ (2)
T P , Z̃ (2)

TC )′ the predictive power in (4.20) is

obtained as

PPT P,TC =Φ
Σ




µ∗
T −µ

∗
P

σ

√
ñ(2)

T ñ(2)
P

ñ(2)
T +ñ(2)

P

+ w (1)
T P

w (2)
T P

X̄ (1)
T −X̄ (1)

P
σ

√
n(1)

T n(1)
P

n(1)
T +n(1)

P

−
√

w (1)
T P

2+w (2)
T P

2

w (2)
T P

b(2)
T P

√
1+ σ∗

T
2+σ∗

P
2

σ2

ñ(2)
T ñ(2)

P

ñ(2)
T +ñ(2)

P

,

µ∗
T −µ

∗
C+∆ni

σ

√
ñ(2)

T ñ(2)
C

ñ(2)
T +ñ(2)

C

+ w (1)
TC

w (2)
TC

X̄ (1)
T −X̄ (1)

C +∆ni

σ

√
n(1)

T n(1)
C

n(1)
T +n(1)

C

−
√

w (1)
TC

2+w (2)
TC

2

w (2)
TC

b(2)
TC

√
1+ σ∗

T
2+σ∗

C
2

σ2

ñ(2)
T ñ(2)

C

ñ(2)
T +ñ(2)

C




,

(4.21)

where Σ is a 2× 2 matrix with main diagonal elements equal to 1 and off-diagonal elements
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determined as

ρ =
1+ σ∗

T
2

σ2 ñ(2)
T√(

1+ σ∗
T

2+σ∗
P

2

σ2

ñ(2)
T ñ(2)

P

ñ(2)
T +ñ(2)

P

)(
1+ σ∗

T
2+σ∗

C
2

σ2

ñ(2)
T ñ(2)

C

ñ(2)
T +ñ(2)

C

)

√√√√√
ñ(2)

C ñ(2)
P(

ñ(2)
T + ñ(2)

C

)(
ñ(2)

T + ñ(2)
P

) . (4.22)

Taking a closer look at the predictive power formula distinct similarities to the respective con-

ditional power given in (4.17) become apparent. First of all, similar to the differences between

C PTC (θTC ) and PPTC , the predictive power in (4.21) particularly differs from the correspond-

ing conditional power by the two quantities in the denominators. Moreover, the correlation

in (4.22) differs from that given in (4.16) by a certain factor which is formed by the common

variance, the posterior variances and the second-stage sample sizes.

If we use non-informative priors for all treatment effects µT ,µC and µP , i.e. σT,0,σC ,0,σP,0 →
∞, it can be easily shown that the predictive power from (4.21) becomes

PPT P,TC =Φ
Σ




X̄ (1)
T −X̄ (1)

P
σ

(√
ñ(2)

T ñ(2)
P

ñ(2)
T +ñ(2)

P

+ w (1)
T P

w (2)
T P

√
n(1)

T n(1)
P

n(1)
T +n(1)

P

)
−

√
w (1)

T P

2+w (2)
T P

2

w (2)
T P

b(2)
T P

√
1+ n(1)

T +n(1)
P

n(1)
T n(1)

P

ñ(2)
T ñ(2)

P

ñ(2)
T +ñ(2)

P

,

X̄ (1)
T −X̄ (1)

C +∆ni

σ

(√
ñ(2)

T ñ(2)
C

ñ(2)
T +ñ(2)

C

+ w (1)
TC

w (2)
TC

√
n(1)

T n(1)
C

n(1)
T +n(1)

C

)
−

√
w (1)

TC

2+w (2)
TC

2

w (2)
TC

b(2)
TC

√
1+ n(1)

T +n(1)
C

n(1)
T n(1)

C

ñ(2)
T ñ(2)

C

ñ(2)
T +ñ(2)

C




,

where the respective correlation from (4.22) is then given as

ρ =
1+ ñ(2)

T

n(1)
T√(

1+ n(1)
T +n(1)

P

n(1)
T n(1)

P

ñ(2)
T ñ(2)

P

ñ(2)
T +ñ(2)

P

)(
1+ n(1)

T +n(1)
C

n(1)
T n(1)

C

ñ(2)
T ñ(2)

C

ñ(2)
T +ñ(2)

C

)

√√√√√
ñ(2)

C ñ(2)
P(

ñ(2)
T + ñ(2)

C

)(
ñ(2)

T + ñ(2)
P

) .

If instead highly informative priors are used, i.e. σT,0,σC ,0,σP,0 → 0, it follows from (4.21) and

(4.22) that the predictive power converges to C PT P,TC (µT,0 −µP,0,µT,0 −µC ,0), which is the re-

spective conditional power to reject both H (s)
0,T P and H (n)

0,TC at the final analysis assuming the

anticipated prior mean differences.

Finally, we will now investigated how the predictive power in (4.21) behaves for increasing

second-stage sample sizes. For θT P > 0 and θTC > −∆ni the conditional power in (4.17) obvi-

ously approaches one for increasing ñ(2)
T , ñ(2)

C and ñ(2)
P , so that any targeted conditional power

can be obtained for suitably large second-stage sizes. Unfortunately, as we will now see, this

is not the case for the predictive power. Let us therefore assume that the second-stage sample

sizes of the control and placebo group are defined as fractions of the second-stage test group

size, namely ñ(2)
C = c̃(2)

C ñ(2)
T and ñ(2)

P = c̃(2)
P ñ(2)

T for some c̃(2)
C , c̃(2)

P > 0. Then the off-diagonal ele-
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ment in (4.22) can be written as

ρ =
1

ñ(2)
T

+ σ∗
T

2

σ2

√(
1

ñ(2)
T

+ σ∗
T

2+σ∗
P

2

σ2

c̃ (2)
P

1+c̃ (2)
P

)(
1

ñ(2)
T

+ σ∗
T

2+σ∗
C

2

σ2

c̃ (2)
C

1+c̃ (2)
C

)

√√√√√
c̃(2)

C c̃(2)
P(

1+ c̃(2)
C

)(
1+ c̃(2)

P

) . (4.23)

With the same considerations as at the end of Section 4.1.3 it follows for the predictive power

in (4.21) that

PPT P,TC
ñ(2)

T ,ñ(2)
C ,ñ(2)

P →∞
−−−−−−−−−−−→Φ

Σ




µ∗
T −µ∗

P√
σ∗

T
2 +σ∗

P
2

,
µ∗

T −µ∗
C +∆ni

√
σ∗

T
2 +σ∗

C
2


 ,

where the off-diagonal elements of the corresponding matrix Σ are determined according to

(4.23) and we have

ρ
ñ(2)

T ,ñ(2)
C ,ñ(2)

P →∞
−−−−−−−−−−−→

σ∗
T

2

√(
σ∗

T
2 +σ∗

P
2)(σ∗

T
2 +σ∗

C
2)

.

If non-informative priors are used, it obviously follows that the predictive power converges to

Φ
Σ(Z (1)

T P , Z (1)
TC ) with ρ becoming the correlation of the two first stage test statistics Z (1)

T P and Z (1)
TC ,

namely ρ =
√

n(1)
C n(1)

P(
n(1)

T +n(1)
C

)(
n(1)

T +n(1)
P

) .

With regard to sample size re-calculation this means that both observed interim test statistics

need to be sufficiently large in order to have the ability of achieving the targeted predictive

power. In other words, if only one of the first-stage test statistics is low, the maximum attainable

predictive power will also be low. This is a very undesirable property, so that the predictive

power in (4.21) seems to be even less suitable for sample size re-calculation than the predictive

power given in (4.19). However, not least because of the large amount of information on the

control and placebo treatment that is generally available in the beginning of a three-arm non-

inferiority trial, the derived predictive power formulas are useful tools for exploring the interim

data in such trials.

4.2.4 Hypothetical Example

Let us now illustrate the proposed adaptive testing procedure by means of reconsidering the

hypothetical trial example of the previous chapter. In a three-arm trial a new therapy for the

treatment of bronchial asthma should be compared with an already approved active control

treatment and placebo. Treatment efficacy will be assessed by means of changes of the forced

expiratory volume in one second (FEV1) measured in litre (l ). Besides a one-sided significance

level of α= 0.025, a non-inferiority margin of ∆ni = 0.2l is adopted.

First of all, let us start by determining a group sequential design with K = 2 equally-sized
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Table 4.1: Sample sizes, observed data and test results for a hypothetical trial where the pro-
posed adaptive testing procedure is applied.

Stage Sample sizes Stage-wise data [in l ] Test results

k ñ(k)
T ñ(k)

C ñ(k)
P ∆X̄ (k)

T ∆X̄ (k)
C ∆X̄ (k)

P Z (k)∗
T P b(k)

T P Z (k)∗
TC b(k)

TC

1 204 204 68 2.409 2.489 2.021 2.771 2.797 1.212 2.797
2 369 369 38 2.415 2.463 1.913 4.043 1.977 2.317 1.977

stages as described in the previous chapter, were the overall power to demonstrate both su-

periority over placebo and non-inferiority to the control treatment shall be at least 1 −β =
0.80. As rejections at interim should only occur when the level of evidence is high, the re-

jection boundaries are chosen according to O’Brien Fleming for both comparisons, namely

(b(1)
T P ,b(2)

T P ) = (b(1)
TC ,b(2)

TC ) = (2.797,1.977).

In previous placebo-controlled superiority trials treatment effects of 2.4l and 2l were ob-

served for the control treatment and placebo, respectively. The test treatment is assumed to

have the same effect as the active control, so that we will assume µT =µC = 2.4l and µP = 2l for

the sample size determination, i.e. θT P = 0.4l and θTC = 0l . According to this, the between-

group allocation ratio is chosen as n(2)
T : n(2)

C : n(2)
P = 3 : 3 : 1, i.e. cC = 1 and cP = 1

3 , which

is, for the assumed treatment effects, close to the respective optimal allocation. For simplic-

ity reasons we further assume that the standard deviation of σ = 1l is known. By choosing

(n(1)
T ,n(2)

T ) = (n(1)
C ,n(2)

C ) = (204,408) and (n(1)
P ,n(2)

P ) = (68,136) the overall power of the group

sequential design to show both superiority to placebo and non-inferiority to the active con-

trol is 80.2% according to (3.34). In order to account for uncertainties regarding the assumed

treatment effects, especially that of the experimental treatment, the study team decides to

extend the group sequential to an adaptive design as described in Section 4.2.1, offering the

ability of mid-trial sample size re-assessment based on the observed interim data. Therefore,

the weights are chosen as w (1)
T P = w (2)

T P = w (1)
TC = w (2)

TC = 1 so that the two independent stages

are equally weighted. Note that for equal stage sizes this is obviously equivalent to choos-

ing the weights as the square roots of the preplanned stage-wise information levels given as√
I

(1)
T P =

√
I

(2)
T P −I

(1)
T P = 7.141 and

√
I

(1)
TC =

√
I

(2)
TC −I

(1)
TC = 10.010, respectively.

Immediately after the primary endpoints of the first 476 patients have been observed the

interim analysis is conducted. The corresponding observed data and test results of the two

comparisons are given in Table 4.1. Although the test statistic of the test versus placebo su-

periority comparison Z (1)∗
T P is relatively large, the corresponding critical boundary b(1)

T P is not

crossed, so that neither H (s)
0,T P nor H (n)

0,TC can be rejected at the interim analysis. Moreover, it

becomes apparent that the observed means of the test and control group seem to be in line

with the assumptions µT = 2.4l and µP = 2l , whereas the sample mean of the control group is

slightly higher than expected. However, this deviation might also be due to chance.
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Let us now take a closer look at the trial data by determining the respective conditional pow-

ers when the trial proceeds as planned, i.e. without any design changes such as sample size

re-calculation. As the interim test statistic of the test versus placebo superiority comparison is

very large, the conditional power to reject H (s)
0,T P is expected to be very high. According to (4.14)

the conditional power to reject only H (s)
0,T P assuming the treatment difference θT P = 0.4l from

the planning stage is calculated as C PT P (0.4) = 99.8%. The conditional power at the observed

treatment difference X̄ (1)
T − X̄ (1)

P = 0.388l of C PT P (0.338) = 99.7% is also very high. Thus, the

observed data suggest that H (s)
0,T P will almost surely be rejected at the final analysis.

The conditional power to reject H (s)
0,T P and H (n)

0,TC at the treatment differences assumed in the

planning stage is calculated by means of Equation (4.17) as C PT P,TC (0.4,0) = 66.8%. In order

to obtain at least 80% conditional power this would require 217 additional patients overall. In

contrast, re-calculating the sample sizes based on the conditional power at the observed mean

differences, which is only 35.5% for the preplanned design, would result in more than a fourfold

increase of the overall second-stage size, namely from 476 to 1911 patients. However, it should

be kept in mind that the interim point estimators have a certain degree of uncertainty.

Because there clearly is a lot of prior information from previous trials on the control treat-

ment and placebo effect, it seems natural to implement this prior belief when assessing the in-

terim data. This can be easily done by defining prior distributions for the treatment effects and

updating them in a Bayesian fashion with the first-stage observations. ForµC andµP we choose

very informative normal priors with means µC ,0 = 2.4,µP,0 = 2 and variances σ2
C ,0 = σ2

P,0 = 1
500 ,

whereas for the test treatment effect we choose a normal prior distribution which is a little less

Figure 4.1: Marginal prior belief regarding the treatment effects µT ,µC and µP (left) and joint
prior belief about the treatment differences µT −µP and µT −µC displayed as 1%,
10%, 50%, 90% and 99% of the maximum ordinate (right).
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Table 4.2: Summary of the Bayesian updating process including the prior distributions, the ob-
served interim data and the resulting posterior distributions for the treatment effects
µT ,µC and µP .

Treatment Prior Observed Posterior
group hyperparameters interim data hyperparameters

D µD,0 σ2
D,0 X̄ (1)

D σ2
/

n(1)
D µ∗

D σ∗
D

2

T(est) 2.4 1/100 2.409 1/204 2.406 1/304
C(ontrol) 2.4 1/500 2.489 1/204 2.426 1/704
P(lacebo) 2.0 1/500 2.021 1/68 2.003 1/568

informative, namely µT,0 = 2.4 and σ2
T,0 =

1
100 . Furthermore, we make the simplifying assump-

tion of independent prior distributions, so that the joint prior distribution of the treatment

differences µT −µP and µT −µC can be easily determined. Figure 4.1 gives an overview on

the prior marginal belief about the treatment effects and the joint prior belief concerning the

treatment differences.

Note that for the control treatment and placebo effect the prior information is given a higher

weight than the information gained from the first stage, because we have σ2
C ,0 <

σ2

n(1)
C

and σ2
P,0 <

σ2

n(1)
P

. In contrast, as we obviously have σ2
T,0 >

σ2

n(1)
T

, the first-stage data on the test treatment group

has a higher weight than the respective prior information on µT .

As it has been mentioned earlier, the respective posterior distributions are also independent

normal distributions whose hyperparameters can be calculated by simple mathematical opera-

tions according to (4.7). Table 4.2 gives an overview on the respective prior beliefs, the observed

first-stage information and the resulting posterior beliefs on the treatment effects µT ,µC and

µP . As we can see, the posterior means of the test and placebo group are almost the same

as those assumed in the planning stage, whereas the posterior mean of the control group is

slightly higher than anticipated. By means of the derived posterior hyperparameters from Ta-

ble 4.2 the predictive power to reject H (s)
0,T P and H (n)

0,TC with the preplanned second-stage sizes

is determined according to (4.21) and (4.22) as PPT P,TC = 57.6%, which is fairly low.

In order to get a better overview on the probabilities of the potential study outcomes based

on the currently available information let us now consider the joint posterior predictive distri-

bution of the second-stage mean differences ∆X̄ (2)
T −∆X̄ (2)

P and ∆X̄ (2)
T −∆X̄ (2)

C . This distribution

can be determined analogously to the derivation of the joint posterior predictive distribution

of the second-stage test statistics Z̃ (2)
T P and Z̃ (2)

TC which could also be used instead (cf. Section

4.2.3). However, to the opinion of the author, considering differences is preferable to consider-

ing test statistics because they are easier to comprehend, especially by non-statisticians.

The plot on the left-hand side of Figure 4.2, which is in the style of Figure 3 presented in

Spiegelhalter et al. (1986), shows the joint posterior predictive distribution of ∆X̄ (2)
T −∆X̄ (2)

P and
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Figure 4.2: Acceptance and rejection regions of the final analysis and corresponding joint
posterior predictive distribution of the future mean differences ∆X̄ (2)

T −∆X̄ (2)
P and

∆X̄ (2)
T −∆X̄ (2)

C for the preplanned second-stage sizes ñ(2)
T = ñ(2)

C = 204 and ñ(2)
P = 68

(left) and the updated second-stage sizes ñ(2)
T = ñ(2)

C = 369 and ñ(2)
P = 38 (right). Con-

tours shown are 1%, 10%, 50%, 90% and 99% of the maximum ordinate.

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0
.4

-0
.2

0.
0

0.
2

0.
4

∆X̄ (2)
T −∆X̄ (2)

P

∆
X̄

(2
)

T
−
∆

X̄
(2

)
C

Accept
H (s)

0,T P
and
H (n)

0,TC

Reject H (s)
0,T P and H (n)

0,TC

Reject only H (s)
0,T P

1

10

50

90

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0
.4

-0
.2

0.
0

0.
2

0.
4

∆X̄ (2)
T −∆X̄ (2)

P

∆
X̄

(2
)

T
−
∆

X̄
(2

)
C

Accept
H (s)

0,T P
and
H (n)

0,TC

Reject H (s)
0,T P and H (n)

0,TC

Reject only H (s)
0,T P

1

10

50

90

∆X̄ (2)
T −∆X̄ (2)

C superimposed on the corresponding acceptance and rejection regions at the final

analysis when the trial proceeds with the preplanned second-stage sizes. Through this, the fig-

ure gives a graphical representation of the predictive probabilities such as the predictive power

to reject both null hypotheses, which is obtained by integrating the joint posterior predictive

distribution of the second-stage sample mean differences over the dark grey shaded area.

Let us now take a closer look at the left plot in Figure 4.2. With the currently available in-

formation it seems very unlikely that none of the null hypotheses is rejected at the final stage

because the bulk of plausible future values for ∆X̄ (2)
T −∆X̄ (2)

P lies to the right of 0.004, which

is the smallest value of ∆X̄ (2)
T −∆X̄ (2)

P that would result in a rejection of H (s)
0,T P . Due to the fact

that the test statistic Z (1)
T P is already very high, this is hardly surprising. The corresponding pre-

dictive probability that both null hypotheses will be accepted in the final analysis is as low as

0.5%. Moreover, rejecting both null hypotheses in the end seems to be more plausible than re-

jecting only H (s)
0,T P with corresponding predictive probabilities of 57.6% (= PPT P,TC ) and 41.8%,

respectively.

Based on the observations at the interim analysis the study team decides to continue the

trial with an increased second-stage size. In order to account for potentially existing deviations

from the treatment effects assumed in the planning stage, the sample sizes of the second stage

will be re-calculated based on the conditional power in (4.17) at the posterior mean differences.

That means we want to find the smallest sample sizes ñ(2)
T , ñ(2)

C and ñ(2)
P so that C PT P,TC (µ∗

T −
µ∗

P ,µ∗
T −µ∗

C ) = C PT P,TC (0.404,−0.02) ≥ 0.80 holds. Note that the predictive power PPT P,TC is
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not used for re-calculation as this generally results in too large sample sizes (see also Sections

4.1.3 and 4.2.3). Without changing the between-group allocation ratio, i.e. c̃(2)
C = 1 and c̃(2)

P = 1
3 ,

the required second-stage sizes to achieve a conditional power of at least 80% to reject both

null hypotheses are obtained as ñ(2)
T = ñ(2)

C = 363 and ñ(2)
P = 121. That means we would have

to recruit 371 additional patients which is a second-stage size increase of about 78%. Based

on the interim observations it seems natural to put more emphasis on the test versus control

non-inferiority comparison as H (s)
0,T P will almost surely be rejected. Moreover, the allocation

ratio 3:3:1 might no longer be optimal with respect to minimising the overall sample size.

Therefore, by analogy with the optimisations in the previous chapters, among all second-

stage sizes ñ(2)
T , ñ(2)

C and ñ(2)
P that result in a conditional power of at least 80%, we search for

those with the smallest overall second-stage size ñ(2)
T + ñ(2)

C + ñ(2)
P . Practically speaking, this

is done as follows: Define ñ(2)
C = c̃(2)

C ñ(2)
T and ñ(2)

P = c̃(2)
P ñ(2)

T for some c̃(2)
C , c̃(2)

P > 0, so that for

each pair (c̃(2)
C , c̃(2)

P ) their is a unique (real number) solution ñ(2)
T for C PT P,TC (0.404,−0.02) = 0.80

with corresponding overall second-stage size (1 + c̃(2)
C + c̃(2)

P )ñ(2)
T . Then, with an appropriate

optimisation routine such as the downhill simplex algorithm by Nelder and Mead (1965) we

search for the allocation ratios that minimise the overall second-stage size.

The optimal second-stage sizes are obtained as ñ(2)
T = ñ(2)

C = 363 and ñ(2)
P = 38 resulting in a

conditional power of C PT P,TC (0.404,−0.02) = 80%. Besides saving 71 patients overall compared

to re-calculation without changing the between-group allocation ratio, the optimal design fur-

thermore has the desirable feature of considerably reducing the number of patients allocated

to the placebo group. Along with an ethical advantage this also reflects the fact that the proof of

efficacy for the test treatment could nearly be demonstrated at the interim analysis. It should

also be noted that, interestingly, the re-calculated optimal second-stage placebo group size is

almost half of the respective preplanned placebo group size.

The influence of the re-calculation on the probability of potential study outcomes is further-

more illustrated in the right plot of Figure 4.2. This plot shows the rejection regions of the final

stage together with the joint posterior predictive distribution of ∆X̄ (2)
T −∆X̄ (2)

P and ∆X̄ (2)
T −∆X̄ (2)

C

for the re-calculated sample sizes ñ(2)
T = ñ(2)

C = 363 and ñ(2)
P = 38. First of all, it becomes appar-

ent that the rejection boundary for ∆X̄ (2)
T −∆X̄ (2)

C is slightly decreased compared with the pre-

planned design, while the respective critical value for ∆X̄ (2)
T −∆X̄ (2)

P is almost unaffected by the

re-calculation. The shift from the superiority comparison between test and placebo towards

the test versus control non-inferiority comparison is reflected by the fact that the variation of

the future sample mean difference ∆X̄ (2)
T −∆X̄ (2)

P is increased, whereas ∆X̄ (2)
T −∆X̄ (2)

C now has

a smaller variance than in the preplanned design. Through this, the corresponding predictive

power to reject both null hypotheses in the end is considerably increased from 57.5% to 73%.

Moreover, we now have a 25.5% predictive probability to reject only H (s)
0,T P , while the predictive

probability that no hypothesis will be rejected is slightly increased to 1.5%, which is, however,

still very low.

Shortly after the trial has proceeded with the derived optimal second-stage sizes ñ(2)
T = ñ(2)

C =
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363 and ñ(2)
P = 38, the final analysis is conducted. The second-stage sample means of the three

treatment groups and the corresponding test results can be found in Table 4.1. As both test

statistics obviously exceed the critical value b(2)
T P = b(2)

TC = 1.977, the trial ends with rejection

of both null hypotheses. That means, in addition to its proof of efficacy, the test treatment is

furthermore demonstrated to be non-inferior to the active control. Note that the results from

the second stage also seem to confirm the impression at the interim analysis of the control

treatment effect being slightly higher than assumed. Furthermore it should be noted that, if

the same sample means would have been observed with the preplanned second-stage sizes,

H (n)
0,TC could have not been rejected.

4.2.5 An Optimal Adaptive Type Design without Early Rejection

As we have seen in the hypothetical example above, re-calculation of the between-group sam-

ple size allocation based on the observed interim data led to substantial sample size savings,

especially in the placebo group. Let us therefore further investigate the option of optimising

the between-group allocation at the interim analysis by using the conditional power to reject

both H (s)
0,T P and H (n)

0,TC .

In order to reduce the number of influence parameters, such as the group sequential re-

jection boundaries, we will restrict to adaptive designs without early rejection at the interim

analysis. Such designs are easily obtained within the proposed framework by simply setting

b(1)
T P = b(1)

TC =∞ which results in b(2)
T P = b(2)

TC = z1−α, i.e. the critical values of the fixed sample size

design from Section 2.3. This choice might be of particular interest when prematurely closing

the placebo arm is viewed critically, because there are concerns about a change in patient pop-

ulation after dropping the placebo group. Note that this clearly is one of the major points of

criticism regarding the proposed group sequential and adaptive designs.

At the interim analysis, analogous to the optimisation in the hypothetical example, the con-

ditional power to reject both H (s)
0,T P and H (n)

0,TC from (4.17) at the preplanned treatment differ-

ences will be used to obtain the optimal second-stage sizes ñ(2)
T , ñ(2)

C and ñ(2)
P that minimise

the overall second-stage size. The respective conditional power of the fixed sample size design

given the observed sample means X̄ (1)
T , X̄ (1)

C and X̄ (1)
P will be used as the targeted conditional

power in the optimisation. Through this, the adaptive type design will obviously have the same

overall power as the fixed sample size design, which allows a fair comparison between the two

designs.

For simplicity reasons, let us assume that the sample size re-calculation will be conducted

when the primary endpoint has been observed for half of the patients, so that we have n(1)
D =

ñ(2)
D for D = T,C ,P . By setting w (1)

T P = w (2)
T P = w (1)

TC = w (2)
TC = 1 it can be easily shown that the

inverse normal test statistics of the final analysis coincide with the respective cumulative test

statistics of the group sequential design, i.e. we have Z (2)∗
T P = Z (2)

T P and Z (2)∗
TC = Z (2)

TC . Conse-

quently, the derived conditional and predictive power formulas can also be used for group se-

quential and even fixed sample size designs. Moreover, one can use the required sample sizes
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of the fixed design as a starting point for the adaptive type design.

Suppose we have a fixed design with corresponding sample sizes nT, f i x ,nC , f i x and nP, f i x .

Then, after half of the patients have been observed with sample means X̄ (1)
T , X̄ (1)

C and X̄ (1)
P , ac-

cording to (4.17) the corresponding conditional power to reject both H (s)
0,T P and H (n)

0,TC in the

end is obtained as

C P
f i x
T P,TC (θT P ,θTC ) =Φ

Σ f i x

(
θT P + X̄ (1)

T − X̄ (1)
Pp

2σ

√
nT, f i x nP, f i x

nT, f i x +nP, f i x
−
p

2z1−α,

θTC + X̄ (1)
T − X̄ (1)

C +2∆ni
p

2σ

√
nT, f i x nC , f i x

nT, f i x +nC , f i x
−
p

2z1−α

)
,

(4.24)

where the corresponding covariance matrix is easily determined according to (4.16) as

Σ f i x =
(

1 ρ f i x

ρ f i x 1

)
with ρ f i x =

√
nC , f i x nP, f i x(

nT, f i x +nC , f i x
)(

nT, f i x +nP, f i x
) . (4.25)

As mentioned earlier, this conditional power will be used as the targeted conditional power for

calculating the optimal second-stage sizes. By means of applying the adaptive type design to

the previously considered hypothetical trial example we will now investigate its properties in

comparison to the optimal fixed design.

Just as a quick reminder, the assumed treatment differences from the planning stage and the

common known standard deviation were θT P = 0.4,θTC = 0 and σ = 1, respectively. The non-

inferiority margin was chosen as ∆ni = 0.2, the one-sided significance level was α = 2.5% and

the targeted overall power was set to 1−β= 80%. First of all, let us derive the respective optimal

fixed design that should serve both as a starting point and a reference for the adaptive type

design. The corresponding optimal sample sizes are determined as nT, f i x = 414,nC , f i x = 402

and nP, f i x = 124 resulting in an overall power of 80.1% to reject both H (s)
0,T P and H (n)

0,TC assuming

the treatment differences θT P = 0.4 and θTC = 0.

Before examining the adaptive type design let us first take a closer look at the respective con-

ditional power C P
f i x
T P,TC (0.4,0) calculated by means of (4.24) and (4.25), that is used as the tar-

geted conditional power when re-calculating the sample sizes at interim. Figure 4.3 illustrates

the dependency of C P
f i x
T P,TC (0.4,0) on the mid-trial sample mean differences X̄ (1)

T − X̄ (1)
P and

X̄ (1)
T − X̄ (1)

C . Moreover, under the assumption that the true treatment differences are θT P = 0.4

and θTC = 0, it gives the respective 95% prediction ellipsoid for (X̄ (1)
T − X̄ (1)

P , X̄ (1)
T − X̄ (1)

C )′, which

is the two-dimensional extension of the prediction interval.

It can be seen that the conditional power is already very high when the interim observations

are as anticipated, namely for X̄ (1)
T − X̄ (1)

P = 0.4 and X̄ (1)
T − X̄ (1)

C = 0 the conditional power is

almost 90%. Furthermore, it becomes apparent that, for plausible sample mean differences,

the conditional power C P
f i x
T P,TC (0.4,0) is mainly influenced by the treatment difference between

the test and control group X̄ (1)
T − X̄ (1)

C . This is primarily caused by the fact that the power for
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Figure 4.3: Conditional power of the optimal fixed design to reject H (s)
0,T P and H (n)

0,TC at θT P =
0.4 and θTC = 0 depending on the observed treatment differences X̄ (1)

T − X̄ (1)
P and

X̄ (1)
T − X̄ (1)

C of the first half of patients. The ellipsoid represents the respective 95%

prediction area for the vector of observed mean differences (X̄ (1)
T − X̄ (1)

P , X̄ (1)
T − X̄ (1)

C )′.
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rejecting H (s)
0,T P is already very high under the optimal allocation. As a result there is almost

no difference in conditional power whether the observed difference X̄ (1)
T − X̄ (1)

P is 0.2 or larger.

Moreover, if X̄ (1)
T − X̄ (1)

C ≥ 0 is observed, the conditional power will most surely be higher than

50% as this only requires a slightly positive sample mean difference between test and placebo,

which obviously is more than likely under the assumption θT P = 0.4. If we have X̄ (1)
T − X̄ (1)

C ≥
−0.1, the conditional power will be at least 50% for any observed difference X̄ (1)

T − X̄ (1)
P ≥ 0.1.

Let us now take a closer look at the behaviour of the optimal adaptive type design by exam-

ining how the optimal second-stage allocation depends on the observed sample mean differ-

ences X̄ (1)
T − X̄ (1)

P and X̄ (1)
T − X̄ (1)

C . Let therefore ñ(2)
T,ad , ñ(2)

C ,ad and ñ(2)
P,ad denote the re-calculated

second-stage sample sizes of the adaptive type design for the test, control and placebo group,

respectively. Furthermore, assume that the second-stage sizes of the control and placebo group

are defined as fractions of the respective test group size, i.e. ñ(2)
C ,ad = c̃(2)

C ,ad ñ(2)
T,ad and ñ(2)

P,ad =
c̃(2)

P,ad ñ(2)
T,ad for some parameters c̃(2)

C ,ad , c̃(2)
P,ad > 0. Figure 4.4 shows the second-stage allocation

ratios c̃(2)
C ,ad and c̃(2)

P,ad of the optimal adaptive type design for different combinations of ob-

served treatment differences X̄ (1)
T − X̄ (1)

P and X̄ (1)
T − X̄ (1)

C . Again, the 95% prediction ellipsoid for

the vector of mean differences is superimposed in order to get an insight on plausible interim

values when the true treatment differences are indeed θT P = 0.4 and θTC = 0.

It becomes apparent that the optimal second-stage allocations are mainly influenced by the
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Figure 4.4: Second-stage allocation ratios of the adaptive type design depending on the ob-
served treatment differences X̄ (1)

T −X̄ (1)
P and X̄ (1)

T −X̄ (1)
C of the first half of patients. The

ellipsoid represents the respective 95% prediction area for the vector of observed
mean differences (X̄ (1)

T − X̄ (1)
P , X̄ (1)

T − X̄ (1)
C )′.
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observed sample means of the control and placebo group X̄ (1)
C and X̄ (1)

P , respectively, whereas

X̄ (1)
T alone has only a small effect on c̃(2)

C ,ad and c̃(2)
P,ad . In particular, the lines of the right contour

plot in Figure 4.4 are almost parallel to the line through the origin with slope one, illustrating

the negligible influence of X̄ (1)
T alone on c̃(2)

P,ad . For increasing interim placebo effect X̄ (1)
P the al-

location ratio of the placebo group c̃(2)
P,ad also increases, while at the same time c̃(2)

C ,ad decreases.

If instead the observed sample mean of the placebo group is small, the second-stage size of

the placebo group will also be small and the respective control group size will be large, each

relative to the second-stage test group size. For the interim estimator of the control treatment

effect X̄ (1)
C the dependencies are simply the other way around. That means for increasing X̄ (1)

C

we have smaller c̃(2)
P,ad and larger c̃(2)

C ,ad , whereas we have larger c̃(2)
P,ad and smaller c̃(2)

C ,ad when

X̄ (1)
C is decreasing. Consequently, the smallest c̃(2)

P,ad are observed for large X̄ (1)
T − X̄ (1)

P and small

X̄ (1)
T − X̄ (1)

C , while, in contrast, for small X̄ (1)
T − X̄ (1)

P and large X̄ (1)
T − X̄ (1)

C we will have a small

control group. Practically speaking this means that the optimal adaptive type design decreases

the number of patients allocated to the control (placebo) when the performance of the con-

trol (placebo) at the interim analysis compared with the other two treatments is poorer than

expected. It should be noted that such a behaviour is also desirable from an ethical viewpoint.

Let us now investigate the performance of the adaptive type design in comparison to the

optimal single-stage design by considering the quotients of the adaptive divided by the cor-

responding optimal single-stage sample sizes. Figure 4.5 shows these quotients for different

combinations of interim sample mean differences together with the 95% prediction ellipsoid

for the vector of observed mean differences. First of all, a quite similar pattern as in Figure 4.4

can be observed, i.e. the sample sizes of the adaptive type design mainly depend on X̄ (1)
C and
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Figure 4.5: Sample sizes of the adaptive type design divided by those of the optimal single-stage
design depending on the observed treatment differences X̄ (1)

T − X̄ (1)
P and X̄ (1)

T − X̄ (1)
C

of the first half of patients. The ellipsoid represents the respective 95% prediction
area for the vector of observed mean differences (X̄ (1)

T − X̄ (1)
P , X̄ (1)

T − X̄ (1)
C )′.
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X̄ (1)
P , while X̄ (1)

T alone has only a minor influence. Moreover, for plausible values of X̄ (1)
T − X̄ (1)

P

and X̄ (1)
T − X̄ (1)

C the overall sample size reductions compared with the optimal fixed design are

only moderate. Only when X̄ (1)
T − X̄ (1)

P is small and X̄ (1)
T − X̄ (1)

C is large, an overall sample size

reduction of up to 30% is possible. In these situations also the test and the control group size

can be reduced to up to 70% and 50% of the respective optimal single-stage sample size, re-

spectively. Among the three treatment groups the sample size of the placebo group reacts most

sensitive to different values of X̄ (1)
T − X̄ (1)

P and X̄ (1)
T − X̄ (1)

C . For plausible interim sample mean

differences the placebo group size is reduced or increased by up to 50%, which means that the

second-stage placebo group size is either completely reduced to zero or doubled. Increasing

the sample size of the placebo group might not be desirable in many cases, however, in these

situations we benefit from greater reductions of the overall sample size.
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Last but not least we are interested in the expected performance of the proposed adaptive

type design, or in other words: What is the expected additional benefit of the second optimi-

sation of the between-group sample size allocation? Let us therefore assume that the derived

single-stage design is indeed the true optimal design, i.e. the assumed treatment differences

θT P = 0.4 and θTC = 0 are the true treatment differences. By means of simulation with 1 million

iterations we determined the expected sample sizes of the adaptive type design for the test,

control and placebo group as 406.1, 394.2 and 111.1, so that the expected overall sample size is

given as 911.4. Compared with the sample sizes of optimal fixed design this means we have an

average reduction of the test, control and placebo group of around 2%, 2% and 10%, while the

overall sample size is reduced on average by about 3%. In absolute terms this is an overall ex-

pected reduction of about 29 patients, with an average decrease of almost 8, 8 and 13 patients

in the test, control and placebo group, respectively.

4.3 Summary

The group sequential testing procedure proposed in Chapter 3 turned out to improve the op-

timal single-stage design from Chapter 2 by means of minimising the required overall sample

size and, in particular, the number of patients allocated to placebo. However, one major point

of criticism of the group sequential design is the potential change in patient population once

the placebo arm is dropped. Moreover, often uncertainty exists in the planning stage of three-

arm trials regarding the true treatment effects, so that the determined sample sizes might be

either too small or too large. As a natural extension of the group sequential testing procedure,

the adaptive design proposed in this chapter provides a simple way of dealing with the two

mentioned issues. Through the ability of data-dependent sample size changes at the interim

analysis, the second-stage placebo group size could be reduced to a certain threshold once

H (s)
0,T P has been rejected, instead of completely closing the placebo arm. In doing so, potential

heterogeneities across the stages due to a change in patient population might be decreased and

can be assessed at the final analysis by comparing the independent results from the two stages.

Re-calculating the sample sizes of the second stage based on the observed interim data could

also help to overcome uncertainties concerning the treatment effects.

Due to its similarity to the proposed group sequential testing procedure, all findings from

the previous chapter can be carried over to the adaptive testing procedure, such as, for exam-

ple, formulas for the overall power. Thus, an obvious approach is to start with determining

an appropriate group sequential design, which serves as a basis for the adaptive design. The

derived formulas for the conditional power can then be used at the interim analysis to decide

on whether to stop the trial for futility or to continue with preplanned or re-calculated sample

sizes. As there often is a large amount of information regarding the control and placebo treat-

ment in three-arm non-inferiority trials, we also determined formulas for the corresponding

Bayesian predictive power. In particular, it turned out that an illustration such as Figure 4.2
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with the rejection regions of the final stage and the respective joint posterior predictive dis-

tribution of the second-stage differences provides a comprehensive overview on the interim

knowledge about the further course of the study. Together with the corresponding predictive

probabilities such a figure can aid the decision-making process during trial conduct.

Note that the above-mentioned figure and the derived formulas for the conditional and the

predictive power can also be used for the group sequential testing procedure derived in the

previous chapter. Therefore, simply replace the weights w (1)
T P , w (2)

T P and w (1)
TC , w (2)

TC in formulas

(4.15), (4.17), (4.19) and (4.20) by the square roots of the corresponding stage-wise information

levels
√

I
(1)

T P ,
√

I
(2)

T P −I
(1)

T P and
√

I
(1)

TC ,
√

I
(2)

TC −I
(1)

TC , respectively. In the same way these cal-

culations can also be used to monitor three-arm non-inferiority trials with fixed sample sizes.

At the end of this chapter we furthermore investigated a special type of adaptive design with-

out early rejection, where the interim analysis is only used to optimise the sample size alloca-

tion between the three treatment groups in order to further minimise the overall sample size.

The proposed adaptive type design has the same overall power as the optimal single-stage de-

sign and at the same time always results in a smaller overall sample size. The average sample

size reductions compared with the fixed design turned out to be relatively low, although in

certain situations the overall sample size can be reduced by up to 30%. Moreover, when the ob-

served interim sample mean difference between test and placebo is larger than expected, the

placebo group size is considerably reduced to almost 50% of the optimal single-stage placebo

group size. Interestingly, the resulting allocation rule is also reasonable from an ethical view-

point, because it reduces the sample size of the control or placebo group when it apparently

performs poorer than expected.

Finally, let us give a short comment on the assumption of a known common variance σ2.

Usually the sample sizes in three-arm non-inferiority trials are relatively large, so that the pro-

posed adaptive design as well as the group sequential testing procedure will also be (at least

approximately) valid for the unknown variance setting. However, exact type I error control is

often required in confirmatory clinical trials. An exact solution for the unknown variance set-

ting that can be easily applied to the proposed adaptive testing procedure was proposed by

Lehmacher and Wassmer (1999), who considered the final test statistic

Z∗
2 =

w1Φ
−1(1−p1)+w2Φ

−1(1−p2)
√

w 2
1 +w 2

2

,

where p1 and p2 are the independent p-values of the first and the second-stage, respectively,

and Φ
−1(·) denotes the inverse cumulative distribution function of the N (0,1)-distribution.

Note that this also provides another solution for group sequential testing with an unknown

variance. When assessing the conditional power of such a design at the interim analysis, a sen-

sible substitute for σ2 must be found, introducing further uncertainty. With respect to Bayesian

calculations it can be shown that the respective conjugate prior for a normal distribution with

unknown variance is the normal inverse-gamma distribution.
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In this thesis we dealt with the design and the analysis of three-arm ‘gold standard’ non-infe-

riority trials for the case of a normally distributed endpoint. Although the superiority compar-

ison between the active comparator and placebo might be of interest in some situations, we

restricted to the two main objectives in such trials, namely the direct proof of efficacy for the

experimental treatment (H (s)
0,T P ) and the non-inferiority comparison between the test and the

control treatment (H (n)
0,TC ).

We started by investigating the hierarchical fixed sample size design proposed by Koch and

Röhmel (2004), beginning with the test versus placebo superiority comparison and proceeding

to the non-inferiority test once H (s)
0,T P has been rejected. In addition to exact and approximate

formulas for the overall power to reject both H (s)
0,T P and H (n)

0,TC , we determined optimal sam-

ple size allocations that minimise the overall sample size. Interestingly, it turned out that the

placebo group size is also considerably reduced under the optimal allocation, which clearly

is desirable from an ethical point of view as this makes the trial more acceptable for patients.

The fact that the power of the superiority comparison between the experimental treatment and

placebo is very high under the optimal allocation, brought us to the idea of utilising this high

power by means of implementing a group sequential design.

We then proposed a general group sequential three-arm non-inferiority design that allows

dropping the placebo arm once the efficacy of the test treatment has been demonstrated. We

derived corresponding formulas for the overall power that can be used for sample size plan-

ning. Moreover, formulas for the expected placebo group size and the expected overall sample

size were determined. It turned out that the implementation of group sequential methodology

in three-arm non-inferiority trials can lead to considerable sample size savings, especially in

the placebo group. This makes the trial even more acceptable from an ethical point of view.

Besides the full group sequential designs where both hypotheses are tested group sequentially,

we also investigated partial group sequential designs that test only H (s)
0,T P in a group sequen-

tial manner. Such designs lead to the largest reductions in the expected placebo group size

and might be of interest in situations when an early study termination with rejection of both

H (s)
0,T P and H (n)

0,TC is not desirable, e.g. in some situations it might be required to collect more

safety data on the experimental treatment. Further investigations showed that it is reasonable

to adapt the optimal single-stage allocations also in the group sequential setting. Moreover,
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the derivation of approximately optimal group sequential boundaries showed that it seems ad-

visable to choose more aggressive rejection boundaries for the proof of efficacy than for the

non-inferiority comparison as this leads to designs with favourable properties. With respect to

practical application the discussed error spending designs are preferable to the classical group

sequential tests because they turned out to have comparable performances and provide the

additional flexibility to adequately handle deviations from the preplanned stage-wise sample

size allocation.

As it has been mentioned earlier, when applying the proposed group sequential testing pro-

cedure it is vital to restrict the knowledge about dropping the placebo arm. Otherwise the

patient population might change and as a result the whole study might be called into ques-

tion. The proposed adaptive testing procedure, which can be seen as a natural extension of

the group sequential designs, offers another possibility of dealing with this issue. Instead of

completely closing the placebo arm, it could be reduced to a certain threshold, giving us also a

better chance to detect potential heterogeneities across the different stages. By means of sam-

ple size re-calculations at an interim analysis, the adaptive designs also enable us to account for

uncertainties concerning the treatment effects, which often exist in three-arm non-inferiority

trials. Besides sample size re-assessment the derived conditional power formulas are also suit-

able for decision-making regarding stopping for futility.

The determined Bayesian predictive power formulas represent another monitoring tool that

is useful especially in three-arm non-inferiority trials, because in the planning stage of such tri-

als we already have a large amount of information about the control treatment and the placebo

effect. However, similar to Dallow and Fina (2011) our investigations showed that using the pre-

dictive power for sample size re-calculation is not advisable as this generally leads to too large

sample sizes. Nevertheless, a certain graphical representation turned out to provide a com-

prehensive overview on the interim knowledge about the further course of the study, namely

the contour plot of the joint posterior predictive distribution of the second-stage sample mean

differences ∆X̄ (2)
T −∆X̄ (2)

P and ∆X̄ (2)
T −∆X̄ (2)

C superimposed on the respective rejection regions

of the final analysis. Note that the proposed conditional and predictive power formulas as well

as the above-mentioned figure can also be used for monitoring trials with a group sequential

or even a fixed sample size design.

Finally, we proposed an optimal adaptive design without early rejection where the interim

analysis is used solely for updating the between-group allocation ratio in a way that the overall

sample size is minimised. With the same overall power as the optimal fixed design, the pro-

posed adaptive design always results in smaller overall sample sizes. Although the expected

sample size savings are only marginal, in certain situations the sample sizes, especially that of

the placebo group, can be reduced considerably. Moreover, interestingly, the optimal adaptive

design behaves in an ethical manner, as it reduces the sample size of the control or the placebo

group when the interim observations suggest that the respective treatment performs poorer

than expected.
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As we have seen, there are a number of benefits associated with the application of group

sequential and adaptive methodology in three-arm non-inferiority trials. In particular, they

can help to minimise the number of patients treated with placebo and to better exploit the re-

sources. Besides an ethical advantage, this could also reduce patient concerns to participate

in the trial and as a result enhance the recruitment process of the study. Moreover, the deter-

mined conditional and predictive power formulas are useful monitoring tools that can aid the

decision-making process during trial conduct.

However, one should always bear in mind that the implementation of interim analyses is as-

sociated with additional operational efforts. In order to preserve the integrity and validity of the

trial, it is vital to set up an Independent Data Monitoring Committee (IDMC). Furthermore, the

amount of information revealed by the IDMC during trial conduct should be reduced to a min-

imum, so that the blinding is guaranteed. Allowing sample size changes at the interim analysis

will introduce additional efforts, especially when the allocation between the treatment groups

is altered. A centralised online randomisation could be a simple and effective way of dealing

with this issue. Irrespective of whether the placebo arm was dropped or the placebo group

size was reduced at the interim analysis, it is generally advisable to assess potential differences

between the independent stages (CHMP, 2007b). As it has been mentioned earlier, the error

spending designs can be used for dealing with the problem of overrunning patients. Here, it

is important that the “results including and excluding the overrunning patients should be pre-

sented and differences between these two analyses should be discussed.” (CHMP, 2007b).

Let us conclude with an outlook on potential subjects of future research based on the meth-

ods presented in this thesis. First of all, it seems natural to implement the control versus

placebo superiority comparison (H (s)
0,C P ) in the proposed group sequential and adaptive testing

procedure, because the proof of efficacy for the control treatment might be mandatory under

some circumstances. In doing so, one could make use of the fact that H (s)
0,C P and H (n)

0,TC can-

not be true at the same time if H (s)
0,T P is false (Koch and Röhmel, 2004). Dropping the placebo

arm then seems reasonable only if both the test and the control treatment are demonstrated to

be superior to placebo. Thus, the presented formulas for the overall power and the expected

sample sizes, as well as those for the conditional and the predictive power have to be adjusted.

Implementing futility boundaries might also be of interest and would require only minor

changes of the presented formulas. In this regard, it would be worth investigating the loss in

overall power introduced by applying futility boundaries.

As we only dealt with normally distributed data, transferring the proposed methods to other

distributions could also be the subject of future research. Especially the case of Poisson dis-

tributed outcomes would be of interest as e.g. in trials for the treatment of migraine the primary

endpoint often is the number of attacks, and in this medical indication the three-arm design

is furthermore recommended by the health authorities (CHMP, 2007a). In a similar fashion as

Stucke and Kieser (2012) a general approach based on maximum likelihood estimators could

be derived, covering a wide variety of distributions.
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TABLES

Table A.1: Exact (first row) and approximate (second row) overall sample sizes of the optimal
design to achieve an overall power of 80% with significance level α = 0.025 and as-
suming µT =µC .

∆ni /(µC −µP ) ǫ=σ/(µC −µP )
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1/6
75 292 654 1161 1812 2609 3550 4636
73 290 652 1159 1810 2607 3548 4634

1/5
53 206 459 815 1271 1830 2490 3251
51 204 457 813 1269 1828 2488 3249

1/4
36 135 300 531 828 1192 1621 2117
34 133 298 529 826 1190 1619 2115

1/3
22 80 176 310 483 695 945 1234
20 77 174 308 481 693 943 1232

1/2
12 40 87 153 237 340 462 603
10 38 85 151 235 338 460 601
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Table A.2: Comparison of the optimal allocations for achieving 80% overall power to reject
H (s)

0,T P ∪H (n)
0,TC and H (s)

0,T P ∪H (n)
0,TC ∪H (s)

0,C P with α= 0.025 and µT =µC .

H (s)
0,T P ∪H (n)

0,TC H (s)
0,T P ∪H (n)

0,TC ∪H (s)
0,C P

∆ni /(µC −µP ) cC cP 1−βT P 1−βTC cC cP 1−βT P 1−βTC 1−βC P

0.1 1.00 0.02 99.9% 80.1% 1.00 0.02 99.9% 80.1% 99.9%
0.2 1.00 0.06 99.7% 80.2% 1.00 0.06 99.8% 80.2% 99.8%
0.3 1.00 0.12 99.3% 80.4% 1.01 0.14 99.6% 80.5% 99.6%
0.4 0.99 0.20 98.5% 80.8% 1.02 0.23 99.1% 81.0% 99.1%
0.5 0.98 0.30 97.4% 81.4% 1.04 0.35 98.4% 81.8% 98.4%

Table A.3: Optimal allocation ratios and spending parameters of ρ-family designs minimising
ASN or ASN +Nmax with corresponding operating characteristics for overall power
1−β, α= 0.025, θTC = 0, ∆ni = θC P

2 and K stages.

1−β K cC cP ρT P ρTC
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

min(ASN ) 0.80 2 0.97 0.40 0.363 1.141 109.7 79.8 84.0
3 0.97 0.46 0.365 1.327 113.2 72.9 79.4
4 0.96 0.49 0.392 1.481 114.8 69.7 77.2
5 0.96 0.51 0.423 1.584 115.7 67.9 76.0

0.90 2 0.98 0.34 0.283 0.885 110.8 75.0 77.3
3 0.98 0.40 0.235 0.908 116.5 67.2 71.4
4 0.97 0.44 0.245 0.993 119.2 63.5 68.8
5 0.97 0.47 0.264 1.067 120.7 61.5 67.3

min(ASN +Nmax ) 0.80 2 0.98 0.34 1.065 2.355 102.9 72.3 86.2
3 0.98 0.35 1.301 3.032 103.1 65.5 82.5
4 0.97 0.35 1.458 3.378 103.3 62.7 80.5
5 0.97 0.35 1.565 3.600 103.4 61.1 79.3

0.90 2 0.98 0.30 0.874 1.956 103.5 67.3 79.7
3 0.98 0.30 1.008 2.456 104.0 58.5 75.2
4 0.98 0.31 1.137 2.770 104.1 55.3 73.0
5 0.98 0.31 1.224 2.953 104.3 53.6 71.6



119

Table A.4: Optimal allocation ratios and spending parameters of γ-family designs minimising
ASN or ASN +Nmax with corresponding operating characteristics for overall power
1−β, α= 0.025, θTC = 0, ∆ni = θC P

2 and K stages.

1−β K cC cP γT P γTC
Nmax
N f i x

ASnP
nP, f i x

ASN
N f i x

min(ASN ) 0.80 2 0.97 0.40 2.503 −0.373 109.7 79.8 84.0
3 0.97 0.46 2.844 −0.802 113.4 72.8 79.4
4 0.96 0.50 3.012 −1.053 115.5 69.6 77.3
5 0.96 0.52 3.010 −1.228 116.6 67.6 76.0

0.90 2 0.98 0.34 3.063 0.332 110.8 75.0 77.3
3 0.98 0.40 3.968 0.279 116.7 67.1 71.4
4 0.97 0.44 4.401 0.150 120.0 63.2 68.7
5 0.97 0.47 4.643 0.064 122.2 60.9 67.2

min(ASN +Nmax ) 0.80 2 0.98 0.34 −0.176 −2.830 102.9 72.3 86.2
3 0.98 0.35 −0.708 −3.755 103.1 65.3 82.5
4 0.98 0.35 −1.050 −4.258 103.1 62.5 80.6
5 0.98 0.35 −1.269 −4.553 103.2 60.9 79.5

0.90 2 0.98 0.30 0.365 −2.115 103.5 67.3 79.7
3 0.98 0.31 0.013 −2.962 103.9 58.6 75.2
4 0.98 0.31 −0.287 −3.423 103.9 55.2 73.0
5 0.98 0.31 −0.485 −3.712 104.0 53.4 71.8





APPENDIX B

R FUNCTIONS

B.1 Overview

Chapter 2: Three-Arm Non-Inferiority Trials

• Exact and approximate overall power of the fixed sample size design

→ ThreeArmSingleStagePower()

• Required sample sizes with predefined cC ,cP to achieve a certain overall power

→ ThreeArmSingleStageDesign()

• Optimal sample sizes to achieve a certain overall power

→ ThreeArmSingleStageOptDesign()

Chapter 3: Group Sequential Three-Arm Non-Inferiority Designs

• Boundaries of Wang Tsiatis type designs with equal stage-sizes

→ WangTsiatis()

• Boundaries of Kim DeMets and Hwang Shih DeCani error spending designs with equal

stage-sizes

→ KD(), HSD(), ErrorSpending()

• Overall power of the group sequential testing procedure

→ ThreeArmGroupSeqPower()

• Required sample sizes with predefined cC , cP to achieve a certain overall power

→ ThreeArmGroupSeqDesign()

• Expected sample size of the placebo group and overall

→ ThreeArmGroupSeqASN()
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Chapter 4: Extension to Adaptive Designs

• Conditional power to reject either H (n)
0,TC alone or both null hypotheses at the final stage

given the interim data

→ ThreeArmAdaptiveCP()

• Required second-stage sample sizes with predefined c̃(2)
C , c̃(2)

P to achieve a certain condi-

tional power

→ ThreeArmAdaptiveReCalcCP()

• Optimal second-stage sample sizes to achieve a certain conditional power

→ ThreeArmAdaptiveOptReCalcCP()

• Predictive power to reject either H (n)
0,TC alone or both null hypotheses at the final stage

given the interim data

→ ThreeArmAdaptivePP()
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B.2 Source Code

################################################################################

############## #############

############## Calculation of the overall power in a single stage #############

############## three -arm non -inferiority trial #############

############## #############

################################################################################

# #

# Author: Patrick Schlömer #

# Last update: 13/May/2014 #

# #

################################################################################

# #

# REQUIRED PACKAGES: - mnormt #

# ----------------- - mvtnorm #

# #

# REQUIRED FUNCTIONS: NONE #

# ------------------ #

# #

################################################################################

# #

# THIS FUNCTION: #

# -------------- #

# Calculates the power to reject H_0,TP^(s), the separate powers to reject #

# H_0,TC^(n) and H_0,CP^(s) and the overall power to reject all null #

# hypotheses. #

# #

################################################################################

ThreeArmSingleStagePower <- function(nT ,nC ,nP ,thetaTP ,thetaTC ,sigma ,DeltaNI ,

alpha ,method="approx",H0CP=FALSE) {

################################################################################

# #

# INPUT -PARAMETERS: #

# ----------------- #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# nT | float | >0 | Sample size of the test group #

# | | | #

# nC | float | >0 | Sample size of the control group #

# | | | #

# nP | float | >0 | Sample size of the placebo group #

# | | | #

# thetaTP | float | | True treatment difference between #

# | | | test and placebo group #

# | | | #

# thetaTC | float | | True treatment difference between #

# | | | test and control group #

# | | | #

# sigma | float | >0 | Common standard deviation #
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# | | | #

# DeltaNI | float | >0 | Non -inferiority margin #

# | | | #

# alpha | float | >0 & <1 | Separate significance level #

# | | | #

# method | string | "approx", | Defines the method to calculate the #

# | | "exact" | overall power: either approximative #

# | | | by means of the normal distribution #

# | | | (DEFAULT) exact with the t-distrib. #

# | | | #

# H0CP | logical | TRUE , | Defines if H_0,CP^(s) also has to be #

# | | FALSE | rejected (TRUE) or not (FALSE), which #

# | | | is the default value. Including #

# | | | H_0,CP^(s) is only allowed for #

# | | | method =" approx ". #

# | | | #

#----------------------------------------------------------------------------- #

# #

# OUTPUT -PARAMETERS: #

# ------------------ #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# PowerTP | float | >0 & <1 | Separate power to reject H_0,TP^(s) #

# | | | #

# PowerTC | float | >0 & <1 | Separate power to reject H_0,TC^(n) #

# | | | #

# PowerCP | float | >0 & <1 | Separate power to reject H_0,CP^(s) #

# | | | #

# Power | float | >0 & <1 | Overall power of the procedure #

# | | | #

################################################################################

if (method =="exact") {

# exact power using t-distribution

# critical value

crit <- qt(p=1-alpha ,df=max(round(nT+nC+nP -3) ,1))

# separate power to reject H_0,TP^(s)

PowerTP <- 1-pt(q=crit ,df=max(round(nT+nC+nP -3) ,1),

ncp=thetaTP/sigma*sqrt(nT*nP/(nT+nP)))

# separate power to reject H_0,TC^(n)

PowerTC <- 1-pt(q=crit ,df=max(round(nT+nC+nP -3) ,1),

ncp=( thetaTC+DeltaNI)/sigma*sqrt(nT*nC/(nT+nC)))

# separate power to reject H_0,CP^(s)

PowerCP <- 1-pt(q=crit ,df=max(round(nT+nC+nP -3) ,1),

ncp=(thetaTP -thetaTC)/sigma*sqrt(nC*nP/(nC+nP)))

# mean vector of test statistics

theta <- c(thetaTP/sigma*sqrt(nT*nP/(nT+nP)),

(thetaTC+DeltaNI)/sigma*sqrt(nT*nC/(nT+nC)))
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# covariance matrix of test statistics

rho <- sqrt(nC*nP/((nT+nC)*(nT+nP)))

cov <- matrix(data=c(1,rho ,rho ,1),nrow=2,ncol =2)

# overall power to reject both null hypotheses

Power <- sadmvt(lower=c(-Inf ,-Inf),upper=c(-crit ,-crit),mean=-theta ,S=cov ,

df=max(round(nT+nC+nP -3) ,1))[1]

} else if (method =="approx") {

# approximative power using normal distribution

# critical value

crit <- qnorm(p=1-alpha)

# separate power to reject H_0,TP^(s)

PowerTP <- pnorm(q=thetaTP/sigma*sqrt(nT*nP/(nT+nP))-crit)

# separate power to reject H_0,TC^(s)

PowerTC <- pnorm(q=( thetaTC+DeltaNI)/sigma*sqrt(nT*nC/(nT+nC))-crit)

# separate power to reject H_0,CP^(s)

PowerCP <- pnorm(q=(thetaTP -thetaTC)/sigma*sqrt(nC*nP/(nC+nP))-crit)

if (H0CP==FALSE) {

# without H_0,CP^(s)

# mean vector of test statistics

theta <- c(thetaTP/sigma*sqrt(nT*nP/(nT+nP)),

(thetaTC+DeltaNI)/sigma*sqrt(nT*nC/(nT+nC)))

# covariance matrix of test statistics

rho <- sqrt(nC*nP/((nT+nC)*(nT+nP)))

cov <- matrix(data=c(1,rho ,rho ,1),nrow=2,ncol =2)

# overall power to reject both nullhypotheses

Power <- sadmvn(lower=rep(-Inf ,2),upper=theta -rep(crit ,2),mean=rep(0,2),

varcov=cov)[1]

} else if (H0CP==TRUE) {

# with H_0,CP^(s)

# mean vector of test statistics

theta <- c(thetaTP/sigma*sqrt(nT*nP/(nT+nP)),

(thetaTC+DeltaNI)/sigma*sqrt(nT*nC/(nT+nC)),

(thetaTP -thetaTC)/sigma*sqrt(nC*nP/(nC+nP)))

# covariance matrix of test statistics

rhoTPTC <- sqrt(nC*nP/((nT+nC)*(nT+nP)))

rhoTPCP <- sqrt(nT*nC/((nT+nP)*(nC+nP)))

rhoTCCP <- -sqrt(nT*nP/((nT+nC)*(nC+nP)))

cov <- matrix(c(1,rhoTPTC ,rhoTPCP ,rhoTPTC ,1,rhoTCCP ,rhoTPCP ,rhoTCCP ,1) ,3,3)

# overall power to reject both nullhypotheses

Power <- pmvnorm(lower=rep(-Inf ,3),upper=theta -rep(crit ,3),mean=rep(0,3),

sigma=cov ,algorithm=TVPACK(abseps =1e-6))[1]
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}

}

return(list(PowerTP=PowerTP ,PowerTC=PowerTC ,PowerCP=PowerCP ,Power=Power))

}

################################################################################

# EXAMPLE: #

# -------- #

if (FALSE){ #

ThreeArmSingleStagePower (nT=544,nC=544,nP=136, thetaTP =0.4, thetaTC =0, #

sigma=1,DeltaNI =0.2, alpha =0.025) #

# $PowerTP #

# [1] 0.9865279 #

# #

# $PowerTC #

# [1] 0.9096366 #

# #

# $PowerCP #

# [1] 0.9865279 #

# #

# $Power #

# [1] 0.9000693 #

} #

################################################################################
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################################################################################

############## #############

############## Calculation of the required sample sizes for a #############

############## single stage three -arm non -inferiority trial #############

############## #############

################################################################################

# #

# Author: Patrick Schlömer #

# Last update: 13/May/2014 #

# #

################################################################################

# #

# REQUIRED PACKAGES: - mnormt #

# ----------------- - mvtnorm #

# #

# REQUIRED FUNCTIONS: - ThreeArmSingleStagePower () #

# ------------------ #

# #

################################################################################

# #

# THIS FUNCTION: #

# -------------- #

# Calculates the required sample sizes to obtain a specific overall power #

# 1-beta with prespecified allocation ratios cC=nC/nP and cP=nP/nT. #

# #

################################################################################

ThreeArmSingleStageDesign <- function(thetaTP ,thetaTC ,sigma ,DeltaNI ,alpha ,beta ,

cC ,cP ,method="approx",H0CP=FALSE) {

################################################################################

# #

# INPUT -PARAMETERS: #

# ----------------- #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# thetaTP | float | | True treatment difference between #

# | | | test and placebo group #

# | | | #

# thetaTC | float | | True treatment difference between #

# | | | test and control group #

# | | | #

# sigma | float | >0 | Common standard deviation #

# | | | #

# DeltaNI | float | >0 | Non -inferiority margin #

# | | | #

# alpha | float | >0 & <1 | Separate significance level #

# | | | #

# beta | float | >0 & <1 | Targeted type II error rate #

# | | | #

# cC | float | >0 | Relative size of the placebo group #

# | | | (cC=nC/nT) #
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# | | | #

# cP | float | >0 | Relative size of the control group #

# | | | (cP=nP/nT) #

# | | | #

# method | string | "approx", | Defines the method to calculate the #

# | | "exact" | overall power: either approximative #

# | | | by means of the normal distribution #

# | | | (DEFAULT) exact with the t-distrib. #

# | | | #

# H0CP | logical | TRUE , | Defines if H_0,CP^(s) also has be #

# | | FALSE | rejected (TRUE) or not (FALSE), which #

# | | | is the default value. Including #

# | | | H_0,CP^(s) is only allowed for #

# | | | method =" approx ". #

# | | | #

#----------------------------------------------------------------------------- #

# #

# OUTPUT -PARAMETERS: #

# ------------------ #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# nT | float | >0 | Sample size of the test group #

# | | | #

# nC | float | >0 | Sample size of the control group #

# | | | #

# nP | float | >0 | Sample size of the placebo group #

# | | | #

# N | float | >0 | Overall sample size #

# | | | #

# | | | #

# PowerTP | float | >0 & <1 | Separate power to reject H_0,TP^(s) #

# | | | #

# PowerTC | float | >0 & <1 | Separate power to reject H_0,TC^(n) #

# | | | #

# PowerCP | float | >0 & <1 | Separate power to reject H_0,CP^(s) #

# | | | #

# Power | float | >0 & <1 | Overall power of the procedure #

# | | | #

################################################################################

# new environment

func.env <- new.env()

# root finding function

solvenT <- function(nT) {

assign("nT",nT ,envir=func.env)

assign("nC",cC*nT,envir=func.env)

assign("nP",cP*nT,envir=func.env)

assign("Powers",ThreeArmSingleStagePower (nT=nT ,nC=get("nC",envir=func.env),

nP=get("nP",envir=func.env),

thetaTP=thetaTP , thetaTC=thetaTC ,

sigma=sigma ,DeltaNI=DeltaNI ,

alpha=alpha ,
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method=method ,

H0CP=H0CP),envir=func.env)

return(get("Powers",envir=func.env)$Power -(1-beta))

}

# determine required sample sizes & power

uniroot(solvenT ,lower=1,upper =1e6)

nT <- get("nT",envir=func.env)

nC <- get("nC",envir=func.env)

nP <- get("nP",envir=func.env)

Powers <- get("Powers",envir=func.env)

return(list(nT=nT ,nC=nC,nP=nP ,N=nT+nC+nP ,PowerTP=Powers$PowerTP ,

PowerTC=Powers$PowerTC ,PowerCP=Powers$PowerCP ,Power=Powers$Power))

}

################################################################################

# EXAMPLE: #

# -------- #

if (FALSE){ #

ThreeArmSingleStageDesign (thetaTP =0.4, thetaTC =0,sigma=1,DeltaNI =0.2, #

alpha =0.025 , beta =0.1,cC=1,cP =0.25) #

# $nT #

# [1] 543.8802 #

# #

# $nC #

# [1] 543.8802 #

# #

# $nP #

# [1] 135.97 #

# #

# $N #

# [1] 1223.73 #

# #

# $PowerTP #

# [1] 0.986512 #

# #

# $PowerTC #

# [1] 0.9095774 #

# #

# $PowerCP #

# [1] 0.986512 #

# #

# $Power #

# [1] 0.9 #

} #

################################################################################
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################################################################################

############## #############

############## Calculation of the optimal sample sizes for a #############

############## single stage three -arm non -inferiority trial #############

############## #############

################################################################################

# #

# Author: Patrick Schlömer #

# Last update: 13/May/2014 #

# #

################################################################################

# #

# REQUIRED PACKAGES: - mnormt #

# ----------------- - mvtnorm #

# #

# REQUIRED FUNCTIONS: - ThreeArmSingleStagePower () #

# ------------------ - ThreeArmSingleStageDesign () #

# #

################################################################################

# #

# THIS FUNCTION: #

# -------------- #

# Calculates the optimal sample sizes to obtain a specific overall power #

# 1-beta that minimise the overall sample size. #

# #

################################################################################

ThreeArmSingleStageOptDesign <- function(thetaTP ,thetaTC ,sigma ,DeltaNI ,alpha ,

beta ,H0CP=FALSE) {

################################################################################

# #

# INPUT -PARAMETERS: #

# ----------------- #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# thetaTP | float | | True treatment difference between #

# | | | test and placebo group #

# | | | #

# thetaTC | float | | True treatment difference between #

# | | | test and control group #

# | | | #

# sigma | float | >0 | Common standard deviation #

# | | | #

# DeltaNI | float | >0 | Non -inferiority margin #

# | | | #

# alpha | float | >0 & <1 | Separate significance level #

# | | | #

# beta | float | >0 & <1 | Targeted type II error rate #

# | | | #

# H0CP | logical | TRUE , | Defines if H_0,CP^(s) also has be #

# | | FALSE | rejected (TRUE) or not (FALSE), which #
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# | | | is the default value. #

# | | | #

#----------------------------------------------------------------------------- #

# #

# OUTPUT -PARAMETERS: #

# ------------------ #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# nT | float | >0 | Sample size of the test group #

# | | | #

# nC | float | >0 | Sample size of the control group #

# | | | #

# nP | float | >0 | Sample size of the placebo group #

# | | | #

# N | float | >0 | Overall sample size #

# | | | #

# PowerTP | float | >0 & <1 | Separate power to reject H_0,TP^(s) #

# | | | #

# PowerTC | float | >0 & <1 | Separate power to reject H_0,TC^(n) #

# | | | #

# PowerCP | float | >0 & <1 | Separate power to reject H_0,CP^(s) #

# | | | #

# Power | float | >0 & <1 | Overall power of the procedure #

# | | | #

################################################################################

# optimisation function

optAlloc <- function(c) {

cC <- c[1]

cP <- c[2]

optDesign <<- ThreeArmSingleStageDesign (thetaTP=thetaTP ,thetaTC=thetaTC ,

sigma=sigma ,DeltaNI=DeltaNI ,

alpha=alpha ,beta=beta ,cC=cC ,cP=cP ,

H0CP=H0CP)

return(optDesign$N)

}

# find optimal design

optim(c(0.5 ,0.5),optAlloc ,lower=rep (0.01 ,2),upper=c(3,3),method="L-BFGS -B")

return(optDesign)

}

################################################################################

# EXAMPLE: #

# -------- #

if (FALSE) { #

ThreeArmSingleStageOptDesign (thetaTP =0.4, thetaTC =0, sigma=1,DeltaNI =0.2, #

alpha =0.025 , beta =0.1) #

# $nT #

# [1] 546.2521 #

# #
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# $nC #

# [1] 533.5604 #

# #

# $nP #

# [1] 142.6462 #

# #

# $N #

# [1] 1222.459 #

# #

# $PowerTP #

# [1] 0.989109 #

# #

# $PowerTC #

# [1] 0.9075568 #

# #

# $PowerCP #

# [1] 0.9888057 #

# #

# $Power #

# [1] 0.9 #

} #

################################################################################
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################################################################################

############## #############

############## Calculation of the group sequential boundaries #############

############## according to Wang & Tsiatis (1987) #############

############## #############

################################################################################

# #

# Author: Patrick Schlömer #

# Last update: 13/May/2014 #

# #

################################################################################

# #

# REQUIRED PACKAGES: - mnormt #

# ----------------- #

# #

# REQUIRED FUNCTIONS: NONE #

# ------------------ #

# #

################################################################################

# #

# THIS FUNCTION: #

# -------------- #

# Calculates the group sequential rejection boundaries for the Delta -class #

# proposed by Wang & Tsiatis (1987). Equal stage sizes are assumed. #

# #

################################################################################

WangTsiatis <- function(K,alpha ,Delta){

################################################################################

# #

# INPUT -PARAMETERS: #

# ----------------- #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# K | float | >1 | Number of stages #

# | | | #

# alpha | float | >0 & <1 | Significance level #

# | | | #

# Delta | float | | Parameter defining the shape of the #

# | | | rejection boundaries. Delta=-Inf #

# | | | returns the boundary values of the #

# | | | common single stage design. #

# | | | #

#----------------------------------------------------------------------------- #

# #

# OUTPUT -PARAMETERS: #

# ------------------ #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#
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# | | | #

# bounds | Kx1 vector | | Stage -wise rejection boundaries #

# | (floats) | | #

# | | | #

################################################################################

# new environment

func.env <- new.env()

if (Delta==-Inf) {

# Delta==-Inf returns the boundaries of the common single stage design

assign("bounds",c(rep(Inf ,K-1),qnorm(1-alpha)),envir=func.env)

} else {

# covariance matrix of the test statistics (equal stage sizes!)

cov <- sapply (1:K,function(j)

sapply (1:K,function(i,j) sqrt(min(i,j)/max(i,j)), j=j))

# funtion to solve for bWT

solvebWT <- function(bWT){

assign("bounds" ,(1:K/K)^(Delta -1/2)*bWT ,envir=func.env)

typeIerror <- 1-sadmvn(lower=rep(-Inf ,K),upper=get("bounds",envir=func.env),

mean=rep(0,K),varcov=cov)[1]

return(typeIerror -alpha)

}

# determine boundaries

uniroot(solvebWT ,lower =1e-10, upper =1e10)

}

return(get("bounds",envir=func.env))

}

################################################################################

# EXAMPLE: #

# -------- #

if (FALSE){ #

WangTsiatis(K=3,alpha =0.025 , Delta =0) #

# [1] 3.471086 2.454429 2.004033 #

} #

################################################################################
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################################################################################

############## #############

############## Calculation of the error spending function proposed #############

############## by Kim & DeMets (1987) #############

############## #############

################################################################################

# #

# Author: Patrick Schlömer #

# Last update: 13/May/2014 #

# #

################################################################################

# #

# REQUIRED PACKAGES: - mnormt #

# ----------------- #

# #

# REQUIRED FUNCTIONS: NONE #

# ------------------ #

# #

################################################################################

# #

# THIS FUNCTION: #

# -------------- #

# Calculates the error spending function proposed by Kim & DeMets (1987) with #

# shape parameter rho. #

# #

################################################################################

KD <- function(t,spendpar ,alpha){

################################################################################

# #

# INPUT -PARAMETERS: #

# ----------------- #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# t | float | | Time parameter #

# | | | #

# spendpar | float | >0 | Parameter defining the shape of the #

# | | | spending function #

# | | | #

# alpha | float | >0 & <1 | Significance level #

# | | | #

#----------------------------------------------------------------------------- #

# #

# OUTPUT -PARAMETERS: #

# ------------------ #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# f | float | >=0 | Cumulative type I error spent at #
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# | | <=alpha | time t #

# | | | #

################################################################################

if (t<=0) {

f <- 0

} else if (t>0 && t<1) {

f <- alpha*t^spendpar

} else {

f <- alpha

}

return(f)

}

################################################################################

# EXAMPLE: #

# -------- #

if (FALSE){ #

KD(t=0.5, spendpar=1,alpha =0.025) #

# [1] 0.0125 #

} #

################################################################################
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################################################################################

############## #############

############## Calculation of the error spending function proposed #############

############## by Hwang , Shih & DeCani (1990) #############

############## #############

################################################################################

# #

# Author: Patrick Schlömer #

# Last update: 13/May/2014 #

# #

################################################################################

# #

# REQUIRED PACKAGES: - mnormt #

# ----------------- #

# #

# REQUIRED FUNCTIONS: NONE #

# ------------------ #

# #

################################################################################

# #

# THIS FUNCTION: #

# -------------- #

# Calculates the error spending function proposed by Hwang , Shih & DeCani #

# (1990) with shape parameter gamma. #

# #

################################################################################

HSD <- function(t,spendpar ,alpha){

################################################################################

# #

# INPUT -PARAMETERS: #

# ----------------- #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# t | float | | Time parameter #

# | | | #

# spendpar | float | >0 | Parameter defining the shape of the #

# | | | spending function #

# | | | #

# alpha | float | >0 & <1 | Significance level #

# | | | #

#----------------------------------------------------------------------------- #

# #

# OUTPUT -PARAMETERS: #

# ------------------ #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# f | float | >=0 | Cumulative type I error spent at #



138 APPENDIX B R FUNCTIONS

# | | <=alpha | time t #

# | | | #

################################################################################

if (t<=0) {

f <- 0

} else if (t>0 && t<1) {

if (spendpar ==0){

f <- alpha*t

} else {

f <- alpha*(1-exp(-spendpar*t))/(1-exp(-spendpar))

}

} else {

f <- alpha

}

return(f)

}

################################################################################

# EXAMPLE: #

# -------- #

if (FALSE){ #

HSD(t=0.5, spendpar=1,alpha =0.025) #

# [1] 0.01556148 #

} #

################################################################################
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################################################################################

############## #############

############## Calculation of the group sequential boundaries for #############

############## error spending designs #############

############## #############

################################################################################

# #

# Author: Patrick Schlömer #

# Last update: 13/May/2014 #

# #

################################################################################

# #

# REQUIRED PACKAGES: - mnormt #

# ----------------- #

# #

# REQUIRED FUNCTIONS: - KD() #

# ------------------ - HSD() #

# #

################################################################################

# #

# THIS FUNCTION: #

# -------------- #

# Calculates the group sequential rejection boundaries for the rho - and gamma - #

# class of error spending designs proposed by Kim & DeMets (1987) and Hwang , #

# Shih & DeCani (1990) , respectively. Equal stage sizes are assumed. #

# #

################################################################################

ErrorSpending <- function(K,alpha ,spendfunc ,spendpar){

################################################################################

# #

# INPUT -PARAMETERS: #

# ----------------- #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# K | float | >1 | Number of stages #

# | | | #

# alpha | float | >0 & <1 | Significance level #

# | | | #

# spendfunc | function | KD , HSD | Defines the family of error spending #

# | | | functions (KD = Kim & DeMets , HSD = #

# | | | Hwang , Shih & DeCani) #

# | | | #

# spendpar | float | KD: >0 | Parameter defining the shape of the #

# | | | spending function. spendpar=Inf for #

# | | | KD designs and spendpar=-Inf for HSD #

# | | | designs return the boundary values #

# | | | of the common single stage design , #

# | | | i.e. Inf at stages 1,...,K-1 and #

# | | | qnorm(1-alpha) at stage K. #

# | | | #
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#----------------------------------------------------------------------------- #

# #

# OUTPUT -PARAMETERS: #

# ------------------ #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# bounds | Kx1 vector | | Stage -wise rejection boundaries #

# | (floats) | | #

# | | | #

################################################################################

# new environment

func.env <- new.env()

if (as.character(substitute(spendfunc))=="KD" & spendpar ==Inf) {

# for KD designs with spendpar ==Inf , return single stage design

assign("bounds",c(rep(Inf ,K-1),qnorm(1-alpha)),envir=func.env)

} else if (as.character(substitute(spendfunc))=="HSD" & spendpar==-Inf) {

# for HSD designs with spendpar==-Inf , return single stage design

assign("bounds",c(rep(Inf ,K-1),qnorm(1-alpha)),envir=func.env)

} else {

# covariance matrix of the test statistics (equal stage sizes!)

cov <- sapply (1:K,function(j)

sapply (1:K,function(i,j)

sqrt(min(i,j)/max(i,j)),j=j))

# calculate boundaries

calcbounds <- function(k){

if (k==1){

pk <- spendfunc (1/K,spendpar=spendpar ,alpha=alpha)

assign("bounds",qnorm(1-pk),envir=func.env)

} else {

solvebk <- function(bk){

k <- length(get("bounds",envir=func.env))+1

pk <- spendfunc(k/K,spendpar=spendpar ,alpha=alpha)-

spendfunc ((k-1)/K,spendpar=spendpar ,alpha=alpha)

prob <- sadmvn(lower=c(rep(-Inf ,k-1),bk),

upper=c(get("bounds",envir=func.env),Inf),

mean=rep(0,k),varcov=cov [1:k,1:k])[1]

return(prob -pk)

}

assign("bounds",

c(get("bounds",envir=func.env),

uniroot(solvebk ,lower =1e-10, upper =1e10)$root),envir=func.env)

}

}

sapply (1:K,calcbounds)
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}

return(get("bounds",envir=func.env))

}

################################################################################

# EXAMPLE: #

# -------- #

if (FALSE){ #

ErrorSpending (K=3,alpha =0.025 , spendfunc=KD ,spendpar =1) #

# [1] 2.393980 2.293769 2.199902 #

} #

################################################################################



142 APPENDIX B R FUNCTIONS

################################################################################

############## #############

############## Calculation of the overall power of a group #############

############## sequential three -arm non -inferiority design #############

############## #############

################################################################################

# #

# Author: Patrick Schlömer #

# Last update: 13/May/2014 #

# #

################################################################################

# #

# REQUIRED PACKAGES: - mnormt #

# ----------------- #

# #

# REQUIRED FUNCTIONS: NONE #

# ------------------ #

# #

################################################################################

# #

# THIS FUNCTION: #

# -------------- #

# Calculates the power to reject H_0,TP^(s) and the overall power to reject #

# both null hypotheses. #

# #

################################################################################

ThreeArmGroupSeqPower <- function(K,nT ,nC ,nP ,thetaTP ,thetaTC ,sigma ,DeltaNI ,

bTP ,bTC) {

################################################################################

# #

# INPUT -PARAMETERS: #

# ----------------- #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# K | integer | >1 | Number of stages #

# | | | #

# nT | Kx1 vector | >0 | Cumulative sample sizes of the test #

# | (floats) | | group #

# | | | #

# nC | Kx1 vector | >0 | Cumulative sample sizes of the #

# | (floats) | | control group #

# | | | #

# nP | Kx1 vector | >0 | Cumulative sample sizes of the #

# | (floats) | | placebo group #

# | | | #

# thetaTP | float | | True treatment difference between #

# | | | test and placebo group #

# | | | #

# thetaTC | float | | True treatment difference between #

# | | | test and control group #
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# | | | #

# sigma | float | >0 | Common standard deviation #

# | | | #

# DeltaNI | float | >0 | Non -inferiority margin #

# | | | #

# bTP | Kx1 vector | | Stage -wise rejection boundaries for #

# | (floats) | | H_0,TP^(s) #

# | | | #

# bTC | Kx1 vector | | Stage -wise rejection boundaries for #

# | (floats) | | H_0,TC^(n) #

# | | | #

#----------------------------------------------------------------------------- #

# #

# OUTPUT -PARAMETERS: #

# ------------------ #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# PowerTP | float | >0 & <1 | Power to reject H_0,TP^(s) #

# | | | #

# Power | float | >0 & <1 | Overall power of the procedure #

# | | | #

################################################################################

# fisher informations of the test statistics:

I_TP <- (sigma ^2*(1/nT+1/nP))^-1

I_TC <- (sigma ^2*(1/nT+1/nC))^-1

# covariance matrix of the vector (Z_TP^(1) ,..,Z_TP^(K),Z_TC^(1) ,..,Z_TC^(K))’

covTP <- sapply (1:K,function(j)

sapply (1:K,function(i,j)

sqrt(I_TP[min(i,j)]/I_TP[max(i,j)]),j=j))

covTC <- sapply (1:K,function(j)

sapply (1:K,function(i,j)

sqrt(I_TC[min(i,j)]/I_TC[max(i,j)]),j=j))

covTCP <- sapply (1:K,function(j)

sapply (1:K,function(i,j)

sigma ^2/nT[max(i,j)]*sqrt(I_TP[i]*I_TC[j]),j=j))

cov <- rbind(cbind(covTP ,covTCP),cbind(t(covTCP),covTC))

# power to reject H_0,TP^(s)

PowerTP <- 1-sadmvn(lower=rep(-Inf ,K),upper=bTP -thetaTP*sqrt(I_TP),

mean=rep(0,K),varcov=covTP)[1]

# probabilities P(A_k), 1<=k<=K (A_k = H_0,TP^(s) rejected at stage k and

# H_0,TC^(n) is not rejected at stages k,...,K)

CalcProbAk <- function(k){

if (k==1){

# k=1

ProbAk <- sadmvn(lower=c(bTP[1]- thetaTP*sqrt(I_TP[1]) ,rep(-Inf ,K)),

upper=c(Inf ,bTC[1:K]-(thetaTC+DeltaNI)*sqrt(I_TC[1:K])),

mean=rep(0,K+1),

varcov=cov[-(2:K) ,-(2:K)])[1]

} else {
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# 2<=k<=K

lower <- rep(-Inf ,K+1)

lower[k] <- bTP[k]-thetaTP*sqrt(I_TP[k])

upper <- c(bTP [1:(k-1)]-thetaTP*sqrt(I_TP[1:(k-1)]),Inf ,

bTC[k:K]-(thetaTC+DeltaNI)*sqrt(I_TC[k:K]))

varcov <- cov[-((k+1):(K+k-1)) ,-((k+1):(K+k-1))]

ProbAk <- sadmvn(lower=lower ,upper=upper ,mean=rep(0,K+1),varcov=varcov)[1]

}

return(ProbAk)

}

# overall power

Power <- PowerTP - sum(sapply (1:K,CalcProbAk))

return(list(PowerTP=PowerTP ,Power=Power))

}

################################################################################

# EXAMPLE: #

# -------- #

if (FALSE){ #

ThreeArmGroupSeqPower(K=3,nT=cumsum(rep (188 ,3)),nC=cumsum(rep (188 ,3)), #

nP=cumsum(rep(47,3)),thetaTP =0.4, thetaTC =0,sigma=1, #

DeltaNI =0.2,bTP=c(2.741 ,2.305 ,2.083) , #

bTC=c(3.471 ,2.454 ,2.004)) #

# $PowerTP #

# [1] 0.9861338 #

# #

# $Power #

# [1] 0.9047309 #

} #

################################################################################
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################################################################################

############## #############

############## Calculation of the required sample size for a group #############

############## sequential three -arm non -inferiority design #############

############## #############

################################################################################

# #

# Author: Patrick Schlömer #

# Last update: 13/May/2014 #

# #

################################################################################

# #

# REQUIRED PACKAGES: - mnormt #

# ----------------- #

# #

# REQUIRED FUNCTIONS: - WangTsiatis () #

# ------------------ - KD() #

# - HSD() #

# - ErrorSpending () #

# - ThreeArmGroupSeqPower () #

# #

################################################################################

# #

# THIS FUNCTION: #

# -------------- #

# Calculates the required sample sizes to obtain a specific overall power #

# 1-beta with prespecified allocation ratios cC=nC/nP and cP=nP/nT. Equal #

# stage sizes are assumed , i.e. nD^(k)=k/K*nD^(K) for D=T,C,P. #

# #

################################################################################

ThreeArmGroupSeqDesign <- function(K,thetaTP ,thetaTC ,sigma ,DeltaNI ,alpha ,beta ,

cC,cP ,type ,parTP ,parTC) {

################################################################################

# #

# INPUT -PARAMETERS: #

# ----------------- #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# K | integer | >1 | Number of stages #

# | | | #

# thetaTP | float | | True treatment difference between #

# | | | test and placebo group #

# | | | #

# thetaTC | float | | True treatment difference between #

# | | | test and control group #

# | | | #

# sigma | float | >0 | Common standard deviation #

# | | | #

# DeltaNI | float | >0 | Non -inferiority margin #

# | | | #
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# alpha | float | >0 & <1 | Separate significance level #

# | | | #

# beta | float | >0 & <1 | Targeted type II error rate #

# | | | #

# cC | float | >0 | Relative size of the placebo group #

# | | | (cC=nC/nT) #

# | | | #

# cP | float | >0 | Relative size of the control group #

# | | | (cP=nP/nT) #

# | | | #

# type | string | "WT","KD",| Defines the type of the rejection #

# | | "HSD" | boundaries that are calulated ("WT"= #

# | | | Wang Tsiatis , "KD"= Kim & DeMets #

# | | | error spending , "HSD"= Hwang , Shih & #

# | | | DeCani error spending) #

# | | | #

# parTP | float | type="KD":| Parameter that defines the rejection #

# | | >0 | boundaries for H_0,TP^(s) #

# | | | #

# parTC | float | type="KD":| Parameter that defines the rejection #

# | | >0 | boundaries for H_0,TC^(n) #

# | | | #

#----------------------------------------------------------------------------- #

# #

# OUTPUT -PARAMETERS: #

# ------------------ #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# bTP | Kx1 vector | | Stage -wise rejection boundaries for #

# | (floats) | | H_0,TP^(s) #

# | | | #

# bTC | Kx1 vector | | Stage -wise rejection boundaries for #

# | (floats) | | H_0,TC^(n) #

# | | | #

# nT | Kx1 vector | >0 | Cumulative sample sizes of the test #

# | (floats) | | group #

# | | | #

# nC | Kx1 vector | >0 | Cumulative sample sizes of the #

# | (floats) | | control group #

# | | | #

# nP | Kx1 vector | >0 | Cumulative sample sizes of the #

# | (floats) | | placebo group #

# | | | #

# N | Kx1 vector | >0 | Cumulative overall sample sizes #

# | (floats) | | #

# | | | #

# PowerTP | float | >0 & <1 | Power to reject H_0,TP^(s) #

# | | | #

# Power | float | >0 & <1 | Overall power of the procedure #

# | | | #

################################################################################

# new environment
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func.env <- new.env()

# rejection boundaries

if (type=="WT") {

bTP <- WangTsiatis(K=K,alpha=alpha ,Delta=parTP)

bTC <- WangTsiatis(K=K,alpha=alpha ,Delta=parTC)

} else if (type=="KD") {

bTP <- ErrorSpending (K=K,alpha=alpha ,spendfunc=KD ,spendpar=parTP)

bTC <- ErrorSpending (K=K,alpha=alpha ,spendfunc=KD ,spendpar=parTC)

} else if (type=="HSD") {

bTP <- ErrorSpending (K=K,alpha=alpha ,spendfunc=HSD ,spendpar=parTP)

bTC <- ErrorSpending (K=K,alpha=alpha ,spendfunc=HSD ,spendpar=parTC)

}

# root finding function

solvenTK <- function(nTK) {

assign("nT" ,1:K/K*nTK ,envir=func.env)

assign("nC",cC*1:K/K*nTK ,envir=func.env)

assign("nP",cP*1:K/K*nTK ,envir=func.env)

assign("Powers",ThreeArmGroupSeqPower(K=K,nT=get("nT",envir=func.env),

nC=get("nC",envir=func.env),

nP=get("nP",envir=func.env),

thetaTP=thetaTP ,thetaTC=thetaTC ,

sigma=sigma ,DeltaNI=DeltaNI ,

bTP=bTP ,bTC=bTC),envir=func.env)

return(get("Powers",envir=func.env)$Power -(1-beta))

}

# determine required sample sizes & power

uniroot(solvenTK ,lower=1,upper =1e6)

nT <- get("nT",envir=func.env)

nC <- get("nC",envir=func.env)

nP <- get("nP",envir=func.env)

Powers <- get("Powers",envir=func.env)

return(list(bTP=bTP ,bTC=bTC ,nT=nT ,nC=nC ,nP=nP ,N=nT+nC+nP ,

PowerTP=Powers$PowerTP ,Power=Powers$Power))

}

################################################################################

# EXAMPLE: #

# -------- #

if (FALSE){ #

ThreeArmGroupSeqDesign (K=3,thetaTP =0.4, thetaTC =0,sigma=1,DeltaNI =0.2, #

alpha =0.025 , beta =0.1,cC=1,cP=0.25, type="WT",parTP =0.25, #

parTC =0) #

# $bTP #

# [1] 2.741137 2.305013 2.082814 #

# #

# $bTC #

# [1] 3.471086 2.454429 2.004033 #

# #

# $nT #

# [1] 185.2007 370.4013 555.6020 #
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# #

# $nC #

# [1] 185.2007 370.4013 555.6020 #

# #

# $nP #

# [1] 46.30016 92.60033 138.90049 #

# #

# $N #

# [1] 416.7015 833.4029 1250.1044 #

# #

# $PowerTP #

# [1] 0.9849846 #

# #

# $Power #

# [1] 0.9 #

} #

################################################################################
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################################################################################

############## #############

############## Calculation of the expected sample size for a group #############

############## sequential three -arm non -inferiority design #############

############## #############

################################################################################

# #

# Author: Patrick Schlömer #

# Last update: 13/May/2014 #

# #

################################################################################

# #

# REQUIRED PACKAGES: - mnormt #

# ----------------- #

# #

# REQUIRED FUNCTIONS: NONE #

# ------------------ #

# #

################################################################################

# #

# THIS FUNCTION: #

# -------------- #

# Calculates the expected sample sizes of a group sequential three -arm #

# non -inferiority design at a specific alternative thetaTP and thetaTC. #

# #

################################################################################

ThreeArmGroupSeqASN <- function(K,nT ,nC ,nP ,thetaTP ,thetaTC ,sigma ,DeltaNI ,

bTP ,bTC) {

################################################################################

# #

# INPUT -PARAMETERS: #

# ----------------- #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# K | integer | >1 | Number of stages #

# | | | #

# nT | Kx1 vector | >0 | Cumulative sample sizes of the test #

# | (floats) | | group #

# | | | #

# nC | Kx1 vector | >0 | Cumulative sample sizes of the #

# | (floats) | | control group #

# | | | #

# nP | Kx1 vector | >0 | Cumulative sample sizes of the #

# | (floats) | | placebo group #

# | | | #

# thetaTP | float | | Treatment difference between test and #

# | | | placebo for which ASN is calculated #

# | | | #

# thetaTC | float | | Treatment difference between test and #

# | | | control for which ASN is calculated #
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# | | | #

# sigma | float | >0 | Common standard deviation #

# | | | #

# DeltaNI | float | >0 | Non -inferiority margin #

# | | | #

# bTP | Kx1 vector | | Stage -wise rejection boundaries for #

# | (floats) | | H_0,TP^(s) #

# | | | #

# bTC | Kx1 vector | | Stage -wise rejection boundaries for #

# | (floats) | | H_0,TC^(n) #

# | | | #

#----------------------------------------------------------------------------- #

# #

# OUTPUT -PARAMETERS: #

# ------------------ #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# ASnP | float | >0 | Expected placebo group size #

# | | | #

# ASN | float | >0 | Expected overall sample size #

# | | | #

################################################################################

# fisher informations of the test statistics:

I_TP <- (sigma ^2*(1/nT+1/nP))^-1

I_TC <- (sigma ^2*(1/nT+1/nC))^-1

# covariance matrix of the vector (Z_TP^(1) ,..,Z_TP^(K),Z_TC^(1) ,..,Z_TC^(K))’

covTP <- sapply (1:K,function(j)

sapply (1:K,function(i,j)

sqrt(I_TP[min(i,j)]/I_TP[max(i,j)]),j=j))

covTC <- sapply (1:K,function(j)

sapply (1:K,function(i,j)

sqrt(I_TC[min(i,j)]/I_TC[max(i,j)]),j=j))

covTCP <- sapply (1:K,function(j)

sapply (1:K,function(i,j)

sigma ^2/nT[max(i,j)]*sqrt(I_TP[i]*I_TC[j]),j=j))

cov <- rbind(cbind(covTP ,covTCP),cbind(t(covTCP),covTC))

# probabilities P(E_k1 ,k), 2<=k<=K, 0<=k1 <=k-1

CalcProbEk1k <- function(k1 ,k){

if (k1==0){

# no rejection of H_0,TP^(s)

ProbEk1k <- sadmvn(lower=rep(-Inf ,k-1),

upper=bTP [1:(k-1)]-thetaTP*sqrt(I_TP[1:(k-1)]),

mean=rep(0,k-1),varcov=covTP[-(k:K) ,-(k:K)])[1]

} else if (k1==1) {

# rejection of H_0,TP^(s) at the first stage

ProbEk1k <- sadmvn(lower=c(bTP[1]- thetaTP*sqrt(I_TP[1]),rep(-Inf ,k-1)),

upper=c(Inf ,bTC [1:(k-1)]-

(thetaTC+DeltaNI)*sqrt(I_TC[1:(k-1)])),

mean=rep(0,k),

varcov=cov[-c(2:K,(K+k):(2*K)),-c(2:K,(K+k):(2*K))])[1]
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} else {

# rejection of H_0,TP^(s) at stage k1 , 2<=k1 <=k-1

lower <- rep(-Inf ,k)

lower[k1] <- bTP[k1]-thetaTP*sqrt(I_TP[k1])

upper <- c(bTP [1:(k1 -1)]-thetaTP*sqrt(I_TP[1:(k1 -1)]),Inf ,

bTC[k1:(k-1)]-(thetaTC+DeltaNI)*sqrt(I_TC[k1:(k-1)]))

varcov <- cov[-c((k1+1):(K+k1 -1) ,(K+k):(2*K)),

-c((k1+1):(K+k1 -1) ,(K+k):(2*K))]

ProbEk1k <- sadmvn(lower=lower ,upper=upper ,mean=rep(0,k),varcov=varcov)[1]

}

return(ProbEk1k)

}

# probabilities P(E_k), 2<=k<=K

CalcProbEk <- function(k){

sum(sapply (0:(k-1),CalcProbEk1k ,k=k))

}

# average sample number of the test and control group

ASnT <- nT[1] + sum((nT[2:K]-nT[1:(K-1)])*sapply (2:K,CalcProbEk))

ASnC <- nC[1] + sum((nC[2:K]-nC[1:(K-1)])*sapply (2:K,CalcProbEk))

# average sample number of placebo group

ASnP <- nP[1] + sum((nP[2:K]-nP[1:(K-1)])*sapply (2:K,CalcProbEk1k ,k1=0))

# overall average sample number

ASN <- ASnT + ASnC + ASnP

return(list(ASnT=ASnT ,ASnC=ASnC ,ASnP=ASnP ,ASN=ASN))

}

################################################################################

# EXAMPLE: #

# -------- #

if (FALSE){ #

ThreeArmGroupSeqASN (K=3,nT=cumsum(rep (188 ,3)),nC=cumsum(rep (188 ,3)), #

nP=cumsum(rep(47,3)),thetaTP =0.4, thetaTC =0,sigma=1, #

DeltaNI =0.2,bTP=c(2.741 ,2.305 ,2.083) , #

bTC=c(3.471 ,2.454 ,2.004)) #

# $ASnT #

# [1] 450.0797 #

# #

# $ASnC #

# [1] 450.0797 #

# #

# $ASnP #

# [1] 81.42504 #

# #

# $ASN #

# [1] 981.5844 #

} #

################################################################################
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################################################################################

############## #############

############## Calculation of the conditional power for a #############

############## two -stage adaptive group sequential three -arm #############

############## non -inferiority design #############

############## #############

################################################################################

# #

# Author: Patrick Schlömer #

# Last update: 13/May/2014 #

# #

################################################################################

# #

# REQUIRED PACKAGES: - mnormt #

# ----------------- #

# #

# REQUIRED FUNCTIONS: NONE #

# ------------------ #

# #

################################################################################

# #

# THIS FUNCTION: #

# -------------- #

# Calculates the conditional power given the interim data to reject either #

# both null hypotheses or only H_0,TC^(n) at the final analysis. The latter #

# might e.g. be of interest , if H_0,TP^(s) has already been rejected at the #

# interim analysis. #

# #

################################################################################

ThreeArmAdaptiveCP <- function(nT,nC ,nP ,thetaTP ,thetaTC ,sigma ,DeltaNI ,diffTP ,

diffTC ,bTP ,bTC ,wTP ,wTC ,H0TP) {

################################################################################

# #

# INPUT -PARAMETERS: #

# ----------------- #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# nT | 2x1 vector | >0 | Stage -wise sample sizes of the test #

# | (floats) | | group #

# | | | #

# nC | 2x1 vector | >0 | Stage -wise sample sizes of the #

# | (floats) | | control group #

# | | | #

# nP | 2x1 vector | >0 | Stage -wise sample sizes of the #

# | (floats) | | placebo group #

# | | | #

# thetaTP | float | | Treatment difference between test and #

# | | | placebo for which CP is calculated #

# | | | #

# thetaTC | float | | Treatment difference between test and #
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# | | | control for which CP is calculated #

# | | | #

# sigma | float | >0 | Common standard deviation #

# | | | #

# DeltaNI | float | >0 | Non -inferiority margin #

# | | | #

# diffTP | float | | Observed treatment difference between #

# | | | test and placebo at interim #

# | | | #

# diffTC | float | | Observed treatment difference between #

# | | | test and control at interim #

# | | | #

# bTP | 2x1 vector | | Stage -wise rejection boundaries for #

# | (floats) | | H_0,TP^(s) #

# | | | #

# bTC | 2x1 vector | | Stage -wise rejection boundaries for #

# | (floats) | | H_0,TC^(n) #

# | | | #

# wTP | 2x1 vector | >0 | Weights used for combining the test #

# | (floats) | | statistics for H_0,TP^(s) #

# | | | #

# wTC | 2x1 vector | >0 | Weights used for combining the test #

# | (floats) | | statistics for H_0,TC^(n) #

# | | | #

# H0TP | boolean | 0 or 1 | Defines if the conditional power to #

# | | | reject both null hypotheses (H0TP =1) #

# | | | or only H_0,TC^(n) (H0TP =0) is #

# | | | calculated. #

# | | | #

#----------------------------------------------------------------------------- #

# #

# OUTPUT -PARAMETERS: #

# ------------------ #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# CP | float | >0 & <1 | Conditional power #

# | | | #

################################################################################

if (H0TP ==0) {

# conditional power to reject H_0,TC^(n)

# test statistic of the first stage

ZTC1 <- (( diffTC+DeltaNI)/sigma)*sqrt((nT[1]*nC[1])/(nT[1]+nC[1]))

CP <- pnorm (( thetaTC+DeltaNI)/sigma*sqrt((nT[2]*nC[2])/(nT[2]+nC[2]))

+wTC[1]/wTC[2]*ZTC1 -sqrt(wTC [1]^2+ wTC [2]^2)/wTC[2]*bTC [2])

} else if (H0TP ==1) {

# conditional power to reject both H_0,TP^(s) and H_0,TC^(n)

# test statistics of the first stage

ZTP1 <- (diffTP/sigma)*sqrt((nT[1]*nP[1])/(nT[1]+nP[1]))
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ZTC1 <- (( diffTC+DeltaNI)/sigma)*sqrt((nT[1]*nC[1])/(nT[1]+nC[1]))

# variance -covariance matrix for test statistics of second stage

rho <- sqrt((nC[2]*nP[2])/((nT[2]+nC[2])*(nT[2]+nP[2])))

varcov <- matrix(c(1,rho ,rho ,1),ncol =2)

# upper limits for integration

upper <- c(thetaTP/sigma*sqrt((nT[2]*nP[2])/(nT[2]+nP [2]))

+wTP[1]/wTP[2]*ZTP1 -sqrt(wTP [1]^2+ wTP [2]^2)/wTP[2]*bTP[2],

(thetaTC+DeltaNI)/sigma*sqrt((nT[2]*nC[2])/(nT[2]+nC [2]))

+wTC[1]/wTC[2]*ZTC1 -sqrt(wTC [1]^2+ wTC [2]^2)/wTC[2]*bTC [2])

# conditional power

CP <- sadmvn(lower=rep(-Inf ,2),upper=upper ,mean=rep(0,2),varcov=varcov)[1]

}

return(CP)

}

################################################################################

# EXAMPLE: #

# -------- #

if (FALSE){ #

ThreeArmAdaptiveCP (nT=rep (275 ,2),nC=rep (275 ,2),nP=rep(69,2),thetaTP =0.3, #

thetaTC =-0.02, sigma=1,DeltaNI =0.2, diffTP =0.3, diffTC =-0.02, #

bTP=c(2.423862 ,2.038216) ,bTC=c(2.796511 ,1.977432) , #

wTP=c(1,1),wTC=c(1,1),H0TP =1) #

# [1] 0.8769092 #

} #

################################################################################
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################################################################################

############## #############

############## Re -calculation of the second stage sample sizes for #############

############## a two -stage adaptive group sequential three -arm #############

############## non -inferiority design based on conditional power #############

############## #############

################################################################################

# #

# Author: Patrick Schlömer #

# Last update: 13/May/2014 #

# #

################################################################################

# #

# REQUIRED PACKAGES: - mnormt #

# ----------------- #

# #

# REQUIRED FUNCTIONS: - ThreeArmAdaptiveCP () #

# ------------------ #

# #

################################################################################

# #

# THIS FUNCTION: #

# -------------- #

# Calculates the second stage sample sizes required to obtain a specific #

# conditional power based on the interim data. If the targeted conditional #

# power cannot be obtained with the defined maximum overall sample size of the #

# second stage (maxN2), the obtained conditional power for the respective #

# maximum sample sizes is calculated. #

# #

################################################################################

ThreeArmAdaptiveReCalcCP <- function(nT1 ,nC1 ,nP1 ,cC2 ,cP2 ,Power ,maxN2 ,thetaTP ,

thetaTC ,sigma ,DeltaNI ,diffTP ,diffTC ,bTP ,

bTC ,wTP ,wTC ,H0TP) {

################################################################################

# #

# INPUT -PARAMETERS: #

# ----------------- #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# nT1 | float | >0 | First stage sample size of the test #

# | | | group #

# | | | #

# nC1 | float | >0 | First stage sample size of the #

# | | | control group #

# | | | #

# nP1 | float | >0 | First stage sample size of the #

# | | | placebo group #

# | | | #

# cC2 | float | >0 | Relative control group size of the #

# | | | second stage (cC2=nC2/nT2) #
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# | | | #

# cP2 | float | >0 | Relative placebo group size of the #

# | | | second stage (cP2=nP2/nT2) #

# | | | #

# Power | float | >0 & <1 | Targeted conditional power #

# | | | #

# maxN2 | float | >0 | Maximum overall sample size of the #

# | | | second stage #

# | | | #

# thetaTP | float | | Treatment difference between test and #

# | | | placebo for which CP is calculated #

# | | | #

# thetaTC | float | | Treatment difference between test and #

# | | | control for which CP is calculated #

# | | | #

# sigma | float | >0 | Common standard deviation #

# | | | #

# DeltaNI | float | >0 | Non -inferiority margin #

# | | | #

# diffTP | float | | Observed treatment difference between #

# | | | test and placebo at interim #

# | | | #

# diffTC | float | | Observed treatment difference between #

# | | | test and control at interim #

# | | | #

# bTP | 2x1 vector | | Stage -wise rejection boundaries for #

# | (floats) | | H_0,TP^(s) #

# | | | #

# bTC | 2x1 vector | | Stage -wise rejection boundaries for #

# | (floats) | | H_0,TC^(n) #

# | | | #

# wTP | 2x1 vector | >0 | Weights used for combining the test #

# | (floats) | | statistics for H_0,TP^(s) #

# | | | #

# wTC | 2x1 vector | >0 | Weights used for combining the test #

# | (floats) | | statistics for H_0,TC^(n) #

# | | | #

# H0TP | boolean | 0 or 1 | Defines if the conditional power to #

# | | | reject both null hypotheses (H0TP =1) #

# | | | or only H_0,TC^(n) (H0TP =0) is #

# | | | calculated. #

# | | | #

#----------------------------------------------------------------------------- #

# #

# OUTPUT -PARAMETERS: #

# ------------------ #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# nT2 | float | >0 | Second stage sample size of the test #

# | | | group to achieve conditional power CP #

# | | | #

# nC2 | float | >0 | Second stage sample size of the #

# | | | control group to achieve conditional #
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# | | | power CP #

# | | | #

# nP2 | float | >0 | Second stage sample size of the #

# | | | placebo group to achieve conditional #

# | | | power CP (only given for H0TP=1!) #

# | | | #

# CondPower | float | >0 | Actual conditional power #

# | | | #

################################################################################

if (H0TP ==0) {

# sample size recalculation based on conditional power to reject only

# H_0,TC^(n) => placebo group size is irrelevant

cP2 <- 0

# test statistic of the first stage

ZTC1 <- (( diffTC+DeltaNI)/sigma)*sqrt((nT1*nC1)/(nT1+nC1))

# analytical solution for required second stage sample sizes is available

nT2 <- min(maxN2/(1+ cC2+cP2),

sigma ^2/(thetaTC+DeltaNI)^2*(1+ cC2)/cC2*

(sqrt(wTC [1]^2+ wTC [2]^2)/wTC[2]*bTC [2]+ qnorm(Power)

-wTC[1]/wTC[2]*ZTC1)^2)

nC2 <- cC2*nT2

CondPower <- ThreeArmAdaptiveCP (nT=c(nT1 ,nT2),nC=c(nC1 ,nC2),nP=c(nP1 ,nP2),

thetaTP=thetaTP ,thetaTC=thetaTC ,

sigma=sigma ,DeltaNI=DeltaNI ,diffTP=diffTP ,

diffTC=diffTC ,bTP=bTP ,bTC=bTC ,wTP=wTP ,

wTC=wTC ,H0TP=H0TP)

return(list(nT2=nT2 ,nC2=nC2 ,CondPower=CondPower))

} else if (H0TP ==1) {

# sample size recalculation based on conditional power to reject both

# null hypotheses

# test statistics of the first stage

ZTP1 <- (diffTP/sigma)*sqrt((nT1*nP1)/(nT1+nP1))

ZTC1 <- (( diffTC+DeltaNI)/sigma)*sqrt((nT1*nC1)/(nT1+nC1))

# new environment

func.env <- new.env()

# root finding function

solvenT2 <- function(nT2) {

assign("nC2",cC2*nT2 ,envir=func.env)

assign("nP2",cP2*nT2 ,envir=func.env)

assign("CondPower",ThreeArmAdaptiveCP (nT=c(nT1 ,nT2),

nC=c(nC1 ,get("nC2",envir=func.env)),

nP=c(nP1 ,get("nP2",envir=func.env)),

thetaTP=thetaTP ,thetaTC=thetaTC ,

sigma=sigma ,DeltaNI=DeltaNI ,

diffTP=diffTP ,diffTC=diffTC ,

bTP=bTP ,bTC=bTC ,wTP=wTP ,

wTC=wTC ,H0TP=H0TP),envir=func.env)

return(get("CondPower",envir=func.env)-Power)



158 APPENDIX B R FUNCTIONS

}

# maximum overall sample size maxN2 provides conditional power less than

# the targeted conditional power

if (solvenT2(maxN2/(1+cC2+cP2)) < 0) {

nT2 <- maxN2/(1+cC2+cP2)

nC2 <- cC2*nT2

nP2 <- cP2*nT2

CondPower <- ThreeArmAdaptiveCP (nT=c(nT1 ,nT2),nC=c(nC1 ,nC2),nP=c(nP1 ,nP2),

thetaTP=thetaTP ,thetaTC=thetaTC ,

sigma=sigma ,DeltaNI=DeltaNI ,diffTP=diffTP ,

diffTC=diffTC ,bTP=bTP ,bTC=bTC ,wTP=wTP ,

wTC=wTC ,H0TP=H0TP)

} else {

# determine required sample sizes & conditional power

nT2 <- uniroot(solvenT2 ,lower =1e-10, upper=maxN2/(1+cC2+cP2))$root

nC2 <- get("nC2",envir=func.env)

nP2 <- get("nP2",envir=func.env)

CondPower <- get("CondPower",envir=func.env)

}

return(list(nT2=nT2 ,nC2=nC2 ,nP2=nP2 ,CondPower=CondPower))

}

}

################################################################################

# EXAMPLE: #

# -------- #

if (FALSE){ #

ThreeArmAdaptiveReCalcCP (nT1=275,nC1=275,nP1=69,cC2=1,cP2=0.5, Power =0.9, #

maxN2 =500, thetaTP =0.4, thetaTC =0,sigma=1,DeltaNI =0.2, #

diffTP =0.2, diffTC=0,bTP=c(2.423862 ,2.038216) , #

bTC=c(2.796511 ,1.977432) ,wTP=c(1,1),wTC=c(1,1),H0TP =1)#

# $nT2 #

# [1] 185.4249 #

# #

# $nC2 #

# [1] 185.4249 #

# #

# $nP2 #

# [1] 92.71244 #

# #

# $CondPower #

# [1] 0.9 #

} #

################################################################################
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################################################################################

############## #############

############## Re -calculation of the optimal second stage sample #############

############## size for a two -stage adaptive group sequential #############

############## three -arm non -inferiority design based on #############

############## conditional power #############

############## #############

################################################################################

# #

# Author: Patrick Schlömer #

# Last update: 13/May/2014 #

# #

################################################################################

# #

# REQUIRED PACKAGES: - mnormt #

# ----------------- #

# #

# REQUIRED FUNCTIONS: - ThreeArmAdaptiveCP () #

# ------------------ - ThreeArmAdaptiveReCalcCP () #

# #

################################################################################

# #

# THIS FUNCTION: #

# -------------- #

# Calculates the optimal second stage sample sizes required to obtain a #

# specific conditional power based on the interim data. Here , ’optimal ’ means #

# minimizing the the overall second stage sample size. If the targeted #

# conditional power cannot be obtained with the defined maximum overall sample #

# size of the second stage (’maxN2 ’), the function determines the second stage #

# sample sizes that sum up to ’maxN2 ’ and give the highest conditional power. #

# #

################################################################################

ThreeArmAdaptiveOptReCalcCP <- function(nT1 ,nC1 ,nP1 ,Power ,maxN2 ,thetaTP ,

thetaTC ,sigma ,DeltaNI ,diffTP ,diffTC ,bTP ,

bTC ,wTP ,wTC ,H0TP) {

################################################################################

# #

# INPUT -PARAMETERS: #

# ----------------- #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# nT1 | float | >0 | First stage sample size of the test #

# | | | group #

# | | | #

# nC1 | float | >0 | First stage sample size of the #

# | | | control group #

# | | | #

# nP1 | float | >0 | First stage sample size of the #

# | | | placebo group #

# | | | #
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# Power | float | >0 & <1 | Targeted conditional power #

# | | | #

# maxN2 | float | >0 | Maximum overall sample size of the #

# | | | second stage #

# | | | #

# thetaTP | float | | Treatment difference between test and #

# | | | placebo for which CP is calculated #

# | | | #

# thetaTC | float | | Treatment difference between test and #

# | | | control for which CP is calculated #

# | | | #

# sigma | float | >0 | Common standard deviation #

# | | | #

# DeltaNI | float | >0 | Non -inferiority margin #

# | | | #

# diffTP | float | | Observed treatment difference between #

# | | | test and placebo at interim #

# | | | #

# diffTC | float | | Observed treatment difference between #

# | | | test and control at interim #

# | | | #

# bTP | 2x1 vector | | Stage -wise rejection boundaries for #

# | (floats) | | H_0,TP^(s) #

# | | | #

# bTC | 2x1 vector | | Stage -wise rejection boundaries for #

# | (floats) | | H_0,TC^(n) #

# | | | #

# wTP | 2x1 vector | >0 | Weights used for combining the test #

# | (floats) | | statistics for H_0,TP^(s) #

# | | | #

# wTC | 2x1 vector | >0 | Weights used for combining the test #

# | (floats) | | statistics for H_0,TC^(n) #

# | | | #

# H0TP | boolean | 0 or 1 | Defines if the conditional power to #

# | | | reject both null hypotheses (H0TP =1) #

# | | | or only H_0,TC^(n) (H0TP =0) is #

# | | | calculated. #

# | | | #

#----------------------------------------------------------------------------- #

# #

# OUTPUT -PARAMETERS: #

# ------------------ #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# nT2 | float | >0 | Second stage sample size of the test #

# | | | group to achieve conditional power CP #

# | | | #

# nC2 | float | >0 | Second stage sample size of the #

# | | | control group to achieve conditional #

# | | | power CP #

# | | | #

# nP2 | float | >0 | Second stage sample size of the #

# | | | placebo group to achieve conditional #
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# | | | power CP (only given for H0TP=1!) #

# | | | #

# CondPower | float | >0 | Actual conditional power #

# | | | #

################################################################################

if (H0TP ==0){

# sample size recalculation based on conditional power to reject only

# H_0,TC^(n) => placebo group size is irrelevant and the optimal design is

# given as the balanced design (nT2=nC2)

optdesign <- ThreeArmAdaptiveReCalcCP (nT1=nT1 ,nC1=nC1 ,nP1=nP1 ,cC2=1,cP2=1,

Power=Power ,maxN2=maxN2 ,

thetaTP=thetaTP ,thetaTC=thetaTC ,

sigma=sigma ,DeltaNI=DeltaNI ,

diffTP=diffTP ,diffTC=diffTC ,bTP=bTP ,

bTC=bTC ,wTP=wTP ,wTC=wTC ,H0TP=H0TP)

return(optdesign)

} else if (H0TP ==1) {

# sample size recalculation based on conditional power to reject both

# null hypotheses

# function that returns minus the conditional power for a specific

# allocation and the maximum overall second stage sample size maxN2

optmaxcC2cP2 <- function(alloc){

-ThreeArmAdaptiveCP (nT=c(nT1 ,maxN2/(1+ alloc [1]+ alloc [2])),

nC=c(nC1 ,alloc [1]*maxN2/(1+ alloc [1]+ alloc [2])),

nP=c(nP1 ,alloc [2]*maxN2/(1+ alloc [1]+ alloc [2])),

thetaTP=thetaTP ,thetaTC=thetaTC ,

sigma=sigma ,DeltaNI=DeltaNI ,diffTP=diffTP ,

diffTC=diffTC ,bTP=bTP ,bTC=bTC ,wTP=wTP ,

wTC=wTC ,H0TP=H0TP)

}

# seach for the allocation that maximizes conditional power

optmaxAlloc <- optim(c(0.5 ,0.5),optmaxcC2cP2 ,lower=rep(0.01 ,2),upper=c(3,3),

method="L-BFGS -B")

if (-optmaxAlloc$value < Power) {

# with the defined maximum overall second stage sample size maxN2 the

# targeted conditional power cannot be obtained

nT2 <- maxN2/(1+ optmaxAlloc$par [1]+ optmaxAlloc$par [2])

nC2 <- optmaxAlloc$par[1]*nT2

nP2 <- optmaxAlloc$par[2]*nT2

CondPower <- -optmaxAlloc$value

return(list(nT2=nT2 ,nC2=nC2 ,nP2=nP2 ,CondPower=CondPower))

} else {

# the targeted conditional power can be obtained. thus , search for the

# optimal second stage sample sizes that minimize the overall second

# stage sample size

# new environment

func.env <- new.env()
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# function that returns the overall second stage sample size to obtain

# the targeted conditional power for a specific allocation

optcC2cP2 <- function(alloc){

assign("optDesign",

ThreeArmAdaptiveReCalcCP (nT1=nT1 ,nC1=nC1 ,nP1=nP1 ,cC2=alloc [1],

cP2=alloc [2], Power=Power ,maxN2 =1e10 ,

thetaTP=thetaTP ,thetaTC=thetaTC ,

sigma=sigma ,DeltaNI=DeltaNI ,

diffTP=diffTP ,diffTC=diffTC ,bTP=bTP ,

bTC=bTC ,wTP=wTP ,wTC=wTC ,H0TP=H0TP),

envir=func.env)

return(get("optDesign",envir=func.env)$nT2+

get("optDesign",envir=func.env)$nC2+

get("optDesign",envir=func.env)$nP2)

}

# search for the optimal allocation that minimizes the overall second

# stage sample size

optim(optmaxAlloc$par ,optcC2cP2 ,lower=rep (0.01 ,2),upper=c(3,3),

method="L-BFGS -B")

return(get("optDesign",envir=func.env))

}

}

}

################################################################################

# EXAMPLE: #

# -------- #

if (FALSE){ #

ThreeArmAdaptiveOptReCalcCP(nT1=275,nC1=275,nP1=69, Power =0.9, maxN2 =500, #

thetaTP =0.4, thetaTC =0,sigma=1,DeltaNI =0.2, #

diffTP =0.2, diffTC=0,bTP=c(2.423862 ,2.038216) , #

bTC=c(2.796511 ,1.977432) ,wTP=c(1,1),wTC=c(1,1), #

H0TP =1) #

# $nT2 #

# [1] 183.6715 #

# #

# $nC2 #

# [1] 158.5484 #

# #

# $nP2 #

# [1] 110.8326 #

# #

# $CondPower #

# [1] 0.9 #

} #

################################################################################
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################################################################################

############## #############

############## Calculation of the predictive power for a two -stage #############

############## adaptive group sequential three -arm non -inferiority #############

############## design #############

############## #############

################################################################################

# #

# Author: Patrick Schlömer #

# Last update: 13/May/2014 #

# #

################################################################################

# #

# REQUIRED PACKAGES: - mnormt #

# ----------------- #

# #

# REQUIRED FUNCTIONS: NONE #

# ------------------ #

# #

################################################################################

# #

# THIS FUNCTION: #

# -------------- #

# Calculates the predictive power given the interim data to reject either #

# both null hypotheses or only H_0,TC^(n) at the final analysis. The prior #

# distributions for the treatment effects of the test , control and placebo #

# group are assumed to be mutually independent and normal with known variance. #

# #

################################################################################

ThreeArmAdaptivePP <- function(nT ,nC ,nP ,sigma ,DeltaNI ,muT0 ,muC0 ,muP0 ,sigmaT0 ,

sigmaC0 ,sigmaP0 ,meanT ,meanC ,meanP ,bTP ,bTC ,wTP ,

wTC ,H0TP) {

################################################################################

# #

# INPUT -PARAMETERS: #

# ----------------- #

#______________________________________________________________________________#

# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# nT | 2x1 vector | >0 | Stage -wise sample sizes of the test #

# | (floats) | | group #

# | | | #

# nC | 2x1 vector | >0 | Stage -wise sample sizes of the #

# | (floats) | | control group #

# | | | #

# nP | 2x1 vector | >0 | Stage -wise sample sizes of the #

# | (floats) | | placebo group #

# | | | #

# sigma | float | >0 | Common standard deviation #

# | | | #

# DeltaNI | float | >0 | Non -inferiority margin #
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# | | | #

# muT0 | float | | Mean of the prior distribution for #

# | | | the test treatment effect #

# | | | #

# muC0 | float | | Mean of the prior distribution for #

# | | | the control treatment effect #

# | | | #

# muP0 | float | | Mean of the prior distribution for #

# | | | the placebo effect #

# | | | #

# sigmaT0 | float | >0 | Standard deviation of the prior #

# | | | distribution for the test treatment #

# | | | effect (sigmaT0=Inf for a #

# | | | non -informative prior) #

# | | | #

# sigmaC0 | float | >0 | Standard deviation of the prior #

# | | | distribution for the control #

# | | | treatment effect (sigmaC0=Inf for a #

# | | | non -informative prior) #

# | | | #

# sigmaP0 | float | >0 | Standard deviation of the prior #

# | | | distribution for the placebo effect #

# | | | (sigmaP0=Inf for a non -informative #

# | | | prior) #

# | | | #

# meanT | float | | Observed treatment effect of the test #

# | | | group at interim #

# | | | #

# meanC | float | | Observed treatment effect of the #

# | | | control group at interim #

# | | | #

# meanP | float | | Observed treatment effect of the #

# | | | placebo group at interim #

# | | | #

# bTP | 2x1 vector | | Stage -wise rejection boundaries for #

# | (floats) | | H_0,TP^(s) #

# | | | #

# bTC | 2x1 vector | | Stage -wise rejection boundaries for #

# | (floats) | | H_0,TC^(n) #

# | | | #

# wTP | 2x1 vector | >0 | Weights used for combining the test #

# | (floats) | | statistics for H_0,TP^(s) #

# | | | #

# wTC | 2x1 vector | >0 | Weights used for combining the test #

# | (floats) | | statistics for H_0,TC^(n) #

# | | | #

# H0TP | boolean | 0 or 1 | Defines if the conditional power to #

# | | | reject both null hypotheses (H0TP =1) #

# | | | or only H_0,TC^(n) (H0TP =0) is #

# | | | calculated. #

# | | | #

#----------------------------------------------------------------------------- #

# #

# OUTPUT -PARAMETERS: #

# ------------------ #

#______________________________________________________________________________#
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# | | | #

# VARIABLE | FORMAT | RANGE | DESCRIPTION #

#_____________|____________|___________|_______________________________________#

# | | | #

# PP | float | >0 & <1 | Predictive power #

# | | | #

################################################################################

if (H0TP ==0) {

# predictive power to reject H_0,TC^(n)

# test statistic of the first stage

ZTC1 <- ((meanT -meanC+DeltaNI)/sigma)*sqrt((nT[1]*nC[1])/(nT[1]+nC[1]))

# posterior means and standard deviations for the test and control

# treatment effect

muTpost <- (1/sigmaT0 ^2*muT0+nT[1]/sigma ^2*meanT)/

(1/sigmaT0 ^2+nT[1]/sigma ^2)

muCpost <- (1/sigmaC0 ^2*muC0+nC[1]/sigma ^2*meanC)/

(1/sigmaC0 ^2+nC[1]/sigma ^2)

sigmaTpost <- sqrt(1/(1/sigmaT0 ^2+nT[1]/sigma ^2))

sigmaCpost <- sqrt(1/(1/sigmaC0 ^2+nC[1]/sigma ^2))

# ’posterior ’ test statistic of the second stage

ZTC2post <- (muTpost -muCpost+DeltaNI)/sigma*

sqrt((nT[2]*nC[2])/(nT[2]+nC[2]))

PP <- pnorm(sqrt(sigma ^2/(sigmaTpost ^2+ sigmaCpost ^2)/

(sigma ^2/(sigmaTpost ^2+ sigmaCpost ^2)+

(nT[2]*nC[2])/(nT[2]+nC[2])))*

(ZTC2post+wTC [1]/wTC [2]*ZTC1 -

sqrt(wTC [1]^2+ wTC [2]^2)/wTC[2]*bTC [2]))

} else if (H0TP ==1) {

# predictive power to reject both H_0,TP^(s) and H_0,TC^(n)

# posterior means and standard deviations for the test , control and placebo

# treatment effect

muTpost <- (1/sigmaT0 ^2*muT0+nT[1]/sigma ^2*meanT)/

(1/sigmaT0 ^2+nT[1]/sigma ^2)

muCpost <- (1/sigmaC0 ^2*muC0+nC[1]/sigma ^2*meanC)/

(1/sigmaC0 ^2+nC[1]/sigma ^2)

muPpost <- (1/sigmaP0 ^2*muP0+nP[1]/sigma ^2*meanP)/

(1/sigmaP0 ^2+nP[1]/sigma ^2)

sigmaTpost <- sqrt(1/(1/sigmaT0 ^2+nT[1]/sigma ^2))

sigmaCpost <- sqrt(1/(1/sigmaC0 ^2+nC[1]/sigma ^2))

sigmaPpost <- sqrt(1/(1/sigmaP0 ^2+nP[1]/sigma ^2))

# covariance matrix of the joint posterior predictive distribution of the

# standardised second stage test statsitics

rho <- (1+ sigmaTpost ^2/sigma ^2*nT[2])/

sqrt ((1+( sigmaTpost ^2+ sigmaPpost ^2)/sigma ^2*

(nT[2]*nP[2])/(nT[2]+nP[2]))*

(1+( sigmaTpost ^2+ sigmaCpost ^2)/sigma ^2*

(nT[2]*nC[2])/(nT[2]+nC[2])))*

sqrt((nC[2]*nP[2])/((nT[2]+nC[2])*(nT[2]+nP[2])))
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varcov <- matrix(c(1,rho ,rho ,1),ncol =2)

# upper limits for integration

upper <- c((( muTpost -muPpost)/sigma*sqrt((nT[2]*nP[2])/(nT[2]+nP[2]))+

wTP[1]/wTP[2]*(meanT -meanP)/sigma*

sqrt((nT[1]*nP[1])/(nT[1]+nP[1]))-

sqrt(wTP [1]^2+ wTP [2]^2)/wTP[2]*bTP [2])/

sqrt (1+( sigmaTpost ^2+ sigmaPpost ^2)/sigma ^2*

(nT[2]*nP[2])/(nT[2]+nP[2])),

((muTpost -muCpost+DeltaNI)/sigma*

sqrt((nT[2]*nC[2])/(nT[2]+nC[2]))+

wTC[1]/wTC[2]*(meanT -meanC+DeltaNI)/sigma*

sqrt((nT[1]*nC[1])/(nT[1]+nC[1]))-

sqrt(wTC [1]^2+ wTC [2]^2)/wTC[2]*bTC [2])/

sqrt (1+( sigmaTpost ^2+ sigmaCpost ^2)/sigma ^2*

(nT[2]*nC[2])/(nT[2]+nC[2]))

)

PP <- sadmvn(lower=rep(-Inf ,2),upper=upper ,mean=rep(0,2),varcov=varcov)[1]

}

return(PP)

}

################################################################################

# EXAMPLE: #

# -------- #

if (FALSE){ #

ThreeArmAdaptivePP (nT=rep (275 ,2),nC=rep (275 ,2),nP=rep(69,2),sigma=1, #

DeltaNI =0.2, muT0=0,muC0=0,muP0=0,sigmaT0=Inf , #

sigmaC0=Inf ,sigmaP0=Inf ,meanT =2.4, meanC =2.42, #

meanP =2.1,bTP=c(2.423862 ,2.038216) ,bTC=c(2.796511 ,1.977432) ,#

wTP=c(1,1),wTC=c(1,1),H0TP =1) #

# [1] 0.7504354 #

} #

################################################################################
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