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For my Family



“But if in your thought you must measure time
into seasons, let each season encircle all the other seasons, And let the to-day

embrace the past with remembrance and the future with longing.”
Khalil Gibran, 1926 In: The Prophet



Summary

The isolation and cultivation of heterotrophic marine bacteria
opens possibilities to study their physiology and genomes with respect to
their function in the marine environment. In the pelagic marine realm
bacteria remineralize more than half of the photosynthetically produced
biomass, and thus play an important role in the biogeochemical cycling of

elements.

Flavobacteria are abundant of up to 30% in the North Sea. In previ-
ous studies marine Gammaproteobacteria, Alphaproteobacteria and Acti-
nobacteria were predominantly cultivated, but cultures of Flavobacteria
were infrequently obtained. This thesis addresses the isolation of phy-
logenetically diverse marine Flavobacteria using three new ap-
proaches. First, samples were retrieved from various pelagic and ben-
thic habitats of the North Sea. Second, a new marine artificial seawa-
ter HaHa medium was developed to facilitate the growth of Flavobac-
teria. This medium was supplemented with saccharides and proteins as
carbon sources at a concentration of 2 g/I.. Third, a specific 16S rRNA
gene PCR assay was applied to identify Flavobacteria-Cytophagia
among the colonies. The molecular screen was preferred over the identifi-
cation by cell and colony morphology, since the latter has predominantly
resulted in the isolation of strains of the genera Arenibacter, Cellulophaga
and Maribacter. The 375 Flavobacteriaceae strains isolated on agar
plates comprised (i) seven presumably novel genera, (ii) 42 presumably
novel species in 22 validly described Flavobacteriaceae genera and (iii)
many isolates that were so far not distinguishable from 37 type strains in
16 genera. Thus, in contrast to previous studies, we could show that phy-
logenetically diverse Flavobacteria from the North Sea can be cultivated on

solid medium.
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The isolation of representative strains of the genera Formosa,
Polaribacter, and Reinekea from the North Sea was attempted. In
previous studies these bacterial populations were proposed to be of im-
portance during coastal diatom-dominated phytoplankton blooms, based
on their high abundance of 15% to 25% of the bacterioplankton and their
potential capability to decompose algae derived polysaccharides. A new
medium was devised which had the same composition as the marine HaHa
medium, but with environmental-like micromolar carbon, nitrogen, and
phosphate concentrations. Aerobic dilution cultivation in the HaHa
medium led to a high culturability of 35% of the bacterioplankton
in spring 2010 and 27% of the bacterioplankton in summer 2010. 23
strains of Flavobacteria, Alphaproteobacteria, Gammaproteobac-
teria, and Actinobacteria were obtained directly by dilution cultiva-
tion of single cell inocula. One strain that belonged to the genus Reinekea
was isolated by generating co-cultivatures of randomly mixed bacte-
rial populations which potentially had a positive effect on the growth
of Reinekea. Strains that affiliated with Polaribacter, Formosa, Gillisia
(Flavobacteria), the Roseobacter clade associated (RCA) lineage (Alphapro-
teobacteria), Reinekea, and the OM182 clade (Gammaproteobacteria) had
16S rRNA gene sequence identities of >99.9% with 16S rRNA clones
of the bacterioplankton from the North Sea in spring 2009. In addition,
draft genomes of Formosa, Polaribacter, and Reinekea strains were used
to recruit reads of metagenomes of the bacterioplankton in spring 2009.
Thereby, reads of >95% nucleotide identity covered the draft genomes
of the Formosa clade B strain to 94%, of Reinekea sp. to 90% and of
Polaribacter sp. to 50%. Based on these results we argue that the novel
species of Formosa, Polaribacter, and Reinekea are representatives of
ecologically relevant clades catalyzing the remineralization of coastal

diatom-dominated phytoplankton biomass.



III

The physiological characteristics of the strains were investigated fo-
cusing on the growth on different mono- and polysaccharides, to pro-
vide further evidence that Formosa, Polaribacter and Reinekea species
could prevail in different ecological niches during algae decay. Interest-
ingly, Polaribacter strains grew heterotrophically on all tested sulfated (e.g.
agar, carrageenan) and non-sulfated polysaccharides (e.g. cellulose, lam-
inarin), whereas Formosa strains grew only on non-sulfated polysaccha-
rides. In contrast, Reinekea sp. did not grow on polysaccharides but
on all tested mono-, di-, and trisaccharides including N-acetylneuraminic
acid. Finally, I proposed for these novel species the names 'Formosa
flavarachnoidea’, ’Formosa forsetii’, ’Polaribacter forsetii’, ’Polaribacter

frigidimaris’, " Polaribacter adhaesivus’, and ’Reinekea forsetii’.



“Doch wenn ihr die Zeit in eurem Denken nach Jahreszeiten messen miisst,
dann lasst eine jede alle anderen erfassen. Und lasst das Heute die Vergan-
genheit mit der Erinnerung umfangen und die Zukunft mit der Sehnsucht.”
Khalil Gibran, 2002 In: Der Prophet



Zusammenfassung

Die Isolation und Kultivierung von neuartigen marinen Bakte-
rien ermoglicht es deren Physiologie und Genome im Detail zu studieren,
mit dem Ziel ihre Funktion in ihrer natiirlichen Umgebung zu verstehen.
Im pelagischen Bereich des Meeres verstoffwechseln Bakterien mehr als die

Halfte der durch Photosynthese gewonnenen Biomasse.

Bakterien der Klasse Flavobacteria konnen einen Anteil von bis zu 30%
am Pikoplankton in der Nordsee ausmachen. In der Vergangenheit wurden
vorrangig marine Bakterien der Klassen Alphaproteobacteria, Gammapro-
teobacteria und Actinobacteria isoliert, wobei Vertreter der Flavobacteria
selten in Kultur gebracht werden konnten. Drei konzeptionell neue
Ansatze wurden verfolgt, um phylogenetisch unterschiedliche
Vertreter mariner Flavobacteria zu isolieren. Zunéchst wurden
Proben aus verschiedensten pelagischen und bentischen Lebensraumen ent-
nommen. Weiterhin wurde das neuartige marine HaHa Medium en-
twickelt, bei dem Saccharide und Proteine mit einer Gesamtkonzentration
von 2 g/L als Kohlenstoffquellen dienten und welches das Wachstum von
verschiedenen Flavobacteria begiinstigte. Zusétzlich wurde ein Flavobac-
teria- Cytophagia spezifischer 16S rRINA PCR basierter Test ange-
wandt, um diese unter den gewachsenen Kolonien zu identifizieren und
phylogenetisch zuzuordnen. Dieser Test ersetzte die Pigmentierung und
Zellform als Identifizierungskriterien, die anféiglich dazu gefiihrt haben,
dass hauptséchlich Vertreter der Gattungen Arenibacter, Cellulophaga und
Maribacter isoliert wurden. Die Sammlung von 375 Flavobacteri-
aceae Isolaten beinhaltete (i) sieben moglicherweise neue Gattungen,
(i) 42 moglicherweise neue Arten aus 22 Gattungen und (iii) weiteren
[solate die von 37 Typstammen aus 16 Gattungen nicht zu unterscheiden

waren. Anhand dieser Resultate konnte gezeigt werden, dass es moglich
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ist, eine Vielzahl phylogenetisch diverser Flavobacteria aus der Nordsee auf

Agarplatten zu isolieren.

Ein weiteres Ziel dieser Arbeit war es, reprasentative Stamme der
Gattungen Formosa, Polaribacter und Reinekea aus der Nord-
see zu isolieren. Aufgrund der bemerkenswerten Zellzahlen von 15%
to 25% des Bakterioplanktons und der potenziellen Fahigkeit von Algen
stammende Polysaccharide in der Nordsee abzubauen, wurden in einer
fritheren Studie Vertretern dieser Gattungen eine wichtige tkologische Be-
deutung zugeschrieben. Das in diesen Untersuchungen verwendete Medium
wies die gleiche Zusammensetzung auf wie das neu entwickelte HaHa
Medium, jedoch mit Kohlenstoff-, Stickstoff- und Phosphatkonzentratio-
nen, die mit den micromolaren Konzentrationen des beprobten
Meereswassers vergleichbar waren. Durch aerobe Verdiinnungskul-
tivierung (engl. dilution cultivation) der Wasserprobe in dem nahrstoff-
armen HaHa medium konnte eine Kultivierbarkeit von 35% des
Bakterioplanktons im Friihling und 27% im Sommer 2010 er-
reicht werden. Weiterhin konnten durch die Verdiinnungskultivierung
von einem Nanoliter Meereswasser 23 Stamme kultiviert werden, die
den Flavobacteria, Alphaproteobacteria, Gammaproteobacteria und Acti-
nobacteria zugeordnet werden konnten. Bei der Isolierung einer neuen
Art aus der Gattung Reinekea erwiesen sich Co-Kulturen aus zufélligen
Teilpopulationen des Bakterioplanktons von Vorteil, welche scheinbar das
Wachs-tum von Reinekea sp. in dem Medium erst ermdéglichten. Diese
zufalligen Mischkulturen wurden hergestellt indem 100 nL. Aliquots des
Meereswassers inokuliert wurden, in denen sich circa 50 Bakterioplank-
tonzellen befanden. Die Stdmme der Gattungen Polaribacter, Formosa,
Gillisia, Reinekea und von Verwandten der Roseobacter und der OM182
Gruppe hatten eine 16S rRNA Sequenzidentitit von >99,8% mit
16S rRNA Gensequenzen aus dem Bakterioplankton der Nordsee im Friih-
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ling 2009. Der Zugang zu nahezu geschlossenen Genomen der Formosa,
Polaribacter und Reinekea Stamme ermoglichte es uns, Sequenzen aus
dem Bakterioplankton-Metagenom vom Friihling 2009 auf diesen Genomen
abzubilden. Dabei ergab sich, dass 94% der genomischen Informa-
tion aus dem Stamm der Formosa Gruppe B durch Metagenomse-
quenzen wiedergefunden wurde, 90% der genomischen Informa-
tion des Reinekea Stammes und 50% des Polaribacter Stammes. Die in
dieser Studie gezeigten Daten weisen darauf hin, dass die neuen Formosa,
Polaribacter und Reinekea Stamme reprasentative Vertreter von
okologisch bedeutsamen Bakterienarten sind, deren Funktion vermut-
lich die Verstoffwechselung von Polysacchariden des von Diatomeen do-
minierten Phytoplanktons in der Deutschen Bucht ist.

Die physiologischen Merkmale, insbesondere das Wachstum auf un-
terschiedlichen Mono- und Polysacchariden wurde untersucht, um
weitere Anhaltspunkte iiber die 6kologischen Nischen von Formosa,
Polaribacter und Reinekea wihrend der Zersetzung von Algenpolysac-
chariden in der Nordsee zu gewinnen. Die Polaribacter Stdmme wuch-
sen heterotroph auf allen getesteten sufatierten (z.B. Agar, Carrageen)
und nicht-sulfatierten Polysacchariden (z.B. Zellulose, Laminarin), wihrend
die Formosa Stamme ausschlieflich auf den nicht-sulfatierten Polysac-
chariden wuchsen. Im Gegensatz dazu wuchs der Reinekea Stamm nur
auf den getesteten Monosacchariden, einschliefslich N-Acetylneuraminséure.
Abschliefsend habe ich fiir diese neuen Arten die Namen ’'Formosa
flavarachnoidea’, 'Formosa forsetii’, *Polaribacter forsetii’, *Polaribacter
frigidimaris’, ' Polaribacter adhaesivus’ und ' Reinekea forsetii’ vorgeschla-

gen.
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Chapter 1

Introduction

1.1 Cultivation based ecology

Cultivation of aerobic marine microorganisms was pioneered by Johann
Friedrich Bernhard Fischer (Fig. 1.1) and Harry Luman Russel, who both

used the pour-plate technique origi-
nally developed by Robert Koch (1876).
During the Plankton-Ezxpedition der
Humboldt-Stiftung in 1989 , Bernhard
Fischer (1894) developed a device for
the aseptic sampling of surface seawa-
ter and deep seawater of up to 1000 me-
ters depth. This sampling device was re-
placed first by the metallic Nansen bot-
tle (Fridtjof Wedel-Jarlsberg Nansen,
Nansen, 1901) and later by the plas-
tic Niskin bottle (Shale Jack Niskin,
Berube, 2005). Fischer observed the
highest number of bacteria on agar

plates if the agar plates were inoculated

Figure 1.1 Robert Koch (left) and Bern-
hard Fischer (right) at the Cholera-
Expedition 1883. Adapted from (Exner,
2009).

with neritic (Latin nerita, 'sea mussel’, shallow sea near a coastline) seawa-

ter of epeiric seas (Greek epeiros, 'continent’; inland sea, e.g. Baltic Sea),
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marginal seas (partially enclosed sea, e.g. North Sea), or oceanic seawater
at the borders of two convergent ocean currents (Fischer, 1894). Thus, he
concluded that the bacteria of the ocean lived primarily in nutrient rich
habitats on the dead bodies or excretions of marine plants and animals
(saprophytic).

At the same time, H. L. Russel (1891) studied benthic bacteria by sam-
pling sediment from up to 1000 meters depth in the Gulf of Naples. On agar
plates he cultivated more bacteria from surface sediments of shallow waters
than of deeper waters, and more bacteria from sediment than from over-
laying water. Furthermore, he observed that 35% of the morphologically
distinct bacteria cultivated from the sediment were not cultivated from the
overlaying seawater. Based on his findings, he proposed that the origin of the
cultivated marine bacteria was mainly their natural habitat (autochthonous,
autochthon, Greek auto- ’self’ and chthon ’soil’, i.e. ’sprung from earth it-
self’). Waksman (1934) stated that the bacterial populations of the sea are
different from the ones of the soil and that the chemical composition of the

habitat defines the bacterial community:.

Claude Ephraim ZoBell from the Scripps Institution of Oceanography
of the University of California (Fig. 1.2) had a great impact on the ecol-
ogy and cultivation of aerobic marine bacteria. He developed the marine
medium 2216 for the cultivation of a broad range of marine aerobic het-
erotrophic bacteria (ZoBell, 1941). The development of this medium is
an example for the history of media components. The medium of Fischer
(1894) comsisted of 10 g/L meat-extract peptone and 5 g/L fish-extract
peptone dissolved in natural seawater. However, ZoBell (1941) and later
Buck (1974) did not observe higher bacterial numbers on the agar plate
supplemented with fish-extract peptone. Standardized peptone was com-
mercially not available at the time of Fischer. Thus, ZoBell hypothesized
that the low culturability of bacteria on the agar plate was caused by the
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poor quality of the self-made meat-extract peptone and the high amount

in the medium of Fischer. The addition of phosphate as K,HPO, and iron

as ferric phosphate (Fe(III)PO,) yielded
more bacteria and a broader range
of morphological distinct bacteria (Zo-
Bell, 1941). Hence, the marine 2216
medium was supplemented with stan-
dardized peptone (Bacto peptone) and
ferric phosphate. After studying the
conditions and essential growth factors
of established cultures, Koser and Saun-
ders (1938) and Knight (1935) proposed
yeast extract as growth promoting sup-
plement. Correspondingly, the marine
2216 medium was further developed by
the addition of yeast extract yielding the
marine 2216E medium (Oppenheimer
and ZoBell, 1952). A modification of
the marine 2216E medium with basal

salts (artificial seawater) instead of nat-

Figure 1.2 Claude E. ZoBell attaching
messenger to wire above a J-Z sampler,
in the 1940s. Adapted from (Scripps In-
stitution of Oceanography, 1978).

ural seawater is till today commercially available as BD Difco” marine
broth /agar 2216 from (BD Diagnostic Systems, USA). This medium consti-

tutes the medium of many cultivation studies in marine microbiology, and

was mentioned for the first time by Havenner and colleagues (1979). In

his monograph, ZoBell (1946) reviewed the progress made in marine bac-

teriology since the pioneering monograph of Fischer (1894). He discussed

the latitudinal-longitudinal and vertical distribution of marine bacteria and

the effect of environmental factors such as temperature, season, tide, hy-

drostatic pressure, and phytoplankton.

Furthermore, he concluded that
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bacteria of the genera Pseudomonas, Vibrio, Flavobacterium, and Achro-
mobacter predominate in the ocean (ZoBell, 1946). At that time the genera
Pseudomonas and Vibrio belonged to the family Pseudomonadaceae, the
genera Achromobacter and Flavobacterium to Achromobacteraceae, based
on the taxonomy of the first edition of the Bergey’s Manual of Deterministic
Bacteriology (Bergey et al., 1923). The studies and standardized methods
of ZoBell (1946) have been a benchmark for other researchers in the field
of marine ecology (McGraw, 2006; Karl and Proctor, 2007). For example,
Sieburth (1967) isolated more than 2500 colonies of psychrophilic, psychro-
tolerant, and mesophilic bacteria on agar plates over a period of two years.
He concluded on a seasonal selection of bacteria by water temperature, ir-
respective with which phylum they were affiliated with.

A discrepancy of microscopic counts of freshwater bacteria (direct cell
counts) and the number of colonies forming on the agar plate (colony form-
ing units, CFU), had already been reported by Bere (1933). Direct cell
counts were two orders of magnitude higher than CFUs. Jannasch and Jones
(1959) discussed the difficulty of counting bacteria from seawater directly
by microscopy. Improved staining techniques and microscopy equipment re-
sulted in accurate and standardized direct cell counts (Hobbie et al., 1977)
and confirmed the observation that often less than 1% of marine microorgan-
isms can be cultured on agar plates (Kogure et al., 1979). The phrase ’great
plate count anomaly’ was coined by Staley and Konopka (1985) to describe
this phenomenon in their review of techniques to assess the autecology —the
study of individual species in relation to the environment— and synecology
—the study of the ecological interrelationships within communities and with

their environment of microorganisms-.
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1.2 Difficulties in cultivating marine bacteria

Overall, there are two major reasons for why we are not able to cultivate
most of the bacteria. First, many researchers possibly overlooked putative
novel bacteria (Leadbetter, 2003). For instance, oligotrophic bacteria grow
to a low cell density of less than 10° cells per millimeter (Kuznetsov et al.,
1979; Rappé et al., 2002). These low cell numbers can not be detected by
measuring the optical density or the formation of colonies on the agar plate
(Button et al., 1993). Hence, other techniques must be applied for the de-
tection of bacteria in nutrient poor media, like epifluorescence microscopy
(Connon and Giovannoni, 2002; Amann and Moraru, 2012) or flow cytom-
etry (Button et al., 1993; Fuchs et al., 2000). Second, it is still impossible
to recreate the nutritional requirements of many bacteria during cultiva-
tion (Leadbetter, 2003). Furthermore, bacteria are metabolically versatile
and thus, cannot be cultivated in a single medium. Consequently, either
filtered (Sieburth, 1967) or autoclaved (Fischer, 1894; ZoBell, 1941; But-
ton et al., 1993) seawater was used for medium preparation. Alternatively,
environmental conditions were simulated with diffusion chambers which en-
abled the cultivation of microorganisms in their natural habitat separated
by filter discs (Kaeberlein et al., 2002).

Reasons for the inability to cultivate 99% of bacterial communities on
agar plates can be linked to the factors influencing the regulation of cell
metabolism or cell signaling. Environmental conditions were shown to nega-
tively influence bacterial growth, such as low temperature, a shock of sudden
nutrient abundance, osmotic pressure, reduced light, pH, antibiotics, and
toxins (Postgate and Hunter, 1964; Whitesides and Oliver, 1997; Mascher,
2006; Lennon and Jones, 2011). The effect of high nutrient concentration in

the medium is discussed in detail in 1.5 Concentration of organic carbon.

Microorganisms have evolved the ability to enter a reversible state of re-
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duced metabolic activity (maintenance) or of stopped growth and develop-
ment (dormancy) to lower their energetic expenditures and overcome stress-
ful conditions (Lennon and Jones, 2011). Mechanisms to enter the resting
stage are activated by environmental stress (Kaprelyants et al., 1993). The
mechanisms for the transition into and out of the resting stage and produced
cellular structures require energy and resources (van Bodegom, 2007). Fur-
thermore, sensory mechanism for the interpretation of favorable environ-
mental conditions must be available for the reactivation (resuscitation) of
the starved cells (Rees, 1996; Caceres and Tessier, 2003). Maintenance and
dormancy must be an advantage for the microorganisms and thus have been
maintained in the course of evolution. Consequently unfavorable cultivation

conditions might favor dormancy:.

Small signal molecules (pheromones or autoinducers) that diffuse in and
out of bacterial cells are known from quorum sensing which is a cell-to-cell
communication mechanism of bacterial populations to coordinate their gene
expression after reaching a certain cell density (Williams et al., 2007). This
exchange of information enables the bacteria to cope with environmental
stress by improving their access to nutrients, generating a collective defense
against other competing microorganisms, and adopting different morpholo-
gies (Williams et al., 2007). The successful cultivation of novel species
through the presence of other microorganisms from the same environment
was demonstrated for soil bacteria (Kaeberlein et al., 2002). D’Onofrio and
colleagues (2010) showed the effect of signal molecules (e.g. siderophores)
of neighboring microorganisms promoting the growth of novel bacteria. In
contrast, neighboring microorganisms excreting antagonistic molecules can
inhibit the growth of bacteria (Long and Azam, 2001) and colonization of
surfaces (Cude et al., 2012). A cytokine-like growth factor from an active
growing culture promoted the resuscitation of dormant Micrococcus luteus

cultures (Mukamolova et al., 1998). The addition of signal molecules like
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cyclic AMP (cAMP) and N-acyl homoserine lactones (AHL) increased the
cultivation efficiency for seawater (Bruns et al., 2002) and freshwater bac-
teria (Bruns et al., 2003b).

Widdel and Pfennig (1977) observed that microaerophilic microorganisms
were not able to form colonies on the surface of agar plates in an oxic
environment. These microorganisms grow rather inside the solid media and

can possibly be cultured by using agar shakes or agar dilution series.

1.3 Novel cultivation strategies yielding ecological

relevant bacteria

In the last decades, sophisticated methods for the cultivation of novel mi-
croorganisms have been developed. The acidophilic Thiobacillus ferrooxi-
dans was cultivated on floating filters, because the low pH makes an appli-
cation of agar plates impossible (DeBruyn et al., 1990). A gas-lift bioreactor
was used to mimic deep-sea hydrothermal ecosystems (Postec et al., 2005).
The slow growing chemolitoautotrophic ammonium oxidizing Nitrosomonas
and the nitrite oxidizing Nitrobacter were enriched by using a bioreactor
equipped with hanging sponge-cubes (Araki et al., 1999). The isolation of
slow growing microorganisms might require their separation from clumps of
cells or from fast growing microbial populations. The separation of single
cells with optical tweezers yielded slow growing hyperthermophilic archaea
(Huber et al., 1995). Micromanipulation enabled the cultivation of novel
bacterial species from the termite gut (Frohlich and Konig, 2000).

Button and colleagues (1993) developed the dilution cultivation as a vari-
ation of the cultivation to extinction. They succeeded in the isolation of
some representative oligotrophic marine bacteria (Schut et al., 1993). The
technique and theory was named dilution cultivation and yielded the culti-

vation efficiency of up to 60% of the bacterial community. The procedure
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was the following. The microbial community was diluted in sterile seawater
near extinction, comparable to the most probable number (MPN) technique
(Exworthy, 1933; Haas, 1989). However, differences were the further inocu-
lation of the diluted bacterial communities into the medium, and the screen
for growth with a low cell density (detection limit 10 cells per milliliter)

by flow cytometry.

Dilution cultivation ultimately opened the field of high throughput culti-
vation. Tan and colleagues (1996) used an 8-channel pipette to speed up the
preparation procedure of the dilution cultivation and compared the physi-
ological characteristics of cultivated copiotrophic and oligotrophic bacteria
from the Antarctic. Connon and Giovannoni (2002) developed a protocol
for high-throughput dilution cultivation (HTC) and used fluorescence mi-
croscopy of cell arrays to detect growth in the oligotrophic medium. This
technique led to the cultivation of novel species of Proteobacteria from ma-
rine bacterioplankton (Connon and Giovannoni, 2002), including represen-
tatives of the oligotrophic marine Gammaproteobacteria (OMG) group (Cho
and Giovannoni, 2004). A further improvement of the medium composition
was the supplementation of sterilized seawater with inorganic nitrogen and
phosphorus compounds and a defined mixture of organic carbon compounds
in uM concentrations. This brought the globally important Alphaproteobac-
teria clade SARI11 into culture (Rappé et al., 2002), a decade after its first
discovery (Giovannoni et al., 1990). Another novel technique, the Micro-
Drop microdispenser, automatically distributes droplets that received single
bacterial cells into 96well plates (Bruns et al., 2003a). Moreover, microor-
ganisms can grow in separated compartments after encapsulation single cells
in gel microdroplets (Zengler et al., 2002). The bulky diffusion chambers
(Kaeberlein et al., 2002) were further upgraded to the high throughput Ichip
with multiple diffusion chambers (Nichols et al., 2010). On the contrary, also

cultivation studies using the traditional cultivation on agar plates led to the
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cultivation of novel ecological relevant bacteria. Eilers and colleagues (2001)
cultivated the cosmopolitan NORDS lineage of Gammaproteobacteria on syn-
thetic seawater agar supplemented with inorganic nitrogen and phosphorus
compounds in uM concentrations. The co-cultivation of marine bacteria
with the axenic (bacterium-free) dinoflagellate Lingulodinium polyedrum in
natural seawater yielded a representative strain of the Roseobacter NAC11-3
lineage (Mayali et al., 2008). The Deltaproteobacteria strain FiPS-3 revo-
lutionized our knowledge on the phosphorus metabolism, because it was
enriched and successfully isolated from an anoxic sediment by coupling the
reduction of sulfate to sulfide with the oxidation of phosphite to phosphate
(Schink and Friedrich, 2000). Janssen and colleagues (2002) and Sait and
colleagues (2002) demonstrated the cultivation of phylogenetically diverse

soil bacteria on agar plates with the polymeric substrate xylane.

1.4 Targeted cultivation based on genomic

information

Metagenomics provide insights into metabolic features of so far uncultured
microorganisms and in two cases this has supported cultivation. Tyson
and colleagues (2005) identified the nitrogen fixation operon (nif) in the
metagenome of an acid mine drainage sample. The nif genes were affiliated
with the phylum Nitrospirae which had no cultured representative. Fi-
nally, a nitrogen free medium yielded Leptospirillum ferrodiazotrophum as
a novel isolate from acid mine drainage. Rikenella-like symbionts inhabiting
the digestive tract of the medicinal leech Hirudo verbena were successfully
cultured based on the metagenomic discovery of genes encoding the degra-

dation of sulfated and sialated mucin glycans (Bomar et al., 2011).
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1.5 Biochemical considerations for the design of

artificial seawater media

Elemental composition

A prokaryotic cell consists to 98% dry weight of six non-metal- (C, O, H,
N, S, P) and four metal elements (K, Mg, Fe, Ca) (Overmann, 2006). The
elemental composition of the seawater basal salts is quite stable in seawater
of the same salinity Tab. 1.1 and Tab. 1.2. However, the available macro
nutrients (C, N, S, P) or trace metals (e.g. iron, nickel) differ remarkably
in quantity and quality between seasons, locations and depths. The ratio
between the elements is stated different in the literature. Redfield (1934)
found a molar C:N:P ratio of 106:16:1 in bacterioplankton of the surface
seawater and in the seawater of the deep sea . Fleming (1940) calculated
a C:N:P ratio of 105:15:1 for plankton and Sakshaug and colleagues (1983)
a C:N:P ratio of 102:14:1 of nearly nutrient saturated phytoplankton com-
munities in Norwegian seawater and freshwater. Sterner and colleagues
(2008) concluded that for broad scales the Readfield ratio was consistent,
but varies between habitats and species of different metabolisms (e.g. stor-
age of polyphosphate or polyhydroxyalcanoids). Nevertheless, the amount
of required phosphorus is double as high for bacteria then for algae leading to
a C:N:P ratio of 50:10:1 (Fagerbakke et al., 1996) or 45:9:1 (Goldman et al.,
1987). When the composition of structural components and enzymes are
considered only, the sum formula of bacteria cells is C4Hg4O1.5NP.0950.004
that equals a C:N:P ratio of 44:11:1 (Overmann, 2010).

Concentration of organic carbon

In aquatic systems heterotrophic bacteria are classified into two types of

nutrient adaptation, oligotrophic and eutrophic bacteria (Kuznetsov et al.,
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Table 1.1 Concentration of elements in natural seawater, exclusive
of gases. ZoBell (ZoBell, 1941), Svedrup (Svedrup et al., 1942),
Goldberg (Goldberg, 1965), Culkin (Culkin, 1965), Kester (Kester

et al., 1967)

Element (g/kg) ZoBell Svedrup Goldberg Culkin Kester
Chlorine 19.0 19.0 19.0 194 194
Sodium 10.5 10.6 10.5 28.0 10.8
Magnesium 1.4 1.3 1.35 1.3 1.3
Calcium 0.4 0.40 0.40 0.41 0.41
Potassium 0.38 0.38 0.38 0.39 0.39
Bromine 0.065 0.065 0.067  0.067  0.066
Strontium 0.013 0.008  0.008  0.008
Boron 0.005 0.005 0.006  0.026  0.026
Silicium 0.003 0.004 0.003

Sulphur 0.885 0.9 8.8 2.7 2.7
Carbon 0.028 0.028 0.030

Nitrogen 0.0005  0.0007 0.0003

Phosphorus 0.0007  0.0001 0.00007

Trace metal (mg/kg)

Fluorine 13.0 1.4 1.3 1.0 1.0
Aluminium 0.5 0.01

Iodine 0.05 0.06

Arsenic 0.02

[ron 0.01000 0.02 1

Manganese 0.01

Copper 0.01

Zinc 0.005

Selenium 0.004

Molybdenum 0.0005

Nickel 0.0001

Salinity (%o) 34.3 34.3 35.0 35.0 35.0

1979; Giovannoni and Stingl, 2007). Eutrophic bacteria —also named co-
piotrophic (Poindexter, 1981) or saprophytic bacteria (Kuznetsov et al.,
1979)— grow at carbon concentrations of more than 1 g/L (Yanagita et al.,
1978). In contrast, oligotrophic bacteria are able to grow at carbon concen-
trations of 1-15 mg/L, but not at higher carbon concentrations (Kuznetsov
et al., 1979; Ishida and Kadota, 1981; Button et al., 1993). For example,
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the Alphaproteobacteria clade SAR11 and the Gammaproteobacteria OMG
(oligotrophic marine Gammaproteobacteria) group are common in the olig-
otrophic oceans (Giovannoni et al., 1990; Cho and Giovannoni, 2004) that
have organic carbon concentrations between 30-200 M, corresponding to
0.36-2.4 mg/L organic carbon (Jannasch et al., 1996). Representatives
of both the SAR11 clade and the OMG group, as well as Sphingomonas
alaskensis (Alphaproteobacteria) are obligate oligotrophic bacteria that can
grow only under oligotrophic conditions and to a cell density of less than
10 cells per milliliter (Schut et al., 1997; Connon and Giovannoni, 2002;
Rappé et al., 2002). Facultative oligotrophic bacteria are able to grow at
both low and high carbon concentrations (Schut et al., 1993; Ishida et al.,
1982). In cultivation experiments many research groups observed a signifi-
cantly reduced amount of cultivable freshwater and seawater bacteria when
the medium was supplemented with high concentrations (> 1 g/L) of nu-
trient broth, peptone or yeast extract (Buck, 1974; Martin and MacLeod,
1984; Schut et al., 1993; Jensen et al., 1996; Bussmann et al., 2001; Janssen
et al., 2002). This suggests that oligotrophic bacteria are more abundant in

aquatic environments than copiotrophic bacteria.

Most of the marine microorganisms that are available in culture collections
were isolated with high nutrient concentrations of more than one gram per
liter. These fast growing microorganisms are overrepresented in culture
collections (Keller and Zengler, 2004). Typical exaples of theses copiotrophs
are the genera Vibrio, Alteromonas, and Pseudoalteromonas. These are
often isolated from seawater, but accounted most often for less than one
percent of the total bacterial community of seawater (Eilers et al., 2000;
Pedros-Alio, 2006). This culture-induced enrichment of low abundant or
rare bacterial populations (Stevens et al., 2009) was often described when
nutrient-enriched media were used in batch cultures with synthetic seawater
(Eilers et al., 2000) or filtered seawater (Fuchs et al., 2000) and chemostats
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Table 1.2 Composition of synthetic seawater, exclusive of organic components. 1940,
(Lyman and Fleming, 1940); 2216, BD DIFCO" 2216; 1992,(Widdel and Bak, 1992);
1993,(Schut et al., 1993); 1996,(Atlas, 1996); 2009a,(Stevens et al., 2009); 2009b,(Winkel-
mann and Harder, 2009); 2012,(Carini et al., 2012). ", expressed as kg™

Component 1940° 2216 1992 1993 1996 2009a 2009b 2012
Base salts (g/L)

NaCl 23.5 19.5 20 30 28 18 26.37 28.11
MgCly 6H2O 5.0 8.8 3.0 1.0 2.6 11.4 5.67 5.49
NaoSOy 3.9 3.2 4.0 4.0

MgSO, 7H,0 4.0 68 0.6
CaCly 6H20 1.1 1.8 0.15 0.15 1.2 1.5 1.47 1.47
KCl1 0.66 0.55 0.5 0.7 0.8 0.7 0.72 0.67
KBr 0.10 0.08 0.1 0.09 0.1
Macronutrients (mg/L)

NH,Cl 270 400

NH4NOy4 1.6

(NH4)2S04 5300
KH2PO, 2.1 8.0 204 270 500
NaHoPOy 600
Trace metal (mg/L)

SrCly 24 34 40 20

H3BO3 27 22 0.03 25 0.03 20

Na4O4Si 4.0

NaF 3.0 2.0 1.0 3.0

FGSO4 7H20 2.1 2.1

FeCls 6H20 2 2.1 0.032
Trace metal (ug/L)

MnCl; 4H20 100 80 100 100 1.8
CuClg 2H20 2 5 2 2

ZnS0O4 TH,0O 144 60 144 144 0.23
NaoSeOs 5H20 6 15 6 6 0.17
NasMoO4 2H,0 36 75 36 36 0.1
NiCly 6H20O 24 20 24 24 0.24
CoCly 6H20 190 5 190 190 0.12

with filtered seawater (Massana and Jirgens, 2003). Hence, high nutrient
concentrations in the medium might inhibit the growth of most marine
bacteria (Olsen and Bakken, 1987), because they are not adapted to high
amounts of carbon in the medium (Bussmann et al., 2001). Consequently,

the amount of carbon in the medium selects for bacteria.
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Trace elements

The bioavailability of the transition metals such as iron, manganese, cobalt,
nickel, copper, zinc, molybdenum, and tungsten is low in aquatic, non-acidic
and oxygenated environments. In contrast to alkali (Na*, K*) and alkali
earth metals (Mg?", Ca®"), transition metals are soft Lewis acids with a high
binding stability to soft Lewis bases (e.g. sulfur as FeS, FesS) in aqueous
environments. This leads to the precipitation of transition metals as oxides
or hydroxides under these conditions (Argiiello et al., 2012).

Transition metals are required as prosthetic groups of metalloproteins for
many essential physiological processes in the cell mediating electron transfer
and redox reactions (Overmann, 2006; Andreini et al., 2008; Dupont et al.,
2010). However, at high concentrations transition metals catalyze the pro-
duction of free radicals or substitute for other metal cofactors (Argiello
et al., 2012). During earth history abundances of transition metals changed
from iron and manganese dominated environments to copper and zinc dom-
inated environments and thereby influenced the bioavailability of these ele-
ments as cofactors for biochemical processes (Dupont et al., 2010). Further-
more, bacteria have developed alternative strategies to get access to tran-
sition metals at low concentration or complexed with other molecules. For
example bacteria are able to acquire iron with siderophores, free heme or the
heme-containing proteins hemophores, lactoferrin and transferin (Sandy and
Butler, 2009). Thus, for our cultivation, the medium was supplemented with

a trace element solution to which ethylenediamine-N,N,N’ N’-tetraacetic
acid (EDTA) was added as chelator (Widdel and Bak, 1992).

Buffer and pH

Many buffers are available for the cultivation of bacteria at a pH between

7.0 and 8.0, the pH range at which most of the marine bacteria were cul-
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tivated (Fig. 1.3) by ZoBell (ZoBell, 1941, 1946). In earlier times, most
often Tris-(hydroxymethyl)-aminomethane (short Tris-HCI) or phosphate
buffer were used to control the pH (Good et al., 1966). Tris (hydrox-
ymethyl) aminomethane has a low buffering capacity below a pH of 7.5
and might be inhibitory due to the primary amino group (Good et al.,
1966). Such inhibition was shown for a-amylase (Ghalanbor et al., 2008)
and aminopeptidase (Desmarais et al., 2002). The inorganic phosphate

buffer was shown to in-

1007

hibit the growth of bacteria  growm
from low nutrient environ- of
ments, known as substrate- |
accelerated death (Postgate
and Hunter, 1964). Fur-

thermore, concentrations of

40F

20F

phosphate in the mM range o

7.I0 I 810 I 9.0
led to the formation of pre- pH

ipi with tr lemen : . .
cipitates with trace elements Figure 1.3 Relative amount of colony forming units

3 .
(e.g. Fe’™) and bivalent (growth index) at a certain pH observed on nutrient

cations such as Mg?* and rich marine agar 2216. Adapted from (ZoBell, 1941,
Ca*" (Bartscht et al., 1999; 1946).

Overmann, 2006).  Good

and colleagues (1966) synthesized hydrogen ion buffers (Good’s buffers)
which were inert to chemical or biological degradation and had improved
buffer capacities. Among these buffers, 3-(cyclohexylamino)-2-hydroxy-
I-propanesulfonic acid (HEPES) and 3-(N-morpholino) propanesulfonic
acid (MOPS) both had a pK, at 7.5 and did not form complexes with metal
ions. The comparison of the phosphate buffer with HEPES and MOPS
revealed a significant lower culturability for cultures buffered with phos-

phate buffer and highest numbers in cultivation were achieved with HEPES
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(Bartscht et al., 1999). For copper susceptible species such as the marine
dinoflagellate Amphidinium carterae HEPES can enhance copper toxicity
by increasing the bioavailability of copper(II) (Lage et al., 1996; Vasconcelos
et al., 1996).

Bicarbonate is the natural buffer in seawater and is in equilibrium with
the CO, in the atmosphere at a concentration of 2 mM (ZoBell, 1941).
However, at this low concentration the bicarbonate buffer is not sufficient to
maintain a stable pH during prolonged incubation in nutrient rich medium
(ZoBell, 1946; Bartscht et al., 1999). Thus, Widdel and Bak (1992) applied

a concentration of 30 mM bicarbonate, but only in closed gas tight bottles.

Pressure

Molecular systems are not effected by elevated pressures of up to 1,013 kPa
(Follonier et al., 2012) and mesophilic bacteria are able to grow at pressures
of up to 30 MPa (ZoBell and Johnson, 1949). Moreover, marine bacteria
are able to withstand higher pressures of up to 50 MPa (ZoBell and John-
son, 1949). Nevertheless, pressure can effect the concentrations of dissolved
gases (e.g. oxygen, carbon dioxide) and thus affects bacterial metabolism
indirectly (Follonier et al., 2012). The effects of high pressure on bacteria
are summarized by Follonier and colleagues (2012). In this study, all sam-
ples were surface waters from Sylt, Janssand, Harlesiel, and Helgoland and

therefore pressure effects were no issue.

1.6 The family of Flavobacteriaceae

Flavobacteriaceae inhabit a huge variety of environments in the biosphere
(Kirchman, 2002; Bernardet and Nakagawa, 2006). They form important
populations of heterotrophic bacteria (Bernardet and Nakagawa, 2006) in
soils (Johansen and Binnerup, 2002; Johansen et al., 2009), freshwater
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(Jaspers et al., 2001; Kirchman, 2002), marine (Eilers et al., 2000; Kirchman,
2002; Alonso et al., 2007; Teeling et al., 2012), and industrial environments
(Whiteley and Bailey, 2000). Members of the Flavobacteriaceae were also
found in extreme habitats such as the surface of the deep-sea (Schauer et al.,
2010), hypersaline solar saltern ponds (Baati et al., 2008), and polar regions
(Bowman et al., 1997; Ravenschlag et al., 2001; Goémez-Pereira et al., 2010)
including permanently cold sediments of the Arctic (Ravenschlag et al.,
2001) and Antarctic (Bowman et al., 2003).

The taxonomy of Flavobacteriaceae before 2006

The family of Flavobacteriaceae was first suggested in the PhD thesis of
Jooste (1985) and mentioned in the first edition of the Bergey’s Manual
of Systematic Bacteriology (Reichenbach, 1989). Almost a decade later,
the validation and description of the family Flavobacteriaceae (Bernardet
et al., 1996) and the minimal standards for the description of new taxa
of the family were published (Bernardet et al., 2002). This family be-
longs to the phylum Bacteroidetes (Krieg et al., 2010) which was formerly
known as the 'Flavobacter-Bacteroides” phylum (Gherna and Woese, 1992),
the Cytophaga/ Flavobacterium / Bacteroides line (Hirsch et al., 1998) or the
Cytophaga- Flavobacterium-Bacteroides (CFB) group (Weller et al., 2000).
Members of the Flavobacteriaceae are heterotrophic, gram-negative bacte-
ria, with various morphologies, from coccoid or short rods to long filaments
(Bernardet, 2010). In the last version of Bergey’s Manual of Systematic
Bacteriology (editorial deadline June 2006) the family of Flavobacteriaceae
comprised 168 species in 53 genera (Bernardet, 2010). Type strains orig-
inating from marine habitats (29 genera with 67 species) dominated the
free-living (10 genera with 13 species) as well as the free-living/saprophytic

Flavobacteriaceae (25 genera with 67 species) (Bernardet, 2010). These
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included two of the oldest genera, Flavobacterium and Chryseobacterium,
which comprised 54 species of diverse life-styles (e.g. free-living, parasitic or

saprophytic) isolated from terrestrial, freshwater, and marine environments
(Bernardet, 2010).

Taxonomic changes in the family of Flavobacteriaceae since 2006

Since 1997, the List of Prokaryotic names with Standing in Nomenclature,
formerly known as the List of Bacterial names with Standing in Nomen-
clature (LBSN) follows the description and reclassification of bacteria with
their official names as cited in the Approved Lists of Bacterial Names and
validly published in the International Journal of Systematic and Evolution-
ary Microbiology formerly the International Journal of Systematic Bacte-
riology. This list is available at http://www.bacterio.cict.fr (Euzéby, 1997)
and it was used as the basis of the following update of Flavobacteriaceae

nomenclature.

Since the editorial deadline June 2006 of the last version of Bergey’s Man-
ual of Systematic Bacteriology to July 2012 the family Flavobacteriaceae has
expanded significantly. Descriptions of 49 new genera and 226 new species
were added and 40 species and several genera were reclassified. The genus
Donghaeana was reclassified as Persicivirga (Nedashkovskaya et al., 2009),
Kaistella and Sejongia as Chryseobacterium (Kémpfer et al., 2009a,b),
Stanierella and Gaetbulimicrobium as Aquimarina (Nedashkovskaya et al.,
2006), Persicivirga, Stenothermobacter and Sandarakinotalea as Nonlabens
(Yi and Chun, 2012). In June 2012, the family Flavobacteriaceae con-
sisted of 393 type strains in 95 genera (Fig. 1.4). The minor amount of
9 genera with 19 type strains were either of clinical origin (15 species),
associated to dying animals (3 species) or their wounds (1 species). Fur-

thermore, the genus Planobacterium was of terrestrial origin and the genera
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Epilithonimonas and Cloacibacterium were from freshwater environments,
solely. Still, the oldest genera Flavobacterium and Chryseobacterium were
the largest genera comprising 146 species originating from clinical, terres-
trial, freshwater and marine environments (Tab. 2.52 in Chapter 2 at page
87). Only, seven of these species were isolated from seawater and marine
sediment. Nevertheless, 80 Flavobacteriaceae genera with 210 type strains
are of marine origin, clearly demonstrating their high diversity in this habi-
tat (Fig. 2.S1 in Chapter 2 at page 103). Pigmentation, gliding motility,
iridescence and decomposition of complex organic material are impressive

characteristics of Flavobacteriaceae.

Pigmentation

The name Flavobacteriaceae originated from flavus (L. adj. masc. flavus
yellow), reporting the light to bright yellow or even orange colony color
(Bernardet et al., 2002; Bernardet, 2010) of type strains in 90 genera (Tab.
2.52 in Chapter 2). The colony color is based on carotenoid-type pigments
(identified in 70 genera), flexirubin-type pigments (identified in 10 gen-
era), and undescribed pigments (in 10 genera) (Bernardet and Nakagawa,
2006) (Tab. 2.S2 in Chapter 2). Flexirubins were more frequently ob-
served in Flavobacteriaceae of clinical, freshwater or terrestrial origin, while
marine Flavobacteriaceae often had carotenoids (Reichenbach et al., 1980;
Bernardet, 2010). Flexirubin-type pigments were reported from the marine
Flavobacteriaceae genera Aquimarina (9 species), Kriegella (1), Nonlabens
(1), Pseudozobellia (1), Ulvibacter (2), Vitellibacter (2), and Zobellia (5)
(Tab. 2.52 in Chapter 2). In contrast to the localization of carotenoids
in the inner cytoplasmic membrane, flexirubin-type pigments are located
in the outer membrane of Cytophagia, Flavobacteria and Sphingobacteria
(Irschik and Reichenbach, 1978; Bernardet and Nakagawa, 2006).
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Flexirubin-type pigments are identified by a simple assay: upon addition
of 20% KOH flexirubins change their color from yellow/orange to red/pur-
ple/brown. This can be reversed by acid addition (Reichenbach et al.,
1980). This assay is not specific for flexirubin-type pigments (Reichenbach
et al., 1980), but phenolic carotenoids (e.g. of Brevibacterium linens) change
their color from yellow-orange to pink-purple (Kohl et al., 1983) and KOH
test positive xanthomonadins were found in the genus Xanthomonas (An-
drewes et al., 1973). Furthermore, a KOH treatment without an observed
bathochromic shift might be the result of a modification of the phenolic
hydroxyl group (Fautz and Reichenbach, 1980). Thus, for a further species
description of questionable strains the pigments should be extracted and
analyzed (Bernardet et al., 2002).

The function of flexirubin-type pigments is unknown, but the biosynthesis
of flexirubin proceeds only in growing cells (Fautz and Reichenbach, 1980).
In contrast, carotenoids pigments promote light harvesting (Clayton 1953)
and phototaxis (Thomas and Goedheer, 1953), protect against photody-
namic killing (Mathews and Sistrom, 1959) by removing oxygen radicals
(Blass et al., 1959).

Figure 1.4 (facing page) Phylogenetic relationship among type strains and lineages without
cultured representatives of the family Flavobacteriaceae. The phylogenetic tree is based on
comparisons of 16S rRNA gene sequences using the neighbour-joining method and a 0% and
40% base frequency filter of Bacteroidetes. Type strains of the classes Bacteroidia, Cytophagia
and Sphingobacteria were used as outgroups. The isolation source is indicated by: o, freshwater;
~, marine environment; = terrestrial environment; +, clinical samples. Flavobacteria clades
which had so far no representative culture are indicated by VIS (Goémez-Pereira et al., 2010),
NS (Alonso et al., 2007) and DE (Kirchman et al., 2003). Scalebar represents 5 nucleotide
substitutions per 100 nucleotides.
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Gliding motility

Flavobacteria are non-motile or move by gliding (Bernardet, 2010). It was
proposed that an attachment to surfaces of phytoplankton and algae or the
colonization of biofilms would help to stay close to the substratum (Reichen-
bach, 1981; Gomez-Pereira et al., 2010). Bacteria that are able to move by
gliding have different advantages, (i) movement is possible on a rather dry
surface, (ii) penetration into and migration within a complex organic matrix
enables the bacteria to reach their polymeric substrates that do not diffuse,
(iii) and movement in a fluidic environment is possible without loosing the
contact to the substratum (Reichenbach, 1981). Gliding motility on sur-
faces such as solid agar or algae is mediated by diverse mechanisms and
have a higher calcium requirement (Burchard, 1980; Overmann, 2006), as

shown for Desulfonema magnum (Widdel et al., 1983).

Since, flagella or pili are absent in members of the class Flavobacteria
(Bernardet, 2010) swimming in aqueous environments or swarming across
solid surfaces does not occur (Jarrell et al., 2008). Furthermore, an ATP
driven twitching motility with the type IV pili is known for species of Pro-
teobacteria, Cyanobacteria and gram-positive bacteria (Jarrell et al., 2008),
but the energy for movement of Flavobacteria is provided by proton mo-
tive force (McBride, 2001). Jarrell and McBride (2008) discussed the model
of polysaccharide extrusion (known for Myzococcus), derived from the as-
sociation of Flavobacteria to polysaccharide attachment and degradation.
However, this model is unlikely, because (i) latex spheres of nanometer scale
did not move directed near the bacteria cell surface (Nelson et al., 2008), (ii)
and a rapid movement of Flexibacter sp. BH3 was observed even without

exogenous nutrients and with an emptied carbon storage (McBride, 2001).

Lateral movement of cell surface adhesins can mediate gliding motility, as

shown for Flavobacterium johnsoniae (Nelson et al., 2008). Motor proteins
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are anchored to the peptidoglycan and move adhesins which are attached
to the substratum. These motor proteins are driven by proton motive force
(Jarrell et al., 2008). Furthermore, among 36 Flavobacteriaceae genera with
strains with described gliding motility, 34 genera were of marine origin (Tab.
2.52 in Chapter 2). This suggests that gliding motility is important for

Flavobacteria in marine environments.

Iridescence

Iridescence is the colored appearance of an object depending on the angle of
direct illumination caused by architectures in the nanometer-scale (Vukusic
and Sambles, 2003; Doucet and Meadows, 2009; Meadows et al., 2009). It
has been described from colonies of Flavobacteria (Bernardet, 2010; Kientz
et al., 2012a). However, iridescence is not part of the minimal standards for
describing new taxa of the family Flavobacteriaceae (Bernardet et al., 2002).
ZoBell (1946) described iridescence as greenish fluorescence which was found
among 7% of agar plate cultures of marine origin. Recently, Kientz and
colleagues (2012a) developed methods for the standardized determination of
iridescence by trans- and epi-illumination. Furthermore, this group defined
for the first time categories of iridescence. A coupling of iridescence with
the gliding motility was hypothesized for the establishment of the iridescent
structures (Kientz et al., 2012b). During their studies of abiotic factors
that influence iridescence in Cellulophaga lytica (Flavobacteriaceae) it was
shown that iridescence occurred under cold and water stress (Kientz et al.,
2012b). Furthermore, the physical structures that cause iridescence might
support thermoregulation, UV protection, filtering of light, water repellence,
reduced mechanical friction and prevention of desiccation, for bacteria in the

marine environment (Doucet and Meadows, 2009).
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The marine clade of Flavobacteriaceae

The chemoheterotrophic Flavobacteriaceae are a major component of the
bacterioplankton in aquatic ecosystems and are often found associated with
phytoplanktonic primary production (Kirchman, 2002). Thus, the marine
clade of Flavobacteriaceae was proposed which consisted of 19 genera of
exclusively marine origin (Bowman, 2006). Since its emended description
in 2006, 55 new genera of Flavobacteriaceae have been described exclu-
sively from marine habitats (Fig. 1.4). Bowman (2006) hypothesized on
an evolutionary expansion of Flavobacteriaceae from marine habitats to
non marine environments. The motivation was based on a clear distinct
phylogenetic cluster of the marine clade of Flavobacteriaceae (e.g. Mari-
bacter, Aquimarina) and species in genera that were found exclusively in
terrestrial and freshwater environments (e.g. Chryseobacterium, Planobac-
terium, Epilithonimonas, Cloacibacterium). The ecological transition state
was represented by genera inhabiting a wide range of terrestrial and aquatic

environments (e.g. Flavobacterium, Salinimicrobium).

Flavobacteriaceae in the marine environments

The marine realm can be split in a benthic and a pelagic zone. The ben-
thic zone is an ecological region that includes the sediment surface and
sub-surface layers such as shores, underwater rocks, corals, and intertidal
sediment. The pelagic zone is the water column that goes from the bottom
of the sea to the sea surface including oceanic, and coastal waters. In marine
environments most of the Bacteroidetes can be phylogenetically affiliated
with the class Flavobacteria, mainly Flavobacteriaceae (Kirchman, 2002;
Alonso et al., 2007; Teeling et al., 2012). Abundances of this bacteria group
have been obtained by fluorescence in situ hybridization (FISH) with the
probes CF319a (Manz et al., 1996) and CFB560 (O’Sullivan et al., 2002).
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Both probes have a different coverage in the Bacteroidetes as reviewed by
Amann and Fuchs (2008) and Diez-Vives and colleagues (2012).

Highest abundances of Flavobacteria were found in nutrient rich (eu-
trophic) ecosystems, suggesting a preference for these habitats (Kirchman,
2002; Gomez-Pereira et al., 2010). The bacterial communities in an nutrient
rich upwelling area consisted of significant more Flavobacteria than in the
surrounding seawater, with up to 30% and 10% respectively (Alonso-Saez
et al., 2007, 2012). In the photic zone 50% of the net primary production
(photosynthesis) is remineralized by the heterotrophic bacteria community
(Azam, 1998) that consists of up to 20% Flavobacteria (Schattenhofer et al.,
2009; Gomez-Pereira et al., 2010). Particles in the ocean are hotspots of
organic matter (Azam and Long, 2001) and are significantly colonized by
Flavobacteria, like the particle-associated fraction of the picoplankton (Si-
mon et al.; 1999; Abell and Bowman, 2005; Gomez-Pereira et al., 2010),
formed particles of the estuarine turbidity maxima (Crump et al., 1999),
and marine snow (Woebken et al., 2007). Flavobacteria are of significant
abundance accounting for 15% to 25% of the bacteria community in the in-
tertidal sediment of the North Sea (Llobet-Brossa et al., 1998; Musat et al.,
2006). During phytoplankton blooms, Flavobacteria are of high abundance
irrespective of the season. In summer Flavobacteria accounted for 30% of
total cell counts in the coastal surface seawater (Eilers et al., 2000). More-
over, Flavobacteria accounted for up to 25% in the austral summer in the
Scotia Arc (Jamieson et al., 2012) and for 70% during a Phaeocystis sp.
bloom (Simon et al., 1999). A comparable Flavobacteria abundance of 60%
of the bacteria community was observed during a bloom of Phaeocystis sp.
and Thalassiosira sp. in spring 2009 (Teeling et al., 2012). Thus, Flavobac-
teria were of highest abundance in nutrient rich (eutrophic) ecosystems,
suggesting a preference for these habitats (Kirchman, 2002; Goémez-Pereira
et al., 2010).
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However, there is evidence that different Flavobacteria lineages occupy
different ecological niches in relation to the available algal primary prod-
ucts (Kirchman, 2002; Gomez-Pereira et al., 2010; Teeling et al., 2012).
For example, Riemann and colleagues (2000) and Pinhassi and colleagues
(2004) showed that a shift in the phytoplankton community composition
from phytoflagellates to diatoms resulted in distinct Flavobacteria phylo-
types. West and colleagues (2008) could show the difference in dominat-
ing Flavobacteria lineages within and outside of the phytoplankton bloom.
Moreover, during the decomposition of the spring phytoplankton bloom in
the German Bight a successive occurrence of different Flavobacteria clades

was observed (Teeling et al., 2012).

Decomposition of complex organic matter

Waksman and colleagues (1933) proposed that bacteria are responsible for
the decomposition and further remineralization of complex organic matter.
Flavobacteria participate in the initial degradation of complex organic mat-
ter (Edwards et al., 2010; Gomez-Pereira et al., 2010; Thomas et al., 2011;
Teeling et al., 2012) and profit first from a decaying phytoplankton bloom
(Teeling et al., 2012). Hence, they are responsible for a major fraction of

organic matter remineralization in the oceans (Kirchman, 2002).

Besides amino acids, polysaccharides are a major fraction of organic mat-
ter in the ocean (Benner et al., 1992; Dittmar et al., 2001; Koch et al.,
2005) and their initial breakdown with extracellular enzymes is the rate
limiting step (Arnosti, 2003, 2010). Complex polysaccharides are composed
of different carbohydrate moieties linked by diverse glycosidic bonds. Their
degradation requires a set of synergistic acting glycoside hydrolases (War-
ren, 1996). A successive occurrence of hydrolases was shown for the bacte-

rioplankton community in mesocosms experiments (Riemann et al., 2000).
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Teeling and colleagues (2012) followed the succession of bacterial popula-
tions that are involved in the decomposition of the spring phytoplankton
bloom in the German Bight by a combination of cultivation-independent
methods. In the early phase, Formosa sp. dominated the Bacteroidetes
mainly expressing glycoside hydrolases for the decomposition of non-sulfated
laminarin, whereas in the late phase Polaribacter sp. dominated the pro-

duction of sulfatases for the decomposition of more complex sulfated carbo-
hydrates (Teeling et al., 2012).

Indeed, Bacteroidetes consume rather polymeric organic matter (e.g.
chitin, proteins) than amino acids, in contrast to Alphaproteobacteria and
Gammaproteobacteria (Cottrell and Kirchman, 2000). Furthermore, Bac-
teroidetes have evolved a novel machinery to utilize polysaccharides (Ship-
man et al., 2000; Xu et al., 2003) whose components are located mostly in
the periplasm and outer membrane or are secreted into the medium (Luo,
2012). This machinery (Fig. 1.5) was first described as starch utilization
system (Sus) in Bacteroides thetaiotaomicron and consisted of at least the
two outer membrane bound proteins SusC and SusD, and glycoside hydro-
lases at the outer membrane and in the periplasm (Shipman et al., 2000).
Homologous proteins of SusD bind specifically to oligomeric carbohydrates
and deliver them to proteins homologous to SusC. SusC-like proteins are
TonB-dependent transporters that transport oligosaccharides via a beta-
barrel through the outer membrane (McBride et al., 2009; Martens et al.,
2011). This transport of molecules larger than 600 kDa requires the inter-
action with an inner membrane protein complex consisting of TonB, ExbB,
and ExbD, which itself derives the energy from the proton motive force
(Noinaj et al., 2010). A sensor-regulator system controls the expression of
downstream genes which either consists of an extra-cytoplasmic function
sigma(ECF-sigma) /anti-sigma factor pairs or a hybrid two-component sys-

tem (HTCS). This regulation system acts as sensor for oligosaccharides at
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the outer membrane and thus does not require an uptake of the oligosac-

charides into the periplasm (Koebnik, 2005).
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Figure 1.5 The machinery for polymer decomposition, first described as starch utilization
system (Sus), contains SusD proteins for the specific substrate binding, and glycoside
hydrolases at the outer membrane to decompose the polysaccharides into oligosaccha-
rides. The oligosaccharides are transported into the periplasm by an ATP driven TonB-
dependent transporter and are further decomposed by periplasmic glycoside hydrolases
into monosaccharides. Adapted from Koropatkin et al. (2012)

Genes encoding this machinery, including carbohydrate active enzymes
(CAZy), are often found to be co-localized in polysaccharide utilization
loci (PUL) which are activated by defined oligosaccharides (Cantarel et al.,
2009; Martens et al., 2011). For example, the genome of the marine
polysaccharide-degrading *Gramella forsetii’ (class Flavobacteria) encoded
for 40 glycoside hydrolases (10.5 per Mbp, genome 3.8 Mbp) of which more
than half of them were localized in the direct vicinity of TonB-dependent

transporters (Bauer et al., 2006). The 6.1 Mbp large genome of the chiti-
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nolytic soil bacterium Flavobacterium johnsoniae (Stanier, 1947; Bernardet
et al., 1996) encoded for 138 glycoside hydrolases and 9 polysaccharide
lyases, 42 TonB-dependent transporters and 29 sigma factors (McBride
et al., 2009). In fosmids of the North Atlantic Ocean a high frequency of
TonB-dependent transporters (9 per Mbp) and PULs were found (Gémez-
Pereira et al., 2012). The others suggested that they originate from
Flavobacteria involved in the degradation of phytoplankton derived sulfated
polysaccharides. A metaproteomic study in the South Atlantic identified
19% of the proteins as TonB-dependent transporters and most of them were
closely related to those found in Bacteroidetes in coastal samples (Morris
et al., 2010). Based on the finding that both TonB-dependent transporters
and rhodopsins were identified in the same lineages the authors proposed
a beneficial effect of light on transport activities (Morris et al., 2010). The
role of TonB-dependent transporter was also pronounced during the bacte-
rial decomposition of the spring phytoplankton bloom in the North Sea. The
proportion of TonB-dependent transporter in the expressed proteins almost
doubled from 7% before the bloom to 13% during the algae decomposition
and was dominated by Flavobacteria (Teeling et al., 2012). Furthermore,
different Flavobacteria clades showed distinct profiles of carbohydrate active
enzymes and transporter, suggesting an occupation of different ecological
niches provided by algal primary products (Teeling et al., 2012). Flavobac-
teria may have developed a specific substrate utilization machinery that
enables oligomer uptake as soon as carbohydrates become available. This
trait possibly enabled them to succeed in specific ecological niches within

zones of high net primary production (Teeling et al., 2012).
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1.7 The North Sea

The German Bight in the North Sea is a shallow coastal area with high tidal
dynamics (Port et al., 2011). Its sandy seafloor is a major sink of organic
matter and nitrogen species originating mainly from terrestrial areas, estu-
arine discharge of freshwater, and from open sea (Alongi, 1998; Gao et al.,
2012). The Wadden Sea in the German Bight has a coastline of 500 km
and encompasses an area of 14,000 km?. Its seafloor represents the largest
tidal system in the world in which 93% of the seafloor is dominated by
coarse, sandy, or mixed sediments (Reise et al., 2010). Moreover one-third
of the Wadden Sea area (4,700 km?) is exposed to tidal changes (Reise et al.,
2010). The German Bight is a rectangular basin with dominating eastwards
winds forming an anticlockwise (cyclonic) wind current and tide along the
shore line (Port et al., 2011). Counteracting discharges of eutrophic fresh-
water, mainly from the rivers Elbe and Weser (1000 m? s™1) almost stop the
penetration of water from the open ocean (Port et al., 2011). Furthermore,
the resulting stratification turns the direction of the incoming eastwards
flow to north-northwest. Thus, ocean processes in the German Bight are
mostly driven by tides where shallow coastal areas of less than 20 meter
depth are strongly exposed to tidal mixing (Port et al., 2011). Differences
in the microbial community of intertidal sediments are linked to the organic
matter content (Llobet-Brossa et al., 1998), as well as the organic mate-
rial and microbial communities of sedimenting aggregates (Novitsky, 1990).
Hence, heterotrophic bacteria capable to decompose organic matter play an

important role in the coastal area of the North Sea.
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1.8 Aims and Objectives

In the epipelagic zone of the ocean, aerobic heterotrophic bacteria reminer-
alize half of the photosynthetically produced organic material. The reminer-
alization is mainly driven by members of the classes Alphaproteobacteria,
Gammaproteobacteria, and Flavobacteria. The specific function of these mi-
croorganisms in their habitat is unclear and representative strains in culture
are rare. Therefore, the aim of this thesis is the isolation of Flavobac-
teria and the isolation of in situ abundant marine bacteria by

improving cultivation media and procedures.

Flavobacteria are common in coastal waters and benthic habitats. Pre-
vious studies showed significant abundances of Flavobacteria in the seawa-
ter and the sediment of the North Sea. However, cultivation approaches
obtained a low number of Flavobacteria isolates, irrespective whether they
originated from seawater, intertidal sediment or algae. The first step was the
design of a new artificial seawater medium for the cultivation of phy-
logenetically diverse marine Flavobacteriaceae. It was important that this
medium excludes fast growing opportunistic bacteria. Different benthic
and pelagic environmental samples were investigated and different cul-
tivation techniques on agar plates were applied to increase the diversity of
Flavobacteriaceae isolates. These phylogenetically diverse isolates exhibited
a broad range of colony and cell morphology, and often inconspicuous mor-
phological characteristics. The second step therefore was the design of a

specific PCR assay for the identification of Flavobacteriaceae.

Even though this strain collection will be diverse, it may follow the 'great
plate count anomaly’ and thus, the obtained isolates might not reflect the
Flavobacteriaceae taxa that were identified in bacterial metagenomes and
clone libraries of the North Sea. Several bacterioplankton populations of the

three classes Flavobacteria, Alphaproteobacteria, and Gammaproteobacteria
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have recently been shown to benefit from the decomposition of the spring
phytoplankton bloom in 2009. However, representative strains of these bac-
terioplankton populations were not in culture. Therefore, an artificial
seawater medium of environmental-like nutrient concentrations
was developed and combined with dilution cultivation. Field work at
Helgoland, a fast processing of the seawater and incubation near in situ
temperature were considered to maximize the culturability. Flow cy-
tometry was applied to detect growth in the medium at low cell
densities. For the taxonomic affiliation of obtained isolates, 16S rRNA
gene sequences were compared with full-length 16S rRNA gene clones of
bacterioplankton of the 2009 spring bloom. Furthermore, draft genomes
of selected isolates were used to recruit reads of metagenomes from
bacterioplankton of the 2009 spring bloom and thus, addressing the
ecological relevance of the isolates in the North Sea.

Among the taxonomic affiliation of the isolates, physiological charac-
teristics of selected isolates were investigated to deepen the knowledge of
niche differentiation during phytoplankton decomposition. The focus was
on mono- and polysaccharides utilization, substrate requirements and

morphological characteristics.



References 33

References

Abell, G. C. J. and Bowman, J. P. (2005). Colonization and commu-
nity dynamics of class Flavobacteria on diatom detritus in experimental

mesocosms based on Southern Ocean seawater. FEMS Microbiol Ecol 53,
379-391.

Alongi, D. (1998). Coastal ecosystem processes. CRC Press, Boca Raton,
USA.

Alonso, C., Warnecke, F., Amann, R. and Pernthaler, J. (2007).
High local and global diversity of Flavobacteria in marine plankton. FEn-
viron Microbiol 9, 1253-1266.

Alonso-Saez, L., Aristegui, J., Pinhassi, J., Gémez-Consarnau,
L., Gonzalez, J. M., Vaqué, D., Agusti, S. and Gasol, J. M.
(2007). Bacterial assemblage structure and carbon metabolism along a
productivity gradient in the NE Atlantic Ocean. Aquat Microb Ecol 46,
43-53.

Alonso-Saez, L., Sanchez, O. and Gasol, J. M. (2012). Bacterial
uptake of low molecular weight organics in the subtropical Atlantic: Are

major phylogenetic groups functionally different? Limnol Oceanogr 57,
798-808.

Amann, R. and Fuchs, B. M. (2008). Single-cell identification in mi-
crobial communities by improved fluorescence in situ hybridization tech-
niques. Nat Rev Microbiol 6, 339-348.

Amann, R. and Moraru, C. (2012). Two decades of fluorescence in situ
hybridization in systematic and applied microbiology. Syst Appl Microbiol
35, 483-484.



34 Chapter 1. Introduction

Andreini, C., Bertini, I., Cavallaro, G., Holliday, G. L. and Thorn-
ton, J. M. (2008). Metal ions in biological catalysis: from enzyme
databases to general principles. J Biol Inorg Chem 13, 1205-1218.

Andrewes, A. G., Hertzber, S., Liaaenje, S. and Starr, M. P.
(1973). The Xanthomonas ’carotenoids’ - noncarotenoid, brominated,
aryl-polyene esters. Acta Chem Scand 27, 2383-2395.

Araki, N., Ohashi, A., Machdar, I. and Harada, H. (1999). Behav-
iors of nitrifiers in a novel biofilm reactor employing hanging sponge-cubes
as attachment site. Water Sci Technol 39, 23-31.

Argiiello, J. M., Raimunda, D. and Gonzalez-Guerrero, M. (2012).
Metal transport across biomembranes: emerging models for a distinct
chemistry. J Biol Chem 287, 13510-13517.

Arnosti, C. (2003). Fluorescent derivatization of polysaccharides and
carbohydrate-containing biopolymers for measurement of enzyme activi-
ties in complex media. J Chromatogr B: Anal Technol Biomed Life Sci
793, 181-191.

Arnosti, C. (2010). Microbial extracellular enzymes and the marine carbon
cycle. Annu Rev Mar Sci 3, 401-425.

Atlas, R. M. (1996). Handbook of microbiological media 2nd Edn, chapter
ASW Medium. Parker L. (ed), p. 1545. CRC Press, New York.

Azam, F. (1998). Microbial control of oceanic carbon flux: The plot
thickens. Science 280, 694-696.

Azam, F. and Long, R. A. (2001). Oceanography — Sea snow micro-
cosms. Nature 414, 495-498.



References 35

Baati, H., Guermazi, S., Amdouni, R., Gharsallah, N., Sghir, A.
and Ammar, E. (2008). Prokaryotic diversity of a Tunisian multipond
solar saltern. Extremophiles 12, 505-518.

Bartscht, K., Cypionka, H. and Overmann, J. (1999). Evaluation of
cell activity and of methods for the cultivation of bacteria from a natural
lake community. FEMS Microbiol Ecol 28, 249-259.

Bauer, M., Kube, M., Teeling, H., Richter, M., Lombardot, T.,
Allers, E., Wiirdemann, C. A., Quast, C., Kuhl, H., Knaust,
F. et al. (2006). Whole genome analysis of the marine bacteroidetes
"Gramella forsetii” reveals adaptations to degradation of polymeric or-

ganic matter. Environ Microbiol 8, 2201-2213.

Benner, R., Pakulski, J. D., McCarthy, M., Hedges, J. I. and
Hatcher, P. G. (1992). Bulk chemical characteristics of dissolved organic
matter in the ocean. Science 255, 1561-1564.

Bere, R. (1933). Numbers of bacteria in inland lakes of wisconsin as shown
by the direct microscopic method. Int Rev Hydobiolo 29, 248-263.

Bergey, D. H., Harrison, F. C., Breed, R. S., Hammer, B. W. and
Huntoon, F. M. (1923). Bergey’s Manual of Deterministic Bacteriology.
Williams and Wilkins, Baltimore, MD, USA.

Bernardet, J.-F. (2010). Bergey’s Manual of Systematic Bacteriol-
ogy. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobac-
teria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes,
Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes Vol
4, chapter Class II. Flavobacteriia class. nov. Krieg, N.R., Staley, J.T.,
Brown, D.R., Hedlund, B.P., Paster, B.J., Ward, N.L. et al. (eds), pp.
106-314. Springer, New York.



36 Chapter 1. Introduction

Bernardet, J. F., Nakagawa, Y., and Holmes, B. (2002). Proposed
minimal standards for describing new taxa of the family Flavobacteriaceae
and emended description of the family. Int J Syst Evol Microbiol 52,
1049-1070.

Bernardet, J.-F. and Nakagawa, Y. (2006). The Prokaryotes, chapter
An Introduction to the family Flavobacteriaceae. Dworkin M., Falkow S.,
Rosenberg E., Schleifer K.-H., Stackebrandt E., Bernardet J.-F., Naka-
gawa Y. (eds), pp. 455-480. Springer, New York.

Bernardet, J. F., Segers, P., Vancanneyt, M., Berthe, F., Ker-
sters, K. and Vandamme, P. (1996). Cutting a gordian knot: emended
classification and description of the genus Flavobacterium, emended de-
scription of the family Flavobacteriaceae, and proposal of Flavobacterium
hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978).
Int J Syst Bacteriol 46, 128-148.

Berube, M. S. (2005). The American Heritage scince dictionary, chapter
Nansen bottle. Pickett, J.P. and Leonesio, C. and Spitz, S. (eds), p. 421.
Houghton Mifflin Company, Boston, MA, USA.

Blass, U., Anderson, J. M. and Calvin, M. (1959). Biosynthesis
and possible functional relationships among the carotenoids: and between
chlorophyll @ and chlorophyll b. Plant Physiol 34, 329-333.

Bomar, L., Maltz, M., Colston, S. and Graf, J. (2011). Directed cul-

turing of microorganisms using metatranscriptomics. mBio 2, e00012—11.

Bowman, J. P. (2006). The Prokaryotes, chapter The marine clade of the
family Flavobacteriaceae: The genera Aequorivita, Arenibacter, Cellu-
lophaga, Croceibacter, Formosa, Gelidibacter, Gillisia, Maribacter, Meso-

nia, Muricauda, Polaribacter, Psychroflexus, Psychroserpens, Robigini-



References 37

talea, Salegentibacter, Tenacibaculum, Ulvibacter, Vitellibacter and Zo-
bellia. Bowman, J.P., Dworkin, M., Falkow, S., Rosenberg, E., Schleifer,
K.-H., and Stackebrandt, E. (eds), pp. 677-694. Springer, New York.

Bowman, J. P., McCammon, S. A., Brown, M. V., Nichols,
D. S. and McMeekin, T. A. (1997). Diversity and association of

psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63,
3068-3078.

Bowman, J. P., McCammon, S. A., Gibson, J. A. E., Robertson,
L. and Nichols, P. D. (2003). Prokaryotic metabolic activity and com-

munity structure in Antarctic continental shelf sediments. Appl Environ
Microbiol 69, 2448-2462.

Bruns, A., Cypionka, H. and Overmann, J. (2002). Cyclic AMP
and acyl homoserine lactones increase the cultivation efficiency of het-

erotrophic bacteria from the central Baltic Sea. Appl Environ Microbiol
68, 3978-3987.

Bruns, A., Hoffelner, H. and Overmann, J. (2003a). A novel approach
for high throughput cultivation assays and the isolation of planktonic
bacteria. FEMS Microbiol Ecol 45, 161-171.

Bruns, A., Niibel, U., Cypionka, H. and Overmann, J. (2003b).
Effect of signal compounds and incubation conditions on the culturability
of freshwater bacterioplankton. Appl Environ Microbiol 69, 1980-1989.

Buck, J. D. (1974). Effects of medium composition on recovery of bacteria
from sea water. J Exp Mar Biol Ecol 15, 25-34.

Burchard, R. P. (1980). Gliding motility of bacteria. Bioscience 30,
157-162.



38 Chapter 1. Introduction

Bussmann, I., Philipp, B. and Schink, B. (2001). Factors influencing
the cultivability of lake water bacteria. J Microbiol Methods 47, 41-50.

Button, D. K., Schut, F., Quang, P., Martin, R. and Robertson,
B. R. (1993). Viability and isolation of marine bacteria by dilution cul-

ture - theory, procedures, and initial results. Appl Environ Microbiol 59,
881-891.

Caceres, C. E. and Tessier, A. J. (2003). How long to rest: the
ecology of optimal dormancy and environmental constraint. Ecology 84,
1189-1198.

Cantarel, B., Coutinho, P., Rancurel, C., Bernard, T., Lom-
bard, V. and Henrissat, B. (2009). The Carbohydrate-Active enZymes

database (CAZy): an expert resource for glycogenomics. Nucleic Acids
Res 37, D233-D238.

Carini, P., Steindler, L., Beszteri, S. and Giovannoni, S. J. (2012).
Nutrient requirements for growth of the extreme oligotroph ’Candida-
tus Pelagibacter ubique’ HTCC1062 on a defined medium. ISME J 7,
592-602.

Cho, J. C. and Giovannoni, S. J. (2004). Cultivation and growth char-
acteristics of a diverse group of oligotrophic marine Gammaproteobacteria.
Appl Environ Microbiol 70, 432-440.

Connon, S. A. and Giovannoni, S. J. (2002). High-throughput methods
for culturing microorganisms in very-low-nutrient media yield diverse new

marine isolates. Appl Environ Microbiol 68, 3878-3885.

Cottrell, M. T. and Kirchman, D. L. (2000). Natural assemblages of

marine proteobacteria and members of the Cytophaga-Flavobacter cluster



References 39

consuming low- and high-molecular-weight dissolved organic matter. Appl
Environ Microbiol 66, 1692-1697.

Crump, B. C., Armbrust, E. V. and Baross, J. A. (1999). Phylo-
genetic analysis of particle-attached and free-living bacterial communities
in the Columbia river, its estuary, and the adjacent coastal ocean. Appl
Enuviron Microbiol 65, 3192-3204.

Cude, W. N., Mooney, J., Tavanaei, A. A., Hadden, M. K., Frank,
A. M., Gulvik, C. A., May, A. L. and Buchan, A. (2012). Produc-
tion of the antimicrobial secondary metabolite indigoidine contributes to

competitive surface colonization by the marine roseobacter Phaeobacter
sp. strain Y4I. Appl Environ Microbiol 78, 4771-4780.

Culkin, F. (1965). Chemical Oceanography Vol 1, chapter The major con-
stituents of sea water. Riley J.P., Skirrow G. (eds), pp. 121-161. Academic

Press, London.

DeBruyn, J. C., Boogerd, F. C., Bos, P. and Kuenen, J. G. (1990).
Floating filters, a novel technique for isolation and enumeration of fas-

tidious, acidophilic, iron-oxidizing, autotrophic bacteria. Appl Enuviron
Microbiol 56, 2891-2894.

Desmarais, W. T., Bienvenue, D. L., Bzymek, K. P., Holz, R. C.,
Petsko, G. A. and Ringe, D. (2002). The 1.20 A resolution crystal
structure of the aminopeptidase from Aeromonas proteolytica complexed
with Tris: a tale of buffer inhibition. Structure 10, 1063-1072.

Diez-Vives, C., Gasol, J. M. and Acinas, S. G. (2012). Evaluation of
marine Bacteroidetes-specific primers for microbial diversity and dynam-
ics studies. Microb Ecol 64, 1047-1055.



40 Chapter 1. Introduction

Dittmar, T., Fitznar, H. P. and Kattner, G. (2001). Origin and
biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean

as evident from D- and L-amino acids. Geochim Cosmochim Acta 65,
4103-4114.

D’Onofrio, A., Crawford, J. M., Stewart, E. J., Witt, K., Gavrish,
E., Epstein, S., Clardy, J. and Lewis, K. (2010). Siderophores from

neighboring organisms promote the growth of uncultured bacteria. Chem
Biol 17, 254-264.

Doucet, S. M. and Meadows, M. G. (2009). Iridescence: a functional
perspective. J R Soc Interface 6, S115-S132.

Dupont, C. L., Butcher, A., Valas, R. E., Bourne, P. E. and
Caetano-Anollés, G. (2010). History of biological metal utilization

inferred through phylogenomic analysis of protein structures. Proc Natl
Acad Sci USA 107, 10567-10572.

Edwards, J. L., Smith, D. L., Connolly, J., McDonald, J. E., Cox,
M. J., Joint, I., Edwards, C. and McCarthy, A. J. (2010). Identifi-
cation of carbohydrate metabolism genes in the metagenome of a marine

biofilm community shown to be dominated by Gammaproteobacteria and
Bacteroidetes. Genes 1, 371-384.

Eilers, H., Pernthaler, J., Gléckner, F. O. and Amann, R. (2000).
Culturability and in situ abundance of pelagic bacteria from the North
Sea. Appl Environ Microbiol 66, 3044-3051.

Eilers, H., Pernthaler, J., Peplies, J., Glockner, F. O., Gerdts,
G. and Amann, R. (2001). Isolation of novel pelagic bacteria from the

German Bight and their seasonal contributions to surface picoplankton.
Appl Environ Microbiol 67, 5134-5142.



References 41

Euzéby, J. P. (1997). List of bacterial names with standing in nomencla-
ture: A folder available on the Internet. Int J Syst Bacteriol 47, 590-592.

Exner, M. (2009). Die Entdeckung der Cholera-Atiologie durch Robert
Koch 1883/84. Institut fiir Hygiene und Offentliche Gesundheit der Uni-

versitdit Bonn, Germany.

Exworthy, A. (1933). American Journal of Public Health and the Na-
tions Health, Vol 23, chapter Standard methods for the examination of
water and sewage, 7th Edn, pp. 645-646. Amer Public Health Assoc Inc,
Washington.

Fagerbakke, K. M., Heldal, M. and Norland, S. (1996). Content
of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and
cultured bacteria. Aquat Microb Ecol 10, 15-27.

Fautz, E. and Reichenbach, H. (1980). A simple test for flexirubin-type
pigments. FEMS Microbiol Lett 8, 87-91.

Fischer, B. (1894). Die Bakterien des Meeres nach den Untersuchungen
der Plankton-Expedition: unter gleichzeitiger Beriicksichtigung einiger dl-

terer und neuerer Untersuchungen. Lipsius and Tischer, Kiel, Germany.

Fleming, R. H. (1940). Composition of plankton and units for reporting
populations and production. Proceedings 6th Pacific Science Congress 3
pp. 535-540.

Follonier, S., Panke, S. and Zinn, M. (2012). Pressure to kill or
pressure to boost: a review on the various effects and applications of

hydrostatic pressure in bacterial biotechnology. Appl Microbiol Biotechnol
93, 1805-1815.

Frohlich, J. and Ko6nig, H. (2000). New techniques for isolation of single
prokaryotic cells. FEMS Microbiol Rev 24, 567-572.



42 Chapter 1. Introduction

Fuchs, B. M., Zubkov, M. V., Sahm, K., Burkill, P. H. and
Amann, R. (2000). Changes in community composition during dilu-
tion cultures of marine bacterioplankton as assessed by flow cytometric

and molecular biological techniques. Enuviron Microbiol 2, 191-201.

Gao, H., Matyka, M., Liu, B., Khalili, A., Kostka, J. E., Collins,
G., Jansen, S., Holtappels, M., Jensen, M. M., Badewien, T. H.
et al. (2012). Intensive and extensive nitrogen loss from intertidal per-
meable sediments of the Wadden Sea. Limnol Oceanogr 57, 185-198.

Ghalanbor, Z., Ghaemi, N., Marashi, S. A., Amanlou, M.,
Habibi-Rezaei, M., Khajeh, K. and Ranjbar, B. (2008). Bind-
ing of Tris to Bacillus licheniformis alpha-amylase can affect its starch
hydrolysis activity. Protein Pept Lett 15, 212-214.

Gherna, R. and Woese, C. (1992). A partial phylogenetic analysis of
the 'Flavobacter-Bacteroides’ phylum: basis for taxonomic restructuring.
Syst Appl Microbiol 15, 513-521.

Giovannoni, S. and Stingl, U. (2007). The importance of culturing
bacterioplankton in the 'omics’” age. Nat Rev Microbiol 5, 820-826.

Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. and Field, K. G.
(1990). Genetic diversity in Sargasso Sea bacterioplankton. Nature 345,
60-63.

Goldberg, E. D. (1965). Chemical Oceanography Vol 1, chapter Minor
elements in sea water. Riley JP, Skirrow G (eds), pp. 163-196. Academic
Press, New York.

Goldman, J. C., Caron, D. A. and Dennett, M. R. (1987). Regu-
lation of gross growth efficiency and ammonium regeneration in bacteria

by substrate C:N ratio. Limnol Oceanogr 32, 1239-1252.



References 43

Gomez-Pereira, P. R., Fuchs, B. M., Alonso, C., Oliver, M. J., van
Beusekom, J. E. E. and Amann, R. (2010). Distinct flavobacterial

communities in contrasting water masses of the North Atlantic Ocean.
ISME J 4, 472-487.

Gomez-Pereira, P. R., Schiiler, M., Fuchs, B. M., Bennke, C.,
Teeling, H., Waldmann, J., Richter, M., Barbe, V., Bataille,
E., Glockner, F. O. et al. (2012). Genomic content of uncultured

Bacteroidetes from contrasting oceanic provinces in the North Atlantic
Ocean. Enuviron Microbiol 14, 52—66.

Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa,
S. and Singh, R. M. M. (1966). Hydrogen ion buffers for biological
research. Biochemistry 5, 467-477.

Haas, C. N. (1989). Estimation of microbial densities from dilution count
experiments. Appl Environ Microbiol 55, 1934-1942.

Havenner, J. A., McCardell, B. A. and Weiner, R. M. (1979).
Development of defined, ninimal, and complete media for the growth of

Hyphomicrobium neptunium. Appl Environ Microbiol 38, 18-23.

Hirsch, P., Ludwig, W., Hethke, C., Sittig, M., Hoffmann, B. and
Gallikowski, C. A. (1998). Hymenobacter roseosalivarius gen. nov.,
sp. nov. from continental Antarctic soils and sandstone: bacteria of the

Cytophaga ) Flavobacterium / Bacteroides line of phylogenetic descent. Syst
Appl Microbiol 21, 374-383.

Hobbie, J. E., Daley, R. J. and Jasper, S. (1977). Use of nucleopore
filters for counting bacteria by fluorescence microscopy. Appl Environ
Microbiol 33, 1225-1228.



44 Chapter 1. Introduction

Huber, R., Burggraf, S., Mayer, T., Barns, S. M., Rossnagel, P.
and Stetter, K. O. (1995). Isolation of a hyperthermophilic archaeum
predicted by in situ RNA analysis. Nature 376, 57-58.

Irschik, H. and Reichenbach, H. (1978). Intracellular location of flexiru-
bins in Flexibacter elegans ( Cytophagales). Bioch Biophys Acta 510, 1-10.

Ishida, Y., Imai, I., Miyagaki, T. and Kadota, H. (1982). Growth
and uptake kinetics of a facultatively oligotrophic bacterium at low nu-

trient concentrations. Microb Ecol 8, 23-32.

Ishida, Y. and Kadota, H. (1981). Growth patterns and substrate re-
quirements of naturally occurring obligate oligotrophs. Microb Ecol 7,
123-130.

Jamieson, R. E., Rogers, A. D., Billett, D. S. M., Smale, D. A. and
Pearce, D. A. (2012). Patterns of marine bacterioplankton biodiversity
in the surface waters of the Scotia Arc, Southern Ocean. FEMS Microbiol
FEcol 80, 452-468.

Jannasch, H. W. and Jones, G. E. (1959). Bacterial populations in
sea water as determined by different methods of enumeration. Limnol
Oceanogr 4, 128-139.

Jannasch, H. W., Wirsen, C. O. and Doherty, K. W. (1996). A
pressurized chemostat for the study of marine barophilic and oligotrophic
bacteria. Appl Environ Microbiol 62, 1593-1596.

Janssen, P. H., Yates, P. S., Grinton, B. E., Taylor, P. M. and
Sait, M. (2002). Improved culturability of soil bacteria and isolation in
pure culture of novel members of the divisions Acidobacteria, Actinobac-

teria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68,
2391-2396.



References 45

Jarrell, K. F., and McBride, M. J. (2008). The surprisingly diverse
ways that prokaryotes move. Nat Rev Micro 6, 466-476.

Jaspers, E., Nauhaus, K., Cypionka, H. and Overmann, J. (2001).
Multitude and temporal variability of ecological niches as indicated by
the diversity of cultivated bacterioplankton. FEMS Microbiol Ecol 36,
153-164.

Jensen, P. R., Kauffman, C. A. and Fenical, W. (1996). High re-
covery of culturable bacteria from the surfaces of marine algae. Mar Biol
126, 1-7.

Johansen, J. E. and Binnerup, S. J. (2002). Contribution of Cy-
tophaga-like bacteria to the potential of turnover of carbon, nitrogen, and

phosphorus by bacteria in the rhizosphere of barley (Hordeum vulgare L.).
Microb Ecol 43, 298-306.

Johansen, J. E., Nielsen, P. and Binnerup, S. J. (2009). Identifi-
cation and potential enzyme capacity of flavobacteria isolated from the
rhizosphere of barley (Hordeum vulgare L.). Can J Microbiol 55, 234-241.

Jooste, P. (1985). The taxonomy and significance of Flavobacterium—
Cytophaga strains from dairy sources. Ph.D. thesis, University of the
Orange Free State, Bloemfontein, South Africa.

Kaeberlein, T., Lewis, K. and Epstein, S. S. (2002). Isolating "uncul-
tivable’ microorganisms in pure culture in a simulated natural environ-

ment. Science 296, 1127-1129.

Kampfer, P., Lodders, N., Vaneechoutte, M. and Wauters, G.
(2009a). Transfer of Sejongia antarctica, Sejongia jeonii and Sejongia

marina to the genus Chryseobacterium as Chryseobacterium antarcticum



46 Chapter 1. Introduction

comb. nov., Chryseobacterium jeonii comb. nov. and Chryseobacterium
marinum comb. nov. Int J Syst Evol Microbiol 59, 2238-2240.

Kampfer, P., Vaneechoutte, M., Lodders, N., De Baere, T.,
Avesani, V., Janssens, M., Busse, H.-J. and Wauters, G. (2009b).
Description of Chryseobacterium anthropi sp. nov. to accommodate clin-
ical isolates biochemically similar to Kaistella koreensis and Chryseobac-
terium haifense, proposal to reclassify Kaistella koreensis as Chryseobac-

tertum koreense comb. nov. and emended description of the genus Chry-
seobacterium. Int J Syst Evol Microbiol 59, 2421-2428.

Kaprelyants, A. S., Gottschal, J. C. and Kell, D. B. (1993). Dor-
mancy in non-sporulating bacteria. FEMS Microbiol Rev 104, 271-286.

Karl, D. M. and Proctor, L. M. (2007). Foundations of microbial
oceanography. Oceanography 20, 16-27.

Keller, M. and Zengler, K. (2004). Tapping into microbial diversity.
Nat Rev Microbiol 2, 141-150.

Kester, D. R., Duedall, I. W., Connors, D. N. and Pytkowicz,
R. M. (1967). Preparation of artificial seawater. Limnol Oceanogr 12,
176-179.

Kientz, B., Marie, P. and Rosenfeld, E. (2012a). Effect of abiotic
factors on the unique glitter-like iridescence of Cellulophaga lytica. FEMS
Microbiol Lett 333, 101-108.

Kientz, B., Vukusic, P., Luke, S. and Rosenfeld, E. (2012b). Irides-
cence of a marine bacterium and classification of prokaryotic structural
colors. Appl Environ Microbiol 78, 2092-2099.

Kirchman, D. L. (2002). The ecology of Cytophaga-Flavobacteria in
aquatic environments. FEMS Microbiol Ecol 39, 91-100.



References 47

Kirchman, D. L., Yu, L. Y. and Cottrell, M. T. (2003). Diversity
and abundance of uncultured Cytophaga-like bacteria in the Delaware
Estuary. Appl Environ Microbiol 69, 6587-6596.

Knight, B. (1935). An essential growth factor for Staphylococcus aureus.
Br J Exp Pathol 16, 315-326.

Koch, B. P., Witt, M. R., Engbrodt, R., Dittmar, T. and Kattner,
G. (2005). Molecular formulae of marine and terrigenous dissolved organic
matter detected by electrospray ionization Fourier transform ion cyclotron

resonance mass spectrometry. Geochim Cosmochim Acta 69, 3299-3308.

Koch, R. (1876). Die Atiologie der Milzbrand-Krankheit, begriindet auf
die Entwicklungsgeschichte des Bacillus anthracis. Cohns Beitrage zur
Biologie der Pflanzen 2 pp. 277-310.

Koebnik, R. (2005). TonB-dependent trans-envelope signalling: the ex-
ception or the rule? Trends Microbiol 13, 343-347.

Kogure, K., Simidu, U. and Taga, N. (1979). A tendative direct
microscopic method for counting living marine bacteria. Can J Microbiol
25, 415-420.

Kohl, W., Achenbach, H. and Reichenbach, H. (1983). The pig-
ments of Brevibacterium linens: aromatic carotenoids. Phytochemistry
22, 207-210.

Koropatkin, N. M., Cameron, E. A. and Martens, E. C. (2012).
How glycan metabolism shapes the human gut microbiota. Nat Rev Mi-
crobiol 10, 323-335.

Koser, S. A. and Saunders, F. (1938). Accessory growth factors for

bacteria and related microorganisms. Bacteriol Rev 2, 99-160.



48 Chapter 1. Introduction

Krieg, N. R., Ludwig, W., Euzéby, J. and Whitman, W.
(2010). Bergey’s Manual of Systematic Bacteriology: The Bacteroidetes,
Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fu-
sobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomi-
crobia, Chlamydiae, and Planctomycetes, Vol 4, 2nd Edn, chapter Phy-
lum XIV. Bacteroidetes phyl. nov. Krieg N., Staley J.T., Brown D.R.,
Hedlund B.P., Paster B.J., Ward N.L., Ludwig W. and Whitman W.B.
(eds), pp. 25-469. Springer, New York.

Kuznetsov, S. I., Dubinina, G. A. and Lapteva, N. A. (1979). Bi-
ology of oligotrophic bacteria. Annu Rev Microbiol 33, 377-387.

Lage, O. M., Vasconcelos, M., Soares, H., Osswald, J. M., San-
sonetty, F., Parente, A. M. and Salema, R. (1996). Suitability of
the pH buffers 3-|N-N-bis(hydroxethyl)amino|-2-hydroxypropanesulfonic
acid and N-2-hydroxyethylpiperazine- N’-2-ethanesulfonic acid for in vitro
copper toxicity studies. Arch Environ Contam Toxicol 31, 199-205.

Leadbetter, J. R. (2003). Cultivation of recalcitrant microbes: cells are
alive, well and revealing their secrets in the 21st century laboratory. Curr
Opin Microbiol 6, 274-281.

Lennon, J. T. and Jones, S. E. (2011). Microbial seed banks: the
ecological and evolutionary implications of dormancy. Nat Rev Microbiol
9, 119-130.

Llobet-Brossa, E., Rossello-Mora, R. and Amann, R. (1998). Mi-
crobial community composition of Wadden Sea sediments as revealed by

fluorescence in situ hybridization. Appl Environ Microbiol 64, 2691-2696.

Long, R. A. and Azam, F. (2001). Antagonistic interactions among
marine pelagic bacteria. Appl Environ Microbiol 67, 4975-4983.



References 49

Luo, H. W. (2012). Predicted protein subcellular localization in dominant
surface ocean bacterioplankton. Appl Environ Microbiol 78, 6550-6557.

Lyman, J. and Fleming, R. H. (1940). Composition of sea water. J
Mar Res 3, 134-146.

Manz, W., Amann, R., Ludwig, W., Vancanneyt, M. and
Schleifer, K. H. (1996). Application of a suite of 16S rRNA-specific
oligonucleotide probes designed to investigate bacteria of the phylum

cytophaga-flavobacter-bacteroides in the natural environment. Microbiol-
ogy 142, 1097-1106.

Martens, E. C., Lowe, E. C., Chiang, H., Pudlo, N. A., Wu, M.,
McNulty, N. P., Abbott, D. W., Henrissat, B., Gilbert, H. J.,
Bolam, D. N. et al. (2011). Recognition and degradation of plant cell
wall polysaccharides by two human gut symbionts. PLoS Biol 9, e1001221.

Martin, P. and MacLeod, R. A. (1984). Observations on the distinc-
tion between oligotrophic and eutrophic marine bacteria. Appl Enuviron
Microbiol 47, 1017-1022.

Mascher, T. (2006). Intramembrane-sensing histidine kinases: a new fam-
ily of cell envelope stress sensors in Firmicutes bacteria. FEMS Microbiol
Lett 264, 133-144.

Massana, R. and Jiirgens, K. (2003). Composition and population
dynamics of planktonic bacteria and bacterivorous flagellates in seawater
chemostat cultures. Aquat Microb Ecol 32, 11-22.

Mathews, M. M. and Sistrom, W. R. (1959). Function of carotenoid
pigments in non-photosynthetic bacteria. Nature 184, 1892-1893.

Mayali, X., Franks, P. J. S. and Azarn, F. (2008). Cultivation and



50 Chapter 1. Introduction

ecosystem role of a marine Roseobacter clade-affiliated cluster bacterium.
Appl Environ Microbiol 74, 2595-2603.

McBride, M. J. (2001). Bacterial gliding motility: multiple mechanisms

for cell movement over surfaces. Annu Rev Microbiol 55, 49-75.

McBride, M. J., Xie, G., Martens, E. C., Lapidus, A., Henrissat,
B., Rhodes, R. G., Goltsman, E., Wang, W., Xu, J., Hunnicutt,
D. W. et al. (2009). Novel features of the polysaccharide-digesting glid-

ing bacterium Flavobacterium johnsoniae as revealed by genome sequence
analysis. Appl Environ Microbiol 75, 6864—6875.

McGraw, D. J. (2006). The founding of modern marine microbiology:
Claude ZoBell and his magnum opus, 1946. J Oceanogr 18, 2-13.

Meadows, M. G., Butler, M. W., Morehouse, N. I., Taylor, L. A.,
Toomey, M. B., McGraw, K. J. and Rutowski, R. L. (2009).
Iridescence: views from many angles. J R Soc Interface 6, S107-S113.

Morris, R. M., Nunn, B. L., Frazar, C., Goodlett, D. R., Ting,
Y. S. and Rocap, G. (2010). Comparative metaproteomics reveals

ocean-scale shifts in microbial nutrient utilization and energy transduc-
tion. ISMFE J 4, 673-685.

Mukamolova, G. V., Yanopolskaya, N. D., Kell, D. B. and
Kaprelyants, A. S. (1998). On resuscitation from the dormant state of
Micrococcus luteus. Anton Leeuw Int J G 73, 237-243.

Musat, N., Werner, U., Knittel, K., Kolb, S., Dodenhof, T., van
Beusekom, J. E. E., de Beer, D., Dubilier, N. and Amann, R.
(2006). Microbial community structure of sandy intertidal sediments in
the North Sea, Sylt-Rgm¢ Basin, Wadden Sea. Syst Appl Microbiol 29,
333-348.



References 51

Nansen, F. (1901). Some oceanographical results of the expedition with
the 'Michael Sars’ in the Summer of 1900. Preliminary Report. Nyt Mag
Naturvidensk 39, Christiania.

Nedashkovskaya, O. I., Kwon, K. K. and Kim, S. J. (2009). Re-
classification of Donghaeana dokdonensis Yoon et al. 2006 as Persicivirga
dokdonensis comb. nov. and emended descriptions of the genus Persi-

civirga and of Persicivirga xylanidelens O’Sullivan et al. 2006. Int J Syst
FEvol Microbiol 59, 824-827.

Nedashkovskaya, O. I., Vancanneyt, M., Christiaens, L., Kali-
novskaya, N. I., Mikhailov, V. V. and Swings, J. (2006). Aquima-
rina intermedia sp. nov., reclassification of Stanierella latercula (Lewin
1969) as Aquimarina latercula comb. nov. and Gaetbulimicrobium breviv-
itae Yoon et al. 2006 as Aquimarina brevivitae comb. nov. and emended
description of the genus Aquimarina. Int J Syst FEvol Microbiol 56,
2037-2041.

Nelson, S. S., Bollampalli, S. and McBride, M. J. (2008). Sprb is a
cell surface component of the Flavobacterium johnsoniae gliding motility
machinery. J Bacteriol 190, 2851-2857.

Nichols, D., Cahoon, N., Trakhtenberg, E. M., Pham, L., Mehta,
A., Belanger, A., Kanigan, T., Lewis, K. and Epstein, S. S.
(2010). Use of Ichip for high-throughput in situ cultivation of "uncul-
tivable" microbial species. Appl Environ Microbiol 76, 2445-2450.

Noinaj, N., Guillier, M., Barnard, T. J. and Buchanan, S. K.
(2010). TonB-dependent transporters: regulation, structure, and function.
Annu Rev Microbiol 64, 43—60.

Novitsky, J. (1990). Evidence for sedimenting particles as the origin of



52 Chapter 1. Introduction

the microbial community in a coastal marine sediment. Mar Ecol Prog
Ser 60, 161-167.

Olsen, R. A. and Bakken, L. R. (1987). Viability of soil bacteria:
optimization of plate-counting technique and comparison between total

counts and plate counts within different size groups. Microb Ecol 13,
59-74.

Oppenheimer, C. H. and ZoBell, C. E. (1952). The growth and viabil-
ity of 63 species of marine bacteria as influenced by hydrostatic pressure.
J Mar Res 11, 10-18.

O’Sullivan, L. A., Weightman, A. J. and Fry, J. C. (2002). New de-
generate Cytophaga-Flexibacter- Bacteroides-specific 16S ribosomal DNA-
targeted oligonucleotide probes reveal high bacterial diversity in River Taff
epilithon. Appl Environ Microbiol 68, 201-210.

Overmann, J. . (2006). The Prokaryotes Vol 1, chapter Principles of en-
richment, isolation, cultivation and preservation of prokaryotes. Dworkin

M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. (eds), pp.
80-136. Springer, Berlin, Germany.

Overmann, J. (2010). Geomicrobiology: molecular and environmental
perspective, chapter Novel cultivation strategies for environmentally im-
portant microorganisms. Barton LL, Mandl M, Loy A (eds), pp. 69-89.

Springer Science and Business Media B.V., Springer, Berlin, Germany.

Pedros-Alig, C. (2006). Marine microbial diversity: can it be determined?
Trends Microbiol 14, 257-263.

Pinhassi, J., Sala, M. M., Havskum, H., Peters, F., Guadayol,
O., Malits, A. and Marrase, C. (2004). Changes in bacterioplank-



References 53

ton composition under different phytoplankton regimens. Appl Environ
Microbiol 70, 6753-6766.

Poindexter, J. S. (1981). Oligothrophy - fast and famine existence. Adv
Microb Ecol 5, 63-89.

Port, A., Gurgel, K.-W., Staneva, J., Schulz-Stellenfleth, J. and
Stanev, E. V. (2011). Tidal and wind-driven surface currents in the Ger-

man Bight: HFR observations versus model simulations. Ocean Dynamics
61, 1567-1585.

Postec, A., Urios, L., Lesongeur, F., Ollivier, B., Querellou, J.
and Godfroy, A. (2005). Continuous enrichment culture and molecular
monitoring to investigate the microbial diversity of thermophiles inhabit-

ing deep-sea hydrothermal ecosystems. Curr Microbiol 50, 138-144.

Postgate, J. R. and Hunter, J. R. (1964). Accelerated death of Aer-
obacter aerogenes starved in presence of growth-limiting substrates. J
Gen Microbiol 34, 459-473.

Rappé, M. S., Connon, S. A., Vergin, K. L. and Giovannoni, S. J.
(2002). Cultivation of the ubiquitous SAR11 marine bacterioplankton
clade. Nature 418, 630-633.

Ravenschlag, K., Sahm, K. and Amann, R. (2001). Quantitative
molecular analysis of the microbial community in marine Arctic sediments
(Svalbard). Appl Environ Microbiol 67, 387-395.

Redfield, A. C. (1934). James Johnstone memorial volume, chapter On
the proportions of organic derivations in sea water and their relation to the

composition of plankton. Daniel R.J. (ed). University Press of Liverpool,
Liverpool, UK.



54 Chapter 1. Introduction

Rees, M. (1996). Evolutionary ecology of seed dormancy and seed size.
Philos Trans R Soc Lond Ser B-Biol Sci 351, 1299-1308.

Reichenbach, H. (1981). Taxomony of the gliding bacteria. Annu Rev
Microbiol 35, 339-364.

Reichenbach, H. (1989). Bergey’s Manual of Systematic Bacteriology, Vol
3, chapter Order 1. Cytophagales Leadbetter 1974. Staley J.T., Bryant
M.P., Pfennig N. and Holt J.G. (eds), pp. 2011-2013. Williams and
Wilkins, Baltimore.

Reichenbach, H., Kohl, W., Bottgervetter, A. and Achenbach, H.
(1980). Flexirubin-type pigments in Flavobacterium. Arch Microbiol 126,
291-293.

Reise, K., Baptist, M., Burbridge, P., Dankers, N., Fischer, L.,
Flemming, B., P., O. A. and Smit, C. (2010). Wadden Sea Ecosys-
tem, chapter The Wadden Sea — a universally outstanding tidal wetland.,

pp. 7-23. Common Wadden Sea Secretariat, Wilhelmshaven, Germany.

Riemann, L., Steward, G. F. and Azam, F. (2000). Dynamics of
bacterial community composition and activity during a mesocosm diatom

bloom. Appl Environ Microbiol 66, 578-587.

Russell, H. L. (1891). Untersuchungen tiber im Golf von Neapel lebende
Bakterien. Zeitschrift fiir Hygiene und Infektionskrankheiten 11, 165-206.

Sait, M., Hugenholtz, P. and Janssen, P. H. (2002). Cultivation
of globally distributed soil bacteria from phylogenetic lineages previously

only detected in cultivation-independent surveys. FEnwviron Microbiol 4,
654-666.

Sakshaug, E., Andresen, K., Myklestad, S. and Olsen, Y. (1983).

Nutrient status of phytoplankton communities in Norwegian waters (ma-



References 55

rine, brackish, and fresh) as revealed by their chemical composition. J
Plank Res 5, 175-196.

Sandy, M. and Butler, A. (2009). Microbial iron acquisition: marine
and terrestrial siderophores. Chem Rev 109, 4580-4595.

Schattenhofer, M., Fuchs, B. M., Amann, R., Zubkov, M. V.,
Tarran, G. A. and Pernthaler, J. (2009). Latitudinal distribution
of prokaryotic picoplankton populations in the Atlantic Ocean. Enuviron
Mucrobiol 11, 2078-2093.

Schauer, R., Bienhold, C., Ramette, A. and Harder, J. (2010).
Bacterial diversity and biogeography in deep-sea surface sediments of the
South Atlantic Ocean. ISMFE J 4, 159-170.

Schink, B. and Friedrich, M. (2000). Bacterial metabolism - phosphite
oxidation by sulphate reduction. Nature 406, 37.

Schut, F., Devries, E. J., Gottschal, J. C., Robertson, B. R.,
Harder, W., Prins, R. A. and Button, D. K. (1993). Isolation of
typical marine bacteria by dilution culture: growth, maintenance, and

characteristics of isolates under laboratory conditions. Appl Environ Mi-
crobiol 59, 2150-2160.

Schut, F., Gottschal, J. C. and Prins, R. A. (1997). Isolation and
characterisation of the marine ultramicrobacterium Sphingomonas sp.
strain RB2256. FEMS Microbiol Rev 20, 363-369.

Scripps  Institution of Oceanography (1978). Probing
the Oceans 1936 to 1976. Tofua Press, San Diego, Calif.
http://ark.cdlib.org/ark: /13030 /kt109nc2cj/.

Shipman, J. A., Berleman, J. E. and Salyers, A. A. (2000). Char-

acterization of four outer membrane proteins involved in binding starch



56 Chapter 1. Introduction

to the cell surface of Bacteroides thetaiotaomicron. J Bacteriol 182,
5365-5372.

Sieburth, J. M. (1967). Seasonal selection of estuarine bacteria by water
temperature. J Exp Mar Biol Ecol 1, 98-121.

Simon, M., Glockner, F. O. and Amann, R. (1999). Different com-
munity structure and temperature optima of heterotrophic picoplankton

in various regions of the Southern Ocean. Aquat Microb Ecol 18, 275-284.

Staley, J. T. and Konopka, A. (1985). Measurements of in situ activities
of nonphotosynthetic mikroorganisms in aquatic and terreestrial habitats.
Annu Rev Microbio 39, 321-346.

Stanier, R. (1947). Studies on nonfruiting myxobacteria 1. Cytophaga
johnsonae, n. sp., a chitin-decomposing myxobacterium. J Bacteriol 53,
297-315.

Sterner, R. W., Andersen, T., Elser, J. J., Hessen, D. O., Hood,
J. M., McCauley, E. and Urabe, J. (2008). Scale-dependent carbon

: nitrogen : phosphorus seston stoichiometry in marine and freshwaters.
Limnol Oceanogr 53, 1169-1180.

Stevens, H., Simon, M. and Brinkhoff, T. (2009). Cultivable bac-
teria from bulk water, aggregates, and surface sediments of a tidal flat

ecosystem. Ocean Dynamics 59, 291-304.

Svedrup, H. U., Johanson, M. W. and Fleming, R. H. (1942).
The oceans-their physics, chemistry, and general biology. Prentice-Hall,

Englewood Cliffs , New Jersey.

Tan, T. L., Reinke, M. and Riiger, H. J. (1996). New dilution method
in microtiter-plates for enumeration and enrichment of copiotrophic and

oligotrophic bacteria. Arch Hydrobiol 137, 511-521.



References 57

Teeling, H., Fuchs, B. M., Becher, D., Klockow, C., Gardebrecht,
A., Bennke, C. M., Kassabgy, M., Huang, S., Mann, A. J.,
Waldmann, J. et al. (2012). Substrate-controlled succession of marine

bacterioplankton populations induced by a phytoplankton bloom. Science
336, 608-611.

Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M. and
Michel, G. (2011). Environmental and gut Bacteroidetes: the food

connection. Front Microbiol 2, 93.

Thomas, J. B. and Goedheer, J. C. (1953). Relative efficiency of light
absorbed by carotenoids in photosynthesis and phototaxis of Rhodospir-
illum rubrum. Bioch Biophys Acta 10, 385-390.

Tyson, G. W., Lo, I., Baker, B. J., Allen, E. E., Hugenholtz, P.
and Banfield, J. F. (2005). Genome-directed isolation of the key nitro-
gen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic

microbial community. Appl Environ Microbiol 71, 6319-6324.

van Bodegom, P. (2007). Microbial maintenance: A critical review on its
quantification. Microb Ecol 53, 513-523.

Vasconcelos, M., Azenha, M. and Lage, O. M. (1996). Electrochem-
ical evidence of surfactant activity of the HEPES pH buffer which may

have implications on trace metal availability to cultures in vitro. Anal
Biochem 241, 248-253.

Vukusic, P. and Sambles, J. R. (2003). Photonic structures in biology.
Nature 424, 852-855.

Waksman, S. A. (1934). The role of bacteria in the cycle of life in the
sea. Scientific Monthly 38, 35—49.



58 Chapter 1. Introduction

Waksman, S. A., Carey, C. L., and Reuszer, H. W. (1933). Marine
bacteria and their role in the cycle of life in the sea - I Decomposition of

marine plant and animal residues by bacteria. Biol Bull 65, 57-79.

Warren, R. A. J. (1996). Microbial hydrolysis of polysaccharides. Annu
Rev Microbiol 50, 183-212.

Weller, R., Gléckner, F. O. and Amann, R. (2000). 16S rRNA-
targeted oligonucleotide probes for the in situ detection of members of

the phylum Cytophaga- Flavobacterim-Bacteroides. Syst Appl Microbiol
23, 107-114.

West, N. J., Obernosterer, 1., Zemb, O. and Lebaron, P. (2008).
Major differences of bacterial diversity and activity inside and outside

of a natural iron-fertilized phytoplankton bloom in the Southern Ocean.
Environ Microbiol 10, 738-756.

Whiteley, A. S. and Bailey, M. J. (2000). Bacterial community struc-
ture and physiological state within an industrial phenol bioremediation
system. Appl Environ Microbiol 66, 2400-2407.

Whitesides, M. D. and Oliver, J. D. (1997). Resuscitation of Vibrio
vulnificus from the viable but nonculturable state. Appl Environ Microbiol
63, 1002-1005.

Widdel, F. and Bak, F. (1992). The Prokaryotes Vol 2, chapter Gram-
negative mesophilic sulfate-reducing bacteria. Balows A., Triiper H.G.,
Dworkin M. and Harder W. (eds), pp. 3352-3378. Springer, Berlin, Ger-

many.

Widdel, F., Kohring, G. W. and Mayer, F. (1983). Studies on dissim-

ilatory sulfate-reducing bacteria that decompose fatty-acids. I1I: Charac-



References 59

terization of the filamentous gliding Desulfonema limicola gen. nov. sp.

nov., and Desulfonema magnum sp. nov. Arch Microbiol 134, 286-294.

Widdel, F. and Pfennig, N. (1977). A new anaerobic, sporing, acetate-

oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) ace-
toxidans. Arch Microbiol 112, 119-122.

Williams, P., Winzer, K., Chan, W. C. and Camara, M. (2007).
Look who’s talking: communication and quorum sensing in the bacterial
world. Phil Trans R Soc B 362, 1119-1134.

Winkelmann, N. and Harder, J. (2009). An improved isolation method
for attached-living Planctomycetes of the genus Rhodopirellula. J Micro-
biol Methods 77, 276-284.

Woebken, D., Fuchs, B. M., Kuypers, M. M. M. and Amann, R.
(2007). Potential interactions of particle-associated anammox bacteria

with bacterial and archaeal partners in the Namibian upwelling system.
Appl Environ Microbiol 73, 4648-4657.

Xu, J., Bjursell, M. K., Himrod, J., Deng, S., Carmichael, L. K.,
Chiang, H. C., Hooper, L. V. and Gordon, J. I. (2003). A genomic

view of the human- Bacteroides thetaiotaomicron symbiosis. Science 299,
2074-2076.

Yanagita, T., Ichikawa, T., Tsuji, T., Kamata, Y., Ito, K. and
Sasaki, M. (1978). Two trophic groups of bacteria, oligotrophs and

eutrophs: their distributions in fresh and sea water areas in the central
northern Japan. J Gen Appl Microbiol 24, 59-88.

Yi, H. and Chun, J. (2012). Unification of the genera Nonlabens, Per-

sicivirga, Sandarakinotalea and Stenothermobacter into a single emended



60 Chapter 1. Introduction

genus, Nonlabens, and description of Nonlabens agnitus sp. nov. Syst Appl
Microbiol 35, 150-155.

Zengler, K., Toledo, G., Rappé, M., Elkins, J., Mathur, E. J.,
Short, J. M. and Keller, M. (2002). Cultivating the uncultured. Proc
Natl Acad Sci USA 99, 15681-15686.

ZoBell, C. E. (1941). Studies on marine bacteria. I. The cultural require-
ments of heterotrophic aerobes. J Mar Res 4, 42-75.

ZoBell, C. E. (1946). Marine microbiology. A monograph of hydrobacte-
riology. Chronica Botanica Co., Waltham, Mass. U.S.A.

ZoBell, C. E. and Johnson, F. H. (1949). The influence of hydrostatic
pressure on the growth and viability of terrestrial and marine bacteria. J
Bacteriol 57, 179-189.






Polaribacter strain cultivated on marine HaHa agar.



Chapter 2

Phylogenetic diversity of
Flavobacteria isolated from the

North Sea on solid media

Richard L. Hahnke and Jens Harder

Department of Microbiology, Max Planck Institute for Marine

Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany

Contributions to the manuscript: R.L.H. and J.H. designed research and project outline, de-
veloped the new medium and the Flavobacteria-Cytophagia specific PCR assay, and conducted
sampling on Sylt. R.L.H. organized and conducted sampling with the students at Harlesiel, Hel-
goland and Janssand, isolated and organized the students isolates, and performed phylogenetic

analysis. R.L.H. and J.H. conceived, wrote and edited the manuscript.

Chapter is accepted for Systematic and Applied Microbiology 2013



64 Chapter 2. Cultivation of Flavobacteria from the North Sea

2.1 Abstract

Flavobacteria are abundant in the North Sea, an epeiric sea on the continen-
tal shelf of Europe. However, this abundance has so far not been reflected
by strains in culture collections. We isolated Flavobacteria from pelagic and
benthic samples, such as seawater, phytoplankton, sediment and its porewa-
ter, and from surfaces of animals and seaweeds on agar plates with a variety
of carbon sources. Dilution cultivation with a new medium, incubation at
low temperatures and with long incubation times, and a colony screening
by a Flavobacteria- Cytophagia specific PCR detecting 16S rRNA gene se-
quences led to a collection of phylogenetically diverse strains. Besides two
strains affiliating with Flammevirgaceae and seven strains affiliating with
Cyclobacteriaceae, we isolated within the Flavobacteriaceae 20 strains pre-
sumably representing seven novel candidate genera and 355 strains affiliat-
ing with 26 of 80 validly described marine Flavobacteriaceae genera, based
on a genus boundary of 95.0% 16S rRNA gene sequence identity. The ma-
jority of strains (276) affiliated with 37 known species in 16 genera (based
on the boundary of 98.7% 16S rRNA gene sequence identity), whereas 79
strains likely represented 42 novel species in 22 established Flavobacteriaceae
genera. Pigmentation, iridescence, gliding motility, agar lysis, and flexirubin
as chemical marker supported the taxonomy on the species level. This study
demonstrated the culturability of phylogenetically diverse Flavobacteria on

solid medium originating from the North Sea.
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2.2 Introduction

Flavobacteria are common in epipelagic oceanic and coastal waters as well
as in benthic habitats, accounting for 10 to 30%), sometimes up to 70% of the
bacterial populations (Eilers et al., 2000; Gémez-Pereira et al., 2010; Zinger
et al., 2011). Together with Alphaproteobacteria, Flavobacteria were more
abundant in the particle-associated fraction, whereas Gammaproteobacteria
were dominantly free floating (Abell and Bowman, 2005). Flavobacteria are
known to attach to phytoplankton (Gomez-Pereira et al., 2010) and to par-
ticipate in the initial degradation of complex organic matter, thus playing
an important part in the carbon cycle (Kirchman, 2002). In a decaying
phytoplankton spring bloom in the North Sea, Flavobacteria populations
dominated the initial degradation process (Teeling et al., 2012). The Ger-
man Bight in the North Sea is a shallow coastal area with high tidal dy-
namics (Port et al., 2011) whose seafloor is a major sink of organic matter
and nitrogen species (Alongi, 1998; Gao et al., 2012). In this coastal region,
Flavobacteria were a dominating population in the microbial community in
surface seawater, accounting for up to 55% of bacterioplankton cells (Eil-
ers et al., 2000). In the benthos, Flavobacteria were the most abundant
phylogenetic group, accounting for 15 to 25% of all cells (Llobet-Brossa
et al., 1998). In 2006, the Flavobacteriaceae comprised 168 species in 53
genera (Bernardet, 2010). This family has risen to 393 species in 95 genera
(www.bacterio.cict.fr, June 2012) (Euzéby, 1997). Marine strains repre-
sented 210 Flavobacteriaceae type strains in 80 genera (suppl. Tab. 2.52).

In contrast to the population size, previous attempts to cultivate repre-
sentatives of bacterial communities from the Wadden Sea obtained a low
number of Flavobacteriaceae strains, irrespective whether they originated
from seawater (Eilers et al., 2000) or intertidal sediment (Stevens et al.,

2009). In both cases, polymeric carbohydrates (e.g. chitin, cellulose and
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agar) did not support an increase in culturability. The authors concluded
that (i) frequently isolated bacteria were of low abundance in nature (Eilers
et al., 2000), and (ii) Flavobacteria did not grow well on solid agar (Stevens
et al., 2009). Nevertheless, seven novel species of Flavobacteriaceae had
been isolated from the North Sea and described in recent years. Leeuwen-
hoekiella marinoflava (Nedashkovskaya et al., 2005) was cultivated from the
seawater of the coast of Aberdeen. Maribacter forsetii (Barbeyron et al.,
2008) and ’Gramella forsetii’ (Bauer et al., 2006) were isolated from the
seawater of Helgoland, an island in the German Bight. Muricauda ruestrin-
gensis was isolated from the intertidal sediment near the former village of
Riistringen (Bruns et al., 2001). Tenacibaculum ovolyticum was isolated
from the epiflora of halibut eggs of Bergen, Norway (Hansen et al., 1992;
Suzuki et al., 2001). Tenacibaculum skagerrakense was isolated from the
seawater of Skagerrak, Denmark (Frette et al., 2004), and Cellulophaga fu-
cicola from the brown algae Fucus of Hirsholm island, Denmark (Johansen
et al., 1999).

The aim of our study was a collection of phylogenetically diverse Flavobac-
teriaceae from different locations and sample types of the German Bight
of the North Sea. We explored improved techniques to isolate marine
Flavobacteria using suitable medium components. A PCR with a Flavobac-
teria- Cytophagia specific primer for the 165 TRNA gene enabled a fast iden-

tification of Flavobacteria colonies.

2.3 Material and methods

Sampling
Samples were collected with Niskin bottles, 20 pm- or 80 pm-plankton
nets, sterile syringes or tubes at Helgoland, Harlesiel, Janssand and the

sites Konigshafen, Hausstrand/List and Weststrand on Sylt (suppl. Tab.
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2.51 on page 86). Samples were stored at in situ temperature, transported

to the laboratory within one to three hours and directly processed.

Medium preparation

Artificial seawater (ASW) and all media were prepared with sterile filtered
(0.2 pm polycarbonate filter) ultra pure water (Aquintus system, membra-
Pure, Germany) with a resistivity of 18.3 M{2 m. For dilutions and washing
steps, ASW was prepared following the recipe of Widdel and Bak (1992)
as described by Winkelmann and Harder (2009) (see suppl. on page 109).
Basal salts: 26.37 g NaCl, 5.67 g MgCl, - 6 H,0, 6.8 g MgSO, - 7H,0,0.19 g
NaHCO,, 1.47 g CaCl, - 2H,0, 0.72 g KCI, 0.10 g KBr, 0.02 g H3BO,, 0.02 g
SrCl, and 0.003 g NaF were dissolved in 1 L water. After autoclavation at
121 °C for 25 min and cooling, the ASW was slowly adjusted to pH 7.5 with
autoclaved 1 M NaOH or 1 M HCI. Autoclaved water was used to replace
the evaporated water. The ASW had a salinity of 34%¢ S, comparable to
the euhaline (> 30%o S) sampling sites. ZoBell (1941; 1946) suggested for
the cultivation of most marine bacteria the marine medium 2216 with yeast
extract (=2216E), which is nowadays sold as marine agar 2216. It was
prepared following the manufacturer’s instructions (Difco Laboratories, De-
troit, USA). The evaporated water was replaced by autoclaved water. Other
solid media with defined carbon sources required the preparation of twofold
concentrated ASW and a purification of bacto agar (Difco Laboratories, De-
troit, USA). Agar (18 g L™1) was washed three times with 700 mL ultra pure
water, to remove soluble substances that may inhibit bacterial growth (Wid-
del and Bak, 1992; Janssen et al., 2002). Solid HEPES (50 mM) and 500 mL
twofold ASW were added to the agar suspension. After autoclavation, the
medium was temperated at 55 °C and supplemented with 5 mL NH,Cl
(50 g L1, autoclaved), 10 mL KH,PO, (50 g L', autoclaved), 2 mL trace
element solution (per L: FeSO, - 7H,0, 2.1 g; Na,—EDTA, 5.2 g; H;BOs,
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30 mg; MnCl, - 4 H,0, 100 mg; CoCl, - 6 H,O, 190 mg; NiCl, - 6 H,O, 24 mg;
CuCl, - 2H,0, 10 mg; ZnSO, - 7H,0O, 144 mg; Na,MoO, - 2H,0, 36 mg;
pH adjusted to 6.0 with 5 M NaOH (Pfennig et al., 1981)), and 0.7 mL
SeW solution (Widdel and Bak, 1992). Carbon sources for the SYL media
were 2 g L1 of yeast extract, peptone tryptone, casamino acids, glucose,
cellobiose, N-acetylglucosamine, xylose, galactose, malate, arabinaose or
rhamnose, for the HAR medium 0.3 g L™ of casamino acids and 0.5 g L™!
of glucose, xylose and N-acetylglucosamine, and for the HaHa medium
0.5 g L1 of yeast extract, peptone tryptone, casamino acids, glucose, and
cellobiose. The SYL media received per liter 1 mL 7-vitamin solution
(Winkelmann and Harder, 2009), 1 mL vitamin By solution (Widdel and
Bak, 1992), 1 mL thiamine solution (Winkelmann and Harder, 2009), and
1 mL riboflavin solution (Winkelmann and Harder, 2009). The pH was
slowly adjusted to 7.5 with autoclaved 1 M NaOH. Evaporated water was

replaced with autoclaved water, before the plates were poured.

Isolation and cultivation

To enrich sediment-attached bacteria, 5 mL of the sediment from Harlesiel
were sampled with a sterile cut-off syringe. The sediment was washed
successively five times with 40 mL sterile artificial seawater in a 50 mlL
polypropylene tube; resulting in approximately 5.5 x 10* cells mL~! sedi-
ment. Sediment was allowed to settle for 30 minutes and supernatant was
decanted. The washed sediment was incubated in HAR liquid medium at
25 °C for 24 h. The sediment was mixed with the medium in an overhead
rotator at 25 rpm (Reax 2, Heidolph, Schwabach, Germany). The next day,
the sediment was washed five times with artificial seawater (40 mL) and
afterward incubated for 48 h and 96 h in HAR liquid medium. The super-
natant was decanted and collected in a fresh, sterile 50 mL polypropylene

tube. Samples of the sediment or of the supernatant were incubated on solid
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HAR medium. Kanamycin was reported to select for Flavobacteria (Flint,
1985). Surface intertidal sediments from Konigshafen of Sylt, Janssand
or Harlesiel were incubated on SYL agar, optionally supplemented with
50 pg mL~! kanamycin (Flint, 1985) and incubated at 25 °C for 3-4 weeks.
For inoculation, seawater aliquots were spread on solid agar plates using
sterile glass beads and sediment was spread on agar plates with an inocu-
lating loop. Algae were chopped and washed with sterile artificial seawater.
Animal specimens were washed with seawater and sterile artificial seawater.
The 96-pin replicator enabled a transfer of 1 ul. per pin on 96 defined
positions on a 150mm Petri dish with solid agar (Winkelmann and Harder,
2009). HAR and HaHa agar plates were incubated at 11 °C and SYL agar
plates at room temperature (22 °C) for at least two months. Single colonies
were examined and three times transferred to new plates to obtain pure
strains. Colonies were characterized by phenotypic characteristics as well
as Flavobacteria-Cytophagia specific 16S rRNA gene amplification and se-
quence analysis. Strains were maintained as viable cultures on 2216 marine
agar or on HaHa agar plates at +4 °C and also cryopreserved at —80 °C,

frozen within artificial seawater supplemented with 30% (v/v) glycerol.

16S rRNA gene analysis

Two protocols were applied to release DNA from cells. A tiny amount of a
colony was dissolved from a sterile wooden toothpick in 20 ul. PCR water.
After three freeze/thaw cycles (-20 °C / +4 °C), one microliter served as
PCR template. Alternatively, the smallest separable part of the colony was
squashed in 100 uL. PCR water and lysed by three freeze/thaw cycles. The
frozen sample finally received 100 pul. PCR water and was thawed with-
out mixing. Ten microliters of supernatant served as PCR template. The
165 TRNA gene was amplified with the general bacterial primers GM3F
(5" -AGA GTT TGA TYM TGG CTC AG- 3’) (positions 8-27 according
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to Escherichia coli numbering) and 907R (5" -CCG TCA ATT CCT TTR
AGT TT- 3") (Muyzer et al., 1995) as well as with the primers GM3F and
CF1489R. The Flavobacteria-Cytophagia specific reverse primer CF1489R
(5" -TAC CTT GTT ACG ACT TAG C- 3’, positions 1489-1507) was de-
signed and validated with the ARB software (Ludwig et al., 2004) on the
dataset SILVA refl08_NR99 (Pruesse et al., 2007) and with SILVA Test-
Prime (Klindworth et al., 2012). PCR amplifications were performed in
25 pl with 96 °C for 4 min, 35 cycles of 96 °C for 1 min, 55 or 62 °C for
1 min —for primer pairs GM3F, 907R and GM3F, CF1489R, respectively—,
72 °C for 3 minutes and a final elongation at 72 °C for 10 min. The sequenc-
ing reaction applied the ABI Dye Terminator technology and an Applied
Biosystems 3130xl DNAsequencer (Applied Biosystems). As an excep-
tion to standard conditions, GM3F-CF1489R amplicons were sequenced
with an elongation temperature of 62 °C, the optimal annealing temper-
ature of CF1489R. The 16S rRNA gene sequences were analyzed with
Applied Biosystems Sequencing Analysis 5.2 (Applied Biosystems, Foster
City, USA) and assembled with Sequencer 4.6 (Gene codes, Ann Arbor,
MI). The initial phylogenetic affiliation was assigned using the Riboso-
mal Database Project (Cole et al., 2009). After alignment of sequences
in ARB, evolutionary distances were calculated by the method of Jukes
and Cantor (1969) and a phylogenetic consensus tree was constructed with
neighbour-joining (Saitou and Nei, 1987) using a 0% and 40% base fre-
quency filter in ARB. The 16S rRNA gene sequences were deposited under
Acc.No. JX854056 — JX&854433.
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Phenotypic characterization

The bathochromic shift test with 20% (w/v) KOH was performed to detect
flexirubin type pigments (Fautz and Reichenbach, 1980) (suppl. Fig. 2.55).
Cell shapes were visualized with phase contrast microscopy. Shape and

color of colonies on the agar plate were visualized with a binocular.

2.4 Results and Discussion

We isolated 375 strains affiliating with Flavobacteriaceae from all samples
investigated: seawater of Helgoland, sediment of Harlesiel and Janssand,
and seawater, sediment and its porewater, phytoplankton, seaweed and an-
imal specimens of Sylt in the German Bight. The affiliation was based on
the current nomenclature of Flavobacteriaceae (suppl. Tab. 2.52). A novel
species is defined by a 16S rRNA gene sequence identity between 95.0%
and 98.7% (suppl. Tab. 2.S3), and a novel genus is defined as < 95.0%
16S rRNA gene sequence identity with validly described Flavobacteriaceae
(suppl. Tab. 2.54) (Stackebrandt and Ebers, 2006; Yarza et al., 2010). The
strains represented 7 novel genera, 42 novel species, and 37 validated species,
including four species previously isolated from the North Sea; "Gramella
forsetit” (Bauer et al., 2006), Maribacter forsetii (Barbeyron et al., 2008),
Muricauda ruestringensis (Bruns et al., 2001) and Cellulophaga fucicola
(Johansen et al., 1999). Detailed information on the strains is presented in
Fig. 2.1 and suppl. Tab. 2.53 to 2.54 on pages 92-102.

Selection criteria for isolation were initially the yellow colony color and
a short rod-shaped to filamentous cell morphology. These selection cri-
teria yielded a bias towards strains of the genera Arenibacter, Cellu-
lophaga and Maribacter (suppl. Fig. 2.52). A color-independent screen
for the presence of Flavobacteria in colonies was developed with the

Flavobacteria- Cytophagia specific reverse primer CF1489R. This primer
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covered 86% of all Bacteroidetes sequences present the database SILVA
refl08_ZNR99. The new primer CF1489R amplified in combination with
the Bacteria-forward primer GM3F at 62 °C exclusively a nearly full
length 16S rRNA gene of Flavobacteria or Cytophagia. The Bacteria
specific primer GM3F and 907R revealed the presence of Actinobacte-
ria, Firmicutes, Alphaproteobacteria and Gammaproteobacteria among the
non-Flavobacteria- Cytophagia colonies. Thus, for aerobic marine samples
the new primer is highly specific for Flavobacteria, Sphingobacteria and
Cytophagia. Among the non-intensive yellow colonies detected as Flavobac-
teria, strains of Zunongwangia, 30 of 42 novel species, and 6 of 7 novel

candidate genera were detected.

Variations in media and cultivation conditions

All strains were cultured as chemoheterotrophic bacteria on (i) ZoBell’s
2216 marine agar or (ii) a defined artificial seawater medium supplemented
with ammonium, phosphate, trace elements and as carbon and energy
source with 2 g L' of complex carbon sources (yeast extract, peptone,
casamino acids), defined carbohydrates (glucose, galactose, rhamnose, xy-
lose, cellobiose, malate, or N-acetylglucosamine), or a mixture of both.
HaHa medium was more suitable than marine agar 2216, partly because
colonies of Vibrio, Alteromonas and Pseudoalteromonas were very large on
2216 and covered small adjacent colonies, but rarely formed colonies on

HaHa medium. This may be due to the composition of the HaHa medium.

Figure 2.1 (facing page) Neighbour joining tree of Flavobacteria, based on nearly-complete 16S rRNA
gene sequences (> 1100 bp) with parsimony addition of partial 16S rRNA gene sequences (< 1100 bp).
Isolated strains originated from Harlesiel (Har), Helgoland (Hel), Janssand (Jan) or Sylt (Syl) and
from seawater (~), sediment (=), surfaces of animals (A), seaweed (S) or phytoplankton (P). The
number preceding the bracket indicates the total number of species in the genus represented by isolated
strains. The numbers in the round and square brackets indicate the number of strains affiliated to
each species in the branch, separated by a comma. Square brackets indicate strains first identified
by the Flavobacteria- Cytophagia specific PCR. Scalebar represents 10 nucleotide substitutions per 100
nucleotides.
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Pseudozobellia thermophila KMM 3531, 1400
MAR_2009_75, 727 (1) cand. genus A Syl P
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2[1,6] Sediminicola Har Syl =
Aequorivita antarctica SW49T, 1422
Vitellibacter vladivostokensis KMM3516, 1399
_|: Marixanthomonas ophiurae KMM 3046, 1397
Hel_I_48, 1242 [1] cand. genus B Hel ~
2 (3)[1] Leeuwenhoekiella Syl = P
| Gramella
6(8,10) [1,4,13,15] Har Hel Jan Syl ~=
4 (1,2) [1,2] Salegentibacter Har Hel Syl ~=
2[1,15] Zunongwangia Syl ~=
1(1) Mesonia Syl P
3[2,24] Gillisia Hel Syl ~=
1(13) Olleya Har Hel Syl ~= S
2[1,11 Lacinutrix Har Hel ~=
Mesoflavibacter zeaxanthinifaciens TD-ZX30, 1425
1[1] Psychroserpens Hel ~
MAR_2010_119, 1351 [14] Syl ~=
1 | Gelidibacter algens ACAM 536T, 1473 cand. genus C
Subsaxibacter broadyi P7, 1366
Subsaximicrobium wynnwilliamsii G#7, 1419
2 (1) [1] Winogradskyella Har Syl =A
Sediminibacter furfurosus MAOS-86, 1444 _
MAR_2010_188, 1214 [1] cand. genus D Syl =
Hel_|_10, 1216 [2] cand. genus E Hel ~
1(2) Algibacter Har Syl = S
Snuella lapsa JC2132, 1421
. Yeosuana aromativorans GW1-1, 1469
Meridianimaribacter flavus NH57N, 1470 Syl -
M MAR_2010_118, 1268 [1] cand. genus F
— MAR_2010_10, 1372 [1] cand. genus G Syl =
——17 1[1] Ulvibacter Syl =
|:l ? 3(2,3) [2] Aquimarina Syl =
3(3)[1,3] Krokinobacter Hel Syt~ S
7(1,3,4)[1,1,1,2]  Tenacibaculum Har Syl = SP
3[1,1,11  Polaribacter Hel Syl ~=
1[19] Lutibacter Har =
3[1,1,1  Flavobacterium Har =
L——1{72[1,1 Nonlabens Hel ~
— [/ 3(1,1,2) Cyclobacterium Jan Syl =
T 1[1] Reichenbachiella | CYtoPhagia Syl =
L————171(2) Lewinella |Sphingobacteria Jan =

0.10
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For a spring sample with a temperature of 6.4 °C, we performed the isola-
tion and cultivation at 11 °C. This experiment yielded strains representing
11 of 42 novel Flavobacteriaceae species and 3 of 7 novel candidate genera in
our study, but only one of 37 known species. Even though the environment
reaches mesophilic temperatures (20 °C) during the year, the observed shift
towards novel species observed in cultivations at low temperature, near the
in situ temperature, highlights the temperature as an important variable in

isolation experiments.

Inoculation on plates was performed with traditional spreading tech-
niques. Alternatively, we spotted one microliter on the plate using a 96-pin
replicator (Winkelmann and Harder, 2009). Twofold dilution series yielded
plates with high numbers of single colonies per inoculation spot. To de-
termine the time for colony formation, a spring pelagic water sample from
Helgoland with an in situ temperature of 6.4 °C was diluted and 1152 spots
of 0.1 pL original seawater sample were observed for growth at 12 °C for
300 days (Tab. 2.1). The CFU increased during the incubation time, compa-
rable to a growth curve. After a lag phase of 10 days, the number of colony
forming units (CFU) exponentially increased till day 23 to 153 CFU and ac-
cumulated to 208 CFU at day 110. Besides Actinobacteria (e.g. Rhodococ-
cus, Nocardioides), Alphaproteobacteria (Erythrobacter, Sulfitobacter and
Brevundimonas) and Gammaproteobacteria (e.g. Marinobacter, Pseudoal-
teromonas), we obtained 88 yellow-orange to brownish pigmented colonies
and among them 43 Flavobacteriaceae, correspondingly 273 CFU per mL
seawater. The first Flavobacteriaceae colonies were strains of Krokinobac-
ter, Croceibacter, Maribacter and Salegentibacter. Also strains affiliating
with Gillisia, Stenothermobacter, Arenibacter and Marixanthimonas re-
quired less than 20 days to form visible colonies. In contrast, strains of
Cellulophaga, Flavobacterium and Nonlabens required at least 20 days for

colony formation (Fig. 2.2). Several strains of novel species required long
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incubation times of several weeks, whereas over 80 percent of viable cells
needed only three weeks to grow to visible colonies. The incubation time

seems to be an important factor for the cultivation of novel species.

300 - Flavobacteriaceae
genera

B cand. gen. nov. E

XN Nonlabens

B Flavobacterium

Cellulophaga

= Gillisia

[ Stenothermobacter

Marixanthomonas

Arenibacter

B Maribacter

M Olleya

B Krokinobacter
B Salegentibacter
B cand. gen. nov. B
[0 Croceibacter

250 -

200 -

150

100+

(6)]
o
1

Flavobacteriaceae CFU per mL seawater

o

-~

010

Time (d)

Figure 2.2 Colony formation (CFU per mL seawater) of strains affiliating with Flavobac-
teriaceae genera. The seawater of Helgoland Roads of 20 April 2010 was incubated on
HaHa medium at 11 °C for 300 days.

Ken P. Flint (1985) suggested kanamycin as effective agent to enhance the
culturability of 'Flavobacterium’ species by growth inhibition of other bacte-
ria. Plates with 2 g L™! casamino acids were supplemented with 50 g mL~!
kanamycin and inoculated with phytoplankton or sediment samples. In
comparison with control plates, the number of white colonies was reduced
by 50% on average, whereas the number of yellow colonies remained nearly
constant (suppl. Fig. 2.53). The Flavobacteria- Cytophagia specific PCR was
positive for 90% of the yellow colonies. This experiment confirmed the ob-
servations of Flint (1985) and the resistance of many Flavobacteria to the
aminoglycoside antibiotic kanamycin. Strains obtained from kanamycin-
containing media affiliated with Arenibacter (1 strain), Cellulophaga (7),
Gramella (6), Kriegella (1), Lutibacter (15), Maribacter (1), Mesonia (1),
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Table 2.1 Colony formation (CFU per milliliter seawater) of a Helgoland spring seawater
sample (20 April 2010) on HaHa medium incubated at 11 °C.

Time (days) 15 20 23 34 38 44 52 60 100 110 300
Total CFU 227 533 1020 1100 1160 1213 1267 1320 1347 1387 1387
Pigmented CFU 167 333 507 547 567 573 587 587 587 587 587
Flavobacteria CFU 60 160 260 267 267 267 273 273 273 273 273

Muricauda (2), Saligentibacter (1), Sediminicola (1), Tenacibaculum (2),
Winogradskyella (1), and Zobellia (9). Thus, a selective isolation of certain
genera was not observed by the application of kanamycin.

Biogeography and culturability

The genera Cellulophaga, Maribacter, Gramella, Arenibacter, Lutibacter,
Zunongwangia, Olleya, Zobellia, and Muricauda were isolated frequently,
with more than ten strains per species. Zunongwangia profunda (15 strains)
and Gramella echinicola (13 strains) were exclusively isolated from one
sampling site, in this case, from the porewater 1.5 m below the surface
of West Beach, Sylt. Strains affiliating with Lutibacter litoralis (19 strains)
or Maribacter stanieri (11 strains) were only isolated from the sediment of
Harlesiel or the seawater of Helgoland, respectively. All other strains affili-
ating with one species —as defined by the 16S rRNA gene sequence identity—
were isolated from two or more sampling sites and types. This reflects ei-
ther the low resolution of the 98.7% 16S rRNA gene sequence identity used
as boundary or the lack of a biogeography of many Flavobacteria in the
German Bight.

In our study, the culturability of Flavobacteria from the North Sea on
solid media is still approximately one colony forming unit among thousand
flavobacterial cells. We cultivated strains of 26 known Flavobacteriaceae
genera. Previous studies had isolated strains of seven genera, Flavobac-
tertum, Gillisia, Krokinobacter, Nonlabens, Polaribacter, Tenacibaculum
and Winogradskyella (Eilers et al., 2000; Teske et al., 2000; O’Sullivan
et al., 2006; Wichels et al., 2006; Stevens et al., 2009; Riedel et al., 2010),
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and corresponding 165 TRNA gene sequences were detected in cultivation
independent studies (Zubkov et al., 2001; Alonso et al., 2007; Sapp et al.,
2007; Rink et al., 2008; Teeling et al., 2012). Furthermore, strains of
the genera Algibacter, Aquimarina, Arenibacter, Cellulophaga, Gramella,
Leeuwenhoekiella, Maribacter and Zobellia had been cultivated, but were
not present in cultivation independent studies (Eilers et al., 2000; Grossart
et al., 2004; Stevens et al., 2005; Bauer et al., 2006; O’Sullivan et al.,
2006; Wichels et al., 2006; Stevens et al., 2009; Salatin et al., 2010). The
16S TRNA gene sequences of Marizanthimonas and Psychroserpens were
found in cultivation independent studies only (Musat et al., 2006; Brandt
et al., 2010). These observations showed that we have broadened the di-
versity of culturable Flavobacteria from the North Sea (Eilers et al., 2000;
Stevens et al., 2009) and, in contrast to previous reports, a wide range of
Flavobacteria grew well on solid agar media, but many important taxa still

await cultivation.

Physiological and chemotazonomic observations

The known types of gliding motility were observed (Fig. 2.3): (i) spread-
ing as thin film or as waves (Cellulophaga, Tenacibaculum), (ii) an out-
wards push even around the colony (Leeuwenhoekiella, Polaribacter, Zobel-
lia) or (iii) an flame-like pattern (Aquimarina, Krokinobacter, Pseudozobel-
lia, Zobellia), and (iv) a rhizoid spreading along the streaking (Algibacter,
Gramella, Maribacter, Zeaxanthinibacter). For Krokinobacter spp., move-
ment by gliding was not determined, but putative gliding-related proteins
were encoded in the genome of Krokinobacter sp. 4H-3-7-5 (Klippel et al.,
2011). Strain SRO_11 affiliating with Krokinobacter eikastus glided on ma-
rine agar 2216.

Iridescence (Vukusic and Sambles, 2003; Doucet and Meadows, 2009;

Meadows et al., 2009) was briefly described among Flavobacteria
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(Bernardet, 2010; Kientz et al., 2012), but intensively for Cellulophaga
(Kientz et al., 2012). We observed iridescence in strains affiliated with the
genera Cellulophaga, Algibacter and Maribacter. Flexirubin-type pigments
(Fautz and Reichenbach, 1979) were detected in coherence with the species
description in strains affiliating with Agquimarina, Kriegella, and Zobel-
lia. Unexpectedly, strains MGE_SAT 544 1 and MAR _2010_101 among 31
strains of Arenibacter showed the bathochromic shift after KOH treatment.
In contrast, the Ulvibacter strain MAR_2010_11 had no flexirubin-type pig-
ment. Besides these exceptions, pigmentation, iridescence, gliding motility,
agar lysis, and flexirubin as chemical marker supported the taxonomy on

the species level.

Figure 2.3 Gliding modes among Flavobacteriaceae strains isolated from North Sea sam-
ples. Cultures of Cellulophaga produced a thin film on the agar surface (A, Cellu-
lophaga sp. RHA_28) or biofilm waves (B, Cellulophaga sp. MAR_2009 44). Cultures
of Gramella glided a little from the colony away along the streak (C, D, Gramella
sp. MAR_2010_21). Cultures of Zobellia pushed outwards from around the colony (E,
Zobellia sp. MAR_2009_186) or in a flame-like pattern (F, Zobellia sp. RHA_40) to new
areas of the medium.
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Zobellia, candidate genus A, Muricauda and Kriegella

Twenty-eight strains were isolated affiliating with three Zobellia spp.,
Z. uliginosa, Z. amurskyensis and Z. russellii. All strains were positive
for flexirubin-type pigments. Three strains of the species Z. russellii and
one strain of Z. wuliginosa lysed agar. Seven strains of all three species
showed gliding motility in a flame-like pattern or even around the colony
(Fig. 2.3). Ten strains affiliated with Muricauda ruestringensis. These
were flexirubin-type pigment negative and did not glide or lyse agar, except
for strain MAR_2009 54. Both strains of Kriegella were flexirubin-type
pigment positive, but showed no gliding. The strain MAR_2009 75 had a
16S rRNA gene sequence identity of 94.7% to the closest relative Pseudo-
zobellia thermophile, thus representing the candidate genus A. Iridescence,
agar lysis and flexirubin-type pigments were not observed. This strain was
isolated from phytoplankton of Sylt and showed a flame-like gliding pattern
on agar (Fig. 2.3).

Sediminicola, candidate genus B, and Leeuwenhoekiella

Seven strains isolated from sediment were assigned to Sediminicola luteus
and a novel Sediminicola sp.. No flexirubin-type pigments, gliding, agar
lysis and iridescence were observed. Four strains of two novel species of
Leeuwenhoekiella showed no flexirubin-type pigments, gliding, agar lysis
and iridescence, but strain SRO_13 exhibited gliding motility. One strain
isolated from the seawater of Helgoland had only a 90.4% 16S rRNA gene
sequence identity with its closest relative being Marixanthomonas ophiurae
and thus represents candidate genus B. Agar lysis, flexirubin-type pigments
or iridescence were not observed, but gliding cells were observed around

colonies.
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Maribacter

Fifty-seven strains were assigned to eight species within Maribacter, in-
cluding M. stanieri, M. dokdonensis, M. sedimenticola, and M. forsetii
(Barbeyron et al., 2008) —a species previously isolated from Helgoland—
and four novel species. Two strains of M. dokdonensis showed a glitter-like
iridescence on the surface of the colony and a gliding following the streaking

in a rhizoid spreading. Non of the strains produced flexirubin-like pigments.

Gramella

Thirty-two strains were isolated from sediment affiliating with G. echini-
cola, G. gaetbulicola, G. marina and a novel species of Gramella. Nineteen
strains were isolated from seawater and sediment affiliating with G. portivic-
toriae and 'G. forsetii’ (Bauer et al., 2006). Gliding was observed for three
strains which moved from the colony along the streak (Fig. 2.3). Irides-

cence, agar lysis and flexirubin-type pigments were not observed.

Arenibacter and Zeaxanthinbacter

Thirty-one strains were assigned to Arenibacter, including A. troitsensis,
A. palladensis, A. echinorum and two novel Arenibacter spp. Gliding, agar
lysis and iridescence were not observed. Among thirty-one strains, strains
MAR_2010_101 and MGE_SAT 544 1 were flexirubin-type pigments posi-
tive. Three strains affiliating with Zeaxanthinibacter enoshimensis did not
show iridescence, flexirubin-type pigments and agar lysis, but glided along

the streaking (Fig. 2.3).

Cellulophaga
Fifty-six strains of Cellulophaga were isolated from sediment, seawater,
biofilm, seaweed and animals of all sampling sites, and formed a mono-

phyletic branch of two distinct subgroups in the 16S rRNA gene tree as
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described by Bernardet (2010). In the first subgroup, 52 strains were af-
filiated with C. lytica or represented two novel Cellulophaga spp.. In the
second subgroup, four strains were affiliated with C. baltica, C. pacifica
or represented another novel Cellulophaga sp.. Gliding movement was ob-
served for C. lytica and Cellulophaga sp. mnov. 1 strains, with a faster
spreading on the agar plate than colony formation, resulting in a thin film
on the agar plate (Fig. 2.3). These cultures were isolated by serial dilution
in artificial seawater followed by a homogenous distribution on an agar
plate. Twelve strains of C. lytica and strain RHA_19 showed a glitter-like

iridescence.

Salegentibacter, Zunongwangia, Mesonia, and Gillisia

Seven strains were assigned to Salegentibacter mishustinae, S. salarius, and
two novel Salegentibacter spp.. Sixteen strains with a cell size of less than
1.5 pum and a faint yellow colony color were assigned to Zunongwangia
profunda and one novel Zunongwangia sp.. Mesonia algae was represented
by one strain. In Gillisia, 8 strains were affiliated with G. mutskevichiae,
G. myxillae or depicted a novel species of Gillisia. The strains of Salegen-
tibacter, Zunongwangia, Mesonia, and Gillisia were negative for flexirubin-

type pigments, iridescence, agar lysis and gliding.

Flavobacterium and Nonlabens

Three strains were isolated from sediment affiliating with three species of
Flavobacterium, F. gelidilacus, and two Flavobacterium sp. nov.. Two
strains isolated from seawater of Helgoland represented novel species of
the genus Nonlabens. Gliding, iridescence, agar lysis and flexirubin-type

pigments were not observed.
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Olleya, Lacinutriz, Psychroserpens and candidate genus C

Thirteen strains represented a novel species of Olleya, two strains were
assigned to Lacinutriz copepodicola and Lacinutriz sp. nov., and one strain
to a novel Psychroserpens sp.. Thirteen strains isolated from the porewater
1.5 m below the sand surface at the driftline at Sylt West Beach represented
the candidate genus C, with a 16S rRNA gene sequence identity of 94.0%
with Gelidibacter algens. The strains of Olleya, Lacinutriz, Psychroserpens,
and the candidate genus C were negative for flexirubin-type pigments, iri-

descence, agar lysis and gliding.

Winogradskyella, Algibacter and candidate genera D, E, F, and G

Four strains represented two novel Winogradskyella spp. and two novel
Algibacter spp.. Three strains were assigned to the candidate genera D and
E, with a 16S rRNA gene sequence identity of 94.0% and 91.4% to the next
relative Sediminibacter furfurosus, respectively. Two strains represented
the candidate genera F and G, with the next relative Meridianimaribac-
ter flavus with a 16S rRNA gene sequence identity of 94.7% and 95.0%,
respectively. Gliding, agar lysis, iridescence and flexirubin-type pigments
were not observed for strains of Winogradskyella and the candidate genera
D, E, F, and G. For Algibacter strains, iridescence and gliding along the
streaking (Fig. 2.3) was observed.

Ulvibacter, Aquimarina and Krokinobacter

One strain represented a novel species of Ulvibacter. This strain did not
produce flexirubin-type pigments, in contrast to the current description
of the genus Ulvibacter. Seven strains with more than 10 pm long cells
grouped into three species of Aquimarina, A. macrocephali and two novel
Aquimarina spp.. The flexirubin test was positive for strains of two novel

species of Aquimarina, but not for strains of A. macrocephali. Gliding



2.4. Results and Discussion 83

motility was observed for strains of A. macrocephali and A. sp. nov. II,
isolated from sediment, but not for strains of A. sp. nov. II, isolated from
seawater. Seven strains affiliated with Krokinobacter, including K. eikastus
and two novel Krokinobacter spp.. The strain SRO 199 performed a flame-
like gliding and for the strain SRO_18 agar lysis was observed.

Tenacibaculum, Polaribacter and Lutibacter

Thirteen strains were isolated from seawater, sediment, phytoplankton and
algae affiliating with Tenacibaculum gallaicum, T. litoreum, or presented
5 novel species of Tenacibaculum. Strains of T. gallaicum and T'. sp. nov. II
performed gliding which was faster than colony formation, resulting in a
thin film on the agar plate (Fig. 2.3). Three novel species of Polaribacter
were isolated. The strain Hell 85 performed gliding, even around the colony.
Nineteen strains from the sediment of Harlesiel were affiliated with Lutibac-
ter litoralis. In contrast to the cell size of less than 1.5 um of Polaribacter
and Lutibacter strains, the Tenacibaculum strains formed filaments of more

than 100 pm length.

Cytophagia and Sphingobacteria

An orange to brown colony color and rod-shaped cells characterized non-
motile strains affiliating to Reichenbachiella (family Flammeovirgaceae),
Lewinella (family Saprospiraceae) and Cyclobacterium (family Cyclobacte-

riaceae).

Conclusion and future perspectives

In this study we demonstrated the cultivation of marine Flavobacteriaceae
on agar plates from diverse habitats. A broad phylogenetic diversity was ob-
tained by different cultivation approaches for pelagic and benthic Flavobac-

teria, a Flavobacteria-Cytophagia specific PCR, and a suitable medium.
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This collection of Flavobacteriaceae from the German Bight of the North
Sea provides model organisms of marine aerobic heterotrophic bacteria and

will give access to a variety of carbohydrate active enzymes (Cantarel et al.,
2009; Teeling et al., 2012).
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Table 2.S2 Flavobacteriaceae genera with type strains, their environmental type (mar, marine; ter,
terrestrial; fre, freshwater; cli, clinical), relation to other organisms (FL, free living; S, saprophytic; P
parasitic), pigmentation (F-+, flexirubin type pigments; F- no flexirubin type pigments; C carotinoids;
Pig-, no pigmentation; nd, not determined), gliding movement (gl, gliding; d, gliding varies among
type strains), number of type strains in each genus (2006, listed in (Bernardet, 2010); 2012, listed in
(http://www.bacterio.cict.fr, 06.2012) (Euzéby, 1997); number of type strains with marine life style

(Sed, sediment; SW, seawater; S, saprophytic; P, parasitic), and reclassification as other genus (—).

Genus Type strain En- Rel. Isolation source Pig. Gl. 2006 2012 Sed SW S P
vir.

sea water, sea-ice
Aequorivita A. antarctica mar, FL, S algal, quartz stone C 4 5 0 3 1 0
ter subliths

Aestuariicola A. saemankumensis mar FL tidal flat sediment nd 0 1 1 0 0 0

sea water, alga,
marine sponge, sea
urchin, tidal flat
sediment

Aquimarina A. muelleri mar FL, S F+ gl 1 9 2 5 5 0

Awureicoccus A. marinus mar FL seawater C 1 1 0 1 0 0

L . sponge Axinella
Awureivirga A. marina mar FL, S &
verrucosa

soft coral, sea urchin,
& r
Bizionia B. paragorgiae mar FL, S s.eawa or, sea 1c.e C 5 8 0 4 4 0
brine, algae-feeding

amphipod

Cellulophaga C. lytica mar  FL, s  Peach m“;i’ sl‘eawater’ c g 5 7 2 2 3 0
algal

municipal wastewater,
Cloacibacterium C. normanense fre FL freshwater lake C 0 2
sediment

Corallibacter C. vietnamensis mar S coral Palythoa sp. nd gl 0 1 0 0 1 0
Croceibacter C. atlanticus mar FL, S sea water C 1 1 0 05 05 0
Dokdonia D. donghaensis mar FL sea water F- 1 1 0 1 0o 0

Continued on next page
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Table 2.S2 (continued)

Rel. Isolation source Pig. Gl. 2006 2012 Sed SW S P

o
g

Genus Type strain

s
=

meningitis and
septicaemia, midgut

el
N
w

Elizabethkingia E. meningoseptica cli, FL, S,

of the mosquito, Mir
ter P

space station

epilithon-covered
Epilithonimonas E. tenax fre FL, S stones, raw cow’s F+ 1 2
milk

EBuzebyella E. saccharophila seawater

seafloor basalt, depth
of 1300 m

Flaviramulus F. basaltis mar FL C 0 1 1 0 0 0

deep well, freshwater,
freshwater sediments,
freshwater microbial
mats, surface of
freshwater animals,
wastewater, soil,

Flavobacterium F. aquatile clin, FL, S, rhizosphere, gut of C, d 35 84 3 2 3 1
mar, P the earthworm, F+
fre, insects, sea ice,
ter glacier ice, maine

sediment, marine
algae, clinical animal
speciments of fish

Fulvibacter F. tottoriensis mar FL sediment C 0 1 1 0 0 0

Gaetbulimicrobium G. brevivitae —> Agquimarina brevivitae 1 0

Gangjinia G. marincola FL coastal seawater

microbial mats,

ot
(=)
(=)
Jun
o
(=)

Gillisia G. limnaea mar FL, S sea-ice algae, marine F-
sponge, seawater

sea urchin, marine
sediment, tidal flat

03
—
M
'
N
o
N
(=]

Gramella G. echinicola mar FL, S

&)
'
=}
=
=}
[
[=}
=}

Jejuia J. pallidilutea mar FL seawater

o
[=}

Kazistella K. koreensts — Chryseobacterium koreense

Kriegella K. aquimaris mar FL, S seawater F+ gl 0 1 0 1 0 0

1 id d
Lacinutriz L. copepodicola mar S ca ar?m copepod,
marine red algae

Continued on next page
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Table 2.S2 (continued)

Rel. Isolation source Pig. Gl. 2006 2012 Sed SW S P

o3
7

Genus Type strain

s
i<

sponge Clathria

B8
o
g
w0
'
o
—
(=)
o
—
(=)

Leptobacterium L. flavescens h .
(Microciona) eurypa

B
)
1
o
=

Lutibacter L. litoralis tidal flat sediment C 0 4 4 0 0 0

Arctic marine
sediment, Antarctic
Maribacter M. sedimenticola mar FL, S green alga, red alga, F- gl 5 10 2 4 4 0
sea water, North Sea
water (Helgoland)

eined rapa whelk
Maritimimonas M. rapanae mar S v pa w
(Rapana venosa)

Meridianimaribacter M. flavus mar FL sandy sediment F- gl 0 1 1 0 0o 0

1;
Mesonia M. algae mar FL, S seawater, green alga, F- 1 3 0 1 2 0

seaweed

Muriicola M. jejuensis FL seawater C 0 1 0 1 0o 0

microbial mat,

t di t
Nonlabens N. tegetincola mar, FL seawa e.r, sediment, C, d 1 7 3 1 1 0
subtropical estuary,

fre F+
faeces of the mollusc

avian respirator;
Ornithobacterium O. rhinotracheale cli P, S N pt ¥
rac

green alga
Pibocella P. ponti mar S Acrosiphonia F- gl 0 1 0 0 1 0
sonderi

surface seawater
Gangjin bay, Korea;
Sea of Japan, Russia;
Polaribacter P. filamentus mar FL Dokdo, Korea, C d 4 7 0 7 0 0
seawater in pack ice,
Deadhorse Alaska,
sea ice, Antarctica

green alga Ulva

Pseudozobellia P. thermophila mar S F+ gl 0 1 0 0 1 0

fenestrata

seashore at
. Gangneung, Korea;
Psychroserpens P. burtonensis mar FL, S A )
Antarctic lacustrine

and sea ice habitats

Continued on next page
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Table 2.S2 (continued)

Rel. Isolation source Pig. Gl. 2006 2012 Sed SW S P

o
g

Genus Type strain

s
=

seawater Sargasso

Q
-
V)
-
-
o
(=]

Robiginitalea R. biformata mar FL Sea, Atlantic Ocean,
marine sediment

salt lake and soil,

Q
a
[=)
o
w
(=)
o
[=)

Salinimicrobium S. catena mar, FL sediment and tidal

ter flat sediment

el
v

[=)
—
-
[=)
o
[=)

Sediminibacter S. furfurosus mar FL sediment

Sejongia S. antarctica —— Chryseobacterium antarcticum 2 0

Snuella S. lapsa mar FL tidal flat sediment

el
'
®
2
=}
—
—
=}
(=}
=}

Spongiibacterium S. flavum mar S marine sponge F- 0 1 0 0 1 0

Halichondria oshoro

Stenothermobacter S. spongiae —— Nonlabens spongiae 1 0

cyanobacterial
biofilms attached to
Subsaximicrobium S. wynnwilliamsii mar FL, S the undersides of F- gl 2 2 2 0 0 0

partially buried
quartz stones

diseased red sea
bream Fingerling and

sole, sole, sponge,

turbot, sea bass,
Tenacibaculum T. maritimum mar FL, S, bryozoan, sea C, gl 6 18 3 3 11 1
anemone, green alga,
Pacific oyster, epiflora
of halibut eggs, tidal
flat sediment, coastal

seawater

holothurian, tidal-flat

' jous 1 2 1 0 1 0
sediment

Vitellibacter V. vladivostokensis mar FL, S

Weeksella W. wvirosa cli P, S human. clinical nd 1 1
specimens

aesturine sediment,

b BaP
Yeosuana Y. aromativorans ter, FL enzofalpyrene (BaP) C 0 1
fre and pyrene

enrichment culture

Zhouia Z. amylolytica mar FL sediment nd 0 1 1 0 0 0

Continued on next page
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Table 2.S2 (continued)

Genus Type strain En- Rel. Isolation source Pig. Gl. 2006 2012 Sed SW S P
vir.

Zunongwangia Z. profunda mar FL deep-sea sediment F- 0 1 1 0 0 0
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Table 2.S3 Strains of this study within the genera and the 16S rRNA sequence identity with the
next relative type strain (in %). The strains were subsequently isolated on HaHa agar, 2216E agar or
SYL agar (ARA arabinose, CAA casamino acids, CEL cellobiose, GAL galactose, GLU glucose, MAL
malate, NAG N-acetylglucosamine, RAM rhamnose, XYL xylose) and physiological characteristics were
observed (KanaR, kanamycin resistence; F, flexirubin type pigments; Ir, iridescence; gl, gliding motility;
ly, agar lysis). All strains isolated on HaHa medium or enriched (enrich) were initially identified
as Flavobacteriaceae by PCR screen. ANT, Antarctica; PO, Pacific Ocean; HK, Hong Kong; GER,
Germany; DK, Denmark; KR, Korea

Cultivation Physiology Sampling

Kanal®
Flexirubin
Iridescence
Gliding
Lysis

Name Method Medium

Type Site

Maribacter stanieri

M. stanieri KMM 6046 (>99.1%) - - gl - Ulva Dokdo Island, KR

Hel 1.7 96 pin HaHa - gl surface seawater Helgoland, Kabeltonne
Hel I 14 96 pin HaHa - gl surface seawater Helgoland, Kabeltonne
Hel I 22 96 pin HaHa - gl surface seawater Helgoland, Kabeltonne
Hel I 23 96 pin HaHa - gl surface seawater Helgoland, Kabeltonne
Hel I 25 96 pin HaHa - gl surface seawater Helgoland, Kabeltonne
Hel I 27 96 pin HaHa - gl surface seawater Helgoland, Kabeltonne
Hel I 54 96 pin HaHa - gl surface seawater Helgoland, Kabeltonne
Hel 1 57 96 pin HaHa - gl surface seawater Helgoland, Kabeltonne
Hel I 82 96 pin HaHa - gl surface seawater Helgoland, Kabeltonne
Hel I 87 96 pin HaHa - gl surface seawater Helgoland, Kabeltonne
Hel 1 95 96 pin HaHa - gl surface seawater Helgoland, Kabeltonne

Maribacter sedimenticola

M. sedimenticola CCUG 47098 (>99.3%) - - - ly bottom sediment Dokdo Island, KR
MAR_2009_72 plating GLU - 20 pm phytoplank. Sylt, List

SRO_238 plating RAM - intertidal sediment Sylt, Konigshafen
SRO_412 plating XYL - intertidal sediment Sylt, Kénigshafen

Continued on next page
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Table 2.S3 (continued)

Cultivation Physiology Sampling
£ ¢
2
= E ¢ ¥
= Y
5 5 3 2 B
L2 = 5
Name Method Medium ¥ B 5 U A Type Site

Maribacter sp. II

M. forsetii KT02ds18-6 (95-97%) - - gl - surface seawater Helgoland Island, GER

TBL_80 plating ARA - intertidal sediment Sylt, Kénigshafen
TBL_87_140 plating MAL - intertidal sediment Sylt, Kénigshafen
TBL_105 plating CAA - intertidal sediment Sylt, Konigshafen
TBL_20 plating NAG - gl ly intertidal sediment Janssand, MF

Maribacter sp. IV
M. antarcticus CL-AP4 (98%) - - - -
MGE_SAT 274 enrichm 2216E -

Southern Ocean, ANT
Harlesiel

Pyramimonas
intertidal sediment

Zobellia amurskyensis

Z. amurskyensis KMM 3526 (>99.4%) + - gl ly surface seawater Amursky Bay, KR
MAR._2009 230 plating CEL + gl 80 pm phytoplank. Sylt, List

SRO_20 plating RAM + intertidal sediment Sylt, List

TBL_82 395 plating ARA + intertidal sediment Sylt, Konigshafen
TBL_85_137 plating MAL + intertidal sediment Sylt, Kénigshafen
TBL_88 plating CAA + intertidal sediment Sylt, Konigshafen
TBL_104 plating CAA + intertidal sediment Sylt, Kénigshafen
TBL_113 plating MAL + intertidal sediment Sylt, Kénigshafen
MGE_SAT _695_2 enrichm 2216E —+ intertidal sediment Harlesiel

TBL_90 plating NAG + intertidal sediment Janssand,UF

Continued on next page
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Table 2.S3 (continued)

Cultivation Physiology Sampling
ER-
o)
© Z g ¥
[ - o - "(e
g 8 2 2 1%
Name Method Medium M K &8 U A Type Site
Kriegella aquimaris
K. aquimaris KMM 3665 (>98.7%) + - gl - surface seawater Amursky Bay, KR
TBL_112_391 plating MAL k  + intertidal sediment Sylt, Konigshafen
TBL_69 plating MAL + intertidal sediment Sylt, Hausstrand

Muricauda sp. 1

M. flavescens SW-62 (96.3%)
96 pin

MAR _2010_75

Arenibacter palladensis
A. palladensis CIP 108849 (>99.3%)

MAR_2009_79
SRO_172
SRO_174
SRO_198
SRO_240

Arenibacter sp. 1

A. nanhaiticus NH36A (93.7-94.8%)

plating
plating
plating
plating
plating

HaHa

GLU
XYL
XYL
GAL
RAM

Ir

gl

surface seawater

surface seawater

Ulva

20 pm phytoplank.
intertidal sediment
intertidal sediment
intertidal sediment
intertidal sediment

sediment

Hwajinpo Beach, KR

Sylt, List

Pallada Bay, KR
Sylt, List

Sylt, Konigshafen
Sylt, Konigshafen
Sylt, Hausstrand
Sylt, Hausstrand

South China Sea

SRO 5 plating 2216E - intertidal sediment Sylt, Weststrand
SRO_202 plating 2216E - intertidal sediment Sylt, Weststrand
SRO_310 plating XYL - intertidal sediment Sylt, Hausstrand
SRO_366 plating GAL - intertidal sediment Sylt, Hausstrand

Continued on next page
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Table 2.S3 (continued)

Cultivation Physiology Sampling
£ ¢
2
= E ¢ ¥
ER -

L2 = 5
Name Method Medium ¥ B 5 U A Type Site
A thinib ter hi 818
Z. enoshimensis TD-ZE3 (>99.1%) - - gl - surface seawater Enoshima Island, Japan
MAR _2010_32 96 pin HaHa - sediment porewater Sylt, West beach
MAR_2010_153 96 pin HaHa - gl sediment porewater Sylt, West beach
MAR_2010_194 96 pin HaHa - sediment porewater Sylt, West beach

Continued on next page
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Table 2.S3 (continued)

Cultivation Physiology Sampling
ER-
o)
© Z g ¥
g g o 5 2
g 8 2 2 1%
Name Method Medium M K &8 U A Type Site
Cellulophaga sp. 1T
C. lytica ATCC 23178 (98.7%) - Ir gl ly beach mud Limon, Costa Rica
RHA_19 plating CAA - Ir gl Polysiphonia lanosa Sylt, List, Beach
RHA 20 plating 2216E - Starfish surface Sylt, List, Beach

Cellulophaga baltica
C. baltica NN015840 (99.8%) - Ir gl ly Fucus Bornholm Island, DK
MAR_2009_160_2 plating NAG - Crab surface Sylt, List, Beach

Cellulophaga sp. III
C. pacifica KMM 3664 (>99.7%) - Ir gl ly surface seawater Amursky Bay, KR
Hel I 12 96 pin HaHa - intertidal sediment Helgoland, Kabeltonne

Sediminicola sp. I
S. luteus CNI-3 (98.4%) - - - - marine sediment Sea of Japan, PO
MAR_2010_190 98 pin HaHa - sediment porewater Sylt, West beach

Leeuwenhoekiella sp. II
L. aequorea CCUG 50091 (96.8—97.5%) - - gl - surface seawater Gunnerus Ridge, ANT
MAR_2010_192 96 pin HaHa - sediment porewater Sylt, West beach

Gramella marina

G. marina KMM 6048 (>98.7%) - - gl - Strongylocentrotus Troitsa Bay, KR
MAR_2010_21 96 pin HaHa - gl sediment porewater Sylt, West beach
TBL_53 plating NAG - intertidal sediment Sylt, Hausstrand
TBL_99 plating NAG - intertidal sediment Sylt, Konigshafen
MGE_SSAT 816 enrich CAA k - intertidal sediment Harlesiel

TBL_38 plating CEL - intertidal sediment Janssand, MF
TBL_49 plating CAA - intertidal sediment Janssand, UF
TBL_70 plating MAL - intertidal sediment Janssand, UF
TBL_73 plating MAL - intertidal sediment Janssand, UF

Continued on next page
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Table 2.S3 (continued)

Cultivation Physiology Sampling
£ ¢
2
= E ¢ ¥
= Y
5 5 3 2 B
L2 = 5
Name Method Medium ¥ B 5 U A Type Site

’Gramella forsetii’

’G. forsetii’ KT0803 (>98.9%) - - gl - surface seawater Helgoland Island, GER
MAR_2010_87 96 pin HaHa - sediment porewater Sylt, West beach
MAR_2010_147 96 pin HaHa - sediment porewater Sylt, West beach
MAR_2010_163 96 pin HaHa - sediment porewater Sylt, West beach

Hel I 64 96 pin HaHa - surface seawater Helgoland, Kabeltonne

Gramella sp. 1
G. portivictoriae UST040801-001 (97.1%) - - gl - marine sediment Victoria Harbour, HK
MAR_2010_102 96 pin HaHa - gl sediment porewater Sylt, West beach

Saligentibacter salarius
S. salarius ISL-6 (99.1%) - - - - surface seawater Yellow Sea, Korea
Hel I 34 96 pin HaHa - surface seawater Helgoland, Kabeltonne

Saligentibacter sp. II

S. salegens ACAM 48 (>98.7%) - - - - surface seawater Vestfold Hills, East ANT
Hel 1 6 96 pin HaHa - surface seawater Helgoland, Kabeltonne
Hel 116 96 pin HaHa - surface seawater Helgoland, Kabeltonne

Continued on next page
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Table 2.S3 (continued)

Cultivation Physiology Sampling
ER-
2
© Z g ¥
@ Bl 3 - )
5 8 =2 2 0%
Name Method Medium M K &8 U A Type Site

Lacinutriz copepodicola
L. copepodicola DJ3 (98.9%) - - - - Paralabidocera Ace Lake, East ANT
MGE_SAT_368 enrich 2216E + intertidal sediment Harlesiel

Gillisia mitskevichiae

G. mitskevichice KCTC 12261 (>99.4%) - - - - surface seawater Amursky Bay, KR
MAR_2010_171 96 pin HaHa - gl sediment porewater Sylt, West beach
MAR_2010_182 96 pin HaHa - gl sediment porewater Sylt, West beach

Gillisia sp. 1

G. mitskevichiae KCTC 12261 (97.9-98.1%) - - - - surface seawater Amursky Bay, KR

Hel I 11 96 pin HaHa - surface seawater Helgoland, Kabeltonne
Hel I 18 96 pin HaHa - surface seawater Helgoland, Kabeltonne
Hel 1.19 96 pin HaHa - surface seawater Helgoland, Kabeltonne
Hel 1 86 96 pin HaHa - surface seawater Helgoland, Kabeltonne

Zunongwangia sp. 1
Z. profunda SMA-97 (96.7%) - - - - deep-sea sediment Okinawa Trough
MAR_2010_100 96 pin HaHa - surface seawater Sylt, List

Continued on next page
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Table 2.S3 (continued)

Cultivation Physiology Sampling
£ ¢
8
. 2 g ¥
Q5 2 £
58 2 2 %
Name Method Medium ¥ B 5 U A Type Site
Lacinutriz dicol
L. copepodicola DJI3 (98.9%) - - - - Paralabidocera Ace Lake, East ANT
MGE_SAT_368 enrich 2216E =+ intertidal sediment Harlesiel

Psychroserpens sp. 1
P. burtonensis ACAM 188 (95.3-95.9%) - - - - Antarctic lacustrine Burton Lake, ANT
Hel I 66 96 pin HaHa - surface seawater Helgoland, Kabeltonne

Winogradskyella sp. 11
W. eximia KMM 3944 (95.7%) - - - ly Laminaria G. of Peter the Great
RHA _55 plating 2216E - mussel surface Sylt, List, Beach

Ulvibacter sp. 1
U. antarcticus IMCC3101 (96.4%) + - - - surface seawater King George Island, ANT
MAR _2010_11 96 pin HaHa - sediment porewater Sylt, West beach

Agquimarina sp. I

A. macrocephali JAMB N27 (95.5-98.4%) + - gl - sediment Kagoshima, Japan
MAR_2010_214 96 pin HaHa + surface seawater Sylt, List
MAR _2010_215 96 pin HaHa + surface seawater Sylt, List

Krokinobacter eikastus

K. eikastus PMA-26 (>99.9%) - - - - sediment Kisarazu, Japan
SRO_11 plating 2216E - gl Fucus ceranoides Sylt, List

SRO_18 plating 2216E - ly Fucus ceranoides Sylt, List

Hel I 63 96 pin HaHa - surface seawater Helgoland, Kabeltonne

Dokdonia/Krokinobacter sp. II

D. donghaensis DSW-1 (97.1%) - - - - surface seawater Dokdo Island, KR
K. genikus Cos-13 (97.1%) - - - - sediment Odawara, Japan

Hel 1.5 96 pin HaHa - surface seawater Helgoland, Kabeltonne
Hel I 65 96 pin HaHa - surface seawater Helgoland, Kabeltonne
Hel I 91 96 pin HaHa - surface seawater Helgoland, Kabeltonne

Continued on next page



100 Chapter 2. Cultivation of Flavobacteria from the North Sea

Table 2.S3 (continued)

Cultivation Physiology Sampling
ER-
o)
© Z g ¥
=2 E
g 8 2 2 1%
Name Method Medium M K &8 U A Type Site
Tenacibaculum litoreum
T. litoreum CL-TF13 (99.8%) - - gl - intertidal sediment Ganghwa Island, KR
SRO_13 plating 2216E - intertidal sediment Sylt, Westbeach

Tenacibaculum sp. II

T. mesophilum MBIC1140 (93.3-95.8%) - - gl - Halichondria Numazu, Japan
MAR_2009_124 plating NAG - gl 20 pm phytoplank. Sylt, List
MAR_2009_126 plating NAG - gl 20 pm phytoplank. Sylt, List
MAR_2009_134 plating CEL - 20 pm phytoplank. Sylt, List

Tenacibaculum sp. IV
T. ovolyticum EKDO002 (97.8%) - - gl - halibut eggs Bergen, Norway
MAR_2010_205 96 pin HaHa - surface seawater Sylt, List

Polaribacter sp. 1
P. butkevichii KMM 3938 (97.1%) - - - - surface seawater Amursky Bay, KR
Hel 1 85 96 pin HaHa - gl surface seawater Helgoland, Kabeltonne

Polaribacter sp. II1
P. dokdonensis DSW-5 (96.1%) - Ir - - surface seawater Dokdo Island, KR
MAR_2010_29 96 pin HaHa - sediment porewater Sylt, West beach

Flavobacterium gelidilacus
F. gelidilacus R-8899 (99.3%) - - - - microbial mat Lake Ace, East ANT
MGE_SAT 510 enrich 2216E - intertidal sediment Harlesiel

Continued on next page
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Table 2.S3 (continued)

Cultivation Physiology Sampling
£ ¢
2
= E ¢ ¥
= Y
5 5 3 2 B
L2 = 5
Name Method Medium ¥ B 5 U A Type Site

Flavobacterium sp. II
F. tegetincola A103 (95.5%) - - - - cyanobacterial mat Lake Ace, East ANT

MGE_SAT 384 enrich 2216E - intertidal sediment Harlesiel

Nonlabens sp. 11

N. dokdonensis DSW-6 (95.5%) - - - - surface seawater Dokdo Island, KR
Hel I 38 96 pin HaHa - gl surface seawater Helgoland, Kabeltonne
Cytophagia

Cyclobacterium amurskyense
C. amurskyense KMM 6143 (100%)
TBL_14 plating CAA - intertidal sediment Sylt, Hausstrand

Reichenbachiella faecimaris
R. faecimaris PCP11 (98.9%)
MAR_2010_115 96 pin HaHa - sediment porewater Sylt, West beach

Sphingobacteria
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Figure 2.S1 Sampling sites of Flavobacteriaceae type strains. Environment of the sam-
pling sites from which type strains were isolated as listed in the List of Prokaryotic
names with Standing in Nomenclature (http://www.bacterio.cict.fr, 06.2012) (Euzéby,
1997). Numbers in pie charts represent the number of type strains.
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Arenibacter sp. Zunohgwangia sp.
identification by morphology identification by PCR assay

Figure 2.S2 Colonies on agar plates and cell morphology of Arenibacter sp. (upper and
lower left) and Zunongwangia sp. (upper and lower right) at room temperature after
seven days of incubation. Arenibacter spp. had prominent characteristics of cell- (long
rod shaped) and colony morphology (yellow-orange color), in contrast to Zunongwangia
spp.. Arenibacter spp. were often identified as Flavobacteriaceae by the traditional
observation of colony color and rod-shaped cell morphology, whereas Zunongwangia spp.
were identified as Flavobacteriaceae by the Flavobacteria- Cytophagia specific PCR assay
only.
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Figure 2.S3 Incubated sediment of Konigshafen on agar, supplemented with casamino
acids (CAA, A and B) or N-acetylglucosamine (NAG, C and D). The sediment was
incubated without (A and C) or with kanamycin (Kana, B and D) to test for the selective
effect of the antibiotic kanamycin.
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Distribution of seawater on solid agar plates

An aliquot of 0.5 mL seawater sample was placed onto the agar in the mid-
dle of the Petri dish and even distributed with sterile glass beads. Seawater
aliquots of less than 0.3 mL were diluted in sterile artificial seawater and

aliquots of more than 0.3 mL were successively distributed on the agar.

Distribution of sediment on solid agar plates

Depending on the amount of porewater, the sediment sample was mixed
with up to 0.3 mL sterile artificial seawater on the solid agar. The sediment
was distributed on the solid agar using an inoculating loop with the follow-
ing scheme (Fig. 2.54). Particular attention was given to avoid scratching

or plowing of the agar surface.

Figure 2.S4 Distribution of sediment on agar plates diluted by an inoculation loop fol-
lowing the scheme (1-3).

Bacteria attached to plant and animal specimens

Plants or pieces of plants were placed into a 50 mL polypropylene tube,
chopped with a sterile scalpel and washed with sterile artificial seawater
before distributing them on the solid agar. Animal specimens (e.g. small
crab shells, seashells) were rinsed with seawater first, followed by sterile

artificial seawater before placing them on the solid agar.
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KOH test (test for bathochromic shift)

To test for a bathochromic shift, a colony was deposited on a slide and
covered with a drop of KOH. In a positive test, the color of the biomass
changed from yellow to red or orange to red-brown upon KOH addition
and reverted back upon acidification with two drops of 10% (v/v) HCI
(Fig. 2.55).

20% KOH
ﬁ

Figure 2.S5 Bathochromic shift of flexirubin type pigments caused by KOH treatment,
observable by a shift in colony color from yellow to orange of the strain Aquimarina
sp. TBL 9.

96 pin replicator

Using a 96 pin replicator enables a transfer of 1 pL per pin (Winkelmann
and Harder, 2009) on 96 defined positions on a 14 ¢cm Petri dish with solid
agar (Fig. 2.56). A sterile 14 cm Petri dish was filled with 50 mL of sea-
water or porewater sample. The volume of 50 mL was necessary to fill the
bottom of the large Petri dish completely. For dilution series, 5 mL of the
diluted water sample were mixed with 45 mL artificial seawater in a fresh,
sterile Petri dish. Bacteria of the water sample were transferred onto the
agar plate by dipping the sterile 96 pin replicator into the water sample
without touching the bottom of the Petri dish, followed by gently touching

the surface of the solid agar.
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45 mL ASW

50 mL
water sample

%!

V) |
- @

V| V| V|
Figure 2.S6 Distribution of seawater or porewater at defined positions on solid agar
medium using the 96 pin replicator, modified after Winkelmann and Harder (2009).
The water sample was diluted with sterile artificial seawater (ASW) before transferring
on agar plates. Blue dots represent luminescent colony forming units of Photobacterium
sp. as control for a random distribution of cells with the 96 pin replicator. The spin-

ning arrow indicates the gentle mixing of water samples in the Petri dish by horizontal
shaking.

\
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HaHa medium (agar plates)

Artificial seawater medium:
after (Widdel and Bak, 1992) modified by (Winkelmann and Harder, 2009)

1. Prepare 2x ASW by dissolving the basal salts in 1L ultra pure water

1L 1x ASW 1L 2x ASW

NaCl 26.37 g 52.74 ¢
NaHCO4 0.19 g 0.038 g
CaCl, - 2H,0 147 g 294 ¢g
KCl 0.72 g 144 g
KBr 0.10 g 0.20 g
H;BO, 0.02¢g 0.04 g
SrCl, 0.02 g 0.04 g
NaF 0.003 g 0.006 g

2. Wash 12.6 g Bacto  agar (18 g/L)

- a) add bacto agar in a 1 L bottle

- b) add 600 mL ultra pure water

- ¢) clean inner surface of the bottle with ultra pure water (final volume
< 800 mL)

- d) let agar settle

- e) remove the overlaying water

- repeat twice from b)

I The final volume of the washed agar should be less than 300 mL !

3. Add 350 mL of 2x ASW

4. ! Add magnetic stir bar !
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5. Add HEPES (50 mM, pH 7.5) 9.92 g

6a. Fill up to 650 mL with MilleQ
(6b. Check 6.5 < pH < 7.0)

Ta. Direct before autoclavation, mix agar and liquid
7b. Autoclave, cool (60 °C, keep at 55 °C in a pre-heated water bath)

8. Add sterile from the following stock solutions:

1.4 mL.  Trace-element-solution (autoclaved)

0.7 mL.  Se-W-solution (sterile filtered in PP tubes)
7.0 mL KH,PO,-solution (50 g/L, autoclaved)

3.5 mL NH,Cl-solution (50 g/L, autoclaved)

9. Add carbon sources from the following stock solutions

3.5 mL  Glucose (100 g/L, sterile filtered)
3.5 mL  Cellobioses (100 g/L, sterile filtered)
3.5 mL  Yeast Extract (BioChemica) (100 g/L, sterile filtered)
3.5 mL Casaminoacids (Difco) (100 g/L, sterile filtered)
3.5 mL Tryptone Pepton (Difco) (100 g/L, sterile filtered)

10. Adjust pH to pH 7.5 with 1 M HCl or 1 M NaOH (autoclaved)

11. Add from the following stock solutions
7.9 mL MgCl, -6 H,0 (500 g/L, autoclaved, 5.67 g/L)
9.5 mL. MgSO, - 7H,0O (500 g/L, autoclaved, 6.8 g/L)

12. Add MilleQ water to a final volume of 700 mL, avoid bubbles (auto-

claved)
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Trace-element-solution (0.5 L)

Start with 400 mL water, add

Na,—EDTA 2600 mg
FeSO, - 7H,O 1050 mg
dissolve and add

H;BO, 15 mg
MnCl, - 4H,0 50 mg
CoCl, - 6 H,O 95 mg
NiCl, - 6 H,0 12 mg
CuCl, - 2H,0 5 mg
ZnS0O, - TH,0 72 mg
Na,MoO, - 2H,0 18 mg
Adjust pH to 6.0 with 5 M NaOH

Autoclave

Se-W-solution

Dissolve in 0.5 L. water

NaOH 1000 mg
Na,SeO; - 5 H,O 9 mg
Na,WoO, - 2H,0 9 mg

sterile filter in PP tubes
Autoclave fresh
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3.1 Abstract

Planktonic bacteria respond notably to phytoplankton primary production,
but their role in the remineralization of algal biomass is poorly under-
stood. During a spring phytoplankton bloom in the German Bight of
the North Sea in 2009, we observed high abundances of yet uncultivated
representatives of the genera Formosa, Polaribacter (Flavobacteria), and
Reinekea (Gammaproteobacteria). In order to obtain isolates, we sampled
at the same location and time of the year during the 2010 spring phy-
toplankton bloom. Using a newly devised artificial seawater medium with
environmental-like nutrient concentrations we could attain a culturability of
35% of the bacterioplankton. Twenty-five novel isolates were gained, belong-
ing to Flavobacteria, Gammaproteobacteria, Alphaproteobacteria, and Acti-
nobacteria, including Formosa, Polaribacter, and Reinekea isolates. The
16S rRNA gene sequences of these isolates exhibited identities of up to 99.8%
when compared to full-length 16S rRNA gene clones of bacterioplankton of
the 2009 bloom. Likewise, draft genomes of selected isolates could recruit
reads of metagenomes from bacterioplankton of the 2009 spring bloom that
had > 95% nucleotide identity which covered the draft genomes by 94%
(Formosa sp.), 90% (Reinekea sp.), and 50% (Polaribacter sp.). Based on
these data we argue that the isolates retrieved in this study are representa-
tives of ecologically relevant clades catalyzing the remineralization of coastal

diatom-dominated phytoplankton biomass.
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3.2 Introduction

The response of heterotrophic bacterioplankton to algal blooms is dynamic
(Azam, 1998; Sapp et al., 2007b). In a recent study it was shown how a
diatom-dominated spring phytoplankton bloom in the German Bight of the
North Sea in 2009 changed the bacterioplankton community composition
by exerting a positive selection for bacteria with the capacity to decompose
phytoplankton biomass. These bacteria constituted distinct clades that
were characterized by notably different substrate spectra, in particular with
respect to polysaccharide degradation (Teeling et al., 2012). Polysaccha-
rides are major constituents of blooming marine microalgae such as diatoms
and haptophytes. When such algae disintegrate, these polysaccharides are
released and become available as substrates to the bacterioplankton com-
munity. Some of these substrates are easier to degrade than others and
thus are preferentially degraded by specialized bacteria, which can result
in a succession of distinct blooming bacterioplankton clades. During the
2009 spring algae bloom in the German Bight, a swift succession of Ul-
vibacter, Formosa, and Polaribacter (Flavobacteria), Reinekea and SAR92
(Gammaproteobacteria) was observed, in which each of these clades reached
15% to 25% of the total picoplankton community (Teeling et al., 2012).

It is known that marine Flavobacteria play a pivotal role in the decom-
position of complex organic matter (Kirchman, 2002), in particular of pro-
teins and polysaccharides (Bauer et al., 2006; Martens et al., 2011; Gomez-
Pereira et al., 2012; Teeling et al., 2012; Fernandez-Goémez et al., 2013).
Flavobacteria use TonB-dependent transporters for the uptake of algae-
derived oligosaccharides (Bauer et al., 2006; Schauer et al., 2008; Gomez-
Pereira et al., 2012; Teeling et al., 2012), whereas Gammaproteobacteria
such as Reinekea and Alphaproteobacteria mainly use TRAP and ABC

transporters for the uptake of monomeric carbohydrates and amino acids
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that become available during the initial decomposition of algal biomass
(Mulligan et al., 2011; Schneider et al., 2012; Teeling et al., 2012). Our
comprehension of such microbial niches in nature is limited by the existing
knowledge of the underlying biochemistry (Hugenholtz and Tyson, 2008),
which is reflected in the high proportions of genes without known func-
tions in environmental microbes (Venter et al., 2004; Yooseph et al., 2007).
Consequently, targeted studies on cultivated strains are a necessity for ob-
taining a more complete picture of the functional repertoires and activities
of microbes that have been identified in cultivation-independent studies (re-
viewed by Glockner and Joint, 2010; Joint et al., 2010; Overmann, 2010).
However, since most n situ surveys of microbial communities lack accompa-
nying isolates, it is one of the principal challenges of environmental microbi-
ologists to develop strategies that allow cultivation of ecologically relevant
microorganisms (reviewed by Schloss and Handelsman, 2004; Glockner and
Joint, 2010; Joint et al., 2010).

Numerous marine bacteria from many phyla have already been brought
into culture. This work was pioneered by Bernhard Fischer (1894) and
Claude Ephraim ZoBell (1946). Using ZoBell’'s marine agar, Pinhassi et al.
(1997) could obtain phytoplankton-associated Flavobacteria, Gammapro-
teobacteria, and Alphaproteobacteria. Furthermore, these authores showed
their dominance and seasonality using whole-genome DNA hybridization.
A synthetic seawater agar, supplemented with inorganic nitrogen and phos-
phorus compounds in micromolar concentrations allowed Eilers et al. to cul-
tivate representatives of the cosmopolitan NORS5 clade of Gammaproteobac-
teria (Eilers et al., 2001). Button’s technique and theory of dilution cul-
tivation in sterilized oligotrophic seawater (Button et al., 1993) ultimately
opened the field of high-throughput cultivation and allowed to obtain novel
Proteobacteria species that until then belonged to the uncultured part of the

marine bacterioplankton (Connon and Giovannoni, 2002). An improvement
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of their medium by supplementing the sterilized seawater with inorganic ni-
trogen and phosphorus compounds and a defined mixture of organic carbon
compounds in micromolar concentrations, allowed the successful cultivation
of "Candidatus Pelagibacter ubique’ (Rappé et al., 2002) — a decade after
the discovery of the highly abundant SAR11 (Giovannoni et al., 1990).
The goal of this study was to obtain isolates representative of bacterio-
plankton clades highly abundant during a diatom-dominated phytoplankton
bloom in 2009 near the North Sea island Helgoland in the German Bight
(Teeling et al., 2012). For that we sampled a similar spring phytoplankton
bloom at the same location in 2010. Since many bacterial species can-
not be cultivated on agar plates (Staley and Konopka, 1985; Pedros-Alio,
2006), an artificial seawater (ASW) medium was designed mimicking in
situ, carbon, nitrogen, and phosphorus concentrations. The medium com-
position was derived from the ASW medium of Hahnke and Harder, which
enabled the aerobic cultivation of Proteobacteria, Flavobacteria and Acti-
nobacteria, without showing a distorting cultivation-induced Gammapro-
teobacteria shift (Hahnke and Harder, 2013). As a result, we obtained an
overall culturability of 35% of the total bacterioplankton, and could isolate
representatives of the genera Formosa, Reinekea and Polaribacter. Us-
ing sequence-based comparisons of 16S rRNA genes, proteorhodopsins and
draft genomes with 16S rRNA gene clone libraries and metagenomes of
bacterioplankton from the 2009 spring phytoplankton bloom, we could fur-
thermore demonstrate the relevance of these isolates as key players during

coastal diatom-dominated phytoplankton blooms in the North Sea.
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3.3 Material and methods

Medium preparation

Artificial seawater (ASW) and all media were prepared with sterile filtered
(0.2 pm polycarbonate filter) and autoclaved ultra pure water (Aquintus
system, membraPure, Berlin, Germany) with a resistivity of 18.2 €2 cm, a
total organic carbon of less than 5 ppb, pyrogens of less than 0.001 EU/mL
and heavy metals of less than 0.1 ppb.

The ASW agar HaHa was prepared as described previously (Hahnke and
Harder, 2013). The ASW medium was prepared in a Widdel flask (Widdel
and Bak, 1992) modified for an aerobic medium of large volume, with low
substrate concentrations and without volatile components (suppl. Fig. 3.51).
ASW was prepared following the recipe of Widdel and Bak (1992) as de-
scribed by Winkelmann and Harder (2009) (see suppl. on page 160). Basal
salts: 26.37 g NaCl, 5.67 g MgCl, - 6 H,0O, 6.8 g MgSO, - 7H,O, 1.47 g
CaCl, - 2H,0, 0.72 g KCI, 0.10 g KBr, 0.02 g H3BO,, 0.02 g SrCl,, 0.003 g
NaF, were dissolved in 1 L autoclaved ultra pure water. After autoclaving
in the modified Widdel flask, the ASW was tempered at room tempera-
ture and supplemented with 2 mL trace element solution (containing per
liter ultra pure water: FeSO,-7H,0, 2.1 g; Na,—EDTA, 5.2 g; H3BO,,
30 mg; MnCl, - 4 H,O, 100 mg; CoCl, - 6 H,O, 190 mg; NiCl, - 6 H,O, 24 mg;
CuCl, - 2H,0, 10 mg; ZnSO, - 7TH,0, 144 mg; Na,MoO, - 2H,0, 36 mg; pH
adjusted to 6.0 with 5 M NaOH (Pfennig et al., 1981) and 0.7 mL SeW so-
lution (Widdel and Bak, 1992). The HaHa medium was supplemented with
the sterile filtered (0.2 pm filter, Minisart, Sartorius, Gottingen, Germany)
carbon sources glucose, cellobiose, yeast extract, peptone and casamino
acids at 0.6 mg/L each (Hahnke and Harder, 2013), 1 mL. NH,CI (0.2 g/L,
autoclaved), 0.7 mL KH,PO, (0.02 g/L, autoclaved) providing 100 pM car-
bon, 3.3 uM ammonium and 0.16 uM phosphate. The HaHa_100 medium
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was supplemented with the same carbon sources, but at a concentration of
0.1 g/L each, 4 mL NH,CI (0.2 g/L, autoclaved), 10 mL KH,PO, (2 g/L,
autoclaved) providing a final concentration of 16.8 mM carbon, 15 uM
ammonium and 16 uM phosphate. Flow injection analysis (Hall and Aller,
1992) revealed an ammonium concentration of 106 + 0.7 uM, due to the
addition of yeast extract (210 + 7 pmol/0.5 g), peptone (120 + 7 pmol/0.5
g), and casamino acids (185 + 5 pumol/0.5 g) (suppl. Tab. S3.S2) . The
HaHa 100V medium was identical to the HaHa 100 medium with the ad-
dition of sterile filtered (0.2 pm filter, Minisart, Sartorius) 1 mL 7-vitamin
solution (Winkelmann and Harder, 2009), 1 mL vitamin Bjs solution (Wid-
del and Bak, 1992), 1 mL thiamine solution (Winkelmann and Harder,
2009), and 1 mL riboflavin solution (Winkelmann and Harder, 2009). The
medium was buffered with 2 mM NaHCO,; (Widdel and Bak, 1992) at
pH 7.5. Evaporated water was replaced with autoclaved ultra pure water.
The ASW had a salinity of 34%q S, comparable to the euhaline (> 30%o S)
sampling site (Radach et al., 1990).

Sampling

Untreated surface seawater was sampled from the station 'Kabeltonne” near
the North Sea island Helgoland in the German Bight (54° 10’ 58.3” N;,
7° 537 19.9” E, Helgoland Roads) at high tide on 20 April 2010 (T = 6.4 °C,
pH 7.8) and on 2 September 2010 (T = 15.4 °C, pH 7.9). Seawater samples
were transported in sterile 1 L Schott glass bottles to the laboratory at

in situ temperature and processed within 30 minutes.

Determination of the microbial community
The total microbial cell counts were determined by DAPI (4’,6-diamidino-
2-phenylindole) staining, and specific microbial populations were deter-

mined by catalyzed reporter deposition-fluorescence in situ hybridization
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(CARD-FISH) as described previously (Teeling et al., 2012). Probes includ-
ing competitor and helpers are listed in supplementary (suppl. Tab. 3.51).

Dilution cultivation and incubation

The seawater sample was diluted to near extinction in ASW, directly after
sampling (suppl. Fig. 3.52). Since the amount of cultivable microorgan-
isms was uncertain, 100 pL of seawater (aliquots of 1 nL to 100 nL) were
distributed with 1 mL syringes (styrene-free, DEHP-, latex- und silicone-oil-
free, tuberculin, NORM-JECT, HSW, Germany) and sterile 0.90 x 70 mm
needles (DEHP-, latex- and PVC-free, Sterican, B Braun, Germany) into
17 mL polystyrene tubes (Greiner Bio-One, Austria) with 10 mL ASW
medium (HaHa medium, 100 gM carbon) to an average inoculum of 0.5 to
50 cells per tube. The polystyrene tubes were robust for a later transport,
allowed diffusion of oxygen for aerobic cultivation, and a visual inspection
of optical changes. The dilution cultures and agar plates were incubated in
the dark at 12 °C (April seawater) or 22 °C (September seawater) for three
months. During the incubation the salinity of 34%0 S and the pH of 7.5 of

the ASW medium remained unchanged and precipitates were not observed.

Detection of growth

Cell densities were determined by flow cytometry or fluorescence microscopy.
One milliliter of each enrichment was fixed with 37% formaldehyde (v/v)
to a final concentration of 1% (v/v) for one hour at room temperature.
Samples were diluted with autoclaved and filtered (0.2 pm filter, Minisart,
Sartorius, Gottingen, Germany) ASW and stained with 1x SYBRGreen
(Applied Biosystems, Darmstadt, Germany) and processed by flow cytom-
etry (FACSCalibur, Becton Dickenson, BD Biosciences, Oxford, UK). Cell
concentrations were calculated from sample flow rate which was deter-

mined by addition of a known concentration of fluorescent latex beads as
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an internal standard (Zubkov and Burkill, 2006). The detection limit was
103 cells per milliliter culture. For fluorescence microscopy formaldehyde
fixed samples were filtered directly with a vacuum pump (Millipore, Bil-
lerica, MA, USA) under low, non-disruptive pressure (< 5 mm Hg) and a
96-well blotting manifold (Bio-Dot, Bio-Rad, Munich, Germany) onto 4 mm
polycarbonate filters with a pore size of 0.2 pm (GTTP, Millipore, Billerica,
MA, USA). All filters were stored at —20 °C until further analyses. Filters
were stained with either 1x SYBRGreen or 1 pug/ml DAPI and mounted
on glass slides with Citifluor and VectaShield (4:1).

Sequencing and analysis of 1658 TRNA and ITS

For colony PCR 1 mL culture was concentrated by centrifugation at
13,000x ¢ for 10 min. The pellet was dissolved in 20 pul. PCR water
and subjected to three freeze-thaw cycles for cells lysis. Cell-free PCR
water was used as control. PCR amplifications were performed at 96 °C for
4 min., 35 cycles of 96 °C for 1 min., 55 or 68 °C (depending on primer)
for 1 min., 72 °C for 3 min. and 10 min. elongation at 72 °C. The newly
designed Reinekea-specific primer Rei732R (5" -TAT CAG CCC AGC AAG
TC- 3’) was based on the CARD-FISH probe Rei731 (Teeling et al., 2012),
shortened by one nucleotide at the 3" end. The specificity of Rei732R was
determined in silico with Probe Match (Cole et al., 2009) on the RDP
homepage and with TestPrime (Klindworth et al., 2012) on the SILVA
homepage (Pruesse et al., 2007). Gradient PCR with the primer pair 27F
(5" -AGA GTT TGA TYM TGG CTC AG- 3") (Muyzer et al., 1995)
and Rei732R revealed an optimal annealing temperature of 68 °C. Inter-
genic spacer sequences were amplified and sequenced with the 16S rRNA
primer 165_1099 (5" -GYA ACG AGC GCA ACC C- 3’) (Nossa et al.,
2010) and the 23S rRNA primer L189R (5" -TAC TGA GAT GYT TMA
RTT C- 3’) (Yu and Mohn, 2001). Gradient PCR with the primer pair
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16S_1099/L189R revealed an optimal annealing temperature of 46 °C. The
16S rRNA gene of Flavobacteria was amplified and sequenced with the
primer pair 27F /Fla-1489R as described previously (Hahnke and Harder,
2013). Sequencing reactions were performed using the ABI Dye Terminator
technology according to the manufacturer’s instructions (Applied Biosys-
tems, Foster City, USA) with the following modifications: (a) an Applied
Biosystems model 3130x]1 DNAsequencer (Applied Biosystems, Foster City,
USA) was used for electrophoresis of the sequence reaction mixtures; (b) the
16S rRNA sequences were analyzed with Sequencing Analysis 5.2 (Applied
Biosystems, Foster City, USA) and assembled with Sequencer 4.6 (Gene
codes, Ann Arbor, MI, USA).

Phylogenetic affiliation

The initial phylogenetic affiliation was done using RDP (Cole et al., 2009).
Obtained 16S rRNA sequences were aligned with the SINA aligner (Pruesse
et al., 2007) and added to the tree by the parsimony method in ARB (Lud-
wig et al., 2004). Evolutionary distances were calculated to construct a
phylogenetic consensus tree using neighbor-joining (Saitou and Nei, 1987)

wizh a 0% and 40% base frequency filter.

Read recruitment

De-replicated reads from the metagenome libraries of 7 April 2009 (1,770,956
reads) and 14 April 2009 (4,062,242 reads) (Teeling et al., 2012) were
mapped onto the draft sequenced genomes of the isolated strains. The
mapping was carried out with the SSAHA2 (Ning et al., 2001) using default
parameters. Coverage of a strain was computed by dividing the amount
of bases aligned with the total bases of its draft genome, as described by
Konstantinidis and DeLong (2008).
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Subsequent isolation

To obtain pure cultures, selected enrichments were sub-cultured three times
by diluting the microbial population in medium five times 1:10 and twelve
times 1:2. The cultures were regularly examined for changes and impurities,
including phenotypic characterizations, 16S rRNA gene amplifications, and
CARD-FISH.

Transmaission electron microscopy

For negative staining, bacterial cultures were adsorbed onto carbon film,
washed in TE buffer (20 mM Tris/HCl, 1 mM EDTA, pH 6.9), stained
with 4% (w/v) aqueous uranyl acetate (pH 4.5) according to the method
of Valentin et al. (1968) and picked up with 300-mesh copper grids. After
air-drying, samples were examined in a Zeiss EM109 transmission electron
microscope (TEM) at an acceleration voltage of 80 kV and at calibrated

magnifications.

Strain conservation All cultures were initially cryoconserved with liquid
nitrogen at 80 °C, frozen in HaHa and HaHa_100 medium supplemented
with 30% glycerol (v/v). Isolates were maintained as viable cultures in
HaHa and HaHa 100 medium at 4 °C and 11 °C, and cryoconserved. A

10% inoculum was transferred into fresh medium every three months.

Nucleotide sequence accession numbers

All 16S rRNA, 16S-23S intergenic spacer (ITS) and proteorhodopsin
sequences of this study were submitted using CDinFusion (Hankeln
et al, 2011) and Sequin (http://www.ncbi.nlm.nih.gov/projects/Se-
quin/) and have been deposited in GenBank under accession num-
bers KF023483-KF023507 (16S rRNA), KF023508-KF023511 (prote-
orhodopsin) and KF023512-KF023514 (ITS).
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3.4 Results

Bacterioplankton composition of the seawater sample

[solation was carried out from sub-surface seawater sampled on 20 April
2010 near the North Sea island Helgoland in the German Bight. At that
time, the bacterioplankton cell density accounted for 5.5 x 10° cells mL™!.
Based on microscopic cell counts obtained by fluorescence in situ hybridiza-
tion Bacteria dominated 89% of the total picoplankton, comprising 31%
Alphaproteobacteria, 22% Gammaproteobacteria, and 32% Bacteroidetes
(Fig. 3.1). Members of the class Flavobacteria dominated 78% of the
Bacteroidetes, with Ulvibacter (5.3 x 10% cells mL™1; 9.9%), Polaribacter
(4.2 x 10% cells mL™%; 7.7%), and Owenweeksia (2.3x 10% cells mL~1; 4.2%)
representing the most abundant clades, whereas the flavobacterial Formosa
clade A and B, NS3, NS5 each represented less than 1% (5.5 x 103 cells
mL~1) of the total picoplankton cell counts. In contrast to Flavobacte-

ria, members of the class Cytophagia accounted for less than 1% of the

90+
remaining EUB (1.9%)
[ > Planctomycetes (1.3%)
unid. Bacteroidetes (6.5%)
80| _ Cytophagia (0.7%)
2 — NS5 (1.0%)
g Owenweeksia (4.2%)
704| © | NS3(0.9%)
E Ulvibacter (9.9%)
® ® Formosa B (1.0%)
o 60+ Formosa A (0.2%)
o Polaribacter (7.7%)
Figure 3.1  Relative  abundance of § 5 “Or,‘\'/ﬂ-a‘;"’(qn’g’;’)”"‘e"bacm”a 8.0
bacterioplankton populations on 20 § | Balneatrix (2.0%)
! NORS5 (0.5%
April 2010, as assessed by CARD-FISH: g40 Reinek(ea (o.?q%)
the left bar illustrates the bacteria com- % SARD0IP:4%)
position on class (Alphaproteobacteria & 30 SAR92 (13.0%)
and Gammaproteobacteria) and phylum urid, Alphaprofsobacteria (11.9%)
level (Bacteroidetes and Planctomycetes); 20-
the right bar represents specific clades Roseobacter (7.7%)
as well as the unidentified remainder. 104
Probes used are listed in supplementary SART1 (11.7%)
(Tab. 3.1). 0 -
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Table 3.1 Dilution cultures of the sampled seawater. The original microbial community
accounted for 5.4 10° cells mL~" on 20th April 2010 (Hell) and for 3.2 10° cells mL ™"
on 2nd September 2010 (Hel3).

Name of dilution cultures Hell 31 Hell 32 Hell 33 Hel3 Al
Dilution series 1072 1073 104 107°
Dilution after 100 pL inoculum 1074 107° 10°¢ 1077
Seawater inoculum (nL/sample) 100 10 10 0.1
Cells per 100 pL inoculum 54 5.4 0.5 0.3
No. of dilution cultures 50 100 140 100

Bacteroidetes.  Alphaproteobacteria were represented for the most part
by SARI1 (6.6 x 10* cells mL™1; 12%) and Roseobacter clade members
(4.4 x 10* cells mL~t; 8%). The Gammaproteobacteria were dominated by
members of the SAR92 clade (7.0 x 10% cells mL™!). Other Gammapro-
teobacteria such as Balneatriz, Reinekea, and the OMI182, NORS5 and
SARS6 clades each accounted for less than 2% (1.0 x 10 cells mL™1) of

the total community.

Dilution cultivation of the bacterioplankton

Two different approaches were undertaken, dilution cultivation of single cells
and of small numbers of cells. For the cultivation of single cells, sampled
seawater was diluted to a cell density of one cell per 200 pL (equivalent to
1 nL seawater; termed Hell_33). Subsequently, aliquots of 100 pulL (statis-
tically 0.5 cells) of the diluted seawater were transferred to 140 cultivation
tubes (Tab. 3.1). For the cultivation of small numbers of bacterioplankton
cells, 100 dilution cultures were inoculated with approximately five cells
per 100 L. (equivalent to 10 nL seawater; termed Hell_32), and 50 dilution
cultures with 50 cells per 100 uL (equivalent to 100 nl. seawater; termed
Hell 31). After three months of incubation at 11 °C in the dark, growth to
at least 10% cells mL~! was detected by flow cytometry (suppl. Fig. 3.S3)
in 24 of the 140 Hell 33 dilution cultures, 74 of the 100 Hell 32 dilution
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cultures, and 50 of the 50 Hell_31 dilution cultures. The average cell den-
sity was 5 x 100 cells mL~!. Provided that a single cell was inoculated in
the growth-positive Hell_33 series, these represented pure cultures resulting
from approx. 22 cell divisions. Indeed, 23 dilution cultures represented
pure isolates and only dilution culture Hell 33 69 was an enrichment of

a mixed community, as determined by microscopy and flow cytometry
(suppl. Fig. 3.53).

Phylogenetic affiliations of the isolates

Based on 16S rRNA gene analysis (Fig. 3.2), nine cultures belonged to
Flavobacteriaceae. One affiliated with 99.6% 16S rRNA gene identity with
Gillisia myxillae, one with 99.0% 16S rRNA gene identity with Nonlabens
agnitus and seven exhibited a 16S rRNA sequence identity of less than
98.6% to the next cultured strain and thus likely represented novel species
(Stackebrandt and Ebers, 2006). These novel species included three closely
related Polaribacter strains (mutual identity of 99.9%) which shared an
identity of 97.5% with P. butkevichii, one Formosa strain with a 16S rRNA
gene identity of 96% with F. agariphila and 97% with F. algae, and one
Lutibacter strain with an identity of 96.7% with L. litoralis. Two strains
represented novel candidate Flavobacteriaceae genera, one strain with a
16S TRNA gene identity of 93% to 95% with type strains of the genera
Tenacibaculum and Polaribacter, and one with 93.0 to 95.2% with type
strains of the genus Lutibacter (Fig. 3.2). The three Polaribacter cultures
had identical 16S rRNA gene sequences as well as 99.9% identical 165-23S

Figure 3.2 (facing page) Phylogenetic tree of isolates from the spring bloom at Helgoland
in 2010 and clones of the spring bloom at Helgoland in 2009 (HglApr) or other seawater
samples. Names of genera and clades are given to the right. Dilution cultures (pure cul-
ture) were transferred three times (transfer) to obtain isolates (isolate). A consensus tree
was built with full-length sequences based on the neighbor-joining method, calculated
without and with 40% Bacteria positional conservatory filters.
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HelApr181, Helgoland Roads, 1478 (JX015656)

NorSea39, Helgoland Roads, 1378 (AM279187)

Hel3_A1_48, isolate, 1391 (KF023501) group A
Hel3_A1_48, pure culture, 1236

HglApr355, Helgoland Roads, 1478 (JX015822) ‘ group B

Hel1_33_131, isolate, 1381 (KF023502)
Hel1_33_131, pure culture, 1369

Formosa

Hel1_31_27, isolate, 1341 (KF023499)

Hel1:31:27. pure culture, (1341 ) g rou p C

Formosa spongicola A2T, 1394 (FJ348469)

Formosa agariphila KMM 39627, 1472 (AJ893518)
Formosa algae KMM 35537, 1513 (AY228461)

Hel1_33_55, 2. transfer, 1287 (KF023495)
Hel1_33_55, pure culture, 1375

marine metagenome Helgoland, 447 Stenothermobacter
Stenothermobacter spongiae UST030701-156, 1398 (DQ064789)

Gillisia myxillae UST050418-0857, 1411 (DQ202393)
HglFeb0102m, Helgoland Roads, 1478 (JX016507)

Gillisia sp. Hel1_29, 1208 (JX854111) Gillisia
Hel1_33_143, pure culture, 582 (KF023489)

Gillisia mitskevichiae KMM 60347, 1430 (AY576655)
Gillisia limnaea R-8282T, 1476 (AJ440991)

Flavobacteriaceae

HglApr843, Helgoland Roads, 1478 (JX016243)
Hel1_33_96, isolate, 1369 (KF023506)
Hel1_33_96, pure culture, 1300

Hel1_33_78, isolate, 1369 (KF023504)
Hel1_33_78, pure culture, 1301 Polar,bacter
Hel1_33_49, isolate, 1369 (KF023503)

Hel1_33_49, pure culture, 1329

Polaribacter butkevichii KMM 39387, 1433 (AY189722)
Polaribacter filamentus 2157, 1438 (U73726)
Polaribacter dokdonensis DSW-5T, 1475 (DQ004686)

VIS_St3_34, North Atlantic Ocean, 1384 (FN433446)

Hel1_33_7, 3. transfer, 1367 (KF023505)

Hel1_33_7, pure culture, 1212

Tenacibaculum aestuarii SMK-4T, 1473 (DQ314760)
Tenacibaculum lutimaris TF-267, 1473 (AY661691)

Tenacibaculum soleae LL04 12.1.77, 1505 (AM746476)

Tenacibaculum maritimum R2T, 1456 (M64629)

PEACE2006/161_P3, Bay of Biscay, 1482 (EU394574)

Hel1_33_5, 2. transfer, 1338 (KF023494)

Hel1_33_5, pure culture, 1371

Hel1_33_84, 2. transfer, 1319 (KF023498)

Hel1_33_84, pure culture, 759

IMCC1507, Yellow Sea, 1488 (GU166749)

Lutibacter litoralis CL-TF09T, 1444 (AY962293)

cand. genus A

Tenacibaculum

cand. genus B

Lutibacter

outgroup Candidatus Planktomarina temperata sp. RCA23, Helgoland Roads, 1441 (GQ369962)

Hel1_33_108, isolate, 1267 (KF023497)
Hel1_33_108, pure culture, 904

Hel1_33_19, pure culture, 712 (KF023485) Roseobacter

Hel1_3312, pure culture, 740 (KF023484)

HglApr262, Helgoland Roads, 1421 (JX015733) clade DC5-80-3
Hel1_33_72, isolate, 729 (KF023496)
Hel1_33_72, pure culture, 799

uncult. alphaproteobacterium F098, Helgoland Roads, 562 (DQ289509)

slope strain DI4, North Atlantic continental slope, 1374 (AF254102)
Hel1_33_128, pure culture, 754 (KF023483) Sulfitobacter

Sulfitobacter mediterraneus CH-B4277, 1415 (Y17387)
Sulfitobacter pontiacus ChLG 107, 1396 (Y13155)

Rhodobacteraceae bacterium SH-22, North Sea, 1378 (FJ882056)
:e::_gg_;l 3;, isolate, |1227 (7K65023507)
el1_33_103, pure culture,
marine alphaproteobacterium sp. AS-26, Adriatic Sea, 1428 (AJ391187) RoseObaCter
Loktanella rosea Fg36, 1398 (AY682199) clade AS-26
Loktanella maricola DSW-18T, 1419 (EF202613)
Loktanella agnita R10SW5T, 1396 (AY682198)
Loktanella salsilacus LMG215077, 1306 (DQ915610)

Alphaproteobacteria

Hel1_33_47, pure culture, 741 (KF023486)

Hel1_33_130, pure culture, 749 (KF023488) H
Brevundimonas halotolerans MCS 357, 1385 (FN397633) Bre Vundlmonas

Brevundimonas diminuta LMG 20897, 1418 (AJ227778)
Brevundimonas vesicularis ATCC 114267, 1390 (AJ0O07801)

HglApr1, Helgoland Roads, 1502 (JX015534)
Hel1_31_D35, isolate, 850 (KF023500)
Hel1_31_D35, pure culture, 675 .
Hel1_31_5, enrichment, 646 Reinekea
Reinekea blandensis MED2977, 1530 (DQ403810)

Reinekea marinisedimentorum DSM 153887, 1550 (AJ561121)

uncult. bacterial clone 1C227637, Newport Harbour, 1504 (EU799959)

marine oligothrophic bacterium, HTCC2188, Newport Harbor, 1508 (AY386344)
HglApra1, 1497 (JX015549) OM 182 clade
Hel1_33_129, 3. transfer, 799 (KF023487)
Hel1_33_129, pure culture, 562

F ji i ATCC 191917, 1458 (AB006766)

Gammaproteobacteria

lentus KSL-17 IT, 1491 (DQ121389)
Hel1_33_38, pure culture, 736 (KF023490)
Hel1_33_121, pure culture, 736 (KF023491)

Hel1_33_125, pure culture, 736 (KF023492) A CtinOba Cteria

Hel1_33_147, pure culture, 736 (KF023493) ..
Nocardioides plantarum DSM 11054TT, 1484 (278211) Nocardioides
Nocardioides fonticola NAA-13T, 1403 (EF626689)
Nocardioides albus JCM 58547, 1469 (AF004992)

0.1
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rRNA internal transcribed spacer (ITS) and proteorhodopsin sequences
(suppl. Fig. 3.54), but were clearly distinguishable based on their distinct
morphological characteristics (Fig. 3.3). Another pure culture affiliated
with 99.9% 16S rRNA gene identity with the Gammaproteobacteria clade
OM182 strain HTCC2188. Eight pure cultures were identified as Alphapro-
teobacteria, four strains of which affiliated with 99.9% 16S rRNA gene
identity with Roseobacter sp. RCA23 of the Roseobacter DC5-80-3 clade,
one strain with 99.1% 16S rRNA gene identity with Loktanella rosea and one
strain with 97.2% 16S rRNA gene identity with Sulfitobacter mediterraneus.

Culturability

Culturability with our HaHa liquid medium (Tab. 3.2) was 35 + 7% of to-
tal cell counts (DAPI positive cells). The culturability differed significantly
between Gammaproteobacteria (6%; probe GAM42a), Alphaproteobacteria
(35%; probe ALF968), and Bacteroidetes (38%; probe CF319a). In con-
trast, growth was neither observed on HaHa agar and 2216 agar. Agar or
its components were excluded as growth inhibitors, whereas HEPES buffer

affected the growth of all pure cultures considerably (suppl. Influence of
the HEPES agar on page 156).

Targeted isolation of Reinekea and Formosa clade A

Pure cultures of Reinekea were not directly obtained from the single cell
series (Hell_33; Tab. 3.1). This was probably a result of the low in situ
Reinekea cell numbers of less than 5.0 x 102 cells mL~!. Therefore, enrich-
ments from inoculations with less diluted seawater (Hell 31 and Hell _32;
Tab. 3.1) were screened by PCR with the Reinekea-specific primer pair
27F and Rei732R. Reinekea was detected in four out of the 50 enrich-
ments, which corresponds to a culturability of 17%. Based on CARD-
FISH (Reinekea-specific probe REI731) the relative abundance of Reinekea
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Table 3.2 Estimated culturability of bacterial clades from which dilution cultures were
obtained. Cell counts of bacterioplankton populations were determined by CARD-FISH
using the indicated probes. The culturability and number of expected pure cultures were
estimated as described by Button and colleques (1993). ASE, average standard error.
n.a., not applicable.

Taxon Microbial populations Dilution cultivation Culturability Pure cultures
CARD-FISH Inocul. No. of Positive estimated expected
probe % cells/mL (nL) cultures cultures % (ASE) n (ASE)

Total cell counts DAPI 100 5.4 10° 100 50 50 n.a. n.a.

10 100 74 25 (3) 35 (2)

1 140 24 35 (7) 22 (4)
Bacteria EUB338I-II1 88.7 4.8 10° 100 50 50 n.a. n.a.

10 100 74 28 (4) 35 (2)

1 140 24 39 (8) 22 (4)
Alphaproteobacteria ALF968 31.3 1.7 10° 1 140 8 35 (12) 8 (3)
RCA clade ROS537 77 4.2 104 1 140 6 100 (43) 6 (2)
Gammaproteobacteria GAM42a 22.0 1.2 10° 1 140 1 1 (1) 1 (1)
OM182 clade OM182_707 1.2 8.1 10% 1 140 1 89 (9) 1 (1)
Reinekea REI731 0.9 5.5 10 100 50 4 17 (8) 4 (2

10 100 0 n.a. n.a.

1 150 0 n.a. n.a.
Bacteroidetes CF319a 32.2 1.7 10° 100 50 43 11 (2) 14 (2)

10 100 47 37 (5) 34 (2)

1 140 9 38 (13) 9 (3)
Polaribacter POL740 7.7 4.2 10% 1 140 3 52 (29) 3 (2)
Formosa clade A FORM-181A 2.2 2.7 10% 1 140 3 100 (8) 3 (1)
Formosa clade B FORM-181B 1.0 5.5 106 1 140 1 100 (13) 1 (1)

was between 18% and 35% within the enrichments of approx. 3 x 10°
cells per milliliter. From these, secondary dilution cultures were inoculated
with theoretically two Reinekea cells from the two enrichments Hell 31 5
and Hell 31 27 (consecutive dilution cultures). Reinekea cells were de-
tected by PCR in the dilution culture Hell 31_D35 (D35, 35th tube of
the 10* dilution). The purity of this culture was confirmed by microscopy
and CARD-FISH. The strain affiliated with 96.4% 16S rRNA gene iden-
tity with Reinekea blandensis MED297T (Pinhassi et al., 2007), and 95.4%
with Reinekea marinisedimentorum KMM 36557 (Romanenko et al., 2004)
(Fig. 3.2). Consecutive dilution cultures of the enrichment Hell 31 27 were
negative for Reinekea cells, but yielded three Formosa strains (Formosa
clade C) with a mutual 16S rRNA gene identity of 99.9% and 96% to
97% with Formosa agariphila DSM 153621 (Nedashkovskaya et al., 2006),
Formosa algae KMM 3553 (Ivanova et al., 2004) and the isolate Formosa
sp. Hell_33_131 (Formosa clade B).
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Dilution cultures of the Formosa clade A were not obtained from the
seawater in spring 2010, probably because of the low in situ cell numbers
of the Formosa clade A of less than 1.1 x 10% cells mL~'. On 2 Septem-
ber 2010, the Formosa clade A accounted for 2.7 x 10* cells mL~! (2.2%
of the total picoplankton) in the seawater of Helgoland. Therefore, this
seawater was diluted to a cell density of one cell per 300 uL (equivalent
to 1 nL seawater; termed Hel3_Al), and aliquots of 100 pL (statistically
0.3 cells) of the diluted seawater were transferred to 100 cultivation tubes
(Tab. 3.1). Growth was observed in 50 of the 100 Hel3_A1 dilution cultures,
among them 16S rRNA sequences of the Formosa clade A (dilution culture
Hel3_A1_48). The strain affiliated with 96% to 97% 16S rRNA gene iden-
tity with Formosa agariphila DSM 153621, Formosa algae KMM 35537,
the isolate Formosa sp. Hell 33 131 (Formosa clade B), and Formosa sp.
Hell_31_27 (Formosa clade C). Formosa group specific CARD-FISH of cul-
tures with the probe Form181A and Form181 corroborated the purity of
the culture and affiliation with the Formosa clade A and B.

Enuvironmental relevance

Strains isolated from the 20 April 2010 seawater sample had 16S rRNA
gene sequence identities of more than 99.8% with clone library sequences
from the preceding spring phytoplankton bloom in 2009, such as strains of
Polaribacter, Gillisia, Reinekea, the Formosa clade B, the OM182 clade,
and the Roseobacter clade associated (RCA) lineage (Tab. 3.3). In contrast,
16S rRNA sequences of Formosa clade A and C, Lutibacter, Loktanella, Sul-
fitobacter, and Brevundimonas cultures were not found in the clone library;,
but close relatives with more than 97.8% 16S rRNA gene identity were
present in other clone libraries from Helgoland seawater or other marine
habitats (Tab. 3.3).

Draft genome sequencing of Formosa sp. Hel3_A1_48 (Formosa clade A),
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Table 3.3 Phylogenetic affiliation of obtained pure cultures and isolates to next relative
type strains or 16S rRNA sequences of uncultured marine bacteria. HglApr and HglFeb
sequences are 16S TRNA gene sequences of bacterioplankton clone library of the spring
phytoplankton bloom at Helgoland in 2009

Taxonomy Isolate Inoculum Next relative Identity Next relative Identity Accession
type strains (%) unc. sequence (%) number

Flavobacteriaceae

Polaribacter Hell_33 49 1 nL P. butkevichii 97.5 HglApr843 99.9 JX016243
Hell 3378 1 nL
Hell 3396 1 nL
Formosa Hel3_A1 48 1 nL F. agariphila 96.1 NorSea39 99.6 AM279187
Hell 33131 1 nL F. agariphila 96.0 HglApr355 100 JX015822
Hell 31 27 100 nL.  F. spongicola 97.6 S26-122 97.6 EU287422
Gillisia Hell 33 143 1 nL G. myzillae 96.5 HglFeb0102m 99.8 JX016507
Gillisia sp. Hell 29¢ 99.9 JX854111
Lutibacter Hell 33 84 1 nL L. litoralis 96.7 IMCC1507 97.8 GU166749
Nonlabens Hell 33 55 1 nL N. agnitus 99.0 HMA475136
gen. nov. HelA Hell 337 1 nL Polaribacter sp. 93-95.3 VIS_St3.34 98.4 FN433446
gen. nov. HelB Hell 335 1 nL Lutibacter sp. 93-95.2 PEACE2006/161_P3 98.8 EU394574
Gammaproteobacteria
Reinekea Hell 31 D35 100 nL Reinekea sp. 95.4-96.4 HglAprl 99.9 JX015534
OM182 clade Hell 33129 1 nL OM182 strain HTCC2188 99.9 HglApr41l 99.9 JX015549
Alphaproteobacteria
RCA lineage Hell 33 72 1 nL Octadecabacter 95.5 HglApr262 99.9 JX015733
Hell_33_108 1 nL antarcticus F098 99.9 DQ289509
Hell_33_12 1 nL RCA23¢ 99.9 GQ369962
Hell 33 19 1 nL
Loktanella Hell_33_103 1 nL L. rosea 99.1 SH22-2a 99.9 FJ882056
Sulfitobacter Hell_33_128 1 nL S. mediterraneus 97.2 slope strain DI4% 99.7 AF254102
Brevundimonas Hell 3347 1 nL B. halotolerans 99.7 FN397633
Hell 33 130 1 nL
Actinobacteria
Nocardia Hell_33_38 1 nL N. plantarum 95.2 HF500_03E09 100 EU361007
Hell 33 121 1 nL
Hell_33_125 1 nL
Hell_33_147 1 nL

%strains of cultured marine bacteria

Formosa sp. Hell_33_131 (Formosa clade B), Reinekea sp. Hell_31_D35,
and Polaribacter sp. Hell 33 49, and subsequent read-recruitment of
metagenomes obtained during of the spring bloom of 2009 also indicated
that the isolates were indeed representative of the pelagic bacterioplankton
community in spring 2009 (Tab. 3.4). Metagenomic reads with > 95% nu-
cleotide identity covered 94% of the Formosa sp. Hell 33 131, and 90% of
the Reinekea sp. Hell_31_D35 draft-genomes, and recruited 3.75% (66,441
reads) and 4.44% (180,245 reads) of the reads, respectively. This suggests
that these strains represented discrete populations during the spring phy-

toplankton bloom in 2009. Lower numbers of metagenomic reads were
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Table 3.4 Coverage of isolate draft genomes by metagenome reads. Mapping of de-
replicated metagenomic reads from 7 April 2009 onto the genomes of Formosa and from
14 April 2009 onto the genomes of Reinekea and Polaribacter.

Genome Size Contigs Cumulative coverage by metagenome reads

(bp) of = 95% nucleotide identity
Formosa sp. Hel3_A1 48 2,050,062 3 0.05 0.08 0.13 0.17 0.18 0.18
Formosa sp. Hell 33 131 9,780,744 1 039 1.10 300 7.24 7.55  7.56
Reinekea sp. Hell 31_D35 3,713,075 79 0.40 1.01 207 441 103 15.3
Polaribacter sp. Hell_33_49 3,051,453 31 0.05 0.11 0.23 0.35 0.36 0.36

recruited by draft-genomes of Formosa sp. Hel3_A1.48 (0.12%; 4,930)
and Polaribacter sp. Hell 3349 (0.07%; 1,174), probably because the
Polaribacter and Formosa clade A populations during the 2009 spring
phytoplankton bloom 2009 were of lesser genomic coherence (Tab. 3.4).
This was also reflected in the metagenomic reads covering only 50% of the
Polaribacter sp. Hell 33 49 and 10% of the Formosa sp. Hel3 Al 48 draft

genomes.

3.5 Discussion

Our approach combined the artificial seawater (ASW) medium of Widdel
and Bak (1992), with the modifications introduced by Hahnke and Harder
(2013), and the dilution cultivation approach originally introduced by But-
ton and colleagues (1993). The observed culturability of 35% is in the same
range as reported for novel optimized cultivation techniques, such as 40%
from soil (Kaeberlein et al., 2002), 37% from freshwater (Bussmann et al.,
2001), and 20% (Connon and Giovannoni, 2002) or 50% (Button et al.,
1993) from seawater. Our assessment of culturability based on total cell
counts likely underestimates, since up to 10% of the bacterioplankton was
likely dead or dormant (Ouverney and Fuhrman, 1999; Campbell et al.,
2011). These cultivations in liquid HaHa medium resulted in a more than

100 times higher culturability as HaHa agar (Hahnke and Harder, 2013)
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A

Figure 3.3 Cellular morphologies of marine bacteria documented by transmission electron
microscopy images of (A) Polaribacter sp. Hell_33 49, (B) Polaribacter sp.
Hell_33_78, (C) Polaribacter sp. Hell_33_96, (D) Reinekea sp. Hell_31_D35,
(E) Formosa sp. Hel3_A1 48 of the Formosa clade A, and (F) Formosa sp.
Hell 33_131 of the Formosa clade B. Arrows indicate (B) fibers on the cell surface
and in the surrounding, (D) a peritrichous flagellum, and (E, F) cellular appendages like
strings of pearls forming a cobweb that connects the cells. Bar: 0.5 pym.
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with the same samples. It has been shown before that many of the marine
bacteria obtained by dilution cultivation cannot be grown on agar plates
(Connon and Giovannoni, 2002; Kaeberlein et al., 2002). This inability to
grow on agar plates as well as on HEPES-buffered medium might constitute
reasons for the low cultivation efficiencies in previous studies (Eilers et al.,
2000, 2001; Sapp et al., 2007a; Hahnke and Harder, 2013).

We observed a much lower culturability of Gammaproteobacteria than
for Alphaproteobacteria and Flavobacteria.  This demonstrates that
the HaHa medium is unlikely to suffer from an over-representation of
Gammaproteobacteria, known as cultivation-induced Gammaproteobacte-
ria shift (Fuchs et al., 2000; Massana and Jiirgens, 2003) which corrob-
orates previous results with this medium (Hahnke and Harder, 2013). In
addition, our cultivation approach allowed to isolate strains of Formosa,
Polaribacter, Reinekea, Lutibacter, and the OM182 clade that were not
brought into culture by previous cultivation studies of the North Sea (KEil-
ers et al., 2000, 2001; Sapp et al., 2007a; Stevens et al., 2009; Hahnke and
Harder, 2013). These previous failures are remarkable, since the cultivated
Formosa, Polaribacter, and Roseobacter strains reached abundances of one
to eight percent in spring 2010, and even higher abundances in spring 2009
(Teeling et al., 2012). On the other hand, we were not able to cultivate
representatives of all in situ abundant taxa determined by CARD-FISH,
such as Ulvibacter, SAR11, and SAR92. This suggests that the HaHa
medium did not allow for growth of oligotrophic bacteria like SAR11 (Carini
et al., 2012). However, we were able to directly cultivate a close relative of
the strain HTCC2188 from the Pacific Ocean (Cho and Giovannoni, 2004).
This strain was cultivated in sterilized oligotrophic seawater and belonged
to the marine Gammaproteobacteria clade OM182 which consists of obli-
gate oligotrophic bacteria. Hence, our approach facilitated the cultivation

of oligotrophic bacteria. Further factors, like reactivated prophages, viral



3.5. Discussion 145

infections, signal molecules and substrate requirements that influence the
culturability of marine bacteria have been elaborately discussed elsewhere
(Zengler, 2009; Overmann, 2010; Lennon and Jones, 2011).

Sanudo-Wilhelmy et al. proposed that auxotrophy for at least one B vi-
tamin is common for both eukaryotic phytoplankton and bacterioplankton
(Sanudo-Wilhelmy et al., 2012). This was for example shown for the vita-
mins By, Bs, Br, and By in "Candidatus Pelagibacter ubique’” HTCC1062
(Giovannoni et al., 2005). Indeed, the Reinekea and the Formosa clade A
strains required vitamins for isolation. In situ sources of vitamins are algae
and bacteria, but also influxes from rivers in coastal ecosystems (Gobler
et al., 2007), suggesting a selection of bacterial populations whose vitamin
needs match natural vitamin availability (Sanudo-Wilhelmy et al., 2012).
The Reinekea population increased rapidly after a shift in the phytoplank-
ton composition and collapsed two weeks later (Teeling et al., 2012) which
might have resulted from a phytoplankton or bacterioplankton-induced re-

lease of vitamins or substrates.

Co-cultivation

Dilution cultivation (i.e. dilution to near extinction) allows both, cultiva-
tions starting from single cells and from bacterial communities consisting of
only a few cells (Button et al., 1993). Cultivation of single cells circumvents
the competition of slow growing and fast growing, opportunistic bacteria,
whereas co-cultivation enables helper organisms to promote growth of oth-
erwise non-culturable bacteria (D’Onofrio et al., 2010). For example, detox-
ification of hydrogen peroxide by helper bacteria can reduce the oxidative
stress of beneficiaries (Morris et al., 2012). The evolutionary adaptation
towards helping and benefiting bacteria that results in an increased overall
fitness of the entire bacterial community has been discussed as the 'Black
Queen hypothesis’ (Morris et al., 2012).
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Interestingly, we obtained the two Reinekea-positive enrichments,
Hell 31 5 and Hell 31 27, but after the consecutive dilution cultivation
of both enrichments, Reinekea was detected only in dilution cultures of
the enrichment Hell 31 5. This suggests that the dilution influenced the
bacterial community in Hell 31 27 in a way that prohibited growth of
Reinekea, whereas it influenced the bacterial community in Hell 315 in
a way that promoted growth of Reinekea. The bacterial community of
the latter consisted mainly of Polaribacter, and co-occurrence of Reinekea
and Polaribacter was exactly what was observed in situ during the spring
phytoplankton bloom in 2009 (Teeling et al., 2012). Therefore, a helper-
beneficiary relationship of the Polaribacter and Reinekea is likely and will

be subject of future studies.

Ecological relevance of the isolates

Our novel pure cultures were closely related (>99.9% 16S rRNA identity)
to so far uncultured marine bacteria from the 2009 spring phytoplank-
ton bloom in the German Bight of the North Sea (Teeling et al., 2012),
bacterioplankton from Helgoland sampled at other occasions (Alonso et al.,
2007; Sapp et al., 2007b), or other marine clone libraries (Pham et al.,
2008; Li et al., 2009). However, a 16S rRNA identity of 98.7% to 100%
alone is an insufficient criterion for whether or not these isolates belong to
the afore-seen species (Rossello-Mora and Amann, 2001; Yarza et al., 2010).
As additional criterion, we amplified and sequenced the proteorhodopsin se-
quences of our Flavobacteriaceae isolates, which were 100% identical to pro-
teorhodopsin sequences of phytoplankton bloom-associated bacterial com-
munities from Helgoland in spring 2009 (Teeling et al., 2012) and summer
2006 (Riedel et al., 2010). Moreover, Riedel and colleagues affiliated the
proteorhodopsin sequences Hel31 to Flavobacteriaceae, but could not pro-

vide a genus (Riedel et al., 2010). Here we suggest that this proteorhodopsin
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belongs to the Formosa clade A within the genus Formosa (supplementary
material). Interestingly, our strain Hell 33 7 (candidate Flavobacteriaceae
genus) had a proteorhodopsin sequence with 99.9% sequence identity to
the proteorhodopsin clones NA13 R15 12 and NA11 R15 8 from the North
Atlantic Ocean (Sabehi et al., 2005). This cluster of proteorhodopsin se-
quences was also previously phylogenetically uncharacterized (Sabehi et al.,
2005). Proteorhodopsin sequences have been estimated to be present in
13% of the bacterioplankton in the photic zone (Sabehi et al., 2005) and
are believed to be frequent subjects of lateral gene transfer (Frigaard et al.,
2006; Sharma et al., 2006; Riedel et al., 2010) which of course might have

affected our taxonomic proteorhodopsin affiliations.

Konstantinidis and Tiedje analyzed complete genomes as well as environ-
mental metagenomes and proposed an average nucleotide identity (ANI)
of 94% and a genomic sequence divergence of 5-6% as criteria for ecologi-
cally coherent species (Konstantinidis and Tiedje, 2005; Konstantinidis and
DeLong, 2008). The genomes of our Reinekea and Formosa clade B iso-
lates were covered by 90-94% with metagenomic sequences with > 95% nu-
cleotide identity. Both, the isolates and the metagenomes were derived from
samples of the same habitat that were taken a year apart during spring phy-
toplankton blooms. Consequently, Reinekea sp. Hell 31 D35 and Formosa
sp. Hell_33 131 formed discrete bacterioplankton populations (e.g. popu-
lations with a high level of genomic coherence) during spring 2009. The
isolates of Polaribacter and the Formosa clade A were not part of such
discrete populations, but with draft genome coverage of 50% and 10% with
metagenomic sequences with > 95% nucleotide identity, respectively, still
similar to populations observed in 20009.

Members of the Bacteroidetes play a pivotal role in the degradation of
complex organic matter (Kirchman, 2002; Schauer et al., 2008; Gomez-

Pereira et al., 2012; Teeling et al., 2012). Flavobacteria are non-motile
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or move by gliding (Bernardet, 2010) and many form biofilms, which en-
ables them to colonize surfaces including living phytoplankton and allows
them to stay close to the substratum (Reichenbach, 1981; Gomez-Pereira
et al., 2012). This agrees with the observed strong attachment and ag-
gregate formation of the Polaribacter isolates, that was mediated by fibers
on their cell surfaces (Fig. 3.3). Likewise, formation of three-dimensional
polysaccharides nets as observed for the Formosa isolates could increase the
viscosity of the surrounding medium (Fig. 3.3) and might participate in par-
ticle formation, as shown for Lentisphaera araneosa (Cho and Giovannoni,
2004).

Conclusions

Our cultivation approach enabled a high-throughput cultivation in a dedi-
cated low nutrient medium with little equipment. Representatives of so far
uncultivated marine bacteria were successfully brought into pure culture
directly from the seawater. The obtained isolates represented ecologically
relevant and coherent species in the bacterioplankton during a phytoplank-

ton bloom in the German Bight of the North Sea.

The represented taxa reached a cumulative abundance of 50% of total cell
counts or successively accounted each for 8% to 27% of the bacterioplankton
during the spring phytoplankton bloom at Helgoland in 2009 (Teeling et al.,
2012). Hence, our isolates represent taxa of ecological relevance. Further
physiological studies on these isolates will help to understand their specific
ecological roles in the process of phytoplankton biomass decomposition and

thereby elucidate the factors that define their ecological niches.
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Table 3.52 Composition of casamino acids, tryptone peptone and yeast
extract as listed in the technical manual of BD Bionutrients”, BD Bio-
sciences, Sparks, MD, USA.

Product Name (Bacto, DIFCO) Casamino Acids Peptone  Yeast Extract

Inorganic compounds

Ash % 18.3 6.6 11.2

NaCl % 12.1 0.0 0.1

Sodium mg/g 88.1 33.9 4.9

Calcium ug/g 59.0 256.0 130.0

Chloride ug/e 6.7 0.1 0.4

Phosphate ng/e 2.6 2.6 3.3

Amino nitrogen (ANT) % 9.4 5.3 6.0

Total carbohydrate mg/g 0.0 4.3 163.3

Amino acids
positive charged AA at pH 7.4

% total 2.5 5.0 2.6

% total 0.8 1.9 1.3

% total 5.2 6.2 4.6
nagative charged AA at pH 7.4

% total 2.4 5.2 5.3

% total 15.9 15.1 9.4
polar uncharged AA

Glutamine (Q) % free 0.0 0.1 0.2
% total 2.1 2.2 1.6
- Threonine (T) Y% free 05 07 Ll
% total 1.5 1.8 1.6
special cases
Cystine (C) % free 0.1 0.3 0.2

% total 1.4 1.7 3.0

% total 8.0 6.6 2.0
hydrophobic side chain

% total 3.0 3.2 5.6

% total 4.0 5.5 3.0

% total 5.0 7.5 4.1

% total 1.4 2.1 0.8

% total 3.6 5.2 2.6

% total 0.4 1.3 1.2

% total 5.6 5.9 3.5
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Figure 3.S1 Setup of the modified Widdel flask for medium preparation. (A)
Complete setup. (B) Hose clamp, sterile filter, and a sterile bell to fill the
medium into polystyrene tubes. (C) Pressure reducer, sterile cotton wool
filter, and glass tubes to produce an overpressure of 100 mbar in the headspace
of the medium flask.

1 mL
seawater

9 mL

[ portion of seawater J ( 100 uL ] ( 10 L ) [ 1 pL]

10 mL

medium
ASW in medium

Figure 3.S2 Procedure for dilution cultivation of an untreated seawater sample. The
seawater sample was diluted 1:10 with sterile artificial seawater (ASW), syringes, and
Hungate tubes (black lid). Bacterial populations in portions of 1 nL, 10 nL. and 100
nl, relative to the volume of seawater, were inoculated into polystyrene tubes (blue
lid) filled with 10 mL ASW medium. As control, the medium was inoculated with the
diluent ASW.
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Influence of the HEPES buffer and agar on culturability

The artificial seawater medium HaHa had three differences to the marine
agar HaHa. The solid medium HaHa was supplemented with 18 g /1. washed
agar. As buffer 50 mM HEPES were used for the marine agar HaHa and
2 mM bicarbonate for the artificial seawater HaHa. The carbon concentra-
tion of the marine agar HaHa was 2 g/, and of the artificial seawater HaHa
3 mg/L. We tested 10 pure liquid cultures for growth in the artificial seawa-
ter HaHa with a carbon concentration of 2 g/I.. All 10 pure liquid cultures
did grow under these elevated carbon concentration conditions. To test a
putative negative effect of the agar on growth, the same pure cultures were
inoculated into a medium composed of 2/3 artificial seawater with 18 g/L
washed agar at pH 7.5 and 1/3 artificial seawater HaHa. All pure cultures
did grow in the artificial seawater medium with washed bacto agar.

As a test for an influence of HEPES buffer on growth, the ASW medium
was supplemented with either 2 mM bicarbonate buffer, 2 mM or 50 mM
HEPES at pH 7.5. Three strains that were cultivated on agar plates and
10 pure cultures that grew in liquid medium only were incubated in the
three media for 2 months. All bacteria from the agar plate were able to
grow in all three media. In contrast, all strains from the liquid medium

grew in the medium with 2 mM bicarbonate, weak or not in the 2 mM
HEPES buffered medium, and not in the 50 mM HEPES medium.

Figure 3.S3 (facing page) Structure of dilution cultures of (A) Polaribacter sp. Hell_33_78
and Hell 33 96, (B) Brevundimonas sp. Hell 33 47 and Hell 33 130, (C) Hell 33 131
and Stenothermobacter sp.  Hell 33 55, (D) Roseobacter clade DC5-80-3 strain
Hell 33 55 and clade AS-26 strain Hell 33 103, and (E) OM182 strain Hell 33 129.
Bivariant dot plots of the two parameters of flow cytometry: side light scatter inten-
sity (SSC-H, representing complexity of the cell) and SYBRGreen fluorescence intensity
(FL1-H, reflecting DNA content). Beads with a diameter of 0.5 pum- (light blue) and
1.0 pm (dark blue) were used as an internal standard of fluorescence intensity. The
dilution culture Hell 33 69 was a mixture of different microorganisms confirmed by mi-
croscopy and 16S rRNA gene sequencing.
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Proteorhodopsin analysis

The proteorhodopsin gene of Flavobacteria was amplified with both
primer pairs PR-Flavo-F/R and PR-Flavo-2F /R as described previously
(Yoshizawa et al., 2012). Proteorhodopsin sequences of isolates, the MIMAS
metagenome dataset (Teeling et al., 2012), and closely related sequences
from GenBank (Benson et al., 2010) were aligned in MAFFT (Katoh et al.,
2002) as protein sequences. The phylogenetic tree was constructed with
maximum likelihood using a 40% base frequency filter in ARB (Ludwig
et al., 2004).

The proteorhodopsin gene of all three Polaribacter spp. cultures were
successfully PCR amplified with both primer sets, PR-Fla-1F /R and PR-
Fla-2F /R. The sequences had 99.9% identity to each other and fall into the
proteorhodopsin cluster (suppl. Fig. 3.54) with the cultures Polaribacter
sp. SA4-10 and sp. SA4-47, isolated from the Sea ice of the Sea of
Ochotsk, Hokkaido, Japan (Yoshizawa et al., 2012). Furthermore, these pro-
teorhodopsin sequences were 100% identical to sequences of the metagenome
from the bacterial community decomposing the spring phytoplankton bloom
(Teeling et al., 2012). The proteorhodopsin sequence of strain Hell 337
was PCR amplified with the primer pair PR-Fla-2F /R only. This prote-
orhodopsin sequence was 99.9% identical to the phylogenetically uncharac-
terized proteorhodopsin clones NA13 R15 12 and NA11 R15 8 of the North
Atlantic Ocean (Sabehi et al., 2005). Thus, our strain Hell_33_7 confirmed
proteorhodopsin in surface seawater, and further showed the phylogenetic
affiliation to a novel genus in the family Flavobacteriaceae, phylum Bac-
teroidetes. Furthermore, these proteorhodopsin sequences were 100% iden-
tical to sequences of the metagenome from the bacterial community decom-

posing the spring phytoplankton bloom in 2009 (Teeling et al., 2012).
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Figure 3.S4 Maximum likelihood tree of proteorhodopsin genes of isolates from spring
2010 (Hell_33) and summer 2010 (Hel3_A1l), from the metagenome of the spring phyto-
plankton bloom 2009 (20090606_contig) and other marine proteorhodopsin clones from
the North Sea (HEL31, HELG9), the Yellow Sea (SA4), and the Central North Atlantic

(NA).
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HaHa medium

Artificial seawater medium: after Hahnke et al., 2014

1. Prepare and autoclave the modified Widdel flask

2. Prepare 1x ASW by dissolving the basal salts in autoclaved 1 L ultra

pure water

1L 1x ASW
NaCl 26.37 g
NaHCO, 0.19 g
CaCl, - 2H,0 147 g
KCl 0.72 g
KBr 0.10 g
H,BO, 0.02 g
SrCl, 0.02 g

3. Add 0.5 mL NaF (0.006 g/mL, filtered)

4. ! Add magnetic stir bar !

ba. Fill up to 1 L with autoclaved ultra pure water
(5b. Check pH < 7.0)

6. Autoclave and cool to 70 °C

7. Add ultra pure water to a final volume of 1 L (autoclaved)

8. Cool to < 40 °C



3.7. Supporting Information 161

9. Add sterile from the following stock solutions:

2.0 mL Trace-element-solution (autoclaved)

1.0 mL  Se-W-solution (fresh autoclaved)

0.7 mL  KH,PO,-solution (0.02 g/L, autoclaved)
1.0 mL.  NH,Cl-solution (0.2 g/L, autoclaved)

10. Add carbon sources from the following stock solutions

0.6 mL  Glucose (1 g/L, sterile filtered)
0.6 mL  Cellobioses (1 g/L, sterile filtered)
0.6 mL  Yeast Extract (BioChemica) (1 g/L, sterile filtered)
0.6 mL.  Casaminoacids (Difco) (1 g/L, sterile filtered)
0.6 mL.  Tryptone Pepton (Difco) (1 g/L, sterile filtered)

11. Add buffer from the following stock solutions (! pH < 7.6!)

2.0 mL. NaHCO, (1 M, autoclaved, CO2 equilibrated)

12. Adjust pH to 7.5 with 1 M HCI or 1 M NaHCO; (autoclaved)
13. Add ultra pure water to a final volume of 1 L. (autoclaved)

14. Filter the artificial seawater medium into sterile polystyrene tubes
(15 mL, 188171, Greiner Bio-One, Frickenhausen, Germany) or Hungate
tubes through a Sartolab P20 (0.2 pum poresize, 18075D, satorius, Gottin-
gen, Germany) or P20 Plus (0.2 pum poresize, 18053D, satorius, Gottingen,
Germany) filter
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4.1 Abstract

During phytoplankton bloom senescence distinct bacterioplankton popu-
lations serially succeeded. Based on in situ expressed transporters and
glycoside hydrolases it was suggested that algae derived carbohydrates pro-
vided a series of ecological niches. We studied the physiological charac-
teristics and carbohydrate substrate specificity of strains which were iso-
lated as representatives of phytoplankton decomposing populations. Gly-
coconjugate fibers on Polaribacter cell surface mediated aggregate forma-
tion and strong attachment. Formosa strains were linked to each other by
strings of pearl-like structures in a three dimensional network that caused
an increasing medium viscosity. Reinekea sp. grew on all tested mono-,
di-, trisaccharides, but not on tested polysaccharides. Formosa strains
were able to grow on un-substituted polysaccharides, whereas Polaribacter
strains additionally grew on substituted polysaccharides. These physio-
logical traits provided further evidence that Formosa, Polaribacter, and
Reinekea species could prevail in different ecological niches during algae
decay. On the basis of 16S TRNA sequence analysis and preliminary phe-
notypic analysis novel species were proposed. 'Formosa flavarachnoidea’
(Hel3_A1.48) and 'Formosa forsetii’ (Hell_33_131) belonged to the genus
Formosa (Flavobacteria). *Polaribacter forsetii’ (Hell_33_49), " Polaribacter
frigidimaris’ (Hell_33_78), and ’Polaribacter adhaesivus’ (Hell_33_96) be-
longed to the genus Polaribacter (Flavobacteria). ' Reinekea forsetii’

(Hel1_31_D35) belonged to the genus Reinekea (Gammaproteobacteria).
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4.2 Introduction

Heterotrophic bacteria play an important role in cycling of organic
matter in the ocean by remineralizing more than 50% of the net pri-
mary production (Azam, 1998). During phytoplankton bloom senes-
cence, bacterial cell numbers, growth rates and hydrolytic enzyme ac-
tivity increased significantly (Smith et al., 1995). In experimentally in-
duced as well as naturally occurring phytoplankton blooms the respond-
ing bacterioplankton community consisted mainly of Bacteroidetes, Al-
phaproteobacteria and Gammaproteobacteria (Pinhassi et al., 2004; Rie-
mann et al., 2000; Schéifer et al., 2001; Tada et al., 2011). Flavobacte-
ria were shown to dominate the bacterioplankton that consumed proteins,
N-acetylglucosamine and polysaccharides (e.g. chitin), whereas Alphapro-
teobacteria and Gammaproteobacteria dominated the amino acids consum-
ing part of the bacterioplankton, revealed by microautoradiography of es-

tuarine and coastal bacterioplankton (Cottrell and Kirchman, 2000).

On the genus level, the peaking of distinct bacterial populations char-
acterized the bacterioplankton community after the spring phytoplankton
bloom in shallow coastal waters of the North Sea (Teeling et al., 2012). In
the early phase of algae decay, Ulvibacter, Formosa (Flavobacteriaceae) and
the Roseobacter NAC11-7 lineage (Alphaproteobacteria) succeeded, whereas
Polaribacter (Flavobacteriaceae), the Roseobacter clade-affiliated (RCA)
lineage (Alphaproteobacteria), SAR92 and Reinekea (Gammaproteobacte-
ria) spiked in the late phase (Teeling et al., 2012). It was proposed that
the ecological niche of Reinekea was an uptake of peptides and monosac-
charides, based on the observed expression of mainly ABC type and TRAP
transporters. Mono- and oligosaccharides are the result of polysaccharides
degradation by extracellular glycoside hydrolases. Based on expressed gly-

coside hydrolases and sulfatases, it was suggested that the early blooming
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Formosa potentially decomposed non-substituted laminarin, whereas the
late blooming Polaribacter were able to decompose sulfated polysaccharides
(Teeling et al., 2012).

Representatives of the three genera Formosa, Polaribacter and Reinekea
were isolated from the seawater of Helgoland in 2010, and showed high sim-
ilarities to 16S rRNA and functional gene sequences of the bacterioplankton
metagenome in spring 2009 (Hahnke et al., 2014). We studied metabolic
potentials and nutrient requirements of these marine Flavobacteriaceae and
Gammaproteobacteria isolates to gain further insights into ecological roles
of bacterioplankton populations in the remineralization of algae derived
carbohydrates. The focus was on the utilization of mono-, di-, tri- and
polysaccharides by strains Hel3_A1 48, Hell 33 131, Hell 33 49, Hell 33 78,
Hell 33 96 and Hell 31 D35. Furthermore, the results of this study should
provide target strains and polysaccharides to initialize proteomic studies on

potential polysaccharide utilization loci.

4.3 Material and methods

Artificial seawater (ASW) and all media were prepared with sterile filtered
(0.2 pum polycarbonate filter) ultra pure water (Aquintus system, membra-
Pure, Germany) with a electrical resistivity of 18.3 M2 m.

ASW was prepared following the recipe of Widdel and Bak (1992) as
described by Winkelmann and Harder (2009). The marine media HaHa,
HaHa_100 and HaHa_100V were prepared as described by Hahnke and col-
leagues (2014). The HaHa_min medium was identical to the HaHa medium,
with an addition of 1.1 mL/L NH4CI (5.0 g/L, autoclaved) and 0.1 mL/L
KH,PO4 (50 g/L, autoclaved) providing 100 uM carbon, 103 M ammo-
nium and 16 uM phosphate. The HaHa minV medium was identical to the
HaHa_min medium with the addition of 1 mL /L 7-vitamin solution (Winkel-
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mann and Harder, 2009), 1 mL/L vitamin By, solution (Widdel and Bak,
1992), 1 mL/L thiamine solution (Winkelmann and Harder, 2009), and 1
mL /L riboflavin solution (Winkelmann and Harder, 2009). All media were
buffered with 2 mM NaHCOj3 (Widdel and Bak, 1992) at pH 7.5. Evapo-

rated water was replaced with autoclaved ultra pure water.

Mono-, di- and trisaccharides

The monosaccharides D-galactose, D-mannose, L-rhamnose, D-fructose,
D-mannitol, D-glucose, DL-xylose, L-arabinose and D-arabinose, the disac-
charides trehalose, D-sucrose, D-maltose and D-cellobiose, the trisaccharides
raffinose and N-acetyl-D-glucosamine were dissolved in ultra pure water
(10 g/L). The substrate solutions were adjusted to pH 7 with 1 M NaOH
or HCI and sterile filtered through a 0.2 pum pore size filter (0.2 pm filter,
Minisart, Sartorius, Gottingen, Germany). The HaHa_min and HaHa_minV
media were supplemented with 100 uL of the substrate solutions per 10 mL

medium (0.1 g/L final concentration).

Polysaccharides

For cellulose preparation (structural affected), Whatman filter paper (Grade
595 1/2, Whatman , GE Healthcare, Freiburg, Germany) was cut into
pieces and washed three times with ultra pure water followed by 70%
ethanol. Filter paper pieces were autoclaved in ultra pure water at 121 °Cfor
21 min. Agar, xylan, k- and ¢-carrageenan were prepared following the
protocol of Widdel and Bak (1992). The double concentrated ASW was

autoclaved and mixed with 4% (w/v) agar (Bacto', BD Bionutrients
BD Biosciences, Sparks, MD, USA), xylan (4414.1, Carl Roth, Karlsruhe,
Germany), k-carrageenan (22048, Sigma-Aldrich, Hamburg, Germany) or
t-carrageenan (22045, Sigma-Aldrich, Hamburg, Germany) were autoclaved

in different bottles at 121 °C for 21 min. The double concentrated ASW and
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one of the polymeric substances were mixed 1:1 (v/v) by stirring at 80 °C.
The mixture was adjusted to pH 7 and poured into polypropylene Petri
dish. Colloidal chitin was prepared as described by Souza (2009). 10 g of
chitin (powdered crab shells, C-9213, Sigma-Aldrich, Hamburg, Germany)
were added to 150 ml 37% HCI and stirred at room temperature for 5 hours.
The dissolved chitin was filtered through glass wool. Under vigorous stir-
ring, the addition of 400 mL 50% ethanol (final concentration) caused pre-
cipitation of the chitin. The chitin suspension was filtered on glass-fiber
filter (alternatively top-bottle filter can be used for faster filtration) and
washed with autoclaved ultra pure water until pH 7. The colloidal chitin
was washed with 70% ethanol and air dried. Laminarin from Laminaria
saccharina (1-1760, Sigma-Aldrich, Hamburg, Germany) was washed three
times with ultra pure water and pasteurized three times by incubation in
ultra pure water at 70 °C for 1 h and washing with autoclaved ultra pure wa-
ter. An intensive treatment with ultra pure water was important to exclude
D-mannitol impurities. Glycogen (G-8751, Sigma-Aldrich, Hamburg, Ger-
many) was dissolved in autoclaved artificial seawater and sterilized through
a 0.2 pm sterile filter (Minisart, Sartorius, Gottingen, Germany). Gelatin
powder (4582.3, Carl Roth, Karlsruhe, Germany) was dissolved in 70 °C au-
toclaved artificial seawater and poured into polypropylene Petri dishes.

A portion of the prepared sterile polysaccharides was placed into a
polystyrene tube which was filled up to a volume of 10 mL with either
HaHa min or HaHa minV medium. A portion of the prepared polysaccha-
rides was incubated in HaHa 100V medium at room temperature for at

least one weak to test for contaminating bacteria.
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Cultivation

Substrate test were performed in duplicates and repeated once. 100 ulL
of culture were inoculated into 10 mL HaHa min or HaHa minV medium
supplemented with mono-, di-, tri- or polysaccharides. To test for growth
inhibition by the prepared saccharides and polysaccharides the strains were
inoculated into HaHa 100 or HaHa 100V medium. Growth was detected
by biomass formation in duplicates, against the strain in HaHa min or

HaHa minV medium, and the saccharide in HaHa 100V medium.

Cell staining

For visualization of cells that are attached to the polysaccharides cellu-
lose or laminarin, small pieces of the polysaccharides were incubated with
4’6-diamidino-2-phenylindole (DAPI, 1 pug/ml ASW) at room temperature
for 10 min. Excess DAPI and salts were thoroughly removed by washing
the polysaccharide with sterile ultra pure water and 70% ethanol. The
polysaccharide piece was mounted on glass slides with Citifluor and Vec-
taShield (4:1) and DAPIT stained cells were determined on a Zeiss Axioplan

IT Imaging epifluorescence microscope.

Transmission electron microscopy

For negative staining, samples were absorbed onto carbon film, washed in
TE buffer (20 mM Tris/HCIL, 1 mM EDTA, pH 6.9), stained with 4% (w/v)
aqueous uranyl acetate (pH 4.5) according to the method of Valentine et al.
(1968) and picked up with 300-mesh copper grids. After air-drying, samples
were examined in a EM109 transmission electron microscope (TEM) at an

acceleration voltage of 80 kV and at calibrated magnifications.
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4.4 Results and discussion

General characteristics of the strains

All of the Flavobacteriaceae strains investigated had either yellow or orange
pigments. Flexirubin pigments were not detected. All strains studied, ex-
cept "Formosa flavarachnoidea’, were cold-adapted, with growth occurring
at 0 °C to 23 °C or 26 °C in marine HaHa_100 medium. Optimal growth yields
occurred at 12 °C to 16 °C. Strain 'Formosa flavarachnoidea’ grew between
8 °C and 25 °C, with optimal growth at 22 °C. None of the strains studied
grew at 30 °C or higher in HaHa 100V medium. The original seawater of
Helgoland had a temperature of 7.4 °C at the time of sampling and usu-
ally ranges between 0 °C and 20 °C (Gerdts et al., 2004). All studied strains
shared the utilization of amino acids and oligopeptides from casamino acids,
tryptone peptone, yeast extract, and gelatin. For "Polaribacter frigidimaris’
the hydrolysis of gelatin was not observed, but growth occurred. Vitamins
were not required for growth, except for strains ’Formosa flavarachnoidea’
and ’Reinekea forsetii’. Common and differential phenotypic characteristics
of the strains are listed in Tab. 4.1 and summarized below in the preliminary

descriptions.

It was repeatedly hypothesized that the ecological role of Bacteroidetes
is the decomposition of high molecular weight (HMW) organic matter
(Ivanova et al., 2004), the initial step for the remineralization of organic
matter in the ocean (Arnosti, 2010). The ability of the Flavobacteriaceae
strains to attach and grow on a variety of polysaccharides (e.g. lam-
inarin, cellulose, agar, k-carrageenan) in contrast to Reinekea supports
this role. ’Polaribacter forsetii’ (Polaribacter sp. Hell_33.49) formed a
pellet in liquid culture in contrast to the formation of soft cloudy ag-
gregates of "Polaribacter frigidimaris’ (Polaribacter sp. Hell_33_78) and
"Polaribacter adhaesivus’ (Polaribacter sp. Hell 33 96) (Fig. 4.2 and
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Fig. 4.3). Net-like extracellular glycoconjugate fibers occupied the whole
cell surface and were the basis for aggregate formation and strong attach-
ment of "Polaribacter frigidimaris’ and ’'Polaribacter adhaesivus’. Colonies
of these strains were still attached to surfaces of different materials (e.g.
polystyrene, cellulose, chitin) after centrifugation for 1 h at 2500x g. For
strains "Formosa flavarachnoidea’ (Formosa sp. Hel3_A1_48) and 'Formosa
forsetii’ (Formosa sp. Hell _33_131), appendages were observed that em-
anate from the cell surface with globules of variable size and distances
(Fig. 4.1). Appendages connected the cells with each other, mediated aggre-
gate formation, and resulted in an increased viscosity of the medium. Such
properties were described from Lentisphaera araneosa, as a strategy to trap
particles in the seawater induced by cobweb like structures (Cho et al.,
2004). Vortexing destroyed Formosa cells, but the more robust globular
structures appeared without alterations. Consequently, for further cultiva-

tion the Formosa strains were homogenized by gently inverting.

Furthermore, it was proposed that dedicated Flavobacteria are special-
ized for different fractions of complex organic matter, based on the extent
of polysaccharide utilization loci (PUL) within a genome and their differ-
ence in composition between individual genomes of Flavobacteria (Bauer
et al., 2006; Gomez-Pereira et al., 2012) and between distinct Flavobacte-
ria populations during phytoplankton decomposition (Teeling et al., 2012).
While Formosa agariphila DSM 153621 was able to grow on all tested
mono-, di-, trisaccharides, and N-acetyl-D-glucosamine, strain ’Formosa
flavarachnoidea’ oxidized D-galactose and strain Formosa forsetii’ ox-
idized D-glucose and D-cellobiose exclusively, under the given cultiva-
tion conditions. All three Formosa strains were able to grow on lami-
narin (Fig. 4.2) and slightly (less biomass) on k-carrageenan, but not on
agar. 'Formosa flavarachnoidea’ grew on cellulose (structural affected)

(Fig. 4.3) and carboxymethyl-cellulose, in contrast to Formosa agariphila
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DSM 153627 and 'Formosa forsetii’. Strains Polaribacter sp. Hell 85
and 'Polaribacter forsetii’ differed remarkably from strains ’Polaribacter
frigidimaris’ and ’Polaribacter adhaesivus’, based on their spectrum of ox-
idized carbohydrates. Both Polaribacter strains ’Polaribacter frigidimaris’
and ’'Polaribacter adhaesivus’ grew on all tested mono-, di-, trisaccharides
and N-acetyl-D-glucosamine. The difference between strains ’Polaribacter
frigidimaris’ and ’Polaribacter adhaesivus’ was the inability to grow on
glycogen and the narrow temperature range of growth of strain ' Polaribacter
frigidimaris’. Polaribacter sp. Hell 85 grew on D-galactose, D-mannose,
D-mannitol, DL-xylose, DL-arabinose, D-sucrose, D-maltose and L-raffinose,
but not on L-rhamnose, D-fructose, D-glucose, D-trehalose, D-cellobiose
and N-acetyl-D-glucosamine. ’Polaribacter forsetit’ had a narrow carbo-
hydrate spectrum and grew only on D-mannose, D-glucose, D-maltose and

D-cellobiose.

Teeling and Fuchs et al. (Teeling et al., 2012) hypothesized different eco-
logical niches of Polaribacter and Formosa, based on the potential decom-
position of the more complex substituted polysaccharides by Polaribacter
populations. This was reflected in the decomposition of un-substituted
polysaccharides (e.g. laminarin, cellulose) by studied strains of the both
genera Formosa and Polaribacter, in contrast to the decomposition of sub-
stituted polysaccharides (e.g. agar, xanthan, carrageenan) by all studied

Polaribacter strains only.

As a result of polysaccharides degradation by extracellular glycoside hy-
drolases, monosaccharides and oligosaccharides become available that can
be taken up by fast growing opportunistic bacteria of broad substrate spec-
tra. Comparable to 'Reinekea forsetii’, Reinekea blandensis MED297T was
described with a broad substrate range of mono- and disaccharides (Choi
and Cho, 2010; Pinhassi et al., 2007). ’Reinekea forsetii’ grew on all tested

mono-, di-, trisaccharides, N-acetyl-D-glucosamine and N-acetylneuraminic
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acid, slightly on xanthan and glycogen, but not on all other tested polysac-
charides. While the oxidation of N-acetyl-D-glucosamine was described for
Reinekea blandensis MED297" and Reinekea aestuarii IMCC4489T, none
of the type strains had been tested for growth on N-acetylneuraminic acid
(Pinhassi et al., 2007). Nevertheless, the finding of the NanAKE and NagAB
cluster and the N-acetylneuraminic acid specific TRAP transporter in the
genome of Reinekea blandensis MED297T corroborates the utilization of
N-acetylneuraminic acid by Reinekea blandensis MED297T (Pinhassi et al.,
2007; Vimr et al., 2004). This nutritional strategy is reflected by the in situ
expression of mainly ABC type and TRAP transporters for the potential
uptake of peptides, monosaccharides and other monomers, in the late phase

of the decomposition of the spring phytoplankton (Teeling et al., 2012).
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Description of ’Formosa flavarachnoidea’
"Formosa flavarachnoidea’ (flav.a.rach.no.i.de’a. L. adj. flavus, yellow; N.L.
fem. adj. arachnoidea, similar to cobwebs; flavarachnoidea, pertaining to

the yellow color and the cobweb like structures produced by the strain)

Cells were rod-shaped, 0.6 to 1.2 um long and 0.5 to 0.7 um wide. Non-
motile. Cells occurred singly or as aggregates. Appendages composed of
50 nm globules and 10 pym to 100 pum long emanated from the cell sur-
face. Appendages connected the cells with each other and formed a three
dimensional network. Cells were destroyed by vortexing. Yellow-orange cell
pellets were formed in liquid culture. Growth occurred from 8 °C to 25 °C,
with an optimum at 22 °C. Divided by binary fission. Did not grow on ma-
rine agar HaHa and marine agar 2216. With marine HaHa minV medium,
growth occurred on casamino acids, peptone tryptone, yeast extract, gelatin,
D-galactose, cellulose (structural affected filter paper), carboxymethyl cellu-
lose and laminarin, weak growth on glycogen, xanthan and k-carrageenan,
but not on L-arabinose, D-arabinose, D-cellobiose, D-fructose, D-glucose,
N-acetyl-D-glucosamine, D-maltose, D-mannitol, D-mannose, L-raffinose,
L-rhamnose, D-sucrose, D-trehalose, DL-xylose, agar and ¢-carrageenan. Vi-

tamins were required.

The strain, Hel3 A1 48, was isolated from the seawater of Helgoland Roads,
German Bight of the North Sea, Germany (54°11" N, 7°54’ E).
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Description of ’Formosa forsetii’
"Formosa forsetii’ (for.set’tii. N.L. gen. fem. n. forsetii, of Forseti, a
god in Scandinavian mythology that lived on Helgoland, the German island

from where the bacterium was isolated).

Cells were rod-shaped, 0.6 to 0.8 um long and 0.5 to 0.6 pgm wide. Non-
motile. Cells occurred singly or as aggregates. Appendages emanated
from the cell surface with globules of 50 to 80 nm size and varying dis-
tances. Appendages connected the cells with each other and formed a three
dimensional network. Cells were destroyed by vortexing. Yellow-orange
cell pellets were formed in liquid culture. Growth occurred from 4 °C to
19 °C, with an optimum at 15 °C. Divided by binary fission. Did not
grow on marine agar HaHa and marine agar 2216. With marine HaHa -
min medium, growth occurred on casamino acids, peptone tryptone, yeast
extract, gelatin, D-glucose, D-cellobiose and laminarin, weak growth on
(-carrageenan and k-carrageenan, but not on D-arabinose, L-arabinose,
D-fructose, D-galactose, N-acetyl-D-glucosamine, D-maltose, D-mannitol,
D-mannose, L-raffinose, L-rhammnose, D-trehalose, D-sucrose, DL-xylose,
cellulose (structural affected filter paper), carboxymethyl cellulose, agar,

xanthan and glycogen. Vitamins were not required.

The strain, Hell 33 131, was isolated from the seawater of Helgoland Roads,
German Bight of the North Sea, Germany (54°11" N, 7°54" E).
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Description of ’Polaribacter forsetii’
"Polaribacter forsetii” (for.set’ti.i. N.L. gen. masc. n. forsetii, of Forseti, a
god in Scandinavian mythology that lived on Helgoland, the German island

from where the bacterium was isolated).

Cells were rod-shaped, 0.5 to 2.0 um long and 0.5 to 0.8 ym wide. Non-
motile. Cells occurred singly or as aggregates of 2 to 3 cells. Appendages
at the cell surface were observed with a diameter of less than 50 nm and
a length of more than 10 pum, up to 100 pum. Yellow-orange cell pellets
were formed in liquid culture. Growth occurred between 2 °Cand 22 °C,
with an optimum at 14 °C. Divided by binary fission. Did not grow
on marine agar HaHa and marine agar 2216. With marine HaHa_min
medium, growth occurred on casamino acids, peptone tryptone, yeast ex-
tract, gelatin, L-arabinose, D-arabinose, D-cellobiose, D-glucose, D-maltose,
D-mannose, L-raffinose, glycogen, cellulose (structural affected filter pa-
per), carboxymethyl cellulose, laminarin, agar, xanthan, k-carrageenan and
t-carrageenan, but not on D-fructose, D-galactose, N-acetylD-glucosamine,
D-mannitol, L-rhamnose, D-sucrose, D-trehalose and DL-xylose. Vitamins

were not required.

The strain, Hell 33 49, was isolated from the seawater of Helgoland Roads,
German Bight of the North Sea, Germany (54°11" N, 7°54" E).
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Description of ’Polaribacter frigidimaris’
'Polaribacter frigidimaris’ (fri.gid.i.ma.r’is. L. masc. adj. frigidus, cold; L.

-a, -um, n. mare -is the sea; N.L. gen. n. frigidimaris, of a cold sea).

Cells were rod-shaped, 0.5 to 2.0 um long and 0.5 to 0.8 um wide, with
cobweb like fibers on the cell surface. Non-motile. Cells occurred singly
or as yellow-orange macroscopic aggregates. Growth occurred between
2 °C and 23 °C, with an optimum at 16 °C. Divided by binary fission.
Did not grow on marine agar HaHa and marine agar 2216. With ma-
rine HaHa min medium, growth occurred on casamino acids, peptone
tryptone, yeast extract, gelatin, L-arabinose, D-arabinose, D-cellobiose,
D-fructose, D-galactose, D-glucose, N-acetyl-D-glucosamine, D-maltose,
D-mannitol, D-mannose, N-acetylneuraminic acid, L-raffinose, L-rhamnose,
D-sucrose, D-trehalose, DL-xylose, cellulose (structural affected filter pa-
per), carboxymethyl cellulose, laminarin, agar, xanthan, k-carrageenan and
t-carrageenan, but not on glycogen. Gelatin and xylan were not hydrolyzed.

Vitamin requirement was not observed.

The strain, Hell 33 78, was isolated from the seawater of Helgoland Roads,
German Bight of the North Sea, Germany (54°11" N, 7°54" E).
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Description of ’Polaribacter adhaesivus’
"Polaribacter adhaesivus’ (ad.hae’si.vum, N.L. masc. adj. adhaesivus, ad-

hering, forming aggregates).

Cells were rod-shaped, 0.5 to 2.0 um long and 0.5 to 0.8 um wide, with
fibrous mucus on the cell surface. Non-motile. Cells occurred singly or as
yellow-orange macroscopic aggregates. Growth occurred between 0 °C to
26 °C, with an optimum at 16 °C. Divided by binary fission. Did not
grow on marine agar HaHa and marine agar 2216. With marine HaHa_min
medium, growth occurred on casamino acids, peptone tryptone, yeast ex-
tract, gelatin, L-arabinose, D-arabinose, D-cellobiose, D-fructose, D-glucose,
D-galactose, N-acetyl-D-glucosamine, D-maltose, D-mannitol, D-mannose,
L-raffinose, L-rhamnose, D-sucrose, D-trehalose, DL-xylose, glycogen, cellu-
lose (structural affected filter paper), carboxymethyl cellulose, laminarin,
agar, xanthan, x-carrageenan and ¢-carrageenan. Xylan was not hydrolyzed.

Vitamins were not required.

The strain, Hell 33 96, was isolated from the seawater of Helgoland Roads,
German Bight of the North Sea, Germany (54°11" N, 7°54" E).
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Description of ’Reinekea forsetii’
'Reinekea forsetii’ (for.set’tii. N.L. gen. fem. n. forsetii, of Forseti, a
god in Scandinavian mythology that lived on Helgoland, the German island

from where the bacterium was isolated).

Cells were non-pigmented, regularly coiled rods, 2 to 3 um long and 0.4
to 0.5 pum wide. Motile by single polar flagella. In TEM pictures dark
spots were observed, suggesting putative storage compounds. Growth
occurred between 4 °C and 19 °C, with an optimum at 12 °C. Divided
by binary fission. Generation time was 6 hours at 12 °C. With marine
HaHa minV medium, growth occurred on casamino acids, peptone tryptone,
yeast extract, gelatin, L-arabinose, D-arabinose, D-cellobiose, D-fructose,
D-galactose, N-acetyl-D-glucosamine, D-glucose, D-maltose, D-mannitol,
D-mannose, N-acetylneuraminic acid L-raffinose, L-rhamnose, D-sucrose,
D-trehalose, DL-xylose and glycogen, but not on cellulose (structural af-
fected filter paper), carboxymethyl cellulose, laminarin, agar, xanthan,
r-carrageenan and ¢-carrageenan. Facultatively anaerobic; succinate, ac-
etate, propionate, lactate and formate were produced under anaerobic
conditions, from D-fructose and yeast extract, but not from D-galactose

and N-acetyl-D-glucosamine. Vitamins were required.

The strain, Hell 31 D35, was isolated from the seawater of Helgoland Roads,
German Bight of the North Sea, Germany (54°11" N, 7°54" E).
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Figure 4.1 Cellular morphologies of marine strains documented by trans-
mission electron microscopy images of (a-c) ’Polaribacter forsetii’, (d-f)
’Polaribacter frigidimaris’, (g-j) ’Polaribacter adhaesivus’, (k, 1) *Formosa
flavarachnoidea’;, (m, n) ’*Formosa forsetii’, and (o) ’Reinekea forsetii’. De-
picted are single cells (a, d, g, k, m, o, bar 0.5 um), aggregates (b, e, h, 1, n, bar 1 pm),
and cell surface structures (c, f, j, bar 100 nm) of strains.



4.4. Results and discussion 195

Figure 4.2 Documentation of growth on laminarin by Polaribacter and Formosa strains.
(a) Macroscopic picture (Olympus, S7040) of a growing ’Polaribacter adhaesivus’ in
culture tube visible by of formation of cloudy aggregates (arrow) on the surface of washed
axenic Laminaria saccharina pieces. (b) Microphotograph (Axio Vision Camera, 400x
magnification) of 'Formosa flavarachnoidea’ colonizing the surface of washed axenic
Laminaria saccharina at affected sites (arrow). Green, auto-fluorescence; blue, DAPI
stained bacterial cells; bar, 10 pm.
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Figure 4.3 Documentation of growth on cellulose (structural affected filter paper) by
Polaribacter (a, b, ¢) and Formosa (d, e, f) strains. Macroscopic pictures (a-c) were
recorded with an Olympus S7040 camera and microphotographs were recorded with
an Axio Vision Camera under the microscope at 400x magnification. Cellulose filter
paper in medium without inoculum (a, d). Colonization and growth of ’Polaribacter
adhaesivus’ on the cellulose filter paper (b; yellow spots, Polaribacter colonies) and
"Formosa flavarachnoidea’ on cellulose fibers (e; blue, DAPI stained cells). Affected
filter paper by cellulose decomposing strains (c, ). All pictures were recorded after two
weeks of incubation. White bar, 10 pum; black bar, 100 gm.
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Table 4.1 Characteristics of Formosa, Polaribacter, and Reinekea strains aligned with type strains.
Strains: 1, 'Formosa flavarachnoidea’; 2, 'Formosa forsetii’; 3, Formosa agariphila DSM 153627 4,
Formosa algae KMM 3553T; 5, Polaribacter sp. Hell 85; 6, ’Polaribacter forsetii’; 7, ’Polaribacter
frigidimaris’; 8, *Polaribacter adhaesivus’; 9, Polaribacter irgensii 23-PT; 10, ’Reinekea forsetii’; 11,
Reinekea blandensis MED297T. For comparison, characteristics of Formosa agariphila DSM 153627,
Formosa algae KMM 35537, Polaribacter irgensii 23-PT and Reinekea blandensis MED297T were shown
as described in (Gosink et al., 1998; Ivanova et al., 2004; Nedashkovskaya et al., 2006; Pinhassi et al.,
2007). Abbreviations: -, negative; w, slightly positive; +, positive; ++, strong positive; ND, not deter-
mined; *, grew on marine broth 2216; GlcNAc, N-acetyl-D-glucosamine; Neu5Ac, N-acetylneuraminic
acid; CMC, Carboxymethyl cellulose.

Strains Formosa Polaribacter Reinekea
Characteristics 1 2 3 4 5 6 7 8 9 10 11
Temperature for growth (°C):
From 8 4 4 4 ND 2 2 0 -1.5 4 15
To 25 19 33 34 ND 22 23 26 17 19 42
Optimum 22 15 22 23 ND 14 16 16 12 12 ~D
Vitamin requirement + - — — — — — — — —+ —

Utilization of amino acids:

Casamino acids + 4+ -+  ND* —+ —+ + + + +  ND*
Peptone tryptone + + + ND* + + + + ND* -+ ND*
Yeast extract + + 4+ ND* + + + -+ + +  ND*
Gelatin + 4+ 4+ - N + + o+ - 4+ -
Hydrolysis of gelatin: + 4+ + w ND ND — -+ — -+ —
Utilization of monosaccharides:
D-galactose + - —+ — -+ — + + + + W
D-mannose - - 4+ -+ o+ 4+ o+ o+ o+ o+
L-rhamnose - = —+ — - — -+ + — + _
D-fructose - = -+ — + — + + — + +
D-glucose -+ 4+ + -+ 4+ o+ o+
D-mannitol - = + - + — + + ND + +
DL-xylose — — —+ ND —+ — + + _ + _
L-arabinose — — + — — —+ + + — + +
D-arabinose - = + — — + + + — + +

Continued on next page
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Table 4.1 continued

Strains Formosa Polaribacter Reinekea

Characteristics 1 2 3 4 5 6 7 8 9 10 11

Utilization of disaccharides:

D-trehalose — — —+ — — — —+ —+ — + —
D-sucrose - = -+ — -+ — -+ + — + +
D-maltose - = + - + + + ++ - + +
D-cellobiose — 4+ ND — — + + ++ - —+ +
Utilization of trisaccharides:
L-raffinose - - + — — + + + — + ND
Utilization of:
GleNAc e e e = S S S
NeubAc ND ND ND ND ND ND ND ND ND +-+4+ ND
Utilization of polysaccharides:
Cellulose (filter) 4+ - — — + + + + — — ND
Cellulose (CMC) 4+ - — ND =+ + + —+ ND — ND
Laminarin +  + —+ ND -+ -+ -+ —+ ND — ND
Agar - - = = + + + 4+ N - -
Xanthan W — W ND -+ -+ -+ -+ ND W ND
K-carrageenan W w W ND + + + + ND — ND
L-carrageenan — w — ND + + + + ND — ND
Glycogen w — w — ++ + — + ND + ND
Hydrolysis of xylan 4+ - + ND — — — — ND — ND
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Chapter 5

Conclusion and Discussion of the

present work

The studies described in this thesis contribute to the cultivation of aero-
bic heterotrophic marine bacteria. The second chapter demonstrated the
cultivation of marine Flavobacteriaceae on agar plates. The new HaHa
medium and the new Flavobacteria- Cytophagia specific PCR assay enabled
the targeted cultivation of marine Flavobacteriaceae. This collection of 375
Flavobacteriaceae strains from different habitats of the North Sea comprised
the broad phylogenetic diversity of seven novel candidate genera, 42 novel
species in 22 genera, and strains that were so far not distinguishable from
37 described species in 18 genera (Chapter 2).

Further investigations focused on the cultivation of pelagic bacteria that
were of ecological relevance as representative key species during coastal
diatom-dominated phytoplankton blooms in the North Sea (Chapter 3).
Dilution cultivation of pelagic seawater and the new oligotrophic liquid
HaHa medium led to a culturability of 35% of the bacteria counted in
the same plankton sample by fluorescence in situ hybridization (FISH).
Novel Flavobacteria, Gammaproteobacteria, Alphaproteobacteria, and Acti-
nobacteria isolates were obtained exhibiting of up to 99.8% sequence iden-

tities when compared to proteorhodopsin and full-lengths 16S rRNA gene

205
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sequences of bacterioplankton of spring 2009. Using sequence-based com-
parisons of isolates draft genomes with metagenomes of bacterioplankton
from spring 2009 we could show that reads of > 95% nucleotide identity
covered the draft genomes of Formosa sp. by 94%, Reinekea sp. by 90%
and Polaribacter sp. by 50%.

The fourth chapter investigated the physiological characteristics and car-
bohydrate substrate specificity of these representative key species. The
results provided further insights into the capabilities of these novel species

during the successive decomposition of algae derived polymers ( Chapter 4).

Figure 5.1 (facing page) Phylogenetic relationship among isolates obtained in this thesis,
type strains and lineages without cultured representatives of the family Flavobacteri-
aceae. The phylogenetic tree is based on comparisons of 16S rRNA gene sequences
using the neighbour-joining method and a 0% and 40% base frequency filter of Bac-
teroidetes. Type strains of the classes Bacteroidia, Cytophagia, and Sphingobacteria
were used as outgroups. The isolation source is indicated by: o, freshwater; ~, marine
environment; = terrestrial environment; +, clinical samples. Genera from which isolates
were obtained from are color-coded: blue, from agar plates only; red, dilution cultures
only; purple, both agar plates and dilution cultures; green, isolates that represent novel
genera. Flavobacteria clades which had so far no representative culture are indicated by
VIS (Goémez-Pereira et al., 2010), NS (Alonso et al., 2007) and DE (Kirchman et al.,
2003). Scalebar represents 5 nucleotide substitutions per 100 nucleotides.
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5.1 Improved cultivation of heterotrophic marine

bacteria

The success of cultivation experiments can be affected by different factors,
such as time point and location of sampling, sample preparation, incubation
conditions, medium or the targeted bacteria. Different aspects that mainly
contributed to the cultivation of novel species were discussed in Chapter 2

and Chapter 3 and will be combined and extended here.
Eilers (2000) and Eilers and colleagues (2001) combined the cultivation

of marine pelagic bacteria on agar plates and the determination of their in
situ abundance in the North Sea. They showed that members of Cytopha-
gia-Flavobacteria had abundances of 18% of the bacterioplankton in winter
and 30% in summer. The number of Cytophagia-Flavobacteria colonies was
12% of the 172 obtained colonies. Already after 15 days of incubation at
16 °C the final number of Flavobacteria colonies was reached and after 36
days new colonies were not observed (Eilers et al., 2001). Stevens and col-
leagues (2009) aimed at the cultivation of polymer degrading bacteria from
one sampling station in the East Frisian Wadden Sea in fall, from different
habitats such as seawater, aggregates and surface sediment. Most of the
isolated bacteria were affiliated with Actinobacteria and Gammaproteobac-
teria. The low culturability of Flavobacteria in both studies is prompting
the question whether marine members of Bacteroidetes can be cultivated
on agar plates (Eilers et al., 2000b; Stevens et al., 2009). As demonstrated
in Chapter 2, Flavobacteria can be cultivated from different pelagic and
benthic samples of the North Sea, collected in spring, summer and fall.
Moreover, these 375 Flavobacteria isolates represented 79 species in 33 ma-
rine genera (Fig. 5.1). It was also shown that incubation times of more
than 15 to 39 days at 12 °C (in situ 6.4 °C) were important for 80% of the
Flavobacteria to form visible CFU on the agar plate (Chapter 4, Fig. 2.2 on
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page 75) and that 20% of all colony forming units comprised Flavobacteria.

The short time of 30 min for transportation at in situ temperature, in
contrast to the five hours transport on ice by Eilers and colleagues (2001)
and Stevens and colleagues (2009), may have been advantageous to the
cultivation of Flavobacteriaceae. In an enrichment experiment by Eilers
and colleagues (2000a) it was shown that readily culturable Vibrio and
Alteromonas rapidly increased in cell numbers, whereas the Roseobacter
population remained constant. Further, they showed that members of Vib-
rio and Alteromonas maintain large amounts of cellular ribosomes during
starvation (Eilers et al., 2000a) and thus they maintain a high potential for
growth during starvation and can immediately respond to environmental
changes (Flardh et al., 1992).

The growth of bacteria of interest can be affected when exposed to stress
factors during transport and cultivation (temperature shock, high concen-
tration of a substance). A wide spread example is prophages induced cell
lysis (Weinbauer et al., 2003). Although cells are protected during starva-
tion, they are subjected to prophage induction as soon as they return to
normal growth (Pearl et al., 2008). Prophages and phage infected cells were
found in 10% to 90% of the bacterioplankton cells in the Gulf of Mexico and
in the Mediterranean Sea and the Baltic Sea (Weinbauer and Suttle, 1999;
Weinbauer et al., 2003). Alternatively, stressful cultivation conditions can

trigger maintenance or dormancy of bacteria (Kaprelyants et al., 1993).

Flavobacteria are specialized for the decomposition of complex organic
matter and it was reported several times that they preferentially utilize
proteins and carbohydrates (Cottrell and Kirchman, 2000; Kirchman, 2002;
Teeling et al., 2012; Ferndndez-Gomez et al., 2013). In previous studies,
it was attempted to cultivate Flavobacteria on synthetic seawater medium
supplemented with either a mixture of amino acids (Eilers et al., 2000b),

monosaccharides (Eilers et al., 2000b) or polysaccharides (Stevens et al.,
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2009). As mentioned above, on these media only a low number of Flavobac-
teria were cultivated. We suggested that for the cultivation of Flavobacte-
ria carbohydrates and peptides should be available concurrently. Thus,
we defined the new synthetic seawater HaHa medium which comprised
carbohydrates (glucose, cellobiose) and peptides (yeast extract, peptone,
casamino acids). The observed auxotrophy for amino acids of Polaribacter
and Formosa strains corroborate our assumption (Chapter 4). This topic

is discussed in more detail in section 5.2 Streamlined genomes.

The identification of interesting candidates among a complex community
(enrichment culture) without clearly distinctive morphological features is
challenging (Alain and Querellou, 2009). First, the diversity of morpho-
logical characteristics of the Flavobacteriaceae isolates ranges from bright
yellow to dark brown colonies and from 0.6 pm long rods to 100 um long
filaments, as described for Flavobacteriaceae type strains (Bernardet, 2010).
Second, strains of the genus Polaribacter, Cellulophaga, and Tenacibaculum
were described to be polymorphic. Third, many strains of novel species and
novel candidatus genera were not clearly distinguishable from other bacte-
rial colonies by their morphological characteristics. This implies that on the
one hand the culture collection of Stevens et al. (2009) which was based
on different morphological features had a reduced phylogenetic diversity
among the strains (< 30 16S rRNA sequence types among 129 strains) and
on the other hand, Flavobacteria might have been overlooked. As shown
previously, a molecular screen by 16S rRNA PCR or FISH can support the
cultivation of novel bacteria that were found in 16S rRNA clone libraries
(Eilers et al., 2000b, 2001; Giebel et al., 2011) and can lead to a taxon
specific cultivation (Winkelmann and Harder, 2009). Therefore, we used
a specific PCR assay for the identification of Flavobacteriaceae among the

colonies as straightforward method.

Species identification was even more important in our dilution cultivation
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approach (Chapter 3). Button and colleagues (1993) developed the dilu-
tion cultivation and described (i) the preparation of pure cultures starting
with a single cell as inoculum and (ii) the probability to obtain enrich-
ment cultures from lower dilutions (randomly mixed bacterial populations).
While the phylogenetic affiliation of pure cultures can be determined by
16S rRNA sequencing, the investigation of enrichment cultures depends on
tools for bacterial community analysis such as clone libraries or FISH. In
the targeted cultivation of Reinekea (Chapter 3) we combined the quali-
tative and quantitative detection of Reinekea in our enrichment cultures
using a Reinekea specific PCR assay, followed by specific FISH on positive
enrichment cultures. For future cultivation approaches I suggest to apply
molecular screening methods for taxon identifications more frequently, as
with the development of further taxon specific oligonucleotides —using the
rRNA approach (Amann et al., 1995)— more representatives of hitherto un-

cultured taxa can be identified during cultivation experiments.

One of the major improvements for the cultivation of North Sea bacteria
was the switch from cultivation on agar plates to dilution cultivation in
oligotrophic liquid medium. This approach yielded a culturability of 35% of
the bacterioplankton of Helgoland in spring 2010 (Chapter 3), in contrast
to the culturability below 1% on agar plates (Chapter 2). The direct com-
parison was possible, because aliquots of the same seawater sample were
either incubated on agar plates or in liquid medium. The dilution culti-
vation approach with the seawater of Helgoland in summer 2010 yielded a
culturability of 30% of the bacterioplankton. Since the publications of Bere
(1933) and of Jannasch and Jones (1959) we know that cultivation on agar
plates leads to the 'great plate count anomaly’ which points to the observa-
tion that only 1% of the natural bacterial community —determined by direct
cell counting— can be cultivated on agar plates. For cultures on plates it

was shown that (i) they might represent bacterial taxa of low abundance
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(Eilers et al., 2000b) and (ii) they do not represent the same species as were
found in clone libraries of the same habitat (Suzuki et al., 1997), based on
the species boundary of 98.6% 16S rRNA sequence identity (Stackebrandt
and Ebers, 2006). For example, Fig. 5.1 shows Flavobacteriaceae strains
that were isolated on agar plates affiliated with diverse genera, but did not
affiliate with Flavobacteriaceae clades that were found in clone libraries of
the North Sea (Alonso et al., 2007) or the open ocean (Kirchman et al.,
2003; Gomez-Pereira et al., 2010). On the contrary, isolates of dilution
cultivation in oligotrophic seawater had 16S rRNA sequence identities of
more than 99.8% with environmental clones of the same sampling location
in the North Sea in spring 2009. Moreover, the 16S rRNA sequence of
"Formosa flavarachnoidea’ clustered within the NS2a and VIS3 clade of so
far uncultured Flavobacteria which were found in the pelagic seawater of
Helgoland in the North Sea (NS) (Alonso et al., 2007) and of the north-
ern oceanic provinces in the North Atlatic Ocean (VIS) (Goémez-Pereira
et al.; 2010). A 16S rRNA sequence identity of more than 98.6% is an
insufficient criterion to prove that these strains shared similar phenotypic
and genomic characteristics with the corresponding in situ abundant species
(Rossello-Mora and Amann, 2001; Stackebrandt and Ebers, 2006). However,
we applied the approaches of Konstantinidis and colleagues (Konstantinidis
and Tiedje, 2005; Konstantinidis and DeLong, 2008) and thus could prove
that ’Reinekea forsetii’ and 'Formosa forsetii’” formed populations of high
genomic coherence with the environmental DNA of the spring 2009 bacte-
rioplankton. These species were covered by 90% to 94% by metagenomic
sequences of more than 94% nucleotide identity. Both criteria, an aver-
age nucleotide identity of more than 94% (Konstantinidis and Tiedje, 2005)
and genomic convergence of 94% to 96% (Konstantinidis and DeLong, 2008)

were suggested to circumscribe genetically coherent species.

Even though, some cultures from agar plates or dilution cultivation affili-
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ate with the same genera Polaribacter, Lutibacter, and Nonlabens (Fig. 5.1),
these strains do not belong to the same species (< 98% 16S rRNA sequence
identity). This raises the general question whether agar plate isolates are
genetically and metabolically different to those isolated by dilution culti-
vation. Three strains that originated from the same seawater sample may
represent potential exemplary examples. Strains Hell 29 and Hell 41 grew
on agar plates whereas strain Hell 33 143 was isolated by dilution cultiva-
tion and did not grow on agar plates. These strains fall in the genus Gillisia
and had a mutual 16S rRNA sequence identity of 100%. We could show
that the inability to grow on agar plates was not caused by the presence
of solid agar, the presence of EDTA-complexed trace elements or carbon
concentrations as high as 1 g/L (Chapter 3). However, one phenotypic trait
differed among these strains. The dilution culture Hell 33 143 and all other
dilution cultures could not cope with 2 mM or 50 mM of HEPES buffer in
the medium. It is not clear whether potential toxic effects originated from
phototoxicity (Zigler et al., 1985), the formation of radical species (Grady
et al., 1988), or an increased bioavailability of copper (Lage et al., 1996).
Jannasch and Mateles (1974) could show that bacterial populations of low
cell density were unable to cope with well oxygenated medium in seawater
and freshwater chemostats, but bacterial populations of high cell density
could overcome the high oxygen concentration. With increasing cell densi-
ties the total respiratory capacity of the community increases and possibly
prevents cellular damage caused by oxidative stress (Krieg and Hoffman,
1986). However, Bruns and colleagues (2003) could not increase the bac-
terioplankton culturability by reducing the oxygen partial pressure to 3%,
possibly because microaerophilic or anaerobic bacteria did not constituted

a major fraction of the bacterioplankton.
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Previous high-throughput cultivation studies aimed at the isolation of in-
dividual bacterioplankton cells by diluting the seawater sample to near ex-
tinction (Zengler et al., 2002). In contrast to these studies, our dilution cul-
tivation approach included the cultivation of mixed bacterioplankton popu-
lations by diluting the seawater sample to approximately 10 or 100 cells per
inoculum. Three results led to the assumption that this approach enabled
us to prepare by chance a favorable bacterial community in the dilution cul-
ture Hell_31_5 which potentially promoted the growth of *Reinekea forsetii’.
First, *Reinekea forsetii’ grew in the vitamin free HaHa medium although
this species was auxotroph for vitamins. Second, once we supplemented the
HaHa medium with vitamins a separation of 'Reinekea forsetii’ was possible
using consecutive dilution cultivation. Third, the bacterial community of
the dilution culture Hell 31 5 was dominated by Polaribacter which were
previously shown to succeed simultaneously with Reinekea during the spring
phytoplankton bloom in the North Sea (Teeling et al., 2012). This hypo-
thetical interaction of Reinekea and Polaribacter needs further investigation
to clarify whether (i) cross-feeding between both species is possible and (ii)

the co-occurrence in culture and in situ is a general characteristic.

The possibility to generate large numbers of co-cultures of random mixed
bacterial communities was described by Button and colleagues (1993), but
so far have not been widely implemented in the cultivation of marine bacte-
ria. Co-cultivation of bacterial populations might enable "helper’ organisms
to promote the growth of as yet uncultured bacteria (D’Onofrio et al., 2010).
For example, Alteromonas depleted hydrogen peroxide in the medium and
thereby reduced the oxidative damage of hydrogen peroxide in Prochloro-
coccus (Morris et al., 2011). D’Onofrio et al. (2010) showed the posi-
tive effect of siderophores secreted by Micrococcus (Actinobacteria) and
Vibrio (Gammaproteobacteria) colonies promoting the growth of neighbor-

ing Flavobacteriaceae and Gammaproteobacteria. For future cultivation
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both perspectives of dilution cultivation can help to cultivate as yet uncul-
tured marine bacteria and may offer interesting insights into the interaction
of bacterial communities. Further aspects of metabolic dependency are dis-

cussed in the next section 5.2 Streamlined genomes.

5.2 Streamlined genomes

Morris and colleagues (2012) hypothesized an evolutionary adaptation to-
wards a metabolic dependency between bacterioplankton populations yield-
ing a higher fitness of the overall bacterioplankton community. They pro-
posed that a 'helper’ population has a broad spectrum of metabolic func-
tions and is leaky for public goods (e.g. vitamins, siderophores), whereas a
'beneficiary’ population lost metabolic functions in consequence of selective
genome reduction. As a consequence, the population size of the "beneficiary’
population would be regulated by the 'helper’ populations that provide the
desired compounds.

So far, the 2.75 Mbp genome of Polaribacter irgensii 23-PT and the
2.97 Mbp genome of Polaribacter doktonensis MED152 were reported as
the smallest genomes among the Bacteroidetes (Gonzalez et al., 2008),
the 1.75 Mbp genome of Prochlorococcus marinus SS120T as the smallest
genome among cyanobacteria (Dufresne et al., 2003), the 1.27-1.7 Mbp draft
genomes of members of the Gammaproteobacteria lineage SAR86 (Dupont
et al., 2012) and the 1.3 Mbp genome of 'Candidatus Pelagibacter ubique’
(Giovannoni et al., 2005) as the smallest genomes among free-living bac-
teria. The draft genomes of the obtained isolates 'Polaribacter forsetii’
and "Formosa forsetii’ (Formosa clade B) had a size of 2.99 Mbp and
2.75 Mbp, comparable to the genome size of Polaribacter irgensii 23-PT
and Polaribacter doktonensis MED152. Moreover, the draft genome of the

isolate ' Formosa flavarachnoidea’ (Formosaclade A) had a size of 2.01 Mbp.
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Figure 5.2 Number of predicted protein-encoding genes versus genome size for genomes
of isolates, genome sequenced Flavobacteriaceae type strains (gray dots), and genome
streamlined bacteria ’Candidatus Pelagibacter ubique’ HTCC1062 (Giovannoni et al.,
2005), Prochlorococcus marinus SS120T (Dufresne et al., 2003), Polaribacter doktonensis
MED152 (Gonzalez et al., 2008) and Polaribacter irgensii 23-PT (acc. AAOG00000000).

Thus, this isolate has the smallest genome of all so far sequenced Bac-
teroidetes genomes. The reduced genome sizes of the Polaribacter and
Formosa isolates were the result of a reduction of protein-coding genes

compared to other genome-sequenced Flavobacteria (Fig. 5.2).

Such a small genome might indicate a genomic and metabolic streamlin-
ing as shown for 'Candidatus Pelagibacter ubique’ HTCC1062 (Giovannoni
et al., 2005) and Prochlorococcus marinus SS120% (Dufresne et al., 2003,
2005), Polaribacter doktonensis MED152 (Gonzélez et al., 2008) and mem-
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bers of the Gammaproteobacteria lineage SARS86 (Dupont et al., 2012).
The genome streamlining of "Candidatus Pelagibacter ubique’ HTCC1062
caused a metabolic dependency on pyruvate as carbon source, methionine
as sulfur source, and glycine or serine as essential amino acids (Carini et al.,
2012). This was the reason that for a long time ’Candidatus Pelagibacter
ubique’” HTCC1062 could only be cultivated in natural seawater based
medium, and that it grew to varying cell densities and with varying growth
rates depending on the source of the seawater (Rappé et al., 2002). In
Prochlorococcus marinus SS120T the small genome resulted from the dele-
tion or underrepresentation of genes involved in DNA repair, transporters
and metabolism (Dufresne et al., 2003, 2005). As a major consequence,
Prochlorococcus marinus SS1207 is missing urea, nitrate and nitrite trans-
porters and relies on the import of reduced nitrogen compounds such as
ammonia and amino acids (Dufresne et al., 2003). Polaribacter doktonensis
MED152 was unable to use fermentation or anaerobic respiration for energy
conservation and thus can only perform aerobic respiration. Furthermore,
as nitrogen and sulfur sources Polaribacter doktonensis MED152 was able
to use only ammonia and sulfate (Gonzalez et al., 2008). Members of SAR86
were predicted to be auxotroph for vitamins such as Bg, biotin and thiamine,
and for amino acids such as methionine, histidine, and arginine (Dupont
et al., 2012). Additionally, SAR86 genomes lacked the enzymes required
for assimilatory sulfate reduction and uptake. Instead, SAR86 members
likely require as sulfur source glutathione or dimethyl-sulfoniopropionate,
compounds than can both be detected in surface seawater (Dupont et al.,
2006; Reisch et al., 2011). We observed that the growth of the Formosa and
Polaribacter cultures were dependent on the presents of amino acids (Chap-
ter 3). It still needs to be determined which amino acids were essential for
growth. Since these cultures grew on casamino acids (Bacto ) and peptone

tryptone (Bactow) and the applied casamino acids lack asparagine and glu-
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tamine (see Tab. 3.52 in Chapter 3 on page 154), it can be assumed that
asparagine and glutamine were not essential for growth. It is known that
Flavobacteria degrade dissolved organic matter (DOM) of high-molecular-
weight (Kirchman, 2002) and it was shown that they utilize besides car-
bohydrates a significant amount of the co-occurring proteins (Cottrell and
Kirchman, 2000; Teeling et al., 2012; Fernandez-Goémez et al., 2013). Hence,
Flavobacteria may have evolved a metabolic dependency on proteins, be-
cause both carbohydrates and proteins are available in environments were
Flavobacteria prevail (Wakeham et al., 1997; Kirchman, 2002). We also
observed that the Formosa sp. Hel3 Al 48 and Reinekea sp. Hell 31 D35
strains required vitamins for growth. This was observed after some trans-
fers in vitamin free medium or in cultures of higher cell density. Hence,
traces of vitamins could have originated from the diluted surface seawater
or the yeast extract. Auxotrophy for at least one B vitamin was shown to
be common for bacterioplankton since they lack the biosynthetic pathways
for the production of the vitamin (Sanudo-Wilhelmy et al., 2012). However,
microorganisms presumably undergo such selective genomic and metabolic
rearrangements to minimize the production of cellular components such as
cell structures, proteins and DNA and thereby reduce the demand of carbon,
nitrogen, phosphorus, and other nutrients which are particularly limited in
marine environments (Dufresne et al., 2005; Giovannoni et al., 2005). The
repeatedly observed small cell size leads to an improved nutrient uptake with
an increasing cell surface-to-volume ratio (Button, 1991). As presented in
Chapter 3, the Formosa and Polaribacter strains had a cell size of less that
one and two micrometer, respectively. Teeling and colleagues (2012) could
show that these bacterial populations rapidly increased in cell numbers after
the phytoplankton bloom. Thus, a reduced genome, cell size and a limited
metabolic repertoire might be an advantage during the bacterial succession

in spring.
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5.3 Proteorhodopsin

Proteorhodopsin is an integral membrane protein of bacteria which functions
with retinal as a light-driven proton pump in the marine environment (Béja
et al., 2000, 2001). Proteorhodopsins were found in marine bacterioplankton
of the Sargasso Sea (Venter et al., 2004), the Pacific Ocean (de la Torre
et al., 2003; Yoshizawa et al., 2012), the Mediterranean Sea and the Red Sea
(Man et al., 2003; Sabehi et al., 2005), the Antarctic (Béja et al., 2002), the
North Atlantic Ocean (Sabehi et al., 2005; Campbell et al., 2008), and the
North Sea (Riedel et al., 2010; Teeling et al., 2012). Riedel and colleagues
(2010) estimated that 50% of the bacterioplankton in the North Sea harbour
proteorhodopsin of which the majority potentially absorbed green light.

We could show that the proteorhodopsin sequences of our Flavobacte-
riaceae isolates (Chapter 3) were > 99% identical with (i) metagenome
sequences of the bacterioplankton community in the North Sea in spring
2009 (Teeling et al., 2012), and likewise with (ii) proteorhodopsin clones of
the North Sea in summer 2006 (Riedel et al., 2010), (iii) proteorhodopsin
clones of the North Atlantic Ocean (Sabehi et al., 2005), or (iv) Polaribacter
isolates from the sea ice of the Sea of Ochotsk, Hokkaido, Japan (Yoshizawa
et al., 2012). Based on the single amino acid substitution which differen-
tiates between the light absorption maximum at 490 nm (blue) and 540
nm (red) (Man et al., 2003), the corresponding proteorhodopsins were char-
acterized as green light absorbing. This suggests that the Polaribacter,
Formosa, and the candidate Flavobacteriaceae genus isolates might prevail
in the surface seawater of the North Sea and other oceans, and that these
strains were potentially adapted towards the light spectra of the surface sea-
water, where they were isolated from. Moreover, the close affiliation of the
strain Hell_33_7 with the phylogenetically uncharacterized proteorhodopsin
clones NA13_R15_12 and NA11_R15_8 (Sabehi et al., 2005) reveals that these
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clones can be affiliated with the novel candidate genus (represented by strain
Hell_33_7) of the family Flavobacteriaceae.

The function of proteorhodopsin is so far speculative, because the influ-
ence of light has not been investigated. Yoshizawa et al. (2012) showed for
the culture Polaribacter sp. SA4-10 the activity of the light-driven pro-
ton pump translocating protons from the cytoplasm into the periplasm
and thereby decreasing the pH of the surrounding medium by ApH 0.05.
This suggested that based on the results of other investigators (Oesterhelt
and Stoeckenius, 1973; Béja et al., 2000) the resulting membrane potential
might be sufficient for ATP synthesis. The proteorhodopsin of Dokdonia
donhaenensis PRO95T was constitutively expressed independent from the
incubation in light or dark and the organic matter concentration, but growth
stimulation by light could not be confirmed (Riedel et al., 2010). During
starvation, the growth of Dokdonia donhaenensis PRO95T and the sur-
vival of Vibrio sp. AND4 was enhanced by light (Gémez-Consarnau et al.,
2007, 2010). Gonzélez et al. (2008) showed that the Flavobacteria strain
Polaribacter doktonensis MED152 did not live autotrophically with light,
but needed organic carbon sources. Furthermore, the authors drew the con-
clusion that anaplerotic CO, fixation was stimulated by light, based on a
higher COy uptake in Polaribacter doktonensis MED152 under light than
in the dark. They additionally proposed a biphasic life-style of Polaribacter
doktonensis MED152. First, when complex organic matter is readily avail-
able these substrates serve as energy and carbon source and proteorhodopsin
phototrophy might provide energy for the TonB-dependent transport of
oligosaccharides. Second, under oligotrophic conditions light energy in-
creases the anaplerotic CO4 fixation to replenish the TCA cycle that in-
termediates can be used effectively for biosynthesis. For our Polaribacter,
Formosa, and the candidate Flavobacteriaceae genus strains which were so

far generally incubated in the dark, the proposed life-style might also apply.
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5.4 Targeted isolation of polysaccharide binding

bacteria

Carbohydrate binding modules (CBMs) specifically recognize oligosaccha-
ride moieties and promote a prolonged interaction with the substrate
(Boraston et al., 2004). CBMs are non-catalytic modules found in
carbohydrate-active enzymes (Boraston et al., 2004; Cantarel et al., 2009).
Bacteroidetes are specialized for the initial attack of complex organic mate-
rial (Kirchman, 2002) and their genomes have been shown to encode for nu-
merous carbohydrate-active enzymes (Gonzalez et al., 2008; Martens et al.,
2011; Gomez-Pereira et al., 2012; Teeling et al., 2012). Their strategy is
rather the direct binding to the substrate than the secretion of extracellular

carbohydrate active enzymes (Kirchman, 2002; Bauer et al., 2006).
Carbohydrates can either be directly coupled (Seljelid et al., 1985) or di-

rectly bound via antibodies and lectins (Sternemarr et al., 1992) on the
surface of beads. However, to preserve the presentation of the defined car-
bohydrate moieties for the interaction with CBMs, carbohydrates are cou-
pled to bovine serum albumin (BSA) yielding a neoglycoprotein (Roy et al.,
1984). These neoglycoconjugates are spotted on nitrocellulose membranes
of 0.45 pum pore size or nitrocellulose coated glass slides, as applied for car-
bohydrate microarrays (Pedersen et al., 2012). In contrast to BSA, strep-
tavidin binds readily to polystyrene surfaces and when coupled to biotin
it insignificantly interacts with proteins. Hence, an enrichment of carbo-
hydrate binding microorganisms can be achieved with the help of biotin-
streptavidin coated magnetic beads using either (i) lipids as spacer yield-
ing neoglycolipids, or (ii) using polyacrylamide as spacer yielding pseudo-
polysaccharides (Rye, 1996). For example, L-selectin coated beads were used
to separate acute lymphoblastic leukemia cell lines (Rye and Bovin, 1997).

As a consequence of the wide variety of different glycosidic bonds and nat-
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urally occurring monosaccharides, oligosaccharides are chemically complex
(Cantarel et al., 2009; Warren, 1996). The number of possible combina-
tions in a linear and branched hexasaccharide composed of D-hexoses of the
same molecular mass is larger than 102 (Laine, 1994). This Isomer Barrier,
precludes the determination of the oligosaccharide structure by sequencing
methods like the Edman technique for peptides or the Sanger technique for
DNA (Laine, 1994). Furthermore, the macromolecular structure of partic-
ulate and dissolved organic matter in the ocean is mostly unknown. It is
also largely unknown which specific structures of the organic matter are
remineralized in the seawater and sediments and which part remains as re-
calcitrant material (Lee et al., 2004). The initial approach would be the
application of an already existing oligosaccharide library which was devel-
oped to analyze plant or algae cell walls (Pedersen et al., 2012). In a second
approach, the beads could be coated with naturally available oligosaccha-
rides, generated by the extraction and specific enzymatic or incomplete
chemical hydrolysis of phytoplankton carbohydrates (Rye, 1996; Pedersen
et al., 2012). Since the association constants for protein-carbohydrate inter-
actions (K, 10%-10%) are low in comparison to antigen-antibody reactions
(K, 103-10?), the carbohydrate binding of the cell is reversible by the addi-
tion of the recognized oligosaccharides moiety (competitive reaction) (Rye
and Bovin, 1997). Therefore, cells can be released after the first binding
to the carbohydrate coated beads. A consecutive enrichment with a set of
different oligosaccharides is possible, based on the high specificity of the
CBMs towards the oligosaccharides (Rye and Bovin, 1997). This approach
would allow the investigation of distinct bacterioplankton populations dur-
ing the phytoplankton decomposition. The cultivation of single cells can
be achieved by diluting the enriched and released bacterial population to
near extinction. Alternatively, beads of nanometer scale (Wang et al., 2004)

which bind only one cell, can be distributed into separated enrichments.
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5.5 Sialic acid metabolism

Although the following is speculative, it allows considerations about possi-
ble interactions between bacterioplankton populations during the bacterial
succession after the coastal phytoplankton bloom in spring. The genomes
of "Formosa flavarachnoidea’, 'Formosa forsetii’, 'Reinekea forsetii’, and
"Polaribacter forsetii” enabled the screen for potential metabolic pathways
that could explain niche differentiation. It should be mentioned here that
the order of the strains named above represents the order of their successive
blooming in spring 2009.

The de novo biosynthesis of neuraminic acid (Neu5Ac) is catalyzed
by the enzymes UDP-GlcNAc epimerase (NeuC) and NeubAc synthase
(NeuB) from UDP-GIcNAc, a common precursor of the cell wall (Fig. 5.3)
(Vimr et al., 2004). UDP-GIcNAc is produced from fructose-6-P
or glucosamine-6-P via glucosamine-6-P synthase (GImS), phosphoglu-
cosamine mutase (GlmM) and GleNAc-1-P  uridyltransferase (GlmU).
Neu5Ac enters the common polysialic acid (PSA) biosynthetic pathway via
CMP-NeubAc ligase (NeuA) and Neu5Ac O-acetyltransferase (NeuD). The
polysialyltransferase (NeuS) adds NeubAc to oligosialic acid receptors to
form the PSA capsule, which is then exported through the PSA capsule
export system (Kps). The genes NeuA, NeuB, NeuC, NeuD, the regulator
GntR and the Kps module were found to be co-localized in the genomes of
Formosa and Reinekea. Thus, Formosa and Reinekea potentially build up
their glycocalix with sialic acids. These genes were not found in the genome

of Polaribacter, suggesting a different glycocalix composition.

Extracellular neuramidases (e.g. endo-a-(2,8)-sialidase) cleave glyco-
sidic linkages of terminal sialic acid residues in oligosaccharides, glyco-
proteins or glycolipids (Fig. 5.3). The product NeubAc enters the cell
via the specific ABC (ATP-binding cassette) transporter SatABCD, the
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TRAP (tripartite ATP-independent periplasmic) transporter SiaPQM, or
the MFS (major facilitator superfamily) transporter NanT (Almagro-
Moreno and Boyd, 2009). Within the cell, neuraminic acid (Neub5Ac)
is catabolized by enzymes of the NanAKEX and NagAB-GntR clusters.
The catabolic pathway involves five steps (Fig. 5.3) (Almagro-Moreno
and Boyd, 2009): N-acetylneuraminic acid lyase (NanA) removes the
pyruvate group from NeubAc yielding N-acetylmannosamine (ManNAc).
N-acetylmannosamine kinase (NanK) catalyzes the addition of a phos-
phate group to ManNAc yielding N-acetylmannosamin-6-P (ManNAc-6P).
N-acetylmannosamin-6-P epimerase (Nank) epimerizes ManNAc-6P to
N-acetylglucosamine-6-P  (GlcNAc-6P). Finally, N-acetylglucosamine-6-P
deacetylase (NagA) removes the acetyl group yielding glucosamine-6-P
(GleN-6-P). The amino group is removed by the glucosamine-6-P deaminase

(NagB) yielding fructose-6-phosphate (Fru-6P) that enters the glycolysis.

Exclusively the genome of 'Reinekea forsetit’ contained the complete
NanAKE and NagAB gene cluster, the corresponding regulators NanX
and GntR, the extracellular endo-a-(2,8)-sialidase, and the NeubAc TRAP
transporter SiaPQM. Interestingly, a significant number of glycoside hy-
drolases of the family 2 (GH2) were assigned to Reinekea in the bacterio-
plankton metagenome in spring 2009. The GH2 comprises [-glycosidases
that catalyze the hydrolysis of glycosaminoglycans (Cantarel et al., 2009;
Withers, accessed Dez. 2012). Glycosaminoglycans consist of an amino
sugar (N-acetylglucoseamine or N-acetylgalactosamine) along with a uronic
sugar (glucuronic acid or iduronic acid) or galactose (Esko et al., 2009).
Interestingly, Teeling at al. (2012) showed that during the decomposition
of the spring phytoplankton in 2009 the Formosa population diminished
at the same time as the Reinekea and Polaribacter population started to
bloom. The Formosa population spiked a second time once the Reinekea

population decreased to less than 5%. These authors hypothesized that the
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Figure 5.3 Proposed pathways of de novo sialic acid synthesis and catabolism. (A)
Genes that are involved in the decomposition of sialic acid containing lipopolysac-
charides (sialioglyco-conjugates) via the sialidase, import of acetyl-neuramic acid
(NeubAc) via porins and the SiaPQM transporter, activation and isomerization to
fructose-6-phosphate (fructose-6-P) via the NanAKE and NagAB cluster. Furthermore,
genes for the de novo synthesis of NeubAc from the activated UDP-N-acetylglucosamine
(UDP-GIcNAc) via the NeuBC cluster and glycopolysaccharides with Neub5Ac on the
cell surface via NeuA and Kps. (B) Additionally to the genes for sialic acid utilization,

genes are depicted that encode for the de novo synthesis of UDP-N-acetyl-glucosamine
(UDP-Gle-NAc) from fructose-6-phosphate via the GImSPU cluster. Modified after
(Severi et al., 2007) and (Vimr et al., 2004).

swift succession of the bacterioplankton populations in spring 2009 was trig-
gered by the availability of algae derived carbohydrates. Indeed, the phyto-
plankton composition shifted mainly from Thalassiosira to Chattonella and
Phaeocystis (Teeling et al., 2012). The major carbohydrates produced by
Phaeocystis species comprise polysaccharides of glucose, mannose, rham-
nose, and sialic acid (Thingstad and Billen, 1994), whereas Thalassiosira
species consist mainly of galactose, glucose, mannose, rhamnose and fucose
(Urbani et al., 2005). This suggests that ’'Reinekea forsetii’ can make use
of the sialic acids containing glycocalix of Formosa and Phaeocystis, either
for biosynthesis of its own polysialic acids or for utilizing acetyl-neuramic

acid as potential carbon and nitrogen source. Indeed, I could show that
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"Reinekea forsetis’ grew on N-acetylneuraminic acid and the Formosa and
Polaribacter strains did not (see Chapter 4).

However, Sanudo-Wilhelmy et al. (2012) suggested that besides the eu-
karyotic phytoplankton, bacterioplankton populations are effected by the
availability of vitamins, because marine bacteria are quantitatively the most
important consumers of vitamins as growth factors. Indeed, the Reinekea
culture required vitamins for growth (see Chapter 3). Since algae and bac-
teria are sources of vitamins (Gobler et al., 2007) and Polaribacter together
with Reinekea have been shown to coexist in the same habitat (Teeling et al.,
2012), we proposed Polaribacter populations as a vitamin source during the
co-cultivation with ’Reinekea forsetii’ (Chapter 3). Hence, algae or bacteria
derived vitamins cannot be excluded as a trigger of the ’Reinekea forsetii’
bloom in spring 2009.

Conclusively, ’Reinekea forsetii’ utilized sialic acids and might have
caused the decline of the Formosa population. Polaribacter was probably
not effected by the sialic acid utilization of Reinekea. Instead, Polaribacter
might have been a vitamin source for 'Reinekea forsetii’. Certainly, co-
cultivation studies of Formosa, Reinekea, and Polaribacter cultures and
axenic cultures of Thalassiosira and Phaeocystis are important to elucidate
specific interactions among the bacterioplankton populations and between

bacterioplankton and phytoplankton populations.
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5.6 Outlook

Since the strain collection obtained in this study contributes substantially
to the diversity of discribed North Sea Flavobacteriaceae, the isolates should
be taxonomically classified. The requirements must follow the minimal stan-
dards for describing taxa of the family Flavobacteriaceae (Bernardet et al.,
2002). We already started to group strains based on whole-cell protein pro-
filing by MALDI-TOF MS to reduce the number of strains in this collection
beforehand. This approach has been recently reviewed in its potential as
rapid tool for microbial identification and phenotyping (Moore and Rossell6-
Mora, 2011).

The genomes of these Flavobacteriaceae isolates might encode for nu-
merous polysaccharide utilization loci (PUL) and thus, genome sequencing
of dedicated strains will give insights into arrangements, similarities and
co-localization of carbohydrate active enzymes (CAZyme) and associated
TonB-dependent transporters (for example see Tab. 5.1). However, the clas-
sification of CAZymes based on sequence similarity (Cantarel et al., 2009)
has the consequence that enzymes are grouped together in gene families
which may have quite different substrate specificies (Henrissat, 1991). Thus,
a biochemical characterization of enzymes is needed for an unambiguous
functional assignment (Henrissat, 1991). For example, the number of pro-
tein sequences in the database of CAZymes increased exponentially between
1999 and 2007, while the number of characterized enzymes increased only
linearly (Cantarel et al., 2009). Moreover, it is largely unknown whether cer-
tain bacterioplankton clades that encode for PULs in their genome concert-
edly decompose complex polymeric carbohydrates (synergistic, functionally
complementary) or utilize the same complex carbohydrate, but with differ-
ent sets of enzymes (independent, functionally redundant). For example,

the genomes of Bacteroides thetatotaomicron and B. ovatus of the gut mi-
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Table 5.1 Genome size, predicted ORF, carbohydrate active enzymes (CAZymes), TonB-
dependend and ABC type transporter encoded in the genomes of the novel Formosa,
Polaribacter, und Reinekea species.

Formosa Reinekea Polaribacter

'flavarachnoidea’  ’forsetii’  forsetii’ forsetii’ sp. Hell 85

Contigs 17 1 79 31 63
total bases (Mb) 2.01 2.73 3.71 2.99 3.86
total ORFs 1,848 2,546 4,879 2,634 3,403
CAZymes 121 125 235 292 404
Glycosid hydrolases 38 36 66 90 110
Sulfatases 17 9 1 13 35
TonB dep. transporter 13 19 1 6 8
ABC transporter 16 16 65 11 12

crobiome encode for 28 homologous PULs for the utilization of glycans of the
gut mucosa and plant cells (Martens et al., 2011). The niche speciation of
both species was attributed to eight unique PULs of B. thetatotaomicron to
degrade O-glycans, and five unique PULs of B. ovatus that targeted hemi-
celluloses of the plant cell wall (Martens et al., 2011). It is also possible
that different sets of glycoside hydrolases at the outer membrane decom-
pose complex carbohydrates to common oligosaccharides which are then
transported into the periplasm and hydrolyzed to monosaccharides by the
same set of CAZymes. The expression of PUL-genes is regulated by the
TonB-dependent sensor that directly interacts with linear oligosaccharides.
Hence, related glycans composed of similar oligosaccharides, but exhibiting
different branching patterns, might be detected by the same regulator. For
example, laminarin from brown algae and chrysolaminarin from diatoms are
composed of $(1—3) linked glucose units with irregular §(1—6) branches.
Hence, physiological studies with reasonable polysaccharides coupled with
proteomics will widen our biochemical knowledge of the substrate specificity
of these enzymes and transporters, and thus of polysaccharide decomposi-
tion in pelagic and coastal marine environments.

In Chapter 4 1 described the first results on polysaccharide utilization of

Polaribacter and Formosa strains on a limited set of commercially available
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Figure 5.4 Proteins of a polysaccharide utilization loci (PUL) (A) modified after
(McBride et al., 2009) and (B) synteny between the laminarin degradation PUL in
"Formosa flavarachnoidea’ (Formosa sp. Hel3_A1_48), "Formosa forsetii’ (Formosa sp.
Hell 33_131) and PULs in other Flavobacteria. OM, outer membrane; IM, inner mem-
brane; GH, glycoside hydrolases; TonB, TonB-dep. transporter; LytTR, sensor-regulator
system.

polysaccharides. This list can be extended in further studies. Currently,
Peng Xing (MPI Bremen, Germany) and Frank Unfried (Ernst Moritz Arndt
University, Greifswald, Germany) are cultivating 'Polaribacter forsetii’ and
"Formosa forsetii’ on laminarin to identify with proteomics and transcrip-
tomics potential laminarin specific PULs. Co-cultivation in chemostats and
batch cultures with polysaccharides or mixtures of polysaccharides could
be used to study competition on polysaccharide degradation among the
Polaribacter and Formosa strains. All Polaribacter and Formosa strains
were able to grow on laminarin, but PULs that were predicted to encode for
laminarin decomposition are different among the species (Fig. 5.4). Because
enzymes and proteins of PULs are localized at the outer membrane or in the
periplasm (Fig. 1.5 in Chapter 1 on page 28), the analysis of sub-proteomes
(outer membrane, inner membrane, periplasma) could identify the cellular

localization.

An interesting aspect that needs further investigation is linked to the small
genomes of Polaribacter, Formosa, and Reinekea strains. So far, missing

metabolic pathways and transporters as well as auxotrophy for vitamins,
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organic nitrogen, and sulfur sources have been reported for other genome
streamlined bacteria. Thus, it is important to understand whether such
metabolic consequences apply to the Polaribacter, Formosa, and Reinekea
strains or if other features have evolved. First of all, the essential amino
acids need to be explored to exclude an excess of amino acids in the medium
as peptone and casamino acids, and thus reduce the amount of ammonium
that is secreted into the medium.

In conclusion, the isolates obtained in this thesis open many opportunities
for further studies on the physiology and genetic potential of coastal marine

bacteria, especially of Flavobacteriaceae.
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Abstract

Biological and pysico-chemical characteristics define ecological provinces.
On a transect along the 30°W meridian from 67°N to 34°N, the North At-
lantic Ocean was partitioned into four ecological provinces and nine water
masses. Whether this ecological provinces were reflected in distinct bacterial
populations was studied by terminal restriction fragment length polymor-
phism (T-RFLP) analysis of bacterial 16S rRNA genes present in water
samples along the transect and at depths between sea-surface and 500 me-
ters. Synechococcus prevailed in the North whereas Prochlorococcus was
more abundant in southern sampling stations. Microbial communities were
generally more diverse in phototrophic layers above the pycnocline. Distinct
communities were detected in the epipelagic along the latitudinal transect
through the different water masses, with a second major diversity change
from the epipelagic to the mesopelagic zone. Differences in T-RFLP pat-
terns coincided well with differences in the physico-chemical conditions of
the sampling sites. In silico analyzes were developed to assign phylogenetic
groups to terminal restriction fragments (TRFs) and detected for instance
populations of high-licht and low-light ecotypes of Prochlorococcus. Water
masses in the North Atlantic Ocean hosted different bacterial communities,
including individual populations that may serve as biological marker for the

water mass.
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Introduction

The open ocean harbors a diversity of microorganisms which have often
a regional distribution. One example are unicellular cyanobacteria affil-
iating to Synechococcus and Prochlorococcus (Li, 1994; Liu et al., 1997;
Veldhuis et al., 1997). The variety of habitats results from annual sea-
sonal changes, intense atmospheric events, the thermohaline circulation and
currents throughout the ocean (Platt and Sathyendranath, 1999; Teeling
et al., 2012). Longhurst partitioned the ocean based on physical forcing
into 56 ecological provinces and provided static definitions of the province
boundaries (Longhurst et al., 1995). These ecological provinces are regions
or water masses defined by physico-chemical (e.g. temperature, salinity,
bathymetry) and biological (e.g. chl a concentration, vertical distribution
of bacterioplankton) characteristics, and a common history (Emery and
Meincke, 1986; Devred et al., 2007). Because ocean surface color signifi-
cantly correlates with water column integrated chlorophyll concentrations,
photic depth, and nutrient fields, ecological provinces can be discriminated
by the global time series of satellite ocean color and sea surface temperature
(Esaias et al., 2000; Oliver and Irwin, 2008). The North Atlantic Current
and its prolongation, the North Atlantic Drift Current, divides the North
Atlantic Ocean into a northern and a southern part. Two branches extend
at 38°N 44°W northeastward along the continental slope and southeastward
along the continental slope feeding the current around the North Atlantic
Gyre (Mann, 1967). Along the 30°W meridian from 67°N to 34°N, the North
Atlantic Ocean contains nine water masses in four Longhurstian provinces
(suppl. Fig. A.S1): one Boreal Polar (BPLR), four Atlantic Arctic (ARCT),
two North Atlantic Drift (NADR) and two North Atlantic Subtropical Gyre
(NAST) (Longhurst et al., 1995; Goémez-Pereira et al., 2010). Physical (tem-

perature, salinity), chemical (nutrients) and biological data (chlorophyll
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a, picoplankton, nanophytoplankton, enzyme activities) clearly indicated
gradients along the transect, from cold and nutrient rich water masses in
the North to warm oligotrophic water masses in the South (Gomez-Pereira
et al., 2010; Schattenhofer et al., 2011; Arnosti et al., 2012). Coincidence
of ecological provinces in surface water the North Atlantic Ocean and local
bacterioplankton populations was recently shown for Flavobacteria clades
(Gomez-Pereira et al., 2010) and picoplanktonic populations (Schattenhofer
et al., 2011). So far, a characterization of the diversity of the bacterioplank-
ton within water masses and with depth is missing, in the North Atlantic
Ocean. We hypothesized a strong correlation for all bacterial clades with
water masses, and conducted a cruise from Island (66° 39.27’N) to the Azores
(66° 39.27°N) along a latitudinal gradient 30°W, thus north of cruises of the
Atlantic meridional transect program (Aiken et al., 2000). Epipelagic and
mesopelagic bacterial communities were investigated by terminal restriction
fragment length polymorphism (T-RFLP) of 16S rRNA gene amplicons and

flow cytometry counting of Prochlorococcus and Synechococcus populations.

Material and methods

Sampling

Water samples were obtained on the Maria S. Merian during the VISION
(diVerslty, Structure, functlON) cruise MSMO03/1 (September 2006) with a
CTD rosette equipped with 24 Niskin bottles (suppl. Fig. A.S1). At each
depth seawater aliquots were sampled in triplicate: the biomass of a 200 ml
aliquot was concentrated on a 0.2 um Isopore filter with a diameter of
45 mm (Millipore, Billerica, MA) and the filter was frozen immediately and
stored at —20 °C. Salinity, temperature, the concentrations of phosphate,
ammonium, nitrite and nitrate were taken from (Goémez-Pereira et al.,

2010). The cell numbers of Synechococcus, Prochlorococcus and of the total
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bacterioplankton were determined by flow cytometric analyses as described
in (Tarran et al., 2006).

DNA extraction and T-RFLP

From each station depth, three biological replicates were analyzed. Ge-
nomic DNA was isolated from half a filter, representing 100 ml water
sample, based on a protocol of (Bostrom et al., 2004). The filter half was
placed in a 2.2 ml sample vial and extracted with 525 pL lysis buffer and
11 puL lysozyme (50 mg ml™!) for 30 min at 37 °C in an overhead shaker.
After addition of 60 uL 10% SDS and 3 uL proteinase K (20 mg ml™1),
the extraction was continued for 12 h at 55 °C in the overhead shaker.
The supernatant was transferred and incubated together with 100 uL iso-
propanol for 1 h at room temperature. The DNA was precipitated with
15000x ¢ for 30 min at 4 °C. The pellet was washed with 100 pL cold
ethanol, precipitated a second time and air dried. The DNA was dissolved
in 50 pl. water and quantification yielded 10 to 50 ng genomic DNA per
sample. Amplification of the partial 16S rRNA gene was performed with the
fluorescently labeled primers 27F (FAM, 5-AGA GTT TGA TYM TGG
CTC AG-3’) and 907R (HEX, 5-CCG TCA ATT CCT TTR AGT TT-3"),
targeting all bacteria (Muyzer et al., 1995). The PCR reaction contained
12.5 pL. PCR Master Mix (Promega GmbH, Mannheim, Germany), 4 M
of forward and of reverse primer, and 1-5 ng DNA template in 25 uL.. The
cycle program was 95 °C for 1 min, 33 cycles of 95 °C for 1 min, 60 °C for
1 min and 72 °C for 3 min, followed by 60 °C for 60 min. PCR amplicons
were purified on Sephadex columns (SephadeXTMG—50 Superfine, Amersham
Biosciences AB, Uppsala, Sweden). Approximately 25 ng of PCR amplicon
were digested in a total volume of 10 pL using 5 U of the restriction enzyme
Alul (Fermentas, Burlington, Canada) at 37 °C for 3 hours, followed by heat

inactivation at 65 °C for 30 min. After purification on Sephadex columns,
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terminal restriction fragments (TRFs) were detected on an ABI Prism
3130 XL Genetic Analyzer (Applied Biosystems, California) equipped with
an 80 cm capillary, a POP-7 polymer and the filter set D (Filter DS-30).
The ROX-labeled MapMarker® 1000 (Eurogentec, Belgium) served as a
size standard between 50 bp and 1000 bp.

TRF pattern analyses

T-RFLP patterns were inspected manually with the software Genetic Anal-
yser 3.7 (Applied Biosystems, California, USA). The fluorescence intensity
threshold was set to 20 units and the fragments with a size between 50
and 1000 nucleotides were identified and sized (Local Southern, normaliza-
tion within each run, sum of signals) with the internal size marker. For
comparative analyses, the individual pattern were processed applying the
interactive binner (Ramette, 2009). The binning size was 1 nucleotide and
the binning shift 0.5 nucleotides. Due to a naming of each TRF by its start
of the binning window we added 0.5 bases to the TRF length in naming
TRFs. The resulting pattern with normalized peak areas (RFI, relative
fluorescence intensity of 100% corresponds to the sum of peak areas in each
T-RFLP profile) were visualized in rank versus cumulated abundance curves
with the k-dominance plot in PRIMER-E (v.6, PRIMER-E, Plymouth Ma-
rine Laboratory, UK) (Clarke, 1993). Inspection by Genetic Analyser and
the k-dominance plots served to remove outliers within the triplicates and
identify the final T-RFLP data set (suppl. Fig. A.S2). The constrained
(canonical) correspondence (Ter Braak, 1986) analysis was used to relate
the compositional variation in the bacterial community of the sampling
sites as x? (chi-squared) distances to the observed environmental variation
by canonical correlations, and perform a weighted linear mapping, with-
out information of depth and longitude. For comparability a sampling

site-similarity matrix was generated using the Bray-Curtis coefficient by
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comparing the RFI of each TRF with regard to every pair wise combi-
nation of all stations and depth, with 999 permutations. Non-parametric
multivariate statistical analysis was performed using PRIMER-E and the R
package VEGAN (v.1.8-3 Dixon, 2003). Visual comparisons between bac-
terial communities of predefined oceanic provinces (BPLR, ARCT, NADR,
NAST) were explored by ordination using non-metric multidimensional
scaling (nMDS), with 100 random restarts and 999 iterations. As third
method we used the hierarchical clustering to group the sampling sites.
Visualization was performed by adding the information of the hierarchical
tree into the nMDS plot. A consistent biplot was obtained in a fitting
of the environmental conditions into the nMDS plot applying the func-
tion envfit of the R package VEGAN with 1000 permutation and p-values
smaller than 0.001, but without information of depth and longitude (Dixon,
2003). Analysis of similarity (ANOSIM) in PRIMER-E was used to verify
the significance of water mass specific clustering of bacterial communities
by testing the null hypothesis that bacterial communities from the same
water mass were more similar to each other than to bacterial communities
in different water masses. To test for differences in bacterial communities
between water masses in the epipelagic zone and differences in epipelagic
and mesopelagic bacterial communities two-way crossed ANOSIM statistics
were generated. ANOSIM statistics were based on the same sampling site-
similarity matrix of Bray-Curtis coefficients, as for nMDS, and computed
with 999 permutations. To identify which TRF formed a strong gradient
along the latitude and into the depth we used the principal components
analysis (PCA), transforming the variable space (RFT of each TRF of each
sampling site) into its orthogonal principal components. Afterward, the
eigenvectors of the TRF and principal components scores of the sampling
sites were visualized. Similarity percentage analysis (SIMPER) was used

to get the significance of TRFs in water masses. A significant TRF was
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defined as one with (i) an average RFI within the represented water mass
or water masses of at least double as high as in the other water masses, (ii)
the ratio higher than one between the contribution to the average Bray-
Curtis dissimilarity (Average Dissimilarity) between all pairs of sampling
sites (one within the represented oceanic provinces and one outside), and
the standard deviation (SD) of those contributions, (iii) and a RFI of more
than 4% in at least one sampling site. Corresponding peak of the significant
representative TRE were again inspected manually in the original T-RFLP
pattern with Genetic Analysis 3.7, to confirm that the analyzed fluorescent
signal was unaffected by neighboring TRF. Finally, the biogeography of the
TRFs were visualized in Ocean Data View (v3.4.2, ODV, AWI, Bremer-
haven, Germany) (Schlitzer, 2002).

In silico prediction of the fragment size

16S rRNA gene sequences were retrieved with the ARB program (Lud-
wig et al., 2004) from the SILVA database (rel102ref, 391167 bacterial se-
quences) (Pruesse et al., 2007) by targeting both T-RFLP primers with
0 to 2 mismatches. Four sets of sequences were generated, (i) 135761
sequences of all phyla, (ii) 87 out of 361 sequences of Synechococcus,
(iii) 382 out of 944 sequences of Prochlorococcus and (iv) 233 out of
885 sequences of a Bacteroidetes specific clone library retrieved from
Gomez-Pereira et al.  (2010). These sequences were trimmed to the
T-RFLP amplicon size. The program TRFragCalc (m-file is available
at http://www.mpi-bremen.de_Richard_Hahnke.html) written in MATLAB
(v.2.9.0.529 R2009b, MATLAB The Language of Technical Computing, The
MathWorks, Natick, USA) was applied to import sequences, to identify the
restriction recognition site, and to calculate the resulting T-RFLP frag-
ments. Starting with an in silico fragment, e.g. i TRF_128nt for Synechococ-

cus, we investigated the distribution of TRF in a range of + 5 nucleotides,
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e.g. TRF_123nt to TRF_133nt. This window of 10 nucleotides is necessary
because an absolute determination of the length of TRFs with capillary

electrophoresis is currently not possible (Bruland et al., 1999; Hahn et al.,
2001; Olejniczak et al., 2005).

Results

Oceanographic changes and the bacterial diversity determined by T-RFLP
The North Atlantic Ocean at depths between 20 m and 500 m along the
30°W meridian from the productive cold Greenland current (66°39 "N) across
the cold north and warm south of the North Atlantic Current to the olig-
otrophic central Atlantic Ocean (34°24°N) (suppl. Fig. A.S1) contained a
bacterial diversity revealed in the presence of 467 terminal restriction frag-
ments (TRFs) in all samples (y diversity). Most samples had 58 to 105 TREFs
(25% and 75% quantil, o diversity), median 86 TRFs (suppl. Fig. A.S3).
The Shannon diversity index based on the relative abundance of the TRFs
was large in the epipelagic zone, with a high diversity north and south of
the North Atlantic Drift (Fig. A.1).

T-RFLP pattern and environmental conditions

The fragment pattern of the sampling sites were constrained with environ-
mental conditions (salinity, conductivity, temperature, and the concentra-
tion of dissolved oxygen, ammonium and nitrate) in a unimodal model. The
constrained (or canonical) correspondence analysis (CCA) covered one third
of the total variance (inertia = 2.07), reflected by a mean squared contin-
gency coefficient of the constrained axes with 31% (inertia = 0.63). The
CCA revealed a distribution of sampling sites along a latitudinal gradient
and with water depth (Fig. A.2).

Oxygen, temperature and salinity were coinciding with the first dimen-
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Figure A.1 Density 0g (A) and Shannon diversity index of bacterial 16S rRNA T-RFLP
profiles (B) in the North Atlantic Ocean. Water was sampled from the East Greenland
Current (BPLR, between Greenland and Iceland) through the areas north (ARCT) and
south (NADR) of the Gulf Stream to the North Atlantic Gyre (NAST, south of the
Azores).
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Figure A.2 Canonical correspondence analysis of T-RFLP profiles and constrained en-

vironmental parameters.

The CCA presentation of the differences in the TRF pat-

tern revealed a clustering of water masses along a latitudinal gradient (BPLR, square;
ARCT, dot; NADR, diamond; NAST, triangle) and a separation in either epipelagic or
mesopelagic origin (pycnocline at 50 to 100 m depth). The depth gradient is represented
by the amount of ammonium, nitrate and phosphate whereas the latitude gradient is
represented by the amount of oxygen, temperature and salinity, because including the
depth and latitude into the calculation would ultimately change the two dimensional
visualization (abundances were analyzed constrained to the environmental data). Num-
bers represent sampling stations.
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sion, a proxi for latitude, whereas ammonium, nitrate and phosphate were
proxies for the water depth. Bacterial communities from the surface wa-
ter were well separated from bacterial communities from water deeper
than 80 meter. This coincided with a pycnocline (suppl. Fig. A.S1), and
suggested 80 m as border between the mixed layer and stratified deeper
waters. The ANOSIM test showed that differences between epipelagic
and mesopelagic bacterial communities were significant (global R = 0.79,
p < 0.1%). A hierarchical clustering at 48% similarity defined three
groups of samples: (i) an epipelagic BPLR-ARCT cluster, (ii) an epipelagic
NADR-NAST cluster, and (iii) one common cluster of mesopelagic sam-
ples (suppl. Fig. A.S4). Samples from the Longhurstian provinces BPLR,
ARCT, NADR and NAST formed cluster. The seven smaller clusters of
surface water (Fig. A.1) coincided with the water masses defined by Gomez-
Pereira et al. (2010). Within the provinces, sampling stations of the water
masses BPLR (station 2) , ARCT1 (st. 4-6) and ARCT2 (st. 7-8) were
separated. The NADR (stations 10-13) showed a high variation, reflecting
the dynamic environment of the ocean current. The geographical distance
between stations 10 and 11 is smaller than between stations 11 and 12. In
contrast, the dissimilarity of the bacterial community between stations 10
and 11 was large, compared to the dissimilarity between stations 11 and 12
(Fig. A.2). Stations 16 to 18 of the water masses NAST1 and NAST2 could
not be distinguished on the basis of the T-RFLP pattern. Station 14 and 16
belonged to the water mass NAST1, but station 16 clustered with stations
of the water mass NAST2 and station 14 was separated from station 16.
The significant separation of bacterial communities in the BPLR, ARCT1
and ARC2 water masses, compared to the more similar sampling sites in the
NADR and NAST province, was reflected in the ANOSIM results. Over-
all, the differences between bacterial communities of the water masses were

significant (global R = 0.60, p < 0.1%). Pairwise tests of epipelagic water
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masses showed, that the water masses BPLR1 and NAST2, ARCT2 and
NADRI1, NADR2 and NAST1 were well separated (see ANOSIM results in

supplementary.

Water masses within the same province (e.g. NAST1 and NAST2) had
a larger shared bacterial community. To confirm the clustering of bacterial
populations with water masses along the latitude and an independence from
the CCA method (uses x? distances), the similarity between bacterial com-
munities of individual sampling sites was calculated with the Bray-Curtis
similarity (based on relative abundances) and the Sorensen index (8 di-
versity, based on presents'\absents). The nMDS of both indices revealed a
distribution of sampling sites along the four provinces and with water depth
(suppl. Fig. A.S4), comparable to the results of the CCA. This supports our
hypothesis of a change in bacterial communities with water masses (5 di-
versity). However, the discrimination of bacterial communities in different
water masses was more pronounced with relative abundances. Altogether,
the applied nonparametric statistical analyses demonstrated the presence

of individual bacterial communities in the different water masses.

Characteristic  terminal restriction  fragments for individual oceanic
provinces

Differences between bacterial communities present in water masses were
traced to individual TRFs with similarity percentage analysis (SIMPER,
Tab. 6.1). Among the abundant TRFs, only TRF_58nt and TRF_152nt were
detected in all stations with less than 80 m water depth, whereas forty TRFs
varied in their presence. In the north, TRF 203nt and TRF 259nt were
characteristic for the BPLR. ARCT1 and contained statistically significant
populations of the TRF 125nt and TRF 605nt, ARCT2 the TRF 158nt,
TRF_193nt and TRF _201nt, and NADR2 the TRF_158nt. The sampling
sites in the NADR province had a high abundance of TRF 195nt, and
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in the NAST province of TRF 183nt, TRF 207nt and TRF 242nt. The
analysis revealed a number of TRFs significant for two adjacent provinces.
TRF 204nt and TRF 217nt were less abundant in the north and in the
south, respectively. The TRF 125nt, TRF 189nt, TRF 193nt, TRF 194nt,
and TRF_204nt had the highest maximum RFI of 11.9% to 44.1%. Wa-
ter samples below 80 m were characterized by TRF 152nt and TRF 241nt
(Tab. 6.1). The principal component analysis (PCA) was used to iden-
tify TRFs forming a strong increasing RFI along the latitude or into the
depth (suppl. Tab. A.S5). This first principal component distinguished
between the northern (BPLR, ARCT) and the southern provinces (NADR,
NAST) and revealed a strong influence of the latitude (55.8% of the total
variation). The second principal component covered 13.6% of the total
variance and distinguished depths above and below 80 m. The largest
eigenvector parallel to the first principal component had the TRF_189nt.
The second principal component had major contributions from TRF 125nt,
TRF_152nt, TRF_193nt, and TRF _204nt. Thus, the strong regionallity of
individual TRFs characterized the bacterial communities of different water

masses along the transect in the North Atlantic Ocean (Fig. A.3).

Assignment of terminal restriction fragments to bacterial taza

With TRFragCalc, written in MATLAB for this study, we assigned in sil-
1co terminal restriction fragments to cyanobacteria and compared the result
with measured TRFs (Fig. 4 1b-3b) and fluorescence-detection of cyanobac-
teria by flow cytometry (Fig. A.4 la-3a). In silico terminal restriction
fragments (named iTRFs) of Synechococcus 16S TRNA genes had 73, 128,
190 and 205 nucleotides. The iTRF 128nt originated from 246 sequences
of Synechococcus clade 1 and 3 sequences of Synechococcus clade 111 (over-
all 286 cyanobacteria in 327 sequences). TRF abundance pattern and the

by flow cytometry determined distribution of Synechococcus cell counts in-
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Table 6.1 Abundance and significance of terminal restriction fragments (TRF) that were

representative for water masses. Depicted are the RFI maximum and the associated

sampling site (station, depth), the average RFI in the water masses (BPLR, ARCT1/2,
NADR1/2, NAST1/2), the average RFI of TRFs in the represented oceanic province
(in) and in all other provinces (out), mean dissimilarity (Diss/SD) from SIMPER. Addi-
tionally, the same information is given for the sum of TRF (sum) that are representative

for water masses.

RFI maximum

Average abundance in water mass (%)

TRF RFI  Station Depth  BPLR ARCT NADR NAST Diss/SD
(nt) (%) (m) 1 2 1 2 1 2 out in
BPLR
203 4.3 2 20 3.4 0.9 1.3 0.6 0.5 1.5 1.7 1.1 3.4 2.2
259 6.4 2 20 2.6 0.1 0.9 0.1 0.1 0.3 0.2 0.2 2.6 1.0
Sum 6.0 1.0 2.2 0.7 0.6 1.8 1.9 1.3 5.9 1.4
BPLR_ARCT1
202 5.8 5 20 4.4 2.6 0.7 0.1 0.1 0.0 0.0 0.2 3.2 1.7
BPLR_ARCT
249 8.6 6 75 6.9 5.2 5.1 1.3 0.7 1.2 1.3 1.2 5.5 2.4
461/2 4.7 2 20 2.5 1.8 1.5 0.0 0.0 0.0 0.0 0.1 1.7 1.7
sum 9.4 7.0 6.6 1.3 0.7 1.2 1.3 1.2 7.2 2.5
ARCT1
125 12.3 5 20 1.4 5.5 2.5 3.3 0.6 0.4 0.6 1.5 5.5 1.5
605 4.7 6 20 0.9 2.6 0.2 0.3 0.3 0.3 0.4 0.3 2.6 1.5
sum 2.3 8.1 2.7 3.5 0.8 0.7 1.0 1.8 8.1 1.6
ARCT2
201 4.8 8 20 0.0 0.0 1.2 0.5 0.0 0.0 0.0 0.1 1.2 0.8
193 17.1 7 40 0.3 3.1 6.3 1.8 2.1 1.3 1.2 2.3 4.8 1.4
158 5.3 7 20 0.0 0.7 1.8 1.3 2.3 0.6 0.0 0.8 1.8 1.2
sum 0.3 3.9 9.3 3.6 4.4 1.9 1.2 2.7 9.9 1.2
ARCT2_NADR
194 11.9 12 40 0.2 1.1 4.8 4.7 6.6 1.9 0.3 0.9 5.3 2.3
NADR
195 8.0 12 40 2.7 3.0 0.7 4.1 5.3 1.8 1.3 1.9 4.6 1.7
NADR2
158 3.5 12 20 0.0 0.7 1.8 1.3 2.3 0.6 0.0 0.8 2.3 1.9
NAST
183 5.1 16 40 0.1 0.0 0.1 0.1 0.1 1.8 2.0 0.1 1.9 1.3
207 5.1 17 20 0.0 0.0 0.1 0.1 0.1 2.6 2.8 0.2 2.7 1.6
242 4.0 16 75 0.2 0.0 0.1 0.3 0.6 1.8 1.8 0.3 1.8 2.4
sum 0.3 0.0 0.3 0.5 0.8 6.2 6.5 0.5 6.4 1.9
NADR_NAST
227 5.8 14 75 0.1 0.6 1.1 2.6 2.7 3.2 2.1 0.2 2.6 1.6
246 4.8 13 20 0.0 0.3 0.5 3.0 2.7 3.5 3.9 0.3 3.3 3.1
189 44.1 18 75 1.0 4.1 2.1 19.8 147 149 222 2.8 183 1.8
sum 1.2 4.9 3.7 254 201 217 282 3.3 243 2.2
BPLR_ARCT_NADR
217 5.3 10 75 2.0 2.0 2.9 2.9 1.3 1.2 0.9 0.9 2.2 1.4
ARCT_NADR_NAST
204 21.2 12 75 2.1 4.1 4.3 85 11.1 7.7 6.0 2.1 6.6 1.1
Deeper water 80-500 m
152 30.1 13 400 8.0 4.0 5.5 3.8 5.1 1.1 0.8 3.8 19.3 24
11.2 156 21.8 179 222 222 186
241 12.9 2 275 2.7 1.5 2.3 0.2 0.2 0.0 0.0 0.9 4.5 1.5
10.8 5.3 6.5 4.2 3.5 3.3 1.7
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Figure A.3 Regionality of terminal restriction fragments (TRF), represented by their
mean (mean of RFI of triplicates) relative fluorescence intensity (RFI) between sea
surface and 80 meter depth. Shown are TRFs with a RFI of > 4% in at least one water
sample. Sampling sites along the transect through the northern (BPLR, ARCT) and
southern (NADR, NAST) North Atlanic Ocean provinces are represented by black dots.

dicated a concurrence with the abundance of TRF _125nt, with a Pearson
correlation coefficient p of 0.89. Within the diversity of 135761 bacterial
16S rRNA sequences present in the dataset, the absence of other iTRF
in the range 123-133 nt originating from marine bacteria also supported
an assignment of Synechococcus iITRF_128nt to the observed TRFE _125nt.
Ecotypes of Prochlorococcus differ in their 16S rRNA genes (Rocap et al.,
2002). We found two iTRFs: The iTRF_190nt originated from 16S rRNA
gene sequences of Prochlorococcus strains that were adapted to high light.
Low light adapted Prochlorococcus were represented by iTRF_205nt. In the
T-RFLP profiles, TRF 189nt and the TRF 204nt showed in the subtropi-
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cal province a distribution as expected for high light (p = 0.91) and low
light (p = 0.46) adapted Prochlorococcus (Fig. A.4 2 and 3). Flavobacte-
ria had been investigated with 16S rRNA libraries and wn situ hybridiza-
tion (Gomez-Pereira et al., 2010). The iTRF 461nt and iTRF _462nt orig-
inated from Polaribacter only, and iTRF _464nt from Polaribacter and the
groups NS4 and NS2b. The T-RFLP pattern of TRF 461nt and TRF 462nt
concurred in the northern provinces (suppl. Fig. A.S6). Flavobacteriaceae
VIS4 group was solely responsible for iTRF_604nt. The T-RFLP pattern
of TRF 605nt coincided well with the VIS4 population in FISH cell counts
of 2% of all DAPI stained cells at the station 4 and 6 (suppl. Fig. A.S6).
Flavobacteriaceae group DE2 contributed exclusively to iTRF_606nt. DE2
was abundant in ARCT and NAST according to the T-RFLP pattern of
TRF_607nt and to FISH cell counts. Flavobacteriaceae group DE2 gave
also iTRFs in the range of 817 to 825 nucleotides. The TRF _820nt was
found only in surface waters in the NAST province, but its abundance was
below 1% relative fluorescence intensity. The in silico analyses did not al-
low a clear assignment of other TRFs that were representative for oceanic
provinces (Tab. 6.1). In several cases, assignments to Alphaproteobacte-
ria as well as Gammaproteobacteria were feasible (suppl. Tab. A.S7), an

indication for the low taxonomic resolution of the T-RFLP method.
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Figure A.4 Cyanobacterial populations visualized by flow cytometry (la-3a) and by
their mean (mean of RFI of triplicates) relative fluorescence intensity (RFI) of affili-
ating TRFs (1b-3b). Flow Cytometry detected Synechococcus (la) more abundant in
the mesotrophic region of the northern North Atlantic Drift and Prochlorococcus (2a,
3a) in the oligotrophic central Atlantic gyre. The peak abundance of high light (HL)
adapted Prochlorococcus ecotype was at 40 meters (2a), whereas the low light adapted
(LL) Prochlorococcus ecotype was observed at deeper water layers (3a). The pattern of
terminal restriction fragments (TRF) corresponded to the related cyanobacterial pop-
ulations: TRF_125nt affiliated to Synechococcus (1b), TRF_189nt affiliated to the HL
adapted Prochlorococcus ecotype and Synechococcus (2b), and, TRF_204nt affiliated to
the LL adapted Prochlorococcus ecotype, Synechococcus and other taxa (3b). A star (*)
indicates the sampling site with the largest RFI and the insert shows the correspond-
ing signal in the T-RFLP profile. Contour lines indicate the relative abundance of cell
counts (% total cell counts) or TRFs (%RFI). Black dots indicate sampling sites.
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Discussion

The biogeography of microorganisms started with the characterization of
microbes from Arctic and Antartic (Staley and Gosink, 1999). Diversity
studies with reference to the latitude have shown a pole-to-pole biogeogra-
phy (Ghiglione et al., 2012), a bipolar distribution (Sul et al., 2013) and
a latitudinal diversity gradient (Fuhrman et al., 2008). These studies as-
sembled observations from many oceanic provinces, but did not include a
concrete transect along one longitude. Baldwin et al. reported the mi-
crobial diversity in a Pacific Ocean pole-to-pole transect between 154°W
and 172°E and detected four biological provinces: sub-Arctic/Arctic, tem-
perate, tropical, and sub-Antarctic/Antarctic (Baldwin et al., 2005). Each
province covered a large range of latitudes. The situation is different in
the North Atlantic Ocean, which has four oceanic provinces present on
a relative small range of latitudes. This results from the North Atlantic
Drift, a profound influence on the history of water masses. Fluorescence
in situ hybridization (FISH) (Goémez-Pereira et al., 2010) revealed a bio-
geography of Polaribacter in the northern provinces. Our T-RFLP analy-
ses now showed a biogeography of bacterial populations in the North At-
lantic Ocean consistent with water masses along a latitudinal gradient 30°W
between 66°39.27'N and 34°24.87'N. The photic pelagial showed large dif-
ferences between communities, whereas the mesopelagial had less diverse
bacterial communities. Larger changes in environmental parameters above
the pycnocline as well as the presence of phototrophic microorganisms may
contribute to the larger diversity. Unicellular cyanobacteria affiliating to
Synechococcus and Prochlorococcus are among the major bacterial popula-
tions with a biogeography in the oceans (Li, 1994; Liu et al., 1997; Veld-
huis et al., 1997). The large genetic diversity within Synechococcus and

Prochlorococcus has lead to the definition of ecotypes for genetically well
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defined subgroups (Zwirglmaier et al., 2008). Prochlorococcus has high light
adapted (HL) and low light adapted (LL) ecotypes (Zubkov et al., 2007;
Zwirglmaier et al., 2008; Huang et al., 2012). We could assign TRFs to
Synechococcus, low and high light adapted Prochlorococcus ecotypes on the
basis of in silico fragment length calculations, the biogeographic detection
of TRFs and coincidence with fluorometric measurements of pigments. This
technique showed the distribution of Prochlorococcus ecotypes in different
water depth.

In summary, the oceanic provinces in the North Atlantic Ocean hosted
different bacterial communities. Bacterial populations varied along the lati-
tudinal transect, so that individual terminal restriction fragments can serve

as representative proxy for individual oceanic provinces.
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Figure A.S1 Sampling stations and water density of the Merian cruise 03/1 V:I:S:I:O:N, in
2006. (A) Water samples were obtained from the North Atlantic Ocean along the 30°W
meridian from the productive cold Greenland current (Boreal Polar, BPLR, 66°39'N)
across the cold north (Atlantic Arctic, ARCT) and warm south (North Atlantic Drift,
NADR) of the North Atlantic Current to the oligotrophic central Atlantic Ocean (North
Atlantic Subtropical Gyre, NAST, 34°24’N). (B) The density (as derived quantity og)
of the seawater from depths between 20 m and 200 m indicated a pycnocline between
50 and 100 meter.
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Figure A.S2 Identification of T-RFLP pattern with low phylogenetic information was
possible with the k-dominance plot of T-RFLP pattern. The Normalized relative fluo-
rescence intensities were visualized in rank versus cumulated abundance curves. Each
line represents the cumulative relative fluorescence intensity of forward (black) or re-
verse (gray) terminal restriction fragments of one sampling site and their triplicates.
The species rank at 100% cumulative abundance (RFI) represents the richness of TRFs
of the sampling site. The T-RFLP pattern with a high amount of false positive signals
(indicated by a star) originated from a fixed fluorescence intensity threshold and overall
low fluorescence intensity in this T-RFLP pattern (A). These T-RFLP patterns were ex-
cluded from further analysis. In contrast, the cumulated abundance curves of T-RFLP

patterns of comparable good quality had slightly different fluorescence intensity between
T-RFLP patterns (B).
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Figure A.S3 The diversity richness is different between terminal restriction fragments
derived from the forward (black) and from the reverse (gray) primer. Each black and gray
line represents the cumulative relative fluorescence intensity of the terminal restriction
fragments of one sample site and their triplicates. The species rank at 100% cumulative
abundance (RFI) represents the richness of TRFs of the sample site. TRFs of the reverse
primer had a lower species rank compared to the TRFs of the forward primer at the same
cumulative abundance. Thus, the richness of the reverse primer TRFs is less than the
forward primer TRFs.
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Figure A.S4 The nonmetric multidimensional scaling (nMDS) was applied to visualize
(A) the Bray-Curtis similarity based on relative fluorescence intensities, and (B) the
Sorensen index (/3 diversity) based on presents/absents of TRFs between TRF patterns
of each sample site. Both biplots had a low stress value of 0.12, indicating a meaningful
two dimensional visualization. The presentation of the differences revealed a clustering
of sampling sites from one water mass along a latitudinal gradient of the water masses
BPLR (square), ARCT (dot), NADR (diamond) and NAST (triangle). A hierarchi-
cal clustering defined groups of sampling sites at 48% Bray-Curtis similarity and 55%
Serensen index (indicated by solid gray lines).
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Figure A.S5 The principal component analysis was applied to find terminal restriction
fragments (TRF) that cause the changes in the overall community structure. The presen-
tation of the eigenvectors and eigenvalues revealed a differentiation between the northern
sample sites, BPLR (black square) and ARCT (black dot), above and below 75 m depth,
and in the southern sample sites between NADR (black diamond) and NAST (black
triangle), along the first principal component (PC 1). The second principal (PC 2) dis-
tinguished in the northern sample sites (BPLR, ARCT) above and below 75 m depth,
and in the southern sample sites between NADR and NAST. The TRF_189nt had the
largest eigenvector (gray arrow) parallel to the first principal component, meaning a
large contribution to the population in the south of the transect. Numbers in gray rep-
resent the depth of the sample site. A circle represents sample sites that fall into one
hierarchical cluster of 50% similarity.
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Figure A.S6 Relative fluorescence intensity pattern of significant terminal restriction
fragments (TRF) affiliated to the Flavobacteriaceae Polaribacter (1) and group NS4 (2).
A star (*) indicates the sampling site with the largest RFI and the insert shows the
corresponding signal in the T-RFLP profile.
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Figure A.S7 Relative fluorescence intensity pattern of terminal restriction fragments
(TRF) with a regional distribution and no affiliation to a single taxon in the iTRF
calculation. A star (*) indicates the sampling site with the largest RFI and the insert
shows the corresponding signal in the T-RFLP profile.
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ANOSIM
Analysis of Similarities Two-Way Crossed Analysis

Analysis of similarity (ANOSIM) in PRIMER-E was used to verify the
significance of water mass specific clustering of bacterial communities by
testing the null hypothesis that bacterial communities from the same water
mass were more similar to each other than to bacterial communities in
different water masses. To test for differences in bacterial communities be-
tween water masses in the epipelagic zone and differences in epipelagic and
mesopelagic bacterial communities two-way crossed ANOSIM statistics were
generated. ANOSIM statistics were based on the sampling site-similarity

matrix of Bray-Curtis coefficients and computed with 999 permutations.

Factor Values

Factor Water mass:

BPLR1, ARCT1, ARCT2, NADR1, NADR2, NAST1, NAST?2
Factor Depth:

upper (above 80 m), deeper (deeper than 80 m)

TESTS FOR DIFFERENCES BETWEEN Water mass GROUPS

(across all upper groups)

Global Test

Sample statistic (Global R): 0.597

Significance level of sample statistic: 0.1%

Number of permutations: 999 (Random sample from a large number)

Number of permuted statistics greater than or equal to Global R: 0
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Figure A.S8 Global test for differences between water mass (across all groups) by 2-way-
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Figure A.S9 Test for differences between water mass, across all water masses above 80
m, by 2-way-crossed ANOSIM
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Table A.S1 Result of ANOSIM pairwise tests
R Significance Possible Actual Number >=
Groups Statistic Level Permutations Permutations Observed
BPLR1, ARCT1 0.29 0.001 very large 999 0
BPLR1, ARCT?2 0.66 0.001 Very large 999 0
BPLR1, NADR1 0.72 0.001 very large 999 0
BPLR1, NADR2 0.84 0.001 very large 999 0
BPLR1, NAST1 0.99 0.001 very large 999 0
BPLR1, NAST?2 0.99 0.001 very large 999 0
ARCT1, ARCT2 0.321 0.001 Very large 999 0
ARCT1, NADRI1 0.49 0.001 very large 999 0
ARCT1, NADR2 0.55 0.001 very large 999 0
ARCT1, NAST1 0.70 0.001 very large 999 0
ARCT1, NAST2 0.78 0.001 very large 999 0
ARCT2, NADR1 0.577 0.001 Very large 999 0
ARCT2, NADR2 0.61 0.001 very large 999 0
ARCT2, NAST1 0.85 0.001 very large 999 0
ARCT2, NAST2 0.96 0.001 very large 999 0
NADR1, NADR2 0.225 0.002 Very large 999 1
NADRI1, NAST1 0.54 0.001 very large 999 0
NADRI1, NAST2 0.69 0.001 very large 999 0
NADR2, NAST1 0.418 0.001 Very large 999 0
NADR2, NAST2 0.58 0.001 very large 999 0
NAST1, NAST2 0.20 0.001 very large 999 0
2D Stress: 0.01
ARCT2
NADR1
NADR?2
NAST1
ARCT1 NAST2

BPLR1

Figure A.S10 2-way-crossed ANOSIM MEANS PLOT - nMDS of R values resemblance
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ANOSIM
Analysis of Similarities One-Way Analysis

Analysis of similarity (ANOSIM) in PRIMER-E was used to verify the
significance of water mass specific clustering of bacterial communities by
testing the null hypothesis that bacterial communities from the same water
mass were more similar to each other than to bacterial communities in
different water masses. ANOSIM statistics were based on the sampling
site-similarity matrix of Bray-Curtis coefficients and computed with 999

permutations.

Factor Values

Factor Water mass:
BPLR1, ARCT1, ARCT2, NADR1, NADR2, NAST1, NAST2

TESTS FOR DIFFERENCES BETWEEN water masses

(across all water mass)

Global Test

Sample statistic (Global R): 0.656

Significance level of sample statistic: 0.1%

Number of permutations: 999 (Random sample from a large number)

Number of permuted statistics greater than or equal to Global R: 0

Pairunse tests
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Table A.S2 Result of ANOSIM pairwise tests
R Significance Possible Actual Number >=
Groups Statistic Level Permutations Permutations Observed
BPLR1, ARCT1 0.29 0.001 very large 999 0
BPLR1, ARCT?2 0.66 0.001 very large 999 0
BPLR1, NADRI1 0.72 0.001 very large 999 0
BPLR1, NADR2 0.84 0.001 very large 999 0
BPLR1, NAST1 0.99 0.001 very large 999 0
BPLR1, NAST2 0.99 0.001 very large 999 0
ARCT1, ARCT2 0.32 0.001 very large 999 0
ARCT1, NADRI1 0.49 0.001 very large 999 0
ARCT1, NADR2 0.55 0.001 very large 999 0
ARCT1, NAST1 0.69 0.001 very large 999 0
ARCT1, NAST2 0.78 0.001 very large 999 0
ARCT2, NADRI1 0.58 0.001 very large 999 0
ARCT2, NADR2 0.61 0.001 very large 999 0
ARCT?2, NAST1 0.85 0.001 very large 999 0
ARCT?2, NAST2 0.96 0.001 very large 999 0
NADR1, NADR2 0.23 0.002 very large 999 1
NADRI1, NAST1 0.54 0.001 very large 999 0
NADRI1, NAST?2 0.69 0.001 very large 999 0
NADR2, NAST1 0.42 0.001 very large 999 0
NADR2, NAST2 0.58 0.001 very large 999 0
NAST1, NAST2 0.20 0.001 very large 999 0
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Figure A.S11 Test for differences between water mass, across all water masses above 80
m, by 1-way ANOSIM
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