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I 

Abstract 
 

Biological N2 fixation constitutes the major source of nitrogen in open ocean systems, 

regulating the marine nitrogen inventory and primary productivity. Symbiotic relationships 

between phytoplankton and N2 fixing microorganisms (diazotrophs) have been suggested to 

play a significant role in the ecology and biogeochemistry in these oceanic regions. The 

widely distributed, uncultured N2 fixing cyanobacterium UCYN–A was suggested to live in 

symbiosis since it has unprecedented genome reduction, including the lack of genes encoding 

for oxygen–evolving photosystem II and the tricarboxylic acid cycle. This thesis aims to study 

carbon and nitrogen metabolism on field populations of UCYN–A using molecular biology, 

as well as mass spectrometry tools to visualize metabolic activity on a single cell scale. 

The development of a 16S rRNA oligonucleotide probe specifically targeting UCYN–

A cells and its successful application on environmental samples (Manuscript I and II) revealed 

a symbiotic partnership with a unicellular prymnesiophyte. We demonstrated a nutrient 

transfer in carbon and nitrogen compounds between these two partner cells, providing an 

explanation how these diazotrophs thrive in open ocean systems. Further, UCYN–A can also 

associate with globally abundant calcifying prymnesiophyte members, e.g. Braarudosphaera 

bigelowii, indicating that this symbiosis might impact the efficiency of the biological carbon 

pump. 

In manuscript III, we provided quantitative information on the cellular abundance and 

distribution of UCYN–A cells in the North Atlantic Ocean and identified the eukaryotic 

partner cell as Haptophyta (including prymnesiophyte) via double Catalyzed Reporter 

Deposition–Fluorescence In Situ Hybridization (CARD–FISH). The UCYN–A–Haptophyta 

association was the dominant form (87.0±6.1%) over free–living UCYN–A cells. 

Interestingly, we also detected UCYN–A cells living in association with unknown eukaryotes 

and non–calcifying Haptophyta cells, raising questions about the host specificity. 

During a follow up study (Manuscript IV), we conducted various nutrient amendment 

experiments (including iron, phosphorus, ammonium–nitrate and Saharan Dust) in order to 

examine physiological interactions between individual UCYN–A and Haptophyta cells. 

Single cell measurements using nanometer scale secondary ion mass spectrometry 

(nanoSIMS) revealed a tight physiological coupling in the transfer of carbon (R2 = 0.6232; n 

= 44) and nitrogen (R2 = 0.9659; n = 44) between host and symbiont. N2 fixation was mainly 

stimulated when iron–rich Saharan Dust was added, emphasizing on aeolian dust deposition 

in seawater as a major parameter in constraining N2 fixation of UCYN–A. Moreover, when 

fixed nitrogen species (ammonium and nitrate) were added, a third unknown microbial partner 
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cell was observed within individual UCYN–A–Haptophyta associations, but their menaing is 

unclear. 

Based on this thesis work we revealed how UCYN–A cells thrive in the environment 

and established a culture–independent technique to assess the in situ activity in respect to CO2 

and N2 fixation of this ecological relevant group of microorganisms. Furthermore, this 

unusual partnership between a cyanobacterium and a unicellular alga is a model for symbiosis 

and is analogous to plastid and organismal evolution, and if calcifying, may have important 

implications for past and present oceanic N2 fixation.  
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Zusammenfassung 
 

Die biologische Fixierung von atmosphärischem Stickstoffgas (N2) stellt die Hauptquelle von 

verfügbarem Stickstoff im offenen Ozean dar und reguliert den marinen Stickstoffhaushalt 

und die Primärproduktion. Symbiotische Beziehungen zwischen Phytoplankton und N2 

fixierenden Mikroorganismen (Diazotrophe) spielen vermutlich eine entscheidende Rolle in 

der Ökologie und Biogeochemie innerhalb dieser marinen Gebiete. Die weit verbreitete, 

unkultivierte N2 fixierende Cyanobakterie UCYN–A wurde vermutet in Symbiose zu leben 

wegen ihrer beispiellosen Genomreduktion, unter anderem fehlender Gene für das Sauerstoff 

produzierende  Photosystem II und für den Tricarbonsäurezyklus. Der Schwerpunkt dieser 

Arbeit liegt auf das Studieren vom Kohlenstoff (C) und Stickstoff (N) Metabolismus in 

Feldpopulationen von UCYN–A unter der Benutzung von molekular–biologischen 

Techniken, als auch massen–spektroskopischen Geräten, um die metabolische Aktivität von 

Einzelzellen zu visualisieren. 

Die Entwicklung einer 16S rRNA Oligonukleotid Sonde spezifisch für UCYN–A 

Zellen und ihrer erfolgreichen Applikation in Umweltproben (Manuskript I und II) führte zu 

der Entdeckung einer symbiotischen Partnerschaft mit einem einzelligen Prymnesiophyten. 

Wir zeigen einen Nährstofftransfer von C und N zwischen UCYN–A und deren Partnerzellen, 

und bieten eine Erklärung wie diese diazotrophe Organismen im offenen Ozean leben. 

Weiterhin, UCYN–A Zellen können auch mit global verbreiteten kalzifizierenden 

Prymnesiophyten, zum Beispiel Braarudosphaera bigelowii, assoziieren, was darauf 

hindeuten kann, dass diese Symbiose die Effizienz der biologischen Kohlenstoffpumpe 

beeinflussen kann. 

 In Manuskript III stellen wir quantitative Informationen zur zellulären Abundanz und 

Verteilung von UCYN–A Zellen im Nord Atlantik bereit und identifizieren den 

eukaryotischen Partner als Haptophyta (inklusive Prymnesiophyten). Hierbei haben wir die 

doppelte „Catalyzed Reporter Deposition–In Situ Hybridization“ (CARD–FISH) Methodik 

angewandt. Die UCYN–A–Haptophyta Assoziation war die dominante Form (87.0±6.1%) 

gegenüber frei–lebenden UCYN–A Zellen. Interessanterweise haben wir ebenfalls UCYN–A 

Zellen mit unbekannten Eukaryoten assoziiert gesehen und nicht kalzifizierenden Haptophyta, 

welche Fragen über die Host Spezifität aufwerfen. 

In einer Folgestudie (Manuskript IV) führten wir Experimente mit verschiedenen 

Nährstoffzugaben durch (inklusive Eisen, Phosphat, Ammonium–Nitrat und Staub aus der 

Sahara Wüste), um die physiologischen Interaktionen zwischen UCYN–A und  Haptophyta 
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Zellen zu untersuchen. Durch die nanoSIMS Technologie konnten wir Messungen an 

einzelnen Zellen durchführen, welche gezeigt haben, dass eine signifikante physiologische 

Kopplung im Transfer von C (R2 = 0.6232; n = 44) und N (R2 = 0.9659; n = 44) zwischen 

Host und Symbiont besteht. N2 Fixierung war hauptsächlich durch eisenhaltige Staubzugabe 

stimuliert worden und unterstreicht dadurch die Bedeutung vom windtransportiertem 

Staubeintrag im Seewasser als Hauptfaktor für die Limitierung von N2 Fixierung in UCYN–A 

Zellen. Sobald biologisch verfügbares N in den Experimenten verfügbar war, haben wir in 

einigen UCYN–A–Haptopyhta Assoziationen eine dritte unbekannte mikrobielle Struktur 

festgestellt, deren Bedeutung unklar ist. 

 Auf Grund dieser Doktorarbeit konnten wir zeigen wie UCYN–A Zellen in der 

Umwelt leben und haben eine Methodik etabliert, welche die in situ Aktivität in Bezug auf 

CO2 und N2 Fixierung dieser einzigartigen Assoziation messen kann. Weiterhin, diese 

ungewöhnliche Partnerschaft zwischen einer Cyanobakterie und einer einzelligen Alge stellt 

ein Model für Symbiose dar und ist ein Analogon zur Plastid– und Organismusevolution. 

Zusätzlich, wenn UCYN–A Zellen mit kalzifizierenden Eukaryoten assoziieren, können 

solche Partnerschaften einen entscheidenden Einfluss auf vergangene und aktuelle marine N2 

Fixierung haben. 
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1 Introduction 

1.1 Nitrogen fixation in marine systems 

Dinitrogen gas (N2) accounts for approximately 80% of the Earth’s atmosphere, but due to its 

relatively inert chemical properties most organisms are not able to convert this gas into 

bioavailable nitrogen (Zehr and Paerl, 2008). Nitrogen (N) is indispensable for life since it 

constitutes a critical component of cellular biomass such as nucleic acids, lipids and proteins. 

The reduction of N2 gas into bioavailable ammonia (NH3) is commonly referred to as N2 

fixation and only a few microorganisms (diazotrophs) possess the metabolic repertoire to 

perform this process (Dixon and Kahn, 2004). Advancements in new methodologies including 

culture–independent techniques coupled to high throughput quantitative assays and genome 

sequencing efforts have revealed greater species diversity within the N2 fixing community 

than previously known. However, our knowledge about the physiology and activity of these 

diazotrophs is limited. 

Primary productivity in the world’s oceans is considered to be mainly limited by N. 

Microbial mediated N2 fixation is the major process that provides bioavailable nitrogen. 

Nitrates (i.e. NH3, NO3
–
 and NO2

–
), taken up along with CO2 by photosynthetic phytoplankton, 

are converted into cellular organic compounds, forming the base of the marine food web 

(Capone, 2000). Phytoplankton turnover in surface waters causes a flux of sinking organic 

matter containing cellular biomass and organically rich N compounds (e.g. amino acids), 

leading to the formation of particulate organic nitrogen (PON). The biological degradation of 

PON results in the formation of nitrate (NO3
–
) in deeper water layers, which can fuel surface 

phytoplankton blooms by physical upwelling and mixing events. The amount of primary 

production supported by the regeneration and upwelling of nutrients within the euphotic zone 

is minor compared to the impact of newly fixed N (Capone et al., 1997; Capone et al., 2005) 

(Fig. 1). 

Understanding the magnitude of marine N2 fixation is of crucial interest because it 

influences ocean–atmosphere fluxes of carbon and other nutrients and ultimately regulates the 

concentrations of the greenhouse gas CO2 (Sundquist and Broecker, 1985; Karl et al., 1997). 

Therefore, N2 fixation represents a globally significant process that structures marine 

ecosystems by providing “new” N and by controlling the export and sequestration of organic 

carbon, a process known as the biological pump. 
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Fig. 1: Generalized marine N cycle with emphasis on N2 fixation. The supply of “new” N based on N2 fixation 
and nitrate from deep waters determines the amount of CO2 fixation (primary productivity). The latter process 
defines how much fixed carbon and particulate organic nitrogen (PON) is exported to deeper water layers. 
Additionally, primary productivity is also fuelled by the regeneration of organic material to ammonia within 
surface waters. Modified after Sohm et al. (2011) 

 

The marine N cycle is complex and involves a variety of nitrogen species such as N2, 

NO3
–
, ammonium (NH4

+
), nitrite (NO2

–
), nitrous oxide (N2O) and organic N ranging in 

oxidation states from +V to –III (Fig. 2). Due to the plurality of N species and oxidation 

states, various microbial transformation pathways exist that are used to acquire N for growth 

and as an energy source during respiration (Gruber, 2008). The assimilation of NO3
–
 and NH4

+
 

by phytoplankton is the dominant process in the marine N cycle, because its uptake and 

incorporation into biomass requires a low energy input, especially NH4
+ 

which does not 

involve a redox reaction (Zehr and Ward, 2002). Fixed organic nitrogen can be converted into 

inorganic nitrogen species through ammonification and nitrification, and they represent 

important remineralization processes that link the most oxidized form of nitrogen (NO3
–
) with 

the most reduced form (NH4
+
) (Goldman et al., 1987; Bronk and Steinberg, 2008; Ward, 

2008). Microbial denitrification and anaerobic oxidation of ammonium (anammox) describe 

major processes that remove bioavailable N (N–loss) from the marine environment by 

releasing N2 gas to the atmosphere (Mulder et al., 1995; Kuypers et al., 2003; Lam and 
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Kuypers, 2011). These pathways play a critical role in the bioavailability of organic nitrogen 

compounds in the ocean.  

 

 

Fig. 2: Overview of different nitrogen species, correlating oxidation states and major transformation pathways in 
the marine environment. The dashed lines indicate processes that are carried out under anaerobic conditions, 
whereas the grey lines represent nitrification processes. The red line emphasizes N2 fixation activity, the focus of 
this thesis. Modified after Gruber (2008). 

 

Biologically fixed N in the oceans sum up to about 6.6 x 105 Tg N (Gruber, 2008). 

Aside from N2 fixation, “new” N is also delivered through atmospheric deposition. The latter 

source has been estimated to be around 67 Tg N a–1 and is expected to rise approximately 

10% up to 77 Tg N a–1 over the next two decades due to increasing anthropogenic influences 

from for example the burning of fossil fuels and the extensive use of fertilizers in agriculture. 

This will inevitably effect the surface ocean productivity (Duce et al., 2008). Other additional 

N sources originate in benthic environments and rivers, but these inputs are constrained to 

coastal areas (Capone and Carpenter, 1982; Boyer et al., 2006). Combined estimates of fixed 

N sources result in a global gain of ~200–300 Tg N a–1 (Table 1). On a global scale, marine 

N2 fixation is estimated to provide 100–200 Tg N a–1 (Karl et al., 2002; Gruber, 2008), 

exceeding all other N sources, hence, playing a pivotal role in regulating the marine N 

inventory and primary productivity. 

Estimates of N–loss processes outweigh N–gain processes, leading to an imbalanced 

marine N–budget (Codispoti, 1995; Michaels et al., 1996; Gruber, 2005; Capone and Knapp, 

2007). The ongoing controversy about this discrepancy has been one of the main driving 
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forces for investigating the marine N cycle. Newly discovered diazotrophs reveal a greater 

diversity within the N2 fixers than previously known, suggesting that N2 fixation rates are 

likely underestimated in the marine environment (Zehr et al., 1998; Zehr et al., 2001). 

Therefore, the identification of microorganisms involved in N2 fixation and understanding the 

factors that regulate their activity is crucial in order to balance the marine N budget, as well as 

to better understand ecosystem. 

 
Table 1: Global estimates N–gain and N–loss in marine waters. Adapted from Gruber (2008) 

Process Codispoti et al. (2001) Galloway et al. (2004) Gruber (2004) 

 Nitrogen sources (Tg N a–1) 

Pelagic N2 fixation 117 106 120 

Benthic N2 fixation 15 15 15 

River input (DON*) 34 18 35 

River input (PON**) 42 30 45 

Atmospheric deposition 86 33 50 

Total sources 294 202 265 
    

 Nitrogen sinks (Tg N a–1) 

Organic N export 1  1 

Benthic denitrification 300 206 180 

Pelagic denitrification 150 116 65 

Sedimentation 25 16 25 

N2O loss 6 4 4 

Total sinks 482 342 275 

* Dissolved organic nitrogen 

** Particulate organic nitrogen 

 

1.2 Nitrogen fixing microorganisms 

Biological N2 fixation is an ancient process carried out by diazotrophic microorganisms of 

bacterial and archaeal lineages in a wide range of environments (Staal et al., 2003; Zehr et al., 

2003; Zehr and Paerl, 2008). The term diazotroph implies a chemical reaction with two N 

atoms (diazo–) used for nourishishment (–troph). Most diazotrophs are photoautotrophic as 

they are able to fix CO2 and N2 gas (Capone et al., 2008). During CO2 fixation, the 
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photosystem II (PSII) is used to split two water molecules into two hydrogens and one oxygen 

(O2), the release of energy is used to synthesize carbohydrates with O2 as the terminal electron 

acceptor. These carbohydrates provide an energy reservoir that can be utilized for the 

subsequent N2 fixation process. 

The nitrogenase is the key enzyme used for N2 fixation by diazotrophs (Postgate, 

1982); it contains two multisubunit metallo–proteins. The first protein encoded by the nifD 

and nifK genes has molecular weight of about 220 kDa and is composed of O2 sensitive 

molybdenum–iron–clusters (Mo–Fe) that contain the active site. The second protein is 

considerably smaller (~70 kDa), and it is composed of Fe–clusters that exhibit the active 

binding site of adenosintriphosphate (ATP) and an inorganic aggregate formed by four Fe and 

sulfur (S) atoms, which are responsible for ATP hydrolysis and electron transfer (Bulen and 

LeComte, 1966; Hageman and Burris, 1978). This component is encoded by the nifH gene 

(Zehr et al., 2003). Due to the triple bond within the N2 molecule (N≡N) it costs energy to 

reduce this form to NH4
+ (Gallon, 1992). Eight reducing equivalents and 16 ATP molecules are 

required to accomplish this reaction: 

 

N2 + 8 H+ 8 e– + 16 ATP → 2 NH3 + H2 + 16 ADP + 16 Pi                                             Eq. 1.1 

 

Because the nitrogenase enzyme complex is O2 sensitive, some diazotrophs separate 

CO2 fixation from N2 fixation by spatial segregating the two processes. Some diazotrophs 

have evolved specialized cellular compartments, known as heterocysts, which keep the 

nitrogenase enzyme in an active stage for catalyzing the N2 fixation and prevent this enzyme 

from inactivation by O2 contact via photosynthesis (Stewart, 1969; Rippka et al., 1971; 

Berman Frank et al., 2003). This distinct morphological feature makes it possible to identify 

certain filamentous heterocyst–forming diazotrophs. However, the majority of the 

diazotrophic community does not contain this morphological feature. Instead, diversity is 

distinguished by genetic approaches that target the nifH gene; an approach which has recently 

gained in popularity because this marker gene is well conserved among the diazotrophic 

community (Zehr et al., 2003). Cyanobacteria are considered the main diazotrophs in marine 

waters, but functional nifH gene assays also revealed non–cyanobacterial phylotypes, 

highlighting the potential ecological importance of heterotrophic N2 fixing microorganisms 

(Zehr et al., 1998; Farnelid and Riemann, 2008; Farnelid et al., 2011; Halm et al., 2012). Most 

heterotrophic diazotrophs are not light–dependent and can inhabit deeper water layers 
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compared to other diazotrophs. Nonetheless, actual heterotrophic N2 fixing activity has not 

been proven and its ecological significance remains unclear. 

Known open ocean N2 fixing cyanobacteria have been assigned into three major 

groups according to the nifH gene phylogeny: 

 

(I) Filamentous non–heterocyst forming Trichodesmium 

(II) Filamentous heterocyst forming symbionts with unicellular eukaryotic algae (Richelia, 

Calothrix and relatives) 

(III) Unicellular cyanobacteria (Crocosphaera and relatives of Cyanothece) 

 

In open ocean systems, the cyanobacterium Trichodesmium sp. and filamentous 

cyanobacterial symbionts of diatoms are considered the dominant diazotrophs that 

significantly influence the marine N cycle (Villareal and Carpenter, 1988; Capone et al., 

1997; Carpenter et al., 1999). Recent studies detected novel nifH gene phylotypes of 

unicellular cyanobacteria (UCYN), showing that these groups of organism are present in all 

major oceanic basins and believed to be ecologically relevant (Zehr et al., 2001; Zehr et al., 

2003; Montoya et al., 2004; Moisander et al., 2010). However, since very few diazotrophs 

representatives have been successfully cultivated (Waterbury and Rippka, 1989; Prufert

Bebout et al., 1993; Zehr et al., 2001; Falcón et al., 2004b), it is difficult to know the 

conditions and parameters that allow them to thrive in the environment. Instead we rely on 

culture independent techniques to infer N2 fixing activity and estimate their contribution to the 

marine N budget. 

1.2.1 Trichodesmium 

The filamentous non–heterocyst forming Trichodesmium sp. is considered the most abundant 

diazotroph in the oceans and global estimates of N2 fixation activity has been mainly 

attributed to these cyanobacteria (Capone et al., 1997; Karl et al., 1997; Capone et al., 2005). 

Trichodesmium was first isolated in pure culture by Prufert–Bebout (1993) from the North 

Atlantic. These microorganisms either appear as free–living trichomes or they form extensive 

colonies and aggregates, which sometimes can be observed from space (Capone et al., 1997; 

Subramaniama et al., 2002) (Fig. 3).  
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Fig. 3: Individual filaments of Trichodesmium that form two different aggregates under (A) a binocular 
microscope and (B) an epifluorescent microscope collected near the Hawaiian Islands from station ALOHA (22° 
45’ N, 158° 00’W) on board the RV Kilo Moana (KM 0210) during a research cruise in July 2011. Pictures 
taken by the C–MOORE class 2011.  
 

Quantifying Trichodesmium and accurately assessing their biomass is challenging due to 

different forms, leading to further uncertainties in estimating global N2 fixation (Capone et al., 

1997). The distribution of different forms plays a critical role in estimating N2 fixation 

activity since free trichomes of Trichodesmium have been reported to fix less N2 than colony 

forming Trichodesmium when normalized to individual filaments (Saino and Hattori, 1980; 

Letelier and Karl, 1998). Trichodesmium is globally abundant and thrives best in oligotrophic 

open ocean environments with water temperatures ≥25 °C, i.e. most subtropical and tropical 

regions (Capone et al., 1997; Breitbarth et al., 2007; White et al., 2007a). This 

cyanobacterium exhibits special physiological properties to grow in nutrient depleted 

environments. For instance, these microorganisms can store and sequester carbohydrates and 

phosphate inside their trichomes to survive during low nutrient periods (White et al., 2006; 

Orchard et al., 2010). These storage compounds essentially provide energy during N2 fixation 

(Sohm and Capone, 2006; White et al., 2006). Trichodesmium has also been shown to harbour 

epibiotic bacteria that support the acquisition of phosphate (Van Mooy et al., 2012), and it 

also possess the genetic ability to utilize phosphonates in order to scavenge additional 

phosphate (Dyhrman et al., 2006). Phosphonates constitute organically bound phosphorus, 

which is usually not accessible to other marine microorganisms. Trichodesmium is also able 

to generate gas vacuoles and control their buoyancy, which allows these microorganisms to 

migrate vertically along the water column in order to acquire better light conditions and 

obtain nutrients that are exhausted in surface waters (Villareal and Carpenter, 2003; Karl et 

al., 2008). Further studies suggest that this behaviour can be used to evade grazing pressure, 

giving Trichodesmium a distinct advantage with respect to microbial fitness. 
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Intriguingly, Trichodesmium can fix CO2 and N2 simultaneously during the day, 

despite the lack of heterocyst. It was suggested that the nitrogenase is active in distinct 

regions that are depleted in cellular oxygen, but rich in reductants (Bryceson and Fay, 1981; 

Paerl and Bland, 1982; Paerl and Bebout, 1988). Others suggested that Trichodesmium is 

capable of fixing CO2 via the Mehler reaction, where the oxygen produced by PSII is rapidly 

reduced back to photosystem I (PSI). Such a mechanism would allow for the quick separation 

of photosynthesis from N2 fixation using altering microzones during the day (Berman Frank 

et al., 2001b; Küpper et al., 2004). 

1.2.2 Heterocyst forming cyanobacteria 

The heterocyst forming cyanobacteria represent a group that include both free–living and 

symbiotic cells. Heterocyst–forming cyanobacteria are commonly observed in estuaries and 

brackish water; in open ocean environments these microorganisms are less abundant. A 

possible explanation for these observations is turbulence sensitivity in open ocean systems, 

which is hypothesizes to cause a decrease in the organisms’ biological fitness (Howarth et al., 

1993). In the brackish waters of the Baltic Sea cyanobacteria such as Nodularia spp, 

Aphanizomenon spp. and Anabaena spp. are commonly present. Nodularia spp. and 

Aphanizomenon spp. show temperature preferences ranging between 16–22 °C and 25–28 °C, 

respectively (Lehtimaki et al., 1997) and can reach abundances of 104 heterocyst L–1 during 

blooming events (Laamanen and Kuosa, 2005). In tropical and subtropical marine waters, 

heterocystous diazotrophs are frequently encountered living symbiotically with diatoms 

(Venrick, 1974; Carpenter et al., 1999; Zeev et al., 2008). Some heterocystous forming 

cyanobacteria have been encountered in a free–living stage, but their abundances are 

considerably low (Gómez et al., 2005; White et al., 2007b; Grabowski et al., 2008). These 

diatom–diazotroph associations (DDAs) are mainly represented by Richelia intracellularis 

living symbiotically within diatoms like Hemiaulus spp. or Rhizolsolenia (Fig. 4) and 

filaments of Calothrix spp. that live associated with the diatom Chaetoceros (Carpenter and 

Foster, 2003).  
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Fig. 4: Compilation of symbioses between diatoms and diazotrophs. (A–D) The diatom Hemiaulus hauckii and 
its endosymbiotic cyanobacterium Richelia intracellularis and (E–I) the diatom Rhizosolenia spp. and its 
endosymbiotic cyanobacterium Richelia intrace. (B,G) Bright–field microscopy, fluorescence pattern of (A–F) 
chlorophyll (excitation: 450 nm; emission: 680 nm), (D,I) phycoerythrin (excitation: 490 nm; emission: 580 nm) 
and (C,H) phycocyanin (excitation: 620 nm; emission: 660 nm). Source Zeev et al. (2008). 
 
These associations are widely distributed in warm oligotrophic environments and appear in 

numbers averaging around 103 heterocyst L–1 (Venrick, 1974; Carpenter et al., 1999; Zeev et 

al., 2008). Diatoms commonly form silica frustules, which make them heavier compared to 

most other phytoplankton. Enhanced sinking rate of diatoms fuel the biological pump as cell 

aggregates or fecal pellets from zooplankton (Smetacek, 1999; Buesseler, 2012). 

Recent work observed host specificity among different symbiotic associations, and 

suggested that the diatoms use distinct physiological mechanisms to interact with their 

diazotrohic partners (Foster and Zehr, 2006). Foster et al (2011) demonstrated that the 

symbiotic diazotrophs can fix  extensive amounts of N2 and transport this rapidly to their host, 

fuelling growth. These findings are intriguing and show the importance of these interactions, 

and give attention to an understudied group of organisms that may have a profound impact on 

the marine C and N cycles (Foster et al., 2011). Presently, little is known about the 

ecophysiology of these symbiotic cyanobacteria and their host; however, the recently 

cultivated epibiont Calothrix (from the diatom Chaetoceros) has made it possible to study the 

interactions and mechanisms behind this symbiosis in more detail (Foster et al., 2010). 

 

1.2.3 Unicellular cyanobacterial groups (UCYN) 

The recently characterized UCYN group of unicellular cyanobacteria have been shown to 

have high rates of N2 fixation within a cell–size fraction below 10 μm, emphasizing their 
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importance within the diazotrophic community (Zehr et al., 2001). According to their nifH 

gene phylogeny, these unicellular cyanobacteria have been divided into three groups, namely 

UCYN–A, UCYN–B and UCYN–C (Zehr et al., 1998; Zehr et al., 2008) (Fig. 5). 

 

 

Fig. 5: Maximum–Likelihood phylogenetic reconstruction inferred from selected nifH gene sequences from the 
North Pacific showing the three uncultured unicellular cyanobacterial groups UCYN–A, UCYN–B and UCYN–
C (Needoba et al., 2007). 
 

Over the past decade, each of these groups have been identified and quantified using group 

specific nifH gene primers via quantitative polymerase chain reaction (qPCR) assays. From 

this work, we now know that these cyanobacteria are widely distributed in marine waters, 

especially within tropical and subtropical regions (Langlois et al., 2005; Zehr et al., 2008; 

Moisander et al., 2010). Their abundances can sometimes dominate the diazotrophic 

community (Montoya et al., 2004; Church et al., 2008; Langlois et al., 2008; Goebel et al., 

2010). The nifH gene sequence of UCYN–C shares a high similarity with Cyanothece sp 

ATCC 51142 and some diatom endosymbionts (Zehr, 2011). In comparison to UCYN–B and 

UCYN–A, little is known about the UCYN–C, except that it co–occurs with the other two 

UCYN populations. 

The only cultivated representative of the UCYN–B population is Crocosphaera 

watsonii. Crocosphaera was originally isolated from the South Atlantic Ocean by Waterbury 

and Rippka (1989), and subsequent genetic surveys on its specific nifH gene sequence showed 
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that these diazotrophs are also widely distributed in marine waters (Moisander et al., 2010). 

Crocosphaera sp. can be easily identified by microscopy since it features distinct 

autofluorescence pattern due to its pigmented cells that contain phycoerythrin (Webb et al., 

2009) (Fig. 6). Studies on cultured strains of Crocosphaera sp. revealed temperature 

preferences ranging between 22–36 °C and showed spherically shaped cells appearing in two 

distinct phenotypic groups characterized by size differences (2–4 um and 4–8 um) (Webb et 

al., 2009; Foster et al., 2013). This diazotroph is capable of producing an extra polymer 

saccharide matrix (EPS) (Webb et al., 2009; Foster et al., 2013), it is believed that these 

compounds provide C sources during nutrient limitation, aiding in nutrient acquisition from 

surrounding water and serve as O2 protection for the nitrogenase enzyme (Reddy et al., 1996; 

Corzo et al., 2000). 

 

 
Fig. 6: Epifluorescence microscopic evaluation on Crocosphaera watsonii–like cells under blue excitation on 
field samples collected from station ALOHA (22° 45’ N, 158° 00’W) near the Hawaiian Islands. (A) The free–
living phenotype, and (B) the colonial phenotype. Scale bars 5 μm. Source Foster et al. (2013). 
 

Quantitative measurements on nifH genes specific for Crocosphaera sp. demonstrated 

a linear increase between gene copies (103–104 L–1) and temperature (Church et al., 2008; 

Langlois et al., 2008). Crocosphaera sp. temporarily separates CO2 and N2 fixation during the 

day and night, respectively. The synthesized carbohydrates stored during the day are partially 

utilized for the more energy demanding N2 fixation process. The temporal separation has also 

been confirmed in field samples analysing nifH gene transcripts when numbers peaked during 

the night (Church et al., 2004). The segregation between C and N metabolism is tightly 

regulated by complex gene expression mechanisms including a circadian clock (Chen et al., 

1996; Mohr et al., 2010a). The latter was confirmed by the genome analysis of Crocosphaera 

watsonii, which closely follows a 12:12 h light–dark cycle (Shi et al., 2010). Here, the 

production of the nitrogenase enzyme is initiated shortly before the dark phase in preparation 
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for the upcoming N2 fixation activity during dark hours (Dron et al., 2011). The length of the 

light period is directly coupled to the length of the N2 fixation period because the light length 

determines the reservoir of carbohydrates that fuel N2 fixation activity at night (Dron et al., 

2013).  

In contrast, our knowledge about physiological characteristics of the UCYN–A group 

is limited since there is no cultured representative strain available. UCYN–A usually inhabits 

subtropical and tropical oligotrophic regions with water regimes that range in temperatures 

between 15–30 °C, indicating a broader distribution then other UCYN groups (Needoba et al., 

2007; Church et al., 2008; Moisander et al., 2010). In addition, UCYN–A nifH gene copy 

numbers are usually more abundant compared to other UCYN groups (Church et al., 2008; 

Moisander et al., 2010). It is puzzling, however, that UCYN–A expresses nifH gene 

transcripts mostly during the day. This contradicts the common assumption that unicellular 

diazotrophs temporally separate CO2 fixation from N2 fixation (Gallon, 1992; Berman Frank 

et al., 2003; Dron et al., 2011). 

Technical improvements in fluorescence activated cell sorting (FACS) in combination 

with subsequent 16S and nested nifH gene sequencing attempts resulted in successfully 

separating the UCYN–A population (Zehr et al., 2008). This work detected UCYN–A cell 

diameters of approximately 1 μm, and through genetic analyses, revealed that these 

microorganisms lack genes for photosystem II (PSII) and C fixation, characteristic for 

cyanobacteria. Sorted UCYN–A cells and subsequent sequencing efforts succeeded in closing 

its genome and demonstrated that other genes that encode essential metabolic pathways are 

missing, e.g. RuBisCo, TCA cycle genes and some genes connected to amino acid and purine 

synthesis (Tripp et al., 2010). These findings explain how UCYN–A is able to actively 

express most nifH genes during the light period. Other studies suggest that UCYN–A might 

be photoheterotrophic since it lacks photosynthetic genes, or that is may live in association 

with other phototrophic microorganisms (Bothe et al., 2010; DeLong, 2010; Tripp et al., 

2010). The mechanisms that this cyanobacterium utilizes to thrive in the environment without 

performing CO2 fixation are still unknown. 

Attempts to visualize the globally abundant uncultured cyanobacterium UCYN–A 

have so far been unsuccessful; furthermore research currently lacks activity measurements of 

N2 fixation by UCYN–A. This thesis work aims to improve our understanding of, (1) how 

UCYN–A cells thrive in the environment and, (2) estimating their contribution to marine N2 

fixation. Here we establish a method to identify these microorganisms by fluorescence 

microscopy and then to link their phylogeny with in situ metabolic activity on a single cell 
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scale. This work primarily assesses the physiological activity of this ecological important 

group of microorganisms through culture–independent techniques. 

 

1.3 Parameters controlling N2 fixation 

Understanding the factors that control the activity of diazotrophs and determining their 

temporal–spatial distribution in marine waters is of crucial interest in order to improve N2 

fixation estimates and to identify high productive marine areas that can be linked to high C 

export (Karl et al., 2002; Karl et al., 2012). Better predictions will also improve flux 

calculations of parameters that impact climate change, e.g. atmospheric CO2 levels. 

The availability of nutrients such as trace metals has been suggested to play a major 

role in constraining N2 fixation activity. For instance, the availability of phosphorus (P) and 

iron (Fe), important for nitrogenase activity, have been the main focus of N2 fixation research. 

For instance, studies on cultured strains of Trichodesmium spp. revealed higher N2 fixation 

rates under higher Fe concentrations, due to elevated Fe requirements for the activity of their 

nitrogenase enzyme (Berman Frank et al., 2001a; Kustka et al., 2003). In contrast, low Fe 

concentrations have shown to decrease N2 fixation rates in concert with the expression of 

distinct proteins involved in Fe stress and down regulate proteins containing Fe involved in 

CO2 and N2 fixation (Berman Frank et al., 2001b; Küpper et al., 2008; Chappell and Webb, 

2010). Similarly, the cultured diazotroph Crocosphaera watsonii expresses distinct proteins 

under Fe stress, i.e. idiA homologues, which are proposed to protect PSII against O2 stress and 

have been shown to be dominant components of metatranscriptomes of Crocosphaera sp. 

(Webb et al., 2001; Hewson et al., 2009). The North Atlantic is characterized by elevated Fe 

supply originating mainly from Saharan dust, that stimulates the abundance, distribution and 

activity of diazotrophs (Capone et al., 2005; LaRoche and Breitbarth, 2005; Moore et al., 

2009) (Fig. 7). 

The availability of P is another important parameter that limits Trichodesmium N2 

fixation activity in the Atlantic ocean (Sañudo Wilhelmy et al., 2001). Elevated N2 fixation 

activity leads to decreasing P concentrations, hence, causing P limitations (Wu et al., 2000; 

Cavender Bares et al., 2001). The Atlantic Ocean has been shown to be more P limited than 

Fe, while the opposite is seen in the Pacific Ocean (Cavender Bares et al., 2001; Karl et al., 

2001; Mahowald et al., 2005; Moutin et al., 2008; Moore et al., 2009). It appears that a 

stoichiometric balance of P and Fe concentrations may limit N2 fixation, and in some 

instances, a co–limitation of N2 fixation by the availability of P and Fe may exist (Mills et al 

(2004). 
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Fig. 7: Global distribution of dust deposition leading to P and Fe input in marine environments. Source Jickells 
et al. (2005). 
 

1.4 Assessing N2 fixation activity 

There are several methodologies available to determine N2 fixation activity, including 

geochemical and modelling approaches, as well as measurements through mass spectrometry 

and molecular tools. 

Quantitative methods to determine N2 fixation rates are based on geochemical and 

modelling estimates, and mass spectrometry approaches that use the acetylene reduction assay 

(Capone, 1993; Capone and Montoya, 2001) and stable isotope 15N2 tracer (Montoya et al., 

1996). Geochemical and modelling estimates of N2 fixation are based on abundances, C:N 

requirements and growth rates of distinct N2 fixing microorganisms. These factors are most 

accurately obtained when the investigated population is in culture, which is only the case for a 

few representative strains (Waterbury and Rippka, 1989; Chen et al., 1996). For instance, C:N 

requirements of uncultured diazotrophs are derived using equations and empirical data that 

describe the relationship between cellular C:N content, cell size and morphology of different 

phytoplankon populations (Strathmann, 1967; Liu et al., 1997; Goebel et al., 2008). This 

empirical data is needed to determine cellular N2 fixation rates and can be extrapolated on a 

regional or global scale if abundance data for the targeted diazotrophic population in that 

respective region is available. Abundance data can be acquired through microscopic counts, 

quantitative information on functional genes or remote sensing techniques (Subramaniama et 

al., 2002; Tyrrell et al., 2003; Church et al., 2005a). 

Another approach for estimating N2 fixation is based on models that use algorithms to 

describe anomalies in the stoichiometry of N:P ratios. Early work by Redfield (1958) revealed 



1 Introduction 

15 

that the organic matter composition of marine phytoplankton follows a constant 

stoichiometric  ratio between C, N and P:  

 

106 CO2 + 16 HNO3 + H3PO4 + 122 H2O ↔ (CH2O)106 (NH3)16 (H3PO4) + 138 O2       Eq. 1.2 

 

The classical Redfield N:P stoichiometry of 16:1 is used as a proxy to distinguish from N or P 

limitation, where ratios in water less than 16 indicate N limitation and ratios above 16 indicate 

P limitation. This ratio has been revaluated recently and may change substantially between 

different phytoplankton populations and marine regions (Broecker and Henderson, 1998; 

Klausmeier et al., 2004). For example, varying N:P ratios for algae ranging from 5–19 under 

nutrient–replete growth conditions have been shown by Geider and LaRoche (2002). Further 

studies revealed higher N:P ratios for cyanobacteria and lower values for diatoms, indicating 

taxonomic differences in respect to the Redfield ratio (Bertilsson et al., 2003; Heldal et al., 

2003; Ho et al., 2003; Fu et al., 2005). Despite the variability of the N:P ratio in the elemental 

composition of phytoplankton, this ratio remains stable throughout most of the deep ocean 

(Takahashi et al., 1985) because of feedback mechanisms between denitrification and N2 

fixation processes. Since both processes transform fixed N compounds in marine systems, but 

do not alter the P concentration, these biogeochemical pathways are considered to be the main 

factors that control the N:P stoichiometry (Redfield, 1958; Brandes and Devol, 2002; Gruber, 

2008). In order to detect deviations from the classical 16:1 ratio, the term N* was invented: 

 

N* = [NO3
–
] – 16 [PO4

3–
] + 2.9 μmol kg–1                                                                         Eq. 1.3 

 

The constant of 2.9 μmol kg–1 was added to achieve zero values for global means of N* 

according to Gruber and Sarmiento (1997; 2002). Obtained values for N* can be used to 

emphasize areas with elevated N (positive values) or depleted N concentrations (negative 

values). This approach cannot distinguish between anomalies originating from denitrification 

or N2 fixation because this equation describes the sum of both processes. However, since both 

processes are often spatially and temporarily separated, obtained results can be well 

interpreted and used to estimate global N budgets. Modelling approaches based on this 

anomaly concept suggested that the Atlantic Ocean represents a net source of fixed N, 

whereas the Pacific Ocean serves as a net sink of fixed N (Gruber, 2008). On the other hand, 

higher N2 fixation rates have been proposed for the Pacific Ocean compared to the Atlantic 

Ocean using similar modelling approaches (Deutsch et al., 2007). 
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Determining the natural abundance of 15N isotopes represents another geochemical 

approach to estimate N2 fixation. This stable isotope represents a minor fraction of the N 

element constituting only 0.365% of all N atoms (Nier, 1950), but is sufficient to quantify 

differences in isotope ratio abundances between the sample material and the atmosphere. In 

biological systems, enzymatically–catalyzed reactions can lead to isotopic fractionation 

because lighter isotopes react more readily, leading to products that are lighter than the 

reactants (Teece et al., 1999). Denitrification and N2 fixation, for instance, are generally 

considered to control the size and isotopic composition of the oceanic NO3
–
 pool (Brandes and 

Devol, 2002), where the former process lowers the pool size of NO3
–
 while increasing its δ15N 

signature and the latter process results in opposite effects. These isotopic variations can be 

monitored as they transform into different nitrogen compounds within the euphotic zone 

(Voss et al., 2001; Montoya et al., 2002; McClelland et al., 2003) and benthic sediments 

(Altabet et al., 1995; Ganeshram et al., 1995). These findings can be used to study the marine 

N cycle across broad spatial and temporal scales (Fig. 8). 

 

 
Fig. 8: Schematic overview of different processes and their isotopic fractionation effect on δ15N of 

oceanic NO3
–
. Source Montoya (2008) 

 

Direct measurements of N2 fixation are commonly carried out by applying the 

acetylene reduction approach (ARA) and the 15N2 tracer method. The former method was 

introduced more than five decades ago (Neess et al., 1962; Dugdale et al., 1964) and is based 
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on the ability of the nitrogenase enzyme (crucial for N2 fixation) to reduce small triple bonded 

molecules, chemically similar to N2 (N≡N), such as cyanide, azide, nitrous oxide and 

acetylene. Acetylene (H–C≡C–H) is saturated in liquid and added to the incubation bottle 

(Capone, 1993; Montoya et al., 1996). Acetylene is reduced to ethylene in a theoretical molar 

ratio of 3:1 relative to N2 gas and ethylene is measured via flame ionization gas 

chromatography, measuring N2 fixation by assessing the activity of the nitrogenase enzyme. (2008) 

N2 fixation activity can be measured via the 15N2 gas tracer method that is commonly 

carried out by injecting the tracer into gas tight incubation bottles and after determination of 

the incubation period, the sample water is filtered and subsequently analysed via mass 

spectrometry. N2 fixation rates are then calculated by the change in 15N labelled particulate 

organic nitrogen (15N–PON) between the beginning of the incubation and at the end of the 

incubation according to following equation (Montoya et al., 1996; Capone and Montoya, 

2001): 

 

1.4       Eq.                    
 t

nmol PN
x  

 PNAT%  - N AT%

 PNAT% -  PNAT%
  N t nmol fixation N final

init ial2

init ialfinal1-
2

 

 

where AT% stands for the atomic percentage of the 15N isotope in PON at the end (PNfinal) or 

at the beginning (PNinitial) or the incubation and in the dissolved N2 pool. The only parameter 

that is not measured is the amount of the labeled 15N2 pool, which is derived from equations 

describing the dissolution coefficient of N2 gas in seawater (Weiss, 1970). The dissolution of 

the 15N2 gas within the incubated seawater is of crucial importance to measure N2 fixation 

rates precisely. Recent studies demonstrated a methodological underestimation of N2 fixation 

by using this tracer method compared to an improved protocol (Mohr et al., 2010b; Großkopf 

et al., 2012). These authors dissolved 15N2 gas into liquid prior to its injection into the 

incubation bottles, aiming an improved distribution and accessibility of the 15N tracer for the 

diazotrophic community. This approach might lead to a more balanced N2 budget in the 

oceans. 

The ARA method requires less laboratory work and is more sensitive compared to the 

classical 15N2 tracer method. However, the latter approach does not need a conversion factor 

of 3:1, which undergoes an ongoing debate about its accuracy. Recent findings showed that 

the conversion factor between the acetylene reduction and N2 fixation deviated away from a 

3:1 ratio (Mulholland et al., 2004; Capone et al., 2005; Mulholland and Bernhardt, 2005), 

emphasizing the need to improve methods to assess N2 fixation activity. 
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The abundance of diazotrophs also can provide insight into N2 fixation distribution. 

The key enzyme for N2 fixation is nitrogenase and its iron subunit is encoded by the nifH 

gene. The development of functional gene assays targeting the nifH gene via qPCR is 

commonly applied and provides information on abundance and distribution of distinct 

diazotrophic community members (Zehr and McReynolds, 1989; Zehr et al., 2003; Church et 

al., 2005a). Nonetheless, the results obtained via these approaches have to be interpreted with 

caution because they are based on the assumption that each diazotrophic cell contains only 

one nifH gene copy per cell. This has only been confirmed for Trichodesmium, Cyanothece 

and Crocosphaera (Zehr et al., 2008), but does not hold necessarily true for other diazotrophic 

microorganisms including UCYN–A (Bombar et al., 2011; Ininbergs et al., 2011; Bombar et 

al., 2013). Therefore, the nifH gene assay is semi–quantitative because it does not provide 

exact cell abundances, but is a useful approach to assess diazotrophic community structure. 

These functional gene assays can also serve to target nifH gene expression as mRNA in order 

to infer N2 fixation activity (Church et al., 2005b; Short and Zehr, 2007). This is convenient 

for identifying diazotrophs that are actively expressing the nifH gene, and therefore the 

nitrogenase enzyme, but cannot provide actual rates of N2 fixation. 

Developments in culture–independent techniques coupled with secondary ion mass 

spectrometry (nanoSIMS) made it possible to acquire precise information about the uptake of 

stable isotopes within single microbial cells, linking biological activity with phylogenetic 

identification (Orphan et al., 2001; Musat et al., 2008).Musat et al., 2008).Thus, quantifying rates of uptake at 

the single cell level would be more accurate and reliable. These findings emphasize the 

powerful approach of enumerating cellular abundances of distinct populations and quantifying 

their activity by detecting their isotopic enrichment on a single cell level. This is a useful tool 

for visualizing N2 fixation activity on a single cell level and for assigning it to distinct 

diazotrophic populations (Foster et al., 2011; Thompson et al., 2012; Krupke et al., 2013). In 

combination with the newly optimized 15N2 tracer method, this technique will further improve 

our estimates of N2 fixation. 

1.5 Aims of thesis 

Microbial mediated conversion of atmospheric N2 gas into bioavailable NH3 constitutes an 

important N source in oligotrophic open ocean systems controlling primary productivity. The 

discovery of new N2 fixing microorganisms based on functional nifH gene assays revealed a 

higher diversity within the diazotrophic community than previously known. These phylotypes 

were divided into three uncultured unicellular cyanobacterial groups, i.e. UCYN–A, UCYN–

B and UCYN–C. These groups are globally abundant and the detection of high N2 fixation 
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rates in cell–size fractions with high abundances of UCYN groups indicated their ecological 

importance within the diazotrophic community. 

In particular, nifH gene phylotypes of UCYN–A can dominate diazotrophic 

communities and reveal highest nifH expression during the day, which is unusual since 

unicellular diazotrophs perform N2 fixation during the night. Further investigations succeeded 

in closing the genome of UCYN–A showing that these microorganisms lack genes for PSII, 

any known CO2 fixation pathway and other metabolic features characteristic for 

cyanobacteria. These findings explain elevated nifH gene transcription during the day, but 

questions how these microorganisms thrive in the environment remained unanswered. Our 

knowledge about the UCYN–A group and their physiological activity is limited since this 

group has not been obtained in culture and we depend on field measurements to estimate their 

contribution to N2 fixation. 

My doctoral thesis work focuses on studying C and N metabolism on field populations 

of UCYN–A using molecular biology, as well as mass spectrometry tools to visualize 

metabolic activity on a single cell scale. As part of my thesis, I worked on the development of 

a 16S rRNA oligonucleotide probe that specifically targets the UCYN–A population, allowing 

us to link the phylogenetic identity of UCYN–A with its metabolic activity on a single cell 

scale using nanoSIMS technology. The successful application of this genus–specific probe 

(Manuscript I and II) enabled us to asses these microorganisms microscopically and image 

their CO2 and N2 fixation activity for the first time. In parallel, we revealed that these 

cyanobacteria live in association with globally important calcifying nanoplankton (Manuscript 

I). These findings have implications for our understanding of the marine C and N cycles since 

associations between cyanobacteria and eukaryotes have been shown to play a critical role in 

ocean productivity and carbon sequestration. 

Another component of my thesis was to quantify cellular abundances of the UCYN–A 

association via double CARD–FISH (Catalyzed Reporter Deposition–Fluorescence In Situ 

Hybridization) assays in the North Atlantic Ocean (Manuscript III). We simultaneously 

identified UCYN–A and their eukaryotic partner as Haptophyta cells, demonstrating that 

UCYN–A live in association with a unicellular alga, and that this association is the dominant 

form versus free–living UCYN–A cells. 

Finally, I studied the impact of various nutrients on physiological interactions between 

individual UCYN–A cells and their partner eukaryote (i.e. Haptophyta). This work aimed to 

gather detailed information about the environmental factors that constrain UCYN–A N2 

fixation activity, and identify environmental factors that affect the nutrient transfer between 
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these two partner cells (Manuscript IV). This work forms the foundation for detailed culture 

independent studies on a widely distributed group of microorganisms and underlines the 

importance of measuring in situ activity. This work enhances our understanding of the 

importance and distribution of UCYN-A in the marine environment, the role of their 

associations with a eukaryotic partner cell in mediating C and N fixation, and the 

environmental factors that influence their presence and metabolic activity. 
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Figure S1: Flow cytograms and target cell populations for all samples used in this study.  Red 
fluorescence is measured at 692-40 nm after excitation with a 488 nm laser and is a proxy for chlorophyll 
a content and forward scatter (FSC) is a proxy for cell size. All samples are unpreserved seawater except 
for (F), which is seawater concentrated 100X by vacuum filtration then preserved by freezing in liquid 
nitrogen for storage before analysis by flow cytometry. 3μm beads (B) were used for reference in some 
samples. Note the appearance of the dislodged UCYN-A (U) in the flow cytogram from concentrated 
seawater (F) and the absence of the UCYN-A population in un-concentrated water from the same sample 
(E). Other cell populations indicated are photosynthetic picoeukaryotes (PPE), Synechococcus (Syn.), and 
Prochlorococcus (Pro.). Light blue coloring indicates a greater density of events of a cell population. See 
Supplementary Table 1 for additional information on each sample and use in the experiments described in 
this study.  
 
Figure S2: Presence of UCYN-A genome fragments in metagenomes prepared from sorted 
picoeukaryotes from three samples (T39, T41, and T60) from two stations (STB7 and STB11) from the 
South East Pacific Ocean (14, 42).  Using BLASTN, numerous reads matching the UCYN-A genome at 
99-100% similarity were found only at sample T60 (STB11) (Table S2). Notably, the partner 18S rRNA 
gene sequences were absent at Station STB7 and hits to the UCYN-A genome were relatively low (90-
95% similar) with best hits to distantly related organisms such as Cyanothece and Prochlorococcus 
(Table S2).  
 
Table S1: Sources, experiments conducted, and UCYN-A nifH quantification for samples utilized in this 
study. Experiments conducted: (A) UCYN-A nifH screens of sorted cell populations, (B) 15N and 13C 
incubations and HISH-SIMS, (C) 18S universal rRNA gene PCR from single and entire-population 
picoeukaryotes. Population abbreviations are Prochlorococcus (Pro) and photosynthetic picoeukaryotes 
(PPE). 
 
Table S2: UCYN-A representation in metagenomes from sorted photosynthetic picoeukaryotes from two 
BIOSOPE stations. 
 
Table S3: BLASTn hits of18S and 16S rRNA gene sequences derived from sorts of the entire 
picoeukaryote population from samples KM1110 (Accession numbers JX291805 - JX291865) (A) and 
HOT234 (Accession numbers JX291866 - JX291959) (B).  
 
Table S4: Numbers and best BLASTn identity of 18S rRNA gene sequences derived from nested PCR of 
single nifH-positive picoeukaryotes from HOT234 and KM1110. Cruises are KM1110 (5 m March 2011, 
accession numbers JX291679 - JX291804) and HOT234 (79 m August 2011, accession numbers 
JX291547 - JX291678). Asterisk (* ) indicates the only marine species amplified. All others are suspected 
contaminants from terrestrial sources. Full species names are Chrysochromulina acantha, Pinus 
armandii, Pinus luchuensis, Pinus morrisonicola, Lithocarpus rufovillosus, Ralstonia solanacearum, and 
Cunninghamia lanceolata. 
 
Table S5:  The UCYN-732 and Helpers A and B oligonucleotide (5’ to 3’) shown with other closely 
related free-living and symbiotic cyanobacterial sequences.  Mismatches are highlight in red. 
 
Table S6: Summary of cell dimensions and nanoSIMS analyses for UCYN-A and partner cells measured 
by nanoSIMS.  
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1. Environmental sampling: Seawater samples were collected by 24-Niskin bottle CTD rosette at the 
hydrographic Station ALOHA in the North Pacific Ocean (35) during cruises KM1110 in March 2011 (25 
meter depth), HOT234 (79 meter depth) in August 2011, and HOT239 (25 meter depth) in January 2012 
and at a coastal site off the island of Hawai'i (20 2.047’ N 155 57.394’ W) on cruise KOK 11-15 (40 
meter depth) in December 2011 (Table S1).   
 

2. Cell sorting: All cell sorting was performed with a BD Biosciences Influx Cell Sorter equipped with a 
488 nm laser (Sapphire Coherent), 70 μm diameter nozzle, and using BioSure Sheath fluid (BioSure, 
Grass Valley, CA USA) at 1X concentration. Sorting took place in a laboratory van equipped for flow 
cytometry either on board the ship (HOT234), on land directly following the cruise (KM1110), or on land 
following incubation in an on-deck flow-through seawater incubator and expedited shipping to California 
(HOT239 and KOK 11-15). All seawater samples were pre-filtered with a 50 μm filter (Partec Celltrics, 
Swedesboro, NJ USA) prior to sorting to prevent large particles from clogging the nozzle. Cells were 
sorted by gating on red fluorescence (692-40 nm) and forward scatter (FSC) using the BD cytometry 
software programs Spigot and FACS Sortware. The sort mode of "1.0 Drop Purity" was employed to 
ensure pure sorting of target populations. FlowJo (Tree Star, Ashland OR USA) was used to analyze cell 
counts and create dot plots (Fig. 1, Fig. S1).  
 

3. UCYN-A nifH screening of sorted cell populations: Sorted cells were screened for UCYN-A nitrogenase 
(nifH) by qPCR using the UCYN-A-specific nifH primer/probe Taqman assay (Applied Biosystems, 
Carlsbad, CA USA) (36) for 45 cycles in 25 μL reactions. Three cell populations were screened for 
UCYN-A nifH including photosynthetic picoeukaryotes (PPE) (50-200 cells per sort replicate), 
Prochlorococcus (Pro.) (5,000 cells per sort replicate), and cells not PPE and not Prochlorococcus (at 
least 1,000 cells per replicate). At least four replicate sorts were analyzed by qPCR for each population 
and sample. Cells were sorted directly into Fast Step qPCR strips (Applied Biosystems) with 10 μL of 5 
kD filtered water for direct use in qPCR following addition of the qPCR reagents on a StepOne qPCR 
machine (Applied Biosystems). No amplification of nifH in Prochlorococcus cell sorts indicated no nifH 
contamination of reagents or materials used. We relied on high temperatures in the first stages of qPCR to 
lyse cells rather than a DNA extraction step, which would have resulted in loss of material. 
 

4. Entire picoeukaryote population PCR with universal 18S/16S rRNA gene primers: Sorts of the entire 
picoeukaryote population were carried out for each sample to assess the 18S and 16S rRNA gene 
diversity of the picoeukaryote population that was targeted in this study. Duplicate samples of 2500 cells 
(HOT234) and 500 cells (KM1110) were sorted into 10 μL 5 kD filtered water and amplified with 18S 
rRNA gene universal primers Ek555F and Ek1269R (37) in 50 μL reactions for 35 cycles using Platinum 
Taq reagents (Invitrogen, Grand Island, NY USA). PCR products were run on a 1% agarose gel for 90 
minutes at 90V. Gel bands from approximately 500 bp and 700 bp positions were excised from the gel 
extracted using the QiaQuick Gel Extraction Kit (Qiagen). 
 Purified PCR products were cloned using the pGEM-T Easy Kit (Promega, Madison, WI USA) 
following manufacturer's protocols and plasmid preps were performed using the Montage Plasmid 
MiniprepHTS Kit (Millipore, Billerica, MA USA). The UC Berkeley DNA Sequencing Facility 
(http://mcb.berkeley.edu/barker/dnaseq/) carried out Sanger sequencing. Sequences were checked for 
quality in Sequence Scanner (Applied Biosystems) and BLASTn was run against BLAST database nr 
(includes all GenBank, EMBL, DDBJ, and PDB sequences) in April 2011 to identify the sequences. 
Numerous 16S rRNA sequences (~500 bp) were picked up in addition to the 18S rRNA gene sequences 
(~730 bp) targeted by the primer set and these were included in analysis and confirmed the presence of 
UCYN-A in the photosynthetic picoeukaryote population (Table S3). 
 

5. UCYN-A nifH screening and nested PCR of single picoeukaryotes with 18S rRNA gene universal primers: 
To identify the specific partner cell of UCYN-A (from the diverse picoeukaryote population) single 
picoeukaryotes from KM1110 (5 m) and HOT234 (79 m) were sorted into 10 μL of 5 kD water in 72 
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wells of 96-well qPCR plates. 24 wells were left empty for qPCR standards and no template controls 
(NTC).  Plates were covered with AluminaSeal (Diversified Biotech, Dedham, MA USA) and stored at -
80°C until processing. Whole plates were thawed at room temperature then screened for UCYN-A nifH as 
above.  
 Thirty single cell sorts with UCYN-A nifH gene copy of approximately 1 were selected for use in 
the nested PCR with 18S rRNA gene universal primers. The entire volume of the qPCR nifH-positive 
wells were used as template in 100 μL reactions with Platinum Taq reagents (Invitrogen). First, universal 
primers EukA/EukB (38) were applied for 35 cycles then 1 μL of the EukA/B PCR product used as 
template in 25 μL reactions with internal 18S rRNA gene primers 555F/1269R (37). Gel bands were 
extracted, purified, cloned (20-30 clones were picked for each single cell), and sequenced as above. For 
KM1110 samples, universal 16S rRNA gene primers (27F/1492R) and an internal unicellular diazotroph 
specific primer set (cya359F/nitro821R) (39) were applied to a subset of UCYN-A nifH positive single 
cells. All cya359F/nitro821R amplicons were identical to the UCYN-A 16S rRNA gene. 
 Sequences were compared to BLAST database nr (April 2011) by BLASTn for identification 
(Table S4). The great majority of sequences matched either the environmental prymnesiophyte clone from 
BIOSOPE T60.34 or Pinus armandii (Chinese White Pine). A few sequences matched other terrestrial 
tree species (Table S4). We believe the tree sequences are contaminants that are amplified when PCR 
template is in very low concentration (as in these single cell sorts) as no such tree sequences were derived 
from 18S rRNA gene clones libraries that were made from hundreds of sorted cells to assess the diversity 
of the entire picoeukaryote population (described above and Figure 2). Thus, we do not think they are an 
abundant sequence in our samples, but are due to reagent contamination acquired during sorting or PCR. 
To test this further, nested PCR with 18S rRNA gene universal primers (EukA/B) was applied to 5 kD-
filtered water or nifH-negative cell sorts. P. armandii sequences were present only in the reactions made 
from the nifH-negative cell sorts, indicating that the pine sequences are a contaminant from sorting (likely 
in the sheath fluid or dust) rather than from PCR reagents. The only other marine sequence found in the 
18S rRNA gene nested PCR sequences besides the BIOSOPE T60.34 sequence is from the 
prymnesiophyte Chrysochromulina acantha. This single sequence came from the clone library of one 
single cell sort from HOT234 that also contained P.armandii and BIOSOPE T60.34 sequences (sort ID 
11D12,Table S4). Because we did not find this sequence in any other of the 30 single cell sorts, we 
presume that it is DNA contamination from the seawater sample amplified when template is in low 
concentration, rather than a specific associate of UCYN-A, as it did not appear in the clone library for the 
entire picoeukaryote population from samples HOT234 (Figure 2, Table S3).  
 

6. Prymnesiophyte 18S rRNA gene phylogeny: Determining the phylogeny of the UCYN-A partner sequence 
was accomplished by constructing a tree of the full length 18S rRNA gene sequences of the UCYN-A 
partner best nucleotide hit (BIOSOPE T60.34, FJ537341, Uncultured Chrysochromulina clone) and 
selected cultured and environmental prymnesiophyte sequences (Fig. 2). Sequence alignments were 
created using SINA (v1.2.9) online with the SILVA SEED for the reference alignment (40). PhyML 3.0 
was used to construct a maximum likelihood tree (41) using the HKY85 substitution model and 
bootstrapped with 100 replicates. Outgroups were chosen as in Cuvelier et al. (16) and included 
Thalassiosira weissflogii (AY485445), Chlamydomonas reinhardtii (AY665726), Rhodomonas salina 
(EU926158), Compsopogon coeruleus (AF342748), and Chondrus crispus (Z14140). Other species 
included in the tree (Fig. 2) are: Pavlova sp. CCMP1416 (AJ243369), Phaeocystis globosa (EU077556), 
Phaeocystis pouchetii isolate P360 (AF182114), Phaeocystis antarctica Karsten SK23 (X77481), 
Phaeocystis jahnii (AF163148), Pleurochrysis sp. CCMP 875 (AJ246265), Reticulosphaera socialis 
(X90992), Coccoid haptophyte CCMP 625 (U40924), Isochrysis galbana (ZJ246266), Emiliania huxleyi 
(AF184167), Chrysochromulina campanulifera strain J10 (AJ246273), Chrysochromulina strobilus 
(FN599060), Chrysochromulina cymbium (AM491018),  Chrysochromulina leadbeateri (AM491017), 
Chrysochromulina scutellum (AJ246274), Chrysochromulina sp. NIES-1333 (DQ980478), 
Chrysochromulina simplex (AM491021), Chrysochromulina parva (AB601109), Prymnesiophyte 
symbiont 1 (AF166377), Chrysochromulina acantha strain T20 (AJ246278), Chrysochromulina 
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trondsenii K11 (AJ246279), Chrysochromulina sp. MBIC10513 (AB199882), Chrysochromulina sp. 
LKM-2007-1 (AM491020), Chrysochromulina rotalis (AM491025), Chrysochromulina spinifera 
(AB601108), Chrysochromulina sp. CCMP1204 (AM491016), Chrysochromulina brevifilum strain 
Kawachi (AM490995), Chrysochromulina brevifilum MBIC10518 (AB058358), Chrysochromulina 
parkeae (AM490994) , Haptolina hirta‡ (A5246272), Haptolina ericina‡ (AM491030), Haptolina 
fragaria‡ (AM491013), Haptolina herdlensis‡ (AM491011), Haptolina brevifila PML (AM491012), 
Prymnesium chiton° (AM491029), Prymnesium minor° (AM491010), Prymnesium kappa° (AJ246271), 
Prymnesium polylepis° (AJ004866), Prymnesium sp. UIO133, Prymnesium patelliferum (L34671), 
Braarudosphaera bigelowii, Funahama-T3 (AB478412), Braarudosphaera bigelowii, TP05-6-b 
(AB250785), Braarudosphaera bigelowii, TP05-6-a (AB250784), Braarudosphaera bigelowii Furue-15 
(AB478413), Braarudosphaera bigelowii Yatsushiro-1 (AB478414), Genus names are changed to 
Prymnesium for species marked with (°) and to Haptolina for species marked with (‡) as in Edvardsen et 
al. (15) . 
 

7. Whole genome amplification of BIOSOPE sorted picoeukaryotes and comparison to UCYN-A genome: 
Samples from Station B7 (STB7 - samples T39 and T40) and Station B11 (STB11- sample T60) were 
collected by tangential flow concentration, which is much less disruptive than other concentration 
methods, and cell sorting and DNA was extracted as described previously (14).  Whole genome 
amplification was performed as described before (42). Each sample (T39, T40, and T60) was sequenced 
on a single 454 Titanium run (34).  Raw reads were trimmed as described (34) and BLASTed (BLASTN) 
against the genome of UCYN-A (NC_013771) using a maximum e-value of e-100.  Raw reads were also 
mapped against the genome of UCYN-A using the software Geneious (http://www.geneious.com/) with 
the Medium-Low Sensitivity (Table S2). 
 

8. 15N and 13C incubations, HISH-SIMS, calculations: Seawater for isotope incubations was collected from 
25 m during cruise KM1110 at Station ALOHA (22° 45'N, 158° 00'W). Water was pre-filtered through 
10μm nylon mesh (Nitex 03-10/2) to remove larger diazotrophs (i.e. Trichodesmium, diatom-Richelia 
symbioses). Crocosphaera nifH and UCYN-A nifH gene abundances measured by qPCR were 5,752 and 
183,569 copies L-1, respectively. Water was dispensed into 4 acid-cleaned and sterile 500 mL 
polycarbonate bottles (Nalgene). Two bottles were left un-amended as controls and two bottles were 
amended with 125 μL of 500 mM 13C-bicarbonate (Cambridge Isotopes, Andover, MA USA) and 1.5 mL 
15N2 (Cambridge Isotopes) at 21:00 hours. All bottles were shaken to dissolve the 15N2 bubbles then were 
immediately placed in an on-deck incubator temperature-regulated by continuously flowing surface 
seawater and shaded to approximately 30% of photosynthetically active radiation (PAR) for 36-hours 
before processing by flow cytometry for HISH-SIMS measurements and filtration for bulk isotope 
measurements.   
 For HISH-SIMS analysis, 15,403 cells from the picoeukaryote sort region (Fig. S1) were sorted 
into separate tubes containing 2% paraformaldehyde (PFA) prepared in sterile-filtered seawater. After 
fixation for at least one hour at room temperature, sorted samples were divided into triplicates and applied 
by pipette to a small area (5 mm) marked by an ink circle in triplicate on gold-palladium sputtered 0.2 m 
filters. Gentle vacuum pressure (<5 psi) was used to draw the cells onto the filter. Cells on the filter were 
then rinsed with 1X Phosphate Buffered Saline (PBS) applied by pipette and gentle vacuum pressure, and 
allowed to dry. Filters were folded gently and placed into sterile microfuge tubes and stored at -20°C until 
further processing for the HISH-nanoSIMS.   
 A previously described HISH assay was applied to the PFA-fixed flow sorted picoeukaryote 
population samples with minor modifications (28).  A highly specific oligonucleotide probe mixture and 
assay was developed based on the 16S rRNA gene of UCYN-A (CP001842 FJ170277).  A mixture of a 
5´-horseradish peroxidase (HRP)-labelled oligonucleotide UCYN-732 probe and helper A and B 
oligonucleotides were used and followed by the deposition of fluorine-containing tyramides (Oregon 
Green 488 dissolved in dimethylformamide containing 20 mg mL-1 4-iodophenyl boronic acid) (Table 
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S6).  Helper probes A and B (Table S5) were used to increase the accessibility and subsequent intensity of 
the UCYN-732 probe. A non-probe (NON338) (43) was used as a negative control.     
 The 5 mm ink-marked circles were excised with a knife and the cells were embedded in 0.1% low 
gelling point agarose to avoid cell loss. The cell wall was permeabilized at 37°C with a lysozyme solution 
(10 mg mL-1 in 0.05 M EDTA, pH 8.01, 0.1 M Tris-HCl, pH 7.5; Fluka, Taufkirchen, Germany). After 
permeabilization, filter samples were washed with ultrapure water (MQ, Millipore) and transferred to a 
0.01 M HCl solution for 10 min at room temperature (RT) in order to bleach endogenous peroxidases.
Hybridization conditions were as follows: 8.5 h at 35°C in a hybridization buffer containing: 0.9 M NaCl, 
40 mM Tris-HCl (pH 7.5), 10 % dextran sulfate (wt/vol), 0.01 % (wt/vol) sodium dodecyl sulfate (SDS), 
50% formamide (Fluka) (vol/vol), 10 % (wt/vol) Blocking Reagent (Boehringer, Mannheim, Germany), 
1X Denhard’s reagent, 0.26 mg mL-1 sheared salmon sperm DNA (Ambion), 0.2 mg mL-1 yeast RNA 
(Ambion).  Post-hybridization, samples were incubated at 37°C for 15 min in pre-warmed (37°C) 
washing buffer containing 20 mM NaCl, 5 mM EDTA (pH 8.0), 20 mM Tris-HCl (pH 7.5), and 0.01 % 
SDS and subsequently transferred to 1X PBS (pH 7.6) for 20 min.  Under dark conditions and at 46°C, a 
tyramide signal amplification (TSA) solution (5 % 20 x PBS; 2 M NaCl; 0.1 % blocking reagent; 10 % 
dextran sulfate; 0.0015 % (vol/vol) H2O2, 1 % Oregon Green 488 tyramide (Molecular Probes, Leiden, 
The Netherlands), 1 μL of tyramide solution) was applied to the samples for 20 min. Samples were rinsed 
twice at RT in 1X PBS (pH 7.6) and MQ water for 15 min each rinse.  Cells were air dried, and stained 
with 1 μg mL-1  4’,6’-diamidino-2-phenylindole (DAPI) for 10 min at RT in the dark, then washed three 
times in MQ water and air dried. The total number of UCYN-A cells was enumerated on 2 of the 3 
replicate samples prior to nanoSIMS analysis. All hybridized UCYN-A cells were counted as associated 
with partner cells or as dislodged.  In addition, the partner cells, which were associated with 1, or 2 
UCYN-A cells were further enumerated. For sample 1, 259 total UCYN-A cells were counted, with 83 
(32%) UCYN-A cells dislodged, 166 (64%) UCYN-A cells were in association with 1 partner cell, and 5 
partner cells (or 10 (4%) UCYN-A cells) were found with 2 UCYN-A cells attached.  For sample two 278 
UCYN-A cells were counted, and 107 (38 %) UCYN-A cells were dislodged, 163 (59 %) UCYN-A cells 
were in association with 1 partner cell, and 4 partner cells (or 8 (3%) UCYN-A cells) were found with 2 
UCYN-A cells. 
 After enumeration, areas on the filter sections with UCYN-A cells were marked with arrows and 
numbers using a Laser Microdissection (LMD) Microscope 6500 (Leica, Berlin, Germany) fitted with 
appropriate filter set for the Oregon Green 488 tyramides (excitation max 498nm). Subsequently, the 
filters were mounted on a new glass slide coated with a 4:1 (v/v) embedding solution (low fluorescence 
glycerol mountant (Citifluor AF1, Citifluor Ldt, London, United Kingdom) and mounting fluid Vecta 
Shield (Vecta Laboratories, Burlingame, CA USA) and examined with an Axioplan II microscope (Carl 
Zeiss, Jena, Germany) fitted with the appropriate filter sets for the Oregon Green 488 tyramides and for 
DAPI (excitation max 390 nm). Microscopic pictures were taken and used for orientation purposes during 
subsequent nanoSIMS analysis and for post-processing using look@nanosims software (44).  
 NanoSIMS analysis was performed using a Cameca NanoSIMS 50L instrument. Ten individuals 
cells were analysed which were found in association with 1-2 UCYN-A cells, and 6 unattached UCYN-A 
cells were also measured.  Analysis time, including tuning of detectors, was equivalent to 150h.  Carbon 
(C), fluorine (F), nitrogen (as CN) and sulfur (S) isotopes (12C, 13C, 19F, 12C14N, 12C15N and 32S) were 
measured simultaneously in raster imaging mode. Sample surfaces were rastered with a 16 keV Cesium 
(Cs+) beam and a current between 25-35 pA. Primary ions were focused into a nominal ~50 nm spot 
diameter.  The primary ion beam was used to raster the analyzed area with 2000 counts per pixel over the 
chosen raster size and a dwelling time of 1 or 3 ms per pixel. Areas ranged in size from 5 x 5 to 20 x 20 
μm2 depending on the distribution of the targeted cells (most areas were 10 x 10 μm2). Negative 
secondary ions were collected simultaneously in electron multiplier detectors. Prior to analysis, the area 
was pre-sputtered for 1-2 min with a high-current Cs+ beam to implant Cs and remove surface 
contaminants. 
 All scans were corrected for drift of the beam and sample stage after acquisition. Isotope ratio 
images were created as the ratio of a sum of total counts for each pixel over all recorded planes (40-100 
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planes) of the investigated isotope and the main isotope. Regions of interest (ROIs) around cell structures 
and cell diameter were manually circled and calculated using look@nanosims software (44). 
 The biovolume (V) of the UCYN-A and the associated cells were calculated according to the 
volume of a sphere: 

 
V = (π/6) x Ø3        (1) 
 

where Ø is the cell diameter, and π is 3.14. The cell diameter was determined by the length of the ROI 
using the look@nanoSIMS software. As previously published (45), the carbon (C) content per cell was 
estimated by: 
 

Log [C] = -0.363 + (0.863 x Log (V)     (2) 
 

The C content per cell (Ccon) was converted into N content per cell (Ncon) based on conversion factors 
provided by Tuit et al. (46) assuming a modified Redfield ratio (C:N) of 8.6.  The Ccon and Ncon represent 
the initial C and N content.  The isotopic ratios (RC = 13C/12C and RN = 15N/14N) based on ROI selections 
and nanoSIMS analysis were used to calculate atom percent (AT %) enrichment of 13C or 15N by: 
 
 AC = RC/(1+RC) x 100       (3) 
 
 AN = RN/(1+RN) x 100       (4) 
 
where AC is the atom (AT) % 13C and AN is the AT % 15N. The cell specific C and N2 assimilation (FC or 
FN) was calculated for by: 
 

FC = (13Cex x Ccon)/CSR       (5) 
 
FN = (15Nex x Ncon)/NSR       (6) 
 

where 13Cex and 15Nex are the 13C/12C and 15N/14N ratio of the individual ROIs corrected for by the mean 
13C/12C and 15N/14N ratios in time zero samples divided by 100.  The initial time zero ratios (13C/12C and 
15N/14N) were measured on bulk particulate samples (seawater collected onto a combusted GFF from the 
same depth of experiment) by a standard PDZ Europa ANCA-GSL elemental analyzer interfaced to a 
PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK).  The bulk measurements 
were made at the stable isotope facility of University of California, Davis. The CSR and NSR are the 
calculated AT % of 13C or 15N in the experimental bottle and the Ccon and Ncon are described above 
(equation 2).  The assimilated N or C was then divided by incubation time to determine cell-specific C 
and N2 fixation rates.  The percentage of fixed N transferred to the eukaryotic partners was determined by 
dividing the N assimilated into the associated cell as calculated above by the sum of N assimilated into 
the UCYN-A and the associated cell and multiplying by 100.  Similarly, the percentage of C fixed and 
transferred to the UCYN-A cell was determined by dividing the C assimilated by UCYN-A as described 
above by the sum of C assimilated by the UCYN-A and the associated cell and multiplying by 100. 
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2.2.1 Manuscript II: Supplementary Information 

 
  Probe design and optimizations 

The UCYN-A specific probes, UCYN-A732 and UCYN-A159, and the 

corresponding helpers and competitor oligonucleotides  (Table 1) were designed with the 

PROBE DESIGN tool of the ARB software [1].  The 16S rRNA sequences used for the 

probe design were obtained from GENBANK (Accession numbers: JQ246083-

JQ246089; EU188119, EU1188123, EU188133, EU1188142, EU188278, EU188382, 

CP001842). 16S rRNA sequences were also obtained by cloning and sequencing DNA 

amplicons derived from PCRs on samples collected from stations in the vicinity of the 

Cape Verde (CV) Islands (including the field site reported here)(GENBANK accession 

numbers JQ246081, JQ246082, JQ246089) and from PCRs of cells collected by flow 

cytometry from the subtropical North Pacific (GENBANK, accession numbers 

JQ246083-246088) courtesy of Dr. Jonathan P. Zehr laboratory (University of California, 

Santa Cruz).  

 Probe specificities were checked against the ARB and SILVA databases [3] and 

the Ribosomal Database Project [2]. Only the UCYN-A 16S rRNA sequence showed 100 

% identity with the UCYN-A732 and UCYN-A159 probes. The stringent formamide 

(FA) concentration for each probe was determined in hybridization assays with increasing 

FA concentrations from 0 to 70 % at 5 % increments. After incubation with each FA 

concentration, the hybridized filters were visually inspected and evaluated using 

fluorescence microscopy.   

 We used flow cytometric sorted cells (1.0 - 3.0 μm cell diameter gate), pre-

screened for UCYN-A by nifH qPCR assays, as representative positive controls to verify 

the UCYN-A732 probe specificity and the hybridization conditions (e.g. 50 % FA 

concentration, the use of helper oligonucleotides, hybridization temperature of 35 oC).  A 

second sample and negative control comprised of flow cytometric sorted pico-

cyanobacteria identified by forward scatter (FSC) and red fluorescence (488 nm laser) as 

Synechococcus cells, was also tested with the UCYN-A732 probe (both samples courtesy 

of Zehr laboratory, University of California). In both assays, the competitor 

oligonucleotide was omitted, but the helper oligonucleotides were used; the hybridization 

was positive for the UCYN-A enriched sample and no hybridization was observed in the 
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Synechococcus sample. However, in order to ensure probe specificity in our field 

samples, a competitor oligonucleotide C. watsonii-732 was designed and used in 

combination with the specific probe UCYN-A732 and the two helpers in an improved 

hybridization assay.  

Formamide concentration 
For the UCYN-A732 probe, evaluation of stringent FA concentration was done 

using field samples from CV (December 2010), as well as filters containing cells of C. 

watsonii WH8501. Crocosphaera watsonii contains 1 mismatch on the target site to the 

UCYN-A732 probe. The least cross-hybridization to C. watsonii WH8501 cells occurred 

at 50 % and 55 % FA; no cross-hybridization with C.watsonii WH8501 cells occurred 

above 55 % FA.  However, when field samples were tested, a decrease in signal intensity 

of the hybridized target cells was observed at 55 % and 60 % FA. Above 60 % FA, no 

hybridized cells could be detected on the filters.  As such, we determined that the optimal 

FA concentration that ensures high signal detection of the UCYN-A target cells with 

minimum cross-hybridization was 50 % FA for UCYN-A732 probe.  Moreover, the 

probe accessibility to the UCYN-A 16S rRNA was enhanced by using the probe in 

combination with two unlabeled oligonucleotides called helpers A and B located up and 

downstream of the probe (Table 1).  

For UCYN-A159, the evaluation of stringent FA concentrations was done only on 

CV field samples (2010) in the same way as described for UCYN-A732. The highest FA 

concentration that showed optimal signal intensity of the hybridized cells was 60 % FA. 

We tested the specificity of UCYN-A159 at 60 % FA concentration in a double 

hybridization approach with the UCYN-A732 probe in combination with the 

corresponding helpers and competitor oligonucleotides C.watsonii-732 and P.marinus-

159 (Table 1) and two different tyramides dyes (Alexa488 and Alexa594)(see 

below)(Fig. 2C). At higher FA concentrations (i.e 65 % and 70 %), the signal intensity of 

UCYN-A159 decreased considerably.  At lower FA concentrations (i.e. 45, 50 and 55 %), 

probe signal intensity was as high as observed in the 60 % FA. However, these lower FA 

concentrations need to be further tested for probe specificity, either against the 1 

mismatch control P. marinus or in combination with UCYN-A732 probe.   
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FC = (13Cex x Ccon)/CSR       (5) 

FN = (15Nex x Ncon)/NSR       (6) 

where 13Cex and 15Nex represent the atom % enrichment of 13C and 15N of the individual 

ROIs from which we subtracted the mean atom % 13C and 15N of the time 0 samples of 

bulk particulate pools measured by the EA-IRMS. We also measured the atom % 13C and 
15N for individual UCYN-A and C. watsonii-like cells from the time 0 samples using 

nanoSIMS in order to use these as the natural abundance values of C and N isotopes for 

each cell population. However, the nanoSIMS at our institute is optimized to measure 

isotopic ratios for enriched cells and therefore the measurements of natural abundance are 

not well calibrated. The EA-IRMS, which is calibrated for both non-enriched and 

enriched samples with high instrument accuracy and precision (e.g. 0.3651 ± 0.0000 15N 

atom % and 1.0658 ± 0.0004 13C atom % based on the mean and standard deviation of 

caffeine standards measured in conjunction with the samples) was used to measure 

natural abundances of C and N isotopes in the particulate fraction.  These latter values 

were used for normalization of 13Cex and 15Nex. The CSR and NSR is the estimated labelling 

percentage of C and N in the experimental bottle. 
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Supplementary Fig. 1.  Epifluorescent images of the UCYN-A732 probe used in assays 

with and without helpers A and B.  (A-B) UCYN-A cell hybridized without helpers 

required a longer exposure time (935 ms) to visualize and resulted in higher background 

signal (arrows).  (C-D) A UCYN-A cell hybridized with helpers required a shorter 

exposure time (211 ms) and results in lower background signals.  The overlay of the 

UCYN-A cell hybridized with the UCYN-A probe (green), natural auto-fluorescence 

(red) of the partner cell and DAPI (blue) are shown in A and C. Scale bar is 2.0 μm. 

   

Supplementary Fig. 2.  An overlay of epifluorescent images of C. watsonii WH8501 cells 

hybridized with UCYN-A732, helpers at two different FA concentrations: (A) 45% and 

(B) 50%.  The probe signal emits green while natural auto-fluorescence of C. watsonii 

WH8501 phycoerythrin is red.  Note the increased stringency of UCYN-732A probe at 

50% FA.  Scale bar is 2.0 m. 

 

Supplementary Table 1. Summary of types of samples collected and locations in the 

North Atlantic Ocean reported here. The cross indicates that samples have been collected 

for the designated type of analysis. 

 

Supplementary Table 2. Summary of the cell diameter measured microscopically on field 

populations of attached and free UCYN-A (free) cells and their partner cells collected in 

various locations of the subtropical North Atlantic Ocean.  Locations of collections are 

shown in Fig. 1.



2 Manuscripts  

78 

Supplementary Fig. 1 
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Supplementary Fig. 2 
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Supplementary Table 1 

Expedition Latitude 
 

Longitude Date Experiment 
Depth 
[m] sample type 

      EA-IRMS DNA/RNA FISH nanoSIMS 
Cape Verde 2010 16.76 N 25.12 W 12/03/10 1 0 X X X X 

   12/05/10 2 0 X X X X 
   12/08/10 3 0 X X X X 
   12/08/10 Depth profile 1, 30, 60 - X X - 
   12/10/10 Diel 0 - X - - 

  
 

12/5/10 
Size 

fractionation 0  X X  
Cape Verde 2009 17.03 N 24.78 W 5/25/09 - 10 - - X - 

          
MSM 08/1 17.08 N 23.00 W 4/23/08 - 10 - - X - 

          
VISION 2006 34.07 N 30.00 W 9/30/06 - 30 - - X - 
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Supplementary Table 2. 
Sample location and date UCYN-A cell diameter ( m) Partner cell diameter  ( m) 
North Atlantic September 2006 2.09 4.28 
North Atlantic September 2006 1.26 2.09 
North Atlantic September 2006 1.44 2.39 

CV April 2008 2.94 5.57 
CV April 2008 2.96 4.68 
CV April 2008 2.19 4.06 
CV May 2009 1.15 1.99 

CV December 2010 1.52 free 
CV December 2010 1.74 free 
CV December 2010 1.31 free 
CV December 2010 1.31 free 
CV December 2010 1.38 free 
CV December 2010 1.17 free 
CV December 2010 1.03 free 
CV December 2010 1.27 free 
CV December 2010 1.31 free 
CV December 2010 1.25 free 
CV December 2010 1.06 free 
CV December 2010 1.06 free 
CV December 2010 0.97 free 
CV December 2010 1.52  free 
CV December 2010 1.64  free 
CV December 2010 1.32 free 
CV December 2010 1.54 free 
CV December 2010 1.36 free 
CV December 2010 1.10 free 
CV December 2010 1.37 free 
CV December 2010 1.51 free 
CV December 2010 1.52 free 
CV December 2010 1.19 free 
CV December 2010 1.50 free 
CV December 2010 1.02 free 
CV December 2010 1.05 free 
CV December 2010 0.99 free 
CV December 2010 1.16 free 
CV December 2010 0.69 free 
CV December 2010 1.10 free 
CV December 2010 0.90 free 
CV December 2010 1.06 free 
CV December 2010 1.31 free 
CV December 2010 1.06 free 
CV December 2010 1.13 free 
CV December 2010 0.98 free 
CV December 2010 1.28 free 

 



  

 



2.3 Manuscript III 

83 

2.3 Manuscript III: Distribution of the association between unicellular algae and 

the dinitrogen (N2) fixing cyanobacterium UCYN–A in the North Atlantic 

Ocean 

 

Andreas Krupke1*, Gaute Lavik1, Hannah Halm1,2, Bernhard M Fuchs1 Rudolf I Amann1, 

Marcel MM Kuypers1 

 
1Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany 
2Current address: Helmholtz–Zentrum Potsdam Deutsches GeoForschungsZentrum GFZ 

Mikrobielles GeoEngineering, 14473 Potsdam, Germany 

 
*Corresponding author:  Andreas Krupke, Department of Biogeochemistry, Max Planck 

Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany. 

Email: akrupke@mpi–bremen.de 

 

 

 

Key words: Diazotrophss, Haptophyta, double CARD–FISH, symbiosis 

  



2 Manuscripts  

84 

Abstract 

Dinitrogen (N2) fixing microorganisms are important for marine ecosystems because they 

convert atmospheric N2 gas into bioavailable nitrogen compounds, which affects marine 

productivity and carbon sequestration. The globally abundant, uncultured unicellular 

cyanobacteria UCYN–A was recently discovered living in association with a eukaryote. 

Here, we established a double CARD–FISH approach that identified both partners (i.e. 

UCYN–A and its associated eukaryote (e.g. Haptophyta) and provided quantitative 

information on their distribution and abundance across distinct water masses along a 

transect in the North Atlantic Ocean. The fixation of N2 activity coincided with the 

detection of UCYN–A cells and was only observed in oligotrophic (<0.067 NO3
–
 μM and 

<0.04 PO4
3– μM), warm (>18 °C) surface waters. Parallel genomic analysis from these 

waters targeted unicellular diazotrophs; findings indicated that only UCYN–A cells were 

present, and when coupled to the N2 fixation data, indicated that this group of 

microorganisms was partially responsible for N2 fixation in this region. UCYN–A cells 

were enumerated in association with an algal partner or as free–living using the double 

CARD–FISH approach. We demonstrated that UCYN–A cells living in association with 

a Haptophyta were the dominant form (87.0±6.1%), whereas free–living UCYN–A cells 

represented only a minor fraction (5.2±3.9%). Interestingly, we also detected UCYN–A 

cells living in association with an unknown eukaryote (7.8±5.2%). This study provides 

useful information on the environmental factors that select for the distribution of the 

UCYN–A association and raises questions about the host specificity in the North Atlantic 

Ocean. 
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Introduction 

Dinitrogen (N2) fixation provides the main source of fixed nitrogen (N), the limiting 

nutrient for primary production, in open ocean ecosystems (Karl et al., 2002). A small 

and diverse group of microorganisms, commonly referred to as diazotrophs, perform the 

biologically mediated process of converting atmospheric N2 gas into ammonia (NH3), 

which is catalyzed by the nitrogenase enzyme complex (Zehr et al., 1998). These 

microorganisms are particularly favored in oligotrophic systems because of their ability 

to overcome N limitation (Zehr et al., 1998; Karl et al., 2002; Voss et al., 2004). 

Cyanobacteria constitute the dominant diazotrophs in open ocean waters and their 

impact on the marine carbon (C) and N cycles is significant (Karl et al., 1997; Mahaffey 

et al., 2005; Capone and Knapp, 2007). The widely abundant filamentous non–

heterocystous Trichodesmium sp. and diatom symbionts, such as Richelia intracellularis, 

are considered major contributors to N2 fixation activity in the oceans (Mague et al., 

1974; Capone et al., 1997; Carpenter et al., 1999). Foster et al. (2011) showed that 

substantial amounts of fixed N are transferred from the diazotroph to the host cell, 

leading to enhanced growth rates. These findings highlight the importance of eukaryotic–

diazotrophic associations in the world’s oceans and their influence on the marine C and N 

cycles. 

The discovery of widely distributed new diazotrophic microorganisms (i.e. 

unicellular diazotrophs) in concert with elevated N2 fixation activity indicated that these 

microorganisms constitute important members of the diazotrophic community (Zehr et 

al., 2001; LaRoche and Breitbarth, 2005; Langlois et al., 2008). In particular, the 

ubiquitous unicellular cyanobacteria UCYN–A, discovered more than one decade ago 

(Zehr et al., 1998), likely plays an important role in N2 fixation (Zehr et al., 2008). 

Currently, our knowledge about these microorganisms is very limited because they have 

not been obtained in culture. The genome of UCYN–A lacks certain metabolic pathways 

characteristic for cyanobacteria (e.g. PSII, RuBisCo, TCA cycle), raising questions how 

these microbes thrive in the environment (Bothe et al., 2010; DeLong, 2010; Tripp et al., 

2010). These remarkable findings in combination with a reduced genome size compared 

to other unicellular cyanobacteria suggests that UCYN–A depends on other 

microorganisms for organic carbon compounds to sustain growth requirements (Tripp et 

al., 2010). 
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The widely distributed UCYN–A population has recently been detected in 

association with an eukaryotic algae (Thompson et al., 2012). The authors observed the 

exchange of carbon and nitrogen based on stable isotope tracer incubation experiments in 

the North Pacific. This nutrient exchange may provide an explanation for how UCYN–A 

can thrive in oligotrophic environments despite lacking the genes for photosynthesis and 

other important biosynthetic pathways (Tripp et al., 2010). Our understanding of the 

ecophysiological interaction between UCYN–A and its partner cell is still limited. 

Whether or not this association is obligatory for UCYN–A survival remains to be 

answered since UCYN–A cells have also been observed as free–living (Thompson et al., 

2012; Krupke et al., 2013). This association warrants further investigation in order to 

accurately quantify the distribution of UCYN–A as associated versus free–living, and to 

determine the biogeochemical importance of this association in oligotrophic surface 

waters. 

In this study, the primary objective was to target both partners of the association 

described by Thompson et al. (2012) and to quantify their cellular abundance and 

distribution in the North Atlantic. We developed a double Catalyzed Reporter 

Deposition–Fluorescence In Situ Hybridization (double CARD–FISH) assay using a 

specific oligonucleotide probe for UCYN–A (Krupke et al., 2013) in combination with 

different oligonucleotides targeting various eukaryotic partners. This method was applied 

on samples collected along the 30° W meridian in the North Atlantic Ocean, crossing 

different biogeographical provinces (Longhurst, 1998). We provide quantitative 

information on the association between UCYN–A and the eukaryotic partner cell in the 

marine environment based on the double CARD–FISH approach. This study forms the 

foundation for future ecophysiological studies on this important group of diazotrophic 

cyanobacteria. 
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Material and methods 

The VISION cruise MSM03/01 was conducted in September 2006 on board the German 

R/V Maria S. Merian. Seawater was collected in the North Atlantic from the Arctic Circle 

(66°39,27`N; 29°36,65`W) along the 30° W meridian towards the Azores (34°24,87`N; 

28°28,90`W). This expedition covered 18 different stations (Supplementary Fig. 1) and 

water samples were retrieved using a rosette of 20 L Niskin bottles mounted on a 

conductivity–temperature–density profiler (CTD). In this study we mainly focus on 

samples collected within the upper water body (0–200 m depth). 

Nutrient measurements. Seawater samples were collected and filtered immediately 

through 0.45 μm in–line filters attached to a 60 mL clean syringe and transferred into two 

FalconTM tubes (Franklin Lakes, USA). Samples for the analysis of phosphate (PO4
3–), 

nitrate (NO3
–
) and nitrite (NO2

–
) were stored at –80 °C and measured 

spectrophotometrically using a continuous–flow analyzer and standard AA3 methods 

(Seal Analytical, Norderstedt, Germany). 

Stable isotope incubation experiments. Seawater from the upper water column (0–80 m) 

was collected in the morning (8–9 AM) or evening (5–6 PM) and transferred into light 

transparent 1.0 L incubation bottles and closed without air bubbles. Bottles were 

amended immediately with 4 mL 15N2 gas (18.2–25.7% labeling) (98% + 15N2, Sigma–

Aldrich, St. Louis, MO, USA) and 200 μM 13C bicarbonate solution (H13CO3
–) (6.7–8.0% 

labeling) (98% + 13CO2, Sigma–Aldrich, St. Louis, MO, USA) with a gas tight syringe. 

After injection, bottles were shaken for 5 minutes and incubated in one replicate for 

several hours (1.2–12.7 h). For each experimental series, parallel dark incubation was 

also carried out by covering bottles with aluminum foil. Bottles from >40 m depth were 

covered using a black gauze material (mesh size 1 mm2) to reduce light intensity. 

Samples obtained in the morning were incubated on deck in a water bath with 

continuously flowing surface seawater. Seawater samples collected in the evening were 

incubated in the lab placed in a chamber with continuously flowing surface seawater and 

in situ light conditions simulated with light bulbs. 

EA–IRMS analysis. For the stable isotope incubation experiments, one 1.0 L incubation 

bottle per treatment was vacuum filtered onto pre–combusted 25 mm diameter Glass 

Fiber filters (Whatman GF/F; Sigma–Aldrich, St. Louis, MO, USA) held in a rosette 

filtration system (Millipore, Eschborn, Germany). The GF/F filters were freeze–dried 
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over night, acid–fumed (37% HCl) for 24 hours in a desiccator, and packaged for 

combustion analysis. We used an automated elemental analyzer (Thermo Flash EA, 1112 

Series) coupled to a Delta Plus Advantage mass spectrometer (Thermo Finnigan, 

Dreieich, Germany) in order to measure the C and N content. CO2 and N2 fixation rates 

were calculated as a function of the change in the tracer concentration of the particulate 

organic pool over the incubation time, as described in detail in Montoya et al. (1996).  

CARD–FISH sampling. Additional seawater (500 mL) was collected from each station 

throughout the water column (0–200 m depth) and used for CARD–FISH assays. 

Seawater was immediately fixed with formaldehyde solution (Fluka, Sigma–Aldrich, 

Germany) for 2 hours at room temperature (RT) (final concentration 1% v/v). After the 

fixative step seawater was vacuum–filtered at 100 mbar onto 0.2 μm pore size 

polycarbonate filters (Millipore, Eschborn, Germany) (Gómez Pereira et al., 2010). 

Subsequently, filters were washed twice with 10 mL sterile MilliQ (MQ) water and 

stored frozen at –20° C until further processing. 

Double CARD–FISH assay. In the first round of hybridization, specific oligonucleotide 

probes, including:  PRAS04 (Not et al., 2004), COCCO01 (Eller et al., 2007) and 

PRYM02 (Simon et al., 2000), were applied following standard protocols (Pernthaler and 

Amann, 2004; Pernthaler et al., 2004) in order to target the 18S rRNA of eukaryotic cells 

that potentially live in association with UCYN–A cells (Table 1). In the second round of 

hybridization, the oligonucleotide probe UCYN–A732 targeting the 16S rRNA specific 

for UCYN–A cells and its corresponding helper probes Helper A–732 and Helper B–732 

were applied according to Krupke et al. (2013) (Table 1). At each hybridization step the 

used HRP–oligonucleotide probes were at working solutions of 8.42 pmol μL–1 diluted in 

the hybridization buffer (1:300; v:v). During the double CARD–FISH approach, the 

oligonucleotides EUB I–III (Amann et al., 1990) or EUK516 (Amann et al., 1990) were 

used as positive controls and the oligonucleotide NON338 (Wallner et al., 1993) as a 

negative control (Table 1). All hybridizations were performed at optimal formamide (FA) 

concentrations to ensure maximal stringency (Table 1).  

Phylogenetic identification and cell counts were performed on filter sections using 

standard protocols (Pernthaler et al., 2004; Pernthaler and Pernthaler, 2007) with some 

changes for the double CARD–FISH assays. The cell wall was permeabilized by 

treatment with lysozyme solution (10 mg mL–1 in 0.05 M EDTA, pH 8.0; 0.1 M TrisHCl; 
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Fluka, Taufkirchen, Germany) for 1 h at 37 °C, followed by the inactivation of 

endogenous peroxidases using 0.01 M HCl for 10 min at RT. During the first CARD–

FISH, eukaryotic cells were hybridized for 3 h at 46 °C and washed in washing buffer for 

15 min at 48 °C. The first CARD was performed for 20 min at 46 °C using Alexa594 

tyramides (Molecular probes, Leiden, The Netherlands) (Pernthaler et al., 2004). 

Afterwards, filter sections were washed in 1 x PBS for 10–20 minutes in the dark and 

placed in 3% H2O2 solution for 20 min at RT in order to inactivate the HRP for the 

second CARD–FISH. Therefore, UCYN–A cells were hybridized for 8 h at 35 °C and 

washed in washing buffer for 15 min at 37 °C. The second CARD was performed for 20 

min at 46 °C using Oregon Green 488 tyramides (Molecular probes, Leiden, The 

Netherlands). The cells were counterstained with 1 μg mL–1 4’,6–diamidino–2–

phenylindol (DAPI) for 10 min at RT in the dark. For microscopy counts, filter sections 

were embedded in a mixture of low fluorescence glycerol mountant (Citifluor AF1, 

Citifluor Ldt London, United Kingdom) and mounting fluid Vecta Shield (Vecta 

Laboratories, Burlingame, CA USA) in a 4:1 ratio. 

Microscopy and cell abundances. Microscopic evaluation and counting was performed 

with a Zeiss Axioskop II fluorescence microscope (Zeiss, Berlin, Germany). Initial 

counting attempts were conducted under 1000x magnification in a given grid area, but 

counts of positively hybridized UCYN–A cells varied between each field of view. 

Counting reliability was improved by using a 630x magnification in order to cover a 

bigger area of each filter section. A distinct number of grids were counted in order to 

improve the comparison between each filter section. Filter sections within the upper 

water column (10–200 m depth) from every station were counted on 155 grids (grid area 

= 9843.75 μm2) separately in duplicates or triplicates. Positively hybridized UCYN–A 

cells were quantified according to three different categories: (1) UCYN–A cells in 

association with a positively hybridized Haptophyta, (2) UCYN–A cells with an 

unknown eukaryote, (3) UCYN–A cells appearing as free–living. 

Scanning electron microscopy. Filter sections that revealed high abundances of UCYN–

A associations were selected for further analysis using a Quanta FEG 250 Scanning 

Electron Microscope (FEI, Eindhoven, NL). Targeted cells were measured in high 

vacuum mode and an accelerating voltage of 2.0 kV. 
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DNA extraction and amplicon pyrosequencing. DNA samples from 20 m depth and 

stations 14–18 were used for 454 pyrosequencing technology applying 16S and 18S 

rRNA primer sets. At each station, approximately 100 L seawater were pooled from 5 L 

Niskin bottles and pre–filtered through a 10 μm steel mesh cartridge (Wolftechnik, Weil 

der Stadt, Germany) onto cellulose acetate filters (142 mm diameter, 0.2 μm pore size; 

Sartorius, Goettingen, Germany). Samples were stored at –80 °C until further processing. 

DNA was extracted and purified following the DNeasy plant mini kit (Qiagen, Hilden, 

Germany) protocol with minor modifications (Turk et al., 2011). The bacterial 16S rRNA 

and the eukaryotic 18S rRNA genes were amplified and sequenced using the amplicon 

pyrosequencing facility at the Research and Testing Laboratories (Lubbock, Texas). The 

16S rRNA primer NITRO821R (Mazard et al., 2004) and CYA359F (Nübel et al., 1997) 

targeting unicellular diazotrophic microorganisms were used to verify the presence of 

UCYN–A. The universal 18S rRNA primer Ek1269R and Ek555F (López García et al., 

2003) were used to assess the diversity of the entire picoeukaryote population. The 

generated sequence data from amplicon pyrosequencing was quality–controled by 

Research and Testing Laboratories, following standard procedure (Sun et al., 2011). 

Subsequently, sequences were processed by the NGS (Next Generation Sequencing) 

analysis pipeline of the SILVA rRNA gene database project (SILVAngs) (Quast et al., 

2013). Each sequence read was aligned using the SILVA Incremental Aligner (SINA) 

(Pruesse et al., 2012) against the SILVA SSU rRNA SEED (A vector sequence database 

and a collection of non–chimeric sequences). Quality control was performed after Quast 

et al. (2013) and unique sequence reads were clustered into Operational Taxonomic 

Unit`s (OTUs) after dereplication (removal of identical reads) using cd–hit–est (version 

3.1.2; http://www.bioinformatics.org/cd–hit) (Li and Godzik, 2006). Clustering was run 

in accurate mode, ignoring overhangs, and applying identity criteria of 1.00 and 0.98, 

respectively. The classification was performed by a local nucleotide BLAST search 

against the non–redundant version of the SILVA SSU Ref dataset (release 111; 

http://www.arb–silva.de) using BLASTN (version 2.2.22+; 

http://blast.ncbi.nlm.nih.gov/Blast.cgi) with standard settings (Camacho et al., 2009). 

Reads without any BLAST hits or reads with weak BLAST hits, where the function “(% 

sequence identity +% alignment coverage)/2" did not exceed the value of 93, remain 

unclassified. These reads were assigned to the meta group “No Relative" in the 
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SILVAngs fingerprint and Krona charts (Ondov et al., 2011). In addition, unique 16S 

rRNA sequences that have been clustered in OTUs and subsequently classified have been 

selected for phylogenetic reconstruction using the ARB software (Ludwig et al., 2004). 

This procedure yields quantitative information (number of individual reads per taxonomic 

path), within the limitations of PCR, sequencing technique biases, and multiple rRNA 

operons. 
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Results and discussion 

Symbiotic associations play an important ecological role in marine ecosystems and are 

considered a major source of evolutionary innovation (Margulis and Fester, 1991). The 

recent discovery of UCYN–A living in association with eukaryotic algae represents an 

intriguing model for symbiosis and may provide evolutionary insight about the 

development of plastids (Thompson et al., 2012; Krupke et al., 2013). UCYN–A was 

originally detected using distinct nifH gene sequences by Zehr et al. (1998); subsequent 

studies have shown that these cyanobacteria are widely abundant in all major ocean 

basins (Zehr et al., 2008; Moisander et al., 2010). Further, UCYN–A genome analysis 

revealed an unusual physiology within cyanobacteria because fundamental metabolic 

systems including the photosystem II are absent (Tripp et al., 2010). 

Previous investigations estimated the specific nifH gene abundance of UCYN–A 

without taking into account different associations, e.g. in association with a unicellular 

alga (Thompson et al., 2012; Krupke et al., 2013). Here, we applied a double CARD–

FISH approach to visualize both partners simultaneously. Using this method, we 

identified the eukaryotic partner of UCYN–A, and quantified the cellular abundance and 

distribution of this association along the VISION cruise (Supplementary Fig. 1). 

Environmental Parameters. The cruise transect crossed four different oceanic provinces 

as defined by Longhurst (1998); further analysis of physico–chemical properties revealed 

nine distinct water masses (Oliver and Irwin, 2008; Gómez Pereira et al., 2010). The 

study site has previously been characterized in detail by Gómez–Pereira et al. (2010). 

Briefly, surface water temperatures gradually increased from the coast of Greenland 

towards the Azores, whereas nutrient concentrations decreased with increasing 

temperature. Nutrient concentrations (e.g. PO4
3– or NO3

– 
) in the Boreal Polar (BPLR) and 

Arctic (ARCT) provinces are similar to values reported by Williams and Follows (1998), 

describing cold and nutrient–rich water masses in the North Atlantic. Along the North 

Atlantic Drift (NADR) province towards the North Atlantic Subtropical Gyre (NAST) 

province close to the Azores, nutrient concentrations in surface waters (0–50 m depth) 

further declined and concentrations for PO4
3– (0.0–0.043 μM) were similar to values 

measured by others (Michaels et al., 1996; Jardillier et al., 2010), but elevated compared 

to values documented by Wu et al. (2000). These findings show a clear transition from 
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cold and nutrient–rich waters into warm and nutrient–depleted (oligotrophic) 

environments along the VISION transect. The transition towards oligotrophic conditions 

in the NAST province point out the potential for nitrogen limitation as indicated by the 

relationship of nitrogen (N) to phosphorus (P) in surface waters (0–50 m depth), which 

differ substantially from a 16:1 Redfield ratio (Fig. 1A). Along the transect, N/P ratios 

within the top 50 m depth between station 2–11 were substantially higher (N/P = 6.9–

15.7) compared to ratios between station 12–19 (N/P = 0.7–10.3) (Fig. 1A). The 

transition toward an N–limited environment indicates favorable conditions for 

diazotrophs (Karl et al., 2002; LaRoche and Breitbarth, 2005). This is further supported 

by increasing N/P ratios below 100 m water depth within the NAST province (Fig. 1A); 

N2 fixation activity is known to support new and export production in marine systems, 

generally leading to elevated N/P ratios in deeper water zones (Karl et al., 1997).  

Bulk CO2 and N2 fixation rates. We measured bulk CO2 and N2 fixation activity and 

calculated volumetric rates, as well as areal rates (Fig. 1 B,C; Supplementary Table 1). 

Volumetric CO2 fixation rates under light conditions tended to be lower compared to 

previous investigations in the North Atlantic (Mills et al., 2004; Jardillier et al., 2010). In 

parallel, areal CO2 fixation rates varied more than ten–fold between each station (Fig. 1B; 

Supplementary Table 1), but were not significantly different between the ocean provinces 

(One Way ANOVA, p = 0.876). The small cyanobacteria Prochlorococccus and 

Synechococcus have been detected and quantified along the VISION transect (Gómez

Pereira et al., 2010), and the measured CO2 fixation activity can be partially assigned to 

the presence of these populations given their substantial role as primary producers 

(Goericke and Welschmeyer, 1993; Liu et al., 1997; Veldhuis et al., 1997). 

N2 fixation was not detected in the BPLR, ARCT or NADR provinces; N2 fixation 

was detected in the NAST province, indicating the presence of diazotrophs (Fig. 1C; 

Supplementary Table 1). The subtropical and tropical North Atlantic is characterized by 

elevated iron supply due to Saharan dust input (Stuut et al., 2005) that might stimulate N2 

fixation activity given the high iron demand of diazotrophs (Carpenter and Romans, 

1991; Falkowski, 1997; Capone et al., 2005; Jickells et al., 2005). Our observations in the 

NAST province clearly underline the spatial occurrence of N2 fixation activity with 

surface water temperatures and depleted nutrient concentrations (e.g. low N/P ratios; Fig. 
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1A), as suggested by previous studies (Carpenter and Romans, 1991; Capone et al., 1997; 

LaRoche and Breitbarth, 2005).  

Generally, N2 fixation activity tended to be higher under light conditions 

compared to dark conditions, except at station 17 (Fig. 1C). However, areal estimates of 

N2 fixation activity between light (2.4–5.1 μmol m–2 h–1) and dark conditions (1.9–5.4 

μmol m–2 h–1) were not significantly different (ANOVA on Ranks, P = 0.486; 

Supplementary Table 1). The observed N2 fixation rates in both treatments indicate that a 

mixed diazotrophic community was present containing diazotrophic populations with 

different temporal activity pattern, e.g. Crocosphaera sp. fix N2 in the dark, whereas 

UCYN–A fix N2 in the light (Church et al., 2005b). The measured volumetric and areal 

rates (Supplementary Table 1) have to be considered cautiously since the incubation 

experiments were rather short in time length (~5 hours) and we applied the common 15N2 

gas tracer addition method (“bubble method”), which has been demonstrated to 

underestimate N2 fixation activity substantially (Mohr et al., 2010b; Großkopf et al., 

2012). Our volumetric rate measurements (Supplementary Table 1) are comparable with 

previously reported rates from the North Atlantic (Mills et al., 2004; LaRoche and 

Breitbarth, 2005; Langlois et al., 2008; Krupke et al., 2013), and they are consistent with 

literature values from other oligotrophic regions using the 15N2 gas bubble tracer method 

(0.07–4.17 nmol N L–1 h–1) (Dore et al., 2002; Falcón et al., 2004a; Sohm et al., 2011; 

Luo et al., 2012). 

Visualization of UCYN–A association. A study in the North Pacific by Thompson et al. 

(2012) revealed that 18S rRNA host sequences of UCYN–A clustered together with 

calcareous nanoplankton within the prymnesiophyceae (i.e. Braarudosphaera bigelowii) 

and coccolithophores (i.e. Chrysochromulina parkeae). The double CARD–FISH 

approach was established to target both partners by applying the UCYN–A732 

oligonucleotide probe (Krupke et al., 2013) in combination with different oligonucleotide 

probes targeting groups of prasinophytes (PRAS04) (Not et al., 2004), coccolithophores 

(COCCO01) (Eller et al., 2007) and Haptophyta (PRYM02) (Simon et al., 2000) (Table 

1). These groups of organisms have been shown to be of ecological significance in 

marine systems due to their extensive role in carbon sequestration and are widely 

distributed and abundant in the oceans (Unrein et al., 2007; Zubkov and Tarran, 2008; 

Cuvelier et al., 2010; Jardillier et al., 2010). We detected positively hybridized UCYN–A 
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cells associated with positively hybridized Haptophyta cells (Fig. 2A,B). In contrast, 

positively hybridized UCYN–A cells were not found in association with members of the 

coccolithophores or prasinophytes (data not shown). 

The cell diameters for UCYN–A (1.16 ± 0.24; n = 52) and the Haptophyta partner 

(2.26 ± 0.75; n = 52) were determined based on epi–fluorescence microscopy, and they 

were consistent with previous investigations (Thompson et al., 2012; Krupke et al., 

2013). Smaller UCYN–A cells were associated with smaller Haptophyta cells and vise 

versa (R2 = 0.8058; n = 52), indicative of different growth stages. Further evaluation of 

attached UCYN–A cells showed them located on the polar end of the eukaryote or 

slightly shifted to the side (Fig. 2A–C). It appears that UCYN–A cells live attached to the 

eukaryotic partner within a cell–surface association as observed in the North Pacific 

(Thompson et al., 2012). Epi–fluorescence and scanning electron microscopic 

observations indicate that UCYN–A cells are slightly engulfed by the eukaryote and 

embedded in a preformed slot (Fig. 2B,E,F). The latter analysis provide the first scanning 

electron images of the UCYN–A association. Additionally, calcium carbonate plates (i.e. 

coccoliths) were not detected on the associated eukaryotic partner cell, indicating that 

UCYN–A may also associate with non–calcifying nanoplankton. 

In this study we did not observe two UCYN–A cells associated with one 

eukaryote as observed in the North Pacific (Thompson et al., 2012). Thus far, the 

mechanisms determining the number of UCYN–A cells associating with a eukaryote are 

not clear. Other eukaryotes are able to regulate the number of their symbionts to enhance 

growth conditions (Reisser, 1986, 1992; Johnson, 2011). A recent study by Van Mooy et 

al. (2012) documented that multiple bacterial cells living epibiotically on the diazotroph 

Trichodesmium sp. enhance the uptake of phosphorus, implying a specific 

ecophysiological advantage for maintain numerous symbionts. 

Diversity of unicellular cyanobacteria and picoeukaryotes. The stations that revealed 

positively hybridized UCYN–A cells were selected for 16S rRNA gene pyrosequencing 

using a specific primer set to target unicellular cyanobacteria. Subsequent phylogenetic 

reconstruction analysis showed that 96.73% of the generated OTUs clustered next to 

UCYN–A phylotypes, thus, confirming the presence of this cyanobacterium 

(Supplementary Fig. 2). Parallel 18S rRNA gene pyrosequencing was performed on the 
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same stations in order to gather more insights into the phylogeny of the potential 

eukaryotic partner cell. 

The generated dataset showed a high diversity within picoeukaryotes at stations 

14–18 (Fig. 3A). Among Prymnesiophyceae, we confirmed the presence of the taxa 

Braarudosphaera and Chrysochrymulina. These groups have been shown to harbor 

phylotype sequences of the eukaryotic partner cell of UCYN–A (Thompson et al., 2012). 

Here, we observed large differences in the relative abundances of distinct taxa within 

Prymnesiophyceae between stations 14 until 18. For instance, generated OTUs of 

Braarudosphaera ranged between 5–50% in relative abundances, whereas this taxa was 

absent at station 17 and 18 (Fig. 3E,F). The relative abundances of the taxa 

Chrysochrumulina also varied between the respective stations (Fig. 3E,F). These results 

indicate that the partner cells of UCYN–A fall into various taxa within 

Prymnesiophyceae, and that their distribution varies spatially. Furthermore, we 

encountered UCYN–A cells associated with eukaryotes other than Haptophyta in the 

double CARD–FISH assays (section below). These eukaryotes might belong to the 

groups Syndiniales and Dinophyceae of the phylum Alveolata; both groups had the 

highest sequence representation within the eukaryotic community, comprising on average 

48.8 % of the relative abundances (Fig. 3A). But, it is possible that the relative 

abundances of these groups could be overrepresented due to multiple 18S rDNA gene 

copies in their genome (Zhu et al., 2005; Koid et al., 2012). We identified the eukaryotic 

partner cell for UCYN–A as a Haptophyta based on CARD–FISH assays (section below), 

and measured a large degree of eukaryotic diversity and varying relative abundances 

within Haptophyta (genomic data), as well as among other groups (e.g. Alveolata). From 

these findings, we hypothesize that UCYN–A might associate with a wide range of 

eukaryotic partners, raising questions about the specificity of this form of association. 

The possibility to associate with a variety of hosts indicate diverse metabolic capabilities 

to thrive in the environment and might be the reason why UCYN–A is found in 

contrasting water regimes based on nifH gene sequence abundances (Short and Zehr, 

2007; Rees et al., 2009; Moisander et al., 2010). 

Quantification and distribution of the UCYN–A association. The appearance of UCYN–

A was enumerated into three different categories using the CARD–FISH approach: (1) in 

association with a Haptophyta, (2) in association with an unknown eukaryote and (3) as 
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free–living cells (Fig. 4A–F). The abundance of the UCYN–A association was also 

quantified for the first time, and their distribution patterns were determined based on cell 

counts (Fig. 4A–C). Along the VISION transect in the North Atlantic within the upper 

water column (≤ 200 m depth), UCYN–A cells were completely absent within the BPLR, 

ARCT and NADR provinces and only appeared in the NAST province (Fig. 4A–C). 

These observations clearly demonstrate that these microbes thrive best (~103–104 cells 

mL–1) in oligotrophic environments where nutrient concentrations are low (<0.8 NOx μM 

and <0.04 PO4
3–) and water temperatures are above 18 °C. UCYN–A cells were usually 

observed in surface waters with low N/P ratios (~2.0), and only when N2 fixation activity 

was measured, indicating that the UCYN–A population partially contributed to observed 

N2 fixation rates (Fig. 1C and Fig. 3A–C). 

Quantitative information on the UCYN–A population shows that UCYN–A cells 

mainly live in association with eukaryotes (Fig. 4A–C). Highest abundances were 

measured at station 14 with UCYN–A cells associated with a Haptophyta (1.8–2.6 x 104 

ml–1) and an unknown eukaryote (1.5–4.7 x 103 mL–1) (Fig. 4A,B). Most UCYN–A cells 

within the NAST province (≤ 50 m depth) appear in association with a Haptophyta 

(87.0±6.1%) whereas a smaller fraction is associated with an unknown eukaryote 

(7.8±5.2%). Other UCYN–A cells in that region were detected as free–living and only 

represented a minor fraction (5.2 ± 3.9%). The total UCYN–A population below 50 m 

depth becomes patchy and irregular; the fraction of free–living UCYN–A cells increases 

(32.9±45.4%), and the fraction of UCYN–A cells in association decreases (67.1±45.4%) 

(Fig. 4A–C). With the exception of station 16 and 17, the UCYN–A association was 

absent below 100 m water depth (Fig. 3A–C). This absence is typical for cyanobacteria 

and photosynthetically active microorganisms in general due to the lack of light energy 

(Zehr et al., 2001; Karl et al., 2002; Uitz et al., 2006). Interestingly, UCYN–A cells in 

association with an unknown eukaryote were higher than UCYN–A cells in association 

with a Haptophyta at depths below 50 m at station 16 and 17 (Supplementary Fig. 3A,B). 

These results imply a potential host–depth differentiation along the water column and 

might disclose a niche partitioning among UCYN–A. 

Conclusions and outlook. In general, associations and cell–to–cell interactions between 

diazotrophs and eukaryotes have been overlooked in open ocean systems and little is 

known about the abundances, distribution and ecological significance of these couplings. 
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Here, we identified UCYN–A and their partner cell as a Haptophyta using a double 

CARD–FISH approach, and provided quantitative information on the cellular abundance 

and distribution of this association in the North Atlantic. This information improves our 

understanding on the environmental parameters that select for UCYN–A associations. 

Further investigations targeting the unknown eukaryotes associating with UCYN–A and 

subgroups of Haptophyta would provide insights on potential physiological interactions 

and host specificity, refining our understanding how these interactions affect marine 

ecosystems and shape biogeochemical cycles. 
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Tables and Figures 

Table 1: Summary of 16S (*) and 18S (**) rRNA targeted oligonucleotide probes with 

correlating formamide (FA) concentrations and specificities used in the double CARD–

FISH assays.  The corresponding target microorganisms and references are listed. 

 

Fig. 1: Overview of (A) the ratio of nitrogen species (NOx = NO3
– and NO2

–
) over 

phosphate (PO4
3–) expressed as N/P, (B) bulk CO2 and (C) N2 fixation rates along the 

VISION transect. Bulk fixation rates were integrated between 0–80 m depth and the 

white bars represent bulk rates under light conditions and the black bars refer to bulk 

rates determined under dark conditions. Bulk activity was not measured at stations 7, 13, 

15, and 19 as indicated by the symbol “X”; not detectable N2 fixation activity is indicated 

by “nd”. Panel (A) was generated using Ocean Data View software and the automatic 

scaling feature. The ocean provinces are separated by dashed lines from left to right: 

BPLR = Boreal Polar Province, ARCT = Arctic Province, NADR = North Atlantic Drift 

Province, NAST = North Atlantic Subtropical Gyre Province. 

 

Fig. 2: Double in situ hybridization using specific HRP–labelled oligonucleotide probes 

targeting UCYN–A and the associated eukaryote. The green fluorescence signals refer to 

the deposition of Oregon Green 488 tyramides and the red fluorescence signals refer to 

Alexa 594 tyramides. The blue fluorescence signals refer to DAPI staining. The UCYN–

A cell has been targeted by the UCYN–A732 probe and the eukaryote has been targeted 

by the PRYM02 probe. (A,B) The successful double hybridization of UCYN–A (red) 

located either (A) at the polar end or (B) slightly shifted to the side of a prymnesiophyte 

(green). Two chloroplasts are located on each side of the prymnesiophyte (A) and reveal 

light autofluorescence. (C) A positively hybridized UCYN–A cell associated with a 

eukaryote that has not been targeted by the applied PRYM02 probe. (D) A free–living 

UCYN–A cell, positively hybridized by the UCYN–A732 probe. (E) The successful 

double hybridization of UCYN–A (green) and a prymnesiophyte (red), and the (F) 

complementary electron microscopy analysis displaying the slightly engulfed UCYN–A 

cell indicated by the dashed line, where no coccolith structure was visible. Scale bar, 5 

μm (A–D) and 1 μm (E,F). 
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Fig. 3: Overview of the diversity and the relative abundance of taxonomic groups within 

the picoeukaryote population visualized in a hierarchical structure by using the interactive 

metagenomic visualization tool Krona. (A) The picoeukaryote community composition 

pooled together from station 14–18, and (B–F) Haptophyta phylum diversity down to the 

family level for each station.  

 

Fig. 4: Vertical distribution of UCYN–A throughout the upper 200 m depth along the 

VISION transect based on cell enumeration using double in situ hybridization of the 

UCYN–A732 and PRYM02 oligonucleotide probes. Positively hybridized (A) UCYN–A 

cells in association with eukaryotes that were hybridized by PRYM02, (B) in association 

with an unknown eukaryote that was not hybridized by the PRYM02 probe, and (C) as 

free–living. The ocean provinces are separated by dashed lines from left to right: BPLR = 

Boreal Polar Province, ARCT = Arctic Province, NADR = North Atlantic Drift Province, 

NAST = North Atlantic Subtropical Gyre Province. 
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Fig. 1 

 



2 Manuscripts  

104 
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Fig. 3 
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Fig. 4 

 



2.3 Manuscript III 

107 

References 

Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., and Stahl, D.A. 
(1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow 
cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56: 
1919-1925. 

Bothe, H., Tripp, H.J., and Zehr, J.P. (2010) Unicellular cyanobacteria with a new 
mode of life: The lack of photosynthetic oxygen evolution allows nitrogen fixation 
to proceed. Arch Microbiol 192: 783-790. 

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and 
Madden, T. (2009) BLAST+: architecture and applications. BMC Bioinformatics 
10: 1-9. 

Capone, D.G., and Knapp, A.N. (2007) Oceanography: A marine nitrogen cycle fix? 
Nature 445: 159-160. 

Capone, D.G., Zehr, J.P., Paerl, H.W., Bergman, B., and Carpenter, E.J. (1997) 
Trichodesmium, a globally significant marine cyanobacterium. Science 276: 1221-
1229. 

Capone, D.G., Burns, J.A., Montoya, J.P., Subramaniam, A., Mahaffey, C., 
Gunderson, T. et al. (2005) Nitrogen fixation by Trichodesmium spp.: An 
important source of new nitrogen to the tropical and subtropical North Atlantic 
Ocean. Glob Biogeochem Cycles 19: 1-17. 

Carpenter, E.J., and Romans, K. (1991) Major role of the cyanobacterium 
Trichodesmium in nutrient cycling in the North Atlantic Ocean. Science 254: 1356-
1358. 

Carpenter, E.J., Montoya, J.P., Burns, J., Mulholland, M.R., Subramaniam, A., and 
Capone, D.G. (1999) Extensive bloom of a N2-fixing diatom/cyanobacterial 
association in the tropical Atlantic Ocean. Mar Ecol Prog Ser 185: 273-283. 

Church, M.J., Short, C.M., Jenkins, B.D., Karl, D.M., and Zehr, J.P. (2005) Temporal 
patterns of nitrogenase gene (nifH) expression in the oligotrophic North Pacific 
Ocean. Appl Environ Microbiol 71: 5362-5370. 

Cuvelier, M.L., Allen, A.E., Monier, A., McCrow, J.P., Messié, M., Tringe, S.G. et al. 
(2010) Targeted metagenomics and ecology of globally important uncultured 
eukaryotic phytoplankton. Proceedings of the National Academy of Sciences 107: 
14679-14684. 

Daims, H., Brühl, A., Amann, R., Schleifer, K.H., and Wagner, M. (1999) The 
domain-specific probe EUB338 is insufficient for the detection of all Bacteria: 
Development and evaluation of a more comprehensive probe set. Syst Appl 
Microbiol 22: 434-444. 

DeLong, E.F. (2010) Interesting things come in small packages. Genome Biol 11: 118. 
Dore, J.E., Brum, J.R., Tupas, L.M., and Karl, D.M. (2002) Seasonal and interannual 

variability in sources of nitrogen supporting export in the oligotrophic subtropical 
North Pacific Ocean. Limnol Oceanogr 47: 1595-1607. 

Eller, G., Töbe, K., and Medlin, L.K. (2007) Hierarchical probes at various taxonomic 
levels in the Haptophyta and a new division level probe for the Heterokonta. J 
Plank Res 29: 629-640. 

Falcón, L.I., Carpenter, E.J., Cipriano, F., Bergman, B., and Capone, D.G. (2004) N2 
fixation by unicellular bacterioplankton from the Atlantic and Pacific Oceans: 
Phylogeny and in situ rates. Appl Environ Microbiol 70: 765-770. 

Falkowski, P.G. (1997) Evolution of the nitrogen cycle and its influence on the 
biological sequestration of CO2 in the ocean. Nature 387: 272-275. 



2 Manuscripts  

108 

Foster, R.A., Kuypers, M.M.M., Vagner, T., Paerl, R.W., Musat, N., and Zehr, J.P. 
(2011) Nitrogen fixation and transfer in open ocean diatom–cyanobacterial 
symbioses. ISME J 5: 1484-1493. 

Goericke, R., and Welschmeyer, N.A. (1993) The marine prochlorophyte 
Prochlorococcus contributes significantly to phytoplankton biomass and primary 
production in the Sargasso Sea. Deep-Sea Res Pt I 40: 2283-2294. 

Gómez-Pereira, P.R., Fuchs, B.M., Alonso, C., Oliver, M.J., van Beusekom, J.E.E., 
and Amann, R. (2010) Distinct flavobacterial communities in contrasting water 
masses of the North Atlantic Ocean. The ISME journal 4: 472-487. 

Großkopf, T., Mohr, W., Baustian, T., Schunck, H., Gill, D., Kuypers, M.M.M. et al. 
(2012) Doubling of marine dinitrogen-fixation rates based on direct measurements. 
Nature 488: 361-364. 

Jardillier, L., Zubkov, M.V., Pearman, J., and Scanlan, D.J. (2010) Significant CO2 
fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic 
Ocean. ISME J 4: 1180-1192. 

Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N. et 
al. (2005) Global iron connections between desert dust, ocean biogeochemistry, 
and climate. Science 308: 67-71. 

Johnson, M.D. (2011) Acquired phototrophy in ciliates: a review of cellular 
interactions and structural adaptations. J Eukaryot Microbiol 58: 185-195. 

Karl, D., Letelier, R., Tupas, L., Dore, J., Christian, J., and Hebel, D. (1997) The role 
of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific 
Ocean. Nature 388: 533-538. 

Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R. et al. 
(2002) Dinitrogen fixation in the world's oceans. Biogeochemistry 57: 47-98. 

Koid, A., Nelson, W.C., Mraz, A., and Heidelberg, K.B. (2012) Comparative analysis 
of eukaryotic marine microbial assemblages from 18S rRNA gene and gene 
transcript clone libraries by using different methods of extraction. Appl Environ 
Microbiol 78: 3958-3965. 

Krupke, A., Musat, N., LaRoche, J., Mohr, W., Fuchs, B.M., Amann, R.I. et al. (2013) 
In situ identification and N2 and C fixation rates of uncultivated cyanobacteria 
populations. Syst Appl Microbiol 36: 259-271. 

Langlois, R.J., Hummer, D., and LaRoche, J. (2008) Abundances and distributions of 
the dominant nifH phylotypes in the Northern Atlantic Ocean. Appl Environ 
Microbiol 74: 1922-1931. 

LaRoche, J., and Breitbarth, E. (2005) Importance of the diazotrophs as a source of 
new nitrogen in the ocean. J Sea Res 53: 67-91. 

Li, W., and Godzik, A. (2006) Cd-hit: a fast program for clustering and comparing 
large sets of protein or nucleotide sequences. Bioinformatics 22: 1658-1659. 

Liu, H., Nolla, H.A., and Campbell, L. (1997) Prochlorococcus growth rate and 
contribution to primary production in the equatorial and subtropical North Pacific 
Ocean. Aquat Microb Ecol 12: 39-47. 

Longhurst, A. (1998) Ecological geography of the seaAcademic. San Diego. 
López-García, P., Philippe, H., Gail, F., and Moreira, D. (2003) Autochthonous 

eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at 
the Mid-Atlantic Ridge. Proceedings of the National Academy of Sciences 100: 
697-702. 

Ludwig, W., Strunk, O., Westram, R., Richter, L., and Meier, H. (2004) ARB: A 
software environment for sequence data. Nucleic Acids Res 32: 1363-1371. 



2.3 Manuscript III 

109 

Luo, Y.W., Doney, S.C., Anderson, L.A., Benavides, M., Bode, A., Bonnet, S. et al. 
(2012) Database of diazotrophs in global ocean: Abundances, biomass and 
nitrogen fixation rates. Earth Syst Sci Data 5: 47-106. 

Mague, T.H., Weare, N.M., and Holm-Hansen, O. (1974) Nitrogen fixation in the 
north Pacific Ocean. Mar Biol 24: 109-119. 

Mahaffey, C., Michaels, A.F., and Capone, D.G. (2005) The conundrum of marine N2 
fixation. Am J Sci 305: 546-595. 

Margulis, L., and Fester, R. (1991) Symbiosis as a source of evolutionary innovation: 
Speciation and morphogenesis: MIT Press. 

Mazard, S.L., Fuller, N.J., Orcutt, K.M., Bridle, O., and Scanlan, D.J. (2004) PCR 
analysis of the distribution of unicellular cyanobacterial diazotrophs in the Arabian 
Sea. Appl Environ Microbiol 70: 7355-7364. 

Michaels, A.F., Olson, D., Sarmiento, J.L., Ammerman, J.W., Fanning, K., Jahnke, R. 
et al. (1996) Inputs, losses and transformations of nitrogen and phosphorus in the 
pelagic North Atlantic Ocean. Biogeochemistry 35: 181-226. 

Mills, M.M., Ridame, C., Davey, M., La Roche, J., and Geider, R.J. (2004) Iron and 
phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 
429: 292-294. 

Mohr, W., Großkopf, T., Wallace, D.W.R., and LaRoche, J. (2010) Methodological 
underestimation of oceanic nitrogen fixation rates. PLoS ONE 5: e12583. 

Moisander, P.H., Beinart, R.A., Hewson, I., White, A.E., Johnson, K.S., Carlson, C.A. 
et al. (2010) Unicellular cyanobacterial distributions broaden the oceanic N2 
fixation domain. Science 327: 1512-1514. 

Montoya, J.P., Voss, M., Kahler, P., and Capone, D.G. (1996) A Simple, High-
Precision, High-Sensitivity Tracer Assay for N2-Fixation. Appl Environ Microbiol 
62: 986-993. 

Not, F., Latasa, M., Marie, D., Cariou, T., Vaulot, D., and Simon, N. (2004) A single 
species, Micromonas pusilla (Prasinophyceae), dominates the eukaryotic 
picoplankton in the western English Channel. Appl Environ Microbiol 70: 4064-
4072. 

Nübel, U., Garcia-Pichel, F., and Muyzer, G. (1997) PCR primers to amplify 16S 
rRNA genes from cyanobacteria. Appl Environ Microbiol 63: 3327-3332. 

Oliver, M.J., and Irwin, A.J. (2008) Objective global ocean biogeographic provinces. 
Geophys Res Lett 35: 1-6. 

Ondov, B., Bergman, N., and Phillippy, A. (2011) Interactive metagenomic 
visualization in a Web browser. BMC Bioinformatics 12: 385. 

Pernthaler, A., and Amann, R. (2004) Simultaneous fluorescence in situ hybridization 
of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70: 5426-
5433. 

Pernthaler, A., and Pernthaler, J. (2007) Fluorescence In Situ Hybridization for the 
Identification of Environmental Microbes. In Protocols for Nucleic Acid Analysis 
by Nonradioactive Probes pp. 153-164. 

Pernthaler, A., Pernthaler, J., and Amann, R. (2004) Sensitive multi-color 
fluorescence in situ hybridization for the identification of environmental 
microorganisms. Mol Microb Ecol Man 3: 711-726. 

Pruesse, E., Peplies, J., and Glöckner, F.O. (2012) SINA: Accurate high-throughput 
multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823-
1829. 



2 Manuscripts  

110 

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P. et al. (2013) The 
SILVA ribosomal RNA gene database project: Improved data processing and web-
based tools. Nucleic Acids Res 41: 590-596. 

Rees, A.P., Gilbert, J.A., and Kelly-Gerreyn, B.A. (2009) Nitrogen fixation in the 
western English Channel (NE Atlantic ocean). Mar Ecol Prog Ser 374: 7-12. 

Reisser, W. (1986) Endosymbiotic associations of freshwater protozoa and algae. 
Prog Protist 1: 195-214. 

Reisser, W. (1992) Endosymbiotic associations of algae with freshwater protozoa and 
invertebrates. Algae and symbioses: plants, animals, fungi, viruses, interactions 
explored 1: 1-19. 

Short, S.M., and Zehr, J.P. (2007) Nitrogenase gene expression in the Chesapeake 
Bay Estuary. Environ Microbiol 9: 1591-1596. 

Simon, N., Campbell, L., Örno lfsdo ttir, E., Groben, R., Guillou, L., Lange, M., and 
Medlin, L.K. (2000) Oligonucleotide probes for the identification of three algal 
groups by dot blot and fluorescent whole-cell hybridization. J Eukaryot Microbiol 
47: 76-84. 

Sohm, J.A., Webb, E.A., and Capone, D.G. (2011) Emerging patterns of marine 
nitrogen fixation. Nat Rev Microbiol 9: 499-508. 

Stuut, J.-B., Zabel, M., Ratmeyer, V., Helmke, P., Schefuß, E., Lavik, G., and 
Schneider, R. (2005) Provenance of present-day eolian dust collected off NW 
Africa. J Geophys Res 110: 1-14. 

Sun, Y., Wolcott, R.D., and Dowd, S.E. (2011) Tag-encoded FLX amplicon 
pyrosequencing for the elucidation of microbial and functional gene diversity in 
any environment. In High-Throughput Next Generation Sequencing: Springer, pp. 
129-141. 

Thompson, A.W., Foster, R.A., Krupke, A., Carter, B.J., Musat, N., Vaulot, D. et al. 
(2012) Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. 
Science 337: 1546-1550. 

Tripp, H.J., Bench, S.R., Turk, K.A., Foster, R.A., Desany, B.A., Niazi, F. et al. 
(2010) Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. 
Nature 464: 90-94. 

Turk, K.A., Rees, A.P., Zehr, J.P., Pereira, N., Swift, P., Shelley, R. et al. (2011) 
Nitrogen fixation and nitrogenase (nifH) expression in tropical waters of the 
eastern North Atlantic. ISME J 5: 1201-1212. 

Uitz, J., Claustre, H., Morel, A., and Hooker, S.B. (2006) Vertical distribution of 
phytoplankton communities in open ocean: An assessment based on surface 
chlorophyll. J Geophys Res 111: 1-23. 

Unrein, F., Massana, R., Alonso-Sáez, L., and Gasol, J.M. (2007) Significant year-
round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic 
coastal system. Limnol Oceanogr 52: 456-469. 

Van Mooy, B.A.S., Hmelo, L.R., Sofen, L.E., Campagna, S.R., May, A.L., Dyhrman, 
S.T. et al. (2012) Quorum sensing control of phosphorus acquisition in 
Trichodesmium consortia. The ISME journal 6: 422-429. 

Veldhuis, M.J.W., Kraay, G.W., Van Bleijswijk, J.D.L., and Baars, M.A. (1997) 
Seasonal and spatial variability in phytoplankton biomass, productivity and growth 
in the northwestern Indian Ocean: The southwest and northeast monsoon, 1992-
1993. Deep-Sea Res Pt I 44: 425-449. 

Voss, M., Croot, P., Lochte, K., Mills, M., and Peeken, I. (2004) Patterns of nitrogen 
fixation along 10 °N in the tropical Atlantic. Geophys Res Lett 31: 1-4. 



2.3 Manuscript III 

111 

Wallner, G., Amann, R., and Beisker, W. (1993) Optimizing fluorescent in situ 
hybridization with rRNA targeted oligonucleotide probes for flow cytometric 
identification of microorganisms. Cytometry 14: 136-143. 

Williams, R.G., and Follows, M.J. (1998) The Ekman transfer of nutrients and 
maintenance of new production over the North Atlantic. Deep-Sea Res Pt I 45: 
461-490. 

Wu, J., Sunda, W., Boyle, E.A., and Karl, D.M. (2000) Phosphate depletion in the 
western North Atlantic Ocean. Science 289: 759-762. 

Zehr, J.P., Mellon, M.T., and Zani, S. (1998) New nitrogen-fixing microorganisms 
detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes. Appl 
Environ Microbiol 64: 3444-3450. 

Zehr, J.P., Waterbury, J.B., Turner, P.J., Montoya, J.P., Omoregie, E., Steward, G.F. 
et al. (2001) Unicellular cyanobacteria fix N2 in the subtropical North Pacific 
Ocean. Nature 412: 635-637. 

Zehr, J.P., Bench, S.R., Carter, B.J., Hewson, I., Niazi, F., Shi, T. et al. (2008) 
Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic 
photosystem II. Science 322: 1110-1112. 

Zhu, F., Massana, R., Not, F., Marie, D., and Vaulot, D. (2005) Mapping of 
picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. 
FEMS Microbiol Ecol 52: 79-92. 

Zubkov, M.V., and Tarran, G.A. (2008) High bacterivory by the smallest 
phytoplankton in the North Atlantic Ocean. Nature 455: 224-226. 

 



  

 

 

 

  



2.3.1 Manuscript III: Supplementary Information 

113 

2.3.1 Manuscript III: Supplementary Information 

Supplementary Fig. 1: The VISION cruise track in the North Atlantic covering 18 

stations (S2–S19) represented by the black dots. The dashed lines indicate different 

biogeographical provinces defined after Longhurst (1998): Boreal Polar Province 

(BPLR), Arctic Province (ARCT), North Atlantic Drift Province (NADR) and North 

Atlantic Subtropical Gyre Province (NAST). 

 

Supplementary Fig. 2: Maximum–Likelihood phylogenetic reconstruction inferred 

from unique sequences clustered into classified OTUs. Almost all OTUs (426 = 

92.8%) clustered next to UCYN–A sequences indicated by “UCYN–A cluster”. Other 

sequences were selected and used for comparison, labeled with genus and species 

names, and the values indicated at the nodes represent the percentage from 1,000 

bootstrap replicates. The other OTUs (7.2%) clustered amongst the Sva0996 marine 

group (14 x OTUs), chloroplast (1 x OTU), Prochlorococccus (2 x OTU) and 

Synechococcus (1 x OTU).  

 

Supplementary Fig. 3: The vertical distribution of UCYN–A in association with (A) a 

Haptophyta cell positively hybridized by the PRYM02 oligonucleotide probe and (B) 

an unknown eukaryote that was not hybridized by PRYM02, in the upper 200 m at 

station 16 and 17 along the VISION transect. Cell enumeration was based on double 

in situ hybridization by applying the UCYN–A732 and PRYM02 oligonucleotide 

probes. 

 

Supplementary Table 1: Overview of bulk CO2 and N2 fixation activity expressed in 

volumetric and areal rates (integrated between 0–80 m depth). 
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Supplementary Fig. 1 
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Supplementary Fig. 2 
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Supplementary Fig. 3 
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Abstract 

Biological N2 fixation constitutes the major source of nitrogen in open ocean systems, 

regulating the marine nitrogen inventory and primary productivity. Symbiotic relationships 

between phytoplankton and N2 fixing microorganisms (diazotrophs) have been suggested to 

play a significant role in the ecology and biogeochemistry in these oceanic regions. In the 

subtropical North Atlantic Ocean we identified field populations of uncultured unicellular 

cyanobacteria group A (UCYN–A) associated with photosynthetic Haptophyta partner cells 

using double Catalyzed Reporter Deposition–Fluorescence In Situ Hybridization (CARD–

FISH) assays. Stable isotope incubation experiments with the addition of 13C–Bicarbonate 

and dissolved 15N2 gas in combination with various nutrient amendments (including iron, 

phosphorus, ammonium–nitrate and Saharan Dust) were performed to examine physiological 

interactions between individual UCYN–A and Haptophyta cells. NanoSIMS imaging 

revealed a tight physiological coupling in the transfer of carbon (R2 = 0.6232; n = 44) and 

nitrogen (R2 = 0.9659; n = 44) between host and symbiont. Generally, inorganic carbon 

fixation was enhanced in all nutrient incubations. In contrast, N2 fixation was only stimulated 

when iron, Saharan Dust and/or phosphorus were added, emphasizing on aeolian dust 

deposition as a major parameter in constraining N2 fixation of UCYN–A. Interestingly, the 

addition of ammonium–nitrate did not inhibit N2 fixation by UCYN–A, but resulted in 

enhanced growth and decreased 15N2 derived 15N uptake by the associated Haptophyta. 

Moreover, after fixed nitrogen additions, a third unknown microbial partner was observed 

within individual UCYN–A associations. Our single cell measurements demonstrate the 

physiological complexity of the UCYN–A association and highlight the importance of aeolian 

dust on ocean productivity in this region. 
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Introduction 

Open ocean environments are generally characterized by the scarcity of nutrients, particularly 

bioavailable nitrogen (N), which limits primary productivity (Karl et al., 2002). In such 

oligotrophic environments, the activity of diazotrophs, prokaryotic microorganisms that 

mediate the fixation of atmospheric N2, (Zehr et al., 1998; LaRoche and Breitbarth, 2005) are 

favored since they can overcome N limitation. N2 fixation constitutes the main source of fixed 

N in these waters, supplying fixed N to open ocean ecosystems.  

Since the 1960´s (Dugdale et al., 1961), the most studied diazotroph has been the non–

heterocystous cyanobacterium Trichodesmium spp., which contributes significantly to N2 

fixation in tropical and subtropical oceans (Capone et al., 2005). Other abundant diazotrophs 

in the open ocean are the nitrogen fixing cyanobacterium Richelia sp. found in association 

with diatoms (Mague et al., 1974; Villareal, 1991; Carpenter et al., 1999; Foster et al., 2011). 

N2 fixation via these symbioses can fuel primary production and result in an enhanced sinking 

flux of organic carbon, which could play a mayor role in regulating the efficiency and amount 

of carbon (C) sequestered in the ocean (Subramaniam et al., 2008; Karl et al., 2012). 

More recently, the importance of N2 fixing unicellular cyanobacteria populations 

(UCYN–A, UCYN–B, UCYN–C) has been recognized (Zehr et al., 1998; Zehr et al., 2001; 

Montoya et al., 2004). Surveys based on quantitative PCR (qPCR) assays that target 

diazotroph abundance using the marker nitrogen fixation gene nifH (which encodes 

nitrogenase, the key enzyme for N2 fixation) have revealed their widespread distribution 

throughout the oceans (Short et al., 2004; Church et al., 2005a; Langlois et al., 2008; 

Moisander et al., 2010).  

The nifH gene phylotypes of UCYN–A often outnumber other diazotrophs (Moisander 

et al., 2010; Luo et al., 2012) and can be found in more diverse environments than most other 

diazotrophs (Short and Zehr, 2007; Rees et al., 2009; Moisander et al., 2010). UCYN–A nifH 

gene expression as mRNA is usually highest during the day, unlike other UCYN groups that 

express nifH and fix N2 mainly during the night (Foster et al., 2013) to protect nitrogenase 

from oxygen produced during photosynthesis (Colon-Lopez and Sherman, 1998; Church et 

al., 2005b; Mohr et al., 2010a; Turk et al., 2011). Recent investigations report that the genome 

of UCYN–A lack genes for certain metabolic pathways characteristic for the oxygen evolving 

photosystem, which explains why UCYN–A expresses the oxygen sensitive nitrogenase 

during the day. The unusual metabolism of UCYN–A raises questions how these 

microorganisms thrive in open ocean systems (Zehr et al., 2008; DeLong, 2010; Tripp et al., 

2010).  
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UCYN–A has recently been found living in association with unicellular 

photosynthetic eukaryotes belonging to the Prymnesiophytes (Thompson et al., 2012; Krupke 

et al., 2013). It has been hypothesized that the eukaryotic photosynthetic partner provides 

carbohydrates for UCYN–A and in return, obtains nitrogen compounds from UCYN–A 

(Thompson et al., 2012). Cultures of UCYN–A, unfortunately, do not exist, and therefore, 

environmental observations and field experiments are necessary for acquiring information 

concerning UCYN–A metabolism, and for quantifying the contribution of UCYN–A to the 

marine C and N cycles. Moreover, understanding the nutrient requirements and environmental 

parameters that regulate the physiological interactions between UCYN–A cells and their 

eukaryotic partner are still missing. 

The primary nutrient that limits N2 fixation in the world’s oceans is an ongoing debate. 

Previous studies showed that the availability of phosphorus (P) (Sañudo Wilhelmy et al., 

2001) or iron (Fe) (Shi et al., 2007; Fu et al., 2008) can limit N2 fixation activity, and Mills et 

al. (2004) demonstrated co–limitation of P and Fe in the North Atlantic. The effects of 

nutrient limitation on cellular growth and N2 fixation has been investigated for cultured 

representatives such as Trichodesmium sp. or Crocosphaera watsonii (Berman Frank et al., 

2001a; Webb et al., 2001; Kustka et al., 2003; Hewson et al., 2009). Presently, no studies on 

the effect of P or Fe limitation on N2 fixation and growth in the UCYN–A association exist. 

To address this issue, we conducted a wide range of nutrient amendment experiments to 

investigate the effect of nutrient additions on cellular CO2 and N2 fixation rates, adding 

inorganic nitrogen, phosphorus, and iron, as well as dust in varying combinations. Water 

samples were collected in the vicinity of the Cape Verdean Islands where UCYN–A is present 

throughout the year (LaRoche, unpublished results); this area is also characterized by elevated 

iron inputs due to Saharan Dust deposition (Guieu et al., 2002; Jickells et al., 2005; Stuut et 

al., 2005). Double CARD–FISH assays targeted UCYN–A cells, as well as their partner cells, 

and allowed us to visualize the cells’ metabolic activity on a single cell level using nanometer 

scale secondary ion mass spectrometry (nanoSIMS). The aim was to investigate the effect of 

nutrients on C and N2 fixation by the UCYN–A–eukaryote  symbiosis. 
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Material and methods 

Nutrient and stable isotope incubation experiments. Seawater for experiments was collected 

near the Cape Verdean Islands (located in the eastern tropical North Atlantic at 16.59° N, 

24.52° W) on board the R/V Islandia in May 2009. Sample water from the upper water zone 

(10–20 m) was collected in the morning using a rosette of 12 x 5 L Niskin bottles mounted on 

a conductivity–temperature–density profiler (CTD).  

Seawater from the Nisken bottles was transferred into acid cleaned 4.5 L 

polycarbonate bottles, which were subsequently used for incubation experiments that 

measured CO2 and N2 fixation. These incubation bottles were filled without air bubbles, 

closed with Teflon lined butyl septum caps and amended with nutrients yielding ten different 

treatments: (1) C = control, no nutrients added, (2) N = NH4
+
 (ammonium) + NO3

– 
 (nitrate), (3) 

P = PO4
3– (phosphate) (4) Fe =Fe2+ (iron), (5) NP = NH4

+
 + NO3

–
 + PO4

3–, (6) NFe = NH4
+
 + NO3

–
 

+ Fe2+, (7) PFe = PO4
3– + Fe2+, (8) NPFe = NH4

+
 + NO3

–
 + PO4

3– + Fe2+, (9) DI = Saharan Dust I, 

and (10) DII = Saharan Dust II. The following concentrations were added for N [2 μM], Fe [2 

nM], P [0.2 μM], DI [2 mg L–1] and DII [4 mg L–1]. The utilized Saharan Dust represents 

surface soil collected under clean conditions from various locations in southern Algeria 

(Guieu and Thomas, 1996). The dust amendment contained P (0.14% ± 0.01%), Fe (4.97% ± 

0.49%) and total nitrogen (0.12%± 0.003%) (Mills et al., 2004). Each treatment was prepared 

in triplicate. 

Incubation bottles for each treatment were placed in an incubator with continuously 

flowing surface seawater and shaded to 25% surface irradiance. After 24 h of incubation, all 

bottles were amended with 15N2 enriched liquid (~13 % labeling) (98% + 15N2, Sigma–

Aldrich, St. Louis, MO, USA) following the improved 15N2 tracer technique (Mohr et al., 

2010b; Großkopf et al., 2012) and 240 μM 13C bicarbonate solution (H13CO3
–
) (~10 %) (98% 

+ 13CO2, Sigma–Aldrich, St. Louis, MO, USA) using a gas tight syringe. Incubation bottles 

were incubated for an additional 24 h period. Bulk CO2 and N2 fixation rates were determined 

and will be reported in a separate study on total CO2 and N2 fixation rates (Mohr et al., 

unpublished).  

Double CARD–FISH assay. At the end of the incubation period, triplicate 20 mL aliquots of 

water were preserved in 1% paraformaldehyde (PFA) for approximately 1 h at room 

temperature (RT). Subsequently, these samples were individually filtered through 0.2 μm 

pore size filters (GTTP, 25 mm diameter), and pre–sputtered with gold (Au) and palladium 

(Pd) using a vacuum filtration manifold (Merck Millipore, Billerica, USA). After filtration, 
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filters were washed in 1 x phosphate buffered saline (PBS) solution (130 mM NaCl; 10 mM 

Na2HPO4; pH 7.6) and stored at –20 °C until further processing. 

In the first CARD–FISH (Catalyzed Reporter Deposition–Fluorescence In Situ 

Hybridization) application, we used the 18S rRNA oligonucleotide probe PRYM02 targeting 

Haptophyta (Simon et al., 2000) following standard protocols (Pernthaler and Amann, 2004; 

Pernthaler et al., 2004). In the second CARD–FISH the oligonucleotide probe UCYN–A732, 

targeting the 16S rRNA specific for UCYN–A cells, and its corresponding helper probes 

Helper A–732 and Helper B–732 were applied to increase the probes’ access to 16S rRNA 

target regions according to Krupke et al. (2013). Horseradish peroxidase (HRP) labeled 

oligonucleotide probes were at working solutions of 8.42 pmol μL–1 following dilution in the 

hybridization buffer (1:300; v:v). All hybridizations were performed at optimal formamide 

(FA) concentrations to ensure maximal stringency (Krupke et al., 2013); the oligonucleotides 

EUB338 (Amann et al., 1990) or EUK516 (Amann et al., 1990) were used as positive controls 

and the oligonucleotide NON338 (Wallner et al., 1993) was used as a negative control. 

Phylogenetic identification was performed on filter sections using standard protocols 

(Pernthaler et al., 2004; Pernthaler and Pernthaler, 2007) with some changes for the double 

CARD–FISH assays. Changes include permeabilization of the cell wall with lysozyme 

solution (10 mg mL–1 in 0.05 M EDTA, pH 8.0; 0.1 M TrisHCl; Fluka, Taufkirchen, 

Germany) for 1 h at 37 °C, followed by the inactivation of endogenous peroxidases using 0.01 

M HCl for 10 min at RT. In the first CARD–FISH application, eukaryotic cells were 

hybridized for 3 h at 46 °C and washed in washing buffer for 15 min at 48 °C. The first 

CARD was performed for 20 min at 46 °C using Alexa594 tyramides (Molecular probes, 

Leiden, The Netherlands) (Pernthaler et al., 2004). Afterwards, filter sections were washed in 

1 x PBS for 10–20 min in the dark and placed in 3% H2O2 solution for 20 min at RT in order 

to inactivate the HRP for the second round of hybridization. UCYN–A cells were hybridized 

for 8 h at 35 °C and washed in washing buffer for 15 min at 37 °C. The second CARD was 

performed for 20 min at 46 °C using fluorine (19F) labeled tyramides (i.e. Oregon Green 488, 

Molecular probes, Leiden, The Netherlands). The cells were counterstained with 1 μg mL–1 

4’,6–diamidino–2–phenylindol (DAPI) for 10 min at RT in the dark. 

Marking, microscopy and mapping for nanoSIMS. Laser markings were made near 

positively hybridized UCYN–A cells associated with a positively hybridized Haptophyta with 

a Laser Micro–dissection (LMD) Microscope 6500 (Leica, Berlin, Germany). We used optical 

filter sets suitable for the Oregon Green 488 tyramides to reveal positively hybridized 

UCYN–A cells (excitation Maximum: 498 nm; emission Maximum: 526 nm) and the Alexa 
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594 tyramides to reveal positively hybridized Haptophyta (excitation Maximum: 550 nm; 

emission Maximum: 570 nm). Filter pieces were then embedded in a mixture of low 

fluorescence glycerol mountant (Citifluor AF1, Citifluor Ldt London, United Kingdom) and 

mounting fluid Vecta Shield (Vecta Laboratories, Burlingame, CA USA) in a 4:1 ratio in 

order to take microscopic pictures using a Zeiss Axioskop II fluorescence microscope (Zeiss, 

Berlin, Germany). These pictures were used for orientation purposes during subsequent 

nanoSIMS analysis and for post–processing using look@nanoSIMS software (Polerecky et 

al., 2012). Prior to nanoSIMS analysis, filter pieces were washed with ultra pure water and 

air–dried. 

NanoSIMS measurements. Single cell activity was visualized using a Cameca NanoSIMS 

50L instrument (Cameca, Gennevilliers France). Prior to analysis, the area was pre–sputtered 

for 1–2 min with a rastered high–current Cs– beam to implant Cs and remove surface 

contaminants. Then, sample surfaces were rastered with a 16 keV Cesium (Cs+) beam and a 

current between 25–35 pA. Primary ions were focused into a nominal ~100–120 nm spot 

diameter. The primary ion beam was used to raster the analyzed area with an image size of 

256 x 256 pixels and a dwelling time of 1 or 3 ms per pixel. Raster areas were usually 10 x 10 

μm. Negatively charged secondary ions of carbon (C), fluorine (F), nitrogen (as CN) and 

sulfur (S) (i.e. 12C–, 13C–, 19F–, 12C14N–, 12C15N– and 32S–) were measured simultaneously in 

raster imaging mode by electron multiplier detectors.  

All scans (40–50 planes) were corrected for drift of the beam and sample stage after 

acquisition. Isotope ratio images were created as the ratio of a sum of total counts for each 

pixel over all recorded planes in respect to the investigated isotope. Regions of interest (ROIs) 

around cell structures were circled and calculated using the automated threshold feature based 

on the look@nanosims software (Polerecky et al., 2012). Cell dimensions were estimated 

from the ROIs and the look@nanosims software. 

Calculations. Carbon and nitrogen uptake for individual cells was estimated using the 

equations listed below. The biovolume (V) was calculated according to Sun and Liu (2003): 

V = (π/6) x Ø3         (1) 

where Ø is the cell diameter. Estimates of C content per individual UCYN–A cell was 

followed by the Verity et al. (1992): 

Log [C] = –0.363 + (0.863 x (Log (V))     (2) 

Estimates of C content per individual Haptophyta cell was followed by Strathmann (1967): 

Log [C] = –0.422 + (0.758 x (Log (V))     (3) 
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The C content per cell (Ccon) was converted into N content per cell (Ncon) based on conversion 

factors provided by Tuit et al. (2004) assuming a modified Redfield ratio (C:N) of 8.6. The 

isotopic ratios (RC = 13C/12C and RN = 15N/14N) based on ROI selections and nanoSIMS 

analysis were used to calculate atom percent (AT%) enrichment of 13C or 15N by: 

AC = RC/(RC + 1)        (4) 

AN = RN/(RN + 1)        (5) 

where AC represents AT% enrichment of 13C and AN represents the AT% enrichment of 15N.  

The cell specific C and N uptake (FC or FN) was calculated according to the length of 

incubation time under stable isotope amendments (i.e. 24 hours) by: 

FC = (13Cex x Ccon)/CSR        (6) 

FN = (15Nex x Ncon)/NSR        (7) 

where 13Cex and 15Nex represent the AT% enrichment of 13C and 15N of the individual ROIs 

corrected for by the mean AT% 13C and AT% 15N at time–zero. Time–zero AT% were 

determined on bulk samples using elemental analyzer–isotope ratio mass spectrometry (EA–

IRMS). The EA–IRMS is well calibrated for both non–enriched and enriched samples with 

high instrument accuracy and precision (e.g. 0.3651 ± 0.0000 15N atom % and 1.0658 ± 

0.0004 13C atom % based on the mean and standard deviation of caffeine standards). The CSR 

and NSR is the estimated labelling percentage of C and N in the experimental bottle. 

Statistical evaluations. Single cell C and N uptake results (i.e. AT% 13C and 15N as well as 

CO2 and N2 fixation rates) were statistically evaluated using SigmaStat 3.5 software. We 

applied the t–test to compare measurements between two individual treatments. In case of a 

failure in normalizing individual treatment datasets we applied either Mann–Whitney Rank 

Sum Test (MW–test) or Equal Variance Test (EV–test). 
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Results 

Visualization of UCYN–A–Haptophyta associations. UCYN–A cells and their Haptophyta 

partner cells were simultaneously identified via the double labeling CARD–FISH approach 

(Fig. 1A,D,G small inserts). The application of the UCYN–A specific oligonucleotide probe 

(Krupke et al., 2013) in concert with the deposition of halogenated tyramides and subsequent 

nanoSIMS measurements allowed us to further verify the phylogenetic identification of 

UCYN–A cells based on 19F signals (Fig. 1A,D,G). We imaged the single cell C and N uptake 

by UCYN–A and the associated Haptophyta cells. Examples are shown for individual 

associations in the treatment with no nutrient addition (control), N treatment (NO3
–
 and NH4

+
 

addition), and one of the two sets of Saharan Dust addition (DII treatment) (Fig. 1A–I). 

NanoSIMS measurements of all examined cells gave average cell diameters of 

0.83±0.15 μm for UCYN–A, and 1.66±0.23 μm for Haptophyta cells. Individual values, 

however, were used to estimate biovolumes at the end of each treatment (Fig. 2A,B, 

Supplementary Fig. 1A–D). The largest biovolumes of UCYN–A cells were detected when N 

species (NO3
–
 and NH4

+
) in combination with P or Fe were added in the NP and NPFe 

treatment (0.51±0.11 μm3, 0.43±0.09 μm3, respectively) (Fig. 2A). Overall, the nutrient 

additions yielded biovolumes of UCYN–A cells that were not significantly different from the 

unamended control (MW–test, p = 0.065 and t–test, p ≥ 0.064). 

In contrast, nutrient additions led to strikingly increased biovolumes for Haptophyta 

cells. Except for the Fe and DII treatments, all measured biovolumes were significantly larger 

(on average 3.05±0.16 μm3) than the control (1.56±0.21 μm3) (MW–test, p ≤ 0.019 and t–test, 

p ≤ 0.03) (Fig. 2B). The strongest response was observed during the NP treatment (3.60±0.20 

μm3). The obtained biovolume observed in the PFe treatment was twice as large as in the 

control (Fig. 2B). Overall, estimated biovolumes for the associated Haptophyta cells were 

~3–10 times greater than values for UCYN–A cells (Fig. 3B). 

Carbon uptake in UCYN–A and associated Haptophyta cells. All nutrient additions resulted 

in greater 13C enrichment, as well as elevated C fixation rates for UCYN–A and their 

associated Haptophyta cell compared to control measurements (Fig. 4A–D). On average, 

UCYN–A cells were about one third more enriched in 13C in the nutrient addition 

experiments than cells under control conditions (AT% 13C 2.39±0.19). However, this 13C 

enrichment was only significant in the following treatments, (1) Fe = AT% 13C 3.91±0.19, (2) 

NP = AT% 13C 3.31±0.38, (3) NPFe = AT% 13C 3.36±0.20 and (4) DII = (AT% 13C 

3.31±0.28) (MW–test, p ≤ 0.036 and EV–test, p = 0.008) (Fig. 4A and Supplementary Fig. 

2A,B). Calculated C fixation rates of UCYN–A were up to 3 times higher after nutrient 
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addition than in the control treatment (0.06±0.01 fmol C cell–1 h–1) and differed significantly 

from the control in the Fe treatment (0.15±0.02 fmol C cell–1 h–1, MW–test, p = 0.03), NP 

treatment (0.19±0.04 fmol C cell–1 h–1, t–test, p = 0.004), and the NPFe treatment (0.15±0.01 

fmol C cell–1 h–1, t–test, p < 0.002) (Fig. 4B). Elevated C uptake was observed in the 

experiment where P and Fe were added (PFe treatment), but the available dataset for this 

treatment is limited since only one measurement could be performed. No data is available 

from the P only treatment because no double–hybridized UCYN–A–eukaryote associations 

were detected in the samples. 

In associated Haptophyta cells 13C enrichments were up to 2 times as large as the 13C 

enrichment of the associated UCYN–A cells. C fixation rates for Haptophyta were up to 7 

times greater than for UCYN–A (Fig. 4A–D, Supplementary Fig. 3A–I). Generally, 13C 

enrichments within Haptophyta cells increased during all treatments (AT% 13C 4.02±0.11) 

compared to the control (AT% 13C 3.49±0.27), but were not significantly different between 

treatments (MW–test, p > 0.121) (Fig. 4C). C fixation rates for Haptophyta cells were 

elevated after nutrient additions and were on average about twice as high (0.62±0.03 fmol C 

cell–1 h–1) as in the control treatment (0.31±0.3 fmol C cell–1 h–1) (Fig. 4D). The highest C 

fixation rates were encountered in the NP treatment with 0.84±0.09 fmol C cell–1 h–1. 

Measured C fixation rates increased significantly in all nutrient treatments compared to the 

control (MW–test, p = 0.028 and t–test, p ≤ 0.007), except in one of the treatments with 

Saharan Dust addition (DII treatment) (Fig. 4D). 

Nitrogen uptake in UCYN–A and associated Haptophyta cells. 15N enrichment of UCYN–A 

cells in treatments where additional nitrogen species were available did not differ significantly 

from the control (MW–test, p ≥ 0.214 and EV–test, p > 0.064) (Fig. 4E). 15N enrichments 

were either slightly greater (NP and NFe treatments) or up to one third lower (N and NPFe 

treatments) compared to control values with AT% 15N 1.08±0.10 (Fig. 4E). 

In contrast, UCYN–A cells were significantly enriched in 15N (2–3 fold) when iron 

and Saharan Dust was added compared to control (AT% 15N values of 1.89±0.11, 1.95±0.17 

and 2.97±0.43 for Fe, DI and DII treatments, respectively; MW–test, p ≤ 0.043) (Fig. 4E, 

Supplementary Fig. 2A,B). Corresponding N2 fixation rates for UCYN–A cells were also 

significantly higher in the Fe, DI and DII treatments (0.0072±0.0014, 0.0069±0.0021 and 

0.0134±0.0042 fmol N cell–1 h–1, respectively; MW–test, p < 0.03 and t–test, p < 0.043) than 

in the control (0.0031±0.0005 fmol N cell–1 h–1; t–test, p = 0.24) (Fig. 4F). N2 fixation rates 

were not significantly different from the control (0.0031±0.0005 fmol N cell–1 h–1) when 

inorganic nitrogen (i.e. NO3
–
 and NH4

+
) was available (Fig. 4F).  
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The 15N enrichment of the Haptophyta cells remained mostly unaltered compared to 

the control when nitrogen compounds (i.e. NH4
+
 and NO3

–
) were added in combination with 

phosphorus or iron (AT% 15N 1.43±0.15) (Fig. 4G). However, 15N–enrichment within 

Haptophyta cells dropped significantly in the N treatment (AT% 15N 0.89±0.14) and the 

NPFe treatment (AT% 15N 1.25±0.08) (EV–test, p = 0.021 and MW–test, p = 0.045) (Fig. 

4G). In contrast, Haptophyta cells 15N enrichments were significantly enhanced (2–3 fold) 

upon Fe, and dust (experiments DI and DII) additions (AT% 15N values of 2.23±0.13, 

2.36±0.22 and 3.54±0.52, respectively; EV–test, p = 0.017 and MW–test, p = 0.004) (Fig. 

4G). The PFe treatment also yielded elevated 15N enrichment (AT% 15N 3.29) nearly twice as 

high as the control values (AT% 15N 1.43±0.15) (Fig. 4). 

Assimilation rates of N2 derived N within Haptophyta cells increased upon all nutrient 

additions compared to the control experiment (0.0158±0.0024 fmol N cell–1 h–1), except after 

the addition of NO3
–
 and NH4

+
, when rates declined (0.0127±0.0034 fmol N cell–1 h–1) (Fig. 

4H). The assimilation rates of N2 derived N by Haptophyta cells were significantly enhanced 

in the Fe, DI and DII treatment (0.0326±0.0034, 0.0475±0.0023 and 0.0580±0.0144 fmol N 

cell–1 h–1) relative to the control (MW–test, p ≤ 0.004) (Fig. 4H). An even higher rate of 

0.0789 fmol N cell–1 h–1was observed for the Haptophyta cell in the PFe treatment (ca. 5 

times the rate of the control; see Fig. 4H). 

Observation of unknown structures within the UCYN–A–Haptophyta association. When 

NO3
–
 and NH4

+
 were added a third structure in the UCYN–A–Haptophyta associations was 

sometimes observed (Fig. 3A–F). This enigmatic structure was slightly smaller than UCYN–

A cells with a cell diameter of 0.70±0.06 and a cell biovolume of 0.21±0.06. These structures 

were highly enriched in 13C (AT% 13C 5.16 ± 0.44), but low in 15N (AT% 15N 0.54 ± 0.06). 

On average, these structures were about two–thirds more enriched in 13C than UCYN–A cells 

and about one–third more than Haptophyta cells (Fig. 3B and Fig. 4A,C). These structures 

were approximately one–third lower enriched in 15N than UCYN–A cells, and two–thirds 

lower than Haptophyta cells across all treatments (Fig. 2C and Fig. 4E,G). 
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Discussion 

Nutrients limiting N2 fixation by UCYN–A. Our experiments demonstrate that Saharan Dust 

additions stimulate UCYN–A N2 fixation activity and can be further enhanced when the 

amount of Saharan Dust is doubled, as in the DII treatment (Fig. 4E,F). The uptake of Fe from 

the iron–rich Saharan Dust could explain why dust additions enhanced N2 fixation, which is 

supported by the fact that Fe additions also significantly stimulate N2 fixation by UCYN–A. 

Aeolian dust might also provide molybdenum (Mo), another component that is suggested to 

limit N2 fixation (Howarth and Cole, 1985). The genome of UCYN–A revealed the capacity 

to take up Mo as well as Fe, both trace metals are required for  electron carrier proteins and 

serve as cofactors for the nitrogenase enzyme (Postgate, 1982; Kustka et al., 2003). 

Previous studies also showed that dust deposition in the marine environment releases 

P (Ridame and Guieu, 2002; Bonnet and Guieu, 2004). Unfortunately, we could not 

determine the effect of phosphorus addition only (P treatment) on the N2–fixation rates by 

UCYN–A, but our results from the PFe treatment revealed elevated CO2 and N2 fixation 

activity (Fig. 4A–H). Both nutrients (i.e P and Fe) have been shown to co–limit N2 fixation in 

oligotrophic waters (Mills et al., 2004). Overall, our combined results indicate that the 

diazotrophic partner is limited by P and Fe near the Cape Verdean Islands. 

Nutrients limiting CO2 fixation by the Haptophyta partner. All nutrient additions resulted in 

enhanced photosynthetic activity of the Haptophyta partner, which concomitantly led to 

increased biovolumes (Fig. 2B) (Falkowski and Owens, 1980; Gallagher and Alberte, 1985; 

Coles et al., 2004). Our combined results indicate that the Haptophyta partner growth is N, P 

and Fe limited in the vicinity of the Cape Verde islands. 

Carbon and nitrogen transfer between UCYN–A and Haptophyta cells. The genome of 

UCYN–A lacks genes for any known CO2 fixation pathway, but has the genetic repertoire to 

perform N2 fixation (Zehr et al., 2001; Tripp et al., 2010). Therefore, we hypothesize that the 

observed 13C enrichment in the UCYN–A originates from C transfer from the photosynthetic 

Haptophyta, whereas the 15N enrichment within the Haptophyta results from a transfer of 15N2 

derived fixed 15N from UCYN–A (Fig. 1A–I and Fig. 4A–H). In all treatments, we observe a 

significant correlation between the carbon enrichment and uptake rates (R2 = 0.6232; n = 44, 

two–tailed probability, p < 0.001), as well as the nitrogen enrichment and uptake rates (R2 = 

0.9659; n = 44, two–tailed probability, p < 0.001) of UCYN–A and the associated Haptophyta 

cells (Fig. 5A–D). Based on the determined 13C and 15N enrichment within individual 

associations, we estimate that on average UCYN–A cells assimilated 16.4±7.1% of all C fixed 

by the Haptophyta and the Haptophyta cells assimilated 85.4±5.1% of nitrogen fixed by 
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UCYN–A. These values are similar to recent findings that show that UCYN–A transfers up to 

95% of its fixed N to the host, and in turn receives approximately 17% of the inorganic C 

fixed by the host (Thompson et al., 2012). A similar transfer of C and N has also been 

reported for symbiotic relationships between diatoms and N2 fixing cyanobacteria (Foster et 

al., 2011). Thus far, it is not clear which organic C compound is transferred from the 

Haptophyta to the UCYN–A. Insight my be obtained from cultured representatives closely 

related to UCYN–A, such as Cyanothece sp. ATCC 51142 that can grow in the presence of 

3–(3,4–dichlorophenyl)–1,1–dimethylurea and glycerol (Reddy et al., 1993; Vu et al., 2012).  

Our results show a very tight coupling between 15N enrichments of symbiont and host, 

indicating that the amount of N2 derived N that is taken up by the Haptophyta depends mainly 

on the UCYN–A N2 fixation activity. The addition of NH4
+
 and NO3

– 
does not cause N2 

fixation inhibition; these findings are similar to the observations for other cultivated members 

of the UCYN group (Dekaezemacker and Bonnet, 2011; Großkopf and LaRoche, 2012). The 

addition of inorganic N does enhance Haptophyta C–based growth (Fig. 2A,B and Fig. 4C). 

The high rate of 13C uptake, but low rate of 15N uptake within Haptophyta cells upon NH4
+
 and 

NO3
–
 addition, suggests that the eukaryote can switch to fixed N uptake from external sources 

other than UCYN–A. However, under typical oligotrophic conditions in the open ocean, N2 

fixation by UCYN–A would be the main source of fixed N for the partner Haptophyta cells. 

Formation of unknown structures within the UCYN–A–Haptophyta association. 

Intriguingly, an unknown structure within the association occurred in all treatments with 

ammonium and nitrate additions (Fig. 3A–F). This enigmatic structure is characterized by 

high 13C enrichment, but low 15N enrichment. In comparison to Haptophyta cells, these 

structures were approximately 2–fold more enriched in 13C, Presently, it is unclear what this 

structure might represent: it could be a C–storage compartment for (e.g.) carbohydrates or it 

could represent an early stage of coccoliths formation. The latter would likely play a role in 

estimates of carbon sedimentation rates and overall carbon flux to the deep ocean (Bramlette, 

1958; Honjo, 1976; Fritz, 1999). The application of scanning electron microscopy would help 

to verify the presence of CaCO3 attached plates.  

This enigmatic structure may also represent an attached unidentified microorganism 

since it contains C, N and sulfur (S), even though no strong DAPI signal could be observed 

(Fig. 1B–F). Diffuse or very weak DAPI signals are common for small cells as was observed 

for the co–occurring UCYN–A cells. Because this “unknown” microorganism is more 

enriched in 13C than the photosynthetic partner algae of UCYN–A, it may represent a 

photosynthetic or chemoautotrophic organism.  
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Concluding remarks. This study provides the first insight into the physiological responses of 

field populations of the UCYN–A–Haptophyta association to nutrient addition. We observed 

that the addition of Fe and dust stimulate UCYN–A N2 fixation activity. These results 

emphasize the role of Saharan aeolian dust inputs as the main substrate constraining N2 

fixation activity by UCYN–A in the vicinity of the Cape Verdean Islands. The Haptophyta 

appears to benefit directly from the close association with the UCYN–A due to fixed N 

transfer, especially under dust supply. The discovery of a third microstructure within the 

UCYN–A–Haptopyhte association, most likely an unknown cell, underlines the complexity of 

interactions among microorganisms in oligotrophic surface waters. The determined cell 

diameter and biovolumes of these two partner cells can be helpful in refining estimates of 

single cell C contents and growth rate of this widely, but uncultivated association (Goebel et 

al., 2008). Furthermore, insights gained from this study may provide helpful information for 

isolation attempts of both partner cells. This can further be supported by future efforts 

gathering genetic information on the metabolic repertoire of the associated Haptophyta to 

unravel mechanisms and potential pathways regulating the C and N exchange within this 

association. Thus far, we do not know anything about grazing, recycling or export of UCYN–

A in open ocean systems. Hence, quantitative information on the mechanisms involved in 

CO2 and N2 fixation, release of fixed N and sinking rates of UCYN–A–Haptophyta 

associations will deepen our understanding of their impact on global C and N cycle.   
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Figures 

Fig. 1: Visualization of the UCYN–A association linking the phylogenetic identity of UCYN–

A according to the 19F signal (A, D, G) and its single cell activity (including the Haptophyta 

partner cell) based on isotopic ratios for C (13C/12C = middle panels B,E,H) and N (15N/14N = 

right panels C,F,I) within different nutrient amendment incubation experiments. Inset panels 

on the left side show the corresponding epi–fluorescent images of the UCYN–A cells (green 

signal) and its associated Haptophyta cell (red signal), as well as DAPI staining (blue signal) 

based on double CARD–FISH approach taken prior to nanoSIMS analysis. NanoSIMS 

images refer to different nutrient amendment incubation experiments: (A–C) Control = no 

nutrient added, (D–F) N = NH4
+
 + NO3

–
 addition, (G–I) DII = 4 mg/L Saharan Dust. Warmer 

colors represent higher abundance of the respective isotopes. 

 

Fig. 2: Overview of average biovolumes with standard error for (A) UCYN–A and (B) the 

associated Haptophyta cells with respect to all treatments from left to right: (1) Ctr = control, 

no nutrients added, (2) N = NH4
+
 (ammonium) + NO3

– 
 (nitrate), (3) Fe =Fe2+ (iron), (4) NP = 

NH4
+
 + NO3

–
 + PO4

3–, (5) NFe = NH4
+
 + NO3

–
 + Fe2+, (6) PFe = PO4

3– + Fe2+, (7) NPFe = NH4
+
 + 

NO3
–
 + PO4

3– + Fe2+, (8) DI = Saharan Dust I, and (9) DII = Saharan Dust II. The asterisks 

indicate statistically different compared to the control. No statistics were performed on the 

PFe treatment and single cell rates. Dashed line indicates average values of control 

measurements. 

 

Fig. 3: Visualization of the UCYN–A association within the NP treatment linking the 

phylogenetic identity of UCYN–A and its single cell activity (including the Haptophyta 

partner cell). Panels show (A) deposited fluorine labeled tyramides according to the 19F 

signals, (B) 13C enrichment = 13C/12C, (C) 15N enrichment = 15N/14N, (D) DAPI signal shown 

in black–white, (E) carbon and nitrogen distribution = 12C/14N * 1000 and (F) sulfur = 32S. 

Inset panel on the left side show the corresponding epi–fluorescent images of the UCYN–A 

cells (green signal) and it’s associated Haptophyta cell (red signal), as well as DAPI staining 

(blue signal) based on double CARD–FISH approach taken prior to nanoSIMS analysis. An 

unknown structure attached to the UCYN–A association that has (D) a weak DAPI signal but 

enriched in C and depleted in N (B,C). Next to C and N signals (B,C,E) it also contains (S) 

sulfur. Such a structure was only found when fixed nitrogen was added. Warmer colors 

represent higher abundance of the respective isotopes. Brighter white DAPI signals indicate 

stronger staining due to more DNA. 
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Fig. 4: Overview of nanoSIMS measurements for the association between UCYN–A and a 

Haptophyta from the nutrient amendment incubation experiments. The panels on the left side 

represent the isotopic enrichment in AT% for individual cells for 13C (A = UCYN–A; C = 

Haptophyta) and 15N (E = UCYN–A; G = Haptophyta). The panels on the right side 

(B,D,F,H) show the corresponding single cell activity in fmol cell–1 h–1 for C and N fixation, 

estimated based on obtained nanoSIMS values (AT%) and cell dimension analysis. 

Abbreviations for listed treatments follow Fig. 2. The asterisk symbol indicates statistical 

significance compared to control. No statistics were performed on the PFe treatment and 

single cell rates. Dashed line indicates average values of control measurements. 

 

Fig. 5: Single cell enrichments and rates for (A,B) carbon in AT% 13C and fmol C cell–1 h–1 as 

well as for (C,D) nitrogen in AT% 15N and fmol N cell–1 h–1 within individual associations 

between UCYN–A and its corresponding Haptophyta partner cell across all treatments. 

Abbreviations of treatments follow Fig. 2. 

  



2.4 Manuscript IV 

135 

Fig. 1 

 
 

  



2 Manuscripts  

136 

Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Supplementary Fig. 1: Summary of AT% 13C and 15N isotopic signal for (A,C) UCYN–A and 

(B,D) Haptophyta cells correlating to the respective cell diameters. Listed treatments from top 

to bottom: Ctr = control; N = NH4
+
 + NO3

–
; F = Fe2+; NP = NH4

+
 + NO3

–
 + PO4

3–; NF = NH4
+
 + 

NO3
–
 + Fe2+; NPFe = NH4

+
 + NO3

–
 + PO4

3– + Fe2+; DI = 2 mg/L Saharan dust; DII = 4 mg/L 

Saharan Dust. 

 

Supplementary Fig. 2: Summary of nanoSIMS measurements showing the 13C and 15N 

isotopic signal in AT% for association between (A) UCYN–A and (B) Haptophyta according 

to different nutrient amendment incubation experiments. Listed treatments from top to 

bottom: Ctr = control; N = NH4
+
 + NO3

–
; F = Fe2+; NP = NH4

+
 + NO3

–
 + PO4

3–; NF = NH4
+
 + NO3

–
 

+ Fe2+; NPFe = NH4
+
 + NO3

–
 + PO4

3– + Fe2+; DI = 2 mg/L Saharan dust; DII = 4 mg/L Saharan 

Dust. 

 

Supplementary Fig. 3: Summary of nanoSIMS measurements showing the 13C and 15N 

isotopic signal (AT%) within individual UCYN–A cells and their corresponding partner cell 

(Haptophyta) according to various nutrient amendment incubation experiments. Circles (open 

and filled) represent UCYN–A cells and squares (open and filled) represent Haptophyta cells. 

The color coding refers to the respective partner cells. 
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3 General Discussion and outlook 

Unicellular cyanobacteria have been shown to be globally distributed in the marine 

environment, and they play a major role in the marine nitrogen cycle (Zehr et al., 2001; 

Montoya et al., 2004). Despite their wide distribution, only a few representative open ocean 

diazotrophs have been brought into culture, which makes it difficult to study these groups of 

microorganisms. In particular, the uncultured unicellular cyanobacteria group UCYN–A can 

dominate diazotrophic communities, indicated by high group specific nifH gene copy 

abundances (Church et al., 2008; Moisander et al., 2010). The N2 fixation activity of UCYN–

A is usually inferred from nifH gene expression pattern, which exhibit elevated transcripts 

during the day (Church et al., 2005b). These findings are unusual for unicellular 

cyanobacteria; typically, N2 fixation is carried out during the night to prevent the nitrogenase 

enzyme from inactivation through oxygen–evolving photosynthesis (Mitsui et al., 1987; 

Toepel, 2009; Mohr et al., 2010a; Sherman et al., 2010). Thus far, the physiology of UCYN–

A has been studied via environmental genome analysis, and has revealed an enigmatic genetic 

repertoire different from other cyanobacteria, e.g. lacking genes for CO2 fixation, which likely 

prevents these microbes from living autotrophically (Tripp et al., 2010). These findings help 

to explain observed UCYN-A nifH gene expression during the day, but they also raise 

additional question as to how these microorganisms thrive in the environment. 

UCYN–A living in symbiosis. The development of a 16S rRNA oligonucleotide probe that 

targeted UCYN–A cells and its successful application on environmental samples allowed us 

to image their metabolic activity within individual cells for the first time (Manuscript I and 

II). We found UCYN–A cells living in association with calcifying nanoplankton, e.g. 

Braarudosphaera bigelowii, and we demonstrated a transfer of carbon and nitrogen 

compounds between these two partner cells, providing insight into how these diazotrophs 

thrive in open ocean environments. Next, using double CARD–FISH assays, we provided 

quantitative information on the cellular abundance of UCYN–A in the North Atlantic Ocean 

and showed that the majority of these diazotrophs live in association with a Haptophyta 

versus free–living cells (Manuscript III). Interestingly, UCYN–A cells were also detected in 

association with non–calcifying microorganisms and eukaryotes that were not Haptophyta, 

raising questions of the host specificity. We hypothesize that UCYN–A can associate with a 

variety of eukaryotes, giving it a much better ecological advantage when environmental 

conditions change. This is supported by the fact that UCYN–A is more broadly distributed 

than other diazotrophs and can be found in diverse marine regimes (Short and Zehr, 2007; 

Rees et al., 2009; Moisander et al., 2010). Future work that focuses on identifying subgroups 



3 General Discussion and outlook  

150 

of Haptophyta that appear in association with UCYN–A, as well as other eukaryotes that 

associate with UCYN-A, will allow us to address questions about host specificity. Parallel 

investigations that gather genomic data on these host cells will provide helpful information on 

potential nutrient transfer mechanisms within these unique associations. 

Carbon and nitrogen transfer between UCYN–A and Haptophyta cells. The UCYN–A 

association is uncultivated, which means that our knowledge about the physiological 

interactions between these two partner cells, as well as the environmental factors that 

constrain its N2 fixation activity are based on field studies. To investigate the effects of 

nutrient additions (including iron, phosphorus, ammonium–nitrate and iron-rich Saharan 

Dust) on the carbon and nitrogen exchange between UCYN–A and Haptopyhta cells, we 

conducted various field incubation experiments (Manuscript IV). Single cell measurements 

showed that UCYN–A N2 fixation is limited by phosphate and iron addition (including 

Saharan dust), whereas the metabolic activity of the Haptophyta partner cells was mainly 

ammonium–nitrate, phosphate and iron limited. Independent of nutrient treatment, we 

demonstrated a tight coupling in carbon and nitrogen transfer within individual associations, 

suggesting that UCYN–A cells play an important role in regulating the growth of partner 

Haptophyta cells by transferring substantial amounts of fixed nitrogen. It remains unclear, yet 

intriguing, what carbon source is transferred between UCYN–A and their partner cell to 

support this N2 fixation activity. The combination of stable isotope incubation experiments 

using 13C labelled substrate and subsequent Fourier–Transform ion cyclotron resonance mass 

spectrometer (FT–ICR–MS) analysis provides one promising approach for identifying the 

carbon compound(s) exchanged in the partnership. This technology can precisely determine 

atomic masses of single organic carbon molecules and derive their molecular structure (Koch 

et al., 2005; Dittmar and Paeng, 2009). Such an analysis would not only provide insight into 

the carbon compounds exchanged in this association, but it also might provide the key to 

cultivation attempts through the identification of carbon compounds that are critical to the 

growth of UCYN–A. 

Interestingly, we found that UCYN–A N2 fixation activity is not inhibited when 

inorganic nitrogen (i.e. ammonium and nitrate) was added (Manuscript IV). Other diazotrophs 

are typically restricted to nitrate depleted waters, and their activity is inhibited by the presence 

of nitrate (Ramos and Guerrero, 1983; Mulholland et al., 2001). The cultured unicellular 

diazotroph Crocosphaera watsonii exhibited a similar response to UCYN–A under the 

presence of nitrate (Dekaezemacker and Bonnet, 2011; Großkopf and LaRoche, 2012). The 

ability to take up inorganic nitrogen is believed to increase the competitive fitness of these 
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organisms and might give UCYN–A an advantage in mixed communities of non–diazotrophic 

populations (Agawin et al., 2007). This work emphasizes the diverse physiological 

capabilities of different diazotrophic populations, and the need to incorporate these metabolic 

differences into global N2 fixation models (Sanz Alférez and del Campo, 1994; Großkopf 

and LaRoche, 2012). 

Oxygen protection in unicellular diazotrophs. The nitrogenase enzyme works best under 

reduced conditions (Postgate, 1982; Fay, 1992), even though diazotrophs are constantly 

exposed to high levels of oxygen in pelagic waters of the subtropical and tropical oceans. The 

development of strategies to prevent nitrogenase inhibition through oxygen contact is crucial 

for survival. UCYN–A nifH gene expression peaks during the day, indicating that N2 fixation 

depends on the energy supply through photosynthetically–derived reducing equivalents and 

implying that both processes need to occur at the same time. Nonetheless, exact mechanisms 

that protect nitrogenase from oxygen inactivation within the UCYN–A association remain 

unclear.  

Increased respiratory activity during the dark period is believed to be one mechanism 

to remove intracellular oxygen to establish anoxic conditions (Peschek et al., 1991; Bergman 

et al., 1993). The diazotroph Azotobacter vinelandii reveals elevated activity of certain 

cytochromes (i.e. bd oxidase) under high oxygen concentrations in order to scavenge 

respiratory electrons and therefore, keep oxygen concentrations low (Robson and Postgate, 

1980; Poole and Hill, 1997). In addition, the Mehler reaction may reduce intracellular oxygen 

concentrations of diazotrophic microorganisms by scavenging oxygen (Mehler, 1951; 

Berman Frank et al., 2001b). Autoprotection is another strategy to reduce intracellular 

oxygen concentrations (Oelze, 2000). Future studies that investigate how UCYN–A achieves 

oxygen protection, including examination of the third cellular structure observed in the 

UCYN–A–Haptophyta association (Manuscript IV) and its putative role in metabolic 

partitioning, are necessary to understand these intricate processes.  

Future approaches for studying the UCYN-A symbiosis. The metabolic activity of 

diazotrophs with respect to CO2 and N2 fixation has been shown to be regulated by circadian 

rhythms (Chen et al., 1996; Mohr et al., 2010a). Therefore, additional incubation experiments 

that assess the carbon and nitrogen metabolism of symbiotic UCYN–A cells should 

encompass multiple time points to monitor nutrient exchange and growth rates accurately. 

Since we depend on field samples to assess N2 fixation activity of the UCYN–A association, 

the diel periodicity needs to be considered for planning and carrying out field experiments. 

Further, direct comparisons between in situ activity (i.e. N2 fixation) and specific nifH gene 



3 General Discussion and outlook  

152 

expression could give information on the relationship between functional gene abundance and 

actual metabolic response. In manuscript IV we applied the new 15N2 tracer method (Mohr et 

al., 2010b; Großkopf et al., 2012) that gave more reliable results, but likely underestimated N2 

fixation activity of UCYN–A compared to previous studies (Manuscript I and II) (Thompson 

et al., 2012; Krupke et al., 2013). Future nitrogen budget calculations will also benefit from 

this improved methodology.  

The results from chapter 5 demonstrate complex physiological responses under 

varying environmental stimuli and reveal single cell heterogeneity. Our knowledge about 

regulatory factors that affect N2 fixation is mainly based on population level analysis, whereas 

recent cell specific rates indicate phenotypic variation in N2 fixation activity (Taniuchi et al., 

2008; Foster et al., 2013; Mohr et al., 2013). Studying single cell heterogeneity within the 

UCYN–A association is an interesting aspect for future investigations. Finally, UCYN–A 

cells can associate with globally abundant calcifying microorganisms, implying a significant 

role in carbon sequestration in open ocean environments as suggested for associations 

between diazotrophs and diatoms (Foster et al., 2011; Karl et al., 2012). Future studies should 

look to compare the specific impact on carbon sequestration in respect to carbonate based 

UCYN–A associations and silica based diatom–diazotroph associations. Investigating spatial–

temporal differences between these types of associations and understanding environmental 

factors (e.g. temperature, nutrient concentrations or grazing) controlling the ecological fate of 

these associations are necessary to develop accurate models of global N2 fixation. 

In addition to the ecological importance of N2 fixation in marine systems, the UCYN–

A association represents an intriguing form of symbiosis from an evolutionary perspective. It 

could be that it represents an early stage in endosymbiosis that led to chloroplast 

development; these are organelles mostly found in plants, where CO2 fixation occurs, and 

evolved from symbiotic cyanobacteria that have been incorporated into their host cells. 

Understanding the physiological mechanisms within this unique association has economic 

implications through biotechnological applications, providing novel pathways to establish 

symbiotic relationships between diazotrophic microorganisms and plants. Such scientific 

findings can be utilized for agricultural purposes where the N2 fixing symbionts enhance the 

supply of fixed nitrogen to the plant, thus generating higher crop yields. 

N2 fixation in future oceans. The protection from oxidative stress in diazotrophic cells to 

perform N2 fixation draws attention to marine environments that are characterized by low 

oxygen levels, i.e. oxygen minimum zones (OMZs). These areas are critical for the marine 

nitrogen inventory because they account for ~30–50% nitrogen–loss mainly due to 
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denitrification and anaerobic oxidation of ammonium (Codispoti et al., 2001; Gruber, 2004; 

Kuypers et al., 2005). The oxygen depletion in these regions (due to the degradation of 

sinking organic matter) can be assigned to habitat loss for species at higher levels (Stramma et 

al., 2011). OMZs have also been thought to form potential hot spots for N2 fixation, as 

suggested by Deutsch et al. (2007). The co–occurrence of denitrification and N2 fixation 

activity in an alpine lake has also been demonstrated (Halm et al., 2009). OMZs are expected 

to expand in the future due to climate change, which could have implications on the marine 

nitrogen inventory and ecosystems (Stramma et al., 2008). Increased N2 fixation could 

possibly lead to increased input of fixed nitrogen, counteracting nitrogen–loss in these 

regions. Understanding the balance between nitrogen–loss and nitrogen–gain processes is 

essential to assessing the regulation of nitrogen–cycling in these regions. 

The impact of a changing climate, such as rising CO2 concentrations, will alter N2 

fixation activity. Studies on Trichodesmium and Crocosphaera watsonii showed increased N2 

fixation activity under elevated CO2 levels (Barcelos e Ramos et al., 2007; Hutchins et al., 

2007; Fu et al., 2008), implying that open ocean diazotrophs could fuel the biological carbon 

pump by increasing the supply of nitrogen for primary producers. Increasing CO2 levels can 

also cause opposite effects by inhibiting growth and reducing N2 fixation rates (Czerny et al., 

2009). Additional environmentally-induced changes, such as regional differences in mineral 

dust deposition that affect iron availability in surface waters, as well as the release of 

phosphorus and nitrogen compounds from dust, might alter N2 fixation and overall primary 

production (Baker et al., 2007; Rijkenberg et al., 2008).  

Global change accompanied by increasing atmospheric CO2, increasing OMZs (and 

their elevated denitrification), as well as  elevated anthropogenically–induced flux of fixed 

nitrogen species towards the oceans represent a few examples of environmental factors that 

will influence diazotrophs. The identification of a novel association between UCYN-A and a 

eukaryotic partner cell, as well as the discovery that these types of associations are 

widespread, opens up a new arena for assessing N2 fixation in the world’s ocean. Organismal 

interactions likely play a critical role in determining the flux of carbon and nitrogen in the 

marine environment, as indicated by the observed transfer of compounds between the partner 

cells in this dissertation. Furthermore, the discovery of heterotrophic N2 fixing organisms, 

which are widely distributed and appear in oceanic regions where other autotrophic 

diazotrophs are absent (e.g. deep water zones), indicates that additional studies are necessary 

to determine which diazotrophs are present in the world’s oceans and the extent of their 

metabolic activity. Understanding vertical and biogeographic distributions of different 
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diazotrophic groups, as well as their physiological activity will provide insight into 

determining how these microorganisms influence marine ecosystems and ultimately, how 

they influence the biological carbon pump. In order to make predications on future ocean 

scenarios, we need to deepen our understanding about marine N2 fixation in the present-day 

ocean. 
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Abstract 

Algal cell lysis upon infection is thought to be the significant process how lytic viruses 

structure bacterial communities and affect biogeochemical fluxes. We show that organic 

matter leakage or excretion by infected yet intact algal cells is already largely responsible for 

shaping North Sea bacterial community composition and enhanced bacterial substrate 

assimilation. Prior to algal cell lysis, the application of nano–scale secondary–ion mass 

spectrometry (nanoSIMS) showed a high transfer of infected 13C and 15N–labelled 

Phaeocystis globosa biomass, which stimulated substrate assimilation by Alteromonas cells 

and triggered its attachment to the infected algal host ‘phycosphere’. The leakage or enhanced 

excretion in response to algal viral infection was not reported previously and represents a so 

far undocumented way of viruses facilitating bacterial substrate assimilation. The bacterial 

response to algal viral lysis itself was very rapid with a temporal succession of Alteromonas 

and Roseobacter populations and distinct bacterial phylotypes relative to non–infected control 

cultures. Additionally, our results show that viral lysis of P. globosa single cells results in the 

formation of aggregates which are colonized densely with bacteria. Subsequent bacteriophage 

lysis appeared to be responsible for aggregates dissolution and ultimately led to substantial 

regeneration of dissolved inorganic carbon (55% of the particulate 13C–organic carbon). 

These findings reveal a critical role of viruses in the leakage or excretion of algal biomass 

upon infection, which provides an ecological niche for specific bacterial populations and 

potentially redirects carbon availability. 
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4.2 Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first 

cultivated representative of a unique lineage within the Roseobacter clade 

possessing a remarkably small genome 
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Abstract 

Strain HIMB11 is a planktonic marine bacterium isolated from coastal seawater of the 

tropical North Pacific Ocean that belongs to the ubiquitous and versatile Roseobacter clade of 

the alphaproteobacterial family Rhodobacteraceae. Here we describe the preliminary 

characteristics of strain HIMB11, including annotation of the draft genome sequence and 

comparative genomic analysis with other members of the Roseobacter lineage. The 3,098,747 

bp draft genome is arranged in 34 contigs and contains 3,183 protein–coding genes and 54 

RNA genes. Phylogenomic and 16S rRNA gene analyses indicate that HIMB11 represents a 

unique sublineage within the Roseobacter clade. Comparison with other publicly available 

genome sequences from members of the Roseobacter lineage reveals that strain HIMB11 has 

the genomic potential to utilize a comparatively wide variety of energy sources (e.g. light, 

carbon monoxide), while also possessing a reduced number of substrate transporters.  
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Abstract 

Freshwater lakes represent large methane reservoirs which contribute up to 13% of all 

methane emissions to the atmosphere. Unlike in marine settings where sulfate is the main 

oxidant, the full variety of processes responsible for methane removal in lacustrine 

environments is still not understood. Here we investigated methane oxidation in the water 

column of a permanently stratified lake, Lago di Cadagno, in which methane is almost 

completely oxidized before reaching the water surface. Highest rates of methane oxidation 

were measured at and below the oxycline and the process was accompanied by a high carbon 

isotopic fractionation of methane (αC=1.035). Interestingly, known anaerobic methanotrophic 

archaea (ANME) could not be detected in these anoxic waters. Instead we found abundant 

alpha– and gamma–proteobacterial aerobic methanotrophic bacteria (MOB) in all investigated 

water depths. Gamma–MOB were active under anoxic conditions and assimilated methane 

carbon. In contrast, alpha–MOB did not take up any methane–derived carbon and they might 

feed on excretion products of e.g. algae, with which they associate. The measured 

geochemical profiles and in vitro incubations revealed that of all tested potential electron 

acceptors only oxygen additions resulted in increased rates of methane oxidation. Similar 

effect was observed when the samples were incubated in the light, presumably due to oxygen 

production by photosynthesis. Given the widespread distribution of shallow stratified lakes, 

we propose that photosynthesis–driven aerobic methane oxidation might be a common 

mechanism for methane removal from anoxic lacustrine environments. 
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Abstract 

The South Pacific Gyre (SPG) is the largest oceanic province on our planet, yet very little is 

known about microbial life at and below the seafloor of this extremely oligotrophic region. In 

the better–studied continental margins, sediments have very different biological processes at 

play. Chlorophyll concentrations in the water column and carbon burial rates at the seafloor 

within the gyre are the lowest in the Ocean. Within the gyre, the seafloor is thinly draped with 

sediments comprised mostly of deep–sea red clay or nanofossil carbonate ooze (with water 

depths of 3500 to 5700 m and sediment thickness of ~70 m at the edges to < 2 m in the very 

center). During IODP Expedition 329 seafloor drilling, sediment cores were recovered along 

2 transects at 6 sites spanning from the gyre edges to its ultra–oligotrophic center, plus a 7th 

site just to the south of the gyre. The main goal of the expedition was to explore the nature of 

the sub–seafloor habitats and the microbial communities of this vast ocean area. Onboard 

studies documented that oxygen and nitrate penetrated the entire sediment column within the 

gyre, whereas at the outside station oxygen was depleted within the top 1.5 m, exhibiting a 

mainly anoxic sediment column, typical of less oligotrophic ocean regions. Microbial cell 

abundances were very low within the gyre sediments, with values at the detection limit and 

became undetectable with greater depth. To explore and compare the metabolic activities of 

these entirely oxic sub–seafloor habitats, sediments samples were taken from drill cores at 3–

4 different sediment depths over the entire thickness of the sediment cover at each site. We 

performed onboard incubation experiments, using stable and radio–isotopic labeled 

substrates, to test for potential autotrophic versus heterotrophic metabolisms (14C–carbon 

dioxide, 14C–acetate), as well as for nitrogen turnover and uptake (15N–dinitrogen, 15N–

ammonium). A protocol was developed and tested to efficiently (80–90%) extract and 

concentrate intact cells from these very low–abundance habitats for single cell analyses using 

nanoSIMS. Initial examination of our cell extracts, using FISH, indicated that bacterial cells 

dominate. NanoSIMS analyses showed strong incorporation of 15N–ammonium into bacterial 

cells. We are currently performing statistical comparisons to explore a possible trend of 

uptake rates across the gyre and with depth. The results of our investigations will provide a 

significant step towards understanding microbial life underneath oligotrophic open ocean 

gyres. 
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