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Zusammenfassung

In der vorliegenden Dissertation ist ein integriertes Vorgehen für die formale Verifikation durch

Model Checking und Modultest beschrieben. Der Schwerpunkt liegt dabei auf der Verifikation von C

Funktionen. Spezifikationsorientiertes Testen und funktionale Verifikation erfordern eine formalisier-

te Spezifikation der Module. Für diesen Zweck wurde eine Sprache zur Annotation als Erweiterung

der Syntax von Vor- beziehungsweise Nach-Bedingungen erarbeitet und wird in der vorliegenden

Arbeit vorgestellt. Diese Sprache zur Annotation erlaubt die Definition von logischen Bedingungen

welche den Zustand eines Programms vor seiner Ausführung mit dem nach der Ausführung verbin-

den. Weiterhin wurde für die Nachvollziehbarkeit der überdeckten Anforderungen eine Syntax zur

Spezifizierung von Testfällen erarbeitet. Die spezifizierten Korrektheitsbedingungen können außer-

dem durch die Einführung von entsprechenden Hilfsvariablen verfeinert werden. Über die Spezifika-

tion der zu testenden Modulen hinaus wird die Sprache zur Annotation ebenfalls zur Modellierung

des Verhaltens von externen Funktionen verwendet, welche nicht unmittelbar Teil der zu testenden

Funktion beziehungsweise Prozedur sind, jedoch von dieser aufgerufen werden.

Durch die Spezifikation von Vor- beziehungsweise Nach-Bedingungen sowie von Testfällen re-

duziert sich die Generierung von Testdaten sowohl für strukturelles als auch für funktionales Testen

jeweils auf ein Erreichbarkeitsproblem innerhalb des Kontrollflussgraphen des Moduls. Dieses wie-

derum ist aus dem Bounded Model Checking bekannt. Zur Lösung des Erreichbarkeitsproblems wird

in der vorliegenden Arbeit symbolische Ausführung verwendet. Der Vorteil der symbolischen Aus-

führung ist ihre Genauigkeit und ihre Fähigkeit mehrere Programmeingaben gleichzeitig zu berück-

sichtigen. Dennoch hat die symbolische Ausführung auch Einschränkungen wie zum Beispiel die

Verarbeitung von Aliasing oder der von Aufrufen von externen Funktionen. Diese Einschränkungen

werden analysiert und es werden neue Algorithmen zur Behandlung der zentralen indentifizierten

Probleme erarbeitet. Weiterhin werden Strategien für die Auswahl von Testfälle und für das Expan-

dieren der unterliegenden Datenstruktur entwickelt und vorgestellt. Diese Strategien minimieren die

Anzahl der untersuchten Zustände beim Erreichen der maximalen Codeabdeckung.

Die entwickelten Algorithmen und Strategien wurden im Testdatengenerator CTGEN implemen-

tiert. CTGEN generiert Testdaten sowohl für eine C1 Codeabdeckung als auch für eine funktionale

Abdeckung. Weiterhin unterstützt der implementierte Generator die automatische Erzeugung von

Stubs. Dabei erfüllen die Daten welche ein Stub während der Ausführung eines Tests zurückgibt die

Spezifikation der entsprechenden externen Funktion. CTGEN wird außerdem mit anderen konkur-

rierenden Testdatengeneratoren verglichen. Er liefert dabei konkurrenzfähige Resultate.
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Abstract

In this dissertation an integrated approach to formal module verification by model checking and

module testing is described. The main focus lays on the verification of C functions. Specification-

based testing and functional verification require a formalized module specification. For this purpose

an annotation language as an extension of a pre-/post-condition syntax is developed and discussed.

This annotation language allows the definition of logical conditions relating the program’s pre-state

to its post-state after executing the module. For requirements tracking a test case specification is

developed. The correctness conditions can be refined by the introduction of auxiliary variables.

Besides the specification of the module under test, the presented annotation language allows to model

the behavior of external functions called by the module under test.

By the specification of pre- and post-conditions as well as test cases, test data generation for both

structural and functional testing is reduced to a reachability problem (as known from bounded model

checking) within the module’s control flow graph. These reachability problems are investigated using

symbolic execution. The strength of symbolic execution is in its precision and its ability to reason

about multiple program inputs simultaneously, but it also has limitations like aliasing or external

function calls. These in turn are analyzed and new algorithms are developed which overtake most of

the detected limitations. The expansion and selection strategies for test case selection are developed

and described. They allow to minimize the size of investigated states and the number of generated

test cases, while achieving maximal branch coverage.

The developed algorithms and strategies are implemented in the test generator CTGEN, which

generates test data for C1 structural coverage and for functional coverage. It also supports automated

stub generation where the data returned by a stub during test execution depends on the specifica-

tion provided by the user. CTGEN is evaluated and compared with competing tools and produces

competitive results.
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1 Introduction

1.1 Objectives

In this dissertation an integrated approach to formal module verification by model checking and module

testing is presented. Under verification we understand all quality assurance activities that check whether

an object fulfills the specified requirements [55]. In particular, reviews, walk-throughs, inspections,

formal verification, static analysis and testing are verification activities. Within the software life cycle

module verification has its established place, and static analysis, testing and formal verification are ap-

proved techniques for this purpose. As was pointed out in [80] it is recommended to use these techniques

in an integrated manner. Thus, they can benefit from one another:

• Test cases can be used as counterexamples for violated assertions, thus supporting the static ana-

lysis and formal verification processes.

• Compared to functional testing, static analysis is more successful when investigating non-functional

properties, such as worst case execution time or the absence of run-time errors.

• If algorithms are too complex to be tested or analyzed in an exhaustive way, formal verification is

the technique of choice.

The focus of this thesis is on the verification of C functions and procedures (hereafter referred to as

module or the unit under test (UUT)). Unit testing is a well-known approach, widely used in practice, by

which a single module is tested separately with respect to its functional correctness. Within the scope

of this thesis tests investigating non-functional properties are not considered since these are often more

successfully investigated by means of formal verification, static analysis or abstract interpretation.

Specification-based testing and functional verification require a formalized module specification. For

this purpose we define an annotation language including a pre- and postcondition syntax. This allows

us to define logical conditions relating the program’s prestate to its poststate. More complex correctness

conditions, such as for example logical statements over the number of function calls performed by the

UUT, may also be specified. In this case, auxiliary variables are introduced. By the specification of pre-

and postconditions the test case generation for both structural and functional testing reduces itself to a

reachability problem within the module’s Control Flow Graph (CFG).

The ideas introduced within this thesis are incorporated into CTGEN, an automatic test generation

tool, based on symbolic execution. Since covering every branch in a program is in general an undecidable

problem, the objective of CTGEN is to generate a test that produces as high a coverage for the module

under test as possible. For each UUT CTGEN performs symbolic analysis and generates a test in RT-

Tester syntax [44], which can be compiled and executed.
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1.2 Motivation

Ten years ago, the U.S. Department of Commerce’s National Institute of Standards and Technology

(NIST) estimated that due to low software quality the U.S. economy loses $59,5 billion annually [99].

Although the study was conducted in 2002, the quality of software is in general still a significant issue.

The authors of “The economics of Software Quality” [61] state in their book among others the following

reasons:

1. Software of low quality is expensive, and the costs are proportional to the size of the project.

Table 1.1 illustrates typical costs for development of low-, average- and high-quality software.

“High quality” here refers to software where the development process “includes effective defect
prevention, effective pretest defect removal such as inspections and static analysis, and much more
effective testing than for the other columns.” The authors declare, that testing alone was never

enough to achieve high-quality software, but it is still an essential part of the quality assurance

process.

2. Software errors affect everybody. Software is among the most used products in history, we use

it every day and almost everywhere. A software failure can lead to consequences from simple

inconvenience up to life hazard.

The issue of software quality is especially important in the development of safety-critical systems. To

address this, quality standards [4, 40, 31] were established. But, as mentioned in [80], these standards do

not see 100% correct software as a principal goal since the code correctness does not automatically guar-

antee system safety. Standards request (a) identification of the criticality level of software components,

i.e. its contribution to system safety or, on the contrary, risks and hazards that the possible component

failure may cause, (b) the software shall be developed and verified with state-of-the-art techniques and

with effort symmetrical to the criticality level of the component. Depending on the criticality level, stan-

dards define precisely which techniques should be applied and which effort is seen as adequate. So, tests

should [80]:

1. Execute each functional requirement at least once.

2. Produce complete code coverage according to the coverage criteria: statement, branch or modified

condition/decision coverage. The applicable coverage criteria is defined in standards correspond-

ing to the software criticality level.

Function Points Low Quality Average Quality High Quality

10 $6,875 $6,250 $5,938

100 $88,561 $78,721 $74,785

1,000 $1,039,889 $920,256 $846,636

10,000 $23,925,127 $23,804,458 $18,724,012

100,000 $507,767,782 $433,989,557 $381,910,810

Table 1.1: Software Costs by Size and Quality Level [61].
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3. Show the appropriate integration of the software on the target hardware.

However, the manual elaboration of test data and the development of test procedures exercising this

data on the UUT is time consuming and expensive. The objective for the development of CTGEN is

to support the verification process and to help providing the required results faster and with less effort

compared to a manual approach. Under the assumption that requirements were assigned to correspond-

ing modules by means of an annotation language, CTGEN provides tests with related functional re-

quirements coverage. In case of requirement violation a counter example is generated, which, in turn,

supports finding the defect in the affected module. Furthermore, CTGEN aims at producing complete

branch coverage.

1.3 Software Testing

The study of NIST came to the following conclusion: “The path to higher software quality is significantly
improved software testing” [78].

This section outlines our understanding of the generic term software testing, which has varying def-

initions in literature. According to the Institute of Electrical and Electronics Engineers (IEEE) Guide

to the Software Engineering Body of Knowledge [19] testing is “an activity performed for evaluating
product quality, and for improving it, by identifying defects and problems. [...] Software testing consists
of the dynamic verification of the behavior of a program [...] against the expected behavior”. Myers [76]

defines testing as “the process of executing a program with the intent of finding errors”. According to

Binder’s view [16], testing is “the design and implementation of a special kind of software system: one
that exercises another software system with the intent of finding bugs“. International Software Testing

Qualifications Board (ISTQB) Standard Glossary of Terms [3] sees testing as “The process consisting of
all life cycle activities, both static and dynamic, concerned with planning, preparation and evaluation
of software products and related work products to determine that they satisfy specified requirements,
to demonstrate that they are fit for purpose and to detect defects.“ These are only a few examples of

definitions, the literature provides many more.

The aforementioned definitions have in common that they focus on the aim of testing, which is to

find “errors”, “bugs” or “defects”, but they differ in other aspects. While IEEE, Myers and Binder see

testing as “executing” or “exercising” a program or software (also called dynamic testing), ISTQB has a

broader understanding of testing which includes dynamic as well as static testing activities. Static testing

is defined [3] as “testing of a component or system [...] without execution of that software”. So testing is

not only exercising the program under test and observing the results but also activities like inspections,

walk-throughs, reviews [76] or static analysis [7].

Furthermore, the purpose of testing is extended from an intent to find “errors”or “bugs” [76, 16] to

evaluation and improvement of quality [19] or the demonstration that the system under test is fit for its

purpose and to ensure that it satisfies the specified requirements [3].

In this thesis we see testing as it is defined by ISTQB and focus on dynamic testing, namely on the

definition of test data and test procedures which should provide the basis for a conclusion whether the

module satisfies the defined requirements.
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1.3.1 Test Techniques

Over the years numerous different test design techniques were suggested [76, 7, 55, 84]. Based on models

of the software system, typically in the form of requirements or design documents, they are divided into

two areas: black box and white box testing.

Black Box Testing Black box testing (also referred to as functional testing or specification-based test-

ing) is based only on the specification of the software under test and does not consider its design or

implementation structure. The point of view of the test designer in black box testing is outside of the test

object. Thus, the software under test is seen as a black box.

One important question in the design of tests is “Which test cases will most likely detect the most
errors?”[76]. Black box testing offers a number of techniques which help to approach this problem

systematically and make the test design more effective. In the following we list the most common

techniques and give a short description of each of them.

• Random Testing [76, 84] is the simplest and least effective method. Following this approach, the

software is tested by selecting random inputs from the possible range of values and comparing the

output with the expected result, which is derived from the software specification. It is unlikely

that a randomly selected input set will discover the most errors. To illustrate this we consider the

following example:

i f ( x == 2){

ERROR;

}

where x is an integer input variable not set before the if-statement. The probability, that the

line with an ERROR will be executed by random testing is in the order of 1/n, where n is the

range of the integer data type. However, despite its limitations, random testing is largely used in

test generation since it can be automated easily. Another advantage is that this technique can be

used in combination with other approaches when the software under test is so complex, that it is

infeasible to apply other methodologies exhaustively.

• Equivalence Partitioning [55] is a technique whose basic idea is to partition input or output space

into equivalence classes. The equivalence classes are derived from the software specification and

it is assumed that all members of the same class behave in the same way. In this way, testing only

one representative of the equivalence class leads to the same result as testing all of its members.

The equivalence partitioning technique makes it possible to derive the completeness of the test

suite by measuring the coverage of the equivalence partitions. Furthermore, by testing only one

member of the class this technique avoids redundant tests. However, the probability of failure

detection depends on the quality of the partitioning as well as on which representatives of the

equivalence class were chosen for the test cases.

• Boundary Value Analysis [55, 7] is strongly related to the equivalence partitioning technique.

A boundary value is a value on the boundaries of the equivalence class. Such a value demands

additional attention because errors often appear at the boundaries of the equivalence classes [76].
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• Cause-Effect Graphing [76]. The disadvantage of both the boundary value analysis and the

equivalence partitioning is that they see different input data as independent and do not consider

their combinations. Still, it is possible that one and the same input in combination with a second

input will uncover a fault in the software under test, while the combination with a third input

will not be successful in uncovering a fault. To test all possible combinations of inputs often is an

infeasible task, since the number of test cases derived from the Cartesian product of the equivalence

partitions is usually quite large. The cause-effect graphing is a technique that uses dependencies

and aids to select test cases in a systematic manner. First, the specification is divided into smaller

pieces, from which inputs (causes) and outputs (effects) are derived. The causes and effects are

linked using the Boolean graph, which is transformed into a decision table. Thereby each column

of this table corresponds to a test case.

White Box Testing White box testing (also referred to as structural or glass-box testing) is yet another

approach to design test cases. It is based on the structure of the software implementation. The point of

view of the test designer in white box testing is inside of the test object. The general idea of white box

testing techniques is to execute each part of the source code at least once. The logic of the program is

analyzed and test cases are designed, executed and compared against the expected results. It is important

that the source code is never used as a basis for the determination of expected results. These must be

derived from the specification.

Depending on the focus of examination, the following basic white box techniques are defined [7, 80,

107]:

• Statement coverage (C0) requires that each statement in the program is executed at least once.

This is the weakest criterion, since in if-statements without else clauses the input, which eval-

uates the if condition to false is irrelevant and will be ignored. Therefore, the possibly missing

else branch will not be detected by this technique.

• Branch coverage (C1) requires, that additionally to statement coverage each decision in the pro-

gram is evaluated at least once to true and at least once to false. So, contrary to statement coverage

missing else clauses are considered.

• Modified condition/decision coverage (MCDC) requires, that additionally to branch coverage

every condition in every decision has taken all possible outputs at least once and that it was shown

that each condition in each decision independently affected the outcome of the decision. To show

that a condition independently affects an outcome, all other conditions in the decision must be

fixed while only the condition under consideration is manipulated. MCDC coverage is a stronger

criterion than C1 coverage. It is able to uncover faults which are masked by other conditions in

the decision. This coverage criterion is required, for example, when testing avionic software of

criticality level A.

• Path coverage (C2) requires, that each path in the program under test is executed at least once.

This is the strongest criterion in white box testing, but complete path testing is not feasible for

programs with loops or for programs with a large branching factor.
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Figure 1.1: General V-model [7].

Black box and white box testing techniques uncover different types of faults. Test cases designed

with black box testing techniques can only demonstrate that each requirement in the specification was

implemented, whereas test cases designed with white box testing techniques can demonstrate that each

implemented piece of code corresponds to a specific requirement. As a consequence, Myers [76] suggests

to use elements of both design techniques and use white box testing techniques to supplement black box

based test case design.

All presented techniques give an instrument to argue about the completeness of the performed testing

in addition to aiding in the design of test cases. In this thesis we use white box testing techniques as a

criterion to reason about completeness of the generated test suite. The developed test generator supports

statement (C0) and branch (C1) coverage, whereas path coverage (C2) and MCDC coverage are not

supported. The discussion about possible solutions for the integration of MCDC and path coverage into

the test generator can be found in Section 7.4. Equivalence partitioning and boundary value analysis

are out of the scope of this thesis. We discuss how the test generator can be expanded to support these

techniques in Section 7.4.

1.3.2 Test Levels

The traditional view of the software life cycle suggests that software testing is performed at different

levels along the development and maintenance processes. In the literature many test levels are introduced,

but the most established ones are unit (component), integration, system and acceptance testing [55, 7, 74,

59]. In the general V-model shown in Figure 1.1 each of these test levels is associated with a development

process so that each development process has a corresponding test level.

• Unit (component) test is performed at the lowest level of the software development process. It

verifies the functionality of software pieces which are separately testable in isolation. Such pieces
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can be functions, classes, subroutines and so on. Typically, unit testing uses both functional and

structural techniques [19].

• Integration test can be performed as soon as two or more components are integrated into a system

or a subsystem. The purpose of an integration test is not to find errors but to verify if the software

components interact accordingly to the specification. Like unit testing, an integration test typically

uses both functional and structural techniques.

• System test verifies whether the system as a whole meets the specified requirements. A system

test considers not only functional, but also non-functional requirements, such as security, speed,

accuracy and reliability. The system test should be performed in an environment as similar as

possible to the intended one to evaluate external interfaces to other applications, hardware devices

or the operating environment [7, 19]. During a system test functional techniques are typically used.

• Acceptance test is performed similar to a system test at the highest level of integration and exe-

cuted in the intended environment. Nevertheless, on this level the goal is not to find defects in the

product. An acceptance test evaluates if the system complies with the customer’s requirements.

In this thesis we focus on structural testing at the unit test level. We do not consider functional testing,

since by introducing pre- and postconditions as well as test cases, we reduce the problem of obtaining a

functional test coverage to reaching structural test coverage (see Chapter 3).

1.4 Contributions

In this section we outline the contributions made by this thesis:

• Selection and expansion strategies minimizing the size of the structure that underlies the test case

selection process (symbolic test case tree) and the number of test cases needed for achieving the

desired coverage (Chapter 4).

• Handling of external function calls, which is one of the most important challenges for test data

generation tools [89]. In this thesis a method for the automated generation of a mock object that

replaces the external function by a test stub with the same signature is described (Section 5.12.2).

This method also calculates values for the stub’s return data and output parameters as well as for

global variables which can be modified by the stubbed function in order to fulfill a path condition.

Furthermore, using this technique, exceptional behavior of external functions can be simulated.

• Another challenge for test data generation tools is the handling of symbolic pointers and offsets

[89]. To approach this challenge, a memory model was designed within our research group [80].

The corresponding algorithms for handling pointer and aliasing problems (in particular pointer

arithmetics) were developed in the context of this thesis and are described in Section 5.7.

• An annotation language for supporting specification-based testing and functional verification was

developed. As stated in Section 1.2, the standards demand that each functional requirement should

be executed at least once. However, to our best knowledge none of the test data generating tools

supports requirement tracing. The designed annotation language allows CTGEN to achieve this

(Chapter 3).
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The aforementioned techniques are incorporated into the design and development of CTGEN, a unit

test generator for C code [72]. An overview of the architecture of CTGEN and its functionality is given

in Chapter 2. CTGEN is able to produce test data for functional coverage derived from the specified pre-

and postconditions as well as from test cases and C1 structural coverage. The generator also provides

automated stub generation where the data returned by the stub during the execution of the test may be

specified by means of the annotation language. CTGEN can cope with the typical aliasing problems

present in low-level C, including pointer operations, structures and unions. Furthermore, CTGEN is

able to generate complete test procedures which can be compiled and executed against the module under

test. CTGEN was used in industrial scale test campaigns for embedded systems code in the automotive

domain and demonstrated competitive results. Particularly when handling functions of high complexity,

the results of CTGEN were better than, for example, those of KLEE [22] (Chapter 6).

1.5 Related Work

The content of this section was originally published in [72].

The idea of using symbolic execution for test data generation is not new, as it is an active area of

research since the 70’s [65, 28]. In the past a number of test data generation tools [22, 23, 18, 11, 69, 8,

100, 93, 47, 49, 86] were introduced. Nevertheless, to the best of our knowledge, only Pex (with Moles)

supports automatic stub generation as provided by CTGEN. Furthermore, CTGEN seems to be the only

tool supporting traceability between test cases and requirements. From the experimental results available

from other tool evaluations we conclude that CTGEN outperforms most of them with respect to the UUT

size that still can be handled for C1 coverage generation.

DART [47] is one of the first concolic testing tools to generate test data for C programs. It falls back

to concrete values by external function calls, and does not support symbolic pointers. CUTE [93] is also

a concolic test data generator for C, and, like DART, falls back to concrete values by external function

calls. It supports pointers but collects only equalities/inequalities between them, while CTGEN supports

all regular pointer arithmetic operations.

SAGE [49] (which is built on top of DART), is a very powerful concolic testing tool utilizing white box

fuzzing. It is fully automated and is used on a daily basis by Microsoft within the software development

process. According to the authors, SAGE uncovered about half of all bugs found in Windows 7. SAGE

has a precise memory model, that allows accurate pointer reasoning [41] and is very effective because

it works on large applications instead of small units, which allows to detect problems across compo-

nents. Nevertheless, SAGE uses concrete values for sub-function calls which cannot be symbolically

represented and, as far as we know, it does not support the specification of pre- and postconditions.

Pex [100] is an automatic white-box test generation tool for .NET, developed at Microsoft Research.

It generates high coverage test suites applying dynamic symbolic execution for parametrized unit tests

(PUT). Similarly to CTGEN it uses annotations to define the expected results and the Z3 SMT Solver to

decide on the feasibility of execution paths. It also supports complex pointer structures [101]. As long

as stubs for external functions are not generated by the user, Pex cannot handle such a call symbolically,

while CTGEN recognizes the necessity for a stub and generates it automatically.

Another approach using symbolic execution is applied by KLEE [22], the successor of EXE [23].

KLEE focuses on the interactions of the UUT with the running environment – command-line arguments,

files, environment variables etc. It redirects calls accessing the environment to models, describing ex-
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ternal functions in sufficient depth to allow the generation of the path constraints required. Therefore,

KLEE can handle library functions symbolically only if a corresponding model exists, and all unmod-

elled library and external function calls are executed with concrete values. This may reduce the coverage

to be generated due to random testing limitations. Furthermore, KLEE does not provide a fully auto-

mated detection of inputs: they must be determined by the user either by code instrumentation or by the

command line argument defining the number, size and types of symbolic inputs.

Pathcrawler [18] is also a concolic testing tool. It tries to generate path coverage for C functions. In

contrast to CTGEN, it supports only one dimensional arrays and does not support pointer comparisons

and external function calls.

Another approach to test data generation in productive industrial environments is based on bounded

model checking [8]. The authors used CBMC [26], a Bounded Model Checker for ANSI-C and C++

programs, for the generation of test vectors. The tool supports pointer dereferencing and arithmetic

as well as dynamic memory and more. However, since CBMC is applied to generate a test case for

each block of the CFG of the UUT, CTGEN is able to achieve full decision coverage with fewer test

cases in most situations. For handling external function calls, the authors of [8] use nondeterministic

choice functions available in CBCM as stubs, and CBCM evaluates all traces resulting from all possible

choices. However, the tool can only simulate return values of external functions and does not consider the

possibility of manipulating values of global variables. Though CBMC allows assertions and assumptions

in the function body, the authors use them only to achieve branch coverage, not for checking functional

properties.

PathFinder [86] is a symbolic execution framework, that uses a model checker to generate and ex-

plore different execution paths. PathFinder works on Java byte code, one of its main applications is the

production of test data for achieving high code coverage. PathFinder does not address pointer problems

since these do not exist in Java. For handling external function calls, the authors propose mixed concrete-
symbolic solving [85], which is more precise than CTGEN’s solution with stubs - it will not generate test

data that is impossible in practice. However, mixed concrete-symbolic solving is incomplete, i.e. feasible

paths do exist, for which this method fails to find a solution. Furthermore, by definition of the accurate

pre- and postconditions the problem regarding impossible inputs can be avoided using CTGEN.

Table 1.2 summarizes the results of our comparison.

1.6 Overview

This thesis is organized as follows: Chapter 2 gives an overview over the test data generator CTGEN

developed in the course of this thesis. The architecture of the CTGEN and an example of its invocation

are presented. Chapter 3 introduces the annotation language which allows the specification of a module

under test. The detailed characterization of the language is given and illustrated by an example. Chapter

4 presents the proposed expansion and selection strategies. Chapter 5 provides an introduction to sym-

bolic execution and discusses its limitations. The memory model that underlies the symbolic execution

algorithms is introduced and procedures for reasoning about atomic and complex data types like struc-

tures, unions, arrays and pointers are discussed. The algorithms for handling function calls are described.

Chapter 6 presents experimental results and the evaluation of the developed test data generator CTGEN.

9



1 Introduction

CTGEN PEX CUTE KLEE PathCrawler CBMC for SCS DART SAGE PathFinder

Platform Linux Windows Linux Linux Linux Linux Windows Linux

Language C .NET C C C C C machine code Java

CAPABILITIES
C0 Y Y Y Y Y Y Y Y Y

C1 Y Y Y Y Y Y Y Y Y

MC/DC N Y N N N N N N Y

C2 N Y Y Y N Y Y Y

Pre-/Post Y Y Y Y Y N N N Y

Requirements trac-

ing

Y N N N N N N N N

Auxiliary vars Y N NA N N N N N N

Pointer arithmetics Y Y N Y Y Y N Y -

Pointer dereferenc-

ing

Y Y N Y Y Y N Y -

Pointer comparison Y Y Y Y N Y N Y -

Function pointer N NA N NA N Y N NA

Arrays Y Y Y Y P Y Y Y

Symbolic offset Y NA N Y N Y

Complex dynamic

data structures

(lists...)

N Y Y N Y N Y

External function

calls

Y P N P N Y N N P

Automatic stub

handling

Y P N N N N N N N

Float/double Y N N N Y N N Y Y

Recursion N Y NA Y N Y Y

Multithreading N N Y N N N N Y

Automatic detec-

tion of inputs

Y Y N N Y Y Y Y

TECHNIQUES
SMT solver SONOLAR Z3 lp_solver STP COLIBRI lp_solver Z3 choco,

IASolver,

CVC3

Concolic testing N Y Y Y Y N Y Y N

STCT or acyclic

graph with reNuse

of nodes

STCT STCT application states transition relation Y

Depth-first search N N Y N Y N Y N N

Table 1.2: Test Data Generating Tools [72].
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2 CTGEN

CTGEN is an automatic test generation tool, based on symbolic execution. The objective of CTGEN

is to cover every branch in the program, which is an undecidable problem, so in practice CTGEN tries

to generate a test that produces as high a coverage for the module under test as possible. For each

UUT CTGEN performs symbolic analysis and generates a test in RT-Tester syntax [44], which can be

directly compiled and executed. The test specifies initial values for input parameters, global variables

and for the data to be set and returned by sub-functions called by the UUT. Apart from atomic integral

data types, CTGEN supports floating point variables, pointer arithmetics, structures and arrays and can

cope with the typical aliasing problems in C, caused by array and pointer utilisation. Function pointers,

recursive functions, dynamic memory, complex dynamic data structures with pointers (lists, stacks etc.)

and concurrent program threads are not supported. CTGEN does not check the module under test for run-

time errors but rather delegates this task to the abstract interpreter developed in our research group [82].

CTGEN does not rely on knowledge about all parts of the program (such as undefined or library

functions). Where several other unit test automation tools [93, 23, 47] fall back to the invocation of

the original sub-function code with concrete inputs if an external function occurs on the explored path,

CTGEN automatically generates a mock object replacing the external function by a test stub with the

same signature. Furthermore, it calculates values for the stub’s return data, output parameters and global

variables which can be modified by the stubbed function in order to fulfill a path condition. In this way,

CTGEN can also simulate exceptional behavior of external functions. It is possible but not required to

customize stub behavior by using pre- and postconditions described in Chapter 3. If no restrictions were

made, however, the stub’s actions can deviate from the real behavior of the external function.

The content of this chapter was originally published in [72]. Here we present a reworked and extended

version.

2.1 Architecture

CTGEN is structured into two main components (see Fig. 2.1):

The preprocessor operates on the UUT code. It consists of (1) the CTGEN preprocessor transforming

code annotations as described in Chapter 3, (2) a GCC plugin based on [70], compiling the prepared

source code into a textual specification, consisting of one or several Control Flow Graphs (CFGs) in 3-

address code, and symbol table information like function signatures, types and variables, and (3) parsers,

transforming CFGs and symbol table information into the Intermediate Model Representation (IMR).

The analyzer operates on the IMR. Its building blocks and the interaction of these are described below.

The Symbolic Test Case Generator is responsible for lazy expansion of the CFGs related to the function

under test and its sub-functions. Moreover, it handles the selection of paths, each beginning with the

start node of the CFG and containing yet uncovered transitions (for more details see Chapter 4). If such

a path can be found, it is passed to the Symbolic Interpreter, which traverses the path and symbolically
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2 CTGEN

Figure 2.1: CTGEN overview [72].

calculates the effect of its statements in the memory model. As soon as the next node on the path is

guarded by a non-trivial condition, the Constraint Generator [80] is called and resolves all pointers and

array references occurring in this condition. It also passes the resulting constraint to the Solver. CTGEN

uses a SMT solver (SONOLAR) which has been developed in our research group [82]. SONOLAR

supports integral and floating point data types, arrays and bit vectors. If the solver can find a solution for

the constraint, the solution is passed back to the Symbolic Interpreter, which continues to follow the path

under investigation. Otherwise, if the constraint is infeasible, the solver passes the result to the Symbolic
Test Case Generator, which then learns from this fact and tries to produce another path containing still

uncovered transitions. When no such paths can be found, a unit test is generated based on the collected

solutions (if any) and is stored in the file system.

2.2 Invoking CTGEN

In this section we will give an overview of how the CTGEN tool can be invoked and which output it

produces. To illustrate the process we will demonstrate how CTGEN is used on a simple example. The

program shown in Figure 2.2 contains a trivial implementation of the checkAvailable() routine,

which sets the global variable rainActive to one if and only if global variables rainSensor and

rainFunction have non-zero values and, correspondingly, sets the global variable solarActive
to one if and only if global variables solarSensor and solarFunction have non-zero values.

Here we describe the most elementary way of using CTGEN, e.g. without the definition of any pre-

or postconditions (this will be discussed later, see Chapter 3). First, the GCC plugin translates the given

C code into a textual specification of the CFG and the symbol table information (the plugin output for

checkAvailable() routine is listed in Appendix 1.2). The CFG characterization contains the de-

scription of single blocks and how they relate to each other (for a more detailed discussion of CFG

see Section 4.1). Furthermore, location specification and scope information for each statement are docu-

mented. The scoping information is required to enable the identification of variables with identical names
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2.2 Invoking CTGEN

i n t r a i n S e n s o r = 0 , r a i n F u n c t i o n = 0 , r a i n A c t i v e = 0 ;

i n t s o l a r S e n s o r = 0 , s o l a r F u n c t i o n = 0 , s o l a r A c t i v e = 0 ;

void c h e c k A v a i l a b l e ( ) {

i f ( r a i n S e n s o r && r a i n F u n c t i o n ) {

r a i n A c t i v e = 1 ;

} e l s e {

r a i n A c t i v e = 0 ;

}

i f ( s o l a r S e n s o r && s o l a r F u n c t i o n ) {

s o l a r A c t i v e = 1 ;

} e l s e {

s o l a r A c t i v e = 0 ;

}

}

Figure 2.2: A C program that implements checkAvailable() routine.

used within a statement, since GCC allows to use variables with identical names in different scopes. The

symbol table information includes the list of all used types, all defined global variables and all defined

functions. Each function specification contains information about its parameters, return type and all used

local variables.

After the CFG and the symbol table information are produced by the plugin, the generator part can be

invoked. The generator is called with the following parameters:

ctgen --pathForGeneratedTest $TESTPROJECT/unit_test_autogen
--sourceFile cfg_ex.c

The parameter pathForGeneratedTest defines, where the generated test will be stored. In the ex-

ample it is stored in a test project in the directory unit_test_autogen. The parameter sourceFile
defines which file should be analyzed. In the example the file cfg_ex.c is passed, where function

checkAvailable() is defined. For more detailed information about the usage of CTGEN see Ap-

pendix 7.4.

After the invocation of the test generator, the directory $TESTPROJECT/unit_test_autogen
has the structure shown in Figure 2.3. For each module, defined in the file cfg_ex.c a new unit test

is generated. Since in our example the given source file contains only the definition of the check-
Available() routine, only one new unit test is generated. This test conforms to the RT-Tester syntax

and holds three sub-directories: conf, stubs and specs.

The directory conf contains the test configuration file (unit.conf) and the test documentation

input (unit.rttdoc). The test configuration file specifies how the executable test case has to be

built, where the test specific stubs can be found and the test integration level (here unit test). The test

documentation input defines the headline of the test, the test objectives and the description of the test

driver. Furthermore, the automated documentation generation derives a verdict for the test from the test

execution log.

The directory stubs contains the test stub specification file, where generated stubs (when required)

are defined. In our example the function checkAvailable() does not call any other functions, so

that no stubs are generated. Consequently, the local.stubs file is empty.
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unit_test_autogen

checkAvailable

conf

unit.conf

unit.rttdoc

stubs

local.stubs

specs

checkAvailable_finished_cfg.dot

checkAvailable_solution.txt

unit_test.rts

Figure 2.3: Directory structure of the test generated for the checkAvailable() routine.

The directory specs contains the actual test specification script (unit_test.rts). The test script

is written in Real-Time Test Language (RTTL) (for more information on RTTL see [44]). It defines

generated test cases. Each test case defines the values of input variables and invokes the UUT. The test

script generated for the checkAvailable() function can be observed in Appendix 1.3. Furthermore,

the directory specs contains the solution file checkAvailable_solution.txt, where detailed

information on the test generation process can be found. For each test case the chosen path, its path

constraint and its solution, found by the SMT solver, are listed. At the bottom of the file statistic in-

formation about covered branches can be found. The solution file generated for our example is listed

in Appendix 1.4. Additionally, a graphical output of the CFG of the UUT is produced. This graphic

visualizes the state of the coverage completion after the generation process is finished. All covered edges

and statements are drawn blue, all statements and edges that could not be covered are drawn red. The

checkAvailable() routine from our example could be completely covered. Therefore, all state-

ments and edges are drawn blue (see Appendix 1.5).

The generated test can be compiled and executed with RT-Tester. To measure the actual code coverage

we use gcov. Executing tests independently of CTGEN excludes the influence of potential bugs in

CTGEN and verifies that the generated test runs the code as was claimed by CTGEN.

14



3 Annotation Language

Assertional methods for program verification were introduced by Floyd [43] in the late sixties. His ideas

were refined by Hoare [56] and Dijkstra [36, 37]. The main idea of this approach can be described

as follows: if the precondition of a program is true before the program is executed, the postcondition

must hold true. The annotation language that we present in this chapter was introduced in [72]. This

annotation language makes use of the assertional methods mentioned above and allows users to specify

the expected behavior of a module under test by means of appropriate pre- and postconditions, to refine

the specification with help of auxiliary variables, to introduce the functional coverage by the definition of

test cases relating pre- and postconditions to the corresponding requirements and to reason about global

variables, initial values of variables and return values of a module under test.

Some of the contents of this chapter were already introduced in [72]. However, we here present an

extended and refined version.

3.1 Definition

For the definition of the annotation language we have chosen the approach used in sixgill [51]: the

annotations are specified as GCC macros which are understood by the CTGEN preprocessor. Thus, the

annotations can be turned on and off as needed. One of the critics on formal methods is that the overhead

needed to learn the techniques and the formal languages is too time consuming [52]. Therefore, we have

decided to keep the annotations in standard C syntax, so that no additional expertise is expected from the

user. All annotations are optional. If there are no annotations, CTGEN will try to cover all branches and

detect unreachable code, using arbitrary type-compatible input data.

Pre- and postconditions are defined as follows:

_ _ r t t _ p r e c o n d i t i o n (PRE) ;

_ _ r t t _ p o s t c o n d i t i o n (POST) ;

A precondition indicates, that the expected behavior of the specified function is only guaranteed if

the condition PRE is true. A postcondition specifies, that after the execution of a function the condition

POST must hold. Furthermore, (as discussed in Section 5.12.3) pre- and postconditions also affect stub

generation in CTGEN. Pre- and postconditions have to be defined at the beginning of the body of a

function. PRE and POST are Boolean C expressions, including function calls. All variables occurring in

these conditions must be global, be input respectively output parameters or refer to the return value of

the specified function. To specify conditions involving the return value of the UUT the CTGEN variable

_ _ r t t _ r e t u r n

is introduced. The annotation

_ _ r t t _ i n i t i a l (VARNAME) ;
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is used in annotation expressions (in particular, in postconditions) for referring to the initial value of the

variable VARNAME, valid before the function was executed.

To reason over local variables, auxiliary variables are used. Auxiliary variables cannot occur in assign-

ments to non-auxiliary variables or in control flow conditions [9, 80]. They can be defined as follows:

__r t t_aux (TYPE , VARNAME) ;

In this way, an auxiliary variable of the type TYPE with the name VARNAME will be declared and can be

used in the following CTGEN annotations in the same way as regular variables.

For a more detailed specification of the expected behavior of the function, test cases are used:

_ _ r t t _ t e s t c a s e ( PRE , POST , REQ) ;

The argument PRE defines a precondition and the argument POST a postcondition of the current test

case. The argument REQ is a string tag defining a functional requirement that corresponds to the pre-

and postcondition of this test case. If there is more than one, the requirements can be listed separated by

a comma. For each generated test data set that satisfies a precondition from the test case assertions over

pre- and postconditions will automatically be inserted into the generated test:

/∗ ∗ @ r t t P r i n t
∗ T h i s t e s t case e v a l u a t e s whe ther t h e f u n c t i o n example ( )
∗ behaves c o r r e c t l y
∗ @tag TC_UNIT_EXAMPLE_001
∗ @condi t ion PRE
∗ @event The u n i t under t e s t example ( ) i s c a l l e d .
∗ @expected POST
∗ @req REQ
∗ /

@rttAssert ( PRE , "TC_UNIT_EXAMPLE_001" ) ;

@rttCal l ( example ( ) ) ;

@rttAssert ( POST , "TC_UNIT_EXAMPLE_001" ) ;

Global variables which are allowed to be modified in a function can be specified by means of the

annotation:

_ _ r t t _ m o d i f i e s (VARNAME) ;

CTGEN traces violations, even in cases where a prohibited variable is modified by means of pointer

dereferencing. For each breach of a modification rule an assertion is generated, which records the line

number where the illegal modification occurred, e. g.

/ / v i o l a t e d var VARNAME i n l i n e ( s ) 1212 , 1284
@rttAssert (FALSE) ;

The annotation

_ _ r t t _ a s s i g n (ASSIGNMENT) ;

is intended for assignments to auxiliary variables. In the following example an auxiliary variable a_aux
is first declared using __rtt_aux() it may then be used in a postcondition. To define its value,

__rtt_assign() is used in the function body.
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3.2 Proof Mode versus normal Test Mode.

__r t t_aux ( i n t , a_aux ) ;

_ _ r t t _ p o s t c o n d i t i o n ( a_aux == 0) ;

. . .

i n t b ;

. . .

_ _ r t t _ a s s i g n ( a_aux = b ) ;

The annotation

_ _ r t t _ a s s e r t (COND) ;

can be used in different places of the function to ensure a specific property. If the condition COND is

seen to fail during test generation an assertion recording the line number where the violation occurs is

inserted into the generated test.

An example of a specification of the expected behavior of a function is illustrated in Figure 3.1 (the

original code is highlighted in light gray, inserted annotations have a white background). The function

alloc() returns a pointer allocp to n successive characters if there is still enough room in the buffer

allocbuf and zero if this is not the case. First, by using __rtt_modifies we state that alloc()
can only modify allocp, and that the modification of allocbuf is consequently prohibited. The

annotation __rtt_precondition specifies that the expected behavior of alloc() is guaranteed

only if the parameter n is greater or equal to zero and allocp is not a NULL-pointer. Furthermore,

__rtt_postcondition states that after the execution of the function under test allocp must still

be within the bounds of the array allocbuf. Finally, test cases are defined for the situations where (a)

memory can still be allocated and (b) not enough memory is available.

After preprocessing by CTGEN, this example looks as shown in Figure 3.2 (the original code is

highlighted in light gray, code corresponding to preprocessed annotations has a white background): the

function body is executed only if the precondition holds. Concerning the postcondition and test cases,

appropriate if statements are generated with branches for both outcomes: when the test case (postcon-

dition) fails and also when it passes. The test driver generated by CTGEN for this example as well as

other produced outputs are listed in Appendix 2.

3.2 Proof Mode versus normal Test Mode.

Using symbolic execution for program verification was proposed in 1970’s [65, 35]. To prove the ver-

ification condition it is sufficient to execute all program paths of a preprocessed annotated UUT sym-

bolically. As pointed out in [80], this way the verification problem is reduced to a reachability prob-

lem: a test data set reaching __rtt_testcase_error (see Figure 3.2) at the same time uncovers a

violation of the defined properties and produces a counter example. Otherwise, if it can be shown that

__rtt_testcase_error is unreachable, this proves the validity of the corresponding test case. Fur-

thermore, the goal to obtain functional test coverage is also reduced to reaching structural test coverage,

because branch coverage implies a coverage of requirements mentioned in the test cases.

However, in order to prove that some branch is unreachable, all paths through the function under test

must be explored. This is known to be a problem of exponential complexity. Since this approach is not

feasible for all functions, CTGEN allows to choose between proof mode and normal test mode. In proof

mode CTGEN tries to prove, that no postcondition or test case condition violation is possible, whereas

in normal test mode it attempts to cover only branches which document the test case execution.
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char a l l o c b u f [ ALLOCSIZE ] ;

char ∗ a l l o c p = a l l o c b u f ;

char ∗ a l l o c ( i n t n ) {

_ _ r t t _ m o d i f i e s ( a l l o c p ) ;

_ _ r t t _ p r e c o n d i t i o n ( n >= 0 && a l l o c p != 0) ;

_ _ r t t _ p o s t c o n d i t i o n ( a l l o c p != 0 && a l l o c p <= a l l o c b u f + ALLOCSIZE ) ;

_ _ r t t _ t e s t c a s e ( a l l o c b u f + ALLOCSIZE − _ _ r t t _ i n i t i a l ( a l l o c p ) < n ,

_ _ r t t _ r e t u r n == 0 ,

"CTGEN_001" ) ;

_ _ r t t _ t e s t c a s e ( a l l o c b u f + ALLOCSIZE − _ _ r t t _ i n i t i a l ( a l l o c p ) >= n ,

_ _ r t t _ r e t u r n == _ _ r t t _ i n i t i a l ( a l l o c p ) ,

"CTGEN_002" ) ;

char ∗ r e t v a l = 0 ;

i f ( a l l o c b u f + ALLOCSIZE − a l l o c p >= n ) {

a l l o c p += n ;

r e t v a l = a l l o c p − n ;

}

re turn r e t v a l ;

}

Figure 3.1: Example: Specification of expected behavior.
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char a l l o c b u f [ ALLOCSIZE ] ;

char ∗ a l l o c p = a l l o c b u f ;

char ∗ a l l o c ( i n t n ) {

char ∗ _ _ r t t _ r e t u r n _ _ ;

_ _ r t t _ m o d i f i e s ( a l l o c p ) ;

/ / p r e c o n d i t i o n
i f ( n >= 0 && a l l o c p != 0) {

char ∗ r e t v a l = 0 ;

i f ( a l l o c b u f + ALLOCSIZE − a l l o c p >= n ) {

a l l o c p += n ;

r e t v a l = a l l o c p − n ;

}

/ / p o s t c o n d i t i o n
i f ( a l l o c p != 0 && a l l o c p <= a l l o c b u f + ALLOCSIZE ) {

_ _ r t t _ t e s t c a s e ( n >= 0 && a l l o c p != 0 ,

a l l o c p != 0 && a l l o c p <= a l l o c b u f + ALLOCSIZE , " " ) ;

} e l s e {

_ _ r t t _ t e s t c a s e _ e r r o r ( n >= 0 && a l l o c p != 0 ,

a l l o c p != 0 && a l l o c p <= a l l o c b u f +

ALLOCSIZE , " " ) ;

}

/ / t e s t c a s e 1
i f ( a l l o c b u f + ALLOCSIZE − _ _ r t t _ i n i t i a l ( a l l o c p ) < n ) {

i f ( _ _ r t t _ r e t u r n == 0) {

_ _ r t t _ t e s t c a s e ( a l l o c b u f + ALLOCSIZE − _ _ r t t _ i n i t i a l ( a l l o c p ) < n ,

_ _ r t t _ r e t u r n == 0 ,

"CTGEN_001" ) ;

} e l s e {

_ _ r t t _ t e s t c a s e _ e r r o r ( a l l o c b u f + ALLOCSIZE − _ _ r t t _ i n i t i a l ( a l l o c p ) < n ,

_ _ r t t _ r e t u r n == 0 ,

"CTGEN_001" ) ;

}

}

/ / t e s t c a s e 2
i f ( a l l o c b u f + ALLOCSIZE − _ _ r t t _ i n i t i a l ( a l l o c p ) >= n ) {

i f ( _ _ r t t _ r e t u r n == _ _ r t t _ i n i t i a l ( a l l o c p ) ) {

_ _ r t t _ t e s t c a s e ( a l l o c b u f + ALLOCSIZE − _ _ r t t _ i n i t i a l ( a l l o c p ) >= n ,

_ _ r t t _ r e t u r n == _ _ r t t _ i n i t i a l ( a l l o c p ) ,

"CTGEN_002" ) ;

} e l s e {

_ _ r t t _ t e s t c a s e _ e r r o r ( a l l o c b u f + ALLOCSIZE − _ _ r t t _ i n i t i a l ( a l l o c p ) >= n ,

_ _ r t t _ r e t u r n == _ _ r t t _ i n i t i a l ( a l l o c p ) ,

"CTGEN_002" ) ;

}

}

}

re turn r e t v a l ;

}

Figure 3.2: Preprocessed specification from Figure 3.1.
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4 Symbolic Test Case Generation

As described in Section 2.1, the symbolic test case generator is responsible for the selection of test cases,

which the symbolic interpreter supported by the solver tries to cover. The symbolic test case generator

uses feedback of the solver about eventual infeasibility of a symbolic test case for learning to avoid

detected infeasible paths in the following test case generations. A central data structure in the symbolic

test case generator is a Symbolic Test Case Tree (STCT), which stores bounded paths through the control
flow graph (CFG) of the UUT. To build a STCT the CFG is expanded node by node. To minimize the

size of a STCT and maximize the coverage obtained by generated test cases, we introduce expansion and

selection strategies.

This chapter provides formal definitions of the CFG, the STCT and the algorithms utilized by the

proposed expansion and selection strategies.

4.1 Control Flow Graph

The Control Flow Graph (CFG) represents the control flow of programs. Nodes of a CFG are statements

of the respective program, whereas edges represent the control flow between the statements. There

are several approaches regarding the definition of CFGs. They differ in the level of abstraction of the

representation of sections of statements which are always executed consecutively and the handling of

branches as well as the merging of branches [50]. We define control flow graph as follows:

Definition 4.1. Control Flow Graph of function f we define here as a directed cyclic Graph CFG =
(NC,EC,V ) where

• NC is a finite set of nodes, so that for each GIMPLE statement1 s of f there ∃ns ∈ NC ,

• V is a finite set of variables of f ,

• Guard is a set of Boolean formulae over V ,

• EC ⊆ NC ×Guard ×NC is a finite set of edges, so that for each pair of statements (s,s′) such that

s′ is executed directly after s, there ∃e ∈ EC, where e is a tuple (ns,g,ns′). Node ns we call source
of the edge e and node ns′ – target of the edge e. g is the guard condition of the edge e, which

means, that the edge e can be taken by the program execution only if the condition g evaluates to

true. Node ns is called predecessor of node ns′ and node ns′ – successor of node ns,

The node corresponding to the first statement of f is called start node. The node corresponding to the

last statement of f is called exit node.

1Under a GIMPLE statement we understand a three-address statement representation [1].

21



4 Symbolic Test Case Generation

Figure 4.1: Control flow graph of the checkAvailable() routine.

To illustrate the definition of a CFG, we use the example discussed in Section 2.2. Figure 4.1 shows

the corresponding CFG after converting the checkAvailable() routine into 3-address code. The

start node corresponds to the first statement of the function (rainSensor.0 = rainSensor) and

the exit node corresponds to the return statement.

Definition 4.2. A path p is a finite sequence of edges < e0,e1, . . .en > so that for all i the target of the

edge ei is the source of the edge ei+1. The source node of the first edge e0 is the start node of p, the target

node of the last edge en is the end node of p. If the start node of the path is the start node of the CFG, the

path is called S-path. An S-path whose end node is the exit node of the CFG is called complete [50].

Since a CFG is a cyclic graph, an infinite number of paths through a function exists. In this thesis we

consider only S-paths.

4.2 Symbolic Test Case Tree

STCT is a central data structure in the symbolic test case generator of CTGEN. It stores bounded paths

through the CFG. During expansion of a CFG node n, each outgoing edge of n is analyzed and each

of its target nodes receives a new corresponding STCT leaf, even if this target node has already been

expanded. The nodes are labeled with a number k, so that (n,k) is a unique identifier of a STCT node,

while n may occur several times in the STCT if it can be reached on different (or the same cyclic) CFG

paths. The STCT root corresponds to the CFG start node [12].
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Definition 4.3. Given a CFG = (NC,EC,V ), associated STCTl of length l ∈ N is a tuple

STCTl = (Nl,El,Ll,ϕl,σl,ψl,ηl)

where

• Nl ⊆ NC ×N is a finite subset of tree nodes corresponding to CFG nodes which can be reached

with a path of length l,

• El ⊆ Nl ×Guard ×Nl is a finite subset of tree edges corresponding to CFG edges which can be

reached with a path of length l,

• Ll ⊆ Nl is a set of leaves of the tree,

• ϕl : Nl → NC is a function that maps nodes of STCT to the corresponding nodes of the CFG,

• σl : NC →N is a function that keeps track of the number of the STCT nodes corresponding to each

CFG node,

• ψl : EC → E∗
l is a function that maps edges of the CFG to the list of corresponding edges in STCT.

It can also be empty if the source node of the edge is not expanded yet.

• ηl : El → EC is a function that maps edges of the STCT to the corresponding edges of the CFG.

STCT of an arbitrary length we denote as STCT = (N,E,L,ϕ,σ ,ψ,η).

To illustrate the definition of the STCT, we abstract the CFG from Figure 4.1 by ignoring all guards

which have the value true and by replacing the remaining guards through Boolean variables. The node

labels are also simplified (see Figure 4.2). The fully expanded STCT of the abstracted graph is shown

in Figure 4.3. Node n4 can be reached on three different paths: < (n0,a,n1),(n1,b,n2),(n2,ε,n4) >,

< (n0,a,n1),(n1, !b,n3),(n3,ε,n4) > and < (n0, !a,n3),(n3,ε,n4) >. Thus, the STCT has three corre-

sponding nodes: (n4,0), (n4,1) and (n4,2). And corresponding ϕ(n4,0) = n4 and σ(n4) = 3. Further-

more, since nodes n4 and n5 occur several times in the STCT, edge (n4,c,n5) occurs several times as

well. So ψ(n4,c,n5) = {((n4,0),c,(n5,0)), ((n4,1),c,(n5,1)), ((n4,2),c,(n5,2))} and, corresponding,

η((n4,1),c,(n5,1)) = (n4,c,n5).

4.3 Expansion and Selection Strategies

After the definitions of the CFG and the STCT are introduced, we discuss the proposed expansion and

selection strategies. The content of this section was originally published in [72], so here we present an

extended version with detailed examples and algorithm specifications.

To select a new test case, the symbolic test case generator takes an edge in the CFG which is still

uncovered. Subsequently, it finds a corresponding STCT edge and follows it bottom-up to the start

node. The path is then returned to the test data generator by the symbolic test case generator for further

investigation.

The depth-first search used by several test generating tools [18, 93, 47, 23] allows reusing the infor-

mation of the shared part of the execution path, but on the other hand can cause the generator to get
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Figure 4.2: Abstracted control flow graph of the checkAvailable() routine.
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Figure 4.3: Symbolic test case tree of the checkAvailable() routine.
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“stuck” analyzing a small part of the program and generating a lot of new test cases but no (or little)

new coverage. Pex [100] avoids using depth-first and backtracking techniques by storing the information

of all previously executed paths. CTGEN behaves similarly: during the symbolic execution of a path it

stores information already gained in the form of computation histories and path constraints associated

with each branching point of the path under consideration.

Our expansion and selection strategies are motivated as follows:

• The larger the explored range of the variable values participating in the guard conditions closest

to the start node, the higher the probability to cover more branches depending on these variables

further down in the CFG. So we prioritize edges after their proximity to the start node. This allows

to achieve more coverage when it is not possible to explore the function completely due to its size.

Furthermore, this approach minimizes the number of paths that must be explored to achieve 100%

C1 coverage, which in turn reduces the overall time for generation.

• A path is interesting for the test case generation for achieving C1 coverage only if it contains

edges that are still uncovered with a non-trivial guard condition. Otherwise no new coverage can

be achieved by interpreting this path. We expand until the STCT contains a new uncovered edge

whose guard condition is not always true, or until no expansion can find any additional uncovered

edges. At the same time we try to minimize the size of the STCT. We stop the expansion process

as soon as an uncovered edge with a non-trivial guard condition occurs. We call this approach

incremental expansion.

• To further minimize the size of the STCT we incrementally expand only the end node of the path

under consideration (initially the root node), select a continuation for it and hand it over to the

solver. We continue in a step by step manner until the path is complete. After that and according

to prioritization of edges, a new path is selected. If the selected path is infeasible, the responsible

branch is deleted from the STCT and the selection and expansion process is continued with the

alternative branch.

The loop constructs are unwinded according to our expansion strategy: the loop body is incrementally

expanded until the exit condition is reached. If the exit condition can be evaluated to true, the loop

is exited. Otherwise it is further expanded. This process is bounded by a configurable parameter that

defines the maximum possible depth of the STCT.

The incremental approach allows us to use incremental solving supported by the solver SONOLAR.

By this approach the feasibility constraint is not sent all at once but only the constraint corresponding

to the last guard condition. That, in turn, allows us to execute at least a part of the path for which the

complete feasibility constraint would exceed the possibilities of the solver symbolically.

A simple example of our expansion and selection strategy for the CFG from Figure 4.2 is illustrated in

Figure 4.4. After the initial expansion (Figure 4.4(a)) a path < ((n0,0), a, (n1,0)) > is selected (nodes

and edges that belong to the path are drawn blue, those that do not belong are drawn black). After the

path is interpreted and evaluated as feasible, its last node (n1,0) is expanded (Figure 4.4(b)) and a new

path (continuation of the last one) < ((n0,0), a, (n1,0)), ((n1,0)), b, (n2,0)) > is selected. After this

path is interpreted as well, its last node (n2,0) is expanded until the new edge with a guard condition

appears (Figure 4.4(c)). Afterwards, a new path (continuation of the previous one) is selected. This
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Figure 4.4: Expansion/Selection example.
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Figure 4.5: Expansion/Selection example (final).
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process continues until the path is complete (Figure 4.4(d)). Finally a new path, corresponding to the

prioritization of edges, is selected (here < ((n0,0), !a, (n3,0))>) and the whole process is repeated.

Figure 4.5 shows the final version of the STCT expanded corresponding to our algorithm. Compared

to the fully expanded STCT from Figure 4.3 it is smaller in size and with growing size of the CFG this

difference also increases. Furthermore, for functions whose size makes it impossible to fully expand

their STCT, our strategies enable us to explore the path through the function until the end and not only

the first n steps after which the expansion is not possible anymore. The ability to explore the whole path

gives the generator more flexibility and allows CTGEN to maximize the coverage in the last steps of the

path in contrast to an exploration of only the first n steps.

After having described expansion and selection strategies informally, we consider them in a more

systematic way in the next sections.

4.3.1 Incremental Expansion Algorithm

Initialization of STCT0 = (N0,E0,L0,ϕ0,σ0,ψ0,η0) is done as follows:

N0 = {(s,0)}
E0 = /0

L0 = {(s,0)}
ϕ0(v) = start, v = (s,0)

σ0(v) =
{

1, v = start
0, ∀v ∈ NC \{start}

ψ0(e) = /0, ∀e ∈ EC

η0(e) = /0, ∀e ∈ E0

where start denotes the start node of the CFG and (s,0) the corresponding STCT node.

Algorithm 1 shows the function expandLeaf() that performs our incremental expansion algorithm. Its

inputs are the CFG, the existing STCT and the leaf to be expanded. It modifies the STCT by expanding

the given leaf until the STCT receives a new non-trivial guard condition and at least one uncovered edge.

If it is not possible to expand further, we have reached the end of the function or the maximum number

of permitted expansions.

The example from Figure 4.4 illustrates the proposed algorithm. Presume the STCT is expanded as

is shown in Figure 4.4(b). Suppose we call our algorithm expandLeaf() with (n2,0) as a leaf to expand.

Suppose further, that maximal permitted size of the STCT is big, so that we cannot reach it with the

given CFG. In the first iteration all outgoing edges of the corresponding CFG node n2 are considered. In

our example n2 has only one outgoing edge: (n2,ε,n4) (see Figure 4.1). The node n4 was not expanded

yet, hence its counter is zero, so a new leaf (n4,0) is created and a new edge ((n2,0),ε,(n4,0)) as well as

the new leaf is added to the STCT. Although the edge (n2,ε,n4) is still uncovered, its guard condition is

trivial, and so the loop exit condition is not fulfilled (remember, the maximum size is unreachable in our

example and the working set S contains the new leaf (n4,0)). So the expansion is repeated, this time all

outgoing edges of the node n4 – (n4,c,n5) and (n4, !c,n7) – are considered. Two new leaves (n5,0) and

(n7,0) are created and two new edges ((n4,0),c,(n5,0)) and ((n4,0), !c,(n7,0)) as well as newly created

leaves are added to the STCT. This time considered edges have nontrivial guard conditions, and so the

loop exit condition is evaluated to true.
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i n o u t : STCT = (N,E,L,ϕ,σ ,ψ,η) ;

input : (l,k) a l e a f from STCT ;

CFG = (NC,EC,V ) ;

output : expanded − i n d i c a t o r i f e x p a n s i o n was s u c c e s s f u l

f u n c t i o n expandLeaf ( (l,k) , CFG , STCT ) {

newGuard = f a l s e ;

no tCove red = f a l s e ;

expanded = f a l s e ;

S = empty ;

S = S . push ( (l,k) ) ;

i f ( ! maxSize ) {

r e p e a t {

(n,k) = S . pop ( ) ;

n = ϕ((n,k)) ; / / g e t t h e c o r r e s p o n d i n g CFG node

/ / c o n s i d e r i t s s u c c e s s o r s
f o r a l l e = (n, g, n′) in EC {

expanded = t rue ;

/ / c r e a t e new l e a f (n′,k′) c o r r e s p o n d i n g t o t h e CFG node n′
k′ = σ(n′) ;

S = S . push ( (n′,k′) ) ;

/ / up da t e STCT
N = N ∪{(n′,k′)} ; / / add new node
E = E ∪{((n,k), g, (n′,k′))} ; / / add new edge
L = (L\{(n,k)})∪{(n′,k′)} ; / / e r a s e expanded and add new l e a f

/ / a d j u s t domains o f STCT f u n c t i o n s
D(ϕ) = D(ϕ)∪{(n′,k′)} ;

D(η) = D(η)∪{((n,k), g, (n′,k′))} ;

ϕ((n′,k′)) = n′ ;

σ(n′) = k′+1 ;

ψ(e) = ψ(e)∪{((n,k), g, (n′,k′))} ;

η(((n,k), g, (n′,k′))) = e ;

i f ( e not c o v e r e d ) {

no tCove red = t rue ;

}

/ / check t h e guard c o n d i t i o n o f edge e
i f ( g not c o n s t t ru e ) {

newGuard = t rue ;

}

}

} u n t i l ( S . empty ( ) | | ( no tCove red && newGuard ) | | maxSize )

}

re turn expanded ;

}

Algorithm 1: Incremental expansion algorithm.
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i n o u t : STCT = (N,E,L,ϕ,σ ,ψ,η) ;

input : CFG = (NC,EC,V ) ;

output : expanded − i n d i c a t o r i f e x p a n s i o n was s u c c e s s f u l

f u n c t i o n expandAl l ( STCT , CFG ) {

expanded = f a l s e ;

i f ( maximal s i z e i s not r e a c h e d ) {

f o r a l l l in L {

expanded = expanded | | expandLeaf ( l , CFG , STCT ) ;

}

}

re turn expanded ;

}

Algorithm 2: Expansion algorithm.

The presented algorithm expandLeaf() attempts to expand only one STCT leaf which it receives as in-

put. In case that the selection algorithm (discussed in Section 4.3.2) is not able to find any path containing

still uncovered edges with non-trivial guard condition, the function expandAll() is invoked (Algorithm

2). If the maximum size of the STCT is not reached yet, this function attempts to expand all leaves of

the STCT and reports success if at least one of them could be expanded.

4.3.2 Path Selection Algorithm

We distinguish two path selection algorithms: (1) the algorithm for the selection of an initial path e.g. at

the very beginning of the generation process or after the path under consideration was completed and (2)

the algorithm for selection of a continuation of the path under consideration.

First, we consider the algorithm select(), which handles the selection of an initial path (see Algorithm

3). It receives the existing STCT as input, the set of still uncovered CFG edges U and an indicator

expanded which notifies whether the last STCT expansion was successful or not. The edges in set U are

sorted according to their priorities. This algorithm distinguishes two cases: (1) when the last expansion

of the STCT was successful and (2) when it was not successful, i.e. that the STCT was already fully

expanded or has reached its maximum allowed size. If the last expansion was successful, the algorithm

traverses over all uncovered edges. If an edge has a non-trivial guard condition and was already expanded

(this means there is at least one corresponding edge in the STCT), an S-path is selected. The end node of

the selected path is the target node of the chosen edge. The second case reflects the situation when after

a successful expansion it was already attempted to select a path with a new, not already evaluated path

constraint (case (1)). This attempt fails and the attempt to expand the STCT further fails as well (this

can happen, e.g. when the function under consideration has only sequential code without any branches).

In this case the algorithm tries to select the longest path possible. For this reason, it traverses the set of

uncovered edges U in reversed order, to test the edges farthermost from the start node first. Here it is not

important anymore if the guard condition of the edge is trivial or not.

The function selectContinuation() for the selection of a continuation of the path under consideration

is shown in Algorithm 4. Similarly to the previous algorithm it receives as inputs the existing STCT,

the set of still uncovered CFG edges U and an indicator expanded which notifies whether the last STCT

expansion was successful or not. Additionally, a path α is passed, which should be extended. First, the
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input : STCT = (N,E,L,ϕ,σ ,ψ,η)
U ⊆ EC − uncove red edges from CFG

expanded − i n d i c a t o r i f t h e l a s t e x p a n s i o n of t h e STCT was s u c c e s s f u l

output : s e l e c t e d p a t h p
f u n c t i o n s e l e c t ( STCT , U , expanded ) {

p = NULL;

i f ( expanded ) {

f o r a l l e = (u,g,v) in U {

i f ( g not c o n s t t ru e ) {

f o r a l l e′ = (u′, g, v′) in ψ(e) { / / f o r a l l c o r r e s p o n d i n g STCT edges
p = < (s,g0,w), . . . e′ > ; / / pa th from s t a r t node t i l l e′
re turn p ;

}

}

}

} e l s e {

f o r a l l e = (u,g,v) in U in r e v e r s e d o r d e r {

f o r a l l e′ = (u′, g, v′) ∈ ψ(e) { / / f o r a l l c o r r e s p o n d i n g STCT edges
p = < (s,g0,w), . . . e′ > ; / / pa th from s t a r t node t i l l e′
re turn p ;

}

}

}

re turn p ;

}

Algorithm 3: Path selection algorithm.
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algorithm checks whether the path α is defined. If not, the already discussed function select() is invoked

and the path, selected by it, is returned. Otherwise, if the path α is defined, the end node of this path is

considered and all its outgoing STCT edges are put into the working queue Q. This queue is traversed

and, if the corresponding CFG edge is uncovered, an S-path p is selected, whose end node is the target

node of the chosen edge. If the uncovered edge has a non-trivial guard condition, the selected path p is

returned, otherwise selectContinuation() with p as path to expand is called. This is done because we

always try to select a path with a new, not already evaluated path constraint and only a new not trivial

guard condition can cause infeasibility. When the recursive call of selectContinuation() was successful,

the newly selected path is returned, or p otherwise. If the corresponding STCT edge is already covered,

its target node is examined and all outgoing STCT edges are put into the working queue Q. In this way

either a following uncovered edge will be found or the queue will finally be empty since we are working

on a STCT, which is finite and has no cycles.

input : STCT = (N,E,L,ϕ,σ ,ψ,η)
U ⊆ EC − uncove red edges from CFG

α − i n i t i a l p a t h

expanded − i n d i c a t o r i f t h e l a s t e x p a n s i o n of t h e STCT was s u c c e s s f u l

output : s e l e c t e d p a t h p
f u n c t i o n s e l e c t C o n t i n u a t i o n ( α , STCT , U , expanded ) {

p = NULL;

i f ( α i s NULL) {

re turn s e l e c t ( STCT , U , expanded ) ;

}

w = end node o f α ;

Q = {∀(u,g,v) ∈ E : u = w} / / a l l STCT edges w i t h s o u r c e w

whi le ( !Q. empty ( ) ) {

(u,g,v) = Q. pop ( ) ;

i f ( η((u,g,v)) ∈U ) { / / i f c o r r e s p o n d i n g CFG edge i s n o t c o v e r e d
p = < (s,g0,u′), . . . (u,g,v)> ; / / pa th from s t a r t node t i l l c o n s i d e r e d edge
i f ( g not c o n s t t ru e ) {

re turn p ;

} e l s e {

pnew = s e l e c t C o n t i n u a t i o n ( p ) ;

i f ( pnew ) p = pnew ;

re turn p ;

}

} e l s e {

Q = Q∪{∀(u′,g,v′) ∈ E : u′ = v} / / add a l l STCT edges w i t h s o u r c e v
}

}

re turn p ;

}

Algorithm 4: Path continuation selection algorithm.

We illustrate the discussed algorithms on an example from Figure 4.4. Initially selectContinuation()
is called with input α equal to NULL. Function select() is called and, since the edge ((n0,0), a, (n1,0))
has the highest priority, is uncovered and has a non-trivial guard condition, the path p0 =< ((n0,0), a,
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(n1,0))> is selected (Figure 4.4(a)). To select the next path selectContinuation() is called with input p0

and the path p1 =< ((n0,0), a, (n1,0)), ((n1,0)), b, (n2,0)) > is selected (Figure 4.4(b)) already after

the first iteration because the edge ((n1,0), b, (n2,0)) is uncovered and has a non-trivial guard condition.

Its priority is not important anymore since now we search for a continuation of the existing path. For the

next selection selectContinuation() is called with the input p1 and the path p2 =< ((n0,0), a, (n1,0)),
((n1,0)), b, (n2,0)),((n2,0), ε, (n4,0)),((n4,0),c,(n5,0))> is selected (Figure 4.4(c)). This time it has

required the recursive call of selectContinuation() with input p2′ =< ((n0,0), a, (n1,0)), ((n1,0)), b,

(n2,0)),((n2,0), ε, (n4,0)) >, since the edge ((n2,0), ε, (n4,0)) is uncovered but its guard condition is

trivial.

4.3.3 Pruning of Infeasible Branches

Until now we only have considered situations when the solver was able to find a variable set that satisfies

the derived path constraint so that the selected path could be continued. Here we assume the case when

the solver declares the passed constraint as infeasible. To learn from this fact and to avoid the infeasible

path in further generations, all STCT edges, beginning with the edge which caused the infeasibility are

pruned. This task is performed by the algorithm prune(). It takes a STCT and an edge as inputs and

removes the given edge and all its followers from the STCT. Since the source of the pruned edge was

already expanded, it is not a leaf anymore and hence will not be considered for further expansions. In

this way, the infeasible edge is definitely erased from the STCT and cannot occur on any path selected

for further generations.

i n o u t : STCT = (N,E,L,ϕ,σ ,ψ,η)
input : edge e = (u, g, v) from E ;

procedure prune ( e , STCT ) {

/ / f o r a l l f o l l o w i n g edges
f o r a l l e′ = (v, g′, w) in E{

prune ( e′ , STCT ) ;

}

N = N \ v ;

E = E \ e ;

i f ( v ∈ L ) L = L\ v ;

eC = η(e); / / f i n d o u t c o r r e s p o n d i n g CFG edge
ψ(eC) = ψ(eC)\{e} ;

/ / a d j u s t domains o f STCT f u n c t i o n s
D(ϕ) = D(ϕ)\{v} ;

D(η) = D(η)\{e} ;

}

Algorithm 5: Pruning algorithm.

4.3.4 Execution of the Selected Path

During the symbolic execution of a selected path, the collected information in form of a memory spec-

ification and path constraints is stored for future executions. The memory specification is stored at the

33



4 Symbolic Test Case Generation

branching points of the STCT and holds the memory configuration which is the result of the symbolic

execution of all predecessing nodes of the path plus the node where the configuration is stored. The par-

tial path constraints are stored at edges with non-trivial guard conditions and hold the resolution of the

conjunction of all previous guard conditions on the path including the guard condition of the respective

edge. In this way, when the selected path contains a part of an already executed path, it is not necessary

to execute anew the path steps which they have in common.

i n o u t : p − p a t h t o be e x e c u t e d

mem − memory c o n f i g u r a t i o n

Φ − p a t h c o n s t r a i n t

U ⊆ EC − uncove red edges from CFG

procedure e x e c u t e S y m b o l i c ( p , mem , Φ , U ) {

(u, g, v) = κ(p);
i f ( ! u.covered ) {

e x e c u t e E x p r e s s i o n ( u.expression , mem ) ;

u.covered = true;

}

r e p e a t {

c = r e s o l v e C o n s t r a i n t ( g , mem ) ;

i f ( c 
= true ) {

μ(u) = mem;

Φ = Φ∧ c ;

f ((u, g, v)) = Φ;

} e l s e {

U =U \{η((u, g, v))} ;

e x e c u t e E x p r e s s i o n ( v.expression , mem ) ;

v.covered = true;

κ(p)++;

(u, g, v) = κ(p);
}

} u n t i l ( c 
= true | | p i s e x e c u t e d ) ;

}

Algorithm 6: Symbolic execution of a selected path.

Algorithm 6 shows the procedure executeSymbolic() which performs the described approach. Before

we discuss how this algorithm operates, we introduce the following auxiliary functions:

κ : E∗ → E Maps a path to the corresponding step, where the

symbolic execution must be continued.

μ : N → M∗ Maps a STCT node to the memory model stored

there.

f : E → Guard Maps a STCT edge to the partial path constraint

stored there.

The algorithm executeSymbolic() receives as inputs the path p, whose execution must be performed,

memory configuration mem and constraint Φ. The path p can already be partially executed. Thus,

the memory configuration mem specifies the memory state after performing the symbolic execution of
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n0,0

n1,0

n2,0 n3,0

n4,0 n3,1

mem1

mem2 Φ1

Φ2

a

b

!a

!b

Figure 4.6: Example of information storage.

already covered path steps and constraint Φ represents the condition that must hold to reach the path step

which must be executed next, accordingly to the path settings.

The execution starts at the first path step not yet executed. If the source node of the edge correspond-

ing to this step is not yet covered, the procedure executeExpression() (Algorithm 33) is invoked, which

performs the symbolic execution of the expression associated with the considered node. (The principles

of symbolic execution as well as algorithms for performing the symbolic execution of expressions and

resolution of path constraints are discussed in Chapter 5). The results of the performed symbolic execu-

tion are stored in the memory specification mem, and the executed node is flagged as “covered”. Then

the path is executed symbolically step by step. The guard condition of the edge corresponding to the

current step is processed by the algorithm resolveConstraint() (Algorithm 11 is discussed in Chapter

5). If the resolution result became a non-trivial value, the current memory configuration is stored at the

source node of the considered edge, the resolution result is added to the path constraint Φ and is stored

at the edge. Otherwise the CFG edge corresponding to the current path step is removed from the set

of uncovered edges U , the target node of the edge is executed symbolically by invocation of the pro-

cedure executeExpression() and is flagged as covered. Thereupon the current path step is updated and

the procedure is repeated until the resolution result c becomes a non-trivial value or the path is executed

completely.

To illustrate the discussed algorithm, we consider an example in Figure 4.6. Suppose, the path, whose

symbolic execution must be performed is < ((n0,0),ε,(n1,0)), ((n1,0),a,(n2,0)) >. None symbolic

execution was already performed, all edges and nodes are uncovered. Therefore the current path step is

set to ((n0,0),ε,(n1,0)). The node (n0,0) is not yet covered, so that its symbolic execution is performed

first. Afterwards, the resolution of the guard of the edge ((n0,0),ε,(n1,0)) is done and the returned

result is true, since the guard condition is ε . Thus, the edge ((n0,0),ε,(n1,0)) is removed from the set

of uncovered edges, the expression corresponding to the node (n1,0) is executed symbolically and the

path step is set to ((n1,0),a,(n2,0)). The resolution of the guard condition a is performed, which returns

a non-trivial result. Therefore, the current memory configuration mem1 is stored at the node (n1,0) and

the current partial path constraint Φ1 at the edge ((n1,0),a,(n2,0)). Since the last resolution result was

not equal to true, the algorithm terminates.
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4.3.5 Recalling Stored Information

Algorithm 7 shows the procedure reset(), which restores already collected information for the newly

selected path. In order to find the gathered information, the procedure reset() traverses the path p in

reversed order. Since the selected trace must contain uncovered edges, it is safe to assume that the

last node of the trace was not already executed and to start the search at its predecessor. As soon as a

stored memory configuration is detected, the procedure reset() stores it in an output parameter mem and

sets the path step, where the symbolic execution must be continued. Since the memory configuration is

stored at the branching point and the partial path constraint afterwards, the memory configuration will

be found first. Therefore, as soon as a partial path constraint is found, the output parameter Φ is set and

the procedure is stopped. If the path is traversed completely and no path constraint is found, the output

parameter Φ remains true.

i n o u t : p − p a t h t o be r e s e t

output : mem − r e c a l l e d memory s p e c i f i c a t i o n

Φ − r e c a l l e d p a t h c o n s t r a i n t

procedure r e s e t ( p , mem , Φ ) {

κ(p) = head(p);
Φ = true;

i n t e r p r e t e d N o d e R e a c h e d = false ;

foreach (v, g, w) = last(p) downto head(p){

i f ( ! i n t e r p r e t e d N o d e R e a c h e d && μ(v) ) {

mem = μ(v) ;

κ(p) = (v, g, w) ;

i n t e r p r e t e d N o d e R e a c h e d = true ;

}

i f ( f ((v, g, w)) ) {

Φ = f ((v, g, w)) ;

break ;

}

}

Algorithm 7: Resetting the selected path.

To illustrate the discussed algorithm we consider an example in Figure 4.6. After the execution of the

path < ((n0,0),ε,(n1,0)), ((n1,0),a,(n2,0)), ((n2,0),b,(n4,0))> (drawn blue) the memory configura-

tion is stored at nodes (n1,0) (mem1) and (n2,0) (mem2). Path constraints Φ1 and Φ2 are stored at the

edges ((n1,0),a,(n2,0)) and ((n2,0),b,(n4,0)) respectively. Suppose now that the path < ((n0,0),ε,(n1,
0)), ((n1,0), a,(n2,0)), ((n2,0), !b,(n3,1))> is selected. The first analyzed node (n2,0) holds the mem-

ory configuration mem2. Consequently, the output parameter mem is set and the next path step to execute

is set to ((n2,0), !b, (n3,1)). The edge holds no information about path constraints. Thus, the procedure

continues with the next path step ((n1,0),a,(n2,0)). Since interpretedNodeReached is already

set to true, only the corresponding edge is examined. It holds partial path constraint Φ1, so that the

algorithm terminates.
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4.4 The Generation Algorithm

In this section we present the complete generation algorithm. The procedure generateTestCases() takes

the CFG of a module to be explored as input (Algorithm 8). First, it performs initializations: the STCT

and the set of uncovered edges U receive their initial values. Then it carries out the initial STCT expan-

sion with the CFG start node as the leaf to be expanded and the initialization of the memory configuration.

The actual generation algorithm is fulfilled in a loop that terminates when the coverage goal was

achieved or no path can be selected and no expansions are possible anymore. In general, the algorithm

picks a path according to the edge priorities (the call of selectContinuation() with path equal to NULL)

and tries to complete this path step by step. So the interior loop terminates when the path under consider-

ation is completed (i.e the end node of the path is the CFG exit node) or the coverage goal was achieved

or no path selection and no expansion are possible anymore. When the path selection was successful, the

chosen path is reset first (Algorithm 7). In this operation all already cumulated information is recalled

so that no repeated actions take place. Then, as long as the path is not executed completely and is feasi-

ble, the symbolic execution is performed step by step by invocation of the procedure executeSymbolic()
(Algorithm 6). After each termination of executeSymbolic() the solver is called. If the solver declares

the path condition as infeasible, the pruning algorithm is invoked and the generation algorithm falls back

to the last feasible path, which then will be continued with an alternative branch. Otherwise, the in-

terpreted edge is deleted from the set of uncovered edges U , the current path step is updated and the

interpretation process continues until the path is executed completely or turns out to be infeasible. If

the path could be executed completely, the last node of the path is expanded and the path is saved as

lastFeasiblePath for a possible fallback. In the next loop iteration the continuation of this path is

selected and the execution process is repeated until the path is complete. When the path is completed,

we get a complete test case. Thus, the solution found by the solver is processed and a text representation

of the test case in RT-Tester syntax is generated. We do not discuss the generation of a textual represen-

tation in this thesis since this generation consists in most cases only of a straightforward processing of

the found solution. If the generation of a textual representation requires more complicated transforma-

tions, e.g. like in case of stub generation, the proceeding is illustrated by examples to the corresponding

symbolic execution algorithms (see e.g. Section 5.12.2). Afterwards, the path is set to an initial value

and the process is repeated.

If no path could be selected by the selection algorithm and the last expansion was successful, the

uncovered part of a function under consideration contains only sequential code. In this case the function

expandAll() is invoked to ensure that nothing is missed and selectContinuation() is called one more

time. Now, if the expansion was not successful, the selection algorithm will also accept a path that

contains no non-trivial guard conditions. Otherwise, if the expansion was successful, according to the

expansion algorithm the STCT should now contain a new uncovered edge so that the selection algorithm

will be able to select a new path.

However, if no expansion is possible anymore, no path can be selected, the STCT maximum size is

not exceeded and the CFG still has uncovered edges, this means, that these edges are unreachable and

the generation algorithm has detected unreachable code.
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input : CFG = (NC,EC,V ) ;

procedure g e n e r a t e T e s t C a s e s (CFG ) {

STCT = (N0,E0,L0,ϕ0,σ0,ψ0,η0) ;

U = EC ;

expanded = expandLeaf ( s , CFG , STCT ) ;

i n i t i a l i z e mem ;

whi le (U 
= /0 ) {

p = NULL;

l a s t F e a s i b l e P a t h = NULL;

f e a s i b l e = true ;

whi le (U 
= /0 && p i s not c o m p l e t e ) {

i f ( ! f e a s i b l e ) {

p = l a s t F e a s i b l e P a t h ;

f e a s i b l e = t rue ;

}

p = s e l e c t C o n t i n u a t i o n ( p , STCT , U , expanded )

i f ( p != NULL) {

r e s e t ( p , mem , Φ ) ;

whi le ( p i s not e x e c u t e d && f e a s i b l e ) {

e x e c u t e S y m b o l i c ( p , mem , Φ , U ) ;

f e a s i b l e = s o l v e ( Φ ) ;

e = κ(p);
i f ( ! f e a s i b l e ) {

p rune ( e , STCT ) ;

} e l s e {

U =U \{η(e)} ;

κ(p)++;

}

}

i f ( f e a s i b l e ) {

(u,g,w) = last(p) ;

i f (U 
= /0 && p i s not c o m p l e t e && w ∈ L ) {

expanded = expandLeaf ( w , CFG , STCT ) ;

}

l a s t F e a s i b l e P a t h = p ;

}

} e l s e i f ( expanded ) {

expanded = expandAl l ( STCT , CFG ) ;

} e l s e {

break ;

}

}

i f ( p == NULL && ! expanded ) {

break ;

}

p r o c e s s S o l u t i o n ( ) ;

p = NULL;

}

}

Algorithm 8: Complete generation algorithm.38
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Symbolic execution was introduced in the 70s [65, 28, 27, 20, 90, 60] as an improved testing technique.

Recently it got again a new interest and became a relevant field of research due to enhanced methods

in constraint solving technology, the increase of computational power and algorithmic advances so that

symbolic execution became more tractable [24]. It finds now application in different domains [84, 46,

29]:

• Test data generators use symbolic execution to build constraints on input data;

• Formal verification systems apply symbolic execution to derive logical predicates which are then

proved by theorem provers;

• Development tools use symbolic execution to exercise or examine program transformations.

In this chapter we first give an introduction to symbolic execution (Section 5.1) and discuss its limita-

tions (Section 5.2). Then we introduce the memory model developed in our research group and used in

this dissertation (Section 5.3). We discuss the algorithm for symbolic execution (Section 5.4) that was

used as a foundation to reason about complex data types like structures, unions, arrays and pointers (Sec-

tions 5.6-5.11). Besides, we demonstrate the principles of operation of the constraint generator (Section

5.5). And finally, we describe how the handling of function calls is solved (Section 5.12).

5.1 Introduction to Symbolic Execution

Symbolic execution is a well-known technique, that addresses the problem of automatic generation of

test inputs. It was introduced in 1976 by James C. King [65]. Symbolic execution is similar to a normal

execution process, the difference being that the values of program inputs are seen as symbolic variables,

not concrete values. In this way, “it offers an advantage that one symbolic execution may represent a
large, usually infinite, class of normal executions “ [65].

During symbolic execution when a variable is updated to a new value it is possible that this new

value is an expression over symbolic variables. When the program flow comes to a branch where the

branch condition depends on a symbolic variable, this condition can be evaluated both to true or to false,

depending on the value of the symbolic variable. Through the symbolic execution of a path, it becomes

a path condition, which is a conjunction of all branch conditions occurring on the respective path.

The state of symbolic execution includes the values of program variables, a program counter and a

path condition. The symbolic execution tree represents paths investigated during the symbolic execution

of a module. The tree nodes are associated to executed statements and represent program states. The

nodes are connected by directed edges which represent program transitions.

Figure 5.1 shows an example of the symbolic execution tree for the function diff(), that calculates

the absolute value of a difference of two integers. On the left side (Figure 5.1(a)) the code of the function
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1 i n t d i f f ( i n t x , i n t y ) {
2 i f ( x > y ) {
3 x = x − y ;
4 i f ( x < 0) {
5 asser t ( fa lse ) ;
6 }
7 return x ;
8 } else {
9 y = y − x ;

10 i f ( y < 0) {
11 asser t ( fa lse ) ;
12 }
13 return y ;
14 }
15 }

(a) The C code of the diff() routine.

x = α, y = β
Φ = true

x = α, y = β
Φ = α > β

x = α, y = β
Φ = α ≤ β

x = α − β , y = β
Φ = α > β

x = α, y = β −α
Φ = α ≤ β

x = α − β , y = β
Φ = α > β ∧α −β < 0

x = α − β , y = β ,
returnValue = α −β

Φ = α > β ∧α −β ≥ 0

x = α, y = β −α
Φ = α ≤ β ∧β −α < 0

x = α, y = β −α,
returnValue = β −α

Φ = α ≤ β ∧β −α ≥ 0

Infeasible! Infeasible!

(b) The symbolic execution tree of the diff() routine.

2 2

3 9

4 4 10 10

Figure 5.1: Symbolic execution example.

is listed, on the right side (Figure 5.1(b)) – the corresponding symbolic execution tree is shown. To

simplify the understanding, we denote all variables with English letters (a, b, . . . ) and all symbolic values

with Greek letters (α, β , . . . ). returnValue denotes the symbolic return value of the function. Initially,

the path constraint Φ is set to true and the variables x and y have symbolic values α and β respectively.

At each branching point an assumption about the inputs has to be made to distinguish between alternative

paths. These assumptions are added to the path condition Φ. For example, the if-statement in line 2

can be evaluated to true as well as to false, so that both alternatives then and else are possible for

this statement. Therefore the path condition Φ is updated accordingly: it becomes Φ = α > β for the

then-branch and Φ = α ≤ β for the else-branch.

Path conditions are used to indicate infeasible paths. If a path condition cannot be evaluated to true,

the symbolic execution of the corresponding path will not be continued, since there is no input data that

could execute it. This means, that this symbolic state is unreachable. If no feasible path that executes a

particular statement exists, the statement is unreachable. For example, in Figure 5.1(b) the path condition

Φ = α > β ∧α −β < 0 at the leftmost node is infeasible and, since there is no other path that executes

the statement in line 5, this statement is unreachable.

To reason about path conditions and hence about feasibility of paths, a constraint solver is used. When

the solver determines a path condition as feasible, it calculates concrete values which can then be used

as concrete inputs to explore the corresponding path.

King and his colleagues have implemented the presented principles of symbolic execution in EFFIGY,

the interactive symbolic executor. This system was able to handle simple programs in a PL/I style

programming language. King evaluated it on the basis of a couple of small examples and showed that

his approach was promising. However, the limitations of theorem provers of that time restrained the

possibilities of EFFIGY. For example, the executor was not able to handle variable storage-referencing,

i.e. when the array read or write was dependent on a symbolic expression, and it could deal only with

integer variables.
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5.2 Limitations of Symbolic Execution

Despite recent development in the field of decision procedures and constraint solvers, rapid growth of

computing power and new algorithmic developments, symbolic execution still suffers from a number of

limitations. One of the limitations is, that the symbolic execution tree can become endless in case of

loops. To avoid this, we limit the growth by a boundary – i.e. the depth of the search tree is restricted

by a parameter. Another scalability problem in symbolic execution is path explosion. The number of

paths in a program that must be explored grows exponentially in branching structure and even worse in

the loops. To deal with this problem, we developed search and expansion strategies discussed in Chapter

4.

Further limitations of symbolic execution were listed in a case study [89]. Although the study analyzes

concolic testing tools, the detected restrictions are caused by symbolic execution, since as soon as the

concolic testing tool falls back to random testing due to limitation of symbolic execution, it loses all

advantages by exploration of new paths. The authors distinguish the following limitations:

1. Float/double data type variables. This limitation is inherited from the underlying constraint

solver. Symbolic execution is dependent on the availability of a solver to handle constraints with

float or double variables and since many constraint solvers do not support this, the absence of this

characteristic was selected as one of the limitations.

2. Non-linear arithmetic operations including multiplication, division and modular. Similar to the

previous limitation, here the limitation is caused by the underlying constraint solver.

3. Bitwise operations. Similar to the previous two limitations in this case the restriction is condi-

tioned rather by solver limitations and is not supported by some test generating tools.

4. External function calls. This limitation is caused by the fact that symbolic execution cannot

handle code that is not available. This includes invocation of standard or user library functions or

other components, whose code is not accessible.

5. Pointers. It is not possible to handle pointers in the same way as scalar variables by assigning

them a symbolic value, since the program behavior is influenced not only by the concrete value of

the pointer but also by the contents of the memory where the pointer points to. Besides, pointers

introduce further problems through aliasing, when the value of a variable can be changed not only

by a direct assignment but also by dereferencing of the pointer pointing to this variable.

6. Symbolic offsets. This limitation was pointed out already by King in his introduction of symbolic

execution [65] and is still an issue [91]. Array access dependent on a symbolic expression may be

ambiguous in many cases even if all information collected about inputs that occur in this symbolic

expression is analyzed.

7. Function pointers. De-referencing of the function pointer pointing to an external function call

consequently leads to the same troubles, but the problem is even more complicated when a function

pointer is used as an input – in this case any function can be invoked by means of this function

pointer.

In our opinion the following two limitations are missing in the study [89]:
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1 e x t e r n i n t c a l c T e s t ( i n t c ) ;

2 f l o a t g l o b a l A r r [ 1 0 ] ;

3

4 void example1 ( char ∗p , i n t c ) {

5 i f ( p != NULL) {

6 i f ( c % 2 == 0) {

7 (∗ p ) = c a l c T e s t ( c ) ;

8 }

9 }

10 }

11

12 void example2 ( i n t i ) {

13 i f ( g l o b a l A r r [ i ] > 0 ) {

14 . . .

15 }

16 }

Figure 5.2: Limitations of symbolic execution.

8. Recursive data structures like trees, linked lists or queues. Like by simple pointers symbolic

values cannot be used for such data structures, since feasibility of path constraints involving values

of such data types depends not only on the concrete values of these variables but also on the shape

of the corresponding data structure.

9. Multithreading. The introduction of parallelism leads to exponential growth of the number of

interleavings of concurrent events. Executing such programs symbolically requires the support of

partial order reduction, which needs derivation of interconnections between memory accesses in

the program [92]. This involves alias analysis, pointer arithmetics etc.

We illustrate some of these limitations by the example from Figure 5.2. The statement in line 5

contains a pointer limitation, since parameter p is a pointer and is used in a comparison. Line 6 contains

a non-linear arithmetic operation and line 7 an external function call. Line 13 contains two limitations:

variable storage-referencing and usage of a float variable.

The authors [89] evaluated classified limitations on six industrial and open source systems for twelve

test data generating tools, among them KLEE [22], EXE [23] and Pex [100]. The results showed that

most dominant limitations, which prevented tested tools from generating high coverage, are pointers and

external function calls.

The test generator developed in the scope of this dissertation successfully overcame limitations 1-6.

The resolution of some limitations (1-3, 6) is due to the underlying constraint solver SONOLAR [82].

Other limitations (4-5) were solved by the techniques of symbolic execution designed in this dissertation.

These techniques are demonstrated in the following sections of this chapter.

5.3 Memory Model

Due to aliasing in C/C++ the value of a variable can be changed not only by directly referencing its name

but also by assignments to dereferenced pointers pointing to this specific variable. In the case of arrays

different index expressions may reference the same array element. This makes it difficult to identify
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variable changes along program paths involving pointer and array expressions. To solve this problem, a

memory model consisting of a history of memory items was introduced in [80, 70]:

Definition 5.1. Memory item m is defined as the following structure:

m =de f m.v0 m.v1 m.a m.t m.o m.l m.val m.c

where

• m.v0 is the first computational step where m is valid,

• m.v1 is the last computational step where m is valid, or ∞ for items valid beyond the actual com-

putational step,

• m.a is the symbolic base address,

• m.t is the type of the specified m.val,

• m.o is the start offset from base address in bits, where value is stored,

• m.l is the offset from the base address to first bit following the stored value, so m.l−m.o specifies

the bit-length of the memory location represented by the item,

• m.val is the value specification,

• m.c is the validity constraint.

Each memory item is defined by its base address, offset, length, value expression and time interval

(measured in computational steps) where it is valid. Computational steps are defined as memory mod-

ifications which are stored in corresponding memory items. Memory items are valid within an interval

[m.v0, m.v1] where the lower bound defines the first and the upper bound the last computation in which

the memory item was a part of the configuration. Furthermore, the stored values are not resolved to

concrete or abstract valuations but are specified symbolically.

We illustrate the concept of the memory item by an example. Suppose, the symbolic execution is

performed on a 32-bit architecture and has arrived in computational step n by statement c1 = c - 1,

where c and c1 are variables of type char. The following memory item m will be created:

m =de f n ∞ &c1 char 0 8 cn −1 true

To represent memory blocks representing the same or related values (for example array values), the

following concept is introduced:

Definition 5.2. Family of memory items is defined as the following structure [80]:

mp0,...pk =de f v0 v1 a t o(p0, . . . , pk) l(p0, . . . , pk) val(p0, . . . , pk) c(p0, . . . , pk)

so that
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mp0,...pk =de f {m′ | m′.v0 = v0 ∧ m′.v1 = v1 ∧ m′.a = a ∧ m′.t = t ∧
(∃ p′0, . . . , p′k : m′.o = o [ p′0/p0, . . . , p′k/pk ] ∧
m′.l = l [ p′0/p0, . . . , p′k/pk ] ∧
m′.val = val [ p′0/p0, . . . , p′k/pk ] ∧
m′.c = c [ p′0/p0, . . . , p′k/pk ] ) }

For example, the integer array a[10], which values are all set to zero on a 32-bit architecture, would

be represented as

mi =de f n ∞ &a[0] int 32 · i 32 · i+32 0 0 ≤ i∧ i < 10

where i ∈ {0, . . . , 9}. In this way, all ten elements of this array are represented with a single memory

item, each element aligned according to its index on an index-dependent offset from the base address

&a[0]. Consequently, if we are interested in the second array element (i is equal to 1) we can derive, that

the element is located at the offset 32 up to 64 and its value is 0.

Definition 5.3. A symbolic execution space SS of a module U with corresponding CFG = (NC,EC,V ) is

defined as [80]:

SS =de f NC ×N0 ×M
M =de f dataSegment ×heapSegment × stackSegment

dataSegment =de f M− Item∗

heapSegment =de f M− Item∗

stackSegment =de f M− Item∗

M− Item =de f N0 ×{N0 ∪∞}×BaseAddress×Types×Offset ×OffsetPlusLength×
Value×Constraint

BaseAddress =de f String
Offset =de f OffsetPlusLength =de f Value =de f Constraint =de f Expr(Sym×N0)

Sym =de f symbols of U ∪P
P =de f parameters for families of memory items

Every symbolic state is a triple (node, n, mem), where node is a node in the corresponding CFG,

characterizing the current progress of the symbolic execution, n is a computational step counter and mem
the current memory state. The memory is divided into data segment, heap segment and stack. Memory

items are stored in one of these partitions corresponding to the allocation of the associated variable.

Offsets, values and constraints are specified symbolically by means of expressions over variables of

module U and auxiliary parameters from the specification of families of memory items (as we illustrated

in the last example).

As we will show, this approach – despite aliasing – allows not only to find out the actual memory area

where a new value is written to but also enables us to handle pointer comparisons and pointer arithmetics.
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5.4 Basic Symbolic Execution Algorithm

Symbolic execution is performed after the following rule [80]:

ni
g−−→CFG n j

(ni,n,mem)−−→G (n j,n+1,mem′)
,

where

• ni, n j are CFG nodes,

• g−−→CFG denotes an edge in the CFG with the guard condition g,

• (ni,n,mem) and (n j,n,mem) represent consecutive symbolic states,

• −−→G denotes symbolic execution step (G stands here for “GIMPLE operational semantics”).

According to this rule, the symbolic execution step can be performed on the symbolic level whenever

a corresponding edge exists in the CFG of the module U . However, this transition can be infeasible, i.e.

that there exists no assignment of the inputs that evaluates the corresponding path constraint to true. In

this case this step is not executed.

A symbolic execution step is performed in three phases [80]:

1. For each base address and offset which are modified by the current statement a new memory item

m′ is created, that should be added to the memory configuration.

2. For each new memory item m′ a check is performed, if m′ invalidates any of the existent memory

items, i.e. all memory items m whose corresponding memory area overlaps with the memory area

of the new memory item m′ are found. This can happen only if the base addresses of m and m′ are

equal and offset-characterized areas of m and m′ have a non-empty intersection.

3. For each invalidated memory item new memory items m′′
i are created. These memory items char-

acterize the memory area of m which could still stay unaffected by m′. In case when memory areas

of m and m′ are equal, no memory items m′′
i will be created but m′ replaces m completely.

We illustrate the described procedure by the following example. Suppose, there is an integer array

a[10] whose values were set to zero in the n0-th computation step. On a 32-bit architecture it is

represented as follows:

m = n0 ∞ &a[0] int 32 · i 32 · i+32 0 0 ≤ i∧ i < 10

Suppose further, that there were no modifications of any element of this array until in the n-th computa-

tional step the fourth element of this array was set to k: a[3] = k. To perform this computational step

according to the described approach we:

1. Create a new memory item

m′ = n ∞ &a[0] int 96 128 0 true
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Figure 5.3: Memory item invalidation example.

2. Check the existent memory items for invalidation. We find the memory item m, since m and m′

refer to the same base address and their memory areas overlap. (Figure 5.3 shows the memory

areas corresponding to the participating memory items). We invalidate the memory item m:

m = n0 n &a[0] int 32 · i 32 · i+32 0 0 ≤ i∧ i < 10

3. For the unaffected memory area of the memory item m we create two new memory items (see

Figure 5.3)

m′′
1 = n ∞ &a[0] int 32 · i 32 · i+32 0 0 ≤ i∧ i < 3

m′′
2 = n ∞ &a[0] int 32 · i 32 · i+32 0 4 ≤ i∧ i < 10

Now we will analyze the effect of the symbolic execution on the state space SS formally. In the next

section we define rules specifying stack variable definition and variable assignment.

5.4.1 Memory Model Initialization and Variable Assignment

First, we introduce auxiliary functions that we need for further definitions and algorithms [80]:

β : Selectors → BaseAddress Maps a selector to the corresponding base address.

τ : Selectors → Symbols Maps a selector to the type of the corresponding

variable.

ω : Selectors → Expression Maps a selector to the corresponding symbolic offset

expression.

bitsizeof: Selectors → N Maps a selector to the length of selected memory in

bits.

σ : BaseAddress×M → M− Item∗ Maps a base address to the stack, heap or global data

accordingly to the current memory configuration.

υ : Expression → N Returns a version of the given expression.
Definitions of all auxiliary functions used in this chapter can be found in Section 5.14.

Definition 5.4. The effect of the stack variable definition (typex x;) on the state space Ss is specified
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as follows [80]:

mem′ =de f (mem.dataSegment, mem.heapSegment, mem.stackSegment ∩{m}).

Where m is the memory item originated by the stack variable definition, which is specified in the follow-

ing way:

m =de f n ∞ &x typex 0 bitsizeof(typex) Undef true

Here Undef reflects that the value of the corresponding variable is still undefined. A stack variable

definition affects only the stack segment.

To be able to handle contents of pointer inputs, as well as of pointer members in structures, the gen-

erator simulates the memory corresponding to these pointers: it creates auxiliary variables related to the

input pointers and constructs associated memory items as it is shown in the following definition.

Definition 5.5. The effect of the parameter definition (funcName(typex x, ..)) on the state space

Ss is specified as follows:

mem′ =de f (mem.dataSegment, mem.heapSegment, mem.stackSegment ∩S).

Where S is the set of memory items originated by the parameter definition, which is specified in the

following way:

1. typex is not a pointer or structure:

m =de f n ∞ &x typex 0 bitsizeof(typex) x0 true

S = {m}
Here x0 refers to the initial value of the parameter and reflects that this is an input.

2. typex is a pointer to a type typey, where typey is not a structure or union:

m1 =de f n ∞ &x typex 0 bitsizeof(typex) &x@Pn true

m2 =de f n ∞ &x@P[0] typey[s] 0 bitsizeof(typey) · s x@P0 true

S = {m1,m2}
Here x@P is an auxiliary array of size s, which simulates the memory where the pointer x points

to. The version 0 of the value of the memory item m2 indicates that this is an input.

3. typex is a structure:

m1...i =de f

⎧⎨
⎩

n ∞ &x typex li−1 li x0 true if i-th member is not a pointer

n ∞ &x typex li−1 li x.mi@Pn true otherwise

For all members mi, so that typei is a pointer to a type type′i:

S1 =
⋃

i{memory items created by definition of parameter type′i x.mi@P}
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S = {m1, . . . ,mi}∪S1

Here x.mi@P is an auxiliary variable, which simulates the variable where the member x.mi points

to.

4. typex is a pointer to a type typey, where typey is a structure:

m0 =de f n ∞ &x typex 0 bitsizeof(typex) &x@Pn true

S1 = {memory items created by definition of parameter typey x@P}

S = {m0}∪S1

5. typex is a pointer to a type typey, where typey is a union:

m1 =de f n ∞ &x typex 0 bitsizeof(typex) &x@Pn true

m2 =de f n ∞ &x@P typey 0 bitsizeof(typey) x@P0 true

S = {m1,m2}
Since an assignment to an array member of a union type is not supported (see Section 5.10.1),

here x@P is an auxiliary variable, which simulates the memory where the pointer x points to. The

version 0 of the value of the memory item m2 indicates that this is an input.

A parameter definition affects only the stack segment.

Recursive data types like lists etc. are not supported. However, as the main application field of

the developed test generator is embedded systems, this limitation is not crucial, since according to the

guidelines for embedded systems MISRA-C [10]: “Dynamic heap memory allocation shall not be used.”
An example with pointer parameters of structure type is discussed in Section 5.8.1.

Definition 5.6. The effect of the global variable definition (typex x;) on the state space Ss is specified

as follows:

mem′ =de f (mem.dataSegment ∩S, mem.heapSegment, mem.stackSegment).

Where S is the set of memory items originated by the global variable definition, which is specified in

the same way as was defined for the parameter definition (rules 1-5). A global variable definition affects

only the data segment.

Definition 5.7. The effect of the assignment to a stack or global variable (sel = expr;) on the state

space Ss is specified by procedure call [80]:

updateByAssignment(sel, expr, n, mem); mem′ = mem;

where
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• sel is an arbitrary selector that can be an identifier of an atomic variable, structure access, array

element or mixed structure/array identifier, for example of the form v.field1[i],

• expr is an expression that should be assigned to the identifier sel,

• n is the current computation step,

• mem is the current memory specification.

Assignment to a stack or global variable affects the stack segment or the global data segment.

i n o u t : mem − c u r r e n t memory s p e c i f i c a t i o n

input : sel − s e l e c t o r o f t h e i d e n t i f i e r

exp − e x p r e s s i o n t h a t s h o u l d be a s s i g n e d t o t h e i d e n t i f i e r sel
n − c u r r e n t c o m p u t a t i o n s t e p

procedure upda teByAss ignment ( sel , exp , n , mem ) {

/ / c r e a t e new memory i t e m
m′.v0 = n;

m′.v1 = ∞;

m′.a = β (sel);
m′.t = τ(sel);
m′.o = ω(sel)n;

m′.l = ω(sel)n+ b i t s i z e o f ( sel ) ;

m′.val = exp;

i f ( υ(exp) == ∞ ) {

υ(m′.val) = n ;

}

m′.c = true;

/ / i n s e r t new memory i t e m i n t o t h e memory c o n f i g u r a t i o n
i n s e r t (m′,n,mem);

}

Algorithm 9: Effect of the assignment on the memory specification.

Algorithm 9 shows the procedure updateByAssignment(), which specifies how a new memory item

is created. Particularly, the validity period is defined, the base address and the type of the variable

corresponding to the selector sel are calculated and set, offset and length of the memory location are

calculated symbolically, the value is set according to the right-hand side of the expression. Symbolic

expressions defining offset, length and validity constraint get a version corresponding to the current

computational step. Symbolic expression defining the value of the memory item receives an exceptional

handling: in case when the version of the assigned expression is not set, the version of the value is

set corresponding to the current computational step like for all other symbolic expressions. Otherwise,

the value keeps the version of the assigned expression. This exceptional handling is involved in the

processing of undefined function calls as is discussed in Section 5.12.2.

As was discussed in Chapter 4 we perform an incremental approach of a path execution by which each

non-trivial guard condition is checked for feasibility before the execution of the successive nodes is done.
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This ensures the existence of the created memory item. The path constraint containing the conjunction of

the already evaluated guard conditions is stored apart from the memory items and therefore the validity

constraint of the created memory item can be set to true.

Furthermore, updateByAssignment() invokes the procedure insert() (Algorithm 10) that performs the

insertion of the new memory item into the current memory configuration.

i n o u t : mem − c u r r e n t memory s p e c i f i c a t i o n

input : m′ − memory i t em t o be i n s e r t e d i n t o t h e memory s p e c i f i c a t i o n

n − c u r r e n t c o m p u t a t i o n s t e p

procedure i n s e r t ( m′ , n , mem ) {

/ / f i n d o u t c o r r e s p o n d i n g segment
S = σ(m′.a,mem);
U = /0;

foreach m = last(S) downto head(S){

i f ( m.v1 == ∞ && m′.a == m.a ) {

/ / check i f memory i t e m s o v e r l a p
i f (¬ ( m′.l ≤ m.o∨m.l ≤ m′.o ) ) {

/ / i n v a l i d a t e found memory i t e m
m.v1 = n;

/ / r ema ins o f t h e o l d i t e m on t h e l e f t s i d e
c′′1 = m.c ∧ m′.c ∧ m.o < m′.o ∧ m′.o < m.l;
m′′

1 = (n, ∞, m.a, m.t, m.o, m′.o, m.val, c′′1);
i f ( c′′1 i s f e a s i b l e ) {

U =U ∪{m′′
1} ;

}

/ / r ema ins o f t h e o l d i t e m on t h e r i g h t s i d e
c′′2 = m.c ∧ m′.c ∧ m.o < m′.l ∧ m′.l < m.l;
m′′

2 = (n, ∞, m.a, m.t, m′.l, m.l, m.val, c′′2);
i f ( c′′2 i s f e a s i b l e ) {

U =U ∪{m′′
2} ;

}

}

}

}

S = S∪U ∪{m′};

}

Algorithm 10: Insertion of the new memory item into the memory specification.

To insert a new memory item, the procedure insert() performs a loop over all matching memory

items in the current memory configuration (i.e. all valid memory items with the same base address as a

new memory item m′). In this loop for all memory items overlapping with the newly created item the

invalidation of the found memory items and the creation of new memory items for unaffected memory
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areas is performed. Thereby two new memory items are created:

1. Memory item m′′
1. It captures the remains of the address range of the old memory item m on the

left from the address range of the new memory item m′ (see also example in Figure 5.3).

2. Memory item m′′
2. It captures the remains of the address range of the old memory item m on the

right from the address range of the new memory item m′ (see also example in Figure 5.3).

In both situations we check, if the created memory item m′′
i is feasible (i.e. its validity constraint is

feasible) and only in this case it is inserted into the memory configuration.

We illustrate the presented algorithm by the following example:

1 # d e f i n e INDEX1 3

2 # d e f i n e VALUE1 32

3 # d e f i n e INDEX2 0

4 # d e f i n e VALUE2 33

5 i n t example1 ( unsigned i n t x ) {

6 unsigned i n t a [ 1 0 ] ;

7 a [ INDEX1 ] = VALUE2;

8 a [ INDEX2 ] = VALUE1;

9 i f ( a [ x ] == VALUE1)

10 . . .

11 }

This function has the following GIMPLE representation:

1 i n t example ( unsigned i n t x ) {

2 unsigned i n t a [ 1 0 ] ;

3 unsigned i n t D_1710 ;

4 a [ 3 ] = 3 3 ;

5 a [ 0 ] = 3 2 ;

6 D_1710 = a [ x ] ;

7 i f ( D_1710 == 32)

8 . . .

9 }

Now we process this GIMPLE code line by line. First stack variable definition for all local variables and

input parameters are done:

m1 = (1, ∞, &x, 0, 32, unsigned int, x0, true)
m2 = (2, ∞, &a[0], 0, 320, unsigned int, Undef, true)
m3 = (3, ∞, &D_1710, 0, 32, unsigned int, Undef, true)

The memory item m2 represents the family of memory items corresponding to the array a[10]. Since

m2 corresponds to a contiguous memory area and to simplify the understanding, we omit here and in all

following examples the parameterized representation.

Next, the statement in line 4 is executed. The new memory item m4 is created, valid from the cur-

rent computational step. The old memory item m2 is invalidated and two additional memory items are

produced: m5 and m6. The memory item m5 corresponds to the memory item m′′
1 from the insertion

algorithm (Algorithm 10) and represents the remains of the address region of the old memory item m2

to the right side of the address region of the new memory item m4. The memory item m6 corresponds
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to the memory item m′′
2 from the insertion algorithm and represents the remains of the address region of

the old memory item m2 to the left side of the address region of the new memory item m4. The memory

configuration is now as follows:

m1 = (1, ∞, & x, 0, 32, unsigned int, x0, true)
m2 = (2, 3, &a[0], 0, 320, unsigned int, Undef, true)
m3 = (3, ∞, &D_1710, 0, 32, unsigned int, Undef, true)
m4 = (4, ∞, &a[0], 96, 128, unsigned int, 33, true)
m5 = (4, ∞, &a[0], 0, 96, unsigned int, Undef, true)
m6 = (4, ∞, &a[0], 128, 320, unsigned int, Undef, true)

The statement in line 5 is proceeded in the same manner as the previous one. Though the memory

configuration contains three valid items with base address &a[0] (m4, m5 and m6), only one (m5) cor-

responds to the memory area that overlaps with the newly created item m7. Furthermore, no memory

item, corresponding to the m′′
1, exists, since the new memory item m7 overlaps with the leftmost address

region of the old item m5. For this reason, only two new memory items were inserted into the memory

configuration:

m1 = (1, ∞, &x, 0, 32, unsigned int, x0, true)
m2 = (2, 3, &a[0], 0, 320, unsigned int, Undef, true)
m3 = (3, ∞, &D_1710, 0, 32, unsigned int, Undef, true)
m4 = (4, ∞, &a[0], 96, 128, unsigned int, 33, true)
m5 = (4, 4, &a[0], 0, 96, unsigned int, Undef, true)
m6 = (4, ∞, &a[0], 128, 320, unsigned int, Undef, true)
m7 = (5, ∞, &a[0], 0, 32, unsigned int, 32, true)
m8 = (5, ∞, &a[0], 32, 96, unsigned int, Undef, true)

Next, the statement in line 6 is executed. A new memory item for variable D_1710 is created and the

old one is invalidated. No further new items are created, since memory item m9 replaces memory item

m3 completely. Afterwards, the memory configuration is as follows:

m1 = (1, ∞, &x, 0, 32, unsigned int, x0, true)
m2 = (2, 3, &a[0], 0, 320, unsigned int, Undef, true)
m3 = (3, 5, &D_1710, 0, 32, unsigned int, Undef, true)
m4 = (4, ∞, &a[0], 96, 128, unsigned int, 33, true)
m5 = (4, 4, &a[0], 0, 96, unsigned int, Undef, true)
m6 = (4, ∞, &a[0], 128, 320, unsigned int, Undef, true)
m7 = (5, ∞, &a[0], 0, 32, unsigned int, 32, true)
m8 = (5, ∞, &a[0], 32, 96, unsigned int, Undef, true)
m9 = (6,∞, &D_1710, 0, 32, unsigned int, a6[x6], true)

The if statement in line 7 specifies a guard condition that must be fulfilled in order to cover the

corresponding branch. The constraint generator described in the following section constructs the corre-

sponding path constraint.
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5.5 Constraint Generator

After the statements are executed symbolically as is shown in the previous section, all necessary infor-

mation for constructing the input assignment satisfying the guard condition that must be fulfilled to cover

the corresponding branch is available in the memory configuration. The constraint generator is responsi-

ble for the resolution of the values of the involved memory items for the purpose of constructing a path

constraint free of pointer and other values not supported by the solver [80]. To demonstrate this process,

we continue with the example from the previous section and compose the path constraint to cover the

branch corresponding to the true evaluation of the guard condition from the if statement in line 7.

The constraint generator operates as follows:

1. Initialize the path constraint Φ corresponding to the guard condition:

Φ = (D_17106 == 32).
The variable D_1710 becomes version 6 accordingly to the current computational step.

2. Resolve D_17106. The constraint generator finds the memory item responsible for D_1710
which is valid in computational step 6. In our example this is m9. According to the value of m9

D_17106 is resolved to a6[x6]. Since a6[x6] is not a constant it has to be resolved further.

3. Resolve a6[x6]. It matches with memory items m8, m7, m6 and m4 (memory items m5 and m2 are

already invalid in computational step 6). For each matching memory item the constraint generator

defines a conjunctive clause which resolves a6[x6] and requires that the index x6 is within the

bounds of the address region of the corresponding memory item. This leads to the following

constraint:

(D_17106 ==Undef ∧ 32 · x6 < 96 ∧32 < 32 · x6 +32) ∨
(D_17106 == 32 ∧ 32 · x6 < 32 ∧0 < 32 · x6 +32) ∨
(D_17106 ==Undef ∧ 32 · x6 < 320 ∧128 < 32 · x6 +32) ∨
(D_17106 == 33 ∧ 32 · x6 < 128 ∧96 < 32 · x6 +32)

Now there is only one unresolved variable: x6.

4. Resolve x6. The constraint generator finds the matching memory items, in this case there is only

one: m3. The value of m3 is x0 and cannot be resolved further, since this is an input. This means,

the constraint generator has finished and the resulting path constraint is as follows:

Φ = (D_17106 == 32) ∧
((D_17106 ==Undef ∧ 32 · x6 < 96 ∧32 < 32 · x6 +32) ∨
(D_17106 == 32 ∧ 32 · x6 < 32 ∧0 < 32 · x6 +32) ∨
(D_17106 ==Undef ∧ 32 · x6 < 320 ∧128 < 32 · x6 +32) ∨
(D_17106 == 33 ∧ 32 · x6 < 128 ∧96 < 32 · x6 +32)) ∧
(x6 == x0)

Notice that the final version of Φ contains only operations supported by the solver. Array accesses

were replaced by offset conditions and atomic variables corresponding to their values.

After we have sketched the principle of operation of the constraint generator, we will analyze it in

more detail. Algorithm 11 shows the upper-level procedure of the constraint generation process. Func-

tion resolveConstraint() takes a guard condition which must be resolved and the current memory spec-

ification as inputs. It initializes the path constraint with the guard condition and, as long as the path
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input : g − guard c o n d i t i o n

mem − c u r r e n t memory s p e c i f i c a t i o n

output : Φ − r e s o l v e d p a t h c o n s t r a i n t

f u n c t i o n r e s o l v e C o n s t r a i n t ( g , mem ) {

Φ = g;

whi le ( Φ c o n t a i n s u n r e s o l v e d v a r i a b l e var ) {

/ / f i n d o u t c o r r e s p o n d i n g segment
S = σ(β (var), mem);
foreach m = last(S) downto head(S){

i f ( m.v0 ≤ υ(var)∧υ(var)≤ m.v1 ∧m.a == β (var) ) {

overlap = (m.o < ω(var)+ b i t s i z e o f (sel))∧ (m.l > ω(var));
c = m.c∧overlap;

i f ( c i s f e a s i b l e ) {

r e s o l v e E x p (var, m.val, c, mem);
c1 = c1 ∨ c ;

}

}

}

Φ = Φ∧ c1;

}

r e s o l v e P o i n t e r V a r s ( Φ , mem ) ;

re turn Φ ;

}

Algorithm 11: Constraint resolution.
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constraint contains unresolved variables, performs the following: it iterates over all memory items which

correspond to the unresolved variable var. If the validity period of the item matches with the version of

the variable var, feasibility constraint c is constructed. This feasibility constraint requires that the valid-

ity constraint of the memory item is feasible and that the address range of the memory item overlaps with

the offsets specified by the variable expression. If the constructed constraint is feasible, the procedure

resolveExp() (Algorithm 12) is invoked with variable var as the variable to be resolved and value of the

found memory item m.val as its value. resolveExp() classifies the value val and invokes the correspond-

ing subroutine (e.g. val can be a dereferenced pointer or structure access etc). If the detected value is a

constant or of an atomic type and does not need further resolution to enable its handling by the solver,

the condition requiring that var is equal to the value val is added to the feasibility constraint Φ. More

complicated cases are handled by the subroutines for the resolution of specific forms of expressions. The

principles of operation of these subroutines are discussed in the following sections.

After all variables participating in the passed guard condition, are resolved, the procedure resolve-
PointerVars() (Algorithm 17) is invoked, which brings the pointers in the constructed path constraint Φ
in a form which can be handled by the solver. The detailed discussion about how we approach the pointer

handling is given in Section 5.7.

input : var − v a r i a b l e t o be r e s o l v e d

val − d e t e c t e d v a l u e o f t h e v a r i a b l e

mem − c u r r e n t memory s p e c i f i c a t i o n

output : res − r e s o l u t i o n r e s u l t

procedure r e s o l v e E x p ( var , val , res , mem ) {

i f ( val i s a c o n s t a n t ) {

res = res∧ (var == val);
} e l s e i f ( val i s a d e r e f e r e n c e d p o i n t e r ) {

r e s o l v e D e r e f P t r (var, val, res, mem);
} e l s e i f ( val i s an a r r a y e x p r e s s i o n ) {

r e s o l v e A r r a y E x p (var, val, res, mem);
} e l s e i f ( val i s a s t r u c t or union e x p r e s s i o n ) {

offsetStart = ω(val) ;

offsetEnd = ω(val) + b i t s i z e o f ( val ) ;

i f ( val i s a s t r u c t p o i n t e r e x p r e s s i o n ) {

r e s o l v e S t r u c t P t r E x p (var, val, offsetStart, offsetEnd, res, mem);
} e l s e i f ( val i s a union p o i n t e r e x p r e s s i o n ) {

r e s o l v e U n i o n P t r E x p (var, val, offsetStart, offsetEnd, res, mem);
} e l s e i f ( val i s a s t r u c t e x p r e s s i o n ) {

r e s o l v e S t r u c t E x p (var, val, offsetStart, offsetEnd, res, mem);
} e l s e {

r e s o l v e U n i o n E x p (var, val, offsetStart, offsetEnd, res, mem);
}

} e l s e i f ( val i s an a d d r e s s o p e r a t i o n ) {

re so lveAddrExp (var, val, res);
} e l s e {

res = res∧ (var == val);
}

}

Algorithm 12: Expression resolution.
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5.6 Handling of Dereferenced Pointers

5.6.1 Assignment

Definition 5.8. The effect of the assignment to a dereferenced pointer (e.g. *p = exp; or

p->f = exp;) on the state space Ss is specified by the procedure call [80]:

updateByAssignmentToDerefPtr(p, exp, n, mem); mem′ = mem;

where

• p is a pointer identifier,

• exp is an expression that should be assigned to the dereferenced pointer p,

• n is the current computational step,

• mem is the current memory specification.

The assignment to a dereferenced pointer may affect the stack, data or heap segment dependent on the

value of pointer p.

Algorithm 13 shows the procedure updateByAssignmentToDerefPtr(), which specifies how the new

memory items are created by assignment to a dereferenced pointer. First, the procedure finds all possible

targets where p can point to. For this purpose the procedure iterates over all valid memory items referring

to the pointer base address and resolves the values of these items using auxiliary function resolvePtrVal()
(see Algorithm 14). In case when the value of the found memory item is a structure access, the auxiliary

function resolveStructPtrVal() (Algorithm 20) is invoked instead of the resolvePtrVal(). We present

this algorithm in Section 5.8 which discusses the handling of structure accesses in detail.

A pointer can point to one or more locations, depending on its value and validity constraint. resolve-
PtrVal() traverses over all these possible situations and resolves them to expressions of the form:

baseAddress+offset.

Such expressions specify which base address and offset the memory item has and, in that way, which

value is modified by the assignment to the dereferenced pointer p. The list of these memory item speci-

fications is returned to the updateByAssignmentToDerefPtr(), which creates a new memory item m′ with

a new value exp for each of them. For pointer expressions like (*p)[i] the offset resulting from the

resolution must be corrected, so that additional offset start and offset end are calculated and added to

the specified offset. For simple pointer expressions like (*p) the calculated additional offset is equal to

zero. The insertion of the created item (and, correspondingly, invalidation of memory items conflicting

with the new one) is made as specified by the procedure insert() (see Algorithm 10).

We illustrate this approach by the following example:
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input : p − p o i n t e r i d e n t i f i e r

exp − e x p r e s s i o n t h a t s h o u l d be a s s i g n e d t o t h e d e r e f e r e n c e d p o i n t e r p
n − c u r r e n t c o m p u t a t i o n a l s t e p

i n o u t : mem − c u r r e n t memory s p e c i f i c a t i o n

procedure u p d a t e B y A s s i g n m e n t T o D e r e f P t r ( p , exp , n , mem ) {

/ / f i n d o u t c o r r e s p o n d i n g segment
S = σ(β (p), mem);

foreach m = last(S) downto head(S){

i f ( m.v1 == ∞ && m.a == β (p) ) {

i f ( m.val i s a p o i n t e r s t r u c t a c c e s s ) {

pl = r e s o l v e S t r u c t P t r V a l ( m.val, mem ) ;

} e l s e {

pl = r e s o l v e P t r V a l ( m.val, mem ) ;

}

foreach m′′ in pl{

/ / c r e a t e new memory i t e m
m′.v0 = n;

m′.v1 = ∞;

m′.a = m′′.a;

m′.t = m′′.t;
m′.o = m′′.o+ω(p);
m′.l = m′′.o+ω(p) + b i t s i z e o f ( p ) ;

m′.val = exp;

i f ( υ(exp) == ∞ ) {

υ(m′.val) = n ;

}

m′.c = m.c∧m′′.c;

/ / i n s e r t new memory i t e m i n t o t h e memory c o n f i g u r a t i o n
i n s e r t (m′,n,mem);

}

}

}

}

Algorithm 13: Effect of the assignment to a dereferenced pointer on the memory specification.
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input : exp − e x p r e s s i o n t h a t s h o u l d be r e s o l v e d

mem − c u r r e n t memory s p e c i f i c a t i o n

output : el − s e t o f memory i t e m s wi th p o t e n t i a l t a r g e t a d d r e s s e s and o f f s e t s

f u n c t i o n r e s o l v e P t r V a l ( exp , mem ) {

/ / c r e a t e new memory i t e m
m = (. . . , exp, true);
el = {m};

whi le (∃m′ in el : m′.val i s u n r e s o l v e d ) {

i f ( c a l c u l a t e d base a d d r e s s o f f s e t o f m′.val ) {

m′.o = o f f s e t ;

m′.a = b a s e A d d r e s s ;

/ / i s r e s o l v e d t o b a s e A d d r e s s + o f f s e t , done
c o n t i n u e ;

}

x = u n r e s o l v e d i d e n t i f i e r ;

S = σ(β (x), mem);
foreach m′′ = last(S) downto head(S){

i f ( m′′.a == β ( x ) && m′′.v0 ≤ υ(x)≤ m′′.v1 ) {

i f ( m′′.val i s a p o i n t e r s t r u c t a c c e s s ) {

el = el ∪ r e s o l v e S t r u c t P t r V a l ( m′′.val,mem ) ;

} e l s e {

val1 = m′.val;
in val1 : r e p l a c e a l l o c c u r r e n c e s o f x by m′′.val ;

el = el ∪ {(. . . , val1,m′c∧m′′.c)};

}

}

}

/ / m′ was r e p l a c e d by m′′ , e r a s e m′
el = el \ {m′}

}

re turn el ;

}

Algorithm 14: Resolution of the pointer value to all potential base addresses and offsets.
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C code GIMPLE representation

1 i n t check ( ) {

2

3 i n t z [ 1 0 ] ;

4 i n t ∗ ip , ∗ i p 1 ;

5 i n t r e t ;

6

7 i p = z ;

8 ∗ i p = 7 7 ;

9 . . .

10 }

1 i n t check ( ) {

2

3 i n t z [ 1 0 ] ;

4 i n t ∗ i p ;

5 i n t ∗ i p 1 ;

6 i n t r e t ;

7 i n t D_1712 ;

8

9 i p = &z [ 0 ] ;

10 ∗ i p = 7 7 ;

11 . . .

12 }

Note, that symbolic execution is performed on the GIMPLE code. First the memory configuration is

initialized:

m1 = (1, ∞, &z[0], 0, 320, int, Undef, true)
m2 = (2, ∞, &ip, 0, 32, int*, Undef, true)
m3 = (3 ∞, &ip1, 0, 32, int*, Undef, true)
m4 = (4, ∞, &ret, 0, 32, int, Undef, true)
m5 = (5, ∞, &D_1712, 0, 32, int, Undef, true)

Execution of line 9 (ip = &z[0];) introduces a new memory item m6:

m6 = (6, ∞, &ip, 0, 32, int*, &z6[0], true)

and invalidates the memory item m2:

m2 = (2, 5, &ip, 0, 32, int*, Undef, true)

Thus, as the symbolic execution process reaches the line 10 (*ip = 77;), the memory has the

following configuration:

m1 = (1, ∞, &z[0], 0, 320, int, Undef, true)
m2 = (2, 5, &ip, 0, 32, int*, Undef, true)
m3 = (3 ∞, &ip1, 0, 32, int*, Undef, true)
m4 = (4, ∞, &ret, 0, 32, int, Undef, true)
m5 = (5, ∞, &D_1712, 0, 32, int, Undef, true)
m6 = (6, ∞, &ip, 0, 32, int*, &z6[0], true)

As the procedure updateByAssignmentToDerefPtr() is called for expression (*ip = 77) the resolu-

tion process is started for the memory item m6. The function resolvePtrVal() resolves its value &z6[0]
to the base address &z[0] and offset 0. A new memory item m7 is created:
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m7 = (7, ∞, &z[0], 0, 32, int, 77, true)

Its insertion causes the invalidation of the memory item m1 and the creation of an additional memory

item m8 corresponding to the address range of the old memory item m1 unaffected by the item m7:

m1 = (1, 6, &z[0], 0, 320, int, Undef, true)
m8 = (7, ∞, &z[0], 32, 320, int, Undef, true)

Thus, after the symbolic execution of the expression (*ip = 77) the memory is configured as fol-

lows:

m1 = (1, 6, &z[0], 0, 320, int, Undef, true)
m2 = (2, 5, &ip, 0, 32, int*, Undef, true)
m3 = (3 ∞, &ip1, 0, 32, int*, Undef, true)
m4 = (4, ∞, &ret, 0, 32, int, Undef, true)
m5 = (5, ∞, &D_1712, 0, 32, int, Undef, true)
m6 = (6, ∞, &ip, 0, 32, int*, &z6[0], true)
m7 = (7, ∞, &z[0], 0, 32, int, 77, true)
m8 = (7, ∞, &z[0], 32, 320, int, Undef, true)

In this way, despite aliasing, the value of the expression was written by the symbolic execution to the

memory where it was intended to write by the program.

5.6.2 Resolution

The resolution of a dereferenced pointer is performed by the function call

resolveDere f Ptr(var, p, c, mem)

Where

• var is a versioned variable identifier. It indicates the variable, that has a dereferenced pointer as a

value;

• p is a versioned pointer identifier. It indicates the pointer, which is dereferenced;

• c is a constraint that holds the result of the resolution process;

• mem is the current memory specification.

Algorithm 15 shows the procedure resolveDerefPtr(). First, the algorithm resolves the value of the

given dereferenced pointer p with help of the auxiliary procedure resolveDerefPtrExp() whose principle

of operation we discuss later in this section. The algorithm returns a set S where all possible values of

the dereferenced pointer associated with the pointer whose dereferenced value was resolved (here p) are
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input : var − v a r i a b l e i d e n t i f i e r which has a d e r e f e r e n c e d p o i n t e r a s v a l u e

p − p o i n t e r i d e n t i f i e r

mem − c u r r e n t memory s p e c i f i c a t i o n

i n o u t : c − f e a s i b i l i t y c o n s t r a i n t

procedure r e s o l v e D e r e f P t r ( var , p , c , mem ) {

S = /0; isInput = false ; validFrom = 0;

r e s o l v e D e r e f P t r E x p ( var , p , S , mem , isInput , validFrom ) ;

i f ( isInput ) {

/ / s o r t a c c o r d i n g l y t o v a l i d a t i o n p e r i o d
S . s o r t ( ) ;

/ / f i n d o u t when t h e v a l u e o f d e r e f e r e n c e d p o i n t e r was o v e r w r i t t e n
( resolution , input , c2 , validFrom ) = head(S);

/ / go over a l l i n p u t s o f p o i n t e r t y p e and f i n d a l t e r n a t i v e v a l u e s
foreach input of p o i n t e r t y p e {

r e s o l v e D e r e f P t r E x p ( var , input , S , mem , true , validFrom ) ;

}

/ / s o r t a c c o r d i n g l y t o v a l i d a t i o n p e r i o d
S . s o r t ( ) ;

}

foreach ( resolution , input , c2 , validFrom ) = last(S) downto head(S){

i f ( p 
= input ) {

c1 = (p == input) ;

} e l s e {

c1 = true;

}

res = res ∨ (resolution ∧ c2 ∧ c1 ∧ neg) ;

i f ( isInput ) {

neg = neg ∧ (!c1 ∨ !c2) ;

}

}

c = c ∧ res ;

}

Algorithm 15: Resolution of a dereferenced pointer.
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stored, with the feasibility constraint of this resolution and the computational step where the variable

was overwritten. Furthermore, resolveDerefPtrExp() analyzes whether the pointer refers to an input

and stores the result of this analysis in the input/output parameter isInput. If the generator detects that

the pointer is an input and its value is not overwritten and still points to the variable simulated by the

generator (see Section 5.4.1), we have to consider the situation when several input pointers point to one

and the same variable like in the following example:

i n t i 1 = 0 ;

i n t ∗p1 = &i1 , ∗p2 = &i 1 ;

p t r _ t e s t ( p1 , p2 ) ;

. . .

Thus, other possible alternative values of the dereferenced pointer are analyzed: all pointer inputs are

resolved by invocation of the auxiliary procedure resolveDerefPtrExp(). This procedure adds all possible

alternative resolution results to the set S for further analysis. The alternative value is detected if the input

pointer also still points to the simulated variable and the content of this variable was overwritten later

than the content of the variable where the original pointer p was pointing to. To show why it is important

whether the variable where another pointer points to was overwritten before or after the dereferenced

pointer under consideration, we consider the following example:

p t r _ t e s t ( i n t ∗p1 , i n t ∗p2 ) {

∗p1 = 1 ;

∗p2 = 0 ;

. . .

}

Suppose, the pointer under consideration is p1. Then, if p1 and p2 point to one and the same variable,

the value of *p1 after the execution of listed code is 0 (which is the value that was written to *p2).

However, if the pointer under consideration is p2, it is not significant which value was written to *p1,

since if p1 and p2 point to the same variable, it would already be overwritten. And if the pointers point

to different variables, *p1 cannot affect *p2 by any means.

After all possible values have been collected, they are sorted according to the computational step

where the values of dereferenced pointers were overwritten. Subsequently, these values, beginning with

the most recent one, are traversed and the constraint holding all possible resolutions of the passed deref-

erenced pointer p is built. This constraint requires that if the result is equal to the alternative resolution,

then the feasibility constraint of this resolution must hold and the pointer under consideration must be

equal to the corresponding input pointer and the more recent resolutions are infeasible, which means

that either the pointers are not equal or the feasibility constraints of the resolutions are infeasible. So,

if we suppose that there are n alternative resolutions, which are sorted in such a way that resolution rn

together with the corresponding feasibility constraint cn and the corresponding input pointer pn refer to

the most recent alternative value and r1 together with the corresponding feasibility constraint c1 and the

corresponding input pointer p1 refers to the oldest one, the resulting constraint res after traversing all

these resolutions has the following form:

(rn ∧ cn ∧ (p == pn)) ∨
(rn−1 ∧ cn−1 ∧ (p == pn−1) ∧ ((p 
= pn) ∨ !cn)) ∨
. . .
(r1 ∧ c1 ∧ (p == p1) ∧ ((p 
= pn) ∨ !cn)) ∧ . . . ∧ ((p 
= p2) ∨ !c2)) ∨
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The constraint requiring the equality of pointers is built only if the pointer corresponding to the current

resolution is not the original pointer. The negation constraint neg is built only if the original pointer

refers to an input. Otherwise it is redundant since all validity conditions of the resolution are already

summarized in the corresponding feasibility constraints of possible resolutions.

After all resolutions are traversed the constructed constraint is conjuncted with the resulting constraint

c.

Algorithm 16 shows the procedure resolveDerefPtrExp(). First, the algorithm detects all possible

targets where p can point to. For this purpose it iterates over all valid memory items corresponding

to the pointer base address and invokes the auxiliary function resolvePtrVal() (see Algorithm 14) or

resolveStructPtrVal() (see Algorithm 20) for the values of the found memory items. resolvePtrVal()
and resolveStructPtrVal() resolve each value expression to the list of possible target memory items spec-

ified by the base address and offset. After the possible targets are identified, the algorithm finds out the

values stored in these targets. Therefore, for each of the specified base addresses resolveDerefPtrExp()
traverses over all matching memory items. Now we differentiate if we perform the resolution for an

input pointer or not. If this is a resolution for an input pointer, the memory item is further considered

only if its validity period corresponds to the validity period of the value found for the input pointer (we

are interested only in more recent entries) and if the memory item refers to a simulated input. If this is

not a resolution for an input pointer all found memory items are considered.

The further analysis is performed as follows: if the validity period of the found item corresponds to

the version of the variable identifier var constraint c1 is built, which requires, that:

1. The validity constraint of the memory item m corresponding to the pointer is valid.

2. The validity constraint of the memory item m′ corresponding to the target of the pointer is valid.

3. The validity constraint of the memory item m′′ corresponding to the target specification is valid.

4. The address range of m′ overlaps with the address range specified by the pointer p.

Afterwards, if the constructed constraint is feasible, the variable identifier var is passed for further reso-

lution of the value of the memory item m′ to the procedure resolveExp() discussed in Section 5.5. The

constraint produced by this resolution is stored together with the corresponding pointer, feasibility con-

straint and the validity period in the resulting set of possible outcomes of the resolution process of the

dereferenced pointer p. If it is detected that the memory item m′ refers to a simulated input variable, the

input/output parameter isInput indicating whether the dereferenced pointer still points to an input is set

to true.

To illustrate the described approach, we first demonstrate a simple example not involving input point-

ers. Therefore, we extend the example from the previous section:
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input : var − v a r i a b l e i d e n t i f i e r which has a d e r e f e r e n c e d p o i n t e r a s v a l u e

p − p o i n t e r i d e n t i f i e r

mem − c u r r e n t memory s p e c i f i c a t i o n

validFrom − i n d i c a t e s t h e v a l i d i t y p e r i o d o f ma tch ing memory i t e m s

i n o u t : R − s e t o f found r e s o l u t i o n s

isInput − i n d i c a t e s whe the r t h e r e s o l u t i o n i s pe r fo rmed f o r a p o i n t e r input
procedure r e s o l v e D e r e f P t r E x p ( var , p , R , mem , isInput , validFrom ) {

/ / f i n d o u t c o r r e s p o n d i n g segment
S = σ(β (p), mem);

offsetStart = ω(p);
offsetEnd = ω(p)+ s i z e (basetype(p ) ) ;

foreach m = last(S) downto head(S){

i f ( m.v0 ≤ υ(p)∧υ(p)≤ m.v1 ∧m.a == β (p) ) {

i f ( m.val i s a p o i n t e r s t r u c t a c c e s s ) {

pl = r e s o l v e S t r u c t P t r V a l ( m.val, mem ) ;

} e l s e {

pl = r e s o l v e P t r V a l ( m.val, mem ) ;

}

foreach m′′ in pl{

/ / f o r each memory i t e m s p e c i f i c a t i o n i n t h e l i s t
/ / f i n d a l l i t e m s o v e r l a p p i n g w i t h i t
S1 = σ(m′′.a, mem);

foreach m′ = last(S1) downto head(S1){

i f ( ( isInput ∧ validFrom < m′.v0 ∧ m′ r e f e r s t o a s i m u l a t e d input ) ∨ !isInput) ) {

i f ( m′.v0 ≤ υ(var)∧υ(var)≤ m′.v1 ∧m′.a == m′′.a ) {

overlap = (m′.o < m′′.o+offsetEnd)∧ (m′.l > m′′.o+offsetStart);
c1 = m.c∧m′′.c∧m′.c∧overlap;

i f ( c1 i s f e a s i b l e ) {

r e s o l v e E x p (var, m′.val, c2, mem);
R . push ( ( c2, p, c1, m′.v0 ) ) ;

i f ( m′ r e f e r s t o a s i m u l a t e d input ) {

isInput = true ;

}

}

}

}

}

}

}

}

}

Algorithm 16: Auxiliary procedure for the resolution of a dereferenced pointer.
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C code GIMPLE representation

1 i n t check ( ) {

2

3 i n t z [ 1 0 ] ;

4 i n t ∗ ip , ∗ i p 1 ;

5 i n t r e t ;

6

7 i p = z ;

8 ∗ i p = 7 7 ;

9 i p 1 = i p ;

10 i f (∗ i p 1 == 0) {

11 r e t = 0 ;

12 } e l s e {

13 r e t = 1 ;

14 }

15 . . .

16 }

1 i n t check ( ) {

2

3 i n t z [ 1 0 ] ;

4 i n t ∗ i p ;

5 i n t ∗ i p 1 ;

6 i n t r e t ;

7 i n t D_1712 ;

8

9 i p = &z [ 0 ] ;

10 ∗ i p = 7 7 ;

11 i p 1 = i p ;

12 D_1712 = ∗ i p 1 ;

13 i f ( D_1712 == 0) {

14 r e t = 0 ;

15 } e l s e {

16 r e t = 1 ;

17 }

18 . . .

19 }

In the previous section we have shown that after the symbolic execution of the first 10 lines the memory

is configured as follows:

m1 = (1, 6, &z[0], 0, 320, int, Undef, true)
m2 = (2, 5, &ip, 0, 32, int*, Undef, true)
m3 = (3 ∞, &ip1, 0, 32, int*, Undef, true)
m4 = (4, ∞, &ret, 0, 32, int, Undef, true)
m5 = (5, ∞, &D_1712, 0, 32, int, Undef, true)
m6 = (6, ∞, &ip, 0, 32, int*, &z6[0], true)
m7 = (7, ∞, &z[0], 0, 32, int, 77, true)
m8 = (7, ∞, &z[0], 32, 320, int, Undef, true)

The next assignments ip1 = ip and D_1712 = *ip1 overwrite the values of the memory items

m3 and m5 so that the memory configuration afterwards is as follows:

m1 = (1, 6, &z[0], 0, 320, int, Undef, true)
m2 = (2, 5, &ip, 0, 32, int*, Undef, true)
m3 = (3, 7, &ip1, 0, 32, int*, Undef, true)
m4 = (4, ∞, &ret, 0, 32, int, Undef, true)
m5 = (5, 8, &D_1712, 0, 32, int, Undef, true)
m6 = (6, ∞, &ip, 0, 32, int*, &z6[0], true)
m7 = (7, ∞, &z[0], 0, 32, int, 77, true)
m8 = (7, ∞, &z[0], 32, 320, int, Undef, true)
m9 = (8, ∞, &ip1, 0, 32, int*, ip8, true)
m10 = (9, ∞, &D_1712, 0, 32, int, *ip19, true)
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Now we process as defined by the function resolveConstraint() (Algorithm 11):

1. Initialize the path constraint accordingly to the guard condition:

Φ = (D_1712 9 == 0).

2. Resolve D_1712 9: find the memory item responsible for D_17129, this is m10. Resolve D_17129

according to the value of the item found:

D_1712 9 ==*ip19.

Now the algorithm resolveDerefPtr() is invoked with D_17129 as var, ip19 as p, Φ as c and our

memory configuration as mem. This algorithm invokes the auxiliary procedure resolveDerefPtr-
Exp() with D_17129 as var, ip19 as p, empty set S as R, our memory configuration as mem and

isInput and validFrom set correspondingly to false and 0.

First the offset start and offset end for ip19 are calculated, these are 0 and 32. Then the possible

targets of ip19 are detected. For this purpose the value of the memory item m9 (ip8) is analyzed.

As this is not a structure access, it is passed to the auxiliary function resolvePtrVal(). It produces

the following specification: the base address is &z[0] and the offset is 0 (corresponding to the

value of the memory item m6). The internal loop iterates over the memory items corresponding

to base address &z[0]. These are m1, m7 and m8. Since isInput is set to false, all these memory

items are considered, but, since the validity period of m1 does not match the validity period of the

variable D_1712 9 and the address range of the item m8 ([32, 320)) does not overlap with the

calculated offset ([0, 32)), only memory item m7 matches. The value of m7 is 77 and its feasibility

constraint is true, so that the following tuple is stored in the resolution set R:

(D_17129 ==77, ip19, true, 7)

Here D_17129 ==77 is the resolution of *ip19 detected by resolveDerefPtrExp(), ip19 refers

to a pointer, whose dereferenced value was resolved, true is the validity constraint of the found

resolution and 7 refers to the computational step where the value of the dereferenced pointer was

overwritten.

Since m7 does not refer to a simulated input, the value of isInput remains false. For this reason,

back in the procedure resolveDerefPtrExp() no further resolutions are required. Thus, the returned

set S is iterated and the constraint res is built:

D_17129 ==77.

This resolution is added to the resulting constraint Φ:

Φ = (D_1712 9 == 0 ∧ D_1712 9 ==77).

3. No unresolved symbols exist anymore and the resolution process stops. Φ is infeasible and, since

no other path goes to line 14, this line is consequently unreachable.

Now we consider an example involving input pointers.
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C code GIMPLE representation

1 i n t p t r _ t e s t ( i n t ∗p1 , i n t ∗
p2 )

2 {

3 ∗p1 = 0 ;

4 ∗p2 = 1 ;

5 i f (∗ p1 == 1) {

6 re turn 1 ;

7 } e l s e {

8 re turn 0 ;

9 }

10 }

1 i n t p t r _ t e s t ( i n t ∗p1 , i n t ∗
p2 )

2 {

3 i n t D_1724 ;

4

5 ∗p1 = 0 ;

6 ∗p2 = 1 ;

7 D_1724 = ∗p1 ;

8 i f ( D_1724 == 1) {

9 . . .

10 } e l s e {

11 . . .

12 }

13 }

For a better understanding of the procedure, we represent it as follows: we list the example code line

by line and after each line we specify the memory items which were created by the symbolic execution

of this line. The symbolic execution steps are numbered according to the line numbers of the GIMPLE

representation listed above.

To set the example as clearly as possible, we do not initialize simulated auxiliary variables where the

parameter p1 and p2 point to as arrays (as it was defined in Section 5.4.1), since (1) the algorithm for the

handling of input arrays is not discussed yet – we do this in Section 5.11 – and (2) in this example this

characteristic does not affect the correctness of the resolution, since here we can assume that the pointers

do not point to some arrays. Thus, after the initialization of parameters the memory configuration is as

follows:

1 i n t p t r _ t e s t ( i n t ∗p1 , i n t ∗p2 )

m1 = (1, ∞, &p1, 0, 32, int*, &p1@P1, true)
m2 = (2, ∞, &p1@P, 0, 32, int, p1@P0, true)
m3 = (3, ∞, &p2, 0, 32, int*, &p2@P3, true)
m4 = (4, ∞, &p2@P, 0, 32, int, p2@P0, true)

Subsequently, the stack initialization is done:

3 i n t D_1724 ;

m5 = (5, ∞, &D_1724, 0, 32, int, Undef, true)

After the initialization is completed, we proceed with the symbolic execution line by line:

5 ∗p1 = 0 ;
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The assignment to the dereferenced pointer is proceeded as specified by the procedure update-
ByAssignmentToDerefPtr() (see Algorithm 13), and a new memory item is created:

m6 = (6, ∞, &p1@P, 0, 32, int, 0, true)

The insertion of the memory item m6 into the memory specification invalidates the memory item

m2, so that now m2 is configured as follows:

m2 = (2, 5, &p1@P, 0, 32, int, p1@P0, true)

6 ∗p2 = 1 ;

This assignment is proceeded similarly to the previous one:

m7 = (7, ∞, &p2@P, 0, 32, int, 1, true)

The insertion of the memory item m7 into the memory specification invalidates memory item m4,

so that now m4 is configured as follows:

m4 = (4, 6, &p2@P, 0, 32, int, p2@P0, true)

7 D_1724 = ∗p1 ;

m8 = (8, ∞, &D_1724, 0, 32, int, *p18, true)

The insertion of the memory item m8 into the memory specification invalidates memory item m5,

so that now m5 is configured as follows:

m5 = (5, 7, &D_1724, 0, 32, int, Undef, true)

The next line of the example consists of an if statement if(D_1724 == 1). This means, that the

evaluation of the guard condition (D_1724 == 1) is necessary. Before we start with the resolution

algorithm, we summarize the current memory specification:

m1 = (1, ∞, &p1, 0, 32, int*, &p1@P1, true)
m2 = (2, 5, &p1@P, 0, 32, int, p1@P0, true)
m3 = (3, ∞, &p2, 0, 32, int*, &p2@P3, true)
m4 = (4, 6, &p2@P, 0, 32, int, p2@P0, true)
m5 = (5, 7, &D_1724, 0, 32, int, Undef, true)
m6 = (6, ∞, &p1@P, 0, 32, int, 0, true)
m7 = (7, ∞, &p2@P, 0, 32, int, 1, true)
m8 = (8, ∞, &D_1724, 0, 32, int, *p18, true)
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Now we continue as defined by the function resolveConstraint() (Algorithm 11):

1. Initialize the path constraint according to the guard condition:

Φ = (D_1724 8 == 1).

2. Resolve D_1724 8: find the memory item responsible for D_17248, this is m8. Resolve D_17248

according to the value of the item found:

D_1724 8 ==*p18.

Now the algorithm resolveDerefPtr() is invoked with D_17248 as var, p18 as p, Φ as c and our

memory configuration as mem. This algorithm invokes the auxiliary procedure resolveDerefPtr-
Exp() with D_17248 as var, p18 as p, empty set S as R, our memory configuration as mem and

isInput and validFrom set correspondingly to false and 0.

First, the possible targets of p18 are detected. The value of the memory item m1 (&p1@P1) is

analyzed. This is not a structure access, so it is passed to the auxiliary function resolvePtrVal(). It

produces the following specification: the base address is &p1@P and the offset is 0. The internal

loop iterates over the memory items m2 and m6. Since isInput is set to false, all these memory

items are considered, but, since the validity period of m2 does not match the validity period of

the variable D_1724 8, only memory item m6 matches. Thus, the following tuple is stored in the

resolution set R:

(D_17248 ==0, p18, true, 6)

Here D_17248 ==0 is the resolution of *p18 detected by resolveDerefPtrExp(), p18 refers to

a pointer, whose dereferenced value was resolved, true is the validity constraint of the found

resolution and 6 refers to the computational step where the value of the dereferenced pointer was

overwritten.

Since m6 does refer to a simulated input p1@P, the value of isInput is set to true. For this reason

further resolution process is required in the procedure resolveDerefPtr() . First, validFrom is set to

6 according to the computational step stored in the resolution set. Only values which were written

in subsequent computations are relevant. Next, the algorithm iterates over all input pointers (here

this is pointer parameter p2) and invokes resolveDerefPtrExp() with D_17248 as var, detected

input pointer p28 as p, set S as R, our memory configuration as mem and isInput and validFrom
set correspondingly to true and 6.

Similar to the resolution of p18, possible targets of p28 are detected. The value of the memory

item m3 (&p2@P3) is analyzed. This is not a structure access, so it is passed to the auxiliary

function resolvePtrVal(). It produces the following specification: the base address is &p2@P and

the offset is 0. The internal loop iterates over the memory items m4 and m7. Since isInput is set

to true, only m7 is considered further as although the memory item m4 does refer to a simulated

input p2@P, its validity period does not conform to the value of the parameter validFrom. The

resolution of m7 results in the following tuple, which is stored in the resolution set R:

(D_17248 ==1, p28, true, 7)

Back in the procedure resolveDerefPtr() the set S of all possible resolutions is sorted according to

the validation period and after that it is as follows:
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(D_17248 ==0, p18, true, 6)

(D_17248 ==1, p28, true, 7)

Afterwards, the set S is iterated beginning with the most recent entry and the constraint res is built

step by step. First, we process the tuple (D_17248 ==1, p28, true, 7):

res = (D_17248 ==1 ∧p10 ==p20).

After this iteration the negation constraint neg has the following form:

neg = (p10 
=p20).

Now we process the next tuple (D_17248 ==0, p18, true, 6):

res = (D_17248 ==1 ∧p10 ==p20) ∨ (D_17248 ==0 ∧p10 
=p20).

This resolution is added to the resulting constraint Φ:

Φ = (D_17248 == 1) ∧
((D_17248 ==1 ∧p10 ==p20) ∨ (D_17248 ==0 ∧p10 
=p20)).

3. No unresolved symbols exist anymore and the resolution process stops. The resulting path con-

straint Φ is feasible in case when input pointers p1 and p2 point to one and the same variable and

the designed algorithm makes it possible to detect this.

The generated test driver as well as the other outputs produced by the test generator for this example are

presented in Appendix 3.

The algorithm discussed in this section makes it possible to support the case when multiple pointer

inputs point to the same variable but only for pointers of atomic types. However, the symbolic execu-

tion algorithm can be extended to support the case where the equality of pointers pointing to unions or

structures is supported. For that purpose the algorithms developed for the union and structure pointer

resolution (Sections 5.8.1 and 5.10.3) must be extended in a similar manner as the procedure resolve-
DerefPtr() discussed in this section.

5.7 Handling of Pointers

5.7.1 Background

A pointer is “a variable that contains the address of a variable” [63]. In C, the following pointer

operations are valid [63]:

• Assignment of the pointers of the same type. If p and p1 are pointers of the same type, then p
= p1 copies the contents of p1 into p. Consequently, after this assignment p points to the same

variable p1 points to.

• Addition or subtraction of a pointer and an integer. If a pointer p points to some element of an array,

then p + 1 points to the next element and p + i points i elements after p. Correspondingly, p
- i points i elements before. This is true despite of the type or size of the array elements and i
is scaled corresponding to the size of the variable the pointer points to.
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• Comparison of two pointers, but only if they point to the members of the same array. The behavior

is undefined for arithmetic comparisons with pointers that do not point to the members of the same

array. For example, p > p1 is true, if p points to the element of the array behind the element the

p1 does.

• Subtraction of two pointers, but only if they point to the members of the same array. For example,

p - p1 + 1 is the number of elements from p to p1 inclusive, if p and p1 point to the elements

of the same array and p > p1.

• Assignment or comparison with zero. Pointers and integers are not interchangeable, zero is the

only exception.

Pointer arithmetic is consistent, it does not matter whether we deal with characters, integers or floats.

The size of the variable the pointer points to is automatically considered by all pointer manipulations

[63].

As we stated already, the assignment of pointers is a simple copy of contents of one variable to another

and does not differ from an assignment of, for example, an integer variable. Thus, it is handled as

specified by the procedure updateByAssignment(). The challenging part when handling pointers is their

resolution. Since the solver does not support handling of constraints with pointers, the input pointer

variables must be resolved to some types the solver is capable of dealing with. And though pointers

are addresses, and addresses can be represented as integers, the simple exchange of pointers by integer

variables in a constraint is not sufficient. The value of the pointer must be set reasonable – it must satisfy

requirements of the pointer operations and it must be possible to meaningfully associate a variable to the

calculated address. The method that we have developed for the pointer resolution, is described in the

next section.

5.7.2 Resolution

We handle all memory areas pointed to by pointers as arrays with configurable size. By abstracting

pointers to integers we achieve that constraints over pointers can be solved by a solver capable of integer

arithmetics.

First, we introduce the definition and lemma that we need for the algorithm:

Definition 5.9. Each pointer p is defined by a pair of unsigned integers

p = (A,x),

where

• A corresponds to a base address of the memory area where the pointer p points into,

• x is its offset (p = A+ x).

Lemma 5.1. Expression
(p1 ω p2)

where
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• ω is a comparison operator,

• p1 and p2 are pointers of the form pi = (Ai,xi), i = 1,2

is equivalent to the following constraint:

A1 == A2 && x1 ω x2 && 0 ≤ x1 < dim(p1) && 0 ≤ x2 < dim(p2) (5.1)

where

• A1 == A2 ensures, that p1 and p2 point to the members of the same memory portion,

• x1 ω x2 reflects the pointer expression and

• 0 ≤ xi < dim(pi), i = 1,2, guarantees, that the pointer stays within the array bounds.

Proof. First we prove, that if (p1 ω p2), then (5.1) holds. As was stated in the previous section, the

behavior of (p1 ω p2) is defined only if p1 and p2 point to the members of the same array, hence A1 ==A2

and 0 ≤ xi < dim(pi), i = 1,2 hold. The result of comparison or subtraction of two pointers is dependent

on the order of the array elements where the pointers point to. Offset xi represents exactly the position of

the element in the array where the pointer points to, hence (x1 ω x2) holds and consequently holds (5.1).

Now we prove, that if (5.1) holds, then (p1 ω p2) holds too. Since A1 == A2 and 0 ≤ xi < dim(pi), i =
1,2 hold, it is ensured that corresponding pointers p1 and p2 point to the members of the same array,

hence the behavior of the relation ω is defined. If (x1 ω x2) holds and the corresponding pointers point

to the members of the same array, then, based on the observation that offset xi represents exactly the

position of the element in the array where the pointer points to, (p1 ω p2) holds.

Algorithm 17 shows the procedure resolvePointerVars(). This procedure is called at the end of the

function resolveConstraint() (see Algorithm 11) with the resolved path constraint Φ as input. The al-

gorithm iterates over all atomic Boolean expressions of the given constraint and analyzes every variable

of all these atoms. If a variable is a pointer, further analysis is required: it is distinguished between

the situation when the atom is of a form p == NULL or p != NULL and all other expressions. If the

pointer is compared with NULL, only its base address is relevant. In this case a new auxiliary variable

var.A, corresponding to the base address of the pointer var, is created and the occurrence of var in the

atomic expression a is replaced by it. When the atomic expression a is not a comparison with NULL,

then it is a relation of pointers. This case is postponed and the variable secondCheck, representing

if the repeated analysis of the path constraint is required, is set to true. This is done to ensure that the

comparison of a pointer with NULL is not mistaken for relating to zero the base address of the pointer.

After all atoms were examined for comparison with NULL and if the repeated analysis is required, it is

iterated one more time over all atomic Boolean expressions and their variables. This time all occurrences

of comparisons with NULL in the path constraint are already eliminated, and, consequently, if a pointer

variable is detected in an atom, this variable participates in a relation of pointers. As we have stated in

Lemma 5.1, the relation of two pointers is equivalent to the expression (5.1). To build this expression

two auxiliary variables are created: var.x, corresponding to the offset of the pointer var and var.A,

corresponding to its base address. The occurrence of var in the atomic expression a is replaced by the

auxiliary variable responsible for the offset, and the variable related to the base address is stored in a set
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i n o u t : exp − e x p r e s s i o n which p o i n t e r v a r i a b l e s s h o u l d be r e s o l v e d

input : mem − c u r r e n t memory s p e c i f i c a t i o n

procedure r e s o l v e P o i n t e r V a r s ( exp , mem ) {

ptrVars = /0;

secondCheck = f alse;

foreach ( atom a in exp ) {

foreach ( v a r i a b l e var in a ) {

i f ( var i s a p o i n t e r ) {

i f ( a == ( var == NULL) ∨ a == ( var != NULL) ) {

c r e a t e v a r . A, υ ( v a r .A) = υ(var) ;

r e p l a c e var by v a r .A in atom a ;

} e l s e {

secondCheck = true;

}

}

}

}

i f ( secondChek ) {

foreach ( atom a in exp ) {

foreach ( v a r i a b l e var in a ) {

i f ( var i s a p o i n t e r ) {

c r e a t e v a r . x , υ ( v a r . x ) = υ(var) ;

exp = exp∧ (v a r . x< dim(var)) ;

r e p l a c e var by v a r . x in atom a ;

c r e a t e v a r . A, υ ( v a r .A) = υ(var) ;

ptrVars = ptrVars ∪ v a r .A;

}

}

}

}

/ / b u i l d base a d d r e s s r e l a t i o n
foreach ( p .A in ptrVars ) {

p1 .A = n e x t t o p .A;

c = c∧ ( p .A == p1 .A) ) ;

}

exp = exp∧ c ;

}

Algorithm 17: Resolution of pointer variables.
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for further processing. Since the whole expression exp is originated from the same guard condition, and

since we are working with a GIMPLE code, where all expressions are broken down into expressions with

no more than 3 operands [1], all pointers occurring in the expression exp are related to each other. For

this reason, at the end of the procedure resolvePointerVars() a constraint c is created, that requires, that

all occurred pointers refer to the same array, which means that all their base addresses must be equal.

We illustrate the described approach on a simple example:

1 void t e s t ( char ∗p1 ,

2 char ∗p2 ) {

3 i f ( p1 < p2 ) {

4 ERROR;

5 }

6 }

To reach the line with an error, input pointers p1 and p2 should fulfill the guard condition p1 < p2.

To focus on the discussed algorithm, we present the example in a simplified form. Since p1 and p2 are

inputs, the procedure resolveConstraint() cannot perform any further resolution. Thus, the following

path constraint for the guard condition in line 3 is constructed:

p13 < p23 ∧ p13 == p10 ∧ p23 == p20

where p1i and p2i are pointers and therefore the solver is not capable to handle generated constraint. Now

this constraint is passed to the procedure resolvePointerVars() from Algorithm 17. resolvePointerVars()
analyzes the constraint atom by atom. First, all atoms are examined for comparison with NULL. As

no such atom could be found, no transformations of the path constraint were performed. However,

occurence of relation of pointers was detected, that is, the repeated analysis is required. During this

analysis all atoms are examined one more time. First, relation atom (p13 < p23) is examined. It contains

two variables: p1 and p2, they are evaluated one after another. Variable p1 is a pointer. Thus, auxiliary

variables p1@baseAddress and p1@offset of type unsigned int are created, the occurrence of p1 is

replaced by the auxiliary variable representing its offset (p1@offset) and an additional constraint ensuring

safety of array bounds is added. The same analysis is made for the variable p2. Atoms (p13 == p10) and

(p23 == p20) are examined alike. At the end, additional constraints requiring equality of base addresses

are added. The result is as follows:

p1@offset3 < p2@offset3 ∧ 0 ≤ p1@offset3 < 10 ∧ 0 ≤ p2@offset3 < 10 ∧
p1@offset3 == p1@offset0 ∧ 0 ≤ p1@offset3 < 10 ∧ 0 ≤ p1@offset0 < 10 ∧
p2@offset3 == p2@offset0 ∧ 0 ≤ p2@offset3 < 10 ∧ 0 ≤ p2@offset0 < 10 ∧

p1@baseAddress3 == p2@baseAddress3 ∧
p1@baseAddress3 == p1@baseAddress0 ∧
p2@baseAddress3 == p2@baseAddress0

Here the size for the auxiliary arrays is configured equal to 10, because this memory size makes condition

p1 < p2 feasible (any size ≥ 2 would suffice). Note, that all occurrences of pointer variables are elim-

inated and now all participating variables are of type unsigned int so that the generated constraint

can be passed to the solver. The solver returns the following solution (here the different versions of the
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same variable are not listed for simplicity):

p1@baseAddress = 2147483648

p2@baseAddress = 2147483648

p1@off se t = 1

p2@of f se t = 9

Now we illustrate how we interpret the obtained solution. We consider the calculated base address

as a unique identifier of an auxiliary array: so, if the identifier appears for the first time, a new array is

created. If the identifier is already known, the corresponding auxiliary array is taken. In our example

identifier 2147483648 appears for the first time in the solution for p1@baseAddress, so the new array

p1__autogen_array is created and the pointer p1 is initialized with it. When the same identifier

appears in the solution for p2@baseAddress, it is already known. Therefore, p2 is also initialized

with p1__autogen_array. Then offset values are processed and pointers are modified accordingly.

It results in the following test driver:

char∗ p1 , p2 ;

char p 1 _ _ a u t o g e n _ a r r a y [ 1 0 ] ;

unsigned i n t p 1 _ _ a u t o g e n _ o f f s e t ;

unsigned i n t p 2 _ _ a u t o g e n _ o f f s e t ;

p1 = p 1 _ _ a u t o g e n _ a r r a y ;

p2 = p 1 _ _ a u t o g e n _ a r r a y ;

p 1 _ _ a u t o g e n _ o f f s e t = 1 ;

p1 += p 1 _ _ a u t o g e n _ o f f s e t ;

p 2 _ _ a u t o g e n _ o f f s e t = 9 ;

p2 += p 2 _ _ a u t o g e n _ o f f s e t ;

With this test input the erroneous code in procedure test() is uncovered. The generated test driver for

this example as well as other generator output can be found in Appendix 4.

5.7.3 Address Operation

In this section we discuss the special case of pointer resolution, namely when the value of the pointer to

be resolved contains an address operation (like p = &a + b). To handle it we use the same concept

of the pointer representation as discussed in Section 5.7.2. To define the algorithm we first introduce the

following auxiliary functions:

α : Expression → Expression Returns operand with address operation. For exam-

ple, for expression e = &a + b, α(e) =&a.

δ : Expression → Expression Returns operand with offset part of the expression.

For example, for expression e = &a + b, δ (e) =b.

If the offset part is not existent, δ (e) = 0.

Algorithm 18 shows the procedure resolveAddrExp(). This procedure specifies how an address oper-

ation is resolved so that the resulting constraint contains only variables of atomic data types so that the

solver is able to handle it. First the variable var1: variable to which the address operator is applied is

identified. For example for expression &a + b this is variable a. Next, new auxiliary variables var.A
and var1.A are created, corresponding to the base address of the pointer var and to the base address
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input : var − p o i n t e r i d e n t i f i e r which has an a d d r e s s e x p r e s s i o n as v a l u e

e − a d d r e s s e x p r e s s i o n

output : c − f e a s i b i l i t y c o n s t r a i n t

procedure r e so lveAddrExp ( var , e , c ) {

a = α(e) ;

var1 = v a r i a b l e p a r t i c i p a t i n g in e x p r e s s i o n a

c r e a t e v a r . A, υ ( v a r .A) = υ(var) ;

c r e a t e v a r 1 . A, υ ( v a r 1 .A) = υ(var1) ;

c = c∧ (v a r .A == v a r 1 .A) ;

c r e a t e v a r . x , υ ( v a r . x ) = υ(var) ;

c r e a t e v a r 1 . x , υ ( v a r 1 . x ) = υ(var1) ;

c = c∧ (v a r . x == v a r 1 . x+ω(a)+δ (e)) ;

c = c∧ (v a r . x< dim(var))∧ (v a r 1 . x< dim(var1)) ;

c = c∧ ( v a r 1 . x == 0) ;

}

Algorithm 18: Resolution of address operation.

of the variable var1 respectively. To ensure that the pointer var points to the memory location defined

by the address operation expression, we require, that the base address of the pointer var and the base

address of the variable var1 are equal. Further, we process the offset part of the expression e. New

auxiliary variables corresponding to offsets of var and var1 are created: var.x and var1.x. The offset

difference between var.x and var1.x consists of two parts: (1) defined by the selector – for example

when the address expression has form &a[3], this part is represented by ω(a) in the offset expression

and (2) the explicit offset defined by the δ (e). The safety of array bounds is ensured and in the final step

the offset of the var1 is set to zero since this offset is already taken into account.

We illustrate the described approach on a simple example:

1 i n t a [ 1 0 ] ;

2 void t e s t _ a d d r e s s ( )

3 {

4 i n t ∗p1 = &a [ 1 ] ;

5 i n t ∗p2 = &a [ 4 ] ;

6 i f ( p1 > p2 ) {

7 ERROR;

8 }

9 }

After the symbolic execution of the first 5 lines the memory is configured as follows:

m1 = (1, ∞, &a[0], 0, 320, int, a0, true)
m2 = (2, 3, &p1, 0, 32, int*, Undef, true)
m3 = (3, 4, &p2, 0, 32, int*, Undef, true)
m4 = (4, ∞, &p1, 0, 32, int*, &a4[1], true)
m5 = (5, ∞, &p2, 0, 32, int*, &a5[4], true)
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Now we process as defined by the procedure resolveConstraint() (Section 5.5):

1. Initialize the path constraint according to the guard condition:

Φ = (p1 5 > p25).

2. Resolve p15: find the memory item responsible for p15, this is m4. Resolve p15 according to

the value of the item found. Since the value of m4 (&a4[1]) contains an address operation,

resolveAddrExp() is invoked. resolveAddrExp() creates the auxiliary variables p1@baseAddress,

p1@offset and a@baseAddress, a@offset and constructs the following constraint:

p1@baseAddr5 ==a@baseAddr4 ∧
p1@offset5 ==a@offset4 +1 ∧ a@offset4 < 10 ∧
a@offset4 == 0.

p1 is a local pointer. This is why its offset is not bounded.

3. Analog to p15 the resolution of p25 is performed:

p2@baseAddr5 ==a@baseAddr5 ∧
p2@offset5 ==a@offset5 +4 ∧ a@offset5 < 10 ∧
a@offset5 == 0.

Again, p2 is a local pointer. This is why its offset is not bounded.

4. After these steps only the resolution of a@offseti and a@baseAddri (i = 4,5) to their initial

values remains. To do it, the original variable ai (i= 4,5) is passed for resolution, which is resolved

to a0 according to the value of the memory item m1. This leads to the following constraint:

(p15 > p25)

(p1@baseAddr5 ==a@baseAddr4 ∧
p1@offset5 ==a@offset4 +1 ∧ a@offset4 < 10 ∧ a@offset4 == 0) ∧
(p2@baseAddr5 ==a@baseAddr5 ∧
p2@offset5 ==a@offset5 +4 ∧ a@offset5 < 10 ∧ a@offset5 == 0) ∧
a4 == a0 ∧
a5 == a0.

The values of a@offseti and a@baseAddri (i = 4,5) are not resolved yet, this happens after

the pointer resolution is done in the next step.

5. To eliminate pointer occurrences in the generated constraint, the procedure resolvePointerVars()
is invoked which eliminates occurrences of pointers p15, p25 and ai (i = 0,4,5). The resulting

path constraint is as follows:

Φ = (p1@offset5 > p2@offset5) ∧
(p1@baseAddr5 ==a@baseAddr4 ∧
p1@offset5 ==a@offset4 +1 ∧ a@offset4 < 10 ∧ a@offset4 == 0) ∧
(p2@baseAddr5 ==a@baseAddr5 ∧
p2@offset5 ==a@offset5 +4 ∧ a@offset5 < 10 ∧ a@offset5 == 0) ∧
a@offset4 ==a@offset0 ∧ a@baseAddr4 ==a@baseAddr0

a@offset5 ==a@offset0 ∧ a@baseAddr5 ==a@baseAddr0
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This constraint does not contain any variables of pointer type, so it can be passed to the solver and

it can be established, that the line with an error is unreachable.

The generated test driver as well as the other outputs produced by the test generator for this example

are presented in Appendix 5.

5.8 Handling of Structures

While handling of an assignment to a structure is already covered by the basic algorithm discussed in

5.4.1, the resolution of an assignment of the form var == struct.access is more complicated. Since the

solver cannot handle structure accesses, they must be resolved further up to the value of an atomic type.

When such a resolution is not possible because such a structure access is an input, an auxiliary variable of

a type corresponding to the accessed field is created and the structure access is resolved to this auxiliary

variable. Since the test generator operates on three-address code, we can act on the assumption that we

will never have a structure access in a guard condition, i.e. the structure access can occur only on the left

side of an assignment resulting from the variable resolution.

First, we introduce auxiliary functions that we need for further definitions and algorithms:

ν : Selectors → Selectors Maps a selector to the corresponding base

name. For example ν(x. f 1. f 2) = x.

χ : Expression×Expression → Selectors Maps the defined memory area within a struc-

ture to the corresponding selector.

ι : Expression×Expression → Symbols Maps the defined memory area within a struc-

ture to the corresponding type.
The resolution of a structure assignment is performed by the procedure call

resolveStructExp(var, sel, offsetStart, offsetEnd, c, mem)

Where

• var is a versioned variable identifier. It indicates the variable, that has a structure access as a value.

• sel is a versioned selector of the structure access.

• offsetStart is the start of the demanded memory area within the structure.

• offsetEnd is the end of the demanded memory area within the structure.

• c is a constraint that holds the result of the resolution process.

• mem is the current memory specification.

The Algorithm 19 shows the procedure for the resolution of an assignment of a structure access

resolveStructExp(). First the algorithm finds all memory items referring to the structure variable from

sel. By iterating over the found items the algorithm detects by which of them the validity period corre-

lates with the version of the structure access. If such an item is found, the overlapping of the memory
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input : var − v a r i a b l e i d e n t i f i e r

sel − s t r u c t u r e a c c e s s e x p r e s s i o n

offsetStart − s t a r t o f t h e demanded memory a r e a w i t h i n t h e s t r u c t u r e

offsetEnd − end of t h e demanded memory a r e a w i t h i n t h e s t r u c t u r e

mem − c u r r e n t memory s p e c i f i c a t i o n

output : c − f e a s i b i l i t y c o n s t r a i n t

procedure r e s o l v e S t r u c t E x p ( var , sel , offsetStart , offsetEnd , c , mem ) {

/ / f i n d o u t c o r r e s p o n d i n g segment
S = σ(β (sel), mem);

foreach m = last(S) downto head(S){

i f ( m.v0 ≤ υ(sel)∧υ(sel)≤ m.v1 ∧m.a == β (sel) ) {

overlap = (offsetStart < m.l) ∧ (m.o < offsetEnd);
c1 = m.c∧overlap;

i f ( c1 i s f e a s i b l e ) {

i f ( m r e f e r s t o an input ) {

/ / c r e a t e a u x i l i a r y v a r i a b l e
newVar.name = ν(sel)+χ(offsetStart, offsetEnd);
newVar.type = ι(offsetStart, offsetEnd);
υ(newVar) = υ(m.val)
c1 = c1 ∧ (var == newVar);

} e l s e i f ( offsetStart == m.o ∧ offsetEnd == m.l ) {

r e s o l v e E x p (var, m.val, c1, mem);

} e l s e {

/ / t h i s i s n e s t e d s t r u c t u r e a c c e s s
newOffsetStart = offsetStart −m.o;

newOffsetEnd = offsetEnd −m.o;

r e s o l v e S t r u c t E x p ( var , m.val , newOffsetStart , newOffsetEnd,c1,mem ) ;

}

c2 = c2 ∨ c1;

}

}

}

c = c∧ c2

}

Algorithm 19: Resolution of a struct access.
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segments corresponding to the memory item and to the demanded memory is examined. The overlap-

ping condition is conjuncted with the feasibility constraint of the found memory item and is stored in

constraint c1. When overlapping occurs and the feasibility constraint is feasible (i.e. c1 is feasible), the

algorithm analyzes three possibilities to proceed:

1. The detected memory item corresponds to an input. In this case a new auxiliary variable is created.

Its name is set equally to the base name corresponding to the selector sel plus the selector corre-

sponding to the chosen memory area within the structure. Its type is set to the type of the accessed

field. The resolution expression of the variable identifier var to this new variable is conjuncted

with the feasibility constraint c1.

2. The detected memory item is an exact fit, i.e. it refers to exactly the memory area corresponding

to the selector sel. In this case the procedure resolveExp() (see Section 5.5) is called for further

resolution of the value of the memory item m. The result of this resolution is stored in the constraint

c1.

3. The detected memory item is not an exact fit, i.e. the memory item describes a memory area that is

greater than the memory area corresponding to the selector sel. This can happen in case of nested

structures. To handle it, the algorithm performs a recursive call with an adjusted offset start and

offset end. For example, in the following piece of code the variables v1 and v2 are of struct types

s1_t and s2_t correspondingly:

v1 . f = v2 ;

i f ( v1 . f . f1 )

. . .

During the resolution of an expression v1.f.f1 we will determine that the memory area corre-

sponding to it has variable v2 as a value. This is not sufficient and we must resolve it further.

Namely find the value of the field f1 within the variable v2. To do it, the offsets calculated for

v1.f.f1 must be adjusted, specifically they must correspond to the offsets of the field f1 within

structure s2_t. Therefore the offset of the field f in structure s1_t is subtracted from the offset

start and offset end of the expression v1.f.f1.

The constraint produced by this approach is disjuncted with the summarizing constraint c2, which holds

all possible outcomes of the resolution process of the structure access sel. This constraint is conjuncted

at the end of the algorithm with the resulting constraint c.

We illustrate the introduced algorithm by an example. First, we discuss the part of this example where

the simple structure access can be resolved up to a value of an atomic type, then we continue with the

part where this resolution is not possible since the structure access corresponds to an input and finally

we discuss the processing of a nested structure access. First, we define the structure types used in the

example:
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t y p e d e f s t r u c t {

i n t f1 ;

i n t f2 ;

} n e s t e d S t r u c t T y p e _ t ;

t y p e d e f s t r u c t {

i n t f i e l d 1 ;

i n t f i e l d 2 ;

n e s t e d S t r u c t T y p e _ t f i e l d 3 ;

} s t r u c t T y p e _ t ;

Consider now the function structAccess():
C code GIMPLE representation

1 i n t s t r u c t A c c e s s ( s t r u c t T y p e _ t p1 ) {

2 p1 . f i e l d 1 = 4 ;

3 i f ( p1 . f i e l d 1 < 0) {

4 re turn 1 ;

5 } e l s e i f ( p1 . f i e l d 2 > 0) {

6 re turn 2 ;

7 }

8

9 n e s t e d S t r u c t T y p e _ t tmp ;

10 tmp . f1 = 5 ;

11 tmp . f2 = 7 ;

12 p1 . f i e l d 3 = tmp ;

13

14 i f ( p1 . f i e l d 3 . f1 == 5) {

15 re turn 3 ;

16 }

17 re turn 4 ;

18 }

1 i n t s t r u c t A c c e s s ( s t r u c t T y p e _ t p1 ) {

2 s t r u c t n e s t e d S t r u c t T y p e _ t tmp ;

3 i n t D_1731 ;

4 i n t D_1728 ;

5 i n t D_1727 ;

6 i n t D_1724 ;

7 p1 . f i e l d 1 = 4 ;

8 D_1724 = p1 . f i e l d 1 ;

9 i f ( D_1724 < 0) {

10 D_1727 = 1

11 } e l s e {

12 D_1728 = p1 . f i e l d 2 ;

13 i f ( D_1728 > 0) {

14 d_1727 = 2 ;

15 } e l s e {

16 tmp . f1 = 5 ;

17 tmp . f2 = 7 ;

18 p1 . f i e l d 3 = tmp ;

19 D_1731 = p1 . f i e l d 3 . f1 ;

20 i f ( D_1731 == 5) {

21 D_1727 = 3 ;

22 } e l s e {

23 d_1727 = 4 ;

24 }

25 }

26 }

27 re turn D_1727 ;

28 }

Line 3 of this function contains the evaluation of a defined structure member, line 5 contains the

evaluation of an undefined structure member and line 14 demonstrates a nested structure access.

Suppose, we want to reach line 4 (line 10 in GIMPLE representation). First, the memory initialization

is done (we perform the analysis on the GIMPLE code):

m1 = (1, ∞ , &p1, 0, 128, structType_t, p10, true)
m2 = (2, ∞ , &tmp, 0, 64, int, Undef, true)
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m3 = (3, ∞ , &D_1731, 0, 32, int, Undef, true)
m4 = (4, ∞ , &D_1728, 0, 32, int, Undef, true)
m5 = (5, ∞ , &D_1727, 0, 32, int, Undef, true)
m6 = (6, ∞ , &D_1724, 0, 32, int, Undef, true)

Execution of line 7 (p1.field1 = 4;), overwrites the first 32 bits of the variable p1. First, a

memory item corresponding to these 32 bits is created:

m7 = (7, ∞, &p1, 0, 32, structType_t, 4, true)

The insertion of this memory item into the current memory specification invalidates memory item m1:

m1 = (1, 6, &p1, 0, 128, structType_t, p10, true)

and introduces an additional memory item m8 corresponding to the remains of the memory item m1

unaffected by the performed operation:

m8 = (7, ∞, &p1, 32, 128, structType_t, p10, true)

Execution of line 8 (D_1724 = p1.field1;) overwrites the whole memory item m6. Thus, a new

memory item is created:

m9 = (8, ∞, &D_1724, 0, 32, int, p1.field18, true)

and the old one is invalidated:

m6 = (6, 7, &D_1724, 0, 32, int, Undef, true)

The next line of the function under analysis consists of an if statement if(D_1724 < 0). This

means that the evaluation of the guard condition (D_1724 < 0) is necessary. Before we start with the

resolution algorithm we summarize the current memory specification:

m1 = (1, 6, &p1, 0, 128, structType_t, p10, true)
m2 = (2, ∞ , &tmp, 0, 64, int, Undef, true)
m3 = (3, ∞ , &D_1731, 0, 32, int, Undef, true)
m4 = (4, ∞ , &D_1728, 0, 32, int, Undef, true)
m5 = (5, ∞ , &D_1727, 0, 32, int, Undef, true)
m6 = (6, 7, &D_1724, 0, 32, int, Undef, true)
m7 = (7, ∞, &p1, 0, 32, structType_t, 4, true)
m8 = (7, ∞, &p1, 32, 128, structType_t, p10, true)
m9 = (8, ∞, &D_1724, 0, 32, int, p1.field18, true)

Now we proceed as defined by the procedure resolveConstraint() (Section 5.5):

1. Initialize the path constraint according to the guard condition:
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Φ = (D_17248 < 0).

2. Resolve D_1724 8: find the memory item responsible for D_17248, this is m9. Resolve D_17248

according to the value of the item found:

D_17248 ==p1.field18.

Now the algorithm resolveStructExp() is invoked with D_17248 as var, p1.field18 as sel, 0

for offsetStart, 32 for offsetEnd, Φ as c and our memory configuration as mem. The passed offsets

correspond to the memory area selected by the expression p1.field18. The loop iterates over

the memory items m1, m7 and m8, but, since the validity period of m1 does not match the validity

period of p1.field18 and the address range of the item m8 does not overlap with the calcu-

lated offset, only memory item m7 matches and this match is indeed an exact fit. The procedure

resolveExp() is invoked and the resolution results in:

Φ = (D_17248 < 0 ∧ D_17248 == 4).

3. No unresolved symbols exist anymore and the resolution process stops. Φ is infeasible, and, since

no other path goes to line 10, this line is consequently unreachable.

To demonstrate the case when the resolution of a structure access is not possible because this structure

field corresponds to an input, we continue with our example and aim now to cover the line 14 of the

GIMPLE representation. The guard condition for the else branch in line 11 is a negation of the guard

condition from the previous example, it is resolved to:

Φ = (D_17248 ≥ 0 ∧ D_17248 == 4).

which is obviously feasible.

We continue with the symbolic execution of line 12 (D_1728 = p1.field2;) which overwrites

the whole memory item m4. Thus, a new memory item is created:

m10 = (9, ∞, &D_1728, 0, 32, int, p1.field29, true)

and the old one is invalidated:

m4 = (4, 8, &D_1728, 0, 32, int, Undef, true)

The next line of the function if(D_1728 > 0) requires the evaluation of the guard condition.

Before we start with the resolution process, we summarize the current memory specification:

m1 = (1, 6, &p1, 0, 128, structType_t, p10, true)
m2 = (2, ∞ , &tmp, 0, 64, int, Undef, true)
m3 = (3, ∞ , &D_1731, 0, 32, int, Undef, true)
m4 = (4, 8, &D_1728, 0, 32, int, Undef, true)
m5 = (5, ∞ , &D_1727, 0, 32, int, Undef, true)
m6 = (6, 7, &D_1724, 0, 32, int, Undef, true)
m7 = (7, ∞, &p1, 0, 32, structType_t, 4, true)
m8 = (7, ∞, &p1, 32, 128, structType_t, p10, true)
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m9 = (8, ∞, &D_1724, 0, 32, int, p1.field18, true)
m10 = (9, ∞, &D_1728, 0, 32, int, p1.field29, true)

Now we again proceed as defined by the procedure resolveConstraint() (Section 5.5):

1. Initialize the path constraint according to the guard condition:

Φ = (D_17289 > 0).

2. Resolve D_1728 9: find the memory item responsible for D_17289, this is m10. Resolve D_17289

according to the value of the item found:

D_17289 ==p1.field29.

Now the algorithm resolveStructExp() is invoked with D_17289 as var, p1.field29 as sel, 32

for offsetStart, 64 for offsetEnd, Φ as c and our memory configuration as mem. The passed offsets

correspond to the memory area selected by the expression p1.field29. The loop iterates over

the memory items m1, m7 and m8, but, since the validity period of m1 does not match the validity

period of p1.field29 and the address range of the item m7 does not overlap with the calculated

offset, only memory item m8 matches. However, memory item m8 corresponds to an input and

cannot be resolved further. Therefore, a new auxiliary variable with name p1.field2 of type

int is created and the resolution results in:

Φ = (D_1728 > 0 ∧ D_17289 ==p1.field20).

3. No unresolved symbols exist anymore and the resolution process stops.

And finally, we consider the case of a nested structure access. We continue with our example and now

aim to cover line 21 of the GIMPLE representation. The guard condition for the else branch in line 15 is

a negation of the guard condition from the previous example, and it is resolved to:

Φ = (D_1728 ≤ 0 ∧ D_17289 ==p1.field20).

which is obviously feasible. We continue with the symbolic execution of lines 16-19. For a better

understanding of the procedure, we represent it as follows: we list the example code line by line and

after each line we specify the memory items which were created by the symbolic execution of this line.

The symbolic execution steps are numbered according to the line numbers of the GIMPLE representation

listed above.

16 tmp . f1 = 5 ;

m11 = (10, ∞ , &tmp, 0, 32, int, 5, true)

The insertion of the memory item m11 into the memory specification invalidates the memory item

m2, so that now m2 is configured as follows:

m2 = (2, 9, &tmp, 0, 64, int, Undef, true)
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and the creation of a memory item corresponding to the unaffected memory area of m2:

m12 = (10, ∞ , &tmp, 32, 64, int, Undef, true)

17 tmp . f2 = 7 ;

m13 = (11, ∞ , &tmp, 32, 64, int, 7, true)

The insertion of the memory item m13 into the memory specification invalidates memory item m12,

so that now m12 is configured as follows:

m12 = (10, 10, &tmp, 32, 64, int, Undef, true)

18 p1 . f i e l d 3 = tmp ;

m14 = (12, ∞, &p1, 64, 128, structType_t, tmp12, true)

The insertion of the memory item m14 into the memory specification invalidates memory item m8,

so that now m8 is configured as follows:

m8 = (7, 11, &p1, 32, 128, structType_t, p10, true)

and the creation of a memory item corresponding to the unaffected memory area of m8:

m15 = (12, ∞, &p1, 32, 64, structType_t, p10, true)

19 D_1731 = p1 . f i e l d 3 . f1 ;

m16 = (13, ∞ , &D_1731, 0, 32, int, p1.field3.f113, true)

The insertion of the memory item m16 into the memory specification invalidates memory item m3,

so that now m3 is configured as follows:

m3 = (3, 12, &D_1731, 0, 32, int, Undef, true)

The next line of the function if(D_1731 == 5) requires the evaluation of the guard condition. Before

we start with the resolution process, we summarize the current memory specification:

m1 = (1, 6, &p1, 0, 128, structType_t, p10, true)
m2 = (2, 9, &tmp, 0, 64, int, Undef, true)
m3 = (3, 12, &D_1731, 0, 32, int, Undef, true)
m4 = (4, 8, &D_1728, 0, 32, int, Undef, true)
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m5 = (5, ∞ , &D_1727, 0, 32, int, Undef, true)
m6 = (6, 7, &D_1724, 0, 32, int, Undef, true)
m7 = (7, ∞, &p1, 0, 32, structType_t, 4, true)
m8 = (7, 11, &p1, 32, 128, structType_t, p10, true)
m9 = (8, ∞, &D_1724, 0, 32, int, p1.field18, true)
m10 = (9, ∞, &D_1728, 0, 32, int, p1.field29, true)
m11 = (10, ∞ , &tmp, 0, 32, int, 5, true)
m12 = (10, 10, &tmp, 32, 64, int, Undef, true)
m13 = (11, ∞ , &tmp, 32, 64, int, 7, true)
m14 = (12, ∞, &p1, 64, 128, structType_t, tmp12, true)
m15 = (12, ∞, &p1, 32, 64, structType_t, p10, true)
m16 = (13, ∞ , &D_1731, 0, 32, int, p1.field3.f113, true)

Now we again process as defined by the procedure resolveConstraint() (Section 5.5):

1. Initialize the path constraint according to the guard condition:

Φ = (D_173113 == 5).

2. Resolve D_173113: find the memory item responsible for D_173113, this is m16. Resolve

D_173113 according to the value of the item found:

D_173113 ==p1.field3.f113.

Now the algorithm resolveStructExp() is invoked with D_173113 as var, p1.field3.f113

as sel, 64 for offsetStart, 96 for offsetEnd, Φ as c and our memory configuration as mem. The

passed offsets correspond to the memory area selected by the expression p1.field3.f113. The

loop iterates over the memory items m1, m7, m8, m14 and m15, but only the memory item m14

matches. This is neither an input nor an exact fit – the memory area corresponding to the m14

is bigger than selected by p1.field3.f113. Further resolution is necessary. The algorithm

performs a recursive call with D_173113 as var, tmp12 as sel and adjusted offset start (0) and

offset end (32) - this is in fact the memory area that corresponds to the field f1 within the structure

nestedStructType_t.

This call determines the memory item m11 as a perfect fit and, since the value of m11 is 5, the

resolution results in:

Φ = (D_173113 == 5 ∧ D_173113 == 5).

3. No unresolved symbols exist anymore and the resolution process stops.

The generated test driver as well as the other outputs produced by the test generator for this example

are presented in Appendix 6.

5.8.1 Pointers and Structures

Usually the pointers to structures are used and not the structures directly. Therefore, it is important to

be able to handle the resolution of pointers to structures. We distinguish two cases: assignment to a

dereferenced structure pointer and resolution of a structure pointer (i.e. when a dereferenced structure
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pointer is used in a guard condition). We discuss the algorithms which were developed to handle these

cases in the following two sections.

Assignment

The assignment to a dereferenced pointer is discussed in detail in Section 5.6. The only aspect that we

have postponed was the case when the value of a pointer is a structure access. Algorithm 20 shows an

auxiliary function that was used by Algorithms 13 and 14. A pointer can point to one or more locations,

depending on its value and validity constraint. resolveStructPtrVal() finds the memory items corre-

sponding to the memory locations where the given pointer can point to. The algorithm takes the found

value expression exp for the dereferenced pointer, which is a structure access, and the current memory

configuration as input. First, the given structure expression is reduced to the structure variable and re-

solved to the base address and offset by calling the auxiliary function resolvePtrVal() (see Algorithm

14). For example, if the given expression is p->f, at first the expression p is resolved.

The structure access refers only to a part of the pointed memory area and, therefore, it is necessary

to filter the found memory items to minimize the effort of the generation process. Thus, all memory

items which correspond to the found base address and whose validity period matches the version of the

given expression are analyzed if their memory area overlaps with the memory area corresponding to the

structure access. If this is the case, the found value is either added to the list of the possible resolutions

or is resolved further.

We illustrate the described approach by the following example:

C code GIMPLE representation

1 s t r u c t b i r t h d a y _ t

2 {

3 unsigned i n t day ;

4 unsigned i n t month ;

5 unsigned i n t y e a r ;

6 } ;

7 s t r u c t p e r s o n _ t {

8 i n t w e i g h t ;

9 i n t h e i g h t ;

10 bool i s M a l e ;

11 b i r t h d a y _ t ∗ b i r t h d a y ;

12 } ;

13

14 i n t t e s t ( ) {

15 p e r s o n _ t ∗p , p1 ;

16 b i r t h d a y _ t bd ;

17 p = &p1 ;

18 p−> b i r t h d a y = &bd ;

19 p−>b i r t h d a y −>day = 1 ;

20 . . .

21 }

1 i n t t e s t ( ) {

2 s t r u c t p e r s o n _ t ∗ p ;

3 s t r u c t p e r s o n _ t p1 ;

4 s t r u c t b i r t h d a y _ t bd ;

5 s t r u c t b i r t h d a y _ t ∗ D_1790 ;

6

7 p = &p1 ;

8 p−> b i r t h d a y = &bd ;

9 D_1790 = p−> b i r t h d a y ;

10 D_1790−>day = 1 ;

11 . . .

12 }

We perform the symbolic execution on the GIMPLE code and for a better understanding of the proce-

dure we represent it as follows: we list the example code line by line and after each line we specify the
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input : mem − c u r r e n t memory s p e c i f i c a t i o n

exp − e x p r e s s i o n t h a t s h o u l d be r e s o l v e d

output : el − s e t o f memory i t e m s wi th p o t e n t i a l t a r g e t a d d r e s s e s and o f f s e t s

f u n c t i o n r e s o l v e S t r u c t P t r V a l ( exp , mem ) {

pl = r e s o l v e P t r V a l ( β (exp) , mem ) ;

offsetStart = ω(exp);
offsetEnd = ω(exp) + b i t s i z e o f ( exp ) ;

el = /0;

foreach m in pl{

/ / f i n d o u t c o r r e s p o n d i n g segment
S = σ(m.a,mem);

foreach m′ = last(S) downto head(S){

i f ( m′.a == m.a && m′.v0 ≤ υ(exp)≤ m′.v1 ) {

overlap = (m′.o < offsetEnd +m.o)∧ (m′.l > offsetStart +m.o);
i f ( overlap i s f e a s i b l e ) {

i f ( m′.val i s an input ) {

/ / no f u r t h e r r e s o l u t i o n i s p o s s i b l e
/ / c r e a t e new memory i t e m
newOffset = ω(m′.val)+m′.o ;

m′′ = (m′.a,newOffset, . . . , m′.val,m′.c∧overlap);
el = el ∪ m′′ ;

} e l s e i f ( m′.val i s a p o i n t e r s t r u c t a c c e s s ) {

el1 = r e s o l v e S t r u c t P t r V a l ( m′.val , mem ) ;

} e l s e {

el1 = r e s o l v e P t r V a l ( m′.val , mem ) ;

}

i f ( overlap 
= true ) {

foreach m′′ in el1{

m′′.c = m′′c∧overlap ;

}

}

el = el ∪ el1;

}

}

}

}

re turn el ;

}

Algorithm 20: Resolution of the pointer structure access to all potential base addresses and offsets.
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memory items which were created by the symbolic execution of this line. The symbolic execution steps

are numbered according to the line numbers of the GIMPLE representation listed above.

First, the memory is initialized:

2 s t r u c t p e r s o n _ t ∗ p ;

m1 = (1, ∞, &p, 0, 32, person_t*, Undef, true)

3 s t r u c t p e r s o n _ t p1 ;

m2 = (2, ∞, &p1, 0, 128, person_t, Undef, true)

4 s t r u c t b i r t h d a y _ t bd ;

m3 = (3, ∞, &bd, 0, 96, birthday_t, Undef, true)

5 s t r u c t b i r t h d a y _ t ∗ D_1790 ;

m4 = (4, ∞, &D_1790, 0, 32, birthday_t*, Undef, true)

Then the assignments are processed:

7 p = &p1 ;

is processed as was shown in procedure updateByAssignment() (Algorithm 9), a new memory

item is created:

m5 = (5, ∞, &p, 0, 32, person_t*, &p15, true)

The insertion of the created memory item invalidates the memory item m1:

m1 = (1, 4, &p, 0, 32, person_t*, Undef, true)

8 p−> b i r t h d a y = &bd ;

is processed as was shown in procedure updateByAssignmentToDerefPtr() (Algorithm 13), the

dereferenced pointer p is first resolved to the base address &p1, a new memory item is created:

m6 = (6, ∞, &p1, 96, 128, person_t, &bd6, true)

The insertion of the new memory item into the memory configuration invalidates the memory item

m2:
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m2 = (2, 5, &p1, 0, 128, person_t, Undef, true)

and introduces a new memory item corresponding to the remains of the memory item m2 not

affected by the assignment:

m7 = (6, ∞, &p1, 0, 96, person_t, Undef, true)

9 D_1790 = p−> b i r t h d a y ;

is processed again according to the procedure updateByAssignment() (Algorithm 9), a new mem-

ory item is created:

m8 = (7, ∞, &D_1790, 0, 32, birthday_t*, p->birthday7 , true)

The insertion of the created memory item invalidates the memory item m4:

m4 = (4, 6, &D_1790, 0, 32, birthday_t*, Undef, true)

10 D_1790−>day = 1 ;

At first sight, this assignment does not differ from the assignment in line 8, but the value of the

dereferenced pointer D_1790 is a pointer struct access (memory item m8). Therefore, the pro-

cedure resolveStructPtrVal (Algorithm 20) is invoked with expression p->birthday7 as exp
and our memory configuration as mem. First, the pointer p is resolved to the base address by

the procedure resolvePtrVal() (Algorithm 14), and the result contains only one auxiliary memory

item with base address &p1 and offset 0. The loop over corresponding memory items from the

memory configuration iterates over m2, m6 and m7. The validity period of the item m2 does not

match with the validity period of p->birthday7, and the memory area of m7 ([0, 96)) does not

overlap with the memory area selected by p->birthday ([96, 128)). The only item that is left is

m6. Its value (&bd6) is not an input and not a structure access. Therefore, it is resolved to the base

address according to the procedure resolvePtrVal() (Algorithm 14), and the result (base address:

&bd, offset: 0) is added to the set of memory items of potential target addresses. In this way, the

generator detected that the value 1 should be written on the base address &bd with offsets [0, 32).

So the resulting item is created:

m9 = (8, ∞, &bd, 0, 32, birthday_t, 1, true)

Its insertion into the memory configuration invalidates the memory item m3:

m3 = (3, 7, &bd, 0, 96, birthday_t, Undef, true)

and introduces a new memory item corresponding to the remains of the memory item m3 not

affected by the assignment:
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m10 = (8, ∞, &bd, 32, 96, birthday_t, Undef, true)

All statements from our example are processed. We summarize the memory configuration:

m1 = (1, 4, &p, 0, 32, person_t*, Undef, true)
m2 = (2, 5, &p1, 0, 128, person_t, Undef, true)
m3 = (3, 7, &bd, 0, 96, birthday_t, Undef, true)
m4 = (4, 6, &D_1790, 0, 32, birthday_t*, Undef, true)
m5 = (5, ∞, &p, 0, 32, person_t*, &p15 , true)
m6 = (6, ∞, &p1, 96, 128, person_t, &bd6 , true)
m7 = (6, ∞, &p1, 0, 96, person_t, Undef, true)
m8 = (7, ∞, &D_1790, 0, 32, birthday_t*, p->birthday7 , true)
m9 = (8, ∞, &bd, 0, 32, birthday_t, 1, true)
m10 = (8, ∞, &bd, 32, 96, birthday_t, Undef, true)

Resolution

The resolution of a structure pointer access (e.g a == p->m1) is performed by the procedure call

resolveStructPtrExp(var, sel, offsetStart, offsetEnd, c, mem)

Where

• var is a versioned variable identifier. It indicates the variable, that has a structure access as a value.

• sel is a versioned selector of the pointer structure access.

• offsetStart is the start of the demanded memory area within the structure.

• offsetEnd is the end of the demanded memory area within the structure.

• c is a constraint that holds the result of the resolution process.

• mem is the current memory specification.

Algorithm 21 shows the procedure for the resolution of an assignment of a pointer structure access

resolveStructPtrExp(). First, the algorithm performs the resolution of the pointer, which was derefer-

enced to access the members of the structure. This is done by the auxiliary procedure resolveStruct-
PtrVal() (Algorithm 20) in case if the value of the pointer is again a pointer structure access, or by the

procedure resolvePtrVal() (Algorithm 14) otherwise. These procedures resolve pointers until the mem-

ory where the respective pointer points to is found, and return all possible resolutions. After this is done,

the problem reduces itself to the resolution of a structure access, which is performed by the procedure

resolveStructExp() (Algorithm 19).

We illustrate our approach by the following example:
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input : var − v a r i a b l e i d e n t i f i e r which has a d e r e f e r e n c e d p o i n t e r a s v a l u e

sel − s t r u c t u r e a c c e s s e x p r e s s i o n

offsetStart − s t a r t o f t h e demanded memory a r e a w i t h i n t h e s t r u c t u r e

offsetEnd − end of t h e demanded memory a r e a w i t h i n t h e s t r u c t u r e

mem − c u r r e n t memory s p e c i f i c a t i o n

output : c − f e a s i b i l i t y c o n s t r a i n t

procedure r e s o l v e S t r u c t P t r E x p ( var , sel , offsetStart , offsetEnd , c , mem ) {

/ / f i n d o u t c o r r e s p o n d i n g segment
S = σ(β (sel), mem);

foreach m = last(S) downto head(S){

i f ( m.v0 ≤ υ(sel)∧υ(sel)≤ m.v1 ∧m.a == β (sel) ) {

i f ( m.val i s a p o i n t e r s t r u c t a c c e s s ) {

pl = r e s o l v e S t r u c t P t r V a l ( m.val , mem ) ;

} e l s e {

pl = r e s o l v e P t r V a l ( m.val , mem ) ;

}

foreach m′′ in pl{

offsetStart1 = offsetStart +m′′.o ;

offsetEnd1 = offsetEnd +m′′.o ;

r e s o l v e S t r u c t E x p ( var , m′′.a , offsetStart1, offsetEnd1, c1, mem ) ;

c2 = c2 ∨ c1;

}

}

c = c∧ c2

}

}

Algorithm 21: Resolution of a struct pointer access.
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C code GIMPLE representation

1 unsigned i n t CURRENT_MONTH;

2 i n t getAge2 ( p e r s o n _ t ∗p )

3 {

4 i n t age ;

5

6 i f (CURRENT_MONTH > p−>b i r t h d a y −>month &&

7 CURRENT_DAY > p−>b i r t h d a y −>day ) {

8 age = CURRENT_YEAR −
9 p−>b i r t h d a y −>y e a r ;

10 } e l s e {

11 age = CURRENT_YEAR −
12 p−>b i r t h d a y −>y e a r − 1 ;

13 }

14

15 re turn age ;

16 }

1 unsigned i n t CURRENT_MONTH;

2 i n t getAge2 ( p e r s o n _ t ∗p ) {

3 unsigned i n t CURRENT_MONTH_0;

4 unsigned i n t D_1772 ;

5 s t r u c t b i r t h d a y _ t ∗D_1771 ;

6 . . .

7 D_1771 = p−> b i r t h d a y ;

8 D_1772 = D_1771−>month ;

9 CURRENT_MONTH_0 = CURRENT_MONTH;

10

11 i f ( D_1772 < CURRENT_MONTH_0) {

12 D_1775 = p−> b i r t h d a y ;

13 . . .

14 }

15 }

Where the types birthday_t and person_t are defined as follows:

s t r u c t b i r t h d a y _ t

{

unsigned i n t day ;

unsigned i n t month ;

unsigned i n t y e a r ;

} ;

s t r u c t p e r s o n _ t {

i n t w e i g h t ;

i n t h e i g h t ;

bool i s M a l e ;

b i r t h d a y _ t ∗ b i r t h d a y ;

} ;

We do not demonstrate the whole GIMPLE representation (and symbolic execution) here, but only

the evaluation of the first guard condition (the first clause in the if statement in line 6 of C code). The

complete generator output for this example is presented in Appendix 7.

Nevertheless, for a better understanding of the procedure, we represent it as follows: we list the

example code line by line and after each line we specify the memory items which were created by

the symbolic execution of this line. The symbolic execution steps are numbered according to the line

numbers of the GIMPLE representation listed above.

First, the memory is initialized:

1 unsigned i n t CURRENT_MONTH;

m1 = (1, ∞, &CURRENT_MONTH, 0, 32, unsigned int, CURRENT_MONTH0,

true)

2 i n t getAge2 ( p e r s o n _ t ∗p ) {
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m2 = (2, ∞, &p, 0, 32, person_t*, &p@P2, true)
m3 = (2, ∞, &p@P, 0, 96, person_t, p@P0, true)
m4 = (2, ∞, &p@P, 96, 128, person_t, &p@P.birthday@P2, true)
m5 = (2, ∞, &p@P.birthday@P, 0, 96, birthday_t, p@P.birthday@P0,

true)

Since parameter p is of a pointer type, to be able to resolve this pointer and to reason about its

contents, an auxiliary variable p@P is created and corresponding memory items (m3, m4) are con-

structed. The value of the memory item m2 is set to the address of the created auxiliary variable.

Memory item m3 corresponds to non-pointer members of the structure person_t, the item m4

corresponds to the member birthday of type birthday_t*. Since this is a pointer, a new aux-

iliary variable p@P.birthday@P of type birthday_t is created, which simulates the variable

where the member birthday points to. The value of the item m4 is set to the address of this vari-

able and an item corresponding to it is created (m5). Since structure birthday_t has no pointer

members, no further auxiliary variables or memory items are created. In the generator the process

of expanding of the structure members is bounded by a parameter so that it does not result in an

endless recursion.

3 unsigned i n t CURRENT_MONTH_0;

m6 = (3, ∞, &CURRENT_MONTH_0, 0, 32, unsigned int, Undef, true)

4 unsigned i n t D_1772 ;

m7 = (4, ∞, &D_1772, 0, 32, unsigned int, Undef, true)

5 s t r u c t b i r t h d a y _ t ∗D_1771 ;

m8 = (5, ∞, &D_1771, 0, 32, birthday_t*, Undef, true)

The assignments are processed:

7 D_1771 = p−> b i r t h d a y ;

m9 = (6, ∞, &D_1771, 0, 32, birthday_t*, p->birthday6, , true)

Invalidates the memory item m8:

m8 = (5, 5, &D_1771, 0, 32, birthday_t*, Undef, true)

8 D_1772 = D_1771−>month ;
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m10 = (7, ∞, &D_1772, 0, 32, unsigned int, D_1771->month7, , true)

Invalidates the memory item m7:

m7 = (4, 6, &D_1772, 0, 32, unsigned int, Undef, true)

9 CURRENT_MONTH_0 = CURRENT_MONTH;

m11 = (8,∞, &CURRENT_MONTH_0, 0, 32, unsigned int, CURRENT_MONTH8,

true)

Invalidates the memory item m6:

m6 = (3, 7, &CURRENT_MONTH_0, 0, 32, unsigned int, Undef, true)

Before we start with the resolution of the guard condition in line 11, we summarize the memory

configuration:

m1 = (1, ∞, &CURRENT_MONTH, 0, 32, unsigned int, CURRENT_MONTH0,

true)
m2 = (2, ∞, &p, 0, 32, person_t*, &p@P2, true)
m3 = (2, ∞, &p@P, 0, 96, person_t, p@P0, true)
m4 = (2, ∞, &p@P, 96, 128, person_t, &p@P.birthday@P2, true)
m5 = (2, ∞, &p@P.birthday@P, 0, 96, birthday_t, p@P.birthday@P0,

true)
m6 = (3, 7, &CURRENT_MONTH_0, 0, 32, unsigned int, Undef, true)
m7 = (4, 6, &D_1772, 0, 32, unsigned int, Undef, true)
m8 = (5, 5, &D_1771, 0, 32, birthday_t*, Undef, true)
m9 = (6, ∞, &D_1771, 0, 32, birthday_t*, p->birthday6, , true)
m10 = (7, ∞, &D_1772, 0, 32, unsigned int, D_1771->month7, , true)
m11 = (8,∞, &CURRENT_MONTH_0, 0, 32, unsigned int, CURRENT_MONTH8,

true)

Now we process as defined by the function resolveConstraint() (Algorithm 11):

1. Initialize the path constraint according to the guard condition:

Φ = (D_17728 <CURRENT_MONTH_08).

2. Resolve D_17728: find the memory item responsible for D_17728, this is m10. Resolve D_17728

according to the value of the item found:

D_17728 ==D_1771->month7.
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Now the algorithm resolveStructPtrExp() is invoked with D_17728 as var, D_1771->month7

as sel, 32 as offsetStart, 64 as offsetEnd, Φ as c and our memory configuration as mem. The

following items were found for base address &D_1771: m9 and m8. The validity period of m8

does not fit the version of sel. Thus, only item m9 matches.

The value of m9 is p->birthday6, this is structure pointer access, so the auxiliary function

resolveStructPtrVal() is called. First, another auxiliary function resolvePtrVal() for the expres-

sion p is called. It produces the following specification: the base address is &p@P and the offset

is 0. The loop iterates over the memory items m3 and m4, but only item m4 overlaps with the

memory selected by the expression p->birthday6. The value of m4 is &p@P.birthday@P2

this is not an input and not a pointer structure offset, therefore the function resolvePtrVal() is in-

voked again which produces the following specification: the base address is &p@P.birthday@P
and the offset is 0. This specification is passed to the procedure resolveStructPtrExp(), which

calls resolveStructExp() with D_17728 as var, &p@P.birthday@P2 as sel, [32, 64) as off-

sets, Φ as c and our memory configuration as mem. resolveStructExp() determines, that given sel
corresponds to the memory item m5, whose value is an input, so it creates an auxiliary variable

p@P.birthday@P.month of type unsigned int and produces the following resolution:

D_17728 ==p@P.birthday@P.month0.

3. Resolve CURRENT_MONTH_08:

CURRENT_MONTH_08 == CURRENT_MONTH0.

4. No unresolved symbols exist anymore. Thus, the resolution process stops. The result is as follows:

Φ = (D_17728 <CURRENT_MONTH_08) ∧
(D_17728 ==p@P.birthday@P.month0) ∧
(CURRENT_MONTH_08 == CURRENT_MONTH0).

Constraint Φ now only contains variables of atomic types, thus the solver is able to reason about

it.

The generated test driver as well as the other outputs produced by the test generator for this example

are presented in Appendix 7.

5.9 Handling of Bitfields

Since the solver underlying the generation process is capable of handling bitfields, the bitfields processing

is mostly done by the solver. However, the preprocessing step that collects all needed information is

required. In this section we discuss how this preprocessing step is performed and give an example to

illustrate it.

During the preprocessing of the C code to the GIMPLE representation not only are all expressions

broken down to expressions with no more than three operands, but also other modifications are made.

Amongst them is the transformation of the bitfield evaluation. We observe this in the following example:
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C code GIMPLE representation

1 t y p e d e f s t r u c t b i t f i e l d _ t {

2 u i n t 8 _ t b i t 1 : 1 ;

3 u i n t 8 _ t b i t 2 : 1 ;

4 . . .

5 u i n t 8 _ t b i t 1 2 : 1 ;

6 } b i t f i e l d _ t ;

7

8 b i t f i e l d _ t g loba lBF ;

9 i n t t e s t ( )

10 {

11 i n t r e t v a l = 0 ;

12 g loba lBF . b i t 1 1 = 1 ;

13 g loba lBF . b i t 5 = 0 ;

14 i f ( g loba lBF . b i t 1 1 && . . . ) {

15 . . .

16 }

17 . . .

18 }

1 b i t f i e l d _ t g loba lBF ;

2 i n t t e s t ( )

3 {

4 i n t r e t v a l ;

5 unsigned char D_1729 ;

6 unsigned char D_1730 ;

7 . . .

8 r e t v a l = 0 ;

9 g loba lBF . b i t 1 1 = 1 ;

10 g loba lBF . b i t 5 = 0 ;

11 D_1729 =

12 BIT_FIELD_REF <globalBF , 8 , 8 >;

13 D_1730 = D_1729 & 4 ;

14 i f ( D_1730 != 0) {

15 . . .

16 }

17 . . .

18 }

In this example a bitfield bitfield_t is defined with 12 fields of length 1. Lines 12-13 of the C

code demonstrate an assignment to a bitfield and line 14 shows the evaluation of the bitfield. While an

assignment to a bit field is also handled in GIMPLE as an assignment to an ordinary structure member,

the evaluation looks rather different: first, the content of the byte where the accessed bitfield belongs to

is stored in an auxiliary variable (line 11), then the status of the accessed bit is stored in another auxiliary

variable (line 13) and, finally, it is evaluated. Since the bitfield expression BIT_FIELD_REF(var,
size, start) (where var is the name of the bitfield, size is the size of the extracted segment in

bits and start is the bit number where the extracted segment starts) does not define a single member of

a bitfield but a segment that can contain multiple fields, the values of all these fields must be identified,

composed and stored in the auxiliary variable on the right-hand side.

Definition 5.10. The effect of the assignment of a bitfield on the state space Ss is specified by the proce-

dure call:

updateByBitFieldAssignment(var, exp, n, mem); mem′ = mem;

where

• var is a variable identifier where the bitfield is assigned to,

• exp is a bitfield expression that should be assigned,

• n is the current computational step,

• mem is the current memory specification.

Assignment of a bitfield expression affects only the stack segment.

Algorithm 22 shows the procedure updateByBitFieldAssignment(), which specifies how the assign-

ment of the bit field affects the memory specification. First, the procedure calculates offset start and
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i n o u t : mem − c u r r e n t memory s p e c i f i c a t i o n

input : var − v a r i a b l e i d e n t i f i e r

exp − b i t f i e l d e x p r e s s i o n

n − c u r r e n t c o m p u t a t i o n a l s t e p

procedure u p d a t e B y B i t F i e l d A s s i g n m e n t ( var , exp , n , mem ) {

offsetStart = exp.start ;

offsetEnd = exp.start + exp.size ;

/ / f i n d o u t c o r r e s p o n d i n g segment
S = σ(β (exp.var), mem);

foreach m = last(S) downto head(S){

i f ( m.v1 == ∞ ∧ m.a == β (exp.var) ∧ m.val i s not an input ) {

i f ( m.o < offsetEnd ∧ m.o ≥ offsetStart ∧ m.l ≤ offsetEnd ∧ m.l > offsetStart ) {

MASK = BITMASK( m.l −m.o ) << (m.o−offsetStart) ;

c = c∧ ((var & MASK) == ( m.val << (m.o−offsetStart))) ;

}

}

}

newExp = r t t E x t r a c t ( exp.var, offsetEnd −1 ,offsetStart ) ;

υ(newExp) = υ(exp);

upda teByAss ignment ( var, newExp, n, mem ) ;

foreach m new in mem {

m.c = m.c∧ c ;

}

}

Algorithm 22: Effect of the assignment of a bitfield on the memory specification.
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offset end of the assigned bitfield based on the given bitfield expression. Next, all valid memory items

referring to the base address corresponding to the bitfield name and not referring to an input are found.

The memory items referring to an input can be ignored since their values can be set arbitrarily and do

not restrict the solver by assigning any values to the bits corresponding to these memory items. If the

memory area of the found item correlates with the memory area defined by the bitfield expression, a

bit mask is built which corresponds exactly to the bits defined by the current memory item (here with

BITMASK(n) we denote a bit mask of length n, e.g. BITMASK(3) is 111 in binary representation).

Next, a constraint is built, that reflects that the bits of the variable var corresponding to the memory area

defined by the found item must be equal to the value of this item. After such constraints are built for

all fitting memory items, a bitfield expression, understandable by the solver, is composed, its version

is set equal to the version of the bitfield expression exp and the procedure updateByAssignment() is

called where on the left-hand side of the assignment there is a variable identifier var where the bitfield

is assigned to, and on the right-hand side is the bitfield expression in the solver-required form. After

the procedure updateByAssignment() is finished, all memory items created by this procedure receive an

additional feasibility constraint that characterizes all already defined bits amongst the extracted bits of

the bitfield.

We illustrate the described approach by the example function test() from the beginning of this

section. For a better understanding of the procedure, we represent it as follows: we list the example

code line by line and after each line we specify the memory items which were created by the symbolic

execution of this line. The symbolic execution steps are numbered according to the line numbers of the

GIMPLE representation listed above.

First, the memory is initialized:

1 b i t f i e l d _ t g loba lBF ;

m1 = (1, ∞, &globalBF, 0, 16, bitfield_t, globalBF0, true)

4 i n t r e t v a l ;

m2 = (2, ∞, &retval, 0, 32, int, Undef, true)

5 unsigned char D_1729 ;

m3 = (3, ∞, &D_1729, 0, 8, unsigned char, Undef, true)

6 unsigned char D_1730 ;

m4 = (4, ∞, &D_1730, 0, 8, unsigned char, Undef, true)

Then the assignments are processed:

8 r e t v a l = 0 ;
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m5 = (5, ∞, &retval, 0, 32, int, 0, true)

Invalidates the memory item m2:

m2 = (2, 4, &retval, 0, 32, int, Undef, true)

9 g loba lBF . b i t 1 1 = 1 ;

m6 = (6, ∞, &globalBF, 10, 11, bitfield_t, 1, true)

Invalidates the memory item m1:

m1 = (1, 5, &globalBF, 0, 16, bitfield_t, globalBF0, true)

and introduces additional memory items for remains of m1 unaffected by the assignment:

m7 = (6, ∞, &globalBF, 0, 10, bitfield_t, globalBF0, true)
m8 = (6, ∞, &globalBF, 11, 16, bitfield_t, globalBF0, true)

10 g loba lBF . b i t 5 = 0 ;

m9 = (7, ∞, &globalBF, 4, 5, bitfield_t, 0, true)

Invalidates the memory item m7:

m7 = (6, 6, &globalBF, 0, 10, bitfield_t, globalBF0, true)

and introduces additional memory items for the remains of m7 unaffected by the assignment:

m10 = (7, ∞, &globalBF, 0, 4, bitfield_t, globalBF0, true)
m11 = (7, ∞, &globalBF, 5, 10, bitfield_t, globalBF0, true)

Before we proceed with the next statement, we summarize the current memory specification:

m1 = (1, 5, &globalBF, 0, 16, bitfield_t, globalBF0, true)
m2 = (2, 4, &retval, 0, 32, int, Undef, true)
m3 = (3, ∞, &D_1729, 0, 8, unsigned char, Undef, true)
m4 = (4, ∞, &D_1730, 0, 8, unsigned char, Undef, true)
m5 = (5, ∞, &retval, 0, 32, int, 0, true)
m6 = (6, ∞, &globalBF, 10, 11, bitfield_t, 1, true)
m7 = (6, 6, &globalBF, 0, 10, bitfield_t, globalBF0, true)
m8 = (6, ∞, &globalBF, 11, 16, bitfield_t, globalBF0, true)
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m9 = (7, ∞, &globalBF, 4, 5, bitfield_t, 0, true)
m10 = (7, ∞, &globalBF, 0, 4, bitfield_t, globalBF0, true)
m11 = (7, ∞, &globalBF, 5, 10, bitfield_t, globalBF0, true)

11 D_1729 = BIT_FIELD_REF <globalBF , 8 , 8 >;

Line 11 contains an assignment of 8 bits of the bitfield globalBF beginning with bit 8 to the

variable D_1729, so that the procedure updateByBitFieldAssignment() is invoked with D_1729
as var, BIT_FIELD_REF <globalBF, 8, 8> as exp, n equal to 8 and our memory configu-

ration. First, offsets are calculated: offsetStart is 8 and offsetEnd is 16. Then the procedure iterates

over all memory items referring to the base address &globalBF, but only memory items m6 and

m8-m11 are still valid, and of these memory items only m6 correlates with the memory defined by

the bitfield expression. (Items m8 and m11 refer to inputs, so that the bits, corresponding to these

items are still undefined and can have all possible values. Therefore, m8 and m11 do not restrict

the solver by assigning any values to the bits corresponding to these items, and, consequently, m8

and m11 can be ignored. Items m9 and m10 do not overlap with the memory defined by the bitfield

expression.)

First, we process the memory item m6: its value is 1 and the created bit mask is 4 (1 << 2),

the value of the memory item (1) is shifted two bits to the left and this results in the following

constraint:

c =( (D_1729 & 4) == 4)

Now the bitfield expression is built in the form required by the solver:

exp =rttExtract(globalBF, 15, 8)

and the procedure updateByAssignment() for assignment

D_1729 = rttExtract(globalBF, 15, 8)

is called. This call produces one new memory item:

m12 = (8,∞, &D_1729, 0, 8, unsigned char, rttExtract(globalBF8,15,8),
true)

The feasibility constraint of this memory item is amended by the constraint c, characterizing the

defined bits of the variable D_1729:

m12 = (8,∞, &D_1729, 0, 8, unsigned char, rttExtract(globalBF8,15,8),
(D_17298 & 4 == 4))

In addition to the creation of a new memory item m12, the procedure updateByAssignment() in-

validated the memory item m3:

m3 = (3, 7, &D_1729, 0, 8, unsigned char, Undef, true)
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13 D_1730 = D_1729 & 4 ;

m13 = (9, ∞, &D_1730, 0, 8, unsigned char, (D_17299 & 4), true)

Invalidates the memory item m4:

m4 = (4, 8, &D_1730, 0, 8, unsigned char, Undef, true)

Before we start with the resolution of a guard condition in line 14, we summarize the memory config-

uration:

m1 = (1, 5, &globalBF, 0, 16, bitfield_t, globalBF0, true)
m2 = (2, 4, &retval, 0, 32, int, Undef, true)
m3 = (3, 7, &D_1729, 0, 8, unsigned char, Undef, true)
m4 = (4, 8, &D_1730, 0, 8, unsigned char, Undef, true)
m5 = (5, ∞, &retval, 0, 32, int, 0, true)
m6 = (6, ∞, &globalBF, 10, 11, bitfield_t, 1, true)
m7 = (6, 6, &globalBF, 0, 10, bitfield_t, globalBF0, true)
m8 = (6, ∞, &globalBF, 11, 16, bitfield_t, globalBF0, true)
m9 = (7, ∞, &globalBF, 4, 5, bitfield_t, 0, true)
m10 = (7, ∞, &globalBF, 0, 4, bitfield_t, globalBF0, true)
m11 = (7, ∞, &globalBF, 5, 10, bitfield_t, globalBF0, true)
m12 = (8,∞, &D_1729, 0, 8, unsigned char, rttExtract(globalBF8,15,8),

(D_17298 & 4 == 4))
m13 = (9, ∞, &D_1730, 0, 8, unsigned char, (D_17299 & 4), true)

Now we start the resolution process for the guard condition D_1730 != 0 as defined by the function

resolveConstraint() (Algorithm 11):

1. Initialize the path constraint according to the guard condition:

Φ = (D_17309 ! = 0).

2. Resolve D_17309: find the memory item responsible for D_17309, this is m13. Resolve D_17309

according to the value of the item found and add it to the constraint Φ:

Φ = (D_17309 ! = 0) ∧ (D_17309 ==(D_17299 & 4)).

3. Resolve D_17299: find the memory item responsible for D_17299, this is m12. Resolve D_17299

according to the value and the feasibility constraint of the item found and add it to the constraint

Φ:

Φ = (D_17309 ! = 0) ∧ (D_17309 ==(D_17299 & 4)) ∧
(D_17299 ==rttExtract(globalBF8, 15, 8) ∧ (D_17298 & 4 == 4))

4. Resolve D_17298:
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Φ = (D_17309 ! = 0) ∧ (D_17309 ==(D_17299 & 4)) ∧
(D_17299 ==rttExtract(globalBF8, 15, 8) ∧ (D_17298 & 4 == 4)) ∧
(D_17298 ==rttExtract(globalBF8, 15, 8) ∧ (D_17298 & 4 == 4))

5. Symbol globalBF8 does not need any resolution, since it was already resolved by the procedure

updateByBitFieldAssignment(). No unresolved symbols exist anymore and the resolution process

stops.

The complete test driver for this example as well as the other generator output is listed in Appendix 8.

5.10 Handling of Unions

The difference between structures and unions is that in a structure each member has its own separate

chunk of memory, while in a union each member is allocated at the same piece of storage [13]. All

members of a union start at the same address and, depending on the size of a member, it can be completely

or partially overwritten by storing a value of another member. Consider the following example:

t y p e d e f union {

unsigned s h o r t c2u16 ;

unsigned char c2u8 [ 2 ] ;

} union_u16 ;

union_u16 v ;

i n t t e s t _ s y m 1 ( unsigned s h o r t x ) {

v . c2u16 = x ;

v . c2u8 [ 0 ] = 0 ;

. . .

In this example union union_u16 contains two members: c2u16 of type unsigned short,

occupying 16 bits and an array c2u8 of two elements of type unsigned char, so that each of the

elements of the array occupies 8 bits. By assignment v.c2u16 = x, where x is an input parameter

of type unsigned short, all bits of the variable v are overwritten according to the value of the

parameter x. Dependent on whether the most significant byte of a word is stored at the lowest (big

endian) or highest (little endian) memory address, the next assignment v.c2u8[0] = 0will overwrite

the highest or lowest 8 bits of the variable v. Suppose, we are working on a little-endian machine so

that the least significant 8 bits of v where overwritten with 0. If we now extract v.c2u16 we get

(x & 0xff00) as a value.

In the following sections we discuss the algorithms which enable the generator to keep track of the

values stored and retrieved from the union.

5.10.1 Assignment

Before we present the algorithm for processing an assignment to a union member, we demonstrate how

it operates on our example line by line. First the memory configuration is initialized:

m1 = (1, ∞, &v, 0, 16, union_u16, v0, true)
m2 = (2, ∞, &x, 0, 16, unsigned short, x0, true)
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The first assignment v.c2u16 = x overwrites the whole memory item m1 and afterwards the mem-

ory configuration is as follows:

m1 = (1, 1, &v, 0, 16, union_u16, v0, true)
m2 = (2, ∞, &x, 0, 16, unsigned short, x0, true)
m3 = (3, ∞, &v, 0, 16, union_u16, x3, true)

The next assignment v.c2u8[0] = 0 overwrites only the first 8 bits (we suppose we use a little-

endian machine) of the variable v. First, a memory item corresponding to these 8 bits is created:

m4 = (4, ∞, &v, 0, 8, union_u16, 0, true)

Now we must identify the value of the remaining 8 bits. To do this, we shift the old value (value of the

memory item m3) 8 bits to the right – this way we cut off the overwritten bits – and store the new value

in the item m5 which corresponds to the right-side remains of the memory item m3:

m5 = (4, ∞, &v, 8, 16, union_u16, x3 >> 8, true)

The insertion of the memory items m4 and m5 into the memory specification invalidates the memory

item m3. Thus, after processing of the assignment v.c2u8[0] = 0 the memory is configured as

follows:

m1 = (1, 1, &v, 0, 16, union_u16, v0, true)
m2 = (2, ∞, &x, 0, 16, unsigned short, x0, true)
m3 = (3, 3, &v, 0, 16, union_u16, x3, true)
m4 = (4, ∞, &v, 0, 8, union_u16, 0, true)
m5 = (4, ∞, &v, 8, 16, union_u16, x3 >> 8, true)

In this way, we know the values of the bits in range [0; 8) and in range [8; 16) and can reconstruct the

values of the union members.

After we have sketched the principle of proceeding of the algorithm, we analyze it in more detail. To

be able to handle assignment to a union member, we expand the procedure insert() (Algorithm 10) as is

shown in Algorithm 23. This is conditioned by the fact that the assignment of a new value to a union

member can modify the value of another union member, as we have shown in the example above. The

only difference to the earlier version is that after the new memory items for unaffected memory areas

are created, their values must be corrected in case when the memory item is of a union type (this part of

the algorithm is highlighted in light gray). Depending on whether the generator runs on a big-endian or

a little-endian machine, the value of the memory item corresponding to the remains of the old memory

item on the left side (m1) or on the right side (m2) is adapted.

First we consider the case when the most significant byte is stored on the highest memory address.

In this case the memory item m1 represents the value of the old memory item in the range [m.o,m′.o)

(where m is the old memory item and m′ is the new memory item created by the assignment to the union

member). Since the resolution algorithm for union access, which we will discuss in the next section,

builds a bit mask corresponding to the length of the memory area of the item and extracts the values
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i n o u t : mem − c u r r e n t memory s p e c i f i c a t i o n

input : m′ − memory i t em t o be i n s e r t e d i n t o t h e memory s p e c i f i c a t i o n

n − c u r r e n t c o m p u t a t i o n s t e p

procedure i n s e r t ( m′ , n , mem ) {

/ / f i n d o u t c o r r e s p o n d i n g segment
S = σ(m′.a,mem);
U = /0;

foreach m = last(S) downto head(S){

i f ( m.v1 == ∞ && m′.a == m.a ) {

/ / i n v a l i d a t e found memory i t e m
m.v1 = n;

/ / check i f memory i t e m s o v e r l a p
i f (¬ ( m′.l ≤ m.o∨m.l ≤ m′.o ) ) {

/ / r ema ins o f t h e o l d i t e m on t h e l e f t s i d e
c′′1 = m.c ∧ m′.c ∧ m.o < m′.o ∧ m′.o < m.l;
m′′

1 = (n, ∞, m.a, m.t, m.o, m′.o, m.val, c′′1);
i f ( c′′1 i s f e a s i b l e ) {

U =U ∪{m′′
1} ;

}

/ / r ema ins o f t h e o l d i t e m on t h e r i g h t s i d e
c′′2 = m.c ∧ m′.c ∧ m.o < m′.l ∧ m′.l < m.l;
m′′

2 = (n, ∞, m.a, m.t, m′.l, m.l, m.val, c′′2);
i f ( c′′2 i s f e a s i b l e ) {

U =U ∪{m′′
2} ;

}

i f ( m.t i s a union ) {

i f ( _LITTLE_ENDIAN_ ) {

newValue = m′′
2 .v >> m′′

2 .o−m.o ;

υ(newValue) = υ(m′′
2 .v) ;

m′′
2 .v = newValue ;

} e l s e {

newValue = m′′
1 .v >> m.l −m′′

1 .l ;

υ(newValue) = υ(m′′
1 .v) ;

m′′
1 .v = newValue ;

}

}

}

}

}

S = S∪U ∪{m′};

}

Algorithm 23: Insertion of the new memory item into the memory specification.
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from the memory items, which correspond to their bit length, the value of m1 must not be adapted. The

memory item m2 represents the value of the old memory item in the range [m′.l,m.l). To ensure that this

item holds the right value, the least significant bits [m.o,m′.l) of the old value must be cut off, which is

done by shifting to the right for (m′.l −m.o) bits.

Now consider the case when the most significant byte is stored on the lowest memory address. In this

case the value of m2 must not be adapted since during the resolution process a mask is built to extract the

right value. The memory item m1 represents the value of the old memory item in the range [m.o,m′.o).

Consequently, the least significant bits [m′.o,m.l) must be cut off, which is done by shifting to the right

for (m.l −m′.o) bits.

The discussed algorithm supports assignment to a union variable but only when this variable is not a

member of an array. However, the presented algorithm can be expanded to support also an assignment

to an array member of a union type. For that purpose the memory area which corresponds to the affected

array member of a union type should be extracted into the separate memory item and this memory item

can be handled in the same manner is it was discussed in the introduced algorithm.

5.10.2 Resolution

In this section we discuss the procedure for the resolution of a union access. Before we present the algo-

rithm, we demonstrate how it proceeds on two simple examples: the first example demonstrates access

to a smaller union member after assignment of a bigger one and the second example demonstrates access

to a bigger member after the assignment of small ones. In both examples we use the union union_u16
defined in the previous example. Now we consider the following example:

C code GIMPLE representation

1 union_u16 g loba lV ;

2 i n t t e s t _ s y m 1 ( unsigned s h o r t x )

3 {

4 g loba lV . c2u16 = x ;

5 i f ( g loba lV . c2u8 [ 0 ] == 0 x f f &&

6 globa lV . c2u8 [ 1 ] == 85) {

7 re turn 1 ;

8 }

9 re turn 0 ;

10 }

1 union_u16 g loba lV ;

2 i n t t e s t _ s y m 1 ( unsigned s h o r t x ) {

3 unsigned char D_1723 ;

4 . . .

5 g loba lV . c2u16 = x ;

6 D_1723 = g loba lV . c2u8 [ 0 ] ;

7 i f ( D_1723 == 255) {

8 . . .

9 }

Assignment globalV.c2u16 = x overwrites all bits of the global variable globalV, while the

following if statement performs the evaluation of the smaller members. In this example we analyze

only the processing of the first condition of the if statement in line 5 of the C code, which performs

the evaluation of a member c2u8[0] of the union, which corresponds only to a part of the variable

globalV. We perform symbolic execution on the GIMPLE code. To set the example as simple as

possible, we disregard auxiliary variables introduced by GIMPLE and not used in evaluation of the first

guard condition, since they are not relevant for our illustration. The complete generator output for this

example is presented in Appendix 9.
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For a better understanding of the procedure, we represent it as follows: we list the example code line

by line and after each line we specify the memory items which were created by the symbolic execution

of this line. The symbolic execution steps are numbered according to the line numbers of the GIMPLE

representation listed above.

First the memory is initialized. Initialization of globals and parameters:

1 union_u16 g loba lV ;

m1 = (1, ∞, &globalV, 0, 16, union_u16, globalV0, true)

2 i n t t e s t _ s y m 1 ( unsigned s h o r t x )

m2 = (2, ∞, &x, 0, 16, unsigned short, x0, true)

Subsequently, the stack initialization is done:

3 unsigned char D_1723 ;

m3 = (3 ,∞, &D_1723, 0, 8, unsigned char, Undef, true)

After the initialization is completed, we proceed with the symbolic execution line by line:

5 g loba lV . c2u16 = x ;

m4 = (4, ∞, &globalV, 0, 16, union_u16, x4, true)

The insertion of the memory item m4 into the memory specification invalidates the memory item

m1, so that now m1 is configured as follows:

m1 = (1, 3, &globalV, 0, 16, union_u16, globalV0, true)

6 D_1723 = g loba lV . c2u8 [ 0 ] ;

m5 = (5, ∞, &D_1723, 0, 8, unsigned char, globalV.c2u85[0], true)

The insertion of the memory item m5 into the memory specification invalidates the memory item

m3:

m3 = (3, 4, &D_1723, 0, 8, unsigned char, Undef, true)

The next line of the example consists of the if statement if(D_1723 == 255). This means

that the evaluation of the guard condition (D_1723 == 255) is necessary. Before we start with the
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resolution algorithm, we summarize the current memory specification:

m1 = (1, 3, &globalV, 0, 16, union_u16, globalV0, true)
m2 = (2, ∞, &x, 0, 16, unsigned short, x0, true)
m3 = (3, 4, &D_1723, 0, 8, unsigned char, Undef, true)
m4 = (4, ∞, &globalV, 0, 16, union_u16, x4, true)
m5 = (5, ∞, &D_1723, 0, 8, unsigned char, globalV.c2u85[0], true)

Now we start the resolution process for the guard condition D_1723 == 255 as defined by the

function resolveConstraint() (Algorithm 11):

1. Initialize the path constraint according to the guard condition:

Φ = (D_17235 ==255).

2. Resolve D_17235: find the memory item responsible for D_17235, this is m5. The value of the

found memory item is a union member access, so the procedure resolveUnionExp() (see Algo-

rithm 24) with D_17235 as var, globalV.c2u85[0] as sel, 0 as offsetStart, 8 as offsetEnd and

our memory configuration as mem. The passed offsets correspond to the memory area selected

by the expression globalV.c2u85[0]. The loop iterates over the memory items m1 and m4,

but, since the validity period of m1 does not match the validity period of globalV.c2u85[0],

only memory item m4 matches. The memory area of m4 overlaps with the memory selected by

globalV.c2u85[0]. Therefore, the auxiliary function calculateValueForUnion() is invoked.

This function determines that the size of the member is less than the size of the memory area corre-

sponding to the memory item, so that this is the case when a smaller value should be extracted from

the bigger one. Suppose, we are working on a little-endian machine. In this case we want to access

the lowest 8 bits and the calculated shift is therefore zero. The bit mask for the lowest 8 bits is

0xff and the calculated value is consequently (0xff & x4). Since no other matching memory

items exist, the totalVal calculated for the union access is (unsigned char)(0xff & x4)
and the path constraint is now as follows:

Φ = (D_17235 ==255) ∧
(D_17235 == (unsigned char)(0xff & x4)).

3. Resolve x4: find the responsible memory item, this is m2. The value of the found item refers to an

input atomic variable x0. The resolution expression is built and added to the path constraint Φ:

Φ = (D_17235 ==255) ∧
(D_17235 == (unsigned char)(0xff & x4)) ∧

(x4 ==x0).

4. No unresolved symbols exist anymore and the resolution process stops.

Now we discuss the case when the bigger union member is accessed after assignment of the small ones:
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C code GIMPLE representation

1 union_u16 g loba lV ;

2 i n t t e s t _ s y m 2 ( unsigned char x ,

3 unsigned char y )

4 {

5 g loba lV . c2u8 [ 0 ] = x ;

6 g loba lV . c2u8 [ 1 ] = y ;

7

8 i f ( g loba lV . c2u16 == 0 x5555 ) {

9 re turn 1 ;

10 }

11 re turn 0 ;

12 }

1 union_u16 g loba lV ;

2 i n t t e s t _ s y m 2 ( unsigned char x ,

3 unsigned char y )

4 {

5 s h o r t unsigned i n t D_1727 ;

6 . . .

7 g loba lV . c2u8 [ 0 ] = x ;

8 g loba lV . c2u8 [ 1 ] = y ;

9 D_1727 = g loba lV . c2u16 ;

10 i f ( D_1727 == 21845) {

11 . . .

12 }

13 . . .

14 }

Again, to set the example as simple as possible, we disregard auxiliary variables introduced by GIM-

PLE and not used in evaluation of the first guard condition, since they are not relevant for our illustration.

The complete generator output for this example is presented in Appendix 10.

For a better understanding of the procedure, we represent it as follows: we list the example code line

by line and after each line we specify the memory items which were created by the symbolic execution

of this line. The symbolic execution steps are numbered according to the line numbers of the GIMPLE

representation listed above.

First the memory is initialized. Initialization of globals and parameters:

1 union_u16 g loba lV ;

m1 = (1, ∞, &globalV, 0, 16, union_u16, globalV0, true)

2 i n t t e s t _ s y m 1 ( unsigned char x , unsigned char y )

m2 = (2, ∞, &x, 0, 8, unsigned char, x0, true)
m3 = (3, ∞, &y, 0, 8, unsigned char, y0, true)

Subsequently, the stack initialization is done:

5 s h o r t unsigned i n t D_1727 ;

m4 = (4,∞, &D_1727, 0, 16, short unsigned int, Undef, true)

After the initialization is completed, we proceed with the symbolic execution line by line:

7 g loba lV . c2u8 [ 0 ] = x ;
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m5 = (5, ∞, &globalV, 0, 8, union_u16, x5, true)

The insertion of the memory item m5 into the memory specification invalidates the memory item

m1, so that now m1 is configured as follows:

m1 = (1, 4, &globalV, 0, 16, union_u16, globalV0, true)

Furthermore, the insertion of the memory item m5 provokes the construction of the new memory

item m6 corresponding to the remains of the memory area of the memory item m1 not overlapping

with the memory area of m5. The value of the new memory item is shifted 8 bits to the right in

order to store the value corresponding to the memory area of the item:

m6 = (5, ∞, &globalV, 8, 16, union_u16, globalV0 >> 8, true)

8 g loba lV . c2u8 [ 1 ] = y ;

m7 = (6, ∞, &globalV, 8, 16, union_u16, y6, true)

The insertion of the memory item m7 into the memory specification invalidates the memory item

m6, so that now m6 is configured as follows:

m6 = (5, 5, &globalV, 8, 16, union_u16, globalV0 >> 8, true)

9 D_1727 = g loba lV . c2u16 ;

m8 = (7, ∞, &D_1727, 0, 16, short unsigned int,
globalV.c2u167, true)

The insertion of the memory item m8 into the memory specification invalidates the memory item

m4:

m4 = (4, 6, &D_1727, 0, 16, short unsigned int, Undef, true)

The next line of the example consists of an if statement if(D_1727 == 21845). This means that

the evaluation of the guard condition (D_1727 == 21845) is necessary. Before we start with the

resolution algorithm we summarize the current memory specification:

m1 = (1, 4, &globalV, 0, 16, union_u16, globalV0, true)
m2 = (2, ∞, &x, 0, 8, unsigned char, x0, true)
m3 = (3, ∞, &y, 0, 8, unsigned char, y0, true)
m4 = (4, 6, &D_1727, 0, 16, short unsigned int, Undef, true)
m5 = (5, ∞, &globalV, 0, 8, union_u16, x5, true)
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m6 = (5, 5, &globalV, 8, 16, union_u16, globalV0 >> 8, true)
m7 = (6, ∞, &globalV, 8, 16, union_u16, y6, true)
m8 = (7, ∞, &D_1727, 0, 16, short unsigned int, globalV.c2u167,

true)

Now we start the resolution process for the guard condition D_1727 == 21845 as defined by the

function resolveConstraint() (Algorithm 11):

1. Initialize the path constraint according to the guard condition:

Φ = (D_17277 ==21845).

2. Resolve D_17277: find the memory item responsible for D_17277, this is m8. The value of

the found memory item is a union member access, so the procedure resolveUnionExp() with

D_17277 as var, globalV.c2u167 as sel, 0 as offsetStart, 16 as offsetEnd and our memory

configuration as mem. The passed offsets correspond to the memory area selected by the expression

globalV.c2u167. The loop iterates over the memory items m1, m5, m6 and m7, but, since the

validity periods of m1 and m6 do not match the validity period of globalV.c2u167, only the

memory items m5 and m7 match. The memory areas of m5 and m7 overlap both with the memory

selected by globalV.c2u167, so that this is the case when a value should be constructed from

values of multiple memory items. The accessed union member allocates bits in range [0, 16), while

the memory item m7 corresponds to the bits in range [8, 16). This means that the bits of the value

of the memory item m7 must be first brought to the right position by shifting to the right for 8 bits.

Further, the casting ensures that the constructed values are in the range of the type of the accessed

union member and, therefore, the value of the union access globalV.c2u167 can be resolved

to

(short unsigned int)(x5) | (short unsigned int)(y6 << 8)

and the path constraint is now as follows:

Φ = (D_17277 ==21845) ∧
(D_17277 == (short unsigned int)(x5) |

(short unsigned int)(y6 << 8)).

3. Resolve x5 and y6: find responsible memory items, these are m2 and m3 respectively. The values

of found items refer both to input atomic variables, so x5 is resolved to x0 and y6 is resolved to

y0. The resolution expressions are built and added to the path constraint:

Φ = (D_17277 ==21845) ∧
(D_17277 == (short unsigned int)(x5) |

(short unsigned int)(y6 << 8)) ∧
(x5 ==x0) ∧ (y6 ==y0).

4. No unresolved symbols exist anymore and the resolution process stops.

After we have sketched the principle of proceeding of the algorithm, we will analyze it in more detail.
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input : var − v a r i a b l e i d e n t i f i e r

sel − s t r u c t u r e a c c e s s e x p r e s s i o n

offsetStart − s t a r t o f t h e demanded memory a r e a w i t h i n t h e union
offsetEnd − end of t h e demanded memory a r e a w i t h i n t h e union
mem − c u r r e n t memory s p e c i f i c a t i o n

output : c − f e a s i b i l i t y c o n s t r a i n t

procedure r e s o l v e U n i o n E x p ( var , sel , offsetStart , offsetEnd , c , mem ) {

/ / f i n d o u t c o r r e s p o n d i n g segment
S = σ(β (sel), mem);

foreach m = last(S) downto head(S){

i f ( m.v0 ≤ υ(sel)∧υ(sel)≤ m.v1 ∧m.a == β (sel) ) {

overlap = (offsetStart < m.l) ∧ (m.o < offsetEnd);
c1 = m.c∧overlap;

i f ( c1 i s f e a s i b l e ) {

val = c a l c u l a t e V a l u e F o r U n i o n ( m , offsetStart , offsetEnd , c1 ) ;

totalVal = totalVal | val ;

}

}

}

c = c∧ (var == totalVal) ;

}

Algorithm 24: Resolution of a union access.
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The resolution of a union assignment is performed by the procedure call

resolveUnionExp(var, sel, offsetStart, offsetEnd, c, mem)

Where

• var is a versioned variable identifier. It indicates the variable, that has a union access as a value.

• sel is a versioned selector of the union access.

• offsetStart is the start of the demanded memory area within the union.

• offsetEnd is the end of the demanded memory area within the union.

• c is a constraint that holds the result of the resolution process.

• mem is the current memory specification.

Algorithm 24 shows the procedure for the resolution of an assignment of a union access resolveUnion-
Exp(). First, the algorithm finds all memory items referring to the union variable from the selector sel.
By iterating over the found items the algorithm detects by which of them the validity period correlates

with the version of the union access. As far as such an item is found, the overlapping of the memory

segments corresponding to the memory item and to the demanded memory is examined. The overlap-

ping condition is conjuncted with the feasibility constraint of the found memory item and stored in the

constraint c1. When overlapping occurs and the feasibility constraint is feasible (i.e. c1 is feasible),

the algorithm invokes an auxiliary function calculateValueForUnion() (Algorithm 25). This auxiliary

function calculates the contribution made by a memory item to the value of the accessed union member.

To do this, calculateValueForUnion() first creates an auxiliary variable if the value of the memory item

refers to an input like we have already done by processing a structure access in Section 5.8. Further, the

algorithm analyzes the following three possibilities:

1. The accessed member has exactly the same size as the value of the memory item. Since we have

already ascertained that the accessed memory area and the memory area corresponding to the

memory item overlap, the memory item corresponds to exactly the same bits as are selected by the

selector and, therefore, we do not have to perform any further calculations.

2. The size of the accessed member is greater than the size of the memory area corresponding to the

memory item m. This is the case, when the value must be constructed from smaller values. In the

last example:

g loba lV . c2u8 [ 0 ] = x ;

g loba lV . c2u8 [ 1 ] = y ;

i f ( v . c2u16 == 21845) { . . .

the value of globalV.c2u16 consists of values of the memory items m5 and m7. In order to

determine the contribution of each of these items, calculateValueForUnion() performs shifting to

the right to bring the bits to the right position and fill the less significant bits with zeros.
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output : val − c a l c u l a t e d v a l u e

input : m − memory i tem , whose c o n t r i b u t i o n must be c a l c u l a t e d

offsetStart − s t a r t o f t h e demanded memory a r e a w i t h i n t h e union
offsetEnd − end of t h e demanded memory a r e a w i t h i n t h e union
c − f e a s i b i l i t y c o n s t r a i n t

mem − c u r r e n t memory s p e c i f i c a t i o n

f u n c t i o n c a l c u l a t e V a l u e F o r U n i o n ( m , offsetStart , offsetEnd , c , mem ) {

baseType = ι(offsetStart, offsetEnd) ,

i f ( m r e f e r s t o an input ) {

/ / c r e a t e a u x i l i a r y v a r i a b l e
newVar.name = ν(m.val)+χ(offsetStart, offsetEnd);
newVar.type = ι(offsetStart, offsetEnd);
υ(newVar) = υ(m.val)
start = newVar ;

} e l s e {

start = m.val ;

}

i f ( m.l −m.o == s i z e ( baseType ) ) {

val = start ;

} e l s e i f ( m.l −m.o < s i z e ( baseType ) ) {

/ / a b i g g e r v a l u e i s c o n s t r u c t e d from s m a l l e r ones
i f ( _LITTLE_ENDIAN_ ) {

shift = m.o − offsetStart ;

} e l s e {

shift = offsetEnd − m.l ;

}

val = start << shift ;

} e l s e {

/ / a s m a l l e r v a l u e i s e x t r a c t e d from a b i g g e r one
i f ( _LITTLE_ENDIAN_ ) {

shift = offsetStart − m.o ;

} e l s e {

shift = m.l − offsetEnd ;

}

val = start >> shift ;

}

val = BITMASK( offsetEnd − offsetStart ) & val ;

val = ( baseType ) ( val ) ;

i f ( c i s not a lways t rue ) {

val = r t t I t e ( c , va l , 0 ) ;

}

re turn val ;

}

Algorithm 25: Effect of the assignment to a union member on the memory specification.
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3. The size of the accessed member is less than the size of the memory area corresponding to the

memory item m. This is the case, when the value must be extracted from the bigger value. To

determine the value, calculateValueForUnion() performs shifting to the right to cut off the bits,

that do not participate in the accessed member.

After the value is built in the discussed manner, we must ensure that only relevant bits participate in the

result (e.g. for the case when the memory item holds the remains of the bigger value). This is done by

a bit mask of length equal to the length of the member. Subsequently, the calculated value is casted to

the type of the accessed member and, in case if the passed constraint c is not trivially true, a conditional

assignment understood by the solver is built: rttIte(c, val, 0). This assignment means that if

the constraint c is evaluated to true, the value is equal to val and zero otherwise.

The final value for the union member is built from values calculated for each matching memory item

by bitwise OR. The resolution expression of the variable var to this final value is conjuncted at the end

of the algorithm with the resulting constraint c.

5.10.3 Pointers and Unions

The handling of unions and pointers consists of two cases: assignment to a dereferenced union pointer

and resolution of a union pointer (i.e. when a dereferenced union pointer is used in a guard condi-

tion). The assignment to a dereferenced union pointer is covered by the procedure updateByAssignment-
ToDerefPtr() (Algorithm 13) due to expanded insert() procedure (Algorithm 23). In this section we

present the resolution algorithm for union pointer handling.

The resolution of a union pointer access (e.g a == p->m1) is performed by the procedure call

resolveUnionPtrExp(var, sel, offsetStart, offsetEnd, c, mem)

Where

• var is a versioned variable identifier. It indicates the variable, that has a union access as a value.

• sel is a versioned selector of the pointer union access.

• offsetStart is the start of the demanded memory area within the union.

• offsetEnd is the end of the demanded memory area within the union.

• c is a constraint that holds the result of the resolution process.

• mem is the current memory specification.

Algorithm 26 shows the procedure for the resolution of an assignment of a pointer union access

resolveUnionPtrExp(). First, the algorithm performs the resolution of the pointer, which was derefer-

enced to access the members of the union. This is done by the auxiliary procedure resolveStructPtrVal()
(Algorithm 20) in case if the value of the pointer is a pointer structure access, or by the procedure

resolvePtrVal() (Algorithm 14) otherwise. These procedures resolve pointers until the memory where

the respective pointer points to is found, and return all possible resolutions. After this is done, the
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input : var − v a r i a b l e i d e n t i f i e r which has a d e r e f e r e n c e d p o i n t e r a s v a l u e

sel − union a c c e s s e x p r e s s i o n

offsetStart − s t a r t o f t h e demanded memory a r e a w i t h i n t h e union
offsetEnd − end of t h e demanded memory a r e a w i t h i n t h e union
mem − c u r r e n t memory s p e c i f i c a t i o n

output : c − f e a s i b i l i t y c o n s t r a i n t

procedure r e s o l v e U n i o n P t r E x p ( var , sel , offsetStart , offsetEnd , c , mem ) {

/ / f i n d o u t c o r r e s p o n d i n g segment
S = σ(β (sel), mem);

foreach m = last(S) downto head(S){

i f ( m.v0 ≤ υ(sel)∧υ(sel)≤ m.v1 ∧m.a == β (sel) ) {

i f ( m.val i s a p o i n t e r s t r u c t a c c e s s ) {

pl = r e s o l v e S t r u c t P t r V a l ( m.val, mem ) ;

} e l s e {

pl = r e s o l v e P t r V a l ( m.val, mem ) ;

}

foreach m′′ in pl{

offsetStart1 = offsetStart +m′′.o;

offsetEnd1 = offsetEnd +m′′.o ;

r e s o l v e U n i o n E x p ( var , m′′.a , offsetStart1 , offsetEnd1 , c1 , mem ) ;

c2 = c2 ∨ c1 ;

}

}

c = c∧ c2 ;

}

}

Algorithm 26: Resolution of a union pointer access.
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problem reduces itself to the resolution of a union access, which is performed by the procedure resolve-
UnionExp() (Algorithm 24).

We illustrate our approach by the following example:

C code GIMPLE representation

1 union_u16 g loba lV ;

2 union_u16 ∗ g l o b a l P = &globa lV ;

3 i n t u n i o n _ p t r 1 ( unsigned s h o r t x )

4 {

5 g l o b a l P −>c2u16 = x ;

6 i f ( g l o b a l P −>c2u8 [ 0 ] == 0 x f f &&

7 g l o b a l P −>c2u8 [ 1 ] == 85) {

8 re turn 1 ;

9 }

10 re turn 0 ;

11 }

1 union_u16 g loba lV ;

2 union_u16 ∗ g l o b a l P = &globa lV ;

3 i n t u n i o n _ p t r 1 ( unsigned s h o r t x ) {

4 unsigned char D_1754 ;

5 union union_u16 ∗ g l o b a l P _ 3 ;

6 union union_u16 ∗ g l o b a l P _ 2 ;

7

8 g l o b a l P _ 2 = g l o b a l P ;

9 g loba lP_2 −>c2u16 = x ;

10 g l o b a l P _ 3 = g l o b a l P ;

11 D_1754 = g loba lP_3 −>c2u8 [ 0 ] ;

12 i f ( d_1754 == 255) {

13 . . .

14 }

In this example we use the same union union_u16 as was used in the previous examples demon-

strating the union handling. We perform symbolic execution on the GIMPLE code. To set an example as

simple as possible, we disregard auxiliary variables introduced by GIMPLE and not used in evaluation

of the first guard condition, since they are not relevant for our illustration. The complete generator output

for this example is presented in Appendix 11.

For a better understanding of the procedure, we represent it as follows: we list the example code line

by line and after each line we specify the memory items which were created by the symbolic execution

of this line. The symbolic execution steps are numbered according to the line numbers of the GIMPLE

representation listed above.

First the memory is initialized. Initialization of globals and parameters:

1 union_u16 g loba lV ;

m1 = (1, ∞, &globalV, 0, 16, union_u16, globalV0, true)

2 union_u16 ∗ g l o b a l P ;

m2 = (2, ∞, &globalP, 0, 32, union_u16*, &globalP@P2, true)
m3 = (2, ∞, &globalP@P, 0, 16, union_u16, globalP@P0, true)

Although the global variable globalP is initialized in the example, it is still possible to manip-

ulate its value in a test procedure. To make this possible, the auxiliary variable globalP@P is

created, which simulates the memory where the globalP points to. However, if it is required to

use the defined initial values, the generator can be forced to do it via a modifiable parameter.
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3 i n t t e s t _ s y m 1 ( unsigned s h o r t x )

m4 = (3, ∞, &x, 0, 16, unsigned short, x0, true)

Subsequently, the stack initialization is done:

4 unsigned char D_1754 ;

m5 = (4, ∞, &D_1754, 0, 8, unsigned char, Undef, true)

5 union union_u16 ∗ g l o b a l P _ 3 ;

m6 = (5, ∞, &globalP_3, 0, 32, union_u16*, Undef, true)

6 union union_u16 ∗ g l o b a l P _ 2 ;

m7 = (6, ∞, &globalP_2, 0, 32, union_u16*, Undef, true)

After the initialization is completed, we proceed with the symbolic execution line by line:

8 g l o b a l P _ 2 = g l o b a l P ;

m8 = (7,∞, &globalP_2, 0, 32, union_u16*, globalP7, true)

The insertion of the memory item m8 into the memory specification invalidates the memory item

m7, so that now m7 is configured as follows:

m7 = (6, 6, &globalP_2, 0, 32, union_u16*, Undef, true)

9 g loba lP_2 −>c2u16 = x ;

This assignment is proceeded according to the procedure updateByAssignmentToDerefPtr() (Algo-

rithm 13). First the pointer globalP_2 is resolved by the procedure resolvePtrVal() (Algorithm

14) to the base address where this pointer points to. This is &globalP@P with offset 0. The

member c2u16 of the union union_u16 has offsets [0, 16). Therefore, the following memory

item is created:

m9 = (8, ∞, &globalP@P, 0, 16, union_u16, x8, true)

The insertion of the memory item m8 into the memory specification invalidates the memory item

m3, so that now m3 is configured as follows:

m3 = (2, 7, &globalP@P, 0, 16,union_u16, globalP@P0, true)
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10 g l o b a l P _ 3 = g l o b a l P ;

m10 = (9,∞, &globalP_3, 0, 32, union_u16*, globalP9, true)

The insertion of the memory item m11 into the memory specification invalidates the memory item

m6, so that now m6 is configured as follows:

m6 = (5, 8, &globalP_3, 0, 32, union_u16*, Undef, true)

11 D_1754 = g loba lP_3 −>c2u8 [ 0 ] ;

is processed as is shown in procedure updateByAssignment() (Algorithm 9), a new memory item

is created:

m11 = (10, ∞, &D_1754, 0, 8,unsigned char, globalP_3->c2u8[0]10,
true)

The insertion of the created memory item invalidates the memory item m5:

m5 = (4, 9, &D_1754, 0, 8, unsigned char, Undef, true)

Before we start with the resolution of the guard condition in line 12, we summarize the memory

configuration:

m1 = (1, ∞, &globalV, 0, 16, union_u16, globalV0, true)
m2 = (2, ∞, &globalP, 0, 32, union_u16*, &globalP@P2, true)
m3 = (2, 7, &globalP@P, 0, 1600,union_u16, globalP@P0, true)
m4 = (3, ∞, &x, 0, 16, unsigned short, x0, true)
m5 = (4, 9, &D_1754, 0, 8, unsigned char, Undef, true)
m6 = (5, 8, &globalP_3, 0, 32, union_u16*, Undef, true)
m7 = (6, 6, &globalP_2, 0, 32, union_u16*, Undef, true)
m8 = (7,∞, &globalP_2, 0, 32, union_u16*, globalP7, true)
m9 = (8, ∞, &globalP@P, 0, 16, union_u16, x8, true)
m10 = (9,∞, &globalP_3, 0, 32, union_u16*, globalP9, true)
m11 = (10, ∞, &D_1754, 0, 8,unsigned char,

globalP_3->c2u8[0]10, true)

Now we process as defined by the function resolveConstraint() (Algorithm 11):

1. Initialize the path constraint according to the guard condition:

Φ = (D_175410 == 255).

2. Resolve D_175410: find the memory item responsible for D_175410, this is m11. Resolve

D_175410 according to the value of the item found:
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D_175410 ==globalP_3->c2u8[0]10.

Now the algorithm resolveUnionPtrExp() is invoked with D_175410 as var, globalP_3->
c2u8[0]10 as sel, 0 as offsetStart, 8 as offsetEnd, Φ as c and our memory configuration as mem.

The following items were found for the base address &globalP_3: m10 and m6. The validity

period of m6 does not fit the version of sel. Thus, only item m10 matches.

The value of m10 is globalP9, this is not a structure pointer access, so the auxiliary function re-
solvePtrVal() is called. It produces the following specification: the base address is &globalP@P
and the offset is 0. Back in the procedure resolveUnionPtrExp(), the procedure resolveUnion-
Exp() is called with D_175410 as var, &globalP@P9 as sel, [0, 8) as offsets, Φ as c and our

memory configuration as mem. resolveUnionExp() determines, that given sel corresponds to the

memory items m3 and m9, but the validity period of m3 does not match the validity period of

&globalP@P9. Thus, only memory item m9 remains. The auxiliary function calculateValue-
ForUnion() is invoked with the detected memory item and the defined offsets as inputs. This

function determines, that the size of the member is less than the size of the memory area corre-

sponding to the memory item. This is the case when a smaller value should be extracted from the

bigger one. Suppose, we are working on a little-endian machine, so that we want to access the

lowest 8 bits and the calculated shift is therefore zero. The bit mask for the lowest 8 bits is 0xff
and the calculated value is consequently (0xff & x8). Since no other matching memory items

exist, the totalVal calculated for the union access is (unsigned char)(0xff & x8) and the

path constraint is now as follows:

Φ = (D_175410 ==255) ∧
(D_175410 == (unsigned char)(0xff & x8)).

3. Resolve x8: find the responsible memory item, this is m4. The value of the found item refers to an

input atomic variable x0. The resolution expression is built and added to the path constraint Φ:

Φ = (D_175410 ==255) ∧
(D_175410 == (unsigned char)(0xff & x8)) ∧

(x8 ==x0).

4. No unresolved symbols exist anymore. Thus, the resolution process stops.

5.11 Handling of Arrays

In GIMPLE arrays have two different representations:

1. The input parameters of the array type are represented as pointers and array reads as a dereferenced

pointer after the addition of a corresponding offset. For example, the array access a[x], where a
is an integer array, has the following GIMPLE representation:

D_1763 = x ∗ 4 ;

D_1764 = a + D_1763 ;

D_1765 = ∗D_1764 ;
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2. All remaining occurrences like global variables of array type or array within a structure type stay

unchanged.

The underlying solver SONOLAR [82] that calculates solutions for the generated path constraints is

capable of array theories. Therefore, the generator is supported by the solver when handling array inputs.

The theory of arrays implemented in SONOLAR has the signature ∑A : {read, write,=} [21]. The func-

tion read(a, i) returns the value of the i-th element of array a. The function write(a, i, e) returns array a
overwritten on index i with value e while all other array elements remain unchanged. The predicate =
can be applied only to array elements, not to arrays. The set of axioms of the theory of arrays is defined

as follows [21]:

(A1) i = j ⇒ read(a, i) = read(a, j)
(A2) i = j ⇒ read(write(a, i,e), j) = e
(A3) i 
= j ⇒ read(write(a, i,e), j) = read(a, j)
(A4) a = b ⇔ ∀i(read(a, i) = read(b, i))

Furthermore, the equality in the theory of arrays is reflexive, symmetric and transitive.

For the handling of input arrays we use the function read(), which has the following notation in

SONOLAR: rttArrayRead(a, i). While this function accepts only one-dimensional arrays, this

is no limitation, since an array with n dimensions dim0, dim2, . . .dimn−1 can be represented as a one-

dimensional array with dimension dim, where dim = dim0 · dim2 · · ·dimn−1. However, only arrays of

atomic types can be handled, since SONOLAR does not support structure or union types.

In the two following sections we discuss first the case when an input parameter of an array type must

be analyzed (Section 5.11.1) and then all remaining cases of array occurrences (Section 5.11.2).

5.11.1 Handling of Arrays as Input Parameters

As we have already mentioned, the input parameters of array type are represented by GIMPLE as pointers

and array reads as a dereferenced pointer after the addition of a corresponding offset. The handling of

dereferenced pointers is discussed in Section 5.6. This approach is working well for cases when the

dereferenced pointer can be resolved up to a concrete array element, so that only its atomic value has to

be determined. However, when the dereferenced pointer refers to an input array and the offset depends

on an input, the discussed algorithm is not sufficient. In this section we will, therefore, extend it, so that

it will be able to handle array inputs with input indices.

First, we illustrate by an example where the algorithm discussed in Section 5.6 reaches its limits. The

module under test test() compares two elements of the integer array a and returns true if the element

a[x] is greater then the element a[y] and f alse otherwise. To ensure that passed values of x and y
are within the array bounds, we restrict their range by a precondition.
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C code GIMPLE representation

1 # d e f i n e N 2

2 t y p e d e f i n t my_array [N ] ;

3 i n t t e s t ( my_array a ,

4 unsigned i n t x ,

5 unsigned i n t y )

6 {

7 _ _ r t t _ p r e c o n d i t i o n ( x < N && y < N) ;

8

9 i n t r e t v a l = 0 ;

10 i f ( a [ x ] > a [ y ] ) {

11 r e t v a l = 1 ;

12 } e l s e {

13 r e t v a l = 0 ;

14 }

15 re turn r e t v a l ;

16 }

1 i n t t e s t ( i n t ∗a , i n t x ,

2 i n t y ) {

3 i n t D_1768 ;

4 i n t ∗D_1767 ;

5 unsigned i n t D_1766 ;

6 i n t D_1765 ;

7 i n t ∗D_1764 ;

8 unsigned i n t D_1763 ;

9 . . .

10 D_1763 = x ∗ 4 ;

11 D_1764 = a + D_1763 ;

12 D_1765 = ∗D_1764 ;

13 D_1766 = y ∗ 4 ;

14 D_1767 = a + D_1766 ;

15 D_1768 = ∗D_1767 ;

16 i f ( D_1765 > D_1768 ) {

17 . . .

18 }

19 }

We demonstrate here not the whole GIMPLE representation (and symbolic execution) but only the

evaluation of the guard condition of the if statement in line 10 of the C code and the symbolic execution

of the relevant statements (the execution of statements involving the variable retval as well as of the

precondition is omitted). The complete generator output for this example is presented in Appendix 12.

For a better understanding of the procedure, we represent it as follows: we list the example code line

by line and after each line we specify the memory items which were created by the symbolic execution

of this line. The symbolic execution steps are numbered according to the line numbers of the GIMPLE

representation listed above.

First the memory is initialized. Initialization of parameters:

1 i n t t e s t ( i n t ∗a , i n t x , i n t y )

m1 = (1, ∞, &a, 0, 32, int*, &a@P[0]1, true)
m2 = (1, ∞, &a@P[0], 0, 3200, int[100], a@P0, true)
m3 = (2, ∞, &x, 0, 32, unsigned int, x0, true)
m4 = (3, ∞, &y, 0, 32, unsigned int, y0, true)

For the parameter a two memory items were created: m1 and m2, where m2 corresponds to an

auxiliary array a@P, which simulates the memory were the pointer parameter a points to.

Subsequently, the stack initialization is done:

3 i n t D_1768 ;

m5 = (4, ∞, &D_1768, 0, 32, int, Undef, true)
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4 i n t ∗D_1767 ;

m6 = (5, ∞, &D_1767, 0, 32, int*, Undef, true)

5 unsigned i n t D_1766 ;

m7 = (6, ∞, &D_1766, 0, 32, unsigned int, Undef, true)

6 i n t D_1765 ;

m8 = (7, ∞, &D_1765, 0, 32, int, Undef, true)

7 i n t ∗D_1764 ;

m9 = (8, ∞, &D_1764, 0, 32, int*, Undef, true)

8 unsigned i n t D_1763 ;

m10 = (9, ∞, &D_1763, 0, 32, unsigned int, Undef, true)

After the initialization is completed, we proceed with the symbolic execution line by line:

10 D_1763 = x ∗ 4 ;

m11 = (10, ∞, &D_1763, 0, 32, unsigned int, x10 ·4, true)

The insertion of the memory item m11 into the memory specification invalidates the memory item

m10, so that now m10 is configured as follows:

m10 = (9, 9, &D_1763, 0, 32, unsigned int, Undef, true)

11 D_1764 = a + D_1763 ;

m12 = (11, ∞, &D_1764, 0, 32, int*, a11+D_176311, true)

The insertion of the memory item m12 into the memory specification invalidates the memory item

m9:

m9 = (8, 10, &D_1764, 0, 32, int*, Undef, true)

12 D_1765 = ∗D_1764 ;
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m13 = (12, ∞, &D_1765, 0, 32, int, *D_176412, true)

The insertion of the memory item m13 into the memory specification invalidates the memory item

m8:

m8 = (7, 11, &D_1765, 0, 32, int, Undef, true)

13 D_1766 = y ∗ 4 ;

m14 = (13, ∞, &D_1766, 0, 32, unsigned int, y13 ·4, true)

The insertion of the memory item m14 into the memory specification invalidates the memory item

m7:

m7 = (6, 12, &D_1766, 0, 32, unsigned int, Undef, true)

14 D_1767 = a + D_1766 ;

m15 = (14, ∞, &D_1767, 0, 32, int*, a14+D_176614, true)

The insertion of the memory item m15 into the memory specification invalidates the memory item

m6:

m6 = (7, 13, &D_1767, 0, 32, int*, Undef, true)

15 D_1768 = ∗D_1767 ;

m16 = (15, ∞, &D_1768, 0, 32, int, *D_176715, true)

The insertion of the memory item m16 into the memory specification invalidates the memory item

m5:

m5 = (4, 14, &D_1768, 0, 32, int, Undef, true)

The next line of the example consists of an if statement if(D_1765 > D_1768). This means

that the evaluation of the guard condition (D_1765 > D_1768) is necessary. Before we start with

the resolution algorithm, we summarize the current memory specification:

m1 = (1, ∞, &a, 0, 32, int*, &a@P[0]1, true)
m2 = (1, ∞, &a@P[0], 0, 3200, int[100], a@P0, true)
m3 = (2, ∞, &x, 0, 32, unsigned int, x0, true)

124



5.11 Handling of Arrays

m4 = (3, ∞, &y, 0, 32, unsigned int, y0, true)
m5 = (4, 14, &D_1768, 0, 32, int, Undef, true)
m6 = (5, 13, &D_1767, 0, 32, int*, Undef, true)
m7 = (6, 12, &D_1766, 0, 32, unsigned int, Undef, true)
m8 = (7, 11, &D_1765, 0, 32, int, Undef, true)
m9 = (8, 10, &D_1764, 0, 32, int*, Undef, true)
m10 = (9, 9, &D_1763, 0, 32, unsigned int, Undef, true)
m11 = (10, ∞, &D_1763, 0, 32, unsigned int, x10 ·4, true)
m12 = (11, ∞, &D_1764, 0, 32, int*, a11+D_176311, true)
m13 = (12, ∞, &D_1765, 0, 32, int, *D_176412, true)
m14 = (13, ∞, &D_1766, 0, 32, unsigned int, y13 ·4, true)
m15 = (14, ∞, &D_1767, 0, 32, int*, a14+D_176614, true)
m16 = (15, ∞, &D_1768, 0, 32, int, *D_176715, true)

Now we process as defined by the function resolveConstraint() (Algorithm 11):

1. Initialize the path constraint according to the guard condition:

Φ = (D_176515 >D_176815).

2. Resolve D_176515: find the memory item responsible for D_176515, this is m13. Resolve

D_176515 according to the value of the item found:

D_176515 ==*D_176412.

Now the algorithm resolveDerefPtr() (see Algorithm 15) is invoked with D_176515 as var,

*D_176412 as p, Φ as c and our memory configuration as mem. It passes further resolution to the

algorithm resolveDerefPtrExp() (see Algorithm 16). The resolution of the memory item m12 by

the function resolvePtrVal() produces the following specification: the base address is &a@P[0]
and the offset is x0 ·4 (the value of the memory item m11 is (x10 ·4), x10 is resolved up to the in-

put). The internal loop finds matching memory item m2. Now the algorithm resolveDerefPtrExp()
invokes the subroutine resolveExp() (Algorithm 12), but the value (a@P0) of the found memory

item m2 is an input and cannot be resolved further. However, neither this value can be passed to

the solver in an expression like (D_176515 ==a@P0), since it is of an array type, so that the

corresponding expression makes no sense. To be able to handle this situation, we must first extend

the algorithm resolveDerefPtrExp().

Algorithm 27 shows the extended function resolveDerefPtrExp() (the unextended version is shown

in Algorithm 16). The part of the algorithm that was introduced for the handling of input arrays is

highlighted in light gray. As input arrays are represented by GIMPLE as pointers and the information, if

this is a pointer or an array, is lost, we represent all input pointers (except of pointers to union types) as

arrays of a modifiable size. Since all array elements which have the same value can be represented as a

single memory item, this generates merely a slight overhead. Now, if a pointer refers to an input, we can

act on the assumption, that this pointer refers to an input array. In this case the array expression resolving

the variable var to the element of array m′.val at index i by invocation of rttArrayRead() is built.
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input : var − v a r i a b l e i d e n t i f i e r which has a d e r e f e r e n c e d p o i n t e r a s v a l u e

p − p o i n t e r i d e n t i f i e r

mem − c u r r e n t memory s p e c i f i c a t i o n

validFrom − i n d i c a t e s t h e v a l i d i t y p e r i o d o f ma tch ing memory i t e m s

i n o u t : R − s e t o f found r e s o l u t i o n s

isInput − i n d i c a t e s whe the r t h e r e s o l u t i o n i s pe r fo rmed f o r a p o i n t e r input
procedure r e s o l v e D e r e f P t r E x p ( var , p , R , mem , isInput , validFrom ) {

/ / f i n d o u t c o r r e s p o n d i n g segment
S = σ(β (p), mem);
offsetStart = ω(p);
offsetEnd = ω(p) + s i z e (b a s e t y p e (p ) ) ;

foreach m = last(S) downto head(S){

i f ( m.v0 ≤ υ(p)∧υ(p)≤ m.v1 ∧m.a == β (p) ) {

i f ( m.val i s a p o i n t e r s t r u c t a c c e s s ) {

pl = r e s o l v e S t r u c t P t r V a l ( m.val, mem ) ;

} e l s e {

pl = r e s o l v e P t r V a l ( m.val, mem ) ;

}

foreach m′′ in pl{

/ / f o r each memory i t e m s p e c i f i c a t i o n i n t h e l i s t
/ / f i n d a l l i t e m s o v e r l a p p i n g w i t h i t
S1 = σ(m′′.a, mem);

foreach m′ = last(S1) downto head(S1){

i f ( ( isInput ∧ validFrom < m′.v0 ∧ m′ r e f e r s t o a s i m u l a t e d input ) ∨ !isInput) ) {

i f ( m′.v0 ≤ υ(var)∧υ(var)≤ m′.v1 ∧m′.a == m′′.a ) {

i f ( m′.val i s not an input ) {

overlap = (m′.o < m′′.o+offsetEnd)∧ (m′.l > m′′.o+offsetStart);
c1 = m.c∧m′′.c∧m′.c∧overlap;

i f ( c1 i s f e a s i b l e ) {

r e s o l v e E x p (var, m′.val, c2, mem);
R . push ( ( c2, p, c1, m′.v0 ) ) ;

i f ( m′ r e f e r s t o a s i m u l a t e d input ) isInput = true ;

}

} e l s e {

υ(i) = υ(p);
idxExp = ((i == (m′′.o ·8)/ s i z e (b a s e t y p e (p)))∧ (m′.o ≤ i· s i z e (b a s e t y p e

(p))< m′.l));
arrayExp = (var == r t t A r r a y R e a d ( m′.val , i));
c1 = m.c∧m′′.c∧m′.c ;

i f ( c1 i s f e a s i b l e ) {

c2 = arrayExp∧ idxExp ;

R . push ( ( c2, p, c1, m′.v0 ) ) ;

i f ( m′ r e f e r s t o a s i m u l a t e d input ) isInput = true ;

}

}

}

}

}

}

}

}

}

Algorithm 27: Resolution of a dereferenced pointer, extended.
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The index expression holds the resolution expression for the index where the array read is performed. To

build an index expression an auxiliary variable i is introduced. The version of this auxiliary variable is

set equal to the version of the pointer identifier p, since the array read is made in the computational step

corresponding to this version. The value of the index is required to be equal to the scaled offset expression

calculated by the auxiliary function resolveStructPtrVal() or resolvePtrVal() depending

on the value of the memory item m (basetype() is here an auxiliary function that maps the pointer

selector to its base type, see Section 5.14). Furthermore, it is ensured that the index is within the bounds

of the fitting memory item m′.
After the index and array expressions are constructed, the constraint c1 is built, which requires that the

validity constraints of all participating memory items m, m′ and m′′ are valid. If this constraint is feasible,

constraint c2 is built, which represents the resolution of the dereferenced pointer and requires that the

index and array expressions are valid. This constraint is stored together with the corresponding pointer,

feasibility constraint and the validity period in the resulting set of possible outcomes of the resolution

process of the dereferenced pointer p. If it is detected that the memory item m′ refers to a simulated input

variable, the input/output parameter isInput indicating whether the dereferenced pointer still points to an

input is set to true.

After we have defined how the resolution of the input array is handled, we are able to proceed with

our example. We continue with step 2 of the resolution process:

2. The dereferenced pointer *D_176412 was already resolved to the base address &a@P[0] and

offset x0 ·4. The matching memory item m2 was found. Since the value of m2 is an array, the new

part of the algorithm resolveDerefPtrExp() is now invoked. The index and array expressions are

built:

idxExp =(idx012 == x0 ∧ 0 ≤ idx012 ·32 < 3200)
arrayExp =(D_176515 ==rttArrayRead(a@P0, idx012))

The value of the index idx012 was scaled according to the size of array elements.

Now the following tuple is stored in the resolution set R:

(idxExp∧arrayExp, D_176412, true, 1).

Although the memory item m2 refers to a simulated input a@P, no further input pointers are de-

tected and the resolution of D_176515 results in:

Φ = (D_176515 >D_176815) ∧ (D_176515 ==rttArrayRead(a@P0, idx012)) ∧
(idx012 == x0 ∧ 0 ≤ idx012 ·32 < 3200).

3. Resolve D_176815: the resolution proceeds similar to the resolution of D_176515 and results in:

Φ = (D_176515 >D_176815) ∧ (D_176515 ==rttArrayRead(a@P0, idx012)) ∧
(idx012 == x0 ∧ 0 ≤ idx012 ·32 < 3200) ∧

(D_176815 ==rttArrayRead(a@P0, idx015)) ∧
(idx015 == y0 ∧ 0 ≤ idx015 ·32 < 3200).

4. No unresolved symbols exist anymore. Thus, the resolution process stops and the constructed path

constraint is passed to the solver.
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The solver determines Φ as feasible and returns the following solution (we omit here the listing of the

calculated values for local and auxiliary variables, since they do not affect the generated test case):

a@P [ 0 ] = −513

a@P [ 1 ] = −1

x = 1

y = 0

Based on the calculated solution, the generator constructs the following test driver:

i n t ∗a ;

unsigned i n t x ;

unsigned i n t y ;

i n t a _ r t t _ a r r a y [ 1 0 0 ] ;

i n t _ _ r t t _ r e t u r n ;

@rttBeginTestStep ;

{

y = 0 ;

x = 1 ;

a _ r t t _ a r r a y [ 0 ] = −513;

a = a _ r t t _ a r r a y ;

a _ r t t _ a r r a y [ 1 ] = −1;

a = a _ r t t _ a r r a y ;

@rttCal l ( _ _ r t t _ r e t u r n = t e s t ( a , x , y ) ) ;

}

@rttEndTestStep ;

As was already mentioned, CTGEN generates tests in RT-Tester syntax [44]. To make settings in the

input array, the auxiliary array a_rtt_array is created. Its values are set according to the calculated

by the solver and the input parameter a is set to this array. The values of x and y are set appropriately to

the solution. These settings satisfy the guard condition (a[x] > a[y]) and, consequently, this test

will cover the intended branch. The complete test script as well as the other outputs produced by the

generator for the discussed example can be observed in Appendix 12.

5.11.2 Handling of Arrays in remaining Cases

In this section we discuss the algorithm for array handling in cases when a variable of array type is not

altered by GIMPLE to a variable of pointer type but remains as it was. This occurs in all cases when the

array variable is not an input parameter, e.g if it is a global or local variable.

Before we present the algorithm for the resolution of an array expression, we demonstrate on a simple

example, how it proceeds, line by line. The module under test example() has the following inputs: a

global integer array aG and an integer parameter x. It returns true, if the element at index x is equal to 2

and false otherwise.
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C code GIMPLE representation

1 unsigned i n t aG [ 1 0 ] ;

2 i n t example ( unsigned i n t x ) {

3 aG [ 0 ] = 1 ;

4 aG [ 3 ] = 2 ;

5 i f ( aG [ x ] == 2)

6 re turn 1 ;

7 re turn 0 ;

8 }

1 unsigned i n t aG [ 1 0 ] ;

2 i n t example ( unsigned i n t x ) {

3 unsigned i n t D_1714 ;

4 . . .

5 aG [ 0 ] = 1 ;

6 aG [ 3 ] = 2 ;

7 D_1714 = aG [ x ] ;

8 i f ( D_1714 == 2) {

9 . . .

10 }

11 }

We demonstrate here not the complete GIMPLE representation (and symbolic execution) but only the

evaluation of the guard condition of the if statement in line 6 of C code and the symbolic execution of

the relevant statements. The complete generator output for this example is presented in Appendix 13.

For a better understanding of the procedure, we represent it as follows: we list the example code line

by line and after each line we specify the memory items which were created by the symbolic execution

of this line. The symbolic execution steps are numbered according to the line numbers of the GIMPLE

representation listed above.

First, the memory is initialized. Initialization of globals and parameters:

1 unsigned i n t aG [ 1 0 ] ;

m1 = (1, ∞, &aG[0], 0, 320, int[10], aG0, true)

2 i n t example ( unsigned i n t x )

m2 = (2, ∞, &x, 0, 32, unsigned int, x0, true)

Subsequently, the stack initialization is done:

3 unsigned i n t D_1714 ;

m3 = (3, ∞, &D_1714, 0, 32, unsigned int, Undef, true)

After the initialization is completed we proceed with the symbolic execution line by line:

5 aG [ 0 ] = 1 ;

m4 = (4, ∞, &aG[0], 0, 32, int[10], 1, true)

The insertion of the memory item m4 into the memory specification invalidates the memory item

m1, so that now m1 is configured as follows:
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m1 = (1, 3, &aG[0], 0, 320, int[10], aG0, true)

Furthermore, the insertion of the memory item m4 triggers the construction of the new memory

item m5 corresponding to the remains of the memory area of the memory item m1 not overlapping

with the memory area of m4:

m5 = (4, ∞, &aG[0], 32, 320, int[10], aG0, true)

6 aG [ 3 ] = 2 ;

m6 = (5, ∞, &aG[0], 96, 128, int[10], 2, true)

The insertion of the memory item m6 into the memory specification invalidates the memory item

m5, so that now m5 is configured as follows:

m5 = (4, 4, &aG[0], 32, 320, int[10], aG0, true)

Furthermore, the insertion of the memory item m6 triggers the construction of the new memory

items m7 and m8 corresponding to the remains of the memory area of the memory item m5 not

overlapping with the memory area of m6:

m7 = (5, ∞, &aG[0], 32, 96, int[10], aG0, true)
m8 = (5, ∞, &aG[0], 128, 320, int[10], aG0, true)

7 D_1714 = aG [ x ] ;

m9 = (6,∞, &D_1714, 0, 32, unsigned int, aG6[x6], true)

The insertion of the memory item m9 into the memory specification invalidates the memory item

m3:

m3 = (3, 5, &D_1714, 0, 32, unsigned int, Undef, true)

The next line of the example consists of an if statement if(D_1714 == 2). This means that the

evaluation of the guard condition (D_1714 == 2) is necessary. Before we start with the resolution

algorithm, we summarize the current memory specification:

m1 = (1, 3, &aG[0], 0, 320, int[10], aG0, true)
m2 = (2, ∞, &x, 0, 32, unsigned int, x0, true)
m3 = (3, 5, &D_1714, 0, 32, unsigned int, Undef, true)
m4 = (4, ∞, &aG[0], 0, 32, int[10], 1, true)
m5 = (4, 4, &aG[0], 32, 320, int[10], aG0, true)
m6 = (5, ∞, &aG[0], 96, 128, int[10], 2, true)
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m7 = (5, ∞, &aG[0], 32, 96, int[10], aG0, true)
m8 = (5, ∞, &aG[0], 128, 320, int[10], aG0, true)
m9 = (6,∞, &D_1714, 0, 32, unsigned int, aG6[x6], true)

Now we process as defined by the function resolveConstraint() (Algorithm 11):

1. Initialize the path constraint according to the guard condition:

Φ = (D_17146==2).

2. Resolve D_17146: find the memory item responsible for D_17146, this is m9. Resolve D_17146

according to the value of the item found:

D_17146 ==aG6[x6].

Now the algorithm resolveArrayExp() (see Algorithm 28) is invoked with D_17146 as var,

aG6[x6] as val, Φ as c and our memory configuration as mem.

First the values of the auxiliary variables offsetStart and offsetEnd are calculated:

offsetStart = 32 · x6

offsetEnd = 32 · x6 +32

Then the loop iterates over all memory items with the matching base address. These are the

following: m8, m7, m6, m5, m4 and m1. The validity period of the memory items m5 and m1 does

not match the validity period of aG6[x6]. Thus, only m8, m7, m6 and m4 remain. We analyze

them one by one:

• m8: first the overlapping constraint is built

overlap = (128 < 32·x6 +32) ∧ (320 > 32·x6)

Since the value m8 refers to an input array, the array expression is built:

arrayExp =(D_17146 ==rttArrayRead(aG0, x6))

The array expression and overlapping constraint are summarized:

c1 =(D_17146 ==rttArrayRead(aG0, x6)) ∧
(128 < 32·x6 +32) ∧ (320 > 32·x6)

• m7: first the overlapping constraint is built

overlap = (32 < 32·x6 +32) ∧ (96 > 32·x6)

Since the value m7 refers to an input array, the array expression is built:

arrayExp =(D_17146 ==rttArrayRead(aG0, x6))

The array expression and overlapping constraint are summarized:

c1 =(D_17146 ==rttArrayRead(aG0, x6)) ∧ (32 < 32·x6 +32) ∧ (96 > 32·x6)
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• m6: first the overlapping constraint is built

overlap = (96 < 32·x6 +32) ∧ (128 > 32·x6)

Since the value m8 does not refer to an input, the procedure resolveExp() (Algorithm 12) is

invoked. It produces the following resolution:

c1 =(D_17146 == 2) ∧ (96 < 32·x6 +32) ∧ (128 > 32·x6)

• m4: analog to the memory item m6 results in

c1 =(D_17146 == 1) ∧ (0 < 32·x6 +32) ∧ (32 > 32·x6)

Now we summarize all possible resolutions of aG6[x6] and thus the resolution results in:

Φ = (D_17146==2) ∧
((D_17146 ==rttArrayRead(aG0, x6)) ∧ (128 < 32·x6 +32) ∧ (320 > 32·x6) ∨
(D_17146 ==rttArrayRead(aG0, x6)) ∧ (32 < 32·x6 +32) ∧ (96 > 32·x6) ∨

(D_17146 == 2) ∧ (96 < 32·x6 +32) ∧ (128 > 32·x6) ∨
(D_17146 == 1) ∧ (0 < 32·x6 +32) ∧ (32 > 32·x6)).

3. Resolve x6: find the memory item responsible for x6, this is m2. Resolve x6 according to the value

of the item found:

x6 == x0.

Add the resolution result to the path constraint:

Φ = (D_17146==2) ∧
((D_17146 ==rttArrayRead(aG0, x6)) ∧ (128 < 32·x6 +32) ∧ (320 > 32·x6) ∨
(D_17146 ==rttArrayRead(aG0, x6)) ∧ (32 < 32·x6 +32) ∧ (96 > 32·x6) ∨

(D_17146 == 2) ∧ (96 < 32·x6 +32) ∧ (128 > 32·x6) ∨
(D_17146 == 1) ∧ (0 < 32·x6 +32) ∧ (32 > 32·x6)) ∧

(x6 == x0).

4. No unresolved symbols exist anymore. Thus, the resolution process stops and the constructed path

constraint is passed to the solver.

After we have sketched the principle of proceeding of the algorithm, we will analyze it in more detail.

The resolution of an array assignment is performed by the procedure call

resolveArrayExp(var, val, c, mem)

Where

• var is a versioned variable identifier. It indicates the variable, that has an array access as a value.

• val is a versioned array expression.

• c is a constraint that holds the result of the resolution process.
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input : var − v a r i a b l e i d e n t i f i e r which has an a r r a y e x p r e s s i o n as v a l u e

val − a r r a y e x p r e s s i o n t h a t must be r e s o l v e d

mem − c u r r e n t memory s p e c i f i c a t i o n

i n o u t : c − f e a s i b i l i t y c o n s t r a i n t

procedure r e s o l v e A r r a y E x p ( var , val , c , mem ) {

offsetStart = ω(val)
offsetEnd = ω(val) + b i t s i z e (val) ;

/ / f i n d o u t c o r r e s p o n d i n g segment
S = σ(β (val), mem);

foreach m = last(S) downto head(S){

i f ( m.v0 ≤ υ(val)∧υ(val)≤ m.v1 ∧m.a == β (val) ) {

overlap = (m.o < offsetEnd)∧ (m.l > offsetStart);
c1 = m.c∧overlap;

i f ( c1 i s f e a s i b l e ) {

i f ( m.val i s not an input a r r a y ) {

r e s o l v e E x p (var, m′.val, c1, mem);
} e l s e {

arrayExp = (var == r t t A r r a y R e a d ( m.val , g e t I d x (val)));
c1 = c1 ∧arrayExp ;

}

c2 = c2 ∨ c1;

}

}

}

c = c∧ c2

}

Algorithm 28: Resolution of an array expression.
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• mem is the current memory specification.

The Algorithm 28 shows the procedure for the resolution of an assignment of an array expression

resolveArrayExp(). First the algorithm determines offset start and offset end of the memory area selected

by the array expression. Then the algorithm finds all memory items referring to the array variable from

the array expression val. By iterating over the found items the algorithm detects by which of them

the validity period correlates with the version of the array access. As far as such an item is found, the

overlapping of the memory segments corresponding to the memory item and to the array expression is

examined. The overlapping condition is conjuncted with the feasibility constraint of the found memory

item and is stored in constraint c1. When overlapping occurs and the feasibility constraint is feasible (i.e.

c1 is feasible), the algorithm examines the value of the found memory item and, if the value does not refer

to an input array, invokes the procedure resolveExp() (Algorithm 12). This procedure continues with the

resolution process of the found value and stores the result in constraint c1. Otherwise, if the value of the

item refers to an input array, the array expression resolving the variable var to the element of array m.val
at index corresponding to the index of the array expression val by invocation of rttArrayRead()
is built. This array expression is added to the feasibility constraint c1. The constraint c2 holds the

disjunction of all constructed c1 constraints and thus all possible resolutions of the array expression val.

At the end of the algorithm, after all memory items with matching base address were explored, the

resulting constraint c1 is added to the constraint c, the overall outcome of the resolution process.

Now we return to the presented example and observe the test driver that was generated for the built

path constraint Φ. The solver has determined Φ as feasible and returned the following solution (here

we omit the listing of the calculated values for local and auxiliary variables since they do not affect the

generated test case):

aG [ 1 ] = 2

x = 1

Based on the calculated solution, the generator constructs the following test driver:

e x t er n unsigned i n t aG [ 1 0 ] ;

unsigned i n t x ;

i n t _ _ r t t _ r e t u r n ;

@rttBeginTestStep ;

{

x = 1 ;

aG [ 1 ] = 2

@rttCal l ( _ _ r t t _ r e t u r n = example ( x ) ) ;

}

@rttEndTestStep ;

As was already mentioned, CTGEN generates tests in RT-Tester syntax [44]. The values of parameter x
and the global array aG[] are set according to the solution. These settings satisfy the guard condition

(aG[x] == 2) and, consequently, this test will cover the intended branch. The complete test script as

well as the other outputs produced by the generator for the discussed example are listed in Appendix 13.
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5.12 Function Calls

There is a number of approaches to deal with function calls in symbolic execution and concolic testing.

For defined functions the most common and straight forward approach is the inlining of the body of

the called function [26, 54]. Yet this method increases the number of paths to be investigated rapidly.

For the sake of scalability CUTE [93] suggests to concretize the return values of the function, but,

since in this way the return value of the function is fixed, it can be impossible to cover some following

branches although they are coverable. To deal with the problem of scalability when performing bottom-

up unit testing Pathcrawler [18] performs analysis only of all feasible paths of the called function. This

information is available since the called function was investigated before the calling function.

In this dissertation we use inlining to process defined function calls. Nevertheless, since many of the

paths introduced by the called function cover the same branches in the calling function, we do not aim to

achieve 100% coverage of the inlined function. Instead we search only for a path through this function

which can lead to new covered branches. And, if the called function is too complex, there is still a

possibility to switch to the approach introduced for processing undefined functions.

For the handling of functions whose code is not available, a number of approaches exist. The most

common one is to substitute symbolic variables with concrete values [47, 93, 23]. Another approach

is used by PathFinder [85] – mixed concrete-symbolic solving, where the external function is not inter-

preted first and is concretized later with consideration of solvable constraints in the path condition, but

through concretization the generation process falls back to the random testing, with all its limitations.

KLEE [22] uses a modeled library, which allows interactions with the environment. However, the im-

plementation of such a library is time consuming and this method still has limitations in case when there

is no implemented model for the invoked external function. Pathcrawler suggests another approach [18]

- formal specification of the called function by the use of pre- and postconditions. In the analysis of the

caller function the external function is replaced by the constraint, specifying its behavior. However, this

approach requires manual intervention.

In this dissertation we propose the automatic generation of mock objects for the handling of external

function calls. These mock objects replace external functions by test stubs with the same signature. The

return data, output parameters and global variables which can be modified by the stubbed function are

set according to the calculated values in order to fulfill a path condition. This also allows to simulate

exceptional behavior of stubbed functions, which often is not easy to stimulate in practice. It is possible

but not required to customize stub behavior by using the annotation language.

In the following sections we discuss approaches used in this dissertation for handling defined and

undefined function calls in more detail.

5.12.1 Processing defined Function Calls

To handle defined function calls we apply inlining. Before STCT initialization the CFG of the function

under investigation is examined and all nodes containing function calls are replaced by the CFGs of the

corresponding functions. Afterwards, the test generation process is undertaken as usual with a difference,

that the objective is not to cover all branches of the resulting CFG but only the branches of the original

one.

We illustrate our approach by the following example:
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i n t foo ( i n t a , i n t b )

{

s w i t c h ( a ) {

case 0 :

re turn b ;

case 1 :

re turn −b ;

case 2 :

re turn 0 ;

d e f a u l t :

re turn −1;

}

re turn −1;

}

i n t t e s t ( i n t a , i n t b )

{

i f ( foo ( a , b ) > 0) {

re turn 1 ;

}

re turn 0 ;

}

Suppose, our goal is to generate 100% branch coverage for the function test(). The CFG of the

function test() in three address code is shown in Figure 5.4 on the left. The node holding a call to

function foo() is drawn gray. Before the analysis for test generation starts, this node is replaced by its

CFG – the result is shown in Figure 5.4 on the right. The part of the CFG corresponding to the function

foo() is drawn gray.

The generation process produces two test cases corresponding to traces (for simplicity we list here

only nodes of the traces)

• < (a f oo =a), (b f oo =b), (D_1725=−1), (return f oo = D_1725), (D_1719 = return f oo), (retval.0 =

(D_1719 > 0)), (D_1722 = 1), (return = D_1722)>

• < (a f oo =a), (b f oo =b), (D_1725=b f oo), (return f oo = D_1725), (D_1719 = return f oo), (retval.0 =

(D_1719 > 0)), (D_1722 = 1), (return = D_1722)>

The nodes that belong to these traces are drawn blue in Figure 5.5. The nodes (D_1725= −b f oo) and

(D_1725= 0) are still uncovered, but their coverage is not necessary, since all branches of the CFG

corresponding to the function test() where examined by these two traces. The test script and all the

other outputs produced by the generator for this example can be observed in Appendix 14.

5.12.2 Processing undefined Function Calls

When an external function call appears on the path under consideration, the return value of this external

function, its output parameters and all global variables allowed for modification are handled as symbolic

stub variables. These symbolic stub variables can possibly be modified by this call. A stub variable

holds the information about the stub function to which it belongs and – if it corresponds to the return

value – the output parameter or global variable, changed by this stub.
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D_1719 = foo(a,b)

retval.0 = (D_1719 > 0)

D_1722 = 1 D_1722 = 0

return = D_1722

retval.0 != 0 retval.0 == 0

a f oo = a

b f oo = b

D_1725 = -1 D_1725 = b f oo D_1725 = -b f oo D_1725 = 0

return f oo = D_1725

D_1719 = return f oo

retval.0 = (D_1719 > 0)

D_1722 = 1 D_1722 = 0

return = D_1722

a f oo != 0 && a f oo != 1 && a f oo != 2

a f oo == 0 a f oo == 1

a f oo == 2

retval.0 != 0 retval.0 == 0

Figure 5.4: Processing defined functions: inlining.

a f oo = a

b f oo = b

D_1725 = -1 D_1725 = b f oo D_1725 = -b f oo D_1725 = 0

return f oo = D_1725

D_1719 = return f oo

retval.0 = (D_1719 > 0)

D_1722 = 1 D_1722 = 0

return = D_1722

a f oo == 1

a f oo == 2

a f oo != 0 && a f oo != 1 && a f oo != 2

a f oo == 0

retval.0 != 0 retval.0 == 0

Figure 5.5: Processing defined functions: selection.
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Definition 5.11. Stub variable sv is defined as the following structure:

sv =de f sv.name sv.type sv.stubType sv.func sv.parameter

where

• sv.name is the name of the stub variable,

• sv.type is the type of the stub variable (integer, char etc),

• sv.stubType is the stub type of the stub variable – it indicates whether this variable corresponds to

a global variable (type is stubGlobal), return value of the stub function (type is stubReturn) or its

output parameter (type is stubOut putParameter),

• sv.func is the name of the corresponding stub function,

• sv.parameter is the name of the corresponding parameter in case if the type is stubOut putParameter
and empty otherwise.

First we introduce some auxiliary functions that we need for the definition of the algorithm for han-

dling undefined function calls:

ϕ : Expression → SymbolTable Maps an expression to the corresponding symbol ta-

ble entry – variable or function according to the ex-

pression.

φ : Expression → SymbolTable Maps a parameter from a function expression to the

corresponding signature entry containing symbol ta-

ble information.

η : Expression → N Returns the stub counter for the given function, i.e.

how many times this function was already called on

the path under investigation.

Definition 5.12. The effect of the assignment of an undefined function call to a variable

v = func(...);

on the state space Ss is specified by the procedure call:

updateByFctAssignment(sel, func, n, mem); mem′ = mem;

where

• sel is a selector of the variable identifier,

• func is an undefined function expression,

• n is the current computational step,

• mem is the current memory specification.
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input : sel − s e l e c t o r o f t h e i d e n t i f i e r

func − f u n c t i o n e x p r e s s i o n t h a t s h o u l d be a s s i g n e d t o t h e i d e n t i f i e r sel
n − c u r r e n t c o m p u t a t i o n a l s t e p

i n o u t : mem − c u r r e n t memory s p e c i f i c a t i o n

procedure upda t eByFc tAss ignmen t ( sel , func , n , mem ) {

h a n d l e O u t p u t P a r a m e t e r s ( func , n , mem ) ;

h a n d l e G l o b a l s ( func , n , mem ) ;

/ / c r e a t e a s t u b v a r i a b l e c o r r e s p o n d i n g t o t h e r e t u r n v a l u e o f t h e f u n c t i o n
sv . name = ϕ(func) . name + ‘ ‘@RETURN’ ’ ;

sv . t y p e = ϕ(func) . t y p e ;

sv . s tubType = s t u b R e t u r n ;

sv . f un c = ϕ(func) . name ;

/ / s e t t h e v e r s i o n o f t h e s t u b v a r i a b l e e x p r e s s i o n c o r r e s p o n d i n g t o
/ / t h e s t u b c o u n t e r
υ(sv) = η(func) ;

upda teByAss ignment ( sel , sv , n , mem ) ;

}

Algorithm 29: Effect of the assignment of an undefined function call on the memory specification.

Assignment of an undefined function call may affect the stack or data segment dependent on the signature

of the function func and existence of the global variables in the module under test configuration.

Algorithm 29 shows the procedure updateByFctAssignment(). This procedure specifies the algo-

rithm for processing undefined function calls. First, symbolic stub variables for output parameters of the

observed function are created by the auxiliary procedure handleOut putParameters(). Next, symbolic

stub variables for all global variables, which can possibly be changed by the observed function call,

are created by the auxiliary procedure handleGlobals(). And, finally, a stub variable corresponding to

the return value of the observed function is created: its name is composed from the function name and

RETURN identifier, the type is set corresponding to the return type of the function, the stub type is set to

stubReturn to characterize this stub variable as corresponding to the return value and, last, the name of

the function, to which this stub variable refers, is set. The version of the expression with this stub variable

is set according to the stub counter of the called function and an effect on the assignment of the created

stub variable to the left-hand side of the function assignment expression is computed. The version of the

stub variable expression is important here, since it is used by the further test driver generation to identify

by which stub call which values for the stub variables must be set.

To illustrate this procedure consider the simple example: the following function call is performed

on the path under investigation: i = func_ext(), where the signature of the called function is

int func_ext(). In this case a new stub variable func_ext@RETURN of type int is created.

Its stub type is set to stubReturn and the corresponding stub function is set to func_ext. Suppose, this

is the first call to function func_ext(), hence the version of the corresponding expression is set to

zero. Finally, the effect of an assignment i = func_ext@RETURN0 on the memory specification is

computed.
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input : func − f u n c t i o n e x p r e s s i o n whose output p a r a m e t e r s s h o u l d be a n a l y z e d

n − c u r r e n t c o m p u t a t i o n a l s t e p

i n o u t : mem − c u r r e n t memory s p e c i f i c a t i o n

procedure h a n d l e O u t p u t P a r a m e t e r s ( func , n , mem ) {

foreach ( p a r a m e t e r e x p r e s s i o n p in func . p a r a m e t e r s ) {

sp = φ(p) ;

i f ( sp . t y p e i s a p o i n t e r && sp . r e f T y p e i s not c o n s t ) {

/ / c r e a t e a s t u b v a r i a b l e c o r r e s p o n d i n g t o t h e o u t p u t parame te r
/ / o f t h e f u n c t i o n
sv . name = sp . name + ‘ ‘@’ ’ + ϕ( f unc) . name + ‘ ‘ @outputParam ’ ’ ;

sv . t y p e = sp . r e f T y p e ;

sv . s tubType = s t u b O u t p u t P a r a m e t e r ;

sv . func = ϕ(func) . name ;

/ / s e t t h e v e r s i o n o f t h e s t u b v a r i a b l e e x p r e s s i o n c o r r e s p o n d i n g t o
/ / t h e s t u b c o u n t e r
υ(sv) = η(func) ;

i f ( p c o n t a i n s a d d r e s s o p e r a t i o n ) {

v = v a r i a b l e p a r t i c i p a t i n g in e x p r e s s i o n p
upda teByAss ignment ( v , sv , n , mem ) ;

} e l s e {

upda teByAss ignment (∗ p , sv , n , mem ) ;

}

}

}

Algorithm 30: Undefined function calls: handling of output parameters.
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The auxiliary routine for the handling of the output parameters is shown in Algorithm 30. The pro-

cedure receives the function expression, the current computational step and the current memory speci-

fication as input. For each expression that was passed to the function call as a parameter, the following

analysis is performed: if the corresponding function parameter is a pointer and its content is not pro-

tected by the const qualifier, a new stub variable is created and an effect of the assignment of this

variable to the variable where the pointer parameter points to is computed. For example, the following

function call is performed on the path under investigation: func_ext(&a) where the signature of

the called function is func_ext(int *p). In this case, the pointer does not point to a constant, so

that a new stub variable a@func_ext@outputParam of type int is created. Its stub type is set to

stubOutputParameter and the corresponding stub function is set to func_ext. Suppose, this is

the first call to function func_ext(), hence the version of the corresponding expression is set to zero.

Finally, the effect of an assignment a = a@func_ext@outputParam0 on the memory specification

is computed.

The auxiliary routine for the handling of the global variables is shown in Algorithm 31. The procedure

receives the function expression, the current computational step and the current memory specification as

input. For all memory items from the data segment following analysis is performed: if the memory item

is still valid, it does not refer to a constant and its modification is allowed (for the specification of global

variables whose modification is permitted see Chapter 3), this item is invalidated and a new stub variable

is created. A new memory item, a copy of the invalidated item but with the difference that the value is

set to the stub variable expression, is created.

Definition 5.13. The effect of an undefined procedure call

proc(...);

on the state space Ss is specified by the procedure call:

updateByProcedureCall(proc, n, mem); mem′ = mem;

where

• proc is a procedure expression,

• n is the current computational step,

• mem is the current memory specification.

An undefined procedure call may affect the stack or data segment dependent on the signature of the

procedure proc and existence of the global variables in the module under test configuration.

Algorithm 32 shows procedure updateByProcedureCall(), which specifies the algorithm for process-

ing undefined procedure calls. This procedure is a simpler version of the procedure updateByFctAs-
signment(), since a procedure has no return value. In that way merely the output parameters and global

variables must be considered.

To illustrate how the algorithm for processing undefined function calls works, we use the following

example:
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input : func − f u n c t i o n e x p r e s s i o n whose c a l l i s a n a l y z e d

n − c u r r e n t c o m p u t a t i o n a l s t e p

i n o u t : mem − c u r r e n t memory s p e c i f i c a t i o n

procedure h a n d l e G l o b a l s ( func , n , mem ) {

S = /0;

foreach m = head ( dataSegment ) upto last ( dataSegment ) {

i f ( m.v1 == ∞ &&

m.t i s n o t c o n s t &&

ϕ(m.a) i s n o t p r o h i b i t e d ) {

/ / i n v a l i d a t e found memory i t e m
m.v1 = n;

/ / c r e a t e a s t u b v a r i a b l e c o r r e s p o n d i n g t o t h e g l o b a l var
sv . name = ϕ(m.a) . name + ‘ ‘@’ ’ + ϕ(func) . name ;

sv . t y p e = ϕ(m.a) . t y p e ;

sv . s tubType = s t u b G l o b a l ;

sv . func = ϕ(func) . name ;

/ / s e t t h e v e r s i o n o f t h e s t u b v a r i a b l e e x p r e s s i o n c o r r e s p o n d i n g t o
/ / t h e s t u b c o u n t e r
υ(sv) = η(func) ;

/ / c r e a t e a new memory i t e m
m′.v0 = n;

m′.v1 = ∞;

m′.a = m.a;

m′.t = m.t;
m′.o = m.o;

m′.l = m.l;
m′.val = sv;

S = S ∪ {m′};

}

}

dataSegment = dataSegment ∪ S;

}

Algorithm 31: Undefined function calls: handling of global variables.
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input : proc − procedure e x p r e s s i o n t h a t s h o u l d be a s s i g n e d t o t h e i d e n t i f i e r sel
n − c u r r e n t c o m p u t a t i o n a l s t e p

i n o u t : mem − c u r r e n t memory s p e c i f i c a t i o n

procedure u p d a t e B y P r o c e d u r e C a l l ( proc , n , mem ) {

h a n d l e O u t p u t P a r a m e t e r s ( proc , n , mem ) ;

h a n d l e G l o b a l s ( proc , n , mem ) ;

}

Algorithm 32: Effect of the assignment of an undefined procedure call on the memory specification.

e x t e r n i n t f u n c _ e x t ( i n t a ) ;

i n t g l o b a l V a r ;

void t e s t ( i n t p1 , i n t p2 ) {

_ _ r t t _ m o d i f i e s ( g l o b a l V a r ) ;

g l o b a l V a r = −p2 ;

i f ( f u n c _ e x t ( p1 ) > p2 ) {

i f ( f u n c _ e x t ( p2 ) == p1 && g l o b a l V a r == p2 ) {

ERROR;

}

}

}

In the procedure test() the external function func_ext() is called twice. To reach the line with an

error, func_ext() must return a value that is greater than the value of the parameter p2 by the first

call. Furthermore, by the second call it must return a value that is equal to the value of the parameter p1.

The symbolic interpreter analyzes what could possibly be altered by func_ext() and creates the stub

variables func_ext@RETURN and globalVar@func_ext. The constraint generator generates the

following path constraint (the path constraint is listed here in a simplified form for better understanding;

the complete path constraint for this example is listed in Appendix 15):

func_ext@RETURN@0 > p2 &&

func_ext@RETURN@1 == p1 &&

globalVar@func_ext@1 == p2

The occurrences of the stub variables are versioned corresponding to the running number of the calls of

the external function. Here func_ext@RETURN@0 corresponds to the return value of the first call and

func_ext@RETURN@1 to the return value of the second one. The solver determines the path constraint

as feasible and computes the following solution:

func_ext@RETURN@0 = 2147483647

func_ext@RETURN@1 = 0

globalVar@func_ext@1 = −1

p1 = 0

p2 = −1

Now consider the generated test driver:
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e x t er n unsigned i n t func_ex t_STUB_tes tCaseNr ;

e x t er n unsigned i n t func_ext_STUB_re t ID ;

e x t e r n i n t func_ex t_STUB_re tVa l [ 2 ] ;

i n t p1 , p2 ;

/∗ ∗∗∗∗ STUB f u n c _ e x t ∗∗∗∗ ∗ /
func_ex t_STUB_tes tCaseNr = 0 ;

func_ext_STUB_re t ID = 0 ;

/∗ s e t v a l u e s f o r r e t u r n ∗ /
func_ex t_STUB_re tVa l [ 0 ] = 2147483647;

func_ex t_STUB_re tVa l [ 1 ] = 0 ;

/∗ ∗∗∗∗ end STUB f u n c _ e x t ∗∗∗∗ ∗ /

p1 = 0 ;

p2 = −1;

@ r t t C a l l ( t e s t ( p1 , p2 ) ) ;

and the generated stub:

i n t f u n c _ e x t ( i n t a ) {

@GLOBAL:

unsigned i n t func_ex t_STUB_tes tCaseNr ;

unsigned i n t func_ext_STUB_re t ID ;

i n t func_ex t_STUB_re tVa l [ 2 ] ;

@BODY:

func_ext_RETURN =

func_ex t_STUB_re tVal [ func_ext_STUB_re t ID %2];

i f ( func_ex t_STUB_tes tCaseNr == 0) {

i f ( func_ext_STUB_re t ID == 1) {

g l o b a l V a r = −1;

}

}

func_ext_STUB_re t ID ++;

} ;

CTGEN generates tests in RT-Tester syntax. An array func_ext_STUB_retVal of size two (cor-

responding to the number of calls of the function func_ext()) is created to hold the calculated

return values. These values are stored by the test driver according to their version. The variable

func_ext_STUB_retID corresponds to the running number of the stub call. It is reset by the test

driver before each call of the UUT and incremented by the corresponding stub each time it is called.

Since one test driver can hold many test cases, the variable func_ext_STUB_testCaseNr, that cor-

responds to the number of the test case, is created. This variable is set by the test driver. The value of

the global variable globalVar is set by the stub if the number of the stub call and the test case number

match the calculated ones for this global variable.

The complete test script, stub and all other outputs produced by the generator for this example are

listed in Appendix 15.
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5.12.3 Processing undefined Function Calls with Stub Specification

In the previous section we presented how we process undefined function calls. However, the behavior of

a stub function generated this way can deviate from the behavior of the real function. To approach this

problem, we introduce a specification of stubs by means of the annotation language presented in Chapter

3. It is possible to define the range of stub parameters, global variables as well as return values over pre-

and postconditions.

To illustrate this technique, we consider the example from the previous section:

e x t e r n i n t f u n c _ e x t ( i n t a ) ;

i n t g l o b a l V a r ;

void t e s t ( i n t p1 , i n t p2 ) {

_ _ r t t _ m o d i f i e s ( g l o b a l V a r ) ;

g l o b a l V a r = −p2 ;

i f ( f u n c _ e x t ( p1 ) > p2 ) {

i f ( f u n c _ e x t ( p2 ) == p1 && g l o b a l V a r == p2 ) {

ERROR;

}

}

}

The solver computed the following solution to reach the line with an error:

func_ext@RETURN@0 = 2147483647

func_ext@RETURN@1 = 0

globalVar@func_ext@1 = −1

p1 = 0

p2 = −1

Suppose, the return value of the real function func_ext() cannot be greater or equal to 20 and that

the globalVar is modified by func_ext() in such a way, that afterwards the value of the vari-

able globalVar is always greater than 17. In this case the first calculated return value for the stub

(2147483647) as well as the calculated value for modification of the variable globalVar (-1) are im-

possible. To take this fact into account, we expand the code under test with a dummy function which has

the same signature as func_ext():

i n t f u n c _ e x t ( i n t a )

{

_ _ r t t _ e x t e r n ( ) ;

_ _ r t t _ p o s t c o n d i t i o n ( _ _ r t t _ r e t u r n < 20 && g l o b a l V a r > 17) ;

re turn 0 ;

}

This dummy function contains:

1. The auxiliary function __rtt_extern() which identifies the defined function as a stub speci-

fication for an external function call.

2. A postcondition which specifies that return values of the corresponding generated stub must be
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less than 20 and that after the execution of the stub the global variable globalVar must have a

value greater than 17.

Suppose further, that the parameter a of the function func_ext() must always be greater than zero

and the global variable globalVar is accepted only in range (−20, 20). To take this into account, we

expand the specification of the stub with a precondition:

i n t f u n c _ e x t ( i n t a )

{

_ _ r t t _ e x t e r n ( ) ;

_ _ r t t _ p r e c o n d i t i o n ( a > 0 && −20 < g l o b a l V a r && g l o b a l V a r < 20) ;

_ _ r t t _ p o s t c o n d i t i o n ( _ _ r t t _ r e t u r n < 20 && g l o b a l V a r > 17) ;

re turn 0 ;

}

To process specified pre- and postconditions, we apply inlining like in the case of processing defined

functions. The difference is, that to activate the stub generation the call to the function is not replaced

by its body but remains in the CFG. The nodes corresponding to the precondition definition are inserted

before the function call and the nodes characterizing the postcondition – after. We illustrate this by our

example. Figure 5.6 on the left shows the simplified CFG of the function under test test(), the call to

the function func_ext() is drawn red. On the right side the CFG with inserted nodes responsible for

parameter initialization and precondition (nodes before the call to func_ext()) and nodes defining the

postcondition (nodes after the call to func_ext()) is shown. The inserted nodes are drawn gray. This

preprocessing ensures, that the generator will consider only values in specified range when calculating

the values for stub variables and that in case when such variable assignment cannot be found, it reports

the corresponding branches as unreachable.

Now the path constraint constructed by the generator to reach the line with an error is as follows:

1 f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ v 0 > 0 &&

2 f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ v 0 == p1 &&

3 globalVar@v0 == −p2@0 &&

4 globalVar@v0 > −20 &&

5 globalVar@v0 < 20 &&

6 func_ext@RETURN@0 <= 19 &&

7 globalVar@func_ext@0 > 17 &&

8 func_ext@RETURN@0 > p2 &&
9 f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ v 1 > 0 &&

10 f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ v 1 == p2 &&

11 globalVar@func_ext@0 > −20 &&

12 globalVar@func_ext@0 < 20 &&

13 func_ext@RETURN@1 <= 19 &&

14 globalVar@func_ext@1 > 17 &&

15 func_ext@RETURN@1 == p1 &&
16 globalVar@func_ext@1 == p2

As in the example from the previous section, this path constraint is simplified for better understanding,

v0 and v1 denote here the versions of the variables. The complete version of the path constraint as

well as the complete test driver, stub code and other generator outputs for this example are listed in

Appendix 16. This path constraint is more complicated than the path constraint from the example without
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globalVar = -p2

D_1755 = func_ext(p1)

retval.1 = (D_1755 > p2)

...

return

retval.1 != 0

retval.1 == 0

globalVar = -p2

a f unc_ext = p1

__rtt_precondition_begin()

globalVar.5 = globalVar

globalVar.6 = globalVar

__rtt_precondition_end()

D_1755 = func_ext(p1)

__rtt_postcondition_begin()

globalVar.7 = globalVar

__rtt_postcondition_end()

D_1755 = return f unc_ext

retval.1 = (D_1755 > p2)

...

return

a > 0

globalVar.5 > -20

globalVar.6 < 20

return f unc_ext < 20

globalVar.7 > 17

retval.1 != 0

retval.1 == 0

Figure 5.6: Processing specified stubs.
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stub specification. To emphasize this, we highlighted the inequalities which participate in both path

constraints. The part of the path constraint in lines 1 - 5 corresponds to the precondition of the first call to

func_ext(), inequalities in lines 6-7 correlate with postcondition of the first call to func_ext() and

the inequality in line 8 results from the guard condition in the function under test in line 8. Similarly, the

lines 9 - 12 of the path constraint correspond to the precondition of the second call to func_ext(), lines

13-14 correlate with its postcondition and inequalities in lines 15-16 are caused by the guard conditions

in the function under test in line 9.

The solver determines the path constraint as feasible and computes the following solution:

func_ext@RETURN@0 = 19

func_ext@RETURN@1 = 16

globalVar@func_ext@0 = 19

globalVar@func_ext@1 = 18

p1 = 16

p2 = 18

Note, that the analysis of inequalities in lines 6, 8, 14 and 16 from the path constraint:

func_ext@RETURN@0 <= 19 &&

func_ext@RETURN@0 > p2 &&

globalVar@func_ext@1 > 17 &&

globalVar@func_ext@1 == p2

shows, that there is only one possible combination of assignment of the parameter p2 and the return

value of the function func_ext() by the first call: p2 = 18 and func_ext@RETURN@0 = 19,

which makes it very unlikely that random testing will be capable of uncovering the error in this code.

5.13 Symbolic Execution of an Expression

After we have discussed the algorithms handling the symbolic execution of different specific forms of

expressions, we define a procedure executeExpression() (Algorithm 33) which takes an expression exp,

which must be executed symbolically, and a current memory specification mem as inputs. The expression

exp is analyzed and is delegated further to the algorithms, handling the specific form of an expression ac-

cording to its structure. So, if the passed expression does not have any left-hand side, this is a procedure

call and must be handled by the algorithm updateByProcedureCall() correspondingly. If the expression

on the left is a dereferenced pointer, the symbolic execution is handled by the procedure updateByAssign-
mentToDerefPtr() (Algorithm 13). Further, the right-hand side of the expression is analyzed and passed

to the procedure updateByBitFieldAssignment() (Algorithm 22) if it represents a bit field, or to the pro-

cedure updateByFctAssignment() (Algorithm 29) if it is a function call. All other cases are handled by

the algorithm updateByAssignment() (Algorithm 9).

5.14 Auxiliary Functions

In this section we give an overview over all auxiliary functions introduced for symbolic execution algo-

rithms in this chapter.
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β : Selectors → BaseAddress Maps a selector to the corresponding base address.

τ : Selectors → Symbols Maps a selector to the type of the corresponding

variable.

ω : Selectors → Expression Maps a selector to the corresponding symbolic offset

expression.

bitsizeof: Selectors → N Maps a selector to the length of the selected memory

in bits.

basetype: Selectors → Symbols Maps an array or a pointer selector to the base type.

For example, for the variable p of type int**,

basetype(p) = int.

σ : BaseAddress×M → M− Item∗ Maps a base address to the stack, heap or global data

according to the current memory configuration.

υ : Expression → N Returns a version of the given expression.

α : Expression → Expression Returns the operand with the address operation. For

example, for expression e = &a + b, α(e) =&a.

δ : Expression → Expression Returns the operand with the offset part. For exam-

ple, for expression e = &a + b, δ (e) =b. If the

offset part is not existent, δ (e) = 0.

ν : Selectors → Selectors Maps a selector to the corresponding base name. For

example ν(x. f 1. f 2) = x.

χ : Expression × Expression →
Selectors

Maps the defined memory area within a structure to

the corresponding selector.

ι : Expression × Expression →
Symbols

Maps the defined memory area within a structure to

the corresponding type.

ϕ : Expression → SymbolTable Maps an expression to the corresponding symbol ta-

ble entry – variable or function according to the ex-

pression.

φ : Expression → SymbolTable Maps a parameter from a function expression to the

corresponding signature entry containing the symbol

table information.

η : Expression → N Returns the stub counter for the given function, i.e.

how many times this function was already called on

the path under investigation.
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5 Symbolic Execution

input : exp − e x p r e s s i o n t h a t must be e x e c u t e d s y m b o l i c a l l y

i n o u t : mem − c u r r e n t memory s p e c i f i c a t i o n

procedure e x e c u t e E x p r e s s i o n ( exp , mem ) {

left = l e f t s i d e o f exp ;

right = r i g h t s i d e o f exp ;

n = c u r r e n t c o m p u t a t i o n a l s t e p ;

i f ( ! le f t ) {

u p d a t e B y P r o c e d u r e C a l l ( right , n , mem ) ;

} e l s e i f ( left i s a d e r e f e r e n c e d p o i n t e r ) {

u p d a t e B y A s s i g n m e n t T o D e r e f P t r ( left , right , n , mem ) ;

} e l s e i f ( right i s a b i t f i e l d ) {

u p d a t e B y B i t F i e l d A s s i g n m e n t ( left , right , n , mem ) ;

} e l s e i f ( right i s a f u n c t i o n c a l l ) {

upda t eByFc tAss ignmen t ( left , right , n , mem ) ;

} e l s e {

upda teByAss ignment ( left , right , n , mem ) ;

}

}

Algorithm 33: Symbolic Execution of an Expression.
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6 Experimental Results and Evaluation

This chapter is an extended version of the experimental results and the evaluation published in [72].

The experimental evaluation of CTGEN and the comparison with competing tools was performed

both with synthetic examples evaluating the respective tools’ specific capabilities and with embedded

systems code from an industrial automotive application. The latter presented specific challenges: (1)

the code was automatically generated from Simulink models. This made automated testing mandatory

since small model changes considerably affected the structure of the generated code, so that the re-use

of existing unit tests was impossible if the models had been changed. (2) Some units were exceptionally

long because insufficient hardware resources required to reduce the amount of function calls.

Table 6.1 shows the results achieved by CTGEN in the automotive test project on some selected func-

tions. The most challenging function was f1 with over 2000 lines of code (714 executable lines), using

structures, bit vectors, pointer parameters and complex branch conditions. Nevertheless, CTGEN was

able to generate 95,1% line and 89,0% branch coverage with 59 automatically generated test cases. Fur-

thermore, by using preconditions as guides for CTGEN to cover parts of code further down in the CFG,

it was possible to increase the coverage even more. Function f2 with 50 executable lines of code (about

300 lines of code) represents a typical function in the project. For such functions CTGEN achieved 100%

C1 coverage. Function f3 includes pointer comparison, pointer dereferencing and a for-loop with an

input parameter as a limit. However, due to the small branching factor CTGEN achieves 100% coverage

with only 3 test cases and a generation time of under one second. Summarizing, CTGEN proved to

be efficient for industrial test campaigns in the embedded domain and considerably reduced the overall

project efforts. The more detailed report to this industrial study is given in Appendix 7.4.

In comparison (see Tables 6.2, 6.3 and 6.4), experiments with KLEE [22] and PathCrawler [18]

demonstrated that CTGEN delivers competitive results and outperformed the others for the most complex

function f1(). The experiments with PathCrawler were made with the online version [2], so it was

not possible to exactly measure the time spent by this tool. This tool, however, could not handle the

complexity of f1(), whereas KLEE did not achieve as much coverage as CTGEN, we assume that this

is due to the path-coverage oriented search strategy, which has not been optimized for achieving C1

coverage.

Functions f4() and f5() are also taken from the automotive testing project. Function f5() has struct-

inputs with bit fields. KLEE achieved 100% path coverage. PathCrawler also targets path coverage but

due to limitations of the online version (number of generated test cases, available amount of memory)

delivers only 201 test cases. However, we assume that without these limitations it will also achieve

100% path coverage although in a larger amount of time than KLEE. For the example function Tritype()
KLEE delivers poor results because it does not support floating types. There is, however, an extension

KLEE-FP [30] targeting this problem. PathCrawler excels CTGEN and KLEE but can handle only the

double type, not float, while CTGEN can calculate bit-precise solutions for both. alloc_ptr() and

comp_ptr() demonstrate handling of symbolic pointers, which is not supported by PathCrawler; KLEE

and CTGEN deliver comparable results. Functions test_sym1() and test_sym2() demonstrate handling
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Executable Lines Branches Time Nr of Test Cases Lines Coverage Branch Coverage

f1() 714 492 31m27.098s 59 95,1% 89,0%

f2() 50 30 0m1.444s 8 100% 100%

f3() 11 4 0m0.228s 3 100% 100%

Table 6.1: Experimental results on some functions of HELLA software.

CTGEN KLEE PathCrawler

f1() (714 lines, 492 branches )

Time 31m27.098s 16m50s 586m16.590s -

Nr of Test Cases 59 1120 24311 -

Lines Coverage 95,1% 77,9% 78,54% -

Branch Coverage 89,0% 58,2% 59,36% -

f4() (19 lines, 4 branches )

Time 0.062s 0.040s < 1s

Nr of Test Cases 3 3 9

Lines Coverage 100% 100% 100%

Branch Coverage 100% 100% 100%

f5() (28 lines, 35 branches )

Time 0.337s 3.234s 41,176s 10s

Nr of Test Cases 3 463 2187 201

Lines Coverage 100% 100% 100% 85,71%

Branch Coverage 100% 100% 100% 85,71%

Table 6.2: Experimental results compared with other tools on some functions of HELLA software.

of unions, which is not supported by PathCrawler. CTGEN and KLEE achieved 100% branch and line

coverage in comparable time.

Aliasing problems were investigated by example of the function input_array() (Table 6.4). CTGEN

generated two test cases, which achieved 100% line and branch coverage. KLEE could determine the out

of bound pointer in the guard condition of the if statement. However, as we have already pointed out,

CTGEN does not aim to detect such problems, because these are often more successfully investigated

by means of formal verification, static analysis or abstract interpretation. PathCrawler has aborted the

test generation after getting a segmentation fault in the tested function. Nevertheless, after the indices x
and y were bounded by an if statement, PathCrawler was also able to generate test cases that achieved

100% line and branch coverage.
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CTGEN KLEE PathCrawler

Tritype()
Time 8.404 0.095 < 1s

Nr of Test Cases 8 1 11

Lines Coverage 100% 41,66% 100%

Branch Coverage 100% 20% 100%

i n t T r i t y p e ( double i , double j , double k ) {
i n t t r i t y p = 0 ;
i f ( i < 0 . 0 | | j < 0 . 0 | | k < 0 . 0 )

re turn 3 ;
i f ( i + j <= k | | j + k <= i | | k + i <= j )

re turn 3 ;
i f ( i == j ) t r i t y p = t r i t y p + 1 ;
i f ( i == k ) t r i t y p = t r i t y p + 1 ;
i f ( j == k ) t r i t y p = t r i t y p + 1 ;
i f ( t r i t y p >= 2)

t r i t y p = 2 ;
re turn t r i t y p ;

}

CTGEN KLEE PathCrawler

alloc_ptr()
Time 0.071s 0.064s < 1s

Nr of Test Cases 4 4 2

Lines Coverage 100% 100% 42,86%

Branch Coverage 100% 100% 50%

char ∗ a l l o c _ p t r ( char ∗a l l o c b u f p , char ∗a l l o c p ,
unsigned i n t n )

{
i f ( a l l o c b u f p == 0 | | a l l o c p == 0)

re turn 0 ;

i f ( a l l o c b u f p + ALLOCSIZE − a l l o c p >= n ) {
a l l o c p += n ;
re turn a l l o c p − n ;

}
re turn 0 ;

}

CTGEN KLEE PathCrawler

comp_ptr()
Time 0.032s 0.055s < 1s

Nr of Test Cases 4 4 2

Lines Coverage 100% 100% 75%

Branch Coverage 100% 100% 50%

i n t comp_ptr ( char ∗p1 , char ∗p2 )
{

i f ( p1 != NULL && p2 != NULL && p1 == p2 ) {
re turn 1 ;

}
re turn 0 ;

}

Table 6.3: Experimental results compared with other tools – floating point and pointer comparison.
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CTGEN KLEE PathCrawler

test1()
Time 0.029s 0.033s ∼8s

Nr of Test Cases 3 3 1

Lines Coverage 100% 100% 80%

Branch Coverage 100% 100% 25%

test2()
Time 0.027s 0.035s ∼9s

Nr of Test Cases 2 2 1

Lines Coverage 100% 100% 83%

Branch Coverage 100% 100% 50%

t y p e d e f union {
unsigned s h o r t c2u16 ;
unsigned char c2u8 [ 2 ] ;

} union_u16 ;

union_u16 g loba lV ;
i n t t e s t _ s y m 1 ( unsigned s h o r t x )
{

g loba lV . c2u16 = x ;
i f ( g loba lV . c2u8 [ 0 ] == 0 x f f && globa lV . c2u8 [ 1 ] == 85) {

re turn 1 ;
}
re turn 0 ;

}

i n t t e s t _ s y m 2 ( unsigned char x , unsigned char y )
{

g loba lV . c2u8 [ 0 ] = x ;
g loba lV . c2u8 [ 1 ] = y ;

i f ( g loba lV . c2u16 == 0 x5555 ) {
re turn 1 ;

}
re turn 0 ;

}

CTGEN KLEE PathCrawler

input_array()
Time 0.044s 27.849s 14m16.702 -

Nr of Test Cases 2 108 676 -

Lines Coverage 100% 100% 100% -

Branch Coverage 100% 100% 100% -

# d e f i n e N 2
t y p e d e f i n t my_array [N ] ;
i n t i n p u t _ a r r a y ( my_array a , unsigned i n t x , unsigned i n t y )
{

i n t r e t v a l = 0 ;
i f ( a [ x ] > a [ y ] ) {

r e t v a l = 1 ;
} e l s e {

r e t v a l = 0 ;
}
re turn r e t v a l ;

}

Table 6.4: Experimental results compared with other tools – unions and input arrays.
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7.1 Summary

In this thesis a new method for automated verification of C functions has been presented. This method

consists of two parts: the specification of the module under test and the actual verification.

To allow a formalized module specification, an annotation language as an extension of a pre- and

postcondition syntax was developed and discussed. This annotation language allows the definition of

logical conditions relating the program’s prestate to its poststate after the module’s execution. More

complex correctness conditions, such as the number of subfunction calls performed by the UUT, may

also be specified by means of pre- and postconditions if auxiliary variables are introduced, such as

counters for the number of subfunction calls performed. Via the specification of pre- and postconditions

test case generation for both structural and functional testing is reduced to a reachability problem within

the module’s control flow graph, as known from bounded model checking.

The solution of the reachability problem, presented in this thesis is based on symbolic execution. The

strength of symbolic execution is in its precision and ability to reason about multiple program inputs

simultaneously [65]. However, symbolic execution also has limitations, which were analyzed, and new

algorithms were developed, which allow to overtake most of the identified limitations. The discussed

algorithms were illustrated by examples demonstrating the proceedings.

The test case selection process was discussed and expansion and selection strategies minimizing the

size of the structure underlying this process (STCT) and the number of test cases needed for the coverage

achievement were presented.

The elaborated algorithms and strategies were implemented in a test generator, CTGEN, whose archi-

tecture was presented. CTGEN was used in industrial scale test campaigns for embedded systems code

in the automotive domain. The overview over the most challenging as well as over the most common

modules under test from these campaigns was presented in the industrial study. Furthermore, the perfor-

mance of CTGEN was compared to other test generation tools. The evaluation was performed both with

synthetic examples evaluating the respective tool’s specific capabilities and with embedded systems code

from an industrial automotive application. The results of the evaluation are encouraging.

7.2 Assessment of Results

The objective of this dissertation is the development of a framework for automated verification of C

modules. The verification of a module under test is based on the provided specification. Therefore, an

annotation language was developed (see Chapter 3) which enables the user to define the expected behav-

ior of a module under test by means of pre- and postconditions, to refine the specification with the help

of auxiliary variables, to introduce functional coverage by the definition of test cases with corresponding
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requirements and to reason about global variables, initial values of variables and return values of the

module under test.

Via specification of pre- and postconditions the verification problem is reduced to a reachability prob-

lem within the control flow graph of the module under test. To prove a verification condition symbolic

execution [65, 28] is used: it is sufficient to execute all program paths symbolically and show that the

statements indicating the violation of the verification condition are unreachable. In case when such a

statement can be covered, a counter example is produced.

The strengths and limitations of symbolic execution were analyzed and new algorithms resolving some

of the detected limitations were introduced. To evaluate the results achieved in symbolic execution, we

recall the limitations of symbolic execution which were identified in Section 5.2 and enumerate which

of them were solved:

1. Float/double data type variables. This limitation is successfully overcome by the constraint

solver SONOLAR [82], which supports the test generation process.

2. Non-linear arithmetic operations. Similar to the previous case, this limitation is surmounted by

the underlying solver SONOLAR.

3. Bitwise operations. Similar to the previous two limitations, the elimination of this limitation is

due to the underlying solver.

4. External function calls. This limitation was successfully solved by the introduction of automati-

cally generated mock objects. The algorithm developed for automated stub generation is discussed

in Section 5.12.2. The behavior of the generated stubs can be modeled by means of an annotation

language that is presented in Section 5.12.3.

5. Pointers. The approach to abstract pointers to pairs of integers was developed. This abstraction

enables the solution of constraints over pointers by the underlying constraint solver capable of in-

teger arithmetic. The algorithm implementing this approach is discussed and illustrated in Section

5.7.

6. Symbolic offsets. The algorithm employing the capability of the underlying solver of array the-

ories was developed to handle array inputs. This algorithm as well as an illustrating example are

discussed in Section 5.11. Only arrays of atomic types are handled, since SONOLAR does not

support structure or union types. However, the solver treats arrays as bit vectors [21] which im-

plies, that SONOLAR is basically able to handle arrays of complex data types, but internal data

structures of the tool chain do not support this presently.

Note that the limitations, identified by the authors of [89] as most dominant, which prevented tested

tools from generating high coverage (pointers and external function calls), are resolved by the algorithms

developed in this thesis. Nevertheless, the following limitations remain: function pointers, recursive data

structures and multithreading.

To alleviate the state explosion problem, expansion and selection strategies were developed and are

presented in Chapter 4. These strategies make the complete expansion of the structure underlying the test

generation process (STCT) not always necessary. Additionally, the introduced search strategies allow to

produce maximal code coverage with a minimal number of test cases. This leads to a better performance
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compared with other tools when handling functions with a big branching factor (see Table 6.2, function

f1). However, the developed test generator was not able to achieve the maximal possible coverage of this

function, so that the developed strategies have to be improved further. One of the possible improvements

(backtracking) of this method is discussed in Section 7.4.

The developed strategies and algorithms are implemented in the test generator CTGEN, presented in

Chapter 2. CTGEN was evaluated and compared with the competing tools KLEE [22] and PathCrawler

[18], both with synthetic examples estimating the tool’s specific capabilities and with embedded systems

code from an industrial automotive application (Chapter 6). CTGEN delivered comparable results or

even outperformed the others for the most complex function. Furthermore, CTGEN was used in indus-

trial scale test campaigns for embedded systems code in the automotive domain and demonstrated very

good results. The overview over the most challenging as well as of the most common modules under test

from these campaigns is presented in the industrial study in Appendix 7.4.

CTGEN supports statement and branch coverage. While the branch coverage is a popular test tech-

nique [19], the execution of branches does not imply that all combinations of control transfers are tested

[107]. The experimental evaluations show that branch coverage is not a good indicator for the effective-

ness of the test suite [102]. Standards for safety-critical systems such as [4, 40] require – in addition to

the statement and branch coverage criteria – compliance with other structural coverage criteria such as

MCDC coverage (for software of criticality level A). Thus, the expansion of the test generator to support

further coverage criteria is reasonable. We discuss the possibilities for an integration of MCDC and path

coverage as well as of the boundary value analysis in Section 7.4.

7.3 Discussion of Alternatives

State Explosion Problem The STCT used in this thesis for symbolic test case generation, however,

has an obvious problem: state explosion. The state merging techniques [68, 53] reduce the number of

states and number of paths to be explored. Thus, they in fact work against the state explosion problem but

also increase the size of the symbolic path conditions (which impairs the performance) and handicap the

application of search strategies. Furthermore, to alleviate the state explosion problem of the STCT, the

search and expansion strategies are developed and discussed in this thesis (Section 4.3). These strategies

make the complete expansion of the STCT not always necessary. Additionally, the introduced search

strategies allow to produce the maximal code coverage with a minimal number of test cases. This leads

to better performance compared to other tools when handling functions with a big branching factor (see

Table 6.2, function f1).

Similar to search strategies proposed in this thesis, other search heuristics were presented by re-

searchers to address the state explosion problem. Among these techniques we want to highlight the

Random Path Selection and the Coverage-Optimized Search (KLEE [22]), the Best First Search (EXE

[23]), the Generational Search (SAGE [49]) and the Hybrid Concolic Testing [71].

Another approach for reducing the number of states, which is orthogonal to search strategies, is com-
positional symbolic execution [6, 45]. It proposes to test functions in isolation, creating the function

summaries which can be re-used by testing the higher-level functions. This approach would help to

avoid the repeated analysis of these functions at every call as it is the case with the function inlining

approach and reduce the number of paths to be explored. The automated generation of stubs proposed in

this thesis for handling of external function calls (Section 5.12.2) can also be applied to defined function
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calls to omit inlining. This approach is not as exact as compositional symbolic execution, but it is less

expensive and also allows to handle external function calls. Furthermore, the stubs’ behavior can be

influenced by the user by the definition of pre- and postconditions as it is discussed in Section 5.12.3.

However, the compositional symbolic execution is very promising, and it can be an advantage to integrate

this approach in the developed test generator for the handling of defined function calls.

Static vs dynamic symbolic execution Dynamic symbolic execution or concolic testing [47, 23, 103,

93] is a technique, which performs a concrete execution on random inputs and records the path constraints

along the executed path. The collected path constraints are used to estimate new values which guide the

following executions through alternative paths. It is argued, that dynamic symbolic execution is more

powerful because of its ability to use concrete values for the estimation of the path constraints [46].

However, as was shown in the case study of concolic testing tools [89], most of the limitations of the

dynamic symbolic execution are caused by limitations of the static symbolic execution. Hence, we have

focused on these limitations. Furthermore, static symbolic analysis can be extended so that whenever it

encounters an expression which cannot be handled symbolically due to limitations, the concretization of

the symbolic values can be performed, though [64, 85, 88].

Memory representation The theory of arrays [21] is broadly used for modeling the memory of a

program in software verification, bounded model checking, symbolic execution etc [42]. Usually in this

case, the whole memory is represented as a big one-dimensional array of bit-vectors [21, 97]. It allows to

model the program memory very precisely and use an SMT solver for the resolution of typical aliasing

problems. Our symbolic execution algorithm is more complex but it is also very precise and the solver

has to make less decisions. Furthermore, our approach allows to avoid keeping a huge array representing

the whole memory of a program.

7.4 Future Work

Backtracking One of the problems observed during the application of the test generator in the indus-

trial scale test campaigns was the enormous number of paths which had to be analyzed. To alleviate this

problem expansion and search strategies were developed. These strategies made it possible for CTGEN

to outperform other tools when generating test data for the most challenging function f1 with a huge

branching factor (see Chapter 6), but still, CTGEN was not able to generate the test data for maximal

achievable coverage of this function. One of the possibilities to further improve the developed search

strategies would, therefore, be to learn from SAT solvers, that successfully apply backtracking by search

for variable assignment, evaluating the given Boolean formula to true. Conflict Driven Clause Learning

(CDCL) algorithm [73, 62, 106, 96, 25] was proposed in the late nineties and made a big contribution

to the growing popularity of SAT solvers. CDCL is employed in solvers like MiniSAT [39, 98], Zchaff

[106] and Z3 [75]. The main idea of CDCL algorithm is as follows:

• Pick an unassigned variable from the given Boolean formula and assign it to 0 or 1.

• Perform Boolean constraint propagation.
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• In case when there is any conflict, identify the conflict clause and non-chronologically backtrack

to the decision level that caused this conflict and try to find the solution with an inversed decision.

• Otherwise go back to step 1 and proceed until no unassigned variables exist.

The test generator can proceed in a similar way: in case, when the path constraint was detected as

infeasible, identify the minimal subset of clauses, which is still infeasible and non-chronologically back-

track to the edge where the clause from the identified subset is a guard condition. Try another edge

outgoing from the same node as the found one.

However, the identification of the minimal unsatisfiable core of the path constraint by the solver is

relatively expensive [34, 77] and, since the objective of the generator is to cover all branches and not

exactly the one, whose path condition is infeasible, the application of this approach is meaningful only

in cases when the CFG is mostly covered and the generator has troubles to cover exactly this branch.

For more speedup of the test data generation process non-chronological backtracking can be supported

by abstract interpretation, which is significantly faster than a SMT solver [83]. This technique was

already successfully applied in a framework for automated model-based test case and test data generation

[81, 82].

Boundary Value Analysis Practice shows that errors often appear at the boundaries of the equivalence

classes [76]. Hence, it is advisable to generate test cases that explore such boundary conditions and to

expand the test data generator to provide support of the boundary value analysis. The input equivalence

classes can be identified on the basis of defined preconditions and test cases. The output equivalence

classes – with the help of defined postconditions and test cases. After the equivalence classes are deter-

mined, the boundary values can be found by introducing additional constraints requiring that the values

of variables lay on the boundaries of the equivalence classes or near to them. To support the boundary

value analysis of structure equivalence classes, the approach proposed in [79] can be used: the source

code of the module under test is automatically instrumented in such a way that new branches are in-

troduced, whose coverage leads to boundary value coverage. For this purpose each branch condition

is analyzed and new conditional statements containing constraints that need to be satisfied to achieve

boundary value coverage are inserted. For example, if a module under test contains an if statement like

if(x >= 3), where x is an integer, the source code would be instrumented as follows [79]:

i f ( x == 3) {}

e l s e i f ( x > 3) {}

e l s e i f ( x == 3 − 1) {}

e l s e i f ( x < 3 − 1) {}

/ / a c t u a l program code
i f ( x >= 3) {

. . .

This technique allows to use the existing test data generator, which is optimized to achieve the maximal

possible branch coverage but also dramatically increases the branching factor of the module under test

and the number of possible paths correspondingly. Alternatively, the internal test data generation me-

chanism can be modified, so that for each branch under consideration a new path constraint is generated

where the current branch condition is modified in such a way that satisfaction of this alternative path

constraint leads to the coverage of a boundary value. In this way, for each analyzed branch condition
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7 Conclusion

maximal three additional path constraints will be examined. Whereas by the instrumentation approach

each instrumented branch multiplies the number of path constraints to be analyzed by maximal factor 5.

Path Coverage is the strongest criterion in white box testing but is generally not feasible because of

loops or huge branching factor of the module under test [107]. However, it is reasonable to attempt to

provide maximal possible path coverage, since in this way the level of confidence in reliability of the

module under test increases. In the course of the present work experiments with the detection of all paths

through the function were undertaken and we found out that the extension for naive path coverage support

can be easily done. However it would be more of interest to extend the expansion and selection strategies

discussed in this thesis so that the generator first would have to aim to achieve a 100% branch coverage

and only after that would attempt the path coverage. This approach would ensure that the generator will

get better results in cases when the complete path coverage is not possible due to size and branching

factor of module under test, since the coverage of different paths not always leads to the coverage of new

branches.

MCDC Coverage The standards for safety-critical systems such as [4, 40] require additionally to the

statement and branch coverage criteria (supported by the developed test generator) compliance with

other structural coverage criteria such as MCDC coverage (for software of criticality level A). To pro-

vide MCDC coverage support, the instrumentation approach proposed in [79] can be used. Similar to the

technique for accessing boundary value coverage, the source code of the module under test is automati-

cally instrumented with new conditional statements which need to be satisfied in order to achieve MCDC

coverage. These transformations are based on the Correlated Active Clause Coverage (CACC), also

known as the masking MCDC criterion [5]: “For each p ∈ P and each major clause ci ∈Cp, choose mi-
nor clauses c j, j 
= i so that ci determines p. TR has two requirements for each ci: ci evaluates to true and
ci evaluates to f alse. The values chosen for the minor clauses c j must cause p to be true for one value
of the major clause ci and f alse for the other, that is, it is required that p(ci = true) 
= p(ci = f alse)”.

Where P is a set of predicates, Cp is a set of clauses in p for each p∈P and TR is a set of test requirements

that must be satisfied. For example, for the if statement

i f ( x && ( y | | z ) ) { . . . }

the following instrumentation code will be introduced [79]:

i f ( ( t rue && ( y | | z ) ) != ( f a l s e && ( y | | z ) ) ) {

i f ( x ) { }

e l s e i f ( ! x ) { }

}

i f ( ( x && ( t rue | | z ) ) != ( x && ( f a l s e | | z ) ) ) {

i f ( y ) { }

e l s e i f ( ! y ) { }

}

i f ( ( x && ( y | | t rue ) ) != ( x && ( y | | f a l s e ) ) ) {

i f ( z ) { }

e l s e i f ( ! z ) { }

}

Again, this technique allows the usage of the existing test data generator but increases the branching

factor of the module under test. However, the introduction of alternative path conditions – as in the

case of boundary value analysis – is in this case not possible in the developed test generator. This is
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7.4 Future Work

due to the fact that the source code of the module under test is in this stage of the generation process

already in a three-address statement representation so that a single guard condition does not hold enough

information. This, however, would be necessary for the constraint generation, whose satisfaction would

lead to MCDC coverage.

Remaining Limitations The following limitations of symbolic execution remain unresolved: handling

of function pointers, recursive data structures and multithreading. To make the analysis more precise and

to allow the developed test generator to handle a larger range of modules under test, further algorithms

have to be developed. Recursive input data structures can be handled e.g. with help of lazy initialization
algorithm already used by Symbolic PathFinder [87, 64] and Bogor/Kiasan [33, 32]. The basic principle

of this algorithm is as follows: at the beginning all recursive input data structures have uninitialized fields.

These fields are initialized lazily, not until they are accessed by the symbolic execution. A field of type

T is initialized nondeterministically to null, to a reference to a new object of type T with uninitialized

fields or a reference to an existing object of type T built during earlier field initialization. [64]
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Industrial Case Study

CTGEN was used in industrial scale test campaigns for em-

bedded systems code in the automotive domain and demon-

strated very good results. During these test campaigns CTGEN

has analyzed functions which contained bit field and structure

pointer inputs, unions accesses and pointer comparisons. Some

of them were automatically generated from a Simulink model,

which made automated testing mandatory since small model

changes affected the whole structure of the generated code,

so that reuse of existing unit tests was impossible. Some of

the analyzed functions were exceptionally long because insuf-

ficient hardware resources required to reduce the amount of

function calls.

The results achieved by CTGEN in these test campaigns are

presented in Chapter 6, where an overview of analyzed func-

tions, reached coverage and number of generated test cases is

given. As we point out in this overview, the most challenging

function was f1. It has over 2000 lines of code (714 executable

lines) and 492 branches. It makes use of structure pointer pa-

rameters, bit vectors and complex branch conditions. In this

chapter we give a more detailed insight into the structure of

this function. We present some of the most typical parts of f1

as anonymized code as well as in the form of a CFG. How-

ever, the function f1 with its huge branch factor and length re-

presents an exceptional case. Therefore, in conclusion of this

chapter, we also demonstrate a typical function that was ana-

lyzed during the test campaigns which utilized CTGEN.

We have already mentioned that the function f1 has a remark-

able size. Still, to give an impression of its dimensions, we

demonstrate the CFG of this function scaled to the size of this

page on the right.
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We now consider the first segment of f1. It represents a typical calculation of a local auxiliary vari-

able, which in turn participates in further calculations of other auxiliary variables or in conditions of

if statements. Here we examine the computations made to estimate the value of the auxiliary variable

local_d, for a better overview all occurrences of local_d are highlighted in red:

1 i = ( g l o b a l 1 . SF > p a r a m e t e r −>x2 ) ;

2 l o c a l 2 = ( ( p a r a m e t e r −>x2 − p a r a m e t e r −>x1 ) << 7) ;

3 a r = ( l o c a l 2 == 0) ;

4 . . .

5 i f ( a r ) {

6 l o c a l 1 = 768U;

7 } e l s e {

8 l o c a l 1 = ( u i n t 1 6 _ T ) func1 ( ( ( i n t 3 2 _ T ) ( ( p a r a m e t e r −>y2 − p a r a m e t e r −>y1 ) << 7) ) << 8 ,

9 ( i n t 3 2 _ T ) l o c a l 2 ) ;

10 }

11 i f ( i ) {

12 l o c a l _ d = ( p a r a m e t e r −>y2 << 7) ;

13 } e l s e {

14 i f ( g l o b a l 1 . SF < p a r a m e t e r −>x1 ) {

15 l o c a l _ d = ( p a r a m e t e r −>y1 << 7) ;

16 } e l s e {

17 l o c a l _ d = ( ( i n t 1 6 _ T ) ( ( ( ( i n t 3 2 _ T ) ( ( g l o b a l 1 . SF − p a r a m e t e r −>x1 ) << 7) ) ∗
18 ( ( i n t 3 2 _ T ) l o c a l 1 ) ) >> 8) ) + ( p a r a m e t e r −>y1 << 7) ;

19 }

20 }

21

22 l o c a l _ d = ( ( ( l o c a l _ d >> 7) ∗ p a r a m e t e r −>o f f ) << 1) ;

23 . . .

24 local_DOTA = ( u i n t 8 _ T ) ( ( ( l o c a l _ d >> 2) + ( g l o b a l 1 .DOTA << 6) ) >> 6) ;

25 . . .

26 i f ( l o c a l _ A <= local_DOTA ) {

27 . . .

global1 is a global variable of a structure type and parameter is an input parameter of a pointer

structure type. The value of local_d is dependent on the values of other auxiliary variables local1
and local2, which are highlighted in blue. While the value of the variable local2 depends only

on inputs, so that it is simple to set it in order to satisfy a path constraint, the value of local1 is

more complicated to estimate, since its calculation depends not only on inputs or auxiliary variables,

but, in case when the variable ar is evaluated to false, includes also an invocation of a function call

func1(). Consequently, the estimation of the value of localD is even more complicated, since it can

depend on the value of local1. Henceforth the deeper in the code of the function we go, the more

difficult it is to estimate the values of the auxiliary variables. Most of the auxiliary variables not only

take part in computations of other auxiliary variables, but they also participate in guard conditions. For

example, the variable local_DOTA: the condition of the if statement in line 26 of our example is

evaluated to true if the value of local_DOTA is greater than or equal to the value of another auxiliary

variable local_A (which computation we have omitted here to keep the example simple, but it is not

less complicated than the computation of local_DOTA). To make the calculations even more complex,

the expressions for the estimation of the values of auxiliary variables contain not only arithmetical or

Boolean operations but also bit shifting and casting. The manual elaboration of test cases for such

conditions is very laborious and time consuming.

The next code example represents a typical switch statement implemented in f1:
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1 i f ( g l o b a l 2 . i s _ a c t i v e == 0) {

2 g l o b a l 2 . i s _ a c t i v e = 1U; g l o b a l 2 . s t a t e = v a l u e 1 ;

3 g l o b a l 1 . s t a t e _ i n t = ( ( u i n t 8 _ T ) 1U) ;

4 } e l s e {

5 s w i t c h ( g l o b a l 2 . s t a t e ) {

6 case v a l u e 2 :

7 i f ( l o c a l 1 == TRUE) {

8 g l o b a l 2 . s t a t e = v a l u e 5 ; g l o b a l 1 . s t a t e _ i n t = ( ( u i n t 8 _ T ) 9U) ;

9 } e l s e i f ( l o c a l 2 == TRUE) {

10 g l o b a l 2 . s t a t e = v a l u e 3 ; g l o b a l 1 . s t a t e _ i n t = ( ( u i n t 8 _ T ) 8U) ;

11 } e l s e {

12 i f ( l o c a l 3 == TRUE) {

13 g l o b a l 2 . s t a t e = v a l u e 6 ; g l o b a l 1 . s t a t e _ i n t = ( ( u i n t 8 _ T ) 3U) ;

14 }

15 }

16 break ;

17 case v a l u e 3 :

18 i f ( ( l o c a l 4 | | ( ! l o c a l 5 ) ) == 1) {

19 g l o b a l 2 . s t a t e = v a l u e 6 ; g l o b a l 1 . s t a t e _ i n t = ( ( u i n t 8 _ T ) 3U) ;

20 } e l s e {

21 i f ( l o c a l 6 == TRUE) {

22 g l o b a l 2 . s t a t e = v a l u e 5 ; g l o b a l 1 . s t a t e _ i n t = ( ( u i n t 8 _ T ) 9U) ;

23 }

24 }

25 break ;

26 case v a l u e 4 :

27 i f ( l o c a l 7 == TRUE) {

28 g l o b a l 2 . s t a t e = v a l u e 8 ; g l o b a l 1 . s t a t e _ i n t = ( ( u i n t 8 _ T ) 6U) ;

29 } e l s e {

30 i f ( l o c a l 7 a == TRUE) {

31 g l o b a l 2 . s t a t e = v a l u e 6 ; g l o b a l 1 . s t a t e _ i n t = ( ( u i n t 8 _ T ) 3U) ;

32 }

33 }

34 break ;

35 case v a l u e 5 :

36 i f ( g l o b a l 2 . f .Q == TRUE) {

37 g l o b a l 2 . s t a t e = v a l u e 6 ; g l o b a l 1 . s t a t e _ i n t = ( ( u i n t 8 _ T ) 3U) ;

38 } e l s e {

39 i f ( ( ( l o c a l 8 | | ( l o c a l 9 > 57600U) ) && ( l o c a l 1 5 == ( ( u i n t 8 _ T ) 9U) ) ) == 1) {

40 g l o b a l 2 . s t a t e = v a l u e 7 ; g l o b a l 1 . s t a t e _ i n t = ( ( u i n t 8 _ T ) 2U) ;

41 }

42 }

43 break ;

44 case v a l u e 6 :

45 i f ( ( l o c a l 1 0 && l o c a l 1 1 ) == 1) {

46 g l o b a l 2 . s t a t e = v a l u e 4 ; g l o b a l 1 . s t a t e _ i n t = ( ( u i n t 8 _ T ) 4U) ;

47 } e l s e {

48 i f ( ( l o c a l 8 q | | l o c a l 1 2 ) == 1) {

49 g l o b a l 2 . s t a t e = v a l u e 7 ; g l o b a l 1 . s t a t e _ i n t = ( ( u i n t 8 _ T ) 2U) ;

50 }

51 }

52 break ;

53 case v a l u e 7 :

54 i f ( l o c a l 1 3 == TRUE) {

55 g l o b a l 2 . s t a t e = v a l u e 6 ; g l o b a l 1 . s t a t e _ i n t = ( ( u i n t 8 _ T ) 3U) ;

56 }

57 break ;

58 case v a l u e 1 :

59 i f ( input−>SIL == TRUE) {

60 g l o b a l 2 . s t a t e = v a l u e 7 ; g l o b a l 1 . s t a t e _ i n t = ( ( u i n t 8 _ T ) 2U) ;

61 }
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62 break ;

63 case v a l u e 8 :

64 i f ( ( l o c a l 1 4 | | l o c a l 4 f ) == 1) {

65 g l o b a l 2 . s t a t e = v a l u e 2 ; g l o b a l 1 . s t a t e _ i n t = ( ( u i n t 8 _ T ) 7U) ;

66 }

67 break ;

68 d e f a u l t :

69 g l o b a l 2 . s t a t e = v a l u e 1 ; g l o b a l 1 . s t a t e _ i n t = ( ( u i n t 8 _ T ) 1U) ;

70 break ;

71 }

72 }

All together f1 contains 11 switch statements. Each switch statement corresponds to a state

machine from the Simulink model and each case of a switch statement implements transitions from a

particular state to another, dependent on the respective guard conditions.

The guard conditions occurring in the switch statement from the example depend on the global

variable global2 and on several local variables. The variable global2 is of a structure type, which

size is 2464 bits. It contains members of atomic types and of array or structure types as well. Even

though global2 is a global variable, it can not be considered as a pure input since its members are

overwritten within the function f1. The values of the local variables localX (X denotes the name add

ons like 2 or 4f) are computed in the manner described in the previous example. Furthermore, one has to

keep in mind, that this switch statement is approximately from the middle of the function f1 and the most

of the variables participating in guard conditions of this example also take part in other guard conditions

which were already evaluated during the processing of the function. These preceding guard conditions

have restricted the range of allowed values of the variables, and this makes it more complicated to find a

solution which satisfies the guard conditions. Nevertheless, CTGEN is still able to achieve 88% coverage

of this switch statement. Figure 1 shows the control flow graph of the example. All covered nodes and

edges of this CFG are drawn blue, all uncovered ones are drawn red.

The last example represents a typical function that was analyzed during the test campaigns CTGEN

took part in. The function example3() has seven input parameters of atomic types and one input/out-

put parameter of a structure pointer type. Furthermore the global variables global3 and global4
are used. They are like the global variables from the previous examples of structure types. The function

example3() contains two calls to sub-functions – func1() and func2() and a switch statement.

The conditions occurring in the function example3() depend on the input parameter parameter2
and the global variables. However, similar to the conditions in the switch statement from the previous

example, the member ddcd of the global variable global4 (highlighted red in the listing below) is

overwritten within the function by a value of a local variable which computation depends on inputs and

contains bit shifting, casting and arithmetical operations. Nevertheless, in contrast to the previous exam-

ple, the function example3() is a separate module, so that the values of its variables are not restricted

by the previous guard conditions and CTGEN is able to achieve 100% branch coverage for this function

with only 8 test cases. Figure 2 shows the control flow graph of the function example3(), all nodes

and edges are drawn blue, since all branches were covered.
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1 void example3 ( unsigned char p a r a m e t e r 1 , unsigned char p a r a m e t e r 2 ,

2 unsigned char p a r a m e t e r 3 , s h o r t i n t p a r a m e t e r 4 ,

3 unsigned char p a r a m e t e r 5 , unsigned char p a r a m e t e r 6 ,

4 unsigned char p a r a m e t e r 7 , s t r u c t 1 ∗ p a r a m e t e r 8 )

5 {

6 unsigned char l o c a l 1 ;

7 s h o r t i n t l o c a l 2 ;

8 s h o r t i n t l o c a l 3 ;

9 s h o r t i n t l o c a l 4 ;

10 s h o r t i n t l o c a l 5 ;

11 s h o r t i n t l o c a l 6 ;

12 unsigned i n t tmp ;

13 unsigned i n t tmp_0 ;

14

15 l o c a l 1 = pa r a m e t e r 8 −>UD_D;

16 func1 ( l o c a l 1 , pa r ame te r2 , &pa rame te r8 −>s _ r _ i O ) ;

17 func2 ( pa rame te r1 , pa r ame te r6 , p a r ame te r7 , p a r ame te r4 ,

18 p a r a m e t e r 8 −>s _ r_ iO . r e s e t _ o f f s e t _ b t , pa r a m e t e r 5 ,

19 &pa r a m e t e r 8 −>c_o ) ;

20

21 i f ( p a r a m e t e r 2 ) {

22 tmp = ( ( ( ( unsigned i n t ) ( ( unsigned char ) ( g l o b a l 3 .GWCO << 3) ) )

23 ∗ ( ( unsigned i n t ) p a r a m e t e r 4 ) ) >> 6) ;

24 i f ( ( ( i n t 3 2 _ T ) tmp ) > 65535L ) {

25 tmp = 65535UL;

26 }

27

28 tmp_0 = ( ( ( ( unsigned i n t ) ( ( unsigned char ) ( g l o b a l 3 .GCO << 3) ) )

29 ∗ ( ( unsigned i n t ) p a r a m e t e r 8 −>c_o . S ) ) >> 6) ;

30 i f ( ( ( i n t 3 2 _ T ) tmp_0 ) > 65535L ) {

31 tmp_0 = 65535UL;

32 }

33

34 tmp += tmp_0 ;

35 i f ( ( ( i n t 3 2 _ T ) tmp ) > 65535L ) {

36 tmp = 65535UL;

37 }

38

39 tmp += ( unsigned i n t ) ( ( ( s h o r t i n t ) p a r a m e t e r 5 ) ∗ ( ( s h o r t i n t )

40 p a r a m e t e r 8 −>c_o . S1 ) ) ;

41 i f ( ( ( i n t 3 2 _ T ) tmp ) > 65535L ) {

42 tmp = 65535UL;

43 }

44

45 g l o b a l 4 . ddsd = ( s h o r t i n t ) tmp ;

46 l o c a l 2 = ( ( s h o r t i n t ) p a r a m e t e r 5 ) + ( ( s h o r t i n t ) p a r a m e t e r 8 −>c_o . S2 ) ;

47 i f ( l o c a l 2 > 255U) {

48 l o c a l 2 = 255U;

49 }

50

51 g l o b a l 4 . ddcd = ( unsigned char ) l o c a l 2 ;

52 }

53

54 l o c a l 2 = ( s h o r t i n t ) ( ( ( ( unsigned i n t ) g l o b a l 3 . Y1 ) << 13) / 25UL) ;

55 l o c a l 3 = ( s h o r t i n t ) ( ( ( ( unsigned i n t ) g l o b a l 3 . Y2 ) << 13) / 25UL) ;

56 l o c a l 4 = ( s h o r t i n t ) ( ( ( ( unsigned i n t ) g l o b a l 3 . Y3 ) << 13) / 25UL) ;

57 l o c a l 5 = ( s h o r t i n t ) ( ( ( ( unsigned i n t ) g l o b a l 3 . Y4 ) << 13) / 25UL) ;

58

59 i f ( p a r a m e t e r 2 ) {

60 i f ( ! ( g l o b a l 4 . ddcd <= g l o b a l 3 . X1 ) ) {

61 i f ( g l o b a l 4 . ddcd <= g l o b a l 3 . X2 ) {
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62 l o c a l 2 −= ( s h o r t i n t ) ( ( ( ( unsigned i n t ) ( ( s h o r t i n t ) ( ( ( ( unsigned i n t )

63 ( l o c a l 2 − l o c a l 3 ) ) << 3) / ( ( unsigned i n t ) ( ( unsigned char )

64 ( g l o b a l 3 . X2 − g l o b a l 3 . X1 ) ) ) ) ) ) ∗ ( ( unsigned i n t ) ( ( unsigned char )

65 ( g l o b a l 4 . ddcd − g l o b a l 3 . X1 ) ) ) ) >> 3) ;

66 } e l s e {

67 i f ( g l o b a l 4 . ddcd <= g l o b a l 3 . X3 ) {

68 l o c a l 2 = l o c a l 3 − ( ( s h o r t i n t ) ( ( ( ( unsigned i n t ) ( ( s h o r t i n t )

69 ( ( ( ( unsigned i n t ) ( l o c a l 3 − l o c a l 4 ) ) << 3) / ( ( unsigned i n t )

70 ( ( unsigned char ) ( g l o b a l 3 . X3 − g l o b a l 3 . X2 ) ) ) ) ) ) ∗ ( ( unsigned i n t )

71 ( ( unsigned char ) ( g l o b a l 4 . ddcd − g l o b a l 3 . X2 ) ) ) ) >> 3) ) ;

72 } e l s e {

73 i f ( g l o b a l 4 . ddcd <= g l o b a l 3 . X4 ) {

74 l o c a l 2 = l o c a l 4 − ( ( s h o r t i n t ) ( ( ( ( unsigned i n t ) ( ( s h o r t i n t )

75 ( ( ( ( unsigned i n t ) ( l o c a l 4 − l o c a l 5 ) ) << 3) / ( ( unsigned i n t )

76 ( ( unsigned char ) ( g l o b a l 3 . X4 − g l o b a l 3 . X3 ) ) ) ) ) ) ∗
77 ( ( unsigned i n t ) ( ( unsigned char ) ( g l o b a l 4 . ddcd − g l o b a l 3 . X3 ) ) ) ) >> 3) ) ;

78 } e l s e {

79 i f ( g l o b a l 4 . ddcd <= 200) {

80 l o c a l 2 = l o c a l 5 − ( ( s h o r t i n t ) ( ( ( ( unsigned i n t )

81 ( ( s h o r t i n t ) ( ( ( ( unsigned i n t ) ( l o c a l 5 − 164U) ) << 3) /

82 ( ( unsigned i n t ) ( ( unsigned char ) (200 − g l o b a l 3 . X4 ) ) ) ) ) )

83 ∗ ( ( unsigned i n t ) ( ( unsigned char ) ( g l o b a l 4 . ddcd − g l o b a l 3 . X4 ) ) ) ) >> 3) )

;

84 } e l s e {

85 i f ( g l o b a l 4 . ddcd < 255) {

86 l o c a l 6 = ( s h o r t i n t ) (164U − ( ( ( ( s h o r t i n t ) ( ( unsigned char )

87 ( g l o b a l 4 . ddcd − 200) ) ) ∗ 5U) >> 3) ) ;

88 } e l s e {

89 l o c a l 6 = 128 ;

90 }

91 l o c a l 2 = ( s h o r t i n t ) l o c a l 6 ;

92 }

93 }

94 }

95 }

96 }

97

98 p a r a m e t e r 8 −>UD4_D = ( s h o r t i n t ) ( ( ( ( unsigned i n t )

99 g l o b a l 4 . ddsd ) ∗ ( ( unsigned i n t ) l o c a l 2 ) ) >> 12) ;

100 }

101

102 i f ( p a r a m e t e r 2 > p a r a m e t e r 8 −>UD3_D) {

103 g l o b a l 4 . b idv = pa r a m e t e r 8 −>UD4_D ;

104 } e l s e {

105 i f ( p a r a m e t e r 3 ) {

106 g l o b a l 4 . b idv = 0U;

107 } e l s e {

108 g l o b a l 4 . b idv = pa r a m e t e r 8 −>UD1_D ;

109 }

110 }

111

112 p a r a m e t e r 8 −>UD_D = p a r a m e t e r 1 ;

113 p a r a m e t e r 8 −>UD3_D = p a r a m e t e r 2 ;

114 p a r a m e t e r 8 −>UD1_D = g l o b a l 4 . b idv ;

115 }
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Figure 2: Control flow graph of the function example3().
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Usage format for the unit test generator is as follows:

ctgen --sourceFile <SRC_FILE>
[--pathForGeneratedTest <TARGET_DIR>]
[--interpretFctCalls]
[--stctMaxExp <NUM_OF_EXPANSIONS>]
[--stctMaxLeaves <NUM_OF_LEAVES>]
[--interpretFunction <FUNCTION_NAME>]
[--numOfTestCases <NUM_OF_TEST_CASES>]
[--proofMode]
[--checkGlobalsForModification]
[--onlyCFG]
[--memorySaveMode]
[--useGlobalsInitValues]
[--arrayParameterSize <SIZE>]
[--DB <PATH_TO_TC_DB>]

Parameter Mandatory Description
sourceFile X File to be analyzed.

pathForGeneratedTest Path, where the generated test will be stored. If not set

the generated test will be stored in the current directory.

interpretFctCalls If set, function calls within analyzed modules, whose

definition is available, will be interpreted. Otherwise

they will be handled as stubs.

stctMaxExp Set number of maximal allowed expansions for the

STCT. After the maximal number of expansions is

reached, the generation process will be stopped inde-

pendent from the coverage status of the module under

analysis.

stctMaxLeaves Set number of maximal allowed leaves for the STCT.

After the maximal number of leaves is reached, the gen-

eration process will be stopped independent from the

coverage status of the module under analysis.

interpretFunction Generate a test only for the module with the given

name. If this parameter is not set all modules defined

in the given source file will be interpreted.
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numOfTestCases Maximum number of test cases which will be gener-

ated. The generation process will be stopped inde-

pendent from the coverage status of the module under

analysis. If not set, as many as needed for the com-

plete coverage or as many as possible (see parameters

stctMaxExp and stctMaxLeaves) number of test

cases will be generated.

proofMode If set the test generator will try to prove that postcondi-

tions are not violated and will generate robustness tests

(tests, which violate the precondition). Otherwise the

test generator will only try to achieve 100% branch cov-

erage of the module under test.

checkGlobalsForModification If set the test generator will check if only allowed global

variables are modified.

onlyCFG If set only the CFG will be build and printed out. The

test generation process will not be started.

memorySaveMode If set, the stored memory models and feasibility con-

straints will be removed from the STCT after each com-

pleted test case.

useGlobalsInitValues If set the initial values of global variables will be used,

otherwise global variables are handled as unknown and

are free for initial assignment by the generator.

arrayParameterSize Set the size of an auxiliary array used for pointer han-

dling. Default size is 100.

DB Set the path to the test case database. If not set the

database is considered to be empty.

Example:

ctgen --sourceFile cfg_ex.c --interpretFctCalls --stctMaxExp 1500
--pathForGeneratedTest $TESTPROJECT/unit_test_autogen
--interpretFunction checkAvailable
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In this chapter we present simple examples of CTGEN usage to illustrate techniques discussed in the

dissertation. These examples are kept small to simplify their reading and understanding.

Each example is structured as follows:

• First the source code of the module under test is presented.

• Next the source code of the test driver is presented. The test driver aims to deliver as complete

branch coverage of the module under test as possible. The source code of the test driver is separated

into so called test steps. Each test step corresponds to an analyzed complete path through the

module under test and contains assignments of the inputs and return values of the stub functions

(if any stub function was generated) of the module under test according to the values, calculated

by the generator in order to satisfy the corresponding path constraint. Furthermore a test step

contains a call to the module under test. In case when a specification of the module under test was

given by means of the annotation language (see Chapter 3), the test step also includes assertions

which correspond to this specification and indicate whether the module under test satisfies its

specification or not.

• In case when a stub function was generated, its source code is presented. The stub function con-

tains assignments of the global variables and output parameters modified by this stub function in

order to satisfy the guard conditions of the module under test.

• Next the solution file for the generation process is presented. This file holds information about

which paths through the module under test with which settings of the inputs were supposed to be

taken according to the generator. For each listed path the calculated path constraint is reported.

Furthermore the solution file contains information if the generator was able to calculate inputs to

cover the module under test completely or not. The percentage of the covered transitions is listed

as well as the list of uncovered transitions.

• Finally the graphical output for the generated test is demonstrated. The generator produces the

graphical representation of the CFG corresponding to the GIMPLE representation of the module

under test. In this representation the nodes and edges, which the generator was able to cover are

drawn blue and the nodes and edges for which the generator could not find any feasible path are

drawn red.

The generated test drivers and stub functions are written in RT-Tester syntax [44].

1 Overview Example

This example corresponds to the example discussed in Chapters 2 and 4 and demonstrates the overview

over the CTGEN method of operation. This is the only example that lists the output produced by the
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GCC plugin additionally to the generator output.

1.1 Analyzed Code

The program listed below contains the implementation of the module under test checkAvailable().

This function sets the global variable rainActive to one if and only if the global variables rainSen-
sor and rainFunction have non-zero values. Furthermore, it sets the global variable solarActive
to one if and only if the global variables solarSensor and solarFunction have non-zero values.

i n t r a i n S e n s o r , r a i n F u n c t i o n , r a i n A c t i v e ;

i n t s o l a r S e n s o r , s o l a r F u n c t i o n , s o l a r A c t i v e ;

void c h e c k A v a i l a b l e ( ) {

i f ( r a i n S e n s o r && r a i n F u n c t i o n ) {

r a i n A c t i v e = 1 ;

} e l s e {

r a i n A c t i v e = 0 ;

}

i f ( s o l a r S e n s o r && s o l a r F u n c t i o n ) {

s o l a r A c t i v e = 1 ;

} e l s e {

s o l a r A c t i v e = 0 ;

}

}

Inputs for this module under test are the global variables rainSensor, rainFunction, rain-
Active, solarSensor, solarFunction and solarActive.

1.2 GCC Plugin output

CFG Information

This section contains the code of the module under test checkAvailable() after processing it by

the GCC plugin. The expressions of the module under test are broken down into tuples of no more

than three operands [1]. Auxiliary variables are introduced to hold the temporary values needed for the

transformation of complex expressions. Additionally CFG information is inserted: The source code is

divided into blocks of statements executed without conditional jumps between them, conditional jumps

between these blocks are defined.

# BEGIN_GLOBALS
s t a t i c i n t s o l a r A c t i v e ;

s t a t i c i n t s o l a r F u n c t i o n ;

s t a t i c i n t s o l a r S e n s o r ;

s t a t i c i n t r a i n A c t i v e ;

s t a t i c i n t r a i n F u n c t i o n ;

s t a t i c i n t r a i n S e n s o r ;

# END_GLOBALS

void c h e c k A v a i l a b l e ( ) ( )

{

# BEGIN_SCOPE_BLOCK
# SCOPE_BLOCK_DEPTH 1 <0x40be76b4 >

# SCOPE_BLOCK_VARS
# END_SCOPE_BLOCK
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# BEGIN_LOCAL_HELP_DECLS
i n t s o l a r F u n c t i o n . 3 ;

i n t s o l a r S e n s o r . 2 ;

i n t r a i n F u n c t i o n . 1 ;

i n t r a i n S e n s o r . 0 ;

# END_LOCAL_HELP_DECLS

# BLOCK 2

# PRED : ENTRY ( f a l l t h r u )

# SCOPE_BLOCK_DEPTH 1 <0x40be76b4 >

[ " c fg _ e x . c " : 5 ] r a i n S e n s o r . 0 = r a i n S e n s o r ;

# SCOPE_BLOCK_DEPTH 1 <0x40be76b4 >

[ " c fg_ex . c " : 5 ] i f ( r a i n S e n s o r . 0 != 0)

goto <bb 3 >;

e l s e
goto <bb 5 >;

# SUCC : 3 ( t rue ) 5 ( f a l s e )

# BLOCK 3

# PRED : 2 ( t rue )

# SCOPE_BLOCK_DEPTH 1 <0x40be76b4 >

[ " c f g _e x . c " : 5 ] r a i n F u n c t i o n . 1 = r a i n F u n c t i o n ;

# SCOPE_BLOCK_DEPTH 1 <0x40be76b4 >

[ " c fg_ex . c " : 5 ] i f ( r a i n F u n c t i o n . 1 != 0)

goto <bb 4 >;

e l s e
goto <bb 5 >;

# SUCC : 4 ( t rue ) 5 ( f a l s e )

# BLOCK 4

# PRED : 3 ( t rue )

# SCOPE_BLOCK_DEPTH 1 <0x40be76b4 >

[ " c f g _e x . c " : 6 ] r a i n A c t i v e = 1 ;

goto <bb 6 >;

# SUCC : 6 ( f a l l t h r u )

# BLOCK 5

# PRED : 2 ( f a l s e ) 3 ( f a l s e )

# SCOPE_BLOCK_DEPTH 1 <0x40be76b4 >

[ " c f g _e x . c " : 8 ] r a i n A c t i v e = 0 ;

# SUCC : 6 ( f a l l t h r u )

# BLOCK 6

# PRED : 4 ( f a l l t h r u ) 5 ( f a l l t h r u )

# SCOPE_BLOCK_DEPTH 1 <0x40be76b4 >

[ " c f g _e x . c " : 10] s o l a r S e n s o r . 2 = s o l a r S e n s o r ;

# SCOPE_BLOCK_DEPTH 1 <0x40be76b4 >

[ " c f g _ e x . c " : 10] i f ( s o l a r S e n s o r . 2 != 0)

goto <bb 7 >;

e l s e
goto <bb 9 >;

# SUCC : 7 ( t rue ) 9 ( f a l s e )

# BLOCK 7

# PRED : 6 ( t rue )

# SCOPE_BLOCK_DEPTH 1 <0x40be76b4 >
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[ " c fg _e x . c " : 10] s o l a r F u n c t i o n . 3 = s o l a r F u n c t i o n ;

# SCOPE_BLOCK_DEPTH 1 <0x40be76b4 >

[ " c f g _ e x . c " : 10] i f ( s o l a r F u n c t i o n . 3 != 0)

goto <bb 8 >;

e l s e
goto <bb 9 >;

# SUCC : 8 ( t rue ) 9 ( f a l s e )

# BLOCK 8

# PRED : 7 ( t rue )

# SCOPE_BLOCK_DEPTH 1 <0x40be76b4 >

[ " c f g _e x . c " : 11] s o l a r A c t i v e = 1 ;

goto <bb 10 >;

# SUCC : 10 ( f a l l t h r u )

# BLOCK 9

# PRED : 6 ( f a l s e ) 7 ( f a l s e )

# SCOPE_BLOCK_DEPTH 1 <0x40be76b4 >

[ " c f g _e x . c " : 13] s o l a r A c t i v e = 0 ;

# SUCC : 10 ( f a l l t h r u )

# BLOCK 10

# PRED : 8 ( f a l l t h r u ) 9 ( f a l l t h r u )

# SCOPE_BLOCK_DEPTH 1 <0x40be76b4 >

[ " c f g _ e x . c " : 15] re turn ;

# SUCC : EXIT

}

Symbol Table Information

This section contains the symbol table information of the module under test checkAvailable()
produced by the GCC plugin. It contains the list of all used types with the specification of the name, size

and other characteristics of the type. Furthermore, all declared global variables are listed with a reference

to their type and location where they were declared. Finally, the list of all declared functions with the

specification of the return type, function parameters and local variables is given.

TDGDATA{

TYPES{

TYPE T1{

NAME: " i n t " ;

SIZE : 3 2 ;

TYPECLASS : PRIMITIVE ;

SIGNED : YES ;

}

TYPE T0{

NAME: " vo id " ;

SIZE : 0 ;

TYPECLASS : PRIMITIVE ;

SIGNED : YES ;

}

}

GLOBALS{

VAR " r a i n S e n s o r " : TYPE T1 DEPTH D0<( n i l ) > FILE " c fg _e x . c " LINE 1 ;

VAR " r a i n F u n c t i o n " : TYPE T1 DEPTH D0<( n i l ) > FILE " c fg _e x . c " LINE 1 ;
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VAR " r a i n A c t i v e " : TYPE T1 DEPTH D0<( n i l ) > FILE " c fg _e x . c " LINE 1 ;

VAR " s o l a r S e n s o r " : TYPE T1 DEPTH D0<( n i l ) > FILE " c fg _e x . c " LINE 2 ;

VAR " s o l a r F u n c t i o n " : TYPE T1 DEPTH D0<( n i l ) > FILE " c fg _e x . c " LINE 2 ;

VAR " s o l a r A c t i v e " : TYPE T1 DEPTH D0<( n i l ) > FILE " c fg _e x . c " LINE 2 ;

}

FUNCTIONS{

FUNCTION " c h e c k A v a i l a b l e " FILE " c f g_ e x . c " LINE 4{

RETURNS : T0 ;

LOCALS{

VAR " r a i n S e n s o r . 0 " : TYPE T1 DEPTH D1<( n i l ) > FILE " c fg _e x . c " LINE 5 ;

VAR " r a i n F u n c t i o n . 1 " : TYPE T1 DEPTH D1<( n i l ) > FILE " c fg _e x . c " LINE 5 ;

VAR " s o l a r S e n s o r . 2 " : TYPE T1 DEPTH D1<( n i l ) > FILE " c fg _e x . c " LINE 1 0 ;

VAR " s o l a r F u n c t i o n . 3 " : TYPE T1 DEPTH D1<( n i l ) > FILE " c fg _e x . c " LINE 1 0 ;

}

}

}

}

1.3 Generated Test Driver

This section demonstrates the test driver generated by the test generator in order to achieve the 100%

branch coverage for the module under test checkAvailable(). The generator is able to achieve

complete branch coverage with three cases, thus the test driver contains three test steps. Since no specifi-

cation of the module under test was given, the test driver contains no assertions. checkAvailable()
contains no defined or undefined function calls, thus no stub functions were generated.

First, the module under test and all used global variables are declared. Then in each test step assign-

ment of these global variables is made according to the calculated values and after the setting is done,

the module under test is invoked.

/∗ ===============================
∗ I n c l u d e s e c t i o n
∗ ===============================∗ /

/∗ ===============================
∗ Globa l or s t a t i c C d e c l a r a t i o n s and d e f i n i t i o n s
∗ ===============================∗ /

e x t e r n void c h e c k A v a i l a b l e ( ) ;

@uut void c h e c k A v a i l a b l e ( ) ;

e x t e r n i n t r a i n F u n c t i o n ;

e x t e r n i n t s o l a r F u n c t i o n ;

e x t e r n i n t r a i n S e n s o r ;

e x t e r n i n t s o l a r S e n s o r ;

/∗ ===============================
∗ A b s t r a c t machine d e c l a r a t i o n .
∗ ===============================∗ /

@abstract machine u n i t _ t e s t ( ) {

@INIT :

{

}

@FINIT :
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@PROCESS:

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

r a i n F u n c t i o n = −2147483648;

r a i n F u n c t i o n = −2147483648;

s o l a r F u n c t i o n = −2147483648;

s o l a r F u n c t i o n = −2147483648;

r a i n S e n s o r = −2147483648;

r a i n S e n s o r = −2147483648;

s o l a r S e n s o r = −2147483648;

s o l a r S e n s o r = −2147483648;

@rttCal l ( c h e c k A v a i l a b l e ( ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

r a i n S e n s o r = 0 ;

r a i n S e n s o r = 0 ;

s o l a r S e n s o r = 0 ;

s o l a r S e n s o r = 0 ;

@rttCal l ( c h e c k A v a i l a b l e ( ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

r a i n F u n c t i o n = 0 ;

r a i n F u n c t i o n = 0 ;

s o l a r F u n c t i o n = 0 ;

s o l a r F u n c t i o n = 0 ;

r a i n S e n s o r = −2147483648;

r a i n S e n s o r = −2147483648;

s o l a r S e n s o r = −2147483648;

s o l a r S e n s o r = −2147483648;

@rttCal l ( c h e c k A v a i l a b l e ( ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

}
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1.4 Solution File

This section demonstrates the solution file that results from the generation process. This file contains

the description of three traces (corresponding to the three test steps in the test driver). Each trace is first

specified by a list of its statements, then the path constraint calculated by the generator for this trace is

given and finally the solution computed by the solver for this path constraint is listed.

At the bottom of the solution file the statistics of the achieved coverage is reported. In this example it

is 100%.

SOLUTION FOR FUNCTION c h e c k A v a i l a b l e

TRACE 4

TRACE COMPLETED

TRACE

{ ( r a i n S e n s o r . 0 = r a i n S e n s o r ; ) ,

( r a i n F u n c t i o n . 1 = r a i n F u n c t i o n ; ) ,

( r a i n A c t i v e = 1 ; ) ,

( s o l a r S e n s o r . 2 = s o l a r S e n s o r ; ) ,

( s o l a r F u n c t i o n . 3 = s o l a r F u n c t i o n ; ) ,

( s o l a r A c t i v e = 1 ; ) ,

( c h e c k A v a i l a b l e _ r e t u r n ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 6

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( r a i n S e n s o r . 0@12 != 0) &&

( r a i n S e n s o r . 0@12 == ( ( i n t ) ra inSensor@11 ) ) ) &&

( ra inSensor@11 == ra inSensor@0 ) ) &&

( r a i n F u n c t i o n . 1@13 != 0) &&

( r a i n F u n c t i o n . 1@13 == ( ( i n t ) r a inFunc t ion@12 ) ) &&

( ra inFunc t ion@12 == ra inFunc t ion@0 ) ) &&

( s o l a r S e n s o r . 2@15 != 0) &&

( s o l a r S e n s o r . 2@15 == ( ( i n t ) so l a rSenso r@14 ) ) &&

( so la rSenso r@14 == so la rSenso r@0 ) ) &&

( s o l a r F u n c t i o n . 3@16 != 0) &&

( s o l a r F u n c t i o n . 3@16 == ( ( i n t ) s o l a r F u n c t i o n @ 1 5 ) ) &&

( s o l a r F u n c t i o n @ 1 5 == s o l a r F u n c t i o n @ 0 ) )

SOLUTION :

ra inSensor@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

r a inFunc t i on@ 0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

so l a rSenso r@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

s o l a r F u n c t i o n @ 0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

ra inSensor@11 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

r a i n S e n s o r . 0@12 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

r a inFunc t ion@12 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

r a i n F u n c t i o n . 1@13 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

so la rSenso r@14 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

s o l a r S e n s o r . 2@15 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

s o l a r F u n c t i o n @ 1 5 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

s o l a r F u n c t i o n . 3@16 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

TRACE 7

TRACE COMPLETED

TRACE

{ ( r a i n S e n s o r . 0 = r a i n S e n s o r ; ) ,

( r a i n A c t i v e = 0 ; ) ,
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( s o l a r S e n s o r . 2 = s o l a r S e n s o r ; ) ,

( s o l a r A c t i v e = 0 ; ) ,

( c h e c k A v a i l a b l e _ r e t u r n ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 4

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( r a i n S e n s o r . 0@12 == 0) &&

( r a i n S e n s o r . 0@12 == ( ( i n t ) ra inSensor@11 ) ) ) &&

( ra inSensor@11 == ra inSensor@0 ) ) &&

( s o l a r S e n s o r . 2@14 == 0) &&

( s o l a r S e n s o r . 2@14 == ( ( i n t ) so l a rSenso r@13 ) ) &&

( so la rSenso r@13 == so la rSenso r@0 ) )

SOLUTION :

ra inSensor@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

so l a rSenso r@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

ra inSensor@11 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

r a i n S e n s o r . 0@12 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

so l a rSenso r@13 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

s o l a r S e n s o r . 2@14 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

TRACE 9

TRACE COMPLETED

TRACE

{ ( r a i n S e n s o r . 0 = r a i n S e n s o r ; ) ,

( r a i n F u n c t i o n . 1 = r a i n F u n c t i o n ; ) ,

( r a i n A c t i v e = 0 ; ) ,

( s o l a r S e n s o r . 2 = s o l a r S e n s o r ; ) ,

( s o l a r F u n c t i o n . 3 = s o l a r F u n c t i o n ; ) ,

( s o l a r A c t i v e = 0 ; ) }

t r a c e S t a t e : CONT_AFTER_SOLVING

c u r r e n t S t e p N r : 5

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( r a i n S e n s o r . 0@12 != 0) &&

( r a i n S e n s o r . 0@12 == ( ( i n t ) ra inSensor@11 ) ) ) &&

( ra inSensor@11 == ra inSensor@0 ) ) &&

( r a i n F u n c t i o n . 1@13 == 0) &&

( r a i n F u n c t i o n . 1@13 == ( ( i n t ) r a inFunc t ion@12 ) ) &&

( ra inFunc t ion@12 == ra inFunc t ion@0 ) ) &&

( s o l a r S e n s o r . 2@15 != 0) &&

( s o l a r S e n s o r . 2@15 == ( ( i n t ) so l a rSenso r@14 ) ) &&

( so la rSenso r@14 == so la rSenso r@0 ) ) &&

( s o l a r F u n c t i o n . 3@16 == 0) &&

( s o l a r F u n c t i o n . 3@16 == ( ( i n t ) s o l a r F u n c t i o n @ 1 5 ) ) &&

( s o l a r F u n c t i o n @ 1 5 == s o l a r F u n c t i o n @ 0 ) )

SOLUTION :

ra inSensor@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

r a inFunc t i on@ 0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

so l a rSenso r@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

s o l a r F u n c t i o n @ 0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

ra inSensor@11 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

r a i n S e n s o r . 0@12 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

r a inFunc t ion@12 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

r a i n F u n c t i o n . 1@13 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

so l a rSenso r@14 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

s o l a r S e n s o r . 2@15 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

s o l a r F u n c t i o n @ 1 5 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )
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Figure 3: Graphical representation for the overview example.

s o l a r F u n c t i o n . 3@16 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

O p e r a t i o n c h e c k A v a i l a b l e ( ) i s c o v e r e d .

Covered :

T o t a l t r a n s i t i o n s : 100%

T r a n s i t i o n s w i t h g u a r d s : 100%

1.5 Graphical Output

Figure 3 demonstrates the graphical representation of the CFG corresponding to the module under test.

All nodes and edges of this CFG are drawn blue, which indicates that all of them were successfully

covered.
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2 Annotation Example

This example corresponds to the example discussed in Chapter 3 and demonstrates the usage of the

CTGEN annotation language.

2.1 Analyzed Code

The source code listed below contains the implementation of the module under test alloc(). The

module under test alloc() returns a pointer allocp to n successive characters if there is still enough

room in the buffer allocbuf and zero if this is not the case. First, by using __rtt_modifies we

state that alloc() can only modify allocp, and a modification of allocbuf is consequently pro-

hibited. The annotation __rtt_precondition specifies that the expected behaviour of alloc() is

guaranteed only if the parameter n is greater as or equal to zero and allocp is not a NULL-pointer. Fur-

thermore __rtt_postcondition states that after the execution of the function under test allocp
must still be within the bounds of the array allocbuf. Finally, test cases are defined for situations

where (a) memory can still be allocated and (b) not enough memory is available.

# i n c l u d e " c t g e n _ a n n o t a t i o n . h "

# d e f i n e ALLOCSIZE 1000

char a l l o c b u f [ ALLOCSIZE ] ;

char ∗ a l l o c p = a l l o c b u f ;

char ∗ a l l o c ( i n t n ) {

_ _ r t t _ m o d i f i e s ( a l l o c p ) ;

_ _ r t t _ p r e c o n d i t i o n ( n >= 0 && a l l o c p != 0) ;

_ _ r t t _ p o s t c o n d i t i o n ( a l l o c p != 0 && a l l o c p <= a l l o c b u f + ALLOCSIZE ) ;

_ _ r t t _ t e s t c a s e ( a l l o c b u f + ALLOCSIZE − _ _ r t t _ i n i t i a l ( a l l o c p ) < n ,

_ _ r t t _ r e t u r n == 0 ,

"CTGEN_001" ) ;

_ _ r t t _ t e s t c a s e ( a l l o c b u f + ALLOCSIZE − _ _ r t t _ i n i t i a l ( a l l o c p ) >= n ,

_ _ r t t _ r e t u r n == _ _ r t t _ i n i t i a l ( a l l o c p ) ,

"CTGEN_002" ) ;

char ∗ r e t v a l = 0 ;

i f ( a l l o c b u f + ALLOCSIZE − a l l o c p >= n ) {

a l l o c p += n ;

r e t v a l = a l l o c p − n ;

}

re turn r e t v a l ;

}

2.2 Generated Test Driver

This section demonstrates the test driver generated by the test generator in order to achieve the max-

imal possible branch coverage for the module under test alloc(). The generator was run in proof

mode and tried to find counter examples for the test cases and the postcondition defined by means of

the annotation language. For each of the specified test cases as well as for the postcondition a test case

specification is generated. The specification of test cases contains the test case identifier, the definition

of the condition and the expected result, the indication of the corresponding requirements and a short de-

scription. For each test step the test generator recognizes test cases which can be applied at the particular
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step and inserts an assertion corresponding to the condition before the call to the UUT and an assertion

corresponding to the expected result after the call to the UUT.

# d e f i n e ALLOCSIZE 1000

/∗ ===============================
∗ I n c l u d e s e c t i o n
∗ ===============================∗ /

/∗ ===============================
∗ S t r u c t u r e s
∗ ===============================∗ /

/∗ ===============================
∗ Globa l or s t a t i c C d e c l a r a t i o n s and d e f i n i t i o n s
∗ ===============================∗ /

e x t er n char∗ a l l o c ( i n t n ) ;

@uut char∗ a l l o c ( i n t n ) ;

e x t er n char a l l o c b u f [ 1 0 0 0 ] ;

e x t er n char∗ a l l o c p ;

/∗ ===============================
∗ A b s t r a c t machine d e c l a r a t i o n .
∗ ===============================∗ /

@abstract machine u n i t _ t e s t ( ) {

@INIT :

{

}

@FINIT :

@PROCESS:

char∗ _ _ r t t _ r e t u r n ;

char∗ _ _ r t t _ i n i t i a l _ a l l o c p _ ;

i n t n ;

unsigned i n t a l l o c p _ P o i n t s T o _ o f f s e t _ ;

/∗ ∗ @ r t t P r i n t
∗ T h i s t e s t case e v a l u a t e s , whe ther t h e f u n c t i o n a l l o c
∗ behaves c o r r e c t l y .
∗ @tag TC_UNIT_TEST_AUTOGEN_ALLOC_0001
∗ @condi t ion ( n >= 0 && a l l o c p != 0)
∗ @event The u n i t under t e s t ’ a l l o c ’ i s c a l l e d .
∗ @expected ( a l l o c p != 0 && a l l o c p <= a l l o c b u f + ALLOCSIZE )
∗ @req
∗ /

/∗ ∗ @ r t t P r i n t
∗ T h i s t e s t case e v a l u a t e s , whe ther t h e f u n c t i o n a l l o c
∗ behaves c o r r e c t l y .
∗ @tag TC_UNIT_TEST_AUTOGEN_ALLOC_0002
∗ @condi t ion a l l o c b u f +ALLOCSIZE−_ _ r t t _ i n i t i a l _ a l l o c p _ <n
∗ @event The u n i t under t e s t ’ a l l o c ’ i s c a l l e d .
∗ @expected _ _ r t t _ r e t u r n ==0
∗ @req CTGEN_001
∗ /
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/∗ ∗ @ r t t P r i n t
∗ T h i s t e s t case e v a l u a t e s , whe ther t h e f u n c t i o n a l l o c
∗ behaves c o r r e c t l y .
∗ @tag TC_UNIT_TEST_AUTOGEN_ALLOC_0003
∗ @condi t ion a l l o c b u f +ALLOCSIZE−_ _ r t t _ i n i t i a l _ a l l o c p _ >=n
∗ @event The u n i t under t e s t ’ a l l o c ’ i s c a l l e d .
∗ @expected _ _ r t t _ r e t u r n== _ _ r t t _ i n i t i a l _ a l l o c p _
∗ @req CTGEN_002
∗ /

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

n = −2147483648;

_ _ r t t _ i n i t i a l _ a l l o c p _ = a l l o c p ;

@rttCal l ( _ _ r t t _ r e t u r n = a l l o c ( n ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

a l l o c p = NULL;

a l l o c p = NULL;

n = 0 ;

_ _ r t t _ i n i t i a l _ a l l o c p _ = a l l o c p ;

@rttCal l ( _ _ r t t _ r e t u r n = a l l o c ( n ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

n = 1073742735;

a l l o c p = a l l o c b u f ;

a l l o c p _ P o i n t s T o _ o f f s e t _ = 7 2 ;

a l l o c p += a l l o c p _ P o i n t s T o _ o f f s e t _ ;

_ _ r t t _ i n i t i a l _ a l l o c p _ = a l l o c p ;

@rttAssert ( ( n >= 0 && a l l o c p != 0) , "TC_UNIT_TEST_AUTOGEN_ALLOC_0001" ) ;

@rttAssert ( a l l o c b u f +ALLOCSIZE−_ _ r t t _ i n i t i a l _ a l l o c p _ <n , "

TC_UNIT_TEST_AUTOGEN_ALLOC_0002" ) ;

@rttCal l ( _ _ r t t _ r e t u r n = a l l o c ( n ) ) ;

@rttAssert ( ( a l l o c p != 0 && a l l o c p <= a l l o c b u f + ALLOCSIZE ) , "

TC_UNIT_TEST_AUTOGEN_ALLOC_0001" ) ;

@rttAssert ( _ _ r t t _ r e t u r n ==0 , "TC_UNIT_TEST_AUTOGEN_ALLOC_0002" ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

n = 0 ;

a l l o c p = a l l o c b u f ;

a l l o c p _ P o i n t s T o _ o f f s e t _ = 9 9 ;

a l l o c p += a l l o c p _ P o i n t s T o _ o f f s e t _ ;

_ _ r t t _ i n i t i a l _ a l l o c p _ = a l l o c p ;

@rttAssert ( ( n >= 0 && a l l o c p != 0) , "TC_UNIT_TEST_AUTOGEN_ALLOC_0001" ) ;

@rttAssert ( a l l o c b u f +ALLOCSIZE−_ _ r t t _ i n i t i a l _ a l l o c p _ >=n , "

TC_UNIT_TEST_AUTOGEN_ALLOC_0003" ) ;

@rttCal l ( _ _ r t t _ r e t u r n = a l l o c ( n ) ) ;

@rttAssert ( ( a l l o c p != 0 && a l l o c p <= a l l o c b u f + ALLOCSIZE ) , "

TC_UNIT_TEST_AUTOGEN_ALLOC_0001" ) ;

@rttAssert ( _ _ r t t _ r e t u r n == _ _ r t t _ i n i t i a l _ a l l o c p _ , "TC_UNIT_TEST_AUTOGEN_ALLOC_0003" ) ;

}
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@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

}

2.3 Solution File

This section demonstrates the solution file that results from the generation process. This file contains

the description of four traces (corresponding to the four test steps in the test driver). Each trace is first

specified by the list of it’s statements, then the path constraint calculated by the generator for this trace

is given and finally the solution computed by the solver for this path constraint is listed.

Since the test generator for this example was running in proof mode, it reports the coverage for the

control flow graph containing pre- and postconditions as well as their violations. And although the

announced coverage is only 77%, the generator was able to achieve 100% branch coverage of the UUT.

The analysis of uncovered transitions listed at the bottom of the solution file states that all uncovered

transitions correspond to the violations of the test cases or postcondition respectively.

SOLUTION FOR FUNCTION a l l o c

TRACE 10

TRACE COMPLETED

TRACE

{ ( _ _ r t t _ m o d i f i e s _ _ ((& " a l l o c p " ) ) ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( re turn ; ) }

t r a c e S t a t e : CONT_AFTER_SOLVING

c u r r e n t S t e p N r : 2

f e a s i b l e : 1

CONSTRAINT :

( ( n@61 < 0) &&

( n@61 == ( ( i n t ) n@0) ) )

SOLUTION :

n@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

n@61 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

TRACE 11

TRACE COMPLETED

TRACE

{ ( _ _ r t t _ m o d i f i e s _ _ ((& " a l l o c p " ) ) ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( a l l o c p _ 0 = a l l o c p ; ) ,

( re turn ; ) }

t r a c e S t a t e : CONT_AFTER_SOLVING

c u r r e n t S t e p N r : 3

f e a s i b l e : 1

CONSTRAINT :

( ( ( n@61 >= 0) &&

( n@61 == ( ( i n t ) n@0) ) ) &&

( allocp_0@baseAddr@62 == 0) &&

( allocp_0@baseAddr@62 == a l locp@of f se t@61 ) &&

( allocp@baseAddr@61 == allocp@baseAddr@0 ) &&

( a l locp@of f se t@61 < 100) &&

( a l locp@of f se t@0 < 100) &&

197



Examples of CTGEN Usage.

( a l locp@of f se t@61 == a l locp@of f se t@0 ) &&

( a l locp@of f se t@61 < 100) &&

( allocp_0@baseAddr@62 == allocp@baseAddr@61 ) )

SOLUTION :

n@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

allocp@baseAddr@0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 0 )

a l locp@of f se t@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

n@61 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

allocp@baseAddr@61 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

a l locp@of f se t@61 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

allocp_0@baseAddr@62 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

TRACE 36

TRACE COMPLETED

TRACE

{ ( _ _ r t t _ m o d i f i e s _ _ ((& " a l l o c p " ) ) ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( a l l o c p _ 0 = a l l o c p ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( r e t v a l _ 0 x 4 0 b f 1 2 7 0 = 0 ; ) ,

( D_1759 = ((& a l l o c b u f [ 0 ] ) + 1000) ; ) ,

( D_1760 = ( ( i n t ) D_1759 ) ; ) ,

( a l l o c p _ 1 = a l l o c p ; ) ,

( a l l o c p _ 2 = ( ( i n t ) a l l o c p _ 1 ) ; ) ,

( D_1763 = ( D_1760 − a l l o c p _ 2 ) ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( a l l o c p _ 8 = a l l o c p ; ) ,

( a l l o c p _ 9 = a l l o c p ; ) ,

( D_1778 = ((& a l l o c b u f [ 0 ] ) + 1000) ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( _ _ r t t _ t e s t c a s e _ _ ((& " ( n >= 0 && a l l o c p != 0) " ) , (& " ( a l l o c p != 0 && a l l o c p <= a l l o c b u f +

ALLOCSIZE ) " ) , (&" " ) ) ; ) ,

( D_1781 = ((& a l l o c b u f [ 0 ] ) + 1000) ; ) ,

( D_1782 = ( ( i n t ) D_1781 ) ; ) ,

( a l l o c p _ 1 1 = a l l o c p ; ) ,

( D_1784 = _ _ r t t _ i n i t i a l ( a l locp_11@82 ) ; ) ,

( D_1785 = ( ( i n t ) D_1784 ) ; ) ,

( D_1786 = ( D_1782 − D_1785 ) ; ) ,

( r e t v a l _ 1 0 = ( D_1786 < n ) ; ) ,

( <EMPTYSTATEMENT> ; ) ,

( _ _ r t t _ t e s t c a s e _ _ ((& " a l l o c b u f +ALLOCSIZE−_ _ r t t _ i n i t i a l ( a l l o c p ) <n " ) , (&" _ _ r t t _ r e t u r n ==0 " ) ,

(& "CTGEN_001" ) ) ; ) ,

( D_1794 = ((& a l l o c b u f [ 0 ] ) + 1000) ; ) ,

( D_1795 = ( ( i n t ) D_1794 ) ; ) ,

( a l l o c p _ 1 3 = a l l o c p ; ) ,

( D_1797 = _ _ r t t _ i n i t i a l ( a l locp_13@89 ) ; ) ,

( D_1798 = ( ( i n t ) D_1797 ) ; ) ,

( D_1799 = ( D_1795 − D_1798 ) ; ) ,

( r e t v a l _ 1 2 = ( D_1799 >= n ) ; ) ,

( D_1809 = r e t v a l _ 0 x 4 0 b f 1 2 7 0 ; ) ,

( re turn = D_1809 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 33

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( ( ( ( a l loc@61 >= 0) &&

( al loc@61 == ( ( i n t ) a l loc@0 ) ) ) &&

( allocp_0@baseAddr@62 != 0) &&

( allocp_0@baseAddr@62 == a l locp@of f se t@61 ) &&
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( allocp@baseAddr@61 == allocp@baseAddr@0 ) &&

( a l locp@of f se t@61 < 100) &&

( a l locp@of f se t@0 < 100) &&

( a l locp@of f se t@61 == a l locp@of f se t@0 ) &&

( a l locp@of f se t@61 < 100) &&

( allocp_0@baseAddr@62 == allocp@baseAddr@61 ) ) &&

( D_1763@68 < al loc@68 ) &&

( D_1763@68 == ( ( i n t ) ( D_1760@67 − al locp_2@67 ) ) ) &&

( al loc@68 == ( ( i n t ) a l loc@0 ) ) &&

( D_1760@67 == ( ( i n t ) ( ( i n t ) D_1759@offset@64 ) ) ) &&

( al locp_2@67 == ( ( i n t ) ( ( i n t ) a l locp_1@offse t@66 ) ) ) &&

( D_1759@baseAddr@64 == allocbuf@baseAddr@63 ) &&

( a l l o c b u f @ o f f s e t @ 6 3 == 0) &&

( a l l o c b u f @ o f f s e t @ 6 3 < 1000) &&

( D_1759@offset@64 == ( a l l o c b u f @ o f f s e t @ 6 3 + 1000) ) &&

( a l locp_1@off se t@66 == a l locp@off se t@65 ) &&

( a l l o c b u f @ o f f s e t @ 6 3 == a l l o c b u f @ o f f s e t @ 0 ) &&

( allocp@baseAddr@65 == allocp@baseAddr@0 ) &&

( a l locp@of f se t@65 < 100) &&

( a l locp@of f se t@0 < 100) &&

( a l locp@of f se t@65 == a l locp@of f se t@0 ) &&

( a l locp@of f se t@65 < 100) &&

( a l l o c b u f @ o f f s e t @ 6 3 < 1000) &&

( a l l o c b u f @ o f f s e t @ 0 < 1000) &&

( D_1759@baseAddr@64 == allocp_1@baseAddr@66 ) &&

( allocp_1@baseAddr@66 == allocp@baseAddr@65 ) &&

( allocp@baseAddr@65 == allocbuf@baseAddr@63 ) &&

( allocbuf@baseAddr@63 == allocbuf@baseAddr@0 ) ) &&

( allocp_8@baseAddr@69 != 0) &&

( allocp_8@baseAddr@69 == a l locp@of f se t@68 ) &&

( allocp@baseAddr@68 == allocp@baseAddr@0 ) &&

( a l locp@of f se t@68 < 100) &&

( a l locp@of f se t@0 < 100) &&

( a l locp@of f se t@68 == a l locp@of f se t@0 ) &&

( a l locp@of f se t@68 < 100) &&

( allocp_8@baseAddr@69 == allocp@baseAddr@68 ) ) &&

( a l locp_9@offse t@71 <= D_1778@offset@71 ) &&

( a l locp_9@off se t@71 == a l locp@off se t@69 ) &&

( D_1778@baseAddr@71 == allocbuf@baseAddr@70 ) &&

( a l l o c b u f @ o f f s e t @ 7 0 == 0) &&

( a l l o c b u f @ o f f s e t @ 7 0 < 1000) &&

( D_1778@offset@71 == ( a l l o c b u f @ o f f s e t @ 7 0 + 1000) ) &&

( allocp@baseAddr@69 == allocp@baseAddr@0 ) &&

( a l locp@of f se t@69 < 100) &&

( a l locp@of f se t@0 < 100) &&

( a l locp@of f se t@69 == a l locp@of f se t@0 ) &&

( a l l o c b u f @ o f f s e t @ 7 0 == a l l o c b u f @ o f f s e t @ 0 ) &&

( a l locp@of f se t@69 < 100) &&

( a l l o c b u f @ o f f s e t @ 7 0 < 1000) &&

( a l l o c b u f @ o f f s e t @ 0 < 1000) &&

( allocp_9@baseAddr@71 == D_1778@baseAddr@71 ) &&

( D_1778@baseAddr@71 == allocp@baseAddr@69 ) &&

( allocp@baseAddr@69 == allocbuf@baseAddr@70 ) &&

( allocbuf@baseAddr@70 == allocbuf@baseAddr@0 ) ) &&

( re tva l_10@78 != 0) &&

( re tva l_10@78 == ( ( bool ) ( D_1786@77 < al loc@77 ) ) ) &&

( D_1786@77 == ( ( i n t ) ( D_1782@76 − D_1785@76 ) ) ) &&

( al loc@77 == ( ( i n t ) a l loc@0 ) ) &&

( D_1782@76 == ( ( i n t ) ( ( i n t ) D_1781@offset@72 ) ) ) &&

( D_1785@76 == ( ( i n t ) ( ( i n t ) D_1784@offset@75 ) ) ) &&

( D_1781@baseAddr@72 == allocbuf@baseAddr@71 ) &&

( a l l o c b u f @ o f f s e t @ 7 1 == 0) &&
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( a l l o c b u f @ o f f s e t @ 7 1 < 1000) &&

( D_1781@offset@72 == ( a l l o c b u f @ o f f s e t @ 7 1 + 1000) ) &&

( D_1784@offset@75 == a l locp@of f se t@0 ) &&

( a l l o c b u f @ o f f s e t @ 7 1 == a l l o c b u f @ o f f s e t @ 0 ) &&

( a l locp@of f se t@0 < 100) &&

( a l l o c b u f @ o f f s e t @ 7 1 < 1000) &&

( a l l o c b u f @ o f f s e t @ 0 < 1000) &&

( D_1781@baseAddr@72 == D_1784@baseAddr@75 ) &&

( D_1784@baseAddr@75 == allocp@baseAddr@0 ) &&

( allocp@baseAddr@0 == allocbuf@baseAddr@71 ) &&

( allocbuf@baseAddr@71 == allocbuf@baseAddr@0 ) ) &&

( __r t t_ re tu rn_0x40bf12d8@baseAddr@78 == 0) ) &&

( re tva l_12@85 == 0) &&

( re tva l_12@85 == ( ( bool ) ( D_1799@84 >= al loc@84 ) ) ) &&

( D_1799@84 == ( ( i n t ) ( D_1795@83 − D_1798@83 ) ) ) &&

( al loc@84 == ( ( i n t ) a l loc@0 ) ) &&

( D_1795@83 == ( ( i n t ) ( ( i n t ) D_1794@offset@79 ) ) ) &&

( D_1798@83 == ( ( i n t ) ( ( i n t ) D_1797@offset@82 ) ) ) &&

( D_1794@baseAddr@79 == allocbuf@baseAddr@78 ) &&

( a l l o c b u f @ o f f s e t @ 7 8 == 0) &&

( a l l o c b u f @ o f f s e t @ 7 8 < 1000) &&

( D_1794@offset@79 == ( a l l o c b u f @ o f f s e t @ 7 8 + 1000) ) &&

( D_1797@offset@82 == a l locp@of f se t@0 ) &&

( a l l o c b u f @ o f f s e t @ 7 8 == a l l o c b u f @ o f f s e t @ 0 ) &&

( a l locp@of f se t@0 < 100) &&

( a l l o c b u f @ o f f s e t @ 7 8 < 1000) &&

( a l l o c b u f @ o f f s e t @ 0 < 1000) &&

( D_1794@baseAddr@79 == D_1797@baseAddr@82 ) &&

( D_1797@baseAddr@82 == allocp@baseAddr@0 ) &&

( allocp@baseAddr@0 == allocbuf@baseAddr@78 ) &&

( allocbuf@baseAddr@78 == allocbuf@baseAddr@0 ) ) &&

( al loc@61 >= 0) &&

( al loc@61 == ( ( i n t ) a l loc@0 ) ) &&

( allocp_0@baseAddr@62 != 0) &&

( allocp_0@baseAddr@62 == a l locp@of f se t@61 ) &&

( allocp@baseAddr@61 == allocp@baseAddr@0 ) &&

( a l locp@of f se t@61 < 100) &&

( a l locp@of f se t@0 < 100) &&

( a l locp@of f se t@61 == a l locp@of f se t@0 ) &&

( a l locp@of f se t@61 < 100) &&

( allocp_0@baseAddr@62 == allocp@baseAddr@61 ) &&

( D_1763@68 < al loc@68 ) &&

( D_1763@68 == ( ( i n t ) ( D_1760@67 − al locp_2@67 ) ) ) &&

( al loc@68 == ( ( i n t ) a l loc@0 ) ) &&

( D_1760@67 == ( ( i n t ) ( ( i n t ) D_1759@offset@64 ) ) ) &&

( al locp_2@67 == ( ( i n t ) ( ( i n t ) a l locp_1@offse t@66 ) ) ) &&

( D_1759@baseAddr@64 == allocbuf@baseAddr@63 ) &&

( a l l o c b u f @ o f f s e t @ 6 3 == 0) &&

( a l l o c b u f @ o f f s e t @ 6 3 < 1000) &&

( D_1759@offset@64 == ( a l l o c b u f @ o f f s e t @ 6 3 + 1000) ) &&

( a l locp_1@off se t@66 == a l locp@off se t@65 ) &&

( a l l o c b u f @ o f f s e t @ 6 3 == a l l o c b u f @ o f f s e t @ 0 ) &&

( allocp@baseAddr@65 == allocp@baseAddr@0 ) &&

( a l locp@of f se t@65 < 100) &&

( a l locp@of f se t@0 < 100) &&

( a l locp@of f se t@65 == a l locp@of f se t@0 ) &&

( a l locp@of f se t@65 < 100) &&

( a l l o c b u f @ o f f s e t @ 6 3 < 1000) &&

( a l l o c b u f @ o f f s e t @ 0 < 1000) &&

( D_1759@baseAddr@64 == allocp_1@baseAddr@66 ) &&

( allocp_1@baseAddr@66 == allocp@baseAddr@65 ) &&

( allocp@baseAddr@65 == allocbuf@baseAddr@63 ) &&

200



2 Annotation Example

( al locbuf@baseAddr@63 == allocbuf@baseAddr@0 ) &&

( allocp_8@baseAddr@69 != 0) &&

( allocp_8@baseAddr@69 == a l locp@of f se t@68 ) &&

( allocp@baseAddr@68 == allocp@baseAddr@0 ) &&

( a l locp@of f se t@68 < 100) &&

( a l locp@of f se t@0 < 100) &&

( a l locp@of f se t@68 == a l locp@of f se t@0 ) &&

( a l locp@of f se t@68 < 100) &&

( allocp_8@baseAddr@69 == allocp@baseAddr@68 ) &&

( a l locp_9@offse t@71 <= D_1778@offset@71 ) &&

( a l locp_9@off se t@71 == a l locp@off se t@69 ) &&

( D_1778@baseAddr@71 == allocbuf@baseAddr@70 ) &&

( a l l o c b u f @ o f f s e t @ 7 0 == 0) &&

( a l l o c b u f @ o f f s e t @ 7 0 < 1000) &&

( D_1778@offset@71 == ( a l l o c b u f @ o f f s e t @ 7 0 + 1000) ) &&

( allocp@baseAddr@69 == allocp@baseAddr@0 ) &&

( a l locp@of f se t@69 < 100) &&

( a l locp@of f se t@0 < 100) &&

( a l locp@of f se t@69 == a l locp@of f se t@0 ) &&

( a l l o c b u f @ o f f s e t @ 7 0 == a l l o c b u f @ o f f s e t @ 0 ) &&

( a l locp@of f se t@69 < 100) &&

( a l l o c b u f @ o f f s e t @ 7 0 < 1000) &&

( a l l o c b u f @ o f f s e t @ 0 < 1000) &&

( allocp_9@baseAddr@71 == D_1778@baseAddr@71 ) &&

( D_1778@baseAddr@71 == allocp@baseAddr@69 ) &&

( allocp@baseAddr@69 == allocbuf@baseAddr@70 ) &&

( allocbuf@baseAddr@70 == allocbuf@baseAddr@0 ) &&

( re tva l_10@78 != 0) &&

( re tva l_10@78 == ( ( bool ) ( D_1786@77 < al loc@77 ) ) ) &&

( D_1786@77 == ( ( i n t ) ( D_1782@76 − D_1785@76 ) ) ) &&

( al loc@77 == ( ( i n t ) a l loc@0 ) ) &&

( D_1782@76 == ( ( i n t ) ( ( i n t ) D_1781@offset@72 ) ) ) &&

( D_1785@76 == ( ( i n t ) ( ( i n t ) D_1784@offset@75 ) ) ) &&

( D_1781@baseAddr@72 == allocbuf@baseAddr@71 ) &&

( a l l o c b u f @ o f f s e t @ 7 1 == 0) &&

( a l l o c b u f @ o f f s e t @ 7 1 < 1000) &&

( D_1781@offset@72 == ( a l l o c b u f @ o f f s e t @ 7 1 + 1000) ) &&

( D_1784@offset@75 == a l locp@of f se t@0 ) &&

( a l l o c b u f @ o f f s e t @ 7 1 == a l l o c b u f @ o f f s e t @ 0 ) &&

( a l locp@of f se t@0 < 100) &&

( a l l o c b u f @ o f f s e t @ 7 1 < 1000) &&

( a l l o c b u f @ o f f s e t @ 0 < 1000) &&

( D_1781@baseAddr@72 == D_1784@baseAddr@75 ) &&

( D_1784@baseAddr@75 == allocp@baseAddr@0 ) &&

( allocp@baseAddr@0 == allocbuf@baseAddr@71 ) &&

( allocbuf@baseAddr@71 == allocbuf@baseAddr@0 ) &&

( __r t t_ re tu rn_0x40bf12d8@baseAddr@78 == 0) &&

( re tva l_12@85 == 0) &&

( re tva l_12@85 == ( ( bool ) ( D_1799@84 >= al loc@84 ) ) ) &&

( D_1799@84 == ( ( i n t ) ( D_1795@83 − D_1798@83 ) ) ) &&

( al loc@84 == ( ( i n t ) a l loc@0 ) ) &&

( D_1795@83 == ( ( i n t ) ( ( i n t ) D_1794@offset@79 ) ) ) &&

( D_1798@83 == ( ( i n t ) ( ( i n t ) D_1797@offset@82 ) ) ) &&

( D_1794@baseAddr@79 == allocbuf@baseAddr@78 ) &&

( a l l o c b u f @ o f f s e t @ 7 8 == 0) &&

( a l l o c b u f @ o f f s e t @ 7 8 < 1000) &&

( D_1794@offset@79 == ( a l l o c b u f @ o f f s e t @ 7 8 + 1000) ) &&

( D_1797@offset@82 == a l locp@of f se t@0 ) &&

( a l l o c b u f @ o f f s e t @ 7 8 == a l l o c b u f @ o f f s e t @ 0 ) &&

( a l locp@of f se t@0 < 100) &&

( a l l o c b u f @ o f f s e t @ 7 8 < 1000) &&

( a l l o c b u f @ o f f s e t @ 0 < 1000) &&
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( D_1794@baseAddr@79 == D_1797@baseAddr@82 ) &&

( D_1797@baseAddr@82 == allocp@baseAddr@0 ) &&

( allocp@baseAddr@0 == allocbuf@baseAddr@78 ) &&

( allocbuf@baseAddr@78 == allocbuf@baseAddr@0 ) &&

( __r t t_ re tu rn_0x40bf12d8@baseAddr@78 == re tu rn@of f se t@87 ) &&

( re tu rn@of f se t@87 == D_1809@offset@86 ) &&

( D_1809@offset@86 == re tva l_0x40bf1270@of f se t@85 ) &&

( re tva l_0x40bf1270@of f se t@85 == 0) &&

( return@baseAddr@87 == D_1809@baseAddr@86 ) &&

( D_1809@baseAddr@86 == retval_0x40bf1270@baseAddr@85 ) )

SOLUTION :

al loc@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073742735)

allocp@baseAddr@0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 72)

a l locp@of f se t@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

al locbuf@baseAddr@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

a l l o c b u f @ o f f s e t @ 0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

al loc@61 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073742735)

allocp@baseAddr@61 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

a l locp@of f se t@61 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

allocp_0@baseAddr@62 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

al locbuf@baseAddr@63 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

a l l o c b u f @ o f f s e t @ 6 3 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

D_1759@baseAddr@64 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

D_1759@offset@64 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 1000)

allocp@baseAddr@65 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

a l locp@of f se t@65 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

allocp_1@baseAddr@66 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

a l locp_1@offse t@66 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 72)

D_1760@67 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1000)

al locp_2@67 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 72)

al loc@68 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073742735)

allocp@baseAddr@68 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

a l locp@of f se t@68 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

D_1763@68 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 928)

allocp@baseAddr@69 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

a l locp@of f se t@69 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

allocp_8@baseAddr@69 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 72)

al locbuf@baseAddr@70 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

a l l o c b u f @ o f f s e t @ 7 0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

al locbuf@baseAddr@71 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

a l l o c b u f @ o f f s e t @ 7 1 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

D_1778@baseAddr@71 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

D_1778@offset@71 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 1000)

allocp_9@baseAddr@71 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 72)

a l locp_9@offse t@71 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 72)

D_1781@baseAddr@72 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

D_1781@offset@72 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 1000)

D_1784@baseAddr@75 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 72)

D_1784@offset@75 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 72)

D_1782@76 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1000)

D_1785@76 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 72)

al loc@77 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073742735)

D_1786@77 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 928)

al locbuf@baseAddr@78 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

a l l o c b u f @ o f f s e t @ 7 8 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 0 )

re tva l_10@78 = ( C o n c r e t e L a t t i c e <bool > , 1 )

__r t t_ re tu rn_0x40bf12d8@baseAddr@78 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

D_1794@baseAddr@79 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 72)

D_1794@offset@79 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 1000)

D_1797@baseAddr@82 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 72)

D_1797@offset@82 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 72)

D_1795@83 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1000)
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D_1798@83 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 72)

al loc@84 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073742735)

D_1799@84 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 928)

re tva l_12@85 = ( C o n c r e t e L a t t i c e <bool > , 0 )

re tval_0x40bf1270@baseAddr@85 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 0 )

r e tva l_0x40bf1270@of f se t@85 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

D_1809@baseAddr@86 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

D_1809@offset@86 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 0 )

return@baseAddr@87 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

r e tu rn@of f se t@87 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 0 )

TRACE 38

TRACE COMPLETED

TRACE

{ ( _ _ r t t _ m o d i f i e s _ _ ((& " a l l o c p " ) ) ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( a l l o c p _ 0 = a l l o c p ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( r e t v a l _ 0 x 4 0 b f 1 2 7 0 = 0 ; ) ,

( D_1759 = ((& a l l o c b u f [ 0 ] ) + 1000) ; ) ,

( D_1760 = ( ( i n t ) D_1759 ) ; ) ,

( a l l o c p _ 1 = a l l o c p ; ) ,

( a l l o c p _ 2 = ( ( i n t ) a l l o c p _ 1 ) ; ) ,

( D_1763 = ( D_1760 − a l l o c p _ 2 ) ; ) ,

( a l l o c p _ 3 = a l l o c p ; ) ,

( n_4 = ( ( unsigned i n t ) n ) ; ) ,

( a l l o c p _ 5 = ( a l l o c p _ 3 + n_4 ) ; ) ,

( a l l o c p = a l l o c p _ 5 ; ) ,

( a l l o c p _ 6 = a l l o c p ; ) ,

( n_7 = ( ( unsigned i n t ) n ) ; ) ,

( D_1771 = (−n_7 ) ; ) ,

( r e t v a l _ 0 x 4 0 b f 1 2 7 0 = ( a l l o c p _ 6 + D_1771 ) ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( a l l o c p _ 8 = a l l o c p ; ) ,

( a l l o c p _ 9 = a l l o c p ; ) ,

( D_1778 = ((& a l l o c b u f [ 0 ] ) + 1000) ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( _ _ r t t _ t e s t c a s e _ _ ((& " ( n >= 0 && a l l o c p != 0) " ) , (& " ( a l l o c p != 0 && a l l o c p <= a l l o c b u f +

ALLOCSIZE ) " ) , (&" " ) ) ; ) ,

( D_1781 = ((& a l l o c b u f [ 0 ] ) + 1000) ; ) ,

( D_1782 = ( ( i n t ) D_1781 ) ; ) ,

( a l l o c p _ 1 1 = a l l o c p ; ) ,

( D_1784 = _ _ r t t _ i n i t i a l ( a l locp_11@82 ) ; ) ,

( D_1785 = ( ( i n t ) D_1784 ) ; ) ,

( D_1786 = ( D_1782 − D_1785 ) ; ) ,

( r e t v a l _ 1 0 = ( D_1786 < n ) ; ) ,

( D_1794 = ((& a l l o c b u f [ 0 ] ) + 1000) ; ) ,

( D_1795 = ( ( i n t ) D_1794 ) ; ) ,

( a l l o c p _ 1 3 = a l l o c p ; ) ,

( D_1797 = _ _ r t t _ i n i t i a l ( a l locp_13@89 ) ; ) ,

( D_1798 = ( ( i n t ) D_1797 ) ; ) ,

( D_1799 = ( D_1795 − D_1798 ) ; ) ,

( r e t v a l _ 1 2 = ( D_1799 >= n ) ; ) ,

( a l l o c p _ 1 5 = a l l o c p ; ) ,

( D_1804 = _ _ r t t _ i n i t i a l ( a l locp_15@94 ) ; ) ,

( r e t v a l _ 1 4 = ( D_1804 != _ _ r t t _ r e t u r n _ 0 x 4 0 b f 1 2 d 8 ) ; ) ,

( _ _ r t t _ t e s t c a s e _ _ ((& " a l l o c b u f +ALLOCSIZE−_ _ r t t _ i n i t i a l ( a l l o c p ) >=n " ) , (&" _ _ r t t _ r e t u r n ==

_ _ r t t _ i n i t i a l ( a l l o c p ) " ) , (& "CTGEN_002" ) ) ; ) ,

( D_1809 = r e t v a l _ 0 x 4 0 b f 1 2 7 0 ; ) ,

( re turn = D_1809 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE
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c u r r e n t S t e p N r : 43

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( ( ( ( a l loc@61 >= 0) &&

( al loc@61 == ( ( i n t ) a l loc@0 ) ) ) &&

( allocp_0@baseAddr@62 != 0) &&

( allocp_0@baseAddr@62 == a l locp@of f se t@61 ) &&

( allocp@baseAddr@61 == allocp@baseAddr@0 ) &&

( a l locp@of f se t@61 < 100) &&

( a l locp@of f se t@0 < 100) &&

( a l locp@of f se t@61 == a l locp@of f se t@0 ) &&

( a l locp@of f se t@61 < 100) &&

( allocp_0@baseAddr@62 == allocp@baseAddr@61 ) ) &&

( D_1763@68 >= al loc@68 ) &&

( D_1763@68 == ( ( i n t ) ( D_1760@67 − al locp_2@67 ) ) ) &&

( al loc@68 == ( ( i n t ) a l loc@0 ) ) &&

( D_1760@67 == ( ( i n t ) ( ( i n t ) D_1759@offset@64 ) ) ) &&

( al locp_2@67 == ( ( i n t ) ( ( i n t ) a l locp_1@offse t@66 ) ) ) &&

( D_1759@baseAddr@64 == allocbuf@baseAddr@63 ) &&

( a l l o c b u f @ o f f s e t @ 6 3 == 0) &&

( a l l o c b u f @ o f f s e t @ 6 3 < 1000) &&

( D_1759@offset@64 == ( a l l o c b u f @ o f f s e t @ 6 3 + 1000) ) &&

( a l locp_1@off se t@66 == a l locp@off se t@65 ) &&

( a l l o c b u f @ o f f s e t @ 6 3 == a l l o c b u f @ o f f s e t @ 0 ) &&

( allocp@baseAddr@65 == allocp@baseAddr@0 ) &&

( a l locp@of f se t@65 < 100) &&

( a l locp@of f se t@0 < 100) &&

( a l locp@of f se t@65 == a l locp@of f se t@0 ) &&

( a l locp@of f se t@65 < 100) &&

( a l l o c b u f @ o f f s e t @ 6 3 < 1000) &&

( a l l o c b u f @ o f f s e t @ 0 < 1000) &&

( D_1759@baseAddr@64 == allocp_1@baseAddr@66 ) &&

( allocp_1@baseAddr@66 == allocp@baseAddr@65 ) &&

( allocp@baseAddr@65 == allocbuf@baseAddr@63 ) &&

( allocbuf@baseAddr@63 == allocbuf@baseAddr@0 ) ) &&

( allocp_8@baseAddr@77 != 0) &&

( allocp_8@baseAddr@77 == a l locp@of f se t@76 ) &&

( a l locp@off se t@76 == a l locp_5@off se t@71 ) &&

( a l locp_5@offse t@71 == ( a l locp_3@offse t@70 + n_4@70 ) ) &&

( a l locp_3@off se t@70 == a l locp@off se t@68 ) &&

( n_4@70 == ( ( unsigned i n t ) ( ( unsigned i n t ) a l loc@69 ) ) ) &&

( allocp@baseAddr@68 == allocp@baseAddr@0 ) &&

( a l locp@of f se t@68 < 100) &&

( a l locp@of f se t@0 < 100) &&

( a l locp@of f se t@68 == a l locp@of f se t@0 ) &&

( al loc@69 == ( ( i n t ) a l loc@0 ) ) &&

( a l locp@of f se t@76 < 100) &&

( a l locp@of f se t@68 < 100) &&

( allocp_8@baseAddr@77 == allocp@baseAddr@76 ) &&

( allocp@baseAddr@76 == allocp_5@baseAddr@71 ) &&

( allocp_5@baseAddr@71 == allocp_3@baseAddr@70 ) &&

( allocp_3@baseAddr@70 == allocp@baseAddr@68 ) ) &&

( a l locp_9@offse t@79 <= D_1778@offset@79 ) &&

( a l locp_9@off se t@79 == a l locp@off se t@77 ) &&

( D_1778@baseAddr@79 == allocbuf@baseAddr@78 ) &&

( a l l o c b u f @ o f f s e t @ 7 8 == 0) &&

( a l l o c b u f @ o f f s e t @ 7 8 < 1000) &&

( D_1778@offset@79 == ( a l l o c b u f @ o f f s e t @ 7 8 + 1000) ) &&

( a l locp@off se t@77 == a l locp_5@off se t@71 ) &&

( a l l o c b u f @ o f f s e t @ 7 8 == a l l o c b u f @ o f f s e t @ 0 ) &&

( a l locp@of f se t@77 < 100) &&

204



2 Annotation Example

( a l l o c b u f @ o f f s e t @ 7 8 < 1000) &&

( a l l o c b u f @ o f f s e t @ 0 < 1000) &&

( allocp_9@baseAddr@79 == D_1778@baseAddr@79 ) &&

( D_1778@baseAddr@79 == allocp@baseAddr@77 ) &&

( allocp@baseAddr@77 == allocp_5@baseAddr@71 ) &&

( allocp_5@baseAddr@71 == allocbuf@baseAddr@78 ) &&

( allocbuf@baseAddr@78 == allocbuf@baseAddr@0 ) ) &&

( re tva l_10@86 == 0) &&

( re tva l_10@86 == ( ( bool ) ( D_1786@85 < al loc@85 ) ) ) &&

( D_1786@85 == ( ( i n t ) ( D_1782@84 − D_1785@84 ) ) ) &&

( al loc@85 == ( ( i n t ) a l loc@0 ) ) &&

( D_1782@84 == ( ( i n t ) ( ( i n t ) D_1781@offset@80 ) ) ) &&

( D_1785@84 == ( ( i n t ) ( ( i n t ) D_1784@offset@83 ) ) ) &&

( D_1781@baseAddr@80 == allocbuf@baseAddr@79 ) &&

( a l l o c b u f @ o f f s e t @ 7 9 == 0) &&

( a l l o c b u f @ o f f s e t @ 7 9 < 1000) &&

( D_1781@offset@80 == ( a l l o c b u f @ o f f s e t @ 7 9 + 1000) ) &&

( D_1784@offset@83 == a l locp@of f se t@0 ) &&

( a l l o c b u f @ o f f s e t @ 7 9 == a l l o c b u f @ o f f s e t @ 0 ) &&

( a l locp@of f se t@0 < 100) &&

( a l l o c b u f @ o f f s e t @ 7 9 < 1000) &&

( a l l o c b u f @ o f f s e t @ 0 < 1000) &&

( D_1781@baseAddr@80 == D_1784@baseAddr@83 ) &&

( D_1784@baseAddr@83 == allocp@baseAddr@0 ) &&

( allocp@baseAddr@0 == allocbuf@baseAddr@79 ) &&

( allocbuf@baseAddr@79 == allocbuf@baseAddr@0 ) ) &&

( re tva l_12@93 != 0) &&

( re tva l_12@93 == ( ( bool ) ( D_1799@92 >= al loc@92 ) ) ) &&

( D_1799@92 == ( ( i n t ) ( D_1795@91 − D_1798@91 ) ) ) &&

( al loc@92 == ( ( i n t ) a l loc@0 ) ) &&

( D_1795@91 == ( ( i n t ) ( ( i n t ) D_1794@offset@87 ) ) ) &&

( D_1798@91 == ( ( i n t ) ( ( i n t ) D_1797@offset@90 ) ) ) &&

( D_1794@baseAddr@87 == allocbuf@baseAddr@86 ) &&

( a l l o c b u f @ o f f s e t @ 8 6 == 0) &&

( a l l o c b u f @ o f f s e t @ 8 6 < 1000) &&

( D_1794@offset@87 == ( a l l o c b u f @ o f f s e t @ 8 6 + 1000) ) &&

( D_1797@offset@90 == a l locp@of f se t@0 ) &&

( a l l o c b u f @ o f f s e t @ 8 6 == a l l o c b u f @ o f f s e t @ 0 ) &&

( a l locp@of f se t@0 < 100) &&

( a l l o c b u f @ o f f s e t @ 8 6 < 1000) &&

( a l l o c b u f @ o f f s e t @ 0 < 1000) &&

( D_1794@baseAddr@87 == D_1797@baseAddr@90 ) &&

( D_1797@baseAddr@90 == allocp@baseAddr@0 ) &&

( allocp@baseAddr@0 == allocbuf@baseAddr@86 ) &&

( allocbuf@baseAddr@86 == allocbuf@baseAddr@0 ) ) &&

( re tva l_14@96 == 0) &&

( re tva l_14@96 == ( ( bool ) ( D_1804@offset@95 != _ _ r t t _ r e t u r n _ 0 x 4 0 b f 1 2 d 8 @ o f f s e t @ 9 5 ) ) ) &&

( D_1804@offset@95 == a l locp@of f se t@0 ) &&

( a l locp@of f se t@0 < 100) &&

( D_1804@baseAddr@95 == __r t t_ re tu rn_0x40bf12d8@baseAddr@95 ) &&

( __r t t_ re tu rn_0x40bf12d8@baseAddr@95 == allocp@baseAddr@0 ) ) &&

( al loc@61 >= 0) &&

( al loc@61 == ( ( i n t ) a l loc@0 ) ) &&

( allocp_0@baseAddr@62 != 0) &&

( allocp_0@baseAddr@62 == a l locp@of f se t@61 ) &&

( allocp@baseAddr@61 == allocp@baseAddr@0 ) &&

( a l locp@of f se t@61 < 100) &&

( a l locp@of f se t@0 < 100) &&

( a l locp@of f se t@61 == a l locp@of f se t@0 ) &&

( a l locp@of f se t@61 < 100) &&

( allocp_0@baseAddr@62 == allocp@baseAddr@61 ) &&

( D_1763@68 >= al loc@68 ) &&
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( D_1763@68 == ( ( i n t ) ( D_1760@67 − al locp_2@67 ) ) ) &&

( al loc@68 == ( ( i n t ) a l loc@0 ) ) &&

( D_1760@67 == ( ( i n t ) ( ( i n t ) D_1759@offset@64 ) ) ) &&

( al locp_2@67 == ( ( i n t ) ( ( i n t ) a l locp_1@offse t@66 ) ) ) &&

( D_1759@baseAddr@64 == allocbuf@baseAddr@63 ) &&

( a l l o c b u f @ o f f s e t @ 6 3 == 0) &&

( a l l o c b u f @ o f f s e t @ 6 3 < 1000) &&

( D_1759@offset@64 == ( a l l o c b u f @ o f f s e t @ 6 3 + 1000) ) &&

( a l locp_1@off se t@66 == a l locp@off se t@65 ) &&

( a l l o c b u f @ o f f s e t @ 6 3 == a l l o c b u f @ o f f s e t @ 0 ) &&

( allocp@baseAddr@65 == allocp@baseAddr@0 ) &&

( a l locp@of f se t@65 < 100) &&

( a l locp@of f se t@0 < 100) &&

( a l locp@of f se t@65 == a l locp@of f se t@0 ) &&

( a l locp@of f se t@65 < 100) &&

( a l l o c b u f @ o f f s e t @ 6 3 < 1000) &&

( a l l o c b u f @ o f f s e t @ 0 < 1000) &&

( D_1759@baseAddr@64 == allocp_1@baseAddr@66 ) &&

( allocp_1@baseAddr@66 == allocp@baseAddr@65 ) &&

( allocp@baseAddr@65 == allocbuf@baseAddr@63 ) &&

( allocbuf@baseAddr@63 == allocbuf@baseAddr@0 ) &&

( allocp_8@baseAddr@77 != 0) &&

( allocp_8@baseAddr@77 == a l locp@of f se t@76 ) &&

( a l locp@off se t@76 == a l locp_5@off se t@71 ) &&

( a l locp_5@offse t@71 == ( a l locp_3@offse t@70 + n_4@70 ) ) &&

( a l locp_3@off se t@70 == a l locp@off se t@68 ) &&

( n_4@70 == ( ( unsigned i n t ) ( ( unsigned i n t ) a l loc@69 ) ) ) &&

( allocp@baseAddr@68 == allocp@baseAddr@0 ) &&

( a l locp@of f se t@68 < 100) &&

( a l locp@of f se t@0 < 100) &&

( a l locp@of f se t@68 == a l locp@of f se t@0 ) &&

( al loc@69 == ( ( i n t ) a l loc@0 ) ) &&

( a l locp@of f se t@76 < 100) &&

( a l locp@of f se t@68 < 100) &&

( allocp_8@baseAddr@77 == allocp@baseAddr@76 ) &&

( allocp@baseAddr@76 == allocp_5@baseAddr@71 ) &&

( allocp_5@baseAddr@71 == allocp_3@baseAddr@70 ) &&

( allocp_3@baseAddr@70 == allocp@baseAddr@68 ) &&

( a l locp_9@offse t@79 <= D_1778@offset@79 ) &&

( a l locp_9@off se t@79 == a l locp@off se t@77 ) &&

( D_1778@baseAddr@79 == allocbuf@baseAddr@78 ) &&

( a l l o c b u f @ o f f s e t @ 7 8 == 0) &&

( a l l o c b u f @ o f f s e t @ 7 8 < 1000) &&

( D_1778@offset@79 == ( a l l o c b u f @ o f f s e t @ 7 8 + 1000) ) &&

( a l locp@off se t@77 == a l locp_5@off se t@71 ) &&

( a l l o c b u f @ o f f s e t @ 7 8 == a l l o c b u f @ o f f s e t @ 0 ) &&

( a l locp@of f se t@77 < 100) &&

( a l l o c b u f @ o f f s e t @ 7 8 < 1000) &&

( a l l o c b u f @ o f f s e t @ 0 < 1000) &&

( allocp_9@baseAddr@79 == D_1778@baseAddr@79 ) &&

( D_1778@baseAddr@79 == allocp@baseAddr@77 ) &&

( allocp@baseAddr@77 == allocp_5@baseAddr@71 ) &&

( allocp_5@baseAddr@71 == allocbuf@baseAddr@78 ) &&

( allocbuf@baseAddr@78 == allocbuf@baseAddr@0 ) &&

( re tva l_10@86 == 0) &&

( re tva l_10@86 == ( ( bool ) ( D_1786@85 < al loc@85 ) ) ) &&

( D_1786@85 == ( ( i n t ) ( D_1782@84 − D_1785@84 ) ) ) &&

( al loc@85 == ( ( i n t ) a l loc@0 ) ) &&

( D_1782@84 == ( ( i n t ) ( ( i n t ) D_1781@offset@80 ) ) ) &&

( D_1785@84 == ( ( i n t ) ( ( i n t ) D_1784@offset@83 ) ) ) &&

( D_1781@baseAddr@80 == allocbuf@baseAddr@79 ) &&

( a l l o c b u f @ o f f s e t @ 7 9 == 0) &&
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( a l l o c b u f @ o f f s e t @ 7 9 < 1000) &&

( D_1781@offset@80 == ( a l l o c b u f @ o f f s e t @ 7 9 + 1000) ) &&

( D_1784@offset@83 == a l locp@of f se t@0 ) &&

( a l l o c b u f @ o f f s e t @ 7 9 == a l l o c b u f @ o f f s e t @ 0 ) &&

( a l locp@of f se t@0 < 100) &&

( a l l o c b u f @ o f f s e t @ 7 9 < 1000) &&

( a l l o c b u f @ o f f s e t @ 0 < 1000) &&

( D_1781@baseAddr@80 == D_1784@baseAddr@83 ) &&

( D_1784@baseAddr@83 == allocp@baseAddr@0 ) &&

( allocp@baseAddr@0 == allocbuf@baseAddr@79 ) &&

( allocbuf@baseAddr@79 == allocbuf@baseAddr@0 ) &&

( re tva l_12@93 != 0) &&

( re tva l_12@93 == ( ( bool ) ( D_1799@92 >= al loc@92 ) ) ) &&

( D_1799@92 == ( ( i n t ) ( D_1795@91 − D_1798@91 ) ) ) &&

( al loc@92 == ( ( i n t ) a l loc@0 ) ) &&

( D_1795@91 == ( ( i n t ) ( ( i n t ) D_1794@offset@87 ) ) ) &&

( D_1798@91 == ( ( i n t ) ( ( i n t ) D_1797@offset@90 ) ) ) &&

( D_1794@baseAddr@87 == allocbuf@baseAddr@86 ) &&

( a l l o c b u f @ o f f s e t @ 8 6 == 0) &&

( a l l o c b u f @ o f f s e t @ 8 6 < 1000) &&

( D_1794@offset@87 == ( a l l o c b u f @ o f f s e t @ 8 6 + 1000) ) &&

( D_1797@offset@90 == a l locp@of f se t@0 ) &&

( a l l o c b u f @ o f f s e t @ 8 6 == a l l o c b u f @ o f f s e t @ 0 ) &&

( a l locp@of f se t@0 < 100) &&

( a l l o c b u f @ o f f s e t @ 8 6 < 1000) &&

( a l l o c b u f @ o f f s e t @ 0 < 1000) &&

( D_1794@baseAddr@87 == D_1797@baseAddr@90 ) &&

( D_1797@baseAddr@90 == allocp@baseAddr@0 ) &&

( allocp@baseAddr@0 == allocbuf@baseAddr@86 ) &&

( allocbuf@baseAddr@86 == allocbuf@baseAddr@0 ) &&

( re tva l_14@96 == 0) &&

( re tva l_14@96 == ( ( bool ) ( D_1804@offset@95 != _ _ r t t _ r e t u r n _ 0 x 4 0 b f 1 2 d 8 @ o f f s e t @ 9 5 ) ) ) &&

( D_1804@offset@95 == a l locp@of f se t@0 ) &&

( a l locp@of f se t@0 < 100) &&

( D_1804@baseAddr@95 == __r t t_ re tu rn_0x40bf12d8@baseAddr@95 ) &&

( __r t t_ re tu rn_0x40bf12d8@baseAddr@95 == allocp@baseAddr@0 ) &&

( _ _ r t t _ r e t u r n _ 0 x 4 0 b f 1 2 d 8 @ o f f s e t @ 9 5 == re tu rn@of f se t@98 ) &&

( re tu rn@of f se t@98 == D_1809@offset@97 ) &&

( D_1809@offset@97 == re tva l_0x40bf1270@of f se t@96 ) &&

( re tva l_0x40bf1270@of f se t@96 == ( a l locp_6@offse t@75 + D_1771@75 ) ) &&

( a l locp_6@off se t@75 == a l locp@off se t@72 ) &&

( D_1771@75 == ( ( unsigned i n t ) (−n_7@74 ) ) ) &&

( a l locp@off se t@72 == a l locp_5@off se t@71 ) &&

( n_7@74 == ( ( unsigned i n t ) ( ( unsigned i n t ) a l loc@73 ) ) ) &&

( al loc@73 == ( ( i n t ) a l loc@0 ) ) &&

( a l locp@of f se t@72 < 100) &&

( return@baseAddr@98 == D_1809@baseAddr@97 ) &&

( D_1809@baseAddr@97 == retval_0x40bf1270@baseAddr@96 ) &&

( retval_0x40bf1270@baseAddr@96 == allocp_6@baseAddr@75 ) &&

( allocp_6@baseAddr@75 == allocp@baseAddr@72 ) &&

( allocp@baseAddr@72 == allocp_5@baseAddr@71 ) )

SOLUTION :

al loc@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

allocp@baseAddr@0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

a l locp@of f se t@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

al locbuf@baseAddr@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

a l l o c b u f @ o f f s e t @ 0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 0 )

al loc@61 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

allocp@baseAddr@61 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

a l locp@of f se t@61 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

allocp_0@baseAddr@62 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

al locbuf@baseAddr@63 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)
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a l l o c b u f @ o f f s e t @ 6 3 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

D_1759@baseAddr@64 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

D_1759@offset@64 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 1000)

allocp@baseAddr@65 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

a l locp@of f se t@65 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

allocp_1@baseAddr@66 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

a l locp_1@offse t@66 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

D_1760@67 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1000)

al locp_2@67 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 99)

al loc@68 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

allocp@baseAddr@68 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

a l locp@of f se t@68 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

D_1763@68 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 901)

al loc@69 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

allocp_3@baseAddr@70 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

a l locp_3@offse t@70 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

n_4@70 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 0 )

allocp_5@baseAddr@71 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

a l locp_5@offse t@71 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

allocp@baseAddr@72 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

a l locp@of f se t@72 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

al loc@73 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

n_7@74 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 0 )

D_1771@75 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 0 )

allocp_6@baseAddr@75 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

a l locp_6@offse t@75 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

allocp@baseAddr@76 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

a l locp@of f se t@76 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

allocp@baseAddr@77 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

a l locp@of f se t@77 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

allocp_8@baseAddr@77 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

al locbuf@baseAddr@78 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

a l l o c b u f @ o f f s e t @ 7 8 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

al locbuf@baseAddr@79 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

a l l o c b u f @ o f f s e t @ 7 9 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

D_1778@baseAddr@79 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

D_1778@offset@79 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 1000)

allocp_9@baseAddr@79 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

a l locp_9@offse t@79 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

D_1781@baseAddr@80 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

D_1781@offset@80 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 1000)

D_1784@baseAddr@83 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

D_1784@offset@83 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

D_1782@84 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1000)

D_1785@84 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 99)

al loc@85 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

D_1786@85 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 901)

al locbuf@baseAddr@86 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

a l l o c b u f @ o f f s e t @ 8 6 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

re tva l_10@86 = ( C o n c r e t e L a t t i c e <bool > , 0 )

D_1794@baseAddr@87 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

D_1794@offset@87 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 1000)

D_1797@baseAddr@90 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

D_1797@offset@90 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

D_1795@91 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1000)

D_1798@91 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 99)

al loc@92 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

D_1799@92 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 901)

re tva l_12@93 = ( C o n c r e t e L a t t i c e <bool > , 1 )

__r t t_ re tu rn_0x40bf12d8@baseAddr@95 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

D_1804@baseAddr@95 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

D_1804@offset@95 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)
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_ _ r t t _ r e t u r n _ 0 x 4 0 b f 1 2 d 8 @ o f f s e t @ 9 5 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

re tval_0x40bf1270@baseAddr@96 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

r e tva l_0x40bf1270@of f se t@96 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

re tva l_14@96 = ( C o n c r e t e L a t t i c e <bool > , 0 )

D_1809@baseAddr@97 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

D_1809@offset@97 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

return@baseAddr@98 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 99)

r e tu rn@of f se t@98 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 99)

MAX SIZE IS STILL NOT REACHED

NO EXPANSION IS POSSIBLE ANY MORE AND NO NEW TRACE

O p e r a t i o n a l l o c ( ) i s not c o v e r e d .

Uncovered t r a n s i t i o n s :

[ i d =40] −−− [ ( ! ( a l l o c p _ 8 != 0) ) ] −−−> _ _ r t t _ t e s t c a s e _ e r r o r _ _ ((& " ( n >= 0 && a l l o c p != 0)

" ) , (& " ( a l l o c p != 0 && a l l o c p <= a l l o c b u f + ALLOCSIZE ) " ) , (&" " ) ) ;

[ i d =42] −−− [ ( ! ( a l l o c p _ 9 <= D_1778 ) ) ] −−−> _ _ r t t _ t e s t c a s e _ e r r o r _ _ ((& " ( n >= 0 && a l l o c p

!= 0) " ) , (& " ( a l l o c p != 0 && a l l o c p <= a l l o c b u f + ALLOCSIZE ) " ) , (& " " ) ) ;

[ i d =44] −−− [ t rue ] −−−> D_1781 = ((& a l l o c b u f [ 0 ] ) + 1000) ;

[ i d =47] −−− [ ( _ _ r t t _ r e t u r n _ 0 x 4 0 b f 1 2 d 8 != 0) ] −−−> _ _ r t t _ t e s t c a s e _ e r r o r _ _ ((& " a l l o c b u f +

ALLOCSIZE−_ _ r t t _ i n i t i a l ( a l l o c p ) <n " ) , (&" _ _ r t t _ r e t u r n ==0 " ) , (& "CTGEN_001" ) ) ;

[ i d =49] −−− [ t rue ] −−−> D_1794 = ((& a l l o c b u f [ 0 ] ) + 1000) ;

[ i d =53] −−− [ ( r e t v a l _ 1 4 != 0) ] −−−> _ _ r t t _ t e s t c a s e _ e r r o r _ _ ((& " a l l o c b u f +ALLOCSIZE−
_ _ r t t _ i n i t i a l ( a l l o c p ) >=n " ) , (&" _ _ r t t _ r e t u r n == _ _ r t t _ i n i t i a l ( a l l o c p ) " ) , (& "CTGEN_002" ) )

;

[ i d =55] −−− [ t rue ] −−−> D_1809 = r e t v a l _ 0 x 4 0 b f 1 2 7 0 ;

Covered :

T o t a l t r a n s i t i o n s : 87%

T r a n s i t i o n s w i t h g u a r d s : 77%

2.4 GCOV Output

To control the coverage declared by the generator, we measured the actual coverage produced by running

of the generated test against the UUT with GCC. The result listed below shows, that as expected, the

generated test driver produced 100% branch coverage.

4 : 6 : char ∗ a l l o c ( i n t n ) {

4 : 7 : _ _ r t t _ m o d i f i e s ( a l l o c p ) ;

c a l l 0 r e t u r n e d 100%

−: 8 : _ _ r t t _ p r e c o n d i t i o n ( n >= 0 && a l l o c p != 0) ;

−: 9 : _ _ r t t _ p o s t c o n d i t i o n ( a l l o c p != 0 && a l l o c p <= a l l o c b u f + ALLOCSIZE ) ;

−: 1 0 : _ _ r t t _ t e s t c a s e ( a l l o c b u f + ALLOCSIZE − _ _ r t t _ i n i t i a l ( a l l o c p ) < n ,

−: 1 1 : _ _ r t t _ r e t u r n == 0 ,

4 : 1 2 : "CTGEN_001" ) ;

c a l l 0 r e t u r n e d 100%

−: 1 3 : _ _ r t t _ t e s t c a s e ( a l l o c b u f + ALLOCSIZE − _ _ r t t _ i n i t i a l ( a l l o c p ) >= n ,

−: 1 4 : _ _ r t t _ r e t u r n == _ _ r t t _ i n i t i a l ( a l l o c p ) ,

4 : 1 5 : "CTGEN_002" ) ;

c a l l 0 r e t u r n e d 100%

−: 1 6 :

4 : 1 7 : char ∗ r e t v a l = 0 ;

4 : 1 8 : i f ( a l l o c b u f + ALLOCSIZE − a l l o c p >= n ) {

b r a nc h 0 t a k e n 75% ( f a l l t h r o u g h )

b r a nc h 1 t a k e n 25%

3 : 1 9 : a l l o c p += n ;

3 : 2 0 : r e t v a l = a l l o c p − n ;

−: 2 1 : }

−: 2 2 :

4 : 2 3 : re turn r e t v a l ;
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−: 2 4 : }

2.5 Graphical Output

Figure 4 shows the graphical representation of the CFG corresponding to the module under test. As

expected, the nodes and edges corresponding to the test case or the postcondition violation are drawn

red, which indicates that the generator was not able to find any input data to cover them. All remaining

nodes and edges of this CFG are drawn blue, which indicates that all of them were successfully covered.

3 Dereferenced Pointer Resolution

This example corresponds to the example discussed in Subsection 5.6.2 and demonstrates how CTGEN

handles dereferenced pointers.

3.1 Analyzed Code

The source code listed below contains the implementation of the module under test ptr_test(). The

function receives two pointer parameters as input and reaches the line with an “error” in case when the

guard condition (*p1 == 1) is evaluated to true.

i n t p t r _ t e s t ( i n t ∗p1 , i n t ∗p2 )

{

∗p1 = 0 ;

∗p2 = 1 ;

i f (∗ p1 == 1) {

/ / e r r o r
re turn 1 ;

} e l s e {

re turn 0 ;

}

}

3.2 Generated Test Driver

This section demonstrates the test driver generated by the test generator in order to achieve 100% branch

coverage for the module under test ptr_test(). The generator needs two test cases to achieve com-

plete branch coverage, therefore the test driver contains two test steps. Since no specification of the

module under test was given, the test driver contains no assertions. The function ptr_test() contains

no defined or undefined function calls, thus no stub functions are generated.

First, the module under test is declared. Then auxiliary variables needed to manipulate pointer pa-

rameters in order to fulfill the guard conditions as well as variables for passing function parameters are

declared. In each test step the assignment of pointer parameters as well as auxiliary variables is made

according to the calculated values and after the setting is done, the module under test is invoked.

/∗ ===============================
∗ I n c l u d e s e c t i o n
∗ ===============================∗ /
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3 Dereferenced Pointer Resolution

Figure 4: Graphical representation for the annotation example.
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/∗ ===============================
∗ S t r u c t u r e s
∗ ===============================∗ /

/∗ ===============================
∗ Globa l or s t a t i c C d e c l a r a t i o n s and d e f i n i t i o n s
∗ ===============================∗ /

e x t e r n i n t p t r _ t e s t ( i n t ∗ p1 , i n t ∗ p2 ) ;

@uut i n t p t r _ t e s t ( i n t ∗ p1 , i n t ∗ p2 ) ;

/∗ ===============================
∗ A b s t r a c t machine d e c l a r a t i o n .
∗ ===============================∗ /

@abstract machine u n i t _ t e s t ( ) {

@INIT :

{

}

@FINIT :

@PROCESS:

i n t _ _ r t t _ r e t u r n ;

i n t p1_Po in t sTo ;

i n t ∗ p1 = &p1_Po in t sTo ;

i n t p2_Po in t sTo ;

i n t ∗ p2 = &p2_Po in t sTo ;

i n t p1_Po in t sTo_ [ 1 0 0 ] ;

unsigned i n t p 1 _ P o i n t s T o _ o f f s e t _ ;

unsigned i n t p 2 _ P o i n t s T o _ o f f s e t _ ;

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

p1 = p1_Po in t sTo_ ;

p2 = p1_Po in t sTo_ ;

p 1 _ P o i n t s T o _ o f f s e t _ = 4 8 ;

p1 += p 1 _ P o i n t s T o _ o f f s e t _ ;

p 2 _ P o i n t s T o _ o f f s e t _ = 4 8 ;

p2 += p 2 _ P o i n t s T o _ o f f s e t _ ;

@rttCal l ( _ _ r t t _ r e t u r n = p t r _ t e s t ( p1 , p2 ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

p1 = p1_Po in t sTo_ ;

p2 = p1_Po in t sTo_ ;

p 1 _ P o i n t s T o _ o f f s e t _ = 5 0 ;

p1 += p 1 _ P o i n t s T o _ o f f s e t _ ;

p 2 _ P o i n t s T o _ o f f s e t _ = 5 1 ;

p2 += p 2 _ P o i n t s T o _ o f f s e t _ ;
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@rttCal l ( _ _ r t t _ r e t u r n = p t r _ t e s t ( p1 , p2 ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

}

3.3 Solution File

This section demonstrates the solution file that results from the generation process. This file contains

the description of two traces (corresponding to the two test steps in the test driver). Each trace is first

specified by the list of its statements, then the path constraint calculated by the generator for this trace is

given and finally the solution computed by the solver for this path constraint is listed.

At the bottom of the solution file the statistics of the achieved coverage is reported, in this example it

is 100%.

SOLUTION FOR FUNCTION p t r _ t e s t

TRACE 1

TRACE COMPLETED

TRACE

{ ( (∗ p1 ) = 0 ; ) ,

( (∗ p2 ) = 1 ; ) ,

( D_1724 = (∗ p1 ) ; ) ,

( D_1727 = 1 ; ) ,

( re turn = D_1727 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 4

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( ( D_1724@16 == 1) &&

( ( D_1724@16 == 1) &&

( p1@offset@0 == p2@offset@0 ) | | ( ( D_1724@16 == 0) &&

( p1@offset@0 != p2@offset@0 ) ) ) ) &&

( p1@offset@0 < 100) ) &&

( p1@offset@0 == p1rt tTgenIdxExp0@15 ) ) &&

( p2@offset@0 < 100) ) &&

( p2@offset@0 == p2rt tTgenIdxExp0@15 ) ) &&

( p1@baseAddr@0 == p1@baseAddr@0 ) ) &&

( p1@baseAddr@0 == p2@baseAddr@0 ) )

SOLUTION :

p1@baseAddr@0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2147483648)

p1@offset@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 48)

p2@baseAddr@0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2147483648)

p2@offset@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 48)

p1r t tTgenIdxExp0@15 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 48)

p2r t tTgenIdxExp0@15 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 48)

D_1724@16 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1 )

TRACE 3

TRACE COMPLETED

TRACE

{ ( (∗ p1 ) = 0 ; ) ,

( (∗ p2 ) = 1 ; ) ,

( D_1724 = (∗ p1 ) ; ) ,
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( D_1727 = 0 ; ) ,

( re turn = D_1727 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 4

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( ( D_1724@16 != 1) &&

( ( D_1724@16 == 1) &&

( p1@offset@0 == p2@offset@0 ) | | ( ( D_1724@16 == 0) &&

( p1@offset@0 != p2@offset@0 ) ) ) ) &&

( p1@offset@0 < 100) ) &&

( p1@offset@0 == p1rt tTgenIdxExp0@15 ) ) &&

( p2@offset@0 < 100) ) &&

( p2@offset@0 == p2rt tTgenIdxExp0@15 ) ) &&

( p1@baseAddr@0 == p1@baseAddr@0 ) ) &&

( p1@baseAddr@0 == p2@baseAddr@0 ) )

SOLUTION :

p1@baseAddr@0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2147483648)

p1@offset@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 50)

p2@baseAddr@0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2147483648)

p2@offset@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 51)

p1r t tTgenIdxExp0@15 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 50)

p2r t tTgenIdxExp0@15 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 51)

D_1724@16 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

O p e r a t i o n p t r _ t e s t ( ) i s c o v e r e d .

Covered :

T o t a l t r a n s i t i o n s : 100%

T r a n s i t i o n s w i t h g u a r d s : 100%

3.4 Graphical Output

Figure 5 shows the graphical representation of the CFG corresponding to the module under test. All

nodes and edges of this CFG are drawn blue, which indicates that all of them were successfully covered.

4 Pointer Resolution

This example corresponds to the example discussed in Section 5.7 and demonstrates how CTGEN han-

dles pointer operations.

4.1 Analyzed Code

The source code listed below contains the implementation of the module under test test(). The func-

tion receives two pointer parameters as input and reaches the line with an “error” in case when the guard

condition (p1 < p2) is evaluated to true.

void t e s t ( char ∗p1 , char ∗p2 )

{

i f ( p1 < p2 ) {

i n t e r r o r = 1 ;

}
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4 Pointer Resolution

Figure 5: Graphical representation for the example Dereferenced Pointer Resolution.

re turn ;

}

4.2 Generated Test Driver

This section demonstrates the test driver generated by the test generator in order to achieve 100% branch

coverage for the module under test test(). The generator needs two test cases to achieve complete

branch coverage, therefore the test driver contains two test steps. Since no specification of the module

under test was given, the test driver contains no assertions. The function test() contains no defined or

undefined function calls, therefore no stub functions were generated.

First, the module under test is declared. Then auxiliary variables needed to manipulate pointer param-

eters in order to fulfill the guard conditions as well as variables for passing of the function parameters

are declared. In each test step the assignment of pointer parameters as well as auxiliary variables is made

according to the calculated values and after the setting is done, the module under test is invoked.

/∗ ===============================
∗ I n c l u d e s e c t i o n
∗ ===============================∗ /

/∗ ===============================
∗ Globa l or s t a t i c C d e c l a r a t i o n s and d e f i n i t i o n s
∗ ===============================∗ /

e x t e r n void t e s t ( char∗ p1 , char∗ p2 ) ;
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@uut void t e s t ( char∗ p1 , char∗ p2 ) ;

/∗ ===============================
∗ A b s t r a c t machine d e c l a r a t i o n .
∗ ===============================∗ /

@abstract machine u n i t _ t e s t ( ) {

@INIT :

{

}

@FINIT :

@PROCESS:

char p 1 _ r t t _ h e l p _ p o i n t e r ;

char∗ p1 = &p 1 _ r t t _ h e l p _ p o i n t e r ;

char p 2 _ r t t _ h e l p _ p o i n t e r ;

char∗ p2 = &p 2 _ r t t _ h e l p _ p o i n t e r ;

char p 1 _ r t t _ h e l p _ p o i n t e r _ [ 1 0 ] ;

unsigned i n t p 1 _ r t t _ h e l p _ p o i n t e r _ o f f s e t _ ;

unsigned i n t p 2 _ r t t _ h e l p _ p o i n t e r _ o f f s e t _ ;

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

p1 = p 1 _ r t t _ h e l p _ p o i n t e r _ ;

p2 = p 1 _ r t t _ h e l p _ p o i n t e r _ ;

p 1 _ r t t _ h e l p _ p o i n t e r _ o f f s e t _ = 1 ;

p1 += p 1 _ r t t _ h e l p _ p o i n t e r _ o f f s e t _ ;

;

p 2 _ r t t _ h e l p _ p o i n t e r _ o f f s e t _ = 9 ;

p2 += p 2 _ r t t _ h e l p _ p o i n t e r _ o f f s e t _ ;

;

@rttCal l ( t e s t ( p1 , p2 ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

p1 = p 1 _ r t t _ h e l p _ p o i n t e r _ ;

p2 = p 1 _ r t t _ h e l p _ p o i n t e r _ ;

p 1 _ r t t _ h e l p _ p o i n t e r _ o f f s e t _ = 9 ;

p1 += p 1 _ r t t _ h e l p _ p o i n t e r _ o f f s e t _ ;

;

p 2 _ r t t _ h e l p _ p o i n t e r _ o f f s e t _ = 9 ;

p2 += p 2 _ r t t _ h e l p _ p o i n t e r _ o f f s e t _ ;

;

@rttCal l ( t e s t ( p1 , p2 ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

}
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4.3 Solution File

This section demonstrates the solution file that results from the generation process. This file contains

the description of two traces (corresponding to the two test steps in the test driver). Each trace is first

specified by the list of its statements, then the path constraint calculated by the generator for this trace is

given and finally the solution computed by the solver for this path constraint is listed.

At the bottom of the solution file the statistics of the achieved coverage is reported, in this example it

is 100%.

SOLUTION FOR FUNCTION t e s t

TRACE 1

TRACE COMPLETED

TRACE

{ ( <EMPTYSTATEMENT> ; ) ,

( e r r o r _ 0 x 4 0 b e d 6 1 8 = 1 ; ) ,

( re turn ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 2

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( ( p1@offset@7 < p2@offset@7 ) &&

( p1@baseAddr@7 == p1@baseAddr@4 ) &&

( p1@offset@7 == p1@offset@4 ) ) &&

( p2@baseAddr@7 == p2@baseAddr@6 ) &&

( p2@offset@7 == p2@offset@6 ) ) &&

( p1@offset@7 < 10) ) &&

( p2@offset@7 < 10) ) &&

( p1@baseAddr@7 == p2@baseAddr@7 ) ) &&

( p1@baseAddr@7 != 0) ) &&

( p2@baseAddr@7 != 0) )

SOLUTION :

p1@baseAddr@4 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2147483648)

p1@offset@4 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 1 )

p2@baseAddr@6 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2147483648)

p2@offset@6 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 9 )

p1@baseAddr@7 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2147483648)

p1@offset@7 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 1 )

p2@baseAddr@7 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2147483648)

p2@offset@7 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 9 )

TRACE 2

TRACE COMPLETED

TRACE

{ ( <EMPTYSTATEMENT> ; ) ,

( re turn ; ) }

t r a c e S t a t e : CONT_AFTER_SOLVING

c u r r e n t S t e p N r : 1

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( ( p1@offset@7 >= p2@offset@7 ) &&

( p1@baseAddr@7 == p1@baseAddr@4 ) &&

( p1@offset@7 == p1@offset@4 ) ) &&

( p2@baseAddr@7 == p2@baseAddr@6 ) &&

( p2@offset@7 == p2@offset@6 ) ) &&
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Figure 6: Graphical representation for the example Pointer Resolution.

( p1@offset@7 < 10) ) &&

( p2@offset@7 < 10) ) &&

( p1@baseAddr@7 == p2@baseAddr@7 ) ) &&

( p1@baseAddr@7 != 0) ) &&

( p2@baseAddr@7 != 0) )

SOLUTION :

p1@baseAddr@4 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2147483648)

p1@offset@4 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 9 )

p2@baseAddr@6 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2147483648)

p2@offset@6 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 9 )

p1@baseAddr@7 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2147483648)

p1@offset@7 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 9 )

p2@baseAddr@7 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2147483648)

p2@offset@7 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 9 )

O p e r a t i o n t e s t ( ) i s c o v e r e d .

Covered :

T o t a l t r a n s i t i o n s : 100%

T r a n s i t i o n s w i t h g u a r d s : 100%

4.4 Graphical Output

Figure 6 shows the graphical representation of the CFG corresponding to the module under test. All

nodes and edges of this CFG are drawn blue, which indicates that all of them were successfully covered.

5 Address Operation Resolution

This example corresponds to the example discussed in Section 5.7.3 and demonstrates how CTGEN

handles address operations.
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5.1 Analyzed Code

The source code listed below contains the implementation of the module under test test_address().

The function sets two pointers p1 and p2 to elements of the input array a[10] and reaches the line with

an “error” in case when the guard condition (p1 > p2) is evaluated to true.

i n t a [ 1 0 ] ;

void t e s t _ a d d r e s s ( )

{

i n t ∗p1 = &a [ 1 ] ;

i n t ∗p2 = &a [ 4 ] ;

i f ( p1 > p2 ) {

i n t e r r o r = 1 ;

}

re turn ;

}

5.2 Generated Test Driver

This section demonstrates the test driver generated by the test generator in order to achieve the maximal

possible branch coverage for the module under test test_address(). The generator generated one

test case, since the UUT contains only two possible paths through it and one of them is infeasible. Since

no specification of the module under test was given, the test driver contains no assertions. Function

test() contains no defined or undefined function calls, therefore no stub functions are generated.

First, the module under test is declared. Since the guard condition of the only if-statement of the

UUT does not depend on any input, the generated test driver does not contain any settings for inputs.

/∗ ===============================
∗ I n c l u d e s e c t i o n
∗ ===============================∗ /

/∗ ===============================
∗ S t r u c t u r e s
∗ ===============================∗ /

/∗ ===============================
∗ Globa l or s t a t i c C d e c l a r a t i o n s and d e f i n i t i o n s
∗ ===============================∗ /

e x t e r n void t e s t _ a d d r e s s ( ) ;

@uut void t e s t _ a d d r e s s ( ) ;

e x t e r n i n t a [ 1 0 ] ;

/∗ ===============================
∗ A b s t r a c t machine d e c l a r a t i o n .
∗ ===============================∗ /

@abstract machine u n i t _ t e s t ( ) {

@INIT :

{

}

@FINIT :
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@PROCESS:

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

@rttCal l ( t e s t _ a d d r e s s ( ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
}

5.3 Solution File

This section demonstrates the solution file that results from the generation process. This file contains the

description of one trace (corresponding to the one test step in the test driver). The trace is first specified

by the list of its statements, then the path constraint calculated by the generator for this trace is given and

finally the solution computed by the solver for this path constraint is listed.

At the bottom of the solution file the statistics of the achieved coverage is reported, in this example it

is as expected 50%.

SOLUTION FOR FUNCTION t e s t _ a d d r e s s

TRACE 1

TRACE COMPLETED

TRACE

{ ( p1 = (&a [ 1 ] ) ; ) ,

( p2 = (&a [ 4 ] ) ; ) ,

( re turn ; ) }

t r a c e S t a t e : CONT_AFTER_SOLVING

c u r r e n t S t e p N r : 2

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( ( ( ( ( ( p1@offset@7 <= p2@offset@7 ) &&

( p1@baseAddr@7 == a@baseAddr@5 ) &&

( a@offset@5 == 0) &&

( a@offset@5 < 10) &&

( p1@offset@7 == ( a@offset@5 + 1) ) ) &&

( p2@baseAddr@7 == a@baseAddr@6 ) &&

( a@offset@6 == 0) &&

( a@offset@6 < 10) &&

( p2@offset@7 == ( a@offset@6 + 4) ) ) &&

( a@offset@5 == a@offset@0 ) ) &&

( a@offset@6 == a@offset@0 ) ) &&

( a@offset@5 < 10) ) &&

( a@offset@0 < 10) ) &&

( a@offset@6 < 10) ) &&

( p1@baseAddr@7 == p2@baseAddr@7 ) ) &&

( p2@baseAddr@7 == a@baseAddr@5 ) ) &&

( a@baseAddr@5 == a@baseAddr@0 ) ) &&

( a@baseAddr@0 == a@baseAddr@6 ) )

SOLUTION :

a@baseAddr@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 4294967295)

a@offset@0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 0 )

a@baseAddr@5 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 4294967295)

a@offset@5 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

a@baseAddr@6 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 4294967295)

a@offset@6 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )
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Figure 7: Graphical representation for the example Address Operation Resolution.

p1@baseAddr@7 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 4294967295)

p1@offset@7 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 1 )

p2@baseAddr@7 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 4294967295)

p2@offset@7 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 4 )

MAX SIZE IS STILL NOT REACHED

NO EXPANSION IS POSSIBLE ANY MORE AND NO NEW TRACE

O p e r a t i o n t e s t _ a d d r e s s ( ) i s not c o v e r e d .

Uncovered t r a n s i t i o n s :

[ i d =1] −−− [ ( p1 > p2 ) ] −−−> e r r o r = 1 ;

[ i d =3] −−− [ t rue ] −−−> re turn ;

Covered :

T o t a l t r a n s i t i o n s : 50%

T r a n s i t i o n s w i t h g u a r d s : 50%

5.4 Graphical Output

Figure 7 shows the graphical representation of the CFG corresponding to the module under test. All

covered nodes and edges of the CFG are drawn blue, all uncovered ones red.

6 Structure Access Resolution

This example corresponds to the example discussed in Section 5.8 and demonstrates the technique de-

veloped for the resolution of structure accesses.
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6.1 Analyzed Code

The source code listed below contains the implementation of the module under test structAccess().

The function receives a parameter p1 of type structType_t as input. The module under test contains

a couple of if statements which demonstrate different aspects of the algorithm developed for the reso-

lution of structure accesses: line 14 contains the evaluation of a defined structure field, line 16 contains

the evaluation of an undefined structure field and line 25 demonstrates a nested structure access.

1 t y p e d e f s t r u c t {

2 i n t f1 ;

3 i n t f2 ;

4 } n e s t e d S t r u c t T y p e _ t ;

5

6 t y p e d e f s t r u c t {

7 i n t f i e l d 1 ;

8 i n t f i e l d 2 ;

9 n e s t e d S t r u c t T y p e _ t f i e l d 3 ;

10 } s t r u c t T y p e _ t ;

11

12 i n t s t r u c t A c c e s s ( s t r u c t T y p e _ t p1 ) {

13 p1 . f i e l d 1 = 4 ;

14 i f ( p1 . f i e l d 1 < 0) {

15 re turn 1 ;

16 } e l s e i f ( p1 . f i e l d 2 > 0) {

17 re turn 2 ;

18 }

19

20 n e s t e d S t r u c t T y p e _ t tmp ;

21 tmp . f1 = 5 ;

22 tmp . f2 = 7 ;

23 p1 . f i e l d 3 = tmp ;

24

25 i f ( p1 . f i e l d 3 . f1 == 5) {

26 re turn 3 ;

27 }

28 re turn 4 ;

29 }

The analysis shows, that lines 15 and 28 of the module under test are unreachable since the guard

conditions (p1.field1 < 0) and (p1.field3.f1 != 5) are infeasible.

6.2 Generated Test Driver

This section demonstrates the test driver generated by the test generator in order to achieve the maximal

possible branch coverage for the module under test structAccess(). The generator produced two

test cases, therefore the test driver contains two test steps. Since no specification of the module under test

was given, the test driver contains no assertions. The function structAccess() contains no defined

or undefined function calls, therefore no stub functions are generated.

First, the module under test is declared. Then a variable needed for passing the parameter to the

module under test as well as an auxiliary variable for the return value of the function are declared. In

each test step the assignment of the parameter is made according to the calculated values and after the

setting is done, the module under test is invoked.

/∗ ===============================
∗ I n c l u d e s e c t i o n
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∗ ===============================∗ /

/∗ ===============================
∗ Globa l or s t a t i c C d e c l a r a t i o n s and d e f i n i t i o n s
∗ ===============================∗ /

e x t e r n i n t s t r u c t A c c e s s ( s t r u c t T y p e _ t p1 ) ;

@uut i n t s t r u c t A c c e s s ( s t r u c t T y p e _ t p1 ) ;

/∗ ===============================
∗ A b s t r a c t machine d e c l a r a t i o n .
∗ ===============================∗ /

@abstract machine u n i t _ t e s t ( ) {

@INIT :

{

}

@FINIT :

@PROCESS:

i n t _ _ r t t _ r e t u r n ;

s t r u c t T y p e _ t p1 ;

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

p1 . f i e l d 2 = 1073741824;

@rttCal l ( _ _ r t t _ r e t u r n = s t r u c t A c c e s s ( p1 ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

p1 . f i e l d 2 = −2147483648;

@rttCal l ( _ _ r t t _ r e t u r n = s t r u c t A c c e s s ( p1 ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

}

6.3 Solution File

This section demonstrates the solution file that results from the generation process. This file contains

the description of two traces (corresponding to the two test steps in the test driver). Each trace is first

specified by the list of its statements, then the path constraint calculated by the generator for this trace is

given and finally the solution computed by the solver for this path constraint is listed.

At the bottom of the solution file the statistics of the achieved coverage is reported. In this example,

since the module under test contains unreachable lines of code, the coverage is 66% for transitions with

guards and 71% for total transitions. Besides this statistics the uncovered transitions are listed.

SOLUTION FOR FUNCTION s t r u c t A c c e s s
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TRACE 3

TRACE COMPLETED

TRACE

{ ( p1 . f i e l d 1 = 4 ; ) ,

( D_1724 = p1 . f i e l d 1 ; ) ,

( D_1728 = p1 . f i e l d 2 ; ) ,

( D_1727 = 2 ; ) ,

( re turn = D_1727 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 4

f e a s i b l e : 1

CONSTRAINT :

( ( ( D_1724@12 >= 0) &&

( D_1724@12 == 4) ) &&

( D_1728@13 > 0) &&

( D_1728@13 == ( ( i n t ) p1 . f i e ld2@0 ) ) )

SOLUTION :

p1 . f i e ld2@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741824)

D_1724@12 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 4 )

D_1728@13 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741824)

TRACE 6

TRACE COMPLETED

TRACE

{ ( p1 . f i e l d 1 = 4 ; ) ,

( D_1724 = p1 . f i e l d 1 ; ) ,

( D_1728 = p1 . f i e l d 2 ; ) ,

( tmp_0x40bed784 . f1 = 5 ; ) ,

( tmp_0x40bed784 . f2 = 7 ; ) ,

( p1 . f i e l d 3 = tmp_0x40bed784 ; ) ,

( D_1731 = p1 . f i e l d 3 . f1 ; ) ,

( D_1727 = 3 ; ) ,

( re turn = D_1727 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 8

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( D_1724@12 >= 0) &&

( D_1724@12 == 4) ) &&

( D_1728@13 <= 0) &&

( D_1728@13 == ( ( i n t ) p1 . f i e ld2@0 ) ) ) &&

( D_1731@26 == 5) &&

( D_1731@26 == 5) )

SOLUTION :

p1 . f i e ld2@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

D_1724@12 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 4 )

D_1728@13 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2147483648)

D_1731@26 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 5 )

MAX SIZE IS STILL NOT REACHED

NO EXPANSION IS POSSIBLE ANY MORE AND NO NEW TRACE

O p e r a t i o n s t r u c t A c c e s s ( ) i s not c o v e r e d .

Uncovered t r a n s i t i o n s :

[ i d =4] −−− [ ( D_1724 < 0) ] −−−> D_1727 = 1 ;

[ i d =6] −−− [ t rue ] −−−> re turn = D_1727 ;
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[ i d =11] −−− [ ( ! ( D_1731 == 5) ) ] −−−> D_1727 = 4 ;

[ i d =13] −−− [ t rue ] −−−> re turn = D_1727 ;

Covered :

T o t a l t r a n s i t i o n s : 71%

T r a n s i t i o n s w i t h g u a r d s : 66%

6.4 Graphical Output

Figure 8 shows the graphical representation of the CFG corresponding to the module under test. All

covered nodes and edges of this CFG are drawn blue, all uncovered are drawn red. As expected, nodes

corresponding to line 15 (return 1;) and to line 28 (return 4;) as well as their incoming and

outgoing edges are marked as uncovered.

7 Pointer Structure Access Resolution

This example corresponds to the example discussed in Section 5.8.1 and demonstrates the technique

developed for the resolution of pointer structure accesses.

7.1 Analyzed Code

The source code listed below contains the implementation of the module under test getAge(). The

function receives a pointer parameter p of type person_t* as input. The module under test demon-

strates pointer access to a nested undefined structure field. The ranges of the global variables defining

the current date are restricted by a precondition, this is the only difference to the example discussed in

Section 5.8.1.

# i n c l u d e " c t g e n _ a n n o t a t i o n . h "

unsigned i n t CURRENT_DAY;

unsigned i n t CURRENT_MONTH;

unsigned i n t CURRENT_YEAR;

s t r u c t b i r t h d a y _ t

{

unsigned i n t day ;

unsigned i n t month ;

unsigned i n t y e a r ;

} ;

s t r u c t p e r s o n _ t {

f l o a t w e i g h t ;

i n t h e i g h t ;

bool i s M a l e ;

b i r t h d a y _ t b i r t h d a y ;

} ;

i n t getAge ( p e r s o n _ t ∗p )

{

_ _ r t t _ p r e c o n d i t i o n (0 < CURRENT_DAY && CURRENT_DAY < 32 &&

0 < CURRENT_MONTH && CURRENT_MONTH < 13 &&

2000 < CURRENT_YEAR && CURRENT_YEAR < 2014) ;
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Figure 8: Graphical representation for the example Structure Access Resolution.
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i n t age ;

i f (CURRENT_MONTH > p−> b i r t h d a y . month &&

CURRENT_DAY > p−> b i r t h d a y . day ) {

age = CURRENT_YEAR − p−> b i r t h d a y . y e a r ;

} e l s e {

age = CURRENT_YEAR − p−> b i r t h d a y . y e a r − 1 ;

}

re turn age ;

}

7.2 Generated Test Driver

This section demonstrates the test driver generated by the test generator in order to achieve 100% branch

coverage for the module under test getAge(). The generator produced three test cases, therefore the

test driver contains three test steps.

First, the module under test is declared. Then a variable required to pass the parameter to the module

under test as well as auxiliary variable needed for the initialization of the pointer parameter and an

auxiliary variable for the return value of the function are declared. In each test step the assignment of the

parameter and global variables is made according to the calculated values and after the setting is done,

the module under test is invoked.

/∗ ===============================
∗ I n c l u d e s e c t i o n
∗ ===============================∗ /

/∗ ===============================
∗ S t r u c t u r e s
∗ ===============================∗ /

s t r u c t b i r t h d a y _ t {

unsigned i n t day ;

unsigned i n t month ;

unsigned i n t y e a r ;

} ;

s t r u c t p e r s o n _ t {

f l o a t w e i g h t ;

i n t h e i g h t ;

bool i s M a l e ;

b i r t h d a y _ t ∗ b i r t h d a y ;

} ;

/∗ ===============================
∗ Globa l or s t a t i c C d e c l a r a t i o n s and d e f i n i t i o n s
∗ ===============================∗ /

e x t e r n i n t getAge ( p e r s o n _ t ∗ p ) ;

@uut i n t getAge ( p e r s o n _ t ∗ p ) ;

e x t er n unsigned i n t CURRENT_DAY;

e x t er n unsigned i n t CURRENT_MONTH;

e x t er n unsigned i n t CURRENT_YEAR;

/∗ ===============================
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∗ A b s t r a c t machine d e c l a r a t i o n .
∗ ===============================∗ /

@abstract machine u n i t _ t e s t ( ) {

@INIT :

{

}

@FINIT :

@PROCESS:

i n t _ _ r t t _ r e t u r n ;

p e r s o n _ t p _ P o i n t s T o ;

b i r t h d a y _ t p _ P o i n t s T o _ b i r t h d a y _ P o i n t s T o ;

p _ P o i n t s T o . b i r t h d a y = &p _ P o i n t s T o _ b i r t h d a y _ P o i n t s T o ;

p e r s o n _ t ∗ p = &p _ P o i n t s T o ;

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

CURRENT_DAY = 3 1 ;

CURRENT_DAY = 3 1 ;

CURRENT_DAY = 3 1 ;

CURRENT_DAY = 3 1 ;

CURRENT_MONTH = 7 ;

CURRENT_MONTH = 7 ;

CURRENT_MONTH = 7 ;

CURRENT_MONTH = 7 ;

CURRENT_YEAR = 2007 ;

CURRENT_YEAR = 2007 ;

CURRENT_YEAR = 2007 ;

p _ P o i n t s T o _ b i r t h d a y _ P o i n t s T o . month = 3 ;

p _ P o i n t s T o _ b i r t h d a y _ P o i n t s T o . day = 1 5 ;

@rttCal l ( _ _ r t t _ r e t u r n = getAge ( p ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

CURRENT_DAY = 1 6 ;

CURRENT_DAY = 1 6 ;

CURRENT_DAY = 1 6 ;

CURRENT_MONTH = 1 2 ;

CURRENT_MONTH = 1 2 ;

CURRENT_MONTH = 1 2 ;

CURRENT_MONTH = 1 2 ;

CURRENT_YEAR = 2008 ;

CURRENT_YEAR = 2008 ;

CURRENT_YEAR = 2008 ;

p _ P o i n t s T o _ b i r t h d a y _ P o i n t s T o . month = 1 2 ;

@rttCal l ( _ _ r t t _ r e t u r n = getAge ( p ) ) ;
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}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

CURRENT_DAY = 3 1 ;

CURRENT_DAY = 3 1 ;

CURRENT_DAY = 3 1 ;

CURRENT_DAY = 3 1 ;

CURRENT_MONTH = 7 ;

CURRENT_MONTH = 7 ;

CURRENT_MONTH = 7 ;

CURRENT_MONTH = 7 ;

CURRENT_YEAR = 2007 ;

CURRENT_YEAR = 2007 ;

CURRENT_YEAR = 2007 ;

p _ P o i n t s T o _ b i r t h d a y _ P o i n t s T o . month = 3 ;

p _ P o i n t s T o _ b i r t h d a y _ P o i n t s T o . day = 3 1 ;

@rttCal l ( _ _ r t t _ r e t u r n = getAge ( p ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

}

7.3 Solution File

This section demonstrates the solution file that results from the generation process. This file contains

the description of three traces (corresponding to the three test steps in the test driver). Each trace is first

specified by the list of its statements, then the path constraint calculated by the generator for this trace is

given and finally the solution computed by the solver for this path constraint is listed.

At the bottom of the solution file the statistics of the achieved coverage is reported, in this example it

is 100%.

SOLUTION FOR FUNCTION getAge

TRACE 8

TRACE COMPLETED

TRACE

{ ( _ _ r t t _ p r e c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

(CURRENT_DAY_4 = CURRENT_DAY ; ) ,

(CURRENT_DAY_5 = CURRENT_DAY ; ) ,

(CURRENT_MONTH_6 = CURRENT_MONTH; ) ,

(CURRENT_MONTH_7 = CURRENT_MONTH; ) ,

(CURRENT_YEAR_8 = CURRENT_YEAR ; ) ,

(CURRENT_YEAR_9 = CURRENT_YEAR ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1818 = p−> b i r t h d a y ; ) ,

( D_1819 = D_1818−>month ; ) ,

(CURRENT_MONTH_10 = CURRENT_MONTH; ) ,

( D_1822 = p−> b i r t h d a y ; ) ,

( D_1823 = D_1822−>day ; ) ,

(CURRENT_DAY_11 = CURRENT_DAY ; ) ,
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(CURRENT_YEAR_12 = CURRENT_YEAR ; ) ,

( D_1827 = p−> b i r t h d a y ; ) ,

( D_1828 = D_1827−>y e a r ; ) ,

( D_1829 = (CURRENT_YEAR_12 − D_1828 ) ; ) ,

( age_0x40bf0548 = ( ( i n t ) D_1829 ) ; ) ,

( D_1835 = age_0x40bf0548 ; ) ,

( re turn = D_1835 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 20

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( ( ( ( CURRENT_DAY_4@36 != 0) &&

(CURRENT_DAY_4@36 == ( ( unsigned i n t ) CURRENT_DAY@35) ) ) &&

(CURRENT_DAY@35 == CURRENT_DAY@0) ) &&

(CURRENT_DAY_5@37 <= 31) &&

(CURRENT_DAY_5@37 == ( ( unsigned i n t ) CURRENT_DAY@36) ) &&

(CURRENT_DAY@36 == CURRENT_DAY@0) ) &&

(CURRENT_MONTH_6@38 != 0) &&

(CURRENT_MONTH_6@38 == ( ( unsigned i n t ) CURRENT_MONTH@37) ) &&

(CURRENT_MONTH@37 == CURRENT_MONTH@0) ) &&

(CURRENT_MONTH_7@39 <= 12) &&

(CURRENT_MONTH_7@39 == ( ( unsigned i n t ) CURRENT_MONTH@38) ) &&

(CURRENT_MONTH@38 == CURRENT_MONTH@0) ) &&

(CURRENT_YEAR_8@40 > 2000) &&

(CURRENT_YEAR_8@40 == ( ( unsigned i n t ) CURRENT_YEAR@39) ) &&

(CURRENT_YEAR@39 == CURRENT_YEAR@0) ) &&

(CURRENT_YEAR_9@41 <= 2013) &&

(CURRENT_YEAR_9@41 == ( ( unsigned i n t ) CURRENT_YEAR@40) ) &&

(CURRENT_YEAR@40 == CURRENT_YEAR@0) ) &&

( D_1819@44 < CURRENT_MONTH_10@44) &&

( D_1819@44 == ( ( unsigned i n t ) p@Poin t sTo_b i r thday@Poin t sTo . month@0 ) ) &&

(CURRENT_MONTH_10@44 == ( ( unsigned i n t ) CURRENT_MONTH@43) ) &&

(CURRENT_MONTH@43 == CURRENT_MONTH@0) ) &&

( D_1823@47 < CURRENT_DAY_11@47) &&

( D_1823@47 == ( ( unsigned i n t ) p@Poin t sTo_b i r thday@Poin t sTo . day@0 ) ) &&

(CURRENT_DAY_11@47 == ( ( unsigned i n t ) CURRENT_DAY@46) ) &&

(CURRENT_DAY@46 == CURRENT_DAY@0) )

SOLUTION :

CURRENT_DAY@0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 31)

CURRENT_MONTH@0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 7 )

CURRENT_YEAR@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 2007)

p@Poin t sTo_b i r thday@Poin t sTo . month@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 3 )

p@Poin t sTo_b i r thday@Poin t sTo . day@0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 15)

CURRENT_DAY@35 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 31)

CURRENT_DAY@36 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 31)

CURRENT_DAY_4@36 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 31)

CURRENT_DAY_5@37 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 31)

CURRENT_MONTH@37 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 7 )

CURRENT_MONTH@38 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 7 )

CURRENT_MONTH_6@38 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 7 )

CURRENT_MONTH_7@39 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 7 )

CURRENT_YEAR@39 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 2007)

CURRENT_YEAR@40 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 2007)

CURRENT_YEAR_8@40 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2007)

CURRENT_YEAR_9@41 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2007)

CURRENT_MONTH@43 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 7 )

CURRENT_MONTH_10@44 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 7 )

D_1819@44 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 3 )

CURRENT_DAY@46 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 31)

CURRENT_DAY_11@47 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 31)

D_1823@47 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 15)
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TRACE 10

TRACE COMPLETED

TRACE

{ ( _ _ r t t _ p r e c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

(CURRENT_DAY_4 = CURRENT_DAY ; ) ,

(CURRENT_DAY_5 = CURRENT_DAY ; ) ,

(CURRENT_MONTH_6 = CURRENT_MONTH; ) ,

(CURRENT_MONTH_7 = CURRENT_MONTH; ) ,

(CURRENT_YEAR_8 = CURRENT_YEAR ; ) ,

(CURRENT_YEAR_9 = CURRENT_YEAR ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1818 = p−> b i r t h d a y ; ) ,

( D_1819 = D_1818−>month ; ) ,

(CURRENT_MONTH_10 = CURRENT_MONTH; ) ,

(CURRENT_YEAR_13 = CURRENT_YEAR ; ) ,

( D_1831 = p−> b i r t h d a y ; ) ,

( D_1832 = D_1831−>y e a r ; ) ,

( D_1833 = (CURRENT_YEAR_13 − D_1832 ) ; ) ,

( D_1834 = ( D_1833 + 4294967295) ; ) ,

( age_0x40bf0548 = ( ( i n t ) D_1834 ) ; ) ,

( D_1835 = age_0x40bf0548 ; ) ,

( re turn = D_1835 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 18

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( ( ( CURRENT_DAY_4@36 != 0) &&

(CURRENT_DAY_4@36 == ( ( unsigned i n t ) CURRENT_DAY@35) ) ) &&

(CURRENT_DAY@35 == CURRENT_DAY@0) ) &&

(CURRENT_DAY_5@37 <= 31) &&

(CURRENT_DAY_5@37 == ( ( unsigned i n t ) CURRENT_DAY@36) ) &&

(CURRENT_DAY@36 == CURRENT_DAY@0) ) &&

(CURRENT_MONTH_6@38 != 0) &&

(CURRENT_MONTH_6@38 == ( ( unsigned i n t ) CURRENT_MONTH@37) ) &&

(CURRENT_MONTH@37 == CURRENT_MONTH@0) ) &&

(CURRENT_MONTH_7@39 <= 12) &&

(CURRENT_MONTH_7@39 == ( ( unsigned i n t ) CURRENT_MONTH@38) ) &&

(CURRENT_MONTH@38 == CURRENT_MONTH@0) ) &&

(CURRENT_YEAR_8@40 > 2000) &&

(CURRENT_YEAR_8@40 == ( ( unsigned i n t ) CURRENT_YEAR@39) ) &&

(CURRENT_YEAR@39 == CURRENT_YEAR@0) ) &&

(CURRENT_YEAR_9@41 <= 2013) &&

(CURRENT_YEAR_9@41 == ( ( unsigned i n t ) CURRENT_YEAR@40) ) &&

(CURRENT_YEAR@40 == CURRENT_YEAR@0) ) &&

( D_1819@44 >= CURRENT_MONTH_10@44) &&

( D_1819@44 == ( ( unsigned i n t ) p@Poin t sTo_b i r thday@Poin t sTo . month@0 ) ) &&

(CURRENT_MONTH_10@44 == ( ( unsigned i n t ) CURRENT_MONTH@43) ) &&

(CURRENT_MONTH@43 == CURRENT_MONTH@0) )

SOLUTION :

CURRENT_DAY@0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 16)

CURRENT_MONTH@0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 12)

CURRENT_YEAR@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 2008)

p@Poin t sTo_b i r thday@Poin t sTo . month@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 12)

CURRENT_DAY@35 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 16)

CURRENT_DAY@36 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 16)

CURRENT_DAY_4@36 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 16)

CURRENT_DAY_5@37 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 16)

CURRENT_MONTH@37 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 12)
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CURRENT_MONTH@38 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 12)

CURRENT_MONTH_6@38 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 12)

CURRENT_MONTH_7@39 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 12)

CURRENT_YEAR@39 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 2008)

CURRENT_YEAR@40 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 2008)

CURRENT_YEAR_8@40 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2008)

CURRENT_YEAR_9@41 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2008)

CURRENT_MONTH@43 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 12)

CURRENT_MONTH_10@44 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 12)

D_1819@44 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 12)

TRACE 11

TRACE COMPLETED

TRACE

{ ( _ _ r t t _ p r e c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

(CURRENT_DAY_4 = CURRENT_DAY ; ) ,

(CURRENT_DAY_5 = CURRENT_DAY ; ) ,

(CURRENT_MONTH_6 = CURRENT_MONTH; ) ,

(CURRENT_MONTH_7 = CURRENT_MONTH; ) ,

(CURRENT_YEAR_8 = CURRENT_YEAR ; ) ,

(CURRENT_YEAR_9 = CURRENT_YEAR ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1818 = p−> b i r t h d a y ; ) ,

( D_1819 = D_1818−>month ; ) ,

(CURRENT_MONTH_10 = CURRENT_MONTH; ) ,

( D_1822 = p−> b i r t h d a y ; ) ,

( D_1823 = D_1822−>day ; ) ,

(CURRENT_DAY_11 = CURRENT_DAY ; ) ,

(CURRENT_YEAR_13 = CURRENT_YEAR ; ) }

t r a c e S t a t e : CONT_AFTER_SOLVING

c u r r e n t S t e p N r : 14

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( ( ( ( CURRENT_DAY_4@36 != 0) &&

(CURRENT_DAY_4@36 == ( ( unsigned i n t ) CURRENT_DAY@35) ) ) &&

(CURRENT_DAY@35 == CURRENT_DAY@0) ) &&

(CURRENT_DAY_5@37 <= 31) &&

(CURRENT_DAY_5@37 == ( ( unsigned i n t ) CURRENT_DAY@36) ) &&

(CURRENT_DAY@36 == CURRENT_DAY@0) ) &&

(CURRENT_MONTH_6@38 != 0) &&

(CURRENT_MONTH_6@38 == ( ( unsigned i n t ) CURRENT_MONTH@37) ) &&

(CURRENT_MONTH@37 == CURRENT_MONTH@0) ) &&

(CURRENT_MONTH_7@39 <= 12) &&

(CURRENT_MONTH_7@39 == ( ( unsigned i n t ) CURRENT_MONTH@38) ) &&

(CURRENT_MONTH@38 == CURRENT_MONTH@0) ) &&

(CURRENT_YEAR_8@40 > 2000) &&

(CURRENT_YEAR_8@40 == ( ( unsigned i n t ) CURRENT_YEAR@39) ) &&

(CURRENT_YEAR@39 == CURRENT_YEAR@0) ) &&

(CURRENT_YEAR_9@41 <= 2013) &&

(CURRENT_YEAR_9@41 == ( ( unsigned i n t ) CURRENT_YEAR@40) ) &&

(CURRENT_YEAR@40 == CURRENT_YEAR@0) ) &&

( D_1819@44 < CURRENT_MONTH_10@44) &&

( D_1819@44 == ( ( unsigned i n t ) p@Poin t sTo_b i r thday@Poin t sTo . month@0 ) ) &&

(CURRENT_MONTH_10@44 == ( ( unsigned i n t ) CURRENT_MONTH@43) ) &&

(CURRENT_MONTH@43 == CURRENT_MONTH@0) ) &&

( D_1823@47 >= CURRENT_DAY_11@47) &&

( D_1823@47 == ( ( unsigned i n t ) p@Poin t sTo_b i r thday@Poin t sTo . day@0 ) ) &&

(CURRENT_DAY_11@47 == ( ( unsigned i n t ) CURRENT_DAY@46) ) &&

(CURRENT_DAY@46 == CURRENT_DAY@0) )
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SOLUTION :

CURRENT_DAY@0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 31)

CURRENT_MONTH@0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 7 )

CURRENT_YEAR@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 2007)

p@Poin t sTo_b i r thday@Poin t sTo . month@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 3 )

p@Poin t sTo_b i r thday@Poin t sTo . day@0 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 31)

CURRENT_DAY@35 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 31)

CURRENT_DAY@36 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 31)

CURRENT_DAY_4@36 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 31)

CURRENT_DAY_5@37 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 31)

CURRENT_MONTH@37 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 7 )

CURRENT_MONTH@38 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 7 )

CURRENT_MONTH_6@38 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 7 )

CURRENT_MONTH_7@39 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 7 )

CURRENT_YEAR@39 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 2007)

CURRENT_YEAR@40 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 2007)

CURRENT_YEAR_8@40 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2007)

CURRENT_YEAR_9@41 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2007)

CURRENT_MONTH@43 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 7 )

CURRENT_MONTH_10@44 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 7 )

D_1819@44 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 3 )

CURRENT_DAY@46 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 31)

CURRENT_DAY_11@47 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 31)

D_1823@47 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 31)

O p e r a t i o n getAge ( ) i s c o v e r e d .

Covered :

T o t a l t r a n s i t i o n s : 100%

T r a n s i t i o n s w i t h g u a r d s : 100%

7.4 Graphical Output

Figure 9 shows the graphical representation of the CFG corresponding to the module under test. All

nodes and edges of this CFG are drawn blue, which indicates that all of them are successfully covered.

8 Processing Bit Fields

This example corresponds to the example discussed in Section 5.9 and demonstrates the technique de-

veloped for the handling of bit fields.

8.1 Analyzed Code

The source code listed below contains the implementation of the module under test test(). The func-

tion evaluates the global variable globalBF, which consists of 12 bit fields. The module under test

demonstrates how the generator processes bit fields.

1 t y p e d e f unsigned char u i n t 8 _ t ;

2 t y p e d e f s t r u c t b i t f i e l d _ t {

3 u i n t 8 _ t b i t 1 : 1 ;

4 u i n t 8 _ t b i t 2 : 1 ;

5 u i n t 8 _ t b i t 3 : 1 ;

6 u i n t 8 _ t b i t 4 : 1 ;

7 u i n t 8 _ t b i t 5 : 1 ;
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Figure 9: Graphical representation for the example Pointer Structure Access Resolution.
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8 u i n t 8 _ t b i t 6 : 1 ;

9 u i n t 8 _ t b i t 7 : 1 ;

10 u i n t 8 _ t b i t 8 : 1 ;

11 u i n t 8 _ t b i t 9 : 1 ;

12 u i n t 8 _ t b i t 1 0 : 1 ;

13 u i n t 8 _ t b i t 1 1 : 1 ;

14 u i n t 8 _ t b i t 1 2 : 1 ;

15 } b i t f i e l d _ t ;

16

17 b i t f i e l d _ t g loba lBF ;

18

19 i n t t e s t ( )

20 {

21 i n t r e t v a l = 0 ;

22 g loba lBF . b i t 1 1 = 1 ;

23 g loba lBF . b i t 5 = 0 ;

24 i f ( g loba lBF . b i t 1 1 && globa lBF . b i t 5 ) {

25 r e t v a l = 1 ;

26 } e l s e i f ( g loba lBF . b i t 2 ) {

27 r e t v a l = 2 ;

28 }

29

30 re turn r e t v a l ;

31 }

8.2 Generated Test Driver

This section demonstrates the test driver generated by the test generator in order to achieve the maximal

possible branch coverage for the module under test test(). The generator produced two test cases,

therefore the test driver contains two test steps. Since no specification for the module under test was

given, the test driver contains no assertions. The function test() contains no defined or undefined

function calls, therefore no stub functions are generated.

First, the module under test and the global variable globalBF are declared. In each test step the

assignment of the global variable is made according to the calculated values and after the setting is done,

the module under test is invoked.

/∗ ===============================
∗ I n c l u d e s e c t i o n
∗ ===============================∗ /

/∗ ===============================
∗ S t r u c t u r e s
∗ ===============================∗ /

s t r u c t b i t f i e l d _ t {

u i n t 8 _ t b i t 1 ;

u i n t 8 _ t b i t 2 ;

u i n t 8 _ t b i t 3 ;

u i n t 8 _ t b i t 4 ;

u i n t 8 _ t b i t 5 ;

u i n t 8 _ t b i t 6 ;

u i n t 8 _ t b i t 7 ;

u i n t 8 _ t b i t 8 ;

u i n t 8 _ t b i t 9 ;

u i n t 8 _ t b i t 1 0 ;

u i n t 8 _ t b i t 1 1 ;
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u i n t 8 _ t b i t 1 2 ;

} ;

/∗ ===============================
∗ Globa l or s t a t i c C d e c l a r a t i o n s and d e f i n i t i o n s
∗ ===============================∗ /

e x t e r n i n t t e s t ( ) ;

@uut i n t t e s t ( ) ;

e x t e r n b i t f i e l d _ t g loba lBF ;

/∗ ===============================
∗ A b s t r a c t machine d e c l a r a t i o n .
∗ ===============================∗ /

@abstract machine u n i t _ t e s t ( ) {

@INIT :

{

}

@FINIT :

@PROCESS:

i n t _ _ r t t _ r e t u r n ;

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

g loba lBF . b i t 1 2 = 31

;

g loba lBF . b i t 9 = 0 ;

g loba lBF . b i t 1 0 = 0 ;

g loba lBF . b i t 1 1 = 1 ;

g loba lBF . b i t 1 2 = 3 1 ;

g loba lBF . b i t 1 = 0 ;

g loba lBF . b i t 2 = 1 ;

g loba lBF . b i t 3 = 0 ;

g loba lBF . b i t 4 = 0 ;

g loba lBF . b i t 5 = 0 ;

g loba lBF . b i t 6 = 0 ;

g loba lBF . b i t 7 = 0 ;

g loba lBF . b i t 8 = 0 ;

@rttCal l ( _ _ r t t _ r e t u r n = t e s t ( ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

g loba lBF . b i t 1 2 = 31

;

g loba lBF . b i t 9 = 0 ;

g loba lBF . b i t 1 0 = 0 ;

g loba lBF . b i t 1 1 = 1 ;

g loba lBF . b i t 1 2 = 3 1 ;

g loba lBF . b i t 1 = 0 ;
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g loba lBF . b i t 2 = 0 ;

g loba lBF . b i t 3 = 0 ;

g loba lBF . b i t 4 = 0 ;

g loba lBF . b i t 5 = 0 ;

g loba lBF . b i t 6 = 0 ;

g loba lBF . b i t 7 = 0 ;

g loba lBF . b i t 8 = 0 ;

@rttCal l ( _ _ r t t _ r e t u r n = t e s t ( ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

}

8.3 Solution File

This section demonstrates the solution file that results from the generation process. This file contains

the description of two traces (corresponding to the two test steps in the test driver). Each trace is first

specified by the list of its statements, then the path constraint calculated by the generator for this trace is

given and finally the solution computed by the solver for this path constraint is listed.

At the bottom of the solution file the statistics of the achieved coverage is reported. In this example,

since the module under test contains unreachable branches, the coverage is 66% for transitions with

guards and 80% for the total transitions. Furthermore, the uncovered transitions are listed.

SOLUTION FOR FUNCTION t e s t

TRACE 4

TRACE COMPLETED

TRACE

{ ( r e t v a l _ 0 x 4 0 b e e 8 f 0 = 0 ; ) ,

( g loba lBF . b i t 1 1 = 1 ; ) ,

( g loba lBF . b i t 5 = 0 ; ) ,

( D_1729 = BIT_FIELD_REF ( globalBF , 8 , 8 ) ; ) ,

( D_1730 = ( D_1729 & 4) ; ) ,

( D_1732 = BIT_FIELD_REF ( globalBF , 8 , 0 ) ; ) ,

( D_1733 = ( D_1732 & 16) ; ) ,

( D_1735 = BIT_FIELD_REF ( globalBF , 8 , 0 ) ; ) ,

( D_1736 = ( D_1735 & 2) ; ) ,

( r e t v a l _ 0 x 4 0 b e e 8 f 0 = 2 ; ) ,

( D_1740 = r e t v a l _ 0 x 4 0 b e e 8 f 0 ; ) ,

( re turn = D_1740 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 11

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( D_1730@22 != 0) &&

( D_1730@22 == ( ( unsigned char ) ( D_1729@21 & 4) ) ) ) &&

( ( D_1729@21 & 248) == ( g loba lBF . bit12@0 << 3) ) &&

( ( D_1729@21 & 4) == 4) &&

( D_1729@21 == ( ( unsigned char ) r t t E x t r a c t ( globalBF@17 , 15 , 8 ) ) ) ) &&

( D_1733@24 == 0) &&

( D_1733@24 == ( ( unsigned char ) ( D_1732@23 & 16) ) ) &&

( ( D_1732@23 & 16) == 0) &&

( D_1732@23 == ( ( unsigned char ) r t t E x t r a c t ( globalBF@17 , 7 , 0 ) ) ) ) &&

( D_1736@26 != 0) &&

( D_1736@26 == ( ( unsigned char ) ( D_1735@25 & 2) ) ) &&
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( ( D_1735@25 & 16) == 0) &&

( D_1735@25 == ( ( unsigned char ) r t t E x t r a c t ( globalBF@17 , 7 , 0 ) ) ) )

SOLUTION :

g loba lBF . bit12@0 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 31)

g loba lBF . bit9@21 = 0 ;

g loba lBF . bit10@21 = 0 ;

g loba lBF . bit11@21 = 1 ;

g loba lBF . bit12@21 = 3 1 ;

D_1730@22 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 4 )

g loba lBF . bit1@23 = 0 ;

g loba lBF . bit2@23 = 1 ;

g loba lBF . bit3@23 = 0 ;

g loba lBF . bit4@23 = 0 ;

g loba lBF . bit5@23 = 0 ;

g loba lBF . bit6@23 = 0 ;

g loba lBF . bit7@23 = 0 ;

g loba lBF . bit8@23 = 0 ;

D_1733@24 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 0 )

g loba lBF . bit1@25 = 0 ;

g loba lBF . bit2@25 = 1 ;

g loba lBF . bit3@25 = 0 ;

g loba lBF . bit4@25 = 0 ;

g loba lBF . bit5@25 = 0 ;

g loba lBF . bit6@25 = 0 ;

g loba lBF . bit7@25 = 0 ;

g loba lBF . bit8@25 = 0 ;

D_1736@26 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 2 )

TRACE 7

TRACE COMPLETED

TRACE

{ ( r e t v a l _ 0 x 4 0 b e e 8 f 0 = 0 ; ) ,

( g loba lBF . b i t 1 1 = 1 ; ) ,

( g loba lBF . b i t 5 = 0 ; ) ,

( D_1729 = BIT_FIELD_REF ( globalBF , 8 , 8 ) ; ) ,

( D_1730 = ( D_1729 & 4) ; ) ,

( D_1732 = BIT_FIELD_REF ( globalBF , 8 , 0 ) ; ) ,

( D_1733 = ( D_1732 & 16) ; ) ,

( D_1735 = BIT_FIELD_REF ( globalBF , 8 , 0 ) ; ) ,

( D_1736 = ( D_1735 & 2) ; ) ,

( D_1740 = r e t v a l _ 0 x 4 0 b e e 8 f 0 ; ) ,

( re turn = D_1740 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 10

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( D_1730@22 != 0) &&

( D_1730@22 == ( ( unsigned char ) ( D_1729@21 & 4) ) ) ) &&

( ( D_1729@21 & 248) == ( g loba lBF . bit12@0 << 3) ) &&

( ( D_1729@21 & 4) == 4) &&

( D_1729@21 == ( ( unsigned char ) r t t E x t r a c t ( globalBF@17 , 15 , 8 ) ) ) ) &&

( D_1733@24 == 0) &&

( D_1733@24 == ( ( unsigned char ) ( D_1732@23 & 16) ) ) &&

( ( D_1732@23 & 16) == 0) &&

( D_1732@23 == ( ( unsigned char ) r t t E x t r a c t ( globalBF@17 , 7 , 0 ) ) ) ) &&

( D_1736@26 == 0) &&

( D_1736@26 == ( ( unsigned char ) ( D_1735@25 & 2) ) ) &&

( ( D_1735@25 & 16) == 0) &&

( D_1735@25 == ( ( unsigned char ) r t t E x t r a c t ( globalBF@17 , 7 , 0 ) ) ) )
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SOLUTION :

g loba lBF . bit12@0 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 31)

g loba lBF . bit9@21 = 0 ;

g loba lBF . bit10@21 = 0 ;

g loba lBF . bit11@21 = 1 ;

g loba lBF . bit12@21 = 3 1 ;

D_1730@22 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 4 )

g loba lBF . bit1@23 = 0 ;

g loba lBF . bit2@23 = 0 ;

g loba lBF . bit3@23 = 0 ;

g loba lBF . bit4@23 = 0 ;

g loba lBF . bit5@23 = 0 ;

g loba lBF . bit6@23 = 0 ;

g loba lBF . bit7@23 = 0 ;

g loba lBF . bit8@23 = 0 ;

D_1733@24 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 0 )

g loba lBF . bit1@25 = 0 ;

g loba lBF . bit2@25 = 0 ;

g loba lBF . bit3@25 = 0 ;

g loba lBF . bit4@25 = 0 ;

g loba lBF . bit5@25 = 0 ;

g loba lBF . bit6@25 = 0 ;

g loba lBF . bit7@25 = 0 ;

g loba lBF . bit8@25 = 0 ;

D_1736@26 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 0 )

MAX SIZE IS STILL NOT REACHED

NO EXPANSION IS POSSIBLE ANY MORE AND NO NEW TRACE

O p e r a t i o n t e s t ( ) i s not c o v e r e d .

Uncovered t r a n s i t i o n s :

[ i d =8] −−− [ ( ! ( D_1730 != 0) ) ] −−−> D_1735 = BIT_FIELD_REF ( globalBF , 8 , 0 ) ;

[ i d =9] −−− [ ( D_1733 != 0) ] −−−> r e t v a l _ 0 x 4 0 b e e 8 f 0 = 1 ;

[ i d =11] −−− [ t rue ] −−−> D_1740 = r e t v a l _ 0 x 4 0 b e e 8 f 0 ;

Covered :

T o t a l t r a n s i t i o n s : 80%

T r a n s i t i o n s w i t h g u a r d s : 66%

8.4 Graphical Output

Figure 10 shows the graphical representation of the CFG corresponding to the module under test. All

covered nodes and edges of this CFG are drawn blue, all uncovered ones are drawn red. As expected, the

node corresponding to line 25 (retval = 1;) as well as its incoming and outgoing edges are marked

as uncovered. The edge corresponding to the evaluation of the bitfield globalBF.bit11 to zero is

also marked as uncovered.

9 Processing Unions (Example 1)

This example corresponds to the example discussed in Section 5.10 and demonstrates the technique

developed for the handling of unions, in particular the case of access to a smaller union member after the

assignment of a bigger one.
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Figure 10: Graphical representation for the example Bitfields.
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9.1 Analyzed Code

The source code listed below contains the implementation of the module under test test_sym1(). By

the example of the module under test we demonstrate the algorithm developed for the resolution of union

access.

t y p e d e f union {

unsigned s h o r t c2u16 ;

unsigned char c2u8 [ 2 ] ;

} union_u16 ;

union_u16 g loba lV ;

i n t t e s t _ s y m 1 ( unsigned s h o r t x )

{

g loba lV . c2u16 = x ;

i f ( g loba lV . c2u8 [ 0 ] == 0 x f f && globa lV . c2u8 [ 1 ] == 85) {

re turn 1 ;

}

re turn 0 ;

}

9.2 Generated Test Driver

This section demonstrates the test driver generated by the test generator in order to achieve the maximal

possible branch coverage for the module under test test_sym1(). The generator produced three test

cases, therefore the test driver contains three test steps. The test driver assigns the input parameter x
according to the solution calculated by the solver in each test step before the call to the module under

test. Since no specification of the module under test was given, the test driver contains no assertions. The

function test_sym1() contains no defined or undefined function calls, therefore no stub functions are

generated.

/∗ ===============================
∗ I n c l u d e s e c t i o n
∗ ===============================∗ /

/∗ ===============================
∗ S t r u c t u r e s
∗ ===============================∗ /

/∗ ===============================
∗ Globa l or s t a t i c C d e c l a r a t i o n s and d e f i n i t i o n s
∗ ===============================∗ /

e x t e r n i n t t e s t _ s y m 1 ( s h o r t unsigned i n t x ) ;

@uut i n t t e s t _ s y m 1 ( s h o r t unsigned i n t x ) ;

/∗ ===============================
∗ A b s t r a c t machine d e c l a r a t i o n .
∗ ===============================∗ /

@abstract machine u n i t _ t e s t ( ) {

@INIT :

{

}

@FINIT :

@PROCESS:
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i n t _ _ r t t _ r e t u r n ;

s h o r t unsigned i n t x ;

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

x = 22015 ;

@rttCal l ( _ _ r t t _ r e t u r n = t e s t _ s y m 1 ( x ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

x = 191 ;

@rttCal l ( _ _ r t t _ r e t u r n = t e s t _ s y m 1 ( x ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

x = 54783 ;

@rttCal l ( _ _ r t t _ r e t u r n = t e s t _ s y m 1 ( x ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

}

9.3 Solution File

This section demonstrates the solution file that results from the generation process. This file contains

the description of three traces (corresponding to the three test steps in the test driver). Each trace is first

specified by the list of its statements, then the path constraint calculated by the generator for this trace is

given and finally the solution computed by the solver for this path constraint is listed.

At the bottom of the solution file the statistics of the achieved coverage is reported. In this example

the coverage is 100%.

SOLUTION FOR FUNCTION t e s t _ s y m 1

TRACE 2

TRACE COMPLETED

TRACE

{ ( g loba lV . c2u16 = x ; ) ,

( D_1732 = g loba lV . c2u8 [ 0 ] ; ) ,

( D_1735 = g loba lV . c2u8 [ 1 ] ; ) ,

( D_1738 = 1 ; ) ,

( re turn = D_1738 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 4

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( D_1732@11 == 255) &&

( D_1732@11 == ( ( unsigned char ) ( ( unsigned char ) ( ( x@6 >> 0) & 255) ) ) ) ) &&

(x@6 == ( ( s h o r t unsigned i n t ) x@0) ) ) &&

( D_1735@12 == 85) &&

( D_1735@12 == ( ( unsigned char ) ( ( unsigned char ) ( ( x@6 >> 8) & 255) ) ) ) )

SOLUTION :
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x@0 = ( C o n c r e t e L a t t i c e < unsigned s h o r t i n t > , 22015)

x@6 = ( C o n c r e t e L a t t i c e < unsigned s h o r t i n t > , 22015)

D_1732@11 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 255)

D_1735@12 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 85)

TRACE 4

TRACE COMPLETED

TRACE

{ ( g loba lV . c2u16 = x ; ) ,

( D_1732 = g loba lV . c2u8 [ 0 ] ; ) ,

( D_1738 = 0 ; ) ,

( re turn = D_1738 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 3

f e a s i b l e : 1

CONSTRAINT :

( ( ( D_1732@11 != 255) &&

( D_1732@11 == ( ( unsigned char ) ( ( unsigned char ) ( ( x@6 >> 0) & 255) ) ) ) ) &&

(x@6 == ( ( s h o r t unsigned i n t ) x@0) ) )

SOLUTION :

x@0 = ( C o n c r e t e L a t t i c e < unsigned s h o r t i n t > , 191)

x@6 = ( C o n c r e t e L a t t i c e < unsigned s h o r t i n t > , 191)

D_1732@11 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 191)

TRACE 5

TRACE COMPLETED

TRACE

{ ( g loba lV . c2u16 = x ; ) ,

( D_1732 = g loba lV . c2u8 [ 0 ] ; ) ,

( D_1735 = g loba lV . c2u8 [ 1 ] ; ) ,

( D_1738 = 0 ; ) }

t r a c e S t a t e : CONT_AFTER_SOLVING

c u r r e n t S t e p N r : 3

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( D_1732@11 == 255) &&

( D_1732@11 == ( ( unsigned char ) ( ( unsigned char ) ( ( x@6 >> 0) & 255) ) ) ) ) &&

(x@6 == ( ( s h o r t unsigned i n t ) x@0) ) ) &&

( D_1735@12 != 85) &&

( D_1735@12 == ( ( unsigned char ) ( ( unsigned char ) ( ( x@6 >> 8) & 255) ) ) ) )

SOLUTION :

x@0 = ( C o n c r e t e L a t t i c e < unsigned s h o r t i n t > , 54783)

x@6 = ( C o n c r e t e L a t t i c e < unsigned s h o r t i n t > , 54783)

D_1732@11 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 255)

D_1735@12 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 213)

O p e r a t i o n t e s t _ s y m 1 ( ) i s c o v e r e d .

Covered :

T o t a l t r a n s i t i o n s : 100%

T r a n s i t i o n s w i t h g u a r d s : 100%
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Figure 11: Graphical representation for the example Unions (1).

9.4 Graphical Output

Figure 11 shows the graphical representation of the CFG corresponding to the module under test. All

nodes and edges of this CFG are drawn blue since the generator was able to achieve 100% branch

coverage.

10 Processing Unions (Example 2)

This example corresponds to the example discussed in Section 5.10 and demonstrates the technique

developed for the handling of unions, in particular the case of access to a bigger member after the

assignment of small ones.

10.1 Analyzed Code

The source code listed below contains the implementation of the module under test test_sym2(). By

the example of the module under test we demonstrate the algorithm developed for the resolution of union

access.

t y p e d e f union {

unsigned s h o r t c2u16 ;

unsigned char c2u8 [ 2 ] ;

} union_u16 ;

union_u16 g loba lV ;

i n t t e s t _ s y m 2 ( unsigned char x , unsigned char y )
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{

g loba lV . c2u8 [ 0 ] = x ;

g loba lV . c2u8 [ 1 ] = y ;

i f ( g loba lV . c2u16 == 0 x5555 ) {

re turn 1 ;

}

re turn 0 ;

}

10.2 Generated Test Driver

This section demonstrates the test driver generated by the test generator in order to achieve the maximal

possible branch coverage for the module under test test_sym2(). The generator produced two test

cases, therefore the test driver contains two test steps. The test driver makes assignments of the param-

eters x and y according to the solution calculated by the solver in each test step before the call to the

module under test. Since no specification of the module under test was given, the test driver contains no

assertions. The function test_sym2() contains no defined or undefined function calls, therefore no

stub functions are generated.

/∗ ===============================
∗ I n c l u d e s e c t i o n
∗ ===============================∗ /

/∗ ===============================
∗ S t r u c t u r e s
∗ ===============================∗ /

/∗ ===============================
∗ Globa l or s t a t i c C d e c l a r a t i o n s and d e f i n i t i o n s
∗ ===============================∗ /

e x t e r n i n t t e s t _ s y m 2 ( unsigned char x , unsigned char y ) ;

@uut i n t t e s t _ s y m 2 ( unsigned char x , unsigned char y ) ;

/∗ ===============================
∗ A b s t r a c t machine d e c l a r a t i o n .
∗ ===============================∗ /

@abstract machine u n i t _ t e s t ( ) {

@INIT :

{

}

@FINIT :

@PROCESS:

i n t _ _ r t t _ r e t u r n ;

unsigned char x ;

unsigned char y ;

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

x = 8 5 ;

y = 8 5 ;

@rttCal l ( _ _ r t t _ r e t u r n = t e s t _ s y m 2 ( x , y ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

x = 8 5 ;

y = 213 ;

@rttCal l ( _ _ r t t _ r e t u r n = t e s t _ s y m 2 ( x , y ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

}

10.3 Solution File

This section demonstrates the solution file that results from the generation process. This file contains

the description of two traces (corresponding to the two test steps in the test driver). Each trace is first

specified by the list of its statements, then the path constraint calculated by the generator for this trace is

given and finally the solution computed by the solver for this path constraint is listed.

At the bottom of the solution file the statistics of the achieved coverage is reported. In this example

the coverage is 100%.

SOLUTION FOR FUNCTION t e s t _ s y m 2

TRACE 1

TRACE COMPLETED

TRACE

{ ( g loba lV . c2u8 [ 0 ] = x ; ) ,

( g loba lV . c2u8 [ 1 ] = y ; ) ,

( D_1727 = g loba lV . c2u16 ; ) ,

( D_1730 = 1 ; ) ,

( re turn = D_1730 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 4

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( D_1727@15 == 21845) &&

( D_1727@15 == ( ( s h o r t unsigned i n t ) ( ( ( s h o r t unsigned i n t ) (x@6 << 0) ) | ( ( s h o r t unsigned
i n t ) ( y@10 << 8) ) ) ) ) ) &&

(x@6 == ( ( unsigned char ) x@0) ) ) &&

( y@10 == ( ( unsigned char ) y@0) ) )

SOLUTION :

x@0 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 85)

y@0 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 85)

x@6 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 85)

y@10 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 85)

D_1727@15 = ( C o n c r e t e L a t t i c e <unsigned s h o r t i n t > , 21845)

TRACE 3

TRACE COMPLETED

TRACE

{ ( g loba lV . c2u8 [ 0 ] = x ; ) ,

( g loba lV . c2u8 [ 1 ] = y ; ) ,

( D_1727 = g loba lV . c2u16 ; ) ,

( D_1730 = 0 ; ) ,

( re turn = D_1730 ; ) }
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Figure 12: Graphical representation for the example Unions (2).

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 4

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( D_1727@15 != 21845) &&

( D_1727@15 == ( ( s h o r t unsigned i n t ) ( ( ( s h o r t unsigned i n t ) (x@6 << 0) ) | ( ( s h o r t unsigned
i n t ) ( y@10 << 8) ) ) ) ) ) &&

(x@6 == ( ( unsigned char ) x@0) ) ) &&

( y@10 == ( ( unsigned char ) y@0) ) )

SOLUTION :

x@0 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 85)

y@0 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 213)

x@6 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 85)

y@10 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 213)

D_1727@15 = ( C o n c r e t e L a t t i c e <unsigned s h o r t i n t > , 54613)

O p e r a t i o n t e s t _ s y m 2 ( ) i s c o v e r e d .

Covered :

T o t a l t r a n s i t i o n s : 100%

T r a n s i t i o n s w i t h g u a r d s : 100%

10.4 Graphical Output

Figure 12 demonstrates the graphical representation of the CFG corresponding to the module under test.

All nodes and edges of this CFG are drawn blue since the generator was able to achieve 100% branch
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coverage.

11 Pointer Union Access Resolution

This example corresponds to the example discussed in Section 5.10.3 and demonstrates the technique

developed for the resolution of pointer union accesses.

11.1 Analyzed Code

The source code listed below contains the implementation of the module under test union_ptr1().

The function receives a parameter x of type unsigned short and a global variable globalP of a

union pointer type as input. The module under test demonstrates pointer access to a union member.

t y p e d e f union {

unsigned s h o r t c2u16 ;

unsigned char c2u8 [ 2 ] ;

} union_u16 ;

union_u16 g loba lV ;

union_u16 ∗ g l o b a l P = &globa lV ;

i n t u n i o n _ p t r 1 ( unsigned s h o r t x )

{

g l o b a l P −>c2u16 = x ;

i f ( g l o b a l P −>c2u8 [ 0 ] == 0 x f f && g l o b a l P −>c2u8 [ 1 ] == 85) {

re turn 1 ;

}

re turn 0 ;

}

11.2 Generated Test Driver

This section demonstrates the test driver generated by the test generator in order to achieve 100% branch

coverage for the module under test union_ptr1(). The generator produced three test cases, therefore

the test driver contains three test steps. Since no specification for the module under test was given, the test

driver contains no assertions. The function union_ptr1() contains no defined or undefined function

calls, therefore no stub functions are generated.

First, the module under test is declared. Then a variable required to pass the parameter to the module

under test as well as an auxiliary variable for the return value of the function are declared. In each test

step the assignment of the parameter is made according to the calculated values and after the setting is

done, the module under test is invoked.

/∗ ===============================
∗ I n c l u d e s e c t i o n
∗ ===============================∗ /

/∗ ===============================
∗ S t r u c t u r e s
∗ ===============================∗ /
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/∗ ===============================
∗ Globa l or s t a t i c C d e c l a r a t i o n s and d e f i n i t i o n s
∗ ===============================∗ /

e x t e r n i n t u n i o n _ p t r 1 ( s h o r t unsigned i n t x ) ;

@uut i n t u n i o n _ p t r 1 ( s h o r t unsigned i n t x ) ;

/∗ ===============================
∗ A b s t r a c t machine d e c l a r a t i o n .
∗ ===============================∗ /

@abstract machine u n i t _ t e s t ( ) {

@INIT :

{

}

@FINIT :

@PROCESS:

i n t _ _ r t t _ r e t u r n ;

s h o r t unsigned i n t x ;

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

x = 22015 ;

@rttCal l ( _ _ r t t _ r e t u r n = u n i o n _ p t r 1 ( x ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

x = 191 ;

@rttCal l ( _ _ r t t _ r e t u r n = u n i o n _ p t r 1 ( x ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

x = 54783 ;

@rttCal l ( _ _ r t t _ r e t u r n = u n i o n _ p t r 1 ( x ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

}

11.3 Solution File

This section demonstrates the solution file that results from the generation process. This file contains

the description of three traces (corresponding to the three test steps in the test driver). Each trace is first

specified by the list of its statements, then the path constraint calculated by the generator for this trace is

given and finally the solution computed by the solver for this path constraint is shown.

At the bottom of the solution file the statistics of the achieved coverage is reported. In this example it

is 100%.

SOLUTION FOR FUNCTION u n i o n _ p t r 1
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TRACE 2

TRACE COMPLETED

TRACE

{ ( g l o b a l P _ 2 = g l o b a l P ; ) ,

( g loba lP_2 −>c2u16 = x ; ) ,

( g l o b a l P _ 3 = g l o b a l P ; ) ,

( D_1754 = g loba lP_3 −>c2u8 [ 0 ] ; ) ,

( g l o b a l P _ 4 = g l o b a l P ; ) ,

( D_1758 = g loba lP_4 −>c2u8 [ 1 ] ; ) ,

( D_1761 = 1 ; ) ,

( re turn = D_1761 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 7

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( D_1754@23 == 255) &&

( D_1754@23 == ( ( unsigned char ) ( ( unsigned char ) ( ( x@17 >> 0) & 255) ) ) ) ) &&

( x@17 == ( ( s h o r t unsigned i n t ) x@0) ) ) &&

( D_1758@25 == 85) &&

( D_1758@25 == ( ( unsigned char ) ( ( unsigned char ) ( ( x@17 >> 8) & 255) ) ) ) )

SOLUTION :

x@0 = ( C o n c r e t e L a t t i c e < unsigned s h o r t i n t > , 22015)

x@17 = ( C o n c r e t e L a t t i c e < unsigned s h o r t i n t > , 22015)

D_1754@23 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 255)

D_1758@25 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 85)

TRACE 4

TRACE COMPLETED

TRACE

{ ( g l o b a l P _ 2 = g l o b a l P ; ) ,

( g loba lP_2 −>c2u16 = x ; ) ,

( g l o b a l P _ 3 = g l o b a l P ; ) ,

( D_1754 = g loba lP_3 −>c2u8 [ 0 ] ; ) ,

( D_1761 = 0 ; ) ,

( re turn = D_1761 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 5

f e a s i b l e : 1

CONSTRAINT :

( ( ( D_1754@23 != 255) &&

( D_1754@23 == ( ( unsigned char ) ( ( unsigned char ) ( ( x@17 >> 0) & 255) ) ) ) ) &&

( x@17 == ( ( s h o r t unsigned i n t ) x@0) ) )

SOLUTION :

x@0 = ( C o n c r e t e L a t t i c e < unsigned s h o r t i n t > , 191)

x@17 = ( C o n c r e t e L a t t i c e < unsigned s h o r t i n t > , 191)

D_1754@23 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 191)

TRACE 5

TRACE COMPLETED

TRACE

{ ( g l o b a l P _ 2 = g l o b a l P ; ) ,

( g loba lP_2 −>c2u16 = x ; ) ,

( g l o b a l P _ 3 = g l o b a l P ; ) ,

( D_1754 = g loba lP_3 −>c2u8 [ 0 ] ; ) ,
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( g l o b a l P _ 4 = g l o b a l P ; ) ,

( D_1758 = g loba lP_4 −>c2u8 [ 1 ] ; ) ,

( D_1761 = 0 ; ) }

t r a c e S t a t e : CONT_AFTER_SOLVING

c u r r e n t S t e p N r : 6

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( D_1754@23 == 255) &&

( D_1754@23 == ( ( unsigned char ) ( ( unsigned char ) ( ( x@17 >> 0) & 255) ) ) ) ) &&

( x@17 == ( ( s h o r t unsigned i n t ) x@0) ) ) &&

( D_1758@25 != 85) &&

( D_1758@25 == ( ( unsigned char ) ( ( unsigned char ) ( ( x@17 >> 8) & 255) ) ) ) )

SOLUTION :

x@0 = ( C o n c r e t e L a t t i c e < unsigned s h o r t i n t > , 54783)

x@17 = ( C o n c r e t e L a t t i c e < unsigned s h o r t i n t > , 54783)

D_1754@23 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 255)

D_1758@25 = ( C o n c r e t e L a t t i c e < s i g n e d s h o r t i n t > , 213)

O p e r a t i o n u n i o n _ p t r 1 ( ) i s c o v e r e d .

Covered :

T o t a l t r a n s i t i o n s : 100%

T r a n s i t i o n s w i t h g u a r d s : 100%

11.4 Graphical Output

Figure 13 shows the graphical representation of the CFG corresponding to the module under test. All

nodes and edges of this CFG are drawn blue, which indicates that all of them were successfully covered.

12 Processing Input Arrays

This example corresponds to the example discussed in Section 5.11.1 and demonstrates the technique

developed for handling input arrays.

12.1 Analyzed Code

The source code listed below contains the implementation of the module under test test(). The module

under test test() compares two elements of the integer array a[] and returns true, if the element

a[x] is greater then the element a[y] and false otherwise. The array a[] as well as the indices x and

y are inputs. To ensure, that the passed values of x and y are within the array bounds we specified a

precondition.

# i n c l u d e " c t g e n _ a n n o t a t i o n . h "

# d e f i n e N 2

t y p e d e f i n t my_array [N ] ;

i n t t e s t ( my_array a , unsigned i n t x , unsigned i n t y )

{

_ _ r t t _ p r e c o n d i t i o n ( x < N && y < N) ;

i n t r e t v a l = 0 ;

i f ( a [ x ] > a [ y ] ) {

r e t v a l = 1 ;
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Figure 13: Graphical representation for the example Pointer Union Access.

252



12 Processing Input Arrays

} e l s e {

r e t v a l = 0 ;

}

re turn r e t v a l ;

}

12.2 Generated Test Driver

This section demonstrates the test driver generated by the test generator in order to achieve 100% branch

coverage for the module under test test(). The generator needs two test cases to achieve complete

branch coverage, therefore the test driver contains two test steps.

First, the module under test is declared. Then the auxiliary array needed to manipulate array param-

eters in order to fulfill the guard conditions as well as variables for passing of the function parameters

are declared. In each test step the assignment of array and other parameters is made according to the

calculated values. After the setting is done, the module under test is invoked.

/∗ ===============================
∗ I n c l u d e s e c t i o n
∗ ===============================∗ /

/∗ ===============================
∗ S t r u c t u r e s
∗ ===============================∗ /

/∗ ===============================
∗ Globa l or s t a t i c C d e c l a r a t i o n s and d e f i n i t i o n s
∗ ===============================∗ /

e x t e r n i n t t e s t ( i n t ∗ a , unsigned i n t x , unsigned i n t y ) ;

@uut i n t t e s t ( i n t ∗ a , unsigned i n t x , unsigned i n t y ) ;

/∗ ===============================
∗ A b s t r a c t machine d e c l a r a t i o n .
∗ ===============================∗ /

@abstract machine u n i t _ t e s t ( ) {

@INIT :

@FINIT :

@PROCESS:

i n t _ _ r t t _ r e t u r n ;

i n t a _ P o i n t s T o ;

i n t ∗ a = &a _ P o i n t s T o ;

unsigned i n t x ;

unsigned i n t y ;

i n t a _ r t t _ a r r a y [ 1 0 0 ] ;

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

y = 0 ;

x = 1 ;

a _ r t t _ a r r a y [ 0 ] = −513;

a = a _ r t t _ a r r a y ;

a _ r t t _ a r r a y [ 1 ] = −1;

a = a _ r t t _ a r r a y ;

@rttCal l ( _ _ r t t _ r e t u r n = t e s t ( a , x , y ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

y = 0 ;

x = 0 ;

a _ r t t _ a r r a y [ 0 ] = −1;

a = a _ r t t _ a r r a y ;

@rttCal l ( _ _ r t t _ r e t u r n = t e s t ( a , x , y ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

}

12.3 Solution File

This section demonstrates the solution file that results from the generation process. This file contains

the description of two traces (corresponding to the two test steps in the test driver). Each trace is first

specified by the list of its statements, then the path constraint calculated by the generator for this trace is

given and finally the solution computed by the solver for this path constraint is listed.

At the bottom of the solution file the statistics of the achieved coverage is reported. In this example it

is 100%.

SOLUTION FOR FUNCTION t e s t

TRACE 3

TRACE COMPLETED

TRACE

{ ( _ _ r t t _ p r e c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( <EMPTYSTATEMENT> ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( r e t v a l _ 0 x 4 0 b f 0 3 a 8 = 0 ; ) ,

( D_1763 = ( x ∗ 4) ; ) ,

( D_1764 = ( a + D_1763 ) ; ) ,

( D_1765 = (∗D_1764 ) ; ) ,

( D_1766 = ( y ∗ 4) ; ) ,

( D_1767 = ( a + D_1766 ) ; ) ,

( D_1768 = (∗D_1767 ) ; ) ,

( r e t v a l _ 0 x 4 0 b f 0 3 a 8 = 1 ; ) ,

( D_1772 = r e t v a l _ 0 x 4 0 b f 0 3 a 8 ; ) ,

( re turn = D_1772 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 12

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( x@14 <= 1) &&

( x@14 == ( ( unsigned i n t ) x@0) ) ) &&

( y@14 <= 1) &&

( y@14 == ( ( unsigned i n t ) y@0) ) ) &&

( D_1765@21 > D_1768@21 ) &&

( rt tTgenIdxExp0@17 == ( ( 8 ∗ (x@0 ∗ 4) ) / 32) ) &&

(0 <= ( r t tTgenIdxExp0@17 ∗ 32) ) &&

( ( r t tTgenIdxExp0@17 ∗ 32) < 3200) &&

( D_1765@21 == r t t A r r a y R e a d (a@ARRAY_ACCESS@0, r t tTgenIdxExp0@17 ) ) &&

( r t tTgenIdxExp0@20 == ( ( 8 ∗ (y@0 ∗ 4) ) / 32) ) &&

(0 <= ( r t tTgenIdxExp0@20 ∗ 32) ) &&

( ( r t tTgenIdxExp0@20 ∗ 32) < 3200) &&
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( D_1768@21 == r t t A r r a y R e a d (a@ARRAY_ACCESS@0, r t tTgenIdxExp0@20 ) ) )

SOLUTION :

x@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 1 )

y@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

a@ARRAY_ACCESS[ 0 ]@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −513)

a@ARRAY_ACCESS[ 1 ]@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

x@14 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 1 )

y@14 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

r t tTgenIdxExp0@17 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 1 )

r t tTgenIdxExp0@20 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

D_1765@21 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

D_1768@21 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −513)

TRACE 5

TRACE COMPLETED

TRACE

{ ( _ _ r t t _ p r e c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( <EMPTYSTATEMENT> ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( r e t v a l _ 0 x 4 0 b f 0 3 a 8 = 0 ; ) ,

( D_1763 = ( x ∗ 4) ; ) ,

( D_1764 = ( a + D_1763 ) ; ) ,

( D_1765 = (∗D_1764 ) ; ) ,

( D_1766 = ( y ∗ 4) ; ) ,

( D_1767 = ( a + D_1766 ) ; ) ,

( D_1768 = (∗D_1767 ) ; ) ,

( r e t v a l _ 0 x 4 0 b f 0 3 a 8 = 0 ; ) ,

( D_1772 = r e t v a l _ 0 x 4 0 b f 0 3 a 8 ; ) ,

( re turn = D_1772 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 12

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( x@14 <= 1) &&

( x@14 == ( ( unsigned i n t ) x@0) ) ) &&

( y@14 <= 1) &&

( y@14 == ( ( unsigned i n t ) y@0) ) ) &&

( D_1765@21 <= D_1768@21 ) &&

( rt tTgenIdxExp0@17 == ( ( 8 ∗ (x@0 ∗ 4) ) / 32) ) &&

(0 <= ( r t tTgenIdxExp0@17 ∗ 32) ) &&

( ( r t tTgenIdxExp0@17 ∗ 32) < 3200) &&

( D_1765@21 == r t t A r r a y R e a d (a@ARRAY_ACCESS@0, r t tTgenIdxExp0@17 ) ) &&

( r t tTgenIdxExp0@20 == ( ( 8 ∗ (y@0 ∗ 4) ) / 32) ) &&

(0 <= ( r t tTgenIdxExp0@20 ∗ 32) ) &&

( ( r t tTgenIdxExp0@20 ∗ 32) < 3200) &&

( D_1768@21 == r t t A r r a y R e a d (a@ARRAY_ACCESS@0, r t tTgenIdxExp0@20 ) ) )

SOLUTION :

x@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

y@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

a@ARRAY_ACCESS[ 0 ]@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

x@14 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

y@14 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

r t tTgenIdxExp0@17 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

r t tTgenIdxExp0@20 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

D_1765@21 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

D_1768@21 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

O p e r a t i o n t e s t ( ) i s c o v e r e d .

Covered :
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T o t a l t r a n s i t i o n s : 100%

T r a n s i t i o n s w i t h g u a r d s : 100%

12.4 Graphical Output

Figure 14 shows the graphical representation of the CFG corresponding to the module under test. All

nodes and edges of this CFG are drawn blue, which indicates that all of them were successfully covered.

13 Processing Global Arrays

This example corresponds to the example discussed in Section 5.11.2 and demonstrates the technique

developed for handling global arrays.

13.1 Analyzed Code

The source code listed below contains the implementation of the module under test example(). The

module under test example() receives a global integer array aG[] and an integer parameter x as

input. It returns true, if the element at index x is equal to 2 and false otherwise.

unsigned i n t aG [ 1 0 ] ;

i n t example ( unsigned i n t x )

{

aG [ 0 ] = 1 ;

aG [ 3 ] = 2 ;

i f ( aG [ x ] == 2)

re turn 1 ;

re turn 0 ;

}

13.2 Generated Test Driver

This section demonstrates the test driver generated by the test generator in order to achieve 100% branch

coverage for the module under test example(). The generator needs two test cases to achieve complete

branch coverage, therefore the test driver contains two test steps. Since no specification of the module

under test was given, the test driver contains no assertions. The function example() contains no

defined or undefined function calls, therefore no stub functions are generated.

First, the module under test is declared. In each test step the assignment of global array elements and

other parameters are made according to the calculated values. After the setting is done, the module under

test is invoked.

/∗ ===============================
∗ I n c l u d e s e c t i o n
∗ ===============================∗ /

/∗ ===============================
∗ S t r u c t u r e s
∗ ===============================∗ /

/∗ ===============================
∗ Globa l or s t a t i c C d e c l a r a t i o n s and d e f i n i t i o n s
∗ ===============================∗ /
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Figure 14: Graphical representation for the example Input Arrays.
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e x t e r n i n t example ( unsigned i n t x ) ;

@uut i n t example ( unsigned i n t x ) ;

e x t er n unsigned i n t aG [ 1 0 ] ;

/∗ ===============================
∗ A b s t r a c t machine d e c l a r a t i o n .
∗ ===============================∗ /

@abstract machine u n i t _ t e s t ( ) {

@INIT :

{}

@FINIT :

@PROCESS:

i n t _ _ r t t _ r e t u r n ;

unsigned i n t x ;

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

aG [ 1 ] = 2 ;

x = 1 ;

@rttCal l ( _ _ r t t _ r e t u r n = example ( x ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

aG [ 2 ] = 4294967295;

x = 2 ;

@rttCal l ( _ _ r t t _ r e t u r n = example ( x ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
}

13.3 Solution File

This section demonstrates the solution file that results from the generation process. This file contains

the description of two traces (corresponding to the two test steps in the test driver). Each trace is first

specified by the list of its statements, then the path constraint calculated by the generator for this trace is

given and finally the solution computed by the solver for this path constraint is listed.

At the bottom of the solution file the statistics of the achieved coverage is reported. In this example it

is 100%.

SOLUTION FOR FUNCTION example

TRACE 1

TRACE COMPLETED

TRACE

{ ( aG [ 0 ] = 1 ; ) ,

( aG [ 3 ] = 2 ; ) ,

( D_1714 = aG [ x ] ; ) ,

( D_1717 = 1 ; ) ,

( re turn = D_1717 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE
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c u r r e n t S t e p N r : 4

f e a s i b l e : 1

CONSTRAINT :

( ( ( D_1714@14 == 2) &&

( ( ( ( ( 3 2 ∗ x@13 ) < 32) &&

(0 < ( ( 3 2 ∗ x@13 ) + 32) ) &&

( D_1714@14 == 1) | | ( ( ( ( 3 2 ∗ x@13 ) < 96) &&

(32 < ( ( 3 2 ∗ x@13 ) + 32) ) ) &&

( D_1714@14 == ( ( unsigned i n t ) r t t A r r a y R e a d (aG@ARRAY_ACCESS@0, x@13 ) ) ) ) ) | | ( ( ( ( 3 2 ∗ x@13 )

< 320) &&

(128 < ( ( 3 2 ∗ x@13 ) + 32) ) ) &&

( D_1714@14 == ( ( unsigned i n t ) r t t A r r a y R e a d (aG@ARRAY_ACCESS@0, x@13 ) ) ) ) ) | | ( ( ( ( 3 2 ∗ x@13 )

< 128) &&

(96 < ( ( 3 2 ∗ x@13 ) + 32) ) ) &&

( D_1714@14 == 2) ) ) ) &&

( x@13 == ( ( unsigned i n t ) x@0) ) )

SOLUTION :

aG@ARRAY_ACCESS[ 1 ]@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 2 )

x@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 1 )

x@13 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 1 )

D_1714@14 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 2 )

TRACE 3

TRACE COMPLETED

TRACE

{ ( aG [ 0 ] = 1 ; ) ,

( aG [ 3 ] = 2 ; ) ,

( D_1714 = aG [ x ] ; ) ,

( D_1717 = 0 ; ) ,

( re turn = D_1717 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 4

f e a s i b l e : 1

CONSTRAINT :

( ( ( D_1714@14 != 2) &&

( ( ( ( ( 3 2 ∗ x@13 ) < 32) &&

(0 < ( ( 3 2 ∗ x@13 ) + 32) ) &&

( D_1714@14 == 1) | | ( ( ( ( 3 2 ∗ x@13 ) < 96) &&

(32 < ( ( 3 2 ∗ x@13 ) + 32) ) ) &&

( D_1714@14 == ( ( unsigned i n t ) r t t A r r a y R e a d (aG@ARRAY_ACCESS@0, x@13 ) ) ) ) ) | | ( ( ( ( 3 2 ∗ x@13 )

< 320) &&

(128 < ( ( 3 2 ∗ x@13 ) + 32) ) ) &&

( D_1714@14 == ( ( unsigned i n t ) r t t A r r a y R e a d (aG@ARRAY_ACCESS@0, x@13 ) ) ) ) ) | | ( ( ( ( 3 2 ∗ x@13 )

< 128) &&

(96 < ( ( 3 2 ∗ x@13 ) + 32) ) ) &&

( D_1714@14 == 2) ) ) ) &&

( x@13 == ( ( unsigned i n t ) x@0) ) )

SOLUTION :

x@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 2 )

aG@ARRAY_ACCESS[ 2 ]@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 4294967295)

x@13 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 2 )

D_1714@14 = ( C o n c r e t e L a t t i c e <unsigned i n t > , 4294967295)

O p e r a t i o n example ( ) i s c o v e r e d .

Covered :

T o t a l t r a n s i t i o n s : 100%

T r a n s i t i o n s w i t h g u a r d s : 100%
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Figure 15: Graphical representation for the example Global Arrays.

13.4 Graphical Output

Figure 15 shows the graphical representation of the CFG corresponding to the module under test. All

nodes and edges of this CFG are drawn blue, which indicates that all of them were successfully covered.

14 Processing defined Functions

This example corresponds to the example discussed in Section 5.12.1 and demonstrates the technique

developed for processing defined function calls.

14.1 Analyzed Code

The source code listed below contains the implementation of two functions: the module under test

test() and the function foo() which is invoked by the module under test. The function test() re-

ceives two integer parameters a and b as input. In order to achieve 100% branch coverage of the module

under test the called function foo() must return once a positive and once a negative value.

i n t foo ( unsigned i n t a , i n t b )

{

s w i t c h ( a ) {

case 0 :

re turn b ;

case 1 :

re turn −b ;

case 2 :
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re turn 0 ;

d e f a u l t :

re turn −1;

}

re turn −1;

}

i n t t e s t ( unsigned i n t a , i n t b )

{

i f ( foo ( a , b ) > 0) {

re turn 1 ;

}

re turn 0 ;

}

14.2 Generated Test Driver

This section demonstrates the test driver generated by the test generator in order to achieve 100% branch

coverage for the module under test test(). The generator produced two test cases, therefore the

test driver contains two test steps. Since no specification of the module under test was given, the test

driver contains no assertions. The function test() contains only one defined function call, which was

symbolically executed as discussed in Section 5.12.1, therefore no stub functions were generated.

First, the module under test is declared. Then variables required to pass the parameters to the module

under test as well as an auxiliary variable for the return value of the function are declared. In each test

step the assignment of the parameters is made according to the calculated values. After the setting is

done the module under test is invoked.

/∗ ===============================
∗ I n c l u d e s e c t i o n
∗ ===============================∗ /

/∗ ===============================
∗ Globa l or s t a t i c C d e c l a r a t i o n s and d e f i n i t i o n s
∗ ===============================∗ /

e x t e r n bool t e s t ( unsigned i n t a , i n t b ) ;

@uut bool t e s t ( unsigned i n t a , i n t b ) ;

/∗ ===============================
∗ A b s t r a c t machine d e c l a r a t i o n .
∗ ===============================∗ /

@abstract machine u n i t _ t e s t ( ) {

@INIT :

{

}

@FINIT :

@PROCESS:

bool _ _ r t t _ r e t u r n ;

unsigned i n t a ;

i n t b ;
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@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

b = 1073741824;

a = 0 ;

@rttCal l ( _ _ r t t _ r e t u r n = t e s t ( a , b ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

a = 2147483648;

@rttCal l ( _ _ r t t _ r e t u r n = t e s t ( a , b ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

}

14.3 Solution File

This section demonstrates the solution file that results from the generation process. This file contains

the description of two traces (corresponding to the two test steps in the test driver). Each trace is first

specified by the list of its statements, then the path constraint calculated by the generator for this trace is

given and finally the solution computed by the solver for this path constraint is listed.

At the bottom of the solution file statistics for the achieved coverage are reported. In this example the

achieved coverage is 100%.

SOLUTION FOR FUNCTION t e s t

TRACE 2

TRACE COMPLETED

TRACE

{ ( f o o _ u n s i g n e d i n t _ i n t _ p a r a m e t e r n a m e _ a = a ; ) ,

( f o o _ u n s i g n e d i n t _ i n t _ p a r a m e t e r n a m e _ b = b ; ) ,

( <EMPTYSTATEMENT> ; ) ,

( D_1725_foo_uns igned i n t _ i n t = f o o _ u n s i g n e d i n t _ i n t _ p a r a m e t e r n a m e _ b ; ) ,

( f o o _ u n s i g n e d i n t _ i n t _ r e t u r n = D_1725_foo_uns igned i n t _ i n t ; ) ,

( D_1719 = f o o _ u n s i g n e d i n t _ i n t _ r e t u r n ; ) ,

( r e t v a l _ 0 = ( D_1719 > 0) ; ) ,

( D_1722 = 1 ; ) ,

( re turn = D_1722 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 8

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( f o o _ u n s i g n e d i n t _ i n t _ p a r a m e t e r n a m e _ a @ 1 2 == 0) &&

( f o o _ u n s i g n e d i n t _ i n t _ p a r a m e t e r n a m e _ a @ 1 2 == ( ( unsigned i n t ) a@10 ) ) ) &&

( a@10 == ( ( unsigned i n t ) a@0) ) ) &&

( re tva l_0@16 != 0) &&

( re tva l_0@16 == ( ( bool ) ( D_1719@15 > 0) ) ) &&

( D_1719@15 == ( ( i n t ) f o o _ u n s i g n e d i n t _ i n t _ r e t u r n @ 1 4 ) ) &&

( f o o _ u n s i g n e d i n t _ i n t _ r e t u r n @ 1 4 == ( ( i n t ) D_1725_foo_uns igned i n t _ i n t @ 1 3 ) ) &&
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( D_1725_foo_uns igned i n t _ i n t @ 1 3 == ( ( i n t ) f o o _ u n s i g n e d i n t _ i n t _ p a r a m e t e r n a m e _ b @ 1 2 ) ) &&

( f o o _ u n s i g n e d i n t _ i n t _ p a r a m e t e r n a m e _ b @ 1 2 == ( ( i n t ) b@11 ) ) &&

( b@11 == ( ( i n t ) b@0) ) )

SOLUTION :

a@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

b@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741824)

a@10 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

b@11 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741824)

f o o _ u n s i g n e d i n t _ i n t _ p a r a m e t e r n a m e _ a @ 1 2 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 0 )

f o o _ u n s i g n e d i n t _ i n t _ p a r a m e t e r n a m e _ b @ 1 2 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741824)

D_1725_foo_uns igned i n t _ i n t @ 1 3 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741824)

f o o _ u n s i g n e d i n t _ i n t _ r e t u r n @ 1 4 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741824)

D_1719@15 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741824)

re tva l_0@16 = ( C o n c r e t e L a t t i c e <bool > , 1 )

TRACE 4

TRACE COMPLETED

TRACE

{ ( f o o _ u n s i g n e d i n t _ i n t _ p a r a m e t e r n a m e _ a = a ; ) ,

( f o o _ u n s i g n e d i n t _ i n t _ p a r a m e t e r n a m e _ b = b ; ) ,

( <EMPTYSTATEMENT> ; ) ,

( D_1725_foo_uns igned i n t _ i n t = −1;) ,

( f o o _ u n s i g n e d i n t _ i n t _ r e t u r n = D_1725_foo_uns igned i n t _ i n t ; ) ,

( D_1719 = f o o _ u n s i g n e d i n t _ i n t _ r e t u r n ; ) ,

( r e t v a l _ 0 = ( D_1719 > 0) ; ) ,

( D_1722 = 0 ; ) ,

( re turn = D_1722 ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 8

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( f o o _ u n s i g n e d i n t _ i n t _ p a r a m e t e r n a m e _ a @ 1 2 != 0) &&

( f o o _ u n s i g n e d i n t _ i n t _ p a r a m e t e r n a m e _ a @ 1 2 != 1) ) &&

( f o o _ u n s i g n e d i n t _ i n t _ p a r a m e t e r n a m e _ a @ 1 2 != 2) ) &&

( f o o _ u n s i g n e d i n t _ i n t _ p a r a m e t e r n a m e _ a @ 1 2 == ( ( unsigned i n t ) a@10 ) ) ) &&

( a@10 == ( ( unsigned i n t ) a@0) ) ) &&

( re tva l_0@16 == 0) &&

( re tva l_0@16 == ( ( bool ) ( D_1719@15 > 0) ) ) &&

( D_1719@15 == ( ( i n t ) f o o _ u n s i g n e d i n t _ i n t _ r e t u r n @ 1 4 ) ) &&

( f o o _ u n s i g n e d i n t _ i n t _ r e t u r n @ 1 4 == ( ( i n t ) D_1725_foo_uns igned i n t _ i n t @ 1 3 ) ) &&

( D_1725_foo_uns igned i n t _ i n t @ 1 3 == −1) )

SOLUTION :

a@0 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 2147483648)

a@10 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 2147483648)

f o o _ u n s i g n e d i n t _ i n t _ p a r a m e t e r n a m e _ a @ 1 2 = ( C o n c r e t e L a t t i c e < unsigned i n t > , 2147483648)

D_1725_foo_uns igned i n t _ i n t @ 1 3 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

f o o _ u n s i g n e d i n t _ i n t _ r e t u r n @ 1 4 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

D_1719@15 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

re tva l_0@16 = ( C o n c r e t e L a t t i c e <bool > , 0 )

O p e r a t i o n t e s t ( ) i s c o v e r e d .

Covered :

T o t a l t r a n s i t i o n s : 100%

T r a n s i t i o n s w i t h g u a r d s : 100%
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Figure 16: Graphical representation for the example Defined Functions.

14.4 Graphical Output

Figure 16 shows the graphical representation of the CFG corresponding to the module under test. The

edges corresponding to the called function foo() are drawn dashed. All covered nodes and edges of

this CFG are drawn blue, all uncovered ones are drawn red. Although it was reported, that the achieved

coverage is 100% there are some red nodes and edges in the CFG. However, this is no contradiction

since all uncovered edges and nodes belong to the called function foo() and not to the module under

test test(). Moreover, the nodes of the called function are left uncovered deliberately, since their

coverage does not contribute to the coverage of the module under test.
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15 Processing undefined Functions

This example corresponds to the example discussed in Section 5.12.2 and demonstrates how CTGEN

processes undefined functions and how it generates mock objects with the same signature to replace

those functions.

15.1 Analyzed Code

The source code listed below contains the implementation of the module under test test(). The func-

tion receives two integer parameters p1 and p2 as input. The module under test contains two calls to the

external function func_ext(). To reach the line with an “error”, func_ext() must return a value

that is greater than the value of the parameter p2 on the first call. Furthermore, on the second call it must

return a value that is equal to the value of the parameter p1.

# i n c l u d e " c t g e n _ a n n o t a t i o n . h "

e x t e r n i n t f u n c _ e x t ( i n t a ) ;

i n t g l o b a l V a r ;

void t e s t ( i n t p1 , i n t p2 )

{

_ _ r t t _ m o d i f i e s ( g l o b a l V a r ) ;

i n t e r r o r = 0 ;

g l o b a l V a r = −p2 ;

i f ( f u n c _ e x t ( p1 ) > p2 ) {

i f ( f u n c _ e x t ( p2 ) == p1 && g l o b a l V a r == p2 ) {

e r r o r = 1 ;

re turn ;

}

}

re turn ;

}

15.2 Generated Test Driver

This section demonstrates the test driver generated by the test generator in order to achieve 100% branch

coverage for the module under test test(). The generator produced four test cases, therefore the test

driver contains four test steps. The function test() contains undefined function calls, which all refer

to the same external function, therefore one stub function is generated in order to replace it. The source

code of the stub function is listed in Section 15.3.

First, the module under test is declared. Next the auxiliary global variables required for stub manipu-

lation and the variables required to pass the parameter values to the module under test are declared. In

each test step the assignment of the parameters as well as of global stub variables is made according to

the calculated values and the running number of the test case. After the settings are done, the module

under test is invoked.

/∗ ===============================
∗ I n c l u d e s e c t i o n
∗ ===============================∗ /

/∗ ===============================
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∗ Globa l or s t a t i c C d e c l a r a t i o n s and d e f i n i t i o n s
∗ ===============================∗ /

e x t e r n void t e s t ( i n t p1 , i n t p2 ) ;

@uut void t e s t ( i n t p1 , i n t p2 ) ;

/∗ e x t e r n a l s t u b s v a r s f o r s t u b f u n c _ e x t ∗ /
e x t er n unsigned i n t func_ex t_STUB_tes tCaseNr ;

e x t er n unsigned i n t func_ext_STUB_re t ID ;

e x t e r n i n t func_ex t_STUB_re tVa l [ 2 ] ;

e x t e r n i n t a_func_ext_PARAM_VALUE ;

/∗ ===============================
∗ A b s t r a c t machine d e c l a r a t i o n .
∗ ===============================∗ /

@abstract machine u n i t _ t e s t ( ) {

@INIT :

{

}

@FINIT :

@PROCESS:

i n t p1 ;

i n t p2 ;

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

/∗ ∗∗∗∗ STUB f u n c _ e x t ∗∗∗∗ ∗ /
func_ex t_STUB_tes tCaseNr = 0 ;

func_ext_STUB_re t ID = 0 ;

/∗ s e t v a l u e s f o r r e t u r n ∗ /
func_ex t_STUB_re tVa l [ 0 ] = 2147483647;

func_ex t_STUB_re tVa l [ 1 ] = 0 ;

/∗ v a l u e s f o r g l o b a l s are s e t i n s t u b ∗ /
/∗ s e t v a l u e s f o r o u t p u t p a r a m e t e r s ∗ /

p2 = −1;

p1 = 0 ;

@rttCal l ( t e s t ( p1 , p2 ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

/∗ ∗∗∗∗ STUB f u n c _ e x t ∗∗∗∗ ∗ /
func_ex t_STUB_tes tCaseNr = 1 ;

func_ext_STUB_re t ID = 0 ;

/∗ s e t v a l u e s f o r r e t u r n ∗ /
func_ex t_STUB_re tVa l [ 0 ] = −1;

/∗ v a l u e s f o r g l o b a l s are s e t i n s t u b ∗ /
/∗ s e t v a l u e s f o r o u t p u t p a r a m e t e r s ∗ /

p2 = −1;
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@rttCal l ( t e s t ( p1 , p2 ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

/∗ ∗∗∗∗ STUB f u n c _ e x t ∗∗∗∗ ∗ /
func_ex t_STUB_tes tCaseNr = 2 ;

func_ext_STUB_re t ID = 0 ;

/∗ s e t v a l u e s f o r r e t u r n ∗ /
func_ex t_STUB_re tVa l [ 0 ] = 2147483647;

func_ex t_STUB_re tVa l [ 1 ] = −2;

/∗ v a l u e s f o r g l o b a l s are s e t i n s t u b ∗ /
/∗ s e t v a l u e s f o r o u t p u t p a r a m e t e r s ∗ /

p2 = −1;

p1 = −1;

@rttCal l ( t e s t ( p1 , p2 ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

/∗ ∗∗∗∗ STUB f u n c _ e x t ∗∗∗∗ ∗ /
func_ex t_STUB_tes tCaseNr = 3 ;

func_ext_STUB_re t ID = 0 ;

/∗ s e t v a l u e s f o r r e t u r n ∗ /
func_ex t_STUB_re tVa l [ 0 ] = 2147483646;

func_ex t_STUB_re tVa l [ 1 ] = 0 ;

/∗ v a l u e s f o r g l o b a l s are s e t i n s t u b ∗ /
/∗ s e t v a l u e s f o r o u t p u t p a r a m e t e r s ∗ /

p2 = −2;

p1 = 0 ;

@rttCal l ( t e s t ( p1 , p2 ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

}

15.3 Generated Stub

This section demonstrates the stub function generated by the test generator to replace the external func-

tion called by the module under test. The section @GLOBAL of the stub contains the declarations of

the variables required to set the return values as well as to modify the global variables according to the

values calculated by the generator. The variable func_ext_STUB_testCaseNr keeps track of the

executed test steps, the variable func_ext_STUB_retID keeps track of the number of executions of

the stub within the current test step. The array func_ext_STUB_retVal[] holds the data for the

return values of the stub. This data is set by the test driver. The variable a_func_ext_PARAM_VALUE
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holds the value of the passed parameter. Furthermore the global variable globalVar modified by the

stub is declared.

i n t f u n c _ e x t ( i n t a ) {

@GLOBAL:

unsigned i n t func_ex t_STUB_tes tCaseNr ;

unsigned i n t func_ext_STUB_re t ID ;

i n t func_ex t_STUB_re tVa l [ 2 ] ;

i n t a_func_ext_PARAM_VALUE ;

e x t e r n i n t g l o b a l V a r ;

@BODY:

func_ext_RETURN = func_ex t_STUB_re tVal [ func_ex t_STUB_re t ID %2];

a_func_ext_PARAM_VALUE = ( i n t ) a ;

i f ( func_ex t_STUB_tes tCaseNr == 0) {

i f ( func_ext_STUB_re t ID == 1) {

g l o b a l V a r = −1;

}

}

i f ( func_ex t_STUB_tes tCaseNr == 3) {

i f ( func_ext_STUB_re t ID == 1) {

g l o b a l V a r = −1;

}

}

func_ext_STUB_re t ID ++;

} ;

15.4 Solution File

This section demonstrates the solution file that results from the generation process. This file contains

the description of four traces (corresponding to the four test steps in the test driver). Each trace is first

specified by the list of its statements, then the path constraint calculated by the generator for this trace is

given and finally the solution computed by the solver for this path constraint is shown.

At the bottom of the solution file statistics for the achieved coverage is reported. In this example the

achieved coverage is 100%.

SOLUTION FOR FUNCTION t e s t

TRACE 4

TRACE COMPLETED

TRACE

{ ( _ _ r t t _ m o d i f i e s _ _ ((& " g l o b a l V a r " ) ) ; ) ,

( e r r o r _ 0 x 4 0 b f 0 2 3 c = 0 ; ) ,

( g l o b a l V a r _ 0 = (−p2 ) ; ) ,

( g l o b a l V a r = g l o b a l V a r _ 0 ; ) ,

( D_1768 = f u n c _ e x t ( p1 ) ; ) ,

( D_1753 = D_1768 ; ) ,

( r e t v a l _ 1 = ( D_1753 > p2 ) ; ) ,

( D_1769 = f u n c _ e x t ( p2 ) ; ) ,

( D_1760 = D_1769 ; ) ,

( g l o b a l V a r _ 4 = g l o b a l V a r ; ) ,

( i f t m p _ 3 = 1 ; ) ,

( r e t v a l _ 2 = i f t m p _ 3 ; ) ,

( e r r o r _ 0 x 4 0 b f 0 2 3 c = 1 ; ) ,

( re turn ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 13
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f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( ( r e tva l_1@21 != 0) &&

( re tva l_1@21 == ( ( bool ) ( D_1753@20 > p2@20 ) ) ) ) &&

( D_1753@20 == ( ( i n t ) D_1768@19 ) ) ) &&

( p2@20 == ( ( i n t ) p2@0 ) ) ) &&

( D_1768@19 == ( ( i n t ) func_ext@RETURN@0 ) ) ) &&

( D_1760@24 == p1@24 ) &&

( D_1760@24 == ( ( i n t ) D_1769@23 ) ) &&

( p1@24 == ( ( i n t ) p1@0 ) ) &&

( D_1769@23 == ( ( i n t ) func_ext@RETURN@1 ) ) ) &&

( globalVar_4@25 == p2@25 ) &&

( globalVar_4@25 == ( ( i n t ) globalVar@24 ) ) &&

( p2@25 == ( ( i n t ) p2@0 ) ) &&

( globalVar@24 == ( ( i n t ) globalVar@func_ext@1 ) ) ) &&

( re tva l_2@27 != 0) &&

( re tva l_2@27 == ( ( bool ) iftmp_3@26 ) ) &&

( iftmp_3@26 == 1) )

SOLUTION :

func_ext@RETURN@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 2147483647)

p2@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

p1@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

func_ext@RETURN@1 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

globalVar@func_ext@1 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

D_1768@19 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 2147483647)

p2@20 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

D_1753@20 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 2147483647)

re tva l_1@21 = ( C o n c r e t e L a t t i c e <bool > , 1 )

D_1769@23 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

p1@24 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

D_1760@24 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

globalVar@24 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

p2@25 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

globalVar_4@25 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

iftmp_3@26 = ( C o n c r e t e L a t t i c e <bool > , 1 )

re tva l_2@27 = ( C o n c r e t e L a t t i c e <bool > , 1 )

TRACE 6

TRACE COMPLETED

TRACE

{ ( _ _ r t t _ m o d i f i e s _ _ ((& " g l o b a l V a r " ) ) ; ) ,

( e r r o r _ 0 x 4 0 b f 0 2 3 c = 0 ; ) ,

( g l o b a l V a r _ 0 = (−p2 ) ; ) ,

( g l o b a l V a r = g l o b a l V a r _ 0 ; ) ,

( D_1768 = f u n c _ e x t ( p1 ) ; ) ,

( D_1753 = D_1768 ; ) ,

( r e t v a l _ 1 = ( D_1753 > p2 ) ; ) ,

( <EMPTYSTATEMENT> ; ) ,

( re turn ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 8

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( r e tva l_1@21 == 0) &&

( re tva l_1@21 == ( ( bool ) ( D_1753@20 > p2@20 ) ) ) ) &&

( D_1753@20 == ( ( i n t ) D_1768@19 ) ) ) &&

( p2@20 == ( ( i n t ) p2@0 ) ) ) &&

( D_1768@19 == ( ( i n t ) func_ext@RETURN@0 ) ) )
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SOLUTION :

func_ext@RETURN@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

p2@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

D_1768@19 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

p2@20 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

D_1753@20 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

re tva l_1@21 = ( C o n c r e t e L a t t i c e <bool > , 0 )

TRACE 9

TRACE COMPLETED

TRACE

{ ( _ _ r t t _ m o d i f i e s _ _ ((& " g l o b a l V a r " ) ) ; ) ,

( e r r o r _ 0 x 4 0 b f 0 2 3 c = 0 ; ) ,

( g l o b a l V a r _ 0 = (−p2 ) ; ) ,

( g l o b a l V a r = g l o b a l V a r _ 0 ; ) ,

( D_1768 = f u n c _ e x t ( p1 ) ; ) ,

( D_1753 = D_1768 ; ) ,

( r e t v a l _ 1 = ( D_1753 > p2 ) ; ) ,

( D_1769 = f u n c _ e x t ( p2 ) ; ) ,

( D_1760 = D_1769 ; ) ,

( i f t m p _ 3 = 0 ; ) ,

( r e t v a l _ 2 = i f t m p _ 3 ; ) ,

( <EMPTYSTATEMENT> ; ) ,

( re turn ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 12

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( r e tva l_1@21 != 0) &&

( re tva l_1@21 == ( ( bool ) ( D_1753@20 > p2@20 ) ) ) ) &&

( D_1753@20 == ( ( i n t ) D_1768@19 ) ) ) &&

( p2@20 == ( ( i n t ) p2@0 ) ) ) &&

( D_1768@19 == ( ( i n t ) func_ext@RETURN@0 ) ) ) &&

( D_1760@24 != p1@24 ) &&

( D_1760@24 == ( ( i n t ) D_1769@23 ) ) &&

( p1@24 == ( ( i n t ) p1@0 ) ) &&

( D_1769@23 == ( ( i n t ) func_ext@RETURN@1 ) ) ) &&

( re tva l_2@26 == 0) &&

( re tva l_2@26 == ( ( bool ) iftmp_3@25 ) ) &&

( iftmp_3@25 == 0) )

SOLUTION :

func_ext@RETURN@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 2147483647)

p2@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

p1@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

func_ext@RETURN@1 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2)

D_1768@19 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 2147483647)

p2@20 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

D_1753@20 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 2147483647)

re tva l_1@21 = ( C o n c r e t e L a t t i c e <bool > , 1 )

D_1769@23 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2)

p1@24 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

D_1760@24 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2)

iftmp_3@25 = ( C o n c r e t e L a t t i c e <bool > , 0 )

re tva l_2@26 = ( C o n c r e t e L a t t i c e <bool > , 0 )

TRACE 10

TRACE COMPLETED
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TRACE

{ ( _ _ r t t _ m o d i f i e s _ _ ((& " g l o b a l V a r " ) ) ; ) ,

( e r r o r _ 0 x 4 0 b f 0 2 3 c = 0 ; ) ,

( g l o b a l V a r _ 0 = (−p2 ) ; ) ,

( g l o b a l V a r = g l o b a l V a r _ 0 ; ) ,

( D_1768 = f u n c _ e x t ( p1 ) ; ) ,

( D_1753 = D_1768 ; ) ,

( r e t v a l _ 1 = ( D_1753 > p2 ) ; ) ,

( D_1769 = f u n c _ e x t ( p2 ) ; ) ,

( D_1760 = D_1769 ; ) ,

( g l o b a l V a r _ 4 = g l o b a l V a r ; ) ,

( i f t m p _ 3 = 0 ; ) }

t r a c e S t a t e : CONT_AFTER_SOLVING

c u r r e n t S t e p N r : 10

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( r e tva l_1@21 != 0) &&

( re tva l_1@21 == ( ( bool ) ( D_1753@20 > p2@20 ) ) ) ) &&

( D_1753@20 == ( ( i n t ) D_1768@19 ) ) ) &&

( p2@20 == ( ( i n t ) p2@0 ) ) ) &&

( D_1768@19 == ( ( i n t ) func_ext@RETURN@0 ) ) ) &&

( D_1760@24 == p1@24 ) &&

( D_1760@24 == ( ( i n t ) D_1769@23 ) ) &&

( p1@24 == ( ( i n t ) p1@0 ) ) &&

( D_1769@23 == ( ( i n t ) func_ext@RETURN@1 ) ) ) &&

( globalVar_4@25 != p2@25 ) &&

( globalVar_4@25 == ( ( i n t ) globalVar@24 ) ) &&

( p2@25 == ( ( i n t ) p2@0 ) ) &&

( globalVar@24 == ( ( i n t ) globalVar@func_ext@1 ) ) )

SOLUTION :

func_ext@RETURN@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 2147483646)

p2@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2)

p1@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

func_ext@RETURN@1 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

globalVar@func_ext@1 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

D_1768@19 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 2147483646)

p2@20 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2)

D_1753@20 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 2147483646)

re tva l_1@21 = ( C o n c r e t e L a t t i c e <bool > , 1 )

D_1769@23 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

p1@24 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

D_1760@24 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 0 )

globalVar@24 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

p2@25 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −2)

globalVar_4@25 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

O p e r a t i o n t e s t ( ) i s c o v e r e d .

Covered :

T o t a l t r a n s i t i o n s : 100%

T r a n s i t i o n s w i t h g u a r d s : 100%

15.5 Graphical Output

Figure 17 shows the graphical representation of the CFG corresponding to the module under test. All

nodes and edges of this CFG are drawn blue, which indicates that all of them were successfully covered.
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Figure 17: Graphical representation for the example Undefined Functions.
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16 Processing undefined Functions with Stub Specification

This example corresponds to the example discussed in Section 5.12.3 and demonstrates how it is possible

to specify an undefined function by means of the CTGEN annotation language.

16.1 Analyzed Code

The analyzed module under test is the same as in the previous example demonstrated in Appendix 15.

The difference is, that the undefined function func_ext() received a specification. For this purpose a

dummy function with the same signature was implemented. This function contains only the specification

of the values of the parameter and of the return value as well as of the value of the global variable

globalVar. They are restricted to the permitted value range by means of the pre- and postconditions.

# i n c l u d e " c t g e n _ a n n o t a t i o n . h "

i n t g l o b a l V a r ;

i n t f u n c _ e x t ( i n t a )

{

_ _ r t t _ e x t e r n ( ) ;

_ _ r t t _ p r e c o n d i t i o n ( a > 0 && −20 < g l o b a l V a r && g l o b a l V a r < 20) ;

_ _ r t t _ p o s t c o n d i t i o n ( _ _ r t t _ r e t u r n < 20 && g l o b a l V a r > 17) ;

re turn 0 ;

}

void t e s t ( i n t p1 , i n t p2 )

{

_ _ r t t _ m o d i f i e s ( g l o b a l V a r ) ;

i n t e r r o r = 0 ;

g l o b a l V a r = −p2 ;

i f ( f u n c _ e x t ( p1 ) > p2 ) {

i f ( f u n c _ e x t ( p2 ) == p1 && g l o b a l V a r == p2 ) {

e r r o r = 1 ;

re turn ;

}

}

re turn ;

}

16.2 Generated Test Driver

This section demonstrates the test driver generated by the test generator in order to achieve 100% branch

coverage for the module under test test(). The generator produced four test cases, therefore the test

driver contains four test steps. The function test() contains undefined function calls, which all refer

to the same external function, therefore one stub function is generated in order to replace it. The source

code of the stub function is shown in Section 16.3.

First, the module under test is declared. Next the auxiliary global variables required for stub manip-

ulation and the variables required to pass the parameters to the module under test are declared. In each

test step the assignment of the parameters as well as of global stub variables is made according to the

calculated values and the running number of the test case. After the settings are done, the module under

test is invoked.
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Return values are all in the specified range, and the parameter of the module under test are set in such

a way, that the precondition on the global variable globalVar holds.

/∗ ===============================
∗ I n c l u d e s e c t i o n
∗ ===============================∗ /

/∗ ===============================
∗ Globa l or s t a t i c C d e c l a r a t i o n s and d e f i n i t i o n s
∗ ===============================∗ /

e x t e r n void t e s t ( i n t p1 , i n t p2 ) ;

@uut void t e s t ( i n t p1 , i n t p2 ) ;

/∗ e x t e r n a l s t u b s v a r s f o r s t u b f u n c _ e x t ∗ /
e x t er n unsigned i n t func_ex t_STUB_tes tCaseNr ;

e x t er n unsigned i n t func_ext_STUB_re t ID ;

e x t e r n i n t func_ex t_STUB_re tVa l [ 2 ] ;

e x t e r n i n t a_func_ext_PARAM_VALUE ;

/∗ ===============================
∗ A b s t r a c t machine d e c l a r a t i o n .
∗ ===============================∗ /

@abstract machine u n i t _ t e s t ( ) {

@INIT :

{

}

@FINIT :

@PROCESS:

i n t p1 ;

i n t p2 ;

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

/∗ ∗∗∗∗ STUB f u n c _ e x t ∗∗∗∗ ∗ /
func_ex t_STUB_tes tCaseNr = 0 ;

func_ext_STUB_re t ID = 0 ;

/∗ s e t v a l u e s f o r r e t u r n ∗ /
func_ex t_STUB_re tVa l [ 0 ] = −1;

/∗ v a l u e s f o r g l o b a l s are s e t i n s t u b ∗ /
/∗ s e t v a l u e s f o r o u t p u t p a r a m e t e r s ∗ /

p2 = −1;

p1 = 1073741824;

@rttCal l ( t e s t ( p1 , p2 ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

/∗ ∗∗∗∗ STUB f u n c _ e x t ∗∗∗∗ ∗ /
func_ex t_STUB_tes tCaseNr = 1 ;
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func_ext_STUB_re t ID = 0 ;

/∗ s e t v a l u e s f o r r e t u r n ∗ /
func_ex t_STUB_re tVa l [ 0 ] = 1 9 ;

func_ex t_STUB_re tVa l [ 1 ] = 1 6 ;

/∗ v a l u e s f o r g l o b a l s are s e t i n s t u b ∗ /
/∗ s e t v a l u e s f o r o u t p u t p a r a m e t e r s ∗ /

p2 = 1 8 ;

p1 = 1 6 ;

@rttCal l ( t e s t ( p1 , p2 ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

/∗ ∗∗∗∗ STUB f u n c _ e x t ∗∗∗∗ ∗ /
func_ex t_STUB_tes tCaseNr = 2 ;

func_ext_STUB_re t ID = 0 ;

/∗ s e t v a l u e s f o r r e t u r n ∗ /
func_ex t_STUB_re tVa l [ 0 ] = 1 9 ;

func_ex t_STUB_re tVa l [ 1 ] = −1072693245;

/∗ v a l u e s f o r g l o b a l s are s e t i n s t u b ∗ /
/∗ s e t v a l u e s f o r o u t p u t p a r a m e t e r s ∗ /

p2 = 1 5 ;

p1 = 1073741824;

@rttCal l ( t e s t ( p1 , p2 ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@rttBeginTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
{

/∗ ∗∗∗∗ STUB f u n c _ e x t ∗∗∗∗ ∗ /
func_ex t_STUB_tes tCaseNr = 3 ;

func_ext_STUB_re t ID = 0 ;

/∗ s e t v a l u e s f o r r e t u r n ∗ /
func_ex t_STUB_re tVa l [ 0 ] = 1 9 ;

func_ex t_STUB_re tVa l [ 1 ] = 1 6 ;

/∗ v a l u e s f o r g l o b a l s are s e t i n s t u b ∗ /
/∗ s e t v a l u e s f o r o u t p u t p a r a m e t e r s ∗ /

p2 = 3 ;

p1 = 1 6 ;

@rttCal l ( t e s t ( p1 , p2 ) ) ;

}

@rttEndTestStep ; / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

}
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16.3 Generated Stub

This section demonstrates the stub function generated by the test generator to replace the external func-

tion called by the module under test. The section @GLOBAL of the stub contains declarations of the

variables required to set the return values as well as to modify the global variables according to the

values calculated by the generator. The variable func_ext_STUB_testCaseNr keeps track of the

executed test steps and the variable func_ext_STUB_retID of the number of executions of the stub

within the current test step. The array func_ext_STUB_retVal[] holds the data for the return val-

ues of the stub. This data is set by the test driver. The variable a_func_ext_PARAM_VALUE holds

the value of the passed parameter. Furthermore the global variable globalVar modified by the stub is

declared.

The global variable globalVar is set in such a way, that the postcondition holds.

/∗ ∗
∗ T h i s f i l e c o n t a i n s t h e l o c a l s t u b f u n c t i o n d e f i n i t i o n s o f t h e form
∗

∗ [< type−k ind >] <r e t u r n−t ype > < f u n c t i o n −name> [< format >]
∗ ( <parameter > ( , <parameter >)∗ ) ;
∗ /

i n t f u n c _ e x t ( i n t a ) {

@GLOBAL:

unsigned i n t func_ex t_STUB_tes tCaseNr ;

unsigned i n t func_ext_STUB_re t ID ;

i n t func_ex t_STUB_re tVa l [ 2 ] ;

i n t a_func_ext_PARAM_VALUE ;

e x t e r n i n t g l o b a l V a r ;

@BODY:

func_ext_RETURN = func_ex t_STUB_re tVal [ func_ex t_STUB_re t ID %2];

a_func_ext_PARAM_VALUE = ( i n t ) a ;

i f ( func_ex t_STUB_tes tCaseNr == 0) {

i f ( func_ext_STUB_re t ID == 0) {

g l o b a l V a r = 1073741840;

}

}

i f ( func_ex t_STUB_tes tCaseNr == 1) {

i f ( func_ext_STUB_re t ID == 0) {

g l o b a l V a r = 1 9 ;

}

i f ( func_ext_STUB_re t ID == 1) {

g l o b a l V a r = 1 8 ;

}

}

i f ( func_ex t_STUB_tes tCaseNr == 2) {

i f ( func_ext_STUB_re t ID == 0) {

g l o b a l V a r = 1 9 ;

}

i f ( func_ext_STUB_re t ID == 1) {

g l o b a l V a r = 1073741840;

}

}

i f ( func_ex t_STUB_tes tCaseNr == 3) {

i f ( func_ext_STUB_re t ID == 0) {

g l o b a l V a r = 1 9 ;

}

i f ( func_ext_STUB_re t ID == 1) {

g l o b a l V a r = 1073741825;

}
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}

func_ext_STUB_re t ID ++;

} ;

16.4 Solution File

This section demonstrates the solution file that results from the generation process. This file contains

the description of four traces (corresponding to the four test steps in the test driver). Each trace is first

specified by the list of its statements, then the path constraint calculated by the generator for this trace is

given and finally the solution computed by the solver for this path constraint is shown.

At the bottom of the solution file statistics for the achieved coverage are reported. In this example the

achieved coverage is 100%.

SOLUTION FOR FUNCTION t e s t

TRACE 1

TRACE COMPLETED

TRACE

{ ( e r r o r _ 0 x 4 0 b f 0 2 d 8 = 0 ; ) ,

( g l o b a l V a r _ 0 = (−p2 ) ; ) ,

( g l o b a l V a r = g l o b a l V a r _ 0 ; ) ,

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a = p1 ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t = g l o b a l V a r ; ) ,

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t = g l o b a l V a r ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1755 = f u n c _ e x t ( p1 ) ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t = g l oba lVa r@f unc _ex t ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1755 = func_ext@RETURN ; ) ,

( r e t v a l _ 1 = ( D_1755 > p2 ) ; ) ,

( <EMPTYSTATEMENT> ; ) ,

( re turn ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 15

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( ( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ 2 4 > 0 ) &&

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ 2 4 == ( ( i n t ) p1@23 ) ) ) &&

( p1@23 == ( ( i n t ) p1@0 ) ) ) &&

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 2 5 >= −19) &&

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 2 5 == ( ( i n t ) globalVar@24 ) ) &&

( globalVar@24 == ( ( i n t ) globalVar_0@22 ) ) &&

( globalVar_0@22 == ( ( i n t ) (−p2@21 ) ) ) &&

( p2@21 == ( ( i n t ) p2@0 ) ) ) &&

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 2 6 <= 19) &&

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 2 6 == ( ( i n t ) globalVar@25 ) ) &&

( globalVar@25 == globalVar_0@22 ) ) &&

( func_ext@RETURN@0 <= 19) ) &&

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 2 9 > 17) &&

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 2 9 == ( ( i n t ) globalVar@func_ext@0 ) ) ) &&

( re tva l_1@31 == 0) &&

( re tva l_1@31 == ( ( bool ) ( D_1755@30 > p2@30 ) ) ) &&

( D_1755@30 == func_ext@RETURN@0 ) &&
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( p2@30 == ( ( i n t ) p2@0 ) ) )

SOLUTION :

p1@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741824)

p2@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

func_ext@RETURN@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

globalVar@func_ext@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741840)

p2@21 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

globalVar_0@22 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1 )

p1@23 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741824)

f u n c_ ex t_ i n t _ pa r a m e t e r n a m e _ a @ 24 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741824)

globalVar@24 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1 )

globalVar@25 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1 )

g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 2 5 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1 )

g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 2 6 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1 )

g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 2 9 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741840)

p2@30 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

D_1755@30 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1)

re tva l_1@31 = ( C o n c r e t e L a t t i c e <bool > , 0 )

TRACE 11

TRACE COMPLETED

TRACE

{ ( e r r o r _ 0 x 4 0 b f 0 2 d 8 = 0 ; ) ,

( g l o b a l V a r _ 0 = (−p2 ) ; ) ,

( g l o b a l V a r = g l o b a l V a r _ 0 ; ) ,

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a = p1 ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t = g l o b a l V a r ; ) ,

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t = g l o b a l V a r ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1755 = f u n c _ e x t ( p1 ) ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t = g l oba lVa r@f unc _ex t ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1755 = func_ext@RETURN ; ) ,

( r e t v a l _ 1 = ( D_1755 > p2 ) ; ) ,

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a = p2 ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t = g l o b a l V a r ; ) ,

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t = g l o b a l V a r ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1762 = f u n c _ e x t ( p2 ) ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t = g l oba lVa r@f unc _ex t ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1762 = func_ext@RETURN ; ) ,

( g l o b a l V a r _ 4 = g l o b a l V a r ; ) ,

( i f t m p _ 3 = 1 ; ) ,

( r e t v a l _ 2 = i f t m p _ 3 ; ) ,

( e r r o r _ 0 x 4 0 b f 0 2 d 8 = 1 ; ) ,

( re turn ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 28

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( f un c_ ex t _ in t_ pa ra me t e rn a me _a @2 4 > 0) &&

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ 2 4 == ( ( i n t ) p1@23 ) ) ) &&

( p1@23 == ( ( i n t ) p1@0 ) ) ) &&

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 2 5 >= −19) &&
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( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 2 5 == ( ( i n t ) globalVar@24 ) ) &&

( globalVar@24 == ( ( i n t ) globalVar_0@22 ) ) &&

( globalVar_0@22 == ( ( i n t ) (−p2@21 ) ) ) &&

( p2@21 == ( ( i n t ) p2@0 ) ) ) &&

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 2 6 <= 19) &&

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 2 6 == ( ( i n t ) globalVar@25 ) ) &&

( globalVar@25 == globalVar_0@22 ) ) &&

( func_ext@RETURN@0 <= 19) ) &&

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 2 9 > 17) &&

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 2 9 == ( ( i n t ) globalVar@func_ext@0 ) ) ) &&

( re tva l_1@31 != 0) &&

( re tva l_1@31 == ( ( bool ) ( D_1755@30 > p2@30 ) ) ) &&

( D_1755@30 == func_ext@RETURN@0 ) &&

( p2@30 == ( ( i n t ) p2@0 ) ) ) &&

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ 3 2 > 0) &&

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ 3 2 == ( ( i n t ) p2@31 ) ) &&

( p2@31 == ( ( i n t ) p2@0 ) ) ) &&

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 3 3 >= −19) &&

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 3 3 == ( ( i n t ) globalVar@32 ) ) &&

( globalVar@32 == globalVar@func_ext@0 ) ) &&

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 3 4 <= 19) &&

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 3 4 == ( ( i n t ) globalVar@33 ) ) &&

( globalVar@33 == globalVar@func_ext@0 ) ) &&

( func_ext@RETURN@1 <= 19) ) &&

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 3 7 > 17) &&

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 3 7 == ( ( i n t ) globalVar@func_ext@1 ) ) ) &&

( D_1762@38 == p1@38 ) &&

( D_1762@38 == func_ext@RETURN@1 ) &&

( p1@38 == ( ( i n t ) p1@0 ) ) ) &&

( globalVar_4@39 == p2@39 ) &&

( globalVar_4@39 == ( ( i n t ) globalVar@38 ) ) &&

( p2@39 == ( ( i n t ) p2@0 ) ) &&

( globalVar@38 == globalVar@func_ext@1 ) ) &&

( re tva l_2@41 != 0) &&

( re tva l_2@41 == ( ( bool ) iftmp_3@40 ) ) &&

( iftmp_3@40 == 1) )

SOLUTION :

p1@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 16)

p2@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 18)

func_ext@RETURN@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

globalVar@func_ext@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

func_ext@RETURN@1 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 16)

globalVar@func_ext@1 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 18)

p2@21 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 18)

globalVar_0@22 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −18)

p1@23 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 16)

f u nc _ ex t_ i n t _ pa r a m e t e r n a m e _ a @ 24 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 16)

globalVar@24 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −18)

globalVar@25 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −18)

g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 2 5 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −18)

g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 2 6 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −18)

g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 2 9 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

p2@30 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 18)

D_1755@30 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

p2@31 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 18)

re tva l_1@31 = ( C o n c r e t e L a t t i c e <bool > , 1 )

f u nc _ ex t_ i n t _ pa r a m e t e r n a m e _ a @ 32 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 18)

globalVar@32 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

globalVar@33 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 3 3 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 3 4 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 3 7 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 18)
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p1@38 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 16)

globalVar@38 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 18)

D_1762@38 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 16)

p2@39 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 18)

globalVar_4@39 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 18)

iftmp_3@40 = ( C o n c r e t e L a t t i c e <bool > , 1 )

re tva l_2@41 = ( C o n c r e t e L a t t i c e <bool > , 1 )

TRACE 14

TRACE COMPLETED

TRACE

{ ( e r r o r _ 0 x 4 0 b f 0 2 d 8 = 0 ; ) ,

( g l o b a l V a r _ 0 = (−p2 ) ; ) ,

( g l o b a l V a r = g l o b a l V a r _ 0 ; ) ,

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a = p1 ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t = g l o b a l V a r ; ) ,

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t = g l o b a l V a r ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1755 = f u n c _ e x t ( p1 ) ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t = g l oba lVa r@f unc _ex t ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1755 = func_ext@RETURN ; ) ,

( r e t v a l _ 1 = ( D_1755 > p2 ) ; ) ,

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a = p2 ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t = g l o b a l V a r ; ) ,

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t = g l o b a l V a r ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1762 = f u n c _ e x t ( p2 ) ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t = g l oba lVa r@f unc _ex t ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1762 = func_ext@RETURN ; ) ,

( i f t m p _ 3 = 0 ; ) ,

( r e t v a l _ 2 = i f t m p _ 3 ; ) ,

( <EMPTYSTATEMENT> ; ) ,

( re turn ; ) }

t r a c e S t a t e : CONT_OF_ANOTHER_TRACE

c u r r e n t S t e p N r : 27

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( ( ( ( ( ( ( ( ( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ 2 4 > 0) &&

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ 2 4 == ( ( i n t ) p1@23 ) ) ) &&

( p1@23 == ( ( i n t ) p1@0 ) ) ) &&

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 2 5 >= −19) &&

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 2 5 == ( ( i n t ) globalVar@24 ) ) &&

( globalVar@24 == ( ( i n t ) globalVar_0@22 ) ) &&

( globalVar_0@22 == ( ( i n t ) (−p2@21 ) ) ) &&

( p2@21 == ( ( i n t ) p2@0 ) ) ) &&

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 2 6 <= 19) &&

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 2 6 == ( ( i n t ) globalVar@25 ) ) &&

( globalVar@25 == globalVar_0@22 ) ) &&

( func_ext@RETURN@0 <= 19) ) &&

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 2 9 > 17) &&

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 2 9 == ( ( i n t ) globalVar@func_ext@0 ) ) ) &&

( re tva l_1@31 != 0) &&

( re tva l_1@31 == ( ( bool ) ( D_1755@30 > p2@30 ) ) ) &&
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( D_1755@30 == func_ext@RETURN@0 ) &&

( p2@30 == ( ( i n t ) p2@0 ) ) ) &&

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ 3 2 > 0) &&

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ 3 2 == ( ( i n t ) p2@31 ) ) &&

( p2@31 == ( ( i n t ) p2@0 ) ) ) &&

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 3 3 >= −19) &&

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 3 3 == ( ( i n t ) globalVar@32 ) ) &&

( globalVar@32 == globalVar@func_ext@0 ) ) &&

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 3 4 <= 19) &&

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 3 4 == ( ( i n t ) globalVar@33 ) ) &&

( globalVar@33 == globalVar@func_ext@0 ) ) &&

( func_ext@RETURN@1 <= 19) ) &&

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 3 7 > 17) &&

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 3 7 == ( ( i n t ) globalVar@func_ext@1 ) ) ) &&

( D_1762@38 != p1@38 ) &&

( D_1762@38 == func_ext@RETURN@1 ) &&

( p1@38 == ( ( i n t ) p1@0 ) ) ) &&

( re tva l_2@40 == 0) &&

( re tva l_2@40 == ( ( bool ) iftmp_3@39 ) ) &&

( iftmp_3@39 == 0) )

SOLUTION :

p1@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741824)

p2@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 15)

func_ext@RETURN@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

globalVar@func_ext@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

func_ext@RETURN@1 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1072693245)

globalVar@func_ext@1 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741840)

p2@21 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 15)

globalVar_0@22 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −15)

p1@23 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741824)

f u nc _ ex t_ i n t _ pa r a m e t e r n a m e _ a @ 24 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741824)

globalVar@24 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −15)

globalVar@25 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −15)

g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 2 5 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −15)

g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 2 6 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −15)

g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 2 9 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

p2@30 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 15)

D_1755@30 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

p2@31 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 15)

re tva l_1@31 = ( C o n c r e t e L a t t i c e <bool > , 1 )

f u nc _ ex t_ i n t _ pa r a m e t e r n a m e _ a @ 32 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 15)

globalVar@32 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

globalVar@33 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 3 3 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 3 4 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 3 7 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741840)

p1@38 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741824)

D_1762@38 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −1072693245)

iftmp_3@39 = ( C o n c r e t e L a t t i c e <bool > , 0 )

re tva l_2@40 = ( C o n c r e t e L a t t i c e <bool > , 0 )

TRACE 15

TRACE COMPLETED

TRACE

{ ( e r r o r _ 0 x 4 0 b f 0 2 d 8 = 0 ; ) ,

( g l o b a l V a r _ 0 = (−p2 ) ; ) ,

( g l o b a l V a r = g l o b a l V a r _ 0 ; ) ,

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a = p1 ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t = g l o b a l V a r ; ) ,
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( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t = g l o b a l V a r ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1755 = f u n c _ e x t ( p1 ) ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t = g l oba lVa r@f unc _ex t ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1755 = func_ext@RETURN ; ) ,

( r e t v a l _ 1 = ( D_1755 > p2 ) ; ) ,

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a = p2 ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t = g l o b a l V a r ; ) ,

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t = g l o b a l V a r ; ) ,

( _ _ r t t _ p r e c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1762 = f u n c _ e x t ( p2 ) ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ b e g i n _ _ ( ) ; ) ,

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t = g l oba lVa r@f unc _ex t ; ) ,

( _ _ r t t _ p o s t c o n d i t i o n _ e n d _ _ ( ) ; ) ,

( D_1762 = func_ext@RETURN ; ) ,

( g l o b a l V a r _ 4 = g l o b a l V a r ; ) ,

( i f t m p _ 3 = 0 ; ) }

t r a c e S t a t e : CONT_AFTER_SOLVING

c u r r e n t S t e p N r : 25

f e a s i b l e : 1

CONSTRAINT :

( ( ( ( ( ( ( ( ( ( ( ( ( ( ( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ 2 4 > 0) &&

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ 2 4 == ( ( i n t ) p1@23 ) ) ) &&

( p1@23 == ( ( i n t ) p1@0 ) ) ) &&

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 2 5 >= −19) &&

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 2 5 == ( ( i n t ) globalVar@24 ) ) &&

( globalVar@24 == ( ( i n t ) globalVar_0@22 ) ) &&

( globalVar_0@22 == ( ( i n t ) (−p2@21 ) ) ) &&

( p2@21 == ( ( i n t ) p2@0 ) ) ) &&

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 2 6 <= 19) &&

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 2 6 == ( ( i n t ) globalVar@25 ) ) &&

( globalVar@25 == globalVar_0@22 ) ) &&

( func_ext@RETURN@0 <= 19) ) &&

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 2 9 > 17) &&

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 2 9 == ( ( i n t ) globalVar@func_ext@0 ) ) ) &&

( re tva l_1@31 != 0) &&

( re tva l_1@31 == ( ( bool ) ( D_1755@30 > p2@30 ) ) ) &&

( D_1755@30 == func_ext@RETURN@0 ) &&

( p2@30 == ( ( i n t ) p2@0 ) ) ) &&

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ 3 2 > 0) &&

( f u n c _ e x t _ i n t _ p a r a m e t e r n a m e _ a @ 3 2 == ( ( i n t ) p2@31 ) ) &&

( p2@31 == ( ( i n t ) p2@0 ) ) ) &&

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 3 3 >= −19) &&

( g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 3 3 == ( ( i n t ) globalVar@32 ) ) &&

( globalVar@32 == globalVar@func_ext@0 ) ) &&

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 3 4 <= 19) &&

( g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 3 4 == ( ( i n t ) globalVar@33 ) ) &&

( globalVar@33 == globalVar@func_ext@0 ) ) &&

( func_ext@RETURN@1 <= 19) ) &&

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 3 7 > 17) &&

( g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 3 7 == ( ( i n t ) globalVar@func_ext@1 ) ) ) &&

( D_1762@38 == p1@38 ) &&

( D_1762@38 == func_ext@RETURN@1 ) &&

( p1@38 == ( ( i n t ) p1@0 ) ) ) &&

( globalVar_4@39 != p2@39 ) &&

( globalVar_4@39 == ( ( i n t ) globalVar@38 ) ) &&

( p2@39 == ( ( i n t ) p2@0 ) ) &&

( globalVar@38 == globalVar@func_ext@1 ) )
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SOLUTION :

p1@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 16)

p2@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 3 )

func_ext@RETURN@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

globalVar@func_ext@0 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

func_ext@RETURN@1 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 16)

globalVar@func_ext@1 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741825)

p2@21 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 3 )

globalVar_0@22 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −3)

p1@23 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 16)

f u n c_ ex t_ i n t _ pa r a m e t e r n a m e _ a @ 24 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 16)

globalVar@24 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −3)

globalVar@25 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −3)

g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 2 5 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −3)

g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 2 6 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , −3)

g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 2 9 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

p2@30 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 3 )

D_1755@30 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

p2@31 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 3 )

re tva l_1@31 = ( C o n c r e t e L a t t i c e <bool > , 1 )

f u n c_ ex t_ i n t _ pa r a m e t e r n a m e _ a @ 32 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 3 )

globalVar@32 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

globalVar@33 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

g l o b a l V a r _ 5 _ f u n c _ e x t _ i n t @ 3 3 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

g l o b a l V a r _ 6 _ f u n c _ e x t _ i n t @ 3 4 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 19)

g l o b a l V a r _ 7 _ f u n c _ e x t _ i n t @ 3 7 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741825)

p1@38 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 16)

globalVar@38 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741825)

D_1762@38 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 16)

p2@39 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 3 )

globalVar_4@39 = ( C o n c r e t e L a t t i c e < s i g n e d i n t > , 1073741825)

O p e r a t i o n t e s t ( ) i s c o v e r e d .

Covered :

T o t a l t r a n s i t i o n s : 100%

T r a n s i t i o n s w i t h g u a r d s : 100%

16.5 Graphical Output

Figure 18 shows the graphical representation of the CFG corresponding to the module under test. All

nodes and edges of this CFG are drawn blue, which indicates that all of them were successfully covered.
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Figure 18: Graphical representation for the example Undefined Functions with Stub Specification.
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