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Summary 

The present study investigated whether the cyclopoid copepod Oithona similis Claus 

1866 is a cosmopolitan or a conglomerate of cryptic species. Adult and subadult 

females (C5 stages) of O. similis were closely examined morphologically and via 

DNA-barcoding from four study areas: the Arctic Ocean, the Southern Ocean, the 

North Sea and the Mediterranean Sea. Sampling was done during two expeditions 

with RV Polarstern in the Arctic Ocean (ARK XXIII-3, ARK XXV-1) and at one 

expedition in the Southern Ocean (ANT XXIV-2). Further samples from three stations 

in the North Sea and one station in the Mediterranean Sea were provided.  

 

Based on the shape of the rostrum, body size and the formula and structure of the 

outer setae of the exopodits of the swimming legs, five different morphotypes were 

identified: Oithona similis (Arctic Ocean, Mediterranean Sea, North Sea, Southern 

Ocean), O. atlantica (Arctic Ocean), O. frigida (Southern Ocean), O. nana (North 

Sea) and Oithona sp. (North Sea). Via CO1-sequencing in total eight different 

haplotypes of O. similis were found in this study: “Osi ARK 1”, “Osi ARK 2”, “Osi ARK 

3” (Arctic Ocean), “Osi ANT 1”, “Osi ANT 2”, “Osi ANT 3” (Southern Ocean), “Osi 

North Sea/ Med Sea” (North Sea, Mediterranean Sea) and “Osi Med Sea” 

(Mediterranean Sea). “Osi North Sea/ Med. Sea” is the only haplotype that was 

present at more than one of the sampling areas. In addition to the number of 

haplotypes, this clearly shows that O. similis is not a cosmopolitan but a 

conglomerate of cryptic species. Additionally to the Oithona similis groups, three 

other copepod species groups were identified morphologically as well as via 

sequencing: O. frigida (Ofr) in the Southern Ocean and in the North Sea O. nana 

(Ona) close to the island of Helgoland and Oithona sp. (Osp) close to the island of 

Sylt.  

 

Oithona nana was chosen as the basis of a neighbor joining tree because it is not as 

closely related to O. similis as the other species are. Morphological differences 

regarding the appendages of the swimming legs of O. frigida and O. similis were 

obvious and were clearly reflected in the results of the CO1 sequences, as these 

haplotypes are each located on one of the two different main branches. The 



 

4 

 

differences reflected in the appendage structures of the swimming legs were also 

obvious between O. similis and O. nana. Another haplotype named Oithona sp. 

shares the swimming leg appendage structure with O. nana, but has a bended 

rostrum like O. similis. The differentiation between these species is also clearly 

reflected in their position in the neighbour joining tree as Oithona sp. is located on the 

same branch as O. frigida. Thus, O. similis and other Oithona species inhabiting the 

investigation areas can clearly be differentiated morphologically and genetically. 

 

The genetical differences between haplotype “Osi ANT 1” that was found within the 

Weddell Gyre and the Polar Frontal Zone (PFZ) and “Osi ANT 2” from PFZ are 

considerable. The same applies to “Osi ANT 1” and the second PFZ haplotype “Osi 

Ant 3”. Haplotype “Osi ANT 3” derives from the same branch in the neighbour joining 

tree as “Osi ANT 2”, indicating a close relationship between these two haplotypes 

from the PFZ.  

“Osi ARK 1” is widely distributed within the Arctic Ocean. “Osi ARK 2” and “Osi ARK 

3”, each represented by one female, were only found at a station above the Chukchi 

Plateau. An individual of “Osi ARK 1” was also caught at this station. The position of 

“Osi ARK 2” and “Osi ARK 3” in the neighbor joining tree indicates a close 

relationship between these two groups.  

The haplotype “Osi ARK 1” derives from the same branch as the individuals of the 

haplotype “Osi ANT 1”, but the distance between their branch-offs are quite huge. 

This also applies to the distances between this group and the two other groups from 

the Arctic Ocean. It can be assured that at least two different cryptic O. similis 

species occur in the Arctic Ocean.  

 

The CO1- sequences of the Oithona similis haplotype containing individuals from two 

different places in the North Sea and the Mediterranean Sea differ from the 

sequences of the species sampled at the other regions. The fact that the same 

haplotype was found at different places in the North Sea as well as in the 

Mediterranean Sea shows that this species is widely distributed and might be quite 

flexible concerning environmental conditions. It is also possible that species of the 

genus Oithona are advected into the southern North Sea with Atlantic water.             



 

5 

 

A further haplotype of O. similis was sampled in the Mediterranean Sea. However, 

from the genetic aspect, the haplotypes found in that area are very different. The 

second Mediterranean one is genetically closer to the O. frigida haplotype than to 

any other O. similis haplotype. 

 

Overall, almost no morphological differences were found within and between regions 

for individuals of the Oithona similis species groups from the Southern Ocean, the 

Arctic Ocean, the North Sea and the Mediterranean Sea. Exceptions are the 

individuals from the Arctic Ocean that were described as Oithona atlantica. One aim 

of this study was to examine whether possibly existing cryptic species in the nominal 

O. similis either show no morphological differences or only very slight ones that make 

it impossible to differentiate between them morphologically. Since the individuals that 

were described as Oithona atlantica prior to sequencing do not form an own 

haplotype, and as no other morphological differences within the O. similis individuals 

were found, this can be confirmed at least concerning the examined morphological 

characters.   
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Zusammenfassung 

Die vorliegende Arbeit untersuchte die Fragestellung ob es sich bei dem cyclopoiden 

Copepoden Oithona similis Claus 1866 um einen Kosmopoliten oder mehrere unter 

diesem Namen zusammengefasste kryptische Arten handelt. Adulte und subadulte 

Weibchen (C5- Stadien) von O. similis aus vier Untersuchungsgebieten (Arktischer 

Ozean, Südlicher Ozean, Nordsee, Mittelmeer) wurden morphologisch und mittels 

“DNA-barcoding” genauer untersucht. Die Probennahme erfolgte während zwei 

Expeditionen mit FS Polarstern im Arktischen Ozean (ARK XXIII-3, ARK XXV-1) und 

einer Expedition im Südlichen Ozean (ANT XXIV-2). Weitere Proben von drei 

verschiedenen Stationen in der Nordsee und einer Station im Mittelmeer wurden 

zusätzlich zur Verfügung gestellt.  

 

Anhand der Form des Rostrums, Körpergröße und der Anzahl und Beschaffenheit 

der äußeren Setae des Expoditen der Schwimmbeine konnten fünf verschiedene 

Morphotypen identifiziert werden: Oithona similis (Arktischer Ozean, Mittelmeer, 

Nordsee, Südlicher Ozean), O. atlantica (Arktischer Ozean), O. frigida (Südlicher 

Ozean), O. nana (Nordsee) und Oithona sp. (Nordsee). Im Verlauf dieser Arbeit 

wurden mittels CO1-Seqenzierung insgesamt acht verschiedene Haplotypen von O. 

similis gefunden: “Osi ARK 1”, “Osi ARK 2”, “Osi ARK 3” (Arktischer Ozean), “Osi 

ANT 1”, “Osi ANT 2”, “Osi ANT 3” (Südlicher Ozean), “Osi North Sea/ Med Sea” 

(Nordsee, Mittelmeer) und “Osi Med Sea” (Mittelmeer). “Osi North Sea/ Med Sea” ist 

der einzige Haplotyp, der nicht nur in einem Untersuchungsgebiet angetroffen wurde. 

Zusammen mit der Anzahl der Haplotypen zeigt dieses deutlich, dass O. similis kein 

Kosmopolit ist, sondern unter diesem Namen mehrere kryptische Arten zusammen-

gefasst sind. Außer den Oithona similis-Gruppen wurden noch drei weitere Oithona-

Artengruppen sowohl morphologisch als auch genetisch identifiziert: O. frigida (Ofr) 

im Südlichen Ozean und in der Nordseee: O. nana (Ona) nahe Helgoland und 

Oithona sp. (Osp) bei Sylt.  

 

Als Basis eines “Neighbor joining” Baumes wurde Oithona nana ausgewählt, da 

diese Art nicht so nah mit O. similis verwandt ist wie die anderen untersuchten Arten. 

Morphologische Unterschiede bezüglich der Anhänge der Schwimmbeine von          
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O. frigida und O. similis waren eindeutig und spiegelten sich deutlich in den 

Ergebnissen der CO1-Sequenzen wider, da jeder dieser Haplotypen auf je einem der 

Hauptäste des Baumes lokalisiert ist. Auch zwischen den Arten O. similis und O. 

nana waren die Unterschiede bezüglich der Strukturen der Anhänge der 

Schwimmbeine eindeutig. Ein weiterer Haplotyp, Oithona sp., weist die Anhang-

Struktur der Schwimmbeine von O. nana auf, hat jedoch ein gebogenes Rostrum wie 

O. similis. Die Differenzierung zwischen diesen Arten zeigt sich auch deutlich in ihrer 

Position im „Neighbor joining“ Baum. Oithona sp. ist auf demselben Ast lokalisiert wie 

O. frigida. Oithona similis und andere Oithona-Arten aus den Untersuchungsgebieten 

konnten deutlich morphologisch und genetisch unterschieden werden. 

 

Die genetischen Unterschiede zwischen Haplotyp “Osi ANT 1”, der sowohl im 

Weddell Wirbel als auch in der Polaren Frontzone (PFZ) gefunden wurde, und “Osi 

ANT 2” aus der PFZ sind deutlich. Dasselbe gilt für “Osi ANT 1” und den zweiten 

Haplotypen aus der PFZ: “Osi ANT 3”. Haplotyp “Osi ANT 3” entspringt demselben 

Ast im “neigbor joining” Baum, wie “Osi ANT 2”. Dies weist auf eine enge 

Verwandtschaft zwischen den beiden Haplotypen der PFZ hin. 

“Osi ARK 1” ist im Arktischen Ozean weit verbreitet. “Osi ARK 2” und “Osi ARK 3”, 

die nur aus je einem Weibchen bestehen, wurden nur an einer Station über dem 

Chukchi Plateau gefunden. Dort wurde ebenso ein Weibchen von „Osi ARK 1“ 

gefunden. Die Positionen von “Osi ARK 2” und “Osi ARK 3” im „neighbor joining“ 

Baum weisen auf eine enge Verwandtschaft zwischen beiden hin.  

Die Verzweigung von “Osi ARK 1” entspringt demselben Ast wie “Osi ANT 1”. Der 

Abstand zwischen ihren Abzweigungen ist jedoch sehr groß. Dies trifft auch auf die 

Abstände zwischen den Positionen von „Osi ARK 1“ und den beiden anderen 

Gruppen aus dem Arktischen Ozean zu. Es kommen also mindestens zwei 

verschiedene kryptische Oithona similis-Arten im Arktischen Ozean vor.  

 

Die CO1-Sequenzen des Oithona similis Haplotypen, der Individuen von zwei 

verschiedenen Orten in der Nordsee und aus dem Mittelmeer enthält, unterscheidet 

sich von den Sequenzen der Arten aus den übrigen Untersuchungsgebieten. Die 

Tatsache, dass derselbe Haplotyp sowohl an verschiedenen Orten der Nordsee als 
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auch im Mittelmeer gefunden wurde zeigt, dass diese Art weit verbreitet und sehr 

flexibel bezüglich Umweltfaktoren ist. Eine weitere mögliche Erklärung ist, dass Arten 

der Gattung Oithona mittels Atlantischem Wasser in die Südliche Nordsee 

transportiert werden. Im Mittelmeer wurde ein weiter Haplotyp ausgemacht. Vom 

genetischen Aspekt her sind diese beiden Haplotypen sehr verschieden. Der Zweite 

aus dem Mittelmeer ist enger verwandt mit O. frigida als mit einem der O. similis 

Haplotypen. 

 

Insgesamt wurden fast keine morphologischen Unterschiede innerhalb der 

Untersuchungsgebiete und zwischen ihnen für Individuen der Oithona similis 

Gruppen aus dem Südlichen Ozean, dem Arktischen Ozean, der Nordsee und dem 

Mittelmeer gefunden. Die einzige Ausnahme sind Individuen aus dem Arktischen 

Ozean innerhalb „Osi ARK 1“ die als Oithona atlantica beschrieben wurden. Ein Ziel 

dieser Untersuchung war zu untersuchen, ob potenziell existierende kryptische Arten 

innerhalb der nominalen Art O. similis entweder keine morphologischen Unterschiede 

zeigen oder nur sehr geringfügige, die es unmöglich machen die Arten 

morphologisch zu unterscheiden. Da die Individuen, die vor der Sequenzierung als 

Oithona atlantica erfasst wurden, keinen eigenen Haplotypen bilden und keine 

weiteren morphologischen Unterschiede innerhalb der Oithona similis Individuen 

gefunden wurden, kann dies zumindest für die untersuchten morphologischen 

Merkmale bestätigt werden.  
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1. Introduction  
1.1 Cosmopolitan and Cryptic Species 

The existence of cosmopolitan species, living in widely separated parts of the earth, 

is extremely interesting (Schmidt & Westheide 2000), since cosmopolitism is often 

hard or even impossible to explain. According to Fenchel and Finlay (2004), a 

pragmatic definition of a cosmopolitan species is that it occurs in at least two oceans 

or two biogeographical regions, and in both, the Northern and the Southern 

Hemisphere. Cosmopolitan marine species are found in the pelagos as well as in the 

benthos.  

 

The presumed cosmopolitan distribution of meiofaunal taxa is under debate (Todaro 

et al. 1996). The reliability of species identifications from geographically distant areas 

is questioned, especially when made by different investigators using different 

methods (often low-resolution microscopy) and probable personal “instincts” to 

affiliate species with a given taxon (Todaro et al. 1996). On the one hand, careful 

morphological analysis has shown that some species with a presumed wide 

geographic range are actually composite assemblages of different species (see 

Todaro et al. 1996 and references therein). On the other hand, the use of highly 

reproducible techniques (e.g. high-resolution video microscopy) has confirmed that 

cosmopolitanism appears to be a widespread phenomenon among certain 

meiofaunal groups (Hummon 1994, Todaro et al. 1995). In many groups of marine 

organisms, wide geographic ranges have been uncritically accepted as the natural 

consequence of potentially broad oceanic dispersal (Knowlton 1993). Concerning the 

possible existence of cosmopolitans, it should be considered that the widely held 

opinion that marine environments are poorly supplied with effective isolating barriers 

has often proved untenable (Battaglia 1982). Powerful isolating barriers can be 

provided by a multiplicity of factors (hydrological differences, structure of coastline, 

presence of brackish-water lagoons and estuaries, current regimes, tides, etc.) that 

separately or jointly may favor or prevent interchange between populations (Battaglia 

1982). According to Ward and Hirst (2007), real cosmopolitan species are not the 

rule within the plankton of the world`s oceans but rather exceptions. The majority of 

the plankton species has centers of distribution within ranges that alter in extent and 
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may often, but not always, be linked to particular physical features such as water 

masses (Ward & Hirst 2007). 

 

Often cryptic species are used as equivalent to sibling species (Sáez & Lozano 

2005). In other cases, it is specified that the term sibling connotes more recent 

common ancestors than cryptic, implying a sister-species relationship (Knowlton 

1986). Sibling species are species that cannot or only hardly be distinguished based 

on morphological characters (Mayr 1942, Mayr & Ashlook 1991). However, even 

sibling species in the narrow sense often have minor morphological differences that 

in some case are subtle but diagnostic (Knowlton 1993). Many marine sibling species 

have substantial genetic differences (Knowlton 1993). Furthermore, marine sibling 

species are ubiquitous and appear to be common for a variety of marine 

invertebrates (Knowlton 1993). Such species are found from the poles to the tropics, 

in most known habitats and at depths ranging from intertidal to abyssal (Knowlton 

1993). Cryptic species that do not show any morphological differences are either 

distinguished by e.g. chemical or behavioral mating signals, and/ or appear to show 

morphological stasis (Bickford et al. 2006). Documenting and measuring cryptic 

species diversity in the oceans has important ecological, evolutionary and 

conservation implications (Knowlton 1993, 2000, Mikkelsen & Cracraft 2001). 

 

Marine cryptic species have been revealed by molecular and biochemical genetic 

analyses as well as interbreeding trials, and/ or detailed morphometry measurements 

(e.g. Frost 1974, Bucklin et al. 1996, Rocha-Olivares et al. 2001). These studies 

include some well-studied species of e.g. copepods such as Calanus finmarchicus 

(Hill et al. 2001) and some meiobenthic morphospecies previously regarded as 

cosmopolitan or as species with wide physiological tolerances (Rocha-Olivares et al. 

2001, Bhadury et al. 2008, van Gaever et al. 2009). Thus, many cosmopolitan marine 

invertebrate taxa are actually complexes of sibling species and such species are now 

considered to have more limited geographic ranges (Rocha-Olivares et al. 2001). 

Each clade of a cryptic species is now considered to have more limited geographical 

ranges and smaller physiological tolerances (Montiel-Martínez et al. 2008). It is 

possible that cryptic speciation is even far more common than previously assumed 
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(Lee & Frost 2002). Thus, if the existence of cryptic biodiversity is not identified, it 

hampers the understanding of the evolutionary and ecological processes within a 

study. Correct species identification of microscopic organisms is therefore of prime 

importance (Castro-Longoria et al. 2003)  

 

The cyclopoid copepod species Oithona similis, Claus 1866, has been described as 

cosmopolitan (e. g. Atkinson 1998, Peterson & Keister 2003, Hansen et al. 2004). 

Bigelow (1926) assumed that no other marine planktonic copepod exists over a wider 

range of temperature and salinity than this species. Thus, its wide range of tolerance 

for temperature and salinity is a possible explanation for its large area of distribution 

(Nishida 1985). However, the potential existence of morphologically distinct 

populations within the wide geographical range of O. similis needs further 

examinations (Nishida 1985). What is known about the life history of O. similis is full 

of contradictory information as will be shown in the following chapters. It is said to be 

a very flexible cosmopolitan species. On contrary, it might also be a conglomerate of 

several different cryptic species. Each of these species may actually be very 

stenoecious in contrast to their potentially similar or even identical morphology. If 

cryptic species really exist, we would have to draw a very different picture of 

Oithona`s life history, as in that case the known information would be for a species 

complex. For modellers, it is of great importance to define species-specific functional 

response equations for different environmental conditions.  

 

Genetic examinations are one tool to see if there is more than one species within the 

nominal Oithona similis. However, genetic studies for this species are rather scarce. 

A recent study dealt with the molecular systematics based on 28s rDNA sequences 

of Oithona similis, O. atlantica and O. nana mainly from the Argentine Sea (Cepeda 

et al. 2012). In GenBank, unpublished partial sequences of a 28 s ribosomal RNA 

gene from Bisset et al. (2005) (1 sequence), Llinas et al. (2008) (1 sequence), 

Cepeda et al. (2009) (2 sequences), and of a 26 S ribosomal gene from Scorzetti 

(2008) (1 sequence) and one 18 S ribosomal RNA gene sequence (Wang & Sun 

2010) are available in addition. Furthermore, sixteen unpublished partial sequences 
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of the mitochondrial CO1 gene of O. similis from the Chinese Sea can be found in 

GenBank (3: Sun et al. 2008 and 13: Lee & Lee 2011).  

 

1.2. General introduction to the Copepoda  

Copepods are small crustaceans with a typical length of 0.02-12 mm (Huys & 

Boxshall 1991). More than 10.000 species of free living or parasitic species inhabit 

fresh-, brackish- and marine water as well as terrestrial habitats (Huys & Boxshall 

1991). Copepods evolved from benthic ancestors in the Palaeozoic about 200-400 

million years ago and colonized the pelagial (Bradford-Grieve 2002). Typically, the 

zooplankton biomass in the contemporary ocean is dominated by copepods (Verity & 

Smetacek 1996). Worldwide copepods belong to the numerically most abundant and 

distributed group of marine animals (Humes 1994, Hansen et al. 2004). They might 

even be the most abundant metazoans on the planet (Humes 1994). 

 

Within the marine copepods, pelagic, benthic and epibenthic species as well as 

species that live together with other organisms are found. Copepod vertical 

distributions cover all water layers, from the surface layers down to the abyssal zone 

(Bradford-Grieve et al 1999). Furthermore, copepods seem to be adapted to polar 

environments, as they form a huge part of the zooplankton in the Arctic Ocean as 

well as in the Southern Ocean (Conover & Huntley 1991), where they exhibit high 

biomasses (Ikeda 1985, Errhif et al. 1997). Consequently, these zooplankton 

organisms are an important component of marine food webs (Bradford-Grieve et al 

1999) and can be considered as an especially successful group within the pelagic 

environment (Kiørboe 1997). Within the viscous, nutritionally dilute and perilous 

environment of marine zooplankton, copepods show many evolved exceptional and 

competent solutions to the main challenges of survival, feeding and reproduction 

(Kiørboe 2011).   

 

Nine systematic orders of copepods are known: Platycopioida, Calanoida, 

Misophrioida, Harpacticoida, Monstrilloida, Mormonilloida, Gelyelloida, Cyclopoida, 

Siphonostomatoida and Poecilostomatoida (Bradford-Grieve et al 1999), with the 

former Poecilostomatoida now included in the Cyclopoida (Conway 2006). In terms of 
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their morphology, most planktonic copepods are very similar. They have a 

hydrodynamic elongated body with a well-developed musculature (Kiørboe 1997). 

This body shape allows fast escaping reactions (Ohman 1988). A further common 

attribute are antennules that are stretched out and have mechanosensorical hairs 

which enable them to perceive approaching predators (Yen et al. 1992).  

 

The main food items of copepods are phytoplanktonic (Atkinson 1996, Gallienne & 

Robins 2001) and microzooplanktonic organisms (Atkinson 1996, Hansen et al. 

2004). Most of the copepod species are omnivorous to a certain extent and prey on 

both groups of organisms (Kiørboe 1997). Generally, the clearing rates on mobile 

microzooplanktonic organisms are higher than for phytoplankton (Stoecker & Egloff 

1987). The utility of the food depends on different characteristics of the prey, like 

abundance, shape, size and taste, but also on the behavior of the predator 

(Castellani et al. 2005). A preference for prey-particles with the dimension of 

nanoplankton (2- 20 µm) is well documented for many small copepod species (Fortier 

et al. 1994). Furthermore, protozoans can be an essential part of the food of marine 

copepods (Gifford & Dagg 1991). Thus, protozoans allow survival and reproduction 

of copepods independently of phytoplankton blooms (White & Roman 1992, Ohman 

& Runge 1994).  

 

The food of copepods can be selective, diverse and differ regionally and temporally, 

as well as ontogenetically (Hirst & Bunker 2003). In general, copepods rather seem 

to limit the population of protozoans than to directly control the populations of small 

phytoplankton cells (Atkinson 1996). As food organisms, they are an important 

trophic link to marine carnivorous invertebrates and fishes (Gallienne & Robins 2001, 
Hirst & Bunker 2003) and even whales (Kiørboe 2011). Moreover, copepods are 

involved in carbonate export from the surface layers of the ocean to the bottom 

(Svensen & Nejstgaard 2003), by the migration in deeper layers and by the 

production of fecal pellets. Copepods graze on and modify fecal pellets of 

zooplankton organisms (see e.g. Reigstad 2000, Wexels Riser et al. 2001) and thus 

prevent sinking out of fecal pellets. “The export of biologically generated soft tissue 

(organic matter) and hard tissue (carbonate) to the deep ocean [is] collectively known 
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as the biological pump” (Palmer & Totterdell 2001). A part of the organic carbon from 

the surface layer may be transported into a depth of several hundred meters before 

its egestion or respiration takes place (Palmer & Totterdell 2001). It is also possible 

that the organism itself is preyed upon below the eutrophic layer (Palmer & Totterdell 

2001).  

 

Almost all copepods have twelve developmental stages: six naupliar stages, as e.g. 

identified for the genus Oithona (Murphy 1923), and six stages of copepodites, the 

sixth being the adult animal. The developmental time of the eggs depends on 

temperature and can extend from a one-day period up to several months. The 

duration of each naupliar stage is very short lasting from a few hours up to a few 

days. The period between the single copepodite stages can last much longer 

(Bradford-Grieve et al. 1999).   

 

According to Kiørboe (2011), the success of copepods in marine waters has three 

main reasons. First, due to their torpedo shape and muscular body copepods are 

able to gain high velocity and to speed up (Kiørboe 2011). Their antennules bear 

sensors that are able to perceive information from huge distances and collect 

capable three-dimensional information concerning a prey`s, predator`s or mate`s 

identity, position and velocity (Kiørboe 2011). Thus, they enable reactions that are 

suitable and in time (Kiørboe 2011). The second reason is that they have exceptional 

escape jump ability compared to other organisms of the zooplankton (Kiørboe 2011). 

This is due to a binary impulsion mechanism that is present in many copepods 

(Kiørboe 2011). The “gearing of the swimming leg musculature” and the 

“impulsiveness of the jumps […] allow for an unusually high propulsion efficiency” 

(Kiørboe 2011). The third aspect is their feeding method: “scanning current feeding” 

and “ambush attack jumps” that are practiced by only very few other zooplankton 

organisms (Kiørboe 2011). “Smart technology, remote prey detection, utilized both in 

ambush and feeding-current feeding, releases copepods from the penalty of filtering 

sticky water. These, I believe, are the main reasons for the evolutionary success of 

pelagic copepods in the ocean” (Kiørboe 2011).  
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1.3 Introduction to the genus Oithona  

The genus Oithona belongs to the order of cyclopoid copepods. These show high 

abundances in almost all environments of the ocean and often are the numerically 

dominant organism in the metazooplankton (e.g. Böttger-Schnack et al. 1989, Hay et 

al. 1991, Nielsen et al. 1993). In cold areas like the Arctic and in the temperate zone, 

Oithona is often the most present copepod genus in winter and shows reproduction 

in the upper water layers during the whole year (Kiørboe & Nielsen 1994, Uye & 

Sano 1995). Oithona is presumably the most abundant genus (Deevey 1948, 

Marshall 1949, Nishida 1985) with the widest distribution among copepods in the 

coastal waters as well as in the oceanic regions of tropical, temperate and polar 

waters (Nishida & Marumo 1982, Paffenhöfer 1993, Nielsen & Sabatini 1996, 

Atkinson 1998, McKinnon & Klumpp 1998). 

 

1.4 Feeding and role of Oithona spp in the food web 

In many planktonic systems, O. similis is highly abundant (Hirst & Ward 2008). Due 

to its numerical dominance (Nielsen & Sabatini 1996, Gallienne & Robins 2001), O. 

similis is one of the most important copepod species in the world (Gallienne & Robins 

2001). The importance of O. similis is reflected in its high density, biomass and 

trophic role within the system (e.g. Fransz & González 1995, Metz 1996, Atkinson & 

Sinclair 2000). During its whole life span, it is an important predator as well as an 

important prey organism. In contrast to the nauplii of many other copepod species, 

the ones of Oithona spp. start to feed immediately after hatching (e.g. Uchima & 

Hirano 1986, Hirst & Ward 2008). However, Hirst and Ward (2008) observed an 

elevated mortality in the early stages, relative to the later naupliar and copepodite 

stages. These results likely reflect huge difficulties for the youngest nauplii to find 

sufficient food or to escape predation (Hirst & Ward 2008).  

 

Whether the food spectrum changes in the nauplius and copepodid stages during 

growth is not known, but it is most likely. The naupliar stages of O. similis may be a 

major food source for fish larvae (Takahashi & Uchiyama 2007). All developmental 

stages of Oithona spp. are one of the most important sources of food for many 
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ichthyoplankton organisms (Sánchez-Velasco 1998), particularly for the larvae of 

some commercially important species like cod, mackerel, seabream and hake 

(Young & Davis 1992, Reiss et al. 2005). In some cases, certain developmental 

stages of fish larvae feed almost exclusively on individuals of Oithona species (Porri 

et al. 2007).  

 

Within a study of Nielsen and Sabatini (1996) in the North Sea, little temporal or 

spatial variability of the Oithona biomass was observed. Thus, Porri et al. (2007) 

suggested that Oithona could be a constant food source for ichthyoplankton and 

planktivorous fishes there. By preying on Oithona spp., carnivorous zooplankton like 

chaetognaths (Saito & Kiørboe 2001, Giesecke & González 2004) and jellyfish 

(Omori et al. 1995) make these small copepods also an important element in the 

structure of many food webs (Hansen et al. 2004). It is possible that small copepods 

like O. similis are a major food source for some seabirds in the open Southern Ocean 

(Dubischar et al. 2002). Hence, these copepod species may be a key element in the 

transfer of organic matter from the recycling pelagic community to the higher trophic 

food levels (Dubischar et al. 2002). On the whole, O. similis exhibits an omnivorous 

and/or detritivorous feeding (Petipa et al. 1970, Turner 1986, Paffenhöfer 1993, 

Atkinson 1998, Ashjian et al. 2003, Kattner et al. 2003, Reigstad et al. 2005). 

Furthermore, it has been shown that O. similis is an important link between microbial 

food webs and higher trophic levels (Nielsen & Sabatini 1996). It is therefore possible 

that O. similis benefits from increasing sea temperatures, particularly in high 

latitudes, where reduced ice cover is predicted to increase the prevalence of 

microbial recycling-based ecosystems (Hansen et al. 2003).  

 

1.5. Geographic and vertical distribution of Oithona similis 

Geographic distribution 

Oithona similis is a cosmopolitan species (e.g. Fransz & Gonzalez 1997, Blain et al. 

2001, Hansen et al. 2004) that is abundant in coastal and oceanic regions of the 

tropics, the temperate zone and also in polar waters (Sabatini & Kiørboe 1994).  

 

In a study of Bernard (2002), O. similis and a small calanoid copepod species, 
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Ctenocalanus vanus, were most numerous, together contributing up to 85% (range 

30 to 85%) to the total mesozooplankton abundances in the Polar Front. Oithona 

similis appears to be widely distributed (Conover & Huntley 1991) or ubiquitous 

(Atkinson 1998) and dominates the prevailing copepod assemblages in the Southern 

Ocean (Hopkins & Torres 1889, Metz 1996). Thus, Oithona spp. is undoubtedly 

important for the Antarctic ecosystem (e.g. Fransz 1988, Fransz & Gonzalez 1997, 

Atkinson & Sinclair 2000). This genus can in general temporarily dominate the 

metazooplankton of the mixed zone by numbers (e.g. Metz 1995, Fransz & Gonzalez 

1995, Swadling et al. 1997). The Southern Ocean is inhabited by two species of the 

genus Oithona: Oithona frigida Giesbrecht 1902, and the smaller, numerically as well 

as according to its biomass dominant species O. similis (Metz 1996). Oithona frigida 

is an endemic species in the Southern Ocean (Rosendorn 1917). In the Arctic 

Ocean, O. similis is a dominant species as well (Richter 1994, Auel & Hagen 2002), 

being probably ubiquitous (Conover & Huntley 1991) as it is found in all Arctic water 

masses and near or even in the seasonal sea ice (Grainger & Mohammed 1986, 

Werner 2005). Oithona similis is one of the five dominant copepod species in the 

upper 100 m of the western Arctic Ocean (Ashjian et al. 2003) and in the Greenland 

Sea (Møller et al. 2006).   

 

In the northern and southern parts of the North Sea and adjacent waters, Oithona 

spp. can contribute significantly to the copepod biomass (Hay et al. 1991, Nielsen et 

al. 1993, Kiørboe & Nielsen 1994). The biomass of Oithona spp. in the North Sea 

ranges between 1.0–1.4 g C m–2 year–1 (Tremblay & Roff 1983, McLaren et al. 1989) 

and 1.8–2.2 g C m–2 year–1 (Nielsen & Sabatini 1996). Hence, they contribute 

between 13 and 40% to the annual copepod production (Williams & Muxagata 2006). 

Sometimes Oithona spp. contribute as much as 50-70% to the copepod production in 

summer (Nielsen & Sabatini 1996). This depends on the region and on the 

associated calanoid species (Nielsen & Sabatini 1996).  

 

The zooplankton community of the Mediterranean Sea is also dominated by 

copepods (e.g. Ross & Nival 1976, Dauby 1980, Razouls & Durand 1991). Small 

copepod species and juvenile stages of bigger copepods are important trophic links 
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between the classical and the microbial food webs (Roff et al. 1995, Wickham 1995, 

Calbet et al. 2000). These may be especially important in oligotrophic seas, like e.g. 

in most of the western Mediterranean Sea (Margalef 1985), as the relative size of 

primary consumers is expected to be smaller there (Chisholm 1992, Agawin et al. 

2000) and the microbial organisms dominate (Gasol et al. 1997). Within coastal 

environments of the Mediterranean Sea, Oithona similis is very common (Castellani 

et al. 2005). This species is also found in open waters over a wide latitudinal range, 

but it prefers eutrophic conditions (Castallani et al. 2005). In oligotrophic seas, small-

sized organisms (<1 mm) are an important fraction of the zooplankton community 

(Webber & Roff 1995, Mazzocchi et al. 2003).  

 

Together with Paracalanus and Clausocalanus, Oithona is a dominant genus in the 

offshore waters of the Balearic Sea (Vives 1978, Fernandez de Puelles et al. 2004), 

the Ionian Sea (Mazzocchi et al. 2003), in the eastern Mediterranean (Siokou-

Frangou et al. 1997), in coastal waters of the Gulf of Naples (Mazzocchi & Ribera 

d’Alcalà 1995), in the Bay of Tunis (Souissi et al. 2000), in the Gulf of Trieste 

(Specchi & Fonda-Umani 1983) and in neritic and open waters of the Gulf of Lion and 

in the Ligurian Sea (e.g. Kouwenberg & Razouls 1990, Licandro & Ibanez 2000, 

McGehee et al. 2004). In the Ligurian Sea, Oithona similis was mainly found in the 

epipelagic layer within the upper 50 m (Licandro & Icardi 2009). At a station in the 

Gulf of Naples, nine Oithona species were sampled by Mazzocchi & Ribera d´Alcalà 

during the year 1984 to 1990: O. atlantica, O. akcipiens, O. longispina, O. nana, O. 

plumifera, O. setigera, O. similis, O. tenuis, and O. vivida (Mazzocchi & Ribera 

d´Alcalà 1995). Within their samples O. similis was the dominant species during 

sampled years from 1984 to 1989. The only exception was 1990 when 50.1 % of the 

genus total numbers belonged to O. nana (Mazzocchi & Ribera d´Alcalà 1995).  

 

Vertical distribution 

Throughout the whole year, Oithona similis mainly remains in the upper 200 m of the 

water column of the Southern Ocean (e.g. Metz 1996, Atkinson 1998, Atkinson & 

Sinclair 2000). During observations in the Arctic, this species was also found close to 

the surface (Ashijan et al. 2003). However, O. similis inhabits all depths down to 
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4000 m (Rosendorn 1917). Compared to O. similis, O. frigida lives deeper in the 

water column (e.g. Rosendorn 1917, Hopkins & Torres 1988, Metz 1995) and seems 

to inhabit depths mainly below 200 m (Rosendorn 1917, Hopkins 1985 a), as already 

found by Giesbrecht who discovered this species in 1902. In contrast to females of 

O. similis, those of O. frigida were not found in the upper water layers (Metz 1995). 

Metz (1996) found adults of the genus Oithona in deeper water layers than the 

juveniles and supposed that this can be explained by the avoidance of predators. 

Dependent on the habitat and in accordance with the assumption that O. similis stays 

in the upper water layers during the whole year (Fransz & Gozalez 1995, Atkinson 

1998, Atkinson & Sinclair 2000) and probably shows growth and reproduction there, 

the ability for exploiting low concentrations of food might be essential for this species 

(Atkinson 1998). Its demand of food seems to be large, thus this species would 

strongly be threatened by starvation. However, experiments hint on the ability to 

reduce its metabolism during longer times of starvation (Marshall & Orr 1966).  

 

1.6. Morphology 

1.6.1 General morphology of the Subclass Copepoda 

Depending on species and habitats, the shape of copepods varies (Zhong et al. 

1989). Figure 1 shows examples of copepod species of different orders. Free-

swimming species generally have a cylindrical body with well-developed appendages 

and setae (Zhong et al. 1989). Copepod species that inhabit surface waters are 

rather transparent, colourless, or sometimes blue due to the presence of carotinoids 

within the cuticle (Zhong et al. 1989). Deep-water species can be colored red due to 

the presence of crusta (Zhong et al. 1989). There is no doubt that copepod shape 

and coloration are a manifestation of adaptation to the environment (Zhong et al. 

1989). 
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Fig. 1 Examples of morphological features from copepod species of the different 

orders (Hugget & Bradford-Grieve 2007)  

 

Free-living copepods have a body with 16-17 somites (Zhong et al. 1989). However, 

less than eleven somites are often present due to fusion (Zhong et al. 1989). The 

copepod body is usually separated morphologically in two major divisions: prosome 

and urosome (Zhong et al. 1989, Bradford-Grieve et al. 1999). For an overview of an 

idealized copepod body see figures 2 and 3. The anterior part of the body is large 

and globular and the posterior one is narrower (Davis 1949). The anterior portion, the 

prosome, is further separated into two parts, the cephalosome and the metasome 

(Zhong et al. 1989). The frontal region of the prosome is covered by a dorsal cephalic 

shield (Bradford-Grieve et al. 1999). The cephalosome comprises the head that is a 

fusion of five somites with the first thoracic somite that bears the maxillipeds (Zhong 

et al. 1989, Bradford-Grieve et al. 1999). The posterior part of the prosome, the 
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metasome, consists of one to five free thoracic somites that usually have each a pair 

of pereiopods (swimming feet) (Zhong et al. 1989). Due to differences in the fusion of 

the metasome somites, interspecific distinctions in the number of free somites exist 

(Conway 2006). The head never has any segments, but may show a cervical groove 

in some species (Davis 1949). In many species the head is completely fused with the 

first pedigerous somite of the metasome, though they are completely separate in 

other species (Davis 1949, Bradford-Grieve et al. 1999). Anteriorly at the head (Davis 

1949, Zhong et al. 1989) is the frontal plate (Zhong et al. 1989) where often one or 

more eyespots are found, and some species have large cuticulae lenses on its dorsal 

side (Davis 1949, Zhong et al. 1989). The anterior position of the head usually bears 

a rostrum ventrally (Davis 1949, Zhong et al. 1989) and a frontal organ with two 

sensory hairs (Davis 1949).   
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Fig. 2 Ventral view of an idealized copepod (in Hugget & Bradford-Grieve 2007) 
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Fig. 3 Lateral view of an idealized copepod (Hugget & Bradford-Grieve 2007) 
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The posterior portion, behind the body articulation (Zhong et al. 1989) is called the 

urosome (Davis 1949, Zhong et al. 1989). Calanoid copepods compared to cyclopoid 

and harpacticoid copepods have a different number of somites and thus a different 

point where the body articulates (Conway 2006). Figure 4 shows the major body 

articulation of different copepod orders. The urosome includes the abdomen and one 

or two (in the two suborders Harpacticoida and Cyclopoida; Davis 1949) somites of 

the thorax (Davis 1949, Zhong et al. 1989) that are fused with the abdomen (Zhong 

et al. 1989). The abdomen has a narrow and cylindrical shape and does not show 

any appendages (Zhong et al. 1989). Generally it has five somites, but in females the 

first two are normally fused to a genital somite (Zhong et al. 1989). This genital 

somite is usually swollen (Davis 1949), so that it appears as if they have at least one 

somite less in the urosome than the males (Conway 2006). In calanoids, it is the first 

somite of the urosome and shows the genital opening in both sexes (Conway 2006). 

However, in cyclopoid and harpacticoid copepods, this somite bears the fifth 

swimming feet while the following one is the genital somite (Conway 2006).  

 
Fig. 4 Major body articulation of the different copepod orders  

(Hugget & Bradford-Grieve et al. 2007) 

 

The last somite of the abdomen shows two appendages, named furcal (or caudal) 

rami (or furca; Zhong et al. 1989) (Davis 1949, Zhong et al. 1989). Each side of the 

anal opening bears one of these appendages that usually have terminal setae that 

help in flotation (Davis 1949). Some species have very greatly developed furcal setae 

(Davis 1949). 
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For the identification of copepod species, their appendages are very important. Thus, 

for this study, a detailed literature research on the morphological structures was 

necessary to identify the characteristics that could be used to distinguish between 

Oithona species. Copepods have eleven pairs of appendages which are either 

uniramous or biramous (Zhong et al. 1989). Generally the six pairs of appendages 

are modified into sense and feeding organs that are located on the head (Davis 

1949): antennules, antennae, mandibula, maxillules, maxillae and the maxillipeds 

that are located on the first thoracic segment that is fused with the head (Zhong et al. 

1989). The metasome further has five pairs of swimming legs (pereiopods; Zhong et 

al. 1989), one pair on each thoracic segment (Davis 1949, Zhong et al. 1989; see 

also figure 2).  

 

The first antennae (antennules, Zhong et al. 1989) are located close to the tip of the 

copepod body. They are always uniramus and generally quite long (Davis 1949, 

Zhong et al. 1989). The antennules have numerous segments (Zhong et al. 1989), 

according to Davis (1949) up to twenty-five segments. However, the last two 

segments of the first antennae usually are fused and thus reduce the number of 

segments (Davis 1949). Females generally have symmetric first antennae, whereas 

one of them is modified to a grasping organ (Davis 1949) to copulate (Zhong et al. 

1989) in the males of many genera. In males of Oithona and several other genera, 

both of the first antennae are geniculate (Davis 1949). The antennules are mainly 

balancing organs (Zhong et al. 1989). Their length and segment number are 

depending on the habitat (Zhong et al. 1989). For example, planktonic calanoid 

copepods have long and slender antennules with 23 to 25 segments, while benthic 

harpacticoid species have shorter antennules with five to nine segments (Zhong et al. 

1989). Figure 5 shows a scheme of the first antennae of an idealized calanoid 

copepod. 
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Fig. 5 Schematic mouthparts of an idealized calanoid copepod (Huys & Boxshall 1991)  
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The paired second antennae are located posterior to the first ones (Davis 1949, 

Zhong et al. 1989). A scheme of a second antenna of an idealized calanoid copepod 

is shown in figure 5. The second antennae are shorter than the first ones and 

biramous (Zhong et al. 1989). Typically, they have a two-segmented basipod, a two-

segmented endopod and an exopod with six or seven segments (Davis 1949). Thus, 

the second antennae are greatly modified in many individual genera and species and 

may in some cases be uniramous (Davis 1949). In many groups, such as cyclopoids, 

the exopodite is missing (Zhong et al. 1989). In males of e.g. the genus Corycaeus 

the second and not the first antennae are modified into grasping organs (Davis 

1949).  

 

A pair of mandibles (mandibula; Zhong et al. 1989) is located posterior to the second 

antennae (Davis 1949). They are located on either side of the mouth between the 

anterior and posterior labium (Zhong et al. 1989). Figure 5 shows a scheme of the 

mandible of an idealized calanoid copepod. The inner border of the basipod of the 

mandible shows teeth and this segment is called the masticatory portion of the 

mandible as it is used in the mastication of food (Davis 1949). Number and shape of 

teeth are variable depending on the different feeding habitats of the copepod species 

(Zhong et al. 1989). The mandibular palp is formed by the basis of the mandible and 

jointed exopod and endopod (that are mostly present; Davis 1949) (Davis 1949, 

Zhong et al. 1989), and bear setae (Zhong et al. 1989).  

 

The appendages behind the mandibles are the first maxillae (maxillules; Zhong et al 

1989). The pair of small and biramous maxillules is located beneath the mouth 

(Zhong et al. 1989). They are used to hold and manipulate food (Davis 1949). 

Furthermore, they are taste organs (Davis 1949). The protopod of the maxillule bears 

a (short; Davis 1949) exopodite and an endopodite (Davis 1949, Zhong et al. 1989) 

with setose lobes (Zhong et al. 1989). The first basipod segment consists of three 

inner and one outer lobe (Davis 1949) and bears serrated and stout spines (Zhong et 

al. 1989). It is called masticatory edge or gnathobase and a predation organ (Zhong 

et al. 1989). For morphological details see also figure 5.   
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The (second; Davis 1949) maxillae have only one branch (Davis 1949, Zhong et al. 

1989). They are strongly developed in some species, while in others, they are small 

and insignificant or absent (Davis 1949). The maxillae generally comprise a protopod 

with two segments and an endopod with five segments that bears a series of setose 

endites (Zhong et al. 1989). A scheme of a maxilla of an idealized calanoid copepod 

can be seen in figure 6. 
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Fig. 6 Schematic mouthparts and swimming feet of an idealized calanoid copepod (Huys & 

Boxshall 1991)  
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Located posterior to the second maxillae are the uniramous maxillipeds (Davis 1949). 

They are the first appendages of the thorax and modified as feeding organs (Zhong 

et al. 1989). Maxillipeds have two basal segments that are normally much larger than 

the other segments (Davis 1949). Furthermore, an endopod, consisting of several 

shorter segments, is attached to the distal end of the second basal segment (Davis 

1949). The endopods have setae of various structures due to the different feeding 

habits of copepod species (Zhong et al. 1989). For example, carnivorous species 

have rather strong maxillipeds with stout spines like species of the genus Euchaeta, 

or claw-like one as in species of the genus Oncaea (Zhong et al. 1989). However, 

filter feeders have maxillipeds with many plumose setae (Zhong et al. 1989). An 

example of a maxilliped structure is shown in figure 6.  

 

In general, copepods have five pairs of swimming legs (pereiopods; Zhong et al. 

1989), each pair being attached to one thoracic segment (Davis 1949). The 

pereiopods are located below the sternite of the thorax somites (Zhong et al. 1989). 

Copepods within the suborder Calanoida have all their legs on the metasome. In the 

suborders Cyclopoida and Harpacticoida, the fifth pair of swimming legs is attached 

to the first segment of the urosome (Davis 1949). A few genera have a rudimentary 

sixth pair of feet (Davis 1949). They are located at the genital somite (Bradford-

Grieve et al. 1999). In females, the sixth pereiopods constitute the opercula that 

closes off the paired genital aperture (Huys & Boxshall 1991). The first four pairs of 

swimming legs resemble each other (Davis 1949, Zhong et al. 1989). Figure 6 shows 

an example of a schematic swimming leg. These legs are almost identical in both 

sexes and symmetrically biramous (Zhong et al. 1989). Simultaneous movement is 

ensured through a chinious plate, “the coupler” that unites each pair of legs (Zhong et 

al. 1989). This intercoxal sklerite may be fused to the coxa (Bradford-Grieve et al. 

1999). The pereiopods normally have two basal segments (Davis 1949, Bradford-

Grieve et al. 1999): coxa and basis (Bradford-Grieve et al. 1999), an inner ramus (the 

endopod) and an outer ramus (the exopod) that are attached to the second basal 

segment (the basis) (Davis 1949, Bradford-Grieve et al. 1999). Both ramus bear 

setae and spines (Zhong et al. 1989, Bradford-Grieve et al. 1999).  
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The most generalized genus of the Copepoda is the genus Calanus (Davis 1949). In 

this genus, each exopod and endopod consists of three segments (Davis 1949). 

Though in most species, especially the endopods of the first and second legs show 

modified segmentations (Davis 1949). The female´s fifth swimming feet are normally 

extremely modified to primitive condition (Davis 1949). They are reduced in size, are 

often uniramus and extremely rudimentary, or even entirely absent (Davis 1949). 

Generally, in males, the structure of the fifth leg is more complex and better 

developed than in females (Zhong et al. 1989). Three types exist: biramous, 

uniramous or missing (Zhong et al. 1989). In the suborder Calanoida, the males 

usually have a highly developed fifth leg (Davis 1949). In some species, it is 

“modified into a complicated and powerful hand for the transference of 

spermatophores to the female during copulation” (Davis 1949). Especially for males 

the structure of the fifth swimming leg is extremely important for the determination of 

the species (Davis 1949, Zhong et al. 1989). However, in the orders Cyclopoida and 

Harpacticoida, the fifth legs are often rudimentary and therefore practically have no 

systematic value (Zhong et al. 1989).     

 

1.6.1.1 Explanations and Abbrevations  

According to Gardner & Szabo (1982) this thesis used the following terminology 

 

Genital segment (gnst): The first segment of the urosome with the genital aperture, 

often with hairs, spines, flanges or bulges  

 

Labrum: An upper lip that covers the mouth openings 

 

Mandibles (md): Are paired mouthparts that are located posterior to the antennae 

 

Maxillae (max 1, max 2): Are two pairs of mouthparts (mx1, max 2) that are located 

between the mandibles and maxillipeds 
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Maxillipeds (mxp): Are paired appendages located behind the second maxillae and 

prior to the first pair of swimming legs 

 

Ornamentation: Occurrence of spines, hairs, or setae 

 

Ovisac: a casing that contains the fertilized eggs and generally is attached to the 

genital segment 

 

Prosome (pro): comprises head and thorax and is located anterior to the point of 

articulation of the urosome 

 

Proximal: nearest to the point of origin 

 

Ramus (pl. Rami): a branch that consists of one or more segments 

 

Rostrum: a beak-like prolongation of the head  

 

Seta: An elongated bristle 

 

Setose: covered with setae 

 

Setule: small, blunt seta often borne on a larger seta 

 

Setulose: covered with setules 

 

Spine: thorn-like projection with a defined point of attachment to the body 

 

Spinifrom: drawn out to an acute point; in the shape of a spine 

 

Spinulation: covering of small spines  

 

Spinule: small spine 
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Spinulose: seta with small spines 

 

Styliform: ending in a long, slender point 

 

Thorax (th): the middle region of the body that bears the swimming legs 

 

Total length: Means the distance between the apex of the head and the distal margin 

of the caudal rami 

 

Urosome (ur): the abdomen; that part of the body that is located posterior to the 

major articulation and includes the genital segment 

 

1.6.2 Order Cyclopoida 

Cyclopoid copepods are characterized by small size (Wilson 1932, 1942, Gardner & 

Szabo 1982). Species of these orders all show the same segmentation of the body 

(Conway 2006). The body of adult cyclopoid copepods consists of a prosome with 

cephalosome and four pedigerous segments, and an urosome with six segments that 

are all free in males whereas in females only five are free (Conway 2006). The 

urosome is slender and elongated (Wilson 1932, 1942, Gardner & Szabo 1982), 

while the prosome is broader (Gardner & Szabo 1982, Zhong et al. 1989). Prosome 

and urosome are clearly distinct (Van Breemen 1908). Cyclopoid copepods have a 

very movable articulation between the last two trunk segments (Sars 1918, Zhong et 

al. 1989). The posterior of these segments is usually very small and tightly connected 

with the genital segment (Sars 1918, Wilson 1932). Thus at first sight, it seems likely 

that it belongs more properly to the posterior than to the anterior part of the body 

(Sars 1918). Consequently, the first segment of the urosome bears the fifth pair of 

legs which as a general rule is much reduced (Conway 2006). The fifth pedigerous 

segment first appears in the third copepodid stage (Conway 2006). Cyclopoid 

copepods more resemble calanoid than harpacticoid ones (Sars 1918). However, this 

articulation makes it easy to distinguish calanoid and cyclopoid copepods (Sars 

1918). 
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The antennules of cyclopoids are rather short (Brady 1883, Zhong et al. 1989) and 

scarcely longer than the cephalothorax (Brady 1883). They are generally shorter than 

the prosome (Gardner & Szabo 1982). Characteristic of males is that both 

antennules are modified to grasping organs (Brady 1883, Van Breemen 1908, Zhong 

et al. 1989). However, the anterior antennae of copepod species within the order 

Cyclopoida are usually more elongated than the ones in harpacticoid species (Sars 

1918). Furthermore, they have more articulations (Sars 1918).  

 

The antennae of cyclopoid copepods are generally uniramous (e.g. Brady 1878, 

Gardner & Szabo 1982, Zhong et al. 1989) without an exopod (Sars 1918). A slight 

rudiment of such a ramus can only be found in a few parasitic species (Sars 1918). 

The structure of antennules and antennae allows a jumpily swimming motion 

(Gardner & Szabo 1982).  

 

Further characteristics of cyclopoid copepods are well developed mandibular and 

maxibular palps (Brady 1883). However, these are rudimentary in some species 

(Brady 1883).  

 

In copepods of this order, the first four pairs of legs are equal (Brady 1883). They 

have two branches and are adapted for swimming (Brady 1883). Endopod and 

exopod of swimming legs one to four are trinomial or have a reduced number of 

segments (Van Breemen 1908). Leg number five is rudimentary (Brady 1883, Van 

Breemen 1908, Zhong et al. 1989), one or two-segmented (Zhong et al. 1989) and 

shows in most cases no difference between the sexes (Van Breemen 1908, Wilson 

1932). 

 

Females of this order bear their eggs in two ovisacs (e.g. Van Breemen 1908, Wilson 

1932, Gardner & Szabo 1982) that are attached laterally or subdorsally at their 

surface (Wilson 1932, Zhong et al 1989).  

 

 



 

35 

 

1.6.2.1 Family Oithonidae Dana 1853 

Species belonging to the Oithonidae are small sized (Zhong et al. 1989). Their 

slender cyclopiform body (e.g. Kiefer 1929, Zhong et al. 1989, Boxshall & Halsey 

2004) has thin and transparent integuments (Sars 1918). Females reach total lengths 

of 0.36 to 1.9 mm while males are usually smaller and range between 0.37 and 1.24 

mm (Nishida 1985).  

 

Species of this family differ because they have a moderately dilated prosome, their 

urosome is long and slender (González & Bowman 1965, Zhong et al. 1989). The 

prosome has five somites (Nishida 1985), namely the cephalosome and four 

segments, each bearing a pair of swimming legs (Boxshall & Halsey 2004). At the 

lateral margin of the cephalosome, males of some Oithona species show paired flap 

organs (Boxshall & Halsey 2004). Prosome and urosome are clearly separated from 

one another (Zhong et al. 1989).  

 

Oithonid species have a distinct head (Kiefer 1929) that exhibits a nauplius eye 

(Boxshall & Halsey 2004). The rostrum is variable (Boxshall & Halsey 2004) either 

pointed or curved and partly highly developed (Kiefer 1929). It can be directed 

anteriorly or ventrally but is often reduced (Boxshall & Halsey 2004).  

 

The anterior antennae (antennules) of species within the family Oithonidae are very 

slender (Sars 1918, Kiefer 1929) and have long diverging setae in females (Sars 

1918, Gonzalez & Bowman 1965). They have no aesthetascs, which are present in 

males (Gonzalez & Bowman 1965). Male antennules are more distinctly geniculate 

(Sars 1918) and modified as grasping organs (Kiefer 1929). The antennules have 10 

to 15 segments (Zhong et al. 1989). In contrast, the posterior antennae are small 

(Sars 1918). They have between two and four segments (Kiefer 1929, Zhong et al. 

1989) and are uniramous without an expopod (González & Bowman 1965, Zhong et 

al. 1989).  

 

The well-developed mouth parts differ from those of other cyplopoids (Sars 1918). 

Partially mandibles and maxillae wear claw-like spines (Sars 1918).  



 

36 

 

 

The urosome of oithonids has five segments (Boxshall & Halsey 2004). In females, 

the genital and the first abdominal segment are fused to a genital double somite 

(Boxshall & Halsey 2004). On the double somite of the females paired genital 

apertures including copulatory pores and gonopores are located laterally (Boxshall & 

Halsey 2004). The abdomen has three further free segments (Boxshall & Halsey 

2004). Males have a six-segmented urosome: five pedigerous, one genital and four 

free abdominal segments (Boxshall & Halsey 2004). The genital aperture of the 

males is paired and located ventrally (Boxshall & Halsey 2004).  

 

The rami of oithonid swimming legs one to four are comparably slender and three-

articulate (e.g. Gonzalez & Bowman 1965, Zhong et al. 1989, Boxshall & Halsey 

2004) or less common, two-articulate (Kiefer 1929, Gonzalez & Bowman 1965, 

Boxshall & Halsey 2004), and edged with long setae (Sars 1918). The fifth pair is 

rudimentary (Sars 1918, Kiefer 1929) and partially coalescent with the corresponding 

segment (Sars 1918). Thus, it is only a small conical segment that shows one, two 

(Zhong et al 1989), three or four long setae (Boxshall & Halsey 2004). Two setae on 

the genital operculum of the two sexes represent the sixth leg (Boxshall & Halsey 

2004).  

 

Within this family, the caudal rami of females and males are different (Sars 1918). In 

males they have six setae (Boxshall & Halsey 2004). Moreover, females have paired 

egg sacs (Boxshall & Halsey 2004).  

 

1.6.2.2 Subfamily Oithoninae  

Typical for this subfamily is the rudimentary fifth foot (Kiefer 1929). Its ancient first 

limb is almost completely melded with the fifth thoracal segment and can only be 

recognized as small hump with one bristle (Kiefer 1929). The second limbs are better 

obtained, small and slender with one terminal bristle or, as in three species, with two 

bristles (Kiefer 1929). At least at the lateral limb of the fourth swimming feet one or 

more lateral spines are lacking or vestigial (Kiefer 1929).  

 



 

37 

 

This subfamily includes marine pelagic species and one freshwater species (Kiefer 

1929).  

 

1.6.2.3 Genus Oithona Baird 1843 

Included in the genus Oithona are species with very different body sizes (Rosendorn 

1917). Total lengths are ranging from 0.4 to 1.9 mm (Rosendorn 1917, Al Yamani & 

Prusova 2003). Characteristic of species within this genus is a slender body (Brady 

1883, Sars 1918, Davis 1949) that shows thin and pellucid integuments (Sars 1918).  

 

The slender prosome within this genus (Claus 1863, Gardner & Szabo 1982) is five-

segmented (e.g. Wheeler 1901, Van Breemen 1908, Pesta 1920) and clearly 

separated from the urosome (Mori 1937). A well-marked structure defines the head 

from the first pedigerous segment (e.g. Claus 1863, Mori 1937, Zhong et al. 1989). 

The shape of the forehead is different in the sexes, usually sharp-pointed in females 

and rounded in males (e.g. Rosendorn 1917, Kiefer 1929, González & Bowman 

1965). A rostrum can be present (Davis 1949) and may be useful for species 

identification (Al Yamani & Prusova 2003).  

 

Species of the genus Oithona have long and slender first antennae with 10 to 15 

segments (Brady 1883, Sars 1918) that reach the posterior margin of the prosome or 

are even longer (Gardner & Szabo 1982). In some species, the antennules of the 

females almost reach the end of the body (Kiefer 1929, Mori 1937) and show single 

very long bristles (Claus 1863). In males, they are modified to grasping organs (e.g. 

Claus 1863, Brady 1878, Mori 1937), each having one aestethasc at the end (Van 

Breemen 1908, Pesta 1920). Female antennules are lacking aestethascs (Van 

Breemen 1908, Wheeler 1901, Pesta 1920).   

 

A further characteristic of this genus is that the second antennae consists of two 

segments (Van Bremen 1908, González & Bowman 1956), or in some species three, 

(Wheeler 1901, Kiefer 1929) and shows an abrupt bend in the middle (Sars 1918). 

The second antennae have no exopod (e.g. Wheeler 1901, Mori 1937, Al Yamani & 

Prusova 2003). According to Claus (1863), they have four segments. The last two 



 

38 

 

are attached to the basis in a geniculated joint and wear long and bent bristles (Claus 

1863).  

 

Species of this genus show an elongated and slender mandible (e.g. Brady 1883, 

Van Breemen 1908, Pesta 1920). It has two stout dentate apical spines and a jointed 

secondary branch, as well as a “ciliated wart-like marginal process” (Brady 1878). 

The basal part of the mandibular palp is greatly elongated, pediform and ends in two 

claw-like spines (Sars 1918). A very small setiferous appendage attached outside the 

basal part at some distance from its end forms the inner ramus (Sars 1918). The 

outer ramus is well developed, abruptly reflexed and consists of three to four joints 

that carry long plumose setae (Sars 1918). The endopod of the mandible has one 

somite (Kiefer 1929, González & Bowman 1956) while the exopod is three- (Kiefer 

1929) to four-articulate (Kiefer 1929, González & Bowman 1956). The second basal 

somite has two terminal spines (Kiefer 1929, González & Bowman 1956, Al Yamani 

& Prusova 2003). In some species the exterior spine is reduced (Al Yamani & 

Prusova 2003). The mandibles of males are less strong than in females (Rosendorn 

1917).   

 

Characteristic for the genus Oithona is that endopod and exopod of the first maxillae 

are one-articulate (Wheeler 1901, van Breemen 1908, González & Bowman 1956). 

The maxillae are vigorous (Brady 1883, 1887). Their masticatory lobe is well defined 

and has a number of sharp claw-like spines (Wheeler 1901, Sars 1918). The spines 

are accompanied inside by the palp lamellar, a thick setiform appendage (Sars 1918) 

with two-branches (Brady 1878, 1883). The outer distal lobe of the maxilla is very 

small while the proximal lobe is well developed, recurved and shows long plumose 

setae at the tip (Sars 1918). In males, the first maxillae are weaker than in females 

(Rosendorn 1917).  

 

The second maxillae and the maxilliped are slender (Wheeler 1901, Van Breemen 

1908, Sars 1918) and elongated (Wheeler 1901, Sars 1918). They show strong 

spines (Van Breemen 1908). The endopod of the maxilliped has two somites (Van 

Breemen 1908). The anterior pairs of maxillipeds have five segments and the 
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posterior ones four (Sars 1918). Both carry long spines that are curved anteriorly 

(Sars 1918). Second maxillae and maxilliped do not show a strong sexual 

dimorphism (Rosendorn 1917). However, the maxilliped in males is slightly weaker 

developed (Rosendorn 1917).    

 

The urosome of those species is elongate (Davis 1949, Gardner & Szabo 1982) with 

five segments in females and six in males (e.g. Van Breemen 1908, Mori 1937, 

Zhong et al. 1989). In the genus Oithona, the urosome is longer than one third of the 

total copepod length (Gardner & Szabo 1982). The second segment of the urosome 

forms the genital segment (Davis 1949, Zhong et al. 1989) that is usually swollen 

(Davis 1949) and the longest segment (Al Yamani & Prusova 2003). The genital 

opening of the females is located laterally (Wheeler 1901).   

 

The basal part of the swimming legs is wide and oblate (Sars 1918). The rami are 

usually well-developed and subequal in size (Sars 1918). The endopods of the first 

swimming feet are three-articulate (e.g. Brady 1883, Mori 1937, Al Yamani & Prusova 

2003). The exopods as well (Brady 1878, Kiefer 1929, González & Bowman 1956). In 

rare cases the endopod of the first foot has two segments (González & Bowman 

1956). Inside the first joint of the outer ramus, swimming legs one to four have no 

distinctly developed setae (Sars 1918). However, the apical spine of this ramus is 

very slender and serrate outside (Sars 1918). In males, the spines of the outer edge 

are more consummately developed than in females (Sars 1918). Furthermore, the 

number of spines differs in some species as well from that of the females (Van 

Breemen 1908). In males, the swimming feet are less degenerated than in the 

females, and the shapes of the outer setae and the terminal spines show 

fundamental secondary sexual characters (Rosendorn 1917).  

 

The fifth swimming feet are rudimentary (e.g. Claus 1863, Wheeler 1901, Mori 1937) 

and show two small setiferous papillae (Brady 1878, 1883, Al Yamani & Prusova 

2003). In most species they are exactly alike in both sexes (Claus 1863, Rosendorn 

1917, Sars 1918). The first limb is reduced to a small bump with one bristle (Kiefer 

1929). The second limb is also small, with one (or in three species with two) terminal 
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spine(s) (Kiefer 1929). The sixth natatory feet are represented by one or two setae at 

the anterior part of the genital segment (Al Yamani & Prusova 2003).  

 

The caudal rami are symmetrical (Zhong et al. 1989), short and in some cases 

heavily spread (Kiefer 1929). In females, they are intensely divergent (Sars 1918). 

Their two middle apical setae are much elongated and cross each other at the base 

(Sars 1918). In males, the furcal branches are not as spread as in females 

(Rosendorn 1917). They are shorter and have four bristles with the middle ones 

stronger and longer than the two others (Rosendorn 1917). A further difference 

between the sexes is that the outer setae of the furca are not placed above the 

middle of the margin, instead they are directly in the middle of the furcal margin and 

do not even reach the length of the furca in males (Rosendorn 1917). 

 

Males are not known for all Oithona species yet (Kiefer 1929). The known males 

differ from their females in the urosome and the first antennae and show more 

secondary sexual characteristics, e.g. are their spines much more pronounced at the 

exopods of the swimming legs (Kiefer 1929). Comparative morphological 

examinations show that the specific differences of the female are partially 

compensated in the males (Rosendorn 1917). Thus, the attribution to a sex is not 

easy in some cases (Rosendorn 1917).  

 

Rosendorn (1917) identified the female and males that belong together in the 

samples, when males and females of specific species were cosampled several times. 

The distinction depended on the relative size and thickness of both sexes, the 

relative number of bristles at the swimming legs and the same structure in the first 

leg and some single and specific characters that she found in both gender. However, 

the definite attribution was based on an extensive examination of the mouthparts, as 

both genders have the same number of setae at the mandibles and maxillae 

(Rosendorn 1917). This showed to which species they belong (Rosendorn 1917). 

Males of different species can be distinguished based on size and shape of the trunk, 

the structure of mandible and maxille, setae structure of the swimming legs and the 

shape of the abdomen (Rosendorn 1917).  
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The genus Oithona was established by Baird in 1843 (Claus 1863, Rosendorn 1917, 

Sars 1918) for the species Oithona plumifera from the tropical part of the Atlantic 

(Rosendorn 1917, Sars 1918) and Oithona splendens (Rosendorn 1917). Oithona 

plumifera characteristically has pinnate hairs on the swimming feet. “Oithona is 

distinguished from Cyclopsina by having a pair of short antennae situated 

immediately in front of the long pair” (Baird 1843). Baird believed that the first species 

of this genus is a “seawater louse” drawn by Slabber in 1778 (Rosendorn 1917). 

Baird named it Oithona and explained it like this: “Slabber in his work upon the 

microscopise gives a figure of ˈzeewater luisˈ, which very much resembles the 

species Cycloposina. I have therefore named it after him as its first observer: Oithona 

(Virgin of the wave)” (Rosendorn 1917). Later Dana described the genus Scribella 

that is identical with the genus Oithona (Claus 1863). He gave the first detailed 

description of this genus (Rosendorn 1917). Dana placed Oithona close to Acartia in 

the family of the Calanida (Claus 1863, Sars 1918).  

 

Claus (1863) was of the opinion that the genus Oithona links the cyclopoid and 

calanoid copepods, but is much more connected to the genus Cyclops concerning 

the segmentation of the body and the viscera (Claus 1863). Starting with Claus 

remarks with regard to the relationship of the genus Oithona to Cyclops, Oithona was 

seen to belong to the order of Cyplopoida (Rosendorn 1917). Following the first 

description of O. plumifera, several species of the genus Oithona have been 

described from different parts of the ocean (Sars 1918). The first coherent basic 

description of the genus Oithona was done by Giesbrecht in 1892 (“Fauna und Flora 

von Neapel”) with the eight species that he knew (Rosendorn 1917). Three of those 

were already known: O. setigera and O. plumifera (Dana 1852) and O. similis (Claus 

1866) (Rosendorn 1917). Oithona linearis, O. robusta, O. brevicornis, O. nana and O. 

hebes were first described by Giesbrecht in 1892 (Rosendorn 1917). The number of 

species then increased to about three times of the eight species described by 

Giesbrecht (Rosendorn 1917). Nine of the species, including O. helgolandica Claus 

1863 that were described until 1917 are no independent species (Rosendorn 1917). 

In 1908, Farran founded the genus Paroithona (Rosendorn 1917). Rosendorn (1917) 
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was of the opinion that Paroithona can only be a subgenus. A second subgenus is 

Limnoithona that was described by Burckhardt (1913) from the freshwater 

(Rosendorn 1917). Concerning the correct identification of some Oithona species, 

there is still considerable confusion because of the close relations or the difficulty in 

examining “such delicate and fragile animals” (Sars 1918).  

 

Some of the most important characteristics belonging to cyclopoid copepods are 

present in Oithona: the geniculation of the first antennae in males, the posterior 

antennae without a secondary branch, the rudimentary fifth feet and the two ovisacs 

(Brady 1878). These characters all agree with Cyclops as well as the structure of the 

viscera (Brady 1878) and of the urosome (Claus 1863). The shape of the eye, the 

anatomy of the testes and ovaries and the development of two ovisacs ally to the 

genus Cyclops (Claus 1863).  

 

Species of the genus Oithona are very numerous in the plankton of inshore waters 

throughout the world (González & Bowman 1956). This genus includes many species 

and “the characters used to separate some of the species are slight” (González & 

Bowman 1956). Furthermore, “some species have been described inadequately; e.g. 

such important characters as P5 and the terminal setae of the mandible have been 

omitted in some descriptions” (González & Bowman 1956). As a consequence the 

identification of a species is sometimes difficult (González & Bowman 1956).  

 

1.7 DNA Barcoding 

A widely used genetic method to detect crytpic phyto- and zooplankton species and, 

thus, to understand the role of cryptics in ecological and evolutionary processes, is 

DNA barcoding (e.g. Whiteman et al. 2004, Webb et al. 2006, Bucklin et al. 2007). 

DNA barcoding is based on the idea of sequencing a short, diagnostic segment of 

the DNA to discriminate species (Robba et al. 2006, Garros et al. 2008). It uses short 

sequences of one or a few genes, mostly from the mitochondrion, both to identify 

known species (Wong & Hanner 2008) and to discover new species (Mc Manus & 

Katz 2009). According to Mc Manus and Katz (2009), it is a comparatively simple, 

objective method, which can be applied to all developmental stages of a species and 
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also to parts of an organism. Hebert et al. (2003 a) proposed the use of a 650 bp 59 

fragment of the mitochondrial cytochrome-c oxidase subunit 1 (CO1) gene as a 

reliable universal marker or ‘DNA barcode’ for global biological identification of 

animal species (Schander & Willasen 2005, Chantangsi et al. 2007, Radulovici et al. 

2009).  

 

Using this mitochondrial gene faces a number of advantages (Chantangsi et al. 

2007). Among mitochondrial genes, CO1 is one of only two protein-encoding genes 

that are present in all eukaryotes (Chantangsi et al. 2007). CO1 has been used in a 

large number of vertebrate and invertebrate taxa and provides a reliable and 

accessible solution to the problem of species identification (Hebert et al. 2003 a, 

Rubinoff et al. 2006, Amaral et al. 2007) and offers the possibility to discriminate 

closely related species (Hebert et al. 2003 b, Hajibabaei et al. 2007). From various 

animal phyla it can easily be amplified using universal primers which are very robust 

(Hebert et al. 2003 a) and designed from conserved regions of the gene (Folmer et 

al. 1994, Saunders 2009). The mitochondrial genome evolves at a faster rate than 

the nuclear one (Hebert et al. 2003 b). Hence, mitochondrial genomic sequences at a 

particular region will be more informative in differentiating or distinguishing closely 

related species (Hebert et al. 2003 b) of a variety of animals (e.g. Floyd et al. 2002, 

Hebert et al. 2004 b, Ward 2009). CO1 is a good taxonomic marker for several 

terrestrial and aquatic invertebrates (Hebert et al. 2003 a, Hebert et al. 2004 a, Smith 

et al. 2005), fishes (Rock et al. 2008, Ward 2009), birds (Hebert et al. 2004 b, Ward 

2009) as well as red and brown macroalgae, respectively (e.g. Robba et al. 2006, 

Kucera & Saunders 2008, Mc Devit & Saunders 2009). CO1 is not an all-purpose 

species diagnostic gene, however (Schander & Willassen 2005). Within the Cnidaria, 

for instance, low levels of variability and few distinctive features in CO1 are found 

(Hebert et al. 2003 a, b).  

 

Barcode approaches may help to reveal cryptic species and thus to understand the 

role of cryptics in ecological and evolutionary processes (Whiteman et al. 2004). It is 

a valuable tool, especially when coupled with traditional taxonomic methods, and is 
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fundamental in revealing hidden diversity (Hebert et al. 2004 a). This technique has 

probably been the most widely applied molecular method for a closer identification of 

phyto- and zooplankton (e.g. Webb et al. 2006, Bucklin et al. 2007, Lin et al. 2008). 

According to McManus and Katz (2009), it is a comparatively simple, objective 

method which can be used for all developmental stages of a species, and which can 

also be applied to parts of an organism. DNA barcoding is a tool for assigning 

biological specimens to species (e.g. Hebert et al 2003 b, Schander & Williassen 

2005, Borisenko et al. 2008).  

 

Concerning the order of copepods, the mitochondrial cytochrome c oxidase subunit 1 

gene is suitable for studies at species and population levels. Despite morphological 

similarity, copepods exhibit considerable base-sequence divergence in this gene 

(e.g. Folmer et al. 1994, Bucklin et al. 1999, Vestheim et al. 2005). According to 

Bucklin et al. (2003), it is possible to unambiguously discriminate even the most 

closely related species within the calanoid copepod families, Calanidae and 

Clausocalanidae, by using mt CO1 sequences. It is also possible to examine 

phylogenetic relationships among sibling and non-sibling species of different genera 

with this gene (e.g. Hill et al. 2001, Rocha-Olivares et al. 2001, Bucklin et al. 2003). 

 

2. Aims of the thesis (Hypothesis) 
Oithona similis shows a world-wide distribution and is therefore exposed to very 

different environmental conditions. Investigations on other assigned cosmopolitan 

marine invertebrate species (e.g. Calanus finmarchicus; Hill et al. 2001) showed that 

these are actually composed of cryptic species that are limited in their geographic 

ranges. This leads to the first hypothesis: (H1) Oithona similis is not a cosmopolitan, 

but a conglomerate of cryptic species. However, it is still mainly assumed that O. 

similis is a cosmopolitan species. I therefore propose that possibly existing cryptic 

species in the nominal O. similis either show no morphological differences or only 

very slight ones that make it impossible to differentiate between them 

morphologically (H2). For the investigation areas in this study additional Oithona 

species are described. Thus, I suggest that O. similis and further Oithona species 
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that inhabit the investigation areas can clearly be differentiated morphologically and 

genetically (H3). 
 

3. Material and Methods 

3.1. Investigation areas and sampling 

To test whether Oithona similis is a cosmopolitan species or represents a complex of 

cryptic species, specimens of O. similis were closely examined from four study areas: 

the Arctic Ocean, the Southern Ocean, the North Sea and the Mediterranean Sea. 

These areas are inhabited by O. similis and four congeners: O. frigida (Southern 

Ocean), O. atlantica (Arctic Ocean), O. nana (North Sea) and O. plumifera (North 

Sea). There is great environmental heterogeneity between both polar oceans 

(Atkinson 1998). The North Sea and the Mediterranean Sea further represent 

different regions within the world-wide distribution of this species, especially with 

respect to the water temperature.  
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3.1.1  The Arctic Ocean 

 
Fig.7 The Arctic Ocean (Karcher & Oberhuber 2002) 
 

The Arctic Ocean is enclosed by land masses and therefore the world`s largest 

mediterranean ocean (Foldvik & Gammelrod 1988). Approximately one-third of its 
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area is represented by shelf seas (Aagaard et al. 1981). An overview of the Arctic 

Ocean is shown in figure 7. The inner Arctic Ocean is divided into the major basins, 

the Canadian and the Eurasian Basin, by the Lomonosov Ridge (McLaughlin et al. 

1996). The Canadian Basin is additionally split into the Canada and Makarov Basins 

by the Alpha-Medelev Ridge (McLaughlin et al. 1996). Further basins are partitioned 

via the Nansen-Gakkel Ridge: the Nansen and the Amundsen Basin (McLaughlin et 

al. 1996). Broad (600-800 km) and shallow (30-200 m) continental shelves that are 

mainly located north of Europe and Asia besides the Barents, Kara, Laptev and East 

Siberian seas, surround these basins (McLaughlin et al. 1996).   

 

Waters from the North Atlantic and from the North Pacific are the main water sources 

entering the Arctic Ocean (McLaughlin et al. 1996). These waters become included in 

the large-scale circulation of the inner Arctic Ocean (McLauglin et al. 1996). 

Consequently, they undergo modifications caused by “air/sea/ice interaction, river 

inflow and exchange with surrounding shelves” (McLauglin et al. 1996). The Arctic 

Ocean itself is a supply of deep and intermediate waters to the Northern Hemisphere 

(Mauritzen 1996, Anderson et al. 1999). Via Fram Strait, the Arctic Ocean is 

connected to the Atlantic Ocean. This is the only deep-water connection to the 

Atlantic (Morison 1991) that is located between Greenland and Spitsbergen, with a 

sill depth of 2.600 m. Within the Fram Strait, the warm center of the Atlantic Water is 

conserved as it flows through deeper layers and thus looses a small amount of heat 

to the atmosphere (Beszczynska-Möller et al. 2011). Shallow connections to the 

North Atlantic are through the Davis Strait, west of Greenland and through the 

Barents Sea (Aagard & Carmack 1989). In the shallow Barents Sea, the Atlantic 

Water is strongly modified by the atmosphere (Beszczynska-Möller et al. 2011). 

There is a consolidation of both Atlantic water flows in the northern Kara Sea that 

proceeds in a frontier current alongside the border and ridges of the Arctic Basin 

(Aagaard 1989, Rudels et al. 1994). In the Arctic Ocean, sweeping transformations of 

water masses occur (Schauer et al. 2008). Thus, via cooling, freezing and melting as 

well as through an addition of river run-off, the warm Atlantic Water is modified to 

shallow Polar Water, ice and deep saline water (Schauer et al. 2008). The Atlantic 
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water loop through the Arctic is closed by a return flow of these waters southward 

across the Fram Strait and the Canadian Archipelago (Schauer et al. 2008).    

 

The Bering Strait is the connection of the Arctic Ocean to the Pacific. The about 85 

km wide and ca. 50 m deep Bering Strait is located at the distant end of the Pacific 

Ocean and is the only entrance for Pacific water into the Arctic Ocean (Aagard & 

Carmack 1989, Woodgate & Aagard 2005, Beszczynska-Möller et al. 2011). The 

inflowing Pacific water shows low salinity (Karcher & Oberhuber 2002). The main 

passage of Pacific water that is leaving the Arctic Ocean is the Canadian Arctic 

Archipelago (Karcher & Oberhuber 2002). The water mass exchange with the Pacific 

and Atlantic Ocean closely connects the Arctic Ocean with the global ocean system 

(Beszczynska-Möller et al. 2011).   

 

The upper 500 m of the water column in the basins of the Arctic Ocean show a 

strong stratification (Rudels et al. 2004). Below the low saline polar mixed layer, a 

pycnocline is located (Rudels et al. 2004). Generally, the pycnocline between the 

polar mixed layer and the Atlantic layer is referred to as halocline (Coachman & 

Aagaard 1974). Showing a width of 150 m the halocline usually is about three times 

broader than the polar mixed layer (Rudels et al. 2004). The halocline exhibits salinity 

stratification and its temperatures in the upper part are close to freezing (Rudels et al. 

2004). In contrast temperatures that are increasing towards the subsurface 

temperature maximum of the Atlantic layer cause a destabilizing thermocline at the 

base of the halocline (Rudles et al. 2004). The Atlantic layer contains water with 

temperatures above 0°C and could thus melt several meters of ice if it were to enter 

the polar mixed layer (Rudels et al. 2004). However, this is prevented by the 

halocline (Rudels et al. 2004). It operates as a shield between the surface mixed 

layer and the upward flux of heat and salt in the Atlantic layer that is located below 

(Shimada et al. 2005). During summer the melting of sea ice produces a surface 

layer of still lower salinity (Rudels et al. 2004). This causes a stratification of the polar 

mixed layer (Rudels et al. 2004). Ice formation, brine release and following haline 

convection removes this layer during winter (Rudels et al. 2004).  
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Through hydrologic cycling, the largest part of the Arctic receives a net overage of 

freshwater; a large amount of runoff that is discharged into the Arctic Ocean is 

included (Aagaard & Carmack 1989). Enduring and strong stratification is a 

precondition for significant ice formation in deep oceans (Aagaard & Carmack 1989). 

Ocean circulation influences the structure of the water temperature of the Arctic 

Ocean (Jinping et al. 2005). However, since the early 1990s a large-scale change to 

warmer terms comprising warmer Atlantic inflow has been recognized (Holliday et al. 

2008, Schauer et al. 2008). This was further shown by infrequent warming of 

inflowing Pacific water, in particular in 2007 (Woodgate et al. 2010), penetrating 

aberrant warm water above Arctic shelves (Dmitrenko et al. 2010) flowing alongside 

the continental margin of the Arctic and into the Canada Basin (McLaughlin et al. 

2009). This warming trend is expressed in a reduction of sea ice coverage, thickness 

and volume (Kwok et al. 2009). Furthermore, significant changes concerning the 

storage and distribution of freshwater in the Arctic Ocean have been recorded (see 

e.g. Rigor et al. 2002, Polyakov et al. 2008).   

 

 

Sampling was conducted in the Arctic Ocean during two expeditions with RV 

Polarstern (ARK XXIII-3: 12.08.08-17.10.08, ARK XXIV-1: 10.06.10-29.06.10). 

Fig.8 Sampling Area and location 
of the stations during the 
expedition ARK XXIII-3 in the 
Arctic Ocean 
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Individuals from the Arctic Ocean were sampled at two stations in the Canadian 

Basin and at an additional station at the Chukchi Plateau during ARK XXIII-3.  

 
Further sampling in the Arctic Ocean was done at six stations during the expedition 

ARK XXV-1. For details see Figures 8 and 9.  

 

3.1.2 The Southern Ocean  

The Southern Ocean encompasses the entire oceanic region between the southern 

continent and the Subtropical Convergence, at about 40-50°S (Foldvik & 

Gammelsrod 1988). “[It] is the world's only zonal sea and with free boundaries to the 

north where it continues into the South Pacific Ocean, the South Atlantic Ocean and 

the Indian Ocean” (Foldvik & Gammelsrod 1988).   

 

Fig. 9 Sampling Area and 
location of the stations 
during the expedition ARK 
XXV-1 in the Arctic Ocean 

 



 

51 

 

 

Fig. 10 (Schmitz 1996) The schematics of the global overturning circulation. The wide, red 

arrow that is revolving Antarctica indicates the ACC (Rintoul 2006). Within each basin the 

zonally-averaged circulation is shown by arrows and for each water mass a different color is 

used (Rinoutl 2006). The deep ocean circulation is primarily connected to the upper ocean 

via water mass transformation in the Southern Ocean and a smaller contribution is provided 

from mixing at low latitudes (Rintoul 2006).   

 

The bottom topography strongly affects the flow within all depths of the Southern 

Ocean (Rintoul et al. 2001). This ocean bears two main currents: a narrow one that 

borders on the Antarctic continent, the Coastal Current (“The East Wind Drift”), and 

the Antarctic Circumpolar Current (ACC) (“The West Wind Drift”) (Deacon 1937). The 

eastward flow of the ACC dominates the general circulation of the Southern Ocean 

(Ward et al. 2002). Via its substantial eastward flow, the ACC links the ocean basins, 

“allowing the existence of a global-scale overturning circulation that carries most of 

the ocean heat transport” (Rintoul 2006). Thus, the ACC is the most important way 
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for water mass exchange between the ocean basins (Rintoul 2006). A consequence 

of this basin interchange is that the regional large-scale ocean circulation and heat 

transport is converted to a global appearance (Rintoul 2006).  

 

Figure 10 shows the west to east circulation of the ACC around Antarctica (Rintoul 

2006). Within the ACC, several fronts that cover the whole depth and show high 

velocities, are interrupted by relatively quiet zones (Ward et al. 2002). In general, 

“[f]ronts are ubiquitous, robust circumpolar features of the Southern Ocean” (Sokolov 

& Rintoul 2002). Per definition a front is a sharp boundary among neighboring water 

masses (Bowman 1977). A further main factor within the dynamics of the ACC are 

eddies (Rintoul et al. 2001). Generally, eddy fluxes are very important for the 

dynamics and thermodynamics of the Southern Ocean (Rintoul et al. 2001). From 

north to south the fronts in the ACC are termed: Subantarctic Front (SAF), Polar 

Front (PF) and Southern ACC Front (SACCF) (Ward et al. 2002). The Southern 

Boundary (SACCB) delimits the ACC in the south (Orsi et al. 1995). The Subantarctic 

Front and the Polar Front are the two main fronts of the ACC (Orsi et al. 1995, 

Rintoul 2006). They consist of two or three branches that fuse and depart alongside 

the circumpolar trail of the current (Rintoul 2006).  

 

The Polar Frontal Zone (PFZ) that is located in the ACC, is bordered by the Sub-

Antarctic Front (SAF) in northward direction, and the Antarctic Polar Front (PF) in 

southward direction (Emery 1977, Hoffman 1985). Both cores exhibit high speeds 

(Emery 1977, Hoffman 1985). The Antarctic Polar Front (APF) is a physical frontier 

that is marked by obvious variations in water temperature and salinity (Honjo 2004). 

The PFZ further constitutes a shift from the warmer, less productive Sub-Antarctic 

Surface Waters (SASW) to the colder, more productive Antarctic Surface Waters 

(AASW) within the surface layer (Deacon 1983, Lutjeharms 1985). The SASW have 

their origin north of the SAF and the SASW originate south of the APF (Belkin & 

Gordon 1996, Ansorge et al. 1999, Froneman et al. 1999). The PFZ further conduces 

a significant biogeochemical boundary (Honjo 2004). A high extent of spatial and 

temporal changeability is suggested for the PFZ, including eddies and meanders in 
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both fronts (e.g. Legeckis 1977, Bryden 1983, Pakhomov & Froneman 1999). This 

variability is caused by interaction of the ACC and the bottom topography (Ansorge et 

al. 1999). The position of the PFZ is not stable and is shifted with time (Hoffman & 

Whitworth 1985). It is further strongly depending on the local bathymetry (Nowlin & 

Klinck 1986, Ansorge et al. 1999).  

 

The zones of the Southern Ocean are created concentrically around the Antarctic 

continent (Orsi et al. 1995, Belkin & Gorden 1996). “Each zone maintains its unique 

physical properties” (Honjo 2004). The “zonally- average circulation” for each basin 

and their different layers are further shown in Figure 10 (Rintoul 2006). Altogether 

they form the “the global overturning or thermohaline circulation” (Rintoul 2006). 

Deep water that originates in the North Atlantic (NADW) is transported southward 

into the Southern Ocean. Via the ACC the NADW is brought eastwards (Rintoul 

2006). It further expands towards the pole alongside “shoaling isopycnals to outcrop 

at the sea surface near Antarctica” (Rintoul 2006). Caused by interchanging of heat 

and humidity between ocean, atmosphere and sea ice the up welled deep-water near 

Antarctica is transduced to dense Antarctic Bottom Water or at lower latitudes to 

lighter intermediate waters (Rintoul 2006).  

 

Via the new Southern Ocean water masses, oxygen-rich waters are carried into the 

interior and thus aerate about half of the volume of the global ocean (Rintoul 2006). A 

balance of the outflow of NADW is generated by the intermediate waters that are 

brought northwards into the Atlantic basin and thus close the overturning circulation 

in the Atlantic (Rintoul 2006). The global climate is influenced through the ACC and 

the Southern Ocean overturning circulation (Rintoul 2006). The ocean basins are 

linked and thus enable a “global-scale overturning circulation to exist” and supply “an 

oceanic teleconnection for the transmission of climate signals” (Rintoul 2006). The 

overturning circulation that is related to production and export of the NADW is 

finished through the transformation of deep to intermediate water via an interchange 

of air and sea in the Southern Ocean (Rintoul 2006). The water masses of the 

Southern Ocean further control “the ocean uptake of oxygen, carbon dioxide and 

heat” (Rintoul 2006). 
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A warming of the Southern Ocean was observed in recent decades (Gille 2002, 

Levitus et al. 2005). The biggest modifications of heat content within the oceans of 

the southern hemisphere shows the northern flank of the ACC (Rintoul 2006). 

Furthermore, in recent decades a significant freshening was noticed within certain 

sections of the Southern Ocean (Wong et al. 1999, Curry et al. 2003).  

 

 
Sampling in the Southern Ocean took place during the expedition ANT XXIV-2 

(28.11.07-04.02.08) within two different water masses: the Weddell Gyre (at 7 

stations) and the Polar Frontal Zone (2 stations). For details see fig. 11.   

 

 

 

 

 

 

Fig. 11 Sampling area and location of the stations during the 
expedition ANT XXIV-2 in the Southern Ocean  
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3.1.3  The North Sea 

 
Fig. 12 Bathymetry of the North Sea after Sünderman 1994 (Krause et al. 1995)  
 

The North Sea is located in the northern temperate climate zone (Banner et al. 

1980). It encompasses a surface area of 575.300 km2 (ICES 1983). Hence, it 

belongs to the world`s most extensive shelf seas (Huthnance 1991). Its bathymetry is 

shown in figure 12. The North Sea has a mean water depth of 100 m (Banner et al. 

1980). It is influenced by the neighboring Atlantic Ocean and the marginal Baltic Sea 

(Krause et al. 1995). Through the English Channel (Dover Straits), Scottish 
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continental shelves and the Norwegian Sea, the North Sea water has connection to 

the Atlantic Ocean (Huthnance 1991). High saline water flows from the Atlantic 

Ocean through the English Channel to the south into the North Sea and via the Fair 

Isle Current and the Norwegian deep trench to the north (Krause et al. 1995). From 

the Baltic Sea low saline water enters the North Sea through the Kattegat-Skagerrak 

(Huthnance 1991, Krause et al. 1995). The rivers Elbe, Weser and Ems supply the 

main import of freshwater and nutrients into the North Sea (Krause et al. 1995).    

 

Tidal motion is the central element within the dynamics of the North Sea (Otto et al. 

1990). Thus, most of the variance in sea-surface elevation and currents within a large 

part of the North Sea is due to mainly semidiurnal tides (Huthnance 1991). Tides are 

important for intertidal systems (Otto et al. 1990). Their currents cause further 

horizontal and vertical exchange and have an impact on the bottom (Otto et al. 

1990). Further effects are the transport via “rectified currents, the tidal residuals” 

(Otto et al 1990). The tide has also an impact on the carrying of plankton that 

performs vertical migration (Otto et al. 1990). Other components of the North Sea 

dynamics are effectively forced currents and related elevations within the extensive 

shallow waters (Huthnance 1991). These are the results of variations in atmospheric 

pressure and in particular strong winds (Huthnance 1991). Within some parts of the 

North Sea, these currents and their linked elevations may be comparable to the tidal 

motion or even larger (Huthnance 1991).    
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Fig. 13 The German Bight and Helgoland Island with the sampling station “Helgoland Roads” 

(Wesche 2007) 

 

Copepods for this study were sampled during the expedition HE 302 with RV 

Heincke in April/May 2009 in the North Sea at station 56 by U. Tillmann. Further 

sampling of zooplankton in the North Sea was conducted by the crew of MB Aade 

with a plankton net (mesh size: 150 µm) close to the island of Helgoland at 

“Helgoland Roads” (54° 11.18’ N; 7° 54.0’ E; see fig. 13). This is a “hydrographically 

complex locality” (Greve et al. 2004) about 50 km offshore in the German Bight 

(Eilers et al. 2001). Sampling station characteristics are strong currents and thus no 

stratification (Radach et al. 1990). The German Bight is the southeastern part of the 

North Sea (Rachor 1990) and located at the very margin of the sea (Rachor 1990). It 

shows water depths mainly between 20 and 40 m (Rachor 1990, Otto et al. 1990). Its 

hydrography is influenced by Atlantic water, central North Sea water and coastal 

waters (Krause et al. 1995). It receives waters that originate mainly from western 
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nearshore areas of the North Sea and is almost uncoupled from the oceanical waters 

of the northern North Sea, which are deep and effectively renewed by river runoff 

(Rachor 1990). During summer, the German Bight is strongly influenced by a 

freshwater inflow from the rivers Elbe and Weser (Halsband & Hirche 2004). An 

inflow of Atlantic water masses from the north and the English Channel arrives at the 

island Helgoland during autumn and winter (Goldberg 1973, Banner et al. 1980, Otto 

et al. 1990). A widespread feature of the German Bight is the incurrence of frontal 

zones caused by coinciding water masses of diverse origins (Otto et al. 1990). 

Forced by easterly wind stress there is a central North Sea bottom water upwelling 

that causes upwelling fronts in the west of the Helgoland (Krause et al. 1986).     

 

 
Fig. 14 The List Tidal Basin (Kochmann et al. 2008)  
 

Another sampling station of this study in the North Sea is a fixed one (55°01.30 N, 

08°27.10 E) that is located in the southernmost of three main tidal channels in the 
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List Tidal Basin in the northern Wadden Sea (Martens & van Beusekom 2008). 

Sampling at this station was conducted by the crew of the “Mya”. One semi enclosed 

bight within the North Sea is the List Tidal Basin that ranges 404 km2 (Martens & van 

Beusekom 2008). Its connection to the open North Sea is limited to a single tidal inlet 

(Martens & van Beusekom 2008) with a width of 2.8 km (Diederich 2006). Laterally 

the basin is enclosed by two dams, one to the north and one to the south, that are 

connecting the island of Rømø and the island of Sylt (Martens & van Beusekom 

2008). The mean water depth of the basin is 2.7 m (Loebl et al. 2007), but in the 

main tidal channel, the water depth reaches up to 40 m (Martens & van Beusekom 

2008). Usually, the water column is homogenously mixed (Hickel 1980). The tides in 

the List Tidal Basin appear semidiurnal and have a mean range of about two metres 

(Martens & van Beusekom 2008). During the period of low tide, about 30% of the 

area is emerged (Martens & van Beusekom 2008).  

 

3.1.4 The Mediterranean Sea 

 
Fig. 15 The Mediterranean Sea (Azzurro et al. 2006)  
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A map of the Mediterranean Sea is shown in figure 15. The Mediterranean Sea is 

connected via the Strait of Gibraltar (15 km wide, 320 m max depth) to the Atlantic 

Ocean. Different sub-basins developed as consequence of complex geological 

events. The basins differ in their geo-morphological and hydrological features. The 

Eastern and the Western Basins are the two major sub-regions. They have two partly 

separated thermohaline cells. The Atlantic Ocean influences the Western region 

more directly than the Eastern one, the former being on average more productive 

than the latter.  

 

The Mediterranean climate is influenced by the European and the Asian climate 

(Gómez & Gorsky 2003). In the Mediterranean Sea, thermal anomalies as well as 

changes concerning the circulation patterns occur (Maheras et al. 1999). They are 

influenced by the Sahara and the Atlantic Ocean (Maheras et al. 1999). The 

Mediterranean Sea is very receptive to heat or water budget fluctuations (Béthoux et 

al. 1999). The climate of the eastern and western basins is affected by different 

processes (Reddaway & Bigg 1996). Therefore, changes in the two basins are often 

uncoordinated (Reddaway & Bigg 1996).  

 

In general, the Mediterranean Sea is considered a poor productive oligotrophic sea 

(Jacques & Tréguer 1986). Exceptions are some bays and ports where nutritional 

anthropic inputs may favor the growth of phytoplankton and zooplankton (Jamet et al. 

2001). Characteristic of the Mediterranean Sea are shallow or very shallow straits 

(e.g. Gibraltar, Dardanelles, Silicily) that prevent a deep-water exchange with the 

neighboring ocean and between the deep sub-basins (Siokuou-Frangou et al. 2010). 

However, the deep waters are frequently formed autonomously in the western and 

eastern sub-basins of the Mediterranen Sea and renewed on a yearly basis and thus 

are well oxygenated (Hopkins 1978). The mixed layer depth decreases in winter, as a 

consequence of Atlantic water that flows into the Mediterranean basin and that adds 

a haline factor to the thermal contribution in stratification of large areas of the 

Southwest Mediterranean (D`Ortenzio et al. 2005). This water is frequently named 

Modified Atlantic Water (MAW) as it causes a proceeding eastward change in 

temperature and salinity characteristics (Siokou-Frangou et al. 2010). A further 
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characteristic of the Mediterranean Sea is the occurrence of stable or semi-

permanent gyres in the sub basins (Robinson & Golnaraghi 1994). These gyres are 

generally depending on the topography (Robinson & Golnaraghi 1994).     

 

 
Fig. 16 Sampling area in the Mediterranean Sea (Gómez & Gorsky 2003) 

 

The Ligurian Sea forms the northeastern part of the western Mediterranean and is 

bounded by the French coast (Provence, Corsica) and Italy (Boucher 1984). This 

Mediterranean basin is linked to the North Atlantic climate region (Mazzocchi et al. 

2011). A cyclonic circulation at the surface is characteristic for the Ligurian Sea 

(Béthoux et al. 1982). This is the eastern part of the large cyclonic circulation of the 

northwestern Mediterranean Sea (Hopkins 1978 a). This cyclonic circulation encloses 

a central divergence that is characterized by dense and cold waters that are the 

result of upwelling very deep water masses (2000 m, Hela 1963). Offshore the 

western Ligurian-French coast, a thermohaline front, the Liguro-Provençal front, 

originates from the encounter of the faster flowing Ligurian current that flows 

counterclockwise from the eastern Ligurian Sea towards the Gulf of Lion and also 

from the weak currents in the central zone of the divergence (Boucher et al. 1987, 

Sournia et al. 1990). The Liguro-Provençal front may be impaired by such meanders 

and instabilities as anticyclonic eddies (Sournia et al. 1990, Pinca & Dallot 1997). 

Due to the complex hydrological system, the Ligurian Sea is less oligotrophic than 

other Mediterranean areas with the central zone of divergence being a highly 

productive zone in spring and strictly related to the beginning of the phytoplankton 
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bloom which is mainly composed of dinoflagellates (see Licandro & Icardi 2009 and 

references within). This feature affects the primary consumers as well as higher 

trophic levels comprising micronekton, molluscs, small fish and, in turn, large marine 

mammals that live in this area (Relini et al. 1994, Forcada et al. 1995, Pinca & Dallot 

1997).  

 

One station in the Mediterranean Sea was sampled for this study by S. Gasparini. 

Sampling was done at Villefranche sur Mer Point B (43° 41.10 ' N, 7° 18.94' E; see 

fig. 16) within the Ligurian Sea. Point B is a permanent coastal station with a water 

depth of about 80 m, and is located at the entrance of the Bay of Villefranche that is 

open towards the sea and exposed to wind (Nival & Corre 1976). To a great extent, 

the water circulation in the bay is goaded by the Northern Mediterranean Current 

(Molinero et al. 2005 a, b). The settings of the open Mediterranean further have a 

deep influence there (Molinero et al. 2005a, b). Atmospheric pressure, precipitation 

and temperature of the surface water in the Bay of Villefranche show a close 

interrelation with the North Atlantic Oscillation (NOA), an index of climate variation in 

the North Atlantic Ocean and surrounding continents (Molinero et al. 2005 a, b). 

 

3.1.5 Sampling   

At each station during the three expeditions with RV Polarstern a multinet (mesh 

size: 55 µm, opening size: 0.25 m2) was deployed down to a maximum depth of 250 

m. This kind of sampling is in accordance with the small size of the species that 

mainly lives within the epipelagic zone (see e.g. Metz 1995, Atkinson & Sinclair 2000, 

Ashijan et al. 2003). The samples at the other investigation areas were kindly 

provided by other people as described above. Hence, sampling within the North Sea 

and the Mediterranean Sea could not follow this scheme.    

 

3.1.6 Preparation of the samples  

For the genetic analyses, living adult and subadult females (C5 stage) of Oithona 

spp. were sorted from the samples at 4°C on board and were immediately transferred 

into absolute ethanol for later analysis. Following the published protocol for collection 
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and preservation of ZooGene samples, the ethanol was exchanged every 24 hours 

until it remained clear (http://www.zoogene.org/main/sample_preservation_protocol.html). 

Additional specimens were stored in formaldehyde (end concentration of 4%, 

buffered with hexamine) for morphological examinations. The samples from 

Helgoland Roads were treated the same way. Further samples were ethanol- 

preserved mixed zooplankton samples. All ethanol samples were kept cold at about 

4-8°C until DNA extraction.  

 

3.2 Morphological studies and literature research 

For the morphological studies, all literature that was made available, mainly on 

Oithona similis, but also on Oithona atlantica, Oithona frigida, Oithona helgolandica, 

Oithona nana and Oithona plumifera, was studied. This study resulted in a card file 

showing all gained figures and descriptions of morphological structures for each of 

the species. Prior to the DNA extraction, formaldehyde preserved (end concentration 

of 4%, buffered with hexamine) individuals sampled in the respective investigation 

area were studied morphologically under an inverted microscope (Zeiss; Axiovert 40) 

with a magnification of 40. Whole animals as well as body parts were examined. At 

first, literature was studied to identify the characteristics that could be used to 

separate between the different species. It was very important to find remarkable 

characters that could be discovered and assigned easily to one species within 

seconds. This quick decision method was essential for dealing with the ethanol 

preserved individuals that had to be sorted under a microscope prior to the DNA 

extraction. The exposure to heat could have resulted in destruction of their DNA. To 

further prevent the DNA from destruction, the samples were kept on ice during the 

whole time, and ethanol preserved individuals were placed under a microscope that 

was equipped with a LED lamp.  

 

Oithona atlantica, O. frigida and O. nana e.g. differ from O. similis in body size and 

the shape of the forehead (see figures 17-20 below and table 4 in the results). 

However, the size can vary (e.g. Van Breemen 1903, Dvoretsky & Dvoretsky 2009) 

and a variation of the rostrum shape has been reported as well (Früchtl 1924). 

Therefore, it was necessary to find a further characteristic that helps to clearly 
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determine an individual within seconds to either O. similis or one of the other species. 

The “number and shape of the setae externae at [the] outer branches of the 

swimming feets” (Van Breemen 1903) was a very supportive characteristic. A short 

view on the external spines of the exopodits of the swimming legs together with the 

body size and the shape of the rostrum, made it possible to decide within seconds 

which species the adult or subadult female belonged to. The most striking differences 

that are found when the exopods of O. similis are compared with the ones of the 

other three species are the number and structure of the setae of the third segments 

of swimming feet one to four (see figures 21-24 below). This kind of differentiation is 

in accordance with the observations by e.g. Giesbrecht (1893, 1902), Rosendorn 

(1917), Mori (1937), Nishida et al. (1977), Nishida (1985) and Bradford-Grieve et al. 

(1999). Oithona plumifera is not shown here as no individuals of this species were 

found within this study. However, it shares most structures with O. atlantica but 

shows remarkable “plumes”.  

 

 
Fig. 17 Oithona similis: female dorsal view (a), female rostrum lateral view (b) (Nishida 1985)  
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Fig. 18 Oithona atlantica female: dorsal view and rostrum lateral (Nishida 1985)  

 
Fig. 19 Oithona frigida female dorsal view (Brady 1918), rostrum lateral, dorsal (Giesbrecht 

1902)  
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Fig. 20 Oithona nana female: dorsal, head dorsal and lateral (Giesbrecht 1893)  
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Fig. 21 Oithona similis female: leg 1 (f), leg 2 (g), leg 3 (h), leg 4 (i) (Nishida 1985)  
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Fig. 22 Oithona atlantica female (e) leg 1, (f) leg 2, (g) leg 3, (h) leg 4 (Nishida 1985)  
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Fig. 23 Oithona frigida female leg 1, leg 2, leg 3, leg 4 (Giesbrecht 1902)  
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Fig. 24 Oithona nana leg 1, leg 2 (Giesbrecht 1893), leg 3 (Nishida 1985), leg 4 (Giesbrecht 1893)   
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3.3 Genetic examinations 

Beside Oithona similis, O. frigida, an endemic species in the Southern Ocean, O. 

atlantica, found in the Arctic Ocean, and the two species O. nana and Oithona sp. 

from the North Sea were included in the genetic analyses in order to examine 

interspecific variability in the CO1 gene sequences. Following Bucklin (2000), the 

entire Oithona individuals were prepared for molecular analysis without DNA 

purification or extraction because of their small size (≤ 1 mm). The copepods were 

separated under an inverted microscope (Zeiss; Axiovert 40). Every single individual 

was transferred from absolute ethanol into a 1.5 mm cup containing 180 µl of pre-

cooled ATL buffer and glass beads (diameter: 425-600 µm; Sigma G8772). Each cup 

was shaken on a vortexer at maximum speed for five minutes. The cups were 

horizontally fixed with tape. Afterwards, the samples were centrifuged for 10 minutes 

(16000 G). In the next step, 20 µl proteinase K were added. The samples were 

incubated over night in a thermo incubator (56°C; 550 rpm). The next day, 

purification was done following the instructions of the Qiagen Kit method for tissue. 

Then, 200 µl ATL buffer including 1 µl carrier RNA per 200 µl were applied. The 

samples were incubated for 10 minutes at a temperature of 70°C, before 200 µL 

ethanol were added. The samples were then eluted with 50 µl AE buffer. After the 

elution, 3 µL DNA of the samples were added to the PCR premix. Cytochrome C 

oxidase subunit 1 (CO1) was amplified using the universal primers HCO and LCO of 

Folmer et al. (1994). This primer pair consistently amplified a 710-bp fragment of 

CO1 across the broadest array of invertebrates (Folmer et al. 1994):  

LCO1490: 5´ -ggtcaacaaatcataaagatattgg-3´;  

HCO2198: 5´-taaacttcagggtgaccaaaaatca-3´  
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Table 1: PCR Premix for the primers of Folmer et al. (1994) and Machida et al. (2004) 

 Stock Final concentration µl/sample 

H20   16.35 

10 x buffer 10 x 1 x 2.5 

dNTP 2 mM 0.2 mM 2.5 

HCO 100 µM 0.5 µM 0.125 

LCO 100 µM 0.5 µM 0.125 

Taq HM 5 Prime 5U/µl 0.03 U/µl 0.15 

Betain 100x 1x 0.25 

DNA   3 

 

The PCR reaction program consisted of 2 minutes at 94°C, followed by 40 cycles of 20 

seconds at 94°C, 10 seconds at 37°C and 50 seconds at 68°C. Upon completion of 

the 40 cycles, the program concluded with 8 minutes at 68°C and then held at 4°C. 

When LCO and HCO did not provide any bands on the gel, as it was the case in some 

individuals of Oithona atlantica, versatile primers for the CO1 genes based on highly 

conservative mitochondrial DNA regions [L1384-COI (GGT CAT GTA ATC ATA AAG 

ATA TTG G) X H2612-COI (AGG CCT AGG AAA TGT ATM GGG AAA)] were used 

(see Machida et al. 2004).  

 
Table 2: For the further procedure the PCR premix was modified (see below) 

 Stock Final concentration µl/sample 

H20   11,1 

5 x buffer 5 x 1 x 5 

dNTP 10 mM 0,2 mM 0,5 

HCO 100 µM 0,5 µM 0,125 

LCO 100 µM 0,5 µM 0,125 

Taq roust Kappa 5U/ µl 0,03 U/ µl 0,15 

5 x Enhancer 5 x 1 x 5 

DNA   3 

 

Furthermore, the PCR conditions were also modified for the primer designed by 

Folmer et al. (1994). The new PCR reaction program consisted of 2 minutes at 95°C, 
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followed by 40 cycles of 20 seconds at 95°C, 20 seconds at 49°C and 2 minutes at 

72°C. Upon completion of the 40 cycles, the programme concluded with 8 min at 

72°C and then held at 4°C. For the primer used by Machida et al. (2004), the new 

PCR reaction programme consisted of 2 minutes at 95°C, followed by 35 cycles of 20 

seconds at 95°C, 20 seconds at 51°C and 2 minutes at 72°C. Upon completion of the 

40 cycles the programme concluded with 8 minutes at 72°C and then held at 4°C. 

 

Samples that showed a positive reaction on the agarose gel were cleaned for 

sequencing. The first 148 samples were purified with the PCR purification KIT 28106 

and eluted with 20 µL EB buffer. The following samples were purified with ExoSapit 

by using 5 µL of the PCR product adding 0.25 µL EXO I (Exonuclease I) and 1 µL 

SAP (shrimp alkaline phosphatase). The samples were incubated for 30 minutes at 

37°C and then 15 minutes at 80 °C.  

 

3.3.1 Sequencing  

Cycle sequencing was done with the Big Dye Terminator of the cycle sequencing kit 

(ABI). Prior to sequencing with the ABI 3130XL sequencer, the samples were purified 

with the DyeEx Kit (Qiagen 63188). Sequence reads were proofread and contigs 

from both strands assembled in the program GeneMapper (ABI). The corrected 

sequences were aligned with the program Codon Code Alligner. Using Codon Code 

Alligner, ends were trimmed from the raw sequences. After trimming, forward and 

reverse sequences for each specimen were assembled. Each assembled contig was 

examined and edited by hand, and each sequence was checked for stop codons and 

quality. 

 

The number of unique mitochondrial haplotypes was determined with the computer 

program MEGA 4. Following Saunders (2009), neighbour joining was used to provide 

a visual display of COI-5´ variation within and between species.  

 

DNA-extraction, sequencing and analysis was done in cooperation with Andrea 

Eschbach and Christoph Held.  
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4. Results 

4.1 Morphology of Oithona similis  

4.1.1 Literature research 

In this chapter, the results concerning body size and setae of the exopodits are 

presented. According to the literature, minimal sizes are 0.45 mm (Oithona nana), 0.6 

mm (O. similis), 1.0 mm (O. atlantica) and 1.13 mm (O. frigida). Maximal sizes of 

these species are 0.8 mm (O. nana), 1.2 mm (O. similis), 1.4 mm (O. frgida) and 1.5 

mm (O. atlantica). For further details see table 3 below.   

 
Table 3 Bodysize of the females of the four Oithona species based on literature information 

Species Size [mm] Reference 

Oithona similis  0.73 - 0.8 Giesbrecht 1893 

O. similis 0.73 - 0.8 Van Breemen 1903 

O. similis 0.73 - 0.96 Van Breemen 1908 

O. similis 0.78 - 0.95 Rosendorn 1917 

O. helgolandica (=similis) 0.7 - 0.9 Sars 1918 (1913) 

O. similis 0.73 – 0.96 Pesta 1920 

O. helgolandica (=similis) 0.7 - 0.9 Campbell 1929 

O. similis 0.86 Willey 1920 

O. similis 0.76 - 1.0; usually 0.85 - 

1.00 

Farran 1929 

O. similis 0.74 - 0.95 Kiefer 1929 

O. similis 0.7 - 0.95 Wilson 1932 

O. similis 0.73 - 0.96 Rose 1933 

O. similis 0.9 - 0.93 Farran 1936 

O. similis about 0.8  Mori 1937 

O. similis 0.69- 0.96 Davis 1949 

O. similis 1.15 - 1.2 Vervoort 1951 

O. similis 0.75 - 0.95 Vervoort 1957 

O. similis 0.71 - 1.05 Tanaka 1960 

O. helgolandica (=similis) 0.7 Gaudy 1963 

O. similis 0.7 - 0.95 Kasturirangan 1963 

O. similis 0.80 - 1.02 Tanaka 1964 

O. helgolandica (=similis) 0.8 Ramirez 1966 
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Species Size [mm] Reference 

O. similis 0.89 - 1.1 Pallares 1968 

O. similis 0.7 - 0.8 Minoda 1971 

O. similis 0.69 - 0.84 Nishida et al. 1977 

O. similis 0.68 - 0.96 Nishida 1985 

O. similis 0.8 - 0.92 Mazzocchi et al. 1995 

O. similis 0.68 - 0.96 Chihara & Murano 1997 

O. similis 0.68 - 0.96 Bradford-Grieve et al. 1999 

O. similis 0.68 - 0.96 Hugget & Bradford-Grieve 2007 

O. similis 0.76 Blachowiak-Samolyk et al. 2008 

O. similis 0.6 - 0.75 Selifonova et al. 2008 

O. similis 0.7 - 0.95 Perumal & Rajkumar 

O. atlantica 1.0 - 1.16 Farran 1908 

O. atlantica 1.0 – 1.15 Rosendorn 1917 

O. atlantica 1 – 1.16 Früchtl 1923 

O. atlantica 1.06 Kiefer 1929 

O. atlantica 1.5 Gaudy 1963 

O. atlantica 1.1 Wellershaus 1970 

O. atlantica 1.11 - 1.29 Nishida et al. 1977 

O. atlantica 1.14 - 1.43 Nishida 1985 

O. atlantica 1.16 – 1.39 Mazzocchi et al. 1995 

O. atlantica 1.14 – 1.43 Chihara & Murano 1997 

O. atlantica 1.00 – 1.43 Bradford-Grieve et al. 1999 

O. atlantica 1 - 1.43 Hugget & Bradford-Grieve 2007 

O. frigida 1.2 – 1.35 Rosendorn 1917 

O. frigida 1.3 Brady 1918 

O. frigida 1.25 - 1.28 Farran 1929 

O. frigida 1.2 – 1.35 Kiefer 1929 

O. frigida 1.13 – 1.4 Vervoort 1957 

O. frigida 1.3 Wellershaus 1970 

O. frigida 1.23 - 1.24 Nishida 1985 

O. frigida 1.20 – 1.24 Bradford-Grieve et al. 1999 

O. nana 0.5 - 0.53 Giesbrecht 1893 

O. nana 0.5 – 0.55 Van Breemen 1903 

O. nana 0.7 - 0.8 Esterly 1905  
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Species Size [mm] Reference 

O. nana 0.5 – 0.65 Van Breemen 1908 

O. nana 0.59; 0.6  Burckhard 1913 

O. nana 0.53 Rosendorn 1917 

O. nana 0.5 – 0.53; 0.7 – 0.8 Pesta 1920 

O. nana 0.55 Murphy 1923 

O. nana 0.5 – 0.63 Früchtl 1924 

O. nana 0.53 – 0.55; 0.62 – 0.69 Gurney 1927 

O. nana 0.5 – 0.7 Kiefer 1929 

Oithonina nana 0.5 – 0.65 Wilson 1932 

Oithona nana  about 0.62 Mori 1937 

O. nana  0.53 – 0.55; 0.62 - 0.69 Sewell 1947 

O. nana 0.54 – 0.63 Marques 1951 

O. nana 0.75 Grice 1960 

O. nana 0.55 – 0.6 Björnberg 1963 

O. nana 0.6 Gaudy 1963 

O. nana 0.51 – 0.64 Tanaka 1964 

O. nana 0.6 – 0.66 González & Bowman 1965 

O. nana 0.5 Ramirez 1966 

O. nana 0.53 Wellershaus 1970 

O. nana 0.57 – 0.67 Marques 1974 

O. nana 0.54 - 0.62 Nishida et al. 1977 

O. nana 0.49 - 0.59 Nishida 1985 

O. nana 0.49 – 0.62 Chihara & Murano 1997 

O. nana 0.49 – 0.72 Bradford-Grieve et al. 1999 

O. nana 0.45 - 0.55 Selifonova et al. 2008 

 

Table 4 shows the formula of the external setae of the exopodits of Oithona similis. 

For legs one to three it is the same in all references: 1, 1, 2; 1, 0, 1; 1, 0, 1. For the 

fourth leg two variations exist: 0, 0, 0 (9 references) and 0, 0, 1 (19 references). For 

O. atlantica, three different formulae are mentioned that show differences at legs 

three and four: 1, 1, 2; 1, 0, 2; 1, 0, 1; 0, 0, 1 (7 references), 1, 1, 2; 1, 0, 2; 1, 0. 2; 0, 

0, 1 (2 references) and 1, 1, 2; 1, 0, 2; 1, 0, 2; 0, 0, 2 (1 reference). Two formulae of 

the external setae of the exopodits of O. frigida are described. Differences are shown 

in leg two: 1, 1, 3; 1, 1, 3; 1, 0, 1; 0, 0, 1 (6 references) and 1, 1, 3; 1, 1, 2; 1, 0, 1; 0, 
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0, 1 (5 references). Oithona nana is the only species with no variations in all cited 

references: 1, 1, 3; 1, 1, 3; 1, 1, 3; 1, 1, 2 (17 references). References that do not 

include the formulae for all four legs are additionally shown in table 4.  
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Table 4 Formula of the outer marginal spines of the exopodit of the female swimming legs (the source of information is color-coded, text 

references in red and references from drawn appendages in purple) 

Reference Name of the 
species  

Leg 1 
Number of exter-
nal exopod spines 
Exp1, Exp2, Exp 3 

Leg 2 
Number of external 
exopod spines 
Exp1, Exp2, Exp 3 

Leg 3 
Number of external 
exopod spines 
Exp1, Exp2, Exp 3 

Leg 4 
Number of exter-
nal exopod spines 
Exp1, Exp2, Exp 3 

Giesbrecht 1893 O. similis  
Claus 1866 

1, 1, 2 1, 0, 1 1, 0 ,1 0, 0, 0 

Wheeler 1901 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 0 

Van Breemen 1903 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 0 

Van Breemen 1908 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 0 

Rosendorn 1917 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 

Sars 1918 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 

Pesta 1920 O. helgolandica  

(= O. similis)  

1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 0 

Kiefer 1929 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 

Wilson 1932 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 0 

Rose 1933 O. helgolandica  

(= O. similis) 

1, 1, 2 1, 0, 1  0, 0, 0 

Mori 1937 O. similis  1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 

Davis 1949 O. helgolandica  

(= similis)  

1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 
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Reference Name of the 
species  

Leg 1 
Number of exter-
nal exopod spines 
Exp1, Exp2, Exp 3 

Leg 2 
Number of external 
exopod spines 
Exp1, Exp2, Exp 3 

Leg 3 
Number of external 
exopod spines 
Exp1, Exp2, Exp 3 

Leg 4 
Number of exter-
nal exopod spines 
Exp1, Exp2, Exp 3 

Lindberg 1950 O. similis 1, 1, 2 1, 0, 1   

Lindberg 1955 O. similis 1, 1, 2 1, 0, 1   

Crisafi 1956 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 

Shen & Bai 1956 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 0 

Tanaka 1960 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 

Kasturirangan 1963 O. similis  - , -, 2 -, -, 1  -, - , 1  -, - , 0 

Pallares 1968 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 

Wellershaus 1970 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 

Bradford 1971 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 

Bradford 1972 O. similis  1, 0, 1    

Chen et al. 1974 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 

Nishida et al. 1977 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 

Dawson & Knatz 1980 O. similis 1, 1, 2 1, 0, 1  0, 0, 1 

Shuvalov 1980  O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 

Nishida 1985 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 

Zheng Zhong et al. 1989 O. similis    0, 0, 1 (after Zheng 

Zhong et al. 1965) 

Mazzocchi et al. 1995 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 
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Reference Name of the 
species  

Leg 1 
Number of exter-
nal exopod spines 
Exp1, Exp2, Exp 3 

Leg 2 
Number of external 
exopod spines 
Exp1, Exp2, Exp 3 

Leg 3 
Number of external 
exopod spines 
Exp1, Exp2, Exp 3 

Leg 4 
Number of exter-
nal exopod spines 
Exp1, Exp2, Exp 3 

Chihara & Murano 1997 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 

Bradford-Grieve et al. 1999 O. similis 1, 1, 2 1, 0, 1 1, 0, 1 0, 0, 1 

Rosendorn 1917  O. atlantica  
Farran 1908 

1, 1, 2 1, 0, 2 1, 0, 1 0, 0, 1 

Sars 1918 O. spinirostris 

 (= O. atlantica)  

1, 1, 2 1, 0, 2 1, 0, 2 0, 0, 1 

Kiefer 1929 O. atlantica 1, 1, 2 1, 0, 2 1, 0, 2 0, 0, 1 

Wellershaus 1970 O. atlantica 1, 1, 2 1, 0, 2 1, 0, 2 0, 0, 2 

Bradford 1972 O. atlantica 1, 1, 2    

Chen et al. 1974 O. plumifera  

(= O. atlantica) 

1, 1, 2 1, 0, 2 1, 0, 1 0, 0, 1 

Nishida et al. 1977 O. atlantica 1, 1, 2 1, 0, 2 1, 0, 1 0, 0, 1 

Björnberg et al. 1981 O. atlantica 1, 1, 2 1, 0, 2 1, 0, 1 0, 0, 1 

Nishida 1985 O. atlantica 1, 1, 2 1, 0, 2 1, 0, 1 0, 0, 1 

Mazzocchi et al. 1995 O. atlantica 1, 1, 2 1, 0, 2 1, 0, 1 0, 0, 1 

Chihara & Murano 1997 O. atlantica 1, 1, 2 1, 0, 2 1, 0, 1 0, 0, 1 

Bradford-Grieve et al. 1999 O. atlantica 1, 1, 2 1, 0, 2 1, 0, 1 0, 0, 1 

Hugget&Bradford-Grieve 2007 O. atlantica 1, 1, 2 1, 0, 2 1, 0, 1 0, 0, 1 
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Reference Name of the 
species  

Leg 1 
Number of exter-
nal exopod spines 
Exp1, Exp2, Exp 3 

Leg 2 
Number of external 
exopod spines 
Exp1, Exp2, Exp 3 

Leg 3 
Number of external 
exopod spines 
Exp1, Exp2, Exp 3 

Leg 4 
Number of exter-
nal exopod spines 
Exp1, Exp2, Exp 3 

Giesbrecht 1902 O. frigida n.sp. 1, 1, 3 1, 1, 3 1, 0, 1 0, 0 ,1 

Rosendorn 1917 O. frigida 1, 1, 3 1, 1, 2 1, 0, 1 0, 0, 1 

Kiefer 1929 O. frigida 1, 1, 3 1, 1, 2 1, 0, 1 0, 0, 1 

Lindberg 1950 O. frigida 1, 1, 2 1, 1, 2   

Tanaka 1960 O. frigida 1, 1, 3 1, 1, 3 1, 0, 1 0, 0, 1 

Wellershaus 1970 O. frigida 1, 1, 3 1, 1, 3/2 1, 0, 1 0, 0, 1 

Bradford 1971 O. frigida 1, 1, 3 1, 1, 3 1, 0, 1 0, 0, 1 

Shuvalov 1980 O. frigida 1, 1, 3 1, 1, 2 1, 0, 1 0, 0, 1 

Björnberg et al. 1981 O. frigida 1, 1, 3 1, 1, 2 1, 0, 1 0, 0, 1 

Nishida 1985 O. frigida 1, 1, 3 1, 1, 3 1, 0, 1 0, 0, 1 

Bradford-Grieve et al. 1999 O. frigida 1, 1, 3 1, 1, 3 1, 0, 1 0, 0, 1 

Giesbrecht 1893 O. nana n. sp. 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 

Van Breemen 1903 O. nana 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 

Esterly 1905 O. nana 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 

Van Breemen 1908 O. nana 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 

Rosendorn 1917 O. nana 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 

Pesta 1920 O. nana 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 

Kiefer 1929 O. nana 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 
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Reference Name of the 
species  

Leg 1 
Number of exter-
nal exopod spines 
Exp1, Exp2, Exp 3 

Leg 2 
Number of external 
exopod spines 
Exp1, Exp2, Exp 3 

Leg 3 
Number of external 
exopod spines 
Exp1, Exp2, Exp 3 

Leg 4 
Number of exter-
nal exopod spines 
Exp1, Exp2, Exp 3 

Wilson 1932 Oithonina nana 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 

Rose 1933 Oithona nana 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 

Mori 1937 O. nana 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 

Grice 1960 O. nana    1, 1, 2 

Tanaka 1960 O. nana 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 

González & Bowman 1965 O. nana 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 

Ramirez 1966 O. nana 1, 1, 3 - 1, 1, 3 1, 1, 2 

Wellershaus 1970 O. nana 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 

Nishida et al. 1977 O. nana 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 

Dawson & Knatz 1980 O. nana 1, 1, 3 1, 1, 3  1, 1, 2 

Ferrari & Bowman 1980 O. nana    1, 1, 2 

Shuvalov 1980 O. nana 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 

Nishida 1985 O. nana 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 

Chihara & Murano 1997 O. nana 1, 1, 3 1, 1, 3 1, 1, 3 1, 1, 2 

 

The numbers of inner marginal setae of the exopodit of the Oithona similis swimming legs differ for foot one (Table 5): 0, 1, 4; 0, 1, 

5; 0, 1, 5; 0, 1, 5 (nine references) and 0, 1, 5; 0, 1, 5; 0, 1, 5; 0, 1, 5 (two references). For O. atlantica also two different formulae 

are shown: 0, 1, 4; 0, 1, 5; 0, 1, 5; 0, 1, 5 (three references) and 1, 1, 4; 0, 1, 5; 0, 1, 5; 0, 1, 5 (three references). Five cited 
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references refer to the following formula for O. frigida: 1, 1, 4; 0, 1, 5; 0, 1, 5; 0, 1, 5 and a schematic drawing of Björnberg et al. 

(1981) shows: 0, 1, 4 (5?); 0, 0, 4; 0, 1, 5; 0, 1, 4. Oithona nana is the only species with no variations in all cited references, also for 

the inner setae formulae: 1, 1, 4; 1, 1, 5; 1, 1, 5; 1, 1, 5 (six references). References, not including the formulae for all four legs, are 

additionally shown in Table 5.  

 
Table 5 Formula of the inner marginal seta of the exopodit of the female swimming legs (the source of the information is color-coded: text 

references in red and references from drawn appendages in purple) 

Reference 
 

Name of the species  Leg 1 
Number of inner 
marginal exopod 
setae 
Exp1, Exp2, Exp 3 

Leg 2 
Number of inner 
marginal exopod  
setae 
Exp1, Exp2, Exp 3 

Leg 3 
Number of inner 
marginal exopod 
setae 
Exp1, Exp2, Exp 3 

Leg 4 
Number of inner 
marginal exopod 
setae 
Exp1, Exp2, Exp 3 

Giesbrecht 1893 Oithona similis  
Claus 1866 

0, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5  

Van Breemen 1908 O. similis    0, 1, 5 

Rosendorn 1917 O. similis 0, 1, 5 0, 1, 5 0, 1, 5 0, 1, 5 

Sars 1918 O. similis 0, 1, 4 0, 1, 5   

Rose 1933 O. helgolandica  

(= similis) 

 0, 1, 5   

Mori 1937 (1964) O. similis  0, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Davis 1949 O. helgolandica  

(= similis) 

0, 1, 5 0, 1, 5 0, 1, 5 0, 1, 5 
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Reference 
 

Name of the species  Leg 1 
Number of inner 
marginal exopod 
setae 
Exp1, Exp2, Exp 3 

Leg 2 
Number of inner 
marginal exopod  
setae 
Exp1, Exp2, Exp 3 

Leg 3 
Number of inner 
marginal exopod 
setae 
Exp1, Exp2, Exp 3 

Leg 4 
Number of inner 
marginal exopod 
setae 
Exp1, Exp2, Exp 3 

Shen & Bai 1956 O. similis 0, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Crisafi 1959 O. helgolandica  

(= similis)  

0, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Chen et al. 1974 O. similis 0, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Tanaka 1960 O. similis 0, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Bradford 1972 O. similis  0, 1, 5   

Chen et al. 1974 O. similis  0, 1, 5 0, 1, 5 0, 1, 5 

Nishida et al. 1977 O. similis 0, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Dawson & Knatz 1980 O. similis 0, 1, 4  0, 1, 5 0, 1, 5 

Gardner & Szabo 1982 O. similis  0, 1, 4 

(after Rose 1933; but in 

Rose it is 0, 1, 5) 

  

Nishida 1985 O. similis 0, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Zheng Zhong et al. 1989 O. similis    0, 1, 5 (after Zheng 

Zhong et al. 1965) 
Mazzocchi et al. 1995 O. similis 0, 1, 4 0, 1, 5, 0, 1, 5 0, 1, 5 

Chihara & Murano 1997 O. similis  0, 1, 5   

Bradford-Grieve et al. 1999 O. similis ?, 1, 4 1, 1, 5 1, 1, 5 0, 1, 5 
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Reference 
 

Name of the species  Leg 1 
Number of inner 
marginal exopod 
setae 
Exp1, Exp2, Exp 3 

Leg 2 
Number of inner 
marginal exopod  
setae 
Exp1, Exp2, Exp 3 

Leg 3 
Number of inner 
marginal exopod 
setae 
Exp1, Exp2, Exp 3 

Leg 4 
Number of inner 
marginal exopod 
setae 
Exp1, Exp2, Exp 3 

Rosendorn 1917 O. atlantica  
Farran 1908 

0, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Sars 1918 O. spinirostris 

 (=atlantica)  

1, 1, 4 0, 1, 5  0, 1, 5 

Bradford 1972 O. atlantica ?, 1, 4 (?)    

Chen et al. 1974 O. atlantica 0, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Nishida et al. 1977 O. atlantica 1, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Nishida 1985 O. atlantica 1, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Mazzocchi et al. 1995 O. atlantica 1, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Chihara & Murano 1997 O. atlantica    0, 1, 5 

Bradford et al. 1999 O. atlantica 0, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Hugget & Bradford-Grieve 

2007 

O. atlantica ?, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Giesbrecht 1902 O. frigida n. spec. 1, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Rosendorn 1917 O. frigida 1, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Tanaka 1960 O. frigida 1, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Björnberg et al. 1981 O. frigid 0, 1, 4 0, 0, 4 0, 1, 5 0, 1, 4 
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Reference 
 

Name of the species  Leg 1 
Number of inner 
marginal exopod 
setae 
Exp1, Exp2, Exp 3 

Leg 2 
Number of inner 
marginal exopod  
setae 
Exp1, Exp2, Exp 3 

Leg 3 
Number of inner 
marginal exopod 
setae 
Exp1, Exp2, Exp 3 

Leg 4 
Number of inner 
marginal exopod 
setae 
Exp1, Exp2, Exp 3 

Nishida 1985 O. frigida 1, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Bradford-Grieve et al. 1999 O. frigida 1, 1, 4 0, 1, 5 0, 1, 5 0, 1, 5 

Giesbrecht 1893 O. nana n. spec. 1, 1, 4 1, 1, 5 1, 1, 5 1, 1, 5 

Esterly 1905 O. nana  -, - , 3    

Van Breemen 1908 O. nana    0, 1, 5 

Rosendorn 1917 O. nana 1, 1, 4 1, 1, 5 1, 1, 5 1, 1, 5 

Wilson 1932 Oithonina nana  1, 1, 5   

Rose 1933 Oithona nana    0, 1, 5 

Mori 1937 O. nana 1, 1, 4 1, 1, 5 1, 1, 5 1, 1, 5 

González & Bowman 1965 O. nana 1, 1, 4 1, 1, 5 1, 1, 5 1, 1, 5 

Ramirez 1966 O. nana 0, 1, 5  1, 1, 5 1, 1, 5 

Nishida et al. 1977 O. nana 1, 1, 4 1, 1, 5 1, 1, 5 1, 1, 5 

Dawson & Knatz 1980 O. nana 1, 1, 4 1, 1, 5  0, 1, 5 

Ferrari & Bowman 1980 O. nana    0, 1, 5 

Nishida 1985 O. nana 1, 1, 4 1, 1, 5 1, 1, 5 1, 1, 5  
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4.1.2 Personal observations 

Based on the shape of the rostrum, body size and the formula and structure of the 

outer setae of the exopodits of the swimming legs (see Figs. 21-24 and Tables 4 and 

5), five different morphotypes were identified: Oithona similis, O. atlantica, O. frigida, 

O. nana and Oithona sp.. Individuals from the Arctic Ocean were identified as O. 

similis or O. atlantica. All specimens from the Mediterranean Sea showed the 

morphology of O. similis. Within the North Sea, individuals of three morphotypes 

were found: O. similis (HE 302; Helgoland), O. nana (Helgoland) and Oithona sp. 

(Sylt, List Basin). In this study, it was not possible to assign Oithona sp. to a specific 

known species. It shares the appendage structure of the swimming legs` exopodits of 

O. nana and shows a rostrum that is bended like the one of O. similis and can also 

only be seen from ventral or lateral view. In the Southern Ocean, two morphotypes 

were found: O. similis and O. frigida.  

 

4.2. Genetics of Oithona similis 

Sequences were gained from 163 individuals that were morphologically identified as 

O. similis prior to sequencing (71 from the Arctic Ocean, 83 from the Southern 

Ocean, 2 from the North Sea and 7 from the Mediterranean Sea). 19 individuals from 

the Arctic Ocean had the morphological appendage structure of the swimming legs of 

O. atlantica. Eight of the individuals that were sampled in the Southern Ocean were 

morphologically described as O. frigida. From the North Sea, 10 individuals were 

defined as O. nana and 9 copepods were named Oithona sp. prior to sequencing. 

 

The distribution of the haplotypes is shown in figure 25 and Table 6. Oithona similis 

haplotypes were found in the Arctic Ocean (3 groups), the Southern Ocean (3 

groups), the North Sea (1 group) and the Mediterranean Sea (2 groups). Within the 

Arctic Ocean, the biggest group (Osi ARK 1) includes mt CO1 sequences of 69 

individuals that were described as O. similis and 19 copepods that were defined as 

O. atlantica. This group is widely distributed. It was found at all three stations in all 

depths of the expedition ARK XXIII-3 (as well as at all six stations sampled during the 

second expedition in the Arctic Ocean (ARK XXV-1). The two other groups (Osi ARK 

2, Osi ARK 3) were only found at station 308 (ARK XXIII-3) in the upper 50 m of the 
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water column. These are each represented by just one female of the O. similis 

morphotype.  

 

The three groups from the Southern Ocean only include individuals that were 

morphologically defined as O. similis. The first group (Osi ANT 1) is represented by 

72 individuals and was found at the following stations of the expedition ANT XXIV-2: 

St. 21 (0-50 m, 50-100 m, 100-150 m, 200-250 m), St. 33 (0-50 m, 50-100 m, 100-

150 m), St. 34 (0-50 m, 50-100 m, 100-150 m), St. 39 (0-50 m, 200-250 m), St. 58 (0-

50 m), St. 62 (0-50 m, 50-100 m), St. 85 (100-150 m, 150- 200 m). The second group 

(Osi ANT 2) includes 19 copepods from the Southern Ocean and was only found at 

two stations namely at station 13 from 0-150 m depth and at station 85 within the 

upper 50 m of the water column. The third group (Osi ANT 3) consists only of one 

individual that was caught at station 13 between a water depth of 100 and 150 m.  

 

In the North Sea, one haplotype (Osi North Sea/ Med.Sea) was found for Oithona 

similis. Eight individuals were sampled at two places in the North Sea close to the 

island of Helgoland (one female) and during an expedition of RV Heincke (one 

female) as well as in the Mediterranean Sea close to Villefranche (six individuals). In 

the Mediterranean Sea, a further haplotype (Osi Med. Sea) was detected. It is only 

represented by one specimen.  

 

Additionally to the Oithona similis groups, three other copepod species groups were 

identified morphologically as well as via sequencing: O. frigida (Ofr) in the Southern 

Ocean, O. nana (Ona) (ten females) in the North Sea close to the island of 

Helgoland, and Oithona sp. represented by 9 individuals in the North Sea close to the 

island of Sylt. The O. frigida group consists of eight individuals that were sampled at 

five different stations during the expedition ANT XXIV-2: St. 13 (150-200 m), St. 33 

(50-100 m, 100-150 m), St. 34 (100-150 m), St. 64 (200-250 m), St. 85 (100-150 m).       
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Table 6 Overview of the different haplotypes analyzed in the Arctic Ocean, Southern Ocean, 

Mediterranean Sea and North Sea 

Abbreviation Explanation 

Osi ARK 1 Oithona similis Arctic Ocean Group 1 

Osi ARK 2 Oithona similis Arctic Ocean Group 2 

Osi ARK 3 Oithona similis Arctic Ocean Group 3 

Osi ANT 1 Oithona similis Southern Ocean Group 1 

Osi ANT 2 Oithona similis Southern Ocean Group 2 

Osi ANT 3 Oithona similis Southern Ocean Group 3 

Osi Med. Sea Oithona similis Mediterranean Sea 

Osi North Sea/Med Sea Oithona similis North Sea, Mediterranean Sea 

Ona Oithona nana  

Ofr Oithona frigida 

Osp Oithona sp. 

1; 290, 50 ARK XXIII-3, St. 290, 50-100 m  

1; 290, 100 ARK XXIII-3, St. 290, 100-150 m 

1; 308, 0 ARK XXIII-3, St. 308, 0-50 m 

1; 308, 50 ARK XXIII-3, St. 308, 50- 100 m 

1; 308, 100 ARK XXIII-3, St. 308, 100-250 m 

1; 392, 0 ARK XXIII-3, St. 392, 0-150 m 

2; 1, 0 ARK XXV-1, St. 1, 0-100 m 

2; 24, 0 ARK XXV-1, St. 24, 0-100 m 

2; 34, 0 ARK XXV-1, St. 34, 0-100 (200) m 

2; 57, 0 ARK XXV-1, St. 57, 0-100 m 

2; 63, 0 ARK XXV-1, St. 63, 0-100 m 

2; 74, 0 ARK XXV-1, St. 74, 0-100 m 

3; 13, 0 ANT XXIV-2, St. 13, 0-50 m  

3; 13, 50 ANT XXIV-2, St. 13, 50-100 m 

3; 13, 100 ANT XXIV-2, St. 13, 100-150 m 

3; 13, 150 ANT XXIV-2, St. 13, 150-200 m  

3; 21, 0 ANT XXIV-2, St. 21, 0-50 m 

3; 21, 50 ANT XXIV-2, St. 21, 50-100 m 

3; 21, 100 ANT XXIV-2, St. 21, 100-150 m 

3; 21, 200 ANT XXIV-2, St. 21, 200-250 m 

3; 33, 0 ANT XXIV-2, St. 33, 0-50 m 
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Abbreviation Explanation 

3; 33, 50 ANT XXIV-2, St. 33, 50-100 m 

3; 33, 100 ANT XXIV-2, St. 33, 100-150 m 

3; 34, 0 ANT XXIV-2, St. 34, 0-50 m 

3; 34, 50 ANT XXIV-2, St. 34, 50-100 m 

3; 34, 100 ANT XXIV-2, St. 34, 100-150 m 

3; 39, 0 ANT XXIV-2, St. 39, 0-50 m 

3; 39, 200 ANT XXIV-2, St. 39, 200-250 m 

3; 58, 0 ANT XXIV-2, St. 58, 0-50 m  

3; 62, 0 ANT XXIV-2, St. 62, 0-50 m 

3; 62, 50 ANT XXIV-2, St. 62, 50-100 m 

3; 64, 200 ANT XXIV-2, St. 64, 200-250 m 

3; 85, 0 ANT XXIV-2, St. 85, 0-100 m 

3; 85, 100 ANT XXIV-2, St. 85, 100-150 m 

3; 85, 150 ANT XXIV-2; St. 85, 150-200 m 

Point B Mediterranean Sea 

HE 302 North Sea 

Helgol.  North Sea, close to the island of Helgoland 

Sylt North Sea, close to the island of Sylt 
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Fig. 25 Distribution of the different genetic haplotypes in the investigation areas 
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As basis of the neighbor joining tree, the species Oithona nana was chosen (see fig. 

26). The tree has two main branches; the lower one is subdivided into three branches 

(see figs. 26, 26.3). One of these branches is formed by the second O. similis group 

from the Mediterranean Sea (see fig. 26.3). Oithona frigida forms the second branch 

and the sequences of the species Oithona sp. the third one (see fig. 26.3). The 

second main branch is divided into four branches (see figs. 26, 26.1, 26.2). The 

lowest one is subdivided into two branches, each one containing one of the two 

Arctic O. similis groups that are presented by one individual (see fig. 26.2). The 

second branch from below contains the O. similis group with individuals from the 

Mediterranean Sea and the North Sea (see fig. 26.2). The third one from below is 

divided in two branches (see fig. 26.2). The single individual from the Southern 

Ocean has its own branch next to the second group from the Southern Ocean. The 

uppermost branch is subdivided in two branches (see fig. 26.1, 26.2). One containing 

the first Arctic group (see fig. 26.1), and the other one formed by the first Southern 

Ocean group (see fig. 26.2).  

. 
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Fig 26.1 Detail 1 of 
extraction consenus tree 

Osi ARK 1 
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Fig 24.2 Detail 2 of extraction consenus tree 

Osi ANT 1 

Osi ANT 3 

Osi ANT 2 

Osi ARK 2 
Osi ARK 3 

Osi North/ Med. Sea 
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Fig. 24.3 Detail 3 of the extraction consenus tree 

Osp 

Ofr 

Ona 

Osi Med. Sea 
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Table 7 shows the distribution of the individuals that belong to the haplotype “Osi ARK 1” from the Arctic Ocean according to the 

adjustment in the neighbor joining tree (see figs. 26, 26.1). Subadult females are referred to as C5. The table further shows the 

morphotype that was identified prior to sequencing.  

 
Table 7 The distribution of the individuals of haplotype Osi ARK 1 
Label Morphotype St. Nr., depth interval; 

expedition 
Position Latitude  Position Longitude Area 

Osi 1032 Oithona similis St. 34, 0-100 (200) m; ARK 25-1 74° 59.95' N 3° 30.35' W Greenland Sea  

Osi F1056 O. similis St. 1, 0-100 m; ARK 25-1 71° 23.91' N 8° 26.48' W Greenland Sea close to Jan Mayen 
(volcanic island) 

Osi F1078 O. similis (C5) St. 1, 0-100 m; ARK 25-1 71° 23.91' N 8° 26.48' W Greenland Sea close to Jan Mayen 
(volcanic island) 

Osi F432 O. similis St. 290, 50-100 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford See 

Osi F430 O. similis St. 308, 100-250 m; ARK 23-3 77° 5.11' N 164° 9.03' W Chukchi Plateau 

Osi F1040 O. similis St. 34, 0-100 (200) m; ARK 25-1 77° 59,95' N 3° 30.35' W Greenland Sea 

Oat F433 O. atlantica St. 290, 50-100 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 

Oat F452 O. atlantica St. 290, 50-100 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 

Osi F1213 O. similis St. 308, 50-100 m; ARK 23-3 77° 5.11' N 164° 9.03' W Chukchi Plateau 

Osi F914 O. similis St. 57, 0-100 m; ARK 25-1 75° 0,98' N 0° 59.47' E Greenland Sea 

Oat F484 O. atlantica St. 392, 0-150 m; ARK 23-3  80° 27.90' N 158° 45.66' W Canadian Basin/ Beauford Sea 
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Label Morphotype St. Nr., depth interval; 
expedition 

Position Latitude  Position Longitude Area 

Osi F1017 O. similis St. 24, 0-100 m; ARK 25-1 74° 59.94' N 8° 1.03' W Greenland Sea 

Osi F912 O. similis St. 57, 0-100 m; ARK 25-1 75° 0.98' N 0° 59.47' E  Greenland Sea 

Osi F917 O. similis St. 57, 0-100 m; ARK 25-1 75° 0.98' N 0° 59.47' E  Greenland Sea 

Osi F929 O. similis St. 57, 0-100 m; ARK 25-1 75° 0.98' N 0° 59.47' E Greenland Sea 

Oat F467 O. atlantica St. 308, 0-50 m; ARK 23-3  77° 5.11' N 164° 9.03' W Chukchi Plateau 

Oat F946 O. atlantica (C5) St. 63, 0-50 m; ARK 25-1 74° 59.39' N 4° 50.07' E Greenland Sea, close to Barents Sea 

Osi F1006 O. similis St. 74, 0-100 m; ARK 25-1 75° 0.06' N 11° 54.25' E Norwegian Sea 

Osi F915 O. similis St. 57, 0-100 m; ARK 25-1 75° 0.98' N 0° 59.47' E  Greenland Sea 

Osi F918 O. similis St. 57, 0-100 m; ARK 25-1 75° 0,98' N 0° 59.47' E Greenland Sea 

Osi F937 O. similis St. 63, 0-50 m; ARK 25-1 74° 59,39' N 4° 50.07' E Greenland Sea, close to Barents Sea 

Osi F921 O. similis St. 57, 0-100 m; ARK 25-1 75° 0,98' N 0° 59.47' E Greenland Sea 

Osi F1020 O. similis St. 24, 0-100 m; ARK 25-1 74° 59,94' N 8° 1.03' W Greenland Sea 

Osi F1062 O. similis St. 1, 0-100 m; ARK 25-1 71° 23,91' N 8° 26.48' W Greenland Sea close to Jan Mayen 
(volcanic island) 

Osi F1033 O. similis St. 34, 0-100 (200) m; ARK 25-1 74° 59,95' N 3° 30.35' W Greenland Sea 

Osi F1035 O. similis St. 34, 0-100 (200) m; ARK 25-1 74° 59,95' N 3° 30.35' W Greenland Sea 

Oat F455 O. atlantica St. 290, 50-100 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 
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Label Morphotype St. Nr., depth interval; 
expedition 

Position Latitude  Position Longitude Area 

Oat F459 O. atlantica St. 290, 50-100 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 

Osi F443 O. similis St. 290, 100-150 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 

Osi F1052 O. similis St. 34, 0-100 (200) m; ARK 25-1 74° 59.95' N 3° 30,35' W Greenland Sea 

Osi F1068 O. similis St. 1, 0-100 m; ARK 25-1 71° 23.91' N 8° 26.48' W Greenland Sea close to Jan Mayen 
(volcanic island) 

Oat F932 O. atlantica St. 57, 0-100 m; ARK 25-1 75° 0.98' N 0° 59.47' E Greenland Sea 

Oat F933 O. atlantica St. 57, 0-100 m; ARK 25-1 75° 0.98' N 0° 59.47' E Greenland Sea 

Osi F913 O. similis St. 57, 0-100 m; ARK 25-1 75° 0.98' N 0° 59.47' E Greenland Sea 

Osi F926 O. similis St. 57, 0-100 m; ARK 25-1 75° 0.98' N 0° 59.47' E Greenland Sea 

Osi F930 O. similis St. 57, 0-100 m; ARK 25-1 75° 0.98' N 0° 59.47' E Greenland Sea 

Osi F923 O. similis St. 57, 0-100 m; ARK 25-1 75° 0.98' N 0° 59.47' E Greenland Sea 

Oat F934 O. atlantica St. 57, 0-100 m; ARK 25-1 75° 0.98' N 0° 59.47' E Greenland Sea 

Osi F919 O. similis St. 57, 0-100 m; ARK 25-1 75° 0.98' N 0° 59.47' E Greenland Sea 

Osi F920 O. similis St. 57, 0-100 m; ARK 25-1 75° 0.98' N 0° 59.47' E Greenland Sea 

Osi F911 O. similis St. 57, 0-100 m; ARK 25-1 75° 0.98' N 0° 59.47' E Greenland Sea 

Osi F957 O. similis St. 63, 0-50 m; ARK 25-1 74° 59.39' N 4° 50.07' E Greenland Sea, close to Barents Sea 

Oat F941 O. atlantica St. 63, 0-50 m; ARK 25-1 74° 59.39' N 4° 50.07' E Greenland Sea, close to Barents Sea 
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Label Morphotype St. Nr., depth interval; 
expedition 

Position Latitude  Position Longitude Area 

Oat F940 O. atlantica St. 63, 0-50 m; ARK 25-1 74° 59.39' N 4° 50.07' E Greenland Sea, close to Barents Sea 

Osi F1019 O. similis St. 24, 0-100 m; ARK 25-1 74° 59.94' N 8° 1.03' W Greenland Sea 

Osi F1053 O. similis St. 34, 0-100 (200) m; ARK 25-1 74° 59.95' N 3° 30.35' W Greenland Sea 

Osi F936 O. similis St. 63, 0-50 m; ARK 25-1 74° 59.39' N 4° 50.07' E Greenland Sea, close to Barents Sea 

Osi F948 O. similis (C5) St. 63, 0-50 m; ARK 25-1 74° 59.39' N 4° 50.07' E Greenland Sea, close to Barents Sea 

Osi F953 O. similis St. 63, 0-50 m; ARK 25-1 74° 59.39' N 4° 50.07' E Greenland Sea, close to Barents Sea 

Osi F954 O. similis St. 63, 0-50 m; ARK 25-1 74° 59.39' N 4° 50.07' E Greenland Sea, close to Barents Sea 

Osi F998 O. similis St. 74, 0-100 m; ARK 25-1 75° 0.06' N 11° 54.25' E Norwegian Sea 

Osi F1030 O. similis St. 24, 0-100 m; ARK 25-1 74° 59.94' N 8° 1.03' W Greenland Sea 

Osi F1037 O. similis St. 34, 0-100 (200) m; ARK 25-1 74° 59.95' N 3° 30.35' W Greenland Sea 

Osi F1039 O. similis St. 34, 0-100 (200) m; ARK 25-1 74° 59.95' N 3° 30.35' W Greenland Sea 

Osi F1041 O. similis St. 34, 0-100 (200) m; ARK 25-1 74° 59.95' N 3° 30.35' W Greenland Sea 

Osi F1045 O. similis St. 34, 0-100 (200) m; ARK 25-1 74° 59.95' N 3° 30.35' W Greenland Sea 

Osi F1046 O. similis St. 34, 0-100 (200) m; ARK 25-1 74° 59.95' N 3° 30.35' W Greenland Sea 

Osi F1047 O. similis St. 34, 0-100 (200) m; ARK 25-1 74° 59.95' N 3° 30.35' W Greenland Sea 

Osi F1050 O. similis St. 34, 0-100 (200) m; ARK 25-1 74° 59.95' N 3° 30.35' W Greenland Sea 
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Label Morphotype St. Nr., depth interval; 
expedition 

Position Latitude  Position Longitude Area 

Osi F1054 O. similis St. 34, 0-100 (200) m; ARK 25-1 74° 59.95' N 3° 30.35' W Greenland Sea 

Osi F1058 O. similis St. 1, 0-100 m; ARK 25-1 71° 23.91' N 8° 26.48' W Greenland Sea close to Jan Mayen 
(volcanic island) 

Osi F1072 O. similis St. 1, 0-100 m; ARK 25-1 71° 23.91' N 8° 26.48' W Greenland Sea close to Jan Mayen 
(volcanic island) 

Osi F1074 O. similis St. 1, 0-100 m; ARK 25-1 71° 23.91' N 8° 26.48' W Greenland Sea close to Jan Mayen 
(volcanic island) 

Osi F1075 O. similis St. 1, 0-100 m; ARK 25-1 71° 23.91' N 8° 26.48' W Greenland Sea close to Jan Mayen 
(volcanic island) 

Osi F1211 O. similis St. 308, 50-100 m; ARK 23-3 77° 5.11' N 164° 9.03' W Chukchi Plateau 

Osi F1212 O. similis St. 308, 50-100 m; ARK 23-3 77° 5.11' N 164° 9.03' W Chukchi Plateau 

Osi F1216 O. similis St. 308, 50-100 m; ARK 23-3 77° 5.11' N 164° 9.03' W Chukchi Plateau 

Osi F1049 O. similis St. 34, 0-100 (200) m; ARK 25-1 74° 59.95' N 3° 30.35' W Greenland Sea 

Osi F1057 O. similis St. 1, 0-100 m; ARK 25-1 71° 23.91' N 8° 26.48' W Greenland Sea close to Jan Mayen 
(volcanic island) 

Oat F450 O. atlantica St. 290, 50-100 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 

Oat F451 O. atlantica St. 290, 50-100 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 

Oat F453 O. atlantica St. 290, 50-100 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 



102 

 

Label Morphotype St. Nr., depth interval; 
expedition 

Position Latitude  Position Longitude Area 

Oat F454 O. atlantica St. 290, 50-100 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 

Oat F458 O. atlantica St. 290, 50-100 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 

Oat F460 O. atlantica St. 290, 50-100 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 

Osi F1016 O. similis St. 24, 0-100 m; ARK 25-1 74° 59.94' N 8° 1,03' W Greenland Sea 

Osi F1024 O. similis St. 24, 0-100 m; ARK 25-1 74° 59.94' N 8° 1.03' W Greenland Sea 

Osi F1043 O. similis (C5) St. 34, 0-100 (200) m; ARK 25-1 74° 59.95' N 3° 30.35' W Greenland Sea 

Osi F1069 O. similis St. 1, 0-100 m; ARK 25-1 71° 23.91' N 8° 26.48' W Greenland Sea close to Jan Mayen 
(volcanic island) 

Osi F442 O. similis St. 290, 100-150 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 

Osi F428 O. similis St. 308, 100-250 m; ARK 23-3 77° 5.11' N 164° 9.03' W Chukchi Plateau 

Osi F441 O. similis St. 290, 100-150 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 

Osi F1034 O. similis St. 34, 0-100 (200) m; ARK 25-1 74° 59.95' N 3° 30.35' W Greenland Sea 

Oat F434 O. atlantica St. 308, 100-250 m; ARK 23-3 77° 5.11' N 164° 9.03' W Chukchi Plateau 

Osi F444 O. similis St. 290, 100-150 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 

Osi F1044 O. similis St. 34, 0-100 (200) m; ARK 25-1 74° 59.95' N 3° 30.35' W Greenland Sea  

Osi F440 O. similis St. 290, 100-150 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 

Osi F445 O. similis St. 290, 100-150 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 
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Label Morphotype St. Nr., depth interval; 
expedition 

Position Latitude  Position Longitude Area 

Oat F435 O. atlantica St. 308, 100-250 m; ARK 23-3 77° 5.11' N 164° 9.03' W Chukchi Plateau 

Oat F436 O. atlantica St. 308, 100-250 m; ARK 23-3 77° 5.11' N 164° 9.03' W Chukchi Plateau 

Oat F457 O. atlantica St. 290, 50-100 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 

Osi F431 O. similis St. 290, 50-100 m; ARK 23-3 75° 6.37' N 137° 2.00' W Canadian Basin/ Beauford Sea 

 

The distribution of the haplotype “Osi ANT 1” is shown in table 7.1. The order of the individuals equates to the one in the neighbor 

joining tree (see figs. 26, 26.2).  

 
Table 7.1 The distribution of the individuals of haplotype Osi ANT 1 
Label Morphotype St. Nr., depth interval; 

expedition 
Position Latitude  Position Longitude Water mass 

Osi F1141 O. similis St. 62, 50-100 m; ANT 24-2 62° 59.85' S 0° 0.68' E Weddell Gyre 

Osi F385 O. similis St. 21, 200-250 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Osi F1168 O. similis St. 21, 100-150 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Osi F1156 O. similis St. 33, 0-50 m; ANT 24-2 62° 0.69' S 2° 56.49' W Weddell Gyre 

Osi F1106 O. similis (C5) St. 85, 150-200 m; ANT 24-2 52° 1.15' S 0° 0.19' E Polar Frontal Zone 

Osi F1161 O. similis St. 21, 50-100 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Osi F1135 O. similis St. 62, 50-100 m; ANT 24-2 62° 59.85' S 0° 0.68' E Weddell Gyre  
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Label Morphotype St. Nr., depth interval; 
expedition 

Position Latitude  Position Longitude Water mass 

Osi F317 O. similis St. 33, 100-150 m; ANT 24-2 62° 0.69' S 2° 56.49' W Weddell Gyre  

Osi F322 O. similis St. 21, 0-50 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddel Gyre (Coastal Current?) 

Osi F1149 O. similis St. 39, 0-50 m; ANT 24-2 64° 29.44' S 2° 50.73' E Weddell Gyre 

Osi F1165 O. similis St. 21, 50-100 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Osi F1166 O. similis St. 21, 50-100 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Osi F1125 O. similis St. 34, 50-100 m; ANT 24-2 62° 0.05' S 3° 0.20' E Weddell Gyre  

Osi F1126 O. similis St. 34, 50-100 m; ANT 24-2 62° 0.05' S 3° 0.20' E Weddell Gyre  

Osi F1137 O. similis St. 62, 50-100 m; ANT 24-2 62° 59.85' S 0° 0.68' E Weddell Gyre  

Osi F1163 O. similis St. 21, 50-100 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Osi F1136 O. similis St. 62, 50-100 m; ANT 24-2 62° 59.85' S 0° 0.68' E Weddell Gyre  

Osi F1139 O. similis St. 62, 50-100 m; ANT 24-2 62° 59.85' S 0° 0.68' E Weddell Gyre  

Osi F1140 O. similis St. 62, 50-100 m; ANT 24-2 62° 59.85' S 0° 0.68' E Weddell Gyre  

Osi F1142 O. similis St. 62, 50-100 m; ANT 24-2 62° 59.85' S 0° 0.68' E Wedell Gyre  

Osi F1138 O. similis St. 62, 50-100 m; ANT 24-2 62° 59.85' S 0° 0.68' E Weddell Gyre  

Osi F319 O. similis St. 33, 100-150 m; ANT 24-2 62° 0.69' S 2° 56.49' W Weddell Gyre  

Osi F321 O. similis St. 33, 100-150 m; ANT 24-2 62° 0.69' S 2° 56.49' W Weddell Gyre  
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Osi F330 O. similis St. 21, 0-50 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Label Morphotype St. Nr., depth interval; 
expedition 

Position Latitude  Position Longitude Water mass 

Osi F1115 O. similis St. 34, 0-50 m; ANT 24-2 62° 0.05' S 3° 0.20' E Weddell Gyre  

Osi F318 O. similis St. 33, 100-150 m; ANT 24-2 62° 0.69' S 2° 56.49' W Weddell Gyre  

Osi F328 O. similis St. 21, 0-50 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?)  

Osi F349 O. similis St. 85, 100-150 m; ANT 24-2 52° 1.15' S 0° 0.19' E Polar Frontal Zone 

Osi F323 O. similis St. 21, 0-50 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Osi F338 O. similis St. 21, 0-50 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Osi F343 O. similis St. 85, 100-150 m; ANT 24-2 52° 1.15' S 0° 0.19' E Polar Frontal Zone 

Osi F346 O. similis St. 85, 100-150 m; ANT 24-2 52° 1.15' S 0° 0.19' E Polar Frontal Zone 

Osi F347 O. similis St. 85, 100-150 m; ANT 24-2 52° 1.15' S 0° 0.19' E Polar Frontal Zone 

Osi F348 O. similis St. 85, 100-150 m; ANT 24-2 52° 1.15' S 0° 0.19' E Polar Frontal Zone 

Osi F399 O. similis St. 33, 50-100 m; ANT 24-2 62° 0.69' S 2° 56.49' W Weddell Gyre  

Osi F1123 O. similis St. 34, 50-100 m; ANT 24-2 62° 0.05' S 3° 0.20' E Weddell Gyre  

58 b O. similis St. 58, 0-50 m; ANT 24-2 65° 0.48' S 0° 0.96' W Weddell Gyre  

62 B1 O. similis St.62, 0-50 m; ANT 24-2 62° 59.85' S 0° 0.68' E Weddell Gyre  

Osi F307 O. similis St. 34, 100-150 m; ANT 24-2 62° 0.05' S 3° 0.20' E Weddell Gyre  
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Osi F310 O. similis St. 34, 100-150 m; ANT 24-2 62° 0.05' S 3° 0.20' E Weddell Gyre  

Osi F320 O. similis St. 33, 100-150 m; ANT 24-2 62° 0.69' S 2° 56.49' W Weddell Gyre  

Label Morphotype St. Nr., depth interval; 
expedition 

Position Latitude  Position Longitude Water mass 

Osi F325 O. similis St. 21, 0-50 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Osi F344 O. similis St. 85, 100-150 m; ANT 24-2 52° 1.15' S 0° 0.19' E Polar Frontal Zone 

Osi F345 O. similis St. 85, 100-150 m; ANT 24-2 52° 1.15' S 0° 0.19' E Polar Frontal Zone 

Osi F370 O. similis St. 33, 50-100 m; ANT 24-2 62° 0.69' S 2° 56.49' W Weddell Gyre  

Osi F371 O. similis St. 33, 50-100 m; ANT 24-2 62° 0.69' S 2° 56.49' W Weddell Gyre  

Osi F373 O. similis St. 21, 200-250 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Osi F375 O. similis St. 21, 200-250 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Osi F376 O. similis St. 21, 200-250 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Osi F383 O. similis St. 33, 100-150 m; ANT 24-2 62° 0.69' S 2° 56.49' W Weddell Gyre 

Osi F386 O. similis St. 21, 200-250 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Osi F387 O. similis St. 21, 200-250 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Osi F388 O. similis St. 21, 200-250 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Osi F398 O. similis St. 33, 50-100 m; ANT 24-2 62° 0.69' S 2° 56.49' W Weddell Gyre 

Osi F403 O. similis (C5) St. 85, 100-150 m; ANT 24-2 52° 1.15' S 0° 0.19' E Polar Frontal Zone 
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Osi F405 O. similis St. 39, 200-250 m; ANT 24-2 64° 29.44' S 2° 50.73' E Weddell Gyre 

Osi F410 O. similis St. 21, 200-250 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Osi F412 O. similis St. 21, 200-250 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

Label Morphotype St. Nr., depth interval; 
expedition 

Position Latitude  Position Longitude Water mass 

Osi F378 O. similis (C5) St. 21, 200-250 m; ANT 24-2 67° 56.10' S 2° 58.31' W Weddell Gyre (Coastal Current?) 

62 b O. similis St. 62, 0-50 m; ANT 24-2 62° 59.85' S 0° 0.68' E Weddell Gyre  

58 a O. similis St. 58, 0-50 m; ANT 24-2 65° 0.48' S 0° 0.96' W Weddell Gyre  

Osi F350 O. similis St. 85, 100-150 m; ANT 24-2 52° 1.15' S 0° 0.19' E Polar Frontal Zone 

 

The distribution of the specimens of the haplotype “Osi ANT 2” in the water masses of the Southern Ocean is shown in table 7.2. 

The labels are in the same order as in the neighbor joining tree (see figs. 26, 26.2).   

 
Table 7.2 The distribution of the individuals of haplotype Osi ANT 2 

Label Morphotype St. Nr., depth interval; 
expedition 

Position Latitude  Position Longitude Water mass 

Osi F418 O. similis St. 13, 50-100 m; ANT 24-2 52° 2.16' S 0° 0.99' W Polar Frontal Zone 

Osi F1087 O. similis St. 13, 100-150 m; ANT 24-2 52° 2.16' S 0° 0.99' W Polar Frontal Zone 

13 A1 O. similis St. 13, 0-50 m; ANT 24-2 52° 2.16' S 0° 0.99' W Polar Frontal Zone 

13 B1 O. similis St. 13, 0-50 m; ANT 24-2 52° 2.16' S 0° 0.99' W Polar Frontal Zone 
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13 a O. similis St. 13, 0-50 m; ANT 24-2 52° 2.16' S 0° 0.99' W Polar Frontal Zone 

13 b O. similis St. 13, 0-50 m; ANT 24-2 52° 2.16' S 0° 0.99' W Polar Frontal Zone 

Osi F420 O. similis St. 13, 50-100 m; ANT 24-2 52° 2.16' S 0° 0.99' W Polar Frontal Zone 

Label Morphotype St. Nr., depth interval; 
expedition 

Position Latitude  Position Longitude Water mass 

Osi F421 O. similis St. 13, 50-100 m; ANT 24-2 52° 2.16' S 0° 0.99' W Polar Frontal Zone 

Osi F423 O. similis St. 13, 50-100 m; ANT 24-2 52° 2.16' S 0° 0.99' W Polar Frontal Zone 

Osi F424 O. similis St. 13, 50-100 m; ANT 24-2 52° 2.16' S 0° 0.99' W Polar Frontal Zone 

Osi F425 O. similis St. 13, 50-100 m; ANT 24-2 52° 2.16' S 0° 0.99' W Polar Frontal Zone 

Osi F426 O. similis St. 13, 50-100 m; ANT 24-2 52° 2.16' S 0° 0.99' W Polar Frontal Zone 

Osi F1097 O. similis St. 85, 0-50 m; ANT 24-2 52° 1.15' S 0° 0.19' E Polar Frontal Zone 

Osi F1098 O. similis St. 85, 0-50 m; ANT 24-2 52° 1.15' S 0° 0.19' E Polar Frontal Zone 

Osi F1099 O. similis St. 85, 0-50 m; ANT 24-2 52° 1.15' S 0° 0.19' E Polar Frontal Zone 

Osi F1093 O. similis St. 85, 0-50 m; ANT 24-2 52° 1.15' S 0° 0.19' E Polar Frontal Zone 

Osi F1095 O. similis St. 85, 0-50 m; ANT 24-2 52° 1.15' S 0° 0.19' E Polar Frontal Zone 

Osi F1096 O. similis St. 85, 0-50 m; ANT 24-2 52° 1.15' S 0° 0.19' E Polar Frontal Zone 

Osi F1094 O. similis St. 85, 0-50 m; ANT 24-2  52° 1.15' S 0° 0.19' E Polar Frontal Zone 
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Table 7.3 contains the detailed sampling information for the single individual of the 

haplotype “Osi ANT 3” (see figs. 26, 26.2).  
Table 7.3 The distribution of the individuals of haplotype Osi ANT 3 
Label Morphotyp

e 
St. Nr., depth 
interval; expedition 

Position 
Latitude  

Position 
Longitude 

Water mass 

Osi F1092 O. similis St. 13, 100-150 m; 
ANT 24-2 

52° 2.16' S 0° 0.99' W Polar Frontal 
Zone 

 

The distribution of the specimens from the haplotype “Osi Nort Sea/ Med. Sea” is 

shown in table 7.4. The order of the labels is according to the one in the neighbor 

joining tree (figs. 26, 26.3).  

 

Table 7.4 The distribution of the individuals of haplotype Osi North Sea/ Med. Sea  
Label Morphotype Station Area  

Osi F1175 O. similis Villefranche Point B Mediterranean Sea  

Osi F1189 O. similis St. 56; HE 302 North Sea 

Osi F1177 O. similis Villefranche Point B Mediterranean Sea  

Osi F1182 O. similis Villefranche Point B Mediterranean Sea  

Osi F1183 O. similis Villefranche Point B Mediterranean Sea  

Osi F1184 O. similis St. 56; HE 302 North Sea 

Osi F439 O. similis close to Helgoland North Sea 

Osi F1176 O. similis Villefranche Point B Mediterranean Sea  

Osi F1179 O. similis Villefranche Point B Mediterranean Sea 

 

The detailed sampling information for the single individual of “Osi ARK 2” (see fig. 26, 

26.3) is presented in table 7.5.  

 

Table 7.5 The distribution of the individuals of haplotype Osi Ark 2 

Label Morphotype St. Nr., depth 
interval; expedition 

Position 
Latitude  

Position 
Longitude 

Area 

Osi F462 O. similis St. 308, 0-50 m; ARK 
23-3  

77° 5.11' N 164° 9.03' W Chukchi 
Plateau 
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Table 7.6 contains the detailed sampling information for the single individual of the 

haplotype “Osi ARK 3” (see figs. 26, 26.3)  
Table 7.6 The distribution of the individuals of haplotype Osi ARK 3 
Label Morphotype St. Nr., depth interval; 

expedition 
Position 
Latitude  

Position 
Longitude 

Area  

Osi F463 O. similis St. 308, 0-50 m; ARK 
23-3 

77° 5.11' N 164° 9.03' 
W 

Chukchi 
Plateau 

 

As shown in table 7.7, the haplotype Osp (see figs. 26, 26.3) was only sampled at the 

permanent station in the List Basin.   

 
Table 7.7 The distribution of the individuals of haplotype Osp  
Label Morphotype Station Area  

Osp F1207 Oithona sp. close to Sylt North Sea 

Osp F1201 Oithona sp. close to Sylt North Sea 

Osp F1200 Oithona sp. close to Sylt North Sea 

Osp F1202 Oithona sp. close to Sylt North Sea 

Osp F1206 Oithona sp. close to Sylt North Sea 

Osp F1208 Oithona sp. close to Sylt North Sea 

Osp F1205 Oithona sp. close to Sylt North Sea 

Osp F1204 Oithona sp. close to Sylt North Sea 

Osp F1209 Oithona sp. close to Sylt North Sea 

Osp F1203 Oithona sp. close to Sylt North Sea 

 

The detailed distribution of the morpho- and haplotype Ofr (see figs. 26, 26.3) in the 

Southern Ocean is shown in table 7.8. 

  
Table 7.8 The distribution of the individuals of haplotype Ofr  
Label Morphotype St. Nr., depth 

interval; expedition 
Position 
Latitude  

Position 
Longitude 

Water mass 

Ofr 
F309 

O. frigida St. 64 200-250 m; 
ANT 24-2 

62° 0.94' S 0° 4.31' W Weddell Gyre  
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Ofr 
F315 

O. frigida St. 33 100-150 m; 
ANT 24-2 

62° 0.69' S 2° 56.49' W Weddell Gyre  

Ofr 
F416 

O. frigida St. 13, 150-200 m; 
ANT 24-2 

52° 2.16' S 0° 0.99' W Polar Frontal 
Zone 

Ofr 
F314 

O. frigida St. 64 200-250 m; 
ANT 24-2 

62° 0.94' S 0° 4.31' W Weddell Gyre  

Ofr 
F365 

O. frigida St. 33, 50-100 m; 
ANT 24-2 

62° 0.69' S 2° 56.49' W Weddell Gyre  

Ofr 
F384 

O. frigida 
(C5) 

St. 85, 100-150 m; 
ANT 24-2 

52° 1.15' S 0° 0.19' E Polar Front 
Zone 

Ofr 
F396 

O. frigida St. 62, 150-200 m; 
ANT 24-2 

62° 59.85' S 0° 0.68' E Weddell Gyre  

Osi 
F311 

O. frigida St. 34 100-150 m; 
ANT 24-2 

62° 0.05' S 3° 0.20' E Weddell Gyre  

Ofr 
F413 

O. frigida St. 13, 150-200 m; 
ANT 24-2 

52° 2.16' S 0° 0.99' W Polar Front 

 

Table 7.9 contains the sampling information on the single female of “Osi Med Sea” 

(see figs. 26, 26.3).  

 
Table 7.9 The distribution of the individuals of haplotype Osi Med. Sea 

Label Morphotype Station Area  

Osi F1180 O. similis Villefranche Point B Mediterranean Sea  

 

All individuals of the haplotype “O. na” (see figs. 26, 26.3) were sampled at 

Helgoland Roads as shown in table 7.10.  

 
Table 7.10 The distribution of the individuals of haplotype O na 

Label Morphotype Station Area  

Ona 1199 O. nana  close to Helgoland North Sea 

Ona 1198 O. nana  close to Helgoland North Sea 

Ona 1197 O. nana  close to Helgoland North Sea 

Ona 1196 O. nana  close to Helgoland North Sea 

Ona 1193 O. nana  close to Helgoland North Sea 
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Ona 1192 O. nana  close to Helgoland North Sea 

Ona F480 O. nana  close to Helgoland North Sea 

Ona F479 O. nana  close to Helgoland North Sea 

Ona F437 O. nana  close to Helgoland North Sea 

Ona F438 O. nana  close to Helgoland North Sea 

 

 

5. Discussion 
This chapter first deals with the scarcity of information on males within this study. 

Then, the results on morphology and genetics of the examined specimens are 

discussed. Further attention will be paid to a potential correlation of the results from 

the Arctic and Southern Ocean with hydrographic conditions. Finally, the 

methodological problems of the methods within this study will be addressed.  

 
5.1 A sex-skewed species  

This study concentrates on adult females and several C5-stages of females that 

could be identified additionally. Males were not included in the investigation as they 

were not found in the samples. One reason for the absence of males is that the 

sampling was not done quantitatively as the individuals for the examinations were 

picked out under a binocular and transferred alive via a pipette into ethanol. This 

method offers the best chance to get non-destructed DNA, but it does not include all 

individuals in a given sample. Moreover, within the oithonid species, males are less 

frequent than females (e.g. Van Breemen 1903, Boxshall 1977, Hirst & Ward 2008). 

The chance to miss the few males is therefore quite large. Highly skewed sex-ratios 

for adults of Oithona similis were found in Loch Striven, Scotland: 0.18 (Marshall 

1949) and off Plymouth, English Channel (Digby 1950), and in Scoresby Sound, 

Greenland a ratio of 0.06 was determined (Digby 1954). Nishida et al. (1977) also 

“rarely collected males” within Suruga Bay and adjacent waters of Japan.  

 

The genus Oithona is one of the most sex-skewed genera of the epipelagic 

copepods (Hirst & Kiørboe 2002, Kiørboe 2006). The reasons for this fact are not 

clear. It might be most probable that males are much more preyed upon than females 
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(Hirst & Ward 2008). This is explained by the general behavior in the water column. 

Oithona similis is an ambush feeder that detects its prey hydromechanically 

(Svensen & Kiørboe 2000, Saiz et al. 2003). Ambush predators hang quietly in the 

water column while they slowly sink and scan their surroundings for motile prey to 

attack it (Maar et al. 2006). Thus, the active mate finding behavior of the males is 

especially dangerous when compared to the passive behavior of the females (Hirst & 

Ward 2008). As consequence of their movements, encounter rates with predators 

may increase and these make males more visible and hydromechanically detectable 

for predators (Hirst & Ward 2008). It is likely that searching for a mate increases the 

rate at which males are preyed upon (Hirst & Ward 2008). Hence, Hirst and Ward 

(2008) suggested that not physiological longevity might be the primary cause of the 

strong sex ration skew in adult Oithona but predation. According to Hirst and Ward 

(2008), CV males and adult males of O. similis showed the highest mortality rates of 

any developmental stages.  

 

Sex with mating has several advantages (Kiørboe 2011). It is helpful in removing 

harmful mutations and in fighting against diseases (Kiørboe 2011). Furthermore, 

mating enhances the potential for sexual selection and “promotion of ‘good genes’” 

(Kiørboe 2011). However, the challenge is that males and females need to meet one 

another in a three dimensional environment (Kiørboe 2011). In general, the females 

produce pheromones that are explored by the males and guide their way to the 

female (Kiørboe 2011). It is not clear why males that may only be able to fertilize a 

small division of the females they meet, spend such an enormous attempt in high and 

continuous swimming velocities that enhance their risk to be captured (Kiørboe, 

2011). One possible explanation might be that the males compete for “high-quality 

young females” (Kiørboe 2011). Both genders of Oithona similis seem to mainly 

inhabit the same water layers (see Metz 1996). Thus, one reason for the low number 

of males compared to females might be that the demand of males is not that huge 

because the encounter rate between males and females is sufficient to guarantee the 

sustainment of the population.     
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5.2 Morphology 

In this study the morphological examinations of size, whole body form, rostrum 

structure and the outer setae of the exopodits of the swimming legs showed five 

different morphotypes: Oithona frigida (Southern Ocean), O. similis (Arctic Ocean, 

Mediterranean Sea, North Sea, Southern Ocean), O. atlantica (Arctic Ocean), 

Oithona sp. (North Sea) and O. nana (North Sea). This method agrees with Van 

Breemen 1903: “the best way to differentiate between O. nana and O. similis is using 

their size, their general body shape as well as the existence or missing of a beaked 

rostrum, the length of their antennae compared to the cephalotorax as well as the 

number and shape of the setae externae at outer branches of the swimming feets.” 

Oithona nana has a narrow head that is truncated anteriorly in dorsal view 

(Gubanova & Altukhov 2007). Its rostrum is blunt and not visible dorsally (Gubanova 

& Altukhov 2007). The rostrum is also helpful to differentiate between O. similis and 

O. frigida, because the forehead of O. frigida has a rostrum that can be seen from 

dorsal view while the one of O. similis is directed ventrally and cannot be seen in the 

dorsal view (Rosendorn 1917).  

 

In my opinion, body size is a supportive criterion, but cannot be used as the only one 

because it is variable. For example, specimens of O. similis appear to grow larger in 

the North Sea in comparison to individuals that inhabit the Mediterranean Sea (Van 

Breemen 1903). Furthermore, according to Dvoretsky and Dvoretsky (2009), shape 

and size of the body of O. similis from the Arctic Ocean can vary particularly. This is 

in accordance with Shuvalov (1980) who suggested that O. similis in the Arctic 

Ocean is a polytypic species with different “groups or subpopulations”. Measured 

lengths of the prosoma of O. similis females ranged from 450 to 570 µm in the 

Barents Sea (Dvoretsky & Dvoretsky 2009). These differences might be explained by 

two generations with one from the fall of the previous year that contained the large 

females (Dvoretsky & Dvoretsky 2009). For the White Sea female prosoma ranges of 

660 to 790 µm in spring and 750 to 880 µm in fall were found (Shuvalov 1965 in 

Dvoretsky & Dvoretsky 2009 a).  

 

The genus Oithona is a difficult one for copepodologist because of the small species 

size which makes it very hard to dissect single limbs (Van Breemen 1903). Further 
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problems provide meager descriptions of new species (Van Breemen 1903). In 

consequence of such reduced descriptions, several Oithona species are attributed as 

Oithona similis. Giesbrecht (1893) e.g. suggested that O. helgolandica, O. spinifrons 

and O. pygmaea could eventually be synonyms for O. similis. According to Van 

Breemen (1903) and Bourne (1889), a further Oithona species that was found close 

to Plymouth by Bourne and described as O. spinirostris, is in fact O. similis. The 

rostrum of O. similis has a small and ventrally straightened beak that cannot be seen 

from dorsal (van Breemen 1903). It is necessary to turn individuals of O. similis onto 

their side otherwise it is difficult or even impossible to see the bended rostrum (Van 

Breemen 1903). The bended rostrum should be considered as important feature, 

additionally to other characteristics that hint on O. similis (Van Breemen 1903). An 

example for a problematic description is the one of Boeck (1865) for O. pygmaea 

(Van Breemen 1903). In the description of Boeck (1865), it is only clear that O. 

pygmaea does not have the pointed rostrum of O. spinifrons or O. spinirostris, but not 

that it does not have a beak like O. similis (Van Breemen 1903). The confusion about 

this species might be an explanation for the fact that it is supposed to be a 

cosmopolitan but might indeed be an accumulation of several species grouped under 

one name.  

 

A special case within the genus Oithona is the species O. helgolandica Claus 1863 

that was supposed to be synonymous with O. plumifera or O. similis by other 

researchers (Van Breemen 1903). Van Breemen (1903) disagreed and suggested 

that it might be the same species as O. nana. Giesbrecht (1893) assumed that O. 

helgolandica and O. spinirostris are separate species (Van Breemen 1903). 

However, Giesbrecht (1893) thought that O. helgolandica might be the same species 

as O. similis (van Breemen 1903). Shuvalov (1972) shared this opinion. If this was 

true, Claus would have described one of his new found species twice with two 

different names within three years (Van Breemen 1903). Thus, according to Van 

Breemen (1903) is seems to be very unlikely that in 1866 Claus recognized O. 

spinirostris but not O. helgolandica in the species he described new as O. similis.   

 

Van Breemen (1903) explained in his thesis that Oithona helgolandica and O. nana 

are the same species. They share for example the characteristic of relatively short 
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first antennae (Van Breemen 1903). According to Claus, the antennae of O. 

helgolandica hardly reach the end of the thorax (Van Breemen 1903). Giesbrecht 

(1893) as well as Van Breemen (1903) described the antennae for O. nana as even 

shorter, not reaching the backmost part of the third thoracal segment (van Breemen 

1903). Either way, the short first antennae indicate another species than O. similis 

(Van Breemen 1903). Especially because of this characteristic, Giesbrecht 

questioned that these two species are actually identical (Van Breemen 1903). Van 

Breemen (1903) critically compared his results with older works. He concluded that 

Cleve (1900, 1902, 1903) described at least partly individuals of Oithona nana as O. 

similis within parts of the North Sea. In his own samples at the same stations and 

taken with the same meshes, Van Breemen (1903) only caught individuals of O. 

nana. Furthermore, Van Breemen (1903) suggested that it might be possible that 

Timm (1896) described individuals of O. nana as O. similis in the southern North 

Sea. Van Breemen (1903) argued that according to Timm (1896), the individuals of 

O. similis close to Norway are slighlty larger than the ones from the southern North 

Sea. This might also be a normal size variation. However, there is a synonymy 

problem with this species (Fernández-Severini & Hoffmeyer 2005). This is further 

stressed by the fact that in Argentinean waters, Oithona similis has been cited as 

Oithona helgolandica (Fernández-Severini & Hoffmeyer 2005) following Ramírez 

(1966, 1970 a, b).  

 

5.3 Genetics   

Oithona similis is supposed to be a cosmopolitan species (e.g. Atkinson 1998, 

Peterson & Keister 2003, Hansen et al. 2004). This is astonishing because of the 

very different environmental conditions that a species with worldwide distribution has 

to cope with. It is therefore questionable whether O. similis is a true cosmopolite. 

Genetic examinations are suitable to answer this question. Genetic studies on O. 

similis are however scarce. To resolve the question whether O. similis is a 

cosmopolitan species, the principle of DNA barcoding (Hebert et al. 2003 a) was 

applied to individuals collected in four geographically different investigation areas. Mt 

CO1 was chosen as genetic marker for this study as it can discriminate even the 

most closely related species and resolve evolutionary relationships among species 

within a genus or among some genera (Hill et al. 2001). Identification of species 
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using DNA barcoding is based on the observation that intraspecific genetic 

divergence is usually lower than interspecific divergence (Meyer & Paulay 2005). 

Furthermore, DNA barcoding is useful to identify cryptic species in accordance with a 

critical taxonomic analysis (Groenenberg et al. 2009).  

 

With sequencing, different haplotypes were found in the morphologically identical 

groups of Oithona similis: three groups in the Arctic Ocean, three groups in the 

Southern Ocean, one group in the North Sea and two groups in the Mediterranean 

Sea, of which one group was also found in the North Sea. In addition to the Oithona 

similis groups, three other copepod species groups were identified morphologically 

as well as via sequencing: O. frigida in the Southern Ocean, O. nana and Oithona sp. 

in the North Sea.  

 

In this study, barcoding revealed indeed that Oithona similis is not a cosmopolitan 

species but a conglomerate of cryptic species. Within each of the four examination 

areas at least one cryptic species was found. With one exception, all of the 

haplotypes found in this study occur exclusively either in the North Sea, the 

Mediterranean Sea, the Arctic Ocean or the Southern Ocean. The exception is a 

species that was found at different places in the North Sea and within the 

Mediterranean Sea. Conglomerates of cryptic species are not unusual for copepods 

(e.g. Boileau 1991, Cervelli et al. 1995, Ganz & Burton 1995, Reid 1998). Individuals 

of the Mediterranean Sea sampled close to Nice were included in this work because 

the individuals that Claus used in 1886 for the first description of the new species 

Oithona similis also originated from there. Therefore, those samples offered the 

chance to find the O. similis that was first described by Claus in 1866 and compare it 

to potentially other species.  

 

A general problem of this study is that the number of individuals in some of the found 

haplotypes is very small or they even consist of just one individual. This is a result of 

the whole working process from sampling to measuring. The number of individuals 

that were sampled largely differed between all sampling stations. Depending on the 

number of sampled individuals some of them were fixed in formaldehyde for 

morphological examinations. These animals could not be used for genetical 
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examinations anymore. Furthermore, many of the sampled individuals were often not 

in such a good condition and were therefore excluded from the genetic samples. A 

further problem was that not every single individual examined for the genetic work 

resulted in useful DNA. One single individual of course is not enough for a significant 

result but the findings may be used as a good indication.  

 

For the Southern Ocean, within the nominal Oithona similis, three different 

haplotypes were found in this study: “Osi ANT 1”, “Osi ANT 2” and “Osi ANT 3”. “Osi 

ANT 1” is represented by 72 females and was found at the following stations of the 

expedition ANT XXIV-2: St. 21 (0-50 m, 50-100 m, 100-150 m, 200-250 m), St. 33 (0-

50 m, 50-100 m, 100-150 m), St. 34 (0-50 m, 50-100 m, 100-150 m), St. 39 (0-50 m, 

200-250 m), St. 58 (0-50 m), St. 62 (0-50 m, 50-100 m), St. 85 (100-150 m, 150-200 

m). “Osi ANT 2” includes 19 copepods from the Southern Ocean and was only found 

at two stations namely at station 13 from 0-150 m depth and at station 85 within the 

upper 50 m of the water column. “Osi ANT 3” consists of one individual that was 

caught at station 13 between a water depth of 100 and 150 m. The genetical 

differences between the haplotypes “Osi ANT 1” and “Osi ANT 2” are considerable 

as well as for “Osi ANT 1” and “Osi Ant 3”. The individuals from groups “Osi ANT 2” 

and “Osi ANT 3” are genetically closer. 

 

During the expedition ANT XXIV-2, station 85 (52° 1.15´S; 0° 0.19 E) was done as a 

repetition of station 13 (52° 2.16’S; 0° 0.99`W). The sampling time between these two 

stations was an interval of 52 days. During this period, the temperature of the upper 

layer increased seasonally (pers. comm. V. Strass). Furthermore, the characteristics 

of the water masses in the deeper layers changed. This cannot be due to a seasonal 

signal (pers. comm. V. Strass). One possible explanation is a meridional shift of the 

Southern Ocean Polar Front meander. The stations 13 and 85 were localized at its 

northern flank. However, this explanation is only partially coherent. Temperature and 

salinity below the upper layer had changed reversely than would have been expected 

solely caused by a front shift. Hence, advective influences seem to be included as 

well (pers. comm. V. Strass). The appearance of one species in the upper 50 m (st. 

85) and accordingly the upper 100 m (st 13) and the other species below 100 m 

agrees quite well with the depth of the upper layer (pers. comm. V. Strass). 



119 

 

Zooplankton species are able to find the circumstances they need to be successful in 

competing with other species (Longhurst 1985). In general, co-ocurring species 

ought to vary in the allocation of resources or otherwise separate seasonally 

(Halsband & Hirche 2001). Thus, it is possible that haplotype “Osi ANT 1” and 

haplotype “Osi ANT 2” both serve as indicators of different water masses and 

hydrological conditions (Raymont 1980). The fact that Oithona species live in diverse 

depth layers (Nishida & Marumo 1982) was also reported for the Eastern 

Mediterranean Sea at the basin level (Mazzocchi unpublished data in Mazzocchi & 

Ribera d’Alcalà 1995). Mazzocchi and Ribera d’Alcalà (1995) always observed 

differences in numbers of the distinct species when they found overlapping seasonal 

peaks of O. nana, O. similis and O. plumifera. The authors therefore suggested that 

ecological distinction exists among congener species. 
 

One single female of haplotype “Osi ANT 2” was caught at station 13 between 100 

and 150 m water depth. It cannot be said whether this female was caught at 100 m 

water depth or at 150 m, and if it was able to survive and reproduce below 100 m. It 

is therefore possible that the species distribution is the same at both stations. Both of 

the stations are within the PFZ, while the other seven stations, where the haptotype 

“Osi ANT 1” was caught, are located in the Weddell Gyre. Hydrographical data 

measured by Strass et al. during ANT XXIV-2 show a clear difference between the 

stations in the Polar Frontal Zone and the ones in the Weddell Gyre (figs. 27, 28). At 

stations 13 and 85, higher potential temperature and lower salinity values were 

measured than at the stations in the Weddell Gyre (figs. 27, 28). 
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Fig. 27 CTD-data of the potential temperature [°C] measured at the stations between 0-250 

m during the expedition ANT XXIV-2 in the Southern Ocean (Strass 2010) 

 

Fig. 28 CTD-data of the salinity [PSU] measured at the stations between 0-250 m during the 

expedition ANT XXIV-2 in the Southern Ocean (Strass 2010)  
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Hence, the haplotype “Osi ANT 1” could be more widespread, flexible and common 

within the Southern Ocean than “Osi ANT 2”. The haplotype “Osi ANT 3” is 

represented by a single female that was sampled at station 13 between 100 and 150 

m. This could indicate a third haplotype of O. similis that lives in the area of the Polar 

Front. This third haplotype derives from the same branch in the neighbour joining tree 

as haplotype “Osi ANT 2”, indicating a close relationship between these two 

haplotypes from the PFZ. 

 

The PFZ of the Southern Ocean is characterized by high physical and biological 

variability (Bernard & Froneman 2005). Meanders (e.g. Legeckis 1977, Lutjeharms 

1990, Ansorge et al. 1999) and eddies (Bryden 1983, Ansorge et al. 1999, Froneman 

et al. 1999) are features of the two main fronts that are bounding the PFZ: the 

Subantarctic Front to the north and the Antarctic Polar Front to the south (Bernard & 

Froneman 2005). Plankton transfer via the major frontal systems is therefore 

facilitated (Bernard & Froneman 2005). Consequently, the zooplankton communities 

within the PFZ are very uneven and commonly include species from diverse origins 

that cover sub-tropic, sub-Antarctic and Antarctic species (Ansorge et al. 1999, 

Froneman et al. 1999, Pakhomov & Froneman 1999). This might explain the 

appearance of the different haplotypes at the stations in the PFZ.  

 

In the Arctic Ocean, three haplotypes were detected within the nominal Oithona 

similis. Haplotypes “Osi ARK 2” and “Osi ARK 3” are each represented by a single 

female. These females were sampled in the upper 50 m of the water column at one 

station at the Chukchi Plateau. Their position in the neighbor joining tree indicates a 

close relationship between these two species groups. A further individual belonging 

to haplotype “Osi ARK 1” was sampled at the same station within the same water 

depth. The haplotype “Osi ARK 1” derives from the same branch as the individuals of 

the haplotype “Osi ANT 1”, but the distance between their branch-offs are quite huge. 

This also applies to the distance between this group and the two other groups from 

the Arctic Ocean. It can be assured that at least two different cryptic O. similis 

species occur in that region. Thus, all three O. similis haplotypes are present at this 

station.  
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Hydrographical data measured by Rabe and Wisotzki (2010) during the expedition 

ANT XXIII-6 in the Arctic Ocean (figs. 29, 30) show no clear difference between the 

two stations in the Canada Basin and station 308 above the Chukchi Plateau. At 

station 290, the lowest temperature and salinity values were measured on average 

and the highest were measured at station 392. The potential temperature and salinity 

of station 308 ranges in between the data of the two other stations (figs. 29, 30). 

However, they are closer to the data of station 290 (for stations locations see section 

Material & Methods).  

 

The occurrence of the two other haplotypes of O. similis above the Chukchi Plateau 

in 0-50 m water depth might be explained by their preference of low temperature and 

salinity found at this station (see figs. 29, 30). For the depth interval 0-50 m of station 

290 in the Canada Basin, where even lower temperatures and salinity values are 

recorded by Rabe and Wisotzki (2010; figs. 29, 30), I have no CO1 sequence data of 

Oithona individuals. It might therefore be possible that these Oithona species could 

have been found at this station as well. This may be indicated by the absence of 

these haplotypes at station 392 where higher salinity values and temperatures 

occurred.  

 

The two Sea Mountains forming the Chukchi Plateau extend 400 km in north-south 

and 250 km in east-west directions (Jinping et al. 2005). A basin with connections to 

the Canada Basin via three shallower valleys is located inside the Chukchi Plateau 

and has a maximum depth of 2100 m (Jinping et al. 2005). As a result, the deep 

water of the Chukchi Plateau is less exchangeable with the water outside (Jinping et 

al. 2005). Over the Chukchi Plateau in 30-40 m to below 100 m depth, waters seem 

to have Pacific origin and might have been reworked in the Chukchi Sea (Macdonald 

et al. 2002). This plateau has a complicated topography influencing the water that 

flows around it (Jinping et al. 2005). This is reflected in dynamical and complex 

temperature and salinity patterns (Jinping et al. 2005). Possibly these Oithona 

species are not found at the surrounding waters of the Canada Basin. This might be 

supported by flow and water exchange restriction through the complicated bottom 

topography of the Chukchi Plateau (Jinping et al. 2005).  
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Fig. 29 CTD-data of the potential temperature [°C] measured at the stations between 0-250 

m during the expedition ARK XXIII-3 (Rabe & Wisotzki 2010) 

 

Fig. 30 CTD-data of the salinity [PSU] measured at the stations between 0-250 m during the 

expedition ARK XXIII-3 (Rabe & Wisotzki 2010)  
 

The 88 individuals from group “Osi ARK 1” were sampled at all three stations of the 

expedition ARK XXIII-3 as well as at all six stations of the second expedition in the 

Arctic Ocean ARK XXIV-1. The preliminary CTD data on the potential temperature 
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and salinity for the stations 1, 24, 34, 57 and 63 of the expedition ARK XXV-1 

mearured by Budeus et al. do not show any clear differences while station 74 has 

much higher values (about 3°C) for the potential temperature and also the highest 

salinity (figs. 31, 32). The fact that “Osi ARK1” was found at all these stations in the 

upper water layer shows that it is widely distributed within the Arctic Ocean and quite 

flexible concerning its range for the water temperature and salinity (see figs. 29-32).  

 

 
Fig 31 CTD data of the potential temperature [°C] measured at the stations between 0-100 m 

during the expedition ARK XXV-1 (preliminary results from Budeus et al.) 
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Fig 32 CTD data of the salinity [psu] measured at the stations between 0-100 m during the 

expedition ARK XXV-1 (preliminary results from Budeus et al.)   

 

The CO1- sequences of the Oithona similis haplotype with individuals from two 

different places in the North Sea (one female from each sampling station) and the 

Mediterranean Sea (six individuals) differ from the sequences of the species sampled 

at the other regions. The fact that the same haplotype was found at different places 

in the North Sea as well as in the Mediterranean Sea shows that this species is 

widely distributed and might be quite flexible concerning environmental conditions. 

More individuals from the North Sea would need to be examined to confirm this 

status as well as to investigate whether this area is inhabited by more than one 

cryptic O. similis species. It is also possible that species of the genus Oithona are 

advected into the southern North Sea with Atlantic water as described for two 

congeners of Centropages (see Halsband & Hirche 2001 and references within). 

 

A further haplotype of O. similis was sampled in the Mediterranean Sea. However, 

from the genetic aspect, the haplotypes found in that area are very different. The 

second Mediterranean one is closer to the O. frigida haplotype than to any other O. 

similis haplotype. This group is represented by one female. Unfortunately, it is not 

possible to say if one or even none of these two haplotypes represents the original O. 
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similis that was first described by Claus in 1866 for this area, since a comparison with 

his material is not possible. However, more individuals from the Mediterranean Sea 

would help to get a better idea.  

 

In total eight different haplotypes of Oithona similis were found via CO1 sequencing 

in this study. Except the one group with individuals from the North Sea as well as 

from the Mediterranean Sea, none of these groups was present at more than one of 

the sampling areas. In addition to the number of haplotypes, this clearly shows that 

O. similis is not a cosmopolitan but a conglomerate of cryptic species, which confirms 

hypothesis 1 of this study. 

 

Three further haplotypes were identified: O. frigida (O fr.) in the Southern Ocean, O. 

nana (O. na) in the North Sea close to the island of Helgoland, and O. sp. in the 

North Sea close to the island of Sylt. The samples from the List Basin did not contain 

any individuals of O. similis, although it has been described to be frequent in this 

area (Kraefft 1910, Lücke 1912, Künne 1952). The Oithona nana haplotype was 

chosen as the basis of the neighbor joining tree because the relationship between O. 

similis and O. nana is not as close as it is between the other species. It was even 

supposed to regard O. nana as “the type of a separate, through nearly allied genus, 

for which the name Oithonina may be proposed” (Sars 1918). The genus name 

Oithonina was adapted by authors, for example, Wilson (1932, 1942) and Fagetti 

(1962). But the majority refers to it as a member of the genus Oithona (e.g. 

Rosendorn 1917, Kiefer 1929, Grice 1960).  

 

The Oithona frigida group consists of eight individuals that were sampled at five 

different stations during the expedition ANT XXIV-2: st. 13 (150-200 m), st. 33 (50-

100 m, 100-150 m), st. 34 (100-150 m), st. 64 (200-250 m), st. 85 (100-150 m). 

Except at station 33, all of these individuals were sampled between 100-250 m water 

depths. Mostly Oithona frigida and O. similis showed a distinct distribution in the 

water column with O. similis in the upper part (Hopkins 1985, Hopkins & Torres 1988, 

Metz 1995). This is not supported by the results of this study where both species 

were found together at most of the stations where O. frigida was sampled. However, 

overall, only a few individuals of O. frigida were found within this study that 
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concentrated on the main distribution area of O. similis (0-250 m water depth). Thus, 

if O. frigida would also prefer these water depths, much more individuals of this 

species would have been sampled through the expedition ANT XXIV-2. The 

haplotype Oithona sp. was only found close to the island of Sylt. It showed the 

closest genetic relationship with O. frigida and the second O. similis haplotype from 

the Mediterranean Sea.  

 

5.4 Relation of genetics and morphology 

In addition to the individuals that were morphologically described as O. similis prior to 

sequencing, four other morphotypes were included in this study: O. atlantica, O. 

frigida, O. nana and Oithona sp. The morphological identification of 19 individuals as 

O. atlantica in group “Osi ARK 1” cannot be adhered and most likely is a variation 

within this O. similis haplotype. Another possible explanation would be that O. 

atlantica is not an own species, but only a variation of the species O. similis. 

However, it is not possible to prove or disprove this theory by the means of the 

present study. Morphological differences regarding the appendages of the swimming 

legs of Oithona frigida and O. similis were obvious according to literature (e.g. 

Nishida 1985, Giesbrecht 1902). The morphological differences between these two 

species were clearly reflected in the results of the CO1 sequences, as these 

haplotypes are each located on one of the two different main branches. Oithona 

frigida females were found within the PFZ as well as in the Weddell Gyre. Thus, this 

species seems to be widely distributed within the Southern Ocean. The differences 

reflected in the appendage structures of the swimming legs were also obvious 

between Oithona similis and O. nana. Another haplotype named Oithona sp. shares 

the swimming leg appendage structure with O. nana, but has a bended rostrum like 

O. similis. The differentiation between these species is also clearly reflected in their 

position in the neighbour joining tree as Oithona sp. is located on the same branch as 

O. frigida. This confirms hypothesis 3, since O. similis and other Oithona species 

inhabiting the investigation areas can clearly be differentiated morphologically and 

genetically. 

 

The single individual from “Osi ARK 1” that was sampled at station 308 in the upper 

50 m of the water column was according to its appendages of the swimming legs 
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morphologically described as O. atlantica (Nishida et al. 1977). Further 18 individuals 

of this group shared this leg structure as well (sampled at the ARK XXIII-3 stations 

290, 50-100 m, 308, 100-250 m, 392, 0-150 m and the ARK XXV-1 stations 57, 0-

100 m; 63, 0-100 m). However, this was not the case for the other 79 individuals of 

this haplotype. They all shared the appendage structure described for O. similis. 

Thus, this might be just a morphological variation within this haplotype and it is not 

possible to differentiate between O. similis and O. atlantica by only concentrating on 

the appendage structure of the swimming legs.  
 

A further haplotype of Oithona similis was sampled in the Mediterranean Sea. It also 

shares the appendages structure of the swimming legs of O. similis. Overall, almost 

no morphological differences were found within and between regions for individuals 

of the Oithona similis species groups from the Southern Ocean, the Arctic Ocean, the 

North Sea and the Mediterranean Sea. Exceptions are the individuals from the Arctic 

Ocean that were described as Oithona atlantica. Such differences do probably not 

exist despite the genetic divergence described above. This would not be surprising, 

as within the Crustacea most genetic analysis of species boundaries confirm the 

existence of cryptic species. Some of these are distinguished by surprisingly large 

genetic differences given their morphological similarity (e.g. Palumbi & Benzie 1991, 

Bucklin et al. 1995, Knowlton & Weight 1998, Sarver et al. 1998). Large genetic 

differences in phenotypically similar species could be explained by a rapid rate of 

molecular evolution or a slow rate of morphological divergence (Todaro et al. 1996). 

One aim of this study was to examine hypothesis 2: “possibly existing cryptic species 

in the nominal O. similis either show no morphological differences or only very slight 

ones that make it impossible to differentiate between them morphologically.“ Since 

the individuals that were described as Oithona atlantica prior to sequencing do not 

form an own haplotype, and as no other morphological differences within the Oithona 

similis individuals were found, hypothesis 2 can be confirmed at least concerning the 

examined morphological characters.   

 

The distances in the neighbor joining tree support the conclusion that at least the two 

Oithona similis clusters of the Southern Ocean are reproductively incompatible. 

Bucklin et al. (1995) suggest that for copepods and other crustaceans reproductive 
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isolation may not require extensive morphological divergence. Hence, physiological, 

chromosomal and cytonuclear incompatibilities may be involved (Lee 2000, Willet & 

Burton 2001, Grishanin et al. 2006) as well as biological and behavioral ones. This is 

supported by other studies (e.g. Rocha-Olivares et al. 2001, Lee & Frost 2002, Thum 

& Harrison 2009). The development of specific subspecies can have other reasons 

like different biological niches. The phenomenon of the persistence of a standard 

morphology over vast periods of time during which much environmental change has 

taken place in spite of reproductive isolation is called morphological stasis (Wake et 

al. 1983). Reproductive isolation between genetically proximate and morphologically 

indistinguishable species indicates that morphological stasis reflects cryptic 

speciation within the copepod Eurytemora affinis (Lee & Frost 2002). This is reported 

for cyclopoid copepods (Dodson et al. 2003) and could even be common in many 

other free-living copepods (see Lee & Frost 2002 and references within, Dodson et 

al. 2003, Edmands & Harrison 2003). Despite or in addition to morphological stasis, 

cryptic species that do not show any morphological differences are distinguished by 

nonvisual mating signals (Bickford et al. 2006) such as chemical or hydrological 

signals.  

 

In accordance with the results of the present study, detailed morphological studies 

(Lee & Frost 2002, Dodson et al. 2003) did also not detect any differences among 

genetically divergent and reproductively isolated lineages of copepods. Such 

observations indicate that copepod speciation can occur with little or no 

morphological change (Thum & Harrison 2009). Thum and Harrison (2009) state that 

rather slow morphological relative to molecular evolution may often occur with little or 

no morphological change in copepods. If copepod speciation indeed involves 

mechanisms that do not require morphological divergence, cryptic species may be 

the norm (Thum & Harrison 2009) or at least far more common than previously 

assumed for copepods (Lee & Frost 2002). Species estimates based on 

morphological differences may therefore drastically underestimate the true species 

diversity of copepods (Thum & Harrison 2009). However, morphology is only one 

small part of genetic expression. Physiology, behavior and feeding are a further 

expression of genetics. Hence, morphological changes can be the result of genetical 

ones but this is not always the case.  
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The outer appearance of a species does not always reflect genetical changes, 

morphological differences do therefore probably not exist despite genetic divergence 

(Thum & Harrison 2009) in the investigated Oithona similis species. However, 

Rocha-Olivares et al. (2001) e.g. have revealed morphological differences among 

genetically different lineages of harpacticoids that were previously considered a 

single copepod species. The morphological criteria that were used in this study might 

need additional factors to distinguish among the Oithona species. This is supported 

by the fact that some of the individuals belonging to the O. similis haplotype “Osi 

ARK 1” had the appendage structure that is attributed to O. atlantica. Another fact 

supporting this is that the two species O. nana and Oithona sp. have the same 

appendage structure at the exopods of their swimming legs, but differ in the structure 

of their rostrum. However, morphological differentiations at the swimming legs one to 

four were the only characters that could, besides the whole body structure, size and 

rostrum shape, be used for a quick species identification of the individuals that were 

sampled in this study. When using more subtle differences as criteria for the 

separation of copepod species, however, intraspecific variability has also to be 

considered (Montiel- Martínez et al. 2008).  

 

5.5. Uncertainties 

To relate genetic and morphological differences, it would be ideal to study DNA and 

morphology of the same specimen. In the present study, however, the whole animals 

were needed for DNA extraction. Thus, a future morphological study that 

concentrates on all structures of the individuals could only rely on individuals from the 

same station and depth. The problem is that we cannot rule out an overlap between 

the distributions of the different cryptic species. Hence, by coincidence a specimen of 

another cryptic species and not of the haplotype of interest could be described in a 

following morphological study. Morphological variation that might be found, could 

either correlate with the observed genetic differentiation or simply reflect phenotypic 

plasticity (Baker et al. 2007). Consequently, work on this small Oithona species as on 

other small animals, would benefit of a non-destructive DNA sampling technique that 

allows preserving the link between species morphology and DNA sequences (Ekrem 

& Willassen 2004). Quick high resolution photography and cinematography of the 
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whole body or body parts might be a helpful tool to determine the morphology of an 

individual haplotype. It is however not as precise as morphological work including the 

dissection of body parts. These body parts should additionally be photographed and 

drawn.  

 

5.6 Flexibility of Oithona similis 

Cyclopoids seem to be generalists as they can survive in a broad range of 

environmental circumstance caused by a narrow specialization (Paffenhöfer 1993). 
Species of the genus Oithona are successful colonizers of the Liguirian Sea and 

other parts of the Mediterraneas Sea in late autumn (Licandro & Icardi 2009). This 

might be possible because of their ability to survive and reproduce in the notably 

oligotrophic waters that are characteristic for this season (Licandro & Icardi 2009). 

Oithona similis is supposed to be extremely tolerant concerning diverse 

environmental conditions (Gallienne & Robins 2001). According to Dvoretsky and 

Dvoretsky (2009), differences within the morphological characteristics of adults, such 

as the prosome length of O. similis, are the result of the integrated effect of a series 

of changeable environmental variables including temperature, salinity and food levels 

during the development of the copepods. For individuals of O. similis in the Labrodor 

Sea, no relationship was found relating to water mass variability (Head et al. 2003). 

This is in contrast to descriptions of Richter (1994) and Gislason and Astthorson 

(2004). These authors characterize O. similis as a cold adapted species that occurs 

in highest numbers in the Greenland Sea and in cold waters in the region of Iceland. 

This is supported by a study of Blachowiak-Samolyk et al. (2008 a) who found the 

highest abundances of this species within ice-covered areas of Arctic water masses 

in the Barents Sea.  

 

It would be very interesting to test the flexibility of Oithona individuals among several 

generations at different environmental conditions. However, this is problematic to 

implement as egg carrying females are needed. Otherwise successful mating has to 

take place. It cannot be ruled out that sampled males and females belong to different 

haplotypes that should not be mixed or also might not be able to reproduce 

successfully. It is also not clear whether males of the oithonids are less abundant 

than females due to predation or due to lower demand. The latter implies at least 
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only very few males within the offspring of one female or even none. Thus, the 

experiment might possibly stop after one generation due to a lack of males or due to 

unsuccessful reproduction. Furthermore such an experiment could only be used as 

implication owing to a quite small number of individuals that would be involved. A 

study of Ward and Hirst (2007) showed a range of 6 to 31 eggs per sack within 

Oithona similis. The offspring would have to be divided into groups to test the 

different environmental conditions and each group would at least need one surviving 

male. The best way to have environmental conditions close to nature would be a 

mesocosm, but it would be very difficult if not impossible to find such small 

specimens within a mesocosm. Such experiments are therefore very challenging and 

time consuming but should be worth the effort.     

 

6. Conclusions and Perspectives 

This study clearly shows that Oithona similis is not a truly cosmopolitan species, but 

a conglomerate of several cryptic species. Due to their clonal matrilineal 

transmission, mitochondrial traits are not directly linked to reproductive isolation and 

speciation events (Avise 1994). Hence, mt DNA sequence variation cannot be the 

sole basis to delimit or define species (Hill et al. 2001). Within copepods, the mt DNA 

gene seems to change rapidly (Burton et al. 2007). However, according to Hill et al. 

(2001), sequence variation in this gene is a diagnostic stable and accurate indicator 

for species identity (Hill et al. 2001). Consequently, such molecular data are useful 

for taxonomic identification and can be used as uniform standards of species’ 

identification together with morphological, morphometric and ecological characters 

(Hill et al. 2001), geographic range description and ecological information (Bucklin et 

al. 2003). DNA barcoding can discover species by flagging cryptic ones, but more 

data than CO1 sequences are necessary for describing a new species (Radulovici et 

al. 2009). A new copepod species was, for example, determined by Ueda and 

Bucklin (2006). Their studies were induced by ecological information. After a closer 

examination, the authors found morphological traits that could separate a single 

species in two. This species level of divergence was confirmed by sequences of the 

mitochondrial cytochrome oxidase and the 16S ribosomal genes (Mc Magnus & Katz 

2009). Such findings lead to the conclusion that in our case further examinations of 
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Oithona similis individuals from our chosen study areas are needed to decide 

whether the different clusters represent distinct species. 

 

Cryptic species might differ in temporal and spatial patterns of distribution and 

abundance and in reproductive biology (cf. Bucklin et al. 1998). This implies the 

needed ability to distinguish the species at all life stages (cf. Bucklin et al. 1998). It is 

possible, for example, that the two cryptic species in our investigation areas may 

partition oceanographic habitats by depth or water mass preferences (Goetze 2003). 

If this is the case, some level of niche separation might occur (Bucklin et al. 2001, Mc 

Gillicuddy & Bucklin 2002). It is also possible that an overlap instead of niche 

preferences occurs. This could especially be possible for the cryptic species in the 

Arctic Ocean that were both found at one station in the upper 50 m of the water 

column. If the latter holds true, remains unclear, as this hypothesis is based on only 

two specimens.     

 

If Oithona similis represents different species in the investigation areas, fundamental 

aspects of their geographic distribution, population ecology and life history should be 

re-examined as such published results may represent a species group rather than a 

single species. Thus, species could not be differentiated and would be mixed up. The 

species in that group may differ in temporal and spatial patterns of distribution and 

abundance, and in reproductive biology (cf. Bucklin et al. 1998). A failure to 

recognize such cryptic species would hamper studies of ecological and evolutionary 

processes in the sea (cf. Knowlton 1993, Castro-Longoria et al. 2003), as well as on 

marine bioinvasions (Bucciarelli et al. 2002). However, it is very complex and time 

consuming to verify the existence of such cryptic species complexes, as genetical, 

morphological and ecological investigations as well as reproductive isolation 

breeding trials would be essential (e.g. Lee 2000, Dodson et al. 2003). Hence, the 

possible existence of cryptic species should be kept in mind for future studies on O. 

similis.  

 

If a species complex exists, every single Oithona species could have very different 

ecological requirements and therefore influence the system individually. 

Consequently, mixtures of unrecognized cryptic species could seriously confound 
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interpretations of present results (Knowlton 1993). There are for example still not 

many studies concerning the biology of small zooplankton species that are key 

organisms in the Mediterranean Sea (Licandro & Icardi 2000). More investigations 

dealing with their life cycles, behavior and physiological preferences will help to get a 

better understanding of their success in the pelagic system and to estimate their 

secondary production that is accessible for higher trophic levels (Licandro & Icardi 

2009). Avoiding confusion caused by overlooked cryptic species is particularly 

important for abundant species (Knowlton 1993) like O. similis. This should be 

considered, although for the whole ecosystem the impact of one omnivorous 

ubiquitous species that is dominant and several cryptic species that are very 

stenoecious, might possibly be the same. Many complexes of sibling species offer 

the chance to test current evolutionary theories in ecology and behavioral biology 

(Knowlton 1993). There is an enormous difference in terms of evolutionary potential 

between a circumtropical species and a complex of many more geographically 

limited ones (Knowlton 1986). Furthermore, such information would enhance our 

understanding of the processes of speciation (Knowlton 1986). A study dealing with 

all these aspects for O. similis would be worth the effort. 
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