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ABSTRACT 

Die Fallout-Radionuklide, wie z. B. 137Cs, 210Pbex, sind weitverbreitet zur 

Quantifizierung von Bodenerosions- und Sedimentverteilungsraten innerhalb 

landwirtschaftlicher Nutzflächen bzw. Gewässern. Die mit diesen Radionukliden 

ermittelte räumliche und zeitliche Bodenverlagerung gilt als eine wertvolle 

Ergänzung zu konventionellen Methoden zur Bestimmung der Bodenerosion. Mit 

der Auswertung der oben genannten Radionuklide können allerdings nur 

mittelfristige (40 bis 100 Jahre) Bodenerosionsraten bestimmt werden. Die 7Be 

Methode besitzt das Potenzial kurzzeitige meteorologische Ereignisse (z. B. 

Starkregen) mit sich daraus ergebenen Erosionsraten in Verbindung zu setzen und 

diese abzuschätzen. Die 7Be Methode gewinnt in einer Zeit des sich abzeichnenden 

Klimawandels, der Veränderung der Landnutzung und andere menschliche 

Aktivitäten zunehmend an Bedeutung. 

Die vorliegende Arbeit stellt ein mathematisches Modell vor, das auf den 

physikalischen Prozessen der molekularen Diffusion, unter Berücksichtigung  des 

radioaktiven Zerfalls des 7Be, basiert, um die vertikale Bewegung von 7Be in Böden 

zu untersuchen. Mit diesem Modell wurden Erosionsraten für 12 einzelne 

Niederschlagsereignisse über einen Zeitraum von zwei Jahren in dem 

Untersuchungsgebiet Müncheberg, Deutschland quantifiziert. 

Das Modell geht von der Annahme aus, das es eine pulsähnliche Fallout- 

Anfangsbedingung gibt, bei der vor Beginn der Betrachtung keine 7Be-

Aktivitätskonzentration vorlag. Nach dem Niederschlagsereignis wird mit Hilfe 

einer angenommenen Exponentialverteilung der 7Be-Aktivitätskonzentration auf der 

untersuchten landwirtschaftlichen Fläche der Diffusionskoeffizient D ermittelt. Dabei 

wurde das Modell mit mehr als 15 Tiefenverteilungen ausgestattet, um den 

effektiven Diffusionskoeffizient D besser abschätzen zu können. Für den 

Diffusionskoeffizenten D konnten Werte in der Größenordnung von 10-12 – 10-13 m2 s-1 

für lehmig bis sandige Bodenarten ermittelt werden. Die Boden-Analysen zeigen, 

dass der Diffusionskoeffizient D nicht nur ein Anpassungsparameter ist, sondern 



 

auch von den physikalisch-chemischen Eigenschaften der Radionuklide im Boden 

abhängig ist. 

Die Bodenabtragsraten bei der Fläche des „konventionell betriebenen Anbaus“ 

(Pflügen und sonstige Bodenbearbeitung) im Untersuchungsgebiet lagen zwischen 

kleiner 0,001 bis 4,7 ± 0,4 kg m-2 und bei der Fläche der „Direktsaat“ (keine 

Bodenbearbeitung) zwischen 0,30 ± 0,05 kg m-2  bis 2,0 ± 1,4 kg m-2. Die abgeschätzte 

Erosionsrate auf der Fläche der Direktsaat betrug weniger als die Hälfte bezogen auf 

die Fläche des „konventionellen Anbaus“. 

- Das entwickelte mathematische Modell in dieser Studie beschreibt den 

Transport von 7Be in Böden. Es ist das erste umfassend vorgeschlagene Modell, 

das trotz der vielen Vereinfachungen, z. B. durch die Annahme einer 

exponentiellen Verteilung des 7Be innerhalb der Profile, die Bodenerosion in 

gestörten Bodenoberflächen (konventioneller Anbau) sowie ungestörten 

Bodenoberflächen (Direktsaat) und auf Referenzflächen korrekt wieder gibt. 

- Es wurde nachgewiesen, dass der wichtigste physikalische Prozess, der 7Be im 

Boden transportiert, die molekulare Diffusion ist. Der Nachweis musste unter 

Berücksichtigung des radioaktiven Zerfalls des 7Be mit seiner vergleichsweise 

kurzen Halbwertszeit von 53,23 Tagen durchgeführt werden. 

Migrationsparameter und Messungen bestätigen, dass Sorption  der wichtigste 

physikalische Prozess ist, der die 7Be-Konzentration zu der Bodenoberfläche 

abgrenzt. 

- Das aktuell vorgeschlagene Modell unter Verwendung von 7Be als Tracer wurde 

erfolgreich nach einzelnen Niederschlägen getestet und konnte an Hand 

nachfolgender Niederschlagsereignisse weiter modifiziert werden. 

- Unter zur Hilfenahme der 7Be Methode konnte erfolgreich zwischen der Rill-

Interrill-, Splash und Oberflächenerosion auf der Versuchsfläche unterschieden 

werden. Zu beachten bleibt, dass das diskutierte Diffusions-Modell in dieser 

Studie Vegetation auf den Anbauflächen nicht berücksichtigt. In einigen Fällen 

führt dies bei der Abschätzung der Bodenabtragsrate zu einer Überbewertung.
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ABSTRACT 

The fallout radionuclides 137Cs, 210Pbex are used widely for obtaining quantitative 

information on soil erosion and sediment redistribution rates within agricultural 

landscapes, over several spatial and temporal scales, and they are frequently seen to 

represent a valuable complement to conventional soil erosion measurement 

techniques. However, measurements of these radionuclides provide estimates of 

medium term (i.e. 40-100 years) soil erosion rates. The shorter-term perspective 

provided by the 7Be method has the potential to estimate soil erosion rates associated 

with individual events or short periods. The 7Be method has become increasingly 

relevant in an environment impacted by climate change, changing land use and other 

human activities. 

The present work establishes a mathematical model based on the physical 

processes of molecular diffusion and radioactive decay, to study the vertical 

behaviour of 7Be in soils.  This model was further used to quantify erosion rates for 

12 individual erosional events over a period of two years at our study site in 

Müncheberg, Germany.  

The scope of the model was explored analytically as well as numerically for Pulse-

like fallout initial condition, zero concentration initial condition and exponential 

distribution initial condition.  The model was fitted to more than 15 depth 

distributions and the resulting model parameter, effective diffusion coefficient D, is 

evaluated. In general diffusion coefficients estimated were of the order of 10-12 – 10-13 

m2 s-1 for loamy to sandy soil types. Diffusion coefficients estimated for our study site 

were about 10-13 m2 s-1.  The soil analyses indicate that the diffusion coefficient D is 

not merely a fitting parameter, but is related to the physico-chemical properties of 

radionuclide transport in soils. 

The erosion rates estimated at tilled and no-till plots at our study site were between 

< 0.001 - 4.7 ± 0.4 kg m-2 and 0.3 ± 0.5 kg m-2 - 2.0 ± 1.4 kg m-2 respectively. The 

magnitude of erosion rates estimated at the no-till plots was less than that at the 

tilled plots. The main conclusions of this work are: 
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- The mathematical model developed during this study describes the transport of 

7Be in soils. It is the first extensive model proposed so far that despite of its 

many simplifications, adequately represents the exponential distribution of 7Be 

profiles at disturbed and undisturbed or reference sites. 

- Main physical processes, which transport of 7Be in soil are, diffusion and 

radioactive decay. Migration parameters and measurements confirm that 

sorption is the main physical process, which confines 7Be concentration to soil 

surface.   

- Current erosion estimation methods with 7Be available in the literature for 

estimating erosion rates for single rainfall event was successfully modified to 

quantify erosion rates for multiple rainfall events. 

- Erosion rates estimated with 7Be technique were successfully used to 

differentiate between the rill-interrill, splash and surface erosion at the study 

plot. 

- The Diffusion model proposed in this study does not take into account the 

vegetation cover and thus overestimates the erosion rates or in some cases 

shows the occurrence of deposition on the plot. 
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THESIS OUTLINE 

This PhD thesis is organized into six chapters followed by an APPENDIX section. 

The chapters are organized in such a manner that they explain the building blocks of 

the thesis one by one but at the same time are well connected with each other 

maintaining the flow of the research topic. 

Chapter 1 gives a brief background of the soil erosion problem in the world and 

introduces the basic concepts in the use of radionuclides in soil erosion 

quantification. A detailed discussion on 7Be in the environment is done in this 

chapter. The state of the art of erosion quantification technique using 7Be is also given 

here. The research goals of this study have been addressed at the end of this chapter. 

Chapter 2 introduces the vertical transport model of 7Be in soils. The model is tested 

for different initial and boundary conditions and the analytical solutions to the 

differential equations are presented here. The non steady-state approach of erosion 

quantification is explored in this chapter with the use of Crank-Nicolson scheme of 

numerical discretization of heat equation. 

Chapter 3 deals with the mathematical simulations of the 7Be diffusion model. The 

model is exploited with the help of different input parameters and the simulations 

results are presented in the systematic order. 

Chapter 4 outlines the study area and the sampling strategy used for this research. A 

detailed discussion on the sampling methods for total inventory and depth 

distribution of 7Be is explained in details. Final section of this chapter focuses on the 

sample analysis and 7Be measurement using Gamma Spectroscopy. 

Chapter 5 focuses on the detailed analysis of the 7Be data obtained during this 

research project. At first, the depth distributions of 7Be are studied with the help of 

diffusion model and the estimated diffusion parameters are presented. Secondly, 

erosion quantification was carried out with the help of diffusion model and 7Be 

activities measured at the study site. The estimated short-term soil erosion rates at 

the study sites for 12 discrete erosion events at tilled and no-till plots are presented in 

this chapter. 
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Chapter 6 highlights the main conclusions reached in the thesis and a summary of 

suggested further research.  

Appendix section contains detailed solutions of the differential equations used in 

this thesis. A separate section is devoted here for the error analysis using Monte-

Carlo technique. Computer codes written for the numerical schemes as well as the 

error analysis are included in this section. 
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1 GENERAL INTRODUCTION AND PHYSICAL 

BACKGROUND 

1.1 Motivation 

Soil erosion by water is one form of soil degradation and has become an important 

environmental problem. It is beginning to be recognized for being not simply a 

farming problem but with implications for the wider civil society. More than three 

quarters of the surface land area affected by erosion is located in the developing 

countries of Africa, Asia and Latin America, with about one-half of the total 

occurring in Asia [1] (Figure 1). In the European Union, an estimated 115 million 

hectares (12% land area) is subjected to water erosion [2]. Unlike other regions of the 

world, where extensive agriculture is still significant, during the last half century 

agricultural areas in some parts of Europe e.g. Italy, United Kingdom, Spain have 

suffered an important decrease. Erosion rates vary a great deal spatially and intense 

agricultural practices is one of the driving forces that can accelerate erosion. 

Frequent cultivation of the plots changes the soil properties and eventually the 

plots itself. These changes can be positive or negative for soil protection from erosive 

agents. This depends on the climate, features of the terrain and the canopy cover. In 

the Spanish mountains, farmers modified the terrain by constructing terraces and 

ditches in order to increase yield and protect the valuable top-soil. However land 

abandonment resulted in the degradation of terraces and ditches [3]. In Europe 

intensively farmed areas are being shifted to intensively forested areas, because of 

many abandoned hillslopes an extensive policy of reforestation was encouraged [4]. 

  Current concerns about both on-site and off-site adverse effects associated with 

accelerated soil loss generate an urgent need for obtaining reliable quantitative data 

on the extent and actual rates of soil erosion worldwide [5, 6]. Rapid and reliable 

methods of documenting soil erosion and soil degradation within agricultural areas 

are necessary for providing information for farmers, local governments and risk 

assessors for adopting the best management practices for soil and water 
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conservation. It is also necessary to investigate the erosion processes for developing 

land-use policies with the help of soil erosion/sedimentation prediction models, 

assessment of the economic and environmental impacts of erosion and to select 

effective soil conservation measures and land-management strategies. 

 

 
Figure 1: Water erosion vulnerability map (USDA, 2008), [7]. 

 

Despite extensive literature on the global, regional and national problems of soil 

erosion, quantitative and reliable data on the extent and rates of soil erosion are 

scarce for many regions of the world [8]. Existing methods to assess soil erosion are 

grouped into two categories: (1) Erosion modelling and prediction methods and (2) 
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Erosion measurement methods. In both these cases there is a need for direct 

measurements of soil erosion, which can be done using erosion plots, surveying 

methods and nuclear techniques. Existing classical techniques such as erosion plots 

and surveying methods for monitoring soil erosion are capable of meeting some of 

the requirements, but they have a number of important limitations in terms of 

representativeness of the data obtained and potential to provide information on long 

term soil erosion rates and associated spatial patterns over extended areas, and the 

costs involved [9, 10]. The request for alternative techniques of soil erosion 

assessment to complement erosion plots has directed the attention to the use of 

radionuclides such as 137Cs, 210Pb, 7Be and 14C. 

The objectives of this chapter are (1) to introduce different erosion processes 

initiated by water; (2) to describe briefly the use of radionuclides as tracers of soil 

erosion/deposition; (3) To overview the achievements in the use of cosmogenic 7Be to 

estimate short-term soil loss for single rainfall events (4) to introduce research goals 

for the development of 7Be technique to quantify soil erosion/deposition rates during 

multiple rainfall events. 

1.2 Soil erosion processes by water 

Soil erosion by water is a complex time-variant process which occurs in three phases, 

with the detachment of individual particles from soil mass as the first phase followed 

by their transport by erosive agents such as water as the second phase. When the 

sufficient energy is not available the third phase of particle deposition occurs [11]. 

Tillage plays an important source of energy, which leads to the transport of soil 

downslope [12]. 

During the early stages of a heavy rainfall event, processes that occur on the field 

include surface and splash erosion. As the event proceeds, the flow frequently 

becomes concentrated, and rills are developed (Figure 2 (Top)). Sediment that is 

detached from the interrill areas moves laterally to the rills in the thin interrill sheet 

flow [13]. Direct splash to the rills or downslope is not a major mode of transport. 
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Figure 2: Top: Different types of erosion processes on an exposed slope [14].  

                 Bottom: Erosion features and development of rills [110]; A: Surface erosion  

                 with arrows indicating direction of the flow, B: Prerills, C, D: Incision rills,  

                 E: Channel rills 

 

Rills as shown in Figure 2 (bottom) are the cracks in the soil, which can reach 

depths of 1 cm-10 cm [112] and are produced due to natural topographical features, 

soil roughness, or tillage marks and tracks. Shear and flow velocity are two 

parameters often used to measure the erosive potential of rill flow. Erosion from 

areas between the rills is defined as interrill erosion. In Figure 2 (bottom) soil 

columns are divided into horizons, A and B , depending on the soil characteristics. 

Horizon A is the top layer and is the zone of major biological activity and is therefore 

generally enriched with organic matter and typically darker in color than the 

underlying soil. The horizon B, where some of the materials (e.g. clay, carbonates) 

that are leached from Horizon A by percolating water tend to accumulate.  Horizon B 

is generally thicker than the horizon A (Figure 2 (bottom)). The clay accumulation 

A B DC E 
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and the pressure of overlying soil combine to reduce the porosity of the deeper 

layers. At our study site the erosion processes given by A, B and C in Figure 

2(Bottom) were observed. 

Raindrops not only detach soil aggregates and sand (20-2000 μm), silt (20 -6.3 μm), 

and clay particles (< 2 μm) from the soil mass, but subsequent raindrop impact 

probably breaks the detached aggregates down further as they are transported to the 

rills. In addition, raindrops create turbulence within the flow layer, which greatly 

increases the transport capacity of interrill flow. 

Clay is usually considered to be the mineral component of the eroded soil most 

important in the transport of adsorbed radioactive tracers [15]. The source of the 

sediment can have a large effect on its chemical composition as well as on the 

material eroded from the land surface by runoff and delivered to a stream system 

[16]. The estimation of sediment and associated tracer transport requires information 

on the size and composition of particles [17].  The grain size composition of the 

mobilized sediment and the depth within the soil horizons from which it is 

mobilized result in contrast in the radionuclides and nutrient contents. 

In many erosion studies that determined aggregate and primary particle 

distribution, no differentiation was made between the particle sizes being eroded 

from rill and interrill areas. Based on the results from the field plots, it was suggested 

that the particles eroding from interrill areas would generally be smaller than those 

eroding from the rill areas [15]. Particle selectivity during the erosion process is 

almost impossible when rill erosion is significant because of the massive removal of 

particles from the rills [15]. 

Several laboratory studies using disturbed soils have determined the particle size 

distribution of interrill sediment [11, 15, 17]. It was found that the interrill sediment 

was enriched in sand and not in clay, while rill sediment was enriched in clay and 

not in sand [15]. These findings conflict with the conclusions from other study [13], 

which reasoned that the particles eroding from interrill areas would generally 

smaller than those eroding from the rill areas. The sand enrichment in the interrill 
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sediment is attributed to the downward movement of fines in the soil matrix [15]. 

Until today less information is available on rill erosion and the particle sizes, which 

can be transported. It was concluded that about 15% of the particles transported in 

rill flow from a tilled soil (6% slope) was larger than 1 mm [13]. Almost 3% of the 

sediment was larger than 5 mm, which indicates that rill flow can transport very 

large particles. Selective erosion under these conditions is highly unlikely. Until 

today the information on the sizes of particles detached and transported by rill and 

interrill erosion processes is not complete and is somewhat contradictory. 

1.3 Environmental tracers in soil erosion studies 

In soil erosion research, both extent and source of soil loss can be determined by 

artificially labelling the soil particles with appropriate radioactive tracer. Several 

artificial radionuclides, mainly gamma-ray emitters such as 59Fe, 46Sc, 110Ag, 198Au, 

134Cs, 51Cr etc., have been used as tracers in field erosion studies. The majority of 

radionuclide applications are related to environmental radionuclides such as 137Cs, 

210Pb and 7Be, which showed a great potential in assessing soil erosion and deposition 

[1, 18, 19, 20, 21, 22, 23, 24, 25]. Some of these radionuclides are produced by cosmic 

rays in the atmosphere (7Be, 14C, 32Si, 26Al and 36Cl), others are members of the natural 

decay series of the primordial radionuclides 238U, 235U and 232Th (e.g. 210Pb). Artificial 

radionuclides such as 134Cs, 137Cs that have been released into the environment by 

nuclear weapon tests and nuclear facilities have also proved very useful [5]. The 

usefulness of a particular radionuclide depends on (i) its half-life and (ii) the 

sustainability of the model used for the evaluation of the measured radionuclide 

values. 

Table 1: Radionuclides used for studying soil erosion/deposition rates 

Radionuclide Half-life Radionuclide Origin Erosion assessment 
137Cs 30.2 years Man-made Medium term (~ 40 y) 
210Pb 22.3 years Natural geogenic Long term (~100 y) 

7Be 53.3 days Natural cosmogenic Short term (< 30 days) 
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  When radionuclides such as 137Cs, 210Pb and 7Be reach the soil surface through wet 

and dry deposition, they are quickly and strongly adsorbed by exchange sites of soil 

particles and become essentially non-exchangeable in most environments. After 

deposition these radionuclides migrate into the soil column by a number of physical, 

chemical and biological processes. Accurately measuring these radionuclides in 

soil/sediment samples is relatively easy using modern instrumentation (high-purity 

germanium gamma spectrometry) and standardized protocols for quality assurance 

control. The different time-scales for which the radionuclide technique is applicable 

for erosion studies are summarized in the Table 1. 

Out of the radionuclides demonstrated in Table 1, 137Cs have been successfully used 

to quantify erosion and deposition processes since the 1970s [6, 25, 26, 27]. About 

4000 research papers dealing with the use of 137Cs for soil erosion/deposition rates 

estimation were published showing that it is a valuable complement to conventional 

erosion measurement techniques [28]. 

In the environment impacted by changing climate, changing land use and other 

human activities it becomes increasingly relevant to document short-term 

erosion/deposition rates. Thus there is a need of documenting soil redistribution 

occurring within individual events or short periods. Cosmogenic 7Be offers an 

advantage of providing estimates of short-term soil erosion/deposition rates. The rest 

of the thesis will focus on Beryllium-7 and its use in calculating short-term 

erosion/deposition rates. 

1.3.1 Vertical migration of radionuclides in soils 

Various radionuclides are incorporated differently into the soil profile (Figure 3) 

depending upon their respective half-life and history of fallout as well as the history 

of land-use [29]. 

In soils 7Be is concentrated near the surface (0–2 cm) as it is adsorbed onto the clay 

minerals after it is deposited on the soil surface and does not penetrate deeper into 

soils due to its short half-life. 137Cs values have the greatest activity at depth below 

surface, reflecting peak delivery of it in the 1960s and/or 1986 due to the Chernobyl 
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accident. Because 7Be and 137Cs have different distributions in the soil profile, erosion 

of the soil to different depths will yield characteristic assemblage of radionuclides in 

the eroded material. Shallow erosion produces proportionally larger amounts of 7Be 

as this radionuclide is concentrated near the surface. 

 

 

Figure 3: (1) Penetration profile of 137Cs (2) Penetration profile of 7Be 

 ((1) and (2) are constructed from the data collected by the author) 

 

Deeper incision yields progressively no additional 7Be below about 1 cm. The 

distinct distributions of radionuclides permit, in principle, the use of multiple mass 

balances to quantitatively estimate the amount of rill and surface erosion and the 

characteristic depth of erosion associated with each mechanism [30, 31]. 

1.3.2 Diffusion of radionuclides in soils 

The basic processes controlling mobility of radionuclides in soil include convective 

transport by flowing water, dispersion caused by spatial variations of convection 

velocities, diffusive movement within the fluid, and physio-chemical interaction with 
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the soil matrix. Many field studies have been done to establish the depth distribution 

of 7Be in soils [30, 32, 33, 34, 35]. The field observations from the current study and 

from the published data show that maximum mass activity density (Bq kg-1) of 7Be is 

found at the point of input of the radionuclide i.e. at the surface of the soil column 

and is decreased as we go deeper into the soil column. This is a typical profile of 

purely diffusive transport. From here onwards 7Be transport in soil will be discussed 

on the basis of diffusive flow. 

It is well studied that diffusion process is always active, with spreading essentially 

a function of time, while the convection and dispersion are a direct consequence of 

fluid flow in the porous medium, with spreading basically a function of travel 

distance [36]. 

 

 

 Figure 4: Concentration-distance curves for an instantaneous plane source for  

                  different times t with t1< t2. 

 

Consider a trace substance C0 is inserted into a soil column with no ground water 

flow at x=0 and t=0. It diffuses in both directions away from x = 0. The diffusion 

equation and relevant solution are given in [37] as:   
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The soil from the diffusion point of view represents a non-homogeneous (in 

granular and chemical composition) multifunctional adsorbing system. This system 

consists of three phases: solid phase (soil minerals), liquid phase (soil solution) and 

gaseous phase (soil atmosphere). The most active and important phases of 

interaction radionuclides with soil are solid and liquid phases. The solution layer 

adhering to the soil particles surface and other parts of the soil solution differ in their 

behaviour. The factors affecting the radionuclide movement in soils are: 

physiochemical behaviour of migrating radionuclide, adsorption capacity, soil 

moisture, concentration and composition of soil solution (viz. ions Ca2+, Mg2+, Na+, K+, 

H+, NH4+, Cl-, SO42-, NO3-), pH of the soil (diffusion in acidic soil is much faster than in 

the neutral medium), organic substances content and climatic conditions. 

Diffusion in porous media is affected in different ways by the geometry of porous 

structure and by the contaminant interaction with the pore walls. To account for 

these effects, an effective diffusion coefficient, Deff, is used to describe the 

contaminant diffusion in porous media [38]. 

 

=
τ

e
eff 02

n
D D  

where, ne: effective porosity (open and interconnected pores) 

             τ : Tortuosity – is a measure of the effect of the shape of the flow path 

            D0: Diffusion coefficient for particular solute in bulk water. 
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During this thesis the effective diffusion coefficients for diffusing 7Be2+ ions in the 

soils will be estimated will be denoted by D. 

1.4 Cosmogenic 7Be in the environment 

Beryllium-7 is a short-lived environmental radionuclide of cosmogenic origin. It is 

produced in the upper atmosphere by spallation of nitrogen and oxygen by cosmic 

rays (Figure 5). The nuclear reaction produces BeO or Be(OH)2, which diffuses 

through the atmosphere until it attaches to atmospheric aerosols. Subsequently it is 

deposited to the earth surface as wet and dry fallout [34, 39, 40], although available 

measurements suggest that Be-7 is primarily associated with precipitation [20, 41, 

42]. 

 

�

Figure 5: Production and deposition of 7Be in the atmosphere  
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7Be was first measured in rainwater samples collected at Chicago IL and Lafayette IN 

(USA) between 1953 and 1954 [43]. The presence of this radionuclide attached to 

aerosols in surface air was reported soon after [44]. Since these pioneering efforts, 

numerous studies on the production, concentration, distribution and application of 

7Be in the environment have been conducted. 

1.4.1 Nuclear Properties 

The light atmospheric nuclei, such as carbon, nitrogen and oxygen absorb protons 

and neutrons of primary components of cosmic rays, according to the reactions in 

Table 2 [45]. The half-life for the transmutation of 7 7Be  e Li + −+ → ν  is 53.22 ± 0.06 

days [46]. The decay of 7Be can proceed either directly to the 7Li ground state or to 

the first excited state in 7Li. The branching ratio to the first excited state is 10.44 ± 

0.04% [46]. The decay then proceeds to the 7Li ground state by prompt gamma- ray 

emission with energy of approximately 477.6 keV. 

Table 2: Spallation reactions of protons and neutrons 

Nuclear reactions Energetic Particles 

12 1 7 61. C p Be Li   6 1 4 2
14 1 7 42. N p Be 2 He 7 1 4 2
16 1 7 7 33. O p Be Li He  8 1 4 3 2

+ → +

+ → +

+ → + +

 

                               
Protons 

12 1 7 61. C n Be He   6 0 4 2
14 1 7 82. N n Be Li  7 0 4 3
16 1 7 6 43. O n Be He He8 0 4 2 2

+ → +

+ → +

+ → + +

 

                               
Neutrons 

 

1.4.2 Activity measurement  

Berillyum-7 activities are normally determined in environmental samples using 

gamma spectrometers that detect the 477.6 keV photopeak. In earlier investigations, 

7Be was detected using thallium (Tl) activated sodium-iodide (NaI) detectors [43, 47, 

48, 49, 50]. However, the relatively low resolution of these instruments requires 

chemical separation of 7Be before the gamma analysis because a NaI (Tl) detector 
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cannot distinguish the 7Be photopeak from other radionuclides with decay in the 

same energy region (228Ac at 462 keV; 103Ru at 497 keV). 

1.4.3 Production and delivery to the earth’s surface 

Production of 7Be is continuous, global in extent and depends on the cosmic-ray flux, 

which varies with latitude, altitude, and solar activity (Figure 6) [51, 52, 55, 56, 57]. 

The main production region is the stratosphere (90%), though it is also produced in 

some abundance within the troposphere (approx. 10%). 

 

 

Figure 6: Be-7 concentrations and the sunspot numbers at the period 1987-2003 [58]. 

 

Cosmogenic 7Be production varies with the 11 - year solar cycle. Solar activity 

maxima result in increased deflection of cosmic rays from the solar system [52] that 

decreases the cosmic ray flux to earth, and thus decreases 7Be production. Several 

studies have demonstrated an inverse relationship between cosmogenic 7Be 

concentrations in the air and on earth’s surface with solar activity [53, 54]. The 7Be 

production rate in the atmosphere from available data on cosmic-ray-produced 
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neutron and proton fluxes and spallation reactions involving nitrogen and oxygen 

has a global average value of 810 atoms m-3 s-1 [52, 55]. This value has been adopted 

by the United Nations Scientific Committee on the Effects of Atomic Radiation 

(UNSCEAR) for the purposes of reporting 7Be production rates in the atmosphere 

[59]. UNSCEAR reports the annual effective dose due to cosmogenic 7Be to be 0.03 

μSv [59]. This represents around 0.001% of the total annual effective dose due to all 

natural radiation sources. This shows that 7Be is a not a health risk to the population. 

1.4.4 Aerosol size distribution 

Once 7Be is formed in the atmosphere, it rapidly associates primarily with 

submicron- sized aerosol particles [60, 61, 62]. 7Be in these fine aerosols may 

subsequently enter the marine as well as the terrestrial environment and vegetation 

via wet or dry depositional events [43]. Following deposition, 7Be tends to associate 

with the particulate matter. The 7Be bearing aerosol is generated through the process 

of attachment when 7Be in the form of BeO and BeOH attaches electrostatically to 

atmospheric dust particles [43, 52]. Transformation of 7Be-bearing aerosol as it 

traverses the atmosphere can occur by a number of physical, chemical and 

meteorological processes (e.g. fog and cloud droplet formation, washout, rainout, 

sedimentation etc.), which determine the overall activity size distribution of 7Be on 

the surface air aerosol population. Measurements indicate that 7Be-bearing aerosols 

in surface air follow a unimodal lognormal size distribution and have an activity 

median aerodynamic diameter between 0.07-2 μm [45, 61, 62, 63]. 

1.4.5 Atmospheric residence time and concentration  

The stratospheric residence time of aerosols is approximately 14 months [64]. This 

exceeds the half-life of 7Be by more than six-fold. In the troposphere however, 

production of 7Be is significantly lower, and the residence time of 7Be is much shorter 

(approx. 22-48 days) due to rapid washout [65, 66]. This results in a fairly high 

concentration gradient between the stratosphere and the troposphere, with 

tropospheric air generally containing 1-2 orders of magnitude less 7Be (Bq m-3) than 

in the stratosphere. 7Be in stratospheric air sampled at 18-20 km ranged between 0.16 
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- 0.58 Bq m-3 while 7Be in tropospheric air ranged from 0.005 to 0.02 Bq m-3 7Be [53, 

67]. 

1.4.6 Stratosphere-troposphere exchange and seasonal variability  

The activity of 7Be in the stratosphere remains fairly constant. 7Be concentrations in 

the troposphere and near- surface air and thus the amount of 7Be available to 

ecosystems exhibit seasonal fluctuations [68, 69]. 7Be concentrations in near surface 

air generally range between 0.001 - 0.007 Bq m-3 [69, 70]. Seasonal variations in 7Be 

concentrations can be explained by four processes [69]: 1) Stratosphere-troposphere 

exchange; 2) vertical mixing within the troposphere; 3) air mass transport from 

middle to high latitudes; and 4) wet deposition. 

Stratosphere-troposphere exchange increases 7Be concentrations in the troposphere 

and near-surface air. The high concentrations of 7Be measured in the USA are 

correlated with stratospheric air masses as indicated by potential vorticities [71]. 

Maximum mixing between stratosphere and troposphere occurs in spring at mid-

latitudes, and generally higher concentrations of 7Be are measured in the surface air 

at this time [54, 69]. Intense thunderstorms may also mix stratospheric air 

downward, thus increasing the amount of 7Be available for scavenging by 

precipitation [72]. In summer due to the warming of the earth’s surface, convection 

increases, which transports 7Be from the upper troposphere to the near-surface air. 

Regions with a pronounced seasonal variation in rainfall amount show an inverse 

relationship between rainfall and 7Be in the air, demonstrating that washout of 7Be 

can have a significant impact on its surface air concentration [69].  

1.4.7 Atmospheric deposition  

Beryllium-7 can also reach the surface under clear sky conditions via dry deposition 

(particle sedimentation), but is only removed efficiently from the troposphere by 

precipitation scavenging (wet deposition). Experimental results show that around 

90% or more of the total 7Be deposition in temperate zones generally takes place via 

wet deposition [42, 73, 74, 75, 76]. Wet deposition of 7Be occurs through both below-

cloud scavenging (washout) and in-cloud scavenging (rainout). Washout occurs 
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during early stages of precipitation and quickly depletes the lower troposphere of 

7Be-bearing aerosols. Rainout delivers 7Be from within the cloud layer to the earth’s 

surface and is active throughout the duration of a precipitation event. Serial 

sampling within storms shows that specific activities of 7Be in precipitation decrease 

sharply in the beginning of the storm event and then remain fairly constant 

suggesting a change from washout to rainout as the predominant wet deposition 

process [42, 75, 77]. The annual deposition of 7Be worldwide ranges from 400 to 6500 

Bq m-2 and is related to rainfall (Table 3). Low annual depositions of 7Be have been 

reported for sites in the Middle East and Mediterranean regions, as well as at East 

Antarctica. The highest annual deposition of 7Be is reported for high rainfall areas in 

New Zealand. 

 

Table 3: Annual atmospheric deposition of 7Be and rainfall at different locations 

Location Latitude
7Be 

Deposition 
(Bq m-2)**

Rainfall 
(mm) Period Reference 

Malaga, Spain 36o N 412 308 1992-1999 [78] 
Thessaloniki, Greece 40o N 736 424 1987-1992 [75] 
Roskilde, Denmark 55o N 738 564 1990-1993 [79] 
Bavaria, Germany 49o N 990 616 1989 [80] 

Heidelberg, Germany 49o N 1250 810 1960-1961 [80] 
Canberra, Australia 35o N 1030 660 1988-1989 [42] 
Geneva, Switzerland 46o N 2095 966 1997-1998 [81] 
Galveston TX, USA 29o N 2451 1167 1989-1991 [32] 
Oak Ridge TN, USA 36o N 2017 1251 1982-1984 [34] 

Bombay, India 19o N 1262 2277 1955-1970 [82] 
Hokitika, New 

Zealand 42o N 6350 2634 1985-1986 [83] 

East Antarctica 70o N 700 n.a. n.a. [84] 
North Pacific and 

Atlantic oceans 
0-60o N 1290 n.a. n.a. [85] 

   **Uncertainties were not denoted in the respective publications 

 

Beryllium-7 depositional fluxes at various locations show a high positive 

correlation with rainfall, and temporal variations in the depositional flux of this 
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radionuclide generally follow local rainfall patterns [34, 75, 76, 78, 80]. Average dry 

deposition velocities of 7Be at different locations, including the Pacific and Atlantic 

oceans, are reported to be in the range of 0.004 to 0.074 m s-1 [75, 85].  Since some 

anthropogenic atmospheric radionuclides such as 90Sr and 137Cs are also found 

attached to submicron-sized aerosols, the deposition velocity of 7Be may be a useful 

parameter in estimating the long-term deposition of radioactive pollutants from 

remote sources [83]. 

1.4.8 Distribution in the freshwaters  

Partitioning coefficients (Kd = 1 1[Bq kg ] / [Bq L ]− − ) for 7Be between river water and 

various substrates were determined in the laboratory.  It was found that most mud, 

silt, and clay minerals have a Kd near 105 L kg-1 under neutral to alkaline conditions 

(pH > 6) [86, 87]. Values of Kd   in the freshwaters were reported to be greater than 104 

[62, 88, 89].  This shows that 7Be strongly sorbs to the fine particles and clay minerals 

in soils. 

7Be mobility may be enhanced in natural waters by the formation of soluble 

fluoride (F) and organic acid complexes [86]. Despite numerous studies documenting 

the production of 7Be and the flux to the surface of the earth, there are relatively few 

studies documenting its mobility and export from watersheds. 7Be inventories 

measured in the lake sediment cores were from 35- 875 Bq m-2 with 7Be activities in 

the upper few centimetres of cores noted from 0.02 - 0.55 Bq g-1 [48, 90]. A strong 

seasonality for 7Be fluxes in sediment traps in Lake Zurich was found, with maxima 

in July and August [91].  

1.4.9 Distribution in the vegetation and soils 

Beryllium-7 is delivered to ecosystems primarily as Be2+ in slightly acidic (pH<6) 

rainfall. The Be2+ ion is competitive for cation exchange sites because of its high 

charge density. As 7Be2+ ions come in contact with soils and vegetation, it is rapidly 

accumulated by exchange surfaces. Forest canopies may decrease the amount of 7Be 

that reaches soils and streams [92]. After deposition, most 7Be decays in the soils, but 

some may be exported in particulate or dissolved form. Some areal activity densities 
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of 7Be in soils and grasses, which have been reported in the literature, are 

summarised in Table 4. Temporal variations of 7Be areal activity densities at 

undisturbed sites are likely to occur where seasonal rainfall variation exists [30]. 

 

 

Figure 7: Depth distribution of 7Be at different study sites. Figures 1, 2, 3, and 4 

 are modified by the author from the sources in the literature [30], [33], 

 [19], [94] respectively. 

 

7Be does not penetrate deep into the soil profile as it is sorbed after it is deposited at 

the soil surface. The activity concentration of 7Be in soils generally shows an 

exponential decrease [30, 35, 93]. The depth at which activity concentration decreases 

to the half of its initial value is called the penetration half-depth. The half depths of 
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this radionuclide range from 0.4 to 3.7 mm [30]. In unsaturated marsh soils 7Be can be 

found at a depth of 100 mm [34]. Particles mobilised by the infiltration of rainwater 

and transported through small cracks in the soil surface formed during relatively dry 

periods accounts for this finding. 7Be penetration in the soils is primarily controlled 

by physical properties such as vegetation cover, soil density, and structure [30, 42]. 

An example of 7Be depth distributions can be seen in Figure 7. 

 

Table 4: Terrestrial inventories of 7Be 

 

1.5 7Be: a promising short-term soil erosion/deposition tracer 

Sampling 
date 

Location Latitude Analysed
sample  

Total 7Be 
inventory 
(Bq m-2) 

Referen
ces 

07/1982 Delaware, USA 39o N Marsh + 
Grass

207 ± 27 [34]

07/1984 Oak Ridge TN, USA 36o N Grass + Soil 673 ± 22 [34]
01/1985 Wallops Is. VA, USA 38o N Vegetated 

march soil 
673 ± 48 [34]

01/1985 Wallops Is. VA, USA 38o N Unvegetated 
march soil 

107 ± 19 [34]

09/1988 Black Mt, Australia 35o N Grass + Soil 202 ± 57 [30]
09/1988 Black Mt, Australia 35o N Bare soil 135 ± 9 [30]
09/1989 Black Mt, Australia 35o N Grass + Soil 400 ± 144 [30]
09/1989 Black Mt, Australia 35o N Bare soil 156 ± 42 [30]
09/1989 Black Mt, Australia 35o N Grass + Soil 205  ± 105 [30]
09/1989 Black Mt, Australia 35o N Bare soil 95  ± 9 [30]
01/1991 Bologna, Italy 44o N Grass + Soil 198 ± 9 [33]
01/1991 Bologna, Italy 44o N Bare soil 125 ± 8 [33]
03/1991 Bologna, Italy 44o N Grass + Soil 157 ± 8 [33]
03/1991 Bologna, Italy 44o N Bare soil 153 ± 13 [33]
05/1996 Idaho, USA 44o N Grass + Soil 139 ± 22 [62]
01/1998 Crediton, UK 50o N Bare soil 512 ± 10 [33]
06/1998 Maine, USA 45o N Forested soil 165 ± 66 [95]
10/1998 Silverton Mill, UK 50o N Bare soil 283 ± 26 [33]
12/1998 Maine, USA 45o N Bog core + 

vegetation 
554  ± 144 [95]

05/1999 Treynor IA, USA 41o N Bare soil 121 ± 21 [35]
1997-2000 Taiwan 25o N Grass + Soil 3280  ± 1738 [55]
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1.5.1 Literature survey and state of the art 

Beryllium-7 has been used since the late 1990s to estimate soil erosion and deposition 

processes associated with individual periods of heavy rain at scales ranging from 

plots of a few square meters to fields of a few hectares. 

  Field and laboratory experiments were performed since the early 1990s suggesting 

that the initial vertical depth distribution of 7Be mass activity density, Bq kg-1, within 

the soil is characterized by a strong exponential decrease with depth, with most of 

the radionuclide being found within the upper few millimetres of the surface soil [18, 

19, 21, 22, 30]. 7Be is concentrated in the uppermost soil horizons (Figure 8) suggest 

that it can be used as a tracer for topsoil movement. 

The successful use of 7Be to document both the magnitude and spatial pattern of 

short-term (rainfall event-based) soil erosion/deposition on agricultural land and the 

associated rates has been reported in the UK [21, 33]. The approach used in this study 

was based on comparison of the 7Be areal activity density, Bq m-2, measured at a 

sampling point with a reference areal activity density where neither erosion nor 

deposition has occurred. Depletion of 7Be areal activity density, relative to reference 

value, provides evidence of erosion, whereas areas of deposition are associated with 

increased areal activity densities. The main components of this empirical 

erosion/deposition estimation technique are presented in the study done in Chile 

[18]. 

The application of 7Be technique was suggested in 2006 together with the 

anthropogenic radionuclide 137Cs for distinguishing between sheet and rill erosion 

[21]. 

Until 2012 several studies were published on the 7Be technique in Australia, UK, 

USA and Chile [18, 19, 21, 33]. All these studies use the empirical technique to 

estimate the erosion/deposition rates [33]. 

 

 

1.5.2 Key considerations of the current erosion/deposition estimation 
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         technique and their limitations 

The current 7Be technique uses several key assumptions to estimate the 

erosion/deposition rates. If these assumptions are not fulfilled the technique 

overestimates or/and underestimates the erosion/deposition rates. These 

assumptions along with the possible limitations are discussed in this section to 

highlight the improvements needed for the use of 7Be in estimating soil loss.  

Assumption 1 

The relationship between the activity density of 7Be and mass depth documented for 

the reference site is exponential and representative of the main sampled area. Mass 

depth must be used instead of linear depth while establishing the depth distribution 

of 7Be in soils. 

Limitation 

It’s needed to ensure that the soil properties, surface conditions and surface 

hydrology of the reference sites are essentially similar to those of the sampling area. 

Use of mass depth limits the importance of any minor contrasts in bulk density 

between reference sites and sampling sites. 

Assumption 2  

7Be associated with the erosional event is spatially uniform. 

Limitation 

Assumption 2 is commonly met at the scale of the individual field. The spatial 

distribution of rainfall input and 7Be fallout can be considered to be spatially 

uniform. But for the larger fields and watersheds there is a need to take into account 

the spatial variability of the radionuclide. 

Assumption 3  

Any pre-existing 7Be is uniformly distributed across the area under investigation [33]. 

Limitation 

This assumption is frequently difficult to meet. The necessary uniform spatial 

distribution of pre-existing 7Be can generally found in four situations, 
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1. After a long dry period, when any pre-existing spatially variability of 7Be is 

removed by radioactive decay.  

2. After an extended period of low intensity rainfall that has not resulted in an 

erosion and soil redistribution and therefore redistribution of existing 7Be 

fallout input. 

3. After a field has been ploughed and the existing 7Be has been mixed within the 

plough layer and the activity is below the level of detection. 

4. The erosion events are separated by a period of sufficient length (e.g. two half-

lives or ~106 days). 

Assumption 4 

The 7Be deposited during an erosion event will be rapidly fixed by the soil particles 

and can only be redistributed by the mobilisation and redistribution of soil particles. 

There is no significant grain size selectivity in the mobilization and deposition of soil 

particles.   

Limitation 

This assumption has been widely confirmed by experimental investigations of 

fixation of 7Be fallout inputs by soil particles. 7Be is mainly associated with the finer 

soil particles [62]. If the selective removal of fines occurs, the amount of erosion may 

be overestimated. Similarly, if selective deposition of coarser particles with lower 7Be 

activity occurs, the deposition is underestimated. 

Assumption 5 

The use of 7Be for documenting soil redistribution rates is commonly restricted to 

bare soils. 

Limitation  

As surface vegetation cover readily fixes the 7Be fallout, the proportion of it fixed by 

the soil will vary according to the density and nature of vegetation. On an 

agricultural field soil is covered with crops that limit this assumption to bare fields.  

 

1.5.3 Scope of the further development of the technique for soil erosion/  
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         deposition quantification   

From the literature survey done during this study it was found out that 7Be used for 

erosion/deposition calculation was based merely on the field studies and the 

observed depth distributions of the radionuclide in soils. The available empirical 

relationship as explained in the previous sections assumes constant bulk densities in 

the soil column and uses several key approximations to estimate the soil 

redistribution.  A mathematical model, which represents the transport of 7Be in the 

soil, is necessary and does not exist to date. 

The current erosion/deposition estimation approach using 7Be is based on the 

steady state approximation and therefore it is limited to a single rainfall event. A 

systematic approach is necessary to develop a technique for non-steady state 

conditions to estimate erosion/deposition rates produced by several successive 

periods of heavy rainfall. 

1.6 Research Objectives 

The objectives of this thesis are: First, to construct a model based on the physical 

process of diffusion, to investigate the movement of 7Be in soils; second to use this 

model to modify the existing soil erosion quantification technique from a single 

erosion event to multiple erosion events which are separated by short time intervals 

�t and third, to investigate the scope of the assumptions of the 7Be technique 

mentioned in section 1.5.2.  To perform this erosion research a study site in 

Müncheberg, Germany is selected. Specific objectives of this thesis are addressed in 

the following. 

1. The existing mathematical relationship uses an empirical exponential function, 

which includes mass depth (kg m-2) and specific activity (Bq kg-1) to describe 

the depth distribution of 7Be in soils. This relationship is based on several key 

assumptions as discussed in details in the previous section.  A detailed 

analysis of the validity of these key assumptions is not available as of today in 

the literature. One way of approaching these open challenges is the use of 

mathematical tools such as differential equations. A 1-D diffusion model was 
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constructed during this thesis to explore the migration of 7Be in the soil with 

the use of atmospheric input and radioactive decay. Several mathematical 

simulations were performed before investigating the scope of the model for 

soil erosion quantification based on existing assumptions. 

2. The existing erosion quantification methods compare the inventories of 7Be at 

reference sites with those at the study plots. One important requirement of 

this approach is that the areal activity density of the radionuclide is essentially 

constant across the study site, before the erosional event under investigation 

had occurred. The necessary conditions to achieve this are to separate the 

events by a period of sufficient length (~106 days or 2 half-lives of 7Be) and by 

ensuring that the rainfall during the preceding period did not cause significant 

soil redistribution and thus 7Be redistribution. These conditions may be 

difficult to fulfil at study areas, where the annual precipitation is high and 

heavy rainfall frequently occurs during the wet season. In this thesis a 

numerical technique was used that is capable of simulating soil attached 7Be 

redistribution produced by several successive periods of heavy rainfall. Thus 

the existing technique for erosion quantification using 7Be will be modified 

from single erosion event to multiple erosion events. 

3. Erosion/deposition estimation is dependent on the areal activity density of 7Be 

at the reference sites. It is well documented that the erosion rates calculated 

with the use of reference inventory technique show ambiguous results due to 

the spatial variability of the radionuclide deposited at the soil surface [6, 23, 

24, 25, 96]. An independent approach was developed for this thesis, which 

does not include the comparison of areal activity density at a sampling point 

with that at the reference sites. 

4. Usually the maximum activity of the radionuclide is present in the upper 1-1.5 

mm decreasing exponentially with depth [33]. The potential of using 7Be to 

differentiate between rill erosion, interrill erosion and surface erosion was 
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considered to be a future aspect [18, 33]. This aspect of the 7Be depth 

distribution is also explored in this thesis. 

5. The existing 7Be technique is suited only for bare soils [18]. However, the 

erosion rates will be estimated for the situations where the field was ploughed 

and was covered with vegetation. 
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2 VERTICAL TRANSPORT MODEL FOR 7BE IN SOILS  

2.1 Introduction 

Slow migration of radionuclides result in the availability of it for plant uptake. 

Similarly, if the migration process is fast the radionuclide can enter the groundwater 

table quickly. To understand the processes involved in the transport of radionuclides 

into the soil column it is necessary to predict their time-dependent behaviour. 

  Measurements of long-lived 137Cs have been used in investigations of long-term (up 

to 40 years) water erosion in a wide range of environments [5, 28]. The redistribution 

of 137Cs within the soil column represents a complex set of mechanisms including 

physical, physico-chemical and biological processes [25, 97]. To describe the 

migration and diffusion process of 137Cs in undisturbed soil, transport models like the 

convection-dispersion model [38, 98], the compartment model [99] and other 

statistical distribution function models [100] have been employed. 

  In the case of 7Be, an empirical relationship based on a shape preserving exponential 

depth distribution function exists to date in the literature to describe the migration of 

7Be in soils [18, 19, 21, 33]. It assumes constant bulk densities in the soil column and 

calculates the penetration depth of 7Be. This empirical approach does not consider 

the physical background while establishing the depth distribution of 7Be in soils and 

eventually calculating erosion/deposition rates. 

  As the first objective of this study a one-dimensional diffusion model was 

developed to understand 7Be behaviour in soils. Secondly, the model was used to 

estimate the short-term erosion rates for single and multiple rainfall event scenarios. 

The effective diffusion coefficient D (m2 s-1) and the input flux I0 (Bq m2 s-1) were 

determined by fitting the model to the measured 7Be concentrations in the soil 

column. 

 

 

 

2.2 One-dimensional 7Be diffusion model 
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2.2.1 General assumptions of the model 

Since Beryllium-7 concentrations are maximum in the surface layer [18, 19, 21, 33, 42] 

and decrease with depth, diffusion can be considered as a predominant movement 

process over the profile.  The model is applied to different vertical distributions of 

7Be in soils. The parameter values estimated from this model represent the traces of 

physical and chemical processes involved in the 7Be transport in the soil. The most 

important assumptions made in this model are: 

1. Beryllium-7 is continuously deposited on the soil via wet and dry 

deposition.  

2. There is no horizontal transport component of the model. This corresponds 

to the dominance of the vertical component.   

3. The diffusion coefficient, D is considered constant over the soil column.  

4. Diffusion coefficient D is constant over time.  

5. The parameter D combines molecular diffusion and dispersion of the 

solute caused by geometry of porous structures, into a single constant. It 

takes into account soil porosity and tortuosity [101].  

2.2.2 Model conceptualization 

Taking into account diffusion and radioactive decay, 7Be transport in soil can be 

described by Fick’s law (1) and the continuity or conservation equation (2). 

C(z, t)J(z, t) D
z

� ∂ �= − � �∂� �
 (1) 

∂ ∂= − − λ
∂ ∂

C(z, t) J(z, t) C(z, t)
t z

 (2) 

To solve the differential equation (2) following initial and boundary conditions in 

semi-infinite space and time domains )∈ � ∞	z,t 0,  were considered. The solution is 

finite which implies that C(z , t) 0→ ∞ → .  

Initial Condition:  

> =C(z 0,0) 0  (3) 

Boundary conditions:  
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     (Continues flux boundary condition) (4a) 

 

              (Pulse boundary condition) (4b) 

The boundary conditions (4a) and (4b) describe continues flux of 7Be at the soil 

surface and a short pulse of 7Be-carrying rainfall deposited at the soil surface 

respectively. 

In equations (1), (2), (3), (4a) and (4b) following terminologies have been used: z: 

depth in soil (m); z=0: soil surface; t: migration time in seconds; C (z, t): total 

volumetric concentration, I0(z, t): atmospheric flux of 7Be at the soil surface, Bq m-2 s-1; 

D: diffusion coefficient, m2 s-1; �: radioactive decay constant, s-1, representing a sink 

iS C(z, t)= −λ ; I: deposition density ,Bq m-2; �(t): Dirac delta function. Equation (4a) 

represents a flux-boundary condition. 

  The differential equation (2) is solved for the boundary conditions (4a) and (4b) 

respectively. 

2.2.3 1-D diffusion equation with flux-boundary condition  

Using (1) in (2) and using the initial and boundary conditions defined by (3) and (4a) 

differential equation (5) was solved. The main steps of calculations using Laplace 

transform are explained in Appendix B (Part 1). 

C(z, t) C(z, t)D C(z, t)
t z z

∂ ∂ � ∂ �= − − λ� �∂ ∂ ∂� �
 (5) 

The concentration of 7Be in the Laplace space is written as: 

 (6) 

 

By rearranging (6) and after applying an inverse Laplace transformation as shown in 

Appendix C, we get the solution of (5). 
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 (7) 

Equation (7) gives the solution of the 1-D diffusion equation with radioactive decay 

as the potential sink of 7Be in the semi-infinite soil column. The analytical solution 

expressed by (7) is illustrated with the help of set of input data to understand the 

behavior of 7Be concentration distribution in Figure 8. 

 

 

Figure 8: 7Be concentration distribution for flux boundary condition in a semi infinite  

                 column of soil. The numbers on the curves indicate the time passed in half-  

                 lives of 7Be.      

  

Typical input data chosen for this purpose are I0 = 7.26 Bq m-2 day-1, D = 2.85 × 10-7 m2 

day-1. The concentrations of 7Be increase with increasing time. It also shows that the 

radionuclide penetrates exponentially in the soil with time. 
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Steady state depth distribution of 7Be in soil 

 For the steady state solution of 7Be in soils we used t → ∞  in (7), 

 (8) 

From Equation (8) and the simulations shown in Figure 8 it is concluded that the 7Be 

transport in soil follows an exponential depth distribution if the governing processes 

are diffusion and radioactive decay. Empirical distributions used elsewhere in the 

literature [21, 33] are confirmed using a differential equation approach in this study. 

Both the unknown parameters D and I0 are evaluated by fitting Equation (8) to the 

depth distributions established during this study for 7Be in soils and the data 

available in the literature [18, 19, 21, 33, 42]. 

2.2.4 1-D diffusion equation for Pulse boundary condition 

For the situations where 7Be is instantaneously deposited on the soil surface by a 

heavy rainfall event, boundary condition (4b) is used to solve the differential 

equation (5). For such situations the concentrations and the flux of 7Be given by can 

be written as:  

Using C0(z) and J0(t) and (4b) and applying a Laplace transform we get the 

concentration of 7Be in Laplace space (The main steps of the calculation are given in 

Appendix B (Part 2)): 

 (9) 

Using inverse Laplace transformation of (9) and rearranging we get the solution of 

equation (5) written as: 

 (10) 

Equation (10) is a well-known solution for pulse-like input and has been used for 

137Cs migration studies in soils after the Chernobyl accident [101, 102, 103].  

The movement of 7Be in the depth after a short pulse of rainfall event is being 

shown in Figure 10 for different migration times. Parameter values chosen in this 
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simulation are I0 = 7.26 Bq m-2 day-1and D = 2.85 × 10-7 m2 day-1. At t=10 days in Figure 

9, 7Be concentration has decreased due to diffusion and radioactive decay. 

 

 

Figure 9: Depth distribution of 7Be for different migration times. 1, 2, 3, 4, 5, 6 on the 

                 curves indicate the migration times  0, 5 days, 10 days, 20 days, 30 days 

                 and 40 days respectively. 

 

2.3 Total inventory of 7Be at the reference sites 

The total 7Be inventory at reference sites in Bq m-2 (where no erosion/deposition 

occurs) is calculated by integrating (8) from 0 to �. 

 (11) 

2.3.1 Time evolution of total inventory and depth distribution of 7Be at a 

         eroded position 
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The time it takes to approach the equilibrium depth distribution and total inventory 

of 7Be is crucial for estimating soil erosion rates. If the time period between two 

erosion events, �t,� is small the equilibrium technique using reference sites 

overestimates erosion rates. Thus it is necessary to calculate the time 7Be takes to 

achieve its equilibrium concentration after an erosion event. This is done in two 

parts. In the first part the total inventory evolution is calculated and in the second 

part the depth distribution evolution is considered for an eroded depth of 

magnitude zΔ � 

Part I: Time evolution of total inventory of 7Be after erosion 

The change in concentration of 7Be, C (z, t) (Bq m-3) with time t (days) can be 

expressed as: 

 (12) 

If an erosion event occurs at time t = 0 and a small layer of soil �z is lost, assuming 

that equilibrium had been achieved by 7Be, the total inventory of 7Be after erosion 

A(t0), is calculated by integrating (8) from z= �z to �. 

 (13) 

�Z is the eroded layer of soil in meters. 

The time evolution of the concentration of 7Be from time t=0 to t = t’ is calculated by 

integrating (13) from 0 to t’ (Appendix B (Part 3)): 

 

 (14) 

Here A (t’) is the total inventory (Bq m-2) of 7Be evolved at t=t’ after an erosion event 

at t=0.  Imposing t → ∞  on (14),  

This corresponds to (11) for the 7Be inventory at reference sites. It suggests that as 

the time goes on, eventually all the radionuclide based information about erosion 
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event is lost.  Total inventory evolution with different half-lives of 7Be is shown in 

Table 5. A(t’) and Aref are estimated by using equations (11) and (14). It is clear from 

the Table 5 that the total inventory at an eroding position requires minimum three 

half-lives of 7Be to achieve equilibrium concentration (90-95%). Systematic 

simulations for the total inventory evolution in time are discussed in the next 

sections of this chapter. 

 

Table 5: Total inventory evolution of 7Be at an eroding position  

Eroded layer �z (mm) A(t’)/Aref (%) Half-lives of 7Be 

1 

76 1 

88 2 

94 3 

97 4 

99 5 

2 

64 1 

82 2 

91 3 

95 4 

98 5 

 

Part II: Time evolution of the depth distribution of 7Be after erosion 

With the use of depth distribution of the radionuclide in soil, it is possible to 

distinguish the contribution of soil coming from the surface and from the deeper 

layers. The equilibrium depth distribution of 7Be is given by (8).  

  When a layer of soil, �z is eroded at the study area the depth distribution after 

erosion, CE, is written as follows and is shown in Figure 10. 

 (15) 
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Thus to investigate the evolution of the depth distribution of 7Be, the initial and 

boundary conditions (A) and (B) are applied to (5) 

Initial condition  

EC(z', t 0) C= =  (A) 

After erosion z is transformed to z + �z and is denoted by z’ in (A) 

Boundary Condition 

 (B) 

 

 

Figure 10: Hypothetical depth distribution curve for 7Be concentration in soil. The   

                   shaded region indicates the eroded layer of soil �z. The red curve shows 

                   the depth distribution of 7Be after an erosion event. 

Applying a Laplace transformation on (5) and using (A) and (B) we get the 

concentration of 7Be C  in the Laplace space. After performing an inverse Laplace 
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transform, equation (16) is obtained. C(z,t) in equation (16)  gives the depth 

distribution of 7Be. The detailed mathematical approach to this problem is presented 

in Appendix B (Part 4). 

 (16) 

Equation (16) is a unique solution of (2) for the boundary condition given by (B). 

The solution (16) contains the concentration of 7Be left after an erosion event CE and 

the function, which describes the vertical profile built up with the help of diffusion 

and radioactive decay.  

 

 

Figure 11: Time evolution of 7Be concentration with depth for four migration times. 

                   Blue curve: 7Be distribution left in the soil after and erosion event. 1, 2, 3 

                   and 4 indicate four migration times in days t = 20, 40, 80, 150 respectively. 

The plausibility tests for the equation (16) are given as: 

1. For t → ∞  equation (16) achieves the steady state solution given by (8),  
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; As 
z

De 1 and erfc( ) 2
λ−

< −∞ =  

 (17) 

2. Using t = 0 in (16), it is identical to initial condition (A)      

= ∞EC(z,0) C ;  as erfc( )=0  (18) 

  In Figure 11 evolution of C(z, t) with time for an eroded depth is shown for four 

migration times. For this purpose a typical value of eroded depth �z = 1 mm is used. 

Figure 11 shows that the depth distribution requires 3 half-lives of 7Be to achieve 

steady state given by equation (8). This result is identical to the total inventory 

evolution given in Table 5. 

2.4 Estimation of short-term erosion rates using 7Be diffusion model  

To quantify eroded layer �z at the study site, two situations were considered, which 

use the steady state and the non steady state approach respectively. 

2.4.1 Steady state approach 

This approach is used if the total inventory and the depth distribution of 7Be at the 

study sites and the reference sites have uniform distributions (steady state) before the 

erosion occurs. After an erosion event the inventory of 7Be (Bq m-2) at study sites is 

measured and compared to that at the reference site and eroded depth is calculated 

by following method: 

If �z is the layer of soil eroded at the study plot then the inventory of 7Be at the 

sampling point after erosion can be calculated by integrating (9) from �z to �. 

 

 (19) 

by rearranging (19) and using (11) we get, 

� �
Δ = ⋅ � �λ � �

Ref

s

ADz ln
A

� ���	 

If �z in (20) is negative it implies that erosion has occurred and vice versa. 
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2.4.2 Non steady -state approach 

This approach is used for calculating the eroded depth �z for multiple erosion 

events. In situations where the erosion events are separated by a short time interval 

tΔ , the steady state approach is not applicable because of large differences between 

the reference inventory and the inventory of 7Be at the measurement point. This 

difference is due to the loss of 7Be by erosion at the sampling point after the first 

event and not enough time for the 7Be to reach a steady state (~106 days [33]). For 

such situations we cannot compare the inventories of 7Be at a study plot with that at 

the reference site. 

2.4.2.1 Crank-Nicolson scheme 

For non steady-state conditions the numerical Crank-Nicolson scheme was used to 

estimate the 7Be inventory within short time intervals between two erosion events. 

This is a standard scheme to solve diffusion equation, as it is unconditionally stable 

and highly accurate. It uses a finite differences approach for the discretization of 

differential equations. Its application to the diffusion model given by equation (5) is 

given by equation C1. A detailed discussion on the Crank-Nicolson scheme is given 

in Appendix D. 

− +

− − −
− +

� λ �− + + + −� �ΔΔ Δ Δ� �
� λ �= + − − +� �ΔΔ Δ Δ� �

m m m
i 1 i i 12 2 2

m 1 m 1 m 1
i 1 i i 12 2 2

D 1 D DC C C
t 22 z z 2 z

D 1 D D                      C C C
t 22 z z 2 z

 (C1) 

The MATLAB implementation of equation (C1) is given in Appendix F. To test the 

ability of this numerical scheme to calculate inventories of 7Be in soil the following 

simulations were performed.  

1 Comparison of numerical and analytical solution 

The Numerical solution was compared with the steady state solution and the 

truncation errors determined for the approximated solution. The transient behaviour 

of the solutions to equation (5) is smooth and bounded, meaning the solution does 

not develop local or global maxima that are outside the range of the initial data that 

is, the Crank-Nicolson scheme is unconditionally stable. The time increments (�t) 
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and the depth increments (�z) were chosen to obtain the smallest difference between 

the numerical and analytical solution. The percentage error for this combination of M 

and N was < 1%. Depth and time increments, �z = 10-5 m and �t= 0.06 day were 

estimated for tmax = 90 days and z = 2 cm. The simulations were performed for a 

number of time steps, M = 1000, 2000 and 2500 and a number of space steps, N = 500, 

1000 and 2000 used for the solution matrix. For each combination of M and N, the 

numerical solution was compared with the analytical solution and absolute and 

percentage errors were determined. The best estimation for depth and time 

increments for the minimum error was N = 2000 and M = 1500.  

2 Truncation error analysis for the Crank-Nicolson scheme 

The truncation error for the Crank-Nicolson scheme is 2 2( z ) ( t )σ Δ + σ Δ 
� ���� � 

represents the rate at which the truncation error goes to zero. 

 

  Figure 12: A: Truncation errors for Crank-Nicolson scheme as a function of �x for  

                     fixed �t. B: Truncation errors for Crank-Nicolson scheme as a function of  

                     �t for fixed �x. 

The true magnitude of the Truncation Error (TE) is given as: 

= Δ + Δ2 2
t xTE K t K z  



43 
 

Kt and Kx are constants that depend on the accuracy of finite difference 

approximations. 

To make TE arbitrarily small, both �z and �t must approach zero.  Figure 12 gives 

the comparison of truncation error for Crank-Nicholson scheme for fixed time and 

space steps, �t and �x. For a fixed time step �t, figure 12A shows that the 

dependence of a truncation error for Crank-Nicolson scheme is nearly identical 

except for small �x. Figure 12B shows how the truncation error of the Crank-

Nicolson codes varies when �t is reduced and �x is fixed. The solutions were 

obtained for diffusion coefficient, D = 3.65 × 10-13 m2 s-1, depth of the soil column L= 2 

cm and tmax = 90 days. The Crank-Nicolson scheme can obtain solutions for much 

larger �t as it is unconditionally stable.  As t 0Δ →  for finite �x, the TE of Crank 

Nicolson scheme approaches a constant value. 

2.4.2.2 Erosion quantification using the Crank-Nicolson scheme 

The erosion estimation technique for non steady state condition can be understood 

by considering two erosion events E1 (t1) and E2 (t2) occurring at time t=t1 and t=t2 

(Figure 13). 

 

�

Figure 13: Scheme for the calculation of erosion rates for multiple erosion events. E1 

                   and E2 are erosion events at time instances t1 and t2 respectively. t’2 is the 

                   time instance before erosion event E2 occurs. 

 

The necessary input parameters to solve the differential equation (5) using the 

numerical Crank-Nicolson method are as follows, 
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1. The initial condition is chosen as the inventory of 7Be after the erosion event at 

t=t1 C(z, t=0) =CE as per equation (19). CE is obtained from the measurement of 

7Be inventory at a sampling point after an erosion event. 

2. The input flux I0 (Bq m2 s-1) is estimated from the reference inventory by using 

equation (11).  

3. The diffusion constant (m2 s-1) is evaluated by fitting equation (8) to the depth 

distribution of 7Be at the reference sites. 

 

Using the three input parameters mentioned above, depth distribution profile of 

7Be was numerically simulated until the time t = '
2t . The simulated profile at t = t’2 of 

7Be is integrated over the depth to obtain the total inventory (equation (21)). The 

simulated total inventory at point t = t’2 is denoted by ANum. 

Endz
'

Num Num i 2 i
0

A C (z , t t )dz= =
  (21) 

here = − Δ =iz (i 1) x,  i 1,2,........N ; N is the total number of spatial nodes including 

those at the boundary and �x is the spacing between zi. In equation (21), ANum is the 

total inventory of 7Be before erosion in Bq m-2 and CNum is the simulated volumetric 

concentration of 7Be in Bq m-3. 

� �
Δ = ⋅ � �λ � �

Num

s

ADz ln
A

 (22) 

The inventory of 7Be obtained from (21) is compared to the inventory of 7Be 

measured at the study site after erosion event E2 at t = t2 and eroded/deposited layers 

are calculated by using (22). 
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3 NUMERICAL SIMULATIONS OF THE SYSTEM UNDER 

   STUDY WITH THE 7BE DIFFUSION MODEL 

As the first step to explore the scope of the mathematical model developed in this 

study, a range of numerical simulations were performed using equations (8), (10), 

(14) and (16) for known and estimated input values. Values of the parameters used 

with the simulations are presented in Table 6. These values are estimated by fitting 

the diffusion model (8) to the different depth distributions data documented at our 

study site in Müncheberg in the month of June 2011.  

Table 6: Values of parameters taken for simulations 

Parameter Value 
Diffusion coefficient (D) m2s-1 (3.65 ± 0.75)×10-13 

Input flux (I0) Bq m-2 s-1 (3.64 ± 0.23)×10-5 

Eroded depths (�z) mm 0.5; 1; 1.5 
Decay constant (�) s-1 1.51×10-7 

Depth of the soil column (L) m 0.01 
 

The following simulations were performed before using the diffusion model to 

calculate eroded depths: 

1. Time evolution of total inventory of 7Be for different eroded depths �z.  

2. Time evolution of depth distribution of 7Be for different eroded depths �z. 

3. Time evolution of depth distribution and total inventory of 7Be for varying 

input fluxes I0 

4. Evolution of depth distribution of 7Be for ploughing conditions. 

5. 7Be distribution for a short rainfall pulse input. 

3.1 Time evolution of the 7Be total inventory 

To estimate the time required for the total 7Be inventory to achieve steady state, after 

a rainfall event with an eroded depth �z, equation (14) was used. By using the 

parameter values given in Table 6, the time evolution of the 7Be inventory was 

calculated. Figure 14 shows the percentage of evolved inventory with time in days. 

Three curves represent the inventory approaching steady state (%) for different 
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eroded depths. The evolution of the total inventory of 7Be in time depends on the 

eroded depth �z and the atmospheric input, J0. The minimum time which total 

inventory (Bq m-2) takes to reach the steady state (90-95%), is approximately 90-110 

days. This suggests that for the steady state approximation, if the rainfall events are 

separated by a period less than 100 days erosion will be overestimated. This result 

confirms the limitation of the existing 7Be technique for erosion estimation and is also 

noted elsewhere in the literature [18, 19, 21, 33]. 

 

 

Figure 14: Time evolution of the total inventory of 7Be for eroded depths �z of 

                   0.5 mm (Blue curve), 1 mm (Green Curve), 1.5 mm (Red curve) 2 mm  

                   (Cyan curve) and 2.5 mm (Violet curve). The curves start from an  

                   percentage inventory which is left after an erosion event. 

 
A hypothetical situation for multiple erosion events is considered by assuming five 

erosion events of magnitude �z mentioned in Table 6. These five events are 

simulated for steady state conditions in a period of approximately 400 days (Figure 

15). This shows that if we want to use the steady state approach for multiple erosion 
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event situations, we have to make sure that the multiple events are separated by a 

period of ~110 days (depending on the erosion rate) and within this time period there 

has not been any soil redistribution at the study plot. This is an impossible criterion 

to meet as natural conditions are dynamic and single rainfall events cannot be 

predicted.  

 

 

Figure 15: Time evolution of the total inventory of 7Be for multiple erosion events E1,  

 E2, E3, E4 and E5 with eroding depths of 0.5 mm, 1 mm, 1.5 mm, 2mm   

 and 2.5 mm respectively. 

 

3.2 Time evolution of the depth distribution of 7Be 

Along with the total inventory, the behaviour of the depth distribution was also 

studied. The results are presented in Figure 16. The concentration of 7Be was 

simulated over the depth of 1 cm using Equation (16). Our simulations show that the 

depth distribution at the study site after an erosion event of takes a minimum of 100 

days to reach steady state. For non-steady state conditions, e.g. when the time period 
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between two erosion events is short (< 90 days) the deposited 7Be concentration from 

the atmosphere is found at the soil surface (z=0). 

 

 

Figure 16: Time evolution of the 7Be depth distribution after an erosion event with an 

                   eroded depth �z = 1.5 mm. Blue curve: Depth distribution after an erosion 

                   event at t = 0; Green curve: depth distribution evolved at t = 35 days; Red 

                   curve: depth distribution evolved at t = 60 days; Cyan curve: depth 

                   distribution evolved at t = 80 days; Black  curve: Steady state depth 

                   distribution which overlaps with the numerical  depth distribution at 

                   t = 90 days. 

 

3.3 Time evolution of the 7Be total inventory and depth distribution for  

      varying input fluxes I0 

While calculating erosion rates for multiple rainfall events, an assumption of 

constant input flux of 7Be at the soil surface is considered. During the study period it 

was observed that the 7Be input fluxes show seasonal variability. The total inventory 

and depth distribution evolutions for varying input fluxes are shown in Figure 17 
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and 18.  Figure 17 shows that during the period of increasing input fluxes the total 

inventory reaches faster to the equilibrium state. If an input flux is doubled the total 

inventory reaches upto 110%. This leads to an overestimation of the erosion rate. The 

system is studied in more detail by using depth distribution for varying input flux 

condition and eroded depth of 1.5 mm. During this study it has been observed that 

atmospheric input is higher in the summer months (July-September) compared to the 

other period of the year. But, as seen at our study site, erosion events occurring 

during July-September are separated by short time intervals �t. Therefore constant 

input flux is a good approximation.  

 

 

Figure 17: Time evolution of the total inventory of 7Be for eroded depths �z =1.5 mm  

for different input fluxes using Equation (14): 3.54×10-5 (Blue curve); 

4.54×10-5 (Green curve); 5.54×10-5 (Red curve) and 7.54×10-5 (Cyan curve). 

The curves start from a 40% inventory which is left after an erosion event. 

 

The depth distribution of 7Be plotted in Figure 18 corresponds to input fluxes of 

3.54×10-5 Bq m-2 s-1 and 6.54×10-5 Bq m-2 s-1 respectively. It can be seen from Figure 18 
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for higher input fluxes most of the 7Be concentration is found in the uppermost few 

millimetres of soil.  

 

 

 

Figure 18: Time evolution of depth distribution of 7Be for varying input fluxes (A: I0 = 

3.54×10-5 Bq m-2 s-1, B: I0 = 6.54×10-5 Bq m-2 s-1). The numbers on the curves 

indicate the simulation time in days. Blue curve: 7Be depth distribution 

after erosion; Black curve: steady state depth distribution of 7Be. 
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3.4 Time evolution of the 7Be depth distribution after ploughing 

The study field at Müncheberg was ploughed two times a year. Due to the ploughing 

7Be in the soil was mixed in the ploughing depth of 20-25 cm, meaning that the depth 

distributions were erased.  

 

�
Figure 19: Evolution of the depth distribution of 7Be with time after ploughing. The  

                   numbers on the curves indicate the simulation times in days. 

                   (1: 10 days, 2: 30 days, 3: 60 days, 4: 100 days, 5: 150 days and 6: 200 days) 
�

To estimate erosion after ploughing we have numerically simulated several 7Be 

profiles at the study plot. For this purpose the 7Be depth distribution was simulated 

using the Crank-Nicolson scheme, for the initial condition given as C(z,t=0)=0 (Figure 

19). The simulation results concluded that it requires 180-200 days for the 7Be depth 

distribution to reach steady state after ploughing. Therefore, to use the 7Be technique 

for erosion quantification after ploughing with the steady state approximation, a 

build-up period of 200 days must be taken into consideration. 
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3.5 7Be distribution in soil for a pulse-like input 

Short rainfall events deliver 7Be into soils. Such events are considered as pulse-like 

inputs. The differential equation (5) was solved using the Crank-Nicolson scheme 

with an instantaneous pulse input at the boundary at time t = 0. 

The movement of 7Be into the soil column is being shown in Figure 20 for different 

simulation-times t. At t=10 days in Figure 20 the concentration of 7Be has decreased 

due to the physical process of diffusion and radioactive decay and is confined to the 

surface by sorption. 

 

 

Figure 20: Depth distribution of 7Be for three migration times estimated with  

                  equation (10). The Blue curve is the pulse-like input at the boundary at t=0. 

                  The Green curve, Red curve and Cyan curve indicates the depth 

                  distribution at t = 5 days, t=10 days and 20 days respectively 

 

3.6 Summary 

A numerical simulation scheme was developed, using the Crank-Nicolson approach 

to solve the diffusion equation. The scope of the diffusion model was explored under 
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pulse-input conditions to study the behaviour of 7Be for an instantaneous rainfall 

event. Before applying the model for erosion rates estimation several mathematical 

simulations were performed to understand the behaviour of 7Be for steady state and 

non steady state conditions. The simulations presented in this chapter are very 

illustrative and the non-steady state diffusion model developed here is essential for 

short-term erosion rates quantification. 
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4 FIELDWORK AND LABORATORY ANALYSIS 

4.1 Introduction 
The study-field is situated northeast from Berlin, Germany at Müncheberg. It belongs 

to the agricultural research institute, ZALF (Leibniz-Zentrum für 

Agrarlandschaftsforschung). It is specially designed to perform systematic study on 

slope-induced erosion caused by agricultural practices. Erosion quantification using 

the cosmogenic radionuclide 7Be was conducted at this plot together with the erosion 

studies performed by ZALF.  

4.2 Study site Müncheberg 

Müncheberg is situated in the Märkisch-Oderland district in Brandenburg, Germany 

(52.6°N 14.3°E). The main research programmes carried at Müncheberg are 

monitoring programs in the agricultural landscape and long-term field studies. 

The study plot was used under a ''two plot utilization system'' meaning that, the 

plot was divided into sub-plots, Plot1 and Plot 2, according to the mode of 

agriculture. Plot-1 is kept under ''no-till'' practices where the soil is scratched at the 

surface with minimal force of the machine that is specially designed for this purpose 

(Figure 21B). Plot-2 is ploughed with the conventional ploughing technique with 

ploughing depths reaching up to 25 cm (Figure 21A). In the winter months (October-

February), Winter-Rye (Vital 10) was grown on both plots and in the summer months 

(June-September) Sudan grass (C4 plant) was grown. Both crops were harvested in 

the June and October. These harvested crops were used as fuel for bio-energy 

production [104]. 

Each sub-plot is 53.5 m × 6 m in area, with a slope angle of 6.2° (Figure 22 A). A tin 

board separates the two sub-plots made under different ploughing techniques. 

Sediment mobilised at the study plot by an erosion event was collected in the tin 

barriers and V-channels, which were installed at the bottom of the slope of each plot 

(Figure 22 and 23). Daily measurements for rainfall, wind speed and solar radiation, 

were obtained at the bottom of the plot by an automatic weather station. 
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Figure 21: Agricultural practices using different types of machines; A: No-till 

 machines, B: Conventional ploughing machines 
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Figure 22: A: The experimental plot at Müncheberg research station. B: Schematic of 

                   the Müncheberg study plot. The bold arrow in the middle represents 

                   the direction of the slope.�



57 
 

 

Figure 23: The experimental plots with the barrier and funnel system at the bottom; 

                   A: barrier at no-till plot, B: barrier at till plot, C: Funnel system with 

                   automatic weather station. 

 

4.3 Climate and soil characteristics at Müncheberg 

The climate at the study site is a typical East-German continental inland climate. 

Winters at the study plot are cold with minimum temperatures of -15°C.  In summer 

maximum temperatures up to 30°C were measured. From 2009-2011 the study site 

has experienced frequent long dry weather periods.  The annual mean rainfall 

measured at Müncheberg from 1971-2010 is 525 mm and the annual mean 

temperature is 8.6 °C [105]. 

Table 7: Physical soil properties at the study site 

Plot Position Geographical position Bulk 
density 
(kg m-3)

Organic
Matter 
(OM) 
(%)

Particle size (%)

                                  Latitude (N)       Longitude (E)                                           * Sand    *Silt    *Clay

1 Top 52° 30´ 56.5´´ 14° 7´ 39.3´´ 1573 0.92 85 12 3

1 Middle 52° 30´ 56.9´´ 14° 7´ 39.8´´ 1674 0.98 84 13 3

1 Bottom 52° 30´ 55.1´´ 14° 7´ 40.7´´ 1578 0.97 82 14 4

2 Top 52° 30´ 56.5´´ 14° 7´ 39.3´´ 1525 1.03 85 12 3

2 Middle 52° 30´ 56.9´´ 14° 7´ 39.8´´ 1383 1.04 85 12 3

2 Bottom 52° 30´ 55.1´´ 14° 7´ 40.7´´ 1479 1.19 82 13 5
* Sand (> 63 μm), Silt (2 - 63 μm), Clay (< 2 μm) 
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The soil at the study site is a typical north-eastern German groundwater gray soil, 

which developed as a result of periodic water lodging by fluctuating groundwater 

tables. The soils at the study plot represent the subgroup brown calcareous subsoil 

and Luvisol. According to the German soil rating system, the study site mainly 

consists of sandy loam and sandy soils. The physical properties of the soil at the 

study plot are listed in Table 7. Soil structure was determined at three different parts 

of the plots. Dry densities were measured during this study on a monthly basis over 

a period of 24 months. 

4.4 Sampling design 

A systematic and non-stratified sampling design using a transect plot was chosen for 

this study. The coordinates were fixed using a high resolution GPS camera system. 

The transect was a continuous slope with measurement points 1 to 5, with 5m as the 

highest and 53 m as the lowest point (Figure 24). Uncertainties of the coordinates and 

the distances were in the range 2-5%. 

 

 

Figure 24: The sampling design for 7Be measurements at Müncheberg with RF1, RF2 

                   and RF3 representing the reference sites. The black arrow in the middle of 

                   the plot indicates the slope direction. 
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To determine event-based soil redistribution at the study plots a set of soils samples 

with five profiles (20 cm × 15 cm × 2 cm) located at 5m, 20m, 35m, 50m, 53 m were 

collected from each plot. Three reference sites were located at three sides of the plot 

(Figure 24). These reference sites represented a flat stable area with no visible 

evidence for the occurrence of erosion or sedimentation during rainfall events. 

4.5 7Be measurement program for erosion/deposition quantification 

The purpose of the study was to quantify soil erosion and deposition induced by 

multiple heavy rainfall events. Rainfall data was collected at the study plot using an 

automatic rainfall measurer. Most of the heavy rainfalls occurred during the period 

of July to early October. After the warm months from March to June the soil is dry 

and increasingly susceptible for water erosion. Thirteen samples were collected (5 at 

the tilled plot, 5 at the no-till plot and 3 at reference sites) over a period of 19 months 

(March 2010-October 2011) with a monthly or bi-monthly frequency, depending on 

the occurrence of rainfall events. Sampling was conducted for 3 different weather 

scenarios: 

1. A rainfall event, which deposits soil on the tin barriers, placed at the bottom of 

the plot. 

2. A rainfall event that redistributes the soil within the study plot and no soil is 

deposited at the bottom of the plot. 

3. After dry periods with few rainfall events of small intensity or no rainfall 

events at all. 

The rate of accumulation of 7Be in the soil is likely to exceed the rate of loss by 

decay during the months of higher rainfall [94], while the 7Be half-life (radioactive 

decay) will control the areal activity density during the months of lower rainfall. 

Sampling was performed during all seasons to study the seasonal variability of the 

total inventory of 7Be in the soil. 

Along with the 13 samples from the study plot, 9 samples were collected using a 

measuring cylinder to establish a depth distribution of 7Be at the reference sites 

during different periods of the year. The sampling dates along with the rainfall data 
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is given in the Figure 25. Sampling information is given in details in Table 8. The 

amount of rainfall data measured by the automatic weather station located at the 

study plot. 

 

 

Figure 25: Rainfall events with soil sampling. Red dotted stems indicate the  

                  sampling events in 2010-11. 

 

The particle size investigation of sediments collected in the tin barriers and V-

channels was performed with the help of laser particle size measurements at the 

Asse-GmbH, Remlingen. 

4.6 Sampling methodology 

The sampling procedures and the availability of suitable sampling equipment are 

important potential constraints for the use of 7Be in assessing soil redistribution. The 

choice of method for the collection of soil samples to determine levels of 7Be is 

dependent on the purpose of the project, as well as the study site and its soil 

characteristics. For the analysis of the total number of soil samples the distribution of 
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radionuclide in the soil and the sample mass is required. For this, soil samples from 

shallow depths need to be sampled because 7Be occurrence is restricted to the 

immediate surface layer of the soil and shows a fast decrease with depth [18, 19, 21, 

22, 33].  

If the sample is not collected to a sufficient depth, it will not contain the full 7Be 

inventory. If however the sampling depth is too great, inclusion of soil with 

distinguishing 7Be activities may reduce the concentration of 7Be in the overall 

sample to a low level or even to below the level of detection. Considering these 

criteria for measurement of 7Be in the soil a sampling depth of 2 cm was chosen. 

For characterizing the depth distribution of 7Be at reference sites there is a need to cut 

the sample at a resolution of 1 mm and 2 mm depth increments. A cylindrical corer 

was developed in this study for measurement of the depth distribution. 

4.6.1 Total inventory sampling using the Gauge-Scraper plate method 

A scraper plate was developed during this work specifically for establishing the total 

inventory of 7Be at reference and actual study sites. Sampling is done by two 

components: a gauge of dimensions 15 cm × 20 cm × 2 cm that can be placed on the 

ground to cut a specific part of soil and a scraper plate to cut a layer of soil of 2 cm.   

�

 

Figure 26: A: Gauge and scraper plate at the study site. B: The gauge is placed on the 

                   soil and with the help of a scraper plate the soil of a particular depth is cut.�
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At the sampling point a hole was made larger than the sampling depth. The gauge is 

put on the ground near the corner of the hole. The upper layer of soil of 2cm in 

height is taken as a sample with the help of the scraper plate (Figure 26). 

 

 

Figure 27: A: Reference site RF3 at Müncheberg. B: Grass covered reference site, RF3 

 

A household knife along with the scraper plate was used to cut the grass roots so 

that the scraper plate could sample the soil (Figure 27). Detailed information on the 

study sites and reference sites with their geographical coordinates is listed in Table 9. 

 

Table 9: Description of the study site and reference sites 
Measurement 

point 
Location Geographical position Soil type

                                                                Latitude (N)   Longitude (E)
5 m Till & No-till plot 52° 30’ 56.4’’ 14° 7’ 39.4’’ Cultivated soils

20 m Till & No-till plot 52° 30’ 56.9’’ 14° 7’ 39.8’’ Cultivated soils
35 m Till & No-till plot 52° 30’ 55.3’’ 14° 7’ 40.3’’ Cultivated soils
50 m Till & No-till plot 52° 30’ 55.2’’ 14° 7’ 40.7’’ Cultivated soils
53 m Till & No-till plot 52° 30’ 55.1’’ 14° 7’ 40.7’’ Cultivated soils

RF1 Reference site 1 52° 30’ 57.0’’ 14° 7’ 39.8’’ Bare soil + grass
RF2 Reference site 2 52° 30’ 55.4’’ 14° 7’ 38.2’’ Soil+ long grass 
RF3 Reference site 3 52° 30’ 54.2’’ 14° 7’ 40.2’’ Soil+  grass+ small 

plants 
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4.6.2 Fine increment soil sampler for depth distribution measurements 

To determine the depth distribution of 7Be at the reference sites 9 cores were collected 

and cut into slices of 1 mm or 2 mm for establishing the depth distribution of 7Be in 

soils. 

 

Figure 28: Fine increment cylindrical soil sampler (Photo: Klaus Schmidt) 
 

A special device was developed for this study to facilitate slicing the cores into 

appropriate slices, based on the one described elsewhere [18]. This device comprised 

of, a measuring cylinder (5 cm diameter and 5 cm in height) and a piston (with same 

diameter as the internal diameter of the measuring cylinder). The movement of the 

piston is controlled by a screw thread. The piston is inserted into the base of the 

measuring cylinder and can be used to extrude 1 mm of soil per turn of the screw. 

The cut slices of soils are extruded by rotating the screw one turn and the slices were 

separated from the remaining sample with the use of dental floss thread and a saw 

blade of 0.1 mm thickness (Figure 28). 
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The measuring cylinder was bored into the soil by using a rubber hammer and the 

soil sample of 5 cm thickness was collected, dried and prepared for Gamma 

spectroscopic measurements (Figure 29). One of the limitations of this fine soil 

sampler is when the soil sample contains large stones (size greater than the slice 

thickness) and/or plant roots reaching deep into the soil, a systematic error is 

introduced during the cutting of slices of desired thickness. 

 

 

Figure 29: Sampling technique for the depth distribution of 7Be. A: Material needed 

                  for sampling, B: Measuring cylinder hammered into the soil, C: collection 

                  of  the sample with soil surface on the top, D: cut slices are put into small 

                  vessels for drying. 

 

To avoid these errors a site survey was done at the three chosen reference sites. 

Reference site 1 was chosen to take the soil cores as it contained mainly bare soil with 
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shallow rooted grass.  Initially the core was cut into 10 slices (0-2 cm) in 2 mm depth 

increments. First measurements of these samples with gamma spectrometry showed 

that 7Be is confined to the upper 6 mm. Following this, much finer soil cutting with 1 

mm depth increments was performed to investigate the distribution in more detail. 

4.7 Sample processing 

A high degree of standardization was pursued during this study, starting with the 

sampling technique to the Gamma spectrometry measurements on the samples. 

 

 

Figure 30: Sample processing for the total inventory of 7Be. A: Aluminium 

                  tray used for sample drying. B: Sample spread on the aluminium 

                  tray. C: Oven used for drying the sample at 105°C. D: Sample geometry 

                  used for measurement. 

 

4.7.1 Air drying, grinding, annihilation and sieving for total inventory 

The procedure followed to prepare the samples for a total inventory measurement is 

described here. As a first step the samples were air and oven dried. They were put on 

aluminium sheets for drying at room temperature and later heated in an oven at 

105oC for 22 hours. The sample mass was determined before and after the drying 
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procedure. After drying, the samples were manually disaggregated and passed 

through an oven to burn the organic material present at 400oC. Afterwards the soil 

sample was sieved to < 2 mm to remove stones and gravel. The soil mass after 

sieving was measured again. Finally, the sieved sample was put in aluminium bottles 

and transported to the gamma spectroscopy lab for measurement (Figure 30). 

4.7.2 Fine depth soil sample processing 

The procedure for the depth distribution measurements instead was as follows. The 

soil slices of 1 mm or 2 mm thickness were oven-dried at 80°C for 18 hours. The dried 

samples were burned if any organic matter was present and then pulverized with 

pestle and mortar and their dry densities were determined. These samples were then 

filled in test tubes and transported to the gamma spectrometry laboratory for 

measurement (Figure 31). 

 

 

Figure 31: Sample geometry used for the measurement of the 7Be depth 

                  distribution �� the reference sites. 

 

4.8 Sample analysis 

The 7Be concentrations of the soil samples were determined with gamma 

spectroscopy using high-resolution intrinsic germanium detectors. All samples were 

analysed at the gamma spectroscopy laboratory of Bundesamt für Strahlenschutz 

(BfS), Berlin. It is a standard laboratory for the measurement of natural radioactivity 
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and is certified by IAEA through the worldwide open proficiency test performed in 

the years 2009 and 2010 [106, 107]. Four high-purity Germanium detectors were used 

for the measurement of 7Be (Figure 32). Their specifications are given in Table 10. 

Efficiency calibrations of the detectors were performed with the measurement 

geometry used for different environmental samples during this study. 

The efficiency calibration was performed with single-peak sources such as 54Mn, 

85Sr, 137Cs, 241Am and 109Cd. In addition 57Co, 60Co and 207Bi sources were also used. 

The calibration geometry for the efficiency calibration purpose was a 225 ml 

aluminium bottle with 1 cm; 4 cm and 8 cm fill heights. 

The energy calibration was performed for the selected measuring geometry using a 

standard gamma source known as ‘’Ra-226 Topf’’ supplied by the Physikalisch-

Technische Bundesanstalt (PTB, Braunschweig, Germany). The “Ra-226 Topf” was 

developed for the naturally occurring radionuclide 226Ra, which is found in all 

environmental samples. The presence of uranium in the environmental samples 

would interfere, as the 186 keV gamma photon from235U cannot be distinguished 

from 226Ra. Thus the 186 keV peak was not considered for energy calibration 

purposes.  Ra-226 is measured from its progeny Pb-214 and Bi-214. This requires that 

the noble gas isotope Rn-222 is kept locked gastight in the sample long enough for 

radioactive equilibrium between Ra-226 and short lived Rn-222 to be established. It 

takes about three weeks before equilibrium is reached and Ra-226 can be measured 

using the gamma photons of Pb-214 (352 or 295 keV) and Bi-214 (609 keV). The 

energies of the measured radionuclides in soil samples collected in this study were 

calibrated to the energies of the naturally occurring radionuclides. 

Table 10: Germanium detectors used for the gamma spectroscopic measurements 

Detector Type Polarity Efficiency Manufacturer 

1 Coaxial n-type 40% ORTEC 

2 Coaxial p-type 35% ORTEC 

3 Coaxial n-type 40% ORTEC 

4 Ge Well p-type 40% CANBERRA 
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  The gamma spectra were analysed with the Genie 2000 software from Canberra 

Industries, Inc., Meriden, CT, USA. Beryllium-7 was measured at 477.6 keV as shown 

in Figure 33. Counting time of 25000-80000 seconds was used to measure 7Be for total 

inventory (250 ml aluminium bottles) and 80000-560000 seconds for the depth 

distribution measurements (test tubes).  

 

 

Figure 32: High purity Germanium detectors used to measure 7Be at Bundesamt für 

                  Strahlenschutz, Berlin, Germany. A: Coaxial detector used for aluminium 

                  bottle geometry, B: Ge Well detector for test tube geometry. 

 

Samples for the depth of 0-1 mm were measured for 80000 sec, as the 7Be is present 

predominantly on the surface soil layer. Longer measurement times were required 

for samples below 1 mm, as the areal activity of 7Be below 1 mm decreased sharply 

leading to less 7Be atoms in the deeper layers compared to the surface layer. 

Detection limits obtained with the aluminium bottle for soil samples of 300 grams 

dry mass ranged between 3 and 5 Bq/kg-1. Detection limit for a test tube sample of 2-3 



70 
 

grams measured for 160000 seconds was 10 Bqkg-1 (For a probability of 0.05 false 

positive and false negative errors are, k1-� = 3 and k1-	 = 1.645 [108]). Beryllium-7 was 

assumed to be absent from lower soil core layers when concentration values of two 

consecutive depth increments were indistinguishable from zero. Measured 7Be 

activities of the soil samples were corrected for radioactive decay to the time of the 

sampling with use of Genie 2000 software. 

7Be concentrations in the soil samples were measured as fast as possible after the 

sampling because otherwise they would have been affected by the radioactive decay.  

 

 

 

Figure 33: A: Gamma spectrum of soil; B: 7Be photopeak shown at 477.6 keV 
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4.9 Summary 

To explore the potential of 7Be as a short-term soil erosion tracer and to use the 

radionuclide to calculate erosion rates during multiple rainfall events, a systematic 

and rigorous sampling approach was planned and executed at the study site in 

Müncheberg, Germany. The analysis was performed at the gamma spectroscopy 

laboratory at BfS. The efficiency and energy calibration for all Hp-Ge gamma 

detectors was conducted with standard sources and measurement geometries of the 

soil sample. The sampling technique used here was tested frequently, so as to 

minimize the sampling errors. The fine increment cylinder developed during this 

study can be used for bare soils or soils with shallow rooted grass over them. Its use 

is limited when cutting samples containing stones or /and deep grass roots. 
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5 RESULTS AND DISCUSSION 

5.1 Introduction 

The first part of this chapter discusses the experimental findings on the depth 

distributions and total inventories of 7Be at the reference sites. In the second part, 

erosion rates estimated for steady state and non-steady state conditions are presented 

and discussed. 

5.2 7Be at the reference site at Müncheberg 

The depth distributions and total inventories of 7Be at the study plot in Müncheberg 

were examined over a period of 19 months. The sampling campaigns were 

conducted in accordance with the occurrence of rainfall events. In addition, the 

samples were also collected during dry-periods. The mass of soil collected at the 

bottom was used to estimate the erosion rate. Samples were taken from the soil in the 

tin barrier and V-channel and measured with gamma spectroscopy for 7Be activity 

concentration (Bq kg-1). To establish the depth distribution of 7Be at the reference sites 

cylindrical cores were collected during the months of May 2011, June 2011, 

September 2011, October 2011 and November 2011. 

5.2.1 Depth distributions of 7Be at the study site 

The vertical distribution of 7Be at the reference sites where no erosion or deposition 

occurs was established from the sample at the reference site 1. Reference site 1 

contained mostly soil with short grass. Reference sites 2 and 3 showed a combination 

of long grass and soil. Because of the limiting ability of the fine increment sampler to 

cut long grass, reference site 1 was chosen for establishing the depth distribution. 

Beryllium-7 depth distribution profiles measured at reference site 1 in dry and wet 

months are presented in Figure 34 and 35. They show that the 7Be profiles have a 

decreasing concentration with depth. This decline of concentration with depth is 

exponential in form and is similar to the profiles reported from other studies [18, 19, 

21, 33]. Beryllium-7 was detected at the study site up to a depth of 6 mm. Below 6 

mm, even with long measurement times; no 7Be activity (Bq kg-1) was detected. After 
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deposition, 7Be is sorbed to grain surfaces. This process depends on grain size [30]. 

Grain size dependencies have been observed for 137Cs [112, 113]. At the study site in 

the topmost soil layer, which is dark in colour and mostly consists of organic 

material and clay minerals, 7Be is quickly adsorbed, leading to high concentration in 

the surface layer. 

During the dry period of the year, the concentration of 7Be is higher at the topmost 

layer. Due to absence of water as the main diffusing agent, the 7Be hardly penetrates 

into the soil (Figure 34). 

 

 

Figure 34: Depth distribution of 7Be in the dry period (May 2011). Horizontal error 

                   bar is the statistical uncertainty of the measurement. 

 

The measurements confirm the basic process that dominates in the migration of the 

fallout 7Be into the soil column is diffusion. Water is the main carrier of diffusing 

7Be2+ ions. 
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Figure 35: Be-7 concentrations (kBq m-3) with depth for wet months A: June, 

                   B: September, C: November and D: October. Blue curve is the statistical 

                  fit of the diffusion model (Equation (8)) to the measured data. The dotted 

                  curves are the confidence intervals of the fit. Horizontal error bars are the 

                  statistical uncertainties of the measurement and the vertical error bars 

                  represent the uncertainties over depth. 
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  Beryllium-7 when deposited with the rainwater sorbed to the soil matter and with 

the solvable phase is subjected to diffusion with the soil solution. Because of sorption 

at the soil surface and due to its short half-life, 7Be2+ ions cannot migrate deeper into 

soil. 

  Figure 36 shows the cumulative distribution of 7Be with depth. It is observed from 

all depth distribution samples, that 80% of the total concentration of 7Be in soils is 

present between the surface (z=0) and 3 mm depth. Below 3 mm the concentrations 

decrease rapidly. The removal of the upper 1 mm would result in a reduction of 70% 

of 7Be at any erosion point. 

  The effective diffusion coefficient D and the input flux J were estimated by fitting 

equation (8) i.e. 
z

0 DIC(z, t ) e
D

λ−
→ ∞ =

λ
 with the depth distribution data for 7Be in the 

soil at reference site 1 and are presented in Table 11. The fitting procedure is 

explained in detail in Appendix H. The estimated parameters given in Table 11 were 

compared with the relaxation mass depth and C0 by equating the diffusion model 

(equation (8)) with the empirical profile discussed elsewhere [9, 82]. 

0

z
h

0

z
0 D

C(z) C e         (Empirical profile)

I
C(z) e  (Diffusion model (equation (8)))

D

−

λ−

=

=
λ �

Comparing the two techniques given above 0
0

0

I 1C and
h DD

λ∴ = =
λ


�where C(z) (Bq 

kg-1) is the 7Be activity at a mass depth z (kg m-2), C0 is the concentration of 7Be at the 

surface (z=0) , and h0 (kg m-2) is the relaxation mass depth which is an empirical 

description of the depth to which . Table 11 shows the diffusion coefficients 

estimated by using the diffusion model at the reference site for different periods of 

the year including their uncertainties (Appendix G). The penetration depths h0 are 

the depths where the concentration of 7Be reduces to 1/e times that at the surface. The 

estimated penetration depths were between 1.4 and 1.8 mm. Similar penetration 

depths were reported in a previous study for alluvial bare soils [30]. 
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Figure 36: Cumulative depth distribution of 7Be at reference site in Müncheberg for 

                  the months June (A), September (B), November (C) and October (D). 
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Table 11: Values of fit parameters for 7Be at reference site 1 in Müncheberg 

Month 

Diffusion 
constant  

(D ± �D)×10-13 
(m2 s-1) 

Input Flux 
(I0  ± �I0)×10-5 
(Bq m-2 s-1) 

Relaxation Depth 
(h0  ± �h0) 

(mm) 

Surface 
concentration 

(C0  ± �C0) 
(kBq m-3) 

Sept 2010 2.73 ± 0.65  3.43 ± 0.40  1.40 ± 0.68 170 ± 55
May 2011* NA NA NA NA 
June 2011 3.65 ± 0.75  3.64 ± 0.23  1.60 ± 0.70 155 ± 19
Sept 2011 4.75 ± 1.30  1.70 ± 0.20  1.80 ± 1.00 64 ± 15
Oct 2011 2.95 ± 0.90  1.74 ± 0.34  1.40 ± 0.70 83 ± 31
Nov 2011 3.73 ± 0.72  0.90 ± 0.20  1.60 ± 1.00 37 ± 14

*During May 2011 dry periods were documented and diffusion did not take place. 

 

For depth distribution data in May 2011 only two data points were available. Thus, 

the fitting procedure was meaningless for this profile. May was the driest month in 

the year 2011. Therefore, the maximum concentration of 7Be in the month of May was 

found to be at the surface layer. The mean of diffusion coefficient D weighted with 

the inverse of its uncertainty was calculated and the statistics is presented in Table 12 

and it was used in all further calculations of erosion rates. 

 

Table 12: Statistical summary for parameters D and h0 

Parameters Number of samples 
(n) 

Arithmetic Mean 
AM ± SD 

 

Weighted mean 
WM ± WSD 

 
Diffusion coefficient 

D (m2 s-1) × 10-13 5 3.56 ± 0.79 3.30 ± 0.33 

Penetration depth 
h0 (mm) 5 1.56 ± 0.17 1.52 ± 0.34 

    AM = Arithmetic mean, SD= Standard Deviation, WM= Weighted Mean, WSD= Weighted Standard Deviation 

 

Depth distributions of 7Be were studied in different soils types in other studies [18, 

19, 30, 94, 109]. The diffusion model developed in this study was also fitted to these 

published data and the effective diffusion coefficient and the penetration depths 

were estimated. The results were compared to the values estimated by the authors 

during the respective studies. The data is presented in Table 13. 
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Table 13: Estimated diffusion coefficients and penetration depths for different soils 

Sr.No. Soil type Source D (m2 s-1) ×10-13 h0(Est)* 
(mm) 

h0  (Lit)** 
(mm) 

1 Alluvial bare [30] 6.0 ± 1.0 1.9 ± 0.8 1.6 
2 Heilu [109] 17 ± 4 3.3 ± 1.6 NA 
3 Very fine clay [19] 15 ± 1 3.2 ± 0.9 3.6 
4 Ultisoils [19] 17 ± 8 3.4 ± 1.3 2.3 
5 Inceptisols [94] 4.9 ± 0.8 1.8 ± 0.7 NA 
6 Ultisoils [18] 2.7 ± 0.3 1.3 ± 0.4 1.2 

*h0(Est) is the estimated penetration depth by the diffusion model and **h0(Lit) is the available value   

 of penetration depth from the author of the article. Uncertainties on h0(Lit) values were not provided  

 by any author. 

 

The data used for estimating the parameters D and h0 was reconstructed from the 

research article. Therefore the estimated values have an uncertainty of up to 50%. 

The diffusion coefficients estimated during this study are the first findings of the 

study of 7Be diffusion in soil. For different soil types as shown in Table 13 the 

penetration depths, h0(Est) and h0 (Lit) show similar results. The values of D in Table 

13 vary between 2.7×10-13 and 17×10-13 m2 s-1. This indicates that diffusion of 7Be in 

soils does not only depend on the soil type, but is related to the physico-chemical 

properties of radionuclide transport in soils. 

5.2.2 Grain size characteristics of suspended sediments  

The particle size distributions for the sediments collected after the erosion event in 

June 2011 are presented in Figure 37. Figure 37A shows that sediments collected at 

the V-channel contained 78% clay, 2% silt and 20% sand. Sediments collected at the 

tin barriers contained 95% sand, 5% silt and 0% clay (Figure 37B). The activity of 7Be 

in the sample collected after the erosion event in June 2011 from the V-channel was 

314 ± 20 Bq kg-1 and that from the barrier was 14 ± 1 Bq kg-1 respectively.  The specific 

activities of 7Be are proportional to the clay-sized fraction, which is also noted in the 

other studies [30]. 
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Figure 37: Particle size distribution of suspended sediments discharged during a 

                  rainfall event in June 2011 for (A) V-channel and (B) Barrier. 

 

5.2.3 Soil inventories of 7Be at the reference sites 

For each rainfall event a weighted mean was calculated for the 3 reference sites RF1, 

RF2 and RF3 respectively (Table 15). The total inventories of 7Be at the reference sites 

for the period between March 2010 and October2011 are presented in Figure 38. The 

7Be inventories were measured from March – November in the year 2010 and January 

- October in the year 2011. In the month of December 2010 the study area was 

covered with snow and therefore no samples were collected. During the months of 

July 2010, August 2010, June 2011 and September 2011 the reference sites were 

sampled twice, as multiple heavy rainfall events occurred and erosion rates were 

estimated for those situations. The time series of the total inventory data in Figure 38 

(top) shows that the 7Be has a peak during the summer (August-November) in both 
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years. Lower inventories were found during the spring and early summer (March-

June). 

 

 

Figure 38: Time series of total inventories of 7Be at the reference sites and Rainfall  

                   data for 24 months. In the top plot each group of bar graphs with the  

                   measurement uncertainties represents the 3 reference inventories  

                   measured in each month with pink, violet and green colours for Reference  

                   sites 1, 2 and 3 respectively.  The solid red curve is the sinusoidal fit to the  

                   data and the dotted lines indicate the 95% confidence bounds to the fit��

 

  The Rainfall data in Figure 38 (bottom) shows that rainfall frequencies are 

correlated with the increase in 7Be inventories. We applied a two sample 

Kolmogorov-Smirnov test to check for the identical population between distribution 

of total inventories of 7Be in 2010 and 2011 respectively. The null hypothesis used for 

testing the data sets for � = 20% was, H0: Samples have the different continuous 

distribution.  The statistical analysis show that the hypotheses was rejected for � = 
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20%, P = 0.3911 and Kolmogorov-Smirnov statistic Dcrit = 0.27. There were no major 

differences seen between the two distributions. To visualize the difference between 

two datasets, plot of the two empirical cumulative distribution functions F1(x) (Blue 

curve) and F2(x) (Red curve) representing 7Be inventories in the years 2010 and 2011 

are shown in Figure 39. 

 

 

Figure 39: Empirical cumulative distribution plots for the 7Be inventories. Red curve:  

                   data set for the year 2010 and Blue curve: data set for the year 2011. 

 

  The variability of 7Be at the reference sites was tested using the statistic given in 

Table 15. Table 15 shows that the variability of 7Be throughout the study period was 

10-35%. Considering the periodic behaviour observed at the study site a sinusoidal 

function �was fitted to the 7Be total inventories for the period of 

2 years. Vertical shift 	, Phase shifts 
, and amplitudes � estimated for the fit are, 160 

± 32 Bq m-2, 0.9 ± 0.2, 264 ± 24 Bq m-2. 

  There was an exception in the month of October in the year 2010 where the 

coefficient of variation was 70%. The reason for this was that the samples at RF1 and 

RF2 in October were collected from the same points, which were sampled 15 days 
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before. Thus a layer of soil containing 7Be was lost at these sampling points due to 

the previous sampling campaign. Due to this systematic sampling error the value in 

October was not used in any further calculation of erosion rates. 

 

Table 14: Total inventories of 7Be for different soil conditions 

Month 
RF1 (Bq m-2)

(bare soil + short 
grass) 

RF2 (Bq m-2)
(grass + soil) 

RF3 (Bq m-2) 
(soil + small plants) 

Mar-10 204 ± 17 132 ± 17 184 ± 21 
Apr-10 169 ± 10 119 ± 10 165 ± 24 
May-10 163 ± 12 166 ± 13 177 ± 46 
Jun-10 211 ± 15 160 ± 18 143 ± 21 
Jul-10 244 ± 17 322 ± 16 315 ± 15 

Aug-10 454 ± 21 491 ± 26 542 ± 31 
Sep-10 293 ± 46 549 ± 35 441 ± 53 
Oct-10 349 ± 26 165 ± 10 754 ± 10 
Nov-10 247 ± 41 402 ± 49 551 ± 31 
Jan-11 193 ± 36 234 ± 25 367 ± 20 
Feb-11 276 ± 29 211 ± 34 275 ± 24 
Mar-11 203 ± 31 156 ± 11 233 ± 30 
Apr-11 125 ± 23 163 ± 29 230 ± 38 
May-11 90 ± 30 126 ± 25 220 ± 20 
Jun-11 195 ± 21 267 ± 22 389 ± 21 
Jul-11 270 ± 21 316 ± 22 389 ± 21 

Aug-11 421 ± 22 371 ± 32 346 ± 22 
Sep-11 371 ± 26 374 ± 22 395 ± 27 
Oct-11 317 ± 25 360 ± 38 388 ± 56 

 

Reference sites chosen for the sampling exhibited different physical characteristics. 

Table 14 shows the total inventories of 7Be for the three reference sites RF1, RF2 and 

RF3. The total inventories of 7Be at all the reference sites show similar behaviour of 

the radionuclide with some exceptions arising from sampling errors. Atmospheric 

fluxes given in Table 15 were used for estimation of erosion rates at the study plot. 
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5.3 7Be measurements for soil erosion assessment at the study plot 

Erosion rates were estimated for the rainfall events for which soil was collected at the 

tin barriers and V-channels. 12 events were considered to be short-term erosion 

events at the study plot during the measuring period. Out of 12 events at the tilled 

plot, for one event soil redistribution within the plot was observed and no soil was 

collected at the barrier.  

 

Table 16: Erosion events and plot characteristics at Müncheberg 

Months Year 
Observed 

erosion 
processes

Canopy cover 
Rainfall 

erosivity EI30 
(N m-2) 

Rainfall 
intensity I30 

(mm h-1)
April 2010 Surface 10% 1 5 
May  2010 Splash  100% 11 28 

July-1  2010 Surface + Rill 20% 19 28 
July-2  2010 Rill 50% 19 37 

August-1  2010 Rill 100% 3 17 
August-2 2010 Interrill + Rill 100% 26 50 

June 2011 Surface 5% 3 22 
July 2011 Rill 50% 8 29 

August-1  2011 Interrill + Rill 100% 10 12 
August-2 2011 Splash 100% 4 22 

Sept-1 2011 Rill 100% 1 7 
Sept-2 2011 Interrill + Rill 100% 28 59 

 

The quantities related to erosion processes given in Table 16 were measured by the 

research station situated at the study site. Observed erosion processes were 

distinguished on the basis of material collected at the tin barrier and its properties. 

Both EI30 and I30 in Table 16 were estimated with the rainfall and soil simulation 

model provided by the research institute ZALF [116]. Rainfall erosivity (EI30) is the 

product of storm energy and maximum rainfall intensity (I30) during a storm. As 

EI30 increases the erosivity increases, as the kinetic energy of raindrops and the 

intensity of raindrop impact on the soil surface is increased [110]. The percentage of 

canopy represents the density of vegetation after ploughing. A canopy cover of 100% 

is assumed when plants covering the plot attain the maximum height of 1.5 m. 
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5.3.1 Temporal changes of 7Be activities at the study plot 

Soil erosion from hill-slopes involves a complex sequence of processes that change 

during the course of an erosion event. Soil at the study site is transported by 

overland flow from the top of the slope at 5m to the bottom of the slope where the 

flow rates were decreased and deposition occurred. 

 

 

 Figure 40: Daily precipitation events for the study period from March 2010- 

                   September 2011. Violet arrows indicate the erosion events measured at 

                   the study plot.  

 

No severe rainfall events were recorded before April 2010 at the study plot. 

Therefore it was reasonable to begin the study period for erosion measurement using 

7Be areal activity across the study plot in April 2010 (Figure 40). Heavy rainfall events 

with higher intensities (I30 (mm hr-1)) in the months of July, August and September 

in 2010 and 2011 initiated runoff at both tilled and no-till plots. Soil was removed 

from the slope and suspended as sediment in the runoff during heavy rainfall events 
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and was collected in the tin barrier; finer soil from the removed material was 

deposited in the V-channel which was built behind the barrier. 

 

 

Figure 41: Twelve erosion events occurred during the study period from 2010-2011. 

                   �t represents the time between the erosion events. Colours indicate the  

                   erosion processes. (Red: Rill/ interrill erosion, Yellow: Surface erosion,  

                   Green: Splash erosion) 

 

The research station at the study site recorded that the rainfall events with 

intensities greater than 15 mm h-1 and lasting for more than 20 minutes caused 

surface erosion. If rainfall events lasted for several hours, rill erosion was seen at the 

plot. The material deposited during rill erosion is transported by rill and surface 

erosion combined. The flow rates during rill erosion are much higher and 

consequently the carrying capacity of the flow is larger. Figure 42, 43 and 44 shows 

that the sediments originating from the interrill or surface erosion processes are 
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enriched in clay compared with the composition of the parent soil material. Twelve 

erosion events occurred in two years were separated by short time periods �t. Figure 

41 shows the erosion processes and the associated time period between the events. 

5.3.2 7Be measurements in the soil at tin barrier and V-channel  

The soil collected in the barrier and in the V-channel at the tilled plots was measured 

for 7Be activities. At the onset of surface erosion during the months of June and July 

in 2010-11, at the tilled plot, the collected sediments in the tin barriers were 

associated with relatively large 7Be activity values as shown in Figure 42 and 43. 

  Erosion events occurred immediately after the plot was tilled. The effect of 

ploughing is the loosening of the soil, increasing its erodibility. The initial surface 

erosion process with heavy runoff eroded the uppermost layer of soil. As the darker 

material eroded from the uppermost layer was transported with the surface flow into 

the V-channel, which is placed a few meters behind the tin barrier. The heavier sand 

particles and associated clay and silt were deposited at the tin barrier. As the 

raindrops also fell on the tin barriers, some of the clay minerals from the sediment in 

the barriers were also transported to the V-channel. The soil collected in the V-

channel was measured separately for 7Be activities. The mass of soil collected at the 

V-channel was then added to the mass of soil in the tin barrier.  

  Four heavy rainfall events in the year 2010, as shown in the Figure 41, were 

separated by 6 days, 17 days and 9 days respectively. It is seen from the depth 

distribution in Figure 35 that 7Be is mostly concentrated at the uppermost soil layer. 

As the rainstorms progressed during these four events sediment from the lower soil 

depths was collected at the barrier as testified by the lower 7Be activities (Figure 45 

A). The rills developed along the slope of the plot were observed mainly at 35-50 m 

on the slope length (Figure 44A). 

  In 2011 six heavy rainfall events were recorded. The rainfall events were separated 

by short time intervals of 22 days, 11 days, 27 days, 6 days and 14 days respectively 

(Figure 41). The intensity and duration of rainfall events in 2011 was higher than in 
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2010, thus more sand was collected on the barriers with lower 7Be activities (Figure 

45 B). 

 

Figure 42: 7Be activities in soils collected in tin barriers and V-channels in 2010 

 

 

Figure 43: 7Be activities in soils collected in tin barriers and V-channels in 2011 
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Figure 44: Erosion processes observed at the tilled and no-till plots. A: Rill erosion at 

                   the tilled plot; B: Surface erosion at  the no-till plot 

 

At the no-till plot the main processes observed were surface erosion and pre-rill 

formation (Figure 44B). Some soil was collected in the barrier at the no-till plot 

during the months of May, July and August in 2010 and June, July and September in 

2011. There was no soil collected in the V-channel at the no-till plot during any 

erosion event. Beryllium-7 activities in the soil collected in the barrier at no-till plot 

where high (Table 19). Figure 46 show that the soil at the no-till plot during the study 

period was mainly redistributed within the plot by means of surface runoff denoting 

superficial erosion. The mass of soil collected on the barrier was approximately ten 

times lower than at the tilled plot (Table 19). 
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Figure 45: 7Be activity of the suspended sediment (barrier + V-channel) samples 

                   eroded from the tilled plot for rainfall events in A: 2010, B:2011. The 

                   uncertainties indicate the gamma spectrometry measurement precision at 

                   95% level of confidence. 
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Figure 46: 7Be activity of the suspended sediment (barrier + V-channel) samples  

                    eroded from the no-till plot for rainfall events in Top: 2010, Bottom: 

                    2011. The uncertainties indicate the gamma spectrometry measurement 

                    precision at 95% level of confidence.  

 

5.3.3 Estimation of soil redistribution at the study plot 

Erosion events occurred only during the period between June-September, when the 

atmosphere is instable due to temperature differences, which leads to the formation 

of clouds, leading to intense rainfall events triggering water erosion. The magnitude 

of erosion depends on the rainfall intensity, slope length; soil infiltration capacity; 

slope elevation and canopy cover [111]. At the study area in Müncheberg half of the 

plot was tilled in the month of June and October. Due to ploughing the soil was 

homogenized; loosened within upper 25-30 cm and made susceptible to water 

erosion. 
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Table 18: Sediment delivery ratios based on 7Be measurements for the tilled plot at 

                 the study site for heavy rainfall events in 2010-11. 

Year Month 
Fraction 

of total eroded area
 (%)2) 

Fraction of
total  deposition 

area 
 (%)2)

Sediment 
Delivery 

Ratio SDR 
(%)1) 

2010 April 28 28 - 
 May 28 72 1 
 Jul-1 57 0 3 
 Jul-2 9 56 25 
 Aug-1 35 56 1 
 Aug-2 94 6 7 
2011 June 100 0 2 
 July 6 94 58 
 Aug-1 94 6 1 
 Aug-2 72 28 - 
 Sep-1 37 34 4 
 Sep-2 100 0 8 

 
1) Sediment Delivery Ratio, 

2

7 2

Sediment collected at the barrier/total area of the plot (kg m )
SDR 100

Gross erosion rate calculated using Be (kg m ) 

−

−
= ×  

2) Erosion/deposition area fractions were calculated by comparing the total area of the plot 
and erosion/deposition rates given in the Table 17� 

 
The erosion events occurred in the months after ploughing. No-till plot showed 

comparably lower erosion susceptibility. Rainfall intensities measured at 

Müncheberg ranged between 7 mm h-1and 59 mm h-1. Water erosion normally occurs 

at rainfall intensities higher than 7.5 mm h-1 and is aggravated for intensities more 

than 15 mm h-1 [110]. During the study period, as shown in Table 16, the measured 

rainfall intensities (I30) and the rainfall erosivities were sufficient for triggering water 

erosion. Erosion of soil by water could be seen in different forms at the study site. 

When the rainfall intensity and rainfall erosivity exceeds the infiltration capacity, 

surface erosion was observed. Two situations during the study period (May 2010 and 

August 2011) show splash erosion at the study plot. The study site was ploughed in 

the months of July in 2010 and June in 2011 at the tilled plot. No-till plot was only 

harvested in both years. Table 16 shows that 30 days after the ploughing event the 
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vegetation cover had grown up to 100%. The vegetation cover intercepted the 

incident rainfall at the study plot. The rainwater intercepted by plants falls on the soil 

surface and becomes part of the surface flow. If the distance of the fall height of 

drops is high (in case of long plants) drops causes splash erosion. 

  The magnitude (kg m-2) and pattern of soil redistribution associated with the period 

of heavy rainfall events occurring in the years 2010 and 2011 were estimated for 12 

discrete erosion events using the 7Be flux given in Table 16 and shown by Figure 40 

under following two conditions: 

 

1. Steady state: The reference inventories were compared with the total 

inventories of 7Be at the study plot and eroded depths were calculated 

using equation (20). 

2. Non-steady state: Simulated 7Be concentrations were compared with the 

measured inventories at the study plot and eroded depths were calculated 

using equation (22).  

 

The steady state approach was applied for only one event in April 2010, as before 

this event no significant rainfall was documented by the weather station at the study 

plot and 7Be was assumed to have uniformly distributed. For the remaining 11 events 

the time between the erosion events was short and not sufficient for 7Be 

concentration to achieve steady state. The plot was ploughed for two events where 

7Be concentration was mixed within 25-30 cm. Thus for rainfall events separated by 

short time intervals and the events occurring after ploughing non steady state 

approach was used to calculate erosion rates. The uncertainties on the erosion rates 

were estimated by propagating the measurement uncertainties using the Gauss error 

propagation method. Uncertainty estimates for the simulated inventory of 7Be were 

calculated separately using a pseudo Monte Carlo technique (Appendix G2). 

The magnitudes of the soil redistribution rate along the slope at the tilled and non-

tilled plot calculated using equations (20) and (22) are presented in Tables 17, 18, 19 
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and 20 respectively. Erosion is shown as negative values and deposition as positive 

values. The results indicate that the patterns of erosion and deposition are 

distributed along the slope. The erosion rates are calculated from 7Be measurements 

done at 5m, 20m, 35m, 50m and 53m along the slope length. The radioactive 

measurements of sediments collected in the barrier and V-channel are also presented 

in the tables for comparison. 

5.3.3.1 Erosion rates at the tilled plots 

The total mass of soil collected at the tin barriers during the 6 events in 2010 and 6 

events in 2011 was 197 kg and 493 kg respectively.  

 

 

Figure 47: Erosion/deposition rates estimated for 12 erosion events at tilled plot  

                   for measurement points A: 35m; B: 50m. 

                   (‘-‘: erosion rates, ‘+’: deposition rates )  

The erosion rates for the tilled plot in Table 18 show that the erosion rates are 

estimated between < - 0.001 kg m-2 and - 4.7 ± 0.4 kg m-2 with the largest erosion 

occurring along the steeper part of the slope from 35-50m. At the top of the slope 
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between 5 m and 20m erosion rates calculated for both the years range from 0 kg m-2 

to - 2.1 ± 1.5 kg m-2. 

Erosion rates estimated at 35m and 50 m on the slope for all erosion events 

occurred during the study period are presented in Figure 47. During the erosion 

event in ‘’Sept-2 2011’’ no 7Be activity was measured in the samples collected at 35m 

and 50m showing the occurrence of rill erosion. Rills seen on the plot during these 

erosion events are shown by Figure 47A. 

Soil redistribution rates given in Table 17 have high uncertainties. The uncertainty 

estimates on erosion rates take into account following processes: 

 

1. Differences in total rainfall amounts and the intensities of rainfall 

during the individual storm events.  

2. The percentage of canopy cover present during the heavy rainfall 

months given in Table 16. 

3. The presence of rills, leading to lower 7Be inventories in the soil, which 

compared with simulated inventories leads to overestimation of 

erosion rates. 

 

For the erosion events occurring during 2010-11 at the tilled plot the time evolution 

of the total inventory of 7Be was simulated using equation (14) for a measuring point 

50m along the slope length and is presented in Figure 48. After the erosion events 

occurred in May and Jul-1 in 2010 (as shown in Figure 48 A) and the event occurring 

in July 2011 the percentage inventory of 7Be reached up to 200%. During these three 

events soil deposition has occurred, thus the 7Be inventory measured in the sample 

was higher than the simulated inventory. 

For the rainfall events occurring in Jul-1 in 2010 and June in 2011 the ideal 

conditions for surface erosion with no canopy cover, loose soil and high rainfall 

intensity were generated. If the eroded material originated from the lower soil depths 

it cannot contain high 7Be concentrations. At the study site lower 7Be concentrations 
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measured in soil and the higher estimated erosion rates in Tables 17 and 18 shows 

the rill erosion occurring on the plot. 

During the heavy rainfall events in July and August 2010 and August and 

September 2011, the vegetation cover was up to 100% (plants grown up to 1.5m in 

height). The intensity of rainfall measured during these months was between 7 and 

22 mm h-1. The direct impact of the raindrops was buffered by the vegetation. Due to 

the vegetation, uniform surface erosion was minimized. Some rainfall passed 

through gaps between the vegetation stripes and part of the intercepted rainfall by 

vegetation was evaporated from the leaves and the rest fell to the ground and 

contributed to the surface runoff. As 7Be is deposited with rainfall, after evaporation 

of water from the trees the 7Be atoms are adsorbed to the tree leaves. Thus, some of 

the total 7Be flux from atmosphere to ground is reduced. The erosion/deposition rates 

estimated during these months are shown in Table 17. The higher uncertainties 

indicated in Table 17 include the effect of vegetation cover. 

During the events in August-2 2010 and September-2 2011, a total of 400 kg of soil 

was collected on the barrier. The rainfall intensities measured during these two 

events were 50 mm h-1 and 59 mm h-1 respectively. For events with such high 

intensities rainfall can pass through the vegetation, even bending it, leading to 

stronger impacts of raindrops on the soil [117]. This combined with the water falling 

from the leaves create higher runoff velocities, which lead to surface, rill and interrill 

erosion [117]. The 7Be activities in the samples from the tin barrier and channel are 

presented in Table 17. 

  The sediment delivery ratios in Table 18 show that for the event on ‘’August-2 

2010’’, 7% of the eroded soil was deposited on the tin barrier, while 8% was 

deposited for the event on ‘’September-2 2011’’.  The reason for low sediment 

deliveries in spite of large masses of soil in the barriers was that erosion rates during 

these months were overestimated due to the presence of rills, which contain less 7Be 

concentrations. Thus the overestimation of erosion rates result in lower sediment 

deposition ratios. During the ’’ July 2011’’ event, 170 kg soil was deposited at the tin 
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barriers. The rainfall intensity measured during this event was 29 mm hr-1. The 

canopy cover during this event was 50%. Due to less canopy cover more rainfall was 

reached the soil surface and contributed in heavy soil loss. Soil redistribution rates 

calculated with the 7Be inventories show deposition over the plot (Table 17). This is 

due to the fact that sampling of soil for the 7Be inventories was conducted at interrill 

areas. The sediment delivery ratio estimated for this month was 56%, where 6 % of 

the total area of the plot contributed to the eroded soil (Table 18). 

Soil was transported by high intensity rainfall in May and August 2010 and August 

2011 at the tilled plot. The plot was fully covered with vegetation during these 

months (Table 16). The soil collected at the barrier accounted to 4 kg during both the 

events. The area at the bottom of the slope at around 52-55 m was not covered with 

vegetation. The rainfall intensities during these events were 28 mm hr-1, 17 mm hr-1 

and 22 mm hr-1 respectively. High intensity rainstorms dislocated soil from the area, 

which was not covered with vegetation and deposited it into the tin barrier built next 

to it. The soil redistribution rates estimated for these events show high uncertainties 

(Figure 49). Large uncertainties on erosion rates in Figure 49 and the amount of soil 

measured at the barrier indicate that there has not been any significant erosion event 

occurred during these months at the plot. Field observations made by the 

Agricultural institute, ZALF also confirm the splash erosion process occurring 

during these months. 

The significant amounts of erosion documented by 7Be measurements and the 

diffusion model developed in this study demonstrate that, although the presence of 

vegetation may be effective in reducing moderate rainfall intensities reaching the soil 

surface, the soil redistribution within the intervening areas can still lead to soil 

erosion. 

During extreme rainfall events the vegetation is not proving effective for shielding 

the ground from raindrop impact and rill erosion. Soils disturbed by ploughing are 

especially vulnerable during heavy rainfall events, even if vegetation covered. 
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Figure 48: Time evolution of the total inventory of 7Be for erosion events occurring in 

                   A: 2010; B: 2011, at 50 m along the slope length. The numbers between the 

                   erosion events represent the time in days between the events. The curves 

                   start from an percentage inventory which is left after an erosion event. 
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Figure 49: Soil redistribution rates estimated for the tilled plot for the rainfall event   

                   in May 2010(Top ) and Aug-1 2011(Bottom).  

                   (‘-‘: erosion rates, ‘+’: deposition rates ) 

5.3.3.2 Erosion rates at the no-till plots 

The erosion rates estimated for 12 heavy rainfall events using 7Be inventories are 

presented in Table 19. Sediment delivery ratios are presented in Table 20. By 

comparing the erosion rates in Table 17 and 19 we conclude that there was a large 

difference of magnitude and nature of soil distribution at the no-till plot compared to 

the tilled plot. For all erosion events in 2010 the sediments collected on the barrier 

was 9-10 kg, however in 2011 was ~1kg. Amounts of sediments collected in the 

barriers at the tilled plot were 20-50 times higher than those collected at the no-till 

plots. 

The erosion/deposition rates calculated for no-till plots are estimated with high 

uncertainties. The plot was covered with vegetation during the heavy rainfall events 

in July and August 2010 and in July, August and September 2011. The erosion 

processes at the plot were mainly dominated by surface erosion (Figure 46). If rainfall 

occurred for longer periods pre-rill structures were formed (Figure 2 (bottom) B).  
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The impact of rainfall during the heavy and extreme events was reduced by the 

canopy cover. Uniform erosion was seen during the month of June-2011, when 

harvesting allowed rainfall to hit the soil surface. The amount of sediment 

dislocation was prevented by the firm soil structure maintained at the plot. Soil 

eroded was mostly redistributed within the plot.  

 

 

 
Figure 50: Erosion/deposition rates estimated at no-till plot for 12 erosion events  

                   for measurement points 35m (Top plot) and 50m (bottom plot).  

                  (‘-‘: erosion rates, ‘+’: deposition rates )  

 

The 7Be tagged sediment transported by runoff was redistributed within the plot, 

especially at the steepest part of the slope at 35-50 m Erosion estimated at the no-till 

plot for the measurement points 35 m and 50 m along the slope length are presented 

in Figure 50. Sediment delivery ratios estimated for both years (Table 20) varied from 

0.2 - 1 %. This suggests that the total amount of soil redistribution within the plot was 
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more than the deposition at the barriers.  It can be concluded from the available data 

and the model results that soil erosion at the no-till plot is controlled by no-

cultivation practices before eroding months and by canopy cover protecting the soil 

from erosion by the direct impact of raindrops. 
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Table 20: Soil redistribution based on 7Be measurements for the no-till plot at the 

study site for heavy rainfall events in 2010-11. 

Year Month 

 
Fraction of total  

eroded area 
(%)2) 

 
Fraction of 

total deposition 
area (%)2) 

 
Sediment 
Delivery 

Ratio SDR 
(%)1) 

  0 38  
2010 April 28 29 - 
 May 6 63 1 
 Jul-1 57 6 1 
 Jul-2 56 44 0.2 
 Aug-1 6 38 0 
 Aug-2 100 0 0.2 
2011 June 57 37 - 
 July 100 0 0.3 
 Aug-1 34 37 - 
 Aug-2 29 34 - 
 Sep-1 100 0 - 
 Sep-2   - 

 
2) Sediment Delivery Ratio, 

2

7 2

Sediment collected at the barrier/total area of the plot (kg m )
SDR 100

Gross erosion rate calculated using Be (kg m ) 

−

−
= ×  

2) Erosion/deposition area fractions were calculated by comparing the total area of the plot 
and erosion/deposition rates given in the Table 19� 

5.3.4 Comparison of erosion rates calculated by 7Be and direct soil  

         measurements from ZALF 

Soil budget was calculated for each measurement point at the study plot. For this 

purpose a cumulative calculation of 7Be-tagged soil at each measurement point was 

done. The plot was divided into 6 areas surrounding the measurement points from 

A1 to A6, which contribute to erosion or deposition. Each measurement point 

contributes to either erosion or deposition as given in the tables 17 and 19 

respectively. The soil influx and outflux at each measurement point was weighted 

with the corresponding area. If k1, k2, k3, k4, k5 are the masses of soil dislocated from 

each measurement point and deposited on the area situated between them (Figure 

51), the soil depositing on the tin barriers is estimated as: 



 
 

EST 6 5M A k= ⋅  

Where MEST = Mass of soil depositing on the tin barrier (kg); A6 = Area between 

measurement point at 53m and the tin barrier (m2) and k5 = dislocated soil from point 

5 and deposited on area A6 (kg m-2). 

 

 

Figure 51: Soil budget calculation at the study plot 

 

  The soil deposited at the barrier from the tilled and no-till plot and was estimated as 

shown in figure 51 and is given as ’MEST’ in tables 21 and 22. This estimated soil is 

compared direct measurements performed by the research institute ZALF and is 

presented in both the tables as ’MZALF’ The estimated soil with the associated 

uncertainties at the study plot by 7Be measurements shows a good agreement with 

the physical soil measurements.  

 
Table 21: Comparison of estimated soil using 7Be technique and the direct 
measurements at the tin barrier at the tilled plot  



 
 

Months/ Events 

Soil budget at the measurement 

points  

Measured 

soil, 

MZALF (kg) 

Estimated 

soil, 

MEST (kg) 5m 20m 35m 50m 53m

April 2010 
ERO (-) - - - - 0.7 - 0.5 

- 3 ± 3 
DEP (+) - - + 1.5 - + 0.5 

May 2010 
ERO (-) - - - 1 - 1.2 - 

- 0 ± 0 
DEP (+) - - + 1.5 - + 0.5 

Jul-1 2010 
ERO (-) - - - 1.1 - 1.2 - 0.8 

20 20 ± 10 
DEP (+) - - - + 0.3 + 0.8 

Jul-2 2010 
ERO (-) - 0.3 - 0.08 - 0.32 - 0.7 - 0.9 

24 22 ± 36 
DEP (+) - + 0.08 + 0.02 + 0.1 + 0.9 

Aug-1 
2010 

ERO (-) - - 0.2 - 1.35 - 1.85 - 0.6 
4 14 ± 26 

DEP (+) - - + 0.05 + 0.4 + 1.2 

Aug-2 
2010 

ERO (-) - 0.6 - 1.6 - 2.2 - 3 - 1.3 
145 122 ± 38 

DEP (+) - + 0.2 + 0.2 + 0.06 + 0.8 

Jun 2011 
ERO (-) - 0.7 - 0.7 - 0.2 - 1.26 - 1.2 

16 29 ± 35 
DEP (+) - + 0.2 + 0.2 + 0.06 + 0.8 

Jul 2011 
ERO (-) - - - - - 0.9 

170 21 ± 19 
DEP (+) + 1.4 + 1.5 + 0.5 + 2.6 - 

Aug-1 
2011 

ERO (-) - 2.1 - 3 - 5.5 - 3.2 - 0.4 
25 10 ± 5 

DEP (+) - + 0.6 + 0.8 + 1.7 + 2.2 

Aug-2 
2011 

ERO (-) - 0.7 - 1.4 - 0.2 - 2.3 - 2.9 
4 68 ± 39 

DEP (+) - + 0.2 + 0.4 + 0.1 + 1.5 

Sep-1 2011 
ERO (-) - 0.5 - 0.2 - - - 

13 0 ± 0 
DEP (+) - + 0.2 + 0.5 + 2.4 + 0.8 

Sep-2 2011 
ERO (-) - 1.1 - 0.7 - 5.5 - 6.4 - 9 

161 213 ± 91 
DEP (+) - + 0.3 + 0.2 + 1.7 + 4.3 

Table 22: Comparison of estimated soil using 7Be technique and the direct 
measurements at the tin barrier at the no-till plot 



 
 

 Months/ Events 

Soil budget at the measurement 

points  

Measured 

soil, 

MZALF (kg) 

Estimated 

soil, 

MEST (kg) 5m 20m 35m 50m 53m

April 2010 
ERO (-) - - - -  -  

- 0 ± 0 
DEP (+) + 0.7 + 0.8 - - - 

May 2010 
ERO (-) - - -  - 1 - 0.7 

3 4 ± 3 
DEP (+) - 1 - - + 0.7 

Jul-1 2010 
ERO (-) - - -  -  - 0.9 

3 5 ± 2 
DEP (+) + 0.5 + 0.8 + 0.7 - - 

Jul-2 2010 
ERO (-) -  - 2 - 0.5 - 1.1 - 0.3 

2 1.6 ± 0.7 
DEP (+) - - + 0.5 + 0.2 + 0.7 

Aug-1 
2010 

ERO (-) - -  - 0.6 - 0.7 -  
0.06 0 ± 0 

DEP (+) - + 1.5 - + 0.2 + 0.5 

Aug-2 
2010 

ERO (-) -  -  -  -  - 2.3 
1.5 9 ± 4 

DEP (+) + 0.8 + 1.4 - - - 

Jun 2011 
ERO (-) - 0.5 - 0.6 - 0.7 - 1.2 - 1 

0.1 6 ± 4 
DEP (+) - + 0.2 + 0.2 + 0.2 + 0.8 

Jul 2011 
ERO (-) - 0.9 - - 0.08 - - 0.2 

0.3 1.2 ± 1.0 
DEP (+) - + 0.3 - + 0.3 + 0.2 

Aug-1 
2011 

ERO (-) - - 0.3 - 0.08 - 0.4 - 4.1 
- 28 ± 19 

DEP (+) + 1.1 + 0.3 + 1.4 + 6.1 + 4.6 

Aug-2 
2011 

ERO (-) - - - - 0.1 - 2.7 
- 16 ± 17 

DEP (+) - - + 1.9 + 0.6 + 0.07 

Sep-1 2011 
ERO (-) - - 0.7 - - - 

- 0 ± 0 
DEP (+) - - + 0.2 - + 1.5 

Sep-2 2011 
ERO (-) - 0.5 -  - 1.2 - 0.4 - 1 

0.3 6 ± 9 
DEP (+) - + 0.2 - + 0.4 + 0.3 

  The uncertainties on the direct measurements were not available. The comparison 

shown in the tables 21 and 22 clearly states that the first hand validation of erosion 



 
 

rates at different parts of the slope can be achieved by with 7Be model presented in 

this work. The higher uncertainties on the erosion rates are partly due to the reason 

that the diffusion model in study does not include the other physical processes such 

as infiltration rates, canopy cover, soil roughness etc. Another source of uncertainties 

is, Beryllium-7 technique estimates erosion rates over the complete plot and direct 

measurements assume the uniform erosion over the complete study plot. To validate 

the erosion rates a physical process based model, which can quantify erosion rates 

over the whole plot and at the same points as the 7Be measurements, must be used. 

  The comparison shown in the Tables 21 and 22 clearly states that the validation of 

erosion rates cannot be achieved by comparing the sediment collected in the barriers 

and 7Be measurements at different parts of the slope alone. To validate the erosion 

rates a physical process based model, which can quantify erosion rates over the 

whole plot and at the same points as the 7Be measurements, has to be used. Another 

approach could be planting erosion pins at the measurement points along the slope, 

which could provide an estimate of surface lowering or accretion in the immediate 

vicinity of the pin.�

 

 

 

 

 

 

 

 

 

 

 

6 CONCLUSIONS AND OUTLOOK 



 
 

6.1 CONCLUSIONS 

Main goal of this study included: Establishing a physical process based model to 

study the vertical behaviour of 7Be in soils and use this model to quantify erosion 

rates for single and multiple rainfall events. The results presented in this thesis 

confirm the potential of 7Be as a tracer in soil erosion investigations for single and 

multiple storm events. By providing estimates of soil redistribution rates associated 

with 12 individual erosional events over a period of two years at our study site in 

Müncheberg, Germany, offers a valuable complement to 137Cs, which has been more 

widely used in soil erosion studies.  

The diffusion model proposed in this study to our knowledge is the first extensive 

model proposed so far that despite of its many simplifications, adequately represents 

the exponential distribution of 7Be profiles at disturbed and undisturbed or reference 

sites. Mathematical simulations performed using diffusion model show the scope of 

this model to be used in various scenarios such as multiple rainfall events separated 

by the short time interval �t and erosion events occurring after the field is ploughed.  

The proposed diffusion model has been fitted to more than 15 depth distributions, 

including the profiles taken at our study site in Müncheberg and the available depth 

distributions in the literature. The migration parameters of 7Be in soil were calculated 

by fitting the soil profiles to the diffusion model. In general diffusion coefficients 

estimated were of the order of 10-12 – 10-13 m2 s-1 for loamy to sandy soil types. 

Diffusion coefficients estimated for our study site were about 10-13 m2 s-1.  Main 

physical processes, which transport of 7Be in soil is molecular diffusion and 

radioactive decay decreases its concentration in soils. Migration parameters and 

measurements confirm that sorption is the main physical process, which confines 7Be 

concentration to soil surface. 

Current erosion estimation methods with 7Be available in the literature for 

estimating erosion rates for single rainfall event was successfully modified to 

quantify erosion rates for multiple rainfall events. Estimated erosion rates at tilled 

and no-till plots were between < 0.001 - 4.7 ± 0.4 kg m-2 and 0.3 ± 0.5 kg m-2 - 2.0 ± 1.4 



 
 

kg m-2 respectively. The magnitude of erosion rates estimated at the no-till plots was 

less than that at the tilled plots. Heavy erosion was estimated at the steepest part of 

the slope between 35m-50m along the slope length. Erosion rates estimated with 7Be 

technique were successfully used to differentiate between the rill-interrill, splash and 

surface erosion at the study plot. 

A limitation of the Diffusion model proposed in this study is it does not take into 

account the vegetation cover. Thus during the months when vegetation is present on 

the field the model, in some cases, overestimates the erosion rates or in some cases 

shows the occurrence of deposition on the plot.  

Ploughing was performed twice a year at the study plot. The ploughing event that 

occurred before the heavy rainfall period led to the higher soil movement. To avoid 

this, specifically for the agricultural practices based on slopes one time ploughing 

method should be practised. 

6.2 OUTLOOK 

The current approach of erosion rates quantification for multiple rainfall events can 

be used successfully for discrete rainfall events. But for a situation where the surface 

lowering (erosion) is continuously occurring then the current approach cannot be 

used. For this purpose a mathematical model consisting of differential equations 

approach with a moving boundary should be used. 

The validation is required for the erosion quantification technique presented in this 

thesis. For this purpose a more physical process based models which include the 

effects of wind, vegetation, water content, solar radiation etc., should be used. Some 

of the well implemented approaches found in the literature include, Revised 

Universal Soil Loss Equation (RUSLE), EROSION- 3D and WEPP model.  

The plot used in this study contained continues slope. This plot was specially built 

for the erosion studies. The need to upscale the use of 7Be technique from the small 

field of few m2 to the watershed of few hundred m2 will need the application of 



 
 

additional tools (e.g. GIS, Global Positioning Technique (GPS) and Geostatistics), to 

assist in integrating and interpreting spatial complexity of the landscape.  

The sampling technique used in this study for establishing depth distribution has a 

limitation against soils with deep rooted grass or with stones. More refined technique 

should be developed for the fine cutting of the soil layers to document the 7Be depth 

distribution. One approach to tackle this problem is presented in the literature in the 

form of Fine Soil Increment Corer (FSIC) [113]. 

Developing an improved understanding of the post fallout behaviour of 7Be in soils 

and related environments (e.g. canopy interception, preferential adsorption/ 

desorption mechanisms) is one of the scientific issue that should be dealt in order to 

refine the 7Be technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

APPENDIX 

Appendix A: 1-D diffusion equation without radioactive decay  

A1: In terms of concentration C (z, t) 

The 1-D diffusion equation without the sink  iS C(z, t)= −λ  is given as,  

∂ ∂= −
∂ ∂

2

2

C(z, t) C(z, t)D
t z

 (B1) 

The solution of equation (B1) is presented here in terms of the main mathematical 

steps.  

Taking Laplace transform of equation (B1) w.r.t. t, tL  results in 

∞ ∞
− −∂ ∂=

∂ ∂
 

2

st st
2

0 0

C(z, t) C(z, t)e dt D e dt
t z

 (B2) 

The variable in Laplace space corresponding to t is denoted by s. tL [C(z, t)] is written 

as st

0

C C(z, t)e dt
∞

−= 
 . Using UV integration rule on the LHS of (B2) we get: 

t
C(z, t)L sC C(s, t 0) sC (as per the initial condition)

t
�∂ � = − = = �∂� �

 

∂∴ = −
∂

2

2

CsC D
z

 (B3) 

The solution of (B3) is given as: 

−
=

s z
DC Ae  (B4) 

Here A is the constant of integration which is evaluated by differentiating (B4) w.r.t. 

z and equating it to (B1) at z=0 we have 0I
A

s s D
=

⋅ ⋅
. Thus (B4) can be rewritten as: 

−
=

⋅ ⋅

s z
0 DI

C e
s s D

 (B5) 

The back-transform or the inverse Laplace transform is straightforward if the 

transform tables are used. Thus the concentration C (z, t) is evaluated after taking 

inverse transform of (B5) and is given by (B6). 



 
 

−� �� � � �
� �= −� � � �� �π� �� �� �	 �

2z
4Dt

0
2 t z zC(z, t) I e erfc

DD 2 Dt
 (B6) 

Test for validity of the solution 

Integrating (B6) over the complete soil column i.e. from 0 to � to test the solution 

(B6), if it represents the boundary and initial conditions used in the differential 

equation. 

 

 

The above test shows that the soil column contains the flux J at all times t which 

confirms the validity of the solution 

A2: Solution of diffusion equation (B1) in terms of flux J0 

Consider J0 as a constant flux per unit area per time deposited on the surface of the 

soil column. The flux J(x, t) is given by the Fick’s law (B7). Using (B7) in (B1) we can 

write 

 (B7) 

 (B8) 

Equation (B8) is solved with the use of Laplace transform with boundary condition at 

x = 0, t > 0 as J = J0 (constant) [114]. 

 (B9) 



 
 

Rearranging and integrating (B7) from z=z to z=�, 

 (B10) 

Using (B9) in (B10) and using the properties of error function as 

,  

 (B11) 

The solution can be identified with the well defined solution given elsewhere in the 

literature for continues flux boundary condition [114]. 

Appendix B  

Part 1: Laplace transforms technique for solving diffusion equation with 

radioactive decay 

Taking Laplace transform of Equation (5) w.r.t. t, tL  on both sides and using the 

initial condition we get, 

∂∴ + λ =
∂

2

2

C(s )C D
z

 (B12) 

Rearranging (B12) we get the quadratic equation: 

∂ � + λ �− =� �∂ � �

2

2

C s C 0
Dz

 (B13) 

the solution of (B13) is given as (Neglecting the divergent term), 

+λ−
=

s z
DC Ae  (B14) 

To Find the constant A, Laplace transform of the boundary condition is equated to 

(B14) for z=0. 

∂ ∂− = � = −
∂ ∂

0 0I IC CD
z s z sD

 
 

differentiating (B14) w.r.t z and equating it to the equation above for z=0  



 
 

� �+ λ− = − � =� �� � ⋅ + λ ⋅� �

0 0I IsA A
D sD s s D

 (B15) 

Using (B15) in (B14) we get the result as shown by equation (8) in chapter 2. 

Part 2: 1-D diffusion equation with the pulse boundary condition (5b) 

Applying the Laplace transformation corresponding to t, Lt, to equation (5) results in 

the solution in the Laplace space as shown in Part 1 of Appendix B. 

+λ−
=

s z
DC Ae  (B16) 

To evaluate constant A, the Laplace transformation of (5b) is taken w.r.t. t. This result 

in, 

 

Using A in (B16) we get, 

 (B17) 

Transforming (B17) as ' ' 's s ds Dds ,s Ds
D
+ λ = � = = − λ  and taking inverse Laplace 

transformation as explained in Appendix C, 

− −− −λ
� �� � = ⋅ �

π� �� �

2xx s
1 t4Dt

t
e 1L e e

s Dt
 (B18) 

Part 3: Time evolution of total inventory of 7Be after erosion 

The time evolution of the concentration of 7Be from time t=0 to t = t’ is calculated by 

integrating (13) from 0 to t’. 
= =

= =

=
− λ ⋅
 


t t t t '

t 0 t 00

dC dt
(I C(t))

 

We have = + ⋅ +
+ ⋅


1 1 ln(A B X) constant
A B X B

 

� �∴ = − − λ� �λ	 �

t '

0
0

1t ln(I C(t))  



 
 

� �− λ
∴ = − � �λ − λ� �

0
0

0 0

(I C(t '))1t ' ln      ( As at t = 0 C = C ,  constant = 0)
(I C )

 (B19) 

Rearranging (B19) and using (11) we can write, 

λ− ⋅Δ−λ −λ
� �� �
� �� �= − − ⋅

� �λ � �� �	 �

zt t0 DI
A(t ') 1 e e e  (B20) 

Part 4: Time evolution of depth distribution of 7Be after erosion 

Applying Laplace transformation to (5) w.r.t. t, Lt we get, 

� ��∂ � ∂= − �λ �� �� � 	 �∂ ∂	 � 	 �

2

t t t2

C CL L D L C
t z

 (B21) 

�∂ � = − = +� �∂	 �
t

CL C(z, t 0) sC
t

 (B22) 

∴Using (15), equation (B22) becomes  

∂− + = − λ
∂

2

E 2

CC sC D C
z

 

∂ � + λ �∴ − = −� �∂ � �

2
E

2

CC s
D Dz

 (B23) 

The exact solution to equation (B23) is written in two parts,  

Exact solution = Complementary Function + Particular Integral 

The complementary function is given by, 

� �+ λ= −� �� �
� �

sC.F. A exp z
D

 (B24) 

Taking Laplace transform of (B24) and equating to equation (B) at z=0 we get, 

� �+ λ= −� �� �+ λ � �

0I sC.F. exp z
Ds s D

 (B25) 

The particular integral is found out by the following way, 

λ λ− +Δ −λ
= � =

λ

(Z Z) Z
s D D

E E 01

C
C e C C e

D
 (B26) 

Where, 
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λ− Δ
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The Particular Integral for equation (B23) can be chosen as, 
 

λ− Z
DPI = Ke   (B27) 

Where K = constant 

To find K differentiating (B27) w.r.t. z twice and using equation (B23) we get,  

λ−λ λ− − −λ � + λ �− =� �
� �

Z
DZ Z

0D D C esKe Ke
D D D

 (B28) 

Rearranging (B28), 

0C
K = 

s
 (B29) 

Using (B29) in (B27), 

λ− Z
0 DC

PI = e
s

 (B30) 

The exact solution to (B23) is given by adding (B26) and (B30), 

� � � �+ λ λ= − + −� � � �� � � �+ λ � � � �

0 0I CsC exp z exp z
D s Ds s D

 (B31) 

Here C  is the concentration of 7Be in the Laplace space. The depth distribution of 7Be 

C(z, t) evolved in time t and depth z is obtained by taking an inverse Laplace 

transformation of (B31) using standard Laplace transformation tables. 

λ λ−� �� � � �
= − λ − + λ +� �� � � �

λ � �� � � �	 �

z z
0 D D

E

I z zC(z, t) e erfc t e erfc t C
2 D 2 Dt 2 Dt

 (B32) 

 

Appendix C: Inverse Laplace transformation  

The inverse Laplace transform is evaluated by using Cauchy’s formula as: 

γ+ ∞ − +λ

γ− ∞

= ⋅ =
+ λ


1i z s
st0

1
i

I e zC e dt;  z
D s s D

 (B33)  



 
 

Where � is a real number selected so that all singularities of L(s) are to the left of the 

line s = �, i. 

Using ' ' ' 2s s ds ds ,s s & a a+ λ = � = = − λ = λ � = λ  in equation (6) 

+ ∞−λ −
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= ⋅
−
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 (B34) 

According to the inverse Laplace transform property,  
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Using above properties in (B34), (B31) and (B18) the analytical solution to 1-D 

diffusion equation is obtained for different initial and boundary conditions. 

 

Appendix D: Crank-Nicholson discretization technique for 1-D diffusion  

                      equation 

D1: Finite differences approximations [115] 

The finite differences method gives an approximate solution for C(z,t) at a finite set 

of z and t. The discrete z used in this thesis are uniformly spaced in the interval 

0 z L≤ ≤  such that 

iz (i 1) z,              i 1,2,........N= − Δ =  

N is the total number of spatial nodes including those at the boundary. L is the 

thickness of the soil column. 

 

The spacing between the iz  is computed as 

Lz
N 1

Δ =
−

 

Similarly, the discrete t are uniformly spaced in max0 t t≤ ≤ : 



 
 

mt (m 1) t,            m 1,2,......M= − Δ =  

Here M represents the number of time steps and tΔ  is the size of a time step 

maxt
t

M 1
Δ =

−
 

The solution domain is depicted in Figure 52. Table 22 summarizes the notation used 

to obtain the approximate solution to (5) and to analyse the result. 

 

 

Figure 52: Mesh on semi infinite strip used for solution to the one-dimensional  

                   diffusion equation (6). The solid dots indicate the location of the (known)  

                   initial values. The open dots indicate the location of the (known)  

                   boundary values. The blue circles indicate the position of the interior  

                   points where  the finite difference approximation is computed.  

 

Table 22: Notation of variables 

Symbol Meaning
C(z,t) Continuous solution (true solution) 
C(zi,tm) Continuous solution evaluated at the mesh points 

 
m
iC  

Approximate numerical solution obtained by 
solving the finite differences equations. 

D2: Crank-Nicolson scheme for 1D diffusion equation for 7Be 



 
 

Consider equation (5), 

∂ ∂ � ∂ �= − − λ� �∂ ∂ ∂� �

C(z, t) C(z, t)D C(z, t)
t z z

 

The right hand side of (5) was discretized by using the average of central differences 

scheme evaluated at current and previous time steps (Figure 53) 

 

 
Figure 53: Computational nodes for Crank-Nicolson finite differences technique 

 

The finite differences formulas used to solve (5) numerically are listed in the 

following way: 

1. First order central difference 

Writing Ci+1 and Ci-1 in terms of Taylor series expansions and solving for � ∂ �
� �∂� �z

C
z

gives, 

+ −−∂ = + σ Δ
∂ Δ

i

2i 1 i 1

z

C CC ( x )
z 2 z

 (B35)�

2( z )σ Δ is the truncation error. The size of truncation error is kept small as we chose 

the mesh size zΔ . As Δ <<z 1 the truncation error of central differences scheme goes 

much faster to zero than the forward differences scheme. 

2. Second order central difference 

For the higher order derivatives in z the Taylor series expansion is approximated 

about C(zi)  which gives following result: 

+ −− +∂ = + σ Δ
∂ Δ

i

2
2i 1 i i 1

2 2
z

C 2C CC ( x )
z z

 (B36) 

3. Backward time scheme in spatial dimension 



 
 

The left hand side of equation (5) is approximated using implicit backward in time 

scheme. The backward in time scheme is unconditionally stable and has a temporal 

truncation error of 2( t )σ Δ   

+

−−∂ = + σ Δ
∂ Δ

m 1 i

m m 1
2i i

t ,z

C CC ( t )
t t

 (B37) 

Using equation (B36) and (B37), equation (5) is approximated with 

− − − −
−− + − +

� �− − + − + λ � �= + − +� � 	 �Δ Δ Δ	 �

m m 1 m m m m 1 m 1 m 1
m m 1i i i 1 i i 1 i 1 i i 1
i i2 2

C C C 2C C C 2C CD C C
t 2 2z z
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Rearranging equation (B44), 

− +

− − −
− +

� λ �− + + + −� �ΔΔ Δ Δ� �
� λ �= + − − +� �ΔΔ Δ Δ� �

m m m
i 1 i i 12 2 2

m 1 m 1 m 1
i 1 i i 12 2 2

D 1 D DC C C
t 22 z z 2 z

D 1 D D                      C C C
t 22 z z 2 z

 (B39) 

Boundary condition discretization  

The boundary condition (4a) at z = 0 and z= L is discretized using (B39), 

At z=0 (at the surface) the approximation of (4a) follows, 

− −� λ � � λ �− + + + = − − + +� � � �Δ Δ ΔΔ Δ Δ Δ� � � �
m m m 1 m 1 0
2 1 1 22 2 2 2

2ID 1 D 1 D DC C C C
t 2 t 2 zz z z z

 (BC1) 

At z=L (at the bottom) 

∂ =
∂

C(z, t) 0
z

 (B40) 

Thus (B46) is approximated as, 

− −
+ − + −− + − =m m m 1 m 1

N 1 N 1 N 1 N 1C C C C 0  (BC2) 

From (B45), BC1 and BC2, the system of equations is solved at each time step. The 

coefficients of the interior nodes, ai, bi, ci and di are defined as: 

 

i i i2 2 2

m 1 m 1 m 1
i i 1 i i 12 2 2

D 1 D Da ; b ; c
t 22 z z 2 z

D 1 D Dd C C C
t 22 z z 2 z

− − −
− +

λ= − = + + = −
ΔΔ Δ Δ
� λ �= + − − +� �ΔΔ Δ Δ� �

 

Equation (B45) can be written as, 



 
 

− ++ + =m m m
i i 1 i i i i 1 ia C b C c C d  (B41) 

Equation (B41) was efficiently solved by the standard tridiagonal system method 

using LU factorization with backward substitution (Appendix E). 

 

Appendix E: Solving a tridiagonal system [115] 

The system of equations for Crank-Nicolson scheme can be represented in matrix 

form as Av =d.  

where 

1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4

N 1 N 1 N 1 N 1 N 1

N N N N

b c 0 0 0 0 C d
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− − − − −
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The system of equations given above is solved by Lower Upper tridiagonal matrix 

factorization (LU decomposition) and with the backward substitution. Since the 

coefficient matrix is known to be positive definite (& symmetric in case of diffusion 

without convection), we can write LU factorization without pivoting. 

If coefficient matrix is A, we wish to find Lower and Upper diagonals such that 

A=LU.  

here L and U have the form 

1 1

2 2 2

3 3 3

4 4 4

N 1 N 1 N 1

N N

e 0 0 0 0 0 1 f 0 0 0 0
a e 0 0 0 0 0 1 f 0 0 0
0 a e 0 0 0 0 0 1 f 0 0

L ,U0 0 a e 0 0 0 0 0 1 f 0
0 0 0 0 0 0 0 0
0 0 0 a e 0 0 0 0 0 1 f
0 0 0 0 a e 0 0 0 0 0 1

− − −
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Evaluating each non-zero term in the product LU and setting it equal to the 

corresponding entry in A, gives 
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Solving for the unknowns ei and fi gives:  

Since A=LU, the system Av=d is equivalent to the (LU)v =d. Introducing the w vector 

defined as w =Uv, the system of equations become Lw=d. Since L is the lower 

triangular matrix, w can be easily obtained by solving Lw = d. Thus with w known, v 

is computed by solving Uv = w. Thus once L and U have been found, the v vector is 

computed in two step process. 

Solve Lw = d 

Solve Uv = d 

Since L is the lower triangular, the first solve is forward substitution. Since U is 

upper triangular, the second solve is backward substitution. 

 

Appendix F: MATLAB code to solve Diffusion equation by Crank-   

                     Nicolson scheme 

%*********************************************************************************% 
% --- Define constants and initial condition---% 

clc; 

clear; 



 
 

L    = 0.02;                                   % length of domain in x direction in meters 

J   = 0.0000254791*24*60*60;  % Bq m-2 day-1 

L1   = (0.693/53.2);                     % Decay constant in day-1 

tmax = 25;                                  % End time 

nx   = 2000;                                 % Number of nodes in x direction 

nt   = 1500;                                 % Number of time steps 

dx   = L/(nx-1); 

dt   = tmax/(nt-1); 

alpha= 3.6*10^-13*24*3600;    % Diffusion constant  in m2 day-1    

Z    = 0;                                      % Eroded/deposited layer in meter 

% --- Create arrays to save data for export ---% 

x = linspace(0,L,nx)'; t = linspace(0,tmax,nt); U = zeros(nx,nt); 

% ------------------- Set IC and BC -----------------% 

J1       = 0.000034826*24*60*60;                   % Bq m-2 day-1  

C_O    = (J1/sqrt(L1*alpha))*exp(-sqrt(L1/alpha).*(x+Z)); 

U(:,1)  = C_O;  

% ----Coefficients of the tridiagonal system ---% 

a     = (-alpha/(2*dx^2))*ones(nx,1);            % subdiagonal a: coefficients of phi(i-1) 

c     = a;                                                            % superdiagonal c: coefficients of phi(i+1) 

b     = ((1/dt)+(alpha/dx^2)+ (L1/2))*ones(nx,1); % diagonal b: coefficients of phi(i) 

b1    = -(alpha/dx^2+ L1/2)*ones(nx,1);  

c(1)  = -alpha/dx^2 ;                                      % Fix coefficients of boundary nodes 

a(end)= -alpha/dx^2 ;                                   % Fix coefficients of boundary nodes 

[e,f] = tridiagLU(a,b,c);                                % Get LU factorization of coefficient matrix 

% ------------------Loop over time steps-----------------% 

% ---Right hand side includes time derivative and CN terms ---% 

for m=2:nt 

d          = U(:,m-1)/dt - [0; a(2:end-1).*U(1:end-2,m-1); 0] ... 

+ [0; (b1(2:end-1)).*U(2:end-1,m-1); 0]- [0; c(2:end-1).*U(3:end,m-1); 0]; 



 
 

 

d(1)      =  U(1,m-1)/dt +( b1(1)*U(1,m-1))+ ((alpha/dx^2)*U(2,m-1))+(2*J/dx); 

d(end) = (U(nx,m-1)/dt )- (a(end)*U(nx-1,m-1)) + (b1(end)*U(nx,m-1));  

 

U(:,m) = tridiagLUSolve(d,a,e,f,U(:,m-1));        % solve the system 

End 

% --- Compare with exact solution at the end of the simulation---% 

t1 = exp(-sqrt(L1/alpha)*x).*erfc((x./(2*sqrt(alpha*tmax)))-sqrt(L1*tmax)); 

t2 = exp(sqrt(L1/alpha)*x).*erfc((x./(2*sqrt(alpha*tmax)))+ sqrt(L1*tmax)); 

ue = ((J/(2*sqrt(L1*alpha)))*(t1-t2))+C_O; 

plot(U(:,nt),x,'o--',ue,x,'-'); 

xlabel('Be-7 concentration (Bq m^{-3})');  

ylabel('depth(m)'); 

set(gca,'YDir','reverse','XAxisLocation','top'); 

%-------Calculating Be-7 inventories from the numerical---------% 

%--------                              simulations                                   --------% 

dx1(1:nx)= dx;                   %Total number of depth steps 

A1           = U(:,nt);                %Corresponding Be-7 inventories 

A2           = U(:,nt)'.*dx1; 

A             = sum(A2)            %Total Be-7 inventory at the end of the simulation 

%*********************************************************************************% 
 

Appendix G: Uncertainty analysis for diffusion model  

The uncertainty propagation which was performed on the diffusion model for steady 

state and non steady state conditions given by equations (20) and (22) is presented in 

this section.  

For the steady state approach, the measurement uncertainties of the gamma 

spectroscopy for the activities of 7Be at the reference sites (Aref) and the measurement 



 
 

points (As) on the study plot along with the uncertainty on the diffusion coefficient 

(D) was propagated in the equation (20).  

For the non- steady state situations the uncertainties on the simulated inventories 

were estimated by using the Monte Carlo technique. The uncertainties estimated on 

the simulated inventories (ANum) were propagated in the equation (22) along with the 

uncertainties on the measurement points on the study plot and diffusion coefficient 

(D). 

G1. Uncertainties on Diffusion model  

The eroded depths estimated under steady state and non-steady state conditions 

using the diffusion model are given as  

� �
Δ = ⋅ � �λ � �

Ref

s

ADz ln
A

 (B42) 

� �
Δ = ⋅ � �λ � �

Num

s

ADz ln
A

 (B43) 

The uncertainty on the eroded/deposited depth �z is calculated by using Gauss error 

propagation formula given below: 

Δ

� � � �∂Δ ∂Δ � ∂Δ �σ = σ + σ + σ� � � � � �∂ ∂ ∂� �� � � �

2 2 2
2 2 2 2
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Ref s

z z z (Steady state)
A A D
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2 2 2
2 2 2 2

z Num s D
Num s
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A A D
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Where, 
−

−

σ
σ
σ

7 2
Ref Ref

7 2
Num Num

D

   = Uncertainty on the Be inventory at reference site (Bq m ) A
 = Uncertainty on the Be simulated inventory at a sampling point before erosion (Bq m ) A

    =  Uncertainty on the Dif −

−σ

2 1

7 2
S s

fusion coefficient (m s )D
     = Uncertainty on the Be inventory at a sampling point (Bq m )A

σRef and σS  were obtained from the gamma spectroscopic measurements of the soil 

samples. σNum  is the uncertainty on the simulated inventory (Discussed in detail in 

G2). Using (B42) and (B43) in (B44) and (B45) the uncertainties on the 

erosion/deposition rates are estimated and presented below. 
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G2. Uncertainty analysis using a Monte-Carlo method for simulated  

       inventories of 7Be ( σNUM ) 

A common but very informative Monte Carlo analysis method was used to 

determine uncertainties on the simulated inventories. First, normal distributions with 

specific characteristics e.g. mean and standard deviations were assumed for the input 

variables D and J, in the diffusion model given by equation (5). The diffusion model 

simulation was then run 200 times with sets of input values randomly selected from 

these distributions. A cumulative probability distribution of output values is then 

obtained (Figure 54). 

 

 

Figure 54: An empirical probability density function for simulated inventories of 7Be 



 
 

The input and output normal distributions were standardized using the properties 

of the  distributions such as mean,  standard deviation, coefficient of variation CV (= 

standard deviation/ mean). This allowed the interpretation of the behaviour of error 

propagation through the modelling process and the contribution of the error of each 

input value to the overall uncertainty in the model predictive outcome. The 

confidence intervals of the standard deviations and the means were estimated from 

the distribution of the model output. 

The standard deviations obtained from these simulations were taken as the 

propagated uncertainties of the simulated inventories of 7Be and were denoted as 

σNUM . This procedure was repeated to estimate the uncertainties on simulated 

inventories of 7Be for all the events and at all measurement points. An example to 

demonstrate the Monte Carlo approach of uncertainty analysis is presented for the 

erosion event occurred in the month of Sept-2 in 2011 in Table 1 below. 

Table 1 show that the uncertainties estimated by Monte Carlo technique on the total 

inventories of 7Be have the same order of uncertainty as those propagated from input 

parameters. The statistical characteristics given in the Table 23 suggest that simulated 

7Be inventories for given random distributions produced outputs with CV of 7%. 

 

Table 23: Summary of statistical characteristics of normal distributions of input   
                  and output variables for simulating the inventories of 7Be during the   
                  event in Sept-2 in 2011. 

Model inputs Units Mean SD* 
CV 

(%)* CI* 

Diffusion coefficient, D m2 day-1 3.0 × 10-8 0.7 × 10-8 23 [0.6 0.8] × 10-8 

Atmospheric flux, J Bq m-2 day-1 4.5 0.6 13 [0.5  0.7] 

Model outputs Units Mean SD* 
CV 

(%)* 
CI 

Simulated 7Be 
inventory 

Bq m-2 307 22 7 [20 25] 

*SD = standard deviation, CV = coefficient of variability, CI = confidence intervals on the standard 

deviation for � = 95%. 

 



 
 

Appendix H: Statistical fitting technique using non-linear regression 

A home made MATLAB program for non-linear regression was used. A function 

defined by equation (8) estimates the coefficients of a nonlinear regression using least 

squares. Here, y is a vector of response (dependent variable) values. Typically, X is a 

design matrix of predictor (independent variable) values, with one row for each 

value in y. However, X can be any array that function can accept. Provided the initial 

estimates for coefficients,�function returns a vector �y  of fitted y values. 

 
%*********************************************************************************% 
 
%%******Matlab routine for non linear curve fitting******%% 
 
clc; 
clear; 
Z = [0.5 1.5 2.5 3.5 4.5 5.5]*10^-3; 
C1= [110000 67827 24217 18590 6230 0]; 
C1e=[15850 18797 6919 7796 3317 0]; 
C2e=[0.15 0.15 0.15 0.15 0.15 0.15]*10^-3; 
L = (0.693/(53.2*24*60*60)); 
DiffFun = @(p,Z)p(1)/sqrt(p(2)*L)*exp(-sqrt(L/(p(2)))*Z); 
startingVals = [0.00001 10^-13]; 
  
%*******Confidence intervals for the Parameters*******% 
 
[coefEsts,rw,Jw]= nlinfit(Z,C1,DiffFun,startingVals);  
bCIw = nlparci(coefEsts,rw,Jw); 
%*******Uncertainties on parameters*********% 
 
     dfe = [size(C1,2)- size(coefEsts,2)]; 
 [Qw,Rw] = qr(Jw,0); 
    msew = sum(abs(rw).^2)/(length(coefEsts)); 
   Rinvw = inv(Rw); 
  Sigmaw = Rinvw*Rinvw'*msew; 
  resnorm= sum(rw.^2); 
  se     = sqrt(sum(Rinvw.*Rinvw,2)*resnorm/dfe); 
%*******Plotting the results*********% 
 
xgrid = linspace(min(Z),max(Z),100)'; 
[yFitw, deltaw] = nlpredci(DiffFun,xgrid,coefEsts,rw,Jw); 



 
 

plot(C1,Z,'ko', yFitw,xgrid,'b-',yFitw+deltaw,xgrid,'b:',yFitw-deltaw,xgrid,'b:'); 
hold on; 
errorbar_x(C1,Z,C1e,'.k') 
errorbar(C1,Z,C2e,'.r') 
set(gca, 'XAxisLocation',  'top'); 
set(gca,'Xlim',[0 140]*10^3,'fontsize', 14);     
set(gca,'XTick',[0 20 40 60 80 100 120 140]*10^3,'fontsize', 14); 
set(gca,'xTickLabel',{'0','20','40','60','80','100','120','140'},'fontsize', 14);    
set(gca,'ylim',[0 6]*10^-3,'fontsize', 14);  
set(gca,'yTick',[0 1 2 3 4 5 6]*10^-3,'fontsize', 14);   
set(gca,'yTickLabel',{'0','0.001','0.002','0.003','0.004','0.005','0.006'},'fontsize', 14);  
xlabel('Be-7 concentration (kBq m^-3)');ylabel('Depth (m)'); 
set(gca,'YDir','reverse'); 
 
%%*********Percentages of Be-7 at different depths*********%% 
Z1 = [0 1 2 3 4 5 6]*10^-3; 
C2 =DiffFun(coefEsts,Z1); 
for i= 1:7 
    C(i)=C2(i)*100/sum(C2); 
end 
C3 =cumsum(C); 
figure(2) 
stairs(C3,Z1); 
axes1=gca; 
set(gca,'xlim',[0 100],'fontsize', 14); 
set(gca,'ylim',[0 6]*10^-3,'fontsize', 14); 
set(axes1, 'XAxisLocation',  'top'); 
xlabel('cumulative distribution of C(%) ');ylabel('Depth (m)'); set(gca,'YDir','reverse');  
 
%*********************************************************************************% 
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