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Chapter1

Nonlinear Programming

Nothing at all takes place in the universe in which some rule
of maximum or minimum does not appear.

(Leonhard Euler)

1.1. Mathematical Foundations . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Penalty and barrier methods . . . . . . . . . . . . . . . . . . . . . 7

1.3. Sequential Quadratic Programming . . . . . . . . . . . . . . . . . 9

1.3.1. Derivative Approximations . . . . . . . . . . . . . . . . . . 11

1.3.2. Optimality and Termination Criteria . . . . . . . . . . . . . 18

1.3.3. Hessian Regularization . . . . . . . . . . . . . . . . . . . . 22

1.3.4. Prepare the Quadratic Problem . . . . . . . . . . . . . . . 23

1.3.5. Determine Step Size . . . . . . . . . . . . . . . . . . . . . 26

1.3.6. Recovery Strategies . . . . . . . . . . . . . . . . . . . . . 30

This chapter is intended to give a concise introduction into the key mathematical
and methodological concepts of nonlinear optimization, and an overview of Sequential
Quadratic Programming (SQP) by reference to its implementation in Worhp. It is
neither meant to be complete nor exhaustive, but instead to provide a broad overview
of important concepts, to establish conventions, to provide points of reference, and to
motivate the considerations laid out in the following chapters.

The mathematical problem formulation loosely follows the conventions of Geiger and
Kanzow in [27], while the łspiritž of approaching numerical optimization from a pragmatic,
problem-driven perspective is more apparent in Gill, Murray and Wright [29], although
they use diferent (but equivalent) notational and mathematical conventions.
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1. Nonlinear Programming

1.1. Mathematical Foundations

One possible standard formulation for constrained nonlinear optimization problems is

min
x∈Rn

f(x)

subject to
g(x) 6 0

h(x) = 0

(NLP)

with problem-speciőc functions

f : Rn → R,

g : Rn → Rm1 ,

h : Rn → Rm2 ,

all of which should be twice continuously diferentiable. If neither g nor h are present, the
problem is called unconstrained and usually solved numerically using Newton’s method
or the Nelder-Mead simplex algorithm (cf. [26]), depending on the problem size, the
smoothness of f and the availability of ∇f and ∇2f .

The objective function f , the inequality constraints g and the equality con-
straints h may be linear, quadratic or generally nonlinear. No convexity is required by
the general problem formulation, although convex problems have the attractive general
property that a local minimum is also a global one. In the strictly convex case, this
minimum is unique, whereas general non-convex problems may have any number of local
minima; f(x) = sin(x) illustrates this tangibly.

The problem formulation (NLP) may be (ab)used to maximize an objective function by
minimizing the objective f ∗ ..= −f .

The following concepts and classiőcations with respect to the constraints will accompany
us through all considerations on NLP methods:

Box constraints: Constraints on the optimization variables x, i.e. constraints of the
form g(x) = ±xj − c or h(x) = xj − c with a constant c ∈ R. These are sometimes
also referred to as Simple Bounds.

Theoretically speaking, equality box constraints are an indication of ŕawed modeling,
since the respective variable is a constant; not so in practice, where őxing certain
variables is sometimes very convenient to simplify the implementation of the model,
for instance to accommodate őxed initial or őnal states in discretized optimal
control problems.

Active constraints: An inequality constraint gi(x) 6 0 is called active (at the point
x), if gi(x) = 0. Equality constraints are always active, so this distinction is
meaningful for inequality constraints only. The concept of being active is applied
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1.1. Mathematical Foundations

to box constraints in complete analogy; to diferentiate, one may refer to them as
active box constraints.

It is sometimes convenient to deőne the Active Set I as the index set of all active
constraints, like I(x) ..=



i ∈ {1, . . . ,m1}


 gi(x) is active


.

Inactive constraints: An inequality constraint gi(x) 6 0 is called inactive (at the
point x), if gi(x) < 0, or equivalently, if it is not active.

Feasible set: The feasible set is deőned as the set of all points x, where both inequality
and equality constraints are satisőed, i.e. the set

{x ∈ Rn | g(x) 6 0 and h(x) = 0}.

The feasible set may also be empty, in which case problem (NLP) is, for all intents
and purposes, ill-posed.

The NLP problem class encompasses various other classes of optimization problems, for
instance quadratic problems of the form

min
x∈Rn

1
2
xTQx+ rTx

subject to
Ax 6 b

Cx = d

with matrices Q,A and C and vectors b, c, d and r of appropriate dimensions. The
quadratic problem is convex if Q > 0; we will see later that this case is of great relevance
to SQP methods, because their concept is to locally approximate (NLP) by quadratic
problems with (essentially) Q > 0, since solutions to this problem are unique (in the
strictly convex case) and eicient numerical methods to őnd them are known.

Lagrange Function & Multipliers

Constrained optimization relies heavily on the Lagrange function, which is deőned in
terms of (NLP) as

L(x, λ, µ) := f(x) + λTg(x) + µTh(x),

where λ ∈ Rm1 and µ ∈ Rm2 , are called the Lagrange multipliers (or dual variables ś
the optimization variables x are referred to as primal variables in this context). Other
sources deőne L with diferent signs, or impose inequality constraints as g(x) > 0;
these conventions result in various subsequent sign changes, but luckily all conceivable
permutations of signs yield equivalent formulations of the same problemÐwith the
exception of f , where a sign change turns minimization into maximization problems and
vice versa.

The dual variables are often underappreciated, since the primal variables are at the center
of interest to the underlying optimization problem, and instances where the multipliers
hold a tangible meaning are uncommon; economic models are a notable exception to
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1. Nonlinear Programming

this rule: Here the multipliers are referred to as accounting prices or opportunity costs,
since they represent lost beneőts due to constraints. Results from parametric sensitivity
analysis[10, 11] generalize this widely known fact, asserting that the Lagrange multipliers
in a local optimum describe the sensitivity of the optimal objective function value to
perturbations of the corresponding constraint.

More precisely: Suppose we replace gi(x) 6 0 in (NLP) by gi(x) 6 ε and solve the
perturbed problem to obtain the optimal solution x⋆

ε. If gi is active at x⋆
ε and additional

smoothness and regularity assumptions hold, then

f(x⋆
ε) = f(x⋆

0)− λi · ε+ o


ε2


for łsuiciently smallž ε,

i.e. in terms of sensitivity diferentials λi = −∂f
∂ε
(x⋆

0).

Conditions for optimal solutions

Definition 1 (KKT conditions). A point (x⋆, λ⋆, µ⋆) ∈ Rn × Rm1 × Rm2 satisőes the
Karush-Kuhn-Tucker (KKT) conditions, if

(a) ∇xL(x⋆, λ⋆, µ⋆) = 0, Optimality

(b)
gi(x

⋆) 6 0, i = 1, . . . ,m1, Feasibility
hj(x

⋆) = 0, j = 1, . . . ,m2,

(c) λ⋆
i gi(x

⋆) = 0, i = 1, . . . ,m1, Complementarity

(d) λ⋆
i > 0, i = 1, . . . ,m1,

and is called KKT point in this case.

If the problem is unconstrained, the KKT conditions degenerate to the universally known
necessary condition for local minima ∇f(x⋆) = 0. Likewise, the Karush-Kuhn-Tucker
conditions constitute the őrst-order necessary optimality conditions for (NLP), if the
constraints at x⋆ satisfy certain regularity assumptions (so-called constraint qualifications).
One of various formulations is the following:

Theorem 2 (First-order necessary conditions under LICQ).
If x⋆ is a local minimum of (NLP) such that the gradients of all active constraints

∇gi(x⋆), i ∈ I(x⋆) and ∇hj(x
⋆), j = 1, . . . ,m2

are pair-wise linearly independent (i.e. they satisfy the linear independence constraint
qualification LICQ), then there exist uniquely determined multipliers λ⋆ and µ⋆ such
that (x⋆, λ⋆, µ⋆) satisőes the KKT conditions.

Proof. Proofs of this fundamental theorem, or variations thereof, can be found in any
textbook on constrained optimization, for instance [27, Satz 2.41].
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1.1. Mathematical Foundations

Similar assertions can be made under weaker assumptions, involving bundles of directions
called tangential cones, but the LICQ are among the most concise and intuitive ones. It
is the central statement of Theorem 2 which justiőes that NLP methods are designed to
őnd KKT points.

For sufficient optimality conditions, we can again őnd inspiration in the unconstrained
case, where the Hessian matrix ∇2f(x⋆) has to be positive deőnite, i.e. dT∇2f(x⋆)d > 0
for all d ≠ 0; this essentially translates to the constrained case, where the subspace of
łdirectionsž on which the Hessian matrix ∇2

xxL has to be positive deőnite are further
qualiőed:

Theorem 3 (Suicient conditions).
Given the primal variables x⋆ of a KKT point of (NLP), we deőne

A(x⋆) ..=


d ∈ Rn


∇gi(x⋆)Td 6 0, i ∈ I(x⋆)


∩ ker∇h(x⋆).

If the Hessian has positive curvature, i.e. dT∇2
xxL(x

⋆, λ⋆, µ⋆)d > 0 for all non-zero łdirec-
tionsž d ∈ A, then x⋆ is a strict local minimum of (NLP).

Proof. See [27, Satz 2.55], noting that in general A(x⋆) ) T2(x⋆), hence Theorem 3
is slightly more restrictive, but, by dispensing with tangential cones, is simpler to
formulate.

The crux of Theorem 3 is the fact that it is expensive to validate numerically, if the
problem is large. For this reason, it is uncommon for large-scale NLP methods to check
second-order conditions (necessary or suicient) at all, silently accepting that KKT points
may also be saddle points or even local maxima.

Alternative optimality conditions

A generalization of KKT points, Fritz-John points enable us to cover additional problems,
where LICQ is violated. We can reformulate criterion (a) from deőnition 1 as

∇f(x) = −λT∇g(x)− µT∇h(x).

If g and h satisfy LICQ, this ensures existence and uniqueness of the multipliers. For a
Fritz-John point, this requirement is relaxed, instead considering

(FJ) λ0∇f(x) = −λT∇g(x)− µT∇h(x),

with an additional multiplier λ0 > 0.

The case λ0 > 0 is equivalent to the KKT conditions, with multipliers λ̃ = λ
λ0

and µ̃ = µ
λ0

,
which explains why λ0 is normalized to 1 and therefore omitted.

The interesting case is λ0 = 0 and (λ, µ) ̸= 0, where both conditions are not equivalent.
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1. Nonlinear Programming

Example 4 (Problem 13 from [32]). The optimum of

min
x,y

(x− 2)2 + y2

subject to x, y > 0

(1− x)3 > y

(HS13)

is (x, y) = (1, 0). Writing out (FJ) for (x, y) = (1, 0) yields

λ0



−2 0


= −


λ1 λ2 λ3







1 0
0 1
0 −1



,

which has non-trivial solutions (λ0, . . . , λ3) = (0, 0, c, c) with arbitrary c ∈ R, hence the
optimum is not a KKT, but a Fritz-John point.

Mainstream NLP solvers are designed to őnd KKT points, i.e. points where λ0 ̸= 0, and
therefore struggle with Fritz-John points, where the implicit normalization using λ̃ = λ

λ0

leads to łexplodingž multipliers. Worhp is designed to őnd KKT points, but employs a
heuristic to detect Fritz-John points, whose main criterion is to watch for overly large
multipliers.
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1.2. Penalty and barrier methods

1.2. Penalty and barrier methods

Penalty methods are historically the oldest approach to constrained nonlinear optimization,
and nowadays their use is limited to being employed as merit functions to determine a
suitable step size (see section 1.3.5). The concept of penalty methods is to transform
a constrained minimization problem into an unconstrained one, for which classical
approaches like Newton’s method can be used.

Penalty functions are extensions of the objective f to the constrained case, and as such
have the property that smaller values are better. In general, they take the form

(1.1) Φ(x; η) = f(x) + Ψ


g(x), h(x); η


with a penalty term Ψ: Rm1+m2 ×Rp → R and penalty parameters η ∈ Rp. More general
forms exist, but all established penalty functions fall into this category.

The penalty term Ψ is a scalar measure of feasibility, attaining smaller values the łcloserž
x is to a feasible point. Penalty terms are often constructed to be diferentiable, at least
almost everywhere, since this makes them accessible for derivative-based minimization
methods. The penalty parameters η are updated iteratively during minimization: In-
creasing them forces the unconstrained minimization method towards a feasible point,
while decreasing allows for f to attain lower, i.e. better, values.

A penalty method is a combination of a penalty term Ψ and an update strategy for the
penalty parameters η. Both are chosen to strike a balance between the objective and
feasibility, which is the key (and diicult) concept of penalty methods.

Penalty methods are classiőed, depending on their relationship with the original con-
strained problem: If local minima of (1.1) coincide with the local minima of (NLP), the
penalty method is called exact, otherwise it is inexact. Both classes have handicaps:

• Exact penalty functions cannot be diferentiable in the optimum, if they are of
the form of the form Φ = f +Ψ (other forms exist). This requires modiőcations
to the unconstrained minimization algorithm, as performed, for instance, in the
nonsmooth Newton method (which, despite its name, is not applicable to penalty
functions).

• Inexact penalty methods only return approximate solutions to rather low precisions.
To achieve higher precisions, great penalty parameters are needed, which substan-
tially afect the condition number of the unconstrained minimization problem.

Furthermore, penalty functions may be unbounded below, i.e. even a global minimum of
the constrained problem may be transformed into a truly local minimum of the penalty;
this can cause signiőcant problems, if the minimization method has no safeguards against
unbounded problems.

By design, penalty methods produce infeasible iterates. For this reason, their penalty
functions are sometimes referred to as exterior penalty functions. This property can
be problematic, if the underlying problem is only deőned on feasible points, in which
case barrier methods provide a viable alternative. These were popular in the 1960s

7



1. Nonlinear Programming

(cf. for instance [23] from 1955) but lost interest with the advent of newer methods like
SQP, which were regarded as more eicient. Shortly after Karmarkar published his
polynomial-complexity algorithm [42] for linear programming in 1984, its similarity to
the seemingly obsolete barrier methods was discovered, and they became a key element
of the interior-point methods (cf. the overview article [21] for an account).

In contrast to the (exterior) penalty methods, whose iterates converge to points in the
feasible set from the outside, barrier methods approach the boundary of the feasible set
from the inside. Their name is derived from the łbarrierž that is erected on the boundary
of the feasible set to keep the iterates inside; for this reason, barrier methods are also
referred to as interior penalty methods. Applied to problem (NLP) with m2 = 0, the
(logarithmic) barrier function is

B(x; τ) = f(x)− τ

m1


i=1

log


−gi(x)


,

where τ > 0 is called barrier parameter. Other barrier terms, like


i



−gi(x)
−1

have also
been considered; their common property is to penalize points close to the boundary of the
feasible set, i.e. where gi(x)→ 0−. By letting τ → 0+ during iterative minimization of B,
we allow x to approach this boundary. It can in fact be shown, under mild assumptions,
that lim

τ→0+
x⋆(τ) = x⋆.

Quite similar to the exterior penalty methods, barrier methods sufer from inherent ill-
conditioning as τ → 0+. Furthermore, the line search of the superordinate unconstrained
minimization algorithm must be aware of the problem structure, to restrict evaluations
of B to feasible trial points x+ such that gi(x+) < 0, or otherwise modify B to cope with
infeasible trial points.

8



1.3. Sequential Quadratic Programming

1.3. Sequential Quadratic Programming

Building on the concise theoretical foundations in section 1.1, this part introduces Se-
quential Quadratic Programming as a prominent and successful method for the numerical
solution of (NLP).

SQP methods for general nonlinear problems were őrst considered as early as 1976 by
Han [31], by generalizing results from the PhD thesis [76] of Wilson in 1963, who had
considered a special case. Despite their advanced age of 50 years, SQP methods are
still used widely, for instance in KNITRO (to solve barrier problems), NPSOL, SNOPT,
NLPQLP, or the MATLAB optimization toolboxÐand, of course, in Worhp, being the
youngest solver of the above enumeration. SQP uses derivatives to iteratively minimize
local approximations of the nonlinear functions, a general principle shared by most
derivative-based descent methods for nonlinear problems, sketched in őgure 1.1.

Check
termination

criteria

Compute
search

direction

Determine
step size

Update
derivatives

Initial
guess

Solution

Figure 1.1.: General principle of derivative-based minimization algorithms: The choice
and computation of the search direction is the linchpin of every method.

Computing the Search Direction

The fundamental idea of SQP is to őnd KKT points by applying Newton’s method,
giving it good (local) convergence properties, but entail the use of second derivatives: To
motivate the approach, őrst consider (NLP) without inequality constraints g, leaving us
with the equality-constrained, nonlinear problem

min
x∈Rn

f(x)

subject to h(x) = 0.
(NLPeq)

9



1. Nonlinear Programming

Its KKT points can very concisely be characterized as points (x, µ) that satisfy the
nonlinear equation

Φ(x, µ) =



∇xL(x, µ)
h(x)



= 0

Assuming that both f and h are twice continuously diferentiable, we can apply Newton’s
method to derive the iteration scheme

(x[k+1], µ[k+1]) = (x[k], µ[k])− Φ′(x[k], µ[k])−1Φ(x[k], µ[k]).

By setting (∆x,∆µ) ..= (x[k+1]−x[k], µ[k+1]−µ[k]), we can rearrange the Newton iteration
above to an iterative solution of the linear equation system

Φ′(x, µ)



∆x

∆µ



= −Φ(x, µ).

We can spell this out, using Φ′ =



∇2
xxL ∇hT
∇h 0



, to result in

∇2
xxL(x, µ)∆x+∇h(x)T∆µ = −∇xL(x, µ)

∇h(x)∆x = −h(x),

which we can simplify by deőning new multipliers µ+ ..= µ+∆µ to

∇2
xxL(x, µ)∆x+∇h(x)Tµ+ = −∇f(x)

∇h(x)∆x = −h(x).(KKTeq)

Applying some łreverse engineeringž, we notice that (KKTeq) are the KKT conditions of
the equality-constrained quadratic problem

min
∆x∈Rn

1
2
∆xT∇2

xxL(x, µ)∆x+∇f(x)T∆x

subject to h(x) +∇h(x)∆x = 0,
(QPeq)

noting that the optimization variables are ∆x, with x and µ being constant for (QPeq).
This derivation for equality-constrained problems motivates the addition of inequality
constraints in the same manner, which brings us to the quadratic subproblem of the SQP
approach

min
d∈Rn

1
2
dT∇2

xxL(x, λ, µ)d+∇f(x)Td

subject to
g(x) +∇g(x)d 6 0,

h(x) +∇h(x)d = 0.

(QP)

Since it is based on Newton’s method, SQP inherits its major properties: Local quadratic
convergence, noticeable dependence on the initial guess, and the need to perform line
search to foster global convergence.
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1.3. Sequential Quadratic Programming

The SQP method revolves around the quadratic problem and provides various extensions
over the generic descent algorithm in őgure 1.1. These are sketched in őgure 1.2 and
laid out in more detail in the following paragraphs, which blend aspects of generic SQP
methods on the one hand, and distinctive features of Worhp on the other.

Check KKT
or sKKT
conditions

Update
Hessian

or SBFGS

Prepare
quadratic
problem

Update
derivatives
graph-FD

Determine
step size

Solve QP
with IP
method

Initial
guess Solution

Recovery
Strategies

1 2

3

45

6

∗

Figure 1.2.: Schematic view of Worhp’s implementation of the SQP algorithm. SQP
extensions over őgure 1.1 are highlighted in green, whereas Worhp-speciőc elements

are shown in orange. The recovery strategies are only activated if necessary.

1.3.1. Derivative Approximations 1

In addition to the above assertion, that the search direction is the linchpin of minimization
algorithms, eicient and precise evaluation of the derivatives is the second cornerstone.
This is step 1 of őgure 1.1.

In virtually all cases, the most eicient and precise approach is to calculate the őrst
and second derivatives of f, g and h using pen and paper or computer-algebra systems,
and to write or generate code that evaluates them for given x. Unfortunately, this
approach is generally conőned to academic or textbook problems and not applicable to
most real-world optimization problems; derivative approximations are the remedy, but
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1. Nonlinear Programming

need further reőnement before they become usable, since Worhp is designed as a sparse
NLP solver, suitable for sparse high-dimensional optimization problems with thousands
or millions of variables and constraints.

Definition 5 (Sparsity). A matrix A = (aij) ∈ Rm×n is called sparse, if aij = 0 for
łmanyž pairs (i, j).

Applied to a diferentiable function f = (f1, . . . , fm) : R
n → Rm, sparsity is the structural

property of its Jacobian matrix ∇f that

(∇f)ij =
∂fi

∂xj

≡ 0

for łmanyž pairs (i, j). These entries are called structural zeros, whereas those entries,
where the derivative does not vanish everywhere, are called nonzero entries. Note
that both properties only depend on the structure of f , not on the point, where ∇f is
evaluated; as such, nonzero entries may well attain 0 as numerical value. The number of
nonzero entries is commonly denoted as nnz.

The term sparsity is also used to describe the ratio nnz

n·m
∈ (0, 1]. Matrices or derivatives

with sparsity 1 are called dense, whereas ratios close to 0 are called (very) sparse.

Example 6. Consider the functions and őrst derivatives

f(x) = 1 + x2 +
1
3
x3
3, g(x) =





4x1x2 + 5
3x2

1 + 8x3

10x3 + 12





∇f(x) =


0, 1, x2
3



, ∇g(x) =





4x2 4x1 0
6x1 0 8
0 0 10



.

Their derivatives have the inherent sparsity structures

∇f(x) =


× ×


, ∇g(x) =





× ×
× ×

×



.

where ‘×’ is used to denote a nonzero entry, independent of x or the actual numeric
values.

The Lagrange function for this problem is

L(x, λ) = 1 + x2 + 1
3
x3
3 + λ1(4x1x2 + 5) + λ2



3x2
1 + 8x3



+ λ3(10x3 + 12)

with Hessian matrix and its sparsity structure

∇2
xxL(x, λ) =





6λ2 4λ1 0
4λ1 0 0
0 0 2x3



 ∇2
xxL(x, λ) =





× ×
×

×
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Finite differences

Derivatives of any order can be approximated by the universally known őnite diference
(FD) approach, although its inherent ill-conditioning, together with őnite precision
arithmetic imposes tight limits on achievable derivative order and precision.

To compute derivatives, Worhp has a őnite diference module that employs the standard
methods

(first-order) forward / backward differences

∂f

∂xi

(x) =
f(x± h · ei)− f(x)

h
+ o(|h|),

and (first-order) central differences

∂f

∂xi

(x) =
f(x+ h · ei)− f(x− h · ei)

2h
+ o



h2


to compute őrst (partial) derivatives, and also second (partial) derivatives using, for
instance, second-order forward differences

∂2f

∂xi∂xj

(x) =
f


x+ h · (ei + ej)


− f(x+ h · ei)− f(x+ h · ej) + f(x)

h2
+ o(h)

Gill, Murray and Wright [29] give a more extensive account on FD approximations, along
with considerations on the optimal choice of the perturbation h as compromise between
cut-of and cancellation error.

Coming back to Worhp’s design for solving large-scale sparse problems, techniques for
computing FD approximations with tolerable efort are crucial. The technique for ∇f is
obvious: Only calculate FD approximations for its nonzero entries, cutting the required
evaluations of f from n to nnz 6 n, assuming that the unperturbed value f(x) is cached.

Computing FD approximations for ∇g, however (and in complete analogy ∇h, which we
will omit here), is not as simple, since the general case is that g depends on most, if
not all variables xj. If we can evaluate g component-wise, i.e. gi(x), we are in the same
case as with ∇f . Unfortunately, this case is the exception, and g is usually evaluated as
łblack-boxž, vector-valued function.

The solution is to group the variables xj according to the dependency of the components gi
on them: Two variables xj and xk can be paired, if each component gi depends on at most
one of them. Applying this approach to all variables, we can construct 1 6 ng 6 n groups,
each of which contains one or more variables. The case ng = n may indicate that one gi
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∇g =









×
× × × ×

×
×









(a) g2 thwarts grouping, ng = n

∇g =









×
×

×
×









(b) Just one group ng = 1

∇g =









×
× ×
× ×
× ×









(c) Grouping with ng = 2

Figure 1.3.: Three examples for variable grouping; per-column coloring indicates the
variable groups.

depends on all xj , whereas the (uncommon) case ng = 1 implies, that the components gi
depend on pair-wise diferent variables xj, for instance if ∇g has a (permuted) diagonal
sparsity structure. Three graphical examples in őgure 1.3 illustrate the concept.

This variable grouping is of practical relevance for our purposes, since it allows to
reduce the number of evaluations of g for computing a forward (or backward) diference
approximation of ∇g from n to ng:

Consider example 1.3 (c), where perturbing x1 by evaluating g(x+ h · e1) only afects g1
and g2, whereas gi(x+ h · e1) = gi(x) for i = 3, 4; vice versa, if we perturb x3. Thus we
can aggregate (x1, x3) and (x2, x4), evaluate

g


x+ h(e1 + e3)


and g


x+ h(e2 + e4)


,

and compute the appropriate diferences to calculate forward diferences. This approach
only requires 2 evaluations, where the naive one needs 4; as alluded above, it is no
coincidence that 2 = ng; the construction principle of the groups allows to aggregate
the perturbations for all variables in the group, thus reducing the number of evaluations
from n to ng.

Besides proper bookkeeping, the pivotal task in group-FD approximations is thus to
determine groups such that ng is minimal. Considering graph theory, it can be shown
that this task is equivalent to solving the graph-coloring problem, whose best-known
instance is the coloring of maps, such that no two countries with a common border have
the same color. Put in graph-theoretical terms, if two vertices are connected by an edge,
they must have diferent colors. Figure 1.4 shows these so-called induced graphs for the
examples in őgure 1.3.

The graph-coloring problem has the unfortunate property of being NP-hard, i.e. there
exists no (known) algorithm to solve it in polynomial time, and it is conjectured and
generally believed that no such algorithm exists; the traveling salesman problem is of the
same complexity class. The FD module thus uses heuristics with polynomial runtime
complexity that usually yield good results. A detailed account of the technique, the
various heuristics, numerical results, and an extension to second-order őnite diferences
is given in [41].

14



1.3. Sequential Quadratic Programming

x1 x2

x3 x4

(a) Graph for 1.3 (a)

x1 x2

x3 x4

(b) Graph for 1.3 (b)

x1 x2

x3 x4

(c) Graph for 1.3 (c)

Figure 1.4.: Induced graphs for the examples in őgure 1.3. The graphs are constructed
by connecting two variables xk and xj, if there exists a gi that depends on both.

The group-FD technique is of particular value to Worhp, because the full discretization
or collocation approaches for discretizing optimal control problems typically result in
high-dimensional, but very sparse and regularly structured matrices. The grouping
approach can be highly eicient for this class of problems, and the (optimal) number of
required groups is independent of the grid, a property we call discretization-invariance.

Dense BFGS update

To motivate the BFGS update, a small detour to the one-dimensional case is in order.
Newton’s method for a given diferentiable function f : R→ R is

xk+1 = xk −
f(xk)

f ′(xk)
,

and has local convergence order 2, if f ′ is Lipschitz continuous. Its drawback, however,
is that it requires knowledge of the derivative and two function evaluations per iteration.
The secant method

xk+1 = xk −
xk − xk−1

f(xk)− f(xk−1)
· f(xk)

on the other hand has a lower convergence order of 1
2
(1 +

√
5) ≈ 1.618, but only requires

one function evaluation per iteration, if f(xk−1) is cached. This leads to the secant
method often being faster, despite its lower convergence order, and even if f and f ′ are
still moderately cheap to evaluate; the speed advantage increases, as evaluations of f
and f ′ get more expensive.

Back to SQP methods: The derivation with Newton’s method leads to (QP), which
requires second derivatives ∇2

xxL(x, λ, µ). With the same motivation as in the one-
dimensional case, we could try and replace this derivative by an extension of the se-
cant method to the multi-dimensional case. Independently of each other, Broyden[9],
Fletcher[20], Goldfarb[30], and Shanno[64] followed this path and devised the BFGS
update in 1970. The alternative name quasi-Newton method(s) seems to have been
coined by Shanno.
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1. Nonlinear Programming

In its modern form, the BFGS method is an iterative rank-2 update of an initial matrix
H [0] that maintains positive deőniteness, if H [0] is positive deőnite, and the so-called
curvature condition is met. H [0] is often chosen as identity matrix. The iterative update
can be thought of as accumulating curvature information in the BFGS matrix, although
it does not approximate the Hessian in a matrix-norm sense. In analogy to the one-
dimensional secant method, it can be shown that the BFGS update maintains superlinear
convergence properties of the SQP method.

To compute the rank-2 update, only őrst-order derivative information is required, namely

y[k] ..= ∇L(x[k+1], λ[k+1], µ[k+1])−∇L(x[k], λ[k+1], µ[k+1]).

Note that the multipliers are indeed constant in both terms, the diference is computed
with respect to x only. Abbreviating H+ = H [k+1], H = H [k], y = y[k], and d = d[k], the
update is then computed by

H+ ..= H +
yyT

yTd
− HddTHT

dTHd
.

If H is positive deőnite, then H+ is as well if yTd > 0; controlling this curvature condition
is necessary to ensure that (QP) can be solved.

In contrast to evaluating ∇2
xxL(x, λ, µ), this rank-2 update is cheap to compute from

already known quantities. The lower convergence rate of the BFGS method is compensated
by its cheaper computation and the fact no second derivatives are required.

It is obvious from the vector-vector products that both terms on the right hand side in
general result in dense matrices. Therefore, we have to assume that H+ is dense, even
if H was sparse. This limits its usefulness to small- or medium-scale1 problems, but
motivates to contrive variations of the quasi-Newton methods to extend them into the
sparse domain.

Sparse BFGS update techniques

Three considerations steer our search for sparse variants:

• The update maintains positive deőniteness,
• the matrices enable superlinear convergence of the SQP method,
• the sparsity structure of ∇2

xxL(x, λ, µ) is reproduced or at least covered by the
update to adequately approximate its curvature.

We will loosely follow the extensive account in [41].

1Neither of these terms is rigorously defined; 1,000 and 5,000 variables/constraints are reasonable,
“fuzzy” borders between the small-, medium-, and large-scale domains.
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Assume we have the following sparsity structure:

∇2
xxL =













× × ×
× ×
× ×

× ×
× ×













.

Observing that


B1 0
0 B2



> 0 ⇐⇒ B1 > 0 ∧ B2 > 0,

an obvious approach is to cover the matrix above with a 3× 3 and a 2× 2 matrix, and to
perform separate BFGS updates on these sub-matrices. It is obvious from the previous
observation that the resulting update is again positive deőnite. The block approach is
easily extended to arbitrary number and sizes of the individual blocks, but can only
cover matrices whose sparsity structure is separable, which is far from general. The more
realistic tridiagonal structure

∇2
xxL =













× ×
× ×+ +

+ ×+ ×
× ×+ +

+ +













can be covered, if we allow single intersections of the blocks, in this case of four 2× 2
blocks; the intersecting elements are marked by ×+. It can be shown that positive
deőniteness of the update can be maintained by a (potentially iterative) update of the
input y, partitioned according to the block it belongs to. To also cover matrices of the
form

∇2
xxL =













× × ×
× ×+ ×+ +
× ×+ ×+×+ ×+ ×

+ ×+ ×+ ×
× × ×













we need to allow multiple intersections of the blocks, here three 3× 3 blocks; elements
subject to single intersections are ×+, and the central element present in all three blocks is
marked as ×+×+. An extension of the single-intersection processing of y is able to guarantee
positive deőniteness for the multiply-intersecting block update as well. Furthermore, it
can be proven that the superlinear convergence properties of the dense BFGS method
carry over to these block-BFGS methods, even in the multiply-intersecting case (the
others being special cases of this general one).

Two issues remain: Firstly, the block-BFGS matrices are generally denser than the original
sparsity pattern, due to our approach of covering it by blocks; unless the cover happens
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to exactly match the original pattern, structural zeros are inevitably lost. Secondly, a
sparsity structure like

∇2
xxL =









× × ×
× × ×
× ×

× ×









warrants a diferent approach, since the only block update that covers this structure
consists of a single, dense block. Permutations are a possible means of transforming
structures like the above into more tractable structures. For our block cover, the matrix
bandwidth is an indication of the required block size, thus bandwidth-reducing reordering
algorithms such as (reverse) Cuthill-McKee [14, 28] are an option.

The sparse BFGS (SBFGS) method of Worhp uses a diferent approach, which could
be described as block-wise implicit permutation and fusing. Figure 1.5 illustrates the
idea on the last example sparsity pattern above.









a1 a2 a3
a2 a4 a5

a5 a6
a3 a7











a1 a2
a2 a4





a1 a3
a3 a7





a4 a5
a5 a6





b(1)1 b2
b2 b(1)4





b(2)1 b3
b3 b7





b(2)4 b5
b5 b6











b1 b2 b3
b2 b4 b5

b5 b6
b3 b7









update

update

update

Figure 1.5.: Concept of SBFGS: Entries are collected across the matrix by implicit
permutations to create dense blocks, on which the regular BFGS update is performed.
Since some elements may be present in multiple blocks (here b

(i)
1 , b

(i)
4 ), fusing them

(to b1 and b4) requires special techniques to maintain positive deőniteness.

The key idea of SBFGS is to collect entries from the whole matrix to aggregate them
to dense block matrices; entries are rejected, if aggregating them would introduce a
structural zero in the block matrix. For this reason, a3 and a7 are not aggregated into
the őrst block, because this would require a nonzero right of/below a5. A parameter
controls, whether these blocks can grow to arbitrary size, or have a maximum size. A
proof of the superlinear convergence properties of SBFGS is given in [41].

1.3.2. Optimality and Termination Criteria 2

This section is concerned with the various termination criteria of Worhp, i.e. step 2 in
őgure 1.1. To keep our notation concise, we introduce the numerical constraint violation:
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Definition 7. The numerical constraint violation c is a scalar quantity that allows
to gauge quantitatively, how well a point x satisőes the constraints of the standard
optimization problem (NLP):

c(x) ..=max
(i,j)



max


0, gi(x)


,


hj(x)






for all (i, j) ∈ {1, . . . ,m1} × {1, . . . ,m2}
(CV)

In the strict sense, x is feasible if c(x) = 0.

Scaled KKT conditions

Due to their design, the KKT conditions are the canonical termination criterion for SQP
methods; despite their diferent design, this is also true for the Interior-Point methods.
Adapted to the realities of őnite precision arithmetic, and given a triplet of small, positive
tolerances εopti, εfeas, and εcomp, the standard KKT conditions impose

(a) ∥∇xL(x, λ, µ)∥ 6 εopti, Optimality

(b) c(x) 6 εfeas Feasibility

(c) λigi(x) 6 εcomp, i = 1, . . . ,m1, Complementarity

(d) λi > 0, i = 1, . . . ,m1,

where ∥ · ∥ can be any norm, but usually ∥ · ∥p with p ∈ {1, 2,∞}.
Unfortunately, the standard KKT conditions are not robust against numerical error;
criterion (a) is particularly sensitive against small perturbations of the derivatives, such
as the error incurred from őnite-diference approximations. Due to Worhp’s approach
for solving the quadratic subproblems, the multipliers introduce further rounding errors:
The QP-solver never returns multipliers that are exactly zero, even if the corresponding
constraint is inactive.

Criterion (b) causes the solver to struggle if the constraints are badly scaled, but it is
a design decision of Worhp to not scale the constraints. This is not at least because
there is no canonical way of scaling them, and because we do not want to łsoftenž the
notion of feasibility, as some other NLP solvers do2; a point that is feasible in Worhp’s
sense is guaranteed to satisfy all constraints to the prescribed precision.

An inspiration for improving on the standard conditions ŕows from the users’ wish to
determine values of x that satisfy

|f(x⋆)− f(x)| 6 εopti.

2The elastic mode of SNOPT is a prime example: Troublesome constraints are removed from the
problem and instead added to the objective, using a penalty approach to (try and) satisfy them.
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Applying various heuristics and estimates to the above estimate, and performing an
amount of numerical experimentation őnally leads to the scaled KKT conditions, to
replace the scaling-agnostic criterion (a) by

(as) ∥∇xL(x, λ, µ)∥∞ 6
εopti ·max(1, |f(x)|) + max



λTg(x)




∞
,


µTh(x)




∞



∥d∥∞
,

dubbed scaled KKT conditions, abbreviated sKKT. Variants (as) and (a) difer only
slightly with well-scaled problems, but the scaled one is more robust against numerical
errors and badly scaled problems. The scaled KKT conditions are also chosen to terminate
the solver, if cancellation errors start to blanket the numerical quantities, thus obstructing
further iteration progress.

Low-pass filters

With a similar rationale, the low-pass őlters try and detect the łtrendž of the iteration
processÐa concept that is intuitively clear to every human user who observes the running
solver, but not usually considered by NLP solvers. This termination criterion is supposed
to become active when a human user would terminate the solver, because the progress
indicators do not improve noticeably anymore. Its name is derived from viewing the
progress indicators as time-dependent signal, where changes between consecutive iterations
have high frequency and are őltered, while the low-frequency long-term trend is to be
observed.

Given an iterate x[k], the low-pass őlter computes the two quantities

r+f
..=αf · f(x[k]) + (1− αf )rf , and

r+g
..=αg · c(x[k]) + (1− αg)rg,

and terminates whenever

|r+f − rf |
max(1, |r+f |)

< 10−3εopti, or
|r+g − rg|

max(1, |r+g |)
< 10−3εfeas.

A third low-pass őlter is interwoven with the merit function, detailed in section 1.3.5.

Acceptable solutions

To appreciate the notion of an łacceptablež solution, we have to adopt an engineer’s point
of view. Considered with mathematical rigor, an iterate (x[k], λ[k], µ[k]) either satisőes one
of the termination criteria, in which case the solver terminates, or it does not, in which
case the solver carries on. If, however, the problem is łstubbornž and resists our attempts
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to őnd optimal points to high precision, or if solutions close to an optimal solution are
helpful for the user, returning acceptable solutions makes sense.

An iterate (x[k], λ[k], µ[k]) is considered acceptable, if it satisőes the (scaled) KKT conditions
to a lower precision; be default, Worhp uses εacc

◦
..=
√
ε◦ instead of the strict tolerance ε◦,

for ◦ ∈ {opti, feas}, although this can be chosen by the user. Obviously, setting εacc
◦ = ε◦

disables this behavior.

The notion is useful only, if the solver is forced to terminate before őnding a strictly
optimal solution. This can be caused by

• reaching a user-deőned limit (maxiter, timeout),
• slow progress,
• an error condition in the model that cannot be alleviated, or
• user intervention.

The notion of acceptable solutions is complemented by saving the best acceptable
iterate found so far. This, again, is justiőed from a practical point of view: While the
theory of optimization holds that under certain conditions (including properties of the
problem and choice of the step size) successive iterates are better in a well-deőned way,
practical problems have an unfortunate tendency to violate theoretical assertions. Given
a suiciently łuncooperativež problem, we can sometimes observe that both feasibility
and optimality measure actually decline from one iterate to the next. Worhp therefore
stores an iterate (x[k], λ[k], µ[k]), if it satisőes the acceptable tolerances, and updates it,
if a better iterate is found. Since we do not want to depend on a merit function or the
őlter (cf. section 1.3.5 for details on both) to judge this, a new iterate (x[k], λ[k], µ[k]) is
considered as better than an already stored iterate (xs, λs, µs) according to the simple
rules of algorithm 1:

Algorithm 1 for updating stored acceptable solutions
if (xs, λs, µs) is feasible to strict tolerance εfeas then

if (x[k], λ[k], µ[k]) is feasible to strict tolerance εfeas then
if f(x[k]) < f(xs) then

Update (xs, λs, µs)← (x[k], λ[k], µ[k]) ◃ feasible and better objective

else
if (x[k], λ[k], µ[k]) is less infeasible than (xs, λs, µs) then

Update (xs, λs, µs)← (x[k], λ[k], µ[k]) ◃ improves feasibility

The focus of algorithm 1 on feasibility betrays Worhp’s deeper purpose as optimiza-
tion component of optimal control problem solvers, but also caters for many practical
engineering problems, where infeasible solutions are unphysical and therefore unusable.

Storing acceptable solutions can be useful when dealing with a model that is particularly
diicult to optimize and any solution that is better than the initial guess is useful; this
situation frequently arises in the early development phase of a new model, or when
applying mathematical optimization to a simulation model for the őrst time. Setting the
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acceptable tolerances to high absolute values instructs Worhp to start storing iterates
early.

Additional heuristics

As mentioned earlier, many practical optimization problems have the unfortunate tendency
to disregard mathematical prerequisites, such as f, g and h being suiciently smooth,
satisfying a constraint qualiőcation in the optimum, or for the whole problem to be
bounded from below. Worhp’s heuristics can be considered as last-ditch efort to őnd
łgoodž solutions even in cases, where our theory and the numerical methods fail.

Most simple, the unbounded problem detection heuristic triggers, if the current iterate is
feasible, if the last search direction d[k] is a descent direction (i.e. ∇f(x[k])Td[k] < 0) and
the objective falls below a őxed limit, −1020 by default.

The Fritz-John point and nondifferentiable point detection heuristics are laid out in
algorithm 2:

Algorithm 2 for detecting Fritz-John or nondiferentiable points
if



d[k]




2
6 εopti then ◃ small search direction

if c(x[k]) 6 εfeas then ◃ feasible point
if |f(x[k])− f(x[k−1])| 6 εopti then ◃ slow progress

if


∇xL(x[k], λ[k], µ[k])




∞
> ε−1

opti then
Terminate: Optimum may be nondiferentiable.

if


λ[k]




∞
> cFJ or



µ[k]




∞
> cFJ then

Terminate: Optimum may be Fritz-John point.

Algorithm 2 deserves a short explanation: The őrst heuristic triggers for points where
the values of a derivative łexplodež close to the nondiferentiable pointÐthis is not
always true, with x →→ |x| being a very simple counterexample, hence the heuristic would
probably have been more aptly named as singularity heuristic.

The detection heuristic for Fritz-John points assumes that λ[k], |µ[k]| → ∞ if converging
towards a Fritz-John, since λ0 → 0 in this case. Since the multipliers may also show this
behavior in a KKT point, the approach is only a heuristic one and may produce false
alarms.

1.3.3. Hessian Regularization 3

At the core if every SQP method, quadratic problems of the form

min
x∈Rn

1
2
xTQx+ rTx

subject to
Ax 6 b

Cx = d,
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have to be solved. For the solution to be well-deőned and unique, Q has to be positive
deőnite on the subspace spanned by the kernels of A and C, i.e.

xTQx > 0 for all x ∈ span{kerA, kerC},

otherwise we lose uniqueness, or the problem may be unbounded. One can guess that
ensuring this numerically would require QR, singular value or Schur decompositions, all
of which are too expensive in the large-scale case. A common approach is therefore to
ensure Q > 0 on the whole space, instead of the subspace dependent on A and C. If Q
is a BFGS matrix, we remember that positive deőniteness is one of its most important
properties. If, however, Q = ∇2

xxL, some work is in order:

To ensure positive deőniteness of Q without prohibitive computational costs, Levenberg-
Marquadt regularization may be used. This is done by determining a lower bound on
the smallest eigenvalue of Q, the so-called Gerschgorin bound

σ = min
16i6n



qii −
n



j ̸=i

|qij|


and using it to update Q by

(1.2) Q+ = Q+ τ ·max{−σ, 1}I.

Here I denotes the identity matrix and τ is a factor which is adapted iteratively: choosing
τ = 1 guarantees positive deőniteness, since it shifts the spectrum such that it is bounded
from below by 1, but the Hessian matrix may be perturbed drastically if the Gerschgorin
bound produces a negative σ with great modulus, either because the smallest eigenvalue
is negative with great modulus, or because the Gerschgorin estimate is bad. Due to
the inexact nature of the Gerschgorin estimate, τ = 1 is suicient but not necessary for
establishing positive deőniteness. The iterative update of Worhp tries to let τ [k] ↘ 0 as
x[k] → x⋆, since ∇2

xxL can be shown to have the right spectral properties in a minimum
(confer also theorem 3), hence no regularization is required in a neighborhood of x⋆.

1.3.4. Prepare the Quadratic Problem 4

Besides the regularization of the Hessian matrix, further modiőcations of the linear-
quadratic problem approximation are either necessary or beneőcial. Constraint relaxation
ensures that the constraints can be satisőed, although they are only approximated to
őrst order, while the weak-Active Set method was devised to use less memory and
computational time by problem size reduction.

Constraint Relaxation

Problem (QP) may not always have a solution, which can be demonstrated by a very
simple example. This also serves to demonstrate one of the dangers of starting from a
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trivial initial guess, such as x[0] = 0; the exact deőnition of what constitutes a trivial
initial guess depends, of course, on the optimization problem.

Example. Consider the nonlinear inequality constraint

g(x) = 1− x2
6 0.

Linearizing this constraint at x[0] = 0, we arrive at the inequality

g(x[0]) + g′(x[0]) · d = 1 + 0 · d 6 0,

which obviously cannot be satisőed, hence (QP) cannot be solved.

To work around the problem of unsolvable QPs, Powell introduced the idea to perform
a constraint relaxation (also referred to as elastic constraints) by introducing a
constraint relaxation variable δ ∈ [0, 1] and an associated constraint relaxation penalty
parameter ηr > 0, and using them to reformulate (QP) as

min
d∈Rn, δ∈[0,1]

1
2
dT∇2

xxL(x, λ, µ)d+∇f(x)Td+ ηr
2
δ2

subject to
(1− σiδ)gi(x) +∇gi(x)d 6 0, i = 1, . . . ,m1

(1− δ)h(x) + ∇h(x)d = 0.

(rQP)

with

σi =



0, if gi(x) < 0, i.e. gi is inactive

1, otherwise

In practice, (rQP) is transformed into the standard QP formulation through

Qr =



∇2
xxL 0
0 ηr



and minimizing over dr =



d

δ



.

The key advantage of constraint relaxation is that (d, δ) = (0, 1) is always feasible for
(rQP). If, however, the solution (d, δ) satisőes δ = 0, it is optimal for (QP). The
relaxation variable can be controlled through the penalty term ηr: If it is too small,
the resulting search direction d will not suiciently decrease the constraint violation,
hence the SQP method cannot converge to a feasible point. If ηr is chosen too large, the
condition number of the extended matrix Qr is large and the QP-solver may fail, or yield
an imprecise solution. To őnd a compromise between both extremes, ηr is initially small
and iteratively increased if δ exceeds a given upper bound.

By default, Worhp uses a single relaxation variable for all constraints. One can
alternatively choose to use m1 + m2 relaxation variables, i.e. one for each constraint,
which increases the QP dimensions and computational time, but may increase stability
and overall performance for problems with łdiicultž constraints.
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Weak-Active Set

The weak-Active Set method is inspired by the established Active Set method for solving
inequality-constrained quadratic problems. The concept of the (strict) Active Set method
is to identify the set I of active indices. The quadratic problem (QP) is then modiőed to

min
d∈Rn

1
2
dT∇2

xxL(x, λ, µ)d+∇f(x)Td

subject to
gi(x) +∇gi(x)d = 0, i ∈ I

h(x) +∇h(x)d = 0.

(QPAS)

i.e. the inactive inequality constraints are identiőed and dropped from the problem. The
manual pen-and-paper solution of optimization problems is very similar to this approach.

The modiőed problem is equality-constrained and can be solved without further ado by
solving a system of linear equations. The task of identifying the Active Set is nontrivial,
however, because it may change between iterations (although it stabilizes when the
SQP method converges to a solution), and because the solver essentially has to make a
prediction for the active set at the next iterate x[k+1] that is computed using I(x[k+1]).
Since g is nonlinear, the prediction can be inaccurate, hence an iterative update procedure
is needed, with an exponential worst-case performance of O(2m1).

While Interior-Point methods do not sufer from this complication, introducing the slack
variables increases the problem size; this efect is strongest if the problem has many
inequalities, which is very pronounced in discretized optimal control problems with path
constraints. To take advantage of the beneőts of both methods, the weak-Active Set
method uses a conservative estimate to remove inequality constraints, and thus reduce
the size of the quadratic subproblems (QP). This method does not share the diiculties of
its strict precursor, since the estimate of the active set may be fuzzy, and any łsuspiciousž
inequality constraints can be left untouched, since there is no need to transform them
into equality constraints.

Definition (weak-Active Set). Let x ∈ Rn and δw ∈ R with δw > 0. A constraint gi(x)
is called weak-active, when gi(x) 6 δw. Equality constraints are always weak-active. The
weak-Active Set Iw is given by Iw(x) =



i ∈ {1, . . . ,m1}


 gi(x) is weak-active


.

Applying this deőnition to (QP) gives us

min
d∈Rn

1
2
dT∇2

xxL(x, λ, µ)d+∇f(x)Td

subject to
gi(x) +∇gi(x)d 6 0, i ∈ Iw(x)

h(x) +∇h(x)d = 0.

(QPwAS)

The key diference to (QPAS) is that the inequality constraints do not need to be łforcedž
to equalities, since the QP-solver is able to handle them by using an Interior-Point
method, whereas older QP-solvers were only able to solve equality-constrained problems.
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1. Nonlinear Programming

In contrast to the original method, the weak-Active Set technique is used to lower the
computational efort, and not as a problem transformation required by the available
methods.

1.3.5. Determine Step Size 6

Owing to its łheritagež as an application of Newton’s method, SQP methods have to
perform line search to achieve global convergence as well. The task is to determine a
step size α, usually α ∈ (0, 1], such that

x[k+1] ..= x[k] + αd[k]

satisőes some performance criterion. If the problem is unconstrained, as in Newton’s
method, this criterion is simply the objective f to be minimized. In constrained opti-
mization, however, feasibility is an additional, usually conŕicting criterion to consider.
Complementarity can be construed as yet another criterion, but is only considered in the
termination criteria of Worhp.

Assuming we have a scalar performance criterion Φ: Rn → R that behaves similar to f ,
in that smaller values mean better performance, we can deőne the scalar function

(1.3) φ : R→ R, φ(α) ..= Φ


x[k] + αd[k]


,

Further assuming that Φ is smooth, so is φ, and this invites us to apply methods from
unconstrained, one-dimensional minimization, such as the secant or Newton’s method, to
determine

αmin = argmin
α∈(0,1]

φ(α).

However, considering that this line search is but a single step embedded in the iterative
scheme of the whole minimization algorithm, and that Φ is potentially expensive to
evaluateÐsince it will have to involve f , g, and hÐ, determining the exact minimum
αmin is unnecessary efort.

Instead of performing (exact) line search, NLP methods in general perform variants of
inexact line search which test a (small) number of trial step sizes αi. Since the theory
holds that α = 1 is the optimal step size in a neighborhood of x⋆, α0 = 1 is generally
used as őrst trial step, with further steps deőned through

αi = βi, i = 1, . . . , imax

with a decrease factor β ∈ (0, 1) and an upper limit to the number of trial steps imax ∈ N.
Worhp modiőes the choice of trial step sizes slightly, since for certain problem classes,
α0 = 1 − ε seems to be beneőcial. Therefore, Worhp uses trial step sizes αi = α0β

i,

where α0 can be inŕuenced through a solver parameter.

Acceptance or rejection of a trial step size depends on the employed globalization method,
where Worhp uses merit functions and a (2D-)filter as two major alternatives.

26



1.3. Sequential Quadratic Programming

Merit functions

The function Φ in equation (1.3) is called merit function, which is an equivalent concept
to the penalty functions shown in section 1.2. Worhp implements two merit functions:
The Augmented Lagrangian

La(x, λ, µ; γ, η) = f(x) + 1
2

m1


i=1

1

γi





max{0, λi + γigi(x)}
2 − λ2

i



+

m2


i=1

µihi(x) +
1
2

m2


i=1

ηih
2
i (x)

(AL)

and the L1 merit function (also known as exact L1 penalty function)

(L1) L1(x; γ, η) = f(x) +


m1


i=1

γi max(0, gi(x)) +

m2


i=1

ηi|hi(x)|


.

The SQP algorithm is highly sensitive to the choice of the penalty parameters (γ, η), and
their update is non-trivial. While the Augmented Lagrangian is diferentiable, the L1

merit function has nondiferentiable points. However, the L1 merit function does possess
a directional derivative along the search direction, and thus φ(α) ..= Φ



x[k] + αd[k]


is
diferentiable for Φ = L1.

Given a merit function Φ and the function φ constructed from it, various strategies exist
to decide whether to accept or reject a trial step size αi, established ones being the
Armijo(-Goldstein) rule and the Wolfe-Powell rule:

The Armijo rule accepts points α that satisfy the Armijo-Goldstein condition

φ(α) 6 φ(0) + σαφ′(0).

The łstrictnessž parameter σ ∈ (0, 1) can be used to control the required amount of
improvement; higher values cause the Armijo rule to accept fewer points. Figure 1.6
illustrates the concept of the Armijo rule graphically.

φ

α
0

Figure 1.6.: Schematic view of the Armijo rule: The acceptance region, i.e. the set of
points for which φ lies below the Armijo-Goldstein line is highlighted in green.
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Bounding the iterates from above guarantees a minimum amount of improvement,
although not enough to make the Armijo rule efficient, which is a technical criterion
used to proof the global convergence properties of SQP methods; it can be shown,
however, that the scaled Armijo rule is eicient, if the trial step sizes are chosen as
αi = sβi, i = 1, . . . , imax and s > 0 is chosen appropriately. However, the scaled variant
precludes the trial step size α = 1, which is required to łinheritž the quadratic convergence
order from Newton’s method. Alternatively, choosing αi = β±i, i.e. interleaved increasing
and decreasing trial step sizes also makes the Armijo rule eicient. In practice, Worhp

employs the standard Armijo-Goldstein condition to enable locally quadratic convergence,
even though global convergence cannot be proven for this approach.

The Wolfe-Powell rule is stricter than the Armijo rule, by adding a second condition. For
given parameters σ ∈ (0, 1

2
) and ρ ∈ [σ, 1), it accepts points α that satisfy

φ(α) 6 φ(0) + σαφ′(0) and

φ′(α) > ρφ′(0)

or alternatively, for the strict Wolfe-Powell rule

|φ′(α)| 6 −ρφ′(0).

φ

α
0

φ

α
0

Figure 1.7.: Schematic view of the Wolfe-Powell rule (left), and its strict counterpart
(right). The acceptance region is highlighted in green, smaller than for the Armijo
rule, and yet smaller in the strict case, where only the derivative condition is active.

The advantage of the Wolfe-Powell rule is that it is efficient, i.e. it can be proven (under
certain assumptions on the problem) that an SQP method converges globally, if it uses
one of the Wolfe-Powell strategies to choose the step size. Its great disadvantage is that it
requires additional derivative evaluations for every trial step size, where the Armijo rule
only requires function evaluations (which may already be expensive). For this reason,
Worhp exclusively employs the Armijo rule with one of the merit functions.

The filter method

The suitable choice of the penalty term and penalty parameters is one of the diiculties
of using merit functions, owing to the approach of combining two (conŕicting) criteria
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into a single, scalar one. The őlter method is a 2-dimensional criterion that considers
objective and feasibility separately, thus circumventing this diiculty. A trial iterate
x[k+1] = x[k] + αd[k] is accepted by the őlter if it improves either the objective function f

or the constraint violation c, as deőned in (CV).

Definition (dominance). The point


f(x[k]), c(x[k])


is said to be dominated by the point


f(x[j]), c(x[j])


if both

f(x[j]) 6 f(x[k]) and c(x[j]) 6 c(x[k]).

A őlter F is a list of pairs


f(x), c(x)


such that no entry dominates any other. A trial
iterate x[k+1] is accepted by the őlter if the corresponding pair



f(x[k+1]), c(x[k+1])


is not
dominated by any őlter entry. The pair



f(x[k+1]), c(x[k+1])


can then be added to the
őlter and all entries that are dominated by this new pair have to be deleted. Otherwise a
new trial iterate with a smaller step size is tested.

The őlter can be initialized as F = {∞,∞} or, with an upper bound to the constraint
violation, as F = {−∞, cmax}.

cmax

f

c

Figure 1.8.: Schematic view of the őlter method and comparison with a őctional merit
function. The rejection region of the őlter (checkered) is much smaller than that of

the merit function (striped).

The simple principle of the őlter method has to be extended by various additional
conditions and heuristics to prevent circling behavior, convergence to infeasible points
or slow overall progress. Furthermore, the update of the τ parameter in the Hessian
regularization (1.2) relies on the merit function, by comparing predicted and actual
reduction. No scalar criterion like this is available in the őlter method, hence the
regularization operate on the inertia of the Hessian. For this reason, the őlter method in
Worhp depends on linear algebra solvers that compute the inertia.

An extensive account of the theory, implementation in Worhp, and numerical results is
given in [45].
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1.3.6. Recovery Strategies ∗

The line search is an obvious Achilles heel of the algorithm, since all previous steps
inŕuence its outcome; a bad initial guess, faulty derivatives, or an imprecise solution
of the QP. All of these inŕuences can cause a line search breakdown; unfortunately,
backtracing the breakdown to its cause next to impossible, unless prohibitively expensive
analysis tools constantly supervise the solver. The recovery strategies were devised as
cheap(er) heuristics to be activated for a single iterations after a line search breakdown
or an error condition in the QP solver.

Worhp has the following recovery strategies:

• The SLP (Successive Linear Programming) strategy replaces the Hessian or BFGS
matrix in (QP) by the identity, which essentially reduces the SQP method to a
őrst-order steepest descent method. The rationale is that Q may have a high
condition number, which either causes a breakdown of the QP or linear solver, or
later in the line search, due to an inexact search direction. Replacing Q by the
well-conditioned identity eliminates this source of error.

• The non-monotone strategy allows local increase of the merit function, by replacing
the current value of the merit function Φ(x[k]) by its lowpass-őltered value, which
is always greater.

• The dual feasibility strategy activates the so-called dual feasibility mode which tries
to őnd a feasible point by solving the least-squares problem min∥c(x)∥22. In őlter
and Interior-Point methods, this step is called feasibility restoration. The term dual
stems from the solution method: The QP solver internally solves linear systems of
the form



Q AT

A 0



x

λ



=



f

c



,

which can be used to solve the normal equation ATAd = −ATc by rewriting it as


I A

AT 0



l

d



=



0
−ATc



.

This is akin to the dual problem, hence the designation as dual feasibility mode.
• As a last resort, the force strategy can be interpreted as a restart of the optimization

run. It forces the line search to accept the step size αf determined such that


αfd
[k]


 = 1 to make a suiciently great step to escape the current problematic
region.

Two further strategies, the ascent and the cut strategy, are heuristics that can charitably
be described as experimental and are better left undocumented.
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Chapter2

Architecture of Worhp

A spider conducts operations that resemble those of a weaver,
and a bee puts to shame many an architect in the
construction of her cells. But what distinguishes the worst
architect from the best of bees is this, that the architect
raises his structure in imagination before he erects it in reality.

(Karl Marx, Das Kapital)
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2. Architecture of WORHP

The architecture of Worhp was designed to overcome technical shortcomings of tradi-
tional mathematical software architectures, to permit a high degree of user interaction
with the solver, to allow a higher degree of modularity than traditional mathematical
software does and to enable both industrial-grade usability and its use as an academic
experimental platform.

The term łtraditional mathematical softwarež very loosely refers to many established and
mature software packages written in some FORTRAN (i.e. pre-90) dialect, which often
excel in terms of performance or precision, but face diiculties regarding usability or
maintainability due to the remarkable restrictions of the language; from an architectural
point of view, Worhp is an attempt to right some of the wrongs imposed on programmers
during the long reign of the old FORTRAN standards and dialects.

The tools developed for and used in Worhp to this end are the Uniőed Solver Interface
(USI) that deőnes a simple, yet powerful interfacing convention both externally and
internally, and together with the Reverse Communication (RC) paradigm allows an
unprecedented degree of interaction with a piece of mathematical software, and in
combination with the XML module ofers interesting possibilities for inspection, analysis
and result processing. The őnal major tool of the bunch is Worhp’s workspace and
memory management, the weak spot of many FORTRAN software packages’ usability.
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2.1. Practical Problem Formulation

2.1. Practical Problem Formulation

The standard formulation for constrained nonlinear optimization problems considered in
chapter 1 is

min
x∈Rn

f(x)

subject to
g(x) 6 0

h(x) = 0,

(NLP)

which is very suitable and convenient for the theoretical considerations. However, it
can be cumbersome to formulate practical optimization problems, for instance a box
constraint 1 6 xi 6 2. This is unfortunate for various reasons:

• It places an additional burden on the users, who have to reformulate their op-
timization problems to match the abstract mathematical notation. This can be
particularly irksome, if the solver is integrated into existing models.

• In the case of box constraints, information is lost by transforming them into the
standard inequality formulation; box constraints receive special treatment in various
places, which improves both performance and stability.

• During development and integration, it may be useful to łswitchž individual con-
straints on and of, or soften equality constraints to (tight) inequalities.

Therefore, Worhp operates on problems in the more ŕexible formulation

min
x∈Rn

F (x)

subject to


l

L



6



x

G(x)



6



u

U

(OP)

with bounds
l, u ∈ Rn and L,U ∈ Rm

and functions
F : Rn → R and G : Rn → Rm.

Formulations (NLP) and (OP) are equivalent through transformations of the form

g(x) = ±xi + c 6 0 ⇐⇒ c = li 6 xi or xi 6 ui = −c,
g1(x) = −c(x) + c1 6 0
g2(x) = c(x) + c2 6 0



⇐⇒ G(x) = c(x) and L = c1, U = −c2,

h(x) = c(x)− c = 0 ⇐⇒ G(x) = c(x) and L = U = c.

Since f is not afected by these transformations, we can always choose F ≡ f and need
not diferentiate further between both. The constraints G, on the other hand, and their
dimension m depend on the functions g and h, and on their dimensions m1 and m2 in a
non-trivial way; only m > m2 holds in general, irrespective of the problem structure.
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Note on multipliers

Unlike the convention for the mathematical formulation (NLP), Worhp uses multipliers
λ for box constraints and µ for the general (G) constraints. In case of two-sided constraints,
two (NLP)-multipliers are associated with a single constraint, but it only has a single
(OP)-multiplier. This is only seemingly problematic: For equality constraints, both (NLP)-
multipliers coincide, thus the (OP)-multiplier takes their common value; for inequality
constraints, at most one of them can be active at any point, and the (OP)-multiplier
attains the value of the active (NLP)-multiplier, the inactive one being silently discarded.
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2.2. Sparse Matrices

Due to its fundamental design as a solver for large-scale problems, Worhp operates
exclusively on sparse matrices (but can be łtrickedž into operating on dense matrices). As
laid out in deőnition 5 and illustrated by example 6, the central idea behind sparse matrix
representations is the omission of zero entries, which saves memory and computational
time. Nonzero entries deőne the sparse matrix structure, which is inherent to every
instance of (NLP) and constant, while the actual values of the nonzero entries depend on
the current point (note that nonzero entries may of course attain the numeric value 0).

Worhp accepts two diferent sparse matrix representations: the Coordinate Storage (CS)
format, or the Compressed Column (CC) format. They difer in their storage requirements
and their suitability for certain matrix operations. Both formats in general, and Worhp’s
specializations of them, are described in the following paragraphs. Worhp’s conventions
for sparse matrix representation allow it to naturally operate on dense matrices given in
Fortran’s storage sequence for 2D arrays, without conversions or special indexing; only
the Hessian matrix with its łdiagonal-lastž ordering is an exception to that rule.

2.2.1. Coordinate Storage format

The coordinate storage or triplet format is the łintuitivež sparse matrix format, where a
nonzero matrix entry a = (A)ij corresponds to an (a, i, j) triplet. These triplets are split
up into the val, row and col arrays such that (valk, rowk, colk) = (a, i, j)k for some
enumeration k = 1, . . . , nnz of the nonzero entries; a priori, no kind of ordering has to be
assumed for this construction. Thus the storage requirement for the CS format is nnz

double + 2nnz integer.

Since Worhp uses the CS format internally, it is the preferred sparse matrix format.

While the general format makes no assumptions on the sorting or uniqueness of the
entries, Worhp imposes the following restrictions:

CS-1. Entries are sorted ascending in column-major order.

CS-2. Each matrix entry may be present at most once.

CS-3. Vectors only: The column index is omitted for sparse vectors.

CS-4. Hessian only: Only the lower triangular part is saved; őrst the strictly lower
triangular (i.e. subdiagonal) entries hij with i > j in column-major order, last
all diagonal entries hii in ascending order, regardless of whether the problem
has a nonzero entry at hii.

Restriction CS-1 is of special importance, because it allows the use of more eicient
algorithms, simpliőes conversion between CS and CC, and since its memory layout
coincides with that of dense matrices in Fortran, Worhp can easily be integrated
into dense problem formulations. Restriction CS-4 is necessary to enable the Hessian
regularization by diagonal update, described in section 1.3.3.
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A number of matrix operations can be carried out in a simple and eicient way with the
CS format, among them

• Matrix transpose (by swapping row and col, but changing the ordering),
• Adding or removing entries,
• Mx and yTM multiplications.

Example 8. We consider again the functions in example 6, and their derivatives

F (x) = 1 + x2 +
1
3
x3
3, G(x) =





4x1x2 + 5
3x2

1 + 8x3

10x3 + 12



,

∇F (x) =


0, 1, x2
3



, ∇G(x) =





4x2 4x1 0
6x1 0 8
0 0 10



,

and ∇2
xxL(x, µ) =





6µ2 4µ1 0
4µ1 0 0
0 0 2x3





The gradient DF, Jacobian DG and Hessian HM encoded in Worhp’s CS format are then
given by

DF: val =


1, x2
3



, row =


2, 3


, col = ∅, because of CS-3.

DG: val =


4x2, 6x1, 4x1, 8, 10


, row =


1, 2, 1, 2, 3


, col =


1, 1, 2, 3, 3


.

HM: val =


4µ1, 6µ2, 0, 2x3



, row =


2, 1, 2, 3


, col =


1, 1, 2, 3


. Note that, because
of CS-4, the elements are ordered as



h21, h11, h22, h33



and h22 ≡ 0 despite being
a structural zero is included, because it is a diagonal element.

2.2.2. Compressed Column format

The compressed column format, closely related to the Harwell-Boeing format for saving
sparse matrices to őles, is a more technical sparse matrix format, where a nonzero matrix
entry a = (A)ij corresponds to an (a, i) pair (plus additional indices per column). These
pairs are split up into the val and row arrays as (valk, rowk) = (a, i)k for an enumeration
k = 1, . . . , nnz which orders the nonzero entries such that jk+1 > jk. In other words,
the nonzero entries are sorted ascending by their column index, so that every column
corresponds to a contiguous block of elements:

val and row =


column1 , column2 , . . . , columnn



The column indices colp are the start indices into these blocks such that all entries
(valk, rowk) for k = colp, . . . , colp+1 − 1 belong to column p (hence, col has dimension
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n+1, its values are non-decreasing, with mandatory values col1 = 1 and coln+1 = nnz+1).
If two consecutive values colp = colp+1, then column p is empty.

Worhp imposes some additional restrictions on the CC format:

CC-1. Entries are sorted by row in each column, i.e. for all (valk, rowk) we have
rowk+1 > rowk, for all k = colp, . . . , colp+1 − 2, for all columns p.

CC-2. Vectors only: The column index is omitted for sparse vectors.

CC-3. Hessian only: Only the lower triangular part is saved, and all diagonal entries
hii, regardless of whether the problem has a nonzero entry at hii.

The restriction CC-1 is of special importance, because it ensures that (valk, rowk) where
k = coli corresponds to the diagonal entry hii in the Hessian, and it arranges the memory
layout to coincide with that of dense matrices in Fortran, so Worhp can easily be
integrated into dense problem formulations.

Note that restriction CC-1, together with CS-1 and CS-2 ensures that both formats only
difer by their col indices ś the representation of vectors is thus identical.

For Hessian matrices, CC-3 implies that each column has at least one entry, hence col is
strictly increasing, i.e. colp+1 > colp + 1 for all p.

The CC format is most eicient for vector-matrix multiplications, and for quick access to
columns (and Hessian diagonal entries if CC-1 is in efect).

Example 9. Consider the functions in Example 6. The gradient DF, Jacobian DG and
Hessian HM encoded in Worhp’s CC format are then given by

DF: identical to the CS case.

DG: val =


4x2, 6x1, 4x1, 8, 10


, row =


1, 2, 1, 2, 3


, col =


1, 3, 4, 6


.

HM: val =


6µ2, 4µ1, 0, 2x3



, row =


1, 2, 2, 3


, col =


1, 3, 4, 5


. Note that, because
of CC-3, the łnon-nonzerož entry h22 ≡ 0 is included, because it is a diagonal
element.
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2.3. Data Housekeeping

NLP solvers move substantial amounts of data between caller and their internals. The
technical limitation of legacy numerical software to scalars and arrays as routine arguments
results in heavy, burdensome exterior interfaces and often łinfectsž the interior interfaces
as well. This can be a burden on both the user and the maintainer, especially so when
making modiőcations that add further required arguments.

The Uniőed Solver Interface (USI) is an attempt to break the time-honored tradition
of established numerical software to use routine interfaces with more than a handful of
arguments, by replacing it with clean, concise interfaces with low maintenance. With
no intention to denigrate, the snOptA interface of SNOPT in listing 2.1 provides a very
demonstrative example of the clutter found in legacy interfaces, particularly of FORTRAN
software.

1 subroutine snOptA

2 & ( Start , nF, n, nxname , nFname ,

3 & ObjAdd , ObjRow , Prob , usrfun ,

4 & iAfun , jAvar , lenA , neA , A,

5 & iGfun , jGvar , lenG , neG ,

6 & xlow , xupp , xnames , Flow , Fupp , Fnames ,

7 & x, xstate , xmul , F, Fstate , Fmul ,

8 & INFO , mincw , miniw , minrw ,

9 & nS, nInf , sInf ,

10 & cu, lencu , iu , leniu , ru, lenru ,

11 & cw, lencw , iw , leniw , rw, lenrw )

12 external

13 & usrfun

14 integer

15 & INFO , lenA , lencu , lencw , lenG , leniu , leniw , lenru , lenrw ,

16 & mincw , miniw , minrw , n, neA , neG , nF, nFname , nInf , nS,

17 & nxname , ObjRow , Start , iAfun(lenA), iGfun(lenG), iu(leniu),

18 & iw(leniw), jAvar(lenA), jGvar(lenG), xstate(n), Fstate(nF)

19 double precision

20 & ObjAdd , sInf , A(lenA), F(nF), Fmul(nF), Flow(nF), Fupp(nF),

21 & ru(lenru), rw(lenrw), x(n), xlow(n), xmul(n), xupp(n)

22 character

23 & Prob*8, cu(lencu)*8, cw(lencw)*8,

24 & Fnames(nFname )*8, xnames(nxname )*8

Listing 2.1: Interface of snOptA (the advanced SNOPT interface), not including the
interface deőnitions of the user-deőned functions.

While Object-oriented Programming (OOP) provides a feasible alternativeÐas seen in
IpoptÐWorhp’s design constraints precluded an OOP approach. The central concept
behind the Uniőed Solver Interface is as simple as powerful: All solver-relevant data is
kept in four data structures. The USI describes the calling interface of any routine that
expects instances of these four data structures and the fact that almost all high-level solver
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routines share this interface. We will shed some light on the rationale and consequences
of this design in this section.

2.3.1. The traditional many arguments convention

Let us consider listing 2.1, considering it as an arbitrary representative of complex
numerical software: It shows (part of) the classical FORTRAN-style interface of SNOPT’s
advanced interface snOptA and expects an impressive total of 49(!) arguments to be
supplied by its caller. We will dub this approach the many arguments interface convention.

One advantage of the many arguments convention lies in its technical simplicity: All
programming languages of practical relevance to numerical computing support arrays
and function pointers, and are thus able to call this routine.

A major disadvantage of this convention lies in the pure number of arguments, each of a
certain data type, and most with an individual length, and their positions in the calling
sequence; since FORTRAN does not yet support keyword arguments, order matters.
Every caller thus has to duplicate a sizable block of argument declarations in the calling
function, followed by a similarly sizable call.

Let us further consider the many arguments convention from a
technical and maintenance point of view: Most software packages
with a minimum amount of technical or algorithmic complexity
will be structured into various routines1. This implies a calling
hierarchy.
Let us assume for the sake of the argument that routine1 calls
routine2 which then calls routine3 etc., until we reach routineN.
In general, each of these routines will have its own speciőc in-
terface routinek(argk1, arg

k
2, . . . , arg

k
nk
), and quite often



arg
j

i





i = 1, . . . , nj


⊂


argki



 i = 1, . . . , nk


for j > k. holds, except
for low-level functions like the highly abstract and specialized BLAS
routines, or plain printf.

routine1

routine2

...

routineN

If we expand or otherwise modify routineN śfor instance by adding a parameter setting
that the user can modifyś we add argNnN+1 to routineN, and in turn need to modify
all superordinate N-1 interfaces by adding this new argument to all calling routines.
Depending on the depth N, the structure and size of the overall code and the usage of
routinek in other places, the refactoring efort can be considerate; and to add insult to
injury, since legacy FORTRAN compilers were unable to perform complete argument
checking, it was exceptionally easy to forget refactoring a call or an interface somewhere,
which could cause anything from no notable change to completely erratic program
behavior afterwards.

1 As a matter of fact, it is considered bad software design not to structure software into as many
routines as sensible and appropriate (using descriptive names), to minimize code duplication, enhance
maintainability and make the code more readable.
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Luckily, modern compilers will mostly be able to spot human mistakes like this one, but
it seems that tools for automatic refactoring of this kind only exist in commercial IDEs
for C++ code; the refactoring efort is still there, and we only considered a linear calling
hierarchy; if routineN were a low-level function called by many superordinate functions,
the refactoring efort quickly reaches prohibitive dimensions.

For the sake of completeness, this scenario could be covered by deőning argNnN+1 as global,
thus bypassing the calling functions. Although purists will consider this as gross heresy
against modern programming conventions, this practice might be acceptable for static
parameters (say, a print-level); extending this to actual data arguments, however, leads
us back to the bad old FORTRAN practices, where data was passed around in mixtures
of routine arguments and COMMON blocks. It also undermines any attempts to keep the
solver mostly state-less, which we will come to appreciate later in this section.

Another complication comes about, if type qualiőers/attributes are added to the argu-
ments. In C, relevant type qualiőers for function arguments are const and restrict;
the use of volatile is for the most part restricted to kernel and driver programming,
and usually of no interest to programmers of sequential algorithms. The Fortran analog
of const is the INTENTF90 attribute; the efect of C’s optional restrict is the default in
Fortran, where we have ALIASF90 as complementary keyword for the default case in C. If
any routine argument has a qualiőer, the subordinate arguments have to inherit it. If, for
instance, routine1 qualiőes an argument as read-only (const in C, or intent(in) in
Fortran), and passes it on to routine2, it is a semantic error if the latter does not qualify
it likewise. Going back to our routineN example, we can create a similar refactoring
cascade, if we need to remove a read-only qualiőer from one of its arguments, since all
superordinate routines have to have the qualiőer removed as well. This time, circum-
venting this refactoring cascade by using global access to the argument in question may
even lead to surprising behavior (see A.1 for a worked-out example). Adding restrict

to an argument of routine1 leads to a similar cascade in reverse order for as long as the
argument is passed on to the lower-level routine.

Conclusion

The many arguments convention leads to bloat and can easily turn into a maintenance
burden, if the code under consideration is not static, but subject to modiőcations and
extensions. This precludes its use in Worhp for the high-level routines.

2.3.2. The USI approach in WORHP

The central idea behind the Uniőed Solver Interface (USI) is to bundle all solver data
in four data structures transparent to both user and solver, and create a single routine
interface shared by all high-level routines of the solver. These four data structures are

OptVar: Named after the optimization variables (primal and dual), encapsulated in it,
and additionally holds the essential problem dimensions and current values of the
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objective and the constraints, and the constraint bounds. In simple cases, users
need only interact with this data structure.

Workspace: The solver workspace, holding the various internal (often vector-valued)
quantities used by NLP solvers, like the current penalty parameter for the merit
function, or the objective scaling factor. For łhistoricž reasons, the workspace also
holds the derivative matrices, although this is earmarked for refactoring during the
next major API-breaking change. Section 3.4 gives an account of the workspace
memory management.

Params: As its name suggests, this structure holds the solver parameters, meaning scalars
or vectors that somehow inŕuence the way the solver works, like the feasibility
tolerance, or an upper limit to major iterations (łmaxiterž). The mapping created
by the serialization module (see section 2.5) between this data structure and a
parameter őle is used by default to set solver parameters at startup.

Control: Since Worhp’s architecture is based on Reverse Communication, it needs
additional variables for ŕow control. Where other packages use a single integer
ŕag, Worhp uses a more sophisticated and robust approach, encapsulated in this
opaque structure, with dedicated querying routines in place for interaction with
the user.

The namesake Uniőed Solver Interface is of the form <RoutineName>(opt, wsp, par,

cnt) and shared by most high-level routines of Worhp.

This approach of encapsulating everything into data structures has few drawbacks:

• Since access qualiőers (const or intentF90) only apply to all of the structure, and
not individual components, this method of compiler-enforced access control is very
limited. One can argue, though, that this lack of access control (which means
prohibiting access to certain pieces of data) is in keeping with Worhp’s intention
to deliberately allow some level of łtinkeringž with its functionality. Experience
also shows that almost all users leave the components well alone, lest they łbreakž
something, which is actually preferable over a purely technical approach.

• Setting up the data structures, specifying dimensions, parameters and matrix
structures, and doing so in the right order turns out to be a surprisingly complex
process that is usually performed behind the scenes by many-argument solvers,
or not at all, because these solvers do not have complex data structures to be
initialized in the őrst place. Worhp users nevertheless seem quite capable to
handle this complexity admirably well, since they are provided with commented
usage examples that they can mimic.

Despite the abovementioned shortcomings concerning access control and data structure
initialization, the advantages of the USI approach seem to outweigh its disadvantages:

• The use of a common interface does away with the need to remember or look up the
precise signature of routine interfaces, i.e. the number, order, type and meaning of
arguments2. This is less of an issue with C/C++, since current IDEs (such as Visual

2The reader is hereby challenged to try and memorize the snOptA interface.
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Studio, Eclipse, KDevelop, Code::Blocks etc.) have comfortable auto-completion
features, but there is no known editor that ofers the same for Fortran.

• Whenever the set of inputs or outputs of some routine change, only the central data
structure deőnition needs to be modiőed (if anything at all), but the USI interface
will remain constant for the foreseeable future. In particular, the refactoring cascade
explained above will not be triggered.

• Experimental changes that require access to more data are not discouraged by the
need for potentially extensive refactoring.

• The complete solver data is accessible everywhere. It is therefore possible to place
code segments based solely on logical considerations, instead of being constrained
by data locality ś this means that code that belongs together can stay together,
which is beneőcial for maintainability.

Furthermore, the USI approach enabled the Hotstart functionality of the serialization
module (see section 2.5). When the concept of keeping all solver data in these data
structures is rigorously adhered to, it will leave the solver stateless, which is a major
prerequisite for reentrancy, i.e. the ability to run several instances of the solver in parallel.

Unfortunately, the QP-solver component of Worhp currently uses private variables, leav-
ing the whole solver stateful again, which poses a signiőcant obstacle to all parallelization
attempts.

Conclusion

The Uniőed Solver Interface is a simple, yet elegant approach to overcome the drawbacks
of the many arguments convention when an OOP approach is not feasible.

It ofers beneőts to both the users and developers of the solver, which is in keeping with
the design goal of Worhp to provide industrial-grade usability in a way that does not
preclude its continued extension, maintenance and use as experimental platform.
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2.4. Reverse Communication

Basing Worhp on the Reverse Communication paradigm is the second major building
block of its novel architecture3. Calling this a paradigm is not as pretentious as it may
seem on the őrst glance, because it fundamentally changes the interaction between the
caller and the solver: Where the traditional approach (dubbed Direct Communication)
hands over control to the solver for better or worse, Reverse Communication puts the
caller back into the driver’s seat; őgure 2.1 summarizes this diference in graphical form.

Direct Communication

F , G

∇F , ∇G

Reverse Communication

F

G

∇F
∇G

Figure 2.1.: Schematic view of Direct vs. Reverse Communication in an NLP solver:
Here represents code, marks a function call and shows the location
of the major iteration loop. We can clearly observe that the RC approach has to
deőne fewer interfaces, and that no artiőcial partition between the calling program
and the user functions has to be introduced by wrapping them into a subroutine that

is callable by the external NLP solver.

Where Direct Communication receives control from the caller and only relents it whenever
it seems őt (hopefully when the solver converged towards an optimal solution), Reverse
Communication leaves control in the callers hand: The łFire-and-Forgetž is replaced by
repeated calls to the solver, which performs some limited task only to return to the caller
with instructions on what to do next. In the context of an NLP solver, the caller will
repeatedly be asked to evaluate the objective and constraints and to make the updated
values available to the solver, that will then carry on with the current iteration and
return to the caller as soon as another user action is necessary, or some quantity needs
to be updated.

Figure 2.1 showcases the main technical diference: The major iteration loop is łoutsourcedž
to the caller, who can therefore exert some level of control over the iterative process. When

3It seems fair to note that Worhp is neither the only nor the first NLP solver using Reverse Commu-
nication – NLPQLP[62] probably is. However, Worhp appears to be the first NLP solver that fully
utilizes the potential of RC by coupling it with the USI approach in section 2.3.
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combined with the USI approach, that lays bare all solver data, Reverse Communication
vastly increases the analysis and intervention options open to the caller. Given suicient
know-how and efort, the caller can bypass or even replace whole sections of the default
iteration process, or just content himself with in-depth inspections of even the most
obscure solver internals.

The Reverse Communication paradigm applied to Worhp results in the following changes
when compared to traditional NLP solvers:

• The major iteration loop is built and controlled by the caller, not by Worhp; the
solver suggests to continue the iteration or terminate it, but the caller controls it.

• Worhp communicates with the caller through so-called user actions that request
him to evaluate a function, produce some kind of iteration output or perform no
task at all and just call the Worhp NLP routine again.

• No solver-callable functions need to be provided by the userÐthe caller just needs to
ensure that speciőc quantities are computed (in whichever way) whenever Worhp

requests them. Worhp never calls any user-provided function at all.
• The caller can closely monitor the iteration process, override the default output

and intervene as necessary.
• The caller is able to interfere with the NLP solver on a low-level algorithmic level,

instead of being limited to controlling a handful of solver parameters (such as
MaxIter). It is technically possible for suiciently knowledgeable users to replace
the QP solver, the line search or any other component of Worhp by their own
code, without so much as touching its source code.

We should note that, even though these changes are substantial, users are free to, but
not forced to actively use the additional freedom granted by Reverse Communication.
The complexity of using Worhp like a standard Direct Communication solver is not
signiőcantly higher, and can be completely negated by hiding the RC interface behind a
simpler DC interface. Currently, Worhp implements two such interfaces, one of them
a DC+USI one (i.e. hiding the Reverse Communication loop behind the interface and
accepting function pointers, but still using the high-level data structures), and the other
one resembling a legacy NLP solver interface with the many arguments (see section 2.3)
convention.

2.4.1. Division into stages

Worhp uses the terminology stages to describe the single steps between two Reverse
Communication solver calls. Each major iteration passes through at least 10 Stages;
possibly more if a recovery strategy is activated, the constraint relaxation penalty is
increased, or if the trial step size α0 = 1 is rejected and actual line search begins.

A striking feature of Worhp’s division of a major iteration into stages is the őne
granularity, i.e. the fact that many intermediate stages do not require any user action,
making them redundant during normal operation. This granularity is a deliberate
design decision that is guided by the canonical steps of the NLP algorithm and aims at
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Worhp Caller

Pre

KKT

DF

DG

Check

KKT

HM
iteration
output

Create

QP

Update

Hessian

Solve

QP

Post

QP

Find

step size
Update

Point

F G

Finalize

Figure 2.2.: Graphic representation of Worhp’s major stages. The stages are traversed
in counter-clockwise order, with optional loops or jumps between them. Every stage
returns back to the caller, who then calls Worhp again to activate the next stage.
The green 3rd-level nodes denote actions (mostly evaluations) that are required of the

caller before transitioning to the next stage.

exposing these steps to potential caller intervention. This design decision also accounts
for simplifying the solver-internal control ŕow, since many stages may jump to other
(hitherto unmentioned) non-default stages to recover from errors or switch the solver into

45



2. Architecture of WORHP

diferent operational modes. The current design with frequent entry and return allows for
a clean implementation of this complex control ŕow without having to resort to mutually
entwined sequences of goto and jump marks at arbitrary code points.

2.4.2. Implementation considerations

Since most users will be content with the default behavior of the solver, the more extreme
scenarios of interventions are limited to few occasions, and the overhead of Reverse over
Direct Communication is of interest to a majority of the users. The implementation thus
has to strive to keep this overhead low.

Since the caller repeatedly polls for user actions and solver status, the implementation
needs to provide simple and eicient means to this end. There exist software packages
communicating through RC that approach the ŕow control and user action issue through
a single status integer whose value encodes the solver status, user actions and the current
or next stage of the solver. While this approach is indeed simple, its Achilles heel is the
coupling of unrelated entities. Worhp can currently request the user actions

1. Call worhp()

This user action is needed because the RC őnite diference routine temporarily
łswitches ofž Worhp and takes control of the RC loop itself to request function
evaluations.

2. Produce iteration output

The combination of USI and RC enables users to provide their own output routines,
for instance because they prefer the clunky output of SNOPT, or because the
output is further processed by text parsers that expect a speciőc format. Since this
action is ŕagged exactly once per major iteration, it can also serve for user-speciőc
logging, to ŕag a repaint of a graphical representation of the progress, or any other
action that is performed once per major iteration.

3. Evaluate F

4. Evaluate G

5. Evaluate DF

6. Evaluate DG

7. Evaluate HM

The above ŕags prompt the caller to evaluate one of the user-deőned functions, or
to update a derivative of them. It is important that the derivative ŕags are not
raised, if the user chooses to have them approximated by őnite diferences or one
of the BFGS methods.

8. call finite difference routine to compute DF

9. call finite difference routine to compute DG
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10. call finite difference routine to compute HM

11. call finite difference routine (catch-all of the above)

The őnite diference routine must also communicate through RC, and thus has a
set of user actions. The őrst three actually confound solver status and user action,
but the catch-all is used to hide this from the user.

In addition to these 11 user actions, Worhp has 49 distinct statuses [sic] and 16 stages
which allows a total of 276 combinations (although most of no practical relevance), which
overŕows the range of common integer types. Even if the number of combinations were
much lower, it is a maintenance, book-keeping and documentation burden to keep track
of an extensive list of integers and their respective meanings. The obvious solution is to
split status, stage and user action, and to introduce means to set, poll and reset them.

An NLP solver status (łiteratingž, łerrorž, łoptimal solution foundž etc.) can aptly be
represented by a simple integer number, since it cannot attain two distinct statuses at
any time. This remains true for Worhp, but it can attain a superposition of statuses,
if it terminates inside łacceptablež tolerances due to some error or limit conditionÐ
the acceptable status is then superposed with the original stopping condition. Named
constants are deőned by Worhp to avoid the use of magic numbers in user and library
code to set or check for the status of the solver, for instance for the stopping criterion of
the RC loop (Fortran version):

DO WHILE (cnt%status < terminateSuccess .AND. cnt%status > terminateError)

which is śeven without any comment or external documentationś signiőcantly more de-
scriptive through the use of terminateSuccess and terminateError than the equivalent
condition

DO WHILE (cnt%status < 1000 .AND. cnt%status > -1000)

by inserting the numeric values of the constants. Furthermore, the version using named
constants continues to function (after recompiling), even if the actual numeric values
change, while the magic number version will break.

Worhp stages can be represented by an integer, as well, but it may be beneőcial for
the solver to be able to look back at previous stages, if the current behavior depends on
which stages were traversed before, and also to plan ahead for more than one single stage.
The appropriate structure to provide this functionality is a ring bufer, whose maximum
length is determined by the desired planning and retrospection horizons. Since a ring
bufer is (slightly) more complex to handle than integer ŕags, getter and setter routines
are needed; Worhp provides GetStage and SetStage routines that query or schedule
stages and abstract from the ring bufer implementation. For the actual representation
of the stages, Worhp deőnes named constants of the form Init_SQP, Check_KKT etc.
By convention, stage constants are formed with underscores, while status constants such
as OptimalSolution or TerminatedByUser are composed according to the CamelCase
convention.
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Finally, the user actions require a representation that allows them to be set and cleared
independently of each other. As for the stages, Worhp provides getter and setter routines
[Add|Set|Get|Done]UserAction that enable all necessary operations on user actions
and abstract them from the implementation; the caller will only use GetUserAction to
query a user action ŕag, and DoneUserAction to reset it as indicated in listing 2.2.

if (GetUserAction(cnt , evalF)) {

/* Update opt ->F here */

DoneUserAction(cnt , evalF);

}

Listing 2.2: User action query and reset, shown for the łevaluate Fž case. The token
evalF is another example of a named constant deőned by Worhp.

One important beneőt of working with these ŕags is the fact that Worhp is able to
check whether all user action ŕags are reset, and is thus able to raise a warning, if one
or more ŕags have not been reset, informing the user about a potential mistake. The
simple approach with tests of the form

if (iFlag == 123) {

/* evaluate F */

}

lacks this ability and will leave this type of user error unnoticed.

2.4.3. Applications

The interactive mode (see section 3.3) is a solver-internal application of the Reverse
Communication architecture.

The Sentinel project (running from 2007 to 2010) was another application that aimed at
providing a Worhp-speciőc external analysis tool that used the transparency provided
by RC and USI to perform on-demand analysis of the solver data, in particular matrix
conditions, scaling and other numerical issues and provide recommendations or perform
real-time interventions, while the solver is running. Since a number of analyses and
interventions could actually be performed in real-time, great portions of the project were
merged into Worhp, for instance the recovery strategies (see section 1.3.6) that are
partially responsible for Worhp’s above-average robustness in many test scenarios.
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2.5. Serialization

The serialization module is a natural extension of Worhp’s data handling: It enables
serialization of the data structures to a őle, and vice versa, deserialization from a őle
back to the data structures, i.e. it deőnes a one-to-one mapping between the in-memory
representation of the C structs used by Worhp and a őle on disk.

Since Worhp is stateless by design, this allows to completely capture the solver state.

2.5.1. Hotstart functionality

The most prominent application of the serialization module is the Hotstart functionality of
Worhp, which allows to save and restore an optimization process. To this end, the solver
is interrupted between any two stages (see section 2.4.1) and terminated after serializing
its state. The state őle can later be loaded by Worhp, producing bit-precise restorations
of its state, which enables seamless continuation of the previously interrupted iteration.
This seamless continuation is the deőning capability of the Hotstart functionality and sets
it apart from the warm start feature of other NLP solvers, which mostly includes restoring
the BFGS matrix and possibly the multipliers, but disregards the signiőcant internal state,
such as penalty parameters (when using a merit function), the őlter entries (when instead
using a őlter), best-so-far solution etc. If the Hotstart őle is platform-independent (which
it is, as outlined in section 2.5.3), users can migrate an optimization run between diferent
computers and architectures, for instance from Linux to Windows, from 32-bit systems
to 64-bit ones, from PowerPC to Itanium. Hotstart őles are written by WorhpToXML

and HotstartSave (Fortran/C), and read by WorhpFromXML and HotstartLoad. The
routine names difer, because the C functions are wrappers around the Fortran routines
that make heavy use of optional arguments, which is not readily portable to C using the
established Fortran standard.

2.5.2. Reading parameters

In addition to the complete Hotstart, it is possible to perform an incomplete Hotstart by
using only partial information; this may consist of a single data structure only or of a
genuine subset of components, leaving the missing ones at default values. The obvious
(and historically the őrst) application of this option is to outőt Worhp with a parameter
őle from which to read its parameters at runtime. This parameter őle is technically an
incomplete Hotstart őle, which contains an image of the Params data structure only. The
őle may even be incomplete, in the sense of omitting some components, if one wishes
to set only few, instead of all parameters, to speciőc values. This is enabled by őrst
using the default initializer, followed by checking the presence of every component in
the parameter őle, overriding the initialized default value. Fortran callers can use the
WorhpFromXML routine for reading incomplete Hotstart őles (using optional arguments,
as laid out earlier), while C callers are provided with the tailored ReadXML function.
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One user-driven extension to the parameter reading is the ability to provide default
parameters that difer from Worhp’s defaults, while still allowing a parameter őle to
override them. Since the usual initialize-override approach is atomic from the caller’s
perspective, it cannot provide this functionality, because the initialization step overrides
any caller-speciőc defaults. The solution is to separate both steps into two operations.
Worhp provides a new InitParams routine to perform the initialization step, and
non-initializing parameter reading routine for the second; the Fortran WorhpFromXML is
extended by an optional noInit ŕag, while C callers use the new ReadParamsNoInit

function.

2.5.3. Serialization format

The choice of a serialization format was guided by the following constraints:

Readability: Hotstart and, more importantly, parameter őles should be easily human-
readable, and editing them should be possible without imposing rigid formatting
rules on users. This precludes the use of binary formats, even though they are more
eicient.

Portability: Both Hotstart and parameter őles must not be platform-dependent; porta-
bility of the Hotstart őle between platforms is an explicit feature. The same is
valid for parameter őles, since the solver is supposed to show consistent results4

when running the same problem with the same parameter on diferent platforms.
This, again, discourages the use of binary formats.

Standardization: If possible, the serialization format should conform to an established
standard. This way, external tools will be available to edit or perform more
sophisticated operations on the serialization őles. Availability of syntax highlighting
in an editor is tangible example for this demand.

Efficiency: With Worhp being designed for large-scale optimization, Hotstart őles
potentially need to hold a considerable amount of data. The serialization format
should cause as little overhead as possible, although this goal contradicts readability
and portability, since it essentially calls for a binary format.

Possible candidates are JSON, YAML and XML. Despite their diferences, for instance
in supporting types other than strings, none is signiőcantly superior to the others for our
purposes. Two arguments initially supported the choice of XML as Worhp’s serialization
format:

• XML is rather robust, whereas whitespace changes can signiőcantly change the
interpretation of (read: break) YAML data.

4Demanding equal behavior between platforms is unrealistic, since different processors, compilers and
math libraries have subtle influences on the results of floating point arithmetic; instead we can
realistically only demand consistent results and differences in the order of 1 ulp, unless such errors
accumulate.
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• Most, if not all, unixoid operating systems come equipped with libxml2, which
seemed to facilitate portability in the initial development.

While the robustness argument is still valid, subtle diferences between Linux distributions
(most noticeable symbol versioning), make short work of portability. The internal XML
parser presented in section 3.5 has therefore been added in late 2012 to cut dependencies
on external tools. This in turn invalidates the second argument and opens the road
to considering an alternative serialization format, since the XML grammar (and the
resulting parser) is quite intricate and complex.
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Technical Implementation

The compiler does not change its operation to conform to the
meanings implied by your variable names.

(Quip on GCC Bugzilla)
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3. Technical Implementation

This chapter is concerned with the (software-)engineering details needed to implement
the architecture and functionality outlined in the previous chapters.

The main aspects under consideration are:

• the mixed-language (hybrid) implementation of Worhp, which aims at harvesting
the beneőts of both C and Fortran and facilitates interfacing with both languages
in a łnaturalž way;

• the automatic code generation, which became a technical necessity as the size and
technical complexity of Worhp increased and has since then been established and
extended to a convenient tool for relieving developers of many onerous tasks;

• the workspace management used by Worhp to handle dynamic memory require-
ments;

• the technical infrastructure to build the various solver interfaces for a wide range
of conőgurations and target platforms, in a mostly automatic way, and to perform
other maintenance or technical tasks.
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3.1. Hybrid implementation

Worhp’s technical design revolves around the central decision to base its data man-
agement on a small set of rich struct-like data structures, instead of the conventional
approach of keeping and communicating data in a potentially large collection of arrays
and (array, size) pairs or, worse even, partitioned integer and real workspace arrays. It
is further stipulated that interoperability with C/C++ should be possible and simple,
without incurring any unjustiőed overhead śneither for the C/C++ nor the Fortran
componentsś and that an implementation should be deployable on all major platforms.

3.1.1. Interoperability issues with legacy FORTRAN

Consistently separating words by spaces became a general
custom about the tenth century A.D., and lasted until about
1957, when FORTRAN abandoned the practice.

(Sun FORTRAN Reference Manual)

The canonic choice for the data structure design is to base it on C struct, and repro-
duce its layout with Fortran constructs. If restricted to pre-2003 Fortran constructs,
this approach is severely hampered by software portability and memory layout issues,
but enjoys standardized language support starting with the 2003 standard and further
extensions in the 2008 standard.

We will őrst consider legacy, i.e. pre-90 FORTRAN dialects to illustrate the technical
issues involved, and then move on to the 90/95 standard and further to the substantial
interoperability improvements of the most recent (2003 and 2008) Fortran standards.

Available Fortran constructs

Some FORTRAN dialects include the RECORD or STRUCTURE keywords, which are sup-
ported by some compilers, but being non-standard, unsupported by others. COMMON blocks

STRUCTURE /parameters/

REAL*8 tol

INTEGER *4 maxiter

LOGICAL *1 switch

END STRUCTURE

Listing 3.1: Example of a non-standard Fortran data structure

ofer a standard pre-90 alternative, but do not ofer the conciseness of the struct-like
component access.
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Reliable and maintainable use of COMMON blocks typically requires crutches such as storing
their deőnitions in a central deőnition őle included by all routines that access the block.

Example vector.inc:

INTEGER N, NMAX

PARAMETER (NMAX =100)

REAL X(NMAX)

COMMON /VECTOR/ V, N, NMAX

Example use:

SUBROUTINE A(I, X)

INTEGER I

REAL X

INCLUDE vector.inc

IF (I .GT. 0 .AND. I .LE. NMAX) V(i) = V(i) + X

END SUBROUTINE

With the advent of Fortran 90, user-defined types using the TYPE keyword were introduced
as a standard-conforming replacement of the legacy RECORD and STRUCTURE constructs.
This allows writing standard-conforming Fortran code using an analogue of the C struct

type.

To achieve interoperability between a C struct and its companion Fortran TYPE, one
has to restrict the component types to interoperable ones and precisely harmonize their
memory layouts.

Type interoperability

Type interoperability is usually unproblematic if the components are restricted to primitive
scalar types and arrays of them; types like C int will virtually always correspond to
Fortran default INTEGER, which is a 4-byte signed integer type on almost all current,
non-exotic platforms1, although the C standard only requires it to have at least 2 bytes[38,
ğ5.2.4.2.1].

Other C types like unions and bit-őelds are not interoperable as such, since Fortran
has no equivalent types for them, although a speciőc łinstancež of a union type may in
principle interoperate with Fortran2, and bit-őelds may be mapped to integers, which
can either be manipulated and inspected by corresponding integer operations, or more
expressively by the IBITSF95 , IBSETF95 , IBCLRF95 , IANDF95 , IORF95 and IEORF95 intrinsics.

1Many assumptions like these hold almost universally nowadays, because current non-embedded
computers are –with few exceptions– based on the x86 architecture. Special case handling in legacy
code is an indication that things were much more diverse and complicated when platforms like VAX,
PDP-11, System/360 or Crays were in common use for scientific computing.

2Consider the union {int i; double d;}; on most platforms, this union will be accessible by a single
REAL(8) or a 2-element array of default INTEGER; which of these will hold i is implementation-
dependent – it is safe to assume that every sane compiler will align i to 4 bytes, so it will either the
upper or lower word.
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The underlying size of the bit-őeld is a potential issue, but may be controlled by using
dummy bits to force the compiler to pick a certain (minimum) size.

Problems may surface on uncommon platforms, though, since both the C and the Fortran
standard impose few mandatory requirements on data types, such as minimum sizes or
numeric ranges, and leave many details to the implementation. Therefore, consistency
between many platforms exists by convention, but not by standard. This is rather
unsatisfactory for portable software, which should be őrmly based on mandatory aspects
of the standards, instead of common, but not ubiquitous conventions.

Even common types like C long lack a portable mapping to Fortran, because its size
depends on platform and bitness: long is a 4-byte integer on 32-bit Linux systems and
all Windows systems, but an 8-byte integer on 64-bit Linux systems; any mapping to a
Fortran type is thus platform dependent.

Fortran integers always being signed[40, ğ4.4.1], there is, strictly speaking, no interop-
erability with C’s unsigned integer types. In practice, however, a Fortran integer can
interoperate with its companion C unsigned integer type on a subset of its values, namely
those, where the MSB is 0, i.e. on the łlower halfž of its unsigned value range. This
works because the two’s-complement representation of signed integers for non-negative
values is identical with that of unsigned integers, as shown by the following two remarks.

Definition 10 (Two’s-complement). In two’s-complement N bits a1 . . . aN , with ai ∈
{0, 1}, i = 1, . . . , N represent the natural number

N−1


i=1

ai2
i−1 − aN2

N .

The sequence a1 . . . aN is called N -bit signed integer (in two’s-complement representation).
a1 is called the least signiőcant bit (LSB) and aN is called most signiőcant bit (MSB),
irrespective of the physical storage order, which depends on the endianness.

Corollary 11. An N -bit signed integer in two’s-complement representation has a numeric
range of [−2N , . . . , 2N − 1]. The range is skewed towards negative numbers because it
has one and only one representation of zero (namely 0 . . . 0).

Its representation coincides with that of an N -bit unsigned integer for values in [0, . . . , 2N−
1].

Corollary 11 thus guarantees interoperability of Fortran INTEGER types with their com-
panion C unsigned types for łsuiciently smallž values. Should the unsigned value on
the C side exceed the safe threshold, the Fortran side can easily detect this, since its
value will be interpreted as a negative number.

It is worth mentioning that the C standard [38, ğ6.2.6.2(2)] actually leaves three options
for the binary representations of signed integers to the implementation:
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a) sign-and-magnitude: bits a1 . . . aN−1 are value bits and the sign bit aN is a genuine
sign bit, analogous to the IEEE ŕoating point data types.

b) one’s-complement: the sign bit has value −(2N − 1).

c) two’s-complement: the sign bit has value −2N as described in Deőnition 10.

Since options a) and b) have computationally relevant issues (two representations of zero
and non-trivial addition), modern platforms exclusively use c) for integer representation.

Memory layout

Matching the structures’ memory layout is, by far, the more problematic issue with
interoperability. A structure maps its components into memory by deőning for each
component an ofset from the beginning of a structure instance, as illustrated by őgure 3.1.
Therefore, the memory layout between a C struct and its companion Fortran TYPE

matches, if both structures have components of pairwise equal storage sizes and share
the same ofset mapping.

base

8
b
y
te

int i size = 4

offset = 0

internal

padding

double x size = 8

offset = 8

int j size = 4

offset = 16

tail

padding
struct size = 24



sizes = 16

struct {

int i;

double x;

int j;

}

memory layout

Figure 3.1.: Schematic of data structure memory layout, assuming mandatory 8 byte
alignment. Members are accessed in memory by ⟨base address⟩ + ⟨ofset⟩. The
alignment requirement (or rather the blunder in the ordering of the components)
causes 25% overhead for padding due to the strict speciőcations of the C standard.

The C standard requires that these ofsets are increasing in the order of the components,
but the Fortran standard does not prohibit reordering of the structure components; this
can be inhibited by using the SEQUENCE attribute to the TYPE deőnition[40, ğ4.5.1.2].
COMMON blocks may not be reordered[40, ğ5.5.2.1(1+2)] by the Fortran compiler3, which
is why it is customary among experienced Fortran developers to sort its components by
size to minimize the amount of padding added by the compiler: Both C[38, ğ6.7.2.1(12-
13)] and Fortran[40, Note 4.20] compilers may add unnamed padding between adjacent

3This “allows” tricks such as accessing IA(1) in COMMON/IA(2),IB(2)/ through IB(-1).
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components (łinternal paddingž) and padding behind the last element (łtail paddingž)
to maintain any implementation-dependent alignment requirements or suggestions (for
performance reasons); őgure 3.1 demonstrates both types of padding. Double precision
numbers, for instance, should be aligned along 4-byte boundaries according the 386 ABI,
while the AMD64 ABI suggests 8 byte alignment[37, Figure 3-1].

Determining the padding requires some degree of reverse engineering, because compilers
do not provide information on the chosen memory layout. If the padding can be
determined, modern C compilers ofer mechanisms to enforce alignment (and thus
implicitly the padding) down to struct component level, but these mechanisms are
not covered by the standard and are thus compiler-dependent: the GNU compiler
understands the __attribute__ ((aligned (N))) syntax or -malign switches, while
Windows compilers use #pragma pack or __declspec(align(N)) and variations on the
/ALIGN switch. Other compilers may or may not ofer interventions at this level, and
probably add further syntax options to the above collection.

We can conclude that it probably is technically feasible to create one-to-one mappings
between C struct instances and Fortran constructs with two common compiler families,
but the memory layout issues are very diicult to tackle and not very portable. Basing a
central aspect of the solver design on such fragile constructs is emphatically ill-advised.

The Chasm Language Interoperability Tools[59] were created to bridge this łchasmž
between C and Fortran, which is useful for legacy compilers such as g77, ifort prior to
version 10 and gfortran prior to version 4.3. Chasm is essentially left obsolete, however,
by the interoperability features of Fortran 2003 (cf. [40, Chapter 15]) and later, which
are (in essence) supported by ifort > 10 or GCC > 4.3.

3.1.2. Interoperability improvements in newer standards

With the advent of Fortran 2003, the standardizing bodies acknowledged the importance
of interoperability with C. Beyond providing standardized means for operating with
C programs, the tools provided by the standard can also serve as a least common
denominator for interfacing with other languages that have C interoperability features.

Fortran 2003 addresses both type interoperability and memory layout issues:

The standard-conforming way to select the Fortran type corresponding to a given inter-
operable C type is to use the KIND constants deőned by the intrinsic ISO_C_BINDINGF03

module.

Note that most compilers adhere to the łKIND = number of bytesž convention where
C_INTF03 is 4 and C_DOUBLEF03 is 8, but neither does the standard require or advocate
this convention, nor is it safe to rely on it: the NAG compiler, for instance, uses KIND
constants 1, 2 and 3 for REAL types, instead of the conventional 4, 8 and 10/164.

4Although the standard does allow this divergence from the widely established convention, many
practitioners consider NAG’s choice as “silly”.
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C type Fortran 2003 type Note
int INTEGER(KIND=C_INT) 4 with most compilers
long INTEGER(KIND=C_LONG) 4 or 8 with most compilers
size_t INTEGER(KIND=C_SIZE_T) size_t is unsigned!
float REAL(KIND=C_FLOAT) 4 with most compilers
double REAL(KIND=C_DOUBLE) 8 with most compilers
char CHARACTER(KIND=C_CHAR) see note on string interoperability
_BoolC99 LOGICAL(KIND=C_BOOL)

Table 3.1.: Interoperable scalar types deőned by ISO_C_BINDINGF03 (incomplete list).

The standard-conforming way to match the memory layout of a user-deőned TYPE is
to add the BIND(C) modiőer to its deőnition, as shown in listing 3.2. In words of the
standard:

A Fortran derived type is interoperable with a C struct type if the derived-
type definition of the Fortran type specifies BIND(C), the Fortran derived
type and the C struct type have the same number of components, and the
components of the Fortran derived type have types and type parameters that
are interoperable with the types of the corresponding components of the struct
type. A component of a Fortran derived type and a component of a C struct
type correspond if they are declared in the same relative position in their
respective type definitions. [40, ğ15.2.3]

By adding the BIND(C) modiőer we instruct the Fortran compiler to

• check all structure components for their interoperability,
• not reorder the structure components, as if SEQUENCE were in efect,
• use the same padding as the companion C compiler for the equivalent C struct.

Using the ISO_C_BINDINGF03 features, we can thus create Fortran user-deőned TYPEs that
have a matching C struct, although both languages have non-interoperable constructs
for which there is no equivalent construct in the respective other language. Examples
include union and bit-őelds in C, and ALLOCATABLE or POINTER types in Fortran.

TYPE , BIND(C) :: MyInteroperableType

REAL(KIND=C_DOUBLE) :: X(3)

INTEGER(KIND=C_INT) :: N

END TYPE MyInteroperableType

Listing 3.2: Example of a C-interoperable Fortran type

Interoperability of strings is not as straightforward as the one-to-one mapping between
the numeric types, since they are łőrst-class citizensž in Fortran. The LEN attribute
gives them a őxed length, such that no 0-termination is necessary, whereas in C, strings
are (pointers to) character arrays, and their (string-)length is deőned by the position of
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struct MyInteroperableStruct {

double X[3];

int n;

}

Listing 3.3: C struct corresponding to the Fortran type in listing 3.2.

the 0-character. As component of a user-deőned type, a CHAR(KIND=C_CHAR, LEN=N) ::

string may be mapped to a char string[N+1] when care is taken of 0-termination and
the undeőned characters between the logical and the physical string length are initialized
to blanks:

• If 0-termination is not maintained by the Fortran side, C routines accessing the
string may read past its end, resulting in trailing garbage characters in the output
and possible program termination by the OS due to illegal memory access.

• If the undeőned intermediate characters are not set to blanks by the C side, Fortran
routines accessing the string will use them until all LEN=N characters have been
processed, resulting in garbage characters in the output.

Fortran can add 0-termination by setting string(L+1:L+1) = C_NULL_CHARF03 (where
L 6 N is the number of characters; notice the slice-like syntax needed for accessing a
single character, since Fortran strings are syntactically different from arrays of characters,
although their in-memory representation is identical).

Since Fortran types with ALLOCATABLE or POINTER attribute are not (yet5) interoperable,
dynamic arrays have to be implemented on the C side. Fortran can interoperate with
C pointers through the TYPE(C_PTR)F03 type, deőned by the ISO_C_BINDINGF03 module.
Allocated C pointers cannot be directly accessed by Fortran, since Fortran arrays and
pointers in addition to their type also have extent information, which C pointers are
lacking. To create a Fortran pointer from an allocated C pointer, the C_F_POINTERF03

routine takes a TYPE(C_PTR)F03 , extent information and initializes a Fortran pointer
(note that TYPE(C_PTR)F03 is type-agnostic, hence the Fortran pointer type has to match
the C pointer type, or accessing it may result in undeőned behavior).

Interoperable functions

With types being interoperable, the next step is to consider interoperability of functions.
While Fortran diferentiates between functions and subroutines, from a C point of view
the latter is the same as the őrst with no return value, i.e. void, hence we only need to
consider functions (in C sense) without worrying about special treatment for (Fortran)
subroutines.

5TR 29113 of JTC1/SC22/WG5 introduced ISO_Fortran_binding.h as header file provided by the
companion C compiler to define an opaque Fortran array-descriptor type and macros to access the
Fortran array and dimensions. Unfortunately, this part of the technical report was not adopted by
the standardazing body and thus remains in limbo.
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For a function to be interoperable, all of its arguments have to be interoperable and
the types and order of function arguments have to match. Again, the BIND(C) modiőer
instructs the compiler to check for interoperability and behave cooperatively towards its
companion C compiler. An important additional feature for functions is the ability to
specify their assembly name ś this is important, because Fortran compilers generally
perform name mangling, which not only difers between compiler vendors, but is also
inŕuenced by the use (and naming) of encompassing modules; table 3.2 shows the
somewhat diverse name mangling conventions used by a selection of diferent compilers.
Using the BIND(C, name="assembly_name") modiőer instructs the compiler to use the
speciőed name as assembly name, instead of the result of the compiler-speciőc name
mangling scheme. This greatly simpliőes linking to C components in a portable way,
since the assembly name can be chosen freely and works independently of the current
compiler; it can even be used to make existing C functions (such as stdlib functions)
available to Fortran ś a technique employed by Worhp’s workspace management and
described in detail in section 3.4.

SUBROUTINE foo_bar() becomes . . .

compiler freestanding inside module fred

g77/f2c foo_bar__ Ð
gfortran (Linux) foo_bar_ __fred_MOD_foo_bar

gfortran (MinGW old winapi) _foo_bar_ ___fred_MOD_foo_bar

gfortran (MinGW new winapi) foo_bar_ __fred_MOD_foo_bar

ifort (Linux) foo_bar_ fred_mp_foo_bar_

ifort (Windows) _FOO_BAR _FRED_mp_FOO_BAR

Table 3.2.: Examples of Fortran name mangling with diferent compilers.

A minor complication is the fact that the so-called łargument associationž of Fortran is
best described as call-by-reference [40, ğ12.4.1], whereas C operates on local copies of all
arguments, i.e. call-by-value [38, ğ6.5.2.2(4)]Ðthis explains why the following (invalid)
FORTRAN program prints 2 when compiled with some legacy compilers:

PROGRAM INVALID

CALL PLUS (1)

PRINT *, 1

END PROGRAM

SUBROUTINE PLUS(I)

INTEGER I

I = I+1

END SUBROUTINE

(this will not work with modern compilers, since they perform more complete checks
on arguments, and furthermore put the integer constant 1 into a read-only data section
[ELF: .rodata], hence the program is killed by the OS with a memory access violation
when PLUS tries to increment the value at this address.)
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The standard way of interoperating with Fortran is to have C pass all arguments by
reference, i.e. by their address, even scalar arguments like integers or ŕoating point
numbers. To pass literals or the results of a function call or an arithmetic operation to
Fortran routines, one has to explicitly introduce dummy variables, since Fortran accesses
arguments by their addresses, which are undeőned in the above cases.

The Fortran 2003 standard ofers a convenient alternative to the usual łeverything-
pointerž approach by introducing the VALUEF03 attribute that basically instructs the
Fortran compiler to mimic the call-by-value behavior of C. The following code snippet
demonstrates its use by deőning a Fortran subroutine and a compatible C declaration to
interface with it:

SUBROUTINE interoperable(X, N) BIND(C, name="interop")

USE , INTRINSIC :: iso_c_binding

INTEGER (C_INT), VALUE :: N

DOUBLE (C_DOUBLE), INTENT(in) :: X(N)

...

END SUBROUTINE interoperable

/* C interface for the subroutine above */

void interop(const double *x, int n);

To interoperate with existing C functions, an INTERFACEF90 needs to be deőned, specifying
the arguments and the assembly name of the C routine. The following example shows an
interface for the realloc function of the C standard library:

INTERFACE

TYPE (C_PTR) FUNCTION c_realloc(p, n) BIND(C, name = "realloc")

USE , INTRINSIC :: iso_c_binding

TYPE (C_PTR), VALUE :: p

INTEGER (C_SIZE_T), VALUE :: n

END FUNCTION c_realloc

END INTERFACE

3.1.3. Data structure handling in WORHP

With the technical aspects covered by the previous sections, we will now address the
details of Worhp’s data structure handling. The aim of this łhandlingž by the solver
back-end is to provide properly initialized data structures, workspace and manipulation
functions to both the caller and the (numeric) main components of the solver.

The basic steps in a normal solver run are as follows:

1. The caller creates instances of the data structures.

2. optional: The solver parameters are initialized to default values, or to custom values
by reading an XML parameter őle.

3. The caller speciőes the problem dimensions.
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4. The back-end initializes all data structures, allocating storage for variables, matrix
structures and workspace, and setting all counters, ŕags etc. to default values.

5. The caller speciőes initial values, bounds and the sparse matrix structures (if
available), using the previously allocated storage.

6. The caller starts the solver.

7. The solver, on its őrst call, uses the workspace handling routines to request a
number of workspace slices, depending on the dimensions and other input of the
caller, and continues its normal operation afterwards.

8. The solver requests additional workspace slices during its operation, either perma-
nently (on-demand) or for temporary storage.

9. Upon reaching a termination criterion, the solver őnally returns to the caller, who
will usually save or otherwise process the results.

10. The back-end frees all allocated storage. The data structures can now be discarded
or reused for another run, starting at 2.

1: Create instances

This will usually just consist of statically creating instances through

TYPE (OptVar) :: opt

TYPE (Workspace) :: wsp

TYPE (Params) :: par

TYPE (Control) :: cnt

OptVar opt;

Workspace wsp;

Params par;

Control cnt;

It is also possible in both languages to create pointers and allocate them at runtime. A
technical complication of both approaches is the default initialization of the initialized
ŕag in every data structure that serves as a safeguard against overwriting of user-deőned
values by defaults and memory leaks through double allocation of pointers. Currently
the caller has to ensure that the ŕag is false, or the back-end will skip all initialization.

A considerable extension of the approach to allocate pointers to the structures at run-time
is to employ the pimpl idiom discussed in section 3.7

2: Initialize parameters

The caller can optionally initialize the parameter structure, or leave it to the back-
end to initialize it to default values. The usual approach is to use the XML module
(cf. section 2.5) to read a complete or partial parameter őle to set all parameters to
speciőed values; parameters not present in the őle are set to their hard-coded defaults.

When Worhp is integrated into another piece of software, this behavior may be undesir-
able, since the program may need to provide a diferent (sub)set of default parameters,
while still allowing the parameter őle to override them. Section 2.5.2 describes how
Worhp has decoupled initialization and parameter reading to accommodate these cases.
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3: Specify problem dimensions

This step informs Worhp of the essential problem dimensions, which are required to
provide storage for initial guesses, bounds and matrix structures. The caller will at least
specify n and m, and the number of nonzeros of the derivatives, or the choice to treat
them as dense matrices. The example below chooses dense DF with structure initialization
by Worhp, dense DG without structure initialization by Worhp, and a Hessian HM whose
nonzeros admit a diagonal structure with 10 sub-diagonal entries (since the diagonal is
always dense, as laid out in section 2.2).

opt.n = 11;

opt.m = 42;

wsp.DF.nnz = WorhpMatrix_Init_Dense;

wsp.DG.nnz = opt.n * opt.m;

wsp.HM.nnz = opt.n;

The WorhpMatrix_Init_Dense ŕag is actually equivalent with setting nnz to its maximum
possible value and therefore tautological; Worhp now handle both cases identically.

4: Call the initialization routine

With given problem dimensions, calling

CALL WorhpInit(opt , wsp , par , cnt)

IF (cnt%status /= FirstCall) THEN

PRINT *, "example: Initialisation failed."

STOP

END IF

will provide initialized data structures with allocated storage for initial values, bounds
and matrix structures (if not already speciőed for ŕagged dense matrices). In addition,
all internal

5: Specify initial values and structures

In this step, the caller provides initial values to primal and dual variables, and deőnes
the bounds and (sparse) matrix structures, unless the latter are deőned by Worhp in
the previous step. The caller can actually łpollž a matrix, whether its structure needs to
be deőned through the NeedStructure ŕag of every matrix. This is useful for problems
with dynamic behavior with respect to the matrix dimensions, and especially for the
Hessian matrix HM, which can by the solver parameters be replaced by a blocked BFGS
whose structure is determined and deőned by Worhp; the matrix arrays are then left
unallocated, in which case deőning its structure without qualifying the respective code
leads to memory access violations.
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for(i = 0; i < opt.n; ++i) {

opt.X[i] = 1.0;

opt.Lambda[i] = 0.0;

opt.XL[i] = -5.0;

opt.XU[i] = 5.0;

}

for(i = 0; i < opt.m; ++i) {

opt.Mu[i] = 0.0;

opt.GL[i] = -par.Infty;

opt.GU[i] = 1.0;

}

if (wsp.HM.NeedStructure) {

for(i = 0; i < wsp.HM.nnz; ++i) {

/* Fortran indexing! */

wsp.HM.row[i] = wsp.HM.col[i] = i + 1;

}

}

Note that this code snippetÐif continuing the above snippetsÐfails to deőne the sparse
structure of DG, even though its dimension clearly indicates that DG must be dense.

6: Start the solver

This is a simple call of the form

IF (GetUserAction(cnt , callWorhp )) THEN

CALL Worhp(opt , wsp , par , cnt)

! Do not reset callWorhp

END IF

The call needs to be qualiőed by the GetUserAction, since the Reverse Communication
(RC) őnite diference module łswitches ofž the NLP solver during its own operation.

7 & 8: Internal operations

These are operations internal to the solver, which involve the workspace handling routines
described in section 3.4.

9: Terminate the optimization run

As laid out in section 2.4, the main iteration loop is built by the caller, and can in
principle take any form. In all, but exceptional cases, however, the default form
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while(cnt.status < TerminateSuccess && cnt.status > TerminateError) {

/* function evaluations , iteration output , etc. */

}

will do just őne. Worhp sets cnt.status to values above TerminateSuccess, if suc-
cessful, and below TerminateError otherwise. The StatusMsg routine then serves to
translate the value of status into a human-readable message.

10: Free allocated storage

With Worhp making increasing use of dynamic memory allocation, this last step is
mandatory to release all allocated memory, to either post-process the optimal solution,
or to begin another solver run. The clean-up routine is very simply called as

CALL WorhpFree(opt , wsp , par , cnt)

Besides releasing all allocated memory, WorhpFree also zeros pointer members and resets
workspace slice indices to ensure that no access to stale data is possible. The data
structures can now be discarded or reused for another optimization run, starting at the
parameter initialization.
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3.2. Automatic code generation

Now that section 3.1 has established the technical means to create one-to-one mappings
between a C struct and a Fortran TYPE, the next hurdle is to maintain the mapping as
the solver evolves: As of mid-2012, the trunk development line of Worhp has about 400
data structure components (not counting nested ones) shared between four structures.
Any modiőcation to these structures, such as adding a new component, has to be
performed identically on both the C and Fortran side, or otherwise łmisunderstandingsž
will take place between both.

As a minimalistic example, consider

TYPE , BIND(C) :: ExampleType

INTEGER(C_INT) :: I

INTEGER(C_INT) :: J

END TYPE ExampleType

struct {

int j;

int i;

} ExampleStruct

which are interoperable in the technical sense, but the mapping between I and J on the
Fortran side and i and j on the C side is diferent from what we would expect.

While the above mix-up is simple to spot and repair, keeping hundreds of structure
components in sync is a drab, onerous and error-prone task for humans ś given that
computers were designed to relieve humans from work of this kind, automatic generation
of the data structure deőnition code is the obvious solution to this problem.

The software community ofers a rather large number of non-proprietary code generation
tools6. The following constraints on the code generation tool of choice help in drastically
narrowing down the options (in decreasing order of relevance):

License: The tool should be available under liberal license conditions such as Apache,
BSD, MIT or (L)GPL and open-source. This ensures simple availability for all
developers and long-term availability, even if the tool is discontinued.

Platform: With Linux being the primary development platform, the code generation
tool should at least run natively on diferent Linux platforms. Availability for all
target platforms is not necessary, since the generated source-code is committed to
the source-code repository and can therefore be compiled everywhere; only changes
to the data structures require running the code generator, but can also be emulated
manually, if the change-set is simple.

Target languages: The tool should not be tailored to any speciőc language ś many are
designed to produce back-end code for web-applications, such as XML, HTML,
ASP.NET, Java, SQL and others. No tool that targets Fortran could be identiőed,
so it should be language-agnostic, or at least simple to use for generating a language
that it was not designed for.

6http://en.wikipedia.org/wiki/Comparison_of_code_generation_tools lists more than 30 tools,
about half of which are openly licensed (retrieved 2013-03-08)
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Data representation: The code generator should use a single data őle using a simple
syntax for describing the data structure components and templates for generating
the individual C and Fortran source őles.

Extensibility: The generator tool should be easily extensible in addition to its own
functionality, which involves providing code snippets in the language the tool is
written in, if it is based on an interpreted or JIT language like Python or C#.

Tool language: The tool itself should be written in a common language that is readily
available for Linux as primary development platform, such as C, C++, Perl, Python,
. . . , or with some restrictions Java, C#, Lisp/Scheme, since these depend on
additional runtime environments.

The code generation tools GNU AutoGen[47] and cog [3] both satisfy the above require-
ments.

AutoGen is written in C and uses guile[5] as Scheme interpreter, which allows seamless
extension of the inbuilt functionality through user-deőned Scheme functions. It reads a
single deőnition őle containing arbitrary key-value pairs, similar to C struct deőnitions,
and template őles with AutoGen-speciőc syntax (which actually consists mostly of
Scheme functions embedded in AutoGen tags) to generate output őles. AutoGen is
able to generate any textual output format, depending only on the template őle, since
it is completely language-agnostic; it does ofer some auxiliary functions that facilitate
generating C őles, though.

cog is based on Python and its design is more general than AutoGen: cog searches for
special tags in a őle (which can have any textual format, provided it has block or line
comments) and executes the enclosed code with the Python interpreter. This makes it
possible to use cog for small, inline code generation task, but also for mimicking the
behavior of AutoGen by including a central deőnition őle in a Python-readable format.

3.2.1. Data structure definition

The current code generation for Worhp is based on AutoGen, since the concept and
syntax of the deőnition őle is closely related to the (initial) task of the code generation;
in fact, the initial deőnition őle was semi-automatically generated from the existing data
structure code using sed and Perl, a task that was simpliőed by the close correlation
between the AutoGen deőnition őle syntax and the data structure C headers.

The most important distinction made by the code generation is between basic and struct
i.e. derived types, and between scalars and arrays, since the initialization mechanisms
difer greatly. Basic types are double, float, int, size_t, counter, rwmt_index,
iwmt_index and bool, which are translated to the corresponding types in C and Fortran
through simple translation tables. If a component őts none of the types above, it is
assumed to be a struct type; struct types are derived types, such as the WorhpMatrix

type, which have dedicated initialization and clean-up routines. Arrays may be static or
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dynamic; both have sizes, and may have initial values. To accommodate dynamic arrays,
the code for allocation and deallocation is automatically generated.

Since the solver parameters in Params (usually) have tightly prescribed valid values, it
makes perfect sense to add them to their deőnition and generate code that performs
value/range checking and, if necessary, issues a meaningful warning and sets them to
sensible defaults.

For all types without given initial values, code is generated that sets them to deőned
values (usually 0, NULL or equivalent, −1 for workspace slice pointersÐsee section 3.4)
to ensure deterministic behavior. The only drawback to this approach is the fact that
it precludes valgrind from tracking accidental use of uninitialized values. On the other
hand, since all components are initialized, no such use actually exists.

3.2.2. Definition file

The deőnition őle is one of two main components of the automatic code generation
framework. Listing 3.4 shows a snippet of Worhp’s data structure deőnition őle for
(part of) the OptVar structure. The whole őle is about 3000 lines and 70KB in size.

WorhpData = {

struct = OptVar;

inst = opt;

member = {

name = n;

type = int;

};

member = {

name = F;

type = double;

value = "0.0";

};

member = {

name = X;

type = double;

size = n;

};

};

Listing 3.4: Snippet of the data structure deőnition őle

As mentioned above, AutoGen allows free choice of the keys used. Here, each instance of
WorhpData starts one of the four data structures. struct is the name of the structure
to be deőned, and inst is used for instances of this structure, most importantly in the
generated function interfaces. The structure components are enumerated as member

(since this is shorter), which have (quasi-)mandatory őelds name and type. Table 3.3
lists additional őeld names recognized by the code generation.
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Adding a new data structure component is achieved by adding it to the central deőnition
őle and running the appropriate command to auto-generate the source code. This is
automatically performed by make, which monitors the time stamps of deőnition őle and
the generated őles and is thus able to trigger the code generation if the deőnitions were
changed ś see section 4.1.5. No check or intervention is needed to ensure consistency
between Fortran and C, since AutoGen iterates through all members deterministically
and emits them in the order of the deőnition őle.

Field Meaning

name Component name

type Component data type

default Default initial value (only valid for basic types)

value Initial value (only valid for basic types). In value[i] form, overrides
default for i-th array element (C indexing).

pointer Pointer ŕag; no allocation or deallocation code is generated.

init Initialization function (used for struct types)

free Cleanup function (used for struct types)

size Dynamic array size; must be an integer component of this structure.

initif Condition for performing the automatic allocation, if size is present.

dim Static array size; dim[1] . . . dim[k] for k-dimensional array

bound Bounds on scalar values; used to generate range checking code.

valid Valid value; usually issued multiple times to enumerate valid values.

cmnt Add comment; emit stand-alone block comment, if name is absent.

cmntC Add a comment that is only emitted in the C őles.

Table 3.3.: Recognized őelds of the member key in the the AutoGen deőnition őle, and
their function

To deőne named constants or őxed array dimensions, a second set of top-level keys exists,
named Constant, with őelds name, value, and cmnt; the ŕag dimension is attached to
constants that are used as array dimensions, although this (currently) does not require
any special handling, hence it is ignored by the templates.

With over 400 components contained in the deőnition őle, it is sensible to adhere to some
kind of ordering, which is also reŕected in the generated code. The current convention
is to (roughly) sort components by size and type, and inside each type alphabetically
by name. Exceptions exist, some for łhistoricž reasons and others for increasing locality,
i.e. keeping dynamic array sizes like dim_SBFGS_blockval close to the respective array.
Since re-sorting breaks ABI compatibility, it should be performed sparingly.

71



3. Technical Implementation

3.2.3. Template files

The AutoGen template őles use a rather peculiar syntax, embedding the AutoGen
expressions in user-selectable (within reason) two-character opening and closing tags,
such as [= and =] or <$ and $>. The AutoGen expressions consist of macros deőned by
AutoGen, such as FOR .. ENDFOR, IF .. ELIF .. ELSE .. ENDIF etc., or evaluations
of Scheme functions, triggered by the (. (<function> <args>)) syntax7. The basic
template stub

[= FOR WorhpData =][=

FOR member =][= (get "type") =] [= (get "name") =];

[= ENDFOR =][=

ENDFOR =]

emits semicolon-separated lines of type-name pairs, as needed for generating the C header
őle; for each instance of WorhpData in the deőnition őle, it iterates through all member
instances and emits the values of their type and name keys (without checking for presence
or empty values etc.). The output generated from listing 3.4 by this template would be

int n;

double F;

double X;

We observe that whitespace inside AutoGen tags is insigniőcant, while everything outside
AutoGen tags is emitted in the output őle. This, together with the two-character start/end
tags and the copious (over)use of parentheses in Scheme, leaves AutoGen template őles
looking rather cluttered. Proper indention of nested macros together with generous use
of comments (started by the # sign) is used in Worhp’s template őles in an attempt to
expose the underlying structure and logic. It is probably safe to assume that a cog-based
solution in Python would look cleaner.

The simple template above is clearly incomplete, since X is supposed to be a pointer (for
dynamic allocation) instead of a scalar; furthermore, we also need to accommodate one- or
multi-dimensional arrays of constant sizes or nested structs as data structure components;
for the former, we have to take into account the reverse ordering of dimensions of C
in comparison to Fortran; the deőnition őle deőnes static dimensions in Fortran order,
hence we have to consume them in reverse order. The complete template algorithm for
generating the C header deőnition is described by algorithm 3.

The algorithm for generating the corresponding Fortran deőnitions is essentially equivalent
to algorithm 3, but difers in its details: static array dimensions are given in natural
order, only string members have to be handled diferently, since the static array char

string[N] corresponds to CHARACTER(LEN=N) :: string in Fortran.

7notice the copious use of parentheses for which Scheme/Lisp is (in)famous.

72



3.2. Automatic code generation

Algorithm 3 C struct deőnition generator
for <member> in <WorhpData> do

if <name> is not empty then
if <cmnt> is not empty then

emit /* <cmnt> */ ◃ used to comment single components
start new line
emit <type> ◃ translation to C type by table look-up
if <size> or <pointer> is present then

append "*"

emit <name>
for k ← <dim[i]> in reverse order do ◃ empty loop if dim is not present

append [k]

terminate line with ";"

else
if <cmnt> is not empty then

emit <cmnt> as block comment ◃ used to structure the generated code

3.2.4. Applications of automatic code generation

The initial motivation for generating code was to keep the data structure deőnitions
between C and Fortran in sync; this task is clearly accomplished. Since the inception
and implementation, however, additional applications have become apparent, turning
the code generation framework into a formidable workhorse. Its present incarnation, in
addition to its initial task, generates code that

• performs a sanity check on the solver parameters and, where necessary, resets them
to sensible defaults;

• deőnes serialization to and deserialization from XML őles (see section 2.5.1) for
each and every data structure component;

• in interactive mode (see section 3.3), displays lists of all accessible components as
part of the help command, and allows the user to select most of the components
for inspection or modiőcation.

Code generation also simpliőes the introduction of dedicated dynamic arrays to succeed
the legacy notion of a shared, large workspaces; even though Worhp implements an
automated form of workspace management (see section 3.4), this should be considered
as a workaround for an obsolete software design pattern rather than a contemporary,
well-designed solution: The conciseness and maintainability of (de)serialization code for
only two workspaces provided the single most important argument for holding on to the
workspace design pattern. However, with the advent of efortless automatic generation of
this code for an arbitrary number of data structure components, the workspace design
pattern has lost its justiőcation with respect to (de)serialization, and will probably be
phased out in the near future.
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Initialization and clean-up code

The őrst obvious extension to generating the data structure deőnitions is the generation of
code to initialize and free them. For initialization, Worhp receives the essential problem
dimensions from the caller and allocates arrays and matrices according to these, and sets
all scalar values to default values (0 for counters, -1 for workspace slice indices, NULL for
pointers, and individual values for the parameters). The clean-up is responsible for freeing
all allocated memory and for putting all data structures into a deőned, deterministic
state again; this is important for extensive programs that perform memory-intensive
post-processing tasks after solving an optimization problem, and for running multiple
optimization problems sequentially by re-using the same data structures.

Worhp provides routines WorhpInit and WorhpFree for the caller to perform these
tasks. Besides some auxiliary tasks, their most important purpose is to call the solver-
internal routines Internal_Init<struct> and Internal_Free<struct> for <struct> ∈
{OptVar, Workspace, Params, Control}, all eight of which are completely auto-generated
for all four data structures.

Parameter sanity check

One of Worhp’s features is the sanity check on the parameters available to the user.
Although the feature is almost trivial to implement, an estimated 95% of it consisting of
simple range or valid value checks, it is shunned by some established pieces of numerical
software, possibly because of the repetitive and mechanic nature of the code that performs
the sanity check; Worhp has about 150 runtime parametersÐa few more, if program-
dependent parameters, such as MatrixCC, are included in the count. Again, automatic
code generation is perfectly suited to generate code for performing mechanic numeric
range checks, which are formulated in the deőnition őle through the valid őeld to
enumerate valid values, and the bound őeld to deőne upper or lower (numeric) bounds.
The current deőnition őle contains about 130 instances of these őelds. The remaining
parameters cannot be mechanically checked for correctness, requiring manually created
specialized code.

Generation of (de)serialization code

The most extensive application of AutoGen to generate highly repetitive code in Worhp

targets the serialization and deserialization code that translates between the data struc-
tures and XML őles in a platform-independent way. Figure 3.2 shows the parts of the
serialization module; although only a single part of it is auto-generated, it accounts for
more than 80% of the code in all mentioned őles.
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Per-component auto-generated code

complex type breakdown

basic type to node conversion

lightweight XML library abstraction layer

XML library

zlib compression

C runtime

C_Worhp_XML.c

C_XML.c

xml.xw.h

xw library

Figure 3.2.: Hierarchy of the serialization module, with the most speciőc parts at the
top and the most generic ones at the bottom. The per-component part is the most

substantial part, accounting for more than 80% of the code.

Figures and conclusion

All in all, AutoGen is used to generate 11 őles with a total of almost 600KB and over
16,500 lines, although 29% of both őgures are accounted for by manually created include
őles, which contain code that is too specialized to be auto-generated. All templates and
the deőnition őle together make up only 100KB and contain less than 4500 lines (3000
of which account for the deőnition őle).

Given that the initial setup needed considerable efort, while the continued maintenance
and extension is simple, and assuming that the distribution of efort is inverted in the
manual approachÐsimple to set up, but increasingly harder to maintain with growing
sizeÐ, automatic code generation is a maintenance boon for Worhp. Even if, for the
sake of the argument, we assume that code which generates code is twice as hard to write
and maintain as manually generated code (together with keeping all őles in sync), the
őgures above suggest that automatic code generation still has a considerable advantage
over writing all őles by hand.
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3.3. Interactive mode

The interactive mode of Worhp is motivated by the desire to be able to inŕuence (long-
running) optimization runs in real time. Examples for possible runtime interventions
include increasing the amount of output to inspect conspicuous iteration progress, őne-
tuning parameters such as MaxIter (to prevent unsuccessful termination), activating a
feasibility mode, or saving the current iterate to a logőle. With traditional NLP solvers,
this is either impossible to achieve, or at least requires a modiőcation of the calling
program and a restart of the optimization run.

While Reverse Communication does in principle ofer very őne-grained control over the
optimization process, its use is limited to the calling program. Equipping it with the
necessary degree of intelligence and autonomy to react to any conceivable condition that
would cause a human user to intervene is an unrealistic goal Ð a much more feasible
approach is to actually enable runtime interventions: The interactive mode listens to
keyboard commands Ctrl+L and Ctrl+I.

Ctrl+L

Ctrl+I

ITER OBJ CON sKKT FLAGS TIME

[ 0| 18] -1.32300000E+01 9.87E-01 2.24E-02 Uin 4.00E-02

Worhp: Writing logfile

* Logfile written

[ 1| 119] -2.24623190E+02 1.78E+00 4.14E+02 Uin 3.60E-01

[ 2| 75] -2.23659601E+02 1.60E+00 3.22E+02 Uin 5.40E-01

(Worhp) norm opt.x

9.5461941162E+03

(Worhp) c

[ 3| 36] -2.23191095E+02 1.58E+00 8.76E+02 Uin 6.60E-01

The Ctrl+L keyboard command instructs Worhp to write the current iterate to a
logőle (a partial or complete Hotstart őle, see section 2.5.1) but otherwise continue
the iteration process, while Ctrl+I pauses the optimization to present a rudimentary
prompt to the user, ofering various ways of data inspection and interaction through a
number of simple commands. Listing 3.5 shows the help-screen output of the interactive
mode, enumerating the commands understood by it, and listing 3.6 shows an exemplary
listing of the components of the OptVar structure using the 1-argument form of the help

command that is intended for use as reference.

Implementation

The interactive mode is implemented through a Fortran-based parser: Each user input is
assumed to consist of at most 3 tokens, separated by whitespace. The őrst (and possibly
only) token is always a command, possibly followed by an argument (two arguments in
the set case). If the second argument is given, it is assumed to be the name of a data
structure component. The code auto-generation is used to create and maintain a list
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(Worhp) help

Usage: CMD [ARGS]

Control and help commands

continue | c Continue the optimisation.

help | h Show this help.

help <STR > List members of data structure <STR >.

status Show status.

step | s Step over next call.

terminate | t Gracefully terminate the solver.

Commands for inspecting WORHP data (CMD ITEM)

Specify ITEM in C syntax , e.g. "opt.N" or "wsp.nrws"

absmax Print max absolute value.

absmin Print min absolute value.

max Print max value.

min Print min value.

norm | norm2 Print 2-norm.

norm1 Print 1-norm.

normmax Print max -norm.

print | p Print a data item.

Commands for changing WORHP data (CMD ITEM VALUE)

set Set scalar or vector ITEM to VALUE.

Listing 3.5: Help output of interactive mode (highlighting added subsequently, not [yet]
implemented)

of selectable components, to display them in a help screen, as shown in listing 3.6, and
organized in a long SELECT CASE statement of the form

CASE("opt.n")

P%iPtr => opt%n

CASE("opt.m")

P%iPtr => opt%m

CASE("opt.f")

P%dPtr => opt%F

CASE("opt.x")

CALL C_F_POINTER(opt%X, X, [opt%n])

P%dVec => X

Upon selection of a component, an appropriate Fortran pointer is pointed to the selected
component. The pointer structure P is then passed to the handling routines, which
perform the action selected by the őrst argument. This simple structure is only made
possible by the introduction of automatic code generation (see section 3.2), since the
code for the selection process is made up of roughly 800 exceedingly repetitive lines of
Fortran code, which is unsuitable for manual maintenance.
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(Worhp) help opt

Selectable members of "OptVar":

int opt.n

int opt.m

int opt.nGPart

int opt.iGPart

double opt.F

double [] opt.X

double [] opt.XL

double [] opt.XU

double [] opt.Lambda

double [] opt.G

double [] opt.GL

double [] opt.GU

double [] opt.Mu

int[] opt.GPart

Listing 3.6: Detail help output of interactive mode (highlighting added subsequently,
not [yet] implemented)

Limitations

The current implementation state of the interactive mode is best described as proof-of-
concept: Due to the technical nature of the keyboard-event-handler, it is only available on
Linux platforms (and there limited to the AMPL and the library interface, since MATLAB
heavily interferes with I/O). Its coverage is limited to primitive components, excluding
the various structs used (such as the derivative matrices), element-wise inspection and
manipulation of vectors is not possible and no failsafes are implemented to prevent
łdestructivež manipulations that will crash the solver.
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3.4. Workspace Management

The use of two large workspaces (integer and real/double) to provide temporary workspace
or to hold persistent vector-valued quantities is the only (mis)feature of legacy Fortran
software that is still present in Worhp. Its introduction dates back to the inception
of Worhp, where it enabled serialization and interoperability with C. However, the
introduction of automatic code generation and the sparse matrix storage redesign raise
the question, whether its use is still appropriate.

3.4.1. Automatic workspace management

Old FORTRAN codes require workspace, since the language did not allow dynamic mem-
ory allocationÐat least not in a standard-conforming way that was compiler-independent.
Therefore, the calling program had to provide large enough workspace by allocating
suiciently large, static arrays in the main program. This approach was initially chosen
by the FORTRAN fathers to allocate all memory on the stack, which has a performance
advantage over heap storage. Nowadays however, modern compilers may allocate even
static arrays of a certain size on the heap, and dynamic memory allocation is ubiquitous,
leaving the legacy approach obsolete.

Worhp uses a hybrid approach to workspaces: First, it estimates the required workspace
size during initialization, using known dimensions, estimates and some heuristics. The
integer and real workspaces are then allocated using the malloc family of functions
from the C standard library. This workspace is then partitioned into so-called slices
(derived from the term array slice for reasons that will become obvious) by the workspace
management routines. The automatic management of the workspace is performed through
a table of allocated slices, as shown in table 3.4.

1-indexing 0-indexing

Start End Start End size ID name

0 9 1 10 10 1 vec1
10 14 11 15 5 2 vec2
15 34 16 35 20 0
35 44 36 45 10 4 vec4

Table 3.4.: Example workspace management table. Note the third entry with ID 0,
meaning that it has been freed and can be reused for the next allocation.

The Workspace Management Table (WMT) contains start and end indices for each
workspace slice, as well as its size, a numeric ID and an optional name (for monitoring
and debugging purposes). Each workspace has its dedicated WMT, thus referred to as
IWMT (for integers) and RWMT (for reals). The łpointerž to an allocated slice is either
its row index in the WMT, the ID, or the name. IDs are identical to the row index, but
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were introduced to enable defragmenting the workspace, should the need arise, in which
case the row indices would change, while the IDs remained constant. Workspace slices
are supposed to be accessed through Fortran’s array slice syntax v(n1:n2), although
sub-slice or element-wise access is possible. Accessing a workspace slice requires to őrst
set up a Fortran pointer to the respective workspace, since these are C pointers, or in
Fortran syntax TYPE(C_PTR)F03 , which cannot be accessed directly, but only through a
Fortran pointer type initialized by the intrinsic C_F_POINTERF03 subroutine:

DOUBLE , POINTER :: rws (:)

CALL C_F_POINTER(wsp%rws , rws , [wsp%nrws])

Given the (Fortran) workspace pointer, the slice with index k can then be accessed
through

rws(wsp%RWMT(k,3): wsp%RWMT(k,4))

Since this is rather unwieldy, slice access is provided through preprocessor macros

X_S(wsp,idx,iws) for a whole slice,

X_N(wsp,idx) to return the size of the slice,

X_E1(wsp,idx,iws,i) to access a single element with 1-indexing (i.e. Fortran-style
indexing), and

X_R1(wsp,idx,iws,i,j) to access a sub-slice (łrangež) with 1-indexing,

where X ∈ {I, R} for real and integer versions. Especially the range macro explains, why
the 1- and 0-indexing start and end indices in table 3.4 seem to be swapped: To access,
for instance, the őrst 2 elements of vec2 in 0-indexing, the range access macro must return
rws(11+0:11+1), whereas with 1-indexing, it must instead return rws(10+1:10+2). The
choice to save indices for both indexing ways was made to save integer additions on
access, trading (a small amount of) memory for fewer arithmetic operations, although it
remains unclear, whether the alternative would be measurably slower (or faster).

Advantages

The main advantage of automatic workspace management is that it reduces sources of
(human) error, when partitioning the workspace manually; the predecessor of Worhp

sufered severely from this during some stages of its development. Slices are allocated
by the InitRWSlice and InitIWSlice subroutines, which search for free space in the
workspace and allocate it, or provide meaningful error messages upon failure to allocate;
likewise, dedicated routines to free allocated slices exist. This enables the use of the
workspace management for both providing temporary storage in solver subroutines and
persistent storage for vectors.

The Workspace data structure holds various integers that serve as slice indices; unfortu-
nately, no obvious way exists that enables the compiler to prevent confounding integer
and real workspace slice indices. An initial version of Worhp also used the workspaces
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to hold the sparse matrices; the sparse matrix data structure was essentially a wrapper
around workspace indices and associated dimensions.

Besides eliminating sources of error, the workspace approach enabled the serialization of
the data structures (before automatic code generation), since only two huge workspaces
and a number of slice indices had to be (de)serialized, which can be managed through
manually written code.

Disadvantages

Since the matrices were held there, both workspaces needed to be of signiőcant size,
which is especially critical given Worhp’s design goal to solve large-scale problems.
This is further aggravated by two factors: On 32-bit systems, the workspace sizes could
overŕow the integer range, and thereby the maximum size allocatable by the OS, even
if all problem dimensions were well below critical dimensions. Furthermore, especially
on systems already under load by a complex model, allocation of single, huge chunks of
memory may easily fail, even if the sum of available memory is greater, due to memory
fragmentation. The SBFGS module, with its very dynamic memory requirements put a
further strain on the workspace management; in particular, it requires temporary storage,
but cannot provide (reasonable) ex-ante estimates for the required sizes.

The redesign of the WorhpMatrix data structure had each matrix manage its own storage
requirements through the use of C pointers, permitting dynamic allocation and resizing,
and uses the Fortran2003 standard methods to access them from Fortran. This remedied
all of the abovementioned shortcomings, since the workspace sizes shrunk, did not depend
on the matrix dimensions, and the overall memory demand was distributed over various
smaller chunks.

Older versions of Worhp did not estimate the required workspace, but left the choice
to the userÐalthough it was already allocated dynamically; the user’s (forced) choice
was limited to the sizes. This would lead to unsuccessful terminations of the solver
due to lack of workspace. In particularly devious cases, the termination would happen
shortly before reaching the optimum, when extra workspace is allocated upon őnding
(and storing) the őrst acceptable solution. This shortcoming was őxed through the
initial workspace estimate used by the current version of Worhp, depending on known
dimensions, estimates and heuristics.

Finally, the workspaces are a debugging burden, since the interpretation of their content
depends on the workspace management tables, which greatly complicates the use of
debuggers to inspect the solver data.

3.4.2. Dedicated dynamic memory

The rationale for the workspace approach was two-fold:

• Storage of the sparse matrices: Now obsolete through the WorhpMatrix type with
separate memory management.
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• Keeping the serialization code suiciently concise for eicient manual maintenance:
Left obsolete by automatic generation of the (de)serialization code.

Worhp has therefore been transitioning to dedicated dynamic memory in the form of C
pointers to preserve interoperability with C. This mostly applies to persistent storage for
vectors in the Workspace structure, while routine-local temporary storage is provided by
ALLOCATEF90 , taking care to prevent allocations inside loops or heavily used code sections
to strictly limit the overhead from dynamic memory management. As soon as existing
workspace slices are transitioned to dedicated storage, the workspaces can continue to be
shrunk, until they can őnally be completely removed.

The őrst application to use dedicated dynamic was the SBFGS module, which requires
signiőcant amounts of storage, but cannot provide reasonable ex-ante estimates. This is
solved through a dedicated C pointer, and combined with reallocation accessible from
Fortran by deőning a Fortran-C-binding interface to the C standard library routines.
The memory requirement of the working SBGFS method is monitored, and if additional
memory is required, the amount of allocated storage is doubled. This approach is
conservative enough to limit unused (= wasted) memory, and the number of required
reallocation steps grows logarithmically; this is a standard approach to handle dynamically
growing memory requirements, and is also used, for instance, by implementations of the
STL vector class in C++.

Dedicated dynamic memory requires a C pointer and its dimension. Worhp uses
conventions of the form

size_t dim_SBFGS_blocksize;

int *SBFGS_blocksize;

to associate vectors with dimensions. Dimensions always precede the vectors, to ensure
that the dimension is known before reading the vector from a Hotstart őle.

Performance considerations

Dynamic memory management causes overhead, which can be drastic if allocate or free
operations are performed inside a heavily rolling loop. If care is taken to prevent this
scenario, no measurable adverse afects are to be expected.

To make a more reliable statement, Fortran’s ALLOCATE mechanism is compared with
Worhp’s memory management through the two code snippets

DO j=1,N

DO i = 1, SIZE(idx ,1)

ALLOCATE(idx(i)%v(i**2))

END DO

DO i = 1, SIZE(idx ,1)

DEALLOCATE(idx(i)%v)

END DO

END DO
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for ALLOCATE, using the Fortran łtrickž of encapsulating the allocatable component v

inside a user-deőned type to enable arrays of it, and

DO j=1,N

DO i = 1, SIZE(idx ,1)

CALL InitIWSlice(status , wsp , idx(i), i**2, ’test’)

END DO

DO i = 1, SIZE(idx ,1)

CALL FreeIWSlice(status , wsp , idx(i))

END DO

END DO

External timing with the intrinsic time command of bash to measure the wall time for
N ∈ {103, 104, 105, 106} (idx has size 50) is used to determine a simple linear regression
with R, which gives results

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.348e+00 2.474e-02 54.47 0.000337 ***

N 6.849e-06 4.924e-08 139.10 5.17e-05 ***

for ALLOCATE and

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.366e+00 2.086e-02 65.46 0.000233 ***

N 4.594e-05 4.152e-08 1106.49 8.17e-07 ***

for Worhp workspace. Both results show an extremely good őt of the linear models,
which are

tALLOCATE(N) ≈ 1.35 + 6.8 · 10−6 · N and

tIWSlice(N) ≈ 1.37 + 4.6 · 10−5 · N.

Both methods for dynamic memory management have almost identical ofsets (overhead
of the surrounding program, which is equal for both), but Fortran ALLOCATE is about
4.6·10−5

6.8·10−6 ≈ 6.7 times as fast as Worhp’s workspace management. Putting it in other
terms, a combined call of ALLOCATE/DEALLOCATE requires roughly 270 ns8, whereas the
InitIWSlice/FreeIWSlice pair adds up to about 1800 ns. Regarding the complexity of
today’s super-scalar CPUs with various cache levels, these absolute measurements can
at best provide rough estimates for actual numeric software under load, but the timing
ratios provide more reliable guidance, since the test conditions are equal for both.

Considering that Fortran pointers are rather heavy-weight compared to the rudimentary
C pointers, carrying stride and bounds information, and that Fortran ALLOCATE internally
uses malloc, it is clear that the C standard library functions have even lower overheads
then their Fortran siblings. In Fortran, an additional call to C_F_POINTERF03 is required

8Core i7-2600, Ubuntu 12.04 x84_64, gfortran 4.6 with -g -O3 flags
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to access both the Worhp workspace and the dedicated dynamic memory, which causes
some additional overhead. Measurements using the callgrind tool of valgrind indicate,
however, that C_F_POINTER calls are rather light-weight, requiring 63 instructions and
8.7 ns per call to dynamic libgfortran, and 55 instruction and 6.8 ns per call to the
static version.

Conclusion

The use of workspaces, along with the access macros to keep the code concise, and
automatic workspace management through tables to eliminate sources of (human) error
was an appropriate solution to enable serialization and reasonably dynamic memory
management. The workspace approach carries with it various disadvantages, some of
which afect Worhp’s performance as solver for large-scale optimization problems. With
the redesign to workspace-independent sparse matrix structures and the introduction
of automatic code generation for serialization, the workspace approach is left without
obvious advantages, and a technically feasible alternative exists in the form of dedicated
dynamic memory. Since the latter also has a performance edge over Worhp’s memory
management through WMTs, the only reasonable conclusion is to phase out the legacy
workspace approach, and replace it by dedicated storage. The question whether to
perform this as sudden, disruptive replacement, or a slow, incremental one can only be
answered in consideration of the currently active developments.
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3.5. Internal XML parser

Section 2.5 describes the rationale and applications of the serialization module. While it
was backed by the Gnome XML library libxml2 [73] since its inception, the dependency
on an external library hampers portability. In particular, libxml2 (together with its
dependencies) is a maintenance burden for non-unixoid platforms. The various XML
standards (Namespaces, XPath, Relax NG, XInclude, XSLT and others) it implements
are irrelevant for our purposes and needlessly increase complexity and code size; while
the conőguration system of libxml2 allows to disable many of these modules, internal
dependencies seem to forbid building a truly minimal XML library tailored to our needs.

The obvious solution is a dedicated, tailored, minimalistic XML parser that focuses on
speed, low resource use, and portability. The only required functionality are serialization
and deserialization between a DOM tree and an XML őle; features like DTD checking or
high tolerance against malformed documents are of little relevance, because the parser
will encounter two types of őles only: Parameter őles, which are derived from the valid
default parameter őles, and Hotstart őles, which are generated by Worhp and thus safe
to assume as being valid.

Inspired by [77], the parser is based on Ragel[69, 70] to create a plain C őnite-state
machine (FSM) to parse the XML subset explained above, using the very terse grammar

1 attribute = ^(space | [/ >=])+ >buffer %attributeName space* ’=’ space*

2 ((’\’’ ^’\’’* >buffer %attribute ’\’’) | (’"’ ^’"’* >buffer

3 %attribute ’"’));

4 element = ’<’ space* >buffer ^( space | [/ >])+ %elementStart

5 (space+ attribute )* :>> (space* (’/’ %elementEndSingle )? space* ’>’

6 @element );

7 elementBody := space* <: ((^’<’+ >buffer %text) <: space *)? element?

8 :>> (’<’ space* ’/’ ^’>’+ ’>’ @elementEnd );

9 main := space* element space*;

which has many similarities to regular expressions, but is interspersed with FSM instruc-
tions for extra unreadability. The Ragel code is mixed with the target codeÐC code in our
case. Ragel then reads the őle and reproduces the original őle, with the Ragel instructions
replaced by FSM code. The generated FSM code implements either a table-driven or
goto-driven FSM (the latter being faster, but larger in code sizeÐroughly 800 lines of C
code in case of Worhp’s XML parser), whose code is completely unmaintainable, but
also not usually in need of any maintenance. Modiőcations are performed in the mixed
C-Ragel source őle, which is then again transformed by Ragel into a plain-C őle. This
also implies that Ragel is only required, if changes to the FSM are introduced, while in
all other cases the generated C őle can be used; this is important to limit the number of
dependencies on a build platform.

The generated FSM steps byte-wise through the XML őle, matching elements, attributes
and such according to its grammar. The buffer term is one of several embedded actions
that calls an internal snippet of code to store the current FSM pointer for access to found
elements, attributes, and content.
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Figure 3.3.: Chunk-wise operation of the XML parser. This method assumes that the
largest element found is bounded in size by maxLineLength; monitoring the FSM
pointer p at the start and end of elements is then suicient to ensure that the read

bufer never runs empty, before the end of the XML őle is reached.

The parser is combined with zlib[24] to directly read compressed őles; while compressing
őles is certainly contra-productive for parameter őles, since compressed őles are not
human-readable, it is useful to reduce the size of Hotstart őlesÐtypically by a factor of
almost 10. Fortunately, zlib’s gzread reads uncompressed őles as well, without requiring
special ŕags. To reduce the memory footprint in case of large (Hotstart) őles, XML őles
are parsed in chunks, instead of uncompressing the whole őle in a single pass; while
this increases the algorithmic and runtime complexity over the one-pass approach, it
enables parsing greater XML őles. The principle is sketched in őgure 3.3. Since the
parser constructs a DOM, the XML size is still limited by available memory, and requires
SAX-like approaches to reduce its memory footprint, i.e. an event-driven XML parser
that directly maps encountered elements to the respective data structure components
during a single pass through the őle. Since this would entail a complete redesign, a SAX
parser will only be considered, if the XML őle size becomes a limiting factor. Supposedly,
the automatic code generation would greatly facilitate the mechanic component-matching
between XML and data structures.
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3.6. Established shortcomings, bugs and workarounds

Development and testing of Worhp has exposed a number of issues with compilers,
runtimes and other development tools, especially in the area of C-Fortran-interoperability.
The usual reaction of őnding and implementing workarounds often accounts for quirky
or outright strange code constructs, whose rationale is worth documenting.

3.6.1. Intel Visual Fortran 10.1

Intrinsic C_NULL_PTRF03 constant has non-zero value9

The QPSOL component uses C-pointers collected in the QPWorkspace struct to accept
arguments and return results. Before calling QPSOL, these pointers are pointed to the
respective matrices and vectors by a Fortran caller using the C_LOCF03 intrinsic. After
the call, cleanup is performed by setting all pointers to C_NULL_PTRF03 , to prevent the
őnal free() from trying to free memory that has been allocated by Fortran, which
would result in a runtime error; note that free(NULL) is safe to call, since it performs
no action[38, ğ7.20.3.2(2)].

The Intel Visual Fortran compiler has a defect, where the intrinsic C_NULL_PTRF03 constant
has a non-zero(!) value, when using the shared runtime libraries10. This unconditionally
leads to a runtime error, since Worhp will try to free() memory belonging to the
Windows kernel (i.e. memory reserved by the runtime-linker for the Fortran runtime
DLL).

3.6.2. Windows

Behavior of atof depends on locale

The whole family of IO routines of the Windows runtime depends on the currently active
locale. While, in all fairness, this is not a bug, it can nevertheless lead to very surprising
results when parsing parameter or Hotstart őles (described in section 2.5.1) subject to
diferent locale settings. The C locale deőnes . (point) as decimal point according to
the ANSI standard, with the result that the textual representation of ŕoating point
numbers is of the form 9.87e+012. If, however, the locale deőnes , (comma) as decimal
point, ANSI-conforming representations of ŕoating point numbers are parsed incorrectly.
Consider the line

<DOUBLE name="eps">2.2204460492503131e-16</DOUBLE>

9Intel article DPD200049162 on the issue – retrieved 2011-09-27
10According to Intel developer Steve Lionel, this is due to a missing dllexport annotation, which results

in the constant to attain its location in memory (where the shared runtime library data section
resides), instead of the value at this location (being 0x0 of appropriate length), i.e. essentially one
missing level of pointer dereferencing is causing the defect.
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from Worhp’s parameter őle. This deőnes the quantity to be used as machine epsilon,
which is mainly needed for comparisons. On a Windows system with active German (or
similar) locale, , (comma) is used as decimal point, hence atof parses the 2 and discards
the rest, in particular the exponent, resulting in eps = 2 and rather odd behavior of
Worhp.

Workarounds exist:

• Retrieve the currently active decimal point by using localeconf, and if unequal
to . (point), convert all number representations in ANSI form to the current locale
by replacing . by the localized decimal point before handing them over to atof.

• Change the locale settings of the operating system. This is problematic, since only
few users will be able to, be it through lack of administrative rights or lack of
knowledge. This can also be quite disruptive to the workŕow and is therefore not
recommended.

• Use setlocale(LC_NUMERIC, "") to reset the locale settings for number represen-
tations (back to ANSI). This may have an impact on the calling program, though,
depending on the operating system.
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3.7. Maintaining compatibility across versions

This section is concerned with future directions of the Worhp implementation. Although
this is irrelevant for an academic NLP solver based on an experimental new architecture,
it is relevant for Worhp, since it is, and will continue to be, marketed as a software
product with a longer life cycle than just a few years.

A major issue of the current setup with non-opaque data structures is the fact that any
change to the structures that add, remove or modify the type of a member break binary
compatibility of the solver with existing code. Binary compatibility, also referred to as
ABI compatibility, is a desirable goal for Worhp, as it allows for simple upgrade paths:
where Worhp is included as shared library, an upgrade (for improved performance,
introduction of a new feature or őxing a bug) consists solely of replacing said shared
library by the new version.

ABI compatibility will usually require API compatibility, although from a purely technical
point of view, neither implies the other ś the ABI is concerned with the assembler level,
while the API is a concept on the source code level; changing the semantics of a function
while keeping its name and arguments does not change the ABI but does break the API,
while adding a member to a data structure is not an issue for API compatibility but
changes the ABI. In general, both should go hand in hand.

During the development of Worhp, changes (additions, deletions or renamings) to the
data structures have by far been the most common source of API and ABI breakages.

A őrst attempt at alleviating the problem is to have Worhp detect that incompatible
versions are mixed; this happens, for instance, if the shared library is replaced, while the C
headers or Fortran module őles (which deőne the data structures) are not updated, often
resulting in subtle łone-ofž-errors, i.e. observable ofsets between subsequent components.
Let us consider the example

struct {

int m;

int n;

} OldAPIStruct

struct {

int k; /* new! */

int m;

int n;

} NewAPIStruct

and assume that an updated version of the shared library expects NewAPIStruct, but
the caller passes OldAPIStruct; this happens, if only the shared library is replaced but
the headers are left unchanged, although the API has changed. The user will notice
that something is wrong, since any changes to OldAPIStruct.m are ignored (since k

corresponds to some new functionality that the user is unaware of), and changes of the
user to OldAPIStruct.n show up as changes to NewAPIStruct.m to the library.

In most cases, such ofsets cause mayhem to the solver operation, since adjacent values
may have very diferent values/ranges and confounding them will produce nonsensical
settings.
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One possible approach is the inclusion of a data structure revision that is incremented at
every ABI-breaking change into both the library and the header/module őles, such that
a simple comparison at startup will immediately spot incompatible versions and issue an
error. While this is an improvement over the łundetected mayhemž approach, it does not
improve compatibility, but only detects incompatibility.

The pimpl idiom (= łpointer-to-implementationž, cf. [60, Ch. 3]), which is also called
łCheshire Catž or łd-pointerž idiom, is a considerably advanced approach that splits
a class11 into a public component that remains stable over a long time horizon and a
private component that may change. Since this implies hiding major portions of the data
structures, appropriate access functions have to be provided. The implementation of the
data hiding is solved in C by deőning incomplete types (see listing 3.7), while Fortran
seems to allow components with the PRIVATEF90 attribute in public types.

/* pimpl.h */

struct hidden;

struct public {

/* must not change between versions */

double *X;

struct hidden *opaque;

}

struct hidden *new_opaque ();

void do_something(struct hidden *);

/* pimpl.c */

struct hidden {

/* hidden components - may change between versions */

}

struct hidden *new_opaque () { ... }

void do_something(struct hidden *opaque) { ... }

Listing 3.7: Data hiding in plain C through incomplete types.

The beauty of this approach for Worhp is that the basic concept is rather simple to
implement and suicient for long-term ABI compatibility, since many central aspects
of an NLP solver will not change. It is also considerably simpler than in the C++ case,
where additional considerations, such as overloading etc. inŕuence the actual binary
compatibility between diferent versions of a pimpl class.

The downside of applying this approach to Worhp is the initial break of API and ABI
compatibility, and the considerable amount of refactoring of the solver code it will require;
the latter is somewhat mitigated by the fact that this refactoring will be highly mechanic
and thus relatively simple to perform (semi-)automatically.

11the pimpl idiom has been popularized by large C++ projects.
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Chapter4

Solver Infrastructure

Wenn der Reiter nichts taugt, ist das Pferd schuld.
A bad workman blames his tools.

(Proverb)
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4. Solver Infrastructure

4.1. Configuration and Build system

The conőguration and build system of Worhp is used to build the available interfaces for
its supported platforms with the chosen solver conőguration. One of the most important
tasks of a build system is to track all inter-dependencies of source and conőguration őles,
on the one hand to prevent unnecessary recompilation or regeneration of objects, whose
dependencies have not changed, and on the other hand, to reliably trigger the necessary
recompilation or regeneration of objects whose dependencies have changed. Failure to
achieve the őrst task typically leads to time-consuming recompilation cascades, while
failure to achieve the latter will result in incomplete or faulty builds.

The solver conőguration options to build Worhp include

• the choice of a target platform/compiler pair and system paths,
• debug versus release builds (compiler optimization options),
• enabling additional debug output for some solver components,
• static versus shared libraries,
• linear algebra solver support,
• enabling optional modules (XML, licensing).

As of late 2010, Worhp is supported on these platforms

Linux: Debian, Redhat and their derivatives,

Unix: Solaris and OpenSolaris,

Mac: using MacPorts[4],

Windows: Server 2000, XP and later,

using the GNU, Intel and Microsoft compilers. Combined with the fact that Worhp

is being developed and tested on a number of systems with diferent compiler/bitness
constellations, this leads to a large number of diferent possible conőgurations to build
the solver. Together with the need to direct the automatic code generation and handle
the mixed-language approach, creating and maintaining the build system for Worhp is
a complex task.

4.1.1. Available build tools

The development of Worhp being Linux-centric, GNU make[68] is used as the main
build infrastructure, since it is ubiquitous on all unixoid platforms and also available for
the other supported platforms.

Possible alternatives to GNU make are

Boost.Build: Boost.Build[1] is a Jam-based build system to conőgure and build C++

libraries or applications for various platforms. It reads concise Jamfiles that are
written in łJamž, which has a close resemblance to make’s syntax.
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Since Boost.Build is C++ centric, building libraries of non-C++ sources is only
possible by some degree of hacking, for instance by writing explicit rules for all non-
C++ source őles; this, however, defeats the purpose of conciseness by automation,
and introduces unwanted complexity. Also, in contrast to SCons and CMake,
Boost.Build cannot resolve Fortran module dependencies.

The GNU Build System: Also being referred to as łAutotoolsž, the GNU Build System
is a standard infrastructure component used to build most unixoid open-source
software. While the complete build system actually consists of a number of in-
terlocking pieces of software, namely GNU Autoconf[18], GNU Automake[2] and
optionally GNU Autoheader (part of Autoconf) and GNU libtool[72], Autoconf is
sometimes used synonymously for the complete build system.

The GNU Build System constructs a portable configure script that in turn
instantiates a (mostly recursive) makeőle hierarchy to build a software package
on very diferent systems. The capabilities of the configure script include cross-
compiling (although this is involved), checking compiler capabilities, and detecting
and working around quirks, known bugs or missing features. Projects that use
the GNU Build System are conőgured, built, and installed using the three famous
commands

./ configure

make

make install

The strength of the generated configure script lies in the fact that it performs
very őne-grained checks for actual capabilities of the build environment, instead
of relying on version look-ups or databases. A capability is tested by spawning a
sub-process, which runs a shell-script, compiles a small piece of test code, or runs a
system tool to inspect its output. This greatly eases porting an application, once
the initial efort of setting of Autoconf has been sufered.

However, Autoconf has a number of serious issues:

• Autoconf is complex and has a very steep learning curve, partly due to the
fact that it is built on M4, the GNU macro processor.

• The Autotools are notorious for subtle incompatibilities between their many
diferent versions, which is a burden when manipulating the build system of
more than one project, since this may require parallel installations of diferent
Autotool versions.

• Many software packages that depend on Autoconf use recursive invocations
of make. This is harmful for dependency tracking between diferent source
directories, as described in 4.1.4.

• Autoconf is slow1. Part of this performance issue is caused by the repeated
spawning of sub-processes, which is a cheap operation on unixoid systems

1See e.g. section 2.7.2 (test with many dependencies) at http://retropaganda.info/~bohan/work/
psycle/branches/bohan/wonderbuild/benchmarks/time.xml#2.7.2 – retrieved 2013-01-30.
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(internally using fork), but a very costly operation e.g. on Windows platforms.
Although the configure script does cache some of its results, in practice
many of the testing operations are performed repeatedly by sub-makes, and
not cached for other configure scripts by default, unless instructed so by the
user.

CMake: CMake[33], the łCross Platform Makež is a mature and powerful tool to generate
build files to be used by the respective native build system, i.e. makeőles for unixoid
system and Visual Studio project őles for Windows. CMake has őrst-class support for
Fortran 902 and claims to have facilities for tracking Fortran module dependencies.

SCons: SCons[46] is a software construction tool written in Python for C/C++, Fortran
and other languages. Its power lies in the fact that its conőguration őles are
also written in Python, thus enabling the developer to use a genuine full-featured
programming language to tackle the build process. SCons provides a scanner for For-
tran 90 (and later) őles that parses USE statements and uses string transformations
to track module dependencies.

Many less well-known build tools exist, such as waf (used by Cisco, and to build Samba
or Node.js), wonderbuild (obscure) or ninja (used to build Google Chrome), but seeing
that Worhp already requires various more or less exotic dependencies, choosing from
established build tools is probably wise. Despite the Fortran module dependency tracking
facilities of SCons and CMake, Worhp has thus been relying on make with manually
created and maintained makeőles to prevent burdening developers with further software
and language dependencies. While this approach arguably ofers a lesser degree of
automation, it allows much őner control of the details of the build process, which is
especially useful given the degree of complexity caused by automatic code generation
and the mixed-language approach.

4.1.2. Basics of make

GNU make and other versions are controlled by writing makefiles that specify rules
consisting of targets and their prerequisite, and recipes to specify the commands to
execute. make is completely string-based (so dir and dir/ are regarded as two diferent
entities) and has uncommon semantics for variable expansion. Dependencies in make are
formulated as targets : prerequisites pairs, for instance foo.o : foo.c foo.h.
All dependencies are condensed into a single directed acyclic graph (DAG), whose nodes
correspond to targets and prerequisites and whose edges are the dependencies imposed
by rules. It is useful to note that not every DAG is a tree, because multiple targets may
share a prerequisite (expressed in tree terminology, one child may have more than one
parent), but every tree is a DAG.

It is obviously problematic if the dependency graph is incomplete, because this will result
in incomplete dependency tracking, and thus in incomplete or faulty builds, or even in

2See http://www.cmake.org/Wiki/CMake_Fortran_Issues – retrieved 2013-01-30.
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failure to build. It is therefore imperative to create complete dependency graphs, lest
the (potentially subtle) errors introduced by incomplete dependency tracking thwart all
eiciency and reliability gains acquired by using a build system.

Common workarounds for the incomplete dependency graph problem are repeated build
passes, to ensure everything has been build, a tendency to rebuild more than actually
needed, or in extreme cases, frequent complete rebuilds (make clean && make all), to
ensure that all changes in the source őles are picked up. Neither of these workarounds is
acceptable, and the necessity to do so is an indication for serious deőciencies.

4.1.3. Directory structure

The source code and auxiliary őles for building and maintaining Worhp are distributed
over a number of directories, according to their function.

Config Conőguration őles for diferent platforms, loosely following the naming conven-
tion <user/host>-<vendor><bitness>.mk, e.g. ztm-gnu32.mk is a conőguration
őle for the ztm hosts at ZeTeM using the GNU Compiler Collection (GCC)[25] to
build 32-bit objects.

auto AutoGen deőnition őle to generate the Worhp data structures and AutoGen
include őle with custom Scheme functions.

bin Target directory for executables and Dynamic Link Libraries (DLLs). Auxiliary
scripts, CUTEr problem lists and parameter őles also reside in this directory.

blas Source code of a BLAS-subset and some LAPACK routines with dependencies.

core Core components that provide fundamental modules and deőnitions, data
structures, workspace handling, preprocessor macros, initialization routines and
auxiliary routines to all higher-level components.

doc Documentation directory, including a Doxygen conőguration őle that is capable
of producing ridiculous amounts of HTML or LATEX documentation, as well as the
Worhp user manual and tutorial.

examples Example codes for the diferent supported interfaces and languages, includ-
ing tests of the Hotstart functionality and a variable-size Fortran version of the
CUTEr mccormck problem, which can be used to study the asymptotic behavior of
computation times and memory consumption of Worhp for very large dimensions.

hsl When Worhp is built with support for one or more of the HSL linear solvers,
their source code with dependencies needs to be placed in this directory. Some
auxiliary őles are used to build shared libraries or provide a dummy METIS routine.

include Usually empty. If SuperLU or the AMPL library are built by Worhp

because they are not available on the current system, their C header őles are moved
here.
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interfaces Contains code and auxiliary őles to build the MATLAB and AMPL
interfaces of Worhp.

lib Target directory for libraries. Subdirectories named after the target platform,
e.g. win32 or linux64 help to diferentiate between diferent builds. If SuperLU
or the AMPL library are built by Worhp, because they are not available on the
current system, they are moved here as well.

mod Target directory for Fortran module őles.

obj Target directory for object code.

qpsol Source directory for the QPSOL component, together with the leqsol com-
ponent that provides an abstraction layer between diferent linear algebra solvers
and QPSOL or other Worhp components.

res Directory for global non-source őles, like a release-Makeőle template, the Visual
Studio solution or a script for tracking DLL dependencies.

testing Source directory for test routines other than the AMPL interface.

worhp Source directory for the NLP-speciőc components; among these are the user
interfaces and the NLP algorithm, but also the őnite diference and BFGS modules.

xml Source directory for the XML module, the XML library abstraction layer, and
the xw dedicated Worhp XML parser.

4.1.4. Pitfalls of recursive make

make is frequently used recursively to build individual components of the őnal build target.
The most common form of this approach is encountered where a project has multiple
(sub-)directories with source code; make will recursively spawn sub-makes corresponding
to the directory structure. The advantage of using a recursive make hierarchy lies in the
(relative) simplicity and independence of each sub-make, as long as there are no or only
few cross-directory dependencies.

Using make recursively has important drawbacks, however, as described in detail in [51]
and some of these also afected the initial build infrastructure of Worhp.

This initial build infrastructure made heavy use of recursive make to build the sub-libraries
libcore, libqpsol, libwxml, libworhp and libblas according to the directory structure
in section 4.1.3. The most signiőcant obstacle to a simple, clean, and reliable recursive
build infrastructure turns out to be existence of multiple cross-directory dependencies
(mostly on őles in core, but not exclusively), resulting in the dependency information to
be incomplete and fragmented over multiple sub-makes. Listings 4.1 and 4.2 show the
condensed annotated build output to illustrate some consequences of this condition.

Running make example would start the following recursive process (with the current
recursion level indicated by make-like labels):
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[0] The top-level make is only informed about the dependency of the executables on
libworhp and libblas and spawns two sub-makes to create these.

[1] the libworhp target is informed about its dependency on libcore, libqpsol
and libwxml and spawns three sub-makes to create them.

[2] libcore is created.
[2] libqpsol is created, its dependency on some objects in libcore3 is

satisőed, so no sub-make is spawned.
[2] libwxml only knows about its dependency on libcore and spawns a

sub-make for it.

[3] libcore has already been created, the sub-make has nothing to do.

[2] libwxml is created.

[1] libworhp is created.
[1] libblas is created.

make -C trunk/worhp -I .. -k libworhp.a

make [1]: Entering directory ‘trunk/worhp ’

make -C trunk/core -I .. -k libcore.a

make [2]: Entering directory ‘trunk/core ’

[ . . . libcore compiled . . . ]

make [2]: Leaving directory ‘trunk/core ’

make -C trunk/qpsol -I .. -k libqpsol.a

make [2]: Entering directory ‘trunk/qpsol ’

[ . . . libqpsol compiled . . . ]

make [2]: Leaving directory ‘trunk/qpsol ’

make -C trunk/xml -I .. -k libwxml.a

make [2]: Entering directory ‘trunk/xml ’

make -C trunk/core -I .. -k libcore.a^

make [3]: Entering directory ‘trunk/core ’

make [3]: "libcore.a" has already been updated.

make [3]: Leaving directory ‘trunk/core ’

[ . . . libwxml compiled . . . ]

make [2]: Leaving directory ‘trunk/xml ’

make [1]: Leaving directory ‘trunk/worhp ’

[ . . . libworhp compiled . . . ]

make -C trunk/blas -I .. -k libblas.a

make [1]: Entering directory ‘trunk/blas ’

[ . . . libblas compiled . . . ]

make [1]: Leaving directory ‘trunk/blas ’

Listing 4.1: Recursive build sequence (clean rebuild)

When repeating the same make command, an even worse recursive make cascade as in
listing 4.2 is caused on some systems, because some background process or make itself has
altered the content of /tmp, /etc or /home in the őrst run. Since directory timestamps

3GNU make can express dependencies on members of static libraries by foo.o : libbar.a(frob.o)

97



4. Solver Infrastructure

on Linux change when the directory content is altered, these now have newer timestamps
than the Worhp sub-libraries; presumably due to some of the many implicit rules of
GNU make, the sub-libraries are considered as outdated and make spawns sub-makes to
update them. The sub-makes then correctly deduce that nothing has to be done, since no
source or object őle is actually newer than the respective static library, and thus do not
touch them, keeping their timestamp unmodiőed. This results in repeated spawning of
redundant sub-makes, e.g. 3 times for libcore (as dependency of libworhp, of libqpsol
and libwxml).

make -C trunk/worhp -I .. -k libworhp.a

make [1]: Entering directory ‘trunk/worhp ’

make -C trunk/core -I .. -k libcore.a

make [2]: Entering directory ‘trunk/core ’

make [2]: "libcore.a" has already been updated.

make [2]: Leaving directory ‘trunk/core ’

make -C trunk/qpsol -I .. -k libqpsol.a

make [2]: Entering directory ‘trunk/qpsol ’

make [2]: "libqpsol.a" has already been updated.

make [2]: Leaving directory ‘trunk/qpsol ’

make -C trunk/xml -I .. -k libwxml.a

make [2]: Entering directory ‘trunk/xml ’

make -C trunk/core -I .. -k libcore.a

make [3]: Entering directory ‘trunk/core ’

make [3]: "libcore.a" has already been updated.

make [3]: Leaving directory ‘trunk/core ’

make [2]: Leaving directory ‘trunk/xml ’

make [1]: Leaving directory ‘trunk/worhp ’

make -C trunk/xml -I .. -k libwxml.a

make [1]: Entering directory ‘trunk/xml ’

make -C trunk/core -I .. -k libcore.a

make [2]: Entering directory ‘trunk/core ’

make [2]: "libcore.a" has already been updated.

make [2]: Leaving directory ‘trunk/core ’

make [1]: Leaving directory ‘trunk/xml ’

make -C trunk/qpsol -I .. -k libqpsol.a

make [1]: Entering directory ‘trunk/qpsol ’

make [1]: "libqpsol.a" has already been updated.

make [1]: Leaving directory ‘trunk/qpsol ’

make -C trunk/core -I .. -k libcore.a

make [1]: Entering directory ‘trunk/core ’

make [1]: "libcore.a" has already been updated.

make [1]: Leaving directory ‘trunk/core ’

make -C trunk/blas -I .. -k libblas.a

make [1]: Entering directory ‘trunk/blas ’

make [1]: Nothing to be done for "libblas.a".

make [1]: Leaving directory ‘trunk/blas ’

Listing 4.2: Recursive build cascade due to newer őle system timestamps

The initial recursive build system thus causes unnecessary overhead due to suboptimal
use of the dependency tracking features of make.
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Worhp has several cross-directory dependencies, most of which were only known to the
respective sub-make, and in most cases were formulated unspeciőcally as a dependency
on another sub-library. This explains the undesirable sub-make overhead observed in
listing 4.2, and it also caused subtle problems resulting in wrong code in some cases
where the data structure layout (deőned in the core subdirectory) had been changed;
to add insult to injury, running parallel make jobs to speed up build times showed
nondeterministic behavior, and failed most of the time, either at link-time because of
incomplete builds, or at compile-time because of dependencies unknown to make (most
often Fortran module dependencies).

4.1.5. Non-recursive make

The pitfalls of a recursive make hierarchy can be circumvented by running only a single
instance of make with unfragmented and complete dependency information. This ensures
that builds are complete, that all changes of the sources are reŕected in the build output,
that no unnecessary recompilation or regeneration is triggered, and that make is able to
run parallel jobs to speed up compilation, without causing errors; altogether, a build
system constructed in this manner is reliable and performant.

The construction of a single-instance build system requires the precise speciőcation of all
dependencies for all (intermediate or őnal) targets. Fortunately, GNU make has facilities

• to include makeőles from a list of directories,
• to formulate multiple patterns with static pattern rules,
• for various operations on strings, őlenames and paths,
• and to create templates which can be used to instantiate whole recipes with

templated variable and target names.

Worhp uses a modular makeőle system consisting of a main (central) makeőle that
provides global deőnitions and recipes and local makeőle stubs that are included by the
main makeőle adding diferent portions of the solver, according to the target that is
supposed to be built. The main diference to the recursive approach is the fact that
only a single dependency graph is created from the main makeőle and added to by the
included makeőle stubs. Therefore (assuming correctness), dependencies are complete
instead of fragmented over various, individually incomplete graphs.

Technically, the key concept consists of lists of source őles (according to language and some
other distinctions) that need to be compiled and included in the library or executable to
be built; for C őles that do not depend on special includes or compiler ŕags, this is SRC_C.
The variable SRC_DIRS lists the subdirectories to include and is modiőed according to the
current conőguration. When triggering a build, make iterates through SRC_DIRS and for
every subdirectory dir tries to include dir/build.mk and dir/modules.mk. The former
is mandatory, since it deőnes the source őles in dir and their complete dependencies,
while the latter is optional and used to track Fortran module dependencies.

The build.mk makeőle stubs add the source őles in dir to SRC_C (and the other lists
of source őles), if necessary using conditionals to adapt to diferent conőgurations, and
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SRC_C += \

core/C_std.c \

core/C_Worhp_Data.c

SRC_F90 += \

core/std.F90 \

core/Worhp_Data.F90

AUTOGEN_FILES += \

core/C_Worhp_Data.h \

core/C_Worhp_Data.c

# Autogen dependencies

core/C_Worhp_Data.h: core/include -Worhp_Data.h

core/C_Worhp_Data.c: core/include -Worhp_Data.c

# C source dependencies

obj/C_std.o: core/C_std.c core/C_std.h

obj/C_Worhp_Data.o: core/C_Worhp_Data.c core/C_Worhp_Data.h \

core/C_std.h

Listing 4.3: Strongly abridged version of build.mk of the core subdirectory. Since each
makeőle stub is included by the main makeőle, all rules need to be formulated in
terms of the root directory, instead of the local subdirectory, since this is where the

main makeőle is located.

deőne dependencies of the object őles generated from them; the latter can be generated
by using gcc -MM with some manual or automatic post-processing. Listing 4.3 shows an
exemplary makeőle stub for the core subdirectory.

# Manually generated Fortran module dependency file

obj/cs.o : obj/std.o

obj/ccm.o : obj/std.o obj/cs.o

obj/std.o :

obj/timer.o :

obj/Worhp_Data.o : obj/std.o obj/cs.o obj/ccm.o obj/timer.o \

obj/Worhp_Members.o : obj/std.o

Listing 4.4: Slightly abridged version of modules.mk of the core subdirectory. The
module dependencies are formulated in terms of object őles instead of module őles,

since this approach is portable across diferent compilers.

The modules.mk Fortran dependency őles are only present in subdirectories with Fortran
őles that depend on or deőne modules; őgure 4.1 illustrates the inter-module dependencies
of Worhp. The Fortran dependency őles track module dependencies by formulating
them in terms of object őles. While all common Fortran compilers generate module őles,
which would theoretically allow make to keep track of changes through them, the mapping
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module →→ module file name difers between compilers. To avoid conőguration-dependent
creation of vendor-speciőc module dependency rules, they are expressed in terms of object
őles, whose naming is independent of the compiler in use. Using module őles instead
would only be superior to the current approach, if a compiler ofered an option to only
produce a module őle, and if this mode of operation were noticeably cheaper than proper
compilation. By using sophisticated comparisons between new and old module őles,
recompilation of dependent őles could be avoided, if a source őle is recompiled, but the
module remains unchanged. Unfortunately, module őles created by gfortran contain a
timestamp, hence the comparison has to be performed on the content only.

User

Library

interface

MATLAB interface AMPL interface

Worhp_Matlab Ampl_Mod

Worhp_User

Worhp

Core

Worhp

BFGS

Worhp

FD

Worhp

Groups
Worhp

XML

qpsol Worhp_Aux

std stl cs timer Worhp_Data

QP_Data Filter_Data leqsol_Data

Figure 4.1.: Fortran module hierarchy in Worhp.

With the makeőle stubs deőning the source őles and dependencies, the main makeőle
creates a list of object őles (OBJ_C and others) to compile by string transformations
on the source őle lists (SRC_C and others). The main makeőle further deőnes libraries
(static or shared, depending on the conőguration), and the őnal target mostly depends
on the library. Building a target then triggers a chain of transitive dependencies target
→ library → object files → source files. Given rules to compile source to object őles, the
main makeőle has all necessary information to build its known targets.

The approach of splitting the makeőle into one central and various included stub makeőles
keeps changes localized, i.e. changes in one subdirectory only concern the local stub
makeőles, while still enabling make to build an unfragmented dependency graph. Most
importantly, this allows to reliably perform parallel builds, which is an inbuilt capability
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of make: All intermediary or őnal targets that have no mutual dependencies can be
compiled in parallel, taking advantage of today’s multi-processor systems. Observations
on a modern quad-core workstation indicate more than three-fold speedup of a complete
rebuild through parallel building (using the -j ŕag).

Selecting build configurations

Since Worhp does not use a capability-based build tool like Automake, paths to tools and
available external dependencies (like SuperLU, the AMPL solver library, or MATLAB)
have to be stored and organized for every build platform, particular machine, or setup, with
the option to easily and non-disruptively add to the list. The obvious solution is the cre-
ation of machine configuration files, one for each particular machine or setup. The machine
conőguration őles follow the naming convention <user/host>-<vendor><bitness>.mk

and are stored in the Config directory. Each machine conőguration őle deőnes a number
of variables (actually constants), which are later used by the makeőle. Since they are
directly included, these őles are written in makeőle-syntax. Listing 4.5 shows an example.

# Compiler and system

COMPILER := gnu

BITNESS := 64

BUILD := Linux

# System -specific paths

PREFIX := /home/agbueskens

LIB_PATH_AMPL := $(PREFIX )/lib64

INC_PATH_AMPL := $(LIB_PATH_AMPL)

LIB_PATH_SUPERLU := $(PREFIX )/lib64

INC_PATH_SUPERLU := $(PREFIX )/ include/superlu

# compilers and flags

CC := gcc

XC := g++

FC := gfortran

Listing 4.5: Abridged machine conőguration őle, deőning paths and compilers for a
speciőc machine or setup

To select the currently active machine conőguration őle, Worhp has a single, central
build configuration file, Config.mk, shown in listing 4.6. Besides selecting the machine
conőguration őle, the build conőguration őle allows to toggle various Worhp modules,
enable building of dynamic (shared) libraries, select the enabled linear algebra solvers,
and add various debugging features that are compiled into the solver only on speciőc
requestÐthese debugging features consist of additional output for license management,
the XML module, memory management and others. To avoid any runtime overhead,
these features are controlled by the preprocessor, instead of a runtime parameter.
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PLATFORM = cluster -gnu64

COMFLAGS = optimise

ENABLE -MA97 = yes

ENABLE -MA57 = no

ENABLE -SUPERLU = no

ENABLE -WORHP = yes

ENABLE -QPSOL = yes

ENABLE -MATLAB = no

ENABLE -XML = yes

ENABLE -LICENSE = no

DEBUG -XML = no

DEBUG -MEM = no

DEBUG -LIC = no

Listing 4.6: Abridged build conőguration őle, deőning modules to be included and
various debugging options

Integration with automatic code generation

To ensure that changes to code generation deőnition őle are always represented in the
build output, the build infrastructure is aware of the dependencies of auto-generated őles
on both the deőnition and template őle and a recipe is provided to instruct make, how to
update out-of-date code. This extends the abovementioned transitive dependency list to
target → library → object files → source files → definition/template file. The variable
AUTOGEN_FILES is used by the makeőle stubs to deőne all auto-generated source őles (in
addition to specifying them in SRC_C or similar).

Due to the timestamp-based operation of make, the respective őles are only re-generated
if required, and otherwise left alone. This is important, since not every build platform
is required to provide AutoGen, but instead just compiles the auto-generated code. In
some instances, if the Worhp source is checked out from Subversion, timestamps may
suggest wrongly that the auto-generated őles need updating; if AutoGen is present on the
respective machine, no harm is done, but in the case where it is not, the code generation
recipes in the main makeőle need to be deactivated, or a dummy no-op AutoGen can be
provided.
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4.2. Version and configuration info

In some cases, especially when checking for availability of a feature or status of a
known bug, it is sometimes necessary to be able to query the version and conőguration
information of a given Worhp binary.

AMPL interface

The AMPL interface has a straightforward way of providing version information: Since
the interface is implemented as an executable binary that is run by the AMPL executable,
it may also be run as a stand-alone binary with command-line arguments. In keeping
with established conventions, running worhp -v will generate output of the form

version 1.0.2014 (Linux 2.6.18) , driver (20130122) , ASL (20090316)

i.e. printing versions of the Worhp library, the kernel, the AMPL driver, and the ASL
backend. The driver date is derived from subversion, using the svn info --xml command
that returnsÐamong other pieces of informationÐthe date of the last change in an XML
node of the form <date>2012-01-23T14:47:38.546875Z</date>, which can be parsed
using sed, and subsequently integrated into the binary through preprocessor deőnes.
An alternative and less intricate approach is to use the svn:keywords functionality of
Subversion, although this has neither been tested nor implemented, yet.

Library interface

The library interface exports the WorhpVersion routine

void WorhpVersion(int *major , int *minor , int *patch)

that provides a programmatic way of querying the solver version, but has two shortcomings:
One is forced to őrst compile and link a test program to then query and print the version,
and it does not provide information on the enabled modules of Worhp, or the compiler
used to create the library.

On Linux platforms using the ELF binary format, there is an elegant solution to this
problem, which is also used by the the GNU C library; besides providing the C standard
library functionality, it can be executed to produce a small amount of text output stating
the library version and included modules, as demonstrated in listing 4.7.

To generate a shared library that doubles as an executable, some intervention into the
produced ELF format is necessary: the library has to specify an interpreter and an entry
point.
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$ /lib/x86_64 -linux -gnu/libc.so.6

GNU C Library (Ubuntu EGLIBC 2.15 -0 ubuntu10 .3) stable release version

Copyright (C 2012 Free Software Foundation , Inc.

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE.

Compiled by GNU CC version 4.6.3.

Compiled on a Linux 3.2.30 system on 2012 -10 -05.

Available extensions:

crypt add -on version 2.1 by Michael Glad and others

GNU Libidn by Simon Josefsson

Native POSIX Threads Library by Ulrich Drepper et al

BIND -8.2.3 - T5B

libc ABIs: UNIQUE IFUNC

For bug reporting instructions , please see:

<http ://www.debian.org/Bugs/>.

Listing 4.7: Output of eglibc on Ubuntu 12.04

Interpreter

The ELF interpreter is speciőed as a simple character string that is placed into the
appropriate section of the ELF object by a compiler directive; when producing executables,
this is automatically performed by the compiler, but omitted when producing shared
libraries. The interpreter of existing executables can be identiőed with the readelf tool:

$ readelf -l /bin/ls

Elf file type is EXEC (Executable file)

[...]

Program Headers:

[...]

INTERP 0x0000000000000200 0x0000000000400200 0x0000000000400200

0x000000000000001c 0x000000000000001c R 1

[Requesting program interpreter: /lib64/ld -linux -x86 -64.so.2]

[...]

The ELF interpreter, i.e. the helper program for shared library executables on 64-
bit Linux platforms is /lib64/ld-linux-x86-64.so.2, and its 32-bit counterpart is
/lib/ld-linux.so.2; conditional compilation needs to be employed to select the appro-
priate one for the current platform. Despite the ever-increasing diversity and resulting
incompatibilities between the various Linux distributions, using these two interpreters
(actually runtime-linkers) seems to remain a minimum consensus.

To manually add this ELF .interp section to a binary, we use a C code snippet deőning
the interpreter as a string and using the GNU __attribute__ syntax to specify the ELF
section:
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const char elf_interpreter [] __attribute__ (( section(".interp"))) =

"/lib/ld -linux.so.2";

Entry point

To specify the entry point, which again is automatically performed by the linker when
producing an executable, the -e option to the linker speciőes the function to be used as
entry point (usually main for executables). To embed this into the GCC command-line
that links the shared library, the -Wl syntax for passing options to the linker has to be
used, resulting in

-Wl,-e,entry_point

to deőne entry_point as the entry point function; commas need to be used to prevent the
usual tokenization by the compiler driver of the linker options at whitespace, otherwise
-e entry_point would be passed to the compiler instead of the linker (resulting in
complaints, because GCC does not understand this option).

Combining both these techniques is used to have libworhp.so print informative output
shown in listing 4.8.

$ libworhp.so

WORHP shared library for Linux , version 1.0.2014

Copyright (C) 2013 SFZ Optimierung , Steuerung und Regelung.

Distribution of WORHP is subject to terms and conditions.

The authors disclaim all warranties , including without limitation ,

merchantability or fitness for a particular purpose.

Available modules:

MA97 solver support

SuperLU solver support

XML module

Compiled with:

gcc (Ubuntu/Linaro 4.6.3 -1 ubuntu5) 4.6.3

GNU Fortran (Ubuntu/Linaro 4.6.3 -1 ubuntu5) 4.6.3

Listing 4.8: Sample output of shared libworhp on Linux platforms
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4.3. Testing Approach

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write code as cleverly as possible, you
are, by definition, not smart enough to debug it.

(Brian Kernighan)

Although the development process of Worhp has never been subject to strict formaliza-
tion, it does share some characteristics with the test-driven development paradigm.

Test-driven development is characterized by creating tests for desired functionality before
creating the software to be tested. This approach guarantees good test coverage and
additionally provides a simple metric for changes to the software. Regression Testing is
a canonic addition to this development method, its main diference being that its tests
provoke known (and usually corrected) defects in the software, instead of testing desired
functionality. In the combined approach, the test suite is őrst populated with tests for
functionality that is to be developed, and over the lifespan of the software, tests for
identiőed bugs are added to prevent regressions. The GNU Compiler Collection embraces
this approach and has accumulated over 40,000 such tests over the course of its 25-year
lifetime.

Since Worhp is built to solve NLP, its test suite will naturally consist of optimization
problems, accompanied by the technical infrastructure needed to run all tests and verify
their outcome. To make a meaningful statement about Worhp’s capabilities, the test set
needs to be as diverse as possible. The default test suites are a 920-problem set written
in AMPL, consisting of a subset of CUTEr plus the Schittkowski problems from [63], and
the 68-problem COPS test set. The genuine CUTEr collection is provided as 11474 őles
in SIF format. Since Worhp does not (yet) have a SIF interface, the AMPL alternative
is used for testing. Although neither is a true subset of the other, we shall refer to the
set as ł(AMPL-)CUTErž.

Both CUTEr and COPS are recognized as standard test sets for benchmarking and
comparing NLP solvers by the mathematical optimization community, with COPS even
being speciőcally designed as solver comparison tool, and CUTEr containing the 124
Hock/Schittkowski NLP test problems[32] many of which were speciőcally written to
exploit known weaknesses in SQP solvers.

Testing in our sense means to feed all or a subset of the optimization problems of
the abovementioned test sets to the solver. Test results are derived from some canonic
quantities for NLP, among which are the objective function value, the constraint violation,
an optimality measure, iteration and function evaluation counts and user time, and the
solver status (solved to optimal or acceptable level, or some error condition). Test runs,
such as a typical before/after check when a modiőcation is introduced, can then be
compared according to an arbitrary performance measure.

4as of 2012-06 – the collection is updated irregularly, see ftp://ftp.numerical.rl.ac.uk/pub/cuter/
mastsif.updates
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Figure 4.3.: Categories of the (AMPL-)CUTEr test set: The őrst-level (inner) nodes
categorize the objective, and the second-level (outer) nodes the constraints. For
conciseness, network constraints were counted as linear ones, őxed variables as box

constraints, and no objective as constant objective.
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4.4. Testing Infrastructure

This section is devoted to the technical infrastructure that enables testing. Historically,
this part of Worhp has undergone very major development steps, starting from bash-
and őle-based sequential list processing and evaluation through generated HTML code,
until reaching today’s intricate parallel infrastructure implemented in Perl.

4.4.1. Parallel testing script

Given that Worhp’s primary tests are written as AMPL models, they can be run
independently of each other, which means that the process of iterating over a test set
can be trivially parallelized. The solver infrastructure provides a script that runs the
solver on each of a given set of AMPL models, thereby gathering and condensing the
results into a őnal summary (see listing 4.9 for an example summary).

Total .................................................. 313

Successful ........................................... 313 (100.00%)

Optimal ............................................ 313 (100.00%)

Optimal Solution Found ........................... 311

Optimal Solution Found by Low -Pass Filter ........ 1

Optimal Solution Found , maybe non -differentiable . 1

Acceptable ......................................... 0 ( 0.00%)

Unsuccessful ......................................... 0 ( 0.00%)

wall 7.08 (7.08s)

user 4.79 (4.79s)

sys 0.78 (0.78s)

speedup 0.7

Listing 4.9: Summary for a run of the Hock/Schittkowski test set on a dual-core machine.

The testing script consists of two Perl scripts run.pl and node.pl and three Perl modules
containing auxiliary subroutines. The interaction between both scripts is a master-slave
constellation, where a single master (namely run.pl) maintains a list of jobs and assigns
them to idle workers (slaves ś node.pl), until all jobs have been done; a job in this
context is the process of running the solver on a single AMPL model, and parsing the
solver output.

Communication with the user happens through run.pl, which spawns one instance of
node.pl per available CPU core, then waits for feedback from the slaves, starting one
communication thread per łlivež slave. As soon as slaves report in as being alive, the
master starts assigning jobs to the slaves, and waits for the results, until the job list is
empty and all slaves reported back their results, in which case the results are processed
and a summary is presented to the user. Figure 4.4 illustrates the communication scheme
in more detail.
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and even fewer constraints. It is therefore necessary to have sub-microsecond access to
the job list, hence a performant implementation has to hold it in memory. This requires
explicit communication between master and slave, because the slaves cannot retrieve jobs
from a globally visible őle anymore. The latency of this communication link needs to be
lower (preferably by at least one order of magnitude) than the time spent on executing
the job.

Since bash does not provide adequate tools for either, the current implementation uses
Perl, with the master-slave communication implemented through Ethernet connections
and the job and result lists implemented on top of a thread-safe deque.

The deque is a Thread::Queue, which is fast and thread-safe. The Ethernet connection on
multi-core machines (i.e. an SMP setup) will be routed through the loopback device, which
incurs very low latencies, and in clusters or MPP setups typically has sub-microsecond
latency. The ZeTeM cluster, for example, is equipped with high-performance Inőniband
and Gigabit Ethernet, which have proven to achieve suiciently low latencies for running
hundreds of jobs in parallel without performance problemsÐping latencies usually lie in
the 50− 100µs range and thus do not dominate the total time, even for small problems.

Higher network latencies are commonly found in distributed (cloud) computing, where
the individual nodes are not connected through a local network but over regular internet
connections, which results in typical latencies in the 20− 40ms range, i.e. between two
and three orders of magnitude greater than in local clusters. Grouping individually small
tasks into bigger jobs that again take (noticeably) more time to őnish is an option to
keep the network latency from dominating the total time and increase the CPU workload.

The advantage of using TCP connections is that the test infrastructure can be run without
modiőcation on very diferent machine types and network topologies, such as a multi-core
desktop machine, a dedicated compute cluster, or a distributed computing grid. Only
the method of starting the slaves has to be tailored to the present infrastructure: On a
multi-core machine, the slaves are started as child processes, while on the ZeTeM cluster,
the PBS scheduler distributes and starts the slaves.

Termination

With all jobs distributed, the next important question concerns the termination of the
parallel run script: How does the script notice that all jobs have been completed? The
least-technical approach is to compare the total number of jobs against the number of
received results; once the latter reaches the former, all jobs have been completed. This
approach is simple and eicient, but vulnerable to faults: A single job that fails to
produce results will cause the whole run to fail, since the őnal processing and condensing
of all results can only be triggered as soon as all results are available. It is therefore
necessary to őnd a more fault-tolerant solution. In case of failing jobs, this will result in
incomplete results, but ŕawed results are preferable over no results at all.

The chosen approach monitors the number of slave communication threads instead of the
number of results : After starting the slaves and the result processing thread (2 and 3 in
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őgure 4.4), the master starts a thread that is waiting for incoming TCP connections on
the public port (4), and for every such connection spawns a communication thread (5)
that uses a dedicated private port to connect to its associated slave (6). If the slave dies
or if it reported its results and the communication thread has no more jobs to submit, it
terminates itself. Monitoring the number of live slave communication threads is therefore
a feasible termination criterion that is robust against faults: If all slave communication
threads have terminated, all jobs have been sent to the slaves and either returned results
or were lost. To sum up, this approach is more robust than counting results, but still has
following ŕaws:

• It is more complex than the result-counting approach; in particular, the main thread
őrst has to wait for at least one slave communication thread to start, before waiting
for all threads to finish againÐwithout this barrier, there is a race condition in which
the main thread terminates right away, if no slave communication thread has been
spawned, yet. To implement such a barrier, Perl’s cond_wait and cond_signal

are used.
• The master thread that listens for incoming TCP connections on the public port

will never terminate; as soon as all possible slaves have been started, no additional
connections will come in, leaving the master thread blocked. Since the Perl thread
implementation does not ofer mechanisms to terminate a thread from outside, the
thread cannot terminate or be terminated gracefully. Fortunately, this is of little
practical relevance, because Perl terminates all threads if the spawning program
ends, but this provokes warning messages about łrunning and detached threadsž
that may irritate inexperienced users.

• Slaves may suddenly die, either due to errors in the called program (in our case the
Worhp binary) or due to external inŕuences, such as hardware errors, hung-up
kernels or out-of-memory situations. This approach was devised to handle dying
slaves gracefully, but should nevertheless try and obtain results for every job. If the
slave communication thread notices that its slave has died, it therefore re-submits
the last job to the job queue to have another slave process it. This is reasonable if
the slave died due to some external inŕuence, but will result in a cascade of dying
slaves, if the job is responsible.

4.4.2. Solver output processing

Condensing the results is concerned with parsing the solver output, performing operations
(string comparisons, count, sum, mean, . . . ) on various numeric quantities or status strings
and formatting the results for outputÐstep 9 in őgure 4.4. The parsing is performed by
redirecting the solver output through a solver-speciőc parser (since the output formats
of diferent NLP solvers difer widely), which performs line-by-line pattern matching
to extract counts of function evaluation, major and minor iterations, as well as timing
information, achieved results (objective, feasibility and optimality) and the termination
status. Listing 4.10 shows an example of the condensed output on the master node.
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The solver output parsers are implemented as stateless functions invoked for every line
of solver output, which complicates matters, if some piece of information has to be
derived from multiple lines ś most prominently the constraint count, which is often
displayed over various lines, diferentiating between equality and inequality constraints,
or upper/lower/both bounds for box constraints. A workaround is to make the output
parsing routines stateful by using global variables, such that summation over various
lines is possible.

The solver output parsers (one for each NLP solver) have proven to be quite fragile, since
subtle changes in the output format of the solver may cause portions of the parser to fail,
which in turn leads to undeőned values in the sweep script.

Timing the solvers is performed by starting them through the external time command,
providing wall time, user time and sys time. This approach was chosen, because some
NLP solvers do not provide timing routines, whereas the internal timing results of others
difer signiőcantly from external timing. A uniform external timing tool is therefore the
fairest comparison between diferent solvers.

Performance Considerations

Running the (AMPL-)CUTEr test set produces 111,110 (sic) lines of output5 with an
overall 8,360,502 bytes, amounting to an average of 120 lines per problem, and roughly 250
lines or 18,200 bytes per second on an Intel i7-2600 system with 8 (virtual) cores. Scaling
up to the 320 cores of the ZeTeM cluster, this could theoretically produce 10,000 lines
per second with 728 KB/s (≈ 5.6 Mbps) of solver output per second to be sent through
the network and parsed by the master node. While a 100 Mbit Ethernet connection can
easily handle 5 Mbps of data, it is unclear whether Perl can parse this continuous data
stream in real-time. In extreme cases, this could lead to overŕowing bufers and data
loss and consequently in incorrect results.

With the sweep functionality being embedded into the parallel run script, the major
parsing efort is therefore delegated to the slaves to keep the CPU load of the master
node and the amount of network traic as low as possible. The master node only receives
the parsed results, which are sent over the network in the form of őxed-layout strings like

DONE tag =000000: name=hs005:n=2:m=4:nf=11:ng=0: iter =10:

obj = -1.9132229545E+00: con =0.0000000000E+00: kkt =7.7493642313E-08:

status=Optimal Solution Found:tuser =0.00: tsys =0.00

The master caches the received result strings in a Thread::Queue deque, which feeds into
the result processing thread (step 8 in őgure 4.4). To process, each string is tokenized, and
Perl’s inbuilt regular expression matching is applied to extract the values. Information
on queue length is indicated below the test results; low values indicate that the result
processing thread is able to keep up with the incoming stream of results, while high
values indicate overload.

5trunk, revision 1949, default settings
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$ run.pl worhp Lists/test

Using (up to) 4 threads to run 12 problems

Sep 19 2012 10:15:17 [11] aircrfta ......... 3 iterations : Optimal Solution Found

Sep 19 2012 10:15:17 [10] aircrftb ........ 17 iterations : Optimal Solution Found

Remaining: 3pk, airport, aljazzaf, allinit, allinitc, allinitu, alsotame, argauss, arglina, arglinb

Sep 19 2012 10:15:17 [ 9] aljazzaf ........ 20 iterations : Optimal Solution Found

Sep 19 2012 10:15:17 [ 8] allinit .......... 5 iterations : Optimal Solution Found

Sep 19 2012 10:15:17 [ 7] 3pk ............. 28 iterations : Optimal Solution Found

Sep 19 2012 10:15:17 [ 6] allinitu ......... 8 iterations : Optimal Solution Found

Sep 19 2012 10:15:17 [ 5] allinitc ......... 6 iterations : Optimal Solution Found

Sep 19 2012 10:15:17 [ 4] alsotame ......... 4 iterations : Optimal Solution Found

*** All jobs sent to workers ***

Sep 19 2012 10:15:17 [ 3] airport ......... 10 iterations : Optimal Solution Found

Sep 19 2012 10:15:17 [ 2] arglinb .......... 3 iterations : Optimal Solution Found

Sep 19 2012 10:15:17 [ 1] arglina .......... 1 iterations : Optimal Solution Found

Sep 19 2012 10:15:17 [ 0] argauss ......... 54 iterations : Acceptable Solution Found

Total ........................... 12

Successful .................... 12 (100.00%)

Optimal ..................... 11 ( 91.67%)

Optimal Solution Found .... 11

Acceptable .................. 1 ( 8.33%)

Acceptable Solution Found . 1

Unsuccessful .................. 0 ( 0.00%)

wall 0.48 (0.48s)

user 0.22 (0.22s)

sys 0.05 (0.05s)

speedup 0.5

Results written to /home/dwassel/worhp/trunk/bin/results.worhp.20120919.101517

(Queue length: max 1, avg: 0.15)

Listing 4.10: Complete output of the run script for a 10-problem list on a quad-core machine.
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4.5. Parameter Tuning

Sed quis emendabit ipso emendator?
(But who will optimize the optimizer?)

(with apologies to Decimus Iunius Iuvenalis)

Being a complex piece of mathematical software, Worhp can be inŕuenced by more
than 100 runtime parameters. While the efects of some of them are obvious, for instance
MaxIter, Timeout or TolFeas (which are probably the most-used parameters and easily
understood by users), the inŕuence of many other parameters is much more diicult to
assess, either because it is subtle and its details are intricate and require deep knowledge of
Worhp’s algorithmic or theoretical background, or because it changes major algorithmic
details and thus potentially leads to completely diferent sequences of iterates. When
regarding groups of parameters, instead of single parameters in isolation, the complexity
of assessing parameter changes is complicated further (and probably growing exponentially
with the size of the group).

4.5.1. Why tune solver parameters?

If the proper choice of parameters is diicult and mostly unintuitive, it is natural to ask
why users should struggle with it; since Worhp (and every other suiciently sophisticated
software) is generic, its default parameters try and reŕect a minimum consensus for all
possible NLP, which is a huge and very diverse problem classÐwhen viewed pessimistically,
this will necessarily be a setting that works badly for everyone, the software analogue
to łone size őts allž. Thus, though not strictly necessary, tuning is often emphatically
advised when one intends to seriously solve optimization problems.

łTuningž may have very diferent meanings to diferent users and applications:

• In the prototype phase, parameter tuning may be necessary to achieve convergence
at all, since the model still has rough edges.

• If the underlying model is complex and somehow łhardž to solve, or if the achievable
precision is limited, careful tuning is often necessary to obtain satisfactory results.

• If the optimization result is subject to high precision requirements, parameter
tuning can ensure that these requirements are met.

• If a class of models has to be minimized frequently, the aim of parameter tuning
will be to speed up the optimization process.

Tuning is worthwhile, because the possible returns can be signiőcant, but it requires
a) deep mathematical, numerical and algorithmic insight into both the solver and the
application, or b) great amounts of raw computing power to exhaustively sweep the
parameter space on a set of representative examples.

Since approach a) is essentially limited to experienced NLP developers who are also deeply
knowledgeable about the potential application, approach b) is, though inelegant, a much
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more feasible and powerful method for parameter tuning. The advent of multi-processor
machines, compute clusters, or even non-uniform grids of distributed computers make a
tremendous amount of computational power available to any application that can run in
parallel or distributed. A systematic, exhaustive sweep of the parameter space is such an
application, being embarrassingly parallel6.

4.5.2. Sweeping the Parameter Space

In Worhp terminology, a sweep consists of running the solver on a given optimization
problem (or set of optimization problems) for a number of pairwise distinct7 parameter
settings and condensing the results in a human-readable way. However, generating the
parameter settings quickly (exponentially so) becomes an onerous task when sweeping
over more than a single parameter. Consider the following example:

Sweep over all feasible, i.e. BFGSminblocksize 6 BFGSmaxblocksize combinations of

BFGSminblocksize ∈ {1, . . . , 10},
BFGSmaxblocksize ∈ {1, . . . , 10},

BFGSrestart ∈ {10, . . . , 50},

which results in 1
2
· 10 · (10 + 1) · 41 = 2255 distinct parameters triples. Generating the

corresponding parameter őles manually, or even semi-automatic is clearly out of the
question. Hence the generic testing script described in section 4.4.1 was (signiőcantly)
extended to perform parameter sweeps, to the point where each test run is algorithmically
considered as a sweep over a single parameter setting. To perform a sweep, the script
generates the parameter settings, runs all problems with all parameter settings and
condenses the (potentially large) quantity of results into tables and plots for simple
evaluation. The sweep script also runs all problems with the reference parameter set to
establish a baseline for comparison. The diferent parameter settings are diferentiated by
tags, which are 6-digit numbers, starting from 000000 for the reference run, and counting
up; this convention assumes that there will never be more than 106 − 1 parameter
combinations, but is reasonably simply extended to more digits, should the need arise.

Specifying Parameter Combinations

The sweep script has three major modes for generating parameter variations of a parameter:
Each parameter can take all values from a given list, iterate through a range of values or
be taken as random sample. All three modes can be freely mixed.

Communication with the sweep script takes place through command-line arguments to
specify the solver executable and the őle containing a list of problems to iterate over,
and a simply structured text őle to deőne the sweep parameters. Listing 4.11 shows an

6This is indeed the common technical term for problems that can be parallelized with little or no effort.
7Not a functional requirement, but the alternative is only really useful for consistency checking.
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# how many random samples to use

samples 200

# mode name type start stop op step

range ArmijoBeta double 1.5e-1 3.5e-1 + 0.001

range RelaxStart double 1.0e-4 1.0e+4 * 1.1

rand qp.ipBarrier double 1.0e0 1.0e2

list MaxIter int 100 500 1000 5000 10000

list UserHM bool

Listing 4.11: Example parameter combination input őle for the sweep script. This
setting would result in



0.35−0.15
0.001

+ 1
 log(108)

log(1.1)



· 200 · 5 · 2 ≈ 7.8 · 107 combinations,
which is unrealistically high, even with a powerful compute cluster available, since

the parameter őles alone would occupy roughly 900 GiB (at 4 KiB block size).

(unrealistic) example of such a sweep őle, demonstrating the possible modes. Each item
consists of at least 3 tokens, separated by arbitrary whitespace: the őrst token speciőes
the mode, the second one the (case-sensitive) complete parameter name, and the third
its type (since the script is agnostic of this). The meaning of subsequent tokens depends
on the mode:

• In list mode, each token is a list item. For boolean types, where only one sensible
list exists (modulo order), no list speciőcation is required or recognized.

• In range mode, four additional tokens are expected, deőning an interval and an
operation to produce the next variation, i.e. the iteration is deőned by p0

..= start

and pi+1 = pi op step, as long as pi+1 6 stop. The łreversež iteration, where
start > stop and x op step < x is handled as well.

• In random mode, two tokens deőne an interval, in which the random samples are
supposed to lie. The samples deőnition speciőes the number of random samples
to generate; if more than one parameter is to be generated randomly, the sample
count is global, i.e. for each combination of random parameters, a new sample is
generated for all of them. Integer and boolean variables are distributed normally
over the interval; since most real parameters may range over various orders of
magnitude, double precision parameters are distributed log-normally.

• The samples value also generates samples, if no parameters are chosen randomly.
This is useful to ensure consistency by testing the same parameter constellation
repeatedly.

Algorithmic Details of the Sweep Script

The sweep functionality of the parallel run script serves two main purposes: To generate
the parameter combinations and condense the results to enable simple comparisons.

To generate all combinations of list or range parameters, a modiőcation of the simple
counting algorithm is used: Each parameter pi is supposed to attain ki enumerable
values {v1i , . . . , vkii }, which usually are pairwise distinct; for the sake of generating the
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combinations, it is irrelevant whether these values are taken from a list, or generated by
iterating through a given range.

To apply the counting algorithm, we identify each value v
j
i with its index j, i.e. we deőne

bijections φi : {v1i , . . . , vkii } → {1, . . . , ki}. For each parameter, we represent its current
value by a łdigitž di ∈ {1, . . . , ki}. Every combination of parameter values can then be
represented by a łnumberž dndn−1 . . . d2d1. To iterate through all combinations, we start
with 11 . . . 11 and count up until reaching knkn−1 . . . k2k1; the diference to the usual mode
of counting is that each digit is counted in its own base. Given a number dndn−1 . . . d2d1,
the corresponding parameter combination is



φ−1
n (dn), φ

−1
n−1(dn−1), . . . , φ

−1
2 (d2), φ

−1
1 (d1)



.

Random parameters are handled by őxing the current combination of the list and range
parameters (if any) and generating the (globally) speciőed number of samples of all
random parameters. The total number of parameter sets generated thus is equal to
samples ·n

i=1 ki. Sampling is used, even if no random parameters are speciőed; this can
be used to perform consistency and reliability testing of deterministic parameter sweeps.

Condensing the őnal results is, by comparison, a minor task, since the parallel run
script already performs the necessary groundwork by collecting all results. The sweep
functionality on top of this computes various sums, means and median values to facilitate
comparisons across (potentially many) runs with diferent parameter settings.

The non-trivial user task of comparing the sweep results and picking the łbestž parameter
setting is facilitated by generating plots and a heuristic merit value computed for all
runs. The plot feature is limited to the case where only a single parameter is under
consideration, using gnuplot to produce 2D plots of the parameter value against

1. number of optimal terminations,

2. number of successful terminations (i.e. optimal or acceptable),

3. user time,

as shown in őgure 4.5. A sensible extension is to generate (projections of) 3D plots when
two parameters are considered, but this is not yet implemented.

(a) optimal terminations (b) successful terminations (c) user time

Figure 4.5.: Graphs generated by gnuplot for a single-parameter sweep

The heuristic merit value is supposed to weigh various factors and provide a scalar
measure of goodness. Very similar to the merit function used by the NLP line search,
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choosing a good merit function for comparing sweep results is largely heuristic, even if
the ingredients are obvious. Its current incarnation (after an amount of try-and-error) is
computed as

10nopt + 5nacc − 20nfail + log



nref
iter

niter

· n
ref
F

nF

· n
ref
G

nG

· t
ref
user

tuser



with the usual max{1, n} precaution to avoid zeros, where

nopt/acc/fail = number of optimal/acceptable/unsuccessful terminations,

niter = overall number of major iterations,

nF/G = overall number of objective/constraint function evaluations,

tuser = overall user time,

◦ref = value of the reference run, i.e. tag [000000].

The merit value for each tag is then used to present the łbestž tags to the user, a heuristic
intended to enable a quick inspection. Listing 4.12 shows a (rather extreme) example of
this.

Somehow best tags:

[000000] ( 3130.00)

[000004] ( 3031.03)

[000003] ( 554.57)

[000002] ( -2448.00)

Listing 4.12: Example of four sweep tags with the corresponding heuristic merit values.

To prevent ambiguities if merit values coincide, it is concatenated with the tag in a
string sense and then interpreted as real number; this approach is elegantly simple (also
technically, since Perl has no strict typing) and at the same time guarantees to produce
pairwise distinct merit values without changing the order of already distinct values.

4.5.3. Examples

Since any piece of writing on numerical methods is lacking an essential ingredient without
actual numerical results, we will consider some instances where the parallel testing
framework is used to tune some exemplary parameters, and also to analyze itself with
respect to the consistency of the obtained results.

Tuning RelaxMaxPen and surprising consistency results

As a őrst example, we will try and tune the RelaxMaxPen parameter that controls
the upper bound on the penalty parameter ηr for the constraint relaxation variable δ

(introduced in section 1.3.4).
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We can qualitatively predict that very small values of RelaxMaxPen will likely cause more
problems to fail and lower computational times: higher failure rate, because the QP solver
is unable to force the relaxation variable to suiciently small values, afecting convergence
towards feasible points; lower computational times, because Worhp will perform only
few iterative increments of the relaxation penalty before reaching its upper bound. Large
values of RelaxMaxPen will result in higher failure rates as well, since ηr is an eigenvalue
of the extended Hessian matrix, hence it afects the condition number. Intermediate
values should achieve a compromise between too lax handling of the relaxation variable
and too high a condition number of the extended Hessian matrix.

Figure 4.6 supports our prediction and strongly suggests choosing RelaxMaxPen = 107 as
a good default value that minimizes time and maximizes the number of successfully and
optimally solved problems (at least with respect to the CUTEr and COPS test sets).
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Figure 4.6.: Parameter sweep results for RelaxMaxPen ∈


10
n
2






n = 2, . . . , 24



on
CUTEr+COPS, plotting 100 samples each to test for consistency and reliability.

Besides supporting our initial prediction, őgure 4.6 also has surprising implications:
While a certain dispersion of the timing results is to be expected, we do not only observe
a high dispersion of the continuous results, but also variations in the discrete ones, i.e. the
number of successful and optimal terminations. This implies that occasional jobs fail to
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run or report back to the master node. While sampling is an obvious means to increase
the reliability of timing results, it is surprising that the same seems to hold for the integer
results, which implies that the setup on the ZeTeM cluster has certain stability issues.
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Figure 4.7.: Dispersion of utime results for RelaxMaxPen = 107 sweep, showing 200
samples.

Figure 4.7 shows the distribution of 200 timing results for RelaxMaxPen = 107; it is
slightly worrying that the distribution is far from a (possibly skewed) normal distribution,
and in fact not even unimodal, despite the rather large sample size. Given that the
sample parameter lies well in the middle of the whole sweep range, and that the sweep
script submits jobs with monotonically increasing (or decreasing) parameter values in
range mode, łwarm-upž or similar efects do not apply; it is safe to assume that the
cluster was under constant maximum load during all jobs with RelaxMaxPen = 107.

The presence of two diferent types of nodes in the cluster will lead to slightly broader
distributions, but does not explain the observed bimodal distribution, either. Without
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more speciőc data on the recorded sweep run, it seems pointless to speculate about
possible causes, however. We therefore close our analysis with the observation that
the distribution bears some resemblance to a sum of two diferent normal distributions,
i.e. the bimodality may be the efect of an unknown, but nevertheless deterministic, cause
after all.

Consistency of timing results

Although the main goal of parameter tuning for Worhp has been robustness, i.e. solving
as many problems to optimal or at least successful level, has long been the focus of
parameter tuning, performance tuning is of interest as well; the goal of performance
tuning is obviously to minimize the amount of required user time, which may be a
contradicting aim to increasing robustness, but not necessarily so in all cases. Unlike
measuring robustness, which is expressed in terms of integers and impervious to load level
and speed of the machine running the test (assuming deterministic behavior), measuring
performance is highly sensitive to these issues. It is therefore of interest, what level of
consistency of timing measurements the sweep infrastructure is able to deliver. This
is tested on the ZeTeM cluster (i.e. mixed SMP/MPP) and a multi-core (pure SMP)
machine.

The ZeTeM cluster consists of two types of nodes: Few 16-core nodes, dubbed łSMPž
and many 8-core nodes, named łMPPž. Technically speaking, all nodes can be used as
SMP nodes, and the whole setup is MPP, so the node names are indicative, rather than
accurate technical denominations. Besides having more cores, the SMP nodes are also
equipped with more memory and have slightly higher clock frequencies (4 × Opteron
8378, 2.4GHz vs. 2 × Opteron 2378, 2.3GHz). Using an ad hoc estimate, we would
expect jobs on the SMP nodes to be (2.4

2.3
− 1) ≈ 4.3% faster than jobs on MPP nodes.

Unfortunately, table 4.1 suggests that this estimate over-simpliőes matters.

Type cores/nodes utime

SMP 32/2 7565

MPP 16/2 6928

MPP 32/4 6674

SMP 16/2 6601
◭ better

Table 4.1.: Timing consistency between SMP and MPP nodes. Indicated utime is
the median of (each) 10 runs of CUTEr+COPS, distributed over four diferent

conőgurations of nodes and cores.

Comparing the MPP 16/2 conőguration with SMP 16/2 indeed shows a 4.9% speed
advantage of the SMP nodes, which is close to our prediction. The SMP 32/2 conőguration,
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however, is signiőcantly slower than any other, and by almost 15% in comparison to the
SMP 16/2 conőguration.

The most probable explanation is bandwidth contention between the (32/2 = 16) Worhp

instances on the fully loaded SMP nodes, where all other cases only run 8 instances
in parallel. Since 100 Mbit Ethernet is able to deliver signiőcantly higher throughput
than the communication for job submission and results, either TCP latency, or memory
bandwidth is left to blame. In other words: The observed slowdown with 16 parallel
instances is most probably due to a saturation of a speciőc bandwidth that is not (yet)
saturated by 8 instances.

Given that few problems from CUTEr, but rather more from COPS are medium-scale,
the test set as a whole deőnitely puts a strain on the memory bandwidth, if by chance
various medium-scale problems are submitted to the same node. On the other hand,
CUTEr contains many problems that can be solved by Worhp in mere milliseconds,
which is of similar order as typical network latencies. To conclude: While some form of
bandwidth saturation is the most likely explanation, it remains unclear which bandwidth
is being saturated, without performing more extensive measurements. Preventing the
SMP nodes from being fully loaded is a feasible workaround that exhibits the expected
performance diferences between SMP and MPP nodes.

On a multi-core desktop (i.e. SMP) machine, running the sweep script in łconsistency
modež, i.e. running samples of identical parameter sets shows very little variation:

Sweep: Writing parameter files in background.

Number of sweeps: 25

*** All parameter files written ***

Using (up to) 4 threads to run 17472 problems

Tag Success Optimal Failed Iter F evl G evl utime

[000000] 661 648 11 15/8 148/11 109/5 11.34

[000001] 661 648 11 15/8 148/11 109/5 11.64

[000002] 661 648 11 15/8 148/11 109/5 11.80

[000003] 661 648 11 15/8 148/11 109/5 11.57

[000004] 661 648 11 15/8 148/11 109/5 11.73

[000005] 661 648 11 15/8 148/11 109/5 11.60

[000006] 661 648 11 15/8 148/11 109/5 11.63

[000007] 661 648 11 15/8 148/11 109/5 11.48

[000008] 661 648 11 15/8 148/11 109/5 11.46

[000009] 661 648 11 15/8 148/11 109/5 11.72

[000010] 661 648 11 15/8 148/11 109/5 11.84

[000011] 661 648 11 15/8 148/11 109/5 11.68

[000012] 661 648 11 15/8 148/11 109/5 11.80

[000013] 661 648 11 15/8 148/11 109/5 11.36

[000014] 661 648 11 15/8 148/11 109/5 11.86

[000015] 661 648 11 15/8 148/11 109/5 11.12

[000016] 661 648 11 15/8 148/11 109/5 12.06

[000017] 661 648 11 15/8 148/11 109/5 11.33

[000018] 661 648 11 15/8 148/11 109/5 11.81

[000019] 661 648 11 15/8 148/11 109/5 11.36

[000020] 661 648 11 15/8 148/11 109/5 11.70
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[000021] 661 648 11 15/8 148/11 109/5 11.42

[000022] 661 648 11 15/8 148/11 109/5 12.04

[000023] 661 648 11 15/8 148/11 109/5 11.55

*** All jobs sent to workers ***

[000024] 661 648 11 15/8 148/11 109/5 11.87

[000025] 661 648 11 15/8 148/11 109/5 10.99

The distribution of the utime values is reasonably close to a normal distribution (72%
probability), and their standard deviation σ =̇ 0.26 is almost two orders of magnitude
smaller than the values. The most important observation is that the last utime value is
a clear outlier. This is probably due to the lower machine load in the last sweep run,
which puts a smaller strain on caches and memory bandwidth.

Tuning ScaleFacObj and sweep automation

Let us now consider the ScaleFacObj parameter, which deőnes a scaling target with
respect to the objective. If this scaling mode is enabled (by the scaledObj ŕag), the
objective is scaled by the factor

c+ ..= min



1,
ScaleFacObj

|1
c
f(x)|



,

which is updated in every major iteration. The motivation behind this scaling factor is
to leave reasonably well-scaled objectives alone, while reining in the badly-scaled ones.
We consider a őne-grained parameter sweep for 10−5 6 ScaleFacObj 6 105.

Since higher values cause Worhp to apply scaling to fewer of the test problems, we can
qualitatively expect lower values to produce better results, if badly scaled objectives are
responsible for unsuccessful terminations with the default settings.

Considering the sweep results őgure 4.8, we can make various observations:

1. The results are subject to pronounced dispersion. One possible interpretation is that
among the roughly 1000 test problems, few have problem conditions that tax the
numerical methods in Worhp to their limits, hence minor scaling variations may
be the decisive element between optimal, acceptable or unsuccessful termination of
the solver.

This is a general observation in parameter sweeps: Some test problems are particularly
sensitive to certain solver parameters and may show quasi-stochastic behavior in the
sweep results. The set of these test problems is parameter-dependent, although some
problems (such as some instances of the palmer, the vanderm and the himmel series) are
particularly conspicuous. In our case, the dispersion width suggests that 3 or 4 problems
have this quasi-stochastic sensitivity to ScaleFacObj.

These łquasi-stochasticž test problems have proven to be problematic for the parameter
sweep, if computational resources are limited, and the overall sample rate is low, since
they may suggest highly localized maxima (of successful/optimal terminations) or minima
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Figure 4.8.: Parameter sweep results for ScaleFacObj ∈ {10−5 · 1.1n |n = 0, . . . , 2415}
on CUTEr+COPS, using 10 samples each.

(of utime), even in unfavorable regions of the parameter space. The high sampling rate
and wide intervals that are made possible by distributing the parameter sweep over
a powerful computational cluster enable us to move from localized extrema to robust
regions of the parameter space.

To continue our observations:

2. The computational times are subject to high variance as ScaleFacObj grows,
but seem to stabilize again between 103 and 105. This efect is explained by
the action of ScaleFacObj: The greater the trial parameter, the fewer problems
are modiőed, hence the behavior stabilizes; the smaller the parameter, the more
problems are modiőed, but gradually transformed into feasibility problems, if very
small parameters are chosen: Although the two problems

min f(x) s.t. g(x) = 0
and

min 10−20f(x) s.t. g(x) = 0

126



4.5. Parameter Tuning

are equivalent from a theoretical point of view, the second one degenerates into a
feasibility problem g(x) = 0 when solved numerically. It is therefore the łmiddlež
region, where many test problems are afected by the parameterÐand hence show
varianceÐ, but whose objective still has numerical inŕuence.

3. We can observe two local maxima with respect to optimal & successful terminations,
and one (boundary-)minimum of the utime values. Had we added additional
łintelligencež, in form of support vector machines or global optimization techniques,
to the sweep script to automatically identify optimal parameters, it might return
10−5 as optimal choice. However, as explained earlier, this choice would essentially
transform optimization problems into feasibility problems, which is clearly against
the user’s intentions.

Gathering and incorporating all observations, the current default of RelaxMaxPen = 101

is a suitable choice (at least with respect to the test set), since it hits the global
maximum of optimal & successful terminations, and does not interfere with thoroughly
well-scaled problems. The timing results for this region are hard to interpret through
the high dispersion, but on average lie well below the maximum times reached around
RelaxMaxPen = 103.

4.5.4. Conclusions

The parameter sweep was introduced to enable parameter tuning, both generic and
problem-speciőc. It is intended to somewhat ease the burden of requiring deep knowledge
of both the optimizer and the application to be able to tune solver parameters. While it
has yet to be applied by users, it is not intended as developer-exclusive tool; running the
sweep script is suiciently simple to allow wider use in any case, but the interpretation
of the results is not necessarily as simple as the graphs suggest. If users are applying
the parameter sweep to self-chosen test sets, we can assume, however, that they are able
to interpret the results and would therefore not łfall for trapsž such as the potentially
misleading result of the RelaxMaxPen sweep discussed earlier.

This anticipates one major conclusion: While the parameter sweep is simple to run,
blindly trusting its results can be dangerous, which is the reason why the sweep script has
deliberately not been equipped with additional intelligence to automate the parameter
choice: The sweep technique still requires a reŕecting user to scrutinize its results.

The second conclusion concerns consistency and reliability: As the multi-core test
indicates, running the sweep script on a (preferably unloaded) modern desktop machine
yields reliable results that are very consistent across repeated runs; the only observed
variation concerns the time measurements. To achieve higher accuracy here, a small (2ś5)
number of samples can be used in addition to the (deterministic) parameter variations to
calculate a median of the timing results as highly reliable measure.

As the examples suggest, conditions are slightly worse on the ZeTeM cluster, caused by
unreliable nodes with randomly dying slaves and currently unexplained issues that result
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in high dispersion of timing results. Since even the integer measurements show variation,
sweep runs on the cluster always have to use sampling to achieve reliable results. If
robustness is the major concern, a rather small number of samples can already guard
against false results: If we assume a probability of 10−4 (1 in 1000) for a test problem
to fail because of technical problems (in reality, it is probably still lower), a single run
of CUTEr+COPS has a 1− (1− 10−4)988 ≈ 9.4% probability of returning a false result
due to one or more technical failures; this is uncomfortably high. However, using 2 or 3
samples, we can lower the probability of all test runs returning a false result to 0.89%
and 0.083%, respectively, which seems acceptable.

Achieving comparably reliable timing results on the cluster seems to require many more
samples, considering the dispersion observed in őgure 4.7, which is not even normally
distributed (probability < 4.2 · 10−7). It still seems sensible to use the median value of
the results of multiple samples, instead of the minimum, since deviations are present
in both directions, for instance if a slave with a long-running problem dies immediately
after starting it.

All in all, the parallel parameter sweep is a powerful tool, although it requires some care
in interpreting its results. The reliability of its results is excellent on multi-core machines,
and can be increased to satisfactory levels on the cluster by the use of sampling. It
is unique with its capability of “optimizing the optimizer”, which has likely never been
considered for NLP solvers as systematically as described here.

4.6. Future directions for testing

When viewed from a software engineering angle, the current testing regime of Worhp

is very narrowly focused on performance and less on veriőcation and validation in the
software-technical sense. The current form of testing could be regarded as a combination
of system testing, which usually is the last or last-but-one step in formalized software
testing, and performance testing. With continued development and maintenance of
Worhp, it will be sensible to add more software-engineering oriented forms of testing:
unit tests8 perform freestanding tests on single routines or modules, such as Worhp’s CS
module that provides routines for handling sparse matrices. This form of testing is easier
to perform than system testing, since each module has only few, well-deőned functions
of lower complexity than the overall system, and thus requires fewer or simpler tests to
exhaustively test it for defects.

Continuous Integration (CI) is a quality assurance technique that merits partial inclusion
into the development process. Given the existing run script for providing test results and
the conőguration and build system, an initial setup requires only a continuous integration
server that monitors the code repository (Subversion[57] in Worhp’s case) and triggers
test and build runs under certain conditions ś usually at every commit, when following
the CI rules to the letter. Examples of such CI servers are Jenkins[44], written in Java,

8Engineers might call this “module-in-the-loop”
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but easily applicable to other łeco-systemsž by plugins, and bitten[65], based on trac[66],
both written in Python.

Besides extending the testing approach to new technical forms of testing, it is highly
necessary to extend the test sets by new problems, problem classes and using diferent
interfacesÐthe CUTEr and COPS tests are currently exclusively run through the AMPL
interface. This may obscure existing weaknesses of other interfaces or Worhp’s numerical
and algorithmic core, since AMPL provides analytic derivatives, whose precision depends
only on the machine precision and the math library, and internally simpliőes the problem,
removing variables or constraints. Formerly existing problems in handling őxed variables
were only discovered through an application based on the MATLAB interface, since
AMPL removes these.

Extending the test set with new test problems, and most importantly, beyond AMPL is
therefore critical for Worhp’s intended use as a general-purpose, robust NLP solver.
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Examples

A.1. Bypassing const-ness

These two examples use C to demonstrate bypassing a const qualiőer on a routine
argument by changing it through a global pointer.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 /* Used for global access to n in main */

5 static int *np;

6 void routine1(const int n);

7 void routine2(const int n);

8

9 int main (void) {

10 int n = 42; np = &n;

11 routine1(n);

12 exit(EXIT_SUCCESS );

13 }

14 void routine1(const int n) {

15 routine2(n);

16 printf("After routine2: n = %d\n", n);

17 }

18 void routine2(const int n) {

19 (*np)++; /* Increment n */

20 printf("After increment: n = %d\n", n);

21 }

Listing A.1: Example for bypassing const-ness and call-by-value.

In example listing A.1, routine2 needs to use a global pointer to (in a way) change
its argument n, since it inherited its const-ness from routine1 and we are unwilling to
change the whole calling hierarchy.
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If we run this code, we őnd that n keeps its value of 42 in both routines, although its
łmaster copyž in main has been incremented. While this is not at all astonishing to
seasoned C programmers, n being passed by value, i.e. every routine having a local copy,
it holds a potential element of surprise to the perfunctory inspector and thus violates the
good programming practice that code should do what you expect it to do.

The fact that n does not change in both routines is in keeping with its const-ness, but
contradicts the initial assumption that n should change, since it has been incremented
after all.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 /* Used for global access to n in main */

5 static int *np;

6 void routine1(const int *n);

7 void routine2(const int *n);

8

9 int main (void) {

10 int n = 42; np = &n;

11 routine1 (&n);

12 exit(EXIT_SUCCESS );

13 }

14 void routine1(const int *n) {

15 routine2(n);

16 printf("After routine2: n = %d\n", *n);

17 }

18 void routine2(const int *n) {

19 (*np)++; /* Increment n */

20 printf("After increment: n = %d\n", *n);

21 }

Listing A.2: Example for bypassing const-ness and call-by-reference.

Listing A.2 difers from the previous example only in that n is not passed by value, but
by reference. If we compile and run this version, we őnd that it prints 43 twice. Again,
no C programmer should be caught by surprise, but the same statement as for listing A.1
holds, only under opposite signs: the assumption that n should change holds true this
time, but the const-ness claimed by the routine signature is (somehow) violated, which is
surprising again.

Examples A.1 and A.2 are tiny. If we mentally scale them up to a complete software
package with thousands of LOC distributed over various őles, we may well arrive at the
point where changing anything breaks the code in non-obvious ways. When a software
project arrives at this point, it may well be beyond salvation.

Bottom line: Use of global data, combined with Aliasing, easily causes unexpected efects,
creating severe maintenance liabilities, and should thus be avoided.
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Aliasing describes the situation where a single piece of data (in memory) can be accessed
through two or more pointers. The fact that Fortran forbids aliasing by default
accounts for its high performance, since it allows compilers to make aggressive use
of caching and greatly simpliőes dependency analysis. In contrast, C allows aliasing
by default, hence C compilers have to work more conservatively to guarantee data
consistency. 133

AMPL is A Modeling Language for Mathematical Programming[22]. It allows to formu-
late optimization problems in an intuitive language closely resembling mathematical
notation, and uses symbolic operations to simplify the problem and provide exact
(to machine precision) derivatives. 95, 96, 104, 107, 110, 137, 143

Application Binary Interface deőnes the interface between programs or libraries on
the assembler level, i.e. byte order (see endianness), stack convention, etc.. Software
compatibility on the ABI level is often desirable to allow for simple upgrade paths,
but challenging, since there are signiőcant diferences between diferent compilers
(or versions of them) and platforms. 145

Application Programming Interface in our sense is the deőnition of types and func-
tions used to communicate with a given piece of software, often a program library.
Software development diferentiates between stable and evolving APIs, where the
őrst remains static or at least downwards-compatible over various versions, whereas
the latter may change in incompatible ways between diferent versions of the soft-
ware. The GNOME libxml2[73] is an example of a stable API, while the Linux
kernel’s API is deliberately left unstable. 139, 145

ASL supposedly an acronym for łAMPL solver libraryž provides the back-end library
for hooking NLP (or other) solvers to AMPL. It is available from http://www.

netlib.org/ampl/solvers. 104

AutoGen łis a tool designed to simplify the creation and maintenance of programs that
contain large amounts of repetitious text. It is especially valuable in programs
that have several blocks of text that must be kept synchronized.ž [47]. AutoGen is
based on Scheme, using the guile[5] library. It is used by Worhp to generate a
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large portion of the data structure-related code. 69, 95

barrier is a concept used in multi-threaded software. A barrier is a code point that has
to be reached by a set of threads before the program continues; it causes faster
threads to wait for the slower threads to łcatch upž. Barriers are typically used
when results from multiple threads are condensed. 113

bash the Bourne-again shell is the standard shell on many current GNU/Linux systems.
It is mostly compatible with the older Bourne Shell sh introduced with Unix V7,
but also adopted some features of the Korn-Shell ksh and the C-Shell csh. 83,
110, 111

BLAS the Basic Linear Algebra System deőnes a set of routines that perform basic
operations on vectors and matrices for higher-level code to rely on, so that each
architecture can provide (in the engineering sense) optimized versions. Routines are
grouped into levels 1ś3 according to their operands (scalar-vector, matrix-vector
and matrix-matrix). 39, 95

CamelCase is a convention for concatenating words by capitalizing the őrst letter of every
interior word, as in CamelCase or computeThisNumber. Using underscores to con-
nect words (as in compute_this_number) can be thought of as the complementary
convention. 47

Continuous Integration is a form of software quality insurance developed that focuses
on tightly coupling small, incremental changes with highly automated testing and
building infrastructure. Its central aim is to expose conŕicts and errors introduced
by changes early though continued automated building and testing of the software
under development. 129, 145

COPS the Constrained Optimization Problem Set is a collection of large-scale, whose
łprimary purpose [. . . ] is to provide diicult test cases for optimization software.
Problems in the current version of the collection come from ŕuid dynamics, popula-
tion dynamics, optimal design, mesh smoothing, and optimal control.ž. COPS 3.0
is documented in [16, 17]. 107

CUTEr an acronym for łCUTE revisitedž is a collection of over 1,100 optimization
problems in SIF format that serves the purpose of providing a standard set of
problems to test and compare optimization codes. Worhp is benchmarked with a
920-problem set that contains roughly 750 problems of the complete collection that
is documented at [56]. 95, 107, 111

Debugging derived from the term łbugž, which is nowadays used to describe any kind of
defect in software. Its origin lies in Harvard, where on September 9, 1947, engineers
working on the Mark II computer found a moth stuck in relay #70, causing an
arithmetic test to fail. Grace Murray Hopper is reported to have coined the term
łdebuggingž on this occasion. 107
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Figure A.1.: The world’s őrst computer bug, glued into the Mark II logbook. The
comment reads łFirst actual case of bug being foundž.

deque is a contraction of the slightly unwieldy word dequeue, which in turn is an
abbreviation for double-ended queue, i.e. a list of objects that allows elements to
be added and removed from both łendsž. 112, 114

DOM the Document Object Model is a W3C standard that deőnes a tree-like represen-
tation of an XML document and an Application Programming Interface (API) for
accessing and modifying it. 85, 86

Doxygen is a documentation system[71] for C, C++, Fortran and other languages that
parses the source code for special comments, very similar to Javadoc[39], but tailored
to the respective languages’ syntax for comments. 95

DTD short for Document Type Deőnition is a format to deőne a document type for
SGML (and thus XML and HTML) documents by writing grammar-like rules. A
validating parser can use a DTD to validate that a document conforms to the rules
of a thus-deőned document type. 85

Dynamic Link Library Shared library format on Windows platforms. To link libraries
or executables to a Dynamic Link Library, some compilers need an Import Library.
In most cases .dll is used as őle suix. 95, 140, 145

ELF the Executable and Linkable Format is used as standard binary format for object
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code, libraries and executables on many Linux and Unix platforms, replacing the
older a.out and COFF formats. An ELF object can be examined with several tools,
among them readelf and objdump. 62, 104, 105, 143

endianness is a property of a processor architecture that describes the bit storage order
of integers. Big-endian architectures save the MSB őrst (at the lowest bit of a
word) and the LSB last (at the highest bit of a word), whereas little-endian has the
exact opposite storage order. Arabic numbers, for instance, are written down in
big-endian order, whereas the German ordering of dates as DD.MM.YYYY can be
thought of as little-endian. The Intel x86(-64) architecture is little-endian, while
SPARC and PowerPC are historically big-endian (actually bi-endian nowadays,
supporting both modes). 57, 137

HSL (formerly the Harwell Subroutine Library) is a collection of threadsafe ISO Fortran
codes for large scale scientiőc computation [34]. 95

Import Library Specialized static library on Windows platforms needed by the linker to
link against a Dynamic Link Library. Native Windows tools use the .lib suix,
but the MinGW-related tools also use .dll.a. 139

Ipopt łis an open-source solver for large-scale nonlinear continuous optimization. It can
be used from modeling environments, such as AMPL, GAMS, or Matlab, and it is
also available as callable library with interfaces to C++, C, and Fortran. Ipopt uses
an interior point method, together with a őlter linear search procedurež[74]. The
solver Ipopt is presented in [75]. 38

JSON the JavaScript Object Notation[13] is a standard for serializing JavaScript objects,
i.e. it deőnes a mapping between objects and a string representation of them. JSON
supports numeric, logical and string data types and used C-like { } notation for
denoting hierarchies. 50

LAPACK the Linear Algebra Package provides an extensive set of higher-level routines
for łsolving systems of simultaneous linear equations, least-squares solutions of
linear systems of equations, eigenvalue problems, and singular value problemsž. 95

LISP is a functional language based on λ-calculus. LISP is an acronym for List
Processing, but the humorous Lots of Irritating Superfluous Parentheses is re-
garded a more appropriate description by some. (X)emacs is an example of a
well-known application written in a LISP dialect called Emacs Lisp. 143

locale deőnes the country-/language-speciőc conventions for date and time format,
number representation (in particular decimal point), currency symbol, time zone
and others. 87

magic number is a derogatory term for the use of literal numbers in code whose jus-
tiőcation is not obvious. Examples are conditionals like if (iFlag == 31415)
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(where 31415 should be replaced by a descriptive constant), dimensions like char

string[13] or even arithmetic like i = 60*j; since i and j are completely nonde-
scriptive, does 60 describe the number of seconds in a minute, of years between
three successive Great Conjunctions of Jupiter and Saturn or of carbon atoms in a
buckyball? One main criticism of magic numbers is their burden on maintenance,
since refactoring named constants is trivial against őnding and replacing (the
correct!) number literals in extensive code. 47

Massively Parallel Processing abbreviated as MPP describes parallel computing on
many processors that do not have shared, but distributed memory, i.e. the processors
are coupled loosely by network or similar connections. Parallel programming that
uses explicit message passing, such as MPI, is required on MPP architectures. 143,
145

MATLAB is an extensive development environment for numerical algorithms[49]. It
operates numerically on matrices and vectors and is very suitable for prototyping
and quick visualization, but lacks the performance of compiled languages. 96

METIS is a set of routines for partitioning graphs, partitioning őnite element meshes,
and producing őll-reducing orderings for sparse matrices[43, 50]. 95

MinGW Minimalist GNU for Windows[52] is a project that ports part of the GNU
toolchain to Windows, which includes (a subset of) the Windows API, compilers
from the GCC and binutils. It allows the creation of native Windows binaries, but
does explicitly not emulate a POSIX-like environment, like cygwin does. 140

name mangling is the mapping of a function name in the source code to its assem-
bler name in the generated object code. For C, the mapping is usually direct,
while C++ employs complex mappings to handle polymorphism on the linker
level (example: long foo(std::vector<double> &v, size_t n) is mangled to
_Z3fooRSt6vectorIdSaIdEEm by g++). Fortran compilers also mangle function
and subroutine names in a vendor-speciőc way. 62

Nonlinear Programming The Name of the Game: Nonlinear Programming is the pro-
cess of minimizing a smooth (nonlinear) objective function subject to smooth
(nonlinear) equality and inequality constraints, usually by iterative numerical meth-
ods like Worhp. 145

Object-oriented Programming is a programming paradigm popularized with the ad-
vent of C++, although its inception dates back many years before that. Its main
distinction from other programming paradigms, such as functional or imperative,
is the focus on data encapsulated in objects with operations deőned on them.
Important concepts are inheritance, polymorphism and encapsulation. 38, 145

Perl is an extensive scripting language, initially designed as łgluež language with emphasis
on text processing, but nowadays extended by various modules to a general-purpose
language suitable for many applications. One of its distinctive features is its rather
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large body of keywords that purposefully includes redundancies (unless(cond) is
a graphic example of this, intended as more intuitive alternative to if(not(cond))

that needs to be used in other languages). Perl is often characterized by the łthere
is more than one way to do itž (TIMTOWTDI) paradigm, which facilitates writing
Perl programs but may result in code that is hard to understand. Perl also follows
the so-called łdo what I meanž-approach for interpreting language constructs in
non-surprising ways. 69, 110, 142

PVFS originally named Parallel Virtual File System[61] is a őle system for distributed
computing focused on delivering high performance and scalability to petabyte
dimensions. 111

Python is a universal, multi-paradigm programming language with a strong focus on
clarity, readability and expressiveness, backed by a very extensive standard library.
Distinct features of Python are signiőcant whitespace (blocks are deőned by in-
dention) and the small size of its set of builtin functionality and keywords. The
language philosophy is somewhat opposite to Perl in providing a minimalistic,
redundancy-free, easily extensible language that allows (and encourages) a single,
clear, łcanonicalž implementation of any given problem. Python is therefore consid-
ered as very suitable for teaching, but in contrast to other didactic programming
languages, is also actually being used for serious software projects. 69

R is a free, open-source system for statistical computation and visualization, documented
in [58]. 83

Ragel is a state machine compiler that targets languages like C, C++, Java and Ruby.
It uses a regular language to deőne a grammar, and to embed actions to perform
during the scanning/parsing process. Ragel then creates free-standing code that
deőnes a őnite-state machine to scan/parse the deőned grammar. 85

Regression Testing is a test method applicable to software producing output that can
somehow be veriőed or checked against a reference, with the aim to identify and
correct modiőcations to the software that cause it to fail on inputs, which were
handled correctly before. A regression test is performed by (usually automatically)
iterating over a set of inputs and verifying the outputs, e.g. by comparing against
some reference output. Regression testing is most powerful, if for every identiőed
defect an input to trigger it is added to the test set ś this approach can very
efectively prevent the re-surfacing of bugs that have been őxed before. The GCC is
a noticeable example of a software package that relies heavily on regression testing
for developing and accepting bugőxes: the test suite of GCC 4.6 consists of more
than 40,000 individual pieces of code. 107

Reverse Communication is a software architecture convention that places tasks usually
performed in the bowels of a software package (the callee) back into the callers
hands, e.g. the evaluation of a function: instead of implementing a function and
providing a pointer to it to the callee, who then calls the function at his own
disposal, the caller, when prompted by the callee, is given control, performs the
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function’s action and hands the control back to the callee. This reversal of the
usual interaction between caller and callee has coined the term. 32, 41, 43, 66, 145

Scheme is a LISP dialect with a minimalistic design philosophy[67], aimed at allowing
enough ŕexibility and providing extension tools to extend the language to the users
needs, rather than deőning an exhaustive set of language features. 69, 95, 137

sed short for stream editor is a stream-oriented text processor on unixoid platforms
(although ports to other platforms, such as Windows exist). It uses a very concise
syntax for searching, replacing, stack manipulations and such, which actually make
it Turing-complete; accomplished sed programmers have implemented a calculator,
a Linux to Unix assembler converter, or Sokoban(!) using sed. 69, 104

SIF the Standard Input Format is a text format for specifying linear, quadratic and
nonlinear optimization problems, closely linked with the NLP solver LANCELOT[12]
that is based on SIF as input format, and the MPS format for linear problems, of
which it is a superset. A sifdecode tool is available to generate FORTRAN code
from SIF őles, which can be used to solve SIF-encoded problems with other solvers.
In contrast to AMPL or similar formats, SIF is highly non-intuitive, requiring the
problem to be formulated as a high-level structural representation. The format is
described in [7]. 107

SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric
systems of linear equations on high performance machines[15, 48]. 95, 96

symbol versioning is an extension to ELF that allows to annotate symbols (i.e. functions)
in a shared library with a version, and to provide diferent versions of one symbol
to a caller. It is used to retain backwards-compatibility even if the functionality of
existing functions changes. The GNU libc makes ample use of symbol versioning,
in order to support existing binaries without recompilation after libc updates. 51

Symmetric Multi-Processing abbreviated as SMP describes parallel computing on
systems where all processors have access to a single (large) amount of shared memory,
hence communication between processors only requires locks or semaphores, but
data does not have to be passed around in messages, as required by Massively
Parallel Processing. OpenMP is a typical choice for programming on SMP machines.
145

sys time is the subset of a computer’s CPU time that is used by the kernel on behalf of
a process, and as such is complementary to user time. The sys time should usually
be much lower than the user time for a numerical application, unless it performs
intense I/O operations. The total CPU time used by and for a given process is the
sum of user and sys time. 114

Unified Solver Interface is a marketing-compatible term referring to the uniform (opt,

wsp, par, cnt) interface of many Worhp routines. 32, 38, 40, 146
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unit of least precision is the absolute spacing between two consecutive ŕoating point
numbers, abbreviated as ulp. It is related to the machine epsilon, which describes
the same concept normalized to the ŕoating point number 1.0. The IEEE standard
dictates that the result of elementary arithmetic operations with ŕoating point
numbers be within 0.5 ulp of the exact result. 146

user time is the subset of a computer’s CPU time that the kernel allocates to a process.
It excludes time used by the kernel on behalf of this process, e.g. for őle operations,
and the time spent sleeping, when the kernel allocated CPU time to other processes.
For single-thread processes, user time is always less than wall time, since it shares
the CPU with the kernel and other processes. 107, 114, 143, 144

valgrind is an extensive and invaluable debugging and proőling tool for Linux. It uses
dynamic recompilation of binary program code into an internal representation to
enable a very wide range of possible diagnostics, including memory debugging, heap
and cache proőling, diagnosing race conditions between threads and producing call
graphs[53, 6, 54, 55]. 70, 84

wall time is the physical time used by a process, such as a stopwatch operated by the
user (or the clock on the wall) would measure it. While it gives an indication of
the perceived speed of a process, it is misleading on machines under load, where
many active processes compete for CPU time and where the user time is a more
appropriate way of measuring and comparing (performance) timings on computers.
For single-thread processes, wall time is a strict upper bound for the user time, but
multi-threaded processes usually reverse this order, since user time (at least on
Linux systems) is cumulative for multiple CPUs. 114, 144

Workspace Management Table 2D integer table used by Worhp to track start/end-
indices and sizes of Workspace Slices. 79, 146

Workspace Slice Array slice of one of Worhp’s large workspace arrays.. 144

XML the eXtensible Markup Language is a Unicode-based markup language for creating
machine-readable documents[8]. An XML document has a tree-structure and is
organized by annotating its content with tags and attribute-value pairs. 50, 96, 139

YAML Ain’t Markup Language[19] is a recursive acronym for a plain-text serialization
language. It supports key-value pairs, lists, associate arrays and hierarchies, which
it denotes by indention, and distinguished between integer, ŕoat, boolean and string
data. 50

ZeTeM cluster is a cluster of 36 computing nodes (4 SMP nodes with 16 cores + 32
MPP nodes with 8 cores) with a total of 320 Opteron cores and a theoretical peak
performance in the order of 100 GFlops. TORQUE[36] is used as resource manager
and MOAB[35] as job scheduler. 111, 112, 123, 124
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ABI Application Binary Interface. 89

API Application Programming Interface. 41, 89, 139

CI Continuous Integration. 129

DAG directed acyclic graph. 94

DLL Dynamic Link Library. 95, 96

FSM őnite-state machine. 85

GCC GNU Compiler Collection. 95, 106, 107, 141, 142

GNU GNU’s not Unix. 69, 92, 94, 98, 99, 104, 141

IWMT Integer Workspace Management Table. 79

LOC Lines of code. 133

LSB least signiőcant bit. 57, 140

MPP Massively Parallel Processing. 124

MSB most signiőcant bit. 57, 140

NLP Nonlinear Programming. 38

OOP Object-oriented Programming. 38, 42

RC Reverse Communication. 32, 46, 66

RWMT Real Workspace Management Table. 79

SMP Symmetric Multi-Processing. 124
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SQP Sequential Quadratic Programming. 1

ulp unit of least precision. 50

USI Uniőed Solver Interface. 32, 38, 40, 44

WMT Workspace Management Table. 79
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